1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements type-related semantic analysis.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/Type.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/AST/TypeLocVisitor.h"
26 #include "clang/Basic/PartialDiagnostic.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/DelayedDiagnostic.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/Template.h"
38 #include "clang/Sema/TemplateInstCallback.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallString.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
49 using namespace clang
;
51 enum TypeDiagSelector
{
57 /// isOmittedBlockReturnType - Return true if this declarator is missing a
58 /// return type because this is a omitted return type on a block literal.
59 static bool isOmittedBlockReturnType(const Declarator
&D
) {
60 if (D
.getContext() != DeclaratorContext::BlockLiteral
||
61 D
.getDeclSpec().hasTypeSpecifier())
64 if (D
.getNumTypeObjects() == 0)
65 return true; // ^{ ... }
67 if (D
.getNumTypeObjects() == 1 &&
68 D
.getTypeObject(0).Kind
== DeclaratorChunk::Function
)
69 return true; // ^(int X, float Y) { ... }
74 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
75 /// doesn't apply to the given type.
76 static void diagnoseBadTypeAttribute(Sema
&S
, const ParsedAttr
&attr
,
78 TypeDiagSelector WhichType
;
79 bool useExpansionLoc
= true;
80 switch (attr
.getKind()) {
81 case ParsedAttr::AT_ObjCGC
:
82 WhichType
= TDS_Pointer
;
84 case ParsedAttr::AT_ObjCOwnership
:
85 WhichType
= TDS_ObjCObjOrBlock
;
88 // Assume everything else was a function attribute.
89 WhichType
= TDS_Function
;
90 useExpansionLoc
= false;
94 SourceLocation loc
= attr
.getLoc();
95 StringRef name
= attr
.getAttrName()->getName();
97 // The GC attributes are usually written with macros; special-case them.
98 IdentifierInfo
*II
= attr
.isArgIdent(0) ? attr
.getArgAsIdent(0)->Ident
100 if (useExpansionLoc
&& loc
.isMacroID() && II
) {
101 if (II
->isStr("strong")) {
102 if (S
.findMacroSpelling(loc
, "__strong")) name
= "__strong";
103 } else if (II
->isStr("weak")) {
104 if (S
.findMacroSpelling(loc
, "__weak")) name
= "__weak";
108 S
.Diag(loc
, attr
.isRegularKeywordAttribute()
109 ? diag::err_type_attribute_wrong_type
110 : diag::warn_type_attribute_wrong_type
)
111 << name
<< WhichType
<< type
;
114 // objc_gc applies to Objective-C pointers or, otherwise, to the
115 // smallest available pointer type (i.e. 'void*' in 'void**').
116 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
117 case ParsedAttr::AT_ObjCGC: \
118 case ParsedAttr::AT_ObjCOwnership
120 // Calling convention attributes.
121 #define CALLING_CONV_ATTRS_CASELIST \
122 case ParsedAttr::AT_CDecl: \
123 case ParsedAttr::AT_FastCall: \
124 case ParsedAttr::AT_StdCall: \
125 case ParsedAttr::AT_ThisCall: \
126 case ParsedAttr::AT_RegCall: \
127 case ParsedAttr::AT_Pascal: \
128 case ParsedAttr::AT_SwiftCall: \
129 case ParsedAttr::AT_SwiftAsyncCall: \
130 case ParsedAttr::AT_VectorCall: \
131 case ParsedAttr::AT_AArch64VectorPcs: \
132 case ParsedAttr::AT_AArch64SVEPcs: \
133 case ParsedAttr::AT_AMDGPUKernelCall: \
134 case ParsedAttr::AT_MSABI: \
135 case ParsedAttr::AT_SysVABI: \
136 case ParsedAttr::AT_Pcs: \
137 case ParsedAttr::AT_IntelOclBicc: \
138 case ParsedAttr::AT_PreserveMost: \
139 case ParsedAttr::AT_PreserveAll: \
140 case ParsedAttr::AT_M68kRTD
142 // Function type attributes.
143 #define FUNCTION_TYPE_ATTRS_CASELIST \
144 case ParsedAttr::AT_NSReturnsRetained: \
145 case ParsedAttr::AT_NoReturn: \
146 case ParsedAttr::AT_Regparm: \
147 case ParsedAttr::AT_CmseNSCall: \
148 case ParsedAttr::AT_ArmStreaming: \
149 case ParsedAttr::AT_ArmStreamingCompatible: \
150 case ParsedAttr::AT_ArmSharedZA: \
151 case ParsedAttr::AT_ArmPreservesZA: \
152 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
153 case ParsedAttr::AT_AnyX86NoCfCheck: \
154 CALLING_CONV_ATTRS_CASELIST
156 // Microsoft-specific type qualifiers.
157 #define MS_TYPE_ATTRS_CASELIST \
158 case ParsedAttr::AT_Ptr32: \
159 case ParsedAttr::AT_Ptr64: \
160 case ParsedAttr::AT_SPtr: \
161 case ParsedAttr::AT_UPtr
163 // Nullability qualifiers.
164 #define NULLABILITY_TYPE_ATTRS_CASELIST \
165 case ParsedAttr::AT_TypeNonNull: \
166 case ParsedAttr::AT_TypeNullable: \
167 case ParsedAttr::AT_TypeNullableResult: \
168 case ParsedAttr::AT_TypeNullUnspecified
171 /// An object which stores processing state for the entire
172 /// GetTypeForDeclarator process.
173 class TypeProcessingState
{
176 /// The declarator being processed.
177 Declarator
&declarator
;
179 /// The index of the declarator chunk we're currently processing.
180 /// May be the total number of valid chunks, indicating the
184 /// The original set of attributes on the DeclSpec.
185 SmallVector
<ParsedAttr
*, 2> savedAttrs
;
187 /// A list of attributes to diagnose the uselessness of when the
188 /// processing is complete.
189 SmallVector
<ParsedAttr
*, 2> ignoredTypeAttrs
;
191 /// Attributes corresponding to AttributedTypeLocs that we have not yet
193 // FIXME: The two-phase mechanism by which we construct Types and fill
194 // their TypeLocs makes it hard to correctly assign these. We keep the
195 // attributes in creation order as an attempt to make them line up
197 using TypeAttrPair
= std::pair
<const AttributedType
*, const Attr
*>;
198 SmallVector
<TypeAttrPair
, 8> AttrsForTypes
;
199 bool AttrsForTypesSorted
= true;
201 /// MacroQualifiedTypes mapping to macro expansion locations that will be
202 /// stored in a MacroQualifiedTypeLoc.
203 llvm::DenseMap
<const MacroQualifiedType
*, SourceLocation
> LocsForMacros
;
205 /// Flag to indicate we parsed a noderef attribute. This is used for
206 /// validating that noderef was used on a pointer or array.
210 TypeProcessingState(Sema
&sema
, Declarator
&declarator
)
211 : sema(sema
), declarator(declarator
),
212 chunkIndex(declarator
.getNumTypeObjects()), parsedNoDeref(false) {}
214 Sema
&getSema() const {
218 Declarator
&getDeclarator() const {
222 bool isProcessingDeclSpec() const {
223 return chunkIndex
== declarator
.getNumTypeObjects();
226 unsigned getCurrentChunkIndex() const {
230 void setCurrentChunkIndex(unsigned idx
) {
231 assert(idx
<= declarator
.getNumTypeObjects());
235 ParsedAttributesView
&getCurrentAttributes() const {
236 if (isProcessingDeclSpec())
237 return getMutableDeclSpec().getAttributes();
238 return declarator
.getTypeObject(chunkIndex
).getAttrs();
241 /// Save the current set of attributes on the DeclSpec.
242 void saveDeclSpecAttrs() {
243 // Don't try to save them multiple times.
244 if (!savedAttrs
.empty())
247 DeclSpec
&spec
= getMutableDeclSpec();
248 llvm::append_range(savedAttrs
,
249 llvm::make_pointer_range(spec
.getAttributes()));
252 /// Record that we had nowhere to put the given type attribute.
253 /// We will diagnose such attributes later.
254 void addIgnoredTypeAttr(ParsedAttr
&attr
) {
255 ignoredTypeAttrs
.push_back(&attr
);
258 /// Diagnose all the ignored type attributes, given that the
259 /// declarator worked out to the given type.
260 void diagnoseIgnoredTypeAttrs(QualType type
) const {
261 for (auto *Attr
: ignoredTypeAttrs
)
262 diagnoseBadTypeAttribute(getSema(), *Attr
, type
);
265 /// Get an attributed type for the given attribute, and remember the Attr
266 /// object so that we can attach it to the AttributedTypeLoc.
267 QualType
getAttributedType(Attr
*A
, QualType ModifiedType
,
268 QualType EquivType
) {
270 sema
.Context
.getAttributedType(A
->getKind(), ModifiedType
, EquivType
);
271 AttrsForTypes
.push_back({cast
<AttributedType
>(T
.getTypePtr()), A
});
272 AttrsForTypesSorted
= false;
276 /// Get a BTFTagAttributed type for the btf_type_tag attribute.
277 QualType
getBTFTagAttributedType(const BTFTypeTagAttr
*BTFAttr
,
278 QualType WrappedType
) {
279 return sema
.Context
.getBTFTagAttributedType(BTFAttr
, WrappedType
);
282 /// Completely replace the \c auto in \p TypeWithAuto by
283 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
285 QualType
ReplaceAutoType(QualType TypeWithAuto
, QualType Replacement
) {
286 QualType T
= sema
.ReplaceAutoType(TypeWithAuto
, Replacement
);
287 if (auto *AttrTy
= TypeWithAuto
->getAs
<AttributedType
>()) {
288 // Attributed type still should be an attributed type after replacement.
289 auto *NewAttrTy
= cast
<AttributedType
>(T
.getTypePtr());
290 for (TypeAttrPair
&A
: AttrsForTypes
) {
291 if (A
.first
== AttrTy
)
294 AttrsForTypesSorted
= false;
299 /// Extract and remove the Attr* for a given attributed type.
300 const Attr
*takeAttrForAttributedType(const AttributedType
*AT
) {
301 if (!AttrsForTypesSorted
) {
302 llvm::stable_sort(AttrsForTypes
, llvm::less_first());
303 AttrsForTypesSorted
= true;
306 // FIXME: This is quadratic if we have lots of reuses of the same
308 for (auto It
= std::partition_point(
309 AttrsForTypes
.begin(), AttrsForTypes
.end(),
310 [=](const TypeAttrPair
&A
) { return A
.first
< AT
; });
311 It
!= AttrsForTypes
.end() && It
->first
== AT
; ++It
) {
313 const Attr
*Result
= It
->second
;
314 It
->second
= nullptr;
319 llvm_unreachable("no Attr* for AttributedType*");
323 getExpansionLocForMacroQualifiedType(const MacroQualifiedType
*MQT
) const {
324 auto FoundLoc
= LocsForMacros
.find(MQT
);
325 assert(FoundLoc
!= LocsForMacros
.end() &&
326 "Unable to find macro expansion location for MacroQualifedType");
327 return FoundLoc
->second
;
330 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType
*MQT
,
331 SourceLocation Loc
) {
332 LocsForMacros
[MQT
] = Loc
;
335 void setParsedNoDeref(bool parsed
) { parsedNoDeref
= parsed
; }
337 bool didParseNoDeref() const { return parsedNoDeref
; }
339 ~TypeProcessingState() {
340 if (savedAttrs
.empty())
343 getMutableDeclSpec().getAttributes().clearListOnly();
344 for (ParsedAttr
*AL
: savedAttrs
)
345 getMutableDeclSpec().getAttributes().addAtEnd(AL
);
349 DeclSpec
&getMutableDeclSpec() const {
350 return const_cast<DeclSpec
&>(declarator
.getDeclSpec());
353 } // end anonymous namespace
355 static void moveAttrFromListToList(ParsedAttr
&attr
,
356 ParsedAttributesView
&fromList
,
357 ParsedAttributesView
&toList
) {
358 fromList
.remove(&attr
);
359 toList
.addAtEnd(&attr
);
362 /// The location of a type attribute.
363 enum TypeAttrLocation
{
364 /// The attribute is in the decl-specifier-seq.
366 /// The attribute is part of a DeclaratorChunk.
368 /// The attribute is immediately after the declaration's name.
373 processTypeAttrs(TypeProcessingState
&state
, QualType
&type
,
374 TypeAttrLocation TAL
, const ParsedAttributesView
&attrs
,
375 Sema::CUDAFunctionTarget CFT
= Sema::CFT_HostDevice
);
377 static bool handleFunctionTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
379 Sema::CUDAFunctionTarget CFT
);
381 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState
&state
,
382 ParsedAttr
&attr
, QualType
&type
);
384 static bool handleObjCGCTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
387 static bool handleObjCOwnershipTypeAttr(TypeProcessingState
&state
,
388 ParsedAttr
&attr
, QualType
&type
);
390 static bool handleObjCPointerTypeAttr(TypeProcessingState
&state
,
391 ParsedAttr
&attr
, QualType
&type
) {
392 if (attr
.getKind() == ParsedAttr::AT_ObjCGC
)
393 return handleObjCGCTypeAttr(state
, attr
, type
);
394 assert(attr
.getKind() == ParsedAttr::AT_ObjCOwnership
);
395 return handleObjCOwnershipTypeAttr(state
, attr
, type
);
398 /// Given the index of a declarator chunk, check whether that chunk
399 /// directly specifies the return type of a function and, if so, find
400 /// an appropriate place for it.
402 /// \param i - a notional index which the search will start
403 /// immediately inside
405 /// \param onlyBlockPointers Whether we should only look into block
406 /// pointer types (vs. all pointer types).
407 static DeclaratorChunk
*maybeMovePastReturnType(Declarator
&declarator
,
409 bool onlyBlockPointers
) {
410 assert(i
<= declarator
.getNumTypeObjects());
412 DeclaratorChunk
*result
= nullptr;
414 // First, look inwards past parens for a function declarator.
415 for (; i
!= 0; --i
) {
416 DeclaratorChunk
&fnChunk
= declarator
.getTypeObject(i
-1);
417 switch (fnChunk
.Kind
) {
418 case DeclaratorChunk::Paren
:
421 // If we find anything except a function, bail out.
422 case DeclaratorChunk::Pointer
:
423 case DeclaratorChunk::BlockPointer
:
424 case DeclaratorChunk::Array
:
425 case DeclaratorChunk::Reference
:
426 case DeclaratorChunk::MemberPointer
:
427 case DeclaratorChunk::Pipe
:
430 // If we do find a function declarator, scan inwards from that,
431 // looking for a (block-)pointer declarator.
432 case DeclaratorChunk::Function
:
433 for (--i
; i
!= 0; --i
) {
434 DeclaratorChunk
&ptrChunk
= declarator
.getTypeObject(i
-1);
435 switch (ptrChunk
.Kind
) {
436 case DeclaratorChunk::Paren
:
437 case DeclaratorChunk::Array
:
438 case DeclaratorChunk::Function
:
439 case DeclaratorChunk::Reference
:
440 case DeclaratorChunk::Pipe
:
443 case DeclaratorChunk::MemberPointer
:
444 case DeclaratorChunk::Pointer
:
445 if (onlyBlockPointers
)
450 case DeclaratorChunk::BlockPointer
:
454 llvm_unreachable("bad declarator chunk kind");
457 // If we run out of declarators doing that, we're done.
460 llvm_unreachable("bad declarator chunk kind");
462 // Okay, reconsider from our new point.
466 // Ran out of chunks, bail out.
470 /// Given that an objc_gc attribute was written somewhere on a
471 /// declaration *other* than on the declarator itself (for which, use
472 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
473 /// didn't apply in whatever position it was written in, try to move
474 /// it to a more appropriate position.
475 static void distributeObjCPointerTypeAttr(TypeProcessingState
&state
,
476 ParsedAttr
&attr
, QualType type
) {
477 Declarator
&declarator
= state
.getDeclarator();
479 // Move it to the outermost normal or block pointer declarator.
480 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
481 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
482 switch (chunk
.Kind
) {
483 case DeclaratorChunk::Pointer
:
484 case DeclaratorChunk::BlockPointer
: {
485 // But don't move an ARC ownership attribute to the return type
487 DeclaratorChunk
*destChunk
= nullptr;
488 if (state
.isProcessingDeclSpec() &&
489 attr
.getKind() == ParsedAttr::AT_ObjCOwnership
)
490 destChunk
= maybeMovePastReturnType(declarator
, i
- 1,
491 /*onlyBlockPointers=*/true);
492 if (!destChunk
) destChunk
= &chunk
;
494 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
495 destChunk
->getAttrs());
499 case DeclaratorChunk::Paren
:
500 case DeclaratorChunk::Array
:
503 // We may be starting at the return type of a block.
504 case DeclaratorChunk::Function
:
505 if (state
.isProcessingDeclSpec() &&
506 attr
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
507 if (DeclaratorChunk
*dest
= maybeMovePastReturnType(
509 /*onlyBlockPointers=*/true)) {
510 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
517 // Don't walk through these.
518 case DeclaratorChunk::Reference
:
519 case DeclaratorChunk::MemberPointer
:
520 case DeclaratorChunk::Pipe
:
526 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
529 /// Distribute an objc_gc type attribute that was written on the
531 static void distributeObjCPointerTypeAttrFromDeclarator(
532 TypeProcessingState
&state
, ParsedAttr
&attr
, QualType
&declSpecType
) {
533 Declarator
&declarator
= state
.getDeclarator();
535 // objc_gc goes on the innermost pointer to something that's not a
537 unsigned innermost
= -1U;
538 bool considerDeclSpec
= true;
539 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
540 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
541 switch (chunk
.Kind
) {
542 case DeclaratorChunk::Pointer
:
543 case DeclaratorChunk::BlockPointer
:
547 case DeclaratorChunk::Reference
:
548 case DeclaratorChunk::MemberPointer
:
549 case DeclaratorChunk::Paren
:
550 case DeclaratorChunk::Array
:
551 case DeclaratorChunk::Pipe
:
554 case DeclaratorChunk::Function
:
555 considerDeclSpec
= false;
561 // That might actually be the decl spec if we weren't blocked by
562 // anything in the declarator.
563 if (considerDeclSpec
) {
564 if (handleObjCPointerTypeAttr(state
, attr
, declSpecType
)) {
565 // Splice the attribute into the decl spec. Prevents the
566 // attribute from being applied multiple times and gives
567 // the source-location-filler something to work with.
568 state
.saveDeclSpecAttrs();
569 declarator
.getMutableDeclSpec().getAttributes().takeOneFrom(
570 declarator
.getAttributes(), &attr
);
575 // Otherwise, if we found an appropriate chunk, splice the attribute
577 if (innermost
!= -1U) {
578 moveAttrFromListToList(attr
, declarator
.getAttributes(),
579 declarator
.getTypeObject(innermost
).getAttrs());
583 // Otherwise, diagnose when we're done building the type.
584 declarator
.getAttributes().remove(&attr
);
585 state
.addIgnoredTypeAttr(attr
);
588 /// A function type attribute was written somewhere in a declaration
589 /// *other* than on the declarator itself or in the decl spec. Given
590 /// that it didn't apply in whatever position it was written in, try
591 /// to move it to a more appropriate position.
592 static void distributeFunctionTypeAttr(TypeProcessingState
&state
,
593 ParsedAttr
&attr
, QualType type
) {
594 Declarator
&declarator
= state
.getDeclarator();
596 // Try to push the attribute from the return type of a function to
597 // the function itself.
598 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
599 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
600 switch (chunk
.Kind
) {
601 case DeclaratorChunk::Function
:
602 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
606 case DeclaratorChunk::Paren
:
607 case DeclaratorChunk::Pointer
:
608 case DeclaratorChunk::BlockPointer
:
609 case DeclaratorChunk::Array
:
610 case DeclaratorChunk::Reference
:
611 case DeclaratorChunk::MemberPointer
:
612 case DeclaratorChunk::Pipe
:
617 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
620 /// Try to distribute a function type attribute to the innermost
621 /// function chunk or type. Returns true if the attribute was
622 /// distributed, false if no location was found.
623 static bool distributeFunctionTypeAttrToInnermost(
624 TypeProcessingState
&state
, ParsedAttr
&attr
,
625 ParsedAttributesView
&attrList
, QualType
&declSpecType
,
626 Sema::CUDAFunctionTarget CFT
) {
627 Declarator
&declarator
= state
.getDeclarator();
629 // Put it on the innermost function chunk, if there is one.
630 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
631 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
632 if (chunk
.Kind
!= DeclaratorChunk::Function
) continue;
634 moveAttrFromListToList(attr
, attrList
, chunk
.getAttrs());
638 return handleFunctionTypeAttr(state
, attr
, declSpecType
, CFT
);
641 /// A function type attribute was written in the decl spec. Try to
642 /// apply it somewhere.
644 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState
&state
,
645 ParsedAttr
&attr
, QualType
&declSpecType
,
646 Sema::CUDAFunctionTarget CFT
) {
647 state
.saveDeclSpecAttrs();
649 // Try to distribute to the innermost.
650 if (distributeFunctionTypeAttrToInnermost(
651 state
, attr
, state
.getCurrentAttributes(), declSpecType
, CFT
))
654 // If that failed, diagnose the bad attribute when the declarator is
656 state
.addIgnoredTypeAttr(attr
);
659 /// A function type attribute was written on the declarator or declaration.
660 /// Try to apply it somewhere.
661 /// `Attrs` is the attribute list containing the declaration (either of the
662 /// declarator or the declaration).
663 static void distributeFunctionTypeAttrFromDeclarator(
664 TypeProcessingState
&state
, ParsedAttr
&attr
, QualType
&declSpecType
,
665 Sema::CUDAFunctionTarget CFT
) {
666 Declarator
&declarator
= state
.getDeclarator();
668 // Try to distribute to the innermost.
669 if (distributeFunctionTypeAttrToInnermost(
670 state
, attr
, declarator
.getAttributes(), declSpecType
, CFT
))
673 // If that failed, diagnose the bad attribute when the declarator is
675 declarator
.getAttributes().remove(&attr
);
676 state
.addIgnoredTypeAttr(attr
);
679 /// Given that there are attributes written on the declarator or declaration
680 /// itself, try to distribute any type attributes to the appropriate
681 /// declarator chunk.
683 /// These are attributes like the following:
686 /// but not necessarily this:
689 /// `Attrs` is the attribute list containing the declaration (either of the
690 /// declarator or the declaration).
691 static void distributeTypeAttrsFromDeclarator(TypeProcessingState
&state
,
692 QualType
&declSpecType
,
693 Sema::CUDAFunctionTarget CFT
) {
694 // The called functions in this loop actually remove things from the current
695 // list, so iterating over the existing list isn't possible. Instead, make a
696 // non-owning copy and iterate over that.
697 ParsedAttributesView AttrsCopy
{state
.getDeclarator().getAttributes()};
698 for (ParsedAttr
&attr
: AttrsCopy
) {
699 // Do not distribute [[]] attributes. They have strict rules for what
700 // they appertain to.
701 if (attr
.isStandardAttributeSyntax() || attr
.isRegularKeywordAttribute())
704 switch (attr
.getKind()) {
705 OBJC_POINTER_TYPE_ATTRS_CASELIST
:
706 distributeObjCPointerTypeAttrFromDeclarator(state
, attr
, declSpecType
);
709 FUNCTION_TYPE_ATTRS_CASELIST
:
710 distributeFunctionTypeAttrFromDeclarator(state
, attr
, declSpecType
, CFT
);
713 MS_TYPE_ATTRS_CASELIST
:
714 // Microsoft type attributes cannot go after the declarator-id.
717 NULLABILITY_TYPE_ATTRS_CASELIST
:
718 // Nullability specifiers cannot go after the declarator-id.
720 // Objective-C __kindof does not get distributed.
721 case ParsedAttr::AT_ObjCKindOf
:
730 /// Add a synthetic '()' to a block-literal declarator if it is
731 /// required, given the return type.
732 static void maybeSynthesizeBlockSignature(TypeProcessingState
&state
,
733 QualType declSpecType
) {
734 Declarator
&declarator
= state
.getDeclarator();
736 // First, check whether the declarator would produce a function,
737 // i.e. whether the innermost semantic chunk is a function.
738 if (declarator
.isFunctionDeclarator()) {
739 // If so, make that declarator a prototyped declarator.
740 declarator
.getFunctionTypeInfo().hasPrototype
= true;
744 // If there are any type objects, the type as written won't name a
745 // function, regardless of the decl spec type. This is because a
746 // block signature declarator is always an abstract-declarator, and
747 // abstract-declarators can't just be parentheses chunks. Therefore
748 // we need to build a function chunk unless there are no type
749 // objects and the decl spec type is a function.
750 if (!declarator
.getNumTypeObjects() && declSpecType
->isFunctionType())
753 // Note that there *are* cases with invalid declarators where
754 // declarators consist solely of parentheses. In general, these
755 // occur only in failed efforts to make function declarators, so
756 // faking up the function chunk is still the right thing to do.
758 // Otherwise, we need to fake up a function declarator.
759 SourceLocation loc
= declarator
.getBeginLoc();
761 // ...and *prepend* it to the declarator.
762 SourceLocation NoLoc
;
763 declarator
.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
765 /*IsAmbiguous=*/false,
769 /*EllipsisLoc=*/NoLoc
,
771 /*RefQualifierIsLvalueRef=*/true,
772 /*RefQualifierLoc=*/NoLoc
,
773 /*MutableLoc=*/NoLoc
, EST_None
,
774 /*ESpecRange=*/SourceRange(),
775 /*Exceptions=*/nullptr,
776 /*ExceptionRanges=*/nullptr,
778 /*NoexceptExpr=*/nullptr,
779 /*ExceptionSpecTokens=*/nullptr,
780 /*DeclsInPrototype=*/std::nullopt
, loc
, loc
, declarator
));
782 // For consistency, make sure the state still has us as processing
784 assert(state
.getCurrentChunkIndex() == declarator
.getNumTypeObjects() - 1);
785 state
.setCurrentChunkIndex(declarator
.getNumTypeObjects());
788 static void diagnoseAndRemoveTypeQualifiers(Sema
&S
, const DeclSpec
&DS
,
793 // If this occurs outside a template instantiation, warn the user about
794 // it; they probably didn't mean to specify a redundant qualifier.
795 typedef std::pair
<DeclSpec::TQ
, SourceLocation
> QualLoc
;
796 for (QualLoc Qual
: {QualLoc(DeclSpec::TQ_const
, DS
.getConstSpecLoc()),
797 QualLoc(DeclSpec::TQ_restrict
, DS
.getRestrictSpecLoc()),
798 QualLoc(DeclSpec::TQ_volatile
, DS
.getVolatileSpecLoc()),
799 QualLoc(DeclSpec::TQ_atomic
, DS
.getAtomicSpecLoc())}) {
800 if (!(RemoveTQs
& Qual
.first
))
803 if (!S
.inTemplateInstantiation()) {
804 if (TypeQuals
& Qual
.first
)
805 S
.Diag(Qual
.second
, DiagID
)
806 << DeclSpec::getSpecifierName(Qual
.first
) << TypeSoFar
807 << FixItHint::CreateRemoval(Qual
.second
);
810 TypeQuals
&= ~Qual
.first
;
814 /// Return true if this is omitted block return type. Also check type
815 /// attributes and type qualifiers when returning true.
816 static bool checkOmittedBlockReturnType(Sema
&S
, Declarator
&declarator
,
818 if (!isOmittedBlockReturnType(declarator
))
821 // Warn if we see type attributes for omitted return type on a block literal.
822 SmallVector
<ParsedAttr
*, 2> ToBeRemoved
;
823 for (ParsedAttr
&AL
: declarator
.getMutableDeclSpec().getAttributes()) {
824 if (AL
.isInvalid() || !AL
.isTypeAttr())
827 diag::warn_block_literal_attributes_on_omitted_return_type
)
829 ToBeRemoved
.push_back(&AL
);
831 // Remove bad attributes from the list.
832 for (ParsedAttr
*AL
: ToBeRemoved
)
833 declarator
.getMutableDeclSpec().getAttributes().remove(AL
);
835 // Warn if we see type qualifiers for omitted return type on a block literal.
836 const DeclSpec
&DS
= declarator
.getDeclSpec();
837 unsigned TypeQuals
= DS
.getTypeQualifiers();
838 diagnoseAndRemoveTypeQualifiers(S
, DS
, TypeQuals
, Result
, (unsigned)-1,
839 diag::warn_block_literal_qualifiers_on_omitted_return_type
);
840 declarator
.getMutableDeclSpec().ClearTypeQualifiers();
845 /// Apply Objective-C type arguments to the given type.
846 static QualType
applyObjCTypeArgs(Sema
&S
, SourceLocation loc
, QualType type
,
847 ArrayRef
<TypeSourceInfo
*> typeArgs
,
848 SourceRange typeArgsRange
, bool failOnError
,
850 // We can only apply type arguments to an Objective-C class type.
851 const auto *objcObjectType
= type
->getAs
<ObjCObjectType
>();
852 if (!objcObjectType
|| !objcObjectType
->getInterface()) {
853 S
.Diag(loc
, diag::err_objc_type_args_non_class
)
862 // The class type must be parameterized.
863 ObjCInterfaceDecl
*objcClass
= objcObjectType
->getInterface();
864 ObjCTypeParamList
*typeParams
= objcClass
->getTypeParamList();
866 S
.Diag(loc
, diag::err_objc_type_args_non_parameterized_class
)
867 << objcClass
->getDeclName()
868 << FixItHint::CreateRemoval(typeArgsRange
);
876 // The type must not already be specialized.
877 if (objcObjectType
->isSpecialized()) {
878 S
.Diag(loc
, diag::err_objc_type_args_specialized_class
)
880 << FixItHint::CreateRemoval(typeArgsRange
);
888 // Check the type arguments.
889 SmallVector
<QualType
, 4> finalTypeArgs
;
890 unsigned numTypeParams
= typeParams
->size();
891 bool anyPackExpansions
= false;
892 for (unsigned i
= 0, n
= typeArgs
.size(); i
!= n
; ++i
) {
893 TypeSourceInfo
*typeArgInfo
= typeArgs
[i
];
894 QualType typeArg
= typeArgInfo
->getType();
896 // Type arguments cannot have explicit qualifiers or nullability.
897 // We ignore indirect sources of these, e.g. behind typedefs or
898 // template arguments.
899 if (TypeLoc qual
= typeArgInfo
->getTypeLoc().findExplicitQualifierLoc()) {
900 bool diagnosed
= false;
901 SourceRange rangeToRemove
;
902 if (auto attr
= qual
.getAs
<AttributedTypeLoc
>()) {
903 rangeToRemove
= attr
.getLocalSourceRange();
904 if (attr
.getTypePtr()->getImmediateNullability()) {
905 typeArg
= attr
.getTypePtr()->getModifiedType();
906 S
.Diag(attr
.getBeginLoc(),
907 diag::err_objc_type_arg_explicit_nullability
)
908 << typeArg
<< FixItHint::CreateRemoval(rangeToRemove
);
913 // When rebuilding, qualifiers might have gotten here through a
914 // final substitution.
915 if (!rebuilding
&& !diagnosed
) {
916 S
.Diag(qual
.getBeginLoc(), diag::err_objc_type_arg_qualified
)
917 << typeArg
<< typeArg
.getQualifiers().getAsString()
918 << FixItHint::CreateRemoval(rangeToRemove
);
922 // Remove qualifiers even if they're non-local.
923 typeArg
= typeArg
.getUnqualifiedType();
925 finalTypeArgs
.push_back(typeArg
);
927 if (typeArg
->getAs
<PackExpansionType
>())
928 anyPackExpansions
= true;
930 // Find the corresponding type parameter, if there is one.
931 ObjCTypeParamDecl
*typeParam
= nullptr;
932 if (!anyPackExpansions
) {
933 if (i
< numTypeParams
) {
934 typeParam
= typeParams
->begin()[i
];
936 // Too many arguments.
937 S
.Diag(loc
, diag::err_objc_type_args_wrong_arity
)
939 << objcClass
->getDeclName()
940 << (unsigned)typeArgs
.size()
942 S
.Diag(objcClass
->getLocation(), diag::note_previous_decl
)
952 // Objective-C object pointer types must be substitutable for the bounds.
953 if (const auto *typeArgObjC
= typeArg
->getAs
<ObjCObjectPointerType
>()) {
954 // If we don't have a type parameter to match against, assume
955 // everything is fine. There was a prior pack expansion that
956 // means we won't be able to match anything.
958 assert(anyPackExpansions
&& "Too many arguments?");
962 // Retrieve the bound.
963 QualType bound
= typeParam
->getUnderlyingType();
964 const auto *boundObjC
= bound
->castAs
<ObjCObjectPointerType
>();
966 // Determine whether the type argument is substitutable for the bound.
967 if (typeArgObjC
->isObjCIdType()) {
968 // When the type argument is 'id', the only acceptable type
969 // parameter bound is 'id'.
970 if (boundObjC
->isObjCIdType())
972 } else if (S
.Context
.canAssignObjCInterfaces(boundObjC
, typeArgObjC
)) {
973 // Otherwise, we follow the assignability rules.
977 // Diagnose the mismatch.
978 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
979 diag::err_objc_type_arg_does_not_match_bound
)
980 << typeArg
<< bound
<< typeParam
->getDeclName();
981 S
.Diag(typeParam
->getLocation(), diag::note_objc_type_param_here
)
982 << typeParam
->getDeclName();
990 // Block pointer types are permitted for unqualified 'id' bounds.
991 if (typeArg
->isBlockPointerType()) {
992 // If we don't have a type parameter to match against, assume
993 // everything is fine. There was a prior pack expansion that
994 // means we won't be able to match anything.
996 assert(anyPackExpansions
&& "Too many arguments?");
1000 // Retrieve the bound.
1001 QualType bound
= typeParam
->getUnderlyingType();
1002 if (bound
->isBlockCompatibleObjCPointerType(S
.Context
))
1005 // Diagnose the mismatch.
1006 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
1007 diag::err_objc_type_arg_does_not_match_bound
)
1008 << typeArg
<< bound
<< typeParam
->getDeclName();
1009 S
.Diag(typeParam
->getLocation(), diag::note_objc_type_param_here
)
1010 << typeParam
->getDeclName();
1018 // Dependent types will be checked at instantiation time.
1019 if (typeArg
->isDependentType()) {
1023 // Diagnose non-id-compatible type arguments.
1024 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
1025 diag::err_objc_type_arg_not_id_compatible
)
1026 << typeArg
<< typeArgInfo
->getTypeLoc().getSourceRange();
1034 // Make sure we didn't have the wrong number of arguments.
1035 if (!anyPackExpansions
&& finalTypeArgs
.size() != numTypeParams
) {
1036 S
.Diag(loc
, diag::err_objc_type_args_wrong_arity
)
1037 << (typeArgs
.size() < typeParams
->size())
1038 << objcClass
->getDeclName()
1039 << (unsigned)finalTypeArgs
.size()
1040 << (unsigned)numTypeParams
;
1041 S
.Diag(objcClass
->getLocation(), diag::note_previous_decl
)
1050 // Success. Form the specialized type.
1051 return S
.Context
.getObjCObjectType(type
, finalTypeArgs
, { }, false);
1054 QualType
Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl
*Decl
,
1055 SourceLocation ProtocolLAngleLoc
,
1056 ArrayRef
<ObjCProtocolDecl
*> Protocols
,
1057 ArrayRef
<SourceLocation
> ProtocolLocs
,
1058 SourceLocation ProtocolRAngleLoc
,
1060 QualType Result
= QualType(Decl
->getTypeForDecl(), 0);
1061 if (!Protocols
.empty()) {
1063 Result
= Context
.applyObjCProtocolQualifiers(Result
, Protocols
,
1066 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers
)
1067 << SourceRange(ProtocolLAngleLoc
, ProtocolRAngleLoc
);
1068 if (FailOnError
) Result
= QualType();
1070 if (FailOnError
&& Result
.isNull())
1077 QualType
Sema::BuildObjCObjectType(
1078 QualType BaseType
, SourceLocation Loc
, SourceLocation TypeArgsLAngleLoc
,
1079 ArrayRef
<TypeSourceInfo
*> TypeArgs
, SourceLocation TypeArgsRAngleLoc
,
1080 SourceLocation ProtocolLAngleLoc
, ArrayRef
<ObjCProtocolDecl
*> Protocols
,
1081 ArrayRef
<SourceLocation
> ProtocolLocs
, SourceLocation ProtocolRAngleLoc
,
1082 bool FailOnError
, bool Rebuilding
) {
1083 QualType Result
= BaseType
;
1084 if (!TypeArgs
.empty()) {
1086 applyObjCTypeArgs(*this, Loc
, Result
, TypeArgs
,
1087 SourceRange(TypeArgsLAngleLoc
, TypeArgsRAngleLoc
),
1088 FailOnError
, Rebuilding
);
1089 if (FailOnError
&& Result
.isNull())
1093 if (!Protocols
.empty()) {
1095 Result
= Context
.applyObjCProtocolQualifiers(Result
, Protocols
,
1098 Diag(Loc
, diag::err_invalid_protocol_qualifiers
)
1099 << SourceRange(ProtocolLAngleLoc
, ProtocolRAngleLoc
);
1100 if (FailOnError
) Result
= QualType();
1102 if (FailOnError
&& Result
.isNull())
1109 TypeResult
Sema::actOnObjCProtocolQualifierType(
1110 SourceLocation lAngleLoc
,
1111 ArrayRef
<Decl
*> protocols
,
1112 ArrayRef
<SourceLocation
> protocolLocs
,
1113 SourceLocation rAngleLoc
) {
1114 // Form id<protocol-list>.
1115 QualType Result
= Context
.getObjCObjectType(
1116 Context
.ObjCBuiltinIdTy
, {},
1117 llvm::ArrayRef((ObjCProtocolDecl
*const *)protocols
.data(),
1120 Result
= Context
.getObjCObjectPointerType(Result
);
1122 TypeSourceInfo
*ResultTInfo
= Context
.CreateTypeSourceInfo(Result
);
1123 TypeLoc ResultTL
= ResultTInfo
->getTypeLoc();
1125 auto ObjCObjectPointerTL
= ResultTL
.castAs
<ObjCObjectPointerTypeLoc
>();
1126 ObjCObjectPointerTL
.setStarLoc(SourceLocation()); // implicit
1128 auto ObjCObjectTL
= ObjCObjectPointerTL
.getPointeeLoc()
1129 .castAs
<ObjCObjectTypeLoc
>();
1130 ObjCObjectTL
.setHasBaseTypeAsWritten(false);
1131 ObjCObjectTL
.getBaseLoc().initialize(Context
, SourceLocation());
1133 // No type arguments.
1134 ObjCObjectTL
.setTypeArgsLAngleLoc(SourceLocation());
1135 ObjCObjectTL
.setTypeArgsRAngleLoc(SourceLocation());
1137 // Fill in protocol qualifiers.
1138 ObjCObjectTL
.setProtocolLAngleLoc(lAngleLoc
);
1139 ObjCObjectTL
.setProtocolRAngleLoc(rAngleLoc
);
1140 for (unsigned i
= 0, n
= protocols
.size(); i
!= n
; ++i
)
1141 ObjCObjectTL
.setProtocolLoc(i
, protocolLocs
[i
]);
1143 // We're done. Return the completed type to the parser.
1144 return CreateParsedType(Result
, ResultTInfo
);
1147 TypeResult
Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1150 ParsedType BaseType
,
1151 SourceLocation TypeArgsLAngleLoc
,
1152 ArrayRef
<ParsedType
> TypeArgs
,
1153 SourceLocation TypeArgsRAngleLoc
,
1154 SourceLocation ProtocolLAngleLoc
,
1155 ArrayRef
<Decl
*> Protocols
,
1156 ArrayRef
<SourceLocation
> ProtocolLocs
,
1157 SourceLocation ProtocolRAngleLoc
) {
1158 TypeSourceInfo
*BaseTypeInfo
= nullptr;
1159 QualType T
= GetTypeFromParser(BaseType
, &BaseTypeInfo
);
1163 // Handle missing type-source info.
1165 BaseTypeInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
1167 // Extract type arguments.
1168 SmallVector
<TypeSourceInfo
*, 4> ActualTypeArgInfos
;
1169 for (unsigned i
= 0, n
= TypeArgs
.size(); i
!= n
; ++i
) {
1170 TypeSourceInfo
*TypeArgInfo
= nullptr;
1171 QualType TypeArg
= GetTypeFromParser(TypeArgs
[i
], &TypeArgInfo
);
1172 if (TypeArg
.isNull()) {
1173 ActualTypeArgInfos
.clear();
1177 assert(TypeArgInfo
&& "No type source info?");
1178 ActualTypeArgInfos
.push_back(TypeArgInfo
);
1181 // Build the object type.
1182 QualType Result
= BuildObjCObjectType(
1183 T
, BaseTypeInfo
->getTypeLoc().getSourceRange().getBegin(),
1184 TypeArgsLAngleLoc
, ActualTypeArgInfos
, TypeArgsRAngleLoc
,
1186 llvm::ArrayRef((ObjCProtocolDecl
*const *)Protocols
.data(),
1188 ProtocolLocs
, ProtocolRAngleLoc
,
1189 /*FailOnError=*/false,
1190 /*Rebuilding=*/false);
1195 // Create source information for this type.
1196 TypeSourceInfo
*ResultTInfo
= Context
.CreateTypeSourceInfo(Result
);
1197 TypeLoc ResultTL
= ResultTInfo
->getTypeLoc();
1199 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1200 // object pointer type. Fill in source information for it.
1201 if (auto ObjCObjectPointerTL
= ResultTL
.getAs
<ObjCObjectPointerTypeLoc
>()) {
1202 // The '*' is implicit.
1203 ObjCObjectPointerTL
.setStarLoc(SourceLocation());
1204 ResultTL
= ObjCObjectPointerTL
.getPointeeLoc();
1207 if (auto OTPTL
= ResultTL
.getAs
<ObjCTypeParamTypeLoc
>()) {
1208 // Protocol qualifier information.
1209 if (OTPTL
.getNumProtocols() > 0) {
1210 assert(OTPTL
.getNumProtocols() == Protocols
.size());
1211 OTPTL
.setProtocolLAngleLoc(ProtocolLAngleLoc
);
1212 OTPTL
.setProtocolRAngleLoc(ProtocolRAngleLoc
);
1213 for (unsigned i
= 0, n
= Protocols
.size(); i
!= n
; ++i
)
1214 OTPTL
.setProtocolLoc(i
, ProtocolLocs
[i
]);
1217 // We're done. Return the completed type to the parser.
1218 return CreateParsedType(Result
, ResultTInfo
);
1221 auto ObjCObjectTL
= ResultTL
.castAs
<ObjCObjectTypeLoc
>();
1223 // Type argument information.
1224 if (ObjCObjectTL
.getNumTypeArgs() > 0) {
1225 assert(ObjCObjectTL
.getNumTypeArgs() == ActualTypeArgInfos
.size());
1226 ObjCObjectTL
.setTypeArgsLAngleLoc(TypeArgsLAngleLoc
);
1227 ObjCObjectTL
.setTypeArgsRAngleLoc(TypeArgsRAngleLoc
);
1228 for (unsigned i
= 0, n
= ActualTypeArgInfos
.size(); i
!= n
; ++i
)
1229 ObjCObjectTL
.setTypeArgTInfo(i
, ActualTypeArgInfos
[i
]);
1231 ObjCObjectTL
.setTypeArgsLAngleLoc(SourceLocation());
1232 ObjCObjectTL
.setTypeArgsRAngleLoc(SourceLocation());
1235 // Protocol qualifier information.
1236 if (ObjCObjectTL
.getNumProtocols() > 0) {
1237 assert(ObjCObjectTL
.getNumProtocols() == Protocols
.size());
1238 ObjCObjectTL
.setProtocolLAngleLoc(ProtocolLAngleLoc
);
1239 ObjCObjectTL
.setProtocolRAngleLoc(ProtocolRAngleLoc
);
1240 for (unsigned i
= 0, n
= Protocols
.size(); i
!= n
; ++i
)
1241 ObjCObjectTL
.setProtocolLoc(i
, ProtocolLocs
[i
]);
1243 ObjCObjectTL
.setProtocolLAngleLoc(SourceLocation());
1244 ObjCObjectTL
.setProtocolRAngleLoc(SourceLocation());
1248 ObjCObjectTL
.setHasBaseTypeAsWritten(true);
1249 if (ObjCObjectTL
.getType() == T
)
1250 ObjCObjectTL
.getBaseLoc().initializeFullCopy(BaseTypeInfo
->getTypeLoc());
1252 ObjCObjectTL
.getBaseLoc().initialize(Context
, Loc
);
1254 // We're done. Return the completed type to the parser.
1255 return CreateParsedType(Result
, ResultTInfo
);
1258 static OpenCLAccessAttr::Spelling
1259 getImageAccess(const ParsedAttributesView
&Attrs
) {
1260 for (const ParsedAttr
&AL
: Attrs
)
1261 if (AL
.getKind() == ParsedAttr::AT_OpenCLAccess
)
1262 return static_cast<OpenCLAccessAttr::Spelling
>(AL
.getSemanticSpelling());
1263 return OpenCLAccessAttr::Keyword_read_only
;
1266 static UnaryTransformType::UTTKind
1267 TSTToUnaryTransformType(DeclSpec::TST SwitchTST
) {
1268 switch (SwitchTST
) {
1269 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \
1271 return UnaryTransformType::Enum;
1272 #include "clang/Basic/TransformTypeTraits.def"
1274 llvm_unreachable("attempted to parse a non-unary transform builtin");
1278 /// Convert the specified declspec to the appropriate type
1280 /// \param state Specifies the declarator containing the declaration specifier
1281 /// to be converted, along with other associated processing state.
1282 /// \returns The type described by the declaration specifiers. This function
1283 /// never returns null.
1284 static QualType
ConvertDeclSpecToType(TypeProcessingState
&state
) {
1285 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1288 Sema
&S
= state
.getSema();
1289 Declarator
&declarator
= state
.getDeclarator();
1290 DeclSpec
&DS
= declarator
.getMutableDeclSpec();
1291 SourceLocation DeclLoc
= declarator
.getIdentifierLoc();
1292 if (DeclLoc
.isInvalid())
1293 DeclLoc
= DS
.getBeginLoc();
1295 ASTContext
&Context
= S
.Context
;
1298 switch (DS
.getTypeSpecType()) {
1299 case DeclSpec::TST_void
:
1300 Result
= Context
.VoidTy
;
1302 case DeclSpec::TST_char
:
1303 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
)
1304 Result
= Context
.CharTy
;
1305 else if (DS
.getTypeSpecSign() == TypeSpecifierSign::Signed
)
1306 Result
= Context
.SignedCharTy
;
1308 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
&&
1309 "Unknown TSS value");
1310 Result
= Context
.UnsignedCharTy
;
1313 case DeclSpec::TST_wchar
:
1314 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
)
1315 Result
= Context
.WCharTy
;
1316 else if (DS
.getTypeSpecSign() == TypeSpecifierSign::Signed
) {
1317 S
.Diag(DS
.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec
)
1318 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1319 Context
.getPrintingPolicy());
1320 Result
= Context
.getSignedWCharType();
1322 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
&&
1323 "Unknown TSS value");
1324 S
.Diag(DS
.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec
)
1325 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1326 Context
.getPrintingPolicy());
1327 Result
= Context
.getUnsignedWCharType();
1330 case DeclSpec::TST_char8
:
1331 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1332 "Unknown TSS value");
1333 Result
= Context
.Char8Ty
;
1335 case DeclSpec::TST_char16
:
1336 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1337 "Unknown TSS value");
1338 Result
= Context
.Char16Ty
;
1340 case DeclSpec::TST_char32
:
1341 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1342 "Unknown TSS value");
1343 Result
= Context
.Char32Ty
;
1345 case DeclSpec::TST_unspecified
:
1346 // If this is a missing declspec in a block literal return context, then it
1347 // is inferred from the return statements inside the block.
1348 // The declspec is always missing in a lambda expr context; it is either
1349 // specified with a trailing return type or inferred.
1350 if (S
.getLangOpts().CPlusPlus14
&&
1351 declarator
.getContext() == DeclaratorContext::LambdaExpr
) {
1352 // In C++1y, a lambda's implicit return type is 'auto'.
1353 Result
= Context
.getAutoDeductType();
1355 } else if (declarator
.getContext() == DeclaratorContext::LambdaExpr
||
1356 checkOmittedBlockReturnType(S
, declarator
,
1357 Context
.DependentTy
)) {
1358 Result
= Context
.DependentTy
;
1362 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1363 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1364 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1365 // Note that the one exception to this is function definitions, which are
1366 // allowed to be completely missing a declspec. This is handled in the
1367 // parser already though by it pretending to have seen an 'int' in this
1369 if (S
.getLangOpts().isImplicitIntRequired()) {
1370 S
.Diag(DeclLoc
, diag::warn_missing_type_specifier
)
1371 << DS
.getSourceRange()
1372 << FixItHint::CreateInsertion(DS
.getBeginLoc(), "int");
1373 } else if (!DS
.hasTypeSpecifier()) {
1374 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1375 // "At least one type specifier shall be given in the declaration
1376 // specifiers in each declaration, and in the specifier-qualifier list in
1377 // each struct declaration and type name."
1378 if (!S
.getLangOpts().isImplicitIntAllowed() && !DS
.isTypeSpecPipe()) {
1379 S
.Diag(DeclLoc
, diag::err_missing_type_specifier
)
1380 << DS
.getSourceRange();
1382 // When this occurs, often something is very broken with the value
1383 // being declared, poison it as invalid so we don't get chains of
1385 declarator
.setInvalidType(true);
1386 } else if (S
.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1387 DS
.isTypeSpecPipe()) {
1388 S
.Diag(DeclLoc
, diag::err_missing_actual_pipe_type
)
1389 << DS
.getSourceRange();
1390 declarator
.setInvalidType(true);
1392 assert(S
.getLangOpts().isImplicitIntAllowed() &&
1393 "implicit int is disabled?");
1394 S
.Diag(DeclLoc
, diag::ext_missing_type_specifier
)
1395 << DS
.getSourceRange()
1396 << FixItHint::CreateInsertion(DS
.getBeginLoc(), "int");
1401 case DeclSpec::TST_int
: {
1402 if (DS
.getTypeSpecSign() != TypeSpecifierSign::Unsigned
) {
1403 switch (DS
.getTypeSpecWidth()) {
1404 case TypeSpecifierWidth::Unspecified
:
1405 Result
= Context
.IntTy
;
1407 case TypeSpecifierWidth::Short
:
1408 Result
= Context
.ShortTy
;
1410 case TypeSpecifierWidth::Long
:
1411 Result
= Context
.LongTy
;
1413 case TypeSpecifierWidth::LongLong
:
1414 Result
= Context
.LongLongTy
;
1416 // 'long long' is a C99 or C++11 feature.
1417 if (!S
.getLangOpts().C99
) {
1418 if (S
.getLangOpts().CPlusPlus
)
1419 S
.Diag(DS
.getTypeSpecWidthLoc(),
1420 S
.getLangOpts().CPlusPlus11
?
1421 diag::warn_cxx98_compat_longlong
: diag::ext_cxx11_longlong
);
1423 S
.Diag(DS
.getTypeSpecWidthLoc(), diag::ext_c99_longlong
);
1428 switch (DS
.getTypeSpecWidth()) {
1429 case TypeSpecifierWidth::Unspecified
:
1430 Result
= Context
.UnsignedIntTy
;
1432 case TypeSpecifierWidth::Short
:
1433 Result
= Context
.UnsignedShortTy
;
1435 case TypeSpecifierWidth::Long
:
1436 Result
= Context
.UnsignedLongTy
;
1438 case TypeSpecifierWidth::LongLong
:
1439 Result
= Context
.UnsignedLongLongTy
;
1441 // 'long long' is a C99 or C++11 feature.
1442 if (!S
.getLangOpts().C99
) {
1443 if (S
.getLangOpts().CPlusPlus
)
1444 S
.Diag(DS
.getTypeSpecWidthLoc(),
1445 S
.getLangOpts().CPlusPlus11
?
1446 diag::warn_cxx98_compat_longlong
: diag::ext_cxx11_longlong
);
1448 S
.Diag(DS
.getTypeSpecWidthLoc(), diag::ext_c99_longlong
);
1455 case DeclSpec::TST_bitint
: {
1456 if (!S
.Context
.getTargetInfo().hasBitIntType())
1457 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
) << "_BitInt";
1459 S
.BuildBitIntType(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
,
1460 DS
.getRepAsExpr(), DS
.getBeginLoc());
1461 if (Result
.isNull()) {
1462 Result
= Context
.IntTy
;
1463 declarator
.setInvalidType(true);
1467 case DeclSpec::TST_accum
: {
1468 switch (DS
.getTypeSpecWidth()) {
1469 case TypeSpecifierWidth::Short
:
1470 Result
= Context
.ShortAccumTy
;
1472 case TypeSpecifierWidth::Unspecified
:
1473 Result
= Context
.AccumTy
;
1475 case TypeSpecifierWidth::Long
:
1476 Result
= Context
.LongAccumTy
;
1478 case TypeSpecifierWidth::LongLong
:
1479 llvm_unreachable("Unable to specify long long as _Accum width");
1482 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1483 Result
= Context
.getCorrespondingUnsignedType(Result
);
1485 if (DS
.isTypeSpecSat())
1486 Result
= Context
.getCorrespondingSaturatedType(Result
);
1490 case DeclSpec::TST_fract
: {
1491 switch (DS
.getTypeSpecWidth()) {
1492 case TypeSpecifierWidth::Short
:
1493 Result
= Context
.ShortFractTy
;
1495 case TypeSpecifierWidth::Unspecified
:
1496 Result
= Context
.FractTy
;
1498 case TypeSpecifierWidth::Long
:
1499 Result
= Context
.LongFractTy
;
1501 case TypeSpecifierWidth::LongLong
:
1502 llvm_unreachable("Unable to specify long long as _Fract width");
1505 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1506 Result
= Context
.getCorrespondingUnsignedType(Result
);
1508 if (DS
.isTypeSpecSat())
1509 Result
= Context
.getCorrespondingSaturatedType(Result
);
1513 case DeclSpec::TST_int128
:
1514 if (!S
.Context
.getTargetInfo().hasInt128Type() &&
1515 !(S
.getLangOpts().SYCLIsDevice
|| S
.getLangOpts().CUDAIsDevice
||
1516 (S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
)))
1517 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1519 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1520 Result
= Context
.UnsignedInt128Ty
;
1522 Result
= Context
.Int128Ty
;
1524 case DeclSpec::TST_float16
:
1525 // CUDA host and device may have different _Float16 support, therefore
1526 // do not diagnose _Float16 usage to avoid false alarm.
1527 // ToDo: more precise diagnostics for CUDA.
1528 if (!S
.Context
.getTargetInfo().hasFloat16Type() && !S
.getLangOpts().CUDA
&&
1529 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
))
1530 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1532 Result
= Context
.Float16Ty
;
1534 case DeclSpec::TST_half
: Result
= Context
.HalfTy
; break;
1535 case DeclSpec::TST_BFloat16
:
1536 if (!S
.Context
.getTargetInfo().hasBFloat16Type() &&
1537 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
) &&
1538 !S
.getLangOpts().SYCLIsDevice
)
1539 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
) << "__bf16";
1540 Result
= Context
.BFloat16Ty
;
1542 case DeclSpec::TST_float
: Result
= Context
.FloatTy
; break;
1543 case DeclSpec::TST_double
:
1544 if (DS
.getTypeSpecWidth() == TypeSpecifierWidth::Long
)
1545 Result
= Context
.LongDoubleTy
;
1547 Result
= Context
.DoubleTy
;
1548 if (S
.getLangOpts().OpenCL
) {
1549 if (!S
.getOpenCLOptions().isSupported("cl_khr_fp64", S
.getLangOpts()))
1550 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1552 << (S
.getLangOpts().getOpenCLCompatibleVersion() == 300
1553 ? "cl_khr_fp64 and __opencl_c_fp64"
1555 else if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S
.getLangOpts()))
1556 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma
);
1559 case DeclSpec::TST_float128
:
1560 if (!S
.Context
.getTargetInfo().hasFloat128Type() &&
1561 !S
.getLangOpts().SYCLIsDevice
&&
1562 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
))
1563 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1565 Result
= Context
.Float128Ty
;
1567 case DeclSpec::TST_ibm128
:
1568 if (!S
.Context
.getTargetInfo().hasIbm128Type() &&
1569 !S
.getLangOpts().SYCLIsDevice
&&
1570 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
))
1571 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
) << "__ibm128";
1572 Result
= Context
.Ibm128Ty
;
1574 case DeclSpec::TST_bool
:
1575 Result
= Context
.BoolTy
; // _Bool or bool
1577 case DeclSpec::TST_decimal32
: // _Decimal32
1578 case DeclSpec::TST_decimal64
: // _Decimal64
1579 case DeclSpec::TST_decimal128
: // _Decimal128
1580 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_decimal_unsupported
);
1581 Result
= Context
.IntTy
;
1582 declarator
.setInvalidType(true);
1584 case DeclSpec::TST_class
:
1585 case DeclSpec::TST_enum
:
1586 case DeclSpec::TST_union
:
1587 case DeclSpec::TST_struct
:
1588 case DeclSpec::TST_interface
: {
1589 TagDecl
*D
= dyn_cast_or_null
<TagDecl
>(DS
.getRepAsDecl());
1591 // This can happen in C++ with ambiguous lookups.
1592 Result
= Context
.IntTy
;
1593 declarator
.setInvalidType(true);
1597 // If the type is deprecated or unavailable, diagnose it.
1598 S
.DiagnoseUseOfDecl(D
, DS
.getTypeSpecTypeNameLoc());
1600 assert(DS
.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified
&&
1601 DS
.getTypeSpecComplex() == 0 &&
1602 DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1603 "No qualifiers on tag names!");
1605 // TypeQuals handled by caller.
1606 Result
= Context
.getTypeDeclType(D
);
1608 // In both C and C++, make an ElaboratedType.
1609 ElaboratedTypeKeyword Keyword
1610 = ElaboratedType::getKeywordForTypeSpec(DS
.getTypeSpecType());
1611 Result
= S
.getElaboratedType(Keyword
, DS
.getTypeSpecScope(), Result
,
1612 DS
.isTypeSpecOwned() ? D
: nullptr);
1615 case DeclSpec::TST_typename
: {
1616 assert(DS
.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified
&&
1617 DS
.getTypeSpecComplex() == 0 &&
1618 DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1619 "Can't handle qualifiers on typedef names yet!");
1620 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1621 if (Result
.isNull()) {
1622 declarator
.setInvalidType(true);
1625 // TypeQuals handled by caller.
1628 case DeclSpec::TST_typeof_unqualType
:
1629 case DeclSpec::TST_typeofType
:
1630 // FIXME: Preserve type source info.
1631 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1632 assert(!Result
.isNull() && "Didn't get a type for typeof?");
1633 if (!Result
->isDependentType())
1634 if (const TagType
*TT
= Result
->getAs
<TagType
>())
1635 S
.DiagnoseUseOfDecl(TT
->getDecl(), DS
.getTypeSpecTypeLoc());
1636 // TypeQuals handled by caller.
1637 Result
= Context
.getTypeOfType(
1638 Result
, DS
.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1639 ? TypeOfKind::Unqualified
1640 : TypeOfKind::Qualified
);
1642 case DeclSpec::TST_typeof_unqualExpr
:
1643 case DeclSpec::TST_typeofExpr
: {
1644 Expr
*E
= DS
.getRepAsExpr();
1645 assert(E
&& "Didn't get an expression for typeof?");
1646 // TypeQuals handled by caller.
1647 Result
= S
.BuildTypeofExprType(E
, DS
.getTypeSpecType() ==
1648 DeclSpec::TST_typeof_unqualExpr
1649 ? TypeOfKind::Unqualified
1650 : TypeOfKind::Qualified
);
1651 if (Result
.isNull()) {
1652 Result
= Context
.IntTy
;
1653 declarator
.setInvalidType(true);
1657 case DeclSpec::TST_decltype
: {
1658 Expr
*E
= DS
.getRepAsExpr();
1659 assert(E
&& "Didn't get an expression for decltype?");
1660 // TypeQuals handled by caller.
1661 Result
= S
.BuildDecltypeType(E
);
1662 if (Result
.isNull()) {
1663 Result
= Context
.IntTy
;
1664 declarator
.setInvalidType(true);
1668 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1669 #include "clang/Basic/TransformTypeTraits.def"
1670 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1671 assert(!Result
.isNull() && "Didn't get a type for the transformation?");
1672 Result
= S
.BuildUnaryTransformType(
1673 Result
, TSTToUnaryTransformType(DS
.getTypeSpecType()),
1674 DS
.getTypeSpecTypeLoc());
1675 if (Result
.isNull()) {
1676 Result
= Context
.IntTy
;
1677 declarator
.setInvalidType(true);
1681 case DeclSpec::TST_auto
:
1682 case DeclSpec::TST_decltype_auto
: {
1683 auto AutoKW
= DS
.getTypeSpecType() == DeclSpec::TST_decltype_auto
1684 ? AutoTypeKeyword::DecltypeAuto
1685 : AutoTypeKeyword::Auto
;
1687 ConceptDecl
*TypeConstraintConcept
= nullptr;
1688 llvm::SmallVector
<TemplateArgument
, 8> TemplateArgs
;
1689 if (DS
.isConstrainedAuto()) {
1690 if (TemplateIdAnnotation
*TemplateId
= DS
.getRepAsTemplateId()) {
1691 TypeConstraintConcept
=
1692 cast
<ConceptDecl
>(TemplateId
->Template
.get().getAsTemplateDecl());
1693 TemplateArgumentListInfo TemplateArgsInfo
;
1694 TemplateArgsInfo
.setLAngleLoc(TemplateId
->LAngleLoc
);
1695 TemplateArgsInfo
.setRAngleLoc(TemplateId
->RAngleLoc
);
1696 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
1697 TemplateId
->NumArgs
);
1698 S
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
1699 for (const auto &ArgLoc
: TemplateArgsInfo
.arguments())
1700 TemplateArgs
.push_back(ArgLoc
.getArgument());
1702 declarator
.setInvalidType(true);
1705 Result
= S
.Context
.getAutoType(QualType(), AutoKW
,
1706 /*IsDependent*/ false, /*IsPack=*/false,
1707 TypeConstraintConcept
, TemplateArgs
);
1711 case DeclSpec::TST_auto_type
:
1712 Result
= Context
.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType
, false);
1715 case DeclSpec::TST_unknown_anytype
:
1716 Result
= Context
.UnknownAnyTy
;
1719 case DeclSpec::TST_atomic
:
1720 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1721 assert(!Result
.isNull() && "Didn't get a type for _Atomic?");
1722 Result
= S
.BuildAtomicType(Result
, DS
.getTypeSpecTypeLoc());
1723 if (Result
.isNull()) {
1724 Result
= Context
.IntTy
;
1725 declarator
.setInvalidType(true);
1729 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
1730 case DeclSpec::TST_##ImgType##_t: \
1731 switch (getImageAccess(DS.getAttributes())) { \
1732 case OpenCLAccessAttr::Keyword_write_only: \
1733 Result = Context.Id##WOTy; \
1735 case OpenCLAccessAttr::Keyword_read_write: \
1736 Result = Context.Id##RWTy; \
1738 case OpenCLAccessAttr::Keyword_read_only: \
1739 Result = Context.Id##ROTy; \
1741 case OpenCLAccessAttr::SpellingNotCalculated: \
1742 llvm_unreachable("Spelling not yet calculated"); \
1745 #include "clang/Basic/OpenCLImageTypes.def"
1747 case DeclSpec::TST_error
:
1748 Result
= Context
.IntTy
;
1749 declarator
.setInvalidType(true);
1753 // FIXME: we want resulting declarations to be marked invalid, but claiming
1754 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1756 if (Result
->containsErrors())
1757 declarator
.setInvalidType();
1759 if (S
.getLangOpts().OpenCL
) {
1760 const auto &OpenCLOptions
= S
.getOpenCLOptions();
1761 bool IsOpenCLC30Compatible
=
1762 S
.getLangOpts().getOpenCLCompatibleVersion() == 300;
1763 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1765 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1766 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1767 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1768 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1769 // only when the optional feature is supported
1770 if ((Result
->isImageType() || Result
->isSamplerT()) &&
1771 (IsOpenCLC30Compatible
&&
1772 !OpenCLOptions
.isSupported("__opencl_c_images", S
.getLangOpts()))) {
1773 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1774 << 0 << Result
<< "__opencl_c_images";
1775 declarator
.setInvalidType();
1776 } else if (Result
->isOCLImage3dWOType() &&
1777 !OpenCLOptions
.isSupported("cl_khr_3d_image_writes",
1779 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1781 << (IsOpenCLC30Compatible
1782 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1783 : "cl_khr_3d_image_writes");
1784 declarator
.setInvalidType();
1788 bool IsFixedPointType
= DS
.getTypeSpecType() == DeclSpec::TST_accum
||
1789 DS
.getTypeSpecType() == DeclSpec::TST_fract
;
1791 // Only fixed point types can be saturated
1792 if (DS
.isTypeSpecSat() && !IsFixedPointType
)
1793 S
.Diag(DS
.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec
)
1794 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1795 Context
.getPrintingPolicy());
1797 // Handle complex types.
1798 if (DS
.getTypeSpecComplex() == DeclSpec::TSC_complex
) {
1799 if (S
.getLangOpts().Freestanding
)
1800 S
.Diag(DS
.getTypeSpecComplexLoc(), diag::ext_freestanding_complex
);
1801 Result
= Context
.getComplexType(Result
);
1802 } else if (DS
.isTypeAltiVecVector()) {
1803 unsigned typeSize
= static_cast<unsigned>(Context
.getTypeSize(Result
));
1804 assert(typeSize
> 0 && "type size for vector must be greater than 0 bits");
1805 VectorKind VecKind
= VectorKind::AltiVecVector
;
1806 if (DS
.isTypeAltiVecPixel())
1807 VecKind
= VectorKind::AltiVecPixel
;
1808 else if (DS
.isTypeAltiVecBool())
1809 VecKind
= VectorKind::AltiVecBool
;
1810 Result
= Context
.getVectorType(Result
, 128/typeSize
, VecKind
);
1813 // FIXME: Imaginary.
1814 if (DS
.getTypeSpecComplex() == DeclSpec::TSC_imaginary
)
1815 S
.Diag(DS
.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported
);
1817 // Before we process any type attributes, synthesize a block literal
1818 // function declarator if necessary.
1819 if (declarator
.getContext() == DeclaratorContext::BlockLiteral
)
1820 maybeSynthesizeBlockSignature(state
, Result
);
1822 // Apply any type attributes from the decl spec. This may cause the
1823 // list of type attributes to be temporarily saved while the type
1824 // attributes are pushed around.
1825 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1826 if (!DS
.isTypeSpecPipe()) {
1827 // We also apply declaration attributes that "slide" to the decl spec.
1828 // Ordering can be important for attributes. The decalaration attributes
1829 // come syntactically before the decl spec attributes, so we process them
1831 ParsedAttributesView SlidingAttrs
;
1832 for (ParsedAttr
&AL
: declarator
.getDeclarationAttributes()) {
1833 if (AL
.slidesFromDeclToDeclSpecLegacyBehavior()) {
1834 SlidingAttrs
.addAtEnd(&AL
);
1836 // For standard syntax attributes, which would normally appertain to the
1837 // declaration here, suggest moving them to the type instead. But only
1838 // do this for our own vendor attributes; moving other vendors'
1839 // attributes might hurt portability.
1840 // There's one special case that we need to deal with here: The
1841 // `MatrixType` attribute may only be used in a typedef declaration. If
1842 // it's being used anywhere else, don't output the warning as
1843 // ProcessDeclAttributes() will output an error anyway.
1844 if (AL
.isStandardAttributeSyntax() && AL
.isClangScope() &&
1845 !(AL
.getKind() == ParsedAttr::AT_MatrixType
&&
1846 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
)) {
1847 S
.Diag(AL
.getLoc(), diag::warn_type_attribute_deprecated_on_decl
)
1852 // During this call to processTypeAttrs(),
1853 // TypeProcessingState::getCurrentAttributes() will erroneously return a
1854 // reference to the DeclSpec attributes, rather than the declaration
1855 // attributes. However, this doesn't matter, as getCurrentAttributes()
1856 // is only called when distributing attributes from one attribute list
1857 // to another. Declaration attributes are always C++11 attributes, and these
1858 // are never distributed.
1859 processTypeAttrs(state
, Result
, TAL_DeclSpec
, SlidingAttrs
);
1860 processTypeAttrs(state
, Result
, TAL_DeclSpec
, DS
.getAttributes());
1863 // Apply const/volatile/restrict qualifiers to T.
1864 if (unsigned TypeQuals
= DS
.getTypeQualifiers()) {
1865 // Warn about CV qualifiers on function types.
1867 // If the specification of a function type includes any type qualifiers,
1868 // the behavior is undefined.
1869 // C++11 [dcl.fct]p7:
1870 // The effect of a cv-qualifier-seq in a function declarator is not the
1871 // same as adding cv-qualification on top of the function type. In the
1872 // latter case, the cv-qualifiers are ignored.
1873 if (Result
->isFunctionType()) {
1874 diagnoseAndRemoveTypeQualifiers(
1875 S
, DS
, TypeQuals
, Result
, DeclSpec::TQ_const
| DeclSpec::TQ_volatile
,
1876 S
.getLangOpts().CPlusPlus
1877 ? diag::warn_typecheck_function_qualifiers_ignored
1878 : diag::warn_typecheck_function_qualifiers_unspecified
);
1879 // No diagnostic for 'restrict' or '_Atomic' applied to a
1880 // function type; we'll diagnose those later, in BuildQualifiedType.
1883 // C++11 [dcl.ref]p1:
1884 // Cv-qualified references are ill-formed except when the
1885 // cv-qualifiers are introduced through the use of a typedef-name
1886 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1888 // There don't appear to be any other contexts in which a cv-qualified
1889 // reference type could be formed, so the 'ill-formed' clause here appears
1891 if (TypeQuals
&& Result
->isReferenceType()) {
1892 diagnoseAndRemoveTypeQualifiers(
1893 S
, DS
, TypeQuals
, Result
,
1894 DeclSpec::TQ_const
| DeclSpec::TQ_volatile
| DeclSpec::TQ_atomic
,
1895 diag::warn_typecheck_reference_qualifiers
);
1898 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1899 // than once in the same specifier-list or qualifier-list, either directly
1900 // or via one or more typedefs."
1901 if (!S
.getLangOpts().C99
&& !S
.getLangOpts().CPlusPlus
1902 && TypeQuals
& Result
.getCVRQualifiers()) {
1903 if (TypeQuals
& DeclSpec::TQ_const
&& Result
.isConstQualified()) {
1904 S
.Diag(DS
.getConstSpecLoc(), diag::ext_duplicate_declspec
)
1908 if (TypeQuals
& DeclSpec::TQ_volatile
&& Result
.isVolatileQualified()) {
1909 S
.Diag(DS
.getVolatileSpecLoc(), diag::ext_duplicate_declspec
)
1913 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1914 // produce a warning in this case.
1917 QualType Qualified
= S
.BuildQualifiedType(Result
, DeclLoc
, TypeQuals
, &DS
);
1919 // If adding qualifiers fails, just use the unqualified type.
1920 if (Qualified
.isNull())
1921 declarator
.setInvalidType(true);
1926 assert(!Result
.isNull() && "This function should not return a null type");
1930 static std::string
getPrintableNameForEntity(DeclarationName Entity
) {
1932 return Entity
.getAsString();
1937 static bool isDependentOrGNUAutoType(QualType T
) {
1938 if (T
->isDependentType())
1941 const auto *AT
= dyn_cast
<AutoType
>(T
);
1942 return AT
&& AT
->isGNUAutoType();
1945 QualType
Sema::BuildQualifiedType(QualType T
, SourceLocation Loc
,
1946 Qualifiers Qs
, const DeclSpec
*DS
) {
1950 // Ignore any attempt to form a cv-qualified reference.
1951 if (T
->isReferenceType()) {
1953 Qs
.removeVolatile();
1956 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1957 // object or incomplete types shall not be restrict-qualified."
1958 if (Qs
.hasRestrict()) {
1959 unsigned DiagID
= 0;
1962 if (T
->isAnyPointerType() || T
->isReferenceType() ||
1963 T
->isMemberPointerType()) {
1965 if (T
->isObjCObjectPointerType())
1967 else if (const MemberPointerType
*PTy
= T
->getAs
<MemberPointerType
>())
1968 EltTy
= PTy
->getPointeeType();
1970 EltTy
= T
->getPointeeType();
1972 // If we have a pointer or reference, the pointee must have an object
1974 if (!EltTy
->isIncompleteOrObjectType()) {
1975 DiagID
= diag::err_typecheck_invalid_restrict_invalid_pointee
;
1978 } else if (!isDependentOrGNUAutoType(T
)) {
1979 // For an __auto_type variable, we may not have seen the initializer yet
1980 // and so have no idea whether the underlying type is a pointer type or
1982 DiagID
= diag::err_typecheck_invalid_restrict_not_pointer
;
1987 Diag(DS
? DS
->getRestrictSpecLoc() : Loc
, DiagID
) << ProblemTy
;
1988 Qs
.removeRestrict();
1992 return Context
.getQualifiedType(T
, Qs
);
1995 QualType
Sema::BuildQualifiedType(QualType T
, SourceLocation Loc
,
1996 unsigned CVRAU
, const DeclSpec
*DS
) {
2000 // Ignore any attempt to form a cv-qualified reference.
2001 if (T
->isReferenceType())
2003 ~(DeclSpec::TQ_const
| DeclSpec::TQ_volatile
| DeclSpec::TQ_atomic
);
2005 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
2007 unsigned CVR
= CVRAU
& ~(DeclSpec::TQ_atomic
| DeclSpec::TQ_unaligned
);
2010 // If the same qualifier appears more than once in the same
2011 // specifier-qualifier-list, either directly or via one or more typedefs,
2012 // the behavior is the same as if it appeared only once.
2014 // It's not specified what happens when the _Atomic qualifier is applied to
2015 // a type specified with the _Atomic specifier, but we assume that this
2016 // should be treated as if the _Atomic qualifier appeared multiple times.
2017 if (CVRAU
& DeclSpec::TQ_atomic
&& !T
->isAtomicType()) {
2019 // If other qualifiers appear along with the _Atomic qualifier in a
2020 // specifier-qualifier-list, the resulting type is the so-qualified
2023 // Don't need to worry about array types here, since _Atomic can't be
2024 // applied to such types.
2025 SplitQualType Split
= T
.getSplitUnqualifiedType();
2026 T
= BuildAtomicType(QualType(Split
.Ty
, 0),
2027 DS
? DS
->getAtomicSpecLoc() : Loc
);
2030 Split
.Quals
.addCVRQualifiers(CVR
);
2031 return BuildQualifiedType(T
, Loc
, Split
.Quals
);
2034 Qualifiers Q
= Qualifiers::fromCVRMask(CVR
);
2035 Q
.setUnaligned(CVRAU
& DeclSpec::TQ_unaligned
);
2036 return BuildQualifiedType(T
, Loc
, Q
, DS
);
2039 /// Build a paren type including \p T.
2040 QualType
Sema::BuildParenType(QualType T
) {
2041 return Context
.getParenType(T
);
2044 /// Given that we're building a pointer or reference to the given
2045 static QualType
inferARCLifetimeForPointee(Sema
&S
, QualType type
,
2048 // Bail out if retention is unrequired or already specified.
2049 if (!type
->isObjCLifetimeType() ||
2050 type
.getObjCLifetime() != Qualifiers::OCL_None
)
2053 Qualifiers::ObjCLifetime implicitLifetime
= Qualifiers::OCL_None
;
2055 // If the object type is const-qualified, we can safely use
2056 // __unsafe_unretained. This is safe (because there are no read
2057 // barriers), and it'll be safe to coerce anything but __weak* to
2058 // the resulting type.
2059 if (type
.isConstQualified()) {
2060 implicitLifetime
= Qualifiers::OCL_ExplicitNone
;
2062 // Otherwise, check whether the static type does not require
2063 // retaining. This currently only triggers for Class (possibly
2064 // protocol-qualifed, and arrays thereof).
2065 } else if (type
->isObjCARCImplicitlyUnretainedType()) {
2066 implicitLifetime
= Qualifiers::OCL_ExplicitNone
;
2068 // If we are in an unevaluated context, like sizeof, skip adding a
2070 } else if (S
.isUnevaluatedContext()) {
2073 // If that failed, give an error and recover using __strong. __strong
2074 // is the option most likely to prevent spurious second-order diagnostics,
2075 // like when binding a reference to a field.
2077 // These types can show up in private ivars in system headers, so
2078 // we need this to not be an error in those cases. Instead we
2080 if (S
.DelayedDiagnostics
.shouldDelayDiagnostics()) {
2081 S
.DelayedDiagnostics
.add(
2082 sema::DelayedDiagnostic::makeForbiddenType(loc
,
2083 diag::err_arc_indirect_no_ownership
, type
, isReference
));
2085 S
.Diag(loc
, diag::err_arc_indirect_no_ownership
) << type
<< isReference
;
2087 implicitLifetime
= Qualifiers::OCL_Strong
;
2089 assert(implicitLifetime
&& "didn't infer any lifetime!");
2092 qs
.addObjCLifetime(implicitLifetime
);
2093 return S
.Context
.getQualifiedType(type
, qs
);
2096 static std::string
getFunctionQualifiersAsString(const FunctionProtoType
*FnTy
){
2097 std::string Quals
= FnTy
->getMethodQuals().getAsString();
2099 switch (FnTy
->getRefQualifier()) {
2120 /// Kinds of declarator that cannot contain a qualified function type.
2122 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2123 /// a function type with a cv-qualifier or a ref-qualifier can only appear
2124 /// at the topmost level of a type.
2126 /// Parens and member pointers are permitted. We don't diagnose array and
2127 /// function declarators, because they don't allow function types at all.
2129 /// The values of this enum are used in diagnostics.
2130 enum QualifiedFunctionKind
{ QFK_BlockPointer
, QFK_Pointer
, QFK_Reference
};
2131 } // end anonymous namespace
2133 /// Check whether the type T is a qualified function type, and if it is,
2134 /// diagnose that it cannot be contained within the given kind of declarator.
2135 static bool checkQualifiedFunction(Sema
&S
, QualType T
, SourceLocation Loc
,
2136 QualifiedFunctionKind QFK
) {
2137 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2138 const FunctionProtoType
*FPT
= T
->getAs
<FunctionProtoType
>();
2140 (FPT
->getMethodQuals().empty() && FPT
->getRefQualifier() == RQ_None
))
2143 S
.Diag(Loc
, diag::err_compound_qualified_function_type
)
2144 << QFK
<< isa
<FunctionType
>(T
.IgnoreParens()) << T
2145 << getFunctionQualifiersAsString(FPT
);
2149 bool Sema::CheckQualifiedFunctionForTypeId(QualType T
, SourceLocation Loc
) {
2150 const FunctionProtoType
*FPT
= T
->getAs
<FunctionProtoType
>();
2152 (FPT
->getMethodQuals().empty() && FPT
->getRefQualifier() == RQ_None
))
2155 Diag(Loc
, diag::err_qualified_function_typeid
)
2156 << T
<< getFunctionQualifiersAsString(FPT
);
2160 // Helper to deduce addr space of a pointee type in OpenCL mode.
2161 static QualType
deduceOpenCLPointeeAddrSpace(Sema
&S
, QualType PointeeType
) {
2162 if (!PointeeType
->isUndeducedAutoType() && !PointeeType
->isDependentType() &&
2163 !PointeeType
->isSamplerT() &&
2164 !PointeeType
.hasAddressSpace())
2165 PointeeType
= S
.getASTContext().getAddrSpaceQualType(
2166 PointeeType
, S
.getASTContext().getDefaultOpenCLPointeeAddrSpace());
2170 /// Build a pointer type.
2172 /// \param T The type to which we'll be building a pointer.
2174 /// \param Loc The location of the entity whose type involves this
2175 /// pointer type or, if there is no such entity, the location of the
2176 /// type that will have pointer type.
2178 /// \param Entity The name of the entity that involves the pointer
2181 /// \returns A suitable pointer type, if there are no
2182 /// errors. Otherwise, returns a NULL type.
2183 QualType
Sema::BuildPointerType(QualType T
,
2184 SourceLocation Loc
, DeclarationName Entity
) {
2185 if (T
->isReferenceType()) {
2186 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2187 Diag(Loc
, diag::err_illegal_decl_pointer_to_reference
)
2188 << getPrintableNameForEntity(Entity
) << T
;
2192 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
2193 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2195 Diag(Loc
, diag::err_opencl_function_pointer
) << /*pointer*/ 0;
2199 if (getLangOpts().HLSL
&& Loc
.isValid()) {
2200 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 0;
2204 if (checkQualifiedFunction(*this, T
, Loc
, QFK_Pointer
))
2207 assert(!T
->isObjCObjectType() && "Should build ObjCObjectPointerType");
2209 // In ARC, it is forbidden to build pointers to unqualified pointers.
2210 if (getLangOpts().ObjCAutoRefCount
)
2211 T
= inferARCLifetimeForPointee(*this, T
, Loc
, /*reference*/ false);
2213 if (getLangOpts().OpenCL
)
2214 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
2216 // In WebAssembly, pointers to reference types and pointers to tables are
2218 if (getASTContext().getTargetInfo().getTriple().isWasm()) {
2219 if (T
.isWebAssemblyReferenceType()) {
2220 Diag(Loc
, diag::err_wasm_reference_pr
) << 0;
2224 // We need to desugar the type here in case T is a ParenType.
2225 if (T
->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
2226 Diag(Loc
, diag::err_wasm_table_pr
) << 0;
2231 // Build the pointer type.
2232 return Context
.getPointerType(T
);
2235 /// Build a reference type.
2237 /// \param T The type to which we'll be building a reference.
2239 /// \param Loc The location of the entity whose type involves this
2240 /// reference type or, if there is no such entity, the location of the
2241 /// type that will have reference type.
2243 /// \param Entity The name of the entity that involves the reference
2246 /// \returns A suitable reference type, if there are no
2247 /// errors. Otherwise, returns a NULL type.
2248 QualType
Sema::BuildReferenceType(QualType T
, bool SpelledAsLValue
,
2250 DeclarationName Entity
) {
2251 assert(Context
.getCanonicalType(T
) != Context
.OverloadTy
&&
2252 "Unresolved overloaded function type");
2254 // C++0x [dcl.ref]p6:
2255 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2256 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2257 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2258 // the type "lvalue reference to T", while an attempt to create the type
2259 // "rvalue reference to cv TR" creates the type TR.
2260 bool LValueRef
= SpelledAsLValue
|| T
->getAs
<LValueReferenceType
>();
2262 // C++ [dcl.ref]p4: There shall be no references to references.
2264 // According to C++ DR 106, references to references are only
2265 // diagnosed when they are written directly (e.g., "int & &"),
2266 // but not when they happen via a typedef:
2268 // typedef int& intref;
2269 // typedef intref& intref2;
2271 // Parser::ParseDeclaratorInternal diagnoses the case where
2272 // references are written directly; here, we handle the
2273 // collapsing of references-to-references as described in C++0x.
2274 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2277 // A declarator that specifies the type "reference to cv void"
2279 if (T
->isVoidType()) {
2280 Diag(Loc
, diag::err_reference_to_void
);
2284 if (getLangOpts().HLSL
&& Loc
.isValid()) {
2285 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 1;
2289 if (checkQualifiedFunction(*this, T
, Loc
, QFK_Reference
))
2292 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
2293 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2295 Diag(Loc
, diag::err_opencl_function_pointer
) << /*reference*/ 1;
2299 // In ARC, it is forbidden to build references to unqualified pointers.
2300 if (getLangOpts().ObjCAutoRefCount
)
2301 T
= inferARCLifetimeForPointee(*this, T
, Loc
, /*reference*/ true);
2303 if (getLangOpts().OpenCL
)
2304 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
2306 // In WebAssembly, references to reference types and tables are illegal.
2307 if (getASTContext().getTargetInfo().getTriple().isWasm() &&
2308 T
.isWebAssemblyReferenceType()) {
2309 Diag(Loc
, diag::err_wasm_reference_pr
) << 1;
2312 if (T
->isWebAssemblyTableType()) {
2313 Diag(Loc
, diag::err_wasm_table_pr
) << 1;
2317 // Handle restrict on references.
2319 return Context
.getLValueReferenceType(T
, SpelledAsLValue
);
2320 return Context
.getRValueReferenceType(T
);
2323 /// Build a Read-only Pipe type.
2325 /// \param T The type to which we'll be building a Pipe.
2327 /// \param Loc We do not use it for now.
2329 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2331 QualType
Sema::BuildReadPipeType(QualType T
, SourceLocation Loc
) {
2332 return Context
.getReadPipeType(T
);
2335 /// Build a Write-only Pipe type.
2337 /// \param T The type to which we'll be building a Pipe.
2339 /// \param Loc We do not use it for now.
2341 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2343 QualType
Sema::BuildWritePipeType(QualType T
, SourceLocation Loc
) {
2344 return Context
.getWritePipeType(T
);
2347 /// Build a bit-precise integer type.
2349 /// \param IsUnsigned Boolean representing the signedness of the type.
2351 /// \param BitWidth Size of this int type in bits, or an expression representing
2354 /// \param Loc Location of the keyword.
2355 QualType
Sema::BuildBitIntType(bool IsUnsigned
, Expr
*BitWidth
,
2356 SourceLocation Loc
) {
2357 if (BitWidth
->isInstantiationDependent())
2358 return Context
.getDependentBitIntType(IsUnsigned
, BitWidth
);
2360 llvm::APSInt
Bits(32);
2362 VerifyIntegerConstantExpression(BitWidth
, &Bits
, /*FIXME*/ AllowFold
);
2364 if (ICE
.isInvalid())
2367 size_t NumBits
= Bits
.getZExtValue();
2368 if (!IsUnsigned
&& NumBits
< 2) {
2369 Diag(Loc
, diag::err_bit_int_bad_size
) << 0;
2373 if (IsUnsigned
&& NumBits
< 1) {
2374 Diag(Loc
, diag::err_bit_int_bad_size
) << 1;
2378 const TargetInfo
&TI
= getASTContext().getTargetInfo();
2379 if (NumBits
> TI
.getMaxBitIntWidth()) {
2380 Diag(Loc
, diag::err_bit_int_max_size
)
2381 << IsUnsigned
<< static_cast<uint64_t>(TI
.getMaxBitIntWidth());
2385 return Context
.getBitIntType(IsUnsigned
, NumBits
);
2388 /// Check whether the specified array bound can be evaluated using the relevant
2389 /// language rules. If so, returns the possibly-converted expression and sets
2390 /// SizeVal to the size. If not, but the expression might be a VLA bound,
2391 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
2393 static ExprResult
checkArraySize(Sema
&S
, Expr
*&ArraySize
,
2394 llvm::APSInt
&SizeVal
, unsigned VLADiag
,
2396 if (S
.getLangOpts().CPlusPlus14
&&
2398 !ArraySize
->getType()->isIntegralOrUnscopedEnumerationType())) {
2399 // C++14 [dcl.array]p1:
2400 // The constant-expression shall be a converted constant expression of
2401 // type std::size_t.
2403 // Don't apply this rule if we might be forming a VLA: in that case, we
2404 // allow non-constant expressions and constant-folding. We only need to use
2405 // the converted constant expression rules (to properly convert the source)
2406 // when the source expression is of class type.
2407 return S
.CheckConvertedConstantExpression(
2408 ArraySize
, S
.Context
.getSizeType(), SizeVal
, Sema::CCEK_ArrayBound
);
2411 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2412 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2413 class VLADiagnoser
: public Sema::VerifyICEDiagnoser
{
2419 VLADiagnoser(unsigned VLADiag
, bool VLAIsError
)
2420 : VLADiag(VLADiag
), VLAIsError(VLAIsError
) {}
2422 Sema::SemaDiagnosticBuilder
diagnoseNotICEType(Sema
&S
, SourceLocation Loc
,
2423 QualType T
) override
{
2424 return S
.Diag(Loc
, diag::err_array_size_non_int
) << T
;
2427 Sema::SemaDiagnosticBuilder
diagnoseNotICE(Sema
&S
,
2428 SourceLocation Loc
) override
{
2429 IsVLA
= !VLAIsError
;
2430 return S
.Diag(Loc
, VLADiag
);
2433 Sema::SemaDiagnosticBuilder
diagnoseFold(Sema
&S
,
2434 SourceLocation Loc
) override
{
2435 return S
.Diag(Loc
, diag::ext_vla_folded_to_constant
);
2437 } Diagnoser(VLADiag
, VLAIsError
);
2440 S
.VerifyIntegerConstantExpression(ArraySize
, &SizeVal
, Diagnoser
);
2441 if (Diagnoser
.IsVLA
)
2442 return ExprResult();
2446 bool Sema::checkArrayElementAlignment(QualType EltTy
, SourceLocation Loc
) {
2447 EltTy
= Context
.getBaseElementType(EltTy
);
2448 if (EltTy
->isIncompleteType() || EltTy
->isDependentType() ||
2449 EltTy
->isUndeducedType())
2452 CharUnits Size
= Context
.getTypeSizeInChars(EltTy
);
2453 CharUnits Alignment
= Context
.getTypeAlignInChars(EltTy
);
2455 if (Size
.isMultipleOf(Alignment
))
2458 Diag(Loc
, diag::err_array_element_alignment
)
2459 << EltTy
<< Size
.getQuantity() << Alignment
.getQuantity();
2463 /// Build an array type.
2465 /// \param T The type of each element in the array.
2467 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2469 /// \param ArraySize Expression describing the size of the array.
2471 /// \param Brackets The range from the opening '[' to the closing ']'.
2473 /// \param Entity The name of the entity that involves the array
2476 /// \returns A suitable array type, if there are no errors. Otherwise,
2477 /// returns a NULL type.
2478 QualType
Sema::BuildArrayType(QualType T
, ArraySizeModifier ASM
,
2479 Expr
*ArraySize
, unsigned Quals
,
2480 SourceRange Brackets
, DeclarationName Entity
) {
2482 SourceLocation Loc
= Brackets
.getBegin();
2483 if (getLangOpts().CPlusPlus
) {
2484 // C++ [dcl.array]p1:
2485 // T is called the array element type; this type shall not be a reference
2486 // type, the (possibly cv-qualified) type void, a function type or an
2487 // abstract class type.
2489 // C++ [dcl.array]p3:
2490 // When several "array of" specifications are adjacent, [...] only the
2491 // first of the constant expressions that specify the bounds of the arrays
2494 // Note: function types are handled in the common path with C.
2495 if (T
->isReferenceType()) {
2496 Diag(Loc
, diag::err_illegal_decl_array_of_references
)
2497 << getPrintableNameForEntity(Entity
) << T
;
2501 if (T
->isVoidType() || T
->isIncompleteArrayType()) {
2502 Diag(Loc
, diag::err_array_incomplete_or_sizeless_type
) << 0 << T
;
2506 if (RequireNonAbstractType(Brackets
.getBegin(), T
,
2507 diag::err_array_of_abstract_type
))
2510 // Mentioning a member pointer type for an array type causes us to lock in
2511 // an inheritance model, even if it's inside an unused typedef.
2512 if (Context
.getTargetInfo().getCXXABI().isMicrosoft())
2513 if (const MemberPointerType
*MPTy
= T
->getAs
<MemberPointerType
>())
2514 if (!MPTy
->getClass()->isDependentType())
2515 (void)isCompleteType(Loc
, T
);
2518 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2519 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2520 if (!T
.isWebAssemblyReferenceType() &&
2521 RequireCompleteSizedType(Loc
, T
,
2522 diag::err_array_incomplete_or_sizeless_type
))
2526 // Multi-dimensional arrays of WebAssembly references are not allowed.
2527 if (Context
.getTargetInfo().getTriple().isWasm() && T
->isArrayType()) {
2528 const auto *ATy
= dyn_cast
<ArrayType
>(T
);
2529 if (ATy
&& ATy
->getElementType().isWebAssemblyReferenceType()) {
2530 Diag(Loc
, diag::err_wasm_reftype_multidimensional_array
);
2535 if (T
->isSizelessType() && !T
.isWebAssemblyReferenceType()) {
2536 Diag(Loc
, diag::err_array_incomplete_or_sizeless_type
) << 1 << T
;
2540 if (T
->isFunctionType()) {
2541 Diag(Loc
, diag::err_illegal_decl_array_of_functions
)
2542 << getPrintableNameForEntity(Entity
) << T
;
2546 if (const RecordType
*EltTy
= T
->getAs
<RecordType
>()) {
2547 // If the element type is a struct or union that contains a variadic
2548 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2549 if (EltTy
->getDecl()->hasFlexibleArrayMember())
2550 Diag(Loc
, diag::ext_flexible_array_in_array
) << T
;
2551 } else if (T
->isObjCObjectType()) {
2552 Diag(Loc
, diag::err_objc_array_of_interfaces
) << T
;
2556 if (!checkArrayElementAlignment(T
, Loc
))
2559 // Do placeholder conversions on the array size expression.
2560 if (ArraySize
&& ArraySize
->hasPlaceholderType()) {
2561 ExprResult Result
= CheckPlaceholderExpr(ArraySize
);
2562 if (Result
.isInvalid()) return QualType();
2563 ArraySize
= Result
.get();
2566 // Do lvalue-to-rvalue conversions on the array size expression.
2567 if (ArraySize
&& !ArraySize
->isPRValue()) {
2568 ExprResult Result
= DefaultLvalueConversion(ArraySize
);
2569 if (Result
.isInvalid())
2572 ArraySize
= Result
.get();
2575 // C99 6.7.5.2p1: The size expression shall have integer type.
2576 // C++11 allows contextual conversions to such types.
2577 if (!getLangOpts().CPlusPlus11
&&
2578 ArraySize
&& !ArraySize
->isTypeDependent() &&
2579 !ArraySize
->getType()->isIntegralOrUnscopedEnumerationType()) {
2580 Diag(ArraySize
->getBeginLoc(), diag::err_array_size_non_int
)
2581 << ArraySize
->getType() << ArraySize
->getSourceRange();
2585 auto IsStaticAssertLike
= [](const Expr
*ArraySize
, ASTContext
&Context
) {
2589 // If the array size expression is a conditional expression whose branches
2590 // are both integer constant expressions, one negative and one positive,
2591 // then it's assumed to be like an old-style static assertion. e.g.,
2592 // int old_style_assert[expr ? 1 : -1];
2593 // We will accept any integer constant expressions instead of assuming the
2594 // values 1 and -1 are always used.
2595 if (const auto *CondExpr
= dyn_cast_if_present
<ConditionalOperator
>(
2596 ArraySize
->IgnoreParenImpCasts())) {
2597 std::optional
<llvm::APSInt
> LHS
=
2598 CondExpr
->getLHS()->getIntegerConstantExpr(Context
);
2599 std::optional
<llvm::APSInt
> RHS
=
2600 CondExpr
->getRHS()->getIntegerConstantExpr(Context
);
2601 return LHS
&& RHS
&& LHS
->isNegative() != RHS
->isNegative();
2606 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2609 if (getLangOpts().OpenCL
) {
2610 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2611 VLADiag
= diag::err_opencl_vla
;
2613 } else if (getLangOpts().C99
) {
2614 VLADiag
= diag::warn_vla_used
;
2616 } else if (isSFINAEContext()) {
2617 VLADiag
= diag::err_vla_in_sfinae
;
2619 } else if (getLangOpts().OpenMP
&& isInOpenMPTaskUntiedContext()) {
2620 VLADiag
= diag::err_openmp_vla_in_task_untied
;
2622 } else if (getLangOpts().CPlusPlus
) {
2623 if (getLangOpts().CPlusPlus11
&& IsStaticAssertLike(ArraySize
, Context
))
2624 VLADiag
= getLangOpts().GNUMode
2625 ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2626 : diag::ext_vla_cxx_static_assert
;
2628 VLADiag
= getLangOpts().GNUMode
? diag::ext_vla_cxx_in_gnu_mode
2629 : diag::ext_vla_cxx
;
2632 VLADiag
= diag::ext_vla
;
2636 llvm::APSInt
ConstVal(Context
.getTypeSize(Context
.getSizeType()));
2638 if (ASM
== ArraySizeModifier::Star
) {
2643 T
= Context
.getVariableArrayType(T
, nullptr, ASM
, Quals
, Brackets
);
2645 T
= Context
.getIncompleteArrayType(T
, ASM
, Quals
);
2647 } else if (ArraySize
->isTypeDependent() || ArraySize
->isValueDependent()) {
2648 T
= Context
.getDependentSizedArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2651 checkArraySize(*this, ArraySize
, ConstVal
, VLADiag
, VLAIsError
);
2655 if (!R
.isUsable()) {
2656 // C99: an array with a non-ICE size is a VLA. We accept any expression
2657 // that we can fold to a non-zero positive value as a non-VLA as an
2659 T
= Context
.getVariableArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2660 } else if (!T
->isDependentType() && !T
->isIncompleteType() &&
2661 !T
->isConstantSizeType()) {
2662 // C99: an array with an element type that has a non-constant-size is a
2664 // FIXME: Add a note to explain why this isn't a VLA.
2668 T
= Context
.getVariableArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2670 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2671 // have a value greater than zero.
2672 // In C++, this follows from narrowing conversions being disallowed.
2673 if (ConstVal
.isSigned() && ConstVal
.isNegative()) {
2675 Diag(ArraySize
->getBeginLoc(), diag::err_decl_negative_array_size
)
2676 << getPrintableNameForEntity(Entity
)
2677 << ArraySize
->getSourceRange();
2679 Diag(ArraySize
->getBeginLoc(),
2680 diag::err_typecheck_negative_array_size
)
2681 << ArraySize
->getSourceRange();
2684 if (ConstVal
== 0 && !T
.isWebAssemblyReferenceType()) {
2685 // GCC accepts zero sized static arrays. We allow them when
2686 // we're not in a SFINAE context.
2687 Diag(ArraySize
->getBeginLoc(),
2688 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2689 : diag::ext_typecheck_zero_array_size
)
2690 << 0 << ArraySize
->getSourceRange();
2693 // Is the array too large?
2694 unsigned ActiveSizeBits
=
2695 (!T
->isDependentType() && !T
->isVariablyModifiedType() &&
2696 !T
->isIncompleteType() && !T
->isUndeducedType())
2697 ? ConstantArrayType::getNumAddressingBits(Context
, T
, ConstVal
)
2698 : ConstVal
.getActiveBits();
2699 if (ActiveSizeBits
> ConstantArrayType::getMaxSizeBits(Context
)) {
2700 Diag(ArraySize
->getBeginLoc(), diag::err_array_too_large
)
2701 << toString(ConstVal
, 10) << ArraySize
->getSourceRange();
2705 T
= Context
.getConstantArrayType(T
, ConstVal
, ArraySize
, ASM
, Quals
);
2709 if (T
->isVariableArrayType()) {
2710 if (!Context
.getTargetInfo().isVLASupported()) {
2711 // CUDA device code and some other targets don't support VLAs.
2712 bool IsCUDADevice
= (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
);
2714 IsCUDADevice
? diag::err_cuda_vla
: diag::err_vla_unsupported
)
2715 << (IsCUDADevice
? CurrentCUDATarget() : 0);
2716 } else if (sema::FunctionScopeInfo
*FSI
= getCurFunction()) {
2717 // VLAs are supported on this target, but we may need to do delayed
2718 // checking that the VLA is not being used within a coroutine.
2719 FSI
->setHasVLA(Loc
);
2723 // If this is not C99, diagnose array size modifiers on non-VLAs.
2724 if (!getLangOpts().C99
&& !T
->isVariableArrayType() &&
2725 (ASM
!= ArraySizeModifier::Normal
|| Quals
!= 0)) {
2726 Diag(Loc
, getLangOpts().CPlusPlus
? diag::err_c99_array_usage_cxx
2727 : diag::ext_c99_array_usage
)
2728 << llvm::to_underlying(ASM
);
2731 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2732 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2733 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2734 if (getLangOpts().OpenCL
) {
2735 const QualType ArrType
= Context
.getBaseElementType(T
);
2736 if (ArrType
->isBlockPointerType() || ArrType
->isPipeType() ||
2737 ArrType
->isSamplerT() || ArrType
->isImageType()) {
2738 Diag(Loc
, diag::err_opencl_invalid_type_array
) << ArrType
;
2746 QualType
Sema::BuildVectorType(QualType CurType
, Expr
*SizeExpr
,
2747 SourceLocation AttrLoc
) {
2748 // The base type must be integer (not Boolean or enumeration) or float, and
2749 // can't already be a vector.
2750 if ((!CurType
->isDependentType() &&
2751 (!CurType
->isBuiltinType() || CurType
->isBooleanType() ||
2752 (!CurType
->isIntegerType() && !CurType
->isRealFloatingType())) &&
2753 !CurType
->isBitIntType()) ||
2754 CurType
->isArrayType()) {
2755 Diag(AttrLoc
, diag::err_attribute_invalid_vector_type
) << CurType
;
2758 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2759 if (const auto *BIT
= CurType
->getAs
<BitIntType
>()) {
2760 unsigned NumBits
= BIT
->getNumBits();
2761 if (!llvm::isPowerOf2_32(NumBits
) || NumBits
< 8) {
2762 Diag(AttrLoc
, diag::err_attribute_invalid_bitint_vector_type
)
2768 if (SizeExpr
->isTypeDependent() || SizeExpr
->isValueDependent())
2769 return Context
.getDependentVectorType(CurType
, SizeExpr
, AttrLoc
,
2770 VectorKind::Generic
);
2772 std::optional
<llvm::APSInt
> VecSize
=
2773 SizeExpr
->getIntegerConstantExpr(Context
);
2775 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2776 << "vector_size" << AANT_ArgumentIntegerConstant
2777 << SizeExpr
->getSourceRange();
2781 if (CurType
->isDependentType())
2782 return Context
.getDependentVectorType(CurType
, SizeExpr
, AttrLoc
,
2783 VectorKind::Generic
);
2785 // vecSize is specified in bytes - convert to bits.
2786 if (!VecSize
->isIntN(61)) {
2787 // Bit size will overflow uint64.
2788 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2789 << SizeExpr
->getSourceRange() << "vector";
2792 uint64_t VectorSizeBits
= VecSize
->getZExtValue() * 8;
2793 unsigned TypeSize
= static_cast<unsigned>(Context
.getTypeSize(CurType
));
2795 if (VectorSizeBits
== 0) {
2796 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2797 << SizeExpr
->getSourceRange() << "vector";
2801 if (!TypeSize
|| VectorSizeBits
% TypeSize
) {
2802 Diag(AttrLoc
, diag::err_attribute_invalid_size
)
2803 << SizeExpr
->getSourceRange();
2807 if (VectorSizeBits
/ TypeSize
> std::numeric_limits
<uint32_t>::max()) {
2808 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2809 << SizeExpr
->getSourceRange() << "vector";
2813 return Context
.getVectorType(CurType
, VectorSizeBits
/ TypeSize
,
2814 VectorKind::Generic
);
2817 /// Build an ext-vector type.
2819 /// Run the required checks for the extended vector type.
2820 QualType
Sema::BuildExtVectorType(QualType T
, Expr
*ArraySize
,
2821 SourceLocation AttrLoc
) {
2822 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2823 // in conjunction with complex types (pointers, arrays, functions, etc.).
2825 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2826 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2827 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2828 // of bool aren't allowed.
2830 // We explictly allow bool elements in ext_vector_type for C/C++.
2831 bool IsNoBoolVecLang
= getLangOpts().OpenCL
|| getLangOpts().OpenCLCPlusPlus
;
2832 if ((!T
->isDependentType() && !T
->isIntegerType() &&
2833 !T
->isRealFloatingType()) ||
2834 (IsNoBoolVecLang
&& T
->isBooleanType())) {
2835 Diag(AttrLoc
, diag::err_attribute_invalid_vector_type
) << T
;
2839 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2840 if (T
->isBitIntType()) {
2841 unsigned NumBits
= T
->castAs
<BitIntType
>()->getNumBits();
2842 if (!llvm::isPowerOf2_32(NumBits
) || NumBits
< 8) {
2843 Diag(AttrLoc
, diag::err_attribute_invalid_bitint_vector_type
)
2849 if (!ArraySize
->isTypeDependent() && !ArraySize
->isValueDependent()) {
2850 std::optional
<llvm::APSInt
> vecSize
=
2851 ArraySize
->getIntegerConstantExpr(Context
);
2853 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2854 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2855 << ArraySize
->getSourceRange();
2859 if (!vecSize
->isIntN(32)) {
2860 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2861 << ArraySize
->getSourceRange() << "vector";
2864 // Unlike gcc's vector_size attribute, the size is specified as the
2865 // number of elements, not the number of bytes.
2866 unsigned vectorSize
= static_cast<unsigned>(vecSize
->getZExtValue());
2868 if (vectorSize
== 0) {
2869 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2870 << ArraySize
->getSourceRange() << "vector";
2874 return Context
.getExtVectorType(T
, vectorSize
);
2877 return Context
.getDependentSizedExtVectorType(T
, ArraySize
, AttrLoc
);
2880 QualType
Sema::BuildMatrixType(QualType ElementTy
, Expr
*NumRows
, Expr
*NumCols
,
2881 SourceLocation AttrLoc
) {
2882 assert(Context
.getLangOpts().MatrixTypes
&&
2883 "Should never build a matrix type when it is disabled");
2885 // Check element type, if it is not dependent.
2886 if (!ElementTy
->isDependentType() &&
2887 !MatrixType::isValidElementType(ElementTy
)) {
2888 Diag(AttrLoc
, diag::err_attribute_invalid_matrix_type
) << ElementTy
;
2892 if (NumRows
->isTypeDependent() || NumCols
->isTypeDependent() ||
2893 NumRows
->isValueDependent() || NumCols
->isValueDependent())
2894 return Context
.getDependentSizedMatrixType(ElementTy
, NumRows
, NumCols
,
2897 std::optional
<llvm::APSInt
> ValueRows
=
2898 NumRows
->getIntegerConstantExpr(Context
);
2899 std::optional
<llvm::APSInt
> ValueColumns
=
2900 NumCols
->getIntegerConstantExpr(Context
);
2902 auto const RowRange
= NumRows
->getSourceRange();
2903 auto const ColRange
= NumCols
->getSourceRange();
2905 // Both are row and column expressions are invalid.
2906 if (!ValueRows
&& !ValueColumns
) {
2907 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2908 << "matrix_type" << AANT_ArgumentIntegerConstant
<< RowRange
2913 // Only the row expression is invalid.
2915 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2916 << "matrix_type" << AANT_ArgumentIntegerConstant
<< RowRange
;
2920 // Only the column expression is invalid.
2921 if (!ValueColumns
) {
2922 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2923 << "matrix_type" << AANT_ArgumentIntegerConstant
<< ColRange
;
2927 // Check the matrix dimensions.
2928 unsigned MatrixRows
= static_cast<unsigned>(ValueRows
->getZExtValue());
2929 unsigned MatrixColumns
= static_cast<unsigned>(ValueColumns
->getZExtValue());
2930 if (MatrixRows
== 0 && MatrixColumns
== 0) {
2931 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2932 << "matrix" << RowRange
<< ColRange
;
2935 if (MatrixRows
== 0) {
2936 Diag(AttrLoc
, diag::err_attribute_zero_size
) << "matrix" << RowRange
;
2939 if (MatrixColumns
== 0) {
2940 Diag(AttrLoc
, diag::err_attribute_zero_size
) << "matrix" << ColRange
;
2943 if (!ConstantMatrixType::isDimensionValid(MatrixRows
)) {
2944 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2945 << RowRange
<< "matrix row";
2948 if (!ConstantMatrixType::isDimensionValid(MatrixColumns
)) {
2949 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2950 << ColRange
<< "matrix column";
2953 return Context
.getConstantMatrixType(ElementTy
, MatrixRows
, MatrixColumns
);
2956 bool Sema::CheckFunctionReturnType(QualType T
, SourceLocation Loc
) {
2957 if (T
->isArrayType() || T
->isFunctionType()) {
2958 Diag(Loc
, diag::err_func_returning_array_function
)
2959 << T
->isFunctionType() << T
;
2963 // Functions cannot return half FP.
2964 if (T
->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns
&&
2965 !Context
.getTargetInfo().allowHalfArgsAndReturns()) {
2966 Diag(Loc
, diag::err_parameters_retval_cannot_have_fp16_type
) << 1 <<
2967 FixItHint::CreateInsertion(Loc
, "*");
2971 // Methods cannot return interface types. All ObjC objects are
2972 // passed by reference.
2973 if (T
->isObjCObjectType()) {
2974 Diag(Loc
, diag::err_object_cannot_be_passed_returned_by_value
)
2975 << 0 << T
<< FixItHint::CreateInsertion(Loc
, "*");
2979 if (T
.hasNonTrivialToPrimitiveDestructCUnion() ||
2980 T
.hasNonTrivialToPrimitiveCopyCUnion())
2981 checkNonTrivialCUnion(T
, Loc
, NTCUC_FunctionReturn
,
2982 NTCUK_Destruct
|NTCUK_Copy
);
2984 // C++2a [dcl.fct]p12:
2985 // A volatile-qualified return type is deprecated
2986 if (T
.isVolatileQualified() && getLangOpts().CPlusPlus20
)
2987 Diag(Loc
, diag::warn_deprecated_volatile_return
) << T
;
2989 if (T
.getAddressSpace() != LangAS::Default
&& getLangOpts().HLSL
)
2994 /// Check the extended parameter information. Most of the necessary
2995 /// checking should occur when applying the parameter attribute; the
2996 /// only other checks required are positional restrictions.
2997 static void checkExtParameterInfos(Sema
&S
, ArrayRef
<QualType
> paramTypes
,
2998 const FunctionProtoType::ExtProtoInfo
&EPI
,
2999 llvm::function_ref
<SourceLocation(unsigned)> getParamLoc
) {
3000 assert(EPI
.ExtParameterInfos
&& "shouldn't get here without param infos");
3002 bool emittedError
= false;
3003 auto actualCC
= EPI
.ExtInfo
.getCC();
3004 enum class RequiredCC
{ OnlySwift
, SwiftOrSwiftAsync
};
3005 auto checkCompatible
= [&](unsigned paramIndex
, RequiredCC required
) {
3007 (required
== RequiredCC::OnlySwift
)
3008 ? (actualCC
== CC_Swift
)
3009 : (actualCC
== CC_Swift
|| actualCC
== CC_SwiftAsync
);
3010 if (isCompatible
|| emittedError
)
3012 S
.Diag(getParamLoc(paramIndex
), diag::err_swift_param_attr_not_swiftcall
)
3013 << getParameterABISpelling(EPI
.ExtParameterInfos
[paramIndex
].getABI())
3014 << (required
== RequiredCC::OnlySwift
);
3015 emittedError
= true;
3017 for (size_t paramIndex
= 0, numParams
= paramTypes
.size();
3018 paramIndex
!= numParams
; ++paramIndex
) {
3019 switch (EPI
.ExtParameterInfos
[paramIndex
].getABI()) {
3020 // Nothing interesting to check for orindary-ABI parameters.
3021 case ParameterABI::Ordinary
:
3024 // swift_indirect_result parameters must be a prefix of the function
3026 case ParameterABI::SwiftIndirectResult
:
3027 checkCompatible(paramIndex
, RequiredCC::SwiftOrSwiftAsync
);
3028 if (paramIndex
!= 0 &&
3029 EPI
.ExtParameterInfos
[paramIndex
- 1].getABI()
3030 != ParameterABI::SwiftIndirectResult
) {
3031 S
.Diag(getParamLoc(paramIndex
),
3032 diag::err_swift_indirect_result_not_first
);
3036 case ParameterABI::SwiftContext
:
3037 checkCompatible(paramIndex
, RequiredCC::SwiftOrSwiftAsync
);
3040 // SwiftAsyncContext is not limited to swiftasynccall functions.
3041 case ParameterABI::SwiftAsyncContext
:
3044 // swift_error parameters must be preceded by a swift_context parameter.
3045 case ParameterABI::SwiftErrorResult
:
3046 checkCompatible(paramIndex
, RequiredCC::OnlySwift
);
3047 if (paramIndex
== 0 ||
3048 EPI
.ExtParameterInfos
[paramIndex
- 1].getABI() !=
3049 ParameterABI::SwiftContext
) {
3050 S
.Diag(getParamLoc(paramIndex
),
3051 diag::err_swift_error_result_not_after_swift_context
);
3055 llvm_unreachable("bad ABI kind");
3059 QualType
Sema::BuildFunctionType(QualType T
,
3060 MutableArrayRef
<QualType
> ParamTypes
,
3061 SourceLocation Loc
, DeclarationName Entity
,
3062 const FunctionProtoType::ExtProtoInfo
&EPI
) {
3063 bool Invalid
= false;
3065 Invalid
|= CheckFunctionReturnType(T
, Loc
);
3067 for (unsigned Idx
= 0, Cnt
= ParamTypes
.size(); Idx
< Cnt
; ++Idx
) {
3068 // FIXME: Loc is too inprecise here, should use proper locations for args.
3069 QualType ParamType
= Context
.getAdjustedParameterType(ParamTypes
[Idx
]);
3070 if (ParamType
->isVoidType()) {
3071 Diag(Loc
, diag::err_param_with_void_type
);
3073 } else if (ParamType
->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns
&&
3074 !Context
.getTargetInfo().allowHalfArgsAndReturns()) {
3075 // Disallow half FP arguments.
3076 Diag(Loc
, diag::err_parameters_retval_cannot_have_fp16_type
) << 0 <<
3077 FixItHint::CreateInsertion(Loc
, "*");
3079 } else if (ParamType
->isWebAssemblyTableType()) {
3080 Diag(Loc
, diag::err_wasm_table_as_function_parameter
);
3084 // C++2a [dcl.fct]p4:
3085 // A parameter with volatile-qualified type is deprecated
3086 if (ParamType
.isVolatileQualified() && getLangOpts().CPlusPlus20
)
3087 Diag(Loc
, diag::warn_deprecated_volatile_param
) << ParamType
;
3089 ParamTypes
[Idx
] = ParamType
;
3092 if (EPI
.ExtParameterInfos
) {
3093 checkExtParameterInfos(*this, ParamTypes
, EPI
,
3094 [=](unsigned i
) { return Loc
; });
3097 if (EPI
.ExtInfo
.getProducesResult()) {
3098 // This is just a warning, so we can't fail to build if we see it.
3099 checkNSReturnsRetainedReturnType(Loc
, T
);
3105 return Context
.getFunctionType(T
, ParamTypes
, EPI
);
3108 /// Build a member pointer type \c T Class::*.
3110 /// \param T the type to which the member pointer refers.
3111 /// \param Class the class type into which the member pointer points.
3112 /// \param Loc the location where this type begins
3113 /// \param Entity the name of the entity that will have this member pointer type
3115 /// \returns a member pointer type, if successful, or a NULL type if there was
3117 QualType
Sema::BuildMemberPointerType(QualType T
, QualType Class
,
3119 DeclarationName Entity
) {
3120 // Verify that we're not building a pointer to pointer to function with
3121 // exception specification.
3122 if (CheckDistantExceptionSpec(T
)) {
3123 Diag(Loc
, diag::err_distant_exception_spec
);
3127 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
3128 // with reference type, or "cv void."
3129 if (T
->isReferenceType()) {
3130 Diag(Loc
, diag::err_illegal_decl_mempointer_to_reference
)
3131 << getPrintableNameForEntity(Entity
) << T
;
3135 if (T
->isVoidType()) {
3136 Diag(Loc
, diag::err_illegal_decl_mempointer_to_void
)
3137 << getPrintableNameForEntity(Entity
);
3141 if (!Class
->isDependentType() && !Class
->isRecordType()) {
3142 Diag(Loc
, diag::err_mempointer_in_nonclass_type
) << Class
;
3146 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
3147 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
3149 Diag(Loc
, diag::err_opencl_function_pointer
) << /*pointer*/ 0;
3153 if (getLangOpts().HLSL
&& Loc
.isValid()) {
3154 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 0;
3158 // Adjust the default free function calling convention to the default method
3159 // calling convention.
3161 (Entity
.getNameKind() == DeclarationName::CXXConstructorName
) ||
3162 (Entity
.getNameKind() == DeclarationName::CXXDestructorName
);
3163 if (T
->isFunctionType())
3164 adjustMemberFunctionCC(T
, /*HasThisPointer=*/true, IsCtorOrDtor
, Loc
);
3166 return Context
.getMemberPointerType(T
, Class
.getTypePtr());
3169 /// Build a block pointer type.
3171 /// \param T The type to which we'll be building a block pointer.
3173 /// \param Loc The source location, used for diagnostics.
3175 /// \param Entity The name of the entity that involves the block pointer
3178 /// \returns A suitable block pointer type, if there are no
3179 /// errors. Otherwise, returns a NULL type.
3180 QualType
Sema::BuildBlockPointerType(QualType T
,
3182 DeclarationName Entity
) {
3183 if (!T
->isFunctionType()) {
3184 Diag(Loc
, diag::err_nonfunction_block_type
);
3188 if (checkQualifiedFunction(*this, T
, Loc
, QFK_BlockPointer
))
3191 if (getLangOpts().OpenCL
)
3192 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
3194 return Context
.getBlockPointerType(T
);
3197 QualType
Sema::GetTypeFromParser(ParsedType Ty
, TypeSourceInfo
**TInfo
) {
3198 QualType QT
= Ty
.get();
3200 if (TInfo
) *TInfo
= nullptr;
3204 TypeSourceInfo
*DI
= nullptr;
3205 if (const LocInfoType
*LIT
= dyn_cast
<LocInfoType
>(QT
)) {
3206 QT
= LIT
->getType();
3207 DI
= LIT
->getTypeSourceInfo();
3210 if (TInfo
) *TInfo
= DI
;
3214 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState
&state
,
3215 Qualifiers::ObjCLifetime ownership
,
3216 unsigned chunkIndex
);
3218 /// Given that this is the declaration of a parameter under ARC,
3219 /// attempt to infer attributes and such for pointer-to-whatever
3221 static void inferARCWriteback(TypeProcessingState
&state
,
3222 QualType
&declSpecType
) {
3223 Sema
&S
= state
.getSema();
3224 Declarator
&declarator
= state
.getDeclarator();
3226 // TODO: should we care about decl qualifiers?
3228 // Check whether the declarator has the expected form. We walk
3229 // from the inside out in order to make the block logic work.
3230 unsigned outermostPointerIndex
= 0;
3231 bool isBlockPointer
= false;
3232 unsigned numPointers
= 0;
3233 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
3234 unsigned chunkIndex
= i
;
3235 DeclaratorChunk
&chunk
= declarator
.getTypeObject(chunkIndex
);
3236 switch (chunk
.Kind
) {
3237 case DeclaratorChunk::Paren
:
3241 case DeclaratorChunk::Reference
:
3242 case DeclaratorChunk::Pointer
:
3243 // Count the number of pointers. Treat references
3244 // interchangeably as pointers; if they're mis-ordered, normal
3245 // type building will discover that.
3246 outermostPointerIndex
= chunkIndex
;
3250 case DeclaratorChunk::BlockPointer
:
3251 // If we have a pointer to block pointer, that's an acceptable
3252 // indirect reference; anything else is not an application of
3254 if (numPointers
!= 1) return;
3256 outermostPointerIndex
= chunkIndex
;
3257 isBlockPointer
= true;
3259 // We don't care about pointer structure in return values here.
3262 case DeclaratorChunk::Array
: // suppress if written (id[])?
3263 case DeclaratorChunk::Function
:
3264 case DeclaratorChunk::MemberPointer
:
3265 case DeclaratorChunk::Pipe
:
3271 // If we have *one* pointer, then we want to throw the qualifier on
3272 // the declaration-specifiers, which means that it needs to be a
3273 // retainable object type.
3274 if (numPointers
== 1) {
3275 // If it's not a retainable object type, the rule doesn't apply.
3276 if (!declSpecType
->isObjCRetainableType()) return;
3278 // If it already has lifetime, don't do anything.
3279 if (declSpecType
.getObjCLifetime()) return;
3281 // Otherwise, modify the type in-place.
3284 if (declSpecType
->isObjCARCImplicitlyUnretainedType())
3285 qs
.addObjCLifetime(Qualifiers::OCL_ExplicitNone
);
3287 qs
.addObjCLifetime(Qualifiers::OCL_Autoreleasing
);
3288 declSpecType
= S
.Context
.getQualifiedType(declSpecType
, qs
);
3290 // If we have *two* pointers, then we want to throw the qualifier on
3291 // the outermost pointer.
3292 } else if (numPointers
== 2) {
3293 // If we don't have a block pointer, we need to check whether the
3294 // declaration-specifiers gave us something that will turn into a
3295 // retainable object pointer after we slap the first pointer on it.
3296 if (!isBlockPointer
&& !declSpecType
->isObjCObjectType())
3299 // Look for an explicit lifetime attribute there.
3300 DeclaratorChunk
&chunk
= declarator
.getTypeObject(outermostPointerIndex
);
3301 if (chunk
.Kind
!= DeclaratorChunk::Pointer
&&
3302 chunk
.Kind
!= DeclaratorChunk::BlockPointer
)
3304 for (const ParsedAttr
&AL
: chunk
.getAttrs())
3305 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
)
3308 transferARCOwnershipToDeclaratorChunk(state
, Qualifiers::OCL_Autoreleasing
,
3309 outermostPointerIndex
);
3311 // Any other number of pointers/references does not trigger the rule.
3314 // TODO: mark whether we did this inference?
3317 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID
, unsigned Quals
,
3318 SourceLocation FallbackLoc
,
3319 SourceLocation ConstQualLoc
,
3320 SourceLocation VolatileQualLoc
,
3321 SourceLocation RestrictQualLoc
,
3322 SourceLocation AtomicQualLoc
,
3323 SourceLocation UnalignedQualLoc
) {
3331 } const QualKinds
[5] = {
3332 { "const", DeclSpec::TQ_const
, ConstQualLoc
},
3333 { "volatile", DeclSpec::TQ_volatile
, VolatileQualLoc
},
3334 { "restrict", DeclSpec::TQ_restrict
, RestrictQualLoc
},
3335 { "__unaligned", DeclSpec::TQ_unaligned
, UnalignedQualLoc
},
3336 { "_Atomic", DeclSpec::TQ_atomic
, AtomicQualLoc
}
3339 SmallString
<32> QualStr
;
3340 unsigned NumQuals
= 0;
3342 FixItHint FixIts
[5];
3344 // Build a string naming the redundant qualifiers.
3345 for (auto &E
: QualKinds
) {
3346 if (Quals
& E
.Mask
) {
3347 if (!QualStr
.empty()) QualStr
+= ' ';
3350 // If we have a location for the qualifier, offer a fixit.
3351 SourceLocation QualLoc
= E
.Loc
;
3352 if (QualLoc
.isValid()) {
3353 FixIts
[NumQuals
] = FixItHint::CreateRemoval(QualLoc
);
3354 if (Loc
.isInvalid() ||
3355 getSourceManager().isBeforeInTranslationUnit(QualLoc
, Loc
))
3363 Diag(Loc
.isInvalid() ? FallbackLoc
: Loc
, DiagID
)
3364 << QualStr
<< NumQuals
<< FixIts
[0] << FixIts
[1] << FixIts
[2] << FixIts
[3];
3367 // Diagnose pointless type qualifiers on the return type of a function.
3368 static void diagnoseRedundantReturnTypeQualifiers(Sema
&S
, QualType RetTy
,
3370 unsigned FunctionChunkIndex
) {
3371 const DeclaratorChunk::FunctionTypeInfo
&FTI
=
3372 D
.getTypeObject(FunctionChunkIndex
).Fun
;
3373 if (FTI
.hasTrailingReturnType()) {
3374 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3375 RetTy
.getLocalCVRQualifiers(),
3376 FTI
.getTrailingReturnTypeLoc());
3380 for (unsigned OuterChunkIndex
= FunctionChunkIndex
+ 1,
3381 End
= D
.getNumTypeObjects();
3382 OuterChunkIndex
!= End
; ++OuterChunkIndex
) {
3383 DeclaratorChunk
&OuterChunk
= D
.getTypeObject(OuterChunkIndex
);
3384 switch (OuterChunk
.Kind
) {
3385 case DeclaratorChunk::Paren
:
3388 case DeclaratorChunk::Pointer
: {
3389 DeclaratorChunk::PointerTypeInfo
&PTI
= OuterChunk
.Ptr
;
3390 S
.diagnoseIgnoredQualifiers(
3391 diag::warn_qual_return_type
,
3395 PTI
.VolatileQualLoc
,
3396 PTI
.RestrictQualLoc
,
3398 PTI
.UnalignedQualLoc
);
3402 case DeclaratorChunk::Function
:
3403 case DeclaratorChunk::BlockPointer
:
3404 case DeclaratorChunk::Reference
:
3405 case DeclaratorChunk::Array
:
3406 case DeclaratorChunk::MemberPointer
:
3407 case DeclaratorChunk::Pipe
:
3408 // FIXME: We can't currently provide an accurate source location and a
3409 // fix-it hint for these.
3410 unsigned AtomicQual
= RetTy
->isAtomicType() ? DeclSpec::TQ_atomic
: 0;
3411 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3412 RetTy
.getCVRQualifiers() | AtomicQual
,
3413 D
.getIdentifierLoc());
3417 llvm_unreachable("unknown declarator chunk kind");
3420 // If the qualifiers come from a conversion function type, don't diagnose
3421 // them -- they're not necessarily redundant, since such a conversion
3422 // operator can be explicitly called as "x.operator const int()".
3423 if (D
.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId
)
3426 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3427 // which are present there.
3428 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3429 D
.getDeclSpec().getTypeQualifiers(),
3430 D
.getIdentifierLoc(),
3431 D
.getDeclSpec().getConstSpecLoc(),
3432 D
.getDeclSpec().getVolatileSpecLoc(),
3433 D
.getDeclSpec().getRestrictSpecLoc(),
3434 D
.getDeclSpec().getAtomicSpecLoc(),
3435 D
.getDeclSpec().getUnalignedSpecLoc());
3438 static std::pair
<QualType
, TypeSourceInfo
*>
3439 InventTemplateParameter(TypeProcessingState
&state
, QualType T
,
3440 TypeSourceInfo
*TrailingTSI
, AutoType
*Auto
,
3441 InventedTemplateParameterInfo
&Info
) {
3442 Sema
&S
= state
.getSema();
3443 Declarator
&D
= state
.getDeclarator();
3445 const unsigned TemplateParameterDepth
= Info
.AutoTemplateParameterDepth
;
3446 const unsigned AutoParameterPosition
= Info
.TemplateParams
.size();
3447 const bool IsParameterPack
= D
.hasEllipsis();
3449 // If auto is mentioned in a lambda parameter or abbreviated function
3450 // template context, convert it to a template parameter type.
3452 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3453 // template parameter type. Template parameters are temporarily added
3454 // to the TU until the associated TemplateDecl is created.
3455 TemplateTypeParmDecl
*InventedTemplateParam
=
3456 TemplateTypeParmDecl::Create(
3457 S
.Context
, S
.Context
.getTranslationUnitDecl(),
3458 /*KeyLoc=*/D
.getDeclSpec().getTypeSpecTypeLoc(),
3459 /*NameLoc=*/D
.getIdentifierLoc(),
3460 TemplateParameterDepth
, AutoParameterPosition
,
3461 S
.InventAbbreviatedTemplateParameterTypeName(
3462 D
.getIdentifier(), AutoParameterPosition
), false,
3463 IsParameterPack
, /*HasTypeConstraint=*/Auto
->isConstrained());
3464 InventedTemplateParam
->setImplicit();
3465 Info
.TemplateParams
.push_back(InventedTemplateParam
);
3467 // Attach type constraints to the new parameter.
3468 if (Auto
->isConstrained()) {
3470 // The 'auto' appears in a trailing return type we've already built;
3471 // extract its type constraints to attach to the template parameter.
3472 AutoTypeLoc AutoLoc
= TrailingTSI
->getTypeLoc().getContainedAutoTypeLoc();
3473 TemplateArgumentListInfo
TAL(AutoLoc
.getLAngleLoc(), AutoLoc
.getRAngleLoc());
3474 bool Invalid
= false;
3475 for (unsigned Idx
= 0; Idx
< AutoLoc
.getNumArgs(); ++Idx
) {
3476 if (D
.getEllipsisLoc().isInvalid() && !Invalid
&&
3477 S
.DiagnoseUnexpandedParameterPack(AutoLoc
.getArgLoc(Idx
),
3478 Sema::UPPC_TypeConstraint
))
3480 TAL
.addArgument(AutoLoc
.getArgLoc(Idx
));
3484 S
.AttachTypeConstraint(
3485 AutoLoc
.getNestedNameSpecifierLoc(), AutoLoc
.getConceptNameInfo(),
3486 AutoLoc
.getNamedConcept(),
3487 AutoLoc
.hasExplicitTemplateArgs() ? &TAL
: nullptr,
3488 InventedTemplateParam
, D
.getEllipsisLoc());
3491 // The 'auto' appears in the decl-specifiers; we've not finished forming
3492 // TypeSourceInfo for it yet.
3493 TemplateIdAnnotation
*TemplateId
= D
.getDeclSpec().getRepAsTemplateId();
3494 TemplateArgumentListInfo TemplateArgsInfo
;
3495 bool Invalid
= false;
3496 if (TemplateId
->LAngleLoc
.isValid()) {
3497 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
3498 TemplateId
->NumArgs
);
3499 S
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
3501 if (D
.getEllipsisLoc().isInvalid()) {
3502 for (TemplateArgumentLoc Arg
: TemplateArgsInfo
.arguments()) {
3503 if (S
.DiagnoseUnexpandedParameterPack(Arg
,
3504 Sema::UPPC_TypeConstraint
)) {
3512 S
.AttachTypeConstraint(
3513 D
.getDeclSpec().getTypeSpecScope().getWithLocInContext(S
.Context
),
3514 DeclarationNameInfo(DeclarationName(TemplateId
->Name
),
3515 TemplateId
->TemplateNameLoc
),
3516 cast
<ConceptDecl
>(TemplateId
->Template
.get().getAsTemplateDecl()),
3517 TemplateId
->LAngleLoc
.isValid() ? &TemplateArgsInfo
: nullptr,
3518 InventedTemplateParam
, D
.getEllipsisLoc());
3523 // Replace the 'auto' in the function parameter with this invented
3524 // template type parameter.
3525 // FIXME: Retain some type sugar to indicate that this was written
3527 QualType
Replacement(InventedTemplateParam
->getTypeForDecl(), 0);
3528 QualType NewT
= state
.ReplaceAutoType(T
, Replacement
);
3529 TypeSourceInfo
*NewTSI
=
3530 TrailingTSI
? S
.ReplaceAutoTypeSourceInfo(TrailingTSI
, Replacement
)
3532 return {NewT
, NewTSI
};
3535 static TypeSourceInfo
*
3536 GetTypeSourceInfoForDeclarator(TypeProcessingState
&State
,
3537 QualType T
, TypeSourceInfo
*ReturnTypeInfo
);
3539 static QualType
GetDeclSpecTypeForDeclarator(TypeProcessingState
&state
,
3540 TypeSourceInfo
*&ReturnTypeInfo
) {
3541 Sema
&SemaRef
= state
.getSema();
3542 Declarator
&D
= state
.getDeclarator();
3544 ReturnTypeInfo
= nullptr;
3546 // The TagDecl owned by the DeclSpec.
3547 TagDecl
*OwnedTagDecl
= nullptr;
3549 switch (D
.getName().getKind()) {
3550 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
3551 case UnqualifiedIdKind::IK_OperatorFunctionId
:
3552 case UnqualifiedIdKind::IK_Identifier
:
3553 case UnqualifiedIdKind::IK_LiteralOperatorId
:
3554 case UnqualifiedIdKind::IK_TemplateId
:
3555 T
= ConvertDeclSpecToType(state
);
3557 if (!D
.isInvalidType() && D
.getDeclSpec().isTypeSpecOwned()) {
3558 OwnedTagDecl
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
3559 // Owned declaration is embedded in declarator.
3560 OwnedTagDecl
->setEmbeddedInDeclarator(true);
3564 case UnqualifiedIdKind::IK_ConstructorName
:
3565 case UnqualifiedIdKind::IK_ConstructorTemplateId
:
3566 case UnqualifiedIdKind::IK_DestructorName
:
3567 // Constructors and destructors don't have return types. Use
3569 T
= SemaRef
.Context
.VoidTy
;
3570 processTypeAttrs(state
, T
, TAL_DeclSpec
,
3571 D
.getMutableDeclSpec().getAttributes());
3574 case UnqualifiedIdKind::IK_DeductionGuideName
:
3575 // Deduction guides have a trailing return type and no type in their
3576 // decl-specifier sequence. Use a placeholder return type for now.
3577 T
= SemaRef
.Context
.DependentTy
;
3580 case UnqualifiedIdKind::IK_ConversionFunctionId
:
3581 // The result type of a conversion function is the type that it
3583 T
= SemaRef
.GetTypeFromParser(D
.getName().ConversionFunctionId
,
3588 // Note: We don't need to distribute declaration attributes (i.e.
3589 // D.getDeclarationAttributes()) because those are always C++11 attributes,
3590 // and those don't get distributed.
3591 distributeTypeAttrsFromDeclarator(
3592 state
, T
, SemaRef
.IdentifyCUDATarget(D
.getAttributes()));
3594 // Find the deduced type in this type. Look in the trailing return type if we
3595 // have one, otherwise in the DeclSpec type.
3596 // FIXME: The standard wording doesn't currently describe this.
3597 DeducedType
*Deduced
= T
->getContainedDeducedType();
3598 bool DeducedIsTrailingReturnType
= false;
3599 if (Deduced
&& isa
<AutoType
>(Deduced
) && D
.hasTrailingReturnType()) {
3600 QualType T
= SemaRef
.GetTypeFromParser(D
.getTrailingReturnType());
3601 Deduced
= T
.isNull() ? nullptr : T
->getContainedDeducedType();
3602 DeducedIsTrailingReturnType
= true;
3605 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3607 AutoType
*Auto
= dyn_cast
<AutoType
>(Deduced
);
3610 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3611 // class template argument deduction)?
3612 bool IsCXXAutoType
=
3613 (Auto
&& Auto
->getKeyword() != AutoTypeKeyword::GNUAutoType
);
3614 bool IsDeducedReturnType
= false;
3616 switch (D
.getContext()) {
3617 case DeclaratorContext::LambdaExpr
:
3618 // Declared return type of a lambda-declarator is implicit and is always
3621 case DeclaratorContext::ObjCParameter
:
3622 case DeclaratorContext::ObjCResult
:
3625 case DeclaratorContext::RequiresExpr
:
3628 case DeclaratorContext::Prototype
:
3629 case DeclaratorContext::LambdaExprParameter
: {
3630 InventedTemplateParameterInfo
*Info
= nullptr;
3631 if (D
.getContext() == DeclaratorContext::Prototype
) {
3632 // With concepts we allow 'auto' in function parameters.
3633 if (!SemaRef
.getLangOpts().CPlusPlus20
|| !Auto
||
3634 Auto
->getKeyword() != AutoTypeKeyword::Auto
) {
3637 } else if (!SemaRef
.getCurScope()->isFunctionDeclarationScope()) {
3642 Info
= &SemaRef
.InventedParameterInfos
.back();
3644 // In C++14, generic lambdas allow 'auto' in their parameters.
3645 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !Auto
||
3646 Auto
->getKeyword() != AutoTypeKeyword::Auto
) {
3650 Info
= SemaRef
.getCurLambda();
3651 assert(Info
&& "No LambdaScopeInfo on the stack!");
3654 // We'll deal with inventing template parameters for 'auto' in trailing
3655 // return types when we pick up the trailing return type when processing
3656 // the function chunk.
3657 if (!DeducedIsTrailingReturnType
)
3658 T
= InventTemplateParameter(state
, T
, nullptr, Auto
, *Info
).first
;
3661 case DeclaratorContext::Member
: {
3662 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static
||
3663 D
.isFunctionDeclarator())
3665 bool Cxx
= SemaRef
.getLangOpts().CPlusPlus
;
3666 if (isa
<ObjCContainerDecl
>(SemaRef
.CurContext
)) {
3667 Error
= 6; // Interface member.
3669 switch (cast
<TagDecl
>(SemaRef
.CurContext
)->getTagKind()) {
3670 case TagTypeKind::Enum
:
3671 llvm_unreachable("unhandled tag kind");
3672 case TagTypeKind::Struct
:
3673 Error
= Cxx
? 1 : 2; /* Struct member */
3675 case TagTypeKind::Union
:
3676 Error
= Cxx
? 3 : 4; /* Union member */
3678 case TagTypeKind::Class
:
3679 Error
= 5; /* Class member */
3681 case TagTypeKind::Interface
:
3682 Error
= 6; /* Interface member */
3686 if (D
.getDeclSpec().isFriendSpecified())
3687 Error
= 20; // Friend type
3690 case DeclaratorContext::CXXCatch
:
3691 case DeclaratorContext::ObjCCatch
:
3692 Error
= 7; // Exception declaration
3694 case DeclaratorContext::TemplateParam
:
3695 if (isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3696 !SemaRef
.getLangOpts().CPlusPlus20
)
3697 Error
= 19; // Template parameter (until C++20)
3698 else if (!SemaRef
.getLangOpts().CPlusPlus17
)
3699 Error
= 8; // Template parameter (until C++17)
3701 case DeclaratorContext::BlockLiteral
:
3702 Error
= 9; // Block literal
3704 case DeclaratorContext::TemplateArg
:
3705 // Within a template argument list, a deduced template specialization
3706 // type will be reinterpreted as a template template argument.
3707 if (isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3708 !D
.getNumTypeObjects() &&
3709 D
.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier
)
3712 case DeclaratorContext::TemplateTypeArg
:
3713 Error
= 10; // Template type argument
3715 case DeclaratorContext::AliasDecl
:
3716 case DeclaratorContext::AliasTemplate
:
3717 Error
= 12; // Type alias
3719 case DeclaratorContext::TrailingReturn
:
3720 case DeclaratorContext::TrailingReturnVar
:
3721 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !IsCXXAutoType
)
3722 Error
= 13; // Function return type
3723 IsDeducedReturnType
= true;
3725 case DeclaratorContext::ConversionId
:
3726 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !IsCXXAutoType
)
3727 Error
= 14; // conversion-type-id
3728 IsDeducedReturnType
= true;
3730 case DeclaratorContext::FunctionalCast
:
3731 if (isa
<DeducedTemplateSpecializationType
>(Deduced
))
3733 if (SemaRef
.getLangOpts().CPlusPlus23
&& IsCXXAutoType
&&
3734 !Auto
->isDecltypeAuto())
3737 case DeclaratorContext::TypeName
:
3738 case DeclaratorContext::Association
:
3739 Error
= 15; // Generic
3741 case DeclaratorContext::File
:
3742 case DeclaratorContext::Block
:
3743 case DeclaratorContext::ForInit
:
3744 case DeclaratorContext::SelectionInit
:
3745 case DeclaratorContext::Condition
:
3746 // FIXME: P0091R3 (erroneously) does not permit class template argument
3747 // deduction in conditions, for-init-statements, and other declarations
3748 // that are not simple-declarations.
3750 case DeclaratorContext::CXXNew
:
3751 // FIXME: P0091R3 does not permit class template argument deduction here,
3752 // but we follow GCC and allow it anyway.
3753 if (!IsCXXAutoType
&& !isa
<DeducedTemplateSpecializationType
>(Deduced
))
3754 Error
= 17; // 'new' type
3756 case DeclaratorContext::KNRTypeList
:
3757 Error
= 18; // K&R function parameter
3761 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
)
3764 // In Objective-C it is an error to use 'auto' on a function declarator
3765 // (and everywhere for '__auto_type').
3766 if (D
.isFunctionDeclarator() &&
3767 (!SemaRef
.getLangOpts().CPlusPlus11
|| !IsCXXAutoType
))
3770 SourceRange AutoRange
= D
.getDeclSpec().getTypeSpecTypeLoc();
3771 if (D
.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId
)
3772 AutoRange
= D
.getName().getSourceRange();
3777 switch (Auto
->getKeyword()) {
3778 case AutoTypeKeyword::Auto
: Kind
= 0; break;
3779 case AutoTypeKeyword::DecltypeAuto
: Kind
= 1; break;
3780 case AutoTypeKeyword::GNUAutoType
: Kind
= 2; break;
3783 assert(isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3784 "unknown auto type");
3788 auto *DTST
= dyn_cast
<DeducedTemplateSpecializationType
>(Deduced
);
3789 TemplateName TN
= DTST
? DTST
->getTemplateName() : TemplateName();
3791 SemaRef
.Diag(AutoRange
.getBegin(), diag::err_auto_not_allowed
)
3792 << Kind
<< Error
<< (int)SemaRef
.getTemplateNameKindForDiagnostics(TN
)
3793 << QualType(Deduced
, 0) << AutoRange
;
3794 if (auto *TD
= TN
.getAsTemplateDecl())
3795 SemaRef
.NoteTemplateLocation(*TD
);
3797 T
= SemaRef
.Context
.IntTy
;
3798 D
.setInvalidType(true);
3799 } else if (Auto
&& D
.getContext() != DeclaratorContext::LambdaExpr
) {
3800 // If there was a trailing return type, we already got
3801 // warn_cxx98_compat_trailing_return_type in the parser.
3802 SemaRef
.Diag(AutoRange
.getBegin(),
3803 D
.getContext() == DeclaratorContext::LambdaExprParameter
3804 ? diag::warn_cxx11_compat_generic_lambda
3805 : IsDeducedReturnType
3806 ? diag::warn_cxx11_compat_deduced_return_type
3807 : diag::warn_cxx98_compat_auto_type_specifier
)
3812 if (SemaRef
.getLangOpts().CPlusPlus
&&
3813 OwnedTagDecl
&& OwnedTagDecl
->isCompleteDefinition()) {
3814 // Check the contexts where C++ forbids the declaration of a new class
3815 // or enumeration in a type-specifier-seq.
3816 unsigned DiagID
= 0;
3817 switch (D
.getContext()) {
3818 case DeclaratorContext::TrailingReturn
:
3819 case DeclaratorContext::TrailingReturnVar
:
3820 // Class and enumeration definitions are syntactically not allowed in
3821 // trailing return types.
3822 llvm_unreachable("parser should not have allowed this");
3824 case DeclaratorContext::File
:
3825 case DeclaratorContext::Member
:
3826 case DeclaratorContext::Block
:
3827 case DeclaratorContext::ForInit
:
3828 case DeclaratorContext::SelectionInit
:
3829 case DeclaratorContext::BlockLiteral
:
3830 case DeclaratorContext::LambdaExpr
:
3831 // C++11 [dcl.type]p3:
3832 // A type-specifier-seq shall not define a class or enumeration unless
3833 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3834 // the declaration of a template-declaration.
3835 case DeclaratorContext::AliasDecl
:
3837 case DeclaratorContext::AliasTemplate
:
3838 DiagID
= diag::err_type_defined_in_alias_template
;
3840 case DeclaratorContext::TypeName
:
3841 case DeclaratorContext::FunctionalCast
:
3842 case DeclaratorContext::ConversionId
:
3843 case DeclaratorContext::TemplateParam
:
3844 case DeclaratorContext::CXXNew
:
3845 case DeclaratorContext::CXXCatch
:
3846 case DeclaratorContext::ObjCCatch
:
3847 case DeclaratorContext::TemplateArg
:
3848 case DeclaratorContext::TemplateTypeArg
:
3849 case DeclaratorContext::Association
:
3850 DiagID
= diag::err_type_defined_in_type_specifier
;
3852 case DeclaratorContext::Prototype
:
3853 case DeclaratorContext::LambdaExprParameter
:
3854 case DeclaratorContext::ObjCParameter
:
3855 case DeclaratorContext::ObjCResult
:
3856 case DeclaratorContext::KNRTypeList
:
3857 case DeclaratorContext::RequiresExpr
:
3859 // Types shall not be defined in return or parameter types.
3860 DiagID
= diag::err_type_defined_in_param_type
;
3862 case DeclaratorContext::Condition
:
3864 // The type-specifier-seq shall not contain typedef and shall not declare
3865 // a new class or enumeration.
3866 DiagID
= diag::err_type_defined_in_condition
;
3871 SemaRef
.Diag(OwnedTagDecl
->getLocation(), DiagID
)
3872 << SemaRef
.Context
.getTypeDeclType(OwnedTagDecl
);
3873 D
.setInvalidType(true);
3877 assert(!T
.isNull() && "This function should not return a null type");
3881 /// Produce an appropriate diagnostic for an ambiguity between a function
3882 /// declarator and a C++ direct-initializer.
3883 static void warnAboutAmbiguousFunction(Sema
&S
, Declarator
&D
,
3884 DeclaratorChunk
&DeclType
, QualType RT
) {
3885 const DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
3886 assert(FTI
.isAmbiguous
&& "no direct-initializer / function ambiguity");
3888 // If the return type is void there is no ambiguity.
3889 if (RT
->isVoidType())
3892 // An initializer for a non-class type can have at most one argument.
3893 if (!RT
->isRecordType() && FTI
.NumParams
> 1)
3896 // An initializer for a reference must have exactly one argument.
3897 if (RT
->isReferenceType() && FTI
.NumParams
!= 1)
3900 // Only warn if this declarator is declaring a function at block scope, and
3901 // doesn't have a storage class (such as 'extern') specified.
3902 if (!D
.isFunctionDeclarator() ||
3903 D
.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration
||
3904 !S
.CurContext
->isFunctionOrMethod() ||
3905 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified
)
3908 // Inside a condition, a direct initializer is not permitted. We allow one to
3909 // be parsed in order to give better diagnostics in condition parsing.
3910 if (D
.getContext() == DeclaratorContext::Condition
)
3913 SourceRange
ParenRange(DeclType
.Loc
, DeclType
.EndLoc
);
3915 S
.Diag(DeclType
.Loc
,
3916 FTI
.NumParams
? diag::warn_parens_disambiguated_as_function_declaration
3917 : diag::warn_empty_parens_are_function_decl
)
3920 // If the declaration looks like:
3923 // and name lookup finds a function named 'f', then the ',' was
3924 // probably intended to be a ';'.
3925 if (!D
.isFirstDeclarator() && D
.getIdentifier()) {
3926 FullSourceLoc
Comma(D
.getCommaLoc(), S
.SourceMgr
);
3927 FullSourceLoc
Name(D
.getIdentifierLoc(), S
.SourceMgr
);
3928 if (Comma
.getFileID() != Name
.getFileID() ||
3929 Comma
.getSpellingLineNumber() != Name
.getSpellingLineNumber()) {
3930 LookupResult
Result(S
, D
.getIdentifier(), SourceLocation(),
3931 Sema::LookupOrdinaryName
);
3932 if (S
.LookupName(Result
, S
.getCurScope()))
3933 S
.Diag(D
.getCommaLoc(), diag::note_empty_parens_function_call
)
3934 << FixItHint::CreateReplacement(D
.getCommaLoc(), ";")
3935 << D
.getIdentifier();
3936 Result
.suppressDiagnostics();
3940 if (FTI
.NumParams
> 0) {
3941 // For a declaration with parameters, eg. "T var(T());", suggest adding
3942 // parens around the first parameter to turn the declaration into a
3943 // variable declaration.
3944 SourceRange Range
= FTI
.Params
[0].Param
->getSourceRange();
3945 SourceLocation B
= Range
.getBegin();
3946 SourceLocation E
= S
.getLocForEndOfToken(Range
.getEnd());
3947 // FIXME: Maybe we should suggest adding braces instead of parens
3948 // in C++11 for classes that don't have an initializer_list constructor.
3949 S
.Diag(B
, diag::note_additional_parens_for_variable_declaration
)
3950 << FixItHint::CreateInsertion(B
, "(")
3951 << FixItHint::CreateInsertion(E
, ")");
3953 // For a declaration without parameters, eg. "T var();", suggest replacing
3954 // the parens with an initializer to turn the declaration into a variable
3956 const CXXRecordDecl
*RD
= RT
->getAsCXXRecordDecl();
3958 // Empty parens mean value-initialization, and no parens mean
3959 // default initialization. These are equivalent if the default
3960 // constructor is user-provided or if zero-initialization is a
3962 if (RD
&& RD
->hasDefinition() &&
3963 (RD
->isEmpty() || RD
->hasUserProvidedDefaultConstructor()))
3964 S
.Diag(DeclType
.Loc
, diag::note_empty_parens_default_ctor
)
3965 << FixItHint::CreateRemoval(ParenRange
);
3968 S
.getFixItZeroInitializerForType(RT
, ParenRange
.getBegin());
3969 if (Init
.empty() && S
.LangOpts
.CPlusPlus11
)
3972 S
.Diag(DeclType
.Loc
, diag::note_empty_parens_zero_initialize
)
3973 << FixItHint::CreateReplacement(ParenRange
, Init
);
3978 /// Produce an appropriate diagnostic for a declarator with top-level
3980 static void warnAboutRedundantParens(Sema
&S
, Declarator
&D
, QualType T
) {
3981 DeclaratorChunk
&Paren
= D
.getTypeObject(D
.getNumTypeObjects() - 1);
3982 assert(Paren
.Kind
== DeclaratorChunk::Paren
&&
3983 "do not have redundant top-level parentheses");
3985 // This is a syntactic check; we're not interested in cases that arise
3986 // during template instantiation.
3987 if (S
.inTemplateInstantiation())
3990 // Check whether this could be intended to be a construction of a temporary
3991 // object in C++ via a function-style cast.
3992 bool CouldBeTemporaryObject
=
3993 S
.getLangOpts().CPlusPlus
&& D
.isExpressionContext() &&
3994 !D
.isInvalidType() && D
.getIdentifier() &&
3995 D
.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier
&&
3996 (T
->isRecordType() || T
->isDependentType()) &&
3997 D
.getDeclSpec().getTypeQualifiers() == 0 && D
.isFirstDeclarator();
3999 bool StartsWithDeclaratorId
= true;
4000 for (auto &C
: D
.type_objects()) {
4002 case DeclaratorChunk::Paren
:
4006 case DeclaratorChunk::Pointer
:
4007 StartsWithDeclaratorId
= false;
4010 case DeclaratorChunk::Array
:
4012 CouldBeTemporaryObject
= false;
4015 case DeclaratorChunk::Reference
:
4016 // FIXME: Suppress the warning here if there is no initializer; we're
4017 // going to give an error anyway.
4018 // We assume that something like 'T (&x) = y;' is highly likely to not
4019 // be intended to be a temporary object.
4020 CouldBeTemporaryObject
= false;
4021 StartsWithDeclaratorId
= false;
4024 case DeclaratorChunk::Function
:
4025 // In a new-type-id, function chunks require parentheses.
4026 if (D
.getContext() == DeclaratorContext::CXXNew
)
4028 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
4029 // redundant-parens warning, but we don't know whether the function
4030 // chunk was syntactically valid as an expression here.
4031 CouldBeTemporaryObject
= false;
4034 case DeclaratorChunk::BlockPointer
:
4035 case DeclaratorChunk::MemberPointer
:
4036 case DeclaratorChunk::Pipe
:
4037 // These cannot appear in expressions.
4038 CouldBeTemporaryObject
= false;
4039 StartsWithDeclaratorId
= false;
4044 // FIXME: If there is an initializer, assume that this is not intended to be
4045 // a construction of a temporary object.
4047 // Check whether the name has already been declared; if not, this is not a
4048 // function-style cast.
4049 if (CouldBeTemporaryObject
) {
4050 LookupResult
Result(S
, D
.getIdentifier(), SourceLocation(),
4051 Sema::LookupOrdinaryName
);
4052 if (!S
.LookupName(Result
, S
.getCurScope()))
4053 CouldBeTemporaryObject
= false;
4054 Result
.suppressDiagnostics();
4057 SourceRange
ParenRange(Paren
.Loc
, Paren
.EndLoc
);
4059 if (!CouldBeTemporaryObject
) {
4060 // If we have A (::B), the parentheses affect the meaning of the program.
4061 // Suppress the warning in that case. Don't bother looking at the DeclSpec
4062 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
4063 // formally unambiguous.
4064 if (StartsWithDeclaratorId
&& D
.getCXXScopeSpec().isValid()) {
4065 for (NestedNameSpecifier
*NNS
= D
.getCXXScopeSpec().getScopeRep(); NNS
;
4066 NNS
= NNS
->getPrefix()) {
4067 if (NNS
->getKind() == NestedNameSpecifier::Global
)
4072 S
.Diag(Paren
.Loc
, diag::warn_redundant_parens_around_declarator
)
4073 << ParenRange
<< FixItHint::CreateRemoval(Paren
.Loc
)
4074 << FixItHint::CreateRemoval(Paren
.EndLoc
);
4078 S
.Diag(Paren
.Loc
, diag::warn_parens_disambiguated_as_variable_declaration
)
4079 << ParenRange
<< D
.getIdentifier();
4080 auto *RD
= T
->getAsCXXRecordDecl();
4081 if (!RD
|| !RD
->hasDefinition() || RD
->hasNonTrivialDestructor())
4082 S
.Diag(Paren
.Loc
, diag::note_raii_guard_add_name
)
4083 << FixItHint::CreateInsertion(Paren
.Loc
, " varname") << T
4084 << D
.getIdentifier();
4085 // FIXME: A cast to void is probably a better suggestion in cases where it's
4086 // valid (when there is no initializer and we're not in a condition).
4087 S
.Diag(D
.getBeginLoc(), diag::note_function_style_cast_add_parentheses
)
4088 << FixItHint::CreateInsertion(D
.getBeginLoc(), "(")
4089 << FixItHint::CreateInsertion(S
.getLocForEndOfToken(D
.getEndLoc()), ")");
4090 S
.Diag(Paren
.Loc
, diag::note_remove_parens_for_variable_declaration
)
4091 << FixItHint::CreateRemoval(Paren
.Loc
)
4092 << FixItHint::CreateRemoval(Paren
.EndLoc
);
4095 /// Helper for figuring out the default CC for a function declarator type. If
4096 /// this is the outermost chunk, then we can determine the CC from the
4097 /// declarator context. If not, then this could be either a member function
4098 /// type or normal function type.
4099 static CallingConv
getCCForDeclaratorChunk(
4100 Sema
&S
, Declarator
&D
, const ParsedAttributesView
&AttrList
,
4101 const DeclaratorChunk::FunctionTypeInfo
&FTI
, unsigned ChunkIndex
) {
4102 assert(D
.getTypeObject(ChunkIndex
).Kind
== DeclaratorChunk::Function
);
4104 // Check for an explicit CC attribute.
4105 for (const ParsedAttr
&AL
: AttrList
) {
4106 switch (AL
.getKind()) {
4107 CALLING_CONV_ATTRS_CASELIST
: {
4108 // Ignore attributes that don't validate or can't apply to the
4109 // function type. We'll diagnose the failure to apply them in
4110 // handleFunctionTypeAttr.
4112 if (!S
.CheckCallingConvAttr(AL
, CC
, /*FunctionDecl=*/nullptr,
4113 S
.IdentifyCUDATarget(D
.getAttributes())) &&
4114 (!FTI
.isVariadic
|| supportsVariadicCall(CC
))) {
4125 bool IsCXXInstanceMethod
= false;
4127 if (S
.getLangOpts().CPlusPlus
) {
4128 // Look inwards through parentheses to see if this chunk will form a
4129 // member pointer type or if we're the declarator. Any type attributes
4130 // between here and there will override the CC we choose here.
4131 unsigned I
= ChunkIndex
;
4132 bool FoundNonParen
= false;
4133 while (I
&& !FoundNonParen
) {
4135 if (D
.getTypeObject(I
).Kind
!= DeclaratorChunk::Paren
)
4136 FoundNonParen
= true;
4139 if (FoundNonParen
) {
4140 // If we're not the declarator, we're a regular function type unless we're
4141 // in a member pointer.
4142 IsCXXInstanceMethod
=
4143 D
.getTypeObject(I
).Kind
== DeclaratorChunk::MemberPointer
;
4144 } else if (D
.getContext() == DeclaratorContext::LambdaExpr
) {
4145 // This can only be a call operator for a lambda, which is an instance
4146 // method, unless explicitly specified as 'static'.
4147 IsCXXInstanceMethod
=
4148 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static
;
4150 // We're the innermost decl chunk, so must be a function declarator.
4151 assert(D
.isFunctionDeclarator());
4153 // If we're inside a record, we're declaring a method, but it could be
4154 // explicitly or implicitly static.
4155 IsCXXInstanceMethod
=
4156 D
.isFirstDeclarationOfMember() &&
4157 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&&
4158 !D
.isStaticMember();
4162 CallingConv CC
= S
.Context
.getDefaultCallingConvention(FTI
.isVariadic
,
4163 IsCXXInstanceMethod
);
4165 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
4166 // and AMDGPU targets, hence it cannot be treated as a calling
4167 // convention attribute. This is the simplest place to infer
4168 // calling convention for OpenCL kernels.
4169 if (S
.getLangOpts().OpenCL
) {
4170 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
4171 if (AL
.getKind() == ParsedAttr::AT_OpenCLKernel
) {
4172 CC
= CC_OpenCLKernel
;
4176 } else if (S
.getLangOpts().CUDA
) {
4177 // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
4178 // sure the kernels will be marked with the right calling convention so that
4179 // they will be visible by the APIs that ingest SPIR-V.
4180 llvm::Triple Triple
= S
.Context
.getTargetInfo().getTriple();
4181 if (Triple
.getArch() == llvm::Triple::spirv32
||
4182 Triple
.getArch() == llvm::Triple::spirv64
) {
4183 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
4184 if (AL
.getKind() == ParsedAttr::AT_CUDAGlobal
) {
4185 CC
= CC_OpenCLKernel
;
4196 /// A simple notion of pointer kinds, which matches up with the various
4197 /// pointer declarators.
4198 enum class SimplePointerKind
{
4204 } // end anonymous namespace
4206 IdentifierInfo
*Sema::getNullabilityKeyword(NullabilityKind nullability
) {
4207 switch (nullability
) {
4208 case NullabilityKind::NonNull
:
4209 if (!Ident__Nonnull
)
4210 Ident__Nonnull
= PP
.getIdentifierInfo("_Nonnull");
4211 return Ident__Nonnull
;
4213 case NullabilityKind::Nullable
:
4214 if (!Ident__Nullable
)
4215 Ident__Nullable
= PP
.getIdentifierInfo("_Nullable");
4216 return Ident__Nullable
;
4218 case NullabilityKind::NullableResult
:
4219 if (!Ident__Nullable_result
)
4220 Ident__Nullable_result
= PP
.getIdentifierInfo("_Nullable_result");
4221 return Ident__Nullable_result
;
4223 case NullabilityKind::Unspecified
:
4224 if (!Ident__Null_unspecified
)
4225 Ident__Null_unspecified
= PP
.getIdentifierInfo("_Null_unspecified");
4226 return Ident__Null_unspecified
;
4228 llvm_unreachable("Unknown nullability kind.");
4231 /// Retrieve the identifier "NSError".
4232 IdentifierInfo
*Sema::getNSErrorIdent() {
4234 Ident_NSError
= PP
.getIdentifierInfo("NSError");
4236 return Ident_NSError
;
4239 /// Check whether there is a nullability attribute of any kind in the given
4241 static bool hasNullabilityAttr(const ParsedAttributesView
&attrs
) {
4242 for (const ParsedAttr
&AL
: attrs
) {
4243 if (AL
.getKind() == ParsedAttr::AT_TypeNonNull
||
4244 AL
.getKind() == ParsedAttr::AT_TypeNullable
||
4245 AL
.getKind() == ParsedAttr::AT_TypeNullableResult
||
4246 AL
.getKind() == ParsedAttr::AT_TypeNullUnspecified
)
4254 /// Describes the kind of a pointer a declarator describes.
4255 enum class PointerDeclaratorKind
{
4258 // Single-level pointer.
4260 // Multi-level pointer (of any pointer kind).
4263 MaybePointerToCFRef
,
4267 NSErrorPointerPointer
,
4270 /// Describes a declarator chunk wrapping a pointer that marks inference as
4272 // These values must be kept in sync with diagnostics.
4273 enum class PointerWrappingDeclaratorKind
{
4274 /// Pointer is top-level.
4276 /// Pointer is an array element.
4278 /// Pointer is the referent type of a C++ reference.
4281 } // end anonymous namespace
4283 /// Classify the given declarator, whose type-specified is \c type, based on
4284 /// what kind of pointer it refers to.
4286 /// This is used to determine the default nullability.
4287 static PointerDeclaratorKind
4288 classifyPointerDeclarator(Sema
&S
, QualType type
, Declarator
&declarator
,
4289 PointerWrappingDeclaratorKind
&wrappingKind
) {
4290 unsigned numNormalPointers
= 0;
4292 // For any dependent type, we consider it a non-pointer.
4293 if (type
->isDependentType())
4294 return PointerDeclaratorKind::NonPointer
;
4296 // Look through the declarator chunks to identify pointers.
4297 for (unsigned i
= 0, n
= declarator
.getNumTypeObjects(); i
!= n
; ++i
) {
4298 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
4299 switch (chunk
.Kind
) {
4300 case DeclaratorChunk::Array
:
4301 if (numNormalPointers
== 0)
4302 wrappingKind
= PointerWrappingDeclaratorKind::Array
;
4305 case DeclaratorChunk::Function
:
4306 case DeclaratorChunk::Pipe
:
4309 case DeclaratorChunk::BlockPointer
:
4310 case DeclaratorChunk::MemberPointer
:
4311 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4312 : PointerDeclaratorKind::SingleLevelPointer
;
4314 case DeclaratorChunk::Paren
:
4317 case DeclaratorChunk::Reference
:
4318 if (numNormalPointers
== 0)
4319 wrappingKind
= PointerWrappingDeclaratorKind::Reference
;
4322 case DeclaratorChunk::Pointer
:
4323 ++numNormalPointers
;
4324 if (numNormalPointers
> 2)
4325 return PointerDeclaratorKind::MultiLevelPointer
;
4330 // Then, dig into the type specifier itself.
4331 unsigned numTypeSpecifierPointers
= 0;
4333 // Decompose normal pointers.
4334 if (auto ptrType
= type
->getAs
<PointerType
>()) {
4335 ++numNormalPointers
;
4337 if (numNormalPointers
> 2)
4338 return PointerDeclaratorKind::MultiLevelPointer
;
4340 type
= ptrType
->getPointeeType();
4341 ++numTypeSpecifierPointers
;
4345 // Decompose block pointers.
4346 if (type
->getAs
<BlockPointerType
>()) {
4347 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4348 : PointerDeclaratorKind::SingleLevelPointer
;
4351 // Decompose member pointers.
4352 if (type
->getAs
<MemberPointerType
>()) {
4353 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4354 : PointerDeclaratorKind::SingleLevelPointer
;
4357 // Look at Objective-C object pointers.
4358 if (auto objcObjectPtr
= type
->getAs
<ObjCObjectPointerType
>()) {
4359 ++numNormalPointers
;
4360 ++numTypeSpecifierPointers
;
4362 // If this is NSError**, report that.
4363 if (auto objcClassDecl
= objcObjectPtr
->getInterfaceDecl()) {
4364 if (objcClassDecl
->getIdentifier() == S
.getNSErrorIdent() &&
4365 numNormalPointers
== 2 && numTypeSpecifierPointers
< 2) {
4366 return PointerDeclaratorKind::NSErrorPointerPointer
;
4373 // Look at Objective-C class types.
4374 if (auto objcClass
= type
->getAs
<ObjCInterfaceType
>()) {
4375 if (objcClass
->getInterface()->getIdentifier() == S
.getNSErrorIdent()) {
4376 if (numNormalPointers
== 2 && numTypeSpecifierPointers
< 2)
4377 return PointerDeclaratorKind::NSErrorPointerPointer
;
4383 // If at this point we haven't seen a pointer, we won't see one.
4384 if (numNormalPointers
== 0)
4385 return PointerDeclaratorKind::NonPointer
;
4387 if (auto recordType
= type
->getAs
<RecordType
>()) {
4388 RecordDecl
*recordDecl
= recordType
->getDecl();
4390 // If this is CFErrorRef*, report it as such.
4391 if (numNormalPointers
== 2 && numTypeSpecifierPointers
< 2 &&
4392 S
.isCFError(recordDecl
)) {
4393 return PointerDeclaratorKind::CFErrorRefPointer
;
4401 switch (numNormalPointers
) {
4403 return PointerDeclaratorKind::NonPointer
;
4406 return PointerDeclaratorKind::SingleLevelPointer
;
4409 return PointerDeclaratorKind::MaybePointerToCFRef
;
4412 return PointerDeclaratorKind::MultiLevelPointer
;
4416 bool Sema::isCFError(RecordDecl
*RD
) {
4417 // If we already know about CFError, test it directly.
4419 return CFError
== RD
;
4421 // Check whether this is CFError, which we identify based on its bridge to
4422 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4423 // declared with "objc_bridge_mutable", so look for either one of the two
4425 if (RD
->getTagKind() == TagTypeKind::Struct
) {
4426 IdentifierInfo
*bridgedType
= nullptr;
4427 if (auto bridgeAttr
= RD
->getAttr
<ObjCBridgeAttr
>())
4428 bridgedType
= bridgeAttr
->getBridgedType();
4429 else if (auto bridgeAttr
= RD
->getAttr
<ObjCBridgeMutableAttr
>())
4430 bridgedType
= bridgeAttr
->getBridgedType();
4432 if (bridgedType
== getNSErrorIdent()) {
4441 static FileID
getNullabilityCompletenessCheckFileID(Sema
&S
,
4442 SourceLocation loc
) {
4443 // If we're anywhere in a function, method, or closure context, don't perform
4444 // completeness checks.
4445 for (DeclContext
*ctx
= S
.CurContext
; ctx
; ctx
= ctx
->getParent()) {
4446 if (ctx
->isFunctionOrMethod())
4449 if (ctx
->isFileContext())
4453 // We only care about the expansion location.
4454 loc
= S
.SourceMgr
.getExpansionLoc(loc
);
4455 FileID file
= S
.SourceMgr
.getFileID(loc
);
4456 if (file
.isInvalid())
4459 // Retrieve file information.
4460 bool invalid
= false;
4461 const SrcMgr::SLocEntry
&sloc
= S
.SourceMgr
.getSLocEntry(file
, &invalid
);
4462 if (invalid
|| !sloc
.isFile())
4465 // We don't want to perform completeness checks on the main file or in
4467 const SrcMgr::FileInfo
&fileInfo
= sloc
.getFile();
4468 if (fileInfo
.getIncludeLoc().isInvalid())
4470 if (fileInfo
.getFileCharacteristic() != SrcMgr::C_User
&&
4471 S
.Diags
.getSuppressSystemWarnings()) {
4478 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4479 /// taking into account whitespace before and after.
4480 template <typename DiagBuilderT
>
4481 static void fixItNullability(Sema
&S
, DiagBuilderT
&Diag
,
4482 SourceLocation PointerLoc
,
4483 NullabilityKind Nullability
) {
4484 assert(PointerLoc
.isValid());
4485 if (PointerLoc
.isMacroID())
4488 SourceLocation FixItLoc
= S
.getLocForEndOfToken(PointerLoc
);
4489 if (!FixItLoc
.isValid() || FixItLoc
== PointerLoc
)
4492 const char *NextChar
= S
.SourceMgr
.getCharacterData(FixItLoc
);
4496 SmallString
<32> InsertionTextBuf
{" "};
4497 InsertionTextBuf
+= getNullabilitySpelling(Nullability
);
4498 InsertionTextBuf
+= " ";
4499 StringRef InsertionText
= InsertionTextBuf
.str();
4501 if (isWhitespace(*NextChar
)) {
4502 InsertionText
= InsertionText
.drop_back();
4503 } else if (NextChar
[-1] == '[') {
4504 if (NextChar
[0] == ']')
4505 InsertionText
= InsertionText
.drop_back().drop_front();
4507 InsertionText
= InsertionText
.drop_front();
4508 } else if (!isAsciiIdentifierContinue(NextChar
[0], /*allow dollar*/ true) &&
4509 !isAsciiIdentifierContinue(NextChar
[-1], /*allow dollar*/ true)) {
4510 InsertionText
= InsertionText
.drop_back().drop_front();
4513 Diag
<< FixItHint::CreateInsertion(FixItLoc
, InsertionText
);
4516 static void emitNullabilityConsistencyWarning(Sema
&S
,
4517 SimplePointerKind PointerKind
,
4518 SourceLocation PointerLoc
,
4519 SourceLocation PointerEndLoc
) {
4520 assert(PointerLoc
.isValid());
4522 if (PointerKind
== SimplePointerKind::Array
) {
4523 S
.Diag(PointerLoc
, diag::warn_nullability_missing_array
);
4525 S
.Diag(PointerLoc
, diag::warn_nullability_missing
)
4526 << static_cast<unsigned>(PointerKind
);
4529 auto FixItLoc
= PointerEndLoc
.isValid() ? PointerEndLoc
: PointerLoc
;
4530 if (FixItLoc
.isMacroID())
4533 auto addFixIt
= [&](NullabilityKind Nullability
) {
4534 auto Diag
= S
.Diag(FixItLoc
, diag::note_nullability_fix_it
);
4535 Diag
<< static_cast<unsigned>(Nullability
);
4536 Diag
<< static_cast<unsigned>(PointerKind
);
4537 fixItNullability(S
, Diag
, FixItLoc
, Nullability
);
4539 addFixIt(NullabilityKind::Nullable
);
4540 addFixIt(NullabilityKind::NonNull
);
4543 /// Complains about missing nullability if the file containing \p pointerLoc
4544 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4547 /// If the file has \e not seen other uses of nullability, this particular
4548 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4550 checkNullabilityConsistency(Sema
&S
, SimplePointerKind pointerKind
,
4551 SourceLocation pointerLoc
,
4552 SourceLocation pointerEndLoc
= SourceLocation()) {
4553 // Determine which file we're performing consistency checking for.
4554 FileID file
= getNullabilityCompletenessCheckFileID(S
, pointerLoc
);
4555 if (file
.isInvalid())
4558 // If we haven't seen any type nullability in this file, we won't warn now
4560 FileNullability
&fileNullability
= S
.NullabilityMap
[file
];
4561 if (!fileNullability
.SawTypeNullability
) {
4562 // If this is the first pointer declarator in the file, and the appropriate
4563 // warning is on, record it in case we need to diagnose it retroactively.
4564 diag::kind diagKind
;
4565 if (pointerKind
== SimplePointerKind::Array
)
4566 diagKind
= diag::warn_nullability_missing_array
;
4568 diagKind
= diag::warn_nullability_missing
;
4570 if (fileNullability
.PointerLoc
.isInvalid() &&
4571 !S
.Context
.getDiagnostics().isIgnored(diagKind
, pointerLoc
)) {
4572 fileNullability
.PointerLoc
= pointerLoc
;
4573 fileNullability
.PointerEndLoc
= pointerEndLoc
;
4574 fileNullability
.PointerKind
= static_cast<unsigned>(pointerKind
);
4580 // Complain about missing nullability.
4581 emitNullabilityConsistencyWarning(S
, pointerKind
, pointerLoc
, pointerEndLoc
);
4584 /// Marks that a nullability feature has been used in the file containing
4587 /// If this file already had pointer types in it that were missing nullability,
4588 /// the first such instance is retroactively diagnosed.
4590 /// \sa checkNullabilityConsistency
4591 static void recordNullabilitySeen(Sema
&S
, SourceLocation loc
) {
4592 FileID file
= getNullabilityCompletenessCheckFileID(S
, loc
);
4593 if (file
.isInvalid())
4596 FileNullability
&fileNullability
= S
.NullabilityMap
[file
];
4597 if (fileNullability
.SawTypeNullability
)
4599 fileNullability
.SawTypeNullability
= true;
4601 // If we haven't seen any type nullability before, now we have. Retroactively
4602 // diagnose the first unannotated pointer, if there was one.
4603 if (fileNullability
.PointerLoc
.isInvalid())
4606 auto kind
= static_cast<SimplePointerKind
>(fileNullability
.PointerKind
);
4607 emitNullabilityConsistencyWarning(S
, kind
, fileNullability
.PointerLoc
,
4608 fileNullability
.PointerEndLoc
);
4611 /// Returns true if any of the declarator chunks before \p endIndex include a
4612 /// level of indirection: array, pointer, reference, or pointer-to-member.
4614 /// Because declarator chunks are stored in outer-to-inner order, testing
4615 /// every chunk before \p endIndex is testing all chunks that embed the current
4616 /// chunk as part of their type.
4618 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4619 /// end index, in which case all chunks are tested.
4620 static bool hasOuterPointerLikeChunk(const Declarator
&D
, unsigned endIndex
) {
4621 unsigned i
= endIndex
;
4623 // Walk outwards along the declarator chunks.
4625 const DeclaratorChunk
&DC
= D
.getTypeObject(i
);
4627 case DeclaratorChunk::Paren
:
4629 case DeclaratorChunk::Array
:
4630 case DeclaratorChunk::Pointer
:
4631 case DeclaratorChunk::Reference
:
4632 case DeclaratorChunk::MemberPointer
:
4634 case DeclaratorChunk::Function
:
4635 case DeclaratorChunk::BlockPointer
:
4636 case DeclaratorChunk::Pipe
:
4637 // These are invalid anyway, so just ignore.
4644 static bool IsNoDerefableChunk(const DeclaratorChunk
&Chunk
) {
4645 return (Chunk
.Kind
== DeclaratorChunk::Pointer
||
4646 Chunk
.Kind
== DeclaratorChunk::Array
);
4649 template<typename AttrT
>
4650 static AttrT
*createSimpleAttr(ASTContext
&Ctx
, ParsedAttr
&AL
) {
4651 AL
.setUsedAsTypeAttr();
4652 return ::new (Ctx
) AttrT(Ctx
, AL
);
4655 static Attr
*createNullabilityAttr(ASTContext
&Ctx
, ParsedAttr
&Attr
,
4656 NullabilityKind NK
) {
4658 case NullabilityKind::NonNull
:
4659 return createSimpleAttr
<TypeNonNullAttr
>(Ctx
, Attr
);
4661 case NullabilityKind::Nullable
:
4662 return createSimpleAttr
<TypeNullableAttr
>(Ctx
, Attr
);
4664 case NullabilityKind::NullableResult
:
4665 return createSimpleAttr
<TypeNullableResultAttr
>(Ctx
, Attr
);
4667 case NullabilityKind::Unspecified
:
4668 return createSimpleAttr
<TypeNullUnspecifiedAttr
>(Ctx
, Attr
);
4670 llvm_unreachable("unknown NullabilityKind");
4673 // Diagnose whether this is a case with the multiple addr spaces.
4674 // Returns true if this is an invalid case.
4675 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4676 // by qualifiers for two or more different address spaces."
4677 static bool DiagnoseMultipleAddrSpaceAttributes(Sema
&S
, LangAS ASOld
,
4679 SourceLocation AttrLoc
) {
4680 if (ASOld
!= LangAS::Default
) {
4681 if (ASOld
!= ASNew
) {
4682 S
.Diag(AttrLoc
, diag::err_attribute_address_multiple_qualifiers
);
4685 // Emit a warning if they are identical; it's likely unintended.
4687 diag::warn_attribute_address_multiple_identical_qualifiers
);
4692 static TypeSourceInfo
*GetFullTypeForDeclarator(TypeProcessingState
&state
,
4693 QualType declSpecType
,
4694 TypeSourceInfo
*TInfo
) {
4695 // The TypeSourceInfo that this function returns will not be a null type.
4696 // If there is an error, this function will fill in a dummy type as fallback.
4697 QualType T
= declSpecType
;
4698 Declarator
&D
= state
.getDeclarator();
4699 Sema
&S
= state
.getSema();
4700 ASTContext
&Context
= S
.Context
;
4701 const LangOptions
&LangOpts
= S
.getLangOpts();
4703 // The name we're declaring, if any.
4704 DeclarationName Name
;
4705 if (D
.getIdentifier())
4706 Name
= D
.getIdentifier();
4708 // Does this declaration declare a typedef-name?
4709 bool IsTypedefName
=
4710 D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
||
4711 D
.getContext() == DeclaratorContext::AliasDecl
||
4712 D
.getContext() == DeclaratorContext::AliasTemplate
;
4714 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4715 bool IsQualifiedFunction
= T
->isFunctionProtoType() &&
4716 (!T
->castAs
<FunctionProtoType
>()->getMethodQuals().empty() ||
4717 T
->castAs
<FunctionProtoType
>()->getRefQualifier() != RQ_None
);
4719 // If T is 'decltype(auto)', the only declarators we can have are parens
4720 // and at most one function declarator if this is a function declaration.
4721 // If T is a deduced class template specialization type, we can have no
4722 // declarator chunks at all.
4723 if (auto *DT
= T
->getAs
<DeducedType
>()) {
4724 const AutoType
*AT
= T
->getAs
<AutoType
>();
4725 bool IsClassTemplateDeduction
= isa
<DeducedTemplateSpecializationType
>(DT
);
4726 if ((AT
&& AT
->isDecltypeAuto()) || IsClassTemplateDeduction
) {
4727 for (unsigned I
= 0, E
= D
.getNumTypeObjects(); I
!= E
; ++I
) {
4728 unsigned Index
= E
- I
- 1;
4729 DeclaratorChunk
&DeclChunk
= D
.getTypeObject(Index
);
4730 unsigned DiagId
= IsClassTemplateDeduction
4731 ? diag::err_deduced_class_template_compound_type
4732 : diag::err_decltype_auto_compound_type
;
4733 unsigned DiagKind
= 0;
4734 switch (DeclChunk
.Kind
) {
4735 case DeclaratorChunk::Paren
:
4736 // FIXME: Rejecting this is a little silly.
4737 if (IsClassTemplateDeduction
) {
4742 case DeclaratorChunk::Function
: {
4743 if (IsClassTemplateDeduction
) {
4748 if (D
.isFunctionDeclarationContext() &&
4749 D
.isFunctionDeclarator(FnIndex
) && FnIndex
== Index
)
4751 DiagId
= diag::err_decltype_auto_function_declarator_not_declaration
;
4754 case DeclaratorChunk::Pointer
:
4755 case DeclaratorChunk::BlockPointer
:
4756 case DeclaratorChunk::MemberPointer
:
4759 case DeclaratorChunk::Reference
:
4762 case DeclaratorChunk::Array
:
4765 case DeclaratorChunk::Pipe
:
4769 S
.Diag(DeclChunk
.Loc
, DiagId
) << DiagKind
;
4770 D
.setInvalidType(true);
4776 // Determine whether we should infer _Nonnull on pointer types.
4777 std::optional
<NullabilityKind
> inferNullability
;
4778 bool inferNullabilityCS
= false;
4779 bool inferNullabilityInnerOnly
= false;
4780 bool inferNullabilityInnerOnlyComplete
= false;
4782 // Are we in an assume-nonnull region?
4783 bool inAssumeNonNullRegion
= false;
4784 SourceLocation assumeNonNullLoc
= S
.PP
.getPragmaAssumeNonNullLoc();
4785 if (assumeNonNullLoc
.isValid()) {
4786 inAssumeNonNullRegion
= true;
4787 recordNullabilitySeen(S
, assumeNonNullLoc
);
4790 // Whether to complain about missing nullability specifiers or not.
4794 /// Complain on the inner pointers (but not the outermost
4797 /// Complain about any pointers that don't have nullability
4798 /// specified or inferred.
4800 } complainAboutMissingNullability
= CAMN_No
;
4801 unsigned NumPointersRemaining
= 0;
4802 auto complainAboutInferringWithinChunk
= PointerWrappingDeclaratorKind::None
;
4804 if (IsTypedefName
) {
4805 // For typedefs, we do not infer any nullability (the default),
4806 // and we only complain about missing nullability specifiers on
4808 complainAboutMissingNullability
= CAMN_InnerPointers
;
4810 if (T
->canHaveNullability(/*ResultIfUnknown*/ false) &&
4811 !T
->getNullability()) {
4812 // Note that we allow but don't require nullability on dependent types.
4813 ++NumPointersRemaining
;
4816 for (unsigned i
= 0, n
= D
.getNumTypeObjects(); i
!= n
; ++i
) {
4817 DeclaratorChunk
&chunk
= D
.getTypeObject(i
);
4818 switch (chunk
.Kind
) {
4819 case DeclaratorChunk::Array
:
4820 case DeclaratorChunk::Function
:
4821 case DeclaratorChunk::Pipe
:
4824 case DeclaratorChunk::BlockPointer
:
4825 case DeclaratorChunk::MemberPointer
:
4826 ++NumPointersRemaining
;
4829 case DeclaratorChunk::Paren
:
4830 case DeclaratorChunk::Reference
:
4833 case DeclaratorChunk::Pointer
:
4834 ++NumPointersRemaining
;
4839 bool isFunctionOrMethod
= false;
4840 switch (auto context
= state
.getDeclarator().getContext()) {
4841 case DeclaratorContext::ObjCParameter
:
4842 case DeclaratorContext::ObjCResult
:
4843 case DeclaratorContext::Prototype
:
4844 case DeclaratorContext::TrailingReturn
:
4845 case DeclaratorContext::TrailingReturnVar
:
4846 isFunctionOrMethod
= true;
4849 case DeclaratorContext::Member
:
4850 if (state
.getDeclarator().isObjCIvar() && !isFunctionOrMethod
) {
4851 complainAboutMissingNullability
= CAMN_No
;
4855 // Weak properties are inferred to be nullable.
4856 if (state
.getDeclarator().isObjCWeakProperty()) {
4857 // Weak properties cannot be nonnull, and should not complain about
4858 // missing nullable attributes during completeness checks.
4859 complainAboutMissingNullability
= CAMN_No
;
4860 if (inAssumeNonNullRegion
) {
4861 inferNullability
= NullabilityKind::Nullable
;
4868 case DeclaratorContext::File
:
4869 case DeclaratorContext::KNRTypeList
: {
4870 complainAboutMissingNullability
= CAMN_Yes
;
4872 // Nullability inference depends on the type and declarator.
4873 auto wrappingKind
= PointerWrappingDeclaratorKind::None
;
4874 switch (classifyPointerDeclarator(S
, T
, D
, wrappingKind
)) {
4875 case PointerDeclaratorKind::NonPointer
:
4876 case PointerDeclaratorKind::MultiLevelPointer
:
4877 // Cannot infer nullability.
4880 case PointerDeclaratorKind::SingleLevelPointer
:
4881 // Infer _Nonnull if we are in an assumes-nonnull region.
4882 if (inAssumeNonNullRegion
) {
4883 complainAboutInferringWithinChunk
= wrappingKind
;
4884 inferNullability
= NullabilityKind::NonNull
;
4885 inferNullabilityCS
= (context
== DeclaratorContext::ObjCParameter
||
4886 context
== DeclaratorContext::ObjCResult
);
4890 case PointerDeclaratorKind::CFErrorRefPointer
:
4891 case PointerDeclaratorKind::NSErrorPointerPointer
:
4892 // Within a function or method signature, infer _Nullable at both
4894 if (isFunctionOrMethod
&& inAssumeNonNullRegion
)
4895 inferNullability
= NullabilityKind::Nullable
;
4898 case PointerDeclaratorKind::MaybePointerToCFRef
:
4899 if (isFunctionOrMethod
) {
4900 // On pointer-to-pointer parameters marked cf_returns_retained or
4901 // cf_returns_not_retained, if the outer pointer is explicit then
4902 // infer the inner pointer as _Nullable.
4903 auto hasCFReturnsAttr
=
4904 [](const ParsedAttributesView
&AttrList
) -> bool {
4905 return AttrList
.hasAttribute(ParsedAttr::AT_CFReturnsRetained
) ||
4906 AttrList
.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained
);
4908 if (const auto *InnermostChunk
= D
.getInnermostNonParenChunk()) {
4909 if (hasCFReturnsAttr(D
.getDeclarationAttributes()) ||
4910 hasCFReturnsAttr(D
.getAttributes()) ||
4911 hasCFReturnsAttr(InnermostChunk
->getAttrs()) ||
4912 hasCFReturnsAttr(D
.getDeclSpec().getAttributes())) {
4913 inferNullability
= NullabilityKind::Nullable
;
4914 inferNullabilityInnerOnly
= true;
4923 case DeclaratorContext::ConversionId
:
4924 complainAboutMissingNullability
= CAMN_Yes
;
4927 case DeclaratorContext::AliasDecl
:
4928 case DeclaratorContext::AliasTemplate
:
4929 case DeclaratorContext::Block
:
4930 case DeclaratorContext::BlockLiteral
:
4931 case DeclaratorContext::Condition
:
4932 case DeclaratorContext::CXXCatch
:
4933 case DeclaratorContext::CXXNew
:
4934 case DeclaratorContext::ForInit
:
4935 case DeclaratorContext::SelectionInit
:
4936 case DeclaratorContext::LambdaExpr
:
4937 case DeclaratorContext::LambdaExprParameter
:
4938 case DeclaratorContext::ObjCCatch
:
4939 case DeclaratorContext::TemplateParam
:
4940 case DeclaratorContext::TemplateArg
:
4941 case DeclaratorContext::TemplateTypeArg
:
4942 case DeclaratorContext::TypeName
:
4943 case DeclaratorContext::FunctionalCast
:
4944 case DeclaratorContext::RequiresExpr
:
4945 case DeclaratorContext::Association
:
4946 // Don't infer in these contexts.
4951 // Local function that returns true if its argument looks like a va_list.
4952 auto isVaList
= [&S
](QualType T
) -> bool {
4953 auto *typedefTy
= T
->getAs
<TypedefType
>();
4956 TypedefDecl
*vaListTypedef
= S
.Context
.getBuiltinVaListDecl();
4958 if (typedefTy
->getDecl() == vaListTypedef
)
4960 if (auto *name
= typedefTy
->getDecl()->getIdentifier())
4961 if (name
->isStr("va_list"))
4963 typedefTy
= typedefTy
->desugar()->getAs
<TypedefType
>();
4964 } while (typedefTy
);
4968 // Local function that checks the nullability for a given pointer declarator.
4969 // Returns true if _Nonnull was inferred.
4970 auto inferPointerNullability
=
4971 [&](SimplePointerKind pointerKind
, SourceLocation pointerLoc
,
4972 SourceLocation pointerEndLoc
,
4973 ParsedAttributesView
&attrs
, AttributePool
&Pool
) -> ParsedAttr
* {
4974 // We've seen a pointer.
4975 if (NumPointersRemaining
> 0)
4976 --NumPointersRemaining
;
4978 // If a nullability attribute is present, there's nothing to do.
4979 if (hasNullabilityAttr(attrs
))
4982 // If we're supposed to infer nullability, do so now.
4983 if (inferNullability
&& !inferNullabilityInnerOnlyComplete
) {
4984 ParsedAttr::Form form
=
4986 ? ParsedAttr::Form::ContextSensitiveKeyword()
4987 : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4988 false /*IsRegularKeywordAttribute*/);
4989 ParsedAttr
*nullabilityAttr
= Pool
.create(
4990 S
.getNullabilityKeyword(*inferNullability
), SourceRange(pointerLoc
),
4991 nullptr, SourceLocation(), nullptr, 0, form
);
4993 attrs
.addAtEnd(nullabilityAttr
);
4995 if (inferNullabilityCS
) {
4996 state
.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4997 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability
);
5000 if (pointerLoc
.isValid() &&
5001 complainAboutInferringWithinChunk
!=
5002 PointerWrappingDeclaratorKind::None
) {
5004 S
.Diag(pointerLoc
, diag::warn_nullability_inferred_on_nested_type
);
5005 Diag
<< static_cast<int>(complainAboutInferringWithinChunk
);
5006 fixItNullability(S
, Diag
, pointerLoc
, NullabilityKind::NonNull
);
5009 if (inferNullabilityInnerOnly
)
5010 inferNullabilityInnerOnlyComplete
= true;
5011 return nullabilityAttr
;
5014 // If we're supposed to complain about missing nullability, do so
5015 // now if it's truly missing.
5016 switch (complainAboutMissingNullability
) {
5020 case CAMN_InnerPointers
:
5021 if (NumPointersRemaining
== 0)
5026 checkNullabilityConsistency(S
, pointerKind
, pointerLoc
, pointerEndLoc
);
5031 // If the type itself could have nullability but does not, infer pointer
5032 // nullability and perform consistency checking.
5033 if (S
.CodeSynthesisContexts
.empty()) {
5034 if (T
->canHaveNullability(/*ResultIfUnknown*/ false) &&
5035 !T
->getNullability()) {
5037 // Record that we've seen a pointer, but do nothing else.
5038 if (NumPointersRemaining
> 0)
5039 --NumPointersRemaining
;
5041 SimplePointerKind pointerKind
= SimplePointerKind::Pointer
;
5042 if (T
->isBlockPointerType())
5043 pointerKind
= SimplePointerKind::BlockPointer
;
5044 else if (T
->isMemberPointerType())
5045 pointerKind
= SimplePointerKind::MemberPointer
;
5047 if (auto *attr
= inferPointerNullability(
5048 pointerKind
, D
.getDeclSpec().getTypeSpecTypeLoc(),
5049 D
.getDeclSpec().getEndLoc(),
5050 D
.getMutableDeclSpec().getAttributes(),
5051 D
.getMutableDeclSpec().getAttributePool())) {
5052 T
= state
.getAttributedType(
5053 createNullabilityAttr(Context
, *attr
, *inferNullability
), T
, T
);
5058 if (complainAboutMissingNullability
== CAMN_Yes
&& T
->isArrayType() &&
5059 !T
->getNullability() && !isVaList(T
) && D
.isPrototypeContext() &&
5060 !hasOuterPointerLikeChunk(D
, D
.getNumTypeObjects())) {
5061 checkNullabilityConsistency(S
, SimplePointerKind::Array
,
5062 D
.getDeclSpec().getTypeSpecTypeLoc());
5066 bool ExpectNoDerefChunk
=
5067 state
.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref
);
5069 // Walk the DeclTypeInfo, building the recursive type as we go.
5070 // DeclTypeInfos are ordered from the identifier out, which is
5071 // opposite of what we want :).
5073 // Track if the produced type matches the structure of the declarator.
5074 // This is used later to decide if we can fill `TypeLoc` from
5075 // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
5076 // an error by replacing the type with `int`.
5077 bool AreDeclaratorChunksValid
= true;
5078 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
5079 unsigned chunkIndex
= e
- i
- 1;
5080 state
.setCurrentChunkIndex(chunkIndex
);
5081 DeclaratorChunk
&DeclType
= D
.getTypeObject(chunkIndex
);
5082 IsQualifiedFunction
&= DeclType
.Kind
== DeclaratorChunk::Paren
;
5083 switch (DeclType
.Kind
) {
5084 case DeclaratorChunk::Paren
:
5086 warnAboutRedundantParens(S
, D
, T
);
5087 T
= S
.BuildParenType(T
);
5089 case DeclaratorChunk::BlockPointer
:
5090 // If blocks are disabled, emit an error.
5091 if (!LangOpts
.Blocks
)
5092 S
.Diag(DeclType
.Loc
, diag::err_blocks_disable
) << LangOpts
.OpenCL
;
5094 // Handle pointer nullability.
5095 inferPointerNullability(SimplePointerKind::BlockPointer
, DeclType
.Loc
,
5096 DeclType
.EndLoc
, DeclType
.getAttrs(),
5097 state
.getDeclarator().getAttributePool());
5099 T
= S
.BuildBlockPointerType(T
, D
.getIdentifierLoc(), Name
);
5100 if (DeclType
.Cls
.TypeQuals
|| LangOpts
.OpenCL
) {
5101 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
5102 // qualified with const.
5103 if (LangOpts
.OpenCL
)
5104 DeclType
.Cls
.TypeQuals
|= DeclSpec::TQ_const
;
5105 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Cls
.TypeQuals
);
5108 case DeclaratorChunk::Pointer
:
5109 // Verify that we're not building a pointer to pointer to function with
5110 // exception specification.
5111 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
5112 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
5113 D
.setInvalidType(true);
5114 // Build the type anyway.
5117 // Handle pointer nullability
5118 inferPointerNullability(SimplePointerKind::Pointer
, DeclType
.Loc
,
5119 DeclType
.EndLoc
, DeclType
.getAttrs(),
5120 state
.getDeclarator().getAttributePool());
5122 if (LangOpts
.ObjC
&& T
->getAs
<ObjCObjectType
>()) {
5123 T
= Context
.getObjCObjectPointerType(T
);
5124 if (DeclType
.Ptr
.TypeQuals
)
5125 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Ptr
.TypeQuals
);
5129 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
5130 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
5131 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
5132 if (LangOpts
.OpenCL
) {
5133 if (T
->isImageType() || T
->isSamplerT() || T
->isPipeType() ||
5134 T
->isBlockPointerType()) {
5135 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_pointer_to_type
) << T
;
5136 D
.setInvalidType(true);
5140 T
= S
.BuildPointerType(T
, DeclType
.Loc
, Name
);
5141 if (DeclType
.Ptr
.TypeQuals
)
5142 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Ptr
.TypeQuals
);
5144 case DeclaratorChunk::Reference
: {
5145 // Verify that we're not building a reference to pointer to function with
5146 // exception specification.
5147 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
5148 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
5149 D
.setInvalidType(true);
5150 // Build the type anyway.
5152 T
= S
.BuildReferenceType(T
, DeclType
.Ref
.LValueRef
, DeclType
.Loc
, Name
);
5154 if (DeclType
.Ref
.HasRestrict
)
5155 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, Qualifiers::Restrict
);
5158 case DeclaratorChunk::Array
: {
5159 // Verify that we're not building an array of pointers to function with
5160 // exception specification.
5161 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
5162 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
5163 D
.setInvalidType(true);
5164 // Build the type anyway.
5166 DeclaratorChunk::ArrayTypeInfo
&ATI
= DeclType
.Arr
;
5167 Expr
*ArraySize
= static_cast<Expr
*>(ATI
.NumElts
);
5168 ArraySizeModifier ASM
;
5170 // Microsoft property fields can have multiple sizeless array chunks
5171 // (i.e. int x[][][]). Skip all of these except one to avoid creating
5172 // bad incomplete array types.
5173 if (chunkIndex
!= 0 && !ArraySize
&&
5174 D
.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
5175 // This is a sizeless chunk. If the next is also, skip this one.
5176 DeclaratorChunk
&NextDeclType
= D
.getTypeObject(chunkIndex
- 1);
5177 if (NextDeclType
.Kind
== DeclaratorChunk::Array
&&
5178 !NextDeclType
.Arr
.NumElts
)
5183 ASM
= ArraySizeModifier::Star
;
5184 else if (ATI
.hasStatic
)
5185 ASM
= ArraySizeModifier::Static
;
5187 ASM
= ArraySizeModifier::Normal
;
5188 if (ASM
== ArraySizeModifier::Star
&& !D
.isPrototypeContext()) {
5189 // FIXME: This check isn't quite right: it allows star in prototypes
5190 // for function definitions, and disallows some edge cases detailed
5191 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
5192 S
.Diag(DeclType
.Loc
, diag::err_array_star_outside_prototype
);
5193 ASM
= ArraySizeModifier::Normal
;
5194 D
.setInvalidType(true);
5197 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
5198 // shall appear only in a declaration of a function parameter with an
5200 if (ASM
== ArraySizeModifier::Static
|| ATI
.TypeQuals
) {
5201 if (!(D
.isPrototypeContext() ||
5202 D
.getContext() == DeclaratorContext::KNRTypeList
)) {
5203 S
.Diag(DeclType
.Loc
, diag::err_array_static_outside_prototype
)
5204 << (ASM
== ArraySizeModifier::Static
? "'static'"
5205 : "type qualifier");
5206 // Remove the 'static' and the type qualifiers.
5207 if (ASM
== ArraySizeModifier::Static
)
5208 ASM
= ArraySizeModifier::Normal
;
5210 D
.setInvalidType(true);
5213 // C99 6.7.5.2p1: ... and then only in the outermost array type
5215 if (hasOuterPointerLikeChunk(D
, chunkIndex
)) {
5216 S
.Diag(DeclType
.Loc
, diag::err_array_static_not_outermost
)
5217 << (ASM
== ArraySizeModifier::Static
? "'static'"
5218 : "type qualifier");
5219 if (ASM
== ArraySizeModifier::Static
)
5220 ASM
= ArraySizeModifier::Normal
;
5222 D
.setInvalidType(true);
5226 // Array parameters can be marked nullable as well, although it's not
5227 // necessary if they're marked 'static'.
5228 if (complainAboutMissingNullability
== CAMN_Yes
&&
5229 !hasNullabilityAttr(DeclType
.getAttrs()) &&
5230 ASM
!= ArraySizeModifier::Static
&& D
.isPrototypeContext() &&
5231 !hasOuterPointerLikeChunk(D
, chunkIndex
)) {
5232 checkNullabilityConsistency(S
, SimplePointerKind::Array
, DeclType
.Loc
);
5235 T
= S
.BuildArrayType(T
, ASM
, ArraySize
, ATI
.TypeQuals
,
5236 SourceRange(DeclType
.Loc
, DeclType
.EndLoc
), Name
);
5239 case DeclaratorChunk::Function
: {
5240 // If the function declarator has a prototype (i.e. it is not () and
5241 // does not have a K&R-style identifier list), then the arguments are part
5242 // of the type, otherwise the argument list is ().
5243 DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
5244 IsQualifiedFunction
=
5245 FTI
.hasMethodTypeQualifiers() || FTI
.hasRefQualifier();
5247 // Check for auto functions and trailing return type and adjust the
5248 // return type accordingly.
5249 if (!D
.isInvalidType()) {
5250 // trailing-return-type is only required if we're declaring a function,
5251 // and not, for instance, a pointer to a function.
5252 if (D
.getDeclSpec().hasAutoTypeSpec() &&
5253 !FTI
.hasTrailingReturnType() && chunkIndex
== 0) {
5254 if (!S
.getLangOpts().CPlusPlus14
) {
5255 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5256 D
.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
5257 ? diag::err_auto_missing_trailing_return
5258 : diag::err_deduced_return_type
);
5260 D
.setInvalidType(true);
5261 AreDeclaratorChunksValid
= false;
5263 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5264 diag::warn_cxx11_compat_deduced_return_type
);
5266 } else if (FTI
.hasTrailingReturnType()) {
5267 // T must be exactly 'auto' at this point. See CWG issue 681.
5268 if (isa
<ParenType
>(T
)) {
5269 S
.Diag(D
.getBeginLoc(), diag::err_trailing_return_in_parens
)
5270 << T
<< D
.getSourceRange();
5271 D
.setInvalidType(true);
5272 // FIXME: recover and fill decls in `TypeLoc`s.
5273 AreDeclaratorChunksValid
= false;
5274 } else if (D
.getName().getKind() ==
5275 UnqualifiedIdKind::IK_DeductionGuideName
) {
5276 if (T
!= Context
.DependentTy
) {
5277 S
.Diag(D
.getDeclSpec().getBeginLoc(),
5278 diag::err_deduction_guide_with_complex_decl
)
5279 << D
.getSourceRange();
5280 D
.setInvalidType(true);
5281 // FIXME: recover and fill decls in `TypeLoc`s.
5282 AreDeclaratorChunksValid
= false;
5284 } else if (D
.getContext() != DeclaratorContext::LambdaExpr
&&
5285 (T
.hasQualifiers() || !isa
<AutoType
>(T
) ||
5286 cast
<AutoType
>(T
)->getKeyword() !=
5287 AutoTypeKeyword::Auto
||
5288 cast
<AutoType
>(T
)->isConstrained())) {
5289 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5290 diag::err_trailing_return_without_auto
)
5291 << T
<< D
.getDeclSpec().getSourceRange();
5292 D
.setInvalidType(true);
5293 // FIXME: recover and fill decls in `TypeLoc`s.
5294 AreDeclaratorChunksValid
= false;
5296 T
= S
.GetTypeFromParser(FTI
.getTrailingReturnType(), &TInfo
);
5298 // An error occurred parsing the trailing return type.
5300 D
.setInvalidType(true);
5301 } else if (AutoType
*Auto
= T
->getContainedAutoType()) {
5302 // If the trailing return type contains an `auto`, we may need to
5303 // invent a template parameter for it, for cases like
5304 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5305 InventedTemplateParameterInfo
*InventedParamInfo
= nullptr;
5306 if (D
.getContext() == DeclaratorContext::Prototype
)
5307 InventedParamInfo
= &S
.InventedParameterInfos
.back();
5308 else if (D
.getContext() == DeclaratorContext::LambdaExprParameter
)
5309 InventedParamInfo
= S
.getCurLambda();
5310 if (InventedParamInfo
) {
5311 std::tie(T
, TInfo
) = InventTemplateParameter(
5312 state
, T
, TInfo
, Auto
, *InventedParamInfo
);
5316 // This function type is not the type of the entity being declared,
5317 // so checking the 'auto' is not the responsibility of this chunk.
5321 // C99 6.7.5.3p1: The return type may not be a function or array type.
5322 // For conversion functions, we'll diagnose this particular error later.
5323 if (!D
.isInvalidType() && (T
->isArrayType() || T
->isFunctionType()) &&
5324 (D
.getName().getKind() !=
5325 UnqualifiedIdKind::IK_ConversionFunctionId
)) {
5326 unsigned diagID
= diag::err_func_returning_array_function
;
5327 // Last processing chunk in block context means this function chunk
5328 // represents the block.
5329 if (chunkIndex
== 0 &&
5330 D
.getContext() == DeclaratorContext::BlockLiteral
)
5331 diagID
= diag::err_block_returning_array_function
;
5332 S
.Diag(DeclType
.Loc
, diagID
) << T
->isFunctionType() << T
;
5334 D
.setInvalidType(true);
5335 AreDeclaratorChunksValid
= false;
5338 // Do not allow returning half FP value.
5339 // FIXME: This really should be in BuildFunctionType.
5340 if (T
->isHalfType()) {
5341 if (S
.getLangOpts().OpenCL
) {
5342 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5344 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_invalid_return
)
5345 << T
<< 0 /*pointer hint*/;
5346 D
.setInvalidType(true);
5348 } else if (!S
.getLangOpts().NativeHalfArgsAndReturns
&&
5349 !S
.Context
.getTargetInfo().allowHalfArgsAndReturns()) {
5350 S
.Diag(D
.getIdentifierLoc(),
5351 diag::err_parameters_retval_cannot_have_fp16_type
) << 1;
5352 D
.setInvalidType(true);
5356 if (LangOpts
.OpenCL
) {
5357 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5359 if (T
->isBlockPointerType() || T
->isImageType() || T
->isSamplerT() ||
5361 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_invalid_return
)
5362 << T
<< 1 /*hint off*/;
5363 D
.setInvalidType(true);
5365 // OpenCL doesn't support variadic functions and blocks
5366 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5367 // We also allow here any toolchain reserved identifiers.
5368 if (FTI
.isVariadic
&&
5369 !S
.getOpenCLOptions().isAvailableOption(
5370 "__cl_clang_variadic_functions", S
.getLangOpts()) &&
5371 !(D
.getIdentifier() &&
5372 ((D
.getIdentifier()->getName() == "printf" &&
5373 LangOpts
.getOpenCLCompatibleVersion() >= 120) ||
5374 D
.getIdentifier()->getName().starts_with("__")))) {
5375 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_variadic_function
);
5376 D
.setInvalidType(true);
5380 // Methods cannot return interface types. All ObjC objects are
5381 // passed by reference.
5382 if (T
->isObjCObjectType()) {
5383 SourceLocation DiagLoc
, FixitLoc
;
5385 DiagLoc
= TInfo
->getTypeLoc().getBeginLoc();
5386 FixitLoc
= S
.getLocForEndOfToken(TInfo
->getTypeLoc().getEndLoc());
5388 DiagLoc
= D
.getDeclSpec().getTypeSpecTypeLoc();
5389 FixitLoc
= S
.getLocForEndOfToken(D
.getDeclSpec().getEndLoc());
5391 S
.Diag(DiagLoc
, diag::err_object_cannot_be_passed_returned_by_value
)
5393 << FixItHint::CreateInsertion(FixitLoc
, "*");
5395 T
= Context
.getObjCObjectPointerType(T
);
5398 TLB
.pushFullCopy(TInfo
->getTypeLoc());
5399 ObjCObjectPointerTypeLoc TLoc
= TLB
.push
<ObjCObjectPointerTypeLoc
>(T
);
5400 TLoc
.setStarLoc(FixitLoc
);
5401 TInfo
= TLB
.getTypeSourceInfo(Context
, T
);
5403 AreDeclaratorChunksValid
= false;
5406 D
.setInvalidType(true);
5409 // cv-qualifiers on return types are pointless except when the type is a
5410 // class type in C++.
5411 if ((T
.getCVRQualifiers() || T
->isAtomicType()) &&
5412 !(S
.getLangOpts().CPlusPlus
&&
5413 (T
->isDependentType() || T
->isRecordType()))) {
5414 if (T
->isVoidType() && !S
.getLangOpts().CPlusPlus
&&
5415 D
.getFunctionDefinitionKind() ==
5416 FunctionDefinitionKind::Definition
) {
5417 // [6.9.1/3] qualified void return is invalid on a C
5418 // function definition. Apparently ok on declarations and
5419 // in C++ though (!)
5420 S
.Diag(DeclType
.Loc
, diag::err_func_returning_qualified_void
) << T
;
5422 diagnoseRedundantReturnTypeQualifiers(S
, T
, D
, chunkIndex
);
5424 // C++2a [dcl.fct]p12:
5425 // A volatile-qualified return type is deprecated
5426 if (T
.isVolatileQualified() && S
.getLangOpts().CPlusPlus20
)
5427 S
.Diag(DeclType
.Loc
, diag::warn_deprecated_volatile_return
) << T
;
5430 // Objective-C ARC ownership qualifiers are ignored on the function
5431 // return type (by type canonicalization). Complain if this attribute
5432 // was written here.
5433 if (T
.getQualifiers().hasObjCLifetime()) {
5434 SourceLocation AttrLoc
;
5435 if (chunkIndex
+ 1 < D
.getNumTypeObjects()) {
5436 DeclaratorChunk ReturnTypeChunk
= D
.getTypeObject(chunkIndex
+ 1);
5437 for (const ParsedAttr
&AL
: ReturnTypeChunk
.getAttrs()) {
5438 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
5439 AttrLoc
= AL
.getLoc();
5444 if (AttrLoc
.isInvalid()) {
5445 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
5446 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
5447 AttrLoc
= AL
.getLoc();
5453 if (AttrLoc
.isValid()) {
5454 // The ownership attributes are almost always written via
5456 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5457 if (AttrLoc
.isMacroID())
5459 S
.SourceMgr
.getImmediateExpansionRange(AttrLoc
).getBegin();
5461 S
.Diag(AttrLoc
, diag::warn_arc_lifetime_result_type
)
5462 << T
.getQualifiers().getObjCLifetime();
5466 if (LangOpts
.CPlusPlus
&& D
.getDeclSpec().hasTagDefinition()) {
5468 // Types shall not be defined in return or parameter types.
5469 TagDecl
*Tag
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
5470 S
.Diag(Tag
->getLocation(), diag::err_type_defined_in_result_type
)
5471 << Context
.getTypeDeclType(Tag
);
5474 // Exception specs are not allowed in typedefs. Complain, but add it
5476 if (IsTypedefName
&& FTI
.getExceptionSpecType() && !LangOpts
.CPlusPlus17
)
5477 S
.Diag(FTI
.getExceptionSpecLocBeg(),
5478 diag::err_exception_spec_in_typedef
)
5479 << (D
.getContext() == DeclaratorContext::AliasDecl
||
5480 D
.getContext() == DeclaratorContext::AliasTemplate
);
5482 // If we see "T var();" or "T var(T());" at block scope, it is probably
5483 // an attempt to initialize a variable, not a function declaration.
5484 if (FTI
.isAmbiguous
)
5485 warnAboutAmbiguousFunction(S
, D
, DeclType
, T
);
5487 FunctionType::ExtInfo
EI(
5488 getCCForDeclaratorChunk(S
, D
, DeclType
.getAttrs(), FTI
, chunkIndex
));
5490 // OpenCL disallows functions without a prototype, but it doesn't enforce
5491 // strict prototypes as in C23 because it allows a function definition to
5492 // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5493 if (!FTI
.NumParams
&& !FTI
.isVariadic
&&
5494 !LangOpts
.requiresStrictPrototypes() && !LangOpts
.OpenCL
) {
5495 // Simple void foo(), where the incoming T is the result type.
5496 T
= Context
.getFunctionNoProtoType(T
, EI
);
5498 // We allow a zero-parameter variadic function in C if the
5499 // function is marked with the "overloadable" attribute. Scan
5500 // for this attribute now. We also allow it in C23 per WG14 N2975.
5501 if (!FTI
.NumParams
&& FTI
.isVariadic
&& !LangOpts
.CPlusPlus
) {
5503 S
.Diag(FTI
.getEllipsisLoc(),
5504 diag::warn_c17_compat_ellipsis_only_parameter
);
5505 else if (!D
.getDeclarationAttributes().hasAttribute(
5506 ParsedAttr::AT_Overloadable
) &&
5507 !D
.getAttributes().hasAttribute(
5508 ParsedAttr::AT_Overloadable
) &&
5509 !D
.getDeclSpec().getAttributes().hasAttribute(
5510 ParsedAttr::AT_Overloadable
))
5511 S
.Diag(FTI
.getEllipsisLoc(), diag::err_ellipsis_first_param
);
5514 if (FTI
.NumParams
&& FTI
.Params
[0].Param
== nullptr) {
5515 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5517 S
.Diag(FTI
.Params
[0].IdentLoc
,
5518 diag::err_ident_list_in_fn_declaration
);
5519 D
.setInvalidType(true);
5520 // Recover by creating a K&R-style function type, if possible.
5521 T
= (!LangOpts
.requiresStrictPrototypes() && !LangOpts
.OpenCL
)
5522 ? Context
.getFunctionNoProtoType(T
, EI
)
5524 AreDeclaratorChunksValid
= false;
5528 FunctionProtoType::ExtProtoInfo EPI
;
5530 EPI
.Variadic
= FTI
.isVariadic
;
5531 EPI
.EllipsisLoc
= FTI
.getEllipsisLoc();
5532 EPI
.HasTrailingReturn
= FTI
.hasTrailingReturnType();
5533 EPI
.TypeQuals
.addCVRUQualifiers(
5534 FTI
.MethodQualifiers
? FTI
.MethodQualifiers
->getTypeQualifiers()
5536 EPI
.RefQualifier
= !FTI
.hasRefQualifier()? RQ_None
5537 : FTI
.RefQualifierIsLValueRef
? RQ_LValue
5540 // Otherwise, we have a function with a parameter list that is
5541 // potentially variadic.
5542 SmallVector
<QualType
, 16> ParamTys
;
5543 ParamTys
.reserve(FTI
.NumParams
);
5545 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16>
5546 ExtParameterInfos(FTI
.NumParams
);
5547 bool HasAnyInterestingExtParameterInfos
= false;
5549 for (unsigned i
= 0, e
= FTI
.NumParams
; i
!= e
; ++i
) {
5550 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
5551 QualType ParamTy
= Param
->getType();
5552 assert(!ParamTy
.isNull() && "Couldn't parse type?");
5554 // Look for 'void'. void is allowed only as a single parameter to a
5555 // function with no other parameters (C99 6.7.5.3p10). We record
5556 // int(void) as a FunctionProtoType with an empty parameter list.
5557 if (ParamTy
->isVoidType()) {
5558 // If this is something like 'float(int, void)', reject it. 'void'
5559 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5560 // have parameters of incomplete type.
5561 if (FTI
.NumParams
!= 1 || FTI
.isVariadic
) {
5562 S
.Diag(FTI
.Params
[i
].IdentLoc
, diag::err_void_only_param
);
5563 ParamTy
= Context
.IntTy
;
5564 Param
->setType(ParamTy
);
5565 } else if (FTI
.Params
[i
].Ident
) {
5566 // Reject, but continue to parse 'int(void abc)'.
5567 S
.Diag(FTI
.Params
[i
].IdentLoc
, diag::err_param_with_void_type
);
5568 ParamTy
= Context
.IntTy
;
5569 Param
->setType(ParamTy
);
5571 // Reject, but continue to parse 'float(const void)'.
5572 if (ParamTy
.hasQualifiers())
5573 S
.Diag(DeclType
.Loc
, diag::err_void_param_qualified
);
5575 // Do not add 'void' to the list.
5578 } else if (ParamTy
->isHalfType()) {
5579 // Disallow half FP parameters.
5580 // FIXME: This really should be in BuildFunctionType.
5581 if (S
.getLangOpts().OpenCL
) {
5582 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5584 S
.Diag(Param
->getLocation(), diag::err_opencl_invalid_param
)
5587 Param
->setInvalidDecl();
5589 } else if (!S
.getLangOpts().NativeHalfArgsAndReturns
&&
5590 !S
.Context
.getTargetInfo().allowHalfArgsAndReturns()) {
5591 S
.Diag(Param
->getLocation(),
5592 diag::err_parameters_retval_cannot_have_fp16_type
) << 0;
5595 } else if (!FTI
.hasPrototype
) {
5596 if (Context
.isPromotableIntegerType(ParamTy
)) {
5597 ParamTy
= Context
.getPromotedIntegerType(ParamTy
);
5598 Param
->setKNRPromoted(true);
5599 } else if (const BuiltinType
*BTy
= ParamTy
->getAs
<BuiltinType
>()) {
5600 if (BTy
->getKind() == BuiltinType::Float
) {
5601 ParamTy
= Context
.DoubleTy
;
5602 Param
->setKNRPromoted(true);
5605 } else if (S
.getLangOpts().OpenCL
&& ParamTy
->isBlockPointerType()) {
5606 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5607 S
.Diag(Param
->getLocation(), diag::err_opencl_invalid_param
)
5608 << ParamTy
<< 1 /*hint off*/;
5612 if (LangOpts
.ObjCAutoRefCount
&& Param
->hasAttr
<NSConsumedAttr
>()) {
5613 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withIsConsumed(true);
5614 HasAnyInterestingExtParameterInfos
= true;
5617 if (auto attr
= Param
->getAttr
<ParameterABIAttr
>()) {
5618 ExtParameterInfos
[i
] =
5619 ExtParameterInfos
[i
].withABI(attr
->getABI());
5620 HasAnyInterestingExtParameterInfos
= true;
5623 if (Param
->hasAttr
<PassObjectSizeAttr
>()) {
5624 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withHasPassObjectSize();
5625 HasAnyInterestingExtParameterInfos
= true;
5628 if (Param
->hasAttr
<NoEscapeAttr
>()) {
5629 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withIsNoEscape(true);
5630 HasAnyInterestingExtParameterInfos
= true;
5633 ParamTys
.push_back(ParamTy
);
5636 if (HasAnyInterestingExtParameterInfos
) {
5637 EPI
.ExtParameterInfos
= ExtParameterInfos
.data();
5638 checkExtParameterInfos(S
, ParamTys
, EPI
,
5639 [&](unsigned i
) { return FTI
.Params
[i
].Param
->getLocation(); });
5642 SmallVector
<QualType
, 4> Exceptions
;
5643 SmallVector
<ParsedType
, 2> DynamicExceptions
;
5644 SmallVector
<SourceRange
, 2> DynamicExceptionRanges
;
5645 Expr
*NoexceptExpr
= nullptr;
5647 if (FTI
.getExceptionSpecType() == EST_Dynamic
) {
5648 // FIXME: It's rather inefficient to have to split into two vectors
5650 unsigned N
= FTI
.getNumExceptions();
5651 DynamicExceptions
.reserve(N
);
5652 DynamicExceptionRanges
.reserve(N
);
5653 for (unsigned I
= 0; I
!= N
; ++I
) {
5654 DynamicExceptions
.push_back(FTI
.Exceptions
[I
].Ty
);
5655 DynamicExceptionRanges
.push_back(FTI
.Exceptions
[I
].Range
);
5657 } else if (isComputedNoexcept(FTI
.getExceptionSpecType())) {
5658 NoexceptExpr
= FTI
.NoexceptExpr
;
5661 S
.checkExceptionSpecification(D
.isFunctionDeclarationContext(),
5662 FTI
.getExceptionSpecType(),
5664 DynamicExceptionRanges
,
5669 // FIXME: Set address space from attrs for C++ mode here.
5670 // OpenCLCPlusPlus: A class member function has an address space.
5671 auto IsClassMember
= [&]() {
5672 return (!state
.getDeclarator().getCXXScopeSpec().isEmpty() &&
5673 state
.getDeclarator()
5676 ->getKind() == NestedNameSpecifier::TypeSpec
) ||
5677 state
.getDeclarator().getContext() ==
5678 DeclaratorContext::Member
||
5679 state
.getDeclarator().getContext() ==
5680 DeclaratorContext::LambdaExpr
;
5683 if (state
.getSema().getLangOpts().OpenCLCPlusPlus
&& IsClassMember()) {
5684 LangAS ASIdx
= LangAS::Default
;
5685 // Take address space attr if any and mark as invalid to avoid adding
5686 // them later while creating QualType.
5687 if (FTI
.MethodQualifiers
)
5688 for (ParsedAttr
&attr
: FTI
.MethodQualifiers
->getAttributes()) {
5689 LangAS ASIdxNew
= attr
.asOpenCLLangAS();
5690 if (DiagnoseMultipleAddrSpaceAttributes(S
, ASIdx
, ASIdxNew
,
5692 D
.setInvalidType(true);
5696 // If a class member function's address space is not set, set it to
5699 (ASIdx
== LangAS::Default
? S
.getDefaultCXXMethodAddrSpace()
5701 EPI
.TypeQuals
.addAddressSpace(AS
);
5703 T
= Context
.getFunctionType(T
, ParamTys
, EPI
);
5707 case DeclaratorChunk::MemberPointer
: {
5708 // The scope spec must refer to a class, or be dependent.
5709 CXXScopeSpec
&SS
= DeclType
.Mem
.Scope();
5712 // Handle pointer nullability.
5713 inferPointerNullability(SimplePointerKind::MemberPointer
, DeclType
.Loc
,
5714 DeclType
.EndLoc
, DeclType
.getAttrs(),
5715 state
.getDeclarator().getAttributePool());
5717 if (SS
.isInvalid()) {
5718 // Avoid emitting extra errors if we already errored on the scope.
5719 D
.setInvalidType(true);
5720 } else if (S
.isDependentScopeSpecifier(SS
) ||
5721 isa_and_nonnull
<CXXRecordDecl
>(S
.computeDeclContext(SS
))) {
5722 NestedNameSpecifier
*NNS
= SS
.getScopeRep();
5723 NestedNameSpecifier
*NNSPrefix
= NNS
->getPrefix();
5724 switch (NNS
->getKind()) {
5725 case NestedNameSpecifier::Identifier
:
5726 ClsType
= Context
.getDependentNameType(
5727 ElaboratedTypeKeyword::None
, NNSPrefix
, NNS
->getAsIdentifier());
5730 case NestedNameSpecifier::Namespace
:
5731 case NestedNameSpecifier::NamespaceAlias
:
5732 case NestedNameSpecifier::Global
:
5733 case NestedNameSpecifier::Super
:
5734 llvm_unreachable("Nested-name-specifier must name a type");
5736 case NestedNameSpecifier::TypeSpec
:
5737 case NestedNameSpecifier::TypeSpecWithTemplate
:
5738 ClsType
= QualType(NNS
->getAsType(), 0);
5739 // Note: if the NNS has a prefix and ClsType is a nondependent
5740 // TemplateSpecializationType, then the NNS prefix is NOT included
5741 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5742 // NOTE: in particular, no wrap occurs if ClsType already is an
5743 // Elaborated, DependentName, or DependentTemplateSpecialization.
5744 if (isa
<TemplateSpecializationType
>(NNS
->getAsType()))
5745 ClsType
= Context
.getElaboratedType(ElaboratedTypeKeyword::None
,
5746 NNSPrefix
, ClsType
);
5750 S
.Diag(DeclType
.Mem
.Scope().getBeginLoc(),
5751 diag::err_illegal_decl_mempointer_in_nonclass
)
5752 << (D
.getIdentifier() ? D
.getIdentifier()->getName() : "type name")
5753 << DeclType
.Mem
.Scope().getRange();
5754 D
.setInvalidType(true);
5757 if (!ClsType
.isNull())
5758 T
= S
.BuildMemberPointerType(T
, ClsType
, DeclType
.Loc
,
5761 AreDeclaratorChunksValid
= false;
5765 D
.setInvalidType(true);
5766 AreDeclaratorChunksValid
= false;
5767 } else if (DeclType
.Mem
.TypeQuals
) {
5768 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Mem
.TypeQuals
);
5773 case DeclaratorChunk::Pipe
: {
5774 T
= S
.BuildReadPipeType(T
, DeclType
.Loc
);
5775 processTypeAttrs(state
, T
, TAL_DeclSpec
,
5776 D
.getMutableDeclSpec().getAttributes());
5782 D
.setInvalidType(true);
5784 AreDeclaratorChunksValid
= false;
5787 // See if there are any attributes on this declarator chunk.
5788 processTypeAttrs(state
, T
, TAL_DeclChunk
, DeclType
.getAttrs(),
5789 S
.IdentifyCUDATarget(D
.getAttributes()));
5791 if (DeclType
.Kind
!= DeclaratorChunk::Paren
) {
5792 if (ExpectNoDerefChunk
&& !IsNoDerefableChunk(DeclType
))
5793 S
.Diag(DeclType
.Loc
, diag::warn_noderef_on_non_pointer_or_array
);
5795 ExpectNoDerefChunk
= state
.didParseNoDeref();
5799 if (ExpectNoDerefChunk
)
5800 S
.Diag(state
.getDeclarator().getBeginLoc(),
5801 diag::warn_noderef_on_non_pointer_or_array
);
5803 // GNU warning -Wstrict-prototypes
5804 // Warn if a function declaration or definition is without a prototype.
5805 // This warning is issued for all kinds of unprototyped function
5806 // declarations (i.e. function type typedef, function pointer etc.)
5808 // The empty list in a function declarator that is not part of a definition
5809 // of that function specifies that no information about the number or types
5810 // of the parameters is supplied.
5811 // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5812 // function declarations whose behavior changes in C23.
5813 if (!LangOpts
.requiresStrictPrototypes()) {
5814 bool IsBlock
= false;
5815 for (const DeclaratorChunk
&DeclType
: D
.type_objects()) {
5816 switch (DeclType
.Kind
) {
5817 case DeclaratorChunk::BlockPointer
:
5820 case DeclaratorChunk::Function
: {
5821 const DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
5822 // We suppress the warning when there's no LParen location, as this
5823 // indicates the declaration was an implicit declaration, which gets
5824 // warned about separately via -Wimplicit-function-declaration. We also
5825 // suppress the warning when we know the function has a prototype.
5826 if (!FTI
.hasPrototype
&& FTI
.NumParams
== 0 && !FTI
.isVariadic
&&
5827 FTI
.getLParenLoc().isValid())
5828 S
.Diag(DeclType
.Loc
, diag::warn_strict_prototypes
)
5830 << FixItHint::CreateInsertion(FTI
.getRParenLoc(), "void");
5840 assert(!T
.isNull() && "T must not be null after this point");
5842 if (LangOpts
.CPlusPlus
&& T
->isFunctionType()) {
5843 const FunctionProtoType
*FnTy
= T
->getAs
<FunctionProtoType
>();
5844 assert(FnTy
&& "Why oh why is there not a FunctionProtoType here?");
5847 // A cv-qualifier-seq shall only be part of the function type
5848 // for a nonstatic member function, the function type to which a pointer
5849 // to member refers, or the top-level function type of a function typedef
5852 // Core issue 547 also allows cv-qualifiers on function types that are
5853 // top-level template type arguments.
5857 ExplicitObjectMember
,
5860 if (D
.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName
)
5861 Kind
= DeductionGuide
;
5862 else if (!D
.getCXXScopeSpec().isSet()) {
5863 if ((D
.getContext() == DeclaratorContext::Member
||
5864 D
.getContext() == DeclaratorContext::LambdaExpr
) &&
5865 !D
.getDeclSpec().isFriendSpecified())
5868 DeclContext
*DC
= S
.computeDeclContext(D
.getCXXScopeSpec());
5869 if (!DC
|| DC
->isRecord())
5873 if (Kind
== Member
) {
5875 if (D
.isFunctionDeclarator(I
)) {
5876 const DeclaratorChunk
&Chunk
= D
.getTypeObject(I
);
5877 if (Chunk
.Fun
.NumParams
) {
5878 auto *P
= dyn_cast_or_null
<ParmVarDecl
>(Chunk
.Fun
.Params
->Param
);
5879 if (P
&& P
->isExplicitObjectParameter())
5880 Kind
= ExplicitObjectMember
;
5885 // C++11 [dcl.fct]p6 (w/DR1417):
5886 // An attempt to specify a function type with a cv-qualifier-seq or a
5887 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5888 // - the function type for a non-static member function,
5889 // - the function type to which a pointer to member refers,
5890 // - the top-level function type of a function typedef declaration or
5891 // alias-declaration,
5892 // - the type-id in the default argument of a type-parameter, or
5893 // - the type-id of a template-argument for a type-parameter
5895 // FIXME: Checking this here is insufficient. We accept-invalid on:
5897 // template<typename T> struct S { void f(T); };
5898 // S<int() const> s;
5900 // ... for instance.
5901 if (IsQualifiedFunction
&&
5902 !(Kind
== Member
&& !D
.isExplicitObjectMemberFunction() &&
5903 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static
) &&
5904 !IsTypedefName
&& D
.getContext() != DeclaratorContext::TemplateArg
&&
5905 D
.getContext() != DeclaratorContext::TemplateTypeArg
) {
5906 SourceLocation Loc
= D
.getBeginLoc();
5907 SourceRange RemovalRange
;
5909 if (D
.isFunctionDeclarator(I
)) {
5910 SmallVector
<SourceLocation
, 4> RemovalLocs
;
5911 const DeclaratorChunk
&Chunk
= D
.getTypeObject(I
);
5912 assert(Chunk
.Kind
== DeclaratorChunk::Function
);
5914 if (Chunk
.Fun
.hasRefQualifier())
5915 RemovalLocs
.push_back(Chunk
.Fun
.getRefQualifierLoc());
5917 if (Chunk
.Fun
.hasMethodTypeQualifiers())
5918 Chunk
.Fun
.MethodQualifiers
->forEachQualifier(
5919 [&](DeclSpec::TQ TypeQual
, StringRef QualName
,
5920 SourceLocation SL
) { RemovalLocs
.push_back(SL
); });
5922 if (!RemovalLocs
.empty()) {
5923 llvm::sort(RemovalLocs
,
5924 BeforeThanCompare
<SourceLocation
>(S
.getSourceManager()));
5925 RemovalRange
= SourceRange(RemovalLocs
.front(), RemovalLocs
.back());
5926 Loc
= RemovalLocs
.front();
5930 S
.Diag(Loc
, diag::err_invalid_qualified_function_type
)
5931 << Kind
<< D
.isFunctionDeclarator() << T
5932 << getFunctionQualifiersAsString(FnTy
)
5933 << FixItHint::CreateRemoval(RemovalRange
);
5935 // Strip the cv-qualifiers and ref-qualifiers from the type.
5936 FunctionProtoType::ExtProtoInfo EPI
= FnTy
->getExtProtoInfo();
5937 EPI
.TypeQuals
.removeCVRQualifiers();
5938 EPI
.RefQualifier
= RQ_None
;
5940 T
= Context
.getFunctionType(FnTy
->getReturnType(), FnTy
->getParamTypes(),
5942 // Rebuild any parens around the identifier in the function type.
5943 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
5944 if (D
.getTypeObject(i
).Kind
!= DeclaratorChunk::Paren
)
5946 T
= S
.BuildParenType(T
);
5951 // Apply any undistributed attributes from the declaration or declarator.
5952 ParsedAttributesView NonSlidingAttrs
;
5953 for (ParsedAttr
&AL
: D
.getDeclarationAttributes()) {
5954 if (!AL
.slidesFromDeclToDeclSpecLegacyBehavior()) {
5955 NonSlidingAttrs
.addAtEnd(&AL
);
5958 processTypeAttrs(state
, T
, TAL_DeclName
, NonSlidingAttrs
);
5959 processTypeAttrs(state
, T
, TAL_DeclName
, D
.getAttributes());
5961 // Diagnose any ignored type attributes.
5962 state
.diagnoseIgnoredTypeAttrs(T
);
5964 // C++0x [dcl.constexpr]p9:
5965 // A constexpr specifier used in an object declaration declares the object
5967 if (D
.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr
&&
5971 // C++2a [dcl.fct]p4:
5972 // A parameter with volatile-qualified type is deprecated
5973 if (T
.isVolatileQualified() && S
.getLangOpts().CPlusPlus20
&&
5974 (D
.getContext() == DeclaratorContext::Prototype
||
5975 D
.getContext() == DeclaratorContext::LambdaExprParameter
))
5976 S
.Diag(D
.getIdentifierLoc(), diag::warn_deprecated_volatile_param
) << T
;
5978 // If there was an ellipsis in the declarator, the declaration declares a
5979 // parameter pack whose type may be a pack expansion type.
5980 if (D
.hasEllipsis()) {
5981 // C++0x [dcl.fct]p13:
5982 // A declarator-id or abstract-declarator containing an ellipsis shall
5983 // only be used in a parameter-declaration. Such a parameter-declaration
5984 // is a parameter pack (14.5.3). [...]
5985 switch (D
.getContext()) {
5986 case DeclaratorContext::Prototype
:
5987 case DeclaratorContext::LambdaExprParameter
:
5988 case DeclaratorContext::RequiresExpr
:
5989 // C++0x [dcl.fct]p13:
5990 // [...] When it is part of a parameter-declaration-clause, the
5991 // parameter pack is a function parameter pack (14.5.3). The type T
5992 // of the declarator-id of the function parameter pack shall contain
5993 // a template parameter pack; each template parameter pack in T is
5994 // expanded by the function parameter pack.
5996 // We represent function parameter packs as function parameters whose
5997 // type is a pack expansion.
5998 if (!T
->containsUnexpandedParameterPack() &&
5999 (!LangOpts
.CPlusPlus20
|| !T
->getContainedAutoType())) {
6000 S
.Diag(D
.getEllipsisLoc(),
6001 diag::err_function_parameter_pack_without_parameter_packs
)
6002 << T
<< D
.getSourceRange();
6003 D
.setEllipsisLoc(SourceLocation());
6005 T
= Context
.getPackExpansionType(T
, std::nullopt
,
6006 /*ExpectPackInType=*/false);
6009 case DeclaratorContext::TemplateParam
:
6010 // C++0x [temp.param]p15:
6011 // If a template-parameter is a [...] is a parameter-declaration that
6012 // declares a parameter pack (8.3.5), then the template-parameter is a
6013 // template parameter pack (14.5.3).
6015 // Note: core issue 778 clarifies that, if there are any unexpanded
6016 // parameter packs in the type of the non-type template parameter, then
6017 // it expands those parameter packs.
6018 if (T
->containsUnexpandedParameterPack())
6019 T
= Context
.getPackExpansionType(T
, std::nullopt
);
6021 S
.Diag(D
.getEllipsisLoc(),
6022 LangOpts
.CPlusPlus11
6023 ? diag::warn_cxx98_compat_variadic_templates
6024 : diag::ext_variadic_templates
);
6027 case DeclaratorContext::File
:
6028 case DeclaratorContext::KNRTypeList
:
6029 case DeclaratorContext::ObjCParameter
: // FIXME: special diagnostic here?
6030 case DeclaratorContext::ObjCResult
: // FIXME: special diagnostic here?
6031 case DeclaratorContext::TypeName
:
6032 case DeclaratorContext::FunctionalCast
:
6033 case DeclaratorContext::CXXNew
:
6034 case DeclaratorContext::AliasDecl
:
6035 case DeclaratorContext::AliasTemplate
:
6036 case DeclaratorContext::Member
:
6037 case DeclaratorContext::Block
:
6038 case DeclaratorContext::ForInit
:
6039 case DeclaratorContext::SelectionInit
:
6040 case DeclaratorContext::Condition
:
6041 case DeclaratorContext::CXXCatch
:
6042 case DeclaratorContext::ObjCCatch
:
6043 case DeclaratorContext::BlockLiteral
:
6044 case DeclaratorContext::LambdaExpr
:
6045 case DeclaratorContext::ConversionId
:
6046 case DeclaratorContext::TrailingReturn
:
6047 case DeclaratorContext::TrailingReturnVar
:
6048 case DeclaratorContext::TemplateArg
:
6049 case DeclaratorContext::TemplateTypeArg
:
6050 case DeclaratorContext::Association
:
6051 // FIXME: We may want to allow parameter packs in block-literal contexts
6053 S
.Diag(D
.getEllipsisLoc(),
6054 diag::err_ellipsis_in_declarator_not_parameter
);
6055 D
.setEllipsisLoc(SourceLocation());
6060 assert(!T
.isNull() && "T must not be null at the end of this function");
6061 if (!AreDeclaratorChunksValid
)
6062 return Context
.getTrivialTypeSourceInfo(T
);
6063 return GetTypeSourceInfoForDeclarator(state
, T
, TInfo
);
6066 /// GetTypeForDeclarator - Convert the type for the specified
6067 /// declarator to Type instances.
6069 /// The result of this call will never be null, but the associated
6070 /// type may be a null type if there's an unrecoverable error.
6071 TypeSourceInfo
*Sema::GetTypeForDeclarator(Declarator
&D
, Scope
*S
) {
6072 // Determine the type of the declarator. Not all forms of declarator
6075 TypeProcessingState
state(*this, D
);
6077 TypeSourceInfo
*ReturnTypeInfo
= nullptr;
6078 QualType T
= GetDeclSpecTypeForDeclarator(state
, ReturnTypeInfo
);
6079 if (D
.isPrototypeContext() && getLangOpts().ObjCAutoRefCount
)
6080 inferARCWriteback(state
, T
);
6082 return GetFullTypeForDeclarator(state
, T
, ReturnTypeInfo
);
6085 static void transferARCOwnershipToDeclSpec(Sema
&S
,
6086 QualType
&declSpecTy
,
6087 Qualifiers::ObjCLifetime ownership
) {
6088 if (declSpecTy
->isObjCRetainableType() &&
6089 declSpecTy
.getObjCLifetime() == Qualifiers::OCL_None
) {
6091 qs
.addObjCLifetime(ownership
);
6092 declSpecTy
= S
.Context
.getQualifiedType(declSpecTy
, qs
);
6096 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState
&state
,
6097 Qualifiers::ObjCLifetime ownership
,
6098 unsigned chunkIndex
) {
6099 Sema
&S
= state
.getSema();
6100 Declarator
&D
= state
.getDeclarator();
6102 // Look for an explicit lifetime attribute.
6103 DeclaratorChunk
&chunk
= D
.getTypeObject(chunkIndex
);
6104 if (chunk
.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership
))
6107 const char *attrStr
= nullptr;
6108 switch (ownership
) {
6109 case Qualifiers::OCL_None
: llvm_unreachable("no ownership!");
6110 case Qualifiers::OCL_ExplicitNone
: attrStr
= "none"; break;
6111 case Qualifiers::OCL_Strong
: attrStr
= "strong"; break;
6112 case Qualifiers::OCL_Weak
: attrStr
= "weak"; break;
6113 case Qualifiers::OCL_Autoreleasing
: attrStr
= "autoreleasing"; break;
6116 IdentifierLoc
*Arg
= new (S
.Context
) IdentifierLoc
;
6117 Arg
->Ident
= &S
.Context
.Idents
.get(attrStr
);
6118 Arg
->Loc
= SourceLocation();
6120 ArgsUnion
Args(Arg
);
6122 // If there wasn't one, add one (with an invalid source location
6123 // so that we don't make an AttributedType for it).
6124 ParsedAttr
*attr
= D
.getAttributePool().create(
6125 &S
.Context
.Idents
.get("objc_ownership"), SourceLocation(),
6126 /*scope*/ nullptr, SourceLocation(),
6127 /*args*/ &Args
, 1, ParsedAttr::Form::GNU());
6128 chunk
.getAttrs().addAtEnd(attr
);
6129 // TODO: mark whether we did this inference?
6132 /// Used for transferring ownership in casts resulting in l-values.
6133 static void transferARCOwnership(TypeProcessingState
&state
,
6134 QualType
&declSpecTy
,
6135 Qualifiers::ObjCLifetime ownership
) {
6136 Sema
&S
= state
.getSema();
6137 Declarator
&D
= state
.getDeclarator();
6140 bool hasIndirection
= false;
6141 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
6142 DeclaratorChunk
&chunk
= D
.getTypeObject(i
);
6143 switch (chunk
.Kind
) {
6144 case DeclaratorChunk::Paren
:
6148 case DeclaratorChunk::Array
:
6149 case DeclaratorChunk::Reference
:
6150 case DeclaratorChunk::Pointer
:
6152 hasIndirection
= true;
6156 case DeclaratorChunk::BlockPointer
:
6158 transferARCOwnershipToDeclaratorChunk(state
, ownership
, i
);
6161 case DeclaratorChunk::Function
:
6162 case DeclaratorChunk::MemberPointer
:
6163 case DeclaratorChunk::Pipe
:
6171 DeclaratorChunk
&chunk
= D
.getTypeObject(inner
);
6172 if (chunk
.Kind
== DeclaratorChunk::Pointer
) {
6173 if (declSpecTy
->isObjCRetainableType())
6174 return transferARCOwnershipToDeclSpec(S
, declSpecTy
, ownership
);
6175 if (declSpecTy
->isObjCObjectType() && hasIndirection
)
6176 return transferARCOwnershipToDeclaratorChunk(state
, ownership
, inner
);
6178 assert(chunk
.Kind
== DeclaratorChunk::Array
||
6179 chunk
.Kind
== DeclaratorChunk::Reference
);
6180 return transferARCOwnershipToDeclSpec(S
, declSpecTy
, ownership
);
6184 TypeSourceInfo
*Sema::GetTypeForDeclaratorCast(Declarator
&D
, QualType FromTy
) {
6185 TypeProcessingState
state(*this, D
);
6187 TypeSourceInfo
*ReturnTypeInfo
= nullptr;
6188 QualType declSpecTy
= GetDeclSpecTypeForDeclarator(state
, ReturnTypeInfo
);
6190 if (getLangOpts().ObjC
) {
6191 Qualifiers::ObjCLifetime ownership
= Context
.getInnerObjCOwnership(FromTy
);
6192 if (ownership
!= Qualifiers::OCL_None
)
6193 transferARCOwnership(state
, declSpecTy
, ownership
);
6196 return GetFullTypeForDeclarator(state
, declSpecTy
, ReturnTypeInfo
);
6199 static void fillAttributedTypeLoc(AttributedTypeLoc TL
,
6200 TypeProcessingState
&State
) {
6201 TL
.setAttr(State
.takeAttrForAttributedType(TL
.getTypePtr()));
6204 static void fillMatrixTypeLoc(MatrixTypeLoc MTL
,
6205 const ParsedAttributesView
&Attrs
) {
6206 for (const ParsedAttr
&AL
: Attrs
) {
6207 if (AL
.getKind() == ParsedAttr::AT_MatrixType
) {
6208 MTL
.setAttrNameLoc(AL
.getLoc());
6209 MTL
.setAttrRowOperand(AL
.getArgAsExpr(0));
6210 MTL
.setAttrColumnOperand(AL
.getArgAsExpr(1));
6211 MTL
.setAttrOperandParensRange(SourceRange());
6216 llvm_unreachable("no matrix_type attribute found at the expected location!");
6220 class TypeSpecLocFiller
: public TypeLocVisitor
<TypeSpecLocFiller
> {
6222 ASTContext
&Context
;
6223 TypeProcessingState
&State
;
6227 TypeSpecLocFiller(Sema
&S
, ASTContext
&Context
, TypeProcessingState
&State
,
6229 : SemaRef(S
), Context(Context
), State(State
), DS(DS
) {}
6231 void VisitAttributedTypeLoc(AttributedTypeLoc TL
) {
6232 Visit(TL
.getModifiedLoc());
6233 fillAttributedTypeLoc(TL
, State
);
6235 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL
) {
6236 Visit(TL
.getWrappedLoc());
6238 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL
) {
6239 Visit(TL
.getInnerLoc());
6241 State
.getExpansionLocForMacroQualifiedType(TL
.getTypePtr()));
6243 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL
) {
6244 Visit(TL
.getUnqualifiedLoc());
6246 // Allow to fill pointee's type locations, e.g.,
6247 // int __attr * __attr * __attr *p;
6248 void VisitPointerTypeLoc(PointerTypeLoc TL
) { Visit(TL
.getNextTypeLoc()); }
6249 void VisitTypedefTypeLoc(TypedefTypeLoc TL
) {
6250 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6252 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL
) {
6253 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6254 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
6255 // addition field. What we have is good enough for display of location
6256 // of 'fixit' on interface name.
6257 TL
.setNameEndLoc(DS
.getEndLoc());
6259 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL
) {
6260 TypeSourceInfo
*RepTInfo
= nullptr;
6261 Sema::GetTypeFromParser(DS
.getRepAsType(), &RepTInfo
);
6262 TL
.copy(RepTInfo
->getTypeLoc());
6264 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL
) {
6265 TypeSourceInfo
*RepTInfo
= nullptr;
6266 Sema::GetTypeFromParser(DS
.getRepAsType(), &RepTInfo
);
6267 TL
.copy(RepTInfo
->getTypeLoc());
6269 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL
) {
6270 TypeSourceInfo
*TInfo
= nullptr;
6271 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6273 // If we got no declarator info from previous Sema routines,
6274 // just fill with the typespec loc.
6276 TL
.initialize(Context
, DS
.getTypeSpecTypeNameLoc());
6280 TypeLoc OldTL
= TInfo
->getTypeLoc();
6281 if (TInfo
->getType()->getAs
<ElaboratedType
>()) {
6282 ElaboratedTypeLoc ElabTL
= OldTL
.castAs
<ElaboratedTypeLoc
>();
6283 TemplateSpecializationTypeLoc NamedTL
= ElabTL
.getNamedTypeLoc()
6284 .castAs
<TemplateSpecializationTypeLoc
>();
6287 TL
.copy(OldTL
.castAs
<TemplateSpecializationTypeLoc
>());
6288 assert(TL
.getRAngleLoc() == OldTL
.castAs
<TemplateSpecializationTypeLoc
>().getRAngleLoc());
6292 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL
) {
6293 assert(DS
.getTypeSpecType() == DeclSpec::TST_typeofExpr
||
6294 DS
.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr
);
6295 TL
.setTypeofLoc(DS
.getTypeSpecTypeLoc());
6296 TL
.setParensRange(DS
.getTypeofParensRange());
6298 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL
) {
6299 assert(DS
.getTypeSpecType() == DeclSpec::TST_typeofType
||
6300 DS
.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
);
6301 TL
.setTypeofLoc(DS
.getTypeSpecTypeLoc());
6302 TL
.setParensRange(DS
.getTypeofParensRange());
6303 assert(DS
.getRepAsType());
6304 TypeSourceInfo
*TInfo
= nullptr;
6305 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6306 TL
.setUnmodifiedTInfo(TInfo
);
6308 void VisitDecltypeTypeLoc(DecltypeTypeLoc TL
) {
6309 assert(DS
.getTypeSpecType() == DeclSpec::TST_decltype
);
6310 TL
.setDecltypeLoc(DS
.getTypeSpecTypeLoc());
6311 TL
.setRParenLoc(DS
.getTypeofParensRange().getEnd());
6313 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL
) {
6314 assert(DS
.isTransformTypeTrait(DS
.getTypeSpecType()));
6315 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6316 TL
.setParensRange(DS
.getTypeofParensRange());
6317 assert(DS
.getRepAsType());
6318 TypeSourceInfo
*TInfo
= nullptr;
6319 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6320 TL
.setUnderlyingTInfo(TInfo
);
6322 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL
) {
6323 // By default, use the source location of the type specifier.
6324 TL
.setBuiltinLoc(DS
.getTypeSpecTypeLoc());
6325 if (TL
.needsExtraLocalData()) {
6326 // Set info for the written builtin specifiers.
6327 TL
.getWrittenBuiltinSpecs() = DS
.getWrittenBuiltinSpecs();
6328 // Try to have a meaningful source location.
6329 if (TL
.getWrittenSignSpec() != TypeSpecifierSign::Unspecified
)
6330 TL
.expandBuiltinRange(DS
.getTypeSpecSignLoc());
6331 if (TL
.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified
)
6332 TL
.expandBuiltinRange(DS
.getTypeSpecWidthRange());
6335 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL
) {
6336 if (DS
.getTypeSpecType() == TST_typename
) {
6337 TypeSourceInfo
*TInfo
= nullptr;
6338 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6340 if (auto ETL
= TInfo
->getTypeLoc().getAs
<ElaboratedTypeLoc
>()) {
6345 const ElaboratedType
*T
= TL
.getTypePtr();
6346 TL
.setElaboratedKeywordLoc(T
->getKeyword() != ElaboratedTypeKeyword::None
6347 ? DS
.getTypeSpecTypeLoc()
6348 : SourceLocation());
6349 const CXXScopeSpec
& SS
= DS
.getTypeSpecScope();
6350 TL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
6351 Visit(TL
.getNextTypeLoc().getUnqualifiedLoc());
6353 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL
) {
6354 assert(DS
.getTypeSpecType() == TST_typename
);
6355 TypeSourceInfo
*TInfo
= nullptr;
6356 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6358 TL
.copy(TInfo
->getTypeLoc().castAs
<DependentNameTypeLoc
>());
6360 void VisitDependentTemplateSpecializationTypeLoc(
6361 DependentTemplateSpecializationTypeLoc TL
) {
6362 assert(DS
.getTypeSpecType() == TST_typename
);
6363 TypeSourceInfo
*TInfo
= nullptr;
6364 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6367 TInfo
->getTypeLoc().castAs
<DependentTemplateSpecializationTypeLoc
>());
6369 void VisitAutoTypeLoc(AutoTypeLoc TL
) {
6370 assert(DS
.getTypeSpecType() == TST_auto
||
6371 DS
.getTypeSpecType() == TST_decltype_auto
||
6372 DS
.getTypeSpecType() == TST_auto_type
||
6373 DS
.getTypeSpecType() == TST_unspecified
);
6374 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6375 if (DS
.getTypeSpecType() == TST_decltype_auto
)
6376 TL
.setRParenLoc(DS
.getTypeofParensRange().getEnd());
6377 if (!DS
.isConstrainedAuto())
6379 TemplateIdAnnotation
*TemplateId
= DS
.getRepAsTemplateId();
6383 NestedNameSpecifierLoc NNS
=
6384 (DS
.getTypeSpecScope().isNotEmpty()
6385 ? DS
.getTypeSpecScope().getWithLocInContext(Context
)
6386 : NestedNameSpecifierLoc());
6387 TemplateArgumentListInfo
TemplateArgsInfo(TemplateId
->LAngleLoc
,
6388 TemplateId
->RAngleLoc
);
6389 if (TemplateId
->NumArgs
> 0) {
6390 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
6391 TemplateId
->NumArgs
);
6392 SemaRef
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
6394 DeclarationNameInfo DNI
= DeclarationNameInfo(
6395 TL
.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
6396 TemplateId
->TemplateNameLoc
);
6397 auto *CR
= ConceptReference::Create(
6398 Context
, NNS
, TemplateId
->TemplateKWLoc
, DNI
,
6399 /*FoundDecl=*/nullptr,
6400 /*NamedDecl=*/TL
.getTypePtr()->getTypeConstraintConcept(),
6401 ASTTemplateArgumentListInfo::Create(Context
, TemplateArgsInfo
));
6402 TL
.setConceptReference(CR
);
6404 void VisitTagTypeLoc(TagTypeLoc TL
) {
6405 TL
.setNameLoc(DS
.getTypeSpecTypeNameLoc());
6407 void VisitAtomicTypeLoc(AtomicTypeLoc TL
) {
6408 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6409 // or an _Atomic qualifier.
6410 if (DS
.getTypeSpecType() == DeclSpec::TST_atomic
) {
6411 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6412 TL
.setParensRange(DS
.getTypeofParensRange());
6414 TypeSourceInfo
*TInfo
= nullptr;
6415 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6417 TL
.getValueLoc().initializeFullCopy(TInfo
->getTypeLoc());
6419 TL
.setKWLoc(DS
.getAtomicSpecLoc());
6420 // No parens, to indicate this was spelled as an _Atomic qualifier.
6421 TL
.setParensRange(SourceRange());
6422 Visit(TL
.getValueLoc());
6426 void VisitPipeTypeLoc(PipeTypeLoc TL
) {
6427 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6429 TypeSourceInfo
*TInfo
= nullptr;
6430 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6431 TL
.getValueLoc().initializeFullCopy(TInfo
->getTypeLoc());
6434 void VisitExtIntTypeLoc(BitIntTypeLoc TL
) {
6435 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6438 void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL
) {
6439 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6442 void VisitTypeLoc(TypeLoc TL
) {
6443 // FIXME: add other typespec types and change this to an assert.
6444 TL
.initialize(Context
, DS
.getTypeSpecTypeLoc());
6448 class DeclaratorLocFiller
: public TypeLocVisitor
<DeclaratorLocFiller
> {
6449 ASTContext
&Context
;
6450 TypeProcessingState
&State
;
6451 const DeclaratorChunk
&Chunk
;
6454 DeclaratorLocFiller(ASTContext
&Context
, TypeProcessingState
&State
,
6455 const DeclaratorChunk
&Chunk
)
6456 : Context(Context
), State(State
), Chunk(Chunk
) {}
6458 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL
) {
6459 llvm_unreachable("qualified type locs not expected here!");
6461 void VisitDecayedTypeLoc(DecayedTypeLoc TL
) {
6462 llvm_unreachable("decayed type locs not expected here!");
6465 void VisitAttributedTypeLoc(AttributedTypeLoc TL
) {
6466 fillAttributedTypeLoc(TL
, State
);
6468 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL
) {
6471 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL
) {
6474 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL
) {
6475 assert(Chunk
.Kind
== DeclaratorChunk::BlockPointer
);
6476 TL
.setCaretLoc(Chunk
.Loc
);
6478 void VisitPointerTypeLoc(PointerTypeLoc TL
) {
6479 assert(Chunk
.Kind
== DeclaratorChunk::Pointer
);
6480 TL
.setStarLoc(Chunk
.Loc
);
6482 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL
) {
6483 assert(Chunk
.Kind
== DeclaratorChunk::Pointer
);
6484 TL
.setStarLoc(Chunk
.Loc
);
6486 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL
) {
6487 assert(Chunk
.Kind
== DeclaratorChunk::MemberPointer
);
6488 const CXXScopeSpec
& SS
= Chunk
.Mem
.Scope();
6489 NestedNameSpecifierLoc NNSLoc
= SS
.getWithLocInContext(Context
);
6491 const Type
* ClsTy
= TL
.getClass();
6492 QualType ClsQT
= QualType(ClsTy
, 0);
6493 TypeSourceInfo
*ClsTInfo
= Context
.CreateTypeSourceInfo(ClsQT
, 0);
6494 // Now copy source location info into the type loc component.
6495 TypeLoc ClsTL
= ClsTInfo
->getTypeLoc();
6496 switch (NNSLoc
.getNestedNameSpecifier()->getKind()) {
6497 case NestedNameSpecifier::Identifier
:
6498 assert(isa
<DependentNameType
>(ClsTy
) && "Unexpected TypeLoc");
6500 DependentNameTypeLoc DNTLoc
= ClsTL
.castAs
<DependentNameTypeLoc
>();
6501 DNTLoc
.setElaboratedKeywordLoc(SourceLocation());
6502 DNTLoc
.setQualifierLoc(NNSLoc
.getPrefix());
6503 DNTLoc
.setNameLoc(NNSLoc
.getLocalBeginLoc());
6507 case NestedNameSpecifier::TypeSpec
:
6508 case NestedNameSpecifier::TypeSpecWithTemplate
:
6509 if (isa
<ElaboratedType
>(ClsTy
)) {
6510 ElaboratedTypeLoc ETLoc
= ClsTL
.castAs
<ElaboratedTypeLoc
>();
6511 ETLoc
.setElaboratedKeywordLoc(SourceLocation());
6512 ETLoc
.setQualifierLoc(NNSLoc
.getPrefix());
6513 TypeLoc NamedTL
= ETLoc
.getNamedTypeLoc();
6514 NamedTL
.initializeFullCopy(NNSLoc
.getTypeLoc());
6516 ClsTL
.initializeFullCopy(NNSLoc
.getTypeLoc());
6520 case NestedNameSpecifier::Namespace
:
6521 case NestedNameSpecifier::NamespaceAlias
:
6522 case NestedNameSpecifier::Global
:
6523 case NestedNameSpecifier::Super
:
6524 llvm_unreachable("Nested-name-specifier must name a type");
6527 // Finally fill in MemberPointerLocInfo fields.
6528 TL
.setStarLoc(Chunk
.Mem
.StarLoc
);
6529 TL
.setClassTInfo(ClsTInfo
);
6531 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL
) {
6532 assert(Chunk
.Kind
== DeclaratorChunk::Reference
);
6533 // 'Amp' is misleading: this might have been originally
6534 /// spelled with AmpAmp.
6535 TL
.setAmpLoc(Chunk
.Loc
);
6537 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL
) {
6538 assert(Chunk
.Kind
== DeclaratorChunk::Reference
);
6539 assert(!Chunk
.Ref
.LValueRef
);
6540 TL
.setAmpAmpLoc(Chunk
.Loc
);
6542 void VisitArrayTypeLoc(ArrayTypeLoc TL
) {
6543 assert(Chunk
.Kind
== DeclaratorChunk::Array
);
6544 TL
.setLBracketLoc(Chunk
.Loc
);
6545 TL
.setRBracketLoc(Chunk
.EndLoc
);
6546 TL
.setSizeExpr(static_cast<Expr
*>(Chunk
.Arr
.NumElts
));
6548 void VisitFunctionTypeLoc(FunctionTypeLoc TL
) {
6549 assert(Chunk
.Kind
== DeclaratorChunk::Function
);
6550 TL
.setLocalRangeBegin(Chunk
.Loc
);
6551 TL
.setLocalRangeEnd(Chunk
.EndLoc
);
6553 const DeclaratorChunk::FunctionTypeInfo
&FTI
= Chunk
.Fun
;
6554 TL
.setLParenLoc(FTI
.getLParenLoc());
6555 TL
.setRParenLoc(FTI
.getRParenLoc());
6556 for (unsigned i
= 0, e
= TL
.getNumParams(), tpi
= 0; i
!= e
; ++i
) {
6557 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
6558 TL
.setParam(tpi
++, Param
);
6560 TL
.setExceptionSpecRange(FTI
.getExceptionSpecRange());
6562 void VisitParenTypeLoc(ParenTypeLoc TL
) {
6563 assert(Chunk
.Kind
== DeclaratorChunk::Paren
);
6564 TL
.setLParenLoc(Chunk
.Loc
);
6565 TL
.setRParenLoc(Chunk
.EndLoc
);
6567 void VisitPipeTypeLoc(PipeTypeLoc TL
) {
6568 assert(Chunk
.Kind
== DeclaratorChunk::Pipe
);
6569 TL
.setKWLoc(Chunk
.Loc
);
6571 void VisitBitIntTypeLoc(BitIntTypeLoc TL
) {
6572 TL
.setNameLoc(Chunk
.Loc
);
6574 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL
) {
6575 TL
.setExpansionLoc(Chunk
.Loc
);
6577 void VisitVectorTypeLoc(VectorTypeLoc TL
) { TL
.setNameLoc(Chunk
.Loc
); }
6578 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL
) {
6579 TL
.setNameLoc(Chunk
.Loc
);
6581 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL
) {
6582 TL
.setNameLoc(Chunk
.Loc
);
6585 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL
) {
6586 TL
.setNameLoc(Chunk
.Loc
);
6588 void VisitMatrixTypeLoc(MatrixTypeLoc TL
) {
6589 fillMatrixTypeLoc(TL
, Chunk
.getAttrs());
6592 void VisitTypeLoc(TypeLoc TL
) {
6593 llvm_unreachable("unsupported TypeLoc kind in declarator!");
6596 } // end anonymous namespace
6598 static void fillAtomicQualLoc(AtomicTypeLoc ATL
, const DeclaratorChunk
&Chunk
) {
6600 switch (Chunk
.Kind
) {
6601 case DeclaratorChunk::Function
:
6602 case DeclaratorChunk::Array
:
6603 case DeclaratorChunk::Paren
:
6604 case DeclaratorChunk::Pipe
:
6605 llvm_unreachable("cannot be _Atomic qualified");
6607 case DeclaratorChunk::Pointer
:
6608 Loc
= Chunk
.Ptr
.AtomicQualLoc
;
6611 case DeclaratorChunk::BlockPointer
:
6612 case DeclaratorChunk::Reference
:
6613 case DeclaratorChunk::MemberPointer
:
6614 // FIXME: Provide a source location for the _Atomic keyword.
6619 ATL
.setParensRange(SourceRange());
6623 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL
,
6624 const ParsedAttributesView
&Attrs
) {
6625 for (const ParsedAttr
&AL
: Attrs
) {
6626 if (AL
.getKind() == ParsedAttr::AT_AddressSpace
) {
6627 DASTL
.setAttrNameLoc(AL
.getLoc());
6628 DASTL
.setAttrExprOperand(AL
.getArgAsExpr(0));
6629 DASTL
.setAttrOperandParensRange(SourceRange());
6635 "no address_space attribute found at the expected location!");
6638 /// Create and instantiate a TypeSourceInfo with type source information.
6640 /// \param T QualType referring to the type as written in source code.
6642 /// \param ReturnTypeInfo For declarators whose return type does not show
6643 /// up in the normal place in the declaration specifiers (such as a C++
6644 /// conversion function), this pointer will refer to a type source information
6645 /// for that return type.
6646 static TypeSourceInfo
*
6647 GetTypeSourceInfoForDeclarator(TypeProcessingState
&State
,
6648 QualType T
, TypeSourceInfo
*ReturnTypeInfo
) {
6649 Sema
&S
= State
.getSema();
6650 Declarator
&D
= State
.getDeclarator();
6652 TypeSourceInfo
*TInfo
= S
.Context
.CreateTypeSourceInfo(T
);
6653 UnqualTypeLoc CurrTL
= TInfo
->getTypeLoc().getUnqualifiedLoc();
6655 // Handle parameter packs whose type is a pack expansion.
6656 if (isa
<PackExpansionType
>(T
)) {
6657 CurrTL
.castAs
<PackExpansionTypeLoc
>().setEllipsisLoc(D
.getEllipsisLoc());
6658 CurrTL
= CurrTL
.getNextTypeLoc().getUnqualifiedLoc();
6661 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
6662 // Microsoft property fields can have multiple sizeless array chunks
6663 // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6664 if (CurrTL
.getTypeLocClass() == TypeLoc::IncompleteArray
&& e
!= 1 &&
6665 D
.getDeclSpec().getAttributes().hasMSPropertyAttr())
6668 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6669 // declarator chunk.
6670 if (AtomicTypeLoc ATL
= CurrTL
.getAs
<AtomicTypeLoc
>()) {
6671 fillAtomicQualLoc(ATL
, D
.getTypeObject(i
));
6672 CurrTL
= ATL
.getValueLoc().getUnqualifiedLoc();
6675 bool HasDesugaredTypeLoc
= true;
6676 while (HasDesugaredTypeLoc
) {
6677 switch (CurrTL
.getTypeLocClass()) {
6678 case TypeLoc::MacroQualified
: {
6679 auto TL
= CurrTL
.castAs
<MacroQualifiedTypeLoc
>();
6681 State
.getExpansionLocForMacroQualifiedType(TL
.getTypePtr()));
6682 CurrTL
= TL
.getNextTypeLoc().getUnqualifiedLoc();
6686 case TypeLoc::Attributed
: {
6687 auto TL
= CurrTL
.castAs
<AttributedTypeLoc
>();
6688 fillAttributedTypeLoc(TL
, State
);
6689 CurrTL
= TL
.getNextTypeLoc().getUnqualifiedLoc();
6693 case TypeLoc::Adjusted
:
6694 case TypeLoc::BTFTagAttributed
: {
6695 CurrTL
= CurrTL
.getNextTypeLoc().getUnqualifiedLoc();
6699 case TypeLoc::DependentAddressSpace
: {
6700 auto TL
= CurrTL
.castAs
<DependentAddressSpaceTypeLoc
>();
6701 fillDependentAddressSpaceTypeLoc(TL
, D
.getTypeObject(i
).getAttrs());
6702 CurrTL
= TL
.getPointeeTypeLoc().getUnqualifiedLoc();
6707 HasDesugaredTypeLoc
= false;
6712 DeclaratorLocFiller(S
.Context
, State
, D
.getTypeObject(i
)).Visit(CurrTL
);
6713 CurrTL
= CurrTL
.getNextTypeLoc().getUnqualifiedLoc();
6716 // If we have different source information for the return type, use
6717 // that. This really only applies to C++ conversion functions.
6718 if (ReturnTypeInfo
) {
6719 TypeLoc TL
= ReturnTypeInfo
->getTypeLoc();
6720 assert(TL
.getFullDataSize() == CurrTL
.getFullDataSize());
6721 memcpy(CurrTL
.getOpaqueData(), TL
.getOpaqueData(), TL
.getFullDataSize());
6723 TypeSpecLocFiller(S
, S
.Context
, State
, D
.getDeclSpec()).Visit(CurrTL
);
6729 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6730 ParsedType
Sema::CreateParsedType(QualType T
, TypeSourceInfo
*TInfo
) {
6731 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6732 // and Sema during declaration parsing. Try deallocating/caching them when
6733 // it's appropriate, instead of allocating them and keeping them around.
6734 LocInfoType
*LocT
= (LocInfoType
*)BumpAlloc
.Allocate(sizeof(LocInfoType
),
6735 alignof(LocInfoType
));
6736 new (LocT
) LocInfoType(T
, TInfo
);
6737 assert(LocT
->getTypeClass() != T
->getTypeClass() &&
6738 "LocInfoType's TypeClass conflicts with an existing Type class");
6739 return ParsedType::make(QualType(LocT
, 0));
6742 void LocInfoType::getAsStringInternal(std::string
&Str
,
6743 const PrintingPolicy
&Policy
) const {
6744 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6745 " was used directly instead of getting the QualType through"
6746 " GetTypeFromParser");
6749 TypeResult
Sema::ActOnTypeName(Scope
*S
, Declarator
&D
) {
6750 // C99 6.7.6: Type names have no identifier. This is already validated by
6752 assert(D
.getIdentifier() == nullptr &&
6753 "Type name should have no identifier!");
6755 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
6756 QualType T
= TInfo
->getType();
6757 if (D
.isInvalidType())
6760 // Make sure there are no unused decl attributes on the declarator.
6761 // We don't want to do this for ObjC parameters because we're going
6762 // to apply them to the actual parameter declaration.
6763 // Likewise, we don't want to do this for alias declarations, because
6764 // we are actually going to build a declaration from this eventually.
6765 if (D
.getContext() != DeclaratorContext::ObjCParameter
&&
6766 D
.getContext() != DeclaratorContext::AliasDecl
&&
6767 D
.getContext() != DeclaratorContext::AliasTemplate
)
6768 checkUnusedDeclAttributes(D
);
6770 if (getLangOpts().CPlusPlus
) {
6771 // Check that there are no default arguments (C++ only).
6772 CheckExtraCXXDefaultArguments(D
);
6775 return CreateParsedType(T
, TInfo
);
6778 ParsedType
Sema::ActOnObjCInstanceType(SourceLocation Loc
) {
6779 QualType T
= Context
.getObjCInstanceType();
6780 TypeSourceInfo
*TInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
6781 return CreateParsedType(T
, TInfo
);
6784 //===----------------------------------------------------------------------===//
6785 // Type Attribute Processing
6786 //===----------------------------------------------------------------------===//
6788 /// Build an AddressSpace index from a constant expression and diagnose any
6789 /// errors related to invalid address_spaces. Returns true on successfully
6790 /// building an AddressSpace index.
6791 static bool BuildAddressSpaceIndex(Sema
&S
, LangAS
&ASIdx
,
6792 const Expr
*AddrSpace
,
6793 SourceLocation AttrLoc
) {
6794 if (!AddrSpace
->isValueDependent()) {
6795 std::optional
<llvm::APSInt
> OptAddrSpace
=
6796 AddrSpace
->getIntegerConstantExpr(S
.Context
);
6797 if (!OptAddrSpace
) {
6798 S
.Diag(AttrLoc
, diag::err_attribute_argument_type
)
6799 << "'address_space'" << AANT_ArgumentIntegerConstant
6800 << AddrSpace
->getSourceRange();
6803 llvm::APSInt
&addrSpace
= *OptAddrSpace
;
6806 if (addrSpace
.isSigned()) {
6807 if (addrSpace
.isNegative()) {
6808 S
.Diag(AttrLoc
, diag::err_attribute_address_space_negative
)
6809 << AddrSpace
->getSourceRange();
6812 addrSpace
.setIsSigned(false);
6815 llvm::APSInt
max(addrSpace
.getBitWidth());
6817 Qualifiers::MaxAddressSpace
- (unsigned)LangAS::FirstTargetAddressSpace
;
6819 if (addrSpace
> max
) {
6820 S
.Diag(AttrLoc
, diag::err_attribute_address_space_too_high
)
6821 << (unsigned)max
.getZExtValue() << AddrSpace
->getSourceRange();
6826 getLangASFromTargetAS(static_cast<unsigned>(addrSpace
.getZExtValue()));
6830 // Default value for DependentAddressSpaceTypes
6831 ASIdx
= LangAS::Default
;
6835 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6836 /// is uninstantiated. If instantiated it will apply the appropriate address
6837 /// space to the type. This function allows dependent template variables to be
6838 /// used in conjunction with the address_space attribute
6839 QualType
Sema::BuildAddressSpaceAttr(QualType
&T
, LangAS ASIdx
, Expr
*AddrSpace
,
6840 SourceLocation AttrLoc
) {
6841 if (!AddrSpace
->isValueDependent()) {
6842 if (DiagnoseMultipleAddrSpaceAttributes(*this, T
.getAddressSpace(), ASIdx
,
6846 return Context
.getAddrSpaceQualType(T
, ASIdx
);
6849 // A check with similar intentions as checking if a type already has an
6850 // address space except for on a dependent types, basically if the
6851 // current type is already a DependentAddressSpaceType then its already
6852 // lined up to have another address space on it and we can't have
6853 // multiple address spaces on the one pointer indirection
6854 if (T
->getAs
<DependentAddressSpaceType
>()) {
6855 Diag(AttrLoc
, diag::err_attribute_address_multiple_qualifiers
);
6859 return Context
.getDependentAddressSpaceType(T
, AddrSpace
, AttrLoc
);
6862 QualType
Sema::BuildAddressSpaceAttr(QualType
&T
, Expr
*AddrSpace
,
6863 SourceLocation AttrLoc
) {
6865 if (!BuildAddressSpaceIndex(*this, ASIdx
, AddrSpace
, AttrLoc
))
6867 return BuildAddressSpaceAttr(T
, ASIdx
, AddrSpace
, AttrLoc
);
6870 static void HandleBTFTypeTagAttribute(QualType
&Type
, const ParsedAttr
&Attr
,
6871 TypeProcessingState
&State
) {
6872 Sema
&S
= State
.getSema();
6874 // Check the number of attribute arguments.
6875 if (Attr
.getNumArgs() != 1) {
6876 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
6882 // Ensure the argument is a string.
6883 auto *StrLiteral
= dyn_cast
<StringLiteral
>(Attr
.getArgAsExpr(0));
6885 S
.Diag(Attr
.getLoc(), diag::err_attribute_argument_type
)
6886 << Attr
<< AANT_ArgumentString
;
6891 ASTContext
&Ctx
= S
.Context
;
6892 StringRef BTFTypeTag
= StrLiteral
->getString();
6893 Type
= State
.getBTFTagAttributedType(
6894 ::new (Ctx
) BTFTypeTagAttr(Ctx
, Attr
, BTFTypeTag
), Type
);
6897 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6898 /// specified type. The attribute contains 1 argument, the id of the address
6899 /// space for the type.
6900 static void HandleAddressSpaceTypeAttribute(QualType
&Type
,
6901 const ParsedAttr
&Attr
,
6902 TypeProcessingState
&State
) {
6903 Sema
&S
= State
.getSema();
6905 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6906 // qualified by an address-space qualifier."
6907 if (Type
->isFunctionType()) {
6908 S
.Diag(Attr
.getLoc(), diag::err_attribute_address_function_type
);
6914 if (Attr
.getKind() == ParsedAttr::AT_AddressSpace
) {
6916 // Check the attribute arguments.
6917 if (Attr
.getNumArgs() != 1) {
6918 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
6924 Expr
*ASArgExpr
= static_cast<Expr
*>(Attr
.getArgAsExpr(0));
6926 if (!BuildAddressSpaceIndex(S
, ASIdx
, ASArgExpr
, Attr
.getLoc())) {
6931 ASTContext
&Ctx
= S
.Context
;
6933 ::new (Ctx
) AddressSpaceAttr(Ctx
, Attr
, static_cast<unsigned>(ASIdx
));
6935 // If the expression is not value dependent (not templated), then we can
6936 // apply the address space qualifiers just to the equivalent type.
6937 // Otherwise, we make an AttributedType with the modified and equivalent
6938 // type the same, and wrap it in a DependentAddressSpaceType. When this
6939 // dependent type is resolved, the qualifier is added to the equivalent type
6942 if (!ASArgExpr
->isValueDependent()) {
6943 QualType EquivType
=
6944 S
.BuildAddressSpaceAttr(Type
, ASIdx
, ASArgExpr
, Attr
.getLoc());
6945 if (EquivType
.isNull()) {
6949 T
= State
.getAttributedType(ASAttr
, Type
, EquivType
);
6951 T
= State
.getAttributedType(ASAttr
, Type
, Type
);
6952 T
= S
.BuildAddressSpaceAttr(T
, ASIdx
, ASArgExpr
, Attr
.getLoc());
6960 // The keyword-based type attributes imply which address space to use.
6961 ASIdx
= S
.getLangOpts().SYCLIsDevice
? Attr
.asSYCLLangAS()
6962 : Attr
.asOpenCLLangAS();
6963 if (S
.getLangOpts().HLSL
)
6964 ASIdx
= Attr
.asHLSLLangAS();
6966 if (ASIdx
== LangAS::Default
)
6967 llvm_unreachable("Invalid address space");
6969 if (DiagnoseMultipleAddrSpaceAttributes(S
, Type
.getAddressSpace(), ASIdx
,
6975 Type
= S
.Context
.getAddrSpaceQualType(Type
, ASIdx
);
6979 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6980 /// attribute on the specified type.
6982 /// Returns 'true' if the attribute was handled.
6983 static bool handleObjCOwnershipTypeAttr(TypeProcessingState
&state
,
6984 ParsedAttr
&attr
, QualType
&type
) {
6985 bool NonObjCPointer
= false;
6987 if (!type
->isDependentType() && !type
->isUndeducedType()) {
6988 if (const PointerType
*ptr
= type
->getAs
<PointerType
>()) {
6989 QualType pointee
= ptr
->getPointeeType();
6990 if (pointee
->isObjCRetainableType() || pointee
->isPointerType())
6992 // It is important not to lose the source info that there was an attribute
6993 // applied to non-objc pointer. We will create an attributed type but
6994 // its type will be the same as the original type.
6995 NonObjCPointer
= true;
6996 } else if (!type
->isObjCRetainableType()) {
7000 // Don't accept an ownership attribute in the declspec if it would
7001 // just be the return type of a block pointer.
7002 if (state
.isProcessingDeclSpec()) {
7003 Declarator
&D
= state
.getDeclarator();
7004 if (maybeMovePastReturnType(D
, D
.getNumTypeObjects(),
7005 /*onlyBlockPointers=*/true))
7010 Sema
&S
= state
.getSema();
7011 SourceLocation AttrLoc
= attr
.getLoc();
7012 if (AttrLoc
.isMacroID())
7014 S
.getSourceManager().getImmediateExpansionRange(AttrLoc
).getBegin();
7016 if (!attr
.isArgIdent(0)) {
7017 S
.Diag(AttrLoc
, diag::err_attribute_argument_type
) << attr
7018 << AANT_ArgumentString
;
7023 IdentifierInfo
*II
= attr
.getArgAsIdent(0)->Ident
;
7024 Qualifiers::ObjCLifetime lifetime
;
7025 if (II
->isStr("none"))
7026 lifetime
= Qualifiers::OCL_ExplicitNone
;
7027 else if (II
->isStr("strong"))
7028 lifetime
= Qualifiers::OCL_Strong
;
7029 else if (II
->isStr("weak"))
7030 lifetime
= Qualifiers::OCL_Weak
;
7031 else if (II
->isStr("autoreleasing"))
7032 lifetime
= Qualifiers::OCL_Autoreleasing
;
7034 S
.Diag(AttrLoc
, diag::warn_attribute_type_not_supported
) << attr
<< II
;
7039 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
7040 // outside of ARC mode.
7041 if (!S
.getLangOpts().ObjCAutoRefCount
&&
7042 lifetime
!= Qualifiers::OCL_Weak
&&
7043 lifetime
!= Qualifiers::OCL_ExplicitNone
) {
7047 SplitQualType underlyingType
= type
.split();
7049 // Check for redundant/conflicting ownership qualifiers.
7050 if (Qualifiers::ObjCLifetime previousLifetime
7051 = type
.getQualifiers().getObjCLifetime()) {
7052 // If it's written directly, that's an error.
7053 if (S
.Context
.hasDirectOwnershipQualifier(type
)) {
7054 S
.Diag(AttrLoc
, diag::err_attr_objc_ownership_redundant
)
7059 // Otherwise, if the qualifiers actually conflict, pull sugar off
7060 // and remove the ObjCLifetime qualifiers.
7061 if (previousLifetime
!= lifetime
) {
7062 // It's possible to have multiple local ObjCLifetime qualifiers. We
7063 // can't stop after we reach a type that is directly qualified.
7064 const Type
*prevTy
= nullptr;
7065 while (!prevTy
|| prevTy
!= underlyingType
.Ty
) {
7066 prevTy
= underlyingType
.Ty
;
7067 underlyingType
= underlyingType
.getSingleStepDesugaredType();
7069 underlyingType
.Quals
.removeObjCLifetime();
7073 underlyingType
.Quals
.addObjCLifetime(lifetime
);
7075 if (NonObjCPointer
) {
7076 StringRef name
= attr
.getAttrName()->getName();
7078 case Qualifiers::OCL_None
:
7079 case Qualifiers::OCL_ExplicitNone
:
7081 case Qualifiers::OCL_Strong
: name
= "__strong"; break;
7082 case Qualifiers::OCL_Weak
: name
= "__weak"; break;
7083 case Qualifiers::OCL_Autoreleasing
: name
= "__autoreleasing"; break;
7085 S
.Diag(AttrLoc
, diag::warn_type_attribute_wrong_type
) << name
7086 << TDS_ObjCObjOrBlock
<< type
;
7089 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
7090 // because having both 'T' and '__unsafe_unretained T' exist in the type
7091 // system causes unfortunate widespread consistency problems. (For example,
7092 // they're not considered compatible types, and we mangle them identicially
7093 // as template arguments.) These problems are all individually fixable,
7094 // but it's easier to just not add the qualifier and instead sniff it out
7095 // in specific places using isObjCInertUnsafeUnretainedType().
7097 // Doing this does means we miss some trivial consistency checks that
7098 // would've triggered in ARC, but that's better than trying to solve all
7099 // the coexistence problems with __unsafe_unretained.
7100 if (!S
.getLangOpts().ObjCAutoRefCount
&&
7101 lifetime
== Qualifiers::OCL_ExplicitNone
) {
7102 type
= state
.getAttributedType(
7103 createSimpleAttr
<ObjCInertUnsafeUnretainedAttr
>(S
.Context
, attr
),
7108 QualType origType
= type
;
7109 if (!NonObjCPointer
)
7110 type
= S
.Context
.getQualifiedType(underlyingType
);
7112 // If we have a valid source location for the attribute, use an
7113 // AttributedType instead.
7114 if (AttrLoc
.isValid()) {
7115 type
= state
.getAttributedType(::new (S
.Context
)
7116 ObjCOwnershipAttr(S
.Context
, attr
, II
),
7120 auto diagnoseOrDelay
= [](Sema
&S
, SourceLocation loc
,
7121 unsigned diagnostic
, QualType type
) {
7122 if (S
.DelayedDiagnostics
.shouldDelayDiagnostics()) {
7123 S
.DelayedDiagnostics
.add(
7124 sema::DelayedDiagnostic::makeForbiddenType(
7125 S
.getSourceManager().getExpansionLoc(loc
),
7126 diagnostic
, type
, /*ignored*/ 0));
7128 S
.Diag(loc
, diagnostic
);
7132 // Sometimes, __weak isn't allowed.
7133 if (lifetime
== Qualifiers::OCL_Weak
&&
7134 !S
.getLangOpts().ObjCWeak
&& !NonObjCPointer
) {
7136 // Use a specialized diagnostic if the runtime just doesn't support them.
7137 unsigned diagnostic
=
7138 (S
.getLangOpts().ObjCWeakRuntime
? diag::err_arc_weak_disabled
7139 : diag::err_arc_weak_no_runtime
);
7141 // In any case, delay the diagnostic until we know what we're parsing.
7142 diagnoseOrDelay(S
, AttrLoc
, diagnostic
, type
);
7148 // Forbid __weak for class objects marked as
7149 // objc_arc_weak_reference_unavailable
7150 if (lifetime
== Qualifiers::OCL_Weak
) {
7151 if (const ObjCObjectPointerType
*ObjT
=
7152 type
->getAs
<ObjCObjectPointerType
>()) {
7153 if (ObjCInterfaceDecl
*Class
= ObjT
->getInterfaceDecl()) {
7154 if (Class
->isArcWeakrefUnavailable()) {
7155 S
.Diag(AttrLoc
, diag::err_arc_unsupported_weak_class
);
7156 S
.Diag(ObjT
->getInterfaceDecl()->getLocation(),
7157 diag::note_class_declared
);
7166 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
7167 /// attribute on the specified type. Returns true to indicate that
7168 /// the attribute was handled, false to indicate that the type does
7169 /// not permit the attribute.
7170 static bool handleObjCGCTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
7172 Sema
&S
= state
.getSema();
7174 // Delay if this isn't some kind of pointer.
7175 if (!type
->isPointerType() &&
7176 !type
->isObjCObjectPointerType() &&
7177 !type
->isBlockPointerType())
7180 if (type
.getObjCGCAttr() != Qualifiers::GCNone
) {
7181 S
.Diag(attr
.getLoc(), diag::err_attribute_multiple_objc_gc
);
7186 // Check the attribute arguments.
7187 if (!attr
.isArgIdent(0)) {
7188 S
.Diag(attr
.getLoc(), diag::err_attribute_argument_type
)
7189 << attr
<< AANT_ArgumentString
;
7193 Qualifiers::GC GCAttr
;
7194 if (attr
.getNumArgs() > 1) {
7195 S
.Diag(attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << attr
7201 IdentifierInfo
*II
= attr
.getArgAsIdent(0)->Ident
;
7202 if (II
->isStr("weak"))
7203 GCAttr
= Qualifiers::Weak
;
7204 else if (II
->isStr("strong"))
7205 GCAttr
= Qualifiers::Strong
;
7207 S
.Diag(attr
.getLoc(), diag::warn_attribute_type_not_supported
)
7213 QualType origType
= type
;
7214 type
= S
.Context
.getObjCGCQualType(origType
, GCAttr
);
7216 // Make an attributed type to preserve the source information.
7217 if (attr
.getLoc().isValid())
7218 type
= state
.getAttributedType(
7219 ::new (S
.Context
) ObjCGCAttr(S
.Context
, attr
, II
), origType
, type
);
7225 /// A helper class to unwrap a type down to a function for the
7226 /// purposes of applying attributes there.
7229 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
7230 /// if (unwrapped.isFunctionType()) {
7231 /// const FunctionType *fn = unwrapped.get();
7232 /// // change fn somehow
7233 /// T = unwrapped.wrap(fn);
7235 struct FunctionTypeUnwrapper
{
7249 const FunctionType
*Fn
;
7250 SmallVector
<unsigned char /*WrapKind*/, 8> Stack
;
7252 FunctionTypeUnwrapper(Sema
&S
, QualType T
) : Original(T
) {
7254 const Type
*Ty
= T
.getTypePtr();
7255 if (isa
<FunctionType
>(Ty
)) {
7256 Fn
= cast
<FunctionType
>(Ty
);
7258 } else if (isa
<ParenType
>(Ty
)) {
7259 T
= cast
<ParenType
>(Ty
)->getInnerType();
7260 Stack
.push_back(Parens
);
7261 } else if (isa
<ConstantArrayType
>(Ty
) || isa
<VariableArrayType
>(Ty
) ||
7262 isa
<IncompleteArrayType
>(Ty
)) {
7263 T
= cast
<ArrayType
>(Ty
)->getElementType();
7264 Stack
.push_back(Array
);
7265 } else if (isa
<PointerType
>(Ty
)) {
7266 T
= cast
<PointerType
>(Ty
)->getPointeeType();
7267 Stack
.push_back(Pointer
);
7268 } else if (isa
<BlockPointerType
>(Ty
)) {
7269 T
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
7270 Stack
.push_back(BlockPointer
);
7271 } else if (isa
<MemberPointerType
>(Ty
)) {
7272 T
= cast
<MemberPointerType
>(Ty
)->getPointeeType();
7273 Stack
.push_back(MemberPointer
);
7274 } else if (isa
<ReferenceType
>(Ty
)) {
7275 T
= cast
<ReferenceType
>(Ty
)->getPointeeType();
7276 Stack
.push_back(Reference
);
7277 } else if (isa
<AttributedType
>(Ty
)) {
7278 T
= cast
<AttributedType
>(Ty
)->getEquivalentType();
7279 Stack
.push_back(Attributed
);
7280 } else if (isa
<MacroQualifiedType
>(Ty
)) {
7281 T
= cast
<MacroQualifiedType
>(Ty
)->getUnderlyingType();
7282 Stack
.push_back(MacroQualified
);
7284 const Type
*DTy
= Ty
->getUnqualifiedDesugaredType();
7290 T
= QualType(DTy
, 0);
7291 Stack
.push_back(Desugar
);
7296 bool isFunctionType() const { return (Fn
!= nullptr); }
7297 const FunctionType
*get() const { return Fn
; }
7299 QualType
wrap(Sema
&S
, const FunctionType
*New
) {
7300 // If T wasn't modified from the unwrapped type, do nothing.
7301 if (New
== get()) return Original
;
7304 return wrap(S
.Context
, Original
, 0);
7308 QualType
wrap(ASTContext
&C
, QualType Old
, unsigned I
) {
7309 if (I
== Stack
.size())
7310 return C
.getQualifiedType(Fn
, Old
.getQualifiers());
7312 // Build up the inner type, applying the qualifiers from the old
7313 // type to the new type.
7314 SplitQualType SplitOld
= Old
.split();
7316 // As a special case, tail-recurse if there are no qualifiers.
7317 if (SplitOld
.Quals
.empty())
7318 return wrap(C
, SplitOld
.Ty
, I
);
7319 return C
.getQualifiedType(wrap(C
, SplitOld
.Ty
, I
), SplitOld
.Quals
);
7322 QualType
wrap(ASTContext
&C
, const Type
*Old
, unsigned I
) {
7323 if (I
== Stack
.size()) return QualType(Fn
, 0);
7325 switch (static_cast<WrapKind
>(Stack
[I
++])) {
7327 // This is the point at which we potentially lose source
7329 return wrap(C
, Old
->getUnqualifiedDesugaredType(), I
);
7332 return wrap(C
, cast
<AttributedType
>(Old
)->getEquivalentType(), I
);
7335 QualType New
= wrap(C
, cast
<ParenType
>(Old
)->getInnerType(), I
);
7336 return C
.getParenType(New
);
7339 case MacroQualified
:
7340 return wrap(C
, cast
<MacroQualifiedType
>(Old
)->getUnderlyingType(), I
);
7343 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(Old
)) {
7344 QualType New
= wrap(C
, CAT
->getElementType(), I
);
7345 return C
.getConstantArrayType(New
, CAT
->getSize(), CAT
->getSizeExpr(),
7346 CAT
->getSizeModifier(),
7347 CAT
->getIndexTypeCVRQualifiers());
7350 if (const auto *VAT
= dyn_cast
<VariableArrayType
>(Old
)) {
7351 QualType New
= wrap(C
, VAT
->getElementType(), I
);
7352 return C
.getVariableArrayType(
7353 New
, VAT
->getSizeExpr(), VAT
->getSizeModifier(),
7354 VAT
->getIndexTypeCVRQualifiers(), VAT
->getBracketsRange());
7357 const auto *IAT
= cast
<IncompleteArrayType
>(Old
);
7358 QualType New
= wrap(C
, IAT
->getElementType(), I
);
7359 return C
.getIncompleteArrayType(New
, IAT
->getSizeModifier(),
7360 IAT
->getIndexTypeCVRQualifiers());
7364 QualType New
= wrap(C
, cast
<PointerType
>(Old
)->getPointeeType(), I
);
7365 return C
.getPointerType(New
);
7368 case BlockPointer
: {
7369 QualType New
= wrap(C
, cast
<BlockPointerType
>(Old
)->getPointeeType(),I
);
7370 return C
.getBlockPointerType(New
);
7373 case MemberPointer
: {
7374 const MemberPointerType
*OldMPT
= cast
<MemberPointerType
>(Old
);
7375 QualType New
= wrap(C
, OldMPT
->getPointeeType(), I
);
7376 return C
.getMemberPointerType(New
, OldMPT
->getClass());
7380 const ReferenceType
*OldRef
= cast
<ReferenceType
>(Old
);
7381 QualType New
= wrap(C
, OldRef
->getPointeeType(), I
);
7382 if (isa
<LValueReferenceType
>(OldRef
))
7383 return C
.getLValueReferenceType(New
, OldRef
->isSpelledAsLValue());
7385 return C
.getRValueReferenceType(New
);
7389 llvm_unreachable("unknown wrapping kind");
7392 } // end anonymous namespace
7394 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState
&State
,
7395 ParsedAttr
&PAttr
, QualType
&Type
) {
7396 Sema
&S
= State
.getSema();
7399 switch (PAttr
.getKind()) {
7400 default: llvm_unreachable("Unknown attribute kind");
7401 case ParsedAttr::AT_Ptr32
:
7402 A
= createSimpleAttr
<Ptr32Attr
>(S
.Context
, PAttr
);
7404 case ParsedAttr::AT_Ptr64
:
7405 A
= createSimpleAttr
<Ptr64Attr
>(S
.Context
, PAttr
);
7407 case ParsedAttr::AT_SPtr
:
7408 A
= createSimpleAttr
<SPtrAttr
>(S
.Context
, PAttr
);
7410 case ParsedAttr::AT_UPtr
:
7411 A
= createSimpleAttr
<UPtrAttr
>(S
.Context
, PAttr
);
7415 std::bitset
<attr::LastAttr
> Attrs
;
7416 QualType Desugared
= Type
;
7418 if (const TypedefType
*TT
= dyn_cast
<TypedefType
>(Desugared
)) {
7419 Desugared
= TT
->desugar();
7421 } else if (const ElaboratedType
*ET
= dyn_cast
<ElaboratedType
>(Desugared
)) {
7422 Desugared
= ET
->desugar();
7425 const AttributedType
*AT
= dyn_cast
<AttributedType
>(Desugared
);
7428 Attrs
[AT
->getAttrKind()] = true;
7429 Desugared
= AT
->getModifiedType();
7432 // You cannot specify duplicate type attributes, so if the attribute has
7433 // already been applied, flag it.
7434 attr::Kind NewAttrKind
= A
->getKind();
7435 if (Attrs
[NewAttrKind
]) {
7436 S
.Diag(PAttr
.getLoc(), diag::warn_duplicate_attribute_exact
) << PAttr
;
7439 Attrs
[NewAttrKind
] = true;
7441 // You cannot have both __sptr and __uptr on the same type, nor can you
7442 // have __ptr32 and __ptr64.
7443 if (Attrs
[attr::Ptr32
] && Attrs
[attr::Ptr64
]) {
7444 S
.Diag(PAttr
.getLoc(), diag::err_attributes_are_not_compatible
)
7446 << "'__ptr64'" << /*isRegularKeyword=*/0;
7448 } else if (Attrs
[attr::SPtr
] && Attrs
[attr::UPtr
]) {
7449 S
.Diag(PAttr
.getLoc(), diag::err_attributes_are_not_compatible
)
7451 << "'__uptr'" << /*isRegularKeyword=*/0;
7455 // Check the raw (i.e., desugared) Canonical type to see if it
7456 // is a pointer type.
7457 if (!isa
<PointerType
>(Desugared
)) {
7458 // Pointer type qualifiers can only operate on pointer types, but not
7459 // pointer-to-member types.
7460 if (Type
->isMemberPointerType())
7461 S
.Diag(PAttr
.getLoc(), diag::err_attribute_no_member_pointers
) << PAttr
;
7463 S
.Diag(PAttr
.getLoc(), diag::err_attribute_pointers_only
) << PAttr
<< 0;
7467 // Add address space to type based on its attributes.
7468 LangAS ASIdx
= LangAS::Default
;
7470 S
.Context
.getTargetInfo().getPointerWidth(LangAS::Default
);
7471 if (PtrWidth
== 32) {
7472 if (Attrs
[attr::Ptr64
])
7473 ASIdx
= LangAS::ptr64
;
7474 else if (Attrs
[attr::UPtr
])
7475 ASIdx
= LangAS::ptr32_uptr
;
7476 } else if (PtrWidth
== 64 && Attrs
[attr::Ptr32
]) {
7477 if (Attrs
[attr::UPtr
])
7478 ASIdx
= LangAS::ptr32_uptr
;
7480 ASIdx
= LangAS::ptr32_sptr
;
7483 QualType Pointee
= Type
->getPointeeType();
7484 if (ASIdx
!= LangAS::Default
)
7485 Pointee
= S
.Context
.getAddrSpaceQualType(
7486 S
.Context
.removeAddrSpaceQualType(Pointee
), ASIdx
);
7487 Type
= State
.getAttributedType(A
, Type
, S
.Context
.getPointerType(Pointee
));
7491 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState
&State
,
7492 QualType
&QT
, ParsedAttr
&PAttr
) {
7493 assert(PAttr
.getKind() == ParsedAttr::AT_WebAssemblyFuncref
);
7495 Sema
&S
= State
.getSema();
7496 Attr
*A
= createSimpleAttr
<WebAssemblyFuncrefAttr
>(S
.Context
, PAttr
);
7498 std::bitset
<attr::LastAttr
> Attrs
;
7499 attr::Kind NewAttrKind
= A
->getKind();
7500 const auto *AT
= dyn_cast
<AttributedType
>(QT
);
7502 Attrs
[AT
->getAttrKind()] = true;
7503 AT
= dyn_cast
<AttributedType
>(AT
->getModifiedType());
7506 // You cannot specify duplicate type attributes, so if the attribute has
7507 // already been applied, flag it.
7508 if (Attrs
[NewAttrKind
]) {
7509 S
.Diag(PAttr
.getLoc(), diag::warn_duplicate_attribute_exact
) << PAttr
;
7513 // Add address space to type based on its attributes.
7514 LangAS ASIdx
= LangAS::wasm_funcref
;
7515 QualType Pointee
= QT
->getPointeeType();
7516 Pointee
= S
.Context
.getAddrSpaceQualType(
7517 S
.Context
.removeAddrSpaceQualType(Pointee
), ASIdx
);
7518 QT
= State
.getAttributedType(A
, QT
, S
.Context
.getPointerType(Pointee
));
7522 /// Map a nullability attribute kind to a nullability kind.
7523 static NullabilityKind
mapNullabilityAttrKind(ParsedAttr::Kind kind
) {
7525 case ParsedAttr::AT_TypeNonNull
:
7526 return NullabilityKind::NonNull
;
7528 case ParsedAttr::AT_TypeNullable
:
7529 return NullabilityKind::Nullable
;
7531 case ParsedAttr::AT_TypeNullableResult
:
7532 return NullabilityKind::NullableResult
;
7534 case ParsedAttr::AT_TypeNullUnspecified
:
7535 return NullabilityKind::Unspecified
;
7538 llvm_unreachable("not a nullability attribute kind");
7542 /// Applies a nullability type specifier to the given type, if possible.
7544 /// \param state The type processing state.
7546 /// \param type The type to which the nullability specifier will be
7547 /// added. On success, this type will be updated appropriately.
7549 /// \param attr The attribute as written on the type.
7551 /// \param allowOnArrayType Whether to accept nullability specifiers on an
7552 /// array type (e.g., because it will decay to a pointer).
7554 /// \returns true if a problem has been diagnosed, false on success.
7555 static bool checkNullabilityTypeSpecifier(TypeProcessingState
&state
,
7558 bool allowOnArrayType
) {
7559 Sema
&S
= state
.getSema();
7561 NullabilityKind nullability
= mapNullabilityAttrKind(attr
.getKind());
7562 SourceLocation nullabilityLoc
= attr
.getLoc();
7563 bool isContextSensitive
= attr
.isContextSensitiveKeywordAttribute();
7565 recordNullabilitySeen(S
, nullabilityLoc
);
7567 // Check for existing nullability attributes on the type.
7568 QualType desugared
= type
;
7569 while (auto attributed
= dyn_cast
<AttributedType
>(desugared
.getTypePtr())) {
7570 // Check whether there is already a null
7571 if (auto existingNullability
= attributed
->getImmediateNullability()) {
7572 // Duplicated nullability.
7573 if (nullability
== *existingNullability
) {
7574 S
.Diag(nullabilityLoc
, diag::warn_nullability_duplicate
)
7575 << DiagNullabilityKind(nullability
, isContextSensitive
)
7576 << FixItHint::CreateRemoval(nullabilityLoc
);
7581 // Conflicting nullability.
7582 S
.Diag(nullabilityLoc
, diag::err_nullability_conflicting
)
7583 << DiagNullabilityKind(nullability
, isContextSensitive
)
7584 << DiagNullabilityKind(*existingNullability
, false);
7588 desugared
= attributed
->getModifiedType();
7591 // If there is already a different nullability specifier, complain.
7592 // This (unlike the code above) looks through typedefs that might
7593 // have nullability specifiers on them, which means we cannot
7594 // provide a useful Fix-It.
7595 if (auto existingNullability
= desugared
->getNullability()) {
7596 if (nullability
!= *existingNullability
) {
7597 S
.Diag(nullabilityLoc
, diag::err_nullability_conflicting
)
7598 << DiagNullabilityKind(nullability
, isContextSensitive
)
7599 << DiagNullabilityKind(*existingNullability
, false);
7601 // Try to find the typedef with the existing nullability specifier.
7602 if (auto typedefType
= desugared
->getAs
<TypedefType
>()) {
7603 TypedefNameDecl
*typedefDecl
= typedefType
->getDecl();
7604 QualType underlyingType
= typedefDecl
->getUnderlyingType();
7605 if (auto typedefNullability
7606 = AttributedType::stripOuterNullability(underlyingType
)) {
7607 if (*typedefNullability
== *existingNullability
) {
7608 S
.Diag(typedefDecl
->getLocation(), diag::note_nullability_here
)
7609 << DiagNullabilityKind(*existingNullability
, false);
7618 // If this definitely isn't a pointer type, reject the specifier.
7619 if (!desugared
->canHaveNullability() &&
7620 !(allowOnArrayType
&& desugared
->isArrayType())) {
7621 S
.Diag(nullabilityLoc
, diag::err_nullability_nonpointer
)
7622 << DiagNullabilityKind(nullability
, isContextSensitive
) << type
;
7626 // For the context-sensitive keywords/Objective-C property
7627 // attributes, require that the type be a single-level pointer.
7628 if (isContextSensitive
) {
7629 // Make sure that the pointee isn't itself a pointer type.
7630 const Type
*pointeeType
= nullptr;
7631 if (desugared
->isArrayType())
7632 pointeeType
= desugared
->getArrayElementTypeNoTypeQual();
7633 else if (desugared
->isAnyPointerType())
7634 pointeeType
= desugared
->getPointeeType().getTypePtr();
7636 if (pointeeType
&& (pointeeType
->isAnyPointerType() ||
7637 pointeeType
->isObjCObjectPointerType() ||
7638 pointeeType
->isMemberPointerType())) {
7639 S
.Diag(nullabilityLoc
, diag::err_nullability_cs_multilevel
)
7640 << DiagNullabilityKind(nullability
, true)
7642 S
.Diag(nullabilityLoc
, diag::note_nullability_type_specifier
)
7643 << DiagNullabilityKind(nullability
, false)
7645 << FixItHint::CreateReplacement(nullabilityLoc
,
7646 getNullabilitySpelling(nullability
));
7651 // Form the attributed type.
7652 type
= state
.getAttributedType(
7653 createNullabilityAttr(S
.Context
, attr
, nullability
), type
, type
);
7657 /// Check the application of the Objective-C '__kindof' qualifier to
7659 static bool checkObjCKindOfType(TypeProcessingState
&state
, QualType
&type
,
7661 Sema
&S
= state
.getSema();
7663 if (isa
<ObjCTypeParamType
>(type
)) {
7664 // Build the attributed type to record where __kindof occurred.
7665 type
= state
.getAttributedType(
7666 createSimpleAttr
<ObjCKindOfAttr
>(S
.Context
, attr
), type
, type
);
7670 // Find out if it's an Objective-C object or object pointer type;
7671 const ObjCObjectPointerType
*ptrType
= type
->getAs
<ObjCObjectPointerType
>();
7672 const ObjCObjectType
*objType
= ptrType
? ptrType
->getObjectType()
7673 : type
->getAs
<ObjCObjectType
>();
7675 // If not, we can't apply __kindof.
7677 // FIXME: Handle dependent types that aren't yet object types.
7678 S
.Diag(attr
.getLoc(), diag::err_objc_kindof_nonobject
)
7683 // Rebuild the "equivalent" type, which pushes __kindof down into
7685 // There is no need to apply kindof on an unqualified id type.
7686 QualType equivType
= S
.Context
.getObjCObjectType(
7687 objType
->getBaseType(), objType
->getTypeArgsAsWritten(),
7688 objType
->getProtocols(),
7689 /*isKindOf=*/objType
->isObjCUnqualifiedId() ? false : true);
7691 // If we started with an object pointer type, rebuild it.
7693 equivType
= S
.Context
.getObjCObjectPointerType(equivType
);
7694 if (auto nullability
= type
->getNullability()) {
7695 // We create a nullability attribute from the __kindof attribute.
7696 // Make sure that will make sense.
7697 assert(attr
.getAttributeSpellingListIndex() == 0 &&
7698 "multiple spellings for __kindof?");
7699 Attr
*A
= createNullabilityAttr(S
.Context
, attr
, *nullability
);
7700 A
->setImplicit(true);
7701 equivType
= state
.getAttributedType(A
, equivType
, equivType
);
7705 // Build the attributed type to record where __kindof occurred.
7706 type
= state
.getAttributedType(
7707 createSimpleAttr
<ObjCKindOfAttr
>(S
.Context
, attr
), type
, equivType
);
7711 /// Distribute a nullability type attribute that cannot be applied to
7712 /// the type specifier to a pointer, block pointer, or member pointer
7713 /// declarator, complaining if necessary.
7715 /// \returns true if the nullability annotation was distributed, false
7717 static bool distributeNullabilityTypeAttr(TypeProcessingState
&state
,
7718 QualType type
, ParsedAttr
&attr
) {
7719 Declarator
&declarator
= state
.getDeclarator();
7721 /// Attempt to move the attribute to the specified chunk.
7722 auto moveToChunk
= [&](DeclaratorChunk
&chunk
, bool inFunction
) -> bool {
7723 // If there is already a nullability attribute there, don't add
7725 if (hasNullabilityAttr(chunk
.getAttrs()))
7728 // Complain about the nullability qualifier being in the wrong
7735 PK_MemberFunctionPointer
,
7737 = chunk
.Kind
== DeclaratorChunk::Pointer
? (inFunction
? PK_FunctionPointer
7739 : chunk
.Kind
== DeclaratorChunk::BlockPointer
? PK_BlockPointer
7740 : inFunction
? PK_MemberFunctionPointer
: PK_MemberPointer
;
7742 auto diag
= state
.getSema().Diag(attr
.getLoc(),
7743 diag::warn_nullability_declspec
)
7744 << DiagNullabilityKind(mapNullabilityAttrKind(attr
.getKind()),
7745 attr
.isContextSensitiveKeywordAttribute())
7747 << static_cast<unsigned>(pointerKind
);
7749 // FIXME: MemberPointer chunks don't carry the location of the *.
7750 if (chunk
.Kind
!= DeclaratorChunk::MemberPointer
) {
7751 diag
<< FixItHint::CreateRemoval(attr
.getLoc())
7752 << FixItHint::CreateInsertion(
7753 state
.getSema().getPreprocessor().getLocForEndOfToken(
7755 " " + attr
.getAttrName()->getName().str() + " ");
7758 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
7763 // Move it to the outermost pointer, member pointer, or block
7764 // pointer declarator.
7765 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
7766 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
7767 switch (chunk
.Kind
) {
7768 case DeclaratorChunk::Pointer
:
7769 case DeclaratorChunk::BlockPointer
:
7770 case DeclaratorChunk::MemberPointer
:
7771 return moveToChunk(chunk
, false);
7773 case DeclaratorChunk::Paren
:
7774 case DeclaratorChunk::Array
:
7777 case DeclaratorChunk::Function
:
7778 // Try to move past the return type to a function/block/member
7779 // function pointer.
7780 if (DeclaratorChunk
*dest
= maybeMovePastReturnType(
7782 /*onlyBlockPointers=*/false)) {
7783 return moveToChunk(*dest
, true);
7788 // Don't walk through these.
7789 case DeclaratorChunk::Reference
:
7790 case DeclaratorChunk::Pipe
:
7798 static Attr
*getCCTypeAttr(ASTContext
&Ctx
, ParsedAttr
&Attr
) {
7799 assert(!Attr
.isInvalid());
7800 switch (Attr
.getKind()) {
7802 llvm_unreachable("not a calling convention attribute");
7803 case ParsedAttr::AT_CDecl
:
7804 return createSimpleAttr
<CDeclAttr
>(Ctx
, Attr
);
7805 case ParsedAttr::AT_FastCall
:
7806 return createSimpleAttr
<FastCallAttr
>(Ctx
, Attr
);
7807 case ParsedAttr::AT_StdCall
:
7808 return createSimpleAttr
<StdCallAttr
>(Ctx
, Attr
);
7809 case ParsedAttr::AT_ThisCall
:
7810 return createSimpleAttr
<ThisCallAttr
>(Ctx
, Attr
);
7811 case ParsedAttr::AT_RegCall
:
7812 return createSimpleAttr
<RegCallAttr
>(Ctx
, Attr
);
7813 case ParsedAttr::AT_Pascal
:
7814 return createSimpleAttr
<PascalAttr
>(Ctx
, Attr
);
7815 case ParsedAttr::AT_SwiftCall
:
7816 return createSimpleAttr
<SwiftCallAttr
>(Ctx
, Attr
);
7817 case ParsedAttr::AT_SwiftAsyncCall
:
7818 return createSimpleAttr
<SwiftAsyncCallAttr
>(Ctx
, Attr
);
7819 case ParsedAttr::AT_VectorCall
:
7820 return createSimpleAttr
<VectorCallAttr
>(Ctx
, Attr
);
7821 case ParsedAttr::AT_AArch64VectorPcs
:
7822 return createSimpleAttr
<AArch64VectorPcsAttr
>(Ctx
, Attr
);
7823 case ParsedAttr::AT_AArch64SVEPcs
:
7824 return createSimpleAttr
<AArch64SVEPcsAttr
>(Ctx
, Attr
);
7825 case ParsedAttr::AT_ArmStreaming
:
7826 return createSimpleAttr
<ArmStreamingAttr
>(Ctx
, Attr
);
7827 case ParsedAttr::AT_AMDGPUKernelCall
:
7828 return createSimpleAttr
<AMDGPUKernelCallAttr
>(Ctx
, Attr
);
7829 case ParsedAttr::AT_Pcs
: {
7830 // The attribute may have had a fixit applied where we treated an
7831 // identifier as a string literal. The contents of the string are valid,
7832 // but the form may not be.
7834 if (Attr
.isArgExpr(0))
7835 Str
= cast
<StringLiteral
>(Attr
.getArgAsExpr(0))->getString();
7837 Str
= Attr
.getArgAsIdent(0)->Ident
->getName();
7838 PcsAttr::PCSType Type
;
7839 if (!PcsAttr::ConvertStrToPCSType(Str
, Type
))
7840 llvm_unreachable("already validated the attribute");
7841 return ::new (Ctx
) PcsAttr(Ctx
, Attr
, Type
);
7843 case ParsedAttr::AT_IntelOclBicc
:
7844 return createSimpleAttr
<IntelOclBiccAttr
>(Ctx
, Attr
);
7845 case ParsedAttr::AT_MSABI
:
7846 return createSimpleAttr
<MSABIAttr
>(Ctx
, Attr
);
7847 case ParsedAttr::AT_SysVABI
:
7848 return createSimpleAttr
<SysVABIAttr
>(Ctx
, Attr
);
7849 case ParsedAttr::AT_PreserveMost
:
7850 return createSimpleAttr
<PreserveMostAttr
>(Ctx
, Attr
);
7851 case ParsedAttr::AT_PreserveAll
:
7852 return createSimpleAttr
<PreserveAllAttr
>(Ctx
, Attr
);
7853 case ParsedAttr::AT_M68kRTD
:
7854 return createSimpleAttr
<M68kRTDAttr
>(Ctx
, Attr
);
7856 llvm_unreachable("unexpected attribute kind!");
7859 static bool checkMutualExclusion(TypeProcessingState
&state
,
7860 const FunctionProtoType::ExtProtoInfo
&EPI
,
7862 AttributeCommonInfo::Kind OtherKind
) {
7863 auto OtherAttr
= std::find_if(
7864 state
.getCurrentAttributes().begin(), state
.getCurrentAttributes().end(),
7865 [OtherKind
](const ParsedAttr
&A
) { return A
.getKind() == OtherKind
; });
7866 if (OtherAttr
== state
.getCurrentAttributes().end() || OtherAttr
->isInvalid())
7869 Sema
&S
= state
.getSema();
7870 S
.Diag(Attr
.getLoc(), diag::err_attributes_are_not_compatible
)
7871 << *OtherAttr
<< Attr
7872 << (OtherAttr
->isRegularKeywordAttribute() ||
7873 Attr
.isRegularKeywordAttribute());
7874 S
.Diag(OtherAttr
->getLoc(), diag::note_conflicting_attribute
);
7879 /// Process an individual function attribute. Returns true to
7880 /// indicate that the attribute was handled, false if it wasn't.
7881 static bool handleFunctionTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
7883 Sema::CUDAFunctionTarget CFT
) {
7884 Sema
&S
= state
.getSema();
7886 FunctionTypeUnwrapper
unwrapped(S
, type
);
7888 if (attr
.getKind() == ParsedAttr::AT_NoReturn
) {
7889 if (S
.CheckAttrNoArgs(attr
))
7892 // Delay if this is not a function type.
7893 if (!unwrapped
.isFunctionType())
7896 // Otherwise we can process right away.
7897 FunctionType::ExtInfo EI
= unwrapped
.get()->getExtInfo().withNoReturn(true);
7898 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7902 if (attr
.getKind() == ParsedAttr::AT_CmseNSCall
) {
7903 // Delay if this is not a function type.
7904 if (!unwrapped
.isFunctionType())
7907 // Ignore if we don't have CMSE enabled.
7908 if (!S
.getLangOpts().Cmse
) {
7909 S
.Diag(attr
.getLoc(), diag::warn_attribute_ignored
) << attr
;
7914 // Otherwise we can process right away.
7915 FunctionType::ExtInfo EI
=
7916 unwrapped
.get()->getExtInfo().withCmseNSCall(true);
7917 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7921 // ns_returns_retained is not always a type attribute, but if we got
7922 // here, we're treating it as one right now.
7923 if (attr
.getKind() == ParsedAttr::AT_NSReturnsRetained
) {
7924 if (attr
.getNumArgs()) return true;
7926 // Delay if this is not a function type.
7927 if (!unwrapped
.isFunctionType())
7930 // Check whether the return type is reasonable.
7931 if (S
.checkNSReturnsRetainedReturnType(attr
.getLoc(),
7932 unwrapped
.get()->getReturnType()))
7935 // Only actually change the underlying type in ARC builds.
7936 QualType origType
= type
;
7937 if (state
.getSema().getLangOpts().ObjCAutoRefCount
) {
7938 FunctionType::ExtInfo EI
7939 = unwrapped
.get()->getExtInfo().withProducesResult(true);
7940 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7942 type
= state
.getAttributedType(
7943 createSimpleAttr
<NSReturnsRetainedAttr
>(S
.Context
, attr
),
7948 if (attr
.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters
) {
7949 if (S
.CheckAttrTarget(attr
) || S
.CheckAttrNoArgs(attr
))
7952 // Delay if this is not a function type.
7953 if (!unwrapped
.isFunctionType())
7956 FunctionType::ExtInfo EI
=
7957 unwrapped
.get()->getExtInfo().withNoCallerSavedRegs(true);
7958 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7962 if (attr
.getKind() == ParsedAttr::AT_AnyX86NoCfCheck
) {
7963 if (!S
.getLangOpts().CFProtectionBranch
) {
7964 S
.Diag(attr
.getLoc(), diag::warn_nocf_check_attribute_ignored
);
7969 if (S
.CheckAttrTarget(attr
) || S
.CheckAttrNoArgs(attr
))
7972 // If this is not a function type, warning will be asserted by subject
7974 if (!unwrapped
.isFunctionType())
7977 FunctionType::ExtInfo EI
=
7978 unwrapped
.get()->getExtInfo().withNoCfCheck(true);
7979 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7983 if (attr
.getKind() == ParsedAttr::AT_Regparm
) {
7985 if (S
.CheckRegparmAttr(attr
, value
))
7988 // Delay if this is not a function type.
7989 if (!unwrapped
.isFunctionType())
7992 // Diagnose regparm with fastcall.
7993 const FunctionType
*fn
= unwrapped
.get();
7994 CallingConv CC
= fn
->getCallConv();
7995 if (CC
== CC_X86FastCall
) {
7996 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
7997 << FunctionType::getNameForCallConv(CC
) << "regparm"
7998 << attr
.isRegularKeywordAttribute();
8003 FunctionType::ExtInfo EI
=
8004 unwrapped
.get()->getExtInfo().withRegParm(value
);
8005 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
8009 if (attr
.getKind() == ParsedAttr::AT_ArmStreaming
||
8010 attr
.getKind() == ParsedAttr::AT_ArmStreamingCompatible
||
8011 attr
.getKind() == ParsedAttr::AT_ArmSharedZA
||
8012 attr
.getKind() == ParsedAttr::AT_ArmPreservesZA
){
8013 if (S
.CheckAttrTarget(attr
) || S
.CheckAttrNoArgs(attr
))
8016 if (!unwrapped
.isFunctionType())
8019 const auto *FnTy
= unwrapped
.get()->getAs
<FunctionProtoType
>();
8021 // SME ACLE attributes are not supported on K&R-style unprototyped C
8023 S
.Diag(attr
.getLoc(), diag::warn_attribute_wrong_decl_type
) <<
8024 attr
<< attr
.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType
;
8029 FunctionProtoType::ExtProtoInfo EPI
= FnTy
->getExtProtoInfo();
8030 switch (attr
.getKind()) {
8031 case ParsedAttr::AT_ArmStreaming
:
8032 if (checkMutualExclusion(state
, EPI
, attr
,
8033 ParsedAttr::AT_ArmStreamingCompatible
))
8035 EPI
.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask
);
8037 case ParsedAttr::AT_ArmStreamingCompatible
:
8038 if (checkMutualExclusion(state
, EPI
, attr
, ParsedAttr::AT_ArmStreaming
))
8040 EPI
.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask
);
8042 case ParsedAttr::AT_ArmSharedZA
:
8043 EPI
.setArmSMEAttribute(FunctionType::SME_PStateZASharedMask
);
8045 case ParsedAttr::AT_ArmPreservesZA
:
8046 EPI
.setArmSMEAttribute(FunctionType::SME_PStateZAPreservedMask
);
8049 llvm_unreachable("Unsupported attribute");
8052 QualType newtype
= S
.Context
.getFunctionType(FnTy
->getReturnType(),
8053 FnTy
->getParamTypes(), EPI
);
8054 type
= unwrapped
.wrap(S
, newtype
->getAs
<FunctionType
>());
8058 if (attr
.getKind() == ParsedAttr::AT_NoThrow
) {
8059 // Delay if this is not a function type.
8060 if (!unwrapped
.isFunctionType())
8063 if (S
.CheckAttrNoArgs(attr
)) {
8068 // Otherwise we can process right away.
8069 auto *Proto
= unwrapped
.get()->castAs
<FunctionProtoType
>();
8071 // MSVC ignores nothrow if it is in conflict with an explicit exception
8073 if (Proto
->hasExceptionSpec()) {
8074 switch (Proto
->getExceptionSpecType()) {
8076 llvm_unreachable("This doesn't have an exception spec!");
8078 case EST_DynamicNone
:
8079 case EST_BasicNoexcept
:
8080 case EST_NoexceptTrue
:
8082 // Exception spec doesn't conflict with nothrow, so don't warn.
8085 case EST_Uninstantiated
:
8086 case EST_DependentNoexcept
:
8087 case EST_Unevaluated
:
8088 // We don't have enough information to properly determine if there is a
8089 // conflict, so suppress the warning.
8093 case EST_NoexceptFalse
:
8094 S
.Diag(attr
.getLoc(), diag::warn_nothrow_attribute_ignored
);
8100 type
= unwrapped
.wrap(
8102 .getFunctionTypeWithExceptionSpec(
8104 FunctionProtoType::ExceptionSpecInfo
{EST_NoThrow
})
8105 ->getAs
<FunctionType
>());
8109 // Delay if the type didn't work out to a function.
8110 if (!unwrapped
.isFunctionType()) return false;
8112 // Otherwise, a calling convention.
8114 if (S
.CheckCallingConvAttr(attr
, CC
, /*FunctionDecl=*/nullptr, CFT
))
8117 const FunctionType
*fn
= unwrapped
.get();
8118 CallingConv CCOld
= fn
->getCallConv();
8119 Attr
*CCAttr
= getCCTypeAttr(S
.Context
, attr
);
8122 // Error out on when there's already an attribute on the type
8123 // and the CCs don't match.
8124 if (S
.getCallingConvAttributedType(type
)) {
8125 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
8126 << FunctionType::getNameForCallConv(CC
)
8127 << FunctionType::getNameForCallConv(CCOld
)
8128 << attr
.isRegularKeywordAttribute();
8134 // Diagnose use of variadic functions with calling conventions that
8135 // don't support them (e.g. because they're callee-cleanup).
8136 // We delay warning about this on unprototyped function declarations
8137 // until after redeclaration checking, just in case we pick up a
8138 // prototype that way. And apparently we also "delay" warning about
8139 // unprototyped function types in general, despite not necessarily having
8140 // much ability to diagnose it later.
8141 if (!supportsVariadicCall(CC
)) {
8142 const FunctionProtoType
*FnP
= dyn_cast
<FunctionProtoType
>(fn
);
8143 if (FnP
&& FnP
->isVariadic()) {
8144 // stdcall and fastcall are ignored with a warning for GCC and MS
8146 if (CC
== CC_X86StdCall
|| CC
== CC_X86FastCall
)
8147 return S
.Diag(attr
.getLoc(), diag::warn_cconv_unsupported
)
8148 << FunctionType::getNameForCallConv(CC
)
8149 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction
;
8152 return S
.Diag(attr
.getLoc(), diag::err_cconv_varargs
)
8153 << FunctionType::getNameForCallConv(CC
);
8157 // Also diagnose fastcall with regparm.
8158 if (CC
== CC_X86FastCall
&& fn
->getHasRegParm()) {
8159 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
8160 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall
)
8161 << attr
.isRegularKeywordAttribute();
8166 // Modify the CC from the wrapped function type, wrap it all back, and then
8167 // wrap the whole thing in an AttributedType as written. The modified type
8168 // might have a different CC if we ignored the attribute.
8169 QualType Equivalent
;
8173 auto EI
= unwrapped
.get()->getExtInfo().withCallingConv(CC
);
8175 unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
8177 type
= state
.getAttributedType(CCAttr
, type
, Equivalent
);
8181 bool Sema::hasExplicitCallingConv(QualType T
) {
8182 const AttributedType
*AT
;
8184 // Stop if we'd be stripping off a typedef sugar node to reach the
8186 while ((AT
= T
->getAs
<AttributedType
>()) &&
8187 AT
->getAs
<TypedefType
>() == T
->getAs
<TypedefType
>()) {
8188 if (AT
->isCallingConv())
8190 T
= AT
->getModifiedType();
8195 void Sema::adjustMemberFunctionCC(QualType
&T
, bool HasThisPointer
,
8196 bool IsCtorOrDtor
, SourceLocation Loc
) {
8197 FunctionTypeUnwrapper
Unwrapped(*this, T
);
8198 const FunctionType
*FT
= Unwrapped
.get();
8199 bool IsVariadic
= (isa
<FunctionProtoType
>(FT
) &&
8200 cast
<FunctionProtoType
>(FT
)->isVariadic());
8201 CallingConv CurCC
= FT
->getCallConv();
8203 Context
.getDefaultCallingConvention(IsVariadic
, HasThisPointer
);
8208 // MS compiler ignores explicit calling convention attributes on structors. We
8209 // should do the same.
8210 if (Context
.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor
) {
8211 // Issue a warning on ignored calling convention -- except of __stdcall.
8212 // Again, this is what MS compiler does.
8213 if (CurCC
!= CC_X86StdCall
)
8214 Diag(Loc
, diag::warn_cconv_unsupported
)
8215 << FunctionType::getNameForCallConv(CurCC
)
8216 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor
;
8217 // Default adjustment.
8219 // Only adjust types with the default convention. For example, on Windows
8220 // we should adjust a __cdecl type to __thiscall for instance methods, and a
8221 // __thiscall type to __cdecl for static methods.
8222 CallingConv DefaultCC
=
8223 Context
.getDefaultCallingConvention(IsVariadic
, !HasThisPointer
);
8225 if (CurCC
!= DefaultCC
)
8228 if (hasExplicitCallingConv(T
))
8232 FT
= Context
.adjustFunctionType(FT
, FT
->getExtInfo().withCallingConv(ToCC
));
8233 QualType Wrapped
= Unwrapped
.wrap(*this, FT
);
8234 T
= Context
.getAdjustedType(T
, Wrapped
);
8237 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8238 /// and float scalars, although arrays, pointers, and function return values are
8239 /// allowed in conjunction with this construct. Aggregates with this attribute
8240 /// are invalid, even if they are of the same size as a corresponding scalar.
8241 /// The raw attribute should contain precisely 1 argument, the vector size for
8242 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8243 /// this routine will return a new vector type.
8244 static void HandleVectorSizeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8246 // Check the attribute arguments.
8247 if (Attr
.getNumArgs() != 1) {
8248 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
8254 Expr
*SizeExpr
= Attr
.getArgAsExpr(0);
8255 QualType T
= S
.BuildVectorType(CurType
, SizeExpr
, Attr
.getLoc());
8262 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8264 static void HandleExtVectorTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8266 // check the attribute arguments.
8267 if (Attr
.getNumArgs() != 1) {
8268 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
8273 Expr
*SizeExpr
= Attr
.getArgAsExpr(0);
8274 QualType T
= S
.BuildExtVectorType(CurType
, SizeExpr
, Attr
.getLoc());
8279 static bool isPermittedNeonBaseType(QualType
&Ty
, VectorKind VecKind
, Sema
&S
) {
8280 const BuiltinType
*BTy
= Ty
->getAs
<BuiltinType
>();
8284 llvm::Triple Triple
= S
.Context
.getTargetInfo().getTriple();
8286 // Signed poly is mathematically wrong, but has been baked into some ABIs by
8288 bool IsPolyUnsigned
= Triple
.getArch() == llvm::Triple::aarch64
||
8289 Triple
.getArch() == llvm::Triple::aarch64_32
||
8290 Triple
.getArch() == llvm::Triple::aarch64_be
;
8291 if (VecKind
== VectorKind::NeonPoly
) {
8292 if (IsPolyUnsigned
) {
8293 // AArch64 polynomial vectors are unsigned.
8294 return BTy
->getKind() == BuiltinType::UChar
||
8295 BTy
->getKind() == BuiltinType::UShort
||
8296 BTy
->getKind() == BuiltinType::ULong
||
8297 BTy
->getKind() == BuiltinType::ULongLong
;
8299 // AArch32 polynomial vectors are signed.
8300 return BTy
->getKind() == BuiltinType::SChar
||
8301 BTy
->getKind() == BuiltinType::Short
||
8302 BTy
->getKind() == BuiltinType::LongLong
;
8306 // Non-polynomial vector types: the usual suspects are allowed, as well as
8307 // float64_t on AArch64.
8308 if ((Triple
.isArch64Bit() || Triple
.getArch() == llvm::Triple::aarch64_32
) &&
8309 BTy
->getKind() == BuiltinType::Double
)
8312 return BTy
->getKind() == BuiltinType::SChar
||
8313 BTy
->getKind() == BuiltinType::UChar
||
8314 BTy
->getKind() == BuiltinType::Short
||
8315 BTy
->getKind() == BuiltinType::UShort
||
8316 BTy
->getKind() == BuiltinType::Int
||
8317 BTy
->getKind() == BuiltinType::UInt
||
8318 BTy
->getKind() == BuiltinType::Long
||
8319 BTy
->getKind() == BuiltinType::ULong
||
8320 BTy
->getKind() == BuiltinType::LongLong
||
8321 BTy
->getKind() == BuiltinType::ULongLong
||
8322 BTy
->getKind() == BuiltinType::Float
||
8323 BTy
->getKind() == BuiltinType::Half
||
8324 BTy
->getKind() == BuiltinType::BFloat16
;
8327 static bool verifyValidIntegerConstantExpr(Sema
&S
, const ParsedAttr
&Attr
,
8328 llvm::APSInt
&Result
) {
8329 const auto *AttrExpr
= Attr
.getArgAsExpr(0);
8330 if (!AttrExpr
->isTypeDependent()) {
8331 if (std::optional
<llvm::APSInt
> Res
=
8332 AttrExpr
->getIntegerConstantExpr(S
.Context
)) {
8337 S
.Diag(Attr
.getLoc(), diag::err_attribute_argument_type
)
8338 << Attr
<< AANT_ArgumentIntegerConstant
<< AttrExpr
->getSourceRange();
8343 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8344 /// "neon_polyvector_type" attributes are used to create vector types that
8345 /// are mangled according to ARM's ABI. Otherwise, these types are identical
8346 /// to those created with the "vector_size" attribute. Unlike "vector_size"
8347 /// the argument to these Neon attributes is the number of vector elements,
8348 /// not the vector size in bytes. The vector width and element type must
8349 /// match one of the standard Neon vector types.
8350 static void HandleNeonVectorTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8351 Sema
&S
, VectorKind VecKind
) {
8352 bool IsTargetCUDAAndHostARM
= false;
8353 if (S
.getLangOpts().CUDAIsDevice
) {
8354 const TargetInfo
*AuxTI
= S
.getASTContext().getAuxTargetInfo();
8355 IsTargetCUDAAndHostARM
=
8356 AuxTI
&& (AuxTI
->getTriple().isAArch64() || AuxTI
->getTriple().isARM());
8359 // Target must have NEON (or MVE, whose vectors are similar enough
8360 // not to need a separate attribute)
8361 if (!(S
.Context
.getTargetInfo().hasFeature("neon") ||
8362 S
.Context
.getTargetInfo().hasFeature("mve") ||
8363 S
.Context
.getTargetInfo().hasFeature("sve") ||
8364 S
.Context
.getTargetInfo().hasFeature("sme") ||
8365 IsTargetCUDAAndHostARM
) &&
8366 VecKind
== VectorKind::Neon
) {
8367 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
)
8368 << Attr
<< "'neon', 'mve', 'sve' or 'sme'";
8372 if (!(S
.Context
.getTargetInfo().hasFeature("neon") ||
8373 S
.Context
.getTargetInfo().hasFeature("mve") ||
8374 IsTargetCUDAAndHostARM
) &&
8375 VecKind
== VectorKind::NeonPoly
) {
8376 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
)
8377 << Attr
<< "'neon' or 'mve'";
8382 // Check the attribute arguments.
8383 if (Attr
.getNumArgs() != 1) {
8384 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8389 // The number of elements must be an ICE.
8390 llvm::APSInt
numEltsInt(32);
8391 if (!verifyValidIntegerConstantExpr(S
, Attr
, numEltsInt
))
8394 // Only certain element types are supported for Neon vectors.
8395 if (!isPermittedNeonBaseType(CurType
, VecKind
, S
) &&
8396 !IsTargetCUDAAndHostARM
) {
8397 S
.Diag(Attr
.getLoc(), diag::err_attribute_invalid_vector_type
) << CurType
;
8402 // The total size of the vector must be 64 or 128 bits.
8403 unsigned typeSize
= static_cast<unsigned>(S
.Context
.getTypeSize(CurType
));
8404 unsigned numElts
= static_cast<unsigned>(numEltsInt
.getZExtValue());
8405 unsigned vecSize
= typeSize
* numElts
;
8406 if (vecSize
!= 64 && vecSize
!= 128) {
8407 S
.Diag(Attr
.getLoc(), diag::err_attribute_bad_neon_vector_size
) << CurType
;
8412 CurType
= S
.Context
.getVectorType(CurType
, numElts
, VecKind
);
8415 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8416 /// used to create fixed-length versions of sizeless SVE types defined by
8417 /// the ACLE, such as svint32_t and svbool_t.
8418 static void HandleArmSveVectorBitsTypeAttr(QualType
&CurType
, ParsedAttr
&Attr
,
8420 // Target must have SVE.
8421 if (!S
.Context
.getTargetInfo().hasFeature("sve")) {
8422 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
) << Attr
<< "'sve'";
8427 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8428 // if <bits>+ syntax is used.
8429 if (!S
.getLangOpts().VScaleMin
||
8430 S
.getLangOpts().VScaleMin
!= S
.getLangOpts().VScaleMax
) {
8431 S
.Diag(Attr
.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported
)
8437 // Check the attribute arguments.
8438 if (Attr
.getNumArgs() != 1) {
8439 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8445 // The vector size must be an integer constant expression.
8446 llvm::APSInt
SveVectorSizeInBits(32);
8447 if (!verifyValidIntegerConstantExpr(S
, Attr
, SveVectorSizeInBits
))
8450 unsigned VecSize
= static_cast<unsigned>(SveVectorSizeInBits
.getZExtValue());
8452 // The attribute vector size must match -msve-vector-bits.
8453 if (VecSize
!= S
.getLangOpts().VScaleMin
* 128) {
8454 S
.Diag(Attr
.getLoc(), diag::err_attribute_bad_sve_vector_size
)
8455 << VecSize
<< S
.getLangOpts().VScaleMin
* 128;
8460 // Attribute can only be attached to a single SVE vector or predicate type.
8461 if (!CurType
->isSveVLSBuiltinType()) {
8462 S
.Diag(Attr
.getLoc(), diag::err_attribute_invalid_sve_type
)
8468 const auto *BT
= CurType
->castAs
<BuiltinType
>();
8470 QualType EltType
= CurType
->getSveEltType(S
.Context
);
8471 unsigned TypeSize
= S
.Context
.getTypeSize(EltType
);
8472 VectorKind VecKind
= VectorKind::SveFixedLengthData
;
8473 if (BT
->getKind() == BuiltinType::SveBool
) {
8474 // Predicates are represented as i8.
8475 VecSize
/= S
.Context
.getCharWidth() * S
.Context
.getCharWidth();
8476 VecKind
= VectorKind::SveFixedLengthPredicate
;
8478 VecSize
/= TypeSize
;
8479 CurType
= S
.Context
.getVectorType(EltType
, VecSize
, VecKind
);
8482 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState
&State
,
8485 const VectorType
*VT
= dyn_cast
<VectorType
>(CurType
);
8486 if (!VT
|| VT
->getVectorKind() != VectorKind::Neon
) {
8487 State
.getSema().Diag(Attr
.getLoc(),
8488 diag::err_attribute_arm_mve_polymorphism
);
8494 State
.getAttributedType(createSimpleAttr
<ArmMveStrictPolymorphismAttr
>(
8495 State
.getSema().Context
, Attr
),
8499 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8500 /// used to create fixed-length versions of sizeless RVV types such as
8502 static void HandleRISCVRVVVectorBitsTypeAttr(QualType
&CurType
,
8503 ParsedAttr
&Attr
, Sema
&S
) {
8504 // Target must have vector extension.
8505 if (!S
.Context
.getTargetInfo().hasFeature("zve32x")) {
8506 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
)
8507 << Attr
<< "'zve32x'";
8512 auto VScale
= S
.Context
.getTargetInfo().getVScaleRange(S
.getLangOpts());
8513 if (!VScale
|| !VScale
->first
|| VScale
->first
!= VScale
->second
) {
8514 S
.Diag(Attr
.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported
)
8520 // Check the attribute arguments.
8521 if (Attr
.getNumArgs() != 1) {
8522 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8528 // The vector size must be an integer constant expression.
8529 llvm::APSInt
RVVVectorSizeInBits(32);
8530 if (!verifyValidIntegerConstantExpr(S
, Attr
, RVVVectorSizeInBits
))
8533 // Attribute can only be attached to a single RVV vector type.
8534 if (!CurType
->isRVVVLSBuiltinType()) {
8535 S
.Diag(Attr
.getLoc(), diag::err_attribute_invalid_rvv_type
)
8541 unsigned VecSize
= static_cast<unsigned>(RVVVectorSizeInBits
.getZExtValue());
8543 ASTContext::BuiltinVectorTypeInfo Info
=
8544 S
.Context
.getBuiltinVectorTypeInfo(CurType
->castAs
<BuiltinType
>());
8545 unsigned EltSize
= S
.Context
.getTypeSize(Info
.ElementType
);
8546 unsigned MinElts
= Info
.EC
.getKnownMinValue();
8548 // The attribute vector size must match -mrvv-vector-bits.
8549 unsigned ExpectedSize
= VScale
->first
* MinElts
* EltSize
;
8550 if (VecSize
!= ExpectedSize
) {
8551 S
.Diag(Attr
.getLoc(), diag::err_attribute_bad_rvv_vector_size
)
8552 << VecSize
<< ExpectedSize
;
8557 VectorKind VecKind
= VectorKind::RVVFixedLengthData
;
8559 CurType
= S
.Context
.getVectorType(Info
.ElementType
, VecSize
, VecKind
);
8562 /// Handle OpenCL Access Qualifier Attribute.
8563 static void HandleOpenCLAccessAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8565 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8566 if (!(CurType
->isImageType() || CurType
->isPipeType())) {
8567 S
.Diag(Attr
.getLoc(), diag::err_opencl_invalid_access_qualifier
);
8572 if (const TypedefType
* TypedefTy
= CurType
->getAs
<TypedefType
>()) {
8573 QualType BaseTy
= TypedefTy
->desugar();
8575 std::string PrevAccessQual
;
8576 if (BaseTy
->isPipeType()) {
8577 if (TypedefTy
->getDecl()->hasAttr
<OpenCLAccessAttr
>()) {
8578 OpenCLAccessAttr
*Attr
=
8579 TypedefTy
->getDecl()->getAttr
<OpenCLAccessAttr
>();
8580 PrevAccessQual
= Attr
->getSpelling();
8582 PrevAccessQual
= "read_only";
8584 } else if (const BuiltinType
* ImgType
= BaseTy
->getAs
<BuiltinType
>()) {
8586 switch (ImgType
->getKind()) {
8587 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8588 case BuiltinType::Id: \
8589 PrevAccessQual = #Access; \
8591 #include "clang/Basic/OpenCLImageTypes.def"
8593 llvm_unreachable("Unable to find corresponding image type.");
8596 llvm_unreachable("unexpected type");
8598 StringRef AttrName
= Attr
.getAttrName()->getName();
8599 if (PrevAccessQual
== AttrName
.ltrim("_")) {
8600 // Duplicated qualifiers
8601 S
.Diag(Attr
.getLoc(), diag::warn_duplicate_declspec
)
8602 << AttrName
<< Attr
.getRange();
8604 // Contradicting qualifiers
8605 S
.Diag(Attr
.getLoc(), diag::err_opencl_multiple_access_qualifiers
);
8608 S
.Diag(TypedefTy
->getDecl()->getBeginLoc(),
8609 diag::note_opencl_typedef_access_qualifier
) << PrevAccessQual
;
8610 } else if (CurType
->isPipeType()) {
8611 if (Attr
.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only
) {
8612 QualType ElemType
= CurType
->castAs
<PipeType
>()->getElementType();
8613 CurType
= S
.Context
.getWritePipeType(ElemType
);
8618 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8619 static void HandleMatrixTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8621 if (!S
.getLangOpts().MatrixTypes
) {
8622 S
.Diag(Attr
.getLoc(), diag::err_builtin_matrix_disabled
);
8626 if (Attr
.getNumArgs() != 2) {
8627 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8632 Expr
*RowsExpr
= Attr
.getArgAsExpr(0);
8633 Expr
*ColsExpr
= Attr
.getArgAsExpr(1);
8634 QualType T
= S
.BuildMatrixType(CurType
, RowsExpr
, ColsExpr
, Attr
.getLoc());
8639 static void HandleAnnotateTypeAttr(TypeProcessingState
&State
,
8640 QualType
&CurType
, const ParsedAttr
&PA
) {
8641 Sema
&S
= State
.getSema();
8643 if (PA
.getNumArgs() < 1) {
8644 S
.Diag(PA
.getLoc(), diag::err_attribute_too_few_arguments
) << PA
<< 1;
8648 // Make sure that there is a string literal as the annotation's first
8651 if (!S
.checkStringLiteralArgumentAttr(PA
, 0, Str
))
8654 llvm::SmallVector
<Expr
*, 4> Args
;
8655 Args
.reserve(PA
.getNumArgs() - 1);
8656 for (unsigned Idx
= 1; Idx
< PA
.getNumArgs(); Idx
++) {
8657 assert(!PA
.isArgIdent(Idx
));
8658 Args
.push_back(PA
.getArgAsExpr(Idx
));
8660 if (!S
.ConstantFoldAttrArgs(PA
, Args
))
8662 auto *AnnotateTypeAttr
=
8663 AnnotateTypeAttr::Create(S
.Context
, Str
, Args
.data(), Args
.size(), PA
);
8664 CurType
= State
.getAttributedType(AnnotateTypeAttr
, CurType
, CurType
);
8667 static void HandleLifetimeBoundAttr(TypeProcessingState
&State
,
8670 if (State
.getDeclarator().isDeclarationOfFunction()) {
8671 CurType
= State
.getAttributedType(
8672 createSimpleAttr
<LifetimeBoundAttr
>(State
.getSema().Context
, Attr
),
8677 static void HandleHLSLParamModifierAttr(QualType
&CurType
,
8678 const ParsedAttr
&Attr
, Sema
&S
) {
8679 // Don't apply this attribute to template dependent types. It is applied on
8680 // substitution during template instantiation.
8681 if (CurType
->isDependentType())
8683 if (Attr
.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout
||
8684 Attr
.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out
)
8685 CurType
= S
.getASTContext().getLValueReferenceType(CurType
);
8688 static void processTypeAttrs(TypeProcessingState
&state
, QualType
&type
,
8689 TypeAttrLocation TAL
,
8690 const ParsedAttributesView
&attrs
,
8691 Sema::CUDAFunctionTarget CFT
) {
8693 state
.setParsedNoDeref(false);
8697 // Scan through and apply attributes to this type where it makes sense. Some
8698 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8699 // type, but others can be present in the type specifiers even though they
8700 // apply to the decl. Here we apply type attributes and ignore the rest.
8702 // This loop modifies the list pretty frequently, but we still need to make
8703 // sure we visit every element once. Copy the attributes list, and iterate
8705 ParsedAttributesView AttrsCopy
{attrs
};
8706 for (ParsedAttr
&attr
: AttrsCopy
) {
8708 // Skip attributes that were marked to be invalid.
8709 if (attr
.isInvalid())
8712 if (attr
.isStandardAttributeSyntax() || attr
.isRegularKeywordAttribute()) {
8713 // [[gnu::...]] attributes are treated as declaration attributes, so may
8714 // not appertain to a DeclaratorChunk. If we handle them as type
8715 // attributes, accept them in that position and diagnose the GCC
8717 if (attr
.isGNUScope()) {
8718 assert(attr
.isStandardAttributeSyntax());
8719 bool IsTypeAttr
= attr
.isTypeAttr();
8720 if (TAL
== TAL_DeclChunk
) {
8721 state
.getSema().Diag(attr
.getLoc(),
8723 ? diag::warn_gcc_ignores_type_attr
8724 : diag::warn_cxx11_gnu_attribute_on_type
)
8729 } else if (TAL
!= TAL_DeclSpec
&& TAL
!= TAL_DeclChunk
&&
8730 !attr
.isTypeAttr()) {
8731 // Otherwise, only consider type processing for a C++11 attribute if
8732 // - it has actually been applied to a type (decl-specifier-seq or
8733 // declarator chunk), or
8734 // - it is a type attribute, irrespective of where it was applied (so
8735 // that we can support the legacy behavior of some type attributes
8736 // that can be applied to the declaration name).
8741 // If this is an attribute we can handle, do so now,
8742 // otherwise, add it to the FnAttrs list for rechaining.
8743 switch (attr
.getKind()) {
8745 // A [[]] attribute on a declarator chunk must appertain to a type.
8746 if ((attr
.isStandardAttributeSyntax() ||
8747 attr
.isRegularKeywordAttribute()) &&
8748 TAL
== TAL_DeclChunk
) {
8749 state
.getSema().Diag(attr
.getLoc(), diag::err_attribute_not_type_attr
)
8750 << attr
<< attr
.isRegularKeywordAttribute();
8751 attr
.setUsedAsTypeAttr();
8755 case ParsedAttr::UnknownAttribute
:
8756 if (attr
.isStandardAttributeSyntax()) {
8757 state
.getSema().Diag(attr
.getLoc(),
8758 diag::warn_unknown_attribute_ignored
)
8759 << attr
<< attr
.getRange();
8760 // Mark the attribute as invalid so we don't emit the same diagnostic
8766 case ParsedAttr::IgnoredAttribute
:
8769 case ParsedAttr::AT_BTFTypeTag
:
8770 HandleBTFTypeTagAttribute(type
, attr
, state
);
8771 attr
.setUsedAsTypeAttr();
8774 case ParsedAttr::AT_MayAlias
:
8775 // FIXME: This attribute needs to actually be handled, but if we ignore
8776 // it it breaks large amounts of Linux software.
8777 attr
.setUsedAsTypeAttr();
8779 case ParsedAttr::AT_OpenCLPrivateAddressSpace
:
8780 case ParsedAttr::AT_OpenCLGlobalAddressSpace
:
8781 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace
:
8782 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace
:
8783 case ParsedAttr::AT_OpenCLLocalAddressSpace
:
8784 case ParsedAttr::AT_OpenCLConstantAddressSpace
:
8785 case ParsedAttr::AT_OpenCLGenericAddressSpace
:
8786 case ParsedAttr::AT_HLSLGroupSharedAddressSpace
:
8787 case ParsedAttr::AT_AddressSpace
:
8788 HandleAddressSpaceTypeAttribute(type
, attr
, state
);
8789 attr
.setUsedAsTypeAttr();
8791 OBJC_POINTER_TYPE_ATTRS_CASELIST
:
8792 if (!handleObjCPointerTypeAttr(state
, attr
, type
))
8793 distributeObjCPointerTypeAttr(state
, attr
, type
);
8794 attr
.setUsedAsTypeAttr();
8796 case ParsedAttr::AT_VectorSize
:
8797 HandleVectorSizeAttr(type
, attr
, state
.getSema());
8798 attr
.setUsedAsTypeAttr();
8800 case ParsedAttr::AT_ExtVectorType
:
8801 HandleExtVectorTypeAttr(type
, attr
, state
.getSema());
8802 attr
.setUsedAsTypeAttr();
8804 case ParsedAttr::AT_NeonVectorType
:
8805 HandleNeonVectorTypeAttr(type
, attr
, state
.getSema(), VectorKind::Neon
);
8806 attr
.setUsedAsTypeAttr();
8808 case ParsedAttr::AT_NeonPolyVectorType
:
8809 HandleNeonVectorTypeAttr(type
, attr
, state
.getSema(),
8810 VectorKind::NeonPoly
);
8811 attr
.setUsedAsTypeAttr();
8813 case ParsedAttr::AT_ArmSveVectorBits
:
8814 HandleArmSveVectorBitsTypeAttr(type
, attr
, state
.getSema());
8815 attr
.setUsedAsTypeAttr();
8817 case ParsedAttr::AT_ArmMveStrictPolymorphism
: {
8818 HandleArmMveStrictPolymorphismAttr(state
, type
, attr
);
8819 attr
.setUsedAsTypeAttr();
8822 case ParsedAttr::AT_RISCVRVVVectorBits
:
8823 HandleRISCVRVVVectorBitsTypeAttr(type
, attr
, state
.getSema());
8824 attr
.setUsedAsTypeAttr();
8826 case ParsedAttr::AT_OpenCLAccess
:
8827 HandleOpenCLAccessAttr(type
, attr
, state
.getSema());
8828 attr
.setUsedAsTypeAttr();
8830 case ParsedAttr::AT_LifetimeBound
:
8831 if (TAL
== TAL_DeclChunk
)
8832 HandleLifetimeBoundAttr(state
, type
, attr
);
8835 case ParsedAttr::AT_NoDeref
: {
8836 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8837 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8838 // For the time being, we simply emit a warning that the attribute is
8840 if (attr
.isStandardAttributeSyntax()) {
8841 state
.getSema().Diag(attr
.getLoc(), diag::warn_attribute_ignored
)
8845 ASTContext
&Ctx
= state
.getSema().Context
;
8846 type
= state
.getAttributedType(createSimpleAttr
<NoDerefAttr
>(Ctx
, attr
),
8848 attr
.setUsedAsTypeAttr();
8849 state
.setParsedNoDeref(true);
8853 case ParsedAttr::AT_MatrixType
:
8854 HandleMatrixTypeAttr(type
, attr
, state
.getSema());
8855 attr
.setUsedAsTypeAttr();
8858 case ParsedAttr::AT_WebAssemblyFuncref
: {
8859 if (!HandleWebAssemblyFuncrefAttr(state
, type
, attr
))
8860 attr
.setUsedAsTypeAttr();
8864 case ParsedAttr::AT_HLSLParamModifier
: {
8865 HandleHLSLParamModifierAttr(type
, attr
, state
.getSema());
8866 attr
.setUsedAsTypeAttr();
8870 MS_TYPE_ATTRS_CASELIST
:
8871 if (!handleMSPointerTypeQualifierAttr(state
, attr
, type
))
8872 attr
.setUsedAsTypeAttr();
8876 NULLABILITY_TYPE_ATTRS_CASELIST
:
8877 // Either add nullability here or try to distribute it. We
8878 // don't want to distribute the nullability specifier past any
8879 // dependent type, because that complicates the user model.
8880 if (type
->canHaveNullability() || type
->isDependentType() ||
8881 type
->isArrayType() ||
8882 !distributeNullabilityTypeAttr(state
, type
, attr
)) {
8884 if (TAL
== TAL_DeclChunk
)
8885 endIndex
= state
.getCurrentChunkIndex();
8887 endIndex
= state
.getDeclarator().getNumTypeObjects();
8888 bool allowOnArrayType
=
8889 state
.getDeclarator().isPrototypeContext() &&
8890 !hasOuterPointerLikeChunk(state
.getDeclarator(), endIndex
);
8891 if (checkNullabilityTypeSpecifier(
8895 allowOnArrayType
)) {
8899 attr
.setUsedAsTypeAttr();
8903 case ParsedAttr::AT_ObjCKindOf
:
8904 // '__kindof' must be part of the decl-specifiers.
8911 state
.getSema().Diag(attr
.getLoc(),
8912 diag::err_objc_kindof_wrong_position
)
8913 << FixItHint::CreateRemoval(attr
.getLoc())
8914 << FixItHint::CreateInsertion(
8915 state
.getDeclarator().getDeclSpec().getBeginLoc(),
8920 // Apply it regardless.
8921 if (checkObjCKindOfType(state
, type
, attr
))
8925 case ParsedAttr::AT_NoThrow
:
8926 // Exception Specifications aren't generally supported in C mode throughout
8927 // clang, so revert to attribute-based handling for C.
8928 if (!state
.getSema().getLangOpts().CPlusPlus
)
8931 FUNCTION_TYPE_ATTRS_CASELIST
:
8932 attr
.setUsedAsTypeAttr();
8934 // Attributes with standard syntax have strict rules for what they
8935 // appertain to and hence should not use the "distribution" logic below.
8936 if (attr
.isStandardAttributeSyntax() ||
8937 attr
.isRegularKeywordAttribute()) {
8938 if (!handleFunctionTypeAttr(state
, attr
, type
, CFT
)) {
8939 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
8945 // Never process function type attributes as part of the
8946 // declaration-specifiers.
8947 if (TAL
== TAL_DeclSpec
)
8948 distributeFunctionTypeAttrFromDeclSpec(state
, attr
, type
, CFT
);
8950 // Otherwise, handle the possible delays.
8951 else if (!handleFunctionTypeAttr(state
, attr
, type
, CFT
))
8952 distributeFunctionTypeAttr(state
, attr
, type
);
8954 case ParsedAttr::AT_AcquireHandle
: {
8955 if (!type
->isFunctionType())
8958 if (attr
.getNumArgs() != 1) {
8959 state
.getSema().Diag(attr
.getLoc(),
8960 diag::err_attribute_wrong_number_arguments
)
8966 StringRef HandleType
;
8967 if (!state
.getSema().checkStringLiteralArgumentAttr(attr
, 0, HandleType
))
8969 type
= state
.getAttributedType(
8970 AcquireHandleAttr::Create(state
.getSema().Context
, HandleType
, attr
),
8972 attr
.setUsedAsTypeAttr();
8975 case ParsedAttr::AT_AnnotateType
: {
8976 HandleAnnotateTypeAttr(state
, type
, attr
);
8977 attr
.setUsedAsTypeAttr();
8982 // Handle attributes that are defined in a macro. We do not want this to be
8983 // applied to ObjC builtin attributes.
8984 if (isa
<AttributedType
>(type
) && attr
.hasMacroIdentifier() &&
8985 !type
.getQualifiers().hasObjCLifetime() &&
8986 !type
.getQualifiers().hasObjCGCAttr() &&
8987 attr
.getKind() != ParsedAttr::AT_ObjCGC
&&
8988 attr
.getKind() != ParsedAttr::AT_ObjCOwnership
) {
8989 const IdentifierInfo
*MacroII
= attr
.getMacroIdentifier();
8990 type
= state
.getSema().Context
.getMacroQualifiedType(type
, MacroII
);
8991 state
.setExpansionLocForMacroQualifiedType(
8992 cast
<MacroQualifiedType
>(type
.getTypePtr()),
8993 attr
.getMacroExpansionLoc());
8998 void Sema::completeExprArrayBound(Expr
*E
) {
8999 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParens())) {
9000 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(DRE
->getDecl())) {
9001 if (isTemplateInstantiation(Var
->getTemplateSpecializationKind())) {
9002 auto *Def
= Var
->getDefinition();
9004 SourceLocation PointOfInstantiation
= E
->getExprLoc();
9005 runWithSufficientStackSpace(PointOfInstantiation
, [&] {
9006 InstantiateVariableDefinition(PointOfInstantiation
, Var
);
9008 Def
= Var
->getDefinition();
9010 // If we don't already have a point of instantiation, and we managed
9011 // to instantiate a definition, this is the point of instantiation.
9012 // Otherwise, we don't request an end-of-TU instantiation, so this is
9013 // not a point of instantiation.
9014 // FIXME: Is this really the right behavior?
9015 if (Var
->getPointOfInstantiation().isInvalid() && Def
) {
9016 assert(Var
->getTemplateSpecializationKind() ==
9017 TSK_ImplicitInstantiation
&&
9018 "explicit instantiation with no point of instantiation");
9019 Var
->setTemplateSpecializationKind(
9020 Var
->getTemplateSpecializationKind(), PointOfInstantiation
);
9024 // Update the type to the definition's type both here and within the
9028 QualType T
= Def
->getType();
9030 // FIXME: Update the type on all intervening expressions.
9034 // We still go on to try to complete the type independently, as it
9035 // may also require instantiations or diagnostics if it remains
9042 QualType
Sema::getCompletedType(Expr
*E
) {
9043 // Incomplete array types may be completed by the initializer attached to
9044 // their definitions. For static data members of class templates and for
9045 // variable templates, we need to instantiate the definition to get this
9046 // initializer and complete the type.
9047 if (E
->getType()->isIncompleteArrayType())
9048 completeExprArrayBound(E
);
9050 // FIXME: Are there other cases which require instantiating something other
9051 // than the type to complete the type of an expression?
9053 return E
->getType();
9056 /// Ensure that the type of the given expression is complete.
9058 /// This routine checks whether the expression \p E has a complete type. If the
9059 /// expression refers to an instantiable construct, that instantiation is
9060 /// performed as needed to complete its type. Furthermore
9061 /// Sema::RequireCompleteType is called for the expression's type (or in the
9062 /// case of a reference type, the referred-to type).
9064 /// \param E The expression whose type is required to be complete.
9065 /// \param Kind Selects which completeness rules should be applied.
9066 /// \param Diagnoser The object that will emit a diagnostic if the type is
9069 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
9071 bool Sema::RequireCompleteExprType(Expr
*E
, CompleteTypeKind Kind
,
9072 TypeDiagnoser
&Diagnoser
) {
9073 return RequireCompleteType(E
->getExprLoc(), getCompletedType(E
), Kind
,
9077 bool Sema::RequireCompleteExprType(Expr
*E
, unsigned DiagID
) {
9078 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
9079 return RequireCompleteExprType(E
, CompleteTypeKind::Default
, Diagnoser
);
9082 /// Ensure that the type T is a complete type.
9084 /// This routine checks whether the type @p T is complete in any
9085 /// context where a complete type is required. If @p T is a complete
9086 /// type, returns false. If @p T is a class template specialization,
9087 /// this routine then attempts to perform class template
9088 /// instantiation. If instantiation fails, or if @p T is incomplete
9089 /// and cannot be completed, issues the diagnostic @p diag (giving it
9090 /// the type @p T) and returns true.
9092 /// @param Loc The location in the source that the incomplete type
9093 /// diagnostic should refer to.
9095 /// @param T The type that this routine is examining for completeness.
9097 /// @param Kind Selects which completeness rules should be applied.
9099 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
9100 /// @c false otherwise.
9101 bool Sema::RequireCompleteType(SourceLocation Loc
, QualType T
,
9102 CompleteTypeKind Kind
,
9103 TypeDiagnoser
&Diagnoser
) {
9104 if (RequireCompleteTypeImpl(Loc
, T
, Kind
, &Diagnoser
))
9106 if (const TagType
*Tag
= T
->getAs
<TagType
>()) {
9107 if (!Tag
->getDecl()->isCompleteDefinitionRequired()) {
9108 Tag
->getDecl()->setCompleteDefinitionRequired();
9109 Consumer
.HandleTagDeclRequiredDefinition(Tag
->getDecl());
9115 bool Sema::hasStructuralCompatLayout(Decl
*D
, Decl
*Suggested
) {
9116 llvm::DenseSet
<std::pair
<Decl
*, Decl
*>> NonEquivalentDecls
;
9120 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
9121 // and isolate from other C++ specific checks.
9122 StructuralEquivalenceContext
Ctx(
9123 D
->getASTContext(), Suggested
->getASTContext(), NonEquivalentDecls
,
9124 StructuralEquivalenceKind::Default
,
9125 false /*StrictTypeSpelling*/, true /*Complain*/,
9126 true /*ErrorOnTagTypeMismatch*/);
9127 return Ctx
.IsEquivalent(D
, Suggested
);
9130 bool Sema::hasAcceptableDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
9131 AcceptableKind Kind
, bool OnlyNeedComplete
) {
9132 // Easy case: if we don't have modules, all declarations are visible.
9133 if (!getLangOpts().Modules
&& !getLangOpts().ModulesLocalVisibility
)
9136 // If this definition was instantiated from a template, map back to the
9137 // pattern from which it was instantiated.
9138 if (isa
<TagDecl
>(D
) && cast
<TagDecl
>(D
)->isBeingDefined()) {
9139 // We're in the middle of defining it; this definition should be treated
9142 } else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(D
)) {
9143 if (auto *Pattern
= RD
->getTemplateInstantiationPattern())
9145 D
= RD
->getDefinition();
9146 } else if (auto *ED
= dyn_cast
<EnumDecl
>(D
)) {
9147 if (auto *Pattern
= ED
->getTemplateInstantiationPattern())
9149 if (OnlyNeedComplete
&& (ED
->isFixed() || getLangOpts().MSVCCompat
)) {
9150 // If the enum has a fixed underlying type, it may have been forward
9151 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9152 // the enum and assign it the underlying type of `int`. Since we're only
9153 // looking for a complete type (not a definition), any visible declaration
9155 *Suggested
= nullptr;
9156 for (auto *Redecl
: ED
->redecls()) {
9157 if (isAcceptable(Redecl
, Kind
))
9159 if (Redecl
->isThisDeclarationADefinition() ||
9160 (Redecl
->isCanonicalDecl() && !*Suggested
))
9161 *Suggested
= Redecl
;
9166 D
= ED
->getDefinition();
9167 } else if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
9168 if (auto *Pattern
= FD
->getTemplateInstantiationPattern())
9170 D
= FD
->getDefinition();
9171 } else if (auto *VD
= dyn_cast
<VarDecl
>(D
)) {
9172 if (auto *Pattern
= VD
->getTemplateInstantiationPattern())
9174 D
= VD
->getDefinition();
9177 assert(D
&& "missing definition for pattern of instantiated definition");
9181 auto DefinitionIsAcceptable
= [&] {
9182 // The (primary) definition might be in a visible module.
9183 if (isAcceptable(D
, Kind
))
9186 // A visible module might have a merged definition instead.
9187 if (D
->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D
)
9188 : hasVisibleMergedDefinition(D
)) {
9189 if (CodeSynthesisContexts
.empty() &&
9190 !getLangOpts().ModulesLocalVisibility
) {
9191 // Cache the fact that this definition is implicitly visible because
9192 // there is a visible merged definition.
9193 D
->setVisibleDespiteOwningModule();
9201 if (DefinitionIsAcceptable())
9204 // The external source may have additional definitions of this entity that are
9205 // visible, so complete the redeclaration chain now and ask again.
9206 if (auto *Source
= Context
.getExternalSource()) {
9207 Source
->CompleteRedeclChain(D
);
9208 return DefinitionIsAcceptable();
9214 /// Determine whether there is any declaration of \p D that was ever a
9215 /// definition (perhaps before module merging) and is currently visible.
9216 /// \param D The definition of the entity.
9217 /// \param Suggested Filled in with the declaration that should be made visible
9218 /// in order to provide a definition of this entity.
9219 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9220 /// not defined. This only matters for enums with a fixed underlying
9221 /// type, since in all other cases, a type is complete if and only if it
9223 bool Sema::hasVisibleDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
9224 bool OnlyNeedComplete
) {
9225 return hasAcceptableDefinition(D
, Suggested
, Sema::AcceptableKind::Visible
,
9229 /// Determine whether there is any declaration of \p D that was ever a
9230 /// definition (perhaps before module merging) and is currently
9232 /// \param D The definition of the entity.
9233 /// \param Suggested Filled in with the declaration that should be made
9235 /// in order to provide a definition of this entity.
9236 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9237 /// not defined. This only matters for enums with a fixed underlying
9238 /// type, since in all other cases, a type is complete if and only if it
9240 bool Sema::hasReachableDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
9241 bool OnlyNeedComplete
) {
9242 return hasAcceptableDefinition(D
, Suggested
, Sema::AcceptableKind::Reachable
,
9246 /// Locks in the inheritance model for the given class and all of its bases.
9247 static void assignInheritanceModel(Sema
&S
, CXXRecordDecl
*RD
) {
9248 RD
= RD
->getMostRecentNonInjectedDecl();
9249 if (!RD
->hasAttr
<MSInheritanceAttr
>()) {
9250 MSInheritanceModel IM
;
9251 bool BestCase
= false;
9252 switch (S
.MSPointerToMemberRepresentationMethod
) {
9253 case LangOptions::PPTMK_BestCase
:
9255 IM
= RD
->calculateInheritanceModel();
9257 case LangOptions::PPTMK_FullGeneralitySingleInheritance
:
9258 IM
= MSInheritanceModel::Single
;
9260 case LangOptions::PPTMK_FullGeneralityMultipleInheritance
:
9261 IM
= MSInheritanceModel::Multiple
;
9263 case LangOptions::PPTMK_FullGeneralityVirtualInheritance
:
9264 IM
= MSInheritanceModel::Unspecified
;
9268 SourceRange Loc
= S
.ImplicitMSInheritanceAttrLoc
.isValid()
9269 ? S
.ImplicitMSInheritanceAttrLoc
9270 : RD
->getSourceRange();
9271 RD
->addAttr(MSInheritanceAttr::CreateImplicit(
9272 S
.getASTContext(), BestCase
, Loc
, MSInheritanceAttr::Spelling(IM
)));
9273 S
.Consumer
.AssignInheritanceModel(RD
);
9277 /// The implementation of RequireCompleteType
9278 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc
, QualType T
,
9279 CompleteTypeKind Kind
,
9280 TypeDiagnoser
*Diagnoser
) {
9281 // FIXME: Add this assertion to make sure we always get instantiation points.
9282 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9283 // FIXME: Add this assertion to help us flush out problems with
9284 // checking for dependent types and type-dependent expressions.
9286 // assert(!T->isDependentType() &&
9287 // "Can't ask whether a dependent type is complete");
9289 if (const MemberPointerType
*MPTy
= T
->getAs
<MemberPointerType
>()) {
9290 if (!MPTy
->getClass()->isDependentType()) {
9291 if (getLangOpts().CompleteMemberPointers
&&
9292 !MPTy
->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9293 RequireCompleteType(Loc
, QualType(MPTy
->getClass(), 0), Kind
,
9294 diag::err_memptr_incomplete
))
9297 // We lock in the inheritance model once somebody has asked us to ensure
9298 // that a pointer-to-member type is complete.
9299 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
9300 (void)isCompleteType(Loc
, QualType(MPTy
->getClass(), 0));
9301 assignInheritanceModel(*this, MPTy
->getMostRecentCXXRecordDecl());
9306 NamedDecl
*Def
= nullptr;
9307 bool AcceptSizeless
= (Kind
== CompleteTypeKind::AcceptSizeless
);
9308 bool Incomplete
= (T
->isIncompleteType(&Def
) ||
9309 (!AcceptSizeless
&& T
->isSizelessBuiltinType()));
9311 // Check that any necessary explicit specializations are visible. For an
9312 // enum, we just need the declaration, so don't check this.
9313 if (Def
&& !isa
<EnumDecl
>(Def
))
9314 checkSpecializationReachability(Loc
, Def
);
9316 // If we have a complete type, we're done.
9318 NamedDecl
*Suggested
= nullptr;
9320 !hasReachableDefinition(Def
, &Suggested
, /*OnlyNeedComplete=*/true)) {
9321 // If the user is going to see an error here, recover by making the
9322 // definition visible.
9323 bool TreatAsComplete
= Diagnoser
&& !isSFINAEContext();
9324 if (Diagnoser
&& Suggested
)
9325 diagnoseMissingImport(Loc
, Suggested
, MissingImportKind::Definition
,
9326 /*Recover*/ TreatAsComplete
);
9327 return !TreatAsComplete
;
9328 } else if (Def
&& !TemplateInstCallbacks
.empty()) {
9329 CodeSynthesisContext TempInst
;
9330 TempInst
.Kind
= CodeSynthesisContext::Memoization
;
9331 TempInst
.Template
= Def
;
9332 TempInst
.Entity
= Def
;
9333 TempInst
.PointOfInstantiation
= Loc
;
9334 atTemplateBegin(TemplateInstCallbacks
, *this, TempInst
);
9335 atTemplateEnd(TemplateInstCallbacks
, *this, TempInst
);
9341 TagDecl
*Tag
= dyn_cast_or_null
<TagDecl
>(Def
);
9342 ObjCInterfaceDecl
*IFace
= dyn_cast_or_null
<ObjCInterfaceDecl
>(Def
);
9344 // Give the external source a chance to provide a definition of the type.
9345 // This is kept separate from completing the redeclaration chain so that
9346 // external sources such as LLDB can avoid synthesizing a type definition
9347 // unless it's actually needed.
9349 // Avoid diagnosing invalid decls as incomplete.
9350 if (Def
->isInvalidDecl())
9353 // Give the external AST source a chance to complete the type.
9354 if (auto *Source
= Context
.getExternalSource()) {
9355 if (Tag
&& Tag
->hasExternalLexicalStorage())
9356 Source
->CompleteType(Tag
);
9357 if (IFace
&& IFace
->hasExternalLexicalStorage())
9358 Source
->CompleteType(IFace
);
9359 // If the external source completed the type, go through the motions
9360 // again to ensure we're allowed to use the completed type.
9361 if (!T
->isIncompleteType())
9362 return RequireCompleteTypeImpl(Loc
, T
, Kind
, Diagnoser
);
9366 // If we have a class template specialization or a class member of a
9367 // class template specialization, or an array with known size of such,
9368 // try to instantiate it.
9369 if (auto *RD
= dyn_cast_or_null
<CXXRecordDecl
>(Tag
)) {
9370 bool Instantiated
= false;
9371 bool Diagnosed
= false;
9372 if (RD
->isDependentContext()) {
9373 // Don't try to instantiate a dependent class (eg, a member template of
9374 // an instantiated class template specialization).
9375 // FIXME: Can this ever happen?
9376 } else if (auto *ClassTemplateSpec
=
9377 dyn_cast
<ClassTemplateSpecializationDecl
>(RD
)) {
9378 if (ClassTemplateSpec
->getSpecializationKind() == TSK_Undeclared
) {
9379 runWithSufficientStackSpace(Loc
, [&] {
9380 Diagnosed
= InstantiateClassTemplateSpecialization(
9381 Loc
, ClassTemplateSpec
, TSK_ImplicitInstantiation
,
9382 /*Complain=*/Diagnoser
);
9384 Instantiated
= true;
9387 CXXRecordDecl
*Pattern
= RD
->getInstantiatedFromMemberClass();
9388 if (!RD
->isBeingDefined() && Pattern
) {
9389 MemberSpecializationInfo
*MSI
= RD
->getMemberSpecializationInfo();
9390 assert(MSI
&& "Missing member specialization information?");
9391 // This record was instantiated from a class within a template.
9392 if (MSI
->getTemplateSpecializationKind() !=
9393 TSK_ExplicitSpecialization
) {
9394 runWithSufficientStackSpace(Loc
, [&] {
9395 Diagnosed
= InstantiateClass(Loc
, RD
, Pattern
,
9396 getTemplateInstantiationArgs(RD
),
9397 TSK_ImplicitInstantiation
,
9398 /*Complain=*/Diagnoser
);
9400 Instantiated
= true;
9406 // Instantiate* might have already complained that the template is not
9407 // defined, if we asked it to.
9408 if (Diagnoser
&& Diagnosed
)
9410 // If we instantiated a definition, check that it's usable, even if
9411 // instantiation produced an error, so that repeated calls to this
9412 // function give consistent answers.
9413 if (!T
->isIncompleteType())
9414 return RequireCompleteTypeImpl(Loc
, T
, Kind
, Diagnoser
);
9418 // FIXME: If we didn't instantiate a definition because of an explicit
9419 // specialization declaration, check that it's visible.
9424 Diagnoser
->diagnose(*this, Loc
, T
);
9426 // If the type was a forward declaration of a class/struct/union
9427 // type, produce a note.
9428 if (Tag
&& !Tag
->isInvalidDecl() && !Tag
->getLocation().isInvalid())
9429 Diag(Tag
->getLocation(),
9430 Tag
->isBeingDefined() ? diag::note_type_being_defined
9431 : diag::note_forward_declaration
)
9432 << Context
.getTagDeclType(Tag
);
9434 // If the Objective-C class was a forward declaration, produce a note.
9435 if (IFace
&& !IFace
->isInvalidDecl() && !IFace
->getLocation().isInvalid())
9436 Diag(IFace
->getLocation(), diag::note_forward_class
);
9438 // If we have external information that we can use to suggest a fix,
9441 ExternalSource
->MaybeDiagnoseMissingCompleteType(Loc
, T
);
9446 bool Sema::RequireCompleteType(SourceLocation Loc
, QualType T
,
9447 CompleteTypeKind Kind
, unsigned DiagID
) {
9448 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
9449 return RequireCompleteType(Loc
, T
, Kind
, Diagnoser
);
9452 /// Get diagnostic %select index for tag kind for
9453 /// literal type diagnostic message.
9454 /// WARNING: Indexes apply to particular diagnostics only!
9456 /// \returns diagnostic %select index.
9457 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag
) {
9459 case TagTypeKind::Struct
:
9461 case TagTypeKind::Interface
:
9463 case TagTypeKind::Class
:
9465 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9469 /// Ensure that the type T is a literal type.
9471 /// This routine checks whether the type @p T is a literal type. If @p T is an
9472 /// incomplete type, an attempt is made to complete it. If @p T is a literal
9473 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
9474 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
9475 /// it the type @p T), along with notes explaining why the type is not a
9476 /// literal type, and returns true.
9478 /// @param Loc The location in the source that the non-literal type
9479 /// diagnostic should refer to.
9481 /// @param T The type that this routine is examining for literalness.
9483 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
9485 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
9486 /// @c false otherwise.
9487 bool Sema::RequireLiteralType(SourceLocation Loc
, QualType T
,
9488 TypeDiagnoser
&Diagnoser
) {
9489 assert(!T
->isDependentType() && "type should not be dependent");
9491 QualType ElemType
= Context
.getBaseElementType(T
);
9492 if ((isCompleteType(Loc
, ElemType
) || ElemType
->isVoidType()) &&
9493 T
->isLiteralType(Context
))
9496 Diagnoser
.diagnose(*this, Loc
, T
);
9498 if (T
->isVariableArrayType())
9501 const RecordType
*RT
= ElemType
->getAs
<RecordType
>();
9505 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RT
->getDecl());
9507 // A partially-defined class type can't be a literal type, because a literal
9508 // class type must have a trivial destructor (which can't be checked until
9509 // the class definition is complete).
9510 if (RequireCompleteType(Loc
, ElemType
, diag::note_non_literal_incomplete
, T
))
9513 // [expr.prim.lambda]p3:
9514 // This class type is [not] a literal type.
9515 if (RD
->isLambda() && !getLangOpts().CPlusPlus17
) {
9516 Diag(RD
->getLocation(), diag::note_non_literal_lambda
);
9520 // If the class has virtual base classes, then it's not an aggregate, and
9521 // cannot have any constexpr constructors or a trivial default constructor,
9522 // so is non-literal. This is better to diagnose than the resulting absence
9523 // of constexpr constructors.
9524 if (RD
->getNumVBases()) {
9525 Diag(RD
->getLocation(), diag::note_non_literal_virtual_base
)
9526 << getLiteralDiagFromTagKind(RD
->getTagKind()) << RD
->getNumVBases();
9527 for (const auto &I
: RD
->vbases())
9528 Diag(I
.getBeginLoc(), diag::note_constexpr_virtual_base_here
)
9529 << I
.getSourceRange();
9530 } else if (!RD
->isAggregate() && !RD
->hasConstexprNonCopyMoveConstructor() &&
9531 !RD
->hasTrivialDefaultConstructor()) {
9532 Diag(RD
->getLocation(), diag::note_non_literal_no_constexpr_ctors
) << RD
;
9533 } else if (RD
->hasNonLiteralTypeFieldsOrBases()) {
9534 for (const auto &I
: RD
->bases()) {
9535 if (!I
.getType()->isLiteralType(Context
)) {
9536 Diag(I
.getBeginLoc(), diag::note_non_literal_base_class
)
9537 << RD
<< I
.getType() << I
.getSourceRange();
9541 for (const auto *I
: RD
->fields()) {
9542 if (!I
->getType()->isLiteralType(Context
) ||
9543 I
->getType().isVolatileQualified()) {
9544 Diag(I
->getLocation(), diag::note_non_literal_field
)
9545 << RD
<< I
<< I
->getType()
9546 << I
->getType().isVolatileQualified();
9550 } else if (getLangOpts().CPlusPlus20
? !RD
->hasConstexprDestructor()
9551 : !RD
->hasTrivialDestructor()) {
9552 // All fields and bases are of literal types, so have trivial or constexpr
9553 // destructors. If this class's destructor is non-trivial / non-constexpr,
9554 // it must be user-declared.
9555 CXXDestructorDecl
*Dtor
= RD
->getDestructor();
9556 assert(Dtor
&& "class has literal fields and bases but no dtor?");
9560 if (getLangOpts().CPlusPlus20
) {
9561 Diag(Dtor
->getLocation(), diag::note_non_literal_non_constexpr_dtor
)
9564 Diag(Dtor
->getLocation(), Dtor
->isUserProvided()
9565 ? diag::note_non_literal_user_provided_dtor
9566 : diag::note_non_literal_nontrivial_dtor
)
9568 if (!Dtor
->isUserProvided())
9569 SpecialMemberIsTrivial(Dtor
, CXXDestructor
, TAH_IgnoreTrivialABI
,
9577 bool Sema::RequireLiteralType(SourceLocation Loc
, QualType T
, unsigned DiagID
) {
9578 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
9579 return RequireLiteralType(Loc
, T
, Diagnoser
);
9582 /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
9583 /// by the nested-name-specifier contained in SS, and that is (re)declared by
9584 /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
9585 QualType
Sema::getElaboratedType(ElaboratedTypeKeyword Keyword
,
9586 const CXXScopeSpec
&SS
, QualType T
,
9587 TagDecl
*OwnedTagDecl
) {
9590 return Context
.getElaboratedType(
9591 Keyword
, SS
.isValid() ? SS
.getScopeRep() : nullptr, T
, OwnedTagDecl
);
9594 QualType
Sema::BuildTypeofExprType(Expr
*E
, TypeOfKind Kind
) {
9595 assert(!E
->hasPlaceholderType() && "unexpected placeholder");
9597 if (!getLangOpts().CPlusPlus
&& E
->refersToBitField())
9598 Diag(E
->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield
)
9599 << (Kind
== TypeOfKind::Unqualified
? 3 : 2);
9601 if (!E
->isTypeDependent()) {
9602 QualType T
= E
->getType();
9603 if (const TagType
*TT
= T
->getAs
<TagType
>())
9604 DiagnoseUseOfDecl(TT
->getDecl(), E
->getExprLoc());
9606 return Context
.getTypeOfExprType(E
, Kind
);
9609 /// getDecltypeForExpr - Given an expr, will return the decltype for
9610 /// that expression, according to the rules in C++11
9611 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9612 QualType
Sema::getDecltypeForExpr(Expr
*E
) {
9613 if (E
->isTypeDependent())
9614 return Context
.DependentTy
;
9617 if (auto *ImplCastExpr
= dyn_cast
<ImplicitCastExpr
>(E
))
9618 IDExpr
= ImplCastExpr
->getSubExpr();
9620 // C++11 [dcl.type.simple]p4:
9621 // The type denoted by decltype(e) is defined as follows:
9624 // - if E is an unparenthesized id-expression naming a non-type
9625 // template-parameter (13.2), decltype(E) is the type of the
9626 // template-parameter after performing any necessary type deduction
9627 // Note that this does not pick up the implicit 'const' for a template
9628 // parameter object. This rule makes no difference before C++20 so we apply
9629 // it unconditionally.
9630 if (const auto *SNTTPE
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(IDExpr
))
9631 return SNTTPE
->getParameterType(Context
);
9633 // - if e is an unparenthesized id-expression or an unparenthesized class
9634 // member access (5.2.5), decltype(e) is the type of the entity named
9635 // by e. If there is no such entity, or if e names a set of overloaded
9636 // functions, the program is ill-formed;
9638 // We apply the same rules for Objective-C ivar and property references.
9639 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(IDExpr
)) {
9640 const ValueDecl
*VD
= DRE
->getDecl();
9641 QualType T
= VD
->getType();
9642 return isa
<TemplateParamObjectDecl
>(VD
) ? T
.getUnqualifiedType() : T
;
9644 if (const auto *ME
= dyn_cast
<MemberExpr
>(IDExpr
)) {
9645 if (const auto *VD
= ME
->getMemberDecl())
9646 if (isa
<FieldDecl
>(VD
) || isa
<VarDecl
>(VD
))
9647 return VD
->getType();
9648 } else if (const auto *IR
= dyn_cast
<ObjCIvarRefExpr
>(IDExpr
)) {
9649 return IR
->getDecl()->getType();
9650 } else if (const auto *PR
= dyn_cast
<ObjCPropertyRefExpr
>(IDExpr
)) {
9651 if (PR
->isExplicitProperty())
9652 return PR
->getExplicitProperty()->getType();
9653 } else if (const auto *PE
= dyn_cast
<PredefinedExpr
>(IDExpr
)) {
9654 return PE
->getType();
9657 // C++11 [expr.lambda.prim]p18:
9658 // Every occurrence of decltype((x)) where x is a possibly
9659 // parenthesized id-expression that names an entity of automatic
9660 // storage duration is treated as if x were transformed into an
9661 // access to a corresponding data member of the closure type that
9662 // would have been declared if x were an odr-use of the denoted
9664 if (getCurLambda() && isa
<ParenExpr
>(IDExpr
)) {
9665 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(IDExpr
->IgnoreParens())) {
9666 if (auto *Var
= dyn_cast
<VarDecl
>(DRE
->getDecl())) {
9667 QualType T
= getCapturedDeclRefType(Var
, DRE
->getLocation());
9669 return Context
.getLValueReferenceType(T
);
9674 return Context
.getReferenceQualifiedType(E
);
9677 QualType
Sema::BuildDecltypeType(Expr
*E
, bool AsUnevaluated
) {
9678 assert(!E
->hasPlaceholderType() && "unexpected placeholder");
9680 if (AsUnevaluated
&& CodeSynthesisContexts
.empty() &&
9681 !E
->isInstantiationDependent() && E
->HasSideEffects(Context
, false)) {
9682 // The expression operand for decltype is in an unevaluated expression
9683 // context, so side effects could result in unintended consequences.
9684 // Exclude instantiation-dependent expressions, because 'decltype' is often
9685 // used to build SFINAE gadgets.
9686 Diag(E
->getExprLoc(), diag::warn_side_effects_unevaluated_context
);
9688 return Context
.getDecltypeType(E
, getDecltypeForExpr(E
));
9691 static QualType
GetEnumUnderlyingType(Sema
&S
, QualType BaseType
,
9692 SourceLocation Loc
) {
9693 assert(BaseType
->isEnumeralType());
9694 EnumDecl
*ED
= BaseType
->castAs
<EnumType
>()->getDecl();
9695 assert(ED
&& "EnumType has no EnumDecl");
9697 S
.DiagnoseUseOfDecl(ED
, Loc
);
9699 QualType Underlying
= ED
->getIntegerType();
9700 assert(!Underlying
.isNull());
9705 QualType
Sema::BuiltinEnumUnderlyingType(QualType BaseType
,
9706 SourceLocation Loc
) {
9707 if (!BaseType
->isEnumeralType()) {
9708 Diag(Loc
, diag::err_only_enums_have_underlying_types
);
9712 // The enum could be incomplete if we're parsing its definition or
9713 // recovering from an error.
9714 NamedDecl
*FwdDecl
= nullptr;
9715 if (BaseType
->isIncompleteType(&FwdDecl
)) {
9716 Diag(Loc
, diag::err_underlying_type_of_incomplete_enum
) << BaseType
;
9717 Diag(FwdDecl
->getLocation(), diag::note_forward_declaration
) << FwdDecl
;
9721 return GetEnumUnderlyingType(*this, BaseType
, Loc
);
9724 QualType
Sema::BuiltinAddPointer(QualType BaseType
, SourceLocation Loc
) {
9725 QualType Pointer
= BaseType
.isReferenceable() || BaseType
->isVoidType()
9726 ? BuildPointerType(BaseType
.getNonReferenceType(), Loc
,
9730 return Pointer
.isNull() ? QualType() : Pointer
;
9733 QualType
Sema::BuiltinRemovePointer(QualType BaseType
, SourceLocation Loc
) {
9734 // We don't want block pointers or ObjectiveC's id type.
9735 if (!BaseType
->isAnyPointerType() || BaseType
->isObjCIdType())
9738 return BaseType
->getPointeeType();
9741 QualType
Sema::BuiltinDecay(QualType BaseType
, SourceLocation Loc
) {
9742 QualType Underlying
= BaseType
.getNonReferenceType();
9743 if (Underlying
->isArrayType())
9744 return Context
.getDecayedType(Underlying
);
9746 if (Underlying
->isFunctionType())
9747 return BuiltinAddPointer(BaseType
, Loc
);
9749 SplitQualType Split
= Underlying
.getSplitUnqualifiedType();
9750 // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9751 // in the same group of qualifiers as 'const' and 'volatile', we're extending
9752 // '__decay(T)' so that it removes all qualifiers.
9753 Split
.Quals
.removeCVRQualifiers();
9754 return Context
.getQualifiedType(Split
);
9757 QualType
Sema::BuiltinAddReference(QualType BaseType
, UTTKind UKind
,
9758 SourceLocation Loc
) {
9759 assert(LangOpts
.CPlusPlus
);
9760 QualType Reference
=
9761 BaseType
.isReferenceable()
9762 ? BuildReferenceType(BaseType
,
9763 UKind
== UnaryTransformType::AddLvalueReference
,
9764 Loc
, DeclarationName())
9766 return Reference
.isNull() ? QualType() : Reference
;
9769 QualType
Sema::BuiltinRemoveExtent(QualType BaseType
, UTTKind UKind
,
9770 SourceLocation Loc
) {
9771 if (UKind
== UnaryTransformType::RemoveAllExtents
)
9772 return Context
.getBaseElementType(BaseType
);
9774 if (const auto *AT
= Context
.getAsArrayType(BaseType
))
9775 return AT
->getElementType();
9780 QualType
Sema::BuiltinRemoveReference(QualType BaseType
, UTTKind UKind
,
9781 SourceLocation Loc
) {
9782 assert(LangOpts
.CPlusPlus
);
9783 QualType T
= BaseType
.getNonReferenceType();
9784 if (UKind
== UTTKind::RemoveCVRef
&&
9785 (T
.isConstQualified() || T
.isVolatileQualified())) {
9787 QualType Unqual
= Context
.getUnqualifiedArrayType(T
, Quals
);
9788 Quals
.removeConst();
9789 Quals
.removeVolatile();
9790 T
= Context
.getQualifiedType(Unqual
, Quals
);
9795 QualType
Sema::BuiltinChangeCVRQualifiers(QualType BaseType
, UTTKind UKind
,
9796 SourceLocation Loc
) {
9797 if ((BaseType
->isReferenceType() && UKind
!= UTTKind::RemoveRestrict
) ||
9798 BaseType
->isFunctionType())
9802 QualType Unqual
= Context
.getUnqualifiedArrayType(BaseType
, Quals
);
9804 if (UKind
== UTTKind::RemoveConst
|| UKind
== UTTKind::RemoveCV
)
9805 Quals
.removeConst();
9806 if (UKind
== UTTKind::RemoveVolatile
|| UKind
== UTTKind::RemoveCV
)
9807 Quals
.removeVolatile();
9808 if (UKind
== UTTKind::RemoveRestrict
)
9809 Quals
.removeRestrict();
9811 return Context
.getQualifiedType(Unqual
, Quals
);
9814 static QualType
ChangeIntegralSignedness(Sema
&S
, QualType BaseType
,
9816 SourceLocation Loc
) {
9817 if (BaseType
->isEnumeralType()) {
9818 QualType Underlying
= GetEnumUnderlyingType(S
, BaseType
, Loc
);
9819 if (auto *BitInt
= dyn_cast
<BitIntType
>(Underlying
)) {
9820 unsigned int Bits
= BitInt
->getNumBits();
9822 return S
.Context
.getBitIntType(!IsMakeSigned
, Bits
);
9824 S
.Diag(Loc
, diag::err_make_signed_integral_only
)
9825 << IsMakeSigned
<< /*_BitInt(1)*/ true << BaseType
<< 1 << Underlying
;
9828 if (Underlying
->isBooleanType()) {
9829 S
.Diag(Loc
, diag::err_make_signed_integral_only
)
9830 << IsMakeSigned
<< /*_BitInt(1)*/ false << BaseType
<< 1
9836 bool Int128Unsupported
= !S
.Context
.getTargetInfo().hasInt128Type();
9837 std::array
<CanQualType
*, 6> AllSignedIntegers
= {
9838 &S
.Context
.SignedCharTy
, &S
.Context
.ShortTy
, &S
.Context
.IntTy
,
9839 &S
.Context
.LongTy
, &S
.Context
.LongLongTy
, &S
.Context
.Int128Ty
};
9840 ArrayRef
<CanQualType
*> AvailableSignedIntegers(
9841 AllSignedIntegers
.data(), AllSignedIntegers
.size() - Int128Unsupported
);
9842 std::array
<CanQualType
*, 6> AllUnsignedIntegers
= {
9843 &S
.Context
.UnsignedCharTy
, &S
.Context
.UnsignedShortTy
,
9844 &S
.Context
.UnsignedIntTy
, &S
.Context
.UnsignedLongTy
,
9845 &S
.Context
.UnsignedLongLongTy
, &S
.Context
.UnsignedInt128Ty
};
9846 ArrayRef
<CanQualType
*> AvailableUnsignedIntegers(AllUnsignedIntegers
.data(),
9847 AllUnsignedIntegers
.size() -
9849 ArrayRef
<CanQualType
*> *Consider
=
9850 IsMakeSigned
? &AvailableSignedIntegers
: &AvailableUnsignedIntegers
;
9852 uint64_t BaseSize
= S
.Context
.getTypeSize(BaseType
);
9854 llvm::find_if(*Consider
, [&S
, BaseSize
](const CanQual
<Type
> *T
) {
9855 return BaseSize
== S
.Context
.getTypeSize(T
->getTypePtr());
9858 assert(Result
!= Consider
->end());
9859 return QualType((*Result
)->getTypePtr(), 0);
9862 QualType
Sema::BuiltinChangeSignedness(QualType BaseType
, UTTKind UKind
,
9863 SourceLocation Loc
) {
9864 bool IsMakeSigned
= UKind
== UnaryTransformType::MakeSigned
;
9865 if ((!BaseType
->isIntegerType() && !BaseType
->isEnumeralType()) ||
9866 BaseType
->isBooleanType() ||
9867 (BaseType
->isBitIntType() &&
9868 BaseType
->getAs
<BitIntType
>()->getNumBits() < 2)) {
9869 Diag(Loc
, diag::err_make_signed_integral_only
)
9870 << IsMakeSigned
<< BaseType
->isBitIntType() << BaseType
<< 0;
9874 bool IsNonIntIntegral
=
9875 BaseType
->isChar16Type() || BaseType
->isChar32Type() ||
9876 BaseType
->isWideCharType() || BaseType
->isEnumeralType();
9878 QualType Underlying
=
9880 ? ChangeIntegralSignedness(*this, BaseType
, IsMakeSigned
, Loc
)
9881 : IsMakeSigned
? Context
.getCorrespondingSignedType(BaseType
)
9882 : Context
.getCorrespondingUnsignedType(BaseType
);
9883 if (Underlying
.isNull())
9885 return Context
.getQualifiedType(Underlying
, BaseType
.getQualifiers());
9888 QualType
Sema::BuildUnaryTransformType(QualType BaseType
, UTTKind UKind
,
9889 SourceLocation Loc
) {
9890 if (BaseType
->isDependentType())
9891 return Context
.getUnaryTransformType(BaseType
, BaseType
, UKind
);
9894 case UnaryTransformType::EnumUnderlyingType
: {
9895 Result
= BuiltinEnumUnderlyingType(BaseType
, Loc
);
9898 case UnaryTransformType::AddPointer
: {
9899 Result
= BuiltinAddPointer(BaseType
, Loc
);
9902 case UnaryTransformType::RemovePointer
: {
9903 Result
= BuiltinRemovePointer(BaseType
, Loc
);
9906 case UnaryTransformType::Decay
: {
9907 Result
= BuiltinDecay(BaseType
, Loc
);
9910 case UnaryTransformType::AddLvalueReference
:
9911 case UnaryTransformType::AddRvalueReference
: {
9912 Result
= BuiltinAddReference(BaseType
, UKind
, Loc
);
9915 case UnaryTransformType::RemoveAllExtents
:
9916 case UnaryTransformType::RemoveExtent
: {
9917 Result
= BuiltinRemoveExtent(BaseType
, UKind
, Loc
);
9920 case UnaryTransformType::RemoveCVRef
:
9921 case UnaryTransformType::RemoveReference
: {
9922 Result
= BuiltinRemoveReference(BaseType
, UKind
, Loc
);
9925 case UnaryTransformType::RemoveConst
:
9926 case UnaryTransformType::RemoveCV
:
9927 case UnaryTransformType::RemoveRestrict
:
9928 case UnaryTransformType::RemoveVolatile
: {
9929 Result
= BuiltinChangeCVRQualifiers(BaseType
, UKind
, Loc
);
9932 case UnaryTransformType::MakeSigned
:
9933 case UnaryTransformType::MakeUnsigned
: {
9934 Result
= BuiltinChangeSignedness(BaseType
, UKind
, Loc
);
9939 return !Result
.isNull()
9940 ? Context
.getUnaryTransformType(BaseType
, Result
, UKind
)
9944 QualType
Sema::BuildAtomicType(QualType T
, SourceLocation Loc
) {
9945 if (!isDependentOrGNUAutoType(T
)) {
9946 // FIXME: It isn't entirely clear whether incomplete atomic types
9947 // are allowed or not; for simplicity, ban them for the moment.
9948 if (RequireCompleteType(Loc
, T
, diag::err_atomic_specifier_bad_type
, 0))
9951 int DisallowedKind
= -1;
9952 if (T
->isArrayType())
9954 else if (T
->isFunctionType())
9956 else if (T
->isReferenceType())
9958 else if (T
->isAtomicType())
9960 else if (T
.hasQualifiers())
9962 else if (T
->isSizelessType())
9964 else if (!T
.isTriviallyCopyableType(Context
) && getLangOpts().CPlusPlus
)
9965 // Some other non-trivially-copyable type (probably a C++ class)
9967 else if (T
->isBitIntType())
9969 else if (getLangOpts().C23
&& T
->isUndeducedAutoType())
9970 // _Atomic auto is prohibited in C23
9973 if (DisallowedKind
!= -1) {
9974 Diag(Loc
, diag::err_atomic_specifier_bad_type
) << DisallowedKind
<< T
;
9978 // FIXME: Do we need any handling for ARC here?
9981 // Build the pointer type.
9982 return Context
.getAtomicType(T
);