[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / lib / StaticAnalyzer / Core / BugReporterVisitors.cpp
blob2f9965036b9ef91fe9181c50fad3c88269f5e739
1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a set of BugReporter "visitors" which can be used to
10 // enhance the diagnostics reported for a bug.
12 //===----------------------------------------------------------------------===//
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/Analyses/Dominators.h"
26 #include "clang/Analysis/AnalysisDeclContext.h"
27 #include "clang/Analysis/CFG.h"
28 #include "clang/Analysis/CFGStmtMap.h"
29 #include "clang/Analysis/PathDiagnostic.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Lex/Lexer.h"
36 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringRef.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <cassert>
59 #include <deque>
60 #include <memory>
61 #include <optional>
62 #include <string>
63 #include <utility>
65 using namespace clang;
66 using namespace ento;
67 using namespace bugreporter;
69 //===----------------------------------------------------------------------===//
70 // Utility functions.
71 //===----------------------------------------------------------------------===//
73 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
74 if (B->isAdditiveOp() && B->getType()->isPointerType()) {
75 if (B->getLHS()->getType()->isPointerType()) {
76 return B->getLHS();
77 } else if (B->getRHS()->getType()->isPointerType()) {
78 return B->getRHS();
81 return nullptr;
84 /// \return A subexpression of @c Ex which represents the
85 /// expression-of-interest.
86 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
88 /// Given that expression S represents a pointer that would be dereferenced,
89 /// try to find a sub-expression from which the pointer came from.
90 /// This is used for tracking down origins of a null or undefined value:
91 /// "this is null because that is null because that is null" etc.
92 /// We wipe away field and element offsets because they merely add offsets.
93 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
94 /// latter represent an actual pointer dereference; however, we remove
95 /// the final lvalue-to-rvalue cast before returning from this function
96 /// because it demonstrates more clearly from where the pointer rvalue was
97 /// loaded. Examples:
98 /// x->y.z ==> x (lvalue)
99 /// foo()->y.z ==> foo() (rvalue)
100 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
101 const auto *E = dyn_cast<Expr>(S);
102 if (!E)
103 return nullptr;
105 while (true) {
106 if (const auto *CE = dyn_cast<CastExpr>(E)) {
107 if (CE->getCastKind() == CK_LValueToRValue) {
108 // This cast represents the load we're looking for.
109 break;
111 E = CE->getSubExpr();
112 } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
113 // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
114 if (const Expr *Inner = peelOffPointerArithmetic(B)) {
115 E = Inner;
116 } else {
117 // Probably more arithmetic can be pattern-matched here,
118 // but for now give up.
119 break;
121 } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
122 if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
123 (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
124 // Operators '*' and '&' don't actually mean anything.
125 // We look at casts instead.
126 E = U->getSubExpr();
127 } else {
128 // Probably more arithmetic can be pattern-matched here,
129 // but for now give up.
130 break;
133 // Pattern match for a few useful cases: a[0], p->f, *p etc.
134 else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
135 // This handles the case when the dereferencing of a member reference
136 // happens. This is needed, because the AST for dereferencing a
137 // member reference looks like the following:
138 // |-MemberExpr
139 // `-DeclRefExpr
140 // Without this special case the notes would refer to the whole object
141 // (struct, class or union variable) instead of just the relevant member.
143 if (ME->getMemberDecl()->getType()->isReferenceType())
144 break;
145 E = ME->getBase();
146 } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
147 E = IvarRef->getBase();
148 } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
149 E = AE->getBase();
150 } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
151 E = PE->getSubExpr();
152 } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
153 E = FE->getSubExpr();
154 } else {
155 // Other arbitrary stuff.
156 break;
160 // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
161 // deeper into the sub-expression. This way we return the lvalue from which
162 // our pointer rvalue was loaded.
163 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
164 if (CE->getCastKind() == CK_LValueToRValue)
165 E = CE->getSubExpr();
167 return E;
170 static const VarDecl *getVarDeclForExpression(const Expr *E) {
171 if (const auto *DR = dyn_cast<DeclRefExpr>(E))
172 return dyn_cast<VarDecl>(DR->getDecl());
173 return nullptr;
176 static const MemRegion *
177 getLocationRegionIfReference(const Expr *E, const ExplodedNode *N,
178 bool LookingForReference = true) {
179 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
180 // This handles null references from FieldRegions, for example:
181 // struct Wrapper { int &ref; };
182 // Wrapper w = { *(int *)0 };
183 // w.ref = 1;
184 const Expr *Base = ME->getBase();
185 const VarDecl *VD = getVarDeclForExpression(Base);
186 if (!VD)
187 return nullptr;
189 const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
190 if (!FD)
191 return nullptr;
193 if (FD->getType()->isReferenceType()) {
194 SVal StructSVal = N->getState()->getLValue(VD, N->getLocationContext());
195 return N->getState()->getLValue(FD, StructSVal).getAsRegion();
197 return nullptr;
200 const VarDecl *VD = getVarDeclForExpression(E);
201 if (!VD)
202 return nullptr;
203 if (LookingForReference && !VD->getType()->isReferenceType())
204 return nullptr;
205 return N->getState()->getLValue(VD, N->getLocationContext()).getAsRegion();
208 /// Comparing internal representations of symbolic values (via
209 /// SVal::operator==()) is a valid way to check if the value was updated,
210 /// unless it's a LazyCompoundVal that may have a different internal
211 /// representation every time it is loaded from the state. In this function we
212 /// do an approximate comparison for lazy compound values, checking that they
213 /// are the immediate snapshots of the tracked region's bindings within the
214 /// node's respective states but not really checking that these snapshots
215 /// actually contain the same set of bindings.
216 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
217 const ExplodedNode *RightNode, SVal RightVal) {
218 if (LeftVal == RightVal)
219 return true;
221 const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
222 if (!LLCV)
223 return false;
225 const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
226 if (!RLCV)
227 return false;
229 return LLCV->getRegion() == RLCV->getRegion() &&
230 LLCV->getStore() == LeftNode->getState()->getStore() &&
231 RLCV->getStore() == RightNode->getState()->getStore();
234 static std::optional<SVal> getSValForVar(const Expr *CondVarExpr,
235 const ExplodedNode *N) {
236 ProgramStateRef State = N->getState();
237 const LocationContext *LCtx = N->getLocationContext();
239 assert(CondVarExpr);
240 CondVarExpr = CondVarExpr->IgnoreImpCasts();
242 // The declaration of the value may rely on a pointer so take its l-value.
243 // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
244 // evaluate to a FieldRegion when it refers to a declaration of a lambda
245 // capture variable. We most likely need to duplicate that logic here.
246 if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
247 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
248 return State->getSVal(State->getLValue(VD, LCtx));
250 if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
251 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
252 if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
253 return State->getRawSVal(*FieldL, FD->getType());
255 return std::nullopt;
258 static std::optional<const llvm::APSInt *>
259 getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
261 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
262 if (auto CI = V->getAs<nonloc::ConcreteInt>())
263 return &CI->getValue();
264 return std::nullopt;
267 static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
268 const ExplodedNode *N,
269 const PathSensitiveBugReport *B) {
270 // Even if this condition is marked as interesting, it isn't *that*
271 // interesting if it didn't happen in a nested stackframe, the user could just
272 // follow the arrows.
273 if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame()))
274 return false;
276 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
277 if (std::optional<bugreporter::TrackingKind> K =
278 B->getInterestingnessKind(*V))
279 return *K == bugreporter::TrackingKind::Condition;
281 return false;
284 static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
285 const PathSensitiveBugReport *B) {
286 if (std::optional<SVal> V = getSValForVar(E, N))
287 return B->getInterestingnessKind(*V).has_value();
288 return false;
291 /// \return name of the macro inside the location \p Loc.
292 static StringRef getMacroName(SourceLocation Loc,
293 BugReporterContext &BRC) {
294 return Lexer::getImmediateMacroName(
295 Loc,
296 BRC.getSourceManager(),
297 BRC.getASTContext().getLangOpts());
300 /// \return Whether given spelling location corresponds to an expansion
301 /// of a function-like macro.
302 static bool isFunctionMacroExpansion(SourceLocation Loc,
303 const SourceManager &SM) {
304 if (!Loc.isMacroID())
305 return false;
306 while (SM.isMacroArgExpansion(Loc))
307 Loc = SM.getImmediateExpansionRange(Loc).getBegin();
308 std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
309 SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
310 const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
311 return EInfo.isFunctionMacroExpansion();
314 /// \return Whether \c RegionOfInterest was modified at \p N,
315 /// where \p ValueAfter is \c RegionOfInterest's value at the end of the
316 /// stack frame.
317 static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
318 const ExplodedNode *N,
319 SVal ValueAfter) {
320 ProgramStateRef State = N->getState();
321 ProgramStateManager &Mgr = N->getState()->getStateManager();
323 if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() &&
324 !N->getLocationAs<PostStmt>())
325 return false;
327 // Writing into region of interest.
328 if (auto PS = N->getLocationAs<PostStmt>())
329 if (auto *BO = PS->getStmtAs<BinaryOperator>())
330 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
331 N->getSVal(BO->getLHS()).getAsRegion()))
332 return true;
334 // SVal after the state is possibly different.
335 SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
336 if (!Mgr.getSValBuilder()
337 .areEqual(State, ValueAtN, ValueAfter)
338 .isConstrainedTrue() &&
339 (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
340 return true;
342 return false;
345 //===----------------------------------------------------------------------===//
346 // Implementation of BugReporterVisitor.
347 //===----------------------------------------------------------------------===//
349 PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &,
350 const ExplodedNode *,
351 PathSensitiveBugReport &) {
352 return nullptr;
355 void BugReporterVisitor::finalizeVisitor(BugReporterContext &,
356 const ExplodedNode *,
357 PathSensitiveBugReport &) {}
359 PathDiagnosticPieceRef
360 BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC,
361 const ExplodedNode *EndPathNode,
362 const PathSensitiveBugReport &BR) {
363 PathDiagnosticLocation L = BR.getLocation();
364 const auto &Ranges = BR.getRanges();
366 // Only add the statement itself as a range if we didn't specify any
367 // special ranges for this report.
368 auto P = std::make_shared<PathDiagnosticEventPiece>(
369 L, BR.getDescription(), Ranges.begin() == Ranges.end());
370 for (SourceRange Range : Ranges)
371 P->addRange(Range);
373 return P;
376 //===----------------------------------------------------------------------===//
377 // Implementation of NoStateChangeFuncVisitor.
378 //===----------------------------------------------------------------------===//
380 bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
381 const LocationContext *Ctx = N->getLocationContext();
382 const StackFrameContext *SCtx = Ctx->getStackFrame();
383 if (!FramesModifyingCalculated.count(SCtx))
384 findModifyingFrames(N);
385 return FramesModifying.count(SCtx);
388 void NoStateChangeFuncVisitor::markFrameAsModifying(
389 const StackFrameContext *SCtx) {
390 while (!SCtx->inTopFrame()) {
391 auto p = FramesModifying.insert(SCtx);
392 if (!p.second)
393 break; // Frame and all its parents already inserted.
395 SCtx = SCtx->getParent()->getStackFrame();
399 static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) {
400 assert(N->getLocationAs<CallEnter>());
401 // The stackframe of the callee is only found in the nodes succeeding
402 // the CallEnter node. CallEnter's stack frame refers to the caller.
403 const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
405 // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
406 // frame.
407 auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
408 return N->getLocationAs<CallExitEnd>() &&
409 OrigSCtx == N->getFirstPred()->getStackFrame();
411 while (N && !IsMatchingCallExitEnd(N)) {
412 assert(N->succ_size() <= 1 &&
413 "This function is to be used on the trimmed ExplodedGraph!");
414 N = N->getFirstSucc();
416 return N;
419 void NoStateChangeFuncVisitor::findModifyingFrames(
420 const ExplodedNode *const CallExitBeginN) {
422 assert(CallExitBeginN->getLocationAs<CallExitBegin>());
424 const StackFrameContext *const OriginalSCtx =
425 CallExitBeginN->getLocationContext()->getStackFrame();
427 const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
428 const StackFrameContext *CurrentSCtx = OriginalSCtx;
430 for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
431 CurrN = CurrN->getFirstPred()) {
432 // Found a new inlined call.
433 if (CurrN->getLocationAs<CallExitBegin>()) {
434 CurrCallExitBeginN = CurrN;
435 CurrentSCtx = CurrN->getStackFrame();
436 FramesModifyingCalculated.insert(CurrentSCtx);
437 // We won't see a change in between two identical exploded nodes: skip.
438 continue;
441 if (auto CE = CurrN->getLocationAs<CallEnter>()) {
442 if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
443 if (wasModifiedInFunction(CurrN, CallExitEndN))
444 markFrameAsModifying(CurrentSCtx);
446 // We exited this inlined call, lets actualize the stack frame.
447 CurrentSCtx = CurrN->getStackFrame();
449 // Stop calculating at the current function, but always regard it as
450 // modifying, so we can avoid notes like this:
451 // void f(Foo &F) {
452 // F.field = 0; // note: 0 assigned to 'F.field'
453 // // note: returning without writing to 'F.field'
454 // }
455 if (CE->getCalleeContext() == OriginalSCtx) {
456 markFrameAsModifying(CurrentSCtx);
457 break;
461 if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
462 markFrameAsModifying(CurrentSCtx);
466 PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode(
467 const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) {
469 const LocationContext *Ctx = N->getLocationContext();
470 const StackFrameContext *SCtx = Ctx->getStackFrame();
471 ProgramStateRef State = N->getState();
472 auto CallExitLoc = N->getLocationAs<CallExitBegin>();
474 // No diagnostic if region was modified inside the frame.
475 if (!CallExitLoc || isModifiedInFrame(N))
476 return nullptr;
478 CallEventRef<> Call =
479 BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
481 // Optimistically suppress uninitialized value bugs that result
482 // from system headers having a chance to initialize the value
483 // but failing to do so. It's too unlikely a system header's fault.
484 // It's much more likely a situation in which the function has a failure
485 // mode that the user decided not to check. If we want to hunt such
486 // omitted checks, we should provide an explicit function-specific note
487 // describing the precondition under which the function isn't supposed to
488 // initialize its out-parameter, and additionally check that such
489 // precondition can actually be fulfilled on the current path.
490 if (Call->isInSystemHeader()) {
491 // We make an exception for system header functions that have no branches.
492 // Such functions unconditionally fail to initialize the variable.
493 // If they call other functions that have more paths within them,
494 // this suppression would still apply when we visit these inner functions.
495 // One common example of a standard function that doesn't ever initialize
496 // its out parameter is operator placement new; it's up to the follow-up
497 // constructor (if any) to initialize the memory.
498 if (!N->getStackFrame()->getCFG()->isLinear()) {
499 static int i = 0;
500 R.markInvalid(&i, nullptr);
502 return nullptr;
505 if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
506 // If we failed to construct a piece for self, we still want to check
507 // whether the entity of interest is in a parameter.
508 if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N))
509 return Piece;
512 if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
513 // Do not generate diagnostics for not modified parameters in
514 // constructors.
515 return maybeEmitNoteForCXXThis(R, *CCall, N);
518 return maybeEmitNoteForParameters(R, *Call, N);
521 //===----------------------------------------------------------------------===//
522 // Implementation of NoStoreFuncVisitor.
523 //===----------------------------------------------------------------------===//
525 namespace {
526 /// Put a diagnostic on return statement of all inlined functions
527 /// for which the region of interest \p RegionOfInterest was passed into,
528 /// but not written inside, and it has caused an undefined read or a null
529 /// pointer dereference outside.
530 class NoStoreFuncVisitor final : public NoStateChangeFuncVisitor {
531 const SubRegion *RegionOfInterest;
532 MemRegionManager &MmrMgr;
533 const SourceManager &SM;
534 const PrintingPolicy &PP;
536 /// Recursion limit for dereferencing fields when looking for the
537 /// region of interest.
538 /// The limit of two indicates that we will dereference fields only once.
539 static const unsigned DEREFERENCE_LIMIT = 2;
541 using RegionVector = SmallVector<const MemRegion *, 5>;
543 public:
544 NoStoreFuncVisitor(const SubRegion *R, bugreporter::TrackingKind TKind)
545 : NoStateChangeFuncVisitor(TKind), RegionOfInterest(R),
546 MmrMgr(R->getMemRegionManager()),
547 SM(MmrMgr.getContext().getSourceManager()),
548 PP(MmrMgr.getContext().getPrintingPolicy()) {}
550 void Profile(llvm::FoldingSetNodeID &ID) const override {
551 static int Tag = 0;
552 ID.AddPointer(&Tag);
553 ID.AddPointer(RegionOfInterest);
556 private:
557 /// \return Whether \c RegionOfInterest was modified at \p CurrN compared to
558 /// the value it holds in \p CallExitBeginN.
559 bool wasModifiedBeforeCallExit(const ExplodedNode *CurrN,
560 const ExplodedNode *CallExitBeginN) override;
562 /// Attempts to find the region of interest in a given record decl,
563 /// by either following the base classes or fields.
564 /// Dereferences fields up to a given recursion limit.
565 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
566 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
567 /// \return A chain fields leading to the region of interest or std::nullopt.
568 const std::optional<RegionVector>
569 findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
570 const MemRegion *R, const RegionVector &Vec = {},
571 int depth = 0);
573 // Region of interest corresponds to an IVar, exiting a method
574 // which could have written into that IVar, but did not.
575 PathDiagnosticPieceRef maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
576 const ObjCMethodCall &Call,
577 const ExplodedNode *N) final;
579 PathDiagnosticPieceRef maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
580 const CXXConstructorCall &Call,
581 const ExplodedNode *N) final;
583 PathDiagnosticPieceRef
584 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call,
585 const ExplodedNode *N) final;
587 /// Consume the information on the no-store stack frame in order to
588 /// either emit a note or suppress the report enirely.
589 /// \return Diagnostics piece for region not modified in the current function,
590 /// if it decides to emit one.
591 PathDiagnosticPieceRef
592 maybeEmitNote(PathSensitiveBugReport &R, const CallEvent &Call,
593 const ExplodedNode *N, const RegionVector &FieldChain,
594 const MemRegion *MatchedRegion, StringRef FirstElement,
595 bool FirstIsReferenceType, unsigned IndirectionLevel);
597 bool prettyPrintRegionName(const RegionVector &FieldChain,
598 const MemRegion *MatchedRegion,
599 StringRef FirstElement, bool FirstIsReferenceType,
600 unsigned IndirectionLevel,
601 llvm::raw_svector_ostream &os);
603 StringRef prettyPrintFirstElement(StringRef FirstElement,
604 bool MoreItemsExpected,
605 int IndirectionLevel,
606 llvm::raw_svector_ostream &os);
608 } // namespace
610 /// \return Whether the method declaration \p Parent
611 /// syntactically has a binary operation writing into the ivar \p Ivar.
612 static bool potentiallyWritesIntoIvar(const Decl *Parent,
613 const ObjCIvarDecl *Ivar) {
614 using namespace ast_matchers;
615 const char *IvarBind = "Ivar";
616 if (!Parent || !Parent->hasBody())
617 return false;
618 StatementMatcher WriteIntoIvarM = binaryOperator(
619 hasOperatorName("="),
620 hasLHS(ignoringParenImpCasts(
621 objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
622 StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
623 auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
624 for (BoundNodes &Match : Matches) {
625 auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
626 if (IvarRef->isFreeIvar())
627 return true;
629 const Expr *Base = IvarRef->getBase();
630 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
631 Base = ICE->getSubExpr();
633 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
634 if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
635 if (ID->getParameterKind() == ImplicitParamKind::ObjCSelf)
636 return true;
638 return false;
640 return false;
643 /// Attempts to find the region of interest in a given CXX decl,
644 /// by either following the base classes or fields.
645 /// Dereferences fields up to a given recursion limit.
646 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
647 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
648 /// \return A chain fields leading to the region of interest or std::nullopt.
649 const std::optional<NoStoreFuncVisitor::RegionVector>
650 NoStoreFuncVisitor::findRegionOfInterestInRecord(
651 const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
652 const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
653 int depth /* = 0 */) {
655 if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
656 return std::nullopt;
658 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
659 if (!RDX->hasDefinition())
660 return std::nullopt;
662 // Recursively examine the base classes.
663 // Note that following base classes does not increase the recursion depth.
664 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
665 for (const auto &II : RDX->bases())
666 if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
667 if (std::optional<RegionVector> Out =
668 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
669 return Out;
671 for (const FieldDecl *I : RD->fields()) {
672 QualType FT = I->getType();
673 const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
674 const SVal V = State->getSVal(FR);
675 const MemRegion *VR = V.getAsRegion();
677 RegionVector VecF = Vec;
678 VecF.push_back(FR);
680 if (RegionOfInterest == VR)
681 return VecF;
683 if (const RecordDecl *RRD = FT->getAsRecordDecl())
684 if (auto Out =
685 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
686 return Out;
688 QualType PT = FT->getPointeeType();
689 if (PT.isNull() || PT->isVoidType() || !VR)
690 continue;
692 if (const RecordDecl *RRD = PT->getAsRecordDecl())
693 if (std::optional<RegionVector> Out =
694 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
695 return Out;
698 return std::nullopt;
701 PathDiagnosticPieceRef
702 NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
703 const ObjCMethodCall &Call,
704 const ExplodedNode *N) {
705 if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
706 const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
707 if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
708 potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
709 IvarR->getDecl()))
710 return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
711 /*FirstIsReferenceType=*/false, 1);
713 return nullptr;
716 PathDiagnosticPieceRef
717 NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
718 const CXXConstructorCall &Call,
719 const ExplodedNode *N) {
720 const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
721 if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
722 return maybeEmitNote(R, Call, N, {}, ThisR, "this",
723 /*FirstIsReferenceType=*/false, 1);
725 // Do not generate diagnostics for not modified parameters in
726 // constructors.
727 return nullptr;
730 /// \return whether \p Ty points to a const type, or is a const reference.
731 static bool isPointerToConst(QualType Ty) {
732 return !Ty->getPointeeType().isNull() &&
733 Ty->getPointeeType().getCanonicalType().isConstQualified();
736 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
737 PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
738 ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
739 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
740 const ParmVarDecl *PVD = Parameters[I];
741 SVal V = Call.getArgSVal(I);
742 bool ParamIsReferenceType = PVD->getType()->isReferenceType();
743 std::string ParamName = PVD->getNameAsString();
745 unsigned IndirectionLevel = 1;
746 QualType T = PVD->getType();
747 while (const MemRegion *MR = V.getAsRegion()) {
748 if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
749 return maybeEmitNote(R, Call, N, {}, MR, ParamName,
750 ParamIsReferenceType, IndirectionLevel);
752 QualType PT = T->getPointeeType();
753 if (PT.isNull() || PT->isVoidType())
754 break;
756 ProgramStateRef State = N->getState();
758 if (const RecordDecl *RD = PT->getAsRecordDecl())
759 if (std::optional<RegionVector> P =
760 findRegionOfInterestInRecord(RD, State, MR))
761 return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
762 ParamIsReferenceType, IndirectionLevel);
764 V = State->getSVal(MR, PT);
765 T = PT;
766 IndirectionLevel++;
770 return nullptr;
773 bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
774 const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
775 return ::wasRegionOfInterestModifiedAt(
776 RegionOfInterest, CurrN,
777 CallExitBeginN->getState()->getSVal(RegionOfInterest));
780 static llvm::StringLiteral WillBeUsedForACondition =
781 ", which participates in a condition later";
783 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
784 PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N,
785 const RegionVector &FieldChain, const MemRegion *MatchedRegion,
786 StringRef FirstElement, bool FirstIsReferenceType,
787 unsigned IndirectionLevel) {
789 PathDiagnosticLocation L =
790 PathDiagnosticLocation::create(N->getLocation(), SM);
792 // For now this shouldn't trigger, but once it does (as we add more
793 // functions to the body farm), we'll need to decide if these reports
794 // are worth suppressing as well.
795 if (!L.hasValidLocation())
796 return nullptr;
798 SmallString<256> sbuf;
799 llvm::raw_svector_ostream os(sbuf);
800 os << "Returning without writing to '";
802 // Do not generate the note if failed to pretty-print.
803 if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
804 FirstIsReferenceType, IndirectionLevel, os))
805 return nullptr;
807 os << "'";
808 if (TKind == bugreporter::TrackingKind::Condition)
809 os << WillBeUsedForACondition;
810 return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
813 bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
814 const MemRegion *MatchedRegion,
815 StringRef FirstElement,
816 bool FirstIsReferenceType,
817 unsigned IndirectionLevel,
818 llvm::raw_svector_ostream &os) {
820 if (FirstIsReferenceType)
821 IndirectionLevel--;
823 RegionVector RegionSequence;
825 // Add the regions in the reverse order, then reverse the resulting array.
826 assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
827 const MemRegion *R = RegionOfInterest;
828 while (R != MatchedRegion) {
829 RegionSequence.push_back(R);
830 R = cast<SubRegion>(R)->getSuperRegion();
832 std::reverse(RegionSequence.begin(), RegionSequence.end());
833 RegionSequence.append(FieldChain.begin(), FieldChain.end());
835 StringRef Sep;
836 for (const MemRegion *R : RegionSequence) {
838 // Just keep going up to the base region.
839 // Element regions may appear due to casts.
840 if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
841 continue;
843 if (Sep.empty())
844 Sep = prettyPrintFirstElement(FirstElement,
845 /*MoreItemsExpected=*/true,
846 IndirectionLevel, os);
848 os << Sep;
850 // Can only reasonably pretty-print DeclRegions.
851 if (!isa<DeclRegion>(R))
852 return false;
854 const auto *DR = cast<DeclRegion>(R);
855 Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
856 DR->getDecl()->getDeclName().print(os, PP);
859 if (Sep.empty())
860 prettyPrintFirstElement(FirstElement,
861 /*MoreItemsExpected=*/false, IndirectionLevel, os);
862 return true;
865 StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
866 StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
867 llvm::raw_svector_ostream &os) {
868 StringRef Out = ".";
870 if (IndirectionLevel > 0 && MoreItemsExpected) {
871 IndirectionLevel--;
872 Out = "->";
875 if (IndirectionLevel > 0 && MoreItemsExpected)
876 os << "(";
878 for (int i = 0; i < IndirectionLevel; i++)
879 os << "*";
880 os << FirstElement;
882 if (IndirectionLevel > 0 && MoreItemsExpected)
883 os << ")";
885 return Out;
888 //===----------------------------------------------------------------------===//
889 // Implementation of MacroNullReturnSuppressionVisitor.
890 //===----------------------------------------------------------------------===//
892 namespace {
894 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
895 /// the macro.
896 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
897 const SubRegion *RegionOfInterest;
898 const SVal ValueAtDereference;
900 // Do not invalidate the reports where the value was modified
901 // after it got assigned to from the macro.
902 bool WasModified = false;
904 public:
905 MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
906 : RegionOfInterest(R), ValueAtDereference(V) {}
908 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
909 BugReporterContext &BRC,
910 PathSensitiveBugReport &BR) override {
911 if (WasModified)
912 return nullptr;
914 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
915 if (!BugPoint)
916 return nullptr;
918 const SourceManager &SMgr = BRC.getSourceManager();
919 if (auto Loc = matchAssignment(N)) {
920 if (isFunctionMacroExpansion(*Loc, SMgr)) {
921 std::string MacroName = std::string(getMacroName(*Loc, BRC));
922 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
923 if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
924 BR.markInvalid(getTag(), MacroName.c_str());
928 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
929 WasModified = true;
931 return nullptr;
934 static void addMacroVisitorIfNecessary(
935 const ExplodedNode *N, const MemRegion *R,
936 bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
937 const SVal V) {
938 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
939 if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
940 isa<Loc>(V))
941 BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
945 void* getTag() const {
946 static int Tag = 0;
947 return static_cast<void *>(&Tag);
950 void Profile(llvm::FoldingSetNodeID &ID) const override {
951 ID.AddPointer(getTag());
954 private:
955 /// \return Source location of right hand side of an assignment
956 /// into \c RegionOfInterest, empty optional if none found.
957 std::optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
958 const Stmt *S = N->getStmtForDiagnostics();
959 ProgramStateRef State = N->getState();
960 auto *LCtx = N->getLocationContext();
961 if (!S)
962 return std::nullopt;
964 if (const auto *DS = dyn_cast<DeclStmt>(S)) {
965 if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
966 if (const Expr *RHS = VD->getInit())
967 if (RegionOfInterest->isSubRegionOf(
968 State->getLValue(VD, LCtx).getAsRegion()))
969 return RHS->getBeginLoc();
970 } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
971 const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
972 const Expr *RHS = BO->getRHS();
973 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
974 return RHS->getBeginLoc();
977 return std::nullopt;
981 } // end of anonymous namespace
983 namespace {
985 /// Emits an extra note at the return statement of an interesting stack frame.
987 /// The returned value is marked as an interesting value, and if it's null,
988 /// adds a visitor to track where it became null.
990 /// This visitor is intended to be used when another visitor discovers that an
991 /// interesting value comes from an inlined function call.
992 class ReturnVisitor : public TrackingBugReporterVisitor {
993 const StackFrameContext *CalleeSFC;
994 enum {
995 Initial,
996 MaybeUnsuppress,
997 Satisfied
998 } Mode = Initial;
1000 bool EnableNullFPSuppression;
1001 bool ShouldInvalidate = true;
1002 AnalyzerOptions& Options;
1003 bugreporter::TrackingKind TKind;
1005 public:
1006 ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
1007 bool Suppressed, AnalyzerOptions &Options,
1008 bugreporter::TrackingKind TKind)
1009 : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
1010 EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
1012 static void *getTag() {
1013 static int Tag = 0;
1014 return static_cast<void *>(&Tag);
1017 void Profile(llvm::FoldingSetNodeID &ID) const override {
1018 ID.AddPointer(ReturnVisitor::getTag());
1019 ID.AddPointer(CalleeSFC);
1020 ID.AddBoolean(EnableNullFPSuppression);
1023 PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
1024 BugReporterContext &BRC,
1025 PathSensitiveBugReport &BR) {
1026 // Only print a message at the interesting return statement.
1027 if (N->getLocationContext() != CalleeSFC)
1028 return nullptr;
1030 std::optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
1031 if (!SP)
1032 return nullptr;
1034 const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
1035 if (!Ret)
1036 return nullptr;
1038 // Okay, we're at the right return statement, but do we have the return
1039 // value available?
1040 ProgramStateRef State = N->getState();
1041 SVal V = State->getSVal(Ret, CalleeSFC);
1042 if (V.isUnknownOrUndef())
1043 return nullptr;
1045 // Don't print any more notes after this one.
1046 Mode = Satisfied;
1048 const Expr *RetE = Ret->getRetValue();
1049 assert(RetE && "Tracking a return value for a void function");
1051 // Handle cases where a reference is returned and then immediately used.
1052 std::optional<Loc> LValue;
1053 if (RetE->isGLValue()) {
1054 if ((LValue = V.getAs<Loc>())) {
1055 SVal RValue = State->getRawSVal(*LValue, RetE->getType());
1056 if (isa<DefinedSVal>(RValue))
1057 V = RValue;
1061 // Ignore aggregate rvalues.
1062 if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(V))
1063 return nullptr;
1065 RetE = RetE->IgnoreParenCasts();
1067 // Let's track the return value.
1068 getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
1070 // Build an appropriate message based on the return value.
1071 SmallString<64> Msg;
1072 llvm::raw_svector_ostream Out(Msg);
1074 bool WouldEventBeMeaningless = false;
1076 if (State->isNull(V).isConstrainedTrue()) {
1077 if (isa<Loc>(V)) {
1079 // If we have counter-suppression enabled, make sure we keep visiting
1080 // future nodes. We want to emit a path note as well, in case
1081 // the report is resurrected as valid later on.
1082 if (EnableNullFPSuppression &&
1083 Options.ShouldAvoidSuppressingNullArgumentPaths)
1084 Mode = MaybeUnsuppress;
1086 if (RetE->getType()->isObjCObjectPointerType()) {
1087 Out << "Returning nil";
1088 } else {
1089 Out << "Returning null pointer";
1091 } else {
1092 Out << "Returning zero";
1095 } else {
1096 if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1097 Out << "Returning the value " << CI->getValue();
1098 } else {
1099 // There is nothing interesting about returning a value, when it is
1100 // plain value without any constraints, and the function is guaranteed
1101 // to return that every time. We could use CFG::isLinear() here, but
1102 // constexpr branches are obvious to the compiler, not necesserily to
1103 // the programmer.
1104 if (N->getCFG().size() == 3)
1105 WouldEventBeMeaningless = true;
1107 Out << (isa<Loc>(V) ? "Returning pointer" : "Returning value");
1111 if (LValue) {
1112 if (const MemRegion *MR = LValue->getAsRegion()) {
1113 if (MR->canPrintPretty()) {
1114 Out << " (reference to ";
1115 MR->printPretty(Out);
1116 Out << ")";
1119 } else {
1120 // FIXME: We should have a more generalized location printing mechanism.
1121 if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1122 if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1123 Out << " (loaded from '" << *DD << "')";
1126 PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1127 if (!L.isValid() || !L.asLocation().isValid())
1128 return nullptr;
1130 if (TKind == bugreporter::TrackingKind::Condition)
1131 Out << WillBeUsedForACondition;
1133 auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1135 // If we determined that the note is meaningless, make it prunable, and
1136 // don't mark the stackframe interesting.
1137 if (WouldEventBeMeaningless)
1138 EventPiece->setPrunable(true);
1139 else
1140 BR.markInteresting(CalleeSFC);
1142 return EventPiece;
1145 PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1146 BugReporterContext &BRC,
1147 PathSensitiveBugReport &BR) {
1148 assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1150 // Are we at the entry node for this call?
1151 std::optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1152 if (!CE)
1153 return nullptr;
1155 if (CE->getCalleeContext() != CalleeSFC)
1156 return nullptr;
1158 Mode = Satisfied;
1160 // Don't automatically suppress a report if one of the arguments is
1161 // known to be a null pointer. Instead, start tracking /that/ null
1162 // value back to its origin.
1163 ProgramStateManager &StateMgr = BRC.getStateManager();
1164 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1166 ProgramStateRef State = N->getState();
1167 CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1168 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1169 std::optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1170 if (!ArgV)
1171 continue;
1173 const Expr *ArgE = Call->getArgExpr(I);
1174 if (!ArgE)
1175 continue;
1177 // Is it possible for this argument to be non-null?
1178 if (!State->isNull(*ArgV).isConstrainedTrue())
1179 continue;
1181 if (getParentTracker()
1182 .track(ArgE, N, {TKind, EnableNullFPSuppression})
1183 .FoundSomethingToTrack)
1184 ShouldInvalidate = false;
1186 // If we /can't/ track the null pointer, we should err on the side of
1187 // false negatives, and continue towards marking this report invalid.
1188 // (We will still look at the other arguments, though.)
1191 return nullptr;
1194 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1195 BugReporterContext &BRC,
1196 PathSensitiveBugReport &BR) override {
1197 switch (Mode) {
1198 case Initial:
1199 return visitNodeInitial(N, BRC, BR);
1200 case MaybeUnsuppress:
1201 return visitNodeMaybeUnsuppress(N, BRC, BR);
1202 case Satisfied:
1203 return nullptr;
1206 llvm_unreachable("Invalid visit mode!");
1209 void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1210 PathSensitiveBugReport &BR) override {
1211 if (EnableNullFPSuppression && ShouldInvalidate)
1212 BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1216 //===----------------------------------------------------------------------===//
1217 // StoreSiteFinder
1218 //===----------------------------------------------------------------------===//
1220 /// Finds last store into the given region,
1221 /// which is different from a given symbolic value.
1222 class StoreSiteFinder final : public TrackingBugReporterVisitor {
1223 const MemRegion *R;
1224 SVal V;
1225 bool Satisfied = false;
1227 TrackingOptions Options;
1228 const StackFrameContext *OriginSFC;
1230 public:
1231 /// \param V We're searching for the store where \c R received this value.
1232 /// \param R The region we're tracking.
1233 /// \param Options Tracking behavior options.
1234 /// \param OriginSFC Only adds notes when the last store happened in a
1235 /// different stackframe to this one. Disregarded if the tracking kind
1236 /// is thorough.
1237 /// This is useful, because for non-tracked regions, notes about
1238 /// changes to its value in a nested stackframe could be pruned, and
1239 /// this visitor can prevent that without polluting the bugpath too
1240 /// much.
1241 StoreSiteFinder(bugreporter::TrackerRef ParentTracker, KnownSVal V,
1242 const MemRegion *R, TrackingOptions Options,
1243 const StackFrameContext *OriginSFC = nullptr)
1244 : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1245 OriginSFC(OriginSFC) {
1246 assert(R);
1249 void Profile(llvm::FoldingSetNodeID &ID) const override;
1251 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1252 BugReporterContext &BRC,
1253 PathSensitiveBugReport &BR) override;
1255 } // namespace
1257 void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1258 static int tag = 0;
1259 ID.AddPointer(&tag);
1260 ID.AddPointer(R);
1261 ID.Add(V);
1262 ID.AddInteger(static_cast<int>(Options.Kind));
1263 ID.AddBoolean(Options.EnableNullFPSuppression);
1266 /// Returns true if \p N represents the DeclStmt declaring and initializing
1267 /// \p VR.
1268 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1269 std::optional<PostStmt> P = N->getLocationAs<PostStmt>();
1270 if (!P)
1271 return false;
1273 const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1274 if (!DS)
1275 return false;
1277 if (DS->getSingleDecl() != VR->getDecl())
1278 return false;
1280 const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1281 const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1282 if (!FrameSpace) {
1283 // If we ever directly evaluate global DeclStmts, this assertion will be
1284 // invalid, but this still seems preferable to silently accepting an
1285 // initialization that may be for a path-sensitive variable.
1286 assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1287 return true;
1290 assert(VR->getDecl()->hasLocalStorage());
1291 const LocationContext *LCtx = N->getLocationContext();
1292 return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1295 static bool isObjCPointer(const MemRegion *R) {
1296 if (R->isBoundable())
1297 if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1298 return TR->getValueType()->isObjCObjectPointerType();
1300 return false;
1303 static bool isObjCPointer(const ValueDecl *D) {
1304 return D->getType()->isObjCObjectPointerType();
1307 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
1308 static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1309 const bool HasPrefix = SI.Dest->canPrintPretty();
1311 if (HasPrefix) {
1312 SI.Dest->printPretty(OS);
1313 OS << " ";
1316 const char *Action = nullptr;
1318 switch (SI.StoreKind) {
1319 case StoreInfo::Initialization:
1320 Action = HasPrefix ? "initialized to " : "Initializing to ";
1321 break;
1322 case StoreInfo::BlockCapture:
1323 Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1324 break;
1325 default:
1326 llvm_unreachable("Unexpected store kind");
1329 if (isa<loc::ConcreteInt>(SI.Value)) {
1330 OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1332 } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1333 OS << Action << CVal->getValue();
1335 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1336 OS << Action << "the value of ";
1337 SI.Origin->printPretty(OS);
1339 } else if (SI.StoreKind == StoreInfo::Initialization) {
1340 // We don't need to check here, all these conditions were
1341 // checked by StoreSiteFinder, when it figured out that it is
1342 // initialization.
1343 const auto *DS =
1344 cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1346 if (SI.Value.isUndef()) {
1347 if (isa<VarRegion>(SI.Dest)) {
1348 const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1350 if (VD->getInit()) {
1351 OS << (HasPrefix ? "initialized" : "Initializing")
1352 << " to a garbage value";
1353 } else {
1354 OS << (HasPrefix ? "declared" : "Declaring")
1355 << " without an initial value";
1358 } else {
1359 OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1364 /// Display diagnostics for passing bad region as a parameter.
1365 static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1366 StoreInfo SI) {
1367 const auto *VR = cast<VarRegion>(SI.Dest);
1368 const auto *D = VR->getDecl();
1370 OS << "Passing ";
1372 if (isa<loc::ConcreteInt>(SI.Value)) {
1373 OS << (isObjCPointer(D) ? "nil object reference" : "null pointer value");
1375 } else if (SI.Value.isUndef()) {
1376 OS << "uninitialized value";
1378 } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1379 OS << "the value " << CI->getValue();
1381 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1382 SI.Origin->printPretty(OS);
1384 } else {
1385 OS << "value";
1388 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1389 // Printed parameter indexes are 1-based, not 0-based.
1390 unsigned Idx = Param->getFunctionScopeIndex() + 1;
1391 OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1392 if (VR->canPrintPretty()) {
1393 OS << " ";
1394 VR->printPretty(OS);
1396 } else if (const auto *ImplParam = dyn_cast<ImplicitParamDecl>(D)) {
1397 if (ImplParam->getParameterKind() == ImplicitParamKind::ObjCSelf) {
1398 OS << " via implicit parameter 'self'";
1403 /// Show default diagnostics for storing bad region.
1404 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1405 StoreInfo SI) {
1406 const bool HasSuffix = SI.Dest->canPrintPretty();
1408 if (isa<loc::ConcreteInt>(SI.Value)) {
1409 OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1410 : (HasSuffix ? "Null pointer value stored"
1411 : "Storing null pointer value"));
1413 } else if (SI.Value.isUndef()) {
1414 OS << (HasSuffix ? "Uninitialized value stored"
1415 : "Storing uninitialized value");
1417 } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1418 if (HasSuffix)
1419 OS << "The value " << CV->getValue() << " is assigned";
1420 else
1421 OS << "Assigning " << CV->getValue();
1423 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1424 if (HasSuffix) {
1425 OS << "The value of ";
1426 SI.Origin->printPretty(OS);
1427 OS << " is assigned";
1428 } else {
1429 OS << "Assigning the value of ";
1430 SI.Origin->printPretty(OS);
1433 } else {
1434 OS << (HasSuffix ? "Value assigned" : "Assigning value");
1437 if (HasSuffix) {
1438 OS << " to ";
1439 SI.Dest->printPretty(OS);
1443 static bool isTrivialCopyOrMoveCtor(const CXXConstructExpr *CE) {
1444 if (!CE)
1445 return false;
1447 const auto *CtorDecl = CE->getConstructor();
1449 return CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isTrivial();
1452 static const Expr *tryExtractInitializerFromList(const InitListExpr *ILE,
1453 const MemRegion *R) {
1455 const auto *TVR = dyn_cast_or_null<TypedValueRegion>(R);
1457 if (!TVR)
1458 return nullptr;
1460 const auto ITy = ILE->getType().getCanonicalType();
1462 // Push each sub-region onto the stack.
1463 std::stack<const TypedValueRegion *> TVRStack;
1464 while (isa<FieldRegion>(TVR) || isa<ElementRegion>(TVR)) {
1465 // We found a region that matches the type of the init list,
1466 // so we assume this is the outer-most region. This can happen
1467 // if the initializer list is inside a class. If our assumption
1468 // is wrong, we return a nullptr in the end.
1469 if (ITy == TVR->getValueType().getCanonicalType())
1470 break;
1472 TVRStack.push(TVR);
1473 TVR = cast<TypedValueRegion>(TVR->getSuperRegion());
1476 // If the type of the outer most region doesn't match the type
1477 // of the ILE, we can't match the ILE and the region.
1478 if (ITy != TVR->getValueType().getCanonicalType())
1479 return nullptr;
1481 const Expr *Init = ILE;
1482 while (!TVRStack.empty()) {
1483 TVR = TVRStack.top();
1484 TVRStack.pop();
1486 // We hit something that's not an init list before
1487 // running out of regions, so we most likely failed.
1488 if (!isa<InitListExpr>(Init))
1489 return nullptr;
1491 ILE = cast<InitListExpr>(Init);
1492 auto NumInits = ILE->getNumInits();
1494 if (const auto *FR = dyn_cast<FieldRegion>(TVR)) {
1495 const auto *FD = FR->getDecl();
1497 if (FD->getFieldIndex() >= NumInits)
1498 return nullptr;
1500 Init = ILE->getInit(FD->getFieldIndex());
1501 } else if (const auto *ER = dyn_cast<ElementRegion>(TVR)) {
1502 const auto Ind = ER->getIndex();
1504 // If index is symbolic, we can't figure out which expression
1505 // belongs to the region.
1506 if (!Ind.isConstant())
1507 return nullptr;
1509 const auto IndVal = Ind.getAsInteger()->getLimitedValue();
1510 if (IndVal >= NumInits)
1511 return nullptr;
1513 Init = ILE->getInit(IndVal);
1517 return Init;
1520 PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1521 BugReporterContext &BRC,
1522 PathSensitiveBugReport &BR) {
1523 if (Satisfied)
1524 return nullptr;
1526 const ExplodedNode *StoreSite = nullptr;
1527 const ExplodedNode *Pred = Succ->getFirstPred();
1528 const Expr *InitE = nullptr;
1529 bool IsParam = false;
1531 // First see if we reached the declaration of the region.
1532 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1533 if (isInitializationOfVar(Pred, VR)) {
1534 StoreSite = Pred;
1535 InitE = VR->getDecl()->getInit();
1539 // If this is a post initializer expression, initializing the region, we
1540 // should track the initializer expression.
1541 if (std::optional<PostInitializer> PIP =
1542 Pred->getLocationAs<PostInitializer>()) {
1543 const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1544 if (FieldReg == R) {
1545 StoreSite = Pred;
1546 InitE = PIP->getInitializer()->getInit();
1550 // Otherwise, see if this is the store site:
1551 // (1) Succ has this binding and Pred does not, i.e. this is
1552 // where the binding first occurred.
1553 // (2) Succ has this binding and is a PostStore node for this region, i.e.
1554 // the same binding was re-assigned here.
1555 if (!StoreSite) {
1556 if (Succ->getState()->getSVal(R) != V)
1557 return nullptr;
1559 if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1560 std::optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1561 if (!PS || PS->getLocationValue() != R)
1562 return nullptr;
1565 StoreSite = Succ;
1567 if (std::optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) {
1568 // If this is an assignment expression, we can track the value
1569 // being assigned.
1570 if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) {
1571 if (BO->isAssignmentOp())
1572 InitE = BO->getRHS();
1574 // If we have a declaration like 'S s{1,2}' that needs special
1575 // handling, we handle it here.
1576 else if (const auto *DS = P->getStmtAs<DeclStmt>()) {
1577 const auto *Decl = DS->getSingleDecl();
1578 if (isa<VarDecl>(Decl)) {
1579 const auto *VD = cast<VarDecl>(Decl);
1581 // FIXME: Here we only track the inner most region, so we lose
1582 // information, but it's still better than a crash or no information
1583 // at all.
1585 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y',
1586 // and throw away the rest.
1587 if (const auto *ILE = dyn_cast<InitListExpr>(VD->getInit()))
1588 InitE = tryExtractInitializerFromList(ILE, R);
1590 } else if (const auto *CE = P->getStmtAs<CXXConstructExpr>()) {
1592 const auto State = Succ->getState();
1594 if (isTrivialCopyOrMoveCtor(CE) && isa<SubRegion>(R)) {
1595 // Migrate the field regions from the current object to
1596 // the parent object. If we track 'a.y.e' and encounter
1597 // 'S a = b' then we need to track 'b.y.e'.
1599 // Push the regions to a stack, from last to first, so
1600 // considering the example above the stack will look like
1601 // (bottom) 'e' -> 'y' (top).
1603 std::stack<const SubRegion *> SRStack;
1604 const SubRegion *SR = cast<SubRegion>(R);
1605 while (isa<FieldRegion>(SR) || isa<ElementRegion>(SR)) {
1606 SRStack.push(SR);
1607 SR = cast<SubRegion>(SR->getSuperRegion());
1610 // Get the region for the object we copied/moved from.
1611 const auto *OriginEx = CE->getArg(0);
1612 const auto OriginVal =
1613 State->getSVal(OriginEx, Succ->getLocationContext());
1615 // Pop the stored field regions and apply them to the origin
1616 // object in the same order we had them on the copy.
1617 // OriginField will evolve like 'b' -> 'b.y' -> 'b.y.e'.
1618 SVal OriginField = OriginVal;
1619 while (!SRStack.empty()) {
1620 const auto *TopR = SRStack.top();
1621 SRStack.pop();
1623 if (const auto *FR = dyn_cast<FieldRegion>(TopR)) {
1624 OriginField = State->getLValue(FR->getDecl(), OriginField);
1625 } else if (const auto *ER = dyn_cast<ElementRegion>(TopR)) {
1626 OriginField = State->getLValue(ER->getElementType(),
1627 ER->getIndex(), OriginField);
1628 } else {
1629 // FIXME: handle other region type
1633 // Track 'b.y.e'.
1634 getParentTracker().track(V, OriginField.getAsRegion(), Options);
1635 InitE = OriginEx;
1638 // This branch can occur in cases like `Ctor() : field{ x, y } {}'.
1639 else if (const auto *ILE = P->getStmtAs<InitListExpr>()) {
1640 // FIXME: Here we only track the top level region, so we lose
1641 // information, but it's still better than a crash or no information
1642 // at all.
1644 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y', and
1645 // throw away the rest.
1646 InitE = tryExtractInitializerFromList(ILE, R);
1650 // If this is a call entry, the variable should be a parameter.
1651 // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1652 // 'this' should never be NULL, but this visitor isn't just for NULL and
1653 // UndefinedVal.)
1654 if (std::optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1655 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1657 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1658 ProgramStateManager &StateMgr = BRC.getStateManager();
1659 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1661 CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1662 Succ->getState());
1663 InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1664 } else {
1665 // Handle Objective-C 'self'.
1666 assert(isa<ImplicitParamDecl>(VR->getDecl()));
1667 InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1668 ->getInstanceReceiver()->IgnoreParenCasts();
1670 IsParam = true;
1674 // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1675 // is wrapped inside of it.
1676 if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1677 InitE = TmpR->getExpr();
1680 if (!StoreSite)
1681 return nullptr;
1683 Satisfied = true;
1685 // If we have an expression that provided the value, try to track where it
1686 // came from.
1687 if (InitE) {
1688 if (!IsParam)
1689 InitE = InitE->IgnoreParenCasts();
1691 getParentTracker().track(InitE, StoreSite, Options);
1694 // Let's try to find the region where the value came from.
1695 const MemRegion *OldRegion = nullptr;
1697 // If we have init expression, it might be simply a reference
1698 // to a variable, so we can use it.
1699 if (InitE) {
1700 // That region might still be not exactly what we are looking for.
1701 // In situations like `int &ref = val;`, we can't say that
1702 // `ref` is initialized with `val`, rather refers to `val`.
1704 // In order, to mitigate situations like this, we check if the last
1705 // stored value in that region is the value that we track.
1707 // TODO: support other situations better.
1708 if (const MemRegion *Candidate =
1709 getLocationRegionIfReference(InitE, Succ, false)) {
1710 const StoreManager &SM = BRC.getStateManager().getStoreManager();
1712 // Here we traverse the graph up to find the last node where the
1713 // candidate region is still in the store.
1714 for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1715 if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1716 // And if it was bound to the target value, we can use it.
1717 if (N->getState()->getSVal(Candidate) == V) {
1718 OldRegion = Candidate;
1720 break;
1726 // Otherwise, if the current region does indeed contain the value
1727 // we are looking for, we can look for a region where this value
1728 // was before.
1730 // It can be useful for situations like:
1731 // new = identity(old)
1732 // where the analyzer knows that 'identity' returns the value of its
1733 // first argument.
1735 // NOTE: If the region R is not a simple var region, it can contain
1736 // V in one of its subregions.
1737 if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1738 // Let's go up the graph to find the node where the region is
1739 // bound to V.
1740 const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1741 for (;
1742 NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1743 NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1746 if (NodeWithoutBinding) {
1747 // Let's try to find a unique binding for the value in that node.
1748 // We want to use this to find unique bindings because of the following
1749 // situations:
1750 // b = a;
1751 // c = identity(b);
1753 // Telling the user that the value of 'a' is assigned to 'c', while
1754 // correct, can be confusing.
1755 StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1756 BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1757 if (FB)
1758 OldRegion = FB.getRegion();
1762 if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1763 !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1764 return nullptr;
1766 // Okay, we've found the binding. Emit an appropriate message.
1767 SmallString<256> sbuf;
1768 llvm::raw_svector_ostream os(sbuf);
1770 StoreInfo SI = {StoreInfo::Assignment, // default kind
1771 StoreSite,
1772 InitE,
1775 OldRegion};
1777 if (std::optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1778 const Stmt *S = PS->getStmt();
1779 const auto *DS = dyn_cast<DeclStmt>(S);
1780 const auto *VR = dyn_cast<VarRegion>(R);
1782 if (DS) {
1783 SI.StoreKind = StoreInfo::Initialization;
1784 } else if (isa<BlockExpr>(S)) {
1785 SI.StoreKind = StoreInfo::BlockCapture;
1786 if (VR) {
1787 // See if we can get the BlockVarRegion.
1788 ProgramStateRef State = StoreSite->getState();
1789 SVal V = StoreSite->getSVal(S);
1790 if (const auto *BDR =
1791 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1792 if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1793 getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1794 Options, OriginSFC);
1799 } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1800 isa<VarRegion>(SI.Dest)) {
1801 SI.StoreKind = StoreInfo::CallArgument;
1804 return getParentTracker().handle(SI, BRC, Options);
1807 //===----------------------------------------------------------------------===//
1808 // Implementation of TrackConstraintBRVisitor.
1809 //===----------------------------------------------------------------------===//
1811 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1812 static int tag = 0;
1813 ID.AddPointer(&tag);
1814 ID.AddString(Message);
1815 ID.AddBoolean(Assumption);
1816 ID.Add(Constraint);
1819 /// Return the tag associated with this visitor. This tag will be used
1820 /// to make all PathDiagnosticPieces created by this visitor.
1821 const char *TrackConstraintBRVisitor::getTag() {
1822 return "TrackConstraintBRVisitor";
1825 bool TrackConstraintBRVisitor::isZeroCheck() const {
1826 return !Assumption && Constraint.getAs<Loc>();
1829 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1830 if (isZeroCheck())
1831 return N->getState()->isNull(Constraint).isUnderconstrained();
1832 return (bool)N->getState()->assume(Constraint, !Assumption);
1835 PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode(
1836 const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) {
1837 const ExplodedNode *PrevN = N->getFirstPred();
1838 if (IsSatisfied)
1839 return nullptr;
1841 // Start tracking after we see the first state in which the value is
1842 // constrained.
1843 if (!IsTrackingTurnedOn)
1844 if (!isUnderconstrained(N))
1845 IsTrackingTurnedOn = true;
1846 if (!IsTrackingTurnedOn)
1847 return nullptr;
1849 // Check if in the previous state it was feasible for this constraint
1850 // to *not* be true.
1851 if (isUnderconstrained(PrevN)) {
1852 IsSatisfied = true;
1854 // At this point, the negation of the constraint should be infeasible. If it
1855 // is feasible, make sure that the negation of the constrainti was
1856 // infeasible in the current state. If it is feasible, we somehow missed
1857 // the transition point.
1858 assert(!isUnderconstrained(N));
1860 // Construct a new PathDiagnosticPiece.
1861 ProgramPoint P = N->getLocation();
1863 // If this node already have a specialized note, it's probably better
1864 // than our generic note.
1865 // FIXME: This only looks for note tags, not for other ways to add a note.
1866 if (isa_and_nonnull<NoteTag>(P.getTag()))
1867 return nullptr;
1869 PathDiagnosticLocation L =
1870 PathDiagnosticLocation::create(P, BRC.getSourceManager());
1871 if (!L.isValid())
1872 return nullptr;
1874 auto X = std::make_shared<PathDiagnosticEventPiece>(L, Message);
1875 X->setTag(getTag());
1876 return std::move(X);
1879 return nullptr;
1882 //===----------------------------------------------------------------------===//
1883 // Implementation of SuppressInlineDefensiveChecksVisitor.
1884 //===----------------------------------------------------------------------===//
1886 SuppressInlineDefensiveChecksVisitor::
1887 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1888 : V(Value) {
1889 // Check if the visitor is disabled.
1890 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1891 if (!Options.ShouldSuppressInlinedDefensiveChecks)
1892 IsSatisfied = true;
1895 void SuppressInlineDefensiveChecksVisitor::Profile(
1896 llvm::FoldingSetNodeID &ID) const {
1897 static int id = 0;
1898 ID.AddPointer(&id);
1899 ID.Add(V);
1902 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1903 return "IDCVisitor";
1906 PathDiagnosticPieceRef
1907 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1908 BugReporterContext &BRC,
1909 PathSensitiveBugReport &BR) {
1910 const ExplodedNode *Pred = Succ->getFirstPred();
1911 if (IsSatisfied)
1912 return nullptr;
1914 // Start tracking after we see the first state in which the value is null.
1915 if (!IsTrackingTurnedOn)
1916 if (Succ->getState()->isNull(V).isConstrainedTrue())
1917 IsTrackingTurnedOn = true;
1918 if (!IsTrackingTurnedOn)
1919 return nullptr;
1921 // Check if in the previous state it was feasible for this value
1922 // to *not* be null.
1923 if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1924 Succ->getState()->isNull(V).isConstrainedTrue()) {
1925 IsSatisfied = true;
1927 // Check if this is inlined defensive checks.
1928 const LocationContext *CurLC = Succ->getLocationContext();
1929 const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1930 if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1931 BR.markInvalid("Suppress IDC", CurLC);
1932 return nullptr;
1935 // Treat defensive checks in function-like macros as if they were an inlined
1936 // defensive check. If the bug location is not in a macro and the
1937 // terminator for the current location is in a macro then suppress the
1938 // warning.
1939 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1941 if (!BugPoint)
1942 return nullptr;
1944 ProgramPoint CurPoint = Succ->getLocation();
1945 const Stmt *CurTerminatorStmt = nullptr;
1946 if (auto BE = CurPoint.getAs<BlockEdge>()) {
1947 CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1948 } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1949 const Stmt *CurStmt = SP->getStmt();
1950 if (!CurStmt->getBeginLoc().isMacroID())
1951 return nullptr;
1953 CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1954 CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1955 } else {
1956 return nullptr;
1959 if (!CurTerminatorStmt)
1960 return nullptr;
1962 SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1963 if (TerminatorLoc.isMacroID()) {
1964 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1966 // Suppress reports unless we are in that same macro.
1967 if (!BugLoc.isMacroID() ||
1968 getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1969 BR.markInvalid("Suppress Macro IDC", CurLC);
1971 return nullptr;
1974 return nullptr;
1977 //===----------------------------------------------------------------------===//
1978 // TrackControlDependencyCondBRVisitor.
1979 //===----------------------------------------------------------------------===//
1981 namespace {
1982 /// Tracks the expressions that are a control dependency of the node that was
1983 /// supplied to the constructor.
1984 /// For example:
1986 /// cond = 1;
1987 /// if (cond)
1988 /// 10 / 0;
1990 /// An error is emitted at line 3. This visitor realizes that the branch
1991 /// on line 2 is a control dependency of line 3, and tracks it's condition via
1992 /// trackExpressionValue().
1993 class TrackControlDependencyCondBRVisitor final
1994 : public TrackingBugReporterVisitor {
1995 const ExplodedNode *Origin;
1996 ControlDependencyCalculator ControlDeps;
1997 llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
1999 public:
2000 TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
2001 const ExplodedNode *O)
2002 : TrackingBugReporterVisitor(ParentTracker), Origin(O),
2003 ControlDeps(&O->getCFG()) {}
2005 void Profile(llvm::FoldingSetNodeID &ID) const override {
2006 static int x = 0;
2007 ID.AddPointer(&x);
2010 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
2011 BugReporterContext &BRC,
2012 PathSensitiveBugReport &BR) override;
2014 } // end of anonymous namespace
2016 static std::shared_ptr<PathDiagnosticEventPiece>
2017 constructDebugPieceForTrackedCondition(const Expr *Cond,
2018 const ExplodedNode *N,
2019 BugReporterContext &BRC) {
2021 if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE ||
2022 !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
2023 return nullptr;
2025 std::string ConditionText = std::string(Lexer::getSourceText(
2026 CharSourceRange::getTokenRange(Cond->getSourceRange()),
2027 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()));
2029 return std::make_shared<PathDiagnosticEventPiece>(
2030 PathDiagnosticLocation::createBegin(
2031 Cond, BRC.getSourceManager(), N->getLocationContext()),
2032 (Twine() + "Tracking condition '" + ConditionText + "'").str());
2035 static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
2036 if (B->succ_size() != 2)
2037 return false;
2039 const CFGBlock *Then = B->succ_begin()->getReachableBlock();
2040 const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
2042 if (!Then || !Else)
2043 return false;
2045 if (Then->isInevitablySinking() != Else->isInevitablySinking())
2046 return true;
2048 // For the following condition the following CFG would be built:
2050 // ------------->
2051 // / \
2052 // [B1] -> [B2] -> [B3] -> [sink]
2053 // assert(A && B || C); \ \
2054 // -----------> [go on with the execution]
2056 // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
2057 // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
2058 // reached the end of the condition!
2059 if (const Stmt *ElseCond = Else->getTerminatorCondition())
2060 if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
2061 if (BinOp->isLogicalOp())
2062 return isAssertlikeBlock(Else, Context);
2064 return false;
2067 PathDiagnosticPieceRef
2068 TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
2069 BugReporterContext &BRC,
2070 PathSensitiveBugReport &BR) {
2071 // We can only reason about control dependencies within the same stack frame.
2072 if (Origin->getStackFrame() != N->getStackFrame())
2073 return nullptr;
2075 CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
2077 // Skip if we already inspected this block.
2078 if (!VisitedBlocks.insert(NB).second)
2079 return nullptr;
2081 CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
2083 // TODO: Cache CFGBlocks for each ExplodedNode.
2084 if (!OriginB || !NB)
2085 return nullptr;
2087 if (isAssertlikeBlock(NB, BRC.getASTContext()))
2088 return nullptr;
2090 if (ControlDeps.isControlDependent(OriginB, NB)) {
2091 // We don't really want to explain for range loops. Evidence suggests that
2092 // the only thing that leads to is the addition of calls to operator!=.
2093 if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
2094 return nullptr;
2096 if (const Expr *Condition = NB->getLastCondition()) {
2098 // If we can't retrieve a sensible condition, just bail out.
2099 const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
2100 if (!InnerExpr)
2101 return nullptr;
2103 // If the condition was a function call, we likely won't gain much from
2104 // tracking it either. Evidence suggests that it will mostly trigger in
2105 // scenarios like this:
2107 // void f(int *x) {
2108 // x = nullptr;
2109 // if (alwaysTrue()) // We don't need a whole lot of explanation
2110 // // here, the function name is good enough.
2111 // *x = 5;
2112 // }
2114 // Its easy to create a counterexample where this heuristic would make us
2115 // lose valuable information, but we've never really seen one in practice.
2116 if (isa<CallExpr>(InnerExpr))
2117 return nullptr;
2119 // Keeping track of the already tracked conditions on a visitor level
2120 // isn't sufficient, because a new visitor is created for each tracked
2121 // expression, hence the BugReport level set.
2122 if (BR.addTrackedCondition(N)) {
2123 getParentTracker().track(InnerExpr, N,
2124 {bugreporter::TrackingKind::Condition,
2125 /*EnableNullFPSuppression=*/false});
2126 return constructDebugPieceForTrackedCondition(Condition, N, BRC);
2131 return nullptr;
2134 //===----------------------------------------------------------------------===//
2135 // Implementation of trackExpressionValue.
2136 //===----------------------------------------------------------------------===//
2138 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
2140 Ex = Ex->IgnoreParenCasts();
2141 if (const auto *FE = dyn_cast<FullExpr>(Ex))
2142 return peelOffOuterExpr(FE->getSubExpr(), N);
2143 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
2144 return peelOffOuterExpr(OVE->getSourceExpr(), N);
2145 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
2146 const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
2147 if (PropRef && PropRef->isMessagingGetter()) {
2148 const Expr *GetterMessageSend =
2149 POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
2150 assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
2151 return peelOffOuterExpr(GetterMessageSend, N);
2155 // Peel off the ternary operator.
2156 if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
2157 // Find a node where the branching occurred and find out which branch
2158 // we took (true/false) by looking at the ExplodedGraph.
2159 const ExplodedNode *NI = N;
2160 do {
2161 ProgramPoint ProgPoint = NI->getLocation();
2162 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2163 const CFGBlock *srcBlk = BE->getSrc();
2164 if (const Stmt *term = srcBlk->getTerminatorStmt()) {
2165 if (term == CO) {
2166 bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
2167 if (TookTrueBranch)
2168 return peelOffOuterExpr(CO->getTrueExpr(), N);
2169 else
2170 return peelOffOuterExpr(CO->getFalseExpr(), N);
2174 NI = NI->getFirstPred();
2175 } while (NI);
2178 if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2179 if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2180 return peelOffOuterExpr(SubEx, N);
2182 if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2183 if (UO->getOpcode() == UO_LNot)
2184 return peelOffOuterExpr(UO->getSubExpr(), N);
2186 // FIXME: There's a hack in our Store implementation that always computes
2187 // field offsets around null pointers as if they are always equal to 0.
2188 // The idea here is to report accesses to fields as null dereferences
2189 // even though the pointer value that's being dereferenced is actually
2190 // the offset of the field rather than exactly 0.
2191 // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2192 // This code interacts heavily with this hack; otherwise the value
2193 // would not be null at all for most fields, so we'd be unable to track it.
2194 if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2195 if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2196 return peelOffOuterExpr(DerefEx, N);
2199 return Ex;
2202 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
2203 /// was computed.
2204 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
2205 const Expr *Inner) {
2206 while (N) {
2207 if (N->getStmtForDiagnostics() == Inner)
2208 return N;
2209 N = N->getFirstPred();
2211 return N;
2214 //===----------------------------------------------------------------------===//
2215 // Tracker implementation
2216 //===----------------------------------------------------------------------===//
2218 PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI,
2219 BugReporterContext &BRC,
2220 StringRef NodeText) {
2221 // Construct a new PathDiagnosticPiece.
2222 ProgramPoint P = SI.StoreSite->getLocation();
2223 PathDiagnosticLocation L;
2224 if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2225 L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(),
2226 P.getLocationContext());
2228 if (!L.isValid() || !L.asLocation().isValid())
2229 L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
2231 if (!L.isValid() || !L.asLocation().isValid())
2232 return nullptr;
2234 return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2237 namespace {
2238 class DefaultStoreHandler final : public StoreHandler {
2239 public:
2240 using StoreHandler::StoreHandler;
2242 PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC,
2243 TrackingOptions Opts) override {
2244 // Okay, we've found the binding. Emit an appropriate message.
2245 SmallString<256> Buffer;
2246 llvm::raw_svector_ostream OS(Buffer);
2248 switch (SI.StoreKind) {
2249 case StoreInfo::Initialization:
2250 case StoreInfo::BlockCapture:
2251 showBRDiagnostics(OS, SI);
2252 break;
2253 case StoreInfo::CallArgument:
2254 showBRParamDiagnostics(OS, SI);
2255 break;
2256 case StoreInfo::Assignment:
2257 showBRDefaultDiagnostics(OS, SI);
2258 break;
2261 if (Opts.Kind == bugreporter::TrackingKind::Condition)
2262 OS << WillBeUsedForACondition;
2264 return constructNote(SI, BRC, OS.str());
2268 class ControlDependencyHandler final : public ExpressionHandler {
2269 public:
2270 using ExpressionHandler::ExpressionHandler;
2272 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2273 const ExplodedNode *LVNode,
2274 TrackingOptions Opts) override {
2275 PathSensitiveBugReport &Report = getParentTracker().getReport();
2277 // We only track expressions if we believe that they are important. Chances
2278 // are good that control dependencies to the tracking point are also
2279 // important because of this, let's explain why we believe control reached
2280 // this point.
2281 // TODO: Shouldn't we track control dependencies of every bug location,
2282 // rather than only tracked expressions?
2283 if (LVNode->getState()
2284 ->getAnalysisManager()
2285 .getAnalyzerOptions()
2286 .ShouldTrackConditions) {
2287 Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2288 &getParentTracker(), InputNode);
2289 return {/*FoundSomethingToTrack=*/true};
2292 return {};
2296 class NilReceiverHandler final : public ExpressionHandler {
2297 public:
2298 using ExpressionHandler::ExpressionHandler;
2300 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2301 const ExplodedNode *LVNode,
2302 TrackingOptions Opts) override {
2303 // The message send could be nil due to the receiver being nil.
2304 // At this point in the path, the receiver should be live since we are at
2305 // the message send expr. If it is nil, start tracking it.
2306 if (const Expr *Receiver =
2307 NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
2308 return getParentTracker().track(Receiver, LVNode, Opts);
2310 return {};
2314 class ArrayIndexHandler final : public ExpressionHandler {
2315 public:
2316 using ExpressionHandler::ExpressionHandler;
2318 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2319 const ExplodedNode *LVNode,
2320 TrackingOptions Opts) override {
2321 // Track the index if this is an array subscript.
2322 if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2323 return getParentTracker().track(
2324 Arr->getIdx(), LVNode,
2325 {Opts.Kind, /*EnableNullFPSuppression*/ false});
2327 return {};
2331 // TODO: extract it into more handlers
2332 class InterestingLValueHandler final : public ExpressionHandler {
2333 public:
2334 using ExpressionHandler::ExpressionHandler;
2336 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2337 const ExplodedNode *LVNode,
2338 TrackingOptions Opts) override {
2339 ProgramStateRef LVState = LVNode->getState();
2340 const StackFrameContext *SFC = LVNode->getStackFrame();
2341 PathSensitiveBugReport &Report = getParentTracker().getReport();
2342 Tracker::Result Result;
2344 // See if the expression we're interested refers to a variable.
2345 // If so, we can track both its contents and constraints on its value.
2346 if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
2347 SVal LVal = LVNode->getSVal(Inner);
2349 const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2350 bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2352 // If this is a C++ reference to a null pointer, we are tracking the
2353 // pointer. In addition, we should find the store at which the reference
2354 // got initialized.
2355 if (RR && !LVIsNull)
2356 Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2358 // In case of C++ references, we want to differentiate between a null
2359 // reference and reference to null pointer.
2360 // If the LVal is null, check if we are dealing with null reference.
2361 // For those, we want to track the location of the reference.
2362 const MemRegion *R =
2363 (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2365 if (R) {
2367 // Mark both the variable region and its contents as interesting.
2368 SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2369 Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2371 // When we got here, we do have something to track, and we will
2372 // interrupt.
2373 Result.FoundSomethingToTrack = true;
2374 Result.WasInterrupted = true;
2376 MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2377 LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2379 Report.markInteresting(V, Opts.Kind);
2380 Report.addVisitor<UndefOrNullArgVisitor>(R);
2382 // If the contents are symbolic and null, find out when they became
2383 // null.
2384 if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2385 if (LVState->isNull(V).isConstrainedTrue())
2386 Report.addVisitor<TrackConstraintBRVisitor>(
2387 V.castAs<DefinedSVal>(),
2388 /*Assumption=*/false, "Assuming pointer value is null");
2390 // Add visitor, which will suppress inline defensive checks.
2391 if (auto DV = V.getAs<DefinedSVal>())
2392 if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2393 // Note that LVNode may be too late (i.e., too far from the
2394 // InputNode) because the lvalue may have been computed before the
2395 // inlined call was evaluated. InputNode may as well be too early
2396 // here, because the symbol is already dead; this, however, is fine
2397 // because we can still find the node in which it collapsed to null
2398 // previously.
2399 Report.addVisitor<SuppressInlineDefensiveChecksVisitor>(*DV,
2400 InputNode);
2401 getParentTracker().track(V, R, Opts, SFC);
2405 return Result;
2409 /// Adds a ReturnVisitor if the given statement represents a call that was
2410 /// inlined.
2412 /// This will search back through the ExplodedGraph, starting from the given
2413 /// node, looking for when the given statement was processed. If it turns out
2414 /// the statement is a call that was inlined, we add the visitor to the
2415 /// bug report, so it can print a note later.
2416 class InlinedFunctionCallHandler final : public ExpressionHandler {
2417 using ExpressionHandler::ExpressionHandler;
2419 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2420 const ExplodedNode *ExprNode,
2421 TrackingOptions Opts) override {
2422 if (!CallEvent::isCallStmt(E))
2423 return {};
2425 // First, find when we processed the statement.
2426 // If we work with a 'CXXNewExpr' that is going to be purged away before
2427 // its call take place. We would catch that purge in the last condition
2428 // as a 'StmtPoint' so we have to bypass it.
2429 const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2431 // This is moving forward when we enter into another context.
2432 const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2434 do {
2435 // If that is satisfied we found our statement as an inlined call.
2436 if (std::optional<CallExitEnd> CEE =
2437 ExprNode->getLocationAs<CallExitEnd>())
2438 if (CEE->getCalleeContext()->getCallSite() == E)
2439 break;
2441 // Try to move forward to the end of the call-chain.
2442 ExprNode = ExprNode->getFirstPred();
2443 if (!ExprNode)
2444 break;
2446 const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2448 // If that is satisfied we found our statement.
2449 // FIXME: This code currently bypasses the call site for the
2450 // conservatively evaluated allocator.
2451 if (!BypassCXXNewExprEval)
2452 if (std::optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2453 // See if we do not enter into another context.
2454 if (SP->getStmt() == E && CurrentSFC == PredSFC)
2455 break;
2457 CurrentSFC = PredSFC;
2458 } while (ExprNode->getStackFrame() == CurrentSFC);
2460 // Next, step over any post-statement checks.
2461 while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2462 ExprNode = ExprNode->getFirstPred();
2463 if (!ExprNode)
2464 return {};
2466 // Finally, see if we inlined the call.
2467 std::optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2468 if (!CEE)
2469 return {};
2471 const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2472 if (CalleeContext->getCallSite() != E)
2473 return {};
2475 // Check the return value.
2476 ProgramStateRef State = ExprNode->getState();
2477 SVal RetVal = ExprNode->getSVal(E);
2479 // Handle cases where a reference is returned and then immediately used.
2480 if (cast<Expr>(E)->isGLValue())
2481 if (std::optional<Loc> LValue = RetVal.getAs<Loc>())
2482 RetVal = State->getSVal(*LValue);
2484 // See if the return value is NULL. If so, suppress the report.
2485 AnalyzerOptions &Options = State->getAnalysisManager().options;
2487 bool EnableNullFPSuppression = false;
2488 if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2489 if (std::optional<Loc> RetLoc = RetVal.getAs<Loc>())
2490 EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2492 PathSensitiveBugReport &Report = getParentTracker().getReport();
2493 Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2494 EnableNullFPSuppression, Options,
2495 Opts.Kind);
2496 return {true};
2500 class DefaultExpressionHandler final : public ExpressionHandler {
2501 public:
2502 using ExpressionHandler::ExpressionHandler;
2504 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2505 const ExplodedNode *LVNode,
2506 TrackingOptions Opts) override {
2507 ProgramStateRef LVState = LVNode->getState();
2508 const StackFrameContext *SFC = LVNode->getStackFrame();
2509 PathSensitiveBugReport &Report = getParentTracker().getReport();
2510 Tracker::Result Result;
2512 // If the expression is not an "lvalue expression", we can still
2513 // track the constraints on its contents.
2514 SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2516 // Is it a symbolic value?
2517 if (auto L = V.getAs<loc::MemRegionVal>()) {
2518 // FIXME: this is a hack for fixing a later crash when attempting to
2519 // dereference a void* pointer.
2520 // We should not try to dereference pointers at all when we don't care
2521 // what is written inside the pointer.
2522 bool CanDereference = true;
2523 if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2524 if (SR->getPointeeStaticType()->isVoidType())
2525 CanDereference = false;
2526 } else if (L->getRegionAs<AllocaRegion>())
2527 CanDereference = false;
2529 // At this point we are dealing with the region's LValue.
2530 // However, if the rvalue is a symbolic region, we should track it as
2531 // well. Try to use the correct type when looking up the value.
2532 SVal RVal;
2533 if (ExplodedGraph::isInterestingLValueExpr(Inner))
2534 RVal = LVState->getRawSVal(*L, Inner->getType());
2535 else if (CanDereference)
2536 RVal = LVState->getSVal(L->getRegion());
2538 if (CanDereference) {
2539 Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2540 Result.FoundSomethingToTrack = true;
2542 if (auto KV = RVal.getAs<KnownSVal>())
2543 Result.combineWith(
2544 getParentTracker().track(*KV, L->getRegion(), Opts, SFC));
2547 const MemRegion *RegionRVal = RVal.getAsRegion();
2548 if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2549 Report.markInteresting(RegionRVal, Opts.Kind);
2550 Report.addVisitor<TrackConstraintBRVisitor>(
2551 loc::MemRegionVal(RegionRVal),
2552 /*Assumption=*/false, "Assuming pointer value is null");
2553 Result.FoundSomethingToTrack = true;
2557 return Result;
2561 /// Attempts to add visitors to track an RValue expression back to its point of
2562 /// origin.
2563 class PRValueHandler final : public ExpressionHandler {
2564 public:
2565 using ExpressionHandler::ExpressionHandler;
2567 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2568 const ExplodedNode *ExprNode,
2569 TrackingOptions Opts) override {
2570 if (!E->isPRValue())
2571 return {};
2573 const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2574 if (!RVNode)
2575 return {};
2577 Tracker::Result CombinedResult;
2578 Tracker &Parent = getParentTracker();
2580 const auto track = [&CombinedResult, &Parent, ExprNode,
2581 Opts](const Expr *Inner) {
2582 CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2585 // FIXME: Initializer lists can appear in many different contexts
2586 // and most of them needs a special handling. For now let's handle
2587 // what we can. If the initializer list only has 1 element, we track
2588 // that.
2589 // This snippet even handles nesting, e.g.: int *x{{{{{y}}}}};
2590 if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
2591 if (ILE->getNumInits() == 1) {
2592 track(ILE->getInit(0));
2594 return CombinedResult;
2597 return {};
2600 ProgramStateRef RVState = RVNode->getState();
2601 SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2602 const auto *BO = dyn_cast<BinaryOperator>(E);
2604 if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2605 return {};
2607 SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2608 SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2610 // Track both LHS and RHS of a multiplication.
2611 if (BO->getOpcode() == BO_Mul) {
2612 if (LHSV.isZeroConstant())
2613 track(BO->getLHS());
2614 if (RHSV.isZeroConstant())
2615 track(BO->getRHS());
2616 } else { // Track only the LHS of a division or a modulo.
2617 if (LHSV.isZeroConstant())
2618 track(BO->getLHS());
2621 return CombinedResult;
2624 } // namespace
2626 Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
2627 // Default expression handlers.
2628 addLowPriorityHandler<ControlDependencyHandler>();
2629 addLowPriorityHandler<NilReceiverHandler>();
2630 addLowPriorityHandler<ArrayIndexHandler>();
2631 addLowPriorityHandler<InterestingLValueHandler>();
2632 addLowPriorityHandler<InlinedFunctionCallHandler>();
2633 addLowPriorityHandler<DefaultExpressionHandler>();
2634 addLowPriorityHandler<PRValueHandler>();
2635 // Default store handlers.
2636 addHighPriorityHandler<DefaultStoreHandler>();
2639 Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N,
2640 TrackingOptions Opts) {
2641 if (!E || !N)
2642 return {};
2644 const Expr *Inner = peelOffOuterExpr(E, N);
2645 const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2646 if (!LVNode)
2647 return {};
2649 Result CombinedResult;
2650 // Iterate through the handlers in the order according to their priorities.
2651 for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2652 CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2653 if (CombinedResult.WasInterrupted) {
2654 // There is no need to confuse our users here.
2655 // We got interrupted, but our users don't need to know about it.
2656 CombinedResult.WasInterrupted = false;
2657 break;
2661 return CombinedResult;
2664 Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts,
2665 const StackFrameContext *Origin) {
2666 if (auto KV = V.getAs<KnownSVal>()) {
2667 Report.addVisitor<StoreSiteFinder>(this, *KV, R, Opts, Origin);
2668 return {true};
2670 return {};
2673 PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC,
2674 TrackingOptions Opts) {
2675 // Iterate through the handlers in the order according to their priorities.
2676 for (StoreHandlerPtr &Handler : StoreHandlers) {
2677 if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2678 // If the handler produced a non-null piece, return it.
2679 // There is no need in asking other handlers.
2680 return Result;
2682 return {};
2685 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
2686 const Expr *E,
2688 PathSensitiveBugReport &Report,
2689 TrackingOptions Opts) {
2690 return Tracker::create(Report)
2691 ->track(E, InputNode, Opts)
2692 .FoundSomethingToTrack;
2695 void bugreporter::trackStoredValue(KnownSVal V, const MemRegion *R,
2696 PathSensitiveBugReport &Report,
2697 TrackingOptions Opts,
2698 const StackFrameContext *Origin) {
2699 Tracker::create(Report)->track(V, R, Opts, Origin);
2702 //===----------------------------------------------------------------------===//
2703 // Implementation of NulReceiverBRVisitor.
2704 //===----------------------------------------------------------------------===//
2706 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
2707 const ExplodedNode *N) {
2708 const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2709 if (!ME)
2710 return nullptr;
2711 if (const Expr *Receiver = ME->getInstanceReceiver()) {
2712 ProgramStateRef state = N->getState();
2713 SVal V = N->getSVal(Receiver);
2714 if (state->isNull(V).isConstrainedTrue())
2715 return Receiver;
2717 return nullptr;
2720 PathDiagnosticPieceRef
2721 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2722 PathSensitiveBugReport &BR) {
2723 std::optional<PreStmt> P = N->getLocationAs<PreStmt>();
2724 if (!P)
2725 return nullptr;
2727 const Stmt *S = P->getStmt();
2728 const Expr *Receiver = getNilReceiver(S, N);
2729 if (!Receiver)
2730 return nullptr;
2732 llvm::SmallString<256> Buf;
2733 llvm::raw_svector_ostream OS(Buf);
2735 if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2736 OS << "'";
2737 ME->getSelector().print(OS);
2738 OS << "' not called";
2740 else {
2741 OS << "No method is called";
2743 OS << " because the receiver is nil";
2745 // The receiver was nil, and hence the method was skipped.
2746 // Register a BugReporterVisitor to issue a message telling us how
2747 // the receiver was null.
2748 bugreporter::trackExpressionValue(N, Receiver, BR,
2749 {bugreporter::TrackingKind::Thorough,
2750 /*EnableNullFPSuppression*/ false});
2751 // Issue a message saying that the method was skipped.
2752 PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2753 N->getLocationContext());
2754 return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2757 //===----------------------------------------------------------------------===//
2758 // Visitor that tries to report interesting diagnostics from conditions.
2759 //===----------------------------------------------------------------------===//
2761 /// Return the tag associated with this visitor. This tag will be used
2762 /// to make all PathDiagnosticPieces created by this visitor.
2763 const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2765 PathDiagnosticPieceRef
2766 ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2767 PathSensitiveBugReport &BR) {
2768 auto piece = VisitNodeImpl(N, BRC, BR);
2769 if (piece) {
2770 piece->setTag(getTag());
2771 if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2772 ev->setPrunable(true, /* override */ false);
2774 return piece;
2777 PathDiagnosticPieceRef
2778 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
2779 BugReporterContext &BRC,
2780 PathSensitiveBugReport &BR) {
2781 ProgramPoint ProgPoint = N->getLocation();
2782 const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2783 ExprEngine::geteagerlyAssumeBinOpBifurcationTags();
2785 // If an assumption was made on a branch, it should be caught
2786 // here by looking at the state transition.
2787 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2788 const CFGBlock *SrcBlock = BE->getSrc();
2789 if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2790 // If the tag of the previous node is 'Eagerly Assume...' the current
2791 // 'BlockEdge' has the same constraint information. We do not want to
2792 // report the value as it is just an assumption on the predecessor node
2793 // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2794 const ProgramPointTag *PreviousNodeTag =
2795 N->getFirstPred()->getLocation().getTag();
2796 if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2797 return nullptr;
2799 return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2801 return nullptr;
2804 if (std::optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2805 const ProgramPointTag *CurrentNodeTag = PS->getTag();
2806 if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2807 return nullptr;
2809 bool TookTrue = CurrentNodeTag == Tags.first;
2810 return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2813 return nullptr;
2816 PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator(
2817 const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2818 const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2819 BugReporterContext &BRC) {
2820 const Expr *Cond = nullptr;
2822 // In the code below, Term is a CFG terminator and Cond is a branch condition
2823 // expression upon which the decision is made on this terminator.
2825 // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2826 // and "x == 0" is the respective condition.
2828 // Another example: in "if (x && y)", we've got two terminators and two
2829 // conditions due to short-circuit nature of operator "&&":
2830 // 1. The "if (x && y)" statement is a terminator,
2831 // and "y" is the respective condition.
2832 // 2. Also "x && ..." is another terminator,
2833 // and "x" is its condition.
2835 switch (Term->getStmtClass()) {
2836 // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2837 // more tricky because there are more than two branches to account for.
2838 default:
2839 return nullptr;
2840 case Stmt::IfStmtClass:
2841 Cond = cast<IfStmt>(Term)->getCond();
2842 break;
2843 case Stmt::ConditionalOperatorClass:
2844 Cond = cast<ConditionalOperator>(Term)->getCond();
2845 break;
2846 case Stmt::BinaryOperatorClass:
2847 // When we encounter a logical operator (&& or ||) as a CFG terminator,
2848 // then the condition is actually its LHS; otherwise, we'd encounter
2849 // the parent, such as if-statement, as a terminator.
2850 const auto *BO = cast<BinaryOperator>(Term);
2851 assert(BO->isLogicalOp() &&
2852 "CFG terminator is not a short-circuit operator!");
2853 Cond = BO->getLHS();
2854 break;
2857 Cond = Cond->IgnoreParens();
2859 // However, when we encounter a logical operator as a branch condition,
2860 // then the condition is actually its RHS, because LHS would be
2861 // the condition for the logical operator terminator.
2862 while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2863 if (!InnerBO->isLogicalOp())
2864 break;
2865 Cond = InnerBO->getRHS()->IgnoreParens();
2868 assert(Cond);
2869 assert(srcBlk->succ_size() == 2);
2870 const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2871 return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2874 PathDiagnosticPieceRef
2875 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC,
2876 PathSensitiveBugReport &R,
2877 const ExplodedNode *N, bool TookTrue) {
2878 ProgramStateRef CurrentState = N->getState();
2879 ProgramStateRef PrevState = N->getFirstPred()->getState();
2880 const LocationContext *LCtx = N->getLocationContext();
2882 // If the constraint information is changed between the current and the
2883 // previous program state we assuming the newly seen constraint information.
2884 // If we cannot evaluate the condition (and the constraints are the same)
2885 // the analyzer has no information about the value and just assuming it.
2886 bool IsAssuming =
2887 !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2888 CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2890 // These will be modified in code below, but we need to preserve the original
2891 // values in case we want to throw the generic message.
2892 const Expr *CondTmp = Cond;
2893 bool TookTrueTmp = TookTrue;
2895 while (true) {
2896 CondTmp = CondTmp->IgnoreParenCasts();
2897 switch (CondTmp->getStmtClass()) {
2898 default:
2899 break;
2900 case Stmt::BinaryOperatorClass:
2901 if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2902 BRC, R, N, TookTrueTmp, IsAssuming))
2903 return P;
2904 break;
2905 case Stmt::DeclRefExprClass:
2906 if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2907 BRC, R, N, TookTrueTmp, IsAssuming))
2908 return P;
2909 break;
2910 case Stmt::MemberExprClass:
2911 if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2912 BRC, R, N, TookTrueTmp, IsAssuming))
2913 return P;
2914 break;
2915 case Stmt::UnaryOperatorClass: {
2916 const auto *UO = cast<UnaryOperator>(CondTmp);
2917 if (UO->getOpcode() == UO_LNot) {
2918 TookTrueTmp = !TookTrueTmp;
2919 CondTmp = UO->getSubExpr();
2920 continue;
2922 break;
2925 break;
2928 // Condition too complex to explain? Just say something so that the user
2929 // knew we've made some path decision at this point.
2930 // If it is too complex and we know the evaluation of the condition do not
2931 // repeat the note from 'BugReporter.cpp'
2932 if (!IsAssuming)
2933 return nullptr;
2935 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2936 if (!Loc.isValid() || !Loc.asLocation().isValid())
2937 return nullptr;
2939 return std::make_shared<PathDiagnosticEventPiece>(
2940 Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2943 bool ConditionBRVisitor::patternMatch(const Expr *Ex, const Expr *ParentEx,
2944 raw_ostream &Out, BugReporterContext &BRC,
2945 PathSensitiveBugReport &report,
2946 const ExplodedNode *N,
2947 std::optional<bool> &prunable,
2948 bool IsSameFieldName) {
2949 const Expr *OriginalExpr = Ex;
2950 Ex = Ex->IgnoreParenCasts();
2952 if (isa<GNUNullExpr, ObjCBoolLiteralExpr, CXXBoolLiteralExpr, IntegerLiteral,
2953 FloatingLiteral>(Ex)) {
2954 // Use heuristics to determine if the expression is a macro
2955 // expanding to a literal and if so, use the macro's name.
2956 SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2957 SourceLocation EndLoc = OriginalExpr->getEndLoc();
2958 if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2959 const SourceManager &SM = BRC.getSourceManager();
2960 const LangOptions &LO = BRC.getASTContext().getLangOpts();
2961 if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2962 Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2963 CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2964 Out << Lexer::getSourceText(R, SM, LO);
2965 return false;
2970 if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2971 const bool quotes = isa<VarDecl>(DR->getDecl());
2972 if (quotes) {
2973 Out << '\'';
2974 const LocationContext *LCtx = N->getLocationContext();
2975 const ProgramState *state = N->getState().get();
2976 if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2977 LCtx).getAsRegion()) {
2978 if (report.isInteresting(R))
2979 prunable = false;
2980 else {
2981 const ProgramState *state = N->getState().get();
2982 SVal V = state->getSVal(R);
2983 if (report.isInteresting(V))
2984 prunable = false;
2988 Out << DR->getDecl()->getDeclName().getAsString();
2989 if (quotes)
2990 Out << '\'';
2991 return quotes;
2994 if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2995 QualType OriginalTy = OriginalExpr->getType();
2996 if (OriginalTy->isPointerType()) {
2997 if (IL->getValue() == 0) {
2998 Out << "null";
2999 return false;
3002 else if (OriginalTy->isObjCObjectPointerType()) {
3003 if (IL->getValue() == 0) {
3004 Out << "nil";
3005 return false;
3009 Out << IL->getValue();
3010 return false;
3013 if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
3014 if (!IsSameFieldName)
3015 Out << "field '" << ME->getMemberDecl()->getName() << '\'';
3016 else
3017 Out << '\''
3018 << Lexer::getSourceText(
3019 CharSourceRange::getTokenRange(Ex->getSourceRange()),
3020 BRC.getSourceManager(), BRC.getASTContext().getLangOpts(),
3021 nullptr)
3022 << '\'';
3025 return false;
3028 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3029 const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
3030 PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
3031 bool IsAssuming) {
3032 bool shouldInvert = false;
3033 std::optional<bool> shouldPrune;
3035 // Check if the field name of the MemberExprs is ambiguous. Example:
3036 // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
3037 bool IsSameFieldName = false;
3038 const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
3039 const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
3041 if (LhsME && RhsME)
3042 IsSameFieldName =
3043 LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
3045 SmallString<128> LhsString, RhsString;
3047 llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
3048 const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
3049 N, shouldPrune, IsSameFieldName);
3050 const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
3051 N, shouldPrune, IsSameFieldName);
3053 shouldInvert = !isVarLHS && isVarRHS;
3056 BinaryOperator::Opcode Op = BExpr->getOpcode();
3058 if (BinaryOperator::isAssignmentOp(Op)) {
3059 // For assignment operators, all that we care about is that the LHS
3060 // evaluates to "true" or "false".
3061 return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
3062 TookTrue);
3065 // For non-assignment operations, we require that we can understand
3066 // both the LHS and RHS.
3067 if (LhsString.empty() || RhsString.empty() ||
3068 !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
3069 return nullptr;
3071 // Should we invert the strings if the LHS is not a variable name?
3072 SmallString<256> buf;
3073 llvm::raw_svector_ostream Out(buf);
3074 Out << (IsAssuming ? "Assuming " : "")
3075 << (shouldInvert ? RhsString : LhsString) << " is ";
3077 // Do we need to invert the opcode?
3078 if (shouldInvert)
3079 switch (Op) {
3080 default: break;
3081 case BO_LT: Op = BO_GT; break;
3082 case BO_GT: Op = BO_LT; break;
3083 case BO_LE: Op = BO_GE; break;
3084 case BO_GE: Op = BO_LE; break;
3087 if (!TookTrue)
3088 switch (Op) {
3089 case BO_EQ: Op = BO_NE; break;
3090 case BO_NE: Op = BO_EQ; break;
3091 case BO_LT: Op = BO_GE; break;
3092 case BO_GT: Op = BO_LE; break;
3093 case BO_LE: Op = BO_GT; break;
3094 case BO_GE: Op = BO_LT; break;
3095 default:
3096 return nullptr;
3099 switch (Op) {
3100 case BO_EQ:
3101 Out << "equal to ";
3102 break;
3103 case BO_NE:
3104 Out << "not equal to ";
3105 break;
3106 default:
3107 Out << BinaryOperator::getOpcodeStr(Op) << ' ';
3108 break;
3111 Out << (shouldInvert ? LhsString : RhsString);
3112 const LocationContext *LCtx = N->getLocationContext();
3113 const SourceManager &SM = BRC.getSourceManager();
3115 if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
3116 isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
3117 Out << WillBeUsedForACondition;
3119 // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
3120 std::string Message = std::string(Out.str());
3121 Message[0] = toupper(Message[0]);
3123 // If we know the value create a pop-up note to the value part of 'BExpr'.
3124 if (!IsAssuming) {
3125 PathDiagnosticLocation Loc;
3126 if (!shouldInvert) {
3127 if (LhsME && LhsME->getMemberLoc().isValid())
3128 Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
3129 else
3130 Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
3131 } else {
3132 if (RhsME && RhsME->getMemberLoc().isValid())
3133 Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
3134 else
3135 Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
3138 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
3141 PathDiagnosticLocation Loc(Cond, SM, LCtx);
3142 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
3143 if (shouldPrune)
3144 event->setPrunable(*shouldPrune);
3145 return event;
3148 PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable(
3149 StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
3150 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
3151 // FIXME: If there's already a constraint tracker for this variable,
3152 // we shouldn't emit anything here (c.f. the double note in
3153 // test/Analysis/inlining/path-notes.c)
3154 SmallString<256> buf;
3155 llvm::raw_svector_ostream Out(buf);
3156 Out << "Assuming " << LhsString << " is ";
3158 if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
3159 return nullptr;
3161 const LocationContext *LCtx = N->getLocationContext();
3162 PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
3164 if (isVarAnInterestingCondition(CondVarExpr, N, &report))
3165 Out << WillBeUsedForACondition;
3167 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3169 if (isInterestingExpr(CondVarExpr, N, &report))
3170 event->setPrunable(false);
3172 return event;
3175 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3176 const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
3177 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3178 bool IsAssuming) {
3179 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
3180 if (!VD)
3181 return nullptr;
3183 SmallString<256> Buf;
3184 llvm::raw_svector_ostream Out(Buf);
3186 Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
3188 if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
3189 return nullptr;
3191 const LocationContext *LCtx = N->getLocationContext();
3193 if (isVarAnInterestingCondition(DRE, N, &report))
3194 Out << WillBeUsedForACondition;
3196 // If we know the value create a pop-up note to the 'DRE'.
3197 if (!IsAssuming) {
3198 PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx);
3199 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3202 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3203 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3205 if (isInterestingExpr(DRE, N, &report))
3206 event->setPrunable(false);
3208 return std::move(event);
3211 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3212 const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3213 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3214 bool IsAssuming) {
3215 SmallString<256> Buf;
3216 llvm::raw_svector_ostream Out(Buf);
3218 Out << (IsAssuming ? "Assuming field '" : "Field '")
3219 << ME->getMemberDecl()->getName() << "' is ";
3221 if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3222 return nullptr;
3224 const LocationContext *LCtx = N->getLocationContext();
3225 PathDiagnosticLocation Loc;
3227 // If we know the value create a pop-up note to the member of the MemberExpr.
3228 if (!IsAssuming && ME->getMemberLoc().isValid())
3229 Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager());
3230 else
3231 Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3233 if (!Loc.isValid() || !Loc.asLocation().isValid())
3234 return nullptr;
3236 if (isVarAnInterestingCondition(ME, N, &report))
3237 Out << WillBeUsedForACondition;
3239 // If we know the value create a pop-up note.
3240 if (!IsAssuming)
3241 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3243 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3244 if (isInterestingExpr(ME, N, &report))
3245 event->setPrunable(false);
3246 return event;
3249 bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3250 const ExplodedNode *N, bool TookTrue,
3251 bool IsAssuming) {
3252 QualType Ty = CondVarExpr->getType();
3254 if (Ty->isPointerType()) {
3255 Out << (TookTrue ? "non-null" : "null");
3256 return true;
3259 if (Ty->isObjCObjectPointerType()) {
3260 Out << (TookTrue ? "non-nil" : "nil");
3261 return true;
3264 if (!Ty->isIntegralOrEnumerationType())
3265 return false;
3267 std::optional<const llvm::APSInt *> IntValue;
3268 if (!IsAssuming)
3269 IntValue = getConcreteIntegerValue(CondVarExpr, N);
3271 if (IsAssuming || !IntValue) {
3272 if (Ty->isBooleanType())
3273 Out << (TookTrue ? "true" : "false");
3274 else
3275 Out << (TookTrue ? "not equal to 0" : "0");
3276 } else {
3277 if (Ty->isBooleanType())
3278 Out << ((*IntValue)->getBoolValue() ? "true" : "false");
3279 else
3280 Out << **IntValue;
3283 return true;
3286 constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3287 constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3289 bool ConditionBRVisitor::isPieceMessageGeneric(
3290 const PathDiagnosticPiece *Piece) {
3291 return Piece->getString() == GenericTrueMessage ||
3292 Piece->getString() == GenericFalseMessage;
3295 //===----------------------------------------------------------------------===//
3296 // Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3297 //===----------------------------------------------------------------------===//
3299 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
3300 BugReporterContext &BRC, const ExplodedNode *N,
3301 PathSensitiveBugReport &BR) {
3302 // Here we suppress false positives coming from system headers. This list is
3303 // based on known issues.
3304 const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3305 const Decl *D = N->getLocationContext()->getDecl();
3307 if (AnalysisDeclContext::isInStdNamespace(D)) {
3308 // Skip reports within the 'std' namespace. Although these can sometimes be
3309 // the user's fault, we currently don't report them very well, and
3310 // Note that this will not help for any other data structure libraries, like
3311 // TR1, Boost, or llvm/ADT.
3312 if (Options.ShouldSuppressFromCXXStandardLibrary) {
3313 BR.markInvalid(getTag(), nullptr);
3314 return;
3315 } else {
3316 // If the complete 'std' suppression is not enabled, suppress reports
3317 // from the 'std' namespace that are known to produce false positives.
3319 // The analyzer issues a false use-after-free when std::list::pop_front
3320 // or std::list::pop_back are called multiple times because we cannot
3321 // reason about the internal invariants of the data structure.
3322 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3323 const CXXRecordDecl *CD = MD->getParent();
3324 if (CD->getName() == "list") {
3325 BR.markInvalid(getTag(), nullptr);
3326 return;
3330 // The analyzer issues a false positive when the constructor of
3331 // std::__independent_bits_engine from algorithms is used.
3332 if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3333 const CXXRecordDecl *CD = MD->getParent();
3334 if (CD->getName() == "__independent_bits_engine") {
3335 BR.markInvalid(getTag(), nullptr);
3336 return;
3340 for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3341 LCtx = LCtx->getParent()) {
3342 const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3343 if (!MD)
3344 continue;
3346 const CXXRecordDecl *CD = MD->getParent();
3347 // The analyzer issues a false positive on
3348 // std::basic_string<uint8_t> v; v.push_back(1);
3349 // and
3350 // std::u16string s; s += u'a';
3351 // because we cannot reason about the internal invariants of the
3352 // data structure.
3353 if (CD->getName() == "basic_string") {
3354 BR.markInvalid(getTag(), nullptr);
3355 return;
3358 // The analyzer issues a false positive on
3359 // std::shared_ptr<int> p(new int(1)); p = nullptr;
3360 // because it does not reason properly about temporary destructors.
3361 if (CD->getName() == "shared_ptr") {
3362 BR.markInvalid(getTag(), nullptr);
3363 return;
3369 // Skip reports within the sys/queue.h macros as we do not have the ability to
3370 // reason about data structure shapes.
3371 const SourceManager &SM = BRC.getSourceManager();
3372 FullSourceLoc Loc = BR.getLocation().asLocation();
3373 while (Loc.isMacroID()) {
3374 Loc = Loc.getSpellingLoc();
3375 if (SM.getFilename(Loc).ends_with("sys/queue.h")) {
3376 BR.markInvalid(getTag(), nullptr);
3377 return;
3382 //===----------------------------------------------------------------------===//
3383 // Implementation of UndefOrNullArgVisitor.
3384 //===----------------------------------------------------------------------===//
3386 PathDiagnosticPieceRef
3387 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
3388 PathSensitiveBugReport &BR) {
3389 ProgramStateRef State = N->getState();
3390 ProgramPoint ProgLoc = N->getLocation();
3392 // We are only interested in visiting CallEnter nodes.
3393 std::optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3394 if (!CEnter)
3395 return nullptr;
3397 // Check if one of the arguments is the region the visitor is tracking.
3398 CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
3399 CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3400 unsigned Idx = 0;
3401 ArrayRef<ParmVarDecl *> parms = Call->parameters();
3403 for (const auto ParamDecl : parms) {
3404 const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3405 ++Idx;
3407 // Are we tracking the argument or its subregion?
3408 if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3409 continue;
3411 // Check the function parameter type.
3412 assert(ParamDecl && "Formal parameter has no decl?");
3413 QualType T = ParamDecl->getType();
3415 if (!(T->isAnyPointerType() || T->isReferenceType())) {
3416 // Function can only change the value passed in by address.
3417 continue;
3420 // If it is a const pointer value, the function does not intend to
3421 // change the value.
3422 if (T->getPointeeType().isConstQualified())
3423 continue;
3425 // Mark the call site (LocationContext) as interesting if the value of the
3426 // argument is undefined or '0'/'NULL'.
3427 SVal BoundVal = State->getSVal(R);
3428 if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3429 BR.markInteresting(CEnter->getCalleeContext());
3430 return nullptr;
3433 return nullptr;
3436 //===----------------------------------------------------------------------===//
3437 // Implementation of FalsePositiveRefutationBRVisitor.
3438 //===----------------------------------------------------------------------===//
3440 FalsePositiveRefutationBRVisitor::FalsePositiveRefutationBRVisitor()
3441 : Constraints(ConstraintMap::Factory().getEmptyMap()) {}
3443 void FalsePositiveRefutationBRVisitor::finalizeVisitor(
3444 BugReporterContext &BRC, const ExplodedNode *EndPathNode,
3445 PathSensitiveBugReport &BR) {
3446 // Collect new constraints
3447 addConstraints(EndPathNode, /*OverwriteConstraintsOnExistingSyms=*/true);
3449 // Create a refutation manager
3450 llvm::SMTSolverRef RefutationSolver = llvm::CreateZ3Solver();
3451 ASTContext &Ctx = BRC.getASTContext();
3453 // Add constraints to the solver
3454 for (const auto &I : Constraints) {
3455 const SymbolRef Sym = I.first;
3456 auto RangeIt = I.second.begin();
3458 llvm::SMTExprRef SMTConstraints = SMTConv::getRangeExpr(
3459 RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(),
3460 /*InRange=*/true);
3461 while ((++RangeIt) != I.second.end()) {
3462 SMTConstraints = RefutationSolver->mkOr(
3463 SMTConstraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym,
3464 RangeIt->From(), RangeIt->To(),
3465 /*InRange=*/true));
3468 RefutationSolver->addConstraint(SMTConstraints);
3471 // And check for satisfiability
3472 std::optional<bool> IsSAT = RefutationSolver->check();
3473 if (!IsSAT)
3474 return;
3476 if (!*IsSAT)
3477 BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext());
3480 void FalsePositiveRefutationBRVisitor::addConstraints(
3481 const ExplodedNode *N, bool OverwriteConstraintsOnExistingSyms) {
3482 // Collect new constraints
3483 ConstraintMap NewCs = getConstraintMap(N->getState());
3484 ConstraintMap::Factory &CF = N->getState()->get_context<ConstraintMap>();
3486 // Add constraints if we don't have them yet
3487 for (auto const &C : NewCs) {
3488 const SymbolRef &Sym = C.first;
3489 if (!Constraints.contains(Sym)) {
3490 // This symbol is new, just add the constraint.
3491 Constraints = CF.add(Constraints, Sym, C.second);
3492 } else if (OverwriteConstraintsOnExistingSyms) {
3493 // Overwrite the associated constraint of the Symbol.
3494 Constraints = CF.remove(Constraints, Sym);
3495 Constraints = CF.add(Constraints, Sym, C.second);
3500 PathDiagnosticPieceRef FalsePositiveRefutationBRVisitor::VisitNode(
3501 const ExplodedNode *N, BugReporterContext &, PathSensitiveBugReport &) {
3502 addConstraints(N, /*OverwriteConstraintsOnExistingSyms=*/false);
3503 return nullptr;
3506 void FalsePositiveRefutationBRVisitor::Profile(
3507 llvm::FoldingSetNodeID &ID) const {
3508 static int Tag = 0;
3509 ID.AddPointer(&Tag);
3512 //===----------------------------------------------------------------------===//
3513 // Implementation of TagVisitor.
3514 //===----------------------------------------------------------------------===//
3516 int NoteTag::Kind = 0;
3518 void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3519 static int Tag = 0;
3520 ID.AddPointer(&Tag);
3523 PathDiagnosticPieceRef TagVisitor::VisitNode(const ExplodedNode *N,
3524 BugReporterContext &BRC,
3525 PathSensitiveBugReport &R) {
3526 ProgramPoint PP = N->getLocation();
3527 const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3528 if (!T)
3529 return nullptr;
3531 if (std::optional<std::string> Msg = T->generateMessage(BRC, R)) {
3532 PathDiagnosticLocation Loc =
3533 PathDiagnosticLocation::create(PP, BRC.getSourceManager());
3534 auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3535 Piece->setPrunable(T->isPrunable());
3536 return Piece;
3539 return nullptr;