1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSlotTracker.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
64 static const MachineFunction
*getMFIfAvailable(const MachineInstr
&MI
) {
65 if (const MachineBasicBlock
*MBB
= MI
.getParent())
66 if (const MachineFunction
*MF
= MBB
->getParent())
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
73 static void tryToGetTargetInfo(const MachineInstr
&MI
,
74 const TargetRegisterInfo
*&TRI
,
75 const MachineRegisterInfo
*&MRI
,
76 const TargetIntrinsicInfo
*&IntrinsicInfo
,
77 const TargetInstrInfo
*&TII
) {
79 if (const MachineFunction
*MF
= getMFIfAvailable(MI
)) {
80 TRI
= MF
->getSubtarget().getRegisterInfo();
81 MRI
= &MF
->getRegInfo();
82 IntrinsicInfo
= MF
->getTarget().getIntrinsicInfo();
83 TII
= MF
->getSubtarget().getInstrInfo();
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction
&MF
) {
88 for (MCPhysReg ImpDef
: MCID
->implicit_defs())
89 addOperand(MF
, MachineOperand::CreateReg(ImpDef
, true, true));
90 for (MCPhysReg ImpUse
: MCID
->implicit_uses())
91 addOperand(MF
, MachineOperand::CreateReg(ImpUse
, false, true));
94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95 /// implicit operands. It reserves space for the number of operands specified by
97 MachineInstr::MachineInstr(MachineFunction
&MF
, const MCInstrDesc
&TID
,
98 DebugLoc DL
, bool NoImp
)
99 : MCID(&TID
), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100 DbgLoc(std::move(DL
)), DebugInstrNum(0) {
101 assert(DbgLoc
.hasTrivialDestructor() && "Expected trivial destructor");
103 // Reserve space for the expected number of operands.
104 if (unsigned NumOps
= MCID
->getNumOperands() + MCID
->implicit_defs().size() +
105 MCID
->implicit_uses().size()) {
106 CapOperands
= OperandCapacity::get(NumOps
);
107 Operands
= MF
.allocateOperandArray(CapOperands
);
111 addImplicitDefUseOperands(MF
);
114 /// MachineInstr ctor - Copies MachineInstr arg exactly.
115 /// Does not copy the number from debug instruction numbering, to preserve
117 MachineInstr::MachineInstr(MachineFunction
&MF
, const MachineInstr
&MI
)
118 : MCID(&MI
.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119 Info(MI
.Info
), DbgLoc(MI
.getDebugLoc()), DebugInstrNum(0) {
120 assert(DbgLoc
.hasTrivialDestructor() && "Expected trivial destructor");
122 CapOperands
= OperandCapacity::get(MI
.getNumOperands());
123 Operands
= MF
.allocateOperandArray(CapOperands
);
126 for (const MachineOperand
&MO
: MI
.operands())
129 // Replicate ties between the operands, which addOperand was not
130 // able to do reliably.
131 for (unsigned i
= 0, e
= getNumOperands(); i
< e
; ++i
) {
132 MachineOperand
&NewMO
= getOperand(i
);
133 const MachineOperand
&OrigMO
= MI
.getOperand(i
);
134 NewMO
.TiedTo
= OrigMO
.TiedTo
;
137 // Copy all the sensible flags.
141 void MachineInstr::moveBefore(MachineInstr
*MovePos
) {
142 MovePos
->getParent()->splice(MovePos
, getParent(), getIterator());
145 /// getRegInfo - If this instruction is embedded into a MachineFunction,
146 /// return the MachineRegisterInfo object for the current function, otherwise
148 MachineRegisterInfo
*MachineInstr::getRegInfo() {
149 if (MachineBasicBlock
*MBB
= getParent())
150 return &MBB
->getParent()->getRegInfo();
154 const MachineRegisterInfo
*MachineInstr::getRegInfo() const {
155 if (const MachineBasicBlock
*MBB
= getParent())
156 return &MBB
->getParent()->getRegInfo();
160 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo
&MRI
) {
161 for (MachineOperand
&MO
: operands())
163 MRI
.removeRegOperandFromUseList(&MO
);
166 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo
&MRI
) {
167 for (MachineOperand
&MO
: operands())
169 MRI
.addRegOperandToUseList(&MO
);
172 void MachineInstr::addOperand(const MachineOperand
&Op
) {
173 MachineBasicBlock
*MBB
= getParent();
174 assert(MBB
&& "Use MachineInstrBuilder to add operands to dangling instrs");
175 MachineFunction
*MF
= MBB
->getParent();
176 assert(MF
&& "Use MachineInstrBuilder to add operands to dangling instrs");
180 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
181 /// ranges. If MRI is non-null also update use-def chains.
182 static void moveOperands(MachineOperand
*Dst
, MachineOperand
*Src
,
183 unsigned NumOps
, MachineRegisterInfo
*MRI
) {
185 return MRI
->moveOperands(Dst
, Src
, NumOps
);
186 // MachineOperand is a trivially copyable type so we can just use memmove.
187 assert(Dst
&& Src
&& "Unknown operands");
188 std::memmove(Dst
, Src
, NumOps
* sizeof(MachineOperand
));
191 /// addOperand - Add the specified operand to the instruction. If it is an
192 /// implicit operand, it is added to the end of the operand list. If it is
193 /// an explicit operand it is added at the end of the explicit operand list
194 /// (before the first implicit operand).
195 void MachineInstr::addOperand(MachineFunction
&MF
, const MachineOperand
&Op
) {
196 assert(isUInt
<LLVM_MI_NUMOPERANDS_BITS
>(NumOperands
+ 1) &&
197 "Cannot add more operands.");
198 assert(MCID
&& "Cannot add operands before providing an instr descriptor");
200 // Check if we're adding one of our existing operands.
201 if (&Op
>= Operands
&& &Op
< Operands
+ NumOperands
) {
202 // This is unusual: MI->addOperand(MI->getOperand(i)).
203 // If adding Op requires reallocating or moving existing operands around,
204 // the Op reference could go stale. Support it by copying Op.
205 MachineOperand
CopyOp(Op
);
206 return addOperand(MF
, CopyOp
);
209 // Find the insert location for the new operand. Implicit registers go at
210 // the end, everything else goes before the implicit regs.
212 // FIXME: Allow mixed explicit and implicit operands on inline asm.
213 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
214 // implicit-defs, but they must not be moved around. See the FIXME in
216 unsigned OpNo
= getNumOperands();
217 bool isImpReg
= Op
.isReg() && Op
.isImplicit();
218 if (!isImpReg
&& !isInlineAsm()) {
219 while (OpNo
&& Operands
[OpNo
-1].isReg() && Operands
[OpNo
-1].isImplicit()) {
221 assert(!Operands
[OpNo
].isTied() && "Cannot move tied operands");
225 // OpNo now points as the desired insertion point. Unless this is a variadic
226 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
227 // RegMask operands go between the explicit and implicit operands.
228 assert((MCID
->isVariadic() || OpNo
< MCID
->getNumOperands() ||
229 Op
.isValidExcessOperand()) &&
230 "Trying to add an operand to a machine instr that is already done!");
232 MachineRegisterInfo
*MRI
= getRegInfo();
234 // Determine if the Operands array needs to be reallocated.
235 // Save the old capacity and operand array.
236 OperandCapacity OldCap
= CapOperands
;
237 MachineOperand
*OldOperands
= Operands
;
238 if (!OldOperands
|| OldCap
.getSize() == getNumOperands()) {
239 CapOperands
= OldOperands
? OldCap
.getNext() : OldCap
.get(1);
240 Operands
= MF
.allocateOperandArray(CapOperands
);
241 // Move the operands before the insertion point.
243 moveOperands(Operands
, OldOperands
, OpNo
, MRI
);
246 // Move the operands following the insertion point.
247 if (OpNo
!= NumOperands
)
248 moveOperands(Operands
+ OpNo
+ 1, OldOperands
+ OpNo
, NumOperands
- OpNo
,
252 // Deallocate the old operand array.
253 if (OldOperands
!= Operands
&& OldOperands
)
254 MF
.deallocateOperandArray(OldCap
, OldOperands
);
256 // Copy Op into place. It still needs to be inserted into the MRI use lists.
257 MachineOperand
*NewMO
= new (Operands
+ OpNo
) MachineOperand(Op
);
258 NewMO
->ParentMI
= this;
260 // When adding a register operand, tell MRI about it.
261 if (NewMO
->isReg()) {
262 // Ensure isOnRegUseList() returns false, regardless of Op's status.
263 NewMO
->Contents
.Reg
.Prev
= nullptr;
264 // Ignore existing ties. This is not a property that can be copied.
266 // Add the new operand to MRI, but only for instructions in an MBB.
268 MRI
->addRegOperandToUseList(NewMO
);
269 // The MCID operand information isn't accurate until we start adding
270 // explicit operands. The implicit operands are added first, then the
271 // explicits are inserted before them.
273 // Tie uses to defs as indicated in MCInstrDesc.
274 if (NewMO
->isUse()) {
275 int DefIdx
= MCID
->getOperandConstraint(OpNo
, MCOI::TIED_TO
);
277 tieOperands(DefIdx
, OpNo
);
279 // If the register operand is flagged as early, mark the operand as such.
280 if (MCID
->getOperandConstraint(OpNo
, MCOI::EARLY_CLOBBER
) != -1)
281 NewMO
->setIsEarlyClobber(true);
283 // Ensure debug instructions set debug flag on register uses.
284 if (NewMO
->isUse() && isDebugInstr())
289 void MachineInstr::removeOperand(unsigned OpNo
) {
290 assert(OpNo
< getNumOperands() && "Invalid operand number");
291 untieRegOperand(OpNo
);
294 // Moving tied operands would break the ties.
295 for (unsigned i
= OpNo
+ 1, e
= getNumOperands(); i
!= e
; ++i
)
296 if (Operands
[i
].isReg())
297 assert(!Operands
[i
].isTied() && "Cannot move tied operands");
300 MachineRegisterInfo
*MRI
= getRegInfo();
301 if (MRI
&& Operands
[OpNo
].isReg())
302 MRI
->removeRegOperandFromUseList(Operands
+ OpNo
);
304 // Don't call the MachineOperand destructor. A lot of this code depends on
305 // MachineOperand having a trivial destructor anyway, and adding a call here
306 // wouldn't make it 'destructor-correct'.
308 if (unsigned N
= NumOperands
- 1 - OpNo
)
309 moveOperands(Operands
+ OpNo
, Operands
+ OpNo
+ 1, N
, MRI
);
313 void MachineInstr::setExtraInfo(MachineFunction
&MF
,
314 ArrayRef
<MachineMemOperand
*> MMOs
,
315 MCSymbol
*PreInstrSymbol
,
316 MCSymbol
*PostInstrSymbol
,
317 MDNode
*HeapAllocMarker
, MDNode
*PCSections
,
319 bool HasPreInstrSymbol
= PreInstrSymbol
!= nullptr;
320 bool HasPostInstrSymbol
= PostInstrSymbol
!= nullptr;
321 bool HasHeapAllocMarker
= HeapAllocMarker
!= nullptr;
322 bool HasPCSections
= PCSections
!= nullptr;
323 bool HasCFIType
= CFIType
!= 0;
324 int NumPointers
= MMOs
.size() + HasPreInstrSymbol
+ HasPostInstrSymbol
+
325 HasHeapAllocMarker
+ HasPCSections
+ HasCFIType
;
327 // Drop all extra info if there is none.
328 if (NumPointers
<= 0) {
333 // If more than one pointer, then store out of line. Store heap alloc markers
334 // out of line because PointerSumType cannot hold more than 4 tag types with
336 // FIXME: Maybe we should make the symbols in the extra info mutable?
337 else if (NumPointers
> 1 || HasHeapAllocMarker
|| HasPCSections
||
339 Info
.set
<EIIK_OutOfLine
>(
340 MF
.createMIExtraInfo(MMOs
, PreInstrSymbol
, PostInstrSymbol
,
341 HeapAllocMarker
, PCSections
, CFIType
));
345 // Otherwise store the single pointer inline.
346 if (HasPreInstrSymbol
)
347 Info
.set
<EIIK_PreInstrSymbol
>(PreInstrSymbol
);
348 else if (HasPostInstrSymbol
)
349 Info
.set
<EIIK_PostInstrSymbol
>(PostInstrSymbol
);
351 Info
.set
<EIIK_MMO
>(MMOs
[0]);
354 void MachineInstr::dropMemRefs(MachineFunction
&MF
) {
355 if (memoperands_empty())
358 setExtraInfo(MF
, {}, getPreInstrSymbol(), getPostInstrSymbol(),
359 getHeapAllocMarker(), getPCSections(), getCFIType());
362 void MachineInstr::setMemRefs(MachineFunction
&MF
,
363 ArrayRef
<MachineMemOperand
*> MMOs
) {
369 setExtraInfo(MF
, MMOs
, getPreInstrSymbol(), getPostInstrSymbol(),
370 getHeapAllocMarker(), getPCSections(), getCFIType());
373 void MachineInstr::addMemOperand(MachineFunction
&MF
,
374 MachineMemOperand
*MO
) {
375 SmallVector
<MachineMemOperand
*, 2> MMOs
;
376 MMOs
.append(memoperands_begin(), memoperands_end());
378 setMemRefs(MF
, MMOs
);
381 void MachineInstr::cloneMemRefs(MachineFunction
&MF
, const MachineInstr
&MI
) {
383 // Nothing to do for a self-clone!
386 assert(&MF
== MI
.getMF() &&
387 "Invalid machine functions when cloning memory refrences!");
388 // See if we can just steal the extra info already allocated for the
389 // instruction. We can do this whenever the pre- and post-instruction symbols
390 // are the same (including null).
391 if (getPreInstrSymbol() == MI
.getPreInstrSymbol() &&
392 getPostInstrSymbol() == MI
.getPostInstrSymbol() &&
393 getHeapAllocMarker() == MI
.getHeapAllocMarker() &&
394 getPCSections() == MI
.getPCSections()) {
399 // Otherwise, fall back on a copy-based clone.
400 setMemRefs(MF
, MI
.memoperands());
403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
405 static bool hasIdenticalMMOs(ArrayRef
<MachineMemOperand
*> LHS
,
406 ArrayRef
<MachineMemOperand
*> RHS
) {
407 if (LHS
.size() != RHS
.size())
410 auto LHSPointees
= make_pointee_range(LHS
);
411 auto RHSPointees
= make_pointee_range(RHS
);
412 return std::equal(LHSPointees
.begin(), LHSPointees
.end(),
413 RHSPointees
.begin());
416 void MachineInstr::cloneMergedMemRefs(MachineFunction
&MF
,
417 ArrayRef
<const MachineInstr
*> MIs
) {
418 // Try handling easy numbers of MIs with simpler mechanisms.
423 if (MIs
.size() == 1) {
424 cloneMemRefs(MF
, *MIs
[0]);
427 // Because an empty memoperands list provides *no* information and must be
428 // handled conservatively (assuming the instruction can do anything), the only
429 // way to merge with it is to drop all other memoperands.
430 if (MIs
[0]->memoperands_empty()) {
435 // Handle the general case.
436 SmallVector
<MachineMemOperand
*, 2> MergedMMOs
;
437 // Start with the first instruction.
438 assert(&MF
== MIs
[0]->getMF() &&
439 "Invalid machine functions when cloning memory references!");
440 MergedMMOs
.append(MIs
[0]->memoperands_begin(), MIs
[0]->memoperands_end());
441 // Now walk all the other instructions and accumulate any different MMOs.
442 for (const MachineInstr
&MI
: make_pointee_range(MIs
.slice(1))) {
443 assert(&MF
== MI
.getMF() &&
444 "Invalid machine functions when cloning memory references!");
446 // Skip MIs with identical operands to the first. This is a somewhat
447 // arbitrary hack but will catch common cases without being quadratic.
448 // TODO: We could fully implement merge semantics here if needed.
449 if (hasIdenticalMMOs(MIs
[0]->memoperands(), MI
.memoperands()))
452 // Because an empty memoperands list provides *no* information and must be
453 // handled conservatively (assuming the instruction can do anything), the
454 // only way to merge with it is to drop all other memoperands.
455 if (MI
.memoperands_empty()) {
460 // Otherwise accumulate these into our temporary buffer of the merged state.
461 MergedMMOs
.append(MI
.memoperands_begin(), MI
.memoperands_end());
464 setMemRefs(MF
, MergedMMOs
);
467 void MachineInstr::setPreInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
468 // Do nothing if old and new symbols are the same.
469 if (Symbol
== getPreInstrSymbol())
472 // If there was only one symbol and we're removing it, just clear info.
473 if (!Symbol
&& Info
.is
<EIIK_PreInstrSymbol
>()) {
478 setExtraInfo(MF
, memoperands(), Symbol
, getPostInstrSymbol(),
479 getHeapAllocMarker(), getPCSections(), getCFIType());
482 void MachineInstr::setPostInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
483 // Do nothing if old and new symbols are the same.
484 if (Symbol
== getPostInstrSymbol())
487 // If there was only one symbol and we're removing it, just clear info.
488 if (!Symbol
&& Info
.is
<EIIK_PostInstrSymbol
>()) {
493 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), Symbol
,
494 getHeapAllocMarker(), getPCSections(), getCFIType());
497 void MachineInstr::setHeapAllocMarker(MachineFunction
&MF
, MDNode
*Marker
) {
498 // Do nothing if old and new symbols are the same.
499 if (Marker
== getHeapAllocMarker())
502 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503 Marker
, getPCSections(), getCFIType());
506 void MachineInstr::setPCSections(MachineFunction
&MF
, MDNode
*PCSections
) {
507 // Do nothing if old and new symbols are the same.
508 if (PCSections
== getPCSections())
511 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
512 getHeapAllocMarker(), PCSections
, getCFIType());
515 void MachineInstr::setCFIType(MachineFunction
&MF
, uint32_t Type
) {
516 // Do nothing if old and new types are the same.
517 if (Type
== getCFIType())
520 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
521 getHeapAllocMarker(), getPCSections(), Type
);
524 void MachineInstr::cloneInstrSymbols(MachineFunction
&MF
,
525 const MachineInstr
&MI
) {
527 // Nothing to do for a self-clone!
530 assert(&MF
== MI
.getMF() &&
531 "Invalid machine functions when cloning instruction symbols!");
533 setPreInstrSymbol(MF
, MI
.getPreInstrSymbol());
534 setPostInstrSymbol(MF
, MI
.getPostInstrSymbol());
535 setHeapAllocMarker(MF
, MI
.getHeapAllocMarker());
536 setPCSections(MF
, MI
.getPCSections());
539 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr
&Other
) const {
540 // For now, the just return the union of the flags. If the flags get more
541 // complicated over time, we might need more logic here.
542 return getFlags() | Other
.getFlags();
545 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction
&I
) {
546 uint32_t MIFlags
= 0;
547 // Copy the wrapping flags.
548 if (const OverflowingBinaryOperator
*OB
=
549 dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
550 if (OB
->hasNoSignedWrap())
551 MIFlags
|= MachineInstr::MIFlag::NoSWrap
;
552 if (OB
->hasNoUnsignedWrap())
553 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
556 // Copy the exact flag.
557 if (const PossiblyExactOperator
*PE
= dyn_cast
<PossiblyExactOperator
>(&I
))
559 MIFlags
|= MachineInstr::MIFlag::IsExact
;
561 // Copy the fast-math flags.
562 if (const FPMathOperator
*FP
= dyn_cast
<FPMathOperator
>(&I
)) {
563 const FastMathFlags Flags
= FP
->getFastMathFlags();
565 MIFlags
|= MachineInstr::MIFlag::FmNoNans
;
567 MIFlags
|= MachineInstr::MIFlag::FmNoInfs
;
568 if (Flags
.noSignedZeros())
569 MIFlags
|= MachineInstr::MIFlag::FmNsz
;
570 if (Flags
.allowReciprocal())
571 MIFlags
|= MachineInstr::MIFlag::FmArcp
;
572 if (Flags
.allowContract())
573 MIFlags
|= MachineInstr::MIFlag::FmContract
;
574 if (Flags
.approxFunc())
575 MIFlags
|= MachineInstr::MIFlag::FmAfn
;
576 if (Flags
.allowReassoc())
577 MIFlags
|= MachineInstr::MIFlag::FmReassoc
;
580 if (I
.getMetadata(LLVMContext::MD_unpredictable
))
581 MIFlags
|= MachineInstr::MIFlag::Unpredictable
;
586 void MachineInstr::copyIRFlags(const Instruction
&I
) {
587 Flags
= copyFlagsFromInstruction(I
);
590 bool MachineInstr::hasPropertyInBundle(uint64_t Mask
, QueryType Type
) const {
591 assert(!isBundledWithPred() && "Must be called on bundle header");
592 for (MachineBasicBlock::const_instr_iterator MII
= getIterator();; ++MII
) {
593 if (MII
->getDesc().getFlags() & Mask
) {
594 if (Type
== AnyInBundle
)
597 if (Type
== AllInBundle
&& !MII
->isBundle())
600 // This was the last instruction in the bundle.
601 if (!MII
->isBundledWithSucc())
602 return Type
== AllInBundle
;
606 bool MachineInstr::isIdenticalTo(const MachineInstr
&Other
,
607 MICheckType Check
) const {
608 // If opcodes or number of operands are not the same then the two
609 // instructions are obviously not identical.
610 if (Other
.getOpcode() != getOpcode() ||
611 Other
.getNumOperands() != getNumOperands())
615 // We have passed the test above that both instructions have the same
616 // opcode, so we know that both instructions are bundles here. Let's compare
617 // MIs inside the bundle.
618 assert(Other
.isBundle() && "Expected that both instructions are bundles.");
619 MachineBasicBlock::const_instr_iterator I1
= getIterator();
620 MachineBasicBlock::const_instr_iterator I2
= Other
.getIterator();
621 // Loop until we analysed the last intruction inside at least one of the
623 while (I1
->isBundledWithSucc() && I2
->isBundledWithSucc()) {
626 if (!I1
->isIdenticalTo(*I2
, Check
))
629 // If we've reached the end of just one of the two bundles, but not both,
630 // the instructions are not identical.
631 if (I1
->isBundledWithSucc() || I2
->isBundledWithSucc())
635 // Check operands to make sure they match.
636 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
637 const MachineOperand
&MO
= getOperand(i
);
638 const MachineOperand
&OMO
= Other
.getOperand(i
);
640 if (!MO
.isIdenticalTo(OMO
))
645 // Clients may or may not want to ignore defs when testing for equality.
646 // For example, machine CSE pass only cares about finding common
647 // subexpressions, so it's safe to ignore virtual register defs.
649 if (Check
== IgnoreDefs
)
651 else if (Check
== IgnoreVRegDefs
) {
652 if (!MO
.getReg().isVirtual() || !OMO
.getReg().isVirtual())
653 if (!MO
.isIdenticalTo(OMO
))
656 if (!MO
.isIdenticalTo(OMO
))
658 if (Check
== CheckKillDead
&& MO
.isDead() != OMO
.isDead())
662 if (!MO
.isIdenticalTo(OMO
))
664 if (Check
== CheckKillDead
&& MO
.isKill() != OMO
.isKill())
668 // If DebugLoc does not match then two debug instructions are not identical.
670 if (getDebugLoc() && Other
.getDebugLoc() &&
671 getDebugLoc() != Other
.getDebugLoc())
673 // If pre- or post-instruction symbols do not match then the two instructions
674 // are not identical.
675 if (getPreInstrSymbol() != Other
.getPreInstrSymbol() ||
676 getPostInstrSymbol() != Other
.getPostInstrSymbol())
678 // Call instructions with different CFI types are not identical.
679 if (isCall() && getCFIType() != Other
.getCFIType())
685 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr
&Other
) const {
686 if (!isDebugValueLike() || !Other
.isDebugValueLike())
688 if (getDebugLoc() != Other
.getDebugLoc())
690 if (getDebugVariable() != Other
.getDebugVariable())
692 if (getNumDebugOperands() != Other
.getNumDebugOperands())
694 for (unsigned OpIdx
= 0; OpIdx
< getNumDebugOperands(); ++OpIdx
)
695 if (!getDebugOperand(OpIdx
).isIdenticalTo(Other
.getDebugOperand(OpIdx
)))
697 if (!DIExpression::isEqualExpression(
698 getDebugExpression(), isIndirectDebugValue(),
699 Other
.getDebugExpression(), Other
.isIndirectDebugValue()))
704 const MachineFunction
*MachineInstr::getMF() const {
705 return getParent()->getParent();
708 MachineInstr
*MachineInstr::removeFromParent() {
709 assert(getParent() && "Not embedded in a basic block!");
710 return getParent()->remove(this);
713 MachineInstr
*MachineInstr::removeFromBundle() {
714 assert(getParent() && "Not embedded in a basic block!");
715 return getParent()->remove_instr(this);
718 void MachineInstr::eraseFromParent() {
719 assert(getParent() && "Not embedded in a basic block!");
720 getParent()->erase(this);
723 void MachineInstr::eraseFromBundle() {
724 assert(getParent() && "Not embedded in a basic block!");
725 getParent()->erase_instr(this);
728 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type
) const {
731 switch (getOpcode()) {
732 case TargetOpcode::PATCHPOINT
:
733 case TargetOpcode::STACKMAP
:
734 case TargetOpcode::STATEPOINT
:
735 case TargetOpcode::FENTRY_CALL
:
741 bool MachineInstr::shouldUpdateCallSiteInfo() const {
743 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle
);
744 return isCandidateForCallSiteEntry();
747 unsigned MachineInstr::getNumExplicitOperands() const {
748 unsigned NumOperands
= MCID
->getNumOperands();
749 if (!MCID
->isVariadic())
752 for (unsigned I
= NumOperands
, E
= getNumOperands(); I
!= E
; ++I
) {
753 const MachineOperand
&MO
= getOperand(I
);
754 // The operands must always be in the following order:
755 // - explicit reg defs,
756 // - other explicit operands (reg uses, immediates, etc.),
757 // - implicit reg defs
758 // - implicit reg uses
759 if (MO
.isReg() && MO
.isImplicit())
766 unsigned MachineInstr::getNumExplicitDefs() const {
767 unsigned NumDefs
= MCID
->getNumDefs();
768 if (!MCID
->isVariadic())
771 for (unsigned I
= NumDefs
, E
= getNumOperands(); I
!= E
; ++I
) {
772 const MachineOperand
&MO
= getOperand(I
);
773 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
780 void MachineInstr::bundleWithPred() {
781 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
782 setFlag(BundledPred
);
783 MachineBasicBlock::instr_iterator Pred
= getIterator();
785 assert(!Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
786 Pred
->setFlag(BundledSucc
);
789 void MachineInstr::bundleWithSucc() {
790 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
791 setFlag(BundledSucc
);
792 MachineBasicBlock::instr_iterator Succ
= getIterator();
794 assert(!Succ
->isBundledWithPred() && "Inconsistent bundle flags");
795 Succ
->setFlag(BundledPred
);
798 void MachineInstr::unbundleFromPred() {
799 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
800 clearFlag(BundledPred
);
801 MachineBasicBlock::instr_iterator Pred
= getIterator();
803 assert(Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
804 Pred
->clearFlag(BundledSucc
);
807 void MachineInstr::unbundleFromSucc() {
808 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
809 clearFlag(BundledSucc
);
810 MachineBasicBlock::instr_iterator Succ
= getIterator();
812 assert(Succ
->isBundledWithPred() && "Inconsistent bundle flags");
813 Succ
->clearFlag(BundledPred
);
816 bool MachineInstr::isStackAligningInlineAsm() const {
818 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
819 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
825 InlineAsm::AsmDialect
MachineInstr::getInlineAsmDialect() const {
826 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
827 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
828 return InlineAsm::AsmDialect((ExtraInfo
& InlineAsm::Extra_AsmDialect
) != 0);
831 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx
,
832 unsigned *GroupNo
) const {
833 assert(isInlineAsm() && "Expected an inline asm instruction");
834 assert(OpIdx
< getNumOperands() && "OpIdx out of range");
836 // Ignore queries about the initial operands.
837 if (OpIdx
< InlineAsm::MIOp_FirstOperand
)
842 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
844 const MachineOperand
&FlagMO
= getOperand(i
);
845 // If we reach the implicit register operands, stop looking.
848 NumOps
= 1 + InlineAsm::getNumOperandRegisters(FlagMO
.getImm());
849 if (i
+ NumOps
> OpIdx
) {
859 const DILabel
*MachineInstr::getDebugLabel() const {
860 assert(isDebugLabel() && "not a DBG_LABEL");
861 return cast
<DILabel
>(getOperand(0).getMetadata());
864 const MachineOperand
&MachineInstr::getDebugVariableOp() const {
865 assert((isDebugValueLike()) && "not a DBG_VALUE*");
866 unsigned VariableOp
= isNonListDebugValue() ? 2 : 0;
867 return getOperand(VariableOp
);
870 MachineOperand
&MachineInstr::getDebugVariableOp() {
871 assert((isDebugValueLike()) && "not a DBG_VALUE*");
872 unsigned VariableOp
= isNonListDebugValue() ? 2 : 0;
873 return getOperand(VariableOp
);
876 const DILocalVariable
*MachineInstr::getDebugVariable() const {
877 return cast
<DILocalVariable
>(getDebugVariableOp().getMetadata());
880 const MachineOperand
&MachineInstr::getDebugExpressionOp() const {
881 assert((isDebugValueLike()) && "not a DBG_VALUE*");
882 unsigned ExpressionOp
= isNonListDebugValue() ? 3 : 1;
883 return getOperand(ExpressionOp
);
886 MachineOperand
&MachineInstr::getDebugExpressionOp() {
887 assert((isDebugValueLike()) && "not a DBG_VALUE*");
888 unsigned ExpressionOp
= isNonListDebugValue() ? 3 : 1;
889 return getOperand(ExpressionOp
);
892 const DIExpression
*MachineInstr::getDebugExpression() const {
893 return cast
<DIExpression
>(getDebugExpressionOp().getMetadata());
896 bool MachineInstr::isDebugEntryValue() const {
897 return isDebugValue() && getDebugExpression()->isEntryValue();
900 const TargetRegisterClass
*
901 MachineInstr::getRegClassConstraint(unsigned OpIdx
,
902 const TargetInstrInfo
*TII
,
903 const TargetRegisterInfo
*TRI
) const {
904 assert(getParent() && "Can't have an MBB reference here!");
905 assert(getMF() && "Can't have an MF reference here!");
906 const MachineFunction
&MF
= *getMF();
908 // Most opcodes have fixed constraints in their MCInstrDesc.
910 return TII
->getRegClass(getDesc(), OpIdx
, TRI
, MF
);
912 if (!getOperand(OpIdx
).isReg())
915 // For tied uses on inline asm, get the constraint from the def.
917 if (getOperand(OpIdx
).isUse() && isRegTiedToDefOperand(OpIdx
, &DefIdx
))
920 // Inline asm stores register class constraints in the flag word.
921 int FlagIdx
= findInlineAsmFlagIdx(OpIdx
);
925 unsigned Flag
= getOperand(FlagIdx
).getImm();
927 if ((InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegUse
||
928 InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegDef
||
929 InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegDefEarlyClobber
) &&
930 InlineAsm::hasRegClassConstraint(Flag
, RCID
))
931 return TRI
->getRegClass(RCID
);
933 // Assume that all registers in a memory operand are pointers.
934 if (InlineAsm::getKind(Flag
) == InlineAsm::Kind_Mem
)
935 return TRI
->getPointerRegClass(MF
);
940 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVReg(
941 Register Reg
, const TargetRegisterClass
*CurRC
, const TargetInstrInfo
*TII
,
942 const TargetRegisterInfo
*TRI
, bool ExploreBundle
) const {
943 // Check every operands inside the bundle if we have
946 for (ConstMIBundleOperands
OpndIt(*this); OpndIt
.isValid() && CurRC
;
948 CurRC
= OpndIt
->getParent()->getRegClassConstraintEffectForVRegImpl(
949 OpndIt
.getOperandNo(), Reg
, CurRC
, TII
, TRI
);
951 // Otherwise, just check the current operands.
952 for (unsigned i
= 0, e
= NumOperands
; i
< e
&& CurRC
; ++i
)
953 CurRC
= getRegClassConstraintEffectForVRegImpl(i
, Reg
, CurRC
, TII
, TRI
);
957 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVRegImpl(
958 unsigned OpIdx
, Register Reg
, const TargetRegisterClass
*CurRC
,
959 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
960 assert(CurRC
&& "Invalid initial register class");
961 // Check if Reg is constrained by some of its use/def from MI.
962 const MachineOperand
&MO
= getOperand(OpIdx
);
963 if (!MO
.isReg() || MO
.getReg() != Reg
)
965 // If yes, accumulate the constraints through the operand.
966 return getRegClassConstraintEffect(OpIdx
, CurRC
, TII
, TRI
);
969 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffect(
970 unsigned OpIdx
, const TargetRegisterClass
*CurRC
,
971 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
972 const TargetRegisterClass
*OpRC
= getRegClassConstraint(OpIdx
, TII
, TRI
);
973 const MachineOperand
&MO
= getOperand(OpIdx
);
975 "Cannot get register constraints for non-register operand");
976 assert(CurRC
&& "Invalid initial register class");
977 if (unsigned SubIdx
= MO
.getSubReg()) {
979 CurRC
= TRI
->getMatchingSuperRegClass(CurRC
, OpRC
, SubIdx
);
981 CurRC
= TRI
->getSubClassWithSubReg(CurRC
, SubIdx
);
983 CurRC
= TRI
->getCommonSubClass(CurRC
, OpRC
);
987 /// Return the number of instructions inside the MI bundle, not counting the
988 /// header instruction.
989 unsigned MachineInstr::getBundleSize() const {
990 MachineBasicBlock::const_instr_iterator I
= getIterator();
992 while (I
->isBundledWithSucc()) {
999 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1000 /// the given register (not considering sub/super-registers).
1001 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg
) const {
1002 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1003 const MachineOperand
&MO
= getOperand(i
);
1004 if (MO
.isReg() && MO
.isUse() && MO
.isImplicit() && MO
.getReg() == Reg
)
1010 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1011 /// the specific register or -1 if it is not found. It further tightens
1012 /// the search criteria to a use that kills the register if isKill is true.
1013 int MachineInstr::findRegisterUseOperandIdx(
1014 Register Reg
, bool isKill
, const TargetRegisterInfo
*TRI
) const {
1015 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1016 const MachineOperand
&MO
= getOperand(i
);
1017 if (!MO
.isReg() || !MO
.isUse())
1019 Register MOReg
= MO
.getReg();
1022 if (MOReg
== Reg
|| (TRI
&& Reg
&& MOReg
&& TRI
->regsOverlap(MOReg
, Reg
)))
1023 if (!isKill
|| MO
.isKill())
1029 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1030 /// indicating if this instruction reads or writes Reg. This also considers
1031 /// partial defines.
1032 std::pair
<bool,bool>
1033 MachineInstr::readsWritesVirtualRegister(Register Reg
,
1034 SmallVectorImpl
<unsigned> *Ops
) const {
1035 bool PartDef
= false; // Partial redefine.
1036 bool FullDef
= false; // Full define.
1039 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1040 const MachineOperand
&MO
= getOperand(i
);
1041 if (!MO
.isReg() || MO
.getReg() != Reg
)
1046 Use
|= !MO
.isUndef();
1047 else if (MO
.getSubReg() && !MO
.isUndef())
1048 // A partial def undef doesn't count as reading the register.
1053 // A partial redefine uses Reg unless there is also a full define.
1054 return std::make_pair(Use
|| (PartDef
&& !FullDef
), PartDef
|| FullDef
);
1057 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1058 /// the specified register or -1 if it is not found. If isDead is true, defs
1059 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1060 /// also checks if there is a def of a super-register.
1062 MachineInstr::findRegisterDefOperandIdx(Register Reg
, bool isDead
, bool Overlap
,
1063 const TargetRegisterInfo
*TRI
) const {
1064 bool isPhys
= Reg
.isPhysical();
1065 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1066 const MachineOperand
&MO
= getOperand(i
);
1067 // Accept regmask operands when Overlap is set.
1068 // Ignore them when looking for a specific def operand (Overlap == false).
1069 if (isPhys
&& Overlap
&& MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
1071 if (!MO
.isReg() || !MO
.isDef())
1073 Register MOReg
= MO
.getReg();
1074 bool Found
= (MOReg
== Reg
);
1075 if (!Found
&& TRI
&& isPhys
&& MOReg
.isPhysical()) {
1077 Found
= TRI
->regsOverlap(MOReg
, Reg
);
1079 Found
= TRI
->isSubRegister(MOReg
, Reg
);
1081 if (Found
&& (!isDead
|| MO
.isDead()))
1087 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1088 /// operand list that is used to represent the predicate. It returns -1 if
1090 int MachineInstr::findFirstPredOperandIdx() const {
1091 // Don't call MCID.findFirstPredOperandIdx() because this variant
1092 // is sometimes called on an instruction that's not yet complete, and
1093 // so the number of operands is less than the MCID indicates. In
1094 // particular, the PTX target does this.
1095 const MCInstrDesc
&MCID
= getDesc();
1096 if (MCID
.isPredicable()) {
1097 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1098 if (MCID
.operands()[i
].isPredicate())
1105 // MachineOperand::TiedTo is 4 bits wide.
1106 const unsigned TiedMax
= 15;
1108 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1110 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1111 /// field. TiedTo can have these values:
1113 /// 0: Operand is not tied to anything.
1114 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1115 /// TiedMax: Tied to an operand >= TiedMax-1.
1117 /// The tied def must be one of the first TiedMax operands on a normal
1118 /// instruction. INLINEASM instructions allow more tied defs.
1120 void MachineInstr::tieOperands(unsigned DefIdx
, unsigned UseIdx
) {
1121 MachineOperand
&DefMO
= getOperand(DefIdx
);
1122 MachineOperand
&UseMO
= getOperand(UseIdx
);
1123 assert(DefMO
.isDef() && "DefIdx must be a def operand");
1124 assert(UseMO
.isUse() && "UseIdx must be a use operand");
1125 assert(!DefMO
.isTied() && "Def is already tied to another use");
1126 assert(!UseMO
.isTied() && "Use is already tied to another def");
1128 if (DefIdx
< TiedMax
)
1129 UseMO
.TiedTo
= DefIdx
+ 1;
1131 // Inline asm can use the group descriptors to find tied operands,
1132 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1133 // but on normal instruction, the tied def must be within the first TiedMax
1135 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT
) &&
1136 "DefIdx out of range");
1137 UseMO
.TiedTo
= TiedMax
;
1140 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1141 DefMO
.TiedTo
= std::min(UseIdx
+ 1, TiedMax
);
1144 /// Given the index of a tied register operand, find the operand it is tied to.
1145 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1146 /// which must exist.
1147 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx
) const {
1148 const MachineOperand
&MO
= getOperand(OpIdx
);
1149 assert(MO
.isTied() && "Operand isn't tied");
1151 // Normally TiedTo is in range.
1152 if (MO
.TiedTo
< TiedMax
)
1153 return MO
.TiedTo
- 1;
1155 // Uses on normal instructions can be out of range.
1156 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT
) {
1157 // Normal tied defs must be in the 0..TiedMax-1 range.
1160 // MO is a def. Search for the tied use.
1161 for (unsigned i
= TiedMax
- 1, e
= getNumOperands(); i
!= e
; ++i
) {
1162 const MachineOperand
&UseMO
= getOperand(i
);
1163 if (UseMO
.isReg() && UseMO
.isUse() && UseMO
.TiedTo
== OpIdx
+ 1)
1166 llvm_unreachable("Can't find tied use");
1169 if (getOpcode() == TargetOpcode::STATEPOINT
) {
1170 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1172 StatepointOpers
SO(this);
1173 unsigned CurUseIdx
= SO
.getFirstGCPtrIdx();
1174 assert(CurUseIdx
!= -1U && "only gc pointer statepoint operands can be tied");
1175 unsigned NumDefs
= getNumDefs();
1176 for (unsigned CurDefIdx
= 0; CurDefIdx
< NumDefs
; ++CurDefIdx
) {
1177 while (!getOperand(CurUseIdx
).isReg())
1178 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1179 if (OpIdx
== CurDefIdx
)
1181 if (OpIdx
== CurUseIdx
)
1183 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1185 llvm_unreachable("Can't find tied use");
1188 // Now deal with inline asm by parsing the operand group descriptor flags.
1189 // Find the beginning of each operand group.
1190 SmallVector
<unsigned, 8> GroupIdx
;
1191 unsigned OpIdxGroup
= ~0u;
1193 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
1195 const MachineOperand
&FlagMO
= getOperand(i
);
1196 assert(FlagMO
.isImm() && "Invalid tied operand on inline asm");
1197 unsigned CurGroup
= GroupIdx
.size();
1198 GroupIdx
.push_back(i
);
1199 NumOps
= 1 + InlineAsm::getNumOperandRegisters(FlagMO
.getImm());
1200 // OpIdx belongs to this operand group.
1201 if (OpIdx
> i
&& OpIdx
< i
+ NumOps
)
1202 OpIdxGroup
= CurGroup
;
1204 if (!InlineAsm::isUseOperandTiedToDef(FlagMO
.getImm(), TiedGroup
))
1206 // Operands in this group are tied to operands in TiedGroup which must be
1207 // earlier. Find the number of operands between the two groups.
1208 unsigned Delta
= i
- GroupIdx
[TiedGroup
];
1210 // OpIdx is a use tied to TiedGroup.
1211 if (OpIdxGroup
== CurGroup
)
1212 return OpIdx
- Delta
;
1214 // OpIdx is a def tied to this use group.
1215 if (OpIdxGroup
== TiedGroup
)
1216 return OpIdx
+ Delta
;
1218 llvm_unreachable("Invalid tied operand on inline asm");
1221 /// clearKillInfo - Clears kill flags on all operands.
1223 void MachineInstr::clearKillInfo() {
1224 for (MachineOperand
&MO
: operands()) {
1225 if (MO
.isReg() && MO
.isUse())
1226 MO
.setIsKill(false);
1230 void MachineInstr::substituteRegister(Register FromReg
, Register ToReg
,
1232 const TargetRegisterInfo
&RegInfo
) {
1233 if (ToReg
.isPhysical()) {
1235 ToReg
= RegInfo
.getSubReg(ToReg
, SubIdx
);
1236 for (MachineOperand
&MO
: operands()) {
1237 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1239 MO
.substPhysReg(ToReg
, RegInfo
);
1242 for (MachineOperand
&MO
: operands()) {
1243 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1245 MO
.substVirtReg(ToReg
, SubIdx
, RegInfo
);
1250 /// isSafeToMove - Return true if it is safe to move this instruction. If
1251 /// SawStore is set to true, it means that there is a store (or call) between
1252 /// the instruction's location and its intended destination.
1253 bool MachineInstr::isSafeToMove(AAResults
*AA
, bool &SawStore
) const {
1254 // Ignore stuff that we obviously can't move.
1256 // Treat volatile loads as stores. This is not strictly necessary for
1257 // volatiles, but it is required for atomic loads. It is not allowed to move
1258 // a load across an atomic load with Ordering > Monotonic.
1259 if (mayStore() || isCall() || isPHI() ||
1260 (mayLoad() && hasOrderedMemoryRef())) {
1265 if (isPosition() || isDebugInstr() || isTerminator() ||
1266 mayRaiseFPException() || hasUnmodeledSideEffects())
1269 // See if this instruction does a load. If so, we have to guarantee that the
1270 // loaded value doesn't change between the load and the its intended
1271 // destination. The check for isInvariantLoad gives the target the chance to
1272 // classify the load as always returning a constant, e.g. a constant pool
1274 if (mayLoad() && !isDereferenceableInvariantLoad())
1275 // Otherwise, this is a real load. If there is a store between the load and
1276 // end of block, we can't move it.
1282 static bool MemOperandsHaveAlias(const MachineFrameInfo
&MFI
, AAResults
*AA
,
1283 bool UseTBAA
, const MachineMemOperand
*MMOa
,
1284 const MachineMemOperand
*MMOb
) {
1285 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1286 // operates with MachineMemOperand offset with some important assumptions:
1287 // - LLVM fundamentally assumes flat address spaces.
1288 // - MachineOperand offset can *only* result from legalization and cannot
1289 // affect queries other than the trivial case of overlap checking.
1290 // - These offsets never wrap and never step outside of allocated objects.
1291 // - There should never be any negative offsets here.
1293 // FIXME: Modify API to hide this math from "user"
1294 // Even before we go to AA we can reason locally about some memory objects. It
1295 // can save compile time, and possibly catch some corner cases not currently
1298 int64_t OffsetA
= MMOa
->getOffset();
1299 int64_t OffsetB
= MMOb
->getOffset();
1300 int64_t MinOffset
= std::min(OffsetA
, OffsetB
);
1302 uint64_t WidthA
= MMOa
->getSize();
1303 uint64_t WidthB
= MMOb
->getSize();
1304 bool KnownWidthA
= WidthA
!= MemoryLocation::UnknownSize
;
1305 bool KnownWidthB
= WidthB
!= MemoryLocation::UnknownSize
;
1307 const Value
*ValA
= MMOa
->getValue();
1308 const Value
*ValB
= MMOb
->getValue();
1309 bool SameVal
= (ValA
&& ValB
&& (ValA
== ValB
));
1311 const PseudoSourceValue
*PSVa
= MMOa
->getPseudoValue();
1312 const PseudoSourceValue
*PSVb
= MMOb
->getPseudoValue();
1313 if (PSVa
&& ValB
&& !PSVa
->mayAlias(&MFI
))
1315 if (PSVb
&& ValA
&& !PSVb
->mayAlias(&MFI
))
1317 if (PSVa
&& PSVb
&& (PSVa
== PSVb
))
1322 if (!KnownWidthA
|| !KnownWidthB
)
1324 int64_t MaxOffset
= std::max(OffsetA
, OffsetB
);
1325 int64_t LowWidth
= (MinOffset
== OffsetA
) ? WidthA
: WidthB
;
1326 return (MinOffset
+ LowWidth
> MaxOffset
);
1335 assert((OffsetA
>= 0) && "Negative MachineMemOperand offset");
1336 assert((OffsetB
>= 0) && "Negative MachineMemOperand offset");
1339 KnownWidthA
? WidthA
+ OffsetA
- MinOffset
: MemoryLocation::UnknownSize
;
1341 KnownWidthB
? WidthB
+ OffsetB
- MinOffset
: MemoryLocation::UnknownSize
;
1343 return !AA
->isNoAlias(
1344 MemoryLocation(ValA
, OverlapA
, UseTBAA
? MMOa
->getAAInfo() : AAMDNodes()),
1345 MemoryLocation(ValB
, OverlapB
,
1346 UseTBAA
? MMOb
->getAAInfo() : AAMDNodes()));
1349 bool MachineInstr::mayAlias(AAResults
*AA
, const MachineInstr
&Other
,
1350 bool UseTBAA
) const {
1351 const MachineFunction
*MF
= getMF();
1352 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1353 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1355 // Exclude call instruction which may alter the memory but can not be handled
1356 // by this function.
1357 if (isCall() || Other
.isCall())
1360 // If neither instruction stores to memory, they can't alias in any
1361 // meaningful way, even if they read from the same address.
1362 if (!mayStore() && !Other
.mayStore())
1365 // Both instructions must be memory operations to be able to alias.
1366 if (!mayLoadOrStore() || !Other
.mayLoadOrStore())
1369 // Let the target decide if memory accesses cannot possibly overlap.
1370 if (TII
->areMemAccessesTriviallyDisjoint(*this, Other
))
1373 // Memory operations without memory operands may access anything. Be
1374 // conservative and assume `MayAlias`.
1375 if (memoperands_empty() || Other
.memoperands_empty())
1378 // Skip if there are too many memory operands.
1379 auto NumChecks
= getNumMemOperands() * Other
.getNumMemOperands();
1380 if (NumChecks
> TII
->getMemOperandAACheckLimit())
1383 // Check each pair of memory operands from both instructions, which can't
1384 // alias only if all pairs won't alias.
1385 for (auto *MMOa
: memoperands())
1386 for (auto *MMOb
: Other
.memoperands())
1387 if (MemOperandsHaveAlias(MFI
, AA
, UseTBAA
, MMOa
, MMOb
))
1393 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1394 /// or volatile memory reference, or if the information describing the memory
1395 /// reference is not available. Return false if it is known to have no ordered
1396 /// memory references.
1397 bool MachineInstr::hasOrderedMemoryRef() const {
1398 // An instruction known never to access memory won't have a volatile access.
1402 !hasUnmodeledSideEffects())
1405 // Otherwise, if the instruction has no memory reference information,
1406 // conservatively assume it wasn't preserved.
1407 if (memoperands_empty())
1410 // Check if any of our memory operands are ordered.
1411 return llvm::any_of(memoperands(), [](const MachineMemOperand
*MMO
) {
1412 return !MMO
->isUnordered();
1416 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1417 /// trap and is loading from a location whose value is invariant across a run of
1419 bool MachineInstr::isDereferenceableInvariantLoad() const {
1420 // If the instruction doesn't load at all, it isn't an invariant load.
1424 // If the instruction has lost its memoperands, conservatively assume that
1425 // it may not be an invariant load.
1426 if (memoperands_empty())
1429 const MachineFrameInfo
&MFI
= getParent()->getParent()->getFrameInfo();
1431 for (MachineMemOperand
*MMO
: memoperands()) {
1432 if (!MMO
->isUnordered())
1433 // If the memory operand has ordering side effects, we can't move the
1434 // instruction. Such an instruction is technically an invariant load,
1435 // but the caller code would need updated to expect that.
1437 if (MMO
->isStore()) return false;
1438 if (MMO
->isInvariant() && MMO
->isDereferenceable())
1441 // A load from a constant PseudoSourceValue is invariant.
1442 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue()) {
1443 if (PSV
->isConstant(&MFI
))
1447 // Otherwise assume conservatively.
1451 // Everything checks out.
1455 /// isConstantValuePHI - If the specified instruction is a PHI that always
1456 /// merges together the same virtual register, return the register, otherwise
1458 unsigned MachineInstr::isConstantValuePHI() const {
1461 assert(getNumOperands() >= 3 &&
1462 "It's illegal to have a PHI without source operands");
1464 Register Reg
= getOperand(1).getReg();
1465 for (unsigned i
= 3, e
= getNumOperands(); i
< e
; i
+= 2)
1466 if (getOperand(i
).getReg() != Reg
)
1471 bool MachineInstr::hasUnmodeledSideEffects() const {
1472 if (hasProperty(MCID::UnmodeledSideEffects
))
1474 if (isInlineAsm()) {
1475 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1476 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1483 bool MachineInstr::isLoadFoldBarrier() const {
1484 return mayStore() || isCall() ||
1485 (hasUnmodeledSideEffects() && !isPseudoProbe());
1488 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1490 bool MachineInstr::allDefsAreDead() const {
1491 for (const MachineOperand
&MO
: operands()) {
1492 if (!MO
.isReg() || MO
.isUse())
1500 /// copyImplicitOps - Copy implicit register operands from specified
1501 /// instruction to this instruction.
1502 void MachineInstr::copyImplicitOps(MachineFunction
&MF
,
1503 const MachineInstr
&MI
) {
1504 for (const MachineOperand
&MO
:
1505 llvm::drop_begin(MI
.operands(), MI
.getDesc().getNumOperands()))
1506 if ((MO
.isReg() && MO
.isImplicit()) || MO
.isRegMask())
1510 bool MachineInstr::hasComplexRegisterTies() const {
1511 const MCInstrDesc
&MCID
= getDesc();
1512 if (MCID
.Opcode
== TargetOpcode::STATEPOINT
)
1514 for (unsigned I
= 0, E
= getNumOperands(); I
< E
; ++I
) {
1515 const auto &Operand
= getOperand(I
);
1516 if (!Operand
.isReg() || Operand
.isDef())
1517 // Ignore the defined registers as MCID marks only the uses as tied.
1519 int ExpectedTiedIdx
= MCID
.getOperandConstraint(I
, MCOI::TIED_TO
);
1520 int TiedIdx
= Operand
.isTied() ? int(findTiedOperandIdx(I
)) : -1;
1521 if (ExpectedTiedIdx
!= TiedIdx
)
1527 LLT
MachineInstr::getTypeToPrint(unsigned OpIdx
, SmallBitVector
&PrintedTypes
,
1528 const MachineRegisterInfo
&MRI
) const {
1529 const MachineOperand
&Op
= getOperand(OpIdx
);
1533 if (isVariadic() || OpIdx
>= getNumExplicitOperands())
1534 return MRI
.getType(Op
.getReg());
1536 auto &OpInfo
= getDesc().operands()[OpIdx
];
1537 if (!OpInfo
.isGenericType())
1538 return MRI
.getType(Op
.getReg());
1540 if (PrintedTypes
[OpInfo
.getGenericTypeIndex()])
1543 LLT TypeToPrint
= MRI
.getType(Op
.getReg());
1544 // Don't mark the type index printed if it wasn't actually printed: maybe
1545 // another operand with the same type index has an actual type attached:
1546 if (TypeToPrint
.isValid())
1547 PrintedTypes
.set(OpInfo
.getGenericTypeIndex());
1551 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1552 LLVM_DUMP_METHOD
void MachineInstr::dump() const {
1557 LLVM_DUMP_METHOD
void MachineInstr::dumprImpl(
1558 const MachineRegisterInfo
&MRI
, unsigned Depth
, unsigned MaxDepth
,
1559 SmallPtrSetImpl
<const MachineInstr
*> &AlreadySeenInstrs
) const {
1560 if (Depth
>= MaxDepth
)
1562 if (!AlreadySeenInstrs
.insert(this).second
)
1564 // PadToColumn always inserts at least one space.
1565 // Don't mess up the alignment if we don't want any space.
1567 fdbgs().PadToColumn(Depth
* 2);
1569 for (const MachineOperand
&MO
: operands()) {
1570 if (!MO
.isReg() || MO
.isDef())
1572 Register Reg
= MO
.getReg();
1573 if (Reg
.isPhysical())
1575 const MachineInstr
*NewMI
= MRI
.getUniqueVRegDef(Reg
);
1576 if (NewMI
== nullptr)
1578 NewMI
->dumprImpl(MRI
, Depth
+ 1, MaxDepth
, AlreadySeenInstrs
);
1582 LLVM_DUMP_METHOD
void MachineInstr::dumpr(const MachineRegisterInfo
&MRI
,
1583 unsigned MaxDepth
) const {
1584 SmallPtrSet
<const MachineInstr
*, 16> AlreadySeenInstrs
;
1585 dumprImpl(MRI
, 0, MaxDepth
, AlreadySeenInstrs
);
1589 void MachineInstr::print(raw_ostream
&OS
, bool IsStandalone
, bool SkipOpers
,
1590 bool SkipDebugLoc
, bool AddNewLine
,
1591 const TargetInstrInfo
*TII
) const {
1592 const Module
*M
= nullptr;
1593 const Function
*F
= nullptr;
1594 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1595 F
= &MF
->getFunction();
1598 TII
= MF
->getSubtarget().getInstrInfo();
1601 ModuleSlotTracker
MST(M
);
1603 MST
.incorporateFunction(*F
);
1604 print(OS
, MST
, IsStandalone
, SkipOpers
, SkipDebugLoc
, AddNewLine
, TII
);
1607 void MachineInstr::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
1608 bool IsStandalone
, bool SkipOpers
, bool SkipDebugLoc
,
1609 bool AddNewLine
, const TargetInstrInfo
*TII
) const {
1610 // We can be a bit tidier if we know the MachineFunction.
1611 const TargetRegisterInfo
*TRI
= nullptr;
1612 const MachineRegisterInfo
*MRI
= nullptr;
1613 const TargetIntrinsicInfo
*IntrinsicInfo
= nullptr;
1614 tryToGetTargetInfo(*this, TRI
, MRI
, IntrinsicInfo
, TII
);
1616 if (isCFIInstruction())
1617 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1619 SmallBitVector
PrintedTypes(8);
1620 bool ShouldPrintRegisterTies
= IsStandalone
|| hasComplexRegisterTies();
1621 auto getTiedOperandIdx
= [&](unsigned OpIdx
) {
1622 if (!ShouldPrintRegisterTies
)
1624 const MachineOperand
&MO
= getOperand(OpIdx
);
1625 if (MO
.isReg() && MO
.isTied() && !MO
.isDef())
1626 return findTiedOperandIdx(OpIdx
);
1629 unsigned StartOp
= 0;
1630 unsigned e
= getNumOperands();
1632 // Print explicitly defined operands on the left of an assignment syntax.
1633 while (StartOp
< e
) {
1634 const MachineOperand
&MO
= getOperand(StartOp
);
1635 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
1641 LLT TypeToPrint
= MRI
? getTypeToPrint(StartOp
, PrintedTypes
, *MRI
) : LLT
{};
1642 unsigned TiedOperandIdx
= getTiedOperandIdx(StartOp
);
1643 MO
.print(OS
, MST
, TypeToPrint
, StartOp
, /*PrintDef=*/false, IsStandalone
,
1644 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1651 if (getFlag(MachineInstr::FrameSetup
))
1652 OS
<< "frame-setup ";
1653 if (getFlag(MachineInstr::FrameDestroy
))
1654 OS
<< "frame-destroy ";
1655 if (getFlag(MachineInstr::FmNoNans
))
1657 if (getFlag(MachineInstr::FmNoInfs
))
1659 if (getFlag(MachineInstr::FmNsz
))
1661 if (getFlag(MachineInstr::FmArcp
))
1663 if (getFlag(MachineInstr::FmContract
))
1665 if (getFlag(MachineInstr::FmAfn
))
1667 if (getFlag(MachineInstr::FmReassoc
))
1669 if (getFlag(MachineInstr::NoUWrap
))
1671 if (getFlag(MachineInstr::NoSWrap
))
1673 if (getFlag(MachineInstr::IsExact
))
1675 if (getFlag(MachineInstr::NoFPExcept
))
1676 OS
<< "nofpexcept ";
1677 if (getFlag(MachineInstr::NoMerge
))
1680 // Print the opcode name.
1682 OS
<< TII
->getName(getOpcode());
1689 // Print the rest of the operands.
1690 bool FirstOp
= true;
1691 unsigned AsmDescOp
= ~0u;
1692 unsigned AsmOpCount
= 0;
1694 if (isInlineAsm() && e
>= InlineAsm::MIOp_FirstOperand
) {
1695 // Print asm string.
1697 const unsigned OpIdx
= InlineAsm::MIOp_AsmString
;
1698 LLT TypeToPrint
= MRI
? getTypeToPrint(OpIdx
, PrintedTypes
, *MRI
) : LLT
{};
1699 unsigned TiedOperandIdx
= getTiedOperandIdx(OpIdx
);
1700 getOperand(OpIdx
).print(OS
, MST
, TypeToPrint
, OpIdx
, /*PrintDef=*/true, IsStandalone
,
1701 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
,
1704 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1705 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1706 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1707 OS
<< " [sideeffect]";
1708 if (ExtraInfo
& InlineAsm::Extra_MayLoad
)
1710 if (ExtraInfo
& InlineAsm::Extra_MayStore
)
1711 OS
<< " [maystore]";
1712 if (ExtraInfo
& InlineAsm::Extra_IsConvergent
)
1713 OS
<< " [isconvergent]";
1714 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
1715 OS
<< " [alignstack]";
1716 if (getInlineAsmDialect() == InlineAsm::AD_ATT
)
1717 OS
<< " [attdialect]";
1718 if (getInlineAsmDialect() == InlineAsm::AD_Intel
)
1719 OS
<< " [inteldialect]";
1721 StartOp
= AsmDescOp
= InlineAsm::MIOp_FirstOperand
;
1725 for (unsigned i
= StartOp
, e
= getNumOperands(); i
!= e
; ++i
) {
1726 const MachineOperand
&MO
= getOperand(i
);
1728 if (FirstOp
) FirstOp
= false; else OS
<< ",";
1731 if (isDebugValueLike() && MO
.isMetadata()) {
1732 // Pretty print DBG_VALUE* instructions.
1733 auto *DIV
= dyn_cast
<DILocalVariable
>(MO
.getMetadata());
1734 if (DIV
&& !DIV
->getName().empty())
1735 OS
<< "!\"" << DIV
->getName() << '\"';
1737 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1738 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1739 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1740 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1742 } else if (isDebugLabel() && MO
.isMetadata()) {
1743 // Pretty print DBG_LABEL instructions.
1744 auto *DIL
= dyn_cast
<DILabel
>(MO
.getMetadata());
1745 if (DIL
&& !DIL
->getName().empty())
1746 OS
<< "\"" << DIL
->getName() << '\"';
1748 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1749 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1750 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1751 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1753 } else if (i
== AsmDescOp
&& MO
.isImm()) {
1754 // Pretty print the inline asm operand descriptor.
1755 OS
<< '$' << AsmOpCount
++;
1756 unsigned Flag
= MO
.getImm();
1758 OS
<< InlineAsm::getKindName(InlineAsm::getKind(Flag
));
1761 if (!InlineAsm::isImmKind(Flag
) && !InlineAsm::isMemKind(Flag
) &&
1762 InlineAsm::hasRegClassConstraint(Flag
, RCID
)) {
1764 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1766 OS
<< ":RC" << RCID
;
1769 if (InlineAsm::isMemKind(Flag
)) {
1770 unsigned MCID
= InlineAsm::getMemoryConstraintID(Flag
);
1771 OS
<< ":" << InlineAsm::getMemConstraintName(MCID
);
1774 unsigned TiedTo
= 0;
1775 if (InlineAsm::isUseOperandTiedToDef(Flag
, TiedTo
))
1776 OS
<< " tiedto:$" << TiedTo
;
1780 // Compute the index of the next operand descriptor.
1781 AsmDescOp
+= 1 + InlineAsm::getNumOperandRegisters(Flag
);
1783 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1784 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1785 if (MO
.isImm() && isOperandSubregIdx(i
))
1786 MachineOperand::printSubRegIdx(OS
, MO
.getImm(), TRI
);
1788 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1789 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1793 // Print any optional symbols attached to this instruction as-if they were
1795 if (MCSymbol
*PreInstrSymbol
= getPreInstrSymbol()) {
1800 OS
<< " pre-instr-symbol ";
1801 MachineOperand::printSymbol(OS
, *PreInstrSymbol
);
1803 if (MCSymbol
*PostInstrSymbol
= getPostInstrSymbol()) {
1808 OS
<< " post-instr-symbol ";
1809 MachineOperand::printSymbol(OS
, *PostInstrSymbol
);
1811 if (MDNode
*HeapAllocMarker
= getHeapAllocMarker()) {
1816 OS
<< " heap-alloc-marker ";
1817 HeapAllocMarker
->printAsOperand(OS
, MST
);
1819 if (MDNode
*PCSections
= getPCSections()) {
1824 OS
<< " pcsections ";
1825 PCSections
->printAsOperand(OS
, MST
);
1827 if (uint32_t CFIType
= getCFIType()) {
1830 OS
<< " cfi-type " << CFIType
;
1833 if (DebugInstrNum
) {
1836 OS
<< " debug-instr-number " << DebugInstrNum
;
1839 if (!SkipDebugLoc
) {
1840 if (const DebugLoc
&DL
= getDebugLoc()) {
1843 OS
<< " debug-location ";
1844 DL
->printAsOperand(OS
, MST
);
1848 if (!memoperands_empty()) {
1849 SmallVector
<StringRef
, 0> SSNs
;
1850 const LLVMContext
*Context
= nullptr;
1851 std::unique_ptr
<LLVMContext
> CtxPtr
;
1852 const MachineFrameInfo
*MFI
= nullptr;
1853 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1854 MFI
= &MF
->getFrameInfo();
1855 Context
= &MF
->getFunction().getContext();
1857 CtxPtr
= std::make_unique
<LLVMContext
>();
1858 Context
= CtxPtr
.get();
1862 bool NeedComma
= false;
1863 for (const MachineMemOperand
*Op
: memoperands()) {
1866 Op
->print(OS
, MST
, SSNs
, *Context
, MFI
, TII
);
1874 bool HaveSemi
= false;
1876 // Print debug location information.
1877 if (const DebugLoc
&DL
= getDebugLoc()) {
1886 // Print extra comments for DEBUG_VALUE.
1887 if (isDebugValueLike() && getDebugVariableOp().isMetadata()) {
1892 auto *DV
= getDebugVariable();
1893 OS
<< " line no:" << DV
->getLine();
1894 if (isIndirectDebugValue())
1903 bool MachineInstr::addRegisterKilled(Register IncomingReg
,
1904 const TargetRegisterInfo
*RegInfo
,
1905 bool AddIfNotFound
) {
1906 bool isPhysReg
= IncomingReg
.isPhysical();
1907 bool hasAliases
= isPhysReg
&&
1908 MCRegAliasIterator(IncomingReg
, RegInfo
, false).isValid();
1910 SmallVector
<unsigned,4> DeadOps
;
1911 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1912 MachineOperand
&MO
= getOperand(i
);
1913 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
1916 // DEBUG_VALUE nodes do not contribute to code generation and should
1917 // always be ignored. Failure to do so may result in trying to modify
1918 // KILL flags on DEBUG_VALUE nodes.
1922 Register Reg
= MO
.getReg();
1926 if (Reg
== IncomingReg
) {
1929 // The register is already marked kill.
1931 if (isPhysReg
&& isRegTiedToDefOperand(i
))
1932 // Two-address uses of physregs must not be marked kill.
1937 } else if (hasAliases
&& MO
.isKill() && Reg
.isPhysical()) {
1938 // A super-register kill already exists.
1939 if (RegInfo
->isSuperRegister(IncomingReg
, Reg
))
1941 if (RegInfo
->isSubRegister(IncomingReg
, Reg
))
1942 DeadOps
.push_back(i
);
1946 // Trim unneeded kill operands.
1947 while (!DeadOps
.empty()) {
1948 unsigned OpIdx
= DeadOps
.back();
1949 if (getOperand(OpIdx
).isImplicit() &&
1950 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
1951 removeOperand(OpIdx
);
1953 getOperand(OpIdx
).setIsKill(false);
1957 // If not found, this means an alias of one of the operands is killed. Add a
1958 // new implicit operand if required.
1959 if (!Found
&& AddIfNotFound
) {
1960 addOperand(MachineOperand::CreateReg(IncomingReg
,
1969 void MachineInstr::clearRegisterKills(Register Reg
,
1970 const TargetRegisterInfo
*RegInfo
) {
1971 if (!Reg
.isPhysical())
1973 for (MachineOperand
&MO
: operands()) {
1974 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
1976 Register OpReg
= MO
.getReg();
1977 if ((RegInfo
&& RegInfo
->regsOverlap(Reg
, OpReg
)) || Reg
== OpReg
)
1978 MO
.setIsKill(false);
1982 bool MachineInstr::addRegisterDead(Register Reg
,
1983 const TargetRegisterInfo
*RegInfo
,
1984 bool AddIfNotFound
) {
1985 bool isPhysReg
= Reg
.isPhysical();
1986 bool hasAliases
= isPhysReg
&&
1987 MCRegAliasIterator(Reg
, RegInfo
, false).isValid();
1989 SmallVector
<unsigned,4> DeadOps
;
1990 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1991 MachineOperand
&MO
= getOperand(i
);
1992 if (!MO
.isReg() || !MO
.isDef())
1994 Register MOReg
= MO
.getReg();
2001 } else if (hasAliases
&& MO
.isDead() && MOReg
.isPhysical()) {
2002 // There exists a super-register that's marked dead.
2003 if (RegInfo
->isSuperRegister(Reg
, MOReg
))
2005 if (RegInfo
->isSubRegister(Reg
, MOReg
))
2006 DeadOps
.push_back(i
);
2010 // Trim unneeded dead operands.
2011 while (!DeadOps
.empty()) {
2012 unsigned OpIdx
= DeadOps
.back();
2013 if (getOperand(OpIdx
).isImplicit() &&
2014 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
2015 removeOperand(OpIdx
);
2017 getOperand(OpIdx
).setIsDead(false);
2021 // If not found, this means an alias of one of the operands is dead. Add a
2022 // new implicit operand if required.
2023 if (Found
|| !AddIfNotFound
)
2026 addOperand(MachineOperand::CreateReg(Reg
,
2034 void MachineInstr::clearRegisterDeads(Register Reg
) {
2035 for (MachineOperand
&MO
: operands()) {
2036 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
)
2038 MO
.setIsDead(false);
2042 void MachineInstr::setRegisterDefReadUndef(Register Reg
, bool IsUndef
) {
2043 for (MachineOperand
&MO
: operands()) {
2044 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
|| MO
.getSubReg() == 0)
2046 MO
.setIsUndef(IsUndef
);
2050 void MachineInstr::addRegisterDefined(Register Reg
,
2051 const TargetRegisterInfo
*RegInfo
) {
2052 if (Reg
.isPhysical()) {
2053 MachineOperand
*MO
= findRegisterDefOperand(Reg
, false, false, RegInfo
);
2057 for (const MachineOperand
&MO
: operands()) {
2058 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isDef() &&
2059 MO
.getSubReg() == 0)
2063 addOperand(MachineOperand::CreateReg(Reg
,
2068 void MachineInstr::setPhysRegsDeadExcept(ArrayRef
<Register
> UsedRegs
,
2069 const TargetRegisterInfo
&TRI
) {
2070 bool HasRegMask
= false;
2071 for (MachineOperand
&MO
: operands()) {
2072 if (MO
.isRegMask()) {
2076 if (!MO
.isReg() || !MO
.isDef()) continue;
2077 Register Reg
= MO
.getReg();
2078 if (!Reg
.isPhysical())
2080 // If there are no uses, including partial uses, the def is dead.
2081 if (llvm::none_of(UsedRegs
,
2082 [&](MCRegister Use
) { return TRI
.regsOverlap(Use
, Reg
); }))
2086 // This is a call with a register mask operand.
2087 // Mask clobbers are always dead, so add defs for the non-dead defines.
2089 for (const Register
&UsedReg
: UsedRegs
)
2090 addRegisterDefined(UsedReg
, &TRI
);
2094 MachineInstrExpressionTrait::getHashValue(const MachineInstr
* const &MI
) {
2095 // Build up a buffer of hash code components.
2096 SmallVector
<size_t, 16> HashComponents
;
2097 HashComponents
.reserve(MI
->getNumOperands() + 1);
2098 HashComponents
.push_back(MI
->getOpcode());
2099 for (const MachineOperand
&MO
: MI
->operands()) {
2100 if (MO
.isReg() && MO
.isDef() && MO
.getReg().isVirtual())
2101 continue; // Skip virtual register defs.
2103 HashComponents
.push_back(hash_value(MO
));
2105 return hash_combine_range(HashComponents
.begin(), HashComponents
.end());
2108 void MachineInstr::emitError(StringRef Msg
) const {
2109 // Find the source location cookie.
2110 uint64_t LocCookie
= 0;
2111 const MDNode
*LocMD
= nullptr;
2112 for (unsigned i
= getNumOperands(); i
!= 0; --i
) {
2113 if (getOperand(i
-1).isMetadata() &&
2114 (LocMD
= getOperand(i
-1).getMetadata()) &&
2115 LocMD
->getNumOperands() != 0) {
2116 if (const ConstantInt
*CI
=
2117 mdconst::dyn_extract
<ConstantInt
>(LocMD
->getOperand(0))) {
2118 LocCookie
= CI
->getZExtValue();
2124 if (const MachineBasicBlock
*MBB
= getParent())
2125 if (const MachineFunction
*MF
= MBB
->getParent())
2126 return MF
->getMMI().getModule()->getContext().emitError(LocCookie
, Msg
);
2127 report_fatal_error(Msg
);
2130 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2131 const MCInstrDesc
&MCID
, bool IsIndirect
,
2132 Register Reg
, const MDNode
*Variable
,
2133 const MDNode
*Expr
) {
2134 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2135 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2136 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2137 "Expected inlined-at fields to agree");
2138 auto MIB
= BuildMI(MF
, DL
, MCID
).addReg(Reg
);
2143 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2146 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2147 const MCInstrDesc
&MCID
, bool IsIndirect
,
2148 ArrayRef
<MachineOperand
> DebugOps
,
2149 const MDNode
*Variable
, const MDNode
*Expr
) {
2150 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2151 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2152 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2153 "Expected inlined-at fields to agree");
2154 if (MCID
.Opcode
== TargetOpcode::DBG_VALUE
) {
2155 assert(DebugOps
.size() == 1 &&
2156 "DBG_VALUE must contain exactly one debug operand");
2157 MachineOperand DebugOp
= DebugOps
[0];
2158 if (DebugOp
.isReg())
2159 return BuildMI(MF
, DL
, MCID
, IsIndirect
, DebugOp
.getReg(), Variable
,
2162 auto MIB
= BuildMI(MF
, DL
, MCID
).add(DebugOp
);
2167 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2170 auto MIB
= BuildMI(MF
, DL
, MCID
);
2171 MIB
.addMetadata(Variable
).addMetadata(Expr
);
2172 for (const MachineOperand
&DebugOp
: DebugOps
)
2173 if (DebugOp
.isReg())
2174 MIB
.addReg(DebugOp
.getReg());
2180 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2181 MachineBasicBlock::iterator I
,
2182 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2183 bool IsIndirect
, Register Reg
,
2184 const MDNode
*Variable
, const MDNode
*Expr
) {
2185 MachineFunction
&MF
= *BB
.getParent();
2186 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, Reg
, Variable
, Expr
);
2188 return MachineInstrBuilder(MF
, MI
);
2191 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2192 MachineBasicBlock::iterator I
,
2193 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2195 ArrayRef
<MachineOperand
> DebugOps
,
2196 const MDNode
*Variable
, const MDNode
*Expr
) {
2197 MachineFunction
&MF
= *BB
.getParent();
2199 BuildMI(MF
, DL
, MCID
, IsIndirect
, DebugOps
, Variable
, Expr
);
2201 return MachineInstrBuilder(MF
, *MI
);
2204 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2205 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2206 static const DIExpression
*
2207 computeExprForSpill(const MachineInstr
&MI
,
2208 SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2209 assert(MI
.getDebugVariable()->isValidLocationForIntrinsic(MI
.getDebugLoc()) &&
2210 "Expected inlined-at fields to agree");
2212 const DIExpression
*Expr
= MI
.getDebugExpression();
2213 if (MI
.isIndirectDebugValue()) {
2214 assert(MI
.getDebugOffset().getImm() == 0 &&
2215 "DBG_VALUE with nonzero offset");
2216 Expr
= DIExpression::prepend(Expr
, DIExpression::DerefBefore
);
2217 } else if (MI
.isDebugValueList()) {
2218 // We will replace the spilled register with a frame index, so
2219 // immediately deref all references to the spilled register.
2220 std::array
<uint64_t, 1> Ops
{{dwarf::DW_OP_deref
}};
2221 for (const MachineOperand
*Op
: SpilledOperands
) {
2222 unsigned OpIdx
= MI
.getDebugOperandIndex(Op
);
2223 Expr
= DIExpression::appendOpsToArg(Expr
, Ops
, OpIdx
);
2228 static const DIExpression
*computeExprForSpill(const MachineInstr
&MI
,
2229 Register SpillReg
) {
2230 assert(MI
.hasDebugOperandForReg(SpillReg
) && "Spill Reg is not used in MI.");
2231 SmallVector
<const MachineOperand
*> SpillOperands
;
2232 for (const MachineOperand
&Op
: MI
.getDebugOperandsForReg(SpillReg
))
2233 SpillOperands
.push_back(&Op
);
2234 return computeExprForSpill(MI
, SpillOperands
);
2237 MachineInstr
*llvm::buildDbgValueForSpill(MachineBasicBlock
&BB
,
2238 MachineBasicBlock::iterator I
,
2239 const MachineInstr
&Orig
,
2240 int FrameIndex
, Register SpillReg
) {
2241 assert(!Orig
.isDebugRef() &&
2242 "DBG_INSTR_REF should not reference a virtual register.");
2243 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpillReg
);
2244 MachineInstrBuilder NewMI
=
2245 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2246 // Non-Variadic Operands: Location, Offset, Variable, Expression
2247 // Variadic Operands: Variable, Expression, Locations...
2248 if (Orig
.isNonListDebugValue())
2249 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2250 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2251 if (Orig
.isDebugValueList()) {
2252 for (const MachineOperand
&Op
: Orig
.debug_operands())
2253 if (Op
.isReg() && Op
.getReg() == SpillReg
)
2254 NewMI
.addFrameIndex(FrameIndex
);
2256 NewMI
.add(MachineOperand(Op
));
2260 MachineInstr
*llvm::buildDbgValueForSpill(
2261 MachineBasicBlock
&BB
, MachineBasicBlock::iterator I
,
2262 const MachineInstr
&Orig
, int FrameIndex
,
2263 SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2264 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpilledOperands
);
2265 MachineInstrBuilder NewMI
=
2266 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2267 // Non-Variadic Operands: Location, Offset, Variable, Expression
2268 // Variadic Operands: Variable, Expression, Locations...
2269 if (Orig
.isNonListDebugValue())
2270 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2271 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2272 if (Orig
.isDebugValueList()) {
2273 for (const MachineOperand
&Op
: Orig
.debug_operands())
2274 if (is_contained(SpilledOperands
, &Op
))
2275 NewMI
.addFrameIndex(FrameIndex
);
2277 NewMI
.add(MachineOperand(Op
));
2282 void llvm::updateDbgValueForSpill(MachineInstr
&Orig
, int FrameIndex
,
2284 const DIExpression
*Expr
= computeExprForSpill(Orig
, Reg
);
2285 if (Orig
.isNonListDebugValue())
2286 Orig
.getDebugOffset().ChangeToImmediate(0U);
2287 for (MachineOperand
&Op
: Orig
.getDebugOperandsForReg(Reg
))
2288 Op
.ChangeToFrameIndex(FrameIndex
);
2289 Orig
.getDebugExpressionOp().setMetadata(Expr
);
2292 void MachineInstr::collectDebugValues(
2293 SmallVectorImpl
<MachineInstr
*> &DbgValues
) {
2294 MachineInstr
&MI
= *this;
2295 if (!MI
.getOperand(0).isReg())
2298 MachineBasicBlock::iterator DI
= MI
; ++DI
;
2299 for (MachineBasicBlock::iterator DE
= MI
.getParent()->end();
2301 if (!DI
->isDebugValue())
2303 if (DI
->hasDebugOperandForReg(MI
.getOperand(0).getReg()))
2304 DbgValues
.push_back(&*DI
);
2308 void MachineInstr::changeDebugValuesDefReg(Register Reg
) {
2309 // Collect matching debug values.
2310 SmallVector
<MachineInstr
*, 2> DbgValues
;
2312 if (!getOperand(0).isReg())
2315 Register DefReg
= getOperand(0).getReg();
2316 auto *MRI
= getRegInfo();
2317 for (auto &MO
: MRI
->use_operands(DefReg
)) {
2318 auto *DI
= MO
.getParent();
2319 if (!DI
->isDebugValue())
2321 if (DI
->hasDebugOperandForReg(DefReg
)) {
2322 DbgValues
.push_back(DI
);
2326 // Propagate Reg to debug value instructions.
2327 for (auto *DBI
: DbgValues
)
2328 for (MachineOperand
&Op
: DBI
->getDebugOperandsForReg(DefReg
))
2332 using MMOList
= SmallVector
<const MachineMemOperand
*, 2>;
2334 static unsigned getSpillSlotSize(const MMOList
&Accesses
,
2335 const MachineFrameInfo
&MFI
) {
2337 for (const auto *A
: Accesses
)
2338 if (MFI
.isSpillSlotObjectIndex(
2339 cast
<FixedStackPseudoSourceValue
>(A
->getPseudoValue())
2341 Size
+= A
->getSize();
2345 std::optional
<unsigned>
2346 MachineInstr::getSpillSize(const TargetInstrInfo
*TII
) const {
2348 if (TII
->isStoreToStackSlotPostFE(*this, FI
)) {
2349 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2350 if (MFI
.isSpillSlotObjectIndex(FI
))
2351 return (*memoperands_begin())->getSize();
2353 return std::nullopt
;
2356 std::optional
<unsigned>
2357 MachineInstr::getFoldedSpillSize(const TargetInstrInfo
*TII
) const {
2359 if (TII
->hasStoreToStackSlot(*this, Accesses
))
2360 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2361 return std::nullopt
;
2364 std::optional
<unsigned>
2365 MachineInstr::getRestoreSize(const TargetInstrInfo
*TII
) const {
2367 if (TII
->isLoadFromStackSlotPostFE(*this, FI
)) {
2368 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2369 if (MFI
.isSpillSlotObjectIndex(FI
))
2370 return (*memoperands_begin())->getSize();
2372 return std::nullopt
;
2375 std::optional
<unsigned>
2376 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo
*TII
) const {
2378 if (TII
->hasLoadFromStackSlot(*this, Accesses
))
2379 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2380 return std::nullopt
;
2383 unsigned MachineInstr::getDebugInstrNum() {
2384 if (DebugInstrNum
== 0)
2385 DebugInstrNum
= getParent()->getParent()->getNewDebugInstrNum();
2386 return DebugInstrNum
;
2389 unsigned MachineInstr::getDebugInstrNum(MachineFunction
&MF
) {
2390 if (DebugInstrNum
== 0)
2391 DebugInstrNum
= MF
.getNewDebugInstrNum();
2392 return DebugInstrNum
;
2395 std::tuple
<LLT
, LLT
> MachineInstr::getFirst2LLTs() const {
2396 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2397 getRegInfo()->getType(getOperand(1).getReg()));
2400 std::tuple
<LLT
, LLT
, LLT
> MachineInstr::getFirst3LLTs() const {
2401 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2402 getRegInfo()->getType(getOperand(1).getReg()),
2403 getRegInfo()->getType(getOperand(2).getReg()));
2406 std::tuple
<LLT
, LLT
, LLT
, LLT
> MachineInstr::getFirst4LLTs() const {
2407 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2408 getRegInfo()->getType(getOperand(1).getReg()),
2409 getRegInfo()->getType(getOperand(2).getReg()),
2410 getRegInfo()->getType(getOperand(3).getReg()));
2413 std::tuple
<LLT
, LLT
, LLT
, LLT
, LLT
> MachineInstr::getFirst5LLTs() const {
2414 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2415 getRegInfo()->getType(getOperand(1).getReg()),
2416 getRegInfo()->getType(getOperand(2).getReg()),
2417 getRegInfo()->getType(getOperand(3).getReg()),
2418 getRegInfo()->getType(getOperand(4).getReg()));
2421 std::tuple
<Register
, LLT
, Register
, LLT
>
2422 MachineInstr::getFirst2RegLLTs() const {
2423 Register Reg0
= getOperand(0).getReg();
2424 Register Reg1
= getOperand(1).getReg();
2425 return std::tuple(Reg0
, getRegInfo()->getType(Reg0
), Reg1
,
2426 getRegInfo()->getType(Reg1
));
2429 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
>
2430 MachineInstr::getFirst3RegLLTs() const {
2431 Register Reg0
= getOperand(0).getReg();
2432 Register Reg1
= getOperand(1).getReg();
2433 Register Reg2
= getOperand(2).getReg();
2434 return std::tuple(Reg0
, getRegInfo()->getType(Reg0
), Reg1
,
2435 getRegInfo()->getType(Reg1
), Reg2
,
2436 getRegInfo()->getType(Reg2
));
2439 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
, LLT
>
2440 MachineInstr::getFirst4RegLLTs() const {
2441 Register Reg0
= getOperand(0).getReg();
2442 Register Reg1
= getOperand(1).getReg();
2443 Register Reg2
= getOperand(2).getReg();
2444 Register Reg3
= getOperand(3).getReg();
2446 Reg0
, getRegInfo()->getType(Reg0
), Reg1
, getRegInfo()->getType(Reg1
),
2447 Reg2
, getRegInfo()->getType(Reg2
), Reg3
, getRegInfo()->getType(Reg3
));
2450 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
,
2452 MachineInstr::getFirst5RegLLTs() const {
2453 Register Reg0
= getOperand(0).getReg();
2454 Register Reg1
= getOperand(1).getReg();
2455 Register Reg2
= getOperand(2).getReg();
2456 Register Reg3
= getOperand(3).getReg();
2457 Register Reg4
= getOperand(4).getReg();
2459 Reg0
, getRegInfo()->getType(Reg0
), Reg1
, getRegInfo()->getType(Reg1
),
2460 Reg2
, getRegInfo()->getType(Reg2
), Reg3
, getRegInfo()->getType(Reg3
),
2461 Reg4
, getRegInfo()->getType(Reg4
));