[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / MachineInstr.cpp
bloba9309487a7a7ffed358d2ffd1f63bbe881190d8b
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSlotTracker.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
62 using namespace llvm;
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65 if (const MachineBasicBlock *MBB = MI.getParent())
66 if (const MachineFunction *MF = MBB->getParent())
67 return MF;
68 return nullptr;
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74 const TargetRegisterInfo *&TRI,
75 const MachineRegisterInfo *&MRI,
76 const TargetIntrinsicInfo *&IntrinsicInfo,
77 const TargetInstrInfo *&TII) {
79 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80 TRI = MF->getSubtarget().getRegisterInfo();
81 MRI = &MF->getRegInfo();
82 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83 TII = MF->getSubtarget().getInstrInfo();
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88 for (MCPhysReg ImpDef : MCID->implicit_defs())
89 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
90 for (MCPhysReg ImpUse : MCID->implicit_uses())
91 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95 /// implicit operands. It reserves space for the number of operands specified by
96 /// the MCInstrDesc.
97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
98 DebugLoc DL, bool NoImp)
99 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100 DbgLoc(std::move(DL)), DebugInstrNum(0) {
101 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
103 // Reserve space for the expected number of operands.
104 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
105 MCID->implicit_uses().size()) {
106 CapOperands = OperandCapacity::get(NumOps);
107 Operands = MF.allocateOperandArray(CapOperands);
110 if (!NoImp)
111 addImplicitDefUseOperands(MF);
114 /// MachineInstr ctor - Copies MachineInstr arg exactly.
115 /// Does not copy the number from debug instruction numbering, to preserve
116 /// uniqueness.
117 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
118 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) {
120 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 CapOperands = OperandCapacity::get(MI.getNumOperands());
123 Operands = MF.allocateOperandArray(CapOperands);
125 // Copy operands.
126 for (const MachineOperand &MO : MI.operands())
127 addOperand(MF, MO);
129 // Replicate ties between the operands, which addOperand was not
130 // able to do reliably.
131 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
132 MachineOperand &NewMO = getOperand(i);
133 const MachineOperand &OrigMO = MI.getOperand(i);
134 NewMO.TiedTo = OrigMO.TiedTo;
137 // Copy all the sensible flags.
138 setFlags(MI.Flags);
141 void MachineInstr::moveBefore(MachineInstr *MovePos) {
142 MovePos->getParent()->splice(MovePos, getParent(), getIterator());
145 /// getRegInfo - If this instruction is embedded into a MachineFunction,
146 /// return the MachineRegisterInfo object for the current function, otherwise
147 /// return null.
148 MachineRegisterInfo *MachineInstr::getRegInfo() {
149 if (MachineBasicBlock *MBB = getParent())
150 return &MBB->getParent()->getRegInfo();
151 return nullptr;
154 const MachineRegisterInfo *MachineInstr::getRegInfo() const {
155 if (const MachineBasicBlock *MBB = getParent())
156 return &MBB->getParent()->getRegInfo();
157 return nullptr;
160 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161 for (MachineOperand &MO : operands())
162 if (MO.isReg())
163 MRI.removeRegOperandFromUseList(&MO);
166 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
167 for (MachineOperand &MO : operands())
168 if (MO.isReg())
169 MRI.addRegOperandToUseList(&MO);
172 void MachineInstr::addOperand(const MachineOperand &Op) {
173 MachineBasicBlock *MBB = getParent();
174 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
175 MachineFunction *MF = MBB->getParent();
176 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
177 addOperand(*MF, Op);
180 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
181 /// ranges. If MRI is non-null also update use-def chains.
182 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
183 unsigned NumOps, MachineRegisterInfo *MRI) {
184 if (MRI)
185 return MRI->moveOperands(Dst, Src, NumOps);
186 // MachineOperand is a trivially copyable type so we can just use memmove.
187 assert(Dst && Src && "Unknown operands");
188 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
191 /// addOperand - Add the specified operand to the instruction. If it is an
192 /// implicit operand, it is added to the end of the operand list. If it is
193 /// an explicit operand it is added at the end of the explicit operand list
194 /// (before the first implicit operand).
195 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
196 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
197 "Cannot add more operands.");
198 assert(MCID && "Cannot add operands before providing an instr descriptor");
200 // Check if we're adding one of our existing operands.
201 if (&Op >= Operands && &Op < Operands + NumOperands) {
202 // This is unusual: MI->addOperand(MI->getOperand(i)).
203 // If adding Op requires reallocating or moving existing operands around,
204 // the Op reference could go stale. Support it by copying Op.
205 MachineOperand CopyOp(Op);
206 return addOperand(MF, CopyOp);
209 // Find the insert location for the new operand. Implicit registers go at
210 // the end, everything else goes before the implicit regs.
212 // FIXME: Allow mixed explicit and implicit operands on inline asm.
213 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
214 // implicit-defs, but they must not be moved around. See the FIXME in
215 // InstrEmitter.cpp.
216 unsigned OpNo = getNumOperands();
217 bool isImpReg = Op.isReg() && Op.isImplicit();
218 if (!isImpReg && !isInlineAsm()) {
219 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
220 --OpNo;
221 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
225 // OpNo now points as the desired insertion point. Unless this is a variadic
226 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
227 // RegMask operands go between the explicit and implicit operands.
228 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
229 Op.isValidExcessOperand()) &&
230 "Trying to add an operand to a machine instr that is already done!");
232 MachineRegisterInfo *MRI = getRegInfo();
234 // Determine if the Operands array needs to be reallocated.
235 // Save the old capacity and operand array.
236 OperandCapacity OldCap = CapOperands;
237 MachineOperand *OldOperands = Operands;
238 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
239 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
240 Operands = MF.allocateOperandArray(CapOperands);
241 // Move the operands before the insertion point.
242 if (OpNo)
243 moveOperands(Operands, OldOperands, OpNo, MRI);
246 // Move the operands following the insertion point.
247 if (OpNo != NumOperands)
248 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
249 MRI);
250 ++NumOperands;
252 // Deallocate the old operand array.
253 if (OldOperands != Operands && OldOperands)
254 MF.deallocateOperandArray(OldCap, OldOperands);
256 // Copy Op into place. It still needs to be inserted into the MRI use lists.
257 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
258 NewMO->ParentMI = this;
260 // When adding a register operand, tell MRI about it.
261 if (NewMO->isReg()) {
262 // Ensure isOnRegUseList() returns false, regardless of Op's status.
263 NewMO->Contents.Reg.Prev = nullptr;
264 // Ignore existing ties. This is not a property that can be copied.
265 NewMO->TiedTo = 0;
266 // Add the new operand to MRI, but only for instructions in an MBB.
267 if (MRI)
268 MRI->addRegOperandToUseList(NewMO);
269 // The MCID operand information isn't accurate until we start adding
270 // explicit operands. The implicit operands are added first, then the
271 // explicits are inserted before them.
272 if (!isImpReg) {
273 // Tie uses to defs as indicated in MCInstrDesc.
274 if (NewMO->isUse()) {
275 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
276 if (DefIdx != -1)
277 tieOperands(DefIdx, OpNo);
279 // If the register operand is flagged as early, mark the operand as such.
280 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
281 NewMO->setIsEarlyClobber(true);
283 // Ensure debug instructions set debug flag on register uses.
284 if (NewMO->isUse() && isDebugInstr())
285 NewMO->setIsDebug();
289 void MachineInstr::removeOperand(unsigned OpNo) {
290 assert(OpNo < getNumOperands() && "Invalid operand number");
291 untieRegOperand(OpNo);
293 #ifndef NDEBUG
294 // Moving tied operands would break the ties.
295 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
296 if (Operands[i].isReg())
297 assert(!Operands[i].isTied() && "Cannot move tied operands");
298 #endif
300 MachineRegisterInfo *MRI = getRegInfo();
301 if (MRI && Operands[OpNo].isReg())
302 MRI->removeRegOperandFromUseList(Operands + OpNo);
304 // Don't call the MachineOperand destructor. A lot of this code depends on
305 // MachineOperand having a trivial destructor anyway, and adding a call here
306 // wouldn't make it 'destructor-correct'.
308 if (unsigned N = NumOperands - 1 - OpNo)
309 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
310 --NumOperands;
313 void MachineInstr::setExtraInfo(MachineFunction &MF,
314 ArrayRef<MachineMemOperand *> MMOs,
315 MCSymbol *PreInstrSymbol,
316 MCSymbol *PostInstrSymbol,
317 MDNode *HeapAllocMarker, MDNode *PCSections,
318 uint32_t CFIType) {
319 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
320 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
321 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
322 bool HasPCSections = PCSections != nullptr;
323 bool HasCFIType = CFIType != 0;
324 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
325 HasHeapAllocMarker + HasPCSections + HasCFIType;
327 // Drop all extra info if there is none.
328 if (NumPointers <= 0) {
329 Info.clear();
330 return;
333 // If more than one pointer, then store out of line. Store heap alloc markers
334 // out of line because PointerSumType cannot hold more than 4 tag types with
335 // 32-bit pointers.
336 // FIXME: Maybe we should make the symbols in the extra info mutable?
337 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
338 HasCFIType) {
339 Info.set<EIIK_OutOfLine>(
340 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
341 HeapAllocMarker, PCSections, CFIType));
342 return;
345 // Otherwise store the single pointer inline.
346 if (HasPreInstrSymbol)
347 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
348 else if (HasPostInstrSymbol)
349 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
350 else
351 Info.set<EIIK_MMO>(MMOs[0]);
354 void MachineInstr::dropMemRefs(MachineFunction &MF) {
355 if (memoperands_empty())
356 return;
358 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
359 getHeapAllocMarker(), getPCSections(), getCFIType());
362 void MachineInstr::setMemRefs(MachineFunction &MF,
363 ArrayRef<MachineMemOperand *> MMOs) {
364 if (MMOs.empty()) {
365 dropMemRefs(MF);
366 return;
369 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
370 getHeapAllocMarker(), getPCSections(), getCFIType());
373 void MachineInstr::addMemOperand(MachineFunction &MF,
374 MachineMemOperand *MO) {
375 SmallVector<MachineMemOperand *, 2> MMOs;
376 MMOs.append(memoperands_begin(), memoperands_end());
377 MMOs.push_back(MO);
378 setMemRefs(MF, MMOs);
381 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
382 if (this == &MI)
383 // Nothing to do for a self-clone!
384 return;
386 assert(&MF == MI.getMF() &&
387 "Invalid machine functions when cloning memory refrences!");
388 // See if we can just steal the extra info already allocated for the
389 // instruction. We can do this whenever the pre- and post-instruction symbols
390 // are the same (including null).
391 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
392 getPostInstrSymbol() == MI.getPostInstrSymbol() &&
393 getHeapAllocMarker() == MI.getHeapAllocMarker() &&
394 getPCSections() == MI.getPCSections()) {
395 Info = MI.Info;
396 return;
399 // Otherwise, fall back on a copy-based clone.
400 setMemRefs(MF, MI.memoperands());
403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
404 /// identical.
405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406 ArrayRef<MachineMemOperand *> RHS) {
407 if (LHS.size() != RHS.size())
408 return false;
410 auto LHSPointees = make_pointee_range(LHS);
411 auto RHSPointees = make_pointee_range(RHS);
412 return std::equal(LHSPointees.begin(), LHSPointees.end(),
413 RHSPointees.begin());
416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417 ArrayRef<const MachineInstr *> MIs) {
418 // Try handling easy numbers of MIs with simpler mechanisms.
419 if (MIs.empty()) {
420 dropMemRefs(MF);
421 return;
423 if (MIs.size() == 1) {
424 cloneMemRefs(MF, *MIs[0]);
425 return;
427 // Because an empty memoperands list provides *no* information and must be
428 // handled conservatively (assuming the instruction can do anything), the only
429 // way to merge with it is to drop all other memoperands.
430 if (MIs[0]->memoperands_empty()) {
431 dropMemRefs(MF);
432 return;
435 // Handle the general case.
436 SmallVector<MachineMemOperand *, 2> MergedMMOs;
437 // Start with the first instruction.
438 assert(&MF == MIs[0]->getMF() &&
439 "Invalid machine functions when cloning memory references!");
440 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441 // Now walk all the other instructions and accumulate any different MMOs.
442 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443 assert(&MF == MI.getMF() &&
444 "Invalid machine functions when cloning memory references!");
446 // Skip MIs with identical operands to the first. This is a somewhat
447 // arbitrary hack but will catch common cases without being quadratic.
448 // TODO: We could fully implement merge semantics here if needed.
449 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450 continue;
452 // Because an empty memoperands list provides *no* information and must be
453 // handled conservatively (assuming the instruction can do anything), the
454 // only way to merge with it is to drop all other memoperands.
455 if (MI.memoperands_empty()) {
456 dropMemRefs(MF);
457 return;
460 // Otherwise accumulate these into our temporary buffer of the merged state.
461 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
464 setMemRefs(MF, MergedMMOs);
467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468 // Do nothing if old and new symbols are the same.
469 if (Symbol == getPreInstrSymbol())
470 return;
472 // If there was only one symbol and we're removing it, just clear info.
473 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474 Info.clear();
475 return;
478 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479 getHeapAllocMarker(), getPCSections(), getCFIType());
482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483 // Do nothing if old and new symbols are the same.
484 if (Symbol == getPostInstrSymbol())
485 return;
487 // If there was only one symbol and we're removing it, just clear info.
488 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489 Info.clear();
490 return;
493 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494 getHeapAllocMarker(), getPCSections(), getCFIType());
497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498 // Do nothing if old and new symbols are the same.
499 if (Marker == getHeapAllocMarker())
500 return;
502 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503 Marker, getPCSections(), getCFIType());
506 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
507 // Do nothing if old and new symbols are the same.
508 if (PCSections == getPCSections())
509 return;
511 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
512 getHeapAllocMarker(), PCSections, getCFIType());
515 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
516 // Do nothing if old and new types are the same.
517 if (Type == getCFIType())
518 return;
520 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
521 getHeapAllocMarker(), getPCSections(), Type);
524 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
525 const MachineInstr &MI) {
526 if (this == &MI)
527 // Nothing to do for a self-clone!
528 return;
530 assert(&MF == MI.getMF() &&
531 "Invalid machine functions when cloning instruction symbols!");
533 setPreInstrSymbol(MF, MI.getPreInstrSymbol());
534 setPostInstrSymbol(MF, MI.getPostInstrSymbol());
535 setHeapAllocMarker(MF, MI.getHeapAllocMarker());
536 setPCSections(MF, MI.getPCSections());
539 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
540 // For now, the just return the union of the flags. If the flags get more
541 // complicated over time, we might need more logic here.
542 return getFlags() | Other.getFlags();
545 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
546 uint32_t MIFlags = 0;
547 // Copy the wrapping flags.
548 if (const OverflowingBinaryOperator *OB =
549 dyn_cast<OverflowingBinaryOperator>(&I)) {
550 if (OB->hasNoSignedWrap())
551 MIFlags |= MachineInstr::MIFlag::NoSWrap;
552 if (OB->hasNoUnsignedWrap())
553 MIFlags |= MachineInstr::MIFlag::NoUWrap;
556 // Copy the exact flag.
557 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
558 if (PE->isExact())
559 MIFlags |= MachineInstr::MIFlag::IsExact;
561 // Copy the fast-math flags.
562 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
563 const FastMathFlags Flags = FP->getFastMathFlags();
564 if (Flags.noNaNs())
565 MIFlags |= MachineInstr::MIFlag::FmNoNans;
566 if (Flags.noInfs())
567 MIFlags |= MachineInstr::MIFlag::FmNoInfs;
568 if (Flags.noSignedZeros())
569 MIFlags |= MachineInstr::MIFlag::FmNsz;
570 if (Flags.allowReciprocal())
571 MIFlags |= MachineInstr::MIFlag::FmArcp;
572 if (Flags.allowContract())
573 MIFlags |= MachineInstr::MIFlag::FmContract;
574 if (Flags.approxFunc())
575 MIFlags |= MachineInstr::MIFlag::FmAfn;
576 if (Flags.allowReassoc())
577 MIFlags |= MachineInstr::MIFlag::FmReassoc;
580 if (I.getMetadata(LLVMContext::MD_unpredictable))
581 MIFlags |= MachineInstr::MIFlag::Unpredictable;
583 return MIFlags;
586 void MachineInstr::copyIRFlags(const Instruction &I) {
587 Flags = copyFlagsFromInstruction(I);
590 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
591 assert(!isBundledWithPred() && "Must be called on bundle header");
592 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
593 if (MII->getDesc().getFlags() & Mask) {
594 if (Type == AnyInBundle)
595 return true;
596 } else {
597 if (Type == AllInBundle && !MII->isBundle())
598 return false;
600 // This was the last instruction in the bundle.
601 if (!MII->isBundledWithSucc())
602 return Type == AllInBundle;
606 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
607 MICheckType Check) const {
608 // If opcodes or number of operands are not the same then the two
609 // instructions are obviously not identical.
610 if (Other.getOpcode() != getOpcode() ||
611 Other.getNumOperands() != getNumOperands())
612 return false;
614 if (isBundle()) {
615 // We have passed the test above that both instructions have the same
616 // opcode, so we know that both instructions are bundles here. Let's compare
617 // MIs inside the bundle.
618 assert(Other.isBundle() && "Expected that both instructions are bundles.");
619 MachineBasicBlock::const_instr_iterator I1 = getIterator();
620 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
621 // Loop until we analysed the last intruction inside at least one of the
622 // bundles.
623 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
624 ++I1;
625 ++I2;
626 if (!I1->isIdenticalTo(*I2, Check))
627 return false;
629 // If we've reached the end of just one of the two bundles, but not both,
630 // the instructions are not identical.
631 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
632 return false;
635 // Check operands to make sure they match.
636 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
637 const MachineOperand &MO = getOperand(i);
638 const MachineOperand &OMO = Other.getOperand(i);
639 if (!MO.isReg()) {
640 if (!MO.isIdenticalTo(OMO))
641 return false;
642 continue;
645 // Clients may or may not want to ignore defs when testing for equality.
646 // For example, machine CSE pass only cares about finding common
647 // subexpressions, so it's safe to ignore virtual register defs.
648 if (MO.isDef()) {
649 if (Check == IgnoreDefs)
650 continue;
651 else if (Check == IgnoreVRegDefs) {
652 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
653 if (!MO.isIdenticalTo(OMO))
654 return false;
655 } else {
656 if (!MO.isIdenticalTo(OMO))
657 return false;
658 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
659 return false;
661 } else {
662 if (!MO.isIdenticalTo(OMO))
663 return false;
664 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
665 return false;
668 // If DebugLoc does not match then two debug instructions are not identical.
669 if (isDebugInstr())
670 if (getDebugLoc() && Other.getDebugLoc() &&
671 getDebugLoc() != Other.getDebugLoc())
672 return false;
673 // If pre- or post-instruction symbols do not match then the two instructions
674 // are not identical.
675 if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
676 getPostInstrSymbol() != Other.getPostInstrSymbol())
677 return false;
678 // Call instructions with different CFI types are not identical.
679 if (isCall() && getCFIType() != Other.getCFIType())
680 return false;
682 return true;
685 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
686 if (!isDebugValueLike() || !Other.isDebugValueLike())
687 return false;
688 if (getDebugLoc() != Other.getDebugLoc())
689 return false;
690 if (getDebugVariable() != Other.getDebugVariable())
691 return false;
692 if (getNumDebugOperands() != Other.getNumDebugOperands())
693 return false;
694 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
695 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
696 return false;
697 if (!DIExpression::isEqualExpression(
698 getDebugExpression(), isIndirectDebugValue(),
699 Other.getDebugExpression(), Other.isIndirectDebugValue()))
700 return false;
701 return true;
704 const MachineFunction *MachineInstr::getMF() const {
705 return getParent()->getParent();
708 MachineInstr *MachineInstr::removeFromParent() {
709 assert(getParent() && "Not embedded in a basic block!");
710 return getParent()->remove(this);
713 MachineInstr *MachineInstr::removeFromBundle() {
714 assert(getParent() && "Not embedded in a basic block!");
715 return getParent()->remove_instr(this);
718 void MachineInstr::eraseFromParent() {
719 assert(getParent() && "Not embedded in a basic block!");
720 getParent()->erase(this);
723 void MachineInstr::eraseFromBundle() {
724 assert(getParent() && "Not embedded in a basic block!");
725 getParent()->erase_instr(this);
728 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
729 if (!isCall(Type))
730 return false;
731 switch (getOpcode()) {
732 case TargetOpcode::PATCHPOINT:
733 case TargetOpcode::STACKMAP:
734 case TargetOpcode::STATEPOINT:
735 case TargetOpcode::FENTRY_CALL:
736 return false;
738 return true;
741 bool MachineInstr::shouldUpdateCallSiteInfo() const {
742 if (isBundle())
743 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
744 return isCandidateForCallSiteEntry();
747 unsigned MachineInstr::getNumExplicitOperands() const {
748 unsigned NumOperands = MCID->getNumOperands();
749 if (!MCID->isVariadic())
750 return NumOperands;
752 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
753 const MachineOperand &MO = getOperand(I);
754 // The operands must always be in the following order:
755 // - explicit reg defs,
756 // - other explicit operands (reg uses, immediates, etc.),
757 // - implicit reg defs
758 // - implicit reg uses
759 if (MO.isReg() && MO.isImplicit())
760 break;
761 ++NumOperands;
763 return NumOperands;
766 unsigned MachineInstr::getNumExplicitDefs() const {
767 unsigned NumDefs = MCID->getNumDefs();
768 if (!MCID->isVariadic())
769 return NumDefs;
771 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
772 const MachineOperand &MO = getOperand(I);
773 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
774 break;
775 ++NumDefs;
777 return NumDefs;
780 void MachineInstr::bundleWithPred() {
781 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
782 setFlag(BundledPred);
783 MachineBasicBlock::instr_iterator Pred = getIterator();
784 --Pred;
785 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
786 Pred->setFlag(BundledSucc);
789 void MachineInstr::bundleWithSucc() {
790 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
791 setFlag(BundledSucc);
792 MachineBasicBlock::instr_iterator Succ = getIterator();
793 ++Succ;
794 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
795 Succ->setFlag(BundledPred);
798 void MachineInstr::unbundleFromPred() {
799 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
800 clearFlag(BundledPred);
801 MachineBasicBlock::instr_iterator Pred = getIterator();
802 --Pred;
803 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
804 Pred->clearFlag(BundledSucc);
807 void MachineInstr::unbundleFromSucc() {
808 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
809 clearFlag(BundledSucc);
810 MachineBasicBlock::instr_iterator Succ = getIterator();
811 ++Succ;
812 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
813 Succ->clearFlag(BundledPred);
816 bool MachineInstr::isStackAligningInlineAsm() const {
817 if (isInlineAsm()) {
818 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
819 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
820 return true;
822 return false;
825 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
826 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
827 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
828 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
831 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
832 unsigned *GroupNo) const {
833 assert(isInlineAsm() && "Expected an inline asm instruction");
834 assert(OpIdx < getNumOperands() && "OpIdx out of range");
836 // Ignore queries about the initial operands.
837 if (OpIdx < InlineAsm::MIOp_FirstOperand)
838 return -1;
840 unsigned Group = 0;
841 unsigned NumOps;
842 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
843 i += NumOps) {
844 const MachineOperand &FlagMO = getOperand(i);
845 // If we reach the implicit register operands, stop looking.
846 if (!FlagMO.isImm())
847 return -1;
848 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
849 if (i + NumOps > OpIdx) {
850 if (GroupNo)
851 *GroupNo = Group;
852 return i;
854 ++Group;
856 return -1;
859 const DILabel *MachineInstr::getDebugLabel() const {
860 assert(isDebugLabel() && "not a DBG_LABEL");
861 return cast<DILabel>(getOperand(0).getMetadata());
864 const MachineOperand &MachineInstr::getDebugVariableOp() const {
865 assert((isDebugValueLike()) && "not a DBG_VALUE*");
866 unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
867 return getOperand(VariableOp);
870 MachineOperand &MachineInstr::getDebugVariableOp() {
871 assert((isDebugValueLike()) && "not a DBG_VALUE*");
872 unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
873 return getOperand(VariableOp);
876 const DILocalVariable *MachineInstr::getDebugVariable() const {
877 return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
880 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
881 assert((isDebugValueLike()) && "not a DBG_VALUE*");
882 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
883 return getOperand(ExpressionOp);
886 MachineOperand &MachineInstr::getDebugExpressionOp() {
887 assert((isDebugValueLike()) && "not a DBG_VALUE*");
888 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
889 return getOperand(ExpressionOp);
892 const DIExpression *MachineInstr::getDebugExpression() const {
893 return cast<DIExpression>(getDebugExpressionOp().getMetadata());
896 bool MachineInstr::isDebugEntryValue() const {
897 return isDebugValue() && getDebugExpression()->isEntryValue();
900 const TargetRegisterClass*
901 MachineInstr::getRegClassConstraint(unsigned OpIdx,
902 const TargetInstrInfo *TII,
903 const TargetRegisterInfo *TRI) const {
904 assert(getParent() && "Can't have an MBB reference here!");
905 assert(getMF() && "Can't have an MF reference here!");
906 const MachineFunction &MF = *getMF();
908 // Most opcodes have fixed constraints in their MCInstrDesc.
909 if (!isInlineAsm())
910 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
912 if (!getOperand(OpIdx).isReg())
913 return nullptr;
915 // For tied uses on inline asm, get the constraint from the def.
916 unsigned DefIdx;
917 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
918 OpIdx = DefIdx;
920 // Inline asm stores register class constraints in the flag word.
921 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
922 if (FlagIdx < 0)
923 return nullptr;
925 unsigned Flag = getOperand(FlagIdx).getImm();
926 unsigned RCID;
927 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
928 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
929 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
930 InlineAsm::hasRegClassConstraint(Flag, RCID))
931 return TRI->getRegClass(RCID);
933 // Assume that all registers in a memory operand are pointers.
934 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
935 return TRI->getPointerRegClass(MF);
937 return nullptr;
940 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
941 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
942 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
943 // Check every operands inside the bundle if we have
944 // been asked to.
945 if (ExploreBundle)
946 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
947 ++OpndIt)
948 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
949 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
950 else
951 // Otherwise, just check the current operands.
952 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
953 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
954 return CurRC;
957 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
958 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
959 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
960 assert(CurRC && "Invalid initial register class");
961 // Check if Reg is constrained by some of its use/def from MI.
962 const MachineOperand &MO = getOperand(OpIdx);
963 if (!MO.isReg() || MO.getReg() != Reg)
964 return CurRC;
965 // If yes, accumulate the constraints through the operand.
966 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
969 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
970 unsigned OpIdx, const TargetRegisterClass *CurRC,
971 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
972 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
973 const MachineOperand &MO = getOperand(OpIdx);
974 assert(MO.isReg() &&
975 "Cannot get register constraints for non-register operand");
976 assert(CurRC && "Invalid initial register class");
977 if (unsigned SubIdx = MO.getSubReg()) {
978 if (OpRC)
979 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
980 else
981 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
982 } else if (OpRC)
983 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
984 return CurRC;
987 /// Return the number of instructions inside the MI bundle, not counting the
988 /// header instruction.
989 unsigned MachineInstr::getBundleSize() const {
990 MachineBasicBlock::const_instr_iterator I = getIterator();
991 unsigned Size = 0;
992 while (I->isBundledWithSucc()) {
993 ++Size;
994 ++I;
996 return Size;
999 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1000 /// the given register (not considering sub/super-registers).
1001 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1002 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1003 const MachineOperand &MO = getOperand(i);
1004 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1005 return true;
1007 return false;
1010 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1011 /// the specific register or -1 if it is not found. It further tightens
1012 /// the search criteria to a use that kills the register if isKill is true.
1013 int MachineInstr::findRegisterUseOperandIdx(
1014 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1015 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1016 const MachineOperand &MO = getOperand(i);
1017 if (!MO.isReg() || !MO.isUse())
1018 continue;
1019 Register MOReg = MO.getReg();
1020 if (!MOReg)
1021 continue;
1022 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1023 if (!isKill || MO.isKill())
1024 return i;
1026 return -1;
1029 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1030 /// indicating if this instruction reads or writes Reg. This also considers
1031 /// partial defines.
1032 std::pair<bool,bool>
1033 MachineInstr::readsWritesVirtualRegister(Register Reg,
1034 SmallVectorImpl<unsigned> *Ops) const {
1035 bool PartDef = false; // Partial redefine.
1036 bool FullDef = false; // Full define.
1037 bool Use = false;
1039 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1040 const MachineOperand &MO = getOperand(i);
1041 if (!MO.isReg() || MO.getReg() != Reg)
1042 continue;
1043 if (Ops)
1044 Ops->push_back(i);
1045 if (MO.isUse())
1046 Use |= !MO.isUndef();
1047 else if (MO.getSubReg() && !MO.isUndef())
1048 // A partial def undef doesn't count as reading the register.
1049 PartDef = true;
1050 else
1051 FullDef = true;
1053 // A partial redefine uses Reg unless there is also a full define.
1054 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1057 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1058 /// the specified register or -1 if it is not found. If isDead is true, defs
1059 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1060 /// also checks if there is a def of a super-register.
1062 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1063 const TargetRegisterInfo *TRI) const {
1064 bool isPhys = Reg.isPhysical();
1065 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1066 const MachineOperand &MO = getOperand(i);
1067 // Accept regmask operands when Overlap is set.
1068 // Ignore them when looking for a specific def operand (Overlap == false).
1069 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1070 return i;
1071 if (!MO.isReg() || !MO.isDef())
1072 continue;
1073 Register MOReg = MO.getReg();
1074 bool Found = (MOReg == Reg);
1075 if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1076 if (Overlap)
1077 Found = TRI->regsOverlap(MOReg, Reg);
1078 else
1079 Found = TRI->isSubRegister(MOReg, Reg);
1081 if (Found && (!isDead || MO.isDead()))
1082 return i;
1084 return -1;
1087 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1088 /// operand list that is used to represent the predicate. It returns -1 if
1089 /// none is found.
1090 int MachineInstr::findFirstPredOperandIdx() const {
1091 // Don't call MCID.findFirstPredOperandIdx() because this variant
1092 // is sometimes called on an instruction that's not yet complete, and
1093 // so the number of operands is less than the MCID indicates. In
1094 // particular, the PTX target does this.
1095 const MCInstrDesc &MCID = getDesc();
1096 if (MCID.isPredicable()) {
1097 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098 if (MCID.operands()[i].isPredicate())
1099 return i;
1102 return -1;
1105 // MachineOperand::TiedTo is 4 bits wide.
1106 const unsigned TiedMax = 15;
1108 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1110 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1111 /// field. TiedTo can have these values:
1113 /// 0: Operand is not tied to anything.
1114 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1115 /// TiedMax: Tied to an operand >= TiedMax-1.
1117 /// The tied def must be one of the first TiedMax operands on a normal
1118 /// instruction. INLINEASM instructions allow more tied defs.
1120 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1121 MachineOperand &DefMO = getOperand(DefIdx);
1122 MachineOperand &UseMO = getOperand(UseIdx);
1123 assert(DefMO.isDef() && "DefIdx must be a def operand");
1124 assert(UseMO.isUse() && "UseIdx must be a use operand");
1125 assert(!DefMO.isTied() && "Def is already tied to another use");
1126 assert(!UseMO.isTied() && "Use is already tied to another def");
1128 if (DefIdx < TiedMax)
1129 UseMO.TiedTo = DefIdx + 1;
1130 else {
1131 // Inline asm can use the group descriptors to find tied operands,
1132 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1133 // but on normal instruction, the tied def must be within the first TiedMax
1134 // operands.
1135 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1136 "DefIdx out of range");
1137 UseMO.TiedTo = TiedMax;
1140 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1141 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1144 /// Given the index of a tied register operand, find the operand it is tied to.
1145 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1146 /// which must exist.
1147 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1148 const MachineOperand &MO = getOperand(OpIdx);
1149 assert(MO.isTied() && "Operand isn't tied");
1151 // Normally TiedTo is in range.
1152 if (MO.TiedTo < TiedMax)
1153 return MO.TiedTo - 1;
1155 // Uses on normal instructions can be out of range.
1156 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1157 // Normal tied defs must be in the 0..TiedMax-1 range.
1158 if (MO.isUse())
1159 return TiedMax - 1;
1160 // MO is a def. Search for the tied use.
1161 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1162 const MachineOperand &UseMO = getOperand(i);
1163 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1164 return i;
1166 llvm_unreachable("Can't find tied use");
1169 if (getOpcode() == TargetOpcode::STATEPOINT) {
1170 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1171 // on registers.
1172 StatepointOpers SO(this);
1173 unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1174 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1175 unsigned NumDefs = getNumDefs();
1176 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1177 while (!getOperand(CurUseIdx).isReg())
1178 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1179 if (OpIdx == CurDefIdx)
1180 return CurUseIdx;
1181 if (OpIdx == CurUseIdx)
1182 return CurDefIdx;
1183 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1185 llvm_unreachable("Can't find tied use");
1188 // Now deal with inline asm by parsing the operand group descriptor flags.
1189 // Find the beginning of each operand group.
1190 SmallVector<unsigned, 8> GroupIdx;
1191 unsigned OpIdxGroup = ~0u;
1192 unsigned NumOps;
1193 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1194 i += NumOps) {
1195 const MachineOperand &FlagMO = getOperand(i);
1196 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1197 unsigned CurGroup = GroupIdx.size();
1198 GroupIdx.push_back(i);
1199 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1200 // OpIdx belongs to this operand group.
1201 if (OpIdx > i && OpIdx < i + NumOps)
1202 OpIdxGroup = CurGroup;
1203 unsigned TiedGroup;
1204 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1205 continue;
1206 // Operands in this group are tied to operands in TiedGroup which must be
1207 // earlier. Find the number of operands between the two groups.
1208 unsigned Delta = i - GroupIdx[TiedGroup];
1210 // OpIdx is a use tied to TiedGroup.
1211 if (OpIdxGroup == CurGroup)
1212 return OpIdx - Delta;
1214 // OpIdx is a def tied to this use group.
1215 if (OpIdxGroup == TiedGroup)
1216 return OpIdx + Delta;
1218 llvm_unreachable("Invalid tied operand on inline asm");
1221 /// clearKillInfo - Clears kill flags on all operands.
1223 void MachineInstr::clearKillInfo() {
1224 for (MachineOperand &MO : operands()) {
1225 if (MO.isReg() && MO.isUse())
1226 MO.setIsKill(false);
1230 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1231 unsigned SubIdx,
1232 const TargetRegisterInfo &RegInfo) {
1233 if (ToReg.isPhysical()) {
1234 if (SubIdx)
1235 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1236 for (MachineOperand &MO : operands()) {
1237 if (!MO.isReg() || MO.getReg() != FromReg)
1238 continue;
1239 MO.substPhysReg(ToReg, RegInfo);
1241 } else {
1242 for (MachineOperand &MO : operands()) {
1243 if (!MO.isReg() || MO.getReg() != FromReg)
1244 continue;
1245 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1250 /// isSafeToMove - Return true if it is safe to move this instruction. If
1251 /// SawStore is set to true, it means that there is a store (or call) between
1252 /// the instruction's location and its intended destination.
1253 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1254 // Ignore stuff that we obviously can't move.
1256 // Treat volatile loads as stores. This is not strictly necessary for
1257 // volatiles, but it is required for atomic loads. It is not allowed to move
1258 // a load across an atomic load with Ordering > Monotonic.
1259 if (mayStore() || isCall() || isPHI() ||
1260 (mayLoad() && hasOrderedMemoryRef())) {
1261 SawStore = true;
1262 return false;
1265 if (isPosition() || isDebugInstr() || isTerminator() ||
1266 mayRaiseFPException() || hasUnmodeledSideEffects())
1267 return false;
1269 // See if this instruction does a load. If so, we have to guarantee that the
1270 // loaded value doesn't change between the load and the its intended
1271 // destination. The check for isInvariantLoad gives the target the chance to
1272 // classify the load as always returning a constant, e.g. a constant pool
1273 // load.
1274 if (mayLoad() && !isDereferenceableInvariantLoad())
1275 // Otherwise, this is a real load. If there is a store between the load and
1276 // end of block, we can't move it.
1277 return !SawStore;
1279 return true;
1282 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1283 bool UseTBAA, const MachineMemOperand *MMOa,
1284 const MachineMemOperand *MMOb) {
1285 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1286 // operates with MachineMemOperand offset with some important assumptions:
1287 // - LLVM fundamentally assumes flat address spaces.
1288 // - MachineOperand offset can *only* result from legalization and cannot
1289 // affect queries other than the trivial case of overlap checking.
1290 // - These offsets never wrap and never step outside of allocated objects.
1291 // - There should never be any negative offsets here.
1293 // FIXME: Modify API to hide this math from "user"
1294 // Even before we go to AA we can reason locally about some memory objects. It
1295 // can save compile time, and possibly catch some corner cases not currently
1296 // covered.
1298 int64_t OffsetA = MMOa->getOffset();
1299 int64_t OffsetB = MMOb->getOffset();
1300 int64_t MinOffset = std::min(OffsetA, OffsetB);
1302 uint64_t WidthA = MMOa->getSize();
1303 uint64_t WidthB = MMOb->getSize();
1304 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1305 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1307 const Value *ValA = MMOa->getValue();
1308 const Value *ValB = MMOb->getValue();
1309 bool SameVal = (ValA && ValB && (ValA == ValB));
1310 if (!SameVal) {
1311 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1312 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1313 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1314 return false;
1315 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1316 return false;
1317 if (PSVa && PSVb && (PSVa == PSVb))
1318 SameVal = true;
1321 if (SameVal) {
1322 if (!KnownWidthA || !KnownWidthB)
1323 return true;
1324 int64_t MaxOffset = std::max(OffsetA, OffsetB);
1325 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1326 return (MinOffset + LowWidth > MaxOffset);
1329 if (!AA)
1330 return true;
1332 if (!ValA || !ValB)
1333 return true;
1335 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1336 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1338 int64_t OverlapA =
1339 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1340 int64_t OverlapB =
1341 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1343 return !AA->isNoAlias(
1344 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1345 MemoryLocation(ValB, OverlapB,
1346 UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1349 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1350 bool UseTBAA) const {
1351 const MachineFunction *MF = getMF();
1352 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1353 const MachineFrameInfo &MFI = MF->getFrameInfo();
1355 // Exclude call instruction which may alter the memory but can not be handled
1356 // by this function.
1357 if (isCall() || Other.isCall())
1358 return true;
1360 // If neither instruction stores to memory, they can't alias in any
1361 // meaningful way, even if they read from the same address.
1362 if (!mayStore() && !Other.mayStore())
1363 return false;
1365 // Both instructions must be memory operations to be able to alias.
1366 if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1367 return false;
1369 // Let the target decide if memory accesses cannot possibly overlap.
1370 if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1371 return false;
1373 // Memory operations without memory operands may access anything. Be
1374 // conservative and assume `MayAlias`.
1375 if (memoperands_empty() || Other.memoperands_empty())
1376 return true;
1378 // Skip if there are too many memory operands.
1379 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1380 if (NumChecks > TII->getMemOperandAACheckLimit())
1381 return true;
1383 // Check each pair of memory operands from both instructions, which can't
1384 // alias only if all pairs won't alias.
1385 for (auto *MMOa : memoperands())
1386 for (auto *MMOb : Other.memoperands())
1387 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1388 return true;
1390 return false;
1393 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1394 /// or volatile memory reference, or if the information describing the memory
1395 /// reference is not available. Return false if it is known to have no ordered
1396 /// memory references.
1397 bool MachineInstr::hasOrderedMemoryRef() const {
1398 // An instruction known never to access memory won't have a volatile access.
1399 if (!mayStore() &&
1400 !mayLoad() &&
1401 !isCall() &&
1402 !hasUnmodeledSideEffects())
1403 return false;
1405 // Otherwise, if the instruction has no memory reference information,
1406 // conservatively assume it wasn't preserved.
1407 if (memoperands_empty())
1408 return true;
1410 // Check if any of our memory operands are ordered.
1411 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1412 return !MMO->isUnordered();
1416 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1417 /// trap and is loading from a location whose value is invariant across a run of
1418 /// this function.
1419 bool MachineInstr::isDereferenceableInvariantLoad() const {
1420 // If the instruction doesn't load at all, it isn't an invariant load.
1421 if (!mayLoad())
1422 return false;
1424 // If the instruction has lost its memoperands, conservatively assume that
1425 // it may not be an invariant load.
1426 if (memoperands_empty())
1427 return false;
1429 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1431 for (MachineMemOperand *MMO : memoperands()) {
1432 if (!MMO->isUnordered())
1433 // If the memory operand has ordering side effects, we can't move the
1434 // instruction. Such an instruction is technically an invariant load,
1435 // but the caller code would need updated to expect that.
1436 return false;
1437 if (MMO->isStore()) return false;
1438 if (MMO->isInvariant() && MMO->isDereferenceable())
1439 continue;
1441 // A load from a constant PseudoSourceValue is invariant.
1442 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1443 if (PSV->isConstant(&MFI))
1444 continue;
1447 // Otherwise assume conservatively.
1448 return false;
1451 // Everything checks out.
1452 return true;
1455 /// isConstantValuePHI - If the specified instruction is a PHI that always
1456 /// merges together the same virtual register, return the register, otherwise
1457 /// return 0.
1458 unsigned MachineInstr::isConstantValuePHI() const {
1459 if (!isPHI())
1460 return 0;
1461 assert(getNumOperands() >= 3 &&
1462 "It's illegal to have a PHI without source operands");
1464 Register Reg = getOperand(1).getReg();
1465 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1466 if (getOperand(i).getReg() != Reg)
1467 return 0;
1468 return Reg;
1471 bool MachineInstr::hasUnmodeledSideEffects() const {
1472 if (hasProperty(MCID::UnmodeledSideEffects))
1473 return true;
1474 if (isInlineAsm()) {
1475 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1476 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1477 return true;
1480 return false;
1483 bool MachineInstr::isLoadFoldBarrier() const {
1484 return mayStore() || isCall() ||
1485 (hasUnmodeledSideEffects() && !isPseudoProbe());
1488 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1490 bool MachineInstr::allDefsAreDead() const {
1491 for (const MachineOperand &MO : operands()) {
1492 if (!MO.isReg() || MO.isUse())
1493 continue;
1494 if (!MO.isDead())
1495 return false;
1497 return true;
1500 /// copyImplicitOps - Copy implicit register operands from specified
1501 /// instruction to this instruction.
1502 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1503 const MachineInstr &MI) {
1504 for (const MachineOperand &MO :
1505 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1506 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1507 addOperand(MF, MO);
1510 bool MachineInstr::hasComplexRegisterTies() const {
1511 const MCInstrDesc &MCID = getDesc();
1512 if (MCID.Opcode == TargetOpcode::STATEPOINT)
1513 return true;
1514 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1515 const auto &Operand = getOperand(I);
1516 if (!Operand.isReg() || Operand.isDef())
1517 // Ignore the defined registers as MCID marks only the uses as tied.
1518 continue;
1519 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1520 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1521 if (ExpectedTiedIdx != TiedIdx)
1522 return true;
1524 return false;
1527 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1528 const MachineRegisterInfo &MRI) const {
1529 const MachineOperand &Op = getOperand(OpIdx);
1530 if (!Op.isReg())
1531 return LLT{};
1533 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1534 return MRI.getType(Op.getReg());
1536 auto &OpInfo = getDesc().operands()[OpIdx];
1537 if (!OpInfo.isGenericType())
1538 return MRI.getType(Op.getReg());
1540 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1541 return LLT{};
1543 LLT TypeToPrint = MRI.getType(Op.getReg());
1544 // Don't mark the type index printed if it wasn't actually printed: maybe
1545 // another operand with the same type index has an actual type attached:
1546 if (TypeToPrint.isValid())
1547 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1548 return TypeToPrint;
1551 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1552 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1553 dbgs() << " ";
1554 print(dbgs());
1557 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1558 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1559 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1560 if (Depth >= MaxDepth)
1561 return;
1562 if (!AlreadySeenInstrs.insert(this).second)
1563 return;
1564 // PadToColumn always inserts at least one space.
1565 // Don't mess up the alignment if we don't want any space.
1566 if (Depth)
1567 fdbgs().PadToColumn(Depth * 2);
1568 print(fdbgs());
1569 for (const MachineOperand &MO : operands()) {
1570 if (!MO.isReg() || MO.isDef())
1571 continue;
1572 Register Reg = MO.getReg();
1573 if (Reg.isPhysical())
1574 continue;
1575 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1576 if (NewMI == nullptr)
1577 continue;
1578 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1582 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1583 unsigned MaxDepth) const {
1584 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1585 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1587 #endif
1589 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1590 bool SkipDebugLoc, bool AddNewLine,
1591 const TargetInstrInfo *TII) const {
1592 const Module *M = nullptr;
1593 const Function *F = nullptr;
1594 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1595 F = &MF->getFunction();
1596 M = F->getParent();
1597 if (!TII)
1598 TII = MF->getSubtarget().getInstrInfo();
1601 ModuleSlotTracker MST(M);
1602 if (F)
1603 MST.incorporateFunction(*F);
1604 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1607 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1608 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1609 bool AddNewLine, const TargetInstrInfo *TII) const {
1610 // We can be a bit tidier if we know the MachineFunction.
1611 const TargetRegisterInfo *TRI = nullptr;
1612 const MachineRegisterInfo *MRI = nullptr;
1613 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1614 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1616 if (isCFIInstruction())
1617 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1619 SmallBitVector PrintedTypes(8);
1620 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1621 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1622 if (!ShouldPrintRegisterTies)
1623 return 0U;
1624 const MachineOperand &MO = getOperand(OpIdx);
1625 if (MO.isReg() && MO.isTied() && !MO.isDef())
1626 return findTiedOperandIdx(OpIdx);
1627 return 0U;
1629 unsigned StartOp = 0;
1630 unsigned e = getNumOperands();
1632 // Print explicitly defined operands on the left of an assignment syntax.
1633 while (StartOp < e) {
1634 const MachineOperand &MO = getOperand(StartOp);
1635 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1636 break;
1638 if (StartOp != 0)
1639 OS << ", ";
1641 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1642 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1643 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1644 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1645 ++StartOp;
1648 if (StartOp != 0)
1649 OS << " = ";
1651 if (getFlag(MachineInstr::FrameSetup))
1652 OS << "frame-setup ";
1653 if (getFlag(MachineInstr::FrameDestroy))
1654 OS << "frame-destroy ";
1655 if (getFlag(MachineInstr::FmNoNans))
1656 OS << "nnan ";
1657 if (getFlag(MachineInstr::FmNoInfs))
1658 OS << "ninf ";
1659 if (getFlag(MachineInstr::FmNsz))
1660 OS << "nsz ";
1661 if (getFlag(MachineInstr::FmArcp))
1662 OS << "arcp ";
1663 if (getFlag(MachineInstr::FmContract))
1664 OS << "contract ";
1665 if (getFlag(MachineInstr::FmAfn))
1666 OS << "afn ";
1667 if (getFlag(MachineInstr::FmReassoc))
1668 OS << "reassoc ";
1669 if (getFlag(MachineInstr::NoUWrap))
1670 OS << "nuw ";
1671 if (getFlag(MachineInstr::NoSWrap))
1672 OS << "nsw ";
1673 if (getFlag(MachineInstr::IsExact))
1674 OS << "exact ";
1675 if (getFlag(MachineInstr::NoFPExcept))
1676 OS << "nofpexcept ";
1677 if (getFlag(MachineInstr::NoMerge))
1678 OS << "nomerge ";
1680 // Print the opcode name.
1681 if (TII)
1682 OS << TII->getName(getOpcode());
1683 else
1684 OS << "UNKNOWN";
1686 if (SkipOpers)
1687 return;
1689 // Print the rest of the operands.
1690 bool FirstOp = true;
1691 unsigned AsmDescOp = ~0u;
1692 unsigned AsmOpCount = 0;
1694 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1695 // Print asm string.
1696 OS << " ";
1697 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1698 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1699 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1700 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1701 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1702 IntrinsicInfo);
1704 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1705 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1706 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1707 OS << " [sideeffect]";
1708 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1709 OS << " [mayload]";
1710 if (ExtraInfo & InlineAsm::Extra_MayStore)
1711 OS << " [maystore]";
1712 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1713 OS << " [isconvergent]";
1714 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1715 OS << " [alignstack]";
1716 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1717 OS << " [attdialect]";
1718 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1719 OS << " [inteldialect]";
1721 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1722 FirstOp = false;
1725 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1726 const MachineOperand &MO = getOperand(i);
1728 if (FirstOp) FirstOp = false; else OS << ",";
1729 OS << " ";
1731 if (isDebugValueLike() && MO.isMetadata()) {
1732 // Pretty print DBG_VALUE* instructions.
1733 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1734 if (DIV && !DIV->getName().empty())
1735 OS << "!\"" << DIV->getName() << '\"';
1736 else {
1737 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1738 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1739 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1740 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1742 } else if (isDebugLabel() && MO.isMetadata()) {
1743 // Pretty print DBG_LABEL instructions.
1744 auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1745 if (DIL && !DIL->getName().empty())
1746 OS << "\"" << DIL->getName() << '\"';
1747 else {
1748 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1749 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1750 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1751 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1753 } else if (i == AsmDescOp && MO.isImm()) {
1754 // Pretty print the inline asm operand descriptor.
1755 OS << '$' << AsmOpCount++;
1756 unsigned Flag = MO.getImm();
1757 OS << ":[";
1758 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1760 unsigned RCID = 0;
1761 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1762 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1763 if (TRI) {
1764 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1765 } else
1766 OS << ":RC" << RCID;
1769 if (InlineAsm::isMemKind(Flag)) {
1770 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1771 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1774 unsigned TiedTo = 0;
1775 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1776 OS << " tiedto:$" << TiedTo;
1778 OS << ']';
1780 // Compute the index of the next operand descriptor.
1781 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1782 } else {
1783 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1784 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1785 if (MO.isImm() && isOperandSubregIdx(i))
1786 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1787 else
1788 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1789 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1793 // Print any optional symbols attached to this instruction as-if they were
1794 // operands.
1795 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1796 if (!FirstOp) {
1797 FirstOp = false;
1798 OS << ',';
1800 OS << " pre-instr-symbol ";
1801 MachineOperand::printSymbol(OS, *PreInstrSymbol);
1803 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1804 if (!FirstOp) {
1805 FirstOp = false;
1806 OS << ',';
1808 OS << " post-instr-symbol ";
1809 MachineOperand::printSymbol(OS, *PostInstrSymbol);
1811 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1812 if (!FirstOp) {
1813 FirstOp = false;
1814 OS << ',';
1816 OS << " heap-alloc-marker ";
1817 HeapAllocMarker->printAsOperand(OS, MST);
1819 if (MDNode *PCSections = getPCSections()) {
1820 if (!FirstOp) {
1821 FirstOp = false;
1822 OS << ',';
1824 OS << " pcsections ";
1825 PCSections->printAsOperand(OS, MST);
1827 if (uint32_t CFIType = getCFIType()) {
1828 if (!FirstOp)
1829 OS << ',';
1830 OS << " cfi-type " << CFIType;
1833 if (DebugInstrNum) {
1834 if (!FirstOp)
1835 OS << ",";
1836 OS << " debug-instr-number " << DebugInstrNum;
1839 if (!SkipDebugLoc) {
1840 if (const DebugLoc &DL = getDebugLoc()) {
1841 if (!FirstOp)
1842 OS << ',';
1843 OS << " debug-location ";
1844 DL->printAsOperand(OS, MST);
1848 if (!memoperands_empty()) {
1849 SmallVector<StringRef, 0> SSNs;
1850 const LLVMContext *Context = nullptr;
1851 std::unique_ptr<LLVMContext> CtxPtr;
1852 const MachineFrameInfo *MFI = nullptr;
1853 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1854 MFI = &MF->getFrameInfo();
1855 Context = &MF->getFunction().getContext();
1856 } else {
1857 CtxPtr = std::make_unique<LLVMContext>();
1858 Context = CtxPtr.get();
1861 OS << " :: ";
1862 bool NeedComma = false;
1863 for (const MachineMemOperand *Op : memoperands()) {
1864 if (NeedComma)
1865 OS << ", ";
1866 Op->print(OS, MST, SSNs, *Context, MFI, TII);
1867 NeedComma = true;
1871 if (SkipDebugLoc)
1872 return;
1874 bool HaveSemi = false;
1876 // Print debug location information.
1877 if (const DebugLoc &DL = getDebugLoc()) {
1878 if (!HaveSemi) {
1879 OS << ';';
1880 HaveSemi = true;
1882 OS << ' ';
1883 DL.print(OS);
1886 // Print extra comments for DEBUG_VALUE.
1887 if (isDebugValueLike() && getDebugVariableOp().isMetadata()) {
1888 if (!HaveSemi) {
1889 OS << ";";
1890 HaveSemi = true;
1892 auto *DV = getDebugVariable();
1893 OS << " line no:" << DV->getLine();
1894 if (isIndirectDebugValue())
1895 OS << " indirect";
1897 // TODO: DBG_LABEL
1899 if (AddNewLine)
1900 OS << '\n';
1903 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1904 const TargetRegisterInfo *RegInfo,
1905 bool AddIfNotFound) {
1906 bool isPhysReg = IncomingReg.isPhysical();
1907 bool hasAliases = isPhysReg &&
1908 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1909 bool Found = false;
1910 SmallVector<unsigned,4> DeadOps;
1911 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1912 MachineOperand &MO = getOperand(i);
1913 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1914 continue;
1916 // DEBUG_VALUE nodes do not contribute to code generation and should
1917 // always be ignored. Failure to do so may result in trying to modify
1918 // KILL flags on DEBUG_VALUE nodes.
1919 if (MO.isDebug())
1920 continue;
1922 Register Reg = MO.getReg();
1923 if (!Reg)
1924 continue;
1926 if (Reg == IncomingReg) {
1927 if (!Found) {
1928 if (MO.isKill())
1929 // The register is already marked kill.
1930 return true;
1931 if (isPhysReg && isRegTiedToDefOperand(i))
1932 // Two-address uses of physregs must not be marked kill.
1933 return true;
1934 MO.setIsKill();
1935 Found = true;
1937 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
1938 // A super-register kill already exists.
1939 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1940 return true;
1941 if (RegInfo->isSubRegister(IncomingReg, Reg))
1942 DeadOps.push_back(i);
1946 // Trim unneeded kill operands.
1947 while (!DeadOps.empty()) {
1948 unsigned OpIdx = DeadOps.back();
1949 if (getOperand(OpIdx).isImplicit() &&
1950 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1951 removeOperand(OpIdx);
1952 else
1953 getOperand(OpIdx).setIsKill(false);
1954 DeadOps.pop_back();
1957 // If not found, this means an alias of one of the operands is killed. Add a
1958 // new implicit operand if required.
1959 if (!Found && AddIfNotFound) {
1960 addOperand(MachineOperand::CreateReg(IncomingReg,
1961 false /*IsDef*/,
1962 true /*IsImp*/,
1963 true /*IsKill*/));
1964 return true;
1966 return Found;
1969 void MachineInstr::clearRegisterKills(Register Reg,
1970 const TargetRegisterInfo *RegInfo) {
1971 if (!Reg.isPhysical())
1972 RegInfo = nullptr;
1973 for (MachineOperand &MO : operands()) {
1974 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1975 continue;
1976 Register OpReg = MO.getReg();
1977 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1978 MO.setIsKill(false);
1982 bool MachineInstr::addRegisterDead(Register Reg,
1983 const TargetRegisterInfo *RegInfo,
1984 bool AddIfNotFound) {
1985 bool isPhysReg = Reg.isPhysical();
1986 bool hasAliases = isPhysReg &&
1987 MCRegAliasIterator(Reg, RegInfo, false).isValid();
1988 bool Found = false;
1989 SmallVector<unsigned,4> DeadOps;
1990 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1991 MachineOperand &MO = getOperand(i);
1992 if (!MO.isReg() || !MO.isDef())
1993 continue;
1994 Register MOReg = MO.getReg();
1995 if (!MOReg)
1996 continue;
1998 if (MOReg == Reg) {
1999 MO.setIsDead();
2000 Found = true;
2001 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2002 // There exists a super-register that's marked dead.
2003 if (RegInfo->isSuperRegister(Reg, MOReg))
2004 return true;
2005 if (RegInfo->isSubRegister(Reg, MOReg))
2006 DeadOps.push_back(i);
2010 // Trim unneeded dead operands.
2011 while (!DeadOps.empty()) {
2012 unsigned OpIdx = DeadOps.back();
2013 if (getOperand(OpIdx).isImplicit() &&
2014 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2015 removeOperand(OpIdx);
2016 else
2017 getOperand(OpIdx).setIsDead(false);
2018 DeadOps.pop_back();
2021 // If not found, this means an alias of one of the operands is dead. Add a
2022 // new implicit operand if required.
2023 if (Found || !AddIfNotFound)
2024 return Found;
2026 addOperand(MachineOperand::CreateReg(Reg,
2027 true /*IsDef*/,
2028 true /*IsImp*/,
2029 false /*IsKill*/,
2030 true /*IsDead*/));
2031 return true;
2034 void MachineInstr::clearRegisterDeads(Register Reg) {
2035 for (MachineOperand &MO : operands()) {
2036 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2037 continue;
2038 MO.setIsDead(false);
2042 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2043 for (MachineOperand &MO : operands()) {
2044 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2045 continue;
2046 MO.setIsUndef(IsUndef);
2050 void MachineInstr::addRegisterDefined(Register Reg,
2051 const TargetRegisterInfo *RegInfo) {
2052 if (Reg.isPhysical()) {
2053 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2054 if (MO)
2055 return;
2056 } else {
2057 for (const MachineOperand &MO : operands()) {
2058 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2059 MO.getSubReg() == 0)
2060 return;
2063 addOperand(MachineOperand::CreateReg(Reg,
2064 true /*IsDef*/,
2065 true /*IsImp*/));
2068 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2069 const TargetRegisterInfo &TRI) {
2070 bool HasRegMask = false;
2071 for (MachineOperand &MO : operands()) {
2072 if (MO.isRegMask()) {
2073 HasRegMask = true;
2074 continue;
2076 if (!MO.isReg() || !MO.isDef()) continue;
2077 Register Reg = MO.getReg();
2078 if (!Reg.isPhysical())
2079 continue;
2080 // If there are no uses, including partial uses, the def is dead.
2081 if (llvm::none_of(UsedRegs,
2082 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2083 MO.setIsDead();
2086 // This is a call with a register mask operand.
2087 // Mask clobbers are always dead, so add defs for the non-dead defines.
2088 if (HasRegMask)
2089 for (const Register &UsedReg : UsedRegs)
2090 addRegisterDefined(UsedReg, &TRI);
2093 unsigned
2094 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2095 // Build up a buffer of hash code components.
2096 SmallVector<size_t, 16> HashComponents;
2097 HashComponents.reserve(MI->getNumOperands() + 1);
2098 HashComponents.push_back(MI->getOpcode());
2099 for (const MachineOperand &MO : MI->operands()) {
2100 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2101 continue; // Skip virtual register defs.
2103 HashComponents.push_back(hash_value(MO));
2105 return hash_combine_range(HashComponents.begin(), HashComponents.end());
2108 void MachineInstr::emitError(StringRef Msg) const {
2109 // Find the source location cookie.
2110 uint64_t LocCookie = 0;
2111 const MDNode *LocMD = nullptr;
2112 for (unsigned i = getNumOperands(); i != 0; --i) {
2113 if (getOperand(i-1).isMetadata() &&
2114 (LocMD = getOperand(i-1).getMetadata()) &&
2115 LocMD->getNumOperands() != 0) {
2116 if (const ConstantInt *CI =
2117 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2118 LocCookie = CI->getZExtValue();
2119 break;
2124 if (const MachineBasicBlock *MBB = getParent())
2125 if (const MachineFunction *MF = MBB->getParent())
2126 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2127 report_fatal_error(Msg);
2130 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2131 const MCInstrDesc &MCID, bool IsIndirect,
2132 Register Reg, const MDNode *Variable,
2133 const MDNode *Expr) {
2134 assert(isa<DILocalVariable>(Variable) && "not a variable");
2135 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2136 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2137 "Expected inlined-at fields to agree");
2138 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2139 if (IsIndirect)
2140 MIB.addImm(0U);
2141 else
2142 MIB.addReg(0U);
2143 return MIB.addMetadata(Variable).addMetadata(Expr);
2146 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2147 const MCInstrDesc &MCID, bool IsIndirect,
2148 ArrayRef<MachineOperand> DebugOps,
2149 const MDNode *Variable, const MDNode *Expr) {
2150 assert(isa<DILocalVariable>(Variable) && "not a variable");
2151 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2152 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2153 "Expected inlined-at fields to agree");
2154 if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2155 assert(DebugOps.size() == 1 &&
2156 "DBG_VALUE must contain exactly one debug operand");
2157 MachineOperand DebugOp = DebugOps[0];
2158 if (DebugOp.isReg())
2159 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2160 Expr);
2162 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2163 if (IsIndirect)
2164 MIB.addImm(0U);
2165 else
2166 MIB.addReg(0U);
2167 return MIB.addMetadata(Variable).addMetadata(Expr);
2170 auto MIB = BuildMI(MF, DL, MCID);
2171 MIB.addMetadata(Variable).addMetadata(Expr);
2172 for (const MachineOperand &DebugOp : DebugOps)
2173 if (DebugOp.isReg())
2174 MIB.addReg(DebugOp.getReg());
2175 else
2176 MIB.add(DebugOp);
2177 return MIB;
2180 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2181 MachineBasicBlock::iterator I,
2182 const DebugLoc &DL, const MCInstrDesc &MCID,
2183 bool IsIndirect, Register Reg,
2184 const MDNode *Variable, const MDNode *Expr) {
2185 MachineFunction &MF = *BB.getParent();
2186 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2187 BB.insert(I, MI);
2188 return MachineInstrBuilder(MF, MI);
2191 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2192 MachineBasicBlock::iterator I,
2193 const DebugLoc &DL, const MCInstrDesc &MCID,
2194 bool IsIndirect,
2195 ArrayRef<MachineOperand> DebugOps,
2196 const MDNode *Variable, const MDNode *Expr) {
2197 MachineFunction &MF = *BB.getParent();
2198 MachineInstr *MI =
2199 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2200 BB.insert(I, MI);
2201 return MachineInstrBuilder(MF, *MI);
2204 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2205 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2206 static const DIExpression *
2207 computeExprForSpill(const MachineInstr &MI,
2208 SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2209 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2210 "Expected inlined-at fields to agree");
2212 const DIExpression *Expr = MI.getDebugExpression();
2213 if (MI.isIndirectDebugValue()) {
2214 assert(MI.getDebugOffset().getImm() == 0 &&
2215 "DBG_VALUE with nonzero offset");
2216 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2217 } else if (MI.isDebugValueList()) {
2218 // We will replace the spilled register with a frame index, so
2219 // immediately deref all references to the spilled register.
2220 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2221 for (const MachineOperand *Op : SpilledOperands) {
2222 unsigned OpIdx = MI.getDebugOperandIndex(Op);
2223 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2226 return Expr;
2228 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2229 Register SpillReg) {
2230 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2231 SmallVector<const MachineOperand *> SpillOperands;
2232 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2233 SpillOperands.push_back(&Op);
2234 return computeExprForSpill(MI, SpillOperands);
2237 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2238 MachineBasicBlock::iterator I,
2239 const MachineInstr &Orig,
2240 int FrameIndex, Register SpillReg) {
2241 assert(!Orig.isDebugRef() &&
2242 "DBG_INSTR_REF should not reference a virtual register.");
2243 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2244 MachineInstrBuilder NewMI =
2245 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2246 // Non-Variadic Operands: Location, Offset, Variable, Expression
2247 // Variadic Operands: Variable, Expression, Locations...
2248 if (Orig.isNonListDebugValue())
2249 NewMI.addFrameIndex(FrameIndex).addImm(0U);
2250 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2251 if (Orig.isDebugValueList()) {
2252 for (const MachineOperand &Op : Orig.debug_operands())
2253 if (Op.isReg() && Op.getReg() == SpillReg)
2254 NewMI.addFrameIndex(FrameIndex);
2255 else
2256 NewMI.add(MachineOperand(Op));
2258 return NewMI;
2260 MachineInstr *llvm::buildDbgValueForSpill(
2261 MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2262 const MachineInstr &Orig, int FrameIndex,
2263 SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2264 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2265 MachineInstrBuilder NewMI =
2266 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2267 // Non-Variadic Operands: Location, Offset, Variable, Expression
2268 // Variadic Operands: Variable, Expression, Locations...
2269 if (Orig.isNonListDebugValue())
2270 NewMI.addFrameIndex(FrameIndex).addImm(0U);
2271 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2272 if (Orig.isDebugValueList()) {
2273 for (const MachineOperand &Op : Orig.debug_operands())
2274 if (is_contained(SpilledOperands, &Op))
2275 NewMI.addFrameIndex(FrameIndex);
2276 else
2277 NewMI.add(MachineOperand(Op));
2279 return NewMI;
2282 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2283 Register Reg) {
2284 const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2285 if (Orig.isNonListDebugValue())
2286 Orig.getDebugOffset().ChangeToImmediate(0U);
2287 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2288 Op.ChangeToFrameIndex(FrameIndex);
2289 Orig.getDebugExpressionOp().setMetadata(Expr);
2292 void MachineInstr::collectDebugValues(
2293 SmallVectorImpl<MachineInstr *> &DbgValues) {
2294 MachineInstr &MI = *this;
2295 if (!MI.getOperand(0).isReg())
2296 return;
2298 MachineBasicBlock::iterator DI = MI; ++DI;
2299 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2300 DI != DE; ++DI) {
2301 if (!DI->isDebugValue())
2302 return;
2303 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2304 DbgValues.push_back(&*DI);
2308 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2309 // Collect matching debug values.
2310 SmallVector<MachineInstr *, 2> DbgValues;
2312 if (!getOperand(0).isReg())
2313 return;
2315 Register DefReg = getOperand(0).getReg();
2316 auto *MRI = getRegInfo();
2317 for (auto &MO : MRI->use_operands(DefReg)) {
2318 auto *DI = MO.getParent();
2319 if (!DI->isDebugValue())
2320 continue;
2321 if (DI->hasDebugOperandForReg(DefReg)) {
2322 DbgValues.push_back(DI);
2326 // Propagate Reg to debug value instructions.
2327 for (auto *DBI : DbgValues)
2328 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2329 Op.setReg(Reg);
2332 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2334 static unsigned getSpillSlotSize(const MMOList &Accesses,
2335 const MachineFrameInfo &MFI) {
2336 unsigned Size = 0;
2337 for (const auto *A : Accesses)
2338 if (MFI.isSpillSlotObjectIndex(
2339 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2340 ->getFrameIndex()))
2341 Size += A->getSize();
2342 return Size;
2345 std::optional<unsigned>
2346 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2347 int FI;
2348 if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2349 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2350 if (MFI.isSpillSlotObjectIndex(FI))
2351 return (*memoperands_begin())->getSize();
2353 return std::nullopt;
2356 std::optional<unsigned>
2357 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2358 MMOList Accesses;
2359 if (TII->hasStoreToStackSlot(*this, Accesses))
2360 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2361 return std::nullopt;
2364 std::optional<unsigned>
2365 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2366 int FI;
2367 if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2368 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2369 if (MFI.isSpillSlotObjectIndex(FI))
2370 return (*memoperands_begin())->getSize();
2372 return std::nullopt;
2375 std::optional<unsigned>
2376 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2377 MMOList Accesses;
2378 if (TII->hasLoadFromStackSlot(*this, Accesses))
2379 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2380 return std::nullopt;
2383 unsigned MachineInstr::getDebugInstrNum() {
2384 if (DebugInstrNum == 0)
2385 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2386 return DebugInstrNum;
2389 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2390 if (DebugInstrNum == 0)
2391 DebugInstrNum = MF.getNewDebugInstrNum();
2392 return DebugInstrNum;
2395 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2396 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2397 getRegInfo()->getType(getOperand(1).getReg()));
2400 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2401 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2402 getRegInfo()->getType(getOperand(1).getReg()),
2403 getRegInfo()->getType(getOperand(2).getReg()));
2406 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2407 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2408 getRegInfo()->getType(getOperand(1).getReg()),
2409 getRegInfo()->getType(getOperand(2).getReg()),
2410 getRegInfo()->getType(getOperand(3).getReg()));
2413 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2414 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2415 getRegInfo()->getType(getOperand(1).getReg()),
2416 getRegInfo()->getType(getOperand(2).getReg()),
2417 getRegInfo()->getType(getOperand(3).getReg()),
2418 getRegInfo()->getType(getOperand(4).getReg()));
2421 std::tuple<Register, LLT, Register, LLT>
2422 MachineInstr::getFirst2RegLLTs() const {
2423 Register Reg0 = getOperand(0).getReg();
2424 Register Reg1 = getOperand(1).getReg();
2425 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2426 getRegInfo()->getType(Reg1));
2429 std::tuple<Register, LLT, Register, LLT, Register, LLT>
2430 MachineInstr::getFirst3RegLLTs() const {
2431 Register Reg0 = getOperand(0).getReg();
2432 Register Reg1 = getOperand(1).getReg();
2433 Register Reg2 = getOperand(2).getReg();
2434 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2435 getRegInfo()->getType(Reg1), Reg2,
2436 getRegInfo()->getType(Reg2));
2439 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2440 MachineInstr::getFirst4RegLLTs() const {
2441 Register Reg0 = getOperand(0).getReg();
2442 Register Reg1 = getOperand(1).getReg();
2443 Register Reg2 = getOperand(2).getReg();
2444 Register Reg3 = getOperand(3).getReg();
2445 return std::tuple(
2446 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2447 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2450 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2451 LLT>
2452 MachineInstr::getFirst5RegLLTs() const {
2453 Register Reg0 = getOperand(0).getReg();
2454 Register Reg1 = getOperand(1).getReg();
2455 Register Reg2 = getOperand(2).getReg();
2456 Register Reg3 = getOperand(3).getReg();
2457 Register Reg4 = getOperand(4).getReg();
2458 return std::tuple(
2459 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2460 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2461 Reg4, getRegInfo()->getType(Reg4));