[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / IRTranslator.cpp
blob9a67a8d05a4dda80b078d1ad48de6299a6a00276
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
31 #include "llvm/CodeGen/LowLevelType.h"
32 #include "llvm/CodeGen/LowLevelTypeUtils.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/SwitchLoweringUtils.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetPassConfig.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/DiagnosticInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GetElementPtrTypeIterator.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/MC/MCContext.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CodeGen.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Target/TargetIntrinsicInfo.h"
82 #include "llvm/Target/TargetMachine.h"
83 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cstdint>
87 #include <iterator>
88 #include <optional>
89 #include <string>
90 #include <utility>
91 #include <vector>
93 #define DEBUG_TYPE "irtranslator"
95 using namespace llvm;
97 static cl::opt<bool>
98 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
99 cl::desc("Should enable CSE in irtranslator"),
100 cl::Optional, cl::init(false));
101 char IRTranslator::ID = 0;
103 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
104 false, false)
105 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
106 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
107 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
108 INITIALIZE_PASS_DEPENDENCY(StackProtector)
109 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
110 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
111 false, false)
113 static void reportTranslationError(MachineFunction &MF,
114 const TargetPassConfig &TPC,
115 OptimizationRemarkEmitter &ORE,
116 OptimizationRemarkMissed &R) {
117 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
119 // Print the function name explicitly if we don't have a debug location (which
120 // makes the diagnostic less useful) or if we're going to emit a raw error.
121 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
122 R << (" (in function: " + MF.getName() + ")").str();
124 if (TPC.isGlobalISelAbortEnabled())
125 report_fatal_error(Twine(R.getMsg()));
126 else
127 ORE.emit(R);
130 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
131 : MachineFunctionPass(ID), OptLevel(optlevel) {}
133 #ifndef NDEBUG
134 namespace {
135 /// Verify that every instruction created has the same DILocation as the
136 /// instruction being translated.
137 class DILocationVerifier : public GISelChangeObserver {
138 const Instruction *CurrInst = nullptr;
140 public:
141 DILocationVerifier() = default;
142 ~DILocationVerifier() = default;
144 const Instruction *getCurrentInst() const { return CurrInst; }
145 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
147 void erasingInstr(MachineInstr &MI) override {}
148 void changingInstr(MachineInstr &MI) override {}
149 void changedInstr(MachineInstr &MI) override {}
151 void createdInstr(MachineInstr &MI) override {
152 assert(getCurrentInst() && "Inserted instruction without a current MI");
154 // Only print the check message if we're actually checking it.
155 #ifndef NDEBUG
156 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
157 << " was copied to " << MI);
158 #endif
159 // We allow insts in the entry block to have no debug loc because
160 // they could have originated from constants, and we don't want a jumpy
161 // debug experience.
162 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
163 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc())) &&
164 "Line info was not transferred to all instructions");
167 } // namespace
168 #endif // ifndef NDEBUG
171 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
172 AU.addRequired<StackProtector>();
173 AU.addRequired<TargetPassConfig>();
174 AU.addRequired<GISelCSEAnalysisWrapperPass>();
175 AU.addRequired<AssumptionCacheTracker>();
176 if (OptLevel != CodeGenOpt::None) {
177 AU.addRequired<BranchProbabilityInfoWrapperPass>();
178 AU.addRequired<AAResultsWrapperPass>();
180 AU.addRequired<TargetLibraryInfoWrapperPass>();
181 AU.addPreserved<TargetLibraryInfoWrapperPass>();
182 getSelectionDAGFallbackAnalysisUsage(AU);
183 MachineFunctionPass::getAnalysisUsage(AU);
186 IRTranslator::ValueToVRegInfo::VRegListT &
187 IRTranslator::allocateVRegs(const Value &Val) {
188 auto VRegsIt = VMap.findVRegs(Val);
189 if (VRegsIt != VMap.vregs_end())
190 return *VRegsIt->second;
191 auto *Regs = VMap.getVRegs(Val);
192 auto *Offsets = VMap.getOffsets(Val);
193 SmallVector<LLT, 4> SplitTys;
194 computeValueLLTs(*DL, *Val.getType(), SplitTys,
195 Offsets->empty() ? Offsets : nullptr);
196 for (unsigned i = 0; i < SplitTys.size(); ++i)
197 Regs->push_back(0);
198 return *Regs;
201 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
202 auto VRegsIt = VMap.findVRegs(Val);
203 if (VRegsIt != VMap.vregs_end())
204 return *VRegsIt->second;
206 if (Val.getType()->isVoidTy())
207 return *VMap.getVRegs(Val);
209 // Create entry for this type.
210 auto *VRegs = VMap.getVRegs(Val);
211 auto *Offsets = VMap.getOffsets(Val);
213 assert(Val.getType()->isSized() &&
214 "Don't know how to create an empty vreg");
216 SmallVector<LLT, 4> SplitTys;
217 computeValueLLTs(*DL, *Val.getType(), SplitTys,
218 Offsets->empty() ? Offsets : nullptr);
220 if (!isa<Constant>(Val)) {
221 for (auto Ty : SplitTys)
222 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
223 return *VRegs;
226 if (Val.getType()->isAggregateType()) {
227 // UndefValue, ConstantAggregateZero
228 auto &C = cast<Constant>(Val);
229 unsigned Idx = 0;
230 while (auto Elt = C.getAggregateElement(Idx++)) {
231 auto EltRegs = getOrCreateVRegs(*Elt);
232 llvm::copy(EltRegs, std::back_inserter(*VRegs));
234 } else {
235 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
236 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
237 bool Success = translate(cast<Constant>(Val), VRegs->front());
238 if (!Success) {
239 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
240 MF->getFunction().getSubprogram(),
241 &MF->getFunction().getEntryBlock());
242 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
243 reportTranslationError(*MF, *TPC, *ORE, R);
244 return *VRegs;
248 return *VRegs;
251 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
252 auto MapEntry = FrameIndices.find(&AI);
253 if (MapEntry != FrameIndices.end())
254 return MapEntry->second;
256 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
257 uint64_t Size =
258 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
260 // Always allocate at least one byte.
261 Size = std::max<uint64_t>(Size, 1u);
263 int &FI = FrameIndices[&AI];
264 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
265 return FI;
268 Align IRTranslator::getMemOpAlign(const Instruction &I) {
269 if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
270 return SI->getAlign();
271 if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
272 return LI->getAlign();
273 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
274 return AI->getAlign();
275 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
276 return AI->getAlign();
278 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
279 R << "unable to translate memop: " << ore::NV("Opcode", &I);
280 reportTranslationError(*MF, *TPC, *ORE, R);
281 return Align(1);
284 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
285 MachineBasicBlock *&MBB = BBToMBB[&BB];
286 assert(MBB && "BasicBlock was not encountered before");
287 return *MBB;
290 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
291 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
292 MachinePreds[Edge].push_back(NewPred);
295 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
296 MachineIRBuilder &MIRBuilder) {
297 // Get or create a virtual register for each value.
298 // Unless the value is a Constant => loadimm cst?
299 // or inline constant each time?
300 // Creation of a virtual register needs to have a size.
301 Register Op0 = getOrCreateVReg(*U.getOperand(0));
302 Register Op1 = getOrCreateVReg(*U.getOperand(1));
303 Register Res = getOrCreateVReg(U);
304 uint32_t Flags = 0;
305 if (isa<Instruction>(U)) {
306 const Instruction &I = cast<Instruction>(U);
307 Flags = MachineInstr::copyFlagsFromInstruction(I);
310 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
311 return true;
314 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
315 MachineIRBuilder &MIRBuilder) {
316 Register Op0 = getOrCreateVReg(*U.getOperand(0));
317 Register Res = getOrCreateVReg(U);
318 uint32_t Flags = 0;
319 if (isa<Instruction>(U)) {
320 const Instruction &I = cast<Instruction>(U);
321 Flags = MachineInstr::copyFlagsFromInstruction(I);
323 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
324 return true;
327 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
328 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
331 bool IRTranslator::translateCompare(const User &U,
332 MachineIRBuilder &MIRBuilder) {
333 auto *CI = dyn_cast<CmpInst>(&U);
334 Register Op0 = getOrCreateVReg(*U.getOperand(0));
335 Register Op1 = getOrCreateVReg(*U.getOperand(1));
336 Register Res = getOrCreateVReg(U);
337 CmpInst::Predicate Pred =
338 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
339 cast<ConstantExpr>(U).getPredicate());
340 if (CmpInst::isIntPredicate(Pred))
341 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
342 else if (Pred == CmpInst::FCMP_FALSE)
343 MIRBuilder.buildCopy(
344 Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
345 else if (Pred == CmpInst::FCMP_TRUE)
346 MIRBuilder.buildCopy(
347 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
348 else {
349 uint32_t Flags = 0;
350 if (CI)
351 Flags = MachineInstr::copyFlagsFromInstruction(*CI);
352 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
355 return true;
358 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
359 const ReturnInst &RI = cast<ReturnInst>(U);
360 const Value *Ret = RI.getReturnValue();
361 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
362 Ret = nullptr;
364 ArrayRef<Register> VRegs;
365 if (Ret)
366 VRegs = getOrCreateVRegs(*Ret);
368 Register SwiftErrorVReg = 0;
369 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
370 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
371 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
374 // The target may mess up with the insertion point, but
375 // this is not important as a return is the last instruction
376 // of the block anyway.
377 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
380 void IRTranslator::emitBranchForMergedCondition(
381 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
382 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
383 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
384 // If the leaf of the tree is a comparison, merge the condition into
385 // the caseblock.
386 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
387 CmpInst::Predicate Condition;
388 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
389 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
390 } else {
391 const FCmpInst *FC = cast<FCmpInst>(Cond);
392 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
395 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
396 BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
397 CurBuilder->getDebugLoc(), TProb, FProb);
398 SL->SwitchCases.push_back(CB);
399 return;
402 // Create a CaseBlock record representing this branch.
403 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
404 SwitchCG::CaseBlock CB(
405 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
406 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
407 SL->SwitchCases.push_back(CB);
410 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
411 if (const Instruction *I = dyn_cast<Instruction>(V))
412 return I->getParent() == BB;
413 return true;
416 void IRTranslator::findMergedConditions(
417 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
418 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
419 Instruction::BinaryOps Opc, BranchProbability TProb,
420 BranchProbability FProb, bool InvertCond) {
421 using namespace PatternMatch;
422 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
423 "Expected Opc to be AND/OR");
424 // Skip over not part of the tree and remember to invert op and operands at
425 // next level.
426 Value *NotCond;
427 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
428 isValInBlock(NotCond, CurBB->getBasicBlock())) {
429 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
430 !InvertCond);
431 return;
434 const Instruction *BOp = dyn_cast<Instruction>(Cond);
435 const Value *BOpOp0, *BOpOp1;
436 // Compute the effective opcode for Cond, taking into account whether it needs
437 // to be inverted, e.g.
438 // and (not (or A, B)), C
439 // gets lowered as
440 // and (and (not A, not B), C)
441 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
442 if (BOp) {
443 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
444 ? Instruction::And
445 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
446 ? Instruction::Or
447 : (Instruction::BinaryOps)0);
448 if (InvertCond) {
449 if (BOpc == Instruction::And)
450 BOpc = Instruction::Or;
451 else if (BOpc == Instruction::Or)
452 BOpc = Instruction::And;
456 // If this node is not part of the or/and tree, emit it as a branch.
457 // Note that all nodes in the tree should have same opcode.
458 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
459 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
460 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
461 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
462 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
463 InvertCond);
464 return;
467 // Create TmpBB after CurBB.
468 MachineFunction::iterator BBI(CurBB);
469 MachineBasicBlock *TmpBB =
470 MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
471 CurBB->getParent()->insert(++BBI, TmpBB);
473 if (Opc == Instruction::Or) {
474 // Codegen X | Y as:
475 // BB1:
476 // jmp_if_X TBB
477 // jmp TmpBB
478 // TmpBB:
479 // jmp_if_Y TBB
480 // jmp FBB
483 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
484 // The requirement is that
485 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
486 // = TrueProb for original BB.
487 // Assuming the original probabilities are A and B, one choice is to set
488 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
489 // A/(1+B) and 2B/(1+B). This choice assumes that
490 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
491 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
492 // TmpBB, but the math is more complicated.
494 auto NewTrueProb = TProb / 2;
495 auto NewFalseProb = TProb / 2 + FProb;
496 // Emit the LHS condition.
497 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
498 NewFalseProb, InvertCond);
500 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
501 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
502 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
503 // Emit the RHS condition into TmpBB.
504 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
505 Probs[1], InvertCond);
506 } else {
507 assert(Opc == Instruction::And && "Unknown merge op!");
508 // Codegen X & Y as:
509 // BB1:
510 // jmp_if_X TmpBB
511 // jmp FBB
512 // TmpBB:
513 // jmp_if_Y TBB
514 // jmp FBB
516 // This requires creation of TmpBB after CurBB.
518 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
519 // The requirement is that
520 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
521 // = FalseProb for original BB.
522 // Assuming the original probabilities are A and B, one choice is to set
523 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
524 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
525 // TrueProb for BB1 * FalseProb for TmpBB.
527 auto NewTrueProb = TProb + FProb / 2;
528 auto NewFalseProb = FProb / 2;
529 // Emit the LHS condition.
530 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
531 NewFalseProb, InvertCond);
533 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
534 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
535 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
536 // Emit the RHS condition into TmpBB.
537 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
538 Probs[1], InvertCond);
542 bool IRTranslator::shouldEmitAsBranches(
543 const std::vector<SwitchCG::CaseBlock> &Cases) {
544 // For multiple cases, it's better to emit as branches.
545 if (Cases.size() != 2)
546 return true;
548 // If this is two comparisons of the same values or'd or and'd together, they
549 // will get folded into a single comparison, so don't emit two blocks.
550 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
551 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
552 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
553 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
554 return false;
557 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
558 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
559 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
560 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
561 isa<Constant>(Cases[0].CmpRHS) &&
562 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
563 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
564 Cases[0].TrueBB == Cases[1].ThisBB)
565 return false;
566 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
567 Cases[0].FalseBB == Cases[1].ThisBB)
568 return false;
571 return true;
574 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
575 const BranchInst &BrInst = cast<BranchInst>(U);
576 auto &CurMBB = MIRBuilder.getMBB();
577 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
579 if (BrInst.isUnconditional()) {
580 // If the unconditional target is the layout successor, fallthrough.
581 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB))
582 MIRBuilder.buildBr(*Succ0MBB);
584 // Link successors.
585 for (const BasicBlock *Succ : successors(&BrInst))
586 CurMBB.addSuccessor(&getMBB(*Succ));
587 return true;
590 // If this condition is one of the special cases we handle, do special stuff
591 // now.
592 const Value *CondVal = BrInst.getCondition();
593 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
595 const auto &TLI = *MF->getSubtarget().getTargetLowering();
597 // If this is a series of conditions that are or'd or and'd together, emit
598 // this as a sequence of branches instead of setcc's with and/or operations.
599 // As long as jumps are not expensive (exceptions for multi-use logic ops,
600 // unpredictable branches, and vector extracts because those jumps are likely
601 // expensive for any target), this should improve performance.
602 // For example, instead of something like:
603 // cmp A, B
604 // C = seteq
605 // cmp D, E
606 // F = setle
607 // or C, F
608 // jnz foo
609 // Emit:
610 // cmp A, B
611 // je foo
612 // cmp D, E
613 // jle foo
614 using namespace PatternMatch;
615 const Instruction *CondI = dyn_cast<Instruction>(CondVal);
616 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
617 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
618 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
619 Value *Vec;
620 const Value *BOp0, *BOp1;
621 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
622 Opcode = Instruction::And;
623 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
624 Opcode = Instruction::Or;
626 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
627 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
628 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
629 getEdgeProbability(&CurMBB, Succ0MBB),
630 getEdgeProbability(&CurMBB, Succ1MBB),
631 /*InvertCond=*/false);
632 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
634 // Allow some cases to be rejected.
635 if (shouldEmitAsBranches(SL->SwitchCases)) {
636 // Emit the branch for this block.
637 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
638 SL->SwitchCases.erase(SL->SwitchCases.begin());
639 return true;
642 // Okay, we decided not to do this, remove any inserted MBB's and clear
643 // SwitchCases.
644 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
645 MF->erase(SL->SwitchCases[I].ThisBB);
647 SL->SwitchCases.clear();
651 // Create a CaseBlock record representing this branch.
652 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
653 ConstantInt::getTrue(MF->getFunction().getContext()),
654 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
655 CurBuilder->getDebugLoc());
657 // Use emitSwitchCase to actually insert the fast branch sequence for this
658 // cond branch.
659 emitSwitchCase(CB, &CurMBB, *CurBuilder);
660 return true;
663 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
664 MachineBasicBlock *Dst,
665 BranchProbability Prob) {
666 if (!FuncInfo.BPI) {
667 Src->addSuccessorWithoutProb(Dst);
668 return;
670 if (Prob.isUnknown())
671 Prob = getEdgeProbability(Src, Dst);
672 Src->addSuccessor(Dst, Prob);
675 BranchProbability
676 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
677 const MachineBasicBlock *Dst) const {
678 const BasicBlock *SrcBB = Src->getBasicBlock();
679 const BasicBlock *DstBB = Dst->getBasicBlock();
680 if (!FuncInfo.BPI) {
681 // If BPI is not available, set the default probability as 1 / N, where N is
682 // the number of successors.
683 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
684 return BranchProbability(1, SuccSize);
686 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
689 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
690 using namespace SwitchCG;
691 // Extract cases from the switch.
692 const SwitchInst &SI = cast<SwitchInst>(U);
693 BranchProbabilityInfo *BPI = FuncInfo.BPI;
694 CaseClusterVector Clusters;
695 Clusters.reserve(SI.getNumCases());
696 for (const auto &I : SI.cases()) {
697 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
698 assert(Succ && "Could not find successor mbb in mapping");
699 const ConstantInt *CaseVal = I.getCaseValue();
700 BranchProbability Prob =
701 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
702 : BranchProbability(1, SI.getNumCases() + 1);
703 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
706 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
708 // Cluster adjacent cases with the same destination. We do this at all
709 // optimization levels because it's cheap to do and will make codegen faster
710 // if there are many clusters.
711 sortAndRangeify(Clusters);
713 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
715 // If there is only the default destination, jump there directly.
716 if (Clusters.empty()) {
717 SwitchMBB->addSuccessor(DefaultMBB);
718 if (DefaultMBB != SwitchMBB->getNextNode())
719 MIB.buildBr(*DefaultMBB);
720 return true;
723 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
724 SL->findBitTestClusters(Clusters, &SI);
726 LLVM_DEBUG({
727 dbgs() << "Case clusters: ";
728 for (const CaseCluster &C : Clusters) {
729 if (C.Kind == CC_JumpTable)
730 dbgs() << "JT:";
731 if (C.Kind == CC_BitTests)
732 dbgs() << "BT:";
734 C.Low->getValue().print(dbgs(), true);
735 if (C.Low != C.High) {
736 dbgs() << '-';
737 C.High->getValue().print(dbgs(), true);
739 dbgs() << ' ';
741 dbgs() << '\n';
744 assert(!Clusters.empty());
745 SwitchWorkList WorkList;
746 CaseClusterIt First = Clusters.begin();
747 CaseClusterIt Last = Clusters.end() - 1;
748 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
749 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
751 // FIXME: At the moment we don't do any splitting optimizations here like
752 // SelectionDAG does, so this worklist only has one entry.
753 while (!WorkList.empty()) {
754 SwitchWorkListItem W = WorkList.pop_back_val();
755 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
756 return false;
758 return true;
761 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
762 MachineBasicBlock *MBB) {
763 // Emit the code for the jump table
764 assert(JT.Reg != -1U && "Should lower JT Header first!");
765 MachineIRBuilder MIB(*MBB->getParent());
766 MIB.setMBB(*MBB);
767 MIB.setDebugLoc(CurBuilder->getDebugLoc());
769 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
770 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
772 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
773 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
776 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
777 SwitchCG::JumpTableHeader &JTH,
778 MachineBasicBlock *HeaderBB) {
779 MachineIRBuilder MIB(*HeaderBB->getParent());
780 MIB.setMBB(*HeaderBB);
781 MIB.setDebugLoc(CurBuilder->getDebugLoc());
783 const Value &SValue = *JTH.SValue;
784 // Subtract the lowest switch case value from the value being switched on.
785 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
786 Register SwitchOpReg = getOrCreateVReg(SValue);
787 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
788 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
790 // This value may be smaller or larger than the target's pointer type, and
791 // therefore require extension or truncating.
792 Type *PtrIRTy = SValue.getType()->getPointerTo();
793 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
794 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
796 JT.Reg = Sub.getReg(0);
798 if (JTH.FallthroughUnreachable) {
799 if (JT.MBB != HeaderBB->getNextNode())
800 MIB.buildBr(*JT.MBB);
801 return true;
804 // Emit the range check for the jump table, and branch to the default block
805 // for the switch statement if the value being switched on exceeds the
806 // largest case in the switch.
807 auto Cst = getOrCreateVReg(
808 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
809 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
810 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
812 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
814 // Avoid emitting unnecessary branches to the next block.
815 if (JT.MBB != HeaderBB->getNextNode())
816 BrCond = MIB.buildBr(*JT.MBB);
817 return true;
820 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
821 MachineBasicBlock *SwitchBB,
822 MachineIRBuilder &MIB) {
823 Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
824 Register Cond;
825 DebugLoc OldDbgLoc = MIB.getDebugLoc();
826 MIB.setDebugLoc(CB.DbgLoc);
827 MIB.setMBB(*CB.ThisBB);
829 if (CB.PredInfo.NoCmp) {
830 // Branch or fall through to TrueBB.
831 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
832 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
833 CB.ThisBB);
834 CB.ThisBB->normalizeSuccProbs();
835 if (CB.TrueBB != CB.ThisBB->getNextNode())
836 MIB.buildBr(*CB.TrueBB);
837 MIB.setDebugLoc(OldDbgLoc);
838 return;
841 const LLT i1Ty = LLT::scalar(1);
842 // Build the compare.
843 if (!CB.CmpMHS) {
844 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
845 // For conditional branch lowering, we might try to do something silly like
846 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
847 // just re-use the existing condition vreg.
848 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() &&
849 CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
850 Cond = CondLHS;
851 } else {
852 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
853 if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
854 Cond =
855 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
856 else
857 Cond =
858 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
860 } else {
861 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
862 "Can only handle SLE ranges");
864 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
865 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
867 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
868 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
869 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
870 Cond =
871 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
872 } else {
873 const LLT CmpTy = MRI->getType(CmpOpReg);
874 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
875 auto Diff = MIB.buildConstant(CmpTy, High - Low);
876 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
880 // Update successor info
881 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
883 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
884 CB.ThisBB);
886 // TrueBB and FalseBB are always different unless the incoming IR is
887 // degenerate. This only happens when running llc on weird IR.
888 if (CB.TrueBB != CB.FalseBB)
889 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
890 CB.ThisBB->normalizeSuccProbs();
892 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
893 CB.ThisBB);
895 MIB.buildBrCond(Cond, *CB.TrueBB);
896 MIB.buildBr(*CB.FalseBB);
897 MIB.setDebugLoc(OldDbgLoc);
900 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
901 MachineBasicBlock *SwitchMBB,
902 MachineBasicBlock *CurMBB,
903 MachineBasicBlock *DefaultMBB,
904 MachineIRBuilder &MIB,
905 MachineFunction::iterator BBI,
906 BranchProbability UnhandledProbs,
907 SwitchCG::CaseClusterIt I,
908 MachineBasicBlock *Fallthrough,
909 bool FallthroughUnreachable) {
910 using namespace SwitchCG;
911 MachineFunction *CurMF = SwitchMBB->getParent();
912 // FIXME: Optimize away range check based on pivot comparisons.
913 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
914 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
915 BranchProbability DefaultProb = W.DefaultProb;
917 // The jump block hasn't been inserted yet; insert it here.
918 MachineBasicBlock *JumpMBB = JT->MBB;
919 CurMF->insert(BBI, JumpMBB);
921 // Since the jump table block is separate from the switch block, we need
922 // to keep track of it as a machine predecessor to the default block,
923 // otherwise we lose the phi edges.
924 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
925 CurMBB);
926 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
927 JumpMBB);
929 auto JumpProb = I->Prob;
930 auto FallthroughProb = UnhandledProbs;
932 // If the default statement is a target of the jump table, we evenly
933 // distribute the default probability to successors of CurMBB. Also
934 // update the probability on the edge from JumpMBB to Fallthrough.
935 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
936 SE = JumpMBB->succ_end();
937 SI != SE; ++SI) {
938 if (*SI == DefaultMBB) {
939 JumpProb += DefaultProb / 2;
940 FallthroughProb -= DefaultProb / 2;
941 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
942 JumpMBB->normalizeSuccProbs();
943 } else {
944 // Also record edges from the jump table block to it's successors.
945 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
946 JumpMBB);
950 if (FallthroughUnreachable)
951 JTH->FallthroughUnreachable = true;
953 if (!JTH->FallthroughUnreachable)
954 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
955 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
956 CurMBB->normalizeSuccProbs();
958 // The jump table header will be inserted in our current block, do the
959 // range check, and fall through to our fallthrough block.
960 JTH->HeaderBB = CurMBB;
961 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
963 // If we're in the right place, emit the jump table header right now.
964 if (CurMBB == SwitchMBB) {
965 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
966 return false;
967 JTH->Emitted = true;
969 return true;
971 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
972 Value *Cond,
973 MachineBasicBlock *Fallthrough,
974 bool FallthroughUnreachable,
975 BranchProbability UnhandledProbs,
976 MachineBasicBlock *CurMBB,
977 MachineIRBuilder &MIB,
978 MachineBasicBlock *SwitchMBB) {
979 using namespace SwitchCG;
980 const Value *RHS, *LHS, *MHS;
981 CmpInst::Predicate Pred;
982 if (I->Low == I->High) {
983 // Check Cond == I->Low.
984 Pred = CmpInst::ICMP_EQ;
985 LHS = Cond;
986 RHS = I->Low;
987 MHS = nullptr;
988 } else {
989 // Check I->Low <= Cond <= I->High.
990 Pred = CmpInst::ICMP_SLE;
991 LHS = I->Low;
992 MHS = Cond;
993 RHS = I->High;
996 // If Fallthrough is unreachable, fold away the comparison.
997 // The false probability is the sum of all unhandled cases.
998 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
999 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
1001 emitSwitchCase(CB, SwitchMBB, MIB);
1002 return true;
1005 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1006 MachineBasicBlock *SwitchBB) {
1007 MachineIRBuilder &MIB = *CurBuilder;
1008 MIB.setMBB(*SwitchBB);
1010 // Subtract the minimum value.
1011 Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1013 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1014 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1015 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1017 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
1018 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1020 LLT MaskTy = SwitchOpTy;
1021 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1022 !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits()))
1023 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1024 else {
1025 // Ensure that the type will fit the mask value.
1026 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1027 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1028 // Switch table case range are encoded into series of masks.
1029 // Just use pointer type, it's guaranteed to fit.
1030 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1031 break;
1035 Register SubReg = RangeSub.getReg(0);
1036 if (SwitchOpTy != MaskTy)
1037 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1039 B.RegVT = getMVTForLLT(MaskTy);
1040 B.Reg = SubReg;
1042 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1044 if (!B.FallthroughUnreachable)
1045 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1046 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1048 SwitchBB->normalizeSuccProbs();
1050 if (!B.FallthroughUnreachable) {
1051 // Conditional branch to the default block.
1052 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1053 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1054 RangeSub, RangeCst);
1055 MIB.buildBrCond(RangeCmp, *B.Default);
1058 // Avoid emitting unnecessary branches to the next block.
1059 if (MBB != SwitchBB->getNextNode())
1060 MIB.buildBr(*MBB);
1063 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1064 MachineBasicBlock *NextMBB,
1065 BranchProbability BranchProbToNext,
1066 Register Reg, SwitchCG::BitTestCase &B,
1067 MachineBasicBlock *SwitchBB) {
1068 MachineIRBuilder &MIB = *CurBuilder;
1069 MIB.setMBB(*SwitchBB);
1071 LLT SwitchTy = getLLTForMVT(BB.RegVT);
1072 Register Cmp;
1073 unsigned PopCount = llvm::popcount(B.Mask);
1074 if (PopCount == 1) {
1075 // Testing for a single bit; just compare the shift count with what it
1076 // would need to be to shift a 1 bit in that position.
1077 auto MaskTrailingZeros =
1078 MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask));
1079 Cmp =
1080 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1081 .getReg(0);
1082 } else if (PopCount == BB.Range) {
1083 // There is only one zero bit in the range, test for it directly.
1084 auto MaskTrailingOnes =
1085 MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask));
1086 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1087 .getReg(0);
1088 } else {
1089 // Make desired shift.
1090 auto CstOne = MIB.buildConstant(SwitchTy, 1);
1091 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1093 // Emit bit tests and jumps.
1094 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1095 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1096 auto CstZero = MIB.buildConstant(SwitchTy, 0);
1097 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1098 .getReg(0);
1101 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1102 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1103 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1104 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1105 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1106 // one as they are relative probabilities (and thus work more like weights),
1107 // and hence we need to normalize them to let the sum of them become one.
1108 SwitchBB->normalizeSuccProbs();
1110 // Record the fact that the IR edge from the header to the bit test target
1111 // will go through our new block. Neeeded for PHIs to have nodes added.
1112 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1113 SwitchBB);
1115 MIB.buildBrCond(Cmp, *B.TargetBB);
1117 // Avoid emitting unnecessary branches to the next block.
1118 if (NextMBB != SwitchBB->getNextNode())
1119 MIB.buildBr(*NextMBB);
1122 bool IRTranslator::lowerBitTestWorkItem(
1123 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1124 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1125 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1126 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1127 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1128 bool FallthroughUnreachable) {
1129 using namespace SwitchCG;
1130 MachineFunction *CurMF = SwitchMBB->getParent();
1131 // FIXME: Optimize away range check based on pivot comparisons.
1132 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1133 // The bit test blocks haven't been inserted yet; insert them here.
1134 for (BitTestCase &BTC : BTB->Cases)
1135 CurMF->insert(BBI, BTC.ThisBB);
1137 // Fill in fields of the BitTestBlock.
1138 BTB->Parent = CurMBB;
1139 BTB->Default = Fallthrough;
1141 BTB->DefaultProb = UnhandledProbs;
1142 // If the cases in bit test don't form a contiguous range, we evenly
1143 // distribute the probability on the edge to Fallthrough to two
1144 // successors of CurMBB.
1145 if (!BTB->ContiguousRange) {
1146 BTB->Prob += DefaultProb / 2;
1147 BTB->DefaultProb -= DefaultProb / 2;
1150 if (FallthroughUnreachable)
1151 BTB->FallthroughUnreachable = true;
1153 // If we're in the right place, emit the bit test header right now.
1154 if (CurMBB == SwitchMBB) {
1155 emitBitTestHeader(*BTB, SwitchMBB);
1156 BTB->Emitted = true;
1158 return true;
1161 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1162 Value *Cond,
1163 MachineBasicBlock *SwitchMBB,
1164 MachineBasicBlock *DefaultMBB,
1165 MachineIRBuilder &MIB) {
1166 using namespace SwitchCG;
1167 MachineFunction *CurMF = FuncInfo.MF;
1168 MachineBasicBlock *NextMBB = nullptr;
1169 MachineFunction::iterator BBI(W.MBB);
1170 if (++BBI != FuncInfo.MF->end())
1171 NextMBB = &*BBI;
1173 if (EnableOpts) {
1174 // Here, we order cases by probability so the most likely case will be
1175 // checked first. However, two clusters can have the same probability in
1176 // which case their relative ordering is non-deterministic. So we use Low
1177 // as a tie-breaker as clusters are guaranteed to never overlap.
1178 llvm::sort(W.FirstCluster, W.LastCluster + 1,
1179 [](const CaseCluster &a, const CaseCluster &b) {
1180 return a.Prob != b.Prob
1181 ? a.Prob > b.Prob
1182 : a.Low->getValue().slt(b.Low->getValue());
1185 // Rearrange the case blocks so that the last one falls through if possible
1186 // without changing the order of probabilities.
1187 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1188 --I;
1189 if (I->Prob > W.LastCluster->Prob)
1190 break;
1191 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1192 std::swap(*I, *W.LastCluster);
1193 break;
1198 // Compute total probability.
1199 BranchProbability DefaultProb = W.DefaultProb;
1200 BranchProbability UnhandledProbs = DefaultProb;
1201 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1202 UnhandledProbs += I->Prob;
1204 MachineBasicBlock *CurMBB = W.MBB;
1205 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1206 bool FallthroughUnreachable = false;
1207 MachineBasicBlock *Fallthrough;
1208 if (I == W.LastCluster) {
1209 // For the last cluster, fall through to the default destination.
1210 Fallthrough = DefaultMBB;
1211 FallthroughUnreachable = isa<UnreachableInst>(
1212 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1213 } else {
1214 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1215 CurMF->insert(BBI, Fallthrough);
1217 UnhandledProbs -= I->Prob;
1219 switch (I->Kind) {
1220 case CC_BitTests: {
1221 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1222 DefaultProb, UnhandledProbs, I, Fallthrough,
1223 FallthroughUnreachable)) {
1224 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1225 return false;
1227 break;
1230 case CC_JumpTable: {
1231 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1232 UnhandledProbs, I, Fallthrough,
1233 FallthroughUnreachable)) {
1234 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1235 return false;
1237 break;
1239 case CC_Range: {
1240 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1241 FallthroughUnreachable, UnhandledProbs,
1242 CurMBB, MIB, SwitchMBB)) {
1243 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1244 return false;
1246 break;
1249 CurMBB = Fallthrough;
1252 return true;
1255 bool IRTranslator::translateIndirectBr(const User &U,
1256 MachineIRBuilder &MIRBuilder) {
1257 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1259 const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1260 MIRBuilder.buildBrIndirect(Tgt);
1262 // Link successors.
1263 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1264 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1265 for (const BasicBlock *Succ : successors(&BrInst)) {
1266 // It's legal for indirectbr instructions to have duplicate blocks in the
1267 // destination list. We don't allow this in MIR. Skip anything that's
1268 // already a successor.
1269 if (!AddedSuccessors.insert(Succ).second)
1270 continue;
1271 CurBB.addSuccessor(&getMBB(*Succ));
1274 return true;
1277 static bool isSwiftError(const Value *V) {
1278 if (auto Arg = dyn_cast<Argument>(V))
1279 return Arg->hasSwiftErrorAttr();
1280 if (auto AI = dyn_cast<AllocaInst>(V))
1281 return AI->isSwiftError();
1282 return false;
1285 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1286 const LoadInst &LI = cast<LoadInst>(U);
1288 unsigned StoreSize = DL->getTypeStoreSize(LI.getType());
1289 if (StoreSize == 0)
1290 return true;
1292 ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1293 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1294 Register Base = getOrCreateVReg(*LI.getPointerOperand());
1295 AAMDNodes AAInfo = LI.getAAMetadata();
1297 const Value *Ptr = LI.getPointerOperand();
1298 Type *OffsetIRTy = DL->getIndexType(Ptr->getType());
1299 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1301 if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
1302 assert(Regs.size() == 1 && "swifterror should be single pointer");
1303 Register VReg =
1304 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1305 MIRBuilder.buildCopy(Regs[0], VReg);
1306 return true;
1309 auto &TLI = *MF->getSubtarget().getTargetLowering();
1310 MachineMemOperand::Flags Flags =
1311 TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1312 if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1313 if (AA->pointsToConstantMemory(
1314 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
1315 Flags |= MachineMemOperand::MOInvariant;
1319 const MDNode *Ranges =
1320 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1321 for (unsigned i = 0; i < Regs.size(); ++i) {
1322 Register Addr;
1323 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1325 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1326 Align BaseAlign = getMemOpAlign(LI);
1327 auto MMO = MF->getMachineMemOperand(
1328 Ptr, Flags, MRI->getType(Regs[i]),
1329 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
1330 LI.getSyncScopeID(), LI.getOrdering());
1331 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1334 return true;
1337 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1338 const StoreInst &SI = cast<StoreInst>(U);
1339 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1340 return true;
1342 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1343 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1344 Register Base = getOrCreateVReg(*SI.getPointerOperand());
1346 Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType());
1347 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1349 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1350 assert(Vals.size() == 1 && "swifterror should be single pointer");
1352 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1353 SI.getPointerOperand());
1354 MIRBuilder.buildCopy(VReg, Vals[0]);
1355 return true;
1358 auto &TLI = *MF->getSubtarget().getTargetLowering();
1359 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1361 for (unsigned i = 0; i < Vals.size(); ++i) {
1362 Register Addr;
1363 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1365 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1366 Align BaseAlign = getMemOpAlign(SI);
1367 auto MMO = MF->getMachineMemOperand(
1368 Ptr, Flags, MRI->getType(Vals[i]),
1369 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1370 SI.getSyncScopeID(), SI.getOrdering());
1371 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1373 return true;
1376 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1377 const Value *Src = U.getOperand(0);
1378 Type *Int32Ty = Type::getInt32Ty(U.getContext());
1380 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1381 // usual array element rather than looking into the actual aggregate.
1382 SmallVector<Value *, 1> Indices;
1383 Indices.push_back(ConstantInt::get(Int32Ty, 0));
1385 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1386 for (auto Idx : EVI->indices())
1387 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1388 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1389 for (auto Idx : IVI->indices())
1390 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1391 } else {
1392 for (unsigned i = 1; i < U.getNumOperands(); ++i)
1393 Indices.push_back(U.getOperand(i));
1396 return 8 * static_cast<uint64_t>(
1397 DL.getIndexedOffsetInType(Src->getType(), Indices));
1400 bool IRTranslator::translateExtractValue(const User &U,
1401 MachineIRBuilder &MIRBuilder) {
1402 const Value *Src = U.getOperand(0);
1403 uint64_t Offset = getOffsetFromIndices(U, *DL);
1404 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1405 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1406 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1407 auto &DstRegs = allocateVRegs(U);
1409 for (unsigned i = 0; i < DstRegs.size(); ++i)
1410 DstRegs[i] = SrcRegs[Idx++];
1412 return true;
1415 bool IRTranslator::translateInsertValue(const User &U,
1416 MachineIRBuilder &MIRBuilder) {
1417 const Value *Src = U.getOperand(0);
1418 uint64_t Offset = getOffsetFromIndices(U, *DL);
1419 auto &DstRegs = allocateVRegs(U);
1420 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1421 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1422 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1423 auto *InsertedIt = InsertedRegs.begin();
1425 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1426 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1427 DstRegs[i] = *InsertedIt++;
1428 else
1429 DstRegs[i] = SrcRegs[i];
1432 return true;
1435 bool IRTranslator::translateSelect(const User &U,
1436 MachineIRBuilder &MIRBuilder) {
1437 Register Tst = getOrCreateVReg(*U.getOperand(0));
1438 ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1439 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1440 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1442 uint32_t Flags = 0;
1443 if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1444 Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1446 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1447 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1450 return true;
1453 bool IRTranslator::translateCopy(const User &U, const Value &V,
1454 MachineIRBuilder &MIRBuilder) {
1455 Register Src = getOrCreateVReg(V);
1456 auto &Regs = *VMap.getVRegs(U);
1457 if (Regs.empty()) {
1458 Regs.push_back(Src);
1459 VMap.getOffsets(U)->push_back(0);
1460 } else {
1461 // If we already assigned a vreg for this instruction, we can't change that.
1462 // Emit a copy to satisfy the users we already emitted.
1463 MIRBuilder.buildCopy(Regs[0], Src);
1465 return true;
1468 bool IRTranslator::translateBitCast(const User &U,
1469 MachineIRBuilder &MIRBuilder) {
1470 // If we're bitcasting to the source type, we can reuse the source vreg.
1471 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1472 getLLTForType(*U.getType(), *DL)) {
1473 // If the source is a ConstantInt then it was probably created by
1474 // ConstantHoisting and we should leave it alone.
1475 if (isa<ConstantInt>(U.getOperand(0)))
1476 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U,
1477 MIRBuilder);
1478 return translateCopy(U, *U.getOperand(0), MIRBuilder);
1481 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1484 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1485 MachineIRBuilder &MIRBuilder) {
1486 Register Op = getOrCreateVReg(*U.getOperand(0));
1487 Register Res = getOrCreateVReg(U);
1488 MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1489 return true;
1492 bool IRTranslator::translateGetElementPtr(const User &U,
1493 MachineIRBuilder &MIRBuilder) {
1494 Value &Op0 = *U.getOperand(0);
1495 Register BaseReg = getOrCreateVReg(Op0);
1496 Type *PtrIRTy = Op0.getType();
1497 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1498 Type *OffsetIRTy = DL->getIndexType(PtrIRTy);
1499 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1501 // Normalize Vector GEP - all scalar operands should be converted to the
1502 // splat vector.
1503 unsigned VectorWidth = 0;
1505 // True if we should use a splat vector; using VectorWidth alone is not
1506 // sufficient.
1507 bool WantSplatVector = false;
1508 if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1509 VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1510 // We don't produce 1 x N vectors; those are treated as scalars.
1511 WantSplatVector = VectorWidth > 1;
1514 // We might need to splat the base pointer into a vector if the offsets
1515 // are vectors.
1516 if (WantSplatVector && !PtrTy.isVector()) {
1517 BaseReg =
1518 MIRBuilder
1519 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1520 .getReg(0);
1521 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1522 PtrTy = getLLTForType(*PtrIRTy, *DL);
1523 OffsetIRTy = DL->getIndexType(PtrIRTy);
1524 OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1527 int64_t Offset = 0;
1528 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1529 GTI != E; ++GTI) {
1530 const Value *Idx = GTI.getOperand();
1531 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1532 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1533 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1534 continue;
1535 } else {
1536 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1538 // If this is a scalar constant or a splat vector of constants,
1539 // handle it quickly.
1540 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1541 Offset += ElementSize * CI->getSExtValue();
1542 continue;
1545 if (Offset != 0) {
1546 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1547 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1548 .getReg(0);
1549 Offset = 0;
1552 Register IdxReg = getOrCreateVReg(*Idx);
1553 LLT IdxTy = MRI->getType(IdxReg);
1554 if (IdxTy != OffsetTy) {
1555 if (!IdxTy.isVector() && WantSplatVector) {
1556 IdxReg = MIRBuilder.buildSplatVector(
1557 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1560 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1563 // N = N + Idx * ElementSize;
1564 // Avoid doing it for ElementSize of 1.
1565 Register GepOffsetReg;
1566 if (ElementSize != 1) {
1567 auto ElementSizeMIB = MIRBuilder.buildConstant(
1568 getLLTForType(*OffsetIRTy, *DL), ElementSize);
1569 GepOffsetReg =
1570 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1571 } else
1572 GepOffsetReg = IdxReg;
1574 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1578 if (Offset != 0) {
1579 auto OffsetMIB =
1580 MIRBuilder.buildConstant(OffsetTy, Offset);
1581 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1582 return true;
1585 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1586 return true;
1589 bool IRTranslator::translateMemFunc(const CallInst &CI,
1590 MachineIRBuilder &MIRBuilder,
1591 unsigned Opcode) {
1592 const Value *SrcPtr = CI.getArgOperand(1);
1593 // If the source is undef, then just emit a nop.
1594 if (isa<UndefValue>(SrcPtr))
1595 return true;
1597 SmallVector<Register, 3> SrcRegs;
1599 unsigned MinPtrSize = UINT_MAX;
1600 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1601 Register SrcReg = getOrCreateVReg(**AI);
1602 LLT SrcTy = MRI->getType(SrcReg);
1603 if (SrcTy.isPointer())
1604 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1605 SrcRegs.push_back(SrcReg);
1608 LLT SizeTy = LLT::scalar(MinPtrSize);
1610 // The size operand should be the minimum of the pointer sizes.
1611 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1612 if (MRI->getType(SizeOpReg) != SizeTy)
1613 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1615 auto ICall = MIRBuilder.buildInstr(Opcode);
1616 for (Register SrcReg : SrcRegs)
1617 ICall.addUse(SrcReg);
1619 Align DstAlign;
1620 Align SrcAlign;
1621 unsigned IsVol =
1622 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1624 ConstantInt *CopySize = nullptr;
1626 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1627 DstAlign = MCI->getDestAlign().valueOrOne();
1628 SrcAlign = MCI->getSourceAlign().valueOrOne();
1629 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1630 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1631 DstAlign = MCI->getDestAlign().valueOrOne();
1632 SrcAlign = MCI->getSourceAlign().valueOrOne();
1633 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1634 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1635 DstAlign = MMI->getDestAlign().valueOrOne();
1636 SrcAlign = MMI->getSourceAlign().valueOrOne();
1637 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
1638 } else {
1639 auto *MSI = cast<MemSetInst>(&CI);
1640 DstAlign = MSI->getDestAlign().valueOrOne();
1643 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1644 // We need to propagate the tail call flag from the IR inst as an argument.
1645 // Otherwise, we have to pessimize and assume later that we cannot tail call
1646 // any memory intrinsics.
1647 ICall.addImm(CI.isTailCall() ? 1 : 0);
1650 // Create mem operands to store the alignment and volatile info.
1651 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1652 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1653 if (IsVol) {
1654 LoadFlags |= MachineMemOperand::MOVolatile;
1655 StoreFlags |= MachineMemOperand::MOVolatile;
1658 AAMDNodes AAInfo = CI.getAAMetadata();
1659 if (AA && CopySize &&
1660 AA->pointsToConstantMemory(MemoryLocation(
1661 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
1662 LoadFlags |= MachineMemOperand::MOInvariant;
1664 // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1665 // but the previous usage implied it did. Probably should check
1666 // isDereferenceableAndAlignedPointer.
1667 LoadFlags |= MachineMemOperand::MODereferenceable;
1670 ICall.addMemOperand(
1671 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
1672 StoreFlags, 1, DstAlign, AAInfo));
1673 if (Opcode != TargetOpcode::G_MEMSET)
1674 ICall.addMemOperand(MF->getMachineMemOperand(
1675 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1677 return true;
1680 void IRTranslator::getStackGuard(Register DstReg,
1681 MachineIRBuilder &MIRBuilder) {
1682 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1683 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1684 auto MIB =
1685 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1687 auto &TLI = *MF->getSubtarget().getTargetLowering();
1688 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1689 if (!Global)
1690 return;
1692 unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1693 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1695 MachinePointerInfo MPInfo(Global);
1696 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1697 MachineMemOperand::MODereferenceable;
1698 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1699 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1700 MIB.setMemRefs({MemRef});
1703 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1704 MachineIRBuilder &MIRBuilder) {
1705 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1706 MIRBuilder.buildInstr(
1707 Op, {ResRegs[0], ResRegs[1]},
1708 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1710 return true;
1713 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1714 MachineIRBuilder &MIRBuilder) {
1715 Register Dst = getOrCreateVReg(CI);
1716 Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1717 Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1718 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1719 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1720 return true;
1723 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1724 switch (ID) {
1725 default:
1726 break;
1727 case Intrinsic::bswap:
1728 return TargetOpcode::G_BSWAP;
1729 case Intrinsic::bitreverse:
1730 return TargetOpcode::G_BITREVERSE;
1731 case Intrinsic::fshl:
1732 return TargetOpcode::G_FSHL;
1733 case Intrinsic::fshr:
1734 return TargetOpcode::G_FSHR;
1735 case Intrinsic::ceil:
1736 return TargetOpcode::G_FCEIL;
1737 case Intrinsic::cos:
1738 return TargetOpcode::G_FCOS;
1739 case Intrinsic::ctpop:
1740 return TargetOpcode::G_CTPOP;
1741 case Intrinsic::exp:
1742 return TargetOpcode::G_FEXP;
1743 case Intrinsic::exp2:
1744 return TargetOpcode::G_FEXP2;
1745 case Intrinsic::fabs:
1746 return TargetOpcode::G_FABS;
1747 case Intrinsic::copysign:
1748 return TargetOpcode::G_FCOPYSIGN;
1749 case Intrinsic::minnum:
1750 return TargetOpcode::G_FMINNUM;
1751 case Intrinsic::maxnum:
1752 return TargetOpcode::G_FMAXNUM;
1753 case Intrinsic::minimum:
1754 return TargetOpcode::G_FMINIMUM;
1755 case Intrinsic::maximum:
1756 return TargetOpcode::G_FMAXIMUM;
1757 case Intrinsic::canonicalize:
1758 return TargetOpcode::G_FCANONICALIZE;
1759 case Intrinsic::floor:
1760 return TargetOpcode::G_FFLOOR;
1761 case Intrinsic::fma:
1762 return TargetOpcode::G_FMA;
1763 case Intrinsic::log:
1764 return TargetOpcode::G_FLOG;
1765 case Intrinsic::log2:
1766 return TargetOpcode::G_FLOG2;
1767 case Intrinsic::log10:
1768 return TargetOpcode::G_FLOG10;
1769 case Intrinsic::ldexp:
1770 return TargetOpcode::G_FLDEXP;
1771 case Intrinsic::nearbyint:
1772 return TargetOpcode::G_FNEARBYINT;
1773 case Intrinsic::pow:
1774 return TargetOpcode::G_FPOW;
1775 case Intrinsic::powi:
1776 return TargetOpcode::G_FPOWI;
1777 case Intrinsic::rint:
1778 return TargetOpcode::G_FRINT;
1779 case Intrinsic::round:
1780 return TargetOpcode::G_INTRINSIC_ROUND;
1781 case Intrinsic::roundeven:
1782 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1783 case Intrinsic::sin:
1784 return TargetOpcode::G_FSIN;
1785 case Intrinsic::sqrt:
1786 return TargetOpcode::G_FSQRT;
1787 case Intrinsic::trunc:
1788 return TargetOpcode::G_INTRINSIC_TRUNC;
1789 case Intrinsic::readcyclecounter:
1790 return TargetOpcode::G_READCYCLECOUNTER;
1791 case Intrinsic::ptrmask:
1792 return TargetOpcode::G_PTRMASK;
1793 case Intrinsic::lrint:
1794 return TargetOpcode::G_INTRINSIC_LRINT;
1795 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1796 case Intrinsic::vector_reduce_fmin:
1797 return TargetOpcode::G_VECREDUCE_FMIN;
1798 case Intrinsic::vector_reduce_fmax:
1799 return TargetOpcode::G_VECREDUCE_FMAX;
1800 case Intrinsic::vector_reduce_add:
1801 return TargetOpcode::G_VECREDUCE_ADD;
1802 case Intrinsic::vector_reduce_mul:
1803 return TargetOpcode::G_VECREDUCE_MUL;
1804 case Intrinsic::vector_reduce_and:
1805 return TargetOpcode::G_VECREDUCE_AND;
1806 case Intrinsic::vector_reduce_or:
1807 return TargetOpcode::G_VECREDUCE_OR;
1808 case Intrinsic::vector_reduce_xor:
1809 return TargetOpcode::G_VECREDUCE_XOR;
1810 case Intrinsic::vector_reduce_smax:
1811 return TargetOpcode::G_VECREDUCE_SMAX;
1812 case Intrinsic::vector_reduce_smin:
1813 return TargetOpcode::G_VECREDUCE_SMIN;
1814 case Intrinsic::vector_reduce_umax:
1815 return TargetOpcode::G_VECREDUCE_UMAX;
1816 case Intrinsic::vector_reduce_umin:
1817 return TargetOpcode::G_VECREDUCE_UMIN;
1818 case Intrinsic::lround:
1819 return TargetOpcode::G_LROUND;
1820 case Intrinsic::llround:
1821 return TargetOpcode::G_LLROUND;
1823 return Intrinsic::not_intrinsic;
1826 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1827 Intrinsic::ID ID,
1828 MachineIRBuilder &MIRBuilder) {
1830 unsigned Op = getSimpleIntrinsicOpcode(ID);
1832 // Is this a simple intrinsic?
1833 if (Op == Intrinsic::not_intrinsic)
1834 return false;
1836 // Yes. Let's translate it.
1837 SmallVector<llvm::SrcOp, 4> VRegs;
1838 for (const auto &Arg : CI.args())
1839 VRegs.push_back(getOrCreateVReg(*Arg));
1841 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1842 MachineInstr::copyFlagsFromInstruction(CI));
1843 return true;
1846 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1847 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1848 switch (ID) {
1849 case Intrinsic::experimental_constrained_fadd:
1850 return TargetOpcode::G_STRICT_FADD;
1851 case Intrinsic::experimental_constrained_fsub:
1852 return TargetOpcode::G_STRICT_FSUB;
1853 case Intrinsic::experimental_constrained_fmul:
1854 return TargetOpcode::G_STRICT_FMUL;
1855 case Intrinsic::experimental_constrained_fdiv:
1856 return TargetOpcode::G_STRICT_FDIV;
1857 case Intrinsic::experimental_constrained_frem:
1858 return TargetOpcode::G_STRICT_FREM;
1859 case Intrinsic::experimental_constrained_fma:
1860 return TargetOpcode::G_STRICT_FMA;
1861 case Intrinsic::experimental_constrained_sqrt:
1862 return TargetOpcode::G_STRICT_FSQRT;
1863 case Intrinsic::experimental_constrained_ldexp:
1864 return TargetOpcode::G_STRICT_FLDEXP;
1865 default:
1866 return 0;
1870 bool IRTranslator::translateConstrainedFPIntrinsic(
1871 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1872 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
1874 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1875 if (!Opcode)
1876 return false;
1878 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1879 if (EB == fp::ExceptionBehavior::ebIgnore)
1880 Flags |= MachineInstr::NoFPExcept;
1882 SmallVector<llvm::SrcOp, 4> VRegs;
1883 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1884 if (!FPI.isUnaryOp())
1885 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1886 if (FPI.isTernaryOp())
1887 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1889 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1890 return true;
1893 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) {
1894 auto VRegs = getOrCreateVRegs(Arg);
1895 if (VRegs.size() != 1)
1896 return std::nullopt;
1898 // Arguments are lowered as a copy of a livein physical register.
1899 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]);
1900 if (!VRegDef || !VRegDef->isCopy())
1901 return std::nullopt;
1902 return VRegDef->getOperand(1).getReg().asMCReg();
1905 bool IRTranslator::translateIfEntryValueArgument(const DbgValueInst &DebugInst,
1906 MachineIRBuilder &MIRBuilder) {
1907 auto *Arg = dyn_cast<Argument>(DebugInst.getValue());
1908 if (!Arg)
1909 return false;
1911 const DIExpression *Expr = DebugInst.getExpression();
1912 if (!Expr->isEntryValue())
1913 return false;
1915 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
1916 if (!PhysReg) {
1917 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
1918 "couldn't find a physical register\n"
1919 << DebugInst << "\n");
1920 return true;
1923 MIRBuilder.buildDirectDbgValue(*PhysReg, DebugInst.getVariable(),
1924 DebugInst.getExpression());
1925 return true;
1928 bool IRTranslator::translateIfEntryValueArgument(
1929 const DbgDeclareInst &DebugInst) {
1930 auto *Arg = dyn_cast<Argument>(DebugInst.getAddress());
1931 if (!Arg)
1932 return false;
1934 const DIExpression *Expr = DebugInst.getExpression();
1935 if (!Expr->isEntryValue())
1936 return false;
1938 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
1939 if (!PhysReg)
1940 return false;
1942 MF->setVariableDbgInfo(DebugInst.getVariable(), Expr, *PhysReg,
1943 DebugInst.getDebugLoc());
1944 return true;
1947 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1948 MachineIRBuilder &MIRBuilder) {
1949 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1950 if (ORE->enabled()) {
1951 if (MemoryOpRemark::canHandle(MI, *LibInfo)) {
1952 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
1953 R.visit(MI);
1958 // If this is a simple intrinsic (that is, we just need to add a def of
1959 // a vreg, and uses for each arg operand, then translate it.
1960 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1961 return true;
1963 switch (ID) {
1964 default:
1965 break;
1966 case Intrinsic::lifetime_start:
1967 case Intrinsic::lifetime_end: {
1968 // No stack colouring in O0, discard region information.
1969 if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1970 return true;
1972 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1973 : TargetOpcode::LIFETIME_END;
1975 // Get the underlying objects for the location passed on the lifetime
1976 // marker.
1977 SmallVector<const Value *, 4> Allocas;
1978 getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1980 // Iterate over each underlying object, creating lifetime markers for each
1981 // static alloca. Quit if we find a non-static alloca.
1982 for (const Value *V : Allocas) {
1983 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1984 if (!AI)
1985 continue;
1987 if (!AI->isStaticAlloca())
1988 return true;
1990 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1992 return true;
1994 case Intrinsic::dbg_declare: {
1995 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1996 assert(DI.getVariable() && "Missing variable");
1998 const Value *Address = DI.getAddress();
1999 if (!Address || isa<UndefValue>(Address)) {
2000 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
2001 return true;
2004 assert(DI.getVariable()->isValidLocationForIntrinsic(
2005 MIRBuilder.getDebugLoc()) &&
2006 "Expected inlined-at fields to agree");
2007 auto AI = dyn_cast<AllocaInst>(Address);
2008 if (AI && AI->isStaticAlloca()) {
2009 // Static allocas are tracked at the MF level, no need for DBG_VALUE
2010 // instructions (in fact, they get ignored if they *do* exist).
2011 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
2012 getOrCreateFrameIndex(*AI), DI.getDebugLoc());
2013 return true;
2016 if (translateIfEntryValueArgument(DI))
2017 return true;
2019 // A dbg.declare describes the address of a source variable, so lower it
2020 // into an indirect DBG_VALUE.
2021 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
2022 DI.getVariable(), DI.getExpression());
2023 return true;
2025 case Intrinsic::dbg_label: {
2026 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
2027 assert(DI.getLabel() && "Missing label");
2029 assert(DI.getLabel()->isValidLocationForIntrinsic(
2030 MIRBuilder.getDebugLoc()) &&
2031 "Expected inlined-at fields to agree");
2033 MIRBuilder.buildDbgLabel(DI.getLabel());
2034 return true;
2036 case Intrinsic::vaend:
2037 // No target I know of cares about va_end. Certainly no in-tree target
2038 // does. Simplest intrinsic ever!
2039 return true;
2040 case Intrinsic::vastart: {
2041 auto &TLI = *MF->getSubtarget().getTargetLowering();
2042 Value *Ptr = CI.getArgOperand(0);
2043 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
2045 // FIXME: Get alignment
2046 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
2047 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
2048 MachineMemOperand::MOStore,
2049 ListSize, Align(1)));
2050 return true;
2052 case Intrinsic::dbg_value: {
2053 // This form of DBG_VALUE is target-independent.
2054 const DbgValueInst &DI = cast<DbgValueInst>(CI);
2055 const Value *V = DI.getValue();
2056 assert(DI.getVariable()->isValidLocationForIntrinsic(
2057 MIRBuilder.getDebugLoc()) &&
2058 "Expected inlined-at fields to agree");
2059 if (!V || DI.hasArgList()) {
2060 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
2061 // terminate any prior location.
2062 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
2063 return true;
2065 if (const auto *CI = dyn_cast<Constant>(V)) {
2066 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
2067 return true;
2069 if (auto *AI = dyn_cast<AllocaInst>(V);
2070 AI && AI->isStaticAlloca() && DI.getExpression()->startsWithDeref()) {
2071 // If the value is an alloca and the expression starts with a
2072 // dereference, track a stack slot instead of a register, as registers
2073 // may be clobbered.
2074 auto ExprOperands = DI.getExpression()->getElements();
2075 auto *ExprDerefRemoved =
2076 DIExpression::get(AI->getContext(), ExprOperands.drop_front());
2077 MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), DI.getVariable(),
2078 ExprDerefRemoved);
2079 return true;
2081 if (translateIfEntryValueArgument(DI, MIRBuilder))
2082 return true;
2083 for (Register Reg : getOrCreateVRegs(*V)) {
2084 // FIXME: This does not handle register-indirect values at offset 0. The
2085 // direct/indirect thing shouldn't really be handled by something as
2086 // implicit as reg+noreg vs reg+imm in the first place, but it seems
2087 // pretty baked in right now.
2088 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
2090 return true;
2092 case Intrinsic::uadd_with_overflow:
2093 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2094 case Intrinsic::sadd_with_overflow:
2095 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2096 case Intrinsic::usub_with_overflow:
2097 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2098 case Intrinsic::ssub_with_overflow:
2099 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2100 case Intrinsic::umul_with_overflow:
2101 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2102 case Intrinsic::smul_with_overflow:
2103 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2104 case Intrinsic::uadd_sat:
2105 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2106 case Intrinsic::sadd_sat:
2107 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2108 case Intrinsic::usub_sat:
2109 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2110 case Intrinsic::ssub_sat:
2111 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2112 case Intrinsic::ushl_sat:
2113 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2114 case Intrinsic::sshl_sat:
2115 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2116 case Intrinsic::umin:
2117 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2118 case Intrinsic::umax:
2119 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2120 case Intrinsic::smin:
2121 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2122 case Intrinsic::smax:
2123 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2124 case Intrinsic::abs:
2125 // TODO: Preserve "int min is poison" arg in GMIR?
2126 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2127 case Intrinsic::smul_fix:
2128 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2129 case Intrinsic::umul_fix:
2130 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2131 case Intrinsic::smul_fix_sat:
2132 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2133 case Intrinsic::umul_fix_sat:
2134 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2135 case Intrinsic::sdiv_fix:
2136 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2137 case Intrinsic::udiv_fix:
2138 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2139 case Intrinsic::sdiv_fix_sat:
2140 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2141 case Intrinsic::udiv_fix_sat:
2142 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2143 case Intrinsic::fmuladd: {
2144 const TargetMachine &TM = MF->getTarget();
2145 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2146 Register Dst = getOrCreateVReg(CI);
2147 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2148 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2149 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2150 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2151 TLI.isFMAFasterThanFMulAndFAdd(*MF,
2152 TLI.getValueType(*DL, CI.getType()))) {
2153 // TODO: Revisit this to see if we should move this part of the
2154 // lowering to the combiner.
2155 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2156 MachineInstr::copyFlagsFromInstruction(CI));
2157 } else {
2158 LLT Ty = getLLTForType(*CI.getType(), *DL);
2159 auto FMul = MIRBuilder.buildFMul(
2160 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2161 MIRBuilder.buildFAdd(Dst, FMul, Op2,
2162 MachineInstr::copyFlagsFromInstruction(CI));
2164 return true;
2166 case Intrinsic::convert_from_fp16:
2167 // FIXME: This intrinsic should probably be removed from the IR.
2168 MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2169 getOrCreateVReg(*CI.getArgOperand(0)),
2170 MachineInstr::copyFlagsFromInstruction(CI));
2171 return true;
2172 case Intrinsic::convert_to_fp16:
2173 // FIXME: This intrinsic should probably be removed from the IR.
2174 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2175 getOrCreateVReg(*CI.getArgOperand(0)),
2176 MachineInstr::copyFlagsFromInstruction(CI));
2177 return true;
2178 case Intrinsic::frexp: {
2179 ArrayRef<Register> VRegs = getOrCreateVRegs(CI);
2180 MIRBuilder.buildFFrexp(VRegs[0], VRegs[1],
2181 getOrCreateVReg(*CI.getArgOperand(0)),
2182 MachineInstr::copyFlagsFromInstruction(CI));
2183 return true;
2185 case Intrinsic::memcpy_inline:
2186 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2187 case Intrinsic::memcpy:
2188 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2189 case Intrinsic::memmove:
2190 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2191 case Intrinsic::memset:
2192 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2193 case Intrinsic::eh_typeid_for: {
2194 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2195 Register Reg = getOrCreateVReg(CI);
2196 unsigned TypeID = MF->getTypeIDFor(GV);
2197 MIRBuilder.buildConstant(Reg, TypeID);
2198 return true;
2200 case Intrinsic::objectsize:
2201 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2203 case Intrinsic::is_constant:
2204 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2206 case Intrinsic::stackguard:
2207 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2208 return true;
2209 case Intrinsic::stackprotector: {
2210 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2211 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2212 Register GuardVal;
2213 if (TLI.useLoadStackGuardNode()) {
2214 GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2215 getStackGuard(GuardVal, MIRBuilder);
2216 } else
2217 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value.
2219 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2220 int FI = getOrCreateFrameIndex(*Slot);
2221 MF->getFrameInfo().setStackProtectorIndex(FI);
2223 MIRBuilder.buildStore(
2224 GuardVal, getOrCreateVReg(*Slot),
2225 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2226 MachineMemOperand::MOStore |
2227 MachineMemOperand::MOVolatile,
2228 PtrTy, Align(8)));
2229 return true;
2231 case Intrinsic::stacksave: {
2232 // Save the stack pointer to the location provided by the intrinsic.
2233 Register Reg = getOrCreateVReg(CI);
2234 Register StackPtr = MF->getSubtarget()
2235 .getTargetLowering()
2236 ->getStackPointerRegisterToSaveRestore();
2238 // If the target doesn't specify a stack pointer, then fall back.
2239 if (!StackPtr)
2240 return false;
2242 MIRBuilder.buildCopy(Reg, StackPtr);
2243 return true;
2245 case Intrinsic::stackrestore: {
2246 // Restore the stack pointer from the location provided by the intrinsic.
2247 Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2248 Register StackPtr = MF->getSubtarget()
2249 .getTargetLowering()
2250 ->getStackPointerRegisterToSaveRestore();
2252 // If the target doesn't specify a stack pointer, then fall back.
2253 if (!StackPtr)
2254 return false;
2256 MIRBuilder.buildCopy(StackPtr, Reg);
2257 return true;
2259 case Intrinsic::cttz:
2260 case Intrinsic::ctlz: {
2261 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2262 bool isTrailing = ID == Intrinsic::cttz;
2263 unsigned Opcode = isTrailing
2264 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2265 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2266 : Cst->isZero() ? TargetOpcode::G_CTLZ
2267 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2268 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2269 {getOrCreateVReg(*CI.getArgOperand(0))});
2270 return true;
2272 case Intrinsic::invariant_start: {
2273 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2274 Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2275 MIRBuilder.buildUndef(Undef);
2276 return true;
2278 case Intrinsic::invariant_end:
2279 return true;
2280 case Intrinsic::expect:
2281 case Intrinsic::annotation:
2282 case Intrinsic::ptr_annotation:
2283 case Intrinsic::launder_invariant_group:
2284 case Intrinsic::strip_invariant_group: {
2285 // Drop the intrinsic, but forward the value.
2286 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2287 getOrCreateVReg(*CI.getArgOperand(0)));
2288 return true;
2290 case Intrinsic::assume:
2291 case Intrinsic::experimental_noalias_scope_decl:
2292 case Intrinsic::var_annotation:
2293 case Intrinsic::sideeffect:
2294 // Discard annotate attributes, assumptions, and artificial side-effects.
2295 return true;
2296 case Intrinsic::read_volatile_register:
2297 case Intrinsic::read_register: {
2298 Value *Arg = CI.getArgOperand(0);
2299 MIRBuilder
2300 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2301 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2302 return true;
2304 case Intrinsic::write_register: {
2305 Value *Arg = CI.getArgOperand(0);
2306 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2307 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2308 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2309 return true;
2311 case Intrinsic::localescape: {
2312 MachineBasicBlock &EntryMBB = MF->front();
2313 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2315 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2316 // is the same on all targets.
2317 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2318 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2319 if (isa<ConstantPointerNull>(Arg))
2320 continue; // Skip null pointers. They represent a hole in index space.
2322 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2323 MCSymbol *FrameAllocSym =
2324 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2325 Idx);
2327 // This should be inserted at the start of the entry block.
2328 auto LocalEscape =
2329 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2330 .addSym(FrameAllocSym)
2331 .addFrameIndex(FI);
2333 EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2336 return true;
2338 case Intrinsic::vector_reduce_fadd:
2339 case Intrinsic::vector_reduce_fmul: {
2340 // Need to check for the reassoc flag to decide whether we want a
2341 // sequential reduction opcode or not.
2342 Register Dst = getOrCreateVReg(CI);
2343 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2344 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2345 unsigned Opc = 0;
2346 if (!CI.hasAllowReassoc()) {
2347 // The sequential ordering case.
2348 Opc = ID == Intrinsic::vector_reduce_fadd
2349 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2350 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2351 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2352 MachineInstr::copyFlagsFromInstruction(CI));
2353 return true;
2355 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2356 // since the associativity doesn't matter.
2357 unsigned ScalarOpc;
2358 if (ID == Intrinsic::vector_reduce_fadd) {
2359 Opc = TargetOpcode::G_VECREDUCE_FADD;
2360 ScalarOpc = TargetOpcode::G_FADD;
2361 } else {
2362 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2363 ScalarOpc = TargetOpcode::G_FMUL;
2365 LLT DstTy = MRI->getType(Dst);
2366 auto Rdx = MIRBuilder.buildInstr(
2367 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2368 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2369 MachineInstr::copyFlagsFromInstruction(CI));
2371 return true;
2373 case Intrinsic::trap:
2374 case Intrinsic::debugtrap:
2375 case Intrinsic::ubsantrap: {
2376 StringRef TrapFuncName =
2377 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
2378 if (TrapFuncName.empty())
2379 break; // Use the default handling.
2380 CallLowering::CallLoweringInfo Info;
2381 if (ID == Intrinsic::ubsantrap) {
2382 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
2383 CI.getArgOperand(0)->getType(), 0});
2385 Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
2386 Info.CB = &CI;
2387 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
2388 return CLI->lowerCall(MIRBuilder, Info);
2390 case Intrinsic::fptrunc_round: {
2391 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI);
2393 // Convert the metadata argument to a constant integer
2394 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
2395 std::optional<RoundingMode> RoundMode =
2396 convertStrToRoundingMode(cast<MDString>(MD)->getString());
2398 // Add the Rounding mode as an integer
2399 MIRBuilder
2400 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2401 {getOrCreateVReg(CI)},
2402 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
2403 .addImm((int)*RoundMode);
2405 return true;
2407 case Intrinsic::is_fpclass: {
2408 Value *FpValue = CI.getOperand(0);
2409 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1));
2411 MIRBuilder
2412 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2413 {getOrCreateVReg(*FpValue)})
2414 .addImm(TestMaskValue->getZExtValue());
2416 return true;
2418 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2419 case Intrinsic::INTRINSIC:
2420 #include "llvm/IR/ConstrainedOps.def"
2421 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2422 MIRBuilder);
2425 return false;
2428 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2429 MachineIRBuilder &MIRBuilder) {
2431 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2433 if (!ALI) {
2434 LLVM_DEBUG(
2435 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2436 return false;
2439 return ALI->lowerInlineAsm(
2440 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2443 bool IRTranslator::translateCallBase(const CallBase &CB,
2444 MachineIRBuilder &MIRBuilder) {
2445 ArrayRef<Register> Res = getOrCreateVRegs(CB);
2447 SmallVector<ArrayRef<Register>, 8> Args;
2448 Register SwiftInVReg = 0;
2449 Register SwiftErrorVReg = 0;
2450 for (const auto &Arg : CB.args()) {
2451 if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2452 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2453 LLT Ty = getLLTForType(*Arg->getType(), *DL);
2454 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2455 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2456 &CB, &MIRBuilder.getMBB(), Arg));
2457 Args.emplace_back(ArrayRef(SwiftInVReg));
2458 SwiftErrorVReg =
2459 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2460 continue;
2462 Args.push_back(getOrCreateVRegs(*Arg));
2465 if (auto *CI = dyn_cast<CallInst>(&CB)) {
2466 if (ORE->enabled()) {
2467 if (MemoryOpRemark::canHandle(CI, *LibInfo)) {
2468 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2469 R.visit(CI);
2474 // We don't set HasCalls on MFI here yet because call lowering may decide to
2475 // optimize into tail calls. Instead, we defer that to selection where a final
2476 // scan is done to check if any instructions are calls.
2477 bool Success =
2478 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2479 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2481 // Check if we just inserted a tail call.
2482 if (Success) {
2483 assert(!HasTailCall && "Can't tail call return twice from block?");
2484 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2485 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2488 return Success;
2491 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2492 const CallInst &CI = cast<CallInst>(U);
2493 auto TII = MF->getTarget().getIntrinsicInfo();
2494 const Function *F = CI.getCalledFunction();
2496 // FIXME: support Windows dllimport function calls.
2497 if (F && (F->hasDLLImportStorageClass() ||
2498 (MF->getTarget().getTargetTriple().isOSWindows() &&
2499 F->hasExternalWeakLinkage())))
2500 return false;
2502 // FIXME: support control flow guard targets.
2503 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2504 return false;
2506 // FIXME: support statepoints and related.
2507 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U))
2508 return false;
2510 if (CI.isInlineAsm())
2511 return translateInlineAsm(CI, MIRBuilder);
2513 diagnoseDontCall(CI);
2515 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2516 if (F && F->isIntrinsic()) {
2517 ID = F->getIntrinsicID();
2518 if (TII && ID == Intrinsic::not_intrinsic)
2519 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2522 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2523 return translateCallBase(CI, MIRBuilder);
2525 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2527 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2528 return true;
2530 ArrayRef<Register> ResultRegs;
2531 if (!CI.getType()->isVoidTy())
2532 ResultRegs = getOrCreateVRegs(CI);
2534 // Ignore the callsite attributes. Backend code is most likely not expecting
2535 // an intrinsic to sometimes have side effects and sometimes not.
2536 MachineInstrBuilder MIB =
2537 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2538 if (isa<FPMathOperator>(CI))
2539 MIB->copyIRFlags(CI);
2541 for (const auto &Arg : enumerate(CI.args())) {
2542 // If this is required to be an immediate, don't materialize it in a
2543 // register.
2544 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2545 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2546 // imm arguments are more convenient than cimm (and realistically
2547 // probably sufficient), so use them.
2548 assert(CI->getBitWidth() <= 64 &&
2549 "large intrinsic immediates not handled");
2550 MIB.addImm(CI->getSExtValue());
2551 } else {
2552 MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2554 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2555 auto *MD = MDVal->getMetadata();
2556 auto *MDN = dyn_cast<MDNode>(MD);
2557 if (!MDN) {
2558 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2559 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2560 else // This was probably an MDString.
2561 return false;
2563 MIB.addMetadata(MDN);
2564 } else {
2565 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2566 if (VRegs.size() > 1)
2567 return false;
2568 MIB.addUse(VRegs[0]);
2572 // Add a MachineMemOperand if it is a target mem intrinsic.
2573 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2574 TargetLowering::IntrinsicInfo Info;
2575 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2576 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2577 Align Alignment = Info.align.value_or(
2578 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2579 LLT MemTy = Info.memVT.isSimple()
2580 ? getLLTForMVT(Info.memVT.getSimpleVT())
2581 : LLT::scalar(Info.memVT.getStoreSizeInBits());
2583 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2584 // didn't yield anything useful.
2585 MachinePointerInfo MPI;
2586 if (Info.ptrVal)
2587 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2588 else if (Info.fallbackAddressSpace)
2589 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2590 MIB.addMemOperand(
2591 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata()));
2594 return true;
2597 bool IRTranslator::findUnwindDestinations(
2598 const BasicBlock *EHPadBB,
2599 BranchProbability Prob,
2600 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2601 &UnwindDests) {
2602 EHPersonality Personality = classifyEHPersonality(
2603 EHPadBB->getParent()->getFunction().getPersonalityFn());
2604 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2605 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2606 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2607 bool IsSEH = isAsynchronousEHPersonality(Personality);
2609 if (IsWasmCXX) {
2610 // Ignore this for now.
2611 return false;
2614 while (EHPadBB) {
2615 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2616 BasicBlock *NewEHPadBB = nullptr;
2617 if (isa<LandingPadInst>(Pad)) {
2618 // Stop on landingpads. They are not funclets.
2619 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2620 break;
2622 if (isa<CleanupPadInst>(Pad)) {
2623 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2624 // personalities.
2625 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2626 UnwindDests.back().first->setIsEHScopeEntry();
2627 UnwindDests.back().first->setIsEHFuncletEntry();
2628 break;
2630 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2631 // Add the catchpad handlers to the possible destinations.
2632 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2633 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2634 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2635 if (IsMSVCCXX || IsCoreCLR)
2636 UnwindDests.back().first->setIsEHFuncletEntry();
2637 if (!IsSEH)
2638 UnwindDests.back().first->setIsEHScopeEntry();
2640 NewEHPadBB = CatchSwitch->getUnwindDest();
2641 } else {
2642 continue;
2645 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2646 if (BPI && NewEHPadBB)
2647 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2648 EHPadBB = NewEHPadBB;
2650 return true;
2653 bool IRTranslator::translateInvoke(const User &U,
2654 MachineIRBuilder &MIRBuilder) {
2655 const InvokeInst &I = cast<InvokeInst>(U);
2656 MCContext &Context = MF->getContext();
2658 const BasicBlock *ReturnBB = I.getSuccessor(0);
2659 const BasicBlock *EHPadBB = I.getSuccessor(1);
2661 const Function *Fn = I.getCalledFunction();
2663 // FIXME: support invoking patchpoint and statepoint intrinsics.
2664 if (Fn && Fn->isIntrinsic())
2665 return false;
2667 // FIXME: support whatever these are.
2668 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2669 return false;
2671 // FIXME: support control flow guard targets.
2672 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2673 return false;
2675 // FIXME: support Windows exception handling.
2676 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2677 return false;
2679 bool LowerInlineAsm = I.isInlineAsm();
2680 bool NeedEHLabel = true;
2682 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2683 // the region covered by the try.
2684 MCSymbol *BeginSymbol = nullptr;
2685 if (NeedEHLabel) {
2686 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2687 BeginSymbol = Context.createTempSymbol();
2688 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2691 if (LowerInlineAsm) {
2692 if (!translateInlineAsm(I, MIRBuilder))
2693 return false;
2694 } else if (!translateCallBase(I, MIRBuilder))
2695 return false;
2697 MCSymbol *EndSymbol = nullptr;
2698 if (NeedEHLabel) {
2699 EndSymbol = Context.createTempSymbol();
2700 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2703 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2704 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2705 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2706 BranchProbability EHPadBBProb =
2707 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2708 : BranchProbability::getZero();
2710 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2711 return false;
2713 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2714 &ReturnMBB = getMBB(*ReturnBB);
2715 // Update successor info.
2716 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2717 for (auto &UnwindDest : UnwindDests) {
2718 UnwindDest.first->setIsEHPad();
2719 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2721 InvokeMBB->normalizeSuccProbs();
2723 if (NeedEHLabel) {
2724 assert(BeginSymbol && "Expected a begin symbol!");
2725 assert(EndSymbol && "Expected an end symbol!");
2726 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2729 MIRBuilder.buildBr(ReturnMBB);
2730 return true;
2733 bool IRTranslator::translateCallBr(const User &U,
2734 MachineIRBuilder &MIRBuilder) {
2735 // FIXME: Implement this.
2736 return false;
2739 bool IRTranslator::translateLandingPad(const User &U,
2740 MachineIRBuilder &MIRBuilder) {
2741 const LandingPadInst &LP = cast<LandingPadInst>(U);
2743 MachineBasicBlock &MBB = MIRBuilder.getMBB();
2745 MBB.setIsEHPad();
2747 // If there aren't registers to copy the values into (e.g., during SjLj
2748 // exceptions), then don't bother.
2749 auto &TLI = *MF->getSubtarget().getTargetLowering();
2750 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2751 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2752 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2753 return true;
2755 // If landingpad's return type is token type, we don't create DAG nodes
2756 // for its exception pointer and selector value. The extraction of exception
2757 // pointer or selector value from token type landingpads is not currently
2758 // supported.
2759 if (LP.getType()->isTokenTy())
2760 return true;
2762 // Add a label to mark the beginning of the landing pad. Deletion of the
2763 // landing pad can thus be detected via the MachineModuleInfo.
2764 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2765 .addSym(MF->addLandingPad(&MBB));
2767 // If the unwinder does not preserve all registers, ensure that the
2768 // function marks the clobbered registers as used.
2769 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2770 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2771 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2773 LLT Ty = getLLTForType(*LP.getType(), *DL);
2774 Register Undef = MRI->createGenericVirtualRegister(Ty);
2775 MIRBuilder.buildUndef(Undef);
2777 SmallVector<LLT, 2> Tys;
2778 for (Type *Ty : cast<StructType>(LP.getType())->elements())
2779 Tys.push_back(getLLTForType(*Ty, *DL));
2780 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2782 // Mark exception register as live in.
2783 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2784 if (!ExceptionReg)
2785 return false;
2787 MBB.addLiveIn(ExceptionReg);
2788 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2789 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2791 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2792 if (!SelectorReg)
2793 return false;
2795 MBB.addLiveIn(SelectorReg);
2796 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2797 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2798 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2800 return true;
2803 bool IRTranslator::translateAlloca(const User &U,
2804 MachineIRBuilder &MIRBuilder) {
2805 auto &AI = cast<AllocaInst>(U);
2807 if (AI.isSwiftError())
2808 return true;
2810 if (AI.isStaticAlloca()) {
2811 Register Res = getOrCreateVReg(AI);
2812 int FI = getOrCreateFrameIndex(AI);
2813 MIRBuilder.buildFrameIndex(Res, FI);
2814 return true;
2817 // FIXME: support stack probing for Windows.
2818 if (MF->getTarget().getTargetTriple().isOSWindows())
2819 return false;
2821 // Now we're in the harder dynamic case.
2822 Register NumElts = getOrCreateVReg(*AI.getArraySize());
2823 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2824 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2825 if (MRI->getType(NumElts) != IntPtrTy) {
2826 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2827 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2828 NumElts = ExtElts;
2831 Type *Ty = AI.getAllocatedType();
2833 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2834 Register TySize =
2835 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2836 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2838 // Round the size of the allocation up to the stack alignment size
2839 // by add SA-1 to the size. This doesn't overflow because we're computing
2840 // an address inside an alloca.
2841 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2842 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2843 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2844 MachineInstr::NoUWrap);
2845 auto AlignCst =
2846 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2847 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2849 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2850 if (Alignment <= StackAlign)
2851 Alignment = Align(1);
2852 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2854 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2855 assert(MF->getFrameInfo().hasVarSizedObjects());
2856 return true;
2859 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2860 // FIXME: We may need more info about the type. Because of how LLT works,
2861 // we're completely discarding the i64/double distinction here (amongst
2862 // others). Fortunately the ABIs I know of where that matters don't use va_arg
2863 // anyway but that's not guaranteed.
2864 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2865 {getOrCreateVReg(*U.getOperand(0)),
2866 DL->getABITypeAlign(U.getType()).value()});
2867 return true;
2870 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
2871 if (!MF->getTarget().Options.TrapUnreachable)
2872 return true;
2874 auto &UI = cast<UnreachableInst>(U);
2875 // We may be able to ignore unreachable behind a noreturn call.
2876 if (MF->getTarget().Options.NoTrapAfterNoreturn) {
2877 const BasicBlock &BB = *UI.getParent();
2878 if (&UI != &BB.front()) {
2879 BasicBlock::const_iterator PredI =
2880 std::prev(BasicBlock::const_iterator(UI));
2881 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2882 if (Call->doesNotReturn())
2883 return true;
2888 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2889 return true;
2892 bool IRTranslator::translateInsertElement(const User &U,
2893 MachineIRBuilder &MIRBuilder) {
2894 // If it is a <1 x Ty> vector, use the scalar as it is
2895 // not a legal vector type in LLT.
2896 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2897 return translateCopy(U, *U.getOperand(1), MIRBuilder);
2899 Register Res = getOrCreateVReg(U);
2900 Register Val = getOrCreateVReg(*U.getOperand(0));
2901 Register Elt = getOrCreateVReg(*U.getOperand(1));
2902 Register Idx = getOrCreateVReg(*U.getOperand(2));
2903 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2904 return true;
2907 bool IRTranslator::translateExtractElement(const User &U,
2908 MachineIRBuilder &MIRBuilder) {
2909 // If it is a <1 x Ty> vector, use the scalar as it is
2910 // not a legal vector type in LLT.
2911 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2912 return translateCopy(U, *U.getOperand(0), MIRBuilder);
2914 Register Res = getOrCreateVReg(U);
2915 Register Val = getOrCreateVReg(*U.getOperand(0));
2916 const auto &TLI = *MF->getSubtarget().getTargetLowering();
2917 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2918 Register Idx;
2919 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2920 if (CI->getBitWidth() != PreferredVecIdxWidth) {
2921 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
2922 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2923 Idx = getOrCreateVReg(*NewIdxCI);
2926 if (!Idx)
2927 Idx = getOrCreateVReg(*U.getOperand(1));
2928 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2929 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2930 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
2932 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2933 return true;
2936 bool IRTranslator::translateShuffleVector(const User &U,
2937 MachineIRBuilder &MIRBuilder) {
2938 ArrayRef<int> Mask;
2939 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2940 Mask = SVI->getShuffleMask();
2941 else
2942 Mask = cast<ConstantExpr>(U).getShuffleMask();
2943 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2944 MIRBuilder
2945 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2946 {getOrCreateVReg(*U.getOperand(0)),
2947 getOrCreateVReg(*U.getOperand(1))})
2948 .addShuffleMask(MaskAlloc);
2949 return true;
2952 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2953 const PHINode &PI = cast<PHINode>(U);
2955 SmallVector<MachineInstr *, 4> Insts;
2956 for (auto Reg : getOrCreateVRegs(PI)) {
2957 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2958 Insts.push_back(MIB.getInstr());
2961 PendingPHIs.emplace_back(&PI, std::move(Insts));
2962 return true;
2965 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2966 MachineIRBuilder &MIRBuilder) {
2967 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2969 auto &TLI = *MF->getSubtarget().getTargetLowering();
2970 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2972 auto Res = getOrCreateVRegs(I);
2973 Register OldValRes = Res[0];
2974 Register SuccessRes = Res[1];
2975 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2976 Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2977 Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2979 MIRBuilder.buildAtomicCmpXchgWithSuccess(
2980 OldValRes, SuccessRes, Addr, Cmp, NewVal,
2981 *MF->getMachineMemOperand(
2982 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2983 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
2984 I.getSuccessOrdering(), I.getFailureOrdering()));
2985 return true;
2988 bool IRTranslator::translateAtomicRMW(const User &U,
2989 MachineIRBuilder &MIRBuilder) {
2990 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2991 auto &TLI = *MF->getSubtarget().getTargetLowering();
2992 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2994 Register Res = getOrCreateVReg(I);
2995 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2996 Register Val = getOrCreateVReg(*I.getValOperand());
2998 unsigned Opcode = 0;
2999 switch (I.getOperation()) {
3000 default:
3001 return false;
3002 case AtomicRMWInst::Xchg:
3003 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
3004 break;
3005 case AtomicRMWInst::Add:
3006 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
3007 break;
3008 case AtomicRMWInst::Sub:
3009 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
3010 break;
3011 case AtomicRMWInst::And:
3012 Opcode = TargetOpcode::G_ATOMICRMW_AND;
3013 break;
3014 case AtomicRMWInst::Nand:
3015 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
3016 break;
3017 case AtomicRMWInst::Or:
3018 Opcode = TargetOpcode::G_ATOMICRMW_OR;
3019 break;
3020 case AtomicRMWInst::Xor:
3021 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
3022 break;
3023 case AtomicRMWInst::Max:
3024 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
3025 break;
3026 case AtomicRMWInst::Min:
3027 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
3028 break;
3029 case AtomicRMWInst::UMax:
3030 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
3031 break;
3032 case AtomicRMWInst::UMin:
3033 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
3034 break;
3035 case AtomicRMWInst::FAdd:
3036 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
3037 break;
3038 case AtomicRMWInst::FSub:
3039 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
3040 break;
3041 case AtomicRMWInst::FMax:
3042 Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
3043 break;
3044 case AtomicRMWInst::FMin:
3045 Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
3046 break;
3047 case AtomicRMWInst::UIncWrap:
3048 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
3049 break;
3050 case AtomicRMWInst::UDecWrap:
3051 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
3052 break;
3055 MIRBuilder.buildAtomicRMW(
3056 Opcode, Res, Addr, Val,
3057 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3058 Flags, MRI->getType(Val), getMemOpAlign(I),
3059 I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3060 I.getOrdering()));
3061 return true;
3064 bool IRTranslator::translateFence(const User &U,
3065 MachineIRBuilder &MIRBuilder) {
3066 const FenceInst &Fence = cast<FenceInst>(U);
3067 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
3068 Fence.getSyncScopeID());
3069 return true;
3072 bool IRTranslator::translateFreeze(const User &U,
3073 MachineIRBuilder &MIRBuilder) {
3074 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
3075 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
3077 assert(DstRegs.size() == SrcRegs.size() &&
3078 "Freeze with different source and destination type?");
3080 for (unsigned I = 0; I < DstRegs.size(); ++I) {
3081 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
3084 return true;
3087 void IRTranslator::finishPendingPhis() {
3088 #ifndef NDEBUG
3089 DILocationVerifier Verifier;
3090 GISelObserverWrapper WrapperObserver(&Verifier);
3091 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3092 #endif // ifndef NDEBUG
3093 for (auto &Phi : PendingPHIs) {
3094 const PHINode *PI = Phi.first;
3095 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3096 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3097 EntryBuilder->setDebugLoc(PI->getDebugLoc());
3098 #ifndef NDEBUG
3099 Verifier.setCurrentInst(PI);
3100 #endif // ifndef NDEBUG
3102 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3103 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3104 auto IRPred = PI->getIncomingBlock(i);
3105 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
3106 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
3107 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
3108 continue;
3109 SeenPreds.insert(Pred);
3110 for (unsigned j = 0; j < ValRegs.size(); ++j) {
3111 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3112 MIB.addUse(ValRegs[j]);
3113 MIB.addMBB(Pred);
3120 bool IRTranslator::translate(const Instruction &Inst) {
3121 CurBuilder->setDebugLoc(Inst.getDebugLoc());
3122 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections));
3124 auto &TLI = *MF->getSubtarget().getTargetLowering();
3125 if (TLI.fallBackToDAGISel(Inst))
3126 return false;
3128 switch (Inst.getOpcode()) {
3129 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3130 case Instruction::OPCODE: \
3131 return translate##OPCODE(Inst, *CurBuilder.get());
3132 #include "llvm/IR/Instruction.def"
3133 default:
3134 return false;
3138 bool IRTranslator::translate(const Constant &C, Register Reg) {
3139 // We only emit constants into the entry block from here. To prevent jumpy
3140 // debug behaviour remove debug line.
3141 if (auto CurrInstDL = CurBuilder->getDL())
3142 EntryBuilder->setDebugLoc(DebugLoc());
3144 if (auto CI = dyn_cast<ConstantInt>(&C))
3145 EntryBuilder->buildConstant(Reg, *CI);
3146 else if (auto CF = dyn_cast<ConstantFP>(&C))
3147 EntryBuilder->buildFConstant(Reg, *CF);
3148 else if (isa<UndefValue>(C))
3149 EntryBuilder->buildUndef(Reg);
3150 else if (isa<ConstantPointerNull>(C))
3151 EntryBuilder->buildConstant(Reg, 0);
3152 else if (auto GV = dyn_cast<GlobalValue>(&C))
3153 EntryBuilder->buildGlobalValue(Reg, GV);
3154 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
3155 if (!isa<FixedVectorType>(CAZ->getType()))
3156 return false;
3157 // Return the scalar if it is a <1 x Ty> vector.
3158 unsigned NumElts = CAZ->getElementCount().getFixedValue();
3159 if (NumElts == 1)
3160 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder);
3161 SmallVector<Register, 4> Ops;
3162 for (unsigned I = 0; I < NumElts; ++I) {
3163 Constant &Elt = *CAZ->getElementValue(I);
3164 Ops.push_back(getOrCreateVReg(Elt));
3166 EntryBuilder->buildBuildVector(Reg, Ops);
3167 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
3168 // Return the scalar if it is a <1 x Ty> vector.
3169 if (CV->getNumElements() == 1)
3170 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
3171 SmallVector<Register, 4> Ops;
3172 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3173 Constant &Elt = *CV->getElementAsConstant(i);
3174 Ops.push_back(getOrCreateVReg(Elt));
3176 EntryBuilder->buildBuildVector(Reg, Ops);
3177 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3178 switch(CE->getOpcode()) {
3179 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3180 case Instruction::OPCODE: \
3181 return translate##OPCODE(*CE, *EntryBuilder.get());
3182 #include "llvm/IR/Instruction.def"
3183 default:
3184 return false;
3186 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3187 if (CV->getNumOperands() == 1)
3188 return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
3189 SmallVector<Register, 4> Ops;
3190 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3191 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3193 EntryBuilder->buildBuildVector(Reg, Ops);
3194 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3195 EntryBuilder->buildBlockAddress(Reg, BA);
3196 } else
3197 return false;
3199 return true;
3202 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3203 MachineBasicBlock &MBB) {
3204 for (auto &BTB : SL->BitTestCases) {
3205 // Emit header first, if it wasn't already emitted.
3206 if (!BTB.Emitted)
3207 emitBitTestHeader(BTB, BTB.Parent);
3209 BranchProbability UnhandledProb = BTB.Prob;
3210 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3211 UnhandledProb -= BTB.Cases[j].ExtraProb;
3212 // Set the current basic block to the mbb we wish to insert the code into
3213 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3214 // If all cases cover a contiguous range, it is not necessary to jump to
3215 // the default block after the last bit test fails. This is because the
3216 // range check during bit test header creation has guaranteed that every
3217 // case here doesn't go outside the range. In this case, there is no need
3218 // to perform the last bit test, as it will always be true. Instead, make
3219 // the second-to-last bit-test fall through to the target of the last bit
3220 // test, and delete the last bit test.
3222 MachineBasicBlock *NextMBB;
3223 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3224 // Second-to-last bit-test with contiguous range: fall through to the
3225 // target of the final bit test.
3226 NextMBB = BTB.Cases[j + 1].TargetBB;
3227 } else if (j + 1 == ej) {
3228 // For the last bit test, fall through to Default.
3229 NextMBB = BTB.Default;
3230 } else {
3231 // Otherwise, fall through to the next bit test.
3232 NextMBB = BTB.Cases[j + 1].ThisBB;
3235 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3237 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3238 // We need to record the replacement phi edge here that normally
3239 // happens in emitBitTestCase before we delete the case, otherwise the
3240 // phi edge will be lost.
3241 addMachineCFGPred({BTB.Parent->getBasicBlock(),
3242 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3243 MBB);
3244 // Since we're not going to use the final bit test, remove it.
3245 BTB.Cases.pop_back();
3246 break;
3249 // This is "default" BB. We have two jumps to it. From "header" BB and from
3250 // last "case" BB, unless the latter was skipped.
3251 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3252 BTB.Default->getBasicBlock()};
3253 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3254 if (!BTB.ContiguousRange) {
3255 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3258 SL->BitTestCases.clear();
3260 for (auto &JTCase : SL->JTCases) {
3261 // Emit header first, if it wasn't already emitted.
3262 if (!JTCase.first.Emitted)
3263 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3265 emitJumpTable(JTCase.second, JTCase.second.MBB);
3267 SL->JTCases.clear();
3269 for (auto &SwCase : SL->SwitchCases)
3270 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3271 SL->SwitchCases.clear();
3273 // Check if we need to generate stack-protector guard checks.
3274 StackProtector &SP = getAnalysis<StackProtector>();
3275 if (SP.shouldEmitSDCheck(BB)) {
3276 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3277 bool FunctionBasedInstrumentation =
3278 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent());
3279 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3281 // Handle stack protector.
3282 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3283 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3284 return false;
3285 } else if (SPDescriptor.shouldEmitStackProtector()) {
3286 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3287 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3289 // Find the split point to split the parent mbb. At the same time copy all
3290 // physical registers used in the tail of parent mbb into virtual registers
3291 // before the split point and back into physical registers after the split
3292 // point. This prevents us needing to deal with Live-ins and many other
3293 // register allocation issues caused by us splitting the parent mbb. The
3294 // register allocator will clean up said virtual copies later on.
3295 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3296 ParentMBB, *MF->getSubtarget().getInstrInfo());
3298 // Splice the terminator of ParentMBB into SuccessMBB.
3299 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3300 ParentMBB->end());
3302 // Add compare/jump on neq/jump to the parent BB.
3303 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3304 return false;
3306 // CodeGen Failure MBB if we have not codegened it yet.
3307 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3308 if (FailureMBB->empty()) {
3309 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3310 return false;
3313 // Clear the Per-BB State.
3314 SPDescriptor.resetPerBBState();
3316 return true;
3319 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3320 MachineBasicBlock *ParentBB) {
3321 CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3322 // First create the loads to the guard/stack slot for the comparison.
3323 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3324 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
3325 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3326 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL));
3328 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3329 int FI = MFI.getStackProtectorIndex();
3331 Register Guard;
3332 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3333 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3334 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
3336 // Generate code to load the content of the guard slot.
3337 Register GuardVal =
3338 CurBuilder
3339 ->buildLoad(PtrMemTy, StackSlotPtr,
3340 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3341 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3342 .getReg(0);
3344 if (TLI.useStackGuardXorFP()) {
3345 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3346 return false;
3349 // Retrieve guard check function, nullptr if instrumentation is inlined.
3350 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3351 // This path is currently untestable on GlobalISel, since the only platform
3352 // that needs this seems to be Windows, and we fall back on that currently.
3353 // The code still lives here in case that changes.
3354 // Silence warning about unused variable until the code below that uses
3355 // 'GuardCheckFn' is enabled.
3356 (void)GuardCheckFn;
3357 return false;
3358 #if 0
3359 // The target provides a guard check function to validate the guard value.
3360 // Generate a call to that function with the content of the guard slot as
3361 // argument.
3362 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3363 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3364 ISD::ArgFlagsTy Flags;
3365 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3366 Flags.setInReg();
3367 CallLowering::ArgInfo GuardArgInfo(
3368 {GuardVal, FnTy->getParamType(0), {Flags}});
3370 CallLowering::CallLoweringInfo Info;
3371 Info.OrigArgs.push_back(GuardArgInfo);
3372 Info.CallConv = GuardCheckFn->getCallingConv();
3373 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3374 Info.OrigRet = {Register(), FnTy->getReturnType()};
3375 if (!CLI->lowerCall(MIRBuilder, Info)) {
3376 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3377 return false;
3379 return true;
3380 #endif
3383 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3384 // Otherwise, emit a volatile load to retrieve the stack guard value.
3385 if (TLI.useLoadStackGuardNode()) {
3386 Guard =
3387 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3388 getStackGuard(Guard, *CurBuilder);
3389 } else {
3390 // TODO: test using android subtarget when we support @llvm.thread.pointer.
3391 const Value *IRGuard = TLI.getSDagStackGuard(M);
3392 Register GuardPtr = getOrCreateVReg(*IRGuard);
3394 Guard = CurBuilder
3395 ->buildLoad(PtrMemTy, GuardPtr,
3396 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3397 MachineMemOperand::MOLoad |
3398 MachineMemOperand::MOVolatile)
3399 .getReg(0);
3402 // Perform the comparison.
3403 auto Cmp =
3404 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3405 // If the guard/stackslot do not equal, branch to failure MBB.
3406 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3407 // Otherwise branch to success MBB.
3408 CurBuilder->buildBr(*SPD.getSuccessMBB());
3409 return true;
3412 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3413 MachineBasicBlock *FailureBB) {
3414 CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3415 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3417 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3418 const char *Name = TLI.getLibcallName(Libcall);
3420 CallLowering::CallLoweringInfo Info;
3421 Info.CallConv = TLI.getLibcallCallingConv(Libcall);
3422 Info.Callee = MachineOperand::CreateES(Name);
3423 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3425 if (!CLI->lowerCall(*CurBuilder, Info)) {
3426 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3427 return false;
3430 // On PS4/PS5, the "return address" must still be within the calling
3431 // function, even if it's at the very end, so emit an explicit TRAP here.
3432 // WebAssembly needs an unreachable instruction after a non-returning call,
3433 // because the function return type can be different from __stack_chk_fail's
3434 // return type (void).
3435 const TargetMachine &TM = MF->getTarget();
3436 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
3437 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3438 return false;
3440 return true;
3443 void IRTranslator::finalizeFunction() {
3444 // Release the memory used by the different maps we
3445 // needed during the translation.
3446 PendingPHIs.clear();
3447 VMap.reset();
3448 FrameIndices.clear();
3449 MachinePreds.clear();
3450 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3451 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3452 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3453 EntryBuilder.reset();
3454 CurBuilder.reset();
3455 FuncInfo.clear();
3456 SPDescriptor.resetPerFunctionState();
3459 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3460 /// variadic musttail call.
3461 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3462 if (!IsVarArg)
3463 return false;
3465 // Walk the block backwards, because tail calls usually only appear at the end
3466 // of a block.
3467 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3468 const auto *CI = dyn_cast<CallInst>(&I);
3469 return CI && CI->isMustTailCall();
3473 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3474 MF = &CurMF;
3475 const Function &F = MF->getFunction();
3476 GISelCSEAnalysisWrapper &Wrapper =
3477 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3478 // Set the CSEConfig and run the analysis.
3479 GISelCSEInfo *CSEInfo = nullptr;
3480 TPC = &getAnalysis<TargetPassConfig>();
3481 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3482 ? EnableCSEInIRTranslator
3483 : TPC->isGISelCSEEnabled();
3485 if (EnableCSE) {
3486 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3487 CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3488 EntryBuilder->setCSEInfo(CSEInfo);
3489 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3490 CurBuilder->setCSEInfo(CSEInfo);
3491 } else {
3492 EntryBuilder = std::make_unique<MachineIRBuilder>();
3493 CurBuilder = std::make_unique<MachineIRBuilder>();
3495 CLI = MF->getSubtarget().getCallLowering();
3496 CurBuilder->setMF(*MF);
3497 EntryBuilder->setMF(*MF);
3498 MRI = &MF->getRegInfo();
3499 DL = &F.getParent()->getDataLayout();
3500 ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3501 const TargetMachine &TM = MF->getTarget();
3502 TM.resetTargetOptions(F);
3503 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3504 FuncInfo.MF = MF;
3505 if (EnableOpts) {
3506 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3507 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3508 } else {
3509 AA = nullptr;
3510 FuncInfo.BPI = nullptr;
3513 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
3514 MF->getFunction());
3515 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3516 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3518 const auto &TLI = *MF->getSubtarget().getTargetLowering();
3520 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3521 SL->init(TLI, TM, *DL);
3525 assert(PendingPHIs.empty() && "stale PHIs");
3527 // Targets which want to use big endian can enable it using
3528 // enableBigEndian()
3529 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3530 // Currently we don't properly handle big endian code.
3531 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3532 F.getSubprogram(), &F.getEntryBlock());
3533 R << "unable to translate in big endian mode";
3534 reportTranslationError(*MF, *TPC, *ORE, R);
3537 // Release the per-function state when we return, whether we succeeded or not.
3538 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3540 // Setup a separate basic-block for the arguments and constants
3541 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3542 MF->push_back(EntryBB);
3543 EntryBuilder->setMBB(*EntryBB);
3545 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3546 SwiftError.setFunction(CurMF);
3547 SwiftError.createEntriesInEntryBlock(DbgLoc);
3549 bool IsVarArg = F.isVarArg();
3550 bool HasMustTailInVarArgFn = false;
3552 // Create all blocks, in IR order, to preserve the layout.
3553 for (const BasicBlock &BB: F) {
3554 auto *&MBB = BBToMBB[&BB];
3556 MBB = MF->CreateMachineBasicBlock(&BB);
3557 MF->push_back(MBB);
3559 if (BB.hasAddressTaken())
3560 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
3562 if (!HasMustTailInVarArgFn)
3563 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3566 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3568 // Make our arguments/constants entry block fallthrough to the IR entry block.
3569 EntryBB->addSuccessor(&getMBB(F.front()));
3571 if (CLI->fallBackToDAGISel(*MF)) {
3572 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3573 F.getSubprogram(), &F.getEntryBlock());
3574 R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3575 reportTranslationError(*MF, *TPC, *ORE, R);
3576 return false;
3579 // Lower the actual args into this basic block.
3580 SmallVector<ArrayRef<Register>, 8> VRegArgs;
3581 for (const Argument &Arg: F.args()) {
3582 if (DL->getTypeStoreSize(Arg.getType()).isZero())
3583 continue; // Don't handle zero sized types.
3584 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3585 VRegArgs.push_back(VRegs);
3587 if (Arg.hasSwiftErrorAttr()) {
3588 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3589 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3593 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
3594 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3595 F.getSubprogram(), &F.getEntryBlock());
3596 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3597 reportTranslationError(*MF, *TPC, *ORE, R);
3598 return false;
3601 // Need to visit defs before uses when translating instructions.
3602 GISelObserverWrapper WrapperObserver;
3603 if (EnableCSE && CSEInfo)
3604 WrapperObserver.addObserver(CSEInfo);
3606 ReversePostOrderTraversal<const Function *> RPOT(&F);
3607 #ifndef NDEBUG
3608 DILocationVerifier Verifier;
3609 WrapperObserver.addObserver(&Verifier);
3610 #endif // ifndef NDEBUG
3611 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3612 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3613 for (const BasicBlock *BB : RPOT) {
3614 MachineBasicBlock &MBB = getMBB(*BB);
3615 // Set the insertion point of all the following translations to
3616 // the end of this basic block.
3617 CurBuilder->setMBB(MBB);
3618 HasTailCall = false;
3619 for (const Instruction &Inst : *BB) {
3620 // If we translated a tail call in the last step, then we know
3621 // everything after the call is either a return, or something that is
3622 // handled by the call itself. (E.g. a lifetime marker or assume
3623 // intrinsic.) In this case, we should stop translating the block and
3624 // move on.
3625 if (HasTailCall)
3626 break;
3627 #ifndef NDEBUG
3628 Verifier.setCurrentInst(&Inst);
3629 #endif // ifndef NDEBUG
3630 if (translate(Inst))
3631 continue;
3633 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3634 Inst.getDebugLoc(), BB);
3635 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3637 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3638 std::string InstStrStorage;
3639 raw_string_ostream InstStr(InstStrStorage);
3640 InstStr << Inst;
3642 R << ": '" << InstStr.str() << "'";
3645 reportTranslationError(*MF, *TPC, *ORE, R);
3646 return false;
3649 if (!finalizeBasicBlock(*BB, MBB)) {
3650 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3651 BB->getTerminator()->getDebugLoc(), BB);
3652 R << "unable to translate basic block";
3653 reportTranslationError(*MF, *TPC, *ORE, R);
3654 return false;
3657 #ifndef NDEBUG
3658 WrapperObserver.removeObserver(&Verifier);
3659 #endif
3662 finishPendingPhis();
3664 SwiftError.propagateVRegs();
3666 // Merge the argument lowering and constants block with its single
3667 // successor, the LLVM-IR entry block. We want the basic block to
3668 // be maximal.
3669 assert(EntryBB->succ_size() == 1 &&
3670 "Custom BB used for lowering should have only one successor");
3671 // Get the successor of the current entry block.
3672 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3673 assert(NewEntryBB.pred_size() == 1 &&
3674 "LLVM-IR entry block has a predecessor!?");
3675 // Move all the instruction from the current entry block to the
3676 // new entry block.
3677 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3678 EntryBB->end());
3680 // Update the live-in information for the new entry block.
3681 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3682 NewEntryBB.addLiveIn(LiveIn);
3683 NewEntryBB.sortUniqueLiveIns();
3685 // Get rid of the now empty basic block.
3686 EntryBB->removeSuccessor(&NewEntryBB);
3687 MF->remove(EntryBB);
3688 MF->deleteMachineBasicBlock(EntryBB);
3690 assert(&MF->front() == &NewEntryBB &&
3691 "New entry wasn't next in the list of basic block!");
3693 // Initialize stack protector information.
3694 StackProtector &SP = getAnalysis<StackProtector>();
3695 SP.copyToMachineFrameInfo(MF->getFrameInfo());
3697 return false;