1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
31 #include "llvm/CodeGen/LowLevelType.h"
32 #include "llvm/CodeGen/LowLevelTypeUtils.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/SwitchLoweringUtils.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetPassConfig.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/DiagnosticInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GetElementPtrTypeIterator.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/MC/MCContext.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CodeGen.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Target/TargetIntrinsicInfo.h"
82 #include "llvm/Target/TargetMachine.h"
83 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
93 #define DEBUG_TYPE "irtranslator"
98 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
99 cl::desc("Should enable CSE in irtranslator"),
100 cl::Optional
, cl::init(false));
101 char IRTranslator::ID
= 0;
103 INITIALIZE_PASS_BEGIN(IRTranslator
, DEBUG_TYPE
, "IRTranslator LLVM IR -> MI",
105 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
106 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass
)
107 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
108 INITIALIZE_PASS_DEPENDENCY(StackProtector
)
109 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
110 INITIALIZE_PASS_END(IRTranslator
, DEBUG_TYPE
, "IRTranslator LLVM IR -> MI",
113 static void reportTranslationError(MachineFunction
&MF
,
114 const TargetPassConfig
&TPC
,
115 OptimizationRemarkEmitter
&ORE
,
116 OptimizationRemarkMissed
&R
) {
117 MF
.getProperties().set(MachineFunctionProperties::Property::FailedISel
);
119 // Print the function name explicitly if we don't have a debug location (which
120 // makes the diagnostic less useful) or if we're going to emit a raw error.
121 if (!R
.getLocation().isValid() || TPC
.isGlobalISelAbortEnabled())
122 R
<< (" (in function: " + MF
.getName() + ")").str();
124 if (TPC
.isGlobalISelAbortEnabled())
125 report_fatal_error(Twine(R
.getMsg()));
130 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel
)
131 : MachineFunctionPass(ID
), OptLevel(optlevel
) {}
135 /// Verify that every instruction created has the same DILocation as the
136 /// instruction being translated.
137 class DILocationVerifier
: public GISelChangeObserver
{
138 const Instruction
*CurrInst
= nullptr;
141 DILocationVerifier() = default;
142 ~DILocationVerifier() = default;
144 const Instruction
*getCurrentInst() const { return CurrInst
; }
145 void setCurrentInst(const Instruction
*Inst
) { CurrInst
= Inst
; }
147 void erasingInstr(MachineInstr
&MI
) override
{}
148 void changingInstr(MachineInstr
&MI
) override
{}
149 void changedInstr(MachineInstr
&MI
) override
{}
151 void createdInstr(MachineInstr
&MI
) override
{
152 assert(getCurrentInst() && "Inserted instruction without a current MI");
154 // Only print the check message if we're actually checking it.
156 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
157 << " was copied to " << MI
);
159 // We allow insts in the entry block to have no debug loc because
160 // they could have originated from constants, and we don't want a jumpy
162 assert((CurrInst
->getDebugLoc() == MI
.getDebugLoc() ||
163 (MI
.getParent()->isEntryBlock() && !MI
.getDebugLoc())) &&
164 "Line info was not transferred to all instructions");
168 #endif // ifndef NDEBUG
171 void IRTranslator::getAnalysisUsage(AnalysisUsage
&AU
) const {
172 AU
.addRequired
<StackProtector
>();
173 AU
.addRequired
<TargetPassConfig
>();
174 AU
.addRequired
<GISelCSEAnalysisWrapperPass
>();
175 AU
.addRequired
<AssumptionCacheTracker
>();
176 if (OptLevel
!= CodeGenOpt::None
) {
177 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
178 AU
.addRequired
<AAResultsWrapperPass
>();
180 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
181 AU
.addPreserved
<TargetLibraryInfoWrapperPass
>();
182 getSelectionDAGFallbackAnalysisUsage(AU
);
183 MachineFunctionPass::getAnalysisUsage(AU
);
186 IRTranslator::ValueToVRegInfo::VRegListT
&
187 IRTranslator::allocateVRegs(const Value
&Val
) {
188 auto VRegsIt
= VMap
.findVRegs(Val
);
189 if (VRegsIt
!= VMap
.vregs_end())
190 return *VRegsIt
->second
;
191 auto *Regs
= VMap
.getVRegs(Val
);
192 auto *Offsets
= VMap
.getOffsets(Val
);
193 SmallVector
<LLT
, 4> SplitTys
;
194 computeValueLLTs(*DL
, *Val
.getType(), SplitTys
,
195 Offsets
->empty() ? Offsets
: nullptr);
196 for (unsigned i
= 0; i
< SplitTys
.size(); ++i
)
201 ArrayRef
<Register
> IRTranslator::getOrCreateVRegs(const Value
&Val
) {
202 auto VRegsIt
= VMap
.findVRegs(Val
);
203 if (VRegsIt
!= VMap
.vregs_end())
204 return *VRegsIt
->second
;
206 if (Val
.getType()->isVoidTy())
207 return *VMap
.getVRegs(Val
);
209 // Create entry for this type.
210 auto *VRegs
= VMap
.getVRegs(Val
);
211 auto *Offsets
= VMap
.getOffsets(Val
);
213 assert(Val
.getType()->isSized() &&
214 "Don't know how to create an empty vreg");
216 SmallVector
<LLT
, 4> SplitTys
;
217 computeValueLLTs(*DL
, *Val
.getType(), SplitTys
,
218 Offsets
->empty() ? Offsets
: nullptr);
220 if (!isa
<Constant
>(Val
)) {
221 for (auto Ty
: SplitTys
)
222 VRegs
->push_back(MRI
->createGenericVirtualRegister(Ty
));
226 if (Val
.getType()->isAggregateType()) {
227 // UndefValue, ConstantAggregateZero
228 auto &C
= cast
<Constant
>(Val
);
230 while (auto Elt
= C
.getAggregateElement(Idx
++)) {
231 auto EltRegs
= getOrCreateVRegs(*Elt
);
232 llvm::copy(EltRegs
, std::back_inserter(*VRegs
));
235 assert(SplitTys
.size() == 1 && "unexpectedly split LLT");
236 VRegs
->push_back(MRI
->createGenericVirtualRegister(SplitTys
[0]));
237 bool Success
= translate(cast
<Constant
>(Val
), VRegs
->front());
239 OptimizationRemarkMissed
R("gisel-irtranslator", "GISelFailure",
240 MF
->getFunction().getSubprogram(),
241 &MF
->getFunction().getEntryBlock());
242 R
<< "unable to translate constant: " << ore::NV("Type", Val
.getType());
243 reportTranslationError(*MF
, *TPC
, *ORE
, R
);
251 int IRTranslator::getOrCreateFrameIndex(const AllocaInst
&AI
) {
252 auto MapEntry
= FrameIndices
.find(&AI
);
253 if (MapEntry
!= FrameIndices
.end())
254 return MapEntry
->second
;
256 uint64_t ElementSize
= DL
->getTypeAllocSize(AI
.getAllocatedType());
258 ElementSize
* cast
<ConstantInt
>(AI
.getArraySize())->getZExtValue();
260 // Always allocate at least one byte.
261 Size
= std::max
<uint64_t>(Size
, 1u);
263 int &FI
= FrameIndices
[&AI
];
264 FI
= MF
->getFrameInfo().CreateStackObject(Size
, AI
.getAlign(), false, &AI
);
268 Align
IRTranslator::getMemOpAlign(const Instruction
&I
) {
269 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
270 return SI
->getAlign();
271 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
))
272 return LI
->getAlign();
273 if (const AtomicCmpXchgInst
*AI
= dyn_cast
<AtomicCmpXchgInst
>(&I
))
274 return AI
->getAlign();
275 if (const AtomicRMWInst
*AI
= dyn_cast
<AtomicRMWInst
>(&I
))
276 return AI
->getAlign();
278 OptimizationRemarkMissed
R("gisel-irtranslator", "", &I
);
279 R
<< "unable to translate memop: " << ore::NV("Opcode", &I
);
280 reportTranslationError(*MF
, *TPC
, *ORE
, R
);
284 MachineBasicBlock
&IRTranslator::getMBB(const BasicBlock
&BB
) {
285 MachineBasicBlock
*&MBB
= BBToMBB
[&BB
];
286 assert(MBB
&& "BasicBlock was not encountered before");
290 void IRTranslator::addMachineCFGPred(CFGEdge Edge
, MachineBasicBlock
*NewPred
) {
291 assert(NewPred
&& "new predecessor must be a real MachineBasicBlock");
292 MachinePreds
[Edge
].push_back(NewPred
);
295 bool IRTranslator::translateBinaryOp(unsigned Opcode
, const User
&U
,
296 MachineIRBuilder
&MIRBuilder
) {
297 // Get or create a virtual register for each value.
298 // Unless the value is a Constant => loadimm cst?
299 // or inline constant each time?
300 // Creation of a virtual register needs to have a size.
301 Register Op0
= getOrCreateVReg(*U
.getOperand(0));
302 Register Op1
= getOrCreateVReg(*U
.getOperand(1));
303 Register Res
= getOrCreateVReg(U
);
305 if (isa
<Instruction
>(U
)) {
306 const Instruction
&I
= cast
<Instruction
>(U
);
307 Flags
= MachineInstr::copyFlagsFromInstruction(I
);
310 MIRBuilder
.buildInstr(Opcode
, {Res
}, {Op0
, Op1
}, Flags
);
314 bool IRTranslator::translateUnaryOp(unsigned Opcode
, const User
&U
,
315 MachineIRBuilder
&MIRBuilder
) {
316 Register Op0
= getOrCreateVReg(*U
.getOperand(0));
317 Register Res
= getOrCreateVReg(U
);
319 if (isa
<Instruction
>(U
)) {
320 const Instruction
&I
= cast
<Instruction
>(U
);
321 Flags
= MachineInstr::copyFlagsFromInstruction(I
);
323 MIRBuilder
.buildInstr(Opcode
, {Res
}, {Op0
}, Flags
);
327 bool IRTranslator::translateFNeg(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
328 return translateUnaryOp(TargetOpcode::G_FNEG
, U
, MIRBuilder
);
331 bool IRTranslator::translateCompare(const User
&U
,
332 MachineIRBuilder
&MIRBuilder
) {
333 auto *CI
= dyn_cast
<CmpInst
>(&U
);
334 Register Op0
= getOrCreateVReg(*U
.getOperand(0));
335 Register Op1
= getOrCreateVReg(*U
.getOperand(1));
336 Register Res
= getOrCreateVReg(U
);
337 CmpInst::Predicate Pred
=
338 CI
? CI
->getPredicate() : static_cast<CmpInst::Predicate
>(
339 cast
<ConstantExpr
>(U
).getPredicate());
340 if (CmpInst::isIntPredicate(Pred
))
341 MIRBuilder
.buildICmp(Pred
, Res
, Op0
, Op1
);
342 else if (Pred
== CmpInst::FCMP_FALSE
)
343 MIRBuilder
.buildCopy(
344 Res
, getOrCreateVReg(*Constant::getNullValue(U
.getType())));
345 else if (Pred
== CmpInst::FCMP_TRUE
)
346 MIRBuilder
.buildCopy(
347 Res
, getOrCreateVReg(*Constant::getAllOnesValue(U
.getType())));
351 Flags
= MachineInstr::copyFlagsFromInstruction(*CI
);
352 MIRBuilder
.buildFCmp(Pred
, Res
, Op0
, Op1
, Flags
);
358 bool IRTranslator::translateRet(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
359 const ReturnInst
&RI
= cast
<ReturnInst
>(U
);
360 const Value
*Ret
= RI
.getReturnValue();
361 if (Ret
&& DL
->getTypeStoreSize(Ret
->getType()) == 0)
364 ArrayRef
<Register
> VRegs
;
366 VRegs
= getOrCreateVRegs(*Ret
);
368 Register SwiftErrorVReg
= 0;
369 if (CLI
->supportSwiftError() && SwiftError
.getFunctionArg()) {
370 SwiftErrorVReg
= SwiftError
.getOrCreateVRegUseAt(
371 &RI
, &MIRBuilder
.getMBB(), SwiftError
.getFunctionArg());
374 // The target may mess up with the insertion point, but
375 // this is not important as a return is the last instruction
376 // of the block anyway.
377 return CLI
->lowerReturn(MIRBuilder
, Ret
, VRegs
, FuncInfo
, SwiftErrorVReg
);
380 void IRTranslator::emitBranchForMergedCondition(
381 const Value
*Cond
, MachineBasicBlock
*TBB
, MachineBasicBlock
*FBB
,
382 MachineBasicBlock
*CurBB
, MachineBasicBlock
*SwitchBB
,
383 BranchProbability TProb
, BranchProbability FProb
, bool InvertCond
) {
384 // If the leaf of the tree is a comparison, merge the condition into
386 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
387 CmpInst::Predicate Condition
;
388 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
389 Condition
= InvertCond
? IC
->getInversePredicate() : IC
->getPredicate();
391 const FCmpInst
*FC
= cast
<FCmpInst
>(Cond
);
392 Condition
= InvertCond
? FC
->getInversePredicate() : FC
->getPredicate();
395 SwitchCG::CaseBlock
CB(Condition
, false, BOp
->getOperand(0),
396 BOp
->getOperand(1), nullptr, TBB
, FBB
, CurBB
,
397 CurBuilder
->getDebugLoc(), TProb
, FProb
);
398 SL
->SwitchCases
.push_back(CB
);
402 // Create a CaseBlock record representing this branch.
403 CmpInst::Predicate Pred
= InvertCond
? CmpInst::ICMP_NE
: CmpInst::ICMP_EQ
;
404 SwitchCG::CaseBlock
CB(
405 Pred
, false, Cond
, ConstantInt::getTrue(MF
->getFunction().getContext()),
406 nullptr, TBB
, FBB
, CurBB
, CurBuilder
->getDebugLoc(), TProb
, FProb
);
407 SL
->SwitchCases
.push_back(CB
);
410 static bool isValInBlock(const Value
*V
, const BasicBlock
*BB
) {
411 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
412 return I
->getParent() == BB
;
416 void IRTranslator::findMergedConditions(
417 const Value
*Cond
, MachineBasicBlock
*TBB
, MachineBasicBlock
*FBB
,
418 MachineBasicBlock
*CurBB
, MachineBasicBlock
*SwitchBB
,
419 Instruction::BinaryOps Opc
, BranchProbability TProb
,
420 BranchProbability FProb
, bool InvertCond
) {
421 using namespace PatternMatch
;
422 assert((Opc
== Instruction::And
|| Opc
== Instruction::Or
) &&
423 "Expected Opc to be AND/OR");
424 // Skip over not part of the tree and remember to invert op and operands at
427 if (match(Cond
, m_OneUse(m_Not(m_Value(NotCond
)))) &&
428 isValInBlock(NotCond
, CurBB
->getBasicBlock())) {
429 findMergedConditions(NotCond
, TBB
, FBB
, CurBB
, SwitchBB
, Opc
, TProb
, FProb
,
434 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
435 const Value
*BOpOp0
, *BOpOp1
;
436 // Compute the effective opcode for Cond, taking into account whether it needs
437 // to be inverted, e.g.
438 // and (not (or A, B)), C
440 // and (and (not A, not B), C)
441 Instruction::BinaryOps BOpc
= (Instruction::BinaryOps
)0;
443 BOpc
= match(BOp
, m_LogicalAnd(m_Value(BOpOp0
), m_Value(BOpOp1
)))
445 : (match(BOp
, m_LogicalOr(m_Value(BOpOp0
), m_Value(BOpOp1
)))
447 : (Instruction::BinaryOps
)0);
449 if (BOpc
== Instruction::And
)
450 BOpc
= Instruction::Or
;
451 else if (BOpc
== Instruction::Or
)
452 BOpc
= Instruction::And
;
456 // If this node is not part of the or/and tree, emit it as a branch.
457 // Note that all nodes in the tree should have same opcode.
458 bool BOpIsInOrAndTree
= BOpc
&& BOpc
== Opc
&& BOp
->hasOneUse();
459 if (!BOpIsInOrAndTree
|| BOp
->getParent() != CurBB
->getBasicBlock() ||
460 !isValInBlock(BOpOp0
, CurBB
->getBasicBlock()) ||
461 !isValInBlock(BOpOp1
, CurBB
->getBasicBlock())) {
462 emitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
, TProb
, FProb
,
467 // Create TmpBB after CurBB.
468 MachineFunction::iterator
BBI(CurBB
);
469 MachineBasicBlock
*TmpBB
=
470 MF
->CreateMachineBasicBlock(CurBB
->getBasicBlock());
471 CurBB
->getParent()->insert(++BBI
, TmpBB
);
473 if (Opc
== Instruction::Or
) {
483 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
484 // The requirement is that
485 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
486 // = TrueProb for original BB.
487 // Assuming the original probabilities are A and B, one choice is to set
488 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
489 // A/(1+B) and 2B/(1+B). This choice assumes that
490 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
491 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
492 // TmpBB, but the math is more complicated.
494 auto NewTrueProb
= TProb
/ 2;
495 auto NewFalseProb
= TProb
/ 2 + FProb
;
496 // Emit the LHS condition.
497 findMergedConditions(BOpOp0
, TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
, NewTrueProb
,
498 NewFalseProb
, InvertCond
);
500 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
501 SmallVector
<BranchProbability
, 2> Probs
{TProb
/ 2, FProb
};
502 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
503 // Emit the RHS condition into TmpBB.
504 findMergedConditions(BOpOp1
, TBB
, FBB
, TmpBB
, SwitchBB
, Opc
, Probs
[0],
505 Probs
[1], InvertCond
);
507 assert(Opc
== Instruction::And
&& "Unknown merge op!");
516 // This requires creation of TmpBB after CurBB.
518 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
519 // The requirement is that
520 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
521 // = FalseProb for original BB.
522 // Assuming the original probabilities are A and B, one choice is to set
523 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
524 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
525 // TrueProb for BB1 * FalseProb for TmpBB.
527 auto NewTrueProb
= TProb
+ FProb
/ 2;
528 auto NewFalseProb
= FProb
/ 2;
529 // Emit the LHS condition.
530 findMergedConditions(BOpOp0
, TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
, NewTrueProb
,
531 NewFalseProb
, InvertCond
);
533 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
534 SmallVector
<BranchProbability
, 2> Probs
{TProb
, FProb
/ 2};
535 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
536 // Emit the RHS condition into TmpBB.
537 findMergedConditions(BOpOp1
, TBB
, FBB
, TmpBB
, SwitchBB
, Opc
, Probs
[0],
538 Probs
[1], InvertCond
);
542 bool IRTranslator::shouldEmitAsBranches(
543 const std::vector
<SwitchCG::CaseBlock
> &Cases
) {
544 // For multiple cases, it's better to emit as branches.
545 if (Cases
.size() != 2)
548 // If this is two comparisons of the same values or'd or and'd together, they
549 // will get folded into a single comparison, so don't emit two blocks.
550 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
551 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
552 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
553 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
557 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
558 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
559 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
560 Cases
[0].PredInfo
.Pred
== Cases
[1].PredInfo
.Pred
&&
561 isa
<Constant
>(Cases
[0].CmpRHS
) &&
562 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
563 if (Cases
[0].PredInfo
.Pred
== CmpInst::ICMP_EQ
&&
564 Cases
[0].TrueBB
== Cases
[1].ThisBB
)
566 if (Cases
[0].PredInfo
.Pred
== CmpInst::ICMP_NE
&&
567 Cases
[0].FalseBB
== Cases
[1].ThisBB
)
574 bool IRTranslator::translateBr(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
575 const BranchInst
&BrInst
= cast
<BranchInst
>(U
);
576 auto &CurMBB
= MIRBuilder
.getMBB();
577 auto *Succ0MBB
= &getMBB(*BrInst
.getSuccessor(0));
579 if (BrInst
.isUnconditional()) {
580 // If the unconditional target is the layout successor, fallthrough.
581 if (OptLevel
== CodeGenOpt::None
|| !CurMBB
.isLayoutSuccessor(Succ0MBB
))
582 MIRBuilder
.buildBr(*Succ0MBB
);
585 for (const BasicBlock
*Succ
: successors(&BrInst
))
586 CurMBB
.addSuccessor(&getMBB(*Succ
));
590 // If this condition is one of the special cases we handle, do special stuff
592 const Value
*CondVal
= BrInst
.getCondition();
593 MachineBasicBlock
*Succ1MBB
= &getMBB(*BrInst
.getSuccessor(1));
595 const auto &TLI
= *MF
->getSubtarget().getTargetLowering();
597 // If this is a series of conditions that are or'd or and'd together, emit
598 // this as a sequence of branches instead of setcc's with and/or operations.
599 // As long as jumps are not expensive (exceptions for multi-use logic ops,
600 // unpredictable branches, and vector extracts because those jumps are likely
601 // expensive for any target), this should improve performance.
602 // For example, instead of something like:
614 using namespace PatternMatch
;
615 const Instruction
*CondI
= dyn_cast
<Instruction
>(CondVal
);
616 if (!TLI
.isJumpExpensive() && CondI
&& CondI
->hasOneUse() &&
617 !BrInst
.hasMetadata(LLVMContext::MD_unpredictable
)) {
618 Instruction::BinaryOps Opcode
= (Instruction::BinaryOps
)0;
620 const Value
*BOp0
, *BOp1
;
621 if (match(CondI
, m_LogicalAnd(m_Value(BOp0
), m_Value(BOp1
))))
622 Opcode
= Instruction::And
;
623 else if (match(CondI
, m_LogicalOr(m_Value(BOp0
), m_Value(BOp1
))))
624 Opcode
= Instruction::Or
;
626 if (Opcode
&& !(match(BOp0
, m_ExtractElt(m_Value(Vec
), m_Value())) &&
627 match(BOp1
, m_ExtractElt(m_Specific(Vec
), m_Value())))) {
628 findMergedConditions(CondI
, Succ0MBB
, Succ1MBB
, &CurMBB
, &CurMBB
, Opcode
,
629 getEdgeProbability(&CurMBB
, Succ0MBB
),
630 getEdgeProbability(&CurMBB
, Succ1MBB
),
631 /*InvertCond=*/false);
632 assert(SL
->SwitchCases
[0].ThisBB
== &CurMBB
&& "Unexpected lowering!");
634 // Allow some cases to be rejected.
635 if (shouldEmitAsBranches(SL
->SwitchCases
)) {
636 // Emit the branch for this block.
637 emitSwitchCase(SL
->SwitchCases
[0], &CurMBB
, *CurBuilder
);
638 SL
->SwitchCases
.erase(SL
->SwitchCases
.begin());
642 // Okay, we decided not to do this, remove any inserted MBB's and clear
644 for (unsigned I
= 1, E
= SL
->SwitchCases
.size(); I
!= E
; ++I
)
645 MF
->erase(SL
->SwitchCases
[I
].ThisBB
);
647 SL
->SwitchCases
.clear();
651 // Create a CaseBlock record representing this branch.
652 SwitchCG::CaseBlock
CB(CmpInst::ICMP_EQ
, false, CondVal
,
653 ConstantInt::getTrue(MF
->getFunction().getContext()),
654 nullptr, Succ0MBB
, Succ1MBB
, &CurMBB
,
655 CurBuilder
->getDebugLoc());
657 // Use emitSwitchCase to actually insert the fast branch sequence for this
659 emitSwitchCase(CB
, &CurMBB
, *CurBuilder
);
663 void IRTranslator::addSuccessorWithProb(MachineBasicBlock
*Src
,
664 MachineBasicBlock
*Dst
,
665 BranchProbability Prob
) {
667 Src
->addSuccessorWithoutProb(Dst
);
670 if (Prob
.isUnknown())
671 Prob
= getEdgeProbability(Src
, Dst
);
672 Src
->addSuccessor(Dst
, Prob
);
676 IRTranslator::getEdgeProbability(const MachineBasicBlock
*Src
,
677 const MachineBasicBlock
*Dst
) const {
678 const BasicBlock
*SrcBB
= Src
->getBasicBlock();
679 const BasicBlock
*DstBB
= Dst
->getBasicBlock();
681 // If BPI is not available, set the default probability as 1 / N, where N is
682 // the number of successors.
683 auto SuccSize
= std::max
<uint32_t>(succ_size(SrcBB
), 1);
684 return BranchProbability(1, SuccSize
);
686 return FuncInfo
.BPI
->getEdgeProbability(SrcBB
, DstBB
);
689 bool IRTranslator::translateSwitch(const User
&U
, MachineIRBuilder
&MIB
) {
690 using namespace SwitchCG
;
691 // Extract cases from the switch.
692 const SwitchInst
&SI
= cast
<SwitchInst
>(U
);
693 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
694 CaseClusterVector Clusters
;
695 Clusters
.reserve(SI
.getNumCases());
696 for (const auto &I
: SI
.cases()) {
697 MachineBasicBlock
*Succ
= &getMBB(*I
.getCaseSuccessor());
698 assert(Succ
&& "Could not find successor mbb in mapping");
699 const ConstantInt
*CaseVal
= I
.getCaseValue();
700 BranchProbability Prob
=
701 BPI
? BPI
->getEdgeProbability(SI
.getParent(), I
.getSuccessorIndex())
702 : BranchProbability(1, SI
.getNumCases() + 1);
703 Clusters
.push_back(CaseCluster::range(CaseVal
, CaseVal
, Succ
, Prob
));
706 MachineBasicBlock
*DefaultMBB
= &getMBB(*SI
.getDefaultDest());
708 // Cluster adjacent cases with the same destination. We do this at all
709 // optimization levels because it's cheap to do and will make codegen faster
710 // if there are many clusters.
711 sortAndRangeify(Clusters
);
713 MachineBasicBlock
*SwitchMBB
= &getMBB(*SI
.getParent());
715 // If there is only the default destination, jump there directly.
716 if (Clusters
.empty()) {
717 SwitchMBB
->addSuccessor(DefaultMBB
);
718 if (DefaultMBB
!= SwitchMBB
->getNextNode())
719 MIB
.buildBr(*DefaultMBB
);
723 SL
->findJumpTables(Clusters
, &SI
, DefaultMBB
, nullptr, nullptr);
724 SL
->findBitTestClusters(Clusters
, &SI
);
727 dbgs() << "Case clusters: ";
728 for (const CaseCluster
&C
: Clusters
) {
729 if (C
.Kind
== CC_JumpTable
)
731 if (C
.Kind
== CC_BitTests
)
734 C
.Low
->getValue().print(dbgs(), true);
735 if (C
.Low
!= C
.High
) {
737 C
.High
->getValue().print(dbgs(), true);
744 assert(!Clusters
.empty());
745 SwitchWorkList WorkList
;
746 CaseClusterIt First
= Clusters
.begin();
747 CaseClusterIt Last
= Clusters
.end() - 1;
748 auto DefaultProb
= getEdgeProbability(SwitchMBB
, DefaultMBB
);
749 WorkList
.push_back({SwitchMBB
, First
, Last
, nullptr, nullptr, DefaultProb
});
751 // FIXME: At the moment we don't do any splitting optimizations here like
752 // SelectionDAG does, so this worklist only has one entry.
753 while (!WorkList
.empty()) {
754 SwitchWorkListItem W
= WorkList
.pop_back_val();
755 if (!lowerSwitchWorkItem(W
, SI
.getCondition(), SwitchMBB
, DefaultMBB
, MIB
))
761 void IRTranslator::emitJumpTable(SwitchCG::JumpTable
&JT
,
762 MachineBasicBlock
*MBB
) {
763 // Emit the code for the jump table
764 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
765 MachineIRBuilder
MIB(*MBB
->getParent());
767 MIB
.setDebugLoc(CurBuilder
->getDebugLoc());
769 Type
*PtrIRTy
= Type::getInt8PtrTy(MF
->getFunction().getContext());
770 const LLT PtrTy
= getLLTForType(*PtrIRTy
, *DL
);
772 auto Table
= MIB
.buildJumpTable(PtrTy
, JT
.JTI
);
773 MIB
.buildBrJT(Table
.getReg(0), JT
.JTI
, JT
.Reg
);
776 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable
&JT
,
777 SwitchCG::JumpTableHeader
&JTH
,
778 MachineBasicBlock
*HeaderBB
) {
779 MachineIRBuilder
MIB(*HeaderBB
->getParent());
780 MIB
.setMBB(*HeaderBB
);
781 MIB
.setDebugLoc(CurBuilder
->getDebugLoc());
783 const Value
&SValue
= *JTH
.SValue
;
784 // Subtract the lowest switch case value from the value being switched on.
785 const LLT SwitchTy
= getLLTForType(*SValue
.getType(), *DL
);
786 Register SwitchOpReg
= getOrCreateVReg(SValue
);
787 auto FirstCst
= MIB
.buildConstant(SwitchTy
, JTH
.First
);
788 auto Sub
= MIB
.buildSub({SwitchTy
}, SwitchOpReg
, FirstCst
);
790 // This value may be smaller or larger than the target's pointer type, and
791 // therefore require extension or truncating.
792 Type
*PtrIRTy
= SValue
.getType()->getPointerTo();
793 const LLT PtrScalarTy
= LLT::scalar(DL
->getTypeSizeInBits(PtrIRTy
));
794 Sub
= MIB
.buildZExtOrTrunc(PtrScalarTy
, Sub
);
796 JT
.Reg
= Sub
.getReg(0);
798 if (JTH
.FallthroughUnreachable
) {
799 if (JT
.MBB
!= HeaderBB
->getNextNode())
800 MIB
.buildBr(*JT
.MBB
);
804 // Emit the range check for the jump table, and branch to the default block
805 // for the switch statement if the value being switched on exceeds the
806 // largest case in the switch.
807 auto Cst
= getOrCreateVReg(
808 *ConstantInt::get(SValue
.getType(), JTH
.Last
- JTH
.First
));
809 Cst
= MIB
.buildZExtOrTrunc(PtrScalarTy
, Cst
).getReg(0);
810 auto Cmp
= MIB
.buildICmp(CmpInst::ICMP_UGT
, LLT::scalar(1), Sub
, Cst
);
812 auto BrCond
= MIB
.buildBrCond(Cmp
.getReg(0), *JT
.Default
);
814 // Avoid emitting unnecessary branches to the next block.
815 if (JT
.MBB
!= HeaderBB
->getNextNode())
816 BrCond
= MIB
.buildBr(*JT
.MBB
);
820 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock
&CB
,
821 MachineBasicBlock
*SwitchBB
,
822 MachineIRBuilder
&MIB
) {
823 Register CondLHS
= getOrCreateVReg(*CB
.CmpLHS
);
825 DebugLoc OldDbgLoc
= MIB
.getDebugLoc();
826 MIB
.setDebugLoc(CB
.DbgLoc
);
827 MIB
.setMBB(*CB
.ThisBB
);
829 if (CB
.PredInfo
.NoCmp
) {
830 // Branch or fall through to TrueBB.
831 addSuccessorWithProb(CB
.ThisBB
, CB
.TrueBB
, CB
.TrueProb
);
832 addMachineCFGPred({SwitchBB
->getBasicBlock(), CB
.TrueBB
->getBasicBlock()},
834 CB
.ThisBB
->normalizeSuccProbs();
835 if (CB
.TrueBB
!= CB
.ThisBB
->getNextNode())
836 MIB
.buildBr(*CB
.TrueBB
);
837 MIB
.setDebugLoc(OldDbgLoc
);
841 const LLT i1Ty
= LLT::scalar(1);
842 // Build the compare.
844 const auto *CI
= dyn_cast
<ConstantInt
>(CB
.CmpRHS
);
845 // For conditional branch lowering, we might try to do something silly like
846 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
847 // just re-use the existing condition vreg.
848 if (MRI
->getType(CondLHS
).getSizeInBits() == 1 && CI
&& CI
->isOne() &&
849 CB
.PredInfo
.Pred
== CmpInst::ICMP_EQ
) {
852 Register CondRHS
= getOrCreateVReg(*CB
.CmpRHS
);
853 if (CmpInst::isFPPredicate(CB
.PredInfo
.Pred
))
855 MIB
.buildFCmp(CB
.PredInfo
.Pred
, i1Ty
, CondLHS
, CondRHS
).getReg(0);
858 MIB
.buildICmp(CB
.PredInfo
.Pred
, i1Ty
, CondLHS
, CondRHS
).getReg(0);
861 assert(CB
.PredInfo
.Pred
== CmpInst::ICMP_SLE
&&
862 "Can only handle SLE ranges");
864 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
865 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
867 Register CmpOpReg
= getOrCreateVReg(*CB
.CmpMHS
);
868 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
869 Register CondRHS
= getOrCreateVReg(*CB
.CmpRHS
);
871 MIB
.buildICmp(CmpInst::ICMP_SLE
, i1Ty
, CmpOpReg
, CondRHS
).getReg(0);
873 const LLT CmpTy
= MRI
->getType(CmpOpReg
);
874 auto Sub
= MIB
.buildSub({CmpTy
}, CmpOpReg
, CondLHS
);
875 auto Diff
= MIB
.buildConstant(CmpTy
, High
- Low
);
876 Cond
= MIB
.buildICmp(CmpInst::ICMP_ULE
, i1Ty
, Sub
, Diff
).getReg(0);
880 // Update successor info
881 addSuccessorWithProb(CB
.ThisBB
, CB
.TrueBB
, CB
.TrueProb
);
883 addMachineCFGPred({SwitchBB
->getBasicBlock(), CB
.TrueBB
->getBasicBlock()},
886 // TrueBB and FalseBB are always different unless the incoming IR is
887 // degenerate. This only happens when running llc on weird IR.
888 if (CB
.TrueBB
!= CB
.FalseBB
)
889 addSuccessorWithProb(CB
.ThisBB
, CB
.FalseBB
, CB
.FalseProb
);
890 CB
.ThisBB
->normalizeSuccProbs();
892 addMachineCFGPred({SwitchBB
->getBasicBlock(), CB
.FalseBB
->getBasicBlock()},
895 MIB
.buildBrCond(Cond
, *CB
.TrueBB
);
896 MIB
.buildBr(*CB
.FalseBB
);
897 MIB
.setDebugLoc(OldDbgLoc
);
900 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W
,
901 MachineBasicBlock
*SwitchMBB
,
902 MachineBasicBlock
*CurMBB
,
903 MachineBasicBlock
*DefaultMBB
,
904 MachineIRBuilder
&MIB
,
905 MachineFunction::iterator BBI
,
906 BranchProbability UnhandledProbs
,
907 SwitchCG::CaseClusterIt I
,
908 MachineBasicBlock
*Fallthrough
,
909 bool FallthroughUnreachable
) {
910 using namespace SwitchCG
;
911 MachineFunction
*CurMF
= SwitchMBB
->getParent();
912 // FIXME: Optimize away range check based on pivot comparisons.
913 JumpTableHeader
*JTH
= &SL
->JTCases
[I
->JTCasesIndex
].first
;
914 SwitchCG::JumpTable
*JT
= &SL
->JTCases
[I
->JTCasesIndex
].second
;
915 BranchProbability DefaultProb
= W
.DefaultProb
;
917 // The jump block hasn't been inserted yet; insert it here.
918 MachineBasicBlock
*JumpMBB
= JT
->MBB
;
919 CurMF
->insert(BBI
, JumpMBB
);
921 // Since the jump table block is separate from the switch block, we need
922 // to keep track of it as a machine predecessor to the default block,
923 // otherwise we lose the phi edges.
924 addMachineCFGPred({SwitchMBB
->getBasicBlock(), DefaultMBB
->getBasicBlock()},
926 addMachineCFGPred({SwitchMBB
->getBasicBlock(), DefaultMBB
->getBasicBlock()},
929 auto JumpProb
= I
->Prob
;
930 auto FallthroughProb
= UnhandledProbs
;
932 // If the default statement is a target of the jump table, we evenly
933 // distribute the default probability to successors of CurMBB. Also
934 // update the probability on the edge from JumpMBB to Fallthrough.
935 for (MachineBasicBlock::succ_iterator SI
= JumpMBB
->succ_begin(),
936 SE
= JumpMBB
->succ_end();
938 if (*SI
== DefaultMBB
) {
939 JumpProb
+= DefaultProb
/ 2;
940 FallthroughProb
-= DefaultProb
/ 2;
941 JumpMBB
->setSuccProbability(SI
, DefaultProb
/ 2);
942 JumpMBB
->normalizeSuccProbs();
944 // Also record edges from the jump table block to it's successors.
945 addMachineCFGPred({SwitchMBB
->getBasicBlock(), (*SI
)->getBasicBlock()},
950 if (FallthroughUnreachable
)
951 JTH
->FallthroughUnreachable
= true;
953 if (!JTH
->FallthroughUnreachable
)
954 addSuccessorWithProb(CurMBB
, Fallthrough
, FallthroughProb
);
955 addSuccessorWithProb(CurMBB
, JumpMBB
, JumpProb
);
956 CurMBB
->normalizeSuccProbs();
958 // The jump table header will be inserted in our current block, do the
959 // range check, and fall through to our fallthrough block.
960 JTH
->HeaderBB
= CurMBB
;
961 JT
->Default
= Fallthrough
; // FIXME: Move Default to JumpTableHeader.
963 // If we're in the right place, emit the jump table header right now.
964 if (CurMBB
== SwitchMBB
) {
965 if (!emitJumpTableHeader(*JT
, *JTH
, CurMBB
))
971 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I
,
973 MachineBasicBlock
*Fallthrough
,
974 bool FallthroughUnreachable
,
975 BranchProbability UnhandledProbs
,
976 MachineBasicBlock
*CurMBB
,
977 MachineIRBuilder
&MIB
,
978 MachineBasicBlock
*SwitchMBB
) {
979 using namespace SwitchCG
;
980 const Value
*RHS
, *LHS
, *MHS
;
981 CmpInst::Predicate Pred
;
982 if (I
->Low
== I
->High
) {
983 // Check Cond == I->Low.
984 Pred
= CmpInst::ICMP_EQ
;
989 // Check I->Low <= Cond <= I->High.
990 Pred
= CmpInst::ICMP_SLE
;
996 // If Fallthrough is unreachable, fold away the comparison.
997 // The false probability is the sum of all unhandled cases.
998 CaseBlock
CB(Pred
, FallthroughUnreachable
, LHS
, RHS
, MHS
, I
->MBB
, Fallthrough
,
999 CurMBB
, MIB
.getDebugLoc(), I
->Prob
, UnhandledProbs
);
1001 emitSwitchCase(CB
, SwitchMBB
, MIB
);
1005 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock
&B
,
1006 MachineBasicBlock
*SwitchBB
) {
1007 MachineIRBuilder
&MIB
= *CurBuilder
;
1008 MIB
.setMBB(*SwitchBB
);
1010 // Subtract the minimum value.
1011 Register SwitchOpReg
= getOrCreateVReg(*B
.SValue
);
1013 LLT SwitchOpTy
= MRI
->getType(SwitchOpReg
);
1014 Register MinValReg
= MIB
.buildConstant(SwitchOpTy
, B
.First
).getReg(0);
1015 auto RangeSub
= MIB
.buildSub(SwitchOpTy
, SwitchOpReg
, MinValReg
);
1017 Type
*PtrIRTy
= Type::getInt8PtrTy(MF
->getFunction().getContext());
1018 const LLT PtrTy
= getLLTForType(*PtrIRTy
, *DL
);
1020 LLT MaskTy
= SwitchOpTy
;
1021 if (MaskTy
.getSizeInBits() > PtrTy
.getSizeInBits() ||
1022 !llvm::has_single_bit
<uint32_t>(MaskTy
.getSizeInBits()))
1023 MaskTy
= LLT::scalar(PtrTy
.getSizeInBits());
1025 // Ensure that the type will fit the mask value.
1026 for (unsigned I
= 0, E
= B
.Cases
.size(); I
!= E
; ++I
) {
1027 if (!isUIntN(SwitchOpTy
.getSizeInBits(), B
.Cases
[I
].Mask
)) {
1028 // Switch table case range are encoded into series of masks.
1029 // Just use pointer type, it's guaranteed to fit.
1030 MaskTy
= LLT::scalar(PtrTy
.getSizeInBits());
1035 Register SubReg
= RangeSub
.getReg(0);
1036 if (SwitchOpTy
!= MaskTy
)
1037 SubReg
= MIB
.buildZExtOrTrunc(MaskTy
, SubReg
).getReg(0);
1039 B
.RegVT
= getMVTForLLT(MaskTy
);
1042 MachineBasicBlock
*MBB
= B
.Cases
[0].ThisBB
;
1044 if (!B
.FallthroughUnreachable
)
1045 addSuccessorWithProb(SwitchBB
, B
.Default
, B
.DefaultProb
);
1046 addSuccessorWithProb(SwitchBB
, MBB
, B
.Prob
);
1048 SwitchBB
->normalizeSuccProbs();
1050 if (!B
.FallthroughUnreachable
) {
1051 // Conditional branch to the default block.
1052 auto RangeCst
= MIB
.buildConstant(SwitchOpTy
, B
.Range
);
1053 auto RangeCmp
= MIB
.buildICmp(CmpInst::Predicate::ICMP_UGT
, LLT::scalar(1),
1054 RangeSub
, RangeCst
);
1055 MIB
.buildBrCond(RangeCmp
, *B
.Default
);
1058 // Avoid emitting unnecessary branches to the next block.
1059 if (MBB
!= SwitchBB
->getNextNode())
1063 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock
&BB
,
1064 MachineBasicBlock
*NextMBB
,
1065 BranchProbability BranchProbToNext
,
1066 Register Reg
, SwitchCG::BitTestCase
&B
,
1067 MachineBasicBlock
*SwitchBB
) {
1068 MachineIRBuilder
&MIB
= *CurBuilder
;
1069 MIB
.setMBB(*SwitchBB
);
1071 LLT SwitchTy
= getLLTForMVT(BB
.RegVT
);
1073 unsigned PopCount
= llvm::popcount(B
.Mask
);
1074 if (PopCount
== 1) {
1075 // Testing for a single bit; just compare the shift count with what it
1076 // would need to be to shift a 1 bit in that position.
1077 auto MaskTrailingZeros
=
1078 MIB
.buildConstant(SwitchTy
, llvm::countr_zero(B
.Mask
));
1080 MIB
.buildICmp(ICmpInst::ICMP_EQ
, LLT::scalar(1), Reg
, MaskTrailingZeros
)
1082 } else if (PopCount
== BB
.Range
) {
1083 // There is only one zero bit in the range, test for it directly.
1084 auto MaskTrailingOnes
=
1085 MIB
.buildConstant(SwitchTy
, llvm::countr_one(B
.Mask
));
1086 Cmp
= MIB
.buildICmp(CmpInst::ICMP_NE
, LLT::scalar(1), Reg
, MaskTrailingOnes
)
1089 // Make desired shift.
1090 auto CstOne
= MIB
.buildConstant(SwitchTy
, 1);
1091 auto SwitchVal
= MIB
.buildShl(SwitchTy
, CstOne
, Reg
);
1093 // Emit bit tests and jumps.
1094 auto CstMask
= MIB
.buildConstant(SwitchTy
, B
.Mask
);
1095 auto AndOp
= MIB
.buildAnd(SwitchTy
, SwitchVal
, CstMask
);
1096 auto CstZero
= MIB
.buildConstant(SwitchTy
, 0);
1097 Cmp
= MIB
.buildICmp(CmpInst::ICMP_NE
, LLT::scalar(1), AndOp
, CstZero
)
1101 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1102 addSuccessorWithProb(SwitchBB
, B
.TargetBB
, B
.ExtraProb
);
1103 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1104 addSuccessorWithProb(SwitchBB
, NextMBB
, BranchProbToNext
);
1105 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1106 // one as they are relative probabilities (and thus work more like weights),
1107 // and hence we need to normalize them to let the sum of them become one.
1108 SwitchBB
->normalizeSuccProbs();
1110 // Record the fact that the IR edge from the header to the bit test target
1111 // will go through our new block. Neeeded for PHIs to have nodes added.
1112 addMachineCFGPred({BB
.Parent
->getBasicBlock(), B
.TargetBB
->getBasicBlock()},
1115 MIB
.buildBrCond(Cmp
, *B
.TargetBB
);
1117 // Avoid emitting unnecessary branches to the next block.
1118 if (NextMBB
!= SwitchBB
->getNextNode())
1119 MIB
.buildBr(*NextMBB
);
1122 bool IRTranslator::lowerBitTestWorkItem(
1123 SwitchCG::SwitchWorkListItem W
, MachineBasicBlock
*SwitchMBB
,
1124 MachineBasicBlock
*CurMBB
, MachineBasicBlock
*DefaultMBB
,
1125 MachineIRBuilder
&MIB
, MachineFunction::iterator BBI
,
1126 BranchProbability DefaultProb
, BranchProbability UnhandledProbs
,
1127 SwitchCG::CaseClusterIt I
, MachineBasicBlock
*Fallthrough
,
1128 bool FallthroughUnreachable
) {
1129 using namespace SwitchCG
;
1130 MachineFunction
*CurMF
= SwitchMBB
->getParent();
1131 // FIXME: Optimize away range check based on pivot comparisons.
1132 BitTestBlock
*BTB
= &SL
->BitTestCases
[I
->BTCasesIndex
];
1133 // The bit test blocks haven't been inserted yet; insert them here.
1134 for (BitTestCase
&BTC
: BTB
->Cases
)
1135 CurMF
->insert(BBI
, BTC
.ThisBB
);
1137 // Fill in fields of the BitTestBlock.
1138 BTB
->Parent
= CurMBB
;
1139 BTB
->Default
= Fallthrough
;
1141 BTB
->DefaultProb
= UnhandledProbs
;
1142 // If the cases in bit test don't form a contiguous range, we evenly
1143 // distribute the probability on the edge to Fallthrough to two
1144 // successors of CurMBB.
1145 if (!BTB
->ContiguousRange
) {
1146 BTB
->Prob
+= DefaultProb
/ 2;
1147 BTB
->DefaultProb
-= DefaultProb
/ 2;
1150 if (FallthroughUnreachable
)
1151 BTB
->FallthroughUnreachable
= true;
1153 // If we're in the right place, emit the bit test header right now.
1154 if (CurMBB
== SwitchMBB
) {
1155 emitBitTestHeader(*BTB
, SwitchMBB
);
1156 BTB
->Emitted
= true;
1161 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W
,
1163 MachineBasicBlock
*SwitchMBB
,
1164 MachineBasicBlock
*DefaultMBB
,
1165 MachineIRBuilder
&MIB
) {
1166 using namespace SwitchCG
;
1167 MachineFunction
*CurMF
= FuncInfo
.MF
;
1168 MachineBasicBlock
*NextMBB
= nullptr;
1169 MachineFunction::iterator
BBI(W
.MBB
);
1170 if (++BBI
!= FuncInfo
.MF
->end())
1174 // Here, we order cases by probability so the most likely case will be
1175 // checked first. However, two clusters can have the same probability in
1176 // which case their relative ordering is non-deterministic. So we use Low
1177 // as a tie-breaker as clusters are guaranteed to never overlap.
1178 llvm::sort(W
.FirstCluster
, W
.LastCluster
+ 1,
1179 [](const CaseCluster
&a
, const CaseCluster
&b
) {
1180 return a
.Prob
!= b
.Prob
1182 : a
.Low
->getValue().slt(b
.Low
->getValue());
1185 // Rearrange the case blocks so that the last one falls through if possible
1186 // without changing the order of probabilities.
1187 for (CaseClusterIt I
= W
.LastCluster
; I
> W
.FirstCluster
;) {
1189 if (I
->Prob
> W
.LastCluster
->Prob
)
1191 if (I
->Kind
== CC_Range
&& I
->MBB
== NextMBB
) {
1192 std::swap(*I
, *W
.LastCluster
);
1198 // Compute total probability.
1199 BranchProbability DefaultProb
= W
.DefaultProb
;
1200 BranchProbability UnhandledProbs
= DefaultProb
;
1201 for (CaseClusterIt I
= W
.FirstCluster
; I
<= W
.LastCluster
; ++I
)
1202 UnhandledProbs
+= I
->Prob
;
1204 MachineBasicBlock
*CurMBB
= W
.MBB
;
1205 for (CaseClusterIt I
= W
.FirstCluster
, E
= W
.LastCluster
; I
<= E
; ++I
) {
1206 bool FallthroughUnreachable
= false;
1207 MachineBasicBlock
*Fallthrough
;
1208 if (I
== W
.LastCluster
) {
1209 // For the last cluster, fall through to the default destination.
1210 Fallthrough
= DefaultMBB
;
1211 FallthroughUnreachable
= isa
<UnreachableInst
>(
1212 DefaultMBB
->getBasicBlock()->getFirstNonPHIOrDbg());
1214 Fallthrough
= CurMF
->CreateMachineBasicBlock(CurMBB
->getBasicBlock());
1215 CurMF
->insert(BBI
, Fallthrough
);
1217 UnhandledProbs
-= I
->Prob
;
1221 if (!lowerBitTestWorkItem(W
, SwitchMBB
, CurMBB
, DefaultMBB
, MIB
, BBI
,
1222 DefaultProb
, UnhandledProbs
, I
, Fallthrough
,
1223 FallthroughUnreachable
)) {
1224 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1230 case CC_JumpTable
: {
1231 if (!lowerJumpTableWorkItem(W
, SwitchMBB
, CurMBB
, DefaultMBB
, MIB
, BBI
,
1232 UnhandledProbs
, I
, Fallthrough
,
1233 FallthroughUnreachable
)) {
1234 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1240 if (!lowerSwitchRangeWorkItem(I
, Cond
, Fallthrough
,
1241 FallthroughUnreachable
, UnhandledProbs
,
1242 CurMBB
, MIB
, SwitchMBB
)) {
1243 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1249 CurMBB
= Fallthrough
;
1255 bool IRTranslator::translateIndirectBr(const User
&U
,
1256 MachineIRBuilder
&MIRBuilder
) {
1257 const IndirectBrInst
&BrInst
= cast
<IndirectBrInst
>(U
);
1259 const Register Tgt
= getOrCreateVReg(*BrInst
.getAddress());
1260 MIRBuilder
.buildBrIndirect(Tgt
);
1263 SmallPtrSet
<const BasicBlock
*, 32> AddedSuccessors
;
1264 MachineBasicBlock
&CurBB
= MIRBuilder
.getMBB();
1265 for (const BasicBlock
*Succ
: successors(&BrInst
)) {
1266 // It's legal for indirectbr instructions to have duplicate blocks in the
1267 // destination list. We don't allow this in MIR. Skip anything that's
1268 // already a successor.
1269 if (!AddedSuccessors
.insert(Succ
).second
)
1271 CurBB
.addSuccessor(&getMBB(*Succ
));
1277 static bool isSwiftError(const Value
*V
) {
1278 if (auto Arg
= dyn_cast
<Argument
>(V
))
1279 return Arg
->hasSwiftErrorAttr();
1280 if (auto AI
= dyn_cast
<AllocaInst
>(V
))
1281 return AI
->isSwiftError();
1285 bool IRTranslator::translateLoad(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
1286 const LoadInst
&LI
= cast
<LoadInst
>(U
);
1288 unsigned StoreSize
= DL
->getTypeStoreSize(LI
.getType());
1292 ArrayRef
<Register
> Regs
= getOrCreateVRegs(LI
);
1293 ArrayRef
<uint64_t> Offsets
= *VMap
.getOffsets(LI
);
1294 Register Base
= getOrCreateVReg(*LI
.getPointerOperand());
1295 AAMDNodes AAInfo
= LI
.getAAMetadata();
1297 const Value
*Ptr
= LI
.getPointerOperand();
1298 Type
*OffsetIRTy
= DL
->getIndexType(Ptr
->getType());
1299 LLT OffsetTy
= getLLTForType(*OffsetIRTy
, *DL
);
1301 if (CLI
->supportSwiftError() && isSwiftError(Ptr
)) {
1302 assert(Regs
.size() == 1 && "swifterror should be single pointer");
1304 SwiftError
.getOrCreateVRegUseAt(&LI
, &MIRBuilder
.getMBB(), Ptr
);
1305 MIRBuilder
.buildCopy(Regs
[0], VReg
);
1309 auto &TLI
= *MF
->getSubtarget().getTargetLowering();
1310 MachineMemOperand::Flags Flags
=
1311 TLI
.getLoadMemOperandFlags(LI
, *DL
, AC
, LibInfo
);
1312 if (AA
&& !(Flags
& MachineMemOperand::MOInvariant
)) {
1313 if (AA
->pointsToConstantMemory(
1314 MemoryLocation(Ptr
, LocationSize::precise(StoreSize
), AAInfo
))) {
1315 Flags
|= MachineMemOperand::MOInvariant
;
1319 const MDNode
*Ranges
=
1320 Regs
.size() == 1 ? LI
.getMetadata(LLVMContext::MD_range
) : nullptr;
1321 for (unsigned i
= 0; i
< Regs
.size(); ++i
) {
1323 MIRBuilder
.materializePtrAdd(Addr
, Base
, OffsetTy
, Offsets
[i
] / 8);
1325 MachinePointerInfo
Ptr(LI
.getPointerOperand(), Offsets
[i
] / 8);
1326 Align BaseAlign
= getMemOpAlign(LI
);
1327 auto MMO
= MF
->getMachineMemOperand(
1328 Ptr
, Flags
, MRI
->getType(Regs
[i
]),
1329 commonAlignment(BaseAlign
, Offsets
[i
] / 8), AAInfo
, Ranges
,
1330 LI
.getSyncScopeID(), LI
.getOrdering());
1331 MIRBuilder
.buildLoad(Regs
[i
], Addr
, *MMO
);
1337 bool IRTranslator::translateStore(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
1338 const StoreInst
&SI
= cast
<StoreInst
>(U
);
1339 if (DL
->getTypeStoreSize(SI
.getValueOperand()->getType()) == 0)
1342 ArrayRef
<Register
> Vals
= getOrCreateVRegs(*SI
.getValueOperand());
1343 ArrayRef
<uint64_t> Offsets
= *VMap
.getOffsets(*SI
.getValueOperand());
1344 Register Base
= getOrCreateVReg(*SI
.getPointerOperand());
1346 Type
*OffsetIRTy
= DL
->getIndexType(SI
.getPointerOperandType());
1347 LLT OffsetTy
= getLLTForType(*OffsetIRTy
, *DL
);
1349 if (CLI
->supportSwiftError() && isSwiftError(SI
.getPointerOperand())) {
1350 assert(Vals
.size() == 1 && "swifterror should be single pointer");
1352 Register VReg
= SwiftError
.getOrCreateVRegDefAt(&SI
, &MIRBuilder
.getMBB(),
1353 SI
.getPointerOperand());
1354 MIRBuilder
.buildCopy(VReg
, Vals
[0]);
1358 auto &TLI
= *MF
->getSubtarget().getTargetLowering();
1359 MachineMemOperand::Flags Flags
= TLI
.getStoreMemOperandFlags(SI
, *DL
);
1361 for (unsigned i
= 0; i
< Vals
.size(); ++i
) {
1363 MIRBuilder
.materializePtrAdd(Addr
, Base
, OffsetTy
, Offsets
[i
] / 8);
1365 MachinePointerInfo
Ptr(SI
.getPointerOperand(), Offsets
[i
] / 8);
1366 Align BaseAlign
= getMemOpAlign(SI
);
1367 auto MMO
= MF
->getMachineMemOperand(
1368 Ptr
, Flags
, MRI
->getType(Vals
[i
]),
1369 commonAlignment(BaseAlign
, Offsets
[i
] / 8), SI
.getAAMetadata(), nullptr,
1370 SI
.getSyncScopeID(), SI
.getOrdering());
1371 MIRBuilder
.buildStore(Vals
[i
], Addr
, *MMO
);
1376 static uint64_t getOffsetFromIndices(const User
&U
, const DataLayout
&DL
) {
1377 const Value
*Src
= U
.getOperand(0);
1378 Type
*Int32Ty
= Type::getInt32Ty(U
.getContext());
1380 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1381 // usual array element rather than looking into the actual aggregate.
1382 SmallVector
<Value
*, 1> Indices
;
1383 Indices
.push_back(ConstantInt::get(Int32Ty
, 0));
1385 if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(&U
)) {
1386 for (auto Idx
: EVI
->indices())
1387 Indices
.push_back(ConstantInt::get(Int32Ty
, Idx
));
1388 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(&U
)) {
1389 for (auto Idx
: IVI
->indices())
1390 Indices
.push_back(ConstantInt::get(Int32Ty
, Idx
));
1392 for (unsigned i
= 1; i
< U
.getNumOperands(); ++i
)
1393 Indices
.push_back(U
.getOperand(i
));
1396 return 8 * static_cast<uint64_t>(
1397 DL
.getIndexedOffsetInType(Src
->getType(), Indices
));
1400 bool IRTranslator::translateExtractValue(const User
&U
,
1401 MachineIRBuilder
&MIRBuilder
) {
1402 const Value
*Src
= U
.getOperand(0);
1403 uint64_t Offset
= getOffsetFromIndices(U
, *DL
);
1404 ArrayRef
<Register
> SrcRegs
= getOrCreateVRegs(*Src
);
1405 ArrayRef
<uint64_t> Offsets
= *VMap
.getOffsets(*Src
);
1406 unsigned Idx
= llvm::lower_bound(Offsets
, Offset
) - Offsets
.begin();
1407 auto &DstRegs
= allocateVRegs(U
);
1409 for (unsigned i
= 0; i
< DstRegs
.size(); ++i
)
1410 DstRegs
[i
] = SrcRegs
[Idx
++];
1415 bool IRTranslator::translateInsertValue(const User
&U
,
1416 MachineIRBuilder
&MIRBuilder
) {
1417 const Value
*Src
= U
.getOperand(0);
1418 uint64_t Offset
= getOffsetFromIndices(U
, *DL
);
1419 auto &DstRegs
= allocateVRegs(U
);
1420 ArrayRef
<uint64_t> DstOffsets
= *VMap
.getOffsets(U
);
1421 ArrayRef
<Register
> SrcRegs
= getOrCreateVRegs(*Src
);
1422 ArrayRef
<Register
> InsertedRegs
= getOrCreateVRegs(*U
.getOperand(1));
1423 auto *InsertedIt
= InsertedRegs
.begin();
1425 for (unsigned i
= 0; i
< DstRegs
.size(); ++i
) {
1426 if (DstOffsets
[i
] >= Offset
&& InsertedIt
!= InsertedRegs
.end())
1427 DstRegs
[i
] = *InsertedIt
++;
1429 DstRegs
[i
] = SrcRegs
[i
];
1435 bool IRTranslator::translateSelect(const User
&U
,
1436 MachineIRBuilder
&MIRBuilder
) {
1437 Register Tst
= getOrCreateVReg(*U
.getOperand(0));
1438 ArrayRef
<Register
> ResRegs
= getOrCreateVRegs(U
);
1439 ArrayRef
<Register
> Op0Regs
= getOrCreateVRegs(*U
.getOperand(1));
1440 ArrayRef
<Register
> Op1Regs
= getOrCreateVRegs(*U
.getOperand(2));
1443 if (const SelectInst
*SI
= dyn_cast
<SelectInst
>(&U
))
1444 Flags
= MachineInstr::copyFlagsFromInstruction(*SI
);
1446 for (unsigned i
= 0; i
< ResRegs
.size(); ++i
) {
1447 MIRBuilder
.buildSelect(ResRegs
[i
], Tst
, Op0Regs
[i
], Op1Regs
[i
], Flags
);
1453 bool IRTranslator::translateCopy(const User
&U
, const Value
&V
,
1454 MachineIRBuilder
&MIRBuilder
) {
1455 Register Src
= getOrCreateVReg(V
);
1456 auto &Regs
= *VMap
.getVRegs(U
);
1458 Regs
.push_back(Src
);
1459 VMap
.getOffsets(U
)->push_back(0);
1461 // If we already assigned a vreg for this instruction, we can't change that.
1462 // Emit a copy to satisfy the users we already emitted.
1463 MIRBuilder
.buildCopy(Regs
[0], Src
);
1468 bool IRTranslator::translateBitCast(const User
&U
,
1469 MachineIRBuilder
&MIRBuilder
) {
1470 // If we're bitcasting to the source type, we can reuse the source vreg.
1471 if (getLLTForType(*U
.getOperand(0)->getType(), *DL
) ==
1472 getLLTForType(*U
.getType(), *DL
)) {
1473 // If the source is a ConstantInt then it was probably created by
1474 // ConstantHoisting and we should leave it alone.
1475 if (isa
<ConstantInt
>(U
.getOperand(0)))
1476 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER
, U
,
1478 return translateCopy(U
, *U
.getOperand(0), MIRBuilder
);
1481 return translateCast(TargetOpcode::G_BITCAST
, U
, MIRBuilder
);
1484 bool IRTranslator::translateCast(unsigned Opcode
, const User
&U
,
1485 MachineIRBuilder
&MIRBuilder
) {
1486 Register Op
= getOrCreateVReg(*U
.getOperand(0));
1487 Register Res
= getOrCreateVReg(U
);
1488 MIRBuilder
.buildInstr(Opcode
, {Res
}, {Op
});
1492 bool IRTranslator::translateGetElementPtr(const User
&U
,
1493 MachineIRBuilder
&MIRBuilder
) {
1494 Value
&Op0
= *U
.getOperand(0);
1495 Register BaseReg
= getOrCreateVReg(Op0
);
1496 Type
*PtrIRTy
= Op0
.getType();
1497 LLT PtrTy
= getLLTForType(*PtrIRTy
, *DL
);
1498 Type
*OffsetIRTy
= DL
->getIndexType(PtrIRTy
);
1499 LLT OffsetTy
= getLLTForType(*OffsetIRTy
, *DL
);
1501 // Normalize Vector GEP - all scalar operands should be converted to the
1503 unsigned VectorWidth
= 0;
1505 // True if we should use a splat vector; using VectorWidth alone is not
1507 bool WantSplatVector
= false;
1508 if (auto *VT
= dyn_cast
<VectorType
>(U
.getType())) {
1509 VectorWidth
= cast
<FixedVectorType
>(VT
)->getNumElements();
1510 // We don't produce 1 x N vectors; those are treated as scalars.
1511 WantSplatVector
= VectorWidth
> 1;
1514 // We might need to splat the base pointer into a vector if the offsets
1516 if (WantSplatVector
&& !PtrTy
.isVector()) {
1519 .buildSplatVector(LLT::fixed_vector(VectorWidth
, PtrTy
), BaseReg
)
1521 PtrIRTy
= FixedVectorType::get(PtrIRTy
, VectorWidth
);
1522 PtrTy
= getLLTForType(*PtrIRTy
, *DL
);
1523 OffsetIRTy
= DL
->getIndexType(PtrIRTy
);
1524 OffsetTy
= getLLTForType(*OffsetIRTy
, *DL
);
1528 for (gep_type_iterator GTI
= gep_type_begin(&U
), E
= gep_type_end(&U
);
1530 const Value
*Idx
= GTI
.getOperand();
1531 if (StructType
*StTy
= GTI
.getStructTypeOrNull()) {
1532 unsigned Field
= cast
<Constant
>(Idx
)->getUniqueInteger().getZExtValue();
1533 Offset
+= DL
->getStructLayout(StTy
)->getElementOffset(Field
);
1536 uint64_t ElementSize
= DL
->getTypeAllocSize(GTI
.getIndexedType());
1538 // If this is a scalar constant or a splat vector of constants,
1539 // handle it quickly.
1540 if (const auto *CI
= dyn_cast
<ConstantInt
>(Idx
)) {
1541 Offset
+= ElementSize
* CI
->getSExtValue();
1546 auto OffsetMIB
= MIRBuilder
.buildConstant({OffsetTy
}, Offset
);
1547 BaseReg
= MIRBuilder
.buildPtrAdd(PtrTy
, BaseReg
, OffsetMIB
.getReg(0))
1552 Register IdxReg
= getOrCreateVReg(*Idx
);
1553 LLT IdxTy
= MRI
->getType(IdxReg
);
1554 if (IdxTy
!= OffsetTy
) {
1555 if (!IdxTy
.isVector() && WantSplatVector
) {
1556 IdxReg
= MIRBuilder
.buildSplatVector(
1557 OffsetTy
.changeElementType(IdxTy
), IdxReg
).getReg(0);
1560 IdxReg
= MIRBuilder
.buildSExtOrTrunc(OffsetTy
, IdxReg
).getReg(0);
1563 // N = N + Idx * ElementSize;
1564 // Avoid doing it for ElementSize of 1.
1565 Register GepOffsetReg
;
1566 if (ElementSize
!= 1) {
1567 auto ElementSizeMIB
= MIRBuilder
.buildConstant(
1568 getLLTForType(*OffsetIRTy
, *DL
), ElementSize
);
1570 MIRBuilder
.buildMul(OffsetTy
, IdxReg
, ElementSizeMIB
).getReg(0);
1572 GepOffsetReg
= IdxReg
;
1574 BaseReg
= MIRBuilder
.buildPtrAdd(PtrTy
, BaseReg
, GepOffsetReg
).getReg(0);
1580 MIRBuilder
.buildConstant(OffsetTy
, Offset
);
1581 MIRBuilder
.buildPtrAdd(getOrCreateVReg(U
), BaseReg
, OffsetMIB
.getReg(0));
1585 MIRBuilder
.buildCopy(getOrCreateVReg(U
), BaseReg
);
1589 bool IRTranslator::translateMemFunc(const CallInst
&CI
,
1590 MachineIRBuilder
&MIRBuilder
,
1592 const Value
*SrcPtr
= CI
.getArgOperand(1);
1593 // If the source is undef, then just emit a nop.
1594 if (isa
<UndefValue
>(SrcPtr
))
1597 SmallVector
<Register
, 3> SrcRegs
;
1599 unsigned MinPtrSize
= UINT_MAX
;
1600 for (auto AI
= CI
.arg_begin(), AE
= CI
.arg_end(); std::next(AI
) != AE
; ++AI
) {
1601 Register SrcReg
= getOrCreateVReg(**AI
);
1602 LLT SrcTy
= MRI
->getType(SrcReg
);
1603 if (SrcTy
.isPointer())
1604 MinPtrSize
= std::min
<unsigned>(SrcTy
.getSizeInBits(), MinPtrSize
);
1605 SrcRegs
.push_back(SrcReg
);
1608 LLT SizeTy
= LLT::scalar(MinPtrSize
);
1610 // The size operand should be the minimum of the pointer sizes.
1611 Register
&SizeOpReg
= SrcRegs
[SrcRegs
.size() - 1];
1612 if (MRI
->getType(SizeOpReg
) != SizeTy
)
1613 SizeOpReg
= MIRBuilder
.buildZExtOrTrunc(SizeTy
, SizeOpReg
).getReg(0);
1615 auto ICall
= MIRBuilder
.buildInstr(Opcode
);
1616 for (Register SrcReg
: SrcRegs
)
1617 ICall
.addUse(SrcReg
);
1622 cast
<ConstantInt
>(CI
.getArgOperand(CI
.arg_size() - 1))->getZExtValue();
1624 ConstantInt
*CopySize
= nullptr;
1626 if (auto *MCI
= dyn_cast
<MemCpyInst
>(&CI
)) {
1627 DstAlign
= MCI
->getDestAlign().valueOrOne();
1628 SrcAlign
= MCI
->getSourceAlign().valueOrOne();
1629 CopySize
= dyn_cast
<ConstantInt
>(MCI
->getArgOperand(2));
1630 } else if (auto *MCI
= dyn_cast
<MemCpyInlineInst
>(&CI
)) {
1631 DstAlign
= MCI
->getDestAlign().valueOrOne();
1632 SrcAlign
= MCI
->getSourceAlign().valueOrOne();
1633 CopySize
= dyn_cast
<ConstantInt
>(MCI
->getArgOperand(2));
1634 } else if (auto *MMI
= dyn_cast
<MemMoveInst
>(&CI
)) {
1635 DstAlign
= MMI
->getDestAlign().valueOrOne();
1636 SrcAlign
= MMI
->getSourceAlign().valueOrOne();
1637 CopySize
= dyn_cast
<ConstantInt
>(MMI
->getArgOperand(2));
1639 auto *MSI
= cast
<MemSetInst
>(&CI
);
1640 DstAlign
= MSI
->getDestAlign().valueOrOne();
1643 if (Opcode
!= TargetOpcode::G_MEMCPY_INLINE
) {
1644 // We need to propagate the tail call flag from the IR inst as an argument.
1645 // Otherwise, we have to pessimize and assume later that we cannot tail call
1646 // any memory intrinsics.
1647 ICall
.addImm(CI
.isTailCall() ? 1 : 0);
1650 // Create mem operands to store the alignment and volatile info.
1651 MachineMemOperand::Flags LoadFlags
= MachineMemOperand::MOLoad
;
1652 MachineMemOperand::Flags StoreFlags
= MachineMemOperand::MOStore
;
1654 LoadFlags
|= MachineMemOperand::MOVolatile
;
1655 StoreFlags
|= MachineMemOperand::MOVolatile
;
1658 AAMDNodes AAInfo
= CI
.getAAMetadata();
1659 if (AA
&& CopySize
&&
1660 AA
->pointsToConstantMemory(MemoryLocation(
1661 SrcPtr
, LocationSize::precise(CopySize
->getZExtValue()), AAInfo
))) {
1662 LoadFlags
|= MachineMemOperand::MOInvariant
;
1664 // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1665 // but the previous usage implied it did. Probably should check
1666 // isDereferenceableAndAlignedPointer.
1667 LoadFlags
|= MachineMemOperand::MODereferenceable
;
1670 ICall
.addMemOperand(
1671 MF
->getMachineMemOperand(MachinePointerInfo(CI
.getArgOperand(0)),
1672 StoreFlags
, 1, DstAlign
, AAInfo
));
1673 if (Opcode
!= TargetOpcode::G_MEMSET
)
1674 ICall
.addMemOperand(MF
->getMachineMemOperand(
1675 MachinePointerInfo(SrcPtr
), LoadFlags
, 1, SrcAlign
, AAInfo
));
1680 void IRTranslator::getStackGuard(Register DstReg
,
1681 MachineIRBuilder
&MIRBuilder
) {
1682 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
1683 MRI
->setRegClass(DstReg
, TRI
->getPointerRegClass(*MF
));
1685 MIRBuilder
.buildInstr(TargetOpcode::LOAD_STACK_GUARD
, {DstReg
}, {});
1687 auto &TLI
= *MF
->getSubtarget().getTargetLowering();
1688 Value
*Global
= TLI
.getSDagStackGuard(*MF
->getFunction().getParent());
1692 unsigned AddrSpace
= Global
->getType()->getPointerAddressSpace();
1693 LLT PtrTy
= LLT::pointer(AddrSpace
, DL
->getPointerSizeInBits(AddrSpace
));
1695 MachinePointerInfo
MPInfo(Global
);
1696 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOInvariant
|
1697 MachineMemOperand::MODereferenceable
;
1698 MachineMemOperand
*MemRef
= MF
->getMachineMemOperand(
1699 MPInfo
, Flags
, PtrTy
, DL
->getPointerABIAlignment(AddrSpace
));
1700 MIB
.setMemRefs({MemRef
});
1703 bool IRTranslator::translateOverflowIntrinsic(const CallInst
&CI
, unsigned Op
,
1704 MachineIRBuilder
&MIRBuilder
) {
1705 ArrayRef
<Register
> ResRegs
= getOrCreateVRegs(CI
);
1706 MIRBuilder
.buildInstr(
1707 Op
, {ResRegs
[0], ResRegs
[1]},
1708 {getOrCreateVReg(*CI
.getOperand(0)), getOrCreateVReg(*CI
.getOperand(1))});
1713 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op
, const CallInst
&CI
,
1714 MachineIRBuilder
&MIRBuilder
) {
1715 Register Dst
= getOrCreateVReg(CI
);
1716 Register Src0
= getOrCreateVReg(*CI
.getOperand(0));
1717 Register Src1
= getOrCreateVReg(*CI
.getOperand(1));
1718 uint64_t Scale
= cast
<ConstantInt
>(CI
.getOperand(2))->getZExtValue();
1719 MIRBuilder
.buildInstr(Op
, {Dst
}, { Src0
, Src1
, Scale
});
1723 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID
) {
1727 case Intrinsic::bswap
:
1728 return TargetOpcode::G_BSWAP
;
1729 case Intrinsic::bitreverse
:
1730 return TargetOpcode::G_BITREVERSE
;
1731 case Intrinsic::fshl
:
1732 return TargetOpcode::G_FSHL
;
1733 case Intrinsic::fshr
:
1734 return TargetOpcode::G_FSHR
;
1735 case Intrinsic::ceil
:
1736 return TargetOpcode::G_FCEIL
;
1737 case Intrinsic::cos
:
1738 return TargetOpcode::G_FCOS
;
1739 case Intrinsic::ctpop
:
1740 return TargetOpcode::G_CTPOP
;
1741 case Intrinsic::exp
:
1742 return TargetOpcode::G_FEXP
;
1743 case Intrinsic::exp2
:
1744 return TargetOpcode::G_FEXP2
;
1745 case Intrinsic::fabs
:
1746 return TargetOpcode::G_FABS
;
1747 case Intrinsic::copysign
:
1748 return TargetOpcode::G_FCOPYSIGN
;
1749 case Intrinsic::minnum
:
1750 return TargetOpcode::G_FMINNUM
;
1751 case Intrinsic::maxnum
:
1752 return TargetOpcode::G_FMAXNUM
;
1753 case Intrinsic::minimum
:
1754 return TargetOpcode::G_FMINIMUM
;
1755 case Intrinsic::maximum
:
1756 return TargetOpcode::G_FMAXIMUM
;
1757 case Intrinsic::canonicalize
:
1758 return TargetOpcode::G_FCANONICALIZE
;
1759 case Intrinsic::floor
:
1760 return TargetOpcode::G_FFLOOR
;
1761 case Intrinsic::fma
:
1762 return TargetOpcode::G_FMA
;
1763 case Intrinsic::log
:
1764 return TargetOpcode::G_FLOG
;
1765 case Intrinsic::log2
:
1766 return TargetOpcode::G_FLOG2
;
1767 case Intrinsic::log10
:
1768 return TargetOpcode::G_FLOG10
;
1769 case Intrinsic::ldexp
:
1770 return TargetOpcode::G_FLDEXP
;
1771 case Intrinsic::nearbyint
:
1772 return TargetOpcode::G_FNEARBYINT
;
1773 case Intrinsic::pow
:
1774 return TargetOpcode::G_FPOW
;
1775 case Intrinsic::powi
:
1776 return TargetOpcode::G_FPOWI
;
1777 case Intrinsic::rint
:
1778 return TargetOpcode::G_FRINT
;
1779 case Intrinsic::round
:
1780 return TargetOpcode::G_INTRINSIC_ROUND
;
1781 case Intrinsic::roundeven
:
1782 return TargetOpcode::G_INTRINSIC_ROUNDEVEN
;
1783 case Intrinsic::sin
:
1784 return TargetOpcode::G_FSIN
;
1785 case Intrinsic::sqrt
:
1786 return TargetOpcode::G_FSQRT
;
1787 case Intrinsic::trunc
:
1788 return TargetOpcode::G_INTRINSIC_TRUNC
;
1789 case Intrinsic::readcyclecounter
:
1790 return TargetOpcode::G_READCYCLECOUNTER
;
1791 case Intrinsic::ptrmask
:
1792 return TargetOpcode::G_PTRMASK
;
1793 case Intrinsic::lrint
:
1794 return TargetOpcode::G_INTRINSIC_LRINT
;
1795 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1796 case Intrinsic::vector_reduce_fmin
:
1797 return TargetOpcode::G_VECREDUCE_FMIN
;
1798 case Intrinsic::vector_reduce_fmax
:
1799 return TargetOpcode::G_VECREDUCE_FMAX
;
1800 case Intrinsic::vector_reduce_add
:
1801 return TargetOpcode::G_VECREDUCE_ADD
;
1802 case Intrinsic::vector_reduce_mul
:
1803 return TargetOpcode::G_VECREDUCE_MUL
;
1804 case Intrinsic::vector_reduce_and
:
1805 return TargetOpcode::G_VECREDUCE_AND
;
1806 case Intrinsic::vector_reduce_or
:
1807 return TargetOpcode::G_VECREDUCE_OR
;
1808 case Intrinsic::vector_reduce_xor
:
1809 return TargetOpcode::G_VECREDUCE_XOR
;
1810 case Intrinsic::vector_reduce_smax
:
1811 return TargetOpcode::G_VECREDUCE_SMAX
;
1812 case Intrinsic::vector_reduce_smin
:
1813 return TargetOpcode::G_VECREDUCE_SMIN
;
1814 case Intrinsic::vector_reduce_umax
:
1815 return TargetOpcode::G_VECREDUCE_UMAX
;
1816 case Intrinsic::vector_reduce_umin
:
1817 return TargetOpcode::G_VECREDUCE_UMIN
;
1818 case Intrinsic::lround
:
1819 return TargetOpcode::G_LROUND
;
1820 case Intrinsic::llround
:
1821 return TargetOpcode::G_LLROUND
;
1823 return Intrinsic::not_intrinsic
;
1826 bool IRTranslator::translateSimpleIntrinsic(const CallInst
&CI
,
1828 MachineIRBuilder
&MIRBuilder
) {
1830 unsigned Op
= getSimpleIntrinsicOpcode(ID
);
1832 // Is this a simple intrinsic?
1833 if (Op
== Intrinsic::not_intrinsic
)
1836 // Yes. Let's translate it.
1837 SmallVector
<llvm::SrcOp
, 4> VRegs
;
1838 for (const auto &Arg
: CI
.args())
1839 VRegs
.push_back(getOrCreateVReg(*Arg
));
1841 MIRBuilder
.buildInstr(Op
, {getOrCreateVReg(CI
)}, VRegs
,
1842 MachineInstr::copyFlagsFromInstruction(CI
));
1846 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1847 static unsigned getConstrainedOpcode(Intrinsic::ID ID
) {
1849 case Intrinsic::experimental_constrained_fadd
:
1850 return TargetOpcode::G_STRICT_FADD
;
1851 case Intrinsic::experimental_constrained_fsub
:
1852 return TargetOpcode::G_STRICT_FSUB
;
1853 case Intrinsic::experimental_constrained_fmul
:
1854 return TargetOpcode::G_STRICT_FMUL
;
1855 case Intrinsic::experimental_constrained_fdiv
:
1856 return TargetOpcode::G_STRICT_FDIV
;
1857 case Intrinsic::experimental_constrained_frem
:
1858 return TargetOpcode::G_STRICT_FREM
;
1859 case Intrinsic::experimental_constrained_fma
:
1860 return TargetOpcode::G_STRICT_FMA
;
1861 case Intrinsic::experimental_constrained_sqrt
:
1862 return TargetOpcode::G_STRICT_FSQRT
;
1863 case Intrinsic::experimental_constrained_ldexp
:
1864 return TargetOpcode::G_STRICT_FLDEXP
;
1870 bool IRTranslator::translateConstrainedFPIntrinsic(
1871 const ConstrainedFPIntrinsic
&FPI
, MachineIRBuilder
&MIRBuilder
) {
1872 fp::ExceptionBehavior EB
= *FPI
.getExceptionBehavior();
1874 unsigned Opcode
= getConstrainedOpcode(FPI
.getIntrinsicID());
1878 uint32_t Flags
= MachineInstr::copyFlagsFromInstruction(FPI
);
1879 if (EB
== fp::ExceptionBehavior::ebIgnore
)
1880 Flags
|= MachineInstr::NoFPExcept
;
1882 SmallVector
<llvm::SrcOp
, 4> VRegs
;
1883 VRegs
.push_back(getOrCreateVReg(*FPI
.getArgOperand(0)));
1884 if (!FPI
.isUnaryOp())
1885 VRegs
.push_back(getOrCreateVReg(*FPI
.getArgOperand(1)));
1886 if (FPI
.isTernaryOp())
1887 VRegs
.push_back(getOrCreateVReg(*FPI
.getArgOperand(2)));
1889 MIRBuilder
.buildInstr(Opcode
, {getOrCreateVReg(FPI
)}, VRegs
, Flags
);
1893 std::optional
<MCRegister
> IRTranslator::getArgPhysReg(Argument
&Arg
) {
1894 auto VRegs
= getOrCreateVRegs(Arg
);
1895 if (VRegs
.size() != 1)
1896 return std::nullopt
;
1898 // Arguments are lowered as a copy of a livein physical register.
1899 auto *VRegDef
= MF
->getRegInfo().getVRegDef(VRegs
[0]);
1900 if (!VRegDef
|| !VRegDef
->isCopy())
1901 return std::nullopt
;
1902 return VRegDef
->getOperand(1).getReg().asMCReg();
1905 bool IRTranslator::translateIfEntryValueArgument(const DbgValueInst
&DebugInst
,
1906 MachineIRBuilder
&MIRBuilder
) {
1907 auto *Arg
= dyn_cast
<Argument
>(DebugInst
.getValue());
1911 const DIExpression
*Expr
= DebugInst
.getExpression();
1912 if (!Expr
->isEntryValue())
1915 std::optional
<MCRegister
> PhysReg
= getArgPhysReg(*Arg
);
1917 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
1918 "couldn't find a physical register\n"
1919 << DebugInst
<< "\n");
1923 MIRBuilder
.buildDirectDbgValue(*PhysReg
, DebugInst
.getVariable(),
1924 DebugInst
.getExpression());
1928 bool IRTranslator::translateIfEntryValueArgument(
1929 const DbgDeclareInst
&DebugInst
) {
1930 auto *Arg
= dyn_cast
<Argument
>(DebugInst
.getAddress());
1934 const DIExpression
*Expr
= DebugInst
.getExpression();
1935 if (!Expr
->isEntryValue())
1938 std::optional
<MCRegister
> PhysReg
= getArgPhysReg(*Arg
);
1942 MF
->setVariableDbgInfo(DebugInst
.getVariable(), Expr
, *PhysReg
,
1943 DebugInst
.getDebugLoc());
1947 bool IRTranslator::translateKnownIntrinsic(const CallInst
&CI
, Intrinsic::ID ID
,
1948 MachineIRBuilder
&MIRBuilder
) {
1949 if (auto *MI
= dyn_cast
<AnyMemIntrinsic
>(&CI
)) {
1950 if (ORE
->enabled()) {
1951 if (MemoryOpRemark::canHandle(MI
, *LibInfo
)) {
1952 MemoryOpRemark
R(*ORE
, "gisel-irtranslator-memsize", *DL
, *LibInfo
);
1958 // If this is a simple intrinsic (that is, we just need to add a def of
1959 // a vreg, and uses for each arg operand, then translate it.
1960 if (translateSimpleIntrinsic(CI
, ID
, MIRBuilder
))
1966 case Intrinsic::lifetime_start
:
1967 case Intrinsic::lifetime_end
: {
1968 // No stack colouring in O0, discard region information.
1969 if (MF
->getTarget().getOptLevel() == CodeGenOpt::None
)
1972 unsigned Op
= ID
== Intrinsic::lifetime_start
? TargetOpcode::LIFETIME_START
1973 : TargetOpcode::LIFETIME_END
;
1975 // Get the underlying objects for the location passed on the lifetime
1977 SmallVector
<const Value
*, 4> Allocas
;
1978 getUnderlyingObjects(CI
.getArgOperand(1), Allocas
);
1980 // Iterate over each underlying object, creating lifetime markers for each
1981 // static alloca. Quit if we find a non-static alloca.
1982 for (const Value
*V
: Allocas
) {
1983 const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
);
1987 if (!AI
->isStaticAlloca())
1990 MIRBuilder
.buildInstr(Op
).addFrameIndex(getOrCreateFrameIndex(*AI
));
1994 case Intrinsic::dbg_declare
: {
1995 const DbgDeclareInst
&DI
= cast
<DbgDeclareInst
>(CI
);
1996 assert(DI
.getVariable() && "Missing variable");
1998 const Value
*Address
= DI
.getAddress();
1999 if (!Address
|| isa
<UndefValue
>(Address
)) {
2000 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
2004 assert(DI
.getVariable()->isValidLocationForIntrinsic(
2005 MIRBuilder
.getDebugLoc()) &&
2006 "Expected inlined-at fields to agree");
2007 auto AI
= dyn_cast
<AllocaInst
>(Address
);
2008 if (AI
&& AI
->isStaticAlloca()) {
2009 // Static allocas are tracked at the MF level, no need for DBG_VALUE
2010 // instructions (in fact, they get ignored if they *do* exist).
2011 MF
->setVariableDbgInfo(DI
.getVariable(), DI
.getExpression(),
2012 getOrCreateFrameIndex(*AI
), DI
.getDebugLoc());
2016 if (translateIfEntryValueArgument(DI
))
2019 // A dbg.declare describes the address of a source variable, so lower it
2020 // into an indirect DBG_VALUE.
2021 MIRBuilder
.buildIndirectDbgValue(getOrCreateVReg(*Address
),
2022 DI
.getVariable(), DI
.getExpression());
2025 case Intrinsic::dbg_label
: {
2026 const DbgLabelInst
&DI
= cast
<DbgLabelInst
>(CI
);
2027 assert(DI
.getLabel() && "Missing label");
2029 assert(DI
.getLabel()->isValidLocationForIntrinsic(
2030 MIRBuilder
.getDebugLoc()) &&
2031 "Expected inlined-at fields to agree");
2033 MIRBuilder
.buildDbgLabel(DI
.getLabel());
2036 case Intrinsic::vaend
:
2037 // No target I know of cares about va_end. Certainly no in-tree target
2038 // does. Simplest intrinsic ever!
2040 case Intrinsic::vastart
: {
2041 auto &TLI
= *MF
->getSubtarget().getTargetLowering();
2042 Value
*Ptr
= CI
.getArgOperand(0);
2043 unsigned ListSize
= TLI
.getVaListSizeInBits(*DL
) / 8;
2045 // FIXME: Get alignment
2046 MIRBuilder
.buildInstr(TargetOpcode::G_VASTART
, {}, {getOrCreateVReg(*Ptr
)})
2047 .addMemOperand(MF
->getMachineMemOperand(MachinePointerInfo(Ptr
),
2048 MachineMemOperand::MOStore
,
2049 ListSize
, Align(1)));
2052 case Intrinsic::dbg_value
: {
2053 // This form of DBG_VALUE is target-independent.
2054 const DbgValueInst
&DI
= cast
<DbgValueInst
>(CI
);
2055 const Value
*V
= DI
.getValue();
2056 assert(DI
.getVariable()->isValidLocationForIntrinsic(
2057 MIRBuilder
.getDebugLoc()) &&
2058 "Expected inlined-at fields to agree");
2059 if (!V
|| DI
.hasArgList()) {
2060 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
2061 // terminate any prior location.
2062 MIRBuilder
.buildIndirectDbgValue(0, DI
.getVariable(), DI
.getExpression());
2065 if (const auto *CI
= dyn_cast
<Constant
>(V
)) {
2066 MIRBuilder
.buildConstDbgValue(*CI
, DI
.getVariable(), DI
.getExpression());
2069 if (auto *AI
= dyn_cast
<AllocaInst
>(V
);
2070 AI
&& AI
->isStaticAlloca() && DI
.getExpression()->startsWithDeref()) {
2071 // If the value is an alloca and the expression starts with a
2072 // dereference, track a stack slot instead of a register, as registers
2073 // may be clobbered.
2074 auto ExprOperands
= DI
.getExpression()->getElements();
2075 auto *ExprDerefRemoved
=
2076 DIExpression::get(AI
->getContext(), ExprOperands
.drop_front());
2077 MIRBuilder
.buildFIDbgValue(getOrCreateFrameIndex(*AI
), DI
.getVariable(),
2081 if (translateIfEntryValueArgument(DI
, MIRBuilder
))
2083 for (Register Reg
: getOrCreateVRegs(*V
)) {
2084 // FIXME: This does not handle register-indirect values at offset 0. The
2085 // direct/indirect thing shouldn't really be handled by something as
2086 // implicit as reg+noreg vs reg+imm in the first place, but it seems
2087 // pretty baked in right now.
2088 MIRBuilder
.buildDirectDbgValue(Reg
, DI
.getVariable(), DI
.getExpression());
2092 case Intrinsic::uadd_with_overflow
:
2093 return translateOverflowIntrinsic(CI
, TargetOpcode::G_UADDO
, MIRBuilder
);
2094 case Intrinsic::sadd_with_overflow
:
2095 return translateOverflowIntrinsic(CI
, TargetOpcode::G_SADDO
, MIRBuilder
);
2096 case Intrinsic::usub_with_overflow
:
2097 return translateOverflowIntrinsic(CI
, TargetOpcode::G_USUBO
, MIRBuilder
);
2098 case Intrinsic::ssub_with_overflow
:
2099 return translateOverflowIntrinsic(CI
, TargetOpcode::G_SSUBO
, MIRBuilder
);
2100 case Intrinsic::umul_with_overflow
:
2101 return translateOverflowIntrinsic(CI
, TargetOpcode::G_UMULO
, MIRBuilder
);
2102 case Intrinsic::smul_with_overflow
:
2103 return translateOverflowIntrinsic(CI
, TargetOpcode::G_SMULO
, MIRBuilder
);
2104 case Intrinsic::uadd_sat
:
2105 return translateBinaryOp(TargetOpcode::G_UADDSAT
, CI
, MIRBuilder
);
2106 case Intrinsic::sadd_sat
:
2107 return translateBinaryOp(TargetOpcode::G_SADDSAT
, CI
, MIRBuilder
);
2108 case Intrinsic::usub_sat
:
2109 return translateBinaryOp(TargetOpcode::G_USUBSAT
, CI
, MIRBuilder
);
2110 case Intrinsic::ssub_sat
:
2111 return translateBinaryOp(TargetOpcode::G_SSUBSAT
, CI
, MIRBuilder
);
2112 case Intrinsic::ushl_sat
:
2113 return translateBinaryOp(TargetOpcode::G_USHLSAT
, CI
, MIRBuilder
);
2114 case Intrinsic::sshl_sat
:
2115 return translateBinaryOp(TargetOpcode::G_SSHLSAT
, CI
, MIRBuilder
);
2116 case Intrinsic::umin
:
2117 return translateBinaryOp(TargetOpcode::G_UMIN
, CI
, MIRBuilder
);
2118 case Intrinsic::umax
:
2119 return translateBinaryOp(TargetOpcode::G_UMAX
, CI
, MIRBuilder
);
2120 case Intrinsic::smin
:
2121 return translateBinaryOp(TargetOpcode::G_SMIN
, CI
, MIRBuilder
);
2122 case Intrinsic::smax
:
2123 return translateBinaryOp(TargetOpcode::G_SMAX
, CI
, MIRBuilder
);
2124 case Intrinsic::abs
:
2125 // TODO: Preserve "int min is poison" arg in GMIR?
2126 return translateUnaryOp(TargetOpcode::G_ABS
, CI
, MIRBuilder
);
2127 case Intrinsic::smul_fix
:
2128 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX
, CI
, MIRBuilder
);
2129 case Intrinsic::umul_fix
:
2130 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX
, CI
, MIRBuilder
);
2131 case Intrinsic::smul_fix_sat
:
2132 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT
, CI
, MIRBuilder
);
2133 case Intrinsic::umul_fix_sat
:
2134 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT
, CI
, MIRBuilder
);
2135 case Intrinsic::sdiv_fix
:
2136 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX
, CI
, MIRBuilder
);
2137 case Intrinsic::udiv_fix
:
2138 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX
, CI
, MIRBuilder
);
2139 case Intrinsic::sdiv_fix_sat
:
2140 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT
, CI
, MIRBuilder
);
2141 case Intrinsic::udiv_fix_sat
:
2142 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT
, CI
, MIRBuilder
);
2143 case Intrinsic::fmuladd
: {
2144 const TargetMachine
&TM
= MF
->getTarget();
2145 const TargetLowering
&TLI
= *MF
->getSubtarget().getTargetLowering();
2146 Register Dst
= getOrCreateVReg(CI
);
2147 Register Op0
= getOrCreateVReg(*CI
.getArgOperand(0));
2148 Register Op1
= getOrCreateVReg(*CI
.getArgOperand(1));
2149 Register Op2
= getOrCreateVReg(*CI
.getArgOperand(2));
2150 if (TM
.Options
.AllowFPOpFusion
!= FPOpFusion::Strict
&&
2151 TLI
.isFMAFasterThanFMulAndFAdd(*MF
,
2152 TLI
.getValueType(*DL
, CI
.getType()))) {
2153 // TODO: Revisit this to see if we should move this part of the
2154 // lowering to the combiner.
2155 MIRBuilder
.buildFMA(Dst
, Op0
, Op1
, Op2
,
2156 MachineInstr::copyFlagsFromInstruction(CI
));
2158 LLT Ty
= getLLTForType(*CI
.getType(), *DL
);
2159 auto FMul
= MIRBuilder
.buildFMul(
2160 Ty
, Op0
, Op1
, MachineInstr::copyFlagsFromInstruction(CI
));
2161 MIRBuilder
.buildFAdd(Dst
, FMul
, Op2
,
2162 MachineInstr::copyFlagsFromInstruction(CI
));
2166 case Intrinsic::convert_from_fp16
:
2167 // FIXME: This intrinsic should probably be removed from the IR.
2168 MIRBuilder
.buildFPExt(getOrCreateVReg(CI
),
2169 getOrCreateVReg(*CI
.getArgOperand(0)),
2170 MachineInstr::copyFlagsFromInstruction(CI
));
2172 case Intrinsic::convert_to_fp16
:
2173 // FIXME: This intrinsic should probably be removed from the IR.
2174 MIRBuilder
.buildFPTrunc(getOrCreateVReg(CI
),
2175 getOrCreateVReg(*CI
.getArgOperand(0)),
2176 MachineInstr::copyFlagsFromInstruction(CI
));
2178 case Intrinsic::frexp
: {
2179 ArrayRef
<Register
> VRegs
= getOrCreateVRegs(CI
);
2180 MIRBuilder
.buildFFrexp(VRegs
[0], VRegs
[1],
2181 getOrCreateVReg(*CI
.getArgOperand(0)),
2182 MachineInstr::copyFlagsFromInstruction(CI
));
2185 case Intrinsic::memcpy_inline
:
2186 return translateMemFunc(CI
, MIRBuilder
, TargetOpcode::G_MEMCPY_INLINE
);
2187 case Intrinsic::memcpy
:
2188 return translateMemFunc(CI
, MIRBuilder
, TargetOpcode::G_MEMCPY
);
2189 case Intrinsic::memmove
:
2190 return translateMemFunc(CI
, MIRBuilder
, TargetOpcode::G_MEMMOVE
);
2191 case Intrinsic::memset
:
2192 return translateMemFunc(CI
, MIRBuilder
, TargetOpcode::G_MEMSET
);
2193 case Intrinsic::eh_typeid_for
: {
2194 GlobalValue
*GV
= ExtractTypeInfo(CI
.getArgOperand(0));
2195 Register Reg
= getOrCreateVReg(CI
);
2196 unsigned TypeID
= MF
->getTypeIDFor(GV
);
2197 MIRBuilder
.buildConstant(Reg
, TypeID
);
2200 case Intrinsic::objectsize
:
2201 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2203 case Intrinsic::is_constant
:
2204 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2206 case Intrinsic::stackguard
:
2207 getStackGuard(getOrCreateVReg(CI
), MIRBuilder
);
2209 case Intrinsic::stackprotector
: {
2210 const TargetLowering
&TLI
= *MF
->getSubtarget().getTargetLowering();
2211 LLT PtrTy
= getLLTForType(*CI
.getArgOperand(0)->getType(), *DL
);
2213 if (TLI
.useLoadStackGuardNode()) {
2214 GuardVal
= MRI
->createGenericVirtualRegister(PtrTy
);
2215 getStackGuard(GuardVal
, MIRBuilder
);
2217 GuardVal
= getOrCreateVReg(*CI
.getArgOperand(0)); // The guard's value.
2219 AllocaInst
*Slot
= cast
<AllocaInst
>(CI
.getArgOperand(1));
2220 int FI
= getOrCreateFrameIndex(*Slot
);
2221 MF
->getFrameInfo().setStackProtectorIndex(FI
);
2223 MIRBuilder
.buildStore(
2224 GuardVal
, getOrCreateVReg(*Slot
),
2225 *MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
2226 MachineMemOperand::MOStore
|
2227 MachineMemOperand::MOVolatile
,
2231 case Intrinsic::stacksave
: {
2232 // Save the stack pointer to the location provided by the intrinsic.
2233 Register Reg
= getOrCreateVReg(CI
);
2234 Register StackPtr
= MF
->getSubtarget()
2235 .getTargetLowering()
2236 ->getStackPointerRegisterToSaveRestore();
2238 // If the target doesn't specify a stack pointer, then fall back.
2242 MIRBuilder
.buildCopy(Reg
, StackPtr
);
2245 case Intrinsic::stackrestore
: {
2246 // Restore the stack pointer from the location provided by the intrinsic.
2247 Register Reg
= getOrCreateVReg(*CI
.getArgOperand(0));
2248 Register StackPtr
= MF
->getSubtarget()
2249 .getTargetLowering()
2250 ->getStackPointerRegisterToSaveRestore();
2252 // If the target doesn't specify a stack pointer, then fall back.
2256 MIRBuilder
.buildCopy(StackPtr
, Reg
);
2259 case Intrinsic::cttz
:
2260 case Intrinsic::ctlz
: {
2261 ConstantInt
*Cst
= cast
<ConstantInt
>(CI
.getArgOperand(1));
2262 bool isTrailing
= ID
== Intrinsic::cttz
;
2263 unsigned Opcode
= isTrailing
2264 ? Cst
->isZero() ? TargetOpcode::G_CTTZ
2265 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2266 : Cst
->isZero() ? TargetOpcode::G_CTLZ
2267 : TargetOpcode::G_CTLZ_ZERO_UNDEF
;
2268 MIRBuilder
.buildInstr(Opcode
, {getOrCreateVReg(CI
)},
2269 {getOrCreateVReg(*CI
.getArgOperand(0))});
2272 case Intrinsic::invariant_start
: {
2273 LLT PtrTy
= getLLTForType(*CI
.getArgOperand(0)->getType(), *DL
);
2274 Register Undef
= MRI
->createGenericVirtualRegister(PtrTy
);
2275 MIRBuilder
.buildUndef(Undef
);
2278 case Intrinsic::invariant_end
:
2280 case Intrinsic::expect
:
2281 case Intrinsic::annotation
:
2282 case Intrinsic::ptr_annotation
:
2283 case Intrinsic::launder_invariant_group
:
2284 case Intrinsic::strip_invariant_group
: {
2285 // Drop the intrinsic, but forward the value.
2286 MIRBuilder
.buildCopy(getOrCreateVReg(CI
),
2287 getOrCreateVReg(*CI
.getArgOperand(0)));
2290 case Intrinsic::assume
:
2291 case Intrinsic::experimental_noalias_scope_decl
:
2292 case Intrinsic::var_annotation
:
2293 case Intrinsic::sideeffect
:
2294 // Discard annotate attributes, assumptions, and artificial side-effects.
2296 case Intrinsic::read_volatile_register
:
2297 case Intrinsic::read_register
: {
2298 Value
*Arg
= CI
.getArgOperand(0);
2300 .buildInstr(TargetOpcode::G_READ_REGISTER
, {getOrCreateVReg(CI
)}, {})
2301 .addMetadata(cast
<MDNode
>(cast
<MetadataAsValue
>(Arg
)->getMetadata()));
2304 case Intrinsic::write_register
: {
2305 Value
*Arg
= CI
.getArgOperand(0);
2306 MIRBuilder
.buildInstr(TargetOpcode::G_WRITE_REGISTER
)
2307 .addMetadata(cast
<MDNode
>(cast
<MetadataAsValue
>(Arg
)->getMetadata()))
2308 .addUse(getOrCreateVReg(*CI
.getArgOperand(1)));
2311 case Intrinsic::localescape
: {
2312 MachineBasicBlock
&EntryMBB
= MF
->front();
2313 StringRef EscapedName
= GlobalValue::dropLLVMManglingEscape(MF
->getName());
2315 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2316 // is the same on all targets.
2317 for (unsigned Idx
= 0, E
= CI
.arg_size(); Idx
< E
; ++Idx
) {
2318 Value
*Arg
= CI
.getArgOperand(Idx
)->stripPointerCasts();
2319 if (isa
<ConstantPointerNull
>(Arg
))
2320 continue; // Skip null pointers. They represent a hole in index space.
2322 int FI
= getOrCreateFrameIndex(*cast
<AllocaInst
>(Arg
));
2323 MCSymbol
*FrameAllocSym
=
2324 MF
->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName
,
2327 // This should be inserted at the start of the entry block.
2329 MIRBuilder
.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE
)
2330 .addSym(FrameAllocSym
)
2333 EntryMBB
.insert(EntryMBB
.begin(), LocalEscape
);
2338 case Intrinsic::vector_reduce_fadd
:
2339 case Intrinsic::vector_reduce_fmul
: {
2340 // Need to check for the reassoc flag to decide whether we want a
2341 // sequential reduction opcode or not.
2342 Register Dst
= getOrCreateVReg(CI
);
2343 Register ScalarSrc
= getOrCreateVReg(*CI
.getArgOperand(0));
2344 Register VecSrc
= getOrCreateVReg(*CI
.getArgOperand(1));
2346 if (!CI
.hasAllowReassoc()) {
2347 // The sequential ordering case.
2348 Opc
= ID
== Intrinsic::vector_reduce_fadd
2349 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2350 : TargetOpcode::G_VECREDUCE_SEQ_FMUL
;
2351 MIRBuilder
.buildInstr(Opc
, {Dst
}, {ScalarSrc
, VecSrc
},
2352 MachineInstr::copyFlagsFromInstruction(CI
));
2355 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2356 // since the associativity doesn't matter.
2358 if (ID
== Intrinsic::vector_reduce_fadd
) {
2359 Opc
= TargetOpcode::G_VECREDUCE_FADD
;
2360 ScalarOpc
= TargetOpcode::G_FADD
;
2362 Opc
= TargetOpcode::G_VECREDUCE_FMUL
;
2363 ScalarOpc
= TargetOpcode::G_FMUL
;
2365 LLT DstTy
= MRI
->getType(Dst
);
2366 auto Rdx
= MIRBuilder
.buildInstr(
2367 Opc
, {DstTy
}, {VecSrc
}, MachineInstr::copyFlagsFromInstruction(CI
));
2368 MIRBuilder
.buildInstr(ScalarOpc
, {Dst
}, {ScalarSrc
, Rdx
},
2369 MachineInstr::copyFlagsFromInstruction(CI
));
2373 case Intrinsic::trap
:
2374 case Intrinsic::debugtrap
:
2375 case Intrinsic::ubsantrap
: {
2376 StringRef TrapFuncName
=
2377 CI
.getAttributes().getFnAttr("trap-func-name").getValueAsString();
2378 if (TrapFuncName
.empty())
2379 break; // Use the default handling.
2380 CallLowering::CallLoweringInfo Info
;
2381 if (ID
== Intrinsic::ubsantrap
) {
2382 Info
.OrigArgs
.push_back({getOrCreateVRegs(*CI
.getArgOperand(0)),
2383 CI
.getArgOperand(0)->getType(), 0});
2385 Info
.Callee
= MachineOperand::CreateES(TrapFuncName
.data());
2387 Info
.OrigRet
= {Register(), Type::getVoidTy(CI
.getContext()), 0};
2388 return CLI
->lowerCall(MIRBuilder
, Info
);
2390 case Intrinsic::fptrunc_round
: {
2391 uint32_t Flags
= MachineInstr::copyFlagsFromInstruction(CI
);
2393 // Convert the metadata argument to a constant integer
2394 Metadata
*MD
= cast
<MetadataAsValue
>(CI
.getArgOperand(1))->getMetadata();
2395 std::optional
<RoundingMode
> RoundMode
=
2396 convertStrToRoundingMode(cast
<MDString
>(MD
)->getString());
2398 // Add the Rounding mode as an integer
2400 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND
,
2401 {getOrCreateVReg(CI
)},
2402 {getOrCreateVReg(*CI
.getArgOperand(0))}, Flags
)
2403 .addImm((int)*RoundMode
);
2407 case Intrinsic::is_fpclass
: {
2408 Value
*FpValue
= CI
.getOperand(0);
2409 ConstantInt
*TestMaskValue
= cast
<ConstantInt
>(CI
.getOperand(1));
2412 .buildInstr(TargetOpcode::G_IS_FPCLASS
, {getOrCreateVReg(CI
)},
2413 {getOrCreateVReg(*FpValue
)})
2414 .addImm(TestMaskValue
->getZExtValue());
2418 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2419 case Intrinsic::INTRINSIC:
2420 #include "llvm/IR/ConstrainedOps.def"
2421 return translateConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(CI
),
2428 bool IRTranslator::translateInlineAsm(const CallBase
&CB
,
2429 MachineIRBuilder
&MIRBuilder
) {
2431 const InlineAsmLowering
*ALI
= MF
->getSubtarget().getInlineAsmLowering();
2435 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2439 return ALI
->lowerInlineAsm(
2440 MIRBuilder
, CB
, [&](const Value
&Val
) { return getOrCreateVRegs(Val
); });
2443 bool IRTranslator::translateCallBase(const CallBase
&CB
,
2444 MachineIRBuilder
&MIRBuilder
) {
2445 ArrayRef
<Register
> Res
= getOrCreateVRegs(CB
);
2447 SmallVector
<ArrayRef
<Register
>, 8> Args
;
2448 Register SwiftInVReg
= 0;
2449 Register SwiftErrorVReg
= 0;
2450 for (const auto &Arg
: CB
.args()) {
2451 if (CLI
->supportSwiftError() && isSwiftError(Arg
)) {
2452 assert(SwiftInVReg
== 0 && "Expected only one swift error argument");
2453 LLT Ty
= getLLTForType(*Arg
->getType(), *DL
);
2454 SwiftInVReg
= MRI
->createGenericVirtualRegister(Ty
);
2455 MIRBuilder
.buildCopy(SwiftInVReg
, SwiftError
.getOrCreateVRegUseAt(
2456 &CB
, &MIRBuilder
.getMBB(), Arg
));
2457 Args
.emplace_back(ArrayRef(SwiftInVReg
));
2459 SwiftError
.getOrCreateVRegDefAt(&CB
, &MIRBuilder
.getMBB(), Arg
);
2462 Args
.push_back(getOrCreateVRegs(*Arg
));
2465 if (auto *CI
= dyn_cast
<CallInst
>(&CB
)) {
2466 if (ORE
->enabled()) {
2467 if (MemoryOpRemark::canHandle(CI
, *LibInfo
)) {
2468 MemoryOpRemark
R(*ORE
, "gisel-irtranslator-memsize", *DL
, *LibInfo
);
2474 // We don't set HasCalls on MFI here yet because call lowering may decide to
2475 // optimize into tail calls. Instead, we defer that to selection where a final
2476 // scan is done to check if any instructions are calls.
2478 CLI
->lowerCall(MIRBuilder
, CB
, Res
, Args
, SwiftErrorVReg
,
2479 [&]() { return getOrCreateVReg(*CB
.getCalledOperand()); });
2481 // Check if we just inserted a tail call.
2483 assert(!HasTailCall
&& "Can't tail call return twice from block?");
2484 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
2485 HasTailCall
= TII
->isTailCall(*std::prev(MIRBuilder
.getInsertPt()));
2491 bool IRTranslator::translateCall(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
2492 const CallInst
&CI
= cast
<CallInst
>(U
);
2493 auto TII
= MF
->getTarget().getIntrinsicInfo();
2494 const Function
*F
= CI
.getCalledFunction();
2496 // FIXME: support Windows dllimport function calls.
2497 if (F
&& (F
->hasDLLImportStorageClass() ||
2498 (MF
->getTarget().getTargetTriple().isOSWindows() &&
2499 F
->hasExternalWeakLinkage())))
2502 // FIXME: support control flow guard targets.
2503 if (CI
.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget
))
2506 // FIXME: support statepoints and related.
2507 if (isa
<GCStatepointInst
, GCRelocateInst
, GCResultInst
>(U
))
2510 if (CI
.isInlineAsm())
2511 return translateInlineAsm(CI
, MIRBuilder
);
2513 diagnoseDontCall(CI
);
2515 Intrinsic::ID ID
= Intrinsic::not_intrinsic
;
2516 if (F
&& F
->isIntrinsic()) {
2517 ID
= F
->getIntrinsicID();
2518 if (TII
&& ID
== Intrinsic::not_intrinsic
)
2519 ID
= static_cast<Intrinsic::ID
>(TII
->getIntrinsicID(F
));
2522 if (!F
|| !F
->isIntrinsic() || ID
== Intrinsic::not_intrinsic
)
2523 return translateCallBase(CI
, MIRBuilder
);
2525 assert(ID
!= Intrinsic::not_intrinsic
&& "unknown intrinsic");
2527 if (translateKnownIntrinsic(CI
, ID
, MIRBuilder
))
2530 ArrayRef
<Register
> ResultRegs
;
2531 if (!CI
.getType()->isVoidTy())
2532 ResultRegs
= getOrCreateVRegs(CI
);
2534 // Ignore the callsite attributes. Backend code is most likely not expecting
2535 // an intrinsic to sometimes have side effects and sometimes not.
2536 MachineInstrBuilder MIB
=
2537 MIRBuilder
.buildIntrinsic(ID
, ResultRegs
, !F
->doesNotAccessMemory());
2538 if (isa
<FPMathOperator
>(CI
))
2539 MIB
->copyIRFlags(CI
);
2541 for (const auto &Arg
: enumerate(CI
.args())) {
2542 // If this is required to be an immediate, don't materialize it in a
2544 if (CI
.paramHasAttr(Arg
.index(), Attribute::ImmArg
)) {
2545 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Arg
.value())) {
2546 // imm arguments are more convenient than cimm (and realistically
2547 // probably sufficient), so use them.
2548 assert(CI
->getBitWidth() <= 64 &&
2549 "large intrinsic immediates not handled");
2550 MIB
.addImm(CI
->getSExtValue());
2552 MIB
.addFPImm(cast
<ConstantFP
>(Arg
.value()));
2554 } else if (auto *MDVal
= dyn_cast
<MetadataAsValue
>(Arg
.value())) {
2555 auto *MD
= MDVal
->getMetadata();
2556 auto *MDN
= dyn_cast
<MDNode
>(MD
);
2558 if (auto *ConstMD
= dyn_cast
<ConstantAsMetadata
>(MD
))
2559 MDN
= MDNode::get(MF
->getFunction().getContext(), ConstMD
);
2560 else // This was probably an MDString.
2563 MIB
.addMetadata(MDN
);
2565 ArrayRef
<Register
> VRegs
= getOrCreateVRegs(*Arg
.value());
2566 if (VRegs
.size() > 1)
2568 MIB
.addUse(VRegs
[0]);
2572 // Add a MachineMemOperand if it is a target mem intrinsic.
2573 const TargetLowering
&TLI
= *MF
->getSubtarget().getTargetLowering();
2574 TargetLowering::IntrinsicInfo Info
;
2575 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2576 if (TLI
.getTgtMemIntrinsic(Info
, CI
, *MF
, ID
)) {
2577 Align Alignment
= Info
.align
.value_or(
2578 DL
->getABITypeAlign(Info
.memVT
.getTypeForEVT(F
->getContext())));
2579 LLT MemTy
= Info
.memVT
.isSimple()
2580 ? getLLTForMVT(Info
.memVT
.getSimpleVT())
2581 : LLT::scalar(Info
.memVT
.getStoreSizeInBits());
2583 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2584 // didn't yield anything useful.
2585 MachinePointerInfo MPI
;
2587 MPI
= MachinePointerInfo(Info
.ptrVal
, Info
.offset
);
2588 else if (Info
.fallbackAddressSpace
)
2589 MPI
= MachinePointerInfo(*Info
.fallbackAddressSpace
);
2591 MF
->getMachineMemOperand(MPI
, Info
.flags
, MemTy
, Alignment
, CI
.getAAMetadata()));
2597 bool IRTranslator::findUnwindDestinations(
2598 const BasicBlock
*EHPadBB
,
2599 BranchProbability Prob
,
2600 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
2602 EHPersonality Personality
= classifyEHPersonality(
2603 EHPadBB
->getParent()->getFunction().getPersonalityFn());
2604 bool IsMSVCCXX
= Personality
== EHPersonality::MSVC_CXX
;
2605 bool IsCoreCLR
= Personality
== EHPersonality::CoreCLR
;
2606 bool IsWasmCXX
= Personality
== EHPersonality::Wasm_CXX
;
2607 bool IsSEH
= isAsynchronousEHPersonality(Personality
);
2610 // Ignore this for now.
2615 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
2616 BasicBlock
*NewEHPadBB
= nullptr;
2617 if (isa
<LandingPadInst
>(Pad
)) {
2618 // Stop on landingpads. They are not funclets.
2619 UnwindDests
.emplace_back(&getMBB(*EHPadBB
), Prob
);
2622 if (isa
<CleanupPadInst
>(Pad
)) {
2623 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2625 UnwindDests
.emplace_back(&getMBB(*EHPadBB
), Prob
);
2626 UnwindDests
.back().first
->setIsEHScopeEntry();
2627 UnwindDests
.back().first
->setIsEHFuncletEntry();
2630 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
2631 // Add the catchpad handlers to the possible destinations.
2632 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
2633 UnwindDests
.emplace_back(&getMBB(*CatchPadBB
), Prob
);
2634 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2635 if (IsMSVCCXX
|| IsCoreCLR
)
2636 UnwindDests
.back().first
->setIsEHFuncletEntry();
2638 UnwindDests
.back().first
->setIsEHScopeEntry();
2640 NewEHPadBB
= CatchSwitch
->getUnwindDest();
2645 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2646 if (BPI
&& NewEHPadBB
)
2647 Prob
*= BPI
->getEdgeProbability(EHPadBB
, NewEHPadBB
);
2648 EHPadBB
= NewEHPadBB
;
2653 bool IRTranslator::translateInvoke(const User
&U
,
2654 MachineIRBuilder
&MIRBuilder
) {
2655 const InvokeInst
&I
= cast
<InvokeInst
>(U
);
2656 MCContext
&Context
= MF
->getContext();
2658 const BasicBlock
*ReturnBB
= I
.getSuccessor(0);
2659 const BasicBlock
*EHPadBB
= I
.getSuccessor(1);
2661 const Function
*Fn
= I
.getCalledFunction();
2663 // FIXME: support invoking patchpoint and statepoint intrinsics.
2664 if (Fn
&& Fn
->isIntrinsic())
2667 // FIXME: support whatever these are.
2668 if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
))
2671 // FIXME: support control flow guard targets.
2672 if (I
.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget
))
2675 // FIXME: support Windows exception handling.
2676 if (!isa
<LandingPadInst
>(EHPadBB
->getFirstNonPHI()))
2679 bool LowerInlineAsm
= I
.isInlineAsm();
2680 bool NeedEHLabel
= true;
2682 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2683 // the region covered by the try.
2684 MCSymbol
*BeginSymbol
= nullptr;
2686 MIRBuilder
.buildInstr(TargetOpcode::G_INVOKE_REGION_START
);
2687 BeginSymbol
= Context
.createTempSymbol();
2688 MIRBuilder
.buildInstr(TargetOpcode::EH_LABEL
).addSym(BeginSymbol
);
2691 if (LowerInlineAsm
) {
2692 if (!translateInlineAsm(I
, MIRBuilder
))
2694 } else if (!translateCallBase(I
, MIRBuilder
))
2697 MCSymbol
*EndSymbol
= nullptr;
2699 EndSymbol
= Context
.createTempSymbol();
2700 MIRBuilder
.buildInstr(TargetOpcode::EH_LABEL
).addSym(EndSymbol
);
2703 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
2704 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2705 MachineBasicBlock
*InvokeMBB
= &MIRBuilder
.getMBB();
2706 BranchProbability EHPadBBProb
=
2707 BPI
? BPI
->getEdgeProbability(InvokeMBB
->getBasicBlock(), EHPadBB
)
2708 : BranchProbability::getZero();
2710 if (!findUnwindDestinations(EHPadBB
, EHPadBBProb
, UnwindDests
))
2713 MachineBasicBlock
&EHPadMBB
= getMBB(*EHPadBB
),
2714 &ReturnMBB
= getMBB(*ReturnBB
);
2715 // Update successor info.
2716 addSuccessorWithProb(InvokeMBB
, &ReturnMBB
);
2717 for (auto &UnwindDest
: UnwindDests
) {
2718 UnwindDest
.first
->setIsEHPad();
2719 addSuccessorWithProb(InvokeMBB
, UnwindDest
.first
, UnwindDest
.second
);
2721 InvokeMBB
->normalizeSuccProbs();
2724 assert(BeginSymbol
&& "Expected a begin symbol!");
2725 assert(EndSymbol
&& "Expected an end symbol!");
2726 MF
->addInvoke(&EHPadMBB
, BeginSymbol
, EndSymbol
);
2729 MIRBuilder
.buildBr(ReturnMBB
);
2733 bool IRTranslator::translateCallBr(const User
&U
,
2734 MachineIRBuilder
&MIRBuilder
) {
2735 // FIXME: Implement this.
2739 bool IRTranslator::translateLandingPad(const User
&U
,
2740 MachineIRBuilder
&MIRBuilder
) {
2741 const LandingPadInst
&LP
= cast
<LandingPadInst
>(U
);
2743 MachineBasicBlock
&MBB
= MIRBuilder
.getMBB();
2747 // If there aren't registers to copy the values into (e.g., during SjLj
2748 // exceptions), then don't bother.
2749 auto &TLI
= *MF
->getSubtarget().getTargetLowering();
2750 const Constant
*PersonalityFn
= MF
->getFunction().getPersonalityFn();
2751 if (TLI
.getExceptionPointerRegister(PersonalityFn
) == 0 &&
2752 TLI
.getExceptionSelectorRegister(PersonalityFn
) == 0)
2755 // If landingpad's return type is token type, we don't create DAG nodes
2756 // for its exception pointer and selector value. The extraction of exception
2757 // pointer or selector value from token type landingpads is not currently
2759 if (LP
.getType()->isTokenTy())
2762 // Add a label to mark the beginning of the landing pad. Deletion of the
2763 // landing pad can thus be detected via the MachineModuleInfo.
2764 MIRBuilder
.buildInstr(TargetOpcode::EH_LABEL
)
2765 .addSym(MF
->addLandingPad(&MBB
));
2767 // If the unwinder does not preserve all registers, ensure that the
2768 // function marks the clobbered registers as used.
2769 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
2770 if (auto *RegMask
= TRI
.getCustomEHPadPreservedMask(*MF
))
2771 MF
->getRegInfo().addPhysRegsUsedFromRegMask(RegMask
);
2773 LLT Ty
= getLLTForType(*LP
.getType(), *DL
);
2774 Register Undef
= MRI
->createGenericVirtualRegister(Ty
);
2775 MIRBuilder
.buildUndef(Undef
);
2777 SmallVector
<LLT
, 2> Tys
;
2778 for (Type
*Ty
: cast
<StructType
>(LP
.getType())->elements())
2779 Tys
.push_back(getLLTForType(*Ty
, *DL
));
2780 assert(Tys
.size() == 2 && "Only two-valued landingpads are supported");
2782 // Mark exception register as live in.
2783 Register ExceptionReg
= TLI
.getExceptionPointerRegister(PersonalityFn
);
2787 MBB
.addLiveIn(ExceptionReg
);
2788 ArrayRef
<Register
> ResRegs
= getOrCreateVRegs(LP
);
2789 MIRBuilder
.buildCopy(ResRegs
[0], ExceptionReg
);
2791 Register SelectorReg
= TLI
.getExceptionSelectorRegister(PersonalityFn
);
2795 MBB
.addLiveIn(SelectorReg
);
2796 Register PtrVReg
= MRI
->createGenericVirtualRegister(Tys
[0]);
2797 MIRBuilder
.buildCopy(PtrVReg
, SelectorReg
);
2798 MIRBuilder
.buildCast(ResRegs
[1], PtrVReg
);
2803 bool IRTranslator::translateAlloca(const User
&U
,
2804 MachineIRBuilder
&MIRBuilder
) {
2805 auto &AI
= cast
<AllocaInst
>(U
);
2807 if (AI
.isSwiftError())
2810 if (AI
.isStaticAlloca()) {
2811 Register Res
= getOrCreateVReg(AI
);
2812 int FI
= getOrCreateFrameIndex(AI
);
2813 MIRBuilder
.buildFrameIndex(Res
, FI
);
2817 // FIXME: support stack probing for Windows.
2818 if (MF
->getTarget().getTargetTriple().isOSWindows())
2821 // Now we're in the harder dynamic case.
2822 Register NumElts
= getOrCreateVReg(*AI
.getArraySize());
2823 Type
*IntPtrIRTy
= DL
->getIntPtrType(AI
.getType());
2824 LLT IntPtrTy
= getLLTForType(*IntPtrIRTy
, *DL
);
2825 if (MRI
->getType(NumElts
) != IntPtrTy
) {
2826 Register ExtElts
= MRI
->createGenericVirtualRegister(IntPtrTy
);
2827 MIRBuilder
.buildZExtOrTrunc(ExtElts
, NumElts
);
2831 Type
*Ty
= AI
.getAllocatedType();
2833 Register AllocSize
= MRI
->createGenericVirtualRegister(IntPtrTy
);
2835 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy
, DL
->getTypeAllocSize(Ty
)));
2836 MIRBuilder
.buildMul(AllocSize
, NumElts
, TySize
);
2838 // Round the size of the allocation up to the stack alignment size
2839 // by add SA-1 to the size. This doesn't overflow because we're computing
2840 // an address inside an alloca.
2841 Align StackAlign
= MF
->getSubtarget().getFrameLowering()->getStackAlign();
2842 auto SAMinusOne
= MIRBuilder
.buildConstant(IntPtrTy
, StackAlign
.value() - 1);
2843 auto AllocAdd
= MIRBuilder
.buildAdd(IntPtrTy
, AllocSize
, SAMinusOne
,
2844 MachineInstr::NoUWrap
);
2846 MIRBuilder
.buildConstant(IntPtrTy
, ~(uint64_t)(StackAlign
.value() - 1));
2847 auto AlignedAlloc
= MIRBuilder
.buildAnd(IntPtrTy
, AllocAdd
, AlignCst
);
2849 Align Alignment
= std::max(AI
.getAlign(), DL
->getPrefTypeAlign(Ty
));
2850 if (Alignment
<= StackAlign
)
2851 Alignment
= Align(1);
2852 MIRBuilder
.buildDynStackAlloc(getOrCreateVReg(AI
), AlignedAlloc
, Alignment
);
2854 MF
->getFrameInfo().CreateVariableSizedObject(Alignment
, &AI
);
2855 assert(MF
->getFrameInfo().hasVarSizedObjects());
2859 bool IRTranslator::translateVAArg(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
2860 // FIXME: We may need more info about the type. Because of how LLT works,
2861 // we're completely discarding the i64/double distinction here (amongst
2862 // others). Fortunately the ABIs I know of where that matters don't use va_arg
2863 // anyway but that's not guaranteed.
2864 MIRBuilder
.buildInstr(TargetOpcode::G_VAARG
, {getOrCreateVReg(U
)},
2865 {getOrCreateVReg(*U
.getOperand(0)),
2866 DL
->getABITypeAlign(U
.getType()).value()});
2870 bool IRTranslator::translateUnreachable(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
2871 if (!MF
->getTarget().Options
.TrapUnreachable
)
2874 auto &UI
= cast
<UnreachableInst
>(U
);
2875 // We may be able to ignore unreachable behind a noreturn call.
2876 if (MF
->getTarget().Options
.NoTrapAfterNoreturn
) {
2877 const BasicBlock
&BB
= *UI
.getParent();
2878 if (&UI
!= &BB
.front()) {
2879 BasicBlock::const_iterator PredI
=
2880 std::prev(BasicBlock::const_iterator(UI
));
2881 if (const CallInst
*Call
= dyn_cast
<CallInst
>(&*PredI
)) {
2882 if (Call
->doesNotReturn())
2888 MIRBuilder
.buildIntrinsic(Intrinsic::trap
, ArrayRef
<Register
>(), true);
2892 bool IRTranslator::translateInsertElement(const User
&U
,
2893 MachineIRBuilder
&MIRBuilder
) {
2894 // If it is a <1 x Ty> vector, use the scalar as it is
2895 // not a legal vector type in LLT.
2896 if (cast
<FixedVectorType
>(U
.getType())->getNumElements() == 1)
2897 return translateCopy(U
, *U
.getOperand(1), MIRBuilder
);
2899 Register Res
= getOrCreateVReg(U
);
2900 Register Val
= getOrCreateVReg(*U
.getOperand(0));
2901 Register Elt
= getOrCreateVReg(*U
.getOperand(1));
2902 Register Idx
= getOrCreateVReg(*U
.getOperand(2));
2903 MIRBuilder
.buildInsertVectorElement(Res
, Val
, Elt
, Idx
);
2907 bool IRTranslator::translateExtractElement(const User
&U
,
2908 MachineIRBuilder
&MIRBuilder
) {
2909 // If it is a <1 x Ty> vector, use the scalar as it is
2910 // not a legal vector type in LLT.
2911 if (cast
<FixedVectorType
>(U
.getOperand(0)->getType())->getNumElements() == 1)
2912 return translateCopy(U
, *U
.getOperand(0), MIRBuilder
);
2914 Register Res
= getOrCreateVReg(U
);
2915 Register Val
= getOrCreateVReg(*U
.getOperand(0));
2916 const auto &TLI
= *MF
->getSubtarget().getTargetLowering();
2917 unsigned PreferredVecIdxWidth
= TLI
.getVectorIdxTy(*DL
).getSizeInBits();
2919 if (auto *CI
= dyn_cast
<ConstantInt
>(U
.getOperand(1))) {
2920 if (CI
->getBitWidth() != PreferredVecIdxWidth
) {
2921 APInt NewIdx
= CI
->getValue().zextOrTrunc(PreferredVecIdxWidth
);
2922 auto *NewIdxCI
= ConstantInt::get(CI
->getContext(), NewIdx
);
2923 Idx
= getOrCreateVReg(*NewIdxCI
);
2927 Idx
= getOrCreateVReg(*U
.getOperand(1));
2928 if (MRI
->getType(Idx
).getSizeInBits() != PreferredVecIdxWidth
) {
2929 const LLT VecIdxTy
= LLT::scalar(PreferredVecIdxWidth
);
2930 Idx
= MIRBuilder
.buildZExtOrTrunc(VecIdxTy
, Idx
).getReg(0);
2932 MIRBuilder
.buildExtractVectorElement(Res
, Val
, Idx
);
2936 bool IRTranslator::translateShuffleVector(const User
&U
,
2937 MachineIRBuilder
&MIRBuilder
) {
2939 if (auto *SVI
= dyn_cast
<ShuffleVectorInst
>(&U
))
2940 Mask
= SVI
->getShuffleMask();
2942 Mask
= cast
<ConstantExpr
>(U
).getShuffleMask();
2943 ArrayRef
<int> MaskAlloc
= MF
->allocateShuffleMask(Mask
);
2945 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR
, {getOrCreateVReg(U
)},
2946 {getOrCreateVReg(*U
.getOperand(0)),
2947 getOrCreateVReg(*U
.getOperand(1))})
2948 .addShuffleMask(MaskAlloc
);
2952 bool IRTranslator::translatePHI(const User
&U
, MachineIRBuilder
&MIRBuilder
) {
2953 const PHINode
&PI
= cast
<PHINode
>(U
);
2955 SmallVector
<MachineInstr
*, 4> Insts
;
2956 for (auto Reg
: getOrCreateVRegs(PI
)) {
2957 auto MIB
= MIRBuilder
.buildInstr(TargetOpcode::G_PHI
, {Reg
}, {});
2958 Insts
.push_back(MIB
.getInstr());
2961 PendingPHIs
.emplace_back(&PI
, std::move(Insts
));
2965 bool IRTranslator::translateAtomicCmpXchg(const User
&U
,
2966 MachineIRBuilder
&MIRBuilder
) {
2967 const AtomicCmpXchgInst
&I
= cast
<AtomicCmpXchgInst
>(U
);
2969 auto &TLI
= *MF
->getSubtarget().getTargetLowering();
2970 auto Flags
= TLI
.getAtomicMemOperandFlags(I
, *DL
);
2972 auto Res
= getOrCreateVRegs(I
);
2973 Register OldValRes
= Res
[0];
2974 Register SuccessRes
= Res
[1];
2975 Register Addr
= getOrCreateVReg(*I
.getPointerOperand());
2976 Register Cmp
= getOrCreateVReg(*I
.getCompareOperand());
2977 Register NewVal
= getOrCreateVReg(*I
.getNewValOperand());
2979 MIRBuilder
.buildAtomicCmpXchgWithSuccess(
2980 OldValRes
, SuccessRes
, Addr
, Cmp
, NewVal
,
2981 *MF
->getMachineMemOperand(
2982 MachinePointerInfo(I
.getPointerOperand()), Flags
, MRI
->getType(Cmp
),
2983 getMemOpAlign(I
), I
.getAAMetadata(), nullptr, I
.getSyncScopeID(),
2984 I
.getSuccessOrdering(), I
.getFailureOrdering()));
2988 bool IRTranslator::translateAtomicRMW(const User
&U
,
2989 MachineIRBuilder
&MIRBuilder
) {
2990 const AtomicRMWInst
&I
= cast
<AtomicRMWInst
>(U
);
2991 auto &TLI
= *MF
->getSubtarget().getTargetLowering();
2992 auto Flags
= TLI
.getAtomicMemOperandFlags(I
, *DL
);
2994 Register Res
= getOrCreateVReg(I
);
2995 Register Addr
= getOrCreateVReg(*I
.getPointerOperand());
2996 Register Val
= getOrCreateVReg(*I
.getValOperand());
2998 unsigned Opcode
= 0;
2999 switch (I
.getOperation()) {
3002 case AtomicRMWInst::Xchg
:
3003 Opcode
= TargetOpcode::G_ATOMICRMW_XCHG
;
3005 case AtomicRMWInst::Add
:
3006 Opcode
= TargetOpcode::G_ATOMICRMW_ADD
;
3008 case AtomicRMWInst::Sub
:
3009 Opcode
= TargetOpcode::G_ATOMICRMW_SUB
;
3011 case AtomicRMWInst::And
:
3012 Opcode
= TargetOpcode::G_ATOMICRMW_AND
;
3014 case AtomicRMWInst::Nand
:
3015 Opcode
= TargetOpcode::G_ATOMICRMW_NAND
;
3017 case AtomicRMWInst::Or
:
3018 Opcode
= TargetOpcode::G_ATOMICRMW_OR
;
3020 case AtomicRMWInst::Xor
:
3021 Opcode
= TargetOpcode::G_ATOMICRMW_XOR
;
3023 case AtomicRMWInst::Max
:
3024 Opcode
= TargetOpcode::G_ATOMICRMW_MAX
;
3026 case AtomicRMWInst::Min
:
3027 Opcode
= TargetOpcode::G_ATOMICRMW_MIN
;
3029 case AtomicRMWInst::UMax
:
3030 Opcode
= TargetOpcode::G_ATOMICRMW_UMAX
;
3032 case AtomicRMWInst::UMin
:
3033 Opcode
= TargetOpcode::G_ATOMICRMW_UMIN
;
3035 case AtomicRMWInst::FAdd
:
3036 Opcode
= TargetOpcode::G_ATOMICRMW_FADD
;
3038 case AtomicRMWInst::FSub
:
3039 Opcode
= TargetOpcode::G_ATOMICRMW_FSUB
;
3041 case AtomicRMWInst::FMax
:
3042 Opcode
= TargetOpcode::G_ATOMICRMW_FMAX
;
3044 case AtomicRMWInst::FMin
:
3045 Opcode
= TargetOpcode::G_ATOMICRMW_FMIN
;
3047 case AtomicRMWInst::UIncWrap
:
3048 Opcode
= TargetOpcode::G_ATOMICRMW_UINC_WRAP
;
3050 case AtomicRMWInst::UDecWrap
:
3051 Opcode
= TargetOpcode::G_ATOMICRMW_UDEC_WRAP
;
3055 MIRBuilder
.buildAtomicRMW(
3056 Opcode
, Res
, Addr
, Val
,
3057 *MF
->getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
3058 Flags
, MRI
->getType(Val
), getMemOpAlign(I
),
3059 I
.getAAMetadata(), nullptr, I
.getSyncScopeID(),
3064 bool IRTranslator::translateFence(const User
&U
,
3065 MachineIRBuilder
&MIRBuilder
) {
3066 const FenceInst
&Fence
= cast
<FenceInst
>(U
);
3067 MIRBuilder
.buildFence(static_cast<unsigned>(Fence
.getOrdering()),
3068 Fence
.getSyncScopeID());
3072 bool IRTranslator::translateFreeze(const User
&U
,
3073 MachineIRBuilder
&MIRBuilder
) {
3074 const ArrayRef
<Register
> DstRegs
= getOrCreateVRegs(U
);
3075 const ArrayRef
<Register
> SrcRegs
= getOrCreateVRegs(*U
.getOperand(0));
3077 assert(DstRegs
.size() == SrcRegs
.size() &&
3078 "Freeze with different source and destination type?");
3080 for (unsigned I
= 0; I
< DstRegs
.size(); ++I
) {
3081 MIRBuilder
.buildFreeze(DstRegs
[I
], SrcRegs
[I
]);
3087 void IRTranslator::finishPendingPhis() {
3089 DILocationVerifier Verifier
;
3090 GISelObserverWrapper
WrapperObserver(&Verifier
);
3091 RAIIDelegateInstaller
DelInstall(*MF
, &WrapperObserver
);
3092 #endif // ifndef NDEBUG
3093 for (auto &Phi
: PendingPHIs
) {
3094 const PHINode
*PI
= Phi
.first
;
3095 ArrayRef
<MachineInstr
*> ComponentPHIs
= Phi
.second
;
3096 MachineBasicBlock
*PhiMBB
= ComponentPHIs
[0]->getParent();
3097 EntryBuilder
->setDebugLoc(PI
->getDebugLoc());
3099 Verifier
.setCurrentInst(PI
);
3100 #endif // ifndef NDEBUG
3102 SmallSet
<const MachineBasicBlock
*, 16> SeenPreds
;
3103 for (unsigned i
= 0; i
< PI
->getNumIncomingValues(); ++i
) {
3104 auto IRPred
= PI
->getIncomingBlock(i
);
3105 ArrayRef
<Register
> ValRegs
= getOrCreateVRegs(*PI
->getIncomingValue(i
));
3106 for (auto *Pred
: getMachinePredBBs({IRPred
, PI
->getParent()})) {
3107 if (SeenPreds
.count(Pred
) || !PhiMBB
->isPredecessor(Pred
))
3109 SeenPreds
.insert(Pred
);
3110 for (unsigned j
= 0; j
< ValRegs
.size(); ++j
) {
3111 MachineInstrBuilder
MIB(*MF
, ComponentPHIs
[j
]);
3112 MIB
.addUse(ValRegs
[j
]);
3120 bool IRTranslator::translate(const Instruction
&Inst
) {
3121 CurBuilder
->setDebugLoc(Inst
.getDebugLoc());
3122 CurBuilder
->setPCSections(Inst
.getMetadata(LLVMContext::MD_pcsections
));
3124 auto &TLI
= *MF
->getSubtarget().getTargetLowering();
3125 if (TLI
.fallBackToDAGISel(Inst
))
3128 switch (Inst
.getOpcode()) {
3129 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3130 case Instruction::OPCODE: \
3131 return translate##OPCODE(Inst, *CurBuilder.get());
3132 #include "llvm/IR/Instruction.def"
3138 bool IRTranslator::translate(const Constant
&C
, Register Reg
) {
3139 // We only emit constants into the entry block from here. To prevent jumpy
3140 // debug behaviour remove debug line.
3141 if (auto CurrInstDL
= CurBuilder
->getDL())
3142 EntryBuilder
->setDebugLoc(DebugLoc());
3144 if (auto CI
= dyn_cast
<ConstantInt
>(&C
))
3145 EntryBuilder
->buildConstant(Reg
, *CI
);
3146 else if (auto CF
= dyn_cast
<ConstantFP
>(&C
))
3147 EntryBuilder
->buildFConstant(Reg
, *CF
);
3148 else if (isa
<UndefValue
>(C
))
3149 EntryBuilder
->buildUndef(Reg
);
3150 else if (isa
<ConstantPointerNull
>(C
))
3151 EntryBuilder
->buildConstant(Reg
, 0);
3152 else if (auto GV
= dyn_cast
<GlobalValue
>(&C
))
3153 EntryBuilder
->buildGlobalValue(Reg
, GV
);
3154 else if (auto CAZ
= dyn_cast
<ConstantAggregateZero
>(&C
)) {
3155 if (!isa
<FixedVectorType
>(CAZ
->getType()))
3157 // Return the scalar if it is a <1 x Ty> vector.
3158 unsigned NumElts
= CAZ
->getElementCount().getFixedValue();
3160 return translateCopy(C
, *CAZ
->getElementValue(0u), *EntryBuilder
);
3161 SmallVector
<Register
, 4> Ops
;
3162 for (unsigned I
= 0; I
< NumElts
; ++I
) {
3163 Constant
&Elt
= *CAZ
->getElementValue(I
);
3164 Ops
.push_back(getOrCreateVReg(Elt
));
3166 EntryBuilder
->buildBuildVector(Reg
, Ops
);
3167 } else if (auto CV
= dyn_cast
<ConstantDataVector
>(&C
)) {
3168 // Return the scalar if it is a <1 x Ty> vector.
3169 if (CV
->getNumElements() == 1)
3170 return translateCopy(C
, *CV
->getElementAsConstant(0), *EntryBuilder
);
3171 SmallVector
<Register
, 4> Ops
;
3172 for (unsigned i
= 0; i
< CV
->getNumElements(); ++i
) {
3173 Constant
&Elt
= *CV
->getElementAsConstant(i
);
3174 Ops
.push_back(getOrCreateVReg(Elt
));
3176 EntryBuilder
->buildBuildVector(Reg
, Ops
);
3177 } else if (auto CE
= dyn_cast
<ConstantExpr
>(&C
)) {
3178 switch(CE
->getOpcode()) {
3179 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3180 case Instruction::OPCODE: \
3181 return translate##OPCODE(*CE, *EntryBuilder.get());
3182 #include "llvm/IR/Instruction.def"
3186 } else if (auto CV
= dyn_cast
<ConstantVector
>(&C
)) {
3187 if (CV
->getNumOperands() == 1)
3188 return translateCopy(C
, *CV
->getOperand(0), *EntryBuilder
);
3189 SmallVector
<Register
, 4> Ops
;
3190 for (unsigned i
= 0; i
< CV
->getNumOperands(); ++i
) {
3191 Ops
.push_back(getOrCreateVReg(*CV
->getOperand(i
)));
3193 EntryBuilder
->buildBuildVector(Reg
, Ops
);
3194 } else if (auto *BA
= dyn_cast
<BlockAddress
>(&C
)) {
3195 EntryBuilder
->buildBlockAddress(Reg
, BA
);
3202 bool IRTranslator::finalizeBasicBlock(const BasicBlock
&BB
,
3203 MachineBasicBlock
&MBB
) {
3204 for (auto &BTB
: SL
->BitTestCases
) {
3205 // Emit header first, if it wasn't already emitted.
3207 emitBitTestHeader(BTB
, BTB
.Parent
);
3209 BranchProbability UnhandledProb
= BTB
.Prob
;
3210 for (unsigned j
= 0, ej
= BTB
.Cases
.size(); j
!= ej
; ++j
) {
3211 UnhandledProb
-= BTB
.Cases
[j
].ExtraProb
;
3212 // Set the current basic block to the mbb we wish to insert the code into
3213 MachineBasicBlock
*MBB
= BTB
.Cases
[j
].ThisBB
;
3214 // If all cases cover a contiguous range, it is not necessary to jump to
3215 // the default block after the last bit test fails. This is because the
3216 // range check during bit test header creation has guaranteed that every
3217 // case here doesn't go outside the range. In this case, there is no need
3218 // to perform the last bit test, as it will always be true. Instead, make
3219 // the second-to-last bit-test fall through to the target of the last bit
3220 // test, and delete the last bit test.
3222 MachineBasicBlock
*NextMBB
;
3223 if ((BTB
.ContiguousRange
|| BTB
.FallthroughUnreachable
) && j
+ 2 == ej
) {
3224 // Second-to-last bit-test with contiguous range: fall through to the
3225 // target of the final bit test.
3226 NextMBB
= BTB
.Cases
[j
+ 1].TargetBB
;
3227 } else if (j
+ 1 == ej
) {
3228 // For the last bit test, fall through to Default.
3229 NextMBB
= BTB
.Default
;
3231 // Otherwise, fall through to the next bit test.
3232 NextMBB
= BTB
.Cases
[j
+ 1].ThisBB
;
3235 emitBitTestCase(BTB
, NextMBB
, UnhandledProb
, BTB
.Reg
, BTB
.Cases
[j
], MBB
);
3237 if ((BTB
.ContiguousRange
|| BTB
.FallthroughUnreachable
) && j
+ 2 == ej
) {
3238 // We need to record the replacement phi edge here that normally
3239 // happens in emitBitTestCase before we delete the case, otherwise the
3240 // phi edge will be lost.
3241 addMachineCFGPred({BTB
.Parent
->getBasicBlock(),
3242 BTB
.Cases
[ej
- 1].TargetBB
->getBasicBlock()},
3244 // Since we're not going to use the final bit test, remove it.
3245 BTB
.Cases
.pop_back();
3249 // This is "default" BB. We have two jumps to it. From "header" BB and from
3250 // last "case" BB, unless the latter was skipped.
3251 CFGEdge HeaderToDefaultEdge
= {BTB
.Parent
->getBasicBlock(),
3252 BTB
.Default
->getBasicBlock()};
3253 addMachineCFGPred(HeaderToDefaultEdge
, BTB
.Parent
);
3254 if (!BTB
.ContiguousRange
) {
3255 addMachineCFGPred(HeaderToDefaultEdge
, BTB
.Cases
.back().ThisBB
);
3258 SL
->BitTestCases
.clear();
3260 for (auto &JTCase
: SL
->JTCases
) {
3261 // Emit header first, if it wasn't already emitted.
3262 if (!JTCase
.first
.Emitted
)
3263 emitJumpTableHeader(JTCase
.second
, JTCase
.first
, JTCase
.first
.HeaderBB
);
3265 emitJumpTable(JTCase
.second
, JTCase
.second
.MBB
);
3267 SL
->JTCases
.clear();
3269 for (auto &SwCase
: SL
->SwitchCases
)
3270 emitSwitchCase(SwCase
, &CurBuilder
->getMBB(), *CurBuilder
);
3271 SL
->SwitchCases
.clear();
3273 // Check if we need to generate stack-protector guard checks.
3274 StackProtector
&SP
= getAnalysis
<StackProtector
>();
3275 if (SP
.shouldEmitSDCheck(BB
)) {
3276 const TargetLowering
&TLI
= *MF
->getSubtarget().getTargetLowering();
3277 bool FunctionBasedInstrumentation
=
3278 TLI
.getSSPStackGuardCheck(*MF
->getFunction().getParent());
3279 SPDescriptor
.initialize(&BB
, &MBB
, FunctionBasedInstrumentation
);
3281 // Handle stack protector.
3282 if (SPDescriptor
.shouldEmitFunctionBasedCheckStackProtector()) {
3283 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3285 } else if (SPDescriptor
.shouldEmitStackProtector()) {
3286 MachineBasicBlock
*ParentMBB
= SPDescriptor
.getParentMBB();
3287 MachineBasicBlock
*SuccessMBB
= SPDescriptor
.getSuccessMBB();
3289 // Find the split point to split the parent mbb. At the same time copy all
3290 // physical registers used in the tail of parent mbb into virtual registers
3291 // before the split point and back into physical registers after the split
3292 // point. This prevents us needing to deal with Live-ins and many other
3293 // register allocation issues caused by us splitting the parent mbb. The
3294 // register allocator will clean up said virtual copies later on.
3295 MachineBasicBlock::iterator SplitPoint
= findSplitPointForStackProtector(
3296 ParentMBB
, *MF
->getSubtarget().getInstrInfo());
3298 // Splice the terminator of ParentMBB into SuccessMBB.
3299 SuccessMBB
->splice(SuccessMBB
->end(), ParentMBB
, SplitPoint
,
3302 // Add compare/jump on neq/jump to the parent BB.
3303 if (!emitSPDescriptorParent(SPDescriptor
, ParentMBB
))
3306 // CodeGen Failure MBB if we have not codegened it yet.
3307 MachineBasicBlock
*FailureMBB
= SPDescriptor
.getFailureMBB();
3308 if (FailureMBB
->empty()) {
3309 if (!emitSPDescriptorFailure(SPDescriptor
, FailureMBB
))
3313 // Clear the Per-BB State.
3314 SPDescriptor
.resetPerBBState();
3319 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor
&SPD
,
3320 MachineBasicBlock
*ParentBB
) {
3321 CurBuilder
->setInsertPt(*ParentBB
, ParentBB
->end());
3322 // First create the loads to the guard/stack slot for the comparison.
3323 const TargetLowering
&TLI
= *MF
->getSubtarget().getTargetLowering();
3324 Type
*PtrIRTy
= Type::getInt8PtrTy(MF
->getFunction().getContext());
3325 const LLT PtrTy
= getLLTForType(*PtrIRTy
, *DL
);
3326 LLT PtrMemTy
= getLLTForMVT(TLI
.getPointerMemTy(*DL
));
3328 MachineFrameInfo
&MFI
= ParentBB
->getParent()->getFrameInfo();
3329 int FI
= MFI
.getStackProtectorIndex();
3332 Register StackSlotPtr
= CurBuilder
->buildFrameIndex(PtrTy
, FI
).getReg(0);
3333 const Module
&M
= *ParentBB
->getParent()->getFunction().getParent();
3334 Align Align
= DL
->getPrefTypeAlign(Type::getInt8PtrTy(M
.getContext()));
3336 // Generate code to load the content of the guard slot.
3339 ->buildLoad(PtrMemTy
, StackSlotPtr
,
3340 MachinePointerInfo::getFixedStack(*MF
, FI
), Align
,
3341 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
)
3344 if (TLI
.useStackGuardXorFP()) {
3345 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3349 // Retrieve guard check function, nullptr if instrumentation is inlined.
3350 if (const Function
*GuardCheckFn
= TLI
.getSSPStackGuardCheck(M
)) {
3351 // This path is currently untestable on GlobalISel, since the only platform
3352 // that needs this seems to be Windows, and we fall back on that currently.
3353 // The code still lives here in case that changes.
3354 // Silence warning about unused variable until the code below that uses
3355 // 'GuardCheckFn' is enabled.
3359 // The target provides a guard check function to validate the guard value.
3360 // Generate a call to that function with the content of the guard slot as
3362 FunctionType
*FnTy
= GuardCheckFn
->getFunctionType();
3363 assert(FnTy
->getNumParams() == 1 && "Invalid function signature");
3364 ISD::ArgFlagsTy Flags
;
3365 if (GuardCheckFn
->hasAttribute(1, Attribute::AttrKind::InReg
))
3367 CallLowering::ArgInfo
GuardArgInfo(
3368 {GuardVal
, FnTy
->getParamType(0), {Flags
}});
3370 CallLowering::CallLoweringInfo Info
;
3371 Info
.OrigArgs
.push_back(GuardArgInfo
);
3372 Info
.CallConv
= GuardCheckFn
->getCallingConv();
3373 Info
.Callee
= MachineOperand::CreateGA(GuardCheckFn
, 0);
3374 Info
.OrigRet
= {Register(), FnTy
->getReturnType()};
3375 if (!CLI
->lowerCall(MIRBuilder
, Info
)) {
3376 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3383 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3384 // Otherwise, emit a volatile load to retrieve the stack guard value.
3385 if (TLI
.useLoadStackGuardNode()) {
3387 MRI
->createGenericVirtualRegister(LLT::scalar(PtrTy
.getSizeInBits()));
3388 getStackGuard(Guard
, *CurBuilder
);
3390 // TODO: test using android subtarget when we support @llvm.thread.pointer.
3391 const Value
*IRGuard
= TLI
.getSDagStackGuard(M
);
3392 Register GuardPtr
= getOrCreateVReg(*IRGuard
);
3395 ->buildLoad(PtrMemTy
, GuardPtr
,
3396 MachinePointerInfo::getFixedStack(*MF
, FI
), Align
,
3397 MachineMemOperand::MOLoad
|
3398 MachineMemOperand::MOVolatile
)
3402 // Perform the comparison.
3404 CurBuilder
->buildICmp(CmpInst::ICMP_NE
, LLT::scalar(1), Guard
, GuardVal
);
3405 // If the guard/stackslot do not equal, branch to failure MBB.
3406 CurBuilder
->buildBrCond(Cmp
, *SPD
.getFailureMBB());
3407 // Otherwise branch to success MBB.
3408 CurBuilder
->buildBr(*SPD
.getSuccessMBB());
3412 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor
&SPD
,
3413 MachineBasicBlock
*FailureBB
) {
3414 CurBuilder
->setInsertPt(*FailureBB
, FailureBB
->end());
3415 const TargetLowering
&TLI
= *MF
->getSubtarget().getTargetLowering();
3417 const RTLIB::Libcall Libcall
= RTLIB::STACKPROTECTOR_CHECK_FAIL
;
3418 const char *Name
= TLI
.getLibcallName(Libcall
);
3420 CallLowering::CallLoweringInfo Info
;
3421 Info
.CallConv
= TLI
.getLibcallCallingConv(Libcall
);
3422 Info
.Callee
= MachineOperand::CreateES(Name
);
3423 Info
.OrigRet
= {Register(), Type::getVoidTy(MF
->getFunction().getContext()),
3425 if (!CLI
->lowerCall(*CurBuilder
, Info
)) {
3426 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3430 // On PS4/PS5, the "return address" must still be within the calling
3431 // function, even if it's at the very end, so emit an explicit TRAP here.
3432 // WebAssembly needs an unreachable instruction after a non-returning call,
3433 // because the function return type can be different from __stack_chk_fail's
3434 // return type (void).
3435 const TargetMachine
&TM
= MF
->getTarget();
3436 if (TM
.getTargetTriple().isPS() || TM
.getTargetTriple().isWasm()) {
3437 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3443 void IRTranslator::finalizeFunction() {
3444 // Release the memory used by the different maps we
3445 // needed during the translation.
3446 PendingPHIs
.clear();
3448 FrameIndices
.clear();
3449 MachinePreds
.clear();
3450 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3451 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3452 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3453 EntryBuilder
.reset();
3456 SPDescriptor
.resetPerFunctionState();
3459 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3460 /// variadic musttail call.
3461 static bool checkForMustTailInVarArgFn(bool IsVarArg
, const BasicBlock
&BB
) {
3465 // Walk the block backwards, because tail calls usually only appear at the end
3467 return llvm::any_of(llvm::reverse(BB
), [](const Instruction
&I
) {
3468 const auto *CI
= dyn_cast
<CallInst
>(&I
);
3469 return CI
&& CI
->isMustTailCall();
3473 bool IRTranslator::runOnMachineFunction(MachineFunction
&CurMF
) {
3475 const Function
&F
= MF
->getFunction();
3476 GISelCSEAnalysisWrapper
&Wrapper
=
3477 getAnalysis
<GISelCSEAnalysisWrapperPass
>().getCSEWrapper();
3478 // Set the CSEConfig and run the analysis.
3479 GISelCSEInfo
*CSEInfo
= nullptr;
3480 TPC
= &getAnalysis
<TargetPassConfig
>();
3481 bool EnableCSE
= EnableCSEInIRTranslator
.getNumOccurrences()
3482 ? EnableCSEInIRTranslator
3483 : TPC
->isGISelCSEEnabled();
3486 EntryBuilder
= std::make_unique
<CSEMIRBuilder
>(CurMF
);
3487 CSEInfo
= &Wrapper
.get(TPC
->getCSEConfig());
3488 EntryBuilder
->setCSEInfo(CSEInfo
);
3489 CurBuilder
= std::make_unique
<CSEMIRBuilder
>(CurMF
);
3490 CurBuilder
->setCSEInfo(CSEInfo
);
3492 EntryBuilder
= std::make_unique
<MachineIRBuilder
>();
3493 CurBuilder
= std::make_unique
<MachineIRBuilder
>();
3495 CLI
= MF
->getSubtarget().getCallLowering();
3496 CurBuilder
->setMF(*MF
);
3497 EntryBuilder
->setMF(*MF
);
3498 MRI
= &MF
->getRegInfo();
3499 DL
= &F
.getParent()->getDataLayout();
3500 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(&F
);
3501 const TargetMachine
&TM
= MF
->getTarget();
3502 TM
.resetTargetOptions(F
);
3503 EnableOpts
= OptLevel
!= CodeGenOpt::None
&& !skipFunction(F
);
3506 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3507 FuncInfo
.BPI
= &getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
3510 FuncInfo
.BPI
= nullptr;
3513 AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(
3515 LibInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
3516 FuncInfo
.CanLowerReturn
= CLI
->checkReturnTypeForCallConv(*MF
);
3518 const auto &TLI
= *MF
->getSubtarget().getTargetLowering();
3520 SL
= std::make_unique
<GISelSwitchLowering
>(this, FuncInfo
);
3521 SL
->init(TLI
, TM
, *DL
);
3525 assert(PendingPHIs
.empty() && "stale PHIs");
3527 // Targets which want to use big endian can enable it using
3528 // enableBigEndian()
3529 if (!DL
->isLittleEndian() && !CLI
->enableBigEndian()) {
3530 // Currently we don't properly handle big endian code.
3531 OptimizationRemarkMissed
R("gisel-irtranslator", "GISelFailure",
3532 F
.getSubprogram(), &F
.getEntryBlock());
3533 R
<< "unable to translate in big endian mode";
3534 reportTranslationError(*MF
, *TPC
, *ORE
, R
);
3537 // Release the per-function state when we return, whether we succeeded or not.
3538 auto FinalizeOnReturn
= make_scope_exit([this]() { finalizeFunction(); });
3540 // Setup a separate basic-block for the arguments and constants
3541 MachineBasicBlock
*EntryBB
= MF
->CreateMachineBasicBlock();
3542 MF
->push_back(EntryBB
);
3543 EntryBuilder
->setMBB(*EntryBB
);
3545 DebugLoc DbgLoc
= F
.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3546 SwiftError
.setFunction(CurMF
);
3547 SwiftError
.createEntriesInEntryBlock(DbgLoc
);
3549 bool IsVarArg
= F
.isVarArg();
3550 bool HasMustTailInVarArgFn
= false;
3552 // Create all blocks, in IR order, to preserve the layout.
3553 for (const BasicBlock
&BB
: F
) {
3554 auto *&MBB
= BBToMBB
[&BB
];
3556 MBB
= MF
->CreateMachineBasicBlock(&BB
);
3559 if (BB
.hasAddressTaken())
3560 MBB
->setAddressTakenIRBlock(const_cast<BasicBlock
*>(&BB
));
3562 if (!HasMustTailInVarArgFn
)
3563 HasMustTailInVarArgFn
= checkForMustTailInVarArgFn(IsVarArg
, BB
);
3566 MF
->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn
);
3568 // Make our arguments/constants entry block fallthrough to the IR entry block.
3569 EntryBB
->addSuccessor(&getMBB(F
.front()));
3571 if (CLI
->fallBackToDAGISel(*MF
)) {
3572 OptimizationRemarkMissed
R("gisel-irtranslator", "GISelFailure",
3573 F
.getSubprogram(), &F
.getEntryBlock());
3574 R
<< "unable to lower function: " << ore::NV("Prototype", F
.getType());
3575 reportTranslationError(*MF
, *TPC
, *ORE
, R
);
3579 // Lower the actual args into this basic block.
3580 SmallVector
<ArrayRef
<Register
>, 8> VRegArgs
;
3581 for (const Argument
&Arg
: F
.args()) {
3582 if (DL
->getTypeStoreSize(Arg
.getType()).isZero())
3583 continue; // Don't handle zero sized types.
3584 ArrayRef
<Register
> VRegs
= getOrCreateVRegs(Arg
);
3585 VRegArgs
.push_back(VRegs
);
3587 if (Arg
.hasSwiftErrorAttr()) {
3588 assert(VRegs
.size() == 1 && "Too many vregs for Swift error");
3589 SwiftError
.setCurrentVReg(EntryBB
, SwiftError
.getFunctionArg(), VRegs
[0]);
3593 if (!CLI
->lowerFormalArguments(*EntryBuilder
, F
, VRegArgs
, FuncInfo
)) {
3594 OptimizationRemarkMissed
R("gisel-irtranslator", "GISelFailure",
3595 F
.getSubprogram(), &F
.getEntryBlock());
3596 R
<< "unable to lower arguments: " << ore::NV("Prototype", F
.getType());
3597 reportTranslationError(*MF
, *TPC
, *ORE
, R
);
3601 // Need to visit defs before uses when translating instructions.
3602 GISelObserverWrapper WrapperObserver
;
3603 if (EnableCSE
&& CSEInfo
)
3604 WrapperObserver
.addObserver(CSEInfo
);
3606 ReversePostOrderTraversal
<const Function
*> RPOT(&F
);
3608 DILocationVerifier Verifier
;
3609 WrapperObserver
.addObserver(&Verifier
);
3610 #endif // ifndef NDEBUG
3611 RAIIDelegateInstaller
DelInstall(*MF
, &WrapperObserver
);
3612 RAIIMFObserverInstaller
ObsInstall(*MF
, WrapperObserver
);
3613 for (const BasicBlock
*BB
: RPOT
) {
3614 MachineBasicBlock
&MBB
= getMBB(*BB
);
3615 // Set the insertion point of all the following translations to
3616 // the end of this basic block.
3617 CurBuilder
->setMBB(MBB
);
3618 HasTailCall
= false;
3619 for (const Instruction
&Inst
: *BB
) {
3620 // If we translated a tail call in the last step, then we know
3621 // everything after the call is either a return, or something that is
3622 // handled by the call itself. (E.g. a lifetime marker or assume
3623 // intrinsic.) In this case, we should stop translating the block and
3628 Verifier
.setCurrentInst(&Inst
);
3629 #endif // ifndef NDEBUG
3630 if (translate(Inst
))
3633 OptimizationRemarkMissed
R("gisel-irtranslator", "GISelFailure",
3634 Inst
.getDebugLoc(), BB
);
3635 R
<< "unable to translate instruction: " << ore::NV("Opcode", &Inst
);
3637 if (ORE
->allowExtraAnalysis("gisel-irtranslator")) {
3638 std::string InstStrStorage
;
3639 raw_string_ostream
InstStr(InstStrStorage
);
3642 R
<< ": '" << InstStr
.str() << "'";
3645 reportTranslationError(*MF
, *TPC
, *ORE
, R
);
3649 if (!finalizeBasicBlock(*BB
, MBB
)) {
3650 OptimizationRemarkMissed
R("gisel-irtranslator", "GISelFailure",
3651 BB
->getTerminator()->getDebugLoc(), BB
);
3652 R
<< "unable to translate basic block";
3653 reportTranslationError(*MF
, *TPC
, *ORE
, R
);
3658 WrapperObserver
.removeObserver(&Verifier
);
3662 finishPendingPhis();
3664 SwiftError
.propagateVRegs();
3666 // Merge the argument lowering and constants block with its single
3667 // successor, the LLVM-IR entry block. We want the basic block to
3669 assert(EntryBB
->succ_size() == 1 &&
3670 "Custom BB used for lowering should have only one successor");
3671 // Get the successor of the current entry block.
3672 MachineBasicBlock
&NewEntryBB
= **EntryBB
->succ_begin();
3673 assert(NewEntryBB
.pred_size() == 1 &&
3674 "LLVM-IR entry block has a predecessor!?");
3675 // Move all the instruction from the current entry block to the
3677 NewEntryBB
.splice(NewEntryBB
.begin(), EntryBB
, EntryBB
->begin(),
3680 // Update the live-in information for the new entry block.
3681 for (const MachineBasicBlock::RegisterMaskPair
&LiveIn
: EntryBB
->liveins())
3682 NewEntryBB
.addLiveIn(LiveIn
);
3683 NewEntryBB
.sortUniqueLiveIns();
3685 // Get rid of the now empty basic block.
3686 EntryBB
->removeSuccessor(&NewEntryBB
);
3687 MF
->remove(EntryBB
);
3688 MF
->deleteMachineBasicBlock(EntryBB
);
3690 assert(&MF
->front() == &NewEntryBB
&&
3691 "New entry wasn't next in the list of basic block!");
3693 // Initialize stack protector information.
3694 StackProtector
&SP
= getAnalysis
<StackProtector
>();
3695 SP
.copyToMachineFrameInfo(MF
->getFrameInfo());