1 //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "SchedClassResolution.h"
10 #include "BenchmarkResult.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/MC/MCAsmInfo.h"
13 #include "llvm/MCA/Support.h"
14 #include "llvm/Support/FormatVariadic.h"
16 #include <unordered_set>
22 // Return the non-redundant list of WriteProcRes used by the given sched class.
23 // The scheduling model for LLVM is such that each instruction has a certain
24 // number of uops which consume resources which are described by WriteProcRes
25 // entries. Each entry describe how many cycles are spent on a specific ProcRes
27 // For example, an instruction might have 3 uOps, one dispatching on P0
28 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
29 // Note that LLVM additionally denormalizes resource consumption to include
30 // usage of super resources by subresources. So in practice if there exists a
31 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
32 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
33 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
34 // denote implied usage of superresources by subresources:
39 // =============================
41 // Eventually we end up with three entries for the WriteProcRes of the
43 // {ProcResIdx=1, Cycles=1} // P0
44 // {ProcResIdx=7, Cycles=3} // P06
45 // {ProcResIdx=10, Cycles=3} // P016
47 // Note that in this case, P016 does not contribute any cycles, so it would
48 // be removed by this function.
49 // FIXME: Merge this with the equivalent in llvm-mca.
50 static SmallVector
<MCWriteProcResEntry
, 8>
51 getNonRedundantWriteProcRes(const MCSchedClassDesc
&SCDesc
,
52 const MCSubtargetInfo
&STI
) {
53 SmallVector
<MCWriteProcResEntry
, 8> Result
;
54 const auto &SM
= STI
.getSchedModel();
55 const unsigned NumProcRes
= SM
.getNumProcResourceKinds();
57 // Collect resource masks.
58 SmallVector
<uint64_t> ProcResourceMasks(NumProcRes
);
59 mca::computeProcResourceMasks(SM
, ProcResourceMasks
);
61 // Sort entries by smaller resources for (basic) topological ordering.
62 using ResourceMaskAndEntry
= std::pair
<uint64_t, const MCWriteProcResEntry
*>;
63 SmallVector
<ResourceMaskAndEntry
, 8> ResourceMaskAndEntries
;
64 for (const auto *WPR
= STI
.getWriteProcResBegin(&SCDesc
),
65 *const WPREnd
= STI
.getWriteProcResEnd(&SCDesc
);
66 WPR
!= WPREnd
; ++WPR
) {
67 uint64_t Mask
= ProcResourceMasks
[WPR
->ProcResourceIdx
];
68 ResourceMaskAndEntries
.push_back({Mask
, WPR
});
70 sort(ResourceMaskAndEntries
,
71 [](const ResourceMaskAndEntry
&A
, const ResourceMaskAndEntry
&B
) {
72 unsigned popcntA
= llvm::popcount(A
.first
);
73 unsigned popcntB
= llvm::popcount(B
.first
);
74 if (popcntA
< popcntB
)
76 if (popcntA
> popcntB
)
78 return A
.first
< B
.first
;
81 SmallVector
<float, 32> ProcResUnitUsage(NumProcRes
);
82 for (const ResourceMaskAndEntry
&Entry
: ResourceMaskAndEntries
) {
83 const MCWriteProcResEntry
*WPR
= Entry
.second
;
84 const MCProcResourceDesc
*const ProcResDesc
=
85 SM
.getProcResource(WPR
->ProcResourceIdx
);
86 // TODO: Handle AcquireAtAtCycle in llvm-exegesis and llvm-mca. See
87 // https://github.com/llvm/llvm-project/issues/62680 and
88 // https://github.com/llvm/llvm-project/issues/62681
89 assert(WPR
->AcquireAtCycle
== 0 &&
90 "`llvm-exegesis` does not handle AcquireAtCycle > 0");
91 if (ProcResDesc
->SubUnitsIdxBegin
== nullptr) {
92 // This is a ProcResUnit.
94 {WPR
->ProcResourceIdx
, WPR
->ReleaseAtCycle
, WPR
->AcquireAtCycle
});
95 ProcResUnitUsage
[WPR
->ProcResourceIdx
] += WPR
->ReleaseAtCycle
;
97 // This is a ProcResGroup. First see if it contributes any cycles or if
98 // it has cycles just from subunits.
99 float RemainingCycles
= WPR
->ReleaseAtCycle
;
100 for (const auto *SubResIdx
= ProcResDesc
->SubUnitsIdxBegin
;
101 SubResIdx
!= ProcResDesc
->SubUnitsIdxBegin
+ ProcResDesc
->NumUnits
;
103 RemainingCycles
-= ProcResUnitUsage
[*SubResIdx
];
105 if (RemainingCycles
< 0.01f
) {
106 // The ProcResGroup contributes no cycles of its own.
109 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
110 Result
.push_back({WPR
->ProcResourceIdx
,
111 static_cast<uint16_t>(std::round(RemainingCycles
)),
112 WPR
->AcquireAtCycle
});
113 // Spread the remaining cycles over all subunits.
114 for (const auto *SubResIdx
= ProcResDesc
->SubUnitsIdxBegin
;
115 SubResIdx
!= ProcResDesc
->SubUnitsIdxBegin
+ ProcResDesc
->NumUnits
;
117 ProcResUnitUsage
[*SubResIdx
] += RemainingCycles
/ ProcResDesc
->NumUnits
;
124 // Distributes a pressure budget as evenly as possible on the provided subunits
125 // given the already existing port pressure distribution.
127 // The algorithm is as follows: while there is remaining pressure to
128 // distribute, find the subunits with minimal pressure, and distribute
129 // remaining pressure equally up to the pressure of the unit with
130 // second-to-minimal pressure.
131 // For example, let's assume we want to distribute 2*P1256
132 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
133 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
134 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
135 // RemainingPressure = 2.0
136 // We sort the subunits by pressure:
137 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
138 // We'll first start by the subunits with minimal pressure, which are at
139 // the beginning of the sorted array. In this example there is one (P2).
140 // The subunit with second-to-minimal pressure is the next one in the
141 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
143 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
144 // RemainingPressure = 1.9
145 // We repeat this process: distribute 0.2 pressure on each of the minimal
146 // P2 and P1, decrease budget by 2*0.2:
147 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
148 // RemainingPressure = 1.5
149 // There are no second-to-minimal subunits so we just share the remaining
150 // budget (1.5 cycles) equally:
151 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
152 // RemainingPressure = 0.0
153 // We stop as there is no remaining budget to distribute.
154 static void distributePressure(float RemainingPressure
,
155 SmallVector
<uint16_t, 32> Subunits
,
156 SmallVector
<float, 32> &DensePressure
) {
157 // Find the number of subunits with minimal pressure (they are at the
159 sort(Subunits
, [&DensePressure
](const uint16_t A
, const uint16_t B
) {
160 return DensePressure
[A
] < DensePressure
[B
];
162 const auto getPressureForSubunit
= [&DensePressure
,
163 &Subunits
](size_t I
) -> float & {
164 return DensePressure
[Subunits
[I
]];
166 size_t NumMinimalSU
= 1;
167 while (NumMinimalSU
< Subunits
.size() &&
168 getPressureForSubunit(NumMinimalSU
) == getPressureForSubunit(0)) {
171 while (RemainingPressure
> 0.0f
) {
172 if (NumMinimalSU
== Subunits
.size()) {
173 // All units are minimal, just distribute evenly and be done.
174 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
175 getPressureForSubunit(I
) += RemainingPressure
/ NumMinimalSU
;
179 // Distribute the remaining pressure equally.
180 const float MinimalPressure
= getPressureForSubunit(NumMinimalSU
- 1);
181 const float SecondToMinimalPressure
= getPressureForSubunit(NumMinimalSU
);
182 assert(MinimalPressure
< SecondToMinimalPressure
);
183 const float Increment
= SecondToMinimalPressure
- MinimalPressure
;
184 if (RemainingPressure
<= NumMinimalSU
* Increment
) {
185 // There is not enough remaining pressure.
186 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
187 getPressureForSubunit(I
) += RemainingPressure
/ NumMinimalSU
;
191 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
192 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
193 getPressureForSubunit(I
) = SecondToMinimalPressure
;
194 RemainingPressure
-= SecondToMinimalPressure
;
196 while (NumMinimalSU
< Subunits
.size() &&
197 getPressureForSubunit(NumMinimalSU
) == SecondToMinimalPressure
) {
203 std::vector
<std::pair
<uint16_t, float>>
204 computeIdealizedProcResPressure(const MCSchedModel
&SM
,
205 SmallVector
<MCWriteProcResEntry
, 8> WPRS
) {
206 // DensePressure[I] is the port pressure for Proc Resource I.
207 SmallVector
<float, 32> DensePressure(SM
.getNumProcResourceKinds());
208 sort(WPRS
, [](const MCWriteProcResEntry
&A
, const MCWriteProcResEntry
&B
) {
209 return A
.ProcResourceIdx
< B
.ProcResourceIdx
;
211 for (const MCWriteProcResEntry
&WPR
: WPRS
) {
212 // Get units for the entry.
213 const MCProcResourceDesc
*const ProcResDesc
=
214 SM
.getProcResource(WPR
.ProcResourceIdx
);
215 if (ProcResDesc
->SubUnitsIdxBegin
== nullptr) {
216 // This is a ProcResUnit.
217 DensePressure
[WPR
.ProcResourceIdx
] += WPR
.ReleaseAtCycle
;
219 // This is a ProcResGroup.
220 SmallVector
<uint16_t, 32> Subunits(ProcResDesc
->SubUnitsIdxBegin
,
221 ProcResDesc
->SubUnitsIdxBegin
+
222 ProcResDesc
->NumUnits
);
223 distributePressure(WPR
.ReleaseAtCycle
, Subunits
, DensePressure
);
226 // Turn dense pressure into sparse pressure by removing zero entries.
227 std::vector
<std::pair
<uint16_t, float>> Pressure
;
228 for (unsigned I
= 0, E
= SM
.getNumProcResourceKinds(); I
< E
; ++I
) {
229 if (DensePressure
[I
] > 0.0f
)
230 Pressure
.emplace_back(I
, DensePressure
[I
]);
235 ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo
&STI
,
236 unsigned ResolvedSchedClassId
,
238 : SchedClassId(ResolvedSchedClassId
),
239 SCDesc(STI
.getSchedModel().getSchedClassDesc(ResolvedSchedClassId
)),
240 WasVariant(WasVariant
),
241 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc
, STI
)),
242 IdealizedProcResPressure(computeIdealizedProcResPressure(
243 STI
.getSchedModel(), NonRedundantWriteProcRes
)) {
244 assert((SCDesc
== nullptr || !SCDesc
->isVariant()) &&
245 "ResolvedSchedClass should never be variant");
248 static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo
&STI
,
249 const MCInstrInfo
&InstrInfo
,
250 unsigned SchedClassId
,
252 const auto &SM
= STI
.getSchedModel();
253 while (SchedClassId
&& SM
.getSchedClassDesc(SchedClassId
)->isVariant()) {
254 SchedClassId
= STI
.resolveVariantSchedClass(SchedClassId
, &MCI
, &InstrInfo
,
255 SM
.getProcessorID());
260 std::pair
<unsigned /*SchedClassId*/, bool /*WasVariant*/>
261 ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo
&SubtargetInfo
,
262 const MCInstrInfo
&InstrInfo
,
264 unsigned SchedClassId
= InstrInfo
.get(MCI
.getOpcode()).getSchedClass();
265 const bool WasVariant
= SchedClassId
&& SubtargetInfo
.getSchedModel()
266 .getSchedClassDesc(SchedClassId
)
269 ResolveVariantSchedClassId(SubtargetInfo
, InstrInfo
, SchedClassId
, MCI
);
270 return std::make_pair(SchedClassId
, WasVariant
);
273 // Returns a ProxResIdx by id or name.
274 static unsigned findProcResIdx(const MCSubtargetInfo
&STI
,
275 const StringRef NameOrId
) {
276 // Interpret the key as an ProcResIdx.
277 unsigned ProcResIdx
= 0;
278 if (to_integer(NameOrId
, ProcResIdx
, 10))
280 // Interpret the key as a ProcRes name.
281 const auto &SchedModel
= STI
.getSchedModel();
282 for (int I
= 0, E
= SchedModel
.getNumProcResourceKinds(); I
< E
; ++I
) {
283 if (NameOrId
== SchedModel
.getProcResource(I
)->Name
)
289 std::vector
<BenchmarkMeasure
> ResolvedSchedClass::getAsPoint(
290 Benchmark::ModeE Mode
, const MCSubtargetInfo
&STI
,
291 ArrayRef
<PerInstructionStats
> Representative
) const {
292 const size_t NumMeasurements
= Representative
.size();
294 std::vector
<BenchmarkMeasure
> SchedClassPoint(NumMeasurements
);
296 if (Mode
== Benchmark::Latency
) {
297 assert(NumMeasurements
== 1 && "Latency is a single measure.");
298 BenchmarkMeasure
&LatencyMeasure
= SchedClassPoint
[0];
301 LatencyMeasure
.PerInstructionValue
= 0.0;
303 for (unsigned I
= 0; I
< SCDesc
->NumWriteLatencyEntries
; ++I
) {
304 const MCWriteLatencyEntry
*const WLE
=
305 STI
.getWriteLatencyEntry(SCDesc
, I
);
306 LatencyMeasure
.PerInstructionValue
=
307 std::max
<double>(LatencyMeasure
.PerInstructionValue
, WLE
->Cycles
);
309 } else if (Mode
== Benchmark::Uops
) {
310 for (auto I
: zip(SchedClassPoint
, Representative
)) {
311 BenchmarkMeasure
&Measure
= std::get
<0>(I
);
312 const PerInstructionStats
&Stats
= std::get
<1>(I
);
314 StringRef Key
= Stats
.key();
315 uint16_t ProcResIdx
= findProcResIdx(STI
, Key
);
316 if (ProcResIdx
> 0) {
317 // Find the pressure on ProcResIdx `Key`.
318 const auto ProcResPressureIt
=
319 llvm::find_if(IdealizedProcResPressure
,
320 [ProcResIdx
](const std::pair
<uint16_t, float> &WPR
) {
321 return WPR
.first
== ProcResIdx
;
323 Measure
.PerInstructionValue
=
324 ProcResPressureIt
== IdealizedProcResPressure
.end()
326 : ProcResPressureIt
->second
;
327 } else if (Key
== "NumMicroOps") {
328 Measure
.PerInstructionValue
= SCDesc
->NumMicroOps
;
330 errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
336 } else if (Mode
== Benchmark::InverseThroughput
) {
337 assert(NumMeasurements
== 1 && "Inverse Throughput is a single measure.");
338 BenchmarkMeasure
&RThroughputMeasure
= SchedClassPoint
[0];
340 RThroughputMeasure
.PerInstructionValue
=
341 MCSchedModel::getReciprocalThroughput(STI
, *SCDesc
);
343 llvm_unreachable("unimplemented measurement matching mode");
346 return SchedClassPoint
;
349 } // namespace exegesis