1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for expressions.
11 //===----------------------------------------------------------------------===//
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TypeTraits.h"
39 #include "clang/Lex/LiteralSupport.h"
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Sema/AnalysisBasedWarnings.h"
42 #include "clang/Sema/DeclSpec.h"
43 #include "clang/Sema/DelayedDiagnostic.h"
44 #include "clang/Sema/Designator.h"
45 #include "clang/Sema/EnterExpressionEvaluationContext.h"
46 #include "clang/Sema/Initialization.h"
47 #include "clang/Sema/Lookup.h"
48 #include "clang/Sema/Overload.h"
49 #include "clang/Sema/ParsedTemplate.h"
50 #include "clang/Sema/Scope.h"
51 #include "clang/Sema/ScopeInfo.h"
52 #include "clang/Sema/SemaFixItUtils.h"
53 #include "clang/Sema/SemaInternal.h"
54 #include "clang/Sema/Template.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/TypeSize.h"
63 using namespace clang
;
66 /// Determine whether the use of this declaration is valid, without
67 /// emitting diagnostics.
68 bool Sema::CanUseDecl(NamedDecl
*D
, bool TreatUnavailableAsInvalid
) {
69 // See if this is an auto-typed variable whose initializer we are parsing.
70 if (ParsingInitForAutoVars
.count(D
))
73 // See if this is a deleted function.
74 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
78 // If the function has a deduced return type, and we can't deduce it,
79 // then we can't use it either.
80 if (getLangOpts().CPlusPlus14
&& FD
->getReturnType()->isUndeducedType() &&
81 DeduceReturnType(FD
, SourceLocation(), /*Diagnose*/ false))
84 // See if this is an aligned allocation/deallocation function that is
86 if (TreatUnavailableAsInvalid
&&
87 isUnavailableAlignedAllocationFunction(*FD
))
91 // See if this function is unavailable.
92 if (TreatUnavailableAsInvalid
&& D
->getAvailability() == AR_Unavailable
&&
93 cast
<Decl
>(CurContext
)->getAvailability() != AR_Unavailable
)
96 if (isa
<UnresolvedUsingIfExistsDecl
>(D
))
102 static void DiagnoseUnusedOfDecl(Sema
&S
, NamedDecl
*D
, SourceLocation Loc
) {
103 // Warn if this is used but marked unused.
104 if (const auto *A
= D
->getAttr
<UnusedAttr
>()) {
105 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
106 // should diagnose them.
107 if (A
->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused
&&
108 A
->getSemanticSpelling() != UnusedAttr::C23_maybe_unused
) {
109 const Decl
*DC
= cast_or_null
<Decl
>(S
.getCurObjCLexicalContext());
110 if (DC
&& !DC
->hasAttr
<UnusedAttr
>())
111 S
.Diag(Loc
, diag::warn_used_but_marked_unused
) << D
;
116 /// Emit a note explaining that this function is deleted.
117 void Sema::NoteDeletedFunction(FunctionDecl
*Decl
) {
118 assert(Decl
&& Decl
->isDeleted());
120 if (Decl
->isDefaulted()) {
121 // If the method was explicitly defaulted, point at that declaration.
122 if (!Decl
->isImplicit())
123 Diag(Decl
->getLocation(), diag::note_implicitly_deleted
);
125 // Try to diagnose why this special member function was implicitly
126 // deleted. This might fail, if that reason no longer applies.
127 DiagnoseDeletedDefaultedFunction(Decl
);
131 auto *Ctor
= dyn_cast
<CXXConstructorDecl
>(Decl
);
132 if (Ctor
&& Ctor
->isInheritingConstructor())
133 return NoteDeletedInheritingConstructor(Ctor
);
135 Diag(Decl
->getLocation(), diag::note_availability_specified_here
)
139 /// Determine whether a FunctionDecl was ever declared with an
140 /// explicit storage class.
141 static bool hasAnyExplicitStorageClass(const FunctionDecl
*D
) {
142 for (auto *I
: D
->redecls()) {
143 if (I
->getStorageClass() != SC_None
)
149 /// Check whether we're in an extern inline function and referring to a
150 /// variable or function with internal linkage (C11 6.7.4p3).
152 /// This is only a warning because we used to silently accept this code, but
153 /// in many cases it will not behave correctly. This is not enabled in C++ mode
154 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
155 /// and so while there may still be user mistakes, most of the time we can't
156 /// prove that there are errors.
157 static void diagnoseUseOfInternalDeclInInlineFunction(Sema
&S
,
159 SourceLocation Loc
) {
160 // This is disabled under C++; there are too many ways for this to fire in
161 // contexts where the warning is a false positive, or where it is technically
162 // correct but benign.
163 if (S
.getLangOpts().CPlusPlus
)
166 // Check if this is an inlined function or method.
167 FunctionDecl
*Current
= S
.getCurFunctionDecl();
170 if (!Current
->isInlined())
172 if (!Current
->isExternallyVisible())
175 // Check if the decl has internal linkage.
176 if (D
->getFormalLinkage() != Linkage::Internal
)
179 // Downgrade from ExtWarn to Extension if
180 // (1) the supposedly external inline function is in the main file,
181 // and probably won't be included anywhere else.
182 // (2) the thing we're referencing is a pure function.
183 // (3) the thing we're referencing is another inline function.
184 // This last can give us false negatives, but it's better than warning on
185 // wrappers for simple C library functions.
186 const FunctionDecl
*UsedFn
= dyn_cast
<FunctionDecl
>(D
);
187 bool DowngradeWarning
= S
.getSourceManager().isInMainFile(Loc
);
188 if (!DowngradeWarning
&& UsedFn
)
189 DowngradeWarning
= UsedFn
->isInlined() || UsedFn
->hasAttr
<ConstAttr
>();
191 S
.Diag(Loc
, DowngradeWarning
? diag::ext_internal_in_extern_inline_quiet
192 : diag::ext_internal_in_extern_inline
)
193 << /*IsVar=*/!UsedFn
<< D
;
195 S
.MaybeSuggestAddingStaticToDecl(Current
);
197 S
.Diag(D
->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at
)
201 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl
*Cur
) {
202 const FunctionDecl
*First
= Cur
->getFirstDecl();
204 // Suggest "static" on the function, if possible.
205 if (!hasAnyExplicitStorageClass(First
)) {
206 SourceLocation DeclBegin
= First
->getSourceRange().getBegin();
207 Diag(DeclBegin
, diag::note_convert_inline_to_static
)
208 << Cur
<< FixItHint::CreateInsertion(DeclBegin
, "static ");
212 /// Determine whether the use of this declaration is valid, and
213 /// emit any corresponding diagnostics.
215 /// This routine diagnoses various problems with referencing
216 /// declarations that can occur when using a declaration. For example,
217 /// it might warn if a deprecated or unavailable declaration is being
218 /// used, or produce an error (and return true) if a C++0x deleted
219 /// function is being used.
221 /// \returns true if there was an error (this declaration cannot be
222 /// referenced), false otherwise.
224 bool Sema::DiagnoseUseOfDecl(NamedDecl
*D
, ArrayRef
<SourceLocation
> Locs
,
225 const ObjCInterfaceDecl
*UnknownObjCClass
,
226 bool ObjCPropertyAccess
,
227 bool AvoidPartialAvailabilityChecks
,
228 ObjCInterfaceDecl
*ClassReceiver
,
229 bool SkipTrailingRequiresClause
) {
230 SourceLocation Loc
= Locs
.front();
231 if (getLangOpts().CPlusPlus
&& isa
<FunctionDecl
>(D
)) {
232 // If there were any diagnostics suppressed by template argument deduction,
234 auto Pos
= SuppressedDiagnostics
.find(D
->getCanonicalDecl());
235 if (Pos
!= SuppressedDiagnostics
.end()) {
236 for (const PartialDiagnosticAt
&Suppressed
: Pos
->second
)
237 Diag(Suppressed
.first
, Suppressed
.second
);
239 // Clear out the list of suppressed diagnostics, so that we don't emit
240 // them again for this specialization. However, we don't obsolete this
241 // entry from the table, because we want to avoid ever emitting these
242 // diagnostics again.
246 // C++ [basic.start.main]p3:
247 // The function 'main' shall not be used within a program.
248 if (cast
<FunctionDecl
>(D
)->isMain())
249 Diag(Loc
, diag::ext_main_used
);
251 diagnoseUnavailableAlignedAllocation(*cast
<FunctionDecl
>(D
), Loc
);
254 // See if this is an auto-typed variable whose initializer we are parsing.
255 if (ParsingInitForAutoVars
.count(D
)) {
256 if (isa
<BindingDecl
>(D
)) {
257 Diag(Loc
, diag::err_binding_cannot_appear_in_own_initializer
)
260 Diag(Loc
, diag::err_auto_variable_cannot_appear_in_own_initializer
)
261 << D
->getDeclName() << cast
<VarDecl
>(D
)->getType();
266 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
267 // See if this is a deleted function.
268 if (FD
->isDeleted()) {
269 auto *Ctor
= dyn_cast
<CXXConstructorDecl
>(FD
);
270 if (Ctor
&& Ctor
->isInheritingConstructor())
271 Diag(Loc
, diag::err_deleted_inherited_ctor_use
)
273 << Ctor
->getInheritedConstructor().getConstructor()->getParent();
275 Diag(Loc
, diag::err_deleted_function_use
);
276 NoteDeletedFunction(FD
);
281 // A program that refers explicitly or implicitly to a function with a
282 // trailing requires-clause whose constraint-expression is not satisfied,
283 // other than to declare it, is ill-formed. [...]
285 // See if this is a function with constraints that need to be satisfied.
286 // Check this before deducing the return type, as it might instantiate the
288 if (!SkipTrailingRequiresClause
&& FD
->getTrailingRequiresClause()) {
289 ConstraintSatisfaction Satisfaction
;
290 if (CheckFunctionConstraints(FD
, Satisfaction
, Loc
,
291 /*ForOverloadResolution*/ true))
292 // A diagnostic will have already been generated (non-constant
293 // constraint expression, for example)
295 if (!Satisfaction
.IsSatisfied
) {
297 diag::err_reference_to_function_with_unsatisfied_constraints
)
299 DiagnoseUnsatisfiedConstraint(Satisfaction
);
304 // If the function has a deduced return type, and we can't deduce it,
305 // then we can't use it either.
306 if (getLangOpts().CPlusPlus14
&& FD
->getReturnType()->isUndeducedType() &&
307 DeduceReturnType(FD
, Loc
))
310 if (getLangOpts().CUDA
&& !CheckCUDACall(Loc
, FD
))
315 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(D
)) {
316 // Lambdas are only default-constructible or assignable in C++2a onwards.
317 if (MD
->getParent()->isLambda() &&
318 ((isa
<CXXConstructorDecl
>(MD
) &&
319 cast
<CXXConstructorDecl
>(MD
)->isDefaultConstructor()) ||
320 MD
->isCopyAssignmentOperator() || MD
->isMoveAssignmentOperator())) {
321 Diag(Loc
, diag::warn_cxx17_compat_lambda_def_ctor_assign
)
322 << !isa
<CXXConstructorDecl
>(MD
);
326 auto getReferencedObjCProp
= [](const NamedDecl
*D
) ->
327 const ObjCPropertyDecl
* {
328 if (const auto *MD
= dyn_cast
<ObjCMethodDecl
>(D
))
329 return MD
->findPropertyDecl();
332 if (const ObjCPropertyDecl
*ObjCPDecl
= getReferencedObjCProp(D
)) {
333 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl
, Loc
))
335 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D
, Loc
)) {
339 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
340 // Only the variables omp_in and omp_out are allowed in the combiner.
341 // Only the variables omp_priv and omp_orig are allowed in the
342 // initializer-clause.
343 auto *DRD
= dyn_cast
<OMPDeclareReductionDecl
>(CurContext
);
344 if (LangOpts
.OpenMP
&& DRD
&& !CurContext
->containsDecl(D
) &&
346 Diag(Loc
, diag::err_omp_wrong_var_in_declare_reduction
)
347 << getCurFunction()->HasOMPDeclareReductionCombiner
;
348 Diag(D
->getLocation(), diag::note_entity_declared_at
) << D
;
352 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
353 // List-items in map clauses on this construct may only refer to the declared
354 // variable var and entities that could be referenced by a procedure defined
355 // at the same location.
356 // [OpenMP 5.2] Also allow iterator declared variables.
357 if (LangOpts
.OpenMP
&& isa
<VarDecl
>(D
) &&
358 !isOpenMPDeclareMapperVarDeclAllowed(cast
<VarDecl
>(D
))) {
359 Diag(Loc
, diag::err_omp_declare_mapper_wrong_var
)
360 << getOpenMPDeclareMapperVarName();
361 Diag(D
->getLocation(), diag::note_entity_declared_at
) << D
;
365 if (const auto *EmptyD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(D
)) {
366 Diag(Loc
, diag::err_use_of_empty_using_if_exists
);
367 Diag(EmptyD
->getLocation(), diag::note_empty_using_if_exists_here
);
371 DiagnoseAvailabilityOfDecl(D
, Locs
, UnknownObjCClass
, ObjCPropertyAccess
,
372 AvoidPartialAvailabilityChecks
, ClassReceiver
);
374 DiagnoseUnusedOfDecl(*this, D
, Loc
);
376 diagnoseUseOfInternalDeclInInlineFunction(*this, D
, Loc
);
378 if (D
->hasAttr
<AvailableOnlyInDefaultEvalMethodAttr
>()) {
379 if (getLangOpts().getFPEvalMethod() !=
380 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine
&&
381 PP
.getLastFPEvalPragmaLocation().isValid() &&
382 PP
.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
383 Diag(D
->getLocation(),
384 diag::err_type_available_only_in_default_eval_method
)
388 if (auto *VD
= dyn_cast
<ValueDecl
>(D
))
389 checkTypeSupport(VD
->getType(), Loc
, VD
);
391 if (LangOpts
.SYCLIsDevice
||
392 (LangOpts
.OpenMP
&& LangOpts
.OpenMPIsTargetDevice
)) {
393 if (!Context
.getTargetInfo().isTLSSupported())
394 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
395 if (VD
->getTLSKind() != VarDecl::TLS_None
)
396 targetDiag(*Locs
.begin(), diag::err_thread_unsupported
);
399 if (isa
<ParmVarDecl
>(D
) && isa
<RequiresExprBodyDecl
>(D
->getDeclContext()) &&
400 !isUnevaluatedContext()) {
401 // C++ [expr.prim.req.nested] p3
402 // A local parameter shall only appear as an unevaluated operand
403 // (Clause 8) within the constraint-expression.
404 Diag(Loc
, diag::err_requires_expr_parameter_referenced_in_evaluated_context
)
406 Diag(D
->getLocation(), diag::note_entity_declared_at
) << D
;
413 /// DiagnoseSentinelCalls - This routine checks whether a call or
414 /// message-send is to a declaration with the sentinel attribute, and
415 /// if so, it checks that the requirements of the sentinel are
417 void Sema::DiagnoseSentinelCalls(const NamedDecl
*D
, SourceLocation Loc
,
418 ArrayRef
<Expr
*> Args
) {
419 const SentinelAttr
*Attr
= D
->getAttr
<SentinelAttr
>();
423 // The number of formal parameters of the declaration.
424 unsigned NumFormalParams
;
426 // The kind of declaration. This is also an index into a %select in
428 enum { CK_Function
, CK_Method
, CK_Block
} CalleeKind
;
430 if (const auto *MD
= dyn_cast
<ObjCMethodDecl
>(D
)) {
431 NumFormalParams
= MD
->param_size();
432 CalleeKind
= CK_Method
;
433 } else if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
434 NumFormalParams
= FD
->param_size();
435 CalleeKind
= CK_Function
;
436 } else if (const auto *VD
= dyn_cast
<VarDecl
>(D
)) {
437 QualType Ty
= VD
->getType();
438 const FunctionType
*Fn
= nullptr;
439 if (const auto *PtrTy
= Ty
->getAs
<PointerType
>()) {
440 Fn
= PtrTy
->getPointeeType()->getAs
<FunctionType
>();
443 CalleeKind
= CK_Function
;
444 } else if (const auto *PtrTy
= Ty
->getAs
<BlockPointerType
>()) {
445 Fn
= PtrTy
->getPointeeType()->castAs
<FunctionType
>();
446 CalleeKind
= CK_Block
;
451 if (const auto *proto
= dyn_cast
<FunctionProtoType
>(Fn
))
452 NumFormalParams
= proto
->getNumParams();
459 // "NullPos" is the number of formal parameters at the end which
460 // effectively count as part of the variadic arguments. This is
461 // useful if you would prefer to not have *any* formal parameters,
462 // but the language forces you to have at least one.
463 unsigned NullPos
= Attr
->getNullPos();
464 assert((NullPos
== 0 || NullPos
== 1) && "invalid null position on sentinel");
465 NumFormalParams
= (NullPos
> NumFormalParams
? 0 : NumFormalParams
- NullPos
);
467 // The number of arguments which should follow the sentinel.
468 unsigned NumArgsAfterSentinel
= Attr
->getSentinel();
470 // If there aren't enough arguments for all the formal parameters,
471 // the sentinel, and the args after the sentinel, complain.
472 if (Args
.size() < NumFormalParams
+ NumArgsAfterSentinel
+ 1) {
473 Diag(Loc
, diag::warn_not_enough_argument
) << D
->getDeclName();
474 Diag(D
->getLocation(), diag::note_sentinel_here
) << int(CalleeKind
);
478 // Otherwise, find the sentinel expression.
479 const Expr
*SentinelExpr
= Args
[Args
.size() - NumArgsAfterSentinel
- 1];
482 if (SentinelExpr
->isValueDependent())
484 if (Context
.isSentinelNullExpr(SentinelExpr
))
487 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
488 // or 'NULL' if those are actually defined in the context. Only use
489 // 'nil' for ObjC methods, where it's much more likely that the
490 // variadic arguments form a list of object pointers.
491 SourceLocation MissingNilLoc
= getLocForEndOfToken(SentinelExpr
->getEndLoc());
492 std::string NullValue
;
493 if (CalleeKind
== CK_Method
&& PP
.isMacroDefined("nil"))
495 else if (getLangOpts().CPlusPlus11
)
496 NullValue
= "nullptr";
497 else if (PP
.isMacroDefined("NULL"))
500 NullValue
= "(void*) 0";
502 if (MissingNilLoc
.isInvalid())
503 Diag(Loc
, diag::warn_missing_sentinel
) << int(CalleeKind
);
505 Diag(MissingNilLoc
, diag::warn_missing_sentinel
)
507 << FixItHint::CreateInsertion(MissingNilLoc
, ", " + NullValue
);
508 Diag(D
->getLocation(), diag::note_sentinel_here
)
509 << int(CalleeKind
) << Attr
->getRange();
512 SourceRange
Sema::getExprRange(Expr
*E
) const {
513 return E
? E
->getSourceRange() : SourceRange();
516 //===----------------------------------------------------------------------===//
517 // Standard Promotions and Conversions
518 //===----------------------------------------------------------------------===//
520 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
521 ExprResult
Sema::DefaultFunctionArrayConversion(Expr
*E
, bool Diagnose
) {
522 // Handle any placeholder expressions which made it here.
523 if (E
->hasPlaceholderType()) {
524 ExprResult result
= CheckPlaceholderExpr(E
);
525 if (result
.isInvalid()) return ExprError();
529 QualType Ty
= E
->getType();
530 assert(!Ty
.isNull() && "DefaultFunctionArrayConversion - missing type");
532 if (Ty
->isFunctionType()) {
533 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenCasts()))
534 if (auto *FD
= dyn_cast
<FunctionDecl
>(DRE
->getDecl()))
535 if (!checkAddressOfFunctionIsAvailable(FD
, Diagnose
, E
->getExprLoc()))
538 E
= ImpCastExprToType(E
, Context
.getPointerType(Ty
),
539 CK_FunctionToPointerDecay
).get();
540 } else if (Ty
->isArrayType()) {
541 // In C90 mode, arrays only promote to pointers if the array expression is
542 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
543 // type 'array of type' is converted to an expression that has type 'pointer
544 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
545 // that has type 'array of type' ...". The relevant change is "an lvalue"
546 // (C90) to "an expression" (C99).
549 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
550 // T" can be converted to an rvalue of type "pointer to T".
552 if (getLangOpts().C99
|| getLangOpts().CPlusPlus
|| E
->isLValue()) {
553 ExprResult Res
= ImpCastExprToType(E
, Context
.getArrayDecayedType(Ty
),
554 CK_ArrayToPointerDecay
);
563 static void CheckForNullPointerDereference(Sema
&S
, Expr
*E
) {
564 // Check to see if we are dereferencing a null pointer. If so,
565 // and if not volatile-qualified, this is undefined behavior that the
566 // optimizer will delete, so warn about it. People sometimes try to use this
567 // to get a deterministic trap and are surprised by clang's behavior. This
568 // only handles the pattern "*null", which is a very syntactic check.
569 const auto *UO
= dyn_cast
<UnaryOperator
>(E
->IgnoreParenCasts());
570 if (UO
&& UO
->getOpcode() == UO_Deref
&&
571 UO
->getSubExpr()->getType()->isPointerType()) {
573 UO
->getSubExpr()->getType()->getPointeeType().getAddressSpace();
574 if ((!isTargetAddressSpace(AS
) ||
575 (isTargetAddressSpace(AS
) && toTargetAddressSpace(AS
) == 0)) &&
576 UO
->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
577 S
.Context
, Expr::NPC_ValueDependentIsNotNull
) &&
578 !UO
->getType().isVolatileQualified()) {
579 S
.DiagRuntimeBehavior(UO
->getOperatorLoc(), UO
,
580 S
.PDiag(diag::warn_indirection_through_null
)
581 << UO
->getSubExpr()->getSourceRange());
582 S
.DiagRuntimeBehavior(UO
->getOperatorLoc(), UO
,
583 S
.PDiag(diag::note_indirection_through_null
));
588 static void DiagnoseDirectIsaAccess(Sema
&S
, const ObjCIvarRefExpr
*OIRE
,
589 SourceLocation AssignLoc
,
591 const ObjCIvarDecl
*IV
= OIRE
->getDecl();
595 DeclarationName MemberName
= IV
->getDeclName();
596 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
597 if (!Member
|| !Member
->isStr("isa"))
600 const Expr
*Base
= OIRE
->getBase();
601 QualType BaseType
= Base
->getType();
603 BaseType
= BaseType
->getPointeeType();
604 if (const ObjCObjectType
*OTy
= BaseType
->getAs
<ObjCObjectType
>())
605 if (ObjCInterfaceDecl
*IDecl
= OTy
->getInterface()) {
606 ObjCInterfaceDecl
*ClassDeclared
= nullptr;
607 ObjCIvarDecl
*IV
= IDecl
->lookupInstanceVariable(Member
, ClassDeclared
);
608 if (!ClassDeclared
->getSuperClass()
609 && (*ClassDeclared
->ivar_begin()) == IV
) {
611 NamedDecl
*ObjectSetClass
=
612 S
.LookupSingleName(S
.TUScope
,
613 &S
.Context
.Idents
.get("object_setClass"),
614 SourceLocation(), S
.LookupOrdinaryName
);
615 if (ObjectSetClass
) {
616 SourceLocation RHSLocEnd
= S
.getLocForEndOfToken(RHS
->getEndLoc());
617 S
.Diag(OIRE
->getExprLoc(), diag::warn_objc_isa_assign
)
618 << FixItHint::CreateInsertion(OIRE
->getBeginLoc(),
620 << FixItHint::CreateReplacement(
621 SourceRange(OIRE
->getOpLoc(), AssignLoc
), ",")
622 << FixItHint::CreateInsertion(RHSLocEnd
, ")");
625 S
.Diag(OIRE
->getLocation(), diag::warn_objc_isa_assign
);
627 NamedDecl
*ObjectGetClass
=
628 S
.LookupSingleName(S
.TUScope
,
629 &S
.Context
.Idents
.get("object_getClass"),
630 SourceLocation(), S
.LookupOrdinaryName
);
632 S
.Diag(OIRE
->getExprLoc(), diag::warn_objc_isa_use
)
633 << FixItHint::CreateInsertion(OIRE
->getBeginLoc(),
635 << FixItHint::CreateReplacement(
636 SourceRange(OIRE
->getOpLoc(), OIRE
->getEndLoc()), ")");
638 S
.Diag(OIRE
->getLocation(), diag::warn_objc_isa_use
);
640 S
.Diag(IV
->getLocation(), diag::note_ivar_decl
);
645 ExprResult
Sema::DefaultLvalueConversion(Expr
*E
) {
646 // Handle any placeholder expressions which made it here.
647 if (E
->hasPlaceholderType()) {
648 ExprResult result
= CheckPlaceholderExpr(E
);
649 if (result
.isInvalid()) return ExprError();
653 // C++ [conv.lval]p1:
654 // A glvalue of a non-function, non-array type T can be
655 // converted to a prvalue.
656 if (!E
->isGLValue()) return E
;
658 QualType T
= E
->getType();
659 assert(!T
.isNull() && "r-value conversion on typeless expression?");
661 // lvalue-to-rvalue conversion cannot be applied to function or array types.
662 if (T
->isFunctionType() || T
->isArrayType())
665 // We don't want to throw lvalue-to-rvalue casts on top of
666 // expressions of certain types in C++.
667 if (getLangOpts().CPlusPlus
&&
668 (E
->getType() == Context
.OverloadTy
||
669 T
->isDependentType() ||
673 // The C standard is actually really unclear on this point, and
674 // DR106 tells us what the result should be but not why. It's
675 // generally best to say that void types just doesn't undergo
676 // lvalue-to-rvalue at all. Note that expressions of unqualified
677 // 'void' type are never l-values, but qualified void can be.
681 // OpenCL usually rejects direct accesses to values of 'half' type.
682 if (getLangOpts().OpenCL
&&
683 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
685 Diag(E
->getExprLoc(), diag::err_opencl_half_load_store
)
690 CheckForNullPointerDereference(*this, E
);
691 if (const ObjCIsaExpr
*OISA
= dyn_cast
<ObjCIsaExpr
>(E
->IgnoreParenCasts())) {
692 NamedDecl
*ObjectGetClass
= LookupSingleName(TUScope
,
693 &Context
.Idents
.get("object_getClass"),
694 SourceLocation(), LookupOrdinaryName
);
696 Diag(E
->getExprLoc(), diag::warn_objc_isa_use
)
697 << FixItHint::CreateInsertion(OISA
->getBeginLoc(), "object_getClass(")
698 << FixItHint::CreateReplacement(
699 SourceRange(OISA
->getOpLoc(), OISA
->getIsaMemberLoc()), ")");
701 Diag(E
->getExprLoc(), diag::warn_objc_isa_use
);
703 else if (const ObjCIvarRefExpr
*OIRE
=
704 dyn_cast
<ObjCIvarRefExpr
>(E
->IgnoreParenCasts()))
705 DiagnoseDirectIsaAccess(*this, OIRE
, SourceLocation(), /* Expr*/nullptr);
707 // C++ [conv.lval]p1:
708 // [...] If T is a non-class type, the type of the prvalue is the
709 // cv-unqualified version of T. Otherwise, the type of the
713 // If the lvalue has qualified type, the value has the unqualified
714 // version of the type of the lvalue; otherwise, the value has the
715 // type of the lvalue.
716 if (T
.hasQualifiers())
717 T
= T
.getUnqualifiedType();
719 // Under the MS ABI, lock down the inheritance model now.
720 if (T
->isMemberPointerType() &&
721 Context
.getTargetInfo().getCXXABI().isMicrosoft())
722 (void)isCompleteType(E
->getExprLoc(), T
);
724 ExprResult Res
= CheckLValueToRValueConversionOperand(E
);
729 // Loading a __weak object implicitly retains the value, so we need a cleanup to
731 if (E
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
)
732 Cleanup
.setExprNeedsCleanups(true);
734 if (E
->getType().isDestructedType() == QualType::DK_nontrivial_c_struct
)
735 Cleanup
.setExprNeedsCleanups(true);
737 // C++ [conv.lval]p3:
738 // If T is cv std::nullptr_t, the result is a null pointer constant.
739 CastKind CK
= T
->isNullPtrType() ? CK_NullToPointer
: CK_LValueToRValue
;
740 Res
= ImplicitCastExpr::Create(Context
, T
, CK
, E
, nullptr, VK_PRValue
,
741 CurFPFeatureOverrides());
744 // ... if the lvalue has atomic type, the value has the non-atomic version
745 // of the type of the lvalue ...
746 if (const AtomicType
*Atomic
= T
->getAs
<AtomicType
>()) {
747 T
= Atomic
->getValueType().getUnqualifiedType();
748 Res
= ImplicitCastExpr::Create(Context
, T
, CK_AtomicToNonAtomic
, Res
.get(),
749 nullptr, VK_PRValue
, FPOptionsOverride());
755 ExprResult
Sema::DefaultFunctionArrayLvalueConversion(Expr
*E
, bool Diagnose
) {
756 ExprResult Res
= DefaultFunctionArrayConversion(E
, Diagnose
);
759 Res
= DefaultLvalueConversion(Res
.get());
765 /// CallExprUnaryConversions - a special case of an unary conversion
766 /// performed on a function designator of a call expression.
767 ExprResult
Sema::CallExprUnaryConversions(Expr
*E
) {
768 QualType Ty
= E
->getType();
770 // Only do implicit cast for a function type, but not for a pointer
772 if (Ty
->isFunctionType()) {
773 Res
= ImpCastExprToType(E
, Context
.getPointerType(Ty
),
774 CK_FunctionToPointerDecay
);
778 Res
= DefaultLvalueConversion(Res
.get());
784 /// UsualUnaryConversions - Performs various conversions that are common to most
785 /// operators (C99 6.3). The conversions of array and function types are
786 /// sometimes suppressed. For example, the array->pointer conversion doesn't
787 /// apply if the array is an argument to the sizeof or address (&) operators.
788 /// In these instances, this routine should *not* be called.
789 ExprResult
Sema::UsualUnaryConversions(Expr
*E
) {
790 // First, convert to an r-value.
791 ExprResult Res
= DefaultFunctionArrayLvalueConversion(E
);
796 QualType Ty
= E
->getType();
797 assert(!Ty
.isNull() && "UsualUnaryConversions - missing type");
799 LangOptions::FPEvalMethodKind EvalMethod
= CurFPFeatures
.getFPEvalMethod();
800 if (EvalMethod
!= LangOptions::FEM_Source
&& Ty
->isFloatingType() &&
801 (getLangOpts().getFPEvalMethod() !=
802 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine
||
803 PP
.getLastFPEvalPragmaLocation().isValid())) {
804 switch (EvalMethod
) {
806 llvm_unreachable("Unrecognized float evaluation method");
808 case LangOptions::FEM_UnsetOnCommandLine
:
809 llvm_unreachable("Float evaluation method should be set by now");
811 case LangOptions::FEM_Double
:
812 if (Context
.getFloatingTypeOrder(Context
.DoubleTy
, Ty
) > 0)
813 // Widen the expression to double.
814 return Ty
->isComplexType()
815 ? ImpCastExprToType(E
,
816 Context
.getComplexType(Context
.DoubleTy
),
817 CK_FloatingComplexCast
)
818 : ImpCastExprToType(E
, Context
.DoubleTy
, CK_FloatingCast
);
820 case LangOptions::FEM_Extended
:
821 if (Context
.getFloatingTypeOrder(Context
.LongDoubleTy
, Ty
) > 0)
822 // Widen the expression to long double.
823 return Ty
->isComplexType()
825 E
, Context
.getComplexType(Context
.LongDoubleTy
),
826 CK_FloatingComplexCast
)
827 : ImpCastExprToType(E
, Context
.LongDoubleTy
,
833 // Half FP have to be promoted to float unless it is natively supported
834 if (Ty
->isHalfType() && !getLangOpts().NativeHalfType
)
835 return ImpCastExprToType(Res
.get(), Context
.FloatTy
, CK_FloatingCast
);
837 // Try to perform integral promotions if the object has a theoretically
839 if (Ty
->isIntegralOrUnscopedEnumerationType()) {
842 // The following may be used in an expression wherever an int or
843 // unsigned int may be used:
844 // - an object or expression with an integer type whose integer
845 // conversion rank is less than or equal to the rank of int
847 // - A bit-field of type _Bool, int, signed int, or unsigned int.
849 // If an int can represent all values of the original type, the
850 // value is converted to an int; otherwise, it is converted to an
851 // unsigned int. These are called the integer promotions. All
852 // other types are unchanged by the integer promotions.
854 QualType PTy
= Context
.isPromotableBitField(E
);
856 E
= ImpCastExprToType(E
, PTy
, CK_IntegralCast
).get();
859 if (Context
.isPromotableIntegerType(Ty
)) {
860 QualType PT
= Context
.getPromotedIntegerType(Ty
);
861 E
= ImpCastExprToType(E
, PT
, CK_IntegralCast
).get();
868 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
869 /// do not have a prototype. Arguments that have type float or __fp16
870 /// are promoted to double. All other argument types are converted by
871 /// UsualUnaryConversions().
872 ExprResult
Sema::DefaultArgumentPromotion(Expr
*E
) {
873 QualType Ty
= E
->getType();
874 assert(!Ty
.isNull() && "DefaultArgumentPromotion - missing type");
876 ExprResult Res
= UsualUnaryConversions(E
);
881 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
882 // promote to double.
883 // Note that default argument promotion applies only to float (and
884 // half/fp16); it does not apply to _Float16.
885 const BuiltinType
*BTy
= Ty
->getAs
<BuiltinType
>();
886 if (BTy
&& (BTy
->getKind() == BuiltinType::Half
||
887 BTy
->getKind() == BuiltinType::Float
)) {
888 if (getLangOpts().OpenCL
&&
889 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
890 if (BTy
->getKind() == BuiltinType::Half
) {
891 E
= ImpCastExprToType(E
, Context
.FloatTy
, CK_FloatingCast
).get();
894 E
= ImpCastExprToType(E
, Context
.DoubleTy
, CK_FloatingCast
).get();
898 getLangOpts().getExtendIntArgs() ==
899 LangOptions::ExtendArgsKind::ExtendTo64
&&
900 Context
.getTargetInfo().supportsExtendIntArgs() && Ty
->isIntegerType() &&
901 Context
.getTypeSizeInChars(BTy
) <
902 Context
.getTypeSizeInChars(Context
.LongLongTy
)) {
903 E
= (Ty
->isUnsignedIntegerType())
904 ? ImpCastExprToType(E
, Context
.UnsignedLongLongTy
, CK_IntegralCast
)
906 : ImpCastExprToType(E
, Context
.LongLongTy
, CK_IntegralCast
).get();
907 assert(8 == Context
.getTypeSizeInChars(Context
.LongLongTy
).getQuantity() &&
908 "Unexpected typesize for LongLongTy");
911 // C++ performs lvalue-to-rvalue conversion as a default argument
912 // promotion, even on class types, but note:
913 // C++11 [conv.lval]p2:
914 // When an lvalue-to-rvalue conversion occurs in an unevaluated
915 // operand or a subexpression thereof the value contained in the
916 // referenced object is not accessed. Otherwise, if the glvalue
917 // has a class type, the conversion copy-initializes a temporary
918 // of type T from the glvalue and the result of the conversion
919 // is a prvalue for the temporary.
920 // FIXME: add some way to gate this entire thing for correctness in
921 // potentially potentially evaluated contexts.
922 if (getLangOpts().CPlusPlus
&& E
->isGLValue() && !isUnevaluatedContext()) {
923 ExprResult Temp
= PerformCopyInitialization(
924 InitializedEntity::InitializeTemporary(E
->getType()),
926 if (Temp
.isInvalid())
934 /// Determine the degree of POD-ness for an expression.
935 /// Incomplete types are considered POD, since this check can be performed
936 /// when we're in an unevaluated context.
937 Sema::VarArgKind
Sema::isValidVarArgType(const QualType
&Ty
) {
938 if (Ty
->isIncompleteType()) {
939 // C++11 [expr.call]p7:
940 // After these conversions, if the argument does not have arithmetic,
941 // enumeration, pointer, pointer to member, or class type, the program
944 // Since we've already performed array-to-pointer and function-to-pointer
945 // decay, the only such type in C++ is cv void. This also handles
946 // initializer lists as variadic arguments.
947 if (Ty
->isVoidType())
950 if (Ty
->isObjCObjectType())
955 if (Ty
.isDestructedType() == QualType::DK_nontrivial_c_struct
)
958 if (Context
.getTargetInfo().getTriple().isWasm() &&
959 Ty
.isWebAssemblyReferenceType()) {
963 if (Ty
.isCXX98PODType(Context
))
966 // C++11 [expr.call]p7:
967 // Passing a potentially-evaluated argument of class type (Clause 9)
968 // having a non-trivial copy constructor, a non-trivial move constructor,
969 // or a non-trivial destructor, with no corresponding parameter,
970 // is conditionally-supported with implementation-defined semantics.
971 if (getLangOpts().CPlusPlus11
&& !Ty
->isDependentType())
972 if (CXXRecordDecl
*Record
= Ty
->getAsCXXRecordDecl())
973 if (!Record
->hasNonTrivialCopyConstructor() &&
974 !Record
->hasNonTrivialMoveConstructor() &&
975 !Record
->hasNonTrivialDestructor())
976 return VAK_ValidInCXX11
;
978 if (getLangOpts().ObjCAutoRefCount
&& Ty
->isObjCLifetimeType())
981 if (Ty
->isObjCObjectType())
984 if (getLangOpts().MSVCCompat
)
985 return VAK_MSVCUndefined
;
987 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
988 // permitted to reject them. We should consider doing so.
989 return VAK_Undefined
;
992 void Sema::checkVariadicArgument(const Expr
*E
, VariadicCallType CT
) {
993 // Don't allow one to pass an Objective-C interface to a vararg.
994 const QualType
&Ty
= E
->getType();
995 VarArgKind VAK
= isValidVarArgType(Ty
);
997 // Complain about passing non-POD types through varargs.
999 case VAK_ValidInCXX11
:
1000 DiagRuntimeBehavior(
1001 E
->getBeginLoc(), nullptr,
1002 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg
) << Ty
<< CT
);
1005 if (Ty
->isRecordType()) {
1006 // This is unlikely to be what the user intended. If the class has a
1007 // 'c_str' member function, the user probably meant to call that.
1008 DiagRuntimeBehavior(E
->getBeginLoc(), nullptr,
1009 PDiag(diag::warn_pass_class_arg_to_vararg
)
1010 << Ty
<< CT
<< hasCStrMethod(E
) << ".c_str()");
1015 case VAK_MSVCUndefined
:
1016 DiagRuntimeBehavior(E
->getBeginLoc(), nullptr,
1017 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg
)
1018 << getLangOpts().CPlusPlus11
<< Ty
<< CT
);
1022 if (Ty
.isDestructedType() == QualType::DK_nontrivial_c_struct
)
1023 Diag(E
->getBeginLoc(),
1024 diag::err_cannot_pass_non_trivial_c_struct_to_vararg
)
1026 else if (Ty
->isObjCObjectType())
1027 DiagRuntimeBehavior(E
->getBeginLoc(), nullptr,
1028 PDiag(diag::err_cannot_pass_objc_interface_to_vararg
)
1031 Diag(E
->getBeginLoc(), diag::err_cannot_pass_to_vararg
)
1032 << isa
<InitListExpr
>(E
) << Ty
<< CT
;
1037 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1038 /// will create a trap if the resulting type is not a POD type.
1039 ExprResult
Sema::DefaultVariadicArgumentPromotion(Expr
*E
, VariadicCallType CT
,
1040 FunctionDecl
*FDecl
) {
1041 if (const BuiltinType
*PlaceholderTy
= E
->getType()->getAsPlaceholderType()) {
1042 // Strip the unbridged-cast placeholder expression off, if applicable.
1043 if (PlaceholderTy
->getKind() == BuiltinType::ARCUnbridgedCast
&&
1044 (CT
== VariadicMethod
||
1045 (FDecl
&& FDecl
->hasAttr
<CFAuditedTransferAttr
>()))) {
1046 E
= stripARCUnbridgedCast(E
);
1048 // Otherwise, do normal placeholder checking.
1050 ExprResult ExprRes
= CheckPlaceholderExpr(E
);
1051 if (ExprRes
.isInvalid())
1057 ExprResult ExprRes
= DefaultArgumentPromotion(E
);
1058 if (ExprRes
.isInvalid())
1061 // Copy blocks to the heap.
1062 if (ExprRes
.get()->getType()->isBlockPointerType())
1063 maybeExtendBlockObject(ExprRes
);
1067 // Diagnostics regarding non-POD argument types are
1068 // emitted along with format string checking in Sema::CheckFunctionCall().
1069 if (isValidVarArgType(E
->getType()) == VAK_Undefined
) {
1070 // Turn this into a trap.
1072 SourceLocation TemplateKWLoc
;
1074 Name
.setIdentifier(PP
.getIdentifierInfo("__builtin_trap"),
1076 ExprResult TrapFn
= ActOnIdExpression(TUScope
, SS
, TemplateKWLoc
, Name
,
1077 /*HasTrailingLParen=*/true,
1078 /*IsAddressOfOperand=*/false);
1079 if (TrapFn
.isInvalid())
1082 ExprResult Call
= BuildCallExpr(TUScope
, TrapFn
.get(), E
->getBeginLoc(),
1083 std::nullopt
, E
->getEndLoc());
1084 if (Call
.isInvalid())
1088 ActOnBinOp(TUScope
, E
->getBeginLoc(), tok::comma
, Call
.get(), E
);
1089 if (Comma
.isInvalid())
1094 if (!getLangOpts().CPlusPlus
&&
1095 RequireCompleteType(E
->getExprLoc(), E
->getType(),
1096 diag::err_call_incomplete_argument
))
1102 /// Converts an integer to complex float type. Helper function of
1103 /// UsualArithmeticConversions()
1105 /// \return false if the integer expression is an integer type and is
1106 /// successfully converted to the complex type.
1107 static bool handleIntegerToComplexFloatConversion(Sema
&S
, ExprResult
&IntExpr
,
1108 ExprResult
&ComplexExpr
,
1112 if (IntTy
->isComplexType() || IntTy
->isRealFloatingType()) return true;
1113 if (SkipCast
) return false;
1114 if (IntTy
->isIntegerType()) {
1115 QualType fpTy
= ComplexTy
->castAs
<ComplexType
>()->getElementType();
1116 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), fpTy
, CK_IntegralToFloating
);
1117 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), ComplexTy
,
1118 CK_FloatingRealToComplex
);
1120 assert(IntTy
->isComplexIntegerType());
1121 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), ComplexTy
,
1122 CK_IntegralComplexToFloatingComplex
);
1127 // This handles complex/complex, complex/float, or float/complex.
1128 // When both operands are complex, the shorter operand is converted to the
1129 // type of the longer, and that is the type of the result. This corresponds
1130 // to what is done when combining two real floating-point operands.
1131 // The fun begins when size promotion occur across type domains.
1132 // From H&S 6.3.4: When one operand is complex and the other is a real
1133 // floating-point type, the less precise type is converted, within it's
1134 // real or complex domain, to the precision of the other type. For example,
1135 // when combining a "long double" with a "double _Complex", the
1136 // "double _Complex" is promoted to "long double _Complex".
1137 static QualType
handleComplexFloatConversion(Sema
&S
, ExprResult
&Shorter
,
1138 QualType ShorterType
,
1139 QualType LongerType
,
1140 bool PromotePrecision
) {
1141 bool LongerIsComplex
= isa
<ComplexType
>(LongerType
.getCanonicalType());
1143 LongerIsComplex
? LongerType
: S
.Context
.getComplexType(LongerType
);
1145 if (PromotePrecision
) {
1146 if (isa
<ComplexType
>(ShorterType
.getCanonicalType())) {
1148 S
.ImpCastExprToType(Shorter
.get(), Result
, CK_FloatingComplexCast
);
1150 if (LongerIsComplex
)
1151 LongerType
= LongerType
->castAs
<ComplexType
>()->getElementType();
1152 Shorter
= S
.ImpCastExprToType(Shorter
.get(), LongerType
, CK_FloatingCast
);
1158 /// Handle arithmetic conversion with complex types. Helper function of
1159 /// UsualArithmeticConversions()
1160 static QualType
handleComplexConversion(Sema
&S
, ExprResult
&LHS
,
1161 ExprResult
&RHS
, QualType LHSType
,
1162 QualType RHSType
, bool IsCompAssign
) {
1163 // if we have an integer operand, the result is the complex type.
1164 if (!handleIntegerToComplexFloatConversion(S
, RHS
, LHS
, RHSType
, LHSType
,
1165 /*SkipCast=*/false))
1167 if (!handleIntegerToComplexFloatConversion(S
, LHS
, RHS
, LHSType
, RHSType
,
1168 /*SkipCast=*/IsCompAssign
))
1171 // Compute the rank of the two types, regardless of whether they are complex.
1172 int Order
= S
.Context
.getFloatingTypeOrder(LHSType
, RHSType
);
1174 // Promote the precision of the LHS if not an assignment.
1175 return handleComplexFloatConversion(S
, LHS
, LHSType
, RHSType
,
1176 /*PromotePrecision=*/!IsCompAssign
);
1177 // Promote the precision of the RHS unless it is already the same as the LHS.
1178 return handleComplexFloatConversion(S
, RHS
, RHSType
, LHSType
,
1179 /*PromotePrecision=*/Order
> 0);
1182 /// Handle arithmetic conversion from integer to float. Helper function
1183 /// of UsualArithmeticConversions()
1184 static QualType
handleIntToFloatConversion(Sema
&S
, ExprResult
&FloatExpr
,
1185 ExprResult
&IntExpr
,
1186 QualType FloatTy
, QualType IntTy
,
1187 bool ConvertFloat
, bool ConvertInt
) {
1188 if (IntTy
->isIntegerType()) {
1190 // Convert intExpr to the lhs floating point type.
1191 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), FloatTy
,
1192 CK_IntegralToFloating
);
1196 // Convert both sides to the appropriate complex float.
1197 assert(IntTy
->isComplexIntegerType());
1198 QualType result
= S
.Context
.getComplexType(FloatTy
);
1200 // _Complex int -> _Complex float
1202 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), result
,
1203 CK_IntegralComplexToFloatingComplex
);
1205 // float -> _Complex float
1207 FloatExpr
= S
.ImpCastExprToType(FloatExpr
.get(), result
,
1208 CK_FloatingRealToComplex
);
1213 /// Handle arithmethic conversion with floating point types. Helper
1214 /// function of UsualArithmeticConversions()
1215 static QualType
handleFloatConversion(Sema
&S
, ExprResult
&LHS
,
1216 ExprResult
&RHS
, QualType LHSType
,
1217 QualType RHSType
, bool IsCompAssign
) {
1218 bool LHSFloat
= LHSType
->isRealFloatingType();
1219 bool RHSFloat
= RHSType
->isRealFloatingType();
1221 // N1169 4.1.4: If one of the operands has a floating type and the other
1222 // operand has a fixed-point type, the fixed-point operand
1223 // is converted to the floating type [...]
1224 if (LHSType
->isFixedPointType() || RHSType
->isFixedPointType()) {
1226 RHS
= S
.ImpCastExprToType(RHS
.get(), LHSType
, CK_FixedPointToFloating
);
1227 else if (!IsCompAssign
)
1228 LHS
= S
.ImpCastExprToType(LHS
.get(), RHSType
, CK_FixedPointToFloating
);
1229 return LHSFloat
? LHSType
: RHSType
;
1232 // If we have two real floating types, convert the smaller operand
1233 // to the bigger result.
1234 if (LHSFloat
&& RHSFloat
) {
1235 int order
= S
.Context
.getFloatingTypeOrder(LHSType
, RHSType
);
1237 RHS
= S
.ImpCastExprToType(RHS
.get(), LHSType
, CK_FloatingCast
);
1241 assert(order
< 0 && "illegal float comparison");
1243 LHS
= S
.ImpCastExprToType(LHS
.get(), RHSType
, CK_FloatingCast
);
1248 // Half FP has to be promoted to float unless it is natively supported
1249 if (LHSType
->isHalfType() && !S
.getLangOpts().NativeHalfType
)
1250 LHSType
= S
.Context
.FloatTy
;
1252 return handleIntToFloatConversion(S
, LHS
, RHS
, LHSType
, RHSType
,
1253 /*ConvertFloat=*/!IsCompAssign
,
1254 /*ConvertInt=*/ true);
1257 return handleIntToFloatConversion(S
, RHS
, LHS
, RHSType
, LHSType
,
1258 /*ConvertFloat=*/ true,
1259 /*ConvertInt=*/!IsCompAssign
);
1262 /// Diagnose attempts to convert between __float128, __ibm128 and
1263 /// long double if there is no support for such conversion.
1264 /// Helper function of UsualArithmeticConversions().
1265 static bool unsupportedTypeConversion(const Sema
&S
, QualType LHSType
,
1267 // No issue if either is not a floating point type.
1268 if (!LHSType
->isFloatingType() || !RHSType
->isFloatingType())
1271 // No issue if both have the same 128-bit float semantics.
1272 auto *LHSComplex
= LHSType
->getAs
<ComplexType
>();
1273 auto *RHSComplex
= RHSType
->getAs
<ComplexType
>();
1275 QualType LHSElem
= LHSComplex
? LHSComplex
->getElementType() : LHSType
;
1276 QualType RHSElem
= RHSComplex
? RHSComplex
->getElementType() : RHSType
;
1278 const llvm::fltSemantics
&LHSSem
= S
.Context
.getFloatTypeSemantics(LHSElem
);
1279 const llvm::fltSemantics
&RHSSem
= S
.Context
.getFloatTypeSemantics(RHSElem
);
1281 if ((&LHSSem
!= &llvm::APFloat::PPCDoubleDouble() ||
1282 &RHSSem
!= &llvm::APFloat::IEEEquad()) &&
1283 (&LHSSem
!= &llvm::APFloat::IEEEquad() ||
1284 &RHSSem
!= &llvm::APFloat::PPCDoubleDouble()))
1290 typedef ExprResult
PerformCastFn(Sema
&S
, Expr
*operand
, QualType toType
);
1293 /// These helper callbacks are placed in an anonymous namespace to
1294 /// permit their use as function template parameters.
1295 ExprResult
doIntegralCast(Sema
&S
, Expr
*op
, QualType toType
) {
1296 return S
.ImpCastExprToType(op
, toType
, CK_IntegralCast
);
1299 ExprResult
doComplexIntegralCast(Sema
&S
, Expr
*op
, QualType toType
) {
1300 return S
.ImpCastExprToType(op
, S
.Context
.getComplexType(toType
),
1301 CK_IntegralComplexCast
);
1305 /// Handle integer arithmetic conversions. Helper function of
1306 /// UsualArithmeticConversions()
1307 template <PerformCastFn doLHSCast
, PerformCastFn doRHSCast
>
1308 static QualType
handleIntegerConversion(Sema
&S
, ExprResult
&LHS
,
1309 ExprResult
&RHS
, QualType LHSType
,
1310 QualType RHSType
, bool IsCompAssign
) {
1311 // The rules for this case are in C99 6.3.1.8
1312 int order
= S
.Context
.getIntegerTypeOrder(LHSType
, RHSType
);
1313 bool LHSSigned
= LHSType
->hasSignedIntegerRepresentation();
1314 bool RHSSigned
= RHSType
->hasSignedIntegerRepresentation();
1315 if (LHSSigned
== RHSSigned
) {
1316 // Same signedness; use the higher-ranked type
1318 RHS
= (*doRHSCast
)(S
, RHS
.get(), LHSType
);
1320 } else if (!IsCompAssign
)
1321 LHS
= (*doLHSCast
)(S
, LHS
.get(), RHSType
);
1323 } else if (order
!= (LHSSigned
? 1 : -1)) {
1324 // The unsigned type has greater than or equal rank to the
1325 // signed type, so use the unsigned type
1327 RHS
= (*doRHSCast
)(S
, RHS
.get(), LHSType
);
1329 } else if (!IsCompAssign
)
1330 LHS
= (*doLHSCast
)(S
, LHS
.get(), RHSType
);
1332 } else if (S
.Context
.getIntWidth(LHSType
) != S
.Context
.getIntWidth(RHSType
)) {
1333 // The two types are different widths; if we are here, that
1334 // means the signed type is larger than the unsigned type, so
1335 // use the signed type.
1337 RHS
= (*doRHSCast
)(S
, RHS
.get(), LHSType
);
1339 } else if (!IsCompAssign
)
1340 LHS
= (*doLHSCast
)(S
, LHS
.get(), RHSType
);
1343 // The signed type is higher-ranked than the unsigned type,
1344 // but isn't actually any bigger (like unsigned int and long
1345 // on most 32-bit systems). Use the unsigned type corresponding
1346 // to the signed type.
1348 S
.Context
.getCorrespondingUnsignedType(LHSSigned
? LHSType
: RHSType
);
1349 RHS
= (*doRHSCast
)(S
, RHS
.get(), result
);
1351 LHS
= (*doLHSCast
)(S
, LHS
.get(), result
);
1356 /// Handle conversions with GCC complex int extension. Helper function
1357 /// of UsualArithmeticConversions()
1358 static QualType
handleComplexIntConversion(Sema
&S
, ExprResult
&LHS
,
1359 ExprResult
&RHS
, QualType LHSType
,
1361 bool IsCompAssign
) {
1362 const ComplexType
*LHSComplexInt
= LHSType
->getAsComplexIntegerType();
1363 const ComplexType
*RHSComplexInt
= RHSType
->getAsComplexIntegerType();
1365 if (LHSComplexInt
&& RHSComplexInt
) {
1366 QualType LHSEltType
= LHSComplexInt
->getElementType();
1367 QualType RHSEltType
= RHSComplexInt
->getElementType();
1368 QualType ScalarType
=
1369 handleIntegerConversion
<doComplexIntegralCast
, doComplexIntegralCast
>
1370 (S
, LHS
, RHS
, LHSEltType
, RHSEltType
, IsCompAssign
);
1372 return S
.Context
.getComplexType(ScalarType
);
1375 if (LHSComplexInt
) {
1376 QualType LHSEltType
= LHSComplexInt
->getElementType();
1377 QualType ScalarType
=
1378 handleIntegerConversion
<doComplexIntegralCast
, doIntegralCast
>
1379 (S
, LHS
, RHS
, LHSEltType
, RHSType
, IsCompAssign
);
1380 QualType ComplexType
= S
.Context
.getComplexType(ScalarType
);
1381 RHS
= S
.ImpCastExprToType(RHS
.get(), ComplexType
,
1382 CK_IntegralRealToComplex
);
1387 assert(RHSComplexInt
);
1389 QualType RHSEltType
= RHSComplexInt
->getElementType();
1390 QualType ScalarType
=
1391 handleIntegerConversion
<doIntegralCast
, doComplexIntegralCast
>
1392 (S
, LHS
, RHS
, LHSType
, RHSEltType
, IsCompAssign
);
1393 QualType ComplexType
= S
.Context
.getComplexType(ScalarType
);
1396 LHS
= S
.ImpCastExprToType(LHS
.get(), ComplexType
,
1397 CK_IntegralRealToComplex
);
1401 /// Return the rank of a given fixed point or integer type. The value itself
1402 /// doesn't matter, but the values must be increasing with proper increasing
1403 /// rank as described in N1169 4.1.1.
1404 static unsigned GetFixedPointRank(QualType Ty
) {
1405 const auto *BTy
= Ty
->getAs
<BuiltinType
>();
1406 assert(BTy
&& "Expected a builtin type.");
1408 switch (BTy
->getKind()) {
1409 case BuiltinType::ShortFract
:
1410 case BuiltinType::UShortFract
:
1411 case BuiltinType::SatShortFract
:
1412 case BuiltinType::SatUShortFract
:
1414 case BuiltinType::Fract
:
1415 case BuiltinType::UFract
:
1416 case BuiltinType::SatFract
:
1417 case BuiltinType::SatUFract
:
1419 case BuiltinType::LongFract
:
1420 case BuiltinType::ULongFract
:
1421 case BuiltinType::SatLongFract
:
1422 case BuiltinType::SatULongFract
:
1424 case BuiltinType::ShortAccum
:
1425 case BuiltinType::UShortAccum
:
1426 case BuiltinType::SatShortAccum
:
1427 case BuiltinType::SatUShortAccum
:
1429 case BuiltinType::Accum
:
1430 case BuiltinType::UAccum
:
1431 case BuiltinType::SatAccum
:
1432 case BuiltinType::SatUAccum
:
1434 case BuiltinType::LongAccum
:
1435 case BuiltinType::ULongAccum
:
1436 case BuiltinType::SatLongAccum
:
1437 case BuiltinType::SatULongAccum
:
1440 if (BTy
->isInteger())
1442 llvm_unreachable("Unexpected fixed point or integer type");
1446 /// handleFixedPointConversion - Fixed point operations between fixed
1447 /// point types and integers or other fixed point types do not fall under
1448 /// usual arithmetic conversion since these conversions could result in loss
1449 /// of precsision (N1169 4.1.4). These operations should be calculated with
1450 /// the full precision of their result type (N1169 4.1.6.2.1).
1451 static QualType
handleFixedPointConversion(Sema
&S
, QualType LHSTy
,
1453 assert((LHSTy
->isFixedPointType() || RHSTy
->isFixedPointType()) &&
1454 "Expected at least one of the operands to be a fixed point type");
1455 assert((LHSTy
->isFixedPointOrIntegerType() ||
1456 RHSTy
->isFixedPointOrIntegerType()) &&
1457 "Special fixed point arithmetic operation conversions are only "
1458 "applied to ints or other fixed point types");
1460 // If one operand has signed fixed-point type and the other operand has
1461 // unsigned fixed-point type, then the unsigned fixed-point operand is
1462 // converted to its corresponding signed fixed-point type and the resulting
1463 // type is the type of the converted operand.
1464 if (RHSTy
->isSignedFixedPointType() && LHSTy
->isUnsignedFixedPointType())
1465 LHSTy
= S
.Context
.getCorrespondingSignedFixedPointType(LHSTy
);
1466 else if (RHSTy
->isUnsignedFixedPointType() && LHSTy
->isSignedFixedPointType())
1467 RHSTy
= S
.Context
.getCorrespondingSignedFixedPointType(RHSTy
);
1469 // The result type is the type with the highest rank, whereby a fixed-point
1470 // conversion rank is always greater than an integer conversion rank; if the
1471 // type of either of the operands is a saturating fixedpoint type, the result
1472 // type shall be the saturating fixed-point type corresponding to the type
1473 // with the highest rank; the resulting value is converted (taking into
1474 // account rounding and overflow) to the precision of the resulting type.
1475 // Same ranks between signed and unsigned types are resolved earlier, so both
1476 // types are either signed or both unsigned at this point.
1477 unsigned LHSTyRank
= GetFixedPointRank(LHSTy
);
1478 unsigned RHSTyRank
= GetFixedPointRank(RHSTy
);
1480 QualType ResultTy
= LHSTyRank
> RHSTyRank
? LHSTy
: RHSTy
;
1482 if (LHSTy
->isSaturatedFixedPointType() || RHSTy
->isSaturatedFixedPointType())
1483 ResultTy
= S
.Context
.getCorrespondingSaturatedType(ResultTy
);
1488 /// Check that the usual arithmetic conversions can be performed on this pair of
1489 /// expressions that might be of enumeration type.
1490 static void checkEnumArithmeticConversions(Sema
&S
, Expr
*LHS
, Expr
*RHS
,
1492 Sema::ArithConvKind ACK
) {
1493 // C++2a [expr.arith.conv]p1:
1494 // If one operand is of enumeration type and the other operand is of a
1495 // different enumeration type or a floating-point type, this behavior is
1496 // deprecated ([depr.arith.conv.enum]).
1498 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1499 // Eventually we will presumably reject these cases (in C++23 onwards?).
1500 QualType L
= LHS
->getType(), R
= RHS
->getType();
1501 bool LEnum
= L
->isUnscopedEnumerationType(),
1502 REnum
= R
->isUnscopedEnumerationType();
1503 bool IsCompAssign
= ACK
== Sema::ACK_CompAssign
;
1504 if ((!IsCompAssign
&& LEnum
&& R
->isFloatingType()) ||
1505 (REnum
&& L
->isFloatingType())) {
1506 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus26
1507 ? diag::err_arith_conv_enum_float_cxx26
1508 : S
.getLangOpts().CPlusPlus20
1509 ? diag::warn_arith_conv_enum_float_cxx20
1510 : diag::warn_arith_conv_enum_float
)
1511 << LHS
->getSourceRange() << RHS
->getSourceRange() << (int)ACK
<< LEnum
1513 } else if (!IsCompAssign
&& LEnum
&& REnum
&&
1514 !S
.Context
.hasSameUnqualifiedType(L
, R
)) {
1516 // In C++ 26, usual arithmetic conversions between 2 different enum types
1518 if (S
.getLangOpts().CPlusPlus26
)
1519 DiagID
= diag::err_conv_mixed_enum_types_cxx26
;
1520 else if (!L
->castAs
<EnumType
>()->getDecl()->hasNameForLinkage() ||
1521 !R
->castAs
<EnumType
>()->getDecl()->hasNameForLinkage()) {
1522 // If either enumeration type is unnamed, it's less likely that the
1523 // user cares about this, but this situation is still deprecated in
1524 // C++2a. Use a different warning group.
1525 DiagID
= S
.getLangOpts().CPlusPlus20
1526 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1527 : diag::warn_arith_conv_mixed_anon_enum_types
;
1528 } else if (ACK
== Sema::ACK_Conditional
) {
1529 // Conditional expressions are separated out because they have
1530 // historically had a different warning flag.
1531 DiagID
= S
.getLangOpts().CPlusPlus20
1532 ? diag::warn_conditional_mixed_enum_types_cxx20
1533 : diag::warn_conditional_mixed_enum_types
;
1534 } else if (ACK
== Sema::ACK_Comparison
) {
1535 // Comparison expressions are separated out because they have
1536 // historically had a different warning flag.
1537 DiagID
= S
.getLangOpts().CPlusPlus20
1538 ? diag::warn_comparison_mixed_enum_types_cxx20
1539 : diag::warn_comparison_mixed_enum_types
;
1541 DiagID
= S
.getLangOpts().CPlusPlus20
1542 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1543 : diag::warn_arith_conv_mixed_enum_types
;
1545 S
.Diag(Loc
, DiagID
) << LHS
->getSourceRange() << RHS
->getSourceRange()
1546 << (int)ACK
<< L
<< R
;
1550 /// UsualArithmeticConversions - Performs various conversions that are common to
1551 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1552 /// routine returns the first non-arithmetic type found. The client is
1553 /// responsible for emitting appropriate error diagnostics.
1554 QualType
Sema::UsualArithmeticConversions(ExprResult
&LHS
, ExprResult
&RHS
,
1556 ArithConvKind ACK
) {
1557 checkEnumArithmeticConversions(*this, LHS
.get(), RHS
.get(), Loc
, ACK
);
1559 if (ACK
!= ACK_CompAssign
) {
1560 LHS
= UsualUnaryConversions(LHS
.get());
1561 if (LHS
.isInvalid())
1565 RHS
= UsualUnaryConversions(RHS
.get());
1566 if (RHS
.isInvalid())
1569 // For conversion purposes, we ignore any qualifiers.
1570 // For example, "const float" and "float" are equivalent.
1571 QualType LHSType
= LHS
.get()->getType().getUnqualifiedType();
1572 QualType RHSType
= RHS
.get()->getType().getUnqualifiedType();
1574 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1575 if (const AtomicType
*AtomicLHS
= LHSType
->getAs
<AtomicType
>())
1576 LHSType
= AtomicLHS
->getValueType();
1578 // If both types are identical, no conversion is needed.
1579 if (Context
.hasSameType(LHSType
, RHSType
))
1580 return Context
.getCommonSugaredType(LHSType
, RHSType
);
1582 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1583 // The caller can deal with this (e.g. pointer + int).
1584 if (!LHSType
->isArithmeticType() || !RHSType
->isArithmeticType())
1587 // Apply unary and bitfield promotions to the LHS's type.
1588 QualType LHSUnpromotedType
= LHSType
;
1589 if (Context
.isPromotableIntegerType(LHSType
))
1590 LHSType
= Context
.getPromotedIntegerType(LHSType
);
1591 QualType LHSBitfieldPromoteTy
= Context
.isPromotableBitField(LHS
.get());
1592 if (!LHSBitfieldPromoteTy
.isNull())
1593 LHSType
= LHSBitfieldPromoteTy
;
1594 if (LHSType
!= LHSUnpromotedType
&& ACK
!= ACK_CompAssign
)
1595 LHS
= ImpCastExprToType(LHS
.get(), LHSType
, CK_IntegralCast
);
1597 // If both types are identical, no conversion is needed.
1598 if (Context
.hasSameType(LHSType
, RHSType
))
1599 return Context
.getCommonSugaredType(LHSType
, RHSType
);
1601 // At this point, we have two different arithmetic types.
1603 // Diagnose attempts to convert between __ibm128, __float128 and long double
1604 // where such conversions currently can't be handled.
1605 if (unsupportedTypeConversion(*this, LHSType
, RHSType
))
1608 // Handle complex types first (C99 6.3.1.8p1).
1609 if (LHSType
->isComplexType() || RHSType
->isComplexType())
1610 return handleComplexConversion(*this, LHS
, RHS
, LHSType
, RHSType
,
1611 ACK
== ACK_CompAssign
);
1613 // Now handle "real" floating types (i.e. float, double, long double).
1614 if (LHSType
->isRealFloatingType() || RHSType
->isRealFloatingType())
1615 return handleFloatConversion(*this, LHS
, RHS
, LHSType
, RHSType
,
1616 ACK
== ACK_CompAssign
);
1618 // Handle GCC complex int extension.
1619 if (LHSType
->isComplexIntegerType() || RHSType
->isComplexIntegerType())
1620 return handleComplexIntConversion(*this, LHS
, RHS
, LHSType
, RHSType
,
1621 ACK
== ACK_CompAssign
);
1623 if (LHSType
->isFixedPointType() || RHSType
->isFixedPointType())
1624 return handleFixedPointConversion(*this, LHSType
, RHSType
);
1626 // Finally, we have two differing integer types.
1627 return handleIntegerConversion
<doIntegralCast
, doIntegralCast
>
1628 (*this, LHS
, RHS
, LHSType
, RHSType
, ACK
== ACK_CompAssign
);
1631 //===----------------------------------------------------------------------===//
1632 // Semantic Analysis for various Expression Types
1633 //===----------------------------------------------------------------------===//
1636 ExprResult
Sema::ActOnGenericSelectionExpr(
1637 SourceLocation KeyLoc
, SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
1638 bool PredicateIsExpr
, void *ControllingExprOrType
,
1639 ArrayRef
<ParsedType
> ArgTypes
, ArrayRef
<Expr
*> ArgExprs
) {
1640 unsigned NumAssocs
= ArgTypes
.size();
1641 assert(NumAssocs
== ArgExprs
.size());
1643 TypeSourceInfo
**Types
= new TypeSourceInfo
*[NumAssocs
];
1644 for (unsigned i
= 0; i
< NumAssocs
; ++i
) {
1646 (void) GetTypeFromParser(ArgTypes
[i
], &Types
[i
]);
1651 // If we have a controlling type, we need to convert it from a parsed type
1652 // into a semantic type and then pass that along.
1653 if (!PredicateIsExpr
) {
1654 TypeSourceInfo
*ControllingType
;
1655 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType
),
1657 assert(ControllingType
&& "couldn't get the type out of the parser");
1658 ControllingExprOrType
= ControllingType
;
1661 ExprResult ER
= CreateGenericSelectionExpr(
1662 KeyLoc
, DefaultLoc
, RParenLoc
, PredicateIsExpr
, ControllingExprOrType
,
1663 llvm::ArrayRef(Types
, NumAssocs
), ArgExprs
);
1668 ExprResult
Sema::CreateGenericSelectionExpr(
1669 SourceLocation KeyLoc
, SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
1670 bool PredicateIsExpr
, void *ControllingExprOrType
,
1671 ArrayRef
<TypeSourceInfo
*> Types
, ArrayRef
<Expr
*> Exprs
) {
1672 unsigned NumAssocs
= Types
.size();
1673 assert(NumAssocs
== Exprs
.size());
1674 assert(ControllingExprOrType
&&
1675 "Must have either a controlling expression or a controlling type");
1677 Expr
*ControllingExpr
= nullptr;
1678 TypeSourceInfo
*ControllingType
= nullptr;
1679 if (PredicateIsExpr
) {
1680 // Decay and strip qualifiers for the controlling expression type, and
1681 // handle placeholder type replacement. See committee discussion from WG14
1683 EnterExpressionEvaluationContext
Unevaluated(
1684 *this, Sema::ExpressionEvaluationContext::Unevaluated
);
1685 ExprResult R
= DefaultFunctionArrayLvalueConversion(
1686 reinterpret_cast<Expr
*>(ControllingExprOrType
));
1689 ControllingExpr
= R
.get();
1691 // The extension form uses the type directly rather than converting it.
1692 ControllingType
= reinterpret_cast<TypeSourceInfo
*>(ControllingExprOrType
);
1693 if (!ControllingType
)
1697 bool TypeErrorFound
= false,
1698 IsResultDependent
= ControllingExpr
1699 ? ControllingExpr
->isTypeDependent()
1700 : ControllingType
->getType()->isDependentType(),
1701 ContainsUnexpandedParameterPack
=
1703 ? ControllingExpr
->containsUnexpandedParameterPack()
1704 : ControllingType
->getType()->containsUnexpandedParameterPack();
1706 // The controlling expression is an unevaluated operand, so side effects are
1707 // likely unintended.
1708 if (!inTemplateInstantiation() && !IsResultDependent
&& ControllingExpr
&&
1709 ControllingExpr
->HasSideEffects(Context
, false))
1710 Diag(ControllingExpr
->getExprLoc(),
1711 diag::warn_side_effects_unevaluated_context
);
1713 for (unsigned i
= 0; i
< NumAssocs
; ++i
) {
1714 if (Exprs
[i
]->containsUnexpandedParameterPack())
1715 ContainsUnexpandedParameterPack
= true;
1718 if (Types
[i
]->getType()->containsUnexpandedParameterPack())
1719 ContainsUnexpandedParameterPack
= true;
1721 if (Types
[i
]->getType()->isDependentType()) {
1722 IsResultDependent
= true;
1724 // We relax the restriction on use of incomplete types and non-object
1725 // types with the type-based extension of _Generic. Allowing incomplete
1726 // objects means those can be used as "tags" for a type-safe way to map
1727 // to a value. Similarly, matching on function types rather than
1728 // function pointer types can be useful. However, the restriction on VM
1729 // types makes sense to retain as there are open questions about how
1730 // the selection can be made at compile time.
1732 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1733 // complete object type other than a variably modified type."
1735 if (ControllingExpr
&& Types
[i
]->getType()->isIncompleteType())
1736 D
= diag::err_assoc_type_incomplete
;
1737 else if (ControllingExpr
&& !Types
[i
]->getType()->isObjectType())
1738 D
= diag::err_assoc_type_nonobject
;
1739 else if (Types
[i
]->getType()->isVariablyModifiedType())
1740 D
= diag::err_assoc_type_variably_modified
;
1741 else if (ControllingExpr
) {
1742 // Because the controlling expression undergoes lvalue conversion,
1743 // array conversion, and function conversion, an association which is
1744 // of array type, function type, or is qualified can never be
1745 // reached. We will warn about this so users are less surprised by
1746 // the unreachable association. However, we don't have to handle
1747 // function types; that's not an object type, so it's handled above.
1749 // The logic is somewhat different for C++ because C++ has different
1750 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1751 // If T is a non-class type, the type of the prvalue is the cv-
1752 // unqualified version of T. Otherwise, the type of the prvalue is T.
1753 // The result of these rules is that all qualified types in an
1754 // association in C are unreachable, and in C++, only qualified non-
1755 // class types are unreachable.
1757 // NB: this does not apply when the first operand is a type rather
1758 // than an expression, because the type form does not undergo
1760 unsigned Reason
= 0;
1761 QualType QT
= Types
[i
]->getType();
1762 if (QT
->isArrayType())
1764 else if (QT
.hasQualifiers() &&
1765 (!LangOpts
.CPlusPlus
|| !QT
->isRecordType()))
1769 Diag(Types
[i
]->getTypeLoc().getBeginLoc(),
1770 diag::warn_unreachable_association
)
1771 << QT
<< (Reason
- 1);
1775 Diag(Types
[i
]->getTypeLoc().getBeginLoc(), D
)
1776 << Types
[i
]->getTypeLoc().getSourceRange()
1777 << Types
[i
]->getType();
1778 TypeErrorFound
= true;
1781 // C11 6.5.1.1p2 "No two generic associations in the same generic
1782 // selection shall specify compatible types."
1783 for (unsigned j
= i
+1; j
< NumAssocs
; ++j
)
1784 if (Types
[j
] && !Types
[j
]->getType()->isDependentType() &&
1785 Context
.typesAreCompatible(Types
[i
]->getType(),
1786 Types
[j
]->getType())) {
1787 Diag(Types
[j
]->getTypeLoc().getBeginLoc(),
1788 diag::err_assoc_compatible_types
)
1789 << Types
[j
]->getTypeLoc().getSourceRange()
1790 << Types
[j
]->getType()
1791 << Types
[i
]->getType();
1792 Diag(Types
[i
]->getTypeLoc().getBeginLoc(),
1793 diag::note_compat_assoc
)
1794 << Types
[i
]->getTypeLoc().getSourceRange()
1795 << Types
[i
]->getType();
1796 TypeErrorFound
= true;
1804 // If we determined that the generic selection is result-dependent, don't
1805 // try to compute the result expression.
1806 if (IsResultDependent
) {
1807 if (ControllingExpr
)
1808 return GenericSelectionExpr::Create(Context
, KeyLoc
, ControllingExpr
,
1809 Types
, Exprs
, DefaultLoc
, RParenLoc
,
1810 ContainsUnexpandedParameterPack
);
1811 return GenericSelectionExpr::Create(Context
, KeyLoc
, ControllingType
, Types
,
1812 Exprs
, DefaultLoc
, RParenLoc
,
1813 ContainsUnexpandedParameterPack
);
1816 SmallVector
<unsigned, 1> CompatIndices
;
1817 unsigned DefaultIndex
= -1U;
1818 // Look at the canonical type of the controlling expression in case it was a
1819 // deduced type like __auto_type. However, when issuing diagnostics, use the
1820 // type the user wrote in source rather than the canonical one.
1821 for (unsigned i
= 0; i
< NumAssocs
; ++i
) {
1824 else if (ControllingExpr
&&
1825 Context
.typesAreCompatible(
1826 ControllingExpr
->getType().getCanonicalType(),
1827 Types
[i
]->getType()))
1828 CompatIndices
.push_back(i
);
1829 else if (ControllingType
&&
1830 Context
.typesAreCompatible(
1831 ControllingType
->getType().getCanonicalType(),
1832 Types
[i
]->getType()))
1833 CompatIndices
.push_back(i
);
1836 auto GetControllingRangeAndType
= [](Expr
*ControllingExpr
,
1837 TypeSourceInfo
*ControllingType
) {
1838 // We strip parens here because the controlling expression is typically
1839 // parenthesized in macro definitions.
1840 if (ControllingExpr
)
1841 ControllingExpr
= ControllingExpr
->IgnoreParens();
1843 SourceRange SR
= ControllingExpr
1844 ? ControllingExpr
->getSourceRange()
1845 : ControllingType
->getTypeLoc().getSourceRange();
1846 QualType QT
= ControllingExpr
? ControllingExpr
->getType()
1847 : ControllingType
->getType();
1849 return std::make_pair(SR
, QT
);
1852 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1853 // type compatible with at most one of the types named in its generic
1854 // association list."
1855 if (CompatIndices
.size() > 1) {
1856 auto P
= GetControllingRangeAndType(ControllingExpr
, ControllingType
);
1857 SourceRange SR
= P
.first
;
1858 Diag(SR
.getBegin(), diag::err_generic_sel_multi_match
)
1859 << SR
<< P
.second
<< (unsigned)CompatIndices
.size();
1860 for (unsigned I
: CompatIndices
) {
1861 Diag(Types
[I
]->getTypeLoc().getBeginLoc(),
1862 diag::note_compat_assoc
)
1863 << Types
[I
]->getTypeLoc().getSourceRange()
1864 << Types
[I
]->getType();
1869 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1870 // its controlling expression shall have type compatible with exactly one of
1871 // the types named in its generic association list."
1872 if (DefaultIndex
== -1U && CompatIndices
.size() == 0) {
1873 auto P
= GetControllingRangeAndType(ControllingExpr
, ControllingType
);
1874 SourceRange SR
= P
.first
;
1875 Diag(SR
.getBegin(), diag::err_generic_sel_no_match
) << SR
<< P
.second
;
1879 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1880 // type name that is compatible with the type of the controlling expression,
1881 // then the result expression of the generic selection is the expression
1882 // in that generic association. Otherwise, the result expression of the
1883 // generic selection is the expression in the default generic association."
1884 unsigned ResultIndex
=
1885 CompatIndices
.size() ? CompatIndices
[0] : DefaultIndex
;
1887 if (ControllingExpr
) {
1888 return GenericSelectionExpr::Create(
1889 Context
, KeyLoc
, ControllingExpr
, Types
, Exprs
, DefaultLoc
, RParenLoc
,
1890 ContainsUnexpandedParameterPack
, ResultIndex
);
1892 return GenericSelectionExpr::Create(
1893 Context
, KeyLoc
, ControllingType
, Types
, Exprs
, DefaultLoc
, RParenLoc
,
1894 ContainsUnexpandedParameterPack
, ResultIndex
);
1897 static PredefinedIdentKind
getPredefinedExprKind(tok::TokenKind Kind
) {
1900 llvm_unreachable("unexpected TokenKind");
1901 case tok::kw___func__
:
1902 return PredefinedIdentKind::Func
; // [C99 6.4.2.2]
1903 case tok::kw___FUNCTION__
:
1904 return PredefinedIdentKind::Function
;
1905 case tok::kw___FUNCDNAME__
:
1906 return PredefinedIdentKind::FuncDName
; // [MS]
1907 case tok::kw___FUNCSIG__
:
1908 return PredefinedIdentKind::FuncSig
; // [MS]
1909 case tok::kw_L__FUNCTION__
:
1910 return PredefinedIdentKind::LFunction
; // [MS]
1911 case tok::kw_L__FUNCSIG__
:
1912 return PredefinedIdentKind::LFuncSig
; // [MS]
1913 case tok::kw___PRETTY_FUNCTION__
:
1914 return PredefinedIdentKind::PrettyFunction
; // [GNU]
1918 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1919 /// to determine the value of a PredefinedExpr. This can be either a
1920 /// block, lambda, captured statement, function, otherwise a nullptr.
1921 static Decl
*getPredefinedExprDecl(DeclContext
*DC
) {
1922 while (DC
&& !isa
<BlockDecl
, CapturedDecl
, FunctionDecl
, ObjCMethodDecl
>(DC
))
1923 DC
= DC
->getParent();
1924 return cast_or_null
<Decl
>(DC
);
1927 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1928 /// location of the token and the offset of the ud-suffix within it.
1929 static SourceLocation
getUDSuffixLoc(Sema
&S
, SourceLocation TokLoc
,
1931 return Lexer::AdvanceToTokenCharacter(TokLoc
, Offset
, S
.getSourceManager(),
1935 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1936 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1937 static ExprResult
BuildCookedLiteralOperatorCall(Sema
&S
, Scope
*Scope
,
1938 IdentifierInfo
*UDSuffix
,
1939 SourceLocation UDSuffixLoc
,
1940 ArrayRef
<Expr
*> Args
,
1941 SourceLocation LitEndLoc
) {
1942 assert(Args
.size() <= 2 && "too many arguments for literal operator");
1945 for (unsigned ArgIdx
= 0; ArgIdx
!= Args
.size(); ++ArgIdx
) {
1946 ArgTy
[ArgIdx
] = Args
[ArgIdx
]->getType();
1947 if (ArgTy
[ArgIdx
]->isArrayType())
1948 ArgTy
[ArgIdx
] = S
.Context
.getArrayDecayedType(ArgTy
[ArgIdx
]);
1951 DeclarationName OpName
=
1952 S
.Context
.DeclarationNames
.getCXXLiteralOperatorName(UDSuffix
);
1953 DeclarationNameInfo
OpNameInfo(OpName
, UDSuffixLoc
);
1954 OpNameInfo
.setCXXLiteralOperatorNameLoc(UDSuffixLoc
);
1956 LookupResult
R(S
, OpName
, UDSuffixLoc
, Sema::LookupOrdinaryName
);
1957 if (S
.LookupLiteralOperator(Scope
, R
, llvm::ArrayRef(ArgTy
, Args
.size()),
1958 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1959 /*AllowStringTemplatePack*/ false,
1960 /*DiagnoseMissing*/ true) == Sema::LOLR_Error
)
1963 return S
.BuildLiteralOperatorCall(R
, OpNameInfo
, Args
, LitEndLoc
);
1966 ExprResult
Sema::ActOnUnevaluatedStringLiteral(ArrayRef
<Token
> StringToks
) {
1967 // StringToks needs backing storage as it doesn't hold array elements itself
1968 std::vector
<Token
> ExpandedToks
;
1969 if (getLangOpts().MicrosoftExt
)
1970 StringToks
= ExpandedToks
= ExpandFunctionLocalPredefinedMacros(StringToks
);
1972 StringLiteralParser
Literal(StringToks
, PP
,
1973 StringLiteralEvalMethod::Unevaluated
);
1974 if (Literal
.hadError
)
1977 SmallVector
<SourceLocation
, 4> StringTokLocs
;
1978 for (const Token
&Tok
: StringToks
)
1979 StringTokLocs
.push_back(Tok
.getLocation());
1981 StringLiteral
*Lit
= StringLiteral::Create(
1982 Context
, Literal
.GetString(), StringLiteralKind::Unevaluated
, false, {},
1983 &StringTokLocs
[0], StringTokLocs
.size());
1985 if (!Literal
.getUDSuffix().empty()) {
1986 SourceLocation UDSuffixLoc
=
1987 getUDSuffixLoc(*this, StringTokLocs
[Literal
.getUDSuffixToken()],
1988 Literal
.getUDSuffixOffset());
1989 return ExprError(Diag(UDSuffixLoc
, diag::err_invalid_string_udl
));
1996 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef
<Token
> Toks
) {
1997 // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1998 // local macros that expand to string literals that may be concatenated.
1999 // These macros are expanded here (in Sema), because StringLiteralParser
2000 // (in Lex) doesn't know the enclosing function (because it hasn't been
2002 assert(getLangOpts().MicrosoftExt
);
2004 // Note: Although function local macros are defined only inside functions,
2005 // we ensure a valid `CurrentDecl` even outside of a function. This allows
2006 // expansion of macros into empty string literals without additional checks.
2007 Decl
*CurrentDecl
= getPredefinedExprDecl(CurContext
);
2009 CurrentDecl
= Context
.getTranslationUnitDecl();
2011 std::vector
<Token
> ExpandedToks
;
2012 ExpandedToks
.reserve(Toks
.size());
2013 for (const Token
&Tok
: Toks
) {
2014 if (!isFunctionLocalStringLiteralMacro(Tok
.getKind(), getLangOpts())) {
2015 assert(tok::isStringLiteral(Tok
.getKind()));
2016 ExpandedToks
.emplace_back(Tok
);
2019 if (isa
<TranslationUnitDecl
>(CurrentDecl
))
2020 Diag(Tok
.getLocation(), diag::ext_predef_outside_function
);
2021 // Stringify predefined expression
2022 Diag(Tok
.getLocation(), diag::ext_string_literal_from_predefined
)
2024 SmallString
<64> Str
;
2025 llvm::raw_svector_ostream
OS(Str
);
2026 Token
&Exp
= ExpandedToks
.emplace_back();
2028 if (Tok
.getKind() == tok::kw_L__FUNCTION__
||
2029 Tok
.getKind() == tok::kw_L__FUNCSIG__
) {
2031 Exp
.setKind(tok::wide_string_literal
);
2033 Exp
.setKind(tok::string_literal
);
2036 << Lexer::Stringify(PredefinedExpr::ComputeName(
2037 getPredefinedExprKind(Tok
.getKind()), CurrentDecl
))
2039 PP
.CreateString(OS
.str(), Exp
, Tok
.getLocation(), Tok
.getEndLoc());
2041 return ExpandedToks
;
2044 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
2045 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
2046 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
2047 /// multiple tokens. However, the common case is that StringToks points to one
2051 Sema::ActOnStringLiteral(ArrayRef
<Token
> StringToks
, Scope
*UDLScope
) {
2052 assert(!StringToks
.empty() && "Must have at least one string!");
2054 // StringToks needs backing storage as it doesn't hold array elements itself
2055 std::vector
<Token
> ExpandedToks
;
2056 if (getLangOpts().MicrosoftExt
)
2057 StringToks
= ExpandedToks
= ExpandFunctionLocalPredefinedMacros(StringToks
);
2059 StringLiteralParser
Literal(StringToks
, PP
);
2060 if (Literal
.hadError
)
2063 SmallVector
<SourceLocation
, 4> StringTokLocs
;
2064 for (const Token
&Tok
: StringToks
)
2065 StringTokLocs
.push_back(Tok
.getLocation());
2067 QualType CharTy
= Context
.CharTy
;
2068 StringLiteralKind Kind
= StringLiteralKind::Ordinary
;
2069 if (Literal
.isWide()) {
2070 CharTy
= Context
.getWideCharType();
2071 Kind
= StringLiteralKind::Wide
;
2072 } else if (Literal
.isUTF8()) {
2073 if (getLangOpts().Char8
)
2074 CharTy
= Context
.Char8Ty
;
2075 Kind
= StringLiteralKind::UTF8
;
2076 } else if (Literal
.isUTF16()) {
2077 CharTy
= Context
.Char16Ty
;
2078 Kind
= StringLiteralKind::UTF16
;
2079 } else if (Literal
.isUTF32()) {
2080 CharTy
= Context
.Char32Ty
;
2081 Kind
= StringLiteralKind::UTF32
;
2082 } else if (Literal
.isPascal()) {
2083 CharTy
= Context
.UnsignedCharTy
;
2086 // Warn on initializing an array of char from a u8 string literal; this
2087 // becomes ill-formed in C++2a.
2088 if (getLangOpts().CPlusPlus
&& !getLangOpts().CPlusPlus20
&&
2089 !getLangOpts().Char8
&& Kind
== StringLiteralKind::UTF8
) {
2090 Diag(StringTokLocs
.front(), diag::warn_cxx20_compat_utf8_string
);
2092 // Create removals for all 'u8' prefixes in the string literal(s). This
2093 // ensures C++2a compatibility (but may change the program behavior when
2094 // built by non-Clang compilers for which the execution character set is
2095 // not always UTF-8).
2096 auto RemovalDiag
= PDiag(diag::note_cxx20_compat_utf8_string_remove_u8
);
2097 SourceLocation RemovalDiagLoc
;
2098 for (const Token
&Tok
: StringToks
) {
2099 if (Tok
.getKind() == tok::utf8_string_literal
) {
2100 if (RemovalDiagLoc
.isInvalid())
2101 RemovalDiagLoc
= Tok
.getLocation();
2102 RemovalDiag
<< FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2104 Lexer::AdvanceToTokenCharacter(Tok
.getLocation(), 2,
2105 getSourceManager(), getLangOpts())));
2108 Diag(RemovalDiagLoc
, RemovalDiag
);
2112 Context
.getStringLiteralArrayType(CharTy
, Literal
.GetNumStringChars());
2114 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2115 StringLiteral
*Lit
= StringLiteral::Create(Context
, Literal
.GetString(),
2116 Kind
, Literal
.Pascal
, StrTy
,
2118 StringTokLocs
.size());
2119 if (Literal
.getUDSuffix().empty())
2122 // We're building a user-defined literal.
2123 IdentifierInfo
*UDSuffix
= &Context
.Idents
.get(Literal
.getUDSuffix());
2124 SourceLocation UDSuffixLoc
=
2125 getUDSuffixLoc(*this, StringTokLocs
[Literal
.getUDSuffixToken()],
2126 Literal
.getUDSuffixOffset());
2128 // Make sure we're allowed user-defined literals here.
2130 return ExprError(Diag(UDSuffixLoc
, diag::err_invalid_string_udl
));
2132 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2133 // operator "" X (str, len)
2134 QualType SizeType
= Context
.getSizeType();
2136 DeclarationName OpName
=
2137 Context
.DeclarationNames
.getCXXLiteralOperatorName(UDSuffix
);
2138 DeclarationNameInfo
OpNameInfo(OpName
, UDSuffixLoc
);
2139 OpNameInfo
.setCXXLiteralOperatorNameLoc(UDSuffixLoc
);
2141 QualType ArgTy
[] = {
2142 Context
.getArrayDecayedType(StrTy
), SizeType
2145 LookupResult
R(*this, OpName
, UDSuffixLoc
, LookupOrdinaryName
);
2146 switch (LookupLiteralOperator(UDLScope
, R
, ArgTy
,
2147 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2148 /*AllowStringTemplatePack*/ true,
2149 /*DiagnoseMissing*/ true, Lit
)) {
2152 llvm::APInt
Len(Context
.getIntWidth(SizeType
), Literal
.GetNumStringChars());
2153 IntegerLiteral
*LenArg
= IntegerLiteral::Create(Context
, Len
, SizeType
,
2155 Expr
*Args
[] = { Lit
, LenArg
};
2157 return BuildLiteralOperatorCall(R
, OpNameInfo
, Args
, StringTokLocs
.back());
2160 case LOLR_Template
: {
2161 TemplateArgumentListInfo ExplicitArgs
;
2162 TemplateArgument
Arg(Lit
);
2163 TemplateArgumentLocInfo
ArgInfo(Lit
);
2164 ExplicitArgs
.addArgument(TemplateArgumentLoc(Arg
, ArgInfo
));
2165 return BuildLiteralOperatorCall(R
, OpNameInfo
, std::nullopt
,
2166 StringTokLocs
.back(), &ExplicitArgs
);
2169 case LOLR_StringTemplatePack
: {
2170 TemplateArgumentListInfo ExplicitArgs
;
2172 unsigned CharBits
= Context
.getIntWidth(CharTy
);
2173 bool CharIsUnsigned
= CharTy
->isUnsignedIntegerType();
2174 llvm::APSInt
Value(CharBits
, CharIsUnsigned
);
2176 TemplateArgument
TypeArg(CharTy
);
2177 TemplateArgumentLocInfo
TypeArgInfo(Context
.getTrivialTypeSourceInfo(CharTy
));
2178 ExplicitArgs
.addArgument(TemplateArgumentLoc(TypeArg
, TypeArgInfo
));
2180 for (unsigned I
= 0, N
= Lit
->getLength(); I
!= N
; ++I
) {
2181 Value
= Lit
->getCodeUnit(I
);
2182 TemplateArgument
Arg(Context
, Value
, CharTy
);
2183 TemplateArgumentLocInfo ArgInfo
;
2184 ExplicitArgs
.addArgument(TemplateArgumentLoc(Arg
, ArgInfo
));
2186 return BuildLiteralOperatorCall(R
, OpNameInfo
, std::nullopt
,
2187 StringTokLocs
.back(), &ExplicitArgs
);
2190 case LOLR_ErrorNoDiagnostic
:
2191 llvm_unreachable("unexpected literal operator lookup result");
2195 llvm_unreachable("unexpected literal operator lookup result");
2199 Sema::BuildDeclRefExpr(ValueDecl
*D
, QualType Ty
, ExprValueKind VK
,
2201 const CXXScopeSpec
*SS
) {
2202 DeclarationNameInfo
NameInfo(D
->getDeclName(), Loc
);
2203 return BuildDeclRefExpr(D
, Ty
, VK
, NameInfo
, SS
);
2207 Sema::BuildDeclRefExpr(ValueDecl
*D
, QualType Ty
, ExprValueKind VK
,
2208 const DeclarationNameInfo
&NameInfo
,
2209 const CXXScopeSpec
*SS
, NamedDecl
*FoundD
,
2210 SourceLocation TemplateKWLoc
,
2211 const TemplateArgumentListInfo
*TemplateArgs
) {
2212 NestedNameSpecifierLoc NNS
=
2213 SS
? SS
->getWithLocInContext(Context
) : NestedNameSpecifierLoc();
2214 return BuildDeclRefExpr(D
, Ty
, VK
, NameInfo
, NNS
, FoundD
, TemplateKWLoc
,
2218 // CUDA/HIP: Check whether a captured reference variable is referencing a
2219 // host variable in a device or host device lambda.
2220 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema
&S
,
2222 if (!S
.getLangOpts().CUDA
|| !VD
->hasInit())
2224 assert(VD
->getType()->isReferenceType());
2226 // Check whether the reference variable is referencing a host variable.
2227 auto *DRE
= dyn_cast
<DeclRefExpr
>(VD
->getInit());
2230 auto *Referee
= dyn_cast
<VarDecl
>(DRE
->getDecl());
2231 if (!Referee
|| !Referee
->hasGlobalStorage() ||
2232 Referee
->hasAttr
<CUDADeviceAttr
>())
2235 // Check whether the current function is a device or host device lambda.
2236 // Check whether the reference variable is a capture by getDeclContext()
2237 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2238 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(S
.CurContext
);
2239 if (MD
&& MD
->getParent()->isLambda() &&
2240 MD
->getOverloadedOperator() == OO_Call
&& MD
->hasAttr
<CUDADeviceAttr
>() &&
2241 VD
->getDeclContext() != MD
)
2247 NonOdrUseReason
Sema::getNonOdrUseReasonInCurrentContext(ValueDecl
*D
) {
2248 // A declaration named in an unevaluated operand never constitutes an odr-use.
2249 if (isUnevaluatedContext())
2250 return NOUR_Unevaluated
;
2252 // C++2a [basic.def.odr]p4:
2253 // A variable x whose name appears as a potentially-evaluated expression e
2254 // is odr-used by e unless [...] x is a reference that is usable in
2255 // constant expressions.
2257 // If a reference variable referencing a host variable is captured in a
2258 // device or host device lambda, the value of the referee must be copied
2259 // to the capture and the reference variable must be treated as odr-use
2260 // since the value of the referee is not known at compile time and must
2261 // be loaded from the captured.
2262 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2263 if (VD
->getType()->isReferenceType() &&
2264 !(getLangOpts().OpenMP
&& isOpenMPCapturedDecl(D
)) &&
2265 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD
) &&
2266 VD
->isUsableInConstantExpressions(Context
))
2267 return NOUR_Constant
;
2270 // All remaining non-variable cases constitute an odr-use. For variables, we
2271 // need to wait and see how the expression is used.
2275 /// BuildDeclRefExpr - Build an expression that references a
2276 /// declaration that does not require a closure capture.
2278 Sema::BuildDeclRefExpr(ValueDecl
*D
, QualType Ty
, ExprValueKind VK
,
2279 const DeclarationNameInfo
&NameInfo
,
2280 NestedNameSpecifierLoc NNS
, NamedDecl
*FoundD
,
2281 SourceLocation TemplateKWLoc
,
2282 const TemplateArgumentListInfo
*TemplateArgs
) {
2283 bool RefersToCapturedVariable
= isa
<VarDecl
, BindingDecl
>(D
) &&
2284 NeedToCaptureVariable(D
, NameInfo
.getLoc());
2286 DeclRefExpr
*E
= DeclRefExpr::Create(
2287 Context
, NNS
, TemplateKWLoc
, D
, RefersToCapturedVariable
, NameInfo
, Ty
,
2288 VK
, FoundD
, TemplateArgs
, getNonOdrUseReasonInCurrentContext(D
));
2289 MarkDeclRefReferenced(E
);
2291 // C++ [except.spec]p17:
2292 // An exception-specification is considered to be needed when:
2293 // - in an expression, the function is the unique lookup result or
2294 // the selected member of a set of overloaded functions.
2296 // We delay doing this until after we've built the function reference and
2297 // marked it as used so that:
2298 // a) if the function is defaulted, we get errors from defining it before /
2299 // instead of errors from computing its exception specification, and
2300 // b) if the function is a defaulted comparison, we can use the body we
2301 // build when defining it as input to the exception specification
2302 // computation rather than computing a new body.
2303 if (const auto *FPT
= Ty
->getAs
<FunctionProtoType
>()) {
2304 if (isUnresolvedExceptionSpec(FPT
->getExceptionSpecType())) {
2305 if (const auto *NewFPT
= ResolveExceptionSpec(NameInfo
.getLoc(), FPT
))
2306 E
->setType(Context
.getQualifiedType(NewFPT
, Ty
.getQualifiers()));
2310 if (getLangOpts().ObjCWeak
&& isa
<VarDecl
>(D
) &&
2311 Ty
.getObjCLifetime() == Qualifiers::OCL_Weak
&& !isUnevaluatedContext() &&
2312 !Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
, E
->getBeginLoc()))
2313 getCurFunction()->recordUseOfWeak(E
);
2315 const auto *FD
= dyn_cast
<FieldDecl
>(D
);
2316 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(D
))
2317 FD
= IFD
->getAnonField();
2319 UnusedPrivateFields
.remove(FD
);
2320 // Just in case we're building an illegal pointer-to-member.
2321 if (FD
->isBitField())
2322 E
->setObjectKind(OK_BitField
);
2325 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2326 // designates a bit-field.
2327 if (const auto *BD
= dyn_cast
<BindingDecl
>(D
))
2328 if (const auto *BE
= BD
->getBinding())
2329 E
->setObjectKind(BE
->getObjectKind());
2334 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2335 /// possibly a list of template arguments.
2337 /// If this produces template arguments, it is permitted to call
2338 /// DecomposeTemplateName.
2340 /// This actually loses a lot of source location information for
2341 /// non-standard name kinds; we should consider preserving that in
2344 Sema::DecomposeUnqualifiedId(const UnqualifiedId
&Id
,
2345 TemplateArgumentListInfo
&Buffer
,
2346 DeclarationNameInfo
&NameInfo
,
2347 const TemplateArgumentListInfo
*&TemplateArgs
) {
2348 if (Id
.getKind() == UnqualifiedIdKind::IK_TemplateId
) {
2349 Buffer
.setLAngleLoc(Id
.TemplateId
->LAngleLoc
);
2350 Buffer
.setRAngleLoc(Id
.TemplateId
->RAngleLoc
);
2352 ASTTemplateArgsPtr
TemplateArgsPtr(Id
.TemplateId
->getTemplateArgs(),
2353 Id
.TemplateId
->NumArgs
);
2354 translateTemplateArguments(TemplateArgsPtr
, Buffer
);
2356 TemplateName TName
= Id
.TemplateId
->Template
.get();
2357 SourceLocation TNameLoc
= Id
.TemplateId
->TemplateNameLoc
;
2358 NameInfo
= Context
.getNameForTemplate(TName
, TNameLoc
);
2359 TemplateArgs
= &Buffer
;
2361 NameInfo
= GetNameFromUnqualifiedId(Id
);
2362 TemplateArgs
= nullptr;
2366 static void emitEmptyLookupTypoDiagnostic(
2367 const TypoCorrection
&TC
, Sema
&SemaRef
, const CXXScopeSpec
&SS
,
2368 DeclarationName Typo
, SourceLocation TypoLoc
, ArrayRef
<Expr
*> Args
,
2369 unsigned DiagnosticID
, unsigned DiagnosticSuggestID
) {
2371 SS
.isEmpty() ? nullptr : SemaRef
.computeDeclContext(SS
, false);
2373 // Emit a special diagnostic for failed member lookups.
2374 // FIXME: computing the declaration context might fail here (?)
2376 SemaRef
.Diag(TypoLoc
, diag::err_no_member
) << Typo
<< Ctx
2379 SemaRef
.Diag(TypoLoc
, DiagnosticID
) << Typo
;
2383 std::string CorrectedStr
= TC
.getAsString(SemaRef
.getLangOpts());
2384 bool DroppedSpecifier
=
2385 TC
.WillReplaceSpecifier() && Typo
.getAsString() == CorrectedStr
;
2386 unsigned NoteID
= TC
.getCorrectionDeclAs
<ImplicitParamDecl
>()
2387 ? diag::note_implicit_param_decl
2388 : diag::note_previous_decl
;
2390 SemaRef
.diagnoseTypo(TC
, SemaRef
.PDiag(DiagnosticSuggestID
) << Typo
,
2391 SemaRef
.PDiag(NoteID
));
2393 SemaRef
.diagnoseTypo(TC
, SemaRef
.PDiag(diag::err_no_member_suggest
)
2394 << Typo
<< Ctx
<< DroppedSpecifier
2396 SemaRef
.PDiag(NoteID
));
2399 /// Diagnose a lookup that found results in an enclosing class during error
2400 /// recovery. This usually indicates that the results were found in a dependent
2401 /// base class that could not be searched as part of a template definition.
2402 /// Always issues a diagnostic (though this may be only a warning in MS
2403 /// compatibility mode).
2405 /// Return \c true if the error is unrecoverable, or \c false if the caller
2406 /// should attempt to recover using these lookup results.
2407 bool Sema::DiagnoseDependentMemberLookup(const LookupResult
&R
) {
2408 // During a default argument instantiation the CurContext points
2409 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2410 // function parameter list, hence add an explicit check.
2411 bool isDefaultArgument
=
2412 !CodeSynthesisContexts
.empty() &&
2413 CodeSynthesisContexts
.back().Kind
==
2414 CodeSynthesisContext::DefaultFunctionArgumentInstantiation
;
2415 const auto *CurMethod
= dyn_cast
<CXXMethodDecl
>(CurContext
);
2416 bool isInstance
= CurMethod
&& CurMethod
->isInstance() &&
2417 R
.getNamingClass() == CurMethod
->getParent() &&
2420 // There are two ways we can find a class-scope declaration during template
2421 // instantiation that we did not find in the template definition: if it is a
2422 // member of a dependent base class, or if it is declared after the point of
2423 // use in the same class. Distinguish these by comparing the class in which
2424 // the member was found to the naming class of the lookup.
2425 unsigned DiagID
= diag::err_found_in_dependent_base
;
2426 unsigned NoteID
= diag::note_member_declared_at
;
2427 if (R
.getRepresentativeDecl()->getDeclContext()->Equals(R
.getNamingClass())) {
2428 DiagID
= getLangOpts().MSVCCompat
? diag::ext_found_later_in_class
2429 : diag::err_found_later_in_class
;
2430 } else if (getLangOpts().MSVCCompat
) {
2431 DiagID
= diag::ext_found_in_dependent_base
;
2432 NoteID
= diag::note_dependent_member_use
;
2436 // Give a code modification hint to insert 'this->'.
2437 Diag(R
.getNameLoc(), DiagID
)
2438 << R
.getLookupName()
2439 << FixItHint::CreateInsertion(R
.getNameLoc(), "this->");
2440 CheckCXXThisCapture(R
.getNameLoc());
2442 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2443 // they're not shadowed).
2444 Diag(R
.getNameLoc(), DiagID
) << R
.getLookupName();
2447 for (const NamedDecl
*D
: R
)
2448 Diag(D
->getLocation(), NoteID
);
2450 // Return true if we are inside a default argument instantiation
2451 // and the found name refers to an instance member function, otherwise
2452 // the caller will try to create an implicit member call and this is wrong
2453 // for default arguments.
2455 // FIXME: Is this special case necessary? We could allow the caller to
2457 if (isDefaultArgument
&& ((*R
.begin())->isCXXInstanceMember())) {
2458 Diag(R
.getNameLoc(), diag::err_member_call_without_object
) << 0;
2462 // Tell the callee to try to recover.
2466 /// Diagnose an empty lookup.
2468 /// \return false if new lookup candidates were found
2469 bool Sema::DiagnoseEmptyLookup(Scope
*S
, CXXScopeSpec
&SS
, LookupResult
&R
,
2470 CorrectionCandidateCallback
&CCC
,
2471 TemplateArgumentListInfo
*ExplicitTemplateArgs
,
2472 ArrayRef
<Expr
*> Args
, TypoExpr
**Out
) {
2473 DeclarationName Name
= R
.getLookupName();
2475 unsigned diagnostic
= diag::err_undeclared_var_use
;
2476 unsigned diagnostic_suggest
= diag::err_undeclared_var_use_suggest
;
2477 if (Name
.getNameKind() == DeclarationName::CXXOperatorName
||
2478 Name
.getNameKind() == DeclarationName::CXXLiteralOperatorName
||
2479 Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
) {
2480 diagnostic
= diag::err_undeclared_use
;
2481 diagnostic_suggest
= diag::err_undeclared_use_suggest
;
2484 // If the original lookup was an unqualified lookup, fake an
2485 // unqualified lookup. This is useful when (for example) the
2486 // original lookup would not have found something because it was a
2488 DeclContext
*DC
= SS
.isEmpty() ? CurContext
: nullptr;
2490 if (isa
<CXXRecordDecl
>(DC
)) {
2491 LookupQualifiedName(R
, DC
);
2494 // Don't give errors about ambiguities in this lookup.
2495 R
.suppressDiagnostics();
2497 // If there's a best viable function among the results, only mention
2498 // that one in the notes.
2499 OverloadCandidateSet
Candidates(R
.getNameLoc(),
2500 OverloadCandidateSet::CSK_Normal
);
2501 AddOverloadedCallCandidates(R
, ExplicitTemplateArgs
, Args
, Candidates
);
2502 OverloadCandidateSet::iterator Best
;
2503 if (Candidates
.BestViableFunction(*this, R
.getNameLoc(), Best
) ==
2506 R
.addDecl(Best
->FoundDecl
.getDecl(), Best
->FoundDecl
.getAccess());
2510 return DiagnoseDependentMemberLookup(R
);
2516 DC
= DC
->getLookupParent();
2519 // We didn't find anything, so try to correct for a typo.
2520 TypoCorrection Corrected
;
2522 SourceLocation TypoLoc
= R
.getNameLoc();
2523 assert(!ExplicitTemplateArgs
&&
2524 "Diagnosing an empty lookup with explicit template args!");
2525 *Out
= CorrectTypoDelayed(
2526 R
.getLookupNameInfo(), R
.getLookupKind(), S
, &SS
, CCC
,
2527 [=](const TypoCorrection
&TC
) {
2528 emitEmptyLookupTypoDiagnostic(TC
, *this, SS
, Name
, TypoLoc
, Args
,
2529 diagnostic
, diagnostic_suggest
);
2531 nullptr, CTK_ErrorRecovery
);
2535 (Corrected
= CorrectTypo(R
.getLookupNameInfo(), R
.getLookupKind(),
2536 S
, &SS
, CCC
, CTK_ErrorRecovery
))) {
2537 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
2538 bool DroppedSpecifier
=
2539 Corrected
.WillReplaceSpecifier() && Name
.getAsString() == CorrectedStr
;
2540 R
.setLookupName(Corrected
.getCorrection());
2542 bool AcceptableWithRecovery
= false;
2543 bool AcceptableWithoutRecovery
= false;
2544 NamedDecl
*ND
= Corrected
.getFoundDecl();
2546 if (Corrected
.isOverloaded()) {
2547 OverloadCandidateSet
OCS(R
.getNameLoc(),
2548 OverloadCandidateSet::CSK_Normal
);
2549 OverloadCandidateSet::iterator Best
;
2550 for (NamedDecl
*CD
: Corrected
) {
2551 if (FunctionTemplateDecl
*FTD
=
2552 dyn_cast
<FunctionTemplateDecl
>(CD
))
2553 AddTemplateOverloadCandidate(
2554 FTD
, DeclAccessPair::make(FTD
, AS_none
), ExplicitTemplateArgs
,
2556 else if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CD
))
2557 if (!ExplicitTemplateArgs
|| ExplicitTemplateArgs
->size() == 0)
2558 AddOverloadCandidate(FD
, DeclAccessPair::make(FD
, AS_none
),
2561 switch (OCS
.BestViableFunction(*this, R
.getNameLoc(), Best
)) {
2563 ND
= Best
->FoundDecl
;
2564 Corrected
.setCorrectionDecl(ND
);
2567 // FIXME: Arbitrarily pick the first declaration for the note.
2568 Corrected
.setCorrectionDecl(ND
);
2573 if (getLangOpts().CPlusPlus
&& ND
->isCXXClassMember()) {
2574 CXXRecordDecl
*Record
= nullptr;
2575 if (Corrected
.getCorrectionSpecifier()) {
2576 const Type
*Ty
= Corrected
.getCorrectionSpecifier()->getAsType();
2577 Record
= Ty
->getAsCXXRecordDecl();
2580 Record
= cast
<CXXRecordDecl
>(
2581 ND
->getDeclContext()->getRedeclContext());
2582 R
.setNamingClass(Record
);
2585 auto *UnderlyingND
= ND
->getUnderlyingDecl();
2586 AcceptableWithRecovery
= isa
<ValueDecl
>(UnderlyingND
) ||
2587 isa
<FunctionTemplateDecl
>(UnderlyingND
);
2588 // FIXME: If we ended up with a typo for a type name or
2589 // Objective-C class name, we're in trouble because the parser
2590 // is in the wrong place to recover. Suggest the typo
2591 // correction, but don't make it a fix-it since we're not going
2592 // to recover well anyway.
2593 AcceptableWithoutRecovery
= isa
<TypeDecl
>(UnderlyingND
) ||
2594 getAsTypeTemplateDecl(UnderlyingND
) ||
2595 isa
<ObjCInterfaceDecl
>(UnderlyingND
);
2597 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2598 // because we aren't able to recover.
2599 AcceptableWithoutRecovery
= true;
2602 if (AcceptableWithRecovery
|| AcceptableWithoutRecovery
) {
2603 unsigned NoteID
= Corrected
.getCorrectionDeclAs
<ImplicitParamDecl
>()
2604 ? diag::note_implicit_param_decl
2605 : diag::note_previous_decl
;
2607 diagnoseTypo(Corrected
, PDiag(diagnostic_suggest
) << Name
,
2608 PDiag(NoteID
), AcceptableWithRecovery
);
2610 diagnoseTypo(Corrected
, PDiag(diag::err_no_member_suggest
)
2611 << Name
<< computeDeclContext(SS
, false)
2612 << DroppedSpecifier
<< SS
.getRange(),
2613 PDiag(NoteID
), AcceptableWithRecovery
);
2615 // Tell the callee whether to try to recover.
2616 return !AcceptableWithRecovery
;
2621 // Emit a special diagnostic for failed member lookups.
2622 // FIXME: computing the declaration context might fail here (?)
2623 if (!SS
.isEmpty()) {
2624 Diag(R
.getNameLoc(), diag::err_no_member
)
2625 << Name
<< computeDeclContext(SS
, false)
2630 // Give up, we can't recover.
2631 Diag(R
.getNameLoc(), diagnostic
) << Name
;
2635 /// In Microsoft mode, if we are inside a template class whose parent class has
2636 /// dependent base classes, and we can't resolve an unqualified identifier, then
2637 /// assume the identifier is a member of a dependent base class. We can only
2638 /// recover successfully in static methods, instance methods, and other contexts
2639 /// where 'this' is available. This doesn't precisely match MSVC's
2640 /// instantiation model, but it's close enough.
2642 recoverFromMSUnqualifiedLookup(Sema
&S
, ASTContext
&Context
,
2643 DeclarationNameInfo
&NameInfo
,
2644 SourceLocation TemplateKWLoc
,
2645 const TemplateArgumentListInfo
*TemplateArgs
) {
2646 // Only try to recover from lookup into dependent bases in static methods or
2647 // contexts where 'this' is available.
2648 QualType ThisType
= S
.getCurrentThisType();
2649 const CXXRecordDecl
*RD
= nullptr;
2650 if (!ThisType
.isNull())
2651 RD
= ThisType
->getPointeeType()->getAsCXXRecordDecl();
2652 else if (auto *MD
= dyn_cast
<CXXMethodDecl
>(S
.CurContext
))
2653 RD
= MD
->getParent();
2654 if (!RD
|| !RD
->hasAnyDependentBases())
2657 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2658 // is available, suggest inserting 'this->' as a fixit.
2659 SourceLocation Loc
= NameInfo
.getLoc();
2660 auto DB
= S
.Diag(Loc
, diag::ext_undeclared_unqual_id_with_dependent_base
);
2661 DB
<< NameInfo
.getName() << RD
;
2663 if (!ThisType
.isNull()) {
2664 DB
<< FixItHint::CreateInsertion(Loc
, "this->");
2665 return CXXDependentScopeMemberExpr::Create(
2666 Context
, /*This=*/nullptr, ThisType
, /*IsArrow=*/true,
2667 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc
,
2668 /*FirstQualifierFoundInScope=*/nullptr, NameInfo
, TemplateArgs
);
2671 // Synthesize a fake NNS that points to the derived class. This will
2672 // perform name lookup during template instantiation.
2675 NestedNameSpecifier::Create(Context
, nullptr, true, RD
->getTypeForDecl());
2676 SS
.MakeTrivial(Context
, NNS
, SourceRange(Loc
, Loc
));
2677 return DependentScopeDeclRefExpr::Create(
2678 Context
, SS
.getWithLocInContext(Context
), TemplateKWLoc
, NameInfo
,
2683 Sema::ActOnIdExpression(Scope
*S
, CXXScopeSpec
&SS
,
2684 SourceLocation TemplateKWLoc
, UnqualifiedId
&Id
,
2685 bool HasTrailingLParen
, bool IsAddressOfOperand
,
2686 CorrectionCandidateCallback
*CCC
,
2687 bool IsInlineAsmIdentifier
, Token
*KeywordReplacement
) {
2688 assert(!(IsAddressOfOperand
&& HasTrailingLParen
) &&
2689 "cannot be direct & operand and have a trailing lparen");
2693 TemplateArgumentListInfo TemplateArgsBuffer
;
2695 // Decompose the UnqualifiedId into the following data.
2696 DeclarationNameInfo NameInfo
;
2697 const TemplateArgumentListInfo
*TemplateArgs
;
2698 DecomposeUnqualifiedId(Id
, TemplateArgsBuffer
, NameInfo
, TemplateArgs
);
2700 DeclarationName Name
= NameInfo
.getName();
2701 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
2702 SourceLocation NameLoc
= NameInfo
.getLoc();
2704 if (II
&& II
->isEditorPlaceholder()) {
2705 // FIXME: When typed placeholders are supported we can create a typed
2706 // placeholder expression node.
2710 // C++ [temp.dep.expr]p3:
2711 // An id-expression is type-dependent if it contains:
2712 // -- an identifier that was declared with a dependent type,
2713 // (note: handled after lookup)
2714 // -- a template-id that is dependent,
2715 // (note: handled in BuildTemplateIdExpr)
2716 // -- a conversion-function-id that specifies a dependent type,
2717 // -- a nested-name-specifier that contains a class-name that
2718 // names a dependent type.
2719 // Determine whether this is a member of an unknown specialization;
2720 // we need to handle these differently.
2721 bool DependentID
= false;
2722 if (Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
&&
2723 Name
.getCXXNameType()->isDependentType()) {
2725 } else if (SS
.isSet()) {
2726 if (DeclContext
*DC
= computeDeclContext(SS
, false)) {
2727 if (RequireCompleteDeclContext(SS
, DC
))
2735 return ActOnDependentIdExpression(SS
, TemplateKWLoc
, NameInfo
,
2736 IsAddressOfOperand
, TemplateArgs
);
2738 // Perform the required lookup.
2739 LookupResult
R(*this, NameInfo
,
2740 (Id
.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam
)
2741 ? LookupObjCImplicitSelfParam
2742 : LookupOrdinaryName
);
2743 if (TemplateKWLoc
.isValid() || TemplateArgs
) {
2744 // Lookup the template name again to correctly establish the context in
2745 // which it was found. This is really unfortunate as we already did the
2746 // lookup to determine that it was a template name in the first place. If
2747 // this becomes a performance hit, we can work harder to preserve those
2748 // results until we get here but it's likely not worth it.
2749 bool MemberOfUnknownSpecialization
;
2750 AssumedTemplateKind AssumedTemplate
;
2751 if (LookupTemplateName(R
, S
, SS
, QualType(), /*EnteringContext=*/false,
2752 MemberOfUnknownSpecialization
, TemplateKWLoc
,
2756 if (MemberOfUnknownSpecialization
||
2757 (R
.getResultKind() == LookupResult::NotFoundInCurrentInstantiation
))
2758 return ActOnDependentIdExpression(SS
, TemplateKWLoc
, NameInfo
,
2759 IsAddressOfOperand
, TemplateArgs
);
2761 bool IvarLookupFollowUp
= II
&& !SS
.isSet() && getCurMethodDecl();
2762 LookupParsedName(R
, S
, &SS
, !IvarLookupFollowUp
);
2764 // If the result might be in a dependent base class, this is a dependent
2766 if (R
.getResultKind() == LookupResult::NotFoundInCurrentInstantiation
)
2767 return ActOnDependentIdExpression(SS
, TemplateKWLoc
, NameInfo
,
2768 IsAddressOfOperand
, TemplateArgs
);
2770 // If this reference is in an Objective-C method, then we need to do
2771 // some special Objective-C lookup, too.
2772 if (IvarLookupFollowUp
) {
2773 ExprResult
E(LookupInObjCMethod(R
, S
, II
, true));
2777 if (Expr
*Ex
= E
.getAs
<Expr
>())
2782 if (R
.isAmbiguous())
2785 // This could be an implicitly declared function reference if the language
2786 // mode allows it as a feature.
2787 if (R
.empty() && HasTrailingLParen
&& II
&&
2788 getLangOpts().implicitFunctionsAllowed()) {
2789 NamedDecl
*D
= ImplicitlyDefineFunction(NameLoc
, *II
, S
);
2790 if (D
) R
.addDecl(D
);
2793 // Determine whether this name might be a candidate for
2794 // argument-dependent lookup.
2795 bool ADL
= UseArgumentDependentLookup(SS
, R
, HasTrailingLParen
);
2797 if (R
.empty() && !ADL
) {
2798 if (SS
.isEmpty() && getLangOpts().MSVCCompat
) {
2799 if (Expr
*E
= recoverFromMSUnqualifiedLookup(*this, Context
, NameInfo
,
2800 TemplateKWLoc
, TemplateArgs
))
2804 // Don't diagnose an empty lookup for inline assembly.
2805 if (IsInlineAsmIdentifier
)
2808 // If this name wasn't predeclared and if this is not a function
2809 // call, diagnose the problem.
2810 TypoExpr
*TE
= nullptr;
2811 DefaultFilterCCC
DefaultValidator(II
, SS
.isValid() ? SS
.getScopeRep()
2813 DefaultValidator
.IsAddressOfOperand
= IsAddressOfOperand
;
2814 assert((!CCC
|| CCC
->IsAddressOfOperand
== IsAddressOfOperand
) &&
2815 "Typo correction callback misconfigured");
2817 // Make sure the callback knows what the typo being diagnosed is.
2818 CCC
->setTypoName(II
);
2820 CCC
->setTypoNNS(SS
.getScopeRep());
2822 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2823 // a template name, but we happen to have always already looked up the name
2824 // before we get here if it must be a template name.
2825 if (DiagnoseEmptyLookup(S
, SS
, R
, CCC
? *CCC
: DefaultValidator
, nullptr,
2826 std::nullopt
, &TE
)) {
2827 if (TE
&& KeywordReplacement
) {
2828 auto &State
= getTypoExprState(TE
);
2829 auto BestTC
= State
.Consumer
->getNextCorrection();
2830 if (BestTC
.isKeyword()) {
2831 auto *II
= BestTC
.getCorrectionAsIdentifierInfo();
2832 if (State
.DiagHandler
)
2833 State
.DiagHandler(BestTC
);
2834 KeywordReplacement
->startToken();
2835 KeywordReplacement
->setKind(II
->getTokenID());
2836 KeywordReplacement
->setIdentifierInfo(II
);
2837 KeywordReplacement
->setLocation(BestTC
.getCorrectionRange().getBegin());
2838 // Clean up the state associated with the TypoExpr, since it has
2839 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2840 clearDelayedTypo(TE
);
2841 // Signal that a correction to a keyword was performed by returning a
2842 // valid-but-null ExprResult.
2843 return (Expr
*)nullptr;
2845 State
.Consumer
->resetCorrectionStream();
2847 return TE
? TE
: ExprError();
2850 assert(!R
.empty() &&
2851 "DiagnoseEmptyLookup returned false but added no results");
2853 // If we found an Objective-C instance variable, let
2854 // LookupInObjCMethod build the appropriate expression to
2855 // reference the ivar.
2856 if (ObjCIvarDecl
*Ivar
= R
.getAsSingle
<ObjCIvarDecl
>()) {
2858 ExprResult
E(LookupInObjCMethod(R
, S
, Ivar
->getIdentifier()));
2859 // In a hopelessly buggy code, Objective-C instance variable
2860 // lookup fails and no expression will be built to reference it.
2861 if (!E
.isInvalid() && !E
.get())
2867 // This is guaranteed from this point on.
2868 assert(!R
.empty() || ADL
);
2870 // Check whether this might be a C++ implicit instance member access.
2871 // C++ [class.mfct.non-static]p3:
2872 // When an id-expression that is not part of a class member access
2873 // syntax and not used to form a pointer to member is used in the
2874 // body of a non-static member function of class X, if name lookup
2875 // resolves the name in the id-expression to a non-static non-type
2876 // member of some class C, the id-expression is transformed into a
2877 // class member access expression using (*this) as the
2878 // postfix-expression to the left of the . operator.
2880 // But we don't actually need to do this for '&' operands if R
2881 // resolved to a function or overloaded function set, because the
2882 // expression is ill-formed if it actually works out to be a
2883 // non-static member function:
2885 // C++ [expr.ref]p4:
2886 // Otherwise, if E1.E2 refers to a non-static member function. . .
2887 // [t]he expression can be used only as the left-hand operand of a
2888 // member function call.
2890 // There are other safeguards against such uses, but it's important
2891 // to get this right here so that we don't end up making a
2892 // spuriously dependent expression if we're inside a dependent
2894 if (!R
.empty() && (*R
.begin())->isCXXClassMember()) {
2895 bool MightBeImplicitMember
;
2896 if (!IsAddressOfOperand
)
2897 MightBeImplicitMember
= true;
2898 else if (!SS
.isEmpty())
2899 MightBeImplicitMember
= false;
2900 else if (R
.isOverloadedResult())
2901 MightBeImplicitMember
= false;
2902 else if (R
.isUnresolvableResult())
2903 MightBeImplicitMember
= true;
2905 MightBeImplicitMember
= isa
<FieldDecl
>(R
.getFoundDecl()) ||
2906 isa
<IndirectFieldDecl
>(R
.getFoundDecl()) ||
2907 isa
<MSPropertyDecl
>(R
.getFoundDecl());
2909 if (MightBeImplicitMember
)
2910 return BuildPossibleImplicitMemberExpr(SS
, TemplateKWLoc
,
2911 R
, TemplateArgs
, S
);
2914 if (TemplateArgs
|| TemplateKWLoc
.isValid()) {
2916 // In C++1y, if this is a variable template id, then check it
2917 // in BuildTemplateIdExpr().
2918 // The single lookup result must be a variable template declaration.
2919 if (Id
.getKind() == UnqualifiedIdKind::IK_TemplateId
&& Id
.TemplateId
&&
2920 Id
.TemplateId
->Kind
== TNK_Var_template
) {
2921 assert(R
.getAsSingle
<VarTemplateDecl
>() &&
2922 "There should only be one declaration found.");
2925 return BuildTemplateIdExpr(SS
, TemplateKWLoc
, R
, ADL
, TemplateArgs
);
2928 return BuildDeclarationNameExpr(SS
, R
, ADL
);
2931 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2932 /// declaration name, generally during template instantiation.
2933 /// There's a large number of things which don't need to be done along
2935 ExprResult
Sema::BuildQualifiedDeclarationNameExpr(
2936 CXXScopeSpec
&SS
, const DeclarationNameInfo
&NameInfo
,
2937 bool IsAddressOfOperand
, const Scope
*S
, TypeSourceInfo
**RecoveryTSI
) {
2938 if (NameInfo
.getName().isDependentName())
2939 return BuildDependentDeclRefExpr(SS
, /*TemplateKWLoc=*/SourceLocation(),
2940 NameInfo
, /*TemplateArgs=*/nullptr);
2942 DeclContext
*DC
= computeDeclContext(SS
, false);
2944 return BuildDependentDeclRefExpr(SS
, /*TemplateKWLoc=*/SourceLocation(),
2945 NameInfo
, /*TemplateArgs=*/nullptr);
2947 if (RequireCompleteDeclContext(SS
, DC
))
2950 LookupResult
R(*this, NameInfo
, LookupOrdinaryName
);
2951 LookupQualifiedName(R
, DC
);
2953 if (R
.isAmbiguous())
2956 if (R
.getResultKind() == LookupResult::NotFoundInCurrentInstantiation
)
2957 return BuildDependentDeclRefExpr(SS
, /*TemplateKWLoc=*/SourceLocation(),
2958 NameInfo
, /*TemplateArgs=*/nullptr);
2961 // Don't diagnose problems with invalid record decl, the secondary no_member
2962 // diagnostic during template instantiation is likely bogus, e.g. if a class
2963 // is invalid because it's derived from an invalid base class, then missing
2964 // members were likely supposed to be inherited.
2965 if (const auto *CD
= dyn_cast
<CXXRecordDecl
>(DC
))
2966 if (CD
->isInvalidDecl())
2968 Diag(NameInfo
.getLoc(), diag::err_no_member
)
2969 << NameInfo
.getName() << DC
<< SS
.getRange();
2973 if (const TypeDecl
*TD
= R
.getAsSingle
<TypeDecl
>()) {
2974 // Diagnose a missing typename if this resolved unambiguously to a type in
2975 // a dependent context. If we can recover with a type, downgrade this to
2976 // a warning in Microsoft compatibility mode.
2977 unsigned DiagID
= diag::err_typename_missing
;
2978 if (RecoveryTSI
&& getLangOpts().MSVCCompat
)
2979 DiagID
= diag::ext_typename_missing
;
2980 SourceLocation Loc
= SS
.getBeginLoc();
2981 auto D
= Diag(Loc
, DiagID
);
2982 D
<< SS
.getScopeRep() << NameInfo
.getName().getAsString()
2983 << SourceRange(Loc
, NameInfo
.getEndLoc());
2985 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2990 // Only issue the fixit if we're prepared to recover.
2991 D
<< FixItHint::CreateInsertion(Loc
, "typename ");
2993 // Recover by pretending this was an elaborated type.
2994 QualType Ty
= Context
.getTypeDeclType(TD
);
2996 TLB
.pushTypeSpec(Ty
).setNameLoc(NameInfo
.getLoc());
2998 QualType ET
= getElaboratedType(ElaboratedTypeKeyword::None
, SS
, Ty
);
2999 ElaboratedTypeLoc QTL
= TLB
.push
<ElaboratedTypeLoc
>(ET
);
3000 QTL
.setElaboratedKeywordLoc(SourceLocation());
3001 QTL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
3003 *RecoveryTSI
= TLB
.getTypeSourceInfo(Context
, ET
);
3008 // Defend against this resolving to an implicit member access. We usually
3009 // won't get here if this might be a legitimate a class member (we end up in
3010 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
3011 // a pointer-to-member or in an unevaluated context in C++11.
3012 if (!R
.empty() && (*R
.begin())->isCXXClassMember() && !IsAddressOfOperand
)
3013 return BuildPossibleImplicitMemberExpr(SS
,
3014 /*TemplateKWLoc=*/SourceLocation(),
3015 R
, /*TemplateArgs=*/nullptr, S
);
3017 return BuildDeclarationNameExpr(SS
, R
, /* ADL */ false);
3020 /// The parser has read a name in, and Sema has detected that we're currently
3021 /// inside an ObjC method. Perform some additional checks and determine if we
3022 /// should form a reference to an ivar.
3024 /// Ideally, most of this would be done by lookup, but there's
3025 /// actually quite a lot of extra work involved.
3026 DeclResult
Sema::LookupIvarInObjCMethod(LookupResult
&Lookup
, Scope
*S
,
3027 IdentifierInfo
*II
) {
3028 SourceLocation Loc
= Lookup
.getNameLoc();
3029 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
3031 // Check for error condition which is already reported.
3033 return DeclResult(true);
3035 // There are two cases to handle here. 1) scoped lookup could have failed,
3036 // in which case we should look for an ivar. 2) scoped lookup could have
3037 // found a decl, but that decl is outside the current instance method (i.e.
3038 // a global variable). In these two cases, we do a lookup for an ivar with
3039 // this name, if the lookup sucedes, we replace it our current decl.
3041 // If we're in a class method, we don't normally want to look for
3042 // ivars. But if we don't find anything else, and there's an
3043 // ivar, that's an error.
3044 bool IsClassMethod
= CurMethod
->isClassMethod();
3048 LookForIvars
= true;
3049 else if (IsClassMethod
)
3050 LookForIvars
= false;
3052 LookForIvars
= (Lookup
.isSingleResult() &&
3053 Lookup
.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
3054 ObjCInterfaceDecl
*IFace
= nullptr;
3056 IFace
= CurMethod
->getClassInterface();
3057 ObjCInterfaceDecl
*ClassDeclared
;
3058 ObjCIvarDecl
*IV
= nullptr;
3059 if (IFace
&& (IV
= IFace
->lookupInstanceVariable(II
, ClassDeclared
))) {
3060 // Diagnose using an ivar in a class method.
3061 if (IsClassMethod
) {
3062 Diag(Loc
, diag::err_ivar_use_in_class_method
) << IV
->getDeclName();
3063 return DeclResult(true);
3066 // Diagnose the use of an ivar outside of the declaring class.
3067 if (IV
->getAccessControl() == ObjCIvarDecl::Private
&&
3068 !declaresSameEntity(ClassDeclared
, IFace
) &&
3069 !getLangOpts().DebuggerSupport
)
3070 Diag(Loc
, diag::err_private_ivar_access
) << IV
->getDeclName();
3075 } else if (CurMethod
->isInstanceMethod()) {
3076 // We should warn if a local variable hides an ivar.
3077 if (ObjCInterfaceDecl
*IFace
= CurMethod
->getClassInterface()) {
3078 ObjCInterfaceDecl
*ClassDeclared
;
3079 if (ObjCIvarDecl
*IV
= IFace
->lookupInstanceVariable(II
, ClassDeclared
)) {
3080 if (IV
->getAccessControl() != ObjCIvarDecl::Private
||
3081 declaresSameEntity(IFace
, ClassDeclared
))
3082 Diag(Loc
, diag::warn_ivar_use_hidden
) << IV
->getDeclName();
3085 } else if (Lookup
.isSingleResult() &&
3086 Lookup
.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
3087 // If accessing a stand-alone ivar in a class method, this is an error.
3088 if (const ObjCIvarDecl
*IV
=
3089 dyn_cast
<ObjCIvarDecl
>(Lookup
.getFoundDecl())) {
3090 Diag(Loc
, diag::err_ivar_use_in_class_method
) << IV
->getDeclName();
3091 return DeclResult(true);
3095 // Didn't encounter an error, didn't find an ivar.
3096 return DeclResult(false);
3099 ExprResult
Sema::BuildIvarRefExpr(Scope
*S
, SourceLocation Loc
,
3101 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
3102 assert(CurMethod
&& CurMethod
->isInstanceMethod() &&
3103 "should not reference ivar from this context");
3105 ObjCInterfaceDecl
*IFace
= CurMethod
->getClassInterface();
3106 assert(IFace
&& "should not reference ivar from this context");
3108 // If we're referencing an invalid decl, just return this as a silent
3109 // error node. The error diagnostic was already emitted on the decl.
3110 if (IV
->isInvalidDecl())
3113 // Check if referencing a field with __attribute__((deprecated)).
3114 if (DiagnoseUseOfDecl(IV
, Loc
))
3117 // FIXME: This should use a new expr for a direct reference, don't
3118 // turn this into Self->ivar, just return a BareIVarExpr or something.
3119 IdentifierInfo
&II
= Context
.Idents
.get("self");
3120 UnqualifiedId SelfName
;
3121 SelfName
.setImplicitSelfParam(&II
);
3122 CXXScopeSpec SelfScopeSpec
;
3123 SourceLocation TemplateKWLoc
;
3124 ExprResult SelfExpr
=
3125 ActOnIdExpression(S
, SelfScopeSpec
, TemplateKWLoc
, SelfName
,
3126 /*HasTrailingLParen=*/false,
3127 /*IsAddressOfOperand=*/false);
3128 if (SelfExpr
.isInvalid())
3131 SelfExpr
= DefaultLvalueConversion(SelfExpr
.get());
3132 if (SelfExpr
.isInvalid())
3135 MarkAnyDeclReferenced(Loc
, IV
, true);
3137 ObjCMethodFamily MF
= CurMethod
->getMethodFamily();
3138 if (MF
!= OMF_init
&& MF
!= OMF_dealloc
&& MF
!= OMF_finalize
&&
3139 !IvarBacksCurrentMethodAccessor(IFace
, CurMethod
, IV
))
3140 Diag(Loc
, diag::warn_direct_ivar_access
) << IV
->getDeclName();
3142 ObjCIvarRefExpr
*Result
= new (Context
)
3143 ObjCIvarRefExpr(IV
, IV
->getUsageType(SelfExpr
.get()->getType()), Loc
,
3144 IV
->getLocation(), SelfExpr
.get(), true, true);
3146 if (IV
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
) {
3147 if (!isUnevaluatedContext() &&
3148 !Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
, Loc
))
3149 getCurFunction()->recordUseOfWeak(Result
);
3151 if (getLangOpts().ObjCAutoRefCount
&& !isUnevaluatedContext())
3152 if (const BlockDecl
*BD
= CurContext
->getInnermostBlockDecl())
3153 ImplicitlyRetainedSelfLocs
.push_back({Loc
, BD
});
3158 /// The parser has read a name in, and Sema has detected that we're currently
3159 /// inside an ObjC method. Perform some additional checks and determine if we
3160 /// should form a reference to an ivar. If so, build an expression referencing
3163 Sema::LookupInObjCMethod(LookupResult
&Lookup
, Scope
*S
,
3164 IdentifierInfo
*II
, bool AllowBuiltinCreation
) {
3165 // FIXME: Integrate this lookup step into LookupParsedName.
3166 DeclResult Ivar
= LookupIvarInObjCMethod(Lookup
, S
, II
);
3167 if (Ivar
.isInvalid())
3169 if (Ivar
.isUsable())
3170 return BuildIvarRefExpr(S
, Lookup
.getNameLoc(),
3171 cast
<ObjCIvarDecl
>(Ivar
.get()));
3173 if (Lookup
.empty() && II
&& AllowBuiltinCreation
)
3174 LookupBuiltin(Lookup
);
3176 // Sentinel value saying that we didn't do anything special.
3177 return ExprResult(false);
3180 /// Cast a base object to a member's actual type.
3182 /// There are two relevant checks:
3184 /// C++ [class.access.base]p7:
3186 /// If a class member access operator [...] is used to access a non-static
3187 /// data member or non-static member function, the reference is ill-formed if
3188 /// the left operand [...] cannot be implicitly converted to a pointer to the
3189 /// naming class of the right operand.
3191 /// C++ [expr.ref]p7:
3193 /// If E2 is a non-static data member or a non-static member function, the
3194 /// program is ill-formed if the class of which E2 is directly a member is an
3195 /// ambiguous base (11.8) of the naming class (11.9.3) of E2.
3197 /// Note that the latter check does not consider access; the access of the
3198 /// "real" base class is checked as appropriate when checking the access of the
3201 Sema::PerformObjectMemberConversion(Expr
*From
,
3202 NestedNameSpecifier
*Qualifier
,
3203 NamedDecl
*FoundDecl
,
3204 NamedDecl
*Member
) {
3205 const auto *RD
= dyn_cast
<CXXRecordDecl
>(Member
->getDeclContext());
3209 QualType DestRecordType
;
3211 QualType FromRecordType
;
3212 QualType FromType
= From
->getType();
3213 bool PointerConversions
= false;
3214 if (isa
<FieldDecl
>(Member
)) {
3215 DestRecordType
= Context
.getCanonicalType(Context
.getTypeDeclType(RD
));
3216 auto FromPtrType
= FromType
->getAs
<PointerType
>();
3217 DestRecordType
= Context
.getAddrSpaceQualType(
3218 DestRecordType
, FromPtrType
3219 ? FromType
->getPointeeType().getAddressSpace()
3220 : FromType
.getAddressSpace());
3223 DestType
= Context
.getPointerType(DestRecordType
);
3224 FromRecordType
= FromPtrType
->getPointeeType();
3225 PointerConversions
= true;
3227 DestType
= DestRecordType
;
3228 FromRecordType
= FromType
;
3230 } else if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(Member
)) {
3231 if (!Method
->isImplicitObjectMemberFunction())
3234 DestType
= Method
->getThisType().getNonReferenceType();
3235 DestRecordType
= Method
->getFunctionObjectParameterType();
3237 if (FromType
->getAs
<PointerType
>()) {
3238 FromRecordType
= FromType
->getPointeeType();
3239 PointerConversions
= true;
3241 FromRecordType
= FromType
;
3242 DestType
= DestRecordType
;
3245 LangAS FromAS
= FromRecordType
.getAddressSpace();
3246 LangAS DestAS
= DestRecordType
.getAddressSpace();
3247 if (FromAS
!= DestAS
) {
3248 QualType FromRecordTypeWithoutAS
=
3249 Context
.removeAddrSpaceQualType(FromRecordType
);
3250 QualType FromTypeWithDestAS
=
3251 Context
.getAddrSpaceQualType(FromRecordTypeWithoutAS
, DestAS
);
3252 if (PointerConversions
)
3253 FromTypeWithDestAS
= Context
.getPointerType(FromTypeWithDestAS
);
3254 From
= ImpCastExprToType(From
, FromTypeWithDestAS
,
3255 CK_AddressSpaceConversion
, From
->getValueKind())
3259 // No conversion necessary.
3263 if (DestType
->isDependentType() || FromType
->isDependentType())
3266 // If the unqualified types are the same, no conversion is necessary.
3267 if (Context
.hasSameUnqualifiedType(FromRecordType
, DestRecordType
))
3270 SourceRange FromRange
= From
->getSourceRange();
3271 SourceLocation FromLoc
= FromRange
.getBegin();
3273 ExprValueKind VK
= From
->getValueKind();
3275 // C++ [class.member.lookup]p8:
3276 // [...] Ambiguities can often be resolved by qualifying a name with its
3279 // If the member was a qualified name and the qualified referred to a
3280 // specific base subobject type, we'll cast to that intermediate type
3281 // first and then to the object in which the member is declared. That allows
3282 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3284 // class Base { public: int x; };
3285 // class Derived1 : public Base { };
3286 // class Derived2 : public Base { };
3287 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3289 // void VeryDerived::f() {
3290 // x = 17; // error: ambiguous base subobjects
3291 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3293 if (Qualifier
&& Qualifier
->getAsType()) {
3294 QualType QType
= QualType(Qualifier
->getAsType(), 0);
3295 assert(QType
->isRecordType() && "lookup done with non-record type");
3297 QualType QRecordType
= QualType(QType
->castAs
<RecordType
>(), 0);
3299 // In C++98, the qualifier type doesn't actually have to be a base
3300 // type of the object type, in which case we just ignore it.
3301 // Otherwise build the appropriate casts.
3302 if (IsDerivedFrom(FromLoc
, FromRecordType
, QRecordType
)) {
3303 CXXCastPath BasePath
;
3304 if (CheckDerivedToBaseConversion(FromRecordType
, QRecordType
,
3305 FromLoc
, FromRange
, &BasePath
))
3308 if (PointerConversions
)
3309 QType
= Context
.getPointerType(QType
);
3310 From
= ImpCastExprToType(From
, QType
, CK_UncheckedDerivedToBase
,
3311 VK
, &BasePath
).get();
3314 FromRecordType
= QRecordType
;
3316 // If the qualifier type was the same as the destination type,
3318 if (Context
.hasSameUnqualifiedType(FromRecordType
, DestRecordType
))
3323 CXXCastPath BasePath
;
3324 if (CheckDerivedToBaseConversion(FromRecordType
, DestRecordType
,
3325 FromLoc
, FromRange
, &BasePath
,
3326 /*IgnoreAccess=*/true))
3329 return ImpCastExprToType(From
, DestType
, CK_UncheckedDerivedToBase
,
3333 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec
&SS
,
3334 const LookupResult
&R
,
3335 bool HasTrailingLParen
) {
3336 // Only when used directly as the postfix-expression of a call.
3337 if (!HasTrailingLParen
)
3340 // Never if a scope specifier was provided.
3344 // Only in C++ or ObjC++.
3345 if (!getLangOpts().CPlusPlus
)
3348 // Turn off ADL when we find certain kinds of declarations during
3350 for (const NamedDecl
*D
: R
) {
3351 // C++0x [basic.lookup.argdep]p3:
3352 // -- a declaration of a class member
3353 // Since using decls preserve this property, we check this on the
3355 if (D
->isCXXClassMember())
3358 // C++0x [basic.lookup.argdep]p3:
3359 // -- a block-scope function declaration that is not a
3360 // using-declaration
3361 // NOTE: we also trigger this for function templates (in fact, we
3362 // don't check the decl type at all, since all other decl types
3363 // turn off ADL anyway).
3364 if (isa
<UsingShadowDecl
>(D
))
3365 D
= cast
<UsingShadowDecl
>(D
)->getTargetDecl();
3366 else if (D
->getLexicalDeclContext()->isFunctionOrMethod())
3369 // C++0x [basic.lookup.argdep]p3:
3370 // -- a declaration that is neither a function or a function
3372 // And also for builtin functions.
3373 if (const auto *FDecl
= dyn_cast
<FunctionDecl
>(D
)) {
3374 // But also builtin functions.
3375 if (FDecl
->getBuiltinID() && FDecl
->isImplicit())
3377 } else if (!isa
<FunctionTemplateDecl
>(D
))
3385 /// Diagnoses obvious problems with the use of the given declaration
3386 /// as an expression. This is only actually called for lookups that
3387 /// were not overloaded, and it doesn't promise that the declaration
3388 /// will in fact be used.
3389 static bool CheckDeclInExpr(Sema
&S
, SourceLocation Loc
, NamedDecl
*D
,
3390 bool AcceptInvalid
) {
3391 if (D
->isInvalidDecl() && !AcceptInvalid
)
3394 if (isa
<TypedefNameDecl
>(D
)) {
3395 S
.Diag(Loc
, diag::err_unexpected_typedef
) << D
->getDeclName();
3399 if (isa
<ObjCInterfaceDecl
>(D
)) {
3400 S
.Diag(Loc
, diag::err_unexpected_interface
) << D
->getDeclName();
3404 if (isa
<NamespaceDecl
>(D
)) {
3405 S
.Diag(Loc
, diag::err_unexpected_namespace
) << D
->getDeclName();
3412 // Certain multiversion types should be treated as overloaded even when there is
3414 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult
&R
) {
3415 assert(R
.isSingleResult() && "Expected only a single result");
3416 const auto *FD
= dyn_cast
<FunctionDecl
>(R
.getFoundDecl());
3418 (FD
->isCPUDispatchMultiVersion() || FD
->isCPUSpecificMultiVersion());
3421 ExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec
&SS
,
3422 LookupResult
&R
, bool NeedsADL
,
3423 bool AcceptInvalidDecl
) {
3424 // If this is a single, fully-resolved result and we don't need ADL,
3425 // just build an ordinary singleton decl ref.
3426 if (!NeedsADL
&& R
.isSingleResult() &&
3427 !R
.getAsSingle
<FunctionTemplateDecl
>() &&
3428 !ShouldLookupResultBeMultiVersionOverload(R
))
3429 return BuildDeclarationNameExpr(SS
, R
.getLookupNameInfo(), R
.getFoundDecl(),
3430 R
.getRepresentativeDecl(), nullptr,
3433 // We only need to check the declaration if there's exactly one
3434 // result, because in the overloaded case the results can only be
3435 // functions and function templates.
3436 if (R
.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R
) &&
3437 CheckDeclInExpr(*this, R
.getNameLoc(), R
.getFoundDecl(),
3441 // Otherwise, just build an unresolved lookup expression. Suppress
3442 // any lookup-related diagnostics; we'll hash these out later, when
3443 // we've picked a target.
3444 R
.suppressDiagnostics();
3446 UnresolvedLookupExpr
*ULE
3447 = UnresolvedLookupExpr::Create(Context
, R
.getNamingClass(),
3448 SS
.getWithLocInContext(Context
),
3449 R
.getLookupNameInfo(),
3450 NeedsADL
, R
.isOverloadedResult(),
3451 R
.begin(), R
.end());
3456 static void diagnoseUncapturableValueReferenceOrBinding(Sema
&S
,
3460 /// Complete semantic analysis for a reference to the given declaration.
3461 ExprResult
Sema::BuildDeclarationNameExpr(
3462 const CXXScopeSpec
&SS
, const DeclarationNameInfo
&NameInfo
, NamedDecl
*D
,
3463 NamedDecl
*FoundD
, const TemplateArgumentListInfo
*TemplateArgs
,
3464 bool AcceptInvalidDecl
) {
3465 assert(D
&& "Cannot refer to a NULL declaration");
3466 assert(!isa
<FunctionTemplateDecl
>(D
) &&
3467 "Cannot refer unambiguously to a function template");
3469 SourceLocation Loc
= NameInfo
.getLoc();
3470 if (CheckDeclInExpr(*this, Loc
, D
, AcceptInvalidDecl
)) {
3471 // Recovery from invalid cases (e.g. D is an invalid Decl).
3472 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3473 // diagnostics, as invalid decls use int as a fallback type.
3474 return CreateRecoveryExpr(NameInfo
.getBeginLoc(), NameInfo
.getEndLoc(), {});
3477 if (TemplateDecl
*Template
= dyn_cast
<TemplateDecl
>(D
)) {
3478 // Specifically diagnose references to class templates that are missing
3479 // a template argument list.
3480 diagnoseMissingTemplateArguments(TemplateName(Template
), Loc
);
3484 // Make sure that we're referring to a value.
3485 if (!isa
<ValueDecl
, UnresolvedUsingIfExistsDecl
>(D
)) {
3486 Diag(Loc
, diag::err_ref_non_value
) << D
<< SS
.getRange();
3487 Diag(D
->getLocation(), diag::note_declared_at
);
3491 // Check whether this declaration can be used. Note that we suppress
3492 // this check when we're going to perform argument-dependent lookup
3493 // on this function name, because this might not be the function
3494 // that overload resolution actually selects.
3495 if (DiagnoseUseOfDecl(D
, Loc
))
3498 auto *VD
= cast
<ValueDecl
>(D
);
3500 // Only create DeclRefExpr's for valid Decl's.
3501 if (VD
->isInvalidDecl() && !AcceptInvalidDecl
)
3504 // Handle members of anonymous structs and unions. If we got here,
3505 // and the reference is to a class member indirect field, then this
3506 // must be the subject of a pointer-to-member expression.
3507 if (auto *IndirectField
= dyn_cast
<IndirectFieldDecl
>(VD
);
3508 IndirectField
&& !IndirectField
->isCXXClassMember())
3509 return BuildAnonymousStructUnionMemberReference(SS
, NameInfo
.getLoc(),
3512 QualType type
= VD
->getType();
3515 ExprValueKind valueKind
= VK_PRValue
;
3517 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3518 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3519 // is expanded by some outer '...' in the context of the use.
3520 type
= type
.getNonPackExpansionType();
3522 switch (D
->getKind()) {
3523 // Ignore all the non-ValueDecl kinds.
3524 #define ABSTRACT_DECL(kind)
3525 #define VALUE(type, base)
3526 #define DECL(type, base) case Decl::type:
3527 #include "clang/AST/DeclNodes.inc"
3528 llvm_unreachable("invalid value decl kind");
3530 // These shouldn't make it here.
3531 case Decl::ObjCAtDefsField
:
3532 llvm_unreachable("forming non-member reference to ivar?");
3534 // Enum constants are always r-values and never references.
3535 // Unresolved using declarations are dependent.
3536 case Decl::EnumConstant
:
3537 case Decl::UnresolvedUsingValue
:
3538 case Decl::OMPDeclareReduction
:
3539 case Decl::OMPDeclareMapper
:
3540 valueKind
= VK_PRValue
;
3543 // Fields and indirect fields that got here must be for
3544 // pointer-to-member expressions; we just call them l-values for
3545 // internal consistency, because this subexpression doesn't really
3546 // exist in the high-level semantics.
3548 case Decl::IndirectField
:
3549 case Decl::ObjCIvar
:
3550 assert(getLangOpts().CPlusPlus
&& "building reference to field in C?");
3552 // These can't have reference type in well-formed programs, but
3553 // for internal consistency we do this anyway.
3554 type
= type
.getNonReferenceType();
3555 valueKind
= VK_LValue
;
3558 // Non-type template parameters are either l-values or r-values
3559 // depending on the type.
3560 case Decl::NonTypeTemplateParm
: {
3561 if (const ReferenceType
*reftype
= type
->getAs
<ReferenceType
>()) {
3562 type
= reftype
->getPointeeType();
3563 valueKind
= VK_LValue
; // even if the parameter is an r-value reference
3567 // [expr.prim.id.unqual]p2:
3568 // If the entity is a template parameter object for a template
3569 // parameter of type T, the type of the expression is const T.
3570 // [...] The expression is an lvalue if the entity is a [...] template
3571 // parameter object.
3572 if (type
->isRecordType()) {
3573 type
= type
.getUnqualifiedType().withConst();
3574 valueKind
= VK_LValue
;
3578 // For non-references, we need to strip qualifiers just in case
3579 // the template parameter was declared as 'const int' or whatever.
3580 valueKind
= VK_PRValue
;
3581 type
= type
.getUnqualifiedType();
3586 case Decl::VarTemplateSpecialization
:
3587 case Decl::VarTemplatePartialSpecialization
:
3588 case Decl::Decomposition
:
3589 case Decl::OMPCapturedExpr
:
3590 // In C, "extern void blah;" is valid and is an r-value.
3591 if (!getLangOpts().CPlusPlus
&& !type
.hasQualifiers() &&
3592 type
->isVoidType()) {
3593 valueKind
= VK_PRValue
;
3598 case Decl::ImplicitParam
:
3599 case Decl::ParmVar
: {
3600 // These are always l-values.
3601 valueKind
= VK_LValue
;
3602 type
= type
.getNonReferenceType();
3604 // FIXME: Does the addition of const really only apply in
3605 // potentially-evaluated contexts? Since the variable isn't actually
3606 // captured in an unevaluated context, it seems that the answer is no.
3607 if (!isUnevaluatedContext()) {
3608 QualType CapturedType
= getCapturedDeclRefType(cast
<VarDecl
>(VD
), Loc
);
3609 if (!CapturedType
.isNull())
3610 type
= CapturedType
;
3617 // These are always lvalues.
3618 valueKind
= VK_LValue
;
3619 type
= type
.getNonReferenceType();
3622 case Decl::Function
: {
3623 if (unsigned BID
= cast
<FunctionDecl
>(VD
)->getBuiltinID()) {
3624 if (!Context
.BuiltinInfo
.isDirectlyAddressable(BID
)) {
3625 type
= Context
.BuiltinFnTy
;
3626 valueKind
= VK_PRValue
;
3631 const FunctionType
*fty
= type
->castAs
<FunctionType
>();
3633 // If we're referring to a function with an __unknown_anytype
3634 // result type, make the entire expression __unknown_anytype.
3635 if (fty
->getReturnType() == Context
.UnknownAnyTy
) {
3636 type
= Context
.UnknownAnyTy
;
3637 valueKind
= VK_PRValue
;
3641 // Functions are l-values in C++.
3642 if (getLangOpts().CPlusPlus
) {
3643 valueKind
= VK_LValue
;
3647 // C99 DR 316 says that, if a function type comes from a
3648 // function definition (without a prototype), that type is only
3649 // used for checking compatibility. Therefore, when referencing
3650 // the function, we pretend that we don't have the full function
3652 if (!cast
<FunctionDecl
>(VD
)->hasPrototype() && isa
<FunctionProtoType
>(fty
))
3653 type
= Context
.getFunctionNoProtoType(fty
->getReturnType(),
3656 // Functions are r-values in C.
3657 valueKind
= VK_PRValue
;
3661 case Decl::CXXDeductionGuide
:
3662 llvm_unreachable("building reference to deduction guide");
3664 case Decl::MSProperty
:
3666 case Decl::TemplateParamObject
:
3667 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3668 // capture in OpenMP, or duplicated between host and device?
3669 valueKind
= VK_LValue
;
3672 case Decl::UnnamedGlobalConstant
:
3673 valueKind
= VK_LValue
;
3676 case Decl::CXXMethod
:
3677 // If we're referring to a method with an __unknown_anytype
3678 // result type, make the entire expression __unknown_anytype.
3679 // This should only be possible with a type written directly.
3680 if (const FunctionProtoType
*proto
=
3681 dyn_cast
<FunctionProtoType
>(VD
->getType()))
3682 if (proto
->getReturnType() == Context
.UnknownAnyTy
) {
3683 type
= Context
.UnknownAnyTy
;
3684 valueKind
= VK_PRValue
;
3688 // C++ methods are l-values if static, r-values if non-static.
3689 if (cast
<CXXMethodDecl
>(VD
)->isStatic()) {
3690 valueKind
= VK_LValue
;
3695 case Decl::CXXConversion
:
3696 case Decl::CXXDestructor
:
3697 case Decl::CXXConstructor
:
3698 valueKind
= VK_PRValue
;
3703 BuildDeclRefExpr(VD
, type
, valueKind
, NameInfo
, &SS
, FoundD
,
3704 /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs
);
3705 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3706 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3707 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3709 if (VD
->isInvalidDecl() && E
)
3710 return CreateRecoveryExpr(E
->getBeginLoc(), E
->getEndLoc(), {E
});
3714 static void ConvertUTF8ToWideString(unsigned CharByteWidth
, StringRef Source
,
3715 SmallString
<32> &Target
) {
3716 Target
.resize(CharByteWidth
* (Source
.size() + 1));
3717 char *ResultPtr
= &Target
[0];
3718 const llvm::UTF8
*ErrorPtr
;
3720 llvm::ConvertUTF8toWide(CharByteWidth
, Source
, ResultPtr
, ErrorPtr
);
3723 Target
.resize(ResultPtr
- &Target
[0]);
3726 ExprResult
Sema::BuildPredefinedExpr(SourceLocation Loc
,
3727 PredefinedIdentKind IK
) {
3728 Decl
*currentDecl
= getPredefinedExprDecl(CurContext
);
3730 Diag(Loc
, diag::ext_predef_outside_function
);
3731 currentDecl
= Context
.getTranslationUnitDecl();
3735 StringLiteral
*SL
= nullptr;
3736 if (cast
<DeclContext
>(currentDecl
)->isDependentContext())
3737 ResTy
= Context
.DependentTy
;
3739 // Pre-defined identifiers are of type char[x], where x is the length of
3741 auto Str
= PredefinedExpr::ComputeName(IK
, currentDecl
);
3742 unsigned Length
= Str
.length();
3744 llvm::APInt
LengthI(32, Length
+ 1);
3745 if (IK
== PredefinedIdentKind::LFunction
||
3746 IK
== PredefinedIdentKind::LFuncSig
) {
3748 Context
.adjustStringLiteralBaseType(Context
.WideCharTy
.withConst());
3749 SmallString
<32> RawChars
;
3750 ConvertUTF8ToWideString(Context
.getTypeSizeInChars(ResTy
).getQuantity(),
3752 ResTy
= Context
.getConstantArrayType(ResTy
, LengthI
, nullptr,
3753 ArraySizeModifier::Normal
,
3754 /*IndexTypeQuals*/ 0);
3755 SL
= StringLiteral::Create(Context
, RawChars
, StringLiteralKind::Wide
,
3756 /*Pascal*/ false, ResTy
, Loc
);
3758 ResTy
= Context
.adjustStringLiteralBaseType(Context
.CharTy
.withConst());
3759 ResTy
= Context
.getConstantArrayType(ResTy
, LengthI
, nullptr,
3760 ArraySizeModifier::Normal
,
3761 /*IndexTypeQuals*/ 0);
3762 SL
= StringLiteral::Create(Context
, Str
, StringLiteralKind::Ordinary
,
3763 /*Pascal*/ false, ResTy
, Loc
);
3767 return PredefinedExpr::Create(Context
, Loc
, ResTy
, IK
, LangOpts
.MicrosoftExt
,
3771 ExprResult
Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc
,
3772 SourceLocation LParen
,
3773 SourceLocation RParen
,
3774 TypeSourceInfo
*TSI
) {
3775 return SYCLUniqueStableNameExpr::Create(Context
, OpLoc
, LParen
, RParen
, TSI
);
3778 ExprResult
Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc
,
3779 SourceLocation LParen
,
3780 SourceLocation RParen
,
3781 ParsedType ParsedTy
) {
3782 TypeSourceInfo
*TSI
= nullptr;
3783 QualType Ty
= GetTypeFromParser(ParsedTy
, &TSI
);
3788 TSI
= Context
.getTrivialTypeSourceInfo(Ty
, LParen
);
3790 return BuildSYCLUniqueStableNameExpr(OpLoc
, LParen
, RParen
, TSI
);
3793 ExprResult
Sema::ActOnPredefinedExpr(SourceLocation Loc
, tok::TokenKind Kind
) {
3794 return BuildPredefinedExpr(Loc
, getPredefinedExprKind(Kind
));
3797 ExprResult
Sema::ActOnCharacterConstant(const Token
&Tok
, Scope
*UDLScope
) {
3798 SmallString
<16> CharBuffer
;
3799 bool Invalid
= false;
3800 StringRef ThisTok
= PP
.getSpelling(Tok
, CharBuffer
, &Invalid
);
3804 CharLiteralParser
Literal(ThisTok
.begin(), ThisTok
.end(), Tok
.getLocation(),
3806 if (Literal
.hadError())
3810 if (Literal
.isWide())
3811 Ty
= Context
.WideCharTy
; // L'x' -> wchar_t in C and C++.
3812 else if (Literal
.isUTF8() && getLangOpts().C23
)
3813 Ty
= Context
.UnsignedCharTy
; // u8'x' -> unsigned char in C23
3814 else if (Literal
.isUTF8() && getLangOpts().Char8
)
3815 Ty
= Context
.Char8Ty
; // u8'x' -> char8_t when it exists.
3816 else if (Literal
.isUTF16())
3817 Ty
= Context
.Char16Ty
; // u'x' -> char16_t in C11 and C++11.
3818 else if (Literal
.isUTF32())
3819 Ty
= Context
.Char32Ty
; // U'x' -> char32_t in C11 and C++11.
3820 else if (!getLangOpts().CPlusPlus
|| Literal
.isMultiChar())
3821 Ty
= Context
.IntTy
; // 'x' -> int in C, 'wxyz' -> int in C++.
3823 Ty
= Context
.CharTy
; // 'x' -> char in C++;
3824 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3826 CharacterLiteralKind Kind
= CharacterLiteralKind::Ascii
;
3827 if (Literal
.isWide())
3828 Kind
= CharacterLiteralKind::Wide
;
3829 else if (Literal
.isUTF16())
3830 Kind
= CharacterLiteralKind::UTF16
;
3831 else if (Literal
.isUTF32())
3832 Kind
= CharacterLiteralKind::UTF32
;
3833 else if (Literal
.isUTF8())
3834 Kind
= CharacterLiteralKind::UTF8
;
3836 Expr
*Lit
= new (Context
) CharacterLiteral(Literal
.getValue(), Kind
, Ty
,
3839 if (Literal
.getUDSuffix().empty())
3842 // We're building a user-defined literal.
3843 IdentifierInfo
*UDSuffix
= &Context
.Idents
.get(Literal
.getUDSuffix());
3844 SourceLocation UDSuffixLoc
=
3845 getUDSuffixLoc(*this, Tok
.getLocation(), Literal
.getUDSuffixOffset());
3847 // Make sure we're allowed user-defined literals here.
3849 return ExprError(Diag(UDSuffixLoc
, diag::err_invalid_character_udl
));
3851 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3852 // operator "" X (ch)
3853 return BuildCookedLiteralOperatorCall(*this, UDLScope
, UDSuffix
, UDSuffixLoc
,
3854 Lit
, Tok
.getLocation());
3857 ExprResult
Sema::ActOnIntegerConstant(SourceLocation Loc
, uint64_t Val
) {
3858 unsigned IntSize
= Context
.getTargetInfo().getIntWidth();
3859 return IntegerLiteral::Create(Context
, llvm::APInt(IntSize
, Val
),
3860 Context
.IntTy
, Loc
);
3863 static Expr
*BuildFloatingLiteral(Sema
&S
, NumericLiteralParser
&Literal
,
3864 QualType Ty
, SourceLocation Loc
) {
3865 const llvm::fltSemantics
&Format
= S
.Context
.getFloatTypeSemantics(Ty
);
3867 using llvm::APFloat
;
3868 APFloat
Val(Format
);
3870 APFloat::opStatus result
= Literal
.GetFloatValue(Val
);
3872 // Overflow is always an error, but underflow is only an error if
3873 // we underflowed to zero (APFloat reports denormals as underflow).
3874 if ((result
& APFloat::opOverflow
) ||
3875 ((result
& APFloat::opUnderflow
) && Val
.isZero())) {
3876 unsigned diagnostic
;
3877 SmallString
<20> buffer
;
3878 if (result
& APFloat::opOverflow
) {
3879 diagnostic
= diag::warn_float_overflow
;
3880 APFloat::getLargest(Format
).toString(buffer
);
3882 diagnostic
= diag::warn_float_underflow
;
3883 APFloat::getSmallest(Format
).toString(buffer
);
3886 S
.Diag(Loc
, diagnostic
)
3888 << StringRef(buffer
.data(), buffer
.size());
3891 bool isExact
= (result
== APFloat::opOK
);
3892 return FloatingLiteral::Create(S
.Context
, Val
, isExact
, Ty
, Loc
);
3895 bool Sema::CheckLoopHintExpr(Expr
*E
, SourceLocation Loc
) {
3896 assert(E
&& "Invalid expression");
3898 if (E
->isValueDependent())
3901 QualType QT
= E
->getType();
3902 if (!QT
->isIntegerType() || QT
->isBooleanType() || QT
->isCharType()) {
3903 Diag(E
->getExprLoc(), diag::err_pragma_loop_invalid_argument_type
) << QT
;
3907 llvm::APSInt ValueAPS
;
3908 ExprResult R
= VerifyIntegerConstantExpression(E
, &ValueAPS
);
3913 bool ValueIsPositive
= ValueAPS
.isStrictlyPositive();
3914 if (!ValueIsPositive
|| ValueAPS
.getActiveBits() > 31) {
3915 Diag(E
->getExprLoc(), diag::err_pragma_loop_invalid_argument_value
)
3916 << toString(ValueAPS
, 10) << ValueIsPositive
;
3923 ExprResult
Sema::ActOnNumericConstant(const Token
&Tok
, Scope
*UDLScope
) {
3924 // Fast path for a single digit (which is quite common). A single digit
3925 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3926 if (Tok
.getLength() == 1) {
3927 const char Val
= PP
.getSpellingOfSingleCharacterNumericConstant(Tok
);
3928 return ActOnIntegerConstant(Tok
.getLocation(), Val
-'0');
3931 SmallString
<128> SpellingBuffer
;
3932 // NumericLiteralParser wants to overread by one character. Add padding to
3933 // the buffer in case the token is copied to the buffer. If getSpelling()
3934 // returns a StringRef to the memory buffer, it should have a null char at
3935 // the EOF, so it is also safe.
3936 SpellingBuffer
.resize(Tok
.getLength() + 1);
3938 // Get the spelling of the token, which eliminates trigraphs, etc.
3939 bool Invalid
= false;
3940 StringRef TokSpelling
= PP
.getSpelling(Tok
, SpellingBuffer
, &Invalid
);
3944 NumericLiteralParser
Literal(TokSpelling
, Tok
.getLocation(),
3945 PP
.getSourceManager(), PP
.getLangOpts(),
3946 PP
.getTargetInfo(), PP
.getDiagnostics());
3947 if (Literal
.hadError
)
3950 if (Literal
.hasUDSuffix()) {
3951 // We're building a user-defined literal.
3952 const IdentifierInfo
*UDSuffix
= &Context
.Idents
.get(Literal
.getUDSuffix());
3953 SourceLocation UDSuffixLoc
=
3954 getUDSuffixLoc(*this, Tok
.getLocation(), Literal
.getUDSuffixOffset());
3956 // Make sure we're allowed user-defined literals here.
3958 return ExprError(Diag(UDSuffixLoc
, diag::err_invalid_numeric_udl
));
3961 if (Literal
.isFloatingLiteral()) {
3962 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3963 // long double, the literal is treated as a call of the form
3964 // operator "" X (f L)
3965 CookedTy
= Context
.LongDoubleTy
;
3967 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3968 // unsigned long long, the literal is treated as a call of the form
3969 // operator "" X (n ULL)
3970 CookedTy
= Context
.UnsignedLongLongTy
;
3973 DeclarationName OpName
=
3974 Context
.DeclarationNames
.getCXXLiteralOperatorName(UDSuffix
);
3975 DeclarationNameInfo
OpNameInfo(OpName
, UDSuffixLoc
);
3976 OpNameInfo
.setCXXLiteralOperatorNameLoc(UDSuffixLoc
);
3978 SourceLocation TokLoc
= Tok
.getLocation();
3980 // Perform literal operator lookup to determine if we're building a raw
3981 // literal or a cooked one.
3982 LookupResult
R(*this, OpName
, UDSuffixLoc
, LookupOrdinaryName
);
3983 switch (LookupLiteralOperator(UDLScope
, R
, CookedTy
,
3984 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3985 /*AllowStringTemplatePack*/ false,
3986 /*DiagnoseMissing*/ !Literal
.isImaginary
)) {
3987 case LOLR_ErrorNoDiagnostic
:
3988 // Lookup failure for imaginary constants isn't fatal, there's still the
3989 // GNU extension producing _Complex types.
3995 if (Literal
.isFloatingLiteral()) {
3996 Lit
= BuildFloatingLiteral(*this, Literal
, CookedTy
, Tok
.getLocation());
3998 llvm::APInt
ResultVal(Context
.getTargetInfo().getLongLongWidth(), 0);
3999 if (Literal
.GetIntegerValue(ResultVal
))
4000 Diag(Tok
.getLocation(), diag::err_integer_literal_too_large
)
4001 << /* Unsigned */ 1;
4002 Lit
= IntegerLiteral::Create(Context
, ResultVal
, CookedTy
,
4005 return BuildLiteralOperatorCall(R
, OpNameInfo
, Lit
, TokLoc
);
4009 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
4010 // literal is treated as a call of the form
4011 // operator "" X ("n")
4012 unsigned Length
= Literal
.getUDSuffixOffset();
4013 QualType StrTy
= Context
.getConstantArrayType(
4014 Context
.adjustStringLiteralBaseType(Context
.CharTy
.withConst()),
4015 llvm::APInt(32, Length
+ 1), nullptr, ArraySizeModifier::Normal
, 0);
4017 StringLiteral::Create(Context
, StringRef(TokSpelling
.data(), Length
),
4018 StringLiteralKind::Ordinary
,
4019 /*Pascal*/ false, StrTy
, &TokLoc
, 1);
4020 return BuildLiteralOperatorCall(R
, OpNameInfo
, Lit
, TokLoc
);
4023 case LOLR_Template
: {
4024 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
4025 // template), L is treated as a call fo the form
4026 // operator "" X <'c1', 'c2', ... 'ck'>()
4027 // where n is the source character sequence c1 c2 ... ck.
4028 TemplateArgumentListInfo ExplicitArgs
;
4029 unsigned CharBits
= Context
.getIntWidth(Context
.CharTy
);
4030 bool CharIsUnsigned
= Context
.CharTy
->isUnsignedIntegerType();
4031 llvm::APSInt
Value(CharBits
, CharIsUnsigned
);
4032 for (unsigned I
= 0, N
= Literal
.getUDSuffixOffset(); I
!= N
; ++I
) {
4033 Value
= TokSpelling
[I
];
4034 TemplateArgument
Arg(Context
, Value
, Context
.CharTy
);
4035 TemplateArgumentLocInfo ArgInfo
;
4036 ExplicitArgs
.addArgument(TemplateArgumentLoc(Arg
, ArgInfo
));
4038 return BuildLiteralOperatorCall(R
, OpNameInfo
, std::nullopt
, TokLoc
,
4041 case LOLR_StringTemplatePack
:
4042 llvm_unreachable("unexpected literal operator lookup result");
4048 if (Literal
.isFixedPointLiteral()) {
4051 if (Literal
.isAccum
) {
4052 if (Literal
.isHalf
) {
4053 Ty
= Context
.ShortAccumTy
;
4054 } else if (Literal
.isLong
) {
4055 Ty
= Context
.LongAccumTy
;
4057 Ty
= Context
.AccumTy
;
4059 } else if (Literal
.isFract
) {
4060 if (Literal
.isHalf
) {
4061 Ty
= Context
.ShortFractTy
;
4062 } else if (Literal
.isLong
) {
4063 Ty
= Context
.LongFractTy
;
4065 Ty
= Context
.FractTy
;
4069 if (Literal
.isUnsigned
) Ty
= Context
.getCorrespondingUnsignedType(Ty
);
4071 bool isSigned
= !Literal
.isUnsigned
;
4072 unsigned scale
= Context
.getFixedPointScale(Ty
);
4073 unsigned bit_width
= Context
.getTypeInfo(Ty
).Width
;
4075 llvm::APInt
Val(bit_width
, 0, isSigned
);
4076 bool Overflowed
= Literal
.GetFixedPointValue(Val
, scale
);
4077 bool ValIsZero
= Val
.isZero() && !Overflowed
;
4079 auto MaxVal
= Context
.getFixedPointMax(Ty
).getValue();
4080 if (Literal
.isFract
&& Val
== MaxVal
+ 1 && !ValIsZero
)
4081 // Clause 6.4.4 - The value of a constant shall be in the range of
4082 // representable values for its type, with exception for constants of a
4083 // fract type with a value of exactly 1; such a constant shall denote
4084 // the maximal value for the type.
4086 else if (Val
.ugt(MaxVal
) || Overflowed
)
4087 Diag(Tok
.getLocation(), diag::err_too_large_for_fixed_point
);
4089 Res
= FixedPointLiteral::CreateFromRawInt(Context
, Val
, Ty
,
4090 Tok
.getLocation(), scale
);
4091 } else if (Literal
.isFloatingLiteral()) {
4093 if (Literal
.isHalf
){
4094 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
4095 Ty
= Context
.HalfTy
;
4097 Diag(Tok
.getLocation(), diag::err_half_const_requires_fp16
);
4100 } else if (Literal
.isFloat
)
4101 Ty
= Context
.FloatTy
;
4102 else if (Literal
.isLong
)
4103 Ty
= Context
.LongDoubleTy
;
4104 else if (Literal
.isFloat16
)
4105 Ty
= Context
.Float16Ty
;
4106 else if (Literal
.isFloat128
)
4107 Ty
= Context
.Float128Ty
;
4109 Ty
= Context
.DoubleTy
;
4111 Res
= BuildFloatingLiteral(*this, Literal
, Ty
, Tok
.getLocation());
4113 if (Ty
== Context
.DoubleTy
) {
4114 if (getLangOpts().SinglePrecisionConstants
) {
4115 if (Ty
->castAs
<BuiltinType
>()->getKind() != BuiltinType::Float
) {
4116 Res
= ImpCastExprToType(Res
, Context
.FloatTy
, CK_FloatingCast
).get();
4118 } else if (getLangOpts().OpenCL
&& !getOpenCLOptions().isAvailableOption(
4119 "cl_khr_fp64", getLangOpts())) {
4120 // Impose single-precision float type when cl_khr_fp64 is not enabled.
4121 Diag(Tok
.getLocation(), diag::warn_double_const_requires_fp64
)
4122 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
4123 Res
= ImpCastExprToType(Res
, Context
.FloatTy
, CK_FloatingCast
).get();
4126 } else if (!Literal
.isIntegerLiteral()) {
4131 // 'z/uz' literals are a C++23 feature.
4132 if (Literal
.isSizeT
)
4133 Diag(Tok
.getLocation(), getLangOpts().CPlusPlus
4134 ? getLangOpts().CPlusPlus23
4135 ? diag::warn_cxx20_compat_size_t_suffix
4136 : diag::ext_cxx23_size_t_suffix
4137 : diag::err_cxx23_size_t_suffix
);
4139 // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
4140 // but we do not currently support the suffix in C++ mode because it's not
4141 // entirely clear whether WG21 will prefer this suffix to return a library
4142 // type such as std::bit_int instead of returning a _BitInt.
4143 if (Literal
.isBitInt
&& !getLangOpts().CPlusPlus
)
4144 PP
.Diag(Tok
.getLocation(), getLangOpts().C23
4145 ? diag::warn_c23_compat_bitint_suffix
4146 : diag::ext_c23_bitint_suffix
);
4148 // Get the value in the widest-possible width. What is "widest" depends on
4149 // whether the literal is a bit-precise integer or not. For a bit-precise
4150 // integer type, try to scan the source to determine how many bits are
4151 // needed to represent the value. This may seem a bit expensive, but trying
4152 // to get the integer value from an overly-wide APInt is *extremely*
4153 // expensive, so the naive approach of assuming
4154 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4155 unsigned BitsNeeded
=
4156 Literal
.isBitInt
? llvm::APInt::getSufficientBitsNeeded(
4157 Literal
.getLiteralDigits(), Literal
.getRadix())
4158 : Context
.getTargetInfo().getIntMaxTWidth();
4159 llvm::APInt
ResultVal(BitsNeeded
, 0);
4161 if (Literal
.GetIntegerValue(ResultVal
)) {
4162 // If this value didn't fit into uintmax_t, error and force to ull.
4163 Diag(Tok
.getLocation(), diag::err_integer_literal_too_large
)
4164 << /* Unsigned */ 1;
4165 Ty
= Context
.UnsignedLongLongTy
;
4166 assert(Context
.getTypeSize(Ty
) == ResultVal
.getBitWidth() &&
4167 "long long is not intmax_t?");
4169 // If this value fits into a ULL, try to figure out what else it fits into
4170 // according to the rules of C99 6.4.4.1p5.
4172 // Octal, Hexadecimal, and integers with a U suffix are allowed to
4173 // be an unsigned int.
4174 bool AllowUnsigned
= Literal
.isUnsigned
|| Literal
.getRadix() != 10;
4176 // Check from smallest to largest, picking the smallest type we can.
4179 // Microsoft specific integer suffixes are explicitly sized.
4180 if (Literal
.MicrosoftInteger
) {
4181 if (Literal
.MicrosoftInteger
== 8 && !Literal
.isUnsigned
) {
4183 Ty
= Context
.CharTy
;
4185 Width
= Literal
.MicrosoftInteger
;
4186 Ty
= Context
.getIntTypeForBitwidth(Width
,
4187 /*Signed=*/!Literal
.isUnsigned
);
4191 // Bit-precise integer literals are automagically-sized based on the
4192 // width required by the literal.
4193 if (Literal
.isBitInt
) {
4194 // The signed version has one more bit for the sign value. There are no
4195 // zero-width bit-precise integers, even if the literal value is 0.
4196 Width
= std::max(ResultVal
.getActiveBits(), 1u) +
4197 (Literal
.isUnsigned
? 0u : 1u);
4199 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4200 // and reset the type to the largest supported width.
4201 unsigned int MaxBitIntWidth
=
4202 Context
.getTargetInfo().getMaxBitIntWidth();
4203 if (Width
> MaxBitIntWidth
) {
4204 Diag(Tok
.getLocation(), diag::err_integer_literal_too_large
)
4205 << Literal
.isUnsigned
;
4206 Width
= MaxBitIntWidth
;
4209 // Reset the result value to the smaller APInt and select the correct
4210 // type to be used. Note, we zext even for signed values because the
4211 // literal itself is always an unsigned value (a preceeding - is a
4212 // unary operator, not part of the literal).
4213 ResultVal
= ResultVal
.zextOrTrunc(Width
);
4214 Ty
= Context
.getBitIntType(Literal
.isUnsigned
, Width
);
4217 // Check C++23 size_t literals.
4218 if (Literal
.isSizeT
) {
4219 assert(!Literal
.MicrosoftInteger
&&
4220 "size_t literals can't be Microsoft literals");
4221 unsigned SizeTSize
= Context
.getTargetInfo().getTypeWidth(
4222 Context
.getTargetInfo().getSizeType());
4224 // Does it fit in size_t?
4225 if (ResultVal
.isIntN(SizeTSize
)) {
4226 // Does it fit in ssize_t?
4227 if (!Literal
.isUnsigned
&& ResultVal
[SizeTSize
- 1] == 0)
4228 Ty
= Context
.getSignedSizeType();
4229 else if (AllowUnsigned
)
4230 Ty
= Context
.getSizeType();
4235 if (Ty
.isNull() && !Literal
.isLong
&& !Literal
.isLongLong
&&
4237 // Are int/unsigned possibilities?
4238 unsigned IntSize
= Context
.getTargetInfo().getIntWidth();
4240 // Does it fit in a unsigned int?
4241 if (ResultVal
.isIntN(IntSize
)) {
4242 // Does it fit in a signed int?
4243 if (!Literal
.isUnsigned
&& ResultVal
[IntSize
-1] == 0)
4245 else if (AllowUnsigned
)
4246 Ty
= Context
.UnsignedIntTy
;
4251 // Are long/unsigned long possibilities?
4252 if (Ty
.isNull() && !Literal
.isLongLong
&& !Literal
.isSizeT
) {
4253 unsigned LongSize
= Context
.getTargetInfo().getLongWidth();
4255 // Does it fit in a unsigned long?
4256 if (ResultVal
.isIntN(LongSize
)) {
4257 // Does it fit in a signed long?
4258 if (!Literal
.isUnsigned
&& ResultVal
[LongSize
-1] == 0)
4259 Ty
= Context
.LongTy
;
4260 else if (AllowUnsigned
)
4261 Ty
= Context
.UnsignedLongTy
;
4262 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4264 else if (!getLangOpts().C99
&& !getLangOpts().CPlusPlus11
) {
4265 const unsigned LongLongSize
=
4266 Context
.getTargetInfo().getLongLongWidth();
4267 Diag(Tok
.getLocation(),
4268 getLangOpts().CPlusPlus
4270 ? diag::warn_old_implicitly_unsigned_long_cxx
4271 : /*C++98 UB*/ diag::
4272 ext_old_implicitly_unsigned_long_cxx
4273 : diag::warn_old_implicitly_unsigned_long
)
4274 << (LongLongSize
> LongSize
? /*will have type 'long long'*/ 0
4275 : /*will be ill-formed*/ 1);
4276 Ty
= Context
.UnsignedLongTy
;
4282 // Check long long if needed.
4283 if (Ty
.isNull() && !Literal
.isSizeT
) {
4284 unsigned LongLongSize
= Context
.getTargetInfo().getLongLongWidth();
4286 // Does it fit in a unsigned long long?
4287 if (ResultVal
.isIntN(LongLongSize
)) {
4288 // Does it fit in a signed long long?
4289 // To be compatible with MSVC, hex integer literals ending with the
4290 // LL or i64 suffix are always signed in Microsoft mode.
4291 if (!Literal
.isUnsigned
&& (ResultVal
[LongLongSize
-1] == 0 ||
4292 (getLangOpts().MSVCCompat
&& Literal
.isLongLong
)))
4293 Ty
= Context
.LongLongTy
;
4294 else if (AllowUnsigned
)
4295 Ty
= Context
.UnsignedLongLongTy
;
4296 Width
= LongLongSize
;
4298 // 'long long' is a C99 or C++11 feature, whether the literal
4299 // explicitly specified 'long long' or we needed the extra width.
4300 if (getLangOpts().CPlusPlus
)
4301 Diag(Tok
.getLocation(), getLangOpts().CPlusPlus11
4302 ? diag::warn_cxx98_compat_longlong
4303 : diag::ext_cxx11_longlong
);
4304 else if (!getLangOpts().C99
)
4305 Diag(Tok
.getLocation(), diag::ext_c99_longlong
);
4309 // If we still couldn't decide a type, we either have 'size_t' literal
4310 // that is out of range, or a decimal literal that does not fit in a
4311 // signed long long and has no U suffix.
4313 if (Literal
.isSizeT
)
4314 Diag(Tok
.getLocation(), diag::err_size_t_literal_too_large
)
4315 << Literal
.isUnsigned
;
4317 Diag(Tok
.getLocation(),
4318 diag::ext_integer_literal_too_large_for_signed
);
4319 Ty
= Context
.UnsignedLongLongTy
;
4320 Width
= Context
.getTargetInfo().getLongLongWidth();
4323 if (ResultVal
.getBitWidth() != Width
)
4324 ResultVal
= ResultVal
.trunc(Width
);
4326 Res
= IntegerLiteral::Create(Context
, ResultVal
, Ty
, Tok
.getLocation());
4329 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4330 if (Literal
.isImaginary
) {
4331 Res
= new (Context
) ImaginaryLiteral(Res
,
4332 Context
.getComplexType(Res
->getType()));
4334 Diag(Tok
.getLocation(), diag::ext_imaginary_constant
);
4339 ExprResult
Sema::ActOnParenExpr(SourceLocation L
, SourceLocation R
, Expr
*E
) {
4340 assert(E
&& "ActOnParenExpr() missing expr");
4341 QualType ExprTy
= E
->getType();
4342 if (getLangOpts().ProtectParens
&& CurFPFeatures
.getAllowFPReassociate() &&
4343 !E
->isLValue() && ExprTy
->hasFloatingRepresentation())
4344 return BuildBuiltinCallExpr(R
, Builtin::BI__arithmetic_fence
, E
);
4345 return new (Context
) ParenExpr(L
, R
, E
);
4348 static bool CheckVecStepTraitOperandType(Sema
&S
, QualType T
,
4350 SourceRange ArgRange
) {
4351 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4352 // scalar or vector data type argument..."
4353 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4354 // type (C99 6.2.5p18) or void.
4355 if (!(T
->isArithmeticType() || T
->isVoidType() || T
->isVectorType())) {
4356 S
.Diag(Loc
, diag::err_vecstep_non_scalar_vector_type
)
4361 assert((T
->isVoidType() || !T
->isIncompleteType()) &&
4362 "Scalar types should always be complete");
4366 static bool CheckVectorElementsTraitOperandType(Sema
&S
, QualType T
,
4368 SourceRange ArgRange
) {
4369 // builtin_vectorelements supports both fixed-sized and scalable vectors.
4370 if (!T
->isVectorType() && !T
->isSizelessVectorType())
4371 return S
.Diag(Loc
, diag::err_builtin_non_vector_type
)
4373 << "__builtin_vectorelements" << T
<< ArgRange
;
4378 static bool CheckExtensionTraitOperandType(Sema
&S
, QualType T
,
4380 SourceRange ArgRange
,
4381 UnaryExprOrTypeTrait TraitKind
) {
4382 // Invalid types must be hard errors for SFINAE in C++.
4383 if (S
.LangOpts
.CPlusPlus
)
4387 if (T
->isFunctionType() &&
4388 (TraitKind
== UETT_SizeOf
|| TraitKind
== UETT_AlignOf
||
4389 TraitKind
== UETT_PreferredAlignOf
)) {
4390 // sizeof(function)/alignof(function) is allowed as an extension.
4391 S
.Diag(Loc
, diag::ext_sizeof_alignof_function_type
)
4392 << getTraitSpelling(TraitKind
) << ArgRange
;
4396 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4397 // this is an error (OpenCL v1.1 s6.3.k)
4398 if (T
->isVoidType()) {
4399 unsigned DiagID
= S
.LangOpts
.OpenCL
? diag::err_opencl_sizeof_alignof_type
4400 : diag::ext_sizeof_alignof_void_type
;
4401 S
.Diag(Loc
, DiagID
) << getTraitSpelling(TraitKind
) << ArgRange
;
4408 static bool CheckObjCTraitOperandConstraints(Sema
&S
, QualType T
,
4410 SourceRange ArgRange
,
4411 UnaryExprOrTypeTrait TraitKind
) {
4412 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4413 // runtime doesn't allow it.
4414 if (!S
.LangOpts
.ObjCRuntime
.allowsSizeofAlignof() && T
->isObjCObjectType()) {
4415 S
.Diag(Loc
, diag::err_sizeof_nonfragile_interface
)
4416 << T
<< (TraitKind
== UETT_SizeOf
)
4424 /// Check whether E is a pointer from a decayed array type (the decayed
4425 /// pointer type is equal to T) and emit a warning if it is.
4426 static void warnOnSizeofOnArrayDecay(Sema
&S
, SourceLocation Loc
, QualType T
,
4428 // Don't warn if the operation changed the type.
4429 if (T
!= E
->getType())
4432 // Now look for array decays.
4433 const auto *ICE
= dyn_cast
<ImplicitCastExpr
>(E
);
4434 if (!ICE
|| ICE
->getCastKind() != CK_ArrayToPointerDecay
)
4437 S
.Diag(Loc
, diag::warn_sizeof_array_decay
) << ICE
->getSourceRange()
4439 << ICE
->getSubExpr()->getType();
4442 /// Check the constraints on expression operands to unary type expression
4443 /// and type traits.
4445 /// Completes any types necessary and validates the constraints on the operand
4446 /// expression. The logic mostly mirrors the type-based overload, but may modify
4447 /// the expression as it completes the type for that expression through template
4448 /// instantiation, etc.
4449 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr
*E
,
4450 UnaryExprOrTypeTrait ExprKind
) {
4451 QualType ExprTy
= E
->getType();
4452 assert(!ExprTy
->isReferenceType());
4454 bool IsUnevaluatedOperand
=
4455 (ExprKind
== UETT_SizeOf
|| ExprKind
== UETT_DataSizeOf
||
4456 ExprKind
== UETT_AlignOf
|| ExprKind
== UETT_PreferredAlignOf
||
4457 ExprKind
== UETT_VecStep
);
4458 if (IsUnevaluatedOperand
) {
4459 ExprResult Result
= CheckUnevaluatedOperand(E
);
4460 if (Result
.isInvalid())
4465 // The operand for sizeof and alignof is in an unevaluated expression context,
4466 // so side effects could result in unintended consequences.
4467 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4468 // used to build SFINAE gadgets.
4469 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4470 if (IsUnevaluatedOperand
&& !inTemplateInstantiation() &&
4471 !E
->isInstantiationDependent() &&
4472 !E
->getType()->isVariableArrayType() &&
4473 E
->HasSideEffects(Context
, false))
4474 Diag(E
->getExprLoc(), diag::warn_side_effects_unevaluated_context
);
4476 if (ExprKind
== UETT_VecStep
)
4477 return CheckVecStepTraitOperandType(*this, ExprTy
, E
->getExprLoc(),
4478 E
->getSourceRange());
4480 if (ExprKind
== UETT_VectorElements
)
4481 return CheckVectorElementsTraitOperandType(*this, ExprTy
, E
->getExprLoc(),
4482 E
->getSourceRange());
4484 // Explicitly list some types as extensions.
4485 if (!CheckExtensionTraitOperandType(*this, ExprTy
, E
->getExprLoc(),
4486 E
->getSourceRange(), ExprKind
))
4489 // WebAssembly tables are always illegal operands to unary expressions and
4491 if (Context
.getTargetInfo().getTriple().isWasm() &&
4492 E
->getType()->isWebAssemblyTableType()) {
4493 Diag(E
->getExprLoc(), diag::err_wasm_table_invalid_uett_operand
)
4494 << getTraitSpelling(ExprKind
);
4498 // 'alignof' applied to an expression only requires the base element type of
4499 // the expression to be complete. 'sizeof' requires the expression's type to
4500 // be complete (and will attempt to complete it if it's an array of unknown
4502 if (ExprKind
== UETT_AlignOf
|| ExprKind
== UETT_PreferredAlignOf
) {
4503 if (RequireCompleteSizedType(
4504 E
->getExprLoc(), Context
.getBaseElementType(E
->getType()),
4505 diag::err_sizeof_alignof_incomplete_or_sizeless_type
,
4506 getTraitSpelling(ExprKind
), E
->getSourceRange()))
4509 if (RequireCompleteSizedExprType(
4510 E
, diag::err_sizeof_alignof_incomplete_or_sizeless_type
,
4511 getTraitSpelling(ExprKind
), E
->getSourceRange()))
4515 // Completing the expression's type may have changed it.
4516 ExprTy
= E
->getType();
4517 assert(!ExprTy
->isReferenceType());
4519 if (ExprTy
->isFunctionType()) {
4520 Diag(E
->getExprLoc(), diag::err_sizeof_alignof_function_type
)
4521 << getTraitSpelling(ExprKind
) << E
->getSourceRange();
4525 if (CheckObjCTraitOperandConstraints(*this, ExprTy
, E
->getExprLoc(),
4526 E
->getSourceRange(), ExprKind
))
4529 if (ExprKind
== UETT_SizeOf
) {
4530 if (const auto *DeclRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParens())) {
4531 if (const auto *PVD
= dyn_cast
<ParmVarDecl
>(DeclRef
->getFoundDecl())) {
4532 QualType OType
= PVD
->getOriginalType();
4533 QualType Type
= PVD
->getType();
4534 if (Type
->isPointerType() && OType
->isArrayType()) {
4535 Diag(E
->getExprLoc(), diag::warn_sizeof_array_param
)
4537 Diag(PVD
->getLocation(), diag::note_declared_at
);
4542 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4543 // decays into a pointer and returns an unintended result. This is most
4544 // likely a typo for "sizeof(array) op x".
4545 if (const auto *BO
= dyn_cast
<BinaryOperator
>(E
->IgnoreParens())) {
4546 warnOnSizeofOnArrayDecay(*this, BO
->getOperatorLoc(), BO
->getType(),
4548 warnOnSizeofOnArrayDecay(*this, BO
->getOperatorLoc(), BO
->getType(),
4556 static bool CheckAlignOfExpr(Sema
&S
, Expr
*E
, UnaryExprOrTypeTrait ExprKind
) {
4557 // Cannot know anything else if the expression is dependent.
4558 if (E
->isTypeDependent())
4561 if (E
->getObjectKind() == OK_BitField
) {
4562 S
.Diag(E
->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield
)
4563 << 1 << E
->getSourceRange();
4567 ValueDecl
*D
= nullptr;
4568 Expr
*Inner
= E
->IgnoreParens();
4569 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Inner
)) {
4571 } else if (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Inner
)) {
4572 D
= ME
->getMemberDecl();
4575 // If it's a field, require the containing struct to have a
4576 // complete definition so that we can compute the layout.
4578 // This can happen in C++11 onwards, either by naming the member
4579 // in a way that is not transformed into a member access expression
4580 // (in an unevaluated operand, for instance), or by naming the member
4581 // in a trailing-return-type.
4583 // For the record, since __alignof__ on expressions is a GCC
4584 // extension, GCC seems to permit this but always gives the
4585 // nonsensical answer 0.
4587 // We don't really need the layout here --- we could instead just
4588 // directly check for all the appropriate alignment-lowing
4589 // attributes --- but that would require duplicating a lot of
4590 // logic that just isn't worth duplicating for such a marginal
4592 if (FieldDecl
*FD
= dyn_cast_or_null
<FieldDecl
>(D
)) {
4593 // Fast path this check, since we at least know the record has a
4594 // definition if we can find a member of it.
4595 if (!FD
->getParent()->isCompleteDefinition()) {
4596 S
.Diag(E
->getExprLoc(), diag::err_alignof_member_of_incomplete_type
)
4597 << E
->getSourceRange();
4601 // Otherwise, if it's a field, and the field doesn't have
4602 // reference type, then it must have a complete type (or be a
4603 // flexible array member, which we explicitly want to
4604 // white-list anyway), which makes the following checks trivial.
4605 if (!FD
->getType()->isReferenceType())
4609 return S
.CheckUnaryExprOrTypeTraitOperand(E
, ExprKind
);
4612 bool Sema::CheckVecStepExpr(Expr
*E
) {
4613 E
= E
->IgnoreParens();
4615 // Cannot know anything else if the expression is dependent.
4616 if (E
->isTypeDependent())
4619 return CheckUnaryExprOrTypeTraitOperand(E
, UETT_VecStep
);
4622 static void captureVariablyModifiedType(ASTContext
&Context
, QualType T
,
4623 CapturingScopeInfo
*CSI
) {
4624 assert(T
->isVariablyModifiedType());
4625 assert(CSI
!= nullptr);
4627 // We're going to walk down into the type and look for VLA expressions.
4629 const Type
*Ty
= T
.getTypePtr();
4630 switch (Ty
->getTypeClass()) {
4631 #define TYPE(Class, Base)
4632 #define ABSTRACT_TYPE(Class, Base)
4633 #define NON_CANONICAL_TYPE(Class, Base)
4634 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4635 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4636 #include "clang/AST/TypeNodes.inc"
4639 // These types are never variably-modified.
4643 case Type::ExtVector
:
4644 case Type::ConstantMatrix
:
4647 case Type::TemplateSpecialization
:
4648 case Type::ObjCObject
:
4649 case Type::ObjCInterface
:
4650 case Type::ObjCObjectPointer
:
4651 case Type::ObjCTypeParam
:
4654 llvm_unreachable("type class is never variably-modified!");
4655 case Type::Elaborated
:
4656 T
= cast
<ElaboratedType
>(Ty
)->getNamedType();
4658 case Type::Adjusted
:
4659 T
= cast
<AdjustedType
>(Ty
)->getOriginalType();
4662 T
= cast
<DecayedType
>(Ty
)->getPointeeType();
4665 T
= cast
<PointerType
>(Ty
)->getPointeeType();
4667 case Type::BlockPointer
:
4668 T
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
4670 case Type::LValueReference
:
4671 case Type::RValueReference
:
4672 T
= cast
<ReferenceType
>(Ty
)->getPointeeType();
4674 case Type::MemberPointer
:
4675 T
= cast
<MemberPointerType
>(Ty
)->getPointeeType();
4677 case Type::ConstantArray
:
4678 case Type::IncompleteArray
:
4679 // Losing element qualification here is fine.
4680 T
= cast
<ArrayType
>(Ty
)->getElementType();
4682 case Type::VariableArray
: {
4683 // Losing element qualification here is fine.
4684 const VariableArrayType
*VAT
= cast
<VariableArrayType
>(Ty
);
4686 // Unknown size indication requires no size computation.
4687 // Otherwise, evaluate and record it.
4688 auto Size
= VAT
->getSizeExpr();
4689 if (Size
&& !CSI
->isVLATypeCaptured(VAT
) &&
4690 (isa
<CapturedRegionScopeInfo
>(CSI
) || isa
<LambdaScopeInfo
>(CSI
)))
4691 CSI
->addVLATypeCapture(Size
->getExprLoc(), VAT
, Context
.getSizeType());
4693 T
= VAT
->getElementType();
4696 case Type::FunctionProto
:
4697 case Type::FunctionNoProto
:
4698 T
= cast
<FunctionType
>(Ty
)->getReturnType();
4702 case Type::UnaryTransform
:
4703 case Type::Attributed
:
4704 case Type::BTFTagAttributed
:
4705 case Type::SubstTemplateTypeParm
:
4706 case Type::MacroQualified
:
4707 // Keep walking after single level desugaring.
4708 T
= T
.getSingleStepDesugaredType(Context
);
4711 T
= cast
<TypedefType
>(Ty
)->desugar();
4713 case Type::Decltype
:
4714 T
= cast
<DecltypeType
>(Ty
)->desugar();
4717 T
= cast
<UsingType
>(Ty
)->desugar();
4720 case Type::DeducedTemplateSpecialization
:
4721 T
= cast
<DeducedType
>(Ty
)->getDeducedType();
4723 case Type::TypeOfExpr
:
4724 T
= cast
<TypeOfExprType
>(Ty
)->getUnderlyingExpr()->getType();
4727 T
= cast
<AtomicType
>(Ty
)->getValueType();
4730 } while (!T
.isNull() && T
->isVariablyModifiedType());
4733 /// Check the constraints on operands to unary expression and type
4736 /// This will complete any types necessary, and validate the various constraints
4737 /// on those operands.
4739 /// The UsualUnaryConversions() function is *not* called by this routine.
4740 /// C99 6.3.2.1p[2-4] all state:
4741 /// Except when it is the operand of the sizeof operator ...
4743 /// C++ [expr.sizeof]p4
4744 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4745 /// standard conversions are not applied to the operand of sizeof.
4747 /// This policy is followed for all of the unary trait expressions.
4748 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType
,
4749 SourceLocation OpLoc
,
4750 SourceRange ExprRange
,
4751 UnaryExprOrTypeTrait ExprKind
,
4753 if (ExprType
->isDependentType())
4756 // C++ [expr.sizeof]p2:
4757 // When applied to a reference or a reference type, the result
4758 // is the size of the referenced type.
4759 // C++11 [expr.alignof]p3:
4760 // When alignof is applied to a reference type, the result
4761 // shall be the alignment of the referenced type.
4762 if (const ReferenceType
*Ref
= ExprType
->getAs
<ReferenceType
>())
4763 ExprType
= Ref
->getPointeeType();
4765 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4766 // When alignof or _Alignof is applied to an array type, the result
4767 // is the alignment of the element type.
4768 if (ExprKind
== UETT_AlignOf
|| ExprKind
== UETT_PreferredAlignOf
||
4769 ExprKind
== UETT_OpenMPRequiredSimdAlign
)
4770 ExprType
= Context
.getBaseElementType(ExprType
);
4772 if (ExprKind
== UETT_VecStep
)
4773 return CheckVecStepTraitOperandType(*this, ExprType
, OpLoc
, ExprRange
);
4775 if (ExprKind
== UETT_VectorElements
)
4776 return CheckVectorElementsTraitOperandType(*this, ExprType
, OpLoc
,
4779 // Explicitly list some types as extensions.
4780 if (!CheckExtensionTraitOperandType(*this, ExprType
, OpLoc
, ExprRange
,
4784 if (RequireCompleteSizedType(
4785 OpLoc
, ExprType
, diag::err_sizeof_alignof_incomplete_or_sizeless_type
,
4789 if (ExprType
->isFunctionType()) {
4790 Diag(OpLoc
, diag::err_sizeof_alignof_function_type
) << KWName
<< ExprRange
;
4794 // WebAssembly tables are always illegal operands to unary expressions and
4796 if (Context
.getTargetInfo().getTriple().isWasm() &&
4797 ExprType
->isWebAssemblyTableType()) {
4798 Diag(OpLoc
, diag::err_wasm_table_invalid_uett_operand
)
4799 << getTraitSpelling(ExprKind
);
4803 if (CheckObjCTraitOperandConstraints(*this, ExprType
, OpLoc
, ExprRange
,
4807 if (ExprType
->isVariablyModifiedType() && FunctionScopes
.size() > 1) {
4808 if (auto *TT
= ExprType
->getAs
<TypedefType
>()) {
4809 for (auto I
= FunctionScopes
.rbegin(),
4810 E
= std::prev(FunctionScopes
.rend());
4812 auto *CSI
= dyn_cast
<CapturingScopeInfo
>(*I
);
4815 DeclContext
*DC
= nullptr;
4816 if (auto *LSI
= dyn_cast
<LambdaScopeInfo
>(CSI
))
4817 DC
= LSI
->CallOperator
;
4818 else if (auto *CRSI
= dyn_cast
<CapturedRegionScopeInfo
>(CSI
))
4819 DC
= CRSI
->TheCapturedDecl
;
4820 else if (auto *BSI
= dyn_cast
<BlockScopeInfo
>(CSI
))
4823 if (DC
->containsDecl(TT
->getDecl()))
4825 captureVariablyModifiedType(Context
, ExprType
, CSI
);
4834 /// Build a sizeof or alignof expression given a type operand.
4835 ExprResult
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo
*TInfo
,
4836 SourceLocation OpLoc
,
4837 UnaryExprOrTypeTrait ExprKind
,
4842 QualType T
= TInfo
->getType();
4844 if (!T
->isDependentType() &&
4845 CheckUnaryExprOrTypeTraitOperand(T
, OpLoc
, R
, ExprKind
,
4846 getTraitSpelling(ExprKind
)))
4849 // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4850 // properly deal with VLAs in nested calls of sizeof and typeof.
4851 if (isUnevaluatedContext() && ExprKind
== UETT_SizeOf
&&
4852 TInfo
->getType()->isVariablyModifiedType())
4853 TInfo
= TransformToPotentiallyEvaluated(TInfo
);
4855 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4856 return new (Context
) UnaryExprOrTypeTraitExpr(
4857 ExprKind
, TInfo
, Context
.getSizeType(), OpLoc
, R
.getEnd());
4860 /// Build a sizeof or alignof expression given an expression
4863 Sema::CreateUnaryExprOrTypeTraitExpr(Expr
*E
, SourceLocation OpLoc
,
4864 UnaryExprOrTypeTrait ExprKind
) {
4865 ExprResult PE
= CheckPlaceholderExpr(E
);
4871 // Verify that the operand is valid.
4872 bool isInvalid
= false;
4873 if (E
->isTypeDependent()) {
4874 // Delay type-checking for type-dependent expressions.
4875 } else if (ExprKind
== UETT_AlignOf
|| ExprKind
== UETT_PreferredAlignOf
) {
4876 isInvalid
= CheckAlignOfExpr(*this, E
, ExprKind
);
4877 } else if (ExprKind
== UETT_VecStep
) {
4878 isInvalid
= CheckVecStepExpr(E
);
4879 } else if (ExprKind
== UETT_OpenMPRequiredSimdAlign
) {
4880 Diag(E
->getExprLoc(), diag::err_openmp_default_simd_align_expr
);
4882 } else if (E
->refersToBitField()) { // C99 6.5.3.4p1.
4883 Diag(E
->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield
) << 0;
4885 } else if (ExprKind
== UETT_VectorElements
) {
4886 isInvalid
= CheckUnaryExprOrTypeTraitOperand(E
, UETT_VectorElements
);
4888 isInvalid
= CheckUnaryExprOrTypeTraitOperand(E
, UETT_SizeOf
);
4894 if (ExprKind
== UETT_SizeOf
&& E
->getType()->isVariableArrayType()) {
4895 PE
= TransformToPotentiallyEvaluated(E
);
4896 if (PE
.isInvalid()) return ExprError();
4900 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4901 return new (Context
) UnaryExprOrTypeTraitExpr(
4902 ExprKind
, E
, Context
.getSizeType(), OpLoc
, E
->getSourceRange().getEnd());
4905 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4906 /// expr and the same for @c alignof and @c __alignof
4907 /// Note that the ArgRange is invalid if isType is false.
4909 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc
,
4910 UnaryExprOrTypeTrait ExprKind
, bool IsType
,
4911 void *TyOrEx
, SourceRange ArgRange
) {
4912 // If error parsing type, ignore.
4913 if (!TyOrEx
) return ExprError();
4916 TypeSourceInfo
*TInfo
;
4917 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx
), &TInfo
);
4918 return CreateUnaryExprOrTypeTraitExpr(TInfo
, OpLoc
, ExprKind
, ArgRange
);
4921 Expr
*ArgEx
= (Expr
*)TyOrEx
;
4922 ExprResult Result
= CreateUnaryExprOrTypeTraitExpr(ArgEx
, OpLoc
, ExprKind
);
4926 bool Sema::CheckAlignasTypeArgument(StringRef KWName
, TypeSourceInfo
*TInfo
,
4927 SourceLocation OpLoc
, SourceRange R
) {
4930 return CheckUnaryExprOrTypeTraitOperand(TInfo
->getType(), OpLoc
, R
,
4931 UETT_AlignOf
, KWName
);
4934 /// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
4935 /// _Alignas(type-name) .
4936 /// [dcl.align] An alignment-specifier of the form
4937 /// alignas(type-id) has the same effect as alignas(alignof(type-id)).
4939 /// [N1570 6.7.5] _Alignas(type-name) is equivalent to
4940 /// _Alignas(_Alignof(type-name)).
4941 bool Sema::ActOnAlignasTypeArgument(StringRef KWName
, ParsedType Ty
,
4942 SourceLocation OpLoc
, SourceRange R
) {
4943 TypeSourceInfo
*TInfo
;
4944 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty
.getAsOpaquePtr()),
4946 return CheckAlignasTypeArgument(KWName
, TInfo
, OpLoc
, R
);
4949 static QualType
CheckRealImagOperand(Sema
&S
, ExprResult
&V
, SourceLocation Loc
,
4951 if (V
.get()->isTypeDependent())
4952 return S
.Context
.DependentTy
;
4954 // _Real and _Imag are only l-values for normal l-values.
4955 if (V
.get()->getObjectKind() != OK_Ordinary
) {
4956 V
= S
.DefaultLvalueConversion(V
.get());
4961 // These operators return the element type of a complex type.
4962 if (const ComplexType
*CT
= V
.get()->getType()->getAs
<ComplexType
>())
4963 return CT
->getElementType();
4965 // Otherwise they pass through real integer and floating point types here.
4966 if (V
.get()->getType()->isArithmeticType())
4967 return V
.get()->getType();
4969 // Test for placeholders.
4970 ExprResult PR
= S
.CheckPlaceholderExpr(V
.get());
4971 if (PR
.isInvalid()) return QualType();
4972 if (PR
.get() != V
.get()) {
4974 return CheckRealImagOperand(S
, V
, Loc
, IsReal
);
4977 // Reject anything else.
4978 S
.Diag(Loc
, diag::err_realimag_invalid_type
) << V
.get()->getType()
4979 << (IsReal
? "__real" : "__imag");
4986 Sema::ActOnPostfixUnaryOp(Scope
*S
, SourceLocation OpLoc
,
4987 tok::TokenKind Kind
, Expr
*Input
) {
4988 UnaryOperatorKind Opc
;
4990 default: llvm_unreachable("Unknown unary op!");
4991 case tok::plusplus
: Opc
= UO_PostInc
; break;
4992 case tok::minusminus
: Opc
= UO_PostDec
; break;
4995 // Since this might is a postfix expression, get rid of ParenListExprs.
4996 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Input
);
4997 if (Result
.isInvalid()) return ExprError();
4998 Input
= Result
.get();
5000 return BuildUnaryOp(S
, OpLoc
, Opc
, Input
);
5003 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
5005 /// \return true on error
5006 static bool checkArithmeticOnObjCPointer(Sema
&S
,
5007 SourceLocation opLoc
,
5009 assert(op
->getType()->isObjCObjectPointerType());
5010 if (S
.LangOpts
.ObjCRuntime
.allowsPointerArithmetic() &&
5011 !S
.LangOpts
.ObjCSubscriptingLegacyRuntime
)
5014 S
.Diag(opLoc
, diag::err_arithmetic_nonfragile_interface
)
5015 << op
->getType()->castAs
<ObjCObjectPointerType
>()->getPointeeType()
5016 << op
->getSourceRange();
5020 static bool isMSPropertySubscriptExpr(Sema
&S
, Expr
*Base
) {
5021 auto *BaseNoParens
= Base
->IgnoreParens();
5022 if (auto *MSProp
= dyn_cast
<MSPropertyRefExpr
>(BaseNoParens
))
5023 return MSProp
->getPropertyDecl()->getType()->isArrayType();
5024 return isa
<MSPropertySubscriptExpr
>(BaseNoParens
);
5027 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
5028 // Typically this is DependentTy, but can sometimes be more precise.
5030 // There are cases when we could determine a non-dependent type:
5031 // - LHS and RHS may have non-dependent types despite being type-dependent
5032 // (e.g. unbounded array static members of the current instantiation)
5033 // - one may be a dependent-sized array with known element type
5034 // - one may be a dependent-typed valid index (enum in current instantiation)
5036 // We *always* return a dependent type, in such cases it is DependentTy.
5037 // This avoids creating type-dependent expressions with non-dependent types.
5038 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
5039 static QualType
getDependentArraySubscriptType(Expr
*LHS
, Expr
*RHS
,
5040 const ASTContext
&Ctx
) {
5041 assert(LHS
->isTypeDependent() || RHS
->isTypeDependent());
5042 QualType LTy
= LHS
->getType(), RTy
= RHS
->getType();
5043 QualType Result
= Ctx
.DependentTy
;
5044 if (RTy
->isIntegralOrUnscopedEnumerationType()) {
5045 if (const PointerType
*PT
= LTy
->getAs
<PointerType
>())
5046 Result
= PT
->getPointeeType();
5047 else if (const ArrayType
*AT
= LTy
->getAsArrayTypeUnsafe())
5048 Result
= AT
->getElementType();
5049 } else if (LTy
->isIntegralOrUnscopedEnumerationType()) {
5050 if (const PointerType
*PT
= RTy
->getAs
<PointerType
>())
5051 Result
= PT
->getPointeeType();
5052 else if (const ArrayType
*AT
= RTy
->getAsArrayTypeUnsafe())
5053 Result
= AT
->getElementType();
5055 // Ensure we return a dependent type.
5056 return Result
->isDependentType() ? Result
: Ctx
.DependentTy
;
5059 static bool checkArgsForPlaceholders(Sema
&S
, MultiExprArg args
);
5061 ExprResult
Sema::ActOnArraySubscriptExpr(Scope
*S
, Expr
*base
,
5062 SourceLocation lbLoc
,
5063 MultiExprArg ArgExprs
,
5064 SourceLocation rbLoc
) {
5066 if (base
&& !base
->getType().isNull() &&
5067 base
->hasPlaceholderType(BuiltinType::OMPArraySection
))
5068 return ActOnOMPArraySectionExpr(base
, lbLoc
, ArgExprs
.front(), SourceLocation(),
5069 SourceLocation(), /*Length*/ nullptr,
5070 /*Stride=*/nullptr, rbLoc
);
5072 // Since this might be a postfix expression, get rid of ParenListExprs.
5073 if (isa
<ParenListExpr
>(base
)) {
5074 ExprResult result
= MaybeConvertParenListExprToParenExpr(S
, base
);
5075 if (result
.isInvalid())
5077 base
= result
.get();
5080 // Check if base and idx form a MatrixSubscriptExpr.
5082 // Helper to check for comma expressions, which are not allowed as indices for
5083 // matrix subscript expressions.
5084 auto CheckAndReportCommaError
= [this, base
, rbLoc
](Expr
*E
) {
5085 if (isa
<BinaryOperator
>(E
) && cast
<BinaryOperator
>(E
)->isCommaOp()) {
5086 Diag(E
->getExprLoc(), diag::err_matrix_subscript_comma
)
5087 << SourceRange(base
->getBeginLoc(), rbLoc
);
5092 // The matrix subscript operator ([][])is considered a single operator.
5093 // Separating the index expressions by parenthesis is not allowed.
5094 if (base
&& !base
->getType().isNull() &&
5095 base
->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx
) &&
5096 !isa
<MatrixSubscriptExpr
>(base
)) {
5097 Diag(base
->getExprLoc(), diag::err_matrix_separate_incomplete_index
)
5098 << SourceRange(base
->getBeginLoc(), rbLoc
);
5101 // If the base is a MatrixSubscriptExpr, try to create a new
5102 // MatrixSubscriptExpr.
5103 auto *matSubscriptE
= dyn_cast
<MatrixSubscriptExpr
>(base
);
5104 if (matSubscriptE
) {
5105 assert(ArgExprs
.size() == 1);
5106 if (CheckAndReportCommaError(ArgExprs
.front()))
5109 assert(matSubscriptE
->isIncomplete() &&
5110 "base has to be an incomplete matrix subscript");
5111 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE
->getBase(),
5112 matSubscriptE
->getRowIdx(),
5113 ArgExprs
.front(), rbLoc
);
5115 if (base
->getType()->isWebAssemblyTableType()) {
5116 Diag(base
->getExprLoc(), diag::err_wasm_table_art
)
5117 << SourceRange(base
->getBeginLoc(), rbLoc
) << 3;
5121 // Handle any non-overload placeholder types in the base and index
5122 // expressions. We can't handle overloads here because the other
5123 // operand might be an overloadable type, in which case the overload
5124 // resolution for the operator overload should get the first crack
5126 bool IsMSPropertySubscript
= false;
5127 if (base
->getType()->isNonOverloadPlaceholderType()) {
5128 IsMSPropertySubscript
= isMSPropertySubscriptExpr(*this, base
);
5129 if (!IsMSPropertySubscript
) {
5130 ExprResult result
= CheckPlaceholderExpr(base
);
5131 if (result
.isInvalid())
5133 base
= result
.get();
5137 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5138 if (base
->getType()->isMatrixType()) {
5139 assert(ArgExprs
.size() == 1);
5140 if (CheckAndReportCommaError(ArgExprs
.front()))
5143 return CreateBuiltinMatrixSubscriptExpr(base
, ArgExprs
.front(), nullptr,
5147 if (ArgExprs
.size() == 1 && getLangOpts().CPlusPlus20
) {
5148 Expr
*idx
= ArgExprs
[0];
5149 if ((isa
<BinaryOperator
>(idx
) && cast
<BinaryOperator
>(idx
)->isCommaOp()) ||
5150 (isa
<CXXOperatorCallExpr
>(idx
) &&
5151 cast
<CXXOperatorCallExpr
>(idx
)->getOperator() == OO_Comma
)) {
5152 Diag(idx
->getExprLoc(), diag::warn_deprecated_comma_subscript
)
5153 << SourceRange(base
->getBeginLoc(), rbLoc
);
5157 if (ArgExprs
.size() == 1 &&
5158 ArgExprs
[0]->getType()->isNonOverloadPlaceholderType()) {
5159 ExprResult result
= CheckPlaceholderExpr(ArgExprs
[0]);
5160 if (result
.isInvalid())
5162 ArgExprs
[0] = result
.get();
5164 if (checkArgsForPlaceholders(*this, ArgExprs
))
5168 // Build an unanalyzed expression if either operand is type-dependent.
5169 if (getLangOpts().CPlusPlus
&& ArgExprs
.size() == 1 &&
5170 (base
->isTypeDependent() ||
5171 Expr::hasAnyTypeDependentArguments(ArgExprs
)) &&
5172 !isa
<PackExpansionExpr
>(ArgExprs
[0])) {
5173 return new (Context
) ArraySubscriptExpr(
5174 base
, ArgExprs
.front(),
5175 getDependentArraySubscriptType(base
, ArgExprs
.front(), getASTContext()),
5176 VK_LValue
, OK_Ordinary
, rbLoc
);
5179 // MSDN, property (C++)
5180 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5181 // This attribute can also be used in the declaration of an empty array in a
5182 // class or structure definition. For example:
5183 // __declspec(property(get=GetX, put=PutX)) int x[];
5184 // The above statement indicates that x[] can be used with one or more array
5185 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5186 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5187 if (IsMSPropertySubscript
) {
5188 assert(ArgExprs
.size() == 1);
5189 // Build MS property subscript expression if base is MS property reference
5190 // or MS property subscript.
5191 return new (Context
)
5192 MSPropertySubscriptExpr(base
, ArgExprs
.front(), Context
.PseudoObjectTy
,
5193 VK_LValue
, OK_Ordinary
, rbLoc
);
5196 // Use C++ overloaded-operator rules if either operand has record
5197 // type. The spec says to do this if either type is *overloadable*,
5198 // but enum types can't declare subscript operators or conversion
5199 // operators, so there's nothing interesting for overload resolution
5200 // to do if there aren't any record types involved.
5202 // ObjC pointers have their own subscripting logic that is not tied
5203 // to overload resolution and so should not take this path.
5204 if (getLangOpts().CPlusPlus
&& !base
->getType()->isObjCObjectPointerType() &&
5205 ((base
->getType()->isRecordType() ||
5206 (ArgExprs
.size() != 1 || isa
<PackExpansionExpr
>(ArgExprs
[0]) ||
5207 ArgExprs
[0]->getType()->isRecordType())))) {
5208 return CreateOverloadedArraySubscriptExpr(lbLoc
, rbLoc
, base
, ArgExprs
);
5212 CreateBuiltinArraySubscriptExpr(base
, lbLoc
, ArgExprs
.front(), rbLoc
);
5214 if (!Res
.isInvalid() && isa
<ArraySubscriptExpr
>(Res
.get()))
5215 CheckSubscriptAccessOfNoDeref(cast
<ArraySubscriptExpr
>(Res
.get()));
5220 ExprResult
Sema::tryConvertExprToType(Expr
*E
, QualType Ty
) {
5221 InitializedEntity Entity
= InitializedEntity::InitializeTemporary(Ty
);
5222 InitializationKind Kind
=
5223 InitializationKind::CreateCopy(E
->getBeginLoc(), SourceLocation());
5224 InitializationSequence
InitSeq(*this, Entity
, Kind
, E
);
5225 return InitSeq
.Perform(*this, Entity
, Kind
, E
);
5228 ExprResult
Sema::CreateBuiltinMatrixSubscriptExpr(Expr
*Base
, Expr
*RowIdx
,
5230 SourceLocation RBLoc
) {
5231 ExprResult BaseR
= CheckPlaceholderExpr(Base
);
5232 if (BaseR
.isInvalid())
5236 ExprResult RowR
= CheckPlaceholderExpr(RowIdx
);
5237 if (RowR
.isInvalid())
5239 RowIdx
= RowR
.get();
5242 return new (Context
) MatrixSubscriptExpr(
5243 Base
, RowIdx
, ColumnIdx
, Context
.IncompleteMatrixIdxTy
, RBLoc
);
5245 // Build an unanalyzed expression if any of the operands is type-dependent.
5246 if (Base
->isTypeDependent() || RowIdx
->isTypeDependent() ||
5247 ColumnIdx
->isTypeDependent())
5248 return new (Context
) MatrixSubscriptExpr(Base
, RowIdx
, ColumnIdx
,
5249 Context
.DependentTy
, RBLoc
);
5251 ExprResult ColumnR
= CheckPlaceholderExpr(ColumnIdx
);
5252 if (ColumnR
.isInvalid())
5254 ColumnIdx
= ColumnR
.get();
5256 // Check that IndexExpr is an integer expression. If it is a constant
5257 // expression, check that it is less than Dim (= the number of elements in the
5258 // corresponding dimension).
5259 auto IsIndexValid
= [&](Expr
*IndexExpr
, unsigned Dim
,
5260 bool IsColumnIdx
) -> Expr
* {
5261 if (!IndexExpr
->getType()->isIntegerType() &&
5262 !IndexExpr
->isTypeDependent()) {
5263 Diag(IndexExpr
->getBeginLoc(), diag::err_matrix_index_not_integer
)
5268 if (std::optional
<llvm::APSInt
> Idx
=
5269 IndexExpr
->getIntegerConstantExpr(Context
)) {
5270 if ((*Idx
< 0 || *Idx
>= Dim
)) {
5271 Diag(IndexExpr
->getBeginLoc(), diag::err_matrix_index_outside_range
)
5272 << IsColumnIdx
<< Dim
;
5277 ExprResult ConvExpr
=
5278 tryConvertExprToType(IndexExpr
, Context
.getSizeType());
5279 assert(!ConvExpr
.isInvalid() &&
5280 "should be able to convert any integer type to size type");
5281 return ConvExpr
.get();
5284 auto *MTy
= Base
->getType()->getAs
<ConstantMatrixType
>();
5285 RowIdx
= IsIndexValid(RowIdx
, MTy
->getNumRows(), false);
5286 ColumnIdx
= IsIndexValid(ColumnIdx
, MTy
->getNumColumns(), true);
5287 if (!RowIdx
|| !ColumnIdx
)
5290 return new (Context
) MatrixSubscriptExpr(Base
, RowIdx
, ColumnIdx
,
5291 MTy
->getElementType(), RBLoc
);
5294 void Sema::CheckAddressOfNoDeref(const Expr
*E
) {
5295 ExpressionEvaluationContextRecord
&LastRecord
= ExprEvalContexts
.back();
5296 const Expr
*StrippedExpr
= E
->IgnoreParenImpCasts();
5298 // For expressions like `&(*s).b`, the base is recorded and what should be
5300 const MemberExpr
*Member
= nullptr;
5301 while ((Member
= dyn_cast
<MemberExpr
>(StrippedExpr
)) && !Member
->isArrow())
5302 StrippedExpr
= Member
->getBase()->IgnoreParenImpCasts();
5304 LastRecord
.PossibleDerefs
.erase(StrippedExpr
);
5307 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr
*E
) {
5308 if (isUnevaluatedContext())
5311 QualType ResultTy
= E
->getType();
5312 ExpressionEvaluationContextRecord
&LastRecord
= ExprEvalContexts
.back();
5314 // Bail if the element is an array since it is not memory access.
5315 if (isa
<ArrayType
>(ResultTy
))
5318 if (ResultTy
->hasAttr(attr::NoDeref
)) {
5319 LastRecord
.PossibleDerefs
.insert(E
);
5323 // Check if the base type is a pointer to a member access of a struct
5324 // marked with noderef.
5325 const Expr
*Base
= E
->getBase();
5326 QualType BaseTy
= Base
->getType();
5327 if (!(isa
<ArrayType
>(BaseTy
) || isa
<PointerType
>(BaseTy
)))
5328 // Not a pointer access
5331 const MemberExpr
*Member
= nullptr;
5332 while ((Member
= dyn_cast
<MemberExpr
>(Base
->IgnoreParenCasts())) &&
5334 Base
= Member
->getBase();
5336 if (const auto *Ptr
= dyn_cast
<PointerType
>(Base
->getType())) {
5337 if (Ptr
->getPointeeType()->hasAttr(attr::NoDeref
))
5338 LastRecord
.PossibleDerefs
.insert(E
);
5342 ExprResult
Sema::ActOnOMPArraySectionExpr(Expr
*Base
, SourceLocation LBLoc
,
5344 SourceLocation ColonLocFirst
,
5345 SourceLocation ColonLocSecond
,
5346 Expr
*Length
, Expr
*Stride
,
5347 SourceLocation RBLoc
) {
5348 if (Base
->hasPlaceholderType() &&
5349 !Base
->hasPlaceholderType(BuiltinType::OMPArraySection
)) {
5350 ExprResult Result
= CheckPlaceholderExpr(Base
);
5351 if (Result
.isInvalid())
5353 Base
= Result
.get();
5355 if (LowerBound
&& LowerBound
->getType()->isNonOverloadPlaceholderType()) {
5356 ExprResult Result
= CheckPlaceholderExpr(LowerBound
);
5357 if (Result
.isInvalid())
5359 Result
= DefaultLvalueConversion(Result
.get());
5360 if (Result
.isInvalid())
5362 LowerBound
= Result
.get();
5364 if (Length
&& Length
->getType()->isNonOverloadPlaceholderType()) {
5365 ExprResult Result
= CheckPlaceholderExpr(Length
);
5366 if (Result
.isInvalid())
5368 Result
= DefaultLvalueConversion(Result
.get());
5369 if (Result
.isInvalid())
5371 Length
= Result
.get();
5373 if (Stride
&& Stride
->getType()->isNonOverloadPlaceholderType()) {
5374 ExprResult Result
= CheckPlaceholderExpr(Stride
);
5375 if (Result
.isInvalid())
5377 Result
= DefaultLvalueConversion(Result
.get());
5378 if (Result
.isInvalid())
5380 Stride
= Result
.get();
5383 // Build an unanalyzed expression if either operand is type-dependent.
5384 if (Base
->isTypeDependent() ||
5386 (LowerBound
->isTypeDependent() || LowerBound
->isValueDependent())) ||
5387 (Length
&& (Length
->isTypeDependent() || Length
->isValueDependent())) ||
5388 (Stride
&& (Stride
->isTypeDependent() || Stride
->isValueDependent()))) {
5389 return new (Context
) OMPArraySectionExpr(
5390 Base
, LowerBound
, Length
, Stride
, Context
.DependentTy
, VK_LValue
,
5391 OK_Ordinary
, ColonLocFirst
, ColonLocSecond
, RBLoc
);
5394 // Perform default conversions.
5395 QualType OriginalTy
= OMPArraySectionExpr::getBaseOriginalType(Base
);
5397 if (OriginalTy
->isAnyPointerType()) {
5398 ResultTy
= OriginalTy
->getPointeeType();
5399 } else if (OriginalTy
->isArrayType()) {
5400 ResultTy
= OriginalTy
->getAsArrayTypeUnsafe()->getElementType();
5403 Diag(Base
->getExprLoc(), diag::err_omp_typecheck_section_value
)
5404 << Base
->getSourceRange());
5408 auto Res
= PerformOpenMPImplicitIntegerConversion(LowerBound
->getExprLoc(),
5410 if (Res
.isInvalid())
5411 return ExprError(Diag(LowerBound
->getExprLoc(),
5412 diag::err_omp_typecheck_section_not_integer
)
5413 << 0 << LowerBound
->getSourceRange());
5414 LowerBound
= Res
.get();
5416 if (LowerBound
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
5417 LowerBound
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
5418 Diag(LowerBound
->getExprLoc(), diag::warn_omp_section_is_char
)
5419 << 0 << LowerBound
->getSourceRange();
5423 PerformOpenMPImplicitIntegerConversion(Length
->getExprLoc(), Length
);
5424 if (Res
.isInvalid())
5425 return ExprError(Diag(Length
->getExprLoc(),
5426 diag::err_omp_typecheck_section_not_integer
)
5427 << 1 << Length
->getSourceRange());
5430 if (Length
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
5431 Length
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
5432 Diag(Length
->getExprLoc(), diag::warn_omp_section_is_char
)
5433 << 1 << Length
->getSourceRange();
5437 PerformOpenMPImplicitIntegerConversion(Stride
->getExprLoc(), Stride
);
5438 if (Res
.isInvalid())
5439 return ExprError(Diag(Stride
->getExprLoc(),
5440 diag::err_omp_typecheck_section_not_integer
)
5441 << 1 << Stride
->getSourceRange());
5444 if (Stride
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
5445 Stride
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
5446 Diag(Stride
->getExprLoc(), diag::warn_omp_section_is_char
)
5447 << 1 << Stride
->getSourceRange();
5450 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5451 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5452 // type. Note that functions are not objects, and that (in C99 parlance)
5453 // incomplete types are not object types.
5454 if (ResultTy
->isFunctionType()) {
5455 Diag(Base
->getExprLoc(), diag::err_omp_section_function_type
)
5456 << ResultTy
<< Base
->getSourceRange();
5460 if (RequireCompleteType(Base
->getExprLoc(), ResultTy
,
5461 diag::err_omp_section_incomplete_type
, Base
))
5464 if (LowerBound
&& !OriginalTy
->isAnyPointerType()) {
5465 Expr::EvalResult Result
;
5466 if (LowerBound
->EvaluateAsInt(Result
, Context
)) {
5467 // OpenMP 5.0, [2.1.5 Array Sections]
5468 // The array section must be a subset of the original array.
5469 llvm::APSInt LowerBoundValue
= Result
.Val
.getInt();
5470 if (LowerBoundValue
.isNegative()) {
5471 Diag(LowerBound
->getExprLoc(), diag::err_omp_section_not_subset_of_array
)
5472 << LowerBound
->getSourceRange();
5479 Expr::EvalResult Result
;
5480 if (Length
->EvaluateAsInt(Result
, Context
)) {
5481 // OpenMP 5.0, [2.1.5 Array Sections]
5482 // The length must evaluate to non-negative integers.
5483 llvm::APSInt LengthValue
= Result
.Val
.getInt();
5484 if (LengthValue
.isNegative()) {
5485 Diag(Length
->getExprLoc(), diag::err_omp_section_length_negative
)
5486 << toString(LengthValue
, /*Radix=*/10, /*Signed=*/true)
5487 << Length
->getSourceRange();
5491 } else if (ColonLocFirst
.isValid() &&
5492 (OriginalTy
.isNull() || (!OriginalTy
->isConstantArrayType() &&
5493 !OriginalTy
->isVariableArrayType()))) {
5494 // OpenMP 5.0, [2.1.5 Array Sections]
5495 // When the size of the array dimension is not known, the length must be
5496 // specified explicitly.
5497 Diag(ColonLocFirst
, diag::err_omp_section_length_undefined
)
5498 << (!OriginalTy
.isNull() && OriginalTy
->isArrayType());
5503 Expr::EvalResult Result
;
5504 if (Stride
->EvaluateAsInt(Result
, Context
)) {
5505 // OpenMP 5.0, [2.1.5 Array Sections]
5506 // The stride must evaluate to a positive integer.
5507 llvm::APSInt StrideValue
= Result
.Val
.getInt();
5508 if (!StrideValue
.isStrictlyPositive()) {
5509 Diag(Stride
->getExprLoc(), diag::err_omp_section_stride_non_positive
)
5510 << toString(StrideValue
, /*Radix=*/10, /*Signed=*/true)
5511 << Stride
->getSourceRange();
5517 if (!Base
->hasPlaceholderType(BuiltinType::OMPArraySection
)) {
5518 ExprResult Result
= DefaultFunctionArrayLvalueConversion(Base
);
5519 if (Result
.isInvalid())
5521 Base
= Result
.get();
5523 return new (Context
) OMPArraySectionExpr(
5524 Base
, LowerBound
, Length
, Stride
, Context
.OMPArraySectionTy
, VK_LValue
,
5525 OK_Ordinary
, ColonLocFirst
, ColonLocSecond
, RBLoc
);
5528 ExprResult
Sema::ActOnOMPArrayShapingExpr(Expr
*Base
, SourceLocation LParenLoc
,
5529 SourceLocation RParenLoc
,
5530 ArrayRef
<Expr
*> Dims
,
5531 ArrayRef
<SourceRange
> Brackets
) {
5532 if (Base
->hasPlaceholderType()) {
5533 ExprResult Result
= CheckPlaceholderExpr(Base
);
5534 if (Result
.isInvalid())
5536 Result
= DefaultLvalueConversion(Result
.get());
5537 if (Result
.isInvalid())
5539 Base
= Result
.get();
5541 QualType BaseTy
= Base
->getType();
5542 // Delay analysis of the types/expressions if instantiation/specialization is
5544 if (!BaseTy
->isPointerType() && Base
->isTypeDependent())
5545 return OMPArrayShapingExpr::Create(Context
, Context
.DependentTy
, Base
,
5546 LParenLoc
, RParenLoc
, Dims
, Brackets
);
5547 if (!BaseTy
->isPointerType() ||
5548 (!Base
->isTypeDependent() &&
5549 BaseTy
->getPointeeType()->isIncompleteType()))
5550 return ExprError(Diag(Base
->getExprLoc(),
5551 diag::err_omp_non_pointer_type_array_shaping_base
)
5552 << Base
->getSourceRange());
5554 SmallVector
<Expr
*, 4> NewDims
;
5555 bool ErrorFound
= false;
5556 for (Expr
*Dim
: Dims
) {
5557 if (Dim
->hasPlaceholderType()) {
5558 ExprResult Result
= CheckPlaceholderExpr(Dim
);
5559 if (Result
.isInvalid()) {
5563 Result
= DefaultLvalueConversion(Result
.get());
5564 if (Result
.isInvalid()) {
5570 if (!Dim
->isTypeDependent()) {
5572 PerformOpenMPImplicitIntegerConversion(Dim
->getExprLoc(), Dim
);
5573 if (Result
.isInvalid()) {
5575 Diag(Dim
->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer
)
5576 << Dim
->getSourceRange();
5580 Expr::EvalResult EvResult
;
5581 if (!Dim
->isValueDependent() && Dim
->EvaluateAsInt(EvResult
, Context
)) {
5582 // OpenMP 5.0, [2.1.4 Array Shaping]
5583 // Each si is an integral type expression that must evaluate to a
5584 // positive integer.
5585 llvm::APSInt Value
= EvResult
.Val
.getInt();
5586 if (!Value
.isStrictlyPositive()) {
5587 Diag(Dim
->getExprLoc(), diag::err_omp_shaping_dimension_not_positive
)
5588 << toString(Value
, /*Radix=*/10, /*Signed=*/true)
5589 << Dim
->getSourceRange();
5595 NewDims
.push_back(Dim
);
5599 return OMPArrayShapingExpr::Create(Context
, Context
.OMPArrayShapingTy
, Base
,
5600 LParenLoc
, RParenLoc
, NewDims
, Brackets
);
5603 ExprResult
Sema::ActOnOMPIteratorExpr(Scope
*S
, SourceLocation IteratorKwLoc
,
5604 SourceLocation LLoc
, SourceLocation RLoc
,
5605 ArrayRef
<OMPIteratorData
> Data
) {
5606 SmallVector
<OMPIteratorExpr::IteratorDefinition
, 4> ID
;
5607 bool IsCorrect
= true;
5608 for (const OMPIteratorData
&D
: Data
) {
5609 TypeSourceInfo
*TInfo
= nullptr;
5610 SourceLocation StartLoc
;
5612 if (!D
.Type
.getAsOpaquePtr()) {
5613 // OpenMP 5.0, 2.1.6 Iterators
5614 // In an iterator-specifier, if the iterator-type is not specified then
5615 // the type of that iterator is of int type.
5616 DeclTy
= Context
.IntTy
;
5617 StartLoc
= D
.DeclIdentLoc
;
5619 DeclTy
= GetTypeFromParser(D
.Type
, &TInfo
);
5620 StartLoc
= TInfo
->getTypeLoc().getBeginLoc();
5623 bool IsDeclTyDependent
= DeclTy
->isDependentType() ||
5624 DeclTy
->containsUnexpandedParameterPack() ||
5625 DeclTy
->isInstantiationDependentType();
5626 if (!IsDeclTyDependent
) {
5627 if (!DeclTy
->isIntegralType(Context
) && !DeclTy
->isAnyPointerType()) {
5628 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5629 // The iterator-type must be an integral or pointer type.
5630 Diag(StartLoc
, diag::err_omp_iterator_not_integral_or_pointer
)
5635 if (DeclTy
.isConstant(Context
)) {
5636 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5637 // The iterator-type must not be const qualified.
5638 Diag(StartLoc
, diag::err_omp_iterator_not_integral_or_pointer
)
5645 // Iterator declaration.
5646 assert(D
.DeclIdent
&& "Identifier expected.");
5647 // Always try to create iterator declarator to avoid extra error messages
5648 // about unknown declarations use.
5649 auto *VD
= VarDecl::Create(Context
, CurContext
, StartLoc
, D
.DeclIdentLoc
,
5650 D
.DeclIdent
, DeclTy
, TInfo
, SC_None
);
5653 // Check for conflicting previous declaration.
5654 DeclarationNameInfo
NameInfo(VD
->getDeclName(), D
.DeclIdentLoc
);
5655 LookupResult
Previous(*this, NameInfo
, LookupOrdinaryName
,
5656 ForVisibleRedeclaration
);
5657 Previous
.suppressDiagnostics();
5658 LookupName(Previous
, S
);
5660 FilterLookupForScope(Previous
, CurContext
, S
, /*ConsiderLinkage=*/false,
5661 /*AllowInlineNamespace=*/false);
5662 if (!Previous
.empty()) {
5663 NamedDecl
*Old
= Previous
.getRepresentativeDecl();
5664 Diag(D
.DeclIdentLoc
, diag::err_redefinition
) << VD
->getDeclName();
5665 Diag(Old
->getLocation(), diag::note_previous_definition
);
5667 PushOnScopeChains(VD
, S
);
5670 CurContext
->addDecl(VD
);
5673 /// Act on the iterator variable declaration.
5674 ActOnOpenMPIteratorVarDecl(VD
);
5676 Expr
*Begin
= D
.Range
.Begin
;
5677 if (!IsDeclTyDependent
&& Begin
&& !Begin
->isTypeDependent()) {
5678 ExprResult BeginRes
=
5679 PerformImplicitConversion(Begin
, DeclTy
, AA_Converting
);
5680 Begin
= BeginRes
.get();
5682 Expr
*End
= D
.Range
.End
;
5683 if (!IsDeclTyDependent
&& End
&& !End
->isTypeDependent()) {
5684 ExprResult EndRes
= PerformImplicitConversion(End
, DeclTy
, AA_Converting
);
5687 Expr
*Step
= D
.Range
.Step
;
5688 if (!IsDeclTyDependent
&& Step
&& !Step
->isTypeDependent()) {
5689 if (!Step
->getType()->isIntegralType(Context
)) {
5690 Diag(Step
->getExprLoc(), diag::err_omp_iterator_step_not_integral
)
5691 << Step
<< Step
->getSourceRange();
5695 std::optional
<llvm::APSInt
> Result
=
5696 Step
->getIntegerConstantExpr(Context
);
5697 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5698 // If the step expression of a range-specification equals zero, the
5699 // behavior is unspecified.
5700 if (Result
&& Result
->isZero()) {
5701 Diag(Step
->getExprLoc(), diag::err_omp_iterator_step_constant_zero
)
5702 << Step
<< Step
->getSourceRange();
5707 if (!Begin
|| !End
|| !IsCorrect
) {
5711 OMPIteratorExpr::IteratorDefinition
&IDElem
= ID
.emplace_back();
5712 IDElem
.IteratorDecl
= VD
;
5713 IDElem
.AssignmentLoc
= D
.AssignLoc
;
5714 IDElem
.Range
.Begin
= Begin
;
5715 IDElem
.Range
.End
= End
;
5716 IDElem
.Range
.Step
= Step
;
5717 IDElem
.ColonLoc
= D
.ColonLoc
;
5718 IDElem
.SecondColonLoc
= D
.SecColonLoc
;
5721 // Invalidate all created iterator declarations if error is found.
5722 for (const OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
5723 if (Decl
*ID
= D
.IteratorDecl
)
5724 ID
->setInvalidDecl();
5728 SmallVector
<OMPIteratorHelperData
, 4> Helpers
;
5729 if (!CurContext
->isDependentContext()) {
5730 // Build number of ityeration for each iteration range.
5731 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5732 // ((Begini-Stepi-1-Endi) / -Stepi);
5733 for (OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
5735 ExprResult Res
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
, D
.Range
.End
,
5737 if(!Res
.isUsable()) {
5744 // (Endi - Begini) + Stepi
5745 Res
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
, Res
.get(), St
.get());
5746 if (!Res
.isUsable()) {
5750 // (Endi - Begini) + Stepi - 1
5752 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
, Res
.get(),
5753 ActOnIntegerConstant(D
.AssignmentLoc
, 1).get());
5754 if (!Res
.isUsable()) {
5758 // ((Endi - Begini) + Stepi - 1) / Stepi
5759 Res
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Div
, Res
.get(), St
.get());
5760 if (!Res
.isUsable()) {
5764 St1
= CreateBuiltinUnaryOp(D
.AssignmentLoc
, UO_Minus
, D
.Range
.Step
);
5766 ExprResult Res1
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
,
5767 D
.Range
.Begin
, D
.Range
.End
);
5768 if (!Res1
.isUsable()) {
5772 // (Begini - Endi) - Stepi
5774 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
, Res1
.get(), St1
.get());
5775 if (!Res1
.isUsable()) {
5779 // (Begini - Endi) - Stepi - 1
5781 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
, Res1
.get(),
5782 ActOnIntegerConstant(D
.AssignmentLoc
, 1).get());
5783 if (!Res1
.isUsable()) {
5787 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5789 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Div
, Res1
.get(), St1
.get());
5790 if (!Res1
.isUsable()) {
5796 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_GT
, D
.Range
.Step
,
5797 ActOnIntegerConstant(D
.AssignmentLoc
, 0).get());
5798 if (!CmpRes
.isUsable()) {
5802 Res
= ActOnConditionalOp(D
.AssignmentLoc
, D
.AssignmentLoc
, CmpRes
.get(),
5803 Res
.get(), Res1
.get());
5804 if (!Res
.isUsable()) {
5809 Res
= ActOnFinishFullExpr(Res
.get(), /*DiscardedValue=*/false);
5810 if (!Res
.isUsable()) {
5815 // Build counter update.
5818 VarDecl::Create(Context
, CurContext
, D
.IteratorDecl
->getBeginLoc(),
5819 D
.IteratorDecl
->getBeginLoc(), nullptr,
5820 Res
.get()->getType(), nullptr, SC_None
);
5821 CounterVD
->setImplicit();
5823 BuildDeclRefExpr(CounterVD
, CounterVD
->getType(), VK_LValue
,
5824 D
.IteratorDecl
->getBeginLoc());
5825 // Build counter update.
5826 // I = Begini + counter * Stepi;
5827 ExprResult UpdateRes
;
5829 UpdateRes
= CreateBuiltinBinOp(
5830 D
.AssignmentLoc
, BO_Mul
,
5831 DefaultLvalueConversion(RefRes
.get()).get(), St
.get());
5833 UpdateRes
= DefaultLvalueConversion(RefRes
.get());
5835 if (!UpdateRes
.isUsable()) {
5839 UpdateRes
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
, D
.Range
.Begin
,
5841 if (!UpdateRes
.isUsable()) {
5846 BuildDeclRefExpr(cast
<VarDecl
>(D
.IteratorDecl
),
5847 cast
<VarDecl
>(D
.IteratorDecl
)->getType(), VK_LValue
,
5848 D
.IteratorDecl
->getBeginLoc());
5849 UpdateRes
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Assign
, VDRes
.get(),
5851 if (!UpdateRes
.isUsable()) {
5856 ActOnFinishFullExpr(UpdateRes
.get(), /*DiscardedValue=*/true);
5857 if (!UpdateRes
.isUsable()) {
5861 ExprResult CounterUpdateRes
=
5862 CreateBuiltinUnaryOp(D
.AssignmentLoc
, UO_PreInc
, RefRes
.get());
5863 if (!CounterUpdateRes
.isUsable()) {
5868 ActOnFinishFullExpr(CounterUpdateRes
.get(), /*DiscardedValue=*/true);
5869 if (!CounterUpdateRes
.isUsable()) {
5873 OMPIteratorHelperData
&HD
= Helpers
.emplace_back();
5874 HD
.CounterVD
= CounterVD
;
5875 HD
.Upper
= Res
.get();
5876 HD
.Update
= UpdateRes
.get();
5877 HD
.CounterUpdate
= CounterUpdateRes
.get();
5880 Helpers
.assign(ID
.size(), {});
5883 // Invalidate all created iterator declarations if error is found.
5884 for (const OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
5885 if (Decl
*ID
= D
.IteratorDecl
)
5886 ID
->setInvalidDecl();
5890 return OMPIteratorExpr::Create(Context
, Context
.OMPIteratorTy
, IteratorKwLoc
,
5891 LLoc
, RLoc
, ID
, Helpers
);
5895 Sema::CreateBuiltinArraySubscriptExpr(Expr
*Base
, SourceLocation LLoc
,
5896 Expr
*Idx
, SourceLocation RLoc
) {
5897 Expr
*LHSExp
= Base
;
5900 ExprValueKind VK
= VK_LValue
;
5901 ExprObjectKind OK
= OK_Ordinary
;
5903 // Per C++ core issue 1213, the result is an xvalue if either operand is
5904 // a non-lvalue array, and an lvalue otherwise.
5905 if (getLangOpts().CPlusPlus11
) {
5906 for (auto *Op
: {LHSExp
, RHSExp
}) {
5907 Op
= Op
->IgnoreImplicit();
5908 if (Op
->getType()->isArrayType() && !Op
->isLValue())
5913 // Perform default conversions.
5914 if (!LHSExp
->getType()->getAs
<VectorType
>()) {
5915 ExprResult Result
= DefaultFunctionArrayLvalueConversion(LHSExp
);
5916 if (Result
.isInvalid())
5918 LHSExp
= Result
.get();
5920 ExprResult Result
= DefaultFunctionArrayLvalueConversion(RHSExp
);
5921 if (Result
.isInvalid())
5923 RHSExp
= Result
.get();
5925 QualType LHSTy
= LHSExp
->getType(), RHSTy
= RHSExp
->getType();
5927 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5928 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5929 // in the subscript position. As a result, we need to derive the array base
5930 // and index from the expression types.
5931 Expr
*BaseExpr
, *IndexExpr
;
5932 QualType ResultType
;
5933 if (LHSTy
->isDependentType() || RHSTy
->isDependentType()) {
5937 getDependentArraySubscriptType(LHSExp
, RHSExp
, getASTContext());
5938 } else if (const PointerType
*PTy
= LHSTy
->getAs
<PointerType
>()) {
5941 ResultType
= PTy
->getPointeeType();
5942 } else if (const ObjCObjectPointerType
*PTy
=
5943 LHSTy
->getAs
<ObjCObjectPointerType
>()) {
5947 // Use custom logic if this should be the pseudo-object subscript
5949 if (!LangOpts
.isSubscriptPointerArithmetic())
5950 return BuildObjCSubscriptExpression(RLoc
, BaseExpr
, IndexExpr
, nullptr,
5953 ResultType
= PTy
->getPointeeType();
5954 } else if (const PointerType
*PTy
= RHSTy
->getAs
<PointerType
>()) {
5955 // Handle the uncommon case of "123[Ptr]".
5958 ResultType
= PTy
->getPointeeType();
5959 } else if (const ObjCObjectPointerType
*PTy
=
5960 RHSTy
->getAs
<ObjCObjectPointerType
>()) {
5961 // Handle the uncommon case of "123[Ptr]".
5964 ResultType
= PTy
->getPointeeType();
5965 if (!LangOpts
.isSubscriptPointerArithmetic()) {
5966 Diag(LLoc
, diag::err_subscript_nonfragile_interface
)
5967 << ResultType
<< BaseExpr
->getSourceRange();
5970 } else if (const VectorType
*VTy
= LHSTy
->getAs
<VectorType
>()) {
5971 BaseExpr
= LHSExp
; // vectors: V[123]
5973 // We apply C++ DR1213 to vector subscripting too.
5974 if (getLangOpts().CPlusPlus11
&& LHSExp
->isPRValue()) {
5975 ExprResult Materialized
= TemporaryMaterializationConversion(LHSExp
);
5976 if (Materialized
.isInvalid())
5978 LHSExp
= Materialized
.get();
5980 VK
= LHSExp
->getValueKind();
5981 if (VK
!= VK_PRValue
)
5982 OK
= OK_VectorComponent
;
5984 ResultType
= VTy
->getElementType();
5985 QualType BaseType
= BaseExpr
->getType();
5986 Qualifiers BaseQuals
= BaseType
.getQualifiers();
5987 Qualifiers MemberQuals
= ResultType
.getQualifiers();
5988 Qualifiers Combined
= BaseQuals
+ MemberQuals
;
5989 if (Combined
!= MemberQuals
)
5990 ResultType
= Context
.getQualifiedType(ResultType
, Combined
);
5991 } else if (LHSTy
->isBuiltinType() &&
5992 LHSTy
->getAs
<BuiltinType
>()->isSveVLSBuiltinType()) {
5993 const BuiltinType
*BTy
= LHSTy
->getAs
<BuiltinType
>();
5994 if (BTy
->isSVEBool())
5995 return ExprError(Diag(LLoc
, diag::err_subscript_svbool_t
)
5996 << LHSExp
->getSourceRange() << RHSExp
->getSourceRange());
6000 if (getLangOpts().CPlusPlus11
&& LHSExp
->isPRValue()) {
6001 ExprResult Materialized
= TemporaryMaterializationConversion(LHSExp
);
6002 if (Materialized
.isInvalid())
6004 LHSExp
= Materialized
.get();
6006 VK
= LHSExp
->getValueKind();
6007 if (VK
!= VK_PRValue
)
6008 OK
= OK_VectorComponent
;
6010 ResultType
= BTy
->getSveEltType(Context
);
6012 QualType BaseType
= BaseExpr
->getType();
6013 Qualifiers BaseQuals
= BaseType
.getQualifiers();
6014 Qualifiers MemberQuals
= ResultType
.getQualifiers();
6015 Qualifiers Combined
= BaseQuals
+ MemberQuals
;
6016 if (Combined
!= MemberQuals
)
6017 ResultType
= Context
.getQualifiedType(ResultType
, Combined
);
6018 } else if (LHSTy
->isArrayType()) {
6019 // If we see an array that wasn't promoted by
6020 // DefaultFunctionArrayLvalueConversion, it must be an array that
6021 // wasn't promoted because of the C90 rule that doesn't
6022 // allow promoting non-lvalue arrays. Warn, then
6023 // force the promotion here.
6024 Diag(LHSExp
->getBeginLoc(), diag::ext_subscript_non_lvalue
)
6025 << LHSExp
->getSourceRange();
6026 LHSExp
= ImpCastExprToType(LHSExp
, Context
.getArrayDecayedType(LHSTy
),
6027 CK_ArrayToPointerDecay
).get();
6028 LHSTy
= LHSExp
->getType();
6032 ResultType
= LHSTy
->castAs
<PointerType
>()->getPointeeType();
6033 } else if (RHSTy
->isArrayType()) {
6034 // Same as previous, except for 123[f().a] case
6035 Diag(RHSExp
->getBeginLoc(), diag::ext_subscript_non_lvalue
)
6036 << RHSExp
->getSourceRange();
6037 RHSExp
= ImpCastExprToType(RHSExp
, Context
.getArrayDecayedType(RHSTy
),
6038 CK_ArrayToPointerDecay
).get();
6039 RHSTy
= RHSExp
->getType();
6043 ResultType
= RHSTy
->castAs
<PointerType
>()->getPointeeType();
6045 return ExprError(Diag(LLoc
, diag::err_typecheck_subscript_value
)
6046 << LHSExp
->getSourceRange() << RHSExp
->getSourceRange());
6049 if (!IndexExpr
->getType()->isIntegerType() && !IndexExpr
->isTypeDependent())
6050 return ExprError(Diag(LLoc
, diag::err_typecheck_subscript_not_integer
)
6051 << IndexExpr
->getSourceRange());
6053 if ((IndexExpr
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
6054 IndexExpr
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
)) &&
6055 !IndexExpr
->isTypeDependent()) {
6056 std::optional
<llvm::APSInt
> IntegerContantExpr
=
6057 IndexExpr
->getIntegerConstantExpr(getASTContext());
6058 if (!IntegerContantExpr
.has_value() ||
6059 IntegerContantExpr
.value().isNegative())
6060 Diag(LLoc
, diag::warn_subscript_is_char
) << IndexExpr
->getSourceRange();
6063 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
6064 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
6065 // type. Note that Functions are not objects, and that (in C99 parlance)
6066 // incomplete types are not object types.
6067 if (ResultType
->isFunctionType()) {
6068 Diag(BaseExpr
->getBeginLoc(), diag::err_subscript_function_type
)
6069 << ResultType
<< BaseExpr
->getSourceRange();
6073 if (ResultType
->isVoidType() && !getLangOpts().CPlusPlus
) {
6074 // GNU extension: subscripting on pointer to void
6075 Diag(LLoc
, diag::ext_gnu_subscript_void_type
)
6076 << BaseExpr
->getSourceRange();
6078 // C forbids expressions of unqualified void type from being l-values.
6079 // See IsCForbiddenLValueType.
6080 if (!ResultType
.hasQualifiers())
6082 } else if (!ResultType
->isDependentType() &&
6083 !ResultType
.isWebAssemblyReferenceType() &&
6084 RequireCompleteSizedType(
6086 diag::err_subscript_incomplete_or_sizeless_type
, BaseExpr
))
6089 assert(VK
== VK_PRValue
|| LangOpts
.CPlusPlus
||
6090 !ResultType
.isCForbiddenLValueType());
6092 if (LHSExp
->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
6093 FunctionScopes
.size() > 1) {
6095 LHSExp
->IgnoreParenImpCasts()->getType()->getAs
<TypedefType
>()) {
6096 for (auto I
= FunctionScopes
.rbegin(),
6097 E
= std::prev(FunctionScopes
.rend());
6099 auto *CSI
= dyn_cast
<CapturingScopeInfo
>(*I
);
6102 DeclContext
*DC
= nullptr;
6103 if (auto *LSI
= dyn_cast
<LambdaScopeInfo
>(CSI
))
6104 DC
= LSI
->CallOperator
;
6105 else if (auto *CRSI
= dyn_cast
<CapturedRegionScopeInfo
>(CSI
))
6106 DC
= CRSI
->TheCapturedDecl
;
6107 else if (auto *BSI
= dyn_cast
<BlockScopeInfo
>(CSI
))
6110 if (DC
->containsDecl(TT
->getDecl()))
6112 captureVariablyModifiedType(
6113 Context
, LHSExp
->IgnoreParenImpCasts()->getType(), CSI
);
6119 return new (Context
)
6120 ArraySubscriptExpr(LHSExp
, RHSExp
, ResultType
, VK
, OK
, RLoc
);
6123 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc
, FunctionDecl
*FD
,
6124 ParmVarDecl
*Param
, Expr
*RewrittenInit
,
6125 bool SkipImmediateInvocations
) {
6126 if (Param
->hasUnparsedDefaultArg()) {
6127 assert(!RewrittenInit
&& "Should not have a rewritten init expression yet");
6128 // If we've already cleared out the location for the default argument,
6129 // that means we're parsing it right now.
6130 if (!UnparsedDefaultArgLocs
.count(Param
)) {
6131 Diag(Param
->getBeginLoc(), diag::err_recursive_default_argument
) << FD
;
6132 Diag(CallLoc
, diag::note_recursive_default_argument_used_here
);
6133 Param
->setInvalidDecl();
6137 Diag(CallLoc
, diag::err_use_of_default_argument_to_function_declared_later
)
6138 << FD
<< cast
<CXXRecordDecl
>(FD
->getDeclContext());
6139 Diag(UnparsedDefaultArgLocs
[Param
],
6140 diag::note_default_argument_declared_here
);
6144 if (Param
->hasUninstantiatedDefaultArg()) {
6145 assert(!RewrittenInit
&& "Should not have a rewitten init expression yet");
6146 if (InstantiateDefaultArgument(CallLoc
, FD
, Param
))
6150 Expr
*Init
= RewrittenInit
? RewrittenInit
: Param
->getInit();
6151 assert(Init
&& "default argument but no initializer?");
6153 // If the default expression creates temporaries, we need to
6154 // push them to the current stack of expression temporaries so they'll
6155 // be properly destroyed.
6156 // FIXME: We should really be rebuilding the default argument with new
6157 // bound temporaries; see the comment in PR5810.
6158 // We don't need to do that with block decls, though, because
6159 // blocks in default argument expression can never capture anything.
6160 if (auto *InitWithCleanup
= dyn_cast
<ExprWithCleanups
>(Init
)) {
6161 // Set the "needs cleanups" bit regardless of whether there are
6162 // any explicit objects.
6163 Cleanup
.setExprNeedsCleanups(InitWithCleanup
->cleanupsHaveSideEffects());
6164 // Append all the objects to the cleanup list. Right now, this
6165 // should always be a no-op, because blocks in default argument
6166 // expressions should never be able to capture anything.
6167 assert(!InitWithCleanup
->getNumObjects() &&
6168 "default argument expression has capturing blocks?");
6170 // C++ [expr.const]p15.1:
6171 // An expression or conversion is in an immediate function context if it is
6172 // potentially evaluated and [...] its innermost enclosing non-block scope
6173 // is a function parameter scope of an immediate function.
6174 EnterExpressionEvaluationContext
EvalContext(
6176 FD
->isImmediateFunction()
6177 ? ExpressionEvaluationContext::ImmediateFunctionContext
6178 : ExpressionEvaluationContext::PotentiallyEvaluated
,
6180 ExprEvalContexts
.back().IsCurrentlyCheckingDefaultArgumentOrInitializer
=
6181 SkipImmediateInvocations
;
6182 runWithSufficientStackSpace(CallLoc
, [&] {
6183 MarkDeclarationsReferencedInExpr(Init
, /*SkipLocalVariables=*/true);
6188 struct ImmediateCallVisitor
: public RecursiveASTVisitor
<ImmediateCallVisitor
> {
6189 const ASTContext
&Context
;
6190 ImmediateCallVisitor(const ASTContext
&Ctx
) : Context(Ctx
) {}
6192 bool HasImmediateCalls
= false;
6193 bool shouldVisitImplicitCode() const { return true; }
6195 bool VisitCallExpr(CallExpr
*E
) {
6196 if (const FunctionDecl
*FD
= E
->getDirectCallee())
6197 HasImmediateCalls
|= FD
->isImmediateFunction();
6198 return RecursiveASTVisitor
<ImmediateCallVisitor
>::VisitStmt(E
);
6201 // SourceLocExpr are not immediate invocations
6202 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
6203 // need to be rebuilt so that they refer to the correct SourceLocation and
6205 bool VisitSourceLocExpr(SourceLocExpr
*E
) {
6206 HasImmediateCalls
= true;
6207 return RecursiveASTVisitor
<ImmediateCallVisitor
>::VisitStmt(E
);
6210 // A nested lambda might have parameters with immediate invocations
6211 // in their default arguments.
6212 // The compound statement is not visited (as it does not constitute a
6214 // FIXME: We should consider visiting and transforming captures
6215 // with init expressions.
6216 bool VisitLambdaExpr(LambdaExpr
*E
) {
6217 return VisitCXXMethodDecl(E
->getCallOperator());
6220 // Blocks don't support default parameters, and, as for lambdas,
6221 // we don't consider their body a subexpression.
6222 bool VisitBlockDecl(BlockDecl
*B
) { return false; }
6224 bool VisitCompoundStmt(CompoundStmt
*B
) { return false; }
6226 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr
*E
) {
6227 return TraverseStmt(E
->getExpr());
6230 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr
*E
) {
6231 return TraverseStmt(E
->getExpr());
6235 struct EnsureImmediateInvocationInDefaultArgs
6236 : TreeTransform
<EnsureImmediateInvocationInDefaultArgs
> {
6237 EnsureImmediateInvocationInDefaultArgs(Sema
&SemaRef
)
6238 : TreeTransform(SemaRef
) {}
6240 // Lambda can only have immediate invocations in the default
6241 // args of their parameters, which is transformed upon calling the closure.
6242 // The body is not a subexpression, so we have nothing to do.
6243 // FIXME: Immediate calls in capture initializers should be transformed.
6244 ExprResult
TransformLambdaExpr(LambdaExpr
*E
) { return E
; }
6245 ExprResult
TransformBlockExpr(BlockExpr
*E
) { return E
; }
6247 // Make sure we don't rebuild the this pointer as it would
6248 // cause it to incorrectly point it to the outermost class
6249 // in the case of nested struct initialization.
6250 ExprResult
TransformCXXThisExpr(CXXThisExpr
*E
) { return E
; }
6253 ExprResult
Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc
,
6254 FunctionDecl
*FD
, ParmVarDecl
*Param
,
6256 assert(Param
->hasDefaultArg() && "can't build nonexistent default arg");
6258 bool NestedDefaultChecking
= isCheckingDefaultArgumentOrInitializer();
6260 std::optional
<ExpressionEvaluationContextRecord::InitializationContext
>
6261 InitializationContext
=
6262 OutermostDeclarationWithDelayedImmediateInvocations();
6263 if (!InitializationContext
.has_value())
6264 InitializationContext
.emplace(CallLoc
, Param
, CurContext
);
6266 if (!Init
&& !Param
->hasUnparsedDefaultArg()) {
6267 // Mark that we are replacing a default argument first.
6268 // If we are instantiating a template we won't have to
6269 // retransform immediate calls.
6270 // C++ [expr.const]p15.1:
6271 // An expression or conversion is in an immediate function context if it
6272 // is potentially evaluated and [...] its innermost enclosing non-block
6273 // scope is a function parameter scope of an immediate function.
6274 EnterExpressionEvaluationContext
EvalContext(
6276 FD
->isImmediateFunction()
6277 ? ExpressionEvaluationContext::ImmediateFunctionContext
6278 : ExpressionEvaluationContext::PotentiallyEvaluated
,
6281 if (Param
->hasUninstantiatedDefaultArg()) {
6282 if (InstantiateDefaultArgument(CallLoc
, FD
, Param
))
6286 // An immediate invocation that is not evaluated where it appears is
6287 // evaluated and checked for whether it is a constant expression at the
6288 // point where the enclosing initializer is used in a function call.
6289 ImmediateCallVisitor
V(getASTContext());
6290 if (!NestedDefaultChecking
)
6291 V
.TraverseDecl(Param
);
6292 if (V
.HasImmediateCalls
) {
6293 ExprEvalContexts
.back().DelayedDefaultInitializationContext
= {
6294 CallLoc
, Param
, CurContext
};
6295 EnsureImmediateInvocationInDefaultArgs
Immediate(*this);
6297 runWithSufficientStackSpace(CallLoc
, [&] {
6298 Res
= Immediate
.TransformInitializer(Param
->getInit(),
6301 if (Res
.isInvalid())
6303 Res
= ConvertParamDefaultArgument(Param
, Res
.get(),
6304 Res
.get()->getBeginLoc());
6305 if (Res
.isInvalid())
6311 if (CheckCXXDefaultArgExpr(
6312 CallLoc
, FD
, Param
, Init
,
6313 /*SkipImmediateInvocations=*/NestedDefaultChecking
))
6316 return CXXDefaultArgExpr::Create(Context
, InitializationContext
->Loc
, Param
,
6317 Init
, InitializationContext
->Context
);
6320 ExprResult
Sema::BuildCXXDefaultInitExpr(SourceLocation Loc
, FieldDecl
*Field
) {
6321 assert(Field
->hasInClassInitializer());
6323 // If we might have already tried and failed to instantiate, don't try again.
6324 if (Field
->isInvalidDecl())
6327 CXXThisScopeRAII
This(*this, Field
->getParent(), Qualifiers());
6329 auto *ParentRD
= cast
<CXXRecordDecl
>(Field
->getParent());
6331 std::optional
<ExpressionEvaluationContextRecord::InitializationContext
>
6332 InitializationContext
=
6333 OutermostDeclarationWithDelayedImmediateInvocations();
6334 if (!InitializationContext
.has_value())
6335 InitializationContext
.emplace(Loc
, Field
, CurContext
);
6337 Expr
*Init
= nullptr;
6339 bool NestedDefaultChecking
= isCheckingDefaultArgumentOrInitializer();
6341 EnterExpressionEvaluationContext
EvalContext(
6342 *this, ExpressionEvaluationContext::PotentiallyEvaluated
, Field
);
6344 if (!Field
->getInClassInitializer()) {
6345 // Maybe we haven't instantiated the in-class initializer. Go check the
6346 // pattern FieldDecl to see if it has one.
6347 if (isTemplateInstantiation(ParentRD
->getTemplateSpecializationKind())) {
6348 CXXRecordDecl
*ClassPattern
= ParentRD
->getTemplateInstantiationPattern();
6349 DeclContext::lookup_result Lookup
=
6350 ClassPattern
->lookup(Field
->getDeclName());
6352 FieldDecl
*Pattern
= nullptr;
6353 for (auto *L
: Lookup
) {
6354 if ((Pattern
= dyn_cast
<FieldDecl
>(L
)))
6357 assert(Pattern
&& "We must have set the Pattern!");
6358 if (!Pattern
->hasInClassInitializer() ||
6359 InstantiateInClassInitializer(Loc
, Field
, Pattern
,
6360 getTemplateInstantiationArgs(Field
))) {
6361 Field
->setInvalidDecl();
6368 // An immediate invocation that is not evaluated where it appears is
6369 // evaluated and checked for whether it is a constant expression at the
6370 // point where the enclosing initializer is used in a [...] a constructor
6371 // definition, or an aggregate initialization.
6372 ImmediateCallVisitor
V(getASTContext());
6373 if (!NestedDefaultChecking
)
6374 V
.TraverseDecl(Field
);
6375 if (V
.HasImmediateCalls
) {
6376 ExprEvalContexts
.back().DelayedDefaultInitializationContext
= {Loc
, Field
,
6378 ExprEvalContexts
.back().IsCurrentlyCheckingDefaultArgumentOrInitializer
=
6379 NestedDefaultChecking
;
6381 EnsureImmediateInvocationInDefaultArgs
Immediate(*this);
6383 runWithSufficientStackSpace(Loc
, [&] {
6384 Res
= Immediate
.TransformInitializer(Field
->getInClassInitializer(),
6385 /*CXXDirectInit=*/false);
6387 if (!Res
.isInvalid())
6388 Res
= ConvertMemberDefaultInitExpression(Field
, Res
.get(), Loc
);
6389 if (Res
.isInvalid()) {
6390 Field
->setInvalidDecl();
6396 if (Field
->getInClassInitializer()) {
6397 Expr
*E
= Init
? Init
: Field
->getInClassInitializer();
6398 if (!NestedDefaultChecking
)
6399 runWithSufficientStackSpace(Loc
, [&] {
6400 MarkDeclarationsReferencedInExpr(E
, /*SkipLocalVariables=*/false);
6402 // C++11 [class.base.init]p7:
6403 // The initialization of each base and member constitutes a
6405 ExprResult Res
= ActOnFinishFullExpr(E
, /*DiscardedValue=*/false);
6406 if (Res
.isInvalid()) {
6407 Field
->setInvalidDecl();
6412 return CXXDefaultInitExpr::Create(Context
, InitializationContext
->Loc
,
6413 Field
, InitializationContext
->Context
,
6418 // If the brace-or-equal-initializer of a non-static data member
6419 // invokes a defaulted default constructor of its class or of an
6420 // enclosing class in a potentially evaluated subexpression, the
6421 // program is ill-formed.
6423 // This resolution is unworkable: the exception specification of the
6424 // default constructor can be needed in an unevaluated context, in
6425 // particular, in the operand of a noexcept-expression, and we can be
6426 // unable to compute an exception specification for an enclosed class.
6428 // Any attempt to resolve the exception specification of a defaulted default
6429 // constructor before the initializer is lexically complete will ultimately
6430 // come here at which point we can diagnose it.
6431 RecordDecl
*OutermostClass
= ParentRD
->getOuterLexicalRecordContext();
6432 Diag(Loc
, diag::err_default_member_initializer_not_yet_parsed
)
6433 << OutermostClass
<< Field
;
6434 Diag(Field
->getEndLoc(),
6435 diag::note_default_member_initializer_not_yet_parsed
);
6436 // Recover by marking the field invalid, unless we're in a SFINAE context.
6437 if (!isSFINAEContext())
6438 Field
->setInvalidDecl();
6442 Sema::VariadicCallType
6443 Sema::getVariadicCallType(FunctionDecl
*FDecl
, const FunctionProtoType
*Proto
,
6445 if (Proto
&& Proto
->isVariadic()) {
6446 if (isa_and_nonnull
<CXXConstructorDecl
>(FDecl
))
6447 return VariadicConstructor
;
6448 else if (Fn
&& Fn
->getType()->isBlockPointerType())
6449 return VariadicBlock
;
6451 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(FDecl
))
6452 if (Method
->isInstance())
6453 return VariadicMethod
;
6454 } else if (Fn
&& Fn
->getType() == Context
.BoundMemberTy
)
6455 return VariadicMethod
;
6456 return VariadicFunction
;
6458 return VariadicDoesNotApply
;
6462 class FunctionCallCCC final
: public FunctionCallFilterCCC
{
6464 FunctionCallCCC(Sema
&SemaRef
, const IdentifierInfo
*FuncName
,
6465 unsigned NumArgs
, MemberExpr
*ME
)
6466 : FunctionCallFilterCCC(SemaRef
, NumArgs
, false, ME
),
6467 FunctionName(FuncName
) {}
6469 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
6470 if (!candidate
.getCorrectionSpecifier() ||
6471 candidate
.getCorrectionAsIdentifierInfo() != FunctionName
) {
6475 return FunctionCallFilterCCC::ValidateCandidate(candidate
);
6478 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
6479 return std::make_unique
<FunctionCallCCC
>(*this);
6483 const IdentifierInfo
*const FunctionName
;
6487 static TypoCorrection
TryTypoCorrectionForCall(Sema
&S
, Expr
*Fn
,
6488 FunctionDecl
*FDecl
,
6489 ArrayRef
<Expr
*> Args
) {
6490 MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Fn
);
6491 DeclarationName FuncName
= FDecl
->getDeclName();
6492 SourceLocation NameLoc
= ME
? ME
->getMemberLoc() : Fn
->getBeginLoc();
6494 FunctionCallCCC
CCC(S
, FuncName
.getAsIdentifierInfo(), Args
.size(), ME
);
6495 if (TypoCorrection Corrected
= S
.CorrectTypo(
6496 DeclarationNameInfo(FuncName
, NameLoc
), Sema::LookupOrdinaryName
,
6497 S
.getScopeForContext(S
.CurContext
), nullptr, CCC
,
6498 Sema::CTK_ErrorRecovery
)) {
6499 if (NamedDecl
*ND
= Corrected
.getFoundDecl()) {
6500 if (Corrected
.isOverloaded()) {
6501 OverloadCandidateSet
OCS(NameLoc
, OverloadCandidateSet::CSK_Normal
);
6502 OverloadCandidateSet::iterator Best
;
6503 for (NamedDecl
*CD
: Corrected
) {
6504 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CD
))
6505 S
.AddOverloadCandidate(FD
, DeclAccessPair::make(FD
, AS_none
), Args
,
6508 switch (OCS
.BestViableFunction(S
, NameLoc
, Best
)) {
6510 ND
= Best
->FoundDecl
;
6511 Corrected
.setCorrectionDecl(ND
);
6517 ND
= ND
->getUnderlyingDecl();
6518 if (isa
<ValueDecl
>(ND
) || isa
<FunctionTemplateDecl
>(ND
))
6522 return TypoCorrection();
6525 /// ConvertArgumentsForCall - Converts the arguments specified in
6526 /// Args/NumArgs to the parameter types of the function FDecl with
6527 /// function prototype Proto. Call is the call expression itself, and
6528 /// Fn is the function expression. For a C++ member function, this
6529 /// routine does not attempt to convert the object argument. Returns
6530 /// true if the call is ill-formed.
6532 Sema::ConvertArgumentsForCall(CallExpr
*Call
, Expr
*Fn
,
6533 FunctionDecl
*FDecl
,
6534 const FunctionProtoType
*Proto
,
6535 ArrayRef
<Expr
*> Args
,
6536 SourceLocation RParenLoc
,
6537 bool IsExecConfig
) {
6538 // Bail out early if calling a builtin with custom typechecking.
6540 if (unsigned ID
= FDecl
->getBuiltinID())
6541 if (Context
.BuiltinInfo
.hasCustomTypechecking(ID
))
6544 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6545 // assignment, to the types of the corresponding parameter, ...
6546 bool HasExplicitObjectParameter
=
6547 FDecl
&& FDecl
->hasCXXExplicitFunctionObjectParameter();
6548 unsigned ExplicitObjectParameterOffset
= HasExplicitObjectParameter
? 1 : 0;
6549 unsigned NumParams
= Proto
->getNumParams();
6550 bool Invalid
= false;
6551 unsigned MinArgs
= FDecl
? FDecl
->getMinRequiredArguments() : NumParams
;
6552 unsigned FnKind
= Fn
->getType()->isBlockPointerType()
6554 : (IsExecConfig
? 3 /* kernel function (exec config) */
6555 : 0 /* function */);
6557 // If too few arguments are available (and we don't have default
6558 // arguments for the remaining parameters), don't make the call.
6559 if (Args
.size() < NumParams
) {
6560 if (Args
.size() < MinArgs
) {
6562 if (FDecl
&& (TC
= TryTypoCorrectionForCall(*this, Fn
, FDecl
, Args
))) {
6564 MinArgs
== NumParams
&& !Proto
->isVariadic()
6565 ? diag::err_typecheck_call_too_few_args_suggest
6566 : diag::err_typecheck_call_too_few_args_at_least_suggest
;
6569 << FnKind
<< MinArgs
- ExplicitObjectParameterOffset
6570 << static_cast<unsigned>(Args
.size()) -
6571 ExplicitObjectParameterOffset
6572 << HasExplicitObjectParameter
<< TC
.getCorrectionRange());
6573 } else if (MinArgs
- ExplicitObjectParameterOffset
== 1 && FDecl
&&
6574 FDecl
->getParamDecl(ExplicitObjectParameterOffset
)
6577 MinArgs
== NumParams
&& !Proto
->isVariadic()
6578 ? diag::err_typecheck_call_too_few_args_one
6579 : diag::err_typecheck_call_too_few_args_at_least_one
)
6580 << FnKind
<< FDecl
->getParamDecl(ExplicitObjectParameterOffset
)
6581 << HasExplicitObjectParameter
<< Fn
->getSourceRange();
6583 Diag(RParenLoc
, MinArgs
== NumParams
&& !Proto
->isVariadic()
6584 ? diag::err_typecheck_call_too_few_args
6585 : diag::err_typecheck_call_too_few_args_at_least
)
6586 << FnKind
<< MinArgs
- ExplicitObjectParameterOffset
6587 << static_cast<unsigned>(Args
.size()) -
6588 ExplicitObjectParameterOffset
6589 << HasExplicitObjectParameter
<< Fn
->getSourceRange();
6591 // Emit the location of the prototype.
6592 if (!TC
&& FDecl
&& !FDecl
->getBuiltinID() && !IsExecConfig
)
6593 Diag(FDecl
->getLocation(), diag::note_callee_decl
)
6594 << FDecl
<< FDecl
->getParametersSourceRange();
6598 // We reserve space for the default arguments when we create
6599 // the call expression, before calling ConvertArgumentsForCall.
6600 assert((Call
->getNumArgs() == NumParams
) &&
6601 "We should have reserved space for the default arguments before!");
6604 // If too many are passed and not variadic, error on the extras and drop
6606 if (Args
.size() > NumParams
) {
6607 if (!Proto
->isVariadic()) {
6609 if (FDecl
&& (TC
= TryTypoCorrectionForCall(*this, Fn
, FDecl
, Args
))) {
6611 MinArgs
== NumParams
&& !Proto
->isVariadic()
6612 ? diag::err_typecheck_call_too_many_args_suggest
6613 : diag::err_typecheck_call_too_many_args_at_most_suggest
;
6616 << FnKind
<< NumParams
- ExplicitObjectParameterOffset
6617 << static_cast<unsigned>(Args
.size()) -
6618 ExplicitObjectParameterOffset
6619 << HasExplicitObjectParameter
<< TC
.getCorrectionRange());
6620 } else if (NumParams
- ExplicitObjectParameterOffset
== 1 && FDecl
&&
6621 FDecl
->getParamDecl(ExplicitObjectParameterOffset
)
6623 Diag(Args
[NumParams
]->getBeginLoc(),
6624 MinArgs
== NumParams
6625 ? diag::err_typecheck_call_too_many_args_one
6626 : diag::err_typecheck_call_too_many_args_at_most_one
)
6627 << FnKind
<< FDecl
->getParamDecl(ExplicitObjectParameterOffset
)
6628 << static_cast<unsigned>(Args
.size()) -
6629 ExplicitObjectParameterOffset
6630 << HasExplicitObjectParameter
<< Fn
->getSourceRange()
6631 << SourceRange(Args
[NumParams
]->getBeginLoc(),
6632 Args
.back()->getEndLoc());
6634 Diag(Args
[NumParams
]->getBeginLoc(),
6635 MinArgs
== NumParams
6636 ? diag::err_typecheck_call_too_many_args
6637 : diag::err_typecheck_call_too_many_args_at_most
)
6638 << FnKind
<< NumParams
- ExplicitObjectParameterOffset
6639 << static_cast<unsigned>(Args
.size()) -
6640 ExplicitObjectParameterOffset
6641 << HasExplicitObjectParameter
<< Fn
->getSourceRange()
6642 << SourceRange(Args
[NumParams
]->getBeginLoc(),
6643 Args
.back()->getEndLoc());
6645 // Emit the location of the prototype.
6646 if (!TC
&& FDecl
&& !FDecl
->getBuiltinID() && !IsExecConfig
)
6647 Diag(FDecl
->getLocation(), diag::note_callee_decl
)
6648 << FDecl
<< FDecl
->getParametersSourceRange();
6650 // This deletes the extra arguments.
6651 Call
->shrinkNumArgs(NumParams
);
6655 SmallVector
<Expr
*, 8> AllArgs
;
6656 VariadicCallType CallType
= getVariadicCallType(FDecl
, Proto
, Fn
);
6658 Invalid
= GatherArgumentsForCall(Call
->getBeginLoc(), FDecl
, Proto
, 0, Args
,
6662 unsigned TotalNumArgs
= AllArgs
.size();
6663 for (unsigned i
= 0; i
< TotalNumArgs
; ++i
)
6664 Call
->setArg(i
, AllArgs
[i
]);
6666 Call
->computeDependence();
6670 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc
, FunctionDecl
*FDecl
,
6671 const FunctionProtoType
*Proto
,
6672 unsigned FirstParam
, ArrayRef
<Expr
*> Args
,
6673 SmallVectorImpl
<Expr
*> &AllArgs
,
6674 VariadicCallType CallType
, bool AllowExplicit
,
6675 bool IsListInitialization
) {
6676 unsigned NumParams
= Proto
->getNumParams();
6677 bool Invalid
= false;
6679 // Continue to check argument types (even if we have too few/many args).
6680 for (unsigned i
= FirstParam
; i
< NumParams
; i
++) {
6681 QualType ProtoArgType
= Proto
->getParamType(i
);
6684 ParmVarDecl
*Param
= FDecl
? FDecl
->getParamDecl(i
) : nullptr;
6685 if (ArgIx
< Args
.size()) {
6686 Arg
= Args
[ArgIx
++];
6688 if (RequireCompleteType(Arg
->getBeginLoc(), ProtoArgType
,
6689 diag::err_call_incomplete_argument
, Arg
))
6692 // Strip the unbridged-cast placeholder expression off, if applicable.
6693 bool CFAudited
= false;
6694 if (Arg
->getType() == Context
.ARCUnbridgedCastTy
&&
6695 FDecl
&& FDecl
->hasAttr
<CFAuditedTransferAttr
>() &&
6696 (!Param
|| !Param
->hasAttr
<CFConsumedAttr
>()))
6697 Arg
= stripARCUnbridgedCast(Arg
);
6698 else if (getLangOpts().ObjCAutoRefCount
&&
6699 FDecl
&& FDecl
->hasAttr
<CFAuditedTransferAttr
>() &&
6700 (!Param
|| !Param
->hasAttr
<CFConsumedAttr
>()))
6703 if (Proto
->getExtParameterInfo(i
).isNoEscape() &&
6704 ProtoArgType
->isBlockPointerType())
6705 if (auto *BE
= dyn_cast
<BlockExpr
>(Arg
->IgnoreParenNoopCasts(Context
)))
6706 BE
->getBlockDecl()->setDoesNotEscape();
6708 InitializedEntity Entity
=
6709 Param
? InitializedEntity::InitializeParameter(Context
, Param
,
6711 : InitializedEntity::InitializeParameter(
6712 Context
, ProtoArgType
, Proto
->isParamConsumed(i
));
6714 // Remember that parameter belongs to a CF audited API.
6716 Entity
.setParameterCFAudited();
6718 ExprResult ArgE
= PerformCopyInitialization(
6719 Entity
, SourceLocation(), Arg
, IsListInitialization
, AllowExplicit
);
6720 if (ArgE
.isInvalid())
6723 Arg
= ArgE
.getAs
<Expr
>();
6725 assert(Param
&& "can't use default arguments without a known callee");
6727 ExprResult ArgExpr
= BuildCXXDefaultArgExpr(CallLoc
, FDecl
, Param
);
6728 if (ArgExpr
.isInvalid())
6731 Arg
= ArgExpr
.getAs
<Expr
>();
6734 // Check for array bounds violations for each argument to the call. This
6735 // check only triggers warnings when the argument isn't a more complex Expr
6736 // with its own checking, such as a BinaryOperator.
6737 CheckArrayAccess(Arg
);
6739 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6740 CheckStaticArrayArgument(CallLoc
, Param
, Arg
);
6742 AllArgs
.push_back(Arg
);
6745 // If this is a variadic call, handle args passed through "...".
6746 if (CallType
!= VariadicDoesNotApply
) {
6747 // Assume that extern "C" functions with variadic arguments that
6748 // return __unknown_anytype aren't *really* variadic.
6749 if (Proto
->getReturnType() == Context
.UnknownAnyTy
&& FDecl
&&
6750 FDecl
->isExternC()) {
6751 for (Expr
*A
: Args
.slice(ArgIx
)) {
6752 QualType paramType
; // ignored
6753 ExprResult arg
= checkUnknownAnyArg(CallLoc
, A
, paramType
);
6754 Invalid
|= arg
.isInvalid();
6755 AllArgs
.push_back(arg
.get());
6758 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6760 for (Expr
*A
: Args
.slice(ArgIx
)) {
6761 ExprResult Arg
= DefaultVariadicArgumentPromotion(A
, CallType
, FDecl
);
6762 Invalid
|= Arg
.isInvalid();
6763 AllArgs
.push_back(Arg
.get());
6767 // Check for array bounds violations.
6768 for (Expr
*A
: Args
.slice(ArgIx
))
6769 CheckArrayAccess(A
);
6774 static void DiagnoseCalleeStaticArrayParam(Sema
&S
, ParmVarDecl
*PVD
) {
6775 TypeLoc TL
= PVD
->getTypeSourceInfo()->getTypeLoc();
6776 if (DecayedTypeLoc DTL
= TL
.getAs
<DecayedTypeLoc
>())
6777 TL
= DTL
.getOriginalLoc();
6778 if (ArrayTypeLoc ATL
= TL
.getAs
<ArrayTypeLoc
>())
6779 S
.Diag(PVD
->getLocation(), diag::note_callee_static_array
)
6780 << ATL
.getLocalSourceRange();
6783 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6784 /// array parameter, check that it is non-null, and that if it is formed by
6785 /// array-to-pointer decay, the underlying array is sufficiently large.
6787 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6788 /// array type derivation, then for each call to the function, the value of the
6789 /// corresponding actual argument shall provide access to the first element of
6790 /// an array with at least as many elements as specified by the size expression.
6792 Sema::CheckStaticArrayArgument(SourceLocation CallLoc
,
6794 const Expr
*ArgExpr
) {
6795 // Static array parameters are not supported in C++.
6796 if (!Param
|| getLangOpts().CPlusPlus
)
6799 QualType OrigTy
= Param
->getOriginalType();
6801 const ArrayType
*AT
= Context
.getAsArrayType(OrigTy
);
6802 if (!AT
|| AT
->getSizeModifier() != ArraySizeModifier::Static
)
6805 if (ArgExpr
->isNullPointerConstant(Context
,
6806 Expr::NPC_NeverValueDependent
)) {
6807 Diag(CallLoc
, diag::warn_null_arg
) << ArgExpr
->getSourceRange();
6808 DiagnoseCalleeStaticArrayParam(*this, Param
);
6812 const ConstantArrayType
*CAT
= dyn_cast
<ConstantArrayType
>(AT
);
6816 const ConstantArrayType
*ArgCAT
=
6817 Context
.getAsConstantArrayType(ArgExpr
->IgnoreParenCasts()->getType());
6821 if (getASTContext().hasSameUnqualifiedType(CAT
->getElementType(),
6822 ArgCAT
->getElementType())) {
6823 if (ArgCAT
->getSize().ult(CAT
->getSize())) {
6824 Diag(CallLoc
, diag::warn_static_array_too_small
)
6825 << ArgExpr
->getSourceRange()
6826 << (unsigned)ArgCAT
->getSize().getZExtValue()
6827 << (unsigned)CAT
->getSize().getZExtValue() << 0;
6828 DiagnoseCalleeStaticArrayParam(*this, Param
);
6833 std::optional
<CharUnits
> ArgSize
=
6834 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT
);
6835 std::optional
<CharUnits
> ParmSize
=
6836 getASTContext().getTypeSizeInCharsIfKnown(CAT
);
6837 if (ArgSize
&& ParmSize
&& *ArgSize
< *ParmSize
) {
6838 Diag(CallLoc
, diag::warn_static_array_too_small
)
6839 << ArgExpr
->getSourceRange() << (unsigned)ArgSize
->getQuantity()
6840 << (unsigned)ParmSize
->getQuantity() << 1;
6841 DiagnoseCalleeStaticArrayParam(*this, Param
);
6845 /// Given a function expression of unknown-any type, try to rebuild it
6846 /// to have a function type.
6847 static ExprResult
rebuildUnknownAnyFunction(Sema
&S
, Expr
*fn
);
6849 /// Is the given type a placeholder that we need to lower out
6850 /// immediately during argument processing?
6851 static bool isPlaceholderToRemoveAsArg(QualType type
) {
6852 // Placeholders are never sugared.
6853 const BuiltinType
*placeholder
= dyn_cast
<BuiltinType
>(type
);
6854 if (!placeholder
) return false;
6856 switch (placeholder
->getKind()) {
6857 // Ignore all the non-placeholder types.
6858 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6859 case BuiltinType::Id:
6860 #include "clang/Basic/OpenCLImageTypes.def"
6861 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6862 case BuiltinType::Id:
6863 #include "clang/Basic/OpenCLExtensionTypes.def"
6864 // In practice we'll never use this, since all SVE types are sugared
6865 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6866 #define SVE_TYPE(Name, Id, SingletonId) \
6867 case BuiltinType::Id:
6868 #include "clang/Basic/AArch64SVEACLETypes.def"
6869 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6870 case BuiltinType::Id:
6871 #include "clang/Basic/PPCTypes.def"
6872 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6873 #include "clang/Basic/RISCVVTypes.def"
6874 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6875 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6876 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6877 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6878 #include "clang/AST/BuiltinTypes.def"
6881 // We cannot lower out overload sets; they might validly be resolved
6882 // by the call machinery.
6883 case BuiltinType::Overload
:
6886 // Unbridged casts in ARC can be handled in some call positions and
6887 // should be left in place.
6888 case BuiltinType::ARCUnbridgedCast
:
6891 // Pseudo-objects should be converted as soon as possible.
6892 case BuiltinType::PseudoObject
:
6895 // The debugger mode could theoretically but currently does not try
6896 // to resolve unknown-typed arguments based on known parameter types.
6897 case BuiltinType::UnknownAny
:
6900 // These are always invalid as call arguments and should be reported.
6901 case BuiltinType::BoundMember
:
6902 case BuiltinType::BuiltinFn
:
6903 case BuiltinType::IncompleteMatrixIdx
:
6904 case BuiltinType::OMPArraySection
:
6905 case BuiltinType::OMPArrayShaping
:
6906 case BuiltinType::OMPIterator
:
6910 llvm_unreachable("bad builtin type kind");
6913 /// Check an argument list for placeholders that we won't try to
6915 static bool checkArgsForPlaceholders(Sema
&S
, MultiExprArg args
) {
6916 // Apply this processing to all the arguments at once instead of
6917 // dying at the first failure.
6918 bool hasInvalid
= false;
6919 for (size_t i
= 0, e
= args
.size(); i
!= e
; i
++) {
6920 if (isPlaceholderToRemoveAsArg(args
[i
]->getType())) {
6921 ExprResult result
= S
.CheckPlaceholderExpr(args
[i
]);
6922 if (result
.isInvalid()) hasInvalid
= true;
6923 else args
[i
] = result
.get();
6929 /// If a builtin function has a pointer argument with no explicit address
6930 /// space, then it should be able to accept a pointer to any address
6931 /// space as input. In order to do this, we need to replace the
6932 /// standard builtin declaration with one that uses the same address space
6935 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6936 /// it does not contain any pointer arguments without
6937 /// an address space qualifer. Otherwise the rewritten
6938 /// FunctionDecl is returned.
6939 /// TODO: Handle pointer return types.
6940 static FunctionDecl
*rewriteBuiltinFunctionDecl(Sema
*Sema
, ASTContext
&Context
,
6941 FunctionDecl
*FDecl
,
6942 MultiExprArg ArgExprs
) {
6944 QualType DeclType
= FDecl
->getType();
6945 const FunctionProtoType
*FT
= dyn_cast
<FunctionProtoType
>(DeclType
);
6947 if (!Context
.BuiltinInfo
.hasPtrArgsOrResult(FDecl
->getBuiltinID()) || !FT
||
6948 ArgExprs
.size() < FT
->getNumParams())
6951 bool NeedsNewDecl
= false;
6953 SmallVector
<QualType
, 8> OverloadParams
;
6955 for (QualType ParamType
: FT
->param_types()) {
6957 // Convert array arguments to pointer to simplify type lookup.
6959 Sema
->DefaultFunctionArrayLvalueConversion(ArgExprs
[i
++]);
6960 if (ArgRes
.isInvalid())
6962 Expr
*Arg
= ArgRes
.get();
6963 QualType ArgType
= Arg
->getType();
6964 if (!ParamType
->isPointerType() || ParamType
.hasAddressSpace() ||
6965 !ArgType
->isPointerType() ||
6966 !ArgType
->getPointeeType().hasAddressSpace() ||
6967 isPtrSizeAddressSpace(ArgType
->getPointeeType().getAddressSpace())) {
6968 OverloadParams
.push_back(ParamType
);
6972 QualType PointeeType
= ParamType
->getPointeeType();
6973 if (PointeeType
.hasAddressSpace())
6976 NeedsNewDecl
= true;
6977 LangAS AS
= ArgType
->getPointeeType().getAddressSpace();
6979 PointeeType
= Context
.getAddrSpaceQualType(PointeeType
, AS
);
6980 OverloadParams
.push_back(Context
.getPointerType(PointeeType
));
6986 FunctionProtoType::ExtProtoInfo EPI
;
6987 EPI
.Variadic
= FT
->isVariadic();
6988 QualType OverloadTy
= Context
.getFunctionType(FT
->getReturnType(),
6989 OverloadParams
, EPI
);
6990 DeclContext
*Parent
= FDecl
->getParent();
6991 FunctionDecl
*OverloadDecl
= FunctionDecl::Create(
6992 Context
, Parent
, FDecl
->getLocation(), FDecl
->getLocation(),
6993 FDecl
->getIdentifier(), OverloadTy
,
6994 /*TInfo=*/nullptr, SC_Extern
, Sema
->getCurFPFeatures().isFPConstrained(),
6996 /*hasPrototype=*/true);
6997 SmallVector
<ParmVarDecl
*, 16> Params
;
6998 FT
= cast
<FunctionProtoType
>(OverloadTy
);
6999 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
7000 QualType ParamType
= FT
->getParamType(i
);
7002 ParmVarDecl::Create(Context
, OverloadDecl
, SourceLocation(),
7003 SourceLocation(), nullptr, ParamType
,
7004 /*TInfo=*/nullptr, SC_None
, nullptr);
7005 Parm
->setScopeInfo(0, i
);
7006 Params
.push_back(Parm
);
7008 OverloadDecl
->setParams(Params
);
7009 Sema
->mergeDeclAttributes(OverloadDecl
, FDecl
);
7010 return OverloadDecl
;
7013 static void checkDirectCallValidity(Sema
&S
, const Expr
*Fn
,
7014 FunctionDecl
*Callee
,
7015 MultiExprArg ArgExprs
) {
7016 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
7017 // similar attributes) really don't like it when functions are called with an
7018 // invalid number of args.
7019 if (S
.TooManyArguments(Callee
->getNumParams(), ArgExprs
.size(),
7020 /*PartialOverloading=*/false) &&
7021 !Callee
->isVariadic())
7023 if (Callee
->getMinRequiredArguments() > ArgExprs
.size())
7026 if (const EnableIfAttr
*Attr
=
7027 S
.CheckEnableIf(Callee
, Fn
->getBeginLoc(), ArgExprs
, true)) {
7028 S
.Diag(Fn
->getBeginLoc(),
7029 isa
<CXXMethodDecl
>(Callee
)
7030 ? diag::err_ovl_no_viable_member_function_in_call
7031 : diag::err_ovl_no_viable_function_in_call
)
7032 << Callee
<< Callee
->getSourceRange();
7033 S
.Diag(Callee
->getLocation(),
7034 diag::note_ovl_candidate_disabled_by_function_cond_attr
)
7035 << Attr
->getCond()->getSourceRange() << Attr
->getMessage();
7040 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
7041 const UnresolvedMemberExpr
*const UME
, Sema
&S
) {
7043 const auto GetFunctionLevelDCIfCXXClass
=
7044 [](Sema
&S
) -> const CXXRecordDecl
* {
7045 const DeclContext
*const DC
= S
.getFunctionLevelDeclContext();
7046 if (!DC
|| !DC
->getParent())
7049 // If the call to some member function was made from within a member
7050 // function body 'M' return return 'M's parent.
7051 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
))
7052 return MD
->getParent()->getCanonicalDecl();
7053 // else the call was made from within a default member initializer of a
7054 // class, so return the class.
7055 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(DC
))
7056 return RD
->getCanonicalDecl();
7059 // If our DeclContext is neither a member function nor a class (in the
7060 // case of a lambda in a default member initializer), we can't have an
7061 // enclosing 'this'.
7063 const CXXRecordDecl
*const CurParentClass
= GetFunctionLevelDCIfCXXClass(S
);
7064 if (!CurParentClass
)
7067 // The naming class for implicit member functions call is the class in which
7068 // name lookup starts.
7069 const CXXRecordDecl
*const NamingClass
=
7070 UME
->getNamingClass()->getCanonicalDecl();
7071 assert(NamingClass
&& "Must have naming class even for implicit access");
7073 // If the unresolved member functions were found in a 'naming class' that is
7074 // related (either the same or derived from) to the class that contains the
7075 // member function that itself contained the implicit member access.
7077 return CurParentClass
== NamingClass
||
7078 CurParentClass
->isDerivedFrom(NamingClass
);
7082 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7083 Sema
&S
, const UnresolvedMemberExpr
*const UME
, SourceLocation CallLoc
) {
7088 LambdaScopeInfo
*const CurLSI
= S
.getCurLambda();
7089 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
7090 // already been captured, or if this is an implicit member function call (if
7091 // it isn't, an attempt to capture 'this' should already have been made).
7092 if (!CurLSI
|| CurLSI
->ImpCaptureStyle
== CurLSI
->ImpCap_None
||
7093 !UME
->isImplicitAccess() || CurLSI
->isCXXThisCaptured())
7096 // Check if the naming class in which the unresolved members were found is
7097 // related (same as or is a base of) to the enclosing class.
7099 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME
, S
))
7103 DeclContext
*EnclosingFunctionCtx
= S
.CurContext
->getParent()->getParent();
7104 // If the enclosing function is not dependent, then this lambda is
7105 // capture ready, so if we can capture this, do so.
7106 if (!EnclosingFunctionCtx
->isDependentContext()) {
7107 // If the current lambda and all enclosing lambdas can capture 'this' -
7108 // then go ahead and capture 'this' (since our unresolved overload set
7109 // contains at least one non-static member function).
7110 if (!S
.CheckCXXThisCapture(CallLoc
, /*Explcit*/ false, /*Diagnose*/ false))
7111 S
.CheckCXXThisCapture(CallLoc
);
7112 } else if (S
.CurContext
->isDependentContext()) {
7113 // ... since this is an implicit member reference, that might potentially
7114 // involve a 'this' capture, mark 'this' for potential capture in
7115 // enclosing lambdas.
7116 if (CurLSI
->ImpCaptureStyle
!= CurLSI
->ImpCap_None
)
7117 CurLSI
->addPotentialThisCapture(CallLoc
);
7121 // Once a call is fully resolved, warn for unqualified calls to specific
7122 // C++ standard functions, like move and forward.
7123 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema
&S
,
7124 const CallExpr
*Call
) {
7125 // We are only checking unary move and forward so exit early here.
7126 if (Call
->getNumArgs() != 1)
7129 const Expr
*E
= Call
->getCallee()->IgnoreParenImpCasts();
7130 if (!E
|| isa
<UnresolvedLookupExpr
>(E
))
7132 const DeclRefExpr
*DRE
= dyn_cast_if_present
<DeclRefExpr
>(E
);
7133 if (!DRE
|| !DRE
->getLocation().isValid())
7136 if (DRE
->getQualifier())
7139 const FunctionDecl
*FD
= Call
->getDirectCallee();
7143 // Only warn for some functions deemed more frequent or problematic.
7144 unsigned BuiltinID
= FD
->getBuiltinID();
7145 if (BuiltinID
!= Builtin::BImove
&& BuiltinID
!= Builtin::BIforward
)
7148 S
.Diag(DRE
->getLocation(), diag::warn_unqualified_call_to_std_cast_function
)
7149 << FD
->getQualifiedNameAsString()
7150 << FixItHint::CreateInsertion(DRE
->getLocation(), "std::");
7153 ExprResult
Sema::ActOnCallExpr(Scope
*Scope
, Expr
*Fn
, SourceLocation LParenLoc
,
7154 MultiExprArg ArgExprs
, SourceLocation RParenLoc
,
7157 BuildCallExpr(Scope
, Fn
, LParenLoc
, ArgExprs
, RParenLoc
, ExecConfig
,
7158 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
7159 if (Call
.isInvalid())
7162 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
7164 if (const auto *ULE
= dyn_cast
<UnresolvedLookupExpr
>(Fn
);
7165 ULE
&& ULE
->hasExplicitTemplateArgs() &&
7166 ULE
->decls_begin() == ULE
->decls_end()) {
7167 Diag(Fn
->getExprLoc(), getLangOpts().CPlusPlus20
7168 ? diag::warn_cxx17_compat_adl_only_template_id
7169 : diag::ext_adl_only_template_id
)
7173 if (LangOpts
.OpenMP
)
7174 Call
= ActOnOpenMPCall(Call
, Scope
, LParenLoc
, ArgExprs
, RParenLoc
,
7176 if (LangOpts
.CPlusPlus
) {
7177 if (const auto *CE
= dyn_cast
<CallExpr
>(Call
.get()))
7178 DiagnosedUnqualifiedCallsToStdFunctions(*this, CE
);
7183 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
7184 /// This provides the location of the left/right parens and a list of comma
7186 ExprResult
Sema::BuildCallExpr(Scope
*Scope
, Expr
*Fn
, SourceLocation LParenLoc
,
7187 MultiExprArg ArgExprs
, SourceLocation RParenLoc
,
7188 Expr
*ExecConfig
, bool IsExecConfig
,
7189 bool AllowRecovery
) {
7190 // Since this might be a postfix expression, get rid of ParenListExprs.
7191 ExprResult Result
= MaybeConvertParenListExprToParenExpr(Scope
, Fn
);
7192 if (Result
.isInvalid()) return ExprError();
7195 if (checkArgsForPlaceholders(*this, ArgExprs
))
7198 if (getLangOpts().CPlusPlus
) {
7199 // If this is a pseudo-destructor expression, build the call immediately.
7200 if (isa
<CXXPseudoDestructorExpr
>(Fn
)) {
7201 if (!ArgExprs
.empty()) {
7202 // Pseudo-destructor calls should not have any arguments.
7203 Diag(Fn
->getBeginLoc(), diag::err_pseudo_dtor_call_with_args
)
7204 << FixItHint::CreateRemoval(
7205 SourceRange(ArgExprs
.front()->getBeginLoc(),
7206 ArgExprs
.back()->getEndLoc()));
7209 return CallExpr::Create(Context
, Fn
, /*Args=*/{}, Context
.VoidTy
,
7210 VK_PRValue
, RParenLoc
, CurFPFeatureOverrides());
7212 if (Fn
->getType() == Context
.PseudoObjectTy
) {
7213 ExprResult result
= CheckPlaceholderExpr(Fn
);
7214 if (result
.isInvalid()) return ExprError();
7218 // Determine whether this is a dependent call inside a C++ template,
7219 // in which case we won't do any semantic analysis now.
7220 if (Fn
->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs
)) {
7222 return CUDAKernelCallExpr::Create(Context
, Fn
,
7223 cast
<CallExpr
>(ExecConfig
), ArgExprs
,
7224 Context
.DependentTy
, VK_PRValue
,
7225 RParenLoc
, CurFPFeatureOverrides());
7228 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7229 *this, dyn_cast
<UnresolvedMemberExpr
>(Fn
->IgnoreParens()),
7232 return CallExpr::Create(Context
, Fn
, ArgExprs
, Context
.DependentTy
,
7233 VK_PRValue
, RParenLoc
, CurFPFeatureOverrides());
7237 // Determine whether this is a call to an object (C++ [over.call.object]).
7238 if (Fn
->getType()->isRecordType())
7239 return BuildCallToObjectOfClassType(Scope
, Fn
, LParenLoc
, ArgExprs
,
7242 if (Fn
->getType() == Context
.UnknownAnyTy
) {
7243 ExprResult result
= rebuildUnknownAnyFunction(*this, Fn
);
7244 if (result
.isInvalid()) return ExprError();
7248 if (Fn
->getType() == Context
.BoundMemberTy
) {
7249 return BuildCallToMemberFunction(Scope
, Fn
, LParenLoc
, ArgExprs
,
7250 RParenLoc
, ExecConfig
, IsExecConfig
,
7255 // Check for overloaded calls. This can happen even in C due to extensions.
7256 if (Fn
->getType() == Context
.OverloadTy
) {
7257 OverloadExpr::FindResult find
= OverloadExpr::find(Fn
);
7259 // We aren't supposed to apply this logic if there's an '&' involved.
7260 if (!find
.HasFormOfMemberPointer
) {
7261 if (Expr::hasAnyTypeDependentArguments(ArgExprs
))
7262 return CallExpr::Create(Context
, Fn
, ArgExprs
, Context
.DependentTy
,
7263 VK_PRValue
, RParenLoc
, CurFPFeatureOverrides());
7264 OverloadExpr
*ovl
= find
.Expression
;
7265 if (UnresolvedLookupExpr
*ULE
= dyn_cast
<UnresolvedLookupExpr
>(ovl
))
7266 return BuildOverloadedCallExpr(
7267 Scope
, Fn
, ULE
, LParenLoc
, ArgExprs
, RParenLoc
, ExecConfig
,
7268 /*AllowTypoCorrection=*/true, find
.IsAddressOfOperand
);
7269 return BuildCallToMemberFunction(Scope
, Fn
, LParenLoc
, ArgExprs
,
7270 RParenLoc
, ExecConfig
, IsExecConfig
,
7275 // If we're directly calling a function, get the appropriate declaration.
7276 if (Fn
->getType() == Context
.UnknownAnyTy
) {
7277 ExprResult result
= rebuildUnknownAnyFunction(*this, Fn
);
7278 if (result
.isInvalid()) return ExprError();
7282 Expr
*NakedFn
= Fn
->IgnoreParens();
7284 bool CallingNDeclIndirectly
= false;
7285 NamedDecl
*NDecl
= nullptr;
7286 if (UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(NakedFn
)) {
7287 if (UnOp
->getOpcode() == UO_AddrOf
) {
7288 CallingNDeclIndirectly
= true;
7289 NakedFn
= UnOp
->getSubExpr()->IgnoreParens();
7293 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(NakedFn
)) {
7294 NDecl
= DRE
->getDecl();
7296 FunctionDecl
*FDecl
= dyn_cast
<FunctionDecl
>(NDecl
);
7297 if (FDecl
&& FDecl
->getBuiltinID()) {
7298 // Rewrite the function decl for this builtin by replacing parameters
7299 // with no explicit address space with the address space of the arguments
7302 rewriteBuiltinFunctionDecl(this, Context
, FDecl
, ArgExprs
))) {
7304 Fn
= DeclRefExpr::Create(
7305 Context
, FDecl
->getQualifierLoc(), SourceLocation(), FDecl
, false,
7306 SourceLocation(), FDecl
->getType(), Fn
->getValueKind(), FDecl
,
7307 nullptr, DRE
->isNonOdrUse());
7310 } else if (auto *ME
= dyn_cast
<MemberExpr
>(NakedFn
))
7311 NDecl
= ME
->getMemberDecl();
7313 if (FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(NDecl
)) {
7314 if (CallingNDeclIndirectly
&& !checkAddressOfFunctionIsAvailable(
7315 FD
, /*Complain=*/true, Fn
->getBeginLoc()))
7318 checkDirectCallValidity(*this, Fn
, FD
, ArgExprs
);
7320 // If this expression is a call to a builtin function in HIP device
7321 // compilation, allow a pointer-type argument to default address space to be
7322 // passed as a pointer-type parameter to a non-default address space.
7323 // If Arg is declared in the default address space and Param is declared
7324 // in a non-default address space, perform an implicit address space cast to
7325 // the parameter type.
7326 if (getLangOpts().HIP
&& getLangOpts().CUDAIsDevice
&& FD
&&
7327 FD
->getBuiltinID()) {
7328 for (unsigned Idx
= 0; Idx
< FD
->param_size(); ++Idx
) {
7329 ParmVarDecl
*Param
= FD
->getParamDecl(Idx
);
7330 if (!ArgExprs
[Idx
] || !Param
|| !Param
->getType()->isPointerType() ||
7331 !ArgExprs
[Idx
]->getType()->isPointerType())
7334 auto ParamAS
= Param
->getType()->getPointeeType().getAddressSpace();
7335 auto ArgTy
= ArgExprs
[Idx
]->getType();
7336 auto ArgPtTy
= ArgTy
->getPointeeType();
7337 auto ArgAS
= ArgPtTy
.getAddressSpace();
7339 // Add address space cast if target address spaces are different
7340 bool NeedImplicitASC
=
7341 ParamAS
!= LangAS::Default
&& // Pointer params in generic AS don't need special handling.
7342 ( ArgAS
== LangAS::Default
|| // We do allow implicit conversion from generic AS
7343 // or from specific AS which has target AS matching that of Param.
7344 getASTContext().getTargetAddressSpace(ArgAS
) == getASTContext().getTargetAddressSpace(ParamAS
));
7345 if (!NeedImplicitASC
)
7348 // First, ensure that the Arg is an RValue.
7349 if (ArgExprs
[Idx
]->isGLValue()) {
7350 ArgExprs
[Idx
] = ImplicitCastExpr::Create(
7351 Context
, ArgExprs
[Idx
]->getType(), CK_NoOp
, ArgExprs
[Idx
],
7352 nullptr, VK_PRValue
, FPOptionsOverride());
7355 // Construct a new arg type with address space of Param
7356 Qualifiers ArgPtQuals
= ArgPtTy
.getQualifiers();
7357 ArgPtQuals
.setAddressSpace(ParamAS
);
7359 Context
.getQualifiedType(ArgPtTy
.getUnqualifiedType(), ArgPtQuals
);
7361 Context
.getQualifiedType(Context
.getPointerType(NewArgPtTy
),
7362 ArgTy
.getQualifiers());
7364 // Finally perform an implicit address space cast
7365 ArgExprs
[Idx
] = ImpCastExprToType(ArgExprs
[Idx
], NewArgTy
,
7366 CK_AddressSpaceConversion
)
7372 if (Context
.isDependenceAllowed() &&
7373 (Fn
->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs
))) {
7374 assert(!getLangOpts().CPlusPlus
);
7375 assert((Fn
->containsErrors() ||
7376 llvm::any_of(ArgExprs
,
7377 [](clang::Expr
*E
) { return E
->containsErrors(); })) &&
7378 "should only occur in error-recovery path.");
7379 return CallExpr::Create(Context
, Fn
, ArgExprs
, Context
.DependentTy
,
7380 VK_PRValue
, RParenLoc
, CurFPFeatureOverrides());
7382 return BuildResolvedCallExpr(Fn
, NDecl
, LParenLoc
, ArgExprs
, RParenLoc
,
7383 ExecConfig
, IsExecConfig
);
7386 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7387 // with the specified CallArgs
7388 Expr
*Sema::BuildBuiltinCallExpr(SourceLocation Loc
, Builtin::ID Id
,
7389 MultiExprArg CallArgs
) {
7390 StringRef Name
= Context
.BuiltinInfo
.getName(Id
);
7391 LookupResult
R(*this, &Context
.Idents
.get(Name
), Loc
,
7392 Sema::LookupOrdinaryName
);
7393 LookupName(R
, TUScope
, /*AllowBuiltinCreation=*/true);
7395 auto *BuiltInDecl
= R
.getAsSingle
<FunctionDecl
>();
7396 assert(BuiltInDecl
&& "failed to find builtin declaration");
7398 ExprResult DeclRef
=
7399 BuildDeclRefExpr(BuiltInDecl
, BuiltInDecl
->getType(), VK_LValue
, Loc
);
7400 assert(DeclRef
.isUsable() && "Builtin reference cannot fail");
7403 BuildCallExpr(/*Scope=*/nullptr, DeclRef
.get(), Loc
, CallArgs
, Loc
);
7405 assert(!Call
.isInvalid() && "Call to builtin cannot fail!");
7409 /// Parse a __builtin_astype expression.
7411 /// __builtin_astype( value, dst type )
7413 ExprResult
Sema::ActOnAsTypeExpr(Expr
*E
, ParsedType ParsedDestTy
,
7414 SourceLocation BuiltinLoc
,
7415 SourceLocation RParenLoc
) {
7416 QualType DstTy
= GetTypeFromParser(ParsedDestTy
);
7417 return BuildAsTypeExpr(E
, DstTy
, BuiltinLoc
, RParenLoc
);
7420 /// Create a new AsTypeExpr node (bitcast) from the arguments.
7421 ExprResult
Sema::BuildAsTypeExpr(Expr
*E
, QualType DestTy
,
7422 SourceLocation BuiltinLoc
,
7423 SourceLocation RParenLoc
) {
7424 ExprValueKind VK
= VK_PRValue
;
7425 ExprObjectKind OK
= OK_Ordinary
;
7426 QualType SrcTy
= E
->getType();
7427 if (!SrcTy
->isDependentType() &&
7428 Context
.getTypeSize(DestTy
) != Context
.getTypeSize(SrcTy
))
7430 Diag(BuiltinLoc
, diag::err_invalid_astype_of_different_size
)
7431 << DestTy
<< SrcTy
<< E
->getSourceRange());
7432 return new (Context
) AsTypeExpr(E
, DestTy
, VK
, OK
, BuiltinLoc
, RParenLoc
);
7435 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7436 /// provided arguments.
7438 /// __builtin_convertvector( value, dst type )
7440 ExprResult
Sema::ActOnConvertVectorExpr(Expr
*E
, ParsedType ParsedDestTy
,
7441 SourceLocation BuiltinLoc
,
7442 SourceLocation RParenLoc
) {
7443 TypeSourceInfo
*TInfo
;
7444 GetTypeFromParser(ParsedDestTy
, &TInfo
);
7445 return SemaConvertVectorExpr(E
, TInfo
, BuiltinLoc
, RParenLoc
);
7448 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7449 /// i.e. an expression not of \p OverloadTy. The expression should
7450 /// unary-convert to an expression of function-pointer or
7451 /// block-pointer type.
7453 /// \param NDecl the declaration being called, if available
7454 ExprResult
Sema::BuildResolvedCallExpr(Expr
*Fn
, NamedDecl
*NDecl
,
7455 SourceLocation LParenLoc
,
7456 ArrayRef
<Expr
*> Args
,
7457 SourceLocation RParenLoc
, Expr
*Config
,
7458 bool IsExecConfig
, ADLCallKind UsesADL
) {
7459 FunctionDecl
*FDecl
= dyn_cast_or_null
<FunctionDecl
>(NDecl
);
7460 unsigned BuiltinID
= (FDecl
? FDecl
->getBuiltinID() : 0);
7462 // Functions with 'interrupt' attribute cannot be called directly.
7463 if (FDecl
&& FDecl
->hasAttr
<AnyX86InterruptAttr
>()) {
7464 Diag(Fn
->getExprLoc(), diag::err_anyx86_interrupt_called
);
7468 // Interrupt handlers don't save off the VFP regs automatically on ARM,
7469 // so there's some risk when calling out to non-interrupt handler functions
7470 // that the callee might not preserve them. This is easy to diagnose here,
7471 // but can be very challenging to debug.
7472 // Likewise, X86 interrupt handlers may only call routines with attribute
7473 // no_caller_saved_registers since there is no efficient way to
7474 // save and restore the non-GPR state.
7475 if (auto *Caller
= getCurFunctionDecl()) {
7476 if (Caller
->hasAttr
<ARMInterruptAttr
>()) {
7477 bool VFP
= Context
.getTargetInfo().hasFeature("vfp");
7478 if (VFP
&& (!FDecl
|| !FDecl
->hasAttr
<ARMInterruptAttr
>())) {
7479 Diag(Fn
->getExprLoc(), diag::warn_arm_interrupt_calling_convention
);
7481 Diag(FDecl
->getLocation(), diag::note_callee_decl
) << FDecl
;
7484 if (Caller
->hasAttr
<AnyX86InterruptAttr
>() ||
7485 Caller
->hasAttr
<AnyX86NoCallerSavedRegistersAttr
>()) {
7486 const TargetInfo
&TI
= Context
.getTargetInfo();
7487 bool HasNonGPRRegisters
=
7488 TI
.hasFeature("sse") || TI
.hasFeature("x87") || TI
.hasFeature("mmx");
7489 if (HasNonGPRRegisters
&&
7490 (!FDecl
|| !FDecl
->hasAttr
<AnyX86NoCallerSavedRegistersAttr
>())) {
7491 Diag(Fn
->getExprLoc(), diag::warn_anyx86_excessive_regsave
)
7492 << (Caller
->hasAttr
<AnyX86InterruptAttr
>() ? 0 : 1);
7494 Diag(FDecl
->getLocation(), diag::note_callee_decl
) << FDecl
;
7499 // Promote the function operand.
7500 // We special-case function promotion here because we only allow promoting
7501 // builtin functions to function pointers in the callee of a call.
7505 Fn
->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn
)) {
7506 // Extract the return type from the (builtin) function pointer type.
7507 // FIXME Several builtins still have setType in
7508 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7509 // Builtins.def to ensure they are correct before removing setType calls.
7510 QualType FnPtrTy
= Context
.getPointerType(FDecl
->getType());
7511 Result
= ImpCastExprToType(Fn
, FnPtrTy
, CK_BuiltinFnToFnPtr
).get();
7512 ResultTy
= FDecl
->getCallResultType();
7514 Result
= CallExprUnaryConversions(Fn
);
7515 ResultTy
= Context
.BoolTy
;
7517 if (Result
.isInvalid())
7521 // Check for a valid function type, but only if it is not a builtin which
7522 // requires custom type checking. These will be handled by
7523 // CheckBuiltinFunctionCall below just after creation of the call expression.
7524 const FunctionType
*FuncT
= nullptr;
7525 if (!BuiltinID
|| !Context
.BuiltinInfo
.hasCustomTypechecking(BuiltinID
)) {
7527 if (const PointerType
*PT
= Fn
->getType()->getAs
<PointerType
>()) {
7528 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7529 // have type pointer to function".
7530 FuncT
= PT
->getPointeeType()->getAs
<FunctionType
>();
7532 return ExprError(Diag(LParenLoc
, diag::err_typecheck_call_not_function
)
7533 << Fn
->getType() << Fn
->getSourceRange());
7534 } else if (const BlockPointerType
*BPT
=
7535 Fn
->getType()->getAs
<BlockPointerType
>()) {
7536 FuncT
= BPT
->getPointeeType()->castAs
<FunctionType
>();
7538 // Handle calls to expressions of unknown-any type.
7539 if (Fn
->getType() == Context
.UnknownAnyTy
) {
7540 ExprResult rewrite
= rebuildUnknownAnyFunction(*this, Fn
);
7541 if (rewrite
.isInvalid())
7547 return ExprError(Diag(LParenLoc
, diag::err_typecheck_call_not_function
)
7548 << Fn
->getType() << Fn
->getSourceRange());
7552 // Get the number of parameters in the function prototype, if any.
7553 // We will allocate space for max(Args.size(), NumParams) arguments
7554 // in the call expression.
7555 const auto *Proto
= dyn_cast_or_null
<FunctionProtoType
>(FuncT
);
7556 unsigned NumParams
= Proto
? Proto
->getNumParams() : 0;
7560 assert(UsesADL
== ADLCallKind::NotADL
&&
7561 "CUDAKernelCallExpr should not use ADL");
7562 TheCall
= CUDAKernelCallExpr::Create(Context
, Fn
, cast
<CallExpr
>(Config
),
7563 Args
, ResultTy
, VK_PRValue
, RParenLoc
,
7564 CurFPFeatureOverrides(), NumParams
);
7567 CallExpr::Create(Context
, Fn
, Args
, ResultTy
, VK_PRValue
, RParenLoc
,
7568 CurFPFeatureOverrides(), NumParams
, UsesADL
);
7571 if (!Context
.isDependenceAllowed()) {
7572 // Forget about the nulled arguments since typo correction
7573 // do not handle them well.
7574 TheCall
->shrinkNumArgs(Args
.size());
7575 // C cannot always handle TypoExpr nodes in builtin calls and direct
7576 // function calls as their argument checking don't necessarily handle
7577 // dependent types properly, so make sure any TypoExprs have been
7579 ExprResult Result
= CorrectDelayedTyposInExpr(TheCall
);
7580 if (!Result
.isUsable()) return ExprError();
7581 CallExpr
*TheOldCall
= TheCall
;
7582 TheCall
= dyn_cast
<CallExpr
>(Result
.get());
7583 bool CorrectedTypos
= TheCall
!= TheOldCall
;
7584 if (!TheCall
) return Result
;
7585 Args
= llvm::ArrayRef(TheCall
->getArgs(), TheCall
->getNumArgs());
7587 // A new call expression node was created if some typos were corrected.
7588 // However it may not have been constructed with enough storage. In this
7589 // case, rebuild the node with enough storage. The waste of space is
7590 // immaterial since this only happens when some typos were corrected.
7591 if (CorrectedTypos
&& Args
.size() < NumParams
) {
7593 TheCall
= CUDAKernelCallExpr::Create(
7594 Context
, Fn
, cast
<CallExpr
>(Config
), Args
, ResultTy
, VK_PRValue
,
7595 RParenLoc
, CurFPFeatureOverrides(), NumParams
);
7598 CallExpr::Create(Context
, Fn
, Args
, ResultTy
, VK_PRValue
, RParenLoc
,
7599 CurFPFeatureOverrides(), NumParams
, UsesADL
);
7601 // We can now handle the nulled arguments for the default arguments.
7602 TheCall
->setNumArgsUnsafe(std::max
<unsigned>(Args
.size(), NumParams
));
7605 // Bail out early if calling a builtin with custom type checking.
7606 if (BuiltinID
&& Context
.BuiltinInfo
.hasCustomTypechecking(BuiltinID
))
7607 return CheckBuiltinFunctionCall(FDecl
, BuiltinID
, TheCall
);
7609 if (getLangOpts().CUDA
) {
7611 // CUDA: Kernel calls must be to global functions
7612 if (FDecl
&& !FDecl
->hasAttr
<CUDAGlobalAttr
>())
7613 return ExprError(Diag(LParenLoc
,diag::err_kern_call_not_global_function
)
7614 << FDecl
<< Fn
->getSourceRange());
7616 // CUDA: Kernel function must have 'void' return type
7617 if (!FuncT
->getReturnType()->isVoidType() &&
7618 !FuncT
->getReturnType()->getAs
<AutoType
>() &&
7619 !FuncT
->getReturnType()->isInstantiationDependentType())
7620 return ExprError(Diag(LParenLoc
, diag::err_kern_type_not_void_return
)
7621 << Fn
->getType() << Fn
->getSourceRange());
7623 // CUDA: Calls to global functions must be configured
7624 if (FDecl
&& FDecl
->hasAttr
<CUDAGlobalAttr
>())
7625 return ExprError(Diag(LParenLoc
, diag::err_global_call_not_config
)
7626 << FDecl
<< Fn
->getSourceRange());
7630 // Check for a valid return type
7631 if (CheckCallReturnType(FuncT
->getReturnType(), Fn
->getBeginLoc(), TheCall
,
7635 // We know the result type of the call, set it.
7636 TheCall
->setType(FuncT
->getCallResultType(Context
));
7637 TheCall
->setValueKind(Expr::getValueKindForType(FuncT
->getReturnType()));
7639 // WebAssembly tables can't be used as arguments.
7640 if (Context
.getTargetInfo().getTriple().isWasm()) {
7641 for (const Expr
*Arg
: Args
) {
7642 if (Arg
&& Arg
->getType()->isWebAssemblyTableType()) {
7643 return ExprError(Diag(Arg
->getExprLoc(),
7644 diag::err_wasm_table_as_function_parameter
));
7650 if (ConvertArgumentsForCall(TheCall
, Fn
, FDecl
, Proto
, Args
, RParenLoc
,
7654 assert(isa
<FunctionNoProtoType
>(FuncT
) && "Unknown FunctionType!");
7657 // Check if we have too few/too many template arguments, based
7658 // on our knowledge of the function definition.
7659 const FunctionDecl
*Def
= nullptr;
7660 if (FDecl
->hasBody(Def
) && Args
.size() != Def
->param_size()) {
7661 Proto
= Def
->getType()->getAs
<FunctionProtoType
>();
7662 if (!Proto
|| !(Proto
->isVariadic() && Args
.size() >= Def
->param_size()))
7663 Diag(RParenLoc
, diag::warn_call_wrong_number_of_arguments
)
7664 << (Args
.size() > Def
->param_size()) << FDecl
<< Fn
->getSourceRange();
7667 // If the function we're calling isn't a function prototype, but we have
7668 // a function prototype from a prior declaratiom, use that prototype.
7669 if (!FDecl
->hasPrototype())
7670 Proto
= FDecl
->getType()->getAs
<FunctionProtoType
>();
7673 // If we still haven't found a prototype to use but there are arguments to
7674 // the call, diagnose this as calling a function without a prototype.
7675 // However, if we found a function declaration, check to see if
7676 // -Wdeprecated-non-prototype was disabled where the function was declared.
7677 // If so, we will silence the diagnostic here on the assumption that this
7678 // interface is intentional and the user knows what they're doing. We will
7679 // also silence the diagnostic if there is a function declaration but it
7680 // was implicitly defined (the user already gets diagnostics about the
7681 // creation of the implicit function declaration, so the additional warning
7683 if (!Proto
&& !Args
.empty() &&
7684 (!FDecl
|| (!FDecl
->isImplicit() &&
7685 !Diags
.isIgnored(diag::warn_strict_uses_without_prototype
,
7686 FDecl
->getLocation()))))
7687 Diag(LParenLoc
, diag::warn_strict_uses_without_prototype
)
7688 << (FDecl
!= nullptr) << FDecl
;
7690 // Promote the arguments (C99 6.5.2.2p6).
7691 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++) {
7692 Expr
*Arg
= Args
[i
];
7694 if (Proto
&& i
< Proto
->getNumParams()) {
7695 InitializedEntity Entity
= InitializedEntity::InitializeParameter(
7696 Context
, Proto
->getParamType(i
), Proto
->isParamConsumed(i
));
7698 PerformCopyInitialization(Entity
, SourceLocation(), Arg
);
7699 if (ArgE
.isInvalid())
7702 Arg
= ArgE
.getAs
<Expr
>();
7705 ExprResult ArgE
= DefaultArgumentPromotion(Arg
);
7707 if (ArgE
.isInvalid())
7710 Arg
= ArgE
.getAs
<Expr
>();
7713 if (RequireCompleteType(Arg
->getBeginLoc(), Arg
->getType(),
7714 diag::err_call_incomplete_argument
, Arg
))
7717 TheCall
->setArg(i
, Arg
);
7719 TheCall
->computeDependence();
7722 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(FDecl
))
7723 if (Method
->isImplicitObjectMemberFunction())
7724 return ExprError(Diag(LParenLoc
, diag::err_member_call_without_object
)
7725 << Fn
->getSourceRange() << 0);
7727 // Check for sentinels
7729 DiagnoseSentinelCalls(NDecl
, LParenLoc
, Args
);
7731 // Warn for unions passing across security boundary (CMSE).
7732 if (FuncT
!= nullptr && FuncT
->getCmseNSCallAttr()) {
7733 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++) {
7734 if (const auto *RT
=
7735 dyn_cast
<RecordType
>(Args
[i
]->getType().getCanonicalType())) {
7736 if (RT
->getDecl()->isOrContainsUnion())
7737 Diag(Args
[i
]->getBeginLoc(), diag::warn_cmse_nonsecure_union
)
7743 // Do special checking on direct calls to functions.
7745 if (CheckFunctionCall(FDecl
, TheCall
, Proto
))
7748 checkFortifiedBuiltinMemoryFunction(FDecl
, TheCall
);
7751 return CheckBuiltinFunctionCall(FDecl
, BuiltinID
, TheCall
);
7753 if (CheckPointerCall(NDecl
, TheCall
, Proto
))
7756 if (CheckOtherCall(TheCall
, Proto
))
7760 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall
), FDecl
);
7764 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc
, ParsedType Ty
,
7765 SourceLocation RParenLoc
, Expr
*InitExpr
) {
7766 assert(Ty
&& "ActOnCompoundLiteral(): missing type");
7767 assert(InitExpr
&& "ActOnCompoundLiteral(): missing expression");
7769 TypeSourceInfo
*TInfo
;
7770 QualType literalType
= GetTypeFromParser(Ty
, &TInfo
);
7772 TInfo
= Context
.getTrivialTypeSourceInfo(literalType
);
7774 return BuildCompoundLiteralExpr(LParenLoc
, TInfo
, RParenLoc
, InitExpr
);
7778 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc
, TypeSourceInfo
*TInfo
,
7779 SourceLocation RParenLoc
, Expr
*LiteralExpr
) {
7780 QualType literalType
= TInfo
->getType();
7782 if (literalType
->isArrayType()) {
7783 if (RequireCompleteSizedType(
7784 LParenLoc
, Context
.getBaseElementType(literalType
),
7785 diag::err_array_incomplete_or_sizeless_type
,
7786 SourceRange(LParenLoc
, LiteralExpr
->getSourceRange().getEnd())))
7788 if (literalType
->isVariableArrayType()) {
7789 // C23 6.7.10p4: An entity of variable length array type shall not be
7790 // initialized except by an empty initializer.
7792 // The C extension warnings are issued from ParseBraceInitializer() and
7793 // do not need to be issued here. However, we continue to issue an error
7794 // in the case there are initializers or we are compiling C++. We allow
7795 // use of VLAs in C++, but it's not clear we want to allow {} to zero
7796 // init a VLA in C++ in all cases (such as with non-trivial constructors).
7797 // FIXME: should we allow this construct in C++ when it makes sense to do
7799 std::optional
<unsigned> NumInits
;
7800 if (const auto *ILE
= dyn_cast
<InitListExpr
>(LiteralExpr
))
7801 NumInits
= ILE
->getNumInits();
7802 if ((LangOpts
.CPlusPlus
|| NumInits
.value_or(0)) &&
7803 !tryToFixVariablyModifiedVarType(TInfo
, literalType
, LParenLoc
,
7804 diag::err_variable_object_no_init
))
7807 } else if (!literalType
->isDependentType() &&
7808 RequireCompleteType(LParenLoc
, literalType
,
7809 diag::err_typecheck_decl_incomplete_type
,
7810 SourceRange(LParenLoc
, LiteralExpr
->getSourceRange().getEnd())))
7813 InitializedEntity Entity
7814 = InitializedEntity::InitializeCompoundLiteralInit(TInfo
);
7815 InitializationKind Kind
7816 = InitializationKind::CreateCStyleCast(LParenLoc
,
7817 SourceRange(LParenLoc
, RParenLoc
),
7819 InitializationSequence
InitSeq(*this, Entity
, Kind
, LiteralExpr
);
7820 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, LiteralExpr
,
7822 if (Result
.isInvalid())
7824 LiteralExpr
= Result
.get();
7826 bool isFileScope
= !CurContext
->isFunctionOrMethod();
7828 // In C, compound literals are l-values for some reason.
7829 // For GCC compatibility, in C++, file-scope array compound literals with
7830 // constant initializers are also l-values, and compound literals are
7831 // otherwise prvalues.
7833 // (GCC also treats C++ list-initialized file-scope array prvalues with
7834 // constant initializers as l-values, but that's non-conforming, so we don't
7835 // follow it there.)
7837 // FIXME: It would be better to handle the lvalue cases as materializing and
7838 // lifetime-extending a temporary object, but our materialized temporaries
7839 // representation only supports lifetime extension from a variable, not "out
7841 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7842 // is bound to the result of applying array-to-pointer decay to the compound
7844 // FIXME: GCC supports compound literals of reference type, which should
7845 // obviously have a value kind derived from the kind of reference involved.
7847 (getLangOpts().CPlusPlus
&& !(isFileScope
&& literalType
->isArrayType()))
7852 if (auto ILE
= dyn_cast
<InitListExpr
>(LiteralExpr
))
7853 for (unsigned i
= 0, j
= ILE
->getNumInits(); i
!= j
; i
++) {
7854 Expr
*Init
= ILE
->getInit(i
);
7855 ILE
->setInit(i
, ConstantExpr::Create(Context
, Init
));
7858 auto *E
= new (Context
) CompoundLiteralExpr(LParenLoc
, TInfo
, literalType
,
7859 VK
, LiteralExpr
, isFileScope
);
7861 if (!LiteralExpr
->isTypeDependent() &&
7862 !LiteralExpr
->isValueDependent() &&
7863 !literalType
->isDependentType()) // C99 6.5.2.5p3
7864 if (CheckForConstantInitializer(LiteralExpr
, literalType
))
7866 } else if (literalType
.getAddressSpace() != LangAS::opencl_private
&&
7867 literalType
.getAddressSpace() != LangAS::Default
) {
7868 // Embedded-C extensions to C99 6.5.2.5:
7869 // "If the compound literal occurs inside the body of a function, the
7870 // type name shall not be qualified by an address-space qualifier."
7871 Diag(LParenLoc
, diag::err_compound_literal_with_address_space
)
7872 << SourceRange(LParenLoc
, LiteralExpr
->getSourceRange().getEnd());
7876 if (!isFileScope
&& !getLangOpts().CPlusPlus
) {
7877 // Compound literals that have automatic storage duration are destroyed at
7878 // the end of the scope in C; in C++, they're just temporaries.
7880 // Emit diagnostics if it is or contains a C union type that is non-trivial
7882 if (E
->getType().hasNonTrivialToPrimitiveDestructCUnion())
7883 checkNonTrivialCUnion(E
->getType(), E
->getExprLoc(),
7884 NTCUC_CompoundLiteral
, NTCUK_Destruct
);
7886 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7887 if (literalType
.isDestructedType()) {
7888 Cleanup
.setExprNeedsCleanups(true);
7889 ExprCleanupObjects
.push_back(E
);
7890 getCurFunction()->setHasBranchProtectedScope();
7894 if (E
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7895 E
->getType().hasNonTrivialToPrimitiveCopyCUnion())
7896 checkNonTrivialCUnionInInitializer(E
->getInitializer(),
7897 E
->getInitializer()->getExprLoc());
7899 return MaybeBindToTemporary(E
);
7903 Sema::ActOnInitList(SourceLocation LBraceLoc
, MultiExprArg InitArgList
,
7904 SourceLocation RBraceLoc
) {
7905 // Only produce each kind of designated initialization diagnostic once.
7906 SourceLocation FirstDesignator
;
7907 bool DiagnosedArrayDesignator
= false;
7908 bool DiagnosedNestedDesignator
= false;
7909 bool DiagnosedMixedDesignator
= false;
7911 // Check that any designated initializers are syntactically valid in the
7912 // current language mode.
7913 for (unsigned I
= 0, E
= InitArgList
.size(); I
!= E
; ++I
) {
7914 if (auto *DIE
= dyn_cast
<DesignatedInitExpr
>(InitArgList
[I
])) {
7915 if (FirstDesignator
.isInvalid())
7916 FirstDesignator
= DIE
->getBeginLoc();
7918 if (!getLangOpts().CPlusPlus
)
7921 if (!DiagnosedNestedDesignator
&& DIE
->size() > 1) {
7922 DiagnosedNestedDesignator
= true;
7923 Diag(DIE
->getBeginLoc(), diag::ext_designated_init_nested
)
7924 << DIE
->getDesignatorsSourceRange();
7927 for (auto &Desig
: DIE
->designators()) {
7928 if (!Desig
.isFieldDesignator() && !DiagnosedArrayDesignator
) {
7929 DiagnosedArrayDesignator
= true;
7930 Diag(Desig
.getBeginLoc(), diag::ext_designated_init_array
)
7931 << Desig
.getSourceRange();
7935 if (!DiagnosedMixedDesignator
&&
7936 !isa
<DesignatedInitExpr
>(InitArgList
[0])) {
7937 DiagnosedMixedDesignator
= true;
7938 Diag(DIE
->getBeginLoc(), diag::ext_designated_init_mixed
)
7939 << DIE
->getSourceRange();
7940 Diag(InitArgList
[0]->getBeginLoc(), diag::note_designated_init_mixed
)
7941 << InitArgList
[0]->getSourceRange();
7943 } else if (getLangOpts().CPlusPlus
&& !DiagnosedMixedDesignator
&&
7944 isa
<DesignatedInitExpr
>(InitArgList
[0])) {
7945 DiagnosedMixedDesignator
= true;
7946 auto *DIE
= cast
<DesignatedInitExpr
>(InitArgList
[0]);
7947 Diag(DIE
->getBeginLoc(), diag::ext_designated_init_mixed
)
7948 << DIE
->getSourceRange();
7949 Diag(InitArgList
[I
]->getBeginLoc(), diag::note_designated_init_mixed
)
7950 << InitArgList
[I
]->getSourceRange();
7954 if (FirstDesignator
.isValid()) {
7955 // Only diagnose designated initiaization as a C++20 extension if we didn't
7956 // already diagnose use of (non-C++20) C99 designator syntax.
7957 if (getLangOpts().CPlusPlus
&& !DiagnosedArrayDesignator
&&
7958 !DiagnosedNestedDesignator
&& !DiagnosedMixedDesignator
) {
7959 Diag(FirstDesignator
, getLangOpts().CPlusPlus20
7960 ? diag::warn_cxx17_compat_designated_init
7961 : diag::ext_cxx_designated_init
);
7962 } else if (!getLangOpts().CPlusPlus
&& !getLangOpts().C99
) {
7963 Diag(FirstDesignator
, diag::ext_designated_init
);
7967 return BuildInitList(LBraceLoc
, InitArgList
, RBraceLoc
);
7971 Sema::BuildInitList(SourceLocation LBraceLoc
, MultiExprArg InitArgList
,
7972 SourceLocation RBraceLoc
) {
7973 // Semantic analysis for initializers is done by ActOnDeclarator() and
7974 // CheckInitializer() - it requires knowledge of the object being initialized.
7976 // Immediately handle non-overload placeholders. Overloads can be
7977 // resolved contextually, but everything else here can't.
7978 for (unsigned I
= 0, E
= InitArgList
.size(); I
!= E
; ++I
) {
7979 if (InitArgList
[I
]->getType()->isNonOverloadPlaceholderType()) {
7980 ExprResult result
= CheckPlaceholderExpr(InitArgList
[I
]);
7982 // Ignore failures; dropping the entire initializer list because
7983 // of one failure would be terrible for indexing/etc.
7984 if (result
.isInvalid()) continue;
7986 InitArgList
[I
] = result
.get();
7990 InitListExpr
*E
= new (Context
) InitListExpr(Context
, LBraceLoc
, InitArgList
,
7992 E
->setType(Context
.VoidTy
); // FIXME: just a place holder for now.
7996 /// Do an explicit extend of the given block pointer if we're in ARC.
7997 void Sema::maybeExtendBlockObject(ExprResult
&E
) {
7998 assert(E
.get()->getType()->isBlockPointerType());
7999 assert(E
.get()->isPRValue());
8001 // Only do this in an r-value context.
8002 if (!getLangOpts().ObjCAutoRefCount
) return;
8004 E
= ImplicitCastExpr::Create(
8005 Context
, E
.get()->getType(), CK_ARCExtendBlockObject
, E
.get(),
8006 /*base path*/ nullptr, VK_PRValue
, FPOptionsOverride());
8007 Cleanup
.setExprNeedsCleanups(true);
8010 /// Prepare a conversion of the given expression to an ObjC object
8012 CastKind
Sema::PrepareCastToObjCObjectPointer(ExprResult
&E
) {
8013 QualType type
= E
.get()->getType();
8014 if (type
->isObjCObjectPointerType()) {
8016 } else if (type
->isBlockPointerType()) {
8017 maybeExtendBlockObject(E
);
8018 return CK_BlockPointerToObjCPointerCast
;
8020 assert(type
->isPointerType());
8021 return CK_CPointerToObjCPointerCast
;
8025 /// Prepares for a scalar cast, performing all the necessary stages
8026 /// except the final cast and returning the kind required.
8027 CastKind
Sema::PrepareScalarCast(ExprResult
&Src
, QualType DestTy
) {
8028 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
8029 // Also, callers should have filtered out the invalid cases with
8030 // pointers. Everything else should be possible.
8032 QualType SrcTy
= Src
.get()->getType();
8033 if (Context
.hasSameUnqualifiedType(SrcTy
, DestTy
))
8036 switch (Type::ScalarTypeKind SrcKind
= SrcTy
->getScalarTypeKind()) {
8037 case Type::STK_MemberPointer
:
8038 llvm_unreachable("member pointer type in C");
8040 case Type::STK_CPointer
:
8041 case Type::STK_BlockPointer
:
8042 case Type::STK_ObjCObjectPointer
:
8043 switch (DestTy
->getScalarTypeKind()) {
8044 case Type::STK_CPointer
: {
8045 LangAS SrcAS
= SrcTy
->getPointeeType().getAddressSpace();
8046 LangAS DestAS
= DestTy
->getPointeeType().getAddressSpace();
8047 if (SrcAS
!= DestAS
)
8048 return CK_AddressSpaceConversion
;
8049 if (Context
.hasCvrSimilarType(SrcTy
, DestTy
))
8053 case Type::STK_BlockPointer
:
8054 return (SrcKind
== Type::STK_BlockPointer
8055 ? CK_BitCast
: CK_AnyPointerToBlockPointerCast
);
8056 case Type::STK_ObjCObjectPointer
:
8057 if (SrcKind
== Type::STK_ObjCObjectPointer
)
8059 if (SrcKind
== Type::STK_CPointer
)
8060 return CK_CPointerToObjCPointerCast
;
8061 maybeExtendBlockObject(Src
);
8062 return CK_BlockPointerToObjCPointerCast
;
8063 case Type::STK_Bool
:
8064 return CK_PointerToBoolean
;
8065 case Type::STK_Integral
:
8066 return CK_PointerToIntegral
;
8067 case Type::STK_Floating
:
8068 case Type::STK_FloatingComplex
:
8069 case Type::STK_IntegralComplex
:
8070 case Type::STK_MemberPointer
:
8071 case Type::STK_FixedPoint
:
8072 llvm_unreachable("illegal cast from pointer");
8074 llvm_unreachable("Should have returned before this");
8076 case Type::STK_FixedPoint
:
8077 switch (DestTy
->getScalarTypeKind()) {
8078 case Type::STK_FixedPoint
:
8079 return CK_FixedPointCast
;
8080 case Type::STK_Bool
:
8081 return CK_FixedPointToBoolean
;
8082 case Type::STK_Integral
:
8083 return CK_FixedPointToIntegral
;
8084 case Type::STK_Floating
:
8085 return CK_FixedPointToFloating
;
8086 case Type::STK_IntegralComplex
:
8087 case Type::STK_FloatingComplex
:
8088 Diag(Src
.get()->getExprLoc(),
8089 diag::err_unimplemented_conversion_with_fixed_point_type
)
8091 return CK_IntegralCast
;
8092 case Type::STK_CPointer
:
8093 case Type::STK_ObjCObjectPointer
:
8094 case Type::STK_BlockPointer
:
8095 case Type::STK_MemberPointer
:
8096 llvm_unreachable("illegal cast to pointer type");
8098 llvm_unreachable("Should have returned before this");
8100 case Type::STK_Bool
: // casting from bool is like casting from an integer
8101 case Type::STK_Integral
:
8102 switch (DestTy
->getScalarTypeKind()) {
8103 case Type::STK_CPointer
:
8104 case Type::STK_ObjCObjectPointer
:
8105 case Type::STK_BlockPointer
:
8106 if (Src
.get()->isNullPointerConstant(Context
,
8107 Expr::NPC_ValueDependentIsNull
))
8108 return CK_NullToPointer
;
8109 return CK_IntegralToPointer
;
8110 case Type::STK_Bool
:
8111 return CK_IntegralToBoolean
;
8112 case Type::STK_Integral
:
8113 return CK_IntegralCast
;
8114 case Type::STK_Floating
:
8115 return CK_IntegralToFloating
;
8116 case Type::STK_IntegralComplex
:
8117 Src
= ImpCastExprToType(Src
.get(),
8118 DestTy
->castAs
<ComplexType
>()->getElementType(),
8120 return CK_IntegralRealToComplex
;
8121 case Type::STK_FloatingComplex
:
8122 Src
= ImpCastExprToType(Src
.get(),
8123 DestTy
->castAs
<ComplexType
>()->getElementType(),
8124 CK_IntegralToFloating
);
8125 return CK_FloatingRealToComplex
;
8126 case Type::STK_MemberPointer
:
8127 llvm_unreachable("member pointer type in C");
8128 case Type::STK_FixedPoint
:
8129 return CK_IntegralToFixedPoint
;
8131 llvm_unreachable("Should have returned before this");
8133 case Type::STK_Floating
:
8134 switch (DestTy
->getScalarTypeKind()) {
8135 case Type::STK_Floating
:
8136 return CK_FloatingCast
;
8137 case Type::STK_Bool
:
8138 return CK_FloatingToBoolean
;
8139 case Type::STK_Integral
:
8140 return CK_FloatingToIntegral
;
8141 case Type::STK_FloatingComplex
:
8142 Src
= ImpCastExprToType(Src
.get(),
8143 DestTy
->castAs
<ComplexType
>()->getElementType(),
8145 return CK_FloatingRealToComplex
;
8146 case Type::STK_IntegralComplex
:
8147 Src
= ImpCastExprToType(Src
.get(),
8148 DestTy
->castAs
<ComplexType
>()->getElementType(),
8149 CK_FloatingToIntegral
);
8150 return CK_IntegralRealToComplex
;
8151 case Type::STK_CPointer
:
8152 case Type::STK_ObjCObjectPointer
:
8153 case Type::STK_BlockPointer
:
8154 llvm_unreachable("valid float->pointer cast?");
8155 case Type::STK_MemberPointer
:
8156 llvm_unreachable("member pointer type in C");
8157 case Type::STK_FixedPoint
:
8158 return CK_FloatingToFixedPoint
;
8160 llvm_unreachable("Should have returned before this");
8162 case Type::STK_FloatingComplex
:
8163 switch (DestTy
->getScalarTypeKind()) {
8164 case Type::STK_FloatingComplex
:
8165 return CK_FloatingComplexCast
;
8166 case Type::STK_IntegralComplex
:
8167 return CK_FloatingComplexToIntegralComplex
;
8168 case Type::STK_Floating
: {
8169 QualType ET
= SrcTy
->castAs
<ComplexType
>()->getElementType();
8170 if (Context
.hasSameType(ET
, DestTy
))
8171 return CK_FloatingComplexToReal
;
8172 Src
= ImpCastExprToType(Src
.get(), ET
, CK_FloatingComplexToReal
);
8173 return CK_FloatingCast
;
8175 case Type::STK_Bool
:
8176 return CK_FloatingComplexToBoolean
;
8177 case Type::STK_Integral
:
8178 Src
= ImpCastExprToType(Src
.get(),
8179 SrcTy
->castAs
<ComplexType
>()->getElementType(),
8180 CK_FloatingComplexToReal
);
8181 return CK_FloatingToIntegral
;
8182 case Type::STK_CPointer
:
8183 case Type::STK_ObjCObjectPointer
:
8184 case Type::STK_BlockPointer
:
8185 llvm_unreachable("valid complex float->pointer cast?");
8186 case Type::STK_MemberPointer
:
8187 llvm_unreachable("member pointer type in C");
8188 case Type::STK_FixedPoint
:
8189 Diag(Src
.get()->getExprLoc(),
8190 diag::err_unimplemented_conversion_with_fixed_point_type
)
8192 return CK_IntegralCast
;
8194 llvm_unreachable("Should have returned before this");
8196 case Type::STK_IntegralComplex
:
8197 switch (DestTy
->getScalarTypeKind()) {
8198 case Type::STK_FloatingComplex
:
8199 return CK_IntegralComplexToFloatingComplex
;
8200 case Type::STK_IntegralComplex
:
8201 return CK_IntegralComplexCast
;
8202 case Type::STK_Integral
: {
8203 QualType ET
= SrcTy
->castAs
<ComplexType
>()->getElementType();
8204 if (Context
.hasSameType(ET
, DestTy
))
8205 return CK_IntegralComplexToReal
;
8206 Src
= ImpCastExprToType(Src
.get(), ET
, CK_IntegralComplexToReal
);
8207 return CK_IntegralCast
;
8209 case Type::STK_Bool
:
8210 return CK_IntegralComplexToBoolean
;
8211 case Type::STK_Floating
:
8212 Src
= ImpCastExprToType(Src
.get(),
8213 SrcTy
->castAs
<ComplexType
>()->getElementType(),
8214 CK_IntegralComplexToReal
);
8215 return CK_IntegralToFloating
;
8216 case Type::STK_CPointer
:
8217 case Type::STK_ObjCObjectPointer
:
8218 case Type::STK_BlockPointer
:
8219 llvm_unreachable("valid complex int->pointer cast?");
8220 case Type::STK_MemberPointer
:
8221 llvm_unreachable("member pointer type in C");
8222 case Type::STK_FixedPoint
:
8223 Diag(Src
.get()->getExprLoc(),
8224 diag::err_unimplemented_conversion_with_fixed_point_type
)
8226 return CK_IntegralCast
;
8228 llvm_unreachable("Should have returned before this");
8231 llvm_unreachable("Unhandled scalar cast");
8234 static bool breakDownVectorType(QualType type
, uint64_t &len
,
8235 QualType
&eltType
) {
8236 // Vectors are simple.
8237 if (const VectorType
*vecType
= type
->getAs
<VectorType
>()) {
8238 len
= vecType
->getNumElements();
8239 eltType
= vecType
->getElementType();
8240 assert(eltType
->isScalarType());
8244 // We allow lax conversion to and from non-vector types, but only if
8245 // they're real types (i.e. non-complex, non-pointer scalar types).
8246 if (!type
->isRealType()) return false;
8253 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
8254 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
8257 /// This will also return false if the two given types do not make sense from
8258 /// the perspective of SVE bitcasts.
8259 bool Sema::isValidSveBitcast(QualType srcTy
, QualType destTy
) {
8260 assert(srcTy
->isVectorType() || destTy
->isVectorType());
8262 auto ValidScalableConversion
= [](QualType FirstType
, QualType SecondType
) {
8263 if (!FirstType
->isSVESizelessBuiltinType())
8266 const auto *VecTy
= SecondType
->getAs
<VectorType
>();
8267 return VecTy
&& VecTy
->getVectorKind() == VectorKind::SveFixedLengthData
;
8270 return ValidScalableConversion(srcTy
, destTy
) ||
8271 ValidScalableConversion(destTy
, srcTy
);
8274 /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the
8275 /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV
8276 /// VLS type) allowed?
8278 /// This will also return false if the two given types do not make sense from
8279 /// the perspective of RVV bitcasts.
8280 bool Sema::isValidRVVBitcast(QualType srcTy
, QualType destTy
) {
8281 assert(srcTy
->isVectorType() || destTy
->isVectorType());
8283 auto ValidScalableConversion
= [](QualType FirstType
, QualType SecondType
) {
8284 if (!FirstType
->isRVVSizelessBuiltinType())
8287 const auto *VecTy
= SecondType
->getAs
<VectorType
>();
8288 return VecTy
&& VecTy
->getVectorKind() == VectorKind::RVVFixedLengthData
;
8291 return ValidScalableConversion(srcTy
, destTy
) ||
8292 ValidScalableConversion(destTy
, srcTy
);
8295 /// Are the two types matrix types and do they have the same dimensions i.e.
8296 /// do they have the same number of rows and the same number of columns?
8297 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy
, QualType destTy
) {
8298 if (!destTy
->isMatrixType() || !srcTy
->isMatrixType())
8301 const ConstantMatrixType
*matSrcType
= srcTy
->getAs
<ConstantMatrixType
>();
8302 const ConstantMatrixType
*matDestType
= destTy
->getAs
<ConstantMatrixType
>();
8304 return matSrcType
->getNumRows() == matDestType
->getNumRows() &&
8305 matSrcType
->getNumColumns() == matDestType
->getNumColumns();
8308 bool Sema::areVectorTypesSameSize(QualType SrcTy
, QualType DestTy
) {
8309 assert(DestTy
->isVectorType() || SrcTy
->isVectorType());
8311 uint64_t SrcLen
, DestLen
;
8312 QualType SrcEltTy
, DestEltTy
;
8313 if (!breakDownVectorType(SrcTy
, SrcLen
, SrcEltTy
))
8315 if (!breakDownVectorType(DestTy
, DestLen
, DestEltTy
))
8318 // ASTContext::getTypeSize will return the size rounded up to a
8319 // power of 2, so instead of using that, we need to use the raw
8320 // element size multiplied by the element count.
8321 uint64_t SrcEltSize
= Context
.getTypeSize(SrcEltTy
);
8322 uint64_t DestEltSize
= Context
.getTypeSize(DestEltTy
);
8324 return (SrcLen
* SrcEltSize
== DestLen
* DestEltSize
);
8327 // This returns true if at least one of the types is an altivec vector.
8328 bool Sema::anyAltivecTypes(QualType SrcTy
, QualType DestTy
) {
8329 assert((DestTy
->isVectorType() || SrcTy
->isVectorType()) &&
8330 "expected at least one type to be a vector here");
8332 bool IsSrcTyAltivec
=
8333 SrcTy
->isVectorType() && ((SrcTy
->castAs
<VectorType
>()->getVectorKind() ==
8334 VectorKind::AltiVecVector
) ||
8335 (SrcTy
->castAs
<VectorType
>()->getVectorKind() ==
8336 VectorKind::AltiVecBool
) ||
8337 (SrcTy
->castAs
<VectorType
>()->getVectorKind() ==
8338 VectorKind::AltiVecPixel
));
8340 bool IsDestTyAltivec
= DestTy
->isVectorType() &&
8341 ((DestTy
->castAs
<VectorType
>()->getVectorKind() ==
8342 VectorKind::AltiVecVector
) ||
8343 (DestTy
->castAs
<VectorType
>()->getVectorKind() ==
8344 VectorKind::AltiVecBool
) ||
8345 (DestTy
->castAs
<VectorType
>()->getVectorKind() ==
8346 VectorKind::AltiVecPixel
));
8348 return (IsSrcTyAltivec
|| IsDestTyAltivec
);
8351 /// Are the two types lax-compatible vector types? That is, given
8352 /// that one of them is a vector, do they have equal storage sizes,
8353 /// where the storage size is the number of elements times the element
8356 /// This will also return false if either of the types is neither a
8357 /// vector nor a real type.
8358 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy
, QualType destTy
) {
8359 assert(destTy
->isVectorType() || srcTy
->isVectorType());
8361 // Disallow lax conversions between scalars and ExtVectors (these
8362 // conversions are allowed for other vector types because common headers
8363 // depend on them). Most scalar OP ExtVector cases are handled by the
8364 // splat path anyway, which does what we want (convert, not bitcast).
8365 // What this rules out for ExtVectors is crazy things like char4*float.
8366 if (srcTy
->isScalarType() && destTy
->isExtVectorType()) return false;
8367 if (destTy
->isScalarType() && srcTy
->isExtVectorType()) return false;
8369 return areVectorTypesSameSize(srcTy
, destTy
);
8372 /// Is this a legal conversion between two types, one of which is
8373 /// known to be a vector type?
8374 bool Sema::isLaxVectorConversion(QualType srcTy
, QualType destTy
) {
8375 assert(destTy
->isVectorType() || srcTy
->isVectorType());
8377 switch (Context
.getLangOpts().getLaxVectorConversions()) {
8378 case LangOptions::LaxVectorConversionKind::None
:
8381 case LangOptions::LaxVectorConversionKind::Integer
:
8382 if (!srcTy
->isIntegralOrEnumerationType()) {
8383 auto *Vec
= srcTy
->getAs
<VectorType
>();
8384 if (!Vec
|| !Vec
->getElementType()->isIntegralOrEnumerationType())
8387 if (!destTy
->isIntegralOrEnumerationType()) {
8388 auto *Vec
= destTy
->getAs
<VectorType
>();
8389 if (!Vec
|| !Vec
->getElementType()->isIntegralOrEnumerationType())
8392 // OK, integer (vector) -> integer (vector) bitcast.
8395 case LangOptions::LaxVectorConversionKind::All
:
8399 return areLaxCompatibleVectorTypes(srcTy
, destTy
);
8402 bool Sema::CheckMatrixCast(SourceRange R
, QualType DestTy
, QualType SrcTy
,
8404 if (SrcTy
->isMatrixType() && DestTy
->isMatrixType()) {
8405 if (!areMatrixTypesOfTheSameDimension(SrcTy
, DestTy
)) {
8406 return Diag(R
.getBegin(), diag::err_invalid_conversion_between_matrixes
)
8407 << DestTy
<< SrcTy
<< R
;
8409 } else if (SrcTy
->isMatrixType()) {
8410 return Diag(R
.getBegin(),
8411 diag::err_invalid_conversion_between_matrix_and_type
)
8412 << SrcTy
<< DestTy
<< R
;
8413 } else if (DestTy
->isMatrixType()) {
8414 return Diag(R
.getBegin(),
8415 diag::err_invalid_conversion_between_matrix_and_type
)
8416 << DestTy
<< SrcTy
<< R
;
8419 Kind
= CK_MatrixCast
;
8423 bool Sema::CheckVectorCast(SourceRange R
, QualType VectorTy
, QualType Ty
,
8425 assert(VectorTy
->isVectorType() && "Not a vector type!");
8427 if (Ty
->isVectorType() || Ty
->isIntegralType(Context
)) {
8428 if (!areLaxCompatibleVectorTypes(Ty
, VectorTy
))
8429 return Diag(R
.getBegin(),
8430 Ty
->isVectorType() ?
8431 diag::err_invalid_conversion_between_vectors
:
8432 diag::err_invalid_conversion_between_vector_and_integer
)
8433 << VectorTy
<< Ty
<< R
;
8435 return Diag(R
.getBegin(),
8436 diag::err_invalid_conversion_between_vector_and_scalar
)
8437 << VectorTy
<< Ty
<< R
;
8443 ExprResult
Sema::prepareVectorSplat(QualType VectorTy
, Expr
*SplattedExpr
) {
8444 QualType DestElemTy
= VectorTy
->castAs
<VectorType
>()->getElementType();
8446 if (DestElemTy
== SplattedExpr
->getType())
8447 return SplattedExpr
;
8449 assert(DestElemTy
->isFloatingType() ||
8450 DestElemTy
->isIntegralOrEnumerationType());
8453 if (VectorTy
->isExtVectorType() && SplattedExpr
->getType()->isBooleanType()) {
8454 // OpenCL requires that we convert `true` boolean expressions to -1, but
8455 // only when splatting vectors.
8456 if (DestElemTy
->isFloatingType()) {
8457 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8458 // in two steps: boolean to signed integral, then to floating.
8459 ExprResult CastExprRes
= ImpCastExprToType(SplattedExpr
, Context
.IntTy
,
8460 CK_BooleanToSignedIntegral
);
8461 SplattedExpr
= CastExprRes
.get();
8462 CK
= CK_IntegralToFloating
;
8464 CK
= CK_BooleanToSignedIntegral
;
8467 ExprResult CastExprRes
= SplattedExpr
;
8468 CK
= PrepareScalarCast(CastExprRes
, DestElemTy
);
8469 if (CastExprRes
.isInvalid())
8471 SplattedExpr
= CastExprRes
.get();
8473 return ImpCastExprToType(SplattedExpr
, DestElemTy
, CK
);
8476 ExprResult
Sema::CheckExtVectorCast(SourceRange R
, QualType DestTy
,
8477 Expr
*CastExpr
, CastKind
&Kind
) {
8478 assert(DestTy
->isExtVectorType() && "Not an extended vector type!");
8480 QualType SrcTy
= CastExpr
->getType();
8482 // If SrcTy is a VectorType, the total size must match to explicitly cast to
8483 // an ExtVectorType.
8484 // In OpenCL, casts between vectors of different types are not allowed.
8485 // (See OpenCL 6.2).
8486 if (SrcTy
->isVectorType()) {
8487 if (!areLaxCompatibleVectorTypes(SrcTy
, DestTy
) ||
8488 (getLangOpts().OpenCL
&&
8489 !Context
.hasSameUnqualifiedType(DestTy
, SrcTy
))) {
8490 Diag(R
.getBegin(),diag::err_invalid_conversion_between_ext_vectors
)
8491 << DestTy
<< SrcTy
<< R
;
8498 // All non-pointer scalars can be cast to ExtVector type. The appropriate
8499 // conversion will take place first from scalar to elt type, and then
8500 // splat from elt type to vector.
8501 if (SrcTy
->isPointerType())
8502 return Diag(R
.getBegin(),
8503 diag::err_invalid_conversion_between_vector_and_scalar
)
8504 << DestTy
<< SrcTy
<< R
;
8506 Kind
= CK_VectorSplat
;
8507 return prepareVectorSplat(DestTy
, CastExpr
);
8511 Sema::ActOnCastExpr(Scope
*S
, SourceLocation LParenLoc
,
8512 Declarator
&D
, ParsedType
&Ty
,
8513 SourceLocation RParenLoc
, Expr
*CastExpr
) {
8514 assert(!D
.isInvalidType() && (CastExpr
!= nullptr) &&
8515 "ActOnCastExpr(): missing type or expr");
8517 TypeSourceInfo
*castTInfo
= GetTypeForDeclaratorCast(D
, CastExpr
->getType());
8518 if (D
.isInvalidType())
8521 if (getLangOpts().CPlusPlus
) {
8522 // Check that there are no default arguments (C++ only).
8523 CheckExtraCXXDefaultArguments(D
);
8525 // Make sure any TypoExprs have been dealt with.
8526 ExprResult Res
= CorrectDelayedTyposInExpr(CastExpr
);
8527 if (!Res
.isUsable())
8529 CastExpr
= Res
.get();
8532 checkUnusedDeclAttributes(D
);
8534 QualType castType
= castTInfo
->getType();
8535 Ty
= CreateParsedType(castType
, castTInfo
);
8537 bool isVectorLiteral
= false;
8539 // Check for an altivec or OpenCL literal,
8540 // i.e. all the elements are integer constants.
8541 ParenExpr
*PE
= dyn_cast
<ParenExpr
>(CastExpr
);
8542 ParenListExpr
*PLE
= dyn_cast
<ParenListExpr
>(CastExpr
);
8543 if ((getLangOpts().AltiVec
|| getLangOpts().ZVector
|| getLangOpts().OpenCL
)
8544 && castType
->isVectorType() && (PE
|| PLE
)) {
8545 if (PLE
&& PLE
->getNumExprs() == 0) {
8546 Diag(PLE
->getExprLoc(), diag::err_altivec_empty_initializer
);
8549 if (PE
|| PLE
->getNumExprs() == 1) {
8550 Expr
*E
= (PE
? PE
->getSubExpr() : PLE
->getExpr(0));
8551 if (!E
->isTypeDependent() && !E
->getType()->isVectorType())
8552 isVectorLiteral
= true;
8555 isVectorLiteral
= true;
8558 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8559 // then handle it as such.
8560 if (isVectorLiteral
)
8561 return BuildVectorLiteral(LParenLoc
, RParenLoc
, CastExpr
, castTInfo
);
8563 // If the Expr being casted is a ParenListExpr, handle it specially.
8564 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8565 // sequence of BinOp comma operators.
8566 if (isa
<ParenListExpr
>(CastExpr
)) {
8567 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, CastExpr
);
8568 if (Result
.isInvalid()) return ExprError();
8569 CastExpr
= Result
.get();
8572 if (getLangOpts().CPlusPlus
&& !castType
->isVoidType())
8573 Diag(LParenLoc
, diag::warn_old_style_cast
) << CastExpr
->getSourceRange();
8575 CheckTollFreeBridgeCast(castType
, CastExpr
);
8577 CheckObjCBridgeRelatedCast(castType
, CastExpr
);
8579 DiscardMisalignedMemberAddress(castType
.getTypePtr(), CastExpr
);
8581 return BuildCStyleCastExpr(LParenLoc
, castTInfo
, RParenLoc
, CastExpr
);
8584 ExprResult
Sema::BuildVectorLiteral(SourceLocation LParenLoc
,
8585 SourceLocation RParenLoc
, Expr
*E
,
8586 TypeSourceInfo
*TInfo
) {
8587 assert((isa
<ParenListExpr
>(E
) || isa
<ParenExpr
>(E
)) &&
8588 "Expected paren or paren list expression");
8593 SourceLocation LiteralLParenLoc
, LiteralRParenLoc
;
8594 if (ParenListExpr
*PE
= dyn_cast
<ParenListExpr
>(E
)) {
8595 LiteralLParenLoc
= PE
->getLParenLoc();
8596 LiteralRParenLoc
= PE
->getRParenLoc();
8597 exprs
= PE
->getExprs();
8598 numExprs
= PE
->getNumExprs();
8599 } else { // isa<ParenExpr> by assertion at function entrance
8600 LiteralLParenLoc
= cast
<ParenExpr
>(E
)->getLParen();
8601 LiteralRParenLoc
= cast
<ParenExpr
>(E
)->getRParen();
8602 subExpr
= cast
<ParenExpr
>(E
)->getSubExpr();
8607 QualType Ty
= TInfo
->getType();
8608 assert(Ty
->isVectorType() && "Expected vector type");
8610 SmallVector
<Expr
*, 8> initExprs
;
8611 const VectorType
*VTy
= Ty
->castAs
<VectorType
>();
8612 unsigned numElems
= VTy
->getNumElements();
8614 // '(...)' form of vector initialization in AltiVec: the number of
8615 // initializers must be one or must match the size of the vector.
8616 // If a single value is specified in the initializer then it will be
8617 // replicated to all the components of the vector
8618 if (CheckAltivecInitFromScalar(E
->getSourceRange(), Ty
,
8619 VTy
->getElementType()))
8621 if (ShouldSplatAltivecScalarInCast(VTy
)) {
8622 // The number of initializers must be one or must match the size of the
8623 // vector. If a single value is specified in the initializer then it will
8624 // be replicated to all the components of the vector
8625 if (numExprs
== 1) {
8626 QualType ElemTy
= VTy
->getElementType();
8627 ExprResult Literal
= DefaultLvalueConversion(exprs
[0]);
8628 if (Literal
.isInvalid())
8630 Literal
= ImpCastExprToType(Literal
.get(), ElemTy
,
8631 PrepareScalarCast(Literal
, ElemTy
));
8632 return BuildCStyleCastExpr(LParenLoc
, TInfo
, RParenLoc
, Literal
.get());
8634 else if (numExprs
< numElems
) {
8635 Diag(E
->getExprLoc(),
8636 diag::err_incorrect_number_of_vector_initializers
);
8640 initExprs
.append(exprs
, exprs
+ numExprs
);
8643 // For OpenCL, when the number of initializers is a single value,
8644 // it will be replicated to all components of the vector.
8645 if (getLangOpts().OpenCL
&& VTy
->getVectorKind() == VectorKind::Generic
&&
8647 QualType ElemTy
= VTy
->getElementType();
8648 ExprResult Literal
= DefaultLvalueConversion(exprs
[0]);
8649 if (Literal
.isInvalid())
8651 Literal
= ImpCastExprToType(Literal
.get(), ElemTy
,
8652 PrepareScalarCast(Literal
, ElemTy
));
8653 return BuildCStyleCastExpr(LParenLoc
, TInfo
, RParenLoc
, Literal
.get());
8656 initExprs
.append(exprs
, exprs
+ numExprs
);
8658 // FIXME: This means that pretty-printing the final AST will produce curly
8659 // braces instead of the original commas.
8660 InitListExpr
*initE
= new (Context
) InitListExpr(Context
, LiteralLParenLoc
,
8661 initExprs
, LiteralRParenLoc
);
8663 return BuildCompoundLiteralExpr(LParenLoc
, TInfo
, RParenLoc
, initE
);
8666 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8667 /// the ParenListExpr into a sequence of comma binary operators.
8669 Sema::MaybeConvertParenListExprToParenExpr(Scope
*S
, Expr
*OrigExpr
) {
8670 ParenListExpr
*E
= dyn_cast
<ParenListExpr
>(OrigExpr
);
8674 ExprResult
Result(E
->getExpr(0));
8676 for (unsigned i
= 1, e
= E
->getNumExprs(); i
!= e
&& !Result
.isInvalid(); ++i
)
8677 Result
= ActOnBinOp(S
, E
->getExprLoc(), tok::comma
, Result
.get(),
8680 if (Result
.isInvalid()) return ExprError();
8682 return ActOnParenExpr(E
->getLParenLoc(), E
->getRParenLoc(), Result
.get());
8685 ExprResult
Sema::ActOnParenListExpr(SourceLocation L
,
8688 return ParenListExpr::Create(Context
, L
, Val
, R
);
8691 /// Emit a specialized diagnostic when one expression is a null pointer
8692 /// constant and the other is not a pointer. Returns true if a diagnostic is
8694 bool Sema::DiagnoseConditionalForNull(Expr
*LHSExpr
, Expr
*RHSExpr
,
8695 SourceLocation QuestionLoc
) {
8696 Expr
*NullExpr
= LHSExpr
;
8697 Expr
*NonPointerExpr
= RHSExpr
;
8698 Expr::NullPointerConstantKind NullKind
=
8699 NullExpr
->isNullPointerConstant(Context
,
8700 Expr::NPC_ValueDependentIsNotNull
);
8702 if (NullKind
== Expr::NPCK_NotNull
) {
8704 NonPointerExpr
= LHSExpr
;
8706 NullExpr
->isNullPointerConstant(Context
,
8707 Expr::NPC_ValueDependentIsNotNull
);
8710 if (NullKind
== Expr::NPCK_NotNull
)
8713 if (NullKind
== Expr::NPCK_ZeroExpression
)
8716 if (NullKind
== Expr::NPCK_ZeroLiteral
) {
8717 // In this case, check to make sure that we got here from a "NULL"
8718 // string in the source code.
8719 NullExpr
= NullExpr
->IgnoreParenImpCasts();
8720 SourceLocation loc
= NullExpr
->getExprLoc();
8721 if (!findMacroSpelling(loc
, "NULL"))
8725 int DiagType
= (NullKind
== Expr::NPCK_CXX11_nullptr
);
8726 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands_null
)
8727 << NonPointerExpr
->getType() << DiagType
8728 << NonPointerExpr
->getSourceRange();
8732 /// Return false if the condition expression is valid, true otherwise.
8733 static bool checkCondition(Sema
&S
, Expr
*Cond
, SourceLocation QuestionLoc
) {
8734 QualType CondTy
= Cond
->getType();
8736 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8737 if (S
.getLangOpts().OpenCL
&& CondTy
->isFloatingType()) {
8738 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_nonfloat
)
8739 << CondTy
<< Cond
->getSourceRange();
8744 if (CondTy
->isScalarType()) return false;
8746 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_scalar
)
8747 << CondTy
<< Cond
->getSourceRange();
8751 /// Return false if the NullExpr can be promoted to PointerTy,
8753 static bool checkConditionalNullPointer(Sema
&S
, ExprResult
&NullExpr
,
8754 QualType PointerTy
) {
8755 if ((!PointerTy
->isAnyPointerType() && !PointerTy
->isBlockPointerType()) ||
8756 !NullExpr
.get()->isNullPointerConstant(S
.Context
,
8757 Expr::NPC_ValueDependentIsNull
))
8760 NullExpr
= S
.ImpCastExprToType(NullExpr
.get(), PointerTy
, CK_NullToPointer
);
8764 /// Checks compatibility between two pointers and return the resulting
8766 static QualType
checkConditionalPointerCompatibility(Sema
&S
, ExprResult
&LHS
,
8768 SourceLocation Loc
) {
8769 QualType LHSTy
= LHS
.get()->getType();
8770 QualType RHSTy
= RHS
.get()->getType();
8772 if (S
.Context
.hasSameType(LHSTy
, RHSTy
)) {
8773 // Two identical pointers types are always compatible.
8774 return S
.Context
.getCommonSugaredType(LHSTy
, RHSTy
);
8777 QualType lhptee
, rhptee
;
8779 // Get the pointee types.
8780 bool IsBlockPointer
= false;
8781 if (const BlockPointerType
*LHSBTy
= LHSTy
->getAs
<BlockPointerType
>()) {
8782 lhptee
= LHSBTy
->getPointeeType();
8783 rhptee
= RHSTy
->castAs
<BlockPointerType
>()->getPointeeType();
8784 IsBlockPointer
= true;
8786 lhptee
= LHSTy
->castAs
<PointerType
>()->getPointeeType();
8787 rhptee
= RHSTy
->castAs
<PointerType
>()->getPointeeType();
8790 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8791 // differently qualified versions of compatible types, the result type is
8792 // a pointer to an appropriately qualified version of the composite
8795 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8796 // clause doesn't make sense for our extensions. E.g. address space 2 should
8797 // be incompatible with address space 3: they may live on different devices or
8799 Qualifiers lhQual
= lhptee
.getQualifiers();
8800 Qualifiers rhQual
= rhptee
.getQualifiers();
8802 LangAS ResultAddrSpace
= LangAS::Default
;
8803 LangAS LAddrSpace
= lhQual
.getAddressSpace();
8804 LangAS RAddrSpace
= rhQual
.getAddressSpace();
8806 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8807 // spaces is disallowed.
8808 if (lhQual
.isAddressSpaceSupersetOf(rhQual
))
8809 ResultAddrSpace
= LAddrSpace
;
8810 else if (rhQual
.isAddressSpaceSupersetOf(lhQual
))
8811 ResultAddrSpace
= RAddrSpace
;
8813 S
.Diag(Loc
, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers
)
8814 << LHSTy
<< RHSTy
<< 2 << LHS
.get()->getSourceRange()
8815 << RHS
.get()->getSourceRange();
8819 unsigned MergedCVRQual
= lhQual
.getCVRQualifiers() | rhQual
.getCVRQualifiers();
8820 auto LHSCastKind
= CK_BitCast
, RHSCastKind
= CK_BitCast
;
8821 lhQual
.removeCVRQualifiers();
8822 rhQual
.removeCVRQualifiers();
8824 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8825 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8826 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8827 // qual types are compatible iff
8828 // * corresponded types are compatible
8829 // * CVR qualifiers are equal
8830 // * address spaces are equal
8831 // Thus for conditional operator we merge CVR and address space unqualified
8832 // pointees and if there is a composite type we return a pointer to it with
8833 // merged qualifiers.
8835 LAddrSpace
== ResultAddrSpace
? CK_BitCast
: CK_AddressSpaceConversion
;
8837 RAddrSpace
== ResultAddrSpace
? CK_BitCast
: CK_AddressSpaceConversion
;
8838 lhQual
.removeAddressSpace();
8839 rhQual
.removeAddressSpace();
8841 lhptee
= S
.Context
.getQualifiedType(lhptee
.getUnqualifiedType(), lhQual
);
8842 rhptee
= S
.Context
.getQualifiedType(rhptee
.getUnqualifiedType(), rhQual
);
8844 QualType CompositeTy
= S
.Context
.mergeTypes(
8845 lhptee
, rhptee
, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8846 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8848 if (CompositeTy
.isNull()) {
8849 // In this situation, we assume void* type. No especially good
8850 // reason, but this is what gcc does, and we do have to pick
8851 // to get a consistent AST.
8852 QualType incompatTy
;
8853 incompatTy
= S
.Context
.getPointerType(
8854 S
.Context
.getAddrSpaceQualType(S
.Context
.VoidTy
, ResultAddrSpace
));
8855 LHS
= S
.ImpCastExprToType(LHS
.get(), incompatTy
, LHSCastKind
);
8856 RHS
= S
.ImpCastExprToType(RHS
.get(), incompatTy
, RHSCastKind
);
8858 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8859 // for casts between types with incompatible address space qualifiers.
8860 // For the following code the compiler produces casts between global and
8861 // local address spaces of the corresponded innermost pointees:
8862 // local int *global *a;
8863 // global int *global *b;
8864 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8865 S
.Diag(Loc
, diag::ext_typecheck_cond_incompatible_pointers
)
8866 << LHSTy
<< RHSTy
<< LHS
.get()->getSourceRange()
8867 << RHS
.get()->getSourceRange();
8872 // The pointer types are compatible.
8873 // In case of OpenCL ResultTy should have the address space qualifier
8874 // which is a superset of address spaces of both the 2nd and the 3rd
8875 // operands of the conditional operator.
8876 QualType ResultTy
= [&, ResultAddrSpace
]() {
8877 if (S
.getLangOpts().OpenCL
) {
8878 Qualifiers CompositeQuals
= CompositeTy
.getQualifiers();
8879 CompositeQuals
.setAddressSpace(ResultAddrSpace
);
8881 .getQualifiedType(CompositeTy
.getUnqualifiedType(), CompositeQuals
)
8882 .withCVRQualifiers(MergedCVRQual
);
8884 return CompositeTy
.withCVRQualifiers(MergedCVRQual
);
8887 ResultTy
= S
.Context
.getBlockPointerType(ResultTy
);
8889 ResultTy
= S
.Context
.getPointerType(ResultTy
);
8891 LHS
= S
.ImpCastExprToType(LHS
.get(), ResultTy
, LHSCastKind
);
8892 RHS
= S
.ImpCastExprToType(RHS
.get(), ResultTy
, RHSCastKind
);
8896 /// Return the resulting type when the operands are both block pointers.
8897 static QualType
checkConditionalBlockPointerCompatibility(Sema
&S
,
8900 SourceLocation Loc
) {
8901 QualType LHSTy
= LHS
.get()->getType();
8902 QualType RHSTy
= RHS
.get()->getType();
8904 if (!LHSTy
->isBlockPointerType() || !RHSTy
->isBlockPointerType()) {
8905 if (LHSTy
->isVoidPointerType() || RHSTy
->isVoidPointerType()) {
8906 QualType destType
= S
.Context
.getPointerType(S
.Context
.VoidTy
);
8907 LHS
= S
.ImpCastExprToType(LHS
.get(), destType
, CK_BitCast
);
8908 RHS
= S
.ImpCastExprToType(RHS
.get(), destType
, CK_BitCast
);
8911 S
.Diag(Loc
, diag::err_typecheck_cond_incompatible_operands
)
8912 << LHSTy
<< RHSTy
<< LHS
.get()->getSourceRange()
8913 << RHS
.get()->getSourceRange();
8917 // We have 2 block pointer types.
8918 return checkConditionalPointerCompatibility(S
, LHS
, RHS
, Loc
);
8921 /// Return the resulting type when the operands are both pointers.
8923 checkConditionalObjectPointersCompatibility(Sema
&S
, ExprResult
&LHS
,
8925 SourceLocation Loc
) {
8926 // get the pointer types
8927 QualType LHSTy
= LHS
.get()->getType();
8928 QualType RHSTy
= RHS
.get()->getType();
8930 // get the "pointed to" types
8931 QualType lhptee
= LHSTy
->castAs
<PointerType
>()->getPointeeType();
8932 QualType rhptee
= RHSTy
->castAs
<PointerType
>()->getPointeeType();
8934 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8935 if (lhptee
->isVoidType() && rhptee
->isIncompleteOrObjectType()) {
8936 // Figure out necessary qualifiers (C99 6.5.15p6)
8937 QualType destPointee
8938 = S
.Context
.getQualifiedType(lhptee
, rhptee
.getQualifiers());
8939 QualType destType
= S
.Context
.getPointerType(destPointee
);
8940 // Add qualifiers if necessary.
8941 LHS
= S
.ImpCastExprToType(LHS
.get(), destType
, CK_NoOp
);
8942 // Promote to void*.
8943 RHS
= S
.ImpCastExprToType(RHS
.get(), destType
, CK_BitCast
);
8946 if (rhptee
->isVoidType() && lhptee
->isIncompleteOrObjectType()) {
8947 QualType destPointee
8948 = S
.Context
.getQualifiedType(rhptee
, lhptee
.getQualifiers());
8949 QualType destType
= S
.Context
.getPointerType(destPointee
);
8950 // Add qualifiers if necessary.
8951 RHS
= S
.ImpCastExprToType(RHS
.get(), destType
, CK_NoOp
);
8952 // Promote to void*.
8953 LHS
= S
.ImpCastExprToType(LHS
.get(), destType
, CK_BitCast
);
8957 return checkConditionalPointerCompatibility(S
, LHS
, RHS
, Loc
);
8960 /// Return false if the first expression is not an integer and the second
8961 /// expression is not a pointer, true otherwise.
8962 static bool checkPointerIntegerMismatch(Sema
&S
, ExprResult
&Int
,
8963 Expr
* PointerExpr
, SourceLocation Loc
,
8964 bool IsIntFirstExpr
) {
8965 if (!PointerExpr
->getType()->isPointerType() ||
8966 !Int
.get()->getType()->isIntegerType())
8969 Expr
*Expr1
= IsIntFirstExpr
? Int
.get() : PointerExpr
;
8970 Expr
*Expr2
= IsIntFirstExpr
? PointerExpr
: Int
.get();
8972 S
.Diag(Loc
, diag::ext_typecheck_cond_pointer_integer_mismatch
)
8973 << Expr1
->getType() << Expr2
->getType()
8974 << Expr1
->getSourceRange() << Expr2
->getSourceRange();
8975 Int
= S
.ImpCastExprToType(Int
.get(), PointerExpr
->getType(),
8976 CK_IntegralToPointer
);
8980 /// Simple conversion between integer and floating point types.
8982 /// Used when handling the OpenCL conditional operator where the
8983 /// condition is a vector while the other operands are scalar.
8985 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8986 /// types are either integer or floating type. Between the two
8987 /// operands, the type with the higher rank is defined as the "result
8988 /// type". The other operand needs to be promoted to the same type. No
8989 /// other type promotion is allowed. We cannot use
8990 /// UsualArithmeticConversions() for this purpose, since it always
8991 /// promotes promotable types.
8992 static QualType
OpenCLArithmeticConversions(Sema
&S
, ExprResult
&LHS
,
8994 SourceLocation QuestionLoc
) {
8995 LHS
= S
.DefaultFunctionArrayLvalueConversion(LHS
.get());
8996 if (LHS
.isInvalid())
8998 RHS
= S
.DefaultFunctionArrayLvalueConversion(RHS
.get());
8999 if (RHS
.isInvalid())
9002 // For conversion purposes, we ignore any qualifiers.
9003 // For example, "const float" and "float" are equivalent.
9005 S
.Context
.getCanonicalType(LHS
.get()->getType()).getUnqualifiedType();
9007 S
.Context
.getCanonicalType(RHS
.get()->getType()).getUnqualifiedType();
9009 if (!LHSType
->isIntegerType() && !LHSType
->isRealFloatingType()) {
9010 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_int_float
)
9011 << LHSType
<< LHS
.get()->getSourceRange();
9015 if (!RHSType
->isIntegerType() && !RHSType
->isRealFloatingType()) {
9016 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_int_float
)
9017 << RHSType
<< RHS
.get()->getSourceRange();
9021 // If both types are identical, no conversion is needed.
9022 if (LHSType
== RHSType
)
9025 // Now handle "real" floating types (i.e. float, double, long double).
9026 if (LHSType
->isRealFloatingType() || RHSType
->isRealFloatingType())
9027 return handleFloatConversion(S
, LHS
, RHS
, LHSType
, RHSType
,
9028 /*IsCompAssign = */ false);
9030 // Finally, we have two differing integer types.
9031 return handleIntegerConversion
<doIntegralCast
, doIntegralCast
>
9032 (S
, LHS
, RHS
, LHSType
, RHSType
, /*IsCompAssign = */ false);
9035 /// Convert scalar operands to a vector that matches the
9036 /// condition in length.
9038 /// Used when handling the OpenCL conditional operator where the
9039 /// condition is a vector while the other operands are scalar.
9041 /// We first compute the "result type" for the scalar operands
9042 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
9043 /// into a vector of that type where the length matches the condition
9044 /// vector type. s6.11.6 requires that the element types of the result
9045 /// and the condition must have the same number of bits.
9047 OpenCLConvertScalarsToVectors(Sema
&S
, ExprResult
&LHS
, ExprResult
&RHS
,
9048 QualType CondTy
, SourceLocation QuestionLoc
) {
9049 QualType ResTy
= OpenCLArithmeticConversions(S
, LHS
, RHS
, QuestionLoc
);
9050 if (ResTy
.isNull()) return QualType();
9052 const VectorType
*CV
= CondTy
->getAs
<VectorType
>();
9055 // Determine the vector result type
9056 unsigned NumElements
= CV
->getNumElements();
9057 QualType VectorTy
= S
.Context
.getExtVectorType(ResTy
, NumElements
);
9059 // Ensure that all types have the same number of bits
9060 if (S
.Context
.getTypeSize(CV
->getElementType())
9061 != S
.Context
.getTypeSize(ResTy
)) {
9062 // Since VectorTy is created internally, it does not pretty print
9063 // with an OpenCL name. Instead, we just print a description.
9064 std::string EleTyName
= ResTy
.getUnqualifiedType().getAsString();
9065 SmallString
<64> Str
;
9066 llvm::raw_svector_ostream
OS(Str
);
9067 OS
<< "(vector of " << NumElements
<< " '" << EleTyName
<< "' values)";
9068 S
.Diag(QuestionLoc
, diag::err_conditional_vector_element_size
)
9069 << CondTy
<< OS
.str();
9073 // Convert operands to the vector result type
9074 LHS
= S
.ImpCastExprToType(LHS
.get(), VectorTy
, CK_VectorSplat
);
9075 RHS
= S
.ImpCastExprToType(RHS
.get(), VectorTy
, CK_VectorSplat
);
9080 /// Return false if this is a valid OpenCL condition vector
9081 static bool checkOpenCLConditionVector(Sema
&S
, Expr
*Cond
,
9082 SourceLocation QuestionLoc
) {
9083 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
9085 const VectorType
*CondTy
= Cond
->getType()->getAs
<VectorType
>();
9087 QualType EleTy
= CondTy
->getElementType();
9088 if (EleTy
->isIntegerType()) return false;
9090 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_nonfloat
)
9091 << Cond
->getType() << Cond
->getSourceRange();
9095 /// Return false if the vector condition type and the vector
9096 /// result type are compatible.
9098 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
9099 /// number of elements, and their element types have the same number
9101 static bool checkVectorResult(Sema
&S
, QualType CondTy
, QualType VecResTy
,
9102 SourceLocation QuestionLoc
) {
9103 const VectorType
*CV
= CondTy
->getAs
<VectorType
>();
9104 const VectorType
*RV
= VecResTy
->getAs
<VectorType
>();
9107 if (CV
->getNumElements() != RV
->getNumElements()) {
9108 S
.Diag(QuestionLoc
, diag::err_conditional_vector_size
)
9109 << CondTy
<< VecResTy
;
9113 QualType CVE
= CV
->getElementType();
9114 QualType RVE
= RV
->getElementType();
9116 if (S
.Context
.getTypeSize(CVE
) != S
.Context
.getTypeSize(RVE
)) {
9117 S
.Diag(QuestionLoc
, diag::err_conditional_vector_element_size
)
9118 << CondTy
<< VecResTy
;
9125 /// Return the resulting type for the conditional operator in
9126 /// OpenCL (aka "ternary selection operator", OpenCL v1.1
9127 /// s6.3.i) when the condition is a vector type.
9129 OpenCLCheckVectorConditional(Sema
&S
, ExprResult
&Cond
,
9130 ExprResult
&LHS
, ExprResult
&RHS
,
9131 SourceLocation QuestionLoc
) {
9132 Cond
= S
.DefaultFunctionArrayLvalueConversion(Cond
.get());
9133 if (Cond
.isInvalid())
9135 QualType CondTy
= Cond
.get()->getType();
9137 if (checkOpenCLConditionVector(S
, Cond
.get(), QuestionLoc
))
9140 // If either operand is a vector then find the vector type of the
9141 // result as specified in OpenCL v1.1 s6.3.i.
9142 if (LHS
.get()->getType()->isVectorType() ||
9143 RHS
.get()->getType()->isVectorType()) {
9144 bool IsBoolVecLang
=
9145 !S
.getLangOpts().OpenCL
&& !S
.getLangOpts().OpenCLCPlusPlus
;
9147 S
.CheckVectorOperands(LHS
, RHS
, QuestionLoc
,
9148 /*isCompAssign*/ false,
9149 /*AllowBothBool*/ true,
9150 /*AllowBoolConversions*/ false,
9151 /*AllowBooleanOperation*/ IsBoolVecLang
,
9152 /*ReportInvalid*/ true);
9153 if (VecResTy
.isNull())
9155 // The result type must match the condition type as specified in
9156 // OpenCL v1.1 s6.11.6.
9157 if (checkVectorResult(S
, CondTy
, VecResTy
, QuestionLoc
))
9162 // Both operands are scalar.
9163 return OpenCLConvertScalarsToVectors(S
, LHS
, RHS
, CondTy
, QuestionLoc
);
9166 /// Return true if the Expr is block type
9167 static bool checkBlockType(Sema
&S
, const Expr
*E
) {
9168 if (const CallExpr
*CE
= dyn_cast
<CallExpr
>(E
)) {
9169 QualType Ty
= CE
->getCallee()->getType();
9170 if (Ty
->isBlockPointerType()) {
9171 S
.Diag(E
->getExprLoc(), diag::err_opencl_ternary_with_block
);
9178 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
9179 /// In that case, LHS = cond.
9181 QualType
Sema::CheckConditionalOperands(ExprResult
&Cond
, ExprResult
&LHS
,
9182 ExprResult
&RHS
, ExprValueKind
&VK
,
9184 SourceLocation QuestionLoc
) {
9186 ExprResult LHSResult
= CheckPlaceholderExpr(LHS
.get());
9187 if (!LHSResult
.isUsable()) return QualType();
9190 ExprResult RHSResult
= CheckPlaceholderExpr(RHS
.get());
9191 if (!RHSResult
.isUsable()) return QualType();
9194 // C++ is sufficiently different to merit its own checker.
9195 if (getLangOpts().CPlusPlus
)
9196 return CXXCheckConditionalOperands(Cond
, LHS
, RHS
, VK
, OK
, QuestionLoc
);
9201 if (Context
.isDependenceAllowed() &&
9202 (Cond
.get()->isTypeDependent() || LHS
.get()->isTypeDependent() ||
9203 RHS
.get()->isTypeDependent())) {
9204 assert(!getLangOpts().CPlusPlus
);
9205 assert((Cond
.get()->containsErrors() || LHS
.get()->containsErrors() ||
9206 RHS
.get()->containsErrors()) &&
9207 "should only occur in error-recovery path.");
9208 return Context
.DependentTy
;
9211 // The OpenCL operator with a vector condition is sufficiently
9212 // different to merit its own checker.
9213 if ((getLangOpts().OpenCL
&& Cond
.get()->getType()->isVectorType()) ||
9214 Cond
.get()->getType()->isExtVectorType())
9215 return OpenCLCheckVectorConditional(*this, Cond
, LHS
, RHS
, QuestionLoc
);
9217 // First, check the condition.
9218 Cond
= UsualUnaryConversions(Cond
.get());
9219 if (Cond
.isInvalid())
9221 if (checkCondition(*this, Cond
.get(), QuestionLoc
))
9225 if (LHS
.get()->getType()->isVectorType() ||
9226 RHS
.get()->getType()->isVectorType())
9227 return CheckVectorOperands(LHS
, RHS
, QuestionLoc
, /*isCompAssign*/ false,
9228 /*AllowBothBool*/ true,
9229 /*AllowBoolConversions*/ false,
9230 /*AllowBooleanOperation*/ false,
9231 /*ReportInvalid*/ true);
9234 UsualArithmeticConversions(LHS
, RHS
, QuestionLoc
, ACK_Conditional
);
9235 if (LHS
.isInvalid() || RHS
.isInvalid())
9238 // WebAssembly tables are not allowed as conditional LHS or RHS.
9239 QualType LHSTy
= LHS
.get()->getType();
9240 QualType RHSTy
= RHS
.get()->getType();
9241 if (LHSTy
->isWebAssemblyTableType() || RHSTy
->isWebAssemblyTableType()) {
9242 Diag(QuestionLoc
, diag::err_wasm_table_conditional_expression
)
9243 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9247 // Diagnose attempts to convert between __ibm128, __float128 and long double
9248 // where such conversions currently can't be handled.
9249 if (unsupportedTypeConversion(*this, LHSTy
, RHSTy
)) {
9251 diag::err_typecheck_cond_incompatible_operands
) << LHSTy
<< RHSTy
9252 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9256 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
9257 // selection operator (?:).
9258 if (getLangOpts().OpenCL
&&
9259 ((int)checkBlockType(*this, LHS
.get()) | (int)checkBlockType(*this, RHS
.get()))) {
9263 // If both operands have arithmetic type, do the usual arithmetic conversions
9264 // to find a common type: C99 6.5.15p3,5.
9265 if (LHSTy
->isArithmeticType() && RHSTy
->isArithmeticType()) {
9266 // Disallow invalid arithmetic conversions, such as those between bit-
9267 // precise integers types of different sizes, or between a bit-precise
9268 // integer and another type.
9269 if (ResTy
.isNull() && (LHSTy
->isBitIntType() || RHSTy
->isBitIntType())) {
9270 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands
)
9271 << LHSTy
<< RHSTy
<< LHS
.get()->getSourceRange()
9272 << RHS
.get()->getSourceRange();
9276 LHS
= ImpCastExprToType(LHS
.get(), ResTy
, PrepareScalarCast(LHS
, ResTy
));
9277 RHS
= ImpCastExprToType(RHS
.get(), ResTy
, PrepareScalarCast(RHS
, ResTy
));
9282 // If both operands are the same structure or union type, the result is that
9284 if (const RecordType
*LHSRT
= LHSTy
->getAs
<RecordType
>()) { // C99 6.5.15p3
9285 if (const RecordType
*RHSRT
= RHSTy
->getAs
<RecordType
>())
9286 if (LHSRT
->getDecl() == RHSRT
->getDecl())
9287 // "If both the operands have structure or union type, the result has
9288 // that type." This implies that CV qualifiers are dropped.
9289 return Context
.getCommonSugaredType(LHSTy
.getUnqualifiedType(),
9290 RHSTy
.getUnqualifiedType());
9291 // FIXME: Type of conditional expression must be complete in C mode.
9294 // C99 6.5.15p5: "If both operands have void type, the result has void type."
9295 // The following || allows only one side to be void (a GCC-ism).
9296 if (LHSTy
->isVoidType() || RHSTy
->isVoidType()) {
9298 if (LHSTy
->isVoidType() && RHSTy
->isVoidType()) {
9299 ResTy
= Context
.getCommonSugaredType(LHSTy
, RHSTy
);
9300 } else if (RHSTy
->isVoidType()) {
9302 Diag(RHS
.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void
)
9303 << RHS
.get()->getSourceRange();
9306 Diag(LHS
.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void
)
9307 << LHS
.get()->getSourceRange();
9309 LHS
= ImpCastExprToType(LHS
.get(), ResTy
, CK_ToVoid
);
9310 RHS
= ImpCastExprToType(RHS
.get(), ResTy
, CK_ToVoid
);
9315 // ... if both the second and third operands have nullptr_t type, the
9316 // result also has that type.
9317 if (LHSTy
->isNullPtrType() && Context
.hasSameType(LHSTy
, RHSTy
))
9320 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
9321 // the type of the other operand."
9322 if (!checkConditionalNullPointer(*this, RHS
, LHSTy
)) return LHSTy
;
9323 if (!checkConditionalNullPointer(*this, LHS
, RHSTy
)) return RHSTy
;
9325 // All objective-c pointer type analysis is done here.
9326 QualType compositeType
= FindCompositeObjCPointerType(LHS
, RHS
,
9328 if (LHS
.isInvalid() || RHS
.isInvalid())
9330 if (!compositeType
.isNull())
9331 return compositeType
;
9334 // Handle block pointer types.
9335 if (LHSTy
->isBlockPointerType() || RHSTy
->isBlockPointerType())
9336 return checkConditionalBlockPointerCompatibility(*this, LHS
, RHS
,
9339 // Check constraints for C object pointers types (C99 6.5.15p3,6).
9340 if (LHSTy
->isPointerType() && RHSTy
->isPointerType())
9341 return checkConditionalObjectPointersCompatibility(*this, LHS
, RHS
,
9344 // GCC compatibility: soften pointer/integer mismatch. Note that
9345 // null pointers have been filtered out by this point.
9346 if (checkPointerIntegerMismatch(*this, LHS
, RHS
.get(), QuestionLoc
,
9347 /*IsIntFirstExpr=*/true))
9349 if (checkPointerIntegerMismatch(*this, RHS
, LHS
.get(), QuestionLoc
,
9350 /*IsIntFirstExpr=*/false))
9353 // Emit a better diagnostic if one of the expressions is a null pointer
9354 // constant and the other is not a pointer type. In this case, the user most
9355 // likely forgot to take the address of the other expression.
9356 if (DiagnoseConditionalForNull(LHS
.get(), RHS
.get(), QuestionLoc
))
9359 // Finally, if the LHS and RHS types are canonically the same type, we can
9360 // use the common sugared type.
9361 if (Context
.hasSameType(LHSTy
, RHSTy
))
9362 return Context
.getCommonSugaredType(LHSTy
, RHSTy
);
9364 // Otherwise, the operands are not compatible.
9365 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands
)
9366 << LHSTy
<< RHSTy
<< LHS
.get()->getSourceRange()
9367 << RHS
.get()->getSourceRange();
9371 /// FindCompositeObjCPointerType - Helper method to find composite type of
9372 /// two objective-c pointer types of the two input expressions.
9373 QualType
Sema::FindCompositeObjCPointerType(ExprResult
&LHS
, ExprResult
&RHS
,
9374 SourceLocation QuestionLoc
) {
9375 QualType LHSTy
= LHS
.get()->getType();
9376 QualType RHSTy
= RHS
.get()->getType();
9378 // Handle things like Class and struct objc_class*. Here we case the result
9379 // to the pseudo-builtin, because that will be implicitly cast back to the
9380 // redefinition type if an attempt is made to access its fields.
9381 if (LHSTy
->isObjCClassType() &&
9382 (Context
.hasSameType(RHSTy
, Context
.getObjCClassRedefinitionType()))) {
9383 RHS
= ImpCastExprToType(RHS
.get(), LHSTy
, CK_CPointerToObjCPointerCast
);
9386 if (RHSTy
->isObjCClassType() &&
9387 (Context
.hasSameType(LHSTy
, Context
.getObjCClassRedefinitionType()))) {
9388 LHS
= ImpCastExprToType(LHS
.get(), RHSTy
, CK_CPointerToObjCPointerCast
);
9391 // And the same for struct objc_object* / id
9392 if (LHSTy
->isObjCIdType() &&
9393 (Context
.hasSameType(RHSTy
, Context
.getObjCIdRedefinitionType()))) {
9394 RHS
= ImpCastExprToType(RHS
.get(), LHSTy
, CK_CPointerToObjCPointerCast
);
9397 if (RHSTy
->isObjCIdType() &&
9398 (Context
.hasSameType(LHSTy
, Context
.getObjCIdRedefinitionType()))) {
9399 LHS
= ImpCastExprToType(LHS
.get(), RHSTy
, CK_CPointerToObjCPointerCast
);
9402 // And the same for struct objc_selector* / SEL
9403 if (Context
.isObjCSelType(LHSTy
) &&
9404 (Context
.hasSameType(RHSTy
, Context
.getObjCSelRedefinitionType()))) {
9405 RHS
= ImpCastExprToType(RHS
.get(), LHSTy
, CK_BitCast
);
9408 if (Context
.isObjCSelType(RHSTy
) &&
9409 (Context
.hasSameType(LHSTy
, Context
.getObjCSelRedefinitionType()))) {
9410 LHS
= ImpCastExprToType(LHS
.get(), RHSTy
, CK_BitCast
);
9413 // Check constraints for Objective-C object pointers types.
9414 if (LHSTy
->isObjCObjectPointerType() && RHSTy
->isObjCObjectPointerType()) {
9416 if (Context
.getCanonicalType(LHSTy
) == Context
.getCanonicalType(RHSTy
)) {
9417 // Two identical object pointer types are always compatible.
9420 const ObjCObjectPointerType
*LHSOPT
= LHSTy
->castAs
<ObjCObjectPointerType
>();
9421 const ObjCObjectPointerType
*RHSOPT
= RHSTy
->castAs
<ObjCObjectPointerType
>();
9422 QualType compositeType
= LHSTy
;
9424 // If both operands are interfaces and either operand can be
9425 // assigned to the other, use that type as the composite
9426 // type. This allows
9427 // xxx ? (A*) a : (B*) b
9428 // where B is a subclass of A.
9430 // Additionally, as for assignment, if either type is 'id'
9431 // allow silent coercion. Finally, if the types are
9432 // incompatible then make sure to use 'id' as the composite
9433 // type so the result is acceptable for sending messages to.
9435 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9436 // It could return the composite type.
9437 if (!(compositeType
=
9438 Context
.areCommonBaseCompatible(LHSOPT
, RHSOPT
)).isNull()) {
9439 // Nothing more to do.
9440 } else if (Context
.canAssignObjCInterfaces(LHSOPT
, RHSOPT
)) {
9441 compositeType
= RHSOPT
->isObjCBuiltinType() ? RHSTy
: LHSTy
;
9442 } else if (Context
.canAssignObjCInterfaces(RHSOPT
, LHSOPT
)) {
9443 compositeType
= LHSOPT
->isObjCBuiltinType() ? LHSTy
: RHSTy
;
9444 } else if ((LHSOPT
->isObjCQualifiedIdType() ||
9445 RHSOPT
->isObjCQualifiedIdType()) &&
9446 Context
.ObjCQualifiedIdTypesAreCompatible(LHSOPT
, RHSOPT
,
9448 // Need to handle "id<xx>" explicitly.
9449 // GCC allows qualified id and any Objective-C type to devolve to
9450 // id. Currently localizing to here until clear this should be
9451 // part of ObjCQualifiedIdTypesAreCompatible.
9452 compositeType
= Context
.getObjCIdType();
9453 } else if (LHSTy
->isObjCIdType() || RHSTy
->isObjCIdType()) {
9454 compositeType
= Context
.getObjCIdType();
9456 Diag(QuestionLoc
, diag::ext_typecheck_cond_incompatible_operands
)
9458 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9459 QualType incompatTy
= Context
.getObjCIdType();
9460 LHS
= ImpCastExprToType(LHS
.get(), incompatTy
, CK_BitCast
);
9461 RHS
= ImpCastExprToType(RHS
.get(), incompatTy
, CK_BitCast
);
9464 // The object pointer types are compatible.
9465 LHS
= ImpCastExprToType(LHS
.get(), compositeType
, CK_BitCast
);
9466 RHS
= ImpCastExprToType(RHS
.get(), compositeType
, CK_BitCast
);
9467 return compositeType
;
9469 // Check Objective-C object pointer types and 'void *'
9470 if (LHSTy
->isVoidPointerType() && RHSTy
->isObjCObjectPointerType()) {
9471 if (getLangOpts().ObjCAutoRefCount
) {
9472 // ARC forbids the implicit conversion of object pointers to 'void *',
9473 // so these types are not compatible.
9474 Diag(QuestionLoc
, diag::err_cond_voidptr_arc
) << LHSTy
<< RHSTy
9475 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9479 QualType lhptee
= LHSTy
->castAs
<PointerType
>()->getPointeeType();
9480 QualType rhptee
= RHSTy
->castAs
<ObjCObjectPointerType
>()->getPointeeType();
9481 QualType destPointee
9482 = Context
.getQualifiedType(lhptee
, rhptee
.getQualifiers());
9483 QualType destType
= Context
.getPointerType(destPointee
);
9484 // Add qualifiers if necessary.
9485 LHS
= ImpCastExprToType(LHS
.get(), destType
, CK_NoOp
);
9486 // Promote to void*.
9487 RHS
= ImpCastExprToType(RHS
.get(), destType
, CK_BitCast
);
9490 if (LHSTy
->isObjCObjectPointerType() && RHSTy
->isVoidPointerType()) {
9491 if (getLangOpts().ObjCAutoRefCount
) {
9492 // ARC forbids the implicit conversion of object pointers to 'void *',
9493 // so these types are not compatible.
9494 Diag(QuestionLoc
, diag::err_cond_voidptr_arc
) << LHSTy
<< RHSTy
9495 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9499 QualType lhptee
= LHSTy
->castAs
<ObjCObjectPointerType
>()->getPointeeType();
9500 QualType rhptee
= RHSTy
->castAs
<PointerType
>()->getPointeeType();
9501 QualType destPointee
9502 = Context
.getQualifiedType(rhptee
, lhptee
.getQualifiers());
9503 QualType destType
= Context
.getPointerType(destPointee
);
9504 // Add qualifiers if necessary.
9505 RHS
= ImpCastExprToType(RHS
.get(), destType
, CK_NoOp
);
9506 // Promote to void*.
9507 LHS
= ImpCastExprToType(LHS
.get(), destType
, CK_BitCast
);
9513 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9514 /// ParenRange in parentheses.
9515 static void SuggestParentheses(Sema
&Self
, SourceLocation Loc
,
9516 const PartialDiagnostic
&Note
,
9517 SourceRange ParenRange
) {
9518 SourceLocation EndLoc
= Self
.getLocForEndOfToken(ParenRange
.getEnd());
9519 if (ParenRange
.getBegin().isFileID() && ParenRange
.getEnd().isFileID() &&
9521 Self
.Diag(Loc
, Note
)
9522 << FixItHint::CreateInsertion(ParenRange
.getBegin(), "(")
9523 << FixItHint::CreateInsertion(EndLoc
, ")");
9525 // We can't display the parentheses, so just show the bare note.
9526 Self
.Diag(Loc
, Note
) << ParenRange
;
9530 static bool IsArithmeticOp(BinaryOperatorKind Opc
) {
9531 return BinaryOperator::isAdditiveOp(Opc
) ||
9532 BinaryOperator::isMultiplicativeOp(Opc
) ||
9533 BinaryOperator::isShiftOp(Opc
) || Opc
== BO_And
|| Opc
== BO_Or
;
9534 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9535 // not any of the logical operators. Bitwise-xor is commonly used as a
9536 // logical-xor because there is no logical-xor operator. The logical
9537 // operators, including uses of xor, have a high false positive rate for
9538 // precedence warnings.
9541 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9542 /// expression, either using a built-in or overloaded operator,
9543 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9545 static bool IsArithmeticBinaryExpr(Expr
*E
, BinaryOperatorKind
*Opcode
,
9547 // Don't strip parenthesis: we should not warn if E is in parenthesis.
9548 E
= E
->IgnoreImpCasts();
9549 E
= E
->IgnoreConversionOperatorSingleStep();
9550 E
= E
->IgnoreImpCasts();
9551 if (auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
9552 E
= MTE
->getSubExpr();
9553 E
= E
->IgnoreImpCasts();
9556 // Built-in binary operator.
9557 if (BinaryOperator
*OP
= dyn_cast
<BinaryOperator
>(E
)) {
9558 if (IsArithmeticOp(OP
->getOpcode())) {
9559 *Opcode
= OP
->getOpcode();
9560 *RHSExprs
= OP
->getRHS();
9565 // Overloaded operator.
9566 if (CXXOperatorCallExpr
*Call
= dyn_cast
<CXXOperatorCallExpr
>(E
)) {
9567 if (Call
->getNumArgs() != 2)
9570 // Make sure this is really a binary operator that is safe to pass into
9571 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9572 OverloadedOperatorKind OO
= Call
->getOperator();
9573 if (OO
< OO_Plus
|| OO
> OO_Arrow
||
9574 OO
== OO_PlusPlus
|| OO
== OO_MinusMinus
)
9577 BinaryOperatorKind OpKind
= BinaryOperator::getOverloadedOpcode(OO
);
9578 if (IsArithmeticOp(OpKind
)) {
9580 *RHSExprs
= Call
->getArg(1);
9588 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9589 /// or is a logical expression such as (x==y) which has int type, but is
9590 /// commonly interpreted as boolean.
9591 static bool ExprLooksBoolean(Expr
*E
) {
9592 E
= E
->IgnoreParenImpCasts();
9594 if (E
->getType()->isBooleanType())
9596 if (BinaryOperator
*OP
= dyn_cast
<BinaryOperator
>(E
))
9597 return OP
->isComparisonOp() || OP
->isLogicalOp();
9598 if (UnaryOperator
*OP
= dyn_cast
<UnaryOperator
>(E
))
9599 return OP
->getOpcode() == UO_LNot
;
9600 if (E
->getType()->isPointerType())
9602 // FIXME: What about overloaded operator calls returning "unspecified boolean
9603 // type"s (commonly pointer-to-members)?
9608 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9609 /// and binary operator are mixed in a way that suggests the programmer assumed
9610 /// the conditional operator has higher precedence, for example:
9611 /// "int x = a + someBinaryCondition ? 1 : 2".
9612 static void DiagnoseConditionalPrecedence(Sema
&Self
,
9613 SourceLocation OpLoc
,
9617 BinaryOperatorKind CondOpcode
;
9620 if (!IsArithmeticBinaryExpr(Condition
, &CondOpcode
, &CondRHS
))
9622 if (!ExprLooksBoolean(CondRHS
))
9625 // The condition is an arithmetic binary expression, with a right-
9626 // hand side that looks boolean, so warn.
9628 unsigned DiagID
= BinaryOperator::isBitwiseOp(CondOpcode
)
9629 ? diag::warn_precedence_bitwise_conditional
9630 : diag::warn_precedence_conditional
;
9632 Self
.Diag(OpLoc
, DiagID
)
9633 << Condition
->getSourceRange()
9634 << BinaryOperator::getOpcodeStr(CondOpcode
);
9638 Self
.PDiag(diag::note_precedence_silence
)
9639 << BinaryOperator::getOpcodeStr(CondOpcode
),
9640 SourceRange(Condition
->getBeginLoc(), Condition
->getEndLoc()));
9642 SuggestParentheses(Self
, OpLoc
,
9643 Self
.PDiag(diag::note_precedence_conditional_first
),
9644 SourceRange(CondRHS
->getBeginLoc(), RHSExpr
->getEndLoc()));
9647 /// Compute the nullability of a conditional expression.
9648 static QualType
computeConditionalNullability(QualType ResTy
, bool IsBin
,
9649 QualType LHSTy
, QualType RHSTy
,
9651 if (!ResTy
->isAnyPointerType())
9654 auto GetNullability
= [](QualType Ty
) {
9655 std::optional
<NullabilityKind
> Kind
= Ty
->getNullability();
9657 // For our purposes, treat _Nullable_result as _Nullable.
9658 if (*Kind
== NullabilityKind::NullableResult
)
9659 return NullabilityKind::Nullable
;
9662 return NullabilityKind::Unspecified
;
9665 auto LHSKind
= GetNullability(LHSTy
), RHSKind
= GetNullability(RHSTy
);
9666 NullabilityKind MergedKind
;
9668 // Compute nullability of a binary conditional expression.
9670 if (LHSKind
== NullabilityKind::NonNull
)
9671 MergedKind
= NullabilityKind::NonNull
;
9673 MergedKind
= RHSKind
;
9674 // Compute nullability of a normal conditional expression.
9676 if (LHSKind
== NullabilityKind::Nullable
||
9677 RHSKind
== NullabilityKind::Nullable
)
9678 MergedKind
= NullabilityKind::Nullable
;
9679 else if (LHSKind
== NullabilityKind::NonNull
)
9680 MergedKind
= RHSKind
;
9681 else if (RHSKind
== NullabilityKind::NonNull
)
9682 MergedKind
= LHSKind
;
9684 MergedKind
= NullabilityKind::Unspecified
;
9687 // Return if ResTy already has the correct nullability.
9688 if (GetNullability(ResTy
) == MergedKind
)
9691 // Strip all nullability from ResTy.
9692 while (ResTy
->getNullability())
9693 ResTy
= ResTy
.getSingleStepDesugaredType(Ctx
);
9695 // Create a new AttributedType with the new nullability kind.
9696 auto NewAttr
= AttributedType::getNullabilityAttrKind(MergedKind
);
9697 return Ctx
.getAttributedType(NewAttr
, ResTy
, ResTy
);
9700 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
9701 /// in the case of a the GNU conditional expr extension.
9702 ExprResult
Sema::ActOnConditionalOp(SourceLocation QuestionLoc
,
9703 SourceLocation ColonLoc
,
9704 Expr
*CondExpr
, Expr
*LHSExpr
,
9706 if (!Context
.isDependenceAllowed()) {
9707 // C cannot handle TypoExpr nodes in the condition because it
9708 // doesn't handle dependent types properly, so make sure any TypoExprs have
9709 // been dealt with before checking the operands.
9710 ExprResult CondResult
= CorrectDelayedTyposInExpr(CondExpr
);
9711 ExprResult LHSResult
= CorrectDelayedTyposInExpr(LHSExpr
);
9712 ExprResult RHSResult
= CorrectDelayedTyposInExpr(RHSExpr
);
9714 if (!CondResult
.isUsable())
9718 if (!LHSResult
.isUsable())
9722 if (!RHSResult
.isUsable())
9725 CondExpr
= CondResult
.get();
9726 LHSExpr
= LHSResult
.get();
9727 RHSExpr
= RHSResult
.get();
9730 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9731 // was the condition.
9732 OpaqueValueExpr
*opaqueValue
= nullptr;
9733 Expr
*commonExpr
= nullptr;
9735 commonExpr
= CondExpr
;
9736 // Lower out placeholder types first. This is important so that we don't
9737 // try to capture a placeholder. This happens in few cases in C++; such
9738 // as Objective-C++'s dictionary subscripting syntax.
9739 if (commonExpr
->hasPlaceholderType()) {
9740 ExprResult result
= CheckPlaceholderExpr(commonExpr
);
9741 if (!result
.isUsable()) return ExprError();
9742 commonExpr
= result
.get();
9744 // We usually want to apply unary conversions *before* saving, except
9745 // in the special case of a C++ l-value conditional.
9746 if (!(getLangOpts().CPlusPlus
9747 && !commonExpr
->isTypeDependent()
9748 && commonExpr
->getValueKind() == RHSExpr
->getValueKind()
9749 && commonExpr
->isGLValue()
9750 && commonExpr
->isOrdinaryOrBitFieldObject()
9751 && RHSExpr
->isOrdinaryOrBitFieldObject()
9752 && Context
.hasSameType(commonExpr
->getType(), RHSExpr
->getType()))) {
9753 ExprResult commonRes
= UsualUnaryConversions(commonExpr
);
9754 if (commonRes
.isInvalid())
9756 commonExpr
= commonRes
.get();
9759 // If the common expression is a class or array prvalue, materialize it
9760 // so that we can safely refer to it multiple times.
9761 if (commonExpr
->isPRValue() && (commonExpr
->getType()->isRecordType() ||
9762 commonExpr
->getType()->isArrayType())) {
9763 ExprResult MatExpr
= TemporaryMaterializationConversion(commonExpr
);
9764 if (MatExpr
.isInvalid())
9766 commonExpr
= MatExpr
.get();
9769 opaqueValue
= new (Context
) OpaqueValueExpr(commonExpr
->getExprLoc(),
9770 commonExpr
->getType(),
9771 commonExpr
->getValueKind(),
9772 commonExpr
->getObjectKind(),
9774 LHSExpr
= CondExpr
= opaqueValue
;
9777 QualType LHSTy
= LHSExpr
->getType(), RHSTy
= RHSExpr
->getType();
9778 ExprValueKind VK
= VK_PRValue
;
9779 ExprObjectKind OK
= OK_Ordinary
;
9780 ExprResult Cond
= CondExpr
, LHS
= LHSExpr
, RHS
= RHSExpr
;
9781 QualType result
= CheckConditionalOperands(Cond
, LHS
, RHS
,
9782 VK
, OK
, QuestionLoc
);
9783 if (result
.isNull() || Cond
.isInvalid() || LHS
.isInvalid() ||
9787 DiagnoseConditionalPrecedence(*this, QuestionLoc
, Cond
.get(), LHS
.get(),
9790 CheckBoolLikeConversion(Cond
.get(), QuestionLoc
);
9792 result
= computeConditionalNullability(result
, commonExpr
, LHSTy
, RHSTy
,
9796 return new (Context
)
9797 ConditionalOperator(Cond
.get(), QuestionLoc
, LHS
.get(), ColonLoc
,
9798 RHS
.get(), result
, VK
, OK
);
9800 return new (Context
) BinaryConditionalOperator(
9801 commonExpr
, opaqueValue
, Cond
.get(), LHS
.get(), RHS
.get(), QuestionLoc
,
9802 ColonLoc
, result
, VK
, OK
);
9805 // Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
9806 bool Sema::IsInvalidSMECallConversion(QualType FromType
, QualType ToType
,
9807 AArch64SMECallConversionKind C
) {
9808 unsigned FromAttributes
= 0, ToAttributes
= 0;
9809 if (const auto *FromFn
=
9810 dyn_cast
<FunctionProtoType
>(Context
.getCanonicalType(FromType
)))
9812 FromFn
->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask
;
9813 if (const auto *ToFn
=
9814 dyn_cast
<FunctionProtoType
>(Context
.getCanonicalType(ToType
)))
9816 ToFn
->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask
;
9818 if (FromAttributes
== ToAttributes
)
9821 // If the '__arm_preserves_za' is the only difference between the types,
9822 // check whether we're allowed to add or remove it.
9823 if ((FromAttributes
^ ToAttributes
) ==
9824 FunctionType::SME_PStateZAPreservedMask
) {
9826 case AArch64SMECallConversionKind::MatchExactly
:
9828 case AArch64SMECallConversionKind::MayAddPreservesZA
:
9829 return !(ToAttributes
& FunctionType::SME_PStateZAPreservedMask
);
9830 case AArch64SMECallConversionKind::MayDropPreservesZA
:
9831 return !(FromAttributes
& FunctionType::SME_PStateZAPreservedMask
);
9835 // There has been a mismatch of attributes
9839 // Check if we have a conversion between incompatible cmse function pointer
9840 // types, that is, a conversion between a function pointer with the
9841 // cmse_nonsecure_call attribute and one without.
9842 static bool IsInvalidCmseNSCallConversion(Sema
&S
, QualType FromType
,
9844 if (const auto *ToFn
=
9845 dyn_cast
<FunctionType
>(S
.Context
.getCanonicalType(ToType
))) {
9846 if (const auto *FromFn
=
9847 dyn_cast
<FunctionType
>(S
.Context
.getCanonicalType(FromType
))) {
9848 FunctionType::ExtInfo ToEInfo
= ToFn
->getExtInfo();
9849 FunctionType::ExtInfo FromEInfo
= FromFn
->getExtInfo();
9851 return ToEInfo
.getCmseNSCall() != FromEInfo
.getCmseNSCall();
9857 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9858 // being closely modeled after the C99 spec:-). The odd characteristic of this
9859 // routine is it effectively iqnores the qualifiers on the top level pointee.
9860 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9861 // FIXME: add a couple examples in this comment.
9862 static Sema::AssignConvertType
9863 checkPointerTypesForAssignment(Sema
&S
, QualType LHSType
, QualType RHSType
,
9864 SourceLocation Loc
) {
9865 assert(LHSType
.isCanonical() && "LHS not canonicalized!");
9866 assert(RHSType
.isCanonical() && "RHS not canonicalized!");
9868 // get the "pointed to" type (ignoring qualifiers at the top level)
9869 const Type
*lhptee
, *rhptee
;
9870 Qualifiers lhq
, rhq
;
9871 std::tie(lhptee
, lhq
) =
9872 cast
<PointerType
>(LHSType
)->getPointeeType().split().asPair();
9873 std::tie(rhptee
, rhq
) =
9874 cast
<PointerType
>(RHSType
)->getPointeeType().split().asPair();
9876 Sema::AssignConvertType ConvTy
= Sema::Compatible
;
9878 // C99 6.5.16.1p1: This following citation is common to constraints
9879 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9880 // qualifiers of the type *pointed to* by the right;
9882 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9883 if (lhq
.getObjCLifetime() != rhq
.getObjCLifetime() &&
9884 lhq
.compatiblyIncludesObjCLifetime(rhq
)) {
9885 // Ignore lifetime for further calculation.
9886 lhq
.removeObjCLifetime();
9887 rhq
.removeObjCLifetime();
9890 if (!lhq
.compatiblyIncludes(rhq
)) {
9891 // Treat address-space mismatches as fatal.
9892 if (!lhq
.isAddressSpaceSupersetOf(rhq
))
9893 return Sema::IncompatiblePointerDiscardsQualifiers
;
9895 // It's okay to add or remove GC or lifetime qualifiers when converting to
9897 else if (lhq
.withoutObjCGCAttr().withoutObjCLifetime()
9898 .compatiblyIncludes(
9899 rhq
.withoutObjCGCAttr().withoutObjCLifetime())
9900 && (lhptee
->isVoidType() || rhptee
->isVoidType()))
9903 // Treat lifetime mismatches as fatal.
9904 else if (lhq
.getObjCLifetime() != rhq
.getObjCLifetime())
9905 ConvTy
= Sema::IncompatiblePointerDiscardsQualifiers
;
9907 // For GCC/MS compatibility, other qualifier mismatches are treated
9908 // as still compatible in C.
9909 else ConvTy
= Sema::CompatiblePointerDiscardsQualifiers
;
9912 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9913 // incomplete type and the other is a pointer to a qualified or unqualified
9914 // version of void...
9915 if (lhptee
->isVoidType()) {
9916 if (rhptee
->isIncompleteOrObjectType())
9919 // As an extension, we allow cast to/from void* to function pointer.
9920 assert(rhptee
->isFunctionType());
9921 return Sema::FunctionVoidPointer
;
9924 if (rhptee
->isVoidType()) {
9925 if (lhptee
->isIncompleteOrObjectType())
9928 // As an extension, we allow cast to/from void* to function pointer.
9929 assert(lhptee
->isFunctionType());
9930 return Sema::FunctionVoidPointer
;
9933 if (!S
.Diags
.isIgnored(
9934 diag::warn_typecheck_convert_incompatible_function_pointer_strict
,
9936 RHSType
->isFunctionPointerType() && LHSType
->isFunctionPointerType() &&
9937 !S
.IsFunctionConversion(RHSType
, LHSType
, RHSType
))
9938 return Sema::IncompatibleFunctionPointerStrict
;
9940 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9941 // unqualified versions of compatible types, ...
9942 QualType ltrans
= QualType(lhptee
, 0), rtrans
= QualType(rhptee
, 0);
9943 if (!S
.Context
.typesAreCompatible(ltrans
, rtrans
)) {
9944 // Check if the pointee types are compatible ignoring the sign.
9945 // We explicitly check for char so that we catch "char" vs
9946 // "unsigned char" on systems where "char" is unsigned.
9947 if (lhptee
->isCharType())
9948 ltrans
= S
.Context
.UnsignedCharTy
;
9949 else if (lhptee
->hasSignedIntegerRepresentation())
9950 ltrans
= S
.Context
.getCorrespondingUnsignedType(ltrans
);
9952 if (rhptee
->isCharType())
9953 rtrans
= S
.Context
.UnsignedCharTy
;
9954 else if (rhptee
->hasSignedIntegerRepresentation())
9955 rtrans
= S
.Context
.getCorrespondingUnsignedType(rtrans
);
9957 if (ltrans
== rtrans
) {
9958 // Types are compatible ignoring the sign. Qualifier incompatibility
9959 // takes priority over sign incompatibility because the sign
9960 // warning can be disabled.
9961 if (ConvTy
!= Sema::Compatible
)
9964 return Sema::IncompatiblePointerSign
;
9967 // If we are a multi-level pointer, it's possible that our issue is simply
9968 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9969 // the eventual target type is the same and the pointers have the same
9970 // level of indirection, this must be the issue.
9971 if (isa
<PointerType
>(lhptee
) && isa
<PointerType
>(rhptee
)) {
9973 std::tie(lhptee
, lhq
) =
9974 cast
<PointerType
>(lhptee
)->getPointeeType().split().asPair();
9975 std::tie(rhptee
, rhq
) =
9976 cast
<PointerType
>(rhptee
)->getPointeeType().split().asPair();
9978 // Inconsistent address spaces at this point is invalid, even if the
9979 // address spaces would be compatible.
9980 // FIXME: This doesn't catch address space mismatches for pointers of
9981 // different nesting levels, like:
9982 // __local int *** a;
9984 // It's not clear how to actually determine when such pointers are
9985 // invalidly incompatible.
9986 if (lhq
.getAddressSpace() != rhq
.getAddressSpace())
9987 return Sema::IncompatibleNestedPointerAddressSpaceMismatch
;
9989 } while (isa
<PointerType
>(lhptee
) && isa
<PointerType
>(rhptee
));
9991 if (lhptee
== rhptee
)
9992 return Sema::IncompatibleNestedPointerQualifiers
;
9995 // General pointer incompatibility takes priority over qualifiers.
9996 if (RHSType
->isFunctionPointerType() && LHSType
->isFunctionPointerType())
9997 return Sema::IncompatibleFunctionPointer
;
9998 return Sema::IncompatiblePointer
;
10000 if (!S
.getLangOpts().CPlusPlus
&&
10001 S
.IsFunctionConversion(ltrans
, rtrans
, ltrans
))
10002 return Sema::IncompatibleFunctionPointer
;
10003 if (IsInvalidCmseNSCallConversion(S
, ltrans
, rtrans
))
10004 return Sema::IncompatibleFunctionPointer
;
10005 if (S
.IsInvalidSMECallConversion(
10007 Sema::AArch64SMECallConversionKind::MayDropPreservesZA
))
10008 return Sema::IncompatibleFunctionPointer
;
10012 /// checkBlockPointerTypesForAssignment - This routine determines whether two
10013 /// block pointer types are compatible or whether a block and normal pointer
10014 /// are compatible. It is more restrict than comparing two function pointer
10016 static Sema::AssignConvertType
10017 checkBlockPointerTypesForAssignment(Sema
&S
, QualType LHSType
,
10018 QualType RHSType
) {
10019 assert(LHSType
.isCanonical() && "LHS not canonicalized!");
10020 assert(RHSType
.isCanonical() && "RHS not canonicalized!");
10022 QualType lhptee
, rhptee
;
10024 // get the "pointed to" type (ignoring qualifiers at the top level)
10025 lhptee
= cast
<BlockPointerType
>(LHSType
)->getPointeeType();
10026 rhptee
= cast
<BlockPointerType
>(RHSType
)->getPointeeType();
10028 // In C++, the types have to match exactly.
10029 if (S
.getLangOpts().CPlusPlus
)
10030 return Sema::IncompatibleBlockPointer
;
10032 Sema::AssignConvertType ConvTy
= Sema::Compatible
;
10034 // For blocks we enforce that qualifiers are identical.
10035 Qualifiers LQuals
= lhptee
.getLocalQualifiers();
10036 Qualifiers RQuals
= rhptee
.getLocalQualifiers();
10037 if (S
.getLangOpts().OpenCL
) {
10038 LQuals
.removeAddressSpace();
10039 RQuals
.removeAddressSpace();
10041 if (LQuals
!= RQuals
)
10042 ConvTy
= Sema::CompatiblePointerDiscardsQualifiers
;
10044 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
10046 // The current behavior is similar to C++ lambdas. A block might be
10047 // assigned to a variable iff its return type and parameters are compatible
10048 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
10049 // an assignment. Presumably it should behave in way that a function pointer
10050 // assignment does in C, so for each parameter and return type:
10051 // * CVR and address space of LHS should be a superset of CVR and address
10053 // * unqualified types should be compatible.
10054 if (S
.getLangOpts().OpenCL
) {
10055 if (!S
.Context
.typesAreBlockPointerCompatible(
10056 S
.Context
.getQualifiedType(LHSType
.getUnqualifiedType(), LQuals
),
10057 S
.Context
.getQualifiedType(RHSType
.getUnqualifiedType(), RQuals
)))
10058 return Sema::IncompatibleBlockPointer
;
10059 } else if (!S
.Context
.typesAreBlockPointerCompatible(LHSType
, RHSType
))
10060 return Sema::IncompatibleBlockPointer
;
10065 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
10066 /// for assignment compatibility.
10067 static Sema::AssignConvertType
10068 checkObjCPointerTypesForAssignment(Sema
&S
, QualType LHSType
,
10069 QualType RHSType
) {
10070 assert(LHSType
.isCanonical() && "LHS was not canonicalized!");
10071 assert(RHSType
.isCanonical() && "RHS was not canonicalized!");
10073 if (LHSType
->isObjCBuiltinType()) {
10074 // Class is not compatible with ObjC object pointers.
10075 if (LHSType
->isObjCClassType() && !RHSType
->isObjCBuiltinType() &&
10076 !RHSType
->isObjCQualifiedClassType())
10077 return Sema::IncompatiblePointer
;
10078 return Sema::Compatible
;
10080 if (RHSType
->isObjCBuiltinType()) {
10081 if (RHSType
->isObjCClassType() && !LHSType
->isObjCBuiltinType() &&
10082 !LHSType
->isObjCQualifiedClassType())
10083 return Sema::IncompatiblePointer
;
10084 return Sema::Compatible
;
10086 QualType lhptee
= LHSType
->castAs
<ObjCObjectPointerType
>()->getPointeeType();
10087 QualType rhptee
= RHSType
->castAs
<ObjCObjectPointerType
>()->getPointeeType();
10089 if (!lhptee
.isAtLeastAsQualifiedAs(rhptee
) &&
10090 // make an exception for id<P>
10091 !LHSType
->isObjCQualifiedIdType())
10092 return Sema::CompatiblePointerDiscardsQualifiers
;
10094 if (S
.Context
.typesAreCompatible(LHSType
, RHSType
))
10095 return Sema::Compatible
;
10096 if (LHSType
->isObjCQualifiedIdType() || RHSType
->isObjCQualifiedIdType())
10097 return Sema::IncompatibleObjCQualifiedId
;
10098 return Sema::IncompatiblePointer
;
10101 Sema::AssignConvertType
10102 Sema::CheckAssignmentConstraints(SourceLocation Loc
,
10103 QualType LHSType
, QualType RHSType
) {
10104 // Fake up an opaque expression. We don't actually care about what
10105 // cast operations are required, so if CheckAssignmentConstraints
10106 // adds casts to this they'll be wasted, but fortunately that doesn't
10107 // usually happen on valid code.
10108 OpaqueValueExpr
RHSExpr(Loc
, RHSType
, VK_PRValue
);
10109 ExprResult RHSPtr
= &RHSExpr
;
10112 return CheckAssignmentConstraints(LHSType
, RHSPtr
, K
, /*ConvertRHS=*/false);
10115 /// This helper function returns true if QT is a vector type that has element
10116 /// type ElementType.
10117 static bool isVector(QualType QT
, QualType ElementType
) {
10118 if (const VectorType
*VT
= QT
->getAs
<VectorType
>())
10119 return VT
->getElementType().getCanonicalType() == ElementType
;
10123 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
10124 /// has code to accommodate several GCC extensions when type checking
10125 /// pointers. Here are some objectionable examples that GCC considers warnings:
10129 /// struct foo *pfoo;
10131 /// pint = pshort; // warning: assignment from incompatible pointer type
10132 /// a = pint; // warning: assignment makes integer from pointer without a cast
10133 /// pint = a; // warning: assignment makes pointer from integer without a cast
10134 /// pint = pfoo; // warning: assignment from incompatible pointer type
10136 /// As a result, the code for dealing with pointers is more complex than the
10137 /// C99 spec dictates.
10139 /// Sets 'Kind' for any result kind except Incompatible.
10140 Sema::AssignConvertType
10141 Sema::CheckAssignmentConstraints(QualType LHSType
, ExprResult
&RHS
,
10142 CastKind
&Kind
, bool ConvertRHS
) {
10143 QualType RHSType
= RHS
.get()->getType();
10144 QualType OrigLHSType
= LHSType
;
10146 // Get canonical types. We're not formatting these types, just comparing
10148 LHSType
= Context
.getCanonicalType(LHSType
).getUnqualifiedType();
10149 RHSType
= Context
.getCanonicalType(RHSType
).getUnqualifiedType();
10151 // Common case: no conversion required.
10152 if (LHSType
== RHSType
) {
10157 // If the LHS has an __auto_type, there are no additional type constraints
10158 // to be worried about.
10159 if (const auto *AT
= dyn_cast
<AutoType
>(LHSType
)) {
10160 if (AT
->isGNUAutoType()) {
10166 // If we have an atomic type, try a non-atomic assignment, then just add an
10167 // atomic qualification step.
10168 if (const AtomicType
*AtomicTy
= dyn_cast
<AtomicType
>(LHSType
)) {
10169 Sema::AssignConvertType result
=
10170 CheckAssignmentConstraints(AtomicTy
->getValueType(), RHS
, Kind
);
10171 if (result
!= Compatible
)
10173 if (Kind
!= CK_NoOp
&& ConvertRHS
)
10174 RHS
= ImpCastExprToType(RHS
.get(), AtomicTy
->getValueType(), Kind
);
10175 Kind
= CK_NonAtomicToAtomic
;
10179 // If the left-hand side is a reference type, then we are in a
10180 // (rare!) case where we've allowed the use of references in C,
10181 // e.g., as a parameter type in a built-in function. In this case,
10182 // just make sure that the type referenced is compatible with the
10183 // right-hand side type. The caller is responsible for adjusting
10184 // LHSType so that the resulting expression does not have reference
10186 if (const ReferenceType
*LHSTypeRef
= LHSType
->getAs
<ReferenceType
>()) {
10187 if (Context
.typesAreCompatible(LHSTypeRef
->getPointeeType(), RHSType
)) {
10188 Kind
= CK_LValueBitCast
;
10191 return Incompatible
;
10194 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
10195 // to the same ExtVector type.
10196 if (LHSType
->isExtVectorType()) {
10197 if (RHSType
->isExtVectorType())
10198 return Incompatible
;
10199 if (RHSType
->isArithmeticType()) {
10200 // CK_VectorSplat does T -> vector T, so first cast to the element type.
10202 RHS
= prepareVectorSplat(LHSType
, RHS
.get());
10203 Kind
= CK_VectorSplat
;
10208 // Conversions to or from vector type.
10209 if (LHSType
->isVectorType() || RHSType
->isVectorType()) {
10210 if (LHSType
->isVectorType() && RHSType
->isVectorType()) {
10211 // Allow assignments of an AltiVec vector type to an equivalent GCC
10212 // vector type and vice versa
10213 if (Context
.areCompatibleVectorTypes(LHSType
, RHSType
)) {
10218 // If we are allowing lax vector conversions, and LHS and RHS are both
10219 // vectors, the total size only needs to be the same. This is a bitcast;
10220 // no bits are changed but the result type is different.
10221 if (isLaxVectorConversion(RHSType
, LHSType
)) {
10222 // The default for lax vector conversions with Altivec vectors will
10223 // change, so if we are converting between vector types where
10224 // at least one is an Altivec vector, emit a warning.
10225 if (Context
.getTargetInfo().getTriple().isPPC() &&
10226 anyAltivecTypes(RHSType
, LHSType
) &&
10227 !Context
.areCompatibleVectorTypes(RHSType
, LHSType
))
10228 Diag(RHS
.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all
)
10229 << RHSType
<< LHSType
;
10231 return IncompatibleVectors
;
10235 // When the RHS comes from another lax conversion (e.g. binops between
10236 // scalars and vectors) the result is canonicalized as a vector. When the
10237 // LHS is also a vector, the lax is allowed by the condition above. Handle
10238 // the case where LHS is a scalar.
10239 if (LHSType
->isScalarType()) {
10240 const VectorType
*VecType
= RHSType
->getAs
<VectorType
>();
10241 if (VecType
&& VecType
->getNumElements() == 1 &&
10242 isLaxVectorConversion(RHSType
, LHSType
)) {
10243 if (Context
.getTargetInfo().getTriple().isPPC() &&
10244 (VecType
->getVectorKind() == VectorKind::AltiVecVector
||
10245 VecType
->getVectorKind() == VectorKind::AltiVecBool
||
10246 VecType
->getVectorKind() == VectorKind::AltiVecPixel
))
10247 Diag(RHS
.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all
)
10248 << RHSType
<< LHSType
;
10249 ExprResult
*VecExpr
= &RHS
;
10250 *VecExpr
= ImpCastExprToType(VecExpr
->get(), LHSType
, CK_BitCast
);
10256 // Allow assignments between fixed-length and sizeless SVE vectors.
10257 if ((LHSType
->isSVESizelessBuiltinType() && RHSType
->isVectorType()) ||
10258 (LHSType
->isVectorType() && RHSType
->isSVESizelessBuiltinType()))
10259 if (Context
.areCompatibleSveTypes(LHSType
, RHSType
) ||
10260 Context
.areLaxCompatibleSveTypes(LHSType
, RHSType
)) {
10265 // Allow assignments between fixed-length and sizeless RVV vectors.
10266 if ((LHSType
->isRVVSizelessBuiltinType() && RHSType
->isVectorType()) ||
10267 (LHSType
->isVectorType() && RHSType
->isRVVSizelessBuiltinType())) {
10268 if (Context
.areCompatibleRVVTypes(LHSType
, RHSType
) ||
10269 Context
.areLaxCompatibleRVVTypes(LHSType
, RHSType
)) {
10275 return Incompatible
;
10278 // Diagnose attempts to convert between __ibm128, __float128 and long double
10279 // where such conversions currently can't be handled.
10280 if (unsupportedTypeConversion(*this, LHSType
, RHSType
))
10281 return Incompatible
;
10283 // Disallow assigning a _Complex to a real type in C++ mode since it simply
10284 // discards the imaginary part.
10285 if (getLangOpts().CPlusPlus
&& RHSType
->getAs
<ComplexType
>() &&
10286 !LHSType
->getAs
<ComplexType
>())
10287 return Incompatible
;
10289 // Arithmetic conversions.
10290 if (LHSType
->isArithmeticType() && RHSType
->isArithmeticType() &&
10291 !(getLangOpts().CPlusPlus
&& LHSType
->isEnumeralType())) {
10293 Kind
= PrepareScalarCast(RHS
, LHSType
);
10297 // Conversions to normal pointers.
10298 if (const PointerType
*LHSPointer
= dyn_cast
<PointerType
>(LHSType
)) {
10300 if (isa
<PointerType
>(RHSType
)) {
10301 LangAS AddrSpaceL
= LHSPointer
->getPointeeType().getAddressSpace();
10302 LangAS AddrSpaceR
= RHSType
->getPointeeType().getAddressSpace();
10303 if (AddrSpaceL
!= AddrSpaceR
)
10304 Kind
= CK_AddressSpaceConversion
;
10305 else if (Context
.hasCvrSimilarType(RHSType
, LHSType
))
10309 return checkPointerTypesForAssignment(*this, LHSType
, RHSType
,
10310 RHS
.get()->getBeginLoc());
10314 if (RHSType
->isIntegerType()) {
10315 Kind
= CK_IntegralToPointer
; // FIXME: null?
10316 return IntToPointer
;
10319 // C pointers are not compatible with ObjC object pointers,
10320 // with two exceptions:
10321 if (isa
<ObjCObjectPointerType
>(RHSType
)) {
10322 // - conversions to void*
10323 if (LHSPointer
->getPointeeType()->isVoidType()) {
10328 // - conversions from 'Class' to the redefinition type
10329 if (RHSType
->isObjCClassType() &&
10330 Context
.hasSameType(LHSType
,
10331 Context
.getObjCClassRedefinitionType())) {
10337 return IncompatiblePointer
;
10341 if (RHSType
->getAs
<BlockPointerType
>()) {
10342 if (LHSPointer
->getPointeeType()->isVoidType()) {
10343 LangAS AddrSpaceL
= LHSPointer
->getPointeeType().getAddressSpace();
10344 LangAS AddrSpaceR
= RHSType
->getAs
<BlockPointerType
>()
10346 .getAddressSpace();
10348 AddrSpaceL
!= AddrSpaceR
? CK_AddressSpaceConversion
: CK_BitCast
;
10353 return Incompatible
;
10356 // Conversions to block pointers.
10357 if (isa
<BlockPointerType
>(LHSType
)) {
10359 if (RHSType
->isBlockPointerType()) {
10360 LangAS AddrSpaceL
= LHSType
->getAs
<BlockPointerType
>()
10362 .getAddressSpace();
10363 LangAS AddrSpaceR
= RHSType
->getAs
<BlockPointerType
>()
10365 .getAddressSpace();
10366 Kind
= AddrSpaceL
!= AddrSpaceR
? CK_AddressSpaceConversion
: CK_BitCast
;
10367 return checkBlockPointerTypesForAssignment(*this, LHSType
, RHSType
);
10370 // int or null -> T^
10371 if (RHSType
->isIntegerType()) {
10372 Kind
= CK_IntegralToPointer
; // FIXME: null
10373 return IntToBlockPointer
;
10377 if (getLangOpts().ObjC
&& RHSType
->isObjCIdType()) {
10378 Kind
= CK_AnyPointerToBlockPointerCast
;
10383 if (const PointerType
*RHSPT
= RHSType
->getAs
<PointerType
>())
10384 if (RHSPT
->getPointeeType()->isVoidType()) {
10385 Kind
= CK_AnyPointerToBlockPointerCast
;
10389 return Incompatible
;
10392 // Conversions to Objective-C pointers.
10393 if (isa
<ObjCObjectPointerType
>(LHSType
)) {
10395 if (RHSType
->isObjCObjectPointerType()) {
10397 Sema::AssignConvertType result
=
10398 checkObjCPointerTypesForAssignment(*this, LHSType
, RHSType
);
10399 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10400 result
== Compatible
&&
10401 !CheckObjCARCUnavailableWeakConversion(OrigLHSType
, RHSType
))
10402 result
= IncompatibleObjCWeakRef
;
10406 // int or null -> A*
10407 if (RHSType
->isIntegerType()) {
10408 Kind
= CK_IntegralToPointer
; // FIXME: null
10409 return IntToPointer
;
10412 // In general, C pointers are not compatible with ObjC object pointers,
10413 // with two exceptions:
10414 if (isa
<PointerType
>(RHSType
)) {
10415 Kind
= CK_CPointerToObjCPointerCast
;
10417 // - conversions from 'void*'
10418 if (RHSType
->isVoidPointerType()) {
10422 // - conversions to 'Class' from its redefinition type
10423 if (LHSType
->isObjCClassType() &&
10424 Context
.hasSameType(RHSType
,
10425 Context
.getObjCClassRedefinitionType())) {
10429 return IncompatiblePointer
;
10432 // Only under strict condition T^ is compatible with an Objective-C pointer.
10433 if (RHSType
->isBlockPointerType() &&
10434 LHSType
->isBlockCompatibleObjCPointerType(Context
)) {
10436 maybeExtendBlockObject(RHS
);
10437 Kind
= CK_BlockPointerToObjCPointerCast
;
10441 return Incompatible
;
10444 // Conversion to nullptr_t (C23 only)
10445 if (getLangOpts().C23
&& LHSType
->isNullPtrType() &&
10446 RHS
.get()->isNullPointerConstant(Context
,
10447 Expr::NPC_ValueDependentIsNull
)) {
10448 // null -> nullptr_t
10449 Kind
= CK_NullToPointer
;
10453 // Conversions from pointers that are not covered by the above.
10454 if (isa
<PointerType
>(RHSType
)) {
10456 if (LHSType
== Context
.BoolTy
) {
10457 Kind
= CK_PointerToBoolean
;
10462 if (LHSType
->isIntegerType()) {
10463 Kind
= CK_PointerToIntegral
;
10464 return PointerToInt
;
10467 return Incompatible
;
10470 // Conversions from Objective-C pointers that are not covered by the above.
10471 if (isa
<ObjCObjectPointerType
>(RHSType
)) {
10473 if (LHSType
== Context
.BoolTy
) {
10474 Kind
= CK_PointerToBoolean
;
10479 if (LHSType
->isIntegerType()) {
10480 Kind
= CK_PointerToIntegral
;
10481 return PointerToInt
;
10484 return Incompatible
;
10487 // struct A -> struct B
10488 if (isa
<TagType
>(LHSType
) && isa
<TagType
>(RHSType
)) {
10489 if (Context
.typesAreCompatible(LHSType
, RHSType
)) {
10495 if (LHSType
->isSamplerT() && RHSType
->isIntegerType()) {
10496 Kind
= CK_IntToOCLSampler
;
10500 return Incompatible
;
10503 /// Constructs a transparent union from an expression that is
10504 /// used to initialize the transparent union.
10505 static void ConstructTransparentUnion(Sema
&S
, ASTContext
&C
,
10506 ExprResult
&EResult
, QualType UnionType
,
10507 FieldDecl
*Field
) {
10508 // Build an initializer list that designates the appropriate member
10509 // of the transparent union.
10510 Expr
*E
= EResult
.get();
10511 InitListExpr
*Initializer
= new (C
) InitListExpr(C
, SourceLocation(),
10512 E
, SourceLocation());
10513 Initializer
->setType(UnionType
);
10514 Initializer
->setInitializedFieldInUnion(Field
);
10516 // Build a compound literal constructing a value of the transparent
10517 // union type from this initializer list.
10518 TypeSourceInfo
*unionTInfo
= C
.getTrivialTypeSourceInfo(UnionType
);
10519 EResult
= new (C
) CompoundLiteralExpr(SourceLocation(), unionTInfo
, UnionType
,
10520 VK_PRValue
, Initializer
, false);
10523 Sema::AssignConvertType
10524 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType
,
10526 QualType RHSType
= RHS
.get()->getType();
10528 // If the ArgType is a Union type, we want to handle a potential
10529 // transparent_union GCC extension.
10530 const RecordType
*UT
= ArgType
->getAsUnionType();
10531 if (!UT
|| !UT
->getDecl()->hasAttr
<TransparentUnionAttr
>())
10532 return Incompatible
;
10534 // The field to initialize within the transparent union.
10535 RecordDecl
*UD
= UT
->getDecl();
10536 FieldDecl
*InitField
= nullptr;
10537 // It's compatible if the expression matches any of the fields.
10538 for (auto *it
: UD
->fields()) {
10539 if (it
->getType()->isPointerType()) {
10540 // If the transparent union contains a pointer type, we allow:
10542 // 2) null pointer constant
10543 if (RHSType
->isPointerType())
10544 if (RHSType
->castAs
<PointerType
>()->getPointeeType()->isVoidType()) {
10545 RHS
= ImpCastExprToType(RHS
.get(), it
->getType(), CK_BitCast
);
10550 if (RHS
.get()->isNullPointerConstant(Context
,
10551 Expr::NPC_ValueDependentIsNull
)) {
10552 RHS
= ImpCastExprToType(RHS
.get(), it
->getType(),
10560 if (CheckAssignmentConstraints(it
->getType(), RHS
, Kind
)
10562 RHS
= ImpCastExprToType(RHS
.get(), it
->getType(), Kind
);
10569 return Incompatible
;
10571 ConstructTransparentUnion(*this, Context
, RHS
, ArgType
, InitField
);
10575 Sema::AssignConvertType
10576 Sema::CheckSingleAssignmentConstraints(QualType LHSType
, ExprResult
&CallerRHS
,
10578 bool DiagnoseCFAudited
,
10580 // We need to be able to tell the caller whether we diagnosed a problem, if
10581 // they ask us to issue diagnostics.
10582 assert((ConvertRHS
|| !Diagnose
) && "can't indicate whether we diagnosed");
10584 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10585 // we can't avoid *all* modifications at the moment, so we need some somewhere
10586 // to put the updated value.
10587 ExprResult LocalRHS
= CallerRHS
;
10588 ExprResult
&RHS
= ConvertRHS
? CallerRHS
: LocalRHS
;
10590 if (const auto *LHSPtrType
= LHSType
->getAs
<PointerType
>()) {
10591 if (const auto *RHSPtrType
= RHS
.get()->getType()->getAs
<PointerType
>()) {
10592 if (RHSPtrType
->getPointeeType()->hasAttr(attr::NoDeref
) &&
10593 !LHSPtrType
->getPointeeType()->hasAttr(attr::NoDeref
)) {
10594 Diag(RHS
.get()->getExprLoc(),
10595 diag::warn_noderef_to_dereferenceable_pointer
)
10596 << RHS
.get()->getSourceRange();
10601 if (getLangOpts().CPlusPlus
) {
10602 if (!LHSType
->isRecordType() && !LHSType
->isAtomicType()) {
10603 // C++ 5.17p3: If the left operand is not of class type, the
10604 // expression is implicitly converted (C++ 4) to the
10605 // cv-unqualified type of the left operand.
10606 QualType RHSType
= RHS
.get()->getType();
10608 RHS
= PerformImplicitConversion(RHS
.get(), LHSType
.getUnqualifiedType(),
10611 ImplicitConversionSequence ICS
=
10612 TryImplicitConversion(RHS
.get(), LHSType
.getUnqualifiedType(),
10613 /*SuppressUserConversions=*/false,
10614 AllowedExplicit::None
,
10615 /*InOverloadResolution=*/false,
10617 /*AllowObjCWritebackConversion=*/false);
10618 if (ICS
.isFailure())
10619 return Incompatible
;
10620 RHS
= PerformImplicitConversion(RHS
.get(), LHSType
.getUnqualifiedType(),
10621 ICS
, AA_Assigning
);
10623 if (RHS
.isInvalid())
10624 return Incompatible
;
10625 Sema::AssignConvertType result
= Compatible
;
10626 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10627 !CheckObjCARCUnavailableWeakConversion(LHSType
, RHSType
))
10628 result
= IncompatibleObjCWeakRef
;
10632 // FIXME: Currently, we fall through and treat C++ classes like C
10634 // FIXME: We also fall through for atomics; not sure what should
10635 // happen there, though.
10636 } else if (RHS
.get()->getType() == Context
.OverloadTy
) {
10637 // As a set of extensions to C, we support overloading on functions. These
10638 // functions need to be resolved here.
10639 DeclAccessPair DAP
;
10640 if (FunctionDecl
*FD
= ResolveAddressOfOverloadedFunction(
10641 RHS
.get(), LHSType
, /*Complain=*/false, DAP
))
10642 RHS
= FixOverloadedFunctionReference(RHS
.get(), DAP
, FD
);
10644 return Incompatible
;
10647 // This check seems unnatural, however it is necessary to ensure the proper
10648 // conversion of functions/arrays. If the conversion were done for all
10649 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10650 // expressions that suppress this implicit conversion (&, sizeof). This needs
10651 // to happen before we check for null pointer conversions because C does not
10652 // undergo the same implicit conversions as C++ does above (by the calls to
10653 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10654 // lvalue to rvalue cast before checking for null pointer constraints. This
10655 // addresses code like: nullptr_t val; int *ptr; ptr = val;
10657 // Suppress this for references: C++ 8.5.3p5.
10658 if (!LHSType
->isReferenceType()) {
10659 // FIXME: We potentially allocate here even if ConvertRHS is false.
10660 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get(), Diagnose
);
10661 if (RHS
.isInvalid())
10662 return Incompatible
;
10665 // The constraints are expressed in terms of the atomic, qualified, or
10666 // unqualified type of the LHS.
10667 QualType LHSTypeAfterConversion
= LHSType
.getAtomicUnqualifiedType();
10669 // C99 6.5.16.1p1: the left operand is a pointer and the right is
10670 // a null pointer constant <C23>or its type is nullptr_t;</C23>.
10671 if ((LHSTypeAfterConversion
->isPointerType() ||
10672 LHSTypeAfterConversion
->isObjCObjectPointerType() ||
10673 LHSTypeAfterConversion
->isBlockPointerType()) &&
10674 ((getLangOpts().C23
&& RHS
.get()->getType()->isNullPtrType()) ||
10675 RHS
.get()->isNullPointerConstant(Context
,
10676 Expr::NPC_ValueDependentIsNull
))) {
10677 if (Diagnose
|| ConvertRHS
) {
10680 CheckPointerConversion(RHS
.get(), LHSType
, Kind
, Path
,
10681 /*IgnoreBaseAccess=*/false, Diagnose
);
10683 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, Kind
, VK_PRValue
, &Path
);
10687 // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
10688 // unqualified bool, and the right operand is a pointer or its type is
10690 if (getLangOpts().C23
&& LHSType
->isBooleanType() &&
10691 RHS
.get()->getType()->isNullPtrType()) {
10692 // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
10693 // only handles nullptr -> _Bool due to needing an extra conversion
10695 // We model this by converting from nullptr -> void * and then let the
10696 // conversion from void * -> _Bool happen naturally.
10697 if (Diagnose
|| ConvertRHS
) {
10700 CheckPointerConversion(RHS
.get(), Context
.VoidPtrTy
, Kind
, Path
,
10701 /*IgnoreBaseAccess=*/false, Diagnose
);
10703 RHS
= ImpCastExprToType(RHS
.get(), Context
.VoidPtrTy
, Kind
, VK_PRValue
,
10708 // OpenCL queue_t type assignment.
10709 if (LHSType
->isQueueT() && RHS
.get()->isNullPointerConstant(
10710 Context
, Expr::NPC_ValueDependentIsNull
)) {
10711 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
10716 Sema::AssignConvertType result
=
10717 CheckAssignmentConstraints(LHSType
, RHS
, Kind
, ConvertRHS
);
10719 // C99 6.5.16.1p2: The value of the right operand is converted to the
10720 // type of the assignment expression.
10721 // CheckAssignmentConstraints allows the left-hand side to be a reference,
10722 // so that we can use references in built-in functions even in C.
10723 // The getNonReferenceType() call makes sure that the resulting expression
10724 // does not have reference type.
10725 if (result
!= Incompatible
&& RHS
.get()->getType() != LHSType
) {
10726 QualType Ty
= LHSType
.getNonLValueExprType(Context
);
10727 Expr
*E
= RHS
.get();
10729 // Check for various Objective-C errors. If we are not reporting
10730 // diagnostics and just checking for errors, e.g., during overload
10731 // resolution, return Incompatible to indicate the failure.
10732 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10733 CheckObjCConversion(SourceRange(), Ty
, E
, CCK_ImplicitConversion
,
10734 Diagnose
, DiagnoseCFAudited
) != ACR_okay
) {
10736 return Incompatible
;
10738 if (getLangOpts().ObjC
&&
10739 (CheckObjCBridgeRelatedConversions(E
->getBeginLoc(), LHSType
,
10740 E
->getType(), E
, Diagnose
) ||
10741 CheckConversionToObjCLiteral(LHSType
, E
, Diagnose
))) {
10743 return Incompatible
;
10744 // Replace the expression with a corrected version and continue so we
10745 // can find further errors.
10751 RHS
= ImpCastExprToType(E
, Ty
, Kind
);
10758 /// The original operand to an operator, prior to the application of the usual
10759 /// arithmetic conversions and converting the arguments of a builtin operator
10761 struct OriginalOperand
{
10762 explicit OriginalOperand(Expr
*Op
) : Orig(Op
), Conversion(nullptr) {
10763 if (auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(Op
))
10764 Op
= MTE
->getSubExpr();
10765 if (auto *BTE
= dyn_cast
<CXXBindTemporaryExpr
>(Op
))
10766 Op
= BTE
->getSubExpr();
10767 if (auto *ICE
= dyn_cast
<ImplicitCastExpr
>(Op
)) {
10768 Orig
= ICE
->getSubExprAsWritten();
10769 Conversion
= ICE
->getConversionFunction();
10773 QualType
getType() const { return Orig
->getType(); }
10776 NamedDecl
*Conversion
;
10780 QualType
Sema::InvalidOperands(SourceLocation Loc
, ExprResult
&LHS
,
10782 OriginalOperand
OrigLHS(LHS
.get()), OrigRHS(RHS
.get());
10784 Diag(Loc
, diag::err_typecheck_invalid_operands
)
10785 << OrigLHS
.getType() << OrigRHS
.getType()
10786 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
10788 // If a user-defined conversion was applied to either of the operands prior
10789 // to applying the built-in operator rules, tell the user about it.
10790 if (OrigLHS
.Conversion
) {
10791 Diag(OrigLHS
.Conversion
->getLocation(),
10792 diag::note_typecheck_invalid_operands_converted
)
10793 << 0 << LHS
.get()->getType();
10795 if (OrigRHS
.Conversion
) {
10796 Diag(OrigRHS
.Conversion
->getLocation(),
10797 diag::note_typecheck_invalid_operands_converted
)
10798 << 1 << RHS
.get()->getType();
10804 // Diagnose cases where a scalar was implicitly converted to a vector and
10805 // diagnose the underlying types. Otherwise, diagnose the error
10806 // as invalid vector logical operands for non-C++ cases.
10807 QualType
Sema::InvalidLogicalVectorOperands(SourceLocation Loc
, ExprResult
&LHS
,
10809 QualType LHSType
= LHS
.get()->IgnoreImpCasts()->getType();
10810 QualType RHSType
= RHS
.get()->IgnoreImpCasts()->getType();
10812 bool LHSNatVec
= LHSType
->isVectorType();
10813 bool RHSNatVec
= RHSType
->isVectorType();
10815 if (!(LHSNatVec
&& RHSNatVec
)) {
10816 Expr
*Vector
= LHSNatVec
? LHS
.get() : RHS
.get();
10817 Expr
*NonVector
= !LHSNatVec
? LHS
.get() : RHS
.get();
10818 Diag(Loc
, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict
)
10819 << 0 << Vector
->getType() << NonVector
->IgnoreImpCasts()->getType()
10820 << Vector
->getSourceRange();
10824 Diag(Loc
, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict
)
10825 << 1 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
10826 << RHS
.get()->getSourceRange();
10831 /// Try to convert a value of non-vector type to a vector type by converting
10832 /// the type to the element type of the vector and then performing a splat.
10833 /// If the language is OpenCL, we only use conversions that promote scalar
10834 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10835 /// for float->int.
10837 /// OpenCL V2.0 6.2.6.p2:
10838 /// An error shall occur if any scalar operand type has greater rank
10839 /// than the type of the vector element.
10841 /// \param scalar - if non-null, actually perform the conversions
10842 /// \return true if the operation fails (but without diagnosing the failure)
10843 static bool tryVectorConvertAndSplat(Sema
&S
, ExprResult
*scalar
,
10845 QualType vectorEltTy
,
10847 unsigned &DiagID
) {
10848 // The conversion to apply to the scalar before splatting it,
10850 CastKind scalarCast
= CK_NoOp
;
10852 if (vectorEltTy
->isIntegralType(S
.Context
)) {
10853 if (S
.getLangOpts().OpenCL
&& (scalarTy
->isRealFloatingType() ||
10854 (scalarTy
->isIntegerType() &&
10855 S
.Context
.getIntegerTypeOrder(vectorEltTy
, scalarTy
) < 0))) {
10856 DiagID
= diag::err_opencl_scalar_type_rank_greater_than_vector_type
;
10859 if (!scalarTy
->isIntegralType(S
.Context
))
10861 scalarCast
= CK_IntegralCast
;
10862 } else if (vectorEltTy
->isRealFloatingType()) {
10863 if (scalarTy
->isRealFloatingType()) {
10864 if (S
.getLangOpts().OpenCL
&&
10865 S
.Context
.getFloatingTypeOrder(vectorEltTy
, scalarTy
) < 0) {
10866 DiagID
= diag::err_opencl_scalar_type_rank_greater_than_vector_type
;
10869 scalarCast
= CK_FloatingCast
;
10871 else if (scalarTy
->isIntegralType(S
.Context
))
10872 scalarCast
= CK_IntegralToFloating
;
10879 // Adjust scalar if desired.
10881 if (scalarCast
!= CK_NoOp
)
10882 *scalar
= S
.ImpCastExprToType(scalar
->get(), vectorEltTy
, scalarCast
);
10883 *scalar
= S
.ImpCastExprToType(scalar
->get(), vectorTy
, CK_VectorSplat
);
10888 /// Convert vector E to a vector with the same number of elements but different
10890 static ExprResult
convertVector(Expr
*E
, QualType ElementType
, Sema
&S
) {
10891 const auto *VecTy
= E
->getType()->getAs
<VectorType
>();
10892 assert(VecTy
&& "Expression E must be a vector");
10893 QualType NewVecTy
=
10894 VecTy
->isExtVectorType()
10895 ? S
.Context
.getExtVectorType(ElementType
, VecTy
->getNumElements())
10896 : S
.Context
.getVectorType(ElementType
, VecTy
->getNumElements(),
10897 VecTy
->getVectorKind());
10899 // Look through the implicit cast. Return the subexpression if its type is
10901 if (auto *ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
10902 if (ICE
->getSubExpr()->getType() == NewVecTy
)
10903 return ICE
->getSubExpr();
10905 auto Cast
= ElementType
->isIntegerType() ? CK_IntegralCast
: CK_FloatingCast
;
10906 return S
.ImpCastExprToType(E
, NewVecTy
, Cast
);
10909 /// Test if a (constant) integer Int can be casted to another integer type
10910 /// IntTy without losing precision.
10911 static bool canConvertIntToOtherIntTy(Sema
&S
, ExprResult
*Int
,
10912 QualType OtherIntTy
) {
10913 QualType IntTy
= Int
->get()->getType().getUnqualifiedType();
10915 // Reject cases where the value of the Int is unknown as that would
10916 // possibly cause truncation, but accept cases where the scalar can be
10917 // demoted without loss of precision.
10918 Expr::EvalResult EVResult
;
10919 bool CstInt
= Int
->get()->EvaluateAsInt(EVResult
, S
.Context
);
10920 int Order
= S
.Context
.getIntegerTypeOrder(OtherIntTy
, IntTy
);
10921 bool IntSigned
= IntTy
->hasSignedIntegerRepresentation();
10922 bool OtherIntSigned
= OtherIntTy
->hasSignedIntegerRepresentation();
10925 // If the scalar is constant and is of a higher order and has more active
10926 // bits that the vector element type, reject it.
10927 llvm::APSInt Result
= EVResult
.Val
.getInt();
10928 unsigned NumBits
= IntSigned
10929 ? (Result
.isNegative() ? Result
.getSignificantBits()
10930 : Result
.getActiveBits())
10931 : Result
.getActiveBits();
10932 if (Order
< 0 && S
.Context
.getIntWidth(OtherIntTy
) < NumBits
)
10935 // If the signedness of the scalar type and the vector element type
10936 // differs and the number of bits is greater than that of the vector
10937 // element reject it.
10938 return (IntSigned
!= OtherIntSigned
&&
10939 NumBits
> S
.Context
.getIntWidth(OtherIntTy
));
10942 // Reject cases where the value of the scalar is not constant and it's
10943 // order is greater than that of the vector element type.
10944 return (Order
< 0);
10947 /// Test if a (constant) integer Int can be casted to floating point type
10948 /// FloatTy without losing precision.
10949 static bool canConvertIntTyToFloatTy(Sema
&S
, ExprResult
*Int
,
10950 QualType FloatTy
) {
10951 QualType IntTy
= Int
->get()->getType().getUnqualifiedType();
10953 // Determine if the integer constant can be expressed as a floating point
10954 // number of the appropriate type.
10955 Expr::EvalResult EVResult
;
10956 bool CstInt
= Int
->get()->EvaluateAsInt(EVResult
, S
.Context
);
10960 // Reject constants that would be truncated if they were converted to
10961 // the floating point type. Test by simple to/from conversion.
10962 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10963 // could be avoided if there was a convertFromAPInt method
10964 // which could signal back if implicit truncation occurred.
10965 llvm::APSInt Result
= EVResult
.Val
.getInt();
10966 llvm::APFloat
Float(S
.Context
.getFloatTypeSemantics(FloatTy
));
10967 Float
.convertFromAPInt(Result
, IntTy
->hasSignedIntegerRepresentation(),
10968 llvm::APFloat::rmTowardZero
);
10969 llvm::APSInt
ConvertBack(S
.Context
.getIntWidth(IntTy
),
10970 !IntTy
->hasSignedIntegerRepresentation());
10971 bool Ignored
= false;
10972 Float
.convertToInteger(ConvertBack
, llvm::APFloat::rmNearestTiesToEven
,
10974 if (Result
!= ConvertBack
)
10977 // Reject types that cannot be fully encoded into the mantissa of
10979 Bits
= S
.Context
.getTypeSize(IntTy
);
10980 unsigned FloatPrec
= llvm::APFloat::semanticsPrecision(
10981 S
.Context
.getFloatTypeSemantics(FloatTy
));
10982 if (Bits
> FloatPrec
)
10989 /// Attempt to convert and splat Scalar into a vector whose types matches
10990 /// Vector following GCC conversion rules. The rule is that implicit
10991 /// conversion can occur when Scalar can be casted to match Vector's element
10992 /// type without causing truncation of Scalar.
10993 static bool tryGCCVectorConvertAndSplat(Sema
&S
, ExprResult
*Scalar
,
10994 ExprResult
*Vector
) {
10995 QualType ScalarTy
= Scalar
->get()->getType().getUnqualifiedType();
10996 QualType VectorTy
= Vector
->get()->getType().getUnqualifiedType();
10997 QualType VectorEltTy
;
10999 if (const auto *VT
= VectorTy
->getAs
<VectorType
>()) {
11000 assert(!isa
<ExtVectorType
>(VT
) &&
11001 "ExtVectorTypes should not be handled here!");
11002 VectorEltTy
= VT
->getElementType();
11003 } else if (VectorTy
->isSveVLSBuiltinType()) {
11005 VectorTy
->castAs
<BuiltinType
>()->getSveEltType(S
.getASTContext());
11007 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
11010 // Reject cases where the vector element type or the scalar element type are
11011 // not integral or floating point types.
11012 if (!VectorEltTy
->isArithmeticType() || !ScalarTy
->isArithmeticType())
11015 // The conversion to apply to the scalar before splatting it,
11017 CastKind ScalarCast
= CK_NoOp
;
11019 // Accept cases where the vector elements are integers and the scalar is
11021 // FIXME: Notionally if the scalar was a floating point value with a precise
11022 // integral representation, we could cast it to an appropriate integer
11023 // type and then perform the rest of the checks here. GCC will perform
11024 // this conversion in some cases as determined by the input language.
11025 // We should accept it on a language independent basis.
11026 if (VectorEltTy
->isIntegralType(S
.Context
) &&
11027 ScalarTy
->isIntegralType(S
.Context
) &&
11028 S
.Context
.getIntegerTypeOrder(VectorEltTy
, ScalarTy
)) {
11030 if (canConvertIntToOtherIntTy(S
, Scalar
, VectorEltTy
))
11033 ScalarCast
= CK_IntegralCast
;
11034 } else if (VectorEltTy
->isIntegralType(S
.Context
) &&
11035 ScalarTy
->isRealFloatingType()) {
11036 if (S
.Context
.getTypeSize(VectorEltTy
) == S
.Context
.getTypeSize(ScalarTy
))
11037 ScalarCast
= CK_FloatingToIntegral
;
11040 } else if (VectorEltTy
->isRealFloatingType()) {
11041 if (ScalarTy
->isRealFloatingType()) {
11043 // Reject cases where the scalar type is not a constant and has a higher
11044 // Order than the vector element type.
11045 llvm::APFloat
Result(0.0);
11047 // Determine whether this is a constant scalar. In the event that the
11048 // value is dependent (and thus cannot be evaluated by the constant
11049 // evaluator), skip the evaluation. This will then diagnose once the
11050 // expression is instantiated.
11051 bool CstScalar
= Scalar
->get()->isValueDependent() ||
11052 Scalar
->get()->EvaluateAsFloat(Result
, S
.Context
);
11053 int Order
= S
.Context
.getFloatingTypeOrder(VectorEltTy
, ScalarTy
);
11054 if (!CstScalar
&& Order
< 0)
11057 // If the scalar cannot be safely casted to the vector element type,
11060 bool Truncated
= false;
11061 Result
.convert(S
.Context
.getFloatTypeSemantics(VectorEltTy
),
11062 llvm::APFloat::rmNearestTiesToEven
, &Truncated
);
11067 ScalarCast
= CK_FloatingCast
;
11068 } else if (ScalarTy
->isIntegralType(S
.Context
)) {
11069 if (canConvertIntTyToFloatTy(S
, Scalar
, VectorEltTy
))
11072 ScalarCast
= CK_IntegralToFloating
;
11075 } else if (ScalarTy
->isEnumeralType())
11078 // Adjust scalar if desired.
11079 if (ScalarCast
!= CK_NoOp
)
11080 *Scalar
= S
.ImpCastExprToType(Scalar
->get(), VectorEltTy
, ScalarCast
);
11081 *Scalar
= S
.ImpCastExprToType(Scalar
->get(), VectorTy
, CK_VectorSplat
);
11085 QualType
Sema::CheckVectorOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11086 SourceLocation Loc
, bool IsCompAssign
,
11087 bool AllowBothBool
,
11088 bool AllowBoolConversions
,
11089 bool AllowBoolOperation
,
11090 bool ReportInvalid
) {
11091 if (!IsCompAssign
) {
11092 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
11093 if (LHS
.isInvalid())
11096 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
11097 if (RHS
.isInvalid())
11100 // For conversion purposes, we ignore any qualifiers.
11101 // For example, "const float" and "float" are equivalent.
11102 QualType LHSType
= LHS
.get()->getType().getUnqualifiedType();
11103 QualType RHSType
= RHS
.get()->getType().getUnqualifiedType();
11105 const VectorType
*LHSVecType
= LHSType
->getAs
<VectorType
>();
11106 const VectorType
*RHSVecType
= RHSType
->getAs
<VectorType
>();
11107 assert(LHSVecType
|| RHSVecType
);
11109 // AltiVec-style "vector bool op vector bool" combinations are allowed
11110 // for some operators but not others.
11111 if (!AllowBothBool
&& LHSVecType
&&
11112 LHSVecType
->getVectorKind() == VectorKind::AltiVecBool
&& RHSVecType
&&
11113 RHSVecType
->getVectorKind() == VectorKind::AltiVecBool
)
11114 return ReportInvalid
? InvalidOperands(Loc
, LHS
, RHS
) : QualType();
11116 // This operation may not be performed on boolean vectors.
11117 if (!AllowBoolOperation
&&
11118 (LHSType
->isExtVectorBoolType() || RHSType
->isExtVectorBoolType()))
11119 return ReportInvalid
? InvalidOperands(Loc
, LHS
, RHS
) : QualType();
11121 // If the vector types are identical, return.
11122 if (Context
.hasSameType(LHSType
, RHSType
))
11123 return Context
.getCommonSugaredType(LHSType
, RHSType
);
11125 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
11126 if (LHSVecType
&& RHSVecType
&&
11127 Context
.areCompatibleVectorTypes(LHSType
, RHSType
)) {
11128 if (isa
<ExtVectorType
>(LHSVecType
)) {
11129 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
11134 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_BitCast
);
11138 // AllowBoolConversions says that bool and non-bool AltiVec vectors
11139 // can be mixed, with the result being the non-bool type. The non-bool
11140 // operand must have integer element type.
11141 if (AllowBoolConversions
&& LHSVecType
&& RHSVecType
&&
11142 LHSVecType
->getNumElements() == RHSVecType
->getNumElements() &&
11143 (Context
.getTypeSize(LHSVecType
->getElementType()) ==
11144 Context
.getTypeSize(RHSVecType
->getElementType()))) {
11145 if (LHSVecType
->getVectorKind() == VectorKind::AltiVecVector
&&
11146 LHSVecType
->getElementType()->isIntegerType() &&
11147 RHSVecType
->getVectorKind() == VectorKind::AltiVecBool
) {
11148 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
11151 if (!IsCompAssign
&&
11152 LHSVecType
->getVectorKind() == VectorKind::AltiVecBool
&&
11153 RHSVecType
->getVectorKind() == VectorKind::AltiVecVector
&&
11154 RHSVecType
->getElementType()->isIntegerType()) {
11155 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_BitCast
);
11160 // Expressions containing fixed-length and sizeless SVE/RVV vectors are
11161 // invalid since the ambiguity can affect the ABI.
11162 auto IsSveRVVConversion
= [](QualType FirstType
, QualType SecondType
,
11163 unsigned &SVEorRVV
) {
11164 const VectorType
*VecType
= SecondType
->getAs
<VectorType
>();
11166 if (FirstType
->isSizelessBuiltinType() && VecType
) {
11167 if (VecType
->getVectorKind() == VectorKind::SveFixedLengthData
||
11168 VecType
->getVectorKind() == VectorKind::SveFixedLengthPredicate
)
11170 if (VecType
->getVectorKind() == VectorKind::RVVFixedLengthData
) {
11180 if (IsSveRVVConversion(LHSType
, RHSType
, SVEorRVV
) ||
11181 IsSveRVVConversion(RHSType
, LHSType
, SVEorRVV
)) {
11182 Diag(Loc
, diag::err_typecheck_sve_rvv_ambiguous
)
11183 << SVEorRVV
<< LHSType
<< RHSType
;
11187 // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
11188 // invalid since the ambiguity can affect the ABI.
11189 auto IsSveRVVGnuConversion
= [](QualType FirstType
, QualType SecondType
,
11190 unsigned &SVEorRVV
) {
11191 const VectorType
*FirstVecType
= FirstType
->getAs
<VectorType
>();
11192 const VectorType
*SecondVecType
= SecondType
->getAs
<VectorType
>();
11195 if (FirstVecType
&& SecondVecType
) {
11196 if (FirstVecType
->getVectorKind() == VectorKind::Generic
) {
11197 if (SecondVecType
->getVectorKind() == VectorKind::SveFixedLengthData
||
11198 SecondVecType
->getVectorKind() ==
11199 VectorKind::SveFixedLengthPredicate
)
11201 if (SecondVecType
->getVectorKind() == VectorKind::RVVFixedLengthData
) {
11209 if (SecondVecType
&&
11210 SecondVecType
->getVectorKind() == VectorKind::Generic
) {
11211 if (FirstType
->isSVESizelessBuiltinType())
11213 if (FirstType
->isRVVSizelessBuiltinType()) {
11222 if (IsSveRVVGnuConversion(LHSType
, RHSType
, SVEorRVV
) ||
11223 IsSveRVVGnuConversion(RHSType
, LHSType
, SVEorRVV
)) {
11224 Diag(Loc
, diag::err_typecheck_sve_rvv_gnu_ambiguous
)
11225 << SVEorRVV
<< LHSType
<< RHSType
;
11229 // If there's a vector type and a scalar, try to convert the scalar to
11230 // the vector element type and splat.
11231 unsigned DiagID
= diag::err_typecheck_vector_not_convertable
;
11233 if (isa
<ExtVectorType
>(LHSVecType
)) {
11234 if (!tryVectorConvertAndSplat(*this, &RHS
, RHSType
,
11235 LHSVecType
->getElementType(), LHSType
,
11239 if (!tryGCCVectorConvertAndSplat(*this, &RHS
, &LHS
))
11244 if (isa
<ExtVectorType
>(RHSVecType
)) {
11245 if (!tryVectorConvertAndSplat(*this, (IsCompAssign
? nullptr : &LHS
),
11246 LHSType
, RHSVecType
->getElementType(),
11250 if (LHS
.get()->isLValue() ||
11251 !tryGCCVectorConvertAndSplat(*this, &LHS
, &RHS
))
11256 // FIXME: The code below also handles conversion between vectors and
11257 // non-scalars, we should break this down into fine grained specific checks
11258 // and emit proper diagnostics.
11259 QualType VecType
= LHSVecType
? LHSType
: RHSType
;
11260 const VectorType
*VT
= LHSVecType
? LHSVecType
: RHSVecType
;
11261 QualType OtherType
= LHSVecType
? RHSType
: LHSType
;
11262 ExprResult
*OtherExpr
= LHSVecType
? &RHS
: &LHS
;
11263 if (isLaxVectorConversion(OtherType
, VecType
)) {
11264 if (Context
.getTargetInfo().getTriple().isPPC() &&
11265 anyAltivecTypes(RHSType
, LHSType
) &&
11266 !Context
.areCompatibleVectorTypes(RHSType
, LHSType
))
11267 Diag(Loc
, diag::warn_deprecated_lax_vec_conv_all
) << RHSType
<< LHSType
;
11268 // If we're allowing lax vector conversions, only the total (data) size
11269 // needs to be the same. For non compound assignment, if one of the types is
11270 // scalar, the result is always the vector type.
11271 if (!IsCompAssign
) {
11272 *OtherExpr
= ImpCastExprToType(OtherExpr
->get(), VecType
, CK_BitCast
);
11274 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
11275 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
11276 // type. Note that this is already done by non-compound assignments in
11277 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
11278 // <1 x T> -> T. The result is also a vector type.
11279 } else if (OtherType
->isExtVectorType() || OtherType
->isVectorType() ||
11280 (OtherType
->isScalarType() && VT
->getNumElements() == 1)) {
11281 ExprResult
*RHSExpr
= &RHS
;
11282 *RHSExpr
= ImpCastExprToType(RHSExpr
->get(), LHSType
, CK_BitCast
);
11287 // Okay, the expression is invalid.
11289 // If there's a non-vector, non-real operand, diagnose that.
11290 if ((!RHSVecType
&& !RHSType
->isRealType()) ||
11291 (!LHSVecType
&& !LHSType
->isRealType())) {
11292 Diag(Loc
, diag::err_typecheck_vector_not_convertable_non_scalar
)
11293 << LHSType
<< RHSType
11294 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
11298 // OpenCL V1.1 6.2.6.p1:
11299 // If the operands are of more than one vector type, then an error shall
11300 // occur. Implicit conversions between vector types are not permitted, per
11302 if (getLangOpts().OpenCL
&&
11303 RHSVecType
&& isa
<ExtVectorType
>(RHSVecType
) &&
11304 LHSVecType
&& isa
<ExtVectorType
>(LHSVecType
)) {
11305 Diag(Loc
, diag::err_opencl_implicit_vector_conversion
) << LHSType
11311 // If there is a vector type that is not a ExtVector and a scalar, we reach
11312 // this point if scalar could not be converted to the vector's element type
11313 // without truncation.
11314 if ((RHSVecType
&& !isa
<ExtVectorType
>(RHSVecType
)) ||
11315 (LHSVecType
&& !isa
<ExtVectorType
>(LHSVecType
))) {
11316 QualType Scalar
= LHSVecType
? RHSType
: LHSType
;
11317 QualType Vector
= LHSVecType
? LHSType
: RHSType
;
11318 unsigned ScalarOrVector
= LHSVecType
&& RHSVecType
? 1 : 0;
11320 diag::err_typecheck_vector_not_convertable_implict_truncation
)
11321 << ScalarOrVector
<< Scalar
<< Vector
;
11326 // Otherwise, use the generic diagnostic.
11328 << LHSType
<< RHSType
11329 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
11333 QualType
Sema::CheckSizelessVectorOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11334 SourceLocation Loc
,
11336 ArithConvKind OperationKind
) {
11337 if (!IsCompAssign
) {
11338 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
11339 if (LHS
.isInvalid())
11342 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
11343 if (RHS
.isInvalid())
11346 QualType LHSType
= LHS
.get()->getType().getUnqualifiedType();
11347 QualType RHSType
= RHS
.get()->getType().getUnqualifiedType();
11349 const BuiltinType
*LHSBuiltinTy
= LHSType
->getAs
<BuiltinType
>();
11350 const BuiltinType
*RHSBuiltinTy
= RHSType
->getAs
<BuiltinType
>();
11352 unsigned DiagID
= diag::err_typecheck_invalid_operands
;
11353 if ((OperationKind
== ACK_Arithmetic
) &&
11354 ((LHSBuiltinTy
&& LHSBuiltinTy
->isSVEBool()) ||
11355 (RHSBuiltinTy
&& RHSBuiltinTy
->isSVEBool()))) {
11356 Diag(Loc
, DiagID
) << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
11357 << RHS
.get()->getSourceRange();
11361 if (Context
.hasSameType(LHSType
, RHSType
))
11364 if (LHSType
->isSveVLSBuiltinType() && !RHSType
->isSveVLSBuiltinType()) {
11365 if (!tryGCCVectorConvertAndSplat(*this, &RHS
, &LHS
))
11368 if (RHSType
->isSveVLSBuiltinType() && !LHSType
->isSveVLSBuiltinType()) {
11369 if (LHS
.get()->isLValue() ||
11370 !tryGCCVectorConvertAndSplat(*this, &LHS
, &RHS
))
11374 if ((!LHSType
->isSveVLSBuiltinType() && !LHSType
->isRealType()) ||
11375 (!RHSType
->isSveVLSBuiltinType() && !RHSType
->isRealType())) {
11376 Diag(Loc
, diag::err_typecheck_vector_not_convertable_non_scalar
)
11377 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
11378 << RHS
.get()->getSourceRange();
11382 if (LHSType
->isSveVLSBuiltinType() && RHSType
->isSveVLSBuiltinType() &&
11383 Context
.getBuiltinVectorTypeInfo(LHSBuiltinTy
).EC
!=
11384 Context
.getBuiltinVectorTypeInfo(RHSBuiltinTy
).EC
) {
11385 Diag(Loc
, diag::err_typecheck_vector_lengths_not_equal
)
11386 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
11387 << RHS
.get()->getSourceRange();
11391 if (LHSType
->isSveVLSBuiltinType() || RHSType
->isSveVLSBuiltinType()) {
11392 QualType Scalar
= LHSType
->isSveVLSBuiltinType() ? RHSType
: LHSType
;
11393 QualType Vector
= LHSType
->isSveVLSBuiltinType() ? LHSType
: RHSType
;
11394 bool ScalarOrVector
=
11395 LHSType
->isSveVLSBuiltinType() && RHSType
->isSveVLSBuiltinType();
11397 Diag(Loc
, diag::err_typecheck_vector_not_convertable_implict_truncation
)
11398 << ScalarOrVector
<< Scalar
<< Vector
;
11403 Diag(Loc
, DiagID
) << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
11404 << RHS
.get()->getSourceRange();
11408 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
11409 // expression. These are mainly cases where the null pointer is used as an
11410 // integer instead of a pointer.
11411 static void checkArithmeticNull(Sema
&S
, ExprResult
&LHS
, ExprResult
&RHS
,
11412 SourceLocation Loc
, bool IsCompare
) {
11413 // The canonical way to check for a GNU null is with isNullPointerConstant,
11414 // but we use a bit of a hack here for speed; this is a relatively
11415 // hot path, and isNullPointerConstant is slow.
11416 bool LHSNull
= isa
<GNUNullExpr
>(LHS
.get()->IgnoreParenImpCasts());
11417 bool RHSNull
= isa
<GNUNullExpr
>(RHS
.get()->IgnoreParenImpCasts());
11419 QualType NonNullType
= LHSNull
? RHS
.get()->getType() : LHS
.get()->getType();
11421 // Avoid analyzing cases where the result will either be invalid (and
11422 // diagnosed as such) or entirely valid and not something to warn about.
11423 if ((!LHSNull
&& !RHSNull
) || NonNullType
->isBlockPointerType() ||
11424 NonNullType
->isMemberPointerType() || NonNullType
->isFunctionType())
11427 // Comparison operations would not make sense with a null pointer no matter
11428 // what the other expression is.
11430 S
.Diag(Loc
, diag::warn_null_in_arithmetic_operation
)
11431 << (LHSNull
? LHS
.get()->getSourceRange() : SourceRange())
11432 << (RHSNull
? RHS
.get()->getSourceRange() : SourceRange());
11436 // The rest of the operations only make sense with a null pointer
11437 // if the other expression is a pointer.
11438 if (LHSNull
== RHSNull
|| NonNullType
->isAnyPointerType() ||
11439 NonNullType
->canDecayToPointerType())
11442 S
.Diag(Loc
, diag::warn_null_in_comparison_operation
)
11443 << LHSNull
/* LHS is NULL */ << NonNullType
11444 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
11447 static void DiagnoseDivisionSizeofPointerOrArray(Sema
&S
, Expr
*LHS
, Expr
*RHS
,
11448 SourceLocation Loc
) {
11449 const auto *LUE
= dyn_cast
<UnaryExprOrTypeTraitExpr
>(LHS
);
11450 const auto *RUE
= dyn_cast
<UnaryExprOrTypeTraitExpr
>(RHS
);
11453 if (LUE
->getKind() != UETT_SizeOf
|| LUE
->isArgumentType() ||
11454 RUE
->getKind() != UETT_SizeOf
)
11457 const Expr
*LHSArg
= LUE
->getArgumentExpr()->IgnoreParens();
11458 QualType LHSTy
= LHSArg
->getType();
11461 if (RUE
->isArgumentType())
11462 RHSTy
= RUE
->getArgumentType().getNonReferenceType();
11464 RHSTy
= RUE
->getArgumentExpr()->IgnoreParens()->getType();
11466 if (LHSTy
->isPointerType() && !RHSTy
->isPointerType()) {
11467 if (!S
.Context
.hasSameUnqualifiedType(LHSTy
->getPointeeType(), RHSTy
))
11470 S
.Diag(Loc
, diag::warn_division_sizeof_ptr
) << LHS
<< LHS
->getSourceRange();
11471 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(LHSArg
)) {
11472 if (const ValueDecl
*LHSArgDecl
= DRE
->getDecl())
11473 S
.Diag(LHSArgDecl
->getLocation(), diag::note_pointer_declared_here
)
11476 } else if (const auto *ArrayTy
= S
.Context
.getAsArrayType(LHSTy
)) {
11477 QualType ArrayElemTy
= ArrayTy
->getElementType();
11478 if (ArrayElemTy
!= S
.Context
.getBaseElementType(ArrayTy
) ||
11479 ArrayElemTy
->isDependentType() || RHSTy
->isDependentType() ||
11480 RHSTy
->isReferenceType() || ArrayElemTy
->isCharType() ||
11481 S
.Context
.getTypeSize(ArrayElemTy
) == S
.Context
.getTypeSize(RHSTy
))
11483 S
.Diag(Loc
, diag::warn_division_sizeof_array
)
11484 << LHSArg
->getSourceRange() << ArrayElemTy
<< RHSTy
;
11485 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(LHSArg
)) {
11486 if (const ValueDecl
*LHSArgDecl
= DRE
->getDecl())
11487 S
.Diag(LHSArgDecl
->getLocation(), diag::note_array_declared_here
)
11491 S
.Diag(Loc
, diag::note_precedence_silence
) << RHS
;
11495 static void DiagnoseBadDivideOrRemainderValues(Sema
& S
, ExprResult
&LHS
,
11497 SourceLocation Loc
, bool IsDiv
) {
11498 // Check for division/remainder by zero.
11499 Expr::EvalResult RHSValue
;
11500 if (!RHS
.get()->isValueDependent() &&
11501 RHS
.get()->EvaluateAsInt(RHSValue
, S
.Context
) &&
11502 RHSValue
.Val
.getInt() == 0)
11503 S
.DiagRuntimeBehavior(Loc
, RHS
.get(),
11504 S
.PDiag(diag::warn_remainder_division_by_zero
)
11505 << IsDiv
<< RHS
.get()->getSourceRange());
11508 QualType
Sema::CheckMultiplyDivideOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11509 SourceLocation Loc
,
11510 bool IsCompAssign
, bool IsDiv
) {
11511 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
11513 QualType LHSTy
= LHS
.get()->getType();
11514 QualType RHSTy
= RHS
.get()->getType();
11515 if (LHSTy
->isVectorType() || RHSTy
->isVectorType())
11516 return CheckVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
11517 /*AllowBothBool*/ getLangOpts().AltiVec
,
11518 /*AllowBoolConversions*/ false,
11519 /*AllowBooleanOperation*/ false,
11520 /*ReportInvalid*/ true);
11521 if (LHSTy
->isSveVLSBuiltinType() || RHSTy
->isSveVLSBuiltinType())
11522 return CheckSizelessVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
11525 (LHSTy
->isConstantMatrixType() || RHSTy
->isConstantMatrixType()))
11526 return CheckMatrixMultiplyOperands(LHS
, RHS
, Loc
, IsCompAssign
);
11527 // For division, only matrix-by-scalar is supported. Other combinations with
11528 // matrix types are invalid.
11529 if (IsDiv
&& LHSTy
->isConstantMatrixType() && RHSTy
->isArithmeticType())
11530 return CheckMatrixElementwiseOperands(LHS
, RHS
, Loc
, IsCompAssign
);
11532 QualType compType
= UsualArithmeticConversions(
11533 LHS
, RHS
, Loc
, IsCompAssign
? ACK_CompAssign
: ACK_Arithmetic
);
11534 if (LHS
.isInvalid() || RHS
.isInvalid())
11538 if (compType
.isNull() || !compType
->isArithmeticType())
11539 return InvalidOperands(Loc
, LHS
, RHS
);
11541 DiagnoseBadDivideOrRemainderValues(*this, LHS
, RHS
, Loc
, IsDiv
);
11542 DiagnoseDivisionSizeofPointerOrArray(*this, LHS
.get(), RHS
.get(), Loc
);
11547 QualType
Sema::CheckRemainderOperands(
11548 ExprResult
&LHS
, ExprResult
&RHS
, SourceLocation Loc
, bool IsCompAssign
) {
11549 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
11551 if (LHS
.get()->getType()->isVectorType() ||
11552 RHS
.get()->getType()->isVectorType()) {
11553 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
11554 RHS
.get()->getType()->hasIntegerRepresentation())
11555 return CheckVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
11556 /*AllowBothBool*/ getLangOpts().AltiVec
,
11557 /*AllowBoolConversions*/ false,
11558 /*AllowBooleanOperation*/ false,
11559 /*ReportInvalid*/ true);
11560 return InvalidOperands(Loc
, LHS
, RHS
);
11563 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
11564 RHS
.get()->getType()->isSveVLSBuiltinType()) {
11565 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
11566 RHS
.get()->getType()->hasIntegerRepresentation())
11567 return CheckSizelessVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
11570 return InvalidOperands(Loc
, LHS
, RHS
);
11573 QualType compType
= UsualArithmeticConversions(
11574 LHS
, RHS
, Loc
, IsCompAssign
? ACK_CompAssign
: ACK_Arithmetic
);
11575 if (LHS
.isInvalid() || RHS
.isInvalid())
11578 if (compType
.isNull() || !compType
->isIntegerType())
11579 return InvalidOperands(Loc
, LHS
, RHS
);
11580 DiagnoseBadDivideOrRemainderValues(*this, LHS
, RHS
, Loc
, false /* IsDiv */);
11584 /// Diagnose invalid arithmetic on two void pointers.
11585 static void diagnoseArithmeticOnTwoVoidPointers(Sema
&S
, SourceLocation Loc
,
11586 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11587 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus
11588 ? diag::err_typecheck_pointer_arith_void_type
11589 : diag::ext_gnu_void_ptr
)
11590 << 1 /* two pointers */ << LHSExpr
->getSourceRange()
11591 << RHSExpr
->getSourceRange();
11594 /// Diagnose invalid arithmetic on a void pointer.
11595 static void diagnoseArithmeticOnVoidPointer(Sema
&S
, SourceLocation Loc
,
11597 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus
11598 ? diag::err_typecheck_pointer_arith_void_type
11599 : diag::ext_gnu_void_ptr
)
11600 << 0 /* one pointer */ << Pointer
->getSourceRange();
11603 /// Diagnose invalid arithmetic on a null pointer.
11605 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11606 /// idiom, which we recognize as a GNU extension.
11608 static void diagnoseArithmeticOnNullPointer(Sema
&S
, SourceLocation Loc
,
11609 Expr
*Pointer
, bool IsGNUIdiom
) {
11611 S
.Diag(Loc
, diag::warn_gnu_null_ptr_arith
)
11612 << Pointer
->getSourceRange();
11614 S
.Diag(Loc
, diag::warn_pointer_arith_null_ptr
)
11615 << S
.getLangOpts().CPlusPlus
<< Pointer
->getSourceRange();
11618 /// Diagnose invalid subraction on a null pointer.
11620 static void diagnoseSubtractionOnNullPointer(Sema
&S
, SourceLocation Loc
,
11621 Expr
*Pointer
, bool BothNull
) {
11622 // Null - null is valid in C++ [expr.add]p7
11623 if (BothNull
&& S
.getLangOpts().CPlusPlus
)
11626 // Is this s a macro from a system header?
11627 if (S
.Diags
.getSuppressSystemWarnings() && S
.SourceMgr
.isInSystemMacro(Loc
))
11630 S
.DiagRuntimeBehavior(Loc
, Pointer
,
11631 S
.PDiag(diag::warn_pointer_sub_null_ptr
)
11632 << S
.getLangOpts().CPlusPlus
11633 << Pointer
->getSourceRange());
11636 /// Diagnose invalid arithmetic on two function pointers.
11637 static void diagnoseArithmeticOnTwoFunctionPointers(Sema
&S
, SourceLocation Loc
,
11638 Expr
*LHS
, Expr
*RHS
) {
11639 assert(LHS
->getType()->isAnyPointerType());
11640 assert(RHS
->getType()->isAnyPointerType());
11641 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus
11642 ? diag::err_typecheck_pointer_arith_function_type
11643 : diag::ext_gnu_ptr_func_arith
)
11644 << 1 /* two pointers */ << LHS
->getType()->getPointeeType()
11645 // We only show the second type if it differs from the first.
11646 << (unsigned)!S
.Context
.hasSameUnqualifiedType(LHS
->getType(),
11648 << RHS
->getType()->getPointeeType()
11649 << LHS
->getSourceRange() << RHS
->getSourceRange();
11652 /// Diagnose invalid arithmetic on a function pointer.
11653 static void diagnoseArithmeticOnFunctionPointer(Sema
&S
, SourceLocation Loc
,
11655 assert(Pointer
->getType()->isAnyPointerType());
11656 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus
11657 ? diag::err_typecheck_pointer_arith_function_type
11658 : diag::ext_gnu_ptr_func_arith
)
11659 << 0 /* one pointer */ << Pointer
->getType()->getPointeeType()
11660 << 0 /* one pointer, so only one type */
11661 << Pointer
->getSourceRange();
11664 /// Emit error if Operand is incomplete pointer type
11666 /// \returns True if pointer has incomplete type
11667 static bool checkArithmeticIncompletePointerType(Sema
&S
, SourceLocation Loc
,
11669 QualType ResType
= Operand
->getType();
11670 if (const AtomicType
*ResAtomicType
= ResType
->getAs
<AtomicType
>())
11671 ResType
= ResAtomicType
->getValueType();
11673 assert(ResType
->isAnyPointerType() && !ResType
->isDependentType());
11674 QualType PointeeTy
= ResType
->getPointeeType();
11675 return S
.RequireCompleteSizedType(
11677 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type
,
11678 Operand
->getSourceRange());
11681 /// Check the validity of an arithmetic pointer operand.
11683 /// If the operand has pointer type, this code will check for pointer types
11684 /// which are invalid in arithmetic operations. These will be diagnosed
11685 /// appropriately, including whether or not the use is supported as an
11688 /// \returns True when the operand is valid to use (even if as an extension).
11689 static bool checkArithmeticOpPointerOperand(Sema
&S
, SourceLocation Loc
,
11691 QualType ResType
= Operand
->getType();
11692 if (const AtomicType
*ResAtomicType
= ResType
->getAs
<AtomicType
>())
11693 ResType
= ResAtomicType
->getValueType();
11695 if (!ResType
->isAnyPointerType()) return true;
11697 QualType PointeeTy
= ResType
->getPointeeType();
11698 if (PointeeTy
->isVoidType()) {
11699 diagnoseArithmeticOnVoidPointer(S
, Loc
, Operand
);
11700 return !S
.getLangOpts().CPlusPlus
;
11702 if (PointeeTy
->isFunctionType()) {
11703 diagnoseArithmeticOnFunctionPointer(S
, Loc
, Operand
);
11704 return !S
.getLangOpts().CPlusPlus
;
11707 if (checkArithmeticIncompletePointerType(S
, Loc
, Operand
)) return false;
11712 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11715 /// This routine will diagnose any invalid arithmetic on pointer operands much
11716 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11717 /// for emitting a single diagnostic even for operations where both LHS and RHS
11718 /// are (potentially problematic) pointers.
11720 /// \returns True when the operand is valid to use (even if as an extension).
11721 static bool checkArithmeticBinOpPointerOperands(Sema
&S
, SourceLocation Loc
,
11722 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11723 bool isLHSPointer
= LHSExpr
->getType()->isAnyPointerType();
11724 bool isRHSPointer
= RHSExpr
->getType()->isAnyPointerType();
11725 if (!isLHSPointer
&& !isRHSPointer
) return true;
11727 QualType LHSPointeeTy
, RHSPointeeTy
;
11728 if (isLHSPointer
) LHSPointeeTy
= LHSExpr
->getType()->getPointeeType();
11729 if (isRHSPointer
) RHSPointeeTy
= RHSExpr
->getType()->getPointeeType();
11731 // if both are pointers check if operation is valid wrt address spaces
11732 if (isLHSPointer
&& isRHSPointer
) {
11733 if (!LHSPointeeTy
.isAddressSpaceOverlapping(RHSPointeeTy
)) {
11735 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers
)
11736 << LHSExpr
->getType() << RHSExpr
->getType() << 1 /*arithmetic op*/
11737 << LHSExpr
->getSourceRange() << RHSExpr
->getSourceRange();
11742 // Check for arithmetic on pointers to incomplete types.
11743 bool isLHSVoidPtr
= isLHSPointer
&& LHSPointeeTy
->isVoidType();
11744 bool isRHSVoidPtr
= isRHSPointer
&& RHSPointeeTy
->isVoidType();
11745 if (isLHSVoidPtr
|| isRHSVoidPtr
) {
11746 if (!isRHSVoidPtr
) diagnoseArithmeticOnVoidPointer(S
, Loc
, LHSExpr
);
11747 else if (!isLHSVoidPtr
) diagnoseArithmeticOnVoidPointer(S
, Loc
, RHSExpr
);
11748 else diagnoseArithmeticOnTwoVoidPointers(S
, Loc
, LHSExpr
, RHSExpr
);
11750 return !S
.getLangOpts().CPlusPlus
;
11753 bool isLHSFuncPtr
= isLHSPointer
&& LHSPointeeTy
->isFunctionType();
11754 bool isRHSFuncPtr
= isRHSPointer
&& RHSPointeeTy
->isFunctionType();
11755 if (isLHSFuncPtr
|| isRHSFuncPtr
) {
11756 if (!isRHSFuncPtr
) diagnoseArithmeticOnFunctionPointer(S
, Loc
, LHSExpr
);
11757 else if (!isLHSFuncPtr
) diagnoseArithmeticOnFunctionPointer(S
, Loc
,
11759 else diagnoseArithmeticOnTwoFunctionPointers(S
, Loc
, LHSExpr
, RHSExpr
);
11761 return !S
.getLangOpts().CPlusPlus
;
11764 if (isLHSPointer
&& checkArithmeticIncompletePointerType(S
, Loc
, LHSExpr
))
11766 if (isRHSPointer
&& checkArithmeticIncompletePointerType(S
, Loc
, RHSExpr
))
11772 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11774 static void diagnoseStringPlusInt(Sema
&Self
, SourceLocation OpLoc
,
11775 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11776 StringLiteral
* StrExpr
= dyn_cast
<StringLiteral
>(LHSExpr
->IgnoreImpCasts());
11777 Expr
* IndexExpr
= RHSExpr
;
11779 StrExpr
= dyn_cast
<StringLiteral
>(RHSExpr
->IgnoreImpCasts());
11780 IndexExpr
= LHSExpr
;
11783 bool IsStringPlusInt
= StrExpr
&&
11784 IndexExpr
->getType()->isIntegralOrUnscopedEnumerationType();
11785 if (!IsStringPlusInt
|| IndexExpr
->isValueDependent())
11788 SourceRange
DiagRange(LHSExpr
->getBeginLoc(), RHSExpr
->getEndLoc());
11789 Self
.Diag(OpLoc
, diag::warn_string_plus_int
)
11790 << DiagRange
<< IndexExpr
->IgnoreImpCasts()->getType();
11792 // Only print a fixit for "str" + int, not for int + "str".
11793 if (IndexExpr
== RHSExpr
) {
11794 SourceLocation EndLoc
= Self
.getLocForEndOfToken(RHSExpr
->getEndLoc());
11795 Self
.Diag(OpLoc
, diag::note_string_plus_scalar_silence
)
11796 << FixItHint::CreateInsertion(LHSExpr
->getBeginLoc(), "&")
11797 << FixItHint::CreateReplacement(SourceRange(OpLoc
), "[")
11798 << FixItHint::CreateInsertion(EndLoc
, "]");
11800 Self
.Diag(OpLoc
, diag::note_string_plus_scalar_silence
);
11803 /// Emit a warning when adding a char literal to a string.
11804 static void diagnoseStringPlusChar(Sema
&Self
, SourceLocation OpLoc
,
11805 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11806 const Expr
*StringRefExpr
= LHSExpr
;
11807 const CharacterLiteral
*CharExpr
=
11808 dyn_cast
<CharacterLiteral
>(RHSExpr
->IgnoreImpCasts());
11811 CharExpr
= dyn_cast
<CharacterLiteral
>(LHSExpr
->IgnoreImpCasts());
11812 StringRefExpr
= RHSExpr
;
11815 if (!CharExpr
|| !StringRefExpr
)
11818 const QualType StringType
= StringRefExpr
->getType();
11820 // Return if not a PointerType.
11821 if (!StringType
->isAnyPointerType())
11824 // Return if not a CharacterType.
11825 if (!StringType
->getPointeeType()->isAnyCharacterType())
11828 ASTContext
&Ctx
= Self
.getASTContext();
11829 SourceRange
DiagRange(LHSExpr
->getBeginLoc(), RHSExpr
->getEndLoc());
11831 const QualType CharType
= CharExpr
->getType();
11832 if (!CharType
->isAnyCharacterType() &&
11833 CharType
->isIntegerType() &&
11834 llvm::isUIntN(Ctx
.getCharWidth(), CharExpr
->getValue())) {
11835 Self
.Diag(OpLoc
, diag::warn_string_plus_char
)
11836 << DiagRange
<< Ctx
.CharTy
;
11838 Self
.Diag(OpLoc
, diag::warn_string_plus_char
)
11839 << DiagRange
<< CharExpr
->getType();
11842 // Only print a fixit for str + char, not for char + str.
11843 if (isa
<CharacterLiteral
>(RHSExpr
->IgnoreImpCasts())) {
11844 SourceLocation EndLoc
= Self
.getLocForEndOfToken(RHSExpr
->getEndLoc());
11845 Self
.Diag(OpLoc
, diag::note_string_plus_scalar_silence
)
11846 << FixItHint::CreateInsertion(LHSExpr
->getBeginLoc(), "&")
11847 << FixItHint::CreateReplacement(SourceRange(OpLoc
), "[")
11848 << FixItHint::CreateInsertion(EndLoc
, "]");
11850 Self
.Diag(OpLoc
, diag::note_string_plus_scalar_silence
);
11854 /// Emit error when two pointers are incompatible.
11855 static void diagnosePointerIncompatibility(Sema
&S
, SourceLocation Loc
,
11856 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11857 assert(LHSExpr
->getType()->isAnyPointerType());
11858 assert(RHSExpr
->getType()->isAnyPointerType());
11859 S
.Diag(Loc
, diag::err_typecheck_sub_ptr_compatible
)
11860 << LHSExpr
->getType() << RHSExpr
->getType() << LHSExpr
->getSourceRange()
11861 << RHSExpr
->getSourceRange();
11865 QualType
Sema::CheckAdditionOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11866 SourceLocation Loc
, BinaryOperatorKind Opc
,
11867 QualType
* CompLHSTy
) {
11868 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
11870 if (LHS
.get()->getType()->isVectorType() ||
11871 RHS
.get()->getType()->isVectorType()) {
11872 QualType compType
=
11873 CheckVectorOperands(LHS
, RHS
, Loc
, CompLHSTy
,
11874 /*AllowBothBool*/ getLangOpts().AltiVec
,
11875 /*AllowBoolConversions*/ getLangOpts().ZVector
,
11876 /*AllowBooleanOperation*/ false,
11877 /*ReportInvalid*/ true);
11878 if (CompLHSTy
) *CompLHSTy
= compType
;
11882 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
11883 RHS
.get()->getType()->isSveVLSBuiltinType()) {
11884 QualType compType
=
11885 CheckSizelessVectorOperands(LHS
, RHS
, Loc
, CompLHSTy
, ACK_Arithmetic
);
11887 *CompLHSTy
= compType
;
11891 if (LHS
.get()->getType()->isConstantMatrixType() ||
11892 RHS
.get()->getType()->isConstantMatrixType()) {
11893 QualType compType
=
11894 CheckMatrixElementwiseOperands(LHS
, RHS
, Loc
, CompLHSTy
);
11896 *CompLHSTy
= compType
;
11900 QualType compType
= UsualArithmeticConversions(
11901 LHS
, RHS
, Loc
, CompLHSTy
? ACK_CompAssign
: ACK_Arithmetic
);
11902 if (LHS
.isInvalid() || RHS
.isInvalid())
11905 // Diagnose "string literal" '+' int and string '+' "char literal".
11906 if (Opc
== BO_Add
) {
11907 diagnoseStringPlusInt(*this, Loc
, LHS
.get(), RHS
.get());
11908 diagnoseStringPlusChar(*this, Loc
, LHS
.get(), RHS
.get());
11911 // handle the common case first (both operands are arithmetic).
11912 if (!compType
.isNull() && compType
->isArithmeticType()) {
11913 if (CompLHSTy
) *CompLHSTy
= compType
;
11917 // Type-checking. Ultimately the pointer's going to be in PExp;
11918 // note that we bias towards the LHS being the pointer.
11919 Expr
*PExp
= LHS
.get(), *IExp
= RHS
.get();
11921 bool isObjCPointer
;
11922 if (PExp
->getType()->isPointerType()) {
11923 isObjCPointer
= false;
11924 } else if (PExp
->getType()->isObjCObjectPointerType()) {
11925 isObjCPointer
= true;
11927 std::swap(PExp
, IExp
);
11928 if (PExp
->getType()->isPointerType()) {
11929 isObjCPointer
= false;
11930 } else if (PExp
->getType()->isObjCObjectPointerType()) {
11931 isObjCPointer
= true;
11933 return InvalidOperands(Loc
, LHS
, RHS
);
11936 assert(PExp
->getType()->isAnyPointerType());
11938 if (!IExp
->getType()->isIntegerType())
11939 return InvalidOperands(Loc
, LHS
, RHS
);
11941 // Adding to a null pointer results in undefined behavior.
11942 if (PExp
->IgnoreParenCasts()->isNullPointerConstant(
11943 Context
, Expr::NPC_ValueDependentIsNotNull
)) {
11944 // In C++ adding zero to a null pointer is defined.
11945 Expr::EvalResult KnownVal
;
11946 if (!getLangOpts().CPlusPlus
||
11947 (!IExp
->isValueDependent() &&
11948 (!IExp
->EvaluateAsInt(KnownVal
, Context
) ||
11949 KnownVal
.Val
.getInt() != 0))) {
11950 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11951 bool IsGNUIdiom
= BinaryOperator::isNullPointerArithmeticExtension(
11952 Context
, BO_Add
, PExp
, IExp
);
11953 diagnoseArithmeticOnNullPointer(*this, Loc
, PExp
, IsGNUIdiom
);
11957 if (!checkArithmeticOpPointerOperand(*this, Loc
, PExp
))
11960 if (isObjCPointer
&& checkArithmeticOnObjCPointer(*this, Loc
, PExp
))
11963 // Check array bounds for pointer arithemtic
11964 CheckArrayAccess(PExp
, IExp
);
11967 QualType LHSTy
= Context
.isPromotableBitField(LHS
.get());
11968 if (LHSTy
.isNull()) {
11969 LHSTy
= LHS
.get()->getType();
11970 if (Context
.isPromotableIntegerType(LHSTy
))
11971 LHSTy
= Context
.getPromotedIntegerType(LHSTy
);
11973 *CompLHSTy
= LHSTy
;
11976 return PExp
->getType();
11980 QualType
Sema::CheckSubtractionOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11981 SourceLocation Loc
,
11982 QualType
* CompLHSTy
) {
11983 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
11985 if (LHS
.get()->getType()->isVectorType() ||
11986 RHS
.get()->getType()->isVectorType()) {
11987 QualType compType
=
11988 CheckVectorOperands(LHS
, RHS
, Loc
, CompLHSTy
,
11989 /*AllowBothBool*/ getLangOpts().AltiVec
,
11990 /*AllowBoolConversions*/ getLangOpts().ZVector
,
11991 /*AllowBooleanOperation*/ false,
11992 /*ReportInvalid*/ true);
11993 if (CompLHSTy
) *CompLHSTy
= compType
;
11997 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
11998 RHS
.get()->getType()->isSveVLSBuiltinType()) {
11999 QualType compType
=
12000 CheckSizelessVectorOperands(LHS
, RHS
, Loc
, CompLHSTy
, ACK_Arithmetic
);
12002 *CompLHSTy
= compType
;
12006 if (LHS
.get()->getType()->isConstantMatrixType() ||
12007 RHS
.get()->getType()->isConstantMatrixType()) {
12008 QualType compType
=
12009 CheckMatrixElementwiseOperands(LHS
, RHS
, Loc
, CompLHSTy
);
12011 *CompLHSTy
= compType
;
12015 QualType compType
= UsualArithmeticConversions(
12016 LHS
, RHS
, Loc
, CompLHSTy
? ACK_CompAssign
: ACK_Arithmetic
);
12017 if (LHS
.isInvalid() || RHS
.isInvalid())
12020 // Enforce type constraints: C99 6.5.6p3.
12022 // Handle the common case first (both operands are arithmetic).
12023 if (!compType
.isNull() && compType
->isArithmeticType()) {
12024 if (CompLHSTy
) *CompLHSTy
= compType
;
12028 // Either ptr - int or ptr - ptr.
12029 if (LHS
.get()->getType()->isAnyPointerType()) {
12030 QualType lpointee
= LHS
.get()->getType()->getPointeeType();
12032 // Diagnose bad cases where we step over interface counts.
12033 if (LHS
.get()->getType()->isObjCObjectPointerType() &&
12034 checkArithmeticOnObjCPointer(*this, Loc
, LHS
.get()))
12037 // The result type of a pointer-int computation is the pointer type.
12038 if (RHS
.get()->getType()->isIntegerType()) {
12039 // Subtracting from a null pointer should produce a warning.
12040 // The last argument to the diagnose call says this doesn't match the
12041 // GNU int-to-pointer idiom.
12042 if (LHS
.get()->IgnoreParenCasts()->isNullPointerConstant(Context
,
12043 Expr::NPC_ValueDependentIsNotNull
)) {
12044 // In C++ adding zero to a null pointer is defined.
12045 Expr::EvalResult KnownVal
;
12046 if (!getLangOpts().CPlusPlus
||
12047 (!RHS
.get()->isValueDependent() &&
12048 (!RHS
.get()->EvaluateAsInt(KnownVal
, Context
) ||
12049 KnownVal
.Val
.getInt() != 0))) {
12050 diagnoseArithmeticOnNullPointer(*this, Loc
, LHS
.get(), false);
12054 if (!checkArithmeticOpPointerOperand(*this, Loc
, LHS
.get()))
12057 // Check array bounds for pointer arithemtic
12058 CheckArrayAccess(LHS
.get(), RHS
.get(), /*ArraySubscriptExpr*/nullptr,
12059 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
12061 if (CompLHSTy
) *CompLHSTy
= LHS
.get()->getType();
12062 return LHS
.get()->getType();
12065 // Handle pointer-pointer subtractions.
12066 if (const PointerType
*RHSPTy
12067 = RHS
.get()->getType()->getAs
<PointerType
>()) {
12068 QualType rpointee
= RHSPTy
->getPointeeType();
12070 if (getLangOpts().CPlusPlus
) {
12071 // Pointee types must be the same: C++ [expr.add]
12072 if (!Context
.hasSameUnqualifiedType(lpointee
, rpointee
)) {
12073 diagnosePointerIncompatibility(*this, Loc
, LHS
.get(), RHS
.get());
12076 // Pointee types must be compatible C99 6.5.6p3
12077 if (!Context
.typesAreCompatible(
12078 Context
.getCanonicalType(lpointee
).getUnqualifiedType(),
12079 Context
.getCanonicalType(rpointee
).getUnqualifiedType())) {
12080 diagnosePointerIncompatibility(*this, Loc
, LHS
.get(), RHS
.get());
12085 if (!checkArithmeticBinOpPointerOperands(*this, Loc
,
12086 LHS
.get(), RHS
.get()))
12089 bool LHSIsNullPtr
= LHS
.get()->IgnoreParenCasts()->isNullPointerConstant(
12090 Context
, Expr::NPC_ValueDependentIsNotNull
);
12091 bool RHSIsNullPtr
= RHS
.get()->IgnoreParenCasts()->isNullPointerConstant(
12092 Context
, Expr::NPC_ValueDependentIsNotNull
);
12094 // Subtracting nullptr or from nullptr is suspect
12096 diagnoseSubtractionOnNullPointer(*this, Loc
, LHS
.get(), RHSIsNullPtr
);
12098 diagnoseSubtractionOnNullPointer(*this, Loc
, RHS
.get(), LHSIsNullPtr
);
12100 // The pointee type may have zero size. As an extension, a structure or
12101 // union may have zero size or an array may have zero length. In this
12102 // case subtraction does not make sense.
12103 if (!rpointee
->isVoidType() && !rpointee
->isFunctionType()) {
12104 CharUnits ElementSize
= Context
.getTypeSizeInChars(rpointee
);
12105 if (ElementSize
.isZero()) {
12106 Diag(Loc
,diag::warn_sub_ptr_zero_size_types
)
12107 << rpointee
.getUnqualifiedType()
12108 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12112 if (CompLHSTy
) *CompLHSTy
= LHS
.get()->getType();
12113 return Context
.getPointerDiffType();
12117 return InvalidOperands(Loc
, LHS
, RHS
);
12120 static bool isScopedEnumerationType(QualType T
) {
12121 if (const EnumType
*ET
= T
->getAs
<EnumType
>())
12122 return ET
->getDecl()->isScoped();
12126 static void DiagnoseBadShiftValues(Sema
& S
, ExprResult
&LHS
, ExprResult
&RHS
,
12127 SourceLocation Loc
, BinaryOperatorKind Opc
,
12128 QualType LHSType
) {
12129 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
12130 // so skip remaining warnings as we don't want to modify values within Sema.
12131 if (S
.getLangOpts().OpenCL
)
12134 // Check right/shifter operand
12135 Expr::EvalResult RHSResult
;
12136 if (RHS
.get()->isValueDependent() ||
12137 !RHS
.get()->EvaluateAsInt(RHSResult
, S
.Context
))
12139 llvm::APSInt Right
= RHSResult
.Val
.getInt();
12141 if (Right
.isNegative()) {
12142 S
.DiagRuntimeBehavior(Loc
, RHS
.get(),
12143 S
.PDiag(diag::warn_shift_negative
)
12144 << RHS
.get()->getSourceRange());
12148 QualType LHSExprType
= LHS
.get()->getType();
12149 uint64_t LeftSize
= S
.Context
.getTypeSize(LHSExprType
);
12150 if (LHSExprType
->isBitIntType())
12151 LeftSize
= S
.Context
.getIntWidth(LHSExprType
);
12152 else if (LHSExprType
->isFixedPointType()) {
12153 auto FXSema
= S
.Context
.getFixedPointSemantics(LHSExprType
);
12154 LeftSize
= FXSema
.getWidth() - (unsigned)FXSema
.hasUnsignedPadding();
12156 if (Right
.uge(LeftSize
)) {
12157 S
.DiagRuntimeBehavior(Loc
, RHS
.get(),
12158 S
.PDiag(diag::warn_shift_gt_typewidth
)
12159 << RHS
.get()->getSourceRange());
12163 // FIXME: We probably need to handle fixed point types specially here.
12164 if (Opc
!= BO_Shl
|| LHSExprType
->isFixedPointType())
12167 // When left shifting an ICE which is signed, we can check for overflow which
12168 // according to C++ standards prior to C++2a has undefined behavior
12169 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
12170 // more than the maximum value representable in the result type, so never
12171 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
12172 // expression is still probably a bug.)
12173 Expr::EvalResult LHSResult
;
12174 if (LHS
.get()->isValueDependent() ||
12175 LHSType
->hasUnsignedIntegerRepresentation() ||
12176 !LHS
.get()->EvaluateAsInt(LHSResult
, S
.Context
))
12178 llvm::APSInt Left
= LHSResult
.Val
.getInt();
12180 // Don't warn if signed overflow is defined, then all the rest of the
12181 // diagnostics will not be triggered because the behavior is defined.
12182 // Also don't warn in C++20 mode (and newer), as signed left shifts
12183 // always wrap and never overflow.
12184 if (S
.getLangOpts().isSignedOverflowDefined() || S
.getLangOpts().CPlusPlus20
)
12187 // If LHS does not have a non-negative value then, the
12188 // behavior is undefined before C++2a. Warn about it.
12189 if (Left
.isNegative()) {
12190 S
.DiagRuntimeBehavior(Loc
, LHS
.get(),
12191 S
.PDiag(diag::warn_shift_lhs_negative
)
12192 << LHS
.get()->getSourceRange());
12196 llvm::APInt ResultBits
=
12197 static_cast<llvm::APInt
&>(Right
) + Left
.getSignificantBits();
12198 if (ResultBits
.ule(LeftSize
))
12200 llvm::APSInt Result
= Left
.extend(ResultBits
.getLimitedValue());
12201 Result
= Result
.shl(Right
);
12203 // Print the bit representation of the signed integer as an unsigned
12204 // hexadecimal number.
12205 SmallString
<40> HexResult
;
12206 Result
.toString(HexResult
, 16, /*Signed =*/false, /*Literal =*/true);
12208 // If we are only missing a sign bit, this is less likely to result in actual
12209 // bugs -- if the result is cast back to an unsigned type, it will have the
12210 // expected value. Thus we place this behind a different warning that can be
12211 // turned off separately if needed.
12212 if (ResultBits
- 1 == LeftSize
) {
12213 S
.Diag(Loc
, diag::warn_shift_result_sets_sign_bit
)
12214 << HexResult
<< LHSType
12215 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12219 S
.Diag(Loc
, diag::warn_shift_result_gt_typewidth
)
12220 << HexResult
.str() << Result
.getSignificantBits() << LHSType
12221 << Left
.getBitWidth() << LHS
.get()->getSourceRange()
12222 << RHS
.get()->getSourceRange();
12225 /// Return the resulting type when a vector is shifted
12226 /// by a scalar or vector shift amount.
12227 static QualType
checkVectorShift(Sema
&S
, ExprResult
&LHS
, ExprResult
&RHS
,
12228 SourceLocation Loc
, bool IsCompAssign
) {
12229 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
12230 if ((S
.LangOpts
.OpenCL
|| S
.LangOpts
.ZVector
) &&
12231 !LHS
.get()->getType()->isVectorType()) {
12232 S
.Diag(Loc
, diag::err_shift_rhs_only_vector
)
12233 << RHS
.get()->getType() << LHS
.get()->getType()
12234 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12238 if (!IsCompAssign
) {
12239 LHS
= S
.UsualUnaryConversions(LHS
.get());
12240 if (LHS
.isInvalid()) return QualType();
12243 RHS
= S
.UsualUnaryConversions(RHS
.get());
12244 if (RHS
.isInvalid()) return QualType();
12246 QualType LHSType
= LHS
.get()->getType();
12247 // Note that LHS might be a scalar because the routine calls not only in
12249 const VectorType
*LHSVecTy
= LHSType
->getAs
<VectorType
>();
12250 QualType LHSEleType
= LHSVecTy
? LHSVecTy
->getElementType() : LHSType
;
12252 // Note that RHS might not be a vector.
12253 QualType RHSType
= RHS
.get()->getType();
12254 const VectorType
*RHSVecTy
= RHSType
->getAs
<VectorType
>();
12255 QualType RHSEleType
= RHSVecTy
? RHSVecTy
->getElementType() : RHSType
;
12257 // Do not allow shifts for boolean vectors.
12258 if ((LHSVecTy
&& LHSVecTy
->isExtVectorBoolType()) ||
12259 (RHSVecTy
&& RHSVecTy
->isExtVectorBoolType())) {
12260 S
.Diag(Loc
, diag::err_typecheck_invalid_operands
)
12261 << LHS
.get()->getType() << RHS
.get()->getType()
12262 << LHS
.get()->getSourceRange();
12266 // The operands need to be integers.
12267 if (!LHSEleType
->isIntegerType()) {
12268 S
.Diag(Loc
, diag::err_typecheck_expect_int
)
12269 << LHS
.get()->getType() << LHS
.get()->getSourceRange();
12273 if (!RHSEleType
->isIntegerType()) {
12274 S
.Diag(Loc
, diag::err_typecheck_expect_int
)
12275 << RHS
.get()->getType() << RHS
.get()->getSourceRange();
12283 if (LHSEleType
!= RHSEleType
) {
12284 LHS
= S
.ImpCastExprToType(LHS
.get(),RHSEleType
, CK_IntegralCast
);
12285 LHSEleType
= RHSEleType
;
12288 S
.Context
.getExtVectorType(LHSEleType
, RHSVecTy
->getNumElements());
12289 LHS
= S
.ImpCastExprToType(LHS
.get(), VecTy
, CK_VectorSplat
);
12291 } else if (RHSVecTy
) {
12292 // OpenCL v1.1 s6.3.j says that for vector types, the operators
12293 // are applied component-wise. So if RHS is a vector, then ensure
12294 // that the number of elements is the same as LHS...
12295 if (RHSVecTy
->getNumElements() != LHSVecTy
->getNumElements()) {
12296 S
.Diag(Loc
, diag::err_typecheck_vector_lengths_not_equal
)
12297 << LHS
.get()->getType() << RHS
.get()->getType()
12298 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12301 if (!S
.LangOpts
.OpenCL
&& !S
.LangOpts
.ZVector
) {
12302 const BuiltinType
*LHSBT
= LHSEleType
->getAs
<clang::BuiltinType
>();
12303 const BuiltinType
*RHSBT
= RHSEleType
->getAs
<clang::BuiltinType
>();
12304 if (LHSBT
!= RHSBT
&&
12305 S
.Context
.getTypeSize(LHSBT
) != S
.Context
.getTypeSize(RHSBT
)) {
12306 S
.Diag(Loc
, diag::warn_typecheck_vector_element_sizes_not_equal
)
12307 << LHS
.get()->getType() << RHS
.get()->getType()
12308 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12312 // ...else expand RHS to match the number of elements in LHS.
12314 S
.Context
.getExtVectorType(RHSEleType
, LHSVecTy
->getNumElements());
12315 RHS
= S
.ImpCastExprToType(RHS
.get(), VecTy
, CK_VectorSplat
);
12321 static QualType
checkSizelessVectorShift(Sema
&S
, ExprResult
&LHS
,
12322 ExprResult
&RHS
, SourceLocation Loc
,
12323 bool IsCompAssign
) {
12324 if (!IsCompAssign
) {
12325 LHS
= S
.UsualUnaryConversions(LHS
.get());
12326 if (LHS
.isInvalid())
12330 RHS
= S
.UsualUnaryConversions(RHS
.get());
12331 if (RHS
.isInvalid())
12334 QualType LHSType
= LHS
.get()->getType();
12335 const BuiltinType
*LHSBuiltinTy
= LHSType
->castAs
<BuiltinType
>();
12336 QualType LHSEleType
= LHSType
->isSveVLSBuiltinType()
12337 ? LHSBuiltinTy
->getSveEltType(S
.getASTContext())
12340 // Note that RHS might not be a vector
12341 QualType RHSType
= RHS
.get()->getType();
12342 const BuiltinType
*RHSBuiltinTy
= RHSType
->castAs
<BuiltinType
>();
12343 QualType RHSEleType
= RHSType
->isSveVLSBuiltinType()
12344 ? RHSBuiltinTy
->getSveEltType(S
.getASTContext())
12347 if ((LHSBuiltinTy
&& LHSBuiltinTy
->isSVEBool()) ||
12348 (RHSBuiltinTy
&& RHSBuiltinTy
->isSVEBool())) {
12349 S
.Diag(Loc
, diag::err_typecheck_invalid_operands
)
12350 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange();
12354 if (!LHSEleType
->isIntegerType()) {
12355 S
.Diag(Loc
, diag::err_typecheck_expect_int
)
12356 << LHS
.get()->getType() << LHS
.get()->getSourceRange();
12360 if (!RHSEleType
->isIntegerType()) {
12361 S
.Diag(Loc
, diag::err_typecheck_expect_int
)
12362 << RHS
.get()->getType() << RHS
.get()->getSourceRange();
12366 if (LHSType
->isSveVLSBuiltinType() && RHSType
->isSveVLSBuiltinType() &&
12367 (S
.Context
.getBuiltinVectorTypeInfo(LHSBuiltinTy
).EC
!=
12368 S
.Context
.getBuiltinVectorTypeInfo(RHSBuiltinTy
).EC
)) {
12369 S
.Diag(Loc
, diag::err_typecheck_invalid_operands
)
12370 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
12371 << RHS
.get()->getSourceRange();
12375 if (!LHSType
->isSveVLSBuiltinType()) {
12376 assert(RHSType
->isSveVLSBuiltinType());
12379 if (LHSEleType
!= RHSEleType
) {
12380 LHS
= S
.ImpCastExprToType(LHS
.get(), RHSEleType
, clang::CK_IntegralCast
);
12381 LHSEleType
= RHSEleType
;
12383 const llvm::ElementCount VecSize
=
12384 S
.Context
.getBuiltinVectorTypeInfo(RHSBuiltinTy
).EC
;
12386 S
.Context
.getScalableVectorType(LHSEleType
, VecSize
.getKnownMinValue());
12387 LHS
= S
.ImpCastExprToType(LHS
.get(), VecTy
, clang::CK_VectorSplat
);
12389 } else if (RHSBuiltinTy
&& RHSBuiltinTy
->isSveVLSBuiltinType()) {
12390 if (S
.Context
.getTypeSize(RHSBuiltinTy
) !=
12391 S
.Context
.getTypeSize(LHSBuiltinTy
)) {
12392 S
.Diag(Loc
, diag::err_typecheck_vector_lengths_not_equal
)
12393 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
12394 << RHS
.get()->getSourceRange();
12398 const llvm::ElementCount VecSize
=
12399 S
.Context
.getBuiltinVectorTypeInfo(LHSBuiltinTy
).EC
;
12400 if (LHSEleType
!= RHSEleType
) {
12401 RHS
= S
.ImpCastExprToType(RHS
.get(), LHSEleType
, clang::CK_IntegralCast
);
12402 RHSEleType
= LHSEleType
;
12405 S
.Context
.getScalableVectorType(RHSEleType
, VecSize
.getKnownMinValue());
12406 RHS
= S
.ImpCastExprToType(RHS
.get(), VecTy
, CK_VectorSplat
);
12413 QualType
Sema::CheckShiftOperands(ExprResult
&LHS
, ExprResult
&RHS
,
12414 SourceLocation Loc
, BinaryOperatorKind Opc
,
12415 bool IsCompAssign
) {
12416 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
12418 // Vector shifts promote their scalar inputs to vector type.
12419 if (LHS
.get()->getType()->isVectorType() ||
12420 RHS
.get()->getType()->isVectorType()) {
12421 if (LangOpts
.ZVector
) {
12422 // The shift operators for the z vector extensions work basically
12423 // like general shifts, except that neither the LHS nor the RHS is
12424 // allowed to be a "vector bool".
12425 if (auto LHSVecType
= LHS
.get()->getType()->getAs
<VectorType
>())
12426 if (LHSVecType
->getVectorKind() == VectorKind::AltiVecBool
)
12427 return InvalidOperands(Loc
, LHS
, RHS
);
12428 if (auto RHSVecType
= RHS
.get()->getType()->getAs
<VectorType
>())
12429 if (RHSVecType
->getVectorKind() == VectorKind::AltiVecBool
)
12430 return InvalidOperands(Loc
, LHS
, RHS
);
12432 return checkVectorShift(*this, LHS
, RHS
, Loc
, IsCompAssign
);
12435 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
12436 RHS
.get()->getType()->isSveVLSBuiltinType())
12437 return checkSizelessVectorShift(*this, LHS
, RHS
, Loc
, IsCompAssign
);
12439 // Shifts don't perform usual arithmetic conversions, they just do integer
12440 // promotions on each operand. C99 6.5.7p3
12442 // For the LHS, do usual unary conversions, but then reset them away
12443 // if this is a compound assignment.
12444 ExprResult OldLHS
= LHS
;
12445 LHS
= UsualUnaryConversions(LHS
.get());
12446 if (LHS
.isInvalid())
12448 QualType LHSType
= LHS
.get()->getType();
12449 if (IsCompAssign
) LHS
= OldLHS
;
12451 // The RHS is simpler.
12452 RHS
= UsualUnaryConversions(RHS
.get());
12453 if (RHS
.isInvalid())
12455 QualType RHSType
= RHS
.get()->getType();
12457 // C99 6.5.7p2: Each of the operands shall have integer type.
12458 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12459 if ((!LHSType
->isFixedPointOrIntegerType() &&
12460 !LHSType
->hasIntegerRepresentation()) ||
12461 !RHSType
->hasIntegerRepresentation())
12462 return InvalidOperands(Loc
, LHS
, RHS
);
12464 // C++0x: Don't allow scoped enums. FIXME: Use something better than
12465 // hasIntegerRepresentation() above instead of this.
12466 if (isScopedEnumerationType(LHSType
) ||
12467 isScopedEnumerationType(RHSType
)) {
12468 return InvalidOperands(Loc
, LHS
, RHS
);
12470 DiagnoseBadShiftValues(*this, LHS
, RHS
, Loc
, Opc
, LHSType
);
12472 // "The type of the result is that of the promoted left operand."
12476 /// Diagnose bad pointer comparisons.
12477 static void diagnoseDistinctPointerComparison(Sema
&S
, SourceLocation Loc
,
12478 ExprResult
&LHS
, ExprResult
&RHS
,
12480 S
.Diag(Loc
, IsError
? diag::err_typecheck_comparison_of_distinct_pointers
12481 : diag::ext_typecheck_comparison_of_distinct_pointers
)
12482 << LHS
.get()->getType() << RHS
.get()->getType()
12483 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12486 /// Returns false if the pointers are converted to a composite type,
12487 /// true otherwise.
12488 static bool convertPointersToCompositeType(Sema
&S
, SourceLocation Loc
,
12489 ExprResult
&LHS
, ExprResult
&RHS
) {
12490 // C++ [expr.rel]p2:
12491 // [...] Pointer conversions (4.10) and qualification
12492 // conversions (4.4) are performed on pointer operands (or on
12493 // a pointer operand and a null pointer constant) to bring
12494 // them to their composite pointer type. [...]
12496 // C++ [expr.eq]p1 uses the same notion for (in)equality
12497 // comparisons of pointers.
12499 QualType LHSType
= LHS
.get()->getType();
12500 QualType RHSType
= RHS
.get()->getType();
12501 assert(LHSType
->isPointerType() || RHSType
->isPointerType() ||
12502 LHSType
->isMemberPointerType() || RHSType
->isMemberPointerType());
12504 QualType T
= S
.FindCompositePointerType(Loc
, LHS
, RHS
);
12506 if ((LHSType
->isAnyPointerType() || LHSType
->isMemberPointerType()) &&
12507 (RHSType
->isAnyPointerType() || RHSType
->isMemberPointerType()))
12508 diagnoseDistinctPointerComparison(S
, Loc
, LHS
, RHS
, /*isError*/true);
12510 S
.InvalidOperands(Loc
, LHS
, RHS
);
12517 static void diagnoseFunctionPointerToVoidComparison(Sema
&S
, SourceLocation Loc
,
12521 S
.Diag(Loc
, IsError
? diag::err_typecheck_comparison_of_fptr_to_void
12522 : diag::ext_typecheck_comparison_of_fptr_to_void
)
12523 << LHS
.get()->getType() << RHS
.get()->getType()
12524 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12527 static bool isObjCObjectLiteral(ExprResult
&E
) {
12528 switch (E
.get()->IgnoreParenImpCasts()->getStmtClass()) {
12529 case Stmt::ObjCArrayLiteralClass
:
12530 case Stmt::ObjCDictionaryLiteralClass
:
12531 case Stmt::ObjCStringLiteralClass
:
12532 case Stmt::ObjCBoxedExprClass
:
12535 // Note that ObjCBoolLiteral is NOT an object literal!
12540 static bool hasIsEqualMethod(Sema
&S
, const Expr
*LHS
, const Expr
*RHS
) {
12541 const ObjCObjectPointerType
*Type
=
12542 LHS
->getType()->getAs
<ObjCObjectPointerType
>();
12544 // If this is not actually an Objective-C object, bail out.
12548 // Get the LHS object's interface type.
12549 QualType InterfaceType
= Type
->getPointeeType();
12551 // If the RHS isn't an Objective-C object, bail out.
12552 if (!RHS
->getType()->isObjCObjectPointerType())
12555 // Try to find the -isEqual: method.
12556 Selector IsEqualSel
= S
.NSAPIObj
->getIsEqualSelector();
12557 ObjCMethodDecl
*Method
= S
.LookupMethodInObjectType(IsEqualSel
,
12559 /*IsInstance=*/true);
12561 if (Type
->isObjCIdType()) {
12562 // For 'id', just check the global pool.
12563 Method
= S
.LookupInstanceMethodInGlobalPool(IsEqualSel
, SourceRange(),
12564 /*receiverId=*/true);
12566 // Check protocols.
12567 Method
= S
.LookupMethodInQualifiedType(IsEqualSel
, Type
,
12568 /*IsInstance=*/true);
12575 QualType T
= Method
->parameters()[0]->getType();
12576 if (!T
->isObjCObjectPointerType())
12579 QualType R
= Method
->getReturnType();
12580 if (!R
->isScalarType())
12586 Sema::ObjCLiteralKind
Sema::CheckLiteralKind(Expr
*FromE
) {
12587 FromE
= FromE
->IgnoreParenImpCasts();
12588 switch (FromE
->getStmtClass()) {
12591 case Stmt::ObjCStringLiteralClass
:
12592 // "string literal"
12594 case Stmt::ObjCArrayLiteralClass
:
12597 case Stmt::ObjCDictionaryLiteralClass
:
12598 // "dictionary literal"
12599 return LK_Dictionary
;
12600 case Stmt::BlockExprClass
:
12602 case Stmt::ObjCBoxedExprClass
: {
12603 Expr
*Inner
= cast
<ObjCBoxedExpr
>(FromE
)->getSubExpr()->IgnoreParens();
12604 switch (Inner
->getStmtClass()) {
12605 case Stmt::IntegerLiteralClass
:
12606 case Stmt::FloatingLiteralClass
:
12607 case Stmt::CharacterLiteralClass
:
12608 case Stmt::ObjCBoolLiteralExprClass
:
12609 case Stmt::CXXBoolLiteralExprClass
:
12610 // "numeric literal"
12612 case Stmt::ImplicitCastExprClass
: {
12613 CastKind CK
= cast
<CastExpr
>(Inner
)->getCastKind();
12614 // Boolean literals can be represented by implicit casts.
12615 if (CK
== CK_IntegralToBoolean
|| CK
== CK_IntegralCast
)
12628 static void diagnoseObjCLiteralComparison(Sema
&S
, SourceLocation Loc
,
12629 ExprResult
&LHS
, ExprResult
&RHS
,
12630 BinaryOperator::Opcode Opc
){
12633 if (isObjCObjectLiteral(LHS
)) {
12634 Literal
= LHS
.get();
12637 Literal
= RHS
.get();
12641 // Don't warn on comparisons against nil.
12642 Other
= Other
->IgnoreParenCasts();
12643 if (Other
->isNullPointerConstant(S
.getASTContext(),
12644 Expr::NPC_ValueDependentIsNotNull
))
12647 // This should be kept in sync with warn_objc_literal_comparison.
12648 // LK_String should always be after the other literals, since it has its own
12650 Sema::ObjCLiteralKind LiteralKind
= S
.CheckLiteralKind(Literal
);
12651 assert(LiteralKind
!= Sema::LK_Block
);
12652 if (LiteralKind
== Sema::LK_None
) {
12653 llvm_unreachable("Unknown Objective-C object literal kind");
12656 if (LiteralKind
== Sema::LK_String
)
12657 S
.Diag(Loc
, diag::warn_objc_string_literal_comparison
)
12658 << Literal
->getSourceRange();
12660 S
.Diag(Loc
, diag::warn_objc_literal_comparison
)
12661 << LiteralKind
<< Literal
->getSourceRange();
12663 if (BinaryOperator::isEqualityOp(Opc
) &&
12664 hasIsEqualMethod(S
, LHS
.get(), RHS
.get())) {
12665 SourceLocation Start
= LHS
.get()->getBeginLoc();
12666 SourceLocation End
= S
.getLocForEndOfToken(RHS
.get()->getEndLoc());
12667 CharSourceRange OpRange
=
12668 CharSourceRange::getCharRange(Loc
, S
.getLocForEndOfToken(Loc
));
12670 S
.Diag(Loc
, diag::note_objc_literal_comparison_isequal
)
12671 << FixItHint::CreateInsertion(Start
, Opc
== BO_EQ
? "[" : "![")
12672 << FixItHint::CreateReplacement(OpRange
, " isEqual:")
12673 << FixItHint::CreateInsertion(End
, "]");
12677 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12678 static void diagnoseLogicalNotOnLHSofCheck(Sema
&S
, ExprResult
&LHS
,
12679 ExprResult
&RHS
, SourceLocation Loc
,
12680 BinaryOperatorKind Opc
) {
12681 // Check that left hand side is !something.
12682 UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(LHS
.get()->IgnoreImpCasts());
12683 if (!UO
|| UO
->getOpcode() != UO_LNot
) return;
12685 // Only check if the right hand side is non-bool arithmetic type.
12686 if (RHS
.get()->isKnownToHaveBooleanValue()) return;
12688 // Make sure that the something in !something is not bool.
12689 Expr
*SubExpr
= UO
->getSubExpr()->IgnoreImpCasts();
12690 if (SubExpr
->isKnownToHaveBooleanValue()) return;
12693 bool IsBitwiseOp
= Opc
== BO_And
|| Opc
== BO_Or
|| Opc
== BO_Xor
;
12694 S
.Diag(UO
->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check
)
12695 << Loc
<< IsBitwiseOp
;
12697 // First note suggest !(x < y)
12698 SourceLocation FirstOpen
= SubExpr
->getBeginLoc();
12699 SourceLocation FirstClose
= RHS
.get()->getEndLoc();
12700 FirstClose
= S
.getLocForEndOfToken(FirstClose
);
12701 if (FirstClose
.isInvalid())
12702 FirstOpen
= SourceLocation();
12703 S
.Diag(UO
->getOperatorLoc(), diag::note_logical_not_fix
)
12705 << FixItHint::CreateInsertion(FirstOpen
, "(")
12706 << FixItHint::CreateInsertion(FirstClose
, ")");
12708 // Second note suggests (!x) < y
12709 SourceLocation SecondOpen
= LHS
.get()->getBeginLoc();
12710 SourceLocation SecondClose
= LHS
.get()->getEndLoc();
12711 SecondClose
= S
.getLocForEndOfToken(SecondClose
);
12712 if (SecondClose
.isInvalid())
12713 SecondOpen
= SourceLocation();
12714 S
.Diag(UO
->getOperatorLoc(), diag::note_logical_not_silence_with_parens
)
12715 << FixItHint::CreateInsertion(SecondOpen
, "(")
12716 << FixItHint::CreateInsertion(SecondClose
, ")");
12719 // Returns true if E refers to a non-weak array.
12720 static bool checkForArray(const Expr
*E
) {
12721 const ValueDecl
*D
= nullptr;
12722 if (const DeclRefExpr
*DR
= dyn_cast
<DeclRefExpr
>(E
)) {
12724 } else if (const MemberExpr
*Mem
= dyn_cast
<MemberExpr
>(E
)) {
12725 if (Mem
->isImplicitAccess())
12726 D
= Mem
->getMemberDecl();
12730 return D
->getType()->isArrayType() && !D
->isWeak();
12733 /// Diagnose some forms of syntactically-obvious tautological comparison.
12734 static void diagnoseTautologicalComparison(Sema
&S
, SourceLocation Loc
,
12735 Expr
*LHS
, Expr
*RHS
,
12736 BinaryOperatorKind Opc
) {
12737 Expr
*LHSStripped
= LHS
->IgnoreParenImpCasts();
12738 Expr
*RHSStripped
= RHS
->IgnoreParenImpCasts();
12740 QualType LHSType
= LHS
->getType();
12741 QualType RHSType
= RHS
->getType();
12742 if (LHSType
->hasFloatingRepresentation() ||
12743 (LHSType
->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc
)) ||
12744 S
.inTemplateInstantiation())
12747 // WebAssembly Tables cannot be compared, therefore shouldn't emit
12748 // Tautological diagnostics.
12749 if (LHSType
->isWebAssemblyTableType() || RHSType
->isWebAssemblyTableType())
12752 // Comparisons between two array types are ill-formed for operator<=>, so
12753 // we shouldn't emit any additional warnings about it.
12754 if (Opc
== BO_Cmp
&& LHSType
->isArrayType() && RHSType
->isArrayType())
12757 // For non-floating point types, check for self-comparisons of the form
12758 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12759 // often indicate logic errors in the program.
12761 // NOTE: Don't warn about comparison expressions resulting from macro
12762 // expansion. Also don't warn about comparisons which are only self
12763 // comparisons within a template instantiation. The warnings should catch
12764 // obvious cases in the definition of the template anyways. The idea is to
12765 // warn when the typed comparison operator will always evaluate to the same
12768 // Used for indexing into %select in warn_comparison_always
12773 AlwaysEqual
, // std::strong_ordering::equal from operator<=>
12776 // C++2a [depr.array.comp]:
12777 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12778 // operands of array type are deprecated.
12779 if (S
.getLangOpts().CPlusPlus20
&& LHSStripped
->getType()->isArrayType() &&
12780 RHSStripped
->getType()->isArrayType()) {
12781 S
.Diag(Loc
, diag::warn_depr_array_comparison
)
12782 << LHS
->getSourceRange() << RHS
->getSourceRange()
12783 << LHSStripped
->getType() << RHSStripped
->getType();
12784 // Carry on to produce the tautological comparison warning, if this
12785 // expression is potentially-evaluated, we can resolve the array to a
12786 // non-weak declaration, and so on.
12789 if (!LHS
->getBeginLoc().isMacroID() && !RHS
->getBeginLoc().isMacroID()) {
12790 if (Expr::isSameComparisonOperand(LHS
, RHS
)) {
12796 Result
= AlwaysTrue
;
12801 Result
= AlwaysFalse
;
12804 Result
= AlwaysEqual
;
12807 Result
= AlwaysConstant
;
12810 S
.DiagRuntimeBehavior(Loc
, nullptr,
12811 S
.PDiag(diag::warn_comparison_always
)
12812 << 0 /*self-comparison*/
12814 } else if (checkForArray(LHSStripped
) && checkForArray(RHSStripped
)) {
12815 // What is it always going to evaluate to?
12818 case BO_EQ
: // e.g. array1 == array2
12819 Result
= AlwaysFalse
;
12821 case BO_NE
: // e.g. array1 != array2
12822 Result
= AlwaysTrue
;
12824 default: // e.g. array1 <= array2
12825 // The best we can say is 'a constant'
12826 Result
= AlwaysConstant
;
12829 S
.DiagRuntimeBehavior(Loc
, nullptr,
12830 S
.PDiag(diag::warn_comparison_always
)
12831 << 1 /*array comparison*/
12836 if (isa
<CastExpr
>(LHSStripped
))
12837 LHSStripped
= LHSStripped
->IgnoreParenCasts();
12838 if (isa
<CastExpr
>(RHSStripped
))
12839 RHSStripped
= RHSStripped
->IgnoreParenCasts();
12841 // Warn about comparisons against a string constant (unless the other
12842 // operand is null); the user probably wants string comparison function.
12843 Expr
*LiteralString
= nullptr;
12844 Expr
*LiteralStringStripped
= nullptr;
12845 if ((isa
<StringLiteral
>(LHSStripped
) || isa
<ObjCEncodeExpr
>(LHSStripped
)) &&
12846 !RHSStripped
->isNullPointerConstant(S
.Context
,
12847 Expr::NPC_ValueDependentIsNull
)) {
12848 LiteralString
= LHS
;
12849 LiteralStringStripped
= LHSStripped
;
12850 } else if ((isa
<StringLiteral
>(RHSStripped
) ||
12851 isa
<ObjCEncodeExpr
>(RHSStripped
)) &&
12852 !LHSStripped
->isNullPointerConstant(S
.Context
,
12853 Expr::NPC_ValueDependentIsNull
)) {
12854 LiteralString
= RHS
;
12855 LiteralStringStripped
= RHSStripped
;
12858 if (LiteralString
) {
12859 S
.DiagRuntimeBehavior(Loc
, nullptr,
12860 S
.PDiag(diag::warn_stringcompare
)
12861 << isa
<ObjCEncodeExpr
>(LiteralStringStripped
)
12862 << LiteralString
->getSourceRange());
12866 static ImplicitConversionKind
castKindToImplicitConversionKind(CastKind CK
) {
12870 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK
)
12873 llvm_unreachable("unhandled cast kind");
12875 case CK_UserDefinedConversion
:
12876 return ICK_Identity
;
12877 case CK_LValueToRValue
:
12878 return ICK_Lvalue_To_Rvalue
;
12879 case CK_ArrayToPointerDecay
:
12880 return ICK_Array_To_Pointer
;
12881 case CK_FunctionToPointerDecay
:
12882 return ICK_Function_To_Pointer
;
12883 case CK_IntegralCast
:
12884 return ICK_Integral_Conversion
;
12885 case CK_FloatingCast
:
12886 return ICK_Floating_Conversion
;
12887 case CK_IntegralToFloating
:
12888 case CK_FloatingToIntegral
:
12889 return ICK_Floating_Integral
;
12890 case CK_IntegralComplexCast
:
12891 case CK_FloatingComplexCast
:
12892 case CK_FloatingComplexToIntegralComplex
:
12893 case CK_IntegralComplexToFloatingComplex
:
12894 return ICK_Complex_Conversion
;
12895 case CK_FloatingComplexToReal
:
12896 case CK_FloatingRealToComplex
:
12897 case CK_IntegralComplexToReal
:
12898 case CK_IntegralRealToComplex
:
12899 return ICK_Complex_Real
;
12903 static bool checkThreeWayNarrowingConversion(Sema
&S
, QualType ToType
, Expr
*E
,
12905 SourceLocation Loc
) {
12906 // Check for a narrowing implicit conversion.
12907 StandardConversionSequence SCS
;
12908 SCS
.setAsIdentityConversion();
12909 SCS
.setToType(0, FromType
);
12910 SCS
.setToType(1, ToType
);
12911 if (const auto *ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
12912 SCS
.Second
= castKindToImplicitConversionKind(ICE
->getCastKind());
12914 APValue PreNarrowingValue
;
12915 QualType PreNarrowingType
;
12916 switch (SCS
.getNarrowingKind(S
.Context
, E
, PreNarrowingValue
,
12918 /*IgnoreFloatToIntegralConversion*/ true)) {
12919 case NK_Dependent_Narrowing
:
12920 // Implicit conversion to a narrower type, but the expression is
12921 // value-dependent so we can't tell whether it's actually narrowing.
12922 case NK_Not_Narrowing
:
12925 case NK_Constant_Narrowing
:
12926 // Implicit conversion to a narrower type, and the value is not a constant
12928 S
.Diag(E
->getBeginLoc(), diag::err_spaceship_argument_narrowing
)
12930 << PreNarrowingValue
.getAsString(S
.Context
, PreNarrowingType
) << ToType
;
12933 case NK_Variable_Narrowing
:
12934 // Implicit conversion to a narrower type, and the value is not a constant
12936 case NK_Type_Narrowing
:
12937 S
.Diag(E
->getBeginLoc(), diag::err_spaceship_argument_narrowing
)
12938 << /*Constant*/ 0 << FromType
<< ToType
;
12939 // TODO: It's not a constant expression, but what if the user intended it
12940 // to be? Can we produce notes to help them figure out why it isn't?
12943 llvm_unreachable("unhandled case in switch");
12946 static QualType
checkArithmeticOrEnumeralThreeWayCompare(Sema
&S
,
12949 SourceLocation Loc
) {
12950 QualType LHSType
= LHS
.get()->getType();
12951 QualType RHSType
= RHS
.get()->getType();
12952 // Dig out the original argument type and expression before implicit casts
12953 // were applied. These are the types/expressions we need to check the
12954 // [expr.spaceship] requirements against.
12955 ExprResult LHSStripped
= LHS
.get()->IgnoreParenImpCasts();
12956 ExprResult RHSStripped
= RHS
.get()->IgnoreParenImpCasts();
12957 QualType LHSStrippedType
= LHSStripped
.get()->getType();
12958 QualType RHSStrippedType
= RHSStripped
.get()->getType();
12960 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12961 // other is not, the program is ill-formed.
12962 if (LHSStrippedType
->isBooleanType() != RHSStrippedType
->isBooleanType()) {
12963 S
.InvalidOperands(Loc
, LHSStripped
, RHSStripped
);
12967 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12968 int NumEnumArgs
= (int)LHSStrippedType
->isEnumeralType() +
12969 RHSStrippedType
->isEnumeralType();
12970 if (NumEnumArgs
== 1) {
12971 bool LHSIsEnum
= LHSStrippedType
->isEnumeralType();
12972 QualType OtherTy
= LHSIsEnum
? RHSStrippedType
: LHSStrippedType
;
12973 if (OtherTy
->hasFloatingRepresentation()) {
12974 S
.InvalidOperands(Loc
, LHSStripped
, RHSStripped
);
12978 if (NumEnumArgs
== 2) {
12979 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12980 // type E, the operator yields the result of converting the operands
12981 // to the underlying type of E and applying <=> to the converted operands.
12982 if (!S
.Context
.hasSameUnqualifiedType(LHSStrippedType
, RHSStrippedType
)) {
12983 S
.InvalidOperands(Loc
, LHS
, RHS
);
12987 LHSStrippedType
->castAs
<EnumType
>()->getDecl()->getIntegerType();
12988 assert(IntType
->isArithmeticType());
12990 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12991 // promote the boolean type, and all other promotable integer types, to
12993 if (S
.Context
.isPromotableIntegerType(IntType
))
12994 IntType
= S
.Context
.getPromotedIntegerType(IntType
);
12996 LHS
= S
.ImpCastExprToType(LHS
.get(), IntType
, CK_IntegralCast
);
12997 RHS
= S
.ImpCastExprToType(RHS
.get(), IntType
, CK_IntegralCast
);
12998 LHSType
= RHSType
= IntType
;
13001 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
13002 // usual arithmetic conversions are applied to the operands.
13004 S
.UsualArithmeticConversions(LHS
, RHS
, Loc
, Sema::ACK_Comparison
);
13005 if (LHS
.isInvalid() || RHS
.isInvalid())
13008 return S
.InvalidOperands(Loc
, LHS
, RHS
);
13010 std::optional
<ComparisonCategoryType
> CCT
=
13011 getComparisonCategoryForBuiltinCmp(Type
);
13013 return S
.InvalidOperands(Loc
, LHS
, RHS
);
13015 bool HasNarrowing
= checkThreeWayNarrowingConversion(
13016 S
, Type
, LHS
.get(), LHSType
, LHS
.get()->getBeginLoc());
13017 HasNarrowing
|= checkThreeWayNarrowingConversion(S
, Type
, RHS
.get(), RHSType
,
13018 RHS
.get()->getBeginLoc());
13022 assert(!Type
.isNull() && "composite type for <=> has not been set");
13024 return S
.CheckComparisonCategoryType(
13025 *CCT
, Loc
, Sema::ComparisonCategoryUsage::OperatorInExpression
);
13028 static QualType
checkArithmeticOrEnumeralCompare(Sema
&S
, ExprResult
&LHS
,
13030 SourceLocation Loc
,
13031 BinaryOperatorKind Opc
) {
13033 return checkArithmeticOrEnumeralThreeWayCompare(S
, LHS
, RHS
, Loc
);
13035 // C99 6.5.8p3 / C99 6.5.9p4
13037 S
.UsualArithmeticConversions(LHS
, RHS
, Loc
, Sema::ACK_Comparison
);
13038 if (LHS
.isInvalid() || RHS
.isInvalid())
13041 return S
.InvalidOperands(Loc
, LHS
, RHS
);
13042 assert(Type
->isArithmeticType() || Type
->isEnumeralType());
13044 if (Type
->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc
))
13045 return S
.InvalidOperands(Loc
, LHS
, RHS
);
13047 // Check for comparisons of floating point operands using != and ==.
13048 if (Type
->hasFloatingRepresentation())
13049 S
.CheckFloatComparison(Loc
, LHS
.get(), RHS
.get(), Opc
);
13051 // The result of comparisons is 'bool' in C++, 'int' in C.
13052 return S
.Context
.getLogicalOperationType();
13055 void Sema::CheckPtrComparisonWithNullChar(ExprResult
&E
, ExprResult
&NullE
) {
13056 if (!NullE
.get()->getType()->isAnyPointerType())
13058 int NullValue
= PP
.isMacroDefined("NULL") ? 0 : 1;
13059 if (!E
.get()->getType()->isAnyPointerType() &&
13060 E
.get()->isNullPointerConstant(Context
,
13061 Expr::NPC_ValueDependentIsNotNull
) ==
13062 Expr::NPCK_ZeroExpression
) {
13063 if (const auto *CL
= dyn_cast
<CharacterLiteral
>(E
.get())) {
13064 if (CL
->getValue() == 0)
13065 Diag(E
.get()->getExprLoc(), diag::warn_pointer_compare
)
13067 << FixItHint::CreateReplacement(E
.get()->getExprLoc(),
13068 NullValue
? "NULL" : "(void *)0");
13069 } else if (const auto *CE
= dyn_cast
<CStyleCastExpr
>(E
.get())) {
13070 TypeSourceInfo
*TI
= CE
->getTypeInfoAsWritten();
13071 QualType T
= Context
.getCanonicalType(TI
->getType()).getUnqualifiedType();
13072 if (T
== Context
.CharTy
)
13073 Diag(E
.get()->getExprLoc(), diag::warn_pointer_compare
)
13075 << FixItHint::CreateReplacement(E
.get()->getExprLoc(),
13076 NullValue
? "NULL" : "(void *)0");
13081 // C99 6.5.8, C++ [expr.rel]
13082 QualType
Sema::CheckCompareOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13083 SourceLocation Loc
,
13084 BinaryOperatorKind Opc
) {
13085 bool IsRelational
= BinaryOperator::isRelationalOp(Opc
);
13086 bool IsThreeWay
= Opc
== BO_Cmp
;
13087 bool IsOrdered
= IsRelational
|| IsThreeWay
;
13088 auto IsAnyPointerType
= [](ExprResult E
) {
13089 QualType Ty
= E
.get()->getType();
13090 return Ty
->isPointerType() || Ty
->isMemberPointerType();
13093 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
13094 // type, array-to-pointer, ..., conversions are performed on both operands to
13095 // bring them to their composite type.
13096 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
13097 // any type-related checks.
13098 if (!IsThreeWay
|| IsAnyPointerType(LHS
) || IsAnyPointerType(RHS
)) {
13099 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
13100 if (LHS
.isInvalid())
13102 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
13103 if (RHS
.isInvalid())
13106 LHS
= DefaultLvalueConversion(LHS
.get());
13107 if (LHS
.isInvalid())
13109 RHS
= DefaultLvalueConversion(RHS
.get());
13110 if (RHS
.isInvalid())
13114 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/true);
13115 if (!getLangOpts().CPlusPlus
&& BinaryOperator::isEqualityOp(Opc
)) {
13116 CheckPtrComparisonWithNullChar(LHS
, RHS
);
13117 CheckPtrComparisonWithNullChar(RHS
, LHS
);
13120 // Handle vector comparisons separately.
13121 if (LHS
.get()->getType()->isVectorType() ||
13122 RHS
.get()->getType()->isVectorType())
13123 return CheckVectorCompareOperands(LHS
, RHS
, Loc
, Opc
);
13125 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
13126 RHS
.get()->getType()->isSveVLSBuiltinType())
13127 return CheckSizelessVectorCompareOperands(LHS
, RHS
, Loc
, Opc
);
13129 diagnoseLogicalNotOnLHSofCheck(*this, LHS
, RHS
, Loc
, Opc
);
13130 diagnoseTautologicalComparison(*this, Loc
, LHS
.get(), RHS
.get(), Opc
);
13132 QualType LHSType
= LHS
.get()->getType();
13133 QualType RHSType
= RHS
.get()->getType();
13134 if ((LHSType
->isArithmeticType() || LHSType
->isEnumeralType()) &&
13135 (RHSType
->isArithmeticType() || RHSType
->isEnumeralType()))
13136 return checkArithmeticOrEnumeralCompare(*this, LHS
, RHS
, Loc
, Opc
);
13138 if ((LHSType
->isPointerType() &&
13139 LHSType
->getPointeeType().isWebAssemblyReferenceType()) ||
13140 (RHSType
->isPointerType() &&
13141 RHSType
->getPointeeType().isWebAssemblyReferenceType()))
13142 return InvalidOperands(Loc
, LHS
, RHS
);
13144 const Expr::NullPointerConstantKind LHSNullKind
=
13145 LHS
.get()->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
);
13146 const Expr::NullPointerConstantKind RHSNullKind
=
13147 RHS
.get()->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
);
13148 bool LHSIsNull
= LHSNullKind
!= Expr::NPCK_NotNull
;
13149 bool RHSIsNull
= RHSNullKind
!= Expr::NPCK_NotNull
;
13151 auto computeResultTy
= [&]() {
13153 return Context
.getLogicalOperationType();
13154 assert(getLangOpts().CPlusPlus
);
13155 assert(Context
.hasSameType(LHS
.get()->getType(), RHS
.get()->getType()));
13157 QualType CompositeTy
= LHS
.get()->getType();
13158 assert(!CompositeTy
->isReferenceType());
13160 std::optional
<ComparisonCategoryType
> CCT
=
13161 getComparisonCategoryForBuiltinCmp(CompositeTy
);
13163 return InvalidOperands(Loc
, LHS
, RHS
);
13165 if (CompositeTy
->isPointerType() && LHSIsNull
!= RHSIsNull
) {
13166 // P0946R0: Comparisons between a null pointer constant and an object
13167 // pointer result in std::strong_equality, which is ill-formed under
13169 Diag(Loc
, diag::err_typecheck_three_way_comparison_of_pointer_and_zero
)
13170 << (LHSIsNull
? LHS
.get()->getSourceRange()
13171 : RHS
.get()->getSourceRange());
13175 return CheckComparisonCategoryType(
13176 *CCT
, Loc
, ComparisonCategoryUsage::OperatorInExpression
);
13179 if (!IsOrdered
&& LHSIsNull
!= RHSIsNull
) {
13180 bool IsEquality
= Opc
== BO_EQ
;
13182 DiagnoseAlwaysNonNullPointer(LHS
.get(), RHSNullKind
, IsEquality
,
13183 RHS
.get()->getSourceRange());
13185 DiagnoseAlwaysNonNullPointer(RHS
.get(), LHSNullKind
, IsEquality
,
13186 LHS
.get()->getSourceRange());
13189 if (IsOrdered
&& LHSType
->isFunctionPointerType() &&
13190 RHSType
->isFunctionPointerType()) {
13191 // Valid unless a relational comparison of function pointers
13192 bool IsError
= Opc
== BO_Cmp
;
13194 IsError
? diag::err_typecheck_ordered_comparison_of_function_pointers
13195 : getLangOpts().CPlusPlus
13196 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
13197 : diag::ext_typecheck_ordered_comparison_of_function_pointers
;
13198 Diag(Loc
, DiagID
) << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
13199 << RHS
.get()->getSourceRange();
13204 if ((LHSType
->isIntegerType() && !LHSIsNull
) ||
13205 (RHSType
->isIntegerType() && !RHSIsNull
)) {
13206 // Skip normal pointer conversion checks in this case; we have better
13207 // diagnostics for this below.
13208 } else if (getLangOpts().CPlusPlus
) {
13209 // Equality comparison of a function pointer to a void pointer is invalid,
13210 // but we allow it as an extension.
13211 // FIXME: If we really want to allow this, should it be part of composite
13212 // pointer type computation so it works in conditionals too?
13214 ((LHSType
->isFunctionPointerType() && RHSType
->isVoidPointerType()) ||
13215 (RHSType
->isFunctionPointerType() && LHSType
->isVoidPointerType()))) {
13216 // This is a gcc extension compatibility comparison.
13217 // In a SFINAE context, we treat this as a hard error to maintain
13218 // conformance with the C++ standard.
13219 diagnoseFunctionPointerToVoidComparison(
13220 *this, Loc
, LHS
, RHS
, /*isError*/ (bool)isSFINAEContext());
13222 if (isSFINAEContext())
13225 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
13226 return computeResultTy();
13229 // C++ [expr.eq]p2:
13230 // If at least one operand is a pointer [...] bring them to their
13231 // composite pointer type.
13232 // C++ [expr.spaceship]p6
13233 // If at least one of the operands is of pointer type, [...] bring them
13234 // to their composite pointer type.
13235 // C++ [expr.rel]p2:
13236 // If both operands are pointers, [...] bring them to their composite
13238 // For <=>, the only valid non-pointer types are arrays and functions, and
13239 // we already decayed those, so this is really the same as the relational
13240 // comparison rule.
13241 if ((int)LHSType
->isPointerType() + (int)RHSType
->isPointerType() >=
13242 (IsOrdered
? 2 : 1) &&
13243 (!LangOpts
.ObjCAutoRefCount
|| !(LHSType
->isObjCObjectPointerType() ||
13244 RHSType
->isObjCObjectPointerType()))) {
13245 if (convertPointersToCompositeType(*this, Loc
, LHS
, RHS
))
13247 return computeResultTy();
13249 } else if (LHSType
->isPointerType() &&
13250 RHSType
->isPointerType()) { // C99 6.5.8p2
13251 // All of the following pointer-related warnings are GCC extensions, except
13252 // when handling null pointer constants.
13253 QualType LCanPointeeTy
=
13254 LHSType
->castAs
<PointerType
>()->getPointeeType().getCanonicalType();
13255 QualType RCanPointeeTy
=
13256 RHSType
->castAs
<PointerType
>()->getPointeeType().getCanonicalType();
13258 // C99 6.5.9p2 and C99 6.5.8p2
13259 if (Context
.typesAreCompatible(LCanPointeeTy
.getUnqualifiedType(),
13260 RCanPointeeTy
.getUnqualifiedType())) {
13261 if (IsRelational
) {
13262 // Pointers both need to point to complete or incomplete types
13263 if ((LCanPointeeTy
->isIncompleteType() !=
13264 RCanPointeeTy
->isIncompleteType()) &&
13265 !getLangOpts().C11
) {
13266 Diag(Loc
, diag::ext_typecheck_compare_complete_incomplete_pointers
)
13267 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange()
13268 << LHSType
<< RHSType
<< LCanPointeeTy
->isIncompleteType()
13269 << RCanPointeeTy
->isIncompleteType();
13272 } else if (!IsRelational
&&
13273 (LCanPointeeTy
->isVoidType() || RCanPointeeTy
->isVoidType())) {
13274 // Valid unless comparison between non-null pointer and function pointer
13275 if ((LCanPointeeTy
->isFunctionType() || RCanPointeeTy
->isFunctionType())
13276 && !LHSIsNull
&& !RHSIsNull
)
13277 diagnoseFunctionPointerToVoidComparison(*this, Loc
, LHS
, RHS
,
13281 diagnoseDistinctPointerComparison(*this, Loc
, LHS
, RHS
, /*isError*/false);
13283 if (LCanPointeeTy
!= RCanPointeeTy
) {
13284 // Treat NULL constant as a special case in OpenCL.
13285 if (getLangOpts().OpenCL
&& !LHSIsNull
&& !RHSIsNull
) {
13286 if (!LCanPointeeTy
.isAddressSpaceOverlapping(RCanPointeeTy
)) {
13288 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers
)
13289 << LHSType
<< RHSType
<< 0 /* comparison */
13290 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
13293 LangAS AddrSpaceL
= LCanPointeeTy
.getAddressSpace();
13294 LangAS AddrSpaceR
= RCanPointeeTy
.getAddressSpace();
13295 CastKind Kind
= AddrSpaceL
!= AddrSpaceR
? CK_AddressSpaceConversion
13297 if (LHSIsNull
&& !RHSIsNull
)
13298 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, Kind
);
13300 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, Kind
);
13302 return computeResultTy();
13306 // C++ [expr.eq]p4:
13307 // Two operands of type std::nullptr_t or one operand of type
13308 // std::nullptr_t and the other a null pointer constant compare
13311 // If both operands have type nullptr_t or one operand has type nullptr_t
13312 // and the other is a null pointer constant, they compare equal if the
13313 // former is a null pointer.
13314 if (!IsOrdered
&& LHSIsNull
&& RHSIsNull
) {
13315 if (LHSType
->isNullPtrType()) {
13316 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13317 return computeResultTy();
13319 if (RHSType
->isNullPtrType()) {
13320 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13321 return computeResultTy();
13325 if (!getLangOpts().CPlusPlus
&& !IsOrdered
&& (LHSIsNull
|| RHSIsNull
)) {
13327 // Otherwise, at least one operand is a pointer. If one is a pointer and
13328 // the other is a null pointer constant or has type nullptr_t, they
13330 if (LHSIsNull
&& RHSType
->isPointerType()) {
13331 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13332 return computeResultTy();
13334 if (RHSIsNull
&& LHSType
->isPointerType()) {
13335 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13336 return computeResultTy();
13340 // Comparison of Objective-C pointers and block pointers against nullptr_t.
13341 // These aren't covered by the composite pointer type rules.
13342 if (!IsOrdered
&& RHSType
->isNullPtrType() &&
13343 (LHSType
->isObjCObjectPointerType() || LHSType
->isBlockPointerType())) {
13344 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13345 return computeResultTy();
13347 if (!IsOrdered
&& LHSType
->isNullPtrType() &&
13348 (RHSType
->isObjCObjectPointerType() || RHSType
->isBlockPointerType())) {
13349 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13350 return computeResultTy();
13353 if (getLangOpts().CPlusPlus
) {
13354 if (IsRelational
&&
13355 ((LHSType
->isNullPtrType() && RHSType
->isPointerType()) ||
13356 (RHSType
->isNullPtrType() && LHSType
->isPointerType()))) {
13357 // HACK: Relational comparison of nullptr_t against a pointer type is
13358 // invalid per DR583, but we allow it within std::less<> and friends,
13359 // since otherwise common uses of it break.
13360 // FIXME: Consider removing this hack once LWG fixes std::less<> and
13361 // friends to have std::nullptr_t overload candidates.
13362 DeclContext
*DC
= CurContext
;
13363 if (isa
<FunctionDecl
>(DC
))
13364 DC
= DC
->getParent();
13365 if (auto *CTSD
= dyn_cast
<ClassTemplateSpecializationDecl
>(DC
)) {
13366 if (CTSD
->isInStdNamespace() &&
13367 llvm::StringSwitch
<bool>(CTSD
->getName())
13368 .Cases("less", "less_equal", "greater", "greater_equal", true)
13370 if (RHSType
->isNullPtrType())
13371 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13373 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13374 return computeResultTy();
13379 // C++ [expr.eq]p2:
13380 // If at least one operand is a pointer to member, [...] bring them to
13381 // their composite pointer type.
13383 (LHSType
->isMemberPointerType() || RHSType
->isMemberPointerType())) {
13384 if (convertPointersToCompositeType(*this, Loc
, LHS
, RHS
))
13387 return computeResultTy();
13391 // Handle block pointer types.
13392 if (!IsOrdered
&& LHSType
->isBlockPointerType() &&
13393 RHSType
->isBlockPointerType()) {
13394 QualType lpointee
= LHSType
->castAs
<BlockPointerType
>()->getPointeeType();
13395 QualType rpointee
= RHSType
->castAs
<BlockPointerType
>()->getPointeeType();
13397 if (!LHSIsNull
&& !RHSIsNull
&&
13398 !Context
.typesAreCompatible(lpointee
, rpointee
)) {
13399 Diag(Loc
, diag::err_typecheck_comparison_of_distinct_blocks
)
13400 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
13401 << RHS
.get()->getSourceRange();
13403 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
13404 return computeResultTy();
13407 // Allow block pointers to be compared with null pointer constants.
13409 && ((LHSType
->isBlockPointerType() && RHSType
->isPointerType())
13410 || (LHSType
->isPointerType() && RHSType
->isBlockPointerType()))) {
13411 if (!LHSIsNull
&& !RHSIsNull
) {
13412 if (!((RHSType
->isPointerType() && RHSType
->castAs
<PointerType
>()
13413 ->getPointeeType()->isVoidType())
13414 || (LHSType
->isPointerType() && LHSType
->castAs
<PointerType
>()
13415 ->getPointeeType()->isVoidType())))
13416 Diag(Loc
, diag::err_typecheck_comparison_of_distinct_blocks
)
13417 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
13418 << RHS
.get()->getSourceRange();
13420 if (LHSIsNull
&& !RHSIsNull
)
13421 LHS
= ImpCastExprToType(LHS
.get(), RHSType
,
13422 RHSType
->isPointerType() ? CK_BitCast
13423 : CK_AnyPointerToBlockPointerCast
);
13425 RHS
= ImpCastExprToType(RHS
.get(), LHSType
,
13426 LHSType
->isPointerType() ? CK_BitCast
13427 : CK_AnyPointerToBlockPointerCast
);
13428 return computeResultTy();
13431 if (LHSType
->isObjCObjectPointerType() ||
13432 RHSType
->isObjCObjectPointerType()) {
13433 const PointerType
*LPT
= LHSType
->getAs
<PointerType
>();
13434 const PointerType
*RPT
= RHSType
->getAs
<PointerType
>();
13436 bool LPtrToVoid
= LPT
? LPT
->getPointeeType()->isVoidType() : false;
13437 bool RPtrToVoid
= RPT
? RPT
->getPointeeType()->isVoidType() : false;
13439 if (!LPtrToVoid
&& !RPtrToVoid
&&
13440 !Context
.typesAreCompatible(LHSType
, RHSType
)) {
13441 diagnoseDistinctPointerComparison(*this, Loc
, LHS
, RHS
,
13444 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
13445 // the RHS, but we have test coverage for this behavior.
13446 // FIXME: Consider using convertPointersToCompositeType in C++.
13447 if (LHSIsNull
&& !RHSIsNull
) {
13448 Expr
*E
= LHS
.get();
13449 if (getLangOpts().ObjCAutoRefCount
)
13450 CheckObjCConversion(SourceRange(), RHSType
, E
,
13451 CCK_ImplicitConversion
);
13452 LHS
= ImpCastExprToType(E
, RHSType
,
13453 RPT
? CK_BitCast
:CK_CPointerToObjCPointerCast
);
13456 Expr
*E
= RHS
.get();
13457 if (getLangOpts().ObjCAutoRefCount
)
13458 CheckObjCConversion(SourceRange(), LHSType
, E
, CCK_ImplicitConversion
,
13460 /*DiagnoseCFAudited=*/false, Opc
);
13461 RHS
= ImpCastExprToType(E
, LHSType
,
13462 LPT
? CK_BitCast
:CK_CPointerToObjCPointerCast
);
13464 return computeResultTy();
13466 if (LHSType
->isObjCObjectPointerType() &&
13467 RHSType
->isObjCObjectPointerType()) {
13468 if (!Context
.areComparableObjCPointerTypes(LHSType
, RHSType
))
13469 diagnoseDistinctPointerComparison(*this, Loc
, LHS
, RHS
,
13471 if (isObjCObjectLiteral(LHS
) || isObjCObjectLiteral(RHS
))
13472 diagnoseObjCLiteralComparison(*this, Loc
, LHS
, RHS
, Opc
);
13474 if (LHSIsNull
&& !RHSIsNull
)
13475 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_BitCast
);
13477 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
13478 return computeResultTy();
13481 if (!IsOrdered
&& LHSType
->isBlockPointerType() &&
13482 RHSType
->isBlockCompatibleObjCPointerType(Context
)) {
13483 LHS
= ImpCastExprToType(LHS
.get(), RHSType
,
13484 CK_BlockPointerToObjCPointerCast
);
13485 return computeResultTy();
13486 } else if (!IsOrdered
&&
13487 LHSType
->isBlockCompatibleObjCPointerType(Context
) &&
13488 RHSType
->isBlockPointerType()) {
13489 RHS
= ImpCastExprToType(RHS
.get(), LHSType
,
13490 CK_BlockPointerToObjCPointerCast
);
13491 return computeResultTy();
13494 if ((LHSType
->isAnyPointerType() && RHSType
->isIntegerType()) ||
13495 (LHSType
->isIntegerType() && RHSType
->isAnyPointerType())) {
13496 unsigned DiagID
= 0;
13497 bool isError
= false;
13498 if (LangOpts
.DebuggerSupport
) {
13499 // Under a debugger, allow the comparison of pointers to integers,
13500 // since users tend to want to compare addresses.
13501 } else if ((LHSIsNull
&& LHSType
->isIntegerType()) ||
13502 (RHSIsNull
&& RHSType
->isIntegerType())) {
13504 isError
= getLangOpts().CPlusPlus
;
13506 isError
? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13507 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero
;
13509 } else if (getLangOpts().CPlusPlus
) {
13510 DiagID
= diag::err_typecheck_comparison_of_pointer_integer
;
13512 } else if (IsOrdered
)
13513 DiagID
= diag::ext_typecheck_ordered_comparison_of_pointer_integer
;
13515 DiagID
= diag::ext_typecheck_comparison_of_pointer_integer
;
13519 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
13520 << RHS
.get()->getSourceRange();
13525 if (LHSType
->isIntegerType())
13526 LHS
= ImpCastExprToType(LHS
.get(), RHSType
,
13527 LHSIsNull
? CK_NullToPointer
: CK_IntegralToPointer
);
13529 RHS
= ImpCastExprToType(RHS
.get(), LHSType
,
13530 RHSIsNull
? CK_NullToPointer
: CK_IntegralToPointer
);
13531 return computeResultTy();
13534 // Handle block pointers.
13535 if (!IsOrdered
&& RHSIsNull
13536 && LHSType
->isBlockPointerType() && RHSType
->isIntegerType()) {
13537 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13538 return computeResultTy();
13540 if (!IsOrdered
&& LHSIsNull
13541 && LHSType
->isIntegerType() && RHSType
->isBlockPointerType()) {
13542 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13543 return computeResultTy();
13546 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13547 if (LHSType
->isClkEventT() && RHSType
->isClkEventT()) {
13548 return computeResultTy();
13551 if (LHSType
->isQueueT() && RHSType
->isQueueT()) {
13552 return computeResultTy();
13555 if (LHSIsNull
&& RHSType
->isQueueT()) {
13556 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13557 return computeResultTy();
13560 if (LHSType
->isQueueT() && RHSIsNull
) {
13561 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13562 return computeResultTy();
13566 return InvalidOperands(Loc
, LHS
, RHS
);
13569 // Return a signed ext_vector_type that is of identical size and number of
13570 // elements. For floating point vectors, return an integer type of identical
13571 // size and number of elements. In the non ext_vector_type case, search from
13572 // the largest type to the smallest type to avoid cases where long long == long,
13573 // where long gets picked over long long.
13574 QualType
Sema::GetSignedVectorType(QualType V
) {
13575 const VectorType
*VTy
= V
->castAs
<VectorType
>();
13576 unsigned TypeSize
= Context
.getTypeSize(VTy
->getElementType());
13578 if (isa
<ExtVectorType
>(VTy
)) {
13579 if (VTy
->isExtVectorBoolType())
13580 return Context
.getExtVectorType(Context
.BoolTy
, VTy
->getNumElements());
13581 if (TypeSize
== Context
.getTypeSize(Context
.CharTy
))
13582 return Context
.getExtVectorType(Context
.CharTy
, VTy
->getNumElements());
13583 if (TypeSize
== Context
.getTypeSize(Context
.ShortTy
))
13584 return Context
.getExtVectorType(Context
.ShortTy
, VTy
->getNumElements());
13585 if (TypeSize
== Context
.getTypeSize(Context
.IntTy
))
13586 return Context
.getExtVectorType(Context
.IntTy
, VTy
->getNumElements());
13587 if (TypeSize
== Context
.getTypeSize(Context
.Int128Ty
))
13588 return Context
.getExtVectorType(Context
.Int128Ty
, VTy
->getNumElements());
13589 if (TypeSize
== Context
.getTypeSize(Context
.LongTy
))
13590 return Context
.getExtVectorType(Context
.LongTy
, VTy
->getNumElements());
13591 assert(TypeSize
== Context
.getTypeSize(Context
.LongLongTy
) &&
13592 "Unhandled vector element size in vector compare");
13593 return Context
.getExtVectorType(Context
.LongLongTy
, VTy
->getNumElements());
13596 if (TypeSize
== Context
.getTypeSize(Context
.Int128Ty
))
13597 return Context
.getVectorType(Context
.Int128Ty
, VTy
->getNumElements(),
13598 VectorKind::Generic
);
13599 if (TypeSize
== Context
.getTypeSize(Context
.LongLongTy
))
13600 return Context
.getVectorType(Context
.LongLongTy
, VTy
->getNumElements(),
13601 VectorKind::Generic
);
13602 if (TypeSize
== Context
.getTypeSize(Context
.LongTy
))
13603 return Context
.getVectorType(Context
.LongTy
, VTy
->getNumElements(),
13604 VectorKind::Generic
);
13605 if (TypeSize
== Context
.getTypeSize(Context
.IntTy
))
13606 return Context
.getVectorType(Context
.IntTy
, VTy
->getNumElements(),
13607 VectorKind::Generic
);
13608 if (TypeSize
== Context
.getTypeSize(Context
.ShortTy
))
13609 return Context
.getVectorType(Context
.ShortTy
, VTy
->getNumElements(),
13610 VectorKind::Generic
);
13611 assert(TypeSize
== Context
.getTypeSize(Context
.CharTy
) &&
13612 "Unhandled vector element size in vector compare");
13613 return Context
.getVectorType(Context
.CharTy
, VTy
->getNumElements(),
13614 VectorKind::Generic
);
13617 QualType
Sema::GetSignedSizelessVectorType(QualType V
) {
13618 const BuiltinType
*VTy
= V
->castAs
<BuiltinType
>();
13619 assert(VTy
->isSizelessBuiltinType() && "expected sizeless type");
13621 const QualType ETy
= V
->getSveEltType(Context
);
13622 const auto TypeSize
= Context
.getTypeSize(ETy
);
13624 const QualType IntTy
= Context
.getIntTypeForBitwidth(TypeSize
, true);
13625 const llvm::ElementCount VecSize
= Context
.getBuiltinVectorTypeInfo(VTy
).EC
;
13626 return Context
.getScalableVectorType(IntTy
, VecSize
.getKnownMinValue());
13629 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13630 /// operates on extended vector types. Instead of producing an IntTy result,
13631 /// like a scalar comparison, a vector comparison produces a vector of integer
13633 QualType
Sema::CheckVectorCompareOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13634 SourceLocation Loc
,
13635 BinaryOperatorKind Opc
) {
13636 if (Opc
== BO_Cmp
) {
13637 Diag(Loc
, diag::err_three_way_vector_comparison
);
13641 // Check to make sure we're operating on vectors of the same type and width,
13642 // Allowing one side to be a scalar of element type.
13644 CheckVectorOperands(LHS
, RHS
, Loc
, /*isCompAssign*/ false,
13645 /*AllowBothBool*/ true,
13646 /*AllowBoolConversions*/ getLangOpts().ZVector
,
13647 /*AllowBooleanOperation*/ true,
13648 /*ReportInvalid*/ true);
13649 if (vType
.isNull())
13652 QualType LHSType
= LHS
.get()->getType();
13654 // Determine the return type of a vector compare. By default clang will return
13655 // a scalar for all vector compares except vector bool and vector pixel.
13656 // With the gcc compiler we will always return a vector type and with the xl
13657 // compiler we will always return a scalar type. This switch allows choosing
13658 // which behavior is prefered.
13659 if (getLangOpts().AltiVec
) {
13660 switch (getLangOpts().getAltivecSrcCompat()) {
13661 case LangOptions::AltivecSrcCompatKind::Mixed
:
13662 // If AltiVec, the comparison results in a numeric type, i.e.
13663 // bool for C++, int for C
13664 if (vType
->castAs
<VectorType
>()->getVectorKind() ==
13665 VectorKind::AltiVecVector
)
13666 return Context
.getLogicalOperationType();
13668 Diag(Loc
, diag::warn_deprecated_altivec_src_compat
);
13670 case LangOptions::AltivecSrcCompatKind::GCC
:
13671 // For GCC we always return the vector type.
13673 case LangOptions::AltivecSrcCompatKind::XL
:
13674 return Context
.getLogicalOperationType();
13679 // For non-floating point types, check for self-comparisons of the form
13680 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13681 // often indicate logic errors in the program.
13682 diagnoseTautologicalComparison(*this, Loc
, LHS
.get(), RHS
.get(), Opc
);
13684 // Check for comparisons of floating point operands using != and ==.
13685 if (LHSType
->hasFloatingRepresentation()) {
13686 assert(RHS
.get()->getType()->hasFloatingRepresentation());
13687 CheckFloatComparison(Loc
, LHS
.get(), RHS
.get(), Opc
);
13690 // Return a signed type for the vector.
13691 return GetSignedVectorType(vType
);
13694 QualType
Sema::CheckSizelessVectorCompareOperands(ExprResult
&LHS
,
13696 SourceLocation Loc
,
13697 BinaryOperatorKind Opc
) {
13698 if (Opc
== BO_Cmp
) {
13699 Diag(Loc
, diag::err_three_way_vector_comparison
);
13703 // Check to make sure we're operating on vectors of the same type and width,
13704 // Allowing one side to be a scalar of element type.
13705 QualType vType
= CheckSizelessVectorOperands(
13706 LHS
, RHS
, Loc
, /*isCompAssign*/ false, ACK_Comparison
);
13708 if (vType
.isNull())
13711 QualType LHSType
= LHS
.get()->getType();
13713 // For non-floating point types, check for self-comparisons of the form
13714 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13715 // often indicate logic errors in the program.
13716 diagnoseTautologicalComparison(*this, Loc
, LHS
.get(), RHS
.get(), Opc
);
13718 // Check for comparisons of floating point operands using != and ==.
13719 if (LHSType
->hasFloatingRepresentation()) {
13720 assert(RHS
.get()->getType()->hasFloatingRepresentation());
13721 CheckFloatComparison(Loc
, LHS
.get(), RHS
.get(), Opc
);
13724 const BuiltinType
*LHSBuiltinTy
= LHSType
->getAs
<BuiltinType
>();
13725 const BuiltinType
*RHSBuiltinTy
= RHS
.get()->getType()->getAs
<BuiltinType
>();
13727 if (LHSBuiltinTy
&& RHSBuiltinTy
&& LHSBuiltinTy
->isSVEBool() &&
13728 RHSBuiltinTy
->isSVEBool())
13731 // Return a signed type for the vector.
13732 return GetSignedSizelessVectorType(vType
);
13735 static void diagnoseXorMisusedAsPow(Sema
&S
, const ExprResult
&XorLHS
,
13736 const ExprResult
&XorRHS
,
13737 const SourceLocation Loc
) {
13738 // Do not diagnose macros.
13739 if (Loc
.isMacroID())
13742 // Do not diagnose if both LHS and RHS are macros.
13743 if (XorLHS
.get()->getExprLoc().isMacroID() &&
13744 XorRHS
.get()->getExprLoc().isMacroID())
13747 bool Negative
= false;
13748 bool ExplicitPlus
= false;
13749 const auto *LHSInt
= dyn_cast
<IntegerLiteral
>(XorLHS
.get());
13750 const auto *RHSInt
= dyn_cast
<IntegerLiteral
>(XorRHS
.get());
13755 // Check negative literals.
13756 if (const auto *UO
= dyn_cast
<UnaryOperator
>(XorRHS
.get())) {
13757 UnaryOperatorKind Opc
= UO
->getOpcode();
13758 if (Opc
!= UO_Minus
&& Opc
!= UO_Plus
)
13760 RHSInt
= dyn_cast
<IntegerLiteral
>(UO
->getSubExpr());
13763 Negative
= (Opc
== UO_Minus
);
13764 ExplicitPlus
= !Negative
;
13770 const llvm::APInt
&LeftSideValue
= LHSInt
->getValue();
13771 llvm::APInt RightSideValue
= RHSInt
->getValue();
13772 if (LeftSideValue
!= 2 && LeftSideValue
!= 10)
13775 if (LeftSideValue
.getBitWidth() != RightSideValue
.getBitWidth())
13778 CharSourceRange ExprRange
= CharSourceRange::getCharRange(
13779 LHSInt
->getBeginLoc(), S
.getLocForEndOfToken(RHSInt
->getLocation()));
13780 llvm::StringRef ExprStr
=
13781 Lexer::getSourceText(ExprRange
, S
.getSourceManager(), S
.getLangOpts());
13783 CharSourceRange XorRange
=
13784 CharSourceRange::getCharRange(Loc
, S
.getLocForEndOfToken(Loc
));
13785 llvm::StringRef XorStr
=
13786 Lexer::getSourceText(XorRange
, S
.getSourceManager(), S
.getLangOpts());
13787 // Do not diagnose if xor keyword/macro is used.
13788 if (XorStr
== "xor")
13791 std::string LHSStr
= std::string(Lexer::getSourceText(
13792 CharSourceRange::getTokenRange(LHSInt
->getSourceRange()),
13793 S
.getSourceManager(), S
.getLangOpts()));
13794 std::string RHSStr
= std::string(Lexer::getSourceText(
13795 CharSourceRange::getTokenRange(RHSInt
->getSourceRange()),
13796 S
.getSourceManager(), S
.getLangOpts()));
13799 RightSideValue
= -RightSideValue
;
13800 RHSStr
= "-" + RHSStr
;
13801 } else if (ExplicitPlus
) {
13802 RHSStr
= "+" + RHSStr
;
13805 StringRef LHSStrRef
= LHSStr
;
13806 StringRef RHSStrRef
= RHSStr
;
13807 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13809 if (LHSStrRef
.starts_with("0b") || LHSStrRef
.starts_with("0B") ||
13810 RHSStrRef
.starts_with("0b") || RHSStrRef
.starts_with("0B") ||
13811 LHSStrRef
.starts_with("0x") || LHSStrRef
.starts_with("0X") ||
13812 RHSStrRef
.starts_with("0x") || RHSStrRef
.starts_with("0X") ||
13813 (LHSStrRef
.size() > 1 && LHSStrRef
.starts_with("0")) ||
13814 (RHSStrRef
.size() > 1 && RHSStrRef
.starts_with("0")) ||
13815 LHSStrRef
.contains('\'') || RHSStrRef
.contains('\''))
13819 S
.getLangOpts().CPlusPlus
|| S
.getPreprocessor().isMacroDefined("xor");
13820 const llvm::APInt XorValue
= LeftSideValue
^ RightSideValue
;
13821 int64_t RightSideIntValue
= RightSideValue
.getSExtValue();
13822 if (LeftSideValue
== 2 && RightSideIntValue
>= 0) {
13823 std::string SuggestedExpr
= "1 << " + RHSStr
;
13824 bool Overflow
= false;
13825 llvm::APInt One
= (LeftSideValue
- 1);
13826 llvm::APInt PowValue
= One
.sshl_ov(RightSideValue
, Overflow
);
13828 if (RightSideIntValue
< 64)
13829 S
.Diag(Loc
, diag::warn_xor_used_as_pow_base
)
13830 << ExprStr
<< toString(XorValue
, 10, true) << ("1LL << " + RHSStr
)
13831 << FixItHint::CreateReplacement(ExprRange
, "1LL << " + RHSStr
);
13832 else if (RightSideIntValue
== 64)
13833 S
.Diag(Loc
, diag::warn_xor_used_as_pow
)
13834 << ExprStr
<< toString(XorValue
, 10, true);
13838 S
.Diag(Loc
, diag::warn_xor_used_as_pow_base_extra
)
13839 << ExprStr
<< toString(XorValue
, 10, true) << SuggestedExpr
13840 << toString(PowValue
, 10, true)
13841 << FixItHint::CreateReplacement(
13842 ExprRange
, (RightSideIntValue
== 0) ? "1" : SuggestedExpr
);
13845 S
.Diag(Loc
, diag::note_xor_used_as_pow_silence
)
13846 << ("0x2 ^ " + RHSStr
) << SuggestXor
;
13847 } else if (LeftSideValue
== 10) {
13848 std::string SuggestedValue
= "1e" + std::to_string(RightSideIntValue
);
13849 S
.Diag(Loc
, diag::warn_xor_used_as_pow_base
)
13850 << ExprStr
<< toString(XorValue
, 10, true) << SuggestedValue
13851 << FixItHint::CreateReplacement(ExprRange
, SuggestedValue
);
13852 S
.Diag(Loc
, diag::note_xor_used_as_pow_silence
)
13853 << ("0xA ^ " + RHSStr
) << SuggestXor
;
13857 QualType
Sema::CheckVectorLogicalOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13858 SourceLocation Loc
) {
13859 // Ensure that either both operands are of the same vector type, or
13860 // one operand is of a vector type and the other is of its element type.
13861 QualType vType
= CheckVectorOperands(LHS
, RHS
, Loc
, false,
13862 /*AllowBothBool*/ true,
13863 /*AllowBoolConversions*/ false,
13864 /*AllowBooleanOperation*/ false,
13865 /*ReportInvalid*/ false);
13866 if (vType
.isNull())
13867 return InvalidOperands(Loc
, LHS
, RHS
);
13868 if (getLangOpts().OpenCL
&&
13869 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13870 vType
->hasFloatingRepresentation())
13871 return InvalidOperands(Loc
, LHS
, RHS
);
13872 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13873 // usage of the logical operators && and || with vectors in C. This
13874 // check could be notionally dropped.
13875 if (!getLangOpts().CPlusPlus
&&
13876 !(isa
<ExtVectorType
>(vType
->getAs
<VectorType
>())))
13877 return InvalidLogicalVectorOperands(Loc
, LHS
, RHS
);
13879 return GetSignedVectorType(LHS
.get()->getType());
13882 QualType
Sema::CheckMatrixElementwiseOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13883 SourceLocation Loc
,
13884 bool IsCompAssign
) {
13885 if (!IsCompAssign
) {
13886 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
13887 if (LHS
.isInvalid())
13890 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
13891 if (RHS
.isInvalid())
13894 // For conversion purposes, we ignore any qualifiers.
13895 // For example, "const float" and "float" are equivalent.
13896 QualType LHSType
= LHS
.get()->getType().getUnqualifiedType();
13897 QualType RHSType
= RHS
.get()->getType().getUnqualifiedType();
13899 const MatrixType
*LHSMatType
= LHSType
->getAs
<MatrixType
>();
13900 const MatrixType
*RHSMatType
= RHSType
->getAs
<MatrixType
>();
13901 assert((LHSMatType
|| RHSMatType
) && "At least one operand must be a matrix");
13903 if (Context
.hasSameType(LHSType
, RHSType
))
13904 return Context
.getCommonSugaredType(LHSType
, RHSType
);
13906 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13907 // case we have to return InvalidOperands.
13908 ExprResult OriginalLHS
= LHS
;
13909 ExprResult OriginalRHS
= RHS
;
13910 if (LHSMatType
&& !RHSMatType
) {
13911 RHS
= tryConvertExprToType(RHS
.get(), LHSMatType
->getElementType());
13912 if (!RHS
.isInvalid())
13915 return InvalidOperands(Loc
, OriginalLHS
, OriginalRHS
);
13918 if (!LHSMatType
&& RHSMatType
) {
13919 LHS
= tryConvertExprToType(LHS
.get(), RHSMatType
->getElementType());
13920 if (!LHS
.isInvalid())
13922 return InvalidOperands(Loc
, OriginalLHS
, OriginalRHS
);
13925 return InvalidOperands(Loc
, LHS
, RHS
);
13928 QualType
Sema::CheckMatrixMultiplyOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13929 SourceLocation Loc
,
13930 bool IsCompAssign
) {
13931 if (!IsCompAssign
) {
13932 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
13933 if (LHS
.isInvalid())
13936 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
13937 if (RHS
.isInvalid())
13940 auto *LHSMatType
= LHS
.get()->getType()->getAs
<ConstantMatrixType
>();
13941 auto *RHSMatType
= RHS
.get()->getType()->getAs
<ConstantMatrixType
>();
13942 assert((LHSMatType
|| RHSMatType
) && "At least one operand must be a matrix");
13944 if (LHSMatType
&& RHSMatType
) {
13945 if (LHSMatType
->getNumColumns() != RHSMatType
->getNumRows())
13946 return InvalidOperands(Loc
, LHS
, RHS
);
13948 if (Context
.hasSameType(LHSMatType
, RHSMatType
))
13949 return Context
.getCommonSugaredType(
13950 LHS
.get()->getType().getUnqualifiedType(),
13951 RHS
.get()->getType().getUnqualifiedType());
13953 QualType LHSELTy
= LHSMatType
->getElementType(),
13954 RHSELTy
= RHSMatType
->getElementType();
13955 if (!Context
.hasSameType(LHSELTy
, RHSELTy
))
13956 return InvalidOperands(Loc
, LHS
, RHS
);
13958 return Context
.getConstantMatrixType(
13959 Context
.getCommonSugaredType(LHSELTy
, RHSELTy
),
13960 LHSMatType
->getNumRows(), RHSMatType
->getNumColumns());
13962 return CheckMatrixElementwiseOperands(LHS
, RHS
, Loc
, IsCompAssign
);
13965 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc
) {
13979 inline QualType
Sema::CheckBitwiseOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13980 SourceLocation Loc
,
13981 BinaryOperatorKind Opc
) {
13982 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
13984 bool IsCompAssign
=
13985 Opc
== BO_AndAssign
|| Opc
== BO_OrAssign
|| Opc
== BO_XorAssign
;
13987 bool LegalBoolVecOperator
= isLegalBoolVectorBinaryOp(Opc
);
13989 if (LHS
.get()->getType()->isVectorType() ||
13990 RHS
.get()->getType()->isVectorType()) {
13991 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
13992 RHS
.get()->getType()->hasIntegerRepresentation())
13993 return CheckVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
13994 /*AllowBothBool*/ true,
13995 /*AllowBoolConversions*/ getLangOpts().ZVector
,
13996 /*AllowBooleanOperation*/ LegalBoolVecOperator
,
13997 /*ReportInvalid*/ true);
13998 return InvalidOperands(Loc
, LHS
, RHS
);
14001 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
14002 RHS
.get()->getType()->isSveVLSBuiltinType()) {
14003 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
14004 RHS
.get()->getType()->hasIntegerRepresentation())
14005 return CheckSizelessVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
14007 return InvalidOperands(Loc
, LHS
, RHS
);
14010 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
14011 RHS
.get()->getType()->isSveVLSBuiltinType()) {
14012 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
14013 RHS
.get()->getType()->hasIntegerRepresentation())
14014 return CheckSizelessVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
14016 return InvalidOperands(Loc
, LHS
, RHS
);
14020 diagnoseLogicalNotOnLHSofCheck(*this, LHS
, RHS
, Loc
, Opc
);
14022 if (LHS
.get()->getType()->hasFloatingRepresentation() ||
14023 RHS
.get()->getType()->hasFloatingRepresentation())
14024 return InvalidOperands(Loc
, LHS
, RHS
);
14026 ExprResult LHSResult
= LHS
, RHSResult
= RHS
;
14027 QualType compType
= UsualArithmeticConversions(
14028 LHSResult
, RHSResult
, Loc
, IsCompAssign
? ACK_CompAssign
: ACK_BitwiseOp
);
14029 if (LHSResult
.isInvalid() || RHSResult
.isInvalid())
14031 LHS
= LHSResult
.get();
14032 RHS
= RHSResult
.get();
14035 diagnoseXorMisusedAsPow(*this, LHS
, RHS
, Loc
);
14037 if (!compType
.isNull() && compType
->isIntegralOrUnscopedEnumerationType())
14039 return InvalidOperands(Loc
, LHS
, RHS
);
14043 inline QualType
Sema::CheckLogicalOperands(ExprResult
&LHS
, ExprResult
&RHS
,
14044 SourceLocation Loc
,
14045 BinaryOperatorKind Opc
) {
14046 // Check vector operands differently.
14047 if (LHS
.get()->getType()->isVectorType() ||
14048 RHS
.get()->getType()->isVectorType())
14049 return CheckVectorLogicalOperands(LHS
, RHS
, Loc
);
14051 bool EnumConstantInBoolContext
= false;
14052 for (const ExprResult
&HS
: {LHS
, RHS
}) {
14053 if (const auto *DREHS
= dyn_cast
<DeclRefExpr
>(HS
.get())) {
14054 const auto *ECDHS
= dyn_cast
<EnumConstantDecl
>(DREHS
->getDecl());
14055 if (ECDHS
&& ECDHS
->getInitVal() != 0 && ECDHS
->getInitVal() != 1)
14056 EnumConstantInBoolContext
= true;
14060 if (EnumConstantInBoolContext
)
14061 Diag(Loc
, diag::warn_enum_constant_in_bool_context
);
14063 // WebAssembly tables can't be used with logical operators.
14064 QualType LHSTy
= LHS
.get()->getType();
14065 QualType RHSTy
= RHS
.get()->getType();
14066 const auto *LHSATy
= dyn_cast
<ArrayType
>(LHSTy
);
14067 const auto *RHSATy
= dyn_cast
<ArrayType
>(RHSTy
);
14068 if ((LHSATy
&& LHSATy
->getElementType().isWebAssemblyReferenceType()) ||
14069 (RHSATy
&& RHSATy
->getElementType().isWebAssemblyReferenceType())) {
14070 return InvalidOperands(Loc
, LHS
, RHS
);
14073 // Diagnose cases where the user write a logical and/or but probably meant a
14074 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
14076 if (!EnumConstantInBoolContext
&& LHS
.get()->getType()->isIntegerType() &&
14077 !LHS
.get()->getType()->isBooleanType() &&
14078 RHS
.get()->getType()->isIntegerType() && !RHS
.get()->isValueDependent() &&
14079 // Don't warn in macros or template instantiations.
14080 !Loc
.isMacroID() && !inTemplateInstantiation()) {
14081 // If the RHS can be constant folded, and if it constant folds to something
14082 // that isn't 0 or 1 (which indicate a potential logical operation that
14083 // happened to fold to true/false) then warn.
14084 // Parens on the RHS are ignored.
14085 Expr::EvalResult EVResult
;
14086 if (RHS
.get()->EvaluateAsInt(EVResult
, Context
)) {
14087 llvm::APSInt Result
= EVResult
.Val
.getInt();
14088 if ((getLangOpts().Bool
&& !RHS
.get()->getType()->isBooleanType() &&
14089 !RHS
.get()->getExprLoc().isMacroID()) ||
14090 (Result
!= 0 && Result
!= 1)) {
14091 Diag(Loc
, diag::warn_logical_instead_of_bitwise
)
14092 << RHS
.get()->getSourceRange() << (Opc
== BO_LAnd
? "&&" : "||");
14093 // Suggest replacing the logical operator with the bitwise version
14094 Diag(Loc
, diag::note_logical_instead_of_bitwise_change_operator
)
14095 << (Opc
== BO_LAnd
? "&" : "|")
14096 << FixItHint::CreateReplacement(
14097 SourceRange(Loc
, getLocForEndOfToken(Loc
)),
14098 Opc
== BO_LAnd
? "&" : "|");
14099 if (Opc
== BO_LAnd
)
14100 // Suggest replacing "Foo() && kNonZero" with "Foo()"
14101 Diag(Loc
, diag::note_logical_instead_of_bitwise_remove_constant
)
14102 << FixItHint::CreateRemoval(
14103 SourceRange(getLocForEndOfToken(LHS
.get()->getEndLoc()),
14104 RHS
.get()->getEndLoc()));
14109 if (!Context
.getLangOpts().CPlusPlus
) {
14110 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
14111 // not operate on the built-in scalar and vector float types.
14112 if (Context
.getLangOpts().OpenCL
&&
14113 Context
.getLangOpts().OpenCLVersion
< 120) {
14114 if (LHS
.get()->getType()->isFloatingType() ||
14115 RHS
.get()->getType()->isFloatingType())
14116 return InvalidOperands(Loc
, LHS
, RHS
);
14119 LHS
= UsualUnaryConversions(LHS
.get());
14120 if (LHS
.isInvalid())
14123 RHS
= UsualUnaryConversions(RHS
.get());
14124 if (RHS
.isInvalid())
14127 if (!LHS
.get()->getType()->isScalarType() ||
14128 !RHS
.get()->getType()->isScalarType())
14129 return InvalidOperands(Loc
, LHS
, RHS
);
14131 return Context
.IntTy
;
14134 // The following is safe because we only use this method for
14135 // non-overloadable operands.
14137 // C++ [expr.log.and]p1
14138 // C++ [expr.log.or]p1
14139 // The operands are both contextually converted to type bool.
14140 ExprResult LHSRes
= PerformContextuallyConvertToBool(LHS
.get());
14141 if (LHSRes
.isInvalid())
14142 return InvalidOperands(Loc
, LHS
, RHS
);
14145 ExprResult RHSRes
= PerformContextuallyConvertToBool(RHS
.get());
14146 if (RHSRes
.isInvalid())
14147 return InvalidOperands(Loc
, LHS
, RHS
);
14150 // C++ [expr.log.and]p2
14151 // C++ [expr.log.or]p2
14152 // The result is a bool.
14153 return Context
.BoolTy
;
14156 static bool IsReadonlyMessage(Expr
*E
, Sema
&S
) {
14157 const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
);
14158 if (!ME
) return false;
14159 if (!isa
<FieldDecl
>(ME
->getMemberDecl())) return false;
14160 ObjCMessageExpr
*Base
= dyn_cast
<ObjCMessageExpr
>(
14161 ME
->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
14162 if (!Base
) return false;
14163 return Base
->getMethodDecl() != nullptr;
14166 /// Is the given expression (which must be 'const') a reference to a
14167 /// variable which was originally non-const, but which has become
14168 /// 'const' due to being captured within a block?
14169 enum NonConstCaptureKind
{ NCCK_None
, NCCK_Block
, NCCK_Lambda
};
14170 static NonConstCaptureKind
isReferenceToNonConstCapture(Sema
&S
, Expr
*E
) {
14171 assert(E
->isLValue() && E
->getType().isConstQualified());
14172 E
= E
->IgnoreParens();
14174 // Must be a reference to a declaration from an enclosing scope.
14175 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
);
14176 if (!DRE
) return NCCK_None
;
14177 if (!DRE
->refersToEnclosingVariableOrCapture()) return NCCK_None
;
14179 // The declaration must be a variable which is not declared 'const'.
14180 VarDecl
*var
= dyn_cast
<VarDecl
>(DRE
->getDecl());
14181 if (!var
) return NCCK_None
;
14182 if (var
->getType().isConstQualified()) return NCCK_None
;
14183 assert(var
->hasLocalStorage() && "capture added 'const' to non-local?");
14185 // Decide whether the first capture was for a block or a lambda.
14186 DeclContext
*DC
= S
.CurContext
, *Prev
= nullptr;
14187 // Decide whether the first capture was for a block or a lambda.
14189 // For init-capture, it is possible that the variable belongs to the
14190 // template pattern of the current context.
14191 if (auto *FD
= dyn_cast
<FunctionDecl
>(DC
))
14192 if (var
->isInitCapture() &&
14193 FD
->getTemplateInstantiationPattern() == var
->getDeclContext())
14195 if (DC
== var
->getDeclContext())
14198 DC
= DC
->getParent();
14200 // Unless we have an init-capture, we've gone one step too far.
14201 if (!var
->isInitCapture())
14203 return (isa
<BlockDecl
>(DC
) ? NCCK_Block
: NCCK_Lambda
);
14206 static bool IsTypeModifiable(QualType Ty
, bool IsDereference
) {
14207 Ty
= Ty
.getNonReferenceType();
14208 if (IsDereference
&& Ty
->isPointerType())
14209 Ty
= Ty
->getPointeeType();
14210 return !Ty
.isConstQualified();
14213 // Update err_typecheck_assign_const and note_typecheck_assign_const
14214 // when this enum is changed.
14221 ConstUnknown
, // Keep as last element
14224 /// Emit the "read-only variable not assignable" error and print notes to give
14225 /// more information about why the variable is not assignable, such as pointing
14226 /// to the declaration of a const variable, showing that a method is const, or
14227 /// that the function is returning a const reference.
14228 static void DiagnoseConstAssignment(Sema
&S
, const Expr
*E
,
14229 SourceLocation Loc
) {
14230 SourceRange ExprRange
= E
->getSourceRange();
14232 // Only emit one error on the first const found. All other consts will emit
14233 // a note to the error.
14234 bool DiagnosticEmitted
= false;
14236 // Track if the current expression is the result of a dereference, and if the
14237 // next checked expression is the result of a dereference.
14238 bool IsDereference
= false;
14239 bool NextIsDereference
= false;
14241 // Loop to process MemberExpr chains.
14243 IsDereference
= NextIsDereference
;
14245 E
= E
->IgnoreImplicit()->IgnoreParenImpCasts();
14246 if (const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
)) {
14247 NextIsDereference
= ME
->isArrow();
14248 const ValueDecl
*VD
= ME
->getMemberDecl();
14249 if (const FieldDecl
*Field
= dyn_cast
<FieldDecl
>(VD
)) {
14250 // Mutable fields can be modified even if the class is const.
14251 if (Field
->isMutable()) {
14252 assert(DiagnosticEmitted
&& "Expected diagnostic not emitted.");
14256 if (!IsTypeModifiable(Field
->getType(), IsDereference
)) {
14257 if (!DiagnosticEmitted
) {
14258 S
.Diag(Loc
, diag::err_typecheck_assign_const
)
14259 << ExprRange
<< ConstMember
<< false /*static*/ << Field
14260 << Field
->getType();
14261 DiagnosticEmitted
= true;
14263 S
.Diag(VD
->getLocation(), diag::note_typecheck_assign_const
)
14264 << ConstMember
<< false /*static*/ << Field
<< Field
->getType()
14265 << Field
->getSourceRange();
14269 } else if (const VarDecl
*VDecl
= dyn_cast
<VarDecl
>(VD
)) {
14270 if (VDecl
->getType().isConstQualified()) {
14271 if (!DiagnosticEmitted
) {
14272 S
.Diag(Loc
, diag::err_typecheck_assign_const
)
14273 << ExprRange
<< ConstMember
<< true /*static*/ << VDecl
14274 << VDecl
->getType();
14275 DiagnosticEmitted
= true;
14277 S
.Diag(VD
->getLocation(), diag::note_typecheck_assign_const
)
14278 << ConstMember
<< true /*static*/ << VDecl
<< VDecl
->getType()
14279 << VDecl
->getSourceRange();
14281 // Static fields do not inherit constness from parents.
14284 break; // End MemberExpr
14285 } else if (const ArraySubscriptExpr
*ASE
=
14286 dyn_cast
<ArraySubscriptExpr
>(E
)) {
14287 E
= ASE
->getBase()->IgnoreParenImpCasts();
14289 } else if (const ExtVectorElementExpr
*EVE
=
14290 dyn_cast
<ExtVectorElementExpr
>(E
)) {
14291 E
= EVE
->getBase()->IgnoreParenImpCasts();
14297 if (const CallExpr
*CE
= dyn_cast
<CallExpr
>(E
)) {
14299 const FunctionDecl
*FD
= CE
->getDirectCallee();
14300 if (FD
&& !IsTypeModifiable(FD
->getReturnType(), IsDereference
)) {
14301 if (!DiagnosticEmitted
) {
14302 S
.Diag(Loc
, diag::err_typecheck_assign_const
) << ExprRange
14303 << ConstFunction
<< FD
;
14304 DiagnosticEmitted
= true;
14306 S
.Diag(FD
->getReturnTypeSourceRange().getBegin(),
14307 diag::note_typecheck_assign_const
)
14308 << ConstFunction
<< FD
<< FD
->getReturnType()
14309 << FD
->getReturnTypeSourceRange();
14311 } else if (const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
14312 // Point to variable declaration.
14313 if (const ValueDecl
*VD
= DRE
->getDecl()) {
14314 if (!IsTypeModifiable(VD
->getType(), IsDereference
)) {
14315 if (!DiagnosticEmitted
) {
14316 S
.Diag(Loc
, diag::err_typecheck_assign_const
)
14317 << ExprRange
<< ConstVariable
<< VD
<< VD
->getType();
14318 DiagnosticEmitted
= true;
14320 S
.Diag(VD
->getLocation(), diag::note_typecheck_assign_const
)
14321 << ConstVariable
<< VD
<< VD
->getType() << VD
->getSourceRange();
14324 } else if (isa
<CXXThisExpr
>(E
)) {
14325 if (const DeclContext
*DC
= S
.getFunctionLevelDeclContext()) {
14326 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(DC
)) {
14327 if (MD
->isConst()) {
14328 if (!DiagnosticEmitted
) {
14329 S
.Diag(Loc
, diag::err_typecheck_assign_const
) << ExprRange
14330 << ConstMethod
<< MD
;
14331 DiagnosticEmitted
= true;
14333 S
.Diag(MD
->getLocation(), diag::note_typecheck_assign_const
)
14334 << ConstMethod
<< MD
<< MD
->getSourceRange();
14340 if (DiagnosticEmitted
)
14343 // Can't determine a more specific message, so display the generic error.
14344 S
.Diag(Loc
, diag::err_typecheck_assign_const
) << ExprRange
<< ConstUnknown
;
14347 enum OriginalExprKind
{
14353 static void DiagnoseRecursiveConstFields(Sema
&S
, const ValueDecl
*VD
,
14354 const RecordType
*Ty
,
14355 SourceLocation Loc
, SourceRange Range
,
14356 OriginalExprKind OEK
,
14357 bool &DiagnosticEmitted
) {
14358 std::vector
<const RecordType
*> RecordTypeList
;
14359 RecordTypeList
.push_back(Ty
);
14360 unsigned NextToCheckIndex
= 0;
14361 // We walk the record hierarchy breadth-first to ensure that we print
14362 // diagnostics in field nesting order.
14363 while (RecordTypeList
.size() > NextToCheckIndex
) {
14364 bool IsNested
= NextToCheckIndex
> 0;
14365 for (const FieldDecl
*Field
:
14366 RecordTypeList
[NextToCheckIndex
]->getDecl()->fields()) {
14367 // First, check every field for constness.
14368 QualType FieldTy
= Field
->getType();
14369 if (FieldTy
.isConstQualified()) {
14370 if (!DiagnosticEmitted
) {
14371 S
.Diag(Loc
, diag::err_typecheck_assign_const
)
14372 << Range
<< NestedConstMember
<< OEK
<< VD
14373 << IsNested
<< Field
;
14374 DiagnosticEmitted
= true;
14376 S
.Diag(Field
->getLocation(), diag::note_typecheck_assign_const
)
14377 << NestedConstMember
<< IsNested
<< Field
14378 << FieldTy
<< Field
->getSourceRange();
14381 // Then we append it to the list to check next in order.
14382 FieldTy
= FieldTy
.getCanonicalType();
14383 if (const auto *FieldRecTy
= FieldTy
->getAs
<RecordType
>()) {
14384 if (!llvm::is_contained(RecordTypeList
, FieldRecTy
))
14385 RecordTypeList
.push_back(FieldRecTy
);
14388 ++NextToCheckIndex
;
14392 /// Emit an error for the case where a record we are trying to assign to has a
14393 /// const-qualified field somewhere in its hierarchy.
14394 static void DiagnoseRecursiveConstFields(Sema
&S
, const Expr
*E
,
14395 SourceLocation Loc
) {
14396 QualType Ty
= E
->getType();
14397 assert(Ty
->isRecordType() && "lvalue was not record?");
14398 SourceRange Range
= E
->getSourceRange();
14399 const RecordType
*RTy
= Ty
.getCanonicalType()->getAs
<RecordType
>();
14400 bool DiagEmitted
= false;
14402 if (const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
))
14403 DiagnoseRecursiveConstFields(S
, ME
->getMemberDecl(), RTy
, Loc
,
14404 Range
, OEK_Member
, DiagEmitted
);
14405 else if (const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
))
14406 DiagnoseRecursiveConstFields(S
, DRE
->getDecl(), RTy
, Loc
,
14407 Range
, OEK_Variable
, DiagEmitted
);
14409 DiagnoseRecursiveConstFields(S
, nullptr, RTy
, Loc
,
14410 Range
, OEK_LValue
, DiagEmitted
);
14412 DiagnoseConstAssignment(S
, E
, Loc
);
14415 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
14416 /// emit an error and return true. If so, return false.
14417 static bool CheckForModifiableLvalue(Expr
*E
, SourceLocation Loc
, Sema
&S
) {
14418 assert(!E
->hasPlaceholderType(BuiltinType::PseudoObject
));
14420 S
.CheckShadowingDeclModification(E
, Loc
);
14422 SourceLocation OrigLoc
= Loc
;
14423 Expr::isModifiableLvalueResult IsLV
= E
->isModifiableLvalue(S
.Context
,
14425 if (IsLV
== Expr::MLV_ClassTemporary
&& IsReadonlyMessage(E
, S
))
14426 IsLV
= Expr::MLV_InvalidMessageExpression
;
14427 if (IsLV
== Expr::MLV_Valid
)
14430 unsigned DiagID
= 0;
14431 bool NeedType
= false;
14432 switch (IsLV
) { // C99 6.5.16p2
14433 case Expr::MLV_ConstQualified
:
14434 // Use a specialized diagnostic when we're assigning to an object
14435 // from an enclosing function or block.
14436 if (NonConstCaptureKind NCCK
= isReferenceToNonConstCapture(S
, E
)) {
14437 if (NCCK
== NCCK_Block
)
14438 DiagID
= diag::err_block_decl_ref_not_modifiable_lvalue
;
14440 DiagID
= diag::err_lambda_decl_ref_not_modifiable_lvalue
;
14444 // In ARC, use some specialized diagnostics for occasions where we
14445 // infer 'const'. These are always pseudo-strong variables.
14446 if (S
.getLangOpts().ObjCAutoRefCount
) {
14447 DeclRefExpr
*declRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenCasts());
14448 if (declRef
&& isa
<VarDecl
>(declRef
->getDecl())) {
14449 VarDecl
*var
= cast
<VarDecl
>(declRef
->getDecl());
14451 // Use the normal diagnostic if it's pseudo-__strong but the
14452 // user actually wrote 'const'.
14453 if (var
->isARCPseudoStrong() &&
14454 (!var
->getTypeSourceInfo() ||
14455 !var
->getTypeSourceInfo()->getType().isConstQualified())) {
14456 // There are three pseudo-strong cases:
14458 ObjCMethodDecl
*method
= S
.getCurMethodDecl();
14459 if (method
&& var
== method
->getSelfDecl()) {
14460 DiagID
= method
->isClassMethod()
14461 ? diag::err_typecheck_arc_assign_self_class_method
14462 : diag::err_typecheck_arc_assign_self
;
14464 // - Objective-C externally_retained attribute.
14465 } else if (var
->hasAttr
<ObjCExternallyRetainedAttr
>() ||
14466 isa
<ParmVarDecl
>(var
)) {
14467 DiagID
= diag::err_typecheck_arc_assign_externally_retained
;
14469 // - fast enumeration variables
14471 DiagID
= diag::err_typecheck_arr_assign_enumeration
;
14474 SourceRange Assign
;
14475 if (Loc
!= OrigLoc
)
14476 Assign
= SourceRange(OrigLoc
, OrigLoc
);
14477 S
.Diag(Loc
, DiagID
) << E
->getSourceRange() << Assign
;
14478 // We need to preserve the AST regardless, so migration tool
14485 // If none of the special cases above are triggered, then this is a
14486 // simple const assignment.
14488 DiagnoseConstAssignment(S
, E
, Loc
);
14493 case Expr::MLV_ConstAddrSpace
:
14494 DiagnoseConstAssignment(S
, E
, Loc
);
14496 case Expr::MLV_ConstQualifiedField
:
14497 DiagnoseRecursiveConstFields(S
, E
, Loc
);
14499 case Expr::MLV_ArrayType
:
14500 case Expr::MLV_ArrayTemporary
:
14501 DiagID
= diag::err_typecheck_array_not_modifiable_lvalue
;
14504 case Expr::MLV_NotObjectType
:
14505 DiagID
= diag::err_typecheck_non_object_not_modifiable_lvalue
;
14508 case Expr::MLV_LValueCast
:
14509 DiagID
= diag::err_typecheck_lvalue_casts_not_supported
;
14511 case Expr::MLV_Valid
:
14512 llvm_unreachable("did not take early return for MLV_Valid");
14513 case Expr::MLV_InvalidExpression
:
14514 case Expr::MLV_MemberFunction
:
14515 case Expr::MLV_ClassTemporary
:
14516 DiagID
= diag::err_typecheck_expression_not_modifiable_lvalue
;
14518 case Expr::MLV_IncompleteType
:
14519 case Expr::MLV_IncompleteVoidType
:
14520 return S
.RequireCompleteType(Loc
, E
->getType(),
14521 diag::err_typecheck_incomplete_type_not_modifiable_lvalue
, E
);
14522 case Expr::MLV_DuplicateVectorComponents
:
14523 DiagID
= diag::err_typecheck_duplicate_vector_components_not_mlvalue
;
14525 case Expr::MLV_NoSetterProperty
:
14526 llvm_unreachable("readonly properties should be processed differently");
14527 case Expr::MLV_InvalidMessageExpression
:
14528 DiagID
= diag::err_readonly_message_assignment
;
14530 case Expr::MLV_SubObjCPropertySetting
:
14531 DiagID
= diag::err_no_subobject_property_setting
;
14535 SourceRange Assign
;
14536 if (Loc
!= OrigLoc
)
14537 Assign
= SourceRange(OrigLoc
, OrigLoc
);
14539 S
.Diag(Loc
, DiagID
) << E
->getType() << E
->getSourceRange() << Assign
;
14541 S
.Diag(Loc
, DiagID
) << E
->getSourceRange() << Assign
;
14545 static void CheckIdentityFieldAssignment(Expr
*LHSExpr
, Expr
*RHSExpr
,
14546 SourceLocation Loc
,
14548 if (Sema
.inTemplateInstantiation())
14550 if (Sema
.isUnevaluatedContext())
14552 if (Loc
.isInvalid() || Loc
.isMacroID())
14554 if (LHSExpr
->getExprLoc().isMacroID() || RHSExpr
->getExprLoc().isMacroID())
14558 MemberExpr
*ML
= dyn_cast
<MemberExpr
>(LHSExpr
);
14559 MemberExpr
*MR
= dyn_cast
<MemberExpr
>(RHSExpr
);
14561 if (!(isa
<CXXThisExpr
>(ML
->getBase()) && isa
<CXXThisExpr
>(MR
->getBase())))
14563 const ValueDecl
*LHSDecl
=
14564 cast
<ValueDecl
>(ML
->getMemberDecl()->getCanonicalDecl());
14565 const ValueDecl
*RHSDecl
=
14566 cast
<ValueDecl
>(MR
->getMemberDecl()->getCanonicalDecl());
14567 if (LHSDecl
!= RHSDecl
)
14569 if (LHSDecl
->getType().isVolatileQualified())
14571 if (const ReferenceType
*RefTy
= LHSDecl
->getType()->getAs
<ReferenceType
>())
14572 if (RefTy
->getPointeeType().isVolatileQualified())
14575 Sema
.Diag(Loc
, diag::warn_identity_field_assign
) << 0;
14578 // Objective-C instance variables
14579 ObjCIvarRefExpr
*OL
= dyn_cast
<ObjCIvarRefExpr
>(LHSExpr
);
14580 ObjCIvarRefExpr
*OR
= dyn_cast
<ObjCIvarRefExpr
>(RHSExpr
);
14581 if (OL
&& OR
&& OL
->getDecl() == OR
->getDecl()) {
14582 DeclRefExpr
*RL
= dyn_cast
<DeclRefExpr
>(OL
->getBase()->IgnoreImpCasts());
14583 DeclRefExpr
*RR
= dyn_cast
<DeclRefExpr
>(OR
->getBase()->IgnoreImpCasts());
14584 if (RL
&& RR
&& RL
->getDecl() == RR
->getDecl())
14585 Sema
.Diag(Loc
, diag::warn_identity_field_assign
) << 1;
14590 QualType
Sema::CheckAssignmentOperands(Expr
*LHSExpr
, ExprResult
&RHS
,
14591 SourceLocation Loc
,
14592 QualType CompoundType
,
14593 BinaryOperatorKind Opc
) {
14594 assert(!LHSExpr
->hasPlaceholderType(BuiltinType::PseudoObject
));
14596 // Verify that LHS is a modifiable lvalue, and emit error if not.
14597 if (CheckForModifiableLvalue(LHSExpr
, Loc
, *this))
14600 QualType LHSType
= LHSExpr
->getType();
14601 QualType RHSType
= CompoundType
.isNull() ? RHS
.get()->getType() :
14603 // OpenCL v1.2 s6.1.1.1 p2:
14604 // The half data type can only be used to declare a pointer to a buffer that
14605 // contains half values
14606 if (getLangOpts().OpenCL
&&
14607 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14608 LHSType
->isHalfType()) {
14609 Diag(Loc
, diag::err_opencl_half_load_store
) << 1
14610 << LHSType
.getUnqualifiedType();
14614 // WebAssembly tables can't be used on RHS of an assignment expression.
14615 if (RHSType
->isWebAssemblyTableType()) {
14616 Diag(Loc
, diag::err_wasm_table_art
) << 0;
14620 AssignConvertType ConvTy
;
14621 if (CompoundType
.isNull()) {
14622 Expr
*RHSCheck
= RHS
.get();
14624 CheckIdentityFieldAssignment(LHSExpr
, RHSCheck
, Loc
, *this);
14626 QualType
LHSTy(LHSType
);
14627 ConvTy
= CheckSingleAssignmentConstraints(LHSTy
, RHS
);
14628 if (RHS
.isInvalid())
14630 // Special case of NSObject attributes on c-style pointer types.
14631 if (ConvTy
== IncompatiblePointer
&&
14632 ((Context
.isObjCNSObjectType(LHSType
) &&
14633 RHSType
->isObjCObjectPointerType()) ||
14634 (Context
.isObjCNSObjectType(RHSType
) &&
14635 LHSType
->isObjCObjectPointerType())))
14636 ConvTy
= Compatible
;
14638 if (ConvTy
== Compatible
&&
14639 LHSType
->isObjCObjectType())
14640 Diag(Loc
, diag::err_objc_object_assignment
)
14643 // If the RHS is a unary plus or minus, check to see if they = and + are
14644 // right next to each other. If so, the user may have typo'd "x =+ 4"
14645 // instead of "x += 4".
14646 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(RHSCheck
))
14647 RHSCheck
= ICE
->getSubExpr();
14648 if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(RHSCheck
)) {
14649 if ((UO
->getOpcode() == UO_Plus
|| UO
->getOpcode() == UO_Minus
) &&
14650 Loc
.isFileID() && UO
->getOperatorLoc().isFileID() &&
14651 // Only if the two operators are exactly adjacent.
14652 Loc
.getLocWithOffset(1) == UO
->getOperatorLoc() &&
14653 // And there is a space or other character before the subexpr of the
14654 // unary +/-. We don't want to warn on "x=-1".
14655 Loc
.getLocWithOffset(2) != UO
->getSubExpr()->getBeginLoc() &&
14656 UO
->getSubExpr()->getBeginLoc().isFileID()) {
14657 Diag(Loc
, diag::warn_not_compound_assign
)
14658 << (UO
->getOpcode() == UO_Plus
? "+" : "-")
14659 << SourceRange(UO
->getOperatorLoc(), UO
->getOperatorLoc());
14663 if (ConvTy
== Compatible
) {
14664 if (LHSType
.getObjCLifetime() == Qualifiers::OCL_Strong
) {
14665 // Warn about retain cycles where a block captures the LHS, but
14666 // not if the LHS is a simple variable into which the block is
14667 // being stored...unless that variable can be captured by reference!
14668 const Expr
*InnerLHS
= LHSExpr
->IgnoreParenCasts();
14669 const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(InnerLHS
);
14670 if (!DRE
|| DRE
->getDecl()->hasAttr
<BlocksAttr
>())
14671 checkRetainCycles(LHSExpr
, RHS
.get());
14674 if (LHSType
.getObjCLifetime() == Qualifiers::OCL_Strong
||
14675 LHSType
.isNonWeakInMRRWithObjCWeak(Context
)) {
14676 // It is safe to assign a weak reference into a strong variable.
14677 // Although this code can still have problems:
14678 // id x = self.weakProp;
14679 // id y = self.weakProp;
14680 // we do not warn to warn spuriously when 'x' and 'y' are on separate
14681 // paths through the function. This should be revisited if
14682 // -Wrepeated-use-of-weak is made flow-sensitive.
14683 // For ObjCWeak only, we do not warn if the assign is to a non-weak
14684 // variable, which will be valid for the current autorelease scope.
14685 if (!Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
,
14686 RHS
.get()->getBeginLoc()))
14687 getCurFunction()->markSafeWeakUse(RHS
.get());
14689 } else if (getLangOpts().ObjCAutoRefCount
|| getLangOpts().ObjCWeak
) {
14690 checkUnsafeExprAssigns(Loc
, LHSExpr
, RHS
.get());
14694 // Compound assignment "x += y"
14695 ConvTy
= CheckAssignmentConstraints(Loc
, LHSType
, RHSType
);
14698 if (DiagnoseAssignmentResult(ConvTy
, Loc
, LHSType
, RHSType
,
14699 RHS
.get(), AA_Assigning
))
14702 CheckForNullPointerDereference(*this, LHSExpr
);
14704 if (getLangOpts().CPlusPlus20
&& LHSType
.isVolatileQualified()) {
14705 if (CompoundType
.isNull()) {
14706 // C++2a [expr.ass]p5:
14707 // A simple-assignment whose left operand is of a volatile-qualified
14708 // type is deprecated unless the assignment is either a discarded-value
14709 // expression or an unevaluated operand
14710 ExprEvalContexts
.back().VolatileAssignmentLHSs
.push_back(LHSExpr
);
14714 // C11 6.5.16p3: The type of an assignment expression is the type of the
14715 // left operand would have after lvalue conversion.
14716 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14717 // qualified type, the value has the unqualified version of the type of the
14718 // lvalue; additionally, if the lvalue has atomic type, the value has the
14719 // non-atomic version of the type of the lvalue.
14720 // C++ 5.17p1: the type of the assignment expression is that of its left
14722 return getLangOpts().CPlusPlus
? LHSType
: LHSType
.getAtomicUnqualifiedType();
14725 // Scenarios to ignore if expression E is:
14726 // 1. an explicit cast expression into void
14727 // 2. a function call expression that returns void
14728 static bool IgnoreCommaOperand(const Expr
*E
, const ASTContext
&Context
) {
14729 E
= E
->IgnoreParens();
14731 if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(E
)) {
14732 if (CE
->getCastKind() == CK_ToVoid
) {
14736 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14737 if (CE
->getCastKind() == CK_Dependent
&& E
->getType()->isVoidType() &&
14738 CE
->getSubExpr()->getType()->isDependentType()) {
14743 if (const auto *CE
= dyn_cast
<CallExpr
>(E
))
14744 return CE
->getCallReturnType(Context
)->isVoidType();
14748 // Look for instances where it is likely the comma operator is confused with
14749 // another operator. There is an explicit list of acceptable expressions for
14750 // the left hand side of the comma operator, otherwise emit a warning.
14751 void Sema::DiagnoseCommaOperator(const Expr
*LHS
, SourceLocation Loc
) {
14752 // No warnings in macros
14753 if (Loc
.isMacroID())
14756 // Don't warn in template instantiations.
14757 if (inTemplateInstantiation())
14760 // Scope isn't fine-grained enough to explicitly list the specific cases, so
14761 // instead, skip more than needed, then call back into here with the
14762 // CommaVisitor in SemaStmt.cpp.
14763 // The listed locations are the initialization and increment portions
14764 // of a for loop. The additional checks are on the condition of
14765 // if statements, do/while loops, and for loops.
14766 // Differences in scope flags for C89 mode requires the extra logic.
14767 const unsigned ForIncrementFlags
=
14768 getLangOpts().C99
|| getLangOpts().CPlusPlus
14769 ? Scope::ControlScope
| Scope::ContinueScope
| Scope::BreakScope
14770 : Scope::ContinueScope
| Scope::BreakScope
;
14771 const unsigned ForInitFlags
= Scope::ControlScope
| Scope::DeclScope
;
14772 const unsigned ScopeFlags
= getCurScope()->getFlags();
14773 if ((ScopeFlags
& ForIncrementFlags
) == ForIncrementFlags
||
14774 (ScopeFlags
& ForInitFlags
) == ForInitFlags
)
14777 // If there are multiple comma operators used together, get the RHS of the
14778 // of the comma operator as the LHS.
14779 while (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(LHS
)) {
14780 if (BO
->getOpcode() != BO_Comma
)
14782 LHS
= BO
->getRHS();
14785 // Only allow some expressions on LHS to not warn.
14786 if (IgnoreCommaOperand(LHS
, Context
))
14789 Diag(Loc
, diag::warn_comma_operator
);
14790 Diag(LHS
->getBeginLoc(), diag::note_cast_to_void
)
14791 << LHS
->getSourceRange()
14792 << FixItHint::CreateInsertion(LHS
->getBeginLoc(),
14793 LangOpts
.CPlusPlus
? "static_cast<void>("
14795 << FixItHint::CreateInsertion(PP
.getLocForEndOfToken(LHS
->getEndLoc()),
14800 static QualType
CheckCommaOperands(Sema
&S
, ExprResult
&LHS
, ExprResult
&RHS
,
14801 SourceLocation Loc
) {
14802 LHS
= S
.CheckPlaceholderExpr(LHS
.get());
14803 RHS
= S
.CheckPlaceholderExpr(RHS
.get());
14804 if (LHS
.isInvalid() || RHS
.isInvalid())
14807 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14808 // operands, but not unary promotions.
14809 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14811 // So we treat the LHS as a ignored value, and in C++ we allow the
14812 // containing site to determine what should be done with the RHS.
14813 LHS
= S
.IgnoredValueConversions(LHS
.get());
14814 if (LHS
.isInvalid())
14817 S
.DiagnoseUnusedExprResult(LHS
.get(), diag::warn_unused_comma_left_operand
);
14819 if (!S
.getLangOpts().CPlusPlus
) {
14820 RHS
= S
.DefaultFunctionArrayLvalueConversion(RHS
.get());
14821 if (RHS
.isInvalid())
14823 if (!RHS
.get()->getType()->isVoidType())
14824 S
.RequireCompleteType(Loc
, RHS
.get()->getType(),
14825 diag::err_incomplete_type
);
14828 if (!S
.getDiagnostics().isIgnored(diag::warn_comma_operator
, Loc
))
14829 S
.DiagnoseCommaOperator(LHS
.get(), Loc
);
14831 return RHS
.get()->getType();
14834 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14835 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14836 static QualType
CheckIncrementDecrementOperand(Sema
&S
, Expr
*Op
,
14838 ExprObjectKind
&OK
,
14839 SourceLocation OpLoc
,
14840 bool IsInc
, bool IsPrefix
) {
14841 if (Op
->isTypeDependent())
14842 return S
.Context
.DependentTy
;
14844 QualType ResType
= Op
->getType();
14845 // Atomic types can be used for increment / decrement where the non-atomic
14846 // versions can, so ignore the _Atomic() specifier for the purpose of
14848 if (const AtomicType
*ResAtomicType
= ResType
->getAs
<AtomicType
>())
14849 ResType
= ResAtomicType
->getValueType();
14851 assert(!ResType
.isNull() && "no type for increment/decrement expression");
14853 if (S
.getLangOpts().CPlusPlus
&& ResType
->isBooleanType()) {
14854 // Decrement of bool is not allowed.
14856 S
.Diag(OpLoc
, diag::err_decrement_bool
) << Op
->getSourceRange();
14859 // Increment of bool sets it to true, but is deprecated.
14860 S
.Diag(OpLoc
, S
.getLangOpts().CPlusPlus17
? diag::ext_increment_bool
14861 : diag::warn_increment_bool
)
14862 << Op
->getSourceRange();
14863 } else if (S
.getLangOpts().CPlusPlus
&& ResType
->isEnumeralType()) {
14864 // Error on enum increments and decrements in C++ mode
14865 S
.Diag(OpLoc
, diag::err_increment_decrement_enum
) << IsInc
<< ResType
;
14867 } else if (ResType
->isRealType()) {
14869 } else if (ResType
->isPointerType()) {
14870 // C99 6.5.2.4p2, 6.5.6p2
14871 if (!checkArithmeticOpPointerOperand(S
, OpLoc
, Op
))
14873 } else if (ResType
->isObjCObjectPointerType()) {
14874 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14875 // Otherwise, we just need a complete type.
14876 if (checkArithmeticIncompletePointerType(S
, OpLoc
, Op
) ||
14877 checkArithmeticOnObjCPointer(S
, OpLoc
, Op
))
14879 } else if (ResType
->isAnyComplexType()) {
14880 // C99 does not support ++/-- on complex types, we allow as an extension.
14881 S
.Diag(OpLoc
, diag::ext_integer_increment_complex
)
14882 << ResType
<< Op
->getSourceRange();
14883 } else if (ResType
->isPlaceholderType()) {
14884 ExprResult PR
= S
.CheckPlaceholderExpr(Op
);
14885 if (PR
.isInvalid()) return QualType();
14886 return CheckIncrementDecrementOperand(S
, PR
.get(), VK
, OK
, OpLoc
,
14888 } else if (S
.getLangOpts().AltiVec
&& ResType
->isVectorType()) {
14889 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14890 } else if (S
.getLangOpts().ZVector
&& ResType
->isVectorType() &&
14891 (ResType
->castAs
<VectorType
>()->getVectorKind() !=
14892 VectorKind::AltiVecBool
)) {
14893 // The z vector extensions allow ++ and -- for non-bool vectors.
14894 } else if (S
.getLangOpts().OpenCL
&& ResType
->isVectorType() &&
14895 ResType
->castAs
<VectorType
>()->getElementType()->isIntegerType()) {
14896 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14898 S
.Diag(OpLoc
, diag::err_typecheck_illegal_increment_decrement
)
14899 << ResType
<< int(IsInc
) << Op
->getSourceRange();
14902 // At this point, we know we have a real, complex or pointer type.
14903 // Now make sure the operand is a modifiable lvalue.
14904 if (CheckForModifiableLvalue(Op
, OpLoc
, S
))
14906 if (S
.getLangOpts().CPlusPlus20
&& ResType
.isVolatileQualified()) {
14907 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14908 // An operand with volatile-qualified type is deprecated
14909 S
.Diag(OpLoc
, diag::warn_deprecated_increment_decrement_volatile
)
14910 << IsInc
<< ResType
;
14912 // In C++, a prefix increment is the same type as the operand. Otherwise
14913 // (in C or with postfix), the increment is the unqualified type of the
14915 if (IsPrefix
&& S
.getLangOpts().CPlusPlus
) {
14917 OK
= Op
->getObjectKind();
14921 return ResType
.getUnqualifiedType();
14926 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14927 /// This routine allows us to typecheck complex/recursive expressions
14928 /// where the declaration is needed for type checking. We only need to
14929 /// handle cases when the expression references a function designator
14930 /// or is an lvalue. Here are some examples:
14932 /// - &*****f => f for f a function designator.
14934 /// - &s.zz[1].yy -> s, if zz is an array
14935 /// - *(x + 1) -> x, if x is an array
14936 /// - &"123"[2] -> 0
14937 /// - & __real__ x -> x
14939 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14941 static ValueDecl
*getPrimaryDecl(Expr
*E
) {
14942 switch (E
->getStmtClass()) {
14943 case Stmt::DeclRefExprClass
:
14944 return cast
<DeclRefExpr
>(E
)->getDecl();
14945 case Stmt::MemberExprClass
:
14946 // If this is an arrow operator, the address is an offset from
14947 // the base's value, so the object the base refers to is
14949 if (cast
<MemberExpr
>(E
)->isArrow())
14951 // Otherwise, the expression refers to a part of the base
14952 return getPrimaryDecl(cast
<MemberExpr
>(E
)->getBase());
14953 case Stmt::ArraySubscriptExprClass
: {
14954 // FIXME: This code shouldn't be necessary! We should catch the implicit
14955 // promotion of register arrays earlier.
14956 Expr
* Base
= cast
<ArraySubscriptExpr
>(E
)->getBase();
14957 if (ImplicitCastExpr
* ICE
= dyn_cast
<ImplicitCastExpr
>(Base
)) {
14958 if (ICE
->getSubExpr()->getType()->isArrayType())
14959 return getPrimaryDecl(ICE
->getSubExpr());
14963 case Stmt::UnaryOperatorClass
: {
14964 UnaryOperator
*UO
= cast
<UnaryOperator
>(E
);
14966 switch(UO
->getOpcode()) {
14970 return getPrimaryDecl(UO
->getSubExpr());
14975 case Stmt::ParenExprClass
:
14976 return getPrimaryDecl(cast
<ParenExpr
>(E
)->getSubExpr());
14977 case Stmt::ImplicitCastExprClass
:
14978 // If the result of an implicit cast is an l-value, we care about
14979 // the sub-expression; otherwise, the result here doesn't matter.
14980 return getPrimaryDecl(cast
<ImplicitCastExpr
>(E
)->getSubExpr());
14981 case Stmt::CXXUuidofExprClass
:
14982 return cast
<CXXUuidofExpr
>(E
)->getGuidDecl();
14991 AO_Vector_Element
= 1,
14992 AO_Property_Expansion
= 2,
14993 AO_Register_Variable
= 3,
14994 AO_Matrix_Element
= 4,
14998 /// Diagnose invalid operand for address of operations.
15000 /// \param Type The type of operand which cannot have its address taken.
15001 static void diagnoseAddressOfInvalidType(Sema
&S
, SourceLocation Loc
,
15002 Expr
*E
, unsigned Type
) {
15003 S
.Diag(Loc
, diag::err_typecheck_address_of
) << Type
<< E
->getSourceRange();
15006 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc
,
15008 const CXXMethodDecl
*MD
) {
15009 const auto *DRE
= cast
<DeclRefExpr
>(Op
->IgnoreParens());
15012 return Diag(OpLoc
, diag::err_parens_pointer_member_function
)
15013 << Op
->getSourceRange();
15015 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
15016 if (isa
<CXXDestructorDecl
>(MD
))
15017 return Diag(OpLoc
, diag::err_typecheck_addrof_dtor
)
15018 << DRE
->getSourceRange();
15020 if (DRE
->getQualifier())
15023 if (MD
->getParent()->getName().empty())
15024 return Diag(OpLoc
, diag::err_unqualified_pointer_member_function
)
15025 << DRE
->getSourceRange();
15027 SmallString
<32> Str
;
15028 StringRef Qual
= (MD
->getParent()->getName() + "::").toStringRef(Str
);
15029 return Diag(OpLoc
, diag::err_unqualified_pointer_member_function
)
15030 << DRE
->getSourceRange()
15031 << FixItHint::CreateInsertion(DRE
->getSourceRange().getBegin(), Qual
);
15034 /// CheckAddressOfOperand - The operand of & must be either a function
15035 /// designator or an lvalue designating an object. If it is an lvalue, the
15036 /// object cannot be declared with storage class register or be a bit field.
15037 /// Note: The usual conversions are *not* applied to the operand of the &
15038 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
15039 /// In C++, the operand might be an overloaded function name, in which case
15040 /// we allow the '&' but retain the overloaded-function type.
15041 QualType
Sema::CheckAddressOfOperand(ExprResult
&OrigOp
, SourceLocation OpLoc
) {
15042 if (const BuiltinType
*PTy
= OrigOp
.get()->getType()->getAsPlaceholderType()){
15043 if (PTy
->getKind() == BuiltinType::Overload
) {
15044 Expr
*E
= OrigOp
.get()->IgnoreParens();
15045 if (!isa
<OverloadExpr
>(E
)) {
15046 assert(cast
<UnaryOperator
>(E
)->getOpcode() == UO_AddrOf
);
15047 Diag(OpLoc
, diag::err_typecheck_invalid_lvalue_addrof_addrof_function
)
15048 << OrigOp
.get()->getSourceRange();
15052 OverloadExpr
*Ovl
= cast
<OverloadExpr
>(E
);
15053 if (isa
<UnresolvedMemberExpr
>(Ovl
))
15054 if (!ResolveSingleFunctionTemplateSpecialization(Ovl
)) {
15055 Diag(OpLoc
, diag::err_invalid_form_pointer_member_function
)
15056 << OrigOp
.get()->getSourceRange();
15060 return Context
.OverloadTy
;
15063 if (PTy
->getKind() == BuiltinType::UnknownAny
)
15064 return Context
.UnknownAnyTy
;
15066 if (PTy
->getKind() == BuiltinType::BoundMember
) {
15067 Diag(OpLoc
, diag::err_invalid_form_pointer_member_function
)
15068 << OrigOp
.get()->getSourceRange();
15072 OrigOp
= CheckPlaceholderExpr(OrigOp
.get());
15073 if (OrigOp
.isInvalid()) return QualType();
15076 if (OrigOp
.get()->isTypeDependent())
15077 return Context
.DependentTy
;
15079 assert(!OrigOp
.get()->hasPlaceholderType());
15081 // Make sure to ignore parentheses in subsequent checks
15082 Expr
*op
= OrigOp
.get()->IgnoreParens();
15084 // In OpenCL captures for blocks called as lambda functions
15085 // are located in the private address space. Blocks used in
15086 // enqueue_kernel can be located in a different address space
15087 // depending on a vendor implementation. Thus preventing
15088 // taking an address of the capture to avoid invalid AS casts.
15089 if (LangOpts
.OpenCL
) {
15090 auto* VarRef
= dyn_cast
<DeclRefExpr
>(op
);
15091 if (VarRef
&& VarRef
->refersToEnclosingVariableOrCapture()) {
15092 Diag(op
->getExprLoc(), diag::err_opencl_taking_address_capture
);
15097 if (getLangOpts().C99
) {
15098 // Implement C99-only parts of addressof rules.
15099 if (UnaryOperator
* uOp
= dyn_cast
<UnaryOperator
>(op
)) {
15100 if (uOp
->getOpcode() == UO_Deref
)
15101 // Per C99 6.5.3.2, the address of a deref always returns a valid result
15102 // (assuming the deref expression is valid).
15103 return uOp
->getSubExpr()->getType();
15105 // Technically, there should be a check for array subscript
15106 // expressions here, but the result of one is always an lvalue anyway.
15108 ValueDecl
*dcl
= getPrimaryDecl(op
);
15110 if (auto *FD
= dyn_cast_or_null
<FunctionDecl
>(dcl
))
15111 if (!checkAddressOfFunctionIsAvailable(FD
, /*Complain=*/true,
15112 op
->getBeginLoc()))
15115 Expr::LValueClassification lval
= op
->ClassifyLValue(Context
);
15116 unsigned AddressOfError
= AO_No_Error
;
15118 if (lval
== Expr::LV_ClassTemporary
|| lval
== Expr::LV_ArrayTemporary
) {
15119 bool sfinae
= (bool)isSFINAEContext();
15120 Diag(OpLoc
, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
15121 : diag::ext_typecheck_addrof_temporary
)
15122 << op
->getType() << op
->getSourceRange();
15125 // Materialize the temporary as an lvalue so that we can take its address.
15127 CreateMaterializeTemporaryExpr(op
->getType(), OrigOp
.get(), true);
15128 } else if (isa
<ObjCSelectorExpr
>(op
)) {
15129 return Context
.getPointerType(op
->getType());
15130 } else if (lval
== Expr::LV_MemberFunction
) {
15131 // If it's an instance method, make a member pointer.
15132 // The expression must have exactly the form &A::foo.
15134 // If the underlying expression isn't a decl ref, give up.
15135 if (!isa
<DeclRefExpr
>(op
)) {
15136 Diag(OpLoc
, diag::err_invalid_form_pointer_member_function
)
15137 << OrigOp
.get()->getSourceRange();
15140 DeclRefExpr
*DRE
= cast
<DeclRefExpr
>(op
);
15141 CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(DRE
->getDecl());
15143 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc
, OrigOp
.get(), MD
);
15145 QualType MPTy
= Context
.getMemberPointerType(
15146 op
->getType(), Context
.getTypeDeclType(MD
->getParent()).getTypePtr());
15147 // Under the MS ABI, lock down the inheritance model now.
15148 if (Context
.getTargetInfo().getCXXABI().isMicrosoft())
15149 (void)isCompleteType(OpLoc
, MPTy
);
15151 } else if (lval
!= Expr::LV_Valid
&& lval
!= Expr::LV_IncompleteVoidType
) {
15153 // The operand must be either an l-value or a function designator
15154 if (!op
->getType()->isFunctionType()) {
15155 // Use a special diagnostic for loads from property references.
15156 if (isa
<PseudoObjectExpr
>(op
)) {
15157 AddressOfError
= AO_Property_Expansion
;
15159 Diag(OpLoc
, diag::err_typecheck_invalid_lvalue_addrof
)
15160 << op
->getType() << op
->getSourceRange();
15163 } else if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(op
)) {
15164 if (const auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(DRE
->getDecl()))
15165 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc
, OrigOp
.get(), MD
);
15168 } else if (op
->getObjectKind() == OK_BitField
) { // C99 6.5.3.2p1
15169 // The operand cannot be a bit-field
15170 AddressOfError
= AO_Bit_Field
;
15171 } else if (op
->getObjectKind() == OK_VectorComponent
) {
15172 // The operand cannot be an element of a vector
15173 AddressOfError
= AO_Vector_Element
;
15174 } else if (op
->getObjectKind() == OK_MatrixComponent
) {
15175 // The operand cannot be an element of a matrix.
15176 AddressOfError
= AO_Matrix_Element
;
15177 } else if (dcl
) { // C99 6.5.3.2p1
15178 // We have an lvalue with a decl. Make sure the decl is not declared
15179 // with the register storage-class specifier.
15180 if (const VarDecl
*vd
= dyn_cast
<VarDecl
>(dcl
)) {
15181 // in C++ it is not error to take address of a register
15182 // variable (c++03 7.1.1P3)
15183 if (vd
->getStorageClass() == SC_Register
&&
15184 !getLangOpts().CPlusPlus
) {
15185 AddressOfError
= AO_Register_Variable
;
15187 } else if (isa
<MSPropertyDecl
>(dcl
)) {
15188 AddressOfError
= AO_Property_Expansion
;
15189 } else if (isa
<FunctionTemplateDecl
>(dcl
)) {
15190 return Context
.OverloadTy
;
15191 } else if (isa
<FieldDecl
>(dcl
) || isa
<IndirectFieldDecl
>(dcl
)) {
15192 // Okay: we can take the address of a field.
15193 // Could be a pointer to member, though, if there is an explicit
15194 // scope qualifier for the class.
15195 if (isa
<DeclRefExpr
>(op
) && cast
<DeclRefExpr
>(op
)->getQualifier()) {
15196 DeclContext
*Ctx
= dcl
->getDeclContext();
15197 if (Ctx
&& Ctx
->isRecord()) {
15198 if (dcl
->getType()->isReferenceType()) {
15200 diag::err_cannot_form_pointer_to_member_of_reference_type
)
15201 << dcl
->getDeclName() << dcl
->getType();
15205 while (cast
<RecordDecl
>(Ctx
)->isAnonymousStructOrUnion())
15206 Ctx
= Ctx
->getParent();
15208 QualType MPTy
= Context
.getMemberPointerType(
15210 Context
.getTypeDeclType(cast
<RecordDecl
>(Ctx
)).getTypePtr());
15211 // Under the MS ABI, lock down the inheritance model now.
15212 if (Context
.getTargetInfo().getCXXABI().isMicrosoft())
15213 (void)isCompleteType(OpLoc
, MPTy
);
15217 } else if (!isa
<FunctionDecl
, NonTypeTemplateParmDecl
, BindingDecl
,
15218 MSGuidDecl
, UnnamedGlobalConstantDecl
>(dcl
))
15219 llvm_unreachable("Unknown/unexpected decl type");
15222 if (AddressOfError
!= AO_No_Error
) {
15223 diagnoseAddressOfInvalidType(*this, OpLoc
, op
, AddressOfError
);
15227 if (lval
== Expr::LV_IncompleteVoidType
) {
15228 // Taking the address of a void variable is technically illegal, but we
15229 // allow it in cases which are otherwise valid.
15230 // Example: "extern void x; void* y = &x;".
15231 Diag(OpLoc
, diag::ext_typecheck_addrof_void
) << op
->getSourceRange();
15234 // If the operand has type "type", the result has type "pointer to type".
15235 if (op
->getType()->isObjCObjectType())
15236 return Context
.getObjCObjectPointerType(op
->getType());
15238 // Cannot take the address of WebAssembly references or tables.
15239 if (Context
.getTargetInfo().getTriple().isWasm()) {
15240 QualType OpTy
= op
->getType();
15241 if (OpTy
.isWebAssemblyReferenceType()) {
15242 Diag(OpLoc
, diag::err_wasm_ca_reference
)
15243 << 1 << OrigOp
.get()->getSourceRange();
15246 if (OpTy
->isWebAssemblyTableType()) {
15247 Diag(OpLoc
, diag::err_wasm_table_pr
)
15248 << 1 << OrigOp
.get()->getSourceRange();
15253 CheckAddressOfPackedMember(op
);
15255 return Context
.getPointerType(op
->getType());
15258 static void RecordModifiableNonNullParam(Sema
&S
, const Expr
*Exp
) {
15259 const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Exp
);
15262 const Decl
*D
= DRE
->getDecl();
15265 const ParmVarDecl
*Param
= dyn_cast
<ParmVarDecl
>(D
);
15268 if (const FunctionDecl
* FD
= dyn_cast
<FunctionDecl
>(Param
->getDeclContext()))
15269 if (!FD
->hasAttr
<NonNullAttr
>() && !Param
->hasAttr
<NonNullAttr
>())
15271 if (FunctionScopeInfo
*FD
= S
.getCurFunction())
15272 FD
->ModifiedNonNullParams
.insert(Param
);
15275 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
15276 static QualType
CheckIndirectionOperand(Sema
&S
, Expr
*Op
, ExprValueKind
&VK
,
15277 SourceLocation OpLoc
,
15278 bool IsAfterAmp
= false) {
15279 if (Op
->isTypeDependent())
15280 return S
.Context
.DependentTy
;
15282 ExprResult ConvResult
= S
.UsualUnaryConversions(Op
);
15283 if (ConvResult
.isInvalid())
15285 Op
= ConvResult
.get();
15286 QualType OpTy
= Op
->getType();
15289 if (isa
<CXXReinterpretCastExpr
>(Op
)) {
15290 QualType OpOrigType
= Op
->IgnoreParenCasts()->getType();
15291 S
.CheckCompatibleReinterpretCast(OpOrigType
, OpTy
, /*IsDereference*/true,
15292 Op
->getSourceRange());
15295 if (const PointerType
*PT
= OpTy
->getAs
<PointerType
>())
15297 Result
= PT
->getPointeeType();
15299 else if (const ObjCObjectPointerType
*OPT
=
15300 OpTy
->getAs
<ObjCObjectPointerType
>())
15301 Result
= OPT
->getPointeeType();
15303 ExprResult PR
= S
.CheckPlaceholderExpr(Op
);
15304 if (PR
.isInvalid()) return QualType();
15305 if (PR
.get() != Op
)
15306 return CheckIndirectionOperand(S
, PR
.get(), VK
, OpLoc
);
15309 if (Result
.isNull()) {
15310 S
.Diag(OpLoc
, diag::err_typecheck_indirection_requires_pointer
)
15311 << OpTy
<< Op
->getSourceRange();
15315 if (Result
->isVoidType()) {
15316 // C++ [expr.unary.op]p1:
15317 // [...] the expression to which [the unary * operator] is applied shall
15318 // be a pointer to an object type, or a pointer to a function type
15319 LangOptions LO
= S
.getLangOpts();
15321 S
.Diag(OpLoc
, diag::err_typecheck_indirection_through_void_pointer_cpp
)
15322 << OpTy
<< Op
->getSourceRange();
15323 else if (!(LO
.C99
&& IsAfterAmp
) && !S
.isUnevaluatedContext())
15324 S
.Diag(OpLoc
, diag::ext_typecheck_indirection_through_void_pointer
)
15325 << OpTy
<< Op
->getSourceRange();
15328 // Dereferences are usually l-values...
15331 // ...except that certain expressions are never l-values in C.
15332 if (!S
.getLangOpts().CPlusPlus
&& Result
.isCForbiddenLValueType())
15338 BinaryOperatorKind
Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind
) {
15339 BinaryOperatorKind Opc
;
15341 default: llvm_unreachable("Unknown binop!");
15342 case tok::periodstar
: Opc
= BO_PtrMemD
; break;
15343 case tok::arrowstar
: Opc
= BO_PtrMemI
; break;
15344 case tok::star
: Opc
= BO_Mul
; break;
15345 case tok::slash
: Opc
= BO_Div
; break;
15346 case tok::percent
: Opc
= BO_Rem
; break;
15347 case tok::plus
: Opc
= BO_Add
; break;
15348 case tok::minus
: Opc
= BO_Sub
; break;
15349 case tok::lessless
: Opc
= BO_Shl
; break;
15350 case tok::greatergreater
: Opc
= BO_Shr
; break;
15351 case tok::lessequal
: Opc
= BO_LE
; break;
15352 case tok::less
: Opc
= BO_LT
; break;
15353 case tok::greaterequal
: Opc
= BO_GE
; break;
15354 case tok::greater
: Opc
= BO_GT
; break;
15355 case tok::exclaimequal
: Opc
= BO_NE
; break;
15356 case tok::equalequal
: Opc
= BO_EQ
; break;
15357 case tok::spaceship
: Opc
= BO_Cmp
; break;
15358 case tok::amp
: Opc
= BO_And
; break;
15359 case tok::caret
: Opc
= BO_Xor
; break;
15360 case tok::pipe
: Opc
= BO_Or
; break;
15361 case tok::ampamp
: Opc
= BO_LAnd
; break;
15362 case tok::pipepipe
: Opc
= BO_LOr
; break;
15363 case tok::equal
: Opc
= BO_Assign
; break;
15364 case tok::starequal
: Opc
= BO_MulAssign
; break;
15365 case tok::slashequal
: Opc
= BO_DivAssign
; break;
15366 case tok::percentequal
: Opc
= BO_RemAssign
; break;
15367 case tok::plusequal
: Opc
= BO_AddAssign
; break;
15368 case tok::minusequal
: Opc
= BO_SubAssign
; break;
15369 case tok::lesslessequal
: Opc
= BO_ShlAssign
; break;
15370 case tok::greatergreaterequal
: Opc
= BO_ShrAssign
; break;
15371 case tok::ampequal
: Opc
= BO_AndAssign
; break;
15372 case tok::caretequal
: Opc
= BO_XorAssign
; break;
15373 case tok::pipeequal
: Opc
= BO_OrAssign
; break;
15374 case tok::comma
: Opc
= BO_Comma
; break;
15379 static inline UnaryOperatorKind
ConvertTokenKindToUnaryOpcode(
15380 tok::TokenKind Kind
) {
15381 UnaryOperatorKind Opc
;
15383 default: llvm_unreachable("Unknown unary op!");
15384 case tok::plusplus
: Opc
= UO_PreInc
; break;
15385 case tok::minusminus
: Opc
= UO_PreDec
; break;
15386 case tok::amp
: Opc
= UO_AddrOf
; break;
15387 case tok::star
: Opc
= UO_Deref
; break;
15388 case tok::plus
: Opc
= UO_Plus
; break;
15389 case tok::minus
: Opc
= UO_Minus
; break;
15390 case tok::tilde
: Opc
= UO_Not
; break;
15391 case tok::exclaim
: Opc
= UO_LNot
; break;
15392 case tok::kw___real
: Opc
= UO_Real
; break;
15393 case tok::kw___imag
: Opc
= UO_Imag
; break;
15394 case tok::kw___extension__
: Opc
= UO_Extension
; break;
15400 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl
*SelfAssigned
) {
15401 // Explore the case for adding 'this->' to the LHS of a self assignment, very
15402 // common for setters.
15405 // -void setX(int X) { X = X; }
15406 // +void setX(int X) { this->X = X; }
15409 // Only consider parameters for self assignment fixes.
15410 if (!isa
<ParmVarDecl
>(SelfAssigned
))
15412 const auto *Method
=
15413 dyn_cast_or_null
<CXXMethodDecl
>(getCurFunctionDecl(true));
15417 const CXXRecordDecl
*Parent
= Method
->getParent();
15418 // In theory this is fixable if the lambda explicitly captures this, but
15419 // that's added complexity that's rarely going to be used.
15420 if (Parent
->isLambda())
15423 // FIXME: Use an actual Lookup operation instead of just traversing fields
15424 // in order to get base class fields.
15426 llvm::find_if(Parent
->fields(),
15427 [Name(SelfAssigned
->getDeclName())](const FieldDecl
*F
) {
15428 return F
->getDeclName() == Name
;
15430 return (Field
!= Parent
->field_end()) ? *Field
: nullptr;
15433 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
15434 /// This warning suppressed in the event of macro expansions.
15435 static void DiagnoseSelfAssignment(Sema
&S
, Expr
*LHSExpr
, Expr
*RHSExpr
,
15436 SourceLocation OpLoc
, bool IsBuiltin
) {
15437 if (S
.inTemplateInstantiation())
15439 if (S
.isUnevaluatedContext())
15441 if (OpLoc
.isInvalid() || OpLoc
.isMacroID())
15443 LHSExpr
= LHSExpr
->IgnoreParenImpCasts();
15444 RHSExpr
= RHSExpr
->IgnoreParenImpCasts();
15445 const DeclRefExpr
*LHSDeclRef
= dyn_cast
<DeclRefExpr
>(LHSExpr
);
15446 const DeclRefExpr
*RHSDeclRef
= dyn_cast
<DeclRefExpr
>(RHSExpr
);
15447 if (!LHSDeclRef
|| !RHSDeclRef
||
15448 LHSDeclRef
->getLocation().isMacroID() ||
15449 RHSDeclRef
->getLocation().isMacroID())
15451 const ValueDecl
*LHSDecl
=
15452 cast
<ValueDecl
>(LHSDeclRef
->getDecl()->getCanonicalDecl());
15453 const ValueDecl
*RHSDecl
=
15454 cast
<ValueDecl
>(RHSDeclRef
->getDecl()->getCanonicalDecl());
15455 if (LHSDecl
!= RHSDecl
)
15457 if (LHSDecl
->getType().isVolatileQualified())
15459 if (const ReferenceType
*RefTy
= LHSDecl
->getType()->getAs
<ReferenceType
>())
15460 if (RefTy
->getPointeeType().isVolatileQualified())
15463 auto Diag
= S
.Diag(OpLoc
, IsBuiltin
? diag::warn_self_assignment_builtin
15464 : diag::warn_self_assignment_overloaded
)
15465 << LHSDeclRef
->getType() << LHSExpr
->getSourceRange()
15466 << RHSExpr
->getSourceRange();
15467 if (const FieldDecl
*SelfAssignField
=
15468 S
.getSelfAssignmentClassMemberCandidate(RHSDecl
))
15469 Diag
<< 1 << SelfAssignField
15470 << FixItHint::CreateInsertion(LHSDeclRef
->getBeginLoc(), "this->");
15475 /// Check if a bitwise-& is performed on an Objective-C pointer. This
15476 /// is usually indicative of introspection within the Objective-C pointer.
15477 static void checkObjCPointerIntrospection(Sema
&S
, ExprResult
&L
, ExprResult
&R
,
15478 SourceLocation OpLoc
) {
15479 if (!S
.getLangOpts().ObjC
)
15482 const Expr
*ObjCPointerExpr
= nullptr, *OtherExpr
= nullptr;
15483 const Expr
*LHS
= L
.get();
15484 const Expr
*RHS
= R
.get();
15486 if (LHS
->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15487 ObjCPointerExpr
= LHS
;
15490 else if (RHS
->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15491 ObjCPointerExpr
= RHS
;
15495 // This warning is deliberately made very specific to reduce false
15496 // positives with logic that uses '&' for hashing. This logic mainly
15497 // looks for code trying to introspect into tagged pointers, which
15498 // code should generally never do.
15499 if (ObjCPointerExpr
&& isa
<IntegerLiteral
>(OtherExpr
->IgnoreParenCasts())) {
15500 unsigned Diag
= diag::warn_objc_pointer_masking
;
15501 // Determine if we are introspecting the result of performSelectorXXX.
15502 const Expr
*Ex
= ObjCPointerExpr
->IgnoreParenCasts();
15503 // Special case messages to -performSelector and friends, which
15504 // can return non-pointer values boxed in a pointer value.
15505 // Some clients may wish to silence warnings in this subcase.
15506 if (const ObjCMessageExpr
*ME
= dyn_cast
<ObjCMessageExpr
>(Ex
)) {
15507 Selector S
= ME
->getSelector();
15508 StringRef SelArg0
= S
.getNameForSlot(0);
15509 if (SelArg0
.starts_with("performSelector"))
15510 Diag
= diag::warn_objc_pointer_masking_performSelector
;
15513 S
.Diag(OpLoc
, Diag
)
15514 << ObjCPointerExpr
->getSourceRange();
15518 static NamedDecl
*getDeclFromExpr(Expr
*E
) {
15521 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
15522 return DRE
->getDecl();
15523 if (auto *ME
= dyn_cast
<MemberExpr
>(E
))
15524 return ME
->getMemberDecl();
15525 if (auto *IRE
= dyn_cast
<ObjCIvarRefExpr
>(E
))
15526 return IRE
->getDecl();
15530 // This helper function promotes a binary operator's operands (which are of a
15531 // half vector type) to a vector of floats and then truncates the result to
15532 // a vector of either half or short.
15533 static ExprResult
convertHalfVecBinOp(Sema
&S
, ExprResult LHS
, ExprResult RHS
,
15534 BinaryOperatorKind Opc
, QualType ResultTy
,
15535 ExprValueKind VK
, ExprObjectKind OK
,
15536 bool IsCompAssign
, SourceLocation OpLoc
,
15537 FPOptionsOverride FPFeatures
) {
15538 auto &Context
= S
.getASTContext();
15539 assert((isVector(ResultTy
, Context
.HalfTy
) ||
15540 isVector(ResultTy
, Context
.ShortTy
)) &&
15541 "Result must be a vector of half or short");
15542 assert(isVector(LHS
.get()->getType(), Context
.HalfTy
) &&
15543 isVector(RHS
.get()->getType(), Context
.HalfTy
) &&
15544 "both operands expected to be a half vector");
15546 RHS
= convertVector(RHS
.get(), Context
.FloatTy
, S
);
15547 QualType BinOpResTy
= RHS
.get()->getType();
15549 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15550 // change BinOpResTy to a vector of ints.
15551 if (isVector(ResultTy
, Context
.ShortTy
))
15552 BinOpResTy
= S
.GetSignedVectorType(BinOpResTy
);
15555 return CompoundAssignOperator::Create(Context
, LHS
.get(), RHS
.get(), Opc
,
15556 ResultTy
, VK
, OK
, OpLoc
, FPFeatures
,
15557 BinOpResTy
, BinOpResTy
);
15559 LHS
= convertVector(LHS
.get(), Context
.FloatTy
, S
);
15560 auto *BO
= BinaryOperator::Create(Context
, LHS
.get(), RHS
.get(), Opc
,
15561 BinOpResTy
, VK
, OK
, OpLoc
, FPFeatures
);
15562 return convertVector(BO
, ResultTy
->castAs
<VectorType
>()->getElementType(), S
);
15565 static std::pair
<ExprResult
, ExprResult
>
15566 CorrectDelayedTyposInBinOp(Sema
&S
, BinaryOperatorKind Opc
, Expr
*LHSExpr
,
15568 ExprResult LHS
= LHSExpr
, RHS
= RHSExpr
;
15569 if (!S
.Context
.isDependenceAllowed()) {
15570 // C cannot handle TypoExpr nodes on either side of a binop because it
15571 // doesn't handle dependent types properly, so make sure any TypoExprs have
15572 // been dealt with before checking the operands.
15573 LHS
= S
.CorrectDelayedTyposInExpr(LHS
);
15574 RHS
= S
.CorrectDelayedTyposInExpr(
15575 RHS
, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15576 [Opc
, LHS
](Expr
*E
) {
15577 if (Opc
!= BO_Assign
)
15578 return ExprResult(E
);
15579 // Avoid correcting the RHS to the same Expr as the LHS.
15580 Decl
*D
= getDeclFromExpr(E
);
15581 return (D
&& D
== getDeclFromExpr(LHS
.get())) ? ExprError() : E
;
15584 return std::make_pair(LHS
, RHS
);
15587 /// Returns true if conversion between vectors of halfs and vectors of floats
15589 static bool needsConversionOfHalfVec(bool OpRequiresConversion
, ASTContext
&Ctx
,
15590 Expr
*E0
, Expr
*E1
= nullptr) {
15591 if (!OpRequiresConversion
|| Ctx
.getLangOpts().NativeHalfType
||
15592 Ctx
.getTargetInfo().useFP16ConversionIntrinsics())
15595 auto HasVectorOfHalfType
= [&Ctx
](Expr
*E
) {
15596 QualType Ty
= E
->IgnoreImplicit()->getType();
15598 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15599 // to vectors of floats. Although the element type of the vectors is __fp16,
15600 // the vectors shouldn't be treated as storage-only types. See the
15601 // discussion here: https://reviews.llvm.org/rG825235c140e7
15602 if (const VectorType
*VT
= Ty
->getAs
<VectorType
>()) {
15603 if (VT
->getVectorKind() == VectorKind::Neon
)
15605 return VT
->getElementType().getCanonicalType() == Ctx
.HalfTy
;
15610 return HasVectorOfHalfType(E0
) && (!E1
|| HasVectorOfHalfType(E1
));
15613 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15614 /// operator @p Opc at location @c TokLoc. This routine only supports
15615 /// built-in operations; ActOnBinOp handles overloaded operators.
15616 ExprResult
Sema::CreateBuiltinBinOp(SourceLocation OpLoc
,
15617 BinaryOperatorKind Opc
,
15618 Expr
*LHSExpr
, Expr
*RHSExpr
) {
15619 if (getLangOpts().CPlusPlus11
&& isa
<InitListExpr
>(RHSExpr
)) {
15620 // The syntax only allows initializer lists on the RHS of assignment,
15621 // so we don't need to worry about accepting invalid code for
15622 // non-assignment operators.
15624 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15625 // of x = {} is x = T().
15626 InitializationKind Kind
= InitializationKind::CreateDirectList(
15627 RHSExpr
->getBeginLoc(), RHSExpr
->getBeginLoc(), RHSExpr
->getEndLoc());
15628 InitializedEntity Entity
=
15629 InitializedEntity::InitializeTemporary(LHSExpr
->getType());
15630 InitializationSequence
InitSeq(*this, Entity
, Kind
, RHSExpr
);
15631 ExprResult Init
= InitSeq
.Perform(*this, Entity
, Kind
, RHSExpr
);
15632 if (Init
.isInvalid())
15634 RHSExpr
= Init
.get();
15637 ExprResult LHS
= LHSExpr
, RHS
= RHSExpr
;
15638 QualType ResultTy
; // Result type of the binary operator.
15639 // The following two variables are used for compound assignment operators
15640 QualType CompLHSTy
; // Type of LHS after promotions for computation
15641 QualType CompResultTy
; // Type of computation result
15642 ExprValueKind VK
= VK_PRValue
;
15643 ExprObjectKind OK
= OK_Ordinary
;
15644 bool ConvertHalfVec
= false;
15646 std::tie(LHS
, RHS
) = CorrectDelayedTyposInBinOp(*this, Opc
, LHSExpr
, RHSExpr
);
15647 if (!LHS
.isUsable() || !RHS
.isUsable())
15648 return ExprError();
15650 if (getLangOpts().OpenCL
) {
15651 QualType LHSTy
= LHSExpr
->getType();
15652 QualType RHSTy
= RHSExpr
->getType();
15653 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15654 // the ATOMIC_VAR_INIT macro.
15655 if (LHSTy
->isAtomicType() || RHSTy
->isAtomicType()) {
15656 SourceRange
SR(LHSExpr
->getBeginLoc(), RHSExpr
->getEndLoc());
15657 if (BO_Assign
== Opc
)
15658 Diag(OpLoc
, diag::err_opencl_atomic_init
) << 0 << SR
;
15660 ResultTy
= InvalidOperands(OpLoc
, LHS
, RHS
);
15661 return ExprError();
15664 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15665 // only with a builtin functions and therefore should be disallowed here.
15666 if (LHSTy
->isImageType() || RHSTy
->isImageType() ||
15667 LHSTy
->isSamplerT() || RHSTy
->isSamplerT() ||
15668 LHSTy
->isPipeType() || RHSTy
->isPipeType() ||
15669 LHSTy
->isBlockPointerType() || RHSTy
->isBlockPointerType()) {
15670 ResultTy
= InvalidOperands(OpLoc
, LHS
, RHS
);
15671 return ExprError();
15675 checkTypeSupport(LHSExpr
->getType(), OpLoc
, /*ValueDecl*/ nullptr);
15676 checkTypeSupport(RHSExpr
->getType(), OpLoc
, /*ValueDecl*/ nullptr);
15680 ResultTy
= CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, QualType(), Opc
);
15681 if (getLangOpts().CPlusPlus
&&
15682 LHS
.get()->getObjectKind() != OK_ObjCProperty
) {
15683 VK
= LHS
.get()->getValueKind();
15684 OK
= LHS
.get()->getObjectKind();
15686 if (!ResultTy
.isNull()) {
15687 DiagnoseSelfAssignment(*this, LHS
.get(), RHS
.get(), OpLoc
, true);
15688 DiagnoseSelfMove(LHS
.get(), RHS
.get(), OpLoc
);
15690 // Avoid copying a block to the heap if the block is assigned to a local
15691 // auto variable that is declared in the same scope as the block. This
15692 // optimization is unsafe if the local variable is declared in an outer
15693 // scope. For example:
15699 // // It is unsafe to invoke the block here if it wasn't copied to the
15703 if (auto *BE
= dyn_cast
<BlockExpr
>(RHS
.get()->IgnoreParens()))
15704 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(LHS
.get()->IgnoreParens()))
15705 if (auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()))
15706 if (VD
->hasLocalStorage() && getCurScope()->isDeclScope(VD
))
15707 BE
->getBlockDecl()->setCanAvoidCopyToHeap();
15709 if (LHS
.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15710 checkNonTrivialCUnion(LHS
.get()->getType(), LHS
.get()->getExprLoc(),
15711 NTCUC_Assignment
, NTCUK_Copy
);
15713 RecordModifiableNonNullParam(*this, LHS
.get());
15717 ResultTy
= CheckPointerToMemberOperands(LHS
, RHS
, VK
, OpLoc
,
15718 Opc
== BO_PtrMemI
);
15722 ConvertHalfVec
= true;
15723 ResultTy
= CheckMultiplyDivideOperands(LHS
, RHS
, OpLoc
, false,
15727 ResultTy
= CheckRemainderOperands(LHS
, RHS
, OpLoc
);
15730 ConvertHalfVec
= true;
15731 ResultTy
= CheckAdditionOperands(LHS
, RHS
, OpLoc
, Opc
);
15734 ConvertHalfVec
= true;
15735 ResultTy
= CheckSubtractionOperands(LHS
, RHS
, OpLoc
);
15739 ResultTy
= CheckShiftOperands(LHS
, RHS
, OpLoc
, Opc
);
15745 ConvertHalfVec
= true;
15746 ResultTy
= CheckCompareOperands(LHS
, RHS
, OpLoc
, Opc
);
15750 ConvertHalfVec
= true;
15751 ResultTy
= CheckCompareOperands(LHS
, RHS
, OpLoc
, Opc
);
15754 ConvertHalfVec
= true;
15755 ResultTy
= CheckCompareOperands(LHS
, RHS
, OpLoc
, Opc
);
15756 assert(ResultTy
.isNull() || ResultTy
->getAsCXXRecordDecl());
15759 checkObjCPointerIntrospection(*this, LHS
, RHS
, OpLoc
);
15763 ResultTy
= CheckBitwiseOperands(LHS
, RHS
, OpLoc
, Opc
);
15767 ConvertHalfVec
= true;
15768 ResultTy
= CheckLogicalOperands(LHS
, RHS
, OpLoc
, Opc
);
15772 ConvertHalfVec
= true;
15773 CompResultTy
= CheckMultiplyDivideOperands(LHS
, RHS
, OpLoc
, true,
15774 Opc
== BO_DivAssign
);
15775 CompLHSTy
= CompResultTy
;
15776 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15778 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15781 CompResultTy
= CheckRemainderOperands(LHS
, RHS
, OpLoc
, true);
15782 CompLHSTy
= CompResultTy
;
15783 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15785 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15788 ConvertHalfVec
= true;
15789 CompResultTy
= CheckAdditionOperands(LHS
, RHS
, OpLoc
, Opc
, &CompLHSTy
);
15790 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15792 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15795 ConvertHalfVec
= true;
15796 CompResultTy
= CheckSubtractionOperands(LHS
, RHS
, OpLoc
, &CompLHSTy
);
15797 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15799 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15803 CompResultTy
= CheckShiftOperands(LHS
, RHS
, OpLoc
, Opc
, true);
15804 CompLHSTy
= CompResultTy
;
15805 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15807 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15810 case BO_OrAssign
: // fallthrough
15811 DiagnoseSelfAssignment(*this, LHS
.get(), RHS
.get(), OpLoc
, true);
15814 CompResultTy
= CheckBitwiseOperands(LHS
, RHS
, OpLoc
, Opc
);
15815 CompLHSTy
= CompResultTy
;
15816 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15818 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15821 ResultTy
= CheckCommaOperands(*this, LHS
, RHS
, OpLoc
);
15822 if (getLangOpts().CPlusPlus
&& !RHS
.isInvalid()) {
15823 VK
= RHS
.get()->getValueKind();
15824 OK
= RHS
.get()->getObjectKind();
15828 if (ResultTy
.isNull() || LHS
.isInvalid() || RHS
.isInvalid())
15829 return ExprError();
15831 // Some of the binary operations require promoting operands of half vector to
15832 // float vectors and truncating the result back to half vector. For now, we do
15833 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15836 (Opc
== BO_Comma
|| isVector(RHS
.get()->getType(), Context
.HalfTy
) ==
15837 isVector(LHS
.get()->getType(), Context
.HalfTy
)) &&
15838 "both sides are half vectors or neither sides are");
15840 needsConversionOfHalfVec(ConvertHalfVec
, Context
, LHS
.get(), RHS
.get());
15842 // Check for array bounds violations for both sides of the BinaryOperator
15843 CheckArrayAccess(LHS
.get());
15844 CheckArrayAccess(RHS
.get());
15846 if (const ObjCIsaExpr
*OISA
= dyn_cast
<ObjCIsaExpr
>(LHS
.get()->IgnoreParenCasts())) {
15847 NamedDecl
*ObjectSetClass
= LookupSingleName(TUScope
,
15848 &Context
.Idents
.get("object_setClass"),
15849 SourceLocation(), LookupOrdinaryName
);
15850 if (ObjectSetClass
&& isa
<ObjCIsaExpr
>(LHS
.get())) {
15851 SourceLocation RHSLocEnd
= getLocForEndOfToken(RHS
.get()->getEndLoc());
15852 Diag(LHS
.get()->getExprLoc(), diag::warn_objc_isa_assign
)
15853 << FixItHint::CreateInsertion(LHS
.get()->getBeginLoc(),
15854 "object_setClass(")
15855 << FixItHint::CreateReplacement(SourceRange(OISA
->getOpLoc(), OpLoc
),
15857 << FixItHint::CreateInsertion(RHSLocEnd
, ")");
15860 Diag(LHS
.get()->getExprLoc(), diag::warn_objc_isa_assign
);
15862 else if (const ObjCIvarRefExpr
*OIRE
=
15863 dyn_cast
<ObjCIvarRefExpr
>(LHS
.get()->IgnoreParenCasts()))
15864 DiagnoseDirectIsaAccess(*this, OIRE
, OpLoc
, RHS
.get());
15866 // Opc is not a compound assignment if CompResultTy is null.
15867 if (CompResultTy
.isNull()) {
15868 if (ConvertHalfVec
)
15869 return convertHalfVecBinOp(*this, LHS
, RHS
, Opc
, ResultTy
, VK
, OK
, false,
15870 OpLoc
, CurFPFeatureOverrides());
15871 return BinaryOperator::Create(Context
, LHS
.get(), RHS
.get(), Opc
, ResultTy
,
15872 VK
, OK
, OpLoc
, CurFPFeatureOverrides());
15875 // Handle compound assignments.
15876 if (getLangOpts().CPlusPlus
&& LHS
.get()->getObjectKind() !=
15879 OK
= LHS
.get()->getObjectKind();
15882 // The LHS is not converted to the result type for fixed-point compound
15883 // assignment as the common type is computed on demand. Reset the CompLHSTy
15884 // to the LHS type we would have gotten after unary conversions.
15885 if (CompResultTy
->isFixedPointType())
15886 CompLHSTy
= UsualUnaryConversions(LHS
.get()).get()->getType();
15888 if (ConvertHalfVec
)
15889 return convertHalfVecBinOp(*this, LHS
, RHS
, Opc
, ResultTy
, VK
, OK
, true,
15890 OpLoc
, CurFPFeatureOverrides());
15892 return CompoundAssignOperator::Create(
15893 Context
, LHS
.get(), RHS
.get(), Opc
, ResultTy
, VK
, OK
, OpLoc
,
15894 CurFPFeatureOverrides(), CompLHSTy
, CompResultTy
);
15897 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15898 /// operators are mixed in a way that suggests that the programmer forgot that
15899 /// comparison operators have higher precedence. The most typical example of
15900 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15901 static void DiagnoseBitwisePrecedence(Sema
&Self
, BinaryOperatorKind Opc
,
15902 SourceLocation OpLoc
, Expr
*LHSExpr
,
15904 BinaryOperator
*LHSBO
= dyn_cast
<BinaryOperator
>(LHSExpr
);
15905 BinaryOperator
*RHSBO
= dyn_cast
<BinaryOperator
>(RHSExpr
);
15907 // Check that one of the sides is a comparison operator and the other isn't.
15908 bool isLeftComp
= LHSBO
&& LHSBO
->isComparisonOp();
15909 bool isRightComp
= RHSBO
&& RHSBO
->isComparisonOp();
15910 if (isLeftComp
== isRightComp
)
15913 // Bitwise operations are sometimes used as eager logical ops.
15914 // Don't diagnose this.
15915 bool isLeftBitwise
= LHSBO
&& LHSBO
->isBitwiseOp();
15916 bool isRightBitwise
= RHSBO
&& RHSBO
->isBitwiseOp();
15917 if (isLeftBitwise
|| isRightBitwise
)
15920 SourceRange DiagRange
= isLeftComp
15921 ? SourceRange(LHSExpr
->getBeginLoc(), OpLoc
)
15922 : SourceRange(OpLoc
, RHSExpr
->getEndLoc());
15923 StringRef OpStr
= isLeftComp
? LHSBO
->getOpcodeStr() : RHSBO
->getOpcodeStr();
15924 SourceRange ParensRange
=
15926 ? SourceRange(LHSBO
->getRHS()->getBeginLoc(), RHSExpr
->getEndLoc())
15927 : SourceRange(LHSExpr
->getBeginLoc(), RHSBO
->getLHS()->getEndLoc());
15929 Self
.Diag(OpLoc
, diag::warn_precedence_bitwise_rel
)
15930 << DiagRange
<< BinaryOperator::getOpcodeStr(Opc
) << OpStr
;
15931 SuggestParentheses(Self
, OpLoc
,
15932 Self
.PDiag(diag::note_precedence_silence
) << OpStr
,
15933 (isLeftComp
? LHSExpr
: RHSExpr
)->getSourceRange());
15934 SuggestParentheses(Self
, OpLoc
,
15935 Self
.PDiag(diag::note_precedence_bitwise_first
)
15936 << BinaryOperator::getOpcodeStr(Opc
),
15940 /// It accepts a '&&' expr that is inside a '||' one.
15941 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15942 /// in parentheses.
15944 EmitDiagnosticForLogicalAndInLogicalOr(Sema
&Self
, SourceLocation OpLoc
,
15945 BinaryOperator
*Bop
) {
15946 assert(Bop
->getOpcode() == BO_LAnd
);
15947 Self
.Diag(Bop
->getOperatorLoc(), diag::warn_logical_and_in_logical_or
)
15948 << Bop
->getSourceRange() << OpLoc
;
15949 SuggestParentheses(Self
, Bop
->getOperatorLoc(),
15950 Self
.PDiag(diag::note_precedence_silence
)
15951 << Bop
->getOpcodeStr(),
15952 Bop
->getSourceRange());
15955 /// Look for '&&' in the left hand of a '||' expr.
15956 static void DiagnoseLogicalAndInLogicalOrLHS(Sema
&S
, SourceLocation OpLoc
,
15957 Expr
*LHSExpr
, Expr
*RHSExpr
) {
15958 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(LHSExpr
)) {
15959 if (Bop
->getOpcode() == BO_LAnd
) {
15960 // If it's "string_literal && a || b" don't warn since the precedence
15962 if (!isa
<StringLiteral
>(Bop
->getLHS()->IgnoreParenImpCasts()))
15963 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, Bop
);
15964 } else if (Bop
->getOpcode() == BO_LOr
) {
15965 if (BinaryOperator
*RBop
= dyn_cast
<BinaryOperator
>(Bop
->getRHS())) {
15966 // If it's "a || b && string_literal || c" we didn't warn earlier for
15967 // "a || b && string_literal", but warn now.
15968 if (RBop
->getOpcode() == BO_LAnd
&&
15969 isa
<StringLiteral
>(RBop
->getRHS()->IgnoreParenImpCasts()))
15970 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, RBop
);
15976 /// Look for '&&' in the right hand of a '||' expr.
15977 static void DiagnoseLogicalAndInLogicalOrRHS(Sema
&S
, SourceLocation OpLoc
,
15978 Expr
*LHSExpr
, Expr
*RHSExpr
) {
15979 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(RHSExpr
)) {
15980 if (Bop
->getOpcode() == BO_LAnd
) {
15981 // If it's "a || b && string_literal" don't warn since the precedence
15983 if (!isa
<StringLiteral
>(Bop
->getRHS()->IgnoreParenImpCasts()))
15984 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, Bop
);
15989 /// Look for bitwise op in the left or right hand of a bitwise op with
15990 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15991 /// the '&' expression in parentheses.
15992 static void DiagnoseBitwiseOpInBitwiseOp(Sema
&S
, BinaryOperatorKind Opc
,
15993 SourceLocation OpLoc
, Expr
*SubExpr
) {
15994 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(SubExpr
)) {
15995 if (Bop
->isBitwiseOp() && Bop
->getOpcode() < Opc
) {
15996 S
.Diag(Bop
->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op
)
15997 << Bop
->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc
)
15998 << Bop
->getSourceRange() << OpLoc
;
15999 SuggestParentheses(S
, Bop
->getOperatorLoc(),
16000 S
.PDiag(diag::note_precedence_silence
)
16001 << Bop
->getOpcodeStr(),
16002 Bop
->getSourceRange());
16007 static void DiagnoseAdditionInShift(Sema
&S
, SourceLocation OpLoc
,
16008 Expr
*SubExpr
, StringRef Shift
) {
16009 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(SubExpr
)) {
16010 if (Bop
->getOpcode() == BO_Add
|| Bop
->getOpcode() == BO_Sub
) {
16011 StringRef Op
= Bop
->getOpcodeStr();
16012 S
.Diag(Bop
->getOperatorLoc(), diag::warn_addition_in_bitshift
)
16013 << Bop
->getSourceRange() << OpLoc
<< Shift
<< Op
;
16014 SuggestParentheses(S
, Bop
->getOperatorLoc(),
16015 S
.PDiag(diag::note_precedence_silence
) << Op
,
16016 Bop
->getSourceRange());
16021 static void DiagnoseShiftCompare(Sema
&S
, SourceLocation OpLoc
,
16022 Expr
*LHSExpr
, Expr
*RHSExpr
) {
16023 CXXOperatorCallExpr
*OCE
= dyn_cast
<CXXOperatorCallExpr
>(LHSExpr
);
16027 FunctionDecl
*FD
= OCE
->getDirectCallee();
16028 if (!FD
|| !FD
->isOverloadedOperator())
16031 OverloadedOperatorKind Kind
= FD
->getOverloadedOperator();
16032 if (Kind
!= OO_LessLess
&& Kind
!= OO_GreaterGreater
)
16035 S
.Diag(OpLoc
, diag::warn_overloaded_shift_in_comparison
)
16036 << LHSExpr
->getSourceRange() << RHSExpr
->getSourceRange()
16037 << (Kind
== OO_LessLess
);
16038 SuggestParentheses(S
, OCE
->getOperatorLoc(),
16039 S
.PDiag(diag::note_precedence_silence
)
16040 << (Kind
== OO_LessLess
? "<<" : ">>"),
16041 OCE
->getSourceRange());
16042 SuggestParentheses(
16043 S
, OpLoc
, S
.PDiag(diag::note_evaluate_comparison_first
),
16044 SourceRange(OCE
->getArg(1)->getBeginLoc(), RHSExpr
->getEndLoc()));
16047 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
16049 static void DiagnoseBinOpPrecedence(Sema
&Self
, BinaryOperatorKind Opc
,
16050 SourceLocation OpLoc
, Expr
*LHSExpr
,
16052 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
16053 if (BinaryOperator::isBitwiseOp(Opc
))
16054 DiagnoseBitwisePrecedence(Self
, Opc
, OpLoc
, LHSExpr
, RHSExpr
);
16056 // Diagnose "arg1 & arg2 | arg3"
16057 if ((Opc
== BO_Or
|| Opc
== BO_Xor
) &&
16058 !OpLoc
.isMacroID()/* Don't warn in macros. */) {
16059 DiagnoseBitwiseOpInBitwiseOp(Self
, Opc
, OpLoc
, LHSExpr
);
16060 DiagnoseBitwiseOpInBitwiseOp(Self
, Opc
, OpLoc
, RHSExpr
);
16063 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
16064 // We don't warn for 'assert(a || b && "bad")' since this is safe.
16065 if (Opc
== BO_LOr
&& !OpLoc
.isMacroID()/* Don't warn in macros. */) {
16066 DiagnoseLogicalAndInLogicalOrLHS(Self
, OpLoc
, LHSExpr
, RHSExpr
);
16067 DiagnoseLogicalAndInLogicalOrRHS(Self
, OpLoc
, LHSExpr
, RHSExpr
);
16070 if ((Opc
== BO_Shl
&& LHSExpr
->getType()->isIntegralType(Self
.getASTContext()))
16071 || Opc
== BO_Shr
) {
16072 StringRef Shift
= BinaryOperator::getOpcodeStr(Opc
);
16073 DiagnoseAdditionInShift(Self
, OpLoc
, LHSExpr
, Shift
);
16074 DiagnoseAdditionInShift(Self
, OpLoc
, RHSExpr
, Shift
);
16077 // Warn on overloaded shift operators and comparisons, such as:
16079 if (BinaryOperator::isComparisonOp(Opc
))
16080 DiagnoseShiftCompare(Self
, OpLoc
, LHSExpr
, RHSExpr
);
16083 // Binary Operators. 'Tok' is the token for the operator.
16084 ExprResult
Sema::ActOnBinOp(Scope
*S
, SourceLocation TokLoc
,
16085 tok::TokenKind Kind
,
16086 Expr
*LHSExpr
, Expr
*RHSExpr
) {
16087 BinaryOperatorKind Opc
= ConvertTokenKindToBinaryOpcode(Kind
);
16088 assert(LHSExpr
&& "ActOnBinOp(): missing left expression");
16089 assert(RHSExpr
&& "ActOnBinOp(): missing right expression");
16091 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
16092 DiagnoseBinOpPrecedence(*this, Opc
, TokLoc
, LHSExpr
, RHSExpr
);
16094 return BuildBinOp(S
, TokLoc
, Opc
, LHSExpr
, RHSExpr
);
16097 void Sema::LookupBinOp(Scope
*S
, SourceLocation OpLoc
, BinaryOperatorKind Opc
,
16098 UnresolvedSetImpl
&Functions
) {
16099 OverloadedOperatorKind OverOp
= BinaryOperator::getOverloadedOperator(Opc
);
16100 if (OverOp
!= OO_None
&& OverOp
!= OO_Equal
)
16101 LookupOverloadedOperatorName(OverOp
, S
, Functions
);
16103 // In C++20 onwards, we may have a second operator to look up.
16104 if (getLangOpts().CPlusPlus20
) {
16105 if (OverloadedOperatorKind ExtraOp
= getRewrittenOverloadedOperator(OverOp
))
16106 LookupOverloadedOperatorName(ExtraOp
, S
, Functions
);
16110 /// Build an overloaded binary operator expression in the given scope.
16111 static ExprResult
BuildOverloadedBinOp(Sema
&S
, Scope
*Sc
, SourceLocation OpLoc
,
16112 BinaryOperatorKind Opc
,
16113 Expr
*LHS
, Expr
*RHS
) {
16116 // In the non-overloaded case, we warn about self-assignment (x = x) for
16117 // both simple assignment and certain compound assignments where algebra
16118 // tells us the operation yields a constant result. When the operator is
16119 // overloaded, we can't do the latter because we don't want to assume that
16120 // those algebraic identities still apply; for example, a path-building
16121 // library might use operator/= to append paths. But it's still reasonable
16122 // to assume that simple assignment is just moving/copying values around
16123 // and so self-assignment is likely a bug.
16124 DiagnoseSelfAssignment(S
, LHS
, RHS
, OpLoc
, false);
16132 CheckIdentityFieldAssignment(LHS
, RHS
, OpLoc
, S
);
16138 // Find all of the overloaded operators visible from this point.
16139 UnresolvedSet
<16> Functions
;
16140 S
.LookupBinOp(Sc
, OpLoc
, Opc
, Functions
);
16142 // Build the (potentially-overloaded, potentially-dependent)
16143 // binary operation.
16144 return S
.CreateOverloadedBinOp(OpLoc
, Opc
, Functions
, LHS
, RHS
);
16147 ExprResult
Sema::BuildBinOp(Scope
*S
, SourceLocation OpLoc
,
16148 BinaryOperatorKind Opc
,
16149 Expr
*LHSExpr
, Expr
*RHSExpr
) {
16150 ExprResult LHS
, RHS
;
16151 std::tie(LHS
, RHS
) = CorrectDelayedTyposInBinOp(*this, Opc
, LHSExpr
, RHSExpr
);
16152 if (!LHS
.isUsable() || !RHS
.isUsable())
16153 return ExprError();
16154 LHSExpr
= LHS
.get();
16155 RHSExpr
= RHS
.get();
16157 // We want to end up calling one of checkPseudoObjectAssignment
16158 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
16159 // both expressions are overloadable or either is type-dependent),
16160 // or CreateBuiltinBinOp (in any other case). We also want to get
16161 // any placeholder types out of the way.
16163 // Handle pseudo-objects in the LHS.
16164 if (const BuiltinType
*pty
= LHSExpr
->getType()->getAsPlaceholderType()) {
16165 // Assignments with a pseudo-object l-value need special analysis.
16166 if (pty
->getKind() == BuiltinType::PseudoObject
&&
16167 BinaryOperator::isAssignmentOp(Opc
))
16168 return checkPseudoObjectAssignment(S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16170 // Don't resolve overloads if the other type is overloadable.
16171 if (getLangOpts().CPlusPlus
&& pty
->getKind() == BuiltinType::Overload
) {
16172 // We can't actually test that if we still have a placeholder,
16173 // though. Fortunately, none of the exceptions we see in that
16174 // code below are valid when the LHS is an overload set. Note
16175 // that an overload set can be dependently-typed, but it never
16176 // instantiates to having an overloadable type.
16177 ExprResult resolvedRHS
= CheckPlaceholderExpr(RHSExpr
);
16178 if (resolvedRHS
.isInvalid()) return ExprError();
16179 RHSExpr
= resolvedRHS
.get();
16181 if (RHSExpr
->isTypeDependent() ||
16182 RHSExpr
->getType()->isOverloadableType())
16183 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16186 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
16187 // template, diagnose the missing 'template' keyword instead of diagnosing
16188 // an invalid use of a bound member function.
16190 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
16191 // to C++1z [over.over]/1.4, but we already checked for that case above.
16192 if (Opc
== BO_LT
&& inTemplateInstantiation() &&
16193 (pty
->getKind() == BuiltinType::BoundMember
||
16194 pty
->getKind() == BuiltinType::Overload
)) {
16195 auto *OE
= dyn_cast
<OverloadExpr
>(LHSExpr
);
16196 if (OE
&& !OE
->hasTemplateKeyword() && !OE
->hasExplicitTemplateArgs() &&
16197 llvm::any_of(OE
->decls(), [](NamedDecl
*ND
) {
16198 return isa
<FunctionTemplateDecl
>(ND
);
16200 Diag(OE
->getQualifier() ? OE
->getQualifierLoc().getBeginLoc()
16201 : OE
->getNameLoc(),
16202 diag::err_template_kw_missing
)
16203 << OE
->getName().getAsString() << "";
16204 return ExprError();
16208 ExprResult LHS
= CheckPlaceholderExpr(LHSExpr
);
16209 if (LHS
.isInvalid()) return ExprError();
16210 LHSExpr
= LHS
.get();
16213 // Handle pseudo-objects in the RHS.
16214 if (const BuiltinType
*pty
= RHSExpr
->getType()->getAsPlaceholderType()) {
16215 // An overload in the RHS can potentially be resolved by the type
16216 // being assigned to.
16217 if (Opc
== BO_Assign
&& pty
->getKind() == BuiltinType::Overload
) {
16218 if (getLangOpts().CPlusPlus
&&
16219 (LHSExpr
->isTypeDependent() || RHSExpr
->isTypeDependent() ||
16220 LHSExpr
->getType()->isOverloadableType()))
16221 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16223 return CreateBuiltinBinOp(OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16226 // Don't resolve overloads if the other type is overloadable.
16227 if (getLangOpts().CPlusPlus
&& pty
->getKind() == BuiltinType::Overload
&&
16228 LHSExpr
->getType()->isOverloadableType())
16229 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16231 ExprResult resolvedRHS
= CheckPlaceholderExpr(RHSExpr
);
16232 if (!resolvedRHS
.isUsable()) return ExprError();
16233 RHSExpr
= resolvedRHS
.get();
16236 if (getLangOpts().CPlusPlus
) {
16237 // If either expression is type-dependent, always build an
16239 if (LHSExpr
->isTypeDependent() || RHSExpr
->isTypeDependent())
16240 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16242 // Otherwise, build an overloaded op if either expression has an
16243 // overloadable type.
16244 if (LHSExpr
->getType()->isOverloadableType() ||
16245 RHSExpr
->getType()->isOverloadableType())
16246 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16249 if (getLangOpts().RecoveryAST
&&
16250 (LHSExpr
->isTypeDependent() || RHSExpr
->isTypeDependent())) {
16251 assert(!getLangOpts().CPlusPlus
);
16252 assert((LHSExpr
->containsErrors() || RHSExpr
->containsErrors()) &&
16253 "Should only occur in error-recovery path.");
16254 if (BinaryOperator::isCompoundAssignmentOp(Opc
))
16256 // An assignment expression has the value of the left operand after the
16257 // assignment, but is not an lvalue.
16258 return CompoundAssignOperator::Create(
16259 Context
, LHSExpr
, RHSExpr
, Opc
,
16260 LHSExpr
->getType().getUnqualifiedType(), VK_PRValue
, OK_Ordinary
,
16261 OpLoc
, CurFPFeatureOverrides());
16262 QualType ResultType
;
16265 ResultType
= LHSExpr
->getType().getUnqualifiedType();
16275 // These operators have a fixed result type regardless of operands.
16276 ResultType
= Context
.IntTy
;
16279 ResultType
= RHSExpr
->getType();
16282 ResultType
= Context
.DependentTy
;
16285 return BinaryOperator::Create(Context
, LHSExpr
, RHSExpr
, Opc
, ResultType
,
16286 VK_PRValue
, OK_Ordinary
, OpLoc
,
16287 CurFPFeatureOverrides());
16290 // Build a built-in binary operation.
16291 return CreateBuiltinBinOp(OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16294 static bool isOverflowingIntegerType(ASTContext
&Ctx
, QualType T
) {
16295 if (T
.isNull() || T
->isDependentType())
16298 if (!Ctx
.isPromotableIntegerType(T
))
16301 return Ctx
.getIntWidth(T
) >= Ctx
.getIntWidth(Ctx
.IntTy
);
16304 ExprResult
Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc
,
16305 UnaryOperatorKind Opc
, Expr
*InputExpr
,
16307 ExprResult Input
= InputExpr
;
16308 ExprValueKind VK
= VK_PRValue
;
16309 ExprObjectKind OK
= OK_Ordinary
;
16310 QualType resultType
;
16311 bool CanOverflow
= false;
16313 bool ConvertHalfVec
= false;
16314 if (getLangOpts().OpenCL
) {
16315 QualType Ty
= InputExpr
->getType();
16316 // The only legal unary operation for atomics is '&'.
16317 if ((Opc
!= UO_AddrOf
&& Ty
->isAtomicType()) ||
16318 // OpenCL special types - image, sampler, pipe, and blocks are to be used
16319 // only with a builtin functions and therefore should be disallowed here.
16320 (Ty
->isImageType() || Ty
->isSamplerT() || Ty
->isPipeType()
16321 || Ty
->isBlockPointerType())) {
16322 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16323 << InputExpr
->getType()
16324 << Input
.get()->getSourceRange());
16328 if (getLangOpts().HLSL
&& OpLoc
.isValid()) {
16329 if (Opc
== UO_AddrOf
)
16330 return ExprError(Diag(OpLoc
, diag::err_hlsl_operator_unsupported
) << 0);
16331 if (Opc
== UO_Deref
)
16332 return ExprError(Diag(OpLoc
, diag::err_hlsl_operator_unsupported
) << 1);
16340 resultType
= CheckIncrementDecrementOperand(*this, Input
.get(), VK
, OK
,
16342 Opc
== UO_PreInc
||
16344 Opc
== UO_PreInc
||
16346 CanOverflow
= isOverflowingIntegerType(Context
, resultType
);
16349 resultType
= CheckAddressOfOperand(Input
, OpLoc
);
16350 CheckAddressOfNoDeref(InputExpr
);
16351 RecordModifiableNonNullParam(*this, InputExpr
);
16354 Input
= DefaultFunctionArrayLvalueConversion(Input
.get());
16355 if (Input
.isInvalid()) return ExprError();
16357 CheckIndirectionOperand(*this, Input
.get(), VK
, OpLoc
, IsAfterAmp
);
16362 CanOverflow
= Opc
== UO_Minus
&&
16363 isOverflowingIntegerType(Context
, Input
.get()->getType());
16364 Input
= UsualUnaryConversions(Input
.get());
16365 if (Input
.isInvalid()) return ExprError();
16366 // Unary plus and minus require promoting an operand of half vector to a
16367 // float vector and truncating the result back to a half vector. For now, we
16368 // do this only when HalfArgsAndReturns is set (that is, when the target is
16370 ConvertHalfVec
= needsConversionOfHalfVec(true, Context
, Input
.get());
16372 // If the operand is a half vector, promote it to a float vector.
16373 if (ConvertHalfVec
)
16374 Input
= convertVector(Input
.get(), Context
.FloatTy
, *this);
16375 resultType
= Input
.get()->getType();
16376 if (resultType
->isDependentType())
16378 if (resultType
->isArithmeticType()) // C99 6.5.3.3p1
16380 else if (resultType
->isVectorType() &&
16381 // The z vector extensions don't allow + or - with bool vectors.
16382 (!Context
.getLangOpts().ZVector
||
16383 resultType
->castAs
<VectorType
>()->getVectorKind() !=
16384 VectorKind::AltiVecBool
))
16386 else if (resultType
->isSveVLSBuiltinType()) // SVE vectors allow + and -
16388 else if (getLangOpts().CPlusPlus
&& // C++ [expr.unary.op]p6
16390 resultType
->isPointerType())
16393 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16394 << resultType
<< Input
.get()->getSourceRange());
16396 case UO_Not
: // bitwise complement
16397 Input
= UsualUnaryConversions(Input
.get());
16398 if (Input
.isInvalid())
16399 return ExprError();
16400 resultType
= Input
.get()->getType();
16401 if (resultType
->isDependentType())
16403 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
16404 if (resultType
->isComplexType() || resultType
->isComplexIntegerType())
16405 // C99 does not support '~' for complex conjugation.
16406 Diag(OpLoc
, diag::ext_integer_complement_complex
)
16407 << resultType
<< Input
.get()->getSourceRange();
16408 else if (resultType
->hasIntegerRepresentation())
16410 else if (resultType
->isExtVectorType() && Context
.getLangOpts().OpenCL
) {
16411 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
16412 // on vector float types.
16413 QualType T
= resultType
->castAs
<ExtVectorType
>()->getElementType();
16414 if (!T
->isIntegerType())
16415 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16416 << resultType
<< Input
.get()->getSourceRange());
16418 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16419 << resultType
<< Input
.get()->getSourceRange());
16423 case UO_LNot
: // logical negation
16424 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
16425 Input
= DefaultFunctionArrayLvalueConversion(Input
.get());
16426 if (Input
.isInvalid()) return ExprError();
16427 resultType
= Input
.get()->getType();
16429 // Though we still have to promote half FP to float...
16430 if (resultType
->isHalfType() && !Context
.getLangOpts().NativeHalfType
) {
16431 Input
= ImpCastExprToType(Input
.get(), Context
.FloatTy
, CK_FloatingCast
).get();
16432 resultType
= Context
.FloatTy
;
16435 // WebAsembly tables can't be used in unary expressions.
16436 if (resultType
->isPointerType() &&
16437 resultType
->getPointeeType().isWebAssemblyReferenceType()) {
16438 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16439 << resultType
<< Input
.get()->getSourceRange());
16442 if (resultType
->isDependentType())
16444 if (resultType
->isScalarType() && !isScopedEnumerationType(resultType
)) {
16445 // C99 6.5.3.3p1: ok, fallthrough;
16446 if (Context
.getLangOpts().CPlusPlus
) {
16447 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
16448 // operand contextually converted to bool.
16449 Input
= ImpCastExprToType(Input
.get(), Context
.BoolTy
,
16450 ScalarTypeToBooleanCastKind(resultType
));
16451 } else if (Context
.getLangOpts().OpenCL
&&
16452 Context
.getLangOpts().OpenCLVersion
< 120) {
16453 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16454 // operate on scalar float types.
16455 if (!resultType
->isIntegerType() && !resultType
->isPointerType())
16456 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16457 << resultType
<< Input
.get()->getSourceRange());
16459 } else if (resultType
->isExtVectorType()) {
16460 if (Context
.getLangOpts().OpenCL
&&
16461 Context
.getLangOpts().getOpenCLCompatibleVersion() < 120) {
16462 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16463 // operate on vector float types.
16464 QualType T
= resultType
->castAs
<ExtVectorType
>()->getElementType();
16465 if (!T
->isIntegerType())
16466 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16467 << resultType
<< Input
.get()->getSourceRange());
16469 // Vector logical not returns the signed variant of the operand type.
16470 resultType
= GetSignedVectorType(resultType
);
16472 } else if (Context
.getLangOpts().CPlusPlus
&& resultType
->isVectorType()) {
16473 const VectorType
*VTy
= resultType
->castAs
<VectorType
>();
16474 if (VTy
->getVectorKind() != VectorKind::Generic
)
16475 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16476 << resultType
<< Input
.get()->getSourceRange());
16478 // Vector logical not returns the signed variant of the operand type.
16479 resultType
= GetSignedVectorType(resultType
);
16482 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16483 << resultType
<< Input
.get()->getSourceRange());
16486 // LNot always has type int. C99 6.5.3.3p5.
16487 // In C++, it's bool. C++ 5.3.1p8
16488 resultType
= Context
.getLogicalOperationType();
16492 resultType
= CheckRealImagOperand(*this, Input
, OpLoc
, Opc
== UO_Real
);
16493 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
16494 // complex l-values to ordinary l-values and all other values to r-values.
16495 if (Input
.isInvalid()) return ExprError();
16496 if (Opc
== UO_Real
|| Input
.get()->getType()->isAnyComplexType()) {
16497 if (Input
.get()->isGLValue() &&
16498 Input
.get()->getObjectKind() == OK_Ordinary
)
16499 VK
= Input
.get()->getValueKind();
16500 } else if (!getLangOpts().CPlusPlus
) {
16501 // In C, a volatile scalar is read by __imag. In C++, it is not.
16502 Input
= DefaultLvalueConversion(Input
.get());
16506 resultType
= Input
.get()->getType();
16507 VK
= Input
.get()->getValueKind();
16508 OK
= Input
.get()->getObjectKind();
16511 // It's unnecessary to represent the pass-through operator co_await in the
16512 // AST; just return the input expression instead.
16513 assert(!Input
.get()->getType()->isDependentType() &&
16514 "the co_await expression must be non-dependant before "
16515 "building operator co_await");
16518 if (resultType
.isNull() || Input
.isInvalid())
16519 return ExprError();
16521 // Check for array bounds violations in the operand of the UnaryOperator,
16522 // except for the '*' and '&' operators that have to be handled specially
16523 // by CheckArrayAccess (as there are special cases like &array[arraysize]
16524 // that are explicitly defined as valid by the standard).
16525 if (Opc
!= UO_AddrOf
&& Opc
!= UO_Deref
)
16526 CheckArrayAccess(Input
.get());
16529 UnaryOperator::Create(Context
, Input
.get(), Opc
, resultType
, VK
, OK
,
16530 OpLoc
, CanOverflow
, CurFPFeatureOverrides());
16532 if (Opc
== UO_Deref
&& UO
->getType()->hasAttr(attr::NoDeref
) &&
16533 !isa
<ArrayType
>(UO
->getType().getDesugaredType(Context
)) &&
16534 !isUnevaluatedContext())
16535 ExprEvalContexts
.back().PossibleDerefs
.insert(UO
);
16537 // Convert the result back to a half vector.
16538 if (ConvertHalfVec
)
16539 return convertVector(UO
, Context
.HalfTy
, *this);
16543 /// Determine whether the given expression is a qualified member
16544 /// access expression, of a form that could be turned into a pointer to member
16545 /// with the address-of operator.
16546 bool Sema::isQualifiedMemberAccess(Expr
*E
) {
16547 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
16548 if (!DRE
->getQualifier())
16551 ValueDecl
*VD
= DRE
->getDecl();
16552 if (!VD
->isCXXClassMember())
16555 if (isa
<FieldDecl
>(VD
) || isa
<IndirectFieldDecl
>(VD
))
16557 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(VD
))
16558 return Method
->isImplicitObjectMemberFunction();
16563 if (UnresolvedLookupExpr
*ULE
= dyn_cast
<UnresolvedLookupExpr
>(E
)) {
16564 if (!ULE
->getQualifier())
16567 for (NamedDecl
*D
: ULE
->decls()) {
16568 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
16569 if (Method
->isImplicitObjectMemberFunction())
16572 // Overload set does not contain methods.
16583 ExprResult
Sema::BuildUnaryOp(Scope
*S
, SourceLocation OpLoc
,
16584 UnaryOperatorKind Opc
, Expr
*Input
,
16586 // First things first: handle placeholders so that the
16587 // overloaded-operator check considers the right type.
16588 if (const BuiltinType
*pty
= Input
->getType()->getAsPlaceholderType()) {
16589 // Increment and decrement of pseudo-object references.
16590 if (pty
->getKind() == BuiltinType::PseudoObject
&&
16591 UnaryOperator::isIncrementDecrementOp(Opc
))
16592 return checkPseudoObjectIncDec(S
, OpLoc
, Opc
, Input
);
16594 // extension is always a builtin operator.
16595 if (Opc
== UO_Extension
)
16596 return CreateBuiltinUnaryOp(OpLoc
, Opc
, Input
);
16598 // & gets special logic for several kinds of placeholder.
16599 // The builtin code knows what to do.
16600 if (Opc
== UO_AddrOf
&&
16601 (pty
->getKind() == BuiltinType::Overload
||
16602 pty
->getKind() == BuiltinType::UnknownAny
||
16603 pty
->getKind() == BuiltinType::BoundMember
))
16604 return CreateBuiltinUnaryOp(OpLoc
, Opc
, Input
);
16606 // Anything else needs to be handled now.
16607 ExprResult Result
= CheckPlaceholderExpr(Input
);
16608 if (Result
.isInvalid()) return ExprError();
16609 Input
= Result
.get();
16612 if (getLangOpts().CPlusPlus
&& Input
->getType()->isOverloadableType() &&
16613 UnaryOperator::getOverloadedOperator(Opc
) != OO_None
&&
16614 !(Opc
== UO_AddrOf
&& isQualifiedMemberAccess(Input
))) {
16615 // Find all of the overloaded operators visible from this point.
16616 UnresolvedSet
<16> Functions
;
16617 OverloadedOperatorKind OverOp
= UnaryOperator::getOverloadedOperator(Opc
);
16618 if (S
&& OverOp
!= OO_None
)
16619 LookupOverloadedOperatorName(OverOp
, S
, Functions
);
16621 return CreateOverloadedUnaryOp(OpLoc
, Opc
, Functions
, Input
);
16624 return CreateBuiltinUnaryOp(OpLoc
, Opc
, Input
, IsAfterAmp
);
16627 // Unary Operators. 'Tok' is the token for the operator.
16628 ExprResult
Sema::ActOnUnaryOp(Scope
*S
, SourceLocation OpLoc
, tok::TokenKind Op
,
16629 Expr
*Input
, bool IsAfterAmp
) {
16630 return BuildUnaryOp(S
, OpLoc
, ConvertTokenKindToUnaryOpcode(Op
), Input
,
16634 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
16635 ExprResult
Sema::ActOnAddrLabel(SourceLocation OpLoc
, SourceLocation LabLoc
,
16636 LabelDecl
*TheDecl
) {
16637 TheDecl
->markUsed(Context
);
16638 // Create the AST node. The address of a label always has type 'void*'.
16639 auto *Res
= new (Context
) AddrLabelExpr(
16640 OpLoc
, LabLoc
, TheDecl
, Context
.getPointerType(Context
.VoidTy
));
16642 if (getCurFunction())
16643 getCurFunction()->AddrLabels
.push_back(Res
);
16648 void Sema::ActOnStartStmtExpr() {
16649 PushExpressionEvaluationContext(ExprEvalContexts
.back().Context
);
16650 // Make sure we diagnose jumping into a statement expression.
16651 setFunctionHasBranchProtectedScope();
16654 void Sema::ActOnStmtExprError() {
16655 // Note that function is also called by TreeTransform when leaving a
16656 // StmtExpr scope without rebuilding anything.
16658 DiscardCleanupsInEvaluationContext();
16659 PopExpressionEvaluationContext();
16662 ExprResult
Sema::ActOnStmtExpr(Scope
*S
, SourceLocation LPLoc
, Stmt
*SubStmt
,
16663 SourceLocation RPLoc
) {
16664 return BuildStmtExpr(LPLoc
, SubStmt
, RPLoc
, getTemplateDepth(S
));
16667 ExprResult
Sema::BuildStmtExpr(SourceLocation LPLoc
, Stmt
*SubStmt
,
16668 SourceLocation RPLoc
, unsigned TemplateDepth
) {
16669 assert(SubStmt
&& isa
<CompoundStmt
>(SubStmt
) && "Invalid action invocation!");
16670 CompoundStmt
*Compound
= cast
<CompoundStmt
>(SubStmt
);
16672 if (hasAnyUnrecoverableErrorsInThisFunction())
16673 DiscardCleanupsInEvaluationContext();
16674 assert(!Cleanup
.exprNeedsCleanups() &&
16675 "cleanups within StmtExpr not correctly bound!");
16676 PopExpressionEvaluationContext();
16678 // FIXME: there are a variety of strange constraints to enforce here, for
16679 // example, it is not possible to goto into a stmt expression apparently.
16680 // More semantic analysis is needed.
16682 // If there are sub-stmts in the compound stmt, take the type of the last one
16683 // as the type of the stmtexpr.
16684 QualType Ty
= Context
.VoidTy
;
16685 bool StmtExprMayBindToTemp
= false;
16686 if (!Compound
->body_empty()) {
16687 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16688 if (const auto *LastStmt
=
16689 dyn_cast
<ValueStmt
>(Compound
->getStmtExprResult())) {
16690 if (const Expr
*Value
= LastStmt
->getExprStmt()) {
16691 StmtExprMayBindToTemp
= true;
16692 Ty
= Value
->getType();
16697 // FIXME: Check that expression type is complete/non-abstract; statement
16698 // expressions are not lvalues.
16699 Expr
*ResStmtExpr
=
16700 new (Context
) StmtExpr(Compound
, Ty
, LPLoc
, RPLoc
, TemplateDepth
);
16701 if (StmtExprMayBindToTemp
)
16702 return MaybeBindToTemporary(ResStmtExpr
);
16703 return ResStmtExpr
;
16706 ExprResult
Sema::ActOnStmtExprResult(ExprResult ER
) {
16707 if (ER
.isInvalid())
16708 return ExprError();
16710 // Do function/array conversion on the last expression, but not
16711 // lvalue-to-rvalue. However, initialize an unqualified type.
16712 ER
= DefaultFunctionArrayConversion(ER
.get());
16713 if (ER
.isInvalid())
16714 return ExprError();
16715 Expr
*E
= ER
.get();
16717 if (E
->isTypeDependent())
16720 // In ARC, if the final expression ends in a consume, splice
16721 // the consume out and bind it later. In the alternate case
16722 // (when dealing with a retainable type), the result
16723 // initialization will create a produce. In both cases the
16724 // result will be +1, and we'll need to balance that out with
16726 auto *Cast
= dyn_cast
<ImplicitCastExpr
>(E
);
16727 if (Cast
&& Cast
->getCastKind() == CK_ARCConsumeObject
)
16728 return Cast
->getSubExpr();
16730 // FIXME: Provide a better location for the initialization.
16731 return PerformCopyInitialization(
16732 InitializedEntity::InitializeStmtExprResult(
16733 E
->getBeginLoc(), E
->getType().getUnqualifiedType()),
16734 SourceLocation(), E
);
16737 ExprResult
Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc
,
16738 TypeSourceInfo
*TInfo
,
16739 ArrayRef
<OffsetOfComponent
> Components
,
16740 SourceLocation RParenLoc
) {
16741 QualType ArgTy
= TInfo
->getType();
16742 bool Dependent
= ArgTy
->isDependentType();
16743 SourceRange TypeRange
= TInfo
->getTypeLoc().getLocalSourceRange();
16745 // We must have at least one component that refers to the type, and the first
16746 // one is known to be a field designator. Verify that the ArgTy represents
16747 // a struct/union/class.
16748 if (!Dependent
&& !ArgTy
->isRecordType())
16749 return ExprError(Diag(BuiltinLoc
, diag::err_offsetof_record_type
)
16750 << ArgTy
<< TypeRange
);
16752 // Type must be complete per C99 7.17p3 because a declaring a variable
16753 // with an incomplete type would be ill-formed.
16755 && RequireCompleteType(BuiltinLoc
, ArgTy
,
16756 diag::err_offsetof_incomplete_type
, TypeRange
))
16757 return ExprError();
16759 bool DidWarnAboutNonPOD
= false;
16760 QualType CurrentType
= ArgTy
;
16761 SmallVector
<OffsetOfNode
, 4> Comps
;
16762 SmallVector
<Expr
*, 4> Exprs
;
16763 for (const OffsetOfComponent
&OC
: Components
) {
16764 if (OC
.isBrackets
) {
16765 // Offset of an array sub-field. TODO: Should we allow vector elements?
16766 if (!CurrentType
->isDependentType()) {
16767 const ArrayType
*AT
= Context
.getAsArrayType(CurrentType
);
16769 return ExprError(Diag(OC
.LocEnd
, diag::err_offsetof_array_type
)
16771 CurrentType
= AT
->getElementType();
16773 CurrentType
= Context
.DependentTy
;
16775 ExprResult IdxRval
= DefaultLvalueConversion(static_cast<Expr
*>(OC
.U
.E
));
16776 if (IdxRval
.isInvalid())
16777 return ExprError();
16778 Expr
*Idx
= IdxRval
.get();
16780 // The expression must be an integral expression.
16781 // FIXME: An integral constant expression?
16782 if (!Idx
->isTypeDependent() && !Idx
->isValueDependent() &&
16783 !Idx
->getType()->isIntegerType())
16785 Diag(Idx
->getBeginLoc(), diag::err_typecheck_subscript_not_integer
)
16786 << Idx
->getSourceRange());
16788 // Record this array index.
16789 Comps
.push_back(OffsetOfNode(OC
.LocStart
, Exprs
.size(), OC
.LocEnd
));
16790 Exprs
.push_back(Idx
);
16794 // Offset of a field.
16795 if (CurrentType
->isDependentType()) {
16796 // We have the offset of a field, but we can't look into the dependent
16797 // type. Just record the identifier of the field.
16798 Comps
.push_back(OffsetOfNode(OC
.LocStart
, OC
.U
.IdentInfo
, OC
.LocEnd
));
16799 CurrentType
= Context
.DependentTy
;
16803 // We need to have a complete type to look into.
16804 if (RequireCompleteType(OC
.LocStart
, CurrentType
,
16805 diag::err_offsetof_incomplete_type
))
16806 return ExprError();
16808 // Look for the designated field.
16809 const RecordType
*RC
= CurrentType
->getAs
<RecordType
>();
16811 return ExprError(Diag(OC
.LocEnd
, diag::err_offsetof_record_type
)
16813 RecordDecl
*RD
= RC
->getDecl();
16815 // C++ [lib.support.types]p5:
16816 // The macro offsetof accepts a restricted set of type arguments in this
16817 // International Standard. type shall be a POD structure or a POD union
16819 // C++11 [support.types]p4:
16820 // If type is not a standard-layout class (Clause 9), the results are
16822 if (CXXRecordDecl
*CRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
16823 bool IsSafe
= LangOpts
.CPlusPlus11
? CRD
->isStandardLayout() : CRD
->isPOD();
16825 LangOpts
.CPlusPlus11
? diag::ext_offsetof_non_standardlayout_type
16826 : diag::ext_offsetof_non_pod_type
;
16828 if (!IsSafe
&& !DidWarnAboutNonPOD
&& !isUnevaluatedContext()) {
16829 Diag(BuiltinLoc
, DiagID
)
16830 << SourceRange(Components
[0].LocStart
, OC
.LocEnd
) << CurrentType
;
16831 DidWarnAboutNonPOD
= true;
16835 // Look for the field.
16836 LookupResult
R(*this, OC
.U
.IdentInfo
, OC
.LocStart
, LookupMemberName
);
16837 LookupQualifiedName(R
, RD
);
16838 FieldDecl
*MemberDecl
= R
.getAsSingle
<FieldDecl
>();
16839 IndirectFieldDecl
*IndirectMemberDecl
= nullptr;
16841 if ((IndirectMemberDecl
= R
.getAsSingle
<IndirectFieldDecl
>()))
16842 MemberDecl
= IndirectMemberDecl
->getAnonField();
16846 // Lookup could be ambiguous when looking up a placeholder variable
16847 // __builtin_offsetof(S, _).
16848 // In that case we would already have emitted a diagnostic
16849 if (!R
.isAmbiguous())
16850 Diag(BuiltinLoc
, diag::err_no_member
)
16851 << OC
.U
.IdentInfo
<< RD
<< SourceRange(OC
.LocStart
, OC
.LocEnd
);
16852 return ExprError();
16856 // (If the specified member is a bit-field, the behavior is undefined.)
16858 // We diagnose this as an error.
16859 if (MemberDecl
->isBitField()) {
16860 Diag(OC
.LocEnd
, diag::err_offsetof_bitfield
)
16861 << MemberDecl
->getDeclName()
16862 << SourceRange(BuiltinLoc
, RParenLoc
);
16863 Diag(MemberDecl
->getLocation(), diag::note_bitfield_decl
);
16864 return ExprError();
16867 RecordDecl
*Parent
= MemberDecl
->getParent();
16868 if (IndirectMemberDecl
)
16869 Parent
= cast
<RecordDecl
>(IndirectMemberDecl
->getDeclContext());
16871 // If the member was found in a base class, introduce OffsetOfNodes for
16872 // the base class indirections.
16873 CXXBasePaths Paths
;
16874 if (IsDerivedFrom(OC
.LocStart
, CurrentType
, Context
.getTypeDeclType(Parent
),
16876 if (Paths
.getDetectedVirtual()) {
16877 Diag(OC
.LocEnd
, diag::err_offsetof_field_of_virtual_base
)
16878 << MemberDecl
->getDeclName()
16879 << SourceRange(BuiltinLoc
, RParenLoc
);
16880 return ExprError();
16883 CXXBasePath
&Path
= Paths
.front();
16884 for (const CXXBasePathElement
&B
: Path
)
16885 Comps
.push_back(OffsetOfNode(B
.Base
));
16888 if (IndirectMemberDecl
) {
16889 for (auto *FI
: IndirectMemberDecl
->chain()) {
16890 assert(isa
<FieldDecl
>(FI
));
16891 Comps
.push_back(OffsetOfNode(OC
.LocStart
,
16892 cast
<FieldDecl
>(FI
), OC
.LocEnd
));
16895 Comps
.push_back(OffsetOfNode(OC
.LocStart
, MemberDecl
, OC
.LocEnd
));
16897 CurrentType
= MemberDecl
->getType().getNonReferenceType();
16900 return OffsetOfExpr::Create(Context
, Context
.getSizeType(), BuiltinLoc
, TInfo
,
16901 Comps
, Exprs
, RParenLoc
);
16904 ExprResult
Sema::ActOnBuiltinOffsetOf(Scope
*S
,
16905 SourceLocation BuiltinLoc
,
16906 SourceLocation TypeLoc
,
16907 ParsedType ParsedArgTy
,
16908 ArrayRef
<OffsetOfComponent
> Components
,
16909 SourceLocation RParenLoc
) {
16911 TypeSourceInfo
*ArgTInfo
;
16912 QualType ArgTy
= GetTypeFromParser(ParsedArgTy
, &ArgTInfo
);
16913 if (ArgTy
.isNull())
16914 return ExprError();
16917 ArgTInfo
= Context
.getTrivialTypeSourceInfo(ArgTy
, TypeLoc
);
16919 return BuildBuiltinOffsetOf(BuiltinLoc
, ArgTInfo
, Components
, RParenLoc
);
16923 ExprResult
Sema::ActOnChooseExpr(SourceLocation BuiltinLoc
,
16925 Expr
*LHSExpr
, Expr
*RHSExpr
,
16926 SourceLocation RPLoc
) {
16927 assert((CondExpr
&& LHSExpr
&& RHSExpr
) && "Missing type argument(s)");
16929 ExprValueKind VK
= VK_PRValue
;
16930 ExprObjectKind OK
= OK_Ordinary
;
16932 bool CondIsTrue
= false;
16933 if (CondExpr
->isTypeDependent() || CondExpr
->isValueDependent()) {
16934 resType
= Context
.DependentTy
;
16936 // The conditional expression is required to be a constant expression.
16937 llvm::APSInt
condEval(32);
16938 ExprResult CondICE
= VerifyIntegerConstantExpression(
16939 CondExpr
, &condEval
, diag::err_typecheck_choose_expr_requires_constant
);
16940 if (CondICE
.isInvalid())
16941 return ExprError();
16942 CondExpr
= CondICE
.get();
16943 CondIsTrue
= condEval
.getZExtValue();
16945 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16946 Expr
*ActiveExpr
= CondIsTrue
? LHSExpr
: RHSExpr
;
16948 resType
= ActiveExpr
->getType();
16949 VK
= ActiveExpr
->getValueKind();
16950 OK
= ActiveExpr
->getObjectKind();
16953 return new (Context
) ChooseExpr(BuiltinLoc
, CondExpr
, LHSExpr
, RHSExpr
,
16954 resType
, VK
, OK
, RPLoc
, CondIsTrue
);
16957 //===----------------------------------------------------------------------===//
16958 // Clang Extensions.
16959 //===----------------------------------------------------------------------===//
16961 /// ActOnBlockStart - This callback is invoked when a block literal is started.
16962 void Sema::ActOnBlockStart(SourceLocation CaretLoc
, Scope
*CurScope
) {
16963 BlockDecl
*Block
= BlockDecl::Create(Context
, CurContext
, CaretLoc
);
16965 if (LangOpts
.CPlusPlus
) {
16966 MangleNumberingContext
*MCtx
;
16967 Decl
*ManglingContextDecl
;
16968 std::tie(MCtx
, ManglingContextDecl
) =
16969 getCurrentMangleNumberContext(Block
->getDeclContext());
16971 unsigned ManglingNumber
= MCtx
->getManglingNumber(Block
);
16972 Block
->setBlockMangling(ManglingNumber
, ManglingContextDecl
);
16976 PushBlockScope(CurScope
, Block
);
16977 CurContext
->addDecl(Block
);
16979 PushDeclContext(CurScope
, Block
);
16981 CurContext
= Block
;
16983 getCurBlock()->HasImplicitReturnType
= true;
16985 // Enter a new evaluation context to insulate the block from any
16986 // cleanups from the enclosing full-expression.
16987 PushExpressionEvaluationContext(
16988 ExpressionEvaluationContext::PotentiallyEvaluated
);
16991 void Sema::ActOnBlockArguments(SourceLocation CaretLoc
, Declarator
&ParamInfo
,
16993 assert(ParamInfo
.getIdentifier() == nullptr &&
16994 "block-id should have no identifier!");
16995 assert(ParamInfo
.getContext() == DeclaratorContext::BlockLiteral
);
16996 BlockScopeInfo
*CurBlock
= getCurBlock();
16998 TypeSourceInfo
*Sig
= GetTypeForDeclarator(ParamInfo
, CurScope
);
16999 QualType T
= Sig
->getType();
17001 // FIXME: We should allow unexpanded parameter packs here, but that would,
17002 // in turn, make the block expression contain unexpanded parameter packs.
17003 if (DiagnoseUnexpandedParameterPack(CaretLoc
, Sig
, UPPC_Block
)) {
17004 // Drop the parameters.
17005 FunctionProtoType::ExtProtoInfo EPI
;
17006 EPI
.HasTrailingReturn
= false;
17007 EPI
.TypeQuals
.addConst();
17008 T
= Context
.getFunctionType(Context
.DependentTy
, std::nullopt
, EPI
);
17009 Sig
= Context
.getTrivialTypeSourceInfo(T
);
17012 // GetTypeForDeclarator always produces a function type for a block
17013 // literal signature. Furthermore, it is always a FunctionProtoType
17014 // unless the function was written with a typedef.
17015 assert(T
->isFunctionType() &&
17016 "GetTypeForDeclarator made a non-function block signature");
17018 // Look for an explicit signature in that function type.
17019 FunctionProtoTypeLoc ExplicitSignature
;
17021 if ((ExplicitSignature
= Sig
->getTypeLoc()
17022 .getAsAdjusted
<FunctionProtoTypeLoc
>())) {
17024 // Check whether that explicit signature was synthesized by
17025 // GetTypeForDeclarator. If so, don't save that as part of the
17026 // written signature.
17027 if (ExplicitSignature
.getLocalRangeBegin() ==
17028 ExplicitSignature
.getLocalRangeEnd()) {
17029 // This would be much cheaper if we stored TypeLocs instead of
17030 // TypeSourceInfos.
17031 TypeLoc Result
= ExplicitSignature
.getReturnLoc();
17032 unsigned Size
= Result
.getFullDataSize();
17033 Sig
= Context
.CreateTypeSourceInfo(Result
.getType(), Size
);
17034 Sig
->getTypeLoc().initializeFullCopy(Result
, Size
);
17036 ExplicitSignature
= FunctionProtoTypeLoc();
17040 CurBlock
->TheDecl
->setSignatureAsWritten(Sig
);
17041 CurBlock
->FunctionType
= T
;
17043 const auto *Fn
= T
->castAs
<FunctionType
>();
17044 QualType RetTy
= Fn
->getReturnType();
17046 (isa
<FunctionProtoType
>(Fn
) && cast
<FunctionProtoType
>(Fn
)->isVariadic());
17048 CurBlock
->TheDecl
->setIsVariadic(isVariadic
);
17050 // Context.DependentTy is used as a placeholder for a missing block
17051 // return type. TODO: what should we do with declarators like:
17053 // If the answer is "apply template argument deduction"....
17054 if (RetTy
!= Context
.DependentTy
) {
17055 CurBlock
->ReturnType
= RetTy
;
17056 CurBlock
->TheDecl
->setBlockMissingReturnType(false);
17057 CurBlock
->HasImplicitReturnType
= false;
17060 // Push block parameters from the declarator if we had them.
17061 SmallVector
<ParmVarDecl
*, 8> Params
;
17062 if (ExplicitSignature
) {
17063 for (unsigned I
= 0, E
= ExplicitSignature
.getNumParams(); I
!= E
; ++I
) {
17064 ParmVarDecl
*Param
= ExplicitSignature
.getParam(I
);
17065 if (Param
->getIdentifier() == nullptr && !Param
->isImplicit() &&
17066 !Param
->isInvalidDecl() && !getLangOpts().CPlusPlus
) {
17067 // Diagnose this as an extension in C17 and earlier.
17068 if (!getLangOpts().C23
)
17069 Diag(Param
->getLocation(), diag::ext_parameter_name_omitted_c23
);
17071 Params
.push_back(Param
);
17074 // Fake up parameter variables if we have a typedef, like
17075 // ^ fntype { ... }
17076 } else if (const FunctionProtoType
*Fn
= T
->getAs
<FunctionProtoType
>()) {
17077 for (const auto &I
: Fn
->param_types()) {
17078 ParmVarDecl
*Param
= BuildParmVarDeclForTypedef(
17079 CurBlock
->TheDecl
, ParamInfo
.getBeginLoc(), I
);
17080 Params
.push_back(Param
);
17084 // Set the parameters on the block decl.
17085 if (!Params
.empty()) {
17086 CurBlock
->TheDecl
->setParams(Params
);
17087 CheckParmsForFunctionDef(CurBlock
->TheDecl
->parameters(),
17088 /*CheckParameterNames=*/false);
17091 // Finally we can process decl attributes.
17092 ProcessDeclAttributes(CurScope
, CurBlock
->TheDecl
, ParamInfo
);
17094 // Put the parameter variables in scope.
17095 for (auto *AI
: CurBlock
->TheDecl
->parameters()) {
17096 AI
->setOwningFunction(CurBlock
->TheDecl
);
17098 // If this has an identifier, add it to the scope stack.
17099 if (AI
->getIdentifier()) {
17100 CheckShadow(CurBlock
->TheScope
, AI
);
17102 PushOnScopeChains(AI
, CurBlock
->TheScope
);
17105 if (AI
->isInvalidDecl())
17106 CurBlock
->TheDecl
->setInvalidDecl();
17110 /// ActOnBlockError - If there is an error parsing a block, this callback
17111 /// is invoked to pop the information about the block from the action impl.
17112 void Sema::ActOnBlockError(SourceLocation CaretLoc
, Scope
*CurScope
) {
17113 // Leave the expression-evaluation context.
17114 DiscardCleanupsInEvaluationContext();
17115 PopExpressionEvaluationContext();
17117 // Pop off CurBlock, handle nested blocks.
17119 PopFunctionScopeInfo();
17122 /// ActOnBlockStmtExpr - This is called when the body of a block statement
17123 /// literal was successfully completed. ^(int x){...}
17124 ExprResult
Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc
,
17125 Stmt
*Body
, Scope
*CurScope
) {
17126 // If blocks are disabled, emit an error.
17127 if (!LangOpts
.Blocks
)
17128 Diag(CaretLoc
, diag::err_blocks_disable
) << LangOpts
.OpenCL
;
17130 // Leave the expression-evaluation context.
17131 if (hasAnyUnrecoverableErrorsInThisFunction())
17132 DiscardCleanupsInEvaluationContext();
17133 assert(!Cleanup
.exprNeedsCleanups() &&
17134 "cleanups within block not correctly bound!");
17135 PopExpressionEvaluationContext();
17137 BlockScopeInfo
*BSI
= cast
<BlockScopeInfo
>(FunctionScopes
.back());
17138 BlockDecl
*BD
= BSI
->TheDecl
;
17140 if (BSI
->HasImplicitReturnType
)
17141 deduceClosureReturnType(*BSI
);
17143 QualType RetTy
= Context
.VoidTy
;
17144 if (!BSI
->ReturnType
.isNull())
17145 RetTy
= BSI
->ReturnType
;
17147 bool NoReturn
= BD
->hasAttr
<NoReturnAttr
>();
17150 // If the user wrote a function type in some form, try to use that.
17151 if (!BSI
->FunctionType
.isNull()) {
17152 const FunctionType
*FTy
= BSI
->FunctionType
->castAs
<FunctionType
>();
17154 FunctionType::ExtInfo Ext
= FTy
->getExtInfo();
17155 if (NoReturn
&& !Ext
.getNoReturn()) Ext
= Ext
.withNoReturn(true);
17157 // Turn protoless block types into nullary block types.
17158 if (isa
<FunctionNoProtoType
>(FTy
)) {
17159 FunctionProtoType::ExtProtoInfo EPI
;
17161 BlockTy
= Context
.getFunctionType(RetTy
, std::nullopt
, EPI
);
17163 // Otherwise, if we don't need to change anything about the function type,
17164 // preserve its sugar structure.
17165 } else if (FTy
->getReturnType() == RetTy
&&
17166 (!NoReturn
|| FTy
->getNoReturnAttr())) {
17167 BlockTy
= BSI
->FunctionType
;
17169 // Otherwise, make the minimal modifications to the function type.
17171 const FunctionProtoType
*FPT
= cast
<FunctionProtoType
>(FTy
);
17172 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
17173 EPI
.TypeQuals
= Qualifiers();
17175 BlockTy
= Context
.getFunctionType(RetTy
, FPT
->getParamTypes(), EPI
);
17178 // If we don't have a function type, just build one from nothing.
17180 FunctionProtoType::ExtProtoInfo EPI
;
17181 EPI
.ExtInfo
= FunctionType::ExtInfo().withNoReturn(NoReturn
);
17182 BlockTy
= Context
.getFunctionType(RetTy
, std::nullopt
, EPI
);
17185 DiagnoseUnusedParameters(BD
->parameters());
17186 BlockTy
= Context
.getBlockPointerType(BlockTy
);
17188 // If needed, diagnose invalid gotos and switches in the block.
17189 if (getCurFunction()->NeedsScopeChecking() &&
17190 !PP
.isCodeCompletionEnabled())
17191 DiagnoseInvalidJumps(cast
<CompoundStmt
>(Body
));
17193 BD
->setBody(cast
<CompoundStmt
>(Body
));
17195 if (Body
&& getCurFunction()->HasPotentialAvailabilityViolations
)
17196 DiagnoseUnguardedAvailabilityViolations(BD
);
17198 // Try to apply the named return value optimization. We have to check again
17199 // if we can do this, though, because blocks keep return statements around
17200 // to deduce an implicit return type.
17201 if (getLangOpts().CPlusPlus
&& RetTy
->isRecordType() &&
17202 !BD
->isDependentContext())
17203 computeNRVO(Body
, BSI
);
17205 if (RetTy
.hasNonTrivialToPrimitiveDestructCUnion() ||
17206 RetTy
.hasNonTrivialToPrimitiveCopyCUnion())
17207 checkNonTrivialCUnion(RetTy
, BD
->getCaretLocation(), NTCUC_FunctionReturn
,
17208 NTCUK_Destruct
|NTCUK_Copy
);
17212 // Set the captured variables on the block.
17213 SmallVector
<BlockDecl::Capture
, 4> Captures
;
17214 for (Capture
&Cap
: BSI
->Captures
) {
17215 if (Cap
.isInvalid() || Cap
.isThisCapture())
17217 // Cap.getVariable() is always a VarDecl because
17218 // blocks cannot capture structured bindings or other ValueDecl kinds.
17219 auto *Var
= cast
<VarDecl
>(Cap
.getVariable());
17220 Expr
*CopyExpr
= nullptr;
17221 if (getLangOpts().CPlusPlus
&& Cap
.isCopyCapture()) {
17222 if (const RecordType
*Record
=
17223 Cap
.getCaptureType()->getAs
<RecordType
>()) {
17224 // The capture logic needs the destructor, so make sure we mark it.
17225 // Usually this is unnecessary because most local variables have
17226 // their destructors marked at declaration time, but parameters are
17227 // an exception because it's technically only the call site that
17228 // actually requires the destructor.
17229 if (isa
<ParmVarDecl
>(Var
))
17230 FinalizeVarWithDestructor(Var
, Record
);
17232 // Enter a separate potentially-evaluated context while building block
17233 // initializers to isolate their cleanups from those of the block
17235 // FIXME: Is this appropriate even when the block itself occurs in an
17236 // unevaluated operand?
17237 EnterExpressionEvaluationContext
EvalContext(
17238 *this, ExpressionEvaluationContext::PotentiallyEvaluated
);
17240 SourceLocation Loc
= Cap
.getLocation();
17242 ExprResult Result
= BuildDeclarationNameExpr(
17243 CXXScopeSpec(), DeclarationNameInfo(Var
->getDeclName(), Loc
), Var
);
17245 // According to the blocks spec, the capture of a variable from
17246 // the stack requires a const copy constructor. This is not true
17247 // of the copy/move done to move a __block variable to the heap.
17248 if (!Result
.isInvalid() &&
17249 !Result
.get()->getType().isConstQualified()) {
17250 Result
= ImpCastExprToType(Result
.get(),
17251 Result
.get()->getType().withConst(),
17252 CK_NoOp
, VK_LValue
);
17255 if (!Result
.isInvalid()) {
17256 Result
= PerformCopyInitialization(
17257 InitializedEntity::InitializeBlock(Var
->getLocation(),
17258 Cap
.getCaptureType()),
17259 Loc
, Result
.get());
17262 // Build a full-expression copy expression if initialization
17263 // succeeded and used a non-trivial constructor. Recover from
17264 // errors by pretending that the copy isn't necessary.
17265 if (!Result
.isInvalid() &&
17266 !cast
<CXXConstructExpr
>(Result
.get())->getConstructor()
17268 Result
= MaybeCreateExprWithCleanups(Result
);
17269 CopyExpr
= Result
.get();
17274 BlockDecl::Capture
NewCap(Var
, Cap
.isBlockCapture(), Cap
.isNested(),
17276 Captures
.push_back(NewCap
);
17278 BD
->setCaptures(Context
, Captures
, BSI
->CXXThisCaptureIndex
!= 0);
17280 // Pop the block scope now but keep it alive to the end of this function.
17281 AnalysisBasedWarnings::Policy WP
= AnalysisWarnings
.getDefaultPolicy();
17282 PoppedFunctionScopePtr ScopeRAII
= PopFunctionScopeInfo(&WP
, BD
, BlockTy
);
17284 BlockExpr
*Result
= new (Context
) BlockExpr(BD
, BlockTy
);
17286 // If the block isn't obviously global, i.e. it captures anything at
17287 // all, then we need to do a few things in the surrounding context:
17288 if (Result
->getBlockDecl()->hasCaptures()) {
17289 // First, this expression has a new cleanup object.
17290 ExprCleanupObjects
.push_back(Result
->getBlockDecl());
17291 Cleanup
.setExprNeedsCleanups(true);
17293 // It also gets a branch-protected scope if any of the captured
17294 // variables needs destruction.
17295 for (const auto &CI
: Result
->getBlockDecl()->captures()) {
17296 const VarDecl
*var
= CI
.getVariable();
17297 if (var
->getType().isDestructedType() != QualType::DK_none
) {
17298 setFunctionHasBranchProtectedScope();
17304 if (getCurFunction())
17305 getCurFunction()->addBlock(BD
);
17307 if (BD
->isInvalidDecl())
17308 return CreateRecoveryExpr(Result
->getBeginLoc(), Result
->getEndLoc(),
17309 {Result
}, Result
->getType());
17313 ExprResult
Sema::ActOnVAArg(SourceLocation BuiltinLoc
, Expr
*E
, ParsedType Ty
,
17314 SourceLocation RPLoc
) {
17315 TypeSourceInfo
*TInfo
;
17316 GetTypeFromParser(Ty
, &TInfo
);
17317 return BuildVAArgExpr(BuiltinLoc
, E
, TInfo
, RPLoc
);
17320 ExprResult
Sema::BuildVAArgExpr(SourceLocation BuiltinLoc
,
17321 Expr
*E
, TypeSourceInfo
*TInfo
,
17322 SourceLocation RPLoc
) {
17323 Expr
*OrigExpr
= E
;
17326 // CUDA device code does not support varargs.
17327 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
) {
17328 if (const FunctionDecl
*F
= dyn_cast
<FunctionDecl
>(CurContext
)) {
17329 CUDAFunctionTarget T
= IdentifyCUDATarget(F
);
17330 if (T
== CFT_Global
|| T
== CFT_Device
|| T
== CFT_HostDevice
)
17331 return ExprError(Diag(E
->getBeginLoc(), diag::err_va_arg_in_device
));
17335 // NVPTX does not support va_arg expression.
17336 if (getLangOpts().OpenMP
&& getLangOpts().OpenMPIsTargetDevice
&&
17337 Context
.getTargetInfo().getTriple().isNVPTX())
17338 targetDiag(E
->getBeginLoc(), diag::err_va_arg_in_device
);
17340 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
17341 // as Microsoft ABI on an actual Microsoft platform, where
17342 // __builtin_ms_va_list and __builtin_va_list are the same.)
17343 if (!E
->isTypeDependent() && Context
.getTargetInfo().hasBuiltinMSVaList() &&
17344 Context
.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList
) {
17345 QualType MSVaListType
= Context
.getBuiltinMSVaListType();
17346 if (Context
.hasSameType(MSVaListType
, E
->getType())) {
17347 if (CheckForModifiableLvalue(E
, BuiltinLoc
, *this))
17348 return ExprError();
17353 // Get the va_list type
17354 QualType VaListType
= Context
.getBuiltinVaListType();
17356 if (VaListType
->isArrayType()) {
17357 // Deal with implicit array decay; for example, on x86-64,
17358 // va_list is an array, but it's supposed to decay to
17359 // a pointer for va_arg.
17360 VaListType
= Context
.getArrayDecayedType(VaListType
);
17361 // Make sure the input expression also decays appropriately.
17362 ExprResult Result
= UsualUnaryConversions(E
);
17363 if (Result
.isInvalid())
17364 return ExprError();
17366 } else if (VaListType
->isRecordType() && getLangOpts().CPlusPlus
) {
17367 // If va_list is a record type and we are compiling in C++ mode,
17368 // check the argument using reference binding.
17369 InitializedEntity Entity
= InitializedEntity::InitializeParameter(
17370 Context
, Context
.getLValueReferenceType(VaListType
), false);
17371 ExprResult Init
= PerformCopyInitialization(Entity
, SourceLocation(), E
);
17372 if (Init
.isInvalid())
17373 return ExprError();
17374 E
= Init
.getAs
<Expr
>();
17376 // Otherwise, the va_list argument must be an l-value because
17377 // it is modified by va_arg.
17378 if (!E
->isTypeDependent() &&
17379 CheckForModifiableLvalue(E
, BuiltinLoc
, *this))
17380 return ExprError();
17384 if (!IsMS
&& !E
->isTypeDependent() &&
17385 !Context
.hasSameType(VaListType
, E
->getType()))
17387 Diag(E
->getBeginLoc(),
17388 diag::err_first_argument_to_va_arg_not_of_type_va_list
)
17389 << OrigExpr
->getType() << E
->getSourceRange());
17391 if (!TInfo
->getType()->isDependentType()) {
17392 if (RequireCompleteType(TInfo
->getTypeLoc().getBeginLoc(), TInfo
->getType(),
17393 diag::err_second_parameter_to_va_arg_incomplete
,
17394 TInfo
->getTypeLoc()))
17395 return ExprError();
17397 if (RequireNonAbstractType(TInfo
->getTypeLoc().getBeginLoc(),
17399 diag::err_second_parameter_to_va_arg_abstract
,
17400 TInfo
->getTypeLoc()))
17401 return ExprError();
17403 if (!TInfo
->getType().isPODType(Context
)) {
17404 Diag(TInfo
->getTypeLoc().getBeginLoc(),
17405 TInfo
->getType()->isObjCLifetimeType()
17406 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
17407 : diag::warn_second_parameter_to_va_arg_not_pod
)
17408 << TInfo
->getType()
17409 << TInfo
->getTypeLoc().getSourceRange();
17412 // Check for va_arg where arguments of the given type will be promoted
17413 // (i.e. this va_arg is guaranteed to have undefined behavior).
17414 QualType PromoteType
;
17415 if (Context
.isPromotableIntegerType(TInfo
->getType())) {
17416 PromoteType
= Context
.getPromotedIntegerType(TInfo
->getType());
17417 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
17418 // and C23 7.16.1.1p2 says, in part:
17419 // If type is not compatible with the type of the actual next argument
17420 // (as promoted according to the default argument promotions), the
17421 // behavior is undefined, except for the following cases:
17422 // - both types are pointers to qualified or unqualified versions of
17423 // compatible types;
17424 // - one type is compatible with a signed integer type, the other
17425 // type is compatible with the corresponding unsigned integer type,
17426 // and the value is representable in both types;
17427 // - one type is pointer to qualified or unqualified void and the
17428 // other is a pointer to a qualified or unqualified character type;
17429 // - or, the type of the next argument is nullptr_t and type is a
17430 // pointer type that has the same representation and alignment
17431 // requirements as a pointer to a character type.
17432 // Given that type compatibility is the primary requirement (ignoring
17433 // qualifications), you would think we could call typesAreCompatible()
17434 // directly to test this. However, in C++, that checks for *same type*,
17435 // which causes false positives when passing an enumeration type to
17436 // va_arg. Instead, get the underlying type of the enumeration and pass
17438 QualType UnderlyingType
= TInfo
->getType();
17439 if (const auto *ET
= UnderlyingType
->getAs
<EnumType
>())
17440 UnderlyingType
= ET
->getDecl()->getIntegerType();
17441 if (Context
.typesAreCompatible(PromoteType
, UnderlyingType
,
17442 /*CompareUnqualified*/ true))
17443 PromoteType
= QualType();
17445 // If the types are still not compatible, we need to test whether the
17446 // promoted type and the underlying type are the same except for
17447 // signedness. Ask the AST for the correctly corresponding type and see
17448 // if that's compatible.
17449 if (!PromoteType
.isNull() && !UnderlyingType
->isBooleanType() &&
17450 PromoteType
->isUnsignedIntegerType() !=
17451 UnderlyingType
->isUnsignedIntegerType()) {
17453 UnderlyingType
->isUnsignedIntegerType()
17454 ? Context
.getCorrespondingSignedType(UnderlyingType
)
17455 : Context
.getCorrespondingUnsignedType(UnderlyingType
);
17456 if (Context
.typesAreCompatible(PromoteType
, UnderlyingType
,
17457 /*CompareUnqualified*/ true))
17458 PromoteType
= QualType();
17461 if (TInfo
->getType()->isSpecificBuiltinType(BuiltinType::Float
))
17462 PromoteType
= Context
.DoubleTy
;
17463 if (!PromoteType
.isNull())
17464 DiagRuntimeBehavior(TInfo
->getTypeLoc().getBeginLoc(), E
,
17465 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible
)
17466 << TInfo
->getType()
17468 << TInfo
->getTypeLoc().getSourceRange());
17471 QualType T
= TInfo
->getType().getNonLValueExprType(Context
);
17472 return new (Context
) VAArgExpr(BuiltinLoc
, E
, TInfo
, RPLoc
, T
, IsMS
);
17475 ExprResult
Sema::ActOnGNUNullExpr(SourceLocation TokenLoc
) {
17476 // The type of __null will be int or long, depending on the size of
17477 // pointers on the target.
17479 unsigned pw
= Context
.getTargetInfo().getPointerWidth(LangAS::Default
);
17480 if (pw
== Context
.getTargetInfo().getIntWidth())
17481 Ty
= Context
.IntTy
;
17482 else if (pw
== Context
.getTargetInfo().getLongWidth())
17483 Ty
= Context
.LongTy
;
17484 else if (pw
== Context
.getTargetInfo().getLongLongWidth())
17485 Ty
= Context
.LongLongTy
;
17487 llvm_unreachable("I don't know size of pointer!");
17490 return new (Context
) GNUNullExpr(Ty
, TokenLoc
);
17493 static CXXRecordDecl
*LookupStdSourceLocationImpl(Sema
&S
, SourceLocation Loc
) {
17494 CXXRecordDecl
*ImplDecl
= nullptr;
17496 // Fetch the std::source_location::__impl decl.
17497 if (NamespaceDecl
*Std
= S
.getStdNamespace()) {
17498 LookupResult
ResultSL(S
, &S
.PP
.getIdentifierTable().get("source_location"),
17499 Loc
, Sema::LookupOrdinaryName
);
17500 if (S
.LookupQualifiedName(ResultSL
, Std
)) {
17501 if (auto *SLDecl
= ResultSL
.getAsSingle
<RecordDecl
>()) {
17502 LookupResult
ResultImpl(S
, &S
.PP
.getIdentifierTable().get("__impl"),
17503 Loc
, Sema::LookupOrdinaryName
);
17504 if ((SLDecl
->isCompleteDefinition() || SLDecl
->isBeingDefined()) &&
17505 S
.LookupQualifiedName(ResultImpl
, SLDecl
)) {
17506 ImplDecl
= ResultImpl
.getAsSingle
<CXXRecordDecl
>();
17512 if (!ImplDecl
|| !ImplDecl
->isCompleteDefinition()) {
17513 S
.Diag(Loc
, diag::err_std_source_location_impl_not_found
);
17517 // Verify that __impl is a trivial struct type, with no base classes, and with
17518 // only the four expected fields.
17519 if (ImplDecl
->isUnion() || !ImplDecl
->isStandardLayout() ||
17520 ImplDecl
->getNumBases() != 0) {
17521 S
.Diag(Loc
, diag::err_std_source_location_impl_malformed
);
17525 unsigned Count
= 0;
17526 for (FieldDecl
*F
: ImplDecl
->fields()) {
17527 StringRef Name
= F
->getName();
17529 if (Name
== "_M_file_name") {
17530 if (F
->getType() !=
17531 S
.Context
.getPointerType(S
.Context
.CharTy
.withConst()))
17534 } else if (Name
== "_M_function_name") {
17535 if (F
->getType() !=
17536 S
.Context
.getPointerType(S
.Context
.CharTy
.withConst()))
17539 } else if (Name
== "_M_line") {
17540 if (!F
->getType()->isIntegerType())
17543 } else if (Name
== "_M_column") {
17544 if (!F
->getType()->isIntegerType())
17548 Count
= 100; // invalid
17553 S
.Diag(Loc
, diag::err_std_source_location_impl_malformed
);
17560 ExprResult
Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind
,
17561 SourceLocation BuiltinLoc
,
17562 SourceLocation RPLoc
) {
17565 case SourceLocIdentKind::File
:
17566 case SourceLocIdentKind::FileName
:
17567 case SourceLocIdentKind::Function
:
17568 case SourceLocIdentKind::FuncSig
: {
17569 QualType ArrTy
= Context
.getStringLiteralArrayType(Context
.CharTy
, 0);
17571 Context
.getPointerType(ArrTy
->getAsArrayTypeUnsafe()->getElementType());
17574 case SourceLocIdentKind::Line
:
17575 case SourceLocIdentKind::Column
:
17576 ResultTy
= Context
.UnsignedIntTy
;
17578 case SourceLocIdentKind::SourceLocStruct
:
17579 if (!StdSourceLocationImplDecl
) {
17580 StdSourceLocationImplDecl
=
17581 LookupStdSourceLocationImpl(*this, BuiltinLoc
);
17582 if (!StdSourceLocationImplDecl
)
17583 return ExprError();
17585 ResultTy
= Context
.getPointerType(
17586 Context
.getRecordType(StdSourceLocationImplDecl
).withConst());
17590 return BuildSourceLocExpr(Kind
, ResultTy
, BuiltinLoc
, RPLoc
, CurContext
);
17593 ExprResult
Sema::BuildSourceLocExpr(SourceLocIdentKind Kind
, QualType ResultTy
,
17594 SourceLocation BuiltinLoc
,
17595 SourceLocation RPLoc
,
17596 DeclContext
*ParentContext
) {
17597 return new (Context
)
17598 SourceLocExpr(Context
, Kind
, ResultTy
, BuiltinLoc
, RPLoc
, ParentContext
);
17601 bool Sema::CheckConversionToObjCLiteral(QualType DstType
, Expr
*&Exp
,
17603 if (!getLangOpts().ObjC
)
17606 const ObjCObjectPointerType
*PT
= DstType
->getAs
<ObjCObjectPointerType
>();
17609 const ObjCInterfaceDecl
*ID
= PT
->getInterfaceDecl();
17611 // Ignore any parens, implicit casts (should only be
17612 // array-to-pointer decays), and not-so-opaque values. The last is
17613 // important for making this trigger for property assignments.
17614 Expr
*SrcExpr
= Exp
->IgnoreParenImpCasts();
17615 if (OpaqueValueExpr
*OV
= dyn_cast
<OpaqueValueExpr
>(SrcExpr
))
17616 if (OV
->getSourceExpr())
17617 SrcExpr
= OV
->getSourceExpr()->IgnoreParenImpCasts();
17619 if (auto *SL
= dyn_cast
<StringLiteral
>(SrcExpr
)) {
17620 if (!PT
->isObjCIdType() &&
17621 !(ID
&& ID
->getIdentifier()->isStr("NSString")))
17623 if (!SL
->isOrdinary())
17627 Diag(SL
->getBeginLoc(), diag::err_missing_atsign_prefix
)
17628 << /*string*/0 << FixItHint::CreateInsertion(SL
->getBeginLoc(), "@");
17629 Exp
= BuildObjCStringLiteral(SL
->getBeginLoc(), SL
).get();
17634 if ((isa
<IntegerLiteral
>(SrcExpr
) || isa
<CharacterLiteral
>(SrcExpr
) ||
17635 isa
<FloatingLiteral
>(SrcExpr
) || isa
<ObjCBoolLiteralExpr
>(SrcExpr
) ||
17636 isa
<CXXBoolLiteralExpr
>(SrcExpr
)) &&
17637 !SrcExpr
->isNullPointerConstant(
17638 getASTContext(), Expr::NPC_NeverValueDependent
)) {
17639 if (!ID
|| !ID
->getIdentifier()->isStr("NSNumber"))
17642 Diag(SrcExpr
->getBeginLoc(), diag::err_missing_atsign_prefix
)
17644 << FixItHint::CreateInsertion(SrcExpr
->getBeginLoc(), "@");
17646 BuildObjCNumericLiteral(SrcExpr
->getBeginLoc(), SrcExpr
).get();
17656 static bool maybeDiagnoseAssignmentToFunction(Sema
&S
, QualType DstType
,
17657 const Expr
*SrcExpr
) {
17658 if (!DstType
->isFunctionPointerType() ||
17659 !SrcExpr
->getType()->isFunctionType())
17662 auto *DRE
= dyn_cast
<DeclRefExpr
>(SrcExpr
->IgnoreParenImpCasts());
17666 auto *FD
= dyn_cast
<FunctionDecl
>(DRE
->getDecl());
17670 return !S
.checkAddressOfFunctionIsAvailable(FD
,
17672 SrcExpr
->getBeginLoc());
17675 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy
,
17676 SourceLocation Loc
,
17677 QualType DstType
, QualType SrcType
,
17678 Expr
*SrcExpr
, AssignmentAction Action
,
17679 bool *Complained
) {
17681 *Complained
= false;
17683 // Decode the result (notice that AST's are still created for extensions).
17684 bool CheckInferredResultType
= false;
17685 bool isInvalid
= false;
17686 unsigned DiagKind
= 0;
17687 ConversionFixItGenerator ConvHints
;
17688 bool MayHaveConvFixit
= false;
17689 bool MayHaveFunctionDiff
= false;
17690 const ObjCInterfaceDecl
*IFace
= nullptr;
17691 const ObjCProtocolDecl
*PDecl
= nullptr;
17695 DiagnoseAssignmentEnum(DstType
, SrcType
, SrcExpr
);
17699 if (getLangOpts().CPlusPlus
) {
17700 DiagKind
= diag::err_typecheck_convert_pointer_int
;
17703 DiagKind
= diag::ext_typecheck_convert_pointer_int
;
17705 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17706 MayHaveConvFixit
= true;
17709 if (getLangOpts().CPlusPlus
) {
17710 DiagKind
= diag::err_typecheck_convert_int_pointer
;
17713 DiagKind
= diag::ext_typecheck_convert_int_pointer
;
17715 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17716 MayHaveConvFixit
= true;
17718 case IncompatibleFunctionPointerStrict
:
17720 diag::warn_typecheck_convert_incompatible_function_pointer_strict
;
17721 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17722 MayHaveConvFixit
= true;
17724 case IncompatibleFunctionPointer
:
17725 if (getLangOpts().CPlusPlus
) {
17726 DiagKind
= diag::err_typecheck_convert_incompatible_function_pointer
;
17729 DiagKind
= diag::ext_typecheck_convert_incompatible_function_pointer
;
17731 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17732 MayHaveConvFixit
= true;
17734 case IncompatiblePointer
:
17735 if (Action
== AA_Passing_CFAudited
) {
17736 DiagKind
= diag::err_arc_typecheck_convert_incompatible_pointer
;
17737 } else if (getLangOpts().CPlusPlus
) {
17738 DiagKind
= diag::err_typecheck_convert_incompatible_pointer
;
17741 DiagKind
= diag::ext_typecheck_convert_incompatible_pointer
;
17743 CheckInferredResultType
= DstType
->isObjCObjectPointerType() &&
17744 SrcType
->isObjCObjectPointerType();
17745 if (!CheckInferredResultType
) {
17746 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17747 } else if (CheckInferredResultType
) {
17748 SrcType
= SrcType
.getUnqualifiedType();
17749 DstType
= DstType
.getUnqualifiedType();
17751 MayHaveConvFixit
= true;
17753 case IncompatiblePointerSign
:
17754 if (getLangOpts().CPlusPlus
) {
17755 DiagKind
= diag::err_typecheck_convert_incompatible_pointer_sign
;
17758 DiagKind
= diag::ext_typecheck_convert_incompatible_pointer_sign
;
17761 case FunctionVoidPointer
:
17762 if (getLangOpts().CPlusPlus
) {
17763 DiagKind
= diag::err_typecheck_convert_pointer_void_func
;
17766 DiagKind
= diag::ext_typecheck_convert_pointer_void_func
;
17769 case IncompatiblePointerDiscardsQualifiers
: {
17770 // Perform array-to-pointer decay if necessary.
17771 if (SrcType
->isArrayType()) SrcType
= Context
.getArrayDecayedType(SrcType
);
17775 Qualifiers lhq
= SrcType
->getPointeeType().getQualifiers();
17776 Qualifiers rhq
= DstType
->getPointeeType().getQualifiers();
17777 if (lhq
.getAddressSpace() != rhq
.getAddressSpace()) {
17778 DiagKind
= diag::err_typecheck_incompatible_address_space
;
17781 } else if (lhq
.getObjCLifetime() != rhq
.getObjCLifetime()) {
17782 DiagKind
= diag::err_typecheck_incompatible_ownership
;
17786 llvm_unreachable("unknown error case for discarding qualifiers!");
17789 case CompatiblePointerDiscardsQualifiers
:
17790 // If the qualifiers lost were because we were applying the
17791 // (deprecated) C++ conversion from a string literal to a char*
17792 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
17793 // Ideally, this check would be performed in
17794 // checkPointerTypesForAssignment. However, that would require a
17795 // bit of refactoring (so that the second argument is an
17796 // expression, rather than a type), which should be done as part
17797 // of a larger effort to fix checkPointerTypesForAssignment for
17799 if (getLangOpts().CPlusPlus
&&
17800 IsStringLiteralToNonConstPointerConversion(SrcExpr
, DstType
))
17802 if (getLangOpts().CPlusPlus
) {
17803 DiagKind
= diag::err_typecheck_convert_discards_qualifiers
;
17806 DiagKind
= diag::ext_typecheck_convert_discards_qualifiers
;
17810 case IncompatibleNestedPointerQualifiers
:
17811 if (getLangOpts().CPlusPlus
) {
17813 DiagKind
= diag::err_nested_pointer_qualifier_mismatch
;
17815 DiagKind
= diag::ext_nested_pointer_qualifier_mismatch
;
17818 case IncompatibleNestedPointerAddressSpaceMismatch
:
17819 DiagKind
= diag::err_typecheck_incompatible_nested_address_space
;
17822 case IntToBlockPointer
:
17823 DiagKind
= diag::err_int_to_block_pointer
;
17826 case IncompatibleBlockPointer
:
17827 DiagKind
= diag::err_typecheck_convert_incompatible_block_pointer
;
17830 case IncompatibleObjCQualifiedId
: {
17831 if (SrcType
->isObjCQualifiedIdType()) {
17832 const ObjCObjectPointerType
*srcOPT
=
17833 SrcType
->castAs
<ObjCObjectPointerType
>();
17834 for (auto *srcProto
: srcOPT
->quals()) {
17838 if (const ObjCInterfaceType
*IFaceT
=
17839 DstType
->castAs
<ObjCObjectPointerType
>()->getInterfaceType())
17840 IFace
= IFaceT
->getDecl();
17842 else if (DstType
->isObjCQualifiedIdType()) {
17843 const ObjCObjectPointerType
*dstOPT
=
17844 DstType
->castAs
<ObjCObjectPointerType
>();
17845 for (auto *dstProto
: dstOPT
->quals()) {
17849 if (const ObjCInterfaceType
*IFaceT
=
17850 SrcType
->castAs
<ObjCObjectPointerType
>()->getInterfaceType())
17851 IFace
= IFaceT
->getDecl();
17853 if (getLangOpts().CPlusPlus
) {
17854 DiagKind
= diag::err_incompatible_qualified_id
;
17857 DiagKind
= diag::warn_incompatible_qualified_id
;
17861 case IncompatibleVectors
:
17862 if (getLangOpts().CPlusPlus
) {
17863 DiagKind
= diag::err_incompatible_vectors
;
17866 DiagKind
= diag::warn_incompatible_vectors
;
17869 case IncompatibleObjCWeakRef
:
17870 DiagKind
= diag::err_arc_weak_unavailable_assign
;
17874 if (maybeDiagnoseAssignmentToFunction(*this, DstType
, SrcExpr
)) {
17876 *Complained
= true;
17880 DiagKind
= diag::err_typecheck_convert_incompatible
;
17881 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17882 MayHaveConvFixit
= true;
17884 MayHaveFunctionDiff
= true;
17888 QualType FirstType
, SecondType
;
17891 case AA_Initializing
:
17892 // The destination type comes first.
17893 FirstType
= DstType
;
17894 SecondType
= SrcType
;
17899 case AA_Passing_CFAudited
:
17900 case AA_Converting
:
17903 // The source type comes first.
17904 FirstType
= SrcType
;
17905 SecondType
= DstType
;
17909 PartialDiagnostic FDiag
= PDiag(DiagKind
);
17910 AssignmentAction ActionForDiag
= Action
;
17911 if (Action
== AA_Passing_CFAudited
)
17912 ActionForDiag
= AA_Passing
;
17914 FDiag
<< FirstType
<< SecondType
<< ActionForDiag
17915 << SrcExpr
->getSourceRange();
17917 if (DiagKind
== diag::ext_typecheck_convert_incompatible_pointer_sign
||
17918 DiagKind
== diag::err_typecheck_convert_incompatible_pointer_sign
) {
17919 auto isPlainChar
= [](const clang::Type
*Type
) {
17920 return Type
->isSpecificBuiltinType(BuiltinType::Char_S
) ||
17921 Type
->isSpecificBuiltinType(BuiltinType::Char_U
);
17923 FDiag
<< (isPlainChar(FirstType
->getPointeeOrArrayElementType()) ||
17924 isPlainChar(SecondType
->getPointeeOrArrayElementType()));
17927 // If we can fix the conversion, suggest the FixIts.
17928 if (!ConvHints
.isNull()) {
17929 for (FixItHint
&H
: ConvHints
.Hints
)
17933 if (MayHaveConvFixit
) { FDiag
<< (unsigned) (ConvHints
.Kind
); }
17935 if (MayHaveFunctionDiff
)
17936 HandleFunctionTypeMismatch(FDiag
, SecondType
, FirstType
);
17939 if ((DiagKind
== diag::warn_incompatible_qualified_id
||
17940 DiagKind
== diag::err_incompatible_qualified_id
) &&
17941 PDecl
&& IFace
&& !IFace
->hasDefinition())
17942 Diag(IFace
->getLocation(), diag::note_incomplete_class_and_qualified_id
)
17945 if (SecondType
== Context
.OverloadTy
)
17946 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr
).Expression
,
17947 FirstType
, /*TakingAddress=*/true);
17949 if (CheckInferredResultType
)
17950 EmitRelatedResultTypeNote(SrcExpr
);
17952 if (Action
== AA_Returning
&& ConvTy
== IncompatiblePointer
)
17953 EmitRelatedResultTypeNoteForReturn(DstType
);
17956 *Complained
= true;
17960 ExprResult
Sema::VerifyIntegerConstantExpression(Expr
*E
,
17961 llvm::APSInt
*Result
,
17962 AllowFoldKind CanFold
) {
17963 class SimpleICEDiagnoser
: public VerifyICEDiagnoser
{
17965 SemaDiagnosticBuilder
diagnoseNotICEType(Sema
&S
, SourceLocation Loc
,
17966 QualType T
) override
{
17967 return S
.Diag(Loc
, diag::err_ice_not_integral
)
17968 << T
<< S
.LangOpts
.CPlusPlus
;
17970 SemaDiagnosticBuilder
diagnoseNotICE(Sema
&S
, SourceLocation Loc
) override
{
17971 return S
.Diag(Loc
, diag::err_expr_not_ice
) << S
.LangOpts
.CPlusPlus
;
17975 return VerifyIntegerConstantExpression(E
, Result
, Diagnoser
, CanFold
);
17978 ExprResult
Sema::VerifyIntegerConstantExpression(Expr
*E
,
17979 llvm::APSInt
*Result
,
17981 AllowFoldKind CanFold
) {
17982 class IDDiagnoser
: public VerifyICEDiagnoser
{
17986 IDDiagnoser(unsigned DiagID
)
17987 : VerifyICEDiagnoser(DiagID
== 0), DiagID(DiagID
) { }
17989 SemaDiagnosticBuilder
diagnoseNotICE(Sema
&S
, SourceLocation Loc
) override
{
17990 return S
.Diag(Loc
, DiagID
);
17992 } Diagnoser(DiagID
);
17994 return VerifyIntegerConstantExpression(E
, Result
, Diagnoser
, CanFold
);
17997 Sema::SemaDiagnosticBuilder
17998 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema
&S
, SourceLocation Loc
,
18000 return diagnoseNotICE(S
, Loc
);
18003 Sema::SemaDiagnosticBuilder
18004 Sema::VerifyICEDiagnoser::diagnoseFold(Sema
&S
, SourceLocation Loc
) {
18005 return S
.Diag(Loc
, diag::ext_expr_not_ice
) << S
.LangOpts
.CPlusPlus
;
18009 Sema::VerifyIntegerConstantExpression(Expr
*E
, llvm::APSInt
*Result
,
18010 VerifyICEDiagnoser
&Diagnoser
,
18011 AllowFoldKind CanFold
) {
18012 SourceLocation DiagLoc
= E
->getBeginLoc();
18014 if (getLangOpts().CPlusPlus11
) {
18015 // C++11 [expr.const]p5:
18016 // If an expression of literal class type is used in a context where an
18017 // integral constant expression is required, then that class type shall
18018 // have a single non-explicit conversion function to an integral or
18019 // unscoped enumeration type
18020 ExprResult Converted
;
18021 class CXX11ConvertDiagnoser
: public ICEConvertDiagnoser
{
18022 VerifyICEDiagnoser
&BaseDiagnoser
;
18024 CXX11ConvertDiagnoser(VerifyICEDiagnoser
&BaseDiagnoser
)
18025 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
18026 BaseDiagnoser
.Suppress
, true),
18027 BaseDiagnoser(BaseDiagnoser
) {}
18029 SemaDiagnosticBuilder
diagnoseNotInt(Sema
&S
, SourceLocation Loc
,
18030 QualType T
) override
{
18031 return BaseDiagnoser
.diagnoseNotICEType(S
, Loc
, T
);
18034 SemaDiagnosticBuilder
diagnoseIncomplete(
18035 Sema
&S
, SourceLocation Loc
, QualType T
) override
{
18036 return S
.Diag(Loc
, diag::err_ice_incomplete_type
) << T
;
18039 SemaDiagnosticBuilder
diagnoseExplicitConv(
18040 Sema
&S
, SourceLocation Loc
, QualType T
, QualType ConvTy
) override
{
18041 return S
.Diag(Loc
, diag::err_ice_explicit_conversion
) << T
<< ConvTy
;
18044 SemaDiagnosticBuilder
noteExplicitConv(
18045 Sema
&S
, CXXConversionDecl
*Conv
, QualType ConvTy
) override
{
18046 return S
.Diag(Conv
->getLocation(), diag::note_ice_conversion_here
)
18047 << ConvTy
->isEnumeralType() << ConvTy
;
18050 SemaDiagnosticBuilder
diagnoseAmbiguous(
18051 Sema
&S
, SourceLocation Loc
, QualType T
) override
{
18052 return S
.Diag(Loc
, diag::err_ice_ambiguous_conversion
) << T
;
18055 SemaDiagnosticBuilder
noteAmbiguous(
18056 Sema
&S
, CXXConversionDecl
*Conv
, QualType ConvTy
) override
{
18057 return S
.Diag(Conv
->getLocation(), diag::note_ice_conversion_here
)
18058 << ConvTy
->isEnumeralType() << ConvTy
;
18061 SemaDiagnosticBuilder
diagnoseConversion(
18062 Sema
&S
, SourceLocation Loc
, QualType T
, QualType ConvTy
) override
{
18063 llvm_unreachable("conversion functions are permitted");
18065 } ConvertDiagnoser(Diagnoser
);
18067 Converted
= PerformContextualImplicitConversion(DiagLoc
, E
,
18069 if (Converted
.isInvalid())
18071 E
= Converted
.get();
18072 if (!E
->getType()->isIntegralOrUnscopedEnumerationType())
18073 return ExprError();
18074 } else if (!E
->getType()->isIntegralOrUnscopedEnumerationType()) {
18075 // An ICE must be of integral or unscoped enumeration type.
18076 if (!Diagnoser
.Suppress
)
18077 Diagnoser
.diagnoseNotICEType(*this, DiagLoc
, E
->getType())
18078 << E
->getSourceRange();
18079 return ExprError();
18082 ExprResult RValueExpr
= DefaultLvalueConversion(E
);
18083 if (RValueExpr
.isInvalid())
18084 return ExprError();
18086 E
= RValueExpr
.get();
18088 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
18089 // in the non-ICE case.
18090 if (!getLangOpts().CPlusPlus11
&& E
->isIntegerConstantExpr(Context
)) {
18092 *Result
= E
->EvaluateKnownConstIntCheckOverflow(Context
);
18093 if (!isa
<ConstantExpr
>(E
))
18094 E
= Result
? ConstantExpr::Create(Context
, E
, APValue(*Result
))
18095 : ConstantExpr::Create(Context
, E
);
18099 Expr::EvalResult EvalResult
;
18100 SmallVector
<PartialDiagnosticAt
, 8> Notes
;
18101 EvalResult
.Diag
= &Notes
;
18103 // Try to evaluate the expression, and produce diagnostics explaining why it's
18104 // not a constant expression as a side-effect.
18106 E
->EvaluateAsRValue(EvalResult
, Context
, /*isConstantContext*/ true) &&
18107 EvalResult
.Val
.isInt() && !EvalResult
.HasSideEffects
;
18109 if (!isa
<ConstantExpr
>(E
))
18110 E
= ConstantExpr::Create(Context
, E
, EvalResult
.Val
);
18112 // In C++11, we can rely on diagnostics being produced for any expression
18113 // which is not a constant expression. If no diagnostics were produced, then
18114 // this is a constant expression.
18115 if (Folded
&& getLangOpts().CPlusPlus11
&& Notes
.empty()) {
18117 *Result
= EvalResult
.Val
.getInt();
18121 // If our only note is the usual "invalid subexpression" note, just point
18122 // the caret at its location rather than producing an essentially
18124 if (Notes
.size() == 1 && Notes
[0].second
.getDiagID() ==
18125 diag::note_invalid_subexpr_in_const_expr
) {
18126 DiagLoc
= Notes
[0].first
;
18130 if (!Folded
|| !CanFold
) {
18131 if (!Diagnoser
.Suppress
) {
18132 Diagnoser
.diagnoseNotICE(*this, DiagLoc
) << E
->getSourceRange();
18133 for (const PartialDiagnosticAt
&Note
: Notes
)
18134 Diag(Note
.first
, Note
.second
);
18137 return ExprError();
18140 Diagnoser
.diagnoseFold(*this, DiagLoc
) << E
->getSourceRange();
18141 for (const PartialDiagnosticAt
&Note
: Notes
)
18142 Diag(Note
.first
, Note
.second
);
18145 *Result
= EvalResult
.Val
.getInt();
18150 // Handle the case where we conclude a expression which we speculatively
18151 // considered to be unevaluated is actually evaluated.
18152 class TransformToPE
: public TreeTransform
<TransformToPE
> {
18153 typedef TreeTransform
<TransformToPE
> BaseTransform
;
18156 TransformToPE(Sema
&SemaRef
) : BaseTransform(SemaRef
) { }
18158 // Make sure we redo semantic analysis
18159 bool AlwaysRebuild() { return true; }
18160 bool ReplacingOriginal() { return true; }
18162 // We need to special-case DeclRefExprs referring to FieldDecls which
18163 // are not part of a member pointer formation; normal TreeTransforming
18164 // doesn't catch this case because of the way we represent them in the AST.
18165 // FIXME: This is a bit ugly; is it really the best way to handle this
18168 // Error on DeclRefExprs referring to FieldDecls.
18169 ExprResult
TransformDeclRefExpr(DeclRefExpr
*E
) {
18170 if (isa
<FieldDecl
>(E
->getDecl()) &&
18171 !SemaRef
.isUnevaluatedContext())
18172 return SemaRef
.Diag(E
->getLocation(),
18173 diag::err_invalid_non_static_member_use
)
18174 << E
->getDecl() << E
->getSourceRange();
18176 return BaseTransform::TransformDeclRefExpr(E
);
18179 // Exception: filter out member pointer formation
18180 ExprResult
TransformUnaryOperator(UnaryOperator
*E
) {
18181 if (E
->getOpcode() == UO_AddrOf
&& E
->getType()->isMemberPointerType())
18184 return BaseTransform::TransformUnaryOperator(E
);
18187 // The body of a lambda-expression is in a separate expression evaluation
18188 // context so never needs to be transformed.
18189 // FIXME: Ideally we wouldn't transform the closure type either, and would
18190 // just recreate the capture expressions and lambda expression.
18191 StmtResult
TransformLambdaBody(LambdaExpr
*E
, Stmt
*Body
) {
18192 return SkipLambdaBody(E
, Body
);
18197 ExprResult
Sema::TransformToPotentiallyEvaluated(Expr
*E
) {
18198 assert(isUnevaluatedContext() &&
18199 "Should only transform unevaluated expressions");
18200 ExprEvalContexts
.back().Context
=
18201 ExprEvalContexts
[ExprEvalContexts
.size()-2].Context
;
18202 if (isUnevaluatedContext())
18204 return TransformToPE(*this).TransformExpr(E
);
18207 TypeSourceInfo
*Sema::TransformToPotentiallyEvaluated(TypeSourceInfo
*TInfo
) {
18208 assert(isUnevaluatedContext() &&
18209 "Should only transform unevaluated expressions");
18210 ExprEvalContexts
.back().Context
=
18211 ExprEvalContexts
[ExprEvalContexts
.size() - 2].Context
;
18212 if (isUnevaluatedContext())
18214 return TransformToPE(*this).TransformType(TInfo
);
18218 Sema::PushExpressionEvaluationContext(
18219 ExpressionEvaluationContext NewContext
, Decl
*LambdaContextDecl
,
18220 ExpressionEvaluationContextRecord::ExpressionKind ExprContext
) {
18221 ExprEvalContexts
.emplace_back(NewContext
, ExprCleanupObjects
.size(), Cleanup
,
18222 LambdaContextDecl
, ExprContext
);
18224 // Discarded statements and immediate contexts nested in other
18225 // discarded statements or immediate context are themselves
18226 // a discarded statement or an immediate context, respectively.
18227 ExprEvalContexts
.back().InDiscardedStatement
=
18228 ExprEvalContexts
[ExprEvalContexts
.size() - 2]
18229 .isDiscardedStatementContext();
18231 // C++23 [expr.const]/p15
18232 // An expression or conversion is in an immediate function context if [...]
18233 // it is a subexpression of a manifestly constant-evaluated expression or
18235 const auto &Prev
= ExprEvalContexts
[ExprEvalContexts
.size() - 2];
18236 ExprEvalContexts
.back().InImmediateFunctionContext
=
18237 Prev
.isImmediateFunctionContext() || Prev
.isConstantEvaluated();
18239 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
=
18240 Prev
.InImmediateEscalatingFunctionContext
;
18243 if (!MaybeODRUseExprs
.empty())
18244 std::swap(MaybeODRUseExprs
, ExprEvalContexts
.back().SavedMaybeODRUseExprs
);
18248 Sema::PushExpressionEvaluationContext(
18249 ExpressionEvaluationContext NewContext
, ReuseLambdaContextDecl_t
,
18250 ExpressionEvaluationContextRecord::ExpressionKind ExprContext
) {
18251 Decl
*ClosureContextDecl
= ExprEvalContexts
.back().ManglingContextDecl
;
18252 PushExpressionEvaluationContext(NewContext
, ClosureContextDecl
, ExprContext
);
18257 const DeclRefExpr
*CheckPossibleDeref(Sema
&S
, const Expr
*PossibleDeref
) {
18258 PossibleDeref
= PossibleDeref
->IgnoreParenImpCasts();
18259 if (const auto *E
= dyn_cast
<UnaryOperator
>(PossibleDeref
)) {
18260 if (E
->getOpcode() == UO_Deref
)
18261 return CheckPossibleDeref(S
, E
->getSubExpr());
18262 } else if (const auto *E
= dyn_cast
<ArraySubscriptExpr
>(PossibleDeref
)) {
18263 return CheckPossibleDeref(S
, E
->getBase());
18264 } else if (const auto *E
= dyn_cast
<MemberExpr
>(PossibleDeref
)) {
18265 return CheckPossibleDeref(S
, E
->getBase());
18266 } else if (const auto E
= dyn_cast
<DeclRefExpr
>(PossibleDeref
)) {
18268 QualType Ty
= E
->getType();
18269 if (const auto *Ptr
= Ty
->getAs
<PointerType
>())
18270 Inner
= Ptr
->getPointeeType();
18271 else if (const auto *Arr
= S
.Context
.getAsArrayType(Ty
))
18272 Inner
= Arr
->getElementType();
18276 if (Inner
->hasAttr(attr::NoDeref
))
18284 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord
&Rec
) {
18285 for (const Expr
*E
: Rec
.PossibleDerefs
) {
18286 const DeclRefExpr
*DeclRef
= CheckPossibleDeref(*this, E
);
18288 const ValueDecl
*Decl
= DeclRef
->getDecl();
18289 Diag(E
->getExprLoc(), diag::warn_dereference_of_noderef_type
)
18290 << Decl
->getName() << E
->getSourceRange();
18291 Diag(Decl
->getLocation(), diag::note_previous_decl
) << Decl
->getName();
18293 Diag(E
->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl
)
18294 << E
->getSourceRange();
18297 Rec
.PossibleDerefs
.clear();
18300 /// Check whether E, which is either a discarded-value expression or an
18301 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
18302 /// and if so, remove it from the list of volatile-qualified assignments that
18303 /// we are going to warn are deprecated.
18304 void Sema::CheckUnusedVolatileAssignment(Expr
*E
) {
18305 if (!E
->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20
)
18308 // Note: ignoring parens here is not justified by the standard rules, but
18309 // ignoring parentheses seems like a more reasonable approach, and this only
18310 // drives a deprecation warning so doesn't affect conformance.
18311 if (auto *BO
= dyn_cast
<BinaryOperator
>(E
->IgnoreParenImpCasts())) {
18312 if (BO
->getOpcode() == BO_Assign
) {
18313 auto &LHSs
= ExprEvalContexts
.back().VolatileAssignmentLHSs
;
18314 llvm::erase(LHSs
, BO
->getLHS());
18319 void Sema::MarkExpressionAsImmediateEscalating(Expr
*E
) {
18320 assert(!FunctionScopes
.empty() && "Expected a function scope");
18321 assert(getLangOpts().CPlusPlus20
&&
18322 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
&&
18323 "Cannot mark an immediate escalating expression outside of an "
18324 "immediate escalating context");
18325 if (auto *Call
= dyn_cast
<CallExpr
>(E
->IgnoreImplicit());
18326 Call
&& Call
->getCallee()) {
18327 if (auto *DeclRef
=
18328 dyn_cast
<DeclRefExpr
>(Call
->getCallee()->IgnoreImplicit()))
18329 DeclRef
->setIsImmediateEscalating(true);
18330 } else if (auto *Ctr
= dyn_cast
<CXXConstructExpr
>(E
->IgnoreImplicit())) {
18331 Ctr
->setIsImmediateEscalating(true);
18332 } else if (auto *DeclRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreImplicit())) {
18333 DeclRef
->setIsImmediateEscalating(true);
18335 assert(false && "expected an immediately escalating expression");
18337 getCurFunction()->FoundImmediateEscalatingExpression
= true;
18340 ExprResult
Sema::CheckForImmediateInvocation(ExprResult E
, FunctionDecl
*Decl
) {
18341 if (isUnevaluatedContext() || !E
.isUsable() || !Decl
||
18342 !Decl
->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
18343 isCheckingDefaultArgumentOrInitializer() ||
18344 RebuildingImmediateInvocation
|| isImmediateFunctionContext())
18347 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
18348 /// It's OK if this fails; we'll also remove this in
18349 /// HandleImmediateInvocations, but catching it here allows us to avoid
18350 /// walking the AST looking for it in simple cases.
18351 if (auto *Call
= dyn_cast
<CallExpr
>(E
.get()->IgnoreImplicit()))
18352 if (auto *DeclRef
=
18353 dyn_cast
<DeclRefExpr
>(Call
->getCallee()->IgnoreImplicit()))
18354 ExprEvalContexts
.back().ReferenceToConsteval
.erase(DeclRef
);
18356 // C++23 [expr.const]/p16
18357 // An expression or conversion is immediate-escalating if it is not initially
18358 // in an immediate function context and it is [...] an immediate invocation
18359 // that is not a constant expression and is not a subexpression of an
18360 // immediate invocation.
18362 auto CheckConstantExpressionAndKeepResult
= [&]() {
18363 llvm::SmallVector
<PartialDiagnosticAt
, 8> Notes
;
18364 Expr::EvalResult Eval
;
18365 Eval
.Diag
= &Notes
;
18366 bool Res
= E
.get()->EvaluateAsConstantExpr(
18367 Eval
, getASTContext(), ConstantExprKind::ImmediateInvocation
);
18368 if (Res
&& Notes
.empty()) {
18369 Cached
= std::move(Eval
.Val
);
18375 if (!E
.get()->isValueDependent() &&
18376 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
&&
18377 !CheckConstantExpressionAndKeepResult()) {
18378 MarkExpressionAsImmediateEscalating(E
.get());
18382 if (Cleanup
.exprNeedsCleanups()) {
18383 // Since an immediate invocation is a full expression itself - it requires
18384 // an additional ExprWithCleanups node, but it can participate to a bigger
18385 // full expression which actually requires cleanups to be run after so
18386 // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
18387 // may discard cleanups for outer expression too early.
18389 // Note that ExprWithCleanups created here must always have empty cleanup
18391 // - compound literals do not create cleanup objects in C++ and immediate
18392 // invocations are C++-only.
18393 // - blocks are not allowed inside constant expressions and compiler will
18394 // issue an error if they appear there.
18396 // Hence, in correct code any cleanup objects created inside current
18397 // evaluation context must be outside the immediate invocation.
18398 E
= ExprWithCleanups::Create(getASTContext(), E
.get(),
18399 Cleanup
.cleanupsHaveSideEffects(), {});
18402 ConstantExpr
*Res
= ConstantExpr::Create(
18403 getASTContext(), E
.get(),
18404 ConstantExpr::getStorageKind(Decl
->getReturnType().getTypePtr(),
18406 /*IsImmediateInvocation*/ true);
18407 if (Cached
.hasValue())
18408 Res
->MoveIntoResult(Cached
, getASTContext());
18409 /// Value-dependent constant expressions should not be immediately
18410 /// evaluated until they are instantiated.
18411 if (!Res
->isValueDependent())
18412 ExprEvalContexts
.back().ImmediateInvocationCandidates
.emplace_back(Res
, 0);
18416 static void EvaluateAndDiagnoseImmediateInvocation(
18417 Sema
&SemaRef
, Sema::ImmediateInvocationCandidate Candidate
) {
18418 llvm::SmallVector
<PartialDiagnosticAt
, 8> Notes
;
18419 Expr::EvalResult Eval
;
18420 Eval
.Diag
= &Notes
;
18421 ConstantExpr
*CE
= Candidate
.getPointer();
18422 bool Result
= CE
->EvaluateAsConstantExpr(
18423 Eval
, SemaRef
.getASTContext(), ConstantExprKind::ImmediateInvocation
);
18424 if (!Result
|| !Notes
.empty()) {
18425 SemaRef
.FailedImmediateInvocations
.insert(CE
);
18426 Expr
*InnerExpr
= CE
->getSubExpr()->IgnoreImplicit();
18427 if (auto *FunctionalCast
= dyn_cast
<CXXFunctionalCastExpr
>(InnerExpr
))
18428 InnerExpr
= FunctionalCast
->getSubExpr()->IgnoreImplicit();
18429 FunctionDecl
*FD
= nullptr;
18430 if (auto *Call
= dyn_cast
<CallExpr
>(InnerExpr
))
18431 FD
= cast
<FunctionDecl
>(Call
->getCalleeDecl());
18432 else if (auto *Call
= dyn_cast
<CXXConstructExpr
>(InnerExpr
))
18433 FD
= Call
->getConstructor();
18434 else if (auto *Cast
= dyn_cast
<CastExpr
>(InnerExpr
))
18435 FD
= dyn_cast_or_null
<FunctionDecl
>(Cast
->getConversionFunction());
18437 assert(FD
&& FD
->isImmediateFunction() &&
18438 "could not find an immediate function in this expression");
18439 if (FD
->isInvalidDecl())
18441 SemaRef
.Diag(CE
->getBeginLoc(), diag::err_invalid_consteval_call
)
18442 << FD
<< FD
->isConsteval();
18444 SemaRef
.InnermostDeclarationWithDelayedImmediateInvocations()) {
18445 SemaRef
.Diag(Context
->Loc
, diag::note_invalid_consteval_initializer
)
18447 SemaRef
.Diag(Context
->Decl
->getBeginLoc(), diag::note_declared_at
);
18449 if (!FD
->isConsteval())
18450 SemaRef
.DiagnoseImmediateEscalatingReason(FD
);
18451 for (auto &Note
: Notes
)
18452 SemaRef
.Diag(Note
.first
, Note
.second
);
18455 CE
->MoveIntoResult(Eval
.Val
, SemaRef
.getASTContext());
18458 static void RemoveNestedImmediateInvocation(
18459 Sema
&SemaRef
, Sema::ExpressionEvaluationContextRecord
&Rec
,
18460 SmallVector
<Sema::ImmediateInvocationCandidate
, 4>::reverse_iterator It
) {
18461 struct ComplexRemove
: TreeTransform
<ComplexRemove
> {
18462 using Base
= TreeTransform
<ComplexRemove
>;
18463 llvm::SmallPtrSetImpl
<DeclRefExpr
*> &DRSet
;
18464 SmallVector
<Sema::ImmediateInvocationCandidate
, 4> &IISet
;
18465 SmallVector
<Sema::ImmediateInvocationCandidate
, 4>::reverse_iterator
18467 ComplexRemove(Sema
&SemaRef
, llvm::SmallPtrSetImpl
<DeclRefExpr
*> &DR
,
18468 SmallVector
<Sema::ImmediateInvocationCandidate
, 4> &II
,
18469 SmallVector
<Sema::ImmediateInvocationCandidate
,
18470 4>::reverse_iterator Current
)
18471 : Base(SemaRef
), DRSet(DR
), IISet(II
), CurrentII(Current
) {}
18472 void RemoveImmediateInvocation(ConstantExpr
* E
) {
18473 auto It
= std::find_if(CurrentII
, IISet
.rend(),
18474 [E
](Sema::ImmediateInvocationCandidate Elem
) {
18475 return Elem
.getPointer() == E
;
18477 // It is possible that some subexpression of the current immediate
18478 // invocation was handled from another expression evaluation context. Do
18479 // not handle the current immediate invocation if some of its
18480 // subexpressions failed before.
18481 if (It
== IISet
.rend()) {
18482 if (SemaRef
.FailedImmediateInvocations
.contains(E
))
18483 CurrentII
->setInt(1);
18485 It
->setInt(1); // Mark as deleted
18488 ExprResult
TransformConstantExpr(ConstantExpr
*E
) {
18489 if (!E
->isImmediateInvocation())
18490 return Base::TransformConstantExpr(E
);
18491 RemoveImmediateInvocation(E
);
18492 return Base::TransformExpr(E
->getSubExpr());
18494 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18495 /// we need to remove its DeclRefExpr from the DRSet.
18496 ExprResult
TransformCXXOperatorCallExpr(CXXOperatorCallExpr
*E
) {
18497 DRSet
.erase(cast
<DeclRefExpr
>(E
->getCallee()->IgnoreImplicit()));
18498 return Base::TransformCXXOperatorCallExpr(E
);
18500 /// Base::TransformUserDefinedLiteral doesn't preserve the
18501 /// UserDefinedLiteral node.
18502 ExprResult
TransformUserDefinedLiteral(UserDefinedLiteral
*E
) { return E
; }
18503 /// Base::TransformInitializer skips ConstantExpr so we need to visit them
18505 ExprResult
TransformInitializer(Expr
*Init
, bool NotCopyInit
) {
18508 /// ConstantExpr are the first layer of implicit node to be removed so if
18509 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18510 if (auto *CE
= dyn_cast
<ConstantExpr
>(Init
))
18511 if (CE
->isImmediateInvocation())
18512 RemoveImmediateInvocation(CE
);
18513 return Base::TransformInitializer(Init
, NotCopyInit
);
18515 ExprResult
TransformDeclRefExpr(DeclRefExpr
*E
) {
18519 ExprResult
TransformLambdaExpr(LambdaExpr
*E
) {
18520 // Do not rebuild lambdas to avoid creating a new type.
18521 // Lambdas have already been processed inside their eval context.
18524 bool AlwaysRebuild() { return false; }
18525 bool ReplacingOriginal() { return true; }
18526 bool AllowSkippingCXXConstructExpr() {
18527 bool Res
= AllowSkippingFirstCXXConstructExpr
;
18528 AllowSkippingFirstCXXConstructExpr
= true;
18531 bool AllowSkippingFirstCXXConstructExpr
= true;
18532 } Transformer(SemaRef
, Rec
.ReferenceToConsteval
,
18533 Rec
.ImmediateInvocationCandidates
, It
);
18535 /// CXXConstructExpr with a single argument are getting skipped by
18536 /// TreeTransform in some situtation because they could be implicit. This
18537 /// can only occur for the top-level CXXConstructExpr because it is used
18538 /// nowhere in the expression being transformed therefore will not be rebuilt.
18539 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18540 /// skipping the first CXXConstructExpr.
18541 if (isa
<CXXConstructExpr
>(It
->getPointer()->IgnoreImplicit()))
18542 Transformer
.AllowSkippingFirstCXXConstructExpr
= false;
18544 ExprResult Res
= Transformer
.TransformExpr(It
->getPointer()->getSubExpr());
18545 // The result may not be usable in case of previous compilation errors.
18546 // In this case evaluation of the expression may result in crash so just
18547 // don't do anything further with the result.
18548 if (Res
.isUsable()) {
18549 Res
= SemaRef
.MaybeCreateExprWithCleanups(Res
);
18550 It
->getPointer()->setSubExpr(Res
.get());
18555 HandleImmediateInvocations(Sema
&SemaRef
,
18556 Sema::ExpressionEvaluationContextRecord
&Rec
) {
18557 if ((Rec
.ImmediateInvocationCandidates
.size() == 0 &&
18558 Rec
.ReferenceToConsteval
.size() == 0) ||
18559 SemaRef
.RebuildingImmediateInvocation
)
18562 /// When we have more than 1 ImmediateInvocationCandidates or previously
18563 /// failed immediate invocations, we need to check for nested
18564 /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18565 /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18567 if (Rec
.ImmediateInvocationCandidates
.size() > 1 ||
18568 !SemaRef
.FailedImmediateInvocations
.empty()) {
18570 /// Prevent sema calls during the tree transform from adding pointers that
18571 /// are already in the sets.
18572 llvm::SaveAndRestore
DisableIITracking(
18573 SemaRef
.RebuildingImmediateInvocation
, true);
18575 /// Prevent diagnostic during tree transfrom as they are duplicates
18576 Sema::TentativeAnalysisScope
DisableDiag(SemaRef
);
18578 for (auto It
= Rec
.ImmediateInvocationCandidates
.rbegin();
18579 It
!= Rec
.ImmediateInvocationCandidates
.rend(); It
++)
18581 RemoveNestedImmediateInvocation(SemaRef
, Rec
, It
);
18582 } else if (Rec
.ImmediateInvocationCandidates
.size() == 1 &&
18583 Rec
.ReferenceToConsteval
.size()) {
18584 struct SimpleRemove
: RecursiveASTVisitor
<SimpleRemove
> {
18585 llvm::SmallPtrSetImpl
<DeclRefExpr
*> &DRSet
;
18586 SimpleRemove(llvm::SmallPtrSetImpl
<DeclRefExpr
*> &S
) : DRSet(S
) {}
18587 bool VisitDeclRefExpr(DeclRefExpr
*E
) {
18589 return DRSet
.size();
18591 } Visitor(Rec
.ReferenceToConsteval
);
18592 Visitor
.TraverseStmt(
18593 Rec
.ImmediateInvocationCandidates
.front().getPointer()->getSubExpr());
18595 for (auto CE
: Rec
.ImmediateInvocationCandidates
)
18597 EvaluateAndDiagnoseImmediateInvocation(SemaRef
, CE
);
18598 for (auto *DR
: Rec
.ReferenceToConsteval
) {
18599 // If the expression is immediate escalating, it is not an error;
18600 // The outer context itself becomes immediate and further errors,
18601 // if any, will be handled by DiagnoseImmediateEscalatingReason.
18602 if (DR
->isImmediateEscalating())
18604 auto *FD
= cast
<FunctionDecl
>(DR
->getDecl());
18605 const NamedDecl
*ND
= FD
;
18606 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(ND
);
18607 MD
&& (MD
->isLambdaStaticInvoker() || isLambdaCallOperator(MD
)))
18608 ND
= MD
->getParent();
18610 // C++23 [expr.const]/p16
18611 // An expression or conversion is immediate-escalating if it is not
18612 // initially in an immediate function context and it is [...] a
18613 // potentially-evaluated id-expression that denotes an immediate function
18614 // that is not a subexpression of an immediate invocation.
18615 bool ImmediateEscalating
= false;
18616 bool IsPotentiallyEvaluated
=
18618 Sema::ExpressionEvaluationContext::PotentiallyEvaluated
||
18620 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
;
18621 if (SemaRef
.inTemplateInstantiation() && IsPotentiallyEvaluated
)
18622 ImmediateEscalating
= Rec
.InImmediateEscalatingFunctionContext
;
18624 if (!Rec
.InImmediateEscalatingFunctionContext
||
18625 (SemaRef
.inTemplateInstantiation() && !ImmediateEscalating
)) {
18626 SemaRef
.Diag(DR
->getBeginLoc(), diag::err_invalid_consteval_take_address
)
18627 << ND
<< isa
<CXXRecordDecl
>(ND
) << FD
->isConsteval();
18628 SemaRef
.Diag(ND
->getLocation(), diag::note_declared_at
);
18630 SemaRef
.InnermostDeclarationWithDelayedImmediateInvocations()) {
18631 SemaRef
.Diag(Context
->Loc
, diag::note_invalid_consteval_initializer
)
18633 SemaRef
.Diag(Context
->Decl
->getBeginLoc(), diag::note_declared_at
);
18635 if (FD
->isImmediateEscalating() && !FD
->isConsteval())
18636 SemaRef
.DiagnoseImmediateEscalatingReason(FD
);
18639 SemaRef
.MarkExpressionAsImmediateEscalating(DR
);
18644 void Sema::PopExpressionEvaluationContext() {
18645 ExpressionEvaluationContextRecord
& Rec
= ExprEvalContexts
.back();
18646 unsigned NumTypos
= Rec
.NumTypos
;
18648 if (!Rec
.Lambdas
.empty()) {
18649 using ExpressionKind
= ExpressionEvaluationContextRecord::ExpressionKind
;
18650 if (!getLangOpts().CPlusPlus20
&&
18651 (Rec
.ExprContext
== ExpressionKind::EK_TemplateArgument
||
18652 Rec
.isUnevaluated() ||
18653 (Rec
.isConstantEvaluated() && !getLangOpts().CPlusPlus17
))) {
18655 if (Rec
.isUnevaluated()) {
18656 // C++11 [expr.prim.lambda]p2:
18657 // A lambda-expression shall not appear in an unevaluated operand
18659 D
= diag::err_lambda_unevaluated_operand
;
18660 } else if (Rec
.isConstantEvaluated() && !getLangOpts().CPlusPlus17
) {
18661 // C++1y [expr.const]p2:
18662 // A conditional-expression e is a core constant expression unless the
18663 // evaluation of e, following the rules of the abstract machine, would
18664 // evaluate [...] a lambda-expression.
18665 D
= diag::err_lambda_in_constant_expression
;
18666 } else if (Rec
.ExprContext
== ExpressionKind::EK_TemplateArgument
) {
18667 // C++17 [expr.prim.lamda]p2:
18668 // A lambda-expression shall not appear [...] in a template-argument.
18669 D
= diag::err_lambda_in_invalid_context
;
18671 llvm_unreachable("Couldn't infer lambda error message.");
18673 for (const auto *L
: Rec
.Lambdas
)
18674 Diag(L
->getBeginLoc(), D
);
18678 WarnOnPendingNoDerefs(Rec
);
18679 HandleImmediateInvocations(*this, Rec
);
18681 // Warn on any volatile-qualified simple-assignments that are not discarded-
18682 // value expressions nor unevaluated operands (those cases get removed from
18683 // this list by CheckUnusedVolatileAssignment).
18684 for (auto *BO
: Rec
.VolatileAssignmentLHSs
)
18685 Diag(BO
->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile
)
18688 // When are coming out of an unevaluated context, clear out any
18689 // temporaries that we may have created as part of the evaluation of
18690 // the expression in that context: they aren't relevant because they
18691 // will never be constructed.
18692 if (Rec
.isUnevaluated() || Rec
.isConstantEvaluated()) {
18693 ExprCleanupObjects
.erase(ExprCleanupObjects
.begin() + Rec
.NumCleanupObjects
,
18694 ExprCleanupObjects
.end());
18695 Cleanup
= Rec
.ParentCleanup
;
18696 CleanupVarDeclMarking();
18697 std::swap(MaybeODRUseExprs
, Rec
.SavedMaybeODRUseExprs
);
18698 // Otherwise, merge the contexts together.
18700 Cleanup
.mergeFrom(Rec
.ParentCleanup
);
18701 MaybeODRUseExprs
.insert(Rec
.SavedMaybeODRUseExprs
.begin(),
18702 Rec
.SavedMaybeODRUseExprs
.end());
18705 // Pop the current expression evaluation context off the stack.
18706 ExprEvalContexts
.pop_back();
18708 // The global expression evaluation context record is never popped.
18709 ExprEvalContexts
.back().NumTypos
+= NumTypos
;
18712 void Sema::DiscardCleanupsInEvaluationContext() {
18713 ExprCleanupObjects
.erase(
18714 ExprCleanupObjects
.begin() + ExprEvalContexts
.back().NumCleanupObjects
,
18715 ExprCleanupObjects
.end());
18717 MaybeODRUseExprs
.clear();
18720 ExprResult
Sema::HandleExprEvaluationContextForTypeof(Expr
*E
) {
18721 ExprResult Result
= CheckPlaceholderExpr(E
);
18722 if (Result
.isInvalid())
18723 return ExprError();
18725 if (!E
->getType()->isVariablyModifiedType())
18727 return TransformToPotentiallyEvaluated(E
);
18730 /// Are we in a context that is potentially constant evaluated per C++20
18731 /// [expr.const]p12?
18732 static bool isPotentiallyConstantEvaluatedContext(Sema
&SemaRef
) {
18733 /// C++2a [expr.const]p12:
18734 // An expression or conversion is potentially constant evaluated if it is
18735 switch (SemaRef
.ExprEvalContexts
.back().Context
) {
18736 case Sema::ExpressionEvaluationContext::ConstantEvaluated
:
18737 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext
:
18739 // -- a manifestly constant-evaluated expression,
18740 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated
:
18741 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
18742 case Sema::ExpressionEvaluationContext::DiscardedStatement
:
18743 // -- a potentially-evaluated expression,
18744 case Sema::ExpressionEvaluationContext::UnevaluatedList
:
18745 // -- an immediate subexpression of a braced-init-list,
18747 // -- [FIXME] an expression of the form & cast-expression that occurs
18748 // within a templated entity
18749 // -- a subexpression of one of the above that is not a subexpression of
18750 // a nested unevaluated operand.
18753 case Sema::ExpressionEvaluationContext::Unevaluated
:
18754 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract
:
18755 // Expressions in this context are never evaluated.
18758 llvm_unreachable("Invalid context");
18761 /// Return true if this function has a calling convention that requires mangling
18762 /// in the size of the parameter pack.
18763 static bool funcHasParameterSizeMangling(Sema
&S
, FunctionDecl
*FD
) {
18764 // These manglings don't do anything on non-Windows or non-x86 platforms, so
18765 // we don't need parameter type sizes.
18766 const llvm::Triple
&TT
= S
.Context
.getTargetInfo().getTriple();
18767 if (!TT
.isOSWindows() || !TT
.isX86())
18770 // If this is C++ and this isn't an extern "C" function, parameters do not
18771 // need to be complete. In this case, C++ mangling will apply, which doesn't
18772 // use the size of the parameters.
18773 if (S
.getLangOpts().CPlusPlus
&& !FD
->isExternC())
18776 // Stdcall, fastcall, and vectorcall need this special treatment.
18777 CallingConv CC
= FD
->getType()->castAs
<FunctionType
>()->getCallConv();
18779 case CC_X86StdCall
:
18780 case CC_X86FastCall
:
18781 case CC_X86VectorCall
:
18789 /// Require that all of the parameter types of function be complete. Normally,
18790 /// parameter types are only required to be complete when a function is called
18791 /// or defined, but to mangle functions with certain calling conventions, the
18792 /// mangler needs to know the size of the parameter list. In this situation,
18793 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18794 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18795 /// result in a linker error. Clang doesn't implement this behavior, and instead
18796 /// attempts to error at compile time.
18797 static void CheckCompleteParameterTypesForMangler(Sema
&S
, FunctionDecl
*FD
,
18798 SourceLocation Loc
) {
18799 class ParamIncompleteTypeDiagnoser
: public Sema::TypeDiagnoser
{
18801 ParmVarDecl
*Param
;
18804 ParamIncompleteTypeDiagnoser(FunctionDecl
*FD
, ParmVarDecl
*Param
)
18805 : FD(FD
), Param(Param
) {}
18807 void diagnose(Sema
&S
, SourceLocation Loc
, QualType T
) override
{
18808 CallingConv CC
= FD
->getType()->castAs
<FunctionType
>()->getCallConv();
18811 case CC_X86StdCall
:
18812 CCName
= "stdcall";
18814 case CC_X86FastCall
:
18815 CCName
= "fastcall";
18817 case CC_X86VectorCall
:
18818 CCName
= "vectorcall";
18821 llvm_unreachable("CC does not need mangling");
18824 S
.Diag(Loc
, diag::err_cconv_incomplete_param_type
)
18825 << Param
->getDeclName() << FD
->getDeclName() << CCName
;
18829 for (ParmVarDecl
*Param
: FD
->parameters()) {
18830 ParamIncompleteTypeDiagnoser
Diagnoser(FD
, Param
);
18831 S
.RequireCompleteType(Loc
, Param
->getType(), Diagnoser
);
18836 enum class OdrUseContext
{
18837 /// Declarations in this context are not odr-used.
18839 /// Declarations in this context are formally odr-used, but this is a
18840 /// dependent context.
18842 /// Declarations in this context are odr-used but not actually used (yet).
18844 /// Declarations in this context are used.
18849 /// Are we within a context in which references to resolved functions or to
18850 /// variables result in odr-use?
18851 static OdrUseContext
isOdrUseContext(Sema
&SemaRef
) {
18852 OdrUseContext Result
;
18854 switch (SemaRef
.ExprEvalContexts
.back().Context
) {
18855 case Sema::ExpressionEvaluationContext::Unevaluated
:
18856 case Sema::ExpressionEvaluationContext::UnevaluatedList
:
18857 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract
:
18858 return OdrUseContext::None
;
18860 case Sema::ExpressionEvaluationContext::ConstantEvaluated
:
18861 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext
:
18862 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated
:
18863 Result
= OdrUseContext::Used
;
18866 case Sema::ExpressionEvaluationContext::DiscardedStatement
:
18867 Result
= OdrUseContext::FormallyOdrUsed
;
18870 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
18871 // A default argument formally results in odr-use, but doesn't actually
18872 // result in a use in any real sense until it itself is used.
18873 Result
= OdrUseContext::FormallyOdrUsed
;
18877 if (SemaRef
.CurContext
->isDependentContext())
18878 return OdrUseContext::Dependent
;
18883 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl
*Func
) {
18884 if (!Func
->isConstexpr())
18887 if (Func
->isImplicitlyInstantiable() || !Func
->isUserProvided())
18889 auto *CCD
= dyn_cast
<CXXConstructorDecl
>(Func
);
18890 return CCD
&& CCD
->getInheritedConstructor();
18893 /// Mark a function referenced, and check whether it is odr-used
18894 /// (C++ [basic.def.odr]p2, C99 6.9p3)
18895 void Sema::MarkFunctionReferenced(SourceLocation Loc
, FunctionDecl
*Func
,
18896 bool MightBeOdrUse
) {
18897 assert(Func
&& "No function?");
18899 Func
->setReferenced();
18901 // Recursive functions aren't really used until they're used from some other
18903 bool IsRecursiveCall
= CurContext
== Func
;
18905 // C++11 [basic.def.odr]p3:
18906 // A function whose name appears as a potentially-evaluated expression is
18907 // odr-used if it is the unique lookup result or the selected member of a
18908 // set of overloaded functions [...].
18910 // We (incorrectly) mark overload resolution as an unevaluated context, so we
18911 // can just check that here.
18912 OdrUseContext OdrUse
=
18913 MightBeOdrUse
? isOdrUseContext(*this) : OdrUseContext::None
;
18914 if (IsRecursiveCall
&& OdrUse
== OdrUseContext::Used
)
18915 OdrUse
= OdrUseContext::FormallyOdrUsed
;
18917 // Trivial default constructors and destructors are never actually used.
18918 // FIXME: What about other special members?
18919 if (Func
->isTrivial() && !Func
->hasAttr
<DLLExportAttr
>() &&
18920 OdrUse
== OdrUseContext::Used
) {
18921 if (auto *Constructor
= dyn_cast
<CXXConstructorDecl
>(Func
))
18922 if (Constructor
->isDefaultConstructor())
18923 OdrUse
= OdrUseContext::FormallyOdrUsed
;
18924 if (isa
<CXXDestructorDecl
>(Func
))
18925 OdrUse
= OdrUseContext::FormallyOdrUsed
;
18928 // C++20 [expr.const]p12:
18929 // A function [...] is needed for constant evaluation if it is [...] a
18930 // constexpr function that is named by an expression that is potentially
18931 // constant evaluated
18932 bool NeededForConstantEvaluation
=
18933 isPotentiallyConstantEvaluatedContext(*this) &&
18934 isImplicitlyDefinableConstexprFunction(Func
);
18936 // Determine whether we require a function definition to exist, per
18937 // C++11 [temp.inst]p3:
18938 // Unless a function template specialization has been explicitly
18939 // instantiated or explicitly specialized, the function template
18940 // specialization is implicitly instantiated when the specialization is
18941 // referenced in a context that requires a function definition to exist.
18942 // C++20 [temp.inst]p7:
18943 // The existence of a definition of a [...] function is considered to
18944 // affect the semantics of the program if the [...] function is needed for
18945 // constant evaluation by an expression
18946 // C++20 [basic.def.odr]p10:
18947 // Every program shall contain exactly one definition of every non-inline
18948 // function or variable that is odr-used in that program outside of a
18949 // discarded statement
18950 // C++20 [special]p1:
18951 // The implementation will implicitly define [defaulted special members]
18952 // if they are odr-used or needed for constant evaluation.
18954 // Note that we skip the implicit instantiation of templates that are only
18955 // used in unused default arguments or by recursive calls to themselves.
18956 // This is formally non-conforming, but seems reasonable in practice.
18957 bool NeedDefinition
= !IsRecursiveCall
&& (OdrUse
== OdrUseContext::Used
||
18958 NeededForConstantEvaluation
);
18960 // C++14 [temp.expl.spec]p6:
18961 // If a template [...] is explicitly specialized then that specialization
18962 // shall be declared before the first use of that specialization that would
18963 // cause an implicit instantiation to take place, in every translation unit
18964 // in which such a use occurs
18965 if (NeedDefinition
&&
18966 (Func
->getTemplateSpecializationKind() != TSK_Undeclared
||
18967 Func
->getMemberSpecializationInfo()))
18968 checkSpecializationReachability(Loc
, Func
);
18970 if (getLangOpts().CUDA
)
18971 CheckCUDACall(Loc
, Func
);
18973 // If we need a definition, try to create one.
18974 if (NeedDefinition
&& !Func
->getBody()) {
18975 runWithSufficientStackSpace(Loc
, [&] {
18976 if (CXXConstructorDecl
*Constructor
=
18977 dyn_cast
<CXXConstructorDecl
>(Func
)) {
18978 Constructor
= cast
<CXXConstructorDecl
>(Constructor
->getFirstDecl());
18979 if (Constructor
->isDefaulted() && !Constructor
->isDeleted()) {
18980 if (Constructor
->isDefaultConstructor()) {
18981 if (Constructor
->isTrivial() &&
18982 !Constructor
->hasAttr
<DLLExportAttr
>())
18984 DefineImplicitDefaultConstructor(Loc
, Constructor
);
18985 } else if (Constructor
->isCopyConstructor()) {
18986 DefineImplicitCopyConstructor(Loc
, Constructor
);
18987 } else if (Constructor
->isMoveConstructor()) {
18988 DefineImplicitMoveConstructor(Loc
, Constructor
);
18990 } else if (Constructor
->getInheritedConstructor()) {
18991 DefineInheritingConstructor(Loc
, Constructor
);
18993 } else if (CXXDestructorDecl
*Destructor
=
18994 dyn_cast
<CXXDestructorDecl
>(Func
)) {
18995 Destructor
= cast
<CXXDestructorDecl
>(Destructor
->getFirstDecl());
18996 if (Destructor
->isDefaulted() && !Destructor
->isDeleted()) {
18997 if (Destructor
->isTrivial() && !Destructor
->hasAttr
<DLLExportAttr
>())
18999 DefineImplicitDestructor(Loc
, Destructor
);
19001 if (Destructor
->isVirtual() && getLangOpts().AppleKext
)
19002 MarkVTableUsed(Loc
, Destructor
->getParent());
19003 } else if (CXXMethodDecl
*MethodDecl
= dyn_cast
<CXXMethodDecl
>(Func
)) {
19004 if (MethodDecl
->isOverloadedOperator() &&
19005 MethodDecl
->getOverloadedOperator() == OO_Equal
) {
19006 MethodDecl
= cast
<CXXMethodDecl
>(MethodDecl
->getFirstDecl());
19007 if (MethodDecl
->isDefaulted() && !MethodDecl
->isDeleted()) {
19008 if (MethodDecl
->isCopyAssignmentOperator())
19009 DefineImplicitCopyAssignment(Loc
, MethodDecl
);
19010 else if (MethodDecl
->isMoveAssignmentOperator())
19011 DefineImplicitMoveAssignment(Loc
, MethodDecl
);
19013 } else if (isa
<CXXConversionDecl
>(MethodDecl
) &&
19014 MethodDecl
->getParent()->isLambda()) {
19015 CXXConversionDecl
*Conversion
=
19016 cast
<CXXConversionDecl
>(MethodDecl
->getFirstDecl());
19017 if (Conversion
->isLambdaToBlockPointerConversion())
19018 DefineImplicitLambdaToBlockPointerConversion(Loc
, Conversion
);
19020 DefineImplicitLambdaToFunctionPointerConversion(Loc
, Conversion
);
19021 } else if (MethodDecl
->isVirtual() && getLangOpts().AppleKext
)
19022 MarkVTableUsed(Loc
, MethodDecl
->getParent());
19025 if (Func
->isDefaulted() && !Func
->isDeleted()) {
19026 DefaultedComparisonKind DCK
= getDefaultedComparisonKind(Func
);
19027 if (DCK
!= DefaultedComparisonKind::None
)
19028 DefineDefaultedComparison(Loc
, Func
, DCK
);
19031 // Implicit instantiation of function templates and member functions of
19032 // class templates.
19033 if (Func
->isImplicitlyInstantiable()) {
19034 TemplateSpecializationKind TSK
=
19035 Func
->getTemplateSpecializationKindForInstantiation();
19036 SourceLocation PointOfInstantiation
= Func
->getPointOfInstantiation();
19037 bool FirstInstantiation
= PointOfInstantiation
.isInvalid();
19038 if (FirstInstantiation
) {
19039 PointOfInstantiation
= Loc
;
19040 if (auto *MSI
= Func
->getMemberSpecializationInfo())
19041 MSI
->setPointOfInstantiation(Loc
);
19042 // FIXME: Notify listener.
19044 Func
->setTemplateSpecializationKind(TSK
, PointOfInstantiation
);
19045 } else if (TSK
!= TSK_ImplicitInstantiation
) {
19046 // Use the point of use as the point of instantiation, instead of the
19047 // point of explicit instantiation (which we track as the actual point
19048 // of instantiation). This gives better backtraces in diagnostics.
19049 PointOfInstantiation
= Loc
;
19052 if (FirstInstantiation
|| TSK
!= TSK_ImplicitInstantiation
||
19053 Func
->isConstexpr()) {
19054 if (isa
<CXXRecordDecl
>(Func
->getDeclContext()) &&
19055 cast
<CXXRecordDecl
>(Func
->getDeclContext())->isLocalClass() &&
19056 CodeSynthesisContexts
.size())
19057 PendingLocalImplicitInstantiations
.push_back(
19058 std::make_pair(Func
, PointOfInstantiation
));
19059 else if (Func
->isConstexpr())
19060 // Do not defer instantiations of constexpr functions, to avoid the
19061 // expression evaluator needing to call back into Sema if it sees a
19062 // call to such a function.
19063 InstantiateFunctionDefinition(PointOfInstantiation
, Func
);
19065 Func
->setInstantiationIsPending(true);
19066 PendingInstantiations
.push_back(
19067 std::make_pair(Func
, PointOfInstantiation
));
19068 // Notify the consumer that a function was implicitly instantiated.
19069 Consumer
.HandleCXXImplicitFunctionInstantiation(Func
);
19073 // Walk redefinitions, as some of them may be instantiable.
19074 for (auto *i
: Func
->redecls()) {
19075 if (!i
->isUsed(false) && i
->isImplicitlyInstantiable())
19076 MarkFunctionReferenced(Loc
, i
, MightBeOdrUse
);
19082 // If a constructor was defined in the context of a default parameter
19083 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
19084 // context), its initializers may not be referenced yet.
19085 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(Func
)) {
19086 EnterExpressionEvaluationContext
EvalContext(
19088 Constructor
->isImmediateFunction()
19089 ? ExpressionEvaluationContext::ImmediateFunctionContext
19090 : ExpressionEvaluationContext::PotentiallyEvaluated
,
19092 for (CXXCtorInitializer
*Init
: Constructor
->inits()) {
19093 if (Init
->isInClassMemberInitializer())
19094 runWithSufficientStackSpace(Init
->getSourceLocation(), [&]() {
19095 MarkDeclarationsReferencedInExpr(Init
->getInit());
19100 // C++14 [except.spec]p17:
19101 // An exception-specification is considered to be needed when:
19102 // - the function is odr-used or, if it appears in an unevaluated operand,
19103 // would be odr-used if the expression were potentially-evaluated;
19105 // Note, we do this even if MightBeOdrUse is false. That indicates that the
19106 // function is a pure virtual function we're calling, and in that case the
19107 // function was selected by overload resolution and we need to resolve its
19108 // exception specification for a different reason.
19109 const FunctionProtoType
*FPT
= Func
->getType()->getAs
<FunctionProtoType
>();
19110 if (FPT
&& isUnresolvedExceptionSpec(FPT
->getExceptionSpecType()))
19111 ResolveExceptionSpec(Loc
, FPT
);
19113 // A callee could be called by a host function then by a device function.
19114 // If we only try recording once, we will miss recording the use on device
19115 // side. Therefore keep trying until it is recorded.
19116 if (LangOpts
.OffloadImplicitHostDeviceTemplates
&& LangOpts
.CUDAIsDevice
&&
19117 !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice
.count(Func
))
19118 CUDARecordImplicitHostDeviceFuncUsedByDevice(Func
);
19120 // If this is the first "real" use, act on that.
19121 if (OdrUse
== OdrUseContext::Used
&& !Func
->isUsed(/*CheckUsedAttr=*/false)) {
19122 // Keep track of used but undefined functions.
19123 if (!Func
->isDefined()) {
19124 if (mightHaveNonExternalLinkage(Func
))
19125 UndefinedButUsed
.insert(std::make_pair(Func
->getCanonicalDecl(), Loc
));
19126 else if (Func
->getMostRecentDecl()->isInlined() &&
19127 !LangOpts
.GNUInline
&&
19128 !Func
->getMostRecentDecl()->hasAttr
<GNUInlineAttr
>())
19129 UndefinedButUsed
.insert(std::make_pair(Func
->getCanonicalDecl(), Loc
));
19130 else if (isExternalWithNoLinkageType(Func
))
19131 UndefinedButUsed
.insert(std::make_pair(Func
->getCanonicalDecl(), Loc
));
19134 // Some x86 Windows calling conventions mangle the size of the parameter
19135 // pack into the name. Computing the size of the parameters requires the
19136 // parameter types to be complete. Check that now.
19137 if (funcHasParameterSizeMangling(*this, Func
))
19138 CheckCompleteParameterTypesForMangler(*this, Func
, Loc
);
19140 // In the MS C++ ABI, the compiler emits destructor variants where they are
19141 // used. If the destructor is used here but defined elsewhere, mark the
19142 // virtual base destructors referenced. If those virtual base destructors
19143 // are inline, this will ensure they are defined when emitting the complete
19144 // destructor variant. This checking may be redundant if the destructor is
19145 // provided later in this TU.
19146 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
19147 if (auto *Dtor
= dyn_cast
<CXXDestructorDecl
>(Func
)) {
19148 CXXRecordDecl
*Parent
= Dtor
->getParent();
19149 if (Parent
->getNumVBases() > 0 && !Dtor
->getBody())
19150 CheckCompleteDestructorVariant(Loc
, Dtor
);
19154 Func
->markUsed(Context
);
19158 /// Directly mark a variable odr-used. Given a choice, prefer to use
19159 /// MarkVariableReferenced since it does additional checks and then
19160 /// calls MarkVarDeclODRUsed.
19161 /// If the variable must be captured:
19162 /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
19163 /// - else capture it in the DeclContext that maps to the
19164 /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
19166 MarkVarDeclODRUsed(ValueDecl
*V
, SourceLocation Loc
, Sema
&SemaRef
,
19167 const unsigned *const FunctionScopeIndexToStopAt
= nullptr) {
19168 // Keep track of used but undefined variables.
19169 // FIXME: We shouldn't suppress this warning for static data members.
19170 VarDecl
*Var
= V
->getPotentiallyDecomposedVarDecl();
19171 assert(Var
&& "expected a capturable variable");
19173 if (Var
->hasDefinition(SemaRef
.Context
) == VarDecl::DeclarationOnly
&&
19174 (!Var
->isExternallyVisible() || Var
->isInline() ||
19175 SemaRef
.isExternalWithNoLinkageType(Var
)) &&
19176 !(Var
->isStaticDataMember() && Var
->hasInit())) {
19177 SourceLocation
&old
= SemaRef
.UndefinedButUsed
[Var
->getCanonicalDecl()];
19178 if (old
.isInvalid())
19181 QualType CaptureType
, DeclRefType
;
19182 if (SemaRef
.LangOpts
.OpenMP
)
19183 SemaRef
.tryCaptureOpenMPLambdas(V
);
19184 SemaRef
.tryCaptureVariable(V
, Loc
, Sema::TryCapture_Implicit
,
19185 /*EllipsisLoc*/ SourceLocation(),
19186 /*BuildAndDiagnose*/ true, CaptureType
,
19187 DeclRefType
, FunctionScopeIndexToStopAt
);
19189 if (SemaRef
.LangOpts
.CUDA
&& Var
->hasGlobalStorage()) {
19190 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(SemaRef
.CurContext
);
19191 auto VarTarget
= SemaRef
.IdentifyCUDATarget(Var
);
19192 auto UserTarget
= SemaRef
.IdentifyCUDATarget(FD
);
19193 if (VarTarget
== Sema::CVT_Host
&&
19194 (UserTarget
== Sema::CFT_Device
|| UserTarget
== Sema::CFT_HostDevice
||
19195 UserTarget
== Sema::CFT_Global
)) {
19196 // Diagnose ODR-use of host global variables in device functions.
19197 // Reference of device global variables in host functions is allowed
19198 // through shadow variables therefore it is not diagnosed.
19199 if (SemaRef
.LangOpts
.CUDAIsDevice
&& !SemaRef
.LangOpts
.HIPStdPar
) {
19200 SemaRef
.targetDiag(Loc
, diag::err_ref_bad_target
)
19201 << /*host*/ 2 << /*variable*/ 1 << Var
<< UserTarget
;
19202 SemaRef
.targetDiag(Var
->getLocation(),
19203 Var
->getType().isConstQualified()
19204 ? diag::note_cuda_const_var_unpromoted
19205 : diag::note_cuda_host_var
);
19207 } else if (VarTarget
== Sema::CVT_Device
&&
19208 !Var
->hasAttr
<CUDASharedAttr
>() &&
19209 (UserTarget
== Sema::CFT_Host
||
19210 UserTarget
== Sema::CFT_HostDevice
)) {
19211 // Record a CUDA/HIP device side variable if it is ODR-used
19212 // by host code. This is done conservatively, when the variable is
19213 // referenced in any of the following contexts:
19214 // - a non-function context
19215 // - a host function
19216 // - a host device function
19217 // This makes the ODR-use of the device side variable by host code to
19218 // be visible in the device compilation for the compiler to be able to
19219 // emit template variables instantiated by host code only and to
19220 // externalize the static device side variable ODR-used by host code.
19221 if (!Var
->hasExternalStorage())
19222 SemaRef
.getASTContext().CUDADeviceVarODRUsedByHost
.insert(Var
);
19223 else if (SemaRef
.LangOpts
.GPURelocatableDeviceCode
)
19224 SemaRef
.getASTContext().CUDAExternalDeviceDeclODRUsedByHost
.insert(Var
);
19228 V
->markUsed(SemaRef
.Context
);
19231 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl
*Capture
,
19232 SourceLocation Loc
,
19233 unsigned CapturingScopeIndex
) {
19234 MarkVarDeclODRUsed(Capture
, Loc
, *this, &CapturingScopeIndex
);
19237 void diagnoseUncapturableValueReferenceOrBinding(Sema
&S
, SourceLocation loc
,
19239 DeclContext
*VarDC
= var
->getDeclContext();
19241 // If the parameter still belongs to the translation unit, then
19242 // we're actually just using one parameter in the declaration of
19244 if (isa
<ParmVarDecl
>(var
) &&
19245 isa
<TranslationUnitDecl
>(VarDC
))
19248 // For C code, don't diagnose about capture if we're not actually in code
19249 // right now; it's impossible to write a non-constant expression outside of
19250 // function context, so we'll get other (more useful) diagnostics later.
19252 // For C++, things get a bit more nasty... it would be nice to suppress this
19253 // diagnostic for certain cases like using a local variable in an array bound
19254 // for a member of a local class, but the correct predicate is not obvious.
19255 if (!S
.getLangOpts().CPlusPlus
&& !S
.CurContext
->isFunctionOrMethod())
19258 unsigned ValueKind
= isa
<BindingDecl
>(var
) ? 1 : 0;
19259 unsigned ContextKind
= 3; // unknown
19260 if (isa
<CXXMethodDecl
>(VarDC
) &&
19261 cast
<CXXRecordDecl
>(VarDC
->getParent())->isLambda()) {
19263 } else if (isa
<FunctionDecl
>(VarDC
)) {
19265 } else if (isa
<BlockDecl
>(VarDC
)) {
19269 S
.Diag(loc
, diag::err_reference_to_local_in_enclosing_context
)
19270 << var
<< ValueKind
<< ContextKind
<< VarDC
;
19271 S
.Diag(var
->getLocation(), diag::note_entity_declared_at
)
19274 // FIXME: Add additional diagnostic info about class etc. which prevents
19278 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo
*CSI
,
19280 bool &SubCapturesAreNested
,
19281 QualType
&CaptureType
,
19282 QualType
&DeclRefType
) {
19283 // Check whether we've already captured it.
19284 if (CSI
->CaptureMap
.count(Var
)) {
19285 // If we found a capture, any subcaptures are nested.
19286 SubCapturesAreNested
= true;
19288 // Retrieve the capture type for this variable.
19289 CaptureType
= CSI
->getCapture(Var
).getCaptureType();
19291 // Compute the type of an expression that refers to this variable.
19292 DeclRefType
= CaptureType
.getNonReferenceType();
19294 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
19295 // are mutable in the sense that user can change their value - they are
19296 // private instances of the captured declarations.
19297 const Capture
&Cap
= CSI
->getCapture(Var
);
19298 if (Cap
.isCopyCapture() &&
19299 !(isa
<LambdaScopeInfo
>(CSI
) &&
19300 !cast
<LambdaScopeInfo
>(CSI
)->lambdaCaptureShouldBeConst()) &&
19301 !(isa
<CapturedRegionScopeInfo
>(CSI
) &&
19302 cast
<CapturedRegionScopeInfo
>(CSI
)->CapRegionKind
== CR_OpenMP
))
19303 DeclRefType
.addConst();
19309 // Only block literals, captured statements, and lambda expressions can
19310 // capture; other scopes don't work.
19311 static DeclContext
*getParentOfCapturingContextOrNull(DeclContext
*DC
,
19313 SourceLocation Loc
,
19314 const bool Diagnose
,
19316 if (isa
<BlockDecl
>(DC
) || isa
<CapturedDecl
>(DC
) || isLambdaCallOperator(DC
))
19317 return getLambdaAwareParentOfDeclContext(DC
);
19319 VarDecl
*Underlying
= Var
->getPotentiallyDecomposedVarDecl();
19321 if (Underlying
->hasLocalStorage() && Diagnose
)
19322 diagnoseUncapturableValueReferenceOrBinding(S
, Loc
, Var
);
19327 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19328 // certain types of variables (unnamed, variably modified types etc.)
19329 // so check for eligibility.
19330 static bool isVariableCapturable(CapturingScopeInfo
*CSI
, ValueDecl
*Var
,
19331 SourceLocation Loc
, const bool Diagnose
,
19334 assert((isa
<VarDecl
, BindingDecl
>(Var
)) &&
19335 "Only variables and structured bindings can be captured");
19337 bool IsBlock
= isa
<BlockScopeInfo
>(CSI
);
19338 bool IsLambda
= isa
<LambdaScopeInfo
>(CSI
);
19340 // Lambdas are not allowed to capture unnamed variables
19341 // (e.g. anonymous unions).
19342 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
19343 // assuming that's the intent.
19344 if (IsLambda
&& !Var
->getDeclName()) {
19346 S
.Diag(Loc
, diag::err_lambda_capture_anonymous_var
);
19347 S
.Diag(Var
->getLocation(), diag::note_declared_at
);
19352 // Prohibit variably-modified types in blocks; they're difficult to deal with.
19353 if (Var
->getType()->isVariablyModifiedType() && IsBlock
) {
19355 S
.Diag(Loc
, diag::err_ref_vm_type
);
19356 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19360 // Prohibit structs with flexible array members too.
19361 // We cannot capture what is in the tail end of the struct.
19362 if (const RecordType
*VTTy
= Var
->getType()->getAs
<RecordType
>()) {
19363 if (VTTy
->getDecl()->hasFlexibleArrayMember()) {
19366 S
.Diag(Loc
, diag::err_ref_flexarray_type
);
19368 S
.Diag(Loc
, diag::err_lambda_capture_flexarray_type
) << Var
;
19369 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19374 const bool HasBlocksAttr
= Var
->hasAttr
<BlocksAttr
>();
19375 // Lambdas and captured statements are not allowed to capture __block
19376 // variables; they don't support the expected semantics.
19377 if (HasBlocksAttr
&& (IsLambda
|| isa
<CapturedRegionScopeInfo
>(CSI
))) {
19379 S
.Diag(Loc
, diag::err_capture_block_variable
) << Var
<< !IsLambda
;
19380 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19384 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
19385 if (S
.getLangOpts().OpenCL
&& IsBlock
&&
19386 Var
->getType()->isBlockPointerType()) {
19388 S
.Diag(Loc
, diag::err_opencl_block_ref_block
);
19392 if (isa
<BindingDecl
>(Var
)) {
19393 if (!IsLambda
|| !S
.getLangOpts().CPlusPlus
) {
19395 diagnoseUncapturableValueReferenceOrBinding(S
, Loc
, Var
);
19397 } else if (Diagnose
&& S
.getLangOpts().CPlusPlus
) {
19398 S
.Diag(Loc
, S
.LangOpts
.CPlusPlus20
19399 ? diag::warn_cxx17_compat_capture_binding
19400 : diag::ext_capture_binding
)
19402 S
.Diag(Var
->getLocation(), diag::note_entity_declared_at
) << Var
;
19409 // Returns true if the capture by block was successful.
19410 static bool captureInBlock(BlockScopeInfo
*BSI
, ValueDecl
*Var
,
19411 SourceLocation Loc
, const bool BuildAndDiagnose
,
19412 QualType
&CaptureType
, QualType
&DeclRefType
,
19413 const bool Nested
, Sema
&S
, bool Invalid
) {
19414 bool ByRef
= false;
19416 // Blocks are not allowed to capture arrays, excepting OpenCL.
19417 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
19418 // (decayed to pointers).
19419 if (!Invalid
&& !S
.getLangOpts().OpenCL
&& CaptureType
->isArrayType()) {
19420 if (BuildAndDiagnose
) {
19421 S
.Diag(Loc
, diag::err_ref_array_type
);
19422 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19429 // Forbid the block-capture of autoreleasing variables.
19431 CaptureType
.getObjCLifetime() == Qualifiers::OCL_Autoreleasing
) {
19432 if (BuildAndDiagnose
) {
19433 S
.Diag(Loc
, diag::err_arc_autoreleasing_capture
)
19435 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19442 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19443 if (const auto *PT
= CaptureType
->getAs
<PointerType
>()) {
19444 QualType PointeeTy
= PT
->getPointeeType();
19446 if (!Invalid
&& PointeeTy
->getAs
<ObjCObjectPointerType
>() &&
19447 PointeeTy
.getObjCLifetime() == Qualifiers::OCL_Autoreleasing
&&
19448 !S
.Context
.hasDirectOwnershipQualifier(PointeeTy
)) {
19449 if (BuildAndDiagnose
) {
19450 SourceLocation VarLoc
= Var
->getLocation();
19451 S
.Diag(Loc
, diag::warn_block_capture_autoreleasing
);
19452 S
.Diag(VarLoc
, diag::note_declare_parameter_strong
);
19457 const bool HasBlocksAttr
= Var
->hasAttr
<BlocksAttr
>();
19458 if (HasBlocksAttr
|| CaptureType
->isReferenceType() ||
19459 (S
.getLangOpts().OpenMP
&& S
.isOpenMPCapturedDecl(Var
))) {
19460 // Block capture by reference does not change the capture or
19461 // declaration reference types.
19464 // Block capture by copy introduces 'const'.
19465 CaptureType
= CaptureType
.getNonReferenceType().withConst();
19466 DeclRefType
= CaptureType
;
19469 // Actually capture the variable.
19470 if (BuildAndDiagnose
)
19471 BSI
->addCapture(Var
, HasBlocksAttr
, ByRef
, Nested
, Loc
, SourceLocation(),
19472 CaptureType
, Invalid
);
19477 /// Capture the given variable in the captured region.
19478 static bool captureInCapturedRegion(
19479 CapturedRegionScopeInfo
*RSI
, ValueDecl
*Var
, SourceLocation Loc
,
19480 const bool BuildAndDiagnose
, QualType
&CaptureType
, QualType
&DeclRefType
,
19481 const bool RefersToCapturedVariable
, Sema::TryCaptureKind Kind
,
19482 bool IsTopScope
, Sema
&S
, bool Invalid
) {
19483 // By default, capture variables by reference.
19485 if (IsTopScope
&& Kind
!= Sema::TryCapture_Implicit
) {
19486 ByRef
= (Kind
== Sema::TryCapture_ExplicitByRef
);
19487 } else if (S
.getLangOpts().OpenMP
&& RSI
->CapRegionKind
== CR_OpenMP
) {
19488 // Using an LValue reference type is consistent with Lambdas (see below).
19489 if (S
.isOpenMPCapturedDecl(Var
)) {
19490 bool HasConst
= DeclRefType
.isConstQualified();
19491 DeclRefType
= DeclRefType
.getUnqualifiedType();
19492 // Don't lose diagnostics about assignments to const.
19494 DeclRefType
.addConst();
19496 // Do not capture firstprivates in tasks.
19497 if (S
.isOpenMPPrivateDecl(Var
, RSI
->OpenMPLevel
, RSI
->OpenMPCaptureLevel
) !=
19500 ByRef
= S
.isOpenMPCapturedByRef(Var
, RSI
->OpenMPLevel
,
19501 RSI
->OpenMPCaptureLevel
);
19505 CaptureType
= S
.Context
.getLValueReferenceType(DeclRefType
);
19507 CaptureType
= DeclRefType
;
19509 // Actually capture the variable.
19510 if (BuildAndDiagnose
)
19511 RSI
->addCapture(Var
, /*isBlock*/ false, ByRef
, RefersToCapturedVariable
,
19512 Loc
, SourceLocation(), CaptureType
, Invalid
);
19517 /// Capture the given variable in the lambda.
19518 static bool captureInLambda(LambdaScopeInfo
*LSI
, ValueDecl
*Var
,
19519 SourceLocation Loc
, const bool BuildAndDiagnose
,
19520 QualType
&CaptureType
, QualType
&DeclRefType
,
19521 const bool RefersToCapturedVariable
,
19522 const Sema::TryCaptureKind Kind
,
19523 SourceLocation EllipsisLoc
, const bool IsTopScope
,
19524 Sema
&S
, bool Invalid
) {
19525 // Determine whether we are capturing by reference or by value.
19526 bool ByRef
= false;
19527 if (IsTopScope
&& Kind
!= Sema::TryCapture_Implicit
) {
19528 ByRef
= (Kind
== Sema::TryCapture_ExplicitByRef
);
19530 ByRef
= (LSI
->ImpCaptureStyle
== LambdaScopeInfo::ImpCap_LambdaByref
);
19533 BindingDecl
*BD
= dyn_cast
<BindingDecl
>(Var
);
19534 // FIXME: We should support capturing structured bindings in OpenMP.
19535 if (!Invalid
&& BD
&& S
.LangOpts
.OpenMP
) {
19536 if (BuildAndDiagnose
) {
19537 S
.Diag(Loc
, diag::err_capture_binding_openmp
) << Var
;
19538 S
.Diag(Var
->getLocation(), diag::note_entity_declared_at
) << Var
;
19543 if (BuildAndDiagnose
&& S
.Context
.getTargetInfo().getTriple().isWasm() &&
19544 CaptureType
.getNonReferenceType().isWebAssemblyReferenceType()) {
19545 S
.Diag(Loc
, diag::err_wasm_ca_reference
) << 0;
19549 // Compute the type of the field that will capture this variable.
19551 // C++11 [expr.prim.lambda]p15:
19552 // An entity is captured by reference if it is implicitly or
19553 // explicitly captured but not captured by copy. It is
19554 // unspecified whether additional unnamed non-static data
19555 // members are declared in the closure type for entities
19556 // captured by reference.
19558 // FIXME: It is not clear whether we want to build an lvalue reference
19559 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19560 // to do the former, while EDG does the latter. Core issue 1249 will
19561 // clarify, but for now we follow GCC because it's a more permissive and
19562 // easily defensible position.
19563 CaptureType
= S
.Context
.getLValueReferenceType(DeclRefType
);
19565 // C++11 [expr.prim.lambda]p14:
19566 // For each entity captured by copy, an unnamed non-static
19567 // data member is declared in the closure type. The
19568 // declaration order of these members is unspecified. The type
19569 // of such a data member is the type of the corresponding
19570 // captured entity if the entity is not a reference to an
19571 // object, or the referenced type otherwise. [Note: If the
19572 // captured entity is a reference to a function, the
19573 // corresponding data member is also a reference to a
19574 // function. - end note ]
19575 if (const ReferenceType
*RefType
= CaptureType
->getAs
<ReferenceType
>()){
19576 if (!RefType
->getPointeeType()->isFunctionType())
19577 CaptureType
= RefType
->getPointeeType();
19580 // Forbid the lambda copy-capture of autoreleasing variables.
19582 CaptureType
.getObjCLifetime() == Qualifiers::OCL_Autoreleasing
) {
19583 if (BuildAndDiagnose
) {
19584 S
.Diag(Loc
, diag::err_arc_autoreleasing_capture
) << /*lambda*/ 1;
19585 S
.Diag(Var
->getLocation(), diag::note_previous_decl
)
19586 << Var
->getDeclName();
19593 // Make sure that by-copy captures are of a complete and non-abstract type.
19594 if (!Invalid
&& BuildAndDiagnose
) {
19595 if (!CaptureType
->isDependentType() &&
19596 S
.RequireCompleteSizedType(
19598 diag::err_capture_of_incomplete_or_sizeless_type
,
19599 Var
->getDeclName()))
19601 else if (S
.RequireNonAbstractType(Loc
, CaptureType
,
19602 diag::err_capture_of_abstract_type
))
19607 // Compute the type of a reference to this captured variable.
19609 DeclRefType
= CaptureType
.getNonReferenceType();
19611 // C++ [expr.prim.lambda]p5:
19612 // The closure type for a lambda-expression has a public inline
19613 // function call operator [...]. This function call operator is
19614 // declared const (9.3.1) if and only if the lambda-expression's
19615 // parameter-declaration-clause is not followed by mutable.
19616 DeclRefType
= CaptureType
.getNonReferenceType();
19617 bool Const
= LSI
->lambdaCaptureShouldBeConst();
19618 if (Const
&& !CaptureType
->isReferenceType())
19619 DeclRefType
.addConst();
19622 // Add the capture.
19623 if (BuildAndDiagnose
)
19624 LSI
->addCapture(Var
, /*isBlock=*/false, ByRef
, RefersToCapturedVariable
,
19625 Loc
, EllipsisLoc
, CaptureType
, Invalid
);
19630 static bool canCaptureVariableByCopy(ValueDecl
*Var
,
19631 const ASTContext
&Context
) {
19632 // Offer a Copy fix even if the type is dependent.
19633 if (Var
->getType()->isDependentType())
19635 QualType T
= Var
->getType().getNonReferenceType();
19636 if (T
.isTriviallyCopyableType(Context
))
19638 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl()) {
19640 if (!(RD
= RD
->getDefinition()))
19642 if (RD
->hasSimpleCopyConstructor())
19644 if (RD
->hasUserDeclaredCopyConstructor())
19645 for (CXXConstructorDecl
*Ctor
: RD
->ctors())
19646 if (Ctor
->isCopyConstructor())
19647 return !Ctor
->isDeleted();
19652 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19653 /// default capture. Fixes may be omitted if they aren't allowed by the
19654 /// standard, for example we can't emit a default copy capture fix-it if we
19655 /// already explicitly copy capture capture another variable.
19656 static void buildLambdaCaptureFixit(Sema
&Sema
, LambdaScopeInfo
*LSI
,
19658 assert(LSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_None
);
19659 // Don't offer Capture by copy of default capture by copy fixes if Var is
19660 // known not to be copy constructible.
19661 bool ShouldOfferCopyFix
= canCaptureVariableByCopy(Var
, Sema
.getASTContext());
19663 SmallString
<32> FixBuffer
;
19664 StringRef Separator
= LSI
->NumExplicitCaptures
> 0 ? ", " : "";
19665 if (Var
->getDeclName().isIdentifier() && !Var
->getName().empty()) {
19666 SourceLocation VarInsertLoc
= LSI
->IntroducerRange
.getEnd();
19667 if (ShouldOfferCopyFix
) {
19668 // Offer fixes to insert an explicit capture for the variable.
19670 // [OtherCapture] -> [OtherCapture, VarName]
19671 FixBuffer
.assign({Separator
, Var
->getName()});
19672 Sema
.Diag(VarInsertLoc
, diag::note_lambda_variable_capture_fixit
)
19673 << Var
<< /*value*/ 0
19674 << FixItHint::CreateInsertion(VarInsertLoc
, FixBuffer
);
19676 // As above but capture by reference.
19677 FixBuffer
.assign({Separator
, "&", Var
->getName()});
19678 Sema
.Diag(VarInsertLoc
, diag::note_lambda_variable_capture_fixit
)
19679 << Var
<< /*reference*/ 1
19680 << FixItHint::CreateInsertion(VarInsertLoc
, FixBuffer
);
19683 // Only try to offer default capture if there are no captures excluding this
19684 // and init captures.
19687 // [&A, &B]: Don't offer.
19688 // [A, B]: Don't offer.
19689 if (llvm::any_of(LSI
->Captures
, [](Capture
&C
) {
19690 return !C
.isThisCapture() && !C
.isInitCapture();
19694 // The default capture specifiers, '=' or '&', must appear first in the
19696 SourceLocation DefaultInsertLoc
=
19697 LSI
->IntroducerRange
.getBegin().getLocWithOffset(1);
19699 if (ShouldOfferCopyFix
) {
19700 bool CanDefaultCopyCapture
= true;
19701 // [=, *this] OK since c++17
19702 // [=, this] OK since c++20
19703 if (LSI
->isCXXThisCaptured() && !Sema
.getLangOpts().CPlusPlus20
)
19704 CanDefaultCopyCapture
= Sema
.getLangOpts().CPlusPlus17
19705 ? LSI
->getCXXThisCapture().isCopyCapture()
19707 // We can't use default capture by copy if any captures already specified
19708 // capture by copy.
19709 if (CanDefaultCopyCapture
&& llvm::none_of(LSI
->Captures
, [](Capture
&C
) {
19710 return !C
.isThisCapture() && !C
.isInitCapture() && C
.isCopyCapture();
19712 FixBuffer
.assign({"=", Separator
});
19713 Sema
.Diag(DefaultInsertLoc
, diag::note_lambda_default_capture_fixit
)
19715 << FixItHint::CreateInsertion(DefaultInsertLoc
, FixBuffer
);
19719 // We can't use default capture by reference if any captures already specified
19720 // capture by reference.
19721 if (llvm::none_of(LSI
->Captures
, [](Capture
&C
) {
19722 return !C
.isInitCapture() && C
.isReferenceCapture() &&
19723 !C
.isThisCapture();
19725 FixBuffer
.assign({"&", Separator
});
19726 Sema
.Diag(DefaultInsertLoc
, diag::note_lambda_default_capture_fixit
)
19728 << FixItHint::CreateInsertion(DefaultInsertLoc
, FixBuffer
);
19732 bool Sema::tryCaptureVariable(
19733 ValueDecl
*Var
, SourceLocation ExprLoc
, TryCaptureKind Kind
,
19734 SourceLocation EllipsisLoc
, bool BuildAndDiagnose
, QualType
&CaptureType
,
19735 QualType
&DeclRefType
, const unsigned *const FunctionScopeIndexToStopAt
) {
19736 // An init-capture is notionally from the context surrounding its
19737 // declaration, but its parent DC is the lambda class.
19738 DeclContext
*VarDC
= Var
->getDeclContext();
19739 DeclContext
*DC
= CurContext
;
19741 // tryCaptureVariable is called every time a DeclRef is formed,
19742 // it can therefore have non-negigible impact on performances.
19743 // For local variables and when there is no capturing scope,
19744 // we can bailout early.
19745 if (CapturingFunctionScopes
== 0 && (!BuildAndDiagnose
|| VarDC
== DC
))
19748 const auto *VD
= dyn_cast
<VarDecl
>(Var
);
19750 if (VD
->isInitCapture())
19751 VarDC
= VarDC
->getParent();
19753 VD
= Var
->getPotentiallyDecomposedVarDecl();
19755 assert(VD
&& "Cannot capture a null variable");
19757 const unsigned MaxFunctionScopesIndex
= FunctionScopeIndexToStopAt
19758 ? *FunctionScopeIndexToStopAt
: FunctionScopes
.size() - 1;
19759 // We need to sync up the Declaration Context with the
19760 // FunctionScopeIndexToStopAt
19761 if (FunctionScopeIndexToStopAt
) {
19762 unsigned FSIndex
= FunctionScopes
.size() - 1;
19763 while (FSIndex
!= MaxFunctionScopesIndex
) {
19764 DC
= getLambdaAwareParentOfDeclContext(DC
);
19769 // Capture global variables if it is required to use private copy of this
19771 bool IsGlobal
= !VD
->hasLocalStorage();
19773 !(LangOpts
.OpenMP
&& isOpenMPCapturedDecl(Var
, /*CheckScopeInfo=*/true,
19774 MaxFunctionScopesIndex
)))
19777 if (isa
<VarDecl
>(Var
))
19778 Var
= cast
<VarDecl
>(Var
->getCanonicalDecl());
19780 // Walk up the stack to determine whether we can capture the variable,
19781 // performing the "simple" checks that don't depend on type. We stop when
19782 // we've either hit the declared scope of the variable or find an existing
19783 // capture of that variable. We start from the innermost capturing-entity
19784 // (the DC) and ensure that all intervening capturing-entities
19785 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19786 // declcontext can either capture the variable or have already captured
19788 CaptureType
= Var
->getType();
19789 DeclRefType
= CaptureType
.getNonReferenceType();
19790 bool Nested
= false;
19791 bool Explicit
= (Kind
!= TryCapture_Implicit
);
19792 unsigned FunctionScopesIndex
= MaxFunctionScopesIndex
;
19795 LambdaScopeInfo
*LSI
= nullptr;
19796 if (!FunctionScopes
.empty())
19797 LSI
= dyn_cast_or_null
<LambdaScopeInfo
>(
19798 FunctionScopes
[FunctionScopesIndex
]);
19800 bool IsInScopeDeclarationContext
=
19801 !LSI
|| LSI
->AfterParameterList
|| CurContext
== LSI
->CallOperator
;
19803 if (LSI
&& !LSI
->AfterParameterList
) {
19804 // This allows capturing parameters from a default value which does not
19806 if (isa
<ParmVarDecl
>(Var
) && !Var
->getDeclContext()->isFunctionOrMethod())
19809 // If the variable is declared in the current context, there is no need to
19811 if (IsInScopeDeclarationContext
&&
19812 FunctionScopesIndex
== MaxFunctionScopesIndex
&& VarDC
== DC
)
19815 // Only block literals, captured statements, and lambda expressions can
19816 // capture; other scopes don't work.
19817 DeclContext
*ParentDC
=
19818 !IsInScopeDeclarationContext
19820 : getParentOfCapturingContextOrNull(DC
, Var
, ExprLoc
,
19821 BuildAndDiagnose
, *this);
19822 // We need to check for the parent *first* because, if we *have*
19823 // private-captured a global variable, we need to recursively capture it in
19824 // intermediate blocks, lambdas, etc.
19827 FunctionScopesIndex
= MaxFunctionScopesIndex
- 1;
19833 FunctionScopeInfo
*FSI
= FunctionScopes
[FunctionScopesIndex
];
19834 CapturingScopeInfo
*CSI
= cast
<CapturingScopeInfo
>(FSI
);
19836 // Check whether we've already captured it.
19837 if (isVariableAlreadyCapturedInScopeInfo(CSI
, Var
, Nested
, CaptureType
,
19839 CSI
->getCapture(Var
).markUsed(BuildAndDiagnose
);
19843 // When evaluating some attributes (like enable_if) we might refer to a
19844 // function parameter appertaining to the same declaration as that
19846 if (const auto *Parm
= dyn_cast
<ParmVarDecl
>(Var
);
19847 Parm
&& Parm
->getDeclContext() == DC
)
19850 // If we are instantiating a generic lambda call operator body,
19851 // we do not want to capture new variables. What was captured
19852 // during either a lambdas transformation or initial parsing
19854 if (isGenericLambdaCallOperatorSpecialization(DC
)) {
19855 if (BuildAndDiagnose
) {
19856 LambdaScopeInfo
*LSI
= cast
<LambdaScopeInfo
>(CSI
);
19857 if (LSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_None
) {
19858 Diag(ExprLoc
, diag::err_lambda_impcap
) << Var
;
19859 Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19860 Diag(LSI
->Lambda
->getBeginLoc(), diag::note_lambda_decl
);
19861 buildLambdaCaptureFixit(*this, LSI
, Var
);
19863 diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc
, Var
);
19868 // Try to capture variable-length arrays types.
19869 if (Var
->getType()->isVariablyModifiedType()) {
19870 // We're going to walk down into the type and look for VLA
19872 QualType QTy
= Var
->getType();
19873 if (ParmVarDecl
*PVD
= dyn_cast_or_null
<ParmVarDecl
>(Var
))
19874 QTy
= PVD
->getOriginalType();
19875 captureVariablyModifiedType(Context
, QTy
, CSI
);
19878 if (getLangOpts().OpenMP
) {
19879 if (auto *RSI
= dyn_cast
<CapturedRegionScopeInfo
>(CSI
)) {
19880 // OpenMP private variables should not be captured in outer scope, so
19881 // just break here. Similarly, global variables that are captured in a
19882 // target region should not be captured outside the scope of the region.
19883 if (RSI
->CapRegionKind
== CR_OpenMP
) {
19884 OpenMPClauseKind IsOpenMPPrivateDecl
= isOpenMPPrivateDecl(
19885 Var
, RSI
->OpenMPLevel
, RSI
->OpenMPCaptureLevel
);
19886 // If the variable is private (i.e. not captured) and has variably
19887 // modified type, we still need to capture the type for correct
19888 // codegen in all regions, associated with the construct. Currently,
19889 // it is captured in the innermost captured region only.
19890 if (IsOpenMPPrivateDecl
!= OMPC_unknown
&&
19891 Var
->getType()->isVariablyModifiedType()) {
19892 QualType QTy
= Var
->getType();
19893 if (ParmVarDecl
*PVD
= dyn_cast_or_null
<ParmVarDecl
>(Var
))
19894 QTy
= PVD
->getOriginalType();
19895 for (int I
= 1, E
= getNumberOfConstructScopes(RSI
->OpenMPLevel
);
19897 auto *OuterRSI
= cast
<CapturedRegionScopeInfo
>(
19898 FunctionScopes
[FunctionScopesIndex
- I
]);
19899 assert(RSI
->OpenMPLevel
== OuterRSI
->OpenMPLevel
&&
19900 "Wrong number of captured regions associated with the "
19901 "OpenMP construct.");
19902 captureVariablyModifiedType(Context
, QTy
, OuterRSI
);
19906 IsOpenMPPrivateDecl
!= OMPC_private
&&
19907 isOpenMPTargetCapturedDecl(Var
, RSI
->OpenMPLevel
,
19908 RSI
->OpenMPCaptureLevel
);
19909 // Do not capture global if it is not privatized in outer regions.
19911 IsGlobal
&& isOpenMPGlobalCapturedDecl(Var
, RSI
->OpenMPLevel
,
19912 RSI
->OpenMPCaptureLevel
);
19914 // When we detect target captures we are looking from inside the
19915 // target region, therefore we need to propagate the capture from the
19916 // enclosing region. Therefore, the capture is not initially nested.
19918 adjustOpenMPTargetScopeIndex(FunctionScopesIndex
, RSI
->OpenMPLevel
);
19920 if (IsTargetCap
|| IsOpenMPPrivateDecl
== OMPC_private
||
19921 (IsGlobal
&& !IsGlobalCap
)) {
19922 Nested
= !IsTargetCap
;
19923 bool HasConst
= DeclRefType
.isConstQualified();
19924 DeclRefType
= DeclRefType
.getUnqualifiedType();
19925 // Don't lose diagnostics about assignments to const.
19927 DeclRefType
.addConst();
19928 CaptureType
= Context
.getLValueReferenceType(DeclRefType
);
19934 if (CSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_None
&& !Explicit
) {
19935 // No capture-default, and this is not an explicit capture
19936 // so cannot capture this variable.
19937 if (BuildAndDiagnose
) {
19938 Diag(ExprLoc
, diag::err_lambda_impcap
) << Var
;
19939 Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19940 auto *LSI
= cast
<LambdaScopeInfo
>(CSI
);
19942 Diag(LSI
->Lambda
->getBeginLoc(), diag::note_lambda_decl
);
19943 buildLambdaCaptureFixit(*this, LSI
, Var
);
19945 // FIXME: If we error out because an outer lambda can not implicitly
19946 // capture a variable that an inner lambda explicitly captures, we
19947 // should have the inner lambda do the explicit capture - because
19948 // it makes for cleaner diagnostics later. This would purely be done
19949 // so that the diagnostic does not misleadingly claim that a variable
19950 // can not be captured by a lambda implicitly even though it is captured
19951 // explicitly. Suggestion:
19952 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19953 // at the function head
19954 // - cache the StartingDeclContext - this must be a lambda
19955 // - captureInLambda in the innermost lambda the variable.
19960 FunctionScopesIndex
--;
19961 if (IsInScopeDeclarationContext
)
19963 } while (!VarDC
->Equals(DC
));
19965 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19966 // computing the type of the capture at each step, checking type-specific
19967 // requirements, and adding captures if requested.
19968 // If the variable had already been captured previously, we start capturing
19969 // at the lambda nested within that one.
19970 bool Invalid
= false;
19971 for (unsigned I
= ++FunctionScopesIndex
, N
= MaxFunctionScopesIndex
+ 1; I
!= N
;
19973 CapturingScopeInfo
*CSI
= cast
<CapturingScopeInfo
>(FunctionScopes
[I
]);
19975 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19976 // certain types of variables (unnamed, variably modified types etc.)
19977 // so check for eligibility.
19980 !isVariableCapturable(CSI
, Var
, ExprLoc
, BuildAndDiagnose
, *this);
19982 // After encountering an error, if we're actually supposed to capture, keep
19983 // capturing in nested contexts to suppress any follow-on diagnostics.
19984 if (Invalid
&& !BuildAndDiagnose
)
19987 if (BlockScopeInfo
*BSI
= dyn_cast
<BlockScopeInfo
>(CSI
)) {
19988 Invalid
= !captureInBlock(BSI
, Var
, ExprLoc
, BuildAndDiagnose
, CaptureType
,
19989 DeclRefType
, Nested
, *this, Invalid
);
19991 } else if (CapturedRegionScopeInfo
*RSI
= dyn_cast
<CapturedRegionScopeInfo
>(CSI
)) {
19992 Invalid
= !captureInCapturedRegion(
19993 RSI
, Var
, ExprLoc
, BuildAndDiagnose
, CaptureType
, DeclRefType
, Nested
,
19994 Kind
, /*IsTopScope*/ I
== N
- 1, *this, Invalid
);
19997 LambdaScopeInfo
*LSI
= cast
<LambdaScopeInfo
>(CSI
);
19999 !captureInLambda(LSI
, Var
, ExprLoc
, BuildAndDiagnose
, CaptureType
,
20000 DeclRefType
, Nested
, Kind
, EllipsisLoc
,
20001 /*IsTopScope*/ I
== N
- 1, *this, Invalid
);
20005 if (Invalid
&& !BuildAndDiagnose
)
20011 bool Sema::tryCaptureVariable(ValueDecl
*Var
, SourceLocation Loc
,
20012 TryCaptureKind Kind
, SourceLocation EllipsisLoc
) {
20013 QualType CaptureType
;
20014 QualType DeclRefType
;
20015 return tryCaptureVariable(Var
, Loc
, Kind
, EllipsisLoc
,
20016 /*BuildAndDiagnose=*/true, CaptureType
,
20017 DeclRefType
, nullptr);
20020 bool Sema::NeedToCaptureVariable(ValueDecl
*Var
, SourceLocation Loc
) {
20021 QualType CaptureType
;
20022 QualType DeclRefType
;
20023 return !tryCaptureVariable(Var
, Loc
, TryCapture_Implicit
, SourceLocation(),
20024 /*BuildAndDiagnose=*/false, CaptureType
,
20025 DeclRefType
, nullptr);
20028 QualType
Sema::getCapturedDeclRefType(ValueDecl
*Var
, SourceLocation Loc
) {
20029 QualType CaptureType
;
20030 QualType DeclRefType
;
20032 // Determine whether we can capture this variable.
20033 if (tryCaptureVariable(Var
, Loc
, TryCapture_Implicit
, SourceLocation(),
20034 /*BuildAndDiagnose=*/false, CaptureType
,
20035 DeclRefType
, nullptr))
20038 return DeclRefType
;
20042 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
20043 // The produced TemplateArgumentListInfo* points to data stored within this
20044 // object, so should only be used in contexts where the pointer will not be
20045 // used after the CopiedTemplateArgs object is destroyed.
20046 class CopiedTemplateArgs
{
20048 TemplateArgumentListInfo TemplateArgStorage
;
20050 template<typename RefExpr
>
20051 CopiedTemplateArgs(RefExpr
*E
) : HasArgs(E
->hasExplicitTemplateArgs()) {
20053 E
->copyTemplateArgumentsInto(TemplateArgStorage
);
20055 operator TemplateArgumentListInfo
*()
20056 #ifdef __has_cpp_attribute
20057 #if __has_cpp_attribute(clang::lifetimebound)
20058 [[clang::lifetimebound
]]
20062 return HasArgs
? &TemplateArgStorage
: nullptr;
20067 /// Walk the set of potential results of an expression and mark them all as
20068 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
20070 /// \return A new expression if we found any potential results, ExprEmpty() if
20071 /// not, and ExprError() if we diagnosed an error.
20072 static ExprResult
rebuildPotentialResultsAsNonOdrUsed(Sema
&S
, Expr
*E
,
20073 NonOdrUseReason NOUR
) {
20074 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
20075 // an object that satisfies the requirements for appearing in a
20076 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
20077 // is immediately applied." This function handles the lvalue-to-rvalue
20078 // conversion part.
20080 // If we encounter a node that claims to be an odr-use but shouldn't be, we
20081 // transform it into the relevant kind of non-odr-use node and rebuild the
20082 // tree of nodes leading to it.
20084 // This is a mini-TreeTransform that only transforms a restricted subset of
20085 // nodes (and only certain operands of them).
20087 // Rebuild a subexpression.
20088 auto Rebuild
= [&](Expr
*Sub
) {
20089 return rebuildPotentialResultsAsNonOdrUsed(S
, Sub
, NOUR
);
20092 // Check whether a potential result satisfies the requirements of NOUR.
20093 auto IsPotentialResultOdrUsed
= [&](NamedDecl
*D
) {
20094 // Any entity other than a VarDecl is always odr-used whenever it's named
20095 // in a potentially-evaluated expression.
20096 auto *VD
= dyn_cast
<VarDecl
>(D
);
20100 // C++2a [basic.def.odr]p4:
20101 // A variable x whose name appears as a potentially-evalauted expression
20102 // e is odr-used by e unless
20103 // -- x is a reference that is usable in constant expressions, or
20104 // -- x is a variable of non-reference type that is usable in constant
20105 // expressions and has no mutable subobjects, and e is an element of
20106 // the set of potential results of an expression of
20107 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20108 // conversion is applied, or
20109 // -- x is a variable of non-reference type, and e is an element of the
20110 // set of potential results of a discarded-value expression to which
20111 // the lvalue-to-rvalue conversion is not applied
20113 // We check the first bullet and the "potentially-evaluated" condition in
20114 // BuildDeclRefExpr. We check the type requirements in the second bullet
20115 // in CheckLValueToRValueConversionOperand below.
20118 case NOUR_Unevaluated
:
20119 llvm_unreachable("unexpected non-odr-use-reason");
20121 case NOUR_Constant
:
20122 // Constant references were handled when they were built.
20123 if (VD
->getType()->isReferenceType())
20125 if (auto *RD
= VD
->getType()->getAsCXXRecordDecl())
20126 if (RD
->hasMutableFields())
20128 if (!VD
->isUsableInConstantExpressions(S
.Context
))
20132 case NOUR_Discarded
:
20133 if (VD
->getType()->isReferenceType())
20140 // Mark that this expression does not constitute an odr-use.
20141 auto MarkNotOdrUsed
= [&] {
20142 S
.MaybeODRUseExprs
.remove(E
);
20143 if (LambdaScopeInfo
*LSI
= S
.getCurLambda())
20144 LSI
->markVariableExprAsNonODRUsed(E
);
20147 // C++2a [basic.def.odr]p2:
20148 // The set of potential results of an expression e is defined as follows:
20149 switch (E
->getStmtClass()) {
20150 // -- If e is an id-expression, ...
20151 case Expr::DeclRefExprClass
: {
20152 auto *DRE
= cast
<DeclRefExpr
>(E
);
20153 if (DRE
->isNonOdrUse() || IsPotentialResultOdrUsed(DRE
->getDecl()))
20156 // Rebuild as a non-odr-use DeclRefExpr.
20158 return DeclRefExpr::Create(
20159 S
.Context
, DRE
->getQualifierLoc(), DRE
->getTemplateKeywordLoc(),
20160 DRE
->getDecl(), DRE
->refersToEnclosingVariableOrCapture(),
20161 DRE
->getNameInfo(), DRE
->getType(), DRE
->getValueKind(),
20162 DRE
->getFoundDecl(), CopiedTemplateArgs(DRE
), NOUR
);
20165 case Expr::FunctionParmPackExprClass
: {
20166 auto *FPPE
= cast
<FunctionParmPackExpr
>(E
);
20167 // If any of the declarations in the pack is odr-used, then the expression
20168 // as a whole constitutes an odr-use.
20169 for (VarDecl
*D
: *FPPE
)
20170 if (IsPotentialResultOdrUsed(D
))
20171 return ExprEmpty();
20173 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
20174 // nothing cares about whether we marked this as an odr-use, but it might
20175 // be useful for non-compiler tools.
20180 // -- If e is a subscripting operation with an array operand...
20181 case Expr::ArraySubscriptExprClass
: {
20182 auto *ASE
= cast
<ArraySubscriptExpr
>(E
);
20183 Expr
*OldBase
= ASE
->getBase()->IgnoreImplicit();
20184 if (!OldBase
->getType()->isArrayType())
20186 ExprResult Base
= Rebuild(OldBase
);
20187 if (!Base
.isUsable())
20189 Expr
*LHS
= ASE
->getBase() == ASE
->getLHS() ? Base
.get() : ASE
->getLHS();
20190 Expr
*RHS
= ASE
->getBase() == ASE
->getRHS() ? Base
.get() : ASE
->getRHS();
20191 SourceLocation LBracketLoc
= ASE
->getBeginLoc(); // FIXME: Not stored.
20192 return S
.ActOnArraySubscriptExpr(nullptr, LHS
, LBracketLoc
, RHS
,
20193 ASE
->getRBracketLoc());
20196 case Expr::MemberExprClass
: {
20197 auto *ME
= cast
<MemberExpr
>(E
);
20198 // -- If e is a class member access expression [...] naming a non-static
20200 if (isa
<FieldDecl
>(ME
->getMemberDecl())) {
20201 ExprResult Base
= Rebuild(ME
->getBase());
20202 if (!Base
.isUsable())
20204 return MemberExpr::Create(
20205 S
.Context
, Base
.get(), ME
->isArrow(), ME
->getOperatorLoc(),
20206 ME
->getQualifierLoc(), ME
->getTemplateKeywordLoc(),
20207 ME
->getMemberDecl(), ME
->getFoundDecl(), ME
->getMemberNameInfo(),
20208 CopiedTemplateArgs(ME
), ME
->getType(), ME
->getValueKind(),
20209 ME
->getObjectKind(), ME
->isNonOdrUse());
20212 if (ME
->getMemberDecl()->isCXXInstanceMember())
20215 // -- If e is a class member access expression naming a static data member,
20217 if (ME
->isNonOdrUse() || IsPotentialResultOdrUsed(ME
->getMemberDecl()))
20220 // Rebuild as a non-odr-use MemberExpr.
20222 return MemberExpr::Create(
20223 S
.Context
, ME
->getBase(), ME
->isArrow(), ME
->getOperatorLoc(),
20224 ME
->getQualifierLoc(), ME
->getTemplateKeywordLoc(), ME
->getMemberDecl(),
20225 ME
->getFoundDecl(), ME
->getMemberNameInfo(), CopiedTemplateArgs(ME
),
20226 ME
->getType(), ME
->getValueKind(), ME
->getObjectKind(), NOUR
);
20229 case Expr::BinaryOperatorClass
: {
20230 auto *BO
= cast
<BinaryOperator
>(E
);
20231 Expr
*LHS
= BO
->getLHS();
20232 Expr
*RHS
= BO
->getRHS();
20233 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
20234 if (BO
->getOpcode() == BO_PtrMemD
) {
20235 ExprResult Sub
= Rebuild(LHS
);
20236 if (!Sub
.isUsable())
20239 // -- If e is a comma expression, ...
20240 } else if (BO
->getOpcode() == BO_Comma
) {
20241 ExprResult Sub
= Rebuild(RHS
);
20242 if (!Sub
.isUsable())
20248 return S
.BuildBinOp(nullptr, BO
->getOperatorLoc(), BO
->getOpcode(),
20252 // -- If e has the form (e1)...
20253 case Expr::ParenExprClass
: {
20254 auto *PE
= cast
<ParenExpr
>(E
);
20255 ExprResult Sub
= Rebuild(PE
->getSubExpr());
20256 if (!Sub
.isUsable())
20258 return S
.ActOnParenExpr(PE
->getLParen(), PE
->getRParen(), Sub
.get());
20261 // -- If e is a glvalue conditional expression, ...
20262 // We don't apply this to a binary conditional operator. FIXME: Should we?
20263 case Expr::ConditionalOperatorClass
: {
20264 auto *CO
= cast
<ConditionalOperator
>(E
);
20265 ExprResult LHS
= Rebuild(CO
->getLHS());
20266 if (LHS
.isInvalid())
20267 return ExprError();
20268 ExprResult RHS
= Rebuild(CO
->getRHS());
20269 if (RHS
.isInvalid())
20270 return ExprError();
20271 if (!LHS
.isUsable() && !RHS
.isUsable())
20272 return ExprEmpty();
20273 if (!LHS
.isUsable())
20274 LHS
= CO
->getLHS();
20275 if (!RHS
.isUsable())
20276 RHS
= CO
->getRHS();
20277 return S
.ActOnConditionalOp(CO
->getQuestionLoc(), CO
->getColonLoc(),
20278 CO
->getCond(), LHS
.get(), RHS
.get());
20281 // [Clang extension]
20282 // -- If e has the form __extension__ e1...
20283 case Expr::UnaryOperatorClass
: {
20284 auto *UO
= cast
<UnaryOperator
>(E
);
20285 if (UO
->getOpcode() != UO_Extension
)
20287 ExprResult Sub
= Rebuild(UO
->getSubExpr());
20288 if (!Sub
.isUsable())
20290 return S
.BuildUnaryOp(nullptr, UO
->getOperatorLoc(), UO_Extension
,
20294 // [Clang extension]
20295 // -- If e has the form _Generic(...), the set of potential results is the
20296 // union of the sets of potential results of the associated expressions.
20297 case Expr::GenericSelectionExprClass
: {
20298 auto *GSE
= cast
<GenericSelectionExpr
>(E
);
20300 SmallVector
<Expr
*, 4> AssocExprs
;
20301 bool AnyChanged
= false;
20302 for (Expr
*OrigAssocExpr
: GSE
->getAssocExprs()) {
20303 ExprResult AssocExpr
= Rebuild(OrigAssocExpr
);
20304 if (AssocExpr
.isInvalid())
20305 return ExprError();
20306 if (AssocExpr
.isUsable()) {
20307 AssocExprs
.push_back(AssocExpr
.get());
20310 AssocExprs
.push_back(OrigAssocExpr
);
20314 void *ExOrTy
= nullptr;
20315 bool IsExpr
= GSE
->isExprPredicate();
20317 ExOrTy
= GSE
->getControllingExpr();
20319 ExOrTy
= GSE
->getControllingType();
20320 return AnyChanged
? S
.CreateGenericSelectionExpr(
20321 GSE
->getGenericLoc(), GSE
->getDefaultLoc(),
20322 GSE
->getRParenLoc(), IsExpr
, ExOrTy
,
20323 GSE
->getAssocTypeSourceInfos(), AssocExprs
)
20327 // [Clang extension]
20328 // -- If e has the form __builtin_choose_expr(...), the set of potential
20329 // results is the union of the sets of potential results of the
20330 // second and third subexpressions.
20331 case Expr::ChooseExprClass
: {
20332 auto *CE
= cast
<ChooseExpr
>(E
);
20334 ExprResult LHS
= Rebuild(CE
->getLHS());
20335 if (LHS
.isInvalid())
20336 return ExprError();
20338 ExprResult RHS
= Rebuild(CE
->getLHS());
20339 if (RHS
.isInvalid())
20340 return ExprError();
20342 if (!LHS
.get() && !RHS
.get())
20343 return ExprEmpty();
20344 if (!LHS
.isUsable())
20345 LHS
= CE
->getLHS();
20346 if (!RHS
.isUsable())
20347 RHS
= CE
->getRHS();
20349 return S
.ActOnChooseExpr(CE
->getBuiltinLoc(), CE
->getCond(), LHS
.get(),
20350 RHS
.get(), CE
->getRParenLoc());
20353 // Step through non-syntactic nodes.
20354 case Expr::ConstantExprClass
: {
20355 auto *CE
= cast
<ConstantExpr
>(E
);
20356 ExprResult Sub
= Rebuild(CE
->getSubExpr());
20357 if (!Sub
.isUsable())
20359 return ConstantExpr::Create(S
.Context
, Sub
.get());
20362 // We could mostly rely on the recursive rebuilding to rebuild implicit
20363 // casts, but not at the top level, so rebuild them here.
20364 case Expr::ImplicitCastExprClass
: {
20365 auto *ICE
= cast
<ImplicitCastExpr
>(E
);
20366 // Only step through the narrow set of cast kinds we expect to encounter.
20367 // Anything else suggests we've left the region in which potential results
20369 switch (ICE
->getCastKind()) {
20371 case CK_DerivedToBase
:
20372 case CK_UncheckedDerivedToBase
: {
20373 ExprResult Sub
= Rebuild(ICE
->getSubExpr());
20374 if (!Sub
.isUsable())
20376 CXXCastPath
Path(ICE
->path());
20377 return S
.ImpCastExprToType(Sub
.get(), ICE
->getType(), ICE
->getCastKind(),
20378 ICE
->getValueKind(), &Path
);
20391 // Can't traverse through this node. Nothing to do.
20392 return ExprEmpty();
20395 ExprResult
Sema::CheckLValueToRValueConversionOperand(Expr
*E
) {
20396 // Check whether the operand is or contains an object of non-trivial C union
20398 if (E
->getType().isVolatileQualified() &&
20399 (E
->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20400 E
->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20401 checkNonTrivialCUnion(E
->getType(), E
->getExprLoc(),
20402 Sema::NTCUC_LValueToRValueVolatile
,
20403 NTCUK_Destruct
|NTCUK_Copy
);
20405 // C++2a [basic.def.odr]p4:
20406 // [...] an expression of non-volatile-qualified non-class type to which
20407 // the lvalue-to-rvalue conversion is applied [...]
20408 if (E
->getType().isVolatileQualified() || E
->getType()->getAs
<RecordType
>())
20411 ExprResult Result
=
20412 rebuildPotentialResultsAsNonOdrUsed(*this, E
, NOUR_Constant
);
20413 if (Result
.isInvalid())
20414 return ExprError();
20415 return Result
.get() ? Result
: E
;
20418 ExprResult
Sema::ActOnConstantExpression(ExprResult Res
) {
20419 Res
= CorrectDelayedTyposInExpr(Res
);
20421 if (!Res
.isUsable())
20424 // If a constant-expression is a reference to a variable where we delay
20425 // deciding whether it is an odr-use, just assume we will apply the
20426 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
20427 // (a non-type template argument), we have special handling anyway.
20428 return CheckLValueToRValueConversionOperand(Res
.get());
20431 void Sema::CleanupVarDeclMarking() {
20432 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20434 MaybeODRUseExprSet LocalMaybeODRUseExprs
;
20435 std::swap(LocalMaybeODRUseExprs
, MaybeODRUseExprs
);
20437 for (Expr
*E
: LocalMaybeODRUseExprs
) {
20438 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
20439 MarkVarDeclODRUsed(cast
<VarDecl
>(DRE
->getDecl()),
20440 DRE
->getLocation(), *this);
20441 } else if (auto *ME
= dyn_cast
<MemberExpr
>(E
)) {
20442 MarkVarDeclODRUsed(cast
<VarDecl
>(ME
->getMemberDecl()), ME
->getMemberLoc(),
20444 } else if (auto *FP
= dyn_cast
<FunctionParmPackExpr
>(E
)) {
20445 for (VarDecl
*VD
: *FP
)
20446 MarkVarDeclODRUsed(VD
, FP
->getParameterPackLocation(), *this);
20448 llvm_unreachable("Unexpected expression");
20452 assert(MaybeODRUseExprs
.empty() &&
20453 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20456 static void DoMarkPotentialCapture(Sema
&SemaRef
, SourceLocation Loc
,
20457 ValueDecl
*Var
, Expr
*E
) {
20458 VarDecl
*VD
= Var
->getPotentiallyDecomposedVarDecl();
20462 const bool RefersToEnclosingScope
=
20463 (SemaRef
.CurContext
!= VD
->getDeclContext() &&
20464 VD
->getDeclContext()->isFunctionOrMethod() && VD
->hasLocalStorage());
20465 if (RefersToEnclosingScope
) {
20466 LambdaScopeInfo
*const LSI
=
20467 SemaRef
.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20468 if (LSI
&& (!LSI
->CallOperator
||
20469 !LSI
->CallOperator
->Encloses(Var
->getDeclContext()))) {
20470 // If a variable could potentially be odr-used, defer marking it so
20471 // until we finish analyzing the full expression for any
20472 // lvalue-to-rvalue
20473 // or discarded value conversions that would obviate odr-use.
20474 // Add it to the list of potential captures that will be analyzed
20475 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20476 // unless the variable is a reference that was initialized by a constant
20477 // expression (this will never need to be captured or odr-used).
20479 // FIXME: We can simplify this a lot after implementing P0588R1.
20480 assert(E
&& "Capture variable should be used in an expression.");
20481 if (!Var
->getType()->isReferenceType() ||
20482 !VD
->isUsableInConstantExpressions(SemaRef
.Context
))
20483 LSI
->addPotentialCapture(E
->IgnoreParens());
20488 static void DoMarkVarDeclReferenced(
20489 Sema
&SemaRef
, SourceLocation Loc
, VarDecl
*Var
, Expr
*E
,
20490 llvm::DenseMap
<const VarDecl
*, int> &RefsMinusAssignments
) {
20491 assert((!E
|| isa
<DeclRefExpr
>(E
) || isa
<MemberExpr
>(E
) ||
20492 isa
<FunctionParmPackExpr
>(E
)) &&
20493 "Invalid Expr argument to DoMarkVarDeclReferenced");
20494 Var
->setReferenced();
20496 if (Var
->isInvalidDecl())
20499 auto *MSI
= Var
->getMemberSpecializationInfo();
20500 TemplateSpecializationKind TSK
= MSI
? MSI
->getTemplateSpecializationKind()
20501 : Var
->getTemplateSpecializationKind();
20503 OdrUseContext OdrUse
= isOdrUseContext(SemaRef
);
20504 bool UsableInConstantExpr
=
20505 Var
->mightBeUsableInConstantExpressions(SemaRef
.Context
);
20507 if (Var
->isLocalVarDeclOrParm() && !Var
->hasExternalStorage()) {
20508 RefsMinusAssignments
.insert({Var
, 0}).first
->getSecond()++;
20511 // C++20 [expr.const]p12:
20512 // A variable [...] is needed for constant evaluation if it is [...] a
20513 // variable whose name appears as a potentially constant evaluated
20514 // expression that is either a contexpr variable or is of non-volatile
20515 // const-qualified integral type or of reference type
20516 bool NeededForConstantEvaluation
=
20517 isPotentiallyConstantEvaluatedContext(SemaRef
) && UsableInConstantExpr
;
20519 bool NeedDefinition
=
20520 OdrUse
== OdrUseContext::Used
|| NeededForConstantEvaluation
;
20522 assert(!isa
<VarTemplatePartialSpecializationDecl
>(Var
) &&
20523 "Can't instantiate a partial template specialization.");
20525 // If this might be a member specialization of a static data member, check
20526 // the specialization is visible. We already did the checks for variable
20527 // template specializations when we created them.
20528 if (NeedDefinition
&& TSK
!= TSK_Undeclared
&&
20529 !isa
<VarTemplateSpecializationDecl
>(Var
))
20530 SemaRef
.checkSpecializationVisibility(Loc
, Var
);
20532 // Perform implicit instantiation of static data members, static data member
20533 // templates of class templates, and variable template specializations. Delay
20534 // instantiations of variable templates, except for those that could be used
20535 // in a constant expression.
20536 if (NeedDefinition
&& isTemplateInstantiation(TSK
)) {
20537 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20538 // instantiation declaration if a variable is usable in a constant
20539 // expression (among other cases).
20540 bool TryInstantiating
=
20541 TSK
== TSK_ImplicitInstantiation
||
20542 (TSK
== TSK_ExplicitInstantiationDeclaration
&& UsableInConstantExpr
);
20544 if (TryInstantiating
) {
20545 SourceLocation PointOfInstantiation
=
20546 MSI
? MSI
->getPointOfInstantiation() : Var
->getPointOfInstantiation();
20547 bool FirstInstantiation
= PointOfInstantiation
.isInvalid();
20548 if (FirstInstantiation
) {
20549 PointOfInstantiation
= Loc
;
20551 MSI
->setPointOfInstantiation(PointOfInstantiation
);
20552 // FIXME: Notify listener.
20554 Var
->setTemplateSpecializationKind(TSK
, PointOfInstantiation
);
20557 if (UsableInConstantExpr
) {
20558 // Do not defer instantiations of variables that could be used in a
20559 // constant expression.
20560 SemaRef
.runWithSufficientStackSpace(PointOfInstantiation
, [&] {
20561 SemaRef
.InstantiateVariableDefinition(PointOfInstantiation
, Var
);
20564 // Re-set the member to trigger a recomputation of the dependence bits
20565 // for the expression.
20566 if (auto *DRE
= dyn_cast_or_null
<DeclRefExpr
>(E
))
20567 DRE
->setDecl(DRE
->getDecl());
20568 else if (auto *ME
= dyn_cast_or_null
<MemberExpr
>(E
))
20569 ME
->setMemberDecl(ME
->getMemberDecl());
20570 } else if (FirstInstantiation
) {
20571 SemaRef
.PendingInstantiations
20572 .push_back(std::make_pair(Var
, PointOfInstantiation
));
20574 bool Inserted
= false;
20575 for (auto &I
: SemaRef
.SavedPendingInstantiations
) {
20576 auto Iter
= llvm::find_if(
20577 I
, [Var
](const Sema::PendingImplicitInstantiation
&P
) {
20578 return P
.first
== Var
;
20580 if (Iter
!= I
.end()) {
20581 SemaRef
.PendingInstantiations
.push_back(*Iter
);
20588 // FIXME: For a specialization of a variable template, we don't
20589 // distinguish between "declaration and type implicitly instantiated"
20590 // and "implicit instantiation of definition requested", so we have
20591 // no direct way to avoid enqueueing the pending instantiation
20593 if (isa
<VarTemplateSpecializationDecl
>(Var
) && !Inserted
)
20594 SemaRef
.PendingInstantiations
20595 .push_back(std::make_pair(Var
, PointOfInstantiation
));
20600 // C++2a [basic.def.odr]p4:
20601 // A variable x whose name appears as a potentially-evaluated expression e
20602 // is odr-used by e unless
20603 // -- x is a reference that is usable in constant expressions
20604 // -- x is a variable of non-reference type that is usable in constant
20605 // expressions and has no mutable subobjects [FIXME], and e is an
20606 // element of the set of potential results of an expression of
20607 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20608 // conversion is applied
20609 // -- x is a variable of non-reference type, and e is an element of the set
20610 // of potential results of a discarded-value expression to which the
20611 // lvalue-to-rvalue conversion is not applied [FIXME]
20613 // We check the first part of the second bullet here, and
20614 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20615 // FIXME: To get the third bullet right, we need to delay this even for
20616 // variables that are not usable in constant expressions.
20618 // If we already know this isn't an odr-use, there's nothing more to do.
20619 if (DeclRefExpr
*DRE
= dyn_cast_or_null
<DeclRefExpr
>(E
))
20620 if (DRE
->isNonOdrUse())
20622 if (MemberExpr
*ME
= dyn_cast_or_null
<MemberExpr
>(E
))
20623 if (ME
->isNonOdrUse())
20627 case OdrUseContext::None
:
20628 // In some cases, a variable may not have been marked unevaluated, if it
20629 // appears in a defaukt initializer.
20630 assert((!E
|| isa
<FunctionParmPackExpr
>(E
) ||
20631 SemaRef
.isUnevaluatedContext()) &&
20632 "missing non-odr-use marking for unevaluated decl ref");
20635 case OdrUseContext::FormallyOdrUsed
:
20636 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20640 case OdrUseContext::Used
:
20641 // If we might later find that this expression isn't actually an odr-use,
20642 // delay the marking.
20643 if (E
&& Var
->isUsableInConstantExpressions(SemaRef
.Context
))
20644 SemaRef
.MaybeODRUseExprs
.insert(E
);
20646 MarkVarDeclODRUsed(Var
, Loc
, SemaRef
);
20649 case OdrUseContext::Dependent
:
20650 // If this is a dependent context, we don't need to mark variables as
20651 // odr-used, but we may still need to track them for lambda capture.
20652 // FIXME: Do we also need to do this inside dependent typeid expressions
20653 // (which are modeled as unevaluated at this point)?
20654 DoMarkPotentialCapture(SemaRef
, Loc
, Var
, E
);
20659 static void DoMarkBindingDeclReferenced(Sema
&SemaRef
, SourceLocation Loc
,
20660 BindingDecl
*BD
, Expr
*E
) {
20661 BD
->setReferenced();
20663 if (BD
->isInvalidDecl())
20666 OdrUseContext OdrUse
= isOdrUseContext(SemaRef
);
20667 if (OdrUse
== OdrUseContext::Used
) {
20668 QualType CaptureType
, DeclRefType
;
20669 SemaRef
.tryCaptureVariable(BD
, Loc
, Sema::TryCapture_Implicit
,
20670 /*EllipsisLoc*/ SourceLocation(),
20671 /*BuildAndDiagnose*/ true, CaptureType
,
20673 /*FunctionScopeIndexToStopAt*/ nullptr);
20674 } else if (OdrUse
== OdrUseContext::Dependent
) {
20675 DoMarkPotentialCapture(SemaRef
, Loc
, BD
, E
);
20679 /// Mark a variable referenced, and check whether it is odr-used
20680 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
20681 /// used directly for normal expressions referring to VarDecl.
20682 void Sema::MarkVariableReferenced(SourceLocation Loc
, VarDecl
*Var
) {
20683 DoMarkVarDeclReferenced(*this, Loc
, Var
, nullptr, RefsMinusAssignments
);
20686 // C++ [temp.dep.expr]p3:
20687 // An id-expression is type-dependent if it contains:
20688 // - an identifier associated by name lookup with an entity captured by copy
20689 // in a lambda-expression that has an explicit object parameter whose type
20690 // is dependent ([dcl.fct]),
20691 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
20692 Sema
&SemaRef
, ValueDecl
*D
, Expr
*E
) {
20693 auto *ID
= dyn_cast
<DeclRefExpr
>(E
);
20694 if (!ID
|| ID
->isTypeDependent())
20697 auto IsDependent
= [&]() {
20698 const LambdaScopeInfo
*LSI
= SemaRef
.getCurLambda();
20701 if (!LSI
->ExplicitObjectParameter
||
20702 !LSI
->ExplicitObjectParameter
->getType()->isDependentType())
20704 if (!LSI
->CaptureMap
.count(D
))
20706 const Capture
&Cap
= LSI
->getCapture(D
);
20707 return !Cap
.isCopyCapture();
20710 ID
->setCapturedByCopyInLambdaWithExplicitObjectParameter(
20711 IsDependent
, SemaRef
.getASTContext());
20715 MarkExprReferenced(Sema
&SemaRef
, SourceLocation Loc
, Decl
*D
, Expr
*E
,
20716 bool MightBeOdrUse
,
20717 llvm::DenseMap
<const VarDecl
*, int> &RefsMinusAssignments
) {
20718 if (SemaRef
.isInOpenMPDeclareTargetContext())
20719 SemaRef
.checkDeclIsAllowedInOpenMPTarget(E
, D
);
20721 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(D
)) {
20722 DoMarkVarDeclReferenced(SemaRef
, Loc
, Var
, E
, RefsMinusAssignments
);
20723 if (SemaRef
.getLangOpts().CPlusPlus
)
20724 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef
,
20729 if (BindingDecl
*Decl
= dyn_cast
<BindingDecl
>(D
)) {
20730 DoMarkBindingDeclReferenced(SemaRef
, Loc
, Decl
, E
);
20731 if (SemaRef
.getLangOpts().CPlusPlus
)
20732 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef
,
20736 SemaRef
.MarkAnyDeclReferenced(Loc
, D
, MightBeOdrUse
);
20738 // If this is a call to a method via a cast, also mark the method in the
20739 // derived class used in case codegen can devirtualize the call.
20740 const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
);
20743 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(ME
->getMemberDecl());
20746 // Only attempt to devirtualize if this is truly a virtual call.
20747 bool IsVirtualCall
= MD
->isVirtual() &&
20748 ME
->performsVirtualDispatch(SemaRef
.getLangOpts());
20749 if (!IsVirtualCall
)
20752 // If it's possible to devirtualize the call, mark the called function
20754 CXXMethodDecl
*DM
= MD
->getDevirtualizedMethod(
20755 ME
->getBase(), SemaRef
.getLangOpts().AppleKext
);
20757 SemaRef
.MarkAnyDeclReferenced(Loc
, DM
, MightBeOdrUse
);
20760 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
20762 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
20763 /// handled with care if the DeclRefExpr is not newly-created.
20764 void Sema::MarkDeclRefReferenced(DeclRefExpr
*E
, const Expr
*Base
) {
20765 // TODO: update this with DR# once a defect report is filed.
20766 // C++11 defect. The address of a pure member should not be an ODR use, even
20767 // if it's a qualified reference.
20768 bool OdrUse
= true;
20769 if (const CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(E
->getDecl()))
20770 if (Method
->isVirtual() &&
20771 !Method
->getDevirtualizedMethod(Base
, getLangOpts().AppleKext
))
20774 if (auto *FD
= dyn_cast
<FunctionDecl
>(E
->getDecl())) {
20775 if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20776 !isImmediateFunctionContext() &&
20777 !isCheckingDefaultArgumentOrInitializer() &&
20778 FD
->isImmediateFunction() && !RebuildingImmediateInvocation
&&
20779 !FD
->isDependentContext())
20780 ExprEvalContexts
.back().ReferenceToConsteval
.insert(E
);
20782 MarkExprReferenced(*this, E
->getLocation(), E
->getDecl(), E
, OdrUse
,
20783 RefsMinusAssignments
);
20786 /// Perform reference-marking and odr-use handling for a MemberExpr.
20787 void Sema::MarkMemberReferenced(MemberExpr
*E
) {
20788 // C++11 [basic.def.odr]p2:
20789 // A non-overloaded function whose name appears as a potentially-evaluated
20790 // expression or a member of a set of candidate functions, if selected by
20791 // overload resolution when referred to from a potentially-evaluated
20792 // expression, is odr-used, unless it is a pure virtual function and its
20793 // name is not explicitly qualified.
20794 bool MightBeOdrUse
= true;
20795 if (E
->performsVirtualDispatch(getLangOpts())) {
20796 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(E
->getMemberDecl()))
20797 if (Method
->isPure())
20798 MightBeOdrUse
= false;
20800 SourceLocation Loc
=
20801 E
->getMemberLoc().isValid() ? E
->getMemberLoc() : E
->getBeginLoc();
20802 MarkExprReferenced(*this, Loc
, E
->getMemberDecl(), E
, MightBeOdrUse
,
20803 RefsMinusAssignments
);
20806 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
20807 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr
*E
) {
20808 for (VarDecl
*VD
: *E
)
20809 MarkExprReferenced(*this, E
->getParameterPackLocation(), VD
, E
, true,
20810 RefsMinusAssignments
);
20813 /// Perform marking for a reference to an arbitrary declaration. It
20814 /// marks the declaration referenced, and performs odr-use checking for
20815 /// functions and variables. This method should not be used when building a
20816 /// normal expression which refers to a variable.
20817 void Sema::MarkAnyDeclReferenced(SourceLocation Loc
, Decl
*D
,
20818 bool MightBeOdrUse
) {
20819 if (MightBeOdrUse
) {
20820 if (auto *VD
= dyn_cast
<VarDecl
>(D
)) {
20821 MarkVariableReferenced(Loc
, VD
);
20825 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
20826 MarkFunctionReferenced(Loc
, FD
, MightBeOdrUse
);
20829 D
->setReferenced();
20833 // Mark all of the declarations used by a type as referenced.
20834 // FIXME: Not fully implemented yet! We need to have a better understanding
20835 // of when we're entering a context we should not recurse into.
20836 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20837 // TreeTransforms rebuilding the type in a new context. Rather than
20838 // duplicating the TreeTransform logic, we should consider reusing it here.
20839 // Currently that causes problems when rebuilding LambdaExprs.
20840 class MarkReferencedDecls
: public RecursiveASTVisitor
<MarkReferencedDecls
> {
20842 SourceLocation Loc
;
20845 typedef RecursiveASTVisitor
<MarkReferencedDecls
> Inherited
;
20847 MarkReferencedDecls(Sema
&S
, SourceLocation Loc
) : S(S
), Loc(Loc
) { }
20849 bool TraverseTemplateArgument(const TemplateArgument
&Arg
);
20853 bool MarkReferencedDecls::TraverseTemplateArgument(
20854 const TemplateArgument
&Arg
) {
20856 // A non-type template argument is a constant-evaluated context.
20857 EnterExpressionEvaluationContext
Evaluated(
20858 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
20859 if (Arg
.getKind() == TemplateArgument::Declaration
) {
20860 if (Decl
*D
= Arg
.getAsDecl())
20861 S
.MarkAnyDeclReferenced(Loc
, D
, true);
20862 } else if (Arg
.getKind() == TemplateArgument::Expression
) {
20863 S
.MarkDeclarationsReferencedInExpr(Arg
.getAsExpr(), false);
20867 return Inherited::TraverseTemplateArgument(Arg
);
20870 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc
, QualType T
) {
20871 MarkReferencedDecls
Marker(*this, Loc
);
20872 Marker
.TraverseType(T
);
20876 /// Helper class that marks all of the declarations referenced by
20877 /// potentially-evaluated subexpressions as "referenced".
20878 class EvaluatedExprMarker
: public UsedDeclVisitor
<EvaluatedExprMarker
> {
20880 typedef UsedDeclVisitor
<EvaluatedExprMarker
> Inherited
;
20881 bool SkipLocalVariables
;
20882 ArrayRef
<const Expr
*> StopAt
;
20884 EvaluatedExprMarker(Sema
&S
, bool SkipLocalVariables
,
20885 ArrayRef
<const Expr
*> StopAt
)
20886 : Inherited(S
), SkipLocalVariables(SkipLocalVariables
), StopAt(StopAt
) {}
20888 void visitUsedDecl(SourceLocation Loc
, Decl
*D
) {
20889 S
.MarkFunctionReferenced(Loc
, cast
<FunctionDecl
>(D
));
20892 void Visit(Expr
*E
) {
20893 if (llvm::is_contained(StopAt
, E
))
20895 Inherited::Visit(E
);
20898 void VisitConstantExpr(ConstantExpr
*E
) {
20899 // Don't mark declarations within a ConstantExpression, as this expression
20900 // will be evaluated and folded to a value.
20903 void VisitDeclRefExpr(DeclRefExpr
*E
) {
20904 // If we were asked not to visit local variables, don't.
20905 if (SkipLocalVariables
) {
20906 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(E
->getDecl()))
20907 if (VD
->hasLocalStorage())
20911 // FIXME: This can trigger the instantiation of the initializer of a
20912 // variable, which can cause the expression to become value-dependent
20913 // or error-dependent. Do we need to propagate the new dependence bits?
20914 S
.MarkDeclRefReferenced(E
);
20917 void VisitMemberExpr(MemberExpr
*E
) {
20918 S
.MarkMemberReferenced(E
);
20919 Visit(E
->getBase());
20924 /// Mark any declarations that appear within this expression or any
20925 /// potentially-evaluated subexpressions as "referenced".
20927 /// \param SkipLocalVariables If true, don't mark local variables as
20929 /// \param StopAt Subexpressions that we shouldn't recurse into.
20930 void Sema::MarkDeclarationsReferencedInExpr(Expr
*E
,
20931 bool SkipLocalVariables
,
20932 ArrayRef
<const Expr
*> StopAt
) {
20933 EvaluatedExprMarker(*this, SkipLocalVariables
, StopAt
).Visit(E
);
20936 /// Emit a diagnostic when statements are reachable.
20937 /// FIXME: check for reachability even in expressions for which we don't build a
20938 /// CFG (eg, in the initializer of a global or in a constant expression).
20940 /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20941 bool Sema::DiagIfReachable(SourceLocation Loc
, ArrayRef
<const Stmt
*> Stmts
,
20942 const PartialDiagnostic
&PD
) {
20943 if (!Stmts
.empty() && getCurFunctionOrMethodDecl()) {
20944 if (!FunctionScopes
.empty())
20945 FunctionScopes
.back()->PossiblyUnreachableDiags
.push_back(
20946 sema::PossiblyUnreachableDiag(PD
, Loc
, Stmts
));
20950 // The initializer of a constexpr variable or of the first declaration of a
20951 // static data member is not syntactically a constant evaluated constant,
20952 // but nonetheless is always required to be a constant expression, so we
20953 // can skip diagnosing.
20954 // FIXME: Using the mangling context here is a hack.
20955 if (auto *VD
= dyn_cast_or_null
<VarDecl
>(
20956 ExprEvalContexts
.back().ManglingContextDecl
)) {
20957 if (VD
->isConstexpr() ||
20958 (VD
->isStaticDataMember() && VD
->isFirstDecl() && !VD
->isInline()))
20960 // FIXME: For any other kind of variable, we should build a CFG for its
20961 // initializer and check whether the context in question is reachable.
20968 /// Emit a diagnostic that describes an effect on the run-time behavior
20969 /// of the program being compiled.
20971 /// This routine emits the given diagnostic when the code currently being
20972 /// type-checked is "potentially evaluated", meaning that there is a
20973 /// possibility that the code will actually be executable. Code in sizeof()
20974 /// expressions, code used only during overload resolution, etc., are not
20975 /// potentially evaluated. This routine will suppress such diagnostics or,
20976 /// in the absolutely nutty case of potentially potentially evaluated
20977 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20980 /// This routine should be used for all diagnostics that describe the run-time
20981 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20982 /// Failure to do so will likely result in spurious diagnostics or failures
20983 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20984 bool Sema::DiagRuntimeBehavior(SourceLocation Loc
, ArrayRef
<const Stmt
*> Stmts
,
20985 const PartialDiagnostic
&PD
) {
20987 if (ExprEvalContexts
.back().isDiscardedStatementContext())
20990 switch (ExprEvalContexts
.back().Context
) {
20991 case ExpressionEvaluationContext::Unevaluated
:
20992 case ExpressionEvaluationContext::UnevaluatedList
:
20993 case ExpressionEvaluationContext::UnevaluatedAbstract
:
20994 case ExpressionEvaluationContext::DiscardedStatement
:
20995 // The argument will never be evaluated, so don't complain.
20998 case ExpressionEvaluationContext::ConstantEvaluated
:
20999 case ExpressionEvaluationContext::ImmediateFunctionContext
:
21000 // Relevant diagnostics should be produced by constant evaluation.
21003 case ExpressionEvaluationContext::PotentiallyEvaluated
:
21004 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
21005 return DiagIfReachable(Loc
, Stmts
, PD
);
21011 bool Sema::DiagRuntimeBehavior(SourceLocation Loc
, const Stmt
*Statement
,
21012 const PartialDiagnostic
&PD
) {
21013 return DiagRuntimeBehavior(
21014 Loc
, Statement
? llvm::ArrayRef(Statement
) : std::nullopt
, PD
);
21017 bool Sema::CheckCallReturnType(QualType ReturnType
, SourceLocation Loc
,
21018 CallExpr
*CE
, FunctionDecl
*FD
) {
21019 if (ReturnType
->isVoidType() || !ReturnType
->isIncompleteType())
21022 // If we're inside a decltype's expression, don't check for a valid return
21023 // type or construct temporaries until we know whether this is the last call.
21024 if (ExprEvalContexts
.back().ExprContext
==
21025 ExpressionEvaluationContextRecord::EK_Decltype
) {
21026 ExprEvalContexts
.back().DelayedDecltypeCalls
.push_back(CE
);
21030 class CallReturnIncompleteDiagnoser
: public TypeDiagnoser
{
21035 CallReturnIncompleteDiagnoser(FunctionDecl
*FD
, CallExpr
*CE
)
21036 : FD(FD
), CE(CE
) { }
21038 void diagnose(Sema
&S
, SourceLocation Loc
, QualType T
) override
{
21040 S
.Diag(Loc
, diag::err_call_incomplete_return
)
21041 << T
<< CE
->getSourceRange();
21045 S
.Diag(Loc
, diag::err_call_function_incomplete_return
)
21046 << CE
->getSourceRange() << FD
<< T
;
21047 S
.Diag(FD
->getLocation(), diag::note_entity_declared_at
)
21048 << FD
->getDeclName();
21050 } Diagnoser(FD
, CE
);
21052 if (RequireCompleteType(Loc
, ReturnType
, Diagnoser
))
21058 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
21059 // will prevent this condition from triggering, which is what we want.
21060 void Sema::DiagnoseAssignmentAsCondition(Expr
*E
) {
21061 SourceLocation Loc
;
21063 unsigned diagnostic
= diag::warn_condition_is_assignment
;
21064 bool IsOrAssign
= false;
21066 if (BinaryOperator
*Op
= dyn_cast
<BinaryOperator
>(E
)) {
21067 if (Op
->getOpcode() != BO_Assign
&& Op
->getOpcode() != BO_OrAssign
)
21070 IsOrAssign
= Op
->getOpcode() == BO_OrAssign
;
21072 // Greylist some idioms by putting them into a warning subcategory.
21073 if (ObjCMessageExpr
*ME
21074 = dyn_cast
<ObjCMessageExpr
>(Op
->getRHS()->IgnoreParenCasts())) {
21075 Selector Sel
= ME
->getSelector();
21077 // self = [<foo> init...]
21078 if (isSelfExpr(Op
->getLHS()) && ME
->getMethodFamily() == OMF_init
)
21079 diagnostic
= diag::warn_condition_is_idiomatic_assignment
;
21081 // <foo> = [<bar> nextObject]
21082 else if (Sel
.isUnarySelector() && Sel
.getNameForSlot(0) == "nextObject")
21083 diagnostic
= diag::warn_condition_is_idiomatic_assignment
;
21086 Loc
= Op
->getOperatorLoc();
21087 } else if (CXXOperatorCallExpr
*Op
= dyn_cast
<CXXOperatorCallExpr
>(E
)) {
21088 if (Op
->getOperator() != OO_Equal
&& Op
->getOperator() != OO_PipeEqual
)
21091 IsOrAssign
= Op
->getOperator() == OO_PipeEqual
;
21092 Loc
= Op
->getOperatorLoc();
21093 } else if (PseudoObjectExpr
*POE
= dyn_cast
<PseudoObjectExpr
>(E
))
21094 return DiagnoseAssignmentAsCondition(POE
->getSyntacticForm());
21096 // Not an assignment.
21100 Diag(Loc
, diagnostic
) << E
->getSourceRange();
21102 SourceLocation Open
= E
->getBeginLoc();
21103 SourceLocation Close
= getLocForEndOfToken(E
->getSourceRange().getEnd());
21104 Diag(Loc
, diag::note_condition_assign_silence
)
21105 << FixItHint::CreateInsertion(Open
, "(")
21106 << FixItHint::CreateInsertion(Close
, ")");
21109 Diag(Loc
, diag::note_condition_or_assign_to_comparison
)
21110 << FixItHint::CreateReplacement(Loc
, "!=");
21112 Diag(Loc
, diag::note_condition_assign_to_comparison
)
21113 << FixItHint::CreateReplacement(Loc
, "==");
21116 /// Redundant parentheses over an equality comparison can indicate
21117 /// that the user intended an assignment used as condition.
21118 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr
*ParenE
) {
21119 // Don't warn if the parens came from a macro.
21120 SourceLocation parenLoc
= ParenE
->getBeginLoc();
21121 if (parenLoc
.isInvalid() || parenLoc
.isMacroID())
21123 // Don't warn for dependent expressions.
21124 if (ParenE
->isTypeDependent())
21127 Expr
*E
= ParenE
->IgnoreParens();
21129 if (BinaryOperator
*opE
= dyn_cast
<BinaryOperator
>(E
))
21130 if (opE
->getOpcode() == BO_EQ
&&
21131 opE
->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context
)
21132 == Expr::MLV_Valid
) {
21133 SourceLocation Loc
= opE
->getOperatorLoc();
21135 Diag(Loc
, diag::warn_equality_with_extra_parens
) << E
->getSourceRange();
21136 SourceRange ParenERange
= ParenE
->getSourceRange();
21137 Diag(Loc
, diag::note_equality_comparison_silence
)
21138 << FixItHint::CreateRemoval(ParenERange
.getBegin())
21139 << FixItHint::CreateRemoval(ParenERange
.getEnd());
21140 Diag(Loc
, diag::note_equality_comparison_to_assign
)
21141 << FixItHint::CreateReplacement(Loc
, "=");
21145 ExprResult
Sema::CheckBooleanCondition(SourceLocation Loc
, Expr
*E
,
21146 bool IsConstexpr
) {
21147 DiagnoseAssignmentAsCondition(E
);
21148 if (ParenExpr
*parenE
= dyn_cast
<ParenExpr
>(E
))
21149 DiagnoseEqualityWithExtraParens(parenE
);
21151 ExprResult result
= CheckPlaceholderExpr(E
);
21152 if (result
.isInvalid()) return ExprError();
21155 if (!E
->isTypeDependent()) {
21156 if (getLangOpts().CPlusPlus
)
21157 return CheckCXXBooleanCondition(E
, IsConstexpr
); // C++ 6.4p4
21159 ExprResult ERes
= DefaultFunctionArrayLvalueConversion(E
);
21160 if (ERes
.isInvalid())
21161 return ExprError();
21164 QualType T
= E
->getType();
21165 if (!T
->isScalarType()) { // C99 6.8.4.1p1
21166 Diag(Loc
, diag::err_typecheck_statement_requires_scalar
)
21167 << T
<< E
->getSourceRange();
21168 return ExprError();
21170 CheckBoolLikeConversion(E
, Loc
);
21176 Sema::ConditionResult
Sema::ActOnCondition(Scope
*S
, SourceLocation Loc
,
21177 Expr
*SubExpr
, ConditionKind CK
,
21179 // MissingOK indicates whether having no condition expression is valid
21180 // (for loop) or invalid (e.g. while loop).
21182 return MissingOK
? ConditionResult() : ConditionError();
21186 case ConditionKind::Boolean
:
21187 Cond
= CheckBooleanCondition(Loc
, SubExpr
);
21190 case ConditionKind::ConstexprIf
:
21191 Cond
= CheckBooleanCondition(Loc
, SubExpr
, true);
21194 case ConditionKind::Switch
:
21195 Cond
= CheckSwitchCondition(Loc
, SubExpr
);
21198 if (Cond
.isInvalid()) {
21199 Cond
= CreateRecoveryExpr(SubExpr
->getBeginLoc(), SubExpr
->getEndLoc(),
21200 {SubExpr
}, PreferredConditionType(CK
));
21202 return ConditionError();
21204 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
21205 FullExprArg FullExpr
= MakeFullExpr(Cond
.get(), Loc
);
21206 if (!FullExpr
.get())
21207 return ConditionError();
21209 return ConditionResult(*this, nullptr, FullExpr
,
21210 CK
== ConditionKind::ConstexprIf
);
21214 /// A visitor for rebuilding a call to an __unknown_any expression
21215 /// to have an appropriate type.
21216 struct RebuildUnknownAnyFunction
21217 : StmtVisitor
<RebuildUnknownAnyFunction
, ExprResult
> {
21221 RebuildUnknownAnyFunction(Sema
&S
) : S(S
) {}
21223 ExprResult
VisitStmt(Stmt
*S
) {
21224 llvm_unreachable("unexpected statement!");
21227 ExprResult
VisitExpr(Expr
*E
) {
21228 S
.Diag(E
->getExprLoc(), diag::err_unsupported_unknown_any_call
)
21229 << E
->getSourceRange();
21230 return ExprError();
21233 /// Rebuild an expression which simply semantically wraps another
21234 /// expression which it shares the type and value kind of.
21235 template <class T
> ExprResult
rebuildSugarExpr(T
*E
) {
21236 ExprResult SubResult
= Visit(E
->getSubExpr());
21237 if (SubResult
.isInvalid()) return ExprError();
21239 Expr
*SubExpr
= SubResult
.get();
21240 E
->setSubExpr(SubExpr
);
21241 E
->setType(SubExpr
->getType());
21242 E
->setValueKind(SubExpr
->getValueKind());
21243 assert(E
->getObjectKind() == OK_Ordinary
);
21247 ExprResult
VisitParenExpr(ParenExpr
*E
) {
21248 return rebuildSugarExpr(E
);
21251 ExprResult
VisitUnaryExtension(UnaryOperator
*E
) {
21252 return rebuildSugarExpr(E
);
21255 ExprResult
VisitUnaryAddrOf(UnaryOperator
*E
) {
21256 ExprResult SubResult
= Visit(E
->getSubExpr());
21257 if (SubResult
.isInvalid()) return ExprError();
21259 Expr
*SubExpr
= SubResult
.get();
21260 E
->setSubExpr(SubExpr
);
21261 E
->setType(S
.Context
.getPointerType(SubExpr
->getType()));
21262 assert(E
->isPRValue());
21263 assert(E
->getObjectKind() == OK_Ordinary
);
21267 ExprResult
resolveDecl(Expr
*E
, ValueDecl
*VD
) {
21268 if (!isa
<FunctionDecl
>(VD
)) return VisitExpr(E
);
21270 E
->setType(VD
->getType());
21272 assert(E
->isPRValue());
21273 if (S
.getLangOpts().CPlusPlus
&&
21274 !(isa
<CXXMethodDecl
>(VD
) &&
21275 cast
<CXXMethodDecl
>(VD
)->isInstance()))
21276 E
->setValueKind(VK_LValue
);
21281 ExprResult
VisitMemberExpr(MemberExpr
*E
) {
21282 return resolveDecl(E
, E
->getMemberDecl());
21285 ExprResult
VisitDeclRefExpr(DeclRefExpr
*E
) {
21286 return resolveDecl(E
, E
->getDecl());
21291 /// Given a function expression of unknown-any type, try to rebuild it
21292 /// to have a function type.
21293 static ExprResult
rebuildUnknownAnyFunction(Sema
&S
, Expr
*FunctionExpr
) {
21294 ExprResult Result
= RebuildUnknownAnyFunction(S
).Visit(FunctionExpr
);
21295 if (Result
.isInvalid()) return ExprError();
21296 return S
.DefaultFunctionArrayConversion(Result
.get());
21300 /// A visitor for rebuilding an expression of type __unknown_anytype
21301 /// into one which resolves the type directly on the referring
21302 /// expression. Strict preservation of the original source
21303 /// structure is not a goal.
21304 struct RebuildUnknownAnyExpr
21305 : StmtVisitor
<RebuildUnknownAnyExpr
, ExprResult
> {
21309 /// The current destination type.
21312 RebuildUnknownAnyExpr(Sema
&S
, QualType CastType
)
21313 : S(S
), DestType(CastType
) {}
21315 ExprResult
VisitStmt(Stmt
*S
) {
21316 llvm_unreachable("unexpected statement!");
21319 ExprResult
VisitExpr(Expr
*E
) {
21320 S
.Diag(E
->getExprLoc(), diag::err_unsupported_unknown_any_expr
)
21321 << E
->getSourceRange();
21322 return ExprError();
21325 ExprResult
VisitCallExpr(CallExpr
*E
);
21326 ExprResult
VisitObjCMessageExpr(ObjCMessageExpr
*E
);
21328 /// Rebuild an expression which simply semantically wraps another
21329 /// expression which it shares the type and value kind of.
21330 template <class T
> ExprResult
rebuildSugarExpr(T
*E
) {
21331 ExprResult SubResult
= Visit(E
->getSubExpr());
21332 if (SubResult
.isInvalid()) return ExprError();
21333 Expr
*SubExpr
= SubResult
.get();
21334 E
->setSubExpr(SubExpr
);
21335 E
->setType(SubExpr
->getType());
21336 E
->setValueKind(SubExpr
->getValueKind());
21337 assert(E
->getObjectKind() == OK_Ordinary
);
21341 ExprResult
VisitParenExpr(ParenExpr
*E
) {
21342 return rebuildSugarExpr(E
);
21345 ExprResult
VisitUnaryExtension(UnaryOperator
*E
) {
21346 return rebuildSugarExpr(E
);
21349 ExprResult
VisitUnaryAddrOf(UnaryOperator
*E
) {
21350 const PointerType
*Ptr
= DestType
->getAs
<PointerType
>();
21352 S
.Diag(E
->getOperatorLoc(), diag::err_unknown_any_addrof
)
21353 << E
->getSourceRange();
21354 return ExprError();
21357 if (isa
<CallExpr
>(E
->getSubExpr())) {
21358 S
.Diag(E
->getOperatorLoc(), diag::err_unknown_any_addrof_call
)
21359 << E
->getSourceRange();
21360 return ExprError();
21363 assert(E
->isPRValue());
21364 assert(E
->getObjectKind() == OK_Ordinary
);
21365 E
->setType(DestType
);
21367 // Build the sub-expression as if it were an object of the pointee type.
21368 DestType
= Ptr
->getPointeeType();
21369 ExprResult SubResult
= Visit(E
->getSubExpr());
21370 if (SubResult
.isInvalid()) return ExprError();
21371 E
->setSubExpr(SubResult
.get());
21375 ExprResult
VisitImplicitCastExpr(ImplicitCastExpr
*E
);
21377 ExprResult
resolveDecl(Expr
*E
, ValueDecl
*VD
);
21379 ExprResult
VisitMemberExpr(MemberExpr
*E
) {
21380 return resolveDecl(E
, E
->getMemberDecl());
21383 ExprResult
VisitDeclRefExpr(DeclRefExpr
*E
) {
21384 return resolveDecl(E
, E
->getDecl());
21389 /// Rebuilds a call expression which yielded __unknown_anytype.
21390 ExprResult
RebuildUnknownAnyExpr::VisitCallExpr(CallExpr
*E
) {
21391 Expr
*CalleeExpr
= E
->getCallee();
21395 FK_FunctionPointer
,
21400 QualType CalleeType
= CalleeExpr
->getType();
21401 if (CalleeType
== S
.Context
.BoundMemberTy
) {
21402 assert(isa
<CXXMemberCallExpr
>(E
) || isa
<CXXOperatorCallExpr
>(E
));
21403 Kind
= FK_MemberFunction
;
21404 CalleeType
= Expr::findBoundMemberType(CalleeExpr
);
21405 } else if (const PointerType
*Ptr
= CalleeType
->getAs
<PointerType
>()) {
21406 CalleeType
= Ptr
->getPointeeType();
21407 Kind
= FK_FunctionPointer
;
21409 CalleeType
= CalleeType
->castAs
<BlockPointerType
>()->getPointeeType();
21410 Kind
= FK_BlockPointer
;
21412 const FunctionType
*FnType
= CalleeType
->castAs
<FunctionType
>();
21414 // Verify that this is a legal result type of a function.
21415 if (DestType
->isArrayType() || DestType
->isFunctionType()) {
21416 unsigned diagID
= diag::err_func_returning_array_function
;
21417 if (Kind
== FK_BlockPointer
)
21418 diagID
= diag::err_block_returning_array_function
;
21420 S
.Diag(E
->getExprLoc(), diagID
)
21421 << DestType
->isFunctionType() << DestType
;
21422 return ExprError();
21425 // Otherwise, go ahead and set DestType as the call's result.
21426 E
->setType(DestType
.getNonLValueExprType(S
.Context
));
21427 E
->setValueKind(Expr::getValueKindForType(DestType
));
21428 assert(E
->getObjectKind() == OK_Ordinary
);
21430 // Rebuild the function type, replacing the result type with DestType.
21431 const FunctionProtoType
*Proto
= dyn_cast
<FunctionProtoType
>(FnType
);
21433 // __unknown_anytype(...) is a special case used by the debugger when
21434 // it has no idea what a function's signature is.
21436 // We want to build this call essentially under the K&R
21437 // unprototyped rules, but making a FunctionNoProtoType in C++
21438 // would foul up all sorts of assumptions. However, we cannot
21439 // simply pass all arguments as variadic arguments, nor can we
21440 // portably just call the function under a non-variadic type; see
21441 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21442 // However, it turns out that in practice it is generally safe to
21443 // call a function declared as "A foo(B,C,D);" under the prototype
21444 // "A foo(B,C,D,...);". The only known exception is with the
21445 // Windows ABI, where any variadic function is implicitly cdecl
21446 // regardless of its normal CC. Therefore we change the parameter
21447 // types to match the types of the arguments.
21449 // This is a hack, but it is far superior to moving the
21450 // corresponding target-specific code from IR-gen to Sema/AST.
21452 ArrayRef
<QualType
> ParamTypes
= Proto
->getParamTypes();
21453 SmallVector
<QualType
, 8> ArgTypes
;
21454 if (ParamTypes
.empty() && Proto
->isVariadic()) { // the special case
21455 ArgTypes
.reserve(E
->getNumArgs());
21456 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; ++i
) {
21457 ArgTypes
.push_back(S
.Context
.getReferenceQualifiedType(E
->getArg(i
)));
21459 ParamTypes
= ArgTypes
;
21461 DestType
= S
.Context
.getFunctionType(DestType
, ParamTypes
,
21462 Proto
->getExtProtoInfo());
21464 DestType
= S
.Context
.getFunctionNoProtoType(DestType
,
21465 FnType
->getExtInfo());
21468 // Rebuild the appropriate pointer-to-function type.
21470 case FK_MemberFunction
:
21474 case FK_FunctionPointer
:
21475 DestType
= S
.Context
.getPointerType(DestType
);
21478 case FK_BlockPointer
:
21479 DestType
= S
.Context
.getBlockPointerType(DestType
);
21483 // Finally, we can recurse.
21484 ExprResult CalleeResult
= Visit(CalleeExpr
);
21485 if (!CalleeResult
.isUsable()) return ExprError();
21486 E
->setCallee(CalleeResult
.get());
21488 // Bind a temporary if necessary.
21489 return S
.MaybeBindToTemporary(E
);
21492 ExprResult
RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr
*E
) {
21493 // Verify that this is a legal result type of a call.
21494 if (DestType
->isArrayType() || DestType
->isFunctionType()) {
21495 S
.Diag(E
->getExprLoc(), diag::err_func_returning_array_function
)
21496 << DestType
->isFunctionType() << DestType
;
21497 return ExprError();
21500 // Rewrite the method result type if available.
21501 if (ObjCMethodDecl
*Method
= E
->getMethodDecl()) {
21502 assert(Method
->getReturnType() == S
.Context
.UnknownAnyTy
);
21503 Method
->setReturnType(DestType
);
21506 // Change the type of the message.
21507 E
->setType(DestType
.getNonReferenceType());
21508 E
->setValueKind(Expr::getValueKindForType(DestType
));
21510 return S
.MaybeBindToTemporary(E
);
21513 ExprResult
RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr
*E
) {
21514 // The only case we should ever see here is a function-to-pointer decay.
21515 if (E
->getCastKind() == CK_FunctionToPointerDecay
) {
21516 assert(E
->isPRValue());
21517 assert(E
->getObjectKind() == OK_Ordinary
);
21519 E
->setType(DestType
);
21521 // Rebuild the sub-expression as the pointee (function) type.
21522 DestType
= DestType
->castAs
<PointerType
>()->getPointeeType();
21524 ExprResult Result
= Visit(E
->getSubExpr());
21525 if (!Result
.isUsable()) return ExprError();
21527 E
->setSubExpr(Result
.get());
21529 } else if (E
->getCastKind() == CK_LValueToRValue
) {
21530 assert(E
->isPRValue());
21531 assert(E
->getObjectKind() == OK_Ordinary
);
21533 assert(isa
<BlockPointerType
>(E
->getType()));
21535 E
->setType(DestType
);
21537 // The sub-expression has to be a lvalue reference, so rebuild it as such.
21538 DestType
= S
.Context
.getLValueReferenceType(DestType
);
21540 ExprResult Result
= Visit(E
->getSubExpr());
21541 if (!Result
.isUsable()) return ExprError();
21543 E
->setSubExpr(Result
.get());
21546 llvm_unreachable("Unhandled cast type!");
21550 ExprResult
RebuildUnknownAnyExpr::resolveDecl(Expr
*E
, ValueDecl
*VD
) {
21551 ExprValueKind ValueKind
= VK_LValue
;
21552 QualType Type
= DestType
;
21554 // We know how to make this work for certain kinds of decls:
21557 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(VD
)) {
21558 if (const PointerType
*Ptr
= Type
->getAs
<PointerType
>()) {
21559 DestType
= Ptr
->getPointeeType();
21560 ExprResult Result
= resolveDecl(E
, VD
);
21561 if (Result
.isInvalid()) return ExprError();
21562 return S
.ImpCastExprToType(Result
.get(), Type
, CK_FunctionToPointerDecay
,
21566 if (!Type
->isFunctionType()) {
21567 S
.Diag(E
->getExprLoc(), diag::err_unknown_any_function
)
21568 << VD
<< E
->getSourceRange();
21569 return ExprError();
21571 if (const FunctionProtoType
*FT
= Type
->getAs
<FunctionProtoType
>()) {
21572 // We must match the FunctionDecl's type to the hack introduced in
21573 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21574 // type. See the lengthy commentary in that routine.
21575 QualType FDT
= FD
->getType();
21576 const FunctionType
*FnType
= FDT
->castAs
<FunctionType
>();
21577 const FunctionProtoType
*Proto
= dyn_cast_or_null
<FunctionProtoType
>(FnType
);
21578 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
);
21579 if (DRE
&& Proto
&& Proto
->getParamTypes().empty() && Proto
->isVariadic()) {
21580 SourceLocation Loc
= FD
->getLocation();
21581 FunctionDecl
*NewFD
= FunctionDecl::Create(
21582 S
.Context
, FD
->getDeclContext(), Loc
, Loc
,
21583 FD
->getNameInfo().getName(), DestType
, FD
->getTypeSourceInfo(),
21584 SC_None
, S
.getCurFPFeatures().isFPConstrained(),
21585 false /*isInlineSpecified*/, FD
->hasPrototype(),
21586 /*ConstexprKind*/ ConstexprSpecKind::Unspecified
);
21588 if (FD
->getQualifier())
21589 NewFD
->setQualifierInfo(FD
->getQualifierLoc());
21591 SmallVector
<ParmVarDecl
*, 16> Params
;
21592 for (const auto &AI
: FT
->param_types()) {
21593 ParmVarDecl
*Param
=
21594 S
.BuildParmVarDeclForTypedef(FD
, Loc
, AI
);
21595 Param
->setScopeInfo(0, Params
.size());
21596 Params
.push_back(Param
);
21598 NewFD
->setParams(Params
);
21599 DRE
->setDecl(NewFD
);
21600 VD
= DRE
->getDecl();
21604 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
))
21605 if (MD
->isInstance()) {
21606 ValueKind
= VK_PRValue
;
21607 Type
= S
.Context
.BoundMemberTy
;
21610 // Function references aren't l-values in C.
21611 if (!S
.getLangOpts().CPlusPlus
)
21612 ValueKind
= VK_PRValue
;
21615 } else if (isa
<VarDecl
>(VD
)) {
21616 if (const ReferenceType
*RefTy
= Type
->getAs
<ReferenceType
>()) {
21617 Type
= RefTy
->getPointeeType();
21618 } else if (Type
->isFunctionType()) {
21619 S
.Diag(E
->getExprLoc(), diag::err_unknown_any_var_function_type
)
21620 << VD
<< E
->getSourceRange();
21621 return ExprError();
21626 S
.Diag(E
->getExprLoc(), diag::err_unsupported_unknown_any_decl
)
21627 << VD
<< E
->getSourceRange();
21628 return ExprError();
21631 // Modifying the declaration like this is friendly to IR-gen but
21632 // also really dangerous.
21633 VD
->setType(DestType
);
21635 E
->setValueKind(ValueKind
);
21639 /// Check a cast of an unknown-any type. We intentionally only
21640 /// trigger this for C-style casts.
21641 ExprResult
Sema::checkUnknownAnyCast(SourceRange TypeRange
, QualType CastType
,
21642 Expr
*CastExpr
, CastKind
&CastKind
,
21643 ExprValueKind
&VK
, CXXCastPath
&Path
) {
21644 // The type we're casting to must be either void or complete.
21645 if (!CastType
->isVoidType() &&
21646 RequireCompleteType(TypeRange
.getBegin(), CastType
,
21647 diag::err_typecheck_cast_to_incomplete
))
21648 return ExprError();
21650 // Rewrite the casted expression from scratch.
21651 ExprResult result
= RebuildUnknownAnyExpr(*this, CastType
).Visit(CastExpr
);
21652 if (!result
.isUsable()) return ExprError();
21654 CastExpr
= result
.get();
21655 VK
= CastExpr
->getValueKind();
21656 CastKind
= CK_NoOp
;
21661 ExprResult
Sema::forceUnknownAnyToType(Expr
*E
, QualType ToType
) {
21662 return RebuildUnknownAnyExpr(*this, ToType
).Visit(E
);
21665 ExprResult
Sema::checkUnknownAnyArg(SourceLocation callLoc
,
21666 Expr
*arg
, QualType
¶mType
) {
21667 // If the syntactic form of the argument is not an explicit cast of
21668 // any sort, just do default argument promotion.
21669 ExplicitCastExpr
*castArg
= dyn_cast
<ExplicitCastExpr
>(arg
->IgnoreParens());
21671 ExprResult result
= DefaultArgumentPromotion(arg
);
21672 if (result
.isInvalid()) return ExprError();
21673 paramType
= result
.get()->getType();
21677 // Otherwise, use the type that was written in the explicit cast.
21678 assert(!arg
->hasPlaceholderType());
21679 paramType
= castArg
->getTypeAsWritten();
21681 // Copy-initialize a parameter of that type.
21682 InitializedEntity entity
=
21683 InitializedEntity::InitializeParameter(Context
, paramType
,
21684 /*consumed*/ false);
21685 return PerformCopyInitialization(entity
, callLoc
, arg
);
21688 static ExprResult
diagnoseUnknownAnyExpr(Sema
&S
, Expr
*E
) {
21690 unsigned diagID
= diag::err_uncasted_use_of_unknown_any
;
21692 E
= E
->IgnoreParenImpCasts();
21693 if (CallExpr
*call
= dyn_cast
<CallExpr
>(E
)) {
21694 E
= call
->getCallee();
21695 diagID
= diag::err_uncasted_call_of_unknown_any
;
21701 SourceLocation loc
;
21703 if (DeclRefExpr
*ref
= dyn_cast
<DeclRefExpr
>(E
)) {
21704 loc
= ref
->getLocation();
21705 d
= ref
->getDecl();
21706 } else if (MemberExpr
*mem
= dyn_cast
<MemberExpr
>(E
)) {
21707 loc
= mem
->getMemberLoc();
21708 d
= mem
->getMemberDecl();
21709 } else if (ObjCMessageExpr
*msg
= dyn_cast
<ObjCMessageExpr
>(E
)) {
21710 diagID
= diag::err_uncasted_call_of_unknown_any
;
21711 loc
= msg
->getSelectorStartLoc();
21712 d
= msg
->getMethodDecl();
21714 S
.Diag(loc
, diag::err_uncasted_send_to_unknown_any_method
)
21715 << static_cast<unsigned>(msg
->isClassMessage()) << msg
->getSelector()
21716 << orig
->getSourceRange();
21717 return ExprError();
21720 S
.Diag(E
->getExprLoc(), diag::err_unsupported_unknown_any_expr
)
21721 << E
->getSourceRange();
21722 return ExprError();
21725 S
.Diag(loc
, diagID
) << d
<< orig
->getSourceRange();
21727 // Never recoverable.
21728 return ExprError();
21731 /// Check for operands with placeholder types and complain if found.
21732 /// Returns ExprError() if there was an error and no recovery was possible.
21733 ExprResult
Sema::CheckPlaceholderExpr(Expr
*E
) {
21734 if (!Context
.isDependenceAllowed()) {
21735 // C cannot handle TypoExpr nodes on either side of a binop because it
21736 // doesn't handle dependent types properly, so make sure any TypoExprs have
21737 // been dealt with before checking the operands.
21738 ExprResult Result
= CorrectDelayedTyposInExpr(E
);
21739 if (!Result
.isUsable()) return ExprError();
21743 const BuiltinType
*placeholderType
= E
->getType()->getAsPlaceholderType();
21744 if (!placeholderType
) return E
;
21746 switch (placeholderType
->getKind()) {
21748 // Overloaded expressions.
21749 case BuiltinType::Overload
: {
21750 // Try to resolve a single function template specialization.
21751 // This is obligatory.
21752 ExprResult Result
= E
;
21753 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result
, false))
21756 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21757 // leaves Result unchanged on failure.
21759 if (resolveAndFixAddressOfSingleOverloadCandidate(Result
))
21762 // If that failed, try to recover with a call.
21763 tryToRecoverWithCall(Result
, PDiag(diag::err_ovl_unresolvable
),
21764 /*complain*/ true);
21768 // Bound member functions.
21769 case BuiltinType::BoundMember
: {
21770 ExprResult result
= E
;
21771 const Expr
*BME
= E
->IgnoreParens();
21772 PartialDiagnostic PD
= PDiag(diag::err_bound_member_function
);
21773 // Try to give a nicer diagnostic if it is a bound member that we recognize.
21774 if (isa
<CXXPseudoDestructorExpr
>(BME
)) {
21775 PD
= PDiag(diag::err_dtor_expr_without_call
) << /*pseudo-destructor*/ 1;
21776 } else if (const auto *ME
= dyn_cast
<MemberExpr
>(BME
)) {
21777 if (ME
->getMemberNameInfo().getName().getNameKind() ==
21778 DeclarationName::CXXDestructorName
)
21779 PD
= PDiag(diag::err_dtor_expr_without_call
) << /*destructor*/ 0;
21781 tryToRecoverWithCall(result
, PD
,
21782 /*complain*/ true);
21786 // ARC unbridged casts.
21787 case BuiltinType::ARCUnbridgedCast
: {
21788 Expr
*realCast
= stripARCUnbridgedCast(E
);
21789 diagnoseARCUnbridgedCast(realCast
);
21793 // Expressions of unknown type.
21794 case BuiltinType::UnknownAny
:
21795 return diagnoseUnknownAnyExpr(*this, E
);
21798 case BuiltinType::PseudoObject
:
21799 return checkPseudoObjectRValue(E
);
21801 case BuiltinType::BuiltinFn
: {
21802 // Accept __noop without parens by implicitly converting it to a call expr.
21803 auto *DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts());
21805 auto *FD
= cast
<FunctionDecl
>(DRE
->getDecl());
21806 unsigned BuiltinID
= FD
->getBuiltinID();
21807 if (BuiltinID
== Builtin::BI__noop
) {
21808 E
= ImpCastExprToType(E
, Context
.getPointerType(FD
->getType()),
21809 CK_BuiltinFnToFnPtr
)
21811 return CallExpr::Create(Context
, E
, /*Args=*/{}, Context
.IntTy
,
21812 VK_PRValue
, SourceLocation(),
21813 FPOptionsOverride());
21816 if (Context
.BuiltinInfo
.isInStdNamespace(BuiltinID
)) {
21817 // Any use of these other than a direct call is ill-formed as of C++20,
21818 // because they are not addressable functions. In earlier language
21819 // modes, warn and force an instantiation of the real body.
21820 Diag(E
->getBeginLoc(),
21821 getLangOpts().CPlusPlus20
21822 ? diag::err_use_of_unaddressable_function
21823 : diag::warn_cxx20_compat_use_of_unaddressable_function
);
21824 if (FD
->isImplicitlyInstantiable()) {
21825 // Require a definition here because a normal attempt at
21826 // instantiation for a builtin will be ignored, and we won't try
21827 // again later. We assume that the definition of the template
21828 // precedes this use.
21829 InstantiateFunctionDefinition(E
->getBeginLoc(), FD
,
21830 /*Recursive=*/false,
21831 /*DefinitionRequired=*/true,
21832 /*AtEndOfTU=*/false);
21834 // Produce a properly-typed reference to the function.
21836 SS
.Adopt(DRE
->getQualifierLoc());
21837 TemplateArgumentListInfo TemplateArgs
;
21838 DRE
->copyTemplateArgumentsInto(TemplateArgs
);
21839 return BuildDeclRefExpr(
21840 FD
, FD
->getType(), VK_LValue
, DRE
->getNameInfo(),
21841 DRE
->hasQualifier() ? &SS
: nullptr, DRE
->getFoundDecl(),
21842 DRE
->getTemplateKeywordLoc(),
21843 DRE
->hasExplicitTemplateArgs() ? &TemplateArgs
: nullptr);
21847 Diag(E
->getBeginLoc(), diag::err_builtin_fn_use
);
21848 return ExprError();
21851 case BuiltinType::IncompleteMatrixIdx
:
21852 Diag(cast
<MatrixSubscriptExpr
>(E
->IgnoreParens())
21855 diag::err_matrix_incomplete_index
);
21856 return ExprError();
21858 // Expressions of unknown type.
21859 case BuiltinType::OMPArraySection
:
21860 Diag(E
->getBeginLoc(), diag::err_omp_array_section_use
);
21861 return ExprError();
21863 // Expressions of unknown type.
21864 case BuiltinType::OMPArrayShaping
:
21865 return ExprError(Diag(E
->getBeginLoc(), diag::err_omp_array_shaping_use
));
21867 case BuiltinType::OMPIterator
:
21868 return ExprError(Diag(E
->getBeginLoc(), diag::err_omp_iterator_use
));
21870 // Everything else should be impossible.
21871 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21872 case BuiltinType::Id:
21873 #include "clang/Basic/OpenCLImageTypes.def"
21874 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21875 case BuiltinType::Id:
21876 #include "clang/Basic/OpenCLExtensionTypes.def"
21877 #define SVE_TYPE(Name, Id, SingletonId) \
21878 case BuiltinType::Id:
21879 #include "clang/Basic/AArch64SVEACLETypes.def"
21880 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21881 case BuiltinType::Id:
21882 #include "clang/Basic/PPCTypes.def"
21883 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21884 #include "clang/Basic/RISCVVTypes.def"
21885 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21886 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21887 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21888 #define PLACEHOLDER_TYPE(Id, SingletonId)
21889 #include "clang/AST/BuiltinTypes.def"
21893 llvm_unreachable("invalid placeholder type!");
21896 bool Sema::CheckCaseExpression(Expr
*E
) {
21897 if (E
->isTypeDependent())
21899 if (E
->isValueDependent() || E
->isIntegerConstantExpr(Context
))
21900 return E
->getType()->isIntegralOrEnumerationType();
21904 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21906 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc
, tok::TokenKind Kind
) {
21907 assert((Kind
== tok::kw___objc_yes
|| Kind
== tok::kw___objc_no
) &&
21908 "Unknown Objective-C Boolean value!");
21909 QualType BoolT
= Context
.ObjCBuiltinBoolTy
;
21910 if (!Context
.getBOOLDecl()) {
21911 LookupResult
Result(*this, &Context
.Idents
.get("BOOL"), OpLoc
,
21912 Sema::LookupOrdinaryName
);
21913 if (LookupName(Result
, getCurScope()) && Result
.isSingleResult()) {
21914 NamedDecl
*ND
= Result
.getFoundDecl();
21915 if (TypedefDecl
*TD
= dyn_cast
<TypedefDecl
>(ND
))
21916 Context
.setBOOLDecl(TD
);
21919 if (Context
.getBOOLDecl())
21920 BoolT
= Context
.getBOOLType();
21921 return new (Context
)
21922 ObjCBoolLiteralExpr(Kind
== tok::kw___objc_yes
, BoolT
, OpLoc
);
21925 ExprResult
Sema::ActOnObjCAvailabilityCheckExpr(
21926 llvm::ArrayRef
<AvailabilitySpec
> AvailSpecs
, SourceLocation AtLoc
,
21927 SourceLocation RParen
) {
21928 auto FindSpecVersion
=
21929 [&](StringRef Platform
) -> std::optional
<VersionTuple
> {
21930 auto Spec
= llvm::find_if(AvailSpecs
, [&](const AvailabilitySpec
&Spec
) {
21931 return Spec
.getPlatform() == Platform
;
21933 // Transcribe the "ios" availability check to "maccatalyst" when compiling
21934 // for "maccatalyst" if "maccatalyst" is not specified.
21935 if (Spec
== AvailSpecs
.end() && Platform
== "maccatalyst") {
21936 Spec
= llvm::find_if(AvailSpecs
, [&](const AvailabilitySpec
&Spec
) {
21937 return Spec
.getPlatform() == "ios";
21940 if (Spec
== AvailSpecs
.end())
21941 return std::nullopt
;
21942 return Spec
->getVersion();
21945 VersionTuple Version
;
21946 if (auto MaybeVersion
=
21947 FindSpecVersion(Context
.getTargetInfo().getPlatformName()))
21948 Version
= *MaybeVersion
;
21950 // The use of `@available` in the enclosing context should be analyzed to
21951 // warn when it's used inappropriately (i.e. not if(@available)).
21952 if (FunctionScopeInfo
*Context
= getCurFunctionAvailabilityContext())
21953 Context
->HasPotentialAvailabilityViolations
= true;
21955 return new (Context
)
21956 ObjCAvailabilityCheckExpr(Version
, AtLoc
, RParen
, Context
.BoolTy
);
21959 ExprResult
Sema::CreateRecoveryExpr(SourceLocation Begin
, SourceLocation End
,
21960 ArrayRef
<Expr
*> SubExprs
, QualType T
) {
21961 if (!Context
.getLangOpts().RecoveryAST
)
21962 return ExprError();
21964 if (isSFINAEContext())
21965 return ExprError();
21967 if (T
.isNull() || T
->isUndeducedType() ||
21968 !Context
.getLangOpts().RecoveryASTType
)
21969 // We don't know the concrete type, fallback to dependent type.
21970 T
= Context
.DependentTy
;
21972 return RecoveryExpr::Create(Context
, T
, Begin
, End
, SubExprs
);