[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / lib / Sema / SemaExprMember.cpp
blob2abec3d86a27d99927210119ea588c53b56c3666
1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis member access expressions.
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/Overload.h"
13 #include "clang/AST/ASTLambda.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
25 using namespace clang;
26 using namespace sema;
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33 const BaseSet &Bases) {
34 auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35 return !Bases.count(Base->getCanonicalDecl());
37 return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
40 enum IMAKind {
41 /// The reference is definitely not an instance member access.
42 IMA_Static,
44 /// The reference may be an implicit instance member access.
45 IMA_Mixed,
47 /// The reference may be to an instance member, but it might be invalid if
48 /// so, because the context is not an instance method.
49 IMA_Mixed_StaticOrExplicitContext,
51 /// The reference may be to an instance member, but it is invalid if
52 /// so, because the context is from an unrelated class.
53 IMA_Mixed_Unrelated,
55 /// The reference is definitely an implicit instance member access.
56 IMA_Instance,
58 /// The reference may be to an unresolved using declaration.
59 IMA_Unresolved,
61 /// The reference is a contextually-permitted abstract member reference.
62 IMA_Abstract,
64 /// The reference may be to an unresolved using declaration and the
65 /// context is not an instance method.
66 IMA_Unresolved_StaticOrExplicitContext,
68 // The reference refers to a field which is not a member of the containing
69 // class, which is allowed because we're in C++11 mode and the context is
70 // unevaluated.
71 IMA_Field_Uneval_Context,
73 /// All possible referrents are instance members and the current
74 /// context is not an instance method.
75 IMA_Error_StaticOrExplicitContext,
77 /// All possible referrents are instance members of an unrelated
78 /// class.
79 IMA_Error_Unrelated
82 /// The given lookup names class member(s) and is not being used for
83 /// an address-of-member expression. Classify the type of access
84 /// according to whether it's possible that this reference names an
85 /// instance member. This is best-effort in dependent contexts; it is okay to
86 /// conservatively answer "yes", in which case some errors will simply
87 /// not be caught until template-instantiation.
88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89 const LookupResult &R) {
90 assert(!R.empty() && (*R.begin())->isCXXClassMember());
92 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
94 bool isStaticOrExplicitContext =
95 SemaRef.CXXThisTypeOverride.isNull() &&
96 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic() ||
97 cast<CXXMethodDecl>(DC)->isExplicitObjectMemberFunction());
99 if (R.isUnresolvableResult())
100 return isStaticOrExplicitContext ? IMA_Unresolved_StaticOrExplicitContext
101 : IMA_Unresolved;
103 // Collect all the declaring classes of instance members we find.
104 bool hasNonInstance = false;
105 bool isField = false;
106 BaseSet Classes;
107 for (NamedDecl *D : R) {
108 // Look through any using decls.
109 D = D->getUnderlyingDecl();
111 if (D->isCXXInstanceMember()) {
112 isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
113 isa<IndirectFieldDecl>(D);
115 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
116 Classes.insert(R->getCanonicalDecl());
117 } else
118 hasNonInstance = true;
121 // If we didn't find any instance members, it can't be an implicit
122 // member reference.
123 if (Classes.empty())
124 return IMA_Static;
126 // C++11 [expr.prim.general]p12:
127 // An id-expression that denotes a non-static data member or non-static
128 // member function of a class can only be used:
129 // (...)
130 // - if that id-expression denotes a non-static data member and it
131 // appears in an unevaluated operand.
133 // This rule is specific to C++11. However, we also permit this form
134 // in unevaluated inline assembly operands, like the operand to a SIZE.
135 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
136 assert(!AbstractInstanceResult);
137 switch (SemaRef.ExprEvalContexts.back().Context) {
138 case Sema::ExpressionEvaluationContext::Unevaluated:
139 case Sema::ExpressionEvaluationContext::UnevaluatedList:
140 if (isField && SemaRef.getLangOpts().CPlusPlus11)
141 AbstractInstanceResult = IMA_Field_Uneval_Context;
142 break;
144 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
145 AbstractInstanceResult = IMA_Abstract;
146 break;
148 case Sema::ExpressionEvaluationContext::DiscardedStatement:
149 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
150 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
151 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
152 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
153 break;
156 // If the current context is not an instance method, it can't be
157 // an implicit member reference.
158 if (isStaticOrExplicitContext) {
159 if (hasNonInstance)
160 return IMA_Mixed_StaticOrExplicitContext;
162 return AbstractInstanceResult ? AbstractInstanceResult
163 : IMA_Error_StaticOrExplicitContext;
166 CXXRecordDecl *contextClass;
167 if (auto *MD = dyn_cast<CXXMethodDecl>(DC))
168 contextClass = MD->getParent()->getCanonicalDecl();
169 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
170 contextClass = RD;
171 else
172 return AbstractInstanceResult ? AbstractInstanceResult
173 : IMA_Error_StaticOrExplicitContext;
175 // [class.mfct.non-static]p3:
176 // ...is used in the body of a non-static member function of class X,
177 // if name lookup (3.4.1) resolves the name in the id-expression to a
178 // non-static non-type member of some class C [...]
179 // ...if C is not X or a base class of X, the class member access expression
180 // is ill-formed.
181 if (R.getNamingClass() &&
182 contextClass->getCanonicalDecl() !=
183 R.getNamingClass()->getCanonicalDecl()) {
184 // If the naming class is not the current context, this was a qualified
185 // member name lookup, and it's sufficient to check that we have the naming
186 // class as a base class.
187 Classes.clear();
188 Classes.insert(R.getNamingClass()->getCanonicalDecl());
191 // If we can prove that the current context is unrelated to all the
192 // declaring classes, it can't be an implicit member reference (in
193 // which case it's an error if any of those members are selected).
194 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
195 return hasNonInstance ? IMA_Mixed_Unrelated :
196 AbstractInstanceResult ? AbstractInstanceResult :
197 IMA_Error_Unrelated;
199 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
202 /// Diagnose a reference to a field with no object available.
203 static void diagnoseInstanceReference(Sema &SemaRef,
204 const CXXScopeSpec &SS,
205 NamedDecl *Rep,
206 const DeclarationNameInfo &nameInfo) {
207 SourceLocation Loc = nameInfo.getLoc();
208 SourceRange Range(Loc);
209 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
211 // Look through using shadow decls and aliases.
212 Rep = Rep->getUnderlyingDecl();
214 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
215 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
216 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
217 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
219 bool InStaticMethod = Method && Method->isStatic();
220 bool InExplicitObjectMethod =
221 Method && Method->isExplicitObjectMemberFunction();
222 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
224 std::string Replacement;
225 if (InExplicitObjectMethod) {
226 DeclarationName N = Method->getParamDecl(0)->getDeclName();
227 if (!N.isEmpty()) {
228 Replacement.append(N.getAsString());
229 Replacement.append(".");
232 if (IsField && InStaticMethod)
233 // "invalid use of member 'x' in static member function"
234 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method)
235 << Range << nameInfo.getName() << /*static*/ 0;
236 else if (IsField && InExplicitObjectMethod) {
237 auto Diag = SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method)
238 << Range << nameInfo.getName() << /*explicit*/ 1;
239 if (!Replacement.empty())
240 Diag << FixItHint::CreateInsertion(Loc, Replacement);
241 } else if (ContextClass && RepClass && SS.isEmpty() &&
242 !InExplicitObjectMethod && !InStaticMethod &&
243 !RepClass->Equals(ContextClass) &&
244 RepClass->Encloses(ContextClass))
245 // Unqualified lookup in a non-static member function found a member of an
246 // enclosing class.
247 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
248 << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
249 else if (IsField)
250 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
251 << nameInfo.getName() << Range;
252 else if (!InExplicitObjectMethod)
253 SemaRef.Diag(Loc, diag::err_member_call_without_object)
254 << Range << /*static*/ 0;
255 else {
256 if (const auto *Tpl = dyn_cast<FunctionTemplateDecl>(Rep))
257 Rep = Tpl->getTemplatedDecl();
258 const auto *Callee = cast<CXXMethodDecl>(Rep);
259 auto Diag = SemaRef.Diag(Loc, diag::err_member_call_without_object)
260 << Range << Callee->isExplicitObjectMemberFunction();
261 if (!Replacement.empty())
262 Diag << FixItHint::CreateInsertion(Loc, Replacement);
266 /// Builds an expression which might be an implicit member expression.
267 ExprResult Sema::BuildPossibleImplicitMemberExpr(
268 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
269 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
270 UnresolvedLookupExpr *AsULE) {
271 switch (ClassifyImplicitMemberAccess(*this, R)) {
272 case IMA_Instance:
273 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
275 case IMA_Mixed:
276 case IMA_Mixed_Unrelated:
277 case IMA_Unresolved:
278 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
281 case IMA_Field_Uneval_Context:
282 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
283 << R.getLookupNameInfo().getName();
284 [[fallthrough]];
285 case IMA_Static:
286 case IMA_Abstract:
287 case IMA_Mixed_StaticOrExplicitContext:
288 case IMA_Unresolved_StaticOrExplicitContext:
289 if (TemplateArgs || TemplateKWLoc.isValid())
290 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
291 return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false);
293 case IMA_Error_StaticOrExplicitContext:
294 case IMA_Error_Unrelated:
295 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
296 R.getLookupNameInfo());
297 return ExprError();
300 llvm_unreachable("unexpected instance member access kind");
303 /// Determine whether input char is from rgba component set.
304 static bool
305 IsRGBA(char c) {
306 switch (c) {
307 case 'r':
308 case 'g':
309 case 'b':
310 case 'a':
311 return true;
312 default:
313 return false;
317 // OpenCL v1.1, s6.1.7
318 // The component swizzle length must be in accordance with the acceptable
319 // vector sizes.
320 static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
322 return (len >= 1 && len <= 4) || len == 8 || len == 16;
325 /// Check an ext-vector component access expression.
327 /// VK should be set in advance to the value kind of the base
328 /// expression.
329 static QualType
330 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
331 SourceLocation OpLoc, const IdentifierInfo *CompName,
332 SourceLocation CompLoc) {
333 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
334 // see FIXME there.
336 // FIXME: This logic can be greatly simplified by splitting it along
337 // halving/not halving and reworking the component checking.
338 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
340 // The vector accessor can't exceed the number of elements.
341 const char *compStr = CompName->getNameStart();
343 // This flag determines whether or not the component is one of the four
344 // special names that indicate a subset of exactly half the elements are
345 // to be selected.
346 bool HalvingSwizzle = false;
348 // This flag determines whether or not CompName has an 's' char prefix,
349 // indicating that it is a string of hex values to be used as vector indices.
350 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
352 bool HasRepeated = false;
353 bool HasIndex[16] = {};
355 int Idx;
357 // Check that we've found one of the special components, or that the component
358 // names must come from the same set.
359 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
360 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
361 HalvingSwizzle = true;
362 } else if (!HexSwizzle &&
363 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
364 bool HasRGBA = IsRGBA(*compStr);
365 do {
366 // Ensure that xyzw and rgba components don't intermingle.
367 if (HasRGBA != IsRGBA(*compStr))
368 break;
369 if (HasIndex[Idx]) HasRepeated = true;
370 HasIndex[Idx] = true;
371 compStr++;
372 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
374 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
375 if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
376 if (S.getLangOpts().OpenCL &&
377 S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
378 const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
379 S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
380 << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
383 } else {
384 if (HexSwizzle) compStr++;
385 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
386 if (HasIndex[Idx]) HasRepeated = true;
387 HasIndex[Idx] = true;
388 compStr++;
392 if (!HalvingSwizzle && *compStr) {
393 // We didn't get to the end of the string. This means the component names
394 // didn't come from the same set *or* we encountered an illegal name.
395 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
396 << StringRef(compStr, 1) << SourceRange(CompLoc);
397 return QualType();
400 // Ensure no component accessor exceeds the width of the vector type it
401 // operates on.
402 if (!HalvingSwizzle) {
403 compStr = CompName->getNameStart();
405 if (HexSwizzle)
406 compStr++;
408 while (*compStr) {
409 if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
410 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
411 << baseType << SourceRange(CompLoc);
412 return QualType();
417 // OpenCL mode requires swizzle length to be in accordance with accepted
418 // sizes. Clang however supports arbitrary lengths for other languages.
419 if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
420 unsigned SwizzleLength = CompName->getLength();
422 if (HexSwizzle)
423 SwizzleLength--;
425 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
426 S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
427 << SwizzleLength << SourceRange(CompLoc);
428 return QualType();
432 // The component accessor looks fine - now we need to compute the actual type.
433 // The vector type is implied by the component accessor. For example,
434 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
435 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
436 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
437 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
438 : CompName->getLength();
439 if (HexSwizzle)
440 CompSize--;
442 if (CompSize == 1)
443 return vecType->getElementType();
445 if (HasRepeated)
446 VK = VK_PRValue;
448 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
449 // Now look up the TypeDefDecl from the vector type. Without this,
450 // diagostics look bad. We want extended vector types to appear built-in.
451 for (Sema::ExtVectorDeclsType::iterator
452 I = S.ExtVectorDecls.begin(S.getExternalSource()),
453 E = S.ExtVectorDecls.end();
454 I != E; ++I) {
455 if ((*I)->getUnderlyingType() == VT)
456 return S.Context.getTypedefType(*I);
459 return VT; // should never get here (a typedef type should always be found).
462 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
463 IdentifierInfo *Member,
464 const Selector &Sel,
465 ASTContext &Context) {
466 if (Member)
467 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
468 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
469 return PD;
470 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
471 return OMD;
473 for (const auto *I : PDecl->protocols()) {
474 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
475 Context))
476 return D;
478 return nullptr;
481 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
482 IdentifierInfo *Member,
483 const Selector &Sel,
484 ASTContext &Context) {
485 // Check protocols on qualified interfaces.
486 Decl *GDecl = nullptr;
487 for (const auto *I : QIdTy->quals()) {
488 if (Member)
489 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
490 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
491 GDecl = PD;
492 break;
494 // Also must look for a getter or setter name which uses property syntax.
495 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
496 GDecl = OMD;
497 break;
500 if (!GDecl) {
501 for (const auto *I : QIdTy->quals()) {
502 // Search in the protocol-qualifier list of current protocol.
503 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
504 if (GDecl)
505 return GDecl;
508 return GDecl;
511 ExprResult
512 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
513 bool IsArrow, SourceLocation OpLoc,
514 const CXXScopeSpec &SS,
515 SourceLocation TemplateKWLoc,
516 NamedDecl *FirstQualifierInScope,
517 const DeclarationNameInfo &NameInfo,
518 const TemplateArgumentListInfo *TemplateArgs) {
519 // Even in dependent contexts, try to diagnose base expressions with
520 // obviously wrong types, e.g.:
522 // T* t;
523 // t.f;
525 // In Obj-C++, however, the above expression is valid, since it could be
526 // accessing the 'f' property if T is an Obj-C interface. The extra check
527 // allows this, while still reporting an error if T is a struct pointer.
528 if (!IsArrow) {
529 const PointerType *PT = BaseType->getAs<PointerType>();
530 if (PT && (!getLangOpts().ObjC ||
531 PT->getPointeeType()->isRecordType())) {
532 assert(BaseExpr && "cannot happen with implicit member accesses");
533 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
534 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
535 return ExprError();
539 assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() ||
540 isDependentScopeSpecifier(SS) ||
541 (TemplateArgs && llvm::any_of(TemplateArgs->arguments(),
542 [](const TemplateArgumentLoc &Arg) {
543 return Arg.getArgument().isDependent();
544 })));
546 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
547 // must have pointer type, and the accessed type is the pointee.
548 return CXXDependentScopeMemberExpr::Create(
549 Context, BaseExpr, BaseType, IsArrow, OpLoc,
550 SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
551 NameInfo, TemplateArgs);
554 /// We know that the given qualified member reference points only to
555 /// declarations which do not belong to the static type of the base
556 /// expression. Diagnose the problem.
557 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
558 Expr *BaseExpr,
559 QualType BaseType,
560 const CXXScopeSpec &SS,
561 NamedDecl *rep,
562 const DeclarationNameInfo &nameInfo) {
563 // If this is an implicit member access, use a different set of
564 // diagnostics.
565 if (!BaseExpr)
566 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
568 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
569 << SS.getRange() << rep << BaseType;
572 // Check whether the declarations we found through a nested-name
573 // specifier in a member expression are actually members of the base
574 // type. The restriction here is:
576 // C++ [expr.ref]p2:
577 // ... In these cases, the id-expression shall name a
578 // member of the class or of one of its base classes.
580 // So it's perfectly legitimate for the nested-name specifier to name
581 // an unrelated class, and for us to find an overload set including
582 // decls from classes which are not superclasses, as long as the decl
583 // we actually pick through overload resolution is from a superclass.
584 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
585 QualType BaseType,
586 const CXXScopeSpec &SS,
587 const LookupResult &R) {
588 CXXRecordDecl *BaseRecord =
589 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
590 if (!BaseRecord) {
591 // We can't check this yet because the base type is still
592 // dependent.
593 assert(BaseType->isDependentType());
594 return false;
597 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
598 // If this is an implicit member reference and we find a
599 // non-instance member, it's not an error.
600 if (!BaseExpr && !(*I)->isCXXInstanceMember())
601 return false;
603 // Note that we use the DC of the decl, not the underlying decl.
604 DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
605 if (!DC->isRecord())
606 continue;
608 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
609 if (BaseRecord->getCanonicalDecl() == MemberRecord ||
610 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
611 return false;
614 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
615 R.getRepresentativeDecl(),
616 R.getLookupNameInfo());
617 return true;
620 namespace {
622 // Callback to only accept typo corrections that are either a ValueDecl or a
623 // FunctionTemplateDecl and are declared in the current record or, for a C++
624 // classes, one of its base classes.
625 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
626 public:
627 explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
628 : Record(RTy->getDecl()) {
629 // Don't add bare keywords to the consumer since they will always fail
630 // validation by virtue of not being associated with any decls.
631 WantTypeSpecifiers = false;
632 WantExpressionKeywords = false;
633 WantCXXNamedCasts = false;
634 WantFunctionLikeCasts = false;
635 WantRemainingKeywords = false;
638 bool ValidateCandidate(const TypoCorrection &candidate) override {
639 NamedDecl *ND = candidate.getCorrectionDecl();
640 // Don't accept candidates that cannot be member functions, constants,
641 // variables, or templates.
642 if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
643 return false;
645 // Accept candidates that occur in the current record.
646 if (Record->containsDecl(ND))
647 return true;
649 if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) {
650 // Accept candidates that occur in any of the current class' base classes.
651 for (const auto &BS : RD->bases()) {
652 if (const auto *BSTy = BS.getType()->getAs<RecordType>()) {
653 if (BSTy->getDecl()->containsDecl(ND))
654 return true;
659 return false;
662 std::unique_ptr<CorrectionCandidateCallback> clone() override {
663 return std::make_unique<RecordMemberExprValidatorCCC>(*this);
666 private:
667 const RecordDecl *const Record;
672 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
673 Expr *BaseExpr,
674 const RecordType *RTy,
675 SourceLocation OpLoc, bool IsArrow,
676 CXXScopeSpec &SS, bool HasTemplateArgs,
677 SourceLocation TemplateKWLoc,
678 TypoExpr *&TE) {
679 SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
680 RecordDecl *RDecl = RTy->getDecl();
681 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
682 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
683 diag::err_typecheck_incomplete_tag,
684 BaseRange))
685 return true;
687 if (HasTemplateArgs || TemplateKWLoc.isValid()) {
688 // LookupTemplateName doesn't expect these both to exist simultaneously.
689 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
691 bool MOUS;
692 return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
693 TemplateKWLoc);
696 DeclContext *DC = RDecl;
697 if (SS.isSet()) {
698 // If the member name was a qualified-id, look into the
699 // nested-name-specifier.
700 DC = SemaRef.computeDeclContext(SS, false);
702 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
703 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
704 << SS.getRange() << DC;
705 return true;
708 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
710 if (!isa<TypeDecl>(DC)) {
711 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
712 << DC << SS.getRange();
713 return true;
717 // The record definition is complete, now look up the member.
718 SemaRef.LookupQualifiedName(R, DC, SS);
720 if (!R.empty())
721 return false;
723 DeclarationName Typo = R.getLookupName();
724 SourceLocation TypoLoc = R.getNameLoc();
726 struct QueryState {
727 Sema &SemaRef;
728 DeclarationNameInfo NameInfo;
729 Sema::LookupNameKind LookupKind;
730 Sema::RedeclarationKind Redecl;
732 QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
733 R.redeclarationKind()};
734 RecordMemberExprValidatorCCC CCC(RTy);
735 TE = SemaRef.CorrectTypoDelayed(
736 R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
737 [=, &SemaRef](const TypoCorrection &TC) {
738 if (TC) {
739 assert(!TC.isKeyword() &&
740 "Got a keyword as a correction for a member!");
741 bool DroppedSpecifier =
742 TC.WillReplaceSpecifier() &&
743 Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
744 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
745 << Typo << DC << DroppedSpecifier
746 << SS.getRange());
747 } else {
748 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
751 [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
752 LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
753 R.clear(); // Ensure there's no decls lingering in the shared state.
754 R.suppressDiagnostics();
755 R.setLookupName(TC.getCorrection());
756 for (NamedDecl *ND : TC)
757 R.addDecl(ND);
758 R.resolveKind();
759 return SemaRef.BuildMemberReferenceExpr(
760 BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
761 nullptr, R, nullptr, nullptr);
763 Sema::CTK_ErrorRecovery, DC);
765 return false;
768 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
769 ExprResult &BaseExpr, bool &IsArrow,
770 SourceLocation OpLoc, CXXScopeSpec &SS,
771 Decl *ObjCImpDecl, bool HasTemplateArgs,
772 SourceLocation TemplateKWLoc);
774 ExprResult
775 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
776 SourceLocation OpLoc, bool IsArrow,
777 CXXScopeSpec &SS,
778 SourceLocation TemplateKWLoc,
779 NamedDecl *FirstQualifierInScope,
780 const DeclarationNameInfo &NameInfo,
781 const TemplateArgumentListInfo *TemplateArgs,
782 const Scope *S,
783 ActOnMemberAccessExtraArgs *ExtraArgs) {
784 if (BaseType->isDependentType() ||
785 (SS.isSet() && isDependentScopeSpecifier(SS)))
786 return ActOnDependentMemberExpr(Base, BaseType,
787 IsArrow, OpLoc,
788 SS, TemplateKWLoc, FirstQualifierInScope,
789 NameInfo, TemplateArgs);
791 LookupResult R(*this, NameInfo, LookupMemberName);
793 // Implicit member accesses.
794 if (!Base) {
795 TypoExpr *TE = nullptr;
796 QualType RecordTy = BaseType;
797 if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
798 if (LookupMemberExprInRecord(
799 *this, R, nullptr, RecordTy->castAs<RecordType>(), OpLoc, IsArrow,
800 SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
801 return ExprError();
802 if (TE)
803 return TE;
805 // Explicit member accesses.
806 } else {
807 ExprResult BaseResult = Base;
808 ExprResult Result =
809 LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
810 ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
811 TemplateArgs != nullptr, TemplateKWLoc);
813 if (BaseResult.isInvalid())
814 return ExprError();
815 Base = BaseResult.get();
817 if (Result.isInvalid())
818 return ExprError();
820 if (Result.get())
821 return Result;
823 // LookupMemberExpr can modify Base, and thus change BaseType
824 BaseType = Base->getType();
827 return BuildMemberReferenceExpr(Base, BaseType,
828 OpLoc, IsArrow, SS, TemplateKWLoc,
829 FirstQualifierInScope, R, TemplateArgs, S,
830 false, ExtraArgs);
833 ExprResult
834 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
835 SourceLocation loc,
836 IndirectFieldDecl *indirectField,
837 DeclAccessPair foundDecl,
838 Expr *baseObjectExpr,
839 SourceLocation opLoc) {
840 // First, build the expression that refers to the base object.
842 // Case 1: the base of the indirect field is not a field.
843 VarDecl *baseVariable = indirectField->getVarDecl();
844 CXXScopeSpec EmptySS;
845 if (baseVariable) {
846 assert(baseVariable->getType()->isRecordType());
848 // In principle we could have a member access expression that
849 // accesses an anonymous struct/union that's a static member of
850 // the base object's class. However, under the current standard,
851 // static data members cannot be anonymous structs or unions.
852 // Supporting this is as easy as building a MemberExpr here.
853 assert(!baseObjectExpr && "anonymous struct/union is static data member?");
855 DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
857 ExprResult result
858 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
859 if (result.isInvalid()) return ExprError();
861 baseObjectExpr = result.get();
864 assert((baseVariable || baseObjectExpr) &&
865 "referencing anonymous struct/union without a base variable or "
866 "expression");
868 // Build the implicit member references to the field of the
869 // anonymous struct/union.
870 Expr *result = baseObjectExpr;
871 IndirectFieldDecl::chain_iterator
872 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
874 // Case 2: the base of the indirect field is a field and the user
875 // wrote a member expression.
876 if (!baseVariable) {
877 FieldDecl *field = cast<FieldDecl>(*FI);
879 bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
881 // Make a nameInfo that properly uses the anonymous name.
882 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
884 // Build the first member access in the chain with full information.
885 result =
886 BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
887 SS, field, foundDecl, memberNameInfo)
888 .get();
889 if (!result)
890 return ExprError();
893 // In all cases, we should now skip the first declaration in the chain.
894 ++FI;
896 while (FI != FEnd) {
897 FieldDecl *field = cast<FieldDecl>(*FI++);
899 // FIXME: these are somewhat meaningless
900 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
901 DeclAccessPair fakeFoundDecl =
902 DeclAccessPair::make(field, field->getAccess());
904 result =
905 BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
906 (FI == FEnd ? SS : EmptySS), field,
907 fakeFoundDecl, memberNameInfo)
908 .get();
911 return result;
914 static ExprResult
915 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
916 const CXXScopeSpec &SS,
917 MSPropertyDecl *PD,
918 const DeclarationNameInfo &NameInfo) {
919 // Property names are always simple identifiers and therefore never
920 // require any interesting additional storage.
921 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
922 S.Context.PseudoObjectTy, VK_LValue,
923 SS.getWithLocInContext(S.Context),
924 NameInfo.getLoc());
927 MemberExpr *Sema::BuildMemberExpr(
928 Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
929 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
930 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
931 QualType Ty, ExprValueKind VK, ExprObjectKind OK,
932 const TemplateArgumentListInfo *TemplateArgs) {
933 NestedNameSpecifierLoc NNS =
934 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
935 return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
936 FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
937 VK, OK, TemplateArgs);
940 MemberExpr *Sema::BuildMemberExpr(
941 Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
942 SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
943 bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
944 QualType Ty, ExprValueKind VK, ExprObjectKind OK,
945 const TemplateArgumentListInfo *TemplateArgs) {
946 assert((!IsArrow || Base->isPRValue()) &&
947 "-> base must be a pointer prvalue");
948 MemberExpr *E =
949 MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
950 Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
951 VK, OK, getNonOdrUseReasonInCurrentContext(Member));
952 E->setHadMultipleCandidates(HadMultipleCandidates);
953 MarkMemberReferenced(E);
955 // C++ [except.spec]p17:
956 // An exception-specification is considered to be needed when:
957 // - in an expression the function is the unique lookup result or the
958 // selected member of a set of overloaded functions
959 if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
960 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
961 if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
962 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
966 return E;
969 /// Determine if the given scope is within a function-try-block handler.
970 static bool IsInFnTryBlockHandler(const Scope *S) {
971 // Walk the scope stack until finding a FnTryCatchScope, or leave the
972 // function scope. If a FnTryCatchScope is found, check whether the TryScope
973 // flag is set. If it is not, it's a function-try-block handler.
974 for (; S != S->getFnParent(); S = S->getParent()) {
975 if (S->isFnTryCatchScope())
976 return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
978 return false;
981 ExprResult
982 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
983 SourceLocation OpLoc, bool IsArrow,
984 const CXXScopeSpec &SS,
985 SourceLocation TemplateKWLoc,
986 NamedDecl *FirstQualifierInScope,
987 LookupResult &R,
988 const TemplateArgumentListInfo *TemplateArgs,
989 const Scope *S,
990 bool SuppressQualifierCheck,
991 ActOnMemberAccessExtraArgs *ExtraArgs) {
992 QualType BaseType = BaseExprType;
993 if (IsArrow) {
994 assert(BaseType->isPointerType());
995 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
997 R.setBaseObjectType(BaseType);
999 // C++1z [expr.ref]p2:
1000 // For the first option (dot) the first expression shall be a glvalue [...]
1001 if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) {
1002 ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
1003 if (Converted.isInvalid())
1004 return ExprError();
1005 BaseExpr = Converted.get();
1008 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
1009 DeclarationName MemberName = MemberNameInfo.getName();
1010 SourceLocation MemberLoc = MemberNameInfo.getLoc();
1012 if (R.isAmbiguous())
1013 return ExprError();
1015 // [except.handle]p10: Referring to any non-static member or base class of an
1016 // object in the handler for a function-try-block of a constructor or
1017 // destructor for that object results in undefined behavior.
1018 const auto *FD = getCurFunctionDecl();
1019 if (S && BaseExpr && FD &&
1020 (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
1021 isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
1022 IsInFnTryBlockHandler(S))
1023 Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
1024 << isa<CXXDestructorDecl>(FD);
1026 if (R.empty()) {
1027 // Rederive where we looked up.
1028 DeclContext *DC = (SS.isSet()
1029 ? computeDeclContext(SS, false)
1030 : BaseType->castAs<RecordType>()->getDecl());
1032 if (ExtraArgs) {
1033 ExprResult RetryExpr;
1034 if (!IsArrow && BaseExpr) {
1035 SFINAETrap Trap(*this, true);
1036 ParsedType ObjectType;
1037 bool MayBePseudoDestructor = false;
1038 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1039 OpLoc, tok::arrow, ObjectType,
1040 MayBePseudoDestructor);
1041 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1042 CXXScopeSpec TempSS(SS);
1043 RetryExpr = ActOnMemberAccessExpr(
1044 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1045 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1047 if (Trap.hasErrorOccurred())
1048 RetryExpr = ExprError();
1050 if (RetryExpr.isUsable()) {
1051 Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1052 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1053 return RetryExpr;
1057 Diag(R.getNameLoc(), diag::err_no_member)
1058 << MemberName << DC
1059 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1060 return ExprError();
1063 // Diagnose lookups that find only declarations from a non-base
1064 // type. This is possible for either qualified lookups (which may
1065 // have been qualified with an unrelated type) or implicit member
1066 // expressions (which were found with unqualified lookup and thus
1067 // may have come from an enclosing scope). Note that it's okay for
1068 // lookup to find declarations from a non-base type as long as those
1069 // aren't the ones picked by overload resolution.
1070 if ((SS.isSet() || !BaseExpr ||
1071 (isa<CXXThisExpr>(BaseExpr) &&
1072 cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1073 !SuppressQualifierCheck &&
1074 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1075 return ExprError();
1077 // Construct an unresolved result if we in fact got an unresolved
1078 // result.
1079 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1080 // Suppress any lookup-related diagnostics; we'll do these when we
1081 // pick a member.
1082 R.suppressDiagnostics();
1084 UnresolvedMemberExpr *MemExpr
1085 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1086 BaseExpr, BaseExprType,
1087 IsArrow, OpLoc,
1088 SS.getWithLocInContext(Context),
1089 TemplateKWLoc, MemberNameInfo,
1090 TemplateArgs, R.begin(), R.end());
1092 return MemExpr;
1095 assert(R.isSingleResult());
1096 DeclAccessPair FoundDecl = R.begin().getPair();
1097 NamedDecl *MemberDecl = R.getFoundDecl();
1099 // FIXME: diagnose the presence of template arguments now.
1101 // If the decl being referenced had an error, return an error for this
1102 // sub-expr without emitting another error, in order to avoid cascading
1103 // error cases.
1104 if (MemberDecl->isInvalidDecl())
1105 return ExprError();
1107 // Handle the implicit-member-access case.
1108 if (!BaseExpr) {
1109 // If this is not an instance member, convert to a non-member access.
1110 if (!MemberDecl->isCXXInstanceMember()) {
1111 // We might have a variable template specialization (or maybe one day a
1112 // member concept-id).
1113 if (TemplateArgs || TemplateKWLoc.isValid())
1114 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs);
1116 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1117 FoundDecl, TemplateArgs);
1119 SourceLocation Loc = R.getNameLoc();
1120 if (SS.getRange().isValid())
1121 Loc = SS.getRange().getBegin();
1122 BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1125 // Check the use of this member.
1126 if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1127 return ExprError();
1129 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1130 return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1131 MemberNameInfo);
1133 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1134 return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1135 MemberNameInfo);
1137 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1138 // We may have found a field within an anonymous union or struct
1139 // (C++ [class.union]).
1140 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1141 FoundDecl, BaseExpr,
1142 OpLoc);
1144 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1145 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1146 FoundDecl, /*HadMultipleCandidates=*/false,
1147 MemberNameInfo, Var->getType().getNonReferenceType(),
1148 VK_LValue, OK_Ordinary);
1151 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1152 ExprValueKind valueKind;
1153 QualType type;
1154 if (MemberFn->isInstance()) {
1155 valueKind = VK_PRValue;
1156 type = Context.BoundMemberTy;
1157 } else {
1158 valueKind = VK_LValue;
1159 type = MemberFn->getType();
1162 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1163 MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1164 MemberNameInfo, type, valueKind, OK_Ordinary);
1166 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1168 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1169 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1170 FoundDecl, /*HadMultipleCandidates=*/false,
1171 MemberNameInfo, Enum->getType(), VK_PRValue,
1172 OK_Ordinary);
1175 if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1176 if (!TemplateArgs) {
1177 diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc);
1178 return ExprError();
1181 DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
1182 MemberNameInfo.getLoc(), *TemplateArgs);
1183 if (VDecl.isInvalid())
1184 return ExprError();
1186 // Non-dependent member, but dependent template arguments.
1187 if (!VDecl.get())
1188 return ActOnDependentMemberExpr(
1189 BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1190 FirstQualifierInScope, MemberNameInfo, TemplateArgs);
1192 VarDecl *Var = cast<VarDecl>(VDecl.get());
1193 if (!Var->getTemplateSpecializationKind())
1194 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc);
1196 return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1197 FoundDecl, /*HadMultipleCandidates=*/false,
1198 MemberNameInfo, Var->getType().getNonReferenceType(),
1199 VK_LValue, OK_Ordinary, TemplateArgs);
1202 // We found something that we didn't expect. Complain.
1203 if (isa<TypeDecl>(MemberDecl))
1204 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1205 << MemberName << BaseType << int(IsArrow);
1206 else
1207 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1208 << MemberName << BaseType << int(IsArrow);
1210 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1211 << MemberName;
1212 R.suppressDiagnostics();
1213 return ExprError();
1216 /// Given that normal member access failed on the given expression,
1217 /// and given that the expression's type involves builtin-id or
1218 /// builtin-Class, decide whether substituting in the redefinition
1219 /// types would be profitable. The redefinition type is whatever
1220 /// this translation unit tried to typedef to id/Class; we store
1221 /// it to the side and then re-use it in places like this.
1222 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1223 const ObjCObjectPointerType *opty
1224 = base.get()->getType()->getAs<ObjCObjectPointerType>();
1225 if (!opty) return false;
1227 const ObjCObjectType *ty = opty->getObjectType();
1229 QualType redef;
1230 if (ty->isObjCId()) {
1231 redef = S.Context.getObjCIdRedefinitionType();
1232 } else if (ty->isObjCClass()) {
1233 redef = S.Context.getObjCClassRedefinitionType();
1234 } else {
1235 return false;
1238 // Do the substitution as long as the redefinition type isn't just a
1239 // possibly-qualified pointer to builtin-id or builtin-Class again.
1240 opty = redef->getAs<ObjCObjectPointerType>();
1241 if (opty && !opty->getObjectType()->getInterface())
1242 return false;
1244 base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1245 return true;
1248 static bool isRecordType(QualType T) {
1249 return T->isRecordType();
1251 static bool isPointerToRecordType(QualType T) {
1252 if (const PointerType *PT = T->getAs<PointerType>())
1253 return PT->getPointeeType()->isRecordType();
1254 return false;
1257 /// Perform conversions on the LHS of a member access expression.
1258 ExprResult
1259 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1260 if (IsArrow && !Base->getType()->isFunctionType())
1261 return DefaultFunctionArrayLvalueConversion(Base);
1263 return CheckPlaceholderExpr(Base);
1266 /// Look up the given member of the given non-type-dependent
1267 /// expression. This can return in one of two ways:
1268 /// * If it returns a sentinel null-but-valid result, the caller will
1269 /// assume that lookup was performed and the results written into
1270 /// the provided structure. It will take over from there.
1271 /// * Otherwise, the returned expression will be produced in place of
1272 /// an ordinary member expression.
1274 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1275 /// fixed for ObjC++.
1276 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1277 ExprResult &BaseExpr, bool &IsArrow,
1278 SourceLocation OpLoc, CXXScopeSpec &SS,
1279 Decl *ObjCImpDecl, bool HasTemplateArgs,
1280 SourceLocation TemplateKWLoc) {
1281 assert(BaseExpr.get() && "no base expression");
1283 // Perform default conversions.
1284 BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1285 if (BaseExpr.isInvalid())
1286 return ExprError();
1288 QualType BaseType = BaseExpr.get()->getType();
1289 assert(!BaseType->isDependentType());
1291 DeclarationName MemberName = R.getLookupName();
1292 SourceLocation MemberLoc = R.getNameLoc();
1294 // For later type-checking purposes, turn arrow accesses into dot
1295 // accesses. The only access type we support that doesn't follow
1296 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1297 // and those never use arrows, so this is unaffected.
1298 if (IsArrow) {
1299 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1300 BaseType = Ptr->getPointeeType();
1301 else if (const ObjCObjectPointerType *Ptr
1302 = BaseType->getAs<ObjCObjectPointerType>())
1303 BaseType = Ptr->getPointeeType();
1304 else if (BaseType->isRecordType()) {
1305 // Recover from arrow accesses to records, e.g.:
1306 // struct MyRecord foo;
1307 // foo->bar
1308 // This is actually well-formed in C++ if MyRecord has an
1309 // overloaded operator->, but that should have been dealt with
1310 // by now--or a diagnostic message already issued if a problem
1311 // was encountered while looking for the overloaded operator->.
1312 if (!S.getLangOpts().CPlusPlus) {
1313 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1314 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1315 << FixItHint::CreateReplacement(OpLoc, ".");
1317 IsArrow = false;
1318 } else if (BaseType->isFunctionType()) {
1319 goto fail;
1320 } else {
1321 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1322 << BaseType << BaseExpr.get()->getSourceRange();
1323 return ExprError();
1327 // If the base type is an atomic type, this access is undefined behavior per
1328 // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1329 // about the UB and recover by converting the atomic lvalue into a non-atomic
1330 // lvalue. Because this is inherently unsafe as an atomic operation, the
1331 // warning defaults to an error.
1332 if (const auto *ATy = BaseType->getAs<AtomicType>()) {
1333 S.DiagRuntimeBehavior(OpLoc, nullptr,
1334 S.PDiag(diag::warn_atomic_member_access));
1335 BaseType = ATy->getValueType().getUnqualifiedType();
1336 BaseExpr = ImplicitCastExpr::Create(
1337 S.Context, IsArrow ? S.Context.getPointerType(BaseType) : BaseType,
1338 CK_AtomicToNonAtomic, BaseExpr.get(), nullptr,
1339 BaseExpr.get()->getValueKind(), FPOptionsOverride());
1342 // Handle field access to simple records.
1343 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1344 TypoExpr *TE = nullptr;
1345 if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1346 HasTemplateArgs, TemplateKWLoc, TE))
1347 return ExprError();
1349 // Returning valid-but-null is how we indicate to the caller that
1350 // the lookup result was filled in. If typo correction was attempted and
1351 // failed, the lookup result will have been cleared--that combined with the
1352 // valid-but-null ExprResult will trigger the appropriate diagnostics.
1353 return ExprResult(TE);
1356 // Handle ivar access to Objective-C objects.
1357 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1358 if (!SS.isEmpty() && !SS.isInvalid()) {
1359 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1360 << 1 << SS.getScopeRep()
1361 << FixItHint::CreateRemoval(SS.getRange());
1362 SS.clear();
1365 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1367 // There are three cases for the base type:
1368 // - builtin id (qualified or unqualified)
1369 // - builtin Class (qualified or unqualified)
1370 // - an interface
1371 ObjCInterfaceDecl *IDecl = OTy->getInterface();
1372 if (!IDecl) {
1373 if (S.getLangOpts().ObjCAutoRefCount &&
1374 (OTy->isObjCId() || OTy->isObjCClass()))
1375 goto fail;
1376 // There's an implicit 'isa' ivar on all objects.
1377 // But we only actually find it this way on objects of type 'id',
1378 // apparently.
1379 if (OTy->isObjCId() && Member->isStr("isa"))
1380 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1381 OpLoc, S.Context.getObjCClassType());
1382 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1383 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1384 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1385 goto fail;
1388 if (S.RequireCompleteType(OpLoc, BaseType,
1389 diag::err_typecheck_incomplete_tag,
1390 BaseExpr.get()))
1391 return ExprError();
1393 ObjCInterfaceDecl *ClassDeclared = nullptr;
1394 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1396 if (!IV) {
1397 // Attempt to correct for typos in ivar names.
1398 DeclFilterCCC<ObjCIvarDecl> Validator{};
1399 Validator.IsObjCIvarLookup = IsArrow;
1400 if (TypoCorrection Corrected = S.CorrectTypo(
1401 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1402 Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1403 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1404 S.diagnoseTypo(
1405 Corrected,
1406 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1407 << IDecl->getDeclName() << MemberName);
1409 // Figure out the class that declares the ivar.
1410 assert(!ClassDeclared);
1412 Decl *D = cast<Decl>(IV->getDeclContext());
1413 if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1414 D = Category->getClassInterface();
1416 if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1417 ClassDeclared = Implementation->getClassInterface();
1418 else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1419 ClassDeclared = Interface;
1421 assert(ClassDeclared && "cannot query interface");
1422 } else {
1423 if (IsArrow &&
1424 IDecl->FindPropertyDeclaration(
1425 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1426 S.Diag(MemberLoc, diag::err_property_found_suggest)
1427 << Member << BaseExpr.get()->getType()
1428 << FixItHint::CreateReplacement(OpLoc, ".");
1429 return ExprError();
1432 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1433 << IDecl->getDeclName() << MemberName
1434 << BaseExpr.get()->getSourceRange();
1435 return ExprError();
1439 assert(ClassDeclared);
1441 // If the decl being referenced had an error, return an error for this
1442 // sub-expr without emitting another error, in order to avoid cascading
1443 // error cases.
1444 if (IV->isInvalidDecl())
1445 return ExprError();
1447 // Check whether we can reference this field.
1448 if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1449 return ExprError();
1450 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1451 IV->getAccessControl() != ObjCIvarDecl::Package) {
1452 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1453 if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1454 ClassOfMethodDecl = MD->getClassInterface();
1455 else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1456 // Case of a c-function declared inside an objc implementation.
1457 // FIXME: For a c-style function nested inside an objc implementation
1458 // class, there is no implementation context available, so we pass
1459 // down the context as argument to this routine. Ideally, this context
1460 // need be passed down in the AST node and somehow calculated from the
1461 // AST for a function decl.
1462 if (ObjCImplementationDecl *IMPD =
1463 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1464 ClassOfMethodDecl = IMPD->getClassInterface();
1465 else if (ObjCCategoryImplDecl* CatImplClass =
1466 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1467 ClassOfMethodDecl = CatImplClass->getClassInterface();
1469 if (!S.getLangOpts().DebuggerSupport) {
1470 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1471 if (!declaresSameEntity(ClassDeclared, IDecl) ||
1472 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1473 S.Diag(MemberLoc, diag::err_private_ivar_access)
1474 << IV->getDeclName();
1475 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1476 // @protected
1477 S.Diag(MemberLoc, diag::err_protected_ivar_access)
1478 << IV->getDeclName();
1481 bool warn = true;
1482 if (S.getLangOpts().ObjCWeak) {
1483 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1484 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1485 if (UO->getOpcode() == UO_Deref)
1486 BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1488 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1489 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1490 S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1491 warn = false;
1494 if (warn) {
1495 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1496 ObjCMethodFamily MF = MD->getMethodFamily();
1497 warn = (MF != OMF_init && MF != OMF_dealloc &&
1498 MF != OMF_finalize &&
1499 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1501 if (warn)
1502 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1505 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1506 IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1507 IsArrow);
1509 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1510 if (!S.isUnevaluatedContext() &&
1511 !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1512 S.getCurFunction()->recordUseOfWeak(Result);
1515 return Result;
1518 // Objective-C property access.
1519 const ObjCObjectPointerType *OPT;
1520 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1521 if (!SS.isEmpty() && !SS.isInvalid()) {
1522 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1523 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1524 SS.clear();
1527 // This actually uses the base as an r-value.
1528 BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1529 if (BaseExpr.isInvalid())
1530 return ExprError();
1532 assert(S.Context.hasSameUnqualifiedType(BaseType,
1533 BaseExpr.get()->getType()));
1535 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1537 const ObjCObjectType *OT = OPT->getObjectType();
1539 // id, with and without qualifiers.
1540 if (OT->isObjCId()) {
1541 // Check protocols on qualified interfaces.
1542 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1543 if (Decl *PMDecl =
1544 FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1545 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1546 // Check the use of this declaration
1547 if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1548 return ExprError();
1550 return new (S.Context)
1551 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1552 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1555 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1556 Selector SetterSel =
1557 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1558 S.PP.getSelectorTable(),
1559 Member);
1560 ObjCMethodDecl *SMD = nullptr;
1561 if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1562 /*Property id*/ nullptr,
1563 SetterSel, S.Context))
1564 SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1566 return new (S.Context)
1567 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1568 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1571 // Use of id.member can only be for a property reference. Do not
1572 // use the 'id' redefinition in this case.
1573 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1574 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1575 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1577 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1578 << MemberName << BaseType);
1581 // 'Class', unqualified only.
1582 if (OT->isObjCClass()) {
1583 // Only works in a method declaration (??!).
1584 ObjCMethodDecl *MD = S.getCurMethodDecl();
1585 if (!MD) {
1586 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1587 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1588 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1590 goto fail;
1593 // Also must look for a getter name which uses property syntax.
1594 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1595 ObjCInterfaceDecl *IFace = MD->getClassInterface();
1596 if (!IFace)
1597 goto fail;
1599 ObjCMethodDecl *Getter;
1600 if ((Getter = IFace->lookupClassMethod(Sel))) {
1601 // Check the use of this method.
1602 if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1603 return ExprError();
1604 } else
1605 Getter = IFace->lookupPrivateMethod(Sel, false);
1606 // If we found a getter then this may be a valid dot-reference, we
1607 // will look for the matching setter, in case it is needed.
1608 Selector SetterSel =
1609 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1610 S.PP.getSelectorTable(),
1611 Member);
1612 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1613 if (!Setter) {
1614 // If this reference is in an @implementation, also check for 'private'
1615 // methods.
1616 Setter = IFace->lookupPrivateMethod(SetterSel, false);
1619 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1620 return ExprError();
1622 if (Getter || Setter) {
1623 return new (S.Context) ObjCPropertyRefExpr(
1624 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1625 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1628 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1629 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1630 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1632 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1633 << MemberName << BaseType);
1636 // Normal property access.
1637 return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1638 MemberLoc, SourceLocation(), QualType(),
1639 false);
1642 if (BaseType->isExtVectorBoolType()) {
1643 // We disallow element access for ext_vector_type bool. There is no way to
1644 // materialize a reference to a vector element as a pointer (each element is
1645 // one bit in the vector).
1646 S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal)
1647 << MemberName
1648 << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange());
1649 return ExprError();
1652 // Handle 'field access' to vectors, such as 'V.xx'.
1653 if (BaseType->isExtVectorType()) {
1654 // FIXME: this expr should store IsArrow.
1655 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1656 ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1657 QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1658 Member, MemberLoc);
1659 if (ret.isNull())
1660 return ExprError();
1661 Qualifiers BaseQ =
1662 S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1663 ret = S.Context.getQualifiedType(ret, BaseQ);
1665 return new (S.Context)
1666 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1669 // Adjust builtin-sel to the appropriate redefinition type if that's
1670 // not just a pointer to builtin-sel again.
1671 if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1672 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1673 BaseExpr = S.ImpCastExprToType(
1674 BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1675 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1676 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1679 // Failure cases.
1680 fail:
1682 // Recover from dot accesses to pointers, e.g.:
1683 // type *foo;
1684 // foo.bar
1685 // This is actually well-formed in two cases:
1686 // - 'type' is an Objective C type
1687 // - 'bar' is a pseudo-destructor name which happens to refer to
1688 // the appropriate pointer type
1689 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1690 if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1691 MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1692 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1693 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1694 << FixItHint::CreateReplacement(OpLoc, "->");
1696 if (S.isSFINAEContext())
1697 return ExprError();
1699 // Recurse as an -> access.
1700 IsArrow = true;
1701 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1702 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1706 // If the user is trying to apply -> or . to a function name, it's probably
1707 // because they forgot parentheses to call that function.
1708 if (S.tryToRecoverWithCall(
1709 BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1710 /*complain*/ false,
1711 IsArrow ? &isPointerToRecordType : &isRecordType)) {
1712 if (BaseExpr.isInvalid())
1713 return ExprError();
1714 BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1715 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1716 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1719 // HLSL supports implicit conversion of scalar types to single element vector
1720 // rvalues in member expressions.
1721 if (S.getLangOpts().HLSL && BaseType->isScalarType()) {
1722 QualType VectorTy = S.Context.getExtVectorType(BaseType, 1);
1723 BaseExpr = S.ImpCastExprToType(BaseExpr.get(), VectorTy, CK_VectorSplat,
1724 BaseExpr.get()->getValueKind());
1725 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl,
1726 HasTemplateArgs, TemplateKWLoc);
1729 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1730 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1732 return ExprError();
1735 /// The main callback when the parser finds something like
1736 /// expression . [nested-name-specifier] identifier
1737 /// expression -> [nested-name-specifier] identifier
1738 /// where 'identifier' encompasses a fairly broad spectrum of
1739 /// possibilities, including destructor and operator references.
1741 /// \param OpKind either tok::arrow or tok::period
1742 /// \param ObjCImpDecl the current Objective-C \@implementation
1743 /// decl; this is an ugly hack around the fact that Objective-C
1744 /// \@implementations aren't properly put in the context chain
1745 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1746 SourceLocation OpLoc,
1747 tok::TokenKind OpKind,
1748 CXXScopeSpec &SS,
1749 SourceLocation TemplateKWLoc,
1750 UnqualifiedId &Id,
1751 Decl *ObjCImpDecl) {
1752 if (SS.isSet() && SS.isInvalid())
1753 return ExprError();
1755 // Warn about the explicit constructor calls Microsoft extension.
1756 if (getLangOpts().MicrosoftExt &&
1757 Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1758 Diag(Id.getSourceRange().getBegin(),
1759 diag::ext_ms_explicit_constructor_call);
1761 TemplateArgumentListInfo TemplateArgsBuffer;
1763 // Decompose the name into its component parts.
1764 DeclarationNameInfo NameInfo;
1765 const TemplateArgumentListInfo *TemplateArgs;
1766 DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1767 NameInfo, TemplateArgs);
1769 DeclarationName Name = NameInfo.getName();
1770 bool IsArrow = (OpKind == tok::arrow);
1772 if (getLangOpts().HLSL && IsArrow)
1773 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2);
1775 NamedDecl *FirstQualifierInScope
1776 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1778 // This is a postfix expression, so get rid of ParenListExprs.
1779 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1780 if (Result.isInvalid()) return ExprError();
1781 Base = Result.get();
1783 if (Base->getType()->isDependentType() || Name.isDependentName() ||
1784 isDependentScopeSpecifier(SS)) {
1785 return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1786 TemplateKWLoc, FirstQualifierInScope,
1787 NameInfo, TemplateArgs);
1790 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1791 ExprResult Res = BuildMemberReferenceExpr(
1792 Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1793 FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1795 if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1796 CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1798 return Res;
1801 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1802 if (isUnevaluatedContext())
1803 return;
1805 QualType ResultTy = E->getType();
1807 // Member accesses have four cases:
1808 // 1: non-array member via "->": dereferences
1809 // 2: non-array member via ".": nothing interesting happens
1810 // 3: array member access via "->": nothing interesting happens
1811 // (this returns an array lvalue and does not actually dereference memory)
1812 // 4: array member access via ".": *adds* a layer of indirection
1813 if (ResultTy->isArrayType()) {
1814 if (!E->isArrow()) {
1815 // This might be something like:
1816 // (*structPtr).arrayMember
1817 // which behaves roughly like:
1818 // &(*structPtr).pointerMember
1819 // in that the apparent dereference in the base expression does not
1820 // actually happen.
1821 CheckAddressOfNoDeref(E->getBase());
1823 } else if (E->isArrow()) {
1824 if (const auto *Ptr = dyn_cast<PointerType>(
1825 E->getBase()->getType().getDesugaredType(Context))) {
1826 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1827 ExprEvalContexts.back().PossibleDerefs.insert(E);
1832 ExprResult
1833 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1834 SourceLocation OpLoc, const CXXScopeSpec &SS,
1835 FieldDecl *Field, DeclAccessPair FoundDecl,
1836 const DeclarationNameInfo &MemberNameInfo) {
1837 // x.a is an l-value if 'a' has a reference type. Otherwise:
1838 // x.a is an l-value/x-value/pr-value if the base is (and note
1839 // that *x is always an l-value), except that if the base isn't
1840 // an ordinary object then we must have an rvalue.
1841 ExprValueKind VK = VK_LValue;
1842 ExprObjectKind OK = OK_Ordinary;
1843 if (!IsArrow) {
1844 if (BaseExpr->getObjectKind() == OK_Ordinary)
1845 VK = BaseExpr->getValueKind();
1846 else
1847 VK = VK_PRValue;
1849 if (VK != VK_PRValue && Field->isBitField())
1850 OK = OK_BitField;
1852 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1853 QualType MemberType = Field->getType();
1854 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1855 MemberType = Ref->getPointeeType();
1856 VK = VK_LValue;
1857 } else {
1858 QualType BaseType = BaseExpr->getType();
1859 if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1861 Qualifiers BaseQuals = BaseType.getQualifiers();
1863 // GC attributes are never picked up by members.
1864 BaseQuals.removeObjCGCAttr();
1866 // CVR attributes from the base are picked up by members,
1867 // except that 'mutable' members don't pick up 'const'.
1868 if (Field->isMutable()) BaseQuals.removeConst();
1870 Qualifiers MemberQuals =
1871 Context.getCanonicalType(MemberType).getQualifiers();
1873 assert(!MemberQuals.hasAddressSpace());
1875 Qualifiers Combined = BaseQuals + MemberQuals;
1876 if (Combined != MemberQuals)
1877 MemberType = Context.getQualifiedType(MemberType, Combined);
1879 // Pick up NoDeref from the base in case we end up using AddrOf on the
1880 // result. E.g. the expression
1881 // &someNoDerefPtr->pointerMember
1882 // should be a noderef pointer again.
1883 if (BaseType->hasAttr(attr::NoDeref))
1884 MemberType =
1885 Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1888 auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1889 if (!(CurMethod && CurMethod->isDefaulted()))
1890 UnusedPrivateFields.remove(Field);
1892 ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1893 FoundDecl, Field);
1894 if (Base.isInvalid())
1895 return ExprError();
1897 // Build a reference to a private copy for non-static data members in
1898 // non-static member functions, privatized by OpenMP constructs.
1899 if (getLangOpts().OpenMP && IsArrow &&
1900 !CurContext->isDependentContext() &&
1901 isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1902 if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1903 return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1904 MemberNameInfo.getLoc());
1908 return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1909 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1910 /*HadMultipleCandidates=*/false, MemberNameInfo,
1911 MemberType, VK, OK);
1914 /// Builds an implicit member access expression. The current context
1915 /// is known to be an instance method, and the given unqualified lookup
1916 /// set is known to contain only instance members, at least one of which
1917 /// is from an appropriate type.
1918 ExprResult
1919 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1920 SourceLocation TemplateKWLoc,
1921 LookupResult &R,
1922 const TemplateArgumentListInfo *TemplateArgs,
1923 bool IsKnownInstance, const Scope *S) {
1924 assert(!R.empty() && !R.isAmbiguous());
1926 SourceLocation loc = R.getNameLoc();
1928 // If this is known to be an instance access, go ahead and build an
1929 // implicit 'this' expression now.
1930 QualType ThisTy = getCurrentThisType();
1931 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1933 Expr *baseExpr = nullptr; // null signifies implicit access
1934 if (IsKnownInstance) {
1935 SourceLocation Loc = R.getNameLoc();
1936 if (SS.getRange().isValid())
1937 Loc = SS.getRange().getBegin();
1938 baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1941 return BuildMemberReferenceExpr(
1942 baseExpr, ThisTy,
1943 /*OpLoc=*/SourceLocation(),
1944 /*IsArrow=*/!getLangOpts().HLSL, SS, TemplateKWLoc,
1945 /*FirstQualifierInScope=*/nullptr, R, TemplateArgs, S);