[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / llvm / lib / CodeGen / TargetInstrInfo.cpp
blob09dcddc17b0643e2b3c5a69530005017b88dec62
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/ADT/StringExtras.h"
15 #include "llvm/BinaryFormat/Dwarf.h"
16 #include "llvm/CodeGen/MachineCombinerPattern.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineMemOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/MachineScheduler.h"
22 #include "llvm/CodeGen/MachineTraceMetrics.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
25 #include "llvm/CodeGen/StackMaps.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSchedule.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInstrItineraries.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
40 static cl::opt<bool> DisableHazardRecognizer(
41 "disable-sched-hazard", cl::Hidden, cl::init(false),
42 cl::desc("Disable hazard detection during preRA scheduling"));
44 TargetInstrInfo::~TargetInstrInfo() = default;
46 const TargetRegisterClass*
47 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
48 const TargetRegisterInfo *TRI,
49 const MachineFunction &MF) const {
50 if (OpNum >= MCID.getNumOperands())
51 return nullptr;
53 short RegClass = MCID.operands()[OpNum].RegClass;
54 if (MCID.operands()[OpNum].isLookupPtrRegClass())
55 return TRI->getPointerRegClass(MF, RegClass);
57 // Instructions like INSERT_SUBREG do not have fixed register classes.
58 if (RegClass < 0)
59 return nullptr;
61 // Otherwise just look it up normally.
62 return TRI->getRegClass(RegClass);
65 /// insertNoop - Insert a noop into the instruction stream at the specified
66 /// point.
67 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
68 MachineBasicBlock::iterator MI) const {
69 llvm_unreachable("Target didn't implement insertNoop!");
72 /// insertNoops - Insert noops into the instruction stream at the specified
73 /// point.
74 void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB,
75 MachineBasicBlock::iterator MI,
76 unsigned Quantity) const {
77 for (unsigned i = 0; i < Quantity; ++i)
78 insertNoop(MBB, MI);
81 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
82 return strncmp(Str, MAI.getCommentString().data(),
83 MAI.getCommentString().size()) == 0;
86 /// Measure the specified inline asm to determine an approximation of its
87 /// length.
88 /// Comments (which run till the next SeparatorString or newline) do not
89 /// count as an instruction.
90 /// Any other non-whitespace text is considered an instruction, with
91 /// multiple instructions separated by SeparatorString or newlines.
92 /// Variable-length instructions are not handled here; this function
93 /// may be overloaded in the target code to do that.
94 /// We implement a special case of the .space directive which takes only a
95 /// single integer argument in base 10 that is the size in bytes. This is a
96 /// restricted form of the GAS directive in that we only interpret
97 /// simple--i.e. not a logical or arithmetic expression--size values without
98 /// the optional fill value. This is primarily used for creating arbitrary
99 /// sized inline asm blocks for testing purposes.
100 unsigned TargetInstrInfo::getInlineAsmLength(
101 const char *Str,
102 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
103 // Count the number of instructions in the asm.
104 bool AtInsnStart = true;
105 unsigned Length = 0;
106 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
107 for (; *Str; ++Str) {
108 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
109 strlen(MAI.getSeparatorString())) == 0) {
110 AtInsnStart = true;
111 } else if (isAsmComment(Str, MAI)) {
112 // Stop counting as an instruction after a comment until the next
113 // separator.
114 AtInsnStart = false;
117 if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
118 unsigned AddLength = MaxInstLength;
119 if (strncmp(Str, ".space", 6) == 0) {
120 char *EStr;
121 int SpaceSize;
122 SpaceSize = strtol(Str + 6, &EStr, 10);
123 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
124 while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
125 ++EStr;
126 if (*EStr == '\0' || *EStr == '\n' ||
127 isAsmComment(EStr, MAI)) // Successfully parsed .space argument
128 AddLength = SpaceSize;
130 Length += AddLength;
131 AtInsnStart = false;
135 return Length;
138 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
139 /// after it, replacing it with an unconditional branch to NewDest.
140 void
141 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
142 MachineBasicBlock *NewDest) const {
143 MachineBasicBlock *MBB = Tail->getParent();
145 // Remove all the old successors of MBB from the CFG.
146 while (!MBB->succ_empty())
147 MBB->removeSuccessor(MBB->succ_begin());
149 // Save off the debug loc before erasing the instruction.
150 DebugLoc DL = Tail->getDebugLoc();
152 // Update call site info and remove all the dead instructions
153 // from the end of MBB.
154 while (Tail != MBB->end()) {
155 auto MI = Tail++;
156 if (MI->shouldUpdateCallSiteInfo())
157 MBB->getParent()->eraseCallSiteInfo(&*MI);
158 MBB->erase(MI);
161 // If MBB isn't immediately before MBB, insert a branch to it.
162 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
163 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
164 MBB->addSuccessor(NewDest);
167 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
168 bool NewMI, unsigned Idx1,
169 unsigned Idx2) const {
170 const MCInstrDesc &MCID = MI.getDesc();
171 bool HasDef = MCID.getNumDefs();
172 if (HasDef && !MI.getOperand(0).isReg())
173 // No idea how to commute this instruction. Target should implement its own.
174 return nullptr;
176 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
177 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
178 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
179 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
180 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
181 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
182 "This only knows how to commute register operands so far");
184 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
185 Register Reg1 = MI.getOperand(Idx1).getReg();
186 Register Reg2 = MI.getOperand(Idx2).getReg();
187 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
188 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
189 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
190 bool Reg1IsKill = MI.getOperand(Idx1).isKill();
191 bool Reg2IsKill = MI.getOperand(Idx2).isKill();
192 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
193 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
194 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
195 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
196 // Avoid calling isRenamable for virtual registers since we assert that
197 // renamable property is only queried/set for physical registers.
198 bool Reg1IsRenamable =
199 Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false;
200 bool Reg2IsRenamable =
201 Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false;
202 // If destination is tied to either of the commuted source register, then
203 // it must be updated.
204 if (HasDef && Reg0 == Reg1 &&
205 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
206 Reg2IsKill = false;
207 Reg0 = Reg2;
208 SubReg0 = SubReg2;
209 } else if (HasDef && Reg0 == Reg2 &&
210 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
211 Reg1IsKill = false;
212 Reg0 = Reg1;
213 SubReg0 = SubReg1;
216 MachineInstr *CommutedMI = nullptr;
217 if (NewMI) {
218 // Create a new instruction.
219 MachineFunction &MF = *MI.getMF();
220 CommutedMI = MF.CloneMachineInstr(&MI);
221 } else {
222 CommutedMI = &MI;
225 if (HasDef) {
226 CommutedMI->getOperand(0).setReg(Reg0);
227 CommutedMI->getOperand(0).setSubReg(SubReg0);
229 CommutedMI->getOperand(Idx2).setReg(Reg1);
230 CommutedMI->getOperand(Idx1).setReg(Reg2);
231 CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
232 CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
233 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
234 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
235 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
236 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
237 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
238 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
239 // Avoid calling setIsRenamable for virtual registers since we assert that
240 // renamable property is only queried/set for physical registers.
241 if (Reg1.isPhysical())
242 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
243 if (Reg2.isPhysical())
244 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
245 return CommutedMI;
248 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
249 unsigned OpIdx1,
250 unsigned OpIdx2) const {
251 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
252 // any commutable operand, which is done in findCommutedOpIndices() method
253 // called below.
254 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
255 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
256 assert(MI.isCommutable() &&
257 "Precondition violation: MI must be commutable.");
258 return nullptr;
260 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
263 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
264 unsigned &ResultIdx2,
265 unsigned CommutableOpIdx1,
266 unsigned CommutableOpIdx2) {
267 if (ResultIdx1 == CommuteAnyOperandIndex &&
268 ResultIdx2 == CommuteAnyOperandIndex) {
269 ResultIdx1 = CommutableOpIdx1;
270 ResultIdx2 = CommutableOpIdx2;
271 } else if (ResultIdx1 == CommuteAnyOperandIndex) {
272 if (ResultIdx2 == CommutableOpIdx1)
273 ResultIdx1 = CommutableOpIdx2;
274 else if (ResultIdx2 == CommutableOpIdx2)
275 ResultIdx1 = CommutableOpIdx1;
276 else
277 return false;
278 } else if (ResultIdx2 == CommuteAnyOperandIndex) {
279 if (ResultIdx1 == CommutableOpIdx1)
280 ResultIdx2 = CommutableOpIdx2;
281 else if (ResultIdx1 == CommutableOpIdx2)
282 ResultIdx2 = CommutableOpIdx1;
283 else
284 return false;
285 } else
286 // Check that the result operand indices match the given commutable
287 // operand indices.
288 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
289 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
291 return true;
294 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
295 unsigned &SrcOpIdx1,
296 unsigned &SrcOpIdx2) const {
297 assert(!MI.isBundle() &&
298 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
300 const MCInstrDesc &MCID = MI.getDesc();
301 if (!MCID.isCommutable())
302 return false;
304 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
305 // is not true, then the target must implement this.
306 unsigned CommutableOpIdx1 = MCID.getNumDefs();
307 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
308 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
309 CommutableOpIdx1, CommutableOpIdx2))
310 return false;
312 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
313 // No idea.
314 return false;
315 return true;
318 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
319 if (!MI.isTerminator()) return false;
321 // Conditional branch is a special case.
322 if (MI.isBranch() && !MI.isBarrier())
323 return true;
324 if (!MI.isPredicable())
325 return true;
326 return !isPredicated(MI);
329 bool TargetInstrInfo::PredicateInstruction(
330 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
331 bool MadeChange = false;
333 assert(!MI.isBundle() &&
334 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
336 const MCInstrDesc &MCID = MI.getDesc();
337 if (!MI.isPredicable())
338 return false;
340 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
341 if (MCID.operands()[i].isPredicate()) {
342 MachineOperand &MO = MI.getOperand(i);
343 if (MO.isReg()) {
344 MO.setReg(Pred[j].getReg());
345 MadeChange = true;
346 } else if (MO.isImm()) {
347 MO.setImm(Pred[j].getImm());
348 MadeChange = true;
349 } else if (MO.isMBB()) {
350 MO.setMBB(Pred[j].getMBB());
351 MadeChange = true;
353 ++j;
356 return MadeChange;
359 bool TargetInstrInfo::hasLoadFromStackSlot(
360 const MachineInstr &MI,
361 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
362 size_t StartSize = Accesses.size();
363 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
364 oe = MI.memoperands_end();
365 o != oe; ++o) {
366 if ((*o)->isLoad() &&
367 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
368 Accesses.push_back(*o);
370 return Accesses.size() != StartSize;
373 bool TargetInstrInfo::hasStoreToStackSlot(
374 const MachineInstr &MI,
375 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
376 size_t StartSize = Accesses.size();
377 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
378 oe = MI.memoperands_end();
379 o != oe; ++o) {
380 if ((*o)->isStore() &&
381 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
382 Accesses.push_back(*o);
384 return Accesses.size() != StartSize;
387 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
388 unsigned SubIdx, unsigned &Size,
389 unsigned &Offset,
390 const MachineFunction &MF) const {
391 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
392 if (!SubIdx) {
393 Size = TRI->getSpillSize(*RC);
394 Offset = 0;
395 return true;
397 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
398 // Convert bit size to byte size.
399 if (BitSize % 8)
400 return false;
402 int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
403 if (BitOffset < 0 || BitOffset % 8)
404 return false;
406 Size = BitSize / 8;
407 Offset = (unsigned)BitOffset / 8;
409 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
411 if (!MF.getDataLayout().isLittleEndian()) {
412 Offset = TRI->getSpillSize(*RC) - (Offset + Size);
414 return true;
417 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
418 MachineBasicBlock::iterator I,
419 Register DestReg, unsigned SubIdx,
420 const MachineInstr &Orig,
421 const TargetRegisterInfo &TRI) const {
422 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
423 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
424 MBB.insert(I, MI);
427 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
428 const MachineInstr &MI1,
429 const MachineRegisterInfo *MRI) const {
430 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
433 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
434 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
435 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
436 MachineFunction &MF = *MBB.getParent();
437 return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig);
440 // If the COPY instruction in MI can be folded to a stack operation, return
441 // the register class to use.
442 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
443 const TargetInstrInfo &TII,
444 unsigned FoldIdx) {
445 assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction");
446 if (MI.getNumOperands() != 2)
447 return nullptr;
448 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
450 const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
451 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
453 if (FoldOp.getSubReg() || LiveOp.getSubReg())
454 return nullptr;
456 Register FoldReg = FoldOp.getReg();
457 Register LiveReg = LiveOp.getReg();
459 assert(FoldReg.isVirtual() && "Cannot fold physregs");
461 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
462 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
464 if (LiveOp.getReg().isPhysical())
465 return RC->contains(LiveOp.getReg()) ? RC : nullptr;
467 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
468 return RC;
470 // FIXME: Allow folding when register classes are memory compatible.
471 return nullptr;
474 MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
476 std::pair<unsigned, unsigned>
477 TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const {
478 switch (MI.getOpcode()) {
479 case TargetOpcode::STACKMAP:
480 // StackMapLiveValues are foldable
481 return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
482 case TargetOpcode::PATCHPOINT:
483 // For PatchPoint, the call args are not foldable (even if reported in the
484 // stackmap e.g. via anyregcc).
485 return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
486 case TargetOpcode::STATEPOINT:
487 // For statepoints, fold deopt and gc arguments, but not call arguments.
488 return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
489 default:
490 llvm_unreachable("unexpected stackmap opcode");
494 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
495 ArrayRef<unsigned> Ops, int FrameIndex,
496 const TargetInstrInfo &TII) {
497 unsigned StartIdx = 0;
498 unsigned NumDefs = 0;
499 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
500 std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
502 unsigned DefToFoldIdx = MI.getNumOperands();
504 // Return false if any operands requested for folding are not foldable (not
505 // part of the stackmap's live values).
506 for (unsigned Op : Ops) {
507 if (Op < NumDefs) {
508 assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
509 DefToFoldIdx = Op;
510 } else if (Op < StartIdx) {
511 return nullptr;
513 if (MI.getOperand(Op).isTied())
514 return nullptr;
517 MachineInstr *NewMI =
518 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
519 MachineInstrBuilder MIB(MF, NewMI);
521 // No need to fold return, the meta data, and function arguments
522 for (unsigned i = 0; i < StartIdx; ++i)
523 if (i != DefToFoldIdx)
524 MIB.add(MI.getOperand(i));
526 for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
527 MachineOperand &MO = MI.getOperand(i);
528 unsigned TiedTo = e;
529 (void)MI.isRegTiedToDefOperand(i, &TiedTo);
531 if (is_contained(Ops, i)) {
532 assert(TiedTo == e && "Cannot fold tied operands");
533 unsigned SpillSize;
534 unsigned SpillOffset;
535 // Compute the spill slot size and offset.
536 const TargetRegisterClass *RC =
537 MF.getRegInfo().getRegClass(MO.getReg());
538 bool Valid =
539 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
540 if (!Valid)
541 report_fatal_error("cannot spill patchpoint subregister operand");
542 MIB.addImm(StackMaps::IndirectMemRefOp);
543 MIB.addImm(SpillSize);
544 MIB.addFrameIndex(FrameIndex);
545 MIB.addImm(SpillOffset);
546 } else {
547 MIB.add(MO);
548 if (TiedTo < e) {
549 assert(TiedTo < NumDefs && "Bad tied operand");
550 if (TiedTo > DefToFoldIdx)
551 --TiedTo;
552 NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
556 return NewMI;
559 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
560 ArrayRef<unsigned> Ops, int FI,
561 LiveIntervals *LIS,
562 VirtRegMap *VRM) const {
563 auto Flags = MachineMemOperand::MONone;
564 for (unsigned OpIdx : Ops)
565 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
566 : MachineMemOperand::MOLoad;
568 MachineBasicBlock *MBB = MI.getParent();
569 assert(MBB && "foldMemoryOperand needs an inserted instruction");
570 MachineFunction &MF = *MBB->getParent();
572 // If we're not folding a load into a subreg, the size of the load is the
573 // size of the spill slot. But if we are, we need to figure out what the
574 // actual load size is.
575 int64_t MemSize = 0;
576 const MachineFrameInfo &MFI = MF.getFrameInfo();
577 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
579 if (Flags & MachineMemOperand::MOStore) {
580 MemSize = MFI.getObjectSize(FI);
581 } else {
582 for (unsigned OpIdx : Ops) {
583 int64_t OpSize = MFI.getObjectSize(FI);
585 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
586 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
587 if (SubRegSize > 0 && !(SubRegSize % 8))
588 OpSize = SubRegSize / 8;
591 MemSize = std::max(MemSize, OpSize);
595 assert(MemSize && "Did not expect a zero-sized stack slot");
597 MachineInstr *NewMI = nullptr;
599 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
600 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
601 MI.getOpcode() == TargetOpcode::STATEPOINT) {
602 // Fold stackmap/patchpoint.
603 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
604 if (NewMI)
605 MBB->insert(MI, NewMI);
606 } else {
607 // Ask the target to do the actual folding.
608 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
611 if (NewMI) {
612 NewMI->setMemRefs(MF, MI.memoperands());
613 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
614 assert((!(Flags & MachineMemOperand::MOStore) ||
615 NewMI->mayStore()) &&
616 "Folded a def to a non-store!");
617 assert((!(Flags & MachineMemOperand::MOLoad) ||
618 NewMI->mayLoad()) &&
619 "Folded a use to a non-load!");
620 assert(MFI.getObjectOffset(FI) != -1);
621 MachineMemOperand *MMO =
622 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
623 Flags, MemSize, MFI.getObjectAlign(FI));
624 NewMI->addMemOperand(MF, MMO);
626 // The pass "x86 speculative load hardening" always attaches symbols to
627 // call instructions. We need copy it form old instruction.
628 NewMI->cloneInstrSymbols(MF, MI);
630 return NewMI;
633 // Straight COPY may fold as load/store.
634 if (!isCopyInstr(MI) || Ops.size() != 1)
635 return nullptr;
637 const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]);
638 if (!RC)
639 return nullptr;
641 const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
642 MachineBasicBlock::iterator Pos = MI;
644 if (Flags == MachineMemOperand::MOStore)
645 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI,
646 Register());
647 else
648 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register());
649 return &*--Pos;
652 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
653 ArrayRef<unsigned> Ops,
654 MachineInstr &LoadMI,
655 LiveIntervals *LIS) const {
656 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
657 #ifndef NDEBUG
658 for (unsigned OpIdx : Ops)
659 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
660 #endif
662 MachineBasicBlock &MBB = *MI.getParent();
663 MachineFunction &MF = *MBB.getParent();
665 // Ask the target to do the actual folding.
666 MachineInstr *NewMI = nullptr;
667 int FrameIndex = 0;
669 if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
670 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
671 MI.getOpcode() == TargetOpcode::STATEPOINT) &&
672 isLoadFromStackSlot(LoadMI, FrameIndex)) {
673 // Fold stackmap/patchpoint.
674 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
675 if (NewMI)
676 NewMI = &*MBB.insert(MI, NewMI);
677 } else {
678 // Ask the target to do the actual folding.
679 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
682 if (!NewMI)
683 return nullptr;
685 // Copy the memoperands from the load to the folded instruction.
686 if (MI.memoperands_empty()) {
687 NewMI->setMemRefs(MF, LoadMI.memoperands());
688 } else {
689 // Handle the rare case of folding multiple loads.
690 NewMI->setMemRefs(MF, MI.memoperands());
691 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
692 E = LoadMI.memoperands_end();
693 I != E; ++I) {
694 NewMI->addMemOperand(MF, *I);
697 return NewMI;
700 /// transferImplicitOperands - MI is a pseudo-instruction, and the lowered
701 /// replacement instructions immediately precede it. Copy any implicit
702 /// operands from MI to the replacement instruction.
703 static void transferImplicitOperands(MachineInstr *MI,
704 const TargetRegisterInfo *TRI) {
705 MachineBasicBlock::iterator CopyMI = MI;
706 --CopyMI;
708 Register DstReg = MI->getOperand(0).getReg();
709 for (const MachineOperand &MO : MI->implicit_operands()) {
710 CopyMI->addOperand(MO);
712 // Be conservative about preserving kills when subregister defs are
713 // involved. If there was implicit kill of a super-register overlapping the
714 // copy result, we would kill the subregisters previous copies defined.
716 if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg()))
717 CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false);
721 void TargetInstrInfo::lowerCopy(MachineInstr *MI,
722 const TargetRegisterInfo *TRI) const {
723 if (MI->allDefsAreDead()) {
724 MI->setDesc(get(TargetOpcode::KILL));
725 return;
728 MachineOperand &DstMO = MI->getOperand(0);
729 MachineOperand &SrcMO = MI->getOperand(1);
731 bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg());
732 if (IdentityCopy || SrcMO.isUndef()) {
733 // No need to insert an identity copy instruction, but replace with a KILL
734 // if liveness is changed.
735 if (SrcMO.isUndef() || MI->getNumOperands() > 2) {
736 // We must make sure the super-register gets killed. Replace the
737 // instruction with KILL.
738 MI->setDesc(get(TargetOpcode::KILL));
739 return;
741 // Vanilla identity copy.
742 MI->eraseFromParent();
743 return;
746 copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(),
747 SrcMO.getReg(), SrcMO.isKill());
749 if (MI->getNumOperands() > 2)
750 transferImplicitOperands(MI, TRI);
751 MI->eraseFromParent();
752 return;
755 bool TargetInstrInfo::hasReassociableOperands(
756 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
757 const MachineOperand &Op1 = Inst.getOperand(1);
758 const MachineOperand &Op2 = Inst.getOperand(2);
759 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
761 // We need virtual register definitions for the operands that we will
762 // reassociate.
763 MachineInstr *MI1 = nullptr;
764 MachineInstr *MI2 = nullptr;
765 if (Op1.isReg() && Op1.getReg().isVirtual())
766 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
767 if (Op2.isReg() && Op2.getReg().isVirtual())
768 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
770 // And at least one operand must be defined in MBB.
771 return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
774 bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1,
775 unsigned Opcode2) const {
776 return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2;
779 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
780 bool &Commuted) const {
781 const MachineBasicBlock *MBB = Inst.getParent();
782 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
783 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
784 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
785 unsigned Opcode = Inst.getOpcode();
787 // If only one operand has the same or inverse opcode and it's the second
788 // source operand, the operands must be commuted.
789 Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
790 areOpcodesEqualOrInverse(Opcode, MI2->getOpcode());
791 if (Commuted)
792 std::swap(MI1, MI2);
794 // 1. The previous instruction must be the same type as Inst.
795 // 2. The previous instruction must also be associative/commutative or be the
796 // inverse of such an operation (this can be different even for
797 // instructions with the same opcode if traits like fast-math-flags are
798 // included).
799 // 3. The previous instruction must have virtual register definitions for its
800 // operands in the same basic block as Inst.
801 // 4. The previous instruction's result must only be used by Inst.
802 return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
803 (isAssociativeAndCommutative(*MI1) ||
804 isAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
805 hasReassociableOperands(*MI1, MBB) &&
806 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
809 // 1. The operation must be associative and commutative or be the inverse of
810 // such an operation.
811 // 2. The instruction must have virtual register definitions for its
812 // operands in the same basic block.
813 // 3. The instruction must have a reassociable sibling.
814 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
815 bool &Commuted) const {
816 return (isAssociativeAndCommutative(Inst) ||
817 isAssociativeAndCommutative(Inst, /* Invert */ true)) &&
818 hasReassociableOperands(Inst, Inst.getParent()) &&
819 hasReassociableSibling(Inst, Commuted);
822 // The concept of the reassociation pass is that these operations can benefit
823 // from this kind of transformation:
825 // A = ? op ?
826 // B = A op X (Prev)
827 // C = B op Y (Root)
828 // -->
829 // A = ? op ?
830 // B = X op Y
831 // C = A op B
833 // breaking the dependency between A and B, allowing them to be executed in
834 // parallel (or back-to-back in a pipeline) instead of depending on each other.
836 // FIXME: This has the potential to be expensive (compile time) while not
837 // improving the code at all. Some ways to limit the overhead:
838 // 1. Track successful transforms; bail out if hit rate gets too low.
839 // 2. Only enable at -O3 or some other non-default optimization level.
840 // 3. Pre-screen pattern candidates here: if an operand of the previous
841 // instruction is known to not increase the critical path, then don't match
842 // that pattern.
843 bool TargetInstrInfo::getMachineCombinerPatterns(
844 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
845 bool DoRegPressureReduce) const {
846 bool Commute;
847 if (isReassociationCandidate(Root, Commute)) {
848 // We found a sequence of instructions that may be suitable for a
849 // reassociation of operands to increase ILP. Specify each commutation
850 // possibility for the Prev instruction in the sequence and let the
851 // machine combiner decide if changing the operands is worthwhile.
852 if (Commute) {
853 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
854 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
855 } else {
856 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
857 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
859 return true;
862 return false;
865 /// Return true when a code sequence can improve loop throughput.
866 bool
867 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
868 return false;
871 std::pair<unsigned, unsigned>
872 TargetInstrInfo::getReassociationOpcodes(MachineCombinerPattern Pattern,
873 const MachineInstr &Root,
874 const MachineInstr &Prev) const {
875 bool AssocCommutRoot = isAssociativeAndCommutative(Root);
876 bool AssocCommutPrev = isAssociativeAndCommutative(Prev);
878 // Early exit if both opcodes are associative and commutative. It's a trivial
879 // reassociation when we only change operands order. In this case opcodes are
880 // not required to have inverse versions.
881 if (AssocCommutRoot && AssocCommutPrev) {
882 assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal");
883 return std::make_pair(Root.getOpcode(), Root.getOpcode());
886 // At least one instruction is not associative or commutative.
887 // Since we have matched one of the reassociation patterns, we expect that the
888 // instructions' opcodes are equal or one of them is the inversion of the
889 // other.
890 assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) &&
891 "Incorrectly matched pattern");
892 unsigned AssocCommutOpcode = Root.getOpcode();
893 unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode());
894 if (!AssocCommutRoot)
895 std::swap(AssocCommutOpcode, InverseOpcode);
897 // The transformation rule (`+` is any associative and commutative binary
898 // operation, `-` is the inverse):
899 // REASSOC_AX_BY:
900 // (A + X) + Y => A + (X + Y)
901 // (A + X) - Y => A + (X - Y)
902 // (A - X) + Y => A - (X - Y)
903 // (A - X) - Y => A - (X + Y)
904 // REASSOC_XA_BY:
905 // (X + A) + Y => (X + Y) + A
906 // (X + A) - Y => (X - Y) + A
907 // (X - A) + Y => (X + Y) - A
908 // (X - A) - Y => (X - Y) - A
909 // REASSOC_AX_YB:
910 // Y + (A + X) => (Y + X) + A
911 // Y - (A + X) => (Y - X) - A
912 // Y + (A - X) => (Y - X) + A
913 // Y - (A - X) => (Y + X) - A
914 // REASSOC_XA_YB:
915 // Y + (X + A) => (Y + X) + A
916 // Y - (X + A) => (Y - X) - A
917 // Y + (X - A) => (Y + X) - A
918 // Y - (X - A) => (Y - X) + A
919 switch (Pattern) {
920 default:
921 llvm_unreachable("Unexpected pattern");
922 case MachineCombinerPattern::REASSOC_AX_BY:
923 if (!AssocCommutRoot && AssocCommutPrev)
924 return {AssocCommutOpcode, InverseOpcode};
925 if (AssocCommutRoot && !AssocCommutPrev)
926 return {InverseOpcode, InverseOpcode};
927 if (!AssocCommutRoot && !AssocCommutPrev)
928 return {InverseOpcode, AssocCommutOpcode};
929 break;
930 case MachineCombinerPattern::REASSOC_XA_BY:
931 if (!AssocCommutRoot && AssocCommutPrev)
932 return {AssocCommutOpcode, InverseOpcode};
933 if (AssocCommutRoot && !AssocCommutPrev)
934 return {InverseOpcode, AssocCommutOpcode};
935 if (!AssocCommutRoot && !AssocCommutPrev)
936 return {InverseOpcode, InverseOpcode};
937 break;
938 case MachineCombinerPattern::REASSOC_AX_YB:
939 if (!AssocCommutRoot && AssocCommutPrev)
940 return {InverseOpcode, InverseOpcode};
941 if (AssocCommutRoot && !AssocCommutPrev)
942 return {AssocCommutOpcode, InverseOpcode};
943 if (!AssocCommutRoot && !AssocCommutPrev)
944 return {InverseOpcode, AssocCommutOpcode};
945 break;
946 case MachineCombinerPattern::REASSOC_XA_YB:
947 if (!AssocCommutRoot && AssocCommutPrev)
948 return {InverseOpcode, InverseOpcode};
949 if (AssocCommutRoot && !AssocCommutPrev)
950 return {InverseOpcode, AssocCommutOpcode};
951 if (!AssocCommutRoot && !AssocCommutPrev)
952 return {AssocCommutOpcode, InverseOpcode};
953 break;
955 llvm_unreachable("Unhandled combination");
958 // Return a pair of boolean flags showing if the new root and new prev operands
959 // must be swapped. See visual example of the rule in
960 // TargetInstrInfo::getReassociationOpcodes.
961 static std::pair<bool, bool> mustSwapOperands(MachineCombinerPattern Pattern) {
962 switch (Pattern) {
963 default:
964 llvm_unreachable("Unexpected pattern");
965 case MachineCombinerPattern::REASSOC_AX_BY:
966 return {false, false};
967 case MachineCombinerPattern::REASSOC_XA_BY:
968 return {true, false};
969 case MachineCombinerPattern::REASSOC_AX_YB:
970 return {true, true};
971 case MachineCombinerPattern::REASSOC_XA_YB:
972 return {true, true};
976 /// Attempt the reassociation transformation to reduce critical path length.
977 /// See the above comments before getMachineCombinerPatterns().
978 void TargetInstrInfo::reassociateOps(
979 MachineInstr &Root, MachineInstr &Prev,
980 MachineCombinerPattern Pattern,
981 SmallVectorImpl<MachineInstr *> &InsInstrs,
982 SmallVectorImpl<MachineInstr *> &DelInstrs,
983 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
984 MachineFunction *MF = Root.getMF();
985 MachineRegisterInfo &MRI = MF->getRegInfo();
986 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
987 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
988 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
990 // This array encodes the operand index for each parameter because the
991 // operands may be commuted. Each row corresponds to a pattern value,
992 // and each column specifies the index of A, B, X, Y.
993 unsigned OpIdx[4][4] = {
994 { 1, 1, 2, 2 },
995 { 1, 2, 2, 1 },
996 { 2, 1, 1, 2 },
997 { 2, 2, 1, 1 }
1000 int Row;
1001 switch (Pattern) {
1002 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
1003 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
1004 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
1005 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
1006 default: llvm_unreachable("unexpected MachineCombinerPattern");
1009 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
1010 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
1011 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
1012 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
1013 MachineOperand &OpC = Root.getOperand(0);
1015 Register RegA = OpA.getReg();
1016 Register RegB = OpB.getReg();
1017 Register RegX = OpX.getReg();
1018 Register RegY = OpY.getReg();
1019 Register RegC = OpC.getReg();
1021 if (RegA.isVirtual())
1022 MRI.constrainRegClass(RegA, RC);
1023 if (RegB.isVirtual())
1024 MRI.constrainRegClass(RegB, RC);
1025 if (RegX.isVirtual())
1026 MRI.constrainRegClass(RegX, RC);
1027 if (RegY.isVirtual())
1028 MRI.constrainRegClass(RegY, RC);
1029 if (RegC.isVirtual())
1030 MRI.constrainRegClass(RegC, RC);
1032 // Create a new virtual register for the result of (X op Y) instead of
1033 // recycling RegB because the MachineCombiner's computation of the critical
1034 // path requires a new register definition rather than an existing one.
1035 Register NewVR = MRI.createVirtualRegister(RC);
1036 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
1038 auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev);
1039 bool KillA = OpA.isKill();
1040 bool KillX = OpX.isKill();
1041 bool KillY = OpY.isKill();
1042 bool KillNewVR = true;
1044 auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern);
1046 if (SwapPrevOperands) {
1047 std::swap(RegX, RegY);
1048 std::swap(KillX, KillY);
1051 // Create new instructions for insertion.
1052 MachineInstrBuilder MIB1 =
1053 BuildMI(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR)
1054 .addReg(RegX, getKillRegState(KillX))
1055 .addReg(RegY, getKillRegState(KillY))
1056 .setMIFlags(Prev.getFlags());
1058 if (SwapRootOperands) {
1059 std::swap(RegA, NewVR);
1060 std::swap(KillA, KillNewVR);
1063 MachineInstrBuilder MIB2 =
1064 BuildMI(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC)
1065 .addReg(RegA, getKillRegState(KillA))
1066 .addReg(NewVR, getKillRegState(KillNewVR))
1067 .setMIFlags(Root.getFlags());
1069 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
1071 // Record new instructions for insertion and old instructions for deletion.
1072 InsInstrs.push_back(MIB1);
1073 InsInstrs.push_back(MIB2);
1074 DelInstrs.push_back(&Prev);
1075 DelInstrs.push_back(&Root);
1077 // We transformed:
1078 // B = A op X (Prev)
1079 // C = B op Y (Root)
1080 // Into:
1081 // B = X op Y (MIB1)
1082 // C = A op B (MIB2)
1083 // C has the same value as before, B doesn't; as such, keep the debug number
1084 // of C but not of B.
1085 if (unsigned OldRootNum = Root.peekDebugInstrNum())
1086 MIB2.getInstr()->setDebugInstrNum(OldRootNum);
1089 void TargetInstrInfo::genAlternativeCodeSequence(
1090 MachineInstr &Root, MachineCombinerPattern Pattern,
1091 SmallVectorImpl<MachineInstr *> &InsInstrs,
1092 SmallVectorImpl<MachineInstr *> &DelInstrs,
1093 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
1094 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
1096 // Select the previous instruction in the sequence based on the input pattern.
1097 MachineInstr *Prev = nullptr;
1098 switch (Pattern) {
1099 case MachineCombinerPattern::REASSOC_AX_BY:
1100 case MachineCombinerPattern::REASSOC_XA_BY:
1101 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
1102 break;
1103 case MachineCombinerPattern::REASSOC_AX_YB:
1104 case MachineCombinerPattern::REASSOC_XA_YB:
1105 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
1106 break;
1107 default:
1108 llvm_unreachable("Unknown pattern for machine combiner");
1111 // Don't reassociate if Prev and Root are in different blocks.
1112 if (Prev->getParent() != Root.getParent())
1113 return;
1115 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
1118 MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const {
1119 return MachineTraceStrategy::TS_MinInstrCount;
1122 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
1123 const MachineInstr &MI) const {
1124 const MachineFunction &MF = *MI.getMF();
1125 const MachineRegisterInfo &MRI = MF.getRegInfo();
1127 // Remat clients assume operand 0 is the defined register.
1128 if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
1129 return false;
1130 Register DefReg = MI.getOperand(0).getReg();
1132 // A sub-register definition can only be rematerialized if the instruction
1133 // doesn't read the other parts of the register. Otherwise it is really a
1134 // read-modify-write operation on the full virtual register which cannot be
1135 // moved safely.
1136 if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() &&
1137 MI.readsVirtualRegister(DefReg))
1138 return false;
1140 // A load from a fixed stack slot can be rematerialized. This may be
1141 // redundant with subsequent checks, but it's target-independent,
1142 // simple, and a common case.
1143 int FrameIdx = 0;
1144 if (isLoadFromStackSlot(MI, FrameIdx) &&
1145 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
1146 return true;
1148 // Avoid instructions obviously unsafe for remat.
1149 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
1150 MI.hasUnmodeledSideEffects())
1151 return false;
1153 // Don't remat inline asm. We have no idea how expensive it is
1154 // even if it's side effect free.
1155 if (MI.isInlineAsm())
1156 return false;
1158 // Avoid instructions which load from potentially varying memory.
1159 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
1160 return false;
1162 // If any of the registers accessed are non-constant, conservatively assume
1163 // the instruction is not rematerializable.
1164 for (const MachineOperand &MO : MI.operands()) {
1165 if (!MO.isReg()) continue;
1166 Register Reg = MO.getReg();
1167 if (Reg == 0)
1168 continue;
1170 // Check for a well-behaved physical register.
1171 if (Reg.isPhysical()) {
1172 if (MO.isUse()) {
1173 // If the physreg has no defs anywhere, it's just an ambient register
1174 // and we can freely move its uses. Alternatively, if it's allocatable,
1175 // it could get allocated to something with a def during allocation.
1176 if (!MRI.isConstantPhysReg(Reg))
1177 return false;
1178 } else {
1179 // A physreg def. We can't remat it.
1180 return false;
1182 continue;
1185 // Only allow one virtual-register def. There may be multiple defs of the
1186 // same virtual register, though.
1187 if (MO.isDef() && Reg != DefReg)
1188 return false;
1190 // Don't allow any virtual-register uses. Rematting an instruction with
1191 // virtual register uses would length the live ranges of the uses, which
1192 // is not necessarily a good idea, certainly not "trivial".
1193 if (MO.isUse())
1194 return false;
1197 // Everything checked out.
1198 return true;
1201 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
1202 const MachineFunction *MF = MI.getMF();
1203 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
1204 bool StackGrowsDown =
1205 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
1207 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
1208 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
1210 if (!isFrameInstr(MI))
1211 return 0;
1213 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
1215 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
1216 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
1217 SPAdj = -SPAdj;
1219 return SPAdj;
1222 /// isSchedulingBoundary - Test if the given instruction should be
1223 /// considered a scheduling boundary. This primarily includes labels
1224 /// and terminators.
1225 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1226 const MachineBasicBlock *MBB,
1227 const MachineFunction &MF) const {
1228 // Terminators and labels can't be scheduled around.
1229 if (MI.isTerminator() || MI.isPosition())
1230 return true;
1232 // INLINEASM_BR can jump to another block
1233 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1234 return true;
1236 // Don't attempt to schedule around any instruction that defines
1237 // a stack-oriented pointer, as it's unlikely to be profitable. This
1238 // saves compile time, because it doesn't require every single
1239 // stack slot reference to depend on the instruction that does the
1240 // modification.
1241 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1242 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1243 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1246 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1247 // may choose to honor.
1248 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1249 return !DisableHazardRecognizer;
1252 // Default implementation of CreateTargetRAHazardRecognizer.
1253 ScheduleHazardRecognizer *TargetInstrInfo::
1254 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1255 const ScheduleDAG *DAG) const {
1256 // Dummy hazard recognizer allows all instructions to issue.
1257 return new ScheduleHazardRecognizer();
1260 // Default implementation of CreateTargetMIHazardRecognizer.
1261 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
1262 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
1263 return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1266 // Default implementation of CreateTargetPostRAHazardRecognizer.
1267 ScheduleHazardRecognizer *TargetInstrInfo::
1268 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1269 const ScheduleDAG *DAG) const {
1270 return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1273 // Default implementation of getMemOperandWithOffset.
1274 bool TargetInstrInfo::getMemOperandWithOffset(
1275 const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
1276 bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
1277 SmallVector<const MachineOperand *, 4> BaseOps;
1278 unsigned Width;
1279 if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
1280 Width, TRI) ||
1281 BaseOps.size() != 1)
1282 return false;
1283 BaseOp = BaseOps.front();
1284 return true;
1287 //===----------------------------------------------------------------------===//
1288 // SelectionDAG latency interface.
1289 //===----------------------------------------------------------------------===//
1292 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1293 SDNode *DefNode, unsigned DefIdx,
1294 SDNode *UseNode, unsigned UseIdx) const {
1295 if (!ItinData || ItinData->isEmpty())
1296 return -1;
1298 if (!DefNode->isMachineOpcode())
1299 return -1;
1301 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1302 if (!UseNode->isMachineOpcode())
1303 return ItinData->getOperandCycle(DefClass, DefIdx);
1304 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1305 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1308 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1309 SDNode *N) const {
1310 if (!ItinData || ItinData->isEmpty())
1311 return 1;
1313 if (!N->isMachineOpcode())
1314 return 1;
1316 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1319 //===----------------------------------------------------------------------===//
1320 // MachineInstr latency interface.
1321 //===----------------------------------------------------------------------===//
1323 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1324 const MachineInstr &MI) const {
1325 if (!ItinData || ItinData->isEmpty())
1326 return 1;
1328 unsigned Class = MI.getDesc().getSchedClass();
1329 int UOps = ItinData->Itineraries[Class].NumMicroOps;
1330 if (UOps >= 0)
1331 return UOps;
1333 // The # of u-ops is dynamically determined. The specific target should
1334 // override this function to return the right number.
1335 return 1;
1338 /// Return the default expected latency for a def based on it's opcode.
1339 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1340 const MachineInstr &DefMI) const {
1341 if (DefMI.isTransient())
1342 return 0;
1343 if (DefMI.mayLoad())
1344 return SchedModel.LoadLatency;
1345 if (isHighLatencyDef(DefMI.getOpcode()))
1346 return SchedModel.HighLatency;
1347 return 1;
1350 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1351 return 0;
1354 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1355 const MachineInstr &MI,
1356 unsigned *PredCost) const {
1357 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1358 // still have a MinLatency property, which getStageLatency checks.
1359 if (!ItinData)
1360 return MI.mayLoad() ? 2 : 1;
1362 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1365 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1366 const MachineInstr &DefMI,
1367 unsigned DefIdx) const {
1368 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1369 if (!ItinData || ItinData->isEmpty())
1370 return false;
1372 unsigned DefClass = DefMI.getDesc().getSchedClass();
1373 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1374 return (DefCycle != -1 && DefCycle <= 1);
1377 std::optional<ParamLoadedValue>
1378 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
1379 Register Reg) const {
1380 const MachineFunction *MF = MI.getMF();
1381 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1382 DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
1383 int64_t Offset;
1384 bool OffsetIsScalable;
1386 // To simplify the sub-register handling, verify that we only need to
1387 // consider physical registers.
1388 assert(MF->getProperties().hasProperty(
1389 MachineFunctionProperties::Property::NoVRegs));
1391 if (auto DestSrc = isCopyInstr(MI)) {
1392 Register DestReg = DestSrc->Destination->getReg();
1394 // If the copy destination is the forwarding reg, describe the forwarding
1395 // reg using the copy source as the backup location. Example:
1397 // x0 = MOV x7
1398 // call callee(x0) ; x0 described as x7
1399 if (Reg == DestReg)
1400 return ParamLoadedValue(*DestSrc->Source, Expr);
1402 // If the target's hook couldn't describe this copy, give up.
1403 return std::nullopt;
1404 } else if (auto RegImm = isAddImmediate(MI, Reg)) {
1405 Register SrcReg = RegImm->Reg;
1406 Offset = RegImm->Imm;
1407 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
1408 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
1409 } else if (MI.hasOneMemOperand()) {
1410 // Only describe memory which provably does not escape the function. As
1411 // described in llvm.org/PR43343, escaped memory may be clobbered by the
1412 // callee (or by another thread).
1413 const auto &TII = MF->getSubtarget().getInstrInfo();
1414 const MachineFrameInfo &MFI = MF->getFrameInfo();
1415 const MachineMemOperand *MMO = MI.memoperands()[0];
1416 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1418 // If the address points to "special" memory (e.g. a spill slot), it's
1419 // sufficient to check that it isn't aliased by any high-level IR value.
1420 if (!PSV || PSV->mayAlias(&MFI))
1421 return std::nullopt;
1423 const MachineOperand *BaseOp;
1424 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
1425 TRI))
1426 return std::nullopt;
1428 // FIXME: Scalable offsets are not yet handled in the offset code below.
1429 if (OffsetIsScalable)
1430 return std::nullopt;
1432 // TODO: Can currently only handle mem instructions with a single define.
1433 // An example from the x86 target:
1434 // ...
1435 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1436 // ...
1438 if (MI.getNumExplicitDefs() != 1)
1439 return std::nullopt;
1441 // TODO: In what way do we need to take Reg into consideration here?
1443 SmallVector<uint64_t, 8> Ops;
1444 DIExpression::appendOffset(Ops, Offset);
1445 Ops.push_back(dwarf::DW_OP_deref_size);
1446 Ops.push_back(MMO->getSize());
1447 Expr = DIExpression::prependOpcodes(Expr, Ops);
1448 return ParamLoadedValue(*BaseOp, Expr);
1451 return std::nullopt;
1454 /// Both DefMI and UseMI must be valid. By default, call directly to the
1455 /// itinerary. This may be overriden by the target.
1456 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1457 const MachineInstr &DefMI,
1458 unsigned DefIdx,
1459 const MachineInstr &UseMI,
1460 unsigned UseIdx) const {
1461 unsigned DefClass = DefMI.getDesc().getSchedClass();
1462 unsigned UseClass = UseMI.getDesc().getSchedClass();
1463 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1466 bool TargetInstrInfo::getRegSequenceInputs(
1467 const MachineInstr &MI, unsigned DefIdx,
1468 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1469 assert((MI.isRegSequence() ||
1470 MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1472 if (!MI.isRegSequence())
1473 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1475 // We are looking at:
1476 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1477 assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1478 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1479 OpIdx += 2) {
1480 const MachineOperand &MOReg = MI.getOperand(OpIdx);
1481 if (MOReg.isUndef())
1482 continue;
1483 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1484 assert(MOSubIdx.isImm() &&
1485 "One of the subindex of the reg_sequence is not an immediate");
1486 // Record Reg:SubReg, SubIdx.
1487 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1488 (unsigned)MOSubIdx.getImm()));
1490 return true;
1493 bool TargetInstrInfo::getExtractSubregInputs(
1494 const MachineInstr &MI, unsigned DefIdx,
1495 RegSubRegPairAndIdx &InputReg) const {
1496 assert((MI.isExtractSubreg() ||
1497 MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1499 if (!MI.isExtractSubreg())
1500 return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1502 // We are looking at:
1503 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1504 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1505 const MachineOperand &MOReg = MI.getOperand(1);
1506 if (MOReg.isUndef())
1507 return false;
1508 const MachineOperand &MOSubIdx = MI.getOperand(2);
1509 assert(MOSubIdx.isImm() &&
1510 "The subindex of the extract_subreg is not an immediate");
1512 InputReg.Reg = MOReg.getReg();
1513 InputReg.SubReg = MOReg.getSubReg();
1514 InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1515 return true;
1518 bool TargetInstrInfo::getInsertSubregInputs(
1519 const MachineInstr &MI, unsigned DefIdx,
1520 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1521 assert((MI.isInsertSubreg() ||
1522 MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1524 if (!MI.isInsertSubreg())
1525 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1527 // We are looking at:
1528 // Def = INSERT_SEQUENCE v0, v1, sub0.
1529 assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1530 const MachineOperand &MOBaseReg = MI.getOperand(1);
1531 const MachineOperand &MOInsertedReg = MI.getOperand(2);
1532 if (MOInsertedReg.isUndef())
1533 return false;
1534 const MachineOperand &MOSubIdx = MI.getOperand(3);
1535 assert(MOSubIdx.isImm() &&
1536 "One of the subindex of the reg_sequence is not an immediate");
1537 BaseReg.Reg = MOBaseReg.getReg();
1538 BaseReg.SubReg = MOBaseReg.getSubReg();
1540 InsertedReg.Reg = MOInsertedReg.getReg();
1541 InsertedReg.SubReg = MOInsertedReg.getSubReg();
1542 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1543 return true;
1546 // Returns a MIRPrinter comment for this machine operand.
1547 std::string TargetInstrInfo::createMIROperandComment(
1548 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
1549 const TargetRegisterInfo *TRI) const {
1551 if (!MI.isInlineAsm())
1552 return "";
1554 std::string Flags;
1555 raw_string_ostream OS(Flags);
1557 if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
1558 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1559 unsigned ExtraInfo = Op.getImm();
1560 bool First = true;
1561 for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
1562 if (!First)
1563 OS << " ";
1564 First = false;
1565 OS << Info;
1568 return OS.str();
1571 int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
1572 if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
1573 return "";
1575 assert(Op.isImm() && "Expected flag operand to be an immediate");
1576 // Pretty print the inline asm operand descriptor.
1577 unsigned Flag = Op.getImm();
1578 unsigned Kind = InlineAsm::getKind(Flag);
1579 OS << InlineAsm::getKindName(Kind);
1581 unsigned RCID = 0;
1582 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1583 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1584 if (TRI) {
1585 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1586 } else
1587 OS << ":RC" << RCID;
1590 if (InlineAsm::isMemKind(Flag)) {
1591 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1592 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1595 unsigned TiedTo = 0;
1596 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1597 OS << " tiedto:$" << TiedTo;
1599 return OS.str();
1602 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default;
1604 void TargetInstrInfo::mergeOutliningCandidateAttributes(
1605 Function &F, std::vector<outliner::Candidate> &Candidates) const {
1606 // Include target features from an arbitrary candidate for the outlined
1607 // function. This makes sure the outlined function knows what kinds of
1608 // instructions are going into it. This is fine, since all parent functions
1609 // must necessarily support the instructions that are in the outlined region.
1610 outliner::Candidate &FirstCand = Candidates.front();
1611 const Function &ParentFn = FirstCand.getMF()->getFunction();
1612 if (ParentFn.hasFnAttribute("target-features"))
1613 F.addFnAttr(ParentFn.getFnAttribute("target-features"));
1614 if (ParentFn.hasFnAttribute("target-cpu"))
1615 F.addFnAttr(ParentFn.getFnAttribute("target-cpu"));
1617 // Set nounwind, so we don't generate eh_frame.
1618 if (llvm::all_of(Candidates, [](const outliner::Candidate &C) {
1619 return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
1621 F.addFnAttr(Attribute::NoUnwind);
1624 outliner::InstrType TargetInstrInfo::getOutliningType(
1625 MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1626 MachineInstr &MI = *MIT;
1628 // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets
1629 // have support for outlining those. Special-case that here.
1630 if (MI.isCFIInstruction())
1631 // Just go right to the target implementation.
1632 return getOutliningTypeImpl(MIT, Flags);
1634 // Be conservative about inline assembly.
1635 if (MI.isInlineAsm())
1636 return outliner::InstrType::Illegal;
1638 // Labels generally can't safely be outlined.
1639 if (MI.isLabel())
1640 return outliner::InstrType::Illegal;
1642 // Don't let debug instructions impact analysis.
1643 if (MI.isDebugInstr())
1644 return outliner::InstrType::Invisible;
1646 // Some other special cases.
1647 switch (MI.getOpcode()) {
1648 case TargetOpcode::IMPLICIT_DEF:
1649 case TargetOpcode::KILL:
1650 case TargetOpcode::LIFETIME_START:
1651 case TargetOpcode::LIFETIME_END:
1652 return outliner::InstrType::Invisible;
1653 default:
1654 break;
1657 // Is this a terminator for a basic block?
1658 if (MI.isTerminator()) {
1659 // If this is a branch to another block, we can't outline it.
1660 if (!MI.getParent()->succ_empty())
1661 return outliner::InstrType::Illegal;
1663 // Don't outline if the branch is not unconditional.
1664 if (isPredicated(MI))
1665 return outliner::InstrType::Illegal;
1668 // Make sure none of the operands of this instruction do anything that
1669 // might break if they're moved outside their current function.
1670 // This includes MachineBasicBlock references, BlockAddressses,
1671 // Constant pool indices and jump table indices.
1673 // A quick note on MO_TargetIndex:
1674 // This doesn't seem to be used in any of the architectures that the
1675 // MachineOutliner supports, but it was still filtered out in all of them.
1676 // There was one exception (RISC-V), but MO_TargetIndex also isn't used there.
1677 // As such, this check is removed both here and in the target-specific
1678 // implementations. Instead, we assert to make sure this doesn't
1679 // catch anyone off-guard somewhere down the line.
1680 for (const MachineOperand &MOP : MI.operands()) {
1681 // If you hit this assertion, please remove it and adjust
1682 // `getOutliningTypeImpl` for your target appropriately if necessary.
1683 // Adding the assertion back to other supported architectures
1684 // would be nice too :)
1685 assert(!MOP.isTargetIndex() && "This isn't used quite yet!");
1687 // CFI instructions should already have been filtered out at this point.
1688 assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!");
1690 // PrologEpilogInserter should've already run at this point.
1691 assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!");
1693 if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI())
1694 return outliner::InstrType::Illegal;
1697 // If we don't know, delegate to the target-specific hook.
1698 return getOutliningTypeImpl(MIT, Flags);
1701 bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1702 unsigned &Flags) const {
1703 // Some instrumentations create special TargetOpcode at the start which
1704 // expands to special code sequences which must be present.
1705 auto First = MBB.getFirstNonDebugInstr();
1706 if (First == MBB.end())
1707 return true;
1709 if (First->getOpcode() == TargetOpcode::FENTRY_CALL ||
1710 First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)
1711 return false;
1713 // Some instrumentations create special pseudo-instructions at or just before
1714 // the end that must be present.
1715 auto Last = MBB.getLastNonDebugInstr();
1716 if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET ||
1717 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
1718 return false;
1720 if (Last != First && Last->isReturn()) {
1721 --Last;
1722 if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT ||
1723 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
1724 return false;
1726 return true;