1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/MachineValueType.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfo.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/ProfDataUtils.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/IR/ValueHandle.h"
76 #include "llvm/IR/ValueMap.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BlockFrequency.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
91 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
94 #include "llvm/Transforms/Utils/SizeOpts.h"
105 using namespace llvm
;
106 using namespace llvm::PatternMatch
;
108 #define DEBUG_TYPE "codegenprepare"
110 STATISTIC(NumBlocksElim
, "Number of blocks eliminated");
111 STATISTIC(NumPHIsElim
, "Number of trivial PHIs eliminated");
112 STATISTIC(NumGEPsElim
, "Number of GEPs converted to casts");
113 STATISTIC(NumCmpUses
, "Number of uses of Cmp expressions replaced with uses of "
115 STATISTIC(NumCastUses
, "Number of uses of Cast expressions replaced with uses "
117 STATISTIC(NumMemoryInsts
, "Number of memory instructions whose address "
118 "computations were sunk");
119 STATISTIC(NumMemoryInstsPhiCreated
,
120 "Number of phis created when address "
121 "computations were sunk to memory instructions");
122 STATISTIC(NumMemoryInstsSelectCreated
,
123 "Number of select created when address "
124 "computations were sunk to memory instructions");
125 STATISTIC(NumExtsMoved
, "Number of [s|z]ext instructions combined with loads");
126 STATISTIC(NumExtUses
, "Number of uses of [s|z]ext instructions optimized");
127 STATISTIC(NumAndsAdded
,
128 "Number of and mask instructions added to form ext loads");
129 STATISTIC(NumAndUses
, "Number of uses of and mask instructions optimized");
130 STATISTIC(NumRetsDup
, "Number of return instructions duplicated");
131 STATISTIC(NumDbgValueMoved
, "Number of debug value instructions moved");
132 STATISTIC(NumSelectsExpanded
, "Number of selects turned into branches");
133 STATISTIC(NumStoreExtractExposed
, "Number of store(extractelement) exposed");
135 static cl::opt
<bool> DisableBranchOpts(
136 "disable-cgp-branch-opts", cl::Hidden
, cl::init(false),
137 cl::desc("Disable branch optimizations in CodeGenPrepare"));
140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden
, cl::init(false),
141 cl::desc("Disable GC optimizations in CodeGenPrepare"));
144 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden
,
146 cl::desc("Disable select to branch conversion."));
149 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden
, cl::init(true),
150 cl::desc("Address sinking in CGP using GEPs."));
153 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden
, cl::init(true),
154 cl::desc("Enable sinkinig and/cmp into branches."));
156 static cl::opt
<bool> DisableStoreExtract(
157 "disable-cgp-store-extract", cl::Hidden
, cl::init(false),
158 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
160 static cl::opt
<bool> StressStoreExtract(
161 "stress-cgp-store-extract", cl::Hidden
, cl::init(false),
162 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
164 static cl::opt
<bool> DisableExtLdPromotion(
165 "disable-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
166 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
169 static cl::opt
<bool> StressExtLdPromotion(
170 "stress-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
171 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
172 "optimization in CodeGenPrepare"));
174 static cl::opt
<bool> DisablePreheaderProtect(
175 "disable-preheader-prot", cl::Hidden
, cl::init(false),
176 cl::desc("Disable protection against removing loop preheaders"));
178 static cl::opt
<bool> ProfileGuidedSectionPrefix(
179 "profile-guided-section-prefix", cl::Hidden
, cl::init(true),
180 cl::desc("Use profile info to add section prefix for hot/cold functions"));
182 static cl::opt
<bool> ProfileUnknownInSpecialSection(
183 "profile-unknown-in-special-section", cl::Hidden
,
184 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
185 "profile, we cannot tell the function is cold for sure because "
186 "it may be a function newly added without ever being sampled. "
187 "With the flag enabled, compiler can put such profile unknown "
188 "functions into a special section, so runtime system can choose "
189 "to handle it in a different way than .text section, to save "
190 "RAM for example. "));
192 static cl::opt
<bool> BBSectionsGuidedSectionPrefix(
193 "bbsections-guided-section-prefix", cl::Hidden
, cl::init(true),
194 cl::desc("Use the basic-block-sections profile to determine the text "
195 "section prefix for hot functions. Functions with "
196 "basic-block-sections profile will be placed in `.text.hot` "
197 "regardless of their FDO profile info. Other functions won't be "
198 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
201 static cl::opt
<unsigned> FreqRatioToSkipMerge(
202 "cgp-freq-ratio-to-skip-merge", cl::Hidden
, cl::init(2),
203 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
204 "(frequency of destination block) is greater than this ratio"));
206 static cl::opt
<bool> ForceSplitStore(
207 "force-split-store", cl::Hidden
, cl::init(false),
208 cl::desc("Force store splitting no matter what the target query says."));
210 static cl::opt
<bool> EnableTypePromotionMerge(
211 "cgp-type-promotion-merge", cl::Hidden
,
212 cl::desc("Enable merging of redundant sexts when one is dominating"
216 static cl::opt
<bool> DisableComplexAddrModes(
217 "disable-complex-addr-modes", cl::Hidden
, cl::init(false),
218 cl::desc("Disables combining addressing modes with different parts "
219 "in optimizeMemoryInst."));
222 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden
, cl::init(false),
223 cl::desc("Allow creation of Phis in Address sinking."));
225 static cl::opt
<bool> AddrSinkNewSelects(
226 "addr-sink-new-select", cl::Hidden
, cl::init(true),
227 cl::desc("Allow creation of selects in Address sinking."));
229 static cl::opt
<bool> AddrSinkCombineBaseReg(
230 "addr-sink-combine-base-reg", cl::Hidden
, cl::init(true),
231 cl::desc("Allow combining of BaseReg field in Address sinking."));
233 static cl::opt
<bool> AddrSinkCombineBaseGV(
234 "addr-sink-combine-base-gv", cl::Hidden
, cl::init(true),
235 cl::desc("Allow combining of BaseGV field in Address sinking."));
237 static cl::opt
<bool> AddrSinkCombineBaseOffs(
238 "addr-sink-combine-base-offs", cl::Hidden
, cl::init(true),
239 cl::desc("Allow combining of BaseOffs field in Address sinking."));
241 static cl::opt
<bool> AddrSinkCombineScaledReg(
242 "addr-sink-combine-scaled-reg", cl::Hidden
, cl::init(true),
243 cl::desc("Allow combining of ScaledReg field in Address sinking."));
246 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden
,
248 cl::desc("Enable splitting large offset of GEP."));
250 static cl::opt
<bool> EnableICMP_EQToICMP_ST(
251 "cgp-icmp-eq2icmp-st", cl::Hidden
, cl::init(false),
252 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
255 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden
, cl::init(false),
256 cl::desc("Enable BFI update verification for "
260 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden
, cl::init(true),
261 cl::desc("Enable converting phi types in CodeGenPrepare"));
263 static cl::opt
<unsigned>
264 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden
,
265 cl::desc("Least BB number of huge function."));
267 static cl::opt
<unsigned>
268 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
270 cl::desc("Max number of address users to look at"));
274 ZeroExtension
, // Zero extension has been seen.
275 SignExtension
, // Sign extension has been seen.
276 BothExtension
// This extension type is used if we saw sext after
277 // ZeroExtension had been set, or if we saw zext after
278 // SignExtension had been set. It makes the type
279 // information of a promoted instruction invalid.
283 NotModifyDT
, // Not Modify any DT.
284 ModifyBBDT
, // Modify the Basic Block Dominator Tree.
285 ModifyInstDT
// Modify the Instruction Dominator in a Basic Block,
286 // This usually means we move/delete/insert instruction
287 // in a Basic Block. So we should re-iterate instructions
288 // in such Basic Block.
291 using SetOfInstrs
= SmallPtrSet
<Instruction
*, 16>;
292 using TypeIsSExt
= PointerIntPair
<Type
*, 2, ExtType
>;
293 using InstrToOrigTy
= DenseMap
<Instruction
*, TypeIsSExt
>;
294 using SExts
= SmallVector
<Instruction
*, 16>;
295 using ValueToSExts
= MapVector
<Value
*, SExts
>;
297 class TypePromotionTransaction
;
299 class CodeGenPrepare
: public FunctionPass
{
300 const TargetMachine
*TM
= nullptr;
301 const TargetSubtargetInfo
*SubtargetInfo
= nullptr;
302 const TargetLowering
*TLI
= nullptr;
303 const TargetRegisterInfo
*TRI
= nullptr;
304 const TargetTransformInfo
*TTI
= nullptr;
305 const BasicBlockSectionsProfileReader
*BBSectionsProfileReader
= nullptr;
306 const TargetLibraryInfo
*TLInfo
= nullptr;
307 LoopInfo
*LI
= nullptr;
308 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
309 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
310 ProfileSummaryInfo
*PSI
= nullptr;
312 /// As we scan instructions optimizing them, this is the next instruction
313 /// to optimize. Transforms that can invalidate this should update it.
314 BasicBlock::iterator CurInstIterator
;
316 /// Keeps track of non-local addresses that have been sunk into a block.
317 /// This allows us to avoid inserting duplicate code for blocks with
318 /// multiple load/stores of the same address. The usage of WeakTrackingVH
319 /// enables SunkAddrs to be treated as a cache whose entries can be
320 /// invalidated if a sunken address computation has been erased.
321 ValueMap
<Value
*, WeakTrackingVH
> SunkAddrs
;
323 /// Keeps track of all instructions inserted for the current function.
324 SetOfInstrs InsertedInsts
;
326 /// Keeps track of the type of the related instruction before their
327 /// promotion for the current function.
328 InstrToOrigTy PromotedInsts
;
330 /// Keep track of instructions removed during promotion.
331 SetOfInstrs RemovedInsts
;
333 /// Keep track of sext chains based on their initial value.
334 DenseMap
<Value
*, Instruction
*> SeenChainsForSExt
;
336 /// Keep track of GEPs accessing the same data structures such as structs or
337 /// arrays that are candidates to be split later because of their large
339 MapVector
<AssertingVH
<Value
>,
340 SmallVector
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>, 32>>
343 /// Keep track of new GEP base after splitting the GEPs having large offset.
344 SmallSet
<AssertingVH
<Value
>, 2> NewGEPBases
;
346 /// Map serial numbers to Large offset GEPs.
347 DenseMap
<AssertingVH
<GetElementPtrInst
>, int> LargeOffsetGEPID
;
349 /// Keep track of SExt promoted.
350 ValueToSExts ValToSExtendedUses
;
352 /// True if the function has the OptSize attribute.
355 /// DataLayout for the Function being processed.
356 const DataLayout
*DL
= nullptr;
358 /// Building the dominator tree can be expensive, so we only build it
359 /// lazily and update it when required.
360 std::unique_ptr
<DominatorTree
> DT
;
363 /// If encounter huge function, we need to limit the build time.
364 bool IsHugeFunc
= false;
366 /// FreshBBs is like worklist, it collected the updated BBs which need
367 /// to be optimized again.
368 /// Note: Consider building time in this pass, when a BB updated, we need
369 /// to insert such BB into FreshBBs for huge function.
370 SmallSet
<BasicBlock
*, 32> FreshBBs
;
372 static char ID
; // Pass identification, replacement for typeid
374 CodeGenPrepare() : FunctionPass(ID
) {
375 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
378 bool runOnFunction(Function
&F
) override
;
380 void releaseMemory() override
{
381 // Clear per function information.
382 InsertedInsts
.clear();
383 PromotedInsts
.clear();
389 StringRef
getPassName() const override
{ return "CodeGen Prepare"; }
391 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
392 // FIXME: When we can selectively preserve passes, preserve the domtree.
393 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
394 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
395 AU
.addRequired
<TargetPassConfig
>();
396 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
397 AU
.addRequired
<LoopInfoWrapperPass
>();
398 AU
.addUsedIfAvailable
<BasicBlockSectionsProfileReader
>();
402 template <typename F
>
403 void resetIteratorIfInvalidatedWhileCalling(BasicBlock
*BB
, F f
) {
404 // Substituting can cause recursive simplifications, which can invalidate
405 // our iterator. Use a WeakTrackingVH to hold onto it in case this
407 Value
*CurValue
= &*CurInstIterator
;
408 WeakTrackingVH
IterHandle(CurValue
);
412 // If the iterator instruction was recursively deleted, start over at the
413 // start of the block.
414 if (IterHandle
!= CurValue
) {
415 CurInstIterator
= BB
->begin();
420 // Get the DominatorTree, building if necessary.
421 DominatorTree
&getDT(Function
&F
) {
423 DT
= std::make_unique
<DominatorTree
>(F
);
427 void removeAllAssertingVHReferences(Value
*V
);
428 bool eliminateAssumptions(Function
&F
);
429 bool eliminateFallThrough(Function
&F
, DominatorTree
*DT
= nullptr);
430 bool eliminateMostlyEmptyBlocks(Function
&F
);
431 BasicBlock
*findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
);
432 bool canMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
433 void eliminateMostlyEmptyBlock(BasicBlock
*BB
);
434 bool isMergingEmptyBlockProfitable(BasicBlock
*BB
, BasicBlock
*DestBB
,
436 bool makeBitReverse(Instruction
&I
);
437 bool optimizeBlock(BasicBlock
&BB
, ModifyDT
&ModifiedDT
);
438 bool optimizeInst(Instruction
*I
, ModifyDT
&ModifiedDT
);
439 bool optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
, Type
*AccessTy
,
441 bool optimizeGatherScatterInst(Instruction
*MemoryInst
, Value
*Ptr
);
442 bool optimizeInlineAsmInst(CallInst
*CS
);
443 bool optimizeCallInst(CallInst
*CI
, ModifyDT
&ModifiedDT
);
444 bool optimizeExt(Instruction
*&I
);
445 bool optimizeExtUses(Instruction
*I
);
446 bool optimizeLoadExt(LoadInst
*Load
);
447 bool optimizeShiftInst(BinaryOperator
*BO
);
448 bool optimizeFunnelShift(IntrinsicInst
*Fsh
);
449 bool optimizeSelectInst(SelectInst
*SI
);
450 bool optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
);
451 bool optimizeSwitchType(SwitchInst
*SI
);
452 bool optimizeSwitchPhiConstants(SwitchInst
*SI
);
453 bool optimizeSwitchInst(SwitchInst
*SI
);
454 bool optimizeExtractElementInst(Instruction
*Inst
);
455 bool dupRetToEnableTailCallOpts(BasicBlock
*BB
, ModifyDT
&ModifiedDT
);
456 bool fixupDbgValue(Instruction
*I
);
457 bool placeDbgValues(Function
&F
);
458 bool placePseudoProbes(Function
&F
);
459 bool canFormExtLd(const SmallVectorImpl
<Instruction
*> &MovedExts
,
460 LoadInst
*&LI
, Instruction
*&Inst
, bool HasPromoted
);
461 bool tryToPromoteExts(TypePromotionTransaction
&TPT
,
462 const SmallVectorImpl
<Instruction
*> &Exts
,
463 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
464 unsigned CreatedInstsCost
= 0);
465 bool mergeSExts(Function
&F
);
466 bool splitLargeGEPOffsets();
467 bool optimizePhiType(PHINode
*Inst
, SmallPtrSetImpl
<PHINode
*> &Visited
,
468 SmallPtrSetImpl
<Instruction
*> &DeletedInstrs
);
469 bool optimizePhiTypes(Function
&F
);
470 bool performAddressTypePromotion(
471 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
472 bool HasPromoted
, TypePromotionTransaction
&TPT
,
473 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
);
474 bool splitBranchCondition(Function
&F
, ModifyDT
&ModifiedDT
);
475 bool simplifyOffsetableRelocate(GCStatepointInst
&I
);
477 bool tryToSinkFreeOperands(Instruction
*I
);
478 bool replaceMathCmpWithIntrinsic(BinaryOperator
*BO
, Value
*Arg0
, Value
*Arg1
,
479 CmpInst
*Cmp
, Intrinsic::ID IID
);
480 bool optimizeCmp(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
481 bool combineToUSubWithOverflow(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
482 bool combineToUAddWithOverflow(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
483 void verifyBFIUpdates(Function
&F
);
486 } // end anonymous namespace
488 char CodeGenPrepare::ID
= 0;
490 INITIALIZE_PASS_BEGIN(CodeGenPrepare
, DEBUG_TYPE
,
491 "Optimize for code generation", false, false)
492 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader
)
493 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
494 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
495 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
496 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
497 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
498 INITIALIZE_PASS_END(CodeGenPrepare
, DEBUG_TYPE
, "Optimize for code generation",
501 FunctionPass
*llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
503 bool CodeGenPrepare::runOnFunction(Function
&F
) {
507 DL
= &F
.getParent()->getDataLayout();
509 bool EverMadeChange
= false;
511 TM
= &getAnalysis
<TargetPassConfig
>().getTM
<TargetMachine
>();
512 SubtargetInfo
= TM
->getSubtargetImpl(F
);
513 TLI
= SubtargetInfo
->getTargetLowering();
514 TRI
= SubtargetInfo
->getRegisterInfo();
515 TLInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
516 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
517 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
518 BPI
.reset(new BranchProbabilityInfo(F
, *LI
));
519 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, *LI
));
520 PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
521 BBSectionsProfileReader
=
522 getAnalysisIfAvailable
<BasicBlockSectionsProfileReader
>();
523 OptSize
= F
.hasOptSize();
524 // Use the basic-block-sections profile to promote hot functions to .text.hot
526 if (BBSectionsGuidedSectionPrefix
&& BBSectionsProfileReader
&&
527 BBSectionsProfileReader
->isFunctionHot(F
.getName())) {
528 F
.setSectionPrefix("hot");
529 } else if (ProfileGuidedSectionPrefix
) {
530 // The hot attribute overwrites profile count based hotness while profile
531 // counts based hotness overwrite the cold attribute.
532 // This is a conservative behabvior.
533 if (F
.hasFnAttribute(Attribute::Hot
) ||
534 PSI
->isFunctionHotInCallGraph(&F
, *BFI
))
535 F
.setSectionPrefix("hot");
536 // If PSI shows this function is not hot, we will placed the function
537 // into unlikely section if (1) PSI shows this is a cold function, or
538 // (2) the function has a attribute of cold.
539 else if (PSI
->isFunctionColdInCallGraph(&F
, *BFI
) ||
540 F
.hasFnAttribute(Attribute::Cold
))
541 F
.setSectionPrefix("unlikely");
542 else if (ProfileUnknownInSpecialSection
&& PSI
->hasPartialSampleProfile() &&
543 PSI
->isFunctionHotnessUnknown(F
))
544 F
.setSectionPrefix("unknown");
547 /// This optimization identifies DIV instructions that can be
548 /// profitably bypassed and carried out with a shorter, faster divide.
549 if (!OptSize
&& !PSI
->hasHugeWorkingSetSize() && TLI
->isSlowDivBypassed()) {
550 const DenseMap
<unsigned int, unsigned int> &BypassWidths
=
551 TLI
->getBypassSlowDivWidths();
552 BasicBlock
*BB
= &*F
.begin();
553 while (BB
!= nullptr) {
554 // bypassSlowDivision may create new BBs, but we don't want to reapply the
555 // optimization to those blocks.
556 BasicBlock
*Next
= BB
->getNextNode();
557 // F.hasOptSize is already checked in the outer if statement.
558 if (!llvm::shouldOptimizeForSize(BB
, PSI
, BFI
.get()))
559 EverMadeChange
|= bypassSlowDivision(BB
, BypassWidths
);
564 // Get rid of @llvm.assume builtins before attempting to eliminate empty
565 // blocks, since there might be blocks that only contain @llvm.assume calls
566 // (plus arguments that we can get rid of).
567 EverMadeChange
|= eliminateAssumptions(F
);
569 // Eliminate blocks that contain only PHI nodes and an
570 // unconditional branch.
571 EverMadeChange
|= eliminateMostlyEmptyBlocks(F
);
573 ModifyDT ModifiedDT
= ModifyDT::NotModifyDT
;
574 if (!DisableBranchOpts
)
575 EverMadeChange
|= splitBranchCondition(F
, ModifiedDT
);
577 // Split some critical edges where one of the sources is an indirect branch,
578 // to help generate sane code for PHIs involving such edges.
580 SplitIndirectBrCriticalEdges(F
, /*IgnoreBlocksWithoutPHI=*/true);
582 // If we are optimzing huge function, we need to consider the build time.
583 // Because the basic algorithm's complex is near O(N!).
584 IsHugeFunc
= F
.size() > HugeFuncThresholdInCGPP
;
586 // Transformations above may invalidate dominator tree and/or loop info.
589 LI
->analyze(getDT(F
));
591 bool MadeChange
= true;
592 bool FuncIterated
= false;
596 for (BasicBlock
&BB
: llvm::make_early_inc_range(F
)) {
597 if (FuncIterated
&& !FreshBBs
.contains(&BB
))
600 ModifyDT ModifiedDTOnIteration
= ModifyDT::NotModifyDT
;
601 bool Changed
= optimizeBlock(BB
, ModifiedDTOnIteration
);
603 if (ModifiedDTOnIteration
== ModifyDT::ModifyBBDT
)
606 MadeChange
|= Changed
;
608 // If the BB is updated, it may still has chance to be optimized.
609 // This usually happen at sink optimization.
613 // %and = and i32 %a, 4
614 // %cmp = icmp eq i32 %and, 0
616 // If the %cmp sink to other BB, the %and will has chance to sink.
618 FreshBBs
.insert(&BB
);
619 else if (FuncIterated
)
622 // For small/normal functions, we restart BB iteration if the dominator
623 // tree of the Function was changed.
624 if (ModifiedDTOnIteration
!= ModifyDT::NotModifyDT
)
628 // We have iterated all the BB in the (only work for huge) function.
629 FuncIterated
= IsHugeFunc
;
631 if (EnableTypePromotionMerge
&& !ValToSExtendedUses
.empty())
632 MadeChange
|= mergeSExts(F
);
633 if (!LargeOffsetGEPMap
.empty())
634 MadeChange
|= splitLargeGEPOffsets();
635 MadeChange
|= optimizePhiTypes(F
);
638 eliminateFallThrough(F
, DT
.get());
641 if (MadeChange
&& VerifyLoopInfo
)
642 LI
->verify(getDT(F
));
645 // Really free removed instructions during promotion.
646 for (Instruction
*I
: RemovedInsts
)
649 EverMadeChange
|= MadeChange
;
650 SeenChainsForSExt
.clear();
651 ValToSExtendedUses
.clear();
652 RemovedInsts
.clear();
653 LargeOffsetGEPMap
.clear();
654 LargeOffsetGEPID
.clear();
660 if (!DisableBranchOpts
) {
662 // Use a set vector to get deterministic iteration order. The order the
663 // blocks are removed may affect whether or not PHI nodes in successors
665 SmallSetVector
<BasicBlock
*, 8> WorkList
;
666 for (BasicBlock
&BB
: F
) {
667 SmallVector
<BasicBlock
*, 2> Successors(successors(&BB
));
668 MadeChange
|= ConstantFoldTerminator(&BB
, true);
672 for (BasicBlock
*Succ
: Successors
)
673 if (pred_empty(Succ
))
674 WorkList
.insert(Succ
);
677 // Delete the dead blocks and any of their dead successors.
678 MadeChange
|= !WorkList
.empty();
679 while (!WorkList
.empty()) {
680 BasicBlock
*BB
= WorkList
.pop_back_val();
681 SmallVector
<BasicBlock
*, 2> Successors(successors(BB
));
685 for (BasicBlock
*Succ
: Successors
)
686 if (pred_empty(Succ
))
687 WorkList
.insert(Succ
);
690 // Merge pairs of basic blocks with unconditional branches, connected by
692 if (EverMadeChange
|| MadeChange
)
693 MadeChange
|= eliminateFallThrough(F
);
695 EverMadeChange
|= MadeChange
;
698 if (!DisableGCOpts
) {
699 SmallVector
<GCStatepointInst
*, 2> Statepoints
;
700 for (BasicBlock
&BB
: F
)
701 for (Instruction
&I
: BB
)
702 if (auto *SP
= dyn_cast
<GCStatepointInst
>(&I
))
703 Statepoints
.push_back(SP
);
704 for (auto &I
: Statepoints
)
705 EverMadeChange
|= simplifyOffsetableRelocate(*I
);
708 // Do this last to clean up use-before-def scenarios introduced by other
709 // preparatory transforms.
710 EverMadeChange
|= placeDbgValues(F
);
711 EverMadeChange
|= placePseudoProbes(F
);
714 if (VerifyBFIUpdates
)
718 return EverMadeChange
;
721 bool CodeGenPrepare::eliminateAssumptions(Function
&F
) {
722 bool MadeChange
= false;
723 for (BasicBlock
&BB
: F
) {
724 CurInstIterator
= BB
.begin();
725 while (CurInstIterator
!= BB
.end()) {
726 Instruction
*I
= &*(CurInstIterator
++);
727 if (auto *Assume
= dyn_cast
<AssumeInst
>(I
)) {
729 Value
*Operand
= Assume
->getOperand(0);
730 Assume
->eraseFromParent();
732 resetIteratorIfInvalidatedWhileCalling(&BB
, [&]() {
733 RecursivelyDeleteTriviallyDeadInstructions(Operand
, TLInfo
, nullptr);
741 /// An instruction is about to be deleted, so remove all references to it in our
742 /// GEP-tracking data strcutures.
743 void CodeGenPrepare::removeAllAssertingVHReferences(Value
*V
) {
744 LargeOffsetGEPMap
.erase(V
);
745 NewGEPBases
.erase(V
);
747 auto GEP
= dyn_cast
<GetElementPtrInst
>(V
);
751 LargeOffsetGEPID
.erase(GEP
);
753 auto VecI
= LargeOffsetGEPMap
.find(GEP
->getPointerOperand());
754 if (VecI
== LargeOffsetGEPMap
.end())
757 auto &GEPVector
= VecI
->second
;
758 llvm::erase_if(GEPVector
, [=](auto &Elt
) { return Elt
.first
== GEP
; });
760 if (GEPVector
.empty())
761 LargeOffsetGEPMap
.erase(VecI
);
764 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
765 void LLVM_ATTRIBUTE_UNUSED
CodeGenPrepare::verifyBFIUpdates(Function
&F
) {
766 DominatorTree
NewDT(F
);
767 LoopInfo
NewLI(NewDT
);
768 BranchProbabilityInfo
NewBPI(F
, NewLI
, TLInfo
);
769 BlockFrequencyInfo
NewBFI(F
, NewBPI
, NewLI
);
770 NewBFI
.verifyMatch(*BFI
);
773 /// Merge basic blocks which are connected by a single edge, where one of the
774 /// basic blocks has a single successor pointing to the other basic block,
775 /// which has a single predecessor.
776 bool CodeGenPrepare::eliminateFallThrough(Function
&F
, DominatorTree
*DT
) {
777 bool Changed
= false;
778 // Scan all of the blocks in the function, except for the entry block.
779 // Use a temporary array to avoid iterator being invalidated when
781 SmallVector
<WeakTrackingVH
, 16> Blocks
;
782 for (auto &Block
: llvm::drop_begin(F
))
783 Blocks
.push_back(&Block
);
785 SmallSet
<WeakTrackingVH
, 16> Preds
;
786 for (auto &Block
: Blocks
) {
787 auto *BB
= cast_or_null
<BasicBlock
>(Block
);
790 // If the destination block has a single pred, then this is a trivial
791 // edge, just collapse it.
792 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
794 // Don't merge if BB's address is taken.
795 if (!SinglePred
|| SinglePred
== BB
|| BB
->hasAddressTaken())
798 // Make an effort to skip unreachable blocks.
799 if (DT
&& !DT
->isReachableFromEntry(BB
))
802 BranchInst
*Term
= dyn_cast
<BranchInst
>(SinglePred
->getTerminator());
803 if (Term
&& !Term
->isConditional()) {
805 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB
<< "\n\n\n");
807 // Merge BB into SinglePred and delete it.
808 MergeBlockIntoPredecessor(BB
, /* DTU */ nullptr, LI
, /* MSSAU */ nullptr,
809 /* MemDep */ nullptr,
810 /* PredecessorWithTwoSuccessors */ false, DT
);
811 Preds
.insert(SinglePred
);
814 // Update FreshBBs to optimize the merged BB.
815 FreshBBs
.insert(SinglePred
);
821 // (Repeatedly) merging blocks into their predecessors can create redundant
823 for (const auto &Pred
: Preds
)
824 if (auto *BB
= cast_or_null
<BasicBlock
>(Pred
))
825 RemoveRedundantDbgInstrs(BB
);
830 /// Find a destination block from BB if BB is mergeable empty block.
831 BasicBlock
*CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
) {
832 // If this block doesn't end with an uncond branch, ignore it.
833 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
834 if (!BI
|| !BI
->isUnconditional())
837 // If the instruction before the branch (skipping debug info) isn't a phi
838 // node, then other stuff is happening here.
839 BasicBlock::iterator BBI
= BI
->getIterator();
840 if (BBI
!= BB
->begin()) {
842 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
843 if (BBI
== BB
->begin())
847 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
851 // Do not break infinite loops.
852 BasicBlock
*DestBB
= BI
->getSuccessor(0);
856 if (!canMergeBlocks(BB
, DestBB
))
862 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
863 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
864 /// edges in ways that are non-optimal for isel. Start by eliminating these
865 /// blocks so we can split them the way we want them.
866 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function
&F
) {
867 SmallPtrSet
<BasicBlock
*, 16> Preheaders
;
868 SmallVector
<Loop
*, 16> LoopList(LI
->begin(), LI
->end());
869 while (!LoopList
.empty()) {
870 Loop
*L
= LoopList
.pop_back_val();
871 llvm::append_range(LoopList
, *L
);
872 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
873 Preheaders
.insert(Preheader
);
876 bool MadeChange
= false;
877 // Copy blocks into a temporary array to avoid iterator invalidation issues
878 // as we remove them.
879 // Note that this intentionally skips the entry block.
880 SmallVector
<WeakTrackingVH
, 16> Blocks
;
881 for (auto &Block
: llvm::drop_begin(F
))
882 Blocks
.push_back(&Block
);
884 for (auto &Block
: Blocks
) {
885 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(Block
);
888 BasicBlock
*DestBB
= findDestBlockOfMergeableEmptyBlock(BB
);
890 !isMergingEmptyBlockProfitable(BB
, DestBB
, Preheaders
.count(BB
)))
893 eliminateMostlyEmptyBlock(BB
);
899 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock
*BB
,
902 // Do not delete loop preheaders if doing so would create a critical edge.
903 // Loop preheaders can be good locations to spill registers. If the
904 // preheader is deleted and we create a critical edge, registers may be
905 // spilled in the loop body instead.
906 if (!DisablePreheaderProtect
&& isPreheader
&&
907 !(BB
->getSinglePredecessor() &&
908 BB
->getSinglePredecessor()->getSingleSuccessor()))
911 // Skip merging if the block's successor is also a successor to any callbr
912 // that leads to this block.
913 // FIXME: Is this really needed? Is this a correctness issue?
914 for (BasicBlock
*Pred
: predecessors(BB
)) {
915 if (auto *CBI
= dyn_cast
<CallBrInst
>((Pred
)->getTerminator()))
916 for (unsigned i
= 0, e
= CBI
->getNumSuccessors(); i
!= e
; ++i
)
917 if (DestBB
== CBI
->getSuccessor(i
))
921 // Try to skip merging if the unique predecessor of BB is terminated by a
922 // switch or indirect branch instruction, and BB is used as an incoming block
923 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
924 // add COPY instructions in the predecessor of BB instead of BB (if it is not
925 // merged). Note that the critical edge created by merging such blocks wont be
926 // split in MachineSink because the jump table is not analyzable. By keeping
927 // such empty block (BB), ISel will place COPY instructions in BB, not in the
928 // predecessor of BB.
929 BasicBlock
*Pred
= BB
->getUniquePredecessor();
930 if (!Pred
|| !(isa
<SwitchInst
>(Pred
->getTerminator()) ||
931 isa
<IndirectBrInst
>(Pred
->getTerminator())))
934 if (BB
->getTerminator() != BB
->getFirstNonPHIOrDbg())
937 // We use a simple cost heuristic which determine skipping merging is
938 // profitable if the cost of skipping merging is less than the cost of
939 // merging : Cost(skipping merging) < Cost(merging BB), where the
940 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
941 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
942 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
943 // Freq(Pred) / Freq(BB) > 2.
944 // Note that if there are multiple empty blocks sharing the same incoming
945 // value for the PHIs in the DestBB, we consider them together. In such
946 // case, Cost(merging BB) will be the sum of their frequencies.
948 if (!isa
<PHINode
>(DestBB
->begin()))
951 SmallPtrSet
<BasicBlock
*, 16> SameIncomingValueBBs
;
953 // Find all other incoming blocks from which incoming values of all PHIs in
954 // DestBB are the same as the ones from BB.
955 for (BasicBlock
*DestBBPred
: predecessors(DestBB
)) {
956 if (DestBBPred
== BB
)
959 if (llvm::all_of(DestBB
->phis(), [&](const PHINode
&DestPN
) {
960 return DestPN
.getIncomingValueForBlock(BB
) ==
961 DestPN
.getIncomingValueForBlock(DestBBPred
);
963 SameIncomingValueBBs
.insert(DestBBPred
);
966 // See if all BB's incoming values are same as the value from Pred. In this
967 // case, no reason to skip merging because COPYs are expected to be place in
969 if (SameIncomingValueBBs
.count(Pred
))
972 BlockFrequency PredFreq
= BFI
->getBlockFreq(Pred
);
973 BlockFrequency BBFreq
= BFI
->getBlockFreq(BB
);
975 for (auto *SameValueBB
: SameIncomingValueBBs
)
976 if (SameValueBB
->getUniquePredecessor() == Pred
&&
977 DestBB
== findDestBlockOfMergeableEmptyBlock(SameValueBB
))
978 BBFreq
+= BFI
->getBlockFreq(SameValueBB
);
980 return PredFreq
.getFrequency() <=
981 BBFreq
.getFrequency() * FreqRatioToSkipMerge
;
984 /// Return true if we can merge BB into DestBB if there is a single
985 /// unconditional branch between them, and BB contains no other non-phi
987 bool CodeGenPrepare::canMergeBlocks(const BasicBlock
*BB
,
988 const BasicBlock
*DestBB
) const {
989 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
990 // the successor. If there are more complex condition (e.g. preheaders),
991 // don't mess around with them.
992 for (const PHINode
&PN
: BB
->phis()) {
993 for (const User
*U
: PN
.users()) {
994 const Instruction
*UI
= cast
<Instruction
>(U
);
995 if (UI
->getParent() != DestBB
|| !isa
<PHINode
>(UI
))
997 // If User is inside DestBB block and it is a PHINode then check
998 // incoming value. If incoming value is not from BB then this is
999 // a complex condition (e.g. preheaders) we want to avoid here.
1000 if (UI
->getParent() == DestBB
) {
1001 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(UI
))
1002 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
1003 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
1004 if (Insn
&& Insn
->getParent() == BB
&&
1005 Insn
->getParent() != UPN
->getIncomingBlock(I
))
1012 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1013 // and DestBB may have conflicting incoming values for the block. If so, we
1014 // can't merge the block.
1015 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
1017 return true; // no conflict.
1019 // Collect the preds of BB.
1020 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
1021 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
1022 // It is faster to get preds from a PHI than with pred_iterator.
1023 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
1024 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
1026 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
1029 // Walk the preds of DestBB.
1030 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
1031 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
1032 if (BBPreds
.count(Pred
)) { // Common predecessor?
1033 for (const PHINode
&PN
: DestBB
->phis()) {
1034 const Value
*V1
= PN
.getIncomingValueForBlock(Pred
);
1035 const Value
*V2
= PN
.getIncomingValueForBlock(BB
);
1037 // If V2 is a phi node in BB, look up what the mapped value will be.
1038 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
1039 if (V2PN
->getParent() == BB
)
1040 V2
= V2PN
->getIncomingValueForBlock(Pred
);
1042 // If there is a conflict, bail out.
1052 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1053 static void replaceAllUsesWith(Value
*Old
, Value
*New
,
1054 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
1056 auto *OldI
= dyn_cast
<Instruction
>(Old
);
1058 for (Value::user_iterator UI
= OldI
->user_begin(), E
= OldI
->user_end();
1060 Instruction
*User
= cast
<Instruction
>(*UI
);
1062 FreshBBs
.insert(User
->getParent());
1065 Old
->replaceAllUsesWith(New
);
1068 /// Eliminate a basic block that has only phi's and an unconditional branch in
1070 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock
*BB
) {
1071 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1072 BasicBlock
*DestBB
= BI
->getSuccessor(0);
1074 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1077 // If the destination block has a single pred, then this is a trivial edge,
1078 // just collapse it.
1079 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
1080 if (SinglePred
!= DestBB
) {
1081 assert(SinglePred
== BB
&&
1082 "Single predecessor not the same as predecessor");
1083 // Merge DestBB into SinglePred/BB and delete it.
1084 MergeBlockIntoPredecessor(DestBB
);
1085 // Note: BB(=SinglePred) will not be deleted on this path.
1086 // DestBB(=its single successor) is the one that was deleted.
1087 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred
<< "\n\n\n");
1090 // Update FreshBBs to optimize the merged BB.
1091 FreshBBs
.insert(SinglePred
);
1092 FreshBBs
.erase(DestBB
);
1098 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
1099 // to handle the new incoming edges it is about to have.
1100 for (PHINode
&PN
: DestBB
->phis()) {
1101 // Remove the incoming value for BB, and remember it.
1102 Value
*InVal
= PN
.removeIncomingValue(BB
, false);
1104 // Two options: either the InVal is a phi node defined in BB or it is some
1105 // value that dominates BB.
1106 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
1107 if (InValPhi
&& InValPhi
->getParent() == BB
) {
1108 // Add all of the input values of the input PHI as inputs of this phi.
1109 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
1110 PN
.addIncoming(InValPhi
->getIncomingValue(i
),
1111 InValPhi
->getIncomingBlock(i
));
1113 // Otherwise, add one instance of the dominating value for each edge that
1114 // we will be adding.
1115 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
1116 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
1117 PN
.addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
1119 for (BasicBlock
*Pred
: predecessors(BB
))
1120 PN
.addIncoming(InVal
, Pred
);
1125 // The PHIs are now updated, change everything that refers to BB to use
1126 // DestBB and remove BB.
1127 BB
->replaceAllUsesWith(DestBB
);
1128 BB
->eraseFromParent();
1131 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
1134 // Computes a map of base pointer relocation instructions to corresponding
1135 // derived pointer relocation instructions given a vector of all relocate calls
1136 static void computeBaseDerivedRelocateMap(
1137 const SmallVectorImpl
<GCRelocateInst
*> &AllRelocateCalls
,
1138 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>>
1140 // Collect information in two maps: one primarily for locating the base object
1141 // while filling the second map; the second map is the final structure holding
1142 // a mapping between Base and corresponding Derived relocate calls
1143 DenseMap
<std::pair
<unsigned, unsigned>, GCRelocateInst
*> RelocateIdxMap
;
1144 for (auto *ThisRelocate
: AllRelocateCalls
) {
1145 auto K
= std::make_pair(ThisRelocate
->getBasePtrIndex(),
1146 ThisRelocate
->getDerivedPtrIndex());
1147 RelocateIdxMap
.insert(std::make_pair(K
, ThisRelocate
));
1149 for (auto &Item
: RelocateIdxMap
) {
1150 std::pair
<unsigned, unsigned> Key
= Item
.first
;
1151 if (Key
.first
== Key
.second
)
1152 // Base relocation: nothing to insert
1155 GCRelocateInst
*I
= Item
.second
;
1156 auto BaseKey
= std::make_pair(Key
.first
, Key
.first
);
1158 // We're iterating over RelocateIdxMap so we cannot modify it.
1159 auto MaybeBase
= RelocateIdxMap
.find(BaseKey
);
1160 if (MaybeBase
== RelocateIdxMap
.end())
1161 // TODO: We might want to insert a new base object relocate and gep off
1162 // that, if there are enough derived object relocates.
1165 RelocateInstMap
[MaybeBase
->second
].push_back(I
);
1169 // Accepts a GEP and extracts the operands into a vector provided they're all
1170 // small integer constants
1171 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst
*GEP
,
1172 SmallVectorImpl
<Value
*> &OffsetV
) {
1173 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++) {
1174 // Only accept small constant integer operands
1175 auto *Op
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
1176 if (!Op
|| Op
->getZExtValue() > 20)
1180 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++)
1181 OffsetV
.push_back(GEP
->getOperand(i
));
1185 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1186 // replace, computes a replacement, and affects it.
1188 simplifyRelocatesOffABase(GCRelocateInst
*RelocatedBase
,
1189 const SmallVectorImpl
<GCRelocateInst
*> &Targets
) {
1190 bool MadeChange
= false;
1191 // We must ensure the relocation of derived pointer is defined after
1192 // relocation of base pointer. If we find a relocation corresponding to base
1193 // defined earlier than relocation of base then we move relocation of base
1194 // right before found relocation. We consider only relocation in the same
1195 // basic block as relocation of base. Relocations from other basic block will
1196 // be skipped by optimization and we do not care about them.
1197 for (auto R
= RelocatedBase
->getParent()->getFirstInsertionPt();
1198 &*R
!= RelocatedBase
; ++R
)
1199 if (auto *RI
= dyn_cast
<GCRelocateInst
>(R
))
1200 if (RI
->getStatepoint() == RelocatedBase
->getStatepoint())
1201 if (RI
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex()) {
1202 RelocatedBase
->moveBefore(RI
);
1206 for (GCRelocateInst
*ToReplace
: Targets
) {
1207 assert(ToReplace
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex() &&
1208 "Not relocating a derived object of the original base object");
1209 if (ToReplace
->getBasePtrIndex() == ToReplace
->getDerivedPtrIndex()) {
1210 // A duplicate relocate call. TODO: coalesce duplicates.
1214 if (RelocatedBase
->getParent() != ToReplace
->getParent()) {
1215 // Base and derived relocates are in different basic blocks.
1216 // In this case transform is only valid when base dominates derived
1217 // relocate. However it would be too expensive to check dominance
1218 // for each such relocate, so we skip the whole transformation.
1222 Value
*Base
= ToReplace
->getBasePtr();
1223 auto *Derived
= dyn_cast
<GetElementPtrInst
>(ToReplace
->getDerivedPtr());
1224 if (!Derived
|| Derived
->getPointerOperand() != Base
)
1227 SmallVector
<Value
*, 2> OffsetV
;
1228 if (!getGEPSmallConstantIntOffsetV(Derived
, OffsetV
))
1231 // Create a Builder and replace the target callsite with a gep
1232 assert(RelocatedBase
->getNextNode() &&
1233 "Should always have one since it's not a terminator");
1235 // Insert after RelocatedBase
1236 IRBuilder
<> Builder(RelocatedBase
->getNextNode());
1237 Builder
.SetCurrentDebugLocation(ToReplace
->getDebugLoc());
1239 // If gc_relocate does not match the actual type, cast it to the right type.
1240 // In theory, there must be a bitcast after gc_relocate if the type does not
1241 // match, and we should reuse it to get the derived pointer. But it could be
1245 // %g1 = call coldcc i8 addrspace(1)*
1246 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1250 // %g2 = call coldcc i8 addrspace(1)*
1251 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1254 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1255 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1257 // In this case, we can not find the bitcast any more. So we insert a new
1258 // bitcast no matter there is already one or not. In this way, we can handle
1259 // all cases, and the extra bitcast should be optimized away in later
1261 Value
*ActualRelocatedBase
= RelocatedBase
;
1262 if (RelocatedBase
->getType() != Base
->getType()) {
1263 ActualRelocatedBase
=
1264 Builder
.CreateBitCast(RelocatedBase
, Base
->getType());
1266 Value
*Replacement
=
1267 Builder
.CreateGEP(Derived
->getSourceElementType(), ActualRelocatedBase
,
1269 Replacement
->takeName(ToReplace
);
1270 // If the newly generated derived pointer's type does not match the original
1271 // derived pointer's type, cast the new derived pointer to match it. Same
1272 // reasoning as above.
1273 Value
*ActualReplacement
= Replacement
;
1274 if (Replacement
->getType() != ToReplace
->getType()) {
1276 Builder
.CreateBitCast(Replacement
, ToReplace
->getType());
1278 ToReplace
->replaceAllUsesWith(ActualReplacement
);
1279 ToReplace
->eraseFromParent();
1289 // %ptr = gep %base + 15
1290 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1291 // %base' = relocate(%tok, i32 4, i32 4)
1292 // %ptr' = relocate(%tok, i32 4, i32 5)
1293 // %val = load %ptr'
1298 // %ptr = gep %base + 15
1299 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1300 // %base' = gc.relocate(%tok, i32 4, i32 4)
1301 // %ptr' = gep %base' + 15
1302 // %val = load %ptr'
1303 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst
&I
) {
1304 bool MadeChange
= false;
1305 SmallVector
<GCRelocateInst
*, 2> AllRelocateCalls
;
1306 for (auto *U
: I
.users())
1307 if (GCRelocateInst
*Relocate
= dyn_cast
<GCRelocateInst
>(U
))
1308 // Collect all the relocate calls associated with a statepoint
1309 AllRelocateCalls
.push_back(Relocate
);
1311 // We need at least one base pointer relocation + one derived pointer
1312 // relocation to mangle
1313 if (AllRelocateCalls
.size() < 2)
1316 // RelocateInstMap is a mapping from the base relocate instruction to the
1317 // corresponding derived relocate instructions
1318 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>> RelocateInstMap
;
1319 computeBaseDerivedRelocateMap(AllRelocateCalls
, RelocateInstMap
);
1320 if (RelocateInstMap
.empty())
1323 for (auto &Item
: RelocateInstMap
)
1324 // Item.first is the RelocatedBase to offset against
1325 // Item.second is the vector of Targets to replace
1326 MadeChange
= simplifyRelocatesOffABase(Item
.first
, Item
.second
);
1330 /// Sink the specified cast instruction into its user blocks.
1331 static bool SinkCast(CastInst
*CI
) {
1332 BasicBlock
*DefBB
= CI
->getParent();
1334 /// InsertedCasts - Only insert a cast in each block once.
1335 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
1337 bool MadeChange
= false;
1338 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1340 Use
&TheUse
= UI
.getUse();
1341 Instruction
*User
= cast
<Instruction
>(*UI
);
1343 // Figure out which BB this cast is used in. For PHI's this is the
1344 // appropriate predecessor block.
1345 BasicBlock
*UserBB
= User
->getParent();
1346 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
1347 UserBB
= PN
->getIncomingBlock(TheUse
);
1350 // Preincrement use iterator so we don't invalidate it.
1353 // The first insertion point of a block containing an EH pad is after the
1354 // pad. If the pad is the user, we cannot sink the cast past the pad.
1355 if (User
->isEHPad())
1358 // If the block selected to receive the cast is an EH pad that does not
1359 // allow non-PHI instructions before the terminator, we can't sink the
1361 if (UserBB
->getTerminator()->isEHPad())
1364 // If this user is in the same block as the cast, don't change the cast.
1365 if (UserBB
== DefBB
)
1368 // If we have already inserted a cast into this block, use it.
1369 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
1371 if (!InsertedCast
) {
1372 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1373 assert(InsertPt
!= UserBB
->end());
1374 InsertedCast
= CastInst::Create(CI
->getOpcode(), CI
->getOperand(0),
1375 CI
->getType(), "", &*InsertPt
);
1376 InsertedCast
->setDebugLoc(CI
->getDebugLoc());
1379 // Replace a use of the cast with a use of the new cast.
1380 TheUse
= InsertedCast
;
1385 // If we removed all uses, nuke the cast.
1386 if (CI
->use_empty()) {
1387 salvageDebugInfo(*CI
);
1388 CI
->eraseFromParent();
1395 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1396 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1397 /// reduce the number of virtual registers that must be created and coalesced.
1399 /// Return true if any changes are made.
1400 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
,
1401 const DataLayout
&DL
) {
1402 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1403 // than sinking only nop casts, but is helpful on some platforms.
1404 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(CI
)) {
1405 if (!TLI
.isFreeAddrSpaceCast(ASC
->getSrcAddressSpace(),
1406 ASC
->getDestAddressSpace()))
1410 // If this is a noop copy,
1411 EVT SrcVT
= TLI
.getValueType(DL
, CI
->getOperand(0)->getType());
1412 EVT DstVT
= TLI
.getValueType(DL
, CI
->getType());
1414 // This is an fp<->int conversion?
1415 if (SrcVT
.isInteger() != DstVT
.isInteger())
1418 // If this is an extension, it will be a zero or sign extension, which
1420 if (SrcVT
.bitsLT(DstVT
))
1423 // If these values will be promoted, find out what they will be promoted
1424 // to. This helps us consider truncates on PPC as noop copies when they
1426 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) ==
1427 TargetLowering::TypePromoteInteger
)
1428 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
1429 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) ==
1430 TargetLowering::TypePromoteInteger
)
1431 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
1433 // If, after promotion, these are the same types, this is a noop copy.
1437 return SinkCast(CI
);
1440 // Match a simple increment by constant operation. Note that if a sub is
1441 // matched, the step is negated (as if the step had been canonicalized to
1442 // an add, even though we leave the instruction alone.)
1443 bool matchIncrement(const Instruction
*IVInc
, Instruction
*&LHS
,
1445 if (match(IVInc
, m_Add(m_Instruction(LHS
), m_Constant(Step
))) ||
1446 match(IVInc
, m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::uadd_with_overflow
>(
1447 m_Instruction(LHS
), m_Constant(Step
)))))
1449 if (match(IVInc
, m_Sub(m_Instruction(LHS
), m_Constant(Step
))) ||
1450 match(IVInc
, m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::usub_with_overflow
>(
1451 m_Instruction(LHS
), m_Constant(Step
))))) {
1452 Step
= ConstantExpr::getNeg(Step
);
1458 /// If given \p PN is an inductive variable with value IVInc coming from the
1459 /// backedge, and on each iteration it gets increased by Step, return pair
1460 /// <IVInc, Step>. Otherwise, return std::nullopt.
1461 static std::optional
<std::pair
<Instruction
*, Constant
*>>
1462 getIVIncrement(const PHINode
*PN
, const LoopInfo
*LI
) {
1463 const Loop
*L
= LI
->getLoopFor(PN
->getParent());
1464 if (!L
|| L
->getHeader() != PN
->getParent() || !L
->getLoopLatch())
1465 return std::nullopt
;
1467 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(L
->getLoopLatch()));
1468 if (!IVInc
|| LI
->getLoopFor(IVInc
->getParent()) != L
)
1469 return std::nullopt
;
1470 Instruction
*LHS
= nullptr;
1471 Constant
*Step
= nullptr;
1472 if (matchIncrement(IVInc
, LHS
, Step
) && LHS
== PN
)
1473 return std::make_pair(IVInc
, Step
);
1474 return std::nullopt
;
1477 static bool isIVIncrement(const Value
*V
, const LoopInfo
*LI
) {
1478 auto *I
= dyn_cast
<Instruction
>(V
);
1481 Instruction
*LHS
= nullptr;
1482 Constant
*Step
= nullptr;
1483 if (!matchIncrement(I
, LHS
, Step
))
1485 if (auto *PN
= dyn_cast
<PHINode
>(LHS
))
1486 if (auto IVInc
= getIVIncrement(PN
, LI
))
1487 return IVInc
->first
== I
;
1491 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator
*BO
,
1492 Value
*Arg0
, Value
*Arg1
,
1494 Intrinsic::ID IID
) {
1495 auto IsReplacableIVIncrement
= [this, &Cmp
](BinaryOperator
*BO
) {
1496 if (!isIVIncrement(BO
, LI
))
1498 const Loop
*L
= LI
->getLoopFor(BO
->getParent());
1499 assert(L
&& "L should not be null after isIVIncrement()");
1500 // Do not risk on moving increment into a child loop.
1501 if (LI
->getLoopFor(Cmp
->getParent()) != L
)
1504 // Finally, we need to ensure that the insert point will dominate all
1505 // existing uses of the increment.
1507 auto &DT
= getDT(*BO
->getParent()->getParent());
1508 if (DT
.dominates(Cmp
->getParent(), BO
->getParent()))
1509 // If we're moving up the dom tree, all uses are trivially dominated.
1510 // (This is the common case for code produced by LSR.)
1513 // Otherwise, special case the single use in the phi recurrence.
1514 return BO
->hasOneUse() && DT
.dominates(Cmp
->getParent(), L
->getLoopLatch());
1516 if (BO
->getParent() != Cmp
->getParent() && !IsReplacableIVIncrement(BO
)) {
1517 // We used to use a dominator tree here to allow multi-block optimization.
1518 // But that was problematic because:
1519 // 1. It could cause a perf regression by hoisting the math op into the
1521 // 2. It could cause a perf regression by creating a value that was live
1522 // across multiple blocks and increasing register pressure.
1523 // 3. Use of a dominator tree could cause large compile-time regression.
1524 // This is because we recompute the DT on every change in the main CGP
1525 // run-loop. The recomputing is probably unnecessary in many cases, so if
1526 // that was fixed, using a DT here would be ok.
1528 // There is one important particular case we still want to handle: if BO is
1529 // the IV increment. Important properties that make it profitable:
1530 // - We can speculate IV increment anywhere in the loop (as long as the
1531 // indvar Phi is its only user);
1532 // - Upon computing Cmp, we effectively compute something equivalent to the
1533 // IV increment (despite it loops differently in the IR). So moving it up
1534 // to the cmp point does not really increase register pressure.
1538 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1539 if (BO
->getOpcode() == Instruction::Add
&&
1540 IID
== Intrinsic::usub_with_overflow
) {
1541 assert(isa
<Constant
>(Arg1
) && "Unexpected input for usubo");
1542 Arg1
= ConstantExpr::getNeg(cast
<Constant
>(Arg1
));
1545 // Insert at the first instruction of the pair.
1546 Instruction
*InsertPt
= nullptr;
1547 for (Instruction
&Iter
: *Cmp
->getParent()) {
1548 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1549 // the overflow intrinsic are defined.
1550 if ((BO
->getOpcode() != Instruction::Xor
&& &Iter
== BO
) || &Iter
== Cmp
) {
1555 assert(InsertPt
!= nullptr && "Parent block did not contain cmp or binop");
1557 IRBuilder
<> Builder(InsertPt
);
1558 Value
*MathOV
= Builder
.CreateBinaryIntrinsic(IID
, Arg0
, Arg1
);
1559 if (BO
->getOpcode() != Instruction::Xor
) {
1560 Value
*Math
= Builder
.CreateExtractValue(MathOV
, 0, "math");
1561 replaceAllUsesWith(BO
, Math
, FreshBBs
, IsHugeFunc
);
1563 assert(BO
->hasOneUse() &&
1564 "Patterns with XOr should use the BO only in the compare");
1565 Value
*OV
= Builder
.CreateExtractValue(MathOV
, 1, "ov");
1566 replaceAllUsesWith(Cmp
, OV
, FreshBBs
, IsHugeFunc
);
1567 Cmp
->eraseFromParent();
1568 BO
->eraseFromParent();
1572 /// Match special-case patterns that check for unsigned add overflow.
1573 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst
*Cmp
,
1574 BinaryOperator
*&Add
) {
1575 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1576 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1577 Value
*A
= Cmp
->getOperand(0), *B
= Cmp
->getOperand(1);
1579 // We are not expecting non-canonical/degenerate code. Just bail out.
1580 if (isa
<Constant
>(A
))
1583 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1584 if (Pred
== ICmpInst::ICMP_EQ
&& match(B
, m_AllOnes()))
1585 B
= ConstantInt::get(B
->getType(), 1);
1586 else if (Pred
== ICmpInst::ICMP_NE
&& match(B
, m_ZeroInt()))
1587 B
= ConstantInt::get(B
->getType(), -1);
1591 // Check the users of the variable operand of the compare looking for an add
1592 // with the adjusted constant.
1593 for (User
*U
: A
->users()) {
1594 if (match(U
, m_Add(m_Specific(A
), m_Specific(B
)))) {
1595 Add
= cast
<BinaryOperator
>(U
);
1602 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1603 /// intrinsic. Return true if any changes were made.
1604 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst
*Cmp
,
1605 ModifyDT
&ModifiedDT
) {
1606 bool EdgeCase
= false;
1608 BinaryOperator
*Add
;
1609 if (!match(Cmp
, m_UAddWithOverflow(m_Value(A
), m_Value(B
), m_BinOp(Add
)))) {
1610 if (!matchUAddWithOverflowConstantEdgeCases(Cmp
, Add
))
1612 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1613 A
= Add
->getOperand(0);
1614 B
= Add
->getOperand(1);
1618 if (!TLI
->shouldFormOverflowOp(ISD::UADDO
,
1619 TLI
->getValueType(*DL
, Add
->getType()),
1620 Add
->hasNUsesOrMore(EdgeCase
? 1 : 2)))
1623 // We don't want to move around uses of condition values this late, so we
1624 // check if it is legal to create the call to the intrinsic in the basic
1625 // block containing the icmp.
1626 if (Add
->getParent() != Cmp
->getParent() && !Add
->hasOneUse())
1629 if (!replaceMathCmpWithIntrinsic(Add
, A
, B
, Cmp
,
1630 Intrinsic::uadd_with_overflow
))
1633 // Reset callers - do not crash by iterating over a dead instruction.
1634 ModifiedDT
= ModifyDT::ModifyInstDT
;
1638 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst
*Cmp
,
1639 ModifyDT
&ModifiedDT
) {
1640 // We are not expecting non-canonical/degenerate code. Just bail out.
1641 Value
*A
= Cmp
->getOperand(0), *B
= Cmp
->getOperand(1);
1642 if (isa
<Constant
>(A
) && isa
<Constant
>(B
))
1645 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1646 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1647 if (Pred
== ICmpInst::ICMP_UGT
) {
1649 Pred
= ICmpInst::ICMP_ULT
;
1651 // Convert special-case: (A == 0) is the same as (A u< 1).
1652 if (Pred
== ICmpInst::ICMP_EQ
&& match(B
, m_ZeroInt())) {
1653 B
= ConstantInt::get(B
->getType(), 1);
1654 Pred
= ICmpInst::ICMP_ULT
;
1656 // Convert special-case: (A != 0) is the same as (0 u< A).
1657 if (Pred
== ICmpInst::ICMP_NE
&& match(B
, m_ZeroInt())) {
1659 Pred
= ICmpInst::ICMP_ULT
;
1661 if (Pred
!= ICmpInst::ICMP_ULT
)
1664 // Walk the users of a variable operand of a compare looking for a subtract or
1665 // add with that same operand. Also match the 2nd operand of the compare to
1666 // the add/sub, but that may be a negated constant operand of an add.
1667 Value
*CmpVariableOperand
= isa
<Constant
>(A
) ? B
: A
;
1668 BinaryOperator
*Sub
= nullptr;
1669 for (User
*U
: CmpVariableOperand
->users()) {
1670 // A - B, A u< B --> usubo(A, B)
1671 if (match(U
, m_Sub(m_Specific(A
), m_Specific(B
)))) {
1672 Sub
= cast
<BinaryOperator
>(U
);
1676 // A + (-C), A u< C (canonicalized form of (sub A, C))
1677 const APInt
*CmpC
, *AddC
;
1678 if (match(U
, m_Add(m_Specific(A
), m_APInt(AddC
))) &&
1679 match(B
, m_APInt(CmpC
)) && *AddC
== -(*CmpC
)) {
1680 Sub
= cast
<BinaryOperator
>(U
);
1687 if (!TLI
->shouldFormOverflowOp(ISD::USUBO
,
1688 TLI
->getValueType(*DL
, Sub
->getType()),
1689 Sub
->hasNUsesOrMore(1)))
1692 if (!replaceMathCmpWithIntrinsic(Sub
, Sub
->getOperand(0), Sub
->getOperand(1),
1693 Cmp
, Intrinsic::usub_with_overflow
))
1696 // Reset callers - do not crash by iterating over a dead instruction.
1697 ModifiedDT
= ModifyDT::ModifyInstDT
;
1701 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1702 /// registers that must be created and coalesced. This is a clear win except on
1703 /// targets with multiple condition code registers (PowerPC), where it might
1704 /// lose; some adjustment may be wanted there.
1706 /// Return true if any changes are made.
1707 static bool sinkCmpExpression(CmpInst
*Cmp
, const TargetLowering
&TLI
) {
1708 if (TLI
.hasMultipleConditionRegisters())
1711 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1712 if (TLI
.useSoftFloat() && isa
<FCmpInst
>(Cmp
))
1715 // Only insert a cmp in each block once.
1716 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
1718 bool MadeChange
= false;
1719 for (Value::user_iterator UI
= Cmp
->user_begin(), E
= Cmp
->user_end();
1721 Use
&TheUse
= UI
.getUse();
1722 Instruction
*User
= cast
<Instruction
>(*UI
);
1724 // Preincrement use iterator so we don't invalidate it.
1727 // Don't bother for PHI nodes.
1728 if (isa
<PHINode
>(User
))
1731 // Figure out which BB this cmp is used in.
1732 BasicBlock
*UserBB
= User
->getParent();
1733 BasicBlock
*DefBB
= Cmp
->getParent();
1735 // If this user is in the same block as the cmp, don't change the cmp.
1736 if (UserBB
== DefBB
)
1739 // If we have already inserted a cmp into this block, use it.
1740 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
1743 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1744 assert(InsertPt
!= UserBB
->end());
1745 InsertedCmp
= CmpInst::Create(Cmp
->getOpcode(), Cmp
->getPredicate(),
1746 Cmp
->getOperand(0), Cmp
->getOperand(1), "",
1748 // Propagate the debug info.
1749 InsertedCmp
->setDebugLoc(Cmp
->getDebugLoc());
1752 // Replace a use of the cmp with a use of the new cmp.
1753 TheUse
= InsertedCmp
;
1758 // If we removed all uses, nuke the cmp.
1759 if (Cmp
->use_empty()) {
1760 Cmp
->eraseFromParent();
1767 /// For pattern like:
1769 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1773 /// br DomCond, TrueBB, CmpBB
1774 /// CmpBB: (with DomBB being the single predecessor)
1776 /// Cmp = icmp eq CmpOp0, CmpOp1
1779 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1780 /// different from lowering of icmp eq (PowerPC). This function try to convert
1781 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1782 /// After that, DomCond and Cmp can use the same comparison so reduce one
1785 /// Return true if any changes are made.
1786 static bool foldICmpWithDominatingICmp(CmpInst
*Cmp
,
1787 const TargetLowering
&TLI
) {
1788 if (!EnableICMP_EQToICMP_ST
&& TLI
.isEqualityCmpFoldedWithSignedCmp())
1791 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1792 if (Pred
!= ICmpInst::ICMP_EQ
)
1795 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1796 // icmp slt/sgt would introduce more redundant LLVM IR.
1797 for (User
*U
: Cmp
->users()) {
1798 if (isa
<BranchInst
>(U
))
1800 if (isa
<SelectInst
>(U
) && cast
<SelectInst
>(U
)->getCondition() == Cmp
)
1805 // This is a cheap/incomplete check for dominance - just match a single
1806 // predecessor with a conditional branch.
1807 BasicBlock
*CmpBB
= Cmp
->getParent();
1808 BasicBlock
*DomBB
= CmpBB
->getSinglePredecessor();
1812 // We want to ensure that the only way control gets to the comparison of
1813 // interest is that a less/greater than comparison on the same operands is
1816 BasicBlock
*TrueBB
, *FalseBB
;
1817 if (!match(DomBB
->getTerminator(), m_Br(m_Value(DomCond
), TrueBB
, FalseBB
)))
1819 if (CmpBB
!= FalseBB
)
1822 Value
*CmpOp0
= Cmp
->getOperand(0), *CmpOp1
= Cmp
->getOperand(1);
1823 ICmpInst::Predicate DomPred
;
1824 if (!match(DomCond
, m_ICmp(DomPred
, m_Specific(CmpOp0
), m_Specific(CmpOp1
))))
1826 if (DomPred
!= ICmpInst::ICMP_SGT
&& DomPred
!= ICmpInst::ICMP_SLT
)
1829 // Convert the equality comparison to the opposite of the dominating
1830 // comparison and swap the direction for all branch/select users.
1831 // We have conceptually converted:
1832 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1834 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1835 // And similarly for branches.
1836 for (User
*U
: Cmp
->users()) {
1837 if (auto *BI
= dyn_cast
<BranchInst
>(U
)) {
1838 assert(BI
->isConditional() && "Must be conditional");
1839 BI
->swapSuccessors();
1842 if (auto *SI
= dyn_cast
<SelectInst
>(U
)) {
1845 SI
->swapProfMetadata();
1848 llvm_unreachable("Must be a branch or a select");
1850 Cmp
->setPredicate(CmpInst::getSwappedPredicate(DomPred
));
1854 /// Many architectures use the same instruction for both subtract and cmp. Try
1855 /// to swap cmp operands to match subtract operations to allow for CSE.
1856 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst
*Cmp
) {
1857 Value
*Op0
= Cmp
->getOperand(0);
1858 Value
*Op1
= Cmp
->getOperand(1);
1859 if (!Op0
->getType()->isIntegerTy() || isa
<Constant
>(Op0
) ||
1860 isa
<Constant
>(Op1
) || Op0
== Op1
)
1863 // If a subtract already has the same operands as a compare, swapping would be
1864 // bad. If a subtract has the same operands as a compare but in reverse order,
1865 // then swapping is good.
1867 unsigned NumInspected
= 0;
1868 for (const User
*U
: Op0
->users()) {
1869 // Avoid walking many users.
1870 if (++NumInspected
> 128)
1872 if (match(U
, m_Sub(m_Specific(Op1
), m_Specific(Op0
))))
1874 else if (match(U
, m_Sub(m_Specific(Op0
), m_Specific(Op1
))))
1878 if (GoodToSwap
> 0) {
1879 Cmp
->swapOperands();
1885 bool CodeGenPrepare::optimizeCmp(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
) {
1886 if (sinkCmpExpression(Cmp
, *TLI
))
1889 if (combineToUAddWithOverflow(Cmp
, ModifiedDT
))
1892 if (combineToUSubWithOverflow(Cmp
, ModifiedDT
))
1895 if (foldICmpWithDominatingICmp(Cmp
, *TLI
))
1898 if (swapICmpOperandsToExposeCSEOpportunities(Cmp
))
1904 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1905 /// used in a compare to allow isel to generate better code for targets where
1906 /// this operation can be combined.
1908 /// Return true if any changes are made.
1909 static bool sinkAndCmp0Expression(Instruction
*AndI
, const TargetLowering
&TLI
,
1910 SetOfInstrs
&InsertedInsts
) {
1911 // Double-check that we're not trying to optimize an instruction that was
1912 // already optimized by some other part of this pass.
1913 assert(!InsertedInsts
.count(AndI
) &&
1914 "Attempting to optimize already optimized and instruction");
1915 (void)InsertedInsts
;
1917 // Nothing to do for single use in same basic block.
1918 if (AndI
->hasOneUse() &&
1919 AndI
->getParent() == cast
<Instruction
>(*AndI
->user_begin())->getParent())
1922 // Try to avoid cases where sinking/duplicating is likely to increase register
1924 if (!isa
<ConstantInt
>(AndI
->getOperand(0)) &&
1925 !isa
<ConstantInt
>(AndI
->getOperand(1)) &&
1926 AndI
->getOperand(0)->hasOneUse() && AndI
->getOperand(1)->hasOneUse())
1929 for (auto *U
: AndI
->users()) {
1930 Instruction
*User
= cast
<Instruction
>(U
);
1932 // Only sink 'and' feeding icmp with 0.
1933 if (!isa
<ICmpInst
>(User
))
1936 auto *CmpC
= dyn_cast
<ConstantInt
>(User
->getOperand(1));
1937 if (!CmpC
|| !CmpC
->isZero())
1941 if (!TLI
.isMaskAndCmp0FoldingBeneficial(*AndI
))
1944 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1945 LLVM_DEBUG(AndI
->getParent()->dump());
1947 // Push the 'and' into the same block as the icmp 0. There should only be
1948 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1949 // others, so we don't need to keep track of which BBs we insert into.
1950 for (Value::user_iterator UI
= AndI
->user_begin(), E
= AndI
->user_end();
1952 Use
&TheUse
= UI
.getUse();
1953 Instruction
*User
= cast
<Instruction
>(*UI
);
1955 // Preincrement use iterator so we don't invalidate it.
1958 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User
<< "\n");
1960 // Keep the 'and' in the same place if the use is already in the same block.
1961 Instruction
*InsertPt
=
1962 User
->getParent() == AndI
->getParent() ? AndI
: User
;
1963 Instruction
*InsertedAnd
=
1964 BinaryOperator::Create(Instruction::And
, AndI
->getOperand(0),
1965 AndI
->getOperand(1), "", InsertPt
);
1966 // Propagate the debug info.
1967 InsertedAnd
->setDebugLoc(AndI
->getDebugLoc());
1969 // Replace a use of the 'and' with a use of the new 'and'.
1970 TheUse
= InsertedAnd
;
1972 LLVM_DEBUG(User
->getParent()->dump());
1975 // We removed all uses, nuke the and.
1976 AndI
->eraseFromParent();
1980 /// Check if the candidates could be combined with a shift instruction, which
1982 /// 1. Truncate instruction
1983 /// 2. And instruction and the imm is a mask of the low bits:
1984 /// imm & (imm+1) == 0
1985 static bool isExtractBitsCandidateUse(Instruction
*User
) {
1986 if (!isa
<TruncInst
>(User
)) {
1987 if (User
->getOpcode() != Instruction::And
||
1988 !isa
<ConstantInt
>(User
->getOperand(1)))
1991 const APInt
&Cimm
= cast
<ConstantInt
>(User
->getOperand(1))->getValue();
1993 if ((Cimm
& (Cimm
+ 1)).getBoolValue())
1999 /// Sink both shift and truncate instruction to the use of truncate's BB.
2001 SinkShiftAndTruncate(BinaryOperator
*ShiftI
, Instruction
*User
, ConstantInt
*CI
,
2002 DenseMap
<BasicBlock
*, BinaryOperator
*> &InsertedShifts
,
2003 const TargetLowering
&TLI
, const DataLayout
&DL
) {
2004 BasicBlock
*UserBB
= User
->getParent();
2005 DenseMap
<BasicBlock
*, CastInst
*> InsertedTruncs
;
2006 auto *TruncI
= cast
<TruncInst
>(User
);
2007 bool MadeChange
= false;
2009 for (Value::user_iterator TruncUI
= TruncI
->user_begin(),
2010 TruncE
= TruncI
->user_end();
2011 TruncUI
!= TruncE
;) {
2013 Use
&TruncTheUse
= TruncUI
.getUse();
2014 Instruction
*TruncUser
= cast
<Instruction
>(*TruncUI
);
2015 // Preincrement use iterator so we don't invalidate it.
2019 int ISDOpcode
= TLI
.InstructionOpcodeToISD(TruncUser
->getOpcode());
2023 // If the use is actually a legal node, there will not be an
2024 // implicit truncate.
2025 // FIXME: always querying the result type is just an
2026 // approximation; some nodes' legality is determined by the
2027 // operand or other means. There's no good way to find out though.
2028 if (TLI
.isOperationLegalOrCustom(
2029 ISDOpcode
, TLI
.getValueType(DL
, TruncUser
->getType(), true)))
2032 // Don't bother for PHI nodes.
2033 if (isa
<PHINode
>(TruncUser
))
2036 BasicBlock
*TruncUserBB
= TruncUser
->getParent();
2038 if (UserBB
== TruncUserBB
)
2041 BinaryOperator
*&InsertedShift
= InsertedShifts
[TruncUserBB
];
2042 CastInst
*&InsertedTrunc
= InsertedTruncs
[TruncUserBB
];
2044 if (!InsertedShift
&& !InsertedTrunc
) {
2045 BasicBlock::iterator InsertPt
= TruncUserBB
->getFirstInsertionPt();
2046 assert(InsertPt
!= TruncUserBB
->end());
2048 if (ShiftI
->getOpcode() == Instruction::AShr
)
2049 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
2052 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
2054 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
2057 BasicBlock::iterator TruncInsertPt
= TruncUserBB
->getFirstInsertionPt();
2059 assert(TruncInsertPt
!= TruncUserBB
->end());
2061 InsertedTrunc
= CastInst::Create(TruncI
->getOpcode(), InsertedShift
,
2062 TruncI
->getType(), "", &*TruncInsertPt
);
2063 InsertedTrunc
->setDebugLoc(TruncI
->getDebugLoc());
2067 TruncTheUse
= InsertedTrunc
;
2073 /// Sink the shift *right* instruction into user blocks if the uses could
2074 /// potentially be combined with this shift instruction and generate BitExtract
2075 /// instruction. It will only be applied if the architecture supports BitExtract
2076 /// instruction. Here is an example:
2078 /// %x.extract.shift = lshr i64 %arg1, 32
2080 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
2084 /// %x.extract.shift.1 = lshr i64 %arg1, 32
2085 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2087 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2089 /// Return true if any changes are made.
2090 static bool OptimizeExtractBits(BinaryOperator
*ShiftI
, ConstantInt
*CI
,
2091 const TargetLowering
&TLI
,
2092 const DataLayout
&DL
) {
2093 BasicBlock
*DefBB
= ShiftI
->getParent();
2095 /// Only insert instructions in each block once.
2096 DenseMap
<BasicBlock
*, BinaryOperator
*> InsertedShifts
;
2098 bool shiftIsLegal
= TLI
.isTypeLegal(TLI
.getValueType(DL
, ShiftI
->getType()));
2100 bool MadeChange
= false;
2101 for (Value::user_iterator UI
= ShiftI
->user_begin(), E
= ShiftI
->user_end();
2103 Use
&TheUse
= UI
.getUse();
2104 Instruction
*User
= cast
<Instruction
>(*UI
);
2105 // Preincrement use iterator so we don't invalidate it.
2108 // Don't bother for PHI nodes.
2109 if (isa
<PHINode
>(User
))
2112 if (!isExtractBitsCandidateUse(User
))
2115 BasicBlock
*UserBB
= User
->getParent();
2117 if (UserBB
== DefBB
) {
2118 // If the shift and truncate instruction are in the same BB. The use of
2119 // the truncate(TruncUse) may still introduce another truncate if not
2120 // legal. In this case, we would like to sink both shift and truncate
2121 // instruction to the BB of TruncUse.
2124 // i64 shift.result = lshr i64 opnd, imm
2125 // trunc.result = trunc shift.result to i16
2128 // ----> We will have an implicit truncate here if the architecture does
2129 // not have i16 compare.
2130 // cmp i16 trunc.result, opnd2
2132 if (isa
<TruncInst
>(User
) &&
2134 // If the type of the truncate is legal, no truncate will be
2135 // introduced in other basic blocks.
2136 && (!TLI
.isTypeLegal(TLI
.getValueType(DL
, User
->getType()))))
2138 SinkShiftAndTruncate(ShiftI
, User
, CI
, InsertedShifts
, TLI
, DL
);
2142 // If we have already inserted a shift into this block, use it.
2143 BinaryOperator
*&InsertedShift
= InsertedShifts
[UserBB
];
2145 if (!InsertedShift
) {
2146 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
2147 assert(InsertPt
!= UserBB
->end());
2149 if (ShiftI
->getOpcode() == Instruction::AShr
)
2150 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
2153 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
2155 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
2160 // Replace a use of the shift with a use of the new shift.
2161 TheUse
= InsertedShift
;
2164 // If we removed all uses, or there are none, nuke the shift.
2165 if (ShiftI
->use_empty()) {
2166 salvageDebugInfo(*ShiftI
);
2167 ShiftI
->eraseFromParent();
2174 /// If counting leading or trailing zeros is an expensive operation and a zero
2175 /// input is defined, add a check for zero to avoid calling the intrinsic.
2177 /// We want to transform:
2178 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2182 /// %cmpz = icmp eq i64 %A, 0
2183 /// br i1 %cmpz, label %cond.end, label %cond.false
2185 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2186 /// br label %cond.end
2188 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2190 /// If the transform is performed, return true and set ModifiedDT to true.
2191 static bool despeculateCountZeros(IntrinsicInst
*CountZeros
,
2193 const TargetLowering
*TLI
,
2194 const DataLayout
*DL
, ModifyDT
&ModifiedDT
,
2195 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
2197 // If a zero input is undefined, it doesn't make sense to despeculate that.
2198 if (match(CountZeros
->getOperand(1), m_One()))
2201 // If it's cheap to speculate, there's nothing to do.
2202 Type
*Ty
= CountZeros
->getType();
2203 auto IntrinsicID
= CountZeros
->getIntrinsicID();
2204 if ((IntrinsicID
== Intrinsic::cttz
&& TLI
->isCheapToSpeculateCttz(Ty
)) ||
2205 (IntrinsicID
== Intrinsic::ctlz
&& TLI
->isCheapToSpeculateCtlz(Ty
)))
2208 // Only handle legal scalar cases. Anything else requires too much work.
2209 unsigned SizeInBits
= Ty
->getScalarSizeInBits();
2210 if (Ty
->isVectorTy() || SizeInBits
> DL
->getLargestLegalIntTypeSizeInBits())
2213 // Bail if the value is never zero.
2214 Use
&Op
= CountZeros
->getOperandUse(0);
2215 if (isKnownNonZero(Op
, *DL
))
2218 // The intrinsic will be sunk behind a compare against zero and branch.
2219 BasicBlock
*StartBlock
= CountZeros
->getParent();
2220 BasicBlock
*CallBlock
= StartBlock
->splitBasicBlock(CountZeros
, "cond.false");
2222 FreshBBs
.insert(CallBlock
);
2224 // Create another block after the count zero intrinsic. A PHI will be added
2225 // in this block to select the result of the intrinsic or the bit-width
2226 // constant if the input to the intrinsic is zero.
2227 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(CountZeros
));
2228 BasicBlock
*EndBlock
= CallBlock
->splitBasicBlock(SplitPt
, "cond.end");
2230 FreshBBs
.insert(EndBlock
);
2232 // Update the LoopInfo. The new blocks are in the same loop as the start
2234 if (Loop
*L
= LI
.getLoopFor(StartBlock
)) {
2235 L
->addBasicBlockToLoop(CallBlock
, LI
);
2236 L
->addBasicBlockToLoop(EndBlock
, LI
);
2239 // Set up a builder to create a compare, conditional branch, and PHI.
2240 IRBuilder
<> Builder(CountZeros
->getContext());
2241 Builder
.SetInsertPoint(StartBlock
->getTerminator());
2242 Builder
.SetCurrentDebugLocation(CountZeros
->getDebugLoc());
2244 // Replace the unconditional branch that was created by the first split with
2245 // a compare against zero and a conditional branch.
2246 Value
*Zero
= Constant::getNullValue(Ty
);
2247 // Avoid introducing branch on poison. This also replaces the ctz operand.
2248 if (!isGuaranteedNotToBeUndefOrPoison(Op
))
2249 Op
= Builder
.CreateFreeze(Op
, Op
->getName() + ".fr");
2250 Value
*Cmp
= Builder
.CreateICmpEQ(Op
, Zero
, "cmpz");
2251 Builder
.CreateCondBr(Cmp
, EndBlock
, CallBlock
);
2252 StartBlock
->getTerminator()->eraseFromParent();
2254 // Create a PHI in the end block to select either the output of the intrinsic
2255 // or the bit width of the operand.
2256 Builder
.SetInsertPoint(&EndBlock
->front());
2257 PHINode
*PN
= Builder
.CreatePHI(Ty
, 2, "ctz");
2258 replaceAllUsesWith(CountZeros
, PN
, FreshBBs
, IsHugeFunc
);
2259 Value
*BitWidth
= Builder
.getInt(APInt(SizeInBits
, SizeInBits
));
2260 PN
->addIncoming(BitWidth
, StartBlock
);
2261 PN
->addIncoming(CountZeros
, CallBlock
);
2263 // We are explicitly handling the zero case, so we can set the intrinsic's
2264 // undefined zero argument to 'true'. This will also prevent reprocessing the
2265 // intrinsic; we only despeculate when a zero input is defined.
2266 CountZeros
->setArgOperand(1, Builder
.getTrue());
2267 ModifiedDT
= ModifyDT::ModifyBBDT
;
2271 bool CodeGenPrepare::optimizeCallInst(CallInst
*CI
, ModifyDT
&ModifiedDT
) {
2272 BasicBlock
*BB
= CI
->getParent();
2274 // Lower inline assembly if we can.
2275 // If we found an inline asm expession, and if the target knows how to
2276 // lower it to normal LLVM code, do so now.
2277 if (CI
->isInlineAsm()) {
2278 if (TLI
->ExpandInlineAsm(CI
)) {
2279 // Avoid invalidating the iterator.
2280 CurInstIterator
= BB
->begin();
2281 // Avoid processing instructions out of order, which could cause
2282 // reuse before a value is defined.
2286 // Sink address computing for memory operands into the block.
2287 if (optimizeInlineAsmInst(CI
))
2291 // Align the pointer arguments to this call if the target thinks it's a good
2295 if (TLI
->shouldAlignPointerArgs(CI
, MinSize
, PrefAlign
)) {
2296 for (auto &Arg
: CI
->args()) {
2297 // We want to align both objects whose address is used directly and
2298 // objects whose address is used in casts and GEPs, though it only makes
2299 // sense for GEPs if the offset is a multiple of the desired alignment and
2300 // if size - offset meets the size threshold.
2301 if (!Arg
->getType()->isPointerTy())
2303 APInt
Offset(DL
->getIndexSizeInBits(
2304 cast
<PointerType
>(Arg
->getType())->getAddressSpace()),
2306 Value
*Val
= Arg
->stripAndAccumulateInBoundsConstantOffsets(*DL
, Offset
);
2307 uint64_t Offset2
= Offset
.getLimitedValue();
2308 if (!isAligned(PrefAlign
, Offset2
))
2311 if ((AI
= dyn_cast
<AllocaInst
>(Val
)) && AI
->getAlign() < PrefAlign
&&
2312 DL
->getTypeAllocSize(AI
->getAllocatedType()) >= MinSize
+ Offset2
)
2313 AI
->setAlignment(PrefAlign
);
2314 // Global variables can only be aligned if they are defined in this
2315 // object (i.e. they are uniquely initialized in this object), and
2316 // over-aligning global variables that have an explicit section is
2319 if ((GV
= dyn_cast
<GlobalVariable
>(Val
)) && GV
->canIncreaseAlignment() &&
2320 GV
->getPointerAlignment(*DL
) < PrefAlign
&&
2321 DL
->getTypeAllocSize(GV
->getValueType()) >= MinSize
+ Offset2
)
2322 GV
->setAlignment(PrefAlign
);
2325 // If this is a memcpy (or similar) then we may be able to improve the
2327 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(CI
)) {
2328 Align DestAlign
= getKnownAlignment(MI
->getDest(), *DL
);
2329 MaybeAlign MIDestAlign
= MI
->getDestAlign();
2330 if (!MIDestAlign
|| DestAlign
> *MIDestAlign
)
2331 MI
->setDestAlignment(DestAlign
);
2332 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
2333 MaybeAlign MTISrcAlign
= MTI
->getSourceAlign();
2334 Align SrcAlign
= getKnownAlignment(MTI
->getSource(), *DL
);
2335 if (!MTISrcAlign
|| SrcAlign
> *MTISrcAlign
)
2336 MTI
->setSourceAlignment(SrcAlign
);
2340 // If we have a cold call site, try to sink addressing computation into the
2341 // cold block. This interacts with our handling for loads and stores to
2342 // ensure that we can fold all uses of a potential addressing computation
2343 // into their uses. TODO: generalize this to work over profiling data
2344 if (CI
->hasFnAttr(Attribute::Cold
) && !OptSize
&&
2345 !llvm::shouldOptimizeForSize(BB
, PSI
, BFI
.get()))
2346 for (auto &Arg
: CI
->args()) {
2347 if (!Arg
->getType()->isPointerTy())
2349 unsigned AS
= Arg
->getType()->getPointerAddressSpace();
2350 if (optimizeMemoryInst(CI
, Arg
, Arg
->getType(), AS
))
2354 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
);
2356 switch (II
->getIntrinsicID()) {
2359 case Intrinsic::assume
:
2360 llvm_unreachable("llvm.assume should have been removed already");
2361 case Intrinsic::experimental_widenable_condition
: {
2362 // Give up on future widening oppurtunties so that we can fold away dead
2363 // paths and merge blocks before going into block-local instruction
2365 if (II
->use_empty()) {
2366 II
->eraseFromParent();
2369 Constant
*RetVal
= ConstantInt::getTrue(II
->getContext());
2370 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
2371 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
2375 case Intrinsic::objectsize
:
2376 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2377 case Intrinsic::is_constant
:
2378 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2379 case Intrinsic::aarch64_stlxr
:
2380 case Intrinsic::aarch64_stxr
: {
2381 ZExtInst
*ExtVal
= dyn_cast
<ZExtInst
>(CI
->getArgOperand(0));
2382 if (!ExtVal
|| !ExtVal
->hasOneUse() ||
2383 ExtVal
->getParent() == CI
->getParent())
2385 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2386 ExtVal
->moveBefore(CI
);
2387 // Mark this instruction as "inserted by CGP", so that other
2388 // optimizations don't touch it.
2389 InsertedInsts
.insert(ExtVal
);
2393 case Intrinsic::launder_invariant_group
:
2394 case Intrinsic::strip_invariant_group
: {
2395 Value
*ArgVal
= II
->getArgOperand(0);
2396 auto it
= LargeOffsetGEPMap
.find(II
);
2397 if (it
!= LargeOffsetGEPMap
.end()) {
2398 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2399 // Make sure not to have to deal with iterator invalidation
2400 // after possibly adding ArgVal to LargeOffsetGEPMap.
2401 auto GEPs
= std::move(it
->second
);
2402 LargeOffsetGEPMap
[ArgVal
].append(GEPs
.begin(), GEPs
.end());
2403 LargeOffsetGEPMap
.erase(II
);
2406 replaceAllUsesWith(II
, ArgVal
, FreshBBs
, IsHugeFunc
);
2407 II
->eraseFromParent();
2410 case Intrinsic::cttz
:
2411 case Intrinsic::ctlz
:
2412 // If counting zeros is expensive, try to avoid it.
2413 return despeculateCountZeros(II
, *LI
, TLI
, DL
, ModifiedDT
, FreshBBs
,
2415 case Intrinsic::fshl
:
2416 case Intrinsic::fshr
:
2417 return optimizeFunnelShift(II
);
2418 case Intrinsic::dbg_assign
:
2419 case Intrinsic::dbg_value
:
2420 return fixupDbgValue(II
);
2421 case Intrinsic::masked_gather
:
2422 return optimizeGatherScatterInst(II
, II
->getArgOperand(0));
2423 case Intrinsic::masked_scatter
:
2424 return optimizeGatherScatterInst(II
, II
->getArgOperand(1));
2427 SmallVector
<Value
*, 2> PtrOps
;
2429 if (TLI
->getAddrModeArguments(II
, PtrOps
, AccessTy
))
2430 while (!PtrOps
.empty()) {
2431 Value
*PtrVal
= PtrOps
.pop_back_val();
2432 unsigned AS
= PtrVal
->getType()->getPointerAddressSpace();
2433 if (optimizeMemoryInst(II
, PtrVal
, AccessTy
, AS
))
2438 // From here on out we're working with named functions.
2439 if (!CI
->getCalledFunction())
2442 // Lower all default uses of _chk calls. This is very similar
2443 // to what InstCombineCalls does, but here we are only lowering calls
2444 // to fortified library functions (e.g. __memcpy_chk) that have the default
2445 // "don't know" as the objectsize. Anything else should be left alone.
2446 FortifiedLibCallSimplifier
Simplifier(TLInfo
, true);
2447 IRBuilder
<> Builder(CI
);
2448 if (Value
*V
= Simplifier
.optimizeCall(CI
, Builder
)) {
2449 replaceAllUsesWith(CI
, V
, FreshBBs
, IsHugeFunc
);
2450 CI
->eraseFromParent();
2457 /// Look for opportunities to duplicate return instructions to the predecessor
2458 /// to enable tail call optimizations. The case it is currently looking for is:
2461 /// %tmp0 = tail call i32 @f0()
2462 /// br label %return
2464 /// %tmp1 = tail call i32 @f1()
2465 /// br label %return
2467 /// %tmp2 = tail call i32 @f2()
2468 /// br label %return
2470 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2478 /// %tmp0 = tail call i32 @f0()
2481 /// %tmp1 = tail call i32 @f1()
2484 /// %tmp2 = tail call i32 @f2()
2487 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock
*BB
,
2488 ModifyDT
&ModifiedDT
) {
2489 if (!BB
->getTerminator())
2492 ReturnInst
*RetI
= dyn_cast
<ReturnInst
>(BB
->getTerminator());
2496 assert(LI
->getLoopFor(BB
) == nullptr && "A return block cannot be in a loop");
2498 PHINode
*PN
= nullptr;
2499 ExtractValueInst
*EVI
= nullptr;
2500 BitCastInst
*BCI
= nullptr;
2501 Value
*V
= RetI
->getReturnValue();
2503 BCI
= dyn_cast
<BitCastInst
>(V
);
2505 V
= BCI
->getOperand(0);
2507 EVI
= dyn_cast
<ExtractValueInst
>(V
);
2509 V
= EVI
->getOperand(0);
2510 if (!llvm::all_of(EVI
->indices(), [](unsigned idx
) { return idx
== 0; }))
2514 PN
= dyn_cast
<PHINode
>(V
);
2519 if (PN
&& PN
->getParent() != BB
)
2522 auto isLifetimeEndOrBitCastFor
= [](const Instruction
*Inst
) {
2523 const BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Inst
);
2524 if (BC
&& BC
->hasOneUse())
2525 Inst
= BC
->user_back();
2527 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
))
2528 return II
->getIntrinsicID() == Intrinsic::lifetime_end
;
2532 // Make sure there are no instructions between the first instruction
2534 const Instruction
*BI
= BB
->getFirstNonPHI();
2535 // Skip over debug and the bitcast.
2536 while (isa
<DbgInfoIntrinsic
>(BI
) || BI
== BCI
|| BI
== EVI
||
2537 isa
<PseudoProbeInst
>(BI
) || isLifetimeEndOrBitCastFor(BI
))
2538 BI
= BI
->getNextNode();
2542 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2544 const Function
*F
= BB
->getParent();
2545 SmallVector
<BasicBlock
*, 4> TailCallBBs
;
2547 for (unsigned I
= 0, E
= PN
->getNumIncomingValues(); I
!= E
; ++I
) {
2548 // Look through bitcasts.
2549 Value
*IncomingVal
= PN
->getIncomingValue(I
)->stripPointerCasts();
2550 CallInst
*CI
= dyn_cast
<CallInst
>(IncomingVal
);
2551 BasicBlock
*PredBB
= PN
->getIncomingBlock(I
);
2552 // Make sure the phi value is indeed produced by the tail call.
2553 if (CI
&& CI
->hasOneUse() && CI
->getParent() == PredBB
&&
2554 TLI
->mayBeEmittedAsTailCall(CI
) &&
2555 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
2556 TailCallBBs
.push_back(PredBB
);
2559 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
2560 for (BasicBlock
*Pred
: predecessors(BB
)) {
2561 if (!VisitedBBs
.insert(Pred
).second
)
2563 if (Instruction
*I
= Pred
->rbegin()->getPrevNonDebugInstruction(true)) {
2564 CallInst
*CI
= dyn_cast
<CallInst
>(I
);
2565 if (CI
&& CI
->use_empty() && TLI
->mayBeEmittedAsTailCall(CI
) &&
2566 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
2567 TailCallBBs
.push_back(Pred
);
2572 bool Changed
= false;
2573 for (auto const &TailCallBB
: TailCallBBs
) {
2574 // Make sure the call instruction is followed by an unconditional branch to
2575 // the return block.
2576 BranchInst
*BI
= dyn_cast
<BranchInst
>(TailCallBB
->getTerminator());
2577 if (!BI
|| !BI
->isUnconditional() || BI
->getSuccessor(0) != BB
)
2580 // Duplicate the return into TailCallBB.
2581 (void)FoldReturnIntoUncondBranch(RetI
, BB
, TailCallBB
);
2582 assert(!VerifyBFIUpdates
||
2583 BFI
->getBlockFreq(BB
) >= BFI
->getBlockFreq(TailCallBB
));
2586 (BFI
->getBlockFreq(BB
) - BFI
->getBlockFreq(TailCallBB
)).getFrequency());
2587 ModifiedDT
= ModifyDT::ModifyBBDT
;
2592 // If we eliminated all predecessors of the block, delete the block now.
2593 if (Changed
&& !BB
->hasAddressTaken() && pred_empty(BB
))
2594 BB
->eraseFromParent();
2599 //===----------------------------------------------------------------------===//
2600 // Memory Optimization
2601 //===----------------------------------------------------------------------===//
2605 /// This is an extended version of TargetLowering::AddrMode
2606 /// which holds actual Value*'s for register values.
2607 struct ExtAddrMode
: public TargetLowering::AddrMode
{
2608 Value
*BaseReg
= nullptr;
2609 Value
*ScaledReg
= nullptr;
2610 Value
*OriginalValue
= nullptr;
2611 bool InBounds
= true;
2615 BaseRegField
= 0x01,
2617 BaseOffsField
= 0x04,
2618 ScaledRegField
= 0x08,
2620 MultipleFields
= 0xff
2623 ExtAddrMode() = default;
2625 void print(raw_ostream
&OS
) const;
2628 FieldName
compare(const ExtAddrMode
&other
) {
2629 // First check that the types are the same on each field, as differing types
2630 // is something we can't cope with later on.
2631 if (BaseReg
&& other
.BaseReg
&&
2632 BaseReg
->getType() != other
.BaseReg
->getType())
2633 return MultipleFields
;
2634 if (BaseGV
&& other
.BaseGV
&& BaseGV
->getType() != other
.BaseGV
->getType())
2635 return MultipleFields
;
2636 if (ScaledReg
&& other
.ScaledReg
&&
2637 ScaledReg
->getType() != other
.ScaledReg
->getType())
2638 return MultipleFields
;
2640 // Conservatively reject 'inbounds' mismatches.
2641 if (InBounds
!= other
.InBounds
)
2642 return MultipleFields
;
2644 // Check each field to see if it differs.
2645 unsigned Result
= NoField
;
2646 if (BaseReg
!= other
.BaseReg
)
2647 Result
|= BaseRegField
;
2648 if (BaseGV
!= other
.BaseGV
)
2649 Result
|= BaseGVField
;
2650 if (BaseOffs
!= other
.BaseOffs
)
2651 Result
|= BaseOffsField
;
2652 if (ScaledReg
!= other
.ScaledReg
)
2653 Result
|= ScaledRegField
;
2654 // Don't count 0 as being a different scale, because that actually means
2655 // unscaled (which will already be counted by having no ScaledReg).
2656 if (Scale
&& other
.Scale
&& Scale
!= other
.Scale
)
2657 Result
|= ScaleField
;
2659 if (llvm::popcount(Result
) > 1)
2660 return MultipleFields
;
2662 return static_cast<FieldName
>(Result
);
2665 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2668 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2669 // trivial if at most one of these terms is nonzero, except that BaseGV and
2670 // BaseReg both being zero actually means a null pointer value, which we
2671 // consider to be 'non-zero' here.
2672 return !BaseOffs
&& !Scale
&& !(BaseGV
&& BaseReg
);
2675 Value
*GetFieldAsValue(FieldName Field
, Type
*IntPtrTy
) {
2683 case ScaledRegField
:
2686 return ConstantInt::get(IntPtrTy
, BaseOffs
);
2690 void SetCombinedField(FieldName Field
, Value
*V
,
2691 const SmallVectorImpl
<ExtAddrMode
> &AddrModes
) {
2694 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2696 case ExtAddrMode::BaseRegField
:
2699 case ExtAddrMode::BaseGVField
:
2700 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2701 // in the BaseReg field.
2702 assert(BaseReg
== nullptr);
2706 case ExtAddrMode::ScaledRegField
:
2708 // If we have a mix of scaled and unscaled addrmodes then we want scale
2709 // to be the scale and not zero.
2711 for (const ExtAddrMode
&AM
: AddrModes
)
2717 case ExtAddrMode::BaseOffsField
:
2718 // The offset is no longer a constant, so it goes in ScaledReg with a
2720 assert(ScaledReg
== nullptr);
2730 static inline raw_ostream
&operator<<(raw_ostream
&OS
, const ExtAddrMode
&AM
) {
2736 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2737 void ExtAddrMode::print(raw_ostream
&OS
) const {
2738 bool NeedPlus
= false;
2744 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
2749 OS
<< (NeedPlus
? " + " : "") << BaseOffs
;
2754 OS
<< (NeedPlus
? " + " : "") << "Base:";
2755 BaseReg
->printAsOperand(OS
, /*PrintType=*/false);
2759 OS
<< (NeedPlus
? " + " : "") << Scale
<< "*";
2760 ScaledReg
->printAsOperand(OS
, /*PrintType=*/false);
2766 LLVM_DUMP_METHOD
void ExtAddrMode::dump() const {
2772 } // end anonymous namespace
2776 /// This class provides transaction based operation on the IR.
2777 /// Every change made through this class is recorded in the internal state and
2778 /// can be undone (rollback) until commit is called.
2779 /// CGP does not check if instructions could be speculatively executed when
2780 /// moved. Preserving the original location would pessimize the debugging
2781 /// experience, as well as negatively impact the quality of sample PGO.
2782 class TypePromotionTransaction
{
2783 /// This represents the common interface of the individual transaction.
2784 /// Each class implements the logic for doing one specific modification on
2785 /// the IR via the TypePromotionTransaction.
2786 class TypePromotionAction
{
2788 /// The Instruction modified.
2792 /// Constructor of the action.
2793 /// The constructor performs the related action on the IR.
2794 TypePromotionAction(Instruction
*Inst
) : Inst(Inst
) {}
2796 virtual ~TypePromotionAction() = default;
2798 /// Undo the modification done by this action.
2799 /// When this method is called, the IR must be in the same state as it was
2800 /// before this action was applied.
2801 /// \pre Undoing the action works if and only if the IR is in the exact same
2802 /// state as it was directly after this action was applied.
2803 virtual void undo() = 0;
2805 /// Advocate every change made by this action.
2806 /// When the results on the IR of the action are to be kept, it is important
2807 /// to call this function, otherwise hidden information may be kept forever.
2808 virtual void commit() {
2809 // Nothing to be done, this action is not doing anything.
2813 /// Utility to remember the position of an instruction.
2814 class InsertionHandler
{
2815 /// Position of an instruction.
2816 /// Either an instruction:
2817 /// - Is the first in a basic block: BB is used.
2818 /// - Has a previous instruction: PrevInst is used.
2820 Instruction
*PrevInst
;
2824 /// Remember whether or not the instruction had a previous instruction.
2825 bool HasPrevInstruction
;
2828 /// Record the position of \p Inst.
2829 InsertionHandler(Instruction
*Inst
) {
2830 BasicBlock::iterator It
= Inst
->getIterator();
2831 HasPrevInstruction
= (It
!= (Inst
->getParent()->begin()));
2832 if (HasPrevInstruction
)
2833 Point
.PrevInst
= &*--It
;
2835 Point
.BB
= Inst
->getParent();
2838 /// Insert \p Inst at the recorded position.
2839 void insert(Instruction
*Inst
) {
2840 if (HasPrevInstruction
) {
2841 if (Inst
->getParent())
2842 Inst
->removeFromParent();
2843 Inst
->insertAfter(Point
.PrevInst
);
2845 Instruction
*Position
= &*Point
.BB
->getFirstInsertionPt();
2846 if (Inst
->getParent())
2847 Inst
->moveBefore(Position
);
2849 Inst
->insertBefore(Position
);
2854 /// Move an instruction before another.
2855 class InstructionMoveBefore
: public TypePromotionAction
{
2856 /// Original position of the instruction.
2857 InsertionHandler Position
;
2860 /// Move \p Inst before \p Before.
2861 InstructionMoveBefore(Instruction
*Inst
, Instruction
*Before
)
2862 : TypePromotionAction(Inst
), Position(Inst
) {
2863 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst
<< "\nbefore: " << *Before
2865 Inst
->moveBefore(Before
);
2868 /// Move the instruction back to its original position.
2869 void undo() override
{
2870 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst
<< "\n");
2871 Position
.insert(Inst
);
2875 /// Set the operand of an instruction with a new value.
2876 class OperandSetter
: public TypePromotionAction
{
2877 /// Original operand of the instruction.
2880 /// Index of the modified instruction.
2884 /// Set \p Idx operand of \p Inst with \p NewVal.
2885 OperandSetter(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
)
2886 : TypePromotionAction(Inst
), Idx(Idx
) {
2887 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx
<< "\n"
2888 << "for:" << *Inst
<< "\n"
2889 << "with:" << *NewVal
<< "\n");
2890 Origin
= Inst
->getOperand(Idx
);
2891 Inst
->setOperand(Idx
, NewVal
);
2894 /// Restore the original value of the instruction.
2895 void undo() override
{
2896 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx
<< "\n"
2897 << "for: " << *Inst
<< "\n"
2898 << "with: " << *Origin
<< "\n");
2899 Inst
->setOperand(Idx
, Origin
);
2903 /// Hide the operands of an instruction.
2904 /// Do as if this instruction was not using any of its operands.
2905 class OperandsHider
: public TypePromotionAction
{
2906 /// The list of original operands.
2907 SmallVector
<Value
*, 4> OriginalValues
;
2910 /// Remove \p Inst from the uses of the operands of \p Inst.
2911 OperandsHider(Instruction
*Inst
) : TypePromotionAction(Inst
) {
2912 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst
<< "\n");
2913 unsigned NumOpnds
= Inst
->getNumOperands();
2914 OriginalValues
.reserve(NumOpnds
);
2915 for (unsigned It
= 0; It
< NumOpnds
; ++It
) {
2916 // Save the current operand.
2917 Value
*Val
= Inst
->getOperand(It
);
2918 OriginalValues
.push_back(Val
);
2920 // We could use OperandSetter here, but that would imply an overhead
2921 // that we are not willing to pay.
2922 Inst
->setOperand(It
, UndefValue::get(Val
->getType()));
2926 /// Restore the original list of uses.
2927 void undo() override
{
2928 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst
<< "\n");
2929 for (unsigned It
= 0, EndIt
= OriginalValues
.size(); It
!= EndIt
; ++It
)
2930 Inst
->setOperand(It
, OriginalValues
[It
]);
2934 /// Build a truncate instruction.
2935 class TruncBuilder
: public TypePromotionAction
{
2939 /// Build a truncate instruction of \p Opnd producing a \p Ty
2941 /// trunc Opnd to Ty.
2942 TruncBuilder(Instruction
*Opnd
, Type
*Ty
) : TypePromotionAction(Opnd
) {
2943 IRBuilder
<> Builder(Opnd
);
2944 Builder
.SetCurrentDebugLocation(DebugLoc());
2945 Val
= Builder
.CreateTrunc(Opnd
, Ty
, "promoted");
2946 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val
<< "\n");
2949 /// Get the built value.
2950 Value
*getBuiltValue() { return Val
; }
2952 /// Remove the built instruction.
2953 void undo() override
{
2954 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val
<< "\n");
2955 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2956 IVal
->eraseFromParent();
2960 /// Build a sign extension instruction.
2961 class SExtBuilder
: public TypePromotionAction
{
2965 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2967 /// sext Opnd to Ty.
2968 SExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2969 : TypePromotionAction(InsertPt
) {
2970 IRBuilder
<> Builder(InsertPt
);
2971 Val
= Builder
.CreateSExt(Opnd
, Ty
, "promoted");
2972 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val
<< "\n");
2975 /// Get the built value.
2976 Value
*getBuiltValue() { return Val
; }
2978 /// Remove the built instruction.
2979 void undo() override
{
2980 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val
<< "\n");
2981 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2982 IVal
->eraseFromParent();
2986 /// Build a zero extension instruction.
2987 class ZExtBuilder
: public TypePromotionAction
{
2991 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2993 /// zext Opnd to Ty.
2994 ZExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2995 : TypePromotionAction(InsertPt
) {
2996 IRBuilder
<> Builder(InsertPt
);
2997 Builder
.SetCurrentDebugLocation(DebugLoc());
2998 Val
= Builder
.CreateZExt(Opnd
, Ty
, "promoted");
2999 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val
<< "\n");
3002 /// Get the built value.
3003 Value
*getBuiltValue() { return Val
; }
3005 /// Remove the built instruction.
3006 void undo() override
{
3007 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val
<< "\n");
3008 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
3009 IVal
->eraseFromParent();
3013 /// Mutate an instruction to another type.
3014 class TypeMutator
: public TypePromotionAction
{
3015 /// Record the original type.
3019 /// Mutate the type of \p Inst into \p NewTy.
3020 TypeMutator(Instruction
*Inst
, Type
*NewTy
)
3021 : TypePromotionAction(Inst
), OrigTy(Inst
->getType()) {
3022 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst
<< " with " << *NewTy
3024 Inst
->mutateType(NewTy
);
3027 /// Mutate the instruction back to its original type.
3028 void undo() override
{
3029 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst
<< " with " << *OrigTy
3031 Inst
->mutateType(OrigTy
);
3035 /// Replace the uses of an instruction by another instruction.
3036 class UsesReplacer
: public TypePromotionAction
{
3037 /// Helper structure to keep track of the replaced uses.
3038 struct InstructionAndIdx
{
3039 /// The instruction using the instruction.
3042 /// The index where this instruction is used for Inst.
3045 InstructionAndIdx(Instruction
*Inst
, unsigned Idx
)
3046 : Inst(Inst
), Idx(Idx
) {}
3049 /// Keep track of the original uses (pair Instruction, Index).
3050 SmallVector
<InstructionAndIdx
, 4> OriginalUses
;
3051 /// Keep track of the debug users.
3052 SmallVector
<DbgValueInst
*, 1> DbgValues
;
3054 /// Keep track of the new value so that we can undo it by replacing
3055 /// instances of the new value with the original value.
3058 using use_iterator
= SmallVectorImpl
<InstructionAndIdx
>::iterator
;
3061 /// Replace all the use of \p Inst by \p New.
3062 UsesReplacer(Instruction
*Inst
, Value
*New
)
3063 : TypePromotionAction(Inst
), New(New
) {
3064 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst
<< " with " << *New
3066 // Record the original uses.
3067 for (Use
&U
: Inst
->uses()) {
3068 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
3069 OriginalUses
.push_back(InstructionAndIdx(UserI
, U
.getOperandNo()));
3071 // Record the debug uses separately. They are not in the instruction's
3072 // use list, but they are replaced by RAUW.
3073 findDbgValues(DbgValues
, Inst
);
3075 // Now, we can replace the uses.
3076 Inst
->replaceAllUsesWith(New
);
3079 /// Reassign the original uses of Inst to Inst.
3080 void undo() override
{
3081 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst
<< "\n");
3082 for (InstructionAndIdx
&Use
: OriginalUses
)
3083 Use
.Inst
->setOperand(Use
.Idx
, Inst
);
3084 // RAUW has replaced all original uses with references to the new value,
3085 // including the debug uses. Since we are undoing the replacements,
3086 // the original debug uses must also be reinstated to maintain the
3087 // correctness and utility of debug value instructions.
3088 for (auto *DVI
: DbgValues
)
3089 DVI
->replaceVariableLocationOp(New
, Inst
);
3093 /// Remove an instruction from the IR.
3094 class InstructionRemover
: public TypePromotionAction
{
3095 /// Original position of the instruction.
3096 InsertionHandler Inserter
;
3098 /// Helper structure to hide all the link to the instruction. In other
3099 /// words, this helps to do as if the instruction was removed.
3100 OperandsHider Hider
;
3102 /// Keep track of the uses replaced, if any.
3103 UsesReplacer
*Replacer
= nullptr;
3105 /// Keep track of instructions removed.
3106 SetOfInstrs
&RemovedInsts
;
3109 /// Remove all reference of \p Inst and optionally replace all its
3111 /// \p RemovedInsts Keep track of the instructions removed by this Action.
3112 /// \pre If !Inst->use_empty(), then New != nullptr
3113 InstructionRemover(Instruction
*Inst
, SetOfInstrs
&RemovedInsts
,
3114 Value
*New
= nullptr)
3115 : TypePromotionAction(Inst
), Inserter(Inst
), Hider(Inst
),
3116 RemovedInsts(RemovedInsts
) {
3118 Replacer
= new UsesReplacer(Inst
, New
);
3119 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst
<< "\n");
3120 RemovedInsts
.insert(Inst
);
3121 /// The instructions removed here will be freed after completing
3122 /// optimizeBlock() for all blocks as we need to keep track of the
3123 /// removed instructions during promotion.
3124 Inst
->removeFromParent();
3127 ~InstructionRemover() override
{ delete Replacer
; }
3129 InstructionRemover
&operator=(const InstructionRemover
&other
) = delete;
3130 InstructionRemover(const InstructionRemover
&other
) = delete;
3132 /// Resurrect the instruction and reassign it to the proper uses if
3133 /// new value was provided when build this action.
3134 void undo() override
{
3135 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst
<< "\n");
3136 Inserter
.insert(Inst
);
3140 RemovedInsts
.erase(Inst
);
3145 /// Restoration point.
3146 /// The restoration point is a pointer to an action instead of an iterator
3147 /// because the iterator may be invalidated but not the pointer.
3148 using ConstRestorationPt
= const TypePromotionAction
*;
3150 TypePromotionTransaction(SetOfInstrs
&RemovedInsts
)
3151 : RemovedInsts(RemovedInsts
) {}
3153 /// Advocate every changes made in that transaction. Return true if any change
3157 /// Undo all the changes made after the given point.
3158 void rollback(ConstRestorationPt Point
);
3160 /// Get the current restoration point.
3161 ConstRestorationPt
getRestorationPoint() const;
3163 /// \name API for IR modification with state keeping to support rollback.
3165 /// Same as Instruction::setOperand.
3166 void setOperand(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
);
3168 /// Same as Instruction::eraseFromParent.
3169 void eraseInstruction(Instruction
*Inst
, Value
*NewVal
= nullptr);
3171 /// Same as Value::replaceAllUsesWith.
3172 void replaceAllUsesWith(Instruction
*Inst
, Value
*New
);
3174 /// Same as Value::mutateType.
3175 void mutateType(Instruction
*Inst
, Type
*NewTy
);
3177 /// Same as IRBuilder::createTrunc.
3178 Value
*createTrunc(Instruction
*Opnd
, Type
*Ty
);
3180 /// Same as IRBuilder::createSExt.
3181 Value
*createSExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
3183 /// Same as IRBuilder::createZExt.
3184 Value
*createZExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
3186 /// Same as Instruction::moveBefore.
3187 void moveBefore(Instruction
*Inst
, Instruction
*Before
);
3191 /// The ordered list of actions made so far.
3192 SmallVector
<std::unique_ptr
<TypePromotionAction
>, 16> Actions
;
3195 SmallVectorImpl
<std::unique_ptr
<TypePromotionAction
>>::iterator
;
3197 SetOfInstrs
&RemovedInsts
;
3200 } // end anonymous namespace
3202 void TypePromotionTransaction::setOperand(Instruction
*Inst
, unsigned Idx
,
3204 Actions
.push_back(std::make_unique
<TypePromotionTransaction::OperandSetter
>(
3205 Inst
, Idx
, NewVal
));
3208 void TypePromotionTransaction::eraseInstruction(Instruction
*Inst
,
3211 std::make_unique
<TypePromotionTransaction::InstructionRemover
>(
3212 Inst
, RemovedInsts
, NewVal
));
3215 void TypePromotionTransaction::replaceAllUsesWith(Instruction
*Inst
,
3218 std::make_unique
<TypePromotionTransaction::UsesReplacer
>(Inst
, New
));
3221 void TypePromotionTransaction::mutateType(Instruction
*Inst
, Type
*NewTy
) {
3223 std::make_unique
<TypePromotionTransaction::TypeMutator
>(Inst
, NewTy
));
3226 Value
*TypePromotionTransaction::createTrunc(Instruction
*Opnd
, Type
*Ty
) {
3227 std::unique_ptr
<TruncBuilder
> Ptr(new TruncBuilder(Opnd
, Ty
));
3228 Value
*Val
= Ptr
->getBuiltValue();
3229 Actions
.push_back(std::move(Ptr
));
3233 Value
*TypePromotionTransaction::createSExt(Instruction
*Inst
, Value
*Opnd
,
3235 std::unique_ptr
<SExtBuilder
> Ptr(new SExtBuilder(Inst
, Opnd
, Ty
));
3236 Value
*Val
= Ptr
->getBuiltValue();
3237 Actions
.push_back(std::move(Ptr
));
3241 Value
*TypePromotionTransaction::createZExt(Instruction
*Inst
, Value
*Opnd
,
3243 std::unique_ptr
<ZExtBuilder
> Ptr(new ZExtBuilder(Inst
, Opnd
, Ty
));
3244 Value
*Val
= Ptr
->getBuiltValue();
3245 Actions
.push_back(std::move(Ptr
));
3249 void TypePromotionTransaction::moveBefore(Instruction
*Inst
,
3250 Instruction
*Before
) {
3252 std::make_unique
<TypePromotionTransaction::InstructionMoveBefore
>(
3256 TypePromotionTransaction::ConstRestorationPt
3257 TypePromotionTransaction::getRestorationPoint() const {
3258 return !Actions
.empty() ? Actions
.back().get() : nullptr;
3261 bool TypePromotionTransaction::commit() {
3262 for (std::unique_ptr
<TypePromotionAction
> &Action
: Actions
)
3264 bool Modified
= !Actions
.empty();
3269 void TypePromotionTransaction::rollback(
3270 TypePromotionTransaction::ConstRestorationPt Point
) {
3271 while (!Actions
.empty() && Point
!= Actions
.back().get()) {
3272 std::unique_ptr
<TypePromotionAction
> Curr
= Actions
.pop_back_val();
3279 /// A helper class for matching addressing modes.
3281 /// This encapsulates the logic for matching the target-legal addressing modes.
3282 class AddressingModeMatcher
{
3283 SmallVectorImpl
<Instruction
*> &AddrModeInsts
;
3284 const TargetLowering
&TLI
;
3285 const TargetRegisterInfo
&TRI
;
3286 const DataLayout
&DL
;
3288 const std::function
<const DominatorTree
&()> getDTFn
;
3290 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3291 /// the memory instruction that we're computing this address for.
3294 Instruction
*MemoryInst
;
3296 /// This is the addressing mode that we're building up. This is
3297 /// part of the return value of this addressing mode matching stuff.
3298 ExtAddrMode
&AddrMode
;
3300 /// The instructions inserted by other CodeGenPrepare optimizations.
3301 const SetOfInstrs
&InsertedInsts
;
3303 /// A map from the instructions to their type before promotion.
3304 InstrToOrigTy
&PromotedInsts
;
3306 /// The ongoing transaction where every action should be registered.
3307 TypePromotionTransaction
&TPT
;
3309 // A GEP which has too large offset to be folded into the addressing mode.
3310 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
;
3312 /// This is set to true when we should not do profitability checks.
3313 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3314 bool IgnoreProfitability
;
3316 /// True if we are optimizing for size.
3317 bool OptSize
= false;
3319 ProfileSummaryInfo
*PSI
;
3320 BlockFrequencyInfo
*BFI
;
3322 AddressingModeMatcher(
3323 SmallVectorImpl
<Instruction
*> &AMI
, const TargetLowering
&TLI
,
3324 const TargetRegisterInfo
&TRI
, const LoopInfo
&LI
,
3325 const std::function
<const DominatorTree
&()> getDTFn
, Type
*AT
,
3326 unsigned AS
, Instruction
*MI
, ExtAddrMode
&AM
,
3327 const SetOfInstrs
&InsertedInsts
, InstrToOrigTy
&PromotedInsts
,
3328 TypePromotionTransaction
&TPT
,
3329 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
,
3330 bool OptSize
, ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
)
3331 : AddrModeInsts(AMI
), TLI(TLI
), TRI(TRI
),
3332 DL(MI
->getModule()->getDataLayout()), LI(LI
), getDTFn(getDTFn
),
3333 AccessTy(AT
), AddrSpace(AS
), MemoryInst(MI
), AddrMode(AM
),
3334 InsertedInsts(InsertedInsts
), PromotedInsts(PromotedInsts
), TPT(TPT
),
3335 LargeOffsetGEP(LargeOffsetGEP
), OptSize(OptSize
), PSI(PSI
), BFI(BFI
) {
3336 IgnoreProfitability
= false;
3340 /// Find the maximal addressing mode that a load/store of V can fold,
3341 /// give an access type of AccessTy. This returns a list of involved
3342 /// instructions in AddrModeInsts.
3343 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3345 /// \p PromotedInsts maps the instructions to their type before promotion.
3346 /// \p The ongoing transaction where every action should be registered.
3348 Match(Value
*V
, Type
*AccessTy
, unsigned AS
, Instruction
*MemoryInst
,
3349 SmallVectorImpl
<Instruction
*> &AddrModeInsts
,
3350 const TargetLowering
&TLI
, const LoopInfo
&LI
,
3351 const std::function
<const DominatorTree
&()> getDTFn
,
3352 const TargetRegisterInfo
&TRI
, const SetOfInstrs
&InsertedInsts
,
3353 InstrToOrigTy
&PromotedInsts
, TypePromotionTransaction
&TPT
,
3354 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
,
3355 bool OptSize
, ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
) {
3358 bool Success
= AddressingModeMatcher(AddrModeInsts
, TLI
, TRI
, LI
, getDTFn
,
3359 AccessTy
, AS
, MemoryInst
, Result
,
3360 InsertedInsts
, PromotedInsts
, TPT
,
3361 LargeOffsetGEP
, OptSize
, PSI
, BFI
)
3364 assert(Success
&& "Couldn't select *anything*?");
3369 bool matchScaledValue(Value
*ScaleReg
, int64_t Scale
, unsigned Depth
);
3370 bool matchAddr(Value
*Addr
, unsigned Depth
);
3371 bool matchOperationAddr(User
*AddrInst
, unsigned Opcode
, unsigned Depth
,
3372 bool *MovedAway
= nullptr);
3373 bool isProfitableToFoldIntoAddressingMode(Instruction
*I
,
3374 ExtAddrMode
&AMBefore
,
3375 ExtAddrMode
&AMAfter
);
3376 bool valueAlreadyLiveAtInst(Value
*Val
, Value
*KnownLive1
, Value
*KnownLive2
);
3377 bool isPromotionProfitable(unsigned NewCost
, unsigned OldCost
,
3378 Value
*PromotedOperand
) const;
3383 /// An iterator for PhiNodeSet.
3384 class PhiNodeSetIterator
{
3385 PhiNodeSet
*const Set
;
3386 size_t CurrentIndex
= 0;
3389 /// The constructor. Start should point to either a valid element, or be equal
3390 /// to the size of the underlying SmallVector of the PhiNodeSet.
3391 PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
);
3392 PHINode
*operator*() const;
3393 PhiNodeSetIterator
&operator++();
3394 bool operator==(const PhiNodeSetIterator
&RHS
) const;
3395 bool operator!=(const PhiNodeSetIterator
&RHS
) const;
3398 /// Keeps a set of PHINodes.
3400 /// This is a minimal set implementation for a specific use case:
3401 /// It is very fast when there are very few elements, but also provides good
3402 /// performance when there are many. It is similar to SmallPtrSet, but also
3403 /// provides iteration by insertion order, which is deterministic and stable
3404 /// across runs. It is also similar to SmallSetVector, but provides removing
3405 /// elements in O(1) time. This is achieved by not actually removing the element
3406 /// from the underlying vector, so comes at the cost of using more memory, but
3407 /// that is fine, since PhiNodeSets are used as short lived objects.
3409 friend class PhiNodeSetIterator
;
3411 using MapType
= SmallDenseMap
<PHINode
*, size_t, 32>;
3412 using iterator
= PhiNodeSetIterator
;
3414 /// Keeps the elements in the order of their insertion in the underlying
3415 /// vector. To achieve constant time removal, it never deletes any element.
3416 SmallVector
<PHINode
*, 32> NodeList
;
3418 /// Keeps the elements in the underlying set implementation. This (and not the
3419 /// NodeList defined above) is the source of truth on whether an element
3420 /// is actually in the collection.
3423 /// Points to the first valid (not deleted) element when the set is not empty
3424 /// and the value is not zero. Equals to the size of the underlying vector
3425 /// when the set is empty. When the value is 0, as in the beginning, the
3426 /// first element may or may not be valid.
3427 size_t FirstValidElement
= 0;
3430 /// Inserts a new element to the collection.
3431 /// \returns true if the element is actually added, i.e. was not in the
3432 /// collection before the operation.
3433 bool insert(PHINode
*Ptr
) {
3434 if (NodeMap
.insert(std::make_pair(Ptr
, NodeList
.size())).second
) {
3435 NodeList
.push_back(Ptr
);
3441 /// Removes the element from the collection.
3442 /// \returns whether the element is actually removed, i.e. was in the
3443 /// collection before the operation.
3444 bool erase(PHINode
*Ptr
) {
3445 if (NodeMap
.erase(Ptr
)) {
3446 SkipRemovedElements(FirstValidElement
);
3452 /// Removes all elements and clears the collection.
3456 FirstValidElement
= 0;
3459 /// \returns an iterator that will iterate the elements in the order of
3462 if (FirstValidElement
== 0)
3463 SkipRemovedElements(FirstValidElement
);
3464 return PhiNodeSetIterator(this, FirstValidElement
);
3467 /// \returns an iterator that points to the end of the collection.
3468 iterator
end() { return PhiNodeSetIterator(this, NodeList
.size()); }
3470 /// Returns the number of elements in the collection.
3471 size_t size() const { return NodeMap
.size(); }
3473 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3474 size_t count(PHINode
*Ptr
) const { return NodeMap
.count(Ptr
); }
3477 /// Updates the CurrentIndex so that it will point to a valid element.
3479 /// If the element of NodeList at CurrentIndex is valid, it does not
3480 /// change it. If there are no more valid elements, it updates CurrentIndex
3481 /// to point to the end of the NodeList.
3482 void SkipRemovedElements(size_t &CurrentIndex
) {
3483 while (CurrentIndex
< NodeList
.size()) {
3484 auto it
= NodeMap
.find(NodeList
[CurrentIndex
]);
3485 // If the element has been deleted and added again later, NodeMap will
3486 // point to a different index, so CurrentIndex will still be invalid.
3487 if (it
!= NodeMap
.end() && it
->second
== CurrentIndex
)
3494 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
)
3495 : Set(Set
), CurrentIndex(Start
) {}
3497 PHINode
*PhiNodeSetIterator::operator*() const {
3498 assert(CurrentIndex
< Set
->NodeList
.size() &&
3499 "PhiNodeSet access out of range");
3500 return Set
->NodeList
[CurrentIndex
];
3503 PhiNodeSetIterator
&PhiNodeSetIterator::operator++() {
3504 assert(CurrentIndex
< Set
->NodeList
.size() &&
3505 "PhiNodeSet access out of range");
3507 Set
->SkipRemovedElements(CurrentIndex
);
3511 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator
&RHS
) const {
3512 return CurrentIndex
== RHS
.CurrentIndex
;
3515 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator
&RHS
) const {
3516 return !((*this) == RHS
);
3519 /// Keep track of simplification of Phi nodes.
3520 /// Accept the set of all phi nodes and erase phi node from this set
3521 /// if it is simplified.
3522 class SimplificationTracker
{
3523 DenseMap
<Value
*, Value
*> Storage
;
3524 const SimplifyQuery
&SQ
;
3525 // Tracks newly created Phi nodes. The elements are iterated by insertion
3527 PhiNodeSet AllPhiNodes
;
3528 // Tracks newly created Select nodes.
3529 SmallPtrSet
<SelectInst
*, 32> AllSelectNodes
;
3532 SimplificationTracker(const SimplifyQuery
&sq
) : SQ(sq
) {}
3534 Value
*Get(Value
*V
) {
3536 auto SV
= Storage
.find(V
);
3537 if (SV
== Storage
.end())
3543 Value
*Simplify(Value
*Val
) {
3544 SmallVector
<Value
*, 32> WorkList
;
3545 SmallPtrSet
<Value
*, 32> Visited
;
3546 WorkList
.push_back(Val
);
3547 while (!WorkList
.empty()) {
3548 auto *P
= WorkList
.pop_back_val();
3549 if (!Visited
.insert(P
).second
)
3551 if (auto *PI
= dyn_cast
<Instruction
>(P
))
3552 if (Value
*V
= simplifyInstruction(cast
<Instruction
>(PI
), SQ
)) {
3553 for (auto *U
: PI
->users())
3554 WorkList
.push_back(cast
<Value
>(U
));
3556 PI
->replaceAllUsesWith(V
);
3557 if (auto *PHI
= dyn_cast
<PHINode
>(PI
))
3558 AllPhiNodes
.erase(PHI
);
3559 if (auto *Select
= dyn_cast
<SelectInst
>(PI
))
3560 AllSelectNodes
.erase(Select
);
3561 PI
->eraseFromParent();
3567 void Put(Value
*From
, Value
*To
) { Storage
.insert({From
, To
}); }
3569 void ReplacePhi(PHINode
*From
, PHINode
*To
) {
3570 Value
*OldReplacement
= Get(From
);
3571 while (OldReplacement
!= From
) {
3573 To
= dyn_cast
<PHINode
>(OldReplacement
);
3574 OldReplacement
= Get(From
);
3576 assert(To
&& Get(To
) == To
&& "Replacement PHI node is already replaced.");
3578 From
->replaceAllUsesWith(To
);
3579 AllPhiNodes
.erase(From
);
3580 From
->eraseFromParent();
3583 PhiNodeSet
&newPhiNodes() { return AllPhiNodes
; }
3585 void insertNewPhi(PHINode
*PN
) { AllPhiNodes
.insert(PN
); }
3587 void insertNewSelect(SelectInst
*SI
) { AllSelectNodes
.insert(SI
); }
3589 unsigned countNewPhiNodes() const { return AllPhiNodes
.size(); }
3591 unsigned countNewSelectNodes() const { return AllSelectNodes
.size(); }
3593 void destroyNewNodes(Type
*CommonType
) {
3594 // For safe erasing, replace the uses with dummy value first.
3595 auto *Dummy
= PoisonValue::get(CommonType
);
3596 for (auto *I
: AllPhiNodes
) {
3597 I
->replaceAllUsesWith(Dummy
);
3598 I
->eraseFromParent();
3600 AllPhiNodes
.clear();
3601 for (auto *I
: AllSelectNodes
) {
3602 I
->replaceAllUsesWith(Dummy
);
3603 I
->eraseFromParent();
3605 AllSelectNodes
.clear();
3609 /// A helper class for combining addressing modes.
3610 class AddressingModeCombiner
{
3611 typedef DenseMap
<Value
*, Value
*> FoldAddrToValueMapping
;
3612 typedef std::pair
<PHINode
*, PHINode
*> PHIPair
;
3615 /// The addressing modes we've collected.
3616 SmallVector
<ExtAddrMode
, 16> AddrModes
;
3618 /// The field in which the AddrModes differ, when we have more than one.
3619 ExtAddrMode::FieldName DifferentField
= ExtAddrMode::NoField
;
3621 /// Are the AddrModes that we have all just equal to their original values?
3622 bool AllAddrModesTrivial
= true;
3624 /// Common Type for all different fields in addressing modes.
3625 Type
*CommonType
= nullptr;
3627 /// SimplifyQuery for simplifyInstruction utility.
3628 const SimplifyQuery
&SQ
;
3630 /// Original Address.
3633 /// Common value among addresses
3634 Value
*CommonValue
= nullptr;
3637 AddressingModeCombiner(const SimplifyQuery
&_SQ
, Value
*OriginalValue
)
3638 : SQ(_SQ
), Original(OriginalValue
) {}
3640 ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
3642 /// Get the combined AddrMode
3643 const ExtAddrMode
&getAddrMode() const { return AddrModes
[0]; }
3645 /// Add a new AddrMode if it's compatible with the AddrModes we already
3647 /// \return True iff we succeeded in doing so.
3648 bool addNewAddrMode(ExtAddrMode
&NewAddrMode
) {
3649 // Take note of if we have any non-trivial AddrModes, as we need to detect
3650 // when all AddrModes are trivial as then we would introduce a phi or select
3651 // which just duplicates what's already there.
3652 AllAddrModesTrivial
= AllAddrModesTrivial
&& NewAddrMode
.isTrivial();
3654 // If this is the first addrmode then everything is fine.
3655 if (AddrModes
.empty()) {
3656 AddrModes
.emplace_back(NewAddrMode
);
3660 // Figure out how different this is from the other address modes, which we
3661 // can do just by comparing against the first one given that we only care
3662 // about the cumulative difference.
3663 ExtAddrMode::FieldName ThisDifferentField
=
3664 AddrModes
[0].compare(NewAddrMode
);
3665 if (DifferentField
== ExtAddrMode::NoField
)
3666 DifferentField
= ThisDifferentField
;
3667 else if (DifferentField
!= ThisDifferentField
)
3668 DifferentField
= ExtAddrMode::MultipleFields
;
3670 // If NewAddrMode differs in more than one dimension we cannot handle it.
3671 bool CanHandle
= DifferentField
!= ExtAddrMode::MultipleFields
;
3673 // If Scale Field is different then we reject.
3674 CanHandle
= CanHandle
&& DifferentField
!= ExtAddrMode::ScaleField
;
3676 // We also must reject the case when base offset is different and
3677 // scale reg is not null, we cannot handle this case due to merge of
3678 // different offsets will be used as ScaleReg.
3679 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseOffsField
||
3680 !NewAddrMode
.ScaledReg
);
3682 // We also must reject the case when GV is different and BaseReg installed
3683 // due to we want to use base reg as a merge of GV values.
3684 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseGVField
||
3685 !NewAddrMode
.HasBaseReg
);
3687 // Even if NewAddMode is the same we still need to collect it due to
3688 // original value is different. And later we will need all original values
3689 // as anchors during finding the common Phi node.
3691 AddrModes
.emplace_back(NewAddrMode
);
3698 /// Combine the addressing modes we've collected into a single
3699 /// addressing mode.
3700 /// \return True iff we successfully combined them or we only had one so
3701 /// didn't need to combine them anyway.
3702 bool combineAddrModes() {
3703 // If we have no AddrModes then they can't be combined.
3704 if (AddrModes
.size() == 0)
3707 // A single AddrMode can trivially be combined.
3708 if (AddrModes
.size() == 1 || DifferentField
== ExtAddrMode::NoField
)
3711 // If the AddrModes we collected are all just equal to the value they are
3712 // derived from then combining them wouldn't do anything useful.
3713 if (AllAddrModesTrivial
)
3716 if (!addrModeCombiningAllowed())
3719 // Build a map between <original value, basic block where we saw it> to
3720 // value of base register.
3721 // Bail out if there is no common type.
3722 FoldAddrToValueMapping Map
;
3723 if (!initializeMap(Map
))
3726 CommonValue
= findCommon(Map
);
3728 AddrModes
[0].SetCombinedField(DifferentField
, CommonValue
, AddrModes
);
3729 return CommonValue
!= nullptr;
3733 /// `CommonValue` may be a placeholder inserted by us.
3734 /// If the placeholder is not used, we should remove this dead instruction.
3735 void eraseCommonValueIfDead() {
3736 if (CommonValue
&& CommonValue
->getNumUses() == 0)
3737 if (Instruction
*CommonInst
= dyn_cast
<Instruction
>(CommonValue
))
3738 CommonInst
->eraseFromParent();
3741 /// Initialize Map with anchor values. For address seen
3742 /// we set the value of different field saw in this address.
3743 /// At the same time we find a common type for different field we will
3744 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3745 /// Return false if there is no common type found.
3746 bool initializeMap(FoldAddrToValueMapping
&Map
) {
3747 // Keep track of keys where the value is null. We will need to replace it
3748 // with constant null when we know the common type.
3749 SmallVector
<Value
*, 2> NullValue
;
3750 Type
*IntPtrTy
= SQ
.DL
.getIntPtrType(AddrModes
[0].OriginalValue
->getType());
3751 for (auto &AM
: AddrModes
) {
3752 Value
*DV
= AM
.GetFieldAsValue(DifferentField
, IntPtrTy
);
3754 auto *Type
= DV
->getType();
3755 if (CommonType
&& CommonType
!= Type
)
3758 Map
[AM
.OriginalValue
] = DV
;
3760 NullValue
.push_back(AM
.OriginalValue
);
3763 assert(CommonType
&& "At least one non-null value must be!");
3764 for (auto *V
: NullValue
)
3765 Map
[V
] = Constant::getNullValue(CommonType
);
3769 /// We have mapping between value A and other value B where B was a field in
3770 /// addressing mode represented by A. Also we have an original value C
3771 /// representing an address we start with. Traversing from C through phi and
3772 /// selects we ended up with A's in a map. This utility function tries to find
3773 /// a value V which is a field in addressing mode C and traversing through phi
3774 /// nodes and selects we will end up in corresponded values B in a map.
3775 /// The utility will create a new Phi/Selects if needed.
3776 // The simple example looks as follows:
3784 // p = phi [p1, BB1], [p2, BB2]
3791 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3792 Value
*findCommon(FoldAddrToValueMapping
&Map
) {
3793 // Tracks the simplification of newly created phi nodes. The reason we use
3794 // this mapping is because we will add new created Phi nodes in AddrToBase.
3795 // Simplification of Phi nodes is recursive, so some Phi node may
3796 // be simplified after we added it to AddrToBase. In reality this
3797 // simplification is possible only if original phi/selects were not
3799 // Using this mapping we can find the current value in AddrToBase.
3800 SimplificationTracker
ST(SQ
);
3802 // First step, DFS to create PHI nodes for all intermediate blocks.
3803 // Also fill traverse order for the second step.
3804 SmallVector
<Value
*, 32> TraverseOrder
;
3805 InsertPlaceholders(Map
, TraverseOrder
, ST
);
3807 // Second Step, fill new nodes by merged values and simplify if possible.
3808 FillPlaceholders(Map
, TraverseOrder
, ST
);
3810 if (!AddrSinkNewSelects
&& ST
.countNewSelectNodes() > 0) {
3811 ST
.destroyNewNodes(CommonType
);
3815 // Now we'd like to match New Phi nodes to existed ones.
3816 unsigned PhiNotMatchedCount
= 0;
3817 if (!MatchPhiSet(ST
, AddrSinkNewPhis
, PhiNotMatchedCount
)) {
3818 ST
.destroyNewNodes(CommonType
);
3822 auto *Result
= ST
.Get(Map
.find(Original
)->second
);
3824 NumMemoryInstsPhiCreated
+= ST
.countNewPhiNodes() + PhiNotMatchedCount
;
3825 NumMemoryInstsSelectCreated
+= ST
.countNewSelectNodes();
3830 /// Try to match PHI node to Candidate.
3831 /// Matcher tracks the matched Phi nodes.
3832 bool MatchPhiNode(PHINode
*PHI
, PHINode
*Candidate
,
3833 SmallSetVector
<PHIPair
, 8> &Matcher
,
3834 PhiNodeSet
&PhiNodesToMatch
) {
3835 SmallVector
<PHIPair
, 8> WorkList
;
3836 Matcher
.insert({PHI
, Candidate
});
3837 SmallSet
<PHINode
*, 8> MatchedPHIs
;
3838 MatchedPHIs
.insert(PHI
);
3839 WorkList
.push_back({PHI
, Candidate
});
3840 SmallSet
<PHIPair
, 8> Visited
;
3841 while (!WorkList
.empty()) {
3842 auto Item
= WorkList
.pop_back_val();
3843 if (!Visited
.insert(Item
).second
)
3845 // We iterate over all incoming values to Phi to compare them.
3846 // If values are different and both of them Phi and the first one is a
3847 // Phi we added (subject to match) and both of them is in the same basic
3848 // block then we can match our pair if values match. So we state that
3849 // these values match and add it to work list to verify that.
3850 for (auto *B
: Item
.first
->blocks()) {
3851 Value
*FirstValue
= Item
.first
->getIncomingValueForBlock(B
);
3852 Value
*SecondValue
= Item
.second
->getIncomingValueForBlock(B
);
3853 if (FirstValue
== SecondValue
)
3856 PHINode
*FirstPhi
= dyn_cast
<PHINode
>(FirstValue
);
3857 PHINode
*SecondPhi
= dyn_cast
<PHINode
>(SecondValue
);
3859 // One of them is not Phi or
3860 // The first one is not Phi node from the set we'd like to match or
3861 // Phi nodes from different basic blocks then
3862 // we will not be able to match.
3863 if (!FirstPhi
|| !SecondPhi
|| !PhiNodesToMatch
.count(FirstPhi
) ||
3864 FirstPhi
->getParent() != SecondPhi
->getParent())
3867 // If we already matched them then continue.
3868 if (Matcher
.count({FirstPhi
, SecondPhi
}))
3870 // So the values are different and does not match. So we need them to
3871 // match. (But we register no more than one match per PHI node, so that
3872 // we won't later try to replace them twice.)
3873 if (MatchedPHIs
.insert(FirstPhi
).second
)
3874 Matcher
.insert({FirstPhi
, SecondPhi
});
3875 // But me must check it.
3876 WorkList
.push_back({FirstPhi
, SecondPhi
});
3882 /// For the given set of PHI nodes (in the SimplificationTracker) try
3883 /// to find their equivalents.
3884 /// Returns false if this matching fails and creation of new Phi is disabled.
3885 bool MatchPhiSet(SimplificationTracker
&ST
, bool AllowNewPhiNodes
,
3886 unsigned &PhiNotMatchedCount
) {
3887 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3888 // order, so the replacements (ReplacePhi) are also done in a deterministic
3890 SmallSetVector
<PHIPair
, 8> Matched
;
3891 SmallPtrSet
<PHINode
*, 8> WillNotMatch
;
3892 PhiNodeSet
&PhiNodesToMatch
= ST
.newPhiNodes();
3893 while (PhiNodesToMatch
.size()) {
3894 PHINode
*PHI
= *PhiNodesToMatch
.begin();
3896 // Add us, if no Phi nodes in the basic block we do not match.
3897 WillNotMatch
.clear();
3898 WillNotMatch
.insert(PHI
);
3900 // Traverse all Phis until we found equivalent or fail to do that.
3901 bool IsMatched
= false;
3902 for (auto &P
: PHI
->getParent()->phis()) {
3903 // Skip new Phi nodes.
3904 if (PhiNodesToMatch
.count(&P
))
3906 if ((IsMatched
= MatchPhiNode(PHI
, &P
, Matched
, PhiNodesToMatch
)))
3908 // If it does not match, collect all Phi nodes from matcher.
3909 // if we end up with no match, them all these Phi nodes will not match
3911 for (auto M
: Matched
)
3912 WillNotMatch
.insert(M
.first
);
3916 // Replace all matched values and erase them.
3917 for (auto MV
: Matched
)
3918 ST
.ReplacePhi(MV
.first
, MV
.second
);
3922 // If we are not allowed to create new nodes then bail out.
3923 if (!AllowNewPhiNodes
)
3925 // Just remove all seen values in matcher. They will not match anything.
3926 PhiNotMatchedCount
+= WillNotMatch
.size();
3927 for (auto *P
: WillNotMatch
)
3928 PhiNodesToMatch
.erase(P
);
3932 /// Fill the placeholders with values from predecessors and simplify them.
3933 void FillPlaceholders(FoldAddrToValueMapping
&Map
,
3934 SmallVectorImpl
<Value
*> &TraverseOrder
,
3935 SimplificationTracker
&ST
) {
3936 while (!TraverseOrder
.empty()) {
3937 Value
*Current
= TraverseOrder
.pop_back_val();
3938 assert(Map
.contains(Current
) && "No node to fill!!!");
3939 Value
*V
= Map
[Current
];
3941 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(V
)) {
3942 // CurrentValue also must be Select.
3943 auto *CurrentSelect
= cast
<SelectInst
>(Current
);
3944 auto *TrueValue
= CurrentSelect
->getTrueValue();
3945 assert(Map
.contains(TrueValue
) && "No True Value!");
3946 Select
->setTrueValue(ST
.Get(Map
[TrueValue
]));
3947 auto *FalseValue
= CurrentSelect
->getFalseValue();
3948 assert(Map
.contains(FalseValue
) && "No False Value!");
3949 Select
->setFalseValue(ST
.Get(Map
[FalseValue
]));
3951 // Must be a Phi node then.
3952 auto *PHI
= cast
<PHINode
>(V
);
3953 // Fill the Phi node with values from predecessors.
3954 for (auto *B
: predecessors(PHI
->getParent())) {
3955 Value
*PV
= cast
<PHINode
>(Current
)->getIncomingValueForBlock(B
);
3956 assert(Map
.contains(PV
) && "No predecessor Value!");
3957 PHI
->addIncoming(ST
.Get(Map
[PV
]), B
);
3960 Map
[Current
] = ST
.Simplify(V
);
3964 /// Starting from original value recursively iterates over def-use chain up to
3965 /// known ending values represented in a map. For each traversed phi/select
3966 /// inserts a placeholder Phi or Select.
3967 /// Reports all new created Phi/Select nodes by adding them to set.
3968 /// Also reports and order in what values have been traversed.
3969 void InsertPlaceholders(FoldAddrToValueMapping
&Map
,
3970 SmallVectorImpl
<Value
*> &TraverseOrder
,
3971 SimplificationTracker
&ST
) {
3972 SmallVector
<Value
*, 32> Worklist
;
3973 assert((isa
<PHINode
>(Original
) || isa
<SelectInst
>(Original
)) &&
3974 "Address must be a Phi or Select node");
3975 auto *Dummy
= PoisonValue::get(CommonType
);
3976 Worklist
.push_back(Original
);
3977 while (!Worklist
.empty()) {
3978 Value
*Current
= Worklist
.pop_back_val();
3979 // if it is already visited or it is an ending value then skip it.
3980 if (Map
.contains(Current
))
3982 TraverseOrder
.push_back(Current
);
3984 // CurrentValue must be a Phi node or select. All others must be covered
3986 if (SelectInst
*CurrentSelect
= dyn_cast
<SelectInst
>(Current
)) {
3987 // Is it OK to get metadata from OrigSelect?!
3988 // Create a Select placeholder with dummy value.
3989 SelectInst
*Select
= SelectInst::Create(
3990 CurrentSelect
->getCondition(), Dummy
, Dummy
,
3991 CurrentSelect
->getName(), CurrentSelect
, CurrentSelect
);
3992 Map
[Current
] = Select
;
3993 ST
.insertNewSelect(Select
);
3994 // We are interested in True and False values.
3995 Worklist
.push_back(CurrentSelect
->getTrueValue());
3996 Worklist
.push_back(CurrentSelect
->getFalseValue());
3998 // It must be a Phi node then.
3999 PHINode
*CurrentPhi
= cast
<PHINode
>(Current
);
4000 unsigned PredCount
= CurrentPhi
->getNumIncomingValues();
4002 PHINode::Create(CommonType
, PredCount
, "sunk_phi", CurrentPhi
);
4004 ST
.insertNewPhi(PHI
);
4005 append_range(Worklist
, CurrentPhi
->incoming_values());
4010 bool addrModeCombiningAllowed() {
4011 if (DisableComplexAddrModes
)
4013 switch (DifferentField
) {
4016 case ExtAddrMode::BaseRegField
:
4017 return AddrSinkCombineBaseReg
;
4018 case ExtAddrMode::BaseGVField
:
4019 return AddrSinkCombineBaseGV
;
4020 case ExtAddrMode::BaseOffsField
:
4021 return AddrSinkCombineBaseOffs
;
4022 case ExtAddrMode::ScaledRegField
:
4023 return AddrSinkCombineScaledReg
;
4027 } // end anonymous namespace
4029 /// Try adding ScaleReg*Scale to the current addressing mode.
4030 /// Return true and update AddrMode if this addr mode is legal for the target,
4032 bool AddressingModeMatcher::matchScaledValue(Value
*ScaleReg
, int64_t Scale
,
4034 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4035 // mode. Just process that directly.
4037 return matchAddr(ScaleReg
, Depth
);
4039 // If the scale is 0, it takes nothing to add this.
4043 // If we already have a scale of this value, we can add to it, otherwise, we
4044 // need an available scale field.
4045 if (AddrMode
.Scale
!= 0 && AddrMode
.ScaledReg
!= ScaleReg
)
4048 ExtAddrMode TestAddrMode
= AddrMode
;
4050 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
4051 // [A+B + A*7] -> [B+A*8].
4052 TestAddrMode
.Scale
+= Scale
;
4053 TestAddrMode
.ScaledReg
= ScaleReg
;
4055 // If the new address isn't legal, bail out.
4056 if (!TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
))
4059 // It was legal, so commit it.
4060 AddrMode
= TestAddrMode
;
4062 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
4063 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
4064 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4065 // go any further: we can reuse it and cannot eliminate it.
4066 ConstantInt
*CI
= nullptr;
4067 Value
*AddLHS
= nullptr;
4068 if (isa
<Instruction
>(ScaleReg
) && // not a constant expr.
4069 match(ScaleReg
, m_Add(m_Value(AddLHS
), m_ConstantInt(CI
))) &&
4070 !isIVIncrement(ScaleReg
, &LI
) && CI
->getValue().isSignedIntN(64)) {
4071 TestAddrMode
.InBounds
= false;
4072 TestAddrMode
.ScaledReg
= AddLHS
;
4073 TestAddrMode
.BaseOffs
+= CI
->getSExtValue() * TestAddrMode
.Scale
;
4075 // If this addressing mode is legal, commit it and remember that we folded
4076 // this instruction.
4077 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
)) {
4078 AddrModeInsts
.push_back(cast
<Instruction
>(ScaleReg
));
4079 AddrMode
= TestAddrMode
;
4082 // Restore status quo.
4083 TestAddrMode
= AddrMode
;
4086 // If this is an add recurrence with a constant step, return the increment
4087 // instruction and the canonicalized step.
4088 auto GetConstantStep
=
4089 [this](const Value
*V
) -> std::optional
<std::pair
<Instruction
*, APInt
>> {
4090 auto *PN
= dyn_cast
<PHINode
>(V
);
4092 return std::nullopt
;
4093 auto IVInc
= getIVIncrement(PN
, &LI
);
4095 return std::nullopt
;
4096 // TODO: The result of the intrinsics above is two-complement. However when
4097 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4098 // If it has nuw or nsw flags, we need to make sure that these flags are
4099 // inferrable at the point of memory instruction. Otherwise we are replacing
4100 // well-defined two-complement computation with poison. Currently, to avoid
4101 // potentially complex analysis needed to prove this, we reject such cases.
4102 if (auto *OIVInc
= dyn_cast
<OverflowingBinaryOperator
>(IVInc
->first
))
4103 if (OIVInc
->hasNoSignedWrap() || OIVInc
->hasNoUnsignedWrap())
4104 return std::nullopt
;
4105 if (auto *ConstantStep
= dyn_cast
<ConstantInt
>(IVInc
->second
))
4106 return std::make_pair(IVInc
->first
, ConstantStep
->getValue());
4107 return std::nullopt
;
4110 // Try to account for the following special case:
4111 // 1. ScaleReg is an inductive variable;
4112 // 2. We use it with non-zero offset;
4113 // 3. IV's increment is available at the point of memory instruction.
4115 // In this case, we may reuse the IV increment instead of the IV Phi to
4116 // achieve the following advantages:
4117 // 1. If IV step matches the offset, we will have no need in the offset;
4118 // 2. Even if they don't match, we will reduce the overlap of living IV
4119 // and IV increment, that will potentially lead to better register
4121 if (AddrMode
.BaseOffs
) {
4122 if (auto IVStep
= GetConstantStep(ScaleReg
)) {
4123 Instruction
*IVInc
= IVStep
->first
;
4124 // The following assert is important to ensure a lack of infinite loops.
4125 // This transforms is (intentionally) the inverse of the one just above.
4126 // If they don't agree on the definition of an increment, we'd alternate
4127 // back and forth indefinitely.
4128 assert(isIVIncrement(IVInc
, &LI
) && "implied by GetConstantStep");
4129 APInt Step
= IVStep
->second
;
4130 APInt Offset
= Step
* AddrMode
.Scale
;
4131 if (Offset
.isSignedIntN(64)) {
4132 TestAddrMode
.InBounds
= false;
4133 TestAddrMode
.ScaledReg
= IVInc
;
4134 TestAddrMode
.BaseOffs
-= Offset
.getLimitedValue();
4135 // If this addressing mode is legal, commit it..
4136 // (Note that we defer the (expensive) domtree base legality check
4137 // to the very last possible point.)
4138 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
) &&
4139 getDTFn().dominates(IVInc
, MemoryInst
)) {
4140 AddrModeInsts
.push_back(cast
<Instruction
>(IVInc
));
4141 AddrMode
= TestAddrMode
;
4144 // Restore status quo.
4145 TestAddrMode
= AddrMode
;
4150 // Otherwise, just return what we have.
4154 /// This is a little filter, which returns true if an addressing computation
4155 /// involving I might be folded into a load/store accessing it.
4156 /// This doesn't need to be perfect, but needs to accept at least
4157 /// the set of instructions that MatchOperationAddr can.
4158 static bool MightBeFoldableInst(Instruction
*I
) {
4159 switch (I
->getOpcode()) {
4160 case Instruction::BitCast
:
4161 case Instruction::AddrSpaceCast
:
4162 // Don't touch identity bitcasts.
4163 if (I
->getType() == I
->getOperand(0)->getType())
4165 return I
->getType()->isIntOrPtrTy();
4166 case Instruction::PtrToInt
:
4167 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4169 case Instruction::IntToPtr
:
4170 // We know the input is intptr_t, so this is foldable.
4172 case Instruction::Add
:
4174 case Instruction::Mul
:
4175 case Instruction::Shl
:
4176 // Can only handle X*C and X << C.
4177 return isa
<ConstantInt
>(I
->getOperand(1));
4178 case Instruction::GetElementPtr
:
4185 /// Check whether or not \p Val is a legal instruction for \p TLI.
4186 /// \note \p Val is assumed to be the product of some type promotion.
4187 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4188 /// to be legal, as the non-promoted value would have had the same state.
4189 static bool isPromotedInstructionLegal(const TargetLowering
&TLI
,
4190 const DataLayout
&DL
, Value
*Val
) {
4191 Instruction
*PromotedInst
= dyn_cast
<Instruction
>(Val
);
4194 int ISDOpcode
= TLI
.InstructionOpcodeToISD(PromotedInst
->getOpcode());
4195 // If the ISDOpcode is undefined, it was undefined before the promotion.
4198 // Otherwise, check if the promoted instruction is legal or not.
4199 return TLI
.isOperationLegalOrCustom(
4200 ISDOpcode
, TLI
.getValueType(DL
, PromotedInst
->getType()));
4205 /// Hepler class to perform type promotion.
4206 class TypePromotionHelper
{
4207 /// Utility function to add a promoted instruction \p ExtOpnd to
4208 /// \p PromotedInsts and record the type of extension we have seen.
4209 static void addPromotedInst(InstrToOrigTy
&PromotedInsts
,
4210 Instruction
*ExtOpnd
, bool IsSExt
) {
4211 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
4212 InstrToOrigTy::iterator It
= PromotedInsts
.find(ExtOpnd
);
4213 if (It
!= PromotedInsts
.end()) {
4214 // If the new extension is same as original, the information in
4215 // PromotedInsts[ExtOpnd] is still correct.
4216 if (It
->second
.getInt() == ExtTy
)
4219 // Now the new extension is different from old extension, we make
4220 // the type information invalid by setting extension type to
4222 ExtTy
= BothExtension
;
4224 PromotedInsts
[ExtOpnd
] = TypeIsSExt(ExtOpnd
->getType(), ExtTy
);
4227 /// Utility function to query the original type of instruction \p Opnd
4228 /// with a matched extension type. If the extension doesn't match, we
4229 /// cannot use the information we had on the original type.
4230 /// BothExtension doesn't match any extension type.
4231 static const Type
*getOrigType(const InstrToOrigTy
&PromotedInsts
,
4232 Instruction
*Opnd
, bool IsSExt
) {
4233 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
4234 InstrToOrigTy::const_iterator It
= PromotedInsts
.find(Opnd
);
4235 if (It
!= PromotedInsts
.end() && It
->second
.getInt() == ExtTy
)
4236 return It
->second
.getPointer();
4240 /// Utility function to check whether or not a sign or zero extension
4241 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4242 /// either using the operands of \p Inst or promoting \p Inst.
4243 /// The type of the extension is defined by \p IsSExt.
4244 /// In other words, check if:
4245 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4246 /// #1 Promotion applies:
4247 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4248 /// #2 Operand reuses:
4249 /// ext opnd1 to ConsideredExtType.
4250 /// \p PromotedInsts maps the instructions to their type before promotion.
4251 static bool canGetThrough(const Instruction
*Inst
, Type
*ConsideredExtType
,
4252 const InstrToOrigTy
&PromotedInsts
, bool IsSExt
);
4254 /// Utility function to determine if \p OpIdx should be promoted when
4255 /// promoting \p Inst.
4256 static bool shouldExtOperand(const Instruction
*Inst
, int OpIdx
) {
4257 return !(isa
<SelectInst
>(Inst
) && OpIdx
== 0);
4260 /// Utility function to promote the operand of \p Ext when this
4261 /// operand is a promotable trunc or sext or zext.
4262 /// \p PromotedInsts maps the instructions to their type before promotion.
4263 /// \p CreatedInstsCost[out] contains the cost of all instructions
4264 /// created to promote the operand of Ext.
4265 /// Newly added extensions are inserted in \p Exts.
4266 /// Newly added truncates are inserted in \p Truncs.
4267 /// Should never be called directly.
4268 /// \return The promoted value which is used instead of Ext.
4269 static Value
*promoteOperandForTruncAndAnyExt(
4270 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4271 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4272 SmallVectorImpl
<Instruction
*> *Exts
,
4273 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
);
4275 /// Utility function to promote the operand of \p Ext when this
4276 /// operand is promotable and is not a supported trunc or sext.
4277 /// \p PromotedInsts maps the instructions to their type before promotion.
4278 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4279 /// created to promote the operand of Ext.
4280 /// Newly added extensions are inserted in \p Exts.
4281 /// Newly added truncates are inserted in \p Truncs.
4282 /// Should never be called directly.
4283 /// \return The promoted value which is used instead of Ext.
4284 static Value
*promoteOperandForOther(Instruction
*Ext
,
4285 TypePromotionTransaction
&TPT
,
4286 InstrToOrigTy
&PromotedInsts
,
4287 unsigned &CreatedInstsCost
,
4288 SmallVectorImpl
<Instruction
*> *Exts
,
4289 SmallVectorImpl
<Instruction
*> *Truncs
,
4290 const TargetLowering
&TLI
, bool IsSExt
);
4292 /// \see promoteOperandForOther.
4293 static Value
*signExtendOperandForOther(
4294 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4295 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4296 SmallVectorImpl
<Instruction
*> *Exts
,
4297 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4298 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
4299 Exts
, Truncs
, TLI
, true);
4302 /// \see promoteOperandForOther.
4303 static Value
*zeroExtendOperandForOther(
4304 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4305 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4306 SmallVectorImpl
<Instruction
*> *Exts
,
4307 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4308 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
4309 Exts
, Truncs
, TLI
, false);
4313 /// Type for the utility function that promotes the operand of Ext.
4314 using Action
= Value
*(*)(Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4315 InstrToOrigTy
&PromotedInsts
,
4316 unsigned &CreatedInstsCost
,
4317 SmallVectorImpl
<Instruction
*> *Exts
,
4318 SmallVectorImpl
<Instruction
*> *Truncs
,
4319 const TargetLowering
&TLI
);
4321 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4322 /// action to promote the operand of \p Ext instead of using Ext.
4323 /// \return NULL if no promotable action is possible with the current
4325 /// \p InsertedInsts keeps track of all the instructions inserted by the
4326 /// other CodeGenPrepare optimizations. This information is important
4327 /// because we do not want to promote these instructions as CodeGenPrepare
4328 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4329 /// \p PromotedInsts maps the instructions to their type before promotion.
4330 static Action
getAction(Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
4331 const TargetLowering
&TLI
,
4332 const InstrToOrigTy
&PromotedInsts
);
4335 } // end anonymous namespace
4337 bool TypePromotionHelper::canGetThrough(const Instruction
*Inst
,
4338 Type
*ConsideredExtType
,
4339 const InstrToOrigTy
&PromotedInsts
,
4341 // The promotion helper does not know how to deal with vector types yet.
4342 // To be able to fix that, we would need to fix the places where we
4343 // statically extend, e.g., constants and such.
4344 if (Inst
->getType()->isVectorTy())
4347 // We can always get through zext.
4348 if (isa
<ZExtInst
>(Inst
))
4351 // sext(sext) is ok too.
4352 if (IsSExt
&& isa
<SExtInst
>(Inst
))
4355 // We can get through binary operator, if it is legal. In other words, the
4356 // binary operator must have a nuw or nsw flag.
4357 if (const auto *BinOp
= dyn_cast
<BinaryOperator
>(Inst
))
4358 if (isa
<OverflowingBinaryOperator
>(BinOp
) &&
4359 ((!IsSExt
&& BinOp
->hasNoUnsignedWrap()) ||
4360 (IsSExt
&& BinOp
->hasNoSignedWrap())))
4363 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4364 if ((Inst
->getOpcode() == Instruction::And
||
4365 Inst
->getOpcode() == Instruction::Or
))
4368 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4369 if (Inst
->getOpcode() == Instruction::Xor
) {
4370 // Make sure it is not a NOT.
4371 if (const auto *Cst
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1)))
4372 if (!Cst
->getValue().isAllOnes())
4376 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4377 // It may change a poisoned value into a regular value, like
4378 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4379 // poisoned value regular value
4380 // It should be OK since undef covers valid value.
4381 if (Inst
->getOpcode() == Instruction::LShr
&& !IsSExt
)
4384 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4385 // It may change a poisoned value into a regular value, like
4386 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4387 // poisoned value regular value
4388 // It should be OK since undef covers valid value.
4389 if (Inst
->getOpcode() == Instruction::Shl
&& Inst
->hasOneUse()) {
4390 const auto *ExtInst
= cast
<const Instruction
>(*Inst
->user_begin());
4391 if (ExtInst
->hasOneUse()) {
4392 const auto *AndInst
= dyn_cast
<const Instruction
>(*ExtInst
->user_begin());
4393 if (AndInst
&& AndInst
->getOpcode() == Instruction::And
) {
4394 const auto *Cst
= dyn_cast
<ConstantInt
>(AndInst
->getOperand(1));
4396 Cst
->getValue().isIntN(Inst
->getType()->getIntegerBitWidth()))
4402 // Check if we can do the following simplification.
4403 // ext(trunc(opnd)) --> ext(opnd)
4404 if (!isa
<TruncInst
>(Inst
))
4407 Value
*OpndVal
= Inst
->getOperand(0);
4408 // Check if we can use this operand in the extension.
4409 // If the type is larger than the result type of the extension, we cannot.
4410 if (!OpndVal
->getType()->isIntegerTy() ||
4411 OpndVal
->getType()->getIntegerBitWidth() >
4412 ConsideredExtType
->getIntegerBitWidth())
4415 // If the operand of the truncate is not an instruction, we will not have
4416 // any information on the dropped bits.
4417 // (Actually we could for constant but it is not worth the extra logic).
4418 Instruction
*Opnd
= dyn_cast
<Instruction
>(OpndVal
);
4422 // Check if the source of the type is narrow enough.
4423 // I.e., check that trunc just drops extended bits of the same kind of
4425 // #1 get the type of the operand and check the kind of the extended bits.
4426 const Type
*OpndType
= getOrigType(PromotedInsts
, Opnd
, IsSExt
);
4429 else if ((IsSExt
&& isa
<SExtInst
>(Opnd
)) || (!IsSExt
&& isa
<ZExtInst
>(Opnd
)))
4430 OpndType
= Opnd
->getOperand(0)->getType();
4434 // #2 check that the truncate just drops extended bits.
4435 return Inst
->getType()->getIntegerBitWidth() >=
4436 OpndType
->getIntegerBitWidth();
4439 TypePromotionHelper::Action
TypePromotionHelper::getAction(
4440 Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
4441 const TargetLowering
&TLI
, const InstrToOrigTy
&PromotedInsts
) {
4442 assert((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
4443 "Unexpected instruction type");
4444 Instruction
*ExtOpnd
= dyn_cast
<Instruction
>(Ext
->getOperand(0));
4445 Type
*ExtTy
= Ext
->getType();
4446 bool IsSExt
= isa
<SExtInst
>(Ext
);
4447 // If the operand of the extension is not an instruction, we cannot
4449 // If it, check we can get through.
4450 if (!ExtOpnd
|| !canGetThrough(ExtOpnd
, ExtTy
, PromotedInsts
, IsSExt
))
4453 // Do not promote if the operand has been added by codegenprepare.
4454 // Otherwise, it means we are undoing an optimization that is likely to be
4455 // redone, thus causing potential infinite loop.
4456 if (isa
<TruncInst
>(ExtOpnd
) && InsertedInsts
.count(ExtOpnd
))
4459 // SExt or Trunc instructions.
4460 // Return the related handler.
4461 if (isa
<SExtInst
>(ExtOpnd
) || isa
<TruncInst
>(ExtOpnd
) ||
4462 isa
<ZExtInst
>(ExtOpnd
))
4463 return promoteOperandForTruncAndAnyExt
;
4465 // Regular instruction.
4466 // Abort early if we will have to insert non-free instructions.
4467 if (!ExtOpnd
->hasOneUse() && !TLI
.isTruncateFree(ExtTy
, ExtOpnd
->getType()))
4469 return IsSExt
? signExtendOperandForOther
: zeroExtendOperandForOther
;
4472 Value
*TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4473 Instruction
*SExt
, TypePromotionTransaction
&TPT
,
4474 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4475 SmallVectorImpl
<Instruction
*> *Exts
,
4476 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4477 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4478 // get through it and this method should not be called.
4479 Instruction
*SExtOpnd
= cast
<Instruction
>(SExt
->getOperand(0));
4480 Value
*ExtVal
= SExt
;
4481 bool HasMergedNonFreeExt
= false;
4482 if (isa
<ZExtInst
>(SExtOpnd
)) {
4483 // Replace s|zext(zext(opnd))
4485 HasMergedNonFreeExt
= !TLI
.isExtFree(SExtOpnd
);
4487 TPT
.createZExt(SExt
, SExtOpnd
->getOperand(0), SExt
->getType());
4488 TPT
.replaceAllUsesWith(SExt
, ZExt
);
4489 TPT
.eraseInstruction(SExt
);
4492 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4494 TPT
.setOperand(SExt
, 0, SExtOpnd
->getOperand(0));
4496 CreatedInstsCost
= 0;
4498 // Remove dead code.
4499 if (SExtOpnd
->use_empty())
4500 TPT
.eraseInstruction(SExtOpnd
);
4502 // Check if the extension is still needed.
4503 Instruction
*ExtInst
= dyn_cast
<Instruction
>(ExtVal
);
4504 if (!ExtInst
|| ExtInst
->getType() != ExtInst
->getOperand(0)->getType()) {
4507 Exts
->push_back(ExtInst
);
4508 CreatedInstsCost
= !TLI
.isExtFree(ExtInst
) && !HasMergedNonFreeExt
;
4513 // At this point we have: ext ty opnd to ty.
4514 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4515 Value
*NextVal
= ExtInst
->getOperand(0);
4516 TPT
.eraseInstruction(ExtInst
, NextVal
);
4520 Value
*TypePromotionHelper::promoteOperandForOther(
4521 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4522 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4523 SmallVectorImpl
<Instruction
*> *Exts
,
4524 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
,
4526 // By construction, the operand of Ext is an instruction. Otherwise we cannot
4527 // get through it and this method should not be called.
4528 Instruction
*ExtOpnd
= cast
<Instruction
>(Ext
->getOperand(0));
4529 CreatedInstsCost
= 0;
4530 if (!ExtOpnd
->hasOneUse()) {
4531 // ExtOpnd will be promoted.
4532 // All its uses, but Ext, will need to use a truncated value of the
4533 // promoted version.
4534 // Create the truncate now.
4535 Value
*Trunc
= TPT
.createTrunc(Ext
, ExtOpnd
->getType());
4536 if (Instruction
*ITrunc
= dyn_cast
<Instruction
>(Trunc
)) {
4537 // Insert it just after the definition.
4538 ITrunc
->moveAfter(ExtOpnd
);
4540 Truncs
->push_back(ITrunc
);
4543 TPT
.replaceAllUsesWith(ExtOpnd
, Trunc
);
4544 // Restore the operand of Ext (which has been replaced by the previous call
4545 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4546 TPT
.setOperand(Ext
, 0, ExtOpnd
);
4549 // Get through the Instruction:
4550 // 1. Update its type.
4551 // 2. Replace the uses of Ext by Inst.
4552 // 3. Extend each operand that needs to be extended.
4554 // Remember the original type of the instruction before promotion.
4555 // This is useful to know that the high bits are sign extended bits.
4556 addPromotedInst(PromotedInsts
, ExtOpnd
, IsSExt
);
4558 TPT
.mutateType(ExtOpnd
, Ext
->getType());
4560 TPT
.replaceAllUsesWith(Ext
, ExtOpnd
);
4562 Instruction
*ExtForOpnd
= Ext
;
4564 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4565 for (int OpIdx
= 0, EndOpIdx
= ExtOpnd
->getNumOperands(); OpIdx
!= EndOpIdx
;
4567 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd
->getOperand(OpIdx
)) << '\n');
4568 if (ExtOpnd
->getOperand(OpIdx
)->getType() == Ext
->getType() ||
4569 !shouldExtOperand(ExtOpnd
, OpIdx
)) {
4570 LLVM_DEBUG(dbgs() << "No need to propagate\n");
4573 // Check if we can statically extend the operand.
4574 Value
*Opnd
= ExtOpnd
->getOperand(OpIdx
);
4575 if (const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Opnd
)) {
4576 LLVM_DEBUG(dbgs() << "Statically extend\n");
4577 unsigned BitWidth
= Ext
->getType()->getIntegerBitWidth();
4578 APInt CstVal
= IsSExt
? Cst
->getValue().sext(BitWidth
)
4579 : Cst
->getValue().zext(BitWidth
);
4580 TPT
.setOperand(ExtOpnd
, OpIdx
, ConstantInt::get(Ext
->getType(), CstVal
));
4583 // UndefValue are typed, so we have to statically sign extend them.
4584 if (isa
<UndefValue
>(Opnd
)) {
4585 LLVM_DEBUG(dbgs() << "Statically extend\n");
4586 TPT
.setOperand(ExtOpnd
, OpIdx
, UndefValue::get(Ext
->getType()));
4590 // Otherwise we have to explicitly sign extend the operand.
4591 // Check if Ext was reused to extend an operand.
4593 // If yes, create a new one.
4594 LLVM_DEBUG(dbgs() << "More operands to ext\n");
4595 Value
*ValForExtOpnd
= IsSExt
? TPT
.createSExt(Ext
, Opnd
, Ext
->getType())
4596 : TPT
.createZExt(Ext
, Opnd
, Ext
->getType());
4597 if (!isa
<Instruction
>(ValForExtOpnd
)) {
4598 TPT
.setOperand(ExtOpnd
, OpIdx
, ValForExtOpnd
);
4601 ExtForOpnd
= cast
<Instruction
>(ValForExtOpnd
);
4604 Exts
->push_back(ExtForOpnd
);
4605 TPT
.setOperand(ExtForOpnd
, 0, Opnd
);
4607 // Move the sign extension before the insertion point.
4608 TPT
.moveBefore(ExtForOpnd
, ExtOpnd
);
4609 TPT
.setOperand(ExtOpnd
, OpIdx
, ExtForOpnd
);
4610 CreatedInstsCost
+= !TLI
.isExtFree(ExtForOpnd
);
4611 // If more sext are required, new instructions will have to be created.
4612 ExtForOpnd
= nullptr;
4614 if (ExtForOpnd
== Ext
) {
4615 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4616 TPT
.eraseInstruction(Ext
);
4621 /// Check whether or not promoting an instruction to a wider type is profitable.
4622 /// \p NewCost gives the cost of extension instructions created by the
4624 /// \p OldCost gives the cost of extension instructions before the promotion
4625 /// plus the number of instructions that have been
4626 /// matched in the addressing mode the promotion.
4627 /// \p PromotedOperand is the value that has been promoted.
4628 /// \return True if the promotion is profitable, false otherwise.
4629 bool AddressingModeMatcher::isPromotionProfitable(
4630 unsigned NewCost
, unsigned OldCost
, Value
*PromotedOperand
) const {
4631 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost
<< "\tNewCost: " << NewCost
4633 // The cost of the new extensions is greater than the cost of the
4634 // old extension plus what we folded.
4635 // This is not profitable.
4636 if (NewCost
> OldCost
)
4638 if (NewCost
< OldCost
)
4640 // The promotion is neutral but it may help folding the sign extension in
4641 // loads for instance.
4642 // Check that we did not create an illegal instruction.
4643 return isPromotedInstructionLegal(TLI
, DL
, PromotedOperand
);
4646 /// Given an instruction or constant expr, see if we can fold the operation
4647 /// into the addressing mode. If so, update the addressing mode and return
4648 /// true, otherwise return false without modifying AddrMode.
4649 /// If \p MovedAway is not NULL, it contains the information of whether or
4650 /// not AddrInst has to be folded into the addressing mode on success.
4651 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4652 /// because it has been moved away.
4653 /// Thus AddrInst must not be added in the matched instructions.
4654 /// This state can happen when AddrInst is a sext, since it may be moved away.
4655 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4656 /// not be referenced anymore.
4657 bool AddressingModeMatcher::matchOperationAddr(User
*AddrInst
, unsigned Opcode
,
4660 // Avoid exponential behavior on extremely deep expression trees.
4664 // By default, all matched instructions stay in place.
4669 case Instruction::PtrToInt
:
4670 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4671 return matchAddr(AddrInst
->getOperand(0), Depth
);
4672 case Instruction::IntToPtr
: {
4673 auto AS
= AddrInst
->getType()->getPointerAddressSpace();
4674 auto PtrTy
= MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
4675 // This inttoptr is a no-op if the integer type is pointer sized.
4676 if (TLI
.getValueType(DL
, AddrInst
->getOperand(0)->getType()) == PtrTy
)
4677 return matchAddr(AddrInst
->getOperand(0), Depth
);
4680 case Instruction::BitCast
:
4681 // BitCast is always a noop, and we can handle it as long as it is
4682 // int->int or pointer->pointer (we don't want int<->fp or something).
4683 if (AddrInst
->getOperand(0)->getType()->isIntOrPtrTy() &&
4684 // Don't touch identity bitcasts. These were probably put here by LSR,
4685 // and we don't want to mess around with them. Assume it knows what it
4687 AddrInst
->getOperand(0)->getType() != AddrInst
->getType())
4688 return matchAddr(AddrInst
->getOperand(0), Depth
);
4690 case Instruction::AddrSpaceCast
: {
4692 AddrInst
->getOperand(0)->getType()->getPointerAddressSpace();
4693 unsigned DestAS
= AddrInst
->getType()->getPointerAddressSpace();
4694 if (TLI
.getTargetMachine().isNoopAddrSpaceCast(SrcAS
, DestAS
))
4695 return matchAddr(AddrInst
->getOperand(0), Depth
);
4698 case Instruction::Add
: {
4699 // Check to see if we can merge in one operand, then the other. If so, we
4701 ExtAddrMode BackupAddrMode
= AddrMode
;
4702 unsigned OldSize
= AddrModeInsts
.size();
4703 // Start a transaction at this point.
4704 // The LHS may match but not the RHS.
4705 // Therefore, we need a higher level restoration point to undo partially
4706 // matched operation.
4707 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4708 TPT
.getRestorationPoint();
4710 // Try to match an integer constant second to increase its chance of ending
4711 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
4712 int First
= 0, Second
= 1;
4713 if (isa
<ConstantInt
>(AddrInst
->getOperand(First
))
4714 && !isa
<ConstantInt
>(AddrInst
->getOperand(Second
)))
4715 std::swap(First
, Second
);
4716 AddrMode
.InBounds
= false;
4717 if (matchAddr(AddrInst
->getOperand(First
), Depth
+ 1) &&
4718 matchAddr(AddrInst
->getOperand(Second
), Depth
+ 1))
4721 // Restore the old addr mode info.
4722 AddrMode
= BackupAddrMode
;
4723 AddrModeInsts
.resize(OldSize
);
4724 TPT
.rollback(LastKnownGood
);
4726 // Otherwise this was over-aggressive. Try merging operands in the opposite
4728 if (matchAddr(AddrInst
->getOperand(Second
), Depth
+ 1) &&
4729 matchAddr(AddrInst
->getOperand(First
), Depth
+ 1))
4732 // Otherwise we definitely can't merge the ADD in.
4733 AddrMode
= BackupAddrMode
;
4734 AddrModeInsts
.resize(OldSize
);
4735 TPT
.rollback(LastKnownGood
);
4738 // case Instruction::Or:
4739 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4741 case Instruction::Mul
:
4742 case Instruction::Shl
: {
4743 // Can only handle X*C and X << C.
4744 AddrMode
.InBounds
= false;
4745 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(1));
4746 if (!RHS
|| RHS
->getBitWidth() > 64)
4748 int64_t Scale
= Opcode
== Instruction::Shl
4749 ? 1LL << RHS
->getLimitedValue(RHS
->getBitWidth() - 1)
4750 : RHS
->getSExtValue();
4752 return matchScaledValue(AddrInst
->getOperand(0), Scale
, Depth
);
4754 case Instruction::GetElementPtr
: {
4755 // Scan the GEP. We check it if it contains constant offsets and at most
4756 // one variable offset.
4757 int VariableOperand
= -1;
4758 unsigned VariableScale
= 0;
4760 int64_t ConstantOffset
= 0;
4761 gep_type_iterator GTI
= gep_type_begin(AddrInst
);
4762 for (unsigned i
= 1, e
= AddrInst
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
4763 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
4764 const StructLayout
*SL
= DL
.getStructLayout(STy
);
4766 cast
<ConstantInt
>(AddrInst
->getOperand(i
))->getZExtValue();
4767 ConstantOffset
+= SL
->getElementOffset(Idx
);
4769 TypeSize TS
= DL
.getTypeAllocSize(GTI
.getIndexedType());
4770 if (TS
.isNonZero()) {
4771 // The optimisations below currently only work for fixed offsets.
4772 if (TS
.isScalable())
4774 int64_t TypeSize
= TS
.getFixedValue();
4775 if (ConstantInt
*CI
=
4776 dyn_cast
<ConstantInt
>(AddrInst
->getOperand(i
))) {
4777 const APInt
&CVal
= CI
->getValue();
4778 if (CVal
.getSignificantBits() <= 64) {
4779 ConstantOffset
+= CVal
.getSExtValue() * TypeSize
;
4783 // We only allow one variable index at the moment.
4784 if (VariableOperand
!= -1)
4787 // Remember the variable index.
4788 VariableOperand
= i
;
4789 VariableScale
= TypeSize
;
4794 // A common case is for the GEP to only do a constant offset. In this case,
4795 // just add it to the disp field and check validity.
4796 if (VariableOperand
== -1) {
4797 AddrMode
.BaseOffs
+= ConstantOffset
;
4798 if (matchAddr(AddrInst
->getOperand(0), Depth
+ 1)) {
4799 if (!cast
<GEPOperator
>(AddrInst
)->isInBounds())
4800 AddrMode
.InBounds
= false;
4803 AddrMode
.BaseOffs
-= ConstantOffset
;
4805 if (EnableGEPOffsetSplit
&& isa
<GetElementPtrInst
>(AddrInst
) &&
4806 TLI
.shouldConsiderGEPOffsetSplit() && Depth
== 0 &&
4807 ConstantOffset
> 0) {
4808 // Record GEPs with non-zero offsets as candidates for splitting in
4809 // the event that the offset cannot fit into the r+i addressing mode.
4810 // Simple and common case that only one GEP is used in calculating the
4811 // address for the memory access.
4812 Value
*Base
= AddrInst
->getOperand(0);
4813 auto *BaseI
= dyn_cast
<Instruction
>(Base
);
4814 auto *GEP
= cast
<GetElementPtrInst
>(AddrInst
);
4815 if (isa
<Argument
>(Base
) || isa
<GlobalValue
>(Base
) ||
4816 (BaseI
&& !isa
<CastInst
>(BaseI
) &&
4817 !isa
<GetElementPtrInst
>(BaseI
))) {
4818 // Make sure the parent block allows inserting non-PHI instructions
4819 // before the terminator.
4820 BasicBlock
*Parent
= BaseI
? BaseI
->getParent()
4821 : &GEP
->getFunction()->getEntryBlock();
4822 if (!Parent
->getTerminator()->isEHPad())
4823 LargeOffsetGEP
= std::make_pair(GEP
, ConstantOffset
);
4830 // Save the valid addressing mode in case we can't match.
4831 ExtAddrMode BackupAddrMode
= AddrMode
;
4832 unsigned OldSize
= AddrModeInsts
.size();
4834 // See if the scale and offset amount is valid for this target.
4835 AddrMode
.BaseOffs
+= ConstantOffset
;
4836 if (!cast
<GEPOperator
>(AddrInst
)->isInBounds())
4837 AddrMode
.InBounds
= false;
4839 // Match the base operand of the GEP.
4840 if (!matchAddr(AddrInst
->getOperand(0), Depth
+ 1)) {
4841 // If it couldn't be matched, just stuff the value in a register.
4842 if (AddrMode
.HasBaseReg
) {
4843 AddrMode
= BackupAddrMode
;
4844 AddrModeInsts
.resize(OldSize
);
4847 AddrMode
.HasBaseReg
= true;
4848 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4851 // Match the remaining variable portion of the GEP.
4852 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
), VariableScale
,
4854 // If it couldn't be matched, try stuffing the base into a register
4855 // instead of matching it, and retrying the match of the scale.
4856 AddrMode
= BackupAddrMode
;
4857 AddrModeInsts
.resize(OldSize
);
4858 if (AddrMode
.HasBaseReg
)
4860 AddrMode
.HasBaseReg
= true;
4861 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4862 AddrMode
.BaseOffs
+= ConstantOffset
;
4863 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
),
4864 VariableScale
, Depth
)) {
4865 // If even that didn't work, bail.
4866 AddrMode
= BackupAddrMode
;
4867 AddrModeInsts
.resize(OldSize
);
4874 case Instruction::SExt
:
4875 case Instruction::ZExt
: {
4876 Instruction
*Ext
= dyn_cast
<Instruction
>(AddrInst
);
4880 // Try to move this ext out of the way of the addressing mode.
4881 // Ask for a method for doing so.
4882 TypePromotionHelper::Action TPH
=
4883 TypePromotionHelper::getAction(Ext
, InsertedInsts
, TLI
, PromotedInsts
);
4887 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4888 TPT
.getRestorationPoint();
4889 unsigned CreatedInstsCost
= 0;
4890 unsigned ExtCost
= !TLI
.isExtFree(Ext
);
4891 Value
*PromotedOperand
=
4892 TPH(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
, nullptr, nullptr, TLI
);
4893 // SExt has been moved away.
4894 // Thus either it will be rematched later in the recursive calls or it is
4895 // gone. Anyway, we must not fold it into the addressing mode at this point.
4899 // addr = gep base, idx
4901 // promotedOpnd = ext opnd <- no match here
4902 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4903 // addr = gep base, op <- match
4907 assert(PromotedOperand
&&
4908 "TypePromotionHelper should have filtered out those cases");
4910 ExtAddrMode BackupAddrMode
= AddrMode
;
4911 unsigned OldSize
= AddrModeInsts
.size();
4913 if (!matchAddr(PromotedOperand
, Depth
) ||
4914 // The total of the new cost is equal to the cost of the created
4916 // The total of the old cost is equal to the cost of the extension plus
4917 // what we have saved in the addressing mode.
4918 !isPromotionProfitable(CreatedInstsCost
,
4919 ExtCost
+ (AddrModeInsts
.size() - OldSize
),
4921 AddrMode
= BackupAddrMode
;
4922 AddrModeInsts
.resize(OldSize
);
4923 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4924 TPT
.rollback(LastKnownGood
);
4933 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4934 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4935 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4938 bool AddressingModeMatcher::matchAddr(Value
*Addr
, unsigned Depth
) {
4939 // Start a transaction at this point that we will rollback if the matching
4941 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4942 TPT
.getRestorationPoint();
4943 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Addr
)) {
4944 if (CI
->getValue().isSignedIntN(64)) {
4945 // Fold in immediates if legal for the target.
4946 AddrMode
.BaseOffs
+= CI
->getSExtValue();
4947 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4949 AddrMode
.BaseOffs
-= CI
->getSExtValue();
4951 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Addr
)) {
4952 // If this is a global variable, try to fold it into the addressing mode.
4953 if (!AddrMode
.BaseGV
) {
4954 AddrMode
.BaseGV
= GV
;
4955 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4957 AddrMode
.BaseGV
= nullptr;
4959 } else if (Instruction
*I
= dyn_cast
<Instruction
>(Addr
)) {
4960 ExtAddrMode BackupAddrMode
= AddrMode
;
4961 unsigned OldSize
= AddrModeInsts
.size();
4963 // Check to see if it is possible to fold this operation.
4964 bool MovedAway
= false;
4965 if (matchOperationAddr(I
, I
->getOpcode(), Depth
, &MovedAway
)) {
4966 // This instruction may have been moved away. If so, there is nothing
4970 // Okay, it's possible to fold this. Check to see if it is actually
4971 // *profitable* to do so. We use a simple cost model to avoid increasing
4972 // register pressure too much.
4973 if (I
->hasOneUse() ||
4974 isProfitableToFoldIntoAddressingMode(I
, BackupAddrMode
, AddrMode
)) {
4975 AddrModeInsts
.push_back(I
);
4979 // It isn't profitable to do this, roll back.
4980 AddrMode
= BackupAddrMode
;
4981 AddrModeInsts
.resize(OldSize
);
4982 TPT
.rollback(LastKnownGood
);
4984 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Addr
)) {
4985 if (matchOperationAddr(CE
, CE
->getOpcode(), Depth
))
4987 TPT
.rollback(LastKnownGood
);
4988 } else if (isa
<ConstantPointerNull
>(Addr
)) {
4989 // Null pointer gets folded without affecting the addressing mode.
4993 // Worse case, the target should support [reg] addressing modes. :)
4994 if (!AddrMode
.HasBaseReg
) {
4995 AddrMode
.HasBaseReg
= true;
4996 AddrMode
.BaseReg
= Addr
;
4997 // Still check for legality in case the target supports [imm] but not [i+r].
4998 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5000 AddrMode
.HasBaseReg
= false;
5001 AddrMode
.BaseReg
= nullptr;
5004 // If the base register is already taken, see if we can do [r+r].
5005 if (AddrMode
.Scale
== 0) {
5007 AddrMode
.ScaledReg
= Addr
;
5008 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5011 AddrMode
.ScaledReg
= nullptr;
5014 TPT
.rollback(LastKnownGood
);
5018 /// Check to see if all uses of OpVal by the specified inline asm call are due
5019 /// to memory operands. If so, return true, otherwise return false.
5020 static bool IsOperandAMemoryOperand(CallInst
*CI
, InlineAsm
*IA
, Value
*OpVal
,
5021 const TargetLowering
&TLI
,
5022 const TargetRegisterInfo
&TRI
) {
5023 const Function
*F
= CI
->getFunction();
5024 TargetLowering::AsmOperandInfoVector TargetConstraints
=
5025 TLI
.ParseConstraints(F
->getParent()->getDataLayout(), &TRI
, *CI
);
5027 for (TargetLowering::AsmOperandInfo
&OpInfo
: TargetConstraints
) {
5028 // Compute the constraint code and ConstraintType to use.
5029 TLI
.ComputeConstraintToUse(OpInfo
, SDValue());
5031 // If this asm operand is our Value*, and if it isn't an indirect memory
5032 // operand, we can't fold it! TODO: Also handle C_Address?
5033 if (OpInfo
.CallOperandVal
== OpVal
&&
5034 (OpInfo
.ConstraintType
!= TargetLowering::C_Memory
||
5035 !OpInfo
.isIndirect
))
5042 /// Recursively walk all the uses of I until we find a memory use.
5043 /// If we find an obviously non-foldable instruction, return true.
5044 /// Add accessed addresses and types to MemoryUses.
5045 static bool FindAllMemoryUses(
5046 Instruction
*I
, SmallVectorImpl
<std::pair
<Use
*, Type
*>> &MemoryUses
,
5047 SmallPtrSetImpl
<Instruction
*> &ConsideredInsts
, const TargetLowering
&TLI
,
5048 const TargetRegisterInfo
&TRI
, bool OptSize
, ProfileSummaryInfo
*PSI
,
5049 BlockFrequencyInfo
*BFI
, unsigned &SeenInsts
) {
5050 // If we already considered this instruction, we're done.
5051 if (!ConsideredInsts
.insert(I
).second
)
5054 // If this is an obviously unfoldable instruction, bail out.
5055 if (!MightBeFoldableInst(I
))
5058 // Loop over all the uses, recursively processing them.
5059 for (Use
&U
: I
->uses()) {
5060 // Conservatively return true if we're seeing a large number or a deep chain
5061 // of users. This avoids excessive compilation times in pathological cases.
5062 if (SeenInsts
++ >= MaxAddressUsersToScan
)
5065 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
5066 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UserI
)) {
5067 MemoryUses
.push_back({&U
, LI
->getType()});
5071 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UserI
)) {
5072 if (U
.getOperandNo() != StoreInst::getPointerOperandIndex())
5073 return true; // Storing addr, not into addr.
5074 MemoryUses
.push_back({&U
, SI
->getValueOperand()->getType()});
5078 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(UserI
)) {
5079 if (U
.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5080 return true; // Storing addr, not into addr.
5081 MemoryUses
.push_back({&U
, RMW
->getValOperand()->getType()});
5085 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(UserI
)) {
5086 if (U
.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5087 return true; // Storing addr, not into addr.
5088 MemoryUses
.push_back({&U
, CmpX
->getCompareOperand()->getType()});
5092 if (CallInst
*CI
= dyn_cast
<CallInst
>(UserI
)) {
5093 if (CI
->hasFnAttr(Attribute::Cold
)) {
5094 // If this is a cold call, we can sink the addressing calculation into
5095 // the cold path. See optimizeCallInst
5097 OptSize
|| llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
);
5102 InlineAsm
*IA
= dyn_cast
<InlineAsm
>(CI
->getCalledOperand());
5106 // If this is a memory operand, we're cool, otherwise bail out.
5107 if (!IsOperandAMemoryOperand(CI
, IA
, I
, TLI
, TRI
))
5112 if (FindAllMemoryUses(UserI
, MemoryUses
, ConsideredInsts
, TLI
, TRI
, OptSize
,
5113 PSI
, BFI
, SeenInsts
))
5120 static bool FindAllMemoryUses(
5121 Instruction
*I
, SmallVectorImpl
<std::pair
<Use
*, Type
*>> &MemoryUses
,
5122 const TargetLowering
&TLI
, const TargetRegisterInfo
&TRI
, bool OptSize
,
5123 ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
) {
5124 unsigned SeenInsts
= 0;
5125 SmallPtrSet
<Instruction
*, 16> ConsideredInsts
;
5126 return FindAllMemoryUses(I
, MemoryUses
, ConsideredInsts
, TLI
, TRI
, OptSize
,
5127 PSI
, BFI
, SeenInsts
);
5131 /// Return true if Val is already known to be live at the use site that we're
5132 /// folding it into. If so, there is no cost to include it in the addressing
5133 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5134 /// instruction already.
5135 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value
*Val
,
5137 Value
*KnownLive2
) {
5138 // If Val is either of the known-live values, we know it is live!
5139 if (Val
== nullptr || Val
== KnownLive1
|| Val
== KnownLive2
)
5142 // All values other than instructions and arguments (e.g. constants) are live.
5143 if (!isa
<Instruction
>(Val
) && !isa
<Argument
>(Val
))
5146 // If Val is a constant sized alloca in the entry block, it is live, this is
5147 // true because it is just a reference to the stack/frame pointer, which is
5148 // live for the whole function.
5149 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Val
))
5150 if (AI
->isStaticAlloca())
5153 // Check to see if this value is already used in the memory instruction's
5154 // block. If so, it's already live into the block at the very least, so we
5155 // can reasonably fold it.
5156 return Val
->isUsedInBasicBlock(MemoryInst
->getParent());
5159 /// It is possible for the addressing mode of the machine to fold the specified
5160 /// instruction into a load or store that ultimately uses it.
5161 /// However, the specified instruction has multiple uses.
5162 /// Given this, it may actually increase register pressure to fold it
5163 /// into the load. For example, consider this code:
5167 /// use(Y) -> nonload/store
5171 /// In this case, Y has multiple uses, and can be folded into the load of Z
5172 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
5173 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
5174 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
5175 /// number of computations either.
5177 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
5178 /// X was live across 'load Z' for other reasons, we actually *would* want to
5179 /// fold the addressing mode in the Z case. This would make Y die earlier.
5180 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5181 Instruction
*I
, ExtAddrMode
&AMBefore
, ExtAddrMode
&AMAfter
) {
5182 if (IgnoreProfitability
)
5185 // AMBefore is the addressing mode before this instruction was folded into it,
5186 // and AMAfter is the addressing mode after the instruction was folded. Get
5187 // the set of registers referenced by AMAfter and subtract out those
5188 // referenced by AMBefore: this is the set of values which folding in this
5189 // address extends the lifetime of.
5191 // Note that there are only two potential values being referenced here,
5192 // BaseReg and ScaleReg (global addresses are always available, as are any
5193 // folded immediates).
5194 Value
*BaseReg
= AMAfter
.BaseReg
, *ScaledReg
= AMAfter
.ScaledReg
;
5196 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5197 // lifetime wasn't extended by adding this instruction.
5198 if (valueAlreadyLiveAtInst(BaseReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
5200 if (valueAlreadyLiveAtInst(ScaledReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
5201 ScaledReg
= nullptr;
5203 // If folding this instruction (and it's subexprs) didn't extend any live
5204 // ranges, we're ok with it.
5205 if (!BaseReg
&& !ScaledReg
)
5208 // If all uses of this instruction can have the address mode sunk into them,
5209 // we can remove the addressing mode and effectively trade one live register
5210 // for another (at worst.) In this context, folding an addressing mode into
5211 // the use is just a particularly nice way of sinking it.
5212 SmallVector
<std::pair
<Use
*, Type
*>, 16> MemoryUses
;
5213 if (FindAllMemoryUses(I
, MemoryUses
, TLI
, TRI
, OptSize
, PSI
, BFI
))
5214 return false; // Has a non-memory, non-foldable use!
5216 // Now that we know that all uses of this instruction are part of a chain of
5217 // computation involving only operations that could theoretically be folded
5218 // into a memory use, loop over each of these memory operation uses and see
5219 // if they could *actually* fold the instruction. The assumption is that
5220 // addressing modes are cheap and that duplicating the computation involved
5221 // many times is worthwhile, even on a fastpath. For sinking candidates
5222 // (i.e. cold call sites), this serves as a way to prevent excessive code
5223 // growth since most architectures have some reasonable small and fast way to
5224 // compute an effective address. (i.e LEA on x86)
5225 SmallVector
<Instruction
*, 32> MatchedAddrModeInsts
;
5226 for (const std::pair
<Use
*, Type
*> &Pair
: MemoryUses
) {
5227 Value
*Address
= Pair
.first
->get();
5228 Instruction
*UserI
= cast
<Instruction
>(Pair
.first
->getUser());
5229 Type
*AddressAccessTy
= Pair
.second
;
5230 unsigned AS
= Address
->getType()->getPointerAddressSpace();
5232 // Do a match against the root of this address, ignoring profitability. This
5233 // will tell us if the addressing mode for the memory operation will
5234 // *actually* cover the shared instruction.
5236 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
5238 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5239 TPT
.getRestorationPoint();
5240 AddressingModeMatcher
Matcher(MatchedAddrModeInsts
, TLI
, TRI
, LI
, getDTFn
,
5241 AddressAccessTy
, AS
, UserI
, Result
,
5242 InsertedInsts
, PromotedInsts
, TPT
,
5243 LargeOffsetGEP
, OptSize
, PSI
, BFI
);
5244 Matcher
.IgnoreProfitability
= true;
5245 bool Success
= Matcher
.matchAddr(Address
, 0);
5247 assert(Success
&& "Couldn't select *anything*?");
5249 // The match was to check the profitability, the changes made are not
5250 // part of the original matcher. Therefore, they should be dropped
5251 // otherwise the original matcher will not present the right state.
5252 TPT
.rollback(LastKnownGood
);
5254 // If the match didn't cover I, then it won't be shared by it.
5255 if (!is_contained(MatchedAddrModeInsts
, I
))
5258 MatchedAddrModeInsts
.clear();
5264 /// Return true if the specified values are defined in a
5265 /// different basic block than BB.
5266 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
5267 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
5268 return I
->getParent() != BB
;
5272 /// Sink addressing mode computation immediate before MemoryInst if doing so
5273 /// can be done without increasing register pressure. The need for the
5274 /// register pressure constraint means this can end up being an all or nothing
5275 /// decision for all uses of the same addressing computation.
5277 /// Load and Store Instructions often have addressing modes that can do
5278 /// significant amounts of computation. As such, instruction selection will try
5279 /// to get the load or store to do as much computation as possible for the
5280 /// program. The problem is that isel can only see within a single block. As
5281 /// such, we sink as much legal addressing mode work into the block as possible.
5283 /// This method is used to optimize both load/store and inline asms with memory
5284 /// operands. It's also used to sink addressing computations feeding into cold
5285 /// call sites into their (cold) basic block.
5287 /// The motivation for handling sinking into cold blocks is that doing so can
5288 /// both enable other address mode sinking (by satisfying the register pressure
5289 /// constraint above), and reduce register pressure globally (by removing the
5290 /// addressing mode computation from the fast path entirely.).
5291 bool CodeGenPrepare::optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
5292 Type
*AccessTy
, unsigned AddrSpace
) {
5295 // Try to collapse single-value PHI nodes. This is necessary to undo
5296 // unprofitable PRE transformations.
5297 SmallVector
<Value
*, 8> worklist
;
5298 SmallPtrSet
<Value
*, 16> Visited
;
5299 worklist
.push_back(Addr
);
5301 // Use a worklist to iteratively look through PHI and select nodes, and
5302 // ensure that the addressing mode obtained from the non-PHI/select roots of
5303 // the graph are compatible.
5304 bool PhiOrSelectSeen
= false;
5305 SmallVector
<Instruction
*, 16> AddrModeInsts
;
5306 const SimplifyQuery
SQ(*DL
, TLInfo
);
5307 AddressingModeCombiner
AddrModes(SQ
, Addr
);
5308 TypePromotionTransaction
TPT(RemovedInsts
);
5309 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5310 TPT
.getRestorationPoint();
5311 while (!worklist
.empty()) {
5312 Value
*V
= worklist
.pop_back_val();
5314 // We allow traversing cyclic Phi nodes.
5315 // In case of success after this loop we ensure that traversing through
5316 // Phi nodes ends up with all cases to compute address of the form
5317 // BaseGV + Base + Scale * Index + Offset
5318 // where Scale and Offset are constans and BaseGV, Base and Index
5319 // are exactly the same Values in all cases.
5320 // It means that BaseGV, Scale and Offset dominate our memory instruction
5321 // and have the same value as they had in address computation represented
5322 // as Phi. So we can safely sink address computation to memory instruction.
5323 if (!Visited
.insert(V
).second
)
5326 // For a PHI node, push all of its incoming values.
5327 if (PHINode
*P
= dyn_cast
<PHINode
>(V
)) {
5328 append_range(worklist
, P
->incoming_values());
5329 PhiOrSelectSeen
= true;
5332 // Similar for select.
5333 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
5334 worklist
.push_back(SI
->getFalseValue());
5335 worklist
.push_back(SI
->getTrueValue());
5336 PhiOrSelectSeen
= true;
5340 // For non-PHIs, determine the addressing mode being computed. Note that
5341 // the result may differ depending on what other uses our candidate
5342 // addressing instructions might have.
5343 AddrModeInsts
.clear();
5344 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
5346 // Defer the query (and possible computation of) the dom tree to point of
5347 // actual use. It's expected that most address matches don't actually need
5349 auto getDTFn
= [MemoryInst
, this]() -> const DominatorTree
& {
5350 Function
*F
= MemoryInst
->getParent()->getParent();
5351 return this->getDT(*F
);
5353 ExtAddrMode NewAddrMode
= AddressingModeMatcher::Match(
5354 V
, AccessTy
, AddrSpace
, MemoryInst
, AddrModeInsts
, *TLI
, *LI
, getDTFn
,
5355 *TRI
, InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
, OptSize
, PSI
,
5358 GetElementPtrInst
*GEP
= LargeOffsetGEP
.first
;
5359 if (GEP
&& !NewGEPBases
.count(GEP
)) {
5360 // If splitting the underlying data structure can reduce the offset of a
5361 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5362 // previously split data structures.
5363 LargeOffsetGEPMap
[GEP
->getPointerOperand()].push_back(LargeOffsetGEP
);
5364 LargeOffsetGEPID
.insert(std::make_pair(GEP
, LargeOffsetGEPID
.size()));
5367 NewAddrMode
.OriginalValue
= V
;
5368 if (!AddrModes
.addNewAddrMode(NewAddrMode
))
5372 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5373 // or we have multiple but either couldn't combine them or combining them
5374 // wouldn't do anything useful, bail out now.
5375 if (!AddrModes
.combineAddrModes()) {
5376 TPT
.rollback(LastKnownGood
);
5379 bool Modified
= TPT
.commit();
5381 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5382 ExtAddrMode AddrMode
= AddrModes
.getAddrMode();
5384 // If all the instructions matched are already in this BB, don't do anything.
5385 // If we saw a Phi node then it is not local definitely, and if we saw a
5386 // select then we want to push the address calculation past it even if it's
5387 // already in this BB.
5388 if (!PhiOrSelectSeen
&& none_of(AddrModeInsts
, [&](Value
*V
) {
5389 return IsNonLocalValue(V
, MemoryInst
->getParent());
5391 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5396 // Insert this computation right after this user. Since our caller is
5397 // scanning from the top of the BB to the bottom, reuse of the expr are
5398 // guaranteed to happen later.
5399 IRBuilder
<> Builder(MemoryInst
);
5401 // Now that we determined the addressing expression we want to use and know
5402 // that we have to sink it into this block. Check to see if we have already
5403 // done this for some other load/store instr in this block. If so, reuse
5404 // the computation. Before attempting reuse, check if the address is valid
5405 // as it may have been erased.
5407 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Addr
];
5409 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
5410 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
5412 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5413 << " for " << *MemoryInst
<< "\n");
5414 if (SunkAddr
->getType() != Addr
->getType()) {
5415 if (SunkAddr
->getType()->getPointerAddressSpace() !=
5416 Addr
->getType()->getPointerAddressSpace() &&
5417 !DL
->isNonIntegralPointerType(Addr
->getType())) {
5418 // There are two reasons the address spaces might not match: a no-op
5419 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5420 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5421 // TODO: allow bitcast between different address space pointers with the
5423 SunkAddr
= Builder
.CreatePtrToInt(SunkAddr
, IntPtrTy
, "sunkaddr");
5425 Builder
.CreateIntToPtr(SunkAddr
, Addr
->getType(), "sunkaddr");
5427 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
5429 } else if (AddrSinkUsingGEPs
|| (!AddrSinkUsingGEPs
.getNumOccurrences() &&
5430 SubtargetInfo
->addrSinkUsingGEPs())) {
5431 // By default, we use the GEP-based method when AA is used later. This
5432 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5433 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5434 << " for " << *MemoryInst
<< "\n");
5435 Value
*ResultPtr
= nullptr, *ResultIndex
= nullptr;
5437 // First, find the pointer.
5438 if (AddrMode
.BaseReg
&& AddrMode
.BaseReg
->getType()->isPointerTy()) {
5439 ResultPtr
= AddrMode
.BaseReg
;
5440 AddrMode
.BaseReg
= nullptr;
5443 if (AddrMode
.Scale
&& AddrMode
.ScaledReg
->getType()->isPointerTy()) {
5444 // We can't add more than one pointer together, nor can we scale a
5445 // pointer (both of which seem meaningless).
5446 if (ResultPtr
|| AddrMode
.Scale
!= 1)
5449 ResultPtr
= AddrMode
.ScaledReg
;
5453 // It is only safe to sign extend the BaseReg if we know that the math
5454 // required to create it did not overflow before we extend it. Since
5455 // the original IR value was tossed in favor of a constant back when
5456 // the AddrMode was created we need to bail out gracefully if widths
5457 // do not match instead of extending it.
5459 // (See below for code to add the scale.)
5460 if (AddrMode
.Scale
) {
5461 Type
*ScaledRegTy
= AddrMode
.ScaledReg
->getType();
5462 if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() >
5463 cast
<IntegerType
>(ScaledRegTy
)->getBitWidth())
5467 if (AddrMode
.BaseGV
) {
5471 ResultPtr
= AddrMode
.BaseGV
;
5474 // If the real base value actually came from an inttoptr, then the matcher
5475 // will look through it and provide only the integer value. In that case,
5477 if (!DL
->isNonIntegralPointerType(Addr
->getType())) {
5478 if (!ResultPtr
&& AddrMode
.BaseReg
) {
5479 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.BaseReg
, Addr
->getType(),
5481 AddrMode
.BaseReg
= nullptr;
5482 } else if (!ResultPtr
&& AddrMode
.Scale
== 1) {
5483 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.ScaledReg
, Addr
->getType(),
5489 if (!ResultPtr
&& !AddrMode
.BaseReg
&& !AddrMode
.Scale
&&
5490 !AddrMode
.BaseOffs
) {
5491 SunkAddr
= Constant::getNullValue(Addr
->getType());
5492 } else if (!ResultPtr
) {
5496 Builder
.getInt8PtrTy(Addr
->getType()->getPointerAddressSpace());
5497 Type
*I8Ty
= Builder
.getInt8Ty();
5499 // Start with the base register. Do this first so that subsequent address
5500 // matching finds it last, which will prevent it from trying to match it
5501 // as the scaled value in case it happens to be a mul. That would be
5502 // problematic if we've sunk a different mul for the scale, because then
5503 // we'd end up sinking both muls.
5504 if (AddrMode
.BaseReg
) {
5505 Value
*V
= AddrMode
.BaseReg
;
5506 if (V
->getType() != IntPtrTy
)
5507 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
5512 // Add the scale value.
5513 if (AddrMode
.Scale
) {
5514 Value
*V
= AddrMode
.ScaledReg
;
5515 if (V
->getType() == IntPtrTy
) {
5518 assert(cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
5519 cast
<IntegerType
>(V
->getType())->getBitWidth() &&
5520 "We can't transform if ScaledReg is too narrow");
5521 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
5524 if (AddrMode
.Scale
!= 1)
5525 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
5528 ResultIndex
= Builder
.CreateAdd(ResultIndex
, V
, "sunkaddr");
5533 // Add in the Base Offset if present.
5534 if (AddrMode
.BaseOffs
) {
5535 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
5537 // We need to add this separately from the scale above to help with
5538 // SDAG consecutive load/store merging.
5539 if (ResultPtr
->getType() != I8PtrTy
)
5540 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
5541 ResultPtr
= Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
,
5542 "sunkaddr", AddrMode
.InBounds
);
5549 SunkAddr
= ResultPtr
;
5551 if (ResultPtr
->getType() != I8PtrTy
)
5552 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
5553 SunkAddr
= Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr",
5557 if (SunkAddr
->getType() != Addr
->getType()) {
5558 if (SunkAddr
->getType()->getPointerAddressSpace() !=
5559 Addr
->getType()->getPointerAddressSpace() &&
5560 !DL
->isNonIntegralPointerType(Addr
->getType())) {
5561 // There are two reasons the address spaces might not match: a no-op
5562 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5563 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5564 // TODO: allow bitcast between different address space pointers with
5566 SunkAddr
= Builder
.CreatePtrToInt(SunkAddr
, IntPtrTy
, "sunkaddr");
5568 Builder
.CreateIntToPtr(SunkAddr
, Addr
->getType(), "sunkaddr");
5570 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
5574 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5575 // non-integral pointers, so in that case bail out now.
5576 Type
*BaseTy
= AddrMode
.BaseReg
? AddrMode
.BaseReg
->getType() : nullptr;
5577 Type
*ScaleTy
= AddrMode
.Scale
? AddrMode
.ScaledReg
->getType() : nullptr;
5578 PointerType
*BasePtrTy
= dyn_cast_or_null
<PointerType
>(BaseTy
);
5579 PointerType
*ScalePtrTy
= dyn_cast_or_null
<PointerType
>(ScaleTy
);
5580 if (DL
->isNonIntegralPointerType(Addr
->getType()) ||
5581 (BasePtrTy
&& DL
->isNonIntegralPointerType(BasePtrTy
)) ||
5582 (ScalePtrTy
&& DL
->isNonIntegralPointerType(ScalePtrTy
)) ||
5584 DL
->isNonIntegralPointerType(AddrMode
.BaseGV
->getType())))
5587 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5588 << " for " << *MemoryInst
<< "\n");
5589 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
5590 Value
*Result
= nullptr;
5592 // Start with the base register. Do this first so that subsequent address
5593 // matching finds it last, which will prevent it from trying to match it
5594 // as the scaled value in case it happens to be a mul. That would be
5595 // problematic if we've sunk a different mul for the scale, because then
5596 // we'd end up sinking both muls.
5597 if (AddrMode
.BaseReg
) {
5598 Value
*V
= AddrMode
.BaseReg
;
5599 if (V
->getType()->isPointerTy())
5600 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
5601 if (V
->getType() != IntPtrTy
)
5602 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
5606 // Add the scale value.
5607 if (AddrMode
.Scale
) {
5608 Value
*V
= AddrMode
.ScaledReg
;
5609 if (V
->getType() == IntPtrTy
) {
5611 } else if (V
->getType()->isPointerTy()) {
5612 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
5613 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
5614 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
5615 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
5617 // It is only safe to sign extend the BaseReg if we know that the math
5618 // required to create it did not overflow before we extend it. Since
5619 // the original IR value was tossed in favor of a constant back when
5620 // the AddrMode was created we need to bail out gracefully if widths
5621 // do not match instead of extending it.
5622 Instruction
*I
= dyn_cast_or_null
<Instruction
>(Result
);
5623 if (I
&& (Result
!= AddrMode
.BaseReg
))
5624 I
->eraseFromParent();
5627 if (AddrMode
.Scale
!= 1)
5628 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
5631 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5636 // Add in the BaseGV if present.
5637 if (AddrMode
.BaseGV
) {
5638 Value
*V
= Builder
.CreatePtrToInt(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr");
5640 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5645 // Add in the Base Offset if present.
5646 if (AddrMode
.BaseOffs
) {
5647 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
5649 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5655 SunkAddr
= Constant::getNullValue(Addr
->getType());
5657 SunkAddr
= Builder
.CreateIntToPtr(Result
, Addr
->getType(), "sunkaddr");
5660 MemoryInst
->replaceUsesOfWith(Repl
, SunkAddr
);
5661 // Store the newly computed address into the cache. In the case we reused a
5662 // value, this should be idempotent.
5663 SunkAddrs
[Addr
] = WeakTrackingVH(SunkAddr
);
5665 // If we have no uses, recursively delete the value and all dead instructions
5667 if (Repl
->use_empty()) {
5668 resetIteratorIfInvalidatedWhileCalling(CurInstIterator
->getParent(), [&]() {
5669 RecursivelyDeleteTriviallyDeadInstructions(
5670 Repl
, TLInfo
, nullptr,
5671 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
5678 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5679 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5680 /// only handle a 2 operand GEP in the same basic block or a splat constant
5681 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5684 /// If the existing GEP has a vector base pointer that is splat, we can look
5685 /// through the splat to find the scalar pointer. If we can't find a scalar
5686 /// pointer there's nothing we can do.
5688 /// If we have a GEP with more than 2 indices where the middle indices are all
5689 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5691 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5692 /// followed by a GEP with an all zeroes vector index. This will enable
5693 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5695 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction
*MemoryInst
,
5699 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
5700 // Don't optimize GEPs that don't have indices.
5701 if (!GEP
->hasIndices())
5704 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5705 // FIXME: We should support this by sinking the GEP.
5706 if (MemoryInst
->getParent() != GEP
->getParent())
5709 SmallVector
<Value
*, 2> Ops(GEP
->operands());
5711 bool RewriteGEP
= false;
5713 if (Ops
[0]->getType()->isVectorTy()) {
5714 Ops
[0] = getSplatValue(Ops
[0]);
5720 unsigned FinalIndex
= Ops
.size() - 1;
5722 // Ensure all but the last index is 0.
5723 // FIXME: This isn't strictly required. All that's required is that they are
5724 // all scalars or splats.
5725 for (unsigned i
= 1; i
< FinalIndex
; ++i
) {
5726 auto *C
= dyn_cast
<Constant
>(Ops
[i
]);
5729 if (isa
<VectorType
>(C
->getType()))
5730 C
= C
->getSplatValue();
5731 auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
5732 if (!CI
|| !CI
->isZero())
5734 // Scalarize the index if needed.
5738 // Try to scalarize the final index.
5739 if (Ops
[FinalIndex
]->getType()->isVectorTy()) {
5740 if (Value
*V
= getSplatValue(Ops
[FinalIndex
])) {
5741 auto *C
= dyn_cast
<ConstantInt
>(V
);
5742 // Don't scalarize all zeros vector.
5743 if (!C
|| !C
->isZero()) {
5744 Ops
[FinalIndex
] = V
;
5750 // If we made any changes or the we have extra operands, we need to generate
5751 // new instructions.
5752 if (!RewriteGEP
&& Ops
.size() == 2)
5755 auto NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
5757 IRBuilder
<> Builder(MemoryInst
);
5759 Type
*SourceTy
= GEP
->getSourceElementType();
5760 Type
*ScalarIndexTy
= DL
->getIndexType(Ops
[0]->getType()->getScalarType());
5762 // If the final index isn't a vector, emit a scalar GEP containing all ops
5763 // and a vector GEP with all zeroes final index.
5764 if (!Ops
[FinalIndex
]->getType()->isVectorTy()) {
5765 NewAddr
= Builder
.CreateGEP(SourceTy
, Ops
[0], ArrayRef(Ops
).drop_front());
5766 auto *IndexTy
= VectorType::get(ScalarIndexTy
, NumElts
);
5767 auto *SecondTy
= GetElementPtrInst::getIndexedType(
5768 SourceTy
, ArrayRef(Ops
).drop_front());
5770 Builder
.CreateGEP(SecondTy
, NewAddr
, Constant::getNullValue(IndexTy
));
5772 Value
*Base
= Ops
[0];
5773 Value
*Index
= Ops
[FinalIndex
];
5775 // Create a scalar GEP if there are more than 2 operands.
5776 if (Ops
.size() != 2) {
5777 // Replace the last index with 0.
5779 Constant::getNullValue(Ops
[FinalIndex
]->getType()->getScalarType());
5780 Base
= Builder
.CreateGEP(SourceTy
, Base
, ArrayRef(Ops
).drop_front());
5781 SourceTy
= GetElementPtrInst::getIndexedType(
5782 SourceTy
, ArrayRef(Ops
).drop_front());
5785 // Now create the GEP with scalar pointer and vector index.
5786 NewAddr
= Builder
.CreateGEP(SourceTy
, Base
, Index
);
5788 } else if (!isa
<Constant
>(Ptr
)) {
5789 // Not a GEP, maybe its a splat and we can create a GEP to enable
5790 // SelectionDAGBuilder to use it as a uniform base.
5791 Value
*V
= getSplatValue(Ptr
);
5795 auto NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
5797 IRBuilder
<> Builder(MemoryInst
);
5799 // Emit a vector GEP with a scalar pointer and all 0s vector index.
5800 Type
*ScalarIndexTy
= DL
->getIndexType(V
->getType()->getScalarType());
5801 auto *IndexTy
= VectorType::get(ScalarIndexTy
, NumElts
);
5803 if (cast
<IntrinsicInst
>(MemoryInst
)->getIntrinsicID() ==
5804 Intrinsic::masked_gather
) {
5805 ScalarTy
= MemoryInst
->getType()->getScalarType();
5807 assert(cast
<IntrinsicInst
>(MemoryInst
)->getIntrinsicID() ==
5808 Intrinsic::masked_scatter
);
5809 ScalarTy
= MemoryInst
->getOperand(0)->getType()->getScalarType();
5811 NewAddr
= Builder
.CreateGEP(ScalarTy
, V
, Constant::getNullValue(IndexTy
));
5813 // Constant, SelectionDAGBuilder knows to check if its a splat.
5817 MemoryInst
->replaceUsesOfWith(Ptr
, NewAddr
);
5819 // If we have no uses, recursively delete the value and all dead instructions
5821 if (Ptr
->use_empty())
5822 RecursivelyDeleteTriviallyDeadInstructions(
5823 Ptr
, TLInfo
, nullptr,
5824 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
5829 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5830 /// address computing into the block when possible / profitable.
5831 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst
*CS
) {
5832 bool MadeChange
= false;
5834 const TargetRegisterInfo
*TRI
=
5835 TM
->getSubtargetImpl(*CS
->getFunction())->getRegisterInfo();
5836 TargetLowering::AsmOperandInfoVector TargetConstraints
=
5837 TLI
->ParseConstraints(*DL
, TRI
, *CS
);
5839 for (TargetLowering::AsmOperandInfo
&OpInfo
: TargetConstraints
) {
5840 // Compute the constraint code and ConstraintType to use.
5841 TLI
->ComputeConstraintToUse(OpInfo
, SDValue());
5843 // TODO: Also handle C_Address?
5844 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
5845 OpInfo
.isIndirect
) {
5846 Value
*OpVal
= CS
->getArgOperand(ArgNo
++);
5847 MadeChange
|= optimizeMemoryInst(CS
, OpVal
, OpVal
->getType(), ~0u);
5848 } else if (OpInfo
.Type
== InlineAsm::isInput
)
5855 /// Check if all the uses of \p Val are equivalent (or free) zero or
5856 /// sign extensions.
5857 static bool hasSameExtUse(Value
*Val
, const TargetLowering
&TLI
) {
5858 assert(!Val
->use_empty() && "Input must have at least one use");
5859 const Instruction
*FirstUser
= cast
<Instruction
>(*Val
->user_begin());
5860 bool IsSExt
= isa
<SExtInst
>(FirstUser
);
5861 Type
*ExtTy
= FirstUser
->getType();
5862 for (const User
*U
: Val
->users()) {
5863 const Instruction
*UI
= cast
<Instruction
>(U
);
5864 if ((IsSExt
&& !isa
<SExtInst
>(UI
)) || (!IsSExt
&& !isa
<ZExtInst
>(UI
)))
5866 Type
*CurTy
= UI
->getType();
5867 // Same input and output types: Same instruction after CSE.
5871 // If IsSExt is true, we are in this situation:
5873 // b = sext ty1 a to ty2
5874 // c = sext ty1 a to ty3
5875 // Assuming ty2 is shorter than ty3, this could be turned into:
5877 // b = sext ty1 a to ty2
5878 // c = sext ty2 b to ty3
5879 // However, the last sext is not free.
5883 // This is a ZExt, maybe this is free to extend from one type to another.
5884 // In that case, we would not account for a different use.
5887 if (ExtTy
->getScalarType()->getIntegerBitWidth() >
5888 CurTy
->getScalarType()->getIntegerBitWidth()) {
5896 if (!TLI
.isZExtFree(NarrowTy
, LargeTy
))
5899 // All uses are the same or can be derived from one another for free.
5903 /// Try to speculatively promote extensions in \p Exts and continue
5904 /// promoting through newly promoted operands recursively as far as doing so is
5905 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5906 /// When some promotion happened, \p TPT contains the proper state to revert
5909 /// \return true if some promotion happened, false otherwise.
5910 bool CodeGenPrepare::tryToPromoteExts(
5911 TypePromotionTransaction
&TPT
, const SmallVectorImpl
<Instruction
*> &Exts
,
5912 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
5913 unsigned CreatedInstsCost
) {
5914 bool Promoted
= false;
5916 // Iterate over all the extensions to try to promote them.
5917 for (auto *I
: Exts
) {
5918 // Early check if we directly have ext(load).
5919 if (isa
<LoadInst
>(I
->getOperand(0))) {
5920 ProfitablyMovedExts
.push_back(I
);
5924 // Check whether or not we want to do any promotion. The reason we have
5925 // this check inside the for loop is to catch the case where an extension
5926 // is directly fed by a load because in such case the extension can be moved
5927 // up without any promotion on its operands.
5928 if (!TLI
->enableExtLdPromotion() || DisableExtLdPromotion
)
5931 // Get the action to perform the promotion.
5932 TypePromotionHelper::Action TPH
=
5933 TypePromotionHelper::getAction(I
, InsertedInsts
, *TLI
, PromotedInsts
);
5934 // Check if we can promote.
5936 // Save the current extension as we cannot move up through its operand.
5937 ProfitablyMovedExts
.push_back(I
);
5941 // Save the current state.
5942 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5943 TPT
.getRestorationPoint();
5944 SmallVector
<Instruction
*, 4> NewExts
;
5945 unsigned NewCreatedInstsCost
= 0;
5946 unsigned ExtCost
= !TLI
->isExtFree(I
);
5948 Value
*PromotedVal
= TPH(I
, TPT
, PromotedInsts
, NewCreatedInstsCost
,
5949 &NewExts
, nullptr, *TLI
);
5950 assert(PromotedVal
&&
5951 "TypePromotionHelper should have filtered out those cases");
5953 // We would be able to merge only one extension in a load.
5954 // Therefore, if we have more than 1 new extension we heuristically
5955 // cut this search path, because it means we degrade the code quality.
5956 // With exactly 2, the transformation is neutral, because we will merge
5957 // one extension but leave one. However, we optimistically keep going,
5958 // because the new extension may be removed too.
5959 long long TotalCreatedInstsCost
= CreatedInstsCost
+ NewCreatedInstsCost
;
5960 // FIXME: It would be possible to propagate a negative value instead of
5961 // conservatively ceiling it to 0.
5962 TotalCreatedInstsCost
=
5963 std::max((long long)0, (TotalCreatedInstsCost
- ExtCost
));
5964 if (!StressExtLdPromotion
&&
5965 (TotalCreatedInstsCost
> 1 ||
5966 !isPromotedInstructionLegal(*TLI
, *DL
, PromotedVal
))) {
5967 // This promotion is not profitable, rollback to the previous state, and
5968 // save the current extension in ProfitablyMovedExts as the latest
5969 // speculative promotion turned out to be unprofitable.
5970 TPT
.rollback(LastKnownGood
);
5971 ProfitablyMovedExts
.push_back(I
);
5974 // Continue promoting NewExts as far as doing so is profitable.
5975 SmallVector
<Instruction
*, 2> NewlyMovedExts
;
5976 (void)tryToPromoteExts(TPT
, NewExts
, NewlyMovedExts
, TotalCreatedInstsCost
);
5977 bool NewPromoted
= false;
5978 for (auto *ExtInst
: NewlyMovedExts
) {
5979 Instruction
*MovedExt
= cast
<Instruction
>(ExtInst
);
5980 Value
*ExtOperand
= MovedExt
->getOperand(0);
5981 // If we have reached to a load, we need this extra profitability check
5982 // as it could potentially be merged into an ext(load).
5983 if (isa
<LoadInst
>(ExtOperand
) &&
5984 !(StressExtLdPromotion
|| NewCreatedInstsCost
<= ExtCost
||
5985 (ExtOperand
->hasOneUse() || hasSameExtUse(ExtOperand
, *TLI
))))
5988 ProfitablyMovedExts
.push_back(MovedExt
);
5992 // If none of speculative promotions for NewExts is profitable, rollback
5993 // and save the current extension (I) as the last profitable extension.
5995 TPT
.rollback(LastKnownGood
);
5996 ProfitablyMovedExts
.push_back(I
);
5999 // The promotion is profitable.
6005 /// Merging redundant sexts when one is dominating the other.
6006 bool CodeGenPrepare::mergeSExts(Function
&F
) {
6007 bool Changed
= false;
6008 for (auto &Entry
: ValToSExtendedUses
) {
6009 SExts
&Insts
= Entry
.second
;
6011 for (Instruction
*Inst
: Insts
) {
6012 if (RemovedInsts
.count(Inst
) || !isa
<SExtInst
>(Inst
) ||
6013 Inst
->getOperand(0) != Entry
.first
)
6015 bool inserted
= false;
6016 for (auto &Pt
: CurPts
) {
6017 if (getDT(F
).dominates(Inst
, Pt
)) {
6018 replaceAllUsesWith(Pt
, Inst
, FreshBBs
, IsHugeFunc
);
6019 RemovedInsts
.insert(Pt
);
6020 Pt
->removeFromParent();
6026 if (!getDT(F
).dominates(Pt
, Inst
))
6027 // Give up if we need to merge in a common dominator as the
6028 // experiments show it is not profitable.
6030 replaceAllUsesWith(Inst
, Pt
, FreshBBs
, IsHugeFunc
);
6031 RemovedInsts
.insert(Inst
);
6032 Inst
->removeFromParent();
6038 CurPts
.push_back(Inst
);
6044 // Splitting large data structures so that the GEPs accessing them can have
6045 // smaller offsets so that they can be sunk to the same blocks as their users.
6046 // For example, a large struct starting from %base is split into two parts
6047 // where the second part starts from %new_base.
6054 // %gep0 = gep %base, off0
6055 // %gep1 = gep %base, off1
6056 // %gep2 = gep %base, off2
6059 // %load1 = load %gep0
6060 // %load2 = load %gep1
6061 // %load3 = load %gep2
6066 // %new_base = gep %base, off0
6069 // %new_gep0 = %new_base
6070 // %new_gep1 = gep %new_base, off1 - off0
6071 // %new_gep2 = gep %new_base, off2 - off0
6074 // %load1 = load i32, i32* %new_gep0
6075 // %load2 = load i32, i32* %new_gep1
6076 // %load3 = load i32, i32* %new_gep2
6078 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6079 // their offsets are smaller enough to fit into the addressing mode.
6080 bool CodeGenPrepare::splitLargeGEPOffsets() {
6081 bool Changed
= false;
6082 for (auto &Entry
: LargeOffsetGEPMap
) {
6083 Value
*OldBase
= Entry
.first
;
6084 SmallVectorImpl
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>>
6085 &LargeOffsetGEPs
= Entry
.second
;
6086 auto compareGEPOffset
=
6087 [&](const std::pair
<GetElementPtrInst
*, int64_t> &LHS
,
6088 const std::pair
<GetElementPtrInst
*, int64_t> &RHS
) {
6089 if (LHS
.first
== RHS
.first
)
6091 if (LHS
.second
!= RHS
.second
)
6092 return LHS
.second
< RHS
.second
;
6093 return LargeOffsetGEPID
[LHS
.first
] < LargeOffsetGEPID
[RHS
.first
];
6095 // Sorting all the GEPs of the same data structures based on the offsets.
6096 llvm::sort(LargeOffsetGEPs
, compareGEPOffset
);
6097 LargeOffsetGEPs
.erase(
6098 std::unique(LargeOffsetGEPs
.begin(), LargeOffsetGEPs
.end()),
6099 LargeOffsetGEPs
.end());
6100 // Skip if all the GEPs have the same offsets.
6101 if (LargeOffsetGEPs
.front().second
== LargeOffsetGEPs
.back().second
)
6103 GetElementPtrInst
*BaseGEP
= LargeOffsetGEPs
.begin()->first
;
6104 int64_t BaseOffset
= LargeOffsetGEPs
.begin()->second
;
6105 Value
*NewBaseGEP
= nullptr;
6107 auto *LargeOffsetGEP
= LargeOffsetGEPs
.begin();
6108 while (LargeOffsetGEP
!= LargeOffsetGEPs
.end()) {
6109 GetElementPtrInst
*GEP
= LargeOffsetGEP
->first
;
6110 int64_t Offset
= LargeOffsetGEP
->second
;
6111 if (Offset
!= BaseOffset
) {
6112 TargetLowering::AddrMode AddrMode
;
6113 AddrMode
.HasBaseReg
= true;
6114 AddrMode
.BaseOffs
= Offset
- BaseOffset
;
6115 // The result type of the GEP might not be the type of the memory
6117 if (!TLI
->isLegalAddressingMode(*DL
, AddrMode
,
6118 GEP
->getResultElementType(),
6119 GEP
->getAddressSpace())) {
6120 // We need to create a new base if the offset to the current base is
6121 // too large to fit into the addressing mode. So, a very large struct
6122 // may be split into several parts.
6124 BaseOffset
= Offset
;
6125 NewBaseGEP
= nullptr;
6129 // Generate a new GEP to replace the current one.
6130 LLVMContext
&Ctx
= GEP
->getContext();
6131 Type
*PtrIdxTy
= DL
->getIndexType(GEP
->getType());
6133 Type::getInt8PtrTy(Ctx
, GEP
->getType()->getPointerAddressSpace());
6134 Type
*I8Ty
= Type::getInt8Ty(Ctx
);
6137 // Create a new base if we don't have one yet. Find the insertion
6138 // pointer for the new base first.
6139 BasicBlock::iterator NewBaseInsertPt
;
6140 BasicBlock
*NewBaseInsertBB
;
6141 if (auto *BaseI
= dyn_cast
<Instruction
>(OldBase
)) {
6142 // If the base of the struct is an instruction, the new base will be
6143 // inserted close to it.
6144 NewBaseInsertBB
= BaseI
->getParent();
6145 if (isa
<PHINode
>(BaseI
))
6146 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6147 else if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(BaseI
)) {
6149 SplitEdge(NewBaseInsertBB
, Invoke
->getNormalDest(), DT
.get(), LI
);
6150 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6152 NewBaseInsertPt
= std::next(BaseI
->getIterator());
6154 // If the current base is an argument or global value, the new base
6155 // will be inserted to the entry block.
6156 NewBaseInsertBB
= &BaseGEP
->getFunction()->getEntryBlock();
6157 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6159 IRBuilder
<> NewBaseBuilder(NewBaseInsertBB
, NewBaseInsertPt
);
6160 // Create a new base.
6161 Value
*BaseIndex
= ConstantInt::get(PtrIdxTy
, BaseOffset
);
6162 NewBaseGEP
= OldBase
;
6163 if (NewBaseGEP
->getType() != I8PtrTy
)
6164 NewBaseGEP
= NewBaseBuilder
.CreatePointerCast(NewBaseGEP
, I8PtrTy
);
6166 NewBaseBuilder
.CreateGEP(I8Ty
, NewBaseGEP
, BaseIndex
, "splitgep");
6167 NewGEPBases
.insert(NewBaseGEP
);
6170 IRBuilder
<> Builder(GEP
);
6171 Value
*NewGEP
= NewBaseGEP
;
6172 if (Offset
== BaseOffset
) {
6173 if (GEP
->getType() != I8PtrTy
)
6174 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
6176 // Calculate the new offset for the new GEP.
6177 Value
*Index
= ConstantInt::get(PtrIdxTy
, Offset
- BaseOffset
);
6178 NewGEP
= Builder
.CreateGEP(I8Ty
, NewBaseGEP
, Index
);
6180 if (GEP
->getType() != I8PtrTy
)
6181 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
6183 replaceAllUsesWith(GEP
, NewGEP
, FreshBBs
, IsHugeFunc
);
6184 LargeOffsetGEPID
.erase(GEP
);
6185 LargeOffsetGEP
= LargeOffsetGEPs
.erase(LargeOffsetGEP
);
6186 GEP
->eraseFromParent();
6193 bool CodeGenPrepare::optimizePhiType(
6194 PHINode
*I
, SmallPtrSetImpl
<PHINode
*> &Visited
,
6195 SmallPtrSetImpl
<Instruction
*> &DeletedInstrs
) {
6196 // We are looking for a collection on interconnected phi nodes that together
6197 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6198 // are of the same type. Convert the whole set of nodes to the type of the
6200 Type
*PhiTy
= I
->getType();
6201 Type
*ConvertTy
= nullptr;
6202 if (Visited
.count(I
) ||
6203 (!I
->getType()->isIntegerTy() && !I
->getType()->isFloatingPointTy()))
6206 SmallVector
<Instruction
*, 4> Worklist
;
6207 Worklist
.push_back(cast
<Instruction
>(I
));
6208 SmallPtrSet
<PHINode
*, 4> PhiNodes
;
6209 SmallPtrSet
<ConstantData
*, 4> Constants
;
6212 SmallPtrSet
<Instruction
*, 4> Defs
;
6213 SmallPtrSet
<Instruction
*, 4> Uses
;
6214 // This works by adding extra bitcasts between load/stores and removing
6215 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6216 // we can get in the situation where we remove a bitcast in one iteration
6217 // just to add it again in the next. We need to ensure that at least one
6218 // bitcast we remove are anchored to something that will not change back.
6219 bool AnyAnchored
= false;
6221 while (!Worklist
.empty()) {
6222 Instruction
*II
= Worklist
.pop_back_val();
6224 if (auto *Phi
= dyn_cast
<PHINode
>(II
)) {
6225 // Handle Defs, which might also be PHI's
6226 for (Value
*V
: Phi
->incoming_values()) {
6227 if (auto *OpPhi
= dyn_cast
<PHINode
>(V
)) {
6228 if (!PhiNodes
.count(OpPhi
)) {
6229 if (!Visited
.insert(OpPhi
).second
)
6231 PhiNodes
.insert(OpPhi
);
6232 Worklist
.push_back(OpPhi
);
6234 } else if (auto *OpLoad
= dyn_cast
<LoadInst
>(V
)) {
6235 if (!OpLoad
->isSimple())
6237 if (Defs
.insert(OpLoad
).second
)
6238 Worklist
.push_back(OpLoad
);
6239 } else if (auto *OpEx
= dyn_cast
<ExtractElementInst
>(V
)) {
6240 if (Defs
.insert(OpEx
).second
)
6241 Worklist
.push_back(OpEx
);
6242 } else if (auto *OpBC
= dyn_cast
<BitCastInst
>(V
)) {
6244 ConvertTy
= OpBC
->getOperand(0)->getType();
6245 if (OpBC
->getOperand(0)->getType() != ConvertTy
)
6247 if (Defs
.insert(OpBC
).second
) {
6248 Worklist
.push_back(OpBC
);
6249 AnyAnchored
|= !isa
<LoadInst
>(OpBC
->getOperand(0)) &&
6250 !isa
<ExtractElementInst
>(OpBC
->getOperand(0));
6252 } else if (auto *OpC
= dyn_cast
<ConstantData
>(V
))
6253 Constants
.insert(OpC
);
6259 // Handle uses which might also be phi's
6260 for (User
*V
: II
->users()) {
6261 if (auto *OpPhi
= dyn_cast
<PHINode
>(V
)) {
6262 if (!PhiNodes
.count(OpPhi
)) {
6263 if (Visited
.count(OpPhi
))
6265 PhiNodes
.insert(OpPhi
);
6266 Visited
.insert(OpPhi
);
6267 Worklist
.push_back(OpPhi
);
6269 } else if (auto *OpStore
= dyn_cast
<StoreInst
>(V
)) {
6270 if (!OpStore
->isSimple() || OpStore
->getOperand(0) != II
)
6272 Uses
.insert(OpStore
);
6273 } else if (auto *OpBC
= dyn_cast
<BitCastInst
>(V
)) {
6275 ConvertTy
= OpBC
->getType();
6276 if (OpBC
->getType() != ConvertTy
)
6280 any_of(OpBC
->users(), [](User
*U
) { return !isa
<StoreInst
>(U
); });
6287 if (!ConvertTy
|| !AnyAnchored
||
6288 !TLI
->shouldConvertPhiType(PhiTy
, ConvertTy
))
6291 LLVM_DEBUG(dbgs() << "Converting " << *I
<< "\n and connected nodes to "
6292 << *ConvertTy
<< "\n");
6294 // Create all the new phi nodes of the new type, and bitcast any loads to the
6296 ValueToValueMap ValMap
;
6297 for (ConstantData
*C
: Constants
)
6298 ValMap
[C
] = ConstantExpr::getCast(Instruction::BitCast
, C
, ConvertTy
);
6299 for (Instruction
*D
: Defs
) {
6300 if (isa
<BitCastInst
>(D
)) {
6301 ValMap
[D
] = D
->getOperand(0);
6302 DeletedInstrs
.insert(D
);
6305 new BitCastInst(D
, ConvertTy
, D
->getName() + ".bc", D
->getNextNode());
6308 for (PHINode
*Phi
: PhiNodes
)
6309 ValMap
[Phi
] = PHINode::Create(ConvertTy
, Phi
->getNumIncomingValues(),
6310 Phi
->getName() + ".tc", Phi
);
6311 // Pipe together all the PhiNodes.
6312 for (PHINode
*Phi
: PhiNodes
) {
6313 PHINode
*NewPhi
= cast
<PHINode
>(ValMap
[Phi
]);
6314 for (int i
= 0, e
= Phi
->getNumIncomingValues(); i
< e
; i
++)
6315 NewPhi
->addIncoming(ValMap
[Phi
->getIncomingValue(i
)],
6316 Phi
->getIncomingBlock(i
));
6317 Visited
.insert(NewPhi
);
6319 // And finally pipe up the stores and bitcasts
6320 for (Instruction
*U
: Uses
) {
6321 if (isa
<BitCastInst
>(U
)) {
6322 DeletedInstrs
.insert(U
);
6323 replaceAllUsesWith(U
, ValMap
[U
->getOperand(0)], FreshBBs
, IsHugeFunc
);
6326 new BitCastInst(ValMap
[U
->getOperand(0)], PhiTy
, "bc", U
));
6330 // Save the removed phis to be deleted later.
6331 for (PHINode
*Phi
: PhiNodes
)
6332 DeletedInstrs
.insert(Phi
);
6336 bool CodeGenPrepare::optimizePhiTypes(Function
&F
) {
6337 if (!OptimizePhiTypes
)
6340 bool Changed
= false;
6341 SmallPtrSet
<PHINode
*, 4> Visited
;
6342 SmallPtrSet
<Instruction
*, 4> DeletedInstrs
;
6344 // Attempt to optimize all the phis in the functions to the correct type.
6346 for (auto &Phi
: BB
.phis())
6347 Changed
|= optimizePhiType(&Phi
, Visited
, DeletedInstrs
);
6349 // Remove any old phi's that have been converted.
6350 for (auto *I
: DeletedInstrs
) {
6351 replaceAllUsesWith(I
, PoisonValue::get(I
->getType()), FreshBBs
, IsHugeFunc
);
6352 I
->eraseFromParent();
6358 /// Return true, if an ext(load) can be formed from an extension in
6360 bool CodeGenPrepare::canFormExtLd(
6361 const SmallVectorImpl
<Instruction
*> &MovedExts
, LoadInst
*&LI
,
6362 Instruction
*&Inst
, bool HasPromoted
) {
6363 for (auto *MovedExtInst
: MovedExts
) {
6364 if (isa
<LoadInst
>(MovedExtInst
->getOperand(0))) {
6365 LI
= cast
<LoadInst
>(MovedExtInst
->getOperand(0));
6366 Inst
= MovedExtInst
;
6373 // If they're already in the same block, there's nothing to do.
6374 // Make the cheap checks first if we did not promote.
6375 // If we promoted, we need to check if it is indeed profitable.
6376 if (!HasPromoted
&& LI
->getParent() == Inst
->getParent())
6379 return TLI
->isExtLoad(LI
, Inst
, *DL
);
6382 /// Move a zext or sext fed by a load into the same basic block as the load,
6383 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6384 /// extend into the load.
6388 /// %ld = load i32* %addr
6389 /// %add = add nuw i32 %ld, 4
6390 /// %zext = zext i32 %add to i64
6394 /// %ld = load i32* %addr
6395 /// %zext = zext i32 %ld to i64
6396 /// %add = add nuw i64 %zext, 4
6398 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6399 /// allow us to match zext(load i32*) to i64.
6401 /// Also, try to promote the computations used to obtain a sign extended
6402 /// value used into memory accesses.
6405 /// a = add nsw i32 b, 3
6406 /// d = sext i32 a to i64
6407 /// e = getelementptr ..., i64 d
6411 /// f = sext i32 b to i64
6412 /// a = add nsw i64 f, 3
6413 /// e = getelementptr ..., i64 a
6416 /// \p Inst[in/out] the extension may be modified during the process if some
6417 /// promotions apply.
6418 bool CodeGenPrepare::optimizeExt(Instruction
*&Inst
) {
6419 bool AllowPromotionWithoutCommonHeader
= false;
6420 /// See if it is an interesting sext operations for the address type
6421 /// promotion before trying to promote it, e.g., the ones with the right
6422 /// type and used in memory accesses.
6423 bool ATPConsiderable
= TTI
->shouldConsiderAddressTypePromotion(
6424 *Inst
, AllowPromotionWithoutCommonHeader
);
6425 TypePromotionTransaction
TPT(RemovedInsts
);
6426 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
6427 TPT
.getRestorationPoint();
6428 SmallVector
<Instruction
*, 1> Exts
;
6429 SmallVector
<Instruction
*, 2> SpeculativelyMovedExts
;
6430 Exts
.push_back(Inst
);
6432 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, SpeculativelyMovedExts
);
6434 // Look for a load being extended.
6435 LoadInst
*LI
= nullptr;
6436 Instruction
*ExtFedByLoad
;
6438 // Try to promote a chain of computation if it allows to form an extended
6440 if (canFormExtLd(SpeculativelyMovedExts
, LI
, ExtFedByLoad
, HasPromoted
)) {
6441 assert(LI
&& ExtFedByLoad
&& "Expect a valid load and extension");
6443 // Move the extend into the same block as the load.
6444 ExtFedByLoad
->moveAfter(LI
);
6446 Inst
= ExtFedByLoad
;
6450 // Continue promoting SExts if known as considerable depending on targets.
6451 if (ATPConsiderable
&&
6452 performAddressTypePromotion(Inst
, AllowPromotionWithoutCommonHeader
,
6453 HasPromoted
, TPT
, SpeculativelyMovedExts
))
6456 TPT
.rollback(LastKnownGood
);
6460 // Perform address type promotion if doing so is profitable.
6461 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6462 // instructions that sign extended the same initial value. However, if
6463 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6464 // extension is just profitable.
6465 bool CodeGenPrepare::performAddressTypePromotion(
6466 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
6467 bool HasPromoted
, TypePromotionTransaction
&TPT
,
6468 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
) {
6469 bool Promoted
= false;
6470 SmallPtrSet
<Instruction
*, 1> UnhandledExts
;
6471 bool AllSeenFirst
= true;
6472 for (auto *I
: SpeculativelyMovedExts
) {
6473 Value
*HeadOfChain
= I
->getOperand(0);
6474 DenseMap
<Value
*, Instruction
*>::iterator AlreadySeen
=
6475 SeenChainsForSExt
.find(HeadOfChain
);
6476 // If there is an unhandled SExt which has the same header, try to promote
6478 if (AlreadySeen
!= SeenChainsForSExt
.end()) {
6479 if (AlreadySeen
->second
!= nullptr)
6480 UnhandledExts
.insert(AlreadySeen
->second
);
6481 AllSeenFirst
= false;
6485 if (!AllSeenFirst
|| (AllowPromotionWithoutCommonHeader
&&
6486 SpeculativelyMovedExts
.size() == 1)) {
6490 for (auto *I
: SpeculativelyMovedExts
) {
6491 Value
*HeadOfChain
= I
->getOperand(0);
6492 SeenChainsForSExt
[HeadOfChain
] = nullptr;
6493 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
6495 // Update Inst as promotion happen.
6496 Inst
= SpeculativelyMovedExts
.pop_back_val();
6498 // This is the first chain visited from the header, keep the current chain
6499 // as unhandled. Defer to promote this until we encounter another SExt
6500 // chain derived from the same header.
6501 for (auto *I
: SpeculativelyMovedExts
) {
6502 Value
*HeadOfChain
= I
->getOperand(0);
6503 SeenChainsForSExt
[HeadOfChain
] = Inst
;
6508 if (!AllSeenFirst
&& !UnhandledExts
.empty())
6509 for (auto *VisitedSExt
: UnhandledExts
) {
6510 if (RemovedInsts
.count(VisitedSExt
))
6512 TypePromotionTransaction
TPT(RemovedInsts
);
6513 SmallVector
<Instruction
*, 1> Exts
;
6514 SmallVector
<Instruction
*, 2> Chains
;
6515 Exts
.push_back(VisitedSExt
);
6516 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, Chains
);
6520 for (auto *I
: Chains
) {
6521 Value
*HeadOfChain
= I
->getOperand(0);
6522 // Mark this as handled.
6523 SeenChainsForSExt
[HeadOfChain
] = nullptr;
6524 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
6530 bool CodeGenPrepare::optimizeExtUses(Instruction
*I
) {
6531 BasicBlock
*DefBB
= I
->getParent();
6533 // If the result of a {s|z}ext and its source are both live out, rewrite all
6534 // other uses of the source with result of extension.
6535 Value
*Src
= I
->getOperand(0);
6536 if (Src
->hasOneUse())
6539 // Only do this xform if truncating is free.
6540 if (!TLI
->isTruncateFree(I
->getType(), Src
->getType()))
6543 // Only safe to perform the optimization if the source is also defined in
6545 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
6548 bool DefIsLiveOut
= false;
6549 for (User
*U
: I
->users()) {
6550 Instruction
*UI
= cast
<Instruction
>(U
);
6552 // Figure out which BB this ext is used in.
6553 BasicBlock
*UserBB
= UI
->getParent();
6554 if (UserBB
== DefBB
)
6556 DefIsLiveOut
= true;
6562 // Make sure none of the uses are PHI nodes.
6563 for (User
*U
: Src
->users()) {
6564 Instruction
*UI
= cast
<Instruction
>(U
);
6565 BasicBlock
*UserBB
= UI
->getParent();
6566 if (UserBB
== DefBB
)
6568 // Be conservative. We don't want this xform to end up introducing
6569 // reloads just before load / store instructions.
6570 if (isa
<PHINode
>(UI
) || isa
<LoadInst
>(UI
) || isa
<StoreInst
>(UI
))
6574 // InsertedTruncs - Only insert one trunc in each block once.
6575 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
6577 bool MadeChange
= false;
6578 for (Use
&U
: Src
->uses()) {
6579 Instruction
*User
= cast
<Instruction
>(U
.getUser());
6581 // Figure out which BB this ext is used in.
6582 BasicBlock
*UserBB
= User
->getParent();
6583 if (UserBB
== DefBB
)
6586 // Both src and def are live in this block. Rewrite the use.
6587 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
6589 if (!InsertedTrunc
) {
6590 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
6591 assert(InsertPt
!= UserBB
->end());
6592 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", &*InsertPt
);
6593 InsertedInsts
.insert(InsertedTrunc
);
6596 // Replace a use of the {s|z}ext source with a use of the result.
6605 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
6606 // just after the load if the target can fold this into one extload instruction,
6607 // with the hope of eliminating some of the other later "and" instructions using
6608 // the loaded value. "and"s that are made trivially redundant by the insertion
6609 // of the new "and" are removed by this function, while others (e.g. those whose
6610 // path from the load goes through a phi) are left for isel to potentially
6643 // becomes (after a call to optimizeLoadExt for each load):
6647 // x1' = and x1, 0xff
6651 // x2' = and x2, 0xff
6656 bool CodeGenPrepare::optimizeLoadExt(LoadInst
*Load
) {
6657 if (!Load
->isSimple() || !Load
->getType()->isIntOrPtrTy())
6660 // Skip loads we've already transformed.
6661 if (Load
->hasOneUse() &&
6662 InsertedInsts
.count(cast
<Instruction
>(*Load
->user_begin())))
6665 // Look at all uses of Load, looking through phis, to determine how many bits
6666 // of the loaded value are needed.
6667 SmallVector
<Instruction
*, 8> WorkList
;
6668 SmallPtrSet
<Instruction
*, 16> Visited
;
6669 SmallVector
<Instruction
*, 8> AndsToMaybeRemove
;
6670 for (auto *U
: Load
->users())
6671 WorkList
.push_back(cast
<Instruction
>(U
));
6673 EVT LoadResultVT
= TLI
->getValueType(*DL
, Load
->getType());
6674 unsigned BitWidth
= LoadResultVT
.getSizeInBits();
6675 // If the BitWidth is 0, do not try to optimize the type
6679 APInt
DemandBits(BitWidth
, 0);
6680 APInt
WidestAndBits(BitWidth
, 0);
6682 while (!WorkList
.empty()) {
6683 Instruction
*I
= WorkList
.pop_back_val();
6685 // Break use-def graph loops.
6686 if (!Visited
.insert(I
).second
)
6689 // For a PHI node, push all of its users.
6690 if (auto *Phi
= dyn_cast
<PHINode
>(I
)) {
6691 for (auto *U
: Phi
->users())
6692 WorkList
.push_back(cast
<Instruction
>(U
));
6696 switch (I
->getOpcode()) {
6697 case Instruction::And
: {
6698 auto *AndC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
6701 APInt AndBits
= AndC
->getValue();
6702 DemandBits
|= AndBits
;
6703 // Keep track of the widest and mask we see.
6704 if (AndBits
.ugt(WidestAndBits
))
6705 WidestAndBits
= AndBits
;
6706 if (AndBits
== WidestAndBits
&& I
->getOperand(0) == Load
)
6707 AndsToMaybeRemove
.push_back(I
);
6711 case Instruction::Shl
: {
6712 auto *ShlC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
6715 uint64_t ShiftAmt
= ShlC
->getLimitedValue(BitWidth
- 1);
6716 DemandBits
.setLowBits(BitWidth
- ShiftAmt
);
6720 case Instruction::Trunc
: {
6721 EVT TruncVT
= TLI
->getValueType(*DL
, I
->getType());
6722 unsigned TruncBitWidth
= TruncVT
.getSizeInBits();
6723 DemandBits
.setLowBits(TruncBitWidth
);
6732 uint32_t ActiveBits
= DemandBits
.getActiveBits();
6733 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6734 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
6735 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6736 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6737 // followed by an AND.
6738 // TODO: Look into removing this restriction by fixing backends to either
6739 // return false for isLoadExtLegal for i1 or have them select this pattern to
6740 // a single instruction.
6742 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6743 // mask, since these are the only ands that will be removed by isel.
6744 if (ActiveBits
<= 1 || !DemandBits
.isMask(ActiveBits
) ||
6745 WidestAndBits
!= DemandBits
)
6748 LLVMContext
&Ctx
= Load
->getType()->getContext();
6749 Type
*TruncTy
= Type::getIntNTy(Ctx
, ActiveBits
);
6750 EVT TruncVT
= TLI
->getValueType(*DL
, TruncTy
);
6752 // Reject cases that won't be matched as extloads.
6753 if (!LoadResultVT
.bitsGT(TruncVT
) || !TruncVT
.isRound() ||
6754 !TLI
->isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultVT
, TruncVT
))
6757 IRBuilder
<> Builder(Load
->getNextNode());
6758 auto *NewAnd
= cast
<Instruction
>(
6759 Builder
.CreateAnd(Load
, ConstantInt::get(Ctx
, DemandBits
)));
6760 // Mark this instruction as "inserted by CGP", so that other
6761 // optimizations don't touch it.
6762 InsertedInsts
.insert(NewAnd
);
6764 // Replace all uses of load with new and (except for the use of load in the
6766 replaceAllUsesWith(Load
, NewAnd
, FreshBBs
, IsHugeFunc
);
6767 NewAnd
->setOperand(0, Load
);
6769 // Remove any and instructions that are now redundant.
6770 for (auto *And
: AndsToMaybeRemove
)
6771 // Check that the and mask is the same as the one we decided to put on the
6773 if (cast
<ConstantInt
>(And
->getOperand(1))->getValue() == DemandBits
) {
6774 replaceAllUsesWith(And
, NewAnd
, FreshBBs
, IsHugeFunc
);
6775 if (&*CurInstIterator
== And
)
6776 CurInstIterator
= std::next(And
->getIterator());
6777 And
->eraseFromParent();
6785 /// Check if V (an operand of a select instruction) is an expensive instruction
6786 /// that is only used once.
6787 static bool sinkSelectOperand(const TargetTransformInfo
*TTI
, Value
*V
) {
6788 auto *I
= dyn_cast
<Instruction
>(V
);
6789 // If it's safe to speculatively execute, then it should not have side
6790 // effects; therefore, it's safe to sink and possibly *not* execute.
6791 return I
&& I
->hasOneUse() && isSafeToSpeculativelyExecute(I
) &&
6792 TTI
->isExpensiveToSpeculativelyExecute(I
);
6795 /// Returns true if a SelectInst should be turned into an explicit branch.
6796 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo
*TTI
,
6797 const TargetLowering
*TLI
,
6799 // If even a predictable select is cheap, then a branch can't be cheaper.
6800 if (!TLI
->isPredictableSelectExpensive())
6803 // FIXME: This should use the same heuristics as IfConversion to determine
6804 // whether a select is better represented as a branch.
6806 // If metadata tells us that the select condition is obviously predictable,
6807 // then we want to replace the select with a branch.
6808 uint64_t TrueWeight
, FalseWeight
;
6809 if (extractBranchWeights(*SI
, TrueWeight
, FalseWeight
)) {
6810 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
6811 uint64_t Sum
= TrueWeight
+ FalseWeight
;
6813 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
6814 if (Probability
> TTI
->getPredictableBranchThreshold())
6819 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
6821 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6822 // comparison condition. If the compare has more than one use, there's
6823 // probably another cmov or setcc around, so it's not worth emitting a branch.
6824 if (!Cmp
|| !Cmp
->hasOneUse())
6827 // If either operand of the select is expensive and only needed on one side
6828 // of the select, we should form a branch.
6829 if (sinkSelectOperand(TTI
, SI
->getTrueValue()) ||
6830 sinkSelectOperand(TTI
, SI
->getFalseValue()))
6836 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6837 /// false value of \p SI. If the true/false value of \p SI is defined by any
6838 /// select instructions in \p Selects, look through the defining select
6839 /// instruction until the true/false value is not defined in \p Selects.
6841 getTrueOrFalseValue(SelectInst
*SI
, bool isTrue
,
6842 const SmallPtrSet
<const Instruction
*, 2> &Selects
) {
6845 for (SelectInst
*DefSI
= SI
; DefSI
!= nullptr && Selects
.count(DefSI
);
6846 DefSI
= dyn_cast
<SelectInst
>(V
)) {
6847 assert(DefSI
->getCondition() == SI
->getCondition() &&
6848 "The condition of DefSI does not match with SI");
6849 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
6852 assert(V
&& "Failed to get select true/false value");
6856 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator
*Shift
) {
6857 assert(Shift
->isShift() && "Expected a shift");
6859 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6860 // general vector shifts, and (3) the shift amount is a select-of-splatted
6861 // values, hoist the shifts before the select:
6862 // shift Op0, (select Cond, TVal, FVal) -->
6863 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
6865 // This is inverting a generic IR transform when we know that the cost of a
6866 // general vector shift is more than the cost of 2 shift-by-scalars.
6867 // We can't do this effectively in SDAG because we may not be able to
6868 // determine if the select operands are splats from within a basic block.
6869 Type
*Ty
= Shift
->getType();
6870 if (!Ty
->isVectorTy() || !TLI
->isVectorShiftByScalarCheap(Ty
))
6872 Value
*Cond
, *TVal
, *FVal
;
6873 if (!match(Shift
->getOperand(1),
6874 m_OneUse(m_Select(m_Value(Cond
), m_Value(TVal
), m_Value(FVal
)))))
6876 if (!isSplatValue(TVal
) || !isSplatValue(FVal
))
6879 IRBuilder
<> Builder(Shift
);
6880 BinaryOperator::BinaryOps Opcode
= Shift
->getOpcode();
6881 Value
*NewTVal
= Builder
.CreateBinOp(Opcode
, Shift
->getOperand(0), TVal
);
6882 Value
*NewFVal
= Builder
.CreateBinOp(Opcode
, Shift
->getOperand(0), FVal
);
6883 Value
*NewSel
= Builder
.CreateSelect(Cond
, NewTVal
, NewFVal
);
6884 replaceAllUsesWith(Shift
, NewSel
, FreshBBs
, IsHugeFunc
);
6885 Shift
->eraseFromParent();
6889 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst
*Fsh
) {
6890 Intrinsic::ID Opcode
= Fsh
->getIntrinsicID();
6891 assert((Opcode
== Intrinsic::fshl
|| Opcode
== Intrinsic::fshr
) &&
6892 "Expected a funnel shift");
6894 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6895 // than general vector shifts, and (3) the shift amount is select-of-splatted
6896 // values, hoist the funnel shifts before the select:
6897 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
6898 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6900 // This is inverting a generic IR transform when we know that the cost of a
6901 // general vector shift is more than the cost of 2 shift-by-scalars.
6902 // We can't do this effectively in SDAG because we may not be able to
6903 // determine if the select operands are splats from within a basic block.
6904 Type
*Ty
= Fsh
->getType();
6905 if (!Ty
->isVectorTy() || !TLI
->isVectorShiftByScalarCheap(Ty
))
6907 Value
*Cond
, *TVal
, *FVal
;
6908 if (!match(Fsh
->getOperand(2),
6909 m_OneUse(m_Select(m_Value(Cond
), m_Value(TVal
), m_Value(FVal
)))))
6911 if (!isSplatValue(TVal
) || !isSplatValue(FVal
))
6914 IRBuilder
<> Builder(Fsh
);
6915 Value
*X
= Fsh
->getOperand(0), *Y
= Fsh
->getOperand(1);
6916 Value
*NewTVal
= Builder
.CreateIntrinsic(Opcode
, Ty
, {X
, Y
, TVal
});
6917 Value
*NewFVal
= Builder
.CreateIntrinsic(Opcode
, Ty
, {X
, Y
, FVal
});
6918 Value
*NewSel
= Builder
.CreateSelect(Cond
, NewTVal
, NewFVal
);
6919 replaceAllUsesWith(Fsh
, NewSel
, FreshBBs
, IsHugeFunc
);
6920 Fsh
->eraseFromParent();
6924 /// If we have a SelectInst that will likely profit from branch prediction,
6925 /// turn it into a branch.
6926 bool CodeGenPrepare::optimizeSelectInst(SelectInst
*SI
) {
6927 if (DisableSelectToBranch
)
6930 // If the SelectOptimize pass is enabled, selects have already been optimized.
6931 if (!getCGPassBuilderOption().DisableSelectOptimize
)
6934 // Find all consecutive select instructions that share the same condition.
6935 SmallVector
<SelectInst
*, 2> ASI
;
6937 for (BasicBlock::iterator It
= ++BasicBlock::iterator(SI
);
6938 It
!= SI
->getParent()->end(); ++It
) {
6939 SelectInst
*I
= dyn_cast
<SelectInst
>(&*It
);
6940 if (I
&& SI
->getCondition() == I
->getCondition()) {
6947 SelectInst
*LastSI
= ASI
.back();
6948 // Increment the current iterator to skip all the rest of select instructions
6949 // because they will be either "not lowered" or "all lowered" to branch.
6950 CurInstIterator
= std::next(LastSI
->getIterator());
6952 bool VectorCond
= !SI
->getCondition()->getType()->isIntegerTy(1);
6954 // Can we convert the 'select' to CF ?
6955 if (VectorCond
|| SI
->getMetadata(LLVMContext::MD_unpredictable
))
6958 TargetLowering::SelectSupportKind SelectKind
;
6959 if (SI
->getType()->isVectorTy())
6960 SelectKind
= TargetLowering::ScalarCondVectorVal
;
6962 SelectKind
= TargetLowering::ScalarValSelect
;
6964 if (TLI
->isSelectSupported(SelectKind
) &&
6965 (!isFormingBranchFromSelectProfitable(TTI
, TLI
, SI
) || OptSize
||
6966 llvm::shouldOptimizeForSize(SI
->getParent(), PSI
, BFI
.get())))
6969 // The DominatorTree needs to be rebuilt by any consumers after this
6970 // transformation. We simply reset here rather than setting the ModifiedDT
6971 // flag to avoid restarting the function walk in runOnFunction for each
6972 // select optimized.
6975 // Transform a sequence like this:
6977 // %cmp = cmp uge i32 %a, %b
6978 // %sel = select i1 %cmp, i32 %c, i32 %d
6982 // %cmp = cmp uge i32 %a, %b
6983 // %cmp.frozen = freeze %cmp
6984 // br i1 %cmp.frozen, label %select.true, label %select.false
6986 // br label %select.end
6988 // br label %select.end
6990 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6992 // %cmp should be frozen, otherwise it may introduce undefined behavior.
6993 // In addition, we may sink instructions that produce %c or %d from
6994 // the entry block into the destination(s) of the new branch.
6995 // If the true or false blocks do not contain a sunken instruction, that
6996 // block and its branch may be optimized away. In that case, one side of the
6997 // first branch will point directly to select.end, and the corresponding PHI
6998 // predecessor block will be the start block.
7000 // First, we split the block containing the select into 2 blocks.
7001 BasicBlock
*StartBlock
= SI
->getParent();
7002 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(LastSI
));
7003 BasicBlock
*EndBlock
= StartBlock
->splitBasicBlock(SplitPt
, "select.end");
7005 FreshBBs
.insert(EndBlock
);
7006 Loop
*L
= LI
->getLoopFor(StartBlock
);
7008 L
->addBasicBlockToLoop(EndBlock
, *LI
);
7009 BFI
->setBlockFreq(EndBlock
, BFI
->getBlockFreq(StartBlock
).getFrequency());
7010 // Delete the unconditional branch that was just created by the split.
7011 StartBlock
->getTerminator()->eraseFromParent();
7013 // These are the new basic blocks for the conditional branch.
7014 // At least one will become an actual new basic block.
7015 BasicBlock
*TrueBlock
= nullptr;
7016 BasicBlock
*FalseBlock
= nullptr;
7017 BranchInst
*TrueBranch
= nullptr;
7018 BranchInst
*FalseBranch
= nullptr;
7020 // Sink expensive instructions into the conditional blocks to avoid executing
7021 // them speculatively.
7022 for (SelectInst
*SI
: ASI
) {
7023 if (sinkSelectOperand(TTI
, SI
->getTrueValue())) {
7024 if (TrueBlock
== nullptr) {
7025 TrueBlock
= BasicBlock::Create(SI
->getContext(), "select.true.sink",
7026 EndBlock
->getParent(), EndBlock
);
7027 TrueBranch
= BranchInst::Create(EndBlock
, TrueBlock
);
7029 FreshBBs
.insert(TrueBlock
);
7031 L
->addBasicBlockToLoop(TrueBlock
, *LI
);
7032 TrueBranch
->setDebugLoc(SI
->getDebugLoc());
7034 auto *TrueInst
= cast
<Instruction
>(SI
->getTrueValue());
7035 TrueInst
->moveBefore(TrueBranch
);
7037 if (sinkSelectOperand(TTI
, SI
->getFalseValue())) {
7038 if (FalseBlock
== nullptr) {
7039 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false.sink",
7040 EndBlock
->getParent(), EndBlock
);
7042 FreshBBs
.insert(FalseBlock
);
7044 L
->addBasicBlockToLoop(FalseBlock
, *LI
);
7045 FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
7046 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
7048 auto *FalseInst
= cast
<Instruction
>(SI
->getFalseValue());
7049 FalseInst
->moveBefore(FalseBranch
);
7053 // If there was nothing to sink, then arbitrarily choose the 'false' side
7054 // for a new input value to the PHI.
7055 if (TrueBlock
== FalseBlock
) {
7056 assert(TrueBlock
== nullptr &&
7057 "Unexpected basic block transform while optimizing select");
7059 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false",
7060 EndBlock
->getParent(), EndBlock
);
7062 FreshBBs
.insert(FalseBlock
);
7064 L
->addBasicBlockToLoop(FalseBlock
, *LI
);
7065 auto *FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
7066 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
7069 // Insert the real conditional branch based on the original condition.
7070 // If we did not create a new block for one of the 'true' or 'false' paths
7071 // of the condition, it means that side of the branch goes to the end block
7072 // directly and the path originates from the start block from the point of
7073 // view of the new PHI.
7074 BasicBlock
*TT
, *FT
;
7075 if (TrueBlock
== nullptr) {
7078 TrueBlock
= StartBlock
;
7079 } else if (FalseBlock
== nullptr) {
7082 FalseBlock
= StartBlock
;
7088 auto *CondFr
= IB
.CreateFreeze(SI
->getCondition(), SI
->getName() + ".frozen");
7089 IB
.CreateCondBr(CondFr
, TT
, FT
, SI
);
7091 SmallPtrSet
<const Instruction
*, 2> INS
;
7092 INS
.insert(ASI
.begin(), ASI
.end());
7093 // Use reverse iterator because later select may use the value of the
7094 // earlier select, and we need to propagate value through earlier select
7095 // to get the PHI operand.
7096 for (SelectInst
*SI
: llvm::reverse(ASI
)) {
7097 // The select itself is replaced with a PHI Node.
7098 PHINode
*PN
= PHINode::Create(SI
->getType(), 2, "", &EndBlock
->front());
7100 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
), TrueBlock
);
7101 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
), FalseBlock
);
7102 PN
->setDebugLoc(SI
->getDebugLoc());
7104 replaceAllUsesWith(SI
, PN
, FreshBBs
, IsHugeFunc
);
7105 SI
->eraseFromParent();
7107 ++NumSelectsExpanded
;
7110 // Instruct OptimizeBlock to skip to the next block.
7111 CurInstIterator
= StartBlock
->end();
7115 /// Some targets only accept certain types for splat inputs. For example a VDUP
7116 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7117 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7118 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
) {
7119 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7120 if (!match(SVI
, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7121 m_Undef(), m_ZeroMask())))
7123 Type
*NewType
= TLI
->shouldConvertSplatType(SVI
);
7127 auto *SVIVecType
= cast
<FixedVectorType
>(SVI
->getType());
7128 assert(!NewType
->isVectorTy() && "Expected a scalar type!");
7129 assert(NewType
->getScalarSizeInBits() == SVIVecType
->getScalarSizeInBits() &&
7130 "Expected a type of the same size!");
7132 FixedVectorType::get(NewType
, SVIVecType
->getNumElements());
7134 // Create a bitcast (shuffle (insert (bitcast(..))))
7135 IRBuilder
<> Builder(SVI
->getContext());
7136 Builder
.SetInsertPoint(SVI
);
7137 Value
*BC1
= Builder
.CreateBitCast(
7138 cast
<Instruction
>(SVI
->getOperand(0))->getOperand(1), NewType
);
7139 Value
*Shuffle
= Builder
.CreateVectorSplat(NewVecType
->getNumElements(), BC1
);
7140 Value
*BC2
= Builder
.CreateBitCast(Shuffle
, SVIVecType
);
7142 replaceAllUsesWith(SVI
, BC2
, FreshBBs
, IsHugeFunc
);
7143 RecursivelyDeleteTriviallyDeadInstructions(
7144 SVI
, TLInfo
, nullptr,
7145 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
7147 // Also hoist the bitcast up to its operand if it they are not in the same
7149 if (auto *BCI
= dyn_cast
<Instruction
>(BC1
))
7150 if (auto *Op
= dyn_cast
<Instruction
>(BCI
->getOperand(0)))
7151 if (BCI
->getParent() != Op
->getParent() && !isa
<PHINode
>(Op
) &&
7152 !Op
->isTerminator() && !Op
->isEHPad())
7158 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction
*I
) {
7159 // If the operands of I can be folded into a target instruction together with
7160 // I, duplicate and sink them.
7161 SmallVector
<Use
*, 4> OpsToSink
;
7162 if (!TLI
->shouldSinkOperands(I
, OpsToSink
))
7165 // OpsToSink can contain multiple uses in a use chain (e.g.
7166 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7167 // uses must come first, so we process the ops in reverse order so as to not
7168 // create invalid IR.
7169 BasicBlock
*TargetBB
= I
->getParent();
7170 bool Changed
= false;
7171 SmallVector
<Use
*, 4> ToReplace
;
7172 Instruction
*InsertPoint
= I
;
7173 DenseMap
<const Instruction
*, unsigned long> InstOrdering
;
7174 unsigned long InstNumber
= 0;
7175 for (const auto &I
: *TargetBB
)
7176 InstOrdering
[&I
] = InstNumber
++;
7178 for (Use
*U
: reverse(OpsToSink
)) {
7179 auto *UI
= cast
<Instruction
>(U
->get());
7180 if (isa
<PHINode
>(UI
))
7182 if (UI
->getParent() == TargetBB
) {
7183 if (InstOrdering
[UI
] < InstOrdering
[InsertPoint
])
7187 ToReplace
.push_back(U
);
7190 SetVector
<Instruction
*> MaybeDead
;
7191 DenseMap
<Instruction
*, Instruction
*> NewInstructions
;
7192 for (Use
*U
: ToReplace
) {
7193 auto *UI
= cast
<Instruction
>(U
->get());
7194 Instruction
*NI
= UI
->clone();
7197 // Now we clone an instruction, its operands' defs may sink to this BB
7198 // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7199 for (unsigned I
= 0; I
< NI
->getNumOperands(); ++I
) {
7200 auto *OpDef
= dyn_cast
<Instruction
>(NI
->getOperand(I
));
7203 FreshBBs
.insert(OpDef
->getParent());
7207 NewInstructions
[UI
] = NI
;
7208 MaybeDead
.insert(UI
);
7209 LLVM_DEBUG(dbgs() << "Sinking " << *UI
<< " to user " << *I
<< "\n");
7210 NI
->insertBefore(InsertPoint
);
7212 InsertedInsts
.insert(NI
);
7214 // Update the use for the new instruction, making sure that we update the
7215 // sunk instruction uses, if it is part of a chain that has already been
7217 Instruction
*OldI
= cast
<Instruction
>(U
->getUser());
7218 if (NewInstructions
.count(OldI
))
7219 NewInstructions
[OldI
]->setOperand(U
->getOperandNo(), NI
);
7225 // Remove instructions that are dead after sinking.
7226 for (auto *I
: MaybeDead
) {
7227 if (!I
->hasNUsesOrMore(1)) {
7228 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I
<< "\n");
7229 I
->eraseFromParent();
7236 bool CodeGenPrepare::optimizeSwitchType(SwitchInst
*SI
) {
7237 Value
*Cond
= SI
->getCondition();
7238 Type
*OldType
= Cond
->getType();
7239 LLVMContext
&Context
= Cond
->getContext();
7240 EVT OldVT
= TLI
->getValueType(*DL
, OldType
);
7241 MVT RegType
= TLI
->getPreferredSwitchConditionType(Context
, OldVT
);
7242 unsigned RegWidth
= RegType
.getSizeInBits();
7244 if (RegWidth
<= cast
<IntegerType
>(OldType
)->getBitWidth())
7247 // If the register width is greater than the type width, expand the condition
7248 // of the switch instruction and each case constant to the width of the
7249 // register. By widening the type of the switch condition, subsequent
7250 // comparisons (for case comparisons) will not need to be extended to the
7251 // preferred register width, so we will potentially eliminate N-1 extends,
7252 // where N is the number of cases in the switch.
7253 auto *NewType
= Type::getIntNTy(Context
, RegWidth
);
7255 // Extend the switch condition and case constants using the target preferred
7256 // extend unless the switch condition is a function argument with an extend
7257 // attribute. In that case, we can avoid an unnecessary mask/extension by
7258 // matching the argument extension instead.
7259 Instruction::CastOps ExtType
= Instruction::ZExt
;
7260 // Some targets prefer SExt over ZExt.
7261 if (TLI
->isSExtCheaperThanZExt(OldVT
, RegType
))
7262 ExtType
= Instruction::SExt
;
7264 if (auto *Arg
= dyn_cast
<Argument
>(Cond
)) {
7265 if (Arg
->hasSExtAttr())
7266 ExtType
= Instruction::SExt
;
7267 if (Arg
->hasZExtAttr())
7268 ExtType
= Instruction::ZExt
;
7271 auto *ExtInst
= CastInst::Create(ExtType
, Cond
, NewType
);
7272 ExtInst
->insertBefore(SI
);
7273 ExtInst
->setDebugLoc(SI
->getDebugLoc());
7274 SI
->setCondition(ExtInst
);
7275 for (auto Case
: SI
->cases()) {
7276 const APInt
&NarrowConst
= Case
.getCaseValue()->getValue();
7277 APInt WideConst
= (ExtType
== Instruction::ZExt
)
7278 ? NarrowConst
.zext(RegWidth
)
7279 : NarrowConst
.sext(RegWidth
);
7280 Case
.setValue(ConstantInt::get(Context
, WideConst
));
7286 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst
*SI
) {
7287 // The SCCP optimization tends to produce code like this:
7288 // switch(x) { case 42: phi(42, ...) }
7289 // Materializing the constant for the phi-argument needs instructions; So we
7290 // change the code to:
7291 // switch(x) { case 42: phi(x, ...) }
7293 Value
*Condition
= SI
->getCondition();
7294 // Avoid endless loop in degenerate case.
7295 if (isa
<ConstantInt
>(*Condition
))
7298 bool Changed
= false;
7299 BasicBlock
*SwitchBB
= SI
->getParent();
7300 Type
*ConditionType
= Condition
->getType();
7302 for (const SwitchInst::CaseHandle
&Case
: SI
->cases()) {
7303 ConstantInt
*CaseValue
= Case
.getCaseValue();
7304 BasicBlock
*CaseBB
= Case
.getCaseSuccessor();
7305 // Set to true if we previously checked that `CaseBB` is only reached by
7306 // a single case from this switch.
7307 bool CheckedForSinglePred
= false;
7308 for (PHINode
&PHI
: CaseBB
->phis()) {
7309 Type
*PHIType
= PHI
.getType();
7310 // If ZExt is free then we can also catch patterns like this:
7311 // switch((i32)x) { case 42: phi((i64)42, ...); }
7312 // and replace `(i64)42` with `zext i32 %x to i64`.
7314 PHIType
->isIntegerTy() &&
7315 PHIType
->getIntegerBitWidth() > ConditionType
->getIntegerBitWidth() &&
7316 TLI
->isZExtFree(ConditionType
, PHIType
);
7317 if (PHIType
== ConditionType
|| TryZExt
) {
7318 // Set to true to skip this case because of multiple preds.
7319 bool SkipCase
= false;
7320 Value
*Replacement
= nullptr;
7321 for (unsigned I
= 0, E
= PHI
.getNumIncomingValues(); I
!= E
; I
++) {
7322 Value
*PHIValue
= PHI
.getIncomingValue(I
);
7323 if (PHIValue
!= CaseValue
) {
7326 ConstantInt
*PHIValueInt
= dyn_cast
<ConstantInt
>(PHIValue
);
7328 PHIValueInt
->getValue() !=
7329 CaseValue
->getValue().zext(PHIType
->getIntegerBitWidth()))
7332 if (PHI
.getIncomingBlock(I
) != SwitchBB
)
7334 // We cannot optimize if there are multiple case labels jumping to
7335 // this block. This check may get expensive when there are many
7336 // case labels so we test for it last.
7337 if (!CheckedForSinglePred
) {
7338 CheckedForSinglePred
= true;
7339 if (SI
->findCaseDest(CaseBB
) == nullptr) {
7345 if (Replacement
== nullptr) {
7346 if (PHIValue
== CaseValue
) {
7347 Replacement
= Condition
;
7349 IRBuilder
<> Builder(SI
);
7350 Replacement
= Builder
.CreateZExt(Condition
, PHIType
);
7353 PHI
.setIncomingValue(I
, Replacement
);
7364 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst
*SI
) {
7365 bool Changed
= optimizeSwitchType(SI
);
7366 Changed
|= optimizeSwitchPhiConstants(SI
);
7372 /// Helper class to promote a scalar operation to a vector one.
7373 /// This class is used to move downward extractelement transition.
7375 /// a = vector_op <2 x i32>
7376 /// b = extractelement <2 x i32> a, i32 0
7381 /// a = vector_op <2 x i32>
7382 /// c = vector_op a (equivalent to scalar_op on the related lane)
7383 /// * d = extractelement <2 x i32> c, i32 0
7385 /// Assuming both extractelement and store can be combine, we get rid of the
7387 class VectorPromoteHelper
{
7388 /// DataLayout associated with the current module.
7389 const DataLayout
&DL
;
7391 /// Used to perform some checks on the legality of vector operations.
7392 const TargetLowering
&TLI
;
7394 /// Used to estimated the cost of the promoted chain.
7395 const TargetTransformInfo
&TTI
;
7397 /// The transition being moved downwards.
7398 Instruction
*Transition
;
7400 /// The sequence of instructions to be promoted.
7401 SmallVector
<Instruction
*, 4> InstsToBePromoted
;
7403 /// Cost of combining a store and an extract.
7404 unsigned StoreExtractCombineCost
;
7406 /// Instruction that will be combined with the transition.
7407 Instruction
*CombineInst
= nullptr;
7409 /// The instruction that represents the current end of the transition.
7410 /// Since we are faking the promotion until we reach the end of the chain
7411 /// of computation, we need a way to get the current end of the transition.
7412 Instruction
*getEndOfTransition() const {
7413 if (InstsToBePromoted
.empty())
7415 return InstsToBePromoted
.back();
7418 /// Return the index of the original value in the transition.
7419 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7420 /// c, is at index 0.
7421 unsigned getTransitionOriginalValueIdx() const {
7422 assert(isa
<ExtractElementInst
>(Transition
) &&
7423 "Other kind of transitions are not supported yet");
7427 /// Return the index of the index in the transition.
7428 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7430 unsigned getTransitionIdx() const {
7431 assert(isa
<ExtractElementInst
>(Transition
) &&
7432 "Other kind of transitions are not supported yet");
7436 /// Get the type of the transition.
7437 /// This is the type of the original value.
7438 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7439 /// transition is <2 x i32>.
7440 Type
*getTransitionType() const {
7441 return Transition
->getOperand(getTransitionOriginalValueIdx())->getType();
7444 /// Promote \p ToBePromoted by moving \p Def downward through.
7445 /// I.e., we have the following sequence:
7446 /// Def = Transition <ty1> a to <ty2>
7447 /// b = ToBePromoted <ty2> Def, ...
7449 /// b = ToBePromoted <ty1> a, ...
7450 /// Def = Transition <ty1> ToBePromoted to <ty2>
7451 void promoteImpl(Instruction
*ToBePromoted
);
7453 /// Check whether or not it is profitable to promote all the
7454 /// instructions enqueued to be promoted.
7455 bool isProfitableToPromote() {
7456 Value
*ValIdx
= Transition
->getOperand(getTransitionOriginalValueIdx());
7457 unsigned Index
= isa
<ConstantInt
>(ValIdx
)
7458 ? cast
<ConstantInt
>(ValIdx
)->getZExtValue()
7460 Type
*PromotedType
= getTransitionType();
7462 StoreInst
*ST
= cast
<StoreInst
>(CombineInst
);
7463 unsigned AS
= ST
->getPointerAddressSpace();
7464 // Check if this store is supported.
7465 if (!TLI
.allowsMisalignedMemoryAccesses(
7466 TLI
.getValueType(DL
, ST
->getValueOperand()->getType()), AS
,
7468 // If this is not supported, there is no way we can combine
7469 // the extract with the store.
7473 // The scalar chain of computation has to pay for the transition
7474 // scalar to vector.
7475 // The vector chain has to account for the combining cost.
7476 enum TargetTransformInfo::TargetCostKind CostKind
=
7477 TargetTransformInfo::TCK_RecipThroughput
;
7478 InstructionCost ScalarCost
=
7479 TTI
.getVectorInstrCost(*Transition
, PromotedType
, CostKind
, Index
);
7480 InstructionCost VectorCost
= StoreExtractCombineCost
;
7481 for (const auto &Inst
: InstsToBePromoted
) {
7482 // Compute the cost.
7483 // By construction, all instructions being promoted are arithmetic ones.
7484 // Moreover, one argument is a constant that can be viewed as a splat
7486 Value
*Arg0
= Inst
->getOperand(0);
7487 bool IsArg0Constant
= isa
<UndefValue
>(Arg0
) || isa
<ConstantInt
>(Arg0
) ||
7488 isa
<ConstantFP
>(Arg0
);
7489 TargetTransformInfo::OperandValueInfo Arg0Info
, Arg1Info
;
7491 Arg0Info
.Kind
= TargetTransformInfo::OK_UniformConstantValue
;
7493 Arg1Info
.Kind
= TargetTransformInfo::OK_UniformConstantValue
;
7495 ScalarCost
+= TTI
.getArithmeticInstrCost(
7496 Inst
->getOpcode(), Inst
->getType(), CostKind
, Arg0Info
, Arg1Info
);
7497 VectorCost
+= TTI
.getArithmeticInstrCost(Inst
->getOpcode(), PromotedType
,
7498 CostKind
, Arg0Info
, Arg1Info
);
7501 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7502 << ScalarCost
<< "\nVector: " << VectorCost
<< '\n');
7503 return ScalarCost
> VectorCost
;
7506 /// Generate a constant vector with \p Val with the same
7507 /// number of elements as the transition.
7508 /// \p UseSplat defines whether or not \p Val should be replicated
7509 /// across the whole vector.
7510 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7511 /// otherwise we generate a vector with as many undef as possible:
7512 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7513 /// used at the index of the extract.
7514 Value
*getConstantVector(Constant
*Val
, bool UseSplat
) const {
7515 unsigned ExtractIdx
= std::numeric_limits
<unsigned>::max();
7517 // If we cannot determine where the constant must be, we have to
7518 // use a splat constant.
7519 Value
*ValExtractIdx
= Transition
->getOperand(getTransitionIdx());
7520 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(ValExtractIdx
))
7521 ExtractIdx
= CstVal
->getSExtValue();
7526 ElementCount EC
= cast
<VectorType
>(getTransitionType())->getElementCount();
7528 return ConstantVector::getSplat(EC
, Val
);
7530 if (!EC
.isScalable()) {
7531 SmallVector
<Constant
*, 4> ConstVec
;
7532 UndefValue
*UndefVal
= UndefValue::get(Val
->getType());
7533 for (unsigned Idx
= 0; Idx
!= EC
.getKnownMinValue(); ++Idx
) {
7534 if (Idx
== ExtractIdx
)
7535 ConstVec
.push_back(Val
);
7537 ConstVec
.push_back(UndefVal
);
7539 return ConstantVector::get(ConstVec
);
7542 "Generate scalable vector for non-splat is unimplemented");
7545 /// Check if promoting to a vector type an operand at \p OperandIdx
7546 /// in \p Use can trigger undefined behavior.
7547 static bool canCauseUndefinedBehavior(const Instruction
*Use
,
7548 unsigned OperandIdx
) {
7549 // This is not safe to introduce undef when the operand is on
7550 // the right hand side of a division-like instruction.
7551 if (OperandIdx
!= 1)
7553 switch (Use
->getOpcode()) {
7556 case Instruction::SDiv
:
7557 case Instruction::UDiv
:
7558 case Instruction::SRem
:
7559 case Instruction::URem
:
7561 case Instruction::FDiv
:
7562 case Instruction::FRem
:
7563 return !Use
->hasNoNaNs();
7565 llvm_unreachable(nullptr);
7569 VectorPromoteHelper(const DataLayout
&DL
, const TargetLowering
&TLI
,
7570 const TargetTransformInfo
&TTI
, Instruction
*Transition
,
7571 unsigned CombineCost
)
7572 : DL(DL
), TLI(TLI
), TTI(TTI
), Transition(Transition
),
7573 StoreExtractCombineCost(CombineCost
) {
7574 assert(Transition
&& "Do not know how to promote null");
7577 /// Check if we can promote \p ToBePromoted to \p Type.
7578 bool canPromote(const Instruction
*ToBePromoted
) const {
7579 // We could support CastInst too.
7580 return isa
<BinaryOperator
>(ToBePromoted
);
7583 /// Check if it is profitable to promote \p ToBePromoted
7584 /// by moving downward the transition through.
7585 bool shouldPromote(const Instruction
*ToBePromoted
) const {
7586 // Promote only if all the operands can be statically expanded.
7587 // Indeed, we do not want to introduce any new kind of transitions.
7588 for (const Use
&U
: ToBePromoted
->operands()) {
7589 const Value
*Val
= U
.get();
7590 if (Val
== getEndOfTransition()) {
7591 // If the use is a division and the transition is on the rhs,
7592 // we cannot promote the operation, otherwise we may create a
7593 // division by zero.
7594 if (canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()))
7598 if (!isa
<ConstantInt
>(Val
) && !isa
<UndefValue
>(Val
) &&
7599 !isa
<ConstantFP
>(Val
))
7602 // Check that the resulting operation is legal.
7603 int ISDOpcode
= TLI
.InstructionOpcodeToISD(ToBePromoted
->getOpcode());
7606 return StressStoreExtract
||
7607 TLI
.isOperationLegalOrCustom(
7608 ISDOpcode
, TLI
.getValueType(DL
, getTransitionType(), true));
7611 /// Check whether or not \p Use can be combined
7612 /// with the transition.
7613 /// I.e., is it possible to do Use(Transition) => AnotherUse?
7614 bool canCombine(const Instruction
*Use
) { return isa
<StoreInst
>(Use
); }
7616 /// Record \p ToBePromoted as part of the chain to be promoted.
7617 void enqueueForPromotion(Instruction
*ToBePromoted
) {
7618 InstsToBePromoted
.push_back(ToBePromoted
);
7621 /// Set the instruction that will be combined with the transition.
7622 void recordCombineInstruction(Instruction
*ToBeCombined
) {
7623 assert(canCombine(ToBeCombined
) && "Unsupported instruction to combine");
7624 CombineInst
= ToBeCombined
;
7627 /// Promote all the instructions enqueued for promotion if it is
7629 /// \return True if the promotion happened, false otherwise.
7631 // Check if there is something to promote.
7632 // Right now, if we do not have anything to combine with,
7633 // we assume the promotion is not profitable.
7634 if (InstsToBePromoted
.empty() || !CombineInst
)
7638 if (!StressStoreExtract
&& !isProfitableToPromote())
7642 for (auto &ToBePromoted
: InstsToBePromoted
)
7643 promoteImpl(ToBePromoted
);
7644 InstsToBePromoted
.clear();
7649 } // end anonymous namespace
7651 void VectorPromoteHelper::promoteImpl(Instruction
*ToBePromoted
) {
7652 // At this point, we know that all the operands of ToBePromoted but Def
7653 // can be statically promoted.
7654 // For Def, we need to use its parameter in ToBePromoted:
7655 // b = ToBePromoted ty1 a
7656 // Def = Transition ty1 b to ty2
7657 // Move the transition down.
7658 // 1. Replace all uses of the promoted operation by the transition.
7659 // = ... b => = ... Def.
7660 assert(ToBePromoted
->getType() == Transition
->getType() &&
7661 "The type of the result of the transition does not match "
7663 ToBePromoted
->replaceAllUsesWith(Transition
);
7664 // 2. Update the type of the uses.
7665 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7666 Type
*TransitionTy
= getTransitionType();
7667 ToBePromoted
->mutateType(TransitionTy
);
7668 // 3. Update all the operands of the promoted operation with promoted
7670 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7671 for (Use
&U
: ToBePromoted
->operands()) {
7672 Value
*Val
= U
.get();
7673 Value
*NewVal
= nullptr;
7674 if (Val
== Transition
)
7675 NewVal
= Transition
->getOperand(getTransitionOriginalValueIdx());
7676 else if (isa
<UndefValue
>(Val
) || isa
<ConstantInt
>(Val
) ||
7677 isa
<ConstantFP
>(Val
)) {
7678 // Use a splat constant if it is not safe to use undef.
7679 NewVal
= getConstantVector(
7680 cast
<Constant
>(Val
),
7681 isa
<UndefValue
>(Val
) ||
7682 canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()));
7684 llvm_unreachable("Did you modified shouldPromote and forgot to update "
7686 ToBePromoted
->setOperand(U
.getOperandNo(), NewVal
);
7688 Transition
->moveAfter(ToBePromoted
);
7689 Transition
->setOperand(getTransitionOriginalValueIdx(), ToBePromoted
);
7692 /// Some targets can do store(extractelement) with one instruction.
7693 /// Try to push the extractelement towards the stores when the target
7694 /// has this feature and this is profitable.
7695 bool CodeGenPrepare::optimizeExtractElementInst(Instruction
*Inst
) {
7696 unsigned CombineCost
= std::numeric_limits
<unsigned>::max();
7697 if (DisableStoreExtract
||
7698 (!StressStoreExtract
&&
7699 !TLI
->canCombineStoreAndExtract(Inst
->getOperand(0)->getType(),
7700 Inst
->getOperand(1), CombineCost
)))
7703 // At this point we know that Inst is a vector to scalar transition.
7704 // Try to move it down the def-use chain, until:
7705 // - We can combine the transition with its single use
7706 // => we got rid of the transition.
7707 // - We escape the current basic block
7708 // => we would need to check that we are moving it at a cheaper place and
7709 // we do not do that for now.
7710 BasicBlock
*Parent
= Inst
->getParent();
7711 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst
<< '\n');
7712 VectorPromoteHelper
VPH(*DL
, *TLI
, *TTI
, Inst
, CombineCost
);
7713 // If the transition has more than one use, assume this is not going to be
7715 while (Inst
->hasOneUse()) {
7716 Instruction
*ToBePromoted
= cast
<Instruction
>(*Inst
->user_begin());
7717 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted
<< '\n');
7719 if (ToBePromoted
->getParent() != Parent
) {
7720 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7721 << ToBePromoted
->getParent()->getName()
7722 << ") than the transition (" << Parent
->getName()
7727 if (VPH
.canCombine(ToBePromoted
)) {
7728 LLVM_DEBUG(dbgs() << "Assume " << *Inst
<< '\n'
7729 << "will be combined with: " << *ToBePromoted
<< '\n');
7730 VPH
.recordCombineInstruction(ToBePromoted
);
7731 bool Changed
= VPH
.promote();
7732 NumStoreExtractExposed
+= Changed
;
7736 LLVM_DEBUG(dbgs() << "Try promoting.\n");
7737 if (!VPH
.canPromote(ToBePromoted
) || !VPH
.shouldPromote(ToBePromoted
))
7740 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7742 VPH
.enqueueForPromotion(ToBePromoted
);
7743 Inst
= ToBePromoted
;
7748 /// For the instruction sequence of store below, F and I values
7749 /// are bundled together as an i64 value before being stored into memory.
7750 /// Sometimes it is more efficient to generate separate stores for F and I,
7751 /// which can remove the bitwise instructions or sink them to colder places.
7753 /// (store (or (zext (bitcast F to i32) to i64),
7754 /// (shl (zext I to i64), 32)), addr) -->
7755 /// (store F, addr) and (store I, addr+4)
7757 /// Similarly, splitting for other merged store can also be beneficial, like:
7758 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7759 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7760 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7761 /// For pair of {i16, i8}, i32 store --> two i16 stores.
7762 /// For pair of {i8, i8}, i16 store --> two i8 stores.
7764 /// We allow each target to determine specifically which kind of splitting is
7767 /// The store patterns are commonly seen from the simple code snippet below
7768 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7769 /// void goo(const std::pair<int, float> &);
7772 /// goo(std::make_pair(tmp, ftmp));
7776 /// Although we already have similar splitting in DAG Combine, we duplicate
7777 /// it in CodeGenPrepare to catch the case in which pattern is across
7778 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7779 /// during code expansion.
7780 static bool splitMergedValStore(StoreInst
&SI
, const DataLayout
&DL
,
7781 const TargetLowering
&TLI
) {
7782 // Handle simple but common cases only.
7783 Type
*StoreType
= SI
.getValueOperand()->getType();
7785 // The code below assumes shifting a value by <number of bits>,
7786 // whereas scalable vectors would have to be shifted by
7787 // <2log(vscale) + number of bits> in order to store the
7788 // low/high parts. Bailing out for now.
7789 if (StoreType
->isScalableTy())
7792 if (!DL
.typeSizeEqualsStoreSize(StoreType
) ||
7793 DL
.getTypeSizeInBits(StoreType
) == 0)
7796 unsigned HalfValBitSize
= DL
.getTypeSizeInBits(StoreType
) / 2;
7797 Type
*SplitStoreType
= Type::getIntNTy(SI
.getContext(), HalfValBitSize
);
7798 if (!DL
.typeSizeEqualsStoreSize(SplitStoreType
))
7801 // Don't split the store if it is volatile.
7802 if (SI
.isVolatile())
7805 // Match the following patterns:
7806 // (store (or (zext LValue to i64),
7807 // (shl (zext HValue to i64), 32)), HalfValBitSize)
7809 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7810 // (zext LValue to i64),
7811 // Expect both operands of OR and the first operand of SHL have only
7813 Value
*LValue
, *HValue
;
7814 if (!match(SI
.getValueOperand(),
7815 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue
))),
7816 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue
))),
7817 m_SpecificInt(HalfValBitSize
))))))
7820 // Check LValue and HValue are int with size less or equal than 32.
7821 if (!LValue
->getType()->isIntegerTy() ||
7822 DL
.getTypeSizeInBits(LValue
->getType()) > HalfValBitSize
||
7823 !HValue
->getType()->isIntegerTy() ||
7824 DL
.getTypeSizeInBits(HValue
->getType()) > HalfValBitSize
)
7827 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7828 // as the input of target query.
7829 auto *LBC
= dyn_cast
<BitCastInst
>(LValue
);
7830 auto *HBC
= dyn_cast
<BitCastInst
>(HValue
);
7831 EVT LowTy
= LBC
? EVT::getEVT(LBC
->getOperand(0)->getType())
7832 : EVT::getEVT(LValue
->getType());
7833 EVT HighTy
= HBC
? EVT::getEVT(HBC
->getOperand(0)->getType())
7834 : EVT::getEVT(HValue
->getType());
7835 if (!ForceSplitStore
&& !TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
7838 // Start to split store.
7839 IRBuilder
<> Builder(SI
.getContext());
7840 Builder
.SetInsertPoint(&SI
);
7842 // If LValue/HValue is a bitcast in another BB, create a new one in current
7843 // BB so it may be merged with the splitted stores by dag combiner.
7844 if (LBC
&& LBC
->getParent() != SI
.getParent())
7845 LValue
= Builder
.CreateBitCast(LBC
->getOperand(0), LBC
->getType());
7846 if (HBC
&& HBC
->getParent() != SI
.getParent())
7847 HValue
= Builder
.CreateBitCast(HBC
->getOperand(0), HBC
->getType());
7849 bool IsLE
= SI
.getModule()->getDataLayout().isLittleEndian();
7850 auto CreateSplitStore
= [&](Value
*V
, bool Upper
) {
7851 V
= Builder
.CreateZExtOrBitCast(V
, SplitStoreType
);
7852 Value
*Addr
= Builder
.CreateBitCast(
7854 SplitStoreType
->getPointerTo(SI
.getPointerAddressSpace()));
7855 Align Alignment
= SI
.getAlign();
7856 const bool IsOffsetStore
= (IsLE
&& Upper
) || (!IsLE
&& !Upper
);
7857 if (IsOffsetStore
) {
7858 Addr
= Builder
.CreateGEP(
7859 SplitStoreType
, Addr
,
7860 ConstantInt::get(Type::getInt32Ty(SI
.getContext()), 1));
7862 // When splitting the store in half, naturally one half will retain the
7863 // alignment of the original wider store, regardless of whether it was
7864 // over-aligned or not, while the other will require adjustment.
7865 Alignment
= commonAlignment(Alignment
, HalfValBitSize
/ 8);
7867 Builder
.CreateAlignedStore(V
, Addr
, Alignment
);
7870 CreateSplitStore(LValue
, false);
7871 CreateSplitStore(HValue
, true);
7873 // Delete the old store.
7874 SI
.eraseFromParent();
7878 // Return true if the GEP has two operands, the first operand is of a sequential
7879 // type, and the second operand is a constant.
7880 static bool GEPSequentialConstIndexed(GetElementPtrInst
*GEP
) {
7881 gep_type_iterator I
= gep_type_begin(*GEP
);
7882 return GEP
->getNumOperands() == 2 && I
.isSequential() &&
7883 isa
<ConstantInt
>(GEP
->getOperand(1));
7886 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7887 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7888 // reducing liveness interference across those edges benefits global register
7889 // allocation. Currently handles only certain cases.
7891 // For example, unmerge %GEPI and %UGEPI as below.
7893 // ---------- BEFORE ----------
7898 // %GEPI = gep %GEPIOp, Idx
7900 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7901 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7902 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7905 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7906 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7911 // %UGEPI = gep %GEPIOp, UIdx
7913 // ---------------------------
7915 // ---------- AFTER ----------
7917 // ... (same as above)
7918 // (* %GEPI is still alive on the indirectbr edges)
7919 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7925 // %UGEPI = gep %GEPI, (UIdx-Idx)
7927 // ---------------------------
7929 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7930 // no longer alive on them.
7932 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7933 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7934 // not to disable further simplications and optimizations as a result of GEP
7937 // Note this unmerging may increase the length of the data flow critical path
7938 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7939 // between the register pressure and the length of data-flow critical
7940 // path. Restricting this to the uncommon IndirectBr case would minimize the
7941 // impact of potentially longer critical path, if any, and the impact on compile
7943 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst
*GEPI
,
7944 const TargetTransformInfo
*TTI
) {
7945 BasicBlock
*SrcBlock
= GEPI
->getParent();
7946 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7947 // (non-IndirectBr) cases exit early here.
7948 if (!isa
<IndirectBrInst
>(SrcBlock
->getTerminator()))
7950 // Check that GEPI is a simple gep with a single constant index.
7951 if (!GEPSequentialConstIndexed(GEPI
))
7953 ConstantInt
*GEPIIdx
= cast
<ConstantInt
>(GEPI
->getOperand(1));
7954 // Check that GEPI is a cheap one.
7955 if (TTI
->getIntImmCost(GEPIIdx
->getValue(), GEPIIdx
->getType(),
7956 TargetTransformInfo::TCK_SizeAndLatency
) >
7957 TargetTransformInfo::TCC_Basic
)
7959 Value
*GEPIOp
= GEPI
->getOperand(0);
7960 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7961 if (!isa
<Instruction
>(GEPIOp
))
7963 auto *GEPIOpI
= cast
<Instruction
>(GEPIOp
);
7964 if (GEPIOpI
->getParent() != SrcBlock
)
7966 // Check that GEP is used outside the block, meaning it's alive on the
7967 // IndirectBr edge(s).
7968 if (llvm::none_of(GEPI
->users(), [&](User
*Usr
) {
7969 if (auto *I
= dyn_cast
<Instruction
>(Usr
)) {
7970 if (I
->getParent() != SrcBlock
) {
7977 // The second elements of the GEP chains to be unmerged.
7978 std::vector
<GetElementPtrInst
*> UGEPIs
;
7979 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7980 // on IndirectBr edges.
7981 for (User
*Usr
: GEPIOp
->users()) {
7984 // Check if Usr is an Instruction. If not, give up.
7985 if (!isa
<Instruction
>(Usr
))
7987 auto *UI
= cast
<Instruction
>(Usr
);
7988 // Check if Usr in the same block as GEPIOp, which is fine, skip.
7989 if (UI
->getParent() == SrcBlock
)
7991 // Check if Usr is a GEP. If not, give up.
7992 if (!isa
<GetElementPtrInst
>(Usr
))
7994 auto *UGEPI
= cast
<GetElementPtrInst
>(Usr
);
7995 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7996 // the pointer operand to it. If so, record it in the vector. If not, give
7998 if (!GEPSequentialConstIndexed(UGEPI
))
8000 if (UGEPI
->getOperand(0) != GEPIOp
)
8002 if (GEPIIdx
->getType() !=
8003 cast
<ConstantInt
>(UGEPI
->getOperand(1))->getType())
8005 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8006 if (TTI
->getIntImmCost(UGEPIIdx
->getValue(), UGEPIIdx
->getType(),
8007 TargetTransformInfo::TCK_SizeAndLatency
) >
8008 TargetTransformInfo::TCC_Basic
)
8010 UGEPIs
.push_back(UGEPI
);
8012 if (UGEPIs
.size() == 0)
8014 // Check the materializing cost of (Uidx-Idx).
8015 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
8016 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8017 APInt NewIdx
= UGEPIIdx
->getValue() - GEPIIdx
->getValue();
8018 InstructionCost ImmCost
= TTI
->getIntImmCost(
8019 NewIdx
, GEPIIdx
->getType(), TargetTransformInfo::TCK_SizeAndLatency
);
8020 if (ImmCost
> TargetTransformInfo::TCC_Basic
)
8023 // Now unmerge between GEPI and UGEPIs.
8024 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
8025 UGEPI
->setOperand(0, GEPI
);
8026 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8027 Constant
*NewUGEPIIdx
= ConstantInt::get(
8028 GEPIIdx
->getType(), UGEPIIdx
->getValue() - GEPIIdx
->getValue());
8029 UGEPI
->setOperand(1, NewUGEPIIdx
);
8030 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8031 // inbounds to avoid UB.
8032 if (!GEPI
->isInBounds()) {
8033 UGEPI
->setIsInBounds(false);
8036 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8037 // alive on IndirectBr edges).
8038 assert(llvm::none_of(GEPIOp
->users(),
8040 return cast
<Instruction
>(Usr
)->getParent() != SrcBlock
;
8042 "GEPIOp is used outside SrcBlock");
8046 static bool optimizeBranch(BranchInst
*Branch
, const TargetLowering
&TLI
,
8047 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
8050 // %c = icmp ult %x, 8
8055 // %c = icmp eq %tc, 0
8057 // Creating the cmp to zero can be better for the backend, especially if the
8058 // lshr produces flags that can be used automatically.
8059 if (!TLI
.preferZeroCompareBranch() || !Branch
->isConditional())
8062 ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(Branch
->getCondition());
8063 if (!Cmp
|| !isa
<ConstantInt
>(Cmp
->getOperand(1)) || !Cmp
->hasOneUse())
8066 Value
*X
= Cmp
->getOperand(0);
8067 APInt CmpC
= cast
<ConstantInt
>(Cmp
->getOperand(1))->getValue();
8069 for (auto *U
: X
->users()) {
8070 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
8071 // A quick dominance check
8073 (UI
->getParent() != Branch
->getParent() &&
8074 UI
->getParent() != Branch
->getSuccessor(0) &&
8075 UI
->getParent() != Branch
->getSuccessor(1)) ||
8076 (UI
->getParent() != Branch
->getParent() &&
8077 !UI
->getParent()->getSinglePredecessor()))
8080 if (CmpC
.isPowerOf2() && Cmp
->getPredicate() == ICmpInst::ICMP_ULT
&&
8081 match(UI
, m_Shr(m_Specific(X
), m_SpecificInt(CmpC
.logBase2())))) {
8082 IRBuilder
<> Builder(Branch
);
8083 if (UI
->getParent() != Branch
->getParent())
8084 UI
->moveBefore(Branch
);
8085 Value
*NewCmp
= Builder
.CreateCmp(ICmpInst::ICMP_EQ
, UI
,
8086 ConstantInt::get(UI
->getType(), 0));
8087 LLVM_DEBUG(dbgs() << "Converting " << *Cmp
<< "\n");
8088 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp
<< "\n");
8089 replaceAllUsesWith(Cmp
, NewCmp
, FreshBBs
, IsHugeFunc
);
8092 if (Cmp
->isEquality() &&
8093 (match(UI
, m_Add(m_Specific(X
), m_SpecificInt(-CmpC
))) ||
8094 match(UI
, m_Sub(m_Specific(X
), m_SpecificInt(CmpC
))))) {
8095 IRBuilder
<> Builder(Branch
);
8096 if (UI
->getParent() != Branch
->getParent())
8097 UI
->moveBefore(Branch
);
8098 Value
*NewCmp
= Builder
.CreateCmp(Cmp
->getPredicate(), UI
,
8099 ConstantInt::get(UI
->getType(), 0));
8100 LLVM_DEBUG(dbgs() << "Converting " << *Cmp
<< "\n");
8101 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp
<< "\n");
8102 replaceAllUsesWith(Cmp
, NewCmp
, FreshBBs
, IsHugeFunc
);
8109 bool CodeGenPrepare::optimizeInst(Instruction
*I
, ModifyDT
&ModifiedDT
) {
8110 // Bail out if we inserted the instruction to prevent optimizations from
8111 // stepping on each other's toes.
8112 if (InsertedInsts
.count(I
))
8115 // TODO: Move into the switch on opcode below here.
8116 if (PHINode
*P
= dyn_cast
<PHINode
>(I
)) {
8117 // It is possible for very late stage optimizations (such as SimplifyCFG)
8118 // to introduce PHI nodes too late to be cleaned up. If we detect such a
8119 // trivial PHI, go ahead and zap it here.
8120 if (Value
*V
= simplifyInstruction(P
, {*DL
, TLInfo
})) {
8121 LargeOffsetGEPMap
.erase(P
);
8122 replaceAllUsesWith(P
, V
, FreshBBs
, IsHugeFunc
);
8123 P
->eraseFromParent();
8130 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
8131 // If the source of the cast is a constant, then this should have
8132 // already been constant folded. The only reason NOT to constant fold
8133 // it is if something (e.g. LSR) was careful to place the constant
8134 // evaluation in a block other than then one that uses it (e.g. to hoist
8135 // the address of globals out of a loop). If this is the case, we don't
8136 // want to forward-subst the cast.
8137 if (isa
<Constant
>(CI
->getOperand(0)))
8140 if (OptimizeNoopCopyExpression(CI
, *TLI
, *DL
))
8143 if ((isa
<UIToFPInst
>(I
) || isa
<FPToUIInst
>(I
) || isa
<TruncInst
>(I
)) &&
8144 TLI
->optimizeExtendOrTruncateConversion(
8145 I
, LI
->getLoopFor(I
->getParent()), *TTI
))
8148 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
8149 /// Sink a zext or sext into its user blocks if the target type doesn't
8150 /// fit in one register
8151 if (TLI
->getTypeAction(CI
->getContext(),
8152 TLI
->getValueType(*DL
, CI
->getType())) ==
8153 TargetLowering::TypeExpandInteger
) {
8154 return SinkCast(CI
);
8156 if (TLI
->optimizeExtendOrTruncateConversion(
8157 I
, LI
->getLoopFor(I
->getParent()), *TTI
))
8160 bool MadeChange
= optimizeExt(I
);
8161 return MadeChange
| optimizeExtUses(I
);
8167 if (auto *Cmp
= dyn_cast
<CmpInst
>(I
))
8168 if (optimizeCmp(Cmp
, ModifiedDT
))
8171 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
8172 LI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
8173 bool Modified
= optimizeLoadExt(LI
);
8174 unsigned AS
= LI
->getPointerAddressSpace();
8175 Modified
|= optimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(), AS
);
8179 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
8180 if (splitMergedValStore(*SI
, *DL
, *TLI
))
8182 SI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
8183 unsigned AS
= SI
->getPointerAddressSpace();
8184 return optimizeMemoryInst(I
, SI
->getOperand(1),
8185 SI
->getOperand(0)->getType(), AS
);
8188 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
8189 unsigned AS
= RMW
->getPointerAddressSpace();
8190 return optimizeMemoryInst(I
, RMW
->getPointerOperand(), RMW
->getType(), AS
);
8193 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
8194 unsigned AS
= CmpX
->getPointerAddressSpace();
8195 return optimizeMemoryInst(I
, CmpX
->getPointerOperand(),
8196 CmpX
->getCompareOperand()->getType(), AS
);
8199 BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(I
);
8201 if (BinOp
&& BinOp
->getOpcode() == Instruction::And
&& EnableAndCmpSinking
&&
8202 sinkAndCmp0Expression(BinOp
, *TLI
, InsertedInsts
))
8205 // TODO: Move this into the switch on opcode - it handles shifts already.
8206 if (BinOp
&& (BinOp
->getOpcode() == Instruction::AShr
||
8207 BinOp
->getOpcode() == Instruction::LShr
)) {
8208 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BinOp
->getOperand(1));
8209 if (CI
&& TLI
->hasExtractBitsInsn())
8210 if (OptimizeExtractBits(BinOp
, CI
, *TLI
, *DL
))
8214 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
8215 if (GEPI
->hasAllZeroIndices()) {
8216 /// The GEP operand must be a pointer, so must its result -> BitCast
8217 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
8218 GEPI
->getName(), GEPI
);
8219 NC
->setDebugLoc(GEPI
->getDebugLoc());
8220 replaceAllUsesWith(GEPI
, NC
, FreshBBs
, IsHugeFunc
);
8221 RecursivelyDeleteTriviallyDeadInstructions(
8222 GEPI
, TLInfo
, nullptr,
8223 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
8225 optimizeInst(NC
, ModifiedDT
);
8228 if (tryUnmergingGEPsAcrossIndirectBr(GEPI
, TTI
)) {
8234 if (FreezeInst
*FI
= dyn_cast
<FreezeInst
>(I
)) {
8235 // freeze(icmp a, const)) -> icmp (freeze a), const
8236 // This helps generate efficient conditional jumps.
8237 Instruction
*CmpI
= nullptr;
8238 if (ICmpInst
*II
= dyn_cast
<ICmpInst
>(FI
->getOperand(0)))
8240 else if (FCmpInst
*F
= dyn_cast
<FCmpInst
>(FI
->getOperand(0)))
8241 CmpI
= F
->getFastMathFlags().none() ? F
: nullptr;
8243 if (CmpI
&& CmpI
->hasOneUse()) {
8244 auto Op0
= CmpI
->getOperand(0), Op1
= CmpI
->getOperand(1);
8245 bool Const0
= isa
<ConstantInt
>(Op0
) || isa
<ConstantFP
>(Op0
) ||
8246 isa
<ConstantPointerNull
>(Op0
);
8247 bool Const1
= isa
<ConstantInt
>(Op1
) || isa
<ConstantFP
>(Op1
) ||
8248 isa
<ConstantPointerNull
>(Op1
);
8249 if (Const0
|| Const1
) {
8250 if (!Const0
|| !Const1
) {
8251 auto *F
= new FreezeInst(Const0
? Op1
: Op0
, "", CmpI
);
8253 CmpI
->setOperand(Const0
? 1 : 0, F
);
8255 replaceAllUsesWith(FI
, CmpI
, FreshBBs
, IsHugeFunc
);
8256 FI
->eraseFromParent();
8263 if (tryToSinkFreeOperands(I
))
8266 switch (I
->getOpcode()) {
8267 case Instruction::Shl
:
8268 case Instruction::LShr
:
8269 case Instruction::AShr
:
8270 return optimizeShiftInst(cast
<BinaryOperator
>(I
));
8271 case Instruction::Call
:
8272 return optimizeCallInst(cast
<CallInst
>(I
), ModifiedDT
);
8273 case Instruction::Select
:
8274 return optimizeSelectInst(cast
<SelectInst
>(I
));
8275 case Instruction::ShuffleVector
:
8276 return optimizeShuffleVectorInst(cast
<ShuffleVectorInst
>(I
));
8277 case Instruction::Switch
:
8278 return optimizeSwitchInst(cast
<SwitchInst
>(I
));
8279 case Instruction::ExtractElement
:
8280 return optimizeExtractElementInst(cast
<ExtractElementInst
>(I
));
8281 case Instruction::Br
:
8282 return optimizeBranch(cast
<BranchInst
>(I
), *TLI
, FreshBBs
, IsHugeFunc
);
8288 /// Given an OR instruction, check to see if this is a bitreverse
8289 /// idiom. If so, insert the new intrinsic and return true.
8290 bool CodeGenPrepare::makeBitReverse(Instruction
&I
) {
8291 if (!I
.getType()->isIntegerTy() ||
8292 !TLI
->isOperationLegalOrCustom(ISD::BITREVERSE
,
8293 TLI
->getValueType(*DL
, I
.getType(), true)))
8296 SmallVector
<Instruction
*, 4> Insts
;
8297 if (!recognizeBSwapOrBitReverseIdiom(&I
, false, true, Insts
))
8299 Instruction
*LastInst
= Insts
.back();
8300 replaceAllUsesWith(&I
, LastInst
, FreshBBs
, IsHugeFunc
);
8301 RecursivelyDeleteTriviallyDeadInstructions(
8302 &I
, TLInfo
, nullptr,
8303 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
8307 // In this pass we look for GEP and cast instructions that are used
8308 // across basic blocks and rewrite them to improve basic-block-at-a-time
8310 bool CodeGenPrepare::optimizeBlock(BasicBlock
&BB
, ModifyDT
&ModifiedDT
) {
8312 bool MadeChange
= false;
8315 CurInstIterator
= BB
.begin();
8316 ModifiedDT
= ModifyDT::NotModifyDT
;
8317 while (CurInstIterator
!= BB
.end()) {
8318 MadeChange
|= optimizeInst(&*CurInstIterator
++, ModifiedDT
);
8319 if (ModifiedDT
!= ModifyDT::NotModifyDT
) {
8320 // For huge function we tend to quickly go though the inner optmization
8321 // opportunities in the BB. So we go back to the BB head to re-optimize
8322 // each instruction instead of go back to the function head.
8325 getDT(*BB
.getParent());
8332 } while (ModifiedDT
== ModifyDT::ModifyInstDT
);
8334 bool MadeBitReverse
= true;
8335 while (MadeBitReverse
) {
8336 MadeBitReverse
= false;
8337 for (auto &I
: reverse(BB
)) {
8338 if (makeBitReverse(I
)) {
8339 MadeBitReverse
= MadeChange
= true;
8344 MadeChange
|= dupRetToEnableTailCallOpts(&BB
, ModifiedDT
);
8349 // Some CGP optimizations may move or alter what's computed in a block. Check
8350 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8351 bool CodeGenPrepare::fixupDbgValue(Instruction
*I
) {
8352 assert(isa
<DbgValueInst
>(I
));
8353 DbgValueInst
&DVI
= *cast
<DbgValueInst
>(I
);
8355 // Does this dbg.value refer to a sunk address calculation?
8356 bool AnyChange
= false;
8357 SmallDenseSet
<Value
*> LocationOps(DVI
.location_ops().begin(),
8358 DVI
.location_ops().end());
8359 for (Value
*Location
: LocationOps
) {
8360 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Location
];
8361 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
8363 // Point dbg.value at locally computed address, which should give the best
8364 // opportunity to be accurately lowered. This update may change the type
8365 // of pointer being referred to; however this makes no difference to
8366 // debugging information, and we can't generate bitcasts that may affect
8368 DVI
.replaceVariableLocationOp(Location
, SunkAddr
);
8375 // A llvm.dbg.value may be using a value before its definition, due to
8376 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8377 // them by moving the dbg.value to immediately after the value definition.
8378 // FIXME: Ideally this should never be necessary, and this has the potential
8379 // to re-order dbg.value intrinsics.
8380 bool CodeGenPrepare::placeDbgValues(Function
&F
) {
8381 bool MadeChange
= false;
8382 DominatorTree
DT(F
);
8384 for (BasicBlock
&BB
: F
) {
8385 for (Instruction
&Insn
: llvm::make_early_inc_range(BB
)) {
8386 DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(&Insn
);
8390 SmallVector
<Instruction
*, 4> VIs
;
8391 for (Value
*V
: DVI
->getValues())
8392 if (Instruction
*VI
= dyn_cast_or_null
<Instruction
>(V
))
8395 // This DVI may depend on multiple instructions, complicating any
8396 // potential sink. This block takes the defensive approach, opting to
8397 // "undef" the DVI if it has more than one instruction and any of them do
8398 // not dominate DVI.
8399 for (Instruction
*VI
: VIs
) {
8400 if (VI
->isTerminator())
8403 // If VI is a phi in a block with an EHPad terminator, we can't insert
8405 if (isa
<PHINode
>(VI
) && VI
->getParent()->getTerminator()->isEHPad())
8408 // If the defining instruction dominates the dbg.value, we do not need
8409 // to move the dbg.value.
8410 if (DT
.dominates(VI
, DVI
))
8413 // If we depend on multiple instructions and any of them doesn't
8414 // dominate this DVI, we probably can't salvage it: moving it to
8415 // after any of the instructions could cause us to lose the others.
8416 if (VIs
.size() > 1) {
8419 << "Unable to find valid location for Debug Value, undefing:\n"
8421 DVI
->setKillLocation();
8425 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8426 << *DVI
<< ' ' << *VI
);
8427 DVI
->removeFromParent();
8428 if (isa
<PHINode
>(VI
))
8429 DVI
->insertBefore(&*VI
->getParent()->getFirstInsertionPt());
8431 DVI
->insertAfter(VI
);
8440 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8441 // probes can be chained dependencies of other regular DAG nodes and block DAG
8442 // combine optimizations.
8443 bool CodeGenPrepare::placePseudoProbes(Function
&F
) {
8444 bool MadeChange
= false;
8445 for (auto &Block
: F
) {
8446 // Move the rest probes to the beginning of the block.
8447 auto FirstInst
= Block
.getFirstInsertionPt();
8448 while (FirstInst
!= Block
.end() && FirstInst
->isDebugOrPseudoInst())
8450 BasicBlock::iterator
I(FirstInst
);
8452 while (I
!= Block
.end()) {
8453 if (auto *II
= dyn_cast
<PseudoProbeInst
>(I
++)) {
8454 II
->moveBefore(&*FirstInst
);
8462 /// Scale down both weights to fit into uint32_t.
8463 static void scaleWeights(uint64_t &NewTrue
, uint64_t &NewFalse
) {
8464 uint64_t NewMax
= (NewTrue
> NewFalse
) ? NewTrue
: NewFalse
;
8465 uint32_t Scale
= (NewMax
/ std::numeric_limits
<uint32_t>::max()) + 1;
8466 NewTrue
= NewTrue
/ Scale
;
8467 NewFalse
= NewFalse
/ Scale
;
8470 /// Some targets prefer to split a conditional branch like:
8472 /// %0 = icmp ne i32 %a, 0
8473 /// %1 = icmp ne i32 %b, 0
8474 /// %or.cond = or i1 %0, %1
8475 /// br i1 %or.cond, label %TrueBB, label %FalseBB
8477 /// into multiple branch instructions like:
8480 /// %0 = icmp ne i32 %a, 0
8481 /// br i1 %0, label %TrueBB, label %bb2
8483 /// %1 = icmp ne i32 %b, 0
8484 /// br i1 %1, label %TrueBB, label %FalseBB
8486 /// This usually allows instruction selection to do even further optimizations
8487 /// and combine the compare with the branch instruction. Currently this is
8488 /// applied for targets which have "cheap" jump instructions.
8490 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8492 bool CodeGenPrepare::splitBranchCondition(Function
&F
, ModifyDT
&ModifiedDT
) {
8493 if (!TM
->Options
.EnableFastISel
|| TLI
->isJumpExpensive())
8496 bool MadeChange
= false;
8497 for (auto &BB
: F
) {
8498 // Does this BB end with the following?
8499 // %cond1 = icmp|fcmp|binary instruction ...
8500 // %cond2 = icmp|fcmp|binary instruction ...
8501 // %cond.or = or|and i1 %cond1, cond2
8502 // br i1 %cond.or label %dest1, label %dest2"
8503 Instruction
*LogicOp
;
8504 BasicBlock
*TBB
, *FBB
;
8505 if (!match(BB
.getTerminator(),
8506 m_Br(m_OneUse(m_Instruction(LogicOp
)), TBB
, FBB
)))
8509 auto *Br1
= cast
<BranchInst
>(BB
.getTerminator());
8510 if (Br1
->getMetadata(LLVMContext::MD_unpredictable
))
8513 // The merging of mostly empty BB can cause a degenerate branch.
8518 Value
*Cond1
, *Cond2
;
8520 m_LogicalAnd(m_OneUse(m_Value(Cond1
)), m_OneUse(m_Value(Cond2
)))))
8521 Opc
= Instruction::And
;
8522 else if (match(LogicOp
, m_LogicalOr(m_OneUse(m_Value(Cond1
)),
8523 m_OneUse(m_Value(Cond2
)))))
8524 Opc
= Instruction::Or
;
8528 auto IsGoodCond
= [](Value
*Cond
) {
8531 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8532 m_LogicalOr(m_Value(), m_Value()))));
8534 if (!IsGoodCond(Cond1
) || !IsGoodCond(Cond2
))
8537 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB
.dump());
8541 BasicBlock::Create(BB
.getContext(), BB
.getName() + ".cond.split",
8542 BB
.getParent(), BB
.getNextNode());
8544 FreshBBs
.insert(TmpBB
);
8546 // Update original basic block by using the first condition directly by the
8547 // branch instruction and removing the no longer needed and/or instruction.
8548 Br1
->setCondition(Cond1
);
8549 LogicOp
->eraseFromParent();
8551 // Depending on the condition we have to either replace the true or the
8552 // false successor of the original branch instruction.
8553 if (Opc
== Instruction::And
)
8554 Br1
->setSuccessor(0, TmpBB
);
8556 Br1
->setSuccessor(1, TmpBB
);
8558 // Fill in the new basic block.
8559 auto *Br2
= IRBuilder
<>(TmpBB
).CreateCondBr(Cond2
, TBB
, FBB
);
8560 if (auto *I
= dyn_cast
<Instruction
>(Cond2
)) {
8561 I
->removeFromParent();
8562 I
->insertBefore(Br2
);
8565 // Update PHI nodes in both successors. The original BB needs to be
8566 // replaced in one successor's PHI nodes, because the branch comes now from
8567 // the newly generated BB (NewBB). In the other successor we need to add one
8568 // incoming edge to the PHI nodes, because both branch instructions target
8569 // now the same successor. Depending on the original branch condition
8570 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8571 // we perform the correct update for the PHI nodes.
8572 // This doesn't change the successor order of the just created branch
8573 // instruction (or any other instruction).
8574 if (Opc
== Instruction::Or
)
8575 std::swap(TBB
, FBB
);
8577 // Replace the old BB with the new BB.
8578 TBB
->replacePhiUsesWith(&BB
, TmpBB
);
8580 // Add another incoming edge from the new BB.
8581 for (PHINode
&PN
: FBB
->phis()) {
8582 auto *Val
= PN
.getIncomingValueForBlock(&BB
);
8583 PN
.addIncoming(Val
, TmpBB
);
8586 // Update the branch weights (from SelectionDAGBuilder::
8587 // FindMergedConditions).
8588 if (Opc
== Instruction::Or
) {
8589 // Codegen X | Y as:
8598 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8599 // The requirement is that
8600 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8601 // = TrueProb for original BB.
8602 // Assuming the original weights are A and B, one choice is to set BB1's
8603 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8605 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8606 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8607 // TmpBB, but the math is more complicated.
8608 uint64_t TrueWeight
, FalseWeight
;
8609 if (extractBranchWeights(*Br1
, TrueWeight
, FalseWeight
)) {
8610 uint64_t NewTrueWeight
= TrueWeight
;
8611 uint64_t NewFalseWeight
= TrueWeight
+ 2 * FalseWeight
;
8612 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8613 Br1
->setMetadata(LLVMContext::MD_prof
,
8614 MDBuilder(Br1
->getContext())
8615 .createBranchWeights(TrueWeight
, FalseWeight
));
8617 NewTrueWeight
= TrueWeight
;
8618 NewFalseWeight
= 2 * FalseWeight
;
8619 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8620 Br2
->setMetadata(LLVMContext::MD_prof
,
8621 MDBuilder(Br2
->getContext())
8622 .createBranchWeights(TrueWeight
, FalseWeight
));
8625 // Codegen X & Y as:
8633 // This requires creation of TmpBB after CurBB.
8635 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8636 // The requirement is that
8637 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8638 // = FalseProb for original BB.
8639 // Assuming the original weights are A and B, one choice is to set BB1's
8640 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8642 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8643 uint64_t TrueWeight
, FalseWeight
;
8644 if (extractBranchWeights(*Br1
, TrueWeight
, FalseWeight
)) {
8645 uint64_t NewTrueWeight
= 2 * TrueWeight
+ FalseWeight
;
8646 uint64_t NewFalseWeight
= FalseWeight
;
8647 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8648 Br1
->setMetadata(LLVMContext::MD_prof
,
8649 MDBuilder(Br1
->getContext())
8650 .createBranchWeights(TrueWeight
, FalseWeight
));
8652 NewTrueWeight
= 2 * TrueWeight
;
8653 NewFalseWeight
= FalseWeight
;
8654 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8655 Br2
->setMetadata(LLVMContext::MD_prof
,
8656 MDBuilder(Br2
->getContext())
8657 .createBranchWeights(TrueWeight
, FalseWeight
));
8661 ModifiedDT
= ModifyDT::ModifyBBDT
;
8664 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB
.dump();