[Flang] remove whole-archive option for AIX linker (#76039)
[llvm-project.git] / clang / utils / TableGen / ClangAttrEmitter.cpp
blob4ec00573e8a9da8bbe4a9a0f02a9badb068dc122
1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These tablegen backends emit Clang attribute processing code
11 //===----------------------------------------------------------------------===//
13 #include "TableGenBackends.h"
14 #include "ASTTableGen.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TableGen/Error.h"
30 #include "llvm/TableGen/Record.h"
31 #include "llvm/TableGen/StringMatcher.h"
32 #include "llvm/TableGen/TableGenBackend.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cctype>
36 #include <cstddef>
37 #include <cstdint>
38 #include <map>
39 #include <memory>
40 #include <optional>
41 #include <set>
42 #include <sstream>
43 #include <string>
44 #include <utility>
45 #include <vector>
47 using namespace llvm;
49 namespace {
51 class FlattenedSpelling {
52 std::string V, N, NS;
53 bool K = false;
54 const Record &OriginalSpelling;
56 public:
57 FlattenedSpelling(const std::string &Variety, const std::string &Name,
58 const std::string &Namespace, bool KnownToGCC,
59 const Record &OriginalSpelling)
60 : V(Variety), N(Name), NS(Namespace), K(KnownToGCC),
61 OriginalSpelling(OriginalSpelling) {}
62 explicit FlattenedSpelling(const Record &Spelling)
63 : V(std::string(Spelling.getValueAsString("Variety"))),
64 N(std::string(Spelling.getValueAsString("Name"))),
65 OriginalSpelling(Spelling) {
66 assert(V != "GCC" && V != "Clang" &&
67 "Given a GCC spelling, which means this hasn't been flattened!");
68 if (V == "CXX11" || V == "C23" || V == "Pragma")
69 NS = std::string(Spelling.getValueAsString("Namespace"));
72 const std::string &variety() const { return V; }
73 const std::string &name() const { return N; }
74 const std::string &nameSpace() const { return NS; }
75 bool knownToGCC() const { return K; }
76 const Record &getSpellingRecord() const { return OriginalSpelling; }
79 } // end anonymous namespace
81 static std::vector<FlattenedSpelling>
82 GetFlattenedSpellings(const Record &Attr) {
83 std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
84 std::vector<FlattenedSpelling> Ret;
86 for (const auto &Spelling : Spellings) {
87 StringRef Variety = Spelling->getValueAsString("Variety");
88 StringRef Name = Spelling->getValueAsString("Name");
89 if (Variety == "GCC") {
90 Ret.emplace_back("GNU", std::string(Name), "", true, *Spelling);
91 Ret.emplace_back("CXX11", std::string(Name), "gnu", true, *Spelling);
92 if (Spelling->getValueAsBit("AllowInC"))
93 Ret.emplace_back("C23", std::string(Name), "gnu", true, *Spelling);
94 } else if (Variety == "Clang") {
95 Ret.emplace_back("GNU", std::string(Name), "", false, *Spelling);
96 Ret.emplace_back("CXX11", std::string(Name), "clang", false, *Spelling);
97 if (Spelling->getValueAsBit("AllowInC"))
98 Ret.emplace_back("C23", std::string(Name), "clang", false, *Spelling);
99 } else
100 Ret.push_back(FlattenedSpelling(*Spelling));
103 return Ret;
106 static std::string ReadPCHRecord(StringRef type) {
107 return StringSwitch<std::string>(type)
108 .EndsWith("Decl *", "Record.GetLocalDeclAs<" +
109 std::string(type.data(), 0, type.size() - 1) +
110 ">(Record.readInt())")
111 .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
112 .Case("Expr *", "Record.readExpr()")
113 .Case("IdentifierInfo *", "Record.readIdentifier()")
114 .Case("StringRef", "Record.readString()")
115 .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
116 .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
117 .Default("Record.readInt()");
120 // Get a type that is suitable for storing an object of the specified type.
121 static StringRef getStorageType(StringRef type) {
122 return StringSwitch<StringRef>(type)
123 .Case("StringRef", "std::string")
124 .Default(type);
127 // Assumes that the way to get the value is SA->getname()
128 static std::string WritePCHRecord(StringRef type, StringRef name) {
129 return "Record." +
130 StringSwitch<std::string>(type)
131 .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
132 .Case("TypeSourceInfo *",
133 "AddTypeSourceInfo(" + std::string(name) + ");\n")
134 .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
135 .Case("IdentifierInfo *",
136 "AddIdentifierRef(" + std::string(name) + ");\n")
137 .Case("StringRef", "AddString(" + std::string(name) + ");\n")
138 .Case("ParamIdx",
139 "push_back(" + std::string(name) + ".serialize());\n")
140 .Case("OMPTraitInfo *",
141 "writeOMPTraitInfo(" + std::string(name) + ");\n")
142 .Default("push_back(" + std::string(name) + ");\n");
145 // Normalize attribute name by removing leading and trailing
146 // underscores. For example, __foo, foo__, __foo__ would
147 // become foo.
148 static StringRef NormalizeAttrName(StringRef AttrName) {
149 AttrName.consume_front("__");
150 AttrName.consume_back("__");
151 return AttrName;
154 // Normalize the name by removing any and all leading and trailing underscores.
155 // This is different from NormalizeAttrName in that it also handles names like
156 // _pascal and __pascal.
157 static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
158 return Name.trim("_");
161 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
162 // removing "__" if it appears at the beginning and end of the attribute's name.
163 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
164 if (AttrSpelling.starts_with("__") && AttrSpelling.ends_with("__")) {
165 AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
168 return AttrSpelling;
171 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
173 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
174 ParsedAttrMap *Dupes = nullptr) {
175 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
176 std::set<std::string> Seen;
177 ParsedAttrMap R;
178 for (const auto *Attr : Attrs) {
179 if (Attr->getValueAsBit("SemaHandler")) {
180 std::string AN;
181 if (Attr->isSubClassOf("TargetSpecificAttr") &&
182 !Attr->isValueUnset("ParseKind")) {
183 AN = std::string(Attr->getValueAsString("ParseKind"));
185 // If this attribute has already been handled, it does not need to be
186 // handled again.
187 if (Seen.find(AN) != Seen.end()) {
188 if (Dupes)
189 Dupes->push_back(std::make_pair(AN, Attr));
190 continue;
192 Seen.insert(AN);
193 } else
194 AN = NormalizeAttrName(Attr->getName()).str();
196 R.push_back(std::make_pair(AN, Attr));
199 return R;
202 namespace {
204 class Argument {
205 std::string lowerName, upperName;
206 StringRef attrName;
207 bool isOpt;
208 bool Fake;
210 public:
211 Argument(StringRef Arg, StringRef Attr)
212 : lowerName(std::string(Arg)), upperName(lowerName), attrName(Attr),
213 isOpt(false), Fake(false) {
214 if (!lowerName.empty()) {
215 lowerName[0] = std::tolower(lowerName[0]);
216 upperName[0] = std::toupper(upperName[0]);
218 // Work around MinGW's macro definition of 'interface' to 'struct'. We
219 // have an attribute argument called 'Interface', so only the lower case
220 // name conflicts with the macro definition.
221 if (lowerName == "interface")
222 lowerName = "interface_";
224 Argument(const Record &Arg, StringRef Attr)
225 : Argument(Arg.getValueAsString("Name"), Attr) {}
226 virtual ~Argument() = default;
228 StringRef getLowerName() const { return lowerName; }
229 StringRef getUpperName() const { return upperName; }
230 StringRef getAttrName() const { return attrName; }
232 bool isOptional() const { return isOpt; }
233 void setOptional(bool set) { isOpt = set; }
235 bool isFake() const { return Fake; }
236 void setFake(bool fake) { Fake = fake; }
238 // These functions print the argument contents formatted in different ways.
239 virtual void writeAccessors(raw_ostream &OS) const = 0;
240 virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
241 virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
242 virtual void writeCloneArgs(raw_ostream &OS) const = 0;
243 virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
244 virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
245 virtual void writeCtorBody(raw_ostream &OS) const {}
246 virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
247 virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
248 virtual void writeCtorParameters(raw_ostream &OS) const = 0;
249 virtual void writeDeclarations(raw_ostream &OS) const = 0;
250 virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
251 virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
252 virtual void writePCHWrite(raw_ostream &OS) const = 0;
253 virtual std::string getIsOmitted() const { return "false"; }
254 virtual void writeValue(raw_ostream &OS) const = 0;
255 virtual void writeDump(raw_ostream &OS) const = 0;
256 virtual void writeDumpChildren(raw_ostream &OS) const {}
257 virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
259 virtual bool isEnumArg() const { return false; }
260 virtual bool isVariadicEnumArg() const { return false; }
261 virtual bool isVariadic() const { return false; }
263 virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
264 OS << getUpperName();
268 class SimpleArgument : public Argument {
269 std::string type;
271 public:
272 SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
273 : Argument(Arg, Attr), type(std::move(T)) {}
275 std::string getType() const { return type; }
277 void writeAccessors(raw_ostream &OS) const override {
278 OS << " " << type << " get" << getUpperName() << "() const {\n";
279 OS << " return " << getLowerName() << ";\n";
280 OS << " }";
283 void writeCloneArgs(raw_ostream &OS) const override {
284 OS << getLowerName();
287 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
288 OS << "A->get" << getUpperName() << "()";
291 void writeCtorInitializers(raw_ostream &OS) const override {
292 OS << getLowerName() << "(" << getUpperName() << ")";
295 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
296 OS << getLowerName() << "()";
299 void writeCtorParameters(raw_ostream &OS) const override {
300 OS << type << " " << getUpperName();
303 void writeDeclarations(raw_ostream &OS) const override {
304 OS << type << " " << getLowerName() << ";";
307 void writePCHReadDecls(raw_ostream &OS) const override {
308 std::string read = ReadPCHRecord(type);
309 OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
312 void writePCHReadArgs(raw_ostream &OS) const override {
313 OS << getLowerName();
316 void writePCHWrite(raw_ostream &OS) const override {
317 OS << " "
318 << WritePCHRecord(type,
319 "SA->get" + std::string(getUpperName()) + "()");
322 std::string getIsOmitted() const override {
323 auto IsOneOf = [](StringRef subject, auto... list) {
324 return ((subject == list) || ...);
327 if (IsOneOf(type, "IdentifierInfo *", "Expr *"))
328 return "!get" + getUpperName().str() + "()";
329 if (IsOneOf(type, "TypeSourceInfo *"))
330 return "!get" + getUpperName().str() + "Loc()";
331 if (IsOneOf(type, "ParamIdx"))
332 return "!get" + getUpperName().str() + "().isValid()";
334 assert(IsOneOf(type, "unsigned", "int", "bool", "FunctionDecl *",
335 "VarDecl *"));
336 return "false";
339 void writeValue(raw_ostream &OS) const override {
340 if (type == "FunctionDecl *")
341 OS << "\" << get" << getUpperName()
342 << "()->getNameInfo().getAsString() << \"";
343 else if (type == "IdentifierInfo *")
344 // Some non-optional (comma required) identifier arguments can be the
345 // empty string but are then recorded as a nullptr.
346 OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
347 << "()->getName() : \"\") << \"";
348 else if (type == "VarDecl *")
349 OS << "\" << get" << getUpperName() << "()->getName() << \"";
350 else if (type == "TypeSourceInfo *")
351 OS << "\" << get" << getUpperName() << "().getAsString() << \"";
352 else if (type == "ParamIdx")
353 OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
354 else
355 OS << "\" << get" << getUpperName() << "() << \"";
358 void writeDump(raw_ostream &OS) const override {
359 if (StringRef(type).ends_with("Decl *")) {
360 OS << " OS << \" \";\n";
361 OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
362 } else if (type == "IdentifierInfo *") {
363 // Some non-optional (comma required) identifier arguments can be the
364 // empty string but are then recorded as a nullptr.
365 OS << " if (SA->get" << getUpperName() << "())\n"
366 << " OS << \" \" << SA->get" << getUpperName()
367 << "()->getName();\n";
368 } else if (type == "TypeSourceInfo *") {
369 if (isOptional())
370 OS << " if (SA->get" << getUpperName() << "Loc())";
371 OS << " OS << \" \" << SA->get" << getUpperName()
372 << "().getAsString();\n";
373 } else if (type == "bool") {
374 OS << " if (SA->get" << getUpperName() << "()) OS << \" "
375 << getUpperName() << "\";\n";
376 } else if (type == "int" || type == "unsigned") {
377 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
378 } else if (type == "ParamIdx") {
379 if (isOptional())
380 OS << " if (SA->get" << getUpperName() << "().isValid())\n ";
381 OS << " OS << \" \" << SA->get" << getUpperName()
382 << "().getSourceIndex();\n";
383 } else if (type == "OMPTraitInfo *") {
384 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
385 } else {
386 llvm_unreachable("Unknown SimpleArgument type!");
391 class DefaultSimpleArgument : public SimpleArgument {
392 int64_t Default;
394 public:
395 DefaultSimpleArgument(const Record &Arg, StringRef Attr,
396 std::string T, int64_t Default)
397 : SimpleArgument(Arg, Attr, T), Default(Default) {}
399 void writeAccessors(raw_ostream &OS) const override {
400 SimpleArgument::writeAccessors(OS);
402 OS << "\n\n static const " << getType() << " Default" << getUpperName()
403 << " = ";
404 if (getType() == "bool")
405 OS << (Default != 0 ? "true" : "false");
406 else
407 OS << Default;
408 OS << ";";
412 class StringArgument : public Argument {
413 public:
414 StringArgument(const Record &Arg, StringRef Attr)
415 : Argument(Arg, Attr)
418 void writeAccessors(raw_ostream &OS) const override {
419 OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
420 OS << " return llvm::StringRef(" << getLowerName() << ", "
421 << getLowerName() << "Length);\n";
422 OS << " }\n";
423 OS << " unsigned get" << getUpperName() << "Length() const {\n";
424 OS << " return " << getLowerName() << "Length;\n";
425 OS << " }\n";
426 OS << " void set" << getUpperName()
427 << "(ASTContext &C, llvm::StringRef S) {\n";
428 OS << " " << getLowerName() << "Length = S.size();\n";
429 OS << " this->" << getLowerName() << " = new (C, 1) char ["
430 << getLowerName() << "Length];\n";
431 OS << " if (!S.empty())\n";
432 OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
433 << getLowerName() << "Length);\n";
434 OS << " }";
437 void writeCloneArgs(raw_ostream &OS) const override {
438 OS << "get" << getUpperName() << "()";
441 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
442 OS << "A->get" << getUpperName() << "()";
445 void writeCtorBody(raw_ostream &OS) const override {
446 OS << " if (!" << getUpperName() << ".empty())\n";
447 OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
448 << ".data(), " << getLowerName() << "Length);\n";
451 void writeCtorInitializers(raw_ostream &OS) const override {
452 OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
453 << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
454 << "Length])";
457 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
458 OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
461 void writeCtorParameters(raw_ostream &OS) const override {
462 OS << "llvm::StringRef " << getUpperName();
465 void writeDeclarations(raw_ostream &OS) const override {
466 OS << "unsigned " << getLowerName() << "Length;\n";
467 OS << "char *" << getLowerName() << ";";
470 void writePCHReadDecls(raw_ostream &OS) const override {
471 OS << " std::string " << getLowerName()
472 << "= Record.readString();\n";
475 void writePCHReadArgs(raw_ostream &OS) const override {
476 OS << getLowerName();
479 void writePCHWrite(raw_ostream &OS) const override {
480 OS << " Record.AddString(SA->get" << getUpperName() << "());\n";
483 void writeValue(raw_ostream &OS) const override {
484 OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
487 void writeDump(raw_ostream &OS) const override {
488 OS << " OS << \" \\\"\" << SA->get" << getUpperName()
489 << "() << \"\\\"\";\n";
493 class AlignedArgument : public Argument {
494 public:
495 AlignedArgument(const Record &Arg, StringRef Attr)
496 : Argument(Arg, Attr)
499 void writeAccessors(raw_ostream &OS) const override {
500 OS << " bool is" << getUpperName() << "Dependent() const;\n";
501 OS << " bool is" << getUpperName() << "ErrorDependent() const;\n";
503 OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
505 OS << " bool is" << getUpperName() << "Expr() const {\n";
506 OS << " return is" << getLowerName() << "Expr;\n";
507 OS << " }\n";
509 OS << " Expr *get" << getUpperName() << "Expr() const {\n";
510 OS << " assert(is" << getLowerName() << "Expr);\n";
511 OS << " return " << getLowerName() << "Expr;\n";
512 OS << " }\n";
514 OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
515 OS << " assert(!is" << getLowerName() << "Expr);\n";
516 OS << " return " << getLowerName() << "Type;\n";
517 OS << " }";
519 OS << " std::optional<unsigned> getCached" << getUpperName()
520 << "Value() const {\n";
521 OS << " return " << getLowerName() << "Cache;\n";
522 OS << " }";
524 OS << " void setCached" << getUpperName()
525 << "Value(unsigned AlignVal) {\n";
526 OS << " " << getLowerName() << "Cache = AlignVal;\n";
527 OS << " }";
530 void writeAccessorDefinitions(raw_ostream &OS) const override {
531 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
532 << "Dependent() const {\n";
533 OS << " if (is" << getLowerName() << "Expr)\n";
534 OS << " return " << getLowerName() << "Expr && (" << getLowerName()
535 << "Expr->isValueDependent() || " << getLowerName()
536 << "Expr->isTypeDependent());\n";
537 OS << " else\n";
538 OS << " return " << getLowerName()
539 << "Type->getType()->isDependentType();\n";
540 OS << "}\n";
542 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
543 << "ErrorDependent() const {\n";
544 OS << " if (is" << getLowerName() << "Expr)\n";
545 OS << " return " << getLowerName() << "Expr && " << getLowerName()
546 << "Expr->containsErrors();\n";
547 OS << " return " << getLowerName()
548 << "Type->getType()->containsErrors();\n";
549 OS << "}\n";
552 void writeASTVisitorTraversal(raw_ostream &OS) const override {
553 StringRef Name = getUpperName();
554 OS << " if (A->is" << Name << "Expr()) {\n"
555 << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
556 << " return false;\n"
557 << " } else if (auto *TSI = A->get" << Name << "Type()) {\n"
558 << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
559 << " return false;\n"
560 << " }\n";
563 void writeCloneArgs(raw_ostream &OS) const override {
564 OS << "is" << getLowerName() << "Expr, is" << getLowerName()
565 << "Expr ? static_cast<void*>(" << getLowerName()
566 << "Expr) : " << getLowerName()
567 << "Type";
570 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
571 // FIXME: move the definition in Sema::InstantiateAttrs to here.
572 // In the meantime, aligned attributes are cloned.
575 void writeCtorBody(raw_ostream &OS) const override {
576 OS << " if (is" << getLowerName() << "Expr)\n";
577 OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
578 << getUpperName() << ");\n";
579 OS << " else\n";
580 OS << " " << getLowerName()
581 << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
582 << ");\n";
585 void writeCtorInitializers(raw_ostream &OS) const override {
586 OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
589 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
590 OS << "is" << getLowerName() << "Expr(false)";
593 void writeCtorParameters(raw_ostream &OS) const override {
594 OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
597 void writeImplicitCtorArgs(raw_ostream &OS) const override {
598 OS << "Is" << getUpperName() << "Expr, " << getUpperName();
601 void writeDeclarations(raw_ostream &OS) const override {
602 OS << "bool is" << getLowerName() << "Expr;\n";
603 OS << "union {\n";
604 OS << "Expr *" << getLowerName() << "Expr;\n";
605 OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
606 OS << "};\n";
607 OS << "std::optional<unsigned> " << getLowerName() << "Cache;\n";
610 void writePCHReadArgs(raw_ostream &OS) const override {
611 OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
614 void writePCHReadDecls(raw_ostream &OS) const override {
615 OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n";
616 OS << " void *" << getLowerName() << "Ptr;\n";
617 OS << " if (is" << getLowerName() << "Expr)\n";
618 OS << " " << getLowerName() << "Ptr = Record.readExpr();\n";
619 OS << " else\n";
620 OS << " " << getLowerName()
621 << "Ptr = Record.readTypeSourceInfo();\n";
624 void writePCHWrite(raw_ostream &OS) const override {
625 OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
626 OS << " if (SA->is" << getUpperName() << "Expr())\n";
627 OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
628 OS << " else\n";
629 OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName()
630 << "Type());\n";
633 std::string getIsOmitted() const override {
634 return "!((is" + getLowerName().str() + "Expr && " +
635 getLowerName().str() + "Expr) || (!is" + getLowerName().str() +
636 "Expr && " + getLowerName().str() + "Type))";
639 void writeValue(raw_ostream &OS) const override {
640 OS << "\";\n";
641 OS << " if (is" << getLowerName() << "Expr && " << getLowerName()
642 << "Expr)";
643 OS << " " << getLowerName()
644 << "Expr->printPretty(OS, nullptr, Policy);\n";
645 OS << " if (!is" << getLowerName() << "Expr && " << getLowerName()
646 << "Type)";
647 OS << " " << getLowerName()
648 << "Type->getType().print(OS, Policy);\n";
649 OS << " OS << \"";
652 void writeDump(raw_ostream &OS) const override {
653 OS << " if (!SA->is" << getUpperName() << "Expr())\n";
654 OS << " dumpType(SA->get" << getUpperName()
655 << "Type()->getType());\n";
658 void writeDumpChildren(raw_ostream &OS) const override {
659 OS << " if (SA->is" << getUpperName() << "Expr())\n";
660 OS << " Visit(SA->get" << getUpperName() << "Expr());\n";
663 void writeHasChildren(raw_ostream &OS) const override {
664 OS << "SA->is" << getUpperName() << "Expr()";
668 class VariadicArgument : public Argument {
669 std::string Type, ArgName, ArgSizeName, RangeName;
671 protected:
672 // Assumed to receive a parameter: raw_ostream OS.
673 virtual void writeValueImpl(raw_ostream &OS) const {
674 OS << " OS << Val;\n";
676 // Assumed to receive a parameter: raw_ostream OS.
677 virtual void writeDumpImpl(raw_ostream &OS) const {
678 OS << " OS << \" \" << Val;\n";
681 public:
682 VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
683 : Argument(Arg, Attr), Type(std::move(T)),
684 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
685 RangeName(std::string(getLowerName())) {}
687 VariadicArgument(StringRef Arg, StringRef Attr, std::string T)
688 : Argument(Arg, Attr), Type(std::move(T)),
689 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
690 RangeName(std::string(getLowerName())) {}
692 const std::string &getType() const { return Type; }
693 const std::string &getArgName() const { return ArgName; }
694 const std::string &getArgSizeName() const { return ArgSizeName; }
695 bool isVariadic() const override { return true; }
697 void writeAccessors(raw_ostream &OS) const override {
698 std::string IteratorType = getLowerName().str() + "_iterator";
699 std::string BeginFn = getLowerName().str() + "_begin()";
700 std::string EndFn = getLowerName().str() + "_end()";
702 OS << " typedef " << Type << "* " << IteratorType << ";\n";
703 OS << " " << IteratorType << " " << BeginFn << " const {"
704 << " return " << ArgName << "; }\n";
705 OS << " " << IteratorType << " " << EndFn << " const {"
706 << " return " << ArgName << " + " << ArgSizeName << "; }\n";
707 OS << " unsigned " << getLowerName() << "_size() const {"
708 << " return " << ArgSizeName << "; }\n";
709 OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
710 << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
711 << "); }\n";
714 void writeSetter(raw_ostream &OS) const {
715 OS << " void set" << getUpperName() << "(ASTContext &Ctx, ";
716 writeCtorParameters(OS);
717 OS << ") {\n";
718 OS << " " << ArgSizeName << " = " << getUpperName() << "Size;\n";
719 OS << " " << ArgName << " = new (Ctx, 16) " << getType() << "["
720 << ArgSizeName << "];\n";
721 OS << " ";
722 writeCtorBody(OS);
723 OS << " }\n";
726 void writeCloneArgs(raw_ostream &OS) const override {
727 OS << ArgName << ", " << ArgSizeName;
730 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
731 // This isn't elegant, but we have to go through public methods...
732 OS << "A->" << getLowerName() << "_begin(), "
733 << "A->" << getLowerName() << "_size()";
736 void writeASTVisitorTraversal(raw_ostream &OS) const override {
737 // FIXME: Traverse the elements.
740 void writeCtorBody(raw_ostream &OS) const override {
741 OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + "
742 << ArgSizeName << ", " << ArgName << ");\n";
745 void writeCtorInitializers(raw_ostream &OS) const override {
746 OS << ArgSizeName << "(" << getUpperName() << "Size), "
747 << ArgName << "(new (Ctx, 16) " << getType() << "["
748 << ArgSizeName << "])";
751 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
752 OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
755 void writeCtorParameters(raw_ostream &OS) const override {
756 OS << getType() << " *" << getUpperName() << ", unsigned "
757 << getUpperName() << "Size";
760 void writeImplicitCtorArgs(raw_ostream &OS) const override {
761 OS << getUpperName() << ", " << getUpperName() << "Size";
764 void writeDeclarations(raw_ostream &OS) const override {
765 OS << " unsigned " << ArgSizeName << ";\n";
766 OS << " " << getType() << " *" << ArgName << ";";
769 void writePCHReadDecls(raw_ostream &OS) const override {
770 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
771 OS << " SmallVector<" << getType() << ", 4> "
772 << getLowerName() << ";\n";
773 OS << " " << getLowerName() << ".reserve(" << getLowerName()
774 << "Size);\n";
776 // If we can't store the values in the current type (if it's something
777 // like StringRef), store them in a different type and convert the
778 // container afterwards.
779 std::string StorageType = std::string(getStorageType(getType()));
780 std::string StorageName = std::string(getLowerName());
781 if (StorageType != getType()) {
782 StorageName += "Storage";
783 OS << " SmallVector<" << StorageType << ", 4> "
784 << StorageName << ";\n";
785 OS << " " << StorageName << ".reserve(" << getLowerName()
786 << "Size);\n";
789 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
790 std::string read = ReadPCHRecord(Type);
791 OS << " " << StorageName << ".push_back(" << read << ");\n";
793 if (StorageType != getType()) {
794 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
795 OS << " " << getLowerName() << ".push_back("
796 << StorageName << "[i]);\n";
800 void writePCHReadArgs(raw_ostream &OS) const override {
801 OS << getLowerName() << ".data(), " << getLowerName() << "Size";
804 void writePCHWrite(raw_ostream &OS) const override {
805 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
806 OS << " for (auto &Val : SA->" << RangeName << "())\n";
807 OS << " " << WritePCHRecord(Type, "Val");
810 void writeValue(raw_ostream &OS) const override {
811 OS << "\";\n";
812 OS << " for (const auto &Val : " << RangeName << "()) {\n"
813 << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
814 writeValueImpl(OS);
815 OS << " }\n";
816 OS << " OS << \"";
819 void writeDump(raw_ostream &OS) const override {
820 OS << " for (const auto &Val : SA->" << RangeName << "())\n";
821 writeDumpImpl(OS);
825 class VariadicOMPInteropInfoArgument : public VariadicArgument {
826 public:
827 VariadicOMPInteropInfoArgument(const Record &Arg, StringRef Attr)
828 : VariadicArgument(Arg, Attr, "OMPInteropInfo") {}
830 void writeDump(raw_ostream &OS) const override {
831 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
832 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
833 << getLowerName() << "_end(); I != E; ++I) {\n";
834 OS << " if (I->IsTarget && I->IsTargetSync)\n";
835 OS << " OS << \" Target_TargetSync\";\n";
836 OS << " else if (I->IsTarget)\n";
837 OS << " OS << \" Target\";\n";
838 OS << " else\n";
839 OS << " OS << \" TargetSync\";\n";
840 OS << " }\n";
843 void writePCHReadDecls(raw_ostream &OS) const override {
844 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
845 OS << " SmallVector<OMPInteropInfo, 4> " << getLowerName() << ";\n";
846 OS << " " << getLowerName() << ".reserve(" << getLowerName()
847 << "Size);\n";
848 OS << " for (unsigned I = 0, E = " << getLowerName() << "Size; ";
849 OS << "I != E; ++I) {\n";
850 OS << " bool IsTarget = Record.readBool();\n";
851 OS << " bool IsTargetSync = Record.readBool();\n";
852 OS << " " << getLowerName()
853 << ".emplace_back(IsTarget, IsTargetSync);\n";
854 OS << " }\n";
857 void writePCHWrite(raw_ostream &OS) const override {
858 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
859 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
860 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
861 << getLowerName() << "_end(); I != E; ++I) {\n";
862 OS << " Record.writeBool(I->IsTarget);\n";
863 OS << " Record.writeBool(I->IsTargetSync);\n";
864 OS << " }\n";
868 class VariadicParamIdxArgument : public VariadicArgument {
869 public:
870 VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
871 : VariadicArgument(Arg, Attr, "ParamIdx") {}
873 public:
874 void writeValueImpl(raw_ostream &OS) const override {
875 OS << " OS << Val.getSourceIndex();\n";
878 void writeDumpImpl(raw_ostream &OS) const override {
879 OS << " OS << \" \" << Val.getSourceIndex();\n";
883 struct VariadicParamOrParamIdxArgument : public VariadicArgument {
884 VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
885 : VariadicArgument(Arg, Attr, "int") {}
888 // Unique the enums, but maintain the original declaration ordering.
889 std::vector<StringRef>
890 uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
891 std::vector<StringRef> uniques;
892 SmallDenseSet<StringRef, 8> unique_set;
893 for (const auto &i : enums) {
894 if (unique_set.insert(i).second)
895 uniques.push_back(i);
897 return uniques;
900 class EnumArgument : public Argument {
901 std::string fullType;
902 StringRef shortType;
903 std::vector<StringRef> values, enums, uniques;
904 bool isExternal;
906 public:
907 EnumArgument(const Record &Arg, StringRef Attr)
908 : Argument(Arg, Attr), values(Arg.getValueAsListOfStrings("Values")),
909 enums(Arg.getValueAsListOfStrings("Enums")),
910 uniques(uniqueEnumsInOrder(enums)),
911 isExternal(Arg.getValueAsBit("IsExternalType")) {
912 StringRef Type = Arg.getValueAsString("Type");
913 shortType = isExternal ? Type.rsplit("::").second : Type;
914 // If shortType didn't contain :: at all rsplit will give us an empty
915 // string.
916 if (shortType.empty())
917 shortType = Type;
918 fullType = isExternal ? Type : (getAttrName() + "Attr::" + Type).str();
920 // FIXME: Emit a proper error
921 assert(!uniques.empty());
924 bool isEnumArg() const override { return true; }
926 void writeAccessors(raw_ostream &OS) const override {
927 OS << " " << fullType << " get" << getUpperName() << "() const {\n";
928 OS << " return " << getLowerName() << ";\n";
929 OS << " }";
932 void writeCloneArgs(raw_ostream &OS) const override {
933 OS << getLowerName();
936 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
937 OS << "A->get" << getUpperName() << "()";
939 void writeCtorInitializers(raw_ostream &OS) const override {
940 OS << getLowerName() << "(" << getUpperName() << ")";
942 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
943 OS << getLowerName() << "(" << fullType << "(0))";
945 void writeCtorParameters(raw_ostream &OS) const override {
946 OS << fullType << " " << getUpperName();
948 void writeDeclarations(raw_ostream &OS) const override {
949 if (!isExternal) {
950 auto i = uniques.cbegin(), e = uniques.cend();
951 // The last one needs to not have a comma.
952 --e;
954 OS << "public:\n";
955 OS << " enum " << shortType << " {\n";
956 for (; i != e; ++i)
957 OS << " " << *i << ",\n";
958 OS << " " << *e << "\n";
959 OS << " };\n";
962 OS << "private:\n";
963 OS << " " << fullType << " " << getLowerName() << ";";
966 void writePCHReadDecls(raw_ostream &OS) const override {
967 OS << " " << fullType << " " << getLowerName() << "(static_cast<"
968 << fullType << ">(Record.readInt()));\n";
971 void writePCHReadArgs(raw_ostream &OS) const override {
972 OS << getLowerName();
975 void writePCHWrite(raw_ostream &OS) const override {
976 OS << "Record.push_back(static_cast<uint64_t>(SA->get" << getUpperName()
977 << "()));\n";
980 void writeValue(raw_ostream &OS) const override {
981 // FIXME: this isn't 100% correct -- some enum arguments require printing
982 // as a string literal, while others require printing as an identifier.
983 // Tablegen currently does not distinguish between the two forms.
984 OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << shortType
985 << "ToStr(get" << getUpperName() << "()) << \"\\\"";
988 void writeDump(raw_ostream &OS) const override {
989 OS << " switch(SA->get" << getUpperName() << "()) {\n";
990 for (const auto &I : uniques) {
991 OS << " case " << fullType << "::" << I << ":\n";
992 OS << " OS << \" " << I << "\";\n";
993 OS << " break;\n";
995 if (isExternal) {
996 OS << " default:\n";
997 OS << " llvm_unreachable(\"Invalid attribute value\");\n";
999 OS << " }\n";
1002 void writeConversion(raw_ostream &OS, bool Header) const {
1003 if (Header) {
1004 OS << " static bool ConvertStrTo" << shortType << "(StringRef Val, "
1005 << fullType << " &Out);\n";
1006 OS << " static const char *Convert" << shortType << "ToStr("
1007 << fullType << " Val);\n";
1008 return;
1011 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
1012 << "(StringRef Val, " << fullType << " &Out) {\n";
1013 OS << " std::optional<" << fullType << "> "
1014 << "R = llvm::StringSwitch<std::optional<" << fullType << ">>(Val)\n";
1015 for (size_t I = 0; I < enums.size(); ++I) {
1016 OS << " .Case(\"" << values[I] << "\", ";
1017 OS << fullType << "::" << enums[I] << ")\n";
1019 OS << " .Default(std::optional<" << fullType << ">());\n";
1020 OS << " if (R) {\n";
1021 OS << " Out = *R;\n return true;\n }\n";
1022 OS << " return false;\n";
1023 OS << "}\n\n";
1025 // Mapping from enumeration values back to enumeration strings isn't
1026 // trivial because some enumeration values have multiple named
1027 // enumerators, such as type_visibility(internal) and
1028 // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
1029 OS << "const char *" << getAttrName() << "Attr::Convert" << shortType
1030 << "ToStr(" << fullType << " Val) {\n"
1031 << " switch(Val) {\n";
1032 SmallDenseSet<StringRef, 8> Uniques;
1033 for (size_t I = 0; I < enums.size(); ++I) {
1034 if (Uniques.insert(enums[I]).second)
1035 OS << " case " << fullType << "::" << enums[I] << ": return \""
1036 << values[I] << "\";\n";
1038 if (isExternal) {
1039 OS << " default: llvm_unreachable(\"Invalid attribute value\");\n";
1041 OS << " }\n"
1042 << " llvm_unreachable(\"No enumerator with that value\");\n"
1043 << "}\n";
1047 class VariadicEnumArgument: public VariadicArgument {
1048 std::string fullType;
1049 StringRef shortType;
1050 std::vector<StringRef> values, enums, uniques;
1051 bool isExternal;
1053 protected:
1054 void writeValueImpl(raw_ostream &OS) const override {
1055 // FIXME: this isn't 100% correct -- some enum arguments require printing
1056 // as a string literal, while others require printing as an identifier.
1057 // Tablegen currently does not distinguish between the two forms.
1058 OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert"
1059 << shortType << "ToStr(Val)"
1060 << "<< \"\\\"\";\n";
1063 public:
1064 VariadicEnumArgument(const Record &Arg, StringRef Attr)
1065 : VariadicArgument(Arg, Attr,
1066 std::string(Arg.getValueAsString("Type"))),
1067 values(Arg.getValueAsListOfStrings("Values")),
1068 enums(Arg.getValueAsListOfStrings("Enums")),
1069 uniques(uniqueEnumsInOrder(enums)),
1070 isExternal(Arg.getValueAsBit("IsExternalType")) {
1071 StringRef Type = Arg.getValueAsString("Type");
1072 shortType = isExternal ? Type.rsplit("::").second : Type;
1073 // If shortType didn't contain :: at all rsplit will give us an empty
1074 // string.
1075 if (shortType.empty())
1076 shortType = Type;
1077 fullType = isExternal ? Type : (getAttrName() + "Attr::" + Type).str();
1079 // FIXME: Emit a proper error
1080 assert(!uniques.empty());
1083 bool isVariadicEnumArg() const override { return true; }
1085 void writeDeclarations(raw_ostream &OS) const override {
1086 if (!isExternal) {
1087 auto i = uniques.cbegin(), e = uniques.cend();
1088 // The last one needs to not have a comma.
1089 --e;
1091 OS << "public:\n";
1092 OS << " enum " << shortType << " {\n";
1093 for (; i != e; ++i)
1094 OS << " " << *i << ",\n";
1095 OS << " " << *e << "\n";
1096 OS << " };\n";
1098 OS << "private:\n";
1100 VariadicArgument::writeDeclarations(OS);
1103 void writeDump(raw_ostream &OS) const override {
1104 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1105 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1106 << getLowerName() << "_end(); I != E; ++I) {\n";
1107 OS << " switch(*I) {\n";
1108 for (const auto &UI : uniques) {
1109 OS << " case " << fullType << "::" << UI << ":\n";
1110 OS << " OS << \" " << UI << "\";\n";
1111 OS << " break;\n";
1113 OS << " }\n";
1114 OS << " }\n";
1117 void writePCHReadDecls(raw_ostream &OS) const override {
1118 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
1119 OS << " SmallVector<" << fullType << ", 4> " << getLowerName()
1120 << ";\n";
1121 OS << " " << getLowerName() << ".reserve(" << getLowerName()
1122 << "Size);\n";
1123 OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1124 OS << " " << getLowerName() << ".push_back("
1125 << "static_cast<" << fullType << ">(Record.readInt()));\n";
1128 void writePCHWrite(raw_ostream &OS) const override {
1129 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
1130 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1131 << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1132 << getLowerName() << "_end(); i != e; ++i)\n";
1133 OS << " " << WritePCHRecord(fullType, "(*i)");
1136 void writeConversion(raw_ostream &OS, bool Header) const {
1137 if (Header) {
1138 OS << " static bool ConvertStrTo" << shortType << "(StringRef Val, "
1139 << fullType << " &Out);\n";
1140 OS << " static const char *Convert" << shortType << "ToStr("
1141 << fullType << " Val);\n";
1142 return;
1145 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
1146 << "(StringRef Val, ";
1147 OS << fullType << " &Out) {\n";
1148 OS << " std::optional<" << fullType
1149 << "> R = llvm::StringSwitch<std::optional<";
1150 OS << fullType << ">>(Val)\n";
1151 for (size_t I = 0; I < enums.size(); ++I) {
1152 OS << " .Case(\"" << values[I] << "\", ";
1153 OS << fullType << "::" << enums[I] << ")\n";
1155 OS << " .Default(std::optional<" << fullType << ">());\n";
1156 OS << " if (R) {\n";
1157 OS << " Out = *R;\n return true;\n }\n";
1158 OS << " return false;\n";
1159 OS << "}\n\n";
1161 OS << "const char *" << getAttrName() << "Attr::Convert" << shortType
1162 << "ToStr(" << fullType << " Val) {\n"
1163 << " switch(Val) {\n";
1164 SmallDenseSet<StringRef, 8> Uniques;
1165 for (size_t I = 0; I < enums.size(); ++I) {
1166 if (Uniques.insert(enums[I]).second)
1167 OS << " case " << fullType << "::" << enums[I] << ": return \""
1168 << values[I] << "\";\n";
1170 OS << " }\n"
1171 << " llvm_unreachable(\"No enumerator with that value\");\n"
1172 << "}\n";
1176 class VersionArgument : public Argument {
1177 public:
1178 VersionArgument(const Record &Arg, StringRef Attr)
1179 : Argument(Arg, Attr)
1182 void writeAccessors(raw_ostream &OS) const override {
1183 OS << " VersionTuple get" << getUpperName() << "() const {\n";
1184 OS << " return " << getLowerName() << ";\n";
1185 OS << " }\n";
1186 OS << " void set" << getUpperName()
1187 << "(ASTContext &C, VersionTuple V) {\n";
1188 OS << " " << getLowerName() << " = V;\n";
1189 OS << " }";
1192 void writeCloneArgs(raw_ostream &OS) const override {
1193 OS << "get" << getUpperName() << "()";
1196 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1197 OS << "A->get" << getUpperName() << "()";
1200 void writeCtorInitializers(raw_ostream &OS) const override {
1201 OS << getLowerName() << "(" << getUpperName() << ")";
1204 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1205 OS << getLowerName() << "()";
1208 void writeCtorParameters(raw_ostream &OS) const override {
1209 OS << "VersionTuple " << getUpperName();
1212 void writeDeclarations(raw_ostream &OS) const override {
1213 OS << "VersionTuple " << getLowerName() << ";\n";
1216 void writePCHReadDecls(raw_ostream &OS) const override {
1217 OS << " VersionTuple " << getLowerName()
1218 << "= Record.readVersionTuple();\n";
1221 void writePCHReadArgs(raw_ostream &OS) const override {
1222 OS << getLowerName();
1225 void writePCHWrite(raw_ostream &OS) const override {
1226 OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1229 void writeValue(raw_ostream &OS) const override {
1230 OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1233 void writeDump(raw_ostream &OS) const override {
1234 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
1238 class ExprArgument : public SimpleArgument {
1239 public:
1240 ExprArgument(const Record &Arg, StringRef Attr)
1241 : SimpleArgument(Arg, Attr, "Expr *")
1244 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1245 OS << " if (!"
1246 << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1247 OS << " return false;\n";
1250 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1251 OS << "tempInst" << getUpperName();
1254 void writeTemplateInstantiation(raw_ostream &OS) const override {
1255 OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
1256 OS << " {\n";
1257 OS << " EnterExpressionEvaluationContext "
1258 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1259 OS << " ExprResult " << "Result = S.SubstExpr("
1260 << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1261 OS << " if (Result.isInvalid())\n";
1262 OS << " return nullptr;\n";
1263 OS << " tempInst" << getUpperName() << " = Result.get();\n";
1264 OS << " }\n";
1267 void writeValue(raw_ostream &OS) const override {
1268 OS << "\";\n";
1269 OS << " get" << getUpperName()
1270 << "()->printPretty(OS, nullptr, Policy);\n";
1271 OS << " OS << \"";
1274 void writeDump(raw_ostream &OS) const override {}
1276 void writeDumpChildren(raw_ostream &OS) const override {
1277 OS << " Visit(SA->get" << getUpperName() << "());\n";
1280 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1283 class VariadicExprArgument : public VariadicArgument {
1284 public:
1285 VariadicExprArgument(const Record &Arg, StringRef Attr)
1286 : VariadicArgument(Arg, Attr, "Expr *")
1289 VariadicExprArgument(StringRef ArgName, StringRef Attr)
1290 : VariadicArgument(ArgName, Attr, "Expr *") {}
1292 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1293 OS << " {\n";
1294 OS << " " << getType() << " *I = A->" << getLowerName()
1295 << "_begin();\n";
1296 OS << " " << getType() << " *E = A->" << getLowerName()
1297 << "_end();\n";
1298 OS << " for (; I != E; ++I) {\n";
1299 OS << " if (!getDerived().TraverseStmt(*I))\n";
1300 OS << " return false;\n";
1301 OS << " }\n";
1302 OS << " }\n";
1305 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1306 OS << "tempInst" << getUpperName() << ", "
1307 << "A->" << getLowerName() << "_size()";
1310 void writeTemplateInstantiation(raw_ostream &OS) const override {
1311 OS << " auto *tempInst" << getUpperName()
1312 << " = new (C, 16) " << getType()
1313 << "[A->" << getLowerName() << "_size()];\n";
1314 OS << " {\n";
1315 OS << " EnterExpressionEvaluationContext "
1316 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1317 OS << " " << getType() << " *TI = tempInst" << getUpperName()
1318 << ";\n";
1319 OS << " " << getType() << " *I = A->" << getLowerName()
1320 << "_begin();\n";
1321 OS << " " << getType() << " *E = A->" << getLowerName()
1322 << "_end();\n";
1323 OS << " for (; I != E; ++I, ++TI) {\n";
1324 OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1325 OS << " if (Result.isInvalid())\n";
1326 OS << " return nullptr;\n";
1327 OS << " *TI = Result.get();\n";
1328 OS << " }\n";
1329 OS << " }\n";
1332 void writeDump(raw_ostream &OS) const override {}
1334 void writeDumpChildren(raw_ostream &OS) const override {
1335 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1336 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1337 << getLowerName() << "_end(); I != E; ++I)\n";
1338 OS << " Visit(*I);\n";
1341 void writeHasChildren(raw_ostream &OS) const override {
1342 OS << "SA->" << getLowerName() << "_begin() != "
1343 << "SA->" << getLowerName() << "_end()";
1347 class VariadicIdentifierArgument : public VariadicArgument {
1348 public:
1349 VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1350 : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1354 class VariadicStringArgument : public VariadicArgument {
1355 public:
1356 VariadicStringArgument(const Record &Arg, StringRef Attr)
1357 : VariadicArgument(Arg, Attr, "StringRef")
1360 void writeCtorBody(raw_ostream &OS) const override {
1361 OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1362 " ++I) {\n"
1363 " StringRef Ref = " << getUpperName() << "[I];\n"
1364 " if (!Ref.empty()) {\n"
1365 " char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1366 " std::memcpy(Mem, Ref.data(), Ref.size());\n"
1367 " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1368 " }\n"
1369 " }\n";
1372 void writeValueImpl(raw_ostream &OS) const override {
1373 OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
1377 class TypeArgument : public SimpleArgument {
1378 public:
1379 TypeArgument(const Record &Arg, StringRef Attr)
1380 : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1383 void writeAccessors(raw_ostream &OS) const override {
1384 OS << " QualType get" << getUpperName() << "() const {\n";
1385 OS << " return " << getLowerName() << "->getType();\n";
1386 OS << " }";
1387 OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
1388 OS << " return " << getLowerName() << ";\n";
1389 OS << " }";
1392 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1393 OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1394 OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1395 OS << " return false;\n";
1398 void writeTemplateInstantiation(raw_ostream &OS) const override {
1399 OS << " " << getType() << " tempInst" << getUpperName() << " =\n";
1400 OS << " S.SubstType(A->get" << getUpperName() << "Loc(), "
1401 << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1402 OS << " if (!tempInst" << getUpperName() << ")\n";
1403 OS << " return nullptr;\n";
1406 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1407 OS << "tempInst" << getUpperName();
1410 void writePCHWrite(raw_ostream &OS) const override {
1411 OS << " "
1412 << WritePCHRecord(getType(),
1413 "SA->get" + std::string(getUpperName()) + "Loc()");
1417 } // end anonymous namespace
1419 static std::unique_ptr<Argument>
1420 createArgument(const Record &Arg, StringRef Attr,
1421 const Record *Search = nullptr) {
1422 if (!Search)
1423 Search = &Arg;
1425 std::unique_ptr<Argument> Ptr;
1426 llvm::StringRef ArgName = Search->getName();
1428 if (ArgName == "AlignedArgument")
1429 Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
1430 else if (ArgName == "EnumArgument")
1431 Ptr = std::make_unique<EnumArgument>(Arg, Attr);
1432 else if (ArgName == "ExprArgument")
1433 Ptr = std::make_unique<ExprArgument>(Arg, Attr);
1434 else if (ArgName == "DeclArgument")
1435 Ptr = std::make_unique<SimpleArgument>(
1436 Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
1437 else if (ArgName == "IdentifierArgument")
1438 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
1439 else if (ArgName == "DefaultBoolArgument")
1440 Ptr = std::make_unique<DefaultSimpleArgument>(
1441 Arg, Attr, "bool", Arg.getValueAsBit("Default"));
1442 else if (ArgName == "BoolArgument")
1443 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
1444 else if (ArgName == "DefaultIntArgument")
1445 Ptr = std::make_unique<DefaultSimpleArgument>(
1446 Arg, Attr, "int", Arg.getValueAsInt("Default"));
1447 else if (ArgName == "IntArgument")
1448 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
1449 else if (ArgName == "StringArgument")
1450 Ptr = std::make_unique<StringArgument>(Arg, Attr);
1451 else if (ArgName == "TypeArgument")
1452 Ptr = std::make_unique<TypeArgument>(Arg, Attr);
1453 else if (ArgName == "UnsignedArgument")
1454 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
1455 else if (ArgName == "VariadicUnsignedArgument")
1456 Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
1457 else if (ArgName == "VariadicStringArgument")
1458 Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
1459 else if (ArgName == "VariadicEnumArgument")
1460 Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
1461 else if (ArgName == "VariadicExprArgument")
1462 Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
1463 else if (ArgName == "VariadicParamIdxArgument")
1464 Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
1465 else if (ArgName == "VariadicParamOrParamIdxArgument")
1466 Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
1467 else if (ArgName == "ParamIdxArgument")
1468 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
1469 else if (ArgName == "VariadicIdentifierArgument")
1470 Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
1471 else if (ArgName == "VersionArgument")
1472 Ptr = std::make_unique<VersionArgument>(Arg, Attr);
1473 else if (ArgName == "OMPTraitInfoArgument")
1474 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
1475 else if (ArgName == "VariadicOMPInteropInfoArgument")
1476 Ptr = std::make_unique<VariadicOMPInteropInfoArgument>(Arg, Attr);
1478 if (!Ptr) {
1479 // Search in reverse order so that the most-derived type is handled first.
1480 ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
1481 for (const auto &Base : llvm::reverse(Bases)) {
1482 if ((Ptr = createArgument(Arg, Attr, Base.first)))
1483 break;
1487 if (Ptr && Arg.getValueAsBit("Optional"))
1488 Ptr->setOptional(true);
1490 if (Ptr && Arg.getValueAsBit("Fake"))
1491 Ptr->setFake(true);
1493 return Ptr;
1496 static void writeAvailabilityValue(raw_ostream &OS) {
1497 OS << "\" << getPlatform()->getName();\n"
1498 << " if (getStrict()) OS << \", strict\";\n"
1499 << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1500 << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1501 << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1502 << " if (getUnavailable()) OS << \", unavailable\";\n"
1503 << " OS << \"";
1506 static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
1507 OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1508 // Only GNU deprecated has an optional fixit argument at the second position.
1509 if (Variety == "GNU")
1510 OS << " if (!getReplacement().empty()) OS << \", \\\"\""
1511 " << getReplacement() << \"\\\"\";\n";
1512 OS << " OS << \"";
1515 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1516 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1518 OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1519 if (Spellings.empty()) {
1520 OS << " return \"(No spelling)\";\n}\n\n";
1521 return;
1524 OS << " switch (getAttributeSpellingListIndex()) {\n"
1525 " default:\n"
1526 " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1527 " return \"(No spelling)\";\n";
1529 for (unsigned I = 0; I < Spellings.size(); ++I)
1530 OS << " case " << I << ":\n"
1531 " return \"" << Spellings[I].name() << "\";\n";
1532 // End of the switch statement.
1533 OS << " }\n";
1534 // End of the getSpelling function.
1535 OS << "}\n\n";
1538 static void
1539 writePrettyPrintFunction(const Record &R,
1540 const std::vector<std::unique_ptr<Argument>> &Args,
1541 raw_ostream &OS) {
1542 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1544 OS << "void " << R.getName() << "Attr::printPretty("
1545 << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1547 if (Spellings.empty()) {
1548 OS << "}\n\n";
1549 return;
1552 OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1553 << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1554 << " switch (getAttributeSpellingListIndex()) {\n"
1555 << " default:\n"
1556 << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1557 << " break;\n";
1559 for (unsigned I = 0; I < Spellings.size(); ++ I) {
1560 llvm::SmallString<16> Prefix;
1561 llvm::SmallString<8> Suffix;
1562 // The actual spelling of the name and namespace (if applicable)
1563 // of an attribute without considering prefix and suffix.
1564 llvm::SmallString<64> Spelling;
1565 std::string Name = Spellings[I].name();
1566 std::string Variety = Spellings[I].variety();
1568 if (Variety == "GNU") {
1569 Prefix = " __attribute__((";
1570 Suffix = "))";
1571 } else if (Variety == "CXX11" || Variety == "C23") {
1572 Prefix = " [[";
1573 Suffix = "]]";
1574 std::string Namespace = Spellings[I].nameSpace();
1575 if (!Namespace.empty()) {
1576 Spelling += Namespace;
1577 Spelling += "::";
1579 } else if (Variety == "Declspec") {
1580 Prefix = " __declspec(";
1581 Suffix = ")";
1582 } else if (Variety == "Microsoft") {
1583 Prefix = "[";
1584 Suffix = "]";
1585 } else if (Variety == "Keyword") {
1586 Prefix = " ";
1587 Suffix = "";
1588 } else if (Variety == "Pragma") {
1589 Prefix = "#pragma ";
1590 Suffix = "\n";
1591 std::string Namespace = Spellings[I].nameSpace();
1592 if (!Namespace.empty()) {
1593 Spelling += Namespace;
1594 Spelling += " ";
1596 } else if (Variety == "HLSLSemantic") {
1597 Prefix = ":";
1598 Suffix = "";
1599 } else {
1600 llvm_unreachable("Unknown attribute syntax variety!");
1603 Spelling += Name;
1605 OS << " case " << I << " : {\n"
1606 << " OS << \"" << Prefix << Spelling << "\";\n";
1608 if (Variety == "Pragma") {
1609 OS << " printPrettyPragma(OS, Policy);\n";
1610 OS << " OS << \"\\n\";";
1611 OS << " break;\n";
1612 OS << " }\n";
1613 continue;
1616 if (Spelling == "availability") {
1617 OS << " OS << \"(";
1618 writeAvailabilityValue(OS);
1619 OS << ")\";\n";
1620 } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1621 OS << " OS << \"(";
1622 writeDeprecatedAttrValue(OS, Variety);
1623 OS << ")\";\n";
1624 } else {
1625 // To avoid printing parentheses around an empty argument list or
1626 // printing spurious commas at the end of an argument list, we need to
1627 // determine where the last provided non-fake argument is.
1628 bool FoundNonOptArg = false;
1629 for (const auto &arg : llvm::reverse(Args)) {
1630 if (arg->isFake())
1631 continue;
1632 if (FoundNonOptArg)
1633 continue;
1634 // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1635 // any way to detect whether the argument was omitted.
1636 if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1637 FoundNonOptArg = true;
1638 continue;
1640 OS << " if (" << arg->getIsOmitted() << ")\n"
1641 << " ++TrailingOmittedArgs;\n";
1643 unsigned ArgIndex = 0;
1644 for (const auto &arg : Args) {
1645 if (arg->isFake())
1646 continue;
1647 std::string IsOmitted = arg->getIsOmitted();
1648 if (arg->isOptional() && IsOmitted != "false")
1649 OS << " if (!(" << IsOmitted << ")) {\n";
1650 // Variadic arguments print their own leading comma.
1651 if (!arg->isVariadic())
1652 OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
1653 OS << " OS << \"";
1654 arg->writeValue(OS);
1655 OS << "\";\n";
1656 if (arg->isOptional() && IsOmitted != "false")
1657 OS << " }\n";
1658 ++ArgIndex;
1660 if (ArgIndex != 0)
1661 OS << " if (!IsFirstArgument)\n"
1662 << " OS << \")\";\n";
1664 OS << " OS << \"" << Suffix << "\";\n"
1665 << " break;\n"
1666 << " }\n";
1669 // End of the switch statement.
1670 OS << "}\n";
1671 // End of the print function.
1672 OS << "}\n\n";
1675 /// Return the index of a spelling in a spelling list.
1676 static unsigned
1677 getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
1678 const FlattenedSpelling &Spelling) {
1679 assert(!SpellingList.empty() && "Spelling list is empty!");
1681 for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
1682 const FlattenedSpelling &S = SpellingList[Index];
1683 if (S.variety() != Spelling.variety())
1684 continue;
1685 if (S.nameSpace() != Spelling.nameSpace())
1686 continue;
1687 if (S.name() != Spelling.name())
1688 continue;
1690 return Index;
1693 llvm_unreachable("Unknown spelling!");
1696 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1697 std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
1698 if (Accessors.empty())
1699 return;
1701 const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
1702 assert(!SpellingList.empty() &&
1703 "Attribute with empty spelling list can't have accessors!");
1704 for (const auto *Accessor : Accessors) {
1705 const StringRef Name = Accessor->getValueAsString("Name");
1706 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
1708 OS << " bool " << Name
1709 << "() const { return getAttributeSpellingListIndex() == ";
1710 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1711 OS << getSpellingListIndex(SpellingList, Spellings[Index]);
1712 if (Index != Spellings.size() - 1)
1713 OS << " ||\n getAttributeSpellingListIndex() == ";
1714 else
1715 OS << "; }\n";
1720 static bool
1721 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1722 assert(!Spellings.empty() && "An empty list of spellings was provided");
1723 std::string FirstName =
1724 std::string(NormalizeNameForSpellingComparison(Spellings.front().name()));
1725 for (const auto &Spelling :
1726 llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
1727 std::string Name =
1728 std::string(NormalizeNameForSpellingComparison(Spelling.name()));
1729 if (Name != FirstName)
1730 return false;
1732 return true;
1735 typedef std::map<unsigned, std::string> SemanticSpellingMap;
1736 static std::string
1737 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1738 SemanticSpellingMap &Map) {
1739 // The enumerants are automatically generated based on the variety,
1740 // namespace (if present) and name for each attribute spelling. However,
1741 // care is taken to avoid trampling on the reserved namespace due to
1742 // underscores.
1743 std::string Ret(" enum Spelling {\n");
1744 std::set<std::string> Uniques;
1745 unsigned Idx = 0;
1747 // If we have a need to have this many spellings we likely need to add an
1748 // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1749 // value of SpellingNotCalculated there and here.
1750 assert(Spellings.size() < 15 &&
1751 "Too many spellings, would step on SpellingNotCalculated in "
1752 "AttributeCommonInfo");
1753 for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1754 const FlattenedSpelling &S = *I;
1755 const std::string &Variety = S.variety();
1756 const std::string &Spelling = S.name();
1757 const std::string &Namespace = S.nameSpace();
1758 std::string EnumName;
1760 EnumName += (Variety + "_");
1761 if (!Namespace.empty())
1762 EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
1763 "_");
1764 EnumName += NormalizeNameForSpellingComparison(Spelling);
1766 // Even if the name is not unique, this spelling index corresponds to a
1767 // particular enumerant name that we've calculated.
1768 Map[Idx] = EnumName;
1770 // Since we have been stripping underscores to avoid trampling on the
1771 // reserved namespace, we may have inadvertently created duplicate
1772 // enumerant names. These duplicates are not considered part of the
1773 // semantic spelling, and can be elided.
1774 if (Uniques.find(EnumName) != Uniques.end())
1775 continue;
1777 Uniques.insert(EnumName);
1778 if (I != Spellings.begin())
1779 Ret += ",\n";
1780 // Duplicate spellings are not considered part of the semantic spelling
1781 // enumeration, but the spelling index and semantic spelling values are
1782 // meant to be equivalent, so we must specify a concrete value for each
1783 // enumerator.
1784 Ret += " " + EnumName + " = " + llvm::utostr(Idx);
1786 Ret += ",\n SpellingNotCalculated = 15\n";
1787 Ret += "\n };\n\n";
1788 return Ret;
1791 void WriteSemanticSpellingSwitch(const std::string &VarName,
1792 const SemanticSpellingMap &Map,
1793 raw_ostream &OS) {
1794 OS << " switch (" << VarName << ") {\n default: "
1795 << "llvm_unreachable(\"Unknown spelling list index\");\n";
1796 for (const auto &I : Map)
1797 OS << " case " << I.first << ": return " << I.second << ";\n";
1798 OS << " }\n";
1801 // Emits the LateParsed property for attributes.
1802 static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
1803 OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1804 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
1806 for (const auto *Attr : Attrs) {
1807 bool LateParsed = Attr->getValueAsBit("LateParsed");
1809 if (LateParsed) {
1810 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
1812 // FIXME: Handle non-GNU attributes
1813 for (const auto &I : Spellings) {
1814 if (I.variety() != "GNU")
1815 continue;
1816 OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
1820 OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1823 static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1824 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
1825 for (const auto &I : Spellings) {
1826 if (I.variety() == "GNU" || I.variety() == "CXX11")
1827 return true;
1829 return false;
1832 namespace {
1834 struct AttributeSubjectMatchRule {
1835 const Record *MetaSubject;
1836 const Record *Constraint;
1838 AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1839 : MetaSubject(MetaSubject), Constraint(Constraint) {
1840 assert(MetaSubject && "Missing subject");
1843 bool isSubRule() const { return Constraint != nullptr; }
1845 std::vector<Record *> getSubjects() const {
1846 return (Constraint ? Constraint : MetaSubject)
1847 ->getValueAsListOfDefs("Subjects");
1850 std::vector<Record *> getLangOpts() const {
1851 if (Constraint) {
1852 // Lookup the options in the sub-rule first, in case the sub-rule
1853 // overrides the rules options.
1854 std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
1855 if (!Opts.empty())
1856 return Opts;
1858 return MetaSubject->getValueAsListOfDefs("LangOpts");
1861 // Abstract rules are used only for sub-rules
1862 bool isAbstractRule() const { return getSubjects().empty(); }
1864 StringRef getName() const {
1865 return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
1868 bool isNegatedSubRule() const {
1869 assert(isSubRule() && "Not a sub-rule");
1870 return Constraint->getValueAsBit("Negated");
1873 std::string getSpelling() const {
1874 std::string Result = std::string(MetaSubject->getValueAsString("Name"));
1875 if (isSubRule()) {
1876 Result += '(';
1877 if (isNegatedSubRule())
1878 Result += "unless(";
1879 Result += getName();
1880 if (isNegatedSubRule())
1881 Result += ')';
1882 Result += ')';
1884 return Result;
1887 std::string getEnumValueName() const {
1888 SmallString<128> Result;
1889 Result += "SubjectMatchRule_";
1890 Result += MetaSubject->getValueAsString("Name");
1891 if (isSubRule()) {
1892 Result += "_";
1893 if (isNegatedSubRule())
1894 Result += "not_";
1895 Result += Constraint->getValueAsString("Name");
1897 if (isAbstractRule())
1898 Result += "_abstract";
1899 return std::string(Result.str());
1902 std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
1904 static const char *EnumName;
1907 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
1909 struct PragmaClangAttributeSupport {
1910 std::vector<AttributeSubjectMatchRule> Rules;
1912 class RuleOrAggregateRuleSet {
1913 std::vector<AttributeSubjectMatchRule> Rules;
1914 bool IsRule;
1915 RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
1916 bool IsRule)
1917 : Rules(Rules), IsRule(IsRule) {}
1919 public:
1920 bool isRule() const { return IsRule; }
1922 const AttributeSubjectMatchRule &getRule() const {
1923 assert(IsRule && "not a rule!");
1924 return Rules[0];
1927 ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
1928 return Rules;
1931 static RuleOrAggregateRuleSet
1932 getRule(const AttributeSubjectMatchRule &Rule) {
1933 return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
1935 static RuleOrAggregateRuleSet
1936 getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
1937 return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
1940 llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
1942 PragmaClangAttributeSupport(RecordKeeper &Records);
1944 bool isAttributedSupported(const Record &Attribute);
1946 void emitMatchRuleList(raw_ostream &OS);
1948 void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
1950 void generateParsingHelpers(raw_ostream &OS);
1953 } // end anonymous namespace
1955 static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
1956 // FIXME: #pragma clang attribute does not currently support statement
1957 // attributes, so test whether the subject is one that appertains to a
1958 // declaration node. However, it may be reasonable for support for statement
1959 // attributes to be added.
1960 if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") ||
1961 Subject.getName() == "DeclBase")
1962 return true;
1964 if (Subject.isSubClassOf("SubsetSubject"))
1965 return isSupportedPragmaClangAttributeSubject(
1966 *Subject.getValueAsDef("Base"));
1968 return false;
1971 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
1972 const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
1973 if (!CurrentBase)
1974 return false;
1975 if (CurrentBase == Base)
1976 return true;
1977 return doesDeclDeriveFrom(CurrentBase, Base);
1980 PragmaClangAttributeSupport::PragmaClangAttributeSupport(
1981 RecordKeeper &Records) {
1982 std::vector<Record *> MetaSubjects =
1983 Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
1984 auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
1985 const Record *MetaSubject,
1986 const Record *Constraint) {
1987 Rules.emplace_back(MetaSubject, Constraint);
1988 std::vector<Record *> ApplicableSubjects =
1989 SubjectContainer->getValueAsListOfDefs("Subjects");
1990 for (const auto *Subject : ApplicableSubjects) {
1991 bool Inserted =
1992 SubjectsToRules
1993 .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
1994 AttributeSubjectMatchRule(MetaSubject,
1995 Constraint)))
1996 .second;
1997 if (!Inserted) {
1998 PrintFatalError("Attribute subject match rules should not represent"
1999 "same attribute subjects.");
2003 for (const auto *MetaSubject : MetaSubjects) {
2004 MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
2005 std::vector<Record *> Constraints =
2006 MetaSubject->getValueAsListOfDefs("Constraints");
2007 for (const auto *Constraint : Constraints)
2008 MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
2011 std::vector<Record *> Aggregates =
2012 Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
2013 std::vector<Record *> DeclNodes =
2014 Records.getAllDerivedDefinitions(DeclNodeClassName);
2015 for (const auto *Aggregate : Aggregates) {
2016 Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
2018 // Gather sub-classes of the aggregate subject that act as attribute
2019 // subject rules.
2020 std::vector<AttributeSubjectMatchRule> Rules;
2021 for (const auto *D : DeclNodes) {
2022 if (doesDeclDeriveFrom(D, SubjectDecl)) {
2023 auto It = SubjectsToRules.find(D);
2024 if (It == SubjectsToRules.end())
2025 continue;
2026 if (!It->second.isRule() || It->second.getRule().isSubRule())
2027 continue; // Assume that the rule will be included as well.
2028 Rules.push_back(It->second.getRule());
2032 bool Inserted =
2033 SubjectsToRules
2034 .try_emplace(SubjectDecl,
2035 RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
2036 .second;
2037 if (!Inserted) {
2038 PrintFatalError("Attribute subject match rules should not represent"
2039 "same attribute subjects.");
2044 static PragmaClangAttributeSupport &
2045 getPragmaAttributeSupport(RecordKeeper &Records) {
2046 static PragmaClangAttributeSupport Instance(Records);
2047 return Instance;
2050 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
2051 OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
2052 OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
2053 "IsNegated) "
2054 << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
2055 OS << "#endif\n";
2056 for (const auto &Rule : Rules) {
2057 OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
2058 OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
2059 << Rule.isAbstractRule();
2060 if (Rule.isSubRule())
2061 OS << ", "
2062 << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
2063 << ", " << Rule.isNegatedSubRule();
2064 OS << ")\n";
2066 OS << "#undef ATTR_MATCH_SUB_RULE\n";
2069 bool PragmaClangAttributeSupport::isAttributedSupported(
2070 const Record &Attribute) {
2071 // If the attribute explicitly specified whether to support #pragma clang
2072 // attribute, use that setting.
2073 bool Unset;
2074 bool SpecifiedResult =
2075 Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
2076 if (!Unset)
2077 return SpecifiedResult;
2079 // Opt-out rules:
2080 // An attribute requires delayed parsing (LateParsed is on)
2081 if (Attribute.getValueAsBit("LateParsed"))
2082 return false;
2083 // An attribute has no GNU/CXX11 spelling
2084 if (!hasGNUorCXX11Spelling(Attribute))
2085 return false;
2086 // An attribute subject list has a subject that isn't covered by one of the
2087 // subject match rules or has no subjects at all.
2088 if (Attribute.isValueUnset("Subjects"))
2089 return false;
2090 const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
2091 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2092 bool HasAtLeastOneValidSubject = false;
2093 for (const auto *Subject : Subjects) {
2094 if (!isSupportedPragmaClangAttributeSubject(*Subject))
2095 continue;
2096 if (!SubjectsToRules.contains(Subject))
2097 return false;
2098 HasAtLeastOneValidSubject = true;
2100 return HasAtLeastOneValidSubject;
2103 static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
2104 std::string Test;
2106 for (auto *E : LangOpts) {
2107 if (!Test.empty())
2108 Test += " || ";
2110 const StringRef Code = E->getValueAsString("CustomCode");
2111 if (!Code.empty()) {
2112 Test += "(";
2113 Test += Code;
2114 Test += ")";
2115 if (!E->getValueAsString("Name").empty()) {
2116 PrintWarning(
2117 E->getLoc(),
2118 "non-empty 'Name' field ignored because 'CustomCode' was supplied");
2120 } else {
2121 Test += "LangOpts.";
2122 Test += E->getValueAsString("Name");
2126 if (Test.empty())
2127 return "true";
2129 return Test;
2132 void
2133 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2134 raw_ostream &OS) {
2135 if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
2136 return;
2137 // Generate a function that constructs a set of matching rules that describe
2138 // to which declarations the attribute should apply to.
2139 OS << "void getPragmaAttributeMatchRules("
2140 << "llvm::SmallVectorImpl<std::pair<"
2141 << AttributeSubjectMatchRule::EnumName
2142 << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2143 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
2144 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2145 for (const auto *Subject : Subjects) {
2146 if (!isSupportedPragmaClangAttributeSubject(*Subject))
2147 continue;
2148 auto It = SubjectsToRules.find(Subject);
2149 assert(It != SubjectsToRules.end() &&
2150 "This attribute is unsupported by #pragma clang attribute");
2151 for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2152 // The rule might be language specific, so only subtract it from the given
2153 // rules if the specific language options are specified.
2154 std::vector<Record *> LangOpts = Rule.getLangOpts();
2155 OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2156 << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2157 << "));\n";
2160 OS << "}\n\n";
2163 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2164 // Generate routines that check the names of sub-rules.
2165 OS << "std::optional<attr::SubjectMatchRule> "
2166 "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2167 OS << " return std::nullopt;\n";
2168 OS << "}\n\n";
2170 llvm::MapVector<const Record *, std::vector<AttributeSubjectMatchRule>>
2171 SubMatchRules;
2172 for (const auto &Rule : Rules) {
2173 if (!Rule.isSubRule())
2174 continue;
2175 SubMatchRules[Rule.MetaSubject].push_back(Rule);
2178 for (const auto &SubMatchRule : SubMatchRules) {
2179 OS << "std::optional<attr::SubjectMatchRule> "
2180 "isAttributeSubjectMatchSubRuleFor_"
2181 << SubMatchRule.first->getValueAsString("Name")
2182 << "(StringRef Name, bool IsUnless) {\n";
2183 OS << " if (IsUnless)\n";
2184 OS << " return "
2185 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2186 for (const auto &Rule : SubMatchRule.second) {
2187 if (Rule.isNegatedSubRule())
2188 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2189 << ").\n";
2191 OS << " Default(std::nullopt);\n";
2192 OS << " return "
2193 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2194 for (const auto &Rule : SubMatchRule.second) {
2195 if (!Rule.isNegatedSubRule())
2196 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2197 << ").\n";
2199 OS << " Default(std::nullopt);\n";
2200 OS << "}\n\n";
2203 // Generate the function that checks for the top-level rules.
2204 OS << "std::pair<std::optional<attr::SubjectMatchRule>, "
2205 "std::optional<attr::SubjectMatchRule> (*)(StringRef, "
2206 "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2207 OS << " return "
2208 "llvm::StringSwitch<std::pair<std::optional<attr::SubjectMatchRule>, "
2209 "std::optional<attr::SubjectMatchRule> (*) (StringRef, "
2210 "bool)>>(Name).\n";
2211 for (const auto &Rule : Rules) {
2212 if (Rule.isSubRule())
2213 continue;
2214 std::string SubRuleFunction;
2215 if (SubMatchRules.count(Rule.MetaSubject))
2216 SubRuleFunction =
2217 ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2218 else
2219 SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2220 OS << " Case(\"" << Rule.getName() << "\", std::make_pair("
2221 << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2223 OS << " Default(std::make_pair(std::nullopt, "
2224 "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2225 OS << "}\n\n";
2227 // Generate the function that checks for the submatch rules.
2228 OS << "const char *validAttributeSubjectMatchSubRules("
2229 << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2230 OS << " switch (Rule) {\n";
2231 for (const auto &SubMatchRule : SubMatchRules) {
2232 OS << " case "
2233 << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2234 << ":\n";
2235 OS << " return \"'";
2236 bool IsFirst = true;
2237 for (const auto &Rule : SubMatchRule.second) {
2238 if (!IsFirst)
2239 OS << ", '";
2240 IsFirst = false;
2241 if (Rule.isNegatedSubRule())
2242 OS << "unless(";
2243 OS << Rule.getName();
2244 if (Rule.isNegatedSubRule())
2245 OS << ')';
2246 OS << "'";
2248 OS << "\";\n";
2250 OS << " default: return nullptr;\n";
2251 OS << " }\n";
2252 OS << "}\n\n";
2255 template <typename Fn>
2256 static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
2257 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
2258 SmallDenseSet<StringRef, 8> Seen;
2259 for (const FlattenedSpelling &S : Spellings) {
2260 if (Seen.insert(S.name()).second)
2261 F(S);
2265 static bool isTypeArgument(const Record *Arg) {
2266 return !Arg->getSuperClasses().empty() &&
2267 Arg->getSuperClasses().back().first->getName() == "TypeArgument";
2270 /// Emits the first-argument-is-type property for attributes.
2271 static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
2272 OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2273 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2275 for (const auto *Attr : Attrs) {
2276 // Determine whether the first argument is a type.
2277 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2278 if (Args.empty())
2279 continue;
2281 if (!isTypeArgument(Args[0]))
2282 continue;
2284 // All these spellings take a single type argument.
2285 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2286 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2289 OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2292 /// Emits the parse-arguments-in-unevaluated-context property for
2293 /// attributes.
2294 static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
2295 OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2296 ParsedAttrMap Attrs = getParsedAttrList(Records);
2297 for (const auto &I : Attrs) {
2298 const Record &Attr = *I.second;
2300 if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
2301 continue;
2303 // All these spellings take are parsed unevaluated.
2304 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2305 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2308 OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2311 static bool isIdentifierArgument(const Record *Arg) {
2312 return !Arg->getSuperClasses().empty() &&
2313 llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2314 .Case("IdentifierArgument", true)
2315 .Case("EnumArgument", true)
2316 .Case("VariadicEnumArgument", true)
2317 .Default(false);
2320 static bool isVariadicIdentifierArgument(const Record *Arg) {
2321 return !Arg->getSuperClasses().empty() &&
2322 llvm::StringSwitch<bool>(
2323 Arg->getSuperClasses().back().first->getName())
2324 .Case("VariadicIdentifierArgument", true)
2325 .Case("VariadicParamOrParamIdxArgument", true)
2326 .Default(false);
2329 static bool isVariadicExprArgument(const Record *Arg) {
2330 return !Arg->getSuperClasses().empty() &&
2331 llvm::StringSwitch<bool>(
2332 Arg->getSuperClasses().back().first->getName())
2333 .Case("VariadicExprArgument", true)
2334 .Default(false);
2337 static bool isStringLiteralArgument(const Record *Arg) {
2338 return !Arg->getSuperClasses().empty() &&
2339 llvm::StringSwitch<bool>(
2340 Arg->getSuperClasses().back().first->getName())
2341 .Case("StringArgument", true)
2342 .Default(false);
2345 static bool isVariadicStringLiteralArgument(const Record *Arg) {
2346 return !Arg->getSuperClasses().empty() &&
2347 llvm::StringSwitch<bool>(
2348 Arg->getSuperClasses().back().first->getName())
2349 .Case("VariadicStringArgument", true)
2350 .Default(false);
2353 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
2354 raw_ostream &OS) {
2355 OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2356 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2357 for (const auto *A : Attrs) {
2358 // Determine whether the first argument is a variadic identifier.
2359 std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2360 if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
2361 continue;
2363 // All these spellings take an identifier argument.
2364 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2365 OS << ".Case(\"" << S.name() << "\", "
2366 << "true"
2367 << ")\n";
2370 OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2373 // Emits the list of arguments that should be parsed as unevaluated string
2374 // literals for each attribute.
2375 static void emitClangAttrUnevaluatedStringLiteralList(RecordKeeper &Records,
2376 raw_ostream &OS) {
2377 OS << "#if defined(CLANG_ATTR_STRING_LITERAL_ARG_LIST)\n";
2378 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2379 for (const auto *Attr : Attrs) {
2380 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2381 uint32_t Bits = 0;
2382 assert(Args.size() <= 32 && "unsupported number of arguments in attribute");
2383 for (uint32_t N = 0; N < Args.size(); ++N) {
2384 Bits |= (isStringLiteralArgument(Args[N]) << N);
2385 // If we have a variadic string argument, set all the remaining bits to 1
2386 if (isVariadicStringLiteralArgument(Args[N])) {
2387 Bits |= maskTrailingZeros<decltype(Bits)>(N);
2388 break;
2391 if (!Bits)
2392 continue;
2393 // All these spellings have at least one string literal has argument.
2394 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2395 OS << ".Case(\"" << S.name() << "\", " << Bits << ")\n";
2398 OS << "#endif // CLANG_ATTR_STRING_LITERAL_ARG_LIST\n\n";
2401 // Emits the first-argument-is-identifier property for attributes.
2402 static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
2403 OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2404 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2406 for (const auto *Attr : Attrs) {
2407 // Determine whether the first argument is an identifier.
2408 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2409 if (Args.empty() || !isIdentifierArgument(Args[0]))
2410 continue;
2412 // All these spellings take an identifier argument.
2413 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2414 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2417 OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2420 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2421 return !Arg->getSuperClasses().empty() &&
2422 llvm::StringSwitch<bool>(
2423 Arg->getSuperClasses().back().first->getName())
2424 .Case("VariadicParamOrParamIdxArgument", true)
2425 .Default(false);
2428 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
2429 raw_ostream &OS) {
2430 OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2431 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2432 for (const auto *A : Attrs) {
2433 // Determine whether the first argument is a variadic identifier.
2434 std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2435 if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
2436 continue;
2438 // All these spellings take an identifier argument.
2439 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2440 OS << ".Case(\"" << S.name() << "\", "
2441 << "true"
2442 << ")\n";
2445 OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2448 static void emitClangAttrAcceptsExprPack(RecordKeeper &Records,
2449 raw_ostream &OS) {
2450 OS << "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n";
2451 ParsedAttrMap Attrs = getParsedAttrList(Records);
2452 for (const auto &I : Attrs) {
2453 const Record &Attr = *I.second;
2455 if (!Attr.getValueAsBit("AcceptsExprPack"))
2456 continue;
2458 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2459 OS << ".Case(\"" << S.name() << "\", true)\n";
2462 OS << "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n";
2465 static bool isRegularKeywordAttribute(const FlattenedSpelling &S) {
2466 return (S.variety() == "Keyword" &&
2467 !S.getSpellingRecord().getValueAsBit("HasOwnParseRules"));
2470 static void emitFormInitializer(raw_ostream &OS,
2471 const FlattenedSpelling &Spelling,
2472 StringRef SpellingIndex) {
2473 bool IsAlignas =
2474 (Spelling.variety() == "Keyword" && Spelling.name() == "alignas");
2475 OS << "{AttributeCommonInfo::AS_" << Spelling.variety() << ", "
2476 << SpellingIndex << ", " << (IsAlignas ? "true" : "false")
2477 << " /*IsAlignas*/, "
2478 << (isRegularKeywordAttribute(Spelling) ? "true" : "false")
2479 << " /*IsRegularKeywordAttribute*/}";
2482 static void emitAttributes(RecordKeeper &Records, raw_ostream &OS,
2483 bool Header) {
2484 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2485 ParsedAttrMap AttrMap = getParsedAttrList(Records);
2487 // Helper to print the starting character of an attribute argument. If there
2488 // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2489 // prints a comma.
2490 OS << "static inline void DelimitAttributeArgument("
2491 << "raw_ostream& OS, bool& IsFirst) {\n"
2492 << " if (IsFirst) {\n"
2493 << " IsFirst = false;\n"
2494 << " OS << \"(\";\n"
2495 << " } else\n"
2496 << " OS << \", \";\n"
2497 << "}\n";
2499 for (const auto *Attr : Attrs) {
2500 const Record &R = *Attr;
2502 // FIXME: Currently, documentation is generated as-needed due to the fact
2503 // that there is no way to allow a generated project "reach into" the docs
2504 // directory (for instance, it may be an out-of-tree build). However, we want
2505 // to ensure that every attribute has a Documentation field, and produce an
2506 // error if it has been neglected. Otherwise, the on-demand generation which
2507 // happens server-side will fail. This code is ensuring that functionality,
2508 // even though this Emitter doesn't technically need the documentation.
2509 // When attribute documentation can be generated as part of the build
2510 // itself, this code can be removed.
2511 (void)R.getValueAsListOfDefs("Documentation");
2513 if (!R.getValueAsBit("ASTNode"))
2514 continue;
2516 ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
2517 assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2518 std::string SuperName;
2519 bool Inheritable = false;
2520 for (const auto &Super : llvm::reverse(Supers)) {
2521 const Record *R = Super.first;
2522 if (R->getName() != "TargetSpecificAttr" &&
2523 R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2524 SuperName = std::string(R->getName());
2525 if (R->getName() == "InheritableAttr")
2526 Inheritable = true;
2529 if (Header)
2530 OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
2531 else
2532 OS << "\n// " << R.getName() << "Attr implementation\n\n";
2534 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
2535 std::vector<std::unique_ptr<Argument>> Args;
2536 Args.reserve(ArgRecords.size());
2538 bool AttrAcceptsExprPack = Attr->getValueAsBit("AcceptsExprPack");
2539 if (AttrAcceptsExprPack) {
2540 for (size_t I = 0; I < ArgRecords.size(); ++I) {
2541 const Record *ArgR = ArgRecords[I];
2542 if (isIdentifierArgument(ArgR) || isVariadicIdentifierArgument(ArgR) ||
2543 isTypeArgument(ArgR))
2544 PrintFatalError(Attr->getLoc(),
2545 "Attributes accepting packs cannot also "
2546 "have identifier or type arguments.");
2547 // When trying to determine if value-dependent expressions can populate
2548 // the attribute without prior instantiation, the decision is made based
2549 // on the assumption that only the last argument is ever variadic.
2550 if (I < (ArgRecords.size() - 1) && isVariadicExprArgument(ArgR))
2551 PrintFatalError(Attr->getLoc(),
2552 "Attributes accepting packs can only have the last "
2553 "argument be variadic.");
2557 bool HasOptArg = false;
2558 bool HasFakeArg = false;
2559 for (const auto *ArgRecord : ArgRecords) {
2560 Args.emplace_back(createArgument(*ArgRecord, R.getName()));
2561 if (Header) {
2562 Args.back()->writeDeclarations(OS);
2563 OS << "\n\n";
2566 // For these purposes, fake takes priority over optional.
2567 if (Args.back()->isFake()) {
2568 HasFakeArg = true;
2569 } else if (Args.back()->isOptional()) {
2570 HasOptArg = true;
2574 std::unique_ptr<VariadicExprArgument> DelayedArgs = nullptr;
2575 if (AttrAcceptsExprPack) {
2576 DelayedArgs =
2577 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
2578 if (Header) {
2579 DelayedArgs->writeDeclarations(OS);
2580 OS << "\n\n";
2584 if (Header)
2585 OS << "public:\n";
2587 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
2589 // If there are zero or one spellings, all spelling-related functionality
2590 // can be elided. If all of the spellings share the same name, the spelling
2591 // functionality can also be elided.
2592 bool ElideSpelling = (Spellings.size() <= 1) ||
2593 SpellingNamesAreCommon(Spellings);
2595 // This maps spelling index values to semantic Spelling enumerants.
2596 SemanticSpellingMap SemanticToSyntacticMap;
2598 std::string SpellingEnum;
2599 if (Spellings.size() > 1)
2600 SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
2601 if (Header)
2602 OS << SpellingEnum;
2604 const auto &ParsedAttrSpellingItr = llvm::find_if(
2605 AttrMap, [R](const std::pair<std::string, const Record *> &P) {
2606 return &R == P.second;
2609 // Emit CreateImplicit factory methods.
2610 auto emitCreate = [&](bool Implicit, bool DelayedArgsOnly, bool emitFake) {
2611 if (Header)
2612 OS << " static ";
2613 OS << R.getName() << "Attr *";
2614 if (!Header)
2615 OS << R.getName() << "Attr::";
2616 OS << "Create";
2617 if (Implicit)
2618 OS << "Implicit";
2619 if (DelayedArgsOnly)
2620 OS << "WithDelayedArgs";
2621 OS << "(";
2622 OS << "ASTContext &Ctx";
2623 if (!DelayedArgsOnly) {
2624 for (auto const &ai : Args) {
2625 if (ai->isFake() && !emitFake)
2626 continue;
2627 OS << ", ";
2628 ai->writeCtorParameters(OS);
2630 } else {
2631 OS << ", ";
2632 DelayedArgs->writeCtorParameters(OS);
2634 OS << ", const AttributeCommonInfo &CommonInfo";
2635 OS << ")";
2636 if (Header) {
2637 OS << ";\n";
2638 return;
2641 OS << " {\n";
2642 OS << " auto *A = new (Ctx) " << R.getName();
2643 OS << "Attr(Ctx, CommonInfo";
2645 if (!DelayedArgsOnly) {
2646 for (auto const &ai : Args) {
2647 if (ai->isFake() && !emitFake)
2648 continue;
2649 OS << ", ";
2650 ai->writeImplicitCtorArgs(OS);
2653 OS << ");\n";
2654 if (Implicit) {
2655 OS << " A->setImplicit(true);\n";
2657 if (Implicit || ElideSpelling) {
2658 OS << " if (!A->isAttributeSpellingListCalculated() && "
2659 "!A->getAttrName())\n";
2660 OS << " A->setAttributeSpellingListIndex(0);\n";
2662 if (DelayedArgsOnly) {
2663 OS << " A->setDelayedArgs(Ctx, ";
2664 DelayedArgs->writeImplicitCtorArgs(OS);
2665 OS << ");\n";
2667 OS << " return A;\n}\n\n";
2670 auto emitCreateNoCI = [&](bool Implicit, bool DelayedArgsOnly,
2671 bool emitFake) {
2672 if (Header)
2673 OS << " static ";
2674 OS << R.getName() << "Attr *";
2675 if (!Header)
2676 OS << R.getName() << "Attr::";
2677 OS << "Create";
2678 if (Implicit)
2679 OS << "Implicit";
2680 if (DelayedArgsOnly)
2681 OS << "WithDelayedArgs";
2682 OS << "(";
2683 OS << "ASTContext &Ctx";
2684 if (!DelayedArgsOnly) {
2685 for (auto const &ai : Args) {
2686 if (ai->isFake() && !emitFake)
2687 continue;
2688 OS << ", ";
2689 ai->writeCtorParameters(OS);
2691 } else {
2692 OS << ", ";
2693 DelayedArgs->writeCtorParameters(OS);
2695 OS << ", SourceRange Range";
2696 if (Header)
2697 OS << " = {}";
2698 if (Spellings.size() > 1) {
2699 OS << ", Spelling S";
2700 if (Header)
2701 OS << " = " << SemanticToSyntacticMap[0];
2703 OS << ")";
2704 if (Header) {
2705 OS << ";\n";
2706 return;
2709 OS << " {\n";
2710 OS << " AttributeCommonInfo I(Range, ";
2712 if (ParsedAttrSpellingItr != std::end(AttrMap))
2713 OS << "AT_" << ParsedAttrSpellingItr->first;
2714 else
2715 OS << "NoSemaHandlerAttribute";
2717 if (Spellings.size() == 0) {
2718 OS << ", AttributeCommonInfo::Form::Implicit()";
2719 } else if (Spellings.size() == 1) {
2720 OS << ", ";
2721 emitFormInitializer(OS, Spellings[0], "0");
2722 } else {
2723 OS << ", [&]() {\n";
2724 OS << " switch (S) {\n";
2725 std::set<std::string> Uniques;
2726 unsigned Idx = 0;
2727 for (auto I = Spellings.begin(), E = Spellings.end(); I != E;
2728 ++I, ++Idx) {
2729 const FlattenedSpelling &S = *I;
2730 const auto &Name = SemanticToSyntacticMap[Idx];
2731 if (Uniques.insert(Name).second) {
2732 OS << " case " << Name << ":\n";
2733 OS << " return AttributeCommonInfo::Form";
2734 emitFormInitializer(OS, S, Name);
2735 OS << ";\n";
2738 OS << " default:\n";
2739 OS << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
2740 << " return AttributeCommonInfo::Form";
2741 emitFormInitializer(OS, Spellings[0], "0");
2742 OS << ";\n"
2743 << " }\n"
2744 << " }()";
2747 OS << ");\n";
2748 OS << " return Create";
2749 if (Implicit)
2750 OS << "Implicit";
2751 if (DelayedArgsOnly)
2752 OS << "WithDelayedArgs";
2753 OS << "(Ctx";
2754 if (!DelayedArgsOnly) {
2755 for (auto const &ai : Args) {
2756 if (ai->isFake() && !emitFake)
2757 continue;
2758 OS << ", ";
2759 ai->writeImplicitCtorArgs(OS);
2761 } else {
2762 OS << ", ";
2763 DelayedArgs->writeImplicitCtorArgs(OS);
2765 OS << ", I);\n";
2766 OS << "}\n\n";
2769 auto emitCreates = [&](bool DelayedArgsOnly, bool emitFake) {
2770 emitCreate(true, DelayedArgsOnly, emitFake);
2771 emitCreate(false, DelayedArgsOnly, emitFake);
2772 emitCreateNoCI(true, DelayedArgsOnly, emitFake);
2773 emitCreateNoCI(false, DelayedArgsOnly, emitFake);
2776 if (Header)
2777 OS << " // Factory methods\n";
2779 // Emit a CreateImplicit that takes all the arguments.
2780 emitCreates(false, true);
2782 // Emit a CreateImplicit that takes all the non-fake arguments.
2783 if (HasFakeArg)
2784 emitCreates(false, false);
2786 // Emit a CreateWithDelayedArgs that takes only the dependent argument
2787 // expressions.
2788 if (DelayedArgs)
2789 emitCreates(true, false);
2791 // Emit constructors.
2792 auto emitCtor = [&](bool emitOpt, bool emitFake, bool emitNoArgs) {
2793 auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
2794 if (emitNoArgs)
2795 return false;
2796 if (arg->isFake())
2797 return emitFake;
2798 if (arg->isOptional())
2799 return emitOpt;
2800 return true;
2802 if (Header)
2803 OS << " ";
2804 else
2805 OS << R.getName() << "Attr::";
2806 OS << R.getName()
2807 << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
2808 OS << '\n';
2809 for (auto const &ai : Args) {
2810 if (!shouldEmitArg(ai))
2811 continue;
2812 OS << " , ";
2813 ai->writeCtorParameters(OS);
2814 OS << "\n";
2817 OS << " )";
2818 if (Header) {
2819 OS << ";\n";
2820 return;
2822 OS << "\n : " << SuperName << "(Ctx, CommonInfo, ";
2823 OS << "attr::" << R.getName() << ", "
2824 << (R.getValueAsBit("LateParsed") ? "true" : "false");
2825 if (Inheritable) {
2826 OS << ", "
2827 << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
2828 : "false");
2830 OS << ")\n";
2832 for (auto const &ai : Args) {
2833 OS << " , ";
2834 if (!shouldEmitArg(ai)) {
2835 ai->writeCtorDefaultInitializers(OS);
2836 } else {
2837 ai->writeCtorInitializers(OS);
2839 OS << "\n";
2841 if (DelayedArgs) {
2842 OS << " , ";
2843 DelayedArgs->writeCtorDefaultInitializers(OS);
2844 OS << "\n";
2847 OS << " {\n";
2849 for (auto const &ai : Args) {
2850 if (!shouldEmitArg(ai))
2851 continue;
2852 ai->writeCtorBody(OS);
2854 OS << "}\n\n";
2857 if (Header)
2858 OS << "\n // Constructors\n";
2860 // Emit a constructor that includes all the arguments.
2861 // This is necessary for cloning.
2862 emitCtor(true, true, false);
2864 // Emit a constructor that takes all the non-fake arguments.
2865 if (HasFakeArg)
2866 emitCtor(true, false, false);
2868 // Emit a constructor that takes all the non-fake, non-optional arguments.
2869 if (HasOptArg)
2870 emitCtor(false, false, false);
2872 // Emit constructors that takes no arguments if none already exists.
2873 // This is used for delaying arguments.
2874 bool HasRequiredArgs =
2875 llvm::count_if(Args, [=](const std::unique_ptr<Argument> &arg) {
2876 return !arg->isFake() && !arg->isOptional();
2878 if (DelayedArgs && HasRequiredArgs)
2879 emitCtor(false, false, true);
2881 if (Header) {
2882 OS << '\n';
2883 OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
2884 OS << " void printPretty(raw_ostream &OS,\n"
2885 << " const PrintingPolicy &Policy) const;\n";
2886 OS << " const char *getSpelling() const;\n";
2889 if (!ElideSpelling) {
2890 assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
2891 if (Header)
2892 OS << " Spelling getSemanticSpelling() const;\n";
2893 else {
2894 OS << R.getName() << "Attr::Spelling " << R.getName()
2895 << "Attr::getSemanticSpelling() const {\n";
2896 WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
2897 SemanticToSyntacticMap, OS);
2898 OS << "}\n";
2902 if (Header)
2903 writeAttrAccessorDefinition(R, OS);
2905 for (auto const &ai : Args) {
2906 if (Header) {
2907 ai->writeAccessors(OS);
2908 } else {
2909 ai->writeAccessorDefinitions(OS);
2911 OS << "\n\n";
2913 // Don't write conversion routines for fake arguments.
2914 if (ai->isFake()) continue;
2916 if (ai->isEnumArg())
2917 static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
2918 Header);
2919 else if (ai->isVariadicEnumArg())
2920 static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
2921 OS, Header);
2924 if (Header) {
2925 if (DelayedArgs) {
2926 DelayedArgs->writeAccessors(OS);
2927 DelayedArgs->writeSetter(OS);
2930 OS << R.getValueAsString("AdditionalMembers");
2931 OS << "\n\n";
2933 OS << " static bool classof(const Attr *A) { return A->getKind() == "
2934 << "attr::" << R.getName() << "; }\n";
2936 OS << "};\n\n";
2937 } else {
2938 if (DelayedArgs)
2939 DelayedArgs->writeAccessorDefinitions(OS);
2941 OS << R.getName() << "Attr *" << R.getName()
2942 << "Attr::clone(ASTContext &C) const {\n";
2943 OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this";
2944 for (auto const &ai : Args) {
2945 OS << ", ";
2946 ai->writeCloneArgs(OS);
2948 OS << ");\n";
2949 OS << " A->Inherited = Inherited;\n";
2950 OS << " A->IsPackExpansion = IsPackExpansion;\n";
2951 OS << " A->setImplicit(Implicit);\n";
2952 if (DelayedArgs) {
2953 OS << " A->setDelayedArgs(C, ";
2954 DelayedArgs->writeCloneArgs(OS);
2955 OS << ");\n";
2957 OS << " return A;\n}\n\n";
2959 writePrettyPrintFunction(R, Args, OS);
2960 writeGetSpellingFunction(R, OS);
2964 // Emits the class definitions for attributes.
2965 void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
2966 emitSourceFileHeader("Attribute classes' definitions", OS, Records);
2968 OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
2969 OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
2971 emitAttributes(Records, OS, true);
2973 OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
2976 // Emits the class method definitions for attributes.
2977 void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
2978 emitSourceFileHeader("Attribute classes' member function definitions", OS,
2979 Records);
2981 emitAttributes(Records, OS, false);
2983 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2985 // Instead of relying on virtual dispatch we just create a huge dispatch
2986 // switch. This is both smaller and faster than virtual functions.
2987 auto EmitFunc = [&](const char *Method) {
2988 OS << " switch (getKind()) {\n";
2989 for (const auto *Attr : Attrs) {
2990 const Record &R = *Attr;
2991 if (!R.getValueAsBit("ASTNode"))
2992 continue;
2994 OS << " case attr::" << R.getName() << ":\n";
2995 OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
2996 << ";\n";
2998 OS << " }\n";
2999 OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
3000 OS << "}\n\n";
3003 OS << "const char *Attr::getSpelling() const {\n";
3004 EmitFunc("getSpelling()");
3006 OS << "Attr *Attr::clone(ASTContext &C) const {\n";
3007 EmitFunc("clone(C)");
3009 OS << "void Attr::printPretty(raw_ostream &OS, "
3010 "const PrintingPolicy &Policy) const {\n";
3011 EmitFunc("printPretty(OS, Policy)");
3014 static void emitAttrList(raw_ostream &OS, StringRef Class,
3015 const std::vector<Record*> &AttrList) {
3016 for (auto Cur : AttrList) {
3017 OS << Class << "(" << Cur->getName() << ")\n";
3021 // Determines if an attribute has a Pragma spelling.
3022 static bool AttrHasPragmaSpelling(const Record *R) {
3023 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3024 return llvm::any_of(Spellings, [](const FlattenedSpelling &S) {
3025 return S.variety() == "Pragma";
3029 namespace {
3031 struct AttrClassDescriptor {
3032 const char * const MacroName;
3033 const char * const TableGenName;
3036 } // end anonymous namespace
3038 static const AttrClassDescriptor AttrClassDescriptors[] = {
3039 { "ATTR", "Attr" },
3040 { "TYPE_ATTR", "TypeAttr" },
3041 { "STMT_ATTR", "StmtAttr" },
3042 { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" },
3043 { "INHERITABLE_ATTR", "InheritableAttr" },
3044 { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
3045 { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
3046 { "PARAMETER_ABI_ATTR", "ParameterABIAttr" },
3047 { "HLSL_ANNOTATION_ATTR", "HLSLAnnotationAttr"}
3050 static void emitDefaultDefine(raw_ostream &OS, StringRef name,
3051 const char *superName) {
3052 OS << "#ifndef " << name << "\n";
3053 OS << "#define " << name << "(NAME) ";
3054 if (superName) OS << superName << "(NAME)";
3055 OS << "\n#endif\n\n";
3058 namespace {
3060 /// A class of attributes.
3061 struct AttrClass {
3062 const AttrClassDescriptor &Descriptor;
3063 Record *TheRecord;
3064 AttrClass *SuperClass = nullptr;
3065 std::vector<AttrClass*> SubClasses;
3066 std::vector<Record*> Attrs;
3068 AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
3069 : Descriptor(Descriptor), TheRecord(R) {}
3071 void emitDefaultDefines(raw_ostream &OS) const {
3072 // Default the macro unless this is a root class (i.e. Attr).
3073 if (SuperClass) {
3074 emitDefaultDefine(OS, Descriptor.MacroName,
3075 SuperClass->Descriptor.MacroName);
3079 void emitUndefs(raw_ostream &OS) const {
3080 OS << "#undef " << Descriptor.MacroName << "\n";
3083 void emitAttrList(raw_ostream &OS) const {
3084 for (auto SubClass : SubClasses) {
3085 SubClass->emitAttrList(OS);
3088 ::emitAttrList(OS, Descriptor.MacroName, Attrs);
3091 void classifyAttrOnRoot(Record *Attr) {
3092 bool result = classifyAttr(Attr);
3093 assert(result && "failed to classify on root"); (void) result;
3096 void emitAttrRange(raw_ostream &OS) const {
3097 OS << "ATTR_RANGE(" << Descriptor.TableGenName
3098 << ", " << getFirstAttr()->getName()
3099 << ", " << getLastAttr()->getName() << ")\n";
3102 private:
3103 bool classifyAttr(Record *Attr) {
3104 // Check all the subclasses.
3105 for (auto SubClass : SubClasses) {
3106 if (SubClass->classifyAttr(Attr))
3107 return true;
3110 // It's not more specific than this class, but it might still belong here.
3111 if (Attr->isSubClassOf(TheRecord)) {
3112 Attrs.push_back(Attr);
3113 return true;
3116 return false;
3119 Record *getFirstAttr() const {
3120 if (!SubClasses.empty())
3121 return SubClasses.front()->getFirstAttr();
3122 return Attrs.front();
3125 Record *getLastAttr() const {
3126 if (!Attrs.empty())
3127 return Attrs.back();
3128 return SubClasses.back()->getLastAttr();
3132 /// The entire hierarchy of attribute classes.
3133 class AttrClassHierarchy {
3134 std::vector<std::unique_ptr<AttrClass>> Classes;
3136 public:
3137 AttrClassHierarchy(RecordKeeper &Records) {
3138 // Find records for all the classes.
3139 for (auto &Descriptor : AttrClassDescriptors) {
3140 Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
3141 AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
3142 Classes.emplace_back(Class);
3145 // Link up the hierarchy.
3146 for (auto &Class : Classes) {
3147 if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
3148 Class->SuperClass = SuperClass;
3149 SuperClass->SubClasses.push_back(Class.get());
3153 #ifndef NDEBUG
3154 for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
3155 assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
3156 "only the first class should be a root class!");
3158 #endif
3161 void emitDefaultDefines(raw_ostream &OS) const {
3162 for (auto &Class : Classes) {
3163 Class->emitDefaultDefines(OS);
3167 void emitUndefs(raw_ostream &OS) const {
3168 for (auto &Class : Classes) {
3169 Class->emitUndefs(OS);
3173 void emitAttrLists(raw_ostream &OS) const {
3174 // Just start from the root class.
3175 Classes[0]->emitAttrList(OS);
3178 void emitAttrRanges(raw_ostream &OS) const {
3179 for (auto &Class : Classes)
3180 Class->emitAttrRange(OS);
3183 void classifyAttr(Record *Attr) {
3184 // Add the attribute to the root class.
3185 Classes[0]->classifyAttrOnRoot(Attr);
3188 private:
3189 AttrClass *findClassByRecord(Record *R) const {
3190 for (auto &Class : Classes) {
3191 if (Class->TheRecord == R)
3192 return Class.get();
3194 return nullptr;
3197 AttrClass *findSuperClass(Record *R) const {
3198 // TableGen flattens the superclass list, so we just need to walk it
3199 // in reverse.
3200 auto SuperClasses = R->getSuperClasses();
3201 for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
3202 auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
3203 if (SuperClass) return SuperClass;
3205 return nullptr;
3209 } // end anonymous namespace
3211 namespace clang {
3213 // Emits the enumeration list for attributes.
3214 void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
3215 emitSourceFileHeader("List of all attributes that Clang recognizes", OS,
3216 Records);
3218 AttrClassHierarchy Hierarchy(Records);
3220 // Add defaulting macro definitions.
3221 Hierarchy.emitDefaultDefines(OS);
3222 emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
3224 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3225 std::vector<Record *> PragmaAttrs;
3226 for (auto *Attr : Attrs) {
3227 if (!Attr->getValueAsBit("ASTNode"))
3228 continue;
3230 // Add the attribute to the ad-hoc groups.
3231 if (AttrHasPragmaSpelling(Attr))
3232 PragmaAttrs.push_back(Attr);
3234 // Place it in the hierarchy.
3235 Hierarchy.classifyAttr(Attr);
3238 // Emit the main attribute list.
3239 Hierarchy.emitAttrLists(OS);
3241 // Emit the ad hoc groups.
3242 emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
3244 // Emit the attribute ranges.
3245 OS << "#ifdef ATTR_RANGE\n";
3246 Hierarchy.emitAttrRanges(OS);
3247 OS << "#undef ATTR_RANGE\n";
3248 OS << "#endif\n";
3250 Hierarchy.emitUndefs(OS);
3251 OS << "#undef PRAGMA_SPELLING_ATTR\n";
3254 // Emits the enumeration list for attributes.
3255 void EmitClangAttrPrintList(const std::string &FieldName, RecordKeeper &Records,
3256 raw_ostream &OS) {
3257 emitSourceFileHeader(
3258 "List of attributes that can be print on the left side of a decl", OS,
3259 Records);
3261 AttrClassHierarchy Hierarchy(Records);
3263 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3264 std::vector<Record *> PragmaAttrs;
3265 bool first = false;
3267 for (auto *Attr : Attrs) {
3268 if (!Attr->getValueAsBit("ASTNode"))
3269 continue;
3271 if (!Attr->getValueAsBit(FieldName))
3272 continue;
3274 if (!first) {
3275 first = true;
3276 OS << "#define CLANG_ATTR_LIST_" << FieldName;
3279 OS << " \\\n case attr::" << Attr->getName() << ":";
3282 OS << '\n';
3285 // Emits the enumeration list for attributes.
3286 void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
3287 emitSourceFileHeader(
3288 "List of all attribute subject matching rules that Clang recognizes", OS,
3289 Records);
3290 PragmaClangAttributeSupport &PragmaAttributeSupport =
3291 getPragmaAttributeSupport(Records);
3292 emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
3293 PragmaAttributeSupport.emitMatchRuleList(OS);
3294 OS << "#undef ATTR_MATCH_RULE\n";
3297 // Emits the code to read an attribute from a precompiled header.
3298 void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
3299 emitSourceFileHeader("Attribute deserialization code", OS, Records);
3301 Record *InhClass = Records.getClass("InheritableAttr");
3302 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
3303 ArgRecords;
3304 std::vector<std::unique_ptr<Argument>> Args;
3305 std::unique_ptr<VariadicExprArgument> DelayedArgs;
3307 OS << " switch (Kind) {\n";
3308 for (const auto *Attr : Attrs) {
3309 const Record &R = *Attr;
3310 if (!R.getValueAsBit("ASTNode"))
3311 continue;
3313 OS << " case attr::" << R.getName() << ": {\n";
3314 if (R.isSubClassOf(InhClass))
3315 OS << " bool isInherited = Record.readInt();\n";
3316 OS << " bool isImplicit = Record.readInt();\n";
3317 OS << " bool isPackExpansion = Record.readInt();\n";
3318 DelayedArgs = nullptr;
3319 if (Attr->getValueAsBit("AcceptsExprPack")) {
3320 DelayedArgs =
3321 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
3322 DelayedArgs->writePCHReadDecls(OS);
3324 ArgRecords = R.getValueAsListOfDefs("Args");
3325 Args.clear();
3326 for (const auto *Arg : ArgRecords) {
3327 Args.emplace_back(createArgument(*Arg, R.getName()));
3328 Args.back()->writePCHReadDecls(OS);
3330 OS << " New = new (Context) " << R.getName() << "Attr(Context, Info";
3331 for (auto const &ri : Args) {
3332 OS << ", ";
3333 ri->writePCHReadArgs(OS);
3335 OS << ");\n";
3336 if (R.isSubClassOf(InhClass))
3337 OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
3338 OS << " New->setImplicit(isImplicit);\n";
3339 OS << " New->setPackExpansion(isPackExpansion);\n";
3340 if (DelayedArgs) {
3341 OS << " cast<" << R.getName()
3342 << "Attr>(New)->setDelayedArgs(Context, ";
3343 DelayedArgs->writePCHReadArgs(OS);
3344 OS << ");\n";
3346 OS << " break;\n";
3347 OS << " }\n";
3349 OS << " }\n";
3352 // Emits the code to write an attribute to a precompiled header.
3353 void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
3354 emitSourceFileHeader("Attribute serialization code", OS, Records);
3356 Record *InhClass = Records.getClass("InheritableAttr");
3357 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
3359 OS << " switch (A->getKind()) {\n";
3360 for (const auto *Attr : Attrs) {
3361 const Record &R = *Attr;
3362 if (!R.getValueAsBit("ASTNode"))
3363 continue;
3364 OS << " case attr::" << R.getName() << ": {\n";
3365 Args = R.getValueAsListOfDefs("Args");
3366 if (R.isSubClassOf(InhClass) || !Args.empty())
3367 OS << " const auto *SA = cast<" << R.getName()
3368 << "Attr>(A);\n";
3369 if (R.isSubClassOf(InhClass))
3370 OS << " Record.push_back(SA->isInherited());\n";
3371 OS << " Record.push_back(A->isImplicit());\n";
3372 OS << " Record.push_back(A->isPackExpansion());\n";
3373 if (Attr->getValueAsBit("AcceptsExprPack"))
3374 VariadicExprArgument("DelayedArgs", R.getName()).writePCHWrite(OS);
3376 for (const auto *Arg : Args)
3377 createArgument(*Arg, R.getName())->writePCHWrite(OS);
3378 OS << " break;\n";
3379 OS << " }\n";
3381 OS << " }\n";
3384 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
3385 // parameter with only a single check type, if applicable.
3386 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
3387 std::string *FnName,
3388 StringRef ListName,
3389 StringRef CheckAgainst,
3390 StringRef Scope) {
3391 if (!R->isValueUnset(ListName)) {
3392 Test += " && (";
3393 std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
3394 for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
3395 StringRef Part = *I;
3396 Test += CheckAgainst;
3397 Test += " == ";
3398 Test += Scope;
3399 Test += Part;
3400 if (I + 1 != E)
3401 Test += " || ";
3402 if (FnName)
3403 *FnName += Part;
3405 Test += ")";
3406 return true;
3408 return false;
3411 // Generate a conditional expression to check if the current target satisfies
3412 // the conditions for a TargetSpecificAttr record, and append the code for
3413 // those checks to the Test string. If the FnName string pointer is non-null,
3414 // append a unique suffix to distinguish this set of target checks from other
3415 // TargetSpecificAttr records.
3416 static bool GenerateTargetSpecificAttrChecks(const Record *R,
3417 std::vector<StringRef> &Arches,
3418 std::string &Test,
3419 std::string *FnName) {
3420 bool AnyTargetChecks = false;
3422 // It is assumed that there will be an llvm::Triple object
3423 // named "T" and a TargetInfo object named "Target" within
3424 // scope that can be used to determine whether the attribute exists in
3425 // a given target.
3426 Test += "true";
3427 // If one or more architectures is specified, check those. Arches are handled
3428 // differently because GenerateTargetRequirements needs to combine the list
3429 // with ParseKind.
3430 if (!Arches.empty()) {
3431 AnyTargetChecks = true;
3432 Test += " && (";
3433 for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3434 StringRef Part = *I;
3435 Test += "T.getArch() == llvm::Triple::";
3436 Test += Part;
3437 if (I + 1 != E)
3438 Test += " || ";
3439 if (FnName)
3440 *FnName += Part;
3442 Test += ")";
3445 // If the attribute is specific to particular OSes, check those.
3446 AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3447 R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
3449 // If one or more object formats is specified, check those.
3450 AnyTargetChecks |=
3451 GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
3452 "T.getObjectFormat()", "llvm::Triple::");
3454 // If custom code is specified, emit it.
3455 StringRef Code = R->getValueAsString("CustomCode");
3456 if (!Code.empty()) {
3457 AnyTargetChecks = true;
3458 Test += " && (";
3459 Test += Code;
3460 Test += ")";
3463 return AnyTargetChecks;
3466 static void GenerateHasAttrSpellingStringSwitch(
3467 const std::vector<std::pair<const Record *, FlattenedSpelling>> &Attrs,
3468 raw_ostream &OS, const std::string &Variety,
3469 const std::string &Scope = "") {
3470 for (const auto &[Attr, Spelling] : Attrs) {
3471 // C++11-style attributes have specific version information associated with
3472 // them. If the attribute has no scope, the version information must not
3473 // have the default value (1), as that's incorrect. Instead, the unscoped
3474 // attribute version information should be taken from the SD-6 standing
3475 // document, which can be found at:
3476 // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3478 // C23-style attributes have the same kind of version information
3479 // associated with them. The unscoped attribute version information should
3480 // be taken from the specification of the attribute in the C Standard.
3482 // Clang-specific attributes have the same kind of version information
3483 // associated with them. This version is typically the default value (1).
3484 // These version values are clang-specific and should typically be
3485 // incremented once the attribute changes its syntax and/or semantics in a
3486 // a way that is impactful to the end user.
3487 int Version = 1;
3489 assert(Spelling.variety() == Variety);
3490 std::string Name = "";
3491 if (Spelling.nameSpace().empty() || Scope == Spelling.nameSpace()) {
3492 Name = Spelling.name();
3493 Version = static_cast<int>(
3494 Spelling.getSpellingRecord().getValueAsInt("Version"));
3495 // Verify that explicitly specified CXX11 and C23 spellings (i.e.
3496 // not inferred from Clang/GCC spellings) have a version that's
3497 // different from the default (1).
3498 bool RequiresValidVersion =
3499 (Variety == "CXX11" || Variety == "C23") &&
3500 Spelling.getSpellingRecord().getValueAsString("Variety") == Variety;
3501 if (RequiresValidVersion && Scope.empty() && Version == 1)
3502 PrintError(Spelling.getSpellingRecord().getLoc(),
3503 "Standard attributes must have "
3504 "valid version information.");
3507 std::string Test;
3508 if (Attr->isSubClassOf("TargetSpecificAttr")) {
3509 const Record *R = Attr->getValueAsDef("Target");
3510 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3511 GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
3513 // If this is the C++11 variety, also add in the LangOpts test.
3514 if (Variety == "CXX11")
3515 Test += " && LangOpts.CPlusPlus11";
3516 } else if (!Attr->getValueAsListOfDefs("TargetSpecificSpellings").empty()) {
3517 // Add target checks if this spelling is target-specific.
3518 const std::vector<Record *> TargetSpellings =
3519 Attr->getValueAsListOfDefs("TargetSpecificSpellings");
3520 for (const auto &TargetSpelling : TargetSpellings) {
3521 // Find spelling that matches current scope and name.
3522 for (const auto &Spelling : GetFlattenedSpellings(*TargetSpelling)) {
3523 if (Scope == Spelling.nameSpace() && Name == Spelling.name()) {
3524 const Record *Target = TargetSpelling->getValueAsDef("Target");
3525 std::vector<StringRef> Arches =
3526 Target->getValueAsListOfStrings("Arches");
3527 GenerateTargetSpecificAttrChecks(Target, Arches, Test,
3528 /*FnName=*/nullptr);
3529 break;
3534 if (Variety == "CXX11")
3535 Test += " && LangOpts.CPlusPlus11";
3536 } else if (Variety == "CXX11")
3537 // C++11 mode should be checked against LangOpts, which is presumed to be
3538 // present in the caller.
3539 Test = "LangOpts.CPlusPlus11";
3541 std::string TestStr = !Test.empty()
3542 ? Test + " ? " + llvm::itostr(Version) + " : 0"
3543 : llvm::itostr(Version);
3544 if (Scope.empty() || Scope == Spelling.nameSpace())
3545 OS << " .Case(\"" << Spelling.name() << "\", " << TestStr << ")\n";
3547 OS << " .Default(0);\n";
3550 // Emits the list of tokens for regular keyword attributes.
3551 void EmitClangAttrTokenKinds(RecordKeeper &Records, raw_ostream &OS) {
3552 emitSourceFileHeader("A list of tokens generated from the attribute"
3553 " definitions",
3554 OS);
3555 // Assume for now that the same token is not used in multiple regular
3556 // keyword attributes.
3557 for (auto *R : Records.getAllDerivedDefinitions("Attr"))
3558 for (const auto &S : GetFlattenedSpellings(*R))
3559 if (isRegularKeywordAttribute(S)) {
3560 if (!R->getValueAsListOfDefs("Args").empty())
3561 PrintError(R->getLoc(),
3562 "RegularKeyword attributes with arguments are not "
3563 "yet supported");
3564 OS << "KEYWORD_ATTRIBUTE("
3565 << S.getSpellingRecord().getValueAsString("Name") << ")\n";
3567 OS << "#undef KEYWORD_ATTRIBUTE\n";
3570 // Emits the list of spellings for attributes.
3571 void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3572 emitSourceFileHeader("Code to implement the __has_attribute logic", OS,
3573 Records);
3575 // Separate all of the attributes out into four group: generic, C++11, GNU,
3576 // and declspecs. Then generate a big switch statement for each of them.
3577 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3578 std::vector<std::pair<const Record *, FlattenedSpelling>> Declspec, Microsoft,
3579 GNU, Pragma, HLSLSemantic;
3580 std::map<std::string,
3581 std::vector<std::pair<const Record *, FlattenedSpelling>>>
3582 CXX, C23;
3584 // Walk over the list of all attributes, and split them out based on the
3585 // spelling variety.
3586 for (auto *R : Attrs) {
3587 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3588 for (const auto &SI : Spellings) {
3589 const std::string &Variety = SI.variety();
3590 if (Variety == "GNU")
3591 GNU.emplace_back(R, SI);
3592 else if (Variety == "Declspec")
3593 Declspec.emplace_back(R, SI);
3594 else if (Variety == "Microsoft")
3595 Microsoft.emplace_back(R, SI);
3596 else if (Variety == "CXX11")
3597 CXX[SI.nameSpace()].emplace_back(R, SI);
3598 else if (Variety == "C23")
3599 C23[SI.nameSpace()].emplace_back(R, SI);
3600 else if (Variety == "Pragma")
3601 Pragma.emplace_back(R, SI);
3602 else if (Variety == "HLSLSemantic")
3603 HLSLSemantic.emplace_back(R, SI);
3607 OS << "const llvm::Triple &T = Target.getTriple();\n";
3608 OS << "switch (Syntax) {\n";
3609 OS << "case AttributeCommonInfo::Syntax::AS_GNU:\n";
3610 OS << " return llvm::StringSwitch<int>(Name)\n";
3611 GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
3612 OS << "case AttributeCommonInfo::Syntax::AS_Declspec:\n";
3613 OS << " return llvm::StringSwitch<int>(Name)\n";
3614 GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
3615 OS << "case AttributeCommonInfo::Syntax::AS_Microsoft:\n";
3616 OS << " return llvm::StringSwitch<int>(Name)\n";
3617 GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
3618 OS << "case AttributeCommonInfo::Syntax::AS_Pragma:\n";
3619 OS << " return llvm::StringSwitch<int>(Name)\n";
3620 GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
3621 OS << "case AttributeCommonInfo::Syntax::AS_HLSLSemantic:\n";
3622 OS << " return llvm::StringSwitch<int>(Name)\n";
3623 GenerateHasAttrSpellingStringSwitch(HLSLSemantic, OS, "HLSLSemantic");
3624 auto fn = [&OS](const char *Spelling,
3625 const std::map<
3626 std::string,
3627 std::vector<std::pair<const Record *, FlattenedSpelling>>>
3628 &List) {
3629 OS << "case AttributeCommonInfo::Syntax::AS_" << Spelling << ": {\n";
3630 // C++11-style attributes are further split out based on the Scope.
3631 for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
3632 if (I != List.cbegin())
3633 OS << " else ";
3634 if (I->first.empty())
3635 OS << "if (ScopeName == \"\") {\n";
3636 else
3637 OS << "if (ScopeName == \"" << I->first << "\") {\n";
3638 OS << " return llvm::StringSwitch<int>(Name)\n";
3639 GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
3640 OS << "}";
3642 OS << "\n} break;\n";
3644 fn("CXX11", CXX);
3645 fn("C23", C23);
3646 OS << "case AttributeCommonInfo::Syntax::AS_Keyword:\n";
3647 OS << "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n";
3648 OS << " llvm_unreachable(\"hasAttribute not supported for keyword\");\n";
3649 OS << " return 0;\n";
3650 OS << "case AttributeCommonInfo::Syntax::AS_Implicit:\n";
3651 OS << " llvm_unreachable (\"hasAttribute not supported for "
3652 "AS_Implicit\");\n";
3653 OS << " return 0;\n";
3655 OS << "}\n";
3658 void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
3659 emitSourceFileHeader("Code to translate different attribute spellings into "
3660 "internal identifiers",
3661 OS, Records);
3663 OS << " switch (getParsedKind()) {\n";
3664 OS << " case IgnoredAttribute:\n";
3665 OS << " case UnknownAttribute:\n";
3666 OS << " case NoSemaHandlerAttribute:\n";
3667 OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3669 ParsedAttrMap Attrs = getParsedAttrList(Records);
3670 for (const auto &I : Attrs) {
3671 const Record &R = *I.second;
3672 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3673 OS << " case AT_" << I.first << ": {\n";
3674 for (unsigned I = 0; I < Spellings.size(); ++ I) {
3675 OS << " if (Name == \"" << Spellings[I].name() << "\" && "
3676 << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety()
3677 << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
3678 << " return " << I << ";\n";
3681 OS << " break;\n";
3682 OS << " }\n";
3685 OS << " }\n";
3686 OS << " return 0;\n";
3689 // Emits code used by RecursiveASTVisitor to visit attributes
3690 void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
3691 emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS,
3692 Records);
3694 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3696 // Write method declarations for Traverse* methods.
3697 // We emit this here because we only generate methods for attributes that
3698 // are declared as ASTNodes.
3699 OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3700 for (const auto *Attr : Attrs) {
3701 const Record &R = *Attr;
3702 if (!R.getValueAsBit("ASTNode"))
3703 continue;
3704 OS << " bool Traverse"
3705 << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3706 OS << " bool Visit"
3707 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3708 << " return true; \n"
3709 << " }\n";
3711 OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3713 // Write individual Traverse* methods for each attribute class.
3714 for (const auto *Attr : Attrs) {
3715 const Record &R = *Attr;
3716 if (!R.getValueAsBit("ASTNode"))
3717 continue;
3719 OS << "template <typename Derived>\n"
3720 << "bool VISITORCLASS<Derived>::Traverse"
3721 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3722 << " if (!getDerived().VisitAttr(A))\n"
3723 << " return false;\n"
3724 << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
3725 << " return false;\n";
3727 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3728 for (const auto *Arg : ArgRecords)
3729 createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
3731 if (Attr->getValueAsBit("AcceptsExprPack"))
3732 VariadicExprArgument("DelayedArgs", R.getName())
3733 .writeASTVisitorTraversal(OS);
3735 OS << " return true;\n";
3736 OS << "}\n\n";
3739 // Write generic Traverse routine
3740 OS << "template <typename Derived>\n"
3741 << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3742 << " if (!A)\n"
3743 << " return true;\n"
3744 << "\n"
3745 << " switch (A->getKind()) {\n";
3747 for (const auto *Attr : Attrs) {
3748 const Record &R = *Attr;
3749 if (!R.getValueAsBit("ASTNode"))
3750 continue;
3752 OS << " case attr::" << R.getName() << ":\n"
3753 << " return getDerived().Traverse" << R.getName() << "Attr("
3754 << "cast<" << R.getName() << "Attr>(A));\n";
3756 OS << " }\n"; // end switch
3757 OS << " llvm_unreachable(\"bad attribute kind\");\n";
3758 OS << "}\n"; // end function
3759 OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
3762 void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
3763 raw_ostream &OS,
3764 bool AppliesToDecl) {
3766 OS << " switch (At->getKind()) {\n";
3767 for (const auto *Attr : Attrs) {
3768 const Record &R = *Attr;
3769 if (!R.getValueAsBit("ASTNode"))
3770 continue;
3771 OS << " case attr::" << R.getName() << ": {\n";
3772 bool ShouldClone = R.getValueAsBit("Clone") &&
3773 (!AppliesToDecl ||
3774 R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3776 if (!ShouldClone) {
3777 OS << " return nullptr;\n";
3778 OS << " }\n";
3779 continue;
3782 OS << " const auto *A = cast<"
3783 << R.getName() << "Attr>(At);\n";
3784 bool TDependent = R.getValueAsBit("TemplateDependent");
3786 if (!TDependent) {
3787 OS << " return A->clone(C);\n";
3788 OS << " }\n";
3789 continue;
3792 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3793 std::vector<std::unique_ptr<Argument>> Args;
3794 Args.reserve(ArgRecords.size());
3796 for (const auto *ArgRecord : ArgRecords)
3797 Args.emplace_back(createArgument(*ArgRecord, R.getName()));
3799 for (auto const &ai : Args)
3800 ai->writeTemplateInstantiation(OS);
3802 OS << " return new (C) " << R.getName() << "Attr(C, *A";
3803 for (auto const &ai : Args) {
3804 OS << ", ";
3805 ai->writeTemplateInstantiationArgs(OS);
3807 OS << ");\n"
3808 << " }\n";
3810 OS << " } // end switch\n"
3811 << " llvm_unreachable(\"Unknown attribute!\");\n"
3812 << " return nullptr;\n";
3815 // Emits code to instantiate dependent attributes on templates.
3816 void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
3817 emitSourceFileHeader("Template instantiation code for attributes", OS,
3818 Records);
3820 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3822 OS << "namespace clang {\n"
3823 << "namespace sema {\n\n"
3824 << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
3825 << "Sema &S,\n"
3826 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3827 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
3828 OS << "}\n\n"
3829 << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
3830 << " ASTContext &C, Sema &S,\n"
3831 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3832 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
3833 OS << "}\n\n"
3834 << "} // end namespace sema\n"
3835 << "} // end namespace clang\n";
3838 // Emits the list of parsed attributes.
3839 void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
3840 emitSourceFileHeader("List of all attributes that Clang recognizes", OS,
3841 Records);
3843 OS << "#ifndef PARSED_ATTR\n";
3844 OS << "#define PARSED_ATTR(NAME) NAME\n";
3845 OS << "#endif\n\n";
3847 ParsedAttrMap Names = getParsedAttrList(Records);
3848 for (const auto &I : Names) {
3849 OS << "PARSED_ATTR(" << I.first << ")\n";
3853 static bool isArgVariadic(const Record &R, StringRef AttrName) {
3854 return createArgument(R, AttrName)->isVariadic();
3857 static void emitArgInfo(const Record &R, raw_ostream &OS) {
3858 // This function will count the number of arguments specified for the
3859 // attribute and emit the number of required arguments followed by the
3860 // number of optional arguments.
3861 std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
3862 unsigned ArgCount = 0, OptCount = 0, ArgMemberCount = 0;
3863 bool HasVariadic = false;
3864 for (const auto *Arg : Args) {
3865 // If the arg is fake, it's the user's job to supply it: general parsing
3866 // logic shouldn't need to know anything about it.
3867 if (Arg->getValueAsBit("Fake"))
3868 continue;
3869 Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
3870 ++ArgMemberCount;
3871 if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
3872 HasVariadic = true;
3875 // If there is a variadic argument, we will set the optional argument count
3876 // to its largest value. Since it's currently a 4-bit number, we set it to 15.
3877 OS << " /*NumArgs=*/" << ArgCount << ",\n";
3878 OS << " /*OptArgs=*/" << (HasVariadic ? 15 : OptCount) << ",\n";
3879 OS << " /*NumArgMembers=*/" << ArgMemberCount << ",\n";
3882 static std::string GetDiagnosticSpelling(const Record &R) {
3883 std::string Ret = std::string(R.getValueAsString("DiagSpelling"));
3884 if (!Ret.empty())
3885 return Ret;
3887 // If we couldn't find the DiagSpelling in this object, we can check to see
3888 // if the object is one that has a base, and if it is, loop up to the Base
3889 // member recursively.
3890 if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
3891 return GetDiagnosticSpelling(*Base);
3893 return "";
3896 static std::string CalculateDiagnostic(const Record &S) {
3897 // If the SubjectList object has a custom diagnostic associated with it,
3898 // return that directly.
3899 const StringRef CustomDiag = S.getValueAsString("CustomDiag");
3900 if (!CustomDiag.empty())
3901 return ("\"" + Twine(CustomDiag) + "\"").str();
3903 std::vector<std::string> DiagList;
3904 std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
3905 for (const auto *Subject : Subjects) {
3906 const Record &R = *Subject;
3907 // Get the diagnostic text from the Decl or Stmt node given.
3908 std::string V = GetDiagnosticSpelling(R);
3909 if (V.empty()) {
3910 PrintError(R.getLoc(),
3911 "Could not determine diagnostic spelling for the node: " +
3912 R.getName() + "; please add one to DeclNodes.td");
3913 } else {
3914 // The node may contain a list of elements itself, so split the elements
3915 // by a comma, and trim any whitespace.
3916 SmallVector<StringRef, 2> Frags;
3917 llvm::SplitString(V, Frags, ",");
3918 for (auto Str : Frags) {
3919 DiagList.push_back(std::string(Str.trim()));
3924 if (DiagList.empty()) {
3925 PrintFatalError(S.getLoc(),
3926 "Could not deduce diagnostic argument for Attr subjects");
3927 return "";
3930 // FIXME: this is not particularly good for localization purposes and ideally
3931 // should be part of the diagnostics engine itself with some sort of list
3932 // specifier.
3934 // A single member of the list can be returned directly.
3935 if (DiagList.size() == 1)
3936 return '"' + DiagList.front() + '"';
3938 if (DiagList.size() == 2)
3939 return '"' + DiagList[0] + " and " + DiagList[1] + '"';
3941 // If there are more than two in the list, we serialize the first N - 1
3942 // elements with a comma. This leaves the string in the state: foo, bar,
3943 // baz (but misses quux). We can then add ", and " for the last element
3944 // manually.
3945 std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
3946 return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
3949 static std::string GetSubjectWithSuffix(const Record *R) {
3950 const std::string &B = std::string(R->getName());
3951 if (B == "DeclBase")
3952 return "Decl";
3953 return B + "Decl";
3956 static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
3957 return "is" + Subject.getName().str();
3960 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
3961 std::string FnName = functionNameForCustomAppertainsTo(Subject);
3963 // If this code has already been generated, we don't need to do anything.
3964 static std::set<std::string> CustomSubjectSet;
3965 auto I = CustomSubjectSet.find(FnName);
3966 if (I != CustomSubjectSet.end())
3967 return;
3969 // This only works with non-root Decls.
3970 Record *Base = Subject.getValueAsDef(BaseFieldName);
3972 // Not currently support custom subjects within custom subjects.
3973 if (Base->isSubClassOf("SubsetSubject")) {
3974 PrintFatalError(Subject.getLoc(),
3975 "SubsetSubjects within SubsetSubjects is not supported");
3976 return;
3979 OS << "static bool " << FnName << "(const Decl *D) {\n";
3980 OS << " if (const auto *S = dyn_cast<";
3981 OS << GetSubjectWithSuffix(Base);
3982 OS << ">(D))\n";
3983 OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
3984 OS << " return false;\n";
3985 OS << "}\n\n";
3987 CustomSubjectSet.insert(FnName);
3990 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
3991 // If the attribute does not contain a Subjects definition, then use the
3992 // default appertainsTo logic.
3993 if (Attr.isValueUnset("Subjects"))
3994 return;
3996 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3997 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
3999 // If the list of subjects is empty, it is assumed that the attribute
4000 // appertains to everything.
4001 if (Subjects.empty())
4002 return;
4004 bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
4006 // Split the subjects into declaration subjects and statement subjects.
4007 // FIXME: subset subjects are added to the declaration list until there are
4008 // enough statement attributes with custom subject needs to warrant
4009 // the implementation effort.
4010 std::vector<Record *> DeclSubjects, StmtSubjects;
4011 llvm::copy_if(
4012 Subjects, std::back_inserter(DeclSubjects), [](const Record *R) {
4013 return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode");
4015 llvm::copy_if(Subjects, std::back_inserter(StmtSubjects),
4016 [](const Record *R) { return R->isSubClassOf("StmtNode"); });
4018 // We should have sorted all of the subjects into two lists.
4019 // FIXME: this assertion will be wrong if we ever add type attribute subjects.
4020 assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
4022 if (DeclSubjects.empty()) {
4023 // If there are no decl subjects but there are stmt subjects, diagnose
4024 // trying to apply a statement attribute to a declaration.
4025 if (!StmtSubjects.empty()) {
4026 OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
4027 OS << "const Decl *D) const override {\n";
4028 OS << " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n";
4029 OS << " << AL << AL.isRegularKeywordAttribute() << "
4030 "D->getLocation();\n";
4031 OS << " return false;\n";
4032 OS << "}\n\n";
4034 } else {
4035 // Otherwise, generate an appertainsTo check specific to this attribute
4036 // which checks all of the given subjects against the Decl passed in.
4037 OS << "bool diagAppertainsToDecl(Sema &S, ";
4038 OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
4039 OS << " if (";
4040 for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
4041 // If the subject has custom code associated with it, use the generated
4042 // function for it. The function cannot be inlined into this check (yet)
4043 // because it requires the subject to be of a specific type, and were that
4044 // information inlined here, it would not support an attribute with
4045 // multiple custom subjects.
4046 if ((*I)->isSubClassOf("SubsetSubject"))
4047 OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
4048 else
4049 OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
4051 if (I + 1 != E)
4052 OS << " && ";
4054 OS << ") {\n";
4055 OS << " S.Diag(Attr.getLoc(), diag::";
4056 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
4057 : "err_attribute_wrong_decl_type_str");
4058 OS << ")\n";
4059 OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
4060 OS << CalculateDiagnostic(*SubjectObj) << ";\n";
4061 OS << " return false;\n";
4062 OS << " }\n";
4063 OS << " return true;\n";
4064 OS << "}\n\n";
4067 if (StmtSubjects.empty()) {
4068 // If there are no stmt subjects but there are decl subjects, diagnose
4069 // trying to apply a declaration attribute to a statement.
4070 if (!DeclSubjects.empty()) {
4071 OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
4072 OS << "const Stmt *St) const override {\n";
4073 OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
4074 OS << " << AL << AL.isRegularKeywordAttribute() << "
4075 "St->getBeginLoc();\n";
4076 OS << " return false;\n";
4077 OS << "}\n\n";
4079 } else {
4080 // Now, do the same for statements.
4081 OS << "bool diagAppertainsToStmt(Sema &S, ";
4082 OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
4083 OS << " if (";
4084 for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
4085 OS << "!isa<" << (*I)->getName() << ">(St)";
4086 if (I + 1 != E)
4087 OS << " && ";
4089 OS << ") {\n";
4090 OS << " S.Diag(Attr.getLoc(), diag::";
4091 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
4092 : "err_attribute_wrong_decl_type_str");
4093 OS << ")\n";
4094 OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
4095 OS << CalculateDiagnostic(*SubjectObj) << ";\n";
4096 OS << " return false;\n";
4097 OS << " }\n";
4098 OS << " return true;\n";
4099 OS << "}\n\n";
4103 // Generates the mutual exclusion checks. The checks for parsed attributes are
4104 // written into OS and the checks for merging declaration attributes are
4105 // written into MergeOS.
4106 static void GenerateMutualExclusionsChecks(const Record &Attr,
4107 const RecordKeeper &Records,
4108 raw_ostream &OS,
4109 raw_ostream &MergeDeclOS,
4110 raw_ostream &MergeStmtOS) {
4111 // Find all of the definitions that inherit from MutualExclusions and include
4112 // the given attribute in the list of exclusions to generate the
4113 // diagMutualExclusion() check.
4114 std::vector<Record *> ExclusionsList =
4115 Records.getAllDerivedDefinitions("MutualExclusions");
4117 // We don't do any of this magic for type attributes yet.
4118 if (Attr.isSubClassOf("TypeAttr"))
4119 return;
4121 // This means the attribute is either a statement attribute, a decl
4122 // attribute, or both; find out which.
4123 bool CurAttrIsStmtAttr =
4124 Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr");
4125 bool CurAttrIsDeclAttr =
4126 !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr");
4128 std::vector<std::string> DeclAttrs, StmtAttrs;
4130 for (const Record *Exclusion : ExclusionsList) {
4131 std::vector<Record *> MutuallyExclusiveAttrs =
4132 Exclusion->getValueAsListOfDefs("Exclusions");
4133 auto IsCurAttr = [Attr](const Record *R) {
4134 return R->getName() == Attr.getName();
4136 if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) {
4137 // This list of exclusions includes the attribute we're looking for, so
4138 // add the exclusive attributes to the proper list for checking.
4139 for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
4140 if (IsCurAttr(AttrToExclude))
4141 continue;
4143 if (CurAttrIsStmtAttr)
4144 StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str());
4145 if (CurAttrIsDeclAttr)
4146 DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str());
4151 // If there are any decl or stmt attributes, silence -Woverloaded-virtual
4152 // warnings for them both.
4153 if (!DeclAttrs.empty() || !StmtAttrs.empty())
4154 OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n";
4156 // If we discovered any decl or stmt attributes to test for, generate the
4157 // predicates for them now.
4158 if (!DeclAttrs.empty()) {
4159 // Generate the ParsedAttrInfo subclass logic for declarations.
4160 OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
4161 << "const Decl *D) const override {\n";
4162 for (const std::string &A : DeclAttrs) {
4163 OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n";
4164 OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
4165 << " << AL << A << (AL.isRegularKeywordAttribute() ||"
4166 << " A->isRegularKeywordAttribute());\n";
4167 OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
4168 OS << " \nreturn false;\n";
4169 OS << " }\n";
4171 OS << " return true;\n";
4172 OS << " }\n\n";
4174 // Also generate the declaration attribute merging logic if the current
4175 // attribute is one that can be inheritted on a declaration. It is assumed
4176 // this code will be executed in the context of a function with parameters:
4177 // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
4178 // true on success).
4179 if (Attr.isSubClassOf("InheritableAttr")) {
4180 MergeDeclOS << " if (const auto *Second = dyn_cast<"
4181 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
4182 for (const std::string &A : DeclAttrs) {
4183 MergeDeclOS << " if (const auto *First = D->getAttr<" << A
4184 << ">()) {\n";
4185 MergeDeclOS << " S.Diag(First->getLocation(), "
4186 << "diag::err_attributes_are_not_compatible) << First << "
4187 << "Second << (First->isRegularKeywordAttribute() || "
4188 << "Second->isRegularKeywordAttribute());\n";
4189 MergeDeclOS << " S.Diag(Second->getLocation(), "
4190 << "diag::note_conflicting_attribute);\n";
4191 MergeDeclOS << " return false;\n";
4192 MergeDeclOS << " }\n";
4194 MergeDeclOS << " return true;\n";
4195 MergeDeclOS << " }\n";
4199 // Statement attributes are a bit different from declarations. With
4200 // declarations, each attribute is added to the declaration as it is
4201 // processed, and so you can look on the Decl * itself to see if there is a
4202 // conflicting attribute. Statement attributes are processed as a group
4203 // because AttributedStmt needs to tail-allocate all of the attribute nodes
4204 // at once. This means we cannot check whether the statement already contains
4205 // an attribute to check for the conflict. Instead, we need to check whether
4206 // the given list of semantic attributes contain any conflicts. It is assumed
4207 // this code will be executed in the context of a function with parameters:
4208 // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
4209 // loop which loops over the container C with a loop variable named A to
4210 // represent the current attribute to check for conflicts.
4212 // FIXME: it would be nice not to walk over the list of potential attributes
4213 // to apply to the statement more than once, but statements typically don't
4214 // have long lists of attributes on them, so re-walking the list should not
4215 // be an expensive operation.
4216 if (!StmtAttrs.empty()) {
4217 MergeStmtOS << " if (const auto *Second = dyn_cast<"
4218 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
4219 MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) "
4220 << "{ return isa<";
4221 interleave(
4222 StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; },
4223 [&] { MergeStmtOS << ", "; });
4224 MergeStmtOS << ">(Check); });\n";
4225 MergeStmtOS << " if (Iter != C.end()) {\n";
4226 MergeStmtOS << " S.Diag((*Iter)->getLocation(), "
4227 << "diag::err_attributes_are_not_compatible) << *Iter << "
4228 << "Second << ((*Iter)->isRegularKeywordAttribute() || "
4229 << "Second->isRegularKeywordAttribute());\n";
4230 MergeStmtOS << " S.Diag(Second->getLocation(), "
4231 << "diag::note_conflicting_attribute);\n";
4232 MergeStmtOS << " return false;\n";
4233 MergeStmtOS << " }\n";
4234 MergeStmtOS << " }\n";
4238 static void
4239 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
4240 raw_ostream &OS) {
4241 OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
4242 << AttributeSubjectMatchRule::EnumName << " rule) {\n";
4243 OS << " switch (rule) {\n";
4244 for (const auto &Rule : PragmaAttributeSupport.Rules) {
4245 if (Rule.isAbstractRule()) {
4246 OS << " case " << Rule.getEnumValue() << ":\n";
4247 OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n";
4248 OS << " return false;\n";
4249 continue;
4251 std::vector<Record *> Subjects = Rule.getSubjects();
4252 assert(!Subjects.empty() && "Missing subjects");
4253 OS << " case " << Rule.getEnumValue() << ":\n";
4254 OS << " return ";
4255 for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
4256 // If the subject has custom code associated with it, use the function
4257 // that was generated for GenerateAppertainsTo to check if the declaration
4258 // is valid.
4259 if ((*I)->isSubClassOf("SubsetSubject"))
4260 OS << functionNameForCustomAppertainsTo(**I) << "(D)";
4261 else
4262 OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
4264 if (I + 1 != E)
4265 OS << " || ";
4267 OS << ";\n";
4269 OS << " }\n";
4270 OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
4271 OS << "}\n\n";
4274 static void GenerateLangOptRequirements(const Record &R,
4275 raw_ostream &OS) {
4276 // If the attribute has an empty or unset list of language requirements,
4277 // use the default handler.
4278 std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
4279 if (LangOpts.empty())
4280 return;
4282 OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
4283 OS << " return " << GenerateTestExpression(LangOpts) << ";\n";
4284 OS << "}\n\n";
4287 static void GenerateTargetRequirements(const Record &Attr,
4288 const ParsedAttrMap &Dupes,
4289 raw_ostream &OS) {
4290 // If the attribute is not a target specific attribute, use the default
4291 // target handler.
4292 if (!Attr.isSubClassOf("TargetSpecificAttr"))
4293 return;
4295 // Get the list of architectures to be tested for.
4296 const Record *R = Attr.getValueAsDef("Target");
4297 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
4299 // If there are other attributes which share the same parsed attribute kind,
4300 // such as target-specific attributes with a shared spelling, collapse the
4301 // duplicate architectures. This is required because a shared target-specific
4302 // attribute has only one ParsedAttr::Kind enumeration value, but it
4303 // applies to multiple target architectures. In order for the attribute to be
4304 // considered valid, all of its architectures need to be included.
4305 if (!Attr.isValueUnset("ParseKind")) {
4306 const StringRef APK = Attr.getValueAsString("ParseKind");
4307 for (const auto &I : Dupes) {
4308 if (I.first == APK) {
4309 std::vector<StringRef> DA =
4310 I.second->getValueAsDef("Target")->getValueAsListOfStrings(
4311 "Arches");
4312 Arches.insert(Arches.end(), DA.begin(), DA.end());
4317 std::string FnName = "isTarget";
4318 std::string Test;
4319 bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
4321 OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
4322 if (UsesT)
4323 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4324 OS << " return " << Test << ";\n";
4325 OS << "}\n\n";
4328 static void
4329 GenerateSpellingTargetRequirements(const Record &Attr,
4330 const std::vector<Record *> &TargetSpellings,
4331 raw_ostream &OS) {
4332 // If there are no target specific spellings, use the default target handler.
4333 if (TargetSpellings.empty())
4334 return;
4336 std::string Test;
4337 bool UsesT = false;
4338 const std::vector<FlattenedSpelling> SpellingList =
4339 GetFlattenedSpellings(Attr);
4340 for (unsigned TargetIndex = 0; TargetIndex < TargetSpellings.size();
4341 ++TargetIndex) {
4342 const auto &TargetSpelling = TargetSpellings[TargetIndex];
4343 std::vector<FlattenedSpelling> Spellings =
4344 GetFlattenedSpellings(*TargetSpelling);
4346 Test += "((SpellingListIndex == ";
4347 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
4348 Test +=
4349 llvm::itostr(getSpellingListIndex(SpellingList, Spellings[Index]));
4350 if (Index != Spellings.size() - 1)
4351 Test += " ||\n SpellingListIndex == ";
4352 else
4353 Test += ") && ";
4356 const Record *Target = TargetSpelling->getValueAsDef("Target");
4357 std::vector<StringRef> Arches = Target->getValueAsListOfStrings("Arches");
4358 std::string FnName = "isTargetSpelling";
4359 UsesT |= GenerateTargetSpecificAttrChecks(Target, Arches, Test, &FnName);
4360 Test += ")";
4361 if (TargetIndex != TargetSpellings.size() - 1)
4362 Test += " || ";
4365 OS << "bool spellingExistsInTarget(const TargetInfo &Target,\n";
4366 OS << " const unsigned SpellingListIndex) const "
4367 "override {\n";
4368 if (UsesT)
4369 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4370 OS << " return " << Test << ";\n", OS << "}\n\n";
4373 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
4374 raw_ostream &OS) {
4375 // If the attribute does not have a semantic form, we can bail out early.
4376 if (!Attr.getValueAsBit("ASTNode"))
4377 return;
4379 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4381 // If there are zero or one spellings, or all of the spellings share the same
4382 // name, we can also bail out early.
4383 if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
4384 return;
4386 // Generate the enumeration we will use for the mapping.
4387 SemanticSpellingMap SemanticToSyntacticMap;
4388 std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
4389 std::string Name = Attr.getName().str() + "AttrSpellingMap";
4391 OS << "unsigned spellingIndexToSemanticSpelling(";
4392 OS << "const ParsedAttr &Attr) const override {\n";
4393 OS << Enum;
4394 OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
4395 WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
4396 OS << "}\n\n";
4399 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
4400 // Only generate if Attr can be handled simply.
4401 if (!Attr.getValueAsBit("SimpleHandler"))
4402 return;
4404 // Generate a function which just converts from ParsedAttr to the Attr type.
4405 OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
4406 OS << "const ParsedAttr &Attr) const override {\n";
4407 OS << " D->addAttr(::new (S.Context) " << Attr.getName();
4408 OS << "Attr(S.Context, Attr));\n";
4409 OS << " return AttributeApplied;\n";
4410 OS << "}\n\n";
4413 static bool isParamExpr(const Record *Arg) {
4414 return !Arg->getSuperClasses().empty() &&
4415 llvm::StringSwitch<bool>(
4416 Arg->getSuperClasses().back().first->getName())
4417 .Case("ExprArgument", true)
4418 .Case("VariadicExprArgument", true)
4419 .Default(false);
4422 void GenerateIsParamExpr(const Record &Attr, raw_ostream &OS) {
4423 OS << "bool isParamExpr(size_t N) const override {\n";
4424 OS << " return ";
4425 auto Args = Attr.getValueAsListOfDefs("Args");
4426 for (size_t I = 0; I < Args.size(); ++I)
4427 if (isParamExpr(Args[I]))
4428 OS << "(N == " << I << ") || ";
4429 OS << "false;\n";
4430 OS << "}\n\n";
4433 void GenerateHandleAttrWithDelayedArgs(RecordKeeper &Records, raw_ostream &OS) {
4434 OS << "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, ";
4435 OS << "const ParsedAttr &Attr) {\n";
4436 OS << " SmallVector<Expr *, 4> ArgExprs;\n";
4437 OS << " ArgExprs.reserve(Attr.getNumArgs());\n";
4438 OS << " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n";
4439 OS << " assert(!Attr.isArgIdent(I));\n";
4440 OS << " ArgExprs.push_back(Attr.getArgAsExpr(I));\n";
4441 OS << " }\n";
4442 OS << " clang::Attr *CreatedAttr = nullptr;\n";
4443 OS << " switch (Attr.getKind()) {\n";
4444 OS << " default:\n";
4445 OS << " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n";
4446 ParsedAttrMap Attrs = getParsedAttrList(Records);
4447 for (const auto &I : Attrs) {
4448 const Record &R = *I.second;
4449 if (!R.getValueAsBit("AcceptsExprPack"))
4450 continue;
4451 OS << " case ParsedAttr::AT_" << I.first << ": {\n";
4452 OS << " CreatedAttr = " << R.getName() << "Attr::CreateWithDelayedArgs";
4453 OS << "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n";
4454 OS << " break;\n";
4455 OS << " }\n";
4457 OS << " }\n";
4458 OS << " D->addAttr(CreatedAttr);\n";
4459 OS << "}\n\n";
4462 static bool IsKnownToGCC(const Record &Attr) {
4463 // Look at the spellings for this subject; if there are any spellings which
4464 // claim to be known to GCC, the attribute is known to GCC.
4465 return llvm::any_of(
4466 GetFlattenedSpellings(Attr),
4467 [](const FlattenedSpelling &S) { return S.knownToGCC(); });
4470 /// Emits the parsed attribute helpers
4471 void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
4472 emitSourceFileHeader("Parsed attribute helpers", OS, Records);
4474 OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
4475 << "!defined(WANT_STMT_MERGE_LOGIC)\n";
4476 PragmaClangAttributeSupport &PragmaAttributeSupport =
4477 getPragmaAttributeSupport(Records);
4479 // Get the list of parsed attributes, and accept the optional list of
4480 // duplicates due to the ParseKind.
4481 ParsedAttrMap Dupes;
4482 ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
4484 // Generate all of the custom appertainsTo functions that the attributes
4485 // will be using.
4486 for (const auto &I : Attrs) {
4487 const Record &Attr = *I.second;
4488 if (Attr.isValueUnset("Subjects"))
4489 continue;
4490 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
4491 for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
4492 if (Subject->isSubClassOf("SubsetSubject"))
4493 GenerateCustomAppertainsTo(*Subject, OS);
4496 // This stream is used to collect all of the declaration attribute merging
4497 // logic for performing mutual exclusion checks. This gets emitted at the
4498 // end of the file in a helper function of its own.
4499 std::string DeclMergeChecks, StmtMergeChecks;
4500 raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
4502 // Generate a ParsedAttrInfo struct for each of the attributes.
4503 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4504 // TODO: If the attribute's kind appears in the list of duplicates, that is
4505 // because it is a target-specific attribute that appears multiple times.
4506 // It would be beneficial to test whether the duplicates are "similar
4507 // enough" to each other to not cause problems. For instance, check that
4508 // the spellings are identical, and custom parsing rules match, etc.
4510 // We need to generate struct instances based off ParsedAttrInfo from
4511 // ParsedAttr.cpp.
4512 const std::string &AttrName = I->first;
4513 const Record &Attr = *I->second;
4514 auto Spellings = GetFlattenedSpellings(Attr);
4515 if (!Spellings.empty()) {
4516 OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
4517 << "Spellings[] = {\n";
4518 for (const auto &S : Spellings) {
4519 const std::string &RawSpelling = S.name();
4520 std::string Spelling;
4521 if (!S.nameSpace().empty())
4522 Spelling += S.nameSpace() + "::";
4523 if (S.variety() == "GNU")
4524 Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4525 else
4526 Spelling += RawSpelling;
4527 OS << " {AttributeCommonInfo::AS_" << S.variety();
4528 OS << ", \"" << Spelling << "\"},\n";
4530 OS << "};\n";
4533 std::vector<std::string> ArgNames;
4534 for (const auto &Arg : Attr.getValueAsListOfDefs("Args")) {
4535 bool UnusedUnset;
4536 if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset))
4537 continue;
4538 ArgNames.push_back(Arg->getValueAsString("Name").str());
4539 for (const auto &Class : Arg->getSuperClasses()) {
4540 if (Class.first->getName().starts_with("Variadic")) {
4541 ArgNames.back().append("...");
4542 break;
4546 if (!ArgNames.empty()) {
4547 OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n";
4548 for (const auto &N : ArgNames)
4549 OS << '"' << N << "\",";
4550 OS << "};\n";
4553 OS << "struct ParsedAttrInfo" << I->first
4554 << " final : public ParsedAttrInfo {\n";
4555 OS << " constexpr ParsedAttrInfo" << I->first << "() : ParsedAttrInfo(\n";
4556 OS << " /*AttrKind=*/ParsedAttr::AT_" << AttrName << ",\n";
4557 emitArgInfo(Attr, OS);
4558 OS << " /*HasCustomParsing=*/";
4559 OS << Attr.getValueAsBit("HasCustomParsing") << ",\n";
4560 OS << " /*AcceptsExprPack=*/";
4561 OS << Attr.getValueAsBit("AcceptsExprPack") << ",\n";
4562 OS << " /*IsTargetSpecific=*/";
4563 OS << Attr.isSubClassOf("TargetSpecificAttr") << ",\n";
4564 OS << " /*IsType=*/";
4565 OS << (Attr.isSubClassOf("TypeAttr") || Attr.isSubClassOf("DeclOrTypeAttr"))
4566 << ",\n";
4567 OS << " /*IsStmt=*/";
4568 OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"))
4569 << ",\n";
4570 OS << " /*IsKnownToGCC=*/";
4571 OS << IsKnownToGCC(Attr) << ",\n";
4572 OS << " /*IsSupportedByPragmaAttribute=*/";
4573 OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ",\n";
4574 if (!Spellings.empty())
4575 OS << " /*Spellings=*/" << I->first << "Spellings,\n";
4576 else
4577 OS << " /*Spellings=*/{},\n";
4578 if (!ArgNames.empty())
4579 OS << " /*ArgNames=*/" << I->first << "ArgNames";
4580 else
4581 OS << " /*ArgNames=*/{}";
4582 OS << ") {}\n";
4583 GenerateAppertainsTo(Attr, OS);
4584 GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
4585 GenerateLangOptRequirements(Attr, OS);
4586 GenerateTargetRequirements(Attr, Dupes, OS);
4587 GenerateSpellingTargetRequirements(
4588 Attr, Attr.getValueAsListOfDefs("TargetSpecificSpellings"), OS);
4589 GenerateSpellingIndexToSemanticSpelling(Attr, OS);
4590 PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
4591 GenerateHandleDeclAttribute(Attr, OS);
4592 GenerateIsParamExpr(Attr, OS);
4593 OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
4594 OS << "};\n";
4595 OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
4596 << "::Instance;\n";
4599 OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4600 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4601 OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
4603 OS << "};\n\n";
4605 // Generate function for handling attributes with delayed arguments
4606 GenerateHandleAttrWithDelayedArgs(Records, OS);
4608 // Generate the attribute match rules.
4609 emitAttributeMatchRules(PragmaAttributeSupport, OS);
4611 OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4613 // Write out the declaration merging check logic.
4614 OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4615 << "const Attr *A) {\n";
4616 OS << MergeDeclOS.str();
4617 OS << " return true;\n";
4618 OS << "}\n\n";
4620 OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4622 // Write out the statement merging check logic.
4623 OS << "static bool DiagnoseMutualExclusions(Sema &S, "
4624 << "const SmallVectorImpl<const Attr *> &C) {\n";
4625 OS << " for (const Attr *A : C) {\n";
4626 OS << MergeStmtOS.str();
4627 OS << " }\n";
4628 OS << " return true;\n";
4629 OS << "}\n\n";
4631 OS << "#endif\n";
4634 // Emits the kind list of parsed attributes
4635 void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
4636 emitSourceFileHeader("Attribute name matcher", OS, Records);
4638 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4639 std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
4640 Keywords, Pragma, C23, HLSLSemantic;
4641 std::set<std::string> Seen;
4642 for (const auto *A : Attrs) {
4643 const Record &Attr = *A;
4645 bool SemaHandler = Attr.getValueAsBit("SemaHandler");
4646 bool Ignored = Attr.getValueAsBit("Ignored");
4647 if (SemaHandler || Ignored) {
4648 // Attribute spellings can be shared between target-specific attributes,
4649 // and can be shared between syntaxes for the same attribute. For
4650 // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4651 // specific attribute, or MSP430-specific attribute. Additionally, an
4652 // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4653 // for the same semantic attribute. Ultimately, we need to map each of
4654 // these to a single AttributeCommonInfo::Kind value, but the
4655 // StringMatcher class cannot handle duplicate match strings. So we
4656 // generate a list of string to match based on the syntax, and emit
4657 // multiple string matchers depending on the syntax used.
4658 std::string AttrName;
4659 if (Attr.isSubClassOf("TargetSpecificAttr") &&
4660 !Attr.isValueUnset("ParseKind")) {
4661 AttrName = std::string(Attr.getValueAsString("ParseKind"));
4662 if (!Seen.insert(AttrName).second)
4663 continue;
4664 } else
4665 AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
4667 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4668 for (const auto &S : Spellings) {
4669 const std::string &RawSpelling = S.name();
4670 std::vector<StringMatcher::StringPair> *Matches = nullptr;
4671 std::string Spelling;
4672 const std::string &Variety = S.variety();
4673 if (Variety == "CXX11") {
4674 Matches = &CXX11;
4675 if (!S.nameSpace().empty())
4676 Spelling += S.nameSpace() + "::";
4677 } else if (Variety == "C23") {
4678 Matches = &C23;
4679 if (!S.nameSpace().empty())
4680 Spelling += S.nameSpace() + "::";
4681 } else if (Variety == "GNU")
4682 Matches = &GNU;
4683 else if (Variety == "Declspec")
4684 Matches = &Declspec;
4685 else if (Variety == "Microsoft")
4686 Matches = &Microsoft;
4687 else if (Variety == "Keyword")
4688 Matches = &Keywords;
4689 else if (Variety == "Pragma")
4690 Matches = &Pragma;
4691 else if (Variety == "HLSLSemantic")
4692 Matches = &HLSLSemantic;
4694 assert(Matches && "Unsupported spelling variety found");
4696 if (Variety == "GNU")
4697 Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4698 else
4699 Spelling += RawSpelling;
4701 if (SemaHandler)
4702 Matches->push_back(StringMatcher::StringPair(
4703 Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
4704 else
4705 Matches->push_back(StringMatcher::StringPair(
4706 Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
4711 OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
4712 OS << "AttributeCommonInfo::Syntax Syntax) {\n";
4713 OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
4714 StringMatcher("Name", GNU, OS).Emit();
4715 OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
4716 StringMatcher("Name", Declspec, OS).Emit();
4717 OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
4718 StringMatcher("Name", Microsoft, OS).Emit();
4719 OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
4720 StringMatcher("Name", CXX11, OS).Emit();
4721 OS << " } else if (AttributeCommonInfo::AS_C23 == Syntax) {\n";
4722 StringMatcher("Name", C23, OS).Emit();
4723 OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
4724 OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
4725 StringMatcher("Name", Keywords, OS).Emit();
4726 OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
4727 StringMatcher("Name", Pragma, OS).Emit();
4728 OS << " } else if (AttributeCommonInfo::AS_HLSLSemantic == Syntax) {\n";
4729 StringMatcher("Name", HLSLSemantic, OS).Emit();
4730 OS << " }\n";
4731 OS << " return AttributeCommonInfo::UnknownAttribute;\n"
4732 << "}\n";
4735 // Emits the code to dump an attribute.
4736 void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
4737 emitSourceFileHeader("Attribute text node dumper", OS, Records);
4739 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4740 for (const auto *Attr : Attrs) {
4741 const Record &R = *Attr;
4742 if (!R.getValueAsBit("ASTNode"))
4743 continue;
4745 // If the attribute has a semantically-meaningful name (which is determined
4746 // by whether there is a Spelling enumeration for it), then write out the
4747 // spelling used for the attribute.
4749 std::string FunctionContent;
4750 llvm::raw_string_ostream SS(FunctionContent);
4752 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
4753 if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
4754 SS << " OS << \" \" << A->getSpelling();\n";
4756 Args = R.getValueAsListOfDefs("Args");
4757 for (const auto *Arg : Args)
4758 createArgument(*Arg, R.getName())->writeDump(SS);
4760 if (Attr->getValueAsBit("AcceptsExprPack"))
4761 VariadicExprArgument("DelayedArgs", R.getName()).writeDump(OS);
4763 if (SS.tell()) {
4764 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
4765 << "Attr *A) {\n";
4766 if (!Args.empty())
4767 OS << " const auto *SA = cast<" << R.getName()
4768 << "Attr>(A); (void)SA;\n";
4769 OS << SS.str();
4770 OS << " }\n";
4775 void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
4776 emitSourceFileHeader("Attribute text node traverser", OS, Records);
4778 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4779 for (const auto *Attr : Attrs) {
4780 const Record &R = *Attr;
4781 if (!R.getValueAsBit("ASTNode"))
4782 continue;
4784 std::string FunctionContent;
4785 llvm::raw_string_ostream SS(FunctionContent);
4787 Args = R.getValueAsListOfDefs("Args");
4788 for (const auto *Arg : Args)
4789 createArgument(*Arg, R.getName())->writeDumpChildren(SS);
4790 if (Attr->getValueAsBit("AcceptsExprPack"))
4791 VariadicExprArgument("DelayedArgs", R.getName()).writeDumpChildren(SS);
4792 if (SS.tell()) {
4793 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
4794 << "Attr *A) {\n";
4795 if (!Args.empty())
4796 OS << " const auto *SA = cast<" << R.getName()
4797 << "Attr>(A); (void)SA;\n";
4798 OS << SS.str();
4799 OS << " }\n";
4804 void EmitClangAttrParserStringSwitches(RecordKeeper &Records, raw_ostream &OS) {
4805 emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS, Records);
4806 emitClangAttrArgContextList(Records, OS);
4807 emitClangAttrIdentifierArgList(Records, OS);
4808 emitClangAttrUnevaluatedStringLiteralList(Records, OS);
4809 emitClangAttrVariadicIdentifierArgList(Records, OS);
4810 emitClangAttrThisIsaIdentifierArgList(Records, OS);
4811 emitClangAttrAcceptsExprPack(Records, OS);
4812 emitClangAttrTypeArgList(Records, OS);
4813 emitClangAttrLateParsedList(Records, OS);
4816 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
4817 raw_ostream &OS) {
4818 getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
4821 void EmitClangAttrDocTable(RecordKeeper &Records, raw_ostream &OS) {
4822 emitSourceFileHeader("Clang attribute documentation", OS, Records);
4824 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4825 for (const auto *A : Attrs) {
4826 if (!A->getValueAsBit("ASTNode"))
4827 continue;
4828 std::vector<Record *> Docs = A->getValueAsListOfDefs("Documentation");
4829 assert(!Docs.empty());
4830 // Only look at the first documentation if there are several.
4831 // (Currently there's only one such attr, revisit if this becomes common).
4832 StringRef Text =
4833 Docs.front()->getValueAsOptionalString("Content").value_or("");
4834 OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = "
4835 << "R\"reST(" << Text.trim() << ")reST\";\n";
4839 enum class SpellingKind : size_t {
4840 GNU,
4841 CXX11,
4842 C23,
4843 Declspec,
4844 Microsoft,
4845 Keyword,
4846 Pragma,
4847 HLSLSemantic,
4848 NumSpellingKinds
4850 static const size_t NumSpellingKinds = (size_t)SpellingKind::NumSpellingKinds;
4852 class SpellingList {
4853 std::vector<std::string> Spellings[NumSpellingKinds];
4855 public:
4856 ArrayRef<std::string> operator[](SpellingKind K) const {
4857 return Spellings[(size_t)K];
4860 void add(const Record &Attr, FlattenedSpelling Spelling) {
4861 SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
4862 .Case("GNU", SpellingKind::GNU)
4863 .Case("CXX11", SpellingKind::CXX11)
4864 .Case("C23", SpellingKind::C23)
4865 .Case("Declspec", SpellingKind::Declspec)
4866 .Case("Microsoft", SpellingKind::Microsoft)
4867 .Case("Keyword", SpellingKind::Keyword)
4868 .Case("Pragma", SpellingKind::Pragma)
4869 .Case("HLSLSemantic", SpellingKind::HLSLSemantic);
4870 std::string Name;
4871 if (!Spelling.nameSpace().empty()) {
4872 switch (Kind) {
4873 case SpellingKind::CXX11:
4874 case SpellingKind::C23:
4875 Name = Spelling.nameSpace() + "::";
4876 break;
4877 case SpellingKind::Pragma:
4878 Name = Spelling.nameSpace() + " ";
4879 break;
4880 default:
4881 PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
4884 Name += Spelling.name();
4886 Spellings[(size_t)Kind].push_back(Name);
4890 class DocumentationData {
4891 public:
4892 const Record *Documentation;
4893 const Record *Attribute;
4894 std::string Heading;
4895 SpellingList SupportedSpellings;
4897 DocumentationData(const Record &Documentation, const Record &Attribute,
4898 std::pair<std::string, SpellingList> HeadingAndSpellings)
4899 : Documentation(&Documentation), Attribute(&Attribute),
4900 Heading(std::move(HeadingAndSpellings.first)),
4901 SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
4904 static void WriteCategoryHeader(const Record *DocCategory,
4905 raw_ostream &OS) {
4906 const StringRef Name = DocCategory->getValueAsString("Name");
4907 OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
4909 // If there is content, print that as well.
4910 const StringRef ContentStr = DocCategory->getValueAsString("Content");
4911 // Trim leading and trailing newlines and spaces.
4912 OS << ContentStr.trim();
4914 OS << "\n\n";
4917 static std::pair<std::string, SpellingList>
4918 GetAttributeHeadingAndSpellings(const Record &Documentation,
4919 const Record &Attribute,
4920 StringRef Cat) {
4921 // FIXME: there is no way to have a per-spelling category for the attribute
4922 // documentation. This may not be a limiting factor since the spellings
4923 // should generally be consistently applied across the category.
4925 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
4926 if (Spellings.empty())
4927 PrintFatalError(Attribute.getLoc(),
4928 "Attribute has no supported spellings; cannot be "
4929 "documented");
4931 // Determine the heading to be used for this attribute.
4932 std::string Heading = std::string(Documentation.getValueAsString("Heading"));
4933 if (Heading.empty()) {
4934 // If there's only one spelling, we can simply use that.
4935 if (Spellings.size() == 1)
4936 Heading = Spellings.begin()->name();
4937 else {
4938 std::set<std::string> Uniques;
4939 for (auto I = Spellings.begin(), E = Spellings.end();
4940 I != E; ++I) {
4941 std::string Spelling =
4942 std::string(NormalizeNameForSpellingComparison(I->name()));
4943 Uniques.insert(Spelling);
4945 // If the semantic map has only one spelling, that is sufficient for our
4946 // needs.
4947 if (Uniques.size() == 1)
4948 Heading = *Uniques.begin();
4949 // If it's in the undocumented category, just construct a header by
4950 // concatenating all the spellings. Might not be great, but better than
4951 // nothing.
4952 else if (Cat == "Undocumented")
4953 Heading = llvm::join(Uniques.begin(), Uniques.end(), ", ");
4957 // If the heading is still empty, it is an error.
4958 if (Heading.empty())
4959 PrintFatalError(Attribute.getLoc(),
4960 "This attribute requires a heading to be specified");
4962 SpellingList SupportedSpellings;
4963 for (const auto &I : Spellings)
4964 SupportedSpellings.add(Attribute, I);
4966 return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
4969 static void WriteDocumentation(RecordKeeper &Records,
4970 const DocumentationData &Doc, raw_ostream &OS) {
4971 OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
4973 // List what spelling syntaxes the attribute supports.
4974 // Note: "#pragma clang attribute" is handled outside the spelling kinds loop
4975 // so it must be last.
4976 OS << ".. csv-table:: Supported Syntaxes\n";
4977 OS << " :header: \"GNU\", \"C++11\", \"C23\", \"``__declspec``\",";
4978 OS << " \"Keyword\", \"``#pragma``\", \"HLSL Semantic\", \"``#pragma clang ";
4979 OS << "attribute``\"\n\n \"";
4980 for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
4981 SpellingKind K = (SpellingKind)Kind;
4982 // TODO: List Microsoft (IDL-style attribute) spellings once we fully
4983 // support them.
4984 if (K == SpellingKind::Microsoft)
4985 continue;
4987 bool PrintedAny = false;
4988 for (StringRef Spelling : Doc.SupportedSpellings[K]) {
4989 if (PrintedAny)
4990 OS << " |br| ";
4991 OS << "``" << Spelling << "``";
4992 PrintedAny = true;
4995 OS << "\",\"";
4998 if (getPragmaAttributeSupport(Records).isAttributedSupported(
4999 *Doc.Attribute))
5000 OS << "Yes";
5001 OS << "\"\n\n";
5003 // If the attribute is deprecated, print a message about it, and possibly
5004 // provide a replacement attribute.
5005 if (!Doc.Documentation->isValueUnset("Deprecated")) {
5006 OS << "This attribute has been deprecated, and may be removed in a future "
5007 << "version of Clang.";
5008 const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
5009 const StringRef Replacement = Deprecated.getValueAsString("Replacement");
5010 if (!Replacement.empty())
5011 OS << " This attribute has been superseded by ``" << Replacement
5012 << "``.";
5013 OS << "\n\n";
5016 const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
5017 // Trim leading and trailing newlines and spaces.
5018 OS << ContentStr.trim();
5020 OS << "\n\n\n";
5023 void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
5024 // Get the documentation introduction paragraph.
5025 const Record *Documentation = Records.getDef("GlobalDocumentation");
5026 if (!Documentation) {
5027 PrintFatalError("The Documentation top-level definition is missing, "
5028 "no documentation will be generated.");
5029 return;
5032 OS << Documentation->getValueAsString("Intro") << "\n";
5034 // Gather the Documentation lists from each of the attributes, based on the
5035 // category provided.
5036 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
5037 struct CategoryLess {
5038 bool operator()(const Record *L, const Record *R) const {
5039 return L->getValueAsString("Name") < R->getValueAsString("Name");
5042 std::map<const Record *, std::vector<DocumentationData>, CategoryLess>
5043 SplitDocs;
5044 for (const auto *A : Attrs) {
5045 const Record &Attr = *A;
5046 std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
5047 for (const auto *D : Docs) {
5048 const Record &Doc = *D;
5049 const Record *Category = Doc.getValueAsDef("Category");
5050 // If the category is "InternalOnly", then there cannot be any other
5051 // documentation categories (otherwise, the attribute would be
5052 // emitted into the docs).
5053 const StringRef Cat = Category->getValueAsString("Name");
5054 bool InternalOnly = Cat == "InternalOnly";
5055 if (InternalOnly && Docs.size() > 1)
5056 PrintFatalError(Doc.getLoc(),
5057 "Attribute is \"InternalOnly\", but has multiple "
5058 "documentation categories");
5060 if (!InternalOnly)
5061 SplitDocs[Category].push_back(DocumentationData(
5062 Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr, Cat)));
5066 // Having split the attributes out based on what documentation goes where,
5067 // we can begin to generate sections of documentation.
5068 for (auto &I : SplitDocs) {
5069 WriteCategoryHeader(I.first, OS);
5071 llvm::sort(I.second,
5072 [](const DocumentationData &D1, const DocumentationData &D2) {
5073 return D1.Heading < D2.Heading;
5076 // Walk over each of the attributes in the category and write out their
5077 // documentation.
5078 for (const auto &Doc : I.second)
5079 WriteDocumentation(Records, Doc, OS);
5083 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
5084 raw_ostream &OS) {
5085 PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
5086 ParsedAttrMap Attrs = getParsedAttrList(Records);
5087 OS << "#pragma clang attribute supports the following attributes:\n";
5088 for (const auto &I : Attrs) {
5089 if (!Support.isAttributedSupported(*I.second))
5090 continue;
5091 OS << I.first;
5092 if (I.second->isValueUnset("Subjects")) {
5093 OS << " ()\n";
5094 continue;
5096 const Record *SubjectObj = I.second->getValueAsDef("Subjects");
5097 std::vector<Record *> Subjects =
5098 SubjectObj->getValueAsListOfDefs("Subjects");
5099 OS << " (";
5100 bool PrintComma = false;
5101 for (const auto &Subject : llvm::enumerate(Subjects)) {
5102 if (!isSupportedPragmaClangAttributeSubject(*Subject.value()))
5103 continue;
5104 if (PrintComma)
5105 OS << ", ";
5106 PrintComma = true;
5107 PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
5108 Support.SubjectsToRules.find(Subject.value())->getSecond();
5109 if (RuleSet.isRule()) {
5110 OS << RuleSet.getRule().getEnumValueName();
5111 continue;
5113 OS << "(";
5114 for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
5115 if (Rule.index())
5116 OS << ", ";
5117 OS << Rule.value().getEnumValueName();
5119 OS << ")";
5121 OS << ")\n";
5123 OS << "End of supported attributes.\n";
5126 } // end namespace clang