1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements name lookup for C, C++, Objective-C, and
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/RISCVIntrinsicManager.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/TinyPtrVector.h"
42 #include "llvm/ADT/edit_distance.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
53 #include "OpenCLBuiltins.inc"
55 using namespace clang
;
59 class UnqualUsingEntry
{
60 const DeclContext
*Nominated
;
61 const DeclContext
*CommonAncestor
;
64 UnqualUsingEntry(const DeclContext
*Nominated
,
65 const DeclContext
*CommonAncestor
)
66 : Nominated(Nominated
), CommonAncestor(CommonAncestor
) {
69 const DeclContext
*getCommonAncestor() const {
70 return CommonAncestor
;
73 const DeclContext
*getNominatedNamespace() const {
77 // Sort by the pointer value of the common ancestor.
79 bool operator()(const UnqualUsingEntry
&L
, const UnqualUsingEntry
&R
) {
80 return L
.getCommonAncestor() < R
.getCommonAncestor();
83 bool operator()(const UnqualUsingEntry
&E
, const DeclContext
*DC
) {
84 return E
.getCommonAncestor() < DC
;
87 bool operator()(const DeclContext
*DC
, const UnqualUsingEntry
&E
) {
88 return DC
< E
.getCommonAncestor();
93 /// A collection of using directives, as used by C++ unqualified
95 class UnqualUsingDirectiveSet
{
98 typedef SmallVector
<UnqualUsingEntry
, 8> ListTy
;
101 llvm::SmallPtrSet
<DeclContext
*, 8> visited
;
104 UnqualUsingDirectiveSet(Sema
&SemaRef
) : SemaRef(SemaRef
) {}
106 void visitScopeChain(Scope
*S
, Scope
*InnermostFileScope
) {
107 // C++ [namespace.udir]p1:
108 // During unqualified name lookup, the names appear as if they
109 // were declared in the nearest enclosing namespace which contains
110 // both the using-directive and the nominated namespace.
111 DeclContext
*InnermostFileDC
= InnermostFileScope
->getEntity();
112 assert(InnermostFileDC
&& InnermostFileDC
->isFileContext());
114 for (; S
; S
= S
->getParent()) {
115 // C++ [namespace.udir]p1:
116 // A using-directive shall not appear in class scope, but may
117 // appear in namespace scope or in block scope.
118 DeclContext
*Ctx
= S
->getEntity();
119 if (Ctx
&& Ctx
->isFileContext()) {
121 } else if (!Ctx
|| Ctx
->isFunctionOrMethod()) {
122 for (auto *I
: S
->using_directives())
123 if (SemaRef
.isVisible(I
))
124 visit(I
, InnermostFileDC
);
129 // Visits a context and collect all of its using directives
130 // recursively. Treats all using directives as if they were
131 // declared in the context.
133 // A given context is only every visited once, so it is important
134 // that contexts be visited from the inside out in order to get
135 // the effective DCs right.
136 void visit(DeclContext
*DC
, DeclContext
*EffectiveDC
) {
137 if (!visited
.insert(DC
).second
)
140 addUsingDirectives(DC
, EffectiveDC
);
143 // Visits a using directive and collects all of its using
144 // directives recursively. Treats all using directives as if they
145 // were declared in the effective DC.
146 void visit(UsingDirectiveDecl
*UD
, DeclContext
*EffectiveDC
) {
147 DeclContext
*NS
= UD
->getNominatedNamespace();
148 if (!visited
.insert(NS
).second
)
151 addUsingDirective(UD
, EffectiveDC
);
152 addUsingDirectives(NS
, EffectiveDC
);
155 // Adds all the using directives in a context (and those nominated
156 // by its using directives, transitively) as if they appeared in
157 // the given effective context.
158 void addUsingDirectives(DeclContext
*DC
, DeclContext
*EffectiveDC
) {
159 SmallVector
<DeclContext
*, 4> queue
;
161 for (auto *UD
: DC
->using_directives()) {
162 DeclContext
*NS
= UD
->getNominatedNamespace();
163 if (SemaRef
.isVisible(UD
) && visited
.insert(NS
).second
) {
164 addUsingDirective(UD
, EffectiveDC
);
172 DC
= queue
.pop_back_val();
176 // Add a using directive as if it had been declared in the given
177 // context. This helps implement C++ [namespace.udir]p3:
178 // The using-directive is transitive: if a scope contains a
179 // using-directive that nominates a second namespace that itself
180 // contains using-directives, the effect is as if the
181 // using-directives from the second namespace also appeared in
183 void addUsingDirective(UsingDirectiveDecl
*UD
, DeclContext
*EffectiveDC
) {
184 // Find the common ancestor between the effective context and
185 // the nominated namespace.
186 DeclContext
*Common
= UD
->getNominatedNamespace();
187 while (!Common
->Encloses(EffectiveDC
))
188 Common
= Common
->getParent();
189 Common
= Common
->getPrimaryContext();
191 list
.push_back(UnqualUsingEntry(UD
->getNominatedNamespace(), Common
));
194 void done() { llvm::sort(list
, UnqualUsingEntry::Comparator()); }
196 typedef ListTy::const_iterator const_iterator
;
198 const_iterator
begin() const { return list
.begin(); }
199 const_iterator
end() const { return list
.end(); }
201 llvm::iterator_range
<const_iterator
>
202 getNamespacesFor(const DeclContext
*DC
) const {
203 return llvm::make_range(std::equal_range(begin(), end(),
204 DC
->getPrimaryContext(),
205 UnqualUsingEntry::Comparator()));
208 } // end anonymous namespace
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind
,
214 bool Redeclaration
) {
217 case Sema::LookupObjCImplicitSelfParam
:
218 case Sema::LookupOrdinaryName
:
219 case Sema::LookupRedeclarationWithLinkage
:
220 case Sema::LookupLocalFriendName
:
221 case Sema::LookupDestructorName
:
222 IDNS
= Decl::IDNS_Ordinary
;
224 IDNS
|= Decl::IDNS_Tag
| Decl::IDNS_Member
| Decl::IDNS_Namespace
;
226 IDNS
|= Decl::IDNS_TagFriend
| Decl::IDNS_OrdinaryFriend
;
229 IDNS
|= Decl::IDNS_LocalExtern
;
232 case Sema::LookupOperatorName
:
233 // Operator lookup is its own crazy thing; it is not the same
234 // as (e.g.) looking up an operator name for redeclaration.
235 assert(!Redeclaration
&& "cannot do redeclaration operator lookup");
236 IDNS
= Decl::IDNS_NonMemberOperator
;
239 case Sema::LookupTagName
:
241 IDNS
= Decl::IDNS_Type
;
243 // When looking for a redeclaration of a tag name, we add:
244 // 1) TagFriend to find undeclared friend decls
245 // 2) Namespace because they can't "overload" with tag decls.
246 // 3) Tag because it includes class templates, which can't
247 // "overload" with tag decls.
249 IDNS
|= Decl::IDNS_Tag
| Decl::IDNS_TagFriend
| Decl::IDNS_Namespace
;
251 IDNS
= Decl::IDNS_Tag
;
255 case Sema::LookupLabel
:
256 IDNS
= Decl::IDNS_Label
;
259 case Sema::LookupMemberName
:
260 IDNS
= Decl::IDNS_Member
;
262 IDNS
|= Decl::IDNS_Tag
| Decl::IDNS_Ordinary
;
265 case Sema::LookupNestedNameSpecifierName
:
266 IDNS
= Decl::IDNS_Type
| Decl::IDNS_Namespace
;
269 case Sema::LookupNamespaceName
:
270 IDNS
= Decl::IDNS_Namespace
;
273 case Sema::LookupUsingDeclName
:
274 assert(Redeclaration
&& "should only be used for redecl lookup");
275 IDNS
= Decl::IDNS_Ordinary
| Decl::IDNS_Tag
| Decl::IDNS_Member
|
276 Decl::IDNS_Using
| Decl::IDNS_TagFriend
| Decl::IDNS_OrdinaryFriend
|
277 Decl::IDNS_LocalExtern
;
280 case Sema::LookupObjCProtocolName
:
281 IDNS
= Decl::IDNS_ObjCProtocol
;
284 case Sema::LookupOMPReductionName
:
285 IDNS
= Decl::IDNS_OMPReduction
;
288 case Sema::LookupOMPMapperName
:
289 IDNS
= Decl::IDNS_OMPMapper
;
292 case Sema::LookupAnyName
:
293 IDNS
= Decl::IDNS_Ordinary
| Decl::IDNS_Tag
| Decl::IDNS_Member
294 | Decl::IDNS_Using
| Decl::IDNS_Namespace
| Decl::IDNS_ObjCProtocol
301 void LookupResult::configure() {
302 IDNS
= getIDNS(LookupKind
, getSema().getLangOpts().CPlusPlus
,
303 isForRedeclaration());
305 // If we're looking for one of the allocation or deallocation
306 // operators, make sure that the implicitly-declared new and delete
307 // operators can be found.
308 switch (NameInfo
.getName().getCXXOverloadedOperator()) {
312 case OO_Array_Delete
:
313 getSema().DeclareGlobalNewDelete();
320 // Compiler builtins are always visible, regardless of where they end
321 // up being declared.
322 if (IdentifierInfo
*Id
= NameInfo
.getName().getAsIdentifierInfo()) {
323 if (unsigned BuiltinID
= Id
->getBuiltinID()) {
324 if (!getSema().Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
))
330 bool LookupResult::checkDebugAssumptions() const {
331 // This function is never called by NDEBUG builds.
332 assert(ResultKind
!= NotFound
|| Decls
.size() == 0);
333 assert(ResultKind
!= Found
|| Decls
.size() == 1);
334 assert(ResultKind
!= FoundOverloaded
|| Decls
.size() > 1 ||
335 (Decls
.size() == 1 &&
336 isa
<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl())));
337 assert(ResultKind
!= FoundUnresolvedValue
|| checkUnresolved());
338 assert(ResultKind
!= Ambiguous
|| Decls
.size() > 1 ||
339 (Decls
.size() == 1 && (Ambiguity
== AmbiguousBaseSubobjects
||
340 Ambiguity
== AmbiguousBaseSubobjectTypes
)));
341 assert((Paths
!= nullptr) == (ResultKind
== Ambiguous
&&
342 (Ambiguity
== AmbiguousBaseSubobjectTypes
||
343 Ambiguity
== AmbiguousBaseSubobjects
)));
347 // Necessary because CXXBasePaths is not complete in Sema.h
348 void LookupResult::deletePaths(CXXBasePaths
*Paths
) {
352 /// Get a representative context for a declaration such that two declarations
353 /// will have the same context if they were found within the same scope.
354 static const DeclContext
*getContextForScopeMatching(const Decl
*D
) {
355 // For function-local declarations, use that function as the context. This
356 // doesn't account for scopes within the function; the caller must deal with
358 if (const DeclContext
*DC
= D
->getLexicalDeclContext();
359 DC
->isFunctionOrMethod())
362 // Otherwise, look at the semantic context of the declaration. The
363 // declaration must have been found there.
364 return D
->getDeclContext()->getRedeclContext();
367 /// Determine whether \p D is a better lookup result than \p Existing,
368 /// given that they declare the same entity.
369 static bool isPreferredLookupResult(Sema
&S
, Sema::LookupNameKind Kind
,
371 const NamedDecl
*Existing
) {
372 // When looking up redeclarations of a using declaration, prefer a using
373 // shadow declaration over any other declaration of the same entity.
374 if (Kind
== Sema::LookupUsingDeclName
&& isa
<UsingShadowDecl
>(D
) &&
375 !isa
<UsingShadowDecl
>(Existing
))
378 const auto *DUnderlying
= D
->getUnderlyingDecl();
379 const auto *EUnderlying
= Existing
->getUnderlyingDecl();
381 // If they have different underlying declarations, prefer a typedef over the
382 // original type (this happens when two type declarations denote the same
383 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
384 // might carry additional semantic information, such as an alignment override.
385 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
386 // declaration over a typedef. Also prefer a tag over a typedef for
387 // destructor name lookup because in some contexts we only accept a
388 // class-name in a destructor declaration.
389 if (DUnderlying
->getCanonicalDecl() != EUnderlying
->getCanonicalDecl()) {
390 assert(isa
<TypeDecl
>(DUnderlying
) && isa
<TypeDecl
>(EUnderlying
));
391 bool HaveTag
= isa
<TagDecl
>(EUnderlying
);
393 Kind
== Sema::LookupTagName
|| Kind
== Sema::LookupDestructorName
;
394 return HaveTag
!= WantTag
;
397 // Pick the function with more default arguments.
398 // FIXME: In the presence of ambiguous default arguments, we should keep both,
399 // so we can diagnose the ambiguity if the default argument is needed.
400 // See C++ [over.match.best]p3.
401 if (const auto *DFD
= dyn_cast
<FunctionDecl
>(DUnderlying
)) {
402 const auto *EFD
= cast
<FunctionDecl
>(EUnderlying
);
403 unsigned DMin
= DFD
->getMinRequiredArguments();
404 unsigned EMin
= EFD
->getMinRequiredArguments();
405 // If D has more default arguments, it is preferred.
408 // FIXME: When we track visibility for default function arguments, check
409 // that we pick the declaration with more visible default arguments.
412 // Pick the template with more default template arguments.
413 if (const auto *DTD
= dyn_cast
<TemplateDecl
>(DUnderlying
)) {
414 const auto *ETD
= cast
<TemplateDecl
>(EUnderlying
);
415 unsigned DMin
= DTD
->getTemplateParameters()->getMinRequiredArguments();
416 unsigned EMin
= ETD
->getTemplateParameters()->getMinRequiredArguments();
417 // If D has more default arguments, it is preferred. Note that default
418 // arguments (and their visibility) is monotonically increasing across the
419 // redeclaration chain, so this is a quick proxy for "is more recent".
422 // If D has more *visible* default arguments, it is preferred. Note, an
423 // earlier default argument being visible does not imply that a later
424 // default argument is visible, so we can't just check the first one.
425 for (unsigned I
= DMin
, N
= DTD
->getTemplateParameters()->size();
427 if (!S
.hasVisibleDefaultArgument(
428 ETD
->getTemplateParameters()->getParam(I
)) &&
429 S
.hasVisibleDefaultArgument(
430 DTD
->getTemplateParameters()->getParam(I
)))
435 // VarDecl can have incomplete array types, prefer the one with more complete
437 if (const auto *DVD
= dyn_cast
<VarDecl
>(DUnderlying
)) {
438 const auto *EVD
= cast
<VarDecl
>(EUnderlying
);
439 if (EVD
->getType()->isIncompleteType() &&
440 !DVD
->getType()->isIncompleteType()) {
441 // Prefer the decl with a more complete type if visible.
442 return S
.isVisible(DVD
);
444 return false; // Avoid picking up a newer decl, just because it was newer.
447 // For most kinds of declaration, it doesn't really matter which one we pick.
448 if (!isa
<FunctionDecl
>(DUnderlying
) && !isa
<VarDecl
>(DUnderlying
)) {
449 // If the existing declaration is hidden, prefer the new one. Otherwise,
450 // keep what we've got.
451 return !S
.isVisible(Existing
);
454 // Pick the newer declaration; it might have a more precise type.
455 for (const Decl
*Prev
= DUnderlying
->getPreviousDecl(); Prev
;
456 Prev
= Prev
->getPreviousDecl())
457 if (Prev
== EUnderlying
)
462 /// Determine whether \p D can hide a tag declaration.
463 static bool canHideTag(const NamedDecl
*D
) {
464 // C++ [basic.scope.declarative]p4:
465 // Given a set of declarations in a single declarative region [...]
466 // exactly one declaration shall declare a class name or enumeration name
467 // that is not a typedef name and the other declarations shall all refer to
468 // the same variable, non-static data member, or enumerator, or all refer
469 // to functions and function templates; in this case the class name or
470 // enumeration name is hidden.
471 // C++ [basic.scope.hiding]p2:
472 // A class name or enumeration name can be hidden by the name of a
473 // variable, data member, function, or enumerator declared in the same
475 // An UnresolvedUsingValueDecl always instantiates to one of these.
476 D
= D
->getUnderlyingDecl();
477 return isa
<VarDecl
>(D
) || isa
<EnumConstantDecl
>(D
) || isa
<FunctionDecl
>(D
) ||
478 isa
<FunctionTemplateDecl
>(D
) || isa
<FieldDecl
>(D
) ||
479 isa
<UnresolvedUsingValueDecl
>(D
);
482 /// Resolves the result kind of this lookup.
483 void LookupResult::resolveKind() {
484 unsigned N
= Decls
.size();
486 // Fast case: no possible ambiguity.
488 assert(ResultKind
== NotFound
||
489 ResultKind
== NotFoundInCurrentInstantiation
);
493 // If there's a single decl, we need to examine it to decide what
494 // kind of lookup this is.
496 const NamedDecl
*D
= (*Decls
.begin())->getUnderlyingDecl();
497 if (isa
<FunctionTemplateDecl
>(D
))
498 ResultKind
= FoundOverloaded
;
499 else if (isa
<UnresolvedUsingValueDecl
>(D
))
500 ResultKind
= FoundUnresolvedValue
;
504 // Don't do any extra resolution if we've already resolved as ambiguous.
505 if (ResultKind
== Ambiguous
) return;
507 llvm::SmallDenseMap
<const NamedDecl
*, unsigned, 16> Unique
;
508 llvm::SmallDenseMap
<QualType
, unsigned, 16> UniqueTypes
;
510 bool Ambiguous
= false;
511 bool ReferenceToPlaceHolderVariable
= false;
512 bool HasTag
= false, HasFunction
= false;
513 bool HasFunctionTemplate
= false, HasUnresolved
= false;
514 const NamedDecl
*HasNonFunction
= nullptr;
516 llvm::SmallVector
<const NamedDecl
*, 4> EquivalentNonFunctions
;
517 llvm::BitVector
RemovedDecls(N
);
519 for (unsigned I
= 0; I
< N
; I
++) {
520 const NamedDecl
*D
= Decls
[I
]->getUnderlyingDecl();
521 D
= cast
<NamedDecl
>(D
->getCanonicalDecl());
523 // Ignore an invalid declaration unless it's the only one left.
524 // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
525 if ((D
->isInvalidDecl() || isa
<HLSLBufferDecl
>(D
)) &&
526 N
- RemovedDecls
.count() > 1) {
531 // C++ [basic.scope.hiding]p2:
532 // A class name or enumeration name can be hidden by the name of
533 // an object, function, or enumerator declared in the same
534 // scope. If a class or enumeration name and an object, function,
535 // or enumerator are declared in the same scope (in any order)
536 // with the same name, the class or enumeration name is hidden
537 // wherever the object, function, or enumerator name is visible.
538 if (HideTags
&& isa
<TagDecl
>(D
)) {
540 for (auto *OtherDecl
: Decls
) {
541 if (canHideTag(OtherDecl
) && !OtherDecl
->isInvalidDecl() &&
542 getContextForScopeMatching(OtherDecl
)->Equals(
543 getContextForScopeMatching(Decls
[I
]))) {
553 std::optional
<unsigned> ExistingI
;
555 // Redeclarations of types via typedef can occur both within a scope
556 // and, through using declarations and directives, across scopes. There is
557 // no ambiguity if they all refer to the same type, so unique based on the
559 if (const auto *TD
= dyn_cast
<TypeDecl
>(D
)) {
560 QualType T
= getSema().Context
.getTypeDeclType(TD
);
561 auto UniqueResult
= UniqueTypes
.insert(
562 std::make_pair(getSema().Context
.getCanonicalType(T
), I
));
563 if (!UniqueResult
.second
) {
564 // The type is not unique.
565 ExistingI
= UniqueResult
.first
->second
;
569 // For non-type declarations, check for a prior lookup result naming this
570 // canonical declaration.
571 if (!D
->isPlaceholderVar(getSema().getLangOpts()) && !ExistingI
) {
572 auto UniqueResult
= Unique
.insert(std::make_pair(D
, I
));
573 if (!UniqueResult
.second
) {
574 // We've seen this entity before.
575 ExistingI
= UniqueResult
.first
->second
;
580 // This is not a unique lookup result. Pick one of the results and
581 // discard the other.
582 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls
[I
],
584 Decls
[*ExistingI
] = Decls
[I
];
589 // Otherwise, do some decl type analysis and then continue.
591 if (isa
<UnresolvedUsingValueDecl
>(D
)) {
592 HasUnresolved
= true;
593 } else if (isa
<TagDecl
>(D
)) {
597 } else if (isa
<FunctionTemplateDecl
>(D
)) {
599 HasFunctionTemplate
= true;
600 } else if (isa
<FunctionDecl
>(D
)) {
603 if (HasNonFunction
) {
604 // If we're about to create an ambiguity between two declarations that
605 // are equivalent, but one is an internal linkage declaration from one
606 // module and the other is an internal linkage declaration from another
607 // module, just skip it.
608 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction
,
610 EquivalentNonFunctions
.push_back(D
);
614 if (D
->isPlaceholderVar(getSema().getLangOpts()) &&
615 getContextForScopeMatching(D
) ==
616 getContextForScopeMatching(Decls
[I
])) {
617 ReferenceToPlaceHolderVariable
= true;
625 // FIXME: This diagnostic should really be delayed until we're done with
626 // the lookup result, in case the ambiguity is resolved by the caller.
627 if (!EquivalentNonFunctions
.empty() && !Ambiguous
)
628 getSema().diagnoseEquivalentInternalLinkageDeclarations(
629 getNameLoc(), HasNonFunction
, EquivalentNonFunctions
);
631 // Remove decls by replacing them with decls from the end (which
632 // means that we need to iterate from the end) and then truncating
634 for (int I
= RemovedDecls
.find_last(); I
>= 0; I
= RemovedDecls
.find_prev(I
))
635 Decls
[I
] = Decls
[--N
];
638 if ((HasNonFunction
&& (HasFunction
|| HasUnresolved
)) ||
639 (HideTags
&& HasTag
&& (HasFunction
|| HasNonFunction
|| HasUnresolved
)))
642 if (Ambiguous
&& ReferenceToPlaceHolderVariable
)
643 setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable
);
645 setAmbiguous(LookupResult::AmbiguousReference
);
646 else if (HasUnresolved
)
647 ResultKind
= LookupResult::FoundUnresolvedValue
;
648 else if (N
> 1 || HasFunctionTemplate
)
649 ResultKind
= LookupResult::FoundOverloaded
;
651 ResultKind
= LookupResult::Found
;
654 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths
&P
) {
655 CXXBasePaths::const_paths_iterator I
, E
;
656 for (I
= P
.begin(), E
= P
.end(); I
!= E
; ++I
)
657 for (DeclContext::lookup_iterator DI
= I
->Decls
, DE
= DI
.end(); DI
!= DE
;
662 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths
&P
) {
663 Paths
= new CXXBasePaths
;
665 addDeclsFromBasePaths(*Paths
);
667 setAmbiguous(AmbiguousBaseSubobjects
);
670 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths
&P
) {
671 Paths
= new CXXBasePaths
;
673 addDeclsFromBasePaths(*Paths
);
675 setAmbiguous(AmbiguousBaseSubobjectTypes
);
678 void LookupResult::print(raw_ostream
&Out
) {
679 Out
<< Decls
.size() << " result(s)";
680 if (isAmbiguous()) Out
<< ", ambiguous";
681 if (Paths
) Out
<< ", base paths present";
683 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
689 LLVM_DUMP_METHOD
void LookupResult::dump() {
690 llvm::errs() << "lookup results for " << getLookupName().getAsString()
692 for (NamedDecl
*D
: *this)
696 /// Diagnose a missing builtin type.
697 static QualType
diagOpenCLBuiltinTypeError(Sema
&S
, llvm::StringRef TypeClass
,
698 llvm::StringRef Name
) {
699 S
.Diag(SourceLocation(), diag::err_opencl_type_not_found
)
700 << TypeClass
<< Name
;
701 return S
.Context
.VoidTy
;
704 /// Lookup an OpenCL enum type.
705 static QualType
getOpenCLEnumType(Sema
&S
, llvm::StringRef Name
) {
706 LookupResult
Result(S
, &S
.Context
.Idents
.get(Name
), SourceLocation(),
707 Sema::LookupTagName
);
708 S
.LookupName(Result
, S
.TUScope
);
710 return diagOpenCLBuiltinTypeError(S
, "enum", Name
);
711 EnumDecl
*Decl
= Result
.getAsSingle
<EnumDecl
>();
713 return diagOpenCLBuiltinTypeError(S
, "enum", Name
);
714 return S
.Context
.getEnumType(Decl
);
717 /// Lookup an OpenCL typedef type.
718 static QualType
getOpenCLTypedefType(Sema
&S
, llvm::StringRef Name
) {
719 LookupResult
Result(S
, &S
.Context
.Idents
.get(Name
), SourceLocation(),
720 Sema::LookupOrdinaryName
);
721 S
.LookupName(Result
, S
.TUScope
);
723 return diagOpenCLBuiltinTypeError(S
, "typedef", Name
);
724 TypedefNameDecl
*Decl
= Result
.getAsSingle
<TypedefNameDecl
>();
726 return diagOpenCLBuiltinTypeError(S
, "typedef", Name
);
727 return S
.Context
.getTypedefType(Decl
);
730 /// Get the QualType instances of the return type and arguments for an OpenCL
731 /// builtin function signature.
732 /// \param S (in) The Sema instance.
733 /// \param OpenCLBuiltin (in) The signature currently handled.
734 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
735 /// type used as return type or as argument.
736 /// Only meaningful for generic types, otherwise equals 1.
737 /// \param RetTypes (out) List of the possible return types.
738 /// \param ArgTypes (out) List of the possible argument types. For each
739 /// argument, ArgTypes contains QualTypes for the Cartesian product
740 /// of (vector sizes) x (types) .
741 static void GetQualTypesForOpenCLBuiltin(
742 Sema
&S
, const OpenCLBuiltinStruct
&OpenCLBuiltin
, unsigned &GenTypeMaxCnt
,
743 SmallVector
<QualType
, 1> &RetTypes
,
744 SmallVector
<SmallVector
<QualType
, 1>, 5> &ArgTypes
) {
745 // Get the QualType instances of the return types.
746 unsigned Sig
= SignatureTable
[OpenCLBuiltin
.SigTableIndex
];
747 OCL2Qual(S
, TypeTable
[Sig
], RetTypes
);
748 GenTypeMaxCnt
= RetTypes
.size();
750 // Get the QualType instances of the arguments.
751 // First type is the return type, skip it.
752 for (unsigned Index
= 1; Index
< OpenCLBuiltin
.NumTypes
; Index
++) {
753 SmallVector
<QualType
, 1> Ty
;
754 OCL2Qual(S
, TypeTable
[SignatureTable
[OpenCLBuiltin
.SigTableIndex
+ Index
]],
756 GenTypeMaxCnt
= (Ty
.size() > GenTypeMaxCnt
) ? Ty
.size() : GenTypeMaxCnt
;
757 ArgTypes
.push_back(std::move(Ty
));
761 /// Create a list of the candidate function overloads for an OpenCL builtin
763 /// \param Context (in) The ASTContext instance.
764 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
765 /// type used as return type or as argument.
766 /// Only meaningful for generic types, otherwise equals 1.
767 /// \param FunctionList (out) List of FunctionTypes.
768 /// \param RetTypes (in) List of the possible return types.
769 /// \param ArgTypes (in) List of the possible types for the arguments.
770 static void GetOpenCLBuiltinFctOverloads(
771 ASTContext
&Context
, unsigned GenTypeMaxCnt
,
772 std::vector
<QualType
> &FunctionList
, SmallVector
<QualType
, 1> &RetTypes
,
773 SmallVector
<SmallVector
<QualType
, 1>, 5> &ArgTypes
) {
774 FunctionProtoType::ExtProtoInfo
PI(
775 Context
.getDefaultCallingConvention(false, false, true));
778 // Do not attempt to create any FunctionTypes if there are no return types,
779 // which happens when a type belongs to a disabled extension.
780 if (RetTypes
.size() == 0)
783 // Create FunctionTypes for each (gen)type.
784 for (unsigned IGenType
= 0; IGenType
< GenTypeMaxCnt
; IGenType
++) {
785 SmallVector
<QualType
, 5> ArgList
;
787 for (unsigned A
= 0; A
< ArgTypes
.size(); A
++) {
788 // Bail out if there is an argument that has no available types.
789 if (ArgTypes
[A
].size() == 0)
792 // Builtins such as "max" have an "sgentype" argument that represents
793 // the corresponding scalar type of a gentype. The number of gentypes
794 // must be a multiple of the number of sgentypes.
795 assert(GenTypeMaxCnt
% ArgTypes
[A
].size() == 0 &&
796 "argument type count not compatible with gentype type count");
797 unsigned Idx
= IGenType
% ArgTypes
[A
].size();
798 ArgList
.push_back(ArgTypes
[A
][Idx
]);
801 FunctionList
.push_back(Context
.getFunctionType(
802 RetTypes
[(RetTypes
.size() != 1) ? IGenType
: 0], ArgList
, PI
));
806 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
807 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
808 /// builtin function. Add all candidate signatures to the LookUpResult.
810 /// \param S (in) The Sema instance.
811 /// \param LR (inout) The LookupResult instance.
812 /// \param II (in) The identifier being resolved.
813 /// \param FctIndex (in) Starting index in the BuiltinTable.
814 /// \param Len (in) The signature list has Len elements.
815 static void InsertOCLBuiltinDeclarationsFromTable(Sema
&S
, LookupResult
&LR
,
817 const unsigned FctIndex
,
818 const unsigned Len
) {
819 // The builtin function declaration uses generic types (gentype).
820 bool HasGenType
= false;
822 // Maximum number of types contained in a generic type used as return type or
823 // as argument. Only meaningful for generic types, otherwise equals 1.
824 unsigned GenTypeMaxCnt
;
826 ASTContext
&Context
= S
.Context
;
828 for (unsigned SignatureIndex
= 0; SignatureIndex
< Len
; SignatureIndex
++) {
829 const OpenCLBuiltinStruct
&OpenCLBuiltin
=
830 BuiltinTable
[FctIndex
+ SignatureIndex
];
832 // Ignore this builtin function if it is not available in the currently
833 // selected language version.
834 if (!isOpenCLVersionContainedInMask(Context
.getLangOpts(),
835 OpenCLBuiltin
.Versions
))
838 // Ignore this builtin function if it carries an extension macro that is
839 // not defined. This indicates that the extension is not supported by the
840 // target, so the builtin function should not be available.
841 StringRef Extensions
= FunctionExtensionTable
[OpenCLBuiltin
.Extension
];
842 if (!Extensions
.empty()) {
843 SmallVector
<StringRef
, 2> ExtVec
;
844 Extensions
.split(ExtVec
, " ");
845 bool AllExtensionsDefined
= true;
846 for (StringRef Ext
: ExtVec
) {
847 if (!S
.getPreprocessor().isMacroDefined(Ext
)) {
848 AllExtensionsDefined
= false;
852 if (!AllExtensionsDefined
)
856 SmallVector
<QualType
, 1> RetTypes
;
857 SmallVector
<SmallVector
<QualType
, 1>, 5> ArgTypes
;
859 // Obtain QualType lists for the function signature.
860 GetQualTypesForOpenCLBuiltin(S
, OpenCLBuiltin
, GenTypeMaxCnt
, RetTypes
,
862 if (GenTypeMaxCnt
> 1) {
866 // Create function overload for each type combination.
867 std::vector
<QualType
> FunctionList
;
868 GetOpenCLBuiltinFctOverloads(Context
, GenTypeMaxCnt
, FunctionList
, RetTypes
,
871 SourceLocation Loc
= LR
.getNameLoc();
872 DeclContext
*Parent
= Context
.getTranslationUnitDecl();
873 FunctionDecl
*NewOpenCLBuiltin
;
875 for (const auto &FTy
: FunctionList
) {
876 NewOpenCLBuiltin
= FunctionDecl::Create(
877 Context
, Parent
, Loc
, Loc
, II
, FTy
, /*TInfo=*/nullptr, SC_Extern
,
878 S
.getCurFPFeatures().isFPConstrained(), false,
879 FTy
->isFunctionProtoType());
880 NewOpenCLBuiltin
->setImplicit();
882 // Create Decl objects for each parameter, adding them to the
884 const auto *FP
= cast
<FunctionProtoType
>(FTy
);
885 SmallVector
<ParmVarDecl
*, 4> ParmList
;
886 for (unsigned IParm
= 0, e
= FP
->getNumParams(); IParm
!= e
; ++IParm
) {
887 ParmVarDecl
*Parm
= ParmVarDecl::Create(
888 Context
, NewOpenCLBuiltin
, SourceLocation(), SourceLocation(),
889 nullptr, FP
->getParamType(IParm
), nullptr, SC_None
, nullptr);
890 Parm
->setScopeInfo(0, IParm
);
891 ParmList
.push_back(Parm
);
893 NewOpenCLBuiltin
->setParams(ParmList
);
895 // Add function attributes.
896 if (OpenCLBuiltin
.IsPure
)
897 NewOpenCLBuiltin
->addAttr(PureAttr::CreateImplicit(Context
));
898 if (OpenCLBuiltin
.IsConst
)
899 NewOpenCLBuiltin
->addAttr(ConstAttr::CreateImplicit(Context
));
900 if (OpenCLBuiltin
.IsConv
)
901 NewOpenCLBuiltin
->addAttr(ConvergentAttr::CreateImplicit(Context
));
903 if (!S
.getLangOpts().OpenCLCPlusPlus
)
904 NewOpenCLBuiltin
->addAttr(OverloadableAttr::CreateImplicit(Context
));
906 LR
.addDecl(NewOpenCLBuiltin
);
910 // If we added overloads, need to resolve the lookup result.
911 if (Len
> 1 || HasGenType
)
915 /// Lookup a builtin function, when name lookup would otherwise
917 bool Sema::LookupBuiltin(LookupResult
&R
) {
918 Sema::LookupNameKind NameKind
= R
.getLookupKind();
920 // If we didn't find a use of this identifier, and if the identifier
921 // corresponds to a compiler builtin, create the decl object for the builtin
922 // now, injecting it into translation unit scope, and return it.
923 if (NameKind
== Sema::LookupOrdinaryName
||
924 NameKind
== Sema::LookupRedeclarationWithLinkage
) {
925 IdentifierInfo
*II
= R
.getLookupName().getAsIdentifierInfo();
927 if (getLangOpts().CPlusPlus
&& NameKind
== Sema::LookupOrdinaryName
) {
928 if (II
== getASTContext().getMakeIntegerSeqName()) {
929 R
.addDecl(getASTContext().getMakeIntegerSeqDecl());
931 } else if (II
== getASTContext().getTypePackElementName()) {
932 R
.addDecl(getASTContext().getTypePackElementDecl());
937 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
938 if (getLangOpts().OpenCL
&& getLangOpts().DeclareOpenCLBuiltins
) {
939 auto Index
= isOpenCLBuiltin(II
->getName());
941 InsertOCLBuiltinDeclarationsFromTable(*this, R
, II
, Index
.first
- 1,
947 if (DeclareRISCVVBuiltins
|| DeclareRISCVSiFiveVectorBuiltins
) {
948 if (!RVIntrinsicManager
)
949 RVIntrinsicManager
= CreateRISCVIntrinsicManager(*this);
951 RVIntrinsicManager
->InitIntrinsicList();
953 if (RVIntrinsicManager
->CreateIntrinsicIfFound(R
, II
, PP
))
957 // If this is a builtin on this (or all) targets, create the decl.
958 if (unsigned BuiltinID
= II
->getBuiltinID()) {
959 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
960 // library functions like 'malloc'. Instead, we'll just error.
961 if ((getLangOpts().CPlusPlus
|| getLangOpts().OpenCL
) &&
962 Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
))
966 LazilyCreateBuiltin(II
, BuiltinID
, TUScope
,
967 R
.isForRedeclaration(), R
.getNameLoc())) {
978 /// Looks up the declaration of "struct objc_super" and
979 /// saves it for later use in building builtin declaration of
980 /// objc_msgSendSuper and objc_msgSendSuper_stret.
981 static void LookupPredefedObjCSuperType(Sema
&Sema
, Scope
*S
) {
982 ASTContext
&Context
= Sema
.Context
;
983 LookupResult
Result(Sema
, &Context
.Idents
.get("objc_super"), SourceLocation(),
984 Sema::LookupTagName
);
985 Sema
.LookupName(Result
, S
);
986 if (Result
.getResultKind() == LookupResult::Found
)
987 if (const TagDecl
*TD
= Result
.getAsSingle
<TagDecl
>())
988 Context
.setObjCSuperType(Context
.getTagDeclType(TD
));
991 void Sema::LookupNecessaryTypesForBuiltin(Scope
*S
, unsigned ID
) {
992 if (ID
== Builtin::BIobjc_msgSendSuper
)
993 LookupPredefedObjCSuperType(*this, S
);
996 /// Determine whether we can declare a special member function within
997 /// the class at this point.
998 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl
*Class
) {
999 // We need to have a definition for the class.
1000 if (!Class
->getDefinition() || Class
->isDependentContext())
1003 // We can't be in the middle of defining the class.
1004 return !Class
->isBeingDefined();
1007 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl
*Class
) {
1008 if (!CanDeclareSpecialMemberFunction(Class
))
1011 // If the default constructor has not yet been declared, do so now.
1012 if (Class
->needsImplicitDefaultConstructor())
1013 DeclareImplicitDefaultConstructor(Class
);
1015 // If the copy constructor has not yet been declared, do so now.
1016 if (Class
->needsImplicitCopyConstructor())
1017 DeclareImplicitCopyConstructor(Class
);
1019 // If the copy assignment operator has not yet been declared, do so now.
1020 if (Class
->needsImplicitCopyAssignment())
1021 DeclareImplicitCopyAssignment(Class
);
1023 if (getLangOpts().CPlusPlus11
) {
1024 // If the move constructor has not yet been declared, do so now.
1025 if (Class
->needsImplicitMoveConstructor())
1026 DeclareImplicitMoveConstructor(Class
);
1028 // If the move assignment operator has not yet been declared, do so now.
1029 if (Class
->needsImplicitMoveAssignment())
1030 DeclareImplicitMoveAssignment(Class
);
1033 // If the destructor has not yet been declared, do so now.
1034 if (Class
->needsImplicitDestructor())
1035 DeclareImplicitDestructor(Class
);
1038 /// Determine whether this is the name of an implicitly-declared
1039 /// special member function.
1040 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name
) {
1041 switch (Name
.getNameKind()) {
1042 case DeclarationName::CXXConstructorName
:
1043 case DeclarationName::CXXDestructorName
:
1046 case DeclarationName::CXXOperatorName
:
1047 return Name
.getCXXOverloadedOperator() == OO_Equal
;
1056 /// If there are any implicit member functions with the given name
1057 /// that need to be declared in the given declaration context, do so.
1058 static void DeclareImplicitMemberFunctionsWithName(Sema
&S
,
1059 DeclarationName Name
,
1061 const DeclContext
*DC
) {
1065 switch (Name
.getNameKind()) {
1066 case DeclarationName::CXXConstructorName
:
1067 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
))
1068 if (Record
->getDefinition() && CanDeclareSpecialMemberFunction(Record
)) {
1069 CXXRecordDecl
*Class
= const_cast<CXXRecordDecl
*>(Record
);
1070 if (Record
->needsImplicitDefaultConstructor())
1071 S
.DeclareImplicitDefaultConstructor(Class
);
1072 if (Record
->needsImplicitCopyConstructor())
1073 S
.DeclareImplicitCopyConstructor(Class
);
1074 if (S
.getLangOpts().CPlusPlus11
&&
1075 Record
->needsImplicitMoveConstructor())
1076 S
.DeclareImplicitMoveConstructor(Class
);
1080 case DeclarationName::CXXDestructorName
:
1081 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
))
1082 if (Record
->getDefinition() && Record
->needsImplicitDestructor() &&
1083 CanDeclareSpecialMemberFunction(Record
))
1084 S
.DeclareImplicitDestructor(const_cast<CXXRecordDecl
*>(Record
));
1087 case DeclarationName::CXXOperatorName
:
1088 if (Name
.getCXXOverloadedOperator() != OO_Equal
)
1091 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
)) {
1092 if (Record
->getDefinition() && CanDeclareSpecialMemberFunction(Record
)) {
1093 CXXRecordDecl
*Class
= const_cast<CXXRecordDecl
*>(Record
);
1094 if (Record
->needsImplicitCopyAssignment())
1095 S
.DeclareImplicitCopyAssignment(Class
);
1096 if (S
.getLangOpts().CPlusPlus11
&&
1097 Record
->needsImplicitMoveAssignment())
1098 S
.DeclareImplicitMoveAssignment(Class
);
1103 case DeclarationName::CXXDeductionGuideName
:
1104 S
.DeclareImplicitDeductionGuides(Name
.getCXXDeductionGuideTemplate(), Loc
);
1112 // Adds all qualifying matches for a name within a decl context to the
1113 // given lookup result. Returns true if any matches were found.
1114 static bool LookupDirect(Sema
&S
, LookupResult
&R
, const DeclContext
*DC
) {
1117 // Lazily declare C++ special member functions.
1118 if (S
.getLangOpts().CPlusPlus
)
1119 DeclareImplicitMemberFunctionsWithName(S
, R
.getLookupName(), R
.getNameLoc(),
1122 // Perform lookup into this declaration context.
1123 DeclContext::lookup_result DR
= DC
->lookup(R
.getLookupName());
1124 for (NamedDecl
*D
: DR
) {
1125 if ((D
= R
.getAcceptableDecl(D
))) {
1131 if (!Found
&& DC
->isTranslationUnit() && S
.LookupBuiltin(R
))
1134 if (R
.getLookupName().getNameKind()
1135 != DeclarationName::CXXConversionFunctionName
||
1136 R
.getLookupName().getCXXNameType()->isDependentType() ||
1137 !isa
<CXXRecordDecl
>(DC
))
1140 // C++ [temp.mem]p6:
1141 // A specialization of a conversion function template is not found by
1142 // name lookup. Instead, any conversion function templates visible in the
1143 // context of the use are considered. [...]
1144 const CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(DC
);
1145 if (!Record
->isCompleteDefinition())
1148 // For conversion operators, 'operator auto' should only match
1149 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1150 // as a candidate for template substitution.
1151 auto *ContainedDeducedType
=
1152 R
.getLookupName().getCXXNameType()->getContainedDeducedType();
1153 if (R
.getLookupName().getNameKind() ==
1154 DeclarationName::CXXConversionFunctionName
&&
1155 ContainedDeducedType
&& ContainedDeducedType
->isUndeducedType())
1158 for (CXXRecordDecl::conversion_iterator U
= Record
->conversion_begin(),
1159 UEnd
= Record
->conversion_end(); U
!= UEnd
; ++U
) {
1160 FunctionTemplateDecl
*ConvTemplate
= dyn_cast
<FunctionTemplateDecl
>(*U
);
1164 // When we're performing lookup for the purposes of redeclaration, just
1165 // add the conversion function template. When we deduce template
1166 // arguments for specializations, we'll end up unifying the return
1167 // type of the new declaration with the type of the function template.
1168 if (R
.isForRedeclaration()) {
1169 R
.addDecl(ConvTemplate
);
1174 // C++ [temp.mem]p6:
1175 // [...] For each such operator, if argument deduction succeeds
1176 // (14.9.2.3), the resulting specialization is used as if found by
1179 // When referencing a conversion function for any purpose other than
1180 // a redeclaration (such that we'll be building an expression with the
1181 // result), perform template argument deduction and place the
1182 // specialization into the result set. We do this to avoid forcing all
1183 // callers to perform special deduction for conversion functions.
1184 TemplateDeductionInfo
Info(R
.getNameLoc());
1185 FunctionDecl
*Specialization
= nullptr;
1187 const FunctionProtoType
*ConvProto
1188 = ConvTemplate
->getTemplatedDecl()->getType()->getAs
<FunctionProtoType
>();
1189 assert(ConvProto
&& "Nonsensical conversion function template type");
1191 // Compute the type of the function that we would expect the conversion
1192 // function to have, if it were to match the name given.
1193 // FIXME: Calling convention!
1194 FunctionProtoType::ExtProtoInfo EPI
= ConvProto
->getExtProtoInfo();
1195 EPI
.ExtInfo
= EPI
.ExtInfo
.withCallingConv(CC_C
);
1196 EPI
.ExceptionSpec
= EST_None
;
1197 QualType ExpectedType
= R
.getSema().Context
.getFunctionType(
1198 R
.getLookupName().getCXXNameType(), std::nullopt
, EPI
);
1200 // Perform template argument deduction against the type that we would
1201 // expect the function to have.
1202 if (R
.getSema().DeduceTemplateArguments(ConvTemplate
, nullptr, ExpectedType
,
1203 Specialization
, Info
)
1204 == Sema::TDK_Success
) {
1205 R
.addDecl(Specialization
);
1213 // Performs C++ unqualified lookup into the given file context.
1214 static bool CppNamespaceLookup(Sema
&S
, LookupResult
&R
, ASTContext
&Context
,
1215 const DeclContext
*NS
,
1216 UnqualUsingDirectiveSet
&UDirs
) {
1218 assert(NS
&& NS
->isFileContext() && "CppNamespaceLookup() requires namespace!");
1220 // Perform direct name lookup into the LookupCtx.
1221 bool Found
= LookupDirect(S
, R
, NS
);
1223 // Perform direct name lookup into the namespaces nominated by the
1224 // using directives whose common ancestor is this namespace.
1225 for (const UnqualUsingEntry
&UUE
: UDirs
.getNamespacesFor(NS
))
1226 if (LookupDirect(S
, R
, UUE
.getNominatedNamespace()))
1234 static bool isNamespaceOrTranslationUnitScope(Scope
*S
) {
1235 if (DeclContext
*Ctx
= S
->getEntity())
1236 return Ctx
->isFileContext();
1240 /// Find the outer declaration context from this scope. This indicates the
1241 /// context that we should search up to (exclusive) before considering the
1242 /// parent of the specified scope.
1243 static DeclContext
*findOuterContext(Scope
*S
) {
1244 for (Scope
*OuterS
= S
->getParent(); OuterS
; OuterS
= OuterS
->getParent())
1245 if (DeclContext
*DC
= OuterS
->getLookupEntity())
1251 /// An RAII object to specify that we want to find block scope extern
1253 struct FindLocalExternScope
{
1254 FindLocalExternScope(LookupResult
&R
)
1255 : R(R
), OldFindLocalExtern(R
.getIdentifierNamespace() &
1256 Decl::IDNS_LocalExtern
) {
1257 R
.setFindLocalExtern(R
.getIdentifierNamespace() &
1258 (Decl::IDNS_Ordinary
| Decl::IDNS_NonMemberOperator
));
1261 R
.setFindLocalExtern(OldFindLocalExtern
);
1263 ~FindLocalExternScope() {
1267 bool OldFindLocalExtern
;
1269 } // end anonymous namespace
1271 bool Sema::CppLookupName(LookupResult
&R
, Scope
*S
) {
1272 assert(getLangOpts().CPlusPlus
&& "Can perform only C++ lookup");
1274 DeclarationName Name
= R
.getLookupName();
1275 Sema::LookupNameKind NameKind
= R
.getLookupKind();
1277 // If this is the name of an implicitly-declared special member function,
1278 // go through the scope stack to implicitly declare
1279 if (isImplicitlyDeclaredMemberFunctionName(Name
)) {
1280 for (Scope
*PreS
= S
; PreS
; PreS
= PreS
->getParent())
1281 if (DeclContext
*DC
= PreS
->getEntity())
1282 DeclareImplicitMemberFunctionsWithName(*this, Name
, R
.getNameLoc(), DC
);
1285 // Implicitly declare member functions with the name we're looking for, if in
1286 // fact we are in a scope where it matters.
1289 IdentifierResolver::iterator
1290 I
= IdResolver
.begin(Name
),
1291 IEnd
= IdResolver
.end();
1293 // First we lookup local scope.
1294 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1295 // ...During unqualified name lookup (3.4.1), the names appear as if
1296 // they were declared in the nearest enclosing namespace which contains
1297 // both the using-directive and the nominated namespace.
1298 // [Note: in this context, "contains" means "contains directly or
1302 // namespace A { int i; }
1306 // using namespace A;
1307 // ++i; // finds local 'i', A::i appears at global scope
1311 UnqualUsingDirectiveSet
UDirs(*this);
1312 bool VisitedUsingDirectives
= false;
1313 bool LeftStartingScope
= false;
1315 // When performing a scope lookup, we want to find local extern decls.
1316 FindLocalExternScope
FindLocals(R
);
1318 for (; S
&& !isNamespaceOrTranslationUnitScope(S
); S
= S
->getParent()) {
1319 bool SearchNamespaceScope
= true;
1320 // Check whether the IdResolver has anything in this scope.
1321 for (; I
!= IEnd
&& S
->isDeclScope(*I
); ++I
) {
1322 if (NamedDecl
*ND
= R
.getAcceptableDecl(*I
)) {
1323 if (NameKind
== LookupRedeclarationWithLinkage
&&
1324 !(*I
)->isTemplateParameter()) {
1325 // If it's a template parameter, we still find it, so we can diagnose
1326 // the invalid redeclaration.
1328 // Determine whether this (or a previous) declaration is
1330 if (!LeftStartingScope
&& !Initial
->isDeclScope(*I
))
1331 LeftStartingScope
= true;
1333 // If we found something outside of our starting scope that
1334 // does not have linkage, skip it.
1335 if (LeftStartingScope
&& !((*I
)->hasLinkage())) {
1340 // We found something in this scope, we should not look at the
1342 SearchNamespaceScope
= false;
1347 if (!SearchNamespaceScope
) {
1349 if (S
->isClassScope())
1350 if (auto *Record
= dyn_cast_if_present
<CXXRecordDecl
>(S
->getEntity()))
1351 R
.setNamingClass(Record
);
1355 if (NameKind
== LookupLocalFriendName
&& !S
->isClassScope()) {
1356 // C++11 [class.friend]p11:
1357 // If a friend declaration appears in a local class and the name
1358 // specified is an unqualified name, a prior declaration is
1359 // looked up without considering scopes that are outside the
1360 // innermost enclosing non-class scope.
1364 if (DeclContext
*Ctx
= S
->getLookupEntity()) {
1365 DeclContext
*OuterCtx
= findOuterContext(S
);
1366 for (; Ctx
&& !Ctx
->Equals(OuterCtx
); Ctx
= Ctx
->getLookupParent()) {
1367 // We do not directly look into transparent contexts, since
1368 // those entities will be found in the nearest enclosing
1369 // non-transparent context.
1370 if (Ctx
->isTransparentContext())
1373 // We do not look directly into function or method contexts,
1374 // since all of the local variables and parameters of the
1375 // function/method are present within the Scope.
1376 if (Ctx
->isFunctionOrMethod()) {
1377 // If we have an Objective-C instance method, look for ivars
1378 // in the corresponding interface.
1379 if (ObjCMethodDecl
*Method
= dyn_cast
<ObjCMethodDecl
>(Ctx
)) {
1380 if (Method
->isInstanceMethod() && Name
.getAsIdentifierInfo())
1381 if (ObjCInterfaceDecl
*Class
= Method
->getClassInterface()) {
1382 ObjCInterfaceDecl
*ClassDeclared
;
1383 if (ObjCIvarDecl
*Ivar
= Class
->lookupInstanceVariable(
1384 Name
.getAsIdentifierInfo(),
1386 if (NamedDecl
*ND
= R
.getAcceptableDecl(Ivar
)) {
1398 // If this is a file context, we need to perform unqualified name
1399 // lookup considering using directives.
1400 if (Ctx
->isFileContext()) {
1401 // If we haven't handled using directives yet, do so now.
1402 if (!VisitedUsingDirectives
) {
1403 // Add using directives from this context up to the top level.
1404 for (DeclContext
*UCtx
= Ctx
; UCtx
; UCtx
= UCtx
->getParent()) {
1405 if (UCtx
->isTransparentContext())
1408 UDirs
.visit(UCtx
, UCtx
);
1411 // Find the innermost file scope, so we can add using directives
1412 // from local scopes.
1413 Scope
*InnermostFileScope
= S
;
1414 while (InnermostFileScope
&&
1415 !isNamespaceOrTranslationUnitScope(InnermostFileScope
))
1416 InnermostFileScope
= InnermostFileScope
->getParent();
1417 UDirs
.visitScopeChain(Initial
, InnermostFileScope
);
1421 VisitedUsingDirectives
= true;
1424 if (CppNamespaceLookup(*this, R
, Context
, Ctx
, UDirs
)) {
1432 // Perform qualified name lookup into this context.
1433 // FIXME: In some cases, we know that every name that could be found by
1434 // this qualified name lookup will also be on the identifier chain. For
1435 // example, inside a class without any base classes, we never need to
1436 // perform qualified lookup because all of the members are on top of the
1437 // identifier chain.
1438 if (LookupQualifiedName(R
, Ctx
, /*InUnqualifiedLookup=*/true))
1444 // Stop if we ran out of scopes.
1445 // FIXME: This really, really shouldn't be happening.
1446 if (!S
) return false;
1448 // If we are looking for members, no need to look into global/namespace scope.
1449 if (NameKind
== LookupMemberName
)
1452 // Collect UsingDirectiveDecls in all scopes, and recursively all
1453 // nominated namespaces by those using-directives.
1455 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1456 // don't build it for each lookup!
1457 if (!VisitedUsingDirectives
) {
1458 UDirs
.visitScopeChain(Initial
, S
);
1462 // If we're not performing redeclaration lookup, do not look for local
1463 // extern declarations outside of a function scope.
1464 if (!R
.isForRedeclaration())
1465 FindLocals
.restore();
1467 // Lookup namespace scope, and global scope.
1468 // Unqualified name lookup in C++ requires looking into scopes
1469 // that aren't strictly lexical, and therefore we walk through the
1470 // context as well as walking through the scopes.
1471 for (; S
; S
= S
->getParent()) {
1472 // Check whether the IdResolver has anything in this scope.
1474 for (; I
!= IEnd
&& S
->isDeclScope(*I
); ++I
) {
1475 if (NamedDecl
*ND
= R
.getAcceptableDecl(*I
)) {
1476 // We found something. Look for anything else in our scope
1477 // with this same name and in an acceptable identifier
1478 // namespace, so that we can construct an overload set if we
1485 if (Found
&& S
->isTemplateParamScope()) {
1490 DeclContext
*Ctx
= S
->getLookupEntity();
1492 DeclContext
*OuterCtx
= findOuterContext(S
);
1493 for (; Ctx
&& !Ctx
->Equals(OuterCtx
); Ctx
= Ctx
->getLookupParent()) {
1494 // We do not directly look into transparent contexts, since
1495 // those entities will be found in the nearest enclosing
1496 // non-transparent context.
1497 if (Ctx
->isTransparentContext())
1500 // If we have a context, and it's not a context stashed in the
1501 // template parameter scope for an out-of-line definition, also
1502 // look into that context.
1503 if (!(Found
&& S
->isTemplateParamScope())) {
1504 assert(Ctx
->isFileContext() &&
1505 "We should have been looking only at file context here already.");
1507 // Look into context considering using-directives.
1508 if (CppNamespaceLookup(*this, R
, Context
, Ctx
, UDirs
))
1517 if (R
.isForRedeclaration() && !Ctx
->isTransparentContext())
1522 if (R
.isForRedeclaration() && Ctx
&& !Ctx
->isTransparentContext())
1529 void Sema::makeMergedDefinitionVisible(NamedDecl
*ND
) {
1530 if (auto *M
= getCurrentModule())
1531 Context
.mergeDefinitionIntoModule(ND
, M
);
1533 // We're not building a module; just make the definition visible.
1534 ND
->setVisibleDespiteOwningModule();
1536 // If ND is a template declaration, make the template parameters
1537 // visible too. They're not (necessarily) within a mergeable DeclContext.
1538 if (auto *TD
= dyn_cast
<TemplateDecl
>(ND
))
1539 for (auto *Param
: *TD
->getTemplateParameters())
1540 makeMergedDefinitionVisible(Param
);
1543 /// Find the module in which the given declaration was defined.
1544 static Module
*getDefiningModule(Sema
&S
, Decl
*Entity
) {
1545 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Entity
)) {
1546 // If this function was instantiated from a template, the defining module is
1547 // the module containing the pattern.
1548 if (FunctionDecl
*Pattern
= FD
->getTemplateInstantiationPattern())
1550 } else if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Entity
)) {
1551 if (CXXRecordDecl
*Pattern
= RD
->getTemplateInstantiationPattern())
1553 } else if (EnumDecl
*ED
= dyn_cast
<EnumDecl
>(Entity
)) {
1554 if (auto *Pattern
= ED
->getTemplateInstantiationPattern())
1556 } else if (VarDecl
*VD
= dyn_cast
<VarDecl
>(Entity
)) {
1557 if (VarDecl
*Pattern
= VD
->getTemplateInstantiationPattern())
1561 // Walk up to the containing context. That might also have been instantiated
1563 DeclContext
*Context
= Entity
->getLexicalDeclContext();
1564 if (Context
->isFileContext())
1565 return S
.getOwningModule(Entity
);
1566 return getDefiningModule(S
, cast
<Decl
>(Context
));
1569 llvm::DenseSet
<Module
*> &Sema::getLookupModules() {
1570 unsigned N
= CodeSynthesisContexts
.size();
1571 for (unsigned I
= CodeSynthesisContextLookupModules
.size();
1573 Module
*M
= CodeSynthesisContexts
[I
].Entity
?
1574 getDefiningModule(*this, CodeSynthesisContexts
[I
].Entity
) :
1576 if (M
&& !LookupModulesCache
.insert(M
).second
)
1578 CodeSynthesisContextLookupModules
.push_back(M
);
1580 return LookupModulesCache
;
1583 /// Determine if we could use all the declarations in the module.
1584 bool Sema::isUsableModule(const Module
*M
) {
1585 assert(M
&& "We shouldn't check nullness for module here");
1586 // Return quickly if we cached the result.
1587 if (UsableModuleUnitsCache
.count(M
))
1590 // If M is the global module fragment of the current translation unit. So it
1591 // should be usable.
1592 // [module.global.frag]p1:
1593 // The global module fragment can be used to provide declarations that are
1594 // attached to the global module and usable within the module unit.
1595 if (M
== TheGlobalModuleFragment
|| M
== TheImplicitGlobalModuleFragment
||
1596 // If M is the module we're parsing, it should be usable. This covers the
1597 // private module fragment. The private module fragment is usable only if
1598 // it is within the current module unit. And it must be the current
1599 // parsing module unit if it is within the current module unit according
1600 // to the grammar of the private module fragment. NOTE: This is covered by
1601 // the following condition. The intention of the check is to avoid string
1602 // comparison as much as possible.
1603 M
== getCurrentModule() ||
1604 // The module unit which is in the same module with the current module
1607 // FIXME: Here we judge if they are in the same module by comparing the
1608 // string. Is there any better solution?
1609 M
->getPrimaryModuleInterfaceName() ==
1610 llvm::StringRef(getLangOpts().CurrentModule
).split(':').first
) {
1611 UsableModuleUnitsCache
.insert(M
);
1618 bool Sema::hasVisibleMergedDefinition(const NamedDecl
*Def
) {
1619 for (const Module
*Merged
: Context
.getModulesWithMergedDefinition(Def
))
1620 if (isModuleVisible(Merged
))
1625 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl
*Def
) {
1626 for (const Module
*Merged
: Context
.getModulesWithMergedDefinition(Def
))
1627 if (isUsableModule(Merged
))
1632 template <typename ParmDecl
>
1634 hasAcceptableDefaultArgument(Sema
&S
, const ParmDecl
*D
,
1635 llvm::SmallVectorImpl
<Module
*> *Modules
,
1636 Sema::AcceptableKind Kind
) {
1637 if (!D
->hasDefaultArgument())
1640 llvm::SmallPtrSet
<const ParmDecl
*, 4> Visited
;
1641 while (D
&& Visited
.insert(D
).second
) {
1642 auto &DefaultArg
= D
->getDefaultArgStorage();
1643 if (!DefaultArg
.isInherited() && S
.isAcceptable(D
, Kind
))
1646 if (!DefaultArg
.isInherited() && Modules
) {
1647 auto *NonConstD
= const_cast<ParmDecl
*>(D
);
1648 Modules
->push_back(S
.getOwningModule(NonConstD
));
1651 // If there was a previous default argument, maybe its parameter is
1653 D
= DefaultArg
.getInheritedFrom();
1658 bool Sema::hasAcceptableDefaultArgument(
1659 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
,
1660 Sema::AcceptableKind Kind
) {
1661 if (auto *P
= dyn_cast
<TemplateTypeParmDecl
>(D
))
1662 return ::hasAcceptableDefaultArgument(*this, P
, Modules
, Kind
);
1664 if (auto *P
= dyn_cast
<NonTypeTemplateParmDecl
>(D
))
1665 return ::hasAcceptableDefaultArgument(*this, P
, Modules
, Kind
);
1667 return ::hasAcceptableDefaultArgument(
1668 *this, cast
<TemplateTemplateParmDecl
>(D
), Modules
, Kind
);
1671 bool Sema::hasVisibleDefaultArgument(const NamedDecl
*D
,
1672 llvm::SmallVectorImpl
<Module
*> *Modules
) {
1673 return hasAcceptableDefaultArgument(D
, Modules
,
1674 Sema::AcceptableKind::Visible
);
1677 bool Sema::hasReachableDefaultArgument(
1678 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1679 return hasAcceptableDefaultArgument(D
, Modules
,
1680 Sema::AcceptableKind::Reachable
);
1683 template <typename Filter
>
1685 hasAcceptableDeclarationImpl(Sema
&S
, const NamedDecl
*D
,
1686 llvm::SmallVectorImpl
<Module
*> *Modules
, Filter F
,
1687 Sema::AcceptableKind Kind
) {
1688 bool HasFilteredRedecls
= false;
1690 for (auto *Redecl
: D
->redecls()) {
1691 auto *R
= cast
<NamedDecl
>(Redecl
);
1695 if (S
.isAcceptable(R
, Kind
))
1698 HasFilteredRedecls
= true;
1701 Modules
->push_back(R
->getOwningModule());
1704 // Only return false if there is at least one redecl that is not filtered out.
1705 if (HasFilteredRedecls
)
1712 hasAcceptableExplicitSpecialization(Sema
&S
, const NamedDecl
*D
,
1713 llvm::SmallVectorImpl
<Module
*> *Modules
,
1714 Sema::AcceptableKind Kind
) {
1715 return hasAcceptableDeclarationImpl(
1717 [](const NamedDecl
*D
) {
1718 if (auto *RD
= dyn_cast
<CXXRecordDecl
>(D
))
1719 return RD
->getTemplateSpecializationKind() ==
1720 TSK_ExplicitSpecialization
;
1721 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
))
1722 return FD
->getTemplateSpecializationKind() ==
1723 TSK_ExplicitSpecialization
;
1724 if (auto *VD
= dyn_cast
<VarDecl
>(D
))
1725 return VD
->getTemplateSpecializationKind() ==
1726 TSK_ExplicitSpecialization
;
1727 llvm_unreachable("unknown explicit specialization kind");
1732 bool Sema::hasVisibleExplicitSpecialization(
1733 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1734 return ::hasAcceptableExplicitSpecialization(*this, D
, Modules
,
1735 Sema::AcceptableKind::Visible
);
1738 bool Sema::hasReachableExplicitSpecialization(
1739 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1740 return ::hasAcceptableExplicitSpecialization(*this, D
, Modules
,
1741 Sema::AcceptableKind::Reachable
);
1745 hasAcceptableMemberSpecialization(Sema
&S
, const NamedDecl
*D
,
1746 llvm::SmallVectorImpl
<Module
*> *Modules
,
1747 Sema::AcceptableKind Kind
) {
1748 assert(isa
<CXXRecordDecl
>(D
->getDeclContext()) &&
1749 "not a member specialization");
1750 return hasAcceptableDeclarationImpl(
1752 [](const NamedDecl
*D
) {
1753 // If the specialization is declared at namespace scope, then it's a
1754 // member specialization declaration. If it's lexically inside the class
1755 // definition then it was instantiated.
1757 // FIXME: This is a hack. There should be a better way to determine
1759 // FIXME: What about MS-style explicit specializations declared within a
1760 // class definition?
1761 return D
->getLexicalDeclContext()->isFileContext();
1766 bool Sema::hasVisibleMemberSpecialization(
1767 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1768 return hasAcceptableMemberSpecialization(*this, D
, Modules
,
1769 Sema::AcceptableKind::Visible
);
1772 bool Sema::hasReachableMemberSpecialization(
1773 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1774 return hasAcceptableMemberSpecialization(*this, D
, Modules
,
1775 Sema::AcceptableKind::Reachable
);
1778 /// Determine whether a declaration is acceptable to name lookup.
1780 /// This routine determines whether the declaration D is acceptable in the
1781 /// current lookup context, taking into account the current template
1782 /// instantiation stack. During template instantiation, a declaration is
1783 /// acceptable if it is acceptable from a module containing any entity on the
1784 /// template instantiation path (by instantiating a template, you allow it to
1785 /// see the declarations that your module can see, including those later on in
1787 bool LookupResult::isAcceptableSlow(Sema
&SemaRef
, NamedDecl
*D
,
1788 Sema::AcceptableKind Kind
) {
1789 assert(!D
->isUnconditionallyVisible() &&
1790 "should not call this: not in slow case");
1792 Module
*DeclModule
= SemaRef
.getOwningModule(D
);
1793 assert(DeclModule
&& "hidden decl has no owning module");
1795 // If the owning module is visible, the decl is acceptable.
1796 if (SemaRef
.isModuleVisible(DeclModule
,
1797 D
->isInvisibleOutsideTheOwningModule()))
1800 // Determine whether a decl context is a file context for the purpose of
1801 // visibility/reachability. This looks through some (export and linkage spec)
1802 // transparent contexts, but not others (enums).
1803 auto IsEffectivelyFileContext
= [](const DeclContext
*DC
) {
1804 return DC
->isFileContext() || isa
<LinkageSpecDecl
>(DC
) ||
1805 isa
<ExportDecl
>(DC
);
1808 // If this declaration is not at namespace scope
1809 // then it is acceptable if its lexical parent has a acceptable definition.
1810 DeclContext
*DC
= D
->getLexicalDeclContext();
1811 if (DC
&& !IsEffectivelyFileContext(DC
)) {
1812 // For a parameter, check whether our current template declaration's
1813 // lexical context is acceptable, not whether there's some other acceptable
1814 // definition of it, because parameters aren't "within" the definition.
1816 // In C++ we need to check for a acceptable definition due to ODR merging,
1817 // and in C we must not because each declaration of a function gets its own
1818 // set of declarations for tags in prototype scope.
1819 bool AcceptableWithinParent
;
1820 if (D
->isTemplateParameter()) {
1821 bool SearchDefinitions
= true;
1822 if (const auto *DCD
= dyn_cast
<Decl
>(DC
)) {
1823 if (const auto *TD
= DCD
->getDescribedTemplate()) {
1824 TemplateParameterList
*TPL
= TD
->getTemplateParameters();
1825 auto Index
= getDepthAndIndex(D
).second
;
1826 SearchDefinitions
= Index
>= TPL
->size() || TPL
->getParam(Index
) != D
;
1829 if (SearchDefinitions
)
1830 AcceptableWithinParent
=
1831 SemaRef
.hasAcceptableDefinition(cast
<NamedDecl
>(DC
), Kind
);
1833 AcceptableWithinParent
=
1834 isAcceptable(SemaRef
, cast
<NamedDecl
>(DC
), Kind
);
1835 } else if (isa
<ParmVarDecl
>(D
) ||
1836 (isa
<FunctionDecl
>(DC
) && !SemaRef
.getLangOpts().CPlusPlus
))
1837 AcceptableWithinParent
= isAcceptable(SemaRef
, cast
<NamedDecl
>(DC
), Kind
);
1838 else if (D
->isModulePrivate()) {
1839 // A module-private declaration is only acceptable if an enclosing lexical
1840 // parent was merged with another definition in the current module.
1841 AcceptableWithinParent
= false;
1843 if (SemaRef
.hasMergedDefinitionInCurrentModule(cast
<NamedDecl
>(DC
))) {
1844 AcceptableWithinParent
= true;
1847 DC
= DC
->getLexicalParent();
1848 } while (!IsEffectivelyFileContext(DC
));
1850 AcceptableWithinParent
=
1851 SemaRef
.hasAcceptableDefinition(cast
<NamedDecl
>(DC
), Kind
);
1854 if (AcceptableWithinParent
&& SemaRef
.CodeSynthesisContexts
.empty() &&
1855 Kind
== Sema::AcceptableKind::Visible
&&
1856 // FIXME: Do something better in this case.
1857 !SemaRef
.getLangOpts().ModulesLocalVisibility
) {
1858 // Cache the fact that this declaration is implicitly visible because
1859 // its parent has a visible definition.
1860 D
->setVisibleDespiteOwningModule();
1862 return AcceptableWithinParent
;
1865 if (Kind
== Sema::AcceptableKind::Visible
)
1868 assert(Kind
== Sema::AcceptableKind::Reachable
&&
1869 "Additional Sema::AcceptableKind?");
1870 return isReachableSlow(SemaRef
, D
);
1873 bool Sema::isModuleVisible(const Module
*M
, bool ModulePrivate
) {
1874 // The module might be ordinarily visible. For a module-private query, that
1875 // means it is part of the current module.
1876 if (ModulePrivate
&& isUsableModule(M
))
1879 // For a query which is not module-private, that means it is in our visible
1881 if (!ModulePrivate
&& VisibleModules
.isVisible(M
))
1884 // Otherwise, it might be visible by virtue of the query being within a
1885 // template instantiation or similar that is permitted to look inside M.
1887 // Find the extra places where we need to look.
1888 const auto &LookupModules
= getLookupModules();
1889 if (LookupModules
.empty())
1892 // If our lookup set contains the module, it's visible.
1893 if (LookupModules
.count(M
))
1896 // The global module fragments are visible to its corresponding module unit.
1897 // So the global module fragment should be visible if the its corresponding
1898 // module unit is visible.
1899 if (M
->isGlobalModule() && LookupModules
.count(M
->getTopLevelModule()))
1902 // For a module-private query, that's everywhere we get to look.
1906 // Check whether M is transitively exported to an import of the lookup set.
1907 return llvm::any_of(LookupModules
, [&](const Module
*LookupM
) {
1908 return LookupM
->isModuleVisible(M
);
1912 // FIXME: Return false directly if we don't have an interface dependency on the
1913 // translation unit containing D.
1914 bool LookupResult::isReachableSlow(Sema
&SemaRef
, NamedDecl
*D
) {
1915 assert(!isVisible(SemaRef
, D
) && "Shouldn't call the slow case.\n");
1917 Module
*DeclModule
= SemaRef
.getOwningModule(D
);
1918 assert(DeclModule
&& "hidden decl has no owning module");
1920 // Entities in header like modules are reachable only if they're visible.
1921 if (DeclModule
->isHeaderLikeModule())
1924 if (!D
->isInAnotherModuleUnit())
1927 // [module.reach]/p3:
1928 // A declaration D is reachable from a point P if:
1930 // - D is not discarded ([module.global.frag]), appears in a translation unit
1931 // that is reachable from P, and does not appear within a private module
1934 // A declaration that's discarded in the GMF should be module-private.
1935 if (D
->isModulePrivate())
1938 // [module.reach]/p1
1939 // A translation unit U is necessarily reachable from a point P if U is a
1940 // module interface unit on which the translation unit containing P has an
1941 // interface dependency, or the translation unit containing P imports U, in
1942 // either case prior to P ([module.import]).
1944 // [module.import]/p10
1945 // A translation unit has an interface dependency on a translation unit U if
1946 // it contains a declaration (possibly a module-declaration) that imports U
1947 // or if it has an interface dependency on a translation unit that has an
1948 // interface dependency on U.
1950 // So we could conclude the module unit U is necessarily reachable if:
1951 // (1) The module unit U is module interface unit.
1952 // (2) The current unit has an interface dependency on the module unit U.
1954 // Here we only check for the first condition. Since we couldn't see
1955 // DeclModule if it isn't (transitively) imported.
1956 if (DeclModule
->getTopLevelModule()->isModuleInterfaceUnit())
1959 // [module.reach]/p2
1960 // Additional translation units on
1961 // which the point within the program has an interface dependency may be
1962 // considered reachable, but it is unspecified which are and under what
1965 // The decision here is to treat all additional tranditional units as
1970 bool Sema::isAcceptableSlow(const NamedDecl
*D
, Sema::AcceptableKind Kind
) {
1971 return LookupResult::isAcceptable(*this, const_cast<NamedDecl
*>(D
), Kind
);
1974 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult
&R
, const NamedDecl
*New
) {
1975 // FIXME: If there are both visible and hidden declarations, we need to take
1976 // into account whether redeclaration is possible. Example:
1978 // Non-imported module:
1981 // static int f(U); // #2, not a redeclaration of #1
1982 // int f(T); // #3, finds both, should link with #1 if T != U, but
1983 // // with #2 if T == U; neither should be ambiguous.
1987 assert(D
->isExternallyDeclarable() &&
1988 "should not have hidden, non-externally-declarable result here");
1991 // This function is called once "New" is essentially complete, but before a
1992 // previous declaration is attached. We can't query the linkage of "New" in
1993 // general, because attaching the previous declaration can change the
1994 // linkage of New to match the previous declaration.
1996 // However, because we've just determined that there is no *visible* prior
1997 // declaration, we can compute the linkage here. There are two possibilities:
1999 // * This is not a redeclaration; it's safe to compute the linkage now.
2001 // * This is a redeclaration of a prior declaration that is externally
2002 // redeclarable. In that case, the linkage of the declaration is not
2003 // changed by attaching the prior declaration, because both are externally
2004 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
2006 // FIXME: This is subtle and fragile.
2007 return New
->isExternallyDeclarable();
2010 /// Retrieve the visible declaration corresponding to D, if any.
2012 /// This routine determines whether the declaration D is visible in the current
2013 /// module, with the current imports. If not, it checks whether any
2014 /// redeclaration of D is visible, and if so, returns that declaration.
2016 /// \returns D, or a visible previous declaration of D, whichever is more recent
2017 /// and visible. If no declaration of D is visible, returns null.
2018 static NamedDecl
*findAcceptableDecl(Sema
&SemaRef
, NamedDecl
*D
,
2020 assert(!LookupResult::isAvailableForLookup(SemaRef
, D
) && "not in slow case");
2022 for (auto *RD
: D
->redecls()) {
2023 // Don't bother with extra checks if we already know this one isn't visible.
2027 auto ND
= cast
<NamedDecl
>(RD
);
2028 // FIXME: This is wrong in the case where the previous declaration is not
2029 // visible in the same scope as D. This needs to be done much more
2031 if (ND
->isInIdentifierNamespace(IDNS
) &&
2032 LookupResult::isAvailableForLookup(SemaRef
, ND
))
2039 bool Sema::hasVisibleDeclarationSlow(const NamedDecl
*D
,
2040 llvm::SmallVectorImpl
<Module
*> *Modules
) {
2041 assert(!isVisible(D
) && "not in slow case");
2042 return hasAcceptableDeclarationImpl(
2043 *this, D
, Modules
, [](const NamedDecl
*) { return true; },
2044 Sema::AcceptableKind::Visible
);
2047 bool Sema::hasReachableDeclarationSlow(
2048 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
2049 assert(!isReachable(D
) && "not in slow case");
2050 return hasAcceptableDeclarationImpl(
2051 *this, D
, Modules
, [](const NamedDecl
*) { return true; },
2052 Sema::AcceptableKind::Reachable
);
2055 NamedDecl
*LookupResult::getAcceptableDeclSlow(NamedDecl
*D
) const {
2056 if (auto *ND
= dyn_cast
<NamespaceDecl
>(D
)) {
2057 // Namespaces are a bit of a special case: we expect there to be a lot of
2058 // redeclarations of some namespaces, all declarations of a namespace are
2059 // essentially interchangeable, all declarations are found by name lookup
2060 // if any is, and namespaces are never looked up during template
2061 // instantiation. So we benefit from caching the check in this case, and
2062 // it is correct to do so.
2063 auto *Key
= ND
->getCanonicalDecl();
2064 if (auto *Acceptable
= getSema().VisibleNamespaceCache
.lookup(Key
))
2066 auto *Acceptable
= isVisible(getSema(), Key
)
2068 : findAcceptableDecl(getSema(), Key
, IDNS
);
2070 getSema().VisibleNamespaceCache
.insert(std::make_pair(Key
, Acceptable
));
2074 return findAcceptableDecl(getSema(), D
, IDNS
);
2077 bool LookupResult::isVisible(Sema
&SemaRef
, NamedDecl
*D
) {
2078 // If this declaration is already visible, return it directly.
2079 if (D
->isUnconditionallyVisible())
2082 // During template instantiation, we can refer to hidden declarations, if
2083 // they were visible in any module along the path of instantiation.
2084 return isAcceptableSlow(SemaRef
, D
, Sema::AcceptableKind::Visible
);
2087 bool LookupResult::isReachable(Sema
&SemaRef
, NamedDecl
*D
) {
2088 if (D
->isUnconditionallyVisible())
2091 return isAcceptableSlow(SemaRef
, D
, Sema::AcceptableKind::Reachable
);
2094 bool LookupResult::isAvailableForLookup(Sema
&SemaRef
, NamedDecl
*ND
) {
2095 // We should check the visibility at the callsite already.
2096 if (isVisible(SemaRef
, ND
))
2099 // Deduction guide lives in namespace scope generally, but it is just a
2100 // hint to the compilers. What we actually lookup for is the generated member
2101 // of the corresponding template. So it is sufficient to check the
2102 // reachability of the template decl.
2103 if (auto *DeductionGuide
= ND
->getDeclName().getCXXDeductionGuideTemplate())
2104 return SemaRef
.hasReachableDefinition(DeductionGuide
);
2106 // FIXME: The lookup for allocation function is a standalone process.
2107 // (We can find the logics in Sema::FindAllocationFunctions)
2109 // Such structure makes it a problem when we instantiate a template
2110 // declaration using placement allocation function if the placement
2111 // allocation function is invisible.
2112 // (See https://github.com/llvm/llvm-project/issues/59601)
2114 // Here we workaround it by making the placement allocation functions
2115 // always acceptable. The downside is that we can't diagnose the direct
2116 // use of the invisible placement allocation functions. (Although such uses
2118 if (auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
2119 FD
&& FD
->isReservedGlobalPlacementOperator())
2122 auto *DC
= ND
->getDeclContext();
2123 // If ND is not visible and it is at namespace scope, it shouldn't be found
2125 if (DC
->isFileContext())
2128 // [module.interface]p7
2129 // Class and enumeration member names can be found by name lookup in any
2130 // context in which a definition of the type is reachable.
2132 // FIXME: The current implementation didn't consider about scope. For example,
2140 // auto a = E1::e1; // Error as expected.
2141 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2144 // For the above example, the current implementation would emit error for `a`
2145 // correctly. However, the implementation wouldn't diagnose about `b` now.
2146 // Since we only check the reachability for the parent only.
2147 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2148 if (auto *TD
= dyn_cast
<TagDecl
>(DC
))
2149 return SemaRef
.hasReachableDefinition(TD
);
2154 /// Perform unqualified name lookup starting from a given
2157 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2158 /// used to find names within the current scope. For example, 'x' in
2162 /// return x; // unqualified name look finds 'x' in the global scope
2166 /// Different lookup criteria can find different names. For example, a
2167 /// particular scope can have both a struct and a function of the same
2168 /// name, and each can be found by certain lookup criteria. For more
2169 /// information about lookup criteria, see the documentation for the
2170 /// class LookupCriteria.
2172 /// @param S The scope from which unqualified name lookup will
2173 /// begin. If the lookup criteria permits, name lookup may also search
2174 /// in the parent scopes.
2176 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2177 /// look up and the lookup kind), and is updated with the results of lookup
2178 /// including zero or more declarations and possibly additional information
2179 /// used to diagnose ambiguities.
2181 /// @returns \c true if lookup succeeded and false otherwise.
2182 bool Sema::LookupName(LookupResult
&R
, Scope
*S
, bool AllowBuiltinCreation
,
2183 bool ForceNoCPlusPlus
) {
2184 DeclarationName Name
= R
.getLookupName();
2185 if (!Name
) return false;
2187 LookupNameKind NameKind
= R
.getLookupKind();
2189 if (!getLangOpts().CPlusPlus
|| ForceNoCPlusPlus
) {
2190 // Unqualified name lookup in C/Objective-C is purely lexical, so
2191 // search in the declarations attached to the name.
2192 if (NameKind
== Sema::LookupRedeclarationWithLinkage
) {
2193 // Find the nearest non-transparent declaration scope.
2194 while (!(S
->getFlags() & Scope::DeclScope
) ||
2195 (S
->getEntity() && S
->getEntity()->isTransparentContext()))
2199 // When performing a scope lookup, we want to find local extern decls.
2200 FindLocalExternScope
FindLocals(R
);
2202 // Scan up the scope chain looking for a decl that matches this
2203 // identifier that is in the appropriate namespace. This search
2204 // should not take long, as shadowing of names is uncommon, and
2205 // deep shadowing is extremely uncommon.
2206 bool LeftStartingScope
= false;
2208 for (IdentifierResolver::iterator I
= IdResolver
.begin(Name
),
2209 IEnd
= IdResolver
.end();
2211 if (NamedDecl
*D
= R
.getAcceptableDecl(*I
)) {
2212 if (NameKind
== LookupRedeclarationWithLinkage
) {
2213 // Determine whether this (or a previous) declaration is
2215 if (!LeftStartingScope
&& !S
->isDeclScope(*I
))
2216 LeftStartingScope
= true;
2218 // If we found something outside of our starting scope that
2219 // does not have linkage, skip it.
2220 if (LeftStartingScope
&& !((*I
)->hasLinkage())) {
2225 else if (NameKind
== LookupObjCImplicitSelfParam
&&
2226 !isa
<ImplicitParamDecl
>(*I
))
2231 // Check whether there are any other declarations with the same name
2232 // and in the same scope.
2234 // Find the scope in which this declaration was declared (if it
2235 // actually exists in a Scope).
2236 while (S
&& !S
->isDeclScope(D
))
2239 // If the scope containing the declaration is the translation unit,
2240 // then we'll need to perform our checks based on the matching
2241 // DeclContexts rather than matching scopes.
2242 if (S
&& isNamespaceOrTranslationUnitScope(S
))
2245 // Compute the DeclContext, if we need it.
2246 DeclContext
*DC
= nullptr;
2248 DC
= (*I
)->getDeclContext()->getRedeclContext();
2250 IdentifierResolver::iterator LastI
= I
;
2251 for (++LastI
; LastI
!= IEnd
; ++LastI
) {
2253 // Match based on scope.
2254 if (!S
->isDeclScope(*LastI
))
2257 // Match based on DeclContext.
2259 = (*LastI
)->getDeclContext()->getRedeclContext();
2260 if (!LastDC
->Equals(DC
))
2264 // If the declaration is in the right namespace and visible, add it.
2265 if (NamedDecl
*LastD
= R
.getAcceptableDecl(*LastI
))
2275 // Perform C++ unqualified name lookup.
2276 if (CppLookupName(R
, S
))
2280 // If we didn't find a use of this identifier, and if the identifier
2281 // corresponds to a compiler builtin, create the decl object for the builtin
2282 // now, injecting it into translation unit scope, and return it.
2283 if (AllowBuiltinCreation
&& LookupBuiltin(R
))
2286 // If we didn't find a use of this identifier, the ExternalSource
2287 // may be able to handle the situation.
2288 // Note: some lookup failures are expected!
2289 // See e.g. R.isForRedeclaration().
2290 return (ExternalSource
&& ExternalSource
->LookupUnqualified(R
, S
));
2293 /// Perform qualified name lookup in the namespaces nominated by
2294 /// using directives by the given context.
2296 /// C++98 [namespace.qual]p2:
2297 /// Given X::m (where X is a user-declared namespace), or given \::m
2298 /// (where X is the global namespace), let S be the set of all
2299 /// declarations of m in X and in the transitive closure of all
2300 /// namespaces nominated by using-directives in X and its used
2301 /// namespaces, except that using-directives are ignored in any
2302 /// namespace, including X, directly containing one or more
2303 /// declarations of m. No namespace is searched more than once in
2304 /// the lookup of a name. If S is the empty set, the program is
2305 /// ill-formed. Otherwise, if S has exactly one member, or if the
2306 /// context of the reference is a using-declaration
2307 /// (namespace.udecl), S is the required set of declarations of
2308 /// m. Otherwise if the use of m is not one that allows a unique
2309 /// declaration to be chosen from S, the program is ill-formed.
2311 /// C++98 [namespace.qual]p5:
2312 /// During the lookup of a qualified namespace member name, if the
2313 /// lookup finds more than one declaration of the member, and if one
2314 /// declaration introduces a class name or enumeration name and the
2315 /// other declarations either introduce the same object, the same
2316 /// enumerator or a set of functions, the non-type name hides the
2317 /// class or enumeration name if and only if the declarations are
2318 /// from the same namespace; otherwise (the declarations are from
2319 /// different namespaces), the program is ill-formed.
2320 static bool LookupQualifiedNameInUsingDirectives(Sema
&S
, LookupResult
&R
,
2321 DeclContext
*StartDC
) {
2322 assert(StartDC
->isFileContext() && "start context is not a file context");
2324 // We have not yet looked into these namespaces, much less added
2325 // their "using-children" to the queue.
2326 SmallVector
<NamespaceDecl
*, 8> Queue
;
2328 // We have at least added all these contexts to the queue.
2329 llvm::SmallPtrSet
<DeclContext
*, 8> Visited
;
2330 Visited
.insert(StartDC
);
2332 // We have already looked into the initial namespace; seed the queue
2333 // with its using-children.
2334 for (auto *I
: StartDC
->using_directives()) {
2335 NamespaceDecl
*ND
= I
->getNominatedNamespace()->getOriginalNamespace();
2336 if (S
.isVisible(I
) && Visited
.insert(ND
).second
)
2337 Queue
.push_back(ND
);
2340 // The easiest way to implement the restriction in [namespace.qual]p5
2341 // is to check whether any of the individual results found a tag
2342 // and, if so, to declare an ambiguity if the final result is not
2344 bool FoundTag
= false;
2345 bool FoundNonTag
= false;
2347 LookupResult
LocalR(LookupResult::Temporary
, R
);
2350 while (!Queue
.empty()) {
2351 NamespaceDecl
*ND
= Queue
.pop_back_val();
2353 // We go through some convolutions here to avoid copying results
2354 // between LookupResults.
2355 bool UseLocal
= !R
.empty();
2356 LookupResult
&DirectR
= UseLocal
? LocalR
: R
;
2357 bool FoundDirect
= LookupDirect(S
, DirectR
, ND
);
2360 // First do any local hiding.
2361 DirectR
.resolveKind();
2363 // If the local result is a tag, remember that.
2364 if (DirectR
.isSingleTagDecl())
2369 // Append the local results to the total results if necessary.
2371 R
.addAllDecls(LocalR
);
2376 // If we find names in this namespace, ignore its using directives.
2382 for (auto *I
: ND
->using_directives()) {
2383 NamespaceDecl
*Nom
= I
->getNominatedNamespace();
2384 if (S
.isVisible(I
) && Visited
.insert(Nom
).second
)
2385 Queue
.push_back(Nom
);
2390 if (FoundTag
&& FoundNonTag
)
2391 R
.setAmbiguousQualifiedTagHiding();
2399 /// Perform qualified name lookup into a given context.
2401 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2402 /// names when the context of those names is explicit specified, e.g.,
2403 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2405 /// Different lookup criteria can find different names. For example, a
2406 /// particular scope can have both a struct and a function of the same
2407 /// name, and each can be found by certain lookup criteria. For more
2408 /// information about lookup criteria, see the documentation for the
2409 /// class LookupCriteria.
2411 /// \param R captures both the lookup criteria and any lookup results found.
2413 /// \param LookupCtx The context in which qualified name lookup will
2414 /// search. If the lookup criteria permits, name lookup may also search
2415 /// in the parent contexts or (for C++ classes) base classes.
2417 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2418 /// occurs as part of unqualified name lookup.
2420 /// \returns true if lookup succeeded, false if it failed.
2421 bool Sema::LookupQualifiedName(LookupResult
&R
, DeclContext
*LookupCtx
,
2422 bool InUnqualifiedLookup
) {
2423 assert(LookupCtx
&& "Sema::LookupQualifiedName requires a lookup context");
2425 if (!R
.getLookupName())
2428 // Make sure that the declaration context is complete.
2429 assert((!isa
<TagDecl
>(LookupCtx
) ||
2430 LookupCtx
->isDependentContext() ||
2431 cast
<TagDecl
>(LookupCtx
)->isCompleteDefinition() ||
2432 cast
<TagDecl
>(LookupCtx
)->isBeingDefined()) &&
2433 "Declaration context must already be complete!");
2435 struct QualifiedLookupInScope
{
2437 DeclContext
*Context
;
2438 // Set flag in DeclContext informing debugger that we're looking for qualified name
2439 QualifiedLookupInScope(DeclContext
*ctx
)
2440 : oldVal(ctx
->shouldUseQualifiedLookup()), Context(ctx
) {
2441 ctx
->setUseQualifiedLookup();
2443 ~QualifiedLookupInScope() {
2444 Context
->setUseQualifiedLookup(oldVal
);
2448 if (LookupDirect(*this, R
, LookupCtx
)) {
2450 if (isa
<CXXRecordDecl
>(LookupCtx
))
2451 R
.setNamingClass(cast
<CXXRecordDecl
>(LookupCtx
));
2455 // Don't descend into implied contexts for redeclarations.
2456 // C++98 [namespace.qual]p6:
2457 // In a declaration for a namespace member in which the
2458 // declarator-id is a qualified-id, given that the qualified-id
2459 // for the namespace member has the form
2460 // nested-name-specifier unqualified-id
2461 // the unqualified-id shall name a member of the namespace
2462 // designated by the nested-name-specifier.
2463 // See also [class.mfct]p5 and [class.static.data]p2.
2464 if (R
.isForRedeclaration())
2467 // If this is a namespace, look it up in the implied namespaces.
2468 if (LookupCtx
->isFileContext())
2469 return LookupQualifiedNameInUsingDirectives(*this, R
, LookupCtx
);
2471 // If this isn't a C++ class, we aren't allowed to look into base
2472 // classes, we're done.
2473 CXXRecordDecl
*LookupRec
= dyn_cast
<CXXRecordDecl
>(LookupCtx
);
2474 if (!LookupRec
|| !LookupRec
->getDefinition())
2477 // We're done for lookups that can never succeed for C++ classes.
2478 if (R
.getLookupKind() == LookupOperatorName
||
2479 R
.getLookupKind() == LookupNamespaceName
||
2480 R
.getLookupKind() == LookupObjCProtocolName
||
2481 R
.getLookupKind() == LookupLabel
)
2484 // If we're performing qualified name lookup into a dependent class,
2485 // then we are actually looking into a current instantiation. If we have any
2486 // dependent base classes, then we either have to delay lookup until
2487 // template instantiation time (at which point all bases will be available)
2488 // or we have to fail.
2489 if (!InUnqualifiedLookup
&& LookupRec
->isDependentContext() &&
2490 LookupRec
->hasAnyDependentBases()) {
2491 R
.setNotFoundInCurrentInstantiation();
2495 // Perform lookup into our base classes.
2497 DeclarationName Name
= R
.getLookupName();
2498 unsigned IDNS
= R
.getIdentifierNamespace();
2500 // Look for this member in our base classes.
2501 auto BaseCallback
= [Name
, IDNS
](const CXXBaseSpecifier
*Specifier
,
2502 CXXBasePath
&Path
) -> bool {
2503 CXXRecordDecl
*BaseRecord
= Specifier
->getType()->getAsCXXRecordDecl();
2504 // Drop leading non-matching lookup results from the declaration list so
2505 // we don't need to consider them again below.
2506 for (Path
.Decls
= BaseRecord
->lookup(Name
).begin();
2507 Path
.Decls
!= Path
.Decls
.end(); ++Path
.Decls
) {
2508 if ((*Path
.Decls
)->isInIdentifierNamespace(IDNS
))
2515 Paths
.setOrigin(LookupRec
);
2516 if (!LookupRec
->lookupInBases(BaseCallback
, Paths
))
2519 R
.setNamingClass(LookupRec
);
2521 // C++ [class.member.lookup]p2:
2522 // [...] If the resulting set of declarations are not all from
2523 // sub-objects of the same type, or the set has a nonstatic member
2524 // and includes members from distinct sub-objects, there is an
2525 // ambiguity and the program is ill-formed. Otherwise that set is
2526 // the result of the lookup.
2527 QualType SubobjectType
;
2528 int SubobjectNumber
= 0;
2529 AccessSpecifier SubobjectAccess
= AS_none
;
2531 // Check whether the given lookup result contains only static members.
2532 auto HasOnlyStaticMembers
= [&](DeclContext::lookup_iterator Result
) {
2533 for (DeclContext::lookup_iterator I
= Result
, E
= I
.end(); I
!= E
; ++I
)
2534 if ((*I
)->isInIdentifierNamespace(IDNS
) && (*I
)->isCXXInstanceMember())
2539 bool TemplateNameLookup
= R
.isTemplateNameLookup();
2541 // Determine whether two sets of members contain the same members, as
2542 // required by C++ [class.member.lookup]p6.
2543 auto HasSameDeclarations
= [&](DeclContext::lookup_iterator A
,
2544 DeclContext::lookup_iterator B
) {
2545 using Iterator
= DeclContextLookupResult::iterator
;
2546 using Result
= const void *;
2548 auto Next
= [&](Iterator
&It
, Iterator End
) -> Result
{
2550 NamedDecl
*ND
= *It
++;
2551 if (!ND
->isInIdentifierNamespace(IDNS
))
2554 // C++ [temp.local]p3:
2555 // A lookup that finds an injected-class-name (10.2) can result in
2556 // an ambiguity in certain cases (for example, if it is found in
2557 // more than one base class). If all of the injected-class-names
2558 // that are found refer to specializations of the same class
2559 // template, and if the name is used as a template-name, the
2560 // reference refers to the class template itself and not a
2561 // specialization thereof, and is not ambiguous.
2562 if (TemplateNameLookup
)
2563 if (auto *TD
= getAsTemplateNameDecl(ND
))
2566 // C++ [class.member.lookup]p3:
2567 // type declarations (including injected-class-names) are replaced by
2568 // the types they designate
2569 if (const TypeDecl
*TD
= dyn_cast
<TypeDecl
>(ND
->getUnderlyingDecl())) {
2570 QualType T
= Context
.getTypeDeclType(TD
);
2571 return T
.getCanonicalType().getAsOpaquePtr();
2574 return ND
->getUnderlyingDecl()->getCanonicalDecl();
2579 // We'll often find the declarations are in the same order. Handle this
2580 // case (and the special case of only one declaration) efficiently.
2581 Iterator AIt
= A
, BIt
= B
, AEnd
, BEnd
;
2583 Result AResult
= Next(AIt
, AEnd
);
2584 Result BResult
= Next(BIt
, BEnd
);
2585 if (!AResult
&& !BResult
)
2587 if (!AResult
|| !BResult
)
2589 if (AResult
!= BResult
) {
2590 // Found a mismatch; carefully check both lists, accounting for the
2591 // possibility of declarations appearing more than once.
2592 llvm::SmallDenseMap
<Result
, bool, 32> AResults
;
2593 for (; AResult
; AResult
= Next(AIt
, AEnd
))
2594 AResults
.insert({AResult
, /*FoundInB*/false});
2596 for (; BResult
; BResult
= Next(BIt
, BEnd
)) {
2597 auto It
= AResults
.find(BResult
);
2598 if (It
== AResults
.end())
2605 return AResults
.size() == Found
;
2610 for (CXXBasePaths::paths_iterator Path
= Paths
.begin(), PathEnd
= Paths
.end();
2611 Path
!= PathEnd
; ++Path
) {
2612 const CXXBasePathElement
&PathElement
= Path
->back();
2614 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2615 // across all paths.
2616 SubobjectAccess
= std::min(SubobjectAccess
, Path
->Access
);
2618 // Determine whether we're looking at a distinct sub-object or not.
2619 if (SubobjectType
.isNull()) {
2620 // This is the first subobject we've looked at. Record its type.
2621 SubobjectType
= Context
.getCanonicalType(PathElement
.Base
->getType());
2622 SubobjectNumber
= PathElement
.SubobjectNumber
;
2626 if (SubobjectType
!=
2627 Context
.getCanonicalType(PathElement
.Base
->getType())) {
2628 // We found members of the given name in two subobjects of
2629 // different types. If the declaration sets aren't the same, this
2630 // lookup is ambiguous.
2632 // FIXME: The language rule says that this applies irrespective of
2633 // whether the sets contain only static members.
2634 if (HasOnlyStaticMembers(Path
->Decls
) &&
2635 HasSameDeclarations(Paths
.begin()->Decls
, Path
->Decls
))
2638 R
.setAmbiguousBaseSubobjectTypes(Paths
);
2642 // FIXME: This language rule no longer exists. Checking for ambiguous base
2643 // subobjects should be done as part of formation of a class member access
2644 // expression (when converting the object parameter to the member's type).
2645 if (SubobjectNumber
!= PathElement
.SubobjectNumber
) {
2646 // We have a different subobject of the same type.
2648 // C++ [class.member.lookup]p5:
2649 // A static member, a nested type or an enumerator defined in
2650 // a base class T can unambiguously be found even if an object
2651 // has more than one base class subobject of type T.
2652 if (HasOnlyStaticMembers(Path
->Decls
))
2655 // We have found a nonstatic member name in multiple, distinct
2656 // subobjects. Name lookup is ambiguous.
2657 R
.setAmbiguousBaseSubobjects(Paths
);
2662 // Lookup in a base class succeeded; return these results.
2664 for (DeclContext::lookup_iterator I
= Paths
.front().Decls
, E
= I
.end();
2666 AccessSpecifier AS
= CXXRecordDecl::MergeAccess(SubobjectAccess
,
2668 if (NamedDecl
*ND
= R
.getAcceptableDecl(*I
))
2675 /// Performs qualified name lookup or special type of lookup for
2676 /// "__super::" scope specifier.
2678 /// This routine is a convenience overload meant to be called from contexts
2679 /// that need to perform a qualified name lookup with an optional C++ scope
2680 /// specifier that might require special kind of lookup.
2682 /// \param R captures both the lookup criteria and any lookup results found.
2684 /// \param LookupCtx The context in which qualified name lookup will
2687 /// \param SS An optional C++ scope-specifier.
2689 /// \returns true if lookup succeeded, false if it failed.
2690 bool Sema::LookupQualifiedName(LookupResult
&R
, DeclContext
*LookupCtx
,
2692 auto *NNS
= SS
.getScopeRep();
2693 if (NNS
&& NNS
->getKind() == NestedNameSpecifier::Super
)
2694 return LookupInSuper(R
, NNS
->getAsRecordDecl());
2697 return LookupQualifiedName(R
, LookupCtx
);
2700 /// Performs name lookup for a name that was parsed in the
2701 /// source code, and may contain a C++ scope specifier.
2703 /// This routine is a convenience routine meant to be called from
2704 /// contexts that receive a name and an optional C++ scope specifier
2705 /// (e.g., "N::M::x"). It will then perform either qualified or
2706 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2707 /// respectively) on the given name and return those results. It will
2708 /// perform a special type of lookup for "__super::" scope specifier.
2710 /// @param S The scope from which unqualified name lookup will
2713 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2715 /// @param EnteringContext Indicates whether we are going to enter the
2716 /// context of the scope-specifier SS (if present).
2718 /// @returns True if any decls were found (but possibly ambiguous)
2719 bool Sema::LookupParsedName(LookupResult
&R
, Scope
*S
, CXXScopeSpec
*SS
,
2720 bool AllowBuiltinCreation
, bool EnteringContext
) {
2721 if (SS
&& SS
->isInvalid()) {
2722 // When the scope specifier is invalid, don't even look for
2727 if (SS
&& SS
->isSet()) {
2728 NestedNameSpecifier
*NNS
= SS
->getScopeRep();
2729 if (NNS
->getKind() == NestedNameSpecifier::Super
)
2730 return LookupInSuper(R
, NNS
->getAsRecordDecl());
2732 if (DeclContext
*DC
= computeDeclContext(*SS
, EnteringContext
)) {
2733 // We have resolved the scope specifier to a particular declaration
2734 // contex, and will perform name lookup in that context.
2735 if (!DC
->isDependentContext() && RequireCompleteDeclContext(*SS
, DC
))
2738 R
.setContextRange(SS
->getRange());
2739 return LookupQualifiedName(R
, DC
);
2742 // We could not resolve the scope specified to a specific declaration
2743 // context, which means that SS refers to an unknown specialization.
2744 // Name lookup can't find anything in this case.
2745 R
.setNotFoundInCurrentInstantiation();
2746 R
.setContextRange(SS
->getRange());
2750 // Perform unqualified name lookup starting in the given scope.
2751 return LookupName(R
, S
, AllowBuiltinCreation
);
2754 /// Perform qualified name lookup into all base classes of the given
2757 /// \param R captures both the lookup criteria and any lookup results found.
2759 /// \param Class The context in which qualified name lookup will
2760 /// search. Name lookup will search in all base classes merging the results.
2762 /// @returns True if any decls were found (but possibly ambiguous)
2763 bool Sema::LookupInSuper(LookupResult
&R
, CXXRecordDecl
*Class
) {
2764 // The access-control rules we use here are essentially the rules for
2765 // doing a lookup in Class that just magically skipped the direct
2766 // members of Class itself. That is, the naming class is Class, and the
2767 // access includes the access of the base.
2768 for (const auto &BaseSpec
: Class
->bases()) {
2769 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(
2770 BaseSpec
.getType()->castAs
<RecordType
>()->getDecl());
2771 LookupResult
Result(*this, R
.getLookupNameInfo(), R
.getLookupKind());
2772 Result
.setBaseObjectType(Context
.getRecordType(Class
));
2773 LookupQualifiedName(Result
, RD
);
2775 // Copy the lookup results into the target, merging the base's access into
2777 for (auto I
= Result
.begin(), E
= Result
.end(); I
!= E
; ++I
) {
2778 R
.addDecl(I
.getDecl(),
2779 CXXRecordDecl::MergeAccess(BaseSpec
.getAccessSpecifier(),
2783 Result
.suppressDiagnostics();
2787 R
.setNamingClass(Class
);
2792 /// Produce a diagnostic describing the ambiguity that resulted
2793 /// from name lookup.
2795 /// \param Result The result of the ambiguous lookup to be diagnosed.
2796 void Sema::DiagnoseAmbiguousLookup(LookupResult
&Result
) {
2797 assert(Result
.isAmbiguous() && "Lookup result must be ambiguous");
2799 DeclarationName Name
= Result
.getLookupName();
2800 SourceLocation NameLoc
= Result
.getNameLoc();
2801 SourceRange LookupRange
= Result
.getContextRange();
2803 switch (Result
.getAmbiguityKind()) {
2804 case LookupResult::AmbiguousBaseSubobjects
: {
2805 CXXBasePaths
*Paths
= Result
.getBasePaths();
2806 QualType SubobjectType
= Paths
->front().back().Base
->getType();
2807 Diag(NameLoc
, diag::err_ambiguous_member_multiple_subobjects
)
2808 << Name
<< SubobjectType
<< getAmbiguousPathsDisplayString(*Paths
)
2811 DeclContext::lookup_iterator Found
= Paths
->front().Decls
;
2812 while (isa
<CXXMethodDecl
>(*Found
) &&
2813 cast
<CXXMethodDecl
>(*Found
)->isStatic())
2816 Diag((*Found
)->getLocation(), diag::note_ambiguous_member_found
);
2820 case LookupResult::AmbiguousBaseSubobjectTypes
: {
2821 Diag(NameLoc
, diag::err_ambiguous_member_multiple_subobject_types
)
2822 << Name
<< LookupRange
;
2824 CXXBasePaths
*Paths
= Result
.getBasePaths();
2825 std::set
<const NamedDecl
*> DeclsPrinted
;
2826 for (CXXBasePaths::paths_iterator Path
= Paths
->begin(),
2827 PathEnd
= Paths
->end();
2828 Path
!= PathEnd
; ++Path
) {
2829 const NamedDecl
*D
= *Path
->Decls
;
2830 if (!D
->isInIdentifierNamespace(Result
.getIdentifierNamespace()))
2832 if (DeclsPrinted
.insert(D
).second
) {
2833 if (const auto *TD
= dyn_cast
<TypedefNameDecl
>(D
->getUnderlyingDecl()))
2834 Diag(D
->getLocation(), diag::note_ambiguous_member_type_found
)
2835 << TD
->getUnderlyingType();
2836 else if (const auto *TD
= dyn_cast
<TypeDecl
>(D
->getUnderlyingDecl()))
2837 Diag(D
->getLocation(), diag::note_ambiguous_member_type_found
)
2838 << Context
.getTypeDeclType(TD
);
2840 Diag(D
->getLocation(), diag::note_ambiguous_member_found
);
2846 case LookupResult::AmbiguousTagHiding
: {
2847 Diag(NameLoc
, diag::err_ambiguous_tag_hiding
) << Name
<< LookupRange
;
2849 llvm::SmallPtrSet
<NamedDecl
*, 8> TagDecls
;
2851 for (auto *D
: Result
)
2852 if (TagDecl
*TD
= dyn_cast
<TagDecl
>(D
)) {
2853 TagDecls
.insert(TD
);
2854 Diag(TD
->getLocation(), diag::note_hidden_tag
);
2857 for (auto *D
: Result
)
2858 if (!isa
<TagDecl
>(D
))
2859 Diag(D
->getLocation(), diag::note_hiding_object
);
2861 // For recovery purposes, go ahead and implement the hiding.
2862 LookupResult::Filter F
= Result
.makeFilter();
2863 while (F
.hasNext()) {
2864 if (TagDecls
.count(F
.next()))
2871 case LookupResult::AmbiguousReferenceToPlaceholderVariable
: {
2872 Diag(NameLoc
, diag::err_using_placeholder_variable
) << Name
<< LookupRange
;
2873 DeclContext
*DC
= nullptr;
2874 for (auto *D
: Result
) {
2875 Diag(D
->getLocation(), diag::note_reference_placeholder
) << D
;
2876 if (DC
!= nullptr && DC
!= D
->getDeclContext())
2878 DC
= D
->getDeclContext();
2883 case LookupResult::AmbiguousReference
: {
2884 Diag(NameLoc
, diag::err_ambiguous_reference
) << Name
<< LookupRange
;
2886 for (auto *D
: Result
)
2887 Diag(D
->getLocation(), diag::note_ambiguous_candidate
) << D
;
2894 struct AssociatedLookup
{
2895 AssociatedLookup(Sema
&S
, SourceLocation InstantiationLoc
,
2896 Sema::AssociatedNamespaceSet
&Namespaces
,
2897 Sema::AssociatedClassSet
&Classes
)
2898 : S(S
), Namespaces(Namespaces
), Classes(Classes
),
2899 InstantiationLoc(InstantiationLoc
) {
2902 bool addClassTransitive(CXXRecordDecl
*RD
) {
2904 return ClassesTransitive
.insert(RD
);
2908 Sema::AssociatedNamespaceSet
&Namespaces
;
2909 Sema::AssociatedClassSet
&Classes
;
2910 SourceLocation InstantiationLoc
;
2913 Sema::AssociatedClassSet ClassesTransitive
;
2915 } // end anonymous namespace
2918 addAssociatedClassesAndNamespaces(AssociatedLookup
&Result
, QualType T
);
2920 // Given the declaration context \param Ctx of a class, class template or
2921 // enumeration, add the associated namespaces to \param Namespaces as described
2922 // in [basic.lookup.argdep]p2.
2923 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet
&Namespaces
,
2925 // The exact wording has been changed in C++14 as a result of
2926 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2927 // to all language versions since it is possible to return a local type
2928 // from a lambda in C++11.
2930 // C++14 [basic.lookup.argdep]p2:
2931 // If T is a class type [...]. Its associated namespaces are the innermost
2932 // enclosing namespaces of its associated classes. [...]
2934 // If T is an enumeration type, its associated namespace is the innermost
2935 // enclosing namespace of its declaration. [...]
2937 // We additionally skip inline namespaces. The innermost non-inline namespace
2938 // contains all names of all its nested inline namespaces anyway, so we can
2939 // replace the entire inline namespace tree with its root.
2940 while (!Ctx
->isFileContext() || Ctx
->isInlineNamespace())
2941 Ctx
= Ctx
->getParent();
2943 Namespaces
.insert(Ctx
->getPrimaryContext());
2946 // Add the associated classes and namespaces for argument-dependent
2947 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2949 addAssociatedClassesAndNamespaces(AssociatedLookup
&Result
,
2950 const TemplateArgument
&Arg
) {
2951 // C++ [basic.lookup.argdep]p2, last bullet:
2953 switch (Arg
.getKind()) {
2954 case TemplateArgument::Null
:
2957 case TemplateArgument::Type
:
2958 // [...] the namespaces and classes associated with the types of the
2959 // template arguments provided for template type parameters (excluding
2960 // template template parameters)
2961 addAssociatedClassesAndNamespaces(Result
, Arg
.getAsType());
2964 case TemplateArgument::Template
:
2965 case TemplateArgument::TemplateExpansion
: {
2966 // [...] the namespaces in which any template template arguments are
2967 // defined; and the classes in which any member templates used as
2968 // template template arguments are defined.
2969 TemplateName Template
= Arg
.getAsTemplateOrTemplatePattern();
2970 if (ClassTemplateDecl
*ClassTemplate
2971 = dyn_cast
<ClassTemplateDecl
>(Template
.getAsTemplateDecl())) {
2972 DeclContext
*Ctx
= ClassTemplate
->getDeclContext();
2973 if (CXXRecordDecl
*EnclosingClass
= dyn_cast
<CXXRecordDecl
>(Ctx
))
2974 Result
.Classes
.insert(EnclosingClass
);
2975 // Add the associated namespace for this class.
2976 CollectEnclosingNamespace(Result
.Namespaces
, Ctx
);
2981 case TemplateArgument::Declaration
:
2982 case TemplateArgument::Integral
:
2983 case TemplateArgument::Expression
:
2984 case TemplateArgument::NullPtr
:
2985 // [Note: non-type template arguments do not contribute to the set of
2986 // associated namespaces. ]
2989 case TemplateArgument::Pack
:
2990 for (const auto &P
: Arg
.pack_elements())
2991 addAssociatedClassesAndNamespaces(Result
, P
);
2996 // Add the associated classes and namespaces for argument-dependent lookup
2997 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2999 addAssociatedClassesAndNamespaces(AssociatedLookup
&Result
,
3000 CXXRecordDecl
*Class
) {
3002 // Just silently ignore anything whose name is __va_list_tag.
3003 if (Class
->getDeclName() == Result
.S
.VAListTagName
)
3006 // C++ [basic.lookup.argdep]p2:
3008 // -- If T is a class type (including unions), its associated
3009 // classes are: the class itself; the class of which it is a
3010 // member, if any; and its direct and indirect base classes.
3011 // Its associated namespaces are the innermost enclosing
3012 // namespaces of its associated classes.
3014 // Add the class of which it is a member, if any.
3015 DeclContext
*Ctx
= Class
->getDeclContext();
3016 if (CXXRecordDecl
*EnclosingClass
= dyn_cast
<CXXRecordDecl
>(Ctx
))
3017 Result
.Classes
.insert(EnclosingClass
);
3019 // Add the associated namespace for this class.
3020 CollectEnclosingNamespace(Result
.Namespaces
, Ctx
);
3022 // -- If T is a template-id, its associated namespaces and classes are
3023 // the namespace in which the template is defined; for member
3024 // templates, the member template's class; the namespaces and classes
3025 // associated with the types of the template arguments provided for
3026 // template type parameters (excluding template template parameters); the
3027 // namespaces in which any template template arguments are defined; and
3028 // the classes in which any member templates used as template template
3029 // arguments are defined. [Note: non-type template arguments do not
3030 // contribute to the set of associated namespaces. ]
3031 if (ClassTemplateSpecializationDecl
*Spec
3032 = dyn_cast
<ClassTemplateSpecializationDecl
>(Class
)) {
3033 DeclContext
*Ctx
= Spec
->getSpecializedTemplate()->getDeclContext();
3034 if (CXXRecordDecl
*EnclosingClass
= dyn_cast
<CXXRecordDecl
>(Ctx
))
3035 Result
.Classes
.insert(EnclosingClass
);
3036 // Add the associated namespace for this class.
3037 CollectEnclosingNamespace(Result
.Namespaces
, Ctx
);
3039 const TemplateArgumentList
&TemplateArgs
= Spec
->getTemplateArgs();
3040 for (unsigned I
= 0, N
= TemplateArgs
.size(); I
!= N
; ++I
)
3041 addAssociatedClassesAndNamespaces(Result
, TemplateArgs
[I
]);
3044 // Add the class itself. If we've already transitively visited this class,
3045 // we don't need to visit base classes.
3046 if (!Result
.addClassTransitive(Class
))
3049 // Only recurse into base classes for complete types.
3050 if (!Result
.S
.isCompleteType(Result
.InstantiationLoc
,
3051 Result
.S
.Context
.getRecordType(Class
)))
3054 // Add direct and indirect base classes along with their associated
3056 SmallVector
<CXXRecordDecl
*, 32> Bases
;
3057 Bases
.push_back(Class
);
3058 while (!Bases
.empty()) {
3059 // Pop this class off the stack.
3060 Class
= Bases
.pop_back_val();
3062 // Visit the base classes.
3063 for (const auto &Base
: Class
->bases()) {
3064 const RecordType
*BaseType
= Base
.getType()->getAs
<RecordType
>();
3065 // In dependent contexts, we do ADL twice, and the first time around,
3066 // the base type might be a dependent TemplateSpecializationType, or a
3067 // TemplateTypeParmType. If that happens, simply ignore it.
3068 // FIXME: If we want to support export, we probably need to add the
3069 // namespace of the template in a TemplateSpecializationType, or even
3070 // the classes and namespaces of known non-dependent arguments.
3073 CXXRecordDecl
*BaseDecl
= cast
<CXXRecordDecl
>(BaseType
->getDecl());
3074 if (Result
.addClassTransitive(BaseDecl
)) {
3075 // Find the associated namespace for this base class.
3076 DeclContext
*BaseCtx
= BaseDecl
->getDeclContext();
3077 CollectEnclosingNamespace(Result
.Namespaces
, BaseCtx
);
3079 // Make sure we visit the bases of this base class.
3080 if (BaseDecl
->bases_begin() != BaseDecl
->bases_end())
3081 Bases
.push_back(BaseDecl
);
3087 // Add the associated classes and namespaces for
3088 // argument-dependent lookup with an argument of type T
3089 // (C++ [basic.lookup.koenig]p2).
3091 addAssociatedClassesAndNamespaces(AssociatedLookup
&Result
, QualType Ty
) {
3092 // C++ [basic.lookup.koenig]p2:
3094 // For each argument type T in the function call, there is a set
3095 // of zero or more associated namespaces and a set of zero or more
3096 // associated classes to be considered. The sets of namespaces and
3097 // classes is determined entirely by the types of the function
3098 // arguments (and the namespace of any template template
3099 // argument). Typedef names and using-declarations used to specify
3100 // the types do not contribute to this set. The sets of namespaces
3101 // and classes are determined in the following way:
3103 SmallVector
<const Type
*, 16> Queue
;
3104 const Type
*T
= Ty
->getCanonicalTypeInternal().getTypePtr();
3107 switch (T
->getTypeClass()) {
3109 #define TYPE(Class, Base)
3110 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3111 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3112 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3113 #define ABSTRACT_TYPE(Class, Base)
3114 #include "clang/AST/TypeNodes.inc"
3115 // T is canonical. We can also ignore dependent types because
3116 // we don't need to do ADL at the definition point, but if we
3117 // wanted to implement template export (or if we find some other
3118 // use for associated classes and namespaces...) this would be
3122 // -- If T is a pointer to U or an array of U, its associated
3123 // namespaces and classes are those associated with U.
3125 T
= cast
<PointerType
>(T
)->getPointeeType().getTypePtr();
3127 case Type::ConstantArray
:
3128 case Type::IncompleteArray
:
3129 case Type::VariableArray
:
3130 T
= cast
<ArrayType
>(T
)->getElementType().getTypePtr();
3133 // -- If T is a fundamental type, its associated sets of
3134 // namespaces and classes are both empty.
3138 // -- If T is a class type (including unions), its associated
3139 // classes are: the class itself; the class of which it is
3140 // a member, if any; and its direct and indirect base classes.
3141 // Its associated namespaces are the innermost enclosing
3142 // namespaces of its associated classes.
3143 case Type::Record
: {
3144 CXXRecordDecl
*Class
=
3145 cast
<CXXRecordDecl
>(cast
<RecordType
>(T
)->getDecl());
3146 addAssociatedClassesAndNamespaces(Result
, Class
);
3150 // -- If T is an enumeration type, its associated namespace
3151 // is the innermost enclosing namespace of its declaration.
3152 // If it is a class member, its associated class is the
3153 // member’s class; else it has no associated class.
3155 EnumDecl
*Enum
= cast
<EnumType
>(T
)->getDecl();
3157 DeclContext
*Ctx
= Enum
->getDeclContext();
3158 if (CXXRecordDecl
*EnclosingClass
= dyn_cast
<CXXRecordDecl
>(Ctx
))
3159 Result
.Classes
.insert(EnclosingClass
);
3161 // Add the associated namespace for this enumeration.
3162 CollectEnclosingNamespace(Result
.Namespaces
, Ctx
);
3167 // -- If T is a function type, its associated namespaces and
3168 // classes are those associated with the function parameter
3169 // types and those associated with the return type.
3170 case Type::FunctionProto
: {
3171 const FunctionProtoType
*Proto
= cast
<FunctionProtoType
>(T
);
3172 for (const auto &Arg
: Proto
->param_types())
3173 Queue
.push_back(Arg
.getTypePtr());
3177 case Type::FunctionNoProto
: {
3178 const FunctionType
*FnType
= cast
<FunctionType
>(T
);
3179 T
= FnType
->getReturnType().getTypePtr();
3183 // -- If T is a pointer to a member function of a class X, its
3184 // associated namespaces and classes are those associated
3185 // with the function parameter types and return type,
3186 // together with those associated with X.
3188 // -- If T is a pointer to a data member of class X, its
3189 // associated namespaces and classes are those associated
3190 // with the member type together with those associated with
3192 case Type::MemberPointer
: {
3193 const MemberPointerType
*MemberPtr
= cast
<MemberPointerType
>(T
);
3195 // Queue up the class type into which this points.
3196 Queue
.push_back(MemberPtr
->getClass());
3198 // And directly continue with the pointee type.
3199 T
= MemberPtr
->getPointeeType().getTypePtr();
3203 // As an extension, treat this like a normal pointer.
3204 case Type::BlockPointer
:
3205 T
= cast
<BlockPointerType
>(T
)->getPointeeType().getTypePtr();
3208 // References aren't covered by the standard, but that's such an
3209 // obvious defect that we cover them anyway.
3210 case Type::LValueReference
:
3211 case Type::RValueReference
:
3212 T
= cast
<ReferenceType
>(T
)->getPointeeType().getTypePtr();
3215 // These are fundamental types.
3217 case Type::ExtVector
:
3218 case Type::ConstantMatrix
:
3223 // Non-deduced auto types only get here for error cases.
3225 case Type::DeducedTemplateSpecialization
:
3228 // If T is an Objective-C object or interface type, or a pointer to an
3229 // object or interface type, the associated namespace is the global
3231 case Type::ObjCObject
:
3232 case Type::ObjCInterface
:
3233 case Type::ObjCObjectPointer
:
3234 Result
.Namespaces
.insert(Result
.S
.Context
.getTranslationUnitDecl());
3237 // Atomic types are just wrappers; use the associations of the
3240 T
= cast
<AtomicType
>(T
)->getValueType().getTypePtr();
3243 T
= cast
<PipeType
>(T
)->getElementType().getTypePtr();
3249 T
= Queue
.pop_back_val();
3253 /// Find the associated classes and namespaces for
3254 /// argument-dependent lookup for a call with the given set of
3257 /// This routine computes the sets of associated classes and associated
3258 /// namespaces searched by argument-dependent lookup
3259 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
3260 void Sema::FindAssociatedClassesAndNamespaces(
3261 SourceLocation InstantiationLoc
, ArrayRef
<Expr
*> Args
,
3262 AssociatedNamespaceSet
&AssociatedNamespaces
,
3263 AssociatedClassSet
&AssociatedClasses
) {
3264 AssociatedNamespaces
.clear();
3265 AssociatedClasses
.clear();
3267 AssociatedLookup
Result(*this, InstantiationLoc
,
3268 AssociatedNamespaces
, AssociatedClasses
);
3270 // C++ [basic.lookup.koenig]p2:
3271 // For each argument type T in the function call, there is a set
3272 // of zero or more associated namespaces and a set of zero or more
3273 // associated classes to be considered. The sets of namespaces and
3274 // classes is determined entirely by the types of the function
3275 // arguments (and the namespace of any template template
3277 for (unsigned ArgIdx
= 0; ArgIdx
!= Args
.size(); ++ArgIdx
) {
3278 Expr
*Arg
= Args
[ArgIdx
];
3280 if (Arg
->getType() != Context
.OverloadTy
) {
3281 addAssociatedClassesAndNamespaces(Result
, Arg
->getType());
3285 // [...] In addition, if the argument is the name or address of a
3286 // set of overloaded functions and/or function templates, its
3287 // associated classes and namespaces are the union of those
3288 // associated with each of the members of the set: the namespace
3289 // in which the function or function template is defined and the
3290 // classes and namespaces associated with its (non-dependent)
3291 // parameter types and return type.
3292 OverloadExpr
*OE
= OverloadExpr::find(Arg
).Expression
;
3294 for (const NamedDecl
*D
: OE
->decls()) {
3295 // Look through any using declarations to find the underlying function.
3296 const FunctionDecl
*FDecl
= D
->getUnderlyingDecl()->getAsFunction();
3298 // Add the classes and namespaces associated with the parameter
3299 // types and return type of this function.
3300 addAssociatedClassesAndNamespaces(Result
, FDecl
->getType());
3305 NamedDecl
*Sema::LookupSingleName(Scope
*S
, DeclarationName Name
,
3307 LookupNameKind NameKind
,
3308 RedeclarationKind Redecl
) {
3309 LookupResult
R(*this, Name
, Loc
, NameKind
, Redecl
);
3311 return R
.getAsSingle
<NamedDecl
>();
3314 /// Find the protocol with the given name, if any.
3315 ObjCProtocolDecl
*Sema::LookupProtocol(IdentifierInfo
*II
,
3316 SourceLocation IdLoc
,
3317 RedeclarationKind Redecl
) {
3318 Decl
*D
= LookupSingleName(TUScope
, II
, IdLoc
,
3319 LookupObjCProtocolName
, Redecl
);
3320 return cast_or_null
<ObjCProtocolDecl
>(D
);
3323 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op
, Scope
*S
,
3324 UnresolvedSetImpl
&Functions
) {
3325 // C++ [over.match.oper]p3:
3326 // -- The set of non-member candidates is the result of the
3327 // unqualified lookup of operator@ in the context of the
3328 // expression according to the usual rules for name lookup in
3329 // unqualified function calls (3.4.2) except that all member
3330 // functions are ignored.
3331 DeclarationName OpName
= Context
.DeclarationNames
.getCXXOperatorName(Op
);
3332 LookupResult
Operators(*this, OpName
, SourceLocation(), LookupOperatorName
);
3333 LookupName(Operators
, S
);
3335 assert(!Operators
.isAmbiguous() && "Operator lookup cannot be ambiguous");
3336 Functions
.append(Operators
.begin(), Operators
.end());
3339 Sema::SpecialMemberOverloadResult
Sema::LookupSpecialMember(CXXRecordDecl
*RD
,
3340 CXXSpecialMember SM
,
3345 bool VolatileThis
) {
3346 assert(CanDeclareSpecialMemberFunction(RD
) &&
3347 "doing special member lookup into record that isn't fully complete");
3348 RD
= RD
->getDefinition();
3349 if (RValueThis
|| ConstThis
|| VolatileThis
)
3350 assert((SM
== CXXCopyAssignment
|| SM
== CXXMoveAssignment
) &&
3351 "constructors and destructors always have unqualified lvalue this");
3352 if (ConstArg
|| VolatileArg
)
3353 assert((SM
!= CXXDefaultConstructor
&& SM
!= CXXDestructor
) &&
3354 "parameter-less special members can't have qualified arguments");
3356 // FIXME: Get the caller to pass in a location for the lookup.
3357 SourceLocation LookupLoc
= RD
->getLocation();
3359 llvm::FoldingSetNodeID ID
;
3362 ID
.AddInteger(ConstArg
);
3363 ID
.AddInteger(VolatileArg
);
3364 ID
.AddInteger(RValueThis
);
3365 ID
.AddInteger(ConstThis
);
3366 ID
.AddInteger(VolatileThis
);
3369 SpecialMemberOverloadResultEntry
*Result
=
3370 SpecialMemberCache
.FindNodeOrInsertPos(ID
, InsertPoint
);
3372 // This was already cached
3376 Result
= BumpAlloc
.Allocate
<SpecialMemberOverloadResultEntry
>();
3377 Result
= new (Result
) SpecialMemberOverloadResultEntry(ID
);
3378 SpecialMemberCache
.InsertNode(Result
, InsertPoint
);
3380 if (SM
== CXXDestructor
) {
3381 if (RD
->needsImplicitDestructor()) {
3382 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3383 DeclareImplicitDestructor(RD
);
3386 CXXDestructorDecl
*DD
= RD
->getDestructor();
3387 Result
->setMethod(DD
);
3388 Result
->setKind(DD
&& !DD
->isDeleted()
3389 ? SpecialMemberOverloadResult::Success
3390 : SpecialMemberOverloadResult::NoMemberOrDeleted
);
3394 // Prepare for overload resolution. Here we construct a synthetic argument
3395 // if necessary and make sure that implicit functions are declared.
3396 CanQualType CanTy
= Context
.getCanonicalType(Context
.getTagDeclType(RD
));
3397 DeclarationName Name
;
3398 Expr
*Arg
= nullptr;
3401 QualType ArgType
= CanTy
;
3402 ExprValueKind VK
= VK_LValue
;
3404 if (SM
== CXXDefaultConstructor
) {
3405 Name
= Context
.DeclarationNames
.getCXXConstructorName(CanTy
);
3407 if (RD
->needsImplicitDefaultConstructor()) {
3408 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3409 DeclareImplicitDefaultConstructor(RD
);
3413 if (SM
== CXXCopyConstructor
|| SM
== CXXMoveConstructor
) {
3414 Name
= Context
.DeclarationNames
.getCXXConstructorName(CanTy
);
3415 if (RD
->needsImplicitCopyConstructor()) {
3416 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3417 DeclareImplicitCopyConstructor(RD
);
3420 if (getLangOpts().CPlusPlus11
&& RD
->needsImplicitMoveConstructor()) {
3421 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3422 DeclareImplicitMoveConstructor(RD
);
3426 Name
= Context
.DeclarationNames
.getCXXOperatorName(OO_Equal
);
3427 if (RD
->needsImplicitCopyAssignment()) {
3428 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3429 DeclareImplicitCopyAssignment(RD
);
3432 if (getLangOpts().CPlusPlus11
&& RD
->needsImplicitMoveAssignment()) {
3433 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3434 DeclareImplicitMoveAssignment(RD
);
3442 ArgType
.addVolatile();
3444 // This isn't /really/ specified by the standard, but it's implied
3445 // we should be working from a PRValue in the case of move to ensure
3446 // that we prefer to bind to rvalue references, and an LValue in the
3447 // case of copy to ensure we don't bind to rvalue references.
3448 // Possibly an XValue is actually correct in the case of move, but
3449 // there is no semantic difference for class types in this restricted
3451 if (SM
== CXXCopyConstructor
|| SM
== CXXCopyAssignment
)
3457 OpaqueValueExpr
FakeArg(LookupLoc
, ArgType
, VK
);
3459 if (SM
!= CXXDefaultConstructor
) {
3464 // Create the object argument
3465 QualType ThisTy
= CanTy
;
3469 ThisTy
.addVolatile();
3470 Expr::Classification Classification
=
3471 OpaqueValueExpr(LookupLoc
, ThisTy
, RValueThis
? VK_PRValue
: VK_LValue
)
3474 // Now we perform lookup on the name we computed earlier and do overload
3475 // resolution. Lookup is only performed directly into the class since there
3476 // will always be a (possibly implicit) declaration to shadow any others.
3477 OverloadCandidateSet
OCS(LookupLoc
, OverloadCandidateSet::CSK_Normal
);
3478 DeclContext::lookup_result R
= RD
->lookup(Name
);
3481 // We might have no default constructor because we have a lambda's closure
3482 // type, rather than because there's some other declared constructor.
3483 // Every class has a copy/move constructor, copy/move assignment, and
3485 assert(SM
== CXXDefaultConstructor
&&
3486 "lookup for a constructor or assignment operator was empty");
3487 Result
->setMethod(nullptr);
3488 Result
->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted
);
3492 // Copy the candidates as our processing of them may load new declarations
3493 // from an external source and invalidate lookup_result.
3494 SmallVector
<NamedDecl
*, 8> Candidates(R
.begin(), R
.end());
3496 for (NamedDecl
*CandDecl
: Candidates
) {
3497 if (CandDecl
->isInvalidDecl())
3500 DeclAccessPair Cand
= DeclAccessPair::make(CandDecl
, AS_public
);
3501 auto CtorInfo
= getConstructorInfo(Cand
);
3502 if (CXXMethodDecl
*M
= dyn_cast
<CXXMethodDecl
>(Cand
->getUnderlyingDecl())) {
3503 if (SM
== CXXCopyAssignment
|| SM
== CXXMoveAssignment
)
3504 AddMethodCandidate(M
, Cand
, RD
, ThisTy
, Classification
,
3505 llvm::ArrayRef(&Arg
, NumArgs
), OCS
, true);
3507 AddOverloadCandidate(CtorInfo
.Constructor
, CtorInfo
.FoundDecl
,
3508 llvm::ArrayRef(&Arg
, NumArgs
), OCS
,
3509 /*SuppressUserConversions*/ true);
3511 AddOverloadCandidate(M
, Cand
, llvm::ArrayRef(&Arg
, NumArgs
), OCS
,
3512 /*SuppressUserConversions*/ true);
3513 } else if (FunctionTemplateDecl
*Tmpl
=
3514 dyn_cast
<FunctionTemplateDecl
>(Cand
->getUnderlyingDecl())) {
3515 if (SM
== CXXCopyAssignment
|| SM
== CXXMoveAssignment
)
3516 AddMethodTemplateCandidate(Tmpl
, Cand
, RD
, nullptr, ThisTy
,
3518 llvm::ArrayRef(&Arg
, NumArgs
), OCS
, true);
3520 AddTemplateOverloadCandidate(CtorInfo
.ConstructorTmpl
,
3521 CtorInfo
.FoundDecl
, nullptr,
3522 llvm::ArrayRef(&Arg
, NumArgs
), OCS
, true);
3524 AddTemplateOverloadCandidate(Tmpl
, Cand
, nullptr,
3525 llvm::ArrayRef(&Arg
, NumArgs
), OCS
, true);
3527 assert(isa
<UsingDecl
>(Cand
.getDecl()) &&
3528 "illegal Kind of operator = Decl");
3532 OverloadCandidateSet::iterator Best
;
3533 switch (OCS
.BestViableFunction(*this, LookupLoc
, Best
)) {
3535 Result
->setMethod(cast
<CXXMethodDecl
>(Best
->Function
));
3536 Result
->setKind(SpecialMemberOverloadResult::Success
);
3540 Result
->setMethod(cast
<CXXMethodDecl
>(Best
->Function
));
3541 Result
->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted
);
3545 Result
->setMethod(nullptr);
3546 Result
->setKind(SpecialMemberOverloadResult::Ambiguous
);
3549 case OR_No_Viable_Function
:
3550 Result
->setMethod(nullptr);
3551 Result
->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted
);
3558 /// Look up the default constructor for the given class.
3559 CXXConstructorDecl
*Sema::LookupDefaultConstructor(CXXRecordDecl
*Class
) {
3560 SpecialMemberOverloadResult Result
=
3561 LookupSpecialMember(Class
, CXXDefaultConstructor
, false, false, false,
3564 return cast_or_null
<CXXConstructorDecl
>(Result
.getMethod());
3567 /// Look up the copying constructor for the given class.
3568 CXXConstructorDecl
*Sema::LookupCopyingConstructor(CXXRecordDecl
*Class
,
3570 assert(!(Quals
& ~(Qualifiers::Const
| Qualifiers::Volatile
)) &&
3571 "non-const, non-volatile qualifiers for copy ctor arg");
3572 SpecialMemberOverloadResult Result
=
3573 LookupSpecialMember(Class
, CXXCopyConstructor
, Quals
& Qualifiers::Const
,
3574 Quals
& Qualifiers::Volatile
, false, false, false);
3576 return cast_or_null
<CXXConstructorDecl
>(Result
.getMethod());
3579 /// Look up the moving constructor for the given class.
3580 CXXConstructorDecl
*Sema::LookupMovingConstructor(CXXRecordDecl
*Class
,
3582 SpecialMemberOverloadResult Result
=
3583 LookupSpecialMember(Class
, CXXMoveConstructor
, Quals
& Qualifiers::Const
,
3584 Quals
& Qualifiers::Volatile
, false, false, false);
3586 return cast_or_null
<CXXConstructorDecl
>(Result
.getMethod());
3589 /// Look up the constructors for the given class.
3590 DeclContext::lookup_result
Sema::LookupConstructors(CXXRecordDecl
*Class
) {
3591 // If the implicit constructors have not yet been declared, do so now.
3592 if (CanDeclareSpecialMemberFunction(Class
)) {
3593 runWithSufficientStackSpace(Class
->getLocation(), [&] {
3594 if (Class
->needsImplicitDefaultConstructor())
3595 DeclareImplicitDefaultConstructor(Class
);
3596 if (Class
->needsImplicitCopyConstructor())
3597 DeclareImplicitCopyConstructor(Class
);
3598 if (getLangOpts().CPlusPlus11
&& Class
->needsImplicitMoveConstructor())
3599 DeclareImplicitMoveConstructor(Class
);
3603 CanQualType T
= Context
.getCanonicalType(Context
.getTypeDeclType(Class
));
3604 DeclarationName Name
= Context
.DeclarationNames
.getCXXConstructorName(T
);
3605 return Class
->lookup(Name
);
3608 /// Look up the copying assignment operator for the given class.
3609 CXXMethodDecl
*Sema::LookupCopyingAssignment(CXXRecordDecl
*Class
,
3610 unsigned Quals
, bool RValueThis
,
3611 unsigned ThisQuals
) {
3612 assert(!(Quals
& ~(Qualifiers::Const
| Qualifiers::Volatile
)) &&
3613 "non-const, non-volatile qualifiers for copy assignment arg");
3614 assert(!(ThisQuals
& ~(Qualifiers::Const
| Qualifiers::Volatile
)) &&
3615 "non-const, non-volatile qualifiers for copy assignment this");
3616 SpecialMemberOverloadResult Result
=
3617 LookupSpecialMember(Class
, CXXCopyAssignment
, Quals
& Qualifiers::Const
,
3618 Quals
& Qualifiers::Volatile
, RValueThis
,
3619 ThisQuals
& Qualifiers::Const
,
3620 ThisQuals
& Qualifiers::Volatile
);
3622 return Result
.getMethod();
3625 /// Look up the moving assignment operator for the given class.
3626 CXXMethodDecl
*Sema::LookupMovingAssignment(CXXRecordDecl
*Class
,
3629 unsigned ThisQuals
) {
3630 assert(!(ThisQuals
& ~(Qualifiers::Const
| Qualifiers::Volatile
)) &&
3631 "non-const, non-volatile qualifiers for copy assignment this");
3632 SpecialMemberOverloadResult Result
=
3633 LookupSpecialMember(Class
, CXXMoveAssignment
, Quals
& Qualifiers::Const
,
3634 Quals
& Qualifiers::Volatile
, RValueThis
,
3635 ThisQuals
& Qualifiers::Const
,
3636 ThisQuals
& Qualifiers::Volatile
);
3638 return Result
.getMethod();
3641 /// Look for the destructor of the given class.
3643 /// During semantic analysis, this routine should be used in lieu of
3644 /// CXXRecordDecl::getDestructor().
3646 /// \returns The destructor for this class.
3647 CXXDestructorDecl
*Sema::LookupDestructor(CXXRecordDecl
*Class
) {
3648 return cast_or_null
<CXXDestructorDecl
>(
3649 LookupSpecialMember(Class
, CXXDestructor
, false, false, false, false,
3654 /// LookupLiteralOperator - Determine which literal operator should be used for
3655 /// a user-defined literal, per C++11 [lex.ext].
3657 /// Normal overload resolution is not used to select which literal operator to
3658 /// call for a user-defined literal. Look up the provided literal operator name,
3659 /// and filter the results to the appropriate set for the given argument types.
3660 Sema::LiteralOperatorLookupResult
3661 Sema::LookupLiteralOperator(Scope
*S
, LookupResult
&R
,
3662 ArrayRef
<QualType
> ArgTys
, bool AllowRaw
,
3663 bool AllowTemplate
, bool AllowStringTemplatePack
,
3664 bool DiagnoseMissing
, StringLiteral
*StringLit
) {
3666 assert(R
.getResultKind() != LookupResult::Ambiguous
&&
3667 "literal operator lookup can't be ambiguous");
3669 // Filter the lookup results appropriately.
3670 LookupResult::Filter F
= R
.makeFilter();
3672 bool AllowCooked
= true;
3673 bool FoundRaw
= false;
3674 bool FoundTemplate
= false;
3675 bool FoundStringTemplatePack
= false;
3676 bool FoundCooked
= false;
3678 while (F
.hasNext()) {
3680 if (UsingShadowDecl
*USD
= dyn_cast
<UsingShadowDecl
>(D
))
3681 D
= USD
->getTargetDecl();
3683 // If the declaration we found is invalid, skip it.
3684 if (D
->isInvalidDecl()) {
3690 bool IsTemplate
= false;
3691 bool IsStringTemplatePack
= false;
3692 bool IsCooked
= false;
3694 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
3695 if (FD
->getNumParams() == 1 &&
3696 FD
->getParamDecl(0)->getType()->getAs
<PointerType
>())
3698 else if (FD
->getNumParams() == ArgTys
.size()) {
3700 for (unsigned ArgIdx
= 0; ArgIdx
!= ArgTys
.size(); ++ArgIdx
) {
3701 QualType ParamTy
= FD
->getParamDecl(ArgIdx
)->getType();
3702 if (!Context
.hasSameUnqualifiedType(ArgTys
[ArgIdx
], ParamTy
)) {
3709 if (FunctionTemplateDecl
*FD
= dyn_cast
<FunctionTemplateDecl
>(D
)) {
3710 TemplateParameterList
*Params
= FD
->getTemplateParameters();
3711 if (Params
->size() == 1) {
3713 if (!Params
->getParam(0)->isTemplateParameterPack() && !StringLit
) {
3714 // Implied but not stated: user-defined integer and floating literals
3715 // only ever use numeric literal operator templates, not templates
3716 // taking a parameter of class type.
3721 // A string literal template is only considered if the string literal
3722 // is a well-formed template argument for the template parameter.
3724 SFINAETrap
Trap(*this);
3725 SmallVector
<TemplateArgument
, 1> SugaredChecked
, CanonicalChecked
;
3726 TemplateArgumentLoc
Arg(TemplateArgument(StringLit
), StringLit
);
3727 if (CheckTemplateArgument(
3728 Params
->getParam(0), Arg
, FD
, R
.getNameLoc(), R
.getNameLoc(),
3729 0, SugaredChecked
, CanonicalChecked
, CTAK_Specified
) ||
3730 Trap
.hasErrorOccurred())
3734 IsStringTemplatePack
= true;
3738 if (AllowTemplate
&& StringLit
&& IsTemplate
) {
3739 FoundTemplate
= true;
3741 AllowCooked
= false;
3742 AllowStringTemplatePack
= false;
3743 if (FoundRaw
|| FoundCooked
|| FoundStringTemplatePack
) {
3745 FoundRaw
= FoundCooked
= FoundStringTemplatePack
= false;
3747 } else if (AllowCooked
&& IsCooked
) {
3750 AllowTemplate
= StringLit
;
3751 AllowStringTemplatePack
= false;
3752 if (FoundRaw
|| FoundTemplate
|| FoundStringTemplatePack
) {
3753 // Go through again and remove the raw and template decls we've
3756 FoundRaw
= FoundTemplate
= FoundStringTemplatePack
= false;
3758 } else if (AllowRaw
&& IsRaw
) {
3760 } else if (AllowTemplate
&& IsTemplate
) {
3761 FoundTemplate
= true;
3762 } else if (AllowStringTemplatePack
&& IsStringTemplatePack
) {
3763 FoundStringTemplatePack
= true;
3771 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3772 // form for string literal operator templates.
3773 if (StringLit
&& FoundTemplate
)
3774 return LOLR_Template
;
3776 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3777 // parameter type, that is used in preference to a raw literal operator
3778 // or literal operator template.
3782 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3783 // operator template, but not both.
3784 if (FoundRaw
&& FoundTemplate
) {
3785 Diag(R
.getNameLoc(), diag::err_ovl_ambiguous_call
) << R
.getLookupName();
3786 for (const NamedDecl
*D
: R
)
3787 NoteOverloadCandidate(D
, D
->getUnderlyingDecl()->getAsFunction());
3795 return LOLR_Template
;
3797 if (FoundStringTemplatePack
)
3798 return LOLR_StringTemplatePack
;
3800 // Didn't find anything we could use.
3801 if (DiagnoseMissing
) {
3802 Diag(R
.getNameLoc(), diag::err_ovl_no_viable_literal_operator
)
3803 << R
.getLookupName() << (int)ArgTys
.size() << ArgTys
[0]
3804 << (ArgTys
.size() == 2 ? ArgTys
[1] : QualType()) << AllowRaw
3805 << (AllowTemplate
|| AllowStringTemplatePack
);
3809 return LOLR_ErrorNoDiagnostic
;
3812 void ADLResult::insert(NamedDecl
*New
) {
3813 NamedDecl
*&Old
= Decls
[cast
<NamedDecl
>(New
->getCanonicalDecl())];
3815 // If we haven't yet seen a decl for this key, or the last decl
3816 // was exactly this one, we're done.
3817 if (Old
== nullptr || Old
== New
) {
3822 // Otherwise, decide which is a more recent redeclaration.
3823 FunctionDecl
*OldFD
= Old
->getAsFunction();
3824 FunctionDecl
*NewFD
= New
->getAsFunction();
3826 FunctionDecl
*Cursor
= NewFD
;
3828 Cursor
= Cursor
->getPreviousDecl();
3830 // If we got to the end without finding OldFD, OldFD is the newer
3831 // declaration; leave things as they are.
3832 if (!Cursor
) return;
3834 // If we do find OldFD, then NewFD is newer.
3835 if (Cursor
== OldFD
) break;
3837 // Otherwise, keep looking.
3843 void Sema::ArgumentDependentLookup(DeclarationName Name
, SourceLocation Loc
,
3844 ArrayRef
<Expr
*> Args
, ADLResult
&Result
) {
3845 // Find all of the associated namespaces and classes based on the
3846 // arguments we have.
3847 AssociatedNamespaceSet AssociatedNamespaces
;
3848 AssociatedClassSet AssociatedClasses
;
3849 FindAssociatedClassesAndNamespaces(Loc
, Args
,
3850 AssociatedNamespaces
,
3853 // C++ [basic.lookup.argdep]p3:
3854 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3855 // and let Y be the lookup set produced by argument dependent
3856 // lookup (defined as follows). If X contains [...] then Y is
3857 // empty. Otherwise Y is the set of declarations found in the
3858 // namespaces associated with the argument types as described
3859 // below. The set of declarations found by the lookup of the name
3860 // is the union of X and Y.
3862 // Here, we compute Y and add its members to the overloaded
3864 for (auto *NS
: AssociatedNamespaces
) {
3865 // When considering an associated namespace, the lookup is the
3866 // same as the lookup performed when the associated namespace is
3867 // used as a qualifier (3.4.3.2) except that:
3869 // -- Any using-directives in the associated namespace are
3872 // -- Any namespace-scope friend functions declared in
3873 // associated classes are visible within their respective
3874 // namespaces even if they are not visible during an ordinary
3877 // C++20 [basic.lookup.argdep] p4.3
3878 // -- are exported, are attached to a named module M, do not appear
3879 // in the translation unit containing the point of the lookup, and
3880 // have the same innermost enclosing non-inline namespace scope as
3881 // a declaration of an associated entity attached to M.
3882 DeclContext::lookup_result R
= NS
->lookup(Name
);
3884 auto *Underlying
= D
;
3885 if (auto *USD
= dyn_cast
<UsingShadowDecl
>(D
))
3886 Underlying
= USD
->getTargetDecl();
3888 if (!isa
<FunctionDecl
>(Underlying
) &&
3889 !isa
<FunctionTemplateDecl
>(Underlying
))
3892 // The declaration is visible to argument-dependent lookup if either
3893 // it's ordinarily visible or declared as a friend in an associated
3895 bool Visible
= false;
3896 for (D
= D
->getMostRecentDecl(); D
;
3897 D
= cast_or_null
<NamedDecl
>(D
->getPreviousDecl())) {
3898 if (D
->getIdentifierNamespace() & Decl::IDNS_Ordinary
) {
3904 if (!getLangOpts().CPlusPlusModules
)
3907 if (D
->isInExportDeclContext()) {
3908 Module
*FM
= D
->getOwningModule();
3909 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3910 // exports are only valid in module purview and outside of any
3911 // PMF (although a PMF should not even be present in a module
3913 assert(FM
&& FM
->isNamedModule() && !FM
->isPrivateModule() &&
3914 "bad export context");
3915 // .. are attached to a named module M, do not appear in the
3916 // translation unit containing the point of the lookup..
3917 if (D
->isInAnotherModuleUnit() &&
3918 llvm::any_of(AssociatedClasses
, [&](auto *E
) {
3919 // ... and have the same innermost enclosing non-inline
3920 // namespace scope as a declaration of an associated entity
3922 if (E
->getOwningModule() != FM
)
3924 // TODO: maybe this could be cached when generating the
3925 // associated namespaces / entities.
3926 DeclContext
*Ctx
= E
->getDeclContext();
3927 while (!Ctx
->isFileContext() || Ctx
->isInlineNamespace())
3928 Ctx
= Ctx
->getParent();
3935 } else if (D
->getFriendObjectKind()) {
3936 auto *RD
= cast
<CXXRecordDecl
>(D
->getLexicalDeclContext());
3937 // [basic.lookup.argdep]p4:
3938 // Argument-dependent lookup finds all declarations of functions and
3939 // function templates that
3941 // - are declared as a friend ([class.friend]) of any class with a
3942 // reachable definition in the set of associated entities,
3944 // FIXME: If there's a merged definition of D that is reachable, then
3945 // the friend declaration should be considered.
3946 if (AssociatedClasses
.count(RD
) && isReachable(D
)) {
3953 // FIXME: Preserve D as the FoundDecl.
3955 Result
.insert(Underlying
);
3960 //----------------------------------------------------------------------------
3961 // Search for all visible declarations.
3962 //----------------------------------------------------------------------------
3963 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3965 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3969 class ShadowContextRAII
;
3971 class VisibleDeclsRecord
{
3973 /// An entry in the shadow map, which is optimized to store a
3974 /// single declaration (the common case) but can also store a list
3975 /// of declarations.
3976 typedef llvm::TinyPtrVector
<NamedDecl
*> ShadowMapEntry
;
3979 /// A mapping from declaration names to the declarations that have
3980 /// this name within a particular scope.
3981 typedef llvm::DenseMap
<DeclarationName
, ShadowMapEntry
> ShadowMap
;
3983 /// A list of shadow maps, which is used to model name hiding.
3984 std::list
<ShadowMap
> ShadowMaps
;
3986 /// The declaration contexts we have already visited.
3987 llvm::SmallPtrSet
<DeclContext
*, 8> VisitedContexts
;
3989 friend class ShadowContextRAII
;
3992 /// Determine whether we have already visited this context
3993 /// (and, if not, note that we are going to visit that context now).
3994 bool visitedContext(DeclContext
*Ctx
) {
3995 return !VisitedContexts
.insert(Ctx
).second
;
3998 bool alreadyVisitedContext(DeclContext
*Ctx
) {
3999 return VisitedContexts
.count(Ctx
);
4002 /// Determine whether the given declaration is hidden in the
4005 /// \returns the declaration that hides the given declaration, or
4006 /// NULL if no such declaration exists.
4007 NamedDecl
*checkHidden(NamedDecl
*ND
);
4009 /// Add a declaration to the current shadow map.
4010 void add(NamedDecl
*ND
) {
4011 ShadowMaps
.back()[ND
->getDeclName()].push_back(ND
);
4015 /// RAII object that records when we've entered a shadow context.
4016 class ShadowContextRAII
{
4017 VisibleDeclsRecord
&Visible
;
4019 typedef VisibleDeclsRecord::ShadowMap ShadowMap
;
4022 ShadowContextRAII(VisibleDeclsRecord
&Visible
) : Visible(Visible
) {
4023 Visible
.ShadowMaps
.emplace_back();
4026 ~ShadowContextRAII() {
4027 Visible
.ShadowMaps
.pop_back();
4031 } // end anonymous namespace
4033 NamedDecl
*VisibleDeclsRecord::checkHidden(NamedDecl
*ND
) {
4034 unsigned IDNS
= ND
->getIdentifierNamespace();
4035 std::list
<ShadowMap
>::reverse_iterator SM
= ShadowMaps
.rbegin();
4036 for (std::list
<ShadowMap
>::reverse_iterator SMEnd
= ShadowMaps
.rend();
4037 SM
!= SMEnd
; ++SM
) {
4038 ShadowMap::iterator Pos
= SM
->find(ND
->getDeclName());
4039 if (Pos
== SM
->end())
4042 for (auto *D
: Pos
->second
) {
4043 // A tag declaration does not hide a non-tag declaration.
4044 if (D
->hasTagIdentifierNamespace() &&
4045 (IDNS
& (Decl::IDNS_Member
| Decl::IDNS_Ordinary
|
4046 Decl::IDNS_ObjCProtocol
)))
4049 // Protocols are in distinct namespaces from everything else.
4050 if (((D
->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol
)
4051 || (IDNS
& Decl::IDNS_ObjCProtocol
)) &&
4052 D
->getIdentifierNamespace() != IDNS
)
4055 // Functions and function templates in the same scope overload
4056 // rather than hide. FIXME: Look for hiding based on function
4058 if (D
->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4059 ND
->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4060 SM
== ShadowMaps
.rbegin())
4063 // A shadow declaration that's created by a resolved using declaration
4064 // is not hidden by the same using declaration.
4065 if (isa
<UsingShadowDecl
>(ND
) && isa
<UsingDecl
>(D
) &&
4066 cast
<UsingShadowDecl
>(ND
)->getIntroducer() == D
)
4069 // We've found a declaration that hides this one.
4078 class LookupVisibleHelper
{
4080 LookupVisibleHelper(VisibleDeclConsumer
&Consumer
, bool IncludeDependentBases
,
4082 : Consumer(Consumer
), IncludeDependentBases(IncludeDependentBases
),
4083 LoadExternal(LoadExternal
) {}
4085 void lookupVisibleDecls(Sema
&SemaRef
, Scope
*S
, Sema::LookupNameKind Kind
,
4086 bool IncludeGlobalScope
) {
4087 // Determine the set of using directives available during
4088 // unqualified name lookup.
4090 UnqualUsingDirectiveSet
UDirs(SemaRef
);
4091 if (SemaRef
.getLangOpts().CPlusPlus
) {
4092 // Find the first namespace or translation-unit scope.
4093 while (S
&& !isNamespaceOrTranslationUnitScope(S
))
4096 UDirs
.visitScopeChain(Initial
, S
);
4100 // Look for visible declarations.
4101 LookupResult
Result(SemaRef
, DeclarationName(), SourceLocation(), Kind
);
4102 Result
.setAllowHidden(Consumer
.includeHiddenDecls());
4103 if (!IncludeGlobalScope
)
4104 Visited
.visitedContext(SemaRef
.getASTContext().getTranslationUnitDecl());
4105 ShadowContextRAII
Shadow(Visited
);
4106 lookupInScope(Initial
, Result
, UDirs
);
4109 void lookupVisibleDecls(Sema
&SemaRef
, DeclContext
*Ctx
,
4110 Sema::LookupNameKind Kind
, bool IncludeGlobalScope
) {
4111 LookupResult
Result(SemaRef
, DeclarationName(), SourceLocation(), Kind
);
4112 Result
.setAllowHidden(Consumer
.includeHiddenDecls());
4113 if (!IncludeGlobalScope
)
4114 Visited
.visitedContext(SemaRef
.getASTContext().getTranslationUnitDecl());
4116 ShadowContextRAII
Shadow(Visited
);
4117 lookupInDeclContext(Ctx
, Result
, /*QualifiedNameLookup=*/true,
4118 /*InBaseClass=*/false);
4122 void lookupInDeclContext(DeclContext
*Ctx
, LookupResult
&Result
,
4123 bool QualifiedNameLookup
, bool InBaseClass
) {
4127 // Make sure we don't visit the same context twice.
4128 if (Visited
.visitedContext(Ctx
->getPrimaryContext()))
4131 Consumer
.EnteredContext(Ctx
);
4133 // Outside C++, lookup results for the TU live on identifiers.
4134 if (isa
<TranslationUnitDecl
>(Ctx
) &&
4135 !Result
.getSema().getLangOpts().CPlusPlus
) {
4136 auto &S
= Result
.getSema();
4137 auto &Idents
= S
.Context
.Idents
;
4139 // Ensure all external identifiers are in the identifier table.
4141 if (IdentifierInfoLookup
*External
=
4142 Idents
.getExternalIdentifierLookup()) {
4143 std::unique_ptr
<IdentifierIterator
> Iter(External
->getIdentifiers());
4144 for (StringRef Name
= Iter
->Next(); !Name
.empty();
4145 Name
= Iter
->Next())
4149 // Walk all lookup results in the TU for each identifier.
4150 for (const auto &Ident
: Idents
) {
4151 for (auto I
= S
.IdResolver
.begin(Ident
.getValue()),
4152 E
= S
.IdResolver
.end();
4154 if (S
.IdResolver
.isDeclInScope(*I
, Ctx
)) {
4155 if (NamedDecl
*ND
= Result
.getAcceptableDecl(*I
)) {
4156 Consumer
.FoundDecl(ND
, Visited
.checkHidden(ND
), Ctx
, InBaseClass
);
4166 if (CXXRecordDecl
*Class
= dyn_cast
<CXXRecordDecl
>(Ctx
))
4167 Result
.getSema().ForceDeclarationOfImplicitMembers(Class
);
4169 llvm::SmallVector
<NamedDecl
*, 4> DeclsToVisit
;
4170 // We sometimes skip loading namespace-level results (they tend to be huge).
4171 bool Load
= LoadExternal
||
4172 !(isa
<TranslationUnitDecl
>(Ctx
) || isa
<NamespaceDecl
>(Ctx
));
4173 // Enumerate all of the results in this context.
4174 for (DeclContextLookupResult R
:
4175 Load
? Ctx
->lookups()
4176 : Ctx
->noload_lookups(/*PreserveInternalState=*/false))
4178 // Rather than visit immediately, we put ND into a vector and visit
4179 // all decls, in order, outside of this loop. The reason is that
4180 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D)
4181 // may invalidate the iterators used in the two
4183 DeclsToVisit
.push_back(D
);
4185 for (auto *D
: DeclsToVisit
)
4186 if (auto *ND
= Result
.getAcceptableDecl(D
)) {
4187 Consumer
.FoundDecl(ND
, Visited
.checkHidden(ND
), Ctx
, InBaseClass
);
4191 DeclsToVisit
.clear();
4193 // Traverse using directives for qualified name lookup.
4194 if (QualifiedNameLookup
) {
4195 ShadowContextRAII
Shadow(Visited
);
4196 for (auto *I
: Ctx
->using_directives()) {
4197 if (!Result
.getSema().isVisible(I
))
4199 lookupInDeclContext(I
->getNominatedNamespace(), Result
,
4200 QualifiedNameLookup
, InBaseClass
);
4204 // Traverse the contexts of inherited C++ classes.
4205 if (CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(Ctx
)) {
4206 if (!Record
->hasDefinition())
4209 for (const auto &B
: Record
->bases()) {
4210 QualType BaseType
= B
.getType();
4213 if (BaseType
->isDependentType()) {
4214 if (!IncludeDependentBases
) {
4215 // Don't look into dependent bases, because name lookup can't look
4219 const auto *TST
= BaseType
->getAs
<TemplateSpecializationType
>();
4222 TemplateName TN
= TST
->getTemplateName();
4224 dyn_cast_or_null
<ClassTemplateDecl
>(TN
.getAsTemplateDecl());
4227 RD
= TD
->getTemplatedDecl();
4229 const auto *Record
= BaseType
->getAs
<RecordType
>();
4232 RD
= Record
->getDecl();
4235 // FIXME: It would be nice to be able to determine whether referencing
4236 // a particular member would be ambiguous. For example, given
4238 // struct A { int member; };
4239 // struct B { int member; };
4240 // struct C : A, B { };
4242 // void f(C *c) { c->### }
4244 // accessing 'member' would result in an ambiguity. However, we
4245 // could be smart enough to qualify the member with the base
4254 // Find results in this base class (and its bases).
4255 ShadowContextRAII
Shadow(Visited
);
4256 lookupInDeclContext(RD
, Result
, QualifiedNameLookup
,
4257 /*InBaseClass=*/true);
4261 // Traverse the contexts of Objective-C classes.
4262 if (ObjCInterfaceDecl
*IFace
= dyn_cast
<ObjCInterfaceDecl
>(Ctx
)) {
4263 // Traverse categories.
4264 for (auto *Cat
: IFace
->visible_categories()) {
4265 ShadowContextRAII
Shadow(Visited
);
4266 lookupInDeclContext(Cat
, Result
, QualifiedNameLookup
,
4267 /*InBaseClass=*/false);
4270 // Traverse protocols.
4271 for (auto *I
: IFace
->all_referenced_protocols()) {
4272 ShadowContextRAII
Shadow(Visited
);
4273 lookupInDeclContext(I
, Result
, QualifiedNameLookup
,
4274 /*InBaseClass=*/false);
4277 // Traverse the superclass.
4278 if (IFace
->getSuperClass()) {
4279 ShadowContextRAII
Shadow(Visited
);
4280 lookupInDeclContext(IFace
->getSuperClass(), Result
, QualifiedNameLookup
,
4281 /*InBaseClass=*/true);
4284 // If there is an implementation, traverse it. We do this to find
4285 // synthesized ivars.
4286 if (IFace
->getImplementation()) {
4287 ShadowContextRAII
Shadow(Visited
);
4288 lookupInDeclContext(IFace
->getImplementation(), Result
,
4289 QualifiedNameLookup
, InBaseClass
);
4291 } else if (ObjCProtocolDecl
*Protocol
= dyn_cast
<ObjCProtocolDecl
>(Ctx
)) {
4292 for (auto *I
: Protocol
->protocols()) {
4293 ShadowContextRAII
Shadow(Visited
);
4294 lookupInDeclContext(I
, Result
, QualifiedNameLookup
,
4295 /*InBaseClass=*/false);
4297 } else if (ObjCCategoryDecl
*Category
= dyn_cast
<ObjCCategoryDecl
>(Ctx
)) {
4298 for (auto *I
: Category
->protocols()) {
4299 ShadowContextRAII
Shadow(Visited
);
4300 lookupInDeclContext(I
, Result
, QualifiedNameLookup
,
4301 /*InBaseClass=*/false);
4304 // If there is an implementation, traverse it.
4305 if (Category
->getImplementation()) {
4306 ShadowContextRAII
Shadow(Visited
);
4307 lookupInDeclContext(Category
->getImplementation(), Result
,
4308 QualifiedNameLookup
, /*InBaseClass=*/true);
4313 void lookupInScope(Scope
*S
, LookupResult
&Result
,
4314 UnqualUsingDirectiveSet
&UDirs
) {
4315 // No clients run in this mode and it's not supported. Please add tests and
4316 // remove the assertion if you start relying on it.
4317 assert(!IncludeDependentBases
&& "Unsupported flag for lookupInScope");
4322 if (!S
->getEntity() ||
4323 (!S
->getParent() && !Visited
.alreadyVisitedContext(S
->getEntity())) ||
4324 (S
->getEntity())->isFunctionOrMethod()) {
4325 FindLocalExternScope
FindLocals(Result
);
4326 // Walk through the declarations in this Scope. The consumer might add new
4327 // decls to the scope as part of deserialization, so make a copy first.
4328 SmallVector
<Decl
*, 8> ScopeDecls(S
->decls().begin(), S
->decls().end());
4329 for (Decl
*D
: ScopeDecls
) {
4330 if (NamedDecl
*ND
= dyn_cast
<NamedDecl
>(D
))
4331 if ((ND
= Result
.getAcceptableDecl(ND
))) {
4332 Consumer
.FoundDecl(ND
, Visited
.checkHidden(ND
), nullptr, false);
4338 DeclContext
*Entity
= S
->getLookupEntity();
4340 // Look into this scope's declaration context, along with any of its
4341 // parent lookup contexts (e.g., enclosing classes), up to the point
4342 // where we hit the context stored in the next outer scope.
4343 DeclContext
*OuterCtx
= findOuterContext(S
);
4345 for (DeclContext
*Ctx
= Entity
; Ctx
&& !Ctx
->Equals(OuterCtx
);
4346 Ctx
= Ctx
->getLookupParent()) {
4347 if (ObjCMethodDecl
*Method
= dyn_cast
<ObjCMethodDecl
>(Ctx
)) {
4348 if (Method
->isInstanceMethod()) {
4349 // For instance methods, look for ivars in the method's interface.
4350 LookupResult
IvarResult(Result
.getSema(), Result
.getLookupName(),
4351 Result
.getNameLoc(),
4352 Sema::LookupMemberName
);
4353 if (ObjCInterfaceDecl
*IFace
= Method
->getClassInterface()) {
4354 lookupInDeclContext(IFace
, IvarResult
,
4355 /*QualifiedNameLookup=*/false,
4356 /*InBaseClass=*/false);
4360 // We've already performed all of the name lookup that we need
4361 // to for Objective-C methods; the next context will be the
4366 if (Ctx
->isFunctionOrMethod())
4369 lookupInDeclContext(Ctx
, Result
, /*QualifiedNameLookup=*/false,
4370 /*InBaseClass=*/false);
4372 } else if (!S
->getParent()) {
4373 // Look into the translation unit scope. We walk through the translation
4374 // unit's declaration context, because the Scope itself won't have all of
4375 // the declarations if we loaded a precompiled header.
4376 // FIXME: We would like the translation unit's Scope object to point to
4377 // the translation unit, so we don't need this special "if" branch.
4378 // However, doing so would force the normal C++ name-lookup code to look
4379 // into the translation unit decl when the IdentifierInfo chains would
4380 // suffice. Once we fix that problem (which is part of a more general
4381 // "don't look in DeclContexts unless we have to" optimization), we can
4383 Entity
= Result
.getSema().Context
.getTranslationUnitDecl();
4384 lookupInDeclContext(Entity
, Result
, /*QualifiedNameLookup=*/false,
4385 /*InBaseClass=*/false);
4389 // Lookup visible declarations in any namespaces found by using
4391 for (const UnqualUsingEntry
&UUE
: UDirs
.getNamespacesFor(Entity
))
4392 lookupInDeclContext(
4393 const_cast<DeclContext
*>(UUE
.getNominatedNamespace()), Result
,
4394 /*QualifiedNameLookup=*/false,
4395 /*InBaseClass=*/false);
4398 // Lookup names in the parent scope.
4399 ShadowContextRAII
Shadow(Visited
);
4400 lookupInScope(S
->getParent(), Result
, UDirs
);
4404 VisibleDeclsRecord Visited
;
4405 VisibleDeclConsumer
&Consumer
;
4406 bool IncludeDependentBases
;
4411 void Sema::LookupVisibleDecls(Scope
*S
, LookupNameKind Kind
,
4412 VisibleDeclConsumer
&Consumer
,
4413 bool IncludeGlobalScope
, bool LoadExternal
) {
4414 LookupVisibleHelper
H(Consumer
, /*IncludeDependentBases=*/false,
4416 H
.lookupVisibleDecls(*this, S
, Kind
, IncludeGlobalScope
);
4419 void Sema::LookupVisibleDecls(DeclContext
*Ctx
, LookupNameKind Kind
,
4420 VisibleDeclConsumer
&Consumer
,
4421 bool IncludeGlobalScope
,
4422 bool IncludeDependentBases
, bool LoadExternal
) {
4423 LookupVisibleHelper
H(Consumer
, IncludeDependentBases
, LoadExternal
);
4424 H
.lookupVisibleDecls(*this, Ctx
, Kind
, IncludeGlobalScope
);
4427 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4428 /// If GnuLabelLoc is a valid source location, then this is a definition
4429 /// of an __label__ label name, otherwise it is a normal label definition
4431 LabelDecl
*Sema::LookupOrCreateLabel(IdentifierInfo
*II
, SourceLocation Loc
,
4432 SourceLocation GnuLabelLoc
) {
4433 // Do a lookup to see if we have a label with this name already.
4434 NamedDecl
*Res
= nullptr;
4436 if (GnuLabelLoc
.isValid()) {
4437 // Local label definitions always shadow existing labels.
4438 Res
= LabelDecl::Create(Context
, CurContext
, Loc
, II
, GnuLabelLoc
);
4439 Scope
*S
= CurScope
;
4440 PushOnScopeChains(Res
, S
, true);
4441 return cast
<LabelDecl
>(Res
);
4444 // Not a GNU local label.
4445 Res
= LookupSingleName(CurScope
, II
, Loc
, LookupLabel
, NotForRedeclaration
);
4446 // If we found a label, check to see if it is in the same context as us.
4447 // When in a Block, we don't want to reuse a label in an enclosing function.
4448 if (Res
&& Res
->getDeclContext() != CurContext
)
4451 // If not forward referenced or defined already, create the backing decl.
4452 Res
= LabelDecl::Create(Context
, CurContext
, Loc
, II
);
4453 Scope
*S
= CurScope
->getFnParent();
4454 assert(S
&& "Not in a function?");
4455 PushOnScopeChains(Res
, S
, true);
4457 return cast
<LabelDecl
>(Res
);
4460 //===----------------------------------------------------------------------===//
4462 //===----------------------------------------------------------------------===//
4464 static bool isCandidateViable(CorrectionCandidateCallback
&CCC
,
4465 TypoCorrection
&Candidate
) {
4466 Candidate
.setCallbackDistance(CCC
.RankCandidate(Candidate
));
4467 return Candidate
.getEditDistance(false) != TypoCorrection::InvalidDistance
;
4470 static void LookupPotentialTypoResult(Sema
&SemaRef
,
4472 IdentifierInfo
*Name
,
4473 Scope
*S
, CXXScopeSpec
*SS
,
4474 DeclContext
*MemberContext
,
4475 bool EnteringContext
,
4476 bool isObjCIvarLookup
,
4479 /// Check whether the declarations found for a typo correction are
4480 /// visible. Set the correction's RequiresImport flag to true if none of the
4481 /// declarations are visible, false otherwise.
4482 static void checkCorrectionVisibility(Sema
&SemaRef
, TypoCorrection
&TC
) {
4483 TypoCorrection::decl_iterator DI
= TC
.begin(), DE
= TC
.end();
4485 for (/**/; DI
!= DE
; ++DI
)
4486 if (!LookupResult::isVisible(SemaRef
, *DI
))
4488 // No filtering needed if all decls are visible.
4490 TC
.setRequiresImport(false);
4494 llvm::SmallVector
<NamedDecl
*, 4> NewDecls(TC
.begin(), DI
);
4495 bool AnyVisibleDecls
= !NewDecls
.empty();
4497 for (/**/; DI
!= DE
; ++DI
) {
4498 if (LookupResult::isVisible(SemaRef
, *DI
)) {
4499 if (!AnyVisibleDecls
) {
4500 // Found a visible decl, discard all hidden ones.
4501 AnyVisibleDecls
= true;
4504 NewDecls
.push_back(*DI
);
4505 } else if (!AnyVisibleDecls
&& !(*DI
)->isModulePrivate())
4506 NewDecls
.push_back(*DI
);
4509 if (NewDecls
.empty())
4510 TC
= TypoCorrection();
4512 TC
.setCorrectionDecls(NewDecls
);
4513 TC
.setRequiresImport(!AnyVisibleDecls
);
4517 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4518 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4519 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4520 static void getNestedNameSpecifierIdentifiers(
4521 NestedNameSpecifier
*NNS
,
4522 SmallVectorImpl
<const IdentifierInfo
*> &Identifiers
) {
4523 if (NestedNameSpecifier
*Prefix
= NNS
->getPrefix())
4524 getNestedNameSpecifierIdentifiers(Prefix
, Identifiers
);
4526 Identifiers
.clear();
4528 const IdentifierInfo
*II
= nullptr;
4530 switch (NNS
->getKind()) {
4531 case NestedNameSpecifier::Identifier
:
4532 II
= NNS
->getAsIdentifier();
4535 case NestedNameSpecifier::Namespace
:
4536 if (NNS
->getAsNamespace()->isAnonymousNamespace())
4538 II
= NNS
->getAsNamespace()->getIdentifier();
4541 case NestedNameSpecifier::NamespaceAlias
:
4542 II
= NNS
->getAsNamespaceAlias()->getIdentifier();
4545 case NestedNameSpecifier::TypeSpecWithTemplate
:
4546 case NestedNameSpecifier::TypeSpec
:
4547 II
= QualType(NNS
->getAsType(), 0).getBaseTypeIdentifier();
4550 case NestedNameSpecifier::Global
:
4551 case NestedNameSpecifier::Super
:
4556 Identifiers
.push_back(II
);
4559 void TypoCorrectionConsumer::FoundDecl(NamedDecl
*ND
, NamedDecl
*Hiding
,
4560 DeclContext
*Ctx
, bool InBaseClass
) {
4561 // Don't consider hidden names for typo correction.
4565 // Only consider entities with identifiers for names, ignoring
4566 // special names (constructors, overloaded operators, selectors,
4568 IdentifierInfo
*Name
= ND
->getIdentifier();
4572 // Only consider visible declarations and declarations from modules with
4573 // names that exactly match.
4574 if (!LookupResult::isVisible(SemaRef
, ND
) && Name
!= Typo
)
4577 FoundName(Name
->getName());
4580 void TypoCorrectionConsumer::FoundName(StringRef Name
) {
4581 // Compute the edit distance between the typo and the name of this
4582 // entity, and add the identifier to the list of results.
4583 addName(Name
, nullptr);
4586 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword
) {
4587 // Compute the edit distance between the typo and this keyword,
4588 // and add the keyword to the list of results.
4589 addName(Keyword
, nullptr, nullptr, true);
4592 void TypoCorrectionConsumer::addName(StringRef Name
, NamedDecl
*ND
,
4593 NestedNameSpecifier
*NNS
, bool isKeyword
) {
4594 // Use a simple length-based heuristic to determine the minimum possible
4595 // edit distance. If the minimum isn't good enough, bail out early.
4596 StringRef TypoStr
= Typo
->getName();
4597 unsigned MinED
= abs((int)Name
.size() - (int)TypoStr
.size());
4598 if (MinED
&& TypoStr
.size() / MinED
< 3)
4601 // Compute an upper bound on the allowable edit distance, so that the
4602 // edit-distance algorithm can short-circuit.
4603 unsigned UpperBound
= (TypoStr
.size() + 2) / 3;
4604 unsigned ED
= TypoStr
.edit_distance(Name
, true, UpperBound
);
4605 if (ED
> UpperBound
) return;
4607 TypoCorrection
TC(&SemaRef
.Context
.Idents
.get(Name
), ND
, NNS
, ED
);
4608 if (isKeyword
) TC
.makeKeyword();
4609 TC
.setCorrectionRange(nullptr, Result
.getLookupNameInfo());
4613 static const unsigned MaxTypoDistanceResultSets
= 5;
4615 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction
) {
4616 StringRef TypoStr
= Typo
->getName();
4617 StringRef Name
= Correction
.getCorrectionAsIdentifierInfo()->getName();
4619 // For very short typos, ignore potential corrections that have a different
4620 // base identifier from the typo or which have a normalized edit distance
4621 // longer than the typo itself.
4622 if (TypoStr
.size() < 3 &&
4623 (Name
!= TypoStr
|| Correction
.getEditDistance(true) > TypoStr
.size()))
4626 // If the correction is resolved but is not viable, ignore it.
4627 if (Correction
.isResolved()) {
4628 checkCorrectionVisibility(SemaRef
, Correction
);
4629 if (!Correction
|| !isCandidateViable(*CorrectionValidator
, Correction
))
4633 TypoResultList
&CList
=
4634 CorrectionResults
[Correction
.getEditDistance(false)][Name
];
4636 if (!CList
.empty() && !CList
.back().isResolved())
4638 if (NamedDecl
*NewND
= Correction
.getCorrectionDecl()) {
4639 auto RI
= llvm::find_if(CList
, [NewND
](const TypoCorrection
&TypoCorr
) {
4640 return TypoCorr
.getCorrectionDecl() == NewND
;
4642 if (RI
!= CList
.end()) {
4643 // The Correction refers to a decl already in the list. No insertion is
4644 // necessary and all further cases will return.
4646 auto IsDeprecated
= [](Decl
*D
) {
4648 if (D
->isDeprecated())
4650 D
= llvm::dyn_cast_or_null
<NamespaceDecl
>(D
->getDeclContext());
4655 // Prefer non deprecated Corrections over deprecated and only then
4656 // sort using an alphabetical order.
4657 std::pair
<bool, std::string
> NewKey
= {
4658 IsDeprecated(Correction
.getFoundDecl()),
4659 Correction
.getAsString(SemaRef
.getLangOpts())};
4661 std::pair
<bool, std::string
> PrevKey
= {
4662 IsDeprecated(RI
->getFoundDecl()),
4663 RI
->getAsString(SemaRef
.getLangOpts())};
4665 if (NewKey
< PrevKey
)
4670 if (CList
.empty() || Correction
.isResolved())
4671 CList
.push_back(Correction
);
4673 while (CorrectionResults
.size() > MaxTypoDistanceResultSets
)
4674 CorrectionResults
.erase(std::prev(CorrectionResults
.end()));
4677 void TypoCorrectionConsumer::addNamespaces(
4678 const llvm::MapVector
<NamespaceDecl
*, bool> &KnownNamespaces
) {
4679 SearchNamespaces
= true;
4681 for (auto KNPair
: KnownNamespaces
)
4682 Namespaces
.addNameSpecifier(KNPair
.first
);
4684 bool SSIsTemplate
= false;
4685 if (NestedNameSpecifier
*NNS
=
4686 (SS
&& SS
->isValid()) ? SS
->getScopeRep() : nullptr) {
4687 if (const Type
*T
= NNS
->getAsType())
4688 SSIsTemplate
= T
->getTypeClass() == Type::TemplateSpecialization
;
4690 // Do not transform this into an iterator-based loop. The loop body can
4691 // trigger the creation of further types (through lazy deserialization) and
4692 // invalid iterators into this list.
4693 auto &Types
= SemaRef
.getASTContext().getTypes();
4694 for (unsigned I
= 0; I
!= Types
.size(); ++I
) {
4695 const auto *TI
= Types
[I
];
4696 if (CXXRecordDecl
*CD
= TI
->getAsCXXRecordDecl()) {
4697 CD
= CD
->getCanonicalDecl();
4698 if (!CD
->isDependentType() && !CD
->isAnonymousStructOrUnion() &&
4699 !CD
->isUnion() && CD
->getIdentifier() &&
4700 (SSIsTemplate
|| !isa
<ClassTemplateSpecializationDecl
>(CD
)) &&
4701 (CD
->isBeingDefined() || CD
->isCompleteDefinition()))
4702 Namespaces
.addNameSpecifier(CD
);
4707 const TypoCorrection
&TypoCorrectionConsumer::getNextCorrection() {
4708 if (++CurrentTCIndex
< ValidatedCorrections
.size())
4709 return ValidatedCorrections
[CurrentTCIndex
];
4711 CurrentTCIndex
= ValidatedCorrections
.size();
4712 while (!CorrectionResults
.empty()) {
4713 auto DI
= CorrectionResults
.begin();
4714 if (DI
->second
.empty()) {
4715 CorrectionResults
.erase(DI
);
4719 auto RI
= DI
->second
.begin();
4720 if (RI
->second
.empty()) {
4721 DI
->second
.erase(RI
);
4722 performQualifiedLookups();
4726 TypoCorrection TC
= RI
->second
.pop_back_val();
4727 if (TC
.isResolved() || TC
.requiresImport() || resolveCorrection(TC
)) {
4728 ValidatedCorrections
.push_back(TC
);
4729 return ValidatedCorrections
[CurrentTCIndex
];
4732 return ValidatedCorrections
[0]; // The empty correction.
4735 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection
&Candidate
) {
4736 IdentifierInfo
*Name
= Candidate
.getCorrectionAsIdentifierInfo();
4737 DeclContext
*TempMemberContext
= MemberContext
;
4738 CXXScopeSpec
*TempSS
= SS
.get();
4740 LookupPotentialTypoResult(SemaRef
, Result
, Name
, S
, TempSS
, TempMemberContext
,
4742 CorrectionValidator
->IsObjCIvarLookup
,
4743 Name
== Typo
&& !Candidate
.WillReplaceSpecifier());
4744 switch (Result
.getResultKind()) {
4745 case LookupResult::NotFound
:
4746 case LookupResult::NotFoundInCurrentInstantiation
:
4747 case LookupResult::FoundUnresolvedValue
:
4749 // Immediately retry the lookup without the given CXXScopeSpec
4751 Candidate
.WillReplaceSpecifier(true);
4754 if (TempMemberContext
) {
4757 TempMemberContext
= nullptr;
4760 if (SearchNamespaces
)
4761 QualifiedResults
.push_back(Candidate
);
4764 case LookupResult::Ambiguous
:
4765 // We don't deal with ambiguities.
4768 case LookupResult::Found
:
4769 case LookupResult::FoundOverloaded
:
4770 // Store all of the Decls for overloaded symbols
4771 for (auto *TRD
: Result
)
4772 Candidate
.addCorrectionDecl(TRD
);
4773 checkCorrectionVisibility(SemaRef
, Candidate
);
4774 if (!isCandidateViable(*CorrectionValidator
, Candidate
)) {
4775 if (SearchNamespaces
)
4776 QualifiedResults
.push_back(Candidate
);
4779 Candidate
.setCorrectionRange(SS
.get(), Result
.getLookupNameInfo());
4785 void TypoCorrectionConsumer::performQualifiedLookups() {
4786 unsigned TypoLen
= Typo
->getName().size();
4787 for (const TypoCorrection
&QR
: QualifiedResults
) {
4788 for (const auto &NSI
: Namespaces
) {
4789 DeclContext
*Ctx
= NSI
.DeclCtx
;
4790 const Type
*NSType
= NSI
.NameSpecifier
->getAsType();
4792 // If the current NestedNameSpecifier refers to a class and the
4793 // current correction candidate is the name of that class, then skip
4794 // it as it is unlikely a qualified version of the class' constructor
4795 // is an appropriate correction.
4796 if (CXXRecordDecl
*NSDecl
= NSType
? NSType
->getAsCXXRecordDecl() :
4798 if (NSDecl
->getIdentifier() == QR
.getCorrectionAsIdentifierInfo())
4802 TypoCorrection
TC(QR
);
4803 TC
.ClearCorrectionDecls();
4804 TC
.setCorrectionSpecifier(NSI
.NameSpecifier
);
4805 TC
.setQualifierDistance(NSI
.EditDistance
);
4806 TC
.setCallbackDistance(0); // Reset the callback distance
4808 // If the current correction candidate and namespace combination are
4809 // too far away from the original typo based on the normalized edit
4810 // distance, then skip performing a qualified name lookup.
4811 unsigned TmpED
= TC
.getEditDistance(true);
4812 if (QR
.getCorrectionAsIdentifierInfo() != Typo
&& TmpED
&&
4813 TypoLen
/ TmpED
< 3)
4817 Result
.setLookupName(QR
.getCorrectionAsIdentifierInfo());
4818 if (!SemaRef
.LookupQualifiedName(Result
, Ctx
))
4821 // Any corrections added below will be validated in subsequent
4822 // iterations of the main while() loop over the Consumer's contents.
4823 switch (Result
.getResultKind()) {
4824 case LookupResult::Found
:
4825 case LookupResult::FoundOverloaded
: {
4826 if (SS
&& SS
->isValid()) {
4827 std::string NewQualified
= TC
.getAsString(SemaRef
.getLangOpts());
4828 std::string OldQualified
;
4829 llvm::raw_string_ostream
OldOStream(OldQualified
);
4830 SS
->getScopeRep()->print(OldOStream
, SemaRef
.getPrintingPolicy());
4831 OldOStream
<< Typo
->getName();
4832 // If correction candidate would be an identical written qualified
4833 // identifier, then the existing CXXScopeSpec probably included a
4834 // typedef that didn't get accounted for properly.
4835 if (OldOStream
.str() == NewQualified
)
4838 for (LookupResult::iterator TRD
= Result
.begin(), TRDEnd
= Result
.end();
4839 TRD
!= TRDEnd
; ++TRD
) {
4840 if (SemaRef
.CheckMemberAccess(TC
.getCorrectionRange().getBegin(),
4841 NSType
? NSType
->getAsCXXRecordDecl()
4843 TRD
.getPair()) == Sema::AR_accessible
)
4844 TC
.addCorrectionDecl(*TRD
);
4846 if (TC
.isResolved()) {
4847 TC
.setCorrectionRange(SS
.get(), Result
.getLookupNameInfo());
4852 case LookupResult::NotFound
:
4853 case LookupResult::NotFoundInCurrentInstantiation
:
4854 case LookupResult::Ambiguous
:
4855 case LookupResult::FoundUnresolvedValue
:
4860 QualifiedResults
.clear();
4863 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4864 ASTContext
&Context
, DeclContext
*CurContext
, CXXScopeSpec
*CurScopeSpec
)
4865 : Context(Context
), CurContextChain(buildContextChain(CurContext
)) {
4866 if (NestedNameSpecifier
*NNS
=
4867 CurScopeSpec
? CurScopeSpec
->getScopeRep() : nullptr) {
4868 llvm::raw_string_ostream
SpecifierOStream(CurNameSpecifier
);
4869 NNS
->print(SpecifierOStream
, Context
.getPrintingPolicy());
4871 getNestedNameSpecifierIdentifiers(NNS
, CurNameSpecifierIdentifiers
);
4873 // Build the list of identifiers that would be used for an absolute
4874 // (from the global context) NestedNameSpecifier referring to the current
4876 for (DeclContext
*C
: llvm::reverse(CurContextChain
)) {
4877 if (auto *ND
= dyn_cast_or_null
<NamespaceDecl
>(C
))
4878 CurContextIdentifiers
.push_back(ND
->getIdentifier());
4881 // Add the global context as a NestedNameSpecifier
4882 SpecifierInfo SI
= {cast
<DeclContext
>(Context
.getTranslationUnitDecl()),
4883 NestedNameSpecifier::GlobalSpecifier(Context
), 1};
4884 DistanceMap
[1].push_back(SI
);
4887 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4888 DeclContext
*Start
) -> DeclContextList
{
4889 assert(Start
&& "Building a context chain from a null context");
4890 DeclContextList Chain
;
4891 for (DeclContext
*DC
= Start
->getPrimaryContext(); DC
!= nullptr;
4892 DC
= DC
->getLookupParent()) {
4893 NamespaceDecl
*ND
= dyn_cast_or_null
<NamespaceDecl
>(DC
);
4894 if (!DC
->isInlineNamespace() && !DC
->isTransparentContext() &&
4895 !(ND
&& ND
->isAnonymousNamespace()))
4896 Chain
.push_back(DC
->getPrimaryContext());
4902 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4903 DeclContextList
&DeclChain
, NestedNameSpecifier
*&NNS
) {
4904 unsigned NumSpecifiers
= 0;
4905 for (DeclContext
*C
: llvm::reverse(DeclChain
)) {
4906 if (auto *ND
= dyn_cast_or_null
<NamespaceDecl
>(C
)) {
4907 NNS
= NestedNameSpecifier::Create(Context
, NNS
, ND
);
4909 } else if (auto *RD
= dyn_cast_or_null
<RecordDecl
>(C
)) {
4910 NNS
= NestedNameSpecifier::Create(Context
, NNS
, RD
->isTemplateDecl(),
4911 RD
->getTypeForDecl());
4915 return NumSpecifiers
;
4918 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4920 NestedNameSpecifier
*NNS
= nullptr;
4921 unsigned NumSpecifiers
= 0;
4922 DeclContextList
NamespaceDeclChain(buildContextChain(Ctx
));
4923 DeclContextList
FullNamespaceDeclChain(NamespaceDeclChain
);
4925 // Eliminate common elements from the two DeclContext chains.
4926 for (DeclContext
*C
: llvm::reverse(CurContextChain
)) {
4927 if (NamespaceDeclChain
.empty() || NamespaceDeclChain
.back() != C
)
4929 NamespaceDeclChain
.pop_back();
4932 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4933 NumSpecifiers
= buildNestedNameSpecifier(NamespaceDeclChain
, NNS
);
4935 // Add an explicit leading '::' specifier if needed.
4936 if (NamespaceDeclChain
.empty()) {
4937 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4938 NNS
= NestedNameSpecifier::GlobalSpecifier(Context
);
4940 buildNestedNameSpecifier(FullNamespaceDeclChain
, NNS
);
4941 } else if (NamedDecl
*ND
=
4942 dyn_cast_or_null
<NamedDecl
>(NamespaceDeclChain
.back())) {
4943 IdentifierInfo
*Name
= ND
->getIdentifier();
4944 bool SameNameSpecifier
= false;
4945 if (llvm::is_contained(CurNameSpecifierIdentifiers
, Name
)) {
4946 std::string NewNameSpecifier
;
4947 llvm::raw_string_ostream
SpecifierOStream(NewNameSpecifier
);
4948 SmallVector
<const IdentifierInfo
*, 4> NewNameSpecifierIdentifiers
;
4949 getNestedNameSpecifierIdentifiers(NNS
, NewNameSpecifierIdentifiers
);
4950 NNS
->print(SpecifierOStream
, Context
.getPrintingPolicy());
4951 SpecifierOStream
.flush();
4952 SameNameSpecifier
= NewNameSpecifier
== CurNameSpecifier
;
4954 if (SameNameSpecifier
|| llvm::is_contained(CurContextIdentifiers
, Name
)) {
4955 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4956 NNS
= NestedNameSpecifier::GlobalSpecifier(Context
);
4958 buildNestedNameSpecifier(FullNamespaceDeclChain
, NNS
);
4962 // If the built NestedNameSpecifier would be replacing an existing
4963 // NestedNameSpecifier, use the number of component identifiers that
4964 // would need to be changed as the edit distance instead of the number
4965 // of components in the built NestedNameSpecifier.
4966 if (NNS
&& !CurNameSpecifierIdentifiers
.empty()) {
4967 SmallVector
<const IdentifierInfo
*, 4> NewNameSpecifierIdentifiers
;
4968 getNestedNameSpecifierIdentifiers(NNS
, NewNameSpecifierIdentifiers
);
4970 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers
),
4971 llvm::ArrayRef(NewNameSpecifierIdentifiers
));
4974 SpecifierInfo SI
= {Ctx
, NNS
, NumSpecifiers
};
4975 DistanceMap
[NumSpecifiers
].push_back(SI
);
4978 /// Perform name lookup for a possible result for typo correction.
4979 static void LookupPotentialTypoResult(Sema
&SemaRef
,
4981 IdentifierInfo
*Name
,
4982 Scope
*S
, CXXScopeSpec
*SS
,
4983 DeclContext
*MemberContext
,
4984 bool EnteringContext
,
4985 bool isObjCIvarLookup
,
4987 Res
.suppressDiagnostics();
4989 Res
.setLookupName(Name
);
4990 Res
.setAllowHidden(FindHidden
);
4991 if (MemberContext
) {
4992 if (ObjCInterfaceDecl
*Class
= dyn_cast
<ObjCInterfaceDecl
>(MemberContext
)) {
4993 if (isObjCIvarLookup
) {
4994 if (ObjCIvarDecl
*Ivar
= Class
->lookupInstanceVariable(Name
)) {
5001 if (ObjCPropertyDecl
*Prop
= Class
->FindPropertyDeclaration(
5002 Name
, ObjCPropertyQueryKind::OBJC_PR_query_instance
)) {
5009 SemaRef
.LookupQualifiedName(Res
, MemberContext
);
5013 SemaRef
.LookupParsedName(Res
, S
, SS
, /*AllowBuiltinCreation=*/false,
5016 // Fake ivar lookup; this should really be part of
5017 // LookupParsedName.
5018 if (ObjCMethodDecl
*Method
= SemaRef
.getCurMethodDecl()) {
5019 if (Method
->isInstanceMethod() && Method
->getClassInterface() &&
5021 (Res
.isSingleResult() &&
5022 Res
.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5023 if (ObjCIvarDecl
*IV
5024 = Method
->getClassInterface()->lookupInstanceVariable(Name
)) {
5032 /// Add keywords to the consumer as possible typo corrections.
5033 static void AddKeywordsToConsumer(Sema
&SemaRef
,
5034 TypoCorrectionConsumer
&Consumer
,
5035 Scope
*S
, CorrectionCandidateCallback
&CCC
,
5036 bool AfterNestedNameSpecifier
) {
5037 if (AfterNestedNameSpecifier
) {
5038 // For 'X::', we know exactly which keywords can appear next.
5039 Consumer
.addKeywordResult("template");
5040 if (CCC
.WantExpressionKeywords
)
5041 Consumer
.addKeywordResult("operator");
5045 if (CCC
.WantObjCSuper
)
5046 Consumer
.addKeywordResult("super");
5048 if (CCC
.WantTypeSpecifiers
) {
5049 // Add type-specifier keywords to the set of results.
5050 static const char *const CTypeSpecs
[] = {
5051 "char", "const", "double", "enum", "float", "int", "long", "short",
5052 "signed", "struct", "union", "unsigned", "void", "volatile",
5053 "_Complex", "_Imaginary",
5054 // storage-specifiers as well
5055 "extern", "inline", "static", "typedef"
5058 for (const auto *CTS
: CTypeSpecs
)
5059 Consumer
.addKeywordResult(CTS
);
5061 if (SemaRef
.getLangOpts().C99
)
5062 Consumer
.addKeywordResult("restrict");
5063 if (SemaRef
.getLangOpts().Bool
|| SemaRef
.getLangOpts().CPlusPlus
)
5064 Consumer
.addKeywordResult("bool");
5065 else if (SemaRef
.getLangOpts().C99
)
5066 Consumer
.addKeywordResult("_Bool");
5068 if (SemaRef
.getLangOpts().CPlusPlus
) {
5069 Consumer
.addKeywordResult("class");
5070 Consumer
.addKeywordResult("typename");
5071 Consumer
.addKeywordResult("wchar_t");
5073 if (SemaRef
.getLangOpts().CPlusPlus11
) {
5074 Consumer
.addKeywordResult("char16_t");
5075 Consumer
.addKeywordResult("char32_t");
5076 Consumer
.addKeywordResult("constexpr");
5077 Consumer
.addKeywordResult("decltype");
5078 Consumer
.addKeywordResult("thread_local");
5082 if (SemaRef
.getLangOpts().GNUKeywords
)
5083 Consumer
.addKeywordResult("typeof");
5084 } else if (CCC
.WantFunctionLikeCasts
) {
5085 static const char *const CastableTypeSpecs
[] = {
5086 "char", "double", "float", "int", "long", "short",
5087 "signed", "unsigned", "void"
5089 for (auto *kw
: CastableTypeSpecs
)
5090 Consumer
.addKeywordResult(kw
);
5093 if (CCC
.WantCXXNamedCasts
&& SemaRef
.getLangOpts().CPlusPlus
) {
5094 Consumer
.addKeywordResult("const_cast");
5095 Consumer
.addKeywordResult("dynamic_cast");
5096 Consumer
.addKeywordResult("reinterpret_cast");
5097 Consumer
.addKeywordResult("static_cast");
5100 if (CCC
.WantExpressionKeywords
) {
5101 Consumer
.addKeywordResult("sizeof");
5102 if (SemaRef
.getLangOpts().Bool
|| SemaRef
.getLangOpts().CPlusPlus
) {
5103 Consumer
.addKeywordResult("false");
5104 Consumer
.addKeywordResult("true");
5107 if (SemaRef
.getLangOpts().CPlusPlus
) {
5108 static const char *const CXXExprs
[] = {
5109 "delete", "new", "operator", "throw", "typeid"
5111 for (const auto *CE
: CXXExprs
)
5112 Consumer
.addKeywordResult(CE
);
5114 if (isa
<CXXMethodDecl
>(SemaRef
.CurContext
) &&
5115 cast
<CXXMethodDecl
>(SemaRef
.CurContext
)->isInstance())
5116 Consumer
.addKeywordResult("this");
5118 if (SemaRef
.getLangOpts().CPlusPlus11
) {
5119 Consumer
.addKeywordResult("alignof");
5120 Consumer
.addKeywordResult("nullptr");
5124 if (SemaRef
.getLangOpts().C11
) {
5125 // FIXME: We should not suggest _Alignof if the alignof macro
5127 Consumer
.addKeywordResult("_Alignof");
5131 if (CCC
.WantRemainingKeywords
) {
5132 if (SemaRef
.getCurFunctionOrMethodDecl() || SemaRef
.getCurBlock()) {
5134 static const char *const CStmts
[] = {
5135 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5136 for (const auto *CS
: CStmts
)
5137 Consumer
.addKeywordResult(CS
);
5139 if (SemaRef
.getLangOpts().CPlusPlus
) {
5140 Consumer
.addKeywordResult("catch");
5141 Consumer
.addKeywordResult("try");
5144 if (S
&& S
->getBreakParent())
5145 Consumer
.addKeywordResult("break");
5147 if (S
&& S
->getContinueParent())
5148 Consumer
.addKeywordResult("continue");
5150 if (SemaRef
.getCurFunction() &&
5151 !SemaRef
.getCurFunction()->SwitchStack
.empty()) {
5152 Consumer
.addKeywordResult("case");
5153 Consumer
.addKeywordResult("default");
5156 if (SemaRef
.getLangOpts().CPlusPlus
) {
5157 Consumer
.addKeywordResult("namespace");
5158 Consumer
.addKeywordResult("template");
5161 if (S
&& S
->isClassScope()) {
5162 Consumer
.addKeywordResult("explicit");
5163 Consumer
.addKeywordResult("friend");
5164 Consumer
.addKeywordResult("mutable");
5165 Consumer
.addKeywordResult("private");
5166 Consumer
.addKeywordResult("protected");
5167 Consumer
.addKeywordResult("public");
5168 Consumer
.addKeywordResult("virtual");
5172 if (SemaRef
.getLangOpts().CPlusPlus
) {
5173 Consumer
.addKeywordResult("using");
5175 if (SemaRef
.getLangOpts().CPlusPlus11
)
5176 Consumer
.addKeywordResult("static_assert");
5181 std::unique_ptr
<TypoCorrectionConsumer
> Sema::makeTypoCorrectionConsumer(
5182 const DeclarationNameInfo
&TypoName
, Sema::LookupNameKind LookupKind
,
5183 Scope
*S
, CXXScopeSpec
*SS
, CorrectionCandidateCallback
&CCC
,
5184 DeclContext
*MemberContext
, bool EnteringContext
,
5185 const ObjCObjectPointerType
*OPT
, bool ErrorRecovery
) {
5187 if (Diags
.hasFatalErrorOccurred() || !getLangOpts().SpellChecking
||
5188 DisableTypoCorrection
)
5191 // In Microsoft mode, don't perform typo correction in a template member
5192 // function dependent context because it interferes with the "lookup into
5193 // dependent bases of class templates" feature.
5194 if (getLangOpts().MSVCCompat
&& CurContext
->isDependentContext() &&
5195 isa
<CXXMethodDecl
>(CurContext
))
5198 // We only attempt to correct typos for identifiers.
5199 IdentifierInfo
*Typo
= TypoName
.getName().getAsIdentifierInfo();
5203 // If the scope specifier itself was invalid, don't try to correct
5205 if (SS
&& SS
->isInvalid())
5208 // Never try to correct typos during any kind of code synthesis.
5209 if (!CodeSynthesisContexts
.empty())
5212 // Don't try to correct 'super'.
5213 if (S
&& S
->isInObjcMethodScope() && Typo
== getSuperIdentifier())
5216 // Abort if typo correction already failed for this specific typo.
5217 IdentifierSourceLocations::iterator locs
= TypoCorrectionFailures
.find(Typo
);
5218 if (locs
!= TypoCorrectionFailures
.end() &&
5219 locs
->second
.count(TypoName
.getLoc()))
5222 // Don't try to correct the identifier "vector" when in AltiVec mode.
5223 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5224 // remove this workaround.
5225 if ((getLangOpts().AltiVec
|| getLangOpts().ZVector
) && Typo
->isStr("vector"))
5228 // Provide a stop gap for files that are just seriously broken. Trying
5229 // to correct all typos can turn into a HUGE performance penalty, causing
5230 // some files to take minutes to get rejected by the parser.
5231 unsigned Limit
= getDiagnostics().getDiagnosticOptions().SpellCheckingLimit
;
5232 if (Limit
&& TyposCorrected
>= Limit
)
5236 // If we're handling a missing symbol error, using modules, and the
5237 // special search all modules option is used, look for a missing import.
5238 if (ErrorRecovery
&& getLangOpts().Modules
&&
5239 getLangOpts().ModulesSearchAll
) {
5240 // The following has the side effect of loading the missing module.
5241 getModuleLoader().lookupMissingImports(Typo
->getName(),
5242 TypoName
.getBeginLoc());
5245 // Extend the lifetime of the callback. We delayed this until here
5246 // to avoid allocations in the hot path (which is where no typo correction
5247 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5248 // initially stack-allocated.
5249 std::unique_ptr
<CorrectionCandidateCallback
> ClonedCCC
= CCC
.clone();
5250 auto Consumer
= std::make_unique
<TypoCorrectionConsumer
>(
5251 *this, TypoName
, LookupKind
, S
, SS
, std::move(ClonedCCC
), MemberContext
,
5254 // Perform name lookup to find visible, similarly-named entities.
5255 bool IsUnqualifiedLookup
= false;
5256 DeclContext
*QualifiedDC
= MemberContext
;
5257 if (MemberContext
) {
5258 LookupVisibleDecls(MemberContext
, LookupKind
, *Consumer
);
5260 // Look in qualified interfaces.
5262 for (auto *I
: OPT
->quals())
5263 LookupVisibleDecls(I
, LookupKind
, *Consumer
);
5265 } else if (SS
&& SS
->isSet()) {
5266 QualifiedDC
= computeDeclContext(*SS
, EnteringContext
);
5270 LookupVisibleDecls(QualifiedDC
, LookupKind
, *Consumer
);
5272 IsUnqualifiedLookup
= true;
5275 // Determine whether we are going to search in the various namespaces for
5277 bool SearchNamespaces
5278 = getLangOpts().CPlusPlus
&&
5279 (IsUnqualifiedLookup
|| (SS
&& SS
->isSet()));
5281 if (IsUnqualifiedLookup
|| SearchNamespaces
) {
5282 // For unqualified lookup, look through all of the names that we have
5283 // seen in this translation unit.
5284 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5285 for (const auto &I
: Context
.Idents
)
5286 Consumer
->FoundName(I
.getKey());
5288 // Walk through identifiers in external identifier sources.
5289 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5290 if (IdentifierInfoLookup
*External
5291 = Context
.Idents
.getExternalIdentifierLookup()) {
5292 std::unique_ptr
<IdentifierIterator
> Iter(External
->getIdentifiers());
5294 StringRef Name
= Iter
->Next();
5298 Consumer
->FoundName(Name
);
5303 AddKeywordsToConsumer(*this, *Consumer
, S
,
5304 *Consumer
->getCorrectionValidator(),
5305 SS
&& SS
->isNotEmpty());
5307 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5308 // to search those namespaces.
5309 if (SearchNamespaces
) {
5310 // Load any externally-known namespaces.
5311 if (ExternalSource
&& !LoadedExternalKnownNamespaces
) {
5312 SmallVector
<NamespaceDecl
*, 4> ExternalKnownNamespaces
;
5313 LoadedExternalKnownNamespaces
= true;
5314 ExternalSource
->ReadKnownNamespaces(ExternalKnownNamespaces
);
5315 for (auto *N
: ExternalKnownNamespaces
)
5316 KnownNamespaces
[N
] = true;
5319 Consumer
->addNamespaces(KnownNamespaces
);
5325 /// Try to "correct" a typo in the source code by finding
5326 /// visible declarations whose names are similar to the name that was
5327 /// present in the source code.
5329 /// \param TypoName the \c DeclarationNameInfo structure that contains
5330 /// the name that was present in the source code along with its location.
5332 /// \param LookupKind the name-lookup criteria used to search for the name.
5334 /// \param S the scope in which name lookup occurs.
5336 /// \param SS the nested-name-specifier that precedes the name we're
5337 /// looking for, if present.
5339 /// \param CCC A CorrectionCandidateCallback object that provides further
5340 /// validation of typo correction candidates. It also provides flags for
5341 /// determining the set of keywords permitted.
5343 /// \param MemberContext if non-NULL, the context in which to look for
5344 /// a member access expression.
5346 /// \param EnteringContext whether we're entering the context described by
5347 /// the nested-name-specifier SS.
5349 /// \param OPT when non-NULL, the search for visible declarations will
5350 /// also walk the protocols in the qualified interfaces of \p OPT.
5352 /// \returns a \c TypoCorrection containing the corrected name if the typo
5353 /// along with information such as the \c NamedDecl where the corrected name
5354 /// was declared, and any additional \c NestedNameSpecifier needed to access
5355 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5356 TypoCorrection
Sema::CorrectTypo(const DeclarationNameInfo
&TypoName
,
5357 Sema::LookupNameKind LookupKind
,
5358 Scope
*S
, CXXScopeSpec
*SS
,
5359 CorrectionCandidateCallback
&CCC
,
5360 CorrectTypoKind Mode
,
5361 DeclContext
*MemberContext
,
5362 bool EnteringContext
,
5363 const ObjCObjectPointerType
*OPT
,
5364 bool RecordFailure
) {
5365 // Always let the ExternalSource have the first chance at correction, even
5366 // if we would otherwise have given up.
5367 if (ExternalSource
) {
5368 if (TypoCorrection Correction
=
5369 ExternalSource
->CorrectTypo(TypoName
, LookupKind
, S
, SS
, CCC
,
5370 MemberContext
, EnteringContext
, OPT
))
5374 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5375 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5376 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5377 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5378 bool ObjCMessageReceiver
= CCC
.WantObjCSuper
&& !CCC
.WantRemainingKeywords
;
5380 IdentifierInfo
*Typo
= TypoName
.getName().getAsIdentifierInfo();
5381 auto Consumer
= makeTypoCorrectionConsumer(TypoName
, LookupKind
, S
, SS
, CCC
,
5382 MemberContext
, EnteringContext
,
5383 OPT
, Mode
== CTK_ErrorRecovery
);
5386 return TypoCorrection();
5388 // If we haven't found anything, we're done.
5389 if (Consumer
->empty())
5390 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5392 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5393 // is not more that about a third of the length of the typo's identifier.
5394 unsigned ED
= Consumer
->getBestEditDistance(true);
5395 unsigned TypoLen
= Typo
->getName().size();
5396 if (ED
> 0 && TypoLen
/ ED
< 3)
5397 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5399 TypoCorrection BestTC
= Consumer
->getNextCorrection();
5400 TypoCorrection SecondBestTC
= Consumer
->getNextCorrection();
5402 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5404 ED
= BestTC
.getEditDistance();
5406 if (TypoLen
>= 3 && ED
> 0 && TypoLen
/ ED
< 3) {
5407 // If this was an unqualified lookup and we believe the callback
5408 // object wouldn't have filtered out possible corrections, note
5409 // that no correction was found.
5410 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5413 // If only a single name remains, return that result.
5414 if (!SecondBestTC
||
5415 SecondBestTC
.getEditDistance(false) > BestTC
.getEditDistance(false)) {
5416 const TypoCorrection
&Result
= BestTC
;
5418 // Don't correct to a keyword that's the same as the typo; the keyword
5419 // wasn't actually in scope.
5420 if (ED
== 0 && Result
.isKeyword())
5421 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5423 TypoCorrection TC
= Result
;
5424 TC
.setCorrectionRange(SS
, TypoName
);
5425 checkCorrectionVisibility(*this, TC
);
5427 } else if (SecondBestTC
&& ObjCMessageReceiver
) {
5428 // Prefer 'super' when we're completing in a message-receiver
5431 if (BestTC
.getCorrection().getAsString() != "super") {
5432 if (SecondBestTC
.getCorrection().getAsString() == "super")
5433 BestTC
= SecondBestTC
;
5434 else if ((*Consumer
)["super"].front().isKeyword())
5435 BestTC
= (*Consumer
)["super"].front();
5437 // Don't correct to a keyword that's the same as the typo; the keyword
5438 // wasn't actually in scope.
5439 if (BestTC
.getEditDistance() == 0 ||
5440 BestTC
.getCorrection().getAsString() != "super")
5441 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5443 BestTC
.setCorrectionRange(SS
, TypoName
);
5447 // Record the failure's location if needed and return an empty correction. If
5448 // this was an unqualified lookup and we believe the callback object did not
5449 // filter out possible corrections, also cache the failure for the typo.
5450 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
&& !SecondBestTC
);
5453 /// Try to "correct" a typo in the source code by finding
5454 /// visible declarations whose names are similar to the name that was
5455 /// present in the source code.
5457 /// \param TypoName the \c DeclarationNameInfo structure that contains
5458 /// the name that was present in the source code along with its location.
5460 /// \param LookupKind the name-lookup criteria used to search for the name.
5462 /// \param S the scope in which name lookup occurs.
5464 /// \param SS the nested-name-specifier that precedes the name we're
5465 /// looking for, if present.
5467 /// \param CCC A CorrectionCandidateCallback object that provides further
5468 /// validation of typo correction candidates. It also provides flags for
5469 /// determining the set of keywords permitted.
5471 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5472 /// diagnostics when the actual typo correction is attempted.
5474 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5475 /// Expr from a typo correction candidate.
5477 /// \param MemberContext if non-NULL, the context in which to look for
5478 /// a member access expression.
5480 /// \param EnteringContext whether we're entering the context described by
5481 /// the nested-name-specifier SS.
5483 /// \param OPT when non-NULL, the search for visible declarations will
5484 /// also walk the protocols in the qualified interfaces of \p OPT.
5486 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5487 /// Expr representing the result of performing typo correction, or nullptr if
5488 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5489 /// be emitted and it is the responsibility of the caller to emit any that are
5491 TypoExpr
*Sema::CorrectTypoDelayed(
5492 const DeclarationNameInfo
&TypoName
, Sema::LookupNameKind LookupKind
,
5493 Scope
*S
, CXXScopeSpec
*SS
, CorrectionCandidateCallback
&CCC
,
5494 TypoDiagnosticGenerator TDG
, TypoRecoveryCallback TRC
, CorrectTypoKind Mode
,
5495 DeclContext
*MemberContext
, bool EnteringContext
,
5496 const ObjCObjectPointerType
*OPT
) {
5497 auto Consumer
= makeTypoCorrectionConsumer(TypoName
, LookupKind
, S
, SS
, CCC
,
5498 MemberContext
, EnteringContext
,
5499 OPT
, Mode
== CTK_ErrorRecovery
);
5501 // Give the external sema source a chance to correct the typo.
5502 TypoCorrection ExternalTypo
;
5503 if (ExternalSource
&& Consumer
) {
5504 ExternalTypo
= ExternalSource
->CorrectTypo(
5505 TypoName
, LookupKind
, S
, SS
, *Consumer
->getCorrectionValidator(),
5506 MemberContext
, EnteringContext
, OPT
);
5508 Consumer
->addCorrection(ExternalTypo
);
5511 if (!Consumer
|| Consumer
->empty())
5514 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5515 // is not more that about a third of the length of the typo's identifier.
5516 unsigned ED
= Consumer
->getBestEditDistance(true);
5517 IdentifierInfo
*Typo
= TypoName
.getName().getAsIdentifierInfo();
5518 if (!ExternalTypo
&& ED
> 0 && Typo
->getName().size() / ED
< 3)
5520 ExprEvalContexts
.back().NumTypos
++;
5521 return createDelayedTypo(std::move(Consumer
), std::move(TDG
), std::move(TRC
),
5525 void TypoCorrection::addCorrectionDecl(NamedDecl
*CDecl
) {
5529 CorrectionDecls
.clear();
5531 CorrectionDecls
.push_back(CDecl
);
5533 if (!CorrectionName
)
5534 CorrectionName
= CDecl
->getDeclName();
5537 std::string
TypoCorrection::getAsString(const LangOptions
&LO
) const {
5538 if (CorrectionNameSpec
) {
5539 std::string tmpBuffer
;
5540 llvm::raw_string_ostream
PrefixOStream(tmpBuffer
);
5541 CorrectionNameSpec
->print(PrefixOStream
, PrintingPolicy(LO
));
5542 PrefixOStream
<< CorrectionName
;
5543 return PrefixOStream
.str();
5546 return CorrectionName
.getAsString();
5549 bool CorrectionCandidateCallback::ValidateCandidate(
5550 const TypoCorrection
&candidate
) {
5551 if (!candidate
.isResolved())
5554 if (candidate
.isKeyword())
5555 return WantTypeSpecifiers
|| WantExpressionKeywords
|| WantCXXNamedCasts
||
5556 WantRemainingKeywords
|| WantObjCSuper
;
5558 bool HasNonType
= false;
5559 bool HasStaticMethod
= false;
5560 bool HasNonStaticMethod
= false;
5561 for (Decl
*D
: candidate
) {
5562 if (FunctionTemplateDecl
*FTD
= dyn_cast
<FunctionTemplateDecl
>(D
))
5563 D
= FTD
->getTemplatedDecl();
5564 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
5565 if (Method
->isStatic())
5566 HasStaticMethod
= true;
5568 HasNonStaticMethod
= true;
5570 if (!isa
<TypeDecl
>(D
))
5574 if (IsAddressOfOperand
&& HasNonStaticMethod
&& !HasStaticMethod
&&
5575 !candidate
.getCorrectionSpecifier())
5578 return WantTypeSpecifiers
|| HasNonType
;
5581 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema
&SemaRef
, unsigned NumArgs
,
5582 bool HasExplicitTemplateArgs
,
5584 : NumArgs(NumArgs
), HasExplicitTemplateArgs(HasExplicitTemplateArgs
),
5585 CurContext(SemaRef
.CurContext
), MemberFn(ME
) {
5586 WantTypeSpecifiers
= false;
5587 WantFunctionLikeCasts
= SemaRef
.getLangOpts().CPlusPlus
&&
5588 !HasExplicitTemplateArgs
&& NumArgs
== 1;
5589 WantCXXNamedCasts
= HasExplicitTemplateArgs
&& NumArgs
== 1;
5590 WantRemainingKeywords
= false;
5593 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection
&candidate
) {
5594 if (!candidate
.getCorrectionDecl())
5595 return candidate
.isKeyword();
5597 for (auto *C
: candidate
) {
5598 FunctionDecl
*FD
= nullptr;
5599 NamedDecl
*ND
= C
->getUnderlyingDecl();
5600 if (FunctionTemplateDecl
*FTD
= dyn_cast
<FunctionTemplateDecl
>(ND
))
5601 FD
= FTD
->getTemplatedDecl();
5602 if (!HasExplicitTemplateArgs
&& !FD
) {
5603 if (!(FD
= dyn_cast
<FunctionDecl
>(ND
)) && isa
<ValueDecl
>(ND
)) {
5604 // If the Decl is neither a function nor a template function,
5605 // determine if it is a pointer or reference to a function. If so,
5606 // check against the number of arguments expected for the pointee.
5607 QualType ValType
= cast
<ValueDecl
>(ND
)->getType();
5608 if (ValType
.isNull())
5610 if (ValType
->isAnyPointerType() || ValType
->isReferenceType())
5611 ValType
= ValType
->getPointeeType();
5612 if (const FunctionProtoType
*FPT
= ValType
->getAs
<FunctionProtoType
>())
5613 if (FPT
->getNumParams() == NumArgs
)
5618 // A typo for a function-style cast can look like a function call in C++.
5619 if ((HasExplicitTemplateArgs
? getAsTypeTemplateDecl(ND
) != nullptr
5620 : isa
<TypeDecl
>(ND
)) &&
5621 CurContext
->getParentASTContext().getLangOpts().CPlusPlus
)
5622 // Only a class or class template can take two or more arguments.
5623 return NumArgs
<= 1 || HasExplicitTemplateArgs
|| isa
<CXXRecordDecl
>(ND
);
5625 // Skip the current candidate if it is not a FunctionDecl or does not accept
5626 // the current number of arguments.
5627 if (!FD
|| !(FD
->getNumParams() >= NumArgs
&&
5628 FD
->getMinRequiredArguments() <= NumArgs
))
5631 // If the current candidate is a non-static C++ method, skip the candidate
5632 // unless the method being corrected--or the current DeclContext, if the
5633 // function being corrected is not a method--is a method in the same class
5634 // or a descendent class of the candidate's parent class.
5635 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
5636 if (MemberFn
|| !MD
->isStatic()) {
5639 ? dyn_cast_if_present
<CXXMethodDecl
>(MemberFn
->getMemberDecl())
5640 : dyn_cast_if_present
<CXXMethodDecl
>(CurContext
);
5641 const CXXRecordDecl
*CurRD
=
5642 CurMD
? CurMD
->getParent()->getCanonicalDecl() : nullptr;
5643 const CXXRecordDecl
*RD
= MD
->getParent()->getCanonicalDecl();
5644 if (!CurRD
|| (CurRD
!= RD
&& !CurRD
->isDerivedFrom(RD
)))
5653 void Sema::diagnoseTypo(const TypoCorrection
&Correction
,
5654 const PartialDiagnostic
&TypoDiag
,
5655 bool ErrorRecovery
) {
5656 diagnoseTypo(Correction
, TypoDiag
, PDiag(diag::note_previous_decl
),
5660 /// Find which declaration we should import to provide the definition of
5661 /// the given declaration.
5662 static const NamedDecl
*getDefinitionToImport(const NamedDecl
*D
) {
5663 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
5664 return VD
->getDefinition();
5665 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
5666 return FD
->getDefinition();
5667 if (const auto *TD
= dyn_cast
<TagDecl
>(D
))
5668 return TD
->getDefinition();
5669 if (const auto *ID
= dyn_cast
<ObjCInterfaceDecl
>(D
))
5670 return ID
->getDefinition();
5671 if (const auto *PD
= dyn_cast
<ObjCProtocolDecl
>(D
))
5672 return PD
->getDefinition();
5673 if (const auto *TD
= dyn_cast
<TemplateDecl
>(D
))
5674 if (const NamedDecl
*TTD
= TD
->getTemplatedDecl())
5675 return getDefinitionToImport(TTD
);
5679 void Sema::diagnoseMissingImport(SourceLocation Loc
, const NamedDecl
*Decl
,
5680 MissingImportKind MIK
, bool Recover
) {
5681 // Suggest importing a module providing the definition of this entity, if
5683 const NamedDecl
*Def
= getDefinitionToImport(Decl
);
5687 Module
*Owner
= getOwningModule(Def
);
5688 assert(Owner
&& "definition of hidden declaration is not in a module");
5690 llvm::SmallVector
<Module
*, 8> OwningModules
;
5691 OwningModules
.push_back(Owner
);
5692 auto Merged
= Context
.getModulesWithMergedDefinition(Def
);
5693 OwningModules
.insert(OwningModules
.end(), Merged
.begin(), Merged
.end());
5695 diagnoseMissingImport(Loc
, Def
, Def
->getLocation(), OwningModules
, MIK
,
5699 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5700 /// suggesting the addition of a #include of the specified file.
5701 static std::string
getHeaderNameForHeader(Preprocessor
&PP
, FileEntryRef E
,
5702 llvm::StringRef IncludingFile
) {
5703 bool IsAngled
= false;
5704 auto Path
= PP
.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5705 E
, IncludingFile
, &IsAngled
);
5706 return (IsAngled
? '<' : '"') + Path
+ (IsAngled
? '>' : '"');
5709 void Sema::diagnoseMissingImport(SourceLocation UseLoc
, const NamedDecl
*Decl
,
5710 SourceLocation DeclLoc
,
5711 ArrayRef
<Module
*> Modules
,
5712 MissingImportKind MIK
, bool Recover
) {
5713 assert(!Modules
.empty());
5715 // See https://github.com/llvm/llvm-project/issues/73893. It is generally
5716 // confusing than helpful to show the namespace is not visible.
5717 if (isa
<NamespaceDecl
>(Decl
))
5720 auto NotePrevious
= [&] {
5721 // FIXME: Suppress the note backtrace even under
5722 // -fdiagnostics-show-note-include-stack. We don't care how this
5723 // declaration was previously reached.
5724 Diag(DeclLoc
, diag::note_unreachable_entity
) << (int)MIK
;
5727 // Weed out duplicates from module list.
5728 llvm::SmallVector
<Module
*, 8> UniqueModules
;
5729 llvm::SmallDenseSet
<Module
*, 8> UniqueModuleSet
;
5730 for (auto *M
: Modules
) {
5731 if (M
->isExplicitGlobalModule() || M
->isPrivateModule())
5733 if (UniqueModuleSet
.insert(M
).second
)
5734 UniqueModules
.push_back(M
);
5737 // Try to find a suitable header-name to #include.
5738 std::string HeaderName
;
5739 if (OptionalFileEntryRef Header
=
5740 PP
.getHeaderToIncludeForDiagnostics(UseLoc
, DeclLoc
)) {
5741 if (const FileEntry
*FE
=
5742 SourceMgr
.getFileEntryForID(SourceMgr
.getFileID(UseLoc
)))
5744 getHeaderNameForHeader(PP
, *Header
, FE
->tryGetRealPathName());
5747 // If we have a #include we should suggest, or if all definition locations
5748 // were in global module fragments, don't suggest an import.
5749 if (!HeaderName
.empty() || UniqueModules
.empty()) {
5750 // FIXME: Find a smart place to suggest inserting a #include, and add
5751 // a FixItHint there.
5752 Diag(UseLoc
, diag::err_module_unimported_use_header
)
5753 << (int)MIK
<< Decl
<< !HeaderName
.empty() << HeaderName
;
5754 // Produce a note showing where the entity was declared.
5757 createImplicitModuleImportForErrorRecovery(UseLoc
, Modules
[0]);
5761 Modules
= UniqueModules
;
5763 auto GetModuleNameForDiagnostic
= [this](const Module
*M
) -> std::string
{
5764 if (M
->isModuleMapModule())
5765 return M
->getFullModuleName();
5767 Module
*CurrentModule
= getCurrentModule();
5769 if (M
->isImplicitGlobalModule())
5770 M
= M
->getTopLevelModule();
5772 bool IsInTheSameModule
=
5773 CurrentModule
&& CurrentModule
->getPrimaryModuleInterfaceName() ==
5774 M
->getPrimaryModuleInterfaceName();
5776 // If the current module unit is in the same module with M, it is OK to show
5777 // the partition name. Otherwise, it'll be sufficient to show the primary
5779 if (IsInTheSameModule
)
5780 return M
->getTopLevelModuleName().str();
5782 return M
->getPrimaryModuleInterfaceName().str();
5785 if (Modules
.size() > 1) {
5786 std::string ModuleList
;
5788 for (const auto *M
: Modules
) {
5789 ModuleList
+= "\n ";
5790 if (++N
== 5 && N
!= Modules
.size()) {
5791 ModuleList
+= "[...]";
5794 ModuleList
+= GetModuleNameForDiagnostic(M
);
5797 Diag(UseLoc
, diag::err_module_unimported_use_multiple
)
5798 << (int)MIK
<< Decl
<< ModuleList
;
5800 // FIXME: Add a FixItHint that imports the corresponding module.
5801 Diag(UseLoc
, diag::err_module_unimported_use
)
5802 << (int)MIK
<< Decl
<< GetModuleNameForDiagnostic(Modules
[0]);
5807 // Try to recover by implicitly importing this module.
5809 createImplicitModuleImportForErrorRecovery(UseLoc
, Modules
[0]);
5812 /// Diagnose a successfully-corrected typo. Separated from the correction
5813 /// itself to allow external validation of the result, etc.
5815 /// \param Correction The result of performing typo correction.
5816 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5817 /// string added to it (and usually also a fixit).
5818 /// \param PrevNote A note to use when indicating the location of the entity to
5819 /// which we are correcting. Will have the correction string added to it.
5820 /// \param ErrorRecovery If \c true (the default), the caller is going to
5821 /// recover from the typo as if the corrected string had been typed.
5822 /// In this case, \c PDiag must be an error, and we will attach a fixit
5824 void Sema::diagnoseTypo(const TypoCorrection
&Correction
,
5825 const PartialDiagnostic
&TypoDiag
,
5826 const PartialDiagnostic
&PrevNote
,
5827 bool ErrorRecovery
) {
5828 std::string CorrectedStr
= Correction
.getAsString(getLangOpts());
5829 std::string CorrectedQuotedStr
= Correction
.getQuoted(getLangOpts());
5830 FixItHint FixTypo
= FixItHint::CreateReplacement(
5831 Correction
.getCorrectionRange(), CorrectedStr
);
5833 // Maybe we're just missing a module import.
5834 if (Correction
.requiresImport()) {
5835 NamedDecl
*Decl
= Correction
.getFoundDecl();
5836 assert(Decl
&& "import required but no declaration to import");
5838 diagnoseMissingImport(Correction
.getCorrectionRange().getBegin(), Decl
,
5839 MissingImportKind::Declaration
, ErrorRecovery
);
5843 Diag(Correction
.getCorrectionRange().getBegin(), TypoDiag
)
5844 << CorrectedQuotedStr
<< (ErrorRecovery
? FixTypo
: FixItHint());
5846 NamedDecl
*ChosenDecl
=
5847 Correction
.isKeyword() ? nullptr : Correction
.getFoundDecl();
5848 if (PrevNote
.getDiagID() && ChosenDecl
)
5849 Diag(ChosenDecl
->getLocation(), PrevNote
)
5850 << CorrectedQuotedStr
<< (ErrorRecovery
? FixItHint() : FixTypo
);
5852 // Add any extra diagnostics.
5853 for (const PartialDiagnostic
&PD
: Correction
.getExtraDiagnostics())
5854 Diag(Correction
.getCorrectionRange().getBegin(), PD
);
5857 TypoExpr
*Sema::createDelayedTypo(std::unique_ptr
<TypoCorrectionConsumer
> TCC
,
5858 TypoDiagnosticGenerator TDG
,
5859 TypoRecoveryCallback TRC
,
5860 SourceLocation TypoLoc
) {
5861 assert(TCC
&& "createDelayedTypo requires a valid TypoCorrectionConsumer");
5862 auto TE
= new (Context
) TypoExpr(Context
.DependentTy
, TypoLoc
);
5863 auto &State
= DelayedTypos
[TE
];
5864 State
.Consumer
= std::move(TCC
);
5865 State
.DiagHandler
= std::move(TDG
);
5866 State
.RecoveryHandler
= std::move(TRC
);
5868 TypoExprs
.push_back(TE
);
5872 const Sema::TypoExprState
&Sema::getTypoExprState(TypoExpr
*TE
) const {
5873 auto Entry
= DelayedTypos
.find(TE
);
5874 assert(Entry
!= DelayedTypos
.end() &&
5875 "Failed to get the state for a TypoExpr!");
5876 return Entry
->second
;
5879 void Sema::clearDelayedTypo(TypoExpr
*TE
) {
5880 DelayedTypos
.erase(TE
);
5883 void Sema::ActOnPragmaDump(Scope
*S
, SourceLocation IILoc
, IdentifierInfo
*II
) {
5884 DeclarationNameInfo
Name(II
, IILoc
);
5885 LookupResult
R(*this, Name
, LookupAnyName
, Sema::NotForRedeclaration
);
5886 R
.suppressDiagnostics();
5887 R
.setHideTags(false);
5892 void Sema::ActOnPragmaDump(Expr
*E
) {