1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for C++ lambda expressions.
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
26 using namespace clang
;
29 /// Examines the FunctionScopeInfo stack to determine the nearest
30 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
31 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
32 /// If successful, returns the index into Sema's FunctionScopeInfo stack
33 /// of the capture-ready lambda's LambdaScopeInfo.
35 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
36 /// lambda - is on top) to determine the index of the nearest enclosing/outer
37 /// lambda that is ready to capture the \p VarToCapture being referenced in
38 /// the current lambda.
39 /// As we climb down the stack, we want the index of the first such lambda -
40 /// that is the lambda with the highest index that is 'capture-ready'.
42 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
43 /// - its enclosing context is non-dependent
44 /// - and if the chain of lambdas between L and the lambda in which
45 /// V is potentially used (i.e. the lambda at the top of the scope info
46 /// stack), can all capture or have already captured V.
47 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
49 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
50 /// for whether it is 'capture-capable' (see
51 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
54 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
55 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
56 /// is at the top of the stack and has the highest index.
57 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
59 /// \returns An std::optional<unsigned> Index that if evaluates to 'true'
60 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
61 /// lambda which is capture-ready. If the return value evaluates to 'false'
62 /// then no lambda is capture-ready for \p VarToCapture.
64 static inline std::optional
<unsigned>
65 getStackIndexOfNearestEnclosingCaptureReadyLambda(
66 ArrayRef
<const clang::sema::FunctionScopeInfo
*> FunctionScopes
,
67 ValueDecl
*VarToCapture
) {
68 // Label failure to capture.
69 const std::optional
<unsigned> NoLambdaIsCaptureReady
;
71 // Ignore all inner captured regions.
72 unsigned CurScopeIndex
= FunctionScopes
.size() - 1;
73 while (CurScopeIndex
> 0 && isa
<clang::sema::CapturedRegionScopeInfo
>(
74 FunctionScopes
[CurScopeIndex
]))
77 isa
<clang::sema::LambdaScopeInfo
>(FunctionScopes
[CurScopeIndex
]) &&
78 "The function on the top of sema's function-info stack must be a lambda");
80 // If VarToCapture is null, we are attempting to capture 'this'.
81 const bool IsCapturingThis
= !VarToCapture
;
82 const bool IsCapturingVariable
= !IsCapturingThis
;
84 // Start with the current lambda at the top of the stack (highest index).
85 DeclContext
*EnclosingDC
=
86 cast
<sema::LambdaScopeInfo
>(FunctionScopes
[CurScopeIndex
])->CallOperator
;
89 const clang::sema::LambdaScopeInfo
*LSI
=
90 cast
<sema::LambdaScopeInfo
>(FunctionScopes
[CurScopeIndex
]);
91 // IF we have climbed down to an intervening enclosing lambda that contains
92 // the variable declaration - it obviously can/must not capture the
94 // Since its enclosing DC is dependent, all the lambdas between it and the
95 // innermost nested lambda are dependent (otherwise we wouldn't have
96 // arrived here) - so we don't yet have a lambda that can capture the
98 if (IsCapturingVariable
&&
99 VarToCapture
->getDeclContext()->Equals(EnclosingDC
))
100 return NoLambdaIsCaptureReady
;
102 // For an enclosing lambda to be capture ready for an entity, all
103 // intervening lambda's have to be able to capture that entity. If even
104 // one of the intervening lambda's is not capable of capturing the entity
105 // then no enclosing lambda can ever capture that entity.
109 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
111 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
113 // If they do not have a default implicit capture, check to see
114 // if the entity has already been explicitly captured.
115 // If even a single dependent enclosing lambda lacks the capability
116 // to ever capture this variable, there is no further enclosing
117 // non-dependent lambda that can capture this variable.
118 if (LSI
->ImpCaptureStyle
== sema::LambdaScopeInfo::ImpCap_None
) {
119 if (IsCapturingVariable
&& !LSI
->isCaptured(VarToCapture
))
120 return NoLambdaIsCaptureReady
;
121 if (IsCapturingThis
&& !LSI
->isCXXThisCaptured())
122 return NoLambdaIsCaptureReady
;
124 EnclosingDC
= getLambdaAwareParentOfDeclContext(EnclosingDC
);
126 assert(CurScopeIndex
);
128 } while (!EnclosingDC
->isTranslationUnit() &&
129 EnclosingDC
->isDependentContext() &&
130 isLambdaCallOperator(EnclosingDC
));
132 assert(CurScopeIndex
< (FunctionScopes
.size() - 1));
133 // If the enclosingDC is not dependent, then the immediately nested lambda
134 // (one index above) is capture-ready.
135 if (!EnclosingDC
->isDependentContext())
136 return CurScopeIndex
+ 1;
137 return NoLambdaIsCaptureReady
;
140 /// Examines the FunctionScopeInfo stack to determine the nearest
141 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
142 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
143 /// If successful, returns the index into Sema's FunctionScopeInfo stack
144 /// of the capture-capable lambda's LambdaScopeInfo.
146 /// Given the current stack of lambdas being processed by Sema and
147 /// the variable of interest, to identify the nearest enclosing lambda (to the
148 /// current lambda at the top of the stack) that can truly capture
149 /// a variable, it has to have the following two properties:
150 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
151 /// - climb down the stack (i.e. starting from the innermost and examining
152 /// each outer lambda step by step) checking if each enclosing
153 /// lambda can either implicitly or explicitly capture the variable.
154 /// Record the first such lambda that is enclosed in a non-dependent
155 /// context. If no such lambda currently exists return failure.
156 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
157 /// capture the variable by checking all its enclosing lambdas:
158 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
159 /// identified above in 'a' can also capture the variable (this is done
160 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
161 /// 'this' by passing in the index of the Lambda identified in step 'a')
163 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
164 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
165 /// is at the top of the stack.
167 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
170 /// \returns An std::optional<unsigned> Index that if evaluates to 'true'
171 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
172 /// lambda which is capture-capable. If the return value evaluates to 'false'
173 /// then no lambda is capture-capable for \p VarToCapture.
175 std::optional
<unsigned>
176 clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
177 ArrayRef
<const sema::FunctionScopeInfo
*> FunctionScopes
,
178 ValueDecl
*VarToCapture
, Sema
&S
) {
180 const std::optional
<unsigned> NoLambdaIsCaptureCapable
;
182 const std::optional
<unsigned> OptionalStackIndex
=
183 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes
,
185 if (!OptionalStackIndex
)
186 return NoLambdaIsCaptureCapable
;
188 const unsigned IndexOfCaptureReadyLambda
= *OptionalStackIndex
;
189 assert(((IndexOfCaptureReadyLambda
!= (FunctionScopes
.size() - 1)) ||
190 S
.getCurGenericLambda()) &&
191 "The capture ready lambda for a potential capture can only be the "
192 "current lambda if it is a generic lambda");
194 const sema::LambdaScopeInfo
*const CaptureReadyLambdaLSI
=
195 cast
<sema::LambdaScopeInfo
>(FunctionScopes
[IndexOfCaptureReadyLambda
]);
197 // If VarToCapture is null, we are attempting to capture 'this'
198 const bool IsCapturingThis
= !VarToCapture
;
199 const bool IsCapturingVariable
= !IsCapturingThis
;
201 if (IsCapturingVariable
) {
202 // Check if the capture-ready lambda can truly capture the variable, by
203 // checking whether all enclosing lambdas of the capture-ready lambda allow
204 // the capture - i.e. make sure it is capture-capable.
205 QualType CaptureType
, DeclRefType
;
206 const bool CanCaptureVariable
=
207 !S
.tryCaptureVariable(VarToCapture
,
208 /*ExprVarIsUsedInLoc*/ SourceLocation(),
209 clang::Sema::TryCapture_Implicit
,
210 /*EllipsisLoc*/ SourceLocation(),
211 /*BuildAndDiagnose*/ false, CaptureType
,
212 DeclRefType
, &IndexOfCaptureReadyLambda
);
213 if (!CanCaptureVariable
)
214 return NoLambdaIsCaptureCapable
;
216 // Check if the capture-ready lambda can truly capture 'this' by checking
217 // whether all enclosing lambdas of the capture-ready lambda can capture
219 const bool CanCaptureThis
=
220 !S
.CheckCXXThisCapture(
221 CaptureReadyLambdaLSI
->PotentialThisCaptureLocation
,
222 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
223 &IndexOfCaptureReadyLambda
);
225 return NoLambdaIsCaptureCapable
;
227 return IndexOfCaptureReadyLambda
;
230 static inline TemplateParameterList
*
231 getGenericLambdaTemplateParameterList(LambdaScopeInfo
*LSI
, Sema
&SemaRef
) {
232 if (!LSI
->GLTemplateParameterList
&& !LSI
->TemplateParams
.empty()) {
233 LSI
->GLTemplateParameterList
= TemplateParameterList::Create(
235 /*Template kw loc*/ SourceLocation(),
236 /*L angle loc*/ LSI
->ExplicitTemplateParamsRange
.getBegin(),
238 /*R angle loc*/LSI
->ExplicitTemplateParamsRange
.getEnd(),
239 LSI
->RequiresClause
.get());
241 return LSI
->GLTemplateParameterList
;
245 Sema::createLambdaClosureType(SourceRange IntroducerRange
, TypeSourceInfo
*Info
,
246 unsigned LambdaDependencyKind
,
247 LambdaCaptureDefault CaptureDefault
) {
248 DeclContext
*DC
= CurContext
;
249 while (!(DC
->isFunctionOrMethod() || DC
->isRecord() || DC
->isFileContext()))
250 DC
= DC
->getParent();
252 bool IsGenericLambda
=
253 Info
&& getGenericLambdaTemplateParameterList(getCurLambda(), *this);
254 // Start constructing the lambda class.
255 CXXRecordDecl
*Class
= CXXRecordDecl::CreateLambda(
256 Context
, DC
, Info
, IntroducerRange
.getBegin(), LambdaDependencyKind
,
257 IsGenericLambda
, CaptureDefault
);
263 /// Determine whether the given context is or is enclosed in an inline
265 static bool isInInlineFunction(const DeclContext
*DC
) {
266 while (!DC
->isFileContext()) {
267 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(DC
))
271 DC
= DC
->getLexicalParent();
277 std::tuple
<MangleNumberingContext
*, Decl
*>
278 Sema::getCurrentMangleNumberContext(const DeclContext
*DC
) {
279 // Compute the context for allocating mangling numbers in the current
280 // expression, if the ABI requires them.
281 Decl
*ManglingContextDecl
= ExprEvalContexts
.back().ManglingContextDecl
;
292 bool IsInNonspecializedTemplate
=
293 inTemplateInstantiation() || CurContext
->isDependentContext();
295 // Default arguments of member function parameters that appear in a class
296 // definition, as well as the initializers of data members, receive special
297 // treatment. Identify them.
298 if (ManglingContextDecl
) {
299 if (ParmVarDecl
*Param
= dyn_cast
<ParmVarDecl
>(ManglingContextDecl
)) {
300 if (const DeclContext
*LexicalDC
301 = Param
->getDeclContext()->getLexicalParent())
302 if (LexicalDC
->isRecord())
303 Kind
= DefaultArgument
;
304 } else if (VarDecl
*Var
= dyn_cast
<VarDecl
>(ManglingContextDecl
)) {
305 if (Var
->getMostRecentDecl()->isInline())
306 Kind
= InlineVariable
;
307 else if (Var
->getDeclContext()->isRecord() && IsInNonspecializedTemplate
)
308 Kind
= TemplatedVariable
;
309 else if (Var
->getDescribedVarTemplate())
310 Kind
= TemplatedVariable
;
311 else if (auto *VTS
= dyn_cast
<VarTemplateSpecializationDecl
>(Var
)) {
312 if (!VTS
->isExplicitSpecialization())
313 Kind
= TemplatedVariable
;
315 } else if (isa
<FieldDecl
>(ManglingContextDecl
)) {
317 } else if (isa
<ImplicitConceptSpecializationDecl
>(ManglingContextDecl
)) {
322 // Itanium ABI [5.1.7]:
323 // In the following contexts [...] the one-definition rule requires closure
324 // types in different translation units to "correspond":
327 // -- the bodies of inline or templated functions
328 if ((IsInNonspecializedTemplate
&&
329 !(ManglingContextDecl
&& isa
<ParmVarDecl
>(ManglingContextDecl
))) ||
330 isInInlineFunction(CurContext
)) {
331 while (auto *CD
= dyn_cast
<CapturedDecl
>(DC
))
332 DC
= CD
->getParent();
333 return std::make_tuple(&Context
.getManglingNumberContext(DC
), nullptr);
336 return std::make_tuple(nullptr, nullptr);
340 // Concept definitions aren't code generated and thus aren't mangled,
341 // however the ManglingContextDecl is important for the purposes of
342 // re-forming the template argument list of the lambda for constraint
345 // -- default member initializers
346 case DefaultArgument
:
347 // -- default arguments appearing in class definitions
349 case TemplatedVariable
:
350 // -- the initializers of inline or templated variables
351 return std::make_tuple(
352 &Context
.getManglingNumberContext(ASTContext::NeedExtraManglingDecl
,
353 ManglingContextDecl
),
354 ManglingContextDecl
);
357 llvm_unreachable("unexpected context");
361 buildTypeForLambdaCallOperator(Sema
&S
, clang::CXXRecordDecl
*Class
,
362 TemplateParameterList
*TemplateParams
,
363 TypeSourceInfo
*MethodTypeInfo
) {
364 assert(MethodTypeInfo
&& "expected a non null type");
366 QualType MethodType
= MethodTypeInfo
->getType();
367 // If a lambda appears in a dependent context or is a generic lambda (has
368 // template parameters) and has an 'auto' return type, deduce it to a
370 if (Class
->isDependentContext() || TemplateParams
) {
371 const FunctionProtoType
*FPT
= MethodType
->castAs
<FunctionProtoType
>();
372 QualType Result
= FPT
->getReturnType();
373 if (Result
->isUndeducedType()) {
374 Result
= S
.SubstAutoTypeDependent(Result
);
375 MethodType
= S
.Context
.getFunctionType(Result
, FPT
->getParamTypes(),
376 FPT
->getExtProtoInfo());
382 // [C++2b] [expr.prim.lambda.closure] p4
383 // Given a lambda with a lambda-capture, the type of the explicit object
384 // parameter, if any, of the lambda's function call operator (possibly
385 // instantiated from a function call operator template) shall be either:
386 // - the closure type,
387 // - class type derived from the closure type, or
388 // - a reference to a possibly cv-qualified such type.
389 void Sema::DiagnoseInvalidExplicitObjectParameterInLambda(
390 CXXMethodDecl
*Method
) {
391 if (!isLambdaCallWithExplicitObjectParameter(Method
))
393 CXXRecordDecl
*RD
= Method
->getParent();
394 if (Method
->getType()->isDependentType())
396 if (RD
->isCapturelessLambda())
398 QualType ExplicitObjectParameterType
= Method
->getParamDecl(0)
400 .getNonReferenceType()
401 .getUnqualifiedType()
402 .getDesugaredType(getASTContext());
403 QualType LambdaType
= getASTContext().getRecordType(RD
);
404 if (LambdaType
== ExplicitObjectParameterType
)
406 if (IsDerivedFrom(RD
->getLocation(), ExplicitObjectParameterType
, LambdaType
))
408 Diag(Method
->getParamDecl(0)->getLocation(),
409 diag::err_invalid_explicit_object_type_in_lambda
)
410 << ExplicitObjectParameterType
;
413 void Sema::handleLambdaNumbering(
414 CXXRecordDecl
*Class
, CXXMethodDecl
*Method
,
415 std::optional
<CXXRecordDecl::LambdaNumbering
> NumberingOverride
) {
416 if (NumberingOverride
) {
417 Class
->setLambdaNumbering(*NumberingOverride
);
421 ContextRAII
ManglingContext(*this, Class
->getDeclContext());
423 auto getMangleNumberingContext
=
424 [this](CXXRecordDecl
*Class
,
425 Decl
*ManglingContextDecl
) -> MangleNumberingContext
* {
426 // Get mangle numbering context if there's any extra decl context.
427 if (ManglingContextDecl
)
428 return &Context
.getManglingNumberContext(
429 ASTContext::NeedExtraManglingDecl
, ManglingContextDecl
);
430 // Otherwise, from that lambda's decl context.
431 auto DC
= Class
->getDeclContext();
432 while (auto *CD
= dyn_cast
<CapturedDecl
>(DC
))
433 DC
= CD
->getParent();
434 return &Context
.getManglingNumberContext(DC
);
437 CXXRecordDecl::LambdaNumbering Numbering
;
438 MangleNumberingContext
*MCtx
;
439 std::tie(MCtx
, Numbering
.ContextDecl
) =
440 getCurrentMangleNumberContext(Class
->getDeclContext());
441 if (!MCtx
&& (getLangOpts().CUDA
|| getLangOpts().SYCLIsDevice
||
442 getLangOpts().SYCLIsHost
)) {
443 // Force lambda numbering in CUDA/HIP as we need to name lambdas following
444 // ODR. Both device- and host-compilation need to have a consistent naming
445 // on kernel functions. As lambdas are potential part of these `__global__`
446 // function names, they needs numbering following ODR.
447 // Also force for SYCL, since we need this for the
448 // __builtin_sycl_unique_stable_name implementation, which depends on lambda
450 MCtx
= getMangleNumberingContext(Class
, Numbering
.ContextDecl
);
451 assert(MCtx
&& "Retrieving mangle numbering context failed!");
452 Numbering
.HasKnownInternalLinkage
= true;
455 Numbering
.IndexInContext
= MCtx
->getNextLambdaIndex();
456 Numbering
.ManglingNumber
= MCtx
->getManglingNumber(Method
);
457 Numbering
.DeviceManglingNumber
= MCtx
->getDeviceManglingNumber(Method
);
458 Class
->setLambdaNumbering(Numbering
);
461 dyn_cast_or_null
<ExternalSemaSource
>(Context
.getExternalSource()))
462 Source
->AssignedLambdaNumbering(Class
);
466 static void buildLambdaScopeReturnType(Sema
&S
, LambdaScopeInfo
*LSI
,
467 CXXMethodDecl
*CallOperator
,
468 bool ExplicitResultType
) {
469 if (ExplicitResultType
) {
470 LSI
->HasImplicitReturnType
= false;
471 LSI
->ReturnType
= CallOperator
->getReturnType();
472 if (!LSI
->ReturnType
->isDependentType() && !LSI
->ReturnType
->isVoidType())
473 S
.RequireCompleteType(CallOperator
->getBeginLoc(), LSI
->ReturnType
,
474 diag::err_lambda_incomplete_result
);
476 LSI
->HasImplicitReturnType
= true;
480 void Sema::buildLambdaScope(LambdaScopeInfo
*LSI
, CXXMethodDecl
*CallOperator
,
481 SourceRange IntroducerRange
,
482 LambdaCaptureDefault CaptureDefault
,
483 SourceLocation CaptureDefaultLoc
,
484 bool ExplicitParams
, bool Mutable
) {
485 LSI
->CallOperator
= CallOperator
;
486 CXXRecordDecl
*LambdaClass
= CallOperator
->getParent();
487 LSI
->Lambda
= LambdaClass
;
488 if (CaptureDefault
== LCD_ByCopy
)
489 LSI
->ImpCaptureStyle
= LambdaScopeInfo::ImpCap_LambdaByval
;
490 else if (CaptureDefault
== LCD_ByRef
)
491 LSI
->ImpCaptureStyle
= LambdaScopeInfo::ImpCap_LambdaByref
;
492 LSI
->CaptureDefaultLoc
= CaptureDefaultLoc
;
493 LSI
->IntroducerRange
= IntroducerRange
;
494 LSI
->ExplicitParams
= ExplicitParams
;
495 LSI
->Mutable
= Mutable
;
498 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo
*LSI
) {
499 LSI
->finishedExplicitCaptures();
502 void Sema::ActOnLambdaExplicitTemplateParameterList(
503 LambdaIntroducer
&Intro
, SourceLocation LAngleLoc
,
504 ArrayRef
<NamedDecl
*> TParams
, SourceLocation RAngleLoc
,
505 ExprResult RequiresClause
) {
506 LambdaScopeInfo
*LSI
= getCurLambda();
507 assert(LSI
&& "Expected a lambda scope");
508 assert(LSI
->NumExplicitTemplateParams
== 0 &&
509 "Already acted on explicit template parameters");
510 assert(LSI
->TemplateParams
.empty() &&
511 "Explicit template parameters should come "
512 "before invented (auto) ones");
513 assert(!TParams
.empty() &&
514 "No template parameters to act on");
515 LSI
->TemplateParams
.append(TParams
.begin(), TParams
.end());
516 LSI
->NumExplicitTemplateParams
= TParams
.size();
517 LSI
->ExplicitTemplateParamsRange
= {LAngleLoc
, RAngleLoc
};
518 LSI
->RequiresClause
= RequiresClause
;
521 /// If this expression is an enumerator-like expression of some type
522 /// T, return the type T; otherwise, return null.
524 /// Pointer comparisons on the result here should always work because
525 /// it's derived from either the parent of an EnumConstantDecl
526 /// (i.e. the definition) or the declaration returned by
527 /// EnumType::getDecl() (i.e. the definition).
528 static EnumDecl
*findEnumForBlockReturn(Expr
*E
) {
529 // An expression is an enumerator-like expression of type T if,
530 // ignoring parens and parens-like expressions:
531 E
= E
->IgnoreParens();
533 // - it is an enumerator whose enum type is T or
534 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
535 if (EnumConstantDecl
*D
536 = dyn_cast
<EnumConstantDecl
>(DRE
->getDecl())) {
537 return cast
<EnumDecl
>(D
->getDeclContext());
542 // - it is a comma expression whose RHS is an enumerator-like
543 // expression of type T or
544 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
545 if (BO
->getOpcode() == BO_Comma
)
546 return findEnumForBlockReturn(BO
->getRHS());
550 // - it is a statement-expression whose value expression is an
551 // enumerator-like expression of type T or
552 if (StmtExpr
*SE
= dyn_cast
<StmtExpr
>(E
)) {
553 if (Expr
*last
= dyn_cast_or_null
<Expr
>(SE
->getSubStmt()->body_back()))
554 return findEnumForBlockReturn(last
);
558 // - it is a ternary conditional operator (not the GNU ?:
559 // extension) whose second and third operands are
560 // enumerator-like expressions of type T or
561 if (ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
)) {
562 if (EnumDecl
*ED
= findEnumForBlockReturn(CO
->getTrueExpr()))
563 if (ED
== findEnumForBlockReturn(CO
->getFalseExpr()))
569 // - it is an implicit integral conversion applied to an
570 // enumerator-like expression of type T or
571 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
572 // We can sometimes see integral conversions in valid
573 // enumerator-like expressions.
574 if (ICE
->getCastKind() == CK_IntegralCast
)
575 return findEnumForBlockReturn(ICE
->getSubExpr());
577 // Otherwise, just rely on the type.
580 // - it is an expression of that formal enum type.
581 if (const EnumType
*ET
= E
->getType()->getAs
<EnumType
>()) {
582 return ET
->getDecl();
589 /// Attempt to find a type T for which the returned expression of the
590 /// given statement is an enumerator-like expression of that type.
591 static EnumDecl
*findEnumForBlockReturn(ReturnStmt
*ret
) {
592 if (Expr
*retValue
= ret
->getRetValue())
593 return findEnumForBlockReturn(retValue
);
597 /// Attempt to find a common type T for which all of the returned
598 /// expressions in a block are enumerator-like expressions of that
600 static EnumDecl
*findCommonEnumForBlockReturns(ArrayRef
<ReturnStmt
*> returns
) {
601 ArrayRef
<ReturnStmt
*>::iterator i
= returns
.begin(), e
= returns
.end();
603 // Try to find one for the first return.
604 EnumDecl
*ED
= findEnumForBlockReturn(*i
);
605 if (!ED
) return nullptr;
607 // Check that the rest of the returns have the same enum.
608 for (++i
; i
!= e
; ++i
) {
609 if (findEnumForBlockReturn(*i
) != ED
)
613 // Never infer an anonymous enum type.
614 if (!ED
->hasNameForLinkage()) return nullptr;
619 /// Adjust the given return statements so that they formally return
620 /// the given type. It should require, at most, an IntegralCast.
621 static void adjustBlockReturnsToEnum(Sema
&S
, ArrayRef
<ReturnStmt
*> returns
,
622 QualType returnType
) {
623 for (ArrayRef
<ReturnStmt
*>::iterator
624 i
= returns
.begin(), e
= returns
.end(); i
!= e
; ++i
) {
625 ReturnStmt
*ret
= *i
;
626 Expr
*retValue
= ret
->getRetValue();
627 if (S
.Context
.hasSameType(retValue
->getType(), returnType
))
630 // Right now we only support integral fixup casts.
631 assert(returnType
->isIntegralOrUnscopedEnumerationType());
632 assert(retValue
->getType()->isIntegralOrUnscopedEnumerationType());
634 ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(retValue
);
636 Expr
*E
= (cleanups
? cleanups
->getSubExpr() : retValue
);
637 E
= ImplicitCastExpr::Create(S
.Context
, returnType
, CK_IntegralCast
, E
,
638 /*base path*/ nullptr, VK_PRValue
,
639 FPOptionsOverride());
641 cleanups
->setSubExpr(E
);
648 void Sema::deduceClosureReturnType(CapturingScopeInfo
&CSI
) {
649 assert(CSI
.HasImplicitReturnType
);
650 // If it was ever a placeholder, it had to been deduced to DependentTy.
651 assert(CSI
.ReturnType
.isNull() || !CSI
.ReturnType
->isUndeducedType());
652 assert((!isa
<LambdaScopeInfo
>(CSI
) || !getLangOpts().CPlusPlus14
) &&
653 "lambda expressions use auto deduction in C++14 onwards");
655 // C++ core issue 975:
656 // If a lambda-expression does not include a trailing-return-type,
657 // it is as if the trailing-return-type denotes the following type:
658 // - if there are no return statements in the compound-statement,
659 // or all return statements return either an expression of type
660 // void or no expression or braced-init-list, the type void;
661 // - otherwise, if all return statements return an expression
662 // and the types of the returned expressions after
663 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
664 // array-to-pointer conversion (4.2 [conv.array]), and
665 // function-to-pointer conversion (4.3 [conv.func]) are the
666 // same, that common type;
667 // - otherwise, the program is ill-formed.
669 // C++ core issue 1048 additionally removes top-level cv-qualifiers
670 // from the types of returned expressions to match the C++14 auto
673 // In addition, in blocks in non-C++ modes, if all of the return
674 // statements are enumerator-like expressions of some type T, where
675 // T has a name for linkage, then we infer the return type of the
676 // block to be that type.
678 // First case: no return statements, implicit void return type.
679 ASTContext
&Ctx
= getASTContext();
680 if (CSI
.Returns
.empty()) {
681 // It's possible there were simply no /valid/ return statements.
682 // In this case, the first one we found may have at least given us a type.
683 if (CSI
.ReturnType
.isNull())
684 CSI
.ReturnType
= Ctx
.VoidTy
;
688 // Second case: at least one return statement has dependent type.
689 // Delay type checking until instantiation.
690 assert(!CSI
.ReturnType
.isNull() && "We should have a tentative return type.");
691 if (CSI
.ReturnType
->isDependentType())
694 // Try to apply the enum-fuzz rule.
695 if (!getLangOpts().CPlusPlus
) {
696 assert(isa
<BlockScopeInfo
>(CSI
));
697 const EnumDecl
*ED
= findCommonEnumForBlockReturns(CSI
.Returns
);
699 CSI
.ReturnType
= Context
.getTypeDeclType(ED
);
700 adjustBlockReturnsToEnum(*this, CSI
.Returns
, CSI
.ReturnType
);
705 // Third case: only one return statement. Don't bother doing extra work!
706 if (CSI
.Returns
.size() == 1)
709 // General case: many return statements.
710 // Check that they all have compatible return types.
712 // We require the return types to strictly match here.
713 // Note that we've already done the required promotions as part of
714 // processing the return statement.
715 for (const ReturnStmt
*RS
: CSI
.Returns
) {
716 const Expr
*RetE
= RS
->getRetValue();
718 QualType ReturnType
=
719 (RetE
? RetE
->getType() : Context
.VoidTy
).getUnqualifiedType();
720 if (Context
.getCanonicalFunctionResultType(ReturnType
) ==
721 Context
.getCanonicalFunctionResultType(CSI
.ReturnType
)) {
722 // Use the return type with the strictest possible nullability annotation.
723 auto RetTyNullability
= ReturnType
->getNullability();
724 auto BlockNullability
= CSI
.ReturnType
->getNullability();
725 if (BlockNullability
&&
726 (!RetTyNullability
||
727 hasWeakerNullability(*RetTyNullability
, *BlockNullability
)))
728 CSI
.ReturnType
= ReturnType
;
732 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
733 // TODO: It's possible that the *first* return is the divergent one.
734 Diag(RS
->getBeginLoc(),
735 diag::err_typecheck_missing_return_type_incompatible
)
736 << ReturnType
<< CSI
.ReturnType
<< isa
<LambdaScopeInfo
>(CSI
);
737 // Continue iterating so that we keep emitting diagnostics.
741 QualType
Sema::buildLambdaInitCaptureInitialization(
742 SourceLocation Loc
, bool ByRef
, SourceLocation EllipsisLoc
,
743 std::optional
<unsigned> NumExpansions
, IdentifierInfo
*Id
,
744 bool IsDirectInit
, Expr
*&Init
) {
745 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
747 QualType DeductType
= Context
.getAutoDeductType();
749 AutoTypeLoc TL
= TLB
.push
<AutoTypeLoc
>(DeductType
);
752 DeductType
= BuildReferenceType(DeductType
, true, Loc
, Id
);
753 assert(!DeductType
.isNull() && "can't build reference to auto");
754 TLB
.push
<ReferenceTypeLoc
>(DeductType
).setSigilLoc(Loc
);
756 if (EllipsisLoc
.isValid()) {
757 if (Init
->containsUnexpandedParameterPack()) {
758 Diag(EllipsisLoc
, getLangOpts().CPlusPlus20
759 ? diag::warn_cxx17_compat_init_capture_pack
760 : diag::ext_init_capture_pack
);
761 DeductType
= Context
.getPackExpansionType(DeductType
, NumExpansions
,
762 /*ExpectPackInType=*/false);
763 TLB
.push
<PackExpansionTypeLoc
>(DeductType
).setEllipsisLoc(EllipsisLoc
);
765 // Just ignore the ellipsis for now and form a non-pack variable. We'll
766 // diagnose this later when we try to capture it.
769 TypeSourceInfo
*TSI
= TLB
.getTypeSourceInfo(Context
, DeductType
);
771 // Deduce the type of the init capture.
772 QualType DeducedType
= deduceVarTypeFromInitializer(
773 /*VarDecl*/nullptr, DeclarationName(Id
), DeductType
, TSI
,
774 SourceRange(Loc
, Loc
), IsDirectInit
, Init
);
775 if (DeducedType
.isNull())
778 // Are we a non-list direct initialization?
779 ParenListExpr
*CXXDirectInit
= dyn_cast
<ParenListExpr
>(Init
);
781 // Perform initialization analysis and ensure any implicit conversions
782 // (such as lvalue-to-rvalue) are enforced.
783 InitializedEntity Entity
=
784 InitializedEntity::InitializeLambdaCapture(Id
, DeducedType
, Loc
);
785 InitializationKind Kind
=
787 ? (CXXDirectInit
? InitializationKind::CreateDirect(
788 Loc
, Init
->getBeginLoc(), Init
->getEndLoc())
789 : InitializationKind::CreateDirectList(Loc
))
790 : InitializationKind::CreateCopy(Loc
, Init
->getBeginLoc());
792 MultiExprArg Args
= Init
;
795 MultiExprArg(CXXDirectInit
->getExprs(), CXXDirectInit
->getNumExprs());
797 InitializationSequence
InitSeq(*this, Entity
, Kind
, Args
);
798 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, Args
, &DclT
);
800 if (Result
.isInvalid())
803 Init
= Result
.getAs
<Expr
>();
807 VarDecl
*Sema::createLambdaInitCaptureVarDecl(
808 SourceLocation Loc
, QualType InitCaptureType
, SourceLocation EllipsisLoc
,
809 IdentifierInfo
*Id
, unsigned InitStyle
, Expr
*Init
, DeclContext
*DeclCtx
) {
810 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
811 // rather than reconstructing it here.
812 TypeSourceInfo
*TSI
= Context
.getTrivialTypeSourceInfo(InitCaptureType
, Loc
);
813 if (auto PETL
= TSI
->getTypeLoc().getAs
<PackExpansionTypeLoc
>())
814 PETL
.setEllipsisLoc(EllipsisLoc
);
816 // Create a dummy variable representing the init-capture. This is not actually
817 // used as a variable, and only exists as a way to name and refer to the
819 // FIXME: Pass in separate source locations for '&' and identifier.
820 VarDecl
*NewVD
= VarDecl::Create(Context
, DeclCtx
, Loc
, Loc
, Id
,
821 InitCaptureType
, TSI
, SC_Auto
);
822 NewVD
->setInitCapture(true);
823 NewVD
->setReferenced(true);
824 // FIXME: Pass in a VarDecl::InitializationStyle.
825 NewVD
->setInitStyle(static_cast<VarDecl::InitializationStyle
>(InitStyle
));
826 NewVD
->markUsed(Context
);
827 NewVD
->setInit(Init
);
828 if (NewVD
->isParameterPack())
829 getCurLambda()->LocalPacks
.push_back(NewVD
);
833 void Sema::addInitCapture(LambdaScopeInfo
*LSI
, VarDecl
*Var
, bool ByRef
) {
834 assert(Var
->isInitCapture() && "init capture flag should be set");
835 LSI
->addCapture(Var
, /*isBlock=*/false, ByRef
,
836 /*isNested=*/false, Var
->getLocation(), SourceLocation(),
837 Var
->getType(), /*Invalid=*/false);
840 // Unlike getCurLambda, getCurrentLambdaScopeUnsafe doesn't
841 // check that the current lambda is in a consistent or fully constructed state.
842 static LambdaScopeInfo
*getCurrentLambdaScopeUnsafe(Sema
&S
) {
843 assert(!S
.FunctionScopes
.empty());
844 return cast
<LambdaScopeInfo
>(S
.FunctionScopes
[S
.FunctionScopes
.size() - 1]);
847 static TypeSourceInfo
*
848 getDummyLambdaType(Sema
&S
, SourceLocation Loc
= SourceLocation()) {
849 // C++11 [expr.prim.lambda]p4:
850 // If a lambda-expression does not include a lambda-declarator, it is as
851 // if the lambda-declarator were ().
852 FunctionProtoType::ExtProtoInfo
EPI(S
.Context
.getDefaultCallingConvention(
853 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
854 EPI
.HasTrailingReturn
= true;
855 EPI
.TypeQuals
.addConst();
856 LangAS AS
= S
.getDefaultCXXMethodAddrSpace();
857 if (AS
!= LangAS::Default
)
858 EPI
.TypeQuals
.addAddressSpace(AS
);
860 // C++1y [expr.prim.lambda]:
861 // The lambda return type is 'auto', which is replaced by the
862 // trailing-return type if provided and/or deduced from 'return'
864 // We don't do this before C++1y, because we don't support deduced return
866 QualType DefaultTypeForNoTrailingReturn
= S
.getLangOpts().CPlusPlus14
867 ? S
.Context
.getAutoDeductType()
868 : S
.Context
.DependentTy
;
869 QualType MethodTy
= S
.Context
.getFunctionType(DefaultTypeForNoTrailingReturn
,
871 return S
.Context
.getTrivialTypeSourceInfo(MethodTy
, Loc
);
874 static TypeSourceInfo
*getLambdaType(Sema
&S
, LambdaIntroducer
&Intro
,
875 Declarator
&ParamInfo
, Scope
*CurScope
,
877 bool &ExplicitResultType
) {
879 ExplicitResultType
= false;
882 (ParamInfo
.getDeclSpec().getStorageClassSpec() ==
883 DeclSpec::SCS_unspecified
||
884 ParamInfo
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static
) &&
885 "Unexpected storage specifier");
886 bool IsLambdaStatic
=
887 ParamInfo
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static
;
889 TypeSourceInfo
*MethodTyInfo
;
891 if (ParamInfo
.getNumTypeObjects() == 0) {
892 MethodTyInfo
= getDummyLambdaType(S
, Loc
);
894 // Check explicit parameters
895 S
.CheckExplicitObjectLambda(ParamInfo
);
897 DeclaratorChunk::FunctionTypeInfo
&FTI
= ParamInfo
.getFunctionTypeInfo();
899 bool HasExplicitObjectParameter
=
900 ParamInfo
.isExplicitObjectMemberFunction();
902 ExplicitResultType
= FTI
.hasTrailingReturnType();
903 if (!FTI
.hasMutableQualifier() && !IsLambdaStatic
&&
904 !HasExplicitObjectParameter
)
905 FTI
.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const
, Loc
);
907 if (ExplicitResultType
&& S
.getLangOpts().HLSL
) {
908 QualType RetTy
= FTI
.getTrailingReturnType().get();
909 if (!RetTy
.isNull()) {
910 // HLSL does not support specifying an address space on a lambda return
912 LangAS AddressSpace
= RetTy
.getAddressSpace();
913 if (AddressSpace
!= LangAS::Default
)
914 S
.Diag(FTI
.getTrailingReturnTypeLoc(),
915 diag::err_return_value_with_address_space
);
919 MethodTyInfo
= S
.GetTypeForDeclarator(ParamInfo
, CurScope
);
920 assert(MethodTyInfo
&& "no type from lambda-declarator");
922 // Check for unexpanded parameter packs in the method type.
923 if (MethodTyInfo
->getType()->containsUnexpandedParameterPack())
924 S
.DiagnoseUnexpandedParameterPack(Intro
.Range
.getBegin(), MethodTyInfo
,
925 S
.UPPC_DeclarationType
);
930 CXXMethodDecl
*Sema::CreateLambdaCallOperator(SourceRange IntroducerRange
,
931 CXXRecordDecl
*Class
) {
933 // C++20 [expr.prim.lambda.closure]p3:
934 // The closure type for a lambda-expression has a public inline function
935 // call operator (for a non-generic lambda) or function call operator
936 // template (for a generic lambda) whose parameters and return type are
937 // described by the lambda-expression's parameter-declaration-clause
938 // and trailing-return-type respectively.
939 DeclarationName MethodName
=
940 Context
.DeclarationNames
.getCXXOperatorName(OO_Call
);
941 DeclarationNameLoc MethodNameLoc
=
942 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange
.getBegin());
943 CXXMethodDecl
*Method
= CXXMethodDecl::Create(
944 Context
, Class
, SourceLocation(),
945 DeclarationNameInfo(MethodName
, IntroducerRange
.getBegin(),
947 QualType(), /*Tinfo=*/nullptr, SC_None
,
948 getCurFPFeatures().isFPConstrained(),
949 /*isInline=*/true, ConstexprSpecKind::Unspecified
, SourceLocation(),
950 /*TrailingRequiresClause=*/nullptr);
951 Method
->setAccess(AS_public
);
955 void Sema::AddTemplateParametersToLambdaCallOperator(
956 CXXMethodDecl
*CallOperator
, CXXRecordDecl
*Class
,
957 TemplateParameterList
*TemplateParams
) {
958 assert(TemplateParams
&& "no template parameters");
959 FunctionTemplateDecl
*TemplateMethod
= FunctionTemplateDecl::Create(
960 Context
, Class
, CallOperator
->getLocation(), CallOperator
->getDeclName(),
961 TemplateParams
, CallOperator
);
962 TemplateMethod
->setAccess(AS_public
);
963 CallOperator
->setDescribedFunctionTemplate(TemplateMethod
);
966 void Sema::CompleteLambdaCallOperator(
967 CXXMethodDecl
*Method
, SourceLocation LambdaLoc
,
968 SourceLocation CallOperatorLoc
, Expr
*TrailingRequiresClause
,
969 TypeSourceInfo
*MethodTyInfo
, ConstexprSpecKind ConstexprKind
,
970 StorageClass SC
, ArrayRef
<ParmVarDecl
*> Params
,
971 bool HasExplicitResultType
) {
973 LambdaScopeInfo
*LSI
= getCurrentLambdaScopeUnsafe(*this);
975 if (TrailingRequiresClause
)
976 Method
->setTrailingRequiresClause(TrailingRequiresClause
);
978 TemplateParameterList
*TemplateParams
=
979 getGenericLambdaTemplateParameterList(LSI
, *this);
981 DeclContext
*DC
= Method
->getLexicalDeclContext();
982 Method
->setLexicalDeclContext(LSI
->Lambda
);
983 if (TemplateParams
) {
984 FunctionTemplateDecl
*TemplateMethod
=
985 Method
->getDescribedFunctionTemplate();
986 assert(TemplateMethod
&&
987 "AddTemplateParametersToLambdaCallOperator should have been called");
989 LSI
->Lambda
->addDecl(TemplateMethod
);
990 TemplateMethod
->setLexicalDeclContext(DC
);
992 LSI
->Lambda
->addDecl(Method
);
994 LSI
->Lambda
->setLambdaIsGeneric(TemplateParams
);
995 LSI
->Lambda
->setLambdaTypeInfo(MethodTyInfo
);
997 Method
->setLexicalDeclContext(DC
);
998 Method
->setLocation(LambdaLoc
);
999 Method
->setInnerLocStart(CallOperatorLoc
);
1000 Method
->setTypeSourceInfo(MethodTyInfo
);
1001 Method
->setType(buildTypeForLambdaCallOperator(*this, LSI
->Lambda
,
1002 TemplateParams
, MethodTyInfo
));
1003 Method
->setConstexprKind(ConstexprKind
);
1004 Method
->setStorageClass(SC
);
1005 if (!Params
.empty()) {
1006 CheckParmsForFunctionDef(Params
, /*CheckParameterNames=*/false);
1007 Method
->setParams(Params
);
1008 for (auto P
: Method
->parameters()) {
1009 assert(P
&& "null in a parameter list");
1010 P
->setOwningFunction(Method
);
1014 buildLambdaScopeReturnType(*this, LSI
, Method
, HasExplicitResultType
);
1017 void Sema::ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer
&Intro
,
1018 Scope
*CurrentScope
) {
1020 LambdaScopeInfo
*LSI
= getCurLambda();
1021 assert(LSI
&& "LambdaScopeInfo should be on stack!");
1023 if (Intro
.Default
== LCD_ByCopy
)
1024 LSI
->ImpCaptureStyle
= LambdaScopeInfo::ImpCap_LambdaByval
;
1025 else if (Intro
.Default
== LCD_ByRef
)
1026 LSI
->ImpCaptureStyle
= LambdaScopeInfo::ImpCap_LambdaByref
;
1027 LSI
->CaptureDefaultLoc
= Intro
.DefaultLoc
;
1028 LSI
->IntroducerRange
= Intro
.Range
;
1029 LSI
->AfterParameterList
= false;
1031 assert(LSI
->NumExplicitTemplateParams
== 0);
1033 // Determine if we're within a context where we know that the lambda will
1034 // be dependent, because there are template parameters in scope.
1035 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind
=
1036 CXXRecordDecl::LDK_Unknown
;
1037 if (LSI
->NumExplicitTemplateParams
> 0) {
1038 Scope
*TemplateParamScope
= CurScope
->getTemplateParamParent();
1039 assert(TemplateParamScope
&&
1040 "Lambda with explicit template param list should establish a "
1041 "template param scope");
1042 assert(TemplateParamScope
->getParent());
1043 if (TemplateParamScope
->getParent()->getTemplateParamParent() != nullptr)
1044 LambdaDependencyKind
= CXXRecordDecl::LDK_AlwaysDependent
;
1045 } else if (CurScope
->getTemplateParamParent() != nullptr) {
1046 LambdaDependencyKind
= CXXRecordDecl::LDK_AlwaysDependent
;
1049 CXXRecordDecl
*Class
= createLambdaClosureType(
1050 Intro
.Range
, /*Info=*/nullptr, LambdaDependencyKind
, Intro
.Default
);
1051 LSI
->Lambda
= Class
;
1053 CXXMethodDecl
*Method
= CreateLambdaCallOperator(Intro
.Range
, Class
);
1054 LSI
->CallOperator
= Method
;
1055 Method
->setLexicalDeclContext(CurContext
);
1057 PushDeclContext(CurScope
, Method
);
1059 bool ContainsUnexpandedParameterPack
= false;
1061 // Distinct capture names, for diagnostics.
1062 llvm::DenseMap
<IdentifierInfo
*, ValueDecl
*> CaptureNames
;
1064 // Handle explicit captures.
1065 SourceLocation PrevCaptureLoc
=
1066 Intro
.Default
== LCD_None
? Intro
.Range
.getBegin() : Intro
.DefaultLoc
;
1067 for (auto C
= Intro
.Captures
.begin(), E
= Intro
.Captures
.end(); C
!= E
;
1068 PrevCaptureLoc
= C
->Loc
, ++C
) {
1069 if (C
->Kind
== LCK_This
|| C
->Kind
== LCK_StarThis
) {
1070 if (C
->Kind
== LCK_StarThis
)
1071 Diag(C
->Loc
, !getLangOpts().CPlusPlus17
1072 ? diag::ext_star_this_lambda_capture_cxx17
1073 : diag::warn_cxx14_compat_star_this_lambda_capture
);
1075 // C++11 [expr.prim.lambda]p8:
1076 // An identifier or this shall not appear more than once in a
1078 if (LSI
->isCXXThisCaptured()) {
1079 Diag(C
->Loc
, diag::err_capture_more_than_once
)
1080 << "'this'" << SourceRange(LSI
->getCXXThisCapture().getLocation())
1081 << FixItHint::CreateRemoval(
1082 SourceRange(getLocForEndOfToken(PrevCaptureLoc
), C
->Loc
));
1086 // C++20 [expr.prim.lambda]p8:
1087 // If a lambda-capture includes a capture-default that is =,
1088 // each simple-capture of that lambda-capture shall be of the form
1089 // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1090 // redundant but accepted for compatibility with ISO C++14. --end note ]
1091 if (Intro
.Default
== LCD_ByCopy
&& C
->Kind
!= LCK_StarThis
)
1092 Diag(C
->Loc
, !getLangOpts().CPlusPlus20
1093 ? diag::ext_equals_this_lambda_capture_cxx20
1094 : diag::warn_cxx17_compat_equals_this_lambda_capture
);
1096 // C++11 [expr.prim.lambda]p12:
1097 // If this is captured by a local lambda expression, its nearest
1098 // enclosing function shall be a non-static member function.
1099 QualType ThisCaptureType
= getCurrentThisType();
1100 if (ThisCaptureType
.isNull()) {
1101 Diag(C
->Loc
, diag::err_this_capture
) << true;
1105 CheckCXXThisCapture(C
->Loc
, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1106 /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1107 C
->Kind
== LCK_StarThis
);
1108 if (!LSI
->Captures
.empty())
1109 LSI
->ExplicitCaptureRanges
[LSI
->Captures
.size() - 1] = C
->ExplicitRange
;
1113 assert(C
->Id
&& "missing identifier for capture");
1115 if (C
->Init
.isInvalid())
1118 ValueDecl
*Var
= nullptr;
1119 if (C
->Init
.isUsable()) {
1120 Diag(C
->Loc
, getLangOpts().CPlusPlus14
1121 ? diag::warn_cxx11_compat_init_capture
1122 : diag::ext_init_capture
);
1124 // If the initializer expression is usable, but the InitCaptureType
1125 // is not, then an error has occurred - so ignore the capture for now.
1126 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1127 // FIXME: we should create the init capture variable and mark it invalid
1129 if (C
->InitCaptureType
.get().isNull())
1132 if (C
->Init
.get()->containsUnexpandedParameterPack() &&
1133 !C
->InitCaptureType
.get()->getAs
<PackExpansionType
>())
1134 DiagnoseUnexpandedParameterPack(C
->Init
.get(), UPPC_Initializer
);
1137 switch (C
->InitKind
) {
1138 case LambdaCaptureInitKind::NoInit
:
1139 llvm_unreachable("not an init-capture?");
1140 case LambdaCaptureInitKind::CopyInit
:
1141 InitStyle
= VarDecl::CInit
;
1143 case LambdaCaptureInitKind::DirectInit
:
1144 InitStyle
= VarDecl::CallInit
;
1146 case LambdaCaptureInitKind::ListInit
:
1147 InitStyle
= VarDecl::ListInit
;
1150 Var
= createLambdaInitCaptureVarDecl(C
->Loc
, C
->InitCaptureType
.get(),
1151 C
->EllipsisLoc
, C
->Id
, InitStyle
,
1152 C
->Init
.get(), Method
);
1153 assert(Var
&& "createLambdaInitCaptureVarDecl returned a null VarDecl?");
1154 if (auto *V
= dyn_cast
<VarDecl
>(Var
))
1155 CheckShadow(CurrentScope
, V
);
1156 PushOnScopeChains(Var
, CurrentScope
, false);
1158 assert(C
->InitKind
== LambdaCaptureInitKind::NoInit
&&
1159 "init capture has valid but null init?");
1161 // C++11 [expr.prim.lambda]p8:
1162 // If a lambda-capture includes a capture-default that is &, the
1163 // identifiers in the lambda-capture shall not be preceded by &.
1164 // If a lambda-capture includes a capture-default that is =, [...]
1165 // each identifier it contains shall be preceded by &.
1166 if (C
->Kind
== LCK_ByRef
&& Intro
.Default
== LCD_ByRef
) {
1167 Diag(C
->Loc
, diag::err_reference_capture_with_reference_default
)
1168 << FixItHint::CreateRemoval(
1169 SourceRange(getLocForEndOfToken(PrevCaptureLoc
), C
->Loc
));
1171 } else if (C
->Kind
== LCK_ByCopy
&& Intro
.Default
== LCD_ByCopy
) {
1172 Diag(C
->Loc
, diag::err_copy_capture_with_copy_default
)
1173 << FixItHint::CreateRemoval(
1174 SourceRange(getLocForEndOfToken(PrevCaptureLoc
), C
->Loc
));
1178 // C++11 [expr.prim.lambda]p10:
1179 // The identifiers in a capture-list are looked up using the usual
1180 // rules for unqualified name lookup (3.4.1)
1181 DeclarationNameInfo
Name(C
->Id
, C
->Loc
);
1182 LookupResult
R(*this, Name
, LookupOrdinaryName
);
1183 LookupName(R
, CurScope
);
1184 if (R
.isAmbiguous())
1187 // FIXME: Disable corrections that would add qualification?
1188 CXXScopeSpec ScopeSpec
;
1189 DeclFilterCCC
<VarDecl
> Validator
{};
1190 if (DiagnoseEmptyLookup(CurScope
, ScopeSpec
, R
, Validator
))
1194 if (auto *BD
= R
.getAsSingle
<BindingDecl
>())
1197 Var
= R
.getAsSingle
<VarDecl
>();
1198 if (Var
&& DiagnoseUseOfDecl(Var
, C
->Loc
))
1202 // C++11 [expr.prim.lambda]p10:
1203 // [...] each such lookup shall find a variable with automatic storage
1204 // duration declared in the reaching scope of the local lambda expression.
1205 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1207 Diag(C
->Loc
, diag::err_capture_does_not_name_variable
) << C
->Id
;
1211 // C++11 [expr.prim.lambda]p8:
1212 // An identifier or this shall not appear more than once in a
1214 if (auto [It
, Inserted
] = CaptureNames
.insert(std::pair
{C
->Id
, Var
});
1216 if (C
->InitKind
== LambdaCaptureInitKind::NoInit
&&
1217 !Var
->isInitCapture()) {
1218 Diag(C
->Loc
, diag::err_capture_more_than_once
)
1219 << C
->Id
<< It
->second
->getBeginLoc()
1220 << FixItHint::CreateRemoval(
1221 SourceRange(getLocForEndOfToken(PrevCaptureLoc
), C
->Loc
));
1222 Var
->setInvalidDecl();
1223 } else if (Var
&& Var
->isPlaceholderVar(getLangOpts())) {
1224 DiagPlaceholderVariableDefinition(C
->Loc
);
1226 // Previous capture captured something different (one or both was
1227 // an init-capture): no fixit.
1228 Diag(C
->Loc
, diag::err_capture_more_than_once
) << C
->Id
;
1233 // Ignore invalid decls; they'll just confuse the code later.
1234 if (Var
->isInvalidDecl())
1237 VarDecl
*Underlying
= Var
->getPotentiallyDecomposedVarDecl();
1239 if (!Underlying
->hasLocalStorage()) {
1240 Diag(C
->Loc
, diag::err_capture_non_automatic_variable
) << C
->Id
;
1241 Diag(Var
->getLocation(), diag::note_previous_decl
) << C
->Id
;
1245 // C++11 [expr.prim.lambda]p23:
1246 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1247 SourceLocation EllipsisLoc
;
1248 if (C
->EllipsisLoc
.isValid()) {
1249 if (Var
->isParameterPack()) {
1250 EllipsisLoc
= C
->EllipsisLoc
;
1252 Diag(C
->EllipsisLoc
, diag::err_pack_expansion_without_parameter_packs
)
1253 << (C
->Init
.isUsable() ? C
->Init
.get()->getSourceRange()
1254 : SourceRange(C
->Loc
));
1256 // Just ignore the ellipsis.
1258 } else if (Var
->isParameterPack()) {
1259 ContainsUnexpandedParameterPack
= true;
1262 if (C
->Init
.isUsable()) {
1263 addInitCapture(LSI
, cast
<VarDecl
>(Var
), C
->Kind
== LCK_ByRef
);
1264 PushOnScopeChains(Var
, CurScope
, false);
1266 TryCaptureKind Kind
= C
->Kind
== LCK_ByRef
? TryCapture_ExplicitByRef
1267 : TryCapture_ExplicitByVal
;
1268 tryCaptureVariable(Var
, C
->Loc
, Kind
, EllipsisLoc
);
1270 if (!LSI
->Captures
.empty())
1271 LSI
->ExplicitCaptureRanges
[LSI
->Captures
.size() - 1] = C
->ExplicitRange
;
1273 finishLambdaExplicitCaptures(LSI
);
1274 LSI
->ContainsUnexpandedParameterPack
|= ContainsUnexpandedParameterPack
;
1278 void Sema::ActOnLambdaClosureQualifiers(LambdaIntroducer
&Intro
,
1279 SourceLocation MutableLoc
) {
1281 LambdaScopeInfo
*LSI
= getCurrentLambdaScopeUnsafe(*this);
1282 LSI
->Mutable
= MutableLoc
.isValid();
1283 ContextRAII
Context(*this, LSI
->CallOperator
, /*NewThisContext*/ false);
1285 // C++11 [expr.prim.lambda]p9:
1286 // A lambda-expression whose smallest enclosing scope is a block scope is a
1287 // local lambda expression; any other lambda expression shall not have a
1288 // capture-default or simple-capture in its lambda-introducer.
1290 // For simple-captures, this is covered by the check below that any named
1291 // entity is a variable that can be captured.
1293 // For DR1632, we also allow a capture-default in any context where we can
1294 // odr-use 'this' (in particular, in a default initializer for a non-static
1296 if (Intro
.Default
!= LCD_None
&&
1297 !LSI
->Lambda
->getParent()->isFunctionOrMethod() &&
1298 (getCurrentThisType().isNull() ||
1299 CheckCXXThisCapture(SourceLocation(), /*Explicit=*/true,
1300 /*BuildAndDiagnose=*/false)))
1301 Diag(Intro
.DefaultLoc
, diag::err_capture_default_non_local
);
1304 void Sema::ActOnLambdaClosureParameters(
1305 Scope
*LambdaScope
, MutableArrayRef
<DeclaratorChunk::ParamInfo
> Params
) {
1306 LambdaScopeInfo
*LSI
= getCurrentLambdaScopeUnsafe(*this);
1307 PushDeclContext(LambdaScope
, LSI
->CallOperator
);
1309 for (const DeclaratorChunk::ParamInfo
&P
: Params
) {
1310 auto *Param
= cast
<ParmVarDecl
>(P
.Param
);
1311 Param
->setOwningFunction(LSI
->CallOperator
);
1312 if (Param
->getIdentifier())
1313 PushOnScopeChains(Param
, LambdaScope
, false);
1316 // After the parameter list, we may parse a noexcept/requires/trailing return
1317 // type which need to know whether the call operator constiture a dependent
1318 // context, so we need to setup the FunctionTemplateDecl of generic lambdas
1320 TemplateParameterList
*TemplateParams
=
1321 getGenericLambdaTemplateParameterList(LSI
, *this);
1322 if (TemplateParams
) {
1323 AddTemplateParametersToLambdaCallOperator(LSI
->CallOperator
, LSI
->Lambda
,
1325 LSI
->Lambda
->setLambdaIsGeneric(true);
1327 LSI
->AfterParameterList
= true;
1330 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer
&Intro
,
1331 Declarator
&ParamInfo
,
1332 const DeclSpec
&DS
) {
1334 LambdaScopeInfo
*LSI
= getCurrentLambdaScopeUnsafe(*this);
1335 LSI
->CallOperator
->setConstexprKind(DS
.getConstexprSpecifier());
1337 SmallVector
<ParmVarDecl
*, 8> Params
;
1338 bool ExplicitResultType
;
1340 SourceLocation TypeLoc
, CallOperatorLoc
;
1341 if (ParamInfo
.getNumTypeObjects() == 0) {
1342 CallOperatorLoc
= TypeLoc
= Intro
.Range
.getEnd();
1345 ParamInfo
.isFunctionDeclarator(Index
);
1346 const auto &Object
= ParamInfo
.getTypeObject(Index
);
1348 Object
.Loc
.isValid() ? Object
.Loc
: ParamInfo
.getSourceRange().getEnd();
1349 CallOperatorLoc
= ParamInfo
.getSourceRange().getEnd();
1352 CXXRecordDecl
*Class
= LSI
->Lambda
;
1353 CXXMethodDecl
*Method
= LSI
->CallOperator
;
1355 TypeSourceInfo
*MethodTyInfo
= getLambdaType(
1356 *this, Intro
, ParamInfo
, getCurScope(), TypeLoc
, ExplicitResultType
);
1358 LSI
->ExplicitParams
= ParamInfo
.getNumTypeObjects() != 0;
1360 if (ParamInfo
.isFunctionDeclarator() != 0 &&
1361 !FTIHasSingleVoidParameter(ParamInfo
.getFunctionTypeInfo())) {
1362 const auto &FTI
= ParamInfo
.getFunctionTypeInfo();
1363 Params
.reserve(Params
.size());
1364 for (unsigned I
= 0; I
< FTI
.NumParams
; ++I
) {
1365 auto *Param
= cast
<ParmVarDecl
>(FTI
.Params
[I
].Param
);
1366 Param
->setScopeInfo(0, Params
.size());
1367 Params
.push_back(Param
);
1371 bool IsLambdaStatic
=
1372 ParamInfo
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static
;
1374 CompleteLambdaCallOperator(
1375 Method
, Intro
.Range
.getBegin(), CallOperatorLoc
,
1376 ParamInfo
.getTrailingRequiresClause(), MethodTyInfo
,
1377 ParamInfo
.getDeclSpec().getConstexprSpecifier(),
1378 IsLambdaStatic
? SC_Static
: SC_None
, Params
, ExplicitResultType
);
1380 CheckCXXDefaultArguments(Method
);
1382 // This represents the function body for the lambda function, check if we
1383 // have to apply optnone due to a pragma.
1384 AddRangeBasedOptnone(Method
);
1386 // code_seg attribute on lambda apply to the method.
1387 if (Attr
*A
= getImplicitCodeSegOrSectionAttrForFunction(
1388 Method
, /*IsDefinition=*/true))
1391 // Attributes on the lambda apply to the method.
1392 ProcessDeclAttributes(CurScope
, Method
, ParamInfo
);
1394 // CUDA lambdas get implicit host and device attributes.
1395 if (getLangOpts().CUDA
)
1396 CUDASetLambdaAttrs(Method
);
1398 // OpenMP lambdas might get assumumption attributes.
1399 if (LangOpts
.OpenMP
)
1400 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method
);
1402 handleLambdaNumbering(Class
, Method
);
1404 for (auto &&C
: LSI
->Captures
) {
1405 if (!C
.isVariableCapture())
1407 ValueDecl
*Var
= C
.getVariable();
1408 if (Var
&& Var
->isInitCapture()) {
1409 PushOnScopeChains(Var
, CurScope
, false);
1413 auto CheckRedefinition
= [&](ParmVarDecl
*Param
) {
1414 for (const auto &Capture
: Intro
.Captures
) {
1415 if (Capture
.Id
== Param
->getIdentifier()) {
1416 Diag(Param
->getLocation(), diag::err_parameter_shadow_capture
);
1417 Diag(Capture
.Loc
, diag::note_var_explicitly_captured_here
)
1418 << Capture
.Id
<< true;
1425 for (ParmVarDecl
*P
: Params
) {
1426 if (!P
->getIdentifier())
1428 if (CheckRedefinition(P
))
1429 CheckShadow(CurScope
, P
);
1430 PushOnScopeChains(P
, CurScope
);
1433 // C++23 [expr.prim.lambda.capture]p5:
1434 // If an identifier in a capture appears as the declarator-id of a parameter
1435 // of the lambda-declarator's parameter-declaration-clause or as the name of a
1436 // template parameter of the lambda-expression's template-parameter-list, the
1437 // program is ill-formed.
1438 TemplateParameterList
*TemplateParams
=
1439 getGenericLambdaTemplateParameterList(LSI
, *this);
1440 if (TemplateParams
) {
1441 for (const auto *TP
: TemplateParams
->asArray()) {
1442 if (!TP
->getIdentifier())
1444 for (const auto &Capture
: Intro
.Captures
) {
1445 if (Capture
.Id
== TP
->getIdentifier()) {
1446 Diag(Capture
.Loc
, diag::err_template_param_shadow
) << Capture
.Id
;
1447 NoteTemplateParameterLocation(*TP
);
1453 // C++20: dcl.decl.general p4:
1454 // The optional requires-clause ([temp.pre]) in an init-declarator or
1455 // member-declarator shall be present only if the declarator declares a
1456 // templated function ([dcl.fct]).
1457 if (Expr
*TRC
= Method
->getTrailingRequiresClause()) {
1459 // An entity is templated if it is
1461 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
1462 // templated entity,
1463 // - a member of a templated entity,
1464 // - an enumerator for an enumeration that is a templated entity, or
1465 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
1466 // appearing in the declaration of a templated entity. [Note 6: A local
1467 // class, a local or block variable, or a friend function defined in a
1468 // templated entity is a templated entity. — end note]
1470 // A templated function is a function template or a function that is
1471 // templated. A templated class is a class template or a class that is
1472 // templated. A templated variable is a variable template or a variable
1473 // that is templated.
1475 // Note: we only have to check if this is defined in a template entity, OR
1476 // if we are a template, since the rest don't apply. The requires clause
1477 // applies to the call operator, which we already know is a member function,
1479 if (!Method
->getDescribedFunctionTemplate() && !Method
->isTemplated()) {
1480 Diag(TRC
->getBeginLoc(), diag::err_constrained_non_templated_function
);
1484 // Enter a new evaluation context to insulate the lambda from any
1485 // cleanups from the enclosing full-expression.
1486 PushExpressionEvaluationContext(
1487 LSI
->CallOperator
->isConsteval()
1488 ? ExpressionEvaluationContext::ImmediateFunctionContext
1489 : ExpressionEvaluationContext::PotentiallyEvaluated
);
1490 ExprEvalContexts
.back().InImmediateFunctionContext
=
1491 LSI
->CallOperator
->isConsteval();
1492 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
=
1493 getLangOpts().CPlusPlus20
&& LSI
->CallOperator
->isImmediateEscalating();
1496 void Sema::ActOnLambdaError(SourceLocation StartLoc
, Scope
*CurScope
,
1497 bool IsInstantiation
) {
1498 LambdaScopeInfo
*LSI
= cast
<LambdaScopeInfo
>(FunctionScopes
.back());
1500 // Leave the expression-evaluation context.
1501 DiscardCleanupsInEvaluationContext();
1502 PopExpressionEvaluationContext();
1504 // Leave the context of the lambda.
1505 if (!IsInstantiation
)
1508 // Finalize the lambda.
1509 CXXRecordDecl
*Class
= LSI
->Lambda
;
1510 Class
->setInvalidDecl();
1511 SmallVector
<Decl
*, 4> Fields(Class
->fields());
1512 ActOnFields(nullptr, Class
->getLocation(), Class
, Fields
, SourceLocation(),
1513 SourceLocation(), ParsedAttributesView());
1514 CheckCompletedCXXClass(nullptr, Class
);
1516 PopFunctionScopeInfo();
1519 template <typename Func
>
1520 static void repeatForLambdaConversionFunctionCallingConvs(
1521 Sema
&S
, const FunctionProtoType
&CallOpProto
, Func F
) {
1522 CallingConv DefaultFree
= S
.Context
.getDefaultCallingConvention(
1523 CallOpProto
.isVariadic(), /*IsCXXMethod=*/false);
1524 CallingConv DefaultMember
= S
.Context
.getDefaultCallingConvention(
1525 CallOpProto
.isVariadic(), /*IsCXXMethod=*/true);
1526 CallingConv CallOpCC
= CallOpProto
.getCallConv();
1528 /// Implement emitting a version of the operator for many of the calling
1529 /// conventions for MSVC, as described here:
1530 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1531 /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1532 /// vectorcall are generated by MSVC when it is supported by the target.
1533 /// Additionally, we are ensuring that the default-free/default-member and
1534 /// call-operator calling convention are generated as well.
1535 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1536 /// 'member default', despite MSVC not doing so. We do this in order to ensure
1537 /// that someone who intentionally places 'thiscall' on the lambda call
1538 /// operator will still get that overload, since we don't have the a way of
1539 /// detecting the attribute by the time we get here.
1540 if (S
.getLangOpts().MSVCCompat
) {
1541 CallingConv Convs
[] = {
1542 CC_C
, CC_X86StdCall
, CC_X86FastCall
, CC_X86VectorCall
,
1543 DefaultFree
, DefaultMember
, CallOpCC
};
1545 llvm::iterator_range
<CallingConv
*> Range(
1546 std::begin(Convs
), std::unique(std::begin(Convs
), std::end(Convs
)));
1547 const TargetInfo
&TI
= S
.getASTContext().getTargetInfo();
1549 for (CallingConv C
: Range
) {
1550 if (TI
.checkCallingConvention(C
) == TargetInfo::CCCR_OK
)
1556 if (CallOpCC
== DefaultMember
&& DefaultMember
!= DefaultFree
) {
1564 // Returns the 'standard' calling convention to be used for the lambda
1565 // conversion function, that is, the 'free' function calling convention unless
1566 // it is overridden by a non-default calling convention attribute.
1568 getLambdaConversionFunctionCallConv(Sema
&S
,
1569 const FunctionProtoType
*CallOpProto
) {
1570 CallingConv DefaultFree
= S
.Context
.getDefaultCallingConvention(
1571 CallOpProto
->isVariadic(), /*IsCXXMethod=*/false);
1572 CallingConv DefaultMember
= S
.Context
.getDefaultCallingConvention(
1573 CallOpProto
->isVariadic(), /*IsCXXMethod=*/true);
1574 CallingConv CallOpCC
= CallOpProto
->getCallConv();
1576 // If the call-operator hasn't been changed, return both the 'free' and
1577 // 'member' function calling convention.
1578 if (CallOpCC
== DefaultMember
&& DefaultMember
!= DefaultFree
)
1583 QualType
Sema::getLambdaConversionFunctionResultType(
1584 const FunctionProtoType
*CallOpProto
, CallingConv CC
) {
1585 const FunctionProtoType::ExtProtoInfo CallOpExtInfo
=
1586 CallOpProto
->getExtProtoInfo();
1587 FunctionProtoType::ExtProtoInfo InvokerExtInfo
= CallOpExtInfo
;
1588 InvokerExtInfo
.ExtInfo
= InvokerExtInfo
.ExtInfo
.withCallingConv(CC
);
1589 InvokerExtInfo
.TypeQuals
= Qualifiers();
1590 assert(InvokerExtInfo
.RefQualifier
== RQ_None
&&
1591 "Lambda's call operator should not have a reference qualifier");
1592 return Context
.getFunctionType(CallOpProto
->getReturnType(),
1593 CallOpProto
->getParamTypes(), InvokerExtInfo
);
1596 /// Add a lambda's conversion to function pointer, as described in
1597 /// C++11 [expr.prim.lambda]p6.
1598 static void addFunctionPointerConversion(Sema
&S
, SourceRange IntroducerRange
,
1599 CXXRecordDecl
*Class
,
1600 CXXMethodDecl
*CallOperator
,
1601 QualType InvokerFunctionTy
) {
1602 // This conversion is explicitly disabled if the lambda's function has
1603 // pass_object_size attributes on any of its parameters.
1604 auto HasPassObjectSizeAttr
= [](const ParmVarDecl
*P
) {
1605 return P
->hasAttr
<PassObjectSizeAttr
>();
1607 if (llvm::any_of(CallOperator
->parameters(), HasPassObjectSizeAttr
))
1610 // Add the conversion to function pointer.
1611 QualType PtrToFunctionTy
= S
.Context
.getPointerType(InvokerFunctionTy
);
1613 // Create the type of the conversion function.
1614 FunctionProtoType::ExtProtoInfo
ConvExtInfo(
1615 S
.Context
.getDefaultCallingConvention(
1616 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1617 // The conversion function is always const and noexcept.
1618 ConvExtInfo
.TypeQuals
= Qualifiers();
1619 ConvExtInfo
.TypeQuals
.addConst();
1620 ConvExtInfo
.ExceptionSpec
.Type
= EST_BasicNoexcept
;
1622 S
.Context
.getFunctionType(PtrToFunctionTy
, std::nullopt
, ConvExtInfo
);
1624 SourceLocation Loc
= IntroducerRange
.getBegin();
1625 DeclarationName ConversionName
1626 = S
.Context
.DeclarationNames
.getCXXConversionFunctionName(
1627 S
.Context
.getCanonicalType(PtrToFunctionTy
));
1628 // Construct a TypeSourceInfo for the conversion function, and wire
1629 // all the parameters appropriately for the FunctionProtoTypeLoc
1630 // so that everything works during transformation/instantiation of
1632 // The main reason for wiring up the parameters of the conversion
1633 // function with that of the call operator is so that constructs
1634 // like the following work:
1635 // auto L = [](auto b) { <-- 1
1636 // return [](auto a) -> decltype(a) { <-- 2
1640 // int (*fp)(int) = L(5);
1641 // Because the trailing return type can contain DeclRefExprs that refer
1642 // to the original call operator's variables, we hijack the call
1643 // operators ParmVarDecls below.
1644 TypeSourceInfo
*ConvNamePtrToFunctionTSI
=
1645 S
.Context
.getTrivialTypeSourceInfo(PtrToFunctionTy
, Loc
);
1646 DeclarationNameLoc ConvNameLoc
=
1647 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI
);
1649 // The conversion function is a conversion to a pointer-to-function.
1650 TypeSourceInfo
*ConvTSI
= S
.Context
.getTrivialTypeSourceInfo(ConvTy
, Loc
);
1651 FunctionProtoTypeLoc ConvTL
=
1652 ConvTSI
->getTypeLoc().getAs
<FunctionProtoTypeLoc
>();
1653 // Get the result of the conversion function which is a pointer-to-function.
1654 PointerTypeLoc PtrToFunctionTL
=
1655 ConvTL
.getReturnLoc().getAs
<PointerTypeLoc
>();
1656 // Do the same for the TypeSourceInfo that is used to name the conversion
1658 PointerTypeLoc ConvNamePtrToFunctionTL
=
1659 ConvNamePtrToFunctionTSI
->getTypeLoc().getAs
<PointerTypeLoc
>();
1661 // Get the underlying function types that the conversion function will
1662 // be converting to (should match the type of the call operator).
1663 FunctionProtoTypeLoc CallOpConvTL
=
1664 PtrToFunctionTL
.getPointeeLoc().getAs
<FunctionProtoTypeLoc
>();
1665 FunctionProtoTypeLoc CallOpConvNameTL
=
1666 ConvNamePtrToFunctionTL
.getPointeeLoc().getAs
<FunctionProtoTypeLoc
>();
1668 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1669 // These parameter's are essentially used to transform the name and
1670 // the type of the conversion operator. By using the same parameters
1671 // as the call operator's we don't have to fix any back references that
1672 // the trailing return type of the call operator's uses (such as
1673 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1674 // - we can simply use the return type of the call operator, and
1675 // everything should work.
1676 SmallVector
<ParmVarDecl
*, 4> InvokerParams
;
1677 for (unsigned I
= 0, N
= CallOperator
->getNumParams(); I
!= N
; ++I
) {
1678 ParmVarDecl
*From
= CallOperator
->getParamDecl(I
);
1680 InvokerParams
.push_back(ParmVarDecl::Create(
1682 // Temporarily add to the TU. This is set to the invoker below.
1683 S
.Context
.getTranslationUnitDecl(), From
->getBeginLoc(),
1684 From
->getLocation(), From
->getIdentifier(), From
->getType(),
1685 From
->getTypeSourceInfo(), From
->getStorageClass(),
1686 /*DefArg=*/nullptr));
1687 CallOpConvTL
.setParam(I
, From
);
1688 CallOpConvNameTL
.setParam(I
, From
);
1691 CXXConversionDecl
*Conversion
= CXXConversionDecl::Create(
1692 S
.Context
, Class
, Loc
,
1693 DeclarationNameInfo(ConversionName
, Loc
, ConvNameLoc
), ConvTy
, ConvTSI
,
1694 S
.getCurFPFeatures().isFPConstrained(),
1695 /*isInline=*/true, ExplicitSpecifier(),
1696 S
.getLangOpts().CPlusPlus17
? ConstexprSpecKind::Constexpr
1697 : ConstexprSpecKind::Unspecified
,
1698 CallOperator
->getBody()->getEndLoc());
1699 Conversion
->setAccess(AS_public
);
1700 Conversion
->setImplicit(true);
1702 // A non-generic lambda may still be a templated entity. We need to preserve
1703 // constraints when converting the lambda to a function pointer. See GH63181.
1704 if (Expr
*Requires
= CallOperator
->getTrailingRequiresClause())
1705 Conversion
->setTrailingRequiresClause(Requires
);
1707 if (Class
->isGenericLambda()) {
1708 // Create a template version of the conversion operator, using the template
1709 // parameter list of the function call operator.
1710 FunctionTemplateDecl
*TemplateCallOperator
=
1711 CallOperator
->getDescribedFunctionTemplate();
1712 FunctionTemplateDecl
*ConversionTemplate
=
1713 FunctionTemplateDecl::Create(S
.Context
, Class
,
1714 Loc
, ConversionName
,
1715 TemplateCallOperator
->getTemplateParameters(),
1717 ConversionTemplate
->setAccess(AS_public
);
1718 ConversionTemplate
->setImplicit(true);
1719 Conversion
->setDescribedFunctionTemplate(ConversionTemplate
);
1720 Class
->addDecl(ConversionTemplate
);
1722 Class
->addDecl(Conversion
);
1724 // If the lambda is not static, we need to add a static member
1725 // function that will be the result of the conversion with a
1726 // certain unique ID.
1727 // When it is static we just return the static call operator instead.
1728 if (CallOperator
->isImplicitObjectMemberFunction()) {
1729 DeclarationName InvokerName
=
1730 &S
.Context
.Idents
.get(getLambdaStaticInvokerName());
1731 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1732 // we should get a prebuilt TrivialTypeSourceInfo from Context
1733 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1734 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1735 // loop below and then use its Params to set Invoke->setParams(...) below.
1736 // This would avoid the 'const' qualifier of the calloperator from
1737 // contaminating the type of the invoker, which is currently adjusted
1738 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1739 // trailing return type of the invoker would require a visitor to rebuild
1740 // the trailing return type and adjusting all back DeclRefExpr's to refer
1741 // to the new static invoker parameters - not the call operator's.
1742 CXXMethodDecl
*Invoke
= CXXMethodDecl::Create(
1743 S
.Context
, Class
, Loc
, DeclarationNameInfo(InvokerName
, Loc
),
1744 InvokerFunctionTy
, CallOperator
->getTypeSourceInfo(), SC_Static
,
1745 S
.getCurFPFeatures().isFPConstrained(),
1746 /*isInline=*/true, CallOperator
->getConstexprKind(),
1747 CallOperator
->getBody()->getEndLoc());
1748 for (unsigned I
= 0, N
= CallOperator
->getNumParams(); I
!= N
; ++I
)
1749 InvokerParams
[I
]->setOwningFunction(Invoke
);
1750 Invoke
->setParams(InvokerParams
);
1751 Invoke
->setAccess(AS_private
);
1752 Invoke
->setImplicit(true);
1753 if (Class
->isGenericLambda()) {
1754 FunctionTemplateDecl
*TemplateCallOperator
=
1755 CallOperator
->getDescribedFunctionTemplate();
1756 FunctionTemplateDecl
*StaticInvokerTemplate
=
1757 FunctionTemplateDecl::Create(
1758 S
.Context
, Class
, Loc
, InvokerName
,
1759 TemplateCallOperator
->getTemplateParameters(), Invoke
);
1760 StaticInvokerTemplate
->setAccess(AS_private
);
1761 StaticInvokerTemplate
->setImplicit(true);
1762 Invoke
->setDescribedFunctionTemplate(StaticInvokerTemplate
);
1763 Class
->addDecl(StaticInvokerTemplate
);
1765 Class
->addDecl(Invoke
);
1769 /// Add a lambda's conversion to function pointers, as described in
1770 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1771 /// single pointer conversion. In the event that the default calling convention
1772 /// for free and member functions is different, it will emit both conventions.
1773 static void addFunctionPointerConversions(Sema
&S
, SourceRange IntroducerRange
,
1774 CXXRecordDecl
*Class
,
1775 CXXMethodDecl
*CallOperator
) {
1776 const FunctionProtoType
*CallOpProto
=
1777 CallOperator
->getType()->castAs
<FunctionProtoType
>();
1779 repeatForLambdaConversionFunctionCallingConvs(
1780 S
, *CallOpProto
, [&](CallingConv CC
) {
1781 QualType InvokerFunctionTy
=
1782 S
.getLambdaConversionFunctionResultType(CallOpProto
, CC
);
1783 addFunctionPointerConversion(S
, IntroducerRange
, Class
, CallOperator
,
1788 /// Add a lambda's conversion to block pointer.
1789 static void addBlockPointerConversion(Sema
&S
,
1790 SourceRange IntroducerRange
,
1791 CXXRecordDecl
*Class
,
1792 CXXMethodDecl
*CallOperator
) {
1793 const FunctionProtoType
*CallOpProto
=
1794 CallOperator
->getType()->castAs
<FunctionProtoType
>();
1795 QualType FunctionTy
= S
.getLambdaConversionFunctionResultType(
1796 CallOpProto
, getLambdaConversionFunctionCallConv(S
, CallOpProto
));
1797 QualType BlockPtrTy
= S
.Context
.getBlockPointerType(FunctionTy
);
1799 FunctionProtoType::ExtProtoInfo
ConversionEPI(
1800 S
.Context
.getDefaultCallingConvention(
1801 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1802 ConversionEPI
.TypeQuals
= Qualifiers();
1803 ConversionEPI
.TypeQuals
.addConst();
1805 S
.Context
.getFunctionType(BlockPtrTy
, std::nullopt
, ConversionEPI
);
1807 SourceLocation Loc
= IntroducerRange
.getBegin();
1808 DeclarationName Name
1809 = S
.Context
.DeclarationNames
.getCXXConversionFunctionName(
1810 S
.Context
.getCanonicalType(BlockPtrTy
));
1811 DeclarationNameLoc NameLoc
= DeclarationNameLoc::makeNamedTypeLoc(
1812 S
.Context
.getTrivialTypeSourceInfo(BlockPtrTy
, Loc
));
1813 CXXConversionDecl
*Conversion
= CXXConversionDecl::Create(
1814 S
.Context
, Class
, Loc
, DeclarationNameInfo(Name
, Loc
, NameLoc
), ConvTy
,
1815 S
.Context
.getTrivialTypeSourceInfo(ConvTy
, Loc
),
1816 S
.getCurFPFeatures().isFPConstrained(),
1817 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified
,
1818 CallOperator
->getBody()->getEndLoc());
1819 Conversion
->setAccess(AS_public
);
1820 Conversion
->setImplicit(true);
1821 Class
->addDecl(Conversion
);
1824 ExprResult
Sema::BuildCaptureInit(const Capture
&Cap
,
1825 SourceLocation ImplicitCaptureLoc
,
1826 bool IsOpenMPMapping
) {
1827 // VLA captures don't have a stored initialization expression.
1828 if (Cap
.isVLATypeCapture())
1829 return ExprResult();
1831 // An init-capture is initialized directly from its stored initializer.
1832 if (Cap
.isInitCapture())
1833 return cast
<VarDecl
>(Cap
.getVariable())->getInit();
1835 // For anything else, build an initialization expression. For an implicit
1836 // capture, the capture notionally happens at the capture-default, so use
1837 // that location here.
1838 SourceLocation Loc
=
1839 ImplicitCaptureLoc
.isValid() ? ImplicitCaptureLoc
: Cap
.getLocation();
1841 // C++11 [expr.prim.lambda]p21:
1842 // When the lambda-expression is evaluated, the entities that
1843 // are captured by copy are used to direct-initialize each
1844 // corresponding non-static data member of the resulting closure
1845 // object. (For array members, the array elements are
1846 // direct-initialized in increasing subscript order.) These
1847 // initializations are performed in the (unspecified) order in
1848 // which the non-static data members are declared.
1850 // C++ [expr.prim.lambda]p12:
1851 // An entity captured by a lambda-expression is odr-used (3.2) in
1852 // the scope containing the lambda-expression.
1854 IdentifierInfo
*Name
= nullptr;
1855 if (Cap
.isThisCapture()) {
1856 QualType ThisTy
= getCurrentThisType();
1857 Expr
*This
= BuildCXXThisExpr(Loc
, ThisTy
, ImplicitCaptureLoc
.isValid());
1858 if (Cap
.isCopyCapture())
1859 Init
= CreateBuiltinUnaryOp(Loc
, UO_Deref
, This
);
1863 assert(Cap
.isVariableCapture() && "unknown kind of capture");
1864 ValueDecl
*Var
= Cap
.getVariable();
1865 Name
= Var
->getIdentifier();
1866 Init
= BuildDeclarationNameExpr(
1867 CXXScopeSpec(), DeclarationNameInfo(Var
->getDeclName(), Loc
), Var
);
1870 // In OpenMP, the capture kind doesn't actually describe how to capture:
1871 // variables are "mapped" onto the device in a process that does not formally
1872 // make a copy, even for a "copy capture".
1873 if (IsOpenMPMapping
)
1876 if (Init
.isInvalid())
1879 Expr
*InitExpr
= Init
.get();
1880 InitializedEntity Entity
= InitializedEntity::InitializeLambdaCapture(
1881 Name
, Cap
.getCaptureType(), Loc
);
1882 InitializationKind InitKind
=
1883 InitializationKind::CreateDirect(Loc
, Loc
, Loc
);
1884 InitializationSequence
InitSeq(*this, Entity
, InitKind
, InitExpr
);
1885 return InitSeq
.Perform(*this, Entity
, InitKind
, InitExpr
);
1888 ExprResult
Sema::ActOnLambdaExpr(SourceLocation StartLoc
, Stmt
*Body
) {
1889 LambdaScopeInfo LSI
= *cast
<LambdaScopeInfo
>(FunctionScopes
.back());
1890 ActOnFinishFunctionBody(LSI
.CallOperator
, Body
);
1891 return BuildLambdaExpr(StartLoc
, Body
->getEndLoc(), &LSI
);
1894 static LambdaCaptureDefault
1895 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS
) {
1897 case CapturingScopeInfo::ImpCap_None
:
1899 case CapturingScopeInfo::ImpCap_LambdaByval
:
1901 case CapturingScopeInfo::ImpCap_CapturedRegion
:
1902 case CapturingScopeInfo::ImpCap_LambdaByref
:
1904 case CapturingScopeInfo::ImpCap_Block
:
1905 llvm_unreachable("block capture in lambda");
1907 llvm_unreachable("Unknown implicit capture style");
1910 bool Sema::CaptureHasSideEffects(const Capture
&From
) {
1911 if (From
.isInitCapture()) {
1912 Expr
*Init
= cast
<VarDecl
>(From
.getVariable())->getInit();
1913 if (Init
&& Init
->HasSideEffects(Context
))
1917 if (!From
.isCopyCapture())
1920 const QualType T
= From
.isThisCapture()
1921 ? getCurrentThisType()->getPointeeType()
1922 : From
.getCaptureType();
1924 if (T
.isVolatileQualified())
1927 const Type
*BaseT
= T
->getBaseElementTypeUnsafe();
1928 if (const CXXRecordDecl
*RD
= BaseT
->getAsCXXRecordDecl())
1929 return !RD
->isCompleteDefinition() || !RD
->hasTrivialCopyConstructor() ||
1930 !RD
->hasTrivialDestructor();
1935 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange
,
1936 const Capture
&From
) {
1937 if (CaptureHasSideEffects(From
))
1940 if (From
.isVLATypeCapture())
1943 // FIXME: maybe we should warn on these if we can find a sensible diagnostic
1945 if (From
.isInitCapture() &&
1946 From
.getVariable()->isPlaceholderVar(getLangOpts()))
1949 auto diag
= Diag(From
.getLocation(), diag::warn_unused_lambda_capture
);
1950 if (From
.isThisCapture())
1953 diag
<< From
.getVariable();
1954 diag
<< From
.isNonODRUsed();
1955 diag
<< FixItHint::CreateRemoval(CaptureRange
);
1959 /// Create a field within the lambda class or captured statement record for the
1961 FieldDecl
*Sema::BuildCaptureField(RecordDecl
*RD
,
1962 const sema::Capture
&Capture
) {
1963 SourceLocation Loc
= Capture
.getLocation();
1964 QualType FieldType
= Capture
.getCaptureType();
1966 TypeSourceInfo
*TSI
= nullptr;
1967 if (Capture
.isVariableCapture()) {
1968 const auto *Var
= dyn_cast_or_null
<VarDecl
>(Capture
.getVariable());
1969 if (Var
&& Var
->isInitCapture())
1970 TSI
= Var
->getTypeSourceInfo();
1973 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1974 // appropriate, at least for an implicit capture.
1976 TSI
= Context
.getTrivialTypeSourceInfo(FieldType
, Loc
);
1978 // Build the non-static data member.
1980 FieldDecl::Create(Context
, RD
, /*StartLoc=*/Loc
, /*IdLoc=*/Loc
,
1981 /*Id=*/nullptr, FieldType
, TSI
, /*BW=*/nullptr,
1982 /*Mutable=*/false, ICIS_NoInit
);
1983 // If the variable being captured has an invalid type, mark the class as
1985 if (!FieldType
->isDependentType()) {
1986 if (RequireCompleteSizedType(Loc
, FieldType
,
1987 diag::err_field_incomplete_or_sizeless
)) {
1988 RD
->setInvalidDecl();
1989 Field
->setInvalidDecl();
1992 FieldType
->isIncompleteType(&Def
);
1993 if (Def
&& Def
->isInvalidDecl()) {
1994 RD
->setInvalidDecl();
1995 Field
->setInvalidDecl();
1999 Field
->setImplicit(true);
2000 Field
->setAccess(AS_private
);
2003 if (Capture
.isVLATypeCapture())
2004 Field
->setCapturedVLAType(Capture
.getCapturedVLAType());
2009 ExprResult
Sema::BuildLambdaExpr(SourceLocation StartLoc
, SourceLocation EndLoc
,
2010 LambdaScopeInfo
*LSI
) {
2011 // Collect information from the lambda scope.
2012 SmallVector
<LambdaCapture
, 4> Captures
;
2013 SmallVector
<Expr
*, 4> CaptureInits
;
2014 SourceLocation CaptureDefaultLoc
= LSI
->CaptureDefaultLoc
;
2015 LambdaCaptureDefault CaptureDefault
=
2016 mapImplicitCaptureStyle(LSI
->ImpCaptureStyle
);
2017 CXXRecordDecl
*Class
;
2018 CXXMethodDecl
*CallOperator
;
2019 SourceRange IntroducerRange
;
2020 bool ExplicitParams
;
2021 bool ExplicitResultType
;
2022 CleanupInfo LambdaCleanup
;
2023 bool ContainsUnexpandedParameterPack
;
2024 bool IsGenericLambda
;
2026 CallOperator
= LSI
->CallOperator
;
2027 Class
= LSI
->Lambda
;
2028 IntroducerRange
= LSI
->IntroducerRange
;
2029 ExplicitParams
= LSI
->ExplicitParams
;
2030 ExplicitResultType
= !LSI
->HasImplicitReturnType
;
2031 LambdaCleanup
= LSI
->Cleanup
;
2032 ContainsUnexpandedParameterPack
= LSI
->ContainsUnexpandedParameterPack
;
2033 IsGenericLambda
= Class
->isGenericLambda();
2035 CallOperator
->setLexicalDeclContext(Class
);
2036 Decl
*TemplateOrNonTemplateCallOperatorDecl
=
2037 CallOperator
->getDescribedFunctionTemplate()
2038 ? CallOperator
->getDescribedFunctionTemplate()
2039 : cast
<Decl
>(CallOperator
);
2041 // FIXME: Is this really the best choice? Keeping the lexical decl context
2042 // set as CurContext seems more faithful to the source.
2043 TemplateOrNonTemplateCallOperatorDecl
->setLexicalDeclContext(Class
);
2045 PopExpressionEvaluationContext();
2047 // True if the current capture has a used capture or default before it.
2048 bool CurHasPreviousCapture
= CaptureDefault
!= LCD_None
;
2049 SourceLocation PrevCaptureLoc
= CurHasPreviousCapture
?
2050 CaptureDefaultLoc
: IntroducerRange
.getBegin();
2052 for (unsigned I
= 0, N
= LSI
->Captures
.size(); I
!= N
; ++I
) {
2053 const Capture
&From
= LSI
->Captures
[I
];
2055 if (From
.isInvalid())
2058 assert(!From
.isBlockCapture() && "Cannot capture __block variables");
2059 bool IsImplicit
= I
>= LSI
->NumExplicitCaptures
;
2060 SourceLocation ImplicitCaptureLoc
=
2061 IsImplicit
? CaptureDefaultLoc
: SourceLocation();
2063 // Use source ranges of explicit captures for fixits where available.
2064 SourceRange CaptureRange
= LSI
->ExplicitCaptureRanges
[I
];
2066 // Warn about unused explicit captures.
2067 bool IsCaptureUsed
= true;
2068 if (!CurContext
->isDependentContext() && !IsImplicit
&&
2069 !From
.isODRUsed()) {
2070 // Initialized captures that are non-ODR used may not be eliminated.
2071 // FIXME: Where did the IsGenericLambda here come from?
2072 bool NonODRUsedInitCapture
=
2073 IsGenericLambda
&& From
.isNonODRUsed() && From
.isInitCapture();
2074 if (!NonODRUsedInitCapture
) {
2075 bool IsLast
= (I
+ 1) == LSI
->NumExplicitCaptures
;
2076 SourceRange FixItRange
;
2077 if (CaptureRange
.isValid()) {
2078 if (!CurHasPreviousCapture
&& !IsLast
) {
2079 // If there are no captures preceding this capture, remove the
2081 FixItRange
= SourceRange(CaptureRange
.getBegin(),
2082 getLocForEndOfToken(CaptureRange
.getEnd()));
2084 // Otherwise, remove the comma since the last used capture.
2085 FixItRange
= SourceRange(getLocForEndOfToken(PrevCaptureLoc
),
2086 CaptureRange
.getEnd());
2090 IsCaptureUsed
= !DiagnoseUnusedLambdaCapture(FixItRange
, From
);
2094 if (CaptureRange
.isValid()) {
2095 CurHasPreviousCapture
|= IsCaptureUsed
;
2096 PrevCaptureLoc
= CaptureRange
.getEnd();
2099 // Map the capture to our AST representation.
2100 LambdaCapture Capture
= [&] {
2101 if (From
.isThisCapture()) {
2102 // Capturing 'this' implicitly with a default of '[=]' is deprecated,
2103 // because it results in a reference capture. Don't warn prior to
2104 // C++2a; there's nothing that can be done about it before then.
2105 if (getLangOpts().CPlusPlus20
&& IsImplicit
&&
2106 CaptureDefault
== LCD_ByCopy
) {
2107 Diag(From
.getLocation(), diag::warn_deprecated_this_capture
);
2108 Diag(CaptureDefaultLoc
, diag::note_deprecated_this_capture
)
2109 << FixItHint::CreateInsertion(
2110 getLocForEndOfToken(CaptureDefaultLoc
), ", this");
2112 return LambdaCapture(From
.getLocation(), IsImplicit
,
2113 From
.isCopyCapture() ? LCK_StarThis
: LCK_This
);
2114 } else if (From
.isVLATypeCapture()) {
2115 return LambdaCapture(From
.getLocation(), IsImplicit
, LCK_VLAType
);
2117 assert(From
.isVariableCapture() && "unknown kind of capture");
2118 ValueDecl
*Var
= From
.getVariable();
2119 LambdaCaptureKind Kind
=
2120 From
.isCopyCapture() ? LCK_ByCopy
: LCK_ByRef
;
2121 return LambdaCapture(From
.getLocation(), IsImplicit
, Kind
, Var
,
2122 From
.getEllipsisLoc());
2126 // Form the initializer for the capture field.
2127 ExprResult Init
= BuildCaptureInit(From
, ImplicitCaptureLoc
);
2129 // FIXME: Skip this capture if the capture is not used, the initializer
2130 // has no side-effects, the type of the capture is trivial, and the
2131 // lambda is not externally visible.
2133 // Add a FieldDecl for the capture and form its initializer.
2134 BuildCaptureField(Class
, From
);
2135 Captures
.push_back(Capture
);
2136 CaptureInits
.push_back(Init
.get());
2139 CUDACheckLambdaCapture(CallOperator
, From
);
2142 Class
->setCaptures(Context
, Captures
);
2144 // C++11 [expr.prim.lambda]p6:
2145 // The closure type for a lambda-expression with no lambda-capture
2146 // has a public non-virtual non-explicit const conversion function
2147 // to pointer to function having the same parameter and return
2148 // types as the closure type's function call operator.
2149 if (Captures
.empty() && CaptureDefault
== LCD_None
)
2150 addFunctionPointerConversions(*this, IntroducerRange
, Class
,
2154 // The closure type for a lambda-expression has a public non-virtual
2155 // non-explicit const conversion function to a block pointer having the
2156 // same parameter and return types as the closure type's function call
2158 // FIXME: Fix generic lambda to block conversions.
2159 if (getLangOpts().Blocks
&& getLangOpts().ObjC
&& !IsGenericLambda
)
2160 addBlockPointerConversion(*this, IntroducerRange
, Class
, CallOperator
);
2162 // Finalize the lambda class.
2163 SmallVector
<Decl
*, 4> Fields(Class
->fields());
2164 ActOnFields(nullptr, Class
->getLocation(), Class
, Fields
, SourceLocation(),
2165 SourceLocation(), ParsedAttributesView());
2166 CheckCompletedCXXClass(nullptr, Class
);
2169 Cleanup
.mergeFrom(LambdaCleanup
);
2171 LambdaExpr
*Lambda
= LambdaExpr::Create(Context
, Class
, IntroducerRange
,
2172 CaptureDefault
, CaptureDefaultLoc
,
2173 ExplicitParams
, ExplicitResultType
,
2174 CaptureInits
, EndLoc
,
2175 ContainsUnexpandedParameterPack
);
2176 // If the lambda expression's call operator is not explicitly marked constexpr
2177 // and we are not in a dependent context, analyze the call operator to infer
2178 // its constexpr-ness, suppressing diagnostics while doing so.
2179 if (getLangOpts().CPlusPlus17
&& !CallOperator
->isInvalidDecl() &&
2180 !CallOperator
->isConstexpr() &&
2181 !isa
<CoroutineBodyStmt
>(CallOperator
->getBody()) &&
2182 !Class
->getDeclContext()->isDependentContext()) {
2183 CallOperator
->setConstexprKind(
2184 CheckConstexprFunctionDefinition(CallOperator
,
2185 CheckConstexprKind::CheckValid
)
2186 ? ConstexprSpecKind::Constexpr
2187 : ConstexprSpecKind::Unspecified
);
2190 // Emit delayed shadowing warnings now that the full capture list is known.
2191 DiagnoseShadowingLambdaDecls(LSI
);
2193 if (!CurContext
->isDependentContext()) {
2194 switch (ExprEvalContexts
.back().Context
) {
2195 // C++11 [expr.prim.lambda]p2:
2196 // A lambda-expression shall not appear in an unevaluated operand
2198 case ExpressionEvaluationContext::Unevaluated
:
2199 case ExpressionEvaluationContext::UnevaluatedList
:
2200 case ExpressionEvaluationContext::UnevaluatedAbstract
:
2201 // C++1y [expr.const]p2:
2202 // A conditional-expression e is a core constant expression unless the
2203 // evaluation of e, following the rules of the abstract machine, would
2204 // evaluate [...] a lambda-expression.
2206 // This is technically incorrect, there are some constant evaluated contexts
2207 // where this should be allowed. We should probably fix this when DR1607 is
2208 // ratified, it lays out the exact set of conditions where we shouldn't
2209 // allow a lambda-expression.
2210 case ExpressionEvaluationContext::ConstantEvaluated
:
2211 case ExpressionEvaluationContext::ImmediateFunctionContext
:
2212 // We don't actually diagnose this case immediately, because we
2213 // could be within a context where we might find out later that
2214 // the expression is potentially evaluated (e.g., for typeid).
2215 ExprEvalContexts
.back().Lambdas
.push_back(Lambda
);
2218 case ExpressionEvaluationContext::DiscardedStatement
:
2219 case ExpressionEvaluationContext::PotentiallyEvaluated
:
2220 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
2225 return MaybeBindToTemporary(Lambda
);
2228 ExprResult
Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation
,
2229 SourceLocation ConvLocation
,
2230 CXXConversionDecl
*Conv
,
2232 // Make sure that the lambda call operator is marked used.
2233 CXXRecordDecl
*Lambda
= Conv
->getParent();
2234 CXXMethodDecl
*CallOperator
2235 = cast
<CXXMethodDecl
>(
2237 Context
.DeclarationNames
.getCXXOperatorName(OO_Call
)).front());
2238 CallOperator
->setReferenced();
2239 CallOperator
->markUsed(Context
);
2241 ExprResult Init
= PerformCopyInitialization(
2242 InitializedEntity::InitializeLambdaToBlock(ConvLocation
, Src
->getType()),
2243 CurrentLocation
, Src
);
2244 if (!Init
.isInvalid())
2245 Init
= ActOnFinishFullExpr(Init
.get(), /*DiscardedValue*/ false);
2247 if (Init
.isInvalid())
2250 // Create the new block to be returned.
2251 BlockDecl
*Block
= BlockDecl::Create(Context
, CurContext
, ConvLocation
);
2253 // Set the type information.
2254 Block
->setSignatureAsWritten(CallOperator
->getTypeSourceInfo());
2255 Block
->setIsVariadic(CallOperator
->isVariadic());
2256 Block
->setBlockMissingReturnType(false);
2259 SmallVector
<ParmVarDecl
*, 4> BlockParams
;
2260 for (unsigned I
= 0, N
= CallOperator
->getNumParams(); I
!= N
; ++I
) {
2261 ParmVarDecl
*From
= CallOperator
->getParamDecl(I
);
2262 BlockParams
.push_back(ParmVarDecl::Create(
2263 Context
, Block
, From
->getBeginLoc(), From
->getLocation(),
2264 From
->getIdentifier(), From
->getType(), From
->getTypeSourceInfo(),
2265 From
->getStorageClass(),
2266 /*DefArg=*/nullptr));
2268 Block
->setParams(BlockParams
);
2270 Block
->setIsConversionFromLambda(true);
2272 // Add capture. The capture uses a fake variable, which doesn't correspond
2273 // to any actual memory location. However, the initializer copy-initializes
2274 // the lambda object.
2275 TypeSourceInfo
*CapVarTSI
=
2276 Context
.getTrivialTypeSourceInfo(Src
->getType());
2277 VarDecl
*CapVar
= VarDecl::Create(Context
, Block
, ConvLocation
,
2278 ConvLocation
, nullptr,
2279 Src
->getType(), CapVarTSI
,
2281 BlockDecl::Capture
Capture(/*variable=*/CapVar
, /*byRef=*/false,
2282 /*nested=*/false, /*copy=*/Init
.get());
2283 Block
->setCaptures(Context
, Capture
, /*CapturesCXXThis=*/false);
2285 // Add a fake function body to the block. IR generation is responsible
2286 // for filling in the actual body, which cannot be expressed as an AST.
2287 Block
->setBody(new (Context
) CompoundStmt(ConvLocation
));
2289 // Create the block literal expression.
2290 Expr
*BuildBlock
= new (Context
) BlockExpr(Block
, Conv
->getConversionType());
2291 ExprCleanupObjects
.push_back(Block
);
2292 Cleanup
.setExprNeedsCleanups(true);
2297 static FunctionDecl
*getPatternFunctionDecl(FunctionDecl
*FD
) {
2298 if (FD
->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
) {
2299 while (FD
->getInstantiatedFromMemberFunction())
2300 FD
= FD
->getInstantiatedFromMemberFunction();
2304 if (FD
->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate
)
2305 return FD
->getInstantiatedFromDecl();
2307 FunctionTemplateDecl
*FTD
= FD
->getPrimaryTemplate();
2311 while (FTD
->getInstantiatedFromMemberTemplate())
2312 FTD
= FTD
->getInstantiatedFromMemberTemplate();
2314 return FTD
->getTemplatedDecl();
2317 Sema::LambdaScopeForCallOperatorInstantiationRAII::
2318 LambdaScopeForCallOperatorInstantiationRAII(
2319 Sema
&SemaRef
, FunctionDecl
*FD
, MultiLevelTemplateArgumentList MLTAL
,
2320 LocalInstantiationScope
&Scope
, bool ShouldAddDeclsFromParentScope
)
2321 : FunctionScopeRAII(SemaRef
) {
2322 if (!isLambdaCallOperator(FD
)) {
2323 FunctionScopeRAII::disable();
2327 SemaRef
.RebuildLambdaScopeInfo(cast
<CXXMethodDecl
>(FD
));
2329 FunctionDecl
*Pattern
= getPatternFunctionDecl(FD
);
2331 SemaRef
.addInstantiatedCapturesToScope(FD
, Pattern
, Scope
, MLTAL
);
2333 FunctionDecl
*ParentFD
= FD
;
2334 while (ShouldAddDeclsFromParentScope
) {
2337 dyn_cast
<FunctionDecl
>(getLambdaAwareParentOfDeclContext(ParentFD
));
2339 dyn_cast
<FunctionDecl
>(getLambdaAwareParentOfDeclContext(Pattern
));
2341 if (!FD
|| !Pattern
)
2344 SemaRef
.addInstantiatedParametersToScope(ParentFD
, Pattern
, Scope
, MLTAL
);
2345 SemaRef
.addInstantiatedLocalVarsToScope(ParentFD
, Pattern
, Scope
);