[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / lib / Sema / SemaLookup.cpp
blob996f8b57233ba223c1003c7357ae562c2d9ceac0
1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements name lookup for C, C++, Objective-C, and
10 // Objective-C++.
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/RISCVIntrinsicManager.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/TinyPtrVector.h"
42 #include "llvm/ADT/edit_distance.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include <algorithm>
46 #include <iterator>
47 #include <list>
48 #include <optional>
49 #include <set>
50 #include <utility>
51 #include <vector>
53 #include "OpenCLBuiltins.inc"
55 using namespace clang;
56 using namespace sema;
58 namespace {
59 class UnqualUsingEntry {
60 const DeclContext *Nominated;
61 const DeclContext *CommonAncestor;
63 public:
64 UnqualUsingEntry(const DeclContext *Nominated,
65 const DeclContext *CommonAncestor)
66 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
69 const DeclContext *getCommonAncestor() const {
70 return CommonAncestor;
73 const DeclContext *getNominatedNamespace() const {
74 return Nominated;
77 // Sort by the pointer value of the common ancestor.
78 struct Comparator {
79 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
80 return L.getCommonAncestor() < R.getCommonAncestor();
83 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
84 return E.getCommonAncestor() < DC;
87 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
88 return DC < E.getCommonAncestor();
93 /// A collection of using directives, as used by C++ unqualified
94 /// lookup.
95 class UnqualUsingDirectiveSet {
96 Sema &SemaRef;
98 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
100 ListTy list;
101 llvm::SmallPtrSet<DeclContext*, 8> visited;
103 public:
104 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
106 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
107 // C++ [namespace.udir]p1:
108 // During unqualified name lookup, the names appear as if they
109 // were declared in the nearest enclosing namespace which contains
110 // both the using-directive and the nominated namespace.
111 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
112 assert(InnermostFileDC && InnermostFileDC->isFileContext());
114 for (; S; S = S->getParent()) {
115 // C++ [namespace.udir]p1:
116 // A using-directive shall not appear in class scope, but may
117 // appear in namespace scope or in block scope.
118 DeclContext *Ctx = S->getEntity();
119 if (Ctx && Ctx->isFileContext()) {
120 visit(Ctx, Ctx);
121 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
122 for (auto *I : S->using_directives())
123 if (SemaRef.isVisible(I))
124 visit(I, InnermostFileDC);
129 // Visits a context and collect all of its using directives
130 // recursively. Treats all using directives as if they were
131 // declared in the context.
133 // A given context is only every visited once, so it is important
134 // that contexts be visited from the inside out in order to get
135 // the effective DCs right.
136 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
137 if (!visited.insert(DC).second)
138 return;
140 addUsingDirectives(DC, EffectiveDC);
143 // Visits a using directive and collects all of its using
144 // directives recursively. Treats all using directives as if they
145 // were declared in the effective DC.
146 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
147 DeclContext *NS = UD->getNominatedNamespace();
148 if (!visited.insert(NS).second)
149 return;
151 addUsingDirective(UD, EffectiveDC);
152 addUsingDirectives(NS, EffectiveDC);
155 // Adds all the using directives in a context (and those nominated
156 // by its using directives, transitively) as if they appeared in
157 // the given effective context.
158 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
159 SmallVector<DeclContext*, 4> queue;
160 while (true) {
161 for (auto *UD : DC->using_directives()) {
162 DeclContext *NS = UD->getNominatedNamespace();
163 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
164 addUsingDirective(UD, EffectiveDC);
165 queue.push_back(NS);
169 if (queue.empty())
170 return;
172 DC = queue.pop_back_val();
176 // Add a using directive as if it had been declared in the given
177 // context. This helps implement C++ [namespace.udir]p3:
178 // The using-directive is transitive: if a scope contains a
179 // using-directive that nominates a second namespace that itself
180 // contains using-directives, the effect is as if the
181 // using-directives from the second namespace also appeared in
182 // the first.
183 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
184 // Find the common ancestor between the effective context and
185 // the nominated namespace.
186 DeclContext *Common = UD->getNominatedNamespace();
187 while (!Common->Encloses(EffectiveDC))
188 Common = Common->getParent();
189 Common = Common->getPrimaryContext();
191 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
194 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
196 typedef ListTy::const_iterator const_iterator;
198 const_iterator begin() const { return list.begin(); }
199 const_iterator end() const { return list.end(); }
201 llvm::iterator_range<const_iterator>
202 getNamespacesFor(const DeclContext *DC) const {
203 return llvm::make_range(std::equal_range(begin(), end(),
204 DC->getPrimaryContext(),
205 UnqualUsingEntry::Comparator()));
208 } // end anonymous namespace
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213 bool CPlusPlus,
214 bool Redeclaration) {
215 unsigned IDNS = 0;
216 switch (NameKind) {
217 case Sema::LookupObjCImplicitSelfParam:
218 case Sema::LookupOrdinaryName:
219 case Sema::LookupRedeclarationWithLinkage:
220 case Sema::LookupLocalFriendName:
221 case Sema::LookupDestructorName:
222 IDNS = Decl::IDNS_Ordinary;
223 if (CPlusPlus) {
224 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
225 if (Redeclaration)
226 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
228 if (Redeclaration)
229 IDNS |= Decl::IDNS_LocalExtern;
230 break;
232 case Sema::LookupOperatorName:
233 // Operator lookup is its own crazy thing; it is not the same
234 // as (e.g.) looking up an operator name for redeclaration.
235 assert(!Redeclaration && "cannot do redeclaration operator lookup");
236 IDNS = Decl::IDNS_NonMemberOperator;
237 break;
239 case Sema::LookupTagName:
240 if (CPlusPlus) {
241 IDNS = Decl::IDNS_Type;
243 // When looking for a redeclaration of a tag name, we add:
244 // 1) TagFriend to find undeclared friend decls
245 // 2) Namespace because they can't "overload" with tag decls.
246 // 3) Tag because it includes class templates, which can't
247 // "overload" with tag decls.
248 if (Redeclaration)
249 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
250 } else {
251 IDNS = Decl::IDNS_Tag;
253 break;
255 case Sema::LookupLabel:
256 IDNS = Decl::IDNS_Label;
257 break;
259 case Sema::LookupMemberName:
260 IDNS = Decl::IDNS_Member;
261 if (CPlusPlus)
262 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
263 break;
265 case Sema::LookupNestedNameSpecifierName:
266 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
267 break;
269 case Sema::LookupNamespaceName:
270 IDNS = Decl::IDNS_Namespace;
271 break;
273 case Sema::LookupUsingDeclName:
274 assert(Redeclaration && "should only be used for redecl lookup");
275 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
276 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
277 Decl::IDNS_LocalExtern;
278 break;
280 case Sema::LookupObjCProtocolName:
281 IDNS = Decl::IDNS_ObjCProtocol;
282 break;
284 case Sema::LookupOMPReductionName:
285 IDNS = Decl::IDNS_OMPReduction;
286 break;
288 case Sema::LookupOMPMapperName:
289 IDNS = Decl::IDNS_OMPMapper;
290 break;
292 case Sema::LookupAnyName:
293 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
294 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
295 | Decl::IDNS_Type;
296 break;
298 return IDNS;
301 void LookupResult::configure() {
302 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
303 isForRedeclaration());
305 // If we're looking for one of the allocation or deallocation
306 // operators, make sure that the implicitly-declared new and delete
307 // operators can be found.
308 switch (NameInfo.getName().getCXXOverloadedOperator()) {
309 case OO_New:
310 case OO_Delete:
311 case OO_Array_New:
312 case OO_Array_Delete:
313 getSema().DeclareGlobalNewDelete();
314 break;
316 default:
317 break;
320 // Compiler builtins are always visible, regardless of where they end
321 // up being declared.
322 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
323 if (unsigned BuiltinID = Id->getBuiltinID()) {
324 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
325 AllowHidden = true;
330 bool LookupResult::checkDebugAssumptions() const {
331 // This function is never called by NDEBUG builds.
332 assert(ResultKind != NotFound || Decls.size() == 0);
333 assert(ResultKind != Found || Decls.size() == 1);
334 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
335 (Decls.size() == 1 &&
336 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
337 assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
338 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
339 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
340 Ambiguity == AmbiguousBaseSubobjectTypes)));
341 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
342 (Ambiguity == AmbiguousBaseSubobjectTypes ||
343 Ambiguity == AmbiguousBaseSubobjects)));
344 return true;
347 // Necessary because CXXBasePaths is not complete in Sema.h
348 void LookupResult::deletePaths(CXXBasePaths *Paths) {
349 delete Paths;
352 /// Get a representative context for a declaration such that two declarations
353 /// will have the same context if they were found within the same scope.
354 static const DeclContext *getContextForScopeMatching(const Decl *D) {
355 // For function-local declarations, use that function as the context. This
356 // doesn't account for scopes within the function; the caller must deal with
357 // those.
358 if (const DeclContext *DC = D->getLexicalDeclContext();
359 DC->isFunctionOrMethod())
360 return DC;
362 // Otherwise, look at the semantic context of the declaration. The
363 // declaration must have been found there.
364 return D->getDeclContext()->getRedeclContext();
367 /// Determine whether \p D is a better lookup result than \p Existing,
368 /// given that they declare the same entity.
369 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
370 const NamedDecl *D,
371 const NamedDecl *Existing) {
372 // When looking up redeclarations of a using declaration, prefer a using
373 // shadow declaration over any other declaration of the same entity.
374 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
375 !isa<UsingShadowDecl>(Existing))
376 return true;
378 const auto *DUnderlying = D->getUnderlyingDecl();
379 const auto *EUnderlying = Existing->getUnderlyingDecl();
381 // If they have different underlying declarations, prefer a typedef over the
382 // original type (this happens when two type declarations denote the same
383 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
384 // might carry additional semantic information, such as an alignment override.
385 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
386 // declaration over a typedef. Also prefer a tag over a typedef for
387 // destructor name lookup because in some contexts we only accept a
388 // class-name in a destructor declaration.
389 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
390 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
391 bool HaveTag = isa<TagDecl>(EUnderlying);
392 bool WantTag =
393 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
394 return HaveTag != WantTag;
397 // Pick the function with more default arguments.
398 // FIXME: In the presence of ambiguous default arguments, we should keep both,
399 // so we can diagnose the ambiguity if the default argument is needed.
400 // See C++ [over.match.best]p3.
401 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
402 const auto *EFD = cast<FunctionDecl>(EUnderlying);
403 unsigned DMin = DFD->getMinRequiredArguments();
404 unsigned EMin = EFD->getMinRequiredArguments();
405 // If D has more default arguments, it is preferred.
406 if (DMin != EMin)
407 return DMin < EMin;
408 // FIXME: When we track visibility for default function arguments, check
409 // that we pick the declaration with more visible default arguments.
412 // Pick the template with more default template arguments.
413 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
414 const auto *ETD = cast<TemplateDecl>(EUnderlying);
415 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
416 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
417 // If D has more default arguments, it is preferred. Note that default
418 // arguments (and their visibility) is monotonically increasing across the
419 // redeclaration chain, so this is a quick proxy for "is more recent".
420 if (DMin != EMin)
421 return DMin < EMin;
422 // If D has more *visible* default arguments, it is preferred. Note, an
423 // earlier default argument being visible does not imply that a later
424 // default argument is visible, so we can't just check the first one.
425 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
426 I != N; ++I) {
427 if (!S.hasVisibleDefaultArgument(
428 ETD->getTemplateParameters()->getParam(I)) &&
429 S.hasVisibleDefaultArgument(
430 DTD->getTemplateParameters()->getParam(I)))
431 return true;
435 // VarDecl can have incomplete array types, prefer the one with more complete
436 // array type.
437 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) {
438 const auto *EVD = cast<VarDecl>(EUnderlying);
439 if (EVD->getType()->isIncompleteType() &&
440 !DVD->getType()->isIncompleteType()) {
441 // Prefer the decl with a more complete type if visible.
442 return S.isVisible(DVD);
444 return false; // Avoid picking up a newer decl, just because it was newer.
447 // For most kinds of declaration, it doesn't really matter which one we pick.
448 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
449 // If the existing declaration is hidden, prefer the new one. Otherwise,
450 // keep what we've got.
451 return !S.isVisible(Existing);
454 // Pick the newer declaration; it might have a more precise type.
455 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
456 Prev = Prev->getPreviousDecl())
457 if (Prev == EUnderlying)
458 return true;
459 return false;
462 /// Determine whether \p D can hide a tag declaration.
463 static bool canHideTag(const NamedDecl *D) {
464 // C++ [basic.scope.declarative]p4:
465 // Given a set of declarations in a single declarative region [...]
466 // exactly one declaration shall declare a class name or enumeration name
467 // that is not a typedef name and the other declarations shall all refer to
468 // the same variable, non-static data member, or enumerator, or all refer
469 // to functions and function templates; in this case the class name or
470 // enumeration name is hidden.
471 // C++ [basic.scope.hiding]p2:
472 // A class name or enumeration name can be hidden by the name of a
473 // variable, data member, function, or enumerator declared in the same
474 // scope.
475 // An UnresolvedUsingValueDecl always instantiates to one of these.
476 D = D->getUnderlyingDecl();
477 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
478 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
479 isa<UnresolvedUsingValueDecl>(D);
482 /// Resolves the result kind of this lookup.
483 void LookupResult::resolveKind() {
484 unsigned N = Decls.size();
486 // Fast case: no possible ambiguity.
487 if (N == 0) {
488 assert(ResultKind == NotFound ||
489 ResultKind == NotFoundInCurrentInstantiation);
490 return;
493 // If there's a single decl, we need to examine it to decide what
494 // kind of lookup this is.
495 if (N == 1) {
496 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
497 if (isa<FunctionTemplateDecl>(D))
498 ResultKind = FoundOverloaded;
499 else if (isa<UnresolvedUsingValueDecl>(D))
500 ResultKind = FoundUnresolvedValue;
501 return;
504 // Don't do any extra resolution if we've already resolved as ambiguous.
505 if (ResultKind == Ambiguous) return;
507 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique;
508 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
510 bool Ambiguous = false;
511 bool ReferenceToPlaceHolderVariable = false;
512 bool HasTag = false, HasFunction = false;
513 bool HasFunctionTemplate = false, HasUnresolved = false;
514 const NamedDecl *HasNonFunction = nullptr;
516 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions;
517 llvm::BitVector RemovedDecls(N);
519 for (unsigned I = 0; I < N; I++) {
520 const NamedDecl *D = Decls[I]->getUnderlyingDecl();
521 D = cast<NamedDecl>(D->getCanonicalDecl());
523 // Ignore an invalid declaration unless it's the only one left.
524 // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
525 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) &&
526 N - RemovedDecls.count() > 1) {
527 RemovedDecls.set(I);
528 continue;
531 // C++ [basic.scope.hiding]p2:
532 // A class name or enumeration name can be hidden by the name of
533 // an object, function, or enumerator declared in the same
534 // scope. If a class or enumeration name and an object, function,
535 // or enumerator are declared in the same scope (in any order)
536 // with the same name, the class or enumeration name is hidden
537 // wherever the object, function, or enumerator name is visible.
538 if (HideTags && isa<TagDecl>(D)) {
539 bool Hidden = false;
540 for (auto *OtherDecl : Decls) {
541 if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() &&
542 getContextForScopeMatching(OtherDecl)->Equals(
543 getContextForScopeMatching(Decls[I]))) {
544 RemovedDecls.set(I);
545 Hidden = true;
546 break;
549 if (Hidden)
550 continue;
553 std::optional<unsigned> ExistingI;
555 // Redeclarations of types via typedef can occur both within a scope
556 // and, through using declarations and directives, across scopes. There is
557 // no ambiguity if they all refer to the same type, so unique based on the
558 // canonical type.
559 if (const auto *TD = dyn_cast<TypeDecl>(D)) {
560 QualType T = getSema().Context.getTypeDeclType(TD);
561 auto UniqueResult = UniqueTypes.insert(
562 std::make_pair(getSema().Context.getCanonicalType(T), I));
563 if (!UniqueResult.second) {
564 // The type is not unique.
565 ExistingI = UniqueResult.first->second;
569 // For non-type declarations, check for a prior lookup result naming this
570 // canonical declaration.
571 if (!D->isPlaceholderVar(getSema().getLangOpts()) && !ExistingI) {
572 auto UniqueResult = Unique.insert(std::make_pair(D, I));
573 if (!UniqueResult.second) {
574 // We've seen this entity before.
575 ExistingI = UniqueResult.first->second;
579 if (ExistingI) {
580 // This is not a unique lookup result. Pick one of the results and
581 // discard the other.
582 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
583 Decls[*ExistingI]))
584 Decls[*ExistingI] = Decls[I];
585 RemovedDecls.set(I);
586 continue;
589 // Otherwise, do some decl type analysis and then continue.
591 if (isa<UnresolvedUsingValueDecl>(D)) {
592 HasUnresolved = true;
593 } else if (isa<TagDecl>(D)) {
594 if (HasTag)
595 Ambiguous = true;
596 HasTag = true;
597 } else if (isa<FunctionTemplateDecl>(D)) {
598 HasFunction = true;
599 HasFunctionTemplate = true;
600 } else if (isa<FunctionDecl>(D)) {
601 HasFunction = true;
602 } else {
603 if (HasNonFunction) {
604 // If we're about to create an ambiguity between two declarations that
605 // are equivalent, but one is an internal linkage declaration from one
606 // module and the other is an internal linkage declaration from another
607 // module, just skip it.
608 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
609 D)) {
610 EquivalentNonFunctions.push_back(D);
611 RemovedDecls.set(I);
612 continue;
614 if (D->isPlaceholderVar(getSema().getLangOpts()) &&
615 getContextForScopeMatching(D) ==
616 getContextForScopeMatching(Decls[I])) {
617 ReferenceToPlaceHolderVariable = true;
619 Ambiguous = true;
621 HasNonFunction = D;
625 // FIXME: This diagnostic should really be delayed until we're done with
626 // the lookup result, in case the ambiguity is resolved by the caller.
627 if (!EquivalentNonFunctions.empty() && !Ambiguous)
628 getSema().diagnoseEquivalentInternalLinkageDeclarations(
629 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
631 // Remove decls by replacing them with decls from the end (which
632 // means that we need to iterate from the end) and then truncating
633 // to the new size.
634 for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I))
635 Decls[I] = Decls[--N];
636 Decls.truncate(N);
638 if ((HasNonFunction && (HasFunction || HasUnresolved)) ||
639 (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved)))
640 Ambiguous = true;
642 if (Ambiguous && ReferenceToPlaceHolderVariable)
643 setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable);
644 else if (Ambiguous)
645 setAmbiguous(LookupResult::AmbiguousReference);
646 else if (HasUnresolved)
647 ResultKind = LookupResult::FoundUnresolvedValue;
648 else if (N > 1 || HasFunctionTemplate)
649 ResultKind = LookupResult::FoundOverloaded;
650 else
651 ResultKind = LookupResult::Found;
654 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
655 CXXBasePaths::const_paths_iterator I, E;
656 for (I = P.begin(), E = P.end(); I != E; ++I)
657 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
658 ++DI)
659 addDecl(*DI);
662 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
663 Paths = new CXXBasePaths;
664 Paths->swap(P);
665 addDeclsFromBasePaths(*Paths);
666 resolveKind();
667 setAmbiguous(AmbiguousBaseSubobjects);
670 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
671 Paths = new CXXBasePaths;
672 Paths->swap(P);
673 addDeclsFromBasePaths(*Paths);
674 resolveKind();
675 setAmbiguous(AmbiguousBaseSubobjectTypes);
678 void LookupResult::print(raw_ostream &Out) {
679 Out << Decls.size() << " result(s)";
680 if (isAmbiguous()) Out << ", ambiguous";
681 if (Paths) Out << ", base paths present";
683 for (iterator I = begin(), E = end(); I != E; ++I) {
684 Out << "\n";
685 (*I)->print(Out, 2);
689 LLVM_DUMP_METHOD void LookupResult::dump() {
690 llvm::errs() << "lookup results for " << getLookupName().getAsString()
691 << ":\n";
692 for (NamedDecl *D : *this)
693 D->dump();
696 /// Diagnose a missing builtin type.
697 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
698 llvm::StringRef Name) {
699 S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
700 << TypeClass << Name;
701 return S.Context.VoidTy;
704 /// Lookup an OpenCL enum type.
705 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
706 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
707 Sema::LookupTagName);
708 S.LookupName(Result, S.TUScope);
709 if (Result.empty())
710 return diagOpenCLBuiltinTypeError(S, "enum", Name);
711 EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
712 if (!Decl)
713 return diagOpenCLBuiltinTypeError(S, "enum", Name);
714 return S.Context.getEnumType(Decl);
717 /// Lookup an OpenCL typedef type.
718 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
719 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
720 Sema::LookupOrdinaryName);
721 S.LookupName(Result, S.TUScope);
722 if (Result.empty())
723 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
724 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
725 if (!Decl)
726 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
727 return S.Context.getTypedefType(Decl);
730 /// Get the QualType instances of the return type and arguments for an OpenCL
731 /// builtin function signature.
732 /// \param S (in) The Sema instance.
733 /// \param OpenCLBuiltin (in) The signature currently handled.
734 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
735 /// type used as return type or as argument.
736 /// Only meaningful for generic types, otherwise equals 1.
737 /// \param RetTypes (out) List of the possible return types.
738 /// \param ArgTypes (out) List of the possible argument types. For each
739 /// argument, ArgTypes contains QualTypes for the Cartesian product
740 /// of (vector sizes) x (types) .
741 static void GetQualTypesForOpenCLBuiltin(
742 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
743 SmallVector<QualType, 1> &RetTypes,
744 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
745 // Get the QualType instances of the return types.
746 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
747 OCL2Qual(S, TypeTable[Sig], RetTypes);
748 GenTypeMaxCnt = RetTypes.size();
750 // Get the QualType instances of the arguments.
751 // First type is the return type, skip it.
752 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
753 SmallVector<QualType, 1> Ty;
754 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
755 Ty);
756 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
757 ArgTypes.push_back(std::move(Ty));
761 /// Create a list of the candidate function overloads for an OpenCL builtin
762 /// function.
763 /// \param Context (in) The ASTContext instance.
764 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
765 /// type used as return type or as argument.
766 /// Only meaningful for generic types, otherwise equals 1.
767 /// \param FunctionList (out) List of FunctionTypes.
768 /// \param RetTypes (in) List of the possible return types.
769 /// \param ArgTypes (in) List of the possible types for the arguments.
770 static void GetOpenCLBuiltinFctOverloads(
771 ASTContext &Context, unsigned GenTypeMaxCnt,
772 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
773 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
774 FunctionProtoType::ExtProtoInfo PI(
775 Context.getDefaultCallingConvention(false, false, true));
776 PI.Variadic = false;
778 // Do not attempt to create any FunctionTypes if there are no return types,
779 // which happens when a type belongs to a disabled extension.
780 if (RetTypes.size() == 0)
781 return;
783 // Create FunctionTypes for each (gen)type.
784 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
785 SmallVector<QualType, 5> ArgList;
787 for (unsigned A = 0; A < ArgTypes.size(); A++) {
788 // Bail out if there is an argument that has no available types.
789 if (ArgTypes[A].size() == 0)
790 return;
792 // Builtins such as "max" have an "sgentype" argument that represents
793 // the corresponding scalar type of a gentype. The number of gentypes
794 // must be a multiple of the number of sgentypes.
795 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
796 "argument type count not compatible with gentype type count");
797 unsigned Idx = IGenType % ArgTypes[A].size();
798 ArgList.push_back(ArgTypes[A][Idx]);
801 FunctionList.push_back(Context.getFunctionType(
802 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
806 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
807 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
808 /// builtin function. Add all candidate signatures to the LookUpResult.
810 /// \param S (in) The Sema instance.
811 /// \param LR (inout) The LookupResult instance.
812 /// \param II (in) The identifier being resolved.
813 /// \param FctIndex (in) Starting index in the BuiltinTable.
814 /// \param Len (in) The signature list has Len elements.
815 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
816 IdentifierInfo *II,
817 const unsigned FctIndex,
818 const unsigned Len) {
819 // The builtin function declaration uses generic types (gentype).
820 bool HasGenType = false;
822 // Maximum number of types contained in a generic type used as return type or
823 // as argument. Only meaningful for generic types, otherwise equals 1.
824 unsigned GenTypeMaxCnt;
826 ASTContext &Context = S.Context;
828 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
829 const OpenCLBuiltinStruct &OpenCLBuiltin =
830 BuiltinTable[FctIndex + SignatureIndex];
832 // Ignore this builtin function if it is not available in the currently
833 // selected language version.
834 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
835 OpenCLBuiltin.Versions))
836 continue;
838 // Ignore this builtin function if it carries an extension macro that is
839 // not defined. This indicates that the extension is not supported by the
840 // target, so the builtin function should not be available.
841 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
842 if (!Extensions.empty()) {
843 SmallVector<StringRef, 2> ExtVec;
844 Extensions.split(ExtVec, " ");
845 bool AllExtensionsDefined = true;
846 for (StringRef Ext : ExtVec) {
847 if (!S.getPreprocessor().isMacroDefined(Ext)) {
848 AllExtensionsDefined = false;
849 break;
852 if (!AllExtensionsDefined)
853 continue;
856 SmallVector<QualType, 1> RetTypes;
857 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
859 // Obtain QualType lists for the function signature.
860 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
861 ArgTypes);
862 if (GenTypeMaxCnt > 1) {
863 HasGenType = true;
866 // Create function overload for each type combination.
867 std::vector<QualType> FunctionList;
868 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
869 ArgTypes);
871 SourceLocation Loc = LR.getNameLoc();
872 DeclContext *Parent = Context.getTranslationUnitDecl();
873 FunctionDecl *NewOpenCLBuiltin;
875 for (const auto &FTy : FunctionList) {
876 NewOpenCLBuiltin = FunctionDecl::Create(
877 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
878 S.getCurFPFeatures().isFPConstrained(), false,
879 FTy->isFunctionProtoType());
880 NewOpenCLBuiltin->setImplicit();
882 // Create Decl objects for each parameter, adding them to the
883 // FunctionDecl.
884 const auto *FP = cast<FunctionProtoType>(FTy);
885 SmallVector<ParmVarDecl *, 4> ParmList;
886 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
887 ParmVarDecl *Parm = ParmVarDecl::Create(
888 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
889 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
890 Parm->setScopeInfo(0, IParm);
891 ParmList.push_back(Parm);
893 NewOpenCLBuiltin->setParams(ParmList);
895 // Add function attributes.
896 if (OpenCLBuiltin.IsPure)
897 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
898 if (OpenCLBuiltin.IsConst)
899 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
900 if (OpenCLBuiltin.IsConv)
901 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
903 if (!S.getLangOpts().OpenCLCPlusPlus)
904 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
906 LR.addDecl(NewOpenCLBuiltin);
910 // If we added overloads, need to resolve the lookup result.
911 if (Len > 1 || HasGenType)
912 LR.resolveKind();
915 /// Lookup a builtin function, when name lookup would otherwise
916 /// fail.
917 bool Sema::LookupBuiltin(LookupResult &R) {
918 Sema::LookupNameKind NameKind = R.getLookupKind();
920 // If we didn't find a use of this identifier, and if the identifier
921 // corresponds to a compiler builtin, create the decl object for the builtin
922 // now, injecting it into translation unit scope, and return it.
923 if (NameKind == Sema::LookupOrdinaryName ||
924 NameKind == Sema::LookupRedeclarationWithLinkage) {
925 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
926 if (II) {
927 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
928 if (II == getASTContext().getMakeIntegerSeqName()) {
929 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
930 return true;
931 } else if (II == getASTContext().getTypePackElementName()) {
932 R.addDecl(getASTContext().getTypePackElementDecl());
933 return true;
937 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
938 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
939 auto Index = isOpenCLBuiltin(II->getName());
940 if (Index.first) {
941 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
942 Index.second);
943 return true;
947 if (DeclareRISCVVBuiltins || DeclareRISCVSiFiveVectorBuiltins) {
948 if (!RVIntrinsicManager)
949 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this);
951 RVIntrinsicManager->InitIntrinsicList();
953 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
954 return true;
957 // If this is a builtin on this (or all) targets, create the decl.
958 if (unsigned BuiltinID = II->getBuiltinID()) {
959 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
960 // library functions like 'malloc'. Instead, we'll just error.
961 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
962 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
963 return false;
965 if (NamedDecl *D =
966 LazilyCreateBuiltin(II, BuiltinID, TUScope,
967 R.isForRedeclaration(), R.getNameLoc())) {
968 R.addDecl(D);
969 return true;
975 return false;
978 /// Looks up the declaration of "struct objc_super" and
979 /// saves it for later use in building builtin declaration of
980 /// objc_msgSendSuper and objc_msgSendSuper_stret.
981 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
982 ASTContext &Context = Sema.Context;
983 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
984 Sema::LookupTagName);
985 Sema.LookupName(Result, S);
986 if (Result.getResultKind() == LookupResult::Found)
987 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
988 Context.setObjCSuperType(Context.getTagDeclType(TD));
991 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
992 if (ID == Builtin::BIobjc_msgSendSuper)
993 LookupPredefedObjCSuperType(*this, S);
996 /// Determine whether we can declare a special member function within
997 /// the class at this point.
998 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
999 // We need to have a definition for the class.
1000 if (!Class->getDefinition() || Class->isDependentContext())
1001 return false;
1003 // We can't be in the middle of defining the class.
1004 return !Class->isBeingDefined();
1007 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
1008 if (!CanDeclareSpecialMemberFunction(Class))
1009 return;
1011 // If the default constructor has not yet been declared, do so now.
1012 if (Class->needsImplicitDefaultConstructor())
1013 DeclareImplicitDefaultConstructor(Class);
1015 // If the copy constructor has not yet been declared, do so now.
1016 if (Class->needsImplicitCopyConstructor())
1017 DeclareImplicitCopyConstructor(Class);
1019 // If the copy assignment operator has not yet been declared, do so now.
1020 if (Class->needsImplicitCopyAssignment())
1021 DeclareImplicitCopyAssignment(Class);
1023 if (getLangOpts().CPlusPlus11) {
1024 // If the move constructor has not yet been declared, do so now.
1025 if (Class->needsImplicitMoveConstructor())
1026 DeclareImplicitMoveConstructor(Class);
1028 // If the move assignment operator has not yet been declared, do so now.
1029 if (Class->needsImplicitMoveAssignment())
1030 DeclareImplicitMoveAssignment(Class);
1033 // If the destructor has not yet been declared, do so now.
1034 if (Class->needsImplicitDestructor())
1035 DeclareImplicitDestructor(Class);
1038 /// Determine whether this is the name of an implicitly-declared
1039 /// special member function.
1040 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1041 switch (Name.getNameKind()) {
1042 case DeclarationName::CXXConstructorName:
1043 case DeclarationName::CXXDestructorName:
1044 return true;
1046 case DeclarationName::CXXOperatorName:
1047 return Name.getCXXOverloadedOperator() == OO_Equal;
1049 default:
1050 break;
1053 return false;
1056 /// If there are any implicit member functions with the given name
1057 /// that need to be declared in the given declaration context, do so.
1058 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1059 DeclarationName Name,
1060 SourceLocation Loc,
1061 const DeclContext *DC) {
1062 if (!DC)
1063 return;
1065 switch (Name.getNameKind()) {
1066 case DeclarationName::CXXConstructorName:
1067 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1068 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1069 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1070 if (Record->needsImplicitDefaultConstructor())
1071 S.DeclareImplicitDefaultConstructor(Class);
1072 if (Record->needsImplicitCopyConstructor())
1073 S.DeclareImplicitCopyConstructor(Class);
1074 if (S.getLangOpts().CPlusPlus11 &&
1075 Record->needsImplicitMoveConstructor())
1076 S.DeclareImplicitMoveConstructor(Class);
1078 break;
1080 case DeclarationName::CXXDestructorName:
1081 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1082 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1083 CanDeclareSpecialMemberFunction(Record))
1084 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1085 break;
1087 case DeclarationName::CXXOperatorName:
1088 if (Name.getCXXOverloadedOperator() != OO_Equal)
1089 break;
1091 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1092 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1093 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1094 if (Record->needsImplicitCopyAssignment())
1095 S.DeclareImplicitCopyAssignment(Class);
1096 if (S.getLangOpts().CPlusPlus11 &&
1097 Record->needsImplicitMoveAssignment())
1098 S.DeclareImplicitMoveAssignment(Class);
1101 break;
1103 case DeclarationName::CXXDeductionGuideName:
1104 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1105 break;
1107 default:
1108 break;
1112 // Adds all qualifying matches for a name within a decl context to the
1113 // given lookup result. Returns true if any matches were found.
1114 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1115 bool Found = false;
1117 // Lazily declare C++ special member functions.
1118 if (S.getLangOpts().CPlusPlus)
1119 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1120 DC);
1122 // Perform lookup into this declaration context.
1123 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1124 for (NamedDecl *D : DR) {
1125 if ((D = R.getAcceptableDecl(D))) {
1126 R.addDecl(D);
1127 Found = true;
1131 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1132 return true;
1134 if (R.getLookupName().getNameKind()
1135 != DeclarationName::CXXConversionFunctionName ||
1136 R.getLookupName().getCXXNameType()->isDependentType() ||
1137 !isa<CXXRecordDecl>(DC))
1138 return Found;
1140 // C++ [temp.mem]p6:
1141 // A specialization of a conversion function template is not found by
1142 // name lookup. Instead, any conversion function templates visible in the
1143 // context of the use are considered. [...]
1144 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1145 if (!Record->isCompleteDefinition())
1146 return Found;
1148 // For conversion operators, 'operator auto' should only match
1149 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1150 // as a candidate for template substitution.
1151 auto *ContainedDeducedType =
1152 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1153 if (R.getLookupName().getNameKind() ==
1154 DeclarationName::CXXConversionFunctionName &&
1155 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1156 return Found;
1158 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1159 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1160 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1161 if (!ConvTemplate)
1162 continue;
1164 // When we're performing lookup for the purposes of redeclaration, just
1165 // add the conversion function template. When we deduce template
1166 // arguments for specializations, we'll end up unifying the return
1167 // type of the new declaration with the type of the function template.
1168 if (R.isForRedeclaration()) {
1169 R.addDecl(ConvTemplate);
1170 Found = true;
1171 continue;
1174 // C++ [temp.mem]p6:
1175 // [...] For each such operator, if argument deduction succeeds
1176 // (14.9.2.3), the resulting specialization is used as if found by
1177 // name lookup.
1179 // When referencing a conversion function for any purpose other than
1180 // a redeclaration (such that we'll be building an expression with the
1181 // result), perform template argument deduction and place the
1182 // specialization into the result set. We do this to avoid forcing all
1183 // callers to perform special deduction for conversion functions.
1184 TemplateDeductionInfo Info(R.getNameLoc());
1185 FunctionDecl *Specialization = nullptr;
1187 const FunctionProtoType *ConvProto
1188 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1189 assert(ConvProto && "Nonsensical conversion function template type");
1191 // Compute the type of the function that we would expect the conversion
1192 // function to have, if it were to match the name given.
1193 // FIXME: Calling convention!
1194 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1195 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1196 EPI.ExceptionSpec = EST_None;
1197 QualType ExpectedType = R.getSema().Context.getFunctionType(
1198 R.getLookupName().getCXXNameType(), std::nullopt, EPI);
1200 // Perform template argument deduction against the type that we would
1201 // expect the function to have.
1202 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1203 Specialization, Info)
1204 == Sema::TDK_Success) {
1205 R.addDecl(Specialization);
1206 Found = true;
1210 return Found;
1213 // Performs C++ unqualified lookup into the given file context.
1214 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1215 const DeclContext *NS,
1216 UnqualUsingDirectiveSet &UDirs) {
1218 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1220 // Perform direct name lookup into the LookupCtx.
1221 bool Found = LookupDirect(S, R, NS);
1223 // Perform direct name lookup into the namespaces nominated by the
1224 // using directives whose common ancestor is this namespace.
1225 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1226 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1227 Found = true;
1229 R.resolveKind();
1231 return Found;
1234 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1235 if (DeclContext *Ctx = S->getEntity())
1236 return Ctx->isFileContext();
1237 return false;
1240 /// Find the outer declaration context from this scope. This indicates the
1241 /// context that we should search up to (exclusive) before considering the
1242 /// parent of the specified scope.
1243 static DeclContext *findOuterContext(Scope *S) {
1244 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1245 if (DeclContext *DC = OuterS->getLookupEntity())
1246 return DC;
1247 return nullptr;
1250 namespace {
1251 /// An RAII object to specify that we want to find block scope extern
1252 /// declarations.
1253 struct FindLocalExternScope {
1254 FindLocalExternScope(LookupResult &R)
1255 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1256 Decl::IDNS_LocalExtern) {
1257 R.setFindLocalExtern(R.getIdentifierNamespace() &
1258 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1260 void restore() {
1261 R.setFindLocalExtern(OldFindLocalExtern);
1263 ~FindLocalExternScope() {
1264 restore();
1266 LookupResult &R;
1267 bool OldFindLocalExtern;
1269 } // end anonymous namespace
1271 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1272 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1274 DeclarationName Name = R.getLookupName();
1275 Sema::LookupNameKind NameKind = R.getLookupKind();
1277 // If this is the name of an implicitly-declared special member function,
1278 // go through the scope stack to implicitly declare
1279 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1280 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1281 if (DeclContext *DC = PreS->getEntity())
1282 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1285 // Implicitly declare member functions with the name we're looking for, if in
1286 // fact we are in a scope where it matters.
1288 Scope *Initial = S;
1289 IdentifierResolver::iterator
1290 I = IdResolver.begin(Name),
1291 IEnd = IdResolver.end();
1293 // First we lookup local scope.
1294 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1295 // ...During unqualified name lookup (3.4.1), the names appear as if
1296 // they were declared in the nearest enclosing namespace which contains
1297 // both the using-directive and the nominated namespace.
1298 // [Note: in this context, "contains" means "contains directly or
1299 // indirectly".
1301 // For example:
1302 // namespace A { int i; }
1303 // void foo() {
1304 // int i;
1305 // {
1306 // using namespace A;
1307 // ++i; // finds local 'i', A::i appears at global scope
1308 // }
1309 // }
1311 UnqualUsingDirectiveSet UDirs(*this);
1312 bool VisitedUsingDirectives = false;
1313 bool LeftStartingScope = false;
1315 // When performing a scope lookup, we want to find local extern decls.
1316 FindLocalExternScope FindLocals(R);
1318 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1319 bool SearchNamespaceScope = true;
1320 // Check whether the IdResolver has anything in this scope.
1321 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1322 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1323 if (NameKind == LookupRedeclarationWithLinkage &&
1324 !(*I)->isTemplateParameter()) {
1325 // If it's a template parameter, we still find it, so we can diagnose
1326 // the invalid redeclaration.
1328 // Determine whether this (or a previous) declaration is
1329 // out-of-scope.
1330 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1331 LeftStartingScope = true;
1333 // If we found something outside of our starting scope that
1334 // does not have linkage, skip it.
1335 if (LeftStartingScope && !((*I)->hasLinkage())) {
1336 R.setShadowed();
1337 continue;
1339 } else {
1340 // We found something in this scope, we should not look at the
1341 // namespace scope
1342 SearchNamespaceScope = false;
1344 R.addDecl(ND);
1347 if (!SearchNamespaceScope) {
1348 R.resolveKind();
1349 if (S->isClassScope())
1350 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity()))
1351 R.setNamingClass(Record);
1352 return true;
1355 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1356 // C++11 [class.friend]p11:
1357 // If a friend declaration appears in a local class and the name
1358 // specified is an unqualified name, a prior declaration is
1359 // looked up without considering scopes that are outside the
1360 // innermost enclosing non-class scope.
1361 return false;
1364 if (DeclContext *Ctx = S->getLookupEntity()) {
1365 DeclContext *OuterCtx = findOuterContext(S);
1366 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1367 // We do not directly look into transparent contexts, since
1368 // those entities will be found in the nearest enclosing
1369 // non-transparent context.
1370 if (Ctx->isTransparentContext())
1371 continue;
1373 // We do not look directly into function or method contexts,
1374 // since all of the local variables and parameters of the
1375 // function/method are present within the Scope.
1376 if (Ctx->isFunctionOrMethod()) {
1377 // If we have an Objective-C instance method, look for ivars
1378 // in the corresponding interface.
1379 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1380 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1381 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1382 ObjCInterfaceDecl *ClassDeclared;
1383 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1384 Name.getAsIdentifierInfo(),
1385 ClassDeclared)) {
1386 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1387 R.addDecl(ND);
1388 R.resolveKind();
1389 return true;
1395 continue;
1398 // If this is a file context, we need to perform unqualified name
1399 // lookup considering using directives.
1400 if (Ctx->isFileContext()) {
1401 // If we haven't handled using directives yet, do so now.
1402 if (!VisitedUsingDirectives) {
1403 // Add using directives from this context up to the top level.
1404 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1405 if (UCtx->isTransparentContext())
1406 continue;
1408 UDirs.visit(UCtx, UCtx);
1411 // Find the innermost file scope, so we can add using directives
1412 // from local scopes.
1413 Scope *InnermostFileScope = S;
1414 while (InnermostFileScope &&
1415 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1416 InnermostFileScope = InnermostFileScope->getParent();
1417 UDirs.visitScopeChain(Initial, InnermostFileScope);
1419 UDirs.done();
1421 VisitedUsingDirectives = true;
1424 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1425 R.resolveKind();
1426 return true;
1429 continue;
1432 // Perform qualified name lookup into this context.
1433 // FIXME: In some cases, we know that every name that could be found by
1434 // this qualified name lookup will also be on the identifier chain. For
1435 // example, inside a class without any base classes, we never need to
1436 // perform qualified lookup because all of the members are on top of the
1437 // identifier chain.
1438 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1439 return true;
1444 // Stop if we ran out of scopes.
1445 // FIXME: This really, really shouldn't be happening.
1446 if (!S) return false;
1448 // If we are looking for members, no need to look into global/namespace scope.
1449 if (NameKind == LookupMemberName)
1450 return false;
1452 // Collect UsingDirectiveDecls in all scopes, and recursively all
1453 // nominated namespaces by those using-directives.
1455 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1456 // don't build it for each lookup!
1457 if (!VisitedUsingDirectives) {
1458 UDirs.visitScopeChain(Initial, S);
1459 UDirs.done();
1462 // If we're not performing redeclaration lookup, do not look for local
1463 // extern declarations outside of a function scope.
1464 if (!R.isForRedeclaration())
1465 FindLocals.restore();
1467 // Lookup namespace scope, and global scope.
1468 // Unqualified name lookup in C++ requires looking into scopes
1469 // that aren't strictly lexical, and therefore we walk through the
1470 // context as well as walking through the scopes.
1471 for (; S; S = S->getParent()) {
1472 // Check whether the IdResolver has anything in this scope.
1473 bool Found = false;
1474 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1475 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1476 // We found something. Look for anything else in our scope
1477 // with this same name and in an acceptable identifier
1478 // namespace, so that we can construct an overload set if we
1479 // need to.
1480 Found = true;
1481 R.addDecl(ND);
1485 if (Found && S->isTemplateParamScope()) {
1486 R.resolveKind();
1487 return true;
1490 DeclContext *Ctx = S->getLookupEntity();
1491 if (Ctx) {
1492 DeclContext *OuterCtx = findOuterContext(S);
1493 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1494 // We do not directly look into transparent contexts, since
1495 // those entities will be found in the nearest enclosing
1496 // non-transparent context.
1497 if (Ctx->isTransparentContext())
1498 continue;
1500 // If we have a context, and it's not a context stashed in the
1501 // template parameter scope for an out-of-line definition, also
1502 // look into that context.
1503 if (!(Found && S->isTemplateParamScope())) {
1504 assert(Ctx->isFileContext() &&
1505 "We should have been looking only at file context here already.");
1507 // Look into context considering using-directives.
1508 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1509 Found = true;
1512 if (Found) {
1513 R.resolveKind();
1514 return true;
1517 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1518 return false;
1522 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1523 return false;
1526 return !R.empty();
1529 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1530 if (auto *M = getCurrentModule())
1531 Context.mergeDefinitionIntoModule(ND, M);
1532 else
1533 // We're not building a module; just make the definition visible.
1534 ND->setVisibleDespiteOwningModule();
1536 // If ND is a template declaration, make the template parameters
1537 // visible too. They're not (necessarily) within a mergeable DeclContext.
1538 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1539 for (auto *Param : *TD->getTemplateParameters())
1540 makeMergedDefinitionVisible(Param);
1543 /// Find the module in which the given declaration was defined.
1544 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1545 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1546 // If this function was instantiated from a template, the defining module is
1547 // the module containing the pattern.
1548 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1549 Entity = Pattern;
1550 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1551 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1552 Entity = Pattern;
1553 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1554 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1555 Entity = Pattern;
1556 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1557 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1558 Entity = Pattern;
1561 // Walk up to the containing context. That might also have been instantiated
1562 // from a template.
1563 DeclContext *Context = Entity->getLexicalDeclContext();
1564 if (Context->isFileContext())
1565 return S.getOwningModule(Entity);
1566 return getDefiningModule(S, cast<Decl>(Context));
1569 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1570 unsigned N = CodeSynthesisContexts.size();
1571 for (unsigned I = CodeSynthesisContextLookupModules.size();
1572 I != N; ++I) {
1573 Module *M = CodeSynthesisContexts[I].Entity ?
1574 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1575 nullptr;
1576 if (M && !LookupModulesCache.insert(M).second)
1577 M = nullptr;
1578 CodeSynthesisContextLookupModules.push_back(M);
1580 return LookupModulesCache;
1583 /// Determine if we could use all the declarations in the module.
1584 bool Sema::isUsableModule(const Module *M) {
1585 assert(M && "We shouldn't check nullness for module here");
1586 // Return quickly if we cached the result.
1587 if (UsableModuleUnitsCache.count(M))
1588 return true;
1590 // If M is the global module fragment of the current translation unit. So it
1591 // should be usable.
1592 // [module.global.frag]p1:
1593 // The global module fragment can be used to provide declarations that are
1594 // attached to the global module and usable within the module unit.
1595 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment ||
1596 // If M is the module we're parsing, it should be usable. This covers the
1597 // private module fragment. The private module fragment is usable only if
1598 // it is within the current module unit. And it must be the current
1599 // parsing module unit if it is within the current module unit according
1600 // to the grammar of the private module fragment. NOTE: This is covered by
1601 // the following condition. The intention of the check is to avoid string
1602 // comparison as much as possible.
1603 M == getCurrentModule() ||
1604 // The module unit which is in the same module with the current module
1605 // unit is usable.
1607 // FIXME: Here we judge if they are in the same module by comparing the
1608 // string. Is there any better solution?
1609 M->getPrimaryModuleInterfaceName() ==
1610 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1611 UsableModuleUnitsCache.insert(M);
1612 return true;
1615 return false;
1618 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) {
1619 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1620 if (isModuleVisible(Merged))
1621 return true;
1622 return false;
1625 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) {
1626 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1627 if (isUsableModule(Merged))
1628 return true;
1629 return false;
1632 template <typename ParmDecl>
1633 static bool
1634 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1635 llvm::SmallVectorImpl<Module *> *Modules,
1636 Sema::AcceptableKind Kind) {
1637 if (!D->hasDefaultArgument())
1638 return false;
1640 llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1641 while (D && Visited.insert(D).second) {
1642 auto &DefaultArg = D->getDefaultArgStorage();
1643 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1644 return true;
1646 if (!DefaultArg.isInherited() && Modules) {
1647 auto *NonConstD = const_cast<ParmDecl*>(D);
1648 Modules->push_back(S.getOwningModule(NonConstD));
1651 // If there was a previous default argument, maybe its parameter is
1652 // acceptable.
1653 D = DefaultArg.getInheritedFrom();
1655 return false;
1658 bool Sema::hasAcceptableDefaultArgument(
1659 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1660 Sema::AcceptableKind Kind) {
1661 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1662 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1664 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1665 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1667 return ::hasAcceptableDefaultArgument(
1668 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1671 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1672 llvm::SmallVectorImpl<Module *> *Modules) {
1673 return hasAcceptableDefaultArgument(D, Modules,
1674 Sema::AcceptableKind::Visible);
1677 bool Sema::hasReachableDefaultArgument(
1678 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1679 return hasAcceptableDefaultArgument(D, Modules,
1680 Sema::AcceptableKind::Reachable);
1683 template <typename Filter>
1684 static bool
1685 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1686 llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1687 Sema::AcceptableKind Kind) {
1688 bool HasFilteredRedecls = false;
1690 for (auto *Redecl : D->redecls()) {
1691 auto *R = cast<NamedDecl>(Redecl);
1692 if (!F(R))
1693 continue;
1695 if (S.isAcceptable(R, Kind))
1696 return true;
1698 HasFilteredRedecls = true;
1700 if (Modules)
1701 Modules->push_back(R->getOwningModule());
1704 // Only return false if there is at least one redecl that is not filtered out.
1705 if (HasFilteredRedecls)
1706 return false;
1708 return true;
1711 static bool
1712 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1713 llvm::SmallVectorImpl<Module *> *Modules,
1714 Sema::AcceptableKind Kind) {
1715 return hasAcceptableDeclarationImpl(
1716 S, D, Modules,
1717 [](const NamedDecl *D) {
1718 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1719 return RD->getTemplateSpecializationKind() ==
1720 TSK_ExplicitSpecialization;
1721 if (auto *FD = dyn_cast<FunctionDecl>(D))
1722 return FD->getTemplateSpecializationKind() ==
1723 TSK_ExplicitSpecialization;
1724 if (auto *VD = dyn_cast<VarDecl>(D))
1725 return VD->getTemplateSpecializationKind() ==
1726 TSK_ExplicitSpecialization;
1727 llvm_unreachable("unknown explicit specialization kind");
1729 Kind);
1732 bool Sema::hasVisibleExplicitSpecialization(
1733 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1734 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1735 Sema::AcceptableKind::Visible);
1738 bool Sema::hasReachableExplicitSpecialization(
1739 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1740 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1741 Sema::AcceptableKind::Reachable);
1744 static bool
1745 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1746 llvm::SmallVectorImpl<Module *> *Modules,
1747 Sema::AcceptableKind Kind) {
1748 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1749 "not a member specialization");
1750 return hasAcceptableDeclarationImpl(
1751 S, D, Modules,
1752 [](const NamedDecl *D) {
1753 // If the specialization is declared at namespace scope, then it's a
1754 // member specialization declaration. If it's lexically inside the class
1755 // definition then it was instantiated.
1757 // FIXME: This is a hack. There should be a better way to determine
1758 // this.
1759 // FIXME: What about MS-style explicit specializations declared within a
1760 // class definition?
1761 return D->getLexicalDeclContext()->isFileContext();
1763 Kind);
1766 bool Sema::hasVisibleMemberSpecialization(
1767 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1768 return hasAcceptableMemberSpecialization(*this, D, Modules,
1769 Sema::AcceptableKind::Visible);
1772 bool Sema::hasReachableMemberSpecialization(
1773 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1774 return hasAcceptableMemberSpecialization(*this, D, Modules,
1775 Sema::AcceptableKind::Reachable);
1778 /// Determine whether a declaration is acceptable to name lookup.
1780 /// This routine determines whether the declaration D is acceptable in the
1781 /// current lookup context, taking into account the current template
1782 /// instantiation stack. During template instantiation, a declaration is
1783 /// acceptable if it is acceptable from a module containing any entity on the
1784 /// template instantiation path (by instantiating a template, you allow it to
1785 /// see the declarations that your module can see, including those later on in
1786 /// your module).
1787 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1788 Sema::AcceptableKind Kind) {
1789 assert(!D->isUnconditionallyVisible() &&
1790 "should not call this: not in slow case");
1792 Module *DeclModule = SemaRef.getOwningModule(D);
1793 assert(DeclModule && "hidden decl has no owning module");
1795 // If the owning module is visible, the decl is acceptable.
1796 if (SemaRef.isModuleVisible(DeclModule,
1797 D->isInvisibleOutsideTheOwningModule()))
1798 return true;
1800 // Determine whether a decl context is a file context for the purpose of
1801 // visibility/reachability. This looks through some (export and linkage spec)
1802 // transparent contexts, but not others (enums).
1803 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1804 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1805 isa<ExportDecl>(DC);
1808 // If this declaration is not at namespace scope
1809 // then it is acceptable if its lexical parent has a acceptable definition.
1810 DeclContext *DC = D->getLexicalDeclContext();
1811 if (DC && !IsEffectivelyFileContext(DC)) {
1812 // For a parameter, check whether our current template declaration's
1813 // lexical context is acceptable, not whether there's some other acceptable
1814 // definition of it, because parameters aren't "within" the definition.
1816 // In C++ we need to check for a acceptable definition due to ODR merging,
1817 // and in C we must not because each declaration of a function gets its own
1818 // set of declarations for tags in prototype scope.
1819 bool AcceptableWithinParent;
1820 if (D->isTemplateParameter()) {
1821 bool SearchDefinitions = true;
1822 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1823 if (const auto *TD = DCD->getDescribedTemplate()) {
1824 TemplateParameterList *TPL = TD->getTemplateParameters();
1825 auto Index = getDepthAndIndex(D).second;
1826 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1829 if (SearchDefinitions)
1830 AcceptableWithinParent =
1831 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1832 else
1833 AcceptableWithinParent =
1834 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1835 } else if (isa<ParmVarDecl>(D) ||
1836 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1837 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1838 else if (D->isModulePrivate()) {
1839 // A module-private declaration is only acceptable if an enclosing lexical
1840 // parent was merged with another definition in the current module.
1841 AcceptableWithinParent = false;
1842 do {
1843 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1844 AcceptableWithinParent = true;
1845 break;
1847 DC = DC->getLexicalParent();
1848 } while (!IsEffectivelyFileContext(DC));
1849 } else {
1850 AcceptableWithinParent =
1851 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1854 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1855 Kind == Sema::AcceptableKind::Visible &&
1856 // FIXME: Do something better in this case.
1857 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1858 // Cache the fact that this declaration is implicitly visible because
1859 // its parent has a visible definition.
1860 D->setVisibleDespiteOwningModule();
1862 return AcceptableWithinParent;
1865 if (Kind == Sema::AcceptableKind::Visible)
1866 return false;
1868 assert(Kind == Sema::AcceptableKind::Reachable &&
1869 "Additional Sema::AcceptableKind?");
1870 return isReachableSlow(SemaRef, D);
1873 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1874 // The module might be ordinarily visible. For a module-private query, that
1875 // means it is part of the current module.
1876 if (ModulePrivate && isUsableModule(M))
1877 return true;
1879 // For a query which is not module-private, that means it is in our visible
1880 // module set.
1881 if (!ModulePrivate && VisibleModules.isVisible(M))
1882 return true;
1884 // Otherwise, it might be visible by virtue of the query being within a
1885 // template instantiation or similar that is permitted to look inside M.
1887 // Find the extra places where we need to look.
1888 const auto &LookupModules = getLookupModules();
1889 if (LookupModules.empty())
1890 return false;
1892 // If our lookup set contains the module, it's visible.
1893 if (LookupModules.count(M))
1894 return true;
1896 // The global module fragments are visible to its corresponding module unit.
1897 // So the global module fragment should be visible if the its corresponding
1898 // module unit is visible.
1899 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule()))
1900 return true;
1902 // For a module-private query, that's everywhere we get to look.
1903 if (ModulePrivate)
1904 return false;
1906 // Check whether M is transitively exported to an import of the lookup set.
1907 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1908 return LookupM->isModuleVisible(M);
1912 // FIXME: Return false directly if we don't have an interface dependency on the
1913 // translation unit containing D.
1914 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1915 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1917 Module *DeclModule = SemaRef.getOwningModule(D);
1918 assert(DeclModule && "hidden decl has no owning module");
1920 // Entities in header like modules are reachable only if they're visible.
1921 if (DeclModule->isHeaderLikeModule())
1922 return false;
1924 if (!D->isInAnotherModuleUnit())
1925 return true;
1927 // [module.reach]/p3:
1928 // A declaration D is reachable from a point P if:
1929 // ...
1930 // - D is not discarded ([module.global.frag]), appears in a translation unit
1931 // that is reachable from P, and does not appear within a private module
1932 // fragment.
1934 // A declaration that's discarded in the GMF should be module-private.
1935 if (D->isModulePrivate())
1936 return false;
1938 // [module.reach]/p1
1939 // A translation unit U is necessarily reachable from a point P if U is a
1940 // module interface unit on which the translation unit containing P has an
1941 // interface dependency, or the translation unit containing P imports U, in
1942 // either case prior to P ([module.import]).
1944 // [module.import]/p10
1945 // A translation unit has an interface dependency on a translation unit U if
1946 // it contains a declaration (possibly a module-declaration) that imports U
1947 // or if it has an interface dependency on a translation unit that has an
1948 // interface dependency on U.
1950 // So we could conclude the module unit U is necessarily reachable if:
1951 // (1) The module unit U is module interface unit.
1952 // (2) The current unit has an interface dependency on the module unit U.
1954 // Here we only check for the first condition. Since we couldn't see
1955 // DeclModule if it isn't (transitively) imported.
1956 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1957 return true;
1959 // [module.reach]/p2
1960 // Additional translation units on
1961 // which the point within the program has an interface dependency may be
1962 // considered reachable, but it is unspecified which are and under what
1963 // circumstances.
1965 // The decision here is to treat all additional tranditional units as
1966 // unreachable.
1967 return false;
1970 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1971 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1974 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1975 // FIXME: If there are both visible and hidden declarations, we need to take
1976 // into account whether redeclaration is possible. Example:
1978 // Non-imported module:
1979 // int f(T); // #1
1980 // Some TU:
1981 // static int f(U); // #2, not a redeclaration of #1
1982 // int f(T); // #3, finds both, should link with #1 if T != U, but
1983 // // with #2 if T == U; neither should be ambiguous.
1984 for (auto *D : R) {
1985 if (isVisible(D))
1986 return true;
1987 assert(D->isExternallyDeclarable() &&
1988 "should not have hidden, non-externally-declarable result here");
1991 // This function is called once "New" is essentially complete, but before a
1992 // previous declaration is attached. We can't query the linkage of "New" in
1993 // general, because attaching the previous declaration can change the
1994 // linkage of New to match the previous declaration.
1996 // However, because we've just determined that there is no *visible* prior
1997 // declaration, we can compute the linkage here. There are two possibilities:
1999 // * This is not a redeclaration; it's safe to compute the linkage now.
2001 // * This is a redeclaration of a prior declaration that is externally
2002 // redeclarable. In that case, the linkage of the declaration is not
2003 // changed by attaching the prior declaration, because both are externally
2004 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
2006 // FIXME: This is subtle and fragile.
2007 return New->isExternallyDeclarable();
2010 /// Retrieve the visible declaration corresponding to D, if any.
2012 /// This routine determines whether the declaration D is visible in the current
2013 /// module, with the current imports. If not, it checks whether any
2014 /// redeclaration of D is visible, and if so, returns that declaration.
2016 /// \returns D, or a visible previous declaration of D, whichever is more recent
2017 /// and visible. If no declaration of D is visible, returns null.
2018 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2019 unsigned IDNS) {
2020 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2022 for (auto *RD : D->redecls()) {
2023 // Don't bother with extra checks if we already know this one isn't visible.
2024 if (RD == D)
2025 continue;
2027 auto ND = cast<NamedDecl>(RD);
2028 // FIXME: This is wrong in the case where the previous declaration is not
2029 // visible in the same scope as D. This needs to be done much more
2030 // carefully.
2031 if (ND->isInIdentifierNamespace(IDNS) &&
2032 LookupResult::isAvailableForLookup(SemaRef, ND))
2033 return ND;
2036 return nullptr;
2039 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2040 llvm::SmallVectorImpl<Module *> *Modules) {
2041 assert(!isVisible(D) && "not in slow case");
2042 return hasAcceptableDeclarationImpl(
2043 *this, D, Modules, [](const NamedDecl *) { return true; },
2044 Sema::AcceptableKind::Visible);
2047 bool Sema::hasReachableDeclarationSlow(
2048 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2049 assert(!isReachable(D) && "not in slow case");
2050 return hasAcceptableDeclarationImpl(
2051 *this, D, Modules, [](const NamedDecl *) { return true; },
2052 Sema::AcceptableKind::Reachable);
2055 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2056 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2057 // Namespaces are a bit of a special case: we expect there to be a lot of
2058 // redeclarations of some namespaces, all declarations of a namespace are
2059 // essentially interchangeable, all declarations are found by name lookup
2060 // if any is, and namespaces are never looked up during template
2061 // instantiation. So we benefit from caching the check in this case, and
2062 // it is correct to do so.
2063 auto *Key = ND->getCanonicalDecl();
2064 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2065 return Acceptable;
2066 auto *Acceptable = isVisible(getSema(), Key)
2067 ? Key
2068 : findAcceptableDecl(getSema(), Key, IDNS);
2069 if (Acceptable)
2070 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2071 return Acceptable;
2074 return findAcceptableDecl(getSema(), D, IDNS);
2077 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2078 // If this declaration is already visible, return it directly.
2079 if (D->isUnconditionallyVisible())
2080 return true;
2082 // During template instantiation, we can refer to hidden declarations, if
2083 // they were visible in any module along the path of instantiation.
2084 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2087 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2088 if (D->isUnconditionallyVisible())
2089 return true;
2091 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2094 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2095 // We should check the visibility at the callsite already.
2096 if (isVisible(SemaRef, ND))
2097 return true;
2099 // Deduction guide lives in namespace scope generally, but it is just a
2100 // hint to the compilers. What we actually lookup for is the generated member
2101 // of the corresponding template. So it is sufficient to check the
2102 // reachability of the template decl.
2103 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2104 return SemaRef.hasReachableDefinition(DeductionGuide);
2106 // FIXME: The lookup for allocation function is a standalone process.
2107 // (We can find the logics in Sema::FindAllocationFunctions)
2109 // Such structure makes it a problem when we instantiate a template
2110 // declaration using placement allocation function if the placement
2111 // allocation function is invisible.
2112 // (See https://github.com/llvm/llvm-project/issues/59601)
2114 // Here we workaround it by making the placement allocation functions
2115 // always acceptable. The downside is that we can't diagnose the direct
2116 // use of the invisible placement allocation functions. (Although such uses
2117 // should be rare).
2118 if (auto *FD = dyn_cast<FunctionDecl>(ND);
2119 FD && FD->isReservedGlobalPlacementOperator())
2120 return true;
2122 auto *DC = ND->getDeclContext();
2123 // If ND is not visible and it is at namespace scope, it shouldn't be found
2124 // by name lookup.
2125 if (DC->isFileContext())
2126 return false;
2128 // [module.interface]p7
2129 // Class and enumeration member names can be found by name lookup in any
2130 // context in which a definition of the type is reachable.
2132 // FIXME: The current implementation didn't consider about scope. For example,
2133 // ```
2134 // // m.cppm
2135 // export module m;
2136 // enum E1 { e1 };
2137 // // Use.cpp
2138 // import m;
2139 // void test() {
2140 // auto a = E1::e1; // Error as expected.
2141 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2142 // }
2143 // ```
2144 // For the above example, the current implementation would emit error for `a`
2145 // correctly. However, the implementation wouldn't diagnose about `b` now.
2146 // Since we only check the reachability for the parent only.
2147 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2148 if (auto *TD = dyn_cast<TagDecl>(DC))
2149 return SemaRef.hasReachableDefinition(TD);
2151 return false;
2154 /// Perform unqualified name lookup starting from a given
2155 /// scope.
2157 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2158 /// used to find names within the current scope. For example, 'x' in
2159 /// @code
2160 /// int x;
2161 /// int f() {
2162 /// return x; // unqualified name look finds 'x' in the global scope
2163 /// }
2164 /// @endcode
2166 /// Different lookup criteria can find different names. For example, a
2167 /// particular scope can have both a struct and a function of the same
2168 /// name, and each can be found by certain lookup criteria. For more
2169 /// information about lookup criteria, see the documentation for the
2170 /// class LookupCriteria.
2172 /// @param S The scope from which unqualified name lookup will
2173 /// begin. If the lookup criteria permits, name lookup may also search
2174 /// in the parent scopes.
2176 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2177 /// look up and the lookup kind), and is updated with the results of lookup
2178 /// including zero or more declarations and possibly additional information
2179 /// used to diagnose ambiguities.
2181 /// @returns \c true if lookup succeeded and false otherwise.
2182 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2183 bool ForceNoCPlusPlus) {
2184 DeclarationName Name = R.getLookupName();
2185 if (!Name) return false;
2187 LookupNameKind NameKind = R.getLookupKind();
2189 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2190 // Unqualified name lookup in C/Objective-C is purely lexical, so
2191 // search in the declarations attached to the name.
2192 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2193 // Find the nearest non-transparent declaration scope.
2194 while (!(S->getFlags() & Scope::DeclScope) ||
2195 (S->getEntity() && S->getEntity()->isTransparentContext()))
2196 S = S->getParent();
2199 // When performing a scope lookup, we want to find local extern decls.
2200 FindLocalExternScope FindLocals(R);
2202 // Scan up the scope chain looking for a decl that matches this
2203 // identifier that is in the appropriate namespace. This search
2204 // should not take long, as shadowing of names is uncommon, and
2205 // deep shadowing is extremely uncommon.
2206 bool LeftStartingScope = false;
2208 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2209 IEnd = IdResolver.end();
2210 I != IEnd; ++I)
2211 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2212 if (NameKind == LookupRedeclarationWithLinkage) {
2213 // Determine whether this (or a previous) declaration is
2214 // out-of-scope.
2215 if (!LeftStartingScope && !S->isDeclScope(*I))
2216 LeftStartingScope = true;
2218 // If we found something outside of our starting scope that
2219 // does not have linkage, skip it.
2220 if (LeftStartingScope && !((*I)->hasLinkage())) {
2221 R.setShadowed();
2222 continue;
2225 else if (NameKind == LookupObjCImplicitSelfParam &&
2226 !isa<ImplicitParamDecl>(*I))
2227 continue;
2229 R.addDecl(D);
2231 // Check whether there are any other declarations with the same name
2232 // and in the same scope.
2233 if (I != IEnd) {
2234 // Find the scope in which this declaration was declared (if it
2235 // actually exists in a Scope).
2236 while (S && !S->isDeclScope(D))
2237 S = S->getParent();
2239 // If the scope containing the declaration is the translation unit,
2240 // then we'll need to perform our checks based on the matching
2241 // DeclContexts rather than matching scopes.
2242 if (S && isNamespaceOrTranslationUnitScope(S))
2243 S = nullptr;
2245 // Compute the DeclContext, if we need it.
2246 DeclContext *DC = nullptr;
2247 if (!S)
2248 DC = (*I)->getDeclContext()->getRedeclContext();
2250 IdentifierResolver::iterator LastI = I;
2251 for (++LastI; LastI != IEnd; ++LastI) {
2252 if (S) {
2253 // Match based on scope.
2254 if (!S->isDeclScope(*LastI))
2255 break;
2256 } else {
2257 // Match based on DeclContext.
2258 DeclContext *LastDC
2259 = (*LastI)->getDeclContext()->getRedeclContext();
2260 if (!LastDC->Equals(DC))
2261 break;
2264 // If the declaration is in the right namespace and visible, add it.
2265 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2266 R.addDecl(LastD);
2269 R.resolveKind();
2272 return true;
2274 } else {
2275 // Perform C++ unqualified name lookup.
2276 if (CppLookupName(R, S))
2277 return true;
2280 // If we didn't find a use of this identifier, and if the identifier
2281 // corresponds to a compiler builtin, create the decl object for the builtin
2282 // now, injecting it into translation unit scope, and return it.
2283 if (AllowBuiltinCreation && LookupBuiltin(R))
2284 return true;
2286 // If we didn't find a use of this identifier, the ExternalSource
2287 // may be able to handle the situation.
2288 // Note: some lookup failures are expected!
2289 // See e.g. R.isForRedeclaration().
2290 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2293 /// Perform qualified name lookup in the namespaces nominated by
2294 /// using directives by the given context.
2296 /// C++98 [namespace.qual]p2:
2297 /// Given X::m (where X is a user-declared namespace), or given \::m
2298 /// (where X is the global namespace), let S be the set of all
2299 /// declarations of m in X and in the transitive closure of all
2300 /// namespaces nominated by using-directives in X and its used
2301 /// namespaces, except that using-directives are ignored in any
2302 /// namespace, including X, directly containing one or more
2303 /// declarations of m. No namespace is searched more than once in
2304 /// the lookup of a name. If S is the empty set, the program is
2305 /// ill-formed. Otherwise, if S has exactly one member, or if the
2306 /// context of the reference is a using-declaration
2307 /// (namespace.udecl), S is the required set of declarations of
2308 /// m. Otherwise if the use of m is not one that allows a unique
2309 /// declaration to be chosen from S, the program is ill-formed.
2311 /// C++98 [namespace.qual]p5:
2312 /// During the lookup of a qualified namespace member name, if the
2313 /// lookup finds more than one declaration of the member, and if one
2314 /// declaration introduces a class name or enumeration name and the
2315 /// other declarations either introduce the same object, the same
2316 /// enumerator or a set of functions, the non-type name hides the
2317 /// class or enumeration name if and only if the declarations are
2318 /// from the same namespace; otherwise (the declarations are from
2319 /// different namespaces), the program is ill-formed.
2320 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2321 DeclContext *StartDC) {
2322 assert(StartDC->isFileContext() && "start context is not a file context");
2324 // We have not yet looked into these namespaces, much less added
2325 // their "using-children" to the queue.
2326 SmallVector<NamespaceDecl*, 8> Queue;
2328 // We have at least added all these contexts to the queue.
2329 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2330 Visited.insert(StartDC);
2332 // We have already looked into the initial namespace; seed the queue
2333 // with its using-children.
2334 for (auto *I : StartDC->using_directives()) {
2335 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2336 if (S.isVisible(I) && Visited.insert(ND).second)
2337 Queue.push_back(ND);
2340 // The easiest way to implement the restriction in [namespace.qual]p5
2341 // is to check whether any of the individual results found a tag
2342 // and, if so, to declare an ambiguity if the final result is not
2343 // a tag.
2344 bool FoundTag = false;
2345 bool FoundNonTag = false;
2347 LookupResult LocalR(LookupResult::Temporary, R);
2349 bool Found = false;
2350 while (!Queue.empty()) {
2351 NamespaceDecl *ND = Queue.pop_back_val();
2353 // We go through some convolutions here to avoid copying results
2354 // between LookupResults.
2355 bool UseLocal = !R.empty();
2356 LookupResult &DirectR = UseLocal ? LocalR : R;
2357 bool FoundDirect = LookupDirect(S, DirectR, ND);
2359 if (FoundDirect) {
2360 // First do any local hiding.
2361 DirectR.resolveKind();
2363 // If the local result is a tag, remember that.
2364 if (DirectR.isSingleTagDecl())
2365 FoundTag = true;
2366 else
2367 FoundNonTag = true;
2369 // Append the local results to the total results if necessary.
2370 if (UseLocal) {
2371 R.addAllDecls(LocalR);
2372 LocalR.clear();
2376 // If we find names in this namespace, ignore its using directives.
2377 if (FoundDirect) {
2378 Found = true;
2379 continue;
2382 for (auto *I : ND->using_directives()) {
2383 NamespaceDecl *Nom = I->getNominatedNamespace();
2384 if (S.isVisible(I) && Visited.insert(Nom).second)
2385 Queue.push_back(Nom);
2389 if (Found) {
2390 if (FoundTag && FoundNonTag)
2391 R.setAmbiguousQualifiedTagHiding();
2392 else
2393 R.resolveKind();
2396 return Found;
2399 /// Perform qualified name lookup into a given context.
2401 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2402 /// names when the context of those names is explicit specified, e.g.,
2403 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2405 /// Different lookup criteria can find different names. For example, a
2406 /// particular scope can have both a struct and a function of the same
2407 /// name, and each can be found by certain lookup criteria. For more
2408 /// information about lookup criteria, see the documentation for the
2409 /// class LookupCriteria.
2411 /// \param R captures both the lookup criteria and any lookup results found.
2413 /// \param LookupCtx The context in which qualified name lookup will
2414 /// search. If the lookup criteria permits, name lookup may also search
2415 /// in the parent contexts or (for C++ classes) base classes.
2417 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2418 /// occurs as part of unqualified name lookup.
2420 /// \returns true if lookup succeeded, false if it failed.
2421 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2422 bool InUnqualifiedLookup) {
2423 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2425 if (!R.getLookupName())
2426 return false;
2428 // Make sure that the declaration context is complete.
2429 assert((!isa<TagDecl>(LookupCtx) ||
2430 LookupCtx->isDependentContext() ||
2431 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2432 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2433 "Declaration context must already be complete!");
2435 struct QualifiedLookupInScope {
2436 bool oldVal;
2437 DeclContext *Context;
2438 // Set flag in DeclContext informing debugger that we're looking for qualified name
2439 QualifiedLookupInScope(DeclContext *ctx)
2440 : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) {
2441 ctx->setUseQualifiedLookup();
2443 ~QualifiedLookupInScope() {
2444 Context->setUseQualifiedLookup(oldVal);
2446 } QL(LookupCtx);
2448 if (LookupDirect(*this, R, LookupCtx)) {
2449 R.resolveKind();
2450 if (isa<CXXRecordDecl>(LookupCtx))
2451 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2452 return true;
2455 // Don't descend into implied contexts for redeclarations.
2456 // C++98 [namespace.qual]p6:
2457 // In a declaration for a namespace member in which the
2458 // declarator-id is a qualified-id, given that the qualified-id
2459 // for the namespace member has the form
2460 // nested-name-specifier unqualified-id
2461 // the unqualified-id shall name a member of the namespace
2462 // designated by the nested-name-specifier.
2463 // See also [class.mfct]p5 and [class.static.data]p2.
2464 if (R.isForRedeclaration())
2465 return false;
2467 // If this is a namespace, look it up in the implied namespaces.
2468 if (LookupCtx->isFileContext())
2469 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2471 // If this isn't a C++ class, we aren't allowed to look into base
2472 // classes, we're done.
2473 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2474 if (!LookupRec || !LookupRec->getDefinition())
2475 return false;
2477 // We're done for lookups that can never succeed for C++ classes.
2478 if (R.getLookupKind() == LookupOperatorName ||
2479 R.getLookupKind() == LookupNamespaceName ||
2480 R.getLookupKind() == LookupObjCProtocolName ||
2481 R.getLookupKind() == LookupLabel)
2482 return false;
2484 // If we're performing qualified name lookup into a dependent class,
2485 // then we are actually looking into a current instantiation. If we have any
2486 // dependent base classes, then we either have to delay lookup until
2487 // template instantiation time (at which point all bases will be available)
2488 // or we have to fail.
2489 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2490 LookupRec->hasAnyDependentBases()) {
2491 R.setNotFoundInCurrentInstantiation();
2492 return false;
2495 // Perform lookup into our base classes.
2497 DeclarationName Name = R.getLookupName();
2498 unsigned IDNS = R.getIdentifierNamespace();
2500 // Look for this member in our base classes.
2501 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2502 CXXBasePath &Path) -> bool {
2503 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2504 // Drop leading non-matching lookup results from the declaration list so
2505 // we don't need to consider them again below.
2506 for (Path.Decls = BaseRecord->lookup(Name).begin();
2507 Path.Decls != Path.Decls.end(); ++Path.Decls) {
2508 if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2509 return true;
2511 return false;
2514 CXXBasePaths Paths;
2515 Paths.setOrigin(LookupRec);
2516 if (!LookupRec->lookupInBases(BaseCallback, Paths))
2517 return false;
2519 R.setNamingClass(LookupRec);
2521 // C++ [class.member.lookup]p2:
2522 // [...] If the resulting set of declarations are not all from
2523 // sub-objects of the same type, or the set has a nonstatic member
2524 // and includes members from distinct sub-objects, there is an
2525 // ambiguity and the program is ill-formed. Otherwise that set is
2526 // the result of the lookup.
2527 QualType SubobjectType;
2528 int SubobjectNumber = 0;
2529 AccessSpecifier SubobjectAccess = AS_none;
2531 // Check whether the given lookup result contains only static members.
2532 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2533 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2534 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2535 return false;
2536 return true;
2539 bool TemplateNameLookup = R.isTemplateNameLookup();
2541 // Determine whether two sets of members contain the same members, as
2542 // required by C++ [class.member.lookup]p6.
2543 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2544 DeclContext::lookup_iterator B) {
2545 using Iterator = DeclContextLookupResult::iterator;
2546 using Result = const void *;
2548 auto Next = [&](Iterator &It, Iterator End) -> Result {
2549 while (It != End) {
2550 NamedDecl *ND = *It++;
2551 if (!ND->isInIdentifierNamespace(IDNS))
2552 continue;
2554 // C++ [temp.local]p3:
2555 // A lookup that finds an injected-class-name (10.2) can result in
2556 // an ambiguity in certain cases (for example, if it is found in
2557 // more than one base class). If all of the injected-class-names
2558 // that are found refer to specializations of the same class
2559 // template, and if the name is used as a template-name, the
2560 // reference refers to the class template itself and not a
2561 // specialization thereof, and is not ambiguous.
2562 if (TemplateNameLookup)
2563 if (auto *TD = getAsTemplateNameDecl(ND))
2564 ND = TD;
2566 // C++ [class.member.lookup]p3:
2567 // type declarations (including injected-class-names) are replaced by
2568 // the types they designate
2569 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2570 QualType T = Context.getTypeDeclType(TD);
2571 return T.getCanonicalType().getAsOpaquePtr();
2574 return ND->getUnderlyingDecl()->getCanonicalDecl();
2576 return nullptr;
2579 // We'll often find the declarations are in the same order. Handle this
2580 // case (and the special case of only one declaration) efficiently.
2581 Iterator AIt = A, BIt = B, AEnd, BEnd;
2582 while (true) {
2583 Result AResult = Next(AIt, AEnd);
2584 Result BResult = Next(BIt, BEnd);
2585 if (!AResult && !BResult)
2586 return true;
2587 if (!AResult || !BResult)
2588 return false;
2589 if (AResult != BResult) {
2590 // Found a mismatch; carefully check both lists, accounting for the
2591 // possibility of declarations appearing more than once.
2592 llvm::SmallDenseMap<Result, bool, 32> AResults;
2593 for (; AResult; AResult = Next(AIt, AEnd))
2594 AResults.insert({AResult, /*FoundInB*/false});
2595 unsigned Found = 0;
2596 for (; BResult; BResult = Next(BIt, BEnd)) {
2597 auto It = AResults.find(BResult);
2598 if (It == AResults.end())
2599 return false;
2600 if (!It->second) {
2601 It->second = true;
2602 ++Found;
2605 return AResults.size() == Found;
2610 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2611 Path != PathEnd; ++Path) {
2612 const CXXBasePathElement &PathElement = Path->back();
2614 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2615 // across all paths.
2616 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2618 // Determine whether we're looking at a distinct sub-object or not.
2619 if (SubobjectType.isNull()) {
2620 // This is the first subobject we've looked at. Record its type.
2621 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2622 SubobjectNumber = PathElement.SubobjectNumber;
2623 continue;
2626 if (SubobjectType !=
2627 Context.getCanonicalType(PathElement.Base->getType())) {
2628 // We found members of the given name in two subobjects of
2629 // different types. If the declaration sets aren't the same, this
2630 // lookup is ambiguous.
2632 // FIXME: The language rule says that this applies irrespective of
2633 // whether the sets contain only static members.
2634 if (HasOnlyStaticMembers(Path->Decls) &&
2635 HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2636 continue;
2638 R.setAmbiguousBaseSubobjectTypes(Paths);
2639 return true;
2642 // FIXME: This language rule no longer exists. Checking for ambiguous base
2643 // subobjects should be done as part of formation of a class member access
2644 // expression (when converting the object parameter to the member's type).
2645 if (SubobjectNumber != PathElement.SubobjectNumber) {
2646 // We have a different subobject of the same type.
2648 // C++ [class.member.lookup]p5:
2649 // A static member, a nested type or an enumerator defined in
2650 // a base class T can unambiguously be found even if an object
2651 // has more than one base class subobject of type T.
2652 if (HasOnlyStaticMembers(Path->Decls))
2653 continue;
2655 // We have found a nonstatic member name in multiple, distinct
2656 // subobjects. Name lookup is ambiguous.
2657 R.setAmbiguousBaseSubobjects(Paths);
2658 return true;
2662 // Lookup in a base class succeeded; return these results.
2664 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2665 I != E; ++I) {
2666 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2667 (*I)->getAccess());
2668 if (NamedDecl *ND = R.getAcceptableDecl(*I))
2669 R.addDecl(ND, AS);
2671 R.resolveKind();
2672 return true;
2675 /// Performs qualified name lookup or special type of lookup for
2676 /// "__super::" scope specifier.
2678 /// This routine is a convenience overload meant to be called from contexts
2679 /// that need to perform a qualified name lookup with an optional C++ scope
2680 /// specifier that might require special kind of lookup.
2682 /// \param R captures both the lookup criteria and any lookup results found.
2684 /// \param LookupCtx The context in which qualified name lookup will
2685 /// search.
2687 /// \param SS An optional C++ scope-specifier.
2689 /// \returns true if lookup succeeded, false if it failed.
2690 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2691 CXXScopeSpec &SS) {
2692 auto *NNS = SS.getScopeRep();
2693 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2694 return LookupInSuper(R, NNS->getAsRecordDecl());
2695 else
2697 return LookupQualifiedName(R, LookupCtx);
2700 /// Performs name lookup for a name that was parsed in the
2701 /// source code, and may contain a C++ scope specifier.
2703 /// This routine is a convenience routine meant to be called from
2704 /// contexts that receive a name and an optional C++ scope specifier
2705 /// (e.g., "N::M::x"). It will then perform either qualified or
2706 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2707 /// respectively) on the given name and return those results. It will
2708 /// perform a special type of lookup for "__super::" scope specifier.
2710 /// @param S The scope from which unqualified name lookup will
2711 /// begin.
2713 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2715 /// @param EnteringContext Indicates whether we are going to enter the
2716 /// context of the scope-specifier SS (if present).
2718 /// @returns True if any decls were found (but possibly ambiguous)
2719 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2720 bool AllowBuiltinCreation, bool EnteringContext) {
2721 if (SS && SS->isInvalid()) {
2722 // When the scope specifier is invalid, don't even look for
2723 // anything.
2724 return false;
2727 if (SS && SS->isSet()) {
2728 NestedNameSpecifier *NNS = SS->getScopeRep();
2729 if (NNS->getKind() == NestedNameSpecifier::Super)
2730 return LookupInSuper(R, NNS->getAsRecordDecl());
2732 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2733 // We have resolved the scope specifier to a particular declaration
2734 // contex, and will perform name lookup in that context.
2735 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2736 return false;
2738 R.setContextRange(SS->getRange());
2739 return LookupQualifiedName(R, DC);
2742 // We could not resolve the scope specified to a specific declaration
2743 // context, which means that SS refers to an unknown specialization.
2744 // Name lookup can't find anything in this case.
2745 R.setNotFoundInCurrentInstantiation();
2746 R.setContextRange(SS->getRange());
2747 return false;
2750 // Perform unqualified name lookup starting in the given scope.
2751 return LookupName(R, S, AllowBuiltinCreation);
2754 /// Perform qualified name lookup into all base classes of the given
2755 /// class.
2757 /// \param R captures both the lookup criteria and any lookup results found.
2759 /// \param Class The context in which qualified name lookup will
2760 /// search. Name lookup will search in all base classes merging the results.
2762 /// @returns True if any decls were found (but possibly ambiguous)
2763 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2764 // The access-control rules we use here are essentially the rules for
2765 // doing a lookup in Class that just magically skipped the direct
2766 // members of Class itself. That is, the naming class is Class, and the
2767 // access includes the access of the base.
2768 for (const auto &BaseSpec : Class->bases()) {
2769 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2770 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2771 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2772 Result.setBaseObjectType(Context.getRecordType(Class));
2773 LookupQualifiedName(Result, RD);
2775 // Copy the lookup results into the target, merging the base's access into
2776 // the path access.
2777 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2778 R.addDecl(I.getDecl(),
2779 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2780 I.getAccess()));
2783 Result.suppressDiagnostics();
2786 R.resolveKind();
2787 R.setNamingClass(Class);
2789 return !R.empty();
2792 /// Produce a diagnostic describing the ambiguity that resulted
2793 /// from name lookup.
2795 /// \param Result The result of the ambiguous lookup to be diagnosed.
2796 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2797 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2799 DeclarationName Name = Result.getLookupName();
2800 SourceLocation NameLoc = Result.getNameLoc();
2801 SourceRange LookupRange = Result.getContextRange();
2803 switch (Result.getAmbiguityKind()) {
2804 case LookupResult::AmbiguousBaseSubobjects: {
2805 CXXBasePaths *Paths = Result.getBasePaths();
2806 QualType SubobjectType = Paths->front().back().Base->getType();
2807 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2808 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2809 << LookupRange;
2811 DeclContext::lookup_iterator Found = Paths->front().Decls;
2812 while (isa<CXXMethodDecl>(*Found) &&
2813 cast<CXXMethodDecl>(*Found)->isStatic())
2814 ++Found;
2816 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2817 break;
2820 case LookupResult::AmbiguousBaseSubobjectTypes: {
2821 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2822 << Name << LookupRange;
2824 CXXBasePaths *Paths = Result.getBasePaths();
2825 std::set<const NamedDecl *> DeclsPrinted;
2826 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2827 PathEnd = Paths->end();
2828 Path != PathEnd; ++Path) {
2829 const NamedDecl *D = *Path->Decls;
2830 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2831 continue;
2832 if (DeclsPrinted.insert(D).second) {
2833 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2834 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2835 << TD->getUnderlyingType();
2836 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2837 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2838 << Context.getTypeDeclType(TD);
2839 else
2840 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2843 break;
2846 case LookupResult::AmbiguousTagHiding: {
2847 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2849 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2851 for (auto *D : Result)
2852 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2853 TagDecls.insert(TD);
2854 Diag(TD->getLocation(), diag::note_hidden_tag);
2857 for (auto *D : Result)
2858 if (!isa<TagDecl>(D))
2859 Diag(D->getLocation(), diag::note_hiding_object);
2861 // For recovery purposes, go ahead and implement the hiding.
2862 LookupResult::Filter F = Result.makeFilter();
2863 while (F.hasNext()) {
2864 if (TagDecls.count(F.next()))
2865 F.erase();
2867 F.done();
2868 break;
2871 case LookupResult::AmbiguousReferenceToPlaceholderVariable: {
2872 Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange;
2873 DeclContext *DC = nullptr;
2874 for (auto *D : Result) {
2875 Diag(D->getLocation(), diag::note_reference_placeholder) << D;
2876 if (DC != nullptr && DC != D->getDeclContext())
2877 break;
2878 DC = D->getDeclContext();
2880 break;
2883 case LookupResult::AmbiguousReference: {
2884 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2886 for (auto *D : Result)
2887 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2888 break;
2893 namespace {
2894 struct AssociatedLookup {
2895 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2896 Sema::AssociatedNamespaceSet &Namespaces,
2897 Sema::AssociatedClassSet &Classes)
2898 : S(S), Namespaces(Namespaces), Classes(Classes),
2899 InstantiationLoc(InstantiationLoc) {
2902 bool addClassTransitive(CXXRecordDecl *RD) {
2903 Classes.insert(RD);
2904 return ClassesTransitive.insert(RD);
2907 Sema &S;
2908 Sema::AssociatedNamespaceSet &Namespaces;
2909 Sema::AssociatedClassSet &Classes;
2910 SourceLocation InstantiationLoc;
2912 private:
2913 Sema::AssociatedClassSet ClassesTransitive;
2915 } // end anonymous namespace
2917 static void
2918 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2920 // Given the declaration context \param Ctx of a class, class template or
2921 // enumeration, add the associated namespaces to \param Namespaces as described
2922 // in [basic.lookup.argdep]p2.
2923 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2924 DeclContext *Ctx) {
2925 // The exact wording has been changed in C++14 as a result of
2926 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2927 // to all language versions since it is possible to return a local type
2928 // from a lambda in C++11.
2930 // C++14 [basic.lookup.argdep]p2:
2931 // If T is a class type [...]. Its associated namespaces are the innermost
2932 // enclosing namespaces of its associated classes. [...]
2934 // If T is an enumeration type, its associated namespace is the innermost
2935 // enclosing namespace of its declaration. [...]
2937 // We additionally skip inline namespaces. The innermost non-inline namespace
2938 // contains all names of all its nested inline namespaces anyway, so we can
2939 // replace the entire inline namespace tree with its root.
2940 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2941 Ctx = Ctx->getParent();
2943 Namespaces.insert(Ctx->getPrimaryContext());
2946 // Add the associated classes and namespaces for argument-dependent
2947 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2948 static void
2949 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2950 const TemplateArgument &Arg) {
2951 // C++ [basic.lookup.argdep]p2, last bullet:
2952 // -- [...] ;
2953 switch (Arg.getKind()) {
2954 case TemplateArgument::Null:
2955 break;
2957 case TemplateArgument::Type:
2958 // [...] the namespaces and classes associated with the types of the
2959 // template arguments provided for template type parameters (excluding
2960 // template template parameters)
2961 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2962 break;
2964 case TemplateArgument::Template:
2965 case TemplateArgument::TemplateExpansion: {
2966 // [...] the namespaces in which any template template arguments are
2967 // defined; and the classes in which any member templates used as
2968 // template template arguments are defined.
2969 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2970 if (ClassTemplateDecl *ClassTemplate
2971 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2972 DeclContext *Ctx = ClassTemplate->getDeclContext();
2973 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2974 Result.Classes.insert(EnclosingClass);
2975 // Add the associated namespace for this class.
2976 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2978 break;
2981 case TemplateArgument::Declaration:
2982 case TemplateArgument::Integral:
2983 case TemplateArgument::Expression:
2984 case TemplateArgument::NullPtr:
2985 // [Note: non-type template arguments do not contribute to the set of
2986 // associated namespaces. ]
2987 break;
2989 case TemplateArgument::Pack:
2990 for (const auto &P : Arg.pack_elements())
2991 addAssociatedClassesAndNamespaces(Result, P);
2992 break;
2996 // Add the associated classes and namespaces for argument-dependent lookup
2997 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2998 static void
2999 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
3000 CXXRecordDecl *Class) {
3002 // Just silently ignore anything whose name is __va_list_tag.
3003 if (Class->getDeclName() == Result.S.VAListTagName)
3004 return;
3006 // C++ [basic.lookup.argdep]p2:
3007 // [...]
3008 // -- If T is a class type (including unions), its associated
3009 // classes are: the class itself; the class of which it is a
3010 // member, if any; and its direct and indirect base classes.
3011 // Its associated namespaces are the innermost enclosing
3012 // namespaces of its associated classes.
3014 // Add the class of which it is a member, if any.
3015 DeclContext *Ctx = Class->getDeclContext();
3016 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3017 Result.Classes.insert(EnclosingClass);
3019 // Add the associated namespace for this class.
3020 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3022 // -- If T is a template-id, its associated namespaces and classes are
3023 // the namespace in which the template is defined; for member
3024 // templates, the member template's class; the namespaces and classes
3025 // associated with the types of the template arguments provided for
3026 // template type parameters (excluding template template parameters); the
3027 // namespaces in which any template template arguments are defined; and
3028 // the classes in which any member templates used as template template
3029 // arguments are defined. [Note: non-type template arguments do not
3030 // contribute to the set of associated namespaces. ]
3031 if (ClassTemplateSpecializationDecl *Spec
3032 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3033 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3034 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3035 Result.Classes.insert(EnclosingClass);
3036 // Add the associated namespace for this class.
3037 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3039 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3040 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3041 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3044 // Add the class itself. If we've already transitively visited this class,
3045 // we don't need to visit base classes.
3046 if (!Result.addClassTransitive(Class))
3047 return;
3049 // Only recurse into base classes for complete types.
3050 if (!Result.S.isCompleteType(Result.InstantiationLoc,
3051 Result.S.Context.getRecordType(Class)))
3052 return;
3054 // Add direct and indirect base classes along with their associated
3055 // namespaces.
3056 SmallVector<CXXRecordDecl *, 32> Bases;
3057 Bases.push_back(Class);
3058 while (!Bases.empty()) {
3059 // Pop this class off the stack.
3060 Class = Bases.pop_back_val();
3062 // Visit the base classes.
3063 for (const auto &Base : Class->bases()) {
3064 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3065 // In dependent contexts, we do ADL twice, and the first time around,
3066 // the base type might be a dependent TemplateSpecializationType, or a
3067 // TemplateTypeParmType. If that happens, simply ignore it.
3068 // FIXME: If we want to support export, we probably need to add the
3069 // namespace of the template in a TemplateSpecializationType, or even
3070 // the classes and namespaces of known non-dependent arguments.
3071 if (!BaseType)
3072 continue;
3073 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3074 if (Result.addClassTransitive(BaseDecl)) {
3075 // Find the associated namespace for this base class.
3076 DeclContext *BaseCtx = BaseDecl->getDeclContext();
3077 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3079 // Make sure we visit the bases of this base class.
3080 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3081 Bases.push_back(BaseDecl);
3087 // Add the associated classes and namespaces for
3088 // argument-dependent lookup with an argument of type T
3089 // (C++ [basic.lookup.koenig]p2).
3090 static void
3091 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3092 // C++ [basic.lookup.koenig]p2:
3094 // For each argument type T in the function call, there is a set
3095 // of zero or more associated namespaces and a set of zero or more
3096 // associated classes to be considered. The sets of namespaces and
3097 // classes is determined entirely by the types of the function
3098 // arguments (and the namespace of any template template
3099 // argument). Typedef names and using-declarations used to specify
3100 // the types do not contribute to this set. The sets of namespaces
3101 // and classes are determined in the following way:
3103 SmallVector<const Type *, 16> Queue;
3104 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3106 while (true) {
3107 switch (T->getTypeClass()) {
3109 #define TYPE(Class, Base)
3110 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3111 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3112 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3113 #define ABSTRACT_TYPE(Class, Base)
3114 #include "clang/AST/TypeNodes.inc"
3115 // T is canonical. We can also ignore dependent types because
3116 // we don't need to do ADL at the definition point, but if we
3117 // wanted to implement template export (or if we find some other
3118 // use for associated classes and namespaces...) this would be
3119 // wrong.
3120 break;
3122 // -- If T is a pointer to U or an array of U, its associated
3123 // namespaces and classes are those associated with U.
3124 case Type::Pointer:
3125 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3126 continue;
3127 case Type::ConstantArray:
3128 case Type::IncompleteArray:
3129 case Type::VariableArray:
3130 T = cast<ArrayType>(T)->getElementType().getTypePtr();
3131 continue;
3133 // -- If T is a fundamental type, its associated sets of
3134 // namespaces and classes are both empty.
3135 case Type::Builtin:
3136 break;
3138 // -- If T is a class type (including unions), its associated
3139 // classes are: the class itself; the class of which it is
3140 // a member, if any; and its direct and indirect base classes.
3141 // Its associated namespaces are the innermost enclosing
3142 // namespaces of its associated classes.
3143 case Type::Record: {
3144 CXXRecordDecl *Class =
3145 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3146 addAssociatedClassesAndNamespaces(Result, Class);
3147 break;
3150 // -- If T is an enumeration type, its associated namespace
3151 // is the innermost enclosing namespace of its declaration.
3152 // If it is a class member, its associated class is the
3153 // member’s class; else it has no associated class.
3154 case Type::Enum: {
3155 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3157 DeclContext *Ctx = Enum->getDeclContext();
3158 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3159 Result.Classes.insert(EnclosingClass);
3161 // Add the associated namespace for this enumeration.
3162 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3164 break;
3167 // -- If T is a function type, its associated namespaces and
3168 // classes are those associated with the function parameter
3169 // types and those associated with the return type.
3170 case Type::FunctionProto: {
3171 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3172 for (const auto &Arg : Proto->param_types())
3173 Queue.push_back(Arg.getTypePtr());
3174 // fallthrough
3175 [[fallthrough]];
3177 case Type::FunctionNoProto: {
3178 const FunctionType *FnType = cast<FunctionType>(T);
3179 T = FnType->getReturnType().getTypePtr();
3180 continue;
3183 // -- If T is a pointer to a member function of a class X, its
3184 // associated namespaces and classes are those associated
3185 // with the function parameter types and return type,
3186 // together with those associated with X.
3188 // -- If T is a pointer to a data member of class X, its
3189 // associated namespaces and classes are those associated
3190 // with the member type together with those associated with
3191 // X.
3192 case Type::MemberPointer: {
3193 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3195 // Queue up the class type into which this points.
3196 Queue.push_back(MemberPtr->getClass());
3198 // And directly continue with the pointee type.
3199 T = MemberPtr->getPointeeType().getTypePtr();
3200 continue;
3203 // As an extension, treat this like a normal pointer.
3204 case Type::BlockPointer:
3205 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3206 continue;
3208 // References aren't covered by the standard, but that's such an
3209 // obvious defect that we cover them anyway.
3210 case Type::LValueReference:
3211 case Type::RValueReference:
3212 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3213 continue;
3215 // These are fundamental types.
3216 case Type::Vector:
3217 case Type::ExtVector:
3218 case Type::ConstantMatrix:
3219 case Type::Complex:
3220 case Type::BitInt:
3221 break;
3223 // Non-deduced auto types only get here for error cases.
3224 case Type::Auto:
3225 case Type::DeducedTemplateSpecialization:
3226 break;
3228 // If T is an Objective-C object or interface type, or a pointer to an
3229 // object or interface type, the associated namespace is the global
3230 // namespace.
3231 case Type::ObjCObject:
3232 case Type::ObjCInterface:
3233 case Type::ObjCObjectPointer:
3234 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3235 break;
3237 // Atomic types are just wrappers; use the associations of the
3238 // contained type.
3239 case Type::Atomic:
3240 T = cast<AtomicType>(T)->getValueType().getTypePtr();
3241 continue;
3242 case Type::Pipe:
3243 T = cast<PipeType>(T)->getElementType().getTypePtr();
3244 continue;
3247 if (Queue.empty())
3248 break;
3249 T = Queue.pop_back_val();
3253 /// Find the associated classes and namespaces for
3254 /// argument-dependent lookup for a call with the given set of
3255 /// arguments.
3257 /// This routine computes the sets of associated classes and associated
3258 /// namespaces searched by argument-dependent lookup
3259 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
3260 void Sema::FindAssociatedClassesAndNamespaces(
3261 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3262 AssociatedNamespaceSet &AssociatedNamespaces,
3263 AssociatedClassSet &AssociatedClasses) {
3264 AssociatedNamespaces.clear();
3265 AssociatedClasses.clear();
3267 AssociatedLookup Result(*this, InstantiationLoc,
3268 AssociatedNamespaces, AssociatedClasses);
3270 // C++ [basic.lookup.koenig]p2:
3271 // For each argument type T in the function call, there is a set
3272 // of zero or more associated namespaces and a set of zero or more
3273 // associated classes to be considered. The sets of namespaces and
3274 // classes is determined entirely by the types of the function
3275 // arguments (and the namespace of any template template
3276 // argument).
3277 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3278 Expr *Arg = Args[ArgIdx];
3280 if (Arg->getType() != Context.OverloadTy) {
3281 addAssociatedClassesAndNamespaces(Result, Arg->getType());
3282 continue;
3285 // [...] In addition, if the argument is the name or address of a
3286 // set of overloaded functions and/or function templates, its
3287 // associated classes and namespaces are the union of those
3288 // associated with each of the members of the set: the namespace
3289 // in which the function or function template is defined and the
3290 // classes and namespaces associated with its (non-dependent)
3291 // parameter types and return type.
3292 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3294 for (const NamedDecl *D : OE->decls()) {
3295 // Look through any using declarations to find the underlying function.
3296 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3298 // Add the classes and namespaces associated with the parameter
3299 // types and return type of this function.
3300 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3305 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3306 SourceLocation Loc,
3307 LookupNameKind NameKind,
3308 RedeclarationKind Redecl) {
3309 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3310 LookupName(R, S);
3311 return R.getAsSingle<NamedDecl>();
3314 /// Find the protocol with the given name, if any.
3315 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3316 SourceLocation IdLoc,
3317 RedeclarationKind Redecl) {
3318 Decl *D = LookupSingleName(TUScope, II, IdLoc,
3319 LookupObjCProtocolName, Redecl);
3320 return cast_or_null<ObjCProtocolDecl>(D);
3323 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3324 UnresolvedSetImpl &Functions) {
3325 // C++ [over.match.oper]p3:
3326 // -- The set of non-member candidates is the result of the
3327 // unqualified lookup of operator@ in the context of the
3328 // expression according to the usual rules for name lookup in
3329 // unqualified function calls (3.4.2) except that all member
3330 // functions are ignored.
3331 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3332 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3333 LookupName(Operators, S);
3335 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3336 Functions.append(Operators.begin(), Operators.end());
3339 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3340 CXXSpecialMember SM,
3341 bool ConstArg,
3342 bool VolatileArg,
3343 bool RValueThis,
3344 bool ConstThis,
3345 bool VolatileThis) {
3346 assert(CanDeclareSpecialMemberFunction(RD) &&
3347 "doing special member lookup into record that isn't fully complete");
3348 RD = RD->getDefinition();
3349 if (RValueThis || ConstThis || VolatileThis)
3350 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3351 "constructors and destructors always have unqualified lvalue this");
3352 if (ConstArg || VolatileArg)
3353 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3354 "parameter-less special members can't have qualified arguments");
3356 // FIXME: Get the caller to pass in a location for the lookup.
3357 SourceLocation LookupLoc = RD->getLocation();
3359 llvm::FoldingSetNodeID ID;
3360 ID.AddPointer(RD);
3361 ID.AddInteger(SM);
3362 ID.AddInteger(ConstArg);
3363 ID.AddInteger(VolatileArg);
3364 ID.AddInteger(RValueThis);
3365 ID.AddInteger(ConstThis);
3366 ID.AddInteger(VolatileThis);
3368 void *InsertPoint;
3369 SpecialMemberOverloadResultEntry *Result =
3370 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3372 // This was already cached
3373 if (Result)
3374 return *Result;
3376 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3377 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3378 SpecialMemberCache.InsertNode(Result, InsertPoint);
3380 if (SM == CXXDestructor) {
3381 if (RD->needsImplicitDestructor()) {
3382 runWithSufficientStackSpace(RD->getLocation(), [&] {
3383 DeclareImplicitDestructor(RD);
3386 CXXDestructorDecl *DD = RD->getDestructor();
3387 Result->setMethod(DD);
3388 Result->setKind(DD && !DD->isDeleted()
3389 ? SpecialMemberOverloadResult::Success
3390 : SpecialMemberOverloadResult::NoMemberOrDeleted);
3391 return *Result;
3394 // Prepare for overload resolution. Here we construct a synthetic argument
3395 // if necessary and make sure that implicit functions are declared.
3396 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3397 DeclarationName Name;
3398 Expr *Arg = nullptr;
3399 unsigned NumArgs;
3401 QualType ArgType = CanTy;
3402 ExprValueKind VK = VK_LValue;
3404 if (SM == CXXDefaultConstructor) {
3405 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3406 NumArgs = 0;
3407 if (RD->needsImplicitDefaultConstructor()) {
3408 runWithSufficientStackSpace(RD->getLocation(), [&] {
3409 DeclareImplicitDefaultConstructor(RD);
3412 } else {
3413 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3414 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3415 if (RD->needsImplicitCopyConstructor()) {
3416 runWithSufficientStackSpace(RD->getLocation(), [&] {
3417 DeclareImplicitCopyConstructor(RD);
3420 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3421 runWithSufficientStackSpace(RD->getLocation(), [&] {
3422 DeclareImplicitMoveConstructor(RD);
3425 } else {
3426 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3427 if (RD->needsImplicitCopyAssignment()) {
3428 runWithSufficientStackSpace(RD->getLocation(), [&] {
3429 DeclareImplicitCopyAssignment(RD);
3432 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3433 runWithSufficientStackSpace(RD->getLocation(), [&] {
3434 DeclareImplicitMoveAssignment(RD);
3439 if (ConstArg)
3440 ArgType.addConst();
3441 if (VolatileArg)
3442 ArgType.addVolatile();
3444 // This isn't /really/ specified by the standard, but it's implied
3445 // we should be working from a PRValue in the case of move to ensure
3446 // that we prefer to bind to rvalue references, and an LValue in the
3447 // case of copy to ensure we don't bind to rvalue references.
3448 // Possibly an XValue is actually correct in the case of move, but
3449 // there is no semantic difference for class types in this restricted
3450 // case.
3451 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3452 VK = VK_LValue;
3453 else
3454 VK = VK_PRValue;
3457 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3459 if (SM != CXXDefaultConstructor) {
3460 NumArgs = 1;
3461 Arg = &FakeArg;
3464 // Create the object argument
3465 QualType ThisTy = CanTy;
3466 if (ConstThis)
3467 ThisTy.addConst();
3468 if (VolatileThis)
3469 ThisTy.addVolatile();
3470 Expr::Classification Classification =
3471 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3472 .Classify(Context);
3474 // Now we perform lookup on the name we computed earlier and do overload
3475 // resolution. Lookup is only performed directly into the class since there
3476 // will always be a (possibly implicit) declaration to shadow any others.
3477 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3478 DeclContext::lookup_result R = RD->lookup(Name);
3480 if (R.empty()) {
3481 // We might have no default constructor because we have a lambda's closure
3482 // type, rather than because there's some other declared constructor.
3483 // Every class has a copy/move constructor, copy/move assignment, and
3484 // destructor.
3485 assert(SM == CXXDefaultConstructor &&
3486 "lookup for a constructor or assignment operator was empty");
3487 Result->setMethod(nullptr);
3488 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3489 return *Result;
3492 // Copy the candidates as our processing of them may load new declarations
3493 // from an external source and invalidate lookup_result.
3494 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3496 for (NamedDecl *CandDecl : Candidates) {
3497 if (CandDecl->isInvalidDecl())
3498 continue;
3500 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3501 auto CtorInfo = getConstructorInfo(Cand);
3502 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3503 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3504 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3505 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3506 else if (CtorInfo)
3507 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3508 llvm::ArrayRef(&Arg, NumArgs), OCS,
3509 /*SuppressUserConversions*/ true);
3510 else
3511 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3512 /*SuppressUserConversions*/ true);
3513 } else if (FunctionTemplateDecl *Tmpl =
3514 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3515 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3516 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3517 Classification,
3518 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3519 else if (CtorInfo)
3520 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3521 CtorInfo.FoundDecl, nullptr,
3522 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3523 else
3524 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3525 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3526 } else {
3527 assert(isa<UsingDecl>(Cand.getDecl()) &&
3528 "illegal Kind of operator = Decl");
3532 OverloadCandidateSet::iterator Best;
3533 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3534 case OR_Success:
3535 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3536 Result->setKind(SpecialMemberOverloadResult::Success);
3537 break;
3539 case OR_Deleted:
3540 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3541 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3542 break;
3544 case OR_Ambiguous:
3545 Result->setMethod(nullptr);
3546 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3547 break;
3549 case OR_No_Viable_Function:
3550 Result->setMethod(nullptr);
3551 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3552 break;
3555 return *Result;
3558 /// Look up the default constructor for the given class.
3559 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3560 SpecialMemberOverloadResult Result =
3561 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3562 false, false);
3564 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3567 /// Look up the copying constructor for the given class.
3568 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3569 unsigned Quals) {
3570 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3571 "non-const, non-volatile qualifiers for copy ctor arg");
3572 SpecialMemberOverloadResult Result =
3573 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3574 Quals & Qualifiers::Volatile, false, false, false);
3576 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3579 /// Look up the moving constructor for the given class.
3580 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3581 unsigned Quals) {
3582 SpecialMemberOverloadResult Result =
3583 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3584 Quals & Qualifiers::Volatile, false, false, false);
3586 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3589 /// Look up the constructors for the given class.
3590 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3591 // If the implicit constructors have not yet been declared, do so now.
3592 if (CanDeclareSpecialMemberFunction(Class)) {
3593 runWithSufficientStackSpace(Class->getLocation(), [&] {
3594 if (Class->needsImplicitDefaultConstructor())
3595 DeclareImplicitDefaultConstructor(Class);
3596 if (Class->needsImplicitCopyConstructor())
3597 DeclareImplicitCopyConstructor(Class);
3598 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3599 DeclareImplicitMoveConstructor(Class);
3603 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3604 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3605 return Class->lookup(Name);
3608 /// Look up the copying assignment operator for the given class.
3609 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3610 unsigned Quals, bool RValueThis,
3611 unsigned ThisQuals) {
3612 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3613 "non-const, non-volatile qualifiers for copy assignment arg");
3614 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3615 "non-const, non-volatile qualifiers for copy assignment this");
3616 SpecialMemberOverloadResult Result =
3617 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3618 Quals & Qualifiers::Volatile, RValueThis,
3619 ThisQuals & Qualifiers::Const,
3620 ThisQuals & Qualifiers::Volatile);
3622 return Result.getMethod();
3625 /// Look up the moving assignment operator for the given class.
3626 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3627 unsigned Quals,
3628 bool RValueThis,
3629 unsigned ThisQuals) {
3630 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3631 "non-const, non-volatile qualifiers for copy assignment this");
3632 SpecialMemberOverloadResult Result =
3633 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3634 Quals & Qualifiers::Volatile, RValueThis,
3635 ThisQuals & Qualifiers::Const,
3636 ThisQuals & Qualifiers::Volatile);
3638 return Result.getMethod();
3641 /// Look for the destructor of the given class.
3643 /// During semantic analysis, this routine should be used in lieu of
3644 /// CXXRecordDecl::getDestructor().
3646 /// \returns The destructor for this class.
3647 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3648 return cast_or_null<CXXDestructorDecl>(
3649 LookupSpecialMember(Class, CXXDestructor, false, false, false, false,
3650 false)
3651 .getMethod());
3654 /// LookupLiteralOperator - Determine which literal operator should be used for
3655 /// a user-defined literal, per C++11 [lex.ext].
3657 /// Normal overload resolution is not used to select which literal operator to
3658 /// call for a user-defined literal. Look up the provided literal operator name,
3659 /// and filter the results to the appropriate set for the given argument types.
3660 Sema::LiteralOperatorLookupResult
3661 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3662 ArrayRef<QualType> ArgTys, bool AllowRaw,
3663 bool AllowTemplate, bool AllowStringTemplatePack,
3664 bool DiagnoseMissing, StringLiteral *StringLit) {
3665 LookupName(R, S);
3666 assert(R.getResultKind() != LookupResult::Ambiguous &&
3667 "literal operator lookup can't be ambiguous");
3669 // Filter the lookup results appropriately.
3670 LookupResult::Filter F = R.makeFilter();
3672 bool AllowCooked = true;
3673 bool FoundRaw = false;
3674 bool FoundTemplate = false;
3675 bool FoundStringTemplatePack = false;
3676 bool FoundCooked = false;
3678 while (F.hasNext()) {
3679 Decl *D = F.next();
3680 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3681 D = USD->getTargetDecl();
3683 // If the declaration we found is invalid, skip it.
3684 if (D->isInvalidDecl()) {
3685 F.erase();
3686 continue;
3689 bool IsRaw = false;
3690 bool IsTemplate = false;
3691 bool IsStringTemplatePack = false;
3692 bool IsCooked = false;
3694 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3695 if (FD->getNumParams() == 1 &&
3696 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3697 IsRaw = true;
3698 else if (FD->getNumParams() == ArgTys.size()) {
3699 IsCooked = true;
3700 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3701 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3702 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3703 IsCooked = false;
3704 break;
3709 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3710 TemplateParameterList *Params = FD->getTemplateParameters();
3711 if (Params->size() == 1) {
3712 IsTemplate = true;
3713 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3714 // Implied but not stated: user-defined integer and floating literals
3715 // only ever use numeric literal operator templates, not templates
3716 // taking a parameter of class type.
3717 F.erase();
3718 continue;
3721 // A string literal template is only considered if the string literal
3722 // is a well-formed template argument for the template parameter.
3723 if (StringLit) {
3724 SFINAETrap Trap(*this);
3725 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3726 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3727 if (CheckTemplateArgument(
3728 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3729 0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3730 Trap.hasErrorOccurred())
3731 IsTemplate = false;
3733 } else {
3734 IsStringTemplatePack = true;
3738 if (AllowTemplate && StringLit && IsTemplate) {
3739 FoundTemplate = true;
3740 AllowRaw = false;
3741 AllowCooked = false;
3742 AllowStringTemplatePack = false;
3743 if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3744 F.restart();
3745 FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3747 } else if (AllowCooked && IsCooked) {
3748 FoundCooked = true;
3749 AllowRaw = false;
3750 AllowTemplate = StringLit;
3751 AllowStringTemplatePack = false;
3752 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3753 // Go through again and remove the raw and template decls we've
3754 // already found.
3755 F.restart();
3756 FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3758 } else if (AllowRaw && IsRaw) {
3759 FoundRaw = true;
3760 } else if (AllowTemplate && IsTemplate) {
3761 FoundTemplate = true;
3762 } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3763 FoundStringTemplatePack = true;
3764 } else {
3765 F.erase();
3769 F.done();
3771 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3772 // form for string literal operator templates.
3773 if (StringLit && FoundTemplate)
3774 return LOLR_Template;
3776 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3777 // parameter type, that is used in preference to a raw literal operator
3778 // or literal operator template.
3779 if (FoundCooked)
3780 return LOLR_Cooked;
3782 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3783 // operator template, but not both.
3784 if (FoundRaw && FoundTemplate) {
3785 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3786 for (const NamedDecl *D : R)
3787 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction());
3788 return LOLR_Error;
3791 if (FoundRaw)
3792 return LOLR_Raw;
3794 if (FoundTemplate)
3795 return LOLR_Template;
3797 if (FoundStringTemplatePack)
3798 return LOLR_StringTemplatePack;
3800 // Didn't find anything we could use.
3801 if (DiagnoseMissing) {
3802 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3803 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3804 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3805 << (AllowTemplate || AllowStringTemplatePack);
3806 return LOLR_Error;
3809 return LOLR_ErrorNoDiagnostic;
3812 void ADLResult::insert(NamedDecl *New) {
3813 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3815 // If we haven't yet seen a decl for this key, or the last decl
3816 // was exactly this one, we're done.
3817 if (Old == nullptr || Old == New) {
3818 Old = New;
3819 return;
3822 // Otherwise, decide which is a more recent redeclaration.
3823 FunctionDecl *OldFD = Old->getAsFunction();
3824 FunctionDecl *NewFD = New->getAsFunction();
3826 FunctionDecl *Cursor = NewFD;
3827 while (true) {
3828 Cursor = Cursor->getPreviousDecl();
3830 // If we got to the end without finding OldFD, OldFD is the newer
3831 // declaration; leave things as they are.
3832 if (!Cursor) return;
3834 // If we do find OldFD, then NewFD is newer.
3835 if (Cursor == OldFD) break;
3837 // Otherwise, keep looking.
3840 Old = New;
3843 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3844 ArrayRef<Expr *> Args, ADLResult &Result) {
3845 // Find all of the associated namespaces and classes based on the
3846 // arguments we have.
3847 AssociatedNamespaceSet AssociatedNamespaces;
3848 AssociatedClassSet AssociatedClasses;
3849 FindAssociatedClassesAndNamespaces(Loc, Args,
3850 AssociatedNamespaces,
3851 AssociatedClasses);
3853 // C++ [basic.lookup.argdep]p3:
3854 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3855 // and let Y be the lookup set produced by argument dependent
3856 // lookup (defined as follows). If X contains [...] then Y is
3857 // empty. Otherwise Y is the set of declarations found in the
3858 // namespaces associated with the argument types as described
3859 // below. The set of declarations found by the lookup of the name
3860 // is the union of X and Y.
3862 // Here, we compute Y and add its members to the overloaded
3863 // candidate set.
3864 for (auto *NS : AssociatedNamespaces) {
3865 // When considering an associated namespace, the lookup is the
3866 // same as the lookup performed when the associated namespace is
3867 // used as a qualifier (3.4.3.2) except that:
3869 // -- Any using-directives in the associated namespace are
3870 // ignored.
3872 // -- Any namespace-scope friend functions declared in
3873 // associated classes are visible within their respective
3874 // namespaces even if they are not visible during an ordinary
3875 // lookup (11.4).
3877 // C++20 [basic.lookup.argdep] p4.3
3878 // -- are exported, are attached to a named module M, do not appear
3879 // in the translation unit containing the point of the lookup, and
3880 // have the same innermost enclosing non-inline namespace scope as
3881 // a declaration of an associated entity attached to M.
3882 DeclContext::lookup_result R = NS->lookup(Name);
3883 for (auto *D : R) {
3884 auto *Underlying = D;
3885 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3886 Underlying = USD->getTargetDecl();
3888 if (!isa<FunctionDecl>(Underlying) &&
3889 !isa<FunctionTemplateDecl>(Underlying))
3890 continue;
3892 // The declaration is visible to argument-dependent lookup if either
3893 // it's ordinarily visible or declared as a friend in an associated
3894 // class.
3895 bool Visible = false;
3896 for (D = D->getMostRecentDecl(); D;
3897 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3898 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3899 if (isVisible(D)) {
3900 Visible = true;
3901 break;
3904 if (!getLangOpts().CPlusPlusModules)
3905 continue;
3907 if (D->isInExportDeclContext()) {
3908 Module *FM = D->getOwningModule();
3909 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3910 // exports are only valid in module purview and outside of any
3911 // PMF (although a PMF should not even be present in a module
3912 // with an import).
3913 assert(FM && FM->isNamedModule() && !FM->isPrivateModule() &&
3914 "bad export context");
3915 // .. are attached to a named module M, do not appear in the
3916 // translation unit containing the point of the lookup..
3917 if (D->isInAnotherModuleUnit() &&
3918 llvm::any_of(AssociatedClasses, [&](auto *E) {
3919 // ... and have the same innermost enclosing non-inline
3920 // namespace scope as a declaration of an associated entity
3921 // attached to M
3922 if (E->getOwningModule() != FM)
3923 return false;
3924 // TODO: maybe this could be cached when generating the
3925 // associated namespaces / entities.
3926 DeclContext *Ctx = E->getDeclContext();
3927 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3928 Ctx = Ctx->getParent();
3929 return Ctx == NS;
3930 })) {
3931 Visible = true;
3932 break;
3935 } else if (D->getFriendObjectKind()) {
3936 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3937 // [basic.lookup.argdep]p4:
3938 // Argument-dependent lookup finds all declarations of functions and
3939 // function templates that
3940 // - ...
3941 // - are declared as a friend ([class.friend]) of any class with a
3942 // reachable definition in the set of associated entities,
3944 // FIXME: If there's a merged definition of D that is reachable, then
3945 // the friend declaration should be considered.
3946 if (AssociatedClasses.count(RD) && isReachable(D)) {
3947 Visible = true;
3948 break;
3953 // FIXME: Preserve D as the FoundDecl.
3954 if (Visible)
3955 Result.insert(Underlying);
3960 //----------------------------------------------------------------------------
3961 // Search for all visible declarations.
3962 //----------------------------------------------------------------------------
3963 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3965 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3967 namespace {
3969 class ShadowContextRAII;
3971 class VisibleDeclsRecord {
3972 public:
3973 /// An entry in the shadow map, which is optimized to store a
3974 /// single declaration (the common case) but can also store a list
3975 /// of declarations.
3976 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3978 private:
3979 /// A mapping from declaration names to the declarations that have
3980 /// this name within a particular scope.
3981 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3983 /// A list of shadow maps, which is used to model name hiding.
3984 std::list<ShadowMap> ShadowMaps;
3986 /// The declaration contexts we have already visited.
3987 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3989 friend class ShadowContextRAII;
3991 public:
3992 /// Determine whether we have already visited this context
3993 /// (and, if not, note that we are going to visit that context now).
3994 bool visitedContext(DeclContext *Ctx) {
3995 return !VisitedContexts.insert(Ctx).second;
3998 bool alreadyVisitedContext(DeclContext *Ctx) {
3999 return VisitedContexts.count(Ctx);
4002 /// Determine whether the given declaration is hidden in the
4003 /// current scope.
4005 /// \returns the declaration that hides the given declaration, or
4006 /// NULL if no such declaration exists.
4007 NamedDecl *checkHidden(NamedDecl *ND);
4009 /// Add a declaration to the current shadow map.
4010 void add(NamedDecl *ND) {
4011 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
4015 /// RAII object that records when we've entered a shadow context.
4016 class ShadowContextRAII {
4017 VisibleDeclsRecord &Visible;
4019 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
4021 public:
4022 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
4023 Visible.ShadowMaps.emplace_back();
4026 ~ShadowContextRAII() {
4027 Visible.ShadowMaps.pop_back();
4031 } // end anonymous namespace
4033 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4034 unsigned IDNS = ND->getIdentifierNamespace();
4035 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4036 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4037 SM != SMEnd; ++SM) {
4038 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4039 if (Pos == SM->end())
4040 continue;
4042 for (auto *D : Pos->second) {
4043 // A tag declaration does not hide a non-tag declaration.
4044 if (D->hasTagIdentifierNamespace() &&
4045 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4046 Decl::IDNS_ObjCProtocol)))
4047 continue;
4049 // Protocols are in distinct namespaces from everything else.
4050 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4051 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4052 D->getIdentifierNamespace() != IDNS)
4053 continue;
4055 // Functions and function templates in the same scope overload
4056 // rather than hide. FIXME: Look for hiding based on function
4057 // signatures!
4058 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4059 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4060 SM == ShadowMaps.rbegin())
4061 continue;
4063 // A shadow declaration that's created by a resolved using declaration
4064 // is not hidden by the same using declaration.
4065 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4066 cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4067 continue;
4069 // We've found a declaration that hides this one.
4070 return D;
4074 return nullptr;
4077 namespace {
4078 class LookupVisibleHelper {
4079 public:
4080 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4081 bool LoadExternal)
4082 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4083 LoadExternal(LoadExternal) {}
4085 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4086 bool IncludeGlobalScope) {
4087 // Determine the set of using directives available during
4088 // unqualified name lookup.
4089 Scope *Initial = S;
4090 UnqualUsingDirectiveSet UDirs(SemaRef);
4091 if (SemaRef.getLangOpts().CPlusPlus) {
4092 // Find the first namespace or translation-unit scope.
4093 while (S && !isNamespaceOrTranslationUnitScope(S))
4094 S = S->getParent();
4096 UDirs.visitScopeChain(Initial, S);
4098 UDirs.done();
4100 // Look for visible declarations.
4101 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4102 Result.setAllowHidden(Consumer.includeHiddenDecls());
4103 if (!IncludeGlobalScope)
4104 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4105 ShadowContextRAII Shadow(Visited);
4106 lookupInScope(Initial, Result, UDirs);
4109 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4110 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4111 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4112 Result.setAllowHidden(Consumer.includeHiddenDecls());
4113 if (!IncludeGlobalScope)
4114 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4116 ShadowContextRAII Shadow(Visited);
4117 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4118 /*InBaseClass=*/false);
4121 private:
4122 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4123 bool QualifiedNameLookup, bool InBaseClass) {
4124 if (!Ctx)
4125 return;
4127 // Make sure we don't visit the same context twice.
4128 if (Visited.visitedContext(Ctx->getPrimaryContext()))
4129 return;
4131 Consumer.EnteredContext(Ctx);
4133 // Outside C++, lookup results for the TU live on identifiers.
4134 if (isa<TranslationUnitDecl>(Ctx) &&
4135 !Result.getSema().getLangOpts().CPlusPlus) {
4136 auto &S = Result.getSema();
4137 auto &Idents = S.Context.Idents;
4139 // Ensure all external identifiers are in the identifier table.
4140 if (LoadExternal)
4141 if (IdentifierInfoLookup *External =
4142 Idents.getExternalIdentifierLookup()) {
4143 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4144 for (StringRef Name = Iter->Next(); !Name.empty();
4145 Name = Iter->Next())
4146 Idents.get(Name);
4149 // Walk all lookup results in the TU for each identifier.
4150 for (const auto &Ident : Idents) {
4151 for (auto I = S.IdResolver.begin(Ident.getValue()),
4152 E = S.IdResolver.end();
4153 I != E; ++I) {
4154 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4155 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4156 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4157 Visited.add(ND);
4163 return;
4166 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4167 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4169 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4170 // We sometimes skip loading namespace-level results (they tend to be huge).
4171 bool Load = LoadExternal ||
4172 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4173 // Enumerate all of the results in this context.
4174 for (DeclContextLookupResult R :
4175 Load ? Ctx->lookups()
4176 : Ctx->noload_lookups(/*PreserveInternalState=*/false))
4177 for (auto *D : R)
4178 // Rather than visit immediately, we put ND into a vector and visit
4179 // all decls, in order, outside of this loop. The reason is that
4180 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D)
4181 // may invalidate the iterators used in the two
4182 // loops above.
4183 DeclsToVisit.push_back(D);
4185 for (auto *D : DeclsToVisit)
4186 if (auto *ND = Result.getAcceptableDecl(D)) {
4187 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4188 Visited.add(ND);
4191 DeclsToVisit.clear();
4193 // Traverse using directives for qualified name lookup.
4194 if (QualifiedNameLookup) {
4195 ShadowContextRAII Shadow(Visited);
4196 for (auto *I : Ctx->using_directives()) {
4197 if (!Result.getSema().isVisible(I))
4198 continue;
4199 lookupInDeclContext(I->getNominatedNamespace(), Result,
4200 QualifiedNameLookup, InBaseClass);
4204 // Traverse the contexts of inherited C++ classes.
4205 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4206 if (!Record->hasDefinition())
4207 return;
4209 for (const auto &B : Record->bases()) {
4210 QualType BaseType = B.getType();
4212 RecordDecl *RD;
4213 if (BaseType->isDependentType()) {
4214 if (!IncludeDependentBases) {
4215 // Don't look into dependent bases, because name lookup can't look
4216 // there anyway.
4217 continue;
4219 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4220 if (!TST)
4221 continue;
4222 TemplateName TN = TST->getTemplateName();
4223 const auto *TD =
4224 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4225 if (!TD)
4226 continue;
4227 RD = TD->getTemplatedDecl();
4228 } else {
4229 const auto *Record = BaseType->getAs<RecordType>();
4230 if (!Record)
4231 continue;
4232 RD = Record->getDecl();
4235 // FIXME: It would be nice to be able to determine whether referencing
4236 // a particular member would be ambiguous. For example, given
4238 // struct A { int member; };
4239 // struct B { int member; };
4240 // struct C : A, B { };
4242 // void f(C *c) { c->### }
4244 // accessing 'member' would result in an ambiguity. However, we
4245 // could be smart enough to qualify the member with the base
4246 // class, e.g.,
4248 // c->B::member
4250 // or
4252 // c->A::member
4254 // Find results in this base class (and its bases).
4255 ShadowContextRAII Shadow(Visited);
4256 lookupInDeclContext(RD, Result, QualifiedNameLookup,
4257 /*InBaseClass=*/true);
4261 // Traverse the contexts of Objective-C classes.
4262 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4263 // Traverse categories.
4264 for (auto *Cat : IFace->visible_categories()) {
4265 ShadowContextRAII Shadow(Visited);
4266 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4267 /*InBaseClass=*/false);
4270 // Traverse protocols.
4271 for (auto *I : IFace->all_referenced_protocols()) {
4272 ShadowContextRAII Shadow(Visited);
4273 lookupInDeclContext(I, Result, QualifiedNameLookup,
4274 /*InBaseClass=*/false);
4277 // Traverse the superclass.
4278 if (IFace->getSuperClass()) {
4279 ShadowContextRAII Shadow(Visited);
4280 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4281 /*InBaseClass=*/true);
4284 // If there is an implementation, traverse it. We do this to find
4285 // synthesized ivars.
4286 if (IFace->getImplementation()) {
4287 ShadowContextRAII Shadow(Visited);
4288 lookupInDeclContext(IFace->getImplementation(), Result,
4289 QualifiedNameLookup, InBaseClass);
4291 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4292 for (auto *I : Protocol->protocols()) {
4293 ShadowContextRAII Shadow(Visited);
4294 lookupInDeclContext(I, Result, QualifiedNameLookup,
4295 /*InBaseClass=*/false);
4297 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4298 for (auto *I : Category->protocols()) {
4299 ShadowContextRAII Shadow(Visited);
4300 lookupInDeclContext(I, Result, QualifiedNameLookup,
4301 /*InBaseClass=*/false);
4304 // If there is an implementation, traverse it.
4305 if (Category->getImplementation()) {
4306 ShadowContextRAII Shadow(Visited);
4307 lookupInDeclContext(Category->getImplementation(), Result,
4308 QualifiedNameLookup, /*InBaseClass=*/true);
4313 void lookupInScope(Scope *S, LookupResult &Result,
4314 UnqualUsingDirectiveSet &UDirs) {
4315 // No clients run in this mode and it's not supported. Please add tests and
4316 // remove the assertion if you start relying on it.
4317 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4319 if (!S)
4320 return;
4322 if (!S->getEntity() ||
4323 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4324 (S->getEntity())->isFunctionOrMethod()) {
4325 FindLocalExternScope FindLocals(Result);
4326 // Walk through the declarations in this Scope. The consumer might add new
4327 // decls to the scope as part of deserialization, so make a copy first.
4328 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4329 for (Decl *D : ScopeDecls) {
4330 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4331 if ((ND = Result.getAcceptableDecl(ND))) {
4332 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4333 Visited.add(ND);
4338 DeclContext *Entity = S->getLookupEntity();
4339 if (Entity) {
4340 // Look into this scope's declaration context, along with any of its
4341 // parent lookup contexts (e.g., enclosing classes), up to the point
4342 // where we hit the context stored in the next outer scope.
4343 DeclContext *OuterCtx = findOuterContext(S);
4345 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4346 Ctx = Ctx->getLookupParent()) {
4347 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4348 if (Method->isInstanceMethod()) {
4349 // For instance methods, look for ivars in the method's interface.
4350 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4351 Result.getNameLoc(),
4352 Sema::LookupMemberName);
4353 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4354 lookupInDeclContext(IFace, IvarResult,
4355 /*QualifiedNameLookup=*/false,
4356 /*InBaseClass=*/false);
4360 // We've already performed all of the name lookup that we need
4361 // to for Objective-C methods; the next context will be the
4362 // outer scope.
4363 break;
4366 if (Ctx->isFunctionOrMethod())
4367 continue;
4369 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4370 /*InBaseClass=*/false);
4372 } else if (!S->getParent()) {
4373 // Look into the translation unit scope. We walk through the translation
4374 // unit's declaration context, because the Scope itself won't have all of
4375 // the declarations if we loaded a precompiled header.
4376 // FIXME: We would like the translation unit's Scope object to point to
4377 // the translation unit, so we don't need this special "if" branch.
4378 // However, doing so would force the normal C++ name-lookup code to look
4379 // into the translation unit decl when the IdentifierInfo chains would
4380 // suffice. Once we fix that problem (which is part of a more general
4381 // "don't look in DeclContexts unless we have to" optimization), we can
4382 // eliminate this.
4383 Entity = Result.getSema().Context.getTranslationUnitDecl();
4384 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4385 /*InBaseClass=*/false);
4388 if (Entity) {
4389 // Lookup visible declarations in any namespaces found by using
4390 // directives.
4391 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4392 lookupInDeclContext(
4393 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4394 /*QualifiedNameLookup=*/false,
4395 /*InBaseClass=*/false);
4398 // Lookup names in the parent scope.
4399 ShadowContextRAII Shadow(Visited);
4400 lookupInScope(S->getParent(), Result, UDirs);
4403 private:
4404 VisibleDeclsRecord Visited;
4405 VisibleDeclConsumer &Consumer;
4406 bool IncludeDependentBases;
4407 bool LoadExternal;
4409 } // namespace
4411 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4412 VisibleDeclConsumer &Consumer,
4413 bool IncludeGlobalScope, bool LoadExternal) {
4414 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4415 LoadExternal);
4416 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4419 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4420 VisibleDeclConsumer &Consumer,
4421 bool IncludeGlobalScope,
4422 bool IncludeDependentBases, bool LoadExternal) {
4423 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4424 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4427 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4428 /// If GnuLabelLoc is a valid source location, then this is a definition
4429 /// of an __label__ label name, otherwise it is a normal label definition
4430 /// or use.
4431 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4432 SourceLocation GnuLabelLoc) {
4433 // Do a lookup to see if we have a label with this name already.
4434 NamedDecl *Res = nullptr;
4436 if (GnuLabelLoc.isValid()) {
4437 // Local label definitions always shadow existing labels.
4438 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4439 Scope *S = CurScope;
4440 PushOnScopeChains(Res, S, true);
4441 return cast<LabelDecl>(Res);
4444 // Not a GNU local label.
4445 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4446 // If we found a label, check to see if it is in the same context as us.
4447 // When in a Block, we don't want to reuse a label in an enclosing function.
4448 if (Res && Res->getDeclContext() != CurContext)
4449 Res = nullptr;
4450 if (!Res) {
4451 // If not forward referenced or defined already, create the backing decl.
4452 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4453 Scope *S = CurScope->getFnParent();
4454 assert(S && "Not in a function?");
4455 PushOnScopeChains(Res, S, true);
4457 return cast<LabelDecl>(Res);
4460 //===----------------------------------------------------------------------===//
4461 // Typo correction
4462 //===----------------------------------------------------------------------===//
4464 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4465 TypoCorrection &Candidate) {
4466 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4467 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4470 static void LookupPotentialTypoResult(Sema &SemaRef,
4471 LookupResult &Res,
4472 IdentifierInfo *Name,
4473 Scope *S, CXXScopeSpec *SS,
4474 DeclContext *MemberContext,
4475 bool EnteringContext,
4476 bool isObjCIvarLookup,
4477 bool FindHidden);
4479 /// Check whether the declarations found for a typo correction are
4480 /// visible. Set the correction's RequiresImport flag to true if none of the
4481 /// declarations are visible, false otherwise.
4482 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4483 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4485 for (/**/; DI != DE; ++DI)
4486 if (!LookupResult::isVisible(SemaRef, *DI))
4487 break;
4488 // No filtering needed if all decls are visible.
4489 if (DI == DE) {
4490 TC.setRequiresImport(false);
4491 return;
4494 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4495 bool AnyVisibleDecls = !NewDecls.empty();
4497 for (/**/; DI != DE; ++DI) {
4498 if (LookupResult::isVisible(SemaRef, *DI)) {
4499 if (!AnyVisibleDecls) {
4500 // Found a visible decl, discard all hidden ones.
4501 AnyVisibleDecls = true;
4502 NewDecls.clear();
4504 NewDecls.push_back(*DI);
4505 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4506 NewDecls.push_back(*DI);
4509 if (NewDecls.empty())
4510 TC = TypoCorrection();
4511 else {
4512 TC.setCorrectionDecls(NewDecls);
4513 TC.setRequiresImport(!AnyVisibleDecls);
4517 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4518 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4519 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4520 static void getNestedNameSpecifierIdentifiers(
4521 NestedNameSpecifier *NNS,
4522 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4523 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4524 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4525 else
4526 Identifiers.clear();
4528 const IdentifierInfo *II = nullptr;
4530 switch (NNS->getKind()) {
4531 case NestedNameSpecifier::Identifier:
4532 II = NNS->getAsIdentifier();
4533 break;
4535 case NestedNameSpecifier::Namespace:
4536 if (NNS->getAsNamespace()->isAnonymousNamespace())
4537 return;
4538 II = NNS->getAsNamespace()->getIdentifier();
4539 break;
4541 case NestedNameSpecifier::NamespaceAlias:
4542 II = NNS->getAsNamespaceAlias()->getIdentifier();
4543 break;
4545 case NestedNameSpecifier::TypeSpecWithTemplate:
4546 case NestedNameSpecifier::TypeSpec:
4547 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4548 break;
4550 case NestedNameSpecifier::Global:
4551 case NestedNameSpecifier::Super:
4552 return;
4555 if (II)
4556 Identifiers.push_back(II);
4559 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4560 DeclContext *Ctx, bool InBaseClass) {
4561 // Don't consider hidden names for typo correction.
4562 if (Hiding)
4563 return;
4565 // Only consider entities with identifiers for names, ignoring
4566 // special names (constructors, overloaded operators, selectors,
4567 // etc.).
4568 IdentifierInfo *Name = ND->getIdentifier();
4569 if (!Name)
4570 return;
4572 // Only consider visible declarations and declarations from modules with
4573 // names that exactly match.
4574 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4575 return;
4577 FoundName(Name->getName());
4580 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4581 // Compute the edit distance between the typo and the name of this
4582 // entity, and add the identifier to the list of results.
4583 addName(Name, nullptr);
4586 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4587 // Compute the edit distance between the typo and this keyword,
4588 // and add the keyword to the list of results.
4589 addName(Keyword, nullptr, nullptr, true);
4592 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4593 NestedNameSpecifier *NNS, bool isKeyword) {
4594 // Use a simple length-based heuristic to determine the minimum possible
4595 // edit distance. If the minimum isn't good enough, bail out early.
4596 StringRef TypoStr = Typo->getName();
4597 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4598 if (MinED && TypoStr.size() / MinED < 3)
4599 return;
4601 // Compute an upper bound on the allowable edit distance, so that the
4602 // edit-distance algorithm can short-circuit.
4603 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4604 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4605 if (ED > UpperBound) return;
4607 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4608 if (isKeyword) TC.makeKeyword();
4609 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4610 addCorrection(TC);
4613 static const unsigned MaxTypoDistanceResultSets = 5;
4615 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4616 StringRef TypoStr = Typo->getName();
4617 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4619 // For very short typos, ignore potential corrections that have a different
4620 // base identifier from the typo or which have a normalized edit distance
4621 // longer than the typo itself.
4622 if (TypoStr.size() < 3 &&
4623 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4624 return;
4626 // If the correction is resolved but is not viable, ignore it.
4627 if (Correction.isResolved()) {
4628 checkCorrectionVisibility(SemaRef, Correction);
4629 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4630 return;
4633 TypoResultList &CList =
4634 CorrectionResults[Correction.getEditDistance(false)][Name];
4636 if (!CList.empty() && !CList.back().isResolved())
4637 CList.pop_back();
4638 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4639 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4640 return TypoCorr.getCorrectionDecl() == NewND;
4642 if (RI != CList.end()) {
4643 // The Correction refers to a decl already in the list. No insertion is
4644 // necessary and all further cases will return.
4646 auto IsDeprecated = [](Decl *D) {
4647 while (D) {
4648 if (D->isDeprecated())
4649 return true;
4650 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4652 return false;
4655 // Prefer non deprecated Corrections over deprecated and only then
4656 // sort using an alphabetical order.
4657 std::pair<bool, std::string> NewKey = {
4658 IsDeprecated(Correction.getFoundDecl()),
4659 Correction.getAsString(SemaRef.getLangOpts())};
4661 std::pair<bool, std::string> PrevKey = {
4662 IsDeprecated(RI->getFoundDecl()),
4663 RI->getAsString(SemaRef.getLangOpts())};
4665 if (NewKey < PrevKey)
4666 *RI = Correction;
4667 return;
4670 if (CList.empty() || Correction.isResolved())
4671 CList.push_back(Correction);
4673 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4674 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4677 void TypoCorrectionConsumer::addNamespaces(
4678 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4679 SearchNamespaces = true;
4681 for (auto KNPair : KnownNamespaces)
4682 Namespaces.addNameSpecifier(KNPair.first);
4684 bool SSIsTemplate = false;
4685 if (NestedNameSpecifier *NNS =
4686 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4687 if (const Type *T = NNS->getAsType())
4688 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4690 // Do not transform this into an iterator-based loop. The loop body can
4691 // trigger the creation of further types (through lazy deserialization) and
4692 // invalid iterators into this list.
4693 auto &Types = SemaRef.getASTContext().getTypes();
4694 for (unsigned I = 0; I != Types.size(); ++I) {
4695 const auto *TI = Types[I];
4696 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4697 CD = CD->getCanonicalDecl();
4698 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4699 !CD->isUnion() && CD->getIdentifier() &&
4700 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4701 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4702 Namespaces.addNameSpecifier(CD);
4707 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4708 if (++CurrentTCIndex < ValidatedCorrections.size())
4709 return ValidatedCorrections[CurrentTCIndex];
4711 CurrentTCIndex = ValidatedCorrections.size();
4712 while (!CorrectionResults.empty()) {
4713 auto DI = CorrectionResults.begin();
4714 if (DI->second.empty()) {
4715 CorrectionResults.erase(DI);
4716 continue;
4719 auto RI = DI->second.begin();
4720 if (RI->second.empty()) {
4721 DI->second.erase(RI);
4722 performQualifiedLookups();
4723 continue;
4726 TypoCorrection TC = RI->second.pop_back_val();
4727 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4728 ValidatedCorrections.push_back(TC);
4729 return ValidatedCorrections[CurrentTCIndex];
4732 return ValidatedCorrections[0]; // The empty correction.
4735 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4736 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4737 DeclContext *TempMemberContext = MemberContext;
4738 CXXScopeSpec *TempSS = SS.get();
4739 retry_lookup:
4740 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4741 EnteringContext,
4742 CorrectionValidator->IsObjCIvarLookup,
4743 Name == Typo && !Candidate.WillReplaceSpecifier());
4744 switch (Result.getResultKind()) {
4745 case LookupResult::NotFound:
4746 case LookupResult::NotFoundInCurrentInstantiation:
4747 case LookupResult::FoundUnresolvedValue:
4748 if (TempSS) {
4749 // Immediately retry the lookup without the given CXXScopeSpec
4750 TempSS = nullptr;
4751 Candidate.WillReplaceSpecifier(true);
4752 goto retry_lookup;
4754 if (TempMemberContext) {
4755 if (SS && !TempSS)
4756 TempSS = SS.get();
4757 TempMemberContext = nullptr;
4758 goto retry_lookup;
4760 if (SearchNamespaces)
4761 QualifiedResults.push_back(Candidate);
4762 break;
4764 case LookupResult::Ambiguous:
4765 // We don't deal with ambiguities.
4766 break;
4768 case LookupResult::Found:
4769 case LookupResult::FoundOverloaded:
4770 // Store all of the Decls for overloaded symbols
4771 for (auto *TRD : Result)
4772 Candidate.addCorrectionDecl(TRD);
4773 checkCorrectionVisibility(SemaRef, Candidate);
4774 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4775 if (SearchNamespaces)
4776 QualifiedResults.push_back(Candidate);
4777 break;
4779 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4780 return true;
4782 return false;
4785 void TypoCorrectionConsumer::performQualifiedLookups() {
4786 unsigned TypoLen = Typo->getName().size();
4787 for (const TypoCorrection &QR : QualifiedResults) {
4788 for (const auto &NSI : Namespaces) {
4789 DeclContext *Ctx = NSI.DeclCtx;
4790 const Type *NSType = NSI.NameSpecifier->getAsType();
4792 // If the current NestedNameSpecifier refers to a class and the
4793 // current correction candidate is the name of that class, then skip
4794 // it as it is unlikely a qualified version of the class' constructor
4795 // is an appropriate correction.
4796 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4797 nullptr) {
4798 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4799 continue;
4802 TypoCorrection TC(QR);
4803 TC.ClearCorrectionDecls();
4804 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4805 TC.setQualifierDistance(NSI.EditDistance);
4806 TC.setCallbackDistance(0); // Reset the callback distance
4808 // If the current correction candidate and namespace combination are
4809 // too far away from the original typo based on the normalized edit
4810 // distance, then skip performing a qualified name lookup.
4811 unsigned TmpED = TC.getEditDistance(true);
4812 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4813 TypoLen / TmpED < 3)
4814 continue;
4816 Result.clear();
4817 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4818 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4819 continue;
4821 // Any corrections added below will be validated in subsequent
4822 // iterations of the main while() loop over the Consumer's contents.
4823 switch (Result.getResultKind()) {
4824 case LookupResult::Found:
4825 case LookupResult::FoundOverloaded: {
4826 if (SS && SS->isValid()) {
4827 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4828 std::string OldQualified;
4829 llvm::raw_string_ostream OldOStream(OldQualified);
4830 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4831 OldOStream << Typo->getName();
4832 // If correction candidate would be an identical written qualified
4833 // identifier, then the existing CXXScopeSpec probably included a
4834 // typedef that didn't get accounted for properly.
4835 if (OldOStream.str() == NewQualified)
4836 break;
4838 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4839 TRD != TRDEnd; ++TRD) {
4840 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4841 NSType ? NSType->getAsCXXRecordDecl()
4842 : nullptr,
4843 TRD.getPair()) == Sema::AR_accessible)
4844 TC.addCorrectionDecl(*TRD);
4846 if (TC.isResolved()) {
4847 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4848 addCorrection(TC);
4850 break;
4852 case LookupResult::NotFound:
4853 case LookupResult::NotFoundInCurrentInstantiation:
4854 case LookupResult::Ambiguous:
4855 case LookupResult::FoundUnresolvedValue:
4856 break;
4860 QualifiedResults.clear();
4863 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4864 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4865 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4866 if (NestedNameSpecifier *NNS =
4867 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4868 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4869 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4871 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4873 // Build the list of identifiers that would be used for an absolute
4874 // (from the global context) NestedNameSpecifier referring to the current
4875 // context.
4876 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4877 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4878 CurContextIdentifiers.push_back(ND->getIdentifier());
4881 // Add the global context as a NestedNameSpecifier
4882 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4883 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4884 DistanceMap[1].push_back(SI);
4887 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4888 DeclContext *Start) -> DeclContextList {
4889 assert(Start && "Building a context chain from a null context");
4890 DeclContextList Chain;
4891 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4892 DC = DC->getLookupParent()) {
4893 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4894 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4895 !(ND && ND->isAnonymousNamespace()))
4896 Chain.push_back(DC->getPrimaryContext());
4898 return Chain;
4901 unsigned
4902 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4903 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4904 unsigned NumSpecifiers = 0;
4905 for (DeclContext *C : llvm::reverse(DeclChain)) {
4906 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4907 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4908 ++NumSpecifiers;
4909 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4910 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4911 RD->getTypeForDecl());
4912 ++NumSpecifiers;
4915 return NumSpecifiers;
4918 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4919 DeclContext *Ctx) {
4920 NestedNameSpecifier *NNS = nullptr;
4921 unsigned NumSpecifiers = 0;
4922 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4923 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4925 // Eliminate common elements from the two DeclContext chains.
4926 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4927 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4928 break;
4929 NamespaceDeclChain.pop_back();
4932 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4933 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4935 // Add an explicit leading '::' specifier if needed.
4936 if (NamespaceDeclChain.empty()) {
4937 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4938 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4939 NumSpecifiers =
4940 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4941 } else if (NamedDecl *ND =
4942 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4943 IdentifierInfo *Name = ND->getIdentifier();
4944 bool SameNameSpecifier = false;
4945 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4946 std::string NewNameSpecifier;
4947 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4948 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4949 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4950 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4951 SpecifierOStream.flush();
4952 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4954 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4955 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4956 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4957 NumSpecifiers =
4958 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4962 // If the built NestedNameSpecifier would be replacing an existing
4963 // NestedNameSpecifier, use the number of component identifiers that
4964 // would need to be changed as the edit distance instead of the number
4965 // of components in the built NestedNameSpecifier.
4966 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4967 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4968 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4969 NumSpecifiers =
4970 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4971 llvm::ArrayRef(NewNameSpecifierIdentifiers));
4974 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4975 DistanceMap[NumSpecifiers].push_back(SI);
4978 /// Perform name lookup for a possible result for typo correction.
4979 static void LookupPotentialTypoResult(Sema &SemaRef,
4980 LookupResult &Res,
4981 IdentifierInfo *Name,
4982 Scope *S, CXXScopeSpec *SS,
4983 DeclContext *MemberContext,
4984 bool EnteringContext,
4985 bool isObjCIvarLookup,
4986 bool FindHidden) {
4987 Res.suppressDiagnostics();
4988 Res.clear();
4989 Res.setLookupName(Name);
4990 Res.setAllowHidden(FindHidden);
4991 if (MemberContext) {
4992 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4993 if (isObjCIvarLookup) {
4994 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4995 Res.addDecl(Ivar);
4996 Res.resolveKind();
4997 return;
5001 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
5002 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
5003 Res.addDecl(Prop);
5004 Res.resolveKind();
5005 return;
5009 SemaRef.LookupQualifiedName(Res, MemberContext);
5010 return;
5013 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
5014 EnteringContext);
5016 // Fake ivar lookup; this should really be part of
5017 // LookupParsedName.
5018 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
5019 if (Method->isInstanceMethod() && Method->getClassInterface() &&
5020 (Res.empty() ||
5021 (Res.isSingleResult() &&
5022 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5023 if (ObjCIvarDecl *IV
5024 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5025 Res.addDecl(IV);
5026 Res.resolveKind();
5032 /// Add keywords to the consumer as possible typo corrections.
5033 static void AddKeywordsToConsumer(Sema &SemaRef,
5034 TypoCorrectionConsumer &Consumer,
5035 Scope *S, CorrectionCandidateCallback &CCC,
5036 bool AfterNestedNameSpecifier) {
5037 if (AfterNestedNameSpecifier) {
5038 // For 'X::', we know exactly which keywords can appear next.
5039 Consumer.addKeywordResult("template");
5040 if (CCC.WantExpressionKeywords)
5041 Consumer.addKeywordResult("operator");
5042 return;
5045 if (CCC.WantObjCSuper)
5046 Consumer.addKeywordResult("super");
5048 if (CCC.WantTypeSpecifiers) {
5049 // Add type-specifier keywords to the set of results.
5050 static const char *const CTypeSpecs[] = {
5051 "char", "const", "double", "enum", "float", "int", "long", "short",
5052 "signed", "struct", "union", "unsigned", "void", "volatile",
5053 "_Complex", "_Imaginary",
5054 // storage-specifiers as well
5055 "extern", "inline", "static", "typedef"
5058 for (const auto *CTS : CTypeSpecs)
5059 Consumer.addKeywordResult(CTS);
5061 if (SemaRef.getLangOpts().C99)
5062 Consumer.addKeywordResult("restrict");
5063 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5064 Consumer.addKeywordResult("bool");
5065 else if (SemaRef.getLangOpts().C99)
5066 Consumer.addKeywordResult("_Bool");
5068 if (SemaRef.getLangOpts().CPlusPlus) {
5069 Consumer.addKeywordResult("class");
5070 Consumer.addKeywordResult("typename");
5071 Consumer.addKeywordResult("wchar_t");
5073 if (SemaRef.getLangOpts().CPlusPlus11) {
5074 Consumer.addKeywordResult("char16_t");
5075 Consumer.addKeywordResult("char32_t");
5076 Consumer.addKeywordResult("constexpr");
5077 Consumer.addKeywordResult("decltype");
5078 Consumer.addKeywordResult("thread_local");
5082 if (SemaRef.getLangOpts().GNUKeywords)
5083 Consumer.addKeywordResult("typeof");
5084 } else if (CCC.WantFunctionLikeCasts) {
5085 static const char *const CastableTypeSpecs[] = {
5086 "char", "double", "float", "int", "long", "short",
5087 "signed", "unsigned", "void"
5089 for (auto *kw : CastableTypeSpecs)
5090 Consumer.addKeywordResult(kw);
5093 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5094 Consumer.addKeywordResult("const_cast");
5095 Consumer.addKeywordResult("dynamic_cast");
5096 Consumer.addKeywordResult("reinterpret_cast");
5097 Consumer.addKeywordResult("static_cast");
5100 if (CCC.WantExpressionKeywords) {
5101 Consumer.addKeywordResult("sizeof");
5102 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5103 Consumer.addKeywordResult("false");
5104 Consumer.addKeywordResult("true");
5107 if (SemaRef.getLangOpts().CPlusPlus) {
5108 static const char *const CXXExprs[] = {
5109 "delete", "new", "operator", "throw", "typeid"
5111 for (const auto *CE : CXXExprs)
5112 Consumer.addKeywordResult(CE);
5114 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5115 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5116 Consumer.addKeywordResult("this");
5118 if (SemaRef.getLangOpts().CPlusPlus11) {
5119 Consumer.addKeywordResult("alignof");
5120 Consumer.addKeywordResult("nullptr");
5124 if (SemaRef.getLangOpts().C11) {
5125 // FIXME: We should not suggest _Alignof if the alignof macro
5126 // is present.
5127 Consumer.addKeywordResult("_Alignof");
5131 if (CCC.WantRemainingKeywords) {
5132 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5133 // Statements.
5134 static const char *const CStmts[] = {
5135 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5136 for (const auto *CS : CStmts)
5137 Consumer.addKeywordResult(CS);
5139 if (SemaRef.getLangOpts().CPlusPlus) {
5140 Consumer.addKeywordResult("catch");
5141 Consumer.addKeywordResult("try");
5144 if (S && S->getBreakParent())
5145 Consumer.addKeywordResult("break");
5147 if (S && S->getContinueParent())
5148 Consumer.addKeywordResult("continue");
5150 if (SemaRef.getCurFunction() &&
5151 !SemaRef.getCurFunction()->SwitchStack.empty()) {
5152 Consumer.addKeywordResult("case");
5153 Consumer.addKeywordResult("default");
5155 } else {
5156 if (SemaRef.getLangOpts().CPlusPlus) {
5157 Consumer.addKeywordResult("namespace");
5158 Consumer.addKeywordResult("template");
5161 if (S && S->isClassScope()) {
5162 Consumer.addKeywordResult("explicit");
5163 Consumer.addKeywordResult("friend");
5164 Consumer.addKeywordResult("mutable");
5165 Consumer.addKeywordResult("private");
5166 Consumer.addKeywordResult("protected");
5167 Consumer.addKeywordResult("public");
5168 Consumer.addKeywordResult("virtual");
5172 if (SemaRef.getLangOpts().CPlusPlus) {
5173 Consumer.addKeywordResult("using");
5175 if (SemaRef.getLangOpts().CPlusPlus11)
5176 Consumer.addKeywordResult("static_assert");
5181 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5182 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5183 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5184 DeclContext *MemberContext, bool EnteringContext,
5185 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5187 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5188 DisableTypoCorrection)
5189 return nullptr;
5191 // In Microsoft mode, don't perform typo correction in a template member
5192 // function dependent context because it interferes with the "lookup into
5193 // dependent bases of class templates" feature.
5194 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5195 isa<CXXMethodDecl>(CurContext))
5196 return nullptr;
5198 // We only attempt to correct typos for identifiers.
5199 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5200 if (!Typo)
5201 return nullptr;
5203 // If the scope specifier itself was invalid, don't try to correct
5204 // typos.
5205 if (SS && SS->isInvalid())
5206 return nullptr;
5208 // Never try to correct typos during any kind of code synthesis.
5209 if (!CodeSynthesisContexts.empty())
5210 return nullptr;
5212 // Don't try to correct 'super'.
5213 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5214 return nullptr;
5216 // Abort if typo correction already failed for this specific typo.
5217 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5218 if (locs != TypoCorrectionFailures.end() &&
5219 locs->second.count(TypoName.getLoc()))
5220 return nullptr;
5222 // Don't try to correct the identifier "vector" when in AltiVec mode.
5223 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5224 // remove this workaround.
5225 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5226 return nullptr;
5228 // Provide a stop gap for files that are just seriously broken. Trying
5229 // to correct all typos can turn into a HUGE performance penalty, causing
5230 // some files to take minutes to get rejected by the parser.
5231 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5232 if (Limit && TyposCorrected >= Limit)
5233 return nullptr;
5234 ++TyposCorrected;
5236 // If we're handling a missing symbol error, using modules, and the
5237 // special search all modules option is used, look for a missing import.
5238 if (ErrorRecovery && getLangOpts().Modules &&
5239 getLangOpts().ModulesSearchAll) {
5240 // The following has the side effect of loading the missing module.
5241 getModuleLoader().lookupMissingImports(Typo->getName(),
5242 TypoName.getBeginLoc());
5245 // Extend the lifetime of the callback. We delayed this until here
5246 // to avoid allocations in the hot path (which is where no typo correction
5247 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5248 // initially stack-allocated.
5249 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5250 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5251 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5252 EnteringContext);
5254 // Perform name lookup to find visible, similarly-named entities.
5255 bool IsUnqualifiedLookup = false;
5256 DeclContext *QualifiedDC = MemberContext;
5257 if (MemberContext) {
5258 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5260 // Look in qualified interfaces.
5261 if (OPT) {
5262 for (auto *I : OPT->quals())
5263 LookupVisibleDecls(I, LookupKind, *Consumer);
5265 } else if (SS && SS->isSet()) {
5266 QualifiedDC = computeDeclContext(*SS, EnteringContext);
5267 if (!QualifiedDC)
5268 return nullptr;
5270 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5271 } else {
5272 IsUnqualifiedLookup = true;
5275 // Determine whether we are going to search in the various namespaces for
5276 // corrections.
5277 bool SearchNamespaces
5278 = getLangOpts().CPlusPlus &&
5279 (IsUnqualifiedLookup || (SS && SS->isSet()));
5281 if (IsUnqualifiedLookup || SearchNamespaces) {
5282 // For unqualified lookup, look through all of the names that we have
5283 // seen in this translation unit.
5284 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5285 for (const auto &I : Context.Idents)
5286 Consumer->FoundName(I.getKey());
5288 // Walk through identifiers in external identifier sources.
5289 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5290 if (IdentifierInfoLookup *External
5291 = Context.Idents.getExternalIdentifierLookup()) {
5292 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5293 do {
5294 StringRef Name = Iter->Next();
5295 if (Name.empty())
5296 break;
5298 Consumer->FoundName(Name);
5299 } while (true);
5303 AddKeywordsToConsumer(*this, *Consumer, S,
5304 *Consumer->getCorrectionValidator(),
5305 SS && SS->isNotEmpty());
5307 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5308 // to search those namespaces.
5309 if (SearchNamespaces) {
5310 // Load any externally-known namespaces.
5311 if (ExternalSource && !LoadedExternalKnownNamespaces) {
5312 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5313 LoadedExternalKnownNamespaces = true;
5314 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5315 for (auto *N : ExternalKnownNamespaces)
5316 KnownNamespaces[N] = true;
5319 Consumer->addNamespaces(KnownNamespaces);
5322 return Consumer;
5325 /// Try to "correct" a typo in the source code by finding
5326 /// visible declarations whose names are similar to the name that was
5327 /// present in the source code.
5329 /// \param TypoName the \c DeclarationNameInfo structure that contains
5330 /// the name that was present in the source code along with its location.
5332 /// \param LookupKind the name-lookup criteria used to search for the name.
5334 /// \param S the scope in which name lookup occurs.
5336 /// \param SS the nested-name-specifier that precedes the name we're
5337 /// looking for, if present.
5339 /// \param CCC A CorrectionCandidateCallback object that provides further
5340 /// validation of typo correction candidates. It also provides flags for
5341 /// determining the set of keywords permitted.
5343 /// \param MemberContext if non-NULL, the context in which to look for
5344 /// a member access expression.
5346 /// \param EnteringContext whether we're entering the context described by
5347 /// the nested-name-specifier SS.
5349 /// \param OPT when non-NULL, the search for visible declarations will
5350 /// also walk the protocols in the qualified interfaces of \p OPT.
5352 /// \returns a \c TypoCorrection containing the corrected name if the typo
5353 /// along with information such as the \c NamedDecl where the corrected name
5354 /// was declared, and any additional \c NestedNameSpecifier needed to access
5355 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5356 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5357 Sema::LookupNameKind LookupKind,
5358 Scope *S, CXXScopeSpec *SS,
5359 CorrectionCandidateCallback &CCC,
5360 CorrectTypoKind Mode,
5361 DeclContext *MemberContext,
5362 bool EnteringContext,
5363 const ObjCObjectPointerType *OPT,
5364 bool RecordFailure) {
5365 // Always let the ExternalSource have the first chance at correction, even
5366 // if we would otherwise have given up.
5367 if (ExternalSource) {
5368 if (TypoCorrection Correction =
5369 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5370 MemberContext, EnteringContext, OPT))
5371 return Correction;
5374 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5375 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5376 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5377 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5378 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5380 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5381 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5382 MemberContext, EnteringContext,
5383 OPT, Mode == CTK_ErrorRecovery);
5385 if (!Consumer)
5386 return TypoCorrection();
5388 // If we haven't found anything, we're done.
5389 if (Consumer->empty())
5390 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5392 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5393 // is not more that about a third of the length of the typo's identifier.
5394 unsigned ED = Consumer->getBestEditDistance(true);
5395 unsigned TypoLen = Typo->getName().size();
5396 if (ED > 0 && TypoLen / ED < 3)
5397 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5399 TypoCorrection BestTC = Consumer->getNextCorrection();
5400 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5401 if (!BestTC)
5402 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5404 ED = BestTC.getEditDistance();
5406 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5407 // If this was an unqualified lookup and we believe the callback
5408 // object wouldn't have filtered out possible corrections, note
5409 // that no correction was found.
5410 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5413 // If only a single name remains, return that result.
5414 if (!SecondBestTC ||
5415 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5416 const TypoCorrection &Result = BestTC;
5418 // Don't correct to a keyword that's the same as the typo; the keyword
5419 // wasn't actually in scope.
5420 if (ED == 0 && Result.isKeyword())
5421 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5423 TypoCorrection TC = Result;
5424 TC.setCorrectionRange(SS, TypoName);
5425 checkCorrectionVisibility(*this, TC);
5426 return TC;
5427 } else if (SecondBestTC && ObjCMessageReceiver) {
5428 // Prefer 'super' when we're completing in a message-receiver
5429 // context.
5431 if (BestTC.getCorrection().getAsString() != "super") {
5432 if (SecondBestTC.getCorrection().getAsString() == "super")
5433 BestTC = SecondBestTC;
5434 else if ((*Consumer)["super"].front().isKeyword())
5435 BestTC = (*Consumer)["super"].front();
5437 // Don't correct to a keyword that's the same as the typo; the keyword
5438 // wasn't actually in scope.
5439 if (BestTC.getEditDistance() == 0 ||
5440 BestTC.getCorrection().getAsString() != "super")
5441 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5443 BestTC.setCorrectionRange(SS, TypoName);
5444 return BestTC;
5447 // Record the failure's location if needed and return an empty correction. If
5448 // this was an unqualified lookup and we believe the callback object did not
5449 // filter out possible corrections, also cache the failure for the typo.
5450 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5453 /// Try to "correct" a typo in the source code by finding
5454 /// visible declarations whose names are similar to the name that was
5455 /// present in the source code.
5457 /// \param TypoName the \c DeclarationNameInfo structure that contains
5458 /// the name that was present in the source code along with its location.
5460 /// \param LookupKind the name-lookup criteria used to search for the name.
5462 /// \param S the scope in which name lookup occurs.
5464 /// \param SS the nested-name-specifier that precedes the name we're
5465 /// looking for, if present.
5467 /// \param CCC A CorrectionCandidateCallback object that provides further
5468 /// validation of typo correction candidates. It also provides flags for
5469 /// determining the set of keywords permitted.
5471 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5472 /// diagnostics when the actual typo correction is attempted.
5474 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5475 /// Expr from a typo correction candidate.
5477 /// \param MemberContext if non-NULL, the context in which to look for
5478 /// a member access expression.
5480 /// \param EnteringContext whether we're entering the context described by
5481 /// the nested-name-specifier SS.
5483 /// \param OPT when non-NULL, the search for visible declarations will
5484 /// also walk the protocols in the qualified interfaces of \p OPT.
5486 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5487 /// Expr representing the result of performing typo correction, or nullptr if
5488 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5489 /// be emitted and it is the responsibility of the caller to emit any that are
5490 /// needed.
5491 TypoExpr *Sema::CorrectTypoDelayed(
5492 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5493 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5494 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5495 DeclContext *MemberContext, bool EnteringContext,
5496 const ObjCObjectPointerType *OPT) {
5497 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5498 MemberContext, EnteringContext,
5499 OPT, Mode == CTK_ErrorRecovery);
5501 // Give the external sema source a chance to correct the typo.
5502 TypoCorrection ExternalTypo;
5503 if (ExternalSource && Consumer) {
5504 ExternalTypo = ExternalSource->CorrectTypo(
5505 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5506 MemberContext, EnteringContext, OPT);
5507 if (ExternalTypo)
5508 Consumer->addCorrection(ExternalTypo);
5511 if (!Consumer || Consumer->empty())
5512 return nullptr;
5514 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5515 // is not more that about a third of the length of the typo's identifier.
5516 unsigned ED = Consumer->getBestEditDistance(true);
5517 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5518 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5519 return nullptr;
5520 ExprEvalContexts.back().NumTypos++;
5521 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5522 TypoName.getLoc());
5525 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5526 if (!CDecl) return;
5528 if (isKeyword())
5529 CorrectionDecls.clear();
5531 CorrectionDecls.push_back(CDecl);
5533 if (!CorrectionName)
5534 CorrectionName = CDecl->getDeclName();
5537 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5538 if (CorrectionNameSpec) {
5539 std::string tmpBuffer;
5540 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5541 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5542 PrefixOStream << CorrectionName;
5543 return PrefixOStream.str();
5546 return CorrectionName.getAsString();
5549 bool CorrectionCandidateCallback::ValidateCandidate(
5550 const TypoCorrection &candidate) {
5551 if (!candidate.isResolved())
5552 return true;
5554 if (candidate.isKeyword())
5555 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5556 WantRemainingKeywords || WantObjCSuper;
5558 bool HasNonType = false;
5559 bool HasStaticMethod = false;
5560 bool HasNonStaticMethod = false;
5561 for (Decl *D : candidate) {
5562 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5563 D = FTD->getTemplatedDecl();
5564 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5565 if (Method->isStatic())
5566 HasStaticMethod = true;
5567 else
5568 HasNonStaticMethod = true;
5570 if (!isa<TypeDecl>(D))
5571 HasNonType = true;
5574 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5575 !candidate.getCorrectionSpecifier())
5576 return false;
5578 return WantTypeSpecifiers || HasNonType;
5581 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5582 bool HasExplicitTemplateArgs,
5583 MemberExpr *ME)
5584 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5585 CurContext(SemaRef.CurContext), MemberFn(ME) {
5586 WantTypeSpecifiers = false;
5587 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5588 !HasExplicitTemplateArgs && NumArgs == 1;
5589 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5590 WantRemainingKeywords = false;
5593 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5594 if (!candidate.getCorrectionDecl())
5595 return candidate.isKeyword();
5597 for (auto *C : candidate) {
5598 FunctionDecl *FD = nullptr;
5599 NamedDecl *ND = C->getUnderlyingDecl();
5600 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5601 FD = FTD->getTemplatedDecl();
5602 if (!HasExplicitTemplateArgs && !FD) {
5603 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5604 // If the Decl is neither a function nor a template function,
5605 // determine if it is a pointer or reference to a function. If so,
5606 // check against the number of arguments expected for the pointee.
5607 QualType ValType = cast<ValueDecl>(ND)->getType();
5608 if (ValType.isNull())
5609 continue;
5610 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5611 ValType = ValType->getPointeeType();
5612 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5613 if (FPT->getNumParams() == NumArgs)
5614 return true;
5618 // A typo for a function-style cast can look like a function call in C++.
5619 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5620 : isa<TypeDecl>(ND)) &&
5621 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5622 // Only a class or class template can take two or more arguments.
5623 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5625 // Skip the current candidate if it is not a FunctionDecl or does not accept
5626 // the current number of arguments.
5627 if (!FD || !(FD->getNumParams() >= NumArgs &&
5628 FD->getMinRequiredArguments() <= NumArgs))
5629 continue;
5631 // If the current candidate is a non-static C++ method, skip the candidate
5632 // unless the method being corrected--or the current DeclContext, if the
5633 // function being corrected is not a method--is a method in the same class
5634 // or a descendent class of the candidate's parent class.
5635 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5636 if (MemberFn || !MD->isStatic()) {
5637 const auto *CurMD =
5638 MemberFn
5639 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl())
5640 : dyn_cast_if_present<CXXMethodDecl>(CurContext);
5641 const CXXRecordDecl *CurRD =
5642 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5643 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5644 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5645 continue;
5648 return true;
5650 return false;
5653 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5654 const PartialDiagnostic &TypoDiag,
5655 bool ErrorRecovery) {
5656 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5657 ErrorRecovery);
5660 /// Find which declaration we should import to provide the definition of
5661 /// the given declaration.
5662 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
5663 if (const auto *VD = dyn_cast<VarDecl>(D))
5664 return VD->getDefinition();
5665 if (const auto *FD = dyn_cast<FunctionDecl>(D))
5666 return FD->getDefinition();
5667 if (const auto *TD = dyn_cast<TagDecl>(D))
5668 return TD->getDefinition();
5669 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
5670 return ID->getDefinition();
5671 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
5672 return PD->getDefinition();
5673 if (const auto *TD = dyn_cast<TemplateDecl>(D))
5674 if (const NamedDecl *TTD = TD->getTemplatedDecl())
5675 return getDefinitionToImport(TTD);
5676 return nullptr;
5679 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
5680 MissingImportKind MIK, bool Recover) {
5681 // Suggest importing a module providing the definition of this entity, if
5682 // possible.
5683 const NamedDecl *Def = getDefinitionToImport(Decl);
5684 if (!Def)
5685 Def = Decl;
5687 Module *Owner = getOwningModule(Def);
5688 assert(Owner && "definition of hidden declaration is not in a module");
5690 llvm::SmallVector<Module*, 8> OwningModules;
5691 OwningModules.push_back(Owner);
5692 auto Merged = Context.getModulesWithMergedDefinition(Def);
5693 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5695 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5696 Recover);
5699 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5700 /// suggesting the addition of a #include of the specified file.
5701 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E,
5702 llvm::StringRef IncludingFile) {
5703 bool IsAngled = false;
5704 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5705 E, IncludingFile, &IsAngled);
5706 return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"');
5709 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl,
5710 SourceLocation DeclLoc,
5711 ArrayRef<Module *> Modules,
5712 MissingImportKind MIK, bool Recover) {
5713 assert(!Modules.empty());
5715 // See https://github.com/llvm/llvm-project/issues/73893. It is generally
5716 // confusing than helpful to show the namespace is not visible.
5717 if (isa<NamespaceDecl>(Decl))
5718 return;
5720 auto NotePrevious = [&] {
5721 // FIXME: Suppress the note backtrace even under
5722 // -fdiagnostics-show-note-include-stack. We don't care how this
5723 // declaration was previously reached.
5724 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5727 // Weed out duplicates from module list.
5728 llvm::SmallVector<Module*, 8> UniqueModules;
5729 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5730 for (auto *M : Modules) {
5731 if (M->isExplicitGlobalModule() || M->isPrivateModule())
5732 continue;
5733 if (UniqueModuleSet.insert(M).second)
5734 UniqueModules.push_back(M);
5737 // Try to find a suitable header-name to #include.
5738 std::string HeaderName;
5739 if (OptionalFileEntryRef Header =
5740 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5741 if (const FileEntry *FE =
5742 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5743 HeaderName =
5744 getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName());
5747 // If we have a #include we should suggest, or if all definition locations
5748 // were in global module fragments, don't suggest an import.
5749 if (!HeaderName.empty() || UniqueModules.empty()) {
5750 // FIXME: Find a smart place to suggest inserting a #include, and add
5751 // a FixItHint there.
5752 Diag(UseLoc, diag::err_module_unimported_use_header)
5753 << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5754 // Produce a note showing where the entity was declared.
5755 NotePrevious();
5756 if (Recover)
5757 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5758 return;
5761 Modules = UniqueModules;
5763 auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string {
5764 if (M->isModuleMapModule())
5765 return M->getFullModuleName();
5767 Module *CurrentModule = getCurrentModule();
5769 if (M->isImplicitGlobalModule())
5770 M = M->getTopLevelModule();
5772 bool IsInTheSameModule =
5773 CurrentModule && CurrentModule->getPrimaryModuleInterfaceName() ==
5774 M->getPrimaryModuleInterfaceName();
5776 // If the current module unit is in the same module with M, it is OK to show
5777 // the partition name. Otherwise, it'll be sufficient to show the primary
5778 // module name.
5779 if (IsInTheSameModule)
5780 return M->getTopLevelModuleName().str();
5781 else
5782 return M->getPrimaryModuleInterfaceName().str();
5785 if (Modules.size() > 1) {
5786 std::string ModuleList;
5787 unsigned N = 0;
5788 for (const auto *M : Modules) {
5789 ModuleList += "\n ";
5790 if (++N == 5 && N != Modules.size()) {
5791 ModuleList += "[...]";
5792 break;
5794 ModuleList += GetModuleNameForDiagnostic(M);
5797 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5798 << (int)MIK << Decl << ModuleList;
5799 } else {
5800 // FIXME: Add a FixItHint that imports the corresponding module.
5801 Diag(UseLoc, diag::err_module_unimported_use)
5802 << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]);
5805 NotePrevious();
5807 // Try to recover by implicitly importing this module.
5808 if (Recover)
5809 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5812 /// Diagnose a successfully-corrected typo. Separated from the correction
5813 /// itself to allow external validation of the result, etc.
5815 /// \param Correction The result of performing typo correction.
5816 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5817 /// string added to it (and usually also a fixit).
5818 /// \param PrevNote A note to use when indicating the location of the entity to
5819 /// which we are correcting. Will have the correction string added to it.
5820 /// \param ErrorRecovery If \c true (the default), the caller is going to
5821 /// recover from the typo as if the corrected string had been typed.
5822 /// In this case, \c PDiag must be an error, and we will attach a fixit
5823 /// to it.
5824 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5825 const PartialDiagnostic &TypoDiag,
5826 const PartialDiagnostic &PrevNote,
5827 bool ErrorRecovery) {
5828 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5829 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5830 FixItHint FixTypo = FixItHint::CreateReplacement(
5831 Correction.getCorrectionRange(), CorrectedStr);
5833 // Maybe we're just missing a module import.
5834 if (Correction.requiresImport()) {
5835 NamedDecl *Decl = Correction.getFoundDecl();
5836 assert(Decl && "import required but no declaration to import");
5838 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5839 MissingImportKind::Declaration, ErrorRecovery);
5840 return;
5843 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5844 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5846 NamedDecl *ChosenDecl =
5847 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5848 if (PrevNote.getDiagID() && ChosenDecl)
5849 Diag(ChosenDecl->getLocation(), PrevNote)
5850 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5852 // Add any extra diagnostics.
5853 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5854 Diag(Correction.getCorrectionRange().getBegin(), PD);
5857 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5858 TypoDiagnosticGenerator TDG,
5859 TypoRecoveryCallback TRC,
5860 SourceLocation TypoLoc) {
5861 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5862 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5863 auto &State = DelayedTypos[TE];
5864 State.Consumer = std::move(TCC);
5865 State.DiagHandler = std::move(TDG);
5866 State.RecoveryHandler = std::move(TRC);
5867 if (TE)
5868 TypoExprs.push_back(TE);
5869 return TE;
5872 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5873 auto Entry = DelayedTypos.find(TE);
5874 assert(Entry != DelayedTypos.end() &&
5875 "Failed to get the state for a TypoExpr!");
5876 return Entry->second;
5879 void Sema::clearDelayedTypo(TypoExpr *TE) {
5880 DelayedTypos.erase(TE);
5883 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5884 DeclarationNameInfo Name(II, IILoc);
5885 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5886 R.suppressDiagnostics();
5887 R.setHideTags(false);
5888 LookupName(R, S);
5889 R.dump();
5892 void Sema::ActOnPragmaDump(Expr *E) {
5893 E->dump();