1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This coordinates the per-module state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
80 using namespace clang
;
81 using namespace CodeGen
;
83 static llvm::cl::opt
<bool> LimitedCoverage(
84 "limited-coverage-experimental", llvm::cl::Hidden
,
85 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
87 static const char AnnotationSection
[] = "llvm.metadata";
89 static CGCXXABI
*createCXXABI(CodeGenModule
&CGM
) {
90 switch (CGM
.getContext().getCXXABIKind()) {
91 case TargetCXXABI::AppleARM64
:
92 case TargetCXXABI::Fuchsia
:
93 case TargetCXXABI::GenericAArch64
:
94 case TargetCXXABI::GenericARM
:
95 case TargetCXXABI::iOS
:
96 case TargetCXXABI::WatchOS
:
97 case TargetCXXABI::GenericMIPS
:
98 case TargetCXXABI::GenericItanium
:
99 case TargetCXXABI::WebAssembly
:
100 case TargetCXXABI::XL
:
101 return CreateItaniumCXXABI(CGM
);
102 case TargetCXXABI::Microsoft
:
103 return CreateMicrosoftCXXABI(CGM
);
106 llvm_unreachable("invalid C++ ABI kind");
109 static std::unique_ptr
<TargetCodeGenInfo
>
110 createTargetCodeGenInfo(CodeGenModule
&CGM
) {
111 const TargetInfo
&Target
= CGM
.getTarget();
112 const llvm::Triple
&Triple
= Target
.getTriple();
113 const CodeGenOptions
&CodeGenOpts
= CGM
.getCodeGenOpts();
115 switch (Triple
.getArch()) {
117 return createDefaultTargetCodeGenInfo(CGM
);
119 case llvm::Triple::le32
:
120 return createPNaClTargetCodeGenInfo(CGM
);
121 case llvm::Triple::m68k
:
122 return createM68kTargetCodeGenInfo(CGM
);
123 case llvm::Triple::mips
:
124 case llvm::Triple::mipsel
:
125 if (Triple
.getOS() == llvm::Triple::NaCl
)
126 return createPNaClTargetCodeGenInfo(CGM
);
127 return createMIPSTargetCodeGenInfo(CGM
, /*IsOS32=*/true);
129 case llvm::Triple::mips64
:
130 case llvm::Triple::mips64el
:
131 return createMIPSTargetCodeGenInfo(CGM
, /*IsOS32=*/false);
133 case llvm::Triple::avr
: {
134 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135 // on avrtiny. For passing return value, R18~R25 are used on avr, and
136 // R22~R25 are used on avrtiny.
137 unsigned NPR
= Target
.getABI() == "avrtiny" ? 6 : 18;
138 unsigned NRR
= Target
.getABI() == "avrtiny" ? 4 : 8;
139 return createAVRTargetCodeGenInfo(CGM
, NPR
, NRR
);
142 case llvm::Triple::aarch64
:
143 case llvm::Triple::aarch64_32
:
144 case llvm::Triple::aarch64_be
: {
145 AArch64ABIKind Kind
= AArch64ABIKind::AAPCS
;
146 if (Target
.getABI() == "darwinpcs")
147 Kind
= AArch64ABIKind::DarwinPCS
;
148 else if (Triple
.isOSWindows())
149 return createWindowsAArch64TargetCodeGenInfo(CGM
, AArch64ABIKind::Win64
);
150 else if (Target
.getABI() == "aapcs-soft")
151 Kind
= AArch64ABIKind::AAPCSSoft
;
152 else if (Target
.getABI() == "pauthtest")
153 Kind
= AArch64ABIKind::PAuthTest
;
155 return createAArch64TargetCodeGenInfo(CGM
, Kind
);
158 case llvm::Triple::wasm32
:
159 case llvm::Triple::wasm64
: {
160 WebAssemblyABIKind Kind
= WebAssemblyABIKind::MVP
;
161 if (Target
.getABI() == "experimental-mv")
162 Kind
= WebAssemblyABIKind::ExperimentalMV
;
163 return createWebAssemblyTargetCodeGenInfo(CGM
, Kind
);
166 case llvm::Triple::arm
:
167 case llvm::Triple::armeb
:
168 case llvm::Triple::thumb
:
169 case llvm::Triple::thumbeb
: {
170 if (Triple
.getOS() == llvm::Triple::Win32
)
171 return createWindowsARMTargetCodeGenInfo(CGM
, ARMABIKind::AAPCS_VFP
);
173 ARMABIKind Kind
= ARMABIKind::AAPCS
;
174 StringRef ABIStr
= Target
.getABI();
175 if (ABIStr
== "apcs-gnu")
176 Kind
= ARMABIKind::APCS
;
177 else if (ABIStr
== "aapcs16")
178 Kind
= ARMABIKind::AAPCS16_VFP
;
179 else if (CodeGenOpts
.FloatABI
== "hard" ||
180 (CodeGenOpts
.FloatABI
!= "soft" &&
181 (Triple
.getEnvironment() == llvm::Triple::GNUEABIHF
||
182 Triple
.getEnvironment() == llvm::Triple::MuslEABIHF
||
183 Triple
.getEnvironment() == llvm::Triple::EABIHF
)))
184 Kind
= ARMABIKind::AAPCS_VFP
;
186 return createARMTargetCodeGenInfo(CGM
, Kind
);
189 case llvm::Triple::ppc
: {
190 if (Triple
.isOSAIX())
191 return createAIXTargetCodeGenInfo(CGM
, /*Is64Bit=*/false);
194 CodeGenOpts
.FloatABI
== "soft" || Target
.hasFeature("spe");
195 return createPPC32TargetCodeGenInfo(CGM
, IsSoftFloat
);
197 case llvm::Triple::ppcle
: {
198 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
199 return createPPC32TargetCodeGenInfo(CGM
, IsSoftFloat
);
201 case llvm::Triple::ppc64
:
202 if (Triple
.isOSAIX())
203 return createAIXTargetCodeGenInfo(CGM
, /*Is64Bit=*/true);
205 if (Triple
.isOSBinFormatELF()) {
206 PPC64_SVR4_ABIKind Kind
= PPC64_SVR4_ABIKind::ELFv1
;
207 if (Target
.getABI() == "elfv2")
208 Kind
= PPC64_SVR4_ABIKind::ELFv2
;
209 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
211 return createPPC64_SVR4_TargetCodeGenInfo(CGM
, Kind
, IsSoftFloat
);
213 return createPPC64TargetCodeGenInfo(CGM
);
214 case llvm::Triple::ppc64le
: {
215 assert(Triple
.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
216 PPC64_SVR4_ABIKind Kind
= PPC64_SVR4_ABIKind::ELFv2
;
217 if (Target
.getABI() == "elfv1")
218 Kind
= PPC64_SVR4_ABIKind::ELFv1
;
219 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
221 return createPPC64_SVR4_TargetCodeGenInfo(CGM
, Kind
, IsSoftFloat
);
224 case llvm::Triple::nvptx
:
225 case llvm::Triple::nvptx64
:
226 return createNVPTXTargetCodeGenInfo(CGM
);
228 case llvm::Triple::msp430
:
229 return createMSP430TargetCodeGenInfo(CGM
);
231 case llvm::Triple::riscv32
:
232 case llvm::Triple::riscv64
: {
233 StringRef ABIStr
= Target
.getABI();
234 unsigned XLen
= Target
.getPointerWidth(LangAS::Default
);
235 unsigned ABIFLen
= 0;
236 if (ABIStr
.ends_with("f"))
238 else if (ABIStr
.ends_with("d"))
240 bool EABI
= ABIStr
.ends_with("e");
241 return createRISCVTargetCodeGenInfo(CGM
, XLen
, ABIFLen
, EABI
);
244 case llvm::Triple::systemz
: {
245 bool SoftFloat
= CodeGenOpts
.FloatABI
== "soft";
246 bool HasVector
= !SoftFloat
&& Target
.getABI() == "vector";
247 return createSystemZTargetCodeGenInfo(CGM
, HasVector
, SoftFloat
);
250 case llvm::Triple::tce
:
251 case llvm::Triple::tcele
:
252 return createTCETargetCodeGenInfo(CGM
);
254 case llvm::Triple::x86
: {
255 bool IsDarwinVectorABI
= Triple
.isOSDarwin();
256 bool IsWin32FloatStructABI
= Triple
.isOSWindows() && !Triple
.isOSCygMing();
258 if (Triple
.getOS() == llvm::Triple::Win32
) {
259 return createWinX86_32TargetCodeGenInfo(
260 CGM
, IsDarwinVectorABI
, IsWin32FloatStructABI
,
261 CodeGenOpts
.NumRegisterParameters
);
263 return createX86_32TargetCodeGenInfo(
264 CGM
, IsDarwinVectorABI
, IsWin32FloatStructABI
,
265 CodeGenOpts
.NumRegisterParameters
, CodeGenOpts
.FloatABI
== "soft");
268 case llvm::Triple::x86_64
: {
269 StringRef ABI
= Target
.getABI();
270 X86AVXABILevel AVXLevel
= (ABI
== "avx512" ? X86AVXABILevel::AVX512
271 : ABI
== "avx" ? X86AVXABILevel::AVX
272 : X86AVXABILevel::None
);
274 switch (Triple
.getOS()) {
275 case llvm::Triple::Win32
:
276 return createWinX86_64TargetCodeGenInfo(CGM
, AVXLevel
);
278 return createX86_64TargetCodeGenInfo(CGM
, AVXLevel
);
281 case llvm::Triple::hexagon
:
282 return createHexagonTargetCodeGenInfo(CGM
);
283 case llvm::Triple::lanai
:
284 return createLanaiTargetCodeGenInfo(CGM
);
285 case llvm::Triple::r600
:
286 return createAMDGPUTargetCodeGenInfo(CGM
);
287 case llvm::Triple::amdgcn
:
288 return createAMDGPUTargetCodeGenInfo(CGM
);
289 case llvm::Triple::sparc
:
290 return createSparcV8TargetCodeGenInfo(CGM
);
291 case llvm::Triple::sparcv9
:
292 return createSparcV9TargetCodeGenInfo(CGM
);
293 case llvm::Triple::xcore
:
294 return createXCoreTargetCodeGenInfo(CGM
);
295 case llvm::Triple::arc
:
296 return createARCTargetCodeGenInfo(CGM
);
297 case llvm::Triple::spir
:
298 case llvm::Triple::spir64
:
299 return createCommonSPIRTargetCodeGenInfo(CGM
);
300 case llvm::Triple::spirv32
:
301 case llvm::Triple::spirv64
:
302 return createSPIRVTargetCodeGenInfo(CGM
);
303 case llvm::Triple::ve
:
304 return createVETargetCodeGenInfo(CGM
);
305 case llvm::Triple::csky
: {
306 bool IsSoftFloat
= !Target
.hasFeature("hard-float-abi");
308 Target
.hasFeature("fpuv2_df") || Target
.hasFeature("fpuv3_df");
309 return createCSKYTargetCodeGenInfo(CGM
, IsSoftFloat
? 0
313 case llvm::Triple::bpfeb
:
314 case llvm::Triple::bpfel
:
315 return createBPFTargetCodeGenInfo(CGM
);
316 case llvm::Triple::loongarch32
:
317 case llvm::Triple::loongarch64
: {
318 StringRef ABIStr
= Target
.getABI();
319 unsigned ABIFRLen
= 0;
320 if (ABIStr
.ends_with("f"))
322 else if (ABIStr
.ends_with("d"))
324 return createLoongArchTargetCodeGenInfo(
325 CGM
, Target
.getPointerWidth(LangAS::Default
), ABIFRLen
);
330 const TargetCodeGenInfo
&CodeGenModule::getTargetCodeGenInfo() {
331 if (!TheTargetCodeGenInfo
)
332 TheTargetCodeGenInfo
= createTargetCodeGenInfo(*this);
333 return *TheTargetCodeGenInfo
;
336 CodeGenModule::CodeGenModule(ASTContext
&C
,
337 IntrusiveRefCntPtr
<llvm::vfs::FileSystem
> FS
,
338 const HeaderSearchOptions
&HSO
,
339 const PreprocessorOptions
&PPO
,
340 const CodeGenOptions
&CGO
, llvm::Module
&M
,
341 DiagnosticsEngine
&diags
,
342 CoverageSourceInfo
*CoverageInfo
)
343 : Context(C
), LangOpts(C
.getLangOpts()), FS(FS
), HeaderSearchOpts(HSO
),
344 PreprocessorOpts(PPO
), CodeGenOpts(CGO
), TheModule(M
), Diags(diags
),
345 Target(C
.getTargetInfo()), ABI(createCXXABI(*this)),
346 VMContext(M
.getContext()), VTables(*this),
347 SanitizerMD(new SanitizerMetadata(*this)) {
349 // Initialize the type cache.
350 Types
.reset(new CodeGenTypes(*this));
351 llvm::LLVMContext
&LLVMContext
= M
.getContext();
352 VoidTy
= llvm::Type::getVoidTy(LLVMContext
);
353 Int8Ty
= llvm::Type::getInt8Ty(LLVMContext
);
354 Int16Ty
= llvm::Type::getInt16Ty(LLVMContext
);
355 Int32Ty
= llvm::Type::getInt32Ty(LLVMContext
);
356 Int64Ty
= llvm::Type::getInt64Ty(LLVMContext
);
357 HalfTy
= llvm::Type::getHalfTy(LLVMContext
);
358 BFloatTy
= llvm::Type::getBFloatTy(LLVMContext
);
359 FloatTy
= llvm::Type::getFloatTy(LLVMContext
);
360 DoubleTy
= llvm::Type::getDoubleTy(LLVMContext
);
361 PointerWidthInBits
= C
.getTargetInfo().getPointerWidth(LangAS::Default
);
362 PointerAlignInBytes
=
363 C
.toCharUnitsFromBits(C
.getTargetInfo().getPointerAlign(LangAS::Default
))
366 C
.toCharUnitsFromBits(C
.getTargetInfo().getMaxPointerWidth()).getQuantity();
368 C
.toCharUnitsFromBits(C
.getTargetInfo().getIntAlign()).getQuantity();
370 llvm::IntegerType::get(LLVMContext
, C
.getTargetInfo().getCharWidth());
371 IntTy
= llvm::IntegerType::get(LLVMContext
, C
.getTargetInfo().getIntWidth());
372 IntPtrTy
= llvm::IntegerType::get(LLVMContext
,
373 C
.getTargetInfo().getMaxPointerWidth());
374 Int8PtrTy
= llvm::PointerType::get(LLVMContext
,
375 C
.getTargetAddressSpace(LangAS::Default
));
376 const llvm::DataLayout
&DL
= M
.getDataLayout();
378 llvm::PointerType::get(LLVMContext
, DL
.getAllocaAddrSpace());
380 llvm::PointerType::get(LLVMContext
, DL
.getDefaultGlobalsAddressSpace());
381 ConstGlobalsPtrTy
= llvm::PointerType::get(
382 LLVMContext
, C
.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
383 ASTAllocaAddressSpace
= getTargetCodeGenInfo().getASTAllocaAddressSpace();
385 // Build C++20 Module initializers.
386 // TODO: Add Microsoft here once we know the mangling required for the
389 LangOpts
.CPlusPlusModules
&& getCXXABI().getMangleContext().getKind() ==
390 ItaniumMangleContext::MK_Itanium
;
392 RuntimeCC
= getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
397 createOpenCLRuntime();
399 createOpenMPRuntime();
405 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
406 if (LangOpts
.Sanitize
.has(SanitizerKind::Thread
) ||
407 (!CodeGenOpts
.RelaxedAliasing
&& CodeGenOpts
.OptimizationLevel
> 0))
408 TBAA
.reset(new CodeGenTBAA(Context
, getTypes(), TheModule
, CodeGenOpts
,
411 // If debug info or coverage generation is enabled, create the CGDebugInfo
413 if (CodeGenOpts
.getDebugInfo() != llvm::codegenoptions::NoDebugInfo
||
414 CodeGenOpts
.CoverageNotesFile
.size() ||
415 CodeGenOpts
.CoverageDataFile
.size())
416 DebugInfo
.reset(new CGDebugInfo(*this));
418 Block
.GlobalUniqueCount
= 0;
420 if (C
.getLangOpts().ObjC
)
421 ObjCData
.reset(new ObjCEntrypoints());
423 if (CodeGenOpts
.hasProfileClangUse()) {
424 auto ReaderOrErr
= llvm::IndexedInstrProfReader::create(
425 CodeGenOpts
.ProfileInstrumentUsePath
, *FS
,
426 CodeGenOpts
.ProfileRemappingFile
);
427 // We're checking for profile read errors in CompilerInvocation, so if
428 // there was an error it should've already been caught. If it hasn't been
429 // somehow, trip an assertion.
431 PGOReader
= std::move(ReaderOrErr
.get());
434 // If coverage mapping generation is enabled, create the
435 // CoverageMappingModuleGen object.
436 if (CodeGenOpts
.CoverageMapping
)
437 CoverageMapping
.reset(new CoverageMappingModuleGen(*this, *CoverageInfo
));
439 // Generate the module name hash here if needed.
440 if (CodeGenOpts
.UniqueInternalLinkageNames
&&
441 !getModule().getSourceFileName().empty()) {
442 std::string Path
= getModule().getSourceFileName();
443 // Check if a path substitution is needed from the MacroPrefixMap.
444 for (const auto &Entry
: LangOpts
.MacroPrefixMap
)
445 if (Path
.rfind(Entry
.first
, 0) != std::string::npos
) {
446 Path
= Entry
.second
+ Path
.substr(Entry
.first
.size());
449 ModuleNameHash
= llvm::getUniqueInternalLinkagePostfix(Path
);
452 // Record mregparm value now so it is visible through all of codegen.
453 if (Context
.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
)
454 getModule().addModuleFlag(llvm::Module::Error
, "NumRegisterParameters",
455 CodeGenOpts
.NumRegisterParameters
);
458 CodeGenModule::~CodeGenModule() {}
460 void CodeGenModule::createObjCRuntime() {
461 // This is just isGNUFamily(), but we want to force implementors of
462 // new ABIs to decide how best to do this.
463 switch (LangOpts
.ObjCRuntime
.getKind()) {
464 case ObjCRuntime::GNUstep
:
465 case ObjCRuntime::GCC
:
466 case ObjCRuntime::ObjFW
:
467 ObjCRuntime
.reset(CreateGNUObjCRuntime(*this));
470 case ObjCRuntime::FragileMacOSX
:
471 case ObjCRuntime::MacOSX
:
472 case ObjCRuntime::iOS
:
473 case ObjCRuntime::WatchOS
:
474 ObjCRuntime
.reset(CreateMacObjCRuntime(*this));
477 llvm_unreachable("bad runtime kind");
480 void CodeGenModule::createOpenCLRuntime() {
481 OpenCLRuntime
.reset(new CGOpenCLRuntime(*this));
484 void CodeGenModule::createOpenMPRuntime() {
485 // Select a specialized code generation class based on the target, if any.
486 // If it does not exist use the default implementation.
487 switch (getTriple().getArch()) {
488 case llvm::Triple::nvptx
:
489 case llvm::Triple::nvptx64
:
490 case llvm::Triple::amdgcn
:
491 assert(getLangOpts().OpenMPIsTargetDevice
&&
492 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
493 OpenMPRuntime
.reset(new CGOpenMPRuntimeGPU(*this));
496 if (LangOpts
.OpenMPSimd
)
497 OpenMPRuntime
.reset(new CGOpenMPSIMDRuntime(*this));
499 OpenMPRuntime
.reset(new CGOpenMPRuntime(*this));
504 void CodeGenModule::createCUDARuntime() {
505 CUDARuntime
.reset(CreateNVCUDARuntime(*this));
508 void CodeGenModule::createHLSLRuntime() {
509 HLSLRuntime
.reset(new CGHLSLRuntime(*this));
512 void CodeGenModule::addReplacement(StringRef Name
, llvm::Constant
*C
) {
513 Replacements
[Name
] = C
;
516 void CodeGenModule::applyReplacements() {
517 for (auto &I
: Replacements
) {
518 StringRef MangledName
= I
.first
;
519 llvm::Constant
*Replacement
= I
.second
;
520 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
523 auto *OldF
= cast
<llvm::Function
>(Entry
);
524 auto *NewF
= dyn_cast
<llvm::Function
>(Replacement
);
526 if (auto *Alias
= dyn_cast
<llvm::GlobalAlias
>(Replacement
)) {
527 NewF
= dyn_cast
<llvm::Function
>(Alias
->getAliasee());
529 auto *CE
= cast
<llvm::ConstantExpr
>(Replacement
);
530 assert(CE
->getOpcode() == llvm::Instruction::BitCast
||
531 CE
->getOpcode() == llvm::Instruction::GetElementPtr
);
532 NewF
= dyn_cast
<llvm::Function
>(CE
->getOperand(0));
536 // Replace old with new, but keep the old order.
537 OldF
->replaceAllUsesWith(Replacement
);
539 NewF
->removeFromParent();
540 OldF
->getParent()->getFunctionList().insertAfter(OldF
->getIterator(),
543 OldF
->eraseFromParent();
547 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue
*GV
, llvm::Constant
*C
) {
548 GlobalValReplacements
.push_back(std::make_pair(GV
, C
));
551 void CodeGenModule::applyGlobalValReplacements() {
552 for (auto &I
: GlobalValReplacements
) {
553 llvm::GlobalValue
*GV
= I
.first
;
554 llvm::Constant
*C
= I
.second
;
556 GV
->replaceAllUsesWith(C
);
557 GV
->eraseFromParent();
561 // This is only used in aliases that we created and we know they have a
563 static const llvm::GlobalValue
*getAliasedGlobal(const llvm::GlobalValue
*GV
) {
564 const llvm::Constant
*C
;
565 if (auto *GA
= dyn_cast
<llvm::GlobalAlias
>(GV
))
566 C
= GA
->getAliasee();
567 else if (auto *GI
= dyn_cast
<llvm::GlobalIFunc
>(GV
))
568 C
= GI
->getResolver();
572 const auto *AliaseeGV
= dyn_cast
<llvm::GlobalValue
>(C
->stripPointerCasts());
576 const llvm::GlobalValue
*FinalGV
= AliaseeGV
->getAliaseeObject();
583 static bool checkAliasedGlobal(
584 const ASTContext
&Context
, DiagnosticsEngine
&Diags
, SourceLocation Location
,
585 bool IsIFunc
, const llvm::GlobalValue
*Alias
, const llvm::GlobalValue
*&GV
,
586 const llvm::MapVector
<GlobalDecl
, StringRef
> &MangledDeclNames
,
587 SourceRange AliasRange
) {
588 GV
= getAliasedGlobal(Alias
);
590 Diags
.Report(Location
, diag::err_cyclic_alias
) << IsIFunc
;
594 if (GV
->hasCommonLinkage()) {
595 const llvm::Triple
&Triple
= Context
.getTargetInfo().getTriple();
596 if (Triple
.getObjectFormat() == llvm::Triple::XCOFF
) {
597 Diags
.Report(Location
, diag::err_alias_to_common
);
602 if (GV
->isDeclaration()) {
603 Diags
.Report(Location
, diag::err_alias_to_undefined
) << IsIFunc
<< IsIFunc
;
604 Diags
.Report(Location
, diag::note_alias_requires_mangled_name
)
605 << IsIFunc
<< IsIFunc
;
606 // Provide a note if the given function is not found and exists as a
608 for (const auto &[Decl
, Name
] : MangledDeclNames
) {
609 if (const auto *ND
= dyn_cast
<NamedDecl
>(Decl
.getDecl())) {
610 if (ND
->getName() == GV
->getName()) {
611 Diags
.Report(Location
, diag::note_alias_mangled_name_alternative
)
613 << FixItHint::CreateReplacement(
615 (Twine(IsIFunc
? "ifunc" : "alias") + "(\"" + Name
+ "\")")
624 // Check resolver function type.
625 const auto *F
= dyn_cast
<llvm::Function
>(GV
);
627 Diags
.Report(Location
, diag::err_alias_to_undefined
)
628 << IsIFunc
<< IsIFunc
;
632 llvm::FunctionType
*FTy
= F
->getFunctionType();
633 if (!FTy
->getReturnType()->isPointerTy()) {
634 Diags
.Report(Location
, diag::err_ifunc_resolver_return
);
642 // Emit a warning if toc-data attribute is requested for global variables that
643 // have aliases and remove the toc-data attribute.
644 static void checkAliasForTocData(llvm::GlobalVariable
*GVar
,
645 const CodeGenOptions
&CodeGenOpts
,
646 DiagnosticsEngine
&Diags
,
647 SourceLocation Location
) {
648 if (GVar
->hasAttribute("toc-data")) {
649 auto GVId
= GVar
->getName();
650 // Is this a global variable specified by the user as local?
651 if ((llvm::binary_search(CodeGenOpts
.TocDataVarsUserSpecified
, GVId
))) {
652 Diags
.Report(Location
, diag::warn_toc_unsupported_type
)
653 << GVId
<< "the variable has an alias";
655 llvm::AttributeSet CurrAttributes
= GVar
->getAttributes();
656 llvm::AttributeSet NewAttributes
=
657 CurrAttributes
.removeAttribute(GVar
->getContext(), "toc-data");
658 GVar
->setAttributes(NewAttributes
);
662 void CodeGenModule::checkAliases() {
663 // Check if the constructed aliases are well formed. It is really unfortunate
664 // that we have to do this in CodeGen, but we only construct mangled names
665 // and aliases during codegen.
667 DiagnosticsEngine
&Diags
= getDiags();
668 for (const GlobalDecl
&GD
: Aliases
) {
669 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
670 SourceLocation Location
;
672 bool IsIFunc
= D
->hasAttr
<IFuncAttr
>();
673 if (const Attr
*A
= D
->getDefiningAttr()) {
674 Location
= A
->getLocation();
675 Range
= A
->getRange();
677 llvm_unreachable("Not an alias or ifunc?");
679 StringRef MangledName
= getMangledName(GD
);
680 llvm::GlobalValue
*Alias
= GetGlobalValue(MangledName
);
681 const llvm::GlobalValue
*GV
= nullptr;
682 if (!checkAliasedGlobal(getContext(), Diags
, Location
, IsIFunc
, Alias
, GV
,
683 MangledDeclNames
, Range
)) {
688 if (getContext().getTargetInfo().getTriple().isOSAIX())
689 if (const llvm::GlobalVariable
*GVar
=
690 dyn_cast
<const llvm::GlobalVariable
>(GV
))
691 checkAliasForTocData(const_cast<llvm::GlobalVariable
*>(GVar
),
692 getCodeGenOpts(), Diags
, Location
);
694 llvm::Constant
*Aliasee
=
695 IsIFunc
? cast
<llvm::GlobalIFunc
>(Alias
)->getResolver()
696 : cast
<llvm::GlobalAlias
>(Alias
)->getAliasee();
698 llvm::GlobalValue
*AliaseeGV
;
699 if (auto CE
= dyn_cast
<llvm::ConstantExpr
>(Aliasee
))
700 AliaseeGV
= cast
<llvm::GlobalValue
>(CE
->getOperand(0));
702 AliaseeGV
= cast
<llvm::GlobalValue
>(Aliasee
);
704 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>()) {
705 StringRef AliasSection
= SA
->getName();
706 if (AliasSection
!= AliaseeGV
->getSection())
707 Diags
.Report(SA
->getLocation(), diag::warn_alias_with_section
)
708 << AliasSection
<< IsIFunc
<< IsIFunc
;
711 // We have to handle alias to weak aliases in here. LLVM itself disallows
712 // this since the object semantics would not match the IL one. For
713 // compatibility with gcc we implement it by just pointing the alias
714 // to its aliasee's aliasee. We also warn, since the user is probably
715 // expecting the link to be weak.
716 if (auto *GA
= dyn_cast
<llvm::GlobalAlias
>(AliaseeGV
)) {
717 if (GA
->isInterposable()) {
718 Diags
.Report(Location
, diag::warn_alias_to_weak_alias
)
719 << GV
->getName() << GA
->getName() << IsIFunc
;
720 Aliasee
= llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
721 GA
->getAliasee(), Alias
->getType());
724 cast
<llvm::GlobalIFunc
>(Alias
)->setResolver(Aliasee
);
726 cast
<llvm::GlobalAlias
>(Alias
)->setAliasee(Aliasee
);
729 // ifunc resolvers are usually implemented to run before sanitizer
730 // initialization. Disable instrumentation to prevent the ordering issue.
732 cast
<llvm::Function
>(Aliasee
)->addFnAttr(
733 llvm::Attribute::DisableSanitizerInstrumentation
);
738 for (const GlobalDecl
&GD
: Aliases
) {
739 StringRef MangledName
= getMangledName(GD
);
740 llvm::GlobalValue
*Alias
= GetGlobalValue(MangledName
);
741 Alias
->replaceAllUsesWith(llvm::UndefValue::get(Alias
->getType()));
742 Alias
->eraseFromParent();
746 void CodeGenModule::clear() {
747 DeferredDeclsToEmit
.clear();
748 EmittedDeferredDecls
.clear();
749 DeferredAnnotations
.clear();
751 OpenMPRuntime
->clear();
754 void InstrProfStats::reportDiagnostics(DiagnosticsEngine
&Diags
,
755 StringRef MainFile
) {
756 if (!hasDiagnostics())
758 if (VisitedInMainFile
> 0 && VisitedInMainFile
== MissingInMainFile
) {
759 if (MainFile
.empty())
760 MainFile
= "<stdin>";
761 Diags
.Report(diag::warn_profile_data_unprofiled
) << MainFile
;
764 Diags
.Report(diag::warn_profile_data_out_of_date
) << Visited
<< Mismatched
;
767 Diags
.Report(diag::warn_profile_data_missing
) << Visited
<< Missing
;
771 static std::optional
<llvm::GlobalValue::VisibilityTypes
>
772 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K
) {
773 // Map to LLVM visibility.
775 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep
:
777 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default
:
778 return llvm::GlobalValue::DefaultVisibility
;
779 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden
:
780 return llvm::GlobalValue::HiddenVisibility
;
781 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected
:
782 return llvm::GlobalValue::ProtectedVisibility
;
784 llvm_unreachable("unknown option value!");
787 void setLLVMVisibility(llvm::GlobalValue
&GV
,
788 std::optional
<llvm::GlobalValue::VisibilityTypes
> V
) {
792 // Reset DSO locality before setting the visibility. This removes
793 // any effects that visibility options and annotations may have
794 // had on the DSO locality. Setting the visibility will implicitly set
795 // appropriate globals to DSO Local; however, this will be pessimistic
796 // w.r.t. to the normal compiler IRGen.
797 GV
.setDSOLocal(false);
798 GV
.setVisibility(*V
);
801 static void setVisibilityFromDLLStorageClass(const clang::LangOptions
&LO
,
803 if (!LO
.VisibilityFromDLLStorageClass
)
806 std::optional
<llvm::GlobalValue::VisibilityTypes
> DLLExportVisibility
=
807 getLLVMVisibility(LO
.getDLLExportVisibility());
809 std::optional
<llvm::GlobalValue::VisibilityTypes
>
810 NoDLLStorageClassVisibility
=
811 getLLVMVisibility(LO
.getNoDLLStorageClassVisibility());
813 std::optional
<llvm::GlobalValue::VisibilityTypes
>
814 ExternDeclDLLImportVisibility
=
815 getLLVMVisibility(LO
.getExternDeclDLLImportVisibility());
817 std::optional
<llvm::GlobalValue::VisibilityTypes
>
818 ExternDeclNoDLLStorageClassVisibility
=
819 getLLVMVisibility(LO
.getExternDeclNoDLLStorageClassVisibility());
821 for (llvm::GlobalValue
&GV
: M
.global_values()) {
822 if (GV
.hasAppendingLinkage() || GV
.hasLocalLinkage())
825 if (GV
.isDeclarationForLinker())
826 setLLVMVisibility(GV
, GV
.getDLLStorageClass() ==
827 llvm::GlobalValue::DLLImportStorageClass
828 ? ExternDeclDLLImportVisibility
829 : ExternDeclNoDLLStorageClassVisibility
);
831 setLLVMVisibility(GV
, GV
.getDLLStorageClass() ==
832 llvm::GlobalValue::DLLExportStorageClass
833 ? DLLExportVisibility
834 : NoDLLStorageClassVisibility
);
836 GV
.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
840 static bool isStackProtectorOn(const LangOptions
&LangOpts
,
841 const llvm::Triple
&Triple
,
842 clang::LangOptions::StackProtectorMode Mode
) {
843 if (Triple
.isAMDGPU() || Triple
.isNVPTX())
845 return LangOpts
.getStackProtector() == Mode
;
848 void CodeGenModule::Release() {
849 Module
*Primary
= getContext().getCurrentNamedModule();
850 if (CXX20ModuleInits
&& Primary
&& !Primary
->isHeaderLikeModule())
851 EmitModuleInitializers(Primary
);
853 DeferredDecls
.insert(EmittedDeferredDecls
.begin(),
854 EmittedDeferredDecls
.end());
855 EmittedDeferredDecls
.clear();
856 EmitVTablesOpportunistically();
857 applyGlobalValReplacements();
859 emitMultiVersionFunctions();
861 if (Context
.getLangOpts().IncrementalExtensions
&&
862 GlobalTopLevelStmtBlockInFlight
.first
) {
863 const TopLevelStmtDecl
*TLSD
= GlobalTopLevelStmtBlockInFlight
.second
;
864 GlobalTopLevelStmtBlockInFlight
.first
->FinishFunction(TLSD
->getEndLoc());
865 GlobalTopLevelStmtBlockInFlight
= {nullptr, nullptr};
868 // Module implementations are initialized the same way as a regular TU that
869 // imports one or more modules.
870 if (CXX20ModuleInits
&& Primary
&& Primary
->isInterfaceOrPartition())
871 EmitCXXModuleInitFunc(Primary
);
873 EmitCXXGlobalInitFunc();
874 EmitCXXGlobalCleanUpFunc();
875 registerGlobalDtorsWithAtExit();
876 EmitCXXThreadLocalInitFunc();
878 if (llvm::Function
*ObjCInitFunction
= ObjCRuntime
->ModuleInitFunction())
879 AddGlobalCtor(ObjCInitFunction
);
880 if (Context
.getLangOpts().CUDA
&& CUDARuntime
) {
881 if (llvm::Function
*CudaCtorFunction
= CUDARuntime
->finalizeModule())
882 AddGlobalCtor(CudaCtorFunction
);
885 OpenMPRuntime
->createOffloadEntriesAndInfoMetadata();
886 OpenMPRuntime
->clear();
889 getModule().setProfileSummary(
890 PGOReader
->getSummary(/* UseCS */ false).getMD(VMContext
),
891 llvm::ProfileSummary::PSK_Instr
);
892 if (PGOStats
.hasDiagnostics())
893 PGOStats
.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName
);
895 llvm::stable_sort(GlobalCtors
, [](const Structor
&L
, const Structor
&R
) {
896 return L
.LexOrder
< R
.LexOrder
;
898 EmitCtorList(GlobalCtors
, "llvm.global_ctors");
899 EmitCtorList(GlobalDtors
, "llvm.global_dtors");
900 EmitGlobalAnnotations();
901 EmitStaticExternCAliases();
903 EmitDeferredUnusedCoverageMappings();
904 CodeGenPGO(*this).setValueProfilingFlag(getModule());
905 CodeGenPGO(*this).setProfileVersion(getModule());
907 CoverageMapping
->emit();
908 if (CodeGenOpts
.SanitizeCfiCrossDso
) {
909 CodeGenFunction(*this).EmitCfiCheckFail();
910 CodeGenFunction(*this).EmitCfiCheckStub();
912 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
))
914 emitAtAvailableLinkGuard();
915 if (Context
.getTargetInfo().getTriple().isWasm())
918 if (getTriple().isAMDGPU() ||
919 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD
)) {
920 // Emit amdhsa_code_object_version module flag, which is code object version
922 if (getTarget().getTargetOpts().CodeObjectVersion
!=
923 llvm::CodeObjectVersionKind::COV_None
) {
924 getModule().addModuleFlag(llvm::Module::Error
,
925 "amdhsa_code_object_version",
926 getTarget().getTargetOpts().CodeObjectVersion
);
929 // Currently, "-mprintf-kind" option is only supported for HIP
931 auto *MDStr
= llvm::MDString::get(
932 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal
==
933 TargetOptions::AMDGPUPrintfKind::Hostcall
)
936 getModule().addModuleFlag(llvm::Module::Error
, "amdgpu_printf_kind",
941 // Emit a global array containing all external kernels or device variables
942 // used by host functions and mark it as used for CUDA/HIP. This is necessary
943 // to get kernels or device variables in archives linked in even if these
944 // kernels or device variables are only used in host functions.
945 if (!Context
.CUDAExternalDeviceDeclODRUsedByHost
.empty()) {
946 SmallVector
<llvm::Constant
*, 8> UsedArray
;
947 for (auto D
: Context
.CUDAExternalDeviceDeclODRUsedByHost
) {
949 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
))
950 GD
= GlobalDecl(FD
, KernelReferenceKind::Kernel
);
953 UsedArray
.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
954 GetAddrOfGlobal(GD
), Int8PtrTy
));
957 llvm::ArrayType
*ATy
= llvm::ArrayType::get(Int8PtrTy
, UsedArray
.size());
959 auto *GV
= new llvm::GlobalVariable(
960 getModule(), ATy
, false, llvm::GlobalValue::InternalLinkage
,
961 llvm::ConstantArray::get(ATy
, UsedArray
), "__clang_gpu_used_external");
962 addCompilerUsedGlobal(GV
);
964 if (LangOpts
.HIP
&& !getLangOpts().OffloadingNewDriver
) {
965 // Emit a unique ID so that host and device binaries from the same
966 // compilation unit can be associated.
967 auto *GV
= new llvm::GlobalVariable(
968 getModule(), Int8Ty
, false, llvm::GlobalValue::ExternalLinkage
,
969 llvm::Constant::getNullValue(Int8Ty
),
970 "__hip_cuid_" + getContext().getCUIDHash());
971 addCompilerUsedGlobal(GV
);
977 if (CodeGenOpts
.Autolink
&&
978 (Context
.getLangOpts().Modules
|| !LinkerOptionsMetadata
.empty())) {
979 EmitModuleLinkOptions();
982 // On ELF we pass the dependent library specifiers directly to the linker
983 // without manipulating them. This is in contrast to other platforms where
984 // they are mapped to a specific linker option by the compiler. This
985 // difference is a result of the greater variety of ELF linkers and the fact
986 // that ELF linkers tend to handle libraries in a more complicated fashion
987 // than on other platforms. This forces us to defer handling the dependent
988 // libs to the linker.
990 // CUDA/HIP device and host libraries are different. Currently there is no
991 // way to differentiate dependent libraries for host or device. Existing
992 // usage of #pragma comment(lib, *) is intended for host libraries on
993 // Windows. Therefore emit llvm.dependent-libraries only for host.
994 if (!ELFDependentLibraries
.empty() && !Context
.getLangOpts().CUDAIsDevice
) {
995 auto *NMD
= getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
996 for (auto *MD
: ELFDependentLibraries
)
1000 if (CodeGenOpts
.DwarfVersion
) {
1001 getModule().addModuleFlag(llvm::Module::Max
, "Dwarf Version",
1002 CodeGenOpts
.DwarfVersion
);
1005 if (CodeGenOpts
.Dwarf64
)
1006 getModule().addModuleFlag(llvm::Module::Max
, "DWARF64", 1);
1008 if (Context
.getLangOpts().SemanticInterposition
)
1009 // Require various optimization to respect semantic interposition.
1010 getModule().setSemanticInterposition(true);
1012 if (CodeGenOpts
.EmitCodeView
) {
1013 // Indicate that we want CodeView in the metadata.
1014 getModule().addModuleFlag(llvm::Module::Warning
, "CodeView", 1);
1016 if (CodeGenOpts
.CodeViewGHash
) {
1017 getModule().addModuleFlag(llvm::Module::Warning
, "CodeViewGHash", 1);
1019 if (CodeGenOpts
.ControlFlowGuard
) {
1020 // Function ID tables and checks for Control Flow Guard (cfguard=2).
1021 getModule().addModuleFlag(llvm::Module::Warning
, "cfguard", 2);
1022 } else if (CodeGenOpts
.ControlFlowGuardNoChecks
) {
1023 // Function ID tables for Control Flow Guard (cfguard=1).
1024 getModule().addModuleFlag(llvm::Module::Warning
, "cfguard", 1);
1026 if (CodeGenOpts
.EHContGuard
) {
1027 // Function ID tables for EH Continuation Guard.
1028 getModule().addModuleFlag(llvm::Module::Warning
, "ehcontguard", 1);
1030 if (Context
.getLangOpts().Kernel
) {
1031 // Note if we are compiling with /kernel.
1032 getModule().addModuleFlag(llvm::Module::Warning
, "ms-kernel", 1);
1034 if (CodeGenOpts
.OptimizationLevel
> 0 && CodeGenOpts
.StrictVTablePointers
) {
1035 // We don't support LTO with 2 with different StrictVTablePointers
1036 // FIXME: we could support it by stripping all the information introduced
1037 // by StrictVTablePointers.
1039 getModule().addModuleFlag(llvm::Module::Error
, "StrictVTablePointers",1);
1041 llvm::Metadata
*Ops
[2] = {
1042 llvm::MDString::get(VMContext
, "StrictVTablePointers"),
1043 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1044 llvm::Type::getInt32Ty(VMContext
), 1))};
1046 getModule().addModuleFlag(llvm::Module::Require
,
1047 "StrictVTablePointersRequirement",
1048 llvm::MDNode::get(VMContext
, Ops
));
1050 if (getModuleDebugInfo())
1051 // We support a single version in the linked module. The LLVM
1052 // parser will drop debug info with a different version number
1053 // (and warn about it, too).
1054 getModule().addModuleFlag(llvm::Module::Warning
, "Debug Info Version",
1055 llvm::DEBUG_METADATA_VERSION
);
1057 // We need to record the widths of enums and wchar_t, so that we can generate
1058 // the correct build attributes in the ARM backend. wchar_size is also used by
1059 // TargetLibraryInfo.
1060 uint64_t WCharWidth
=
1061 Context
.getTypeSizeInChars(Context
.getWideCharType()).getQuantity();
1062 getModule().addModuleFlag(llvm::Module::Error
, "wchar_size", WCharWidth
);
1064 if (getTriple().isOSzOS()) {
1065 getModule().addModuleFlag(llvm::Module::Warning
,
1066 "zos_product_major_version",
1067 uint32_t(CLANG_VERSION_MAJOR
));
1068 getModule().addModuleFlag(llvm::Module::Warning
,
1069 "zos_product_minor_version",
1070 uint32_t(CLANG_VERSION_MINOR
));
1071 getModule().addModuleFlag(llvm::Module::Warning
, "zos_product_patchlevel",
1072 uint32_t(CLANG_VERSION_PATCHLEVEL
));
1073 std::string ProductId
= getClangVendor() + "clang";
1074 getModule().addModuleFlag(llvm::Module::Error
, "zos_product_id",
1075 llvm::MDString::get(VMContext
, ProductId
));
1077 // Record the language because we need it for the PPA2.
1078 StringRef lang_str
= languageToString(
1079 LangStandard::getLangStandardForKind(LangOpts
.LangStd
).Language
);
1080 getModule().addModuleFlag(llvm::Module::Error
, "zos_cu_language",
1081 llvm::MDString::get(VMContext
, lang_str
));
1083 time_t TT
= PreprocessorOpts
.SourceDateEpoch
1084 ? *PreprocessorOpts
.SourceDateEpoch
1085 : std::time(nullptr);
1086 getModule().addModuleFlag(llvm::Module::Max
, "zos_translation_time",
1087 static_cast<uint64_t>(TT
));
1089 // Multiple modes will be supported here.
1090 getModule().addModuleFlag(llvm::Module::Error
, "zos_le_char_mode",
1091 llvm::MDString::get(VMContext
, "ascii"));
1094 llvm::Triple T
= Context
.getTargetInfo().getTriple();
1095 if (T
.isARM() || T
.isThumb()) {
1096 // The minimum width of an enum in bytes
1097 uint64_t EnumWidth
= Context
.getLangOpts().ShortEnums
? 1 : 4;
1098 getModule().addModuleFlag(llvm::Module::Error
, "min_enum_size", EnumWidth
);
1102 StringRef ABIStr
= Target
.getABI();
1103 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1104 getModule().addModuleFlag(llvm::Module::Error
, "target-abi",
1105 llvm::MDString::get(Ctx
, ABIStr
));
1107 // Add the canonical ISA string as metadata so the backend can set the ELF
1108 // attributes correctly. We use AppendUnique so LTO will keep all of the
1109 // unique ISA strings that were linked together.
1110 const std::vector
<std::string
> &Features
=
1111 getTarget().getTargetOpts().Features
;
1113 llvm::RISCVISAInfo::parseFeatures(T
.isRISCV64() ? 64 : 32, Features
);
1114 if (!errorToBool(ParseResult
.takeError()))
1115 getModule().addModuleFlag(
1116 llvm::Module::AppendUnique
, "riscv-isa",
1118 Ctx
, llvm::MDString::get(Ctx
, (*ParseResult
)->toString())));
1121 if (CodeGenOpts
.SanitizeCfiCrossDso
) {
1122 // Indicate that we want cross-DSO control flow integrity checks.
1123 getModule().addModuleFlag(llvm::Module::Override
, "Cross-DSO CFI", 1);
1126 if (CodeGenOpts
.WholeProgramVTables
) {
1127 // Indicate whether VFE was enabled for this module, so that the
1128 // vcall_visibility metadata added under whole program vtables is handled
1129 // appropriately in the optimizer.
1130 getModule().addModuleFlag(llvm::Module::Error
, "Virtual Function Elim",
1131 CodeGenOpts
.VirtualFunctionElimination
);
1134 if (LangOpts
.Sanitize
.has(SanitizerKind::CFIICall
)) {
1135 getModule().addModuleFlag(llvm::Module::Override
,
1136 "CFI Canonical Jump Tables",
1137 CodeGenOpts
.SanitizeCfiCanonicalJumpTables
);
1140 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
)) {
1141 getModule().addModuleFlag(llvm::Module::Override
, "kcfi", 1);
1142 // KCFI assumes patchable-function-prefix is the same for all indirectly
1143 // called functions. Store the expected offset for code generation.
1144 if (CodeGenOpts
.PatchableFunctionEntryOffset
)
1145 getModule().addModuleFlag(llvm::Module::Override
, "kcfi-offset",
1146 CodeGenOpts
.PatchableFunctionEntryOffset
);
1149 if (CodeGenOpts
.CFProtectionReturn
&&
1150 Target
.checkCFProtectionReturnSupported(getDiags())) {
1151 // Indicate that we want to instrument return control flow protection.
1152 getModule().addModuleFlag(llvm::Module::Min
, "cf-protection-return",
1156 if (CodeGenOpts
.CFProtectionBranch
&&
1157 Target
.checkCFProtectionBranchSupported(getDiags())) {
1158 // Indicate that we want to instrument branch control flow protection.
1159 getModule().addModuleFlag(llvm::Module::Min
, "cf-protection-branch",
1163 if (CodeGenOpts
.FunctionReturnThunks
)
1164 getModule().addModuleFlag(llvm::Module::Override
, "function_return_thunk_extern", 1);
1166 if (CodeGenOpts
.IndirectBranchCSPrefix
)
1167 getModule().addModuleFlag(llvm::Module::Override
, "indirect_branch_cs_prefix", 1);
1169 // Add module metadata for return address signing (ignoring
1170 // non-leaf/all) and stack tagging. These are actually turned on by function
1171 // attributes, but we use module metadata to emit build attributes. This is
1172 // needed for LTO, where the function attributes are inside bitcode
1173 // serialised into a global variable by the time build attributes are
1174 // emitted, so we can't access them. LTO objects could be compiled with
1175 // different flags therefore module flags are set to "Min" behavior to achieve
1176 // the same end result of the normal build where e.g BTI is off if any object
1177 // doesn't support it.
1178 if (Context
.getTargetInfo().hasFeature("ptrauth") &&
1179 LangOpts
.getSignReturnAddressScope() !=
1180 LangOptions::SignReturnAddressScopeKind::None
)
1181 getModule().addModuleFlag(llvm::Module::Override
,
1182 "sign-return-address-buildattr", 1);
1183 if (LangOpts
.Sanitize
.has(SanitizerKind::MemtagStack
))
1184 getModule().addModuleFlag(llvm::Module::Override
,
1185 "tag-stack-memory-buildattr", 1);
1187 if (T
.isARM() || T
.isThumb() || T
.isAArch64()) {
1188 if (LangOpts
.BranchTargetEnforcement
)
1189 getModule().addModuleFlag(llvm::Module::Min
, "branch-target-enforcement",
1191 if (LangOpts
.BranchProtectionPAuthLR
)
1192 getModule().addModuleFlag(llvm::Module::Min
, "branch-protection-pauth-lr",
1194 if (LangOpts
.GuardedControlStack
)
1195 getModule().addModuleFlag(llvm::Module::Min
, "guarded-control-stack", 1);
1196 if (LangOpts
.hasSignReturnAddress())
1197 getModule().addModuleFlag(llvm::Module::Min
, "sign-return-address", 1);
1198 if (LangOpts
.isSignReturnAddressScopeAll())
1199 getModule().addModuleFlag(llvm::Module::Min
, "sign-return-address-all",
1201 if (!LangOpts
.isSignReturnAddressWithAKey())
1202 getModule().addModuleFlag(llvm::Module::Min
,
1203 "sign-return-address-with-bkey", 1);
1205 if (getTriple().isOSLinux()) {
1206 assert(getTriple().isOSBinFormatELF());
1207 using namespace llvm::ELF
;
1208 uint64_t PAuthABIVersion
=
1209 (LangOpts
.PointerAuthIntrinsics
1210 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS
) |
1211 (LangOpts
.PointerAuthCalls
1212 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS
) |
1213 (LangOpts
.PointerAuthReturns
1214 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS
) |
1215 (LangOpts
.PointerAuthAuthTraps
1216 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS
) |
1217 (LangOpts
.PointerAuthVTPtrAddressDiscrimination
1218 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR
) |
1219 (LangOpts
.PointerAuthVTPtrTypeDiscrimination
1220 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR
) |
1221 (LangOpts
.PointerAuthInitFini
1222 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI
);
1223 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI
==
1224 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST
,
1225 "Update when new enum items are defined");
1226 if (PAuthABIVersion
!= 0) {
1227 getModule().addModuleFlag(llvm::Module::Error
,
1228 "aarch64-elf-pauthabi-platform",
1229 AARCH64_PAUTH_PLATFORM_LLVM_LINUX
);
1230 getModule().addModuleFlag(llvm::Module::Error
,
1231 "aarch64-elf-pauthabi-version",
1237 if (CodeGenOpts
.StackClashProtector
)
1238 getModule().addModuleFlag(
1239 llvm::Module::Override
, "probe-stack",
1240 llvm::MDString::get(TheModule
.getContext(), "inline-asm"));
1242 if (CodeGenOpts
.StackProbeSize
&& CodeGenOpts
.StackProbeSize
!= 4096)
1243 getModule().addModuleFlag(llvm::Module::Min
, "stack-probe-size",
1244 CodeGenOpts
.StackProbeSize
);
1246 if (!CodeGenOpts
.MemoryProfileOutput
.empty()) {
1247 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1248 getModule().addModuleFlag(
1249 llvm::Module::Error
, "MemProfProfileFilename",
1250 llvm::MDString::get(Ctx
, CodeGenOpts
.MemoryProfileOutput
));
1253 if (LangOpts
.CUDAIsDevice
&& getTriple().isNVPTX()) {
1254 // Indicate whether __nvvm_reflect should be configured to flush denormal
1255 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
1257 getModule().addModuleFlag(llvm::Module::Override
, "nvvm-reflect-ftz",
1258 CodeGenOpts
.FP32DenormalMode
.Output
!=
1259 llvm::DenormalMode::IEEE
);
1262 if (LangOpts
.EHAsynch
)
1263 getModule().addModuleFlag(llvm::Module::Warning
, "eh-asynch", 1);
1265 // Indicate whether this Module was compiled with -fopenmp
1266 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
)
1267 getModule().addModuleFlag(llvm::Module::Max
, "openmp", LangOpts
.OpenMP
);
1268 if (getLangOpts().OpenMPIsTargetDevice
)
1269 getModule().addModuleFlag(llvm::Module::Max
, "openmp-device",
1272 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1273 if (LangOpts
.OpenCL
|| (LangOpts
.CUDAIsDevice
&& getTriple().isSPIRV())) {
1274 EmitOpenCLMetadata();
1275 // Emit SPIR version.
1276 if (getTriple().isSPIR()) {
1277 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1278 // opencl.spir.version named metadata.
1279 // C++ for OpenCL has a distinct mapping for version compatibility with
1281 auto Version
= LangOpts
.getOpenCLCompatibleVersion();
1282 llvm::Metadata
*SPIRVerElts
[] = {
1283 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1284 Int32Ty
, Version
/ 100)),
1285 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1286 Int32Ty
, (Version
/ 100 > 1) ? 0 : 2))};
1287 llvm::NamedMDNode
*SPIRVerMD
=
1288 TheModule
.getOrInsertNamedMetadata("opencl.spir.version");
1289 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1290 SPIRVerMD
->addOperand(llvm::MDNode::get(Ctx
, SPIRVerElts
));
1294 // HLSL related end of code gen work items.
1296 getHLSLRuntime().finishCodeGen();
1298 if (uint32_t PLevel
= Context
.getLangOpts().PICLevel
) {
1299 assert(PLevel
< 3 && "Invalid PIC Level");
1300 getModule().setPICLevel(static_cast<llvm::PICLevel::Level
>(PLevel
));
1301 if (Context
.getLangOpts().PIE
)
1302 getModule().setPIELevel(static_cast<llvm::PIELevel::Level
>(PLevel
));
1305 if (getCodeGenOpts().CodeModel
.size() > 0) {
1306 unsigned CM
= llvm::StringSwitch
<unsigned>(getCodeGenOpts().CodeModel
)
1307 .Case("tiny", llvm::CodeModel::Tiny
)
1308 .Case("small", llvm::CodeModel::Small
)
1309 .Case("kernel", llvm::CodeModel::Kernel
)
1310 .Case("medium", llvm::CodeModel::Medium
)
1311 .Case("large", llvm::CodeModel::Large
)
1314 llvm::CodeModel::Model codeModel
= static_cast<llvm::CodeModel::Model
>(CM
);
1315 getModule().setCodeModel(codeModel
);
1317 if ((CM
== llvm::CodeModel::Medium
|| CM
== llvm::CodeModel::Large
) &&
1318 Context
.getTargetInfo().getTriple().getArch() ==
1319 llvm::Triple::x86_64
) {
1320 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold
);
1325 if (CodeGenOpts
.NoPLT
)
1326 getModule().setRtLibUseGOT();
1327 if (getTriple().isOSBinFormatELF() &&
1328 CodeGenOpts
.DirectAccessExternalData
!=
1329 getModule().getDirectAccessExternalData()) {
1330 getModule().setDirectAccessExternalData(
1331 CodeGenOpts
.DirectAccessExternalData
);
1333 if (CodeGenOpts
.UnwindTables
)
1334 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts
.UnwindTables
));
1336 switch (CodeGenOpts
.getFramePointer()) {
1337 case CodeGenOptions::FramePointerKind::None
:
1338 // 0 ("none") is the default.
1340 case CodeGenOptions::FramePointerKind::Reserved
:
1341 getModule().setFramePointer(llvm::FramePointerKind::Reserved
);
1343 case CodeGenOptions::FramePointerKind::NonLeaf
:
1344 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf
);
1346 case CodeGenOptions::FramePointerKind::All
:
1347 getModule().setFramePointer(llvm::FramePointerKind::All
);
1351 SimplifyPersonality();
1353 if (getCodeGenOpts().EmitDeclMetadata
)
1356 if (getCodeGenOpts().CoverageNotesFile
.size() ||
1357 getCodeGenOpts().CoverageDataFile
.size())
1360 if (CGDebugInfo
*DI
= getModuleDebugInfo())
1363 if (getCodeGenOpts().EmitVersionIdentMetadata
)
1364 EmitVersionIdentMetadata();
1366 if (!getCodeGenOpts().RecordCommandLine
.empty())
1367 EmitCommandLineMetadata();
1369 if (!getCodeGenOpts().StackProtectorGuard
.empty())
1370 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard
);
1371 if (!getCodeGenOpts().StackProtectorGuardReg
.empty())
1372 getModule().setStackProtectorGuardReg(
1373 getCodeGenOpts().StackProtectorGuardReg
);
1374 if (!getCodeGenOpts().StackProtectorGuardSymbol
.empty())
1375 getModule().setStackProtectorGuardSymbol(
1376 getCodeGenOpts().StackProtectorGuardSymbol
);
1377 if (getCodeGenOpts().StackProtectorGuardOffset
!= INT_MAX
)
1378 getModule().setStackProtectorGuardOffset(
1379 getCodeGenOpts().StackProtectorGuardOffset
);
1380 if (getCodeGenOpts().StackAlignment
)
1381 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment
);
1382 if (getCodeGenOpts().SkipRaxSetup
)
1383 getModule().addModuleFlag(llvm::Module::Override
, "SkipRaxSetup", 1);
1384 if (getLangOpts().RegCall4
)
1385 getModule().addModuleFlag(llvm::Module::Override
, "RegCallv4", 1);
1387 if (getContext().getTargetInfo().getMaxTLSAlign())
1388 getModule().addModuleFlag(llvm::Module::Error
, "MaxTLSAlign",
1389 getContext().getTargetInfo().getMaxTLSAlign());
1391 getTargetCodeGenInfo().emitTargetGlobals(*this);
1393 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames
);
1395 EmitBackendOptionsMetadata(getCodeGenOpts());
1397 // If there is device offloading code embed it in the host now.
1398 EmbedObject(&getModule(), CodeGenOpts
, getDiags());
1400 // Set visibility from DLL storage class
1401 // We do this at the end of LLVM IR generation; after any operation
1402 // that might affect the DLL storage class or the visibility, and
1403 // before anything that might act on these.
1404 setVisibilityFromDLLStorageClass(LangOpts
, getModule());
1406 // Check the tail call symbols are truly undefined.
1407 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals
.empty()) {
1408 for (auto &I
: MustTailCallUndefinedGlobals
) {
1409 if (!I
.first
->isDefined())
1410 getDiags().Report(I
.second
, diag::err_ppc_impossible_musttail
) << 2;
1412 StringRef MangledName
= getMangledName(GlobalDecl(I
.first
));
1413 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
1414 if (!Entry
|| Entry
->isWeakForLinker() ||
1415 Entry
->isDeclarationForLinker())
1416 getDiags().Report(I
.second
, diag::err_ppc_impossible_musttail
) << 2;
1422 void CodeGenModule::EmitOpenCLMetadata() {
1423 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1424 // opencl.ocl.version named metadata node.
1425 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1426 auto CLVersion
= LangOpts
.getOpenCLCompatibleVersion();
1428 auto EmitVersion
= [this](StringRef MDName
, int Version
) {
1429 llvm::Metadata
*OCLVerElts
[] = {
1430 llvm::ConstantAsMetadata::get(
1431 llvm::ConstantInt::get(Int32Ty
, Version
/ 100)),
1432 llvm::ConstantAsMetadata::get(
1433 llvm::ConstantInt::get(Int32Ty
, (Version
% 100) / 10))};
1434 llvm::NamedMDNode
*OCLVerMD
= TheModule
.getOrInsertNamedMetadata(MDName
);
1435 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1436 OCLVerMD
->addOperand(llvm::MDNode::get(Ctx
, OCLVerElts
));
1439 EmitVersion("opencl.ocl.version", CLVersion
);
1440 if (LangOpts
.OpenCLCPlusPlus
) {
1441 // In addition to the OpenCL compatible version, emit the C++ version.
1442 EmitVersion("opencl.cxx.version", LangOpts
.OpenCLCPlusPlusVersion
);
1446 void CodeGenModule::EmitBackendOptionsMetadata(
1447 const CodeGenOptions
&CodeGenOpts
) {
1448 if (getTriple().isRISCV()) {
1449 getModule().addModuleFlag(llvm::Module::Min
, "SmallDataLimit",
1450 CodeGenOpts
.SmallDataLimit
);
1454 void CodeGenModule::UpdateCompletedType(const TagDecl
*TD
) {
1455 // Make sure that this type is translated.
1456 getTypes().UpdateCompletedType(TD
);
1459 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl
*RD
) {
1460 // Make sure that this type is translated.
1461 getTypes().RefreshTypeCacheForClass(RD
);
1464 llvm::MDNode
*CodeGenModule::getTBAATypeInfo(QualType QTy
) {
1467 return TBAA
->getTypeInfo(QTy
);
1470 TBAAAccessInfo
CodeGenModule::getTBAAAccessInfo(QualType AccessType
) {
1472 return TBAAAccessInfo();
1473 if (getLangOpts().CUDAIsDevice
) {
1474 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1476 if (AccessType
->isCUDADeviceBuiltinSurfaceType()) {
1477 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1479 return TBAAAccessInfo();
1480 } else if (AccessType
->isCUDADeviceBuiltinTextureType()) {
1481 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1483 return TBAAAccessInfo();
1486 return TBAA
->getAccessInfo(AccessType
);
1490 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type
*VTablePtrType
) {
1492 return TBAAAccessInfo();
1493 return TBAA
->getVTablePtrAccessInfo(VTablePtrType
);
1496 llvm::MDNode
*CodeGenModule::getTBAAStructInfo(QualType QTy
) {
1499 return TBAA
->getTBAAStructInfo(QTy
);
1502 llvm::MDNode
*CodeGenModule::getTBAABaseTypeInfo(QualType QTy
) {
1505 return TBAA
->getBaseTypeInfo(QTy
);
1508 llvm::MDNode
*CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info
) {
1511 return TBAA
->getAccessTagInfo(Info
);
1514 TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo
,
1515 TBAAAccessInfo TargetInfo
) {
1517 return TBAAAccessInfo();
1518 return TBAA
->mergeTBAAInfoForCast(SourceInfo
, TargetInfo
);
1522 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA
,
1523 TBAAAccessInfo InfoB
) {
1525 return TBAAAccessInfo();
1526 return TBAA
->mergeTBAAInfoForConditionalOperator(InfoA
, InfoB
);
1530 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo
,
1531 TBAAAccessInfo SrcInfo
) {
1533 return TBAAAccessInfo();
1534 return TBAA
->mergeTBAAInfoForConditionalOperator(DestInfo
, SrcInfo
);
1537 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction
*Inst
,
1538 TBAAAccessInfo TBAAInfo
) {
1539 if (llvm::MDNode
*Tag
= getTBAAAccessTagInfo(TBAAInfo
))
1540 Inst
->setMetadata(llvm::LLVMContext::MD_tbaa
, Tag
);
1543 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1544 llvm::Instruction
*I
, const CXXRecordDecl
*RD
) {
1545 I
->setMetadata(llvm::LLVMContext::MD_invariant_group
,
1546 llvm::MDNode::get(getLLVMContext(), {}));
1549 void CodeGenModule::Error(SourceLocation loc
, StringRef message
) {
1550 unsigned diagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
, "%0");
1551 getDiags().Report(Context
.getFullLoc(loc
), diagID
) << message
;
1554 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1555 /// specified stmt yet.
1556 void CodeGenModule::ErrorUnsupported(const Stmt
*S
, const char *Type
) {
1557 unsigned DiagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
,
1558 "cannot compile this %0 yet");
1559 std::string Msg
= Type
;
1560 getDiags().Report(Context
.getFullLoc(S
->getBeginLoc()), DiagID
)
1561 << Msg
<< S
->getSourceRange();
1564 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1565 /// specified decl yet.
1566 void CodeGenModule::ErrorUnsupported(const Decl
*D
, const char *Type
) {
1567 unsigned DiagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
,
1568 "cannot compile this %0 yet");
1569 std::string Msg
= Type
;
1570 getDiags().Report(Context
.getFullLoc(D
->getLocation()), DiagID
) << Msg
;
1573 llvm::ConstantInt
*CodeGenModule::getSize(CharUnits size
) {
1574 return llvm::ConstantInt::get(SizeTy
, size
.getQuantity());
1577 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue
*GV
,
1578 const NamedDecl
*D
) const {
1579 // Internal definitions always have default visibility.
1580 if (GV
->hasLocalLinkage()) {
1581 GV
->setVisibility(llvm::GlobalValue::DefaultVisibility
);
1587 // Set visibility for definitions, and for declarations if requested globally
1588 // or set explicitly.
1589 LinkageInfo LV
= D
->getLinkageAndVisibility();
1591 // OpenMP declare target variables must be visible to the host so they can
1592 // be registered. We require protected visibility unless the variable has
1593 // the DT_nohost modifier and does not need to be registered.
1594 if (Context
.getLangOpts().OpenMP
&&
1595 Context
.getLangOpts().OpenMPIsTargetDevice
&& isa
<VarDecl
>(D
) &&
1596 D
->hasAttr
<OMPDeclareTargetDeclAttr
>() &&
1597 D
->getAttr
<OMPDeclareTargetDeclAttr
>()->getDevType() !=
1598 OMPDeclareTargetDeclAttr::DT_NoHost
&&
1599 LV
.getVisibility() == HiddenVisibility
) {
1600 GV
->setVisibility(llvm::GlobalValue::ProtectedVisibility
);
1604 if (GV
->hasDLLExportStorageClass() || GV
->hasDLLImportStorageClass()) {
1605 // Reject incompatible dlllstorage and visibility annotations.
1606 if (!LV
.isVisibilityExplicit())
1608 if (GV
->hasDLLExportStorageClass()) {
1609 if (LV
.getVisibility() == HiddenVisibility
)
1610 getDiags().Report(D
->getLocation(),
1611 diag::err_hidden_visibility_dllexport
);
1612 } else if (LV
.getVisibility() != DefaultVisibility
) {
1613 getDiags().Report(D
->getLocation(),
1614 diag::err_non_default_visibility_dllimport
);
1619 if (LV
.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls
||
1620 !GV
->isDeclarationForLinker())
1621 GV
->setVisibility(GetLLVMVisibility(LV
.getVisibility()));
1624 static bool shouldAssumeDSOLocal(const CodeGenModule
&CGM
,
1625 llvm::GlobalValue
*GV
) {
1626 if (GV
->hasLocalLinkage())
1629 if (!GV
->hasDefaultVisibility() && !GV
->hasExternalWeakLinkage())
1632 // DLLImport explicitly marks the GV as external.
1633 if (GV
->hasDLLImportStorageClass())
1636 const llvm::Triple
&TT
= CGM
.getTriple();
1637 const auto &CGOpts
= CGM
.getCodeGenOpts();
1638 if (TT
.isWindowsGNUEnvironment()) {
1639 // In MinGW, variables without DLLImport can still be automatically
1640 // imported from a DLL by the linker; don't mark variables that
1641 // potentially could come from another DLL as DSO local.
1643 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1644 // (and this actually happens in the public interface of libstdc++), so
1645 // such variables can't be marked as DSO local. (Native TLS variables
1646 // can't be dllimported at all, though.)
1647 if (GV
->isDeclarationForLinker() && isa
<llvm::GlobalVariable
>(GV
) &&
1648 (!GV
->isThreadLocal() || CGM
.getCodeGenOpts().EmulatedTLS
) &&
1653 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1654 // remain unresolved in the link, they can be resolved to zero, which is
1655 // outside the current DSO.
1656 if (TT
.isOSBinFormatCOFF() && GV
->hasExternalWeakLinkage())
1659 // Every other GV is local on COFF.
1660 // Make an exception for windows OS in the triple: Some firmware builds use
1661 // *-win32-macho triples. This (accidentally?) produced windows relocations
1662 // without GOT tables in older clang versions; Keep this behaviour.
1663 // FIXME: even thread local variables?
1664 if (TT
.isOSBinFormatCOFF() || (TT
.isOSWindows() && TT
.isOSBinFormatMachO()))
1667 // Only handle COFF and ELF for now.
1668 if (!TT
.isOSBinFormatELF())
1671 // If this is not an executable, don't assume anything is local.
1672 llvm::Reloc::Model RM
= CGOpts
.RelocationModel
;
1673 const auto &LOpts
= CGM
.getLangOpts();
1674 if (RM
!= llvm::Reloc::Static
&& !LOpts
.PIE
) {
1675 // On ELF, if -fno-semantic-interposition is specified and the target
1676 // supports local aliases, there will be neither CC1
1677 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1678 // dso_local on the function if using a local alias is preferable (can avoid
1679 // PLT indirection).
1680 if (!(isa
<llvm::Function
>(GV
) && GV
->canBenefitFromLocalAlias()))
1682 return !(CGM
.getLangOpts().SemanticInterposition
||
1683 CGM
.getLangOpts().HalfNoSemanticInterposition
);
1686 // A definition cannot be preempted from an executable.
1687 if (!GV
->isDeclarationForLinker())
1690 // Most PIC code sequences that assume that a symbol is local cannot produce a
1691 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1692 // depended, it seems worth it to handle it here.
1693 if (RM
== llvm::Reloc::PIC_
&& GV
->hasExternalWeakLinkage())
1696 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1700 if (CGOpts
.DirectAccessExternalData
) {
1701 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1702 // for non-thread-local variables. If the symbol is not defined in the
1703 // executable, a copy relocation will be needed at link time. dso_local is
1704 // excluded for thread-local variables because they generally don't support
1705 // copy relocations.
1706 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(GV
))
1707 if (!Var
->isThreadLocal())
1710 // -fno-pic sets dso_local on a function declaration to allow direct
1711 // accesses when taking its address (similar to a data symbol). If the
1712 // function is not defined in the executable, a canonical PLT entry will be
1713 // needed at link time. -fno-direct-access-external-data can avoid the
1714 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1715 // it could just cause trouble without providing perceptible benefits.
1716 if (isa
<llvm::Function
>(GV
) && !CGOpts
.NoPLT
&& RM
== llvm::Reloc::Static
)
1720 // If we can use copy relocations we can assume it is local.
1722 // Otherwise don't assume it is local.
1726 void CodeGenModule::setDSOLocal(llvm::GlobalValue
*GV
) const {
1727 GV
->setDSOLocal(shouldAssumeDSOLocal(*this, GV
));
1730 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue
*GV
,
1731 GlobalDecl GD
) const {
1732 const auto *D
= dyn_cast
<NamedDecl
>(GD
.getDecl());
1733 // C++ destructors have a few C++ ABI specific special cases.
1734 if (const auto *Dtor
= dyn_cast_or_null
<CXXDestructorDecl
>(D
)) {
1735 getCXXABI().setCXXDestructorDLLStorage(GV
, Dtor
, GD
.getDtorType());
1738 setDLLImportDLLExport(GV
, D
);
1741 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue
*GV
,
1742 const NamedDecl
*D
) const {
1743 if (D
&& D
->isExternallyVisible()) {
1744 if (D
->hasAttr
<DLLImportAttr
>())
1745 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
1746 else if ((D
->hasAttr
<DLLExportAttr
>() ||
1747 shouldMapVisibilityToDLLExport(D
)) &&
1748 !GV
->isDeclarationForLinker())
1749 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass
);
1753 void CodeGenModule::setGVProperties(llvm::GlobalValue
*GV
,
1754 GlobalDecl GD
) const {
1755 setDLLImportDLLExport(GV
, GD
);
1756 setGVPropertiesAux(GV
, dyn_cast
<NamedDecl
>(GD
.getDecl()));
1759 void CodeGenModule::setGVProperties(llvm::GlobalValue
*GV
,
1760 const NamedDecl
*D
) const {
1761 setDLLImportDLLExport(GV
, D
);
1762 setGVPropertiesAux(GV
, D
);
1765 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue
*GV
,
1766 const NamedDecl
*D
) const {
1767 setGlobalVisibility(GV
, D
);
1769 GV
->setPartition(CodeGenOpts
.SymbolPartition
);
1772 static llvm::GlobalVariable::ThreadLocalMode
GetLLVMTLSModel(StringRef S
) {
1773 return llvm::StringSwitch
<llvm::GlobalVariable::ThreadLocalMode
>(S
)
1774 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel
)
1775 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel
)
1776 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel
)
1777 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel
);
1780 llvm::GlobalVariable::ThreadLocalMode
1781 CodeGenModule::GetDefaultLLVMTLSModel() const {
1782 switch (CodeGenOpts
.getDefaultTLSModel()) {
1783 case CodeGenOptions::GeneralDynamicTLSModel
:
1784 return llvm::GlobalVariable::GeneralDynamicTLSModel
;
1785 case CodeGenOptions::LocalDynamicTLSModel
:
1786 return llvm::GlobalVariable::LocalDynamicTLSModel
;
1787 case CodeGenOptions::InitialExecTLSModel
:
1788 return llvm::GlobalVariable::InitialExecTLSModel
;
1789 case CodeGenOptions::LocalExecTLSModel
:
1790 return llvm::GlobalVariable::LocalExecTLSModel
;
1792 llvm_unreachable("Invalid TLS model!");
1795 void CodeGenModule::setTLSMode(llvm::GlobalValue
*GV
, const VarDecl
&D
) const {
1796 assert(D
.getTLSKind() && "setting TLS mode on non-TLS var!");
1798 llvm::GlobalValue::ThreadLocalMode TLM
;
1799 TLM
= GetDefaultLLVMTLSModel();
1801 // Override the TLS model if it is explicitly specified.
1802 if (const TLSModelAttr
*Attr
= D
.getAttr
<TLSModelAttr
>()) {
1803 TLM
= GetLLVMTLSModel(Attr
->getModel());
1806 GV
->setThreadLocalMode(TLM
);
1809 static std::string
getCPUSpecificMangling(const CodeGenModule
&CGM
,
1811 const TargetInfo
&Target
= CGM
.getTarget();
1812 return (Twine('.') + Twine(Target
.CPUSpecificManglingCharacter(Name
))).str();
1815 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule
&CGM
,
1816 const CPUSpecificAttr
*Attr
,
1819 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1822 Out
<< getCPUSpecificMangling(CGM
, Attr
->getCPUName(CPUIndex
)->getName());
1823 else if (CGM
.getTarget().supportsIFunc())
1827 // Returns true if GD is a function decl with internal linkage and
1828 // needs a unique suffix after the mangled name.
1829 static bool isUniqueInternalLinkageDecl(GlobalDecl GD
,
1830 CodeGenModule
&CGM
) {
1831 const Decl
*D
= GD
.getDecl();
1832 return !CGM
.getModuleNameHash().empty() && isa
<FunctionDecl
>(D
) &&
1833 (CGM
.getFunctionLinkage(GD
) == llvm::GlobalValue::InternalLinkage
);
1836 static std::string
getMangledNameImpl(CodeGenModule
&CGM
, GlobalDecl GD
,
1837 const NamedDecl
*ND
,
1838 bool OmitMultiVersionMangling
= false) {
1839 SmallString
<256> Buffer
;
1840 llvm::raw_svector_ostream
Out(Buffer
);
1841 MangleContext
&MC
= CGM
.getCXXABI().getMangleContext();
1842 if (!CGM
.getModuleNameHash().empty())
1843 MC
.needsUniqueInternalLinkageNames();
1844 bool ShouldMangle
= MC
.shouldMangleDeclName(ND
);
1846 MC
.mangleName(GD
.getWithDecl(ND
), Out
);
1848 IdentifierInfo
*II
= ND
->getIdentifier();
1849 assert(II
&& "Attempt to mangle unnamed decl.");
1850 const auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
1853 FD
->getType()->castAs
<FunctionType
>()->getCallConv() == CC_X86RegCall
) {
1854 if (CGM
.getLangOpts().RegCall4
)
1855 Out
<< "__regcall4__" << II
->getName();
1857 Out
<< "__regcall3__" << II
->getName();
1858 } else if (FD
&& FD
->hasAttr
<CUDAGlobalAttr
>() &&
1859 GD
.getKernelReferenceKind() == KernelReferenceKind::Stub
) {
1860 Out
<< "__device_stub__" << II
->getName();
1862 Out
<< II
->getName();
1866 // Check if the module name hash should be appended for internal linkage
1867 // symbols. This should come before multi-version target suffixes are
1868 // appended. This is to keep the name and module hash suffix of the
1869 // internal linkage function together. The unique suffix should only be
1870 // added when name mangling is done to make sure that the final name can
1871 // be properly demangled. For example, for C functions without prototypes,
1872 // name mangling is not done and the unique suffix should not be appeneded
1874 if (ShouldMangle
&& isUniqueInternalLinkageDecl(GD
, CGM
)) {
1875 assert(CGM
.getCodeGenOpts().UniqueInternalLinkageNames
&&
1876 "Hash computed when not explicitly requested");
1877 Out
<< CGM
.getModuleNameHash();
1880 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
1881 if (FD
->isMultiVersion() && !OmitMultiVersionMangling
) {
1882 switch (FD
->getMultiVersionKind()) {
1883 case MultiVersionKind::CPUDispatch
:
1884 case MultiVersionKind::CPUSpecific
:
1885 AppendCPUSpecificCPUDispatchMangling(CGM
,
1886 FD
->getAttr
<CPUSpecificAttr
>(),
1887 GD
.getMultiVersionIndex(), Out
);
1889 case MultiVersionKind::Target
: {
1890 auto *Attr
= FD
->getAttr
<TargetAttr
>();
1891 assert(Attr
&& "Expected TargetAttr to be present "
1892 "for attribute mangling");
1893 const ABIInfo
&Info
= CGM
.getTargetCodeGenInfo().getABIInfo();
1894 Info
.appendAttributeMangling(Attr
, Out
);
1897 case MultiVersionKind::TargetVersion
: {
1898 auto *Attr
= FD
->getAttr
<TargetVersionAttr
>();
1899 assert(Attr
&& "Expected TargetVersionAttr to be present "
1900 "for attribute mangling");
1901 const ABIInfo
&Info
= CGM
.getTargetCodeGenInfo().getABIInfo();
1902 Info
.appendAttributeMangling(Attr
, Out
);
1905 case MultiVersionKind::TargetClones
: {
1906 auto *Attr
= FD
->getAttr
<TargetClonesAttr
>();
1907 assert(Attr
&& "Expected TargetClonesAttr to be present "
1908 "for attribute mangling");
1909 unsigned Index
= GD
.getMultiVersionIndex();
1910 const ABIInfo
&Info
= CGM
.getTargetCodeGenInfo().getABIInfo();
1911 Info
.appendAttributeMangling(Attr
, Index
, Out
);
1914 case MultiVersionKind::None
:
1915 llvm_unreachable("None multiversion type isn't valid here");
1919 // Make unique name for device side static file-scope variable for HIP.
1920 if (CGM
.getContext().shouldExternalize(ND
) &&
1921 CGM
.getLangOpts().GPURelocatableDeviceCode
&&
1922 CGM
.getLangOpts().CUDAIsDevice
)
1923 CGM
.printPostfixForExternalizedDecl(Out
, ND
);
1925 return std::string(Out
.str());
1928 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD
,
1929 const FunctionDecl
*FD
,
1930 StringRef
&CurName
) {
1931 if (!FD
->isMultiVersion())
1934 // Get the name of what this would be without the 'target' attribute. This
1935 // allows us to lookup the version that was emitted when this wasn't a
1936 // multiversion function.
1937 std::string NonTargetName
=
1938 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
1940 if (lookupRepresentativeDecl(NonTargetName
, OtherGD
)) {
1941 assert(OtherGD
.getCanonicalDecl()
1944 ->isMultiVersion() &&
1945 "Other GD should now be a multiversioned function");
1946 // OtherFD is the version of this function that was mangled BEFORE
1947 // becoming a MultiVersion function. It potentially needs to be updated.
1948 const FunctionDecl
*OtherFD
= OtherGD
.getCanonicalDecl()
1951 ->getMostRecentDecl();
1952 std::string OtherName
= getMangledNameImpl(*this, OtherGD
, OtherFD
);
1953 // This is so that if the initial version was already the 'default'
1954 // version, we don't try to update it.
1955 if (OtherName
!= NonTargetName
) {
1956 // Remove instead of erase, since others may have stored the StringRef
1958 const auto ExistingRecord
= Manglings
.find(NonTargetName
);
1959 if (ExistingRecord
!= std::end(Manglings
))
1960 Manglings
.remove(&(*ExistingRecord
));
1961 auto Result
= Manglings
.insert(std::make_pair(OtherName
, OtherGD
));
1962 StringRef OtherNameRef
= MangledDeclNames
[OtherGD
.getCanonicalDecl()] =
1963 Result
.first
->first();
1964 // If this is the current decl is being created, make sure we update the name.
1965 if (GD
.getCanonicalDecl() == OtherGD
.getCanonicalDecl())
1966 CurName
= OtherNameRef
;
1967 if (llvm::GlobalValue
*Entry
= GetGlobalValue(NonTargetName
))
1968 Entry
->setName(OtherName
);
1973 StringRef
CodeGenModule::getMangledName(GlobalDecl GD
) {
1974 GlobalDecl CanonicalGD
= GD
.getCanonicalDecl();
1976 // Some ABIs don't have constructor variants. Make sure that base and
1977 // complete constructors get mangled the same.
1978 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(CanonicalGD
.getDecl())) {
1979 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1980 CXXCtorType OrigCtorType
= GD
.getCtorType();
1981 assert(OrigCtorType
== Ctor_Base
|| OrigCtorType
== Ctor_Complete
);
1982 if (OrigCtorType
== Ctor_Base
)
1983 CanonicalGD
= GlobalDecl(CD
, Ctor_Complete
);
1987 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1988 // static device variable depends on whether the variable is referenced by
1989 // a host or device host function. Therefore the mangled name cannot be
1991 if (!LangOpts
.CUDAIsDevice
|| !getContext().mayExternalize(GD
.getDecl())) {
1992 auto FoundName
= MangledDeclNames
.find(CanonicalGD
);
1993 if (FoundName
!= MangledDeclNames
.end())
1994 return FoundName
->second
;
1997 // Keep the first result in the case of a mangling collision.
1998 const auto *ND
= cast
<NamedDecl
>(GD
.getDecl());
1999 std::string MangledName
= getMangledNameImpl(*this, GD
, ND
);
2001 // Ensure either we have different ABIs between host and device compilations,
2002 // says host compilation following MSVC ABI but device compilation follows
2003 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2004 // mangling should be the same after name stubbing. The later checking is
2005 // very important as the device kernel name being mangled in host-compilation
2006 // is used to resolve the device binaries to be executed. Inconsistent naming
2007 // result in undefined behavior. Even though we cannot check that naming
2008 // directly between host- and device-compilations, the host- and
2009 // device-mangling in host compilation could help catching certain ones.
2010 assert(!isa
<FunctionDecl
>(ND
) || !ND
->hasAttr
<CUDAGlobalAttr
>() ||
2011 getContext().shouldExternalize(ND
) || getLangOpts().CUDAIsDevice
||
2012 (getContext().getAuxTargetInfo() &&
2013 (getContext().getAuxTargetInfo()->getCXXABI() !=
2014 getContext().getTargetInfo().getCXXABI())) ||
2015 getCUDARuntime().getDeviceSideName(ND
) ==
2018 GD
.getWithKernelReferenceKind(KernelReferenceKind::Kernel
),
2021 auto Result
= Manglings
.insert(std::make_pair(MangledName
, GD
));
2022 return MangledDeclNames
[CanonicalGD
] = Result
.first
->first();
2025 StringRef
CodeGenModule::getBlockMangledName(GlobalDecl GD
,
2026 const BlockDecl
*BD
) {
2027 MangleContext
&MangleCtx
= getCXXABI().getMangleContext();
2028 const Decl
*D
= GD
.getDecl();
2030 SmallString
<256> Buffer
;
2031 llvm::raw_svector_ostream
Out(Buffer
);
2033 MangleCtx
.mangleGlobalBlock(BD
,
2034 dyn_cast_or_null
<VarDecl
>(initializedGlobalDecl
.getDecl()), Out
);
2035 else if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(D
))
2036 MangleCtx
.mangleCtorBlock(CD
, GD
.getCtorType(), BD
, Out
);
2037 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(D
))
2038 MangleCtx
.mangleDtorBlock(DD
, GD
.getDtorType(), BD
, Out
);
2040 MangleCtx
.mangleBlock(cast
<DeclContext
>(D
), BD
, Out
);
2042 auto Result
= Manglings
.insert(std::make_pair(Out
.str(), BD
));
2043 return Result
.first
->first();
2046 const GlobalDecl
CodeGenModule::getMangledNameDecl(StringRef Name
) {
2047 auto it
= MangledDeclNames
.begin();
2048 while (it
!= MangledDeclNames
.end()) {
2049 if (it
->second
== Name
)
2053 return GlobalDecl();
2056 llvm::GlobalValue
*CodeGenModule::GetGlobalValue(StringRef Name
) {
2057 return getModule().getNamedValue(Name
);
2060 /// AddGlobalCtor - Add a function to the list that will be called before
2062 void CodeGenModule::AddGlobalCtor(llvm::Function
*Ctor
, int Priority
,
2064 llvm::Constant
*AssociatedData
) {
2065 // FIXME: Type coercion of void()* types.
2066 GlobalCtors
.push_back(Structor(Priority
, LexOrder
, Ctor
, AssociatedData
));
2069 /// AddGlobalDtor - Add a function to the list that will be called
2070 /// when the module is unloaded.
2071 void CodeGenModule::AddGlobalDtor(llvm::Function
*Dtor
, int Priority
,
2072 bool IsDtorAttrFunc
) {
2073 if (CodeGenOpts
.RegisterGlobalDtorsWithAtExit
&&
2074 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc
)) {
2075 DtorsUsingAtExit
[Priority
].push_back(Dtor
);
2079 // FIXME: Type coercion of void()* types.
2080 GlobalDtors
.push_back(Structor(Priority
, ~0U, Dtor
, nullptr));
2083 void CodeGenModule::EmitCtorList(CtorList
&Fns
, const char *GlobalName
) {
2084 if (Fns
.empty()) return;
2086 // Ctor function type is void()*.
2087 llvm::FunctionType
* CtorFTy
= llvm::FunctionType::get(VoidTy
, false);
2088 llvm::Type
*CtorPFTy
= llvm::PointerType::get(CtorFTy
,
2089 TheModule
.getDataLayout().getProgramAddressSpace());
2091 // Get the type of a ctor entry, { i32, void ()*, i8* }.
2092 llvm::StructType
*CtorStructTy
= llvm::StructType::get(
2093 Int32Ty
, CtorPFTy
, VoidPtrTy
);
2095 // Construct the constructor and destructor arrays.
2096 ConstantInitBuilder
builder(*this);
2097 auto ctors
= builder
.beginArray(CtorStructTy
);
2098 for (const auto &I
: Fns
) {
2099 auto ctor
= ctors
.beginStruct(CtorStructTy
);
2100 ctor
.addInt(Int32Ty
, I
.Priority
);
2101 ctor
.add(I
.Initializer
);
2102 if (I
.AssociatedData
)
2103 ctor
.add(I
.AssociatedData
);
2105 ctor
.addNullPointer(VoidPtrTy
);
2106 ctor
.finishAndAddTo(ctors
);
2110 ctors
.finishAndCreateGlobal(GlobalName
, getPointerAlign(),
2112 llvm::GlobalValue::AppendingLinkage
);
2114 // The LTO linker doesn't seem to like it when we set an alignment
2115 // on appending variables. Take it off as a workaround.
2116 list
->setAlignment(std::nullopt
);
2121 llvm::GlobalValue::LinkageTypes
2122 CodeGenModule::getFunctionLinkage(GlobalDecl GD
) {
2123 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
2125 GVALinkage Linkage
= getContext().GetGVALinkageForFunction(D
);
2127 if (const auto *Dtor
= dyn_cast
<CXXDestructorDecl
>(D
))
2128 return getCXXABI().getCXXDestructorLinkage(Linkage
, Dtor
, GD
.getDtorType());
2130 return getLLVMLinkageForDeclarator(D
, Linkage
);
2133 llvm::ConstantInt
*CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata
*MD
) {
2134 llvm::MDString
*MDS
= dyn_cast
<llvm::MDString
>(MD
);
2135 if (!MDS
) return nullptr;
2137 return llvm::ConstantInt::get(Int64Ty
, llvm::MD5Hash(MDS
->getString()));
2140 llvm::ConstantInt
*CodeGenModule::CreateKCFITypeId(QualType T
) {
2141 if (auto *FnType
= T
->getAs
<FunctionProtoType
>())
2142 T
= getContext().getFunctionType(
2143 FnType
->getReturnType(), FnType
->getParamTypes(),
2144 FnType
->getExtProtoInfo().withExceptionSpec(EST_None
));
2146 std::string OutName
;
2147 llvm::raw_string_ostream
Out(OutName
);
2148 getCXXABI().getMangleContext().mangleCanonicalTypeName(
2149 T
, Out
, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
);
2151 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
)
2152 Out
<< ".normalized";
2154 return llvm::ConstantInt::get(Int32Ty
,
2155 static_cast<uint32_t>(llvm::xxHash64(OutName
)));
2158 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD
,
2159 const CGFunctionInfo
&Info
,
2160 llvm::Function
*F
, bool IsThunk
) {
2161 unsigned CallingConv
;
2162 llvm::AttributeList PAL
;
2163 ConstructAttributeList(F
->getName(), Info
, GD
, PAL
, CallingConv
,
2164 /*AttrOnCallSite=*/false, IsThunk
);
2165 if (CallingConv
== llvm::CallingConv::X86_VectorCall
&&
2166 getTarget().getTriple().isWindowsArm64EC()) {
2168 if (const Decl
*D
= GD
.getDecl())
2169 Loc
= D
->getLocation();
2171 Error(Loc
, "__vectorcall calling convention is not currently supported");
2173 F
->setAttributes(PAL
);
2174 F
->setCallingConv(static_cast<llvm::CallingConv::ID
>(CallingConv
));
2177 static void removeImageAccessQualifier(std::string
& TyName
) {
2178 std::string
ReadOnlyQual("__read_only");
2179 std::string::size_type ReadOnlyPos
= TyName
.find(ReadOnlyQual
);
2180 if (ReadOnlyPos
!= std::string::npos
)
2181 // "+ 1" for the space after access qualifier.
2182 TyName
.erase(ReadOnlyPos
, ReadOnlyQual
.size() + 1);
2184 std::string
WriteOnlyQual("__write_only");
2185 std::string::size_type WriteOnlyPos
= TyName
.find(WriteOnlyQual
);
2186 if (WriteOnlyPos
!= std::string::npos
)
2187 TyName
.erase(WriteOnlyPos
, WriteOnlyQual
.size() + 1);
2189 std::string
ReadWriteQual("__read_write");
2190 std::string::size_type ReadWritePos
= TyName
.find(ReadWriteQual
);
2191 if (ReadWritePos
!= std::string::npos
)
2192 TyName
.erase(ReadWritePos
, ReadWriteQual
.size() + 1);
2197 // Returns the address space id that should be produced to the
2198 // kernel_arg_addr_space metadata. This is always fixed to the ids
2199 // as specified in the SPIR 2.0 specification in order to differentiate
2200 // for example in clGetKernelArgInfo() implementation between the address
2201 // spaces with targets without unique mapping to the OpenCL address spaces
2202 // (basically all single AS CPUs).
2203 static unsigned ArgInfoAddressSpace(LangAS AS
) {
2205 case LangAS::opencl_global
:
2207 case LangAS::opencl_constant
:
2209 case LangAS::opencl_local
:
2211 case LangAS::opencl_generic
:
2212 return 4; // Not in SPIR 2.0 specs.
2213 case LangAS::opencl_global_device
:
2215 case LangAS::opencl_global_host
:
2218 return 0; // Assume private.
2222 void CodeGenModule::GenKernelArgMetadata(llvm::Function
*Fn
,
2223 const FunctionDecl
*FD
,
2224 CodeGenFunction
*CGF
) {
2225 assert(((FD
&& CGF
) || (!FD
&& !CGF
)) &&
2226 "Incorrect use - FD and CGF should either be both null or not!");
2227 // Create MDNodes that represent the kernel arg metadata.
2228 // Each MDNode is a list in the form of "key", N number of values which is
2229 // the same number of values as their are kernel arguments.
2231 const PrintingPolicy
&Policy
= Context
.getPrintingPolicy();
2233 // MDNode for the kernel argument address space qualifiers.
2234 SmallVector
<llvm::Metadata
*, 8> addressQuals
;
2236 // MDNode for the kernel argument access qualifiers (images only).
2237 SmallVector
<llvm::Metadata
*, 8> accessQuals
;
2239 // MDNode for the kernel argument type names.
2240 SmallVector
<llvm::Metadata
*, 8> argTypeNames
;
2242 // MDNode for the kernel argument base type names.
2243 SmallVector
<llvm::Metadata
*, 8> argBaseTypeNames
;
2245 // MDNode for the kernel argument type qualifiers.
2246 SmallVector
<llvm::Metadata
*, 8> argTypeQuals
;
2248 // MDNode for the kernel argument names.
2249 SmallVector
<llvm::Metadata
*, 8> argNames
;
2252 for (unsigned i
= 0, e
= FD
->getNumParams(); i
!= e
; ++i
) {
2253 const ParmVarDecl
*parm
= FD
->getParamDecl(i
);
2254 // Get argument name.
2255 argNames
.push_back(llvm::MDString::get(VMContext
, parm
->getName()));
2257 if (!getLangOpts().OpenCL
)
2259 QualType ty
= parm
->getType();
2260 std::string typeQuals
;
2262 // Get image and pipe access qualifier:
2263 if (ty
->isImageType() || ty
->isPipeType()) {
2264 const Decl
*PDecl
= parm
;
2265 if (const auto *TD
= ty
->getAs
<TypedefType
>())
2266 PDecl
= TD
->getDecl();
2267 const OpenCLAccessAttr
*A
= PDecl
->getAttr
<OpenCLAccessAttr
>();
2268 if (A
&& A
->isWriteOnly())
2269 accessQuals
.push_back(llvm::MDString::get(VMContext
, "write_only"));
2270 else if (A
&& A
->isReadWrite())
2271 accessQuals
.push_back(llvm::MDString::get(VMContext
, "read_write"));
2273 accessQuals
.push_back(llvm::MDString::get(VMContext
, "read_only"));
2275 accessQuals
.push_back(llvm::MDString::get(VMContext
, "none"));
2277 auto getTypeSpelling
= [&](QualType Ty
) {
2278 auto typeName
= Ty
.getUnqualifiedType().getAsString(Policy
);
2280 if (Ty
.isCanonical()) {
2281 StringRef typeNameRef
= typeName
;
2282 // Turn "unsigned type" to "utype"
2283 if (typeNameRef
.consume_front("unsigned "))
2284 return std::string("u") + typeNameRef
.str();
2285 if (typeNameRef
.consume_front("signed "))
2286 return typeNameRef
.str();
2292 if (ty
->isPointerType()) {
2293 QualType pointeeTy
= ty
->getPointeeType();
2295 // Get address qualifier.
2296 addressQuals
.push_back(
2297 llvm::ConstantAsMetadata::get(CGF
->Builder
.getInt32(
2298 ArgInfoAddressSpace(pointeeTy
.getAddressSpace()))));
2300 // Get argument type name.
2301 std::string typeName
= getTypeSpelling(pointeeTy
) + "*";
2302 std::string baseTypeName
=
2303 getTypeSpelling(pointeeTy
.getCanonicalType()) + "*";
2304 argTypeNames
.push_back(llvm::MDString::get(VMContext
, typeName
));
2305 argBaseTypeNames
.push_back(
2306 llvm::MDString::get(VMContext
, baseTypeName
));
2308 // Get argument type qualifiers:
2309 if (ty
.isRestrictQualified())
2310 typeQuals
= "restrict";
2311 if (pointeeTy
.isConstQualified() ||
2312 (pointeeTy
.getAddressSpace() == LangAS::opencl_constant
))
2313 typeQuals
+= typeQuals
.empty() ? "const" : " const";
2314 if (pointeeTy
.isVolatileQualified())
2315 typeQuals
+= typeQuals
.empty() ? "volatile" : " volatile";
2317 uint32_t AddrSpc
= 0;
2318 bool isPipe
= ty
->isPipeType();
2319 if (ty
->isImageType() || isPipe
)
2320 AddrSpc
= ArgInfoAddressSpace(LangAS::opencl_global
);
2322 addressQuals
.push_back(
2323 llvm::ConstantAsMetadata::get(CGF
->Builder
.getInt32(AddrSpc
)));
2325 // Get argument type name.
2326 ty
= isPipe
? ty
->castAs
<PipeType
>()->getElementType() : ty
;
2327 std::string typeName
= getTypeSpelling(ty
);
2328 std::string baseTypeName
= getTypeSpelling(ty
.getCanonicalType());
2330 // Remove access qualifiers on images
2331 // (as they are inseparable from type in clang implementation,
2332 // but OpenCL spec provides a special query to get access qualifier
2333 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2334 if (ty
->isImageType()) {
2335 removeImageAccessQualifier(typeName
);
2336 removeImageAccessQualifier(baseTypeName
);
2339 argTypeNames
.push_back(llvm::MDString::get(VMContext
, typeName
));
2340 argBaseTypeNames
.push_back(
2341 llvm::MDString::get(VMContext
, baseTypeName
));
2346 argTypeQuals
.push_back(llvm::MDString::get(VMContext
, typeQuals
));
2349 if (getLangOpts().OpenCL
) {
2350 Fn
->setMetadata("kernel_arg_addr_space",
2351 llvm::MDNode::get(VMContext
, addressQuals
));
2352 Fn
->setMetadata("kernel_arg_access_qual",
2353 llvm::MDNode::get(VMContext
, accessQuals
));
2354 Fn
->setMetadata("kernel_arg_type",
2355 llvm::MDNode::get(VMContext
, argTypeNames
));
2356 Fn
->setMetadata("kernel_arg_base_type",
2357 llvm::MDNode::get(VMContext
, argBaseTypeNames
));
2358 Fn
->setMetadata("kernel_arg_type_qual",
2359 llvm::MDNode::get(VMContext
, argTypeQuals
));
2361 if (getCodeGenOpts().EmitOpenCLArgMetadata
||
2362 getCodeGenOpts().HIPSaveKernelArgName
)
2363 Fn
->setMetadata("kernel_arg_name",
2364 llvm::MDNode::get(VMContext
, argNames
));
2367 /// Determines whether the language options require us to model
2368 /// unwind exceptions. We treat -fexceptions as mandating this
2369 /// except under the fragile ObjC ABI with only ObjC exceptions
2370 /// enabled. This means, for example, that C with -fexceptions
2372 static bool hasUnwindExceptions(const LangOptions
&LangOpts
) {
2373 // If exceptions are completely disabled, obviously this is false.
2374 if (!LangOpts
.Exceptions
) return false;
2376 // If C++ exceptions are enabled, this is true.
2377 if (LangOpts
.CXXExceptions
) return true;
2379 // If ObjC exceptions are enabled, this depends on the ABI.
2380 if (LangOpts
.ObjCExceptions
) {
2381 return LangOpts
.ObjCRuntime
.hasUnwindExceptions();
2387 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule
&CGM
,
2388 const CXXMethodDecl
*MD
) {
2389 // Check that the type metadata can ever actually be used by a call.
2390 if (!CGM
.getCodeGenOpts().LTOUnit
||
2391 !CGM
.HasHiddenLTOVisibility(MD
->getParent()))
2394 // Only functions whose address can be taken with a member function pointer
2395 // need this sort of type metadata.
2396 return MD
->isImplicitObjectMemberFunction() && !MD
->isVirtual() &&
2397 !isa
<CXXConstructorDecl
, CXXDestructorDecl
>(MD
);
2400 SmallVector
<const CXXRecordDecl
*, 0>
2401 CodeGenModule::getMostBaseClasses(const CXXRecordDecl
*RD
) {
2402 llvm::SetVector
<const CXXRecordDecl
*> MostBases
;
2404 std::function
<void (const CXXRecordDecl
*)> CollectMostBases
;
2405 CollectMostBases
= [&](const CXXRecordDecl
*RD
) {
2406 if (RD
->getNumBases() == 0)
2407 MostBases
.insert(RD
);
2408 for (const CXXBaseSpecifier
&B
: RD
->bases())
2409 CollectMostBases(B
.getType()->getAsCXXRecordDecl());
2411 CollectMostBases(RD
);
2412 return MostBases
.takeVector();
2415 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl
*D
,
2416 llvm::Function
*F
) {
2417 llvm::AttrBuilder
B(F
->getContext());
2419 if ((!D
|| !D
->hasAttr
<NoUwtableAttr
>()) && CodeGenOpts
.UnwindTables
)
2420 B
.addUWTableAttr(llvm::UWTableKind(CodeGenOpts
.UnwindTables
));
2422 if (CodeGenOpts
.StackClashProtector
)
2423 B
.addAttribute("probe-stack", "inline-asm");
2425 if (CodeGenOpts
.StackProbeSize
&& CodeGenOpts
.StackProbeSize
!= 4096)
2426 B
.addAttribute("stack-probe-size",
2427 std::to_string(CodeGenOpts
.StackProbeSize
));
2429 if (!hasUnwindExceptions(LangOpts
))
2430 B
.addAttribute(llvm::Attribute::NoUnwind
);
2432 if (D
&& D
->hasAttr
<NoStackProtectorAttr
>())
2434 else if (D
&& D
->hasAttr
<StrictGuardStackCheckAttr
>() &&
2435 isStackProtectorOn(LangOpts
, getTriple(), LangOptions::SSPOn
))
2436 B
.addAttribute(llvm::Attribute::StackProtectStrong
);
2437 else if (isStackProtectorOn(LangOpts
, getTriple(), LangOptions::SSPOn
))
2438 B
.addAttribute(llvm::Attribute::StackProtect
);
2439 else if (isStackProtectorOn(LangOpts
, getTriple(), LangOptions::SSPStrong
))
2440 B
.addAttribute(llvm::Attribute::StackProtectStrong
);
2441 else if (isStackProtectorOn(LangOpts
, getTriple(), LangOptions::SSPReq
))
2442 B
.addAttribute(llvm::Attribute::StackProtectReq
);
2445 // If we don't have a declaration to control inlining, the function isn't
2446 // explicitly marked as alwaysinline for semantic reasons, and inlining is
2447 // disabled, mark the function as noinline.
2448 if (!F
->hasFnAttribute(llvm::Attribute::AlwaysInline
) &&
2449 CodeGenOpts
.getInlining() == CodeGenOptions::OnlyAlwaysInlining
)
2450 B
.addAttribute(llvm::Attribute::NoInline
);
2456 // Handle SME attributes that apply to function definitions,
2457 // rather than to function prototypes.
2458 if (D
->hasAttr
<ArmLocallyStreamingAttr
>())
2459 B
.addAttribute("aarch64_pstate_sm_body");
2461 if (auto *Attr
= D
->getAttr
<ArmNewAttr
>()) {
2462 if (Attr
->isNewZA())
2463 B
.addAttribute("aarch64_new_za");
2464 if (Attr
->isNewZT0())
2465 B
.addAttribute("aarch64_new_zt0");
2468 // Track whether we need to add the optnone LLVM attribute,
2469 // starting with the default for this optimization level.
2470 bool ShouldAddOptNone
=
2471 !CodeGenOpts
.DisableO0ImplyOptNone
&& CodeGenOpts
.OptimizationLevel
== 0;
2472 // We can't add optnone in the following cases, it won't pass the verifier.
2473 ShouldAddOptNone
&= !D
->hasAttr
<MinSizeAttr
>();
2474 ShouldAddOptNone
&= !D
->hasAttr
<AlwaysInlineAttr
>();
2476 // Add optnone, but do so only if the function isn't always_inline.
2477 if ((ShouldAddOptNone
|| D
->hasAttr
<OptimizeNoneAttr
>()) &&
2478 !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2479 B
.addAttribute(llvm::Attribute::OptimizeNone
);
2481 // OptimizeNone implies noinline; we should not be inlining such functions.
2482 B
.addAttribute(llvm::Attribute::NoInline
);
2484 // We still need to handle naked functions even though optnone subsumes
2485 // much of their semantics.
2486 if (D
->hasAttr
<NakedAttr
>())
2487 B
.addAttribute(llvm::Attribute::Naked
);
2489 // OptimizeNone wins over OptimizeForSize and MinSize.
2490 F
->removeFnAttr(llvm::Attribute::OptimizeForSize
);
2491 F
->removeFnAttr(llvm::Attribute::MinSize
);
2492 } else if (D
->hasAttr
<NakedAttr
>()) {
2493 // Naked implies noinline: we should not be inlining such functions.
2494 B
.addAttribute(llvm::Attribute::Naked
);
2495 B
.addAttribute(llvm::Attribute::NoInline
);
2496 } else if (D
->hasAttr
<NoDuplicateAttr
>()) {
2497 B
.addAttribute(llvm::Attribute::NoDuplicate
);
2498 } else if (D
->hasAttr
<NoInlineAttr
>() && !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2499 // Add noinline if the function isn't always_inline.
2500 B
.addAttribute(llvm::Attribute::NoInline
);
2501 } else if (D
->hasAttr
<AlwaysInlineAttr
>() &&
2502 !F
->hasFnAttribute(llvm::Attribute::NoInline
)) {
2503 // (noinline wins over always_inline, and we can't specify both in IR)
2504 B
.addAttribute(llvm::Attribute::AlwaysInline
);
2505 } else if (CodeGenOpts
.getInlining() == CodeGenOptions::OnlyAlwaysInlining
) {
2506 // If we're not inlining, then force everything that isn't always_inline to
2507 // carry an explicit noinline attribute.
2508 if (!F
->hasFnAttribute(llvm::Attribute::AlwaysInline
))
2509 B
.addAttribute(llvm::Attribute::NoInline
);
2511 // Otherwise, propagate the inline hint attribute and potentially use its
2512 // absence to mark things as noinline.
2513 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2514 // Search function and template pattern redeclarations for inline.
2515 auto CheckForInline
= [](const FunctionDecl
*FD
) {
2516 auto CheckRedeclForInline
= [](const FunctionDecl
*Redecl
) {
2517 return Redecl
->isInlineSpecified();
2519 if (any_of(FD
->redecls(), CheckRedeclForInline
))
2521 const FunctionDecl
*Pattern
= FD
->getTemplateInstantiationPattern();
2524 return any_of(Pattern
->redecls(), CheckRedeclForInline
);
2526 if (CheckForInline(FD
)) {
2527 B
.addAttribute(llvm::Attribute::InlineHint
);
2528 } else if (CodeGenOpts
.getInlining() ==
2529 CodeGenOptions::OnlyHintInlining
&&
2531 !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2532 B
.addAttribute(llvm::Attribute::NoInline
);
2537 // Add other optimization related attributes if we are optimizing this
2539 if (!D
->hasAttr
<OptimizeNoneAttr
>()) {
2540 if (D
->hasAttr
<ColdAttr
>()) {
2541 if (!ShouldAddOptNone
)
2542 B
.addAttribute(llvm::Attribute::OptimizeForSize
);
2543 B
.addAttribute(llvm::Attribute::Cold
);
2545 if (D
->hasAttr
<HotAttr
>())
2546 B
.addAttribute(llvm::Attribute::Hot
);
2547 if (D
->hasAttr
<MinSizeAttr
>())
2548 B
.addAttribute(llvm::Attribute::MinSize
);
2553 unsigned alignment
= D
->getMaxAlignment() / Context
.getCharWidth();
2555 F
->setAlignment(llvm::Align(alignment
));
2557 if (!D
->hasAttr
<AlignedAttr
>())
2558 if (LangOpts
.FunctionAlignment
)
2559 F
->setAlignment(llvm::Align(1ull << LangOpts
.FunctionAlignment
));
2561 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2562 // reserve a bit for differentiating between virtual and non-virtual member
2563 // functions. If the current target's C++ ABI requires this and this is a
2564 // member function, set its alignment accordingly.
2565 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2566 if (isa
<CXXMethodDecl
>(D
) && F
->getPointerAlignment(getDataLayout()) < 2)
2567 F
->setAlignment(std::max(llvm::Align(2), F
->getAlign().valueOrOne()));
2570 // In the cross-dso CFI mode with canonical jump tables, we want !type
2571 // attributes on definitions only.
2572 if (CodeGenOpts
.SanitizeCfiCrossDso
&&
2573 CodeGenOpts
.SanitizeCfiCanonicalJumpTables
) {
2574 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2575 // Skip available_externally functions. They won't be codegen'ed in the
2576 // current module anyway.
2577 if (getContext().GetGVALinkageForFunction(FD
) != GVA_AvailableExternally
)
2578 CreateFunctionTypeMetadataForIcall(FD
, F
);
2582 // Emit type metadata on member functions for member function pointer checks.
2583 // These are only ever necessary on definitions; we're guaranteed that the
2584 // definition will be present in the LTO unit as a result of LTO visibility.
2585 auto *MD
= dyn_cast
<CXXMethodDecl
>(D
);
2586 if (MD
&& requiresMemberFunctionPointerTypeMetadata(*this, MD
)) {
2587 for (const CXXRecordDecl
*Base
: getMostBaseClasses(MD
->getParent())) {
2588 llvm::Metadata
*Id
=
2589 CreateMetadataIdentifierForType(Context
.getMemberPointerType(
2590 MD
->getType(), Context
.getRecordType(Base
).getTypePtr()));
2591 F
->addTypeMetadata(0, Id
);
2596 void CodeGenModule::SetCommonAttributes(GlobalDecl GD
, llvm::GlobalValue
*GV
) {
2597 const Decl
*D
= GD
.getDecl();
2598 if (isa_and_nonnull
<NamedDecl
>(D
))
2599 setGVProperties(GV
, GD
);
2601 GV
->setVisibility(llvm::GlobalValue::DefaultVisibility
);
2603 if (D
&& D
->hasAttr
<UsedAttr
>())
2604 addUsedOrCompilerUsedGlobal(GV
);
2606 if (const auto *VD
= dyn_cast_if_present
<VarDecl
>(D
);
2608 ((CodeGenOpts
.KeepPersistentStorageVariables
&&
2609 (VD
->getStorageDuration() == SD_Static
||
2610 VD
->getStorageDuration() == SD_Thread
)) ||
2611 (CodeGenOpts
.KeepStaticConsts
&& VD
->getStorageDuration() == SD_Static
&&
2612 VD
->getType().isConstQualified())))
2613 addUsedOrCompilerUsedGlobal(GV
);
2616 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD
,
2617 llvm::AttrBuilder
&Attrs
,
2618 bool SetTargetFeatures
) {
2619 // Add target-cpu and target-features attributes to functions. If
2620 // we have a decl for the function and it has a target attribute then
2621 // parse that and add it to the feature set.
2622 StringRef TargetCPU
= getTarget().getTargetOpts().CPU
;
2623 StringRef TuneCPU
= getTarget().getTargetOpts().TuneCPU
;
2624 std::vector
<std::string
> Features
;
2625 const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(GD
.getDecl());
2626 FD
= FD
? FD
->getMostRecentDecl() : FD
;
2627 const auto *TD
= FD
? FD
->getAttr
<TargetAttr
>() : nullptr;
2628 const auto *TV
= FD
? FD
->getAttr
<TargetVersionAttr
>() : nullptr;
2629 assert((!TD
|| !TV
) && "both target_version and target specified");
2630 const auto *SD
= FD
? FD
->getAttr
<CPUSpecificAttr
>() : nullptr;
2631 const auto *TC
= FD
? FD
->getAttr
<TargetClonesAttr
>() : nullptr;
2632 bool AddedAttr
= false;
2633 if (TD
|| TV
|| SD
|| TC
) {
2634 llvm::StringMap
<bool> FeatureMap
;
2635 getContext().getFunctionFeatureMap(FeatureMap
, GD
);
2637 // Produce the canonical string for this set of features.
2638 for (const llvm::StringMap
<bool>::value_type
&Entry
: FeatureMap
)
2639 Features
.push_back((Entry
.getValue() ? "+" : "-") + Entry
.getKey().str());
2641 // Now add the target-cpu and target-features to the function.
2642 // While we populated the feature map above, we still need to
2643 // get and parse the target attribute so we can get the cpu for
2646 ParsedTargetAttr ParsedAttr
=
2647 Target
.parseTargetAttr(TD
->getFeaturesStr());
2648 if (!ParsedAttr
.CPU
.empty() &&
2649 getTarget().isValidCPUName(ParsedAttr
.CPU
)) {
2650 TargetCPU
= ParsedAttr
.CPU
;
2651 TuneCPU
= ""; // Clear the tune CPU.
2653 if (!ParsedAttr
.Tune
.empty() &&
2654 getTarget().isValidCPUName(ParsedAttr
.Tune
))
2655 TuneCPU
= ParsedAttr
.Tune
;
2659 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2660 // favor this processor.
2661 TuneCPU
= SD
->getCPUName(GD
.getMultiVersionIndex())->getName();
2664 // Otherwise just add the existing target cpu and target features to the
2666 Features
= getTarget().getTargetOpts().Features
;
2669 if (!TargetCPU
.empty()) {
2670 Attrs
.addAttribute("target-cpu", TargetCPU
);
2673 if (!TuneCPU
.empty()) {
2674 Attrs
.addAttribute("tune-cpu", TuneCPU
);
2677 if (!Features
.empty() && SetTargetFeatures
) {
2678 llvm::erase_if(Features
, [&](const std::string
& F
) {
2679 return getTarget().isReadOnlyFeature(F
.substr(1));
2681 llvm::sort(Features
);
2682 Attrs
.addAttribute("target-features", llvm::join(Features
, ","));
2689 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD
,
2690 llvm::GlobalObject
*GO
) {
2691 const Decl
*D
= GD
.getDecl();
2692 SetCommonAttributes(GD
, GO
);
2695 if (auto *GV
= dyn_cast
<llvm::GlobalVariable
>(GO
)) {
2696 if (D
->hasAttr
<RetainAttr
>())
2698 if (auto *SA
= D
->getAttr
<PragmaClangBSSSectionAttr
>())
2699 GV
->addAttribute("bss-section", SA
->getName());
2700 if (auto *SA
= D
->getAttr
<PragmaClangDataSectionAttr
>())
2701 GV
->addAttribute("data-section", SA
->getName());
2702 if (auto *SA
= D
->getAttr
<PragmaClangRodataSectionAttr
>())
2703 GV
->addAttribute("rodata-section", SA
->getName());
2704 if (auto *SA
= D
->getAttr
<PragmaClangRelroSectionAttr
>())
2705 GV
->addAttribute("relro-section", SA
->getName());
2708 if (auto *F
= dyn_cast
<llvm::Function
>(GO
)) {
2709 if (D
->hasAttr
<RetainAttr
>())
2711 if (auto *SA
= D
->getAttr
<PragmaClangTextSectionAttr
>())
2712 if (!D
->getAttr
<SectionAttr
>())
2713 F
->setSection(SA
->getName());
2715 llvm::AttrBuilder
Attrs(F
->getContext());
2716 if (GetCPUAndFeaturesAttributes(GD
, Attrs
)) {
2717 // We know that GetCPUAndFeaturesAttributes will always have the
2718 // newest set, since it has the newest possible FunctionDecl, so the
2719 // new ones should replace the old.
2720 llvm::AttributeMask RemoveAttrs
;
2721 RemoveAttrs
.addAttribute("target-cpu");
2722 RemoveAttrs
.addAttribute("target-features");
2723 RemoveAttrs
.addAttribute("tune-cpu");
2724 F
->removeFnAttrs(RemoveAttrs
);
2725 F
->addFnAttrs(Attrs
);
2729 if (const auto *CSA
= D
->getAttr
<CodeSegAttr
>())
2730 GO
->setSection(CSA
->getName());
2731 else if (const auto *SA
= D
->getAttr
<SectionAttr
>())
2732 GO
->setSection(SA
->getName());
2735 getTargetCodeGenInfo().setTargetAttributes(D
, GO
, *this);
2738 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD
,
2740 const CGFunctionInfo
&FI
) {
2741 const Decl
*D
= GD
.getDecl();
2742 SetLLVMFunctionAttributes(GD
, FI
, F
, /*IsThunk=*/false);
2743 SetLLVMFunctionAttributesForDefinition(D
, F
);
2745 F
->setLinkage(llvm::Function::InternalLinkage
);
2747 setNonAliasAttributes(GD
, F
);
2750 static void setLinkageForGV(llvm::GlobalValue
*GV
, const NamedDecl
*ND
) {
2751 // Set linkage and visibility in case we never see a definition.
2752 LinkageInfo LV
= ND
->getLinkageAndVisibility();
2753 // Don't set internal linkage on declarations.
2754 // "extern_weak" is overloaded in LLVM; we probably should have
2755 // separate linkage types for this.
2756 if (isExternallyVisible(LV
.getLinkage()) &&
2757 (ND
->hasAttr
<WeakAttr
>() || ND
->isWeakImported()))
2758 GV
->setLinkage(llvm::GlobalValue::ExternalWeakLinkage
);
2761 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl
*FD
,
2762 llvm::Function
*F
) {
2763 // Only if we are checking indirect calls.
2764 if (!LangOpts
.Sanitize
.has(SanitizerKind::CFIICall
))
2767 // Non-static class methods are handled via vtable or member function pointer
2768 // checks elsewhere.
2769 if (isa
<CXXMethodDecl
>(FD
) && !cast
<CXXMethodDecl
>(FD
)->isStatic())
2772 llvm::Metadata
*MD
= CreateMetadataIdentifierForType(FD
->getType());
2773 F
->addTypeMetadata(0, MD
);
2774 F
->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD
->getType()));
2776 // Emit a hash-based bit set entry for cross-DSO calls.
2777 if (CodeGenOpts
.SanitizeCfiCrossDso
)
2778 if (auto CrossDsoTypeId
= CreateCrossDsoCfiTypeId(MD
))
2779 F
->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId
));
2782 void CodeGenModule::setKCFIType(const FunctionDecl
*FD
, llvm::Function
*F
) {
2783 llvm::LLVMContext
&Ctx
= F
->getContext();
2784 llvm::MDBuilder
MDB(Ctx
);
2785 F
->setMetadata(llvm::LLVMContext::MD_kcfi_type
,
2787 Ctx
, MDB
.createConstant(CreateKCFITypeId(FD
->getType()))));
2790 static bool allowKCFIIdentifier(StringRef Name
) {
2791 // KCFI type identifier constants are only necessary for external assembly
2792 // functions, which means it's safe to skip unusual names. Subset of
2793 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2794 return llvm::all_of(Name
, [](const char &C
) {
2795 return llvm::isAlnum(C
) || C
== '_' || C
== '.';
2799 void CodeGenModule::finalizeKCFITypes() {
2800 llvm::Module
&M
= getModule();
2801 for (auto &F
: M
.functions()) {
2802 // Remove KCFI type metadata from non-address-taken local functions.
2803 bool AddressTaken
= F
.hasAddressTaken();
2804 if (!AddressTaken
&& F
.hasLocalLinkage())
2805 F
.eraseMetadata(llvm::LLVMContext::MD_kcfi_type
);
2807 // Generate a constant with the expected KCFI type identifier for all
2808 // address-taken function declarations to support annotating indirectly
2809 // called assembly functions.
2810 if (!AddressTaken
|| !F
.isDeclaration())
2813 const llvm::ConstantInt
*Type
;
2814 if (const llvm::MDNode
*MD
= F
.getMetadata(llvm::LLVMContext::MD_kcfi_type
))
2815 Type
= llvm::mdconst::extract
<llvm::ConstantInt
>(MD
->getOperand(0));
2819 StringRef Name
= F
.getName();
2820 if (!allowKCFIIdentifier(Name
))
2823 std::string Asm
= (".weak __kcfi_typeid_" + Name
+ "\n.set __kcfi_typeid_" +
2824 Name
+ ", " + Twine(Type
->getZExtValue()) + "\n")
2826 M
.appendModuleInlineAsm(Asm
);
2830 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD
, llvm::Function
*F
,
2831 bool IsIncompleteFunction
,
2834 if (llvm::Intrinsic::ID IID
= F
->getIntrinsicID()) {
2835 // If this is an intrinsic function, set the function's attributes
2836 // to the intrinsic's attributes.
2837 F
->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID
));
2841 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
2843 if (!IsIncompleteFunction
)
2844 SetLLVMFunctionAttributes(GD
, getTypes().arrangeGlobalDeclaration(GD
), F
,
2847 // Add the Returned attribute for "this", except for iOS 5 and earlier
2848 // where substantial code, including the libstdc++ dylib, was compiled with
2849 // GCC and does not actually return "this".
2850 if (!IsThunk
&& getCXXABI().HasThisReturn(GD
) &&
2851 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2852 assert(!F
->arg_empty() &&
2853 F
->arg_begin()->getType()
2854 ->canLosslesslyBitCastTo(F
->getReturnType()) &&
2855 "unexpected this return");
2856 F
->addParamAttr(0, llvm::Attribute::Returned
);
2859 // Only a few attributes are set on declarations; these may later be
2860 // overridden by a definition.
2862 setLinkageForGV(F
, FD
);
2863 setGVProperties(F
, FD
);
2865 // Setup target-specific attributes.
2866 if (!IsIncompleteFunction
&& F
->isDeclaration())
2867 getTargetCodeGenInfo().setTargetAttributes(FD
, F
, *this);
2869 if (const auto *CSA
= FD
->getAttr
<CodeSegAttr
>())
2870 F
->setSection(CSA
->getName());
2871 else if (const auto *SA
= FD
->getAttr
<SectionAttr
>())
2872 F
->setSection(SA
->getName());
2874 if (const auto *EA
= FD
->getAttr
<ErrorAttr
>()) {
2876 F
->addFnAttr("dontcall-error", EA
->getUserDiagnostic());
2877 else if (EA
->isWarning())
2878 F
->addFnAttr("dontcall-warn", EA
->getUserDiagnostic());
2881 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2882 if (FD
->isInlineBuiltinDeclaration()) {
2883 const FunctionDecl
*FDBody
;
2884 bool HasBody
= FD
->hasBody(FDBody
);
2886 assert(HasBody
&& "Inline builtin declarations should always have an "
2888 if (shouldEmitFunction(FDBody
))
2889 F
->addFnAttr(llvm::Attribute::NoBuiltin
);
2892 if (FD
->isReplaceableGlobalAllocationFunction()) {
2893 // A replaceable global allocation function does not act like a builtin by
2894 // default, only if it is invoked by a new-expression or delete-expression.
2895 F
->addFnAttr(llvm::Attribute::NoBuiltin
);
2898 if (isa
<CXXConstructorDecl
>(FD
) || isa
<CXXDestructorDecl
>(FD
))
2899 F
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2900 else if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
))
2901 if (MD
->isVirtual())
2902 F
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2904 // Don't emit entries for function declarations in the cross-DSO mode. This
2905 // is handled with better precision by the receiving DSO. But if jump tables
2906 // are non-canonical then we need type metadata in order to produce the local
2908 if (!CodeGenOpts
.SanitizeCfiCrossDso
||
2909 !CodeGenOpts
.SanitizeCfiCanonicalJumpTables
)
2910 CreateFunctionTypeMetadataForIcall(FD
, F
);
2912 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
))
2915 if (getLangOpts().OpenMP
&& FD
->hasAttr
<OMPDeclareSimdDeclAttr
>())
2916 getOpenMPRuntime().emitDeclareSimdFunction(FD
, F
);
2918 if (CodeGenOpts
.InlineMaxStackSize
!= UINT_MAX
)
2919 F
->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts
.InlineMaxStackSize
));
2921 if (const auto *CB
= FD
->getAttr
<CallbackAttr
>()) {
2922 // Annotate the callback behavior as metadata:
2923 // - The callback callee (as argument number).
2924 // - The callback payloads (as argument numbers).
2925 llvm::LLVMContext
&Ctx
= F
->getContext();
2926 llvm::MDBuilder
MDB(Ctx
);
2928 // The payload indices are all but the first one in the encoding. The first
2929 // identifies the callback callee.
2930 int CalleeIdx
= *CB
->encoding_begin();
2931 ArrayRef
<int> PayloadIndices(CB
->encoding_begin() + 1, CB
->encoding_end());
2932 F
->addMetadata(llvm::LLVMContext::MD_callback
,
2933 *llvm::MDNode::get(Ctx
, {MDB
.createCallbackEncoding(
2934 CalleeIdx
, PayloadIndices
,
2935 /* VarArgsArePassed */ false)}));
2939 void CodeGenModule::addUsedGlobal(llvm::GlobalValue
*GV
) {
2940 assert((isa
<llvm::Function
>(GV
) || !GV
->isDeclaration()) &&
2941 "Only globals with definition can force usage.");
2942 LLVMUsed
.emplace_back(GV
);
2945 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue
*GV
) {
2946 assert(!GV
->isDeclaration() &&
2947 "Only globals with definition can force usage.");
2948 LLVMCompilerUsed
.emplace_back(GV
);
2951 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue
*GV
) {
2952 assert((isa
<llvm::Function
>(GV
) || !GV
->isDeclaration()) &&
2953 "Only globals with definition can force usage.");
2954 if (getTriple().isOSBinFormatELF())
2955 LLVMCompilerUsed
.emplace_back(GV
);
2957 LLVMUsed
.emplace_back(GV
);
2960 static void emitUsed(CodeGenModule
&CGM
, StringRef Name
,
2961 std::vector
<llvm::WeakTrackingVH
> &List
) {
2962 // Don't create llvm.used if there is no need.
2966 // Convert List to what ConstantArray needs.
2967 SmallVector
<llvm::Constant
*, 8> UsedArray
;
2968 UsedArray
.resize(List
.size());
2969 for (unsigned i
= 0, e
= List
.size(); i
!= e
; ++i
) {
2971 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2972 cast
<llvm::Constant
>(&*List
[i
]), CGM
.Int8PtrTy
);
2975 if (UsedArray
.empty())
2977 llvm::ArrayType
*ATy
= llvm::ArrayType::get(CGM
.Int8PtrTy
, UsedArray
.size());
2979 auto *GV
= new llvm::GlobalVariable(
2980 CGM
.getModule(), ATy
, false, llvm::GlobalValue::AppendingLinkage
,
2981 llvm::ConstantArray::get(ATy
, UsedArray
), Name
);
2983 GV
->setSection("llvm.metadata");
2986 void CodeGenModule::emitLLVMUsed() {
2987 emitUsed(*this, "llvm.used", LLVMUsed
);
2988 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed
);
2991 void CodeGenModule::AppendLinkerOptions(StringRef Opts
) {
2992 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opts
);
2993 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts
));
2996 void CodeGenModule::AddDetectMismatch(StringRef Name
, StringRef Value
) {
2997 llvm::SmallString
<32> Opt
;
2998 getTargetCodeGenInfo().getDetectMismatchOption(Name
, Value
, Opt
);
3001 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opt
);
3002 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts
));
3005 void CodeGenModule::AddDependentLib(StringRef Lib
) {
3006 auto &C
= getLLVMContext();
3007 if (getTarget().getTriple().isOSBinFormatELF()) {
3008 ELFDependentLibraries
.push_back(
3009 llvm::MDNode::get(C
, llvm::MDString::get(C
, Lib
)));
3013 llvm::SmallString
<24> Opt
;
3014 getTargetCodeGenInfo().getDependentLibraryOption(Lib
, Opt
);
3015 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opt
);
3016 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(C
, MDOpts
));
3019 /// Add link options implied by the given module, including modules
3020 /// it depends on, using a postorder walk.
3021 static void addLinkOptionsPostorder(CodeGenModule
&CGM
, Module
*Mod
,
3022 SmallVectorImpl
<llvm::MDNode
*> &Metadata
,
3023 llvm::SmallPtrSet
<Module
*, 16> &Visited
) {
3024 // Import this module's parent.
3025 if (Mod
->Parent
&& Visited
.insert(Mod
->Parent
).second
) {
3026 addLinkOptionsPostorder(CGM
, Mod
->Parent
, Metadata
, Visited
);
3029 // Import this module's dependencies.
3030 for (Module
*Import
: llvm::reverse(Mod
->Imports
)) {
3031 if (Visited
.insert(Import
).second
)
3032 addLinkOptionsPostorder(CGM
, Import
, Metadata
, Visited
);
3035 // Add linker options to link against the libraries/frameworks
3036 // described by this module.
3037 llvm::LLVMContext
&Context
= CGM
.getLLVMContext();
3038 bool IsELF
= CGM
.getTarget().getTriple().isOSBinFormatELF();
3040 // For modules that use export_as for linking, use that module
3042 if (Mod
->UseExportAsModuleLinkName
)
3045 for (const Module::LinkLibrary
&LL
: llvm::reverse(Mod
->LinkLibraries
)) {
3046 // Link against a framework. Frameworks are currently Darwin only, so we
3047 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3048 if (LL
.IsFramework
) {
3049 llvm::Metadata
*Args
[2] = {llvm::MDString::get(Context
, "-framework"),
3050 llvm::MDString::get(Context
, LL
.Library
)};
3052 Metadata
.push_back(llvm::MDNode::get(Context
, Args
));
3056 // Link against a library.
3058 llvm::Metadata
*Args
[2] = {
3059 llvm::MDString::get(Context
, "lib"),
3060 llvm::MDString::get(Context
, LL
.Library
),
3062 Metadata
.push_back(llvm::MDNode::get(Context
, Args
));
3064 llvm::SmallString
<24> Opt
;
3065 CGM
.getTargetCodeGenInfo().getDependentLibraryOption(LL
.Library
, Opt
);
3066 auto *OptString
= llvm::MDString::get(Context
, Opt
);
3067 Metadata
.push_back(llvm::MDNode::get(Context
, OptString
));
3072 void CodeGenModule::EmitModuleInitializers(clang::Module
*Primary
) {
3073 assert(Primary
->isNamedModuleUnit() &&
3074 "We should only emit module initializers for named modules.");
3076 // Emit the initializers in the order that sub-modules appear in the
3077 // source, first Global Module Fragments, if present.
3078 if (auto GMF
= Primary
->getGlobalModuleFragment()) {
3079 for (Decl
*D
: getContext().getModuleInitializers(GMF
)) {
3080 if (isa
<ImportDecl
>(D
))
3082 assert(isa
<VarDecl
>(D
) && "GMF initializer decl is not a var?");
3083 EmitTopLevelDecl(D
);
3086 // Second any associated with the module, itself.
3087 for (Decl
*D
: getContext().getModuleInitializers(Primary
)) {
3088 // Skip import decls, the inits for those are called explicitly.
3089 if (isa
<ImportDecl
>(D
))
3091 EmitTopLevelDecl(D
);
3093 // Third any associated with the Privat eMOdule Fragment, if present.
3094 if (auto PMF
= Primary
->getPrivateModuleFragment()) {
3095 for (Decl
*D
: getContext().getModuleInitializers(PMF
)) {
3096 // Skip import decls, the inits for those are called explicitly.
3097 if (isa
<ImportDecl
>(D
))
3099 assert(isa
<VarDecl
>(D
) && "PMF initializer decl is not a var?");
3100 EmitTopLevelDecl(D
);
3105 void CodeGenModule::EmitModuleLinkOptions() {
3106 // Collect the set of all of the modules we want to visit to emit link
3107 // options, which is essentially the imported modules and all of their
3108 // non-explicit child modules.
3109 llvm::SetVector
<clang::Module
*> LinkModules
;
3110 llvm::SmallPtrSet
<clang::Module
*, 16> Visited
;
3111 SmallVector
<clang::Module
*, 16> Stack
;
3113 // Seed the stack with imported modules.
3114 for (Module
*M
: ImportedModules
) {
3115 // Do not add any link flags when an implementation TU of a module imports
3116 // a header of that same module.
3117 if (M
->getTopLevelModuleName() == getLangOpts().CurrentModule
&&
3118 !getLangOpts().isCompilingModule())
3120 if (Visited
.insert(M
).second
)
3124 // Find all of the modules to import, making a little effort to prune
3125 // non-leaf modules.
3126 while (!Stack
.empty()) {
3127 clang::Module
*Mod
= Stack
.pop_back_val();
3129 bool AnyChildren
= false;
3131 // Visit the submodules of this module.
3132 for (const auto &SM
: Mod
->submodules()) {
3133 // Skip explicit children; they need to be explicitly imported to be
3138 if (Visited
.insert(SM
).second
) {
3139 Stack
.push_back(SM
);
3144 // We didn't find any children, so add this module to the list of
3145 // modules to link against.
3147 LinkModules
.insert(Mod
);
3151 // Add link options for all of the imported modules in reverse topological
3152 // order. We don't do anything to try to order import link flags with respect
3153 // to linker options inserted by things like #pragma comment().
3154 SmallVector
<llvm::MDNode
*, 16> MetadataArgs
;
3156 for (Module
*M
: LinkModules
)
3157 if (Visited
.insert(M
).second
)
3158 addLinkOptionsPostorder(*this, M
, MetadataArgs
, Visited
);
3159 std::reverse(MetadataArgs
.begin(), MetadataArgs
.end());
3160 LinkerOptionsMetadata
.append(MetadataArgs
.begin(), MetadataArgs
.end());
3162 // Add the linker options metadata flag.
3163 auto *NMD
= getModule().getOrInsertNamedMetadata("llvm.linker.options");
3164 for (auto *MD
: LinkerOptionsMetadata
)
3165 NMD
->addOperand(MD
);
3168 void CodeGenModule::EmitDeferred() {
3169 // Emit deferred declare target declarations.
3170 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
)
3171 getOpenMPRuntime().emitDeferredTargetDecls();
3173 // Emit code for any potentially referenced deferred decls. Since a
3174 // previously unused static decl may become used during the generation of code
3175 // for a static function, iterate until no changes are made.
3177 if (!DeferredVTables
.empty()) {
3178 EmitDeferredVTables();
3180 // Emitting a vtable doesn't directly cause more vtables to
3181 // become deferred, although it can cause functions to be
3182 // emitted that then need those vtables.
3183 assert(DeferredVTables
.empty());
3186 // Emit CUDA/HIP static device variables referenced by host code only.
3187 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3188 // needed for further handling.
3189 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
)
3190 llvm::append_range(DeferredDeclsToEmit
,
3191 getContext().CUDADeviceVarODRUsedByHost
);
3193 // Stop if we're out of both deferred vtables and deferred declarations.
3194 if (DeferredDeclsToEmit
.empty())
3197 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3198 // work, it will not interfere with this.
3199 std::vector
<GlobalDecl
> CurDeclsToEmit
;
3200 CurDeclsToEmit
.swap(DeferredDeclsToEmit
);
3202 for (GlobalDecl
&D
: CurDeclsToEmit
) {
3203 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3204 // to get GlobalValue with exactly the type we need, not something that
3205 // might had been created for another decl with the same mangled name but
3207 llvm::GlobalValue
*GV
= dyn_cast
<llvm::GlobalValue
>(
3208 GetAddrOfGlobal(D
, ForDefinition
));
3210 // In case of different address spaces, we may still get a cast, even with
3211 // IsForDefinition equal to true. Query mangled names table to get
3214 GV
= GetGlobalValue(getMangledName(D
));
3216 // Make sure GetGlobalValue returned non-null.
3219 // Check to see if we've already emitted this. This is necessary
3220 // for a couple of reasons: first, decls can end up in the
3221 // deferred-decls queue multiple times, and second, decls can end
3222 // up with definitions in unusual ways (e.g. by an extern inline
3223 // function acquiring a strong function redefinition). Just
3224 // ignore these cases.
3225 if (!GV
->isDeclaration())
3228 // If this is OpenMP, check if it is legal to emit this global normally.
3229 if (LangOpts
.OpenMP
&& OpenMPRuntime
&& OpenMPRuntime
->emitTargetGlobal(D
))
3232 // Otherwise, emit the definition and move on to the next one.
3233 EmitGlobalDefinition(D
, GV
);
3235 // If we found out that we need to emit more decls, do that recursively.
3236 // This has the advantage that the decls are emitted in a DFS and related
3237 // ones are close together, which is convenient for testing.
3238 if (!DeferredVTables
.empty() || !DeferredDeclsToEmit
.empty()) {
3240 assert(DeferredVTables
.empty() && DeferredDeclsToEmit
.empty());
3245 void CodeGenModule::EmitVTablesOpportunistically() {
3246 // Try to emit external vtables as available_externally if they have emitted
3247 // all inlined virtual functions. It runs after EmitDeferred() and therefore
3248 // is not allowed to create new references to things that need to be emitted
3249 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3251 assert((OpportunisticVTables
.empty() || shouldOpportunisticallyEmitVTables())
3252 && "Only emit opportunistic vtables with optimizations");
3254 for (const CXXRecordDecl
*RD
: OpportunisticVTables
) {
3255 assert(getVTables().isVTableExternal(RD
) &&
3256 "This queue should only contain external vtables");
3257 if (getCXXABI().canSpeculativelyEmitVTable(RD
))
3258 VTables
.GenerateClassData(RD
);
3260 OpportunisticVTables
.clear();
3263 void CodeGenModule::EmitGlobalAnnotations() {
3264 for (const auto& [MangledName
, VD
] : DeferredAnnotations
) {
3265 llvm::GlobalValue
*GV
= GetGlobalValue(MangledName
);
3267 AddGlobalAnnotations(VD
, GV
);
3269 DeferredAnnotations
.clear();
3271 if (Annotations
.empty())
3274 // Create a new global variable for the ConstantStruct in the Module.
3275 llvm::Constant
*Array
= llvm::ConstantArray::get(llvm::ArrayType::get(
3276 Annotations
[0]->getType(), Annotations
.size()), Annotations
);
3277 auto *gv
= new llvm::GlobalVariable(getModule(), Array
->getType(), false,
3278 llvm::GlobalValue::AppendingLinkage
,
3279 Array
, "llvm.global.annotations");
3280 gv
->setSection(AnnotationSection
);
3283 llvm::Constant
*CodeGenModule::EmitAnnotationString(StringRef Str
) {
3284 llvm::Constant
*&AStr
= AnnotationStrings
[Str
];
3288 // Not found yet, create a new global.
3289 llvm::Constant
*s
= llvm::ConstantDataArray::getString(getLLVMContext(), Str
);
3290 auto *gv
= new llvm::GlobalVariable(
3291 getModule(), s
->getType(), true, llvm::GlobalValue::PrivateLinkage
, s
,
3292 ".str", nullptr, llvm::GlobalValue::NotThreadLocal
,
3293 ConstGlobalsPtrTy
->getAddressSpace());
3294 gv
->setSection(AnnotationSection
);
3295 gv
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3300 llvm::Constant
*CodeGenModule::EmitAnnotationUnit(SourceLocation Loc
) {
3301 SourceManager
&SM
= getContext().getSourceManager();
3302 PresumedLoc PLoc
= SM
.getPresumedLoc(Loc
);
3304 return EmitAnnotationString(PLoc
.getFilename());
3305 return EmitAnnotationString(SM
.getBufferName(Loc
));
3308 llvm::Constant
*CodeGenModule::EmitAnnotationLineNo(SourceLocation L
) {
3309 SourceManager
&SM
= getContext().getSourceManager();
3310 PresumedLoc PLoc
= SM
.getPresumedLoc(L
);
3311 unsigned LineNo
= PLoc
.isValid() ? PLoc
.getLine() :
3312 SM
.getExpansionLineNumber(L
);
3313 return llvm::ConstantInt::get(Int32Ty
, LineNo
);
3316 llvm::Constant
*CodeGenModule::EmitAnnotationArgs(const AnnotateAttr
*Attr
) {
3317 ArrayRef
<Expr
*> Exprs
= {Attr
->args_begin(), Attr
->args_size()};
3319 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy
);
3321 llvm::FoldingSetNodeID ID
;
3322 for (Expr
*E
: Exprs
) {
3323 ID
.Add(cast
<clang::ConstantExpr
>(E
)->getAPValueResult());
3325 llvm::Constant
*&Lookup
= AnnotationArgs
[ID
.ComputeHash()];
3329 llvm::SmallVector
<llvm::Constant
*, 4> LLVMArgs
;
3330 LLVMArgs
.reserve(Exprs
.size());
3331 ConstantEmitter
ConstEmiter(*this);
3332 llvm::transform(Exprs
, std::back_inserter(LLVMArgs
), [&](const Expr
*E
) {
3333 const auto *CE
= cast
<clang::ConstantExpr
>(E
);
3334 return ConstEmiter
.emitAbstract(CE
->getBeginLoc(), CE
->getAPValueResult(),
3337 auto *Struct
= llvm::ConstantStruct::getAnon(LLVMArgs
);
3338 auto *GV
= new llvm::GlobalVariable(getModule(), Struct
->getType(), true,
3339 llvm::GlobalValue::PrivateLinkage
, Struct
,
3341 GV
->setSection(AnnotationSection
);
3342 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3348 llvm::Constant
*CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue
*GV
,
3349 const AnnotateAttr
*AA
,
3351 // Get the globals for file name, annotation, and the line number.
3352 llvm::Constant
*AnnoGV
= EmitAnnotationString(AA
->getAnnotation()),
3353 *UnitGV
= EmitAnnotationUnit(L
),
3354 *LineNoCst
= EmitAnnotationLineNo(L
),
3355 *Args
= EmitAnnotationArgs(AA
);
3357 llvm::Constant
*GVInGlobalsAS
= GV
;
3358 if (GV
->getAddressSpace() !=
3359 getDataLayout().getDefaultGlobalsAddressSpace()) {
3360 GVInGlobalsAS
= llvm::ConstantExpr::getAddrSpaceCast(
3362 llvm::PointerType::get(
3363 GV
->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3366 // Create the ConstantStruct for the global annotation.
3367 llvm::Constant
*Fields
[] = {
3368 GVInGlobalsAS
, AnnoGV
, UnitGV
, LineNoCst
, Args
,
3370 return llvm::ConstantStruct::getAnon(Fields
);
3373 void CodeGenModule::AddGlobalAnnotations(const ValueDecl
*D
,
3374 llvm::GlobalValue
*GV
) {
3375 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
3376 // Get the struct elements for these annotations.
3377 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>())
3378 Annotations
.push_back(EmitAnnotateAttr(GV
, I
, D
->getLocation()));
3381 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind
, llvm::Function
*Fn
,
3382 SourceLocation Loc
) const {
3383 const auto &NoSanitizeL
= getContext().getNoSanitizeList();
3384 // NoSanitize by function name.
3385 if (NoSanitizeL
.containsFunction(Kind
, Fn
->getName()))
3387 // NoSanitize by location. Check "mainfile" prefix.
3388 auto &SM
= Context
.getSourceManager();
3389 FileEntryRef MainFile
= *SM
.getFileEntryRefForID(SM
.getMainFileID());
3390 if (NoSanitizeL
.containsMainFile(Kind
, MainFile
.getName()))
3393 // Check "src" prefix.
3395 return NoSanitizeL
.containsLocation(Kind
, Loc
);
3396 // If location is unknown, this may be a compiler-generated function. Assume
3397 // it's located in the main file.
3398 return NoSanitizeL
.containsFile(Kind
, MainFile
.getName());
3401 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind
,
3402 llvm::GlobalVariable
*GV
,
3403 SourceLocation Loc
, QualType Ty
,
3404 StringRef Category
) const {
3405 const auto &NoSanitizeL
= getContext().getNoSanitizeList();
3406 if (NoSanitizeL
.containsGlobal(Kind
, GV
->getName(), Category
))
3408 auto &SM
= Context
.getSourceManager();
3409 if (NoSanitizeL
.containsMainFile(
3410 Kind
, SM
.getFileEntryRefForID(SM
.getMainFileID())->getName(),
3413 if (NoSanitizeL
.containsLocation(Kind
, Loc
, Category
))
3416 // Check global type.
3418 // Drill down the array types: if global variable of a fixed type is
3419 // not sanitized, we also don't instrument arrays of them.
3420 while (auto AT
= dyn_cast
<ArrayType
>(Ty
.getTypePtr()))
3421 Ty
= AT
->getElementType();
3422 Ty
= Ty
.getCanonicalType().getUnqualifiedType();
3423 // Only record types (classes, structs etc.) are ignored.
3424 if (Ty
->isRecordType()) {
3425 std::string TypeStr
= Ty
.getAsString(getContext().getPrintingPolicy());
3426 if (NoSanitizeL
.containsType(Kind
, TypeStr
, Category
))
3433 bool CodeGenModule::imbueXRayAttrs(llvm::Function
*Fn
, SourceLocation Loc
,
3434 StringRef Category
) const {
3435 const auto &XRayFilter
= getContext().getXRayFilter();
3436 using ImbueAttr
= XRayFunctionFilter::ImbueAttribute
;
3437 auto Attr
= ImbueAttr::NONE
;
3439 Attr
= XRayFilter
.shouldImbueLocation(Loc
, Category
);
3440 if (Attr
== ImbueAttr::NONE
)
3441 Attr
= XRayFilter
.shouldImbueFunction(Fn
->getName());
3443 case ImbueAttr::NONE
:
3445 case ImbueAttr::ALWAYS
:
3446 Fn
->addFnAttr("function-instrument", "xray-always");
3448 case ImbueAttr::ALWAYS_ARG1
:
3449 Fn
->addFnAttr("function-instrument", "xray-always");
3450 Fn
->addFnAttr("xray-log-args", "1");
3452 case ImbueAttr::NEVER
:
3453 Fn
->addFnAttr("function-instrument", "xray-never");
3459 ProfileList::ExclusionType
3460 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function
*Fn
,
3461 SourceLocation Loc
) const {
3462 const auto &ProfileList
= getContext().getProfileList();
3463 // If the profile list is empty, then instrument everything.
3464 if (ProfileList
.isEmpty())
3465 return ProfileList::Allow
;
3466 CodeGenOptions::ProfileInstrKind Kind
= getCodeGenOpts().getProfileInstr();
3467 // First, check the function name.
3468 if (auto V
= ProfileList
.isFunctionExcluded(Fn
->getName(), Kind
))
3470 // Next, check the source location.
3472 if (auto V
= ProfileList
.isLocationExcluded(Loc
, Kind
))
3474 // If location is unknown, this may be a compiler-generated function. Assume
3475 // it's located in the main file.
3476 auto &SM
= Context
.getSourceManager();
3477 if (auto MainFile
= SM
.getFileEntryRefForID(SM
.getMainFileID()))
3478 if (auto V
= ProfileList
.isFileExcluded(MainFile
->getName(), Kind
))
3480 return ProfileList
.getDefault(Kind
);
3483 ProfileList::ExclusionType
3484 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function
*Fn
,
3485 SourceLocation Loc
) const {
3486 auto V
= isFunctionBlockedByProfileList(Fn
, Loc
);
3487 if (V
!= ProfileList::Allow
)
3490 auto NumGroups
= getCodeGenOpts().ProfileTotalFunctionGroups
;
3491 if (NumGroups
> 1) {
3492 auto Group
= llvm::crc32(arrayRefFromStringRef(Fn
->getName())) % NumGroups
;
3493 if (Group
!= getCodeGenOpts().ProfileSelectedFunctionGroup
)
3494 return ProfileList::Skip
;
3496 return ProfileList::Allow
;
3499 bool CodeGenModule::MustBeEmitted(const ValueDecl
*Global
) {
3500 // Never defer when EmitAllDecls is specified.
3501 if (LangOpts
.EmitAllDecls
)
3504 const auto *VD
= dyn_cast
<VarDecl
>(Global
);
3506 ((CodeGenOpts
.KeepPersistentStorageVariables
&&
3507 (VD
->getStorageDuration() == SD_Static
||
3508 VD
->getStorageDuration() == SD_Thread
)) ||
3509 (CodeGenOpts
.KeepStaticConsts
&& VD
->getStorageDuration() == SD_Static
&&
3510 VD
->getType().isConstQualified())))
3513 return getContext().DeclMustBeEmitted(Global
);
3516 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl
*Global
) {
3517 // In OpenMP 5.0 variables and function may be marked as
3518 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3519 // that they must be emitted on the host/device. To be sure we need to have
3520 // seen a declare target with an explicit mentioning of the function, we know
3521 // we have if the level of the declare target attribute is -1. Note that we
3522 // check somewhere else if we should emit this at all.
3523 if (LangOpts
.OpenMP
>= 50 && !LangOpts
.OpenMPSimd
) {
3524 std::optional
<OMPDeclareTargetDeclAttr
*> ActiveAttr
=
3525 OMPDeclareTargetDeclAttr::getActiveAttr(Global
);
3526 if (!ActiveAttr
|| (*ActiveAttr
)->getLevel() != (unsigned)-1)
3530 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Global
)) {
3531 if (FD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
3532 // Implicit template instantiations may change linkage if they are later
3533 // explicitly instantiated, so they should not be emitted eagerly.
3535 // Defer until all versions have been semantically checked.
3536 if (FD
->hasAttr
<TargetVersionAttr
>() && !FD
->isMultiVersion())
3539 if (const auto *VD
= dyn_cast
<VarDecl
>(Global
)) {
3540 if (Context
.getInlineVariableDefinitionKind(VD
) ==
3541 ASTContext::InlineVariableDefinitionKind::WeakUnknown
)
3542 // A definition of an inline constexpr static data member may change
3543 // linkage later if it's redeclared outside the class.
3545 if (CXX20ModuleInits
&& VD
->getOwningModule() &&
3546 !VD
->getOwningModule()->isModuleMapModule()) {
3547 // For CXX20, module-owned initializers need to be deferred, since it is
3548 // not known at this point if they will be run for the current module or
3549 // as part of the initializer for an imported one.
3553 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3554 // codegen for global variables, because they may be marked as threadprivate.
3555 if (LangOpts
.OpenMP
&& LangOpts
.OpenMPUseTLS
&&
3556 getContext().getTargetInfo().isTLSSupported() && isa
<VarDecl
>(Global
) &&
3557 !Global
->getType().isConstantStorage(getContext(), false, false) &&
3558 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global
))
3564 ConstantAddress
CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl
*GD
) {
3565 StringRef Name
= getMangledName(GD
);
3567 // The UUID descriptor should be pointer aligned.
3568 CharUnits Alignment
= CharUnits::fromQuantity(PointerAlignInBytes
);
3570 // Look for an existing global.
3571 if (llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
))
3572 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3574 ConstantEmitter
Emitter(*this);
3575 llvm::Constant
*Init
;
3577 APValue
&V
= GD
->getAsAPValue();
3578 if (!V
.isAbsent()) {
3579 // If possible, emit the APValue version of the initializer. In particular,
3580 // this gets the type of the constant right.
3581 Init
= Emitter
.emitForInitializer(
3582 GD
->getAsAPValue(), GD
->getType().getAddressSpace(), GD
->getType());
3584 // As a fallback, directly construct the constant.
3585 // FIXME: This may get padding wrong under esoteric struct layout rules.
3586 // MSVC appears to create a complete type 'struct __s_GUID' that it
3587 // presumably uses to represent these constants.
3588 MSGuidDecl::Parts Parts
= GD
->getParts();
3589 llvm::Constant
*Fields
[4] = {
3590 llvm::ConstantInt::get(Int32Ty
, Parts
.Part1
),
3591 llvm::ConstantInt::get(Int16Ty
, Parts
.Part2
),
3592 llvm::ConstantInt::get(Int16Ty
, Parts
.Part3
),
3593 llvm::ConstantDataArray::getRaw(
3594 StringRef(reinterpret_cast<char *>(Parts
.Part4And5
), 8), 8,
3596 Init
= llvm::ConstantStruct::getAnon(Fields
);
3599 auto *GV
= new llvm::GlobalVariable(
3600 getModule(), Init
->getType(),
3601 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage
, Init
, Name
);
3602 if (supportsCOMDAT())
3603 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
3606 if (!V
.isAbsent()) {
3607 Emitter
.finalize(GV
);
3608 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3611 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(GD
->getType());
3612 return ConstantAddress(GV
, Ty
, Alignment
);
3615 ConstantAddress
CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3616 const UnnamedGlobalConstantDecl
*GCD
) {
3617 CharUnits Alignment
= getContext().getTypeAlignInChars(GCD
->getType());
3619 llvm::GlobalVariable
**Entry
= nullptr;
3620 Entry
= &UnnamedGlobalConstantDeclMap
[GCD
];
3622 return ConstantAddress(*Entry
, (*Entry
)->getValueType(), Alignment
);
3624 ConstantEmitter
Emitter(*this);
3625 llvm::Constant
*Init
;
3627 const APValue
&V
= GCD
->getValue();
3629 assert(!V
.isAbsent());
3630 Init
= Emitter
.emitForInitializer(V
, GCD
->getType().getAddressSpace(),
3633 auto *GV
= new llvm::GlobalVariable(getModule(), Init
->getType(),
3634 /*isConstant=*/true,
3635 llvm::GlobalValue::PrivateLinkage
, Init
,
3637 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3638 GV
->setAlignment(Alignment
.getAsAlign());
3640 Emitter
.finalize(GV
);
3643 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3646 ConstantAddress
CodeGenModule::GetAddrOfTemplateParamObject(
3647 const TemplateParamObjectDecl
*TPO
) {
3648 StringRef Name
= getMangledName(TPO
);
3649 CharUnits Alignment
= getNaturalTypeAlignment(TPO
->getType());
3651 if (llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
))
3652 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3654 ConstantEmitter
Emitter(*this);
3655 llvm::Constant
*Init
= Emitter
.emitForInitializer(
3656 TPO
->getValue(), TPO
->getType().getAddressSpace(), TPO
->getType());
3659 ErrorUnsupported(TPO
, "template parameter object");
3660 return ConstantAddress::invalid();
3663 llvm::GlobalValue::LinkageTypes Linkage
=
3664 isExternallyVisible(TPO
->getLinkageAndVisibility().getLinkage())
3665 ? llvm::GlobalValue::LinkOnceODRLinkage
3666 : llvm::GlobalValue::InternalLinkage
;
3667 auto *GV
= new llvm::GlobalVariable(getModule(), Init
->getType(),
3668 /*isConstant=*/true, Linkage
, Init
, Name
);
3669 setGVProperties(GV
, TPO
);
3670 if (supportsCOMDAT())
3671 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
3672 Emitter
.finalize(GV
);
3674 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3677 ConstantAddress
CodeGenModule::GetWeakRefReference(const ValueDecl
*VD
) {
3678 const AliasAttr
*AA
= VD
->getAttr
<AliasAttr
>();
3679 assert(AA
&& "No alias?");
3681 CharUnits Alignment
= getContext().getDeclAlign(VD
);
3682 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(VD
->getType());
3684 // See if there is already something with the target's name in the module.
3685 llvm::GlobalValue
*Entry
= GetGlobalValue(AA
->getAliasee());
3687 return ConstantAddress(Entry
, DeclTy
, Alignment
);
3689 llvm::Constant
*Aliasee
;
3690 if (isa
<llvm::FunctionType
>(DeclTy
))
3691 Aliasee
= GetOrCreateLLVMFunction(AA
->getAliasee(), DeclTy
,
3692 GlobalDecl(cast
<FunctionDecl
>(VD
)),
3693 /*ForVTable=*/false);
3695 Aliasee
= GetOrCreateLLVMGlobal(AA
->getAliasee(), DeclTy
, LangAS::Default
,
3698 auto *F
= cast
<llvm::GlobalValue
>(Aliasee
);
3699 F
->setLinkage(llvm::Function::ExternalWeakLinkage
);
3700 WeakRefReferences
.insert(F
);
3702 return ConstantAddress(Aliasee
, DeclTy
, Alignment
);
3705 template <typename AttrT
> static bool hasImplicitAttr(const ValueDecl
*D
) {
3708 if (auto *A
= D
->getAttr
<AttrT
>())
3709 return A
->isImplicit();
3710 return D
->isImplicit();
3713 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl
*Global
) const {
3714 assert(LangOpts
.CUDA
&& "Should not be called by non-CUDA languages");
3715 // We need to emit host-side 'shadows' for all global
3716 // device-side variables because the CUDA runtime needs their
3717 // size and host-side address in order to provide access to
3718 // their device-side incarnations.
3719 return !LangOpts
.CUDAIsDevice
|| Global
->hasAttr
<CUDADeviceAttr
>() ||
3720 Global
->hasAttr
<CUDAConstantAttr
>() ||
3721 Global
->hasAttr
<CUDASharedAttr
>() ||
3722 Global
->getType()->isCUDADeviceBuiltinSurfaceType() ||
3723 Global
->getType()->isCUDADeviceBuiltinTextureType();
3726 void CodeGenModule::EmitGlobal(GlobalDecl GD
) {
3727 const auto *Global
= cast
<ValueDecl
>(GD
.getDecl());
3729 // Weak references don't produce any output by themselves.
3730 if (Global
->hasAttr
<WeakRefAttr
>())
3733 // If this is an alias definition (which otherwise looks like a declaration)
3735 if (Global
->hasAttr
<AliasAttr
>())
3736 return EmitAliasDefinition(GD
);
3738 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3739 if (Global
->hasAttr
<IFuncAttr
>())
3740 return emitIFuncDefinition(GD
);
3742 // If this is a cpu_dispatch multiversion function, emit the resolver.
3743 if (Global
->hasAttr
<CPUDispatchAttr
>())
3744 return emitCPUDispatchDefinition(GD
);
3746 // If this is CUDA, be selective about which declarations we emit.
3747 // Non-constexpr non-lambda implicit host device functions are not emitted
3748 // unless they are used on device side.
3749 if (LangOpts
.CUDA
) {
3750 assert((isa
<FunctionDecl
>(Global
) || isa
<VarDecl
>(Global
)) &&
3751 "Expected Variable or Function");
3752 if (const auto *VD
= dyn_cast
<VarDecl
>(Global
)) {
3753 if (!shouldEmitCUDAGlobalVar(VD
))
3755 } else if (LangOpts
.CUDAIsDevice
) {
3756 const auto *FD
= dyn_cast
<FunctionDecl
>(Global
);
3757 if ((!Global
->hasAttr
<CUDADeviceAttr
>() ||
3758 (LangOpts
.OffloadImplicitHostDeviceTemplates
&&
3759 hasImplicitAttr
<CUDAHostAttr
>(FD
) &&
3760 hasImplicitAttr
<CUDADeviceAttr
>(FD
) && !FD
->isConstexpr() &&
3761 !isLambdaCallOperator(FD
) &&
3762 !getContext().CUDAImplicitHostDeviceFunUsedByDevice
.count(FD
))) &&
3763 !Global
->hasAttr
<CUDAGlobalAttr
>() &&
3764 !(LangOpts
.HIPStdPar
&& isa
<FunctionDecl
>(Global
) &&
3765 !Global
->hasAttr
<CUDAHostAttr
>()))
3767 // Device-only functions are the only things we skip.
3768 } else if (!Global
->hasAttr
<CUDAHostAttr
>() &&
3769 Global
->hasAttr
<CUDADeviceAttr
>())
3773 if (LangOpts
.OpenMP
) {
3774 // If this is OpenMP, check if it is legal to emit this global normally.
3775 if (OpenMPRuntime
&& OpenMPRuntime
->emitTargetGlobal(GD
))
3777 if (auto *DRD
= dyn_cast
<OMPDeclareReductionDecl
>(Global
)) {
3778 if (MustBeEmitted(Global
))
3779 EmitOMPDeclareReduction(DRD
);
3782 if (auto *DMD
= dyn_cast
<OMPDeclareMapperDecl
>(Global
)) {
3783 if (MustBeEmitted(Global
))
3784 EmitOMPDeclareMapper(DMD
);
3789 // Ignore declarations, they will be emitted on their first use.
3790 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Global
)) {
3791 // Update deferred annotations with the latest declaration if the function
3792 // function was already used or defined.
3793 if (FD
->hasAttr
<AnnotateAttr
>()) {
3794 StringRef MangledName
= getMangledName(GD
);
3795 if (GetGlobalValue(MangledName
))
3796 DeferredAnnotations
[MangledName
] = FD
;
3799 // Forward declarations are emitted lazily on first use.
3800 if (!FD
->doesThisDeclarationHaveABody()) {
3801 if (!FD
->doesDeclarationForceExternallyVisibleDefinition() &&
3802 (!FD
->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3805 StringRef MangledName
= getMangledName(GD
);
3807 // Compute the function info and LLVM type.
3808 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
3809 llvm::Type
*Ty
= getTypes().GetFunctionType(FI
);
3811 GetOrCreateLLVMFunction(MangledName
, Ty
, GD
, /*ForVTable=*/false,
3812 /*DontDefer=*/false);
3816 const auto *VD
= cast
<VarDecl
>(Global
);
3817 assert(VD
->isFileVarDecl() && "Cannot emit local var decl as global.");
3818 if (VD
->isThisDeclarationADefinition() != VarDecl::Definition
&&
3819 !Context
.isMSStaticDataMemberInlineDefinition(VD
)) {
3820 if (LangOpts
.OpenMP
) {
3821 // Emit declaration of the must-be-emitted declare target variable.
3822 if (std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
3823 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
)) {
3825 // If this variable has external storage and doesn't require special
3826 // link handling we defer to its canonical definition.
3827 if (VD
->hasExternalStorage() &&
3828 Res
!= OMPDeclareTargetDeclAttr::MT_Link
)
3831 bool UnifiedMemoryEnabled
=
3832 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3833 if ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
3834 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
3835 !UnifiedMemoryEnabled
) {
3836 (void)GetAddrOfGlobalVar(VD
);
3838 assert(((*Res
== OMPDeclareTargetDeclAttr::MT_Link
) ||
3839 ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
3840 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
3841 UnifiedMemoryEnabled
)) &&
3842 "Link clause or to clause with unified memory expected.");
3843 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD
);
3849 // If this declaration may have caused an inline variable definition to
3850 // change linkage, make sure that it's emitted.
3851 if (Context
.getInlineVariableDefinitionKind(VD
) ==
3852 ASTContext::InlineVariableDefinitionKind::Strong
)
3853 GetAddrOfGlobalVar(VD
);
3858 // Defer code generation to first use when possible, e.g. if this is an inline
3859 // function. If the global must always be emitted, do it eagerly if possible
3860 // to benefit from cache locality.
3861 if (MustBeEmitted(Global
) && MayBeEmittedEagerly(Global
)) {
3862 // Emit the definition if it can't be deferred.
3863 EmitGlobalDefinition(GD
);
3864 addEmittedDeferredDecl(GD
);
3868 // If we're deferring emission of a C++ variable with an
3869 // initializer, remember the order in which it appeared in the file.
3870 if (getLangOpts().CPlusPlus
&& isa
<VarDecl
>(Global
) &&
3871 cast
<VarDecl
>(Global
)->hasInit()) {
3872 DelayedCXXInitPosition
[Global
] = CXXGlobalInits
.size();
3873 CXXGlobalInits
.push_back(nullptr);
3876 StringRef MangledName
= getMangledName(GD
);
3877 if (GetGlobalValue(MangledName
) != nullptr) {
3878 // The value has already been used and should therefore be emitted.
3879 addDeferredDeclToEmit(GD
);
3880 } else if (MustBeEmitted(Global
)) {
3881 // The value must be emitted, but cannot be emitted eagerly.
3882 assert(!MayBeEmittedEagerly(Global
));
3883 addDeferredDeclToEmit(GD
);
3885 // Otherwise, remember that we saw a deferred decl with this name. The
3886 // first use of the mangled name will cause it to move into
3887 // DeferredDeclsToEmit.
3888 DeferredDecls
[MangledName
] = GD
;
3892 // Check if T is a class type with a destructor that's not dllimport.
3893 static bool HasNonDllImportDtor(QualType T
) {
3894 if (const auto *RT
= T
->getBaseElementTypeUnsafe()->getAs
<RecordType
>())
3895 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
3896 if (RD
->getDestructor() && !RD
->getDestructor()->hasAttr
<DLLImportAttr
>())
3903 struct FunctionIsDirectlyRecursive
3904 : public ConstStmtVisitor
<FunctionIsDirectlyRecursive
, bool> {
3905 const StringRef Name
;
3906 const Builtin::Context
&BI
;
3907 FunctionIsDirectlyRecursive(StringRef N
, const Builtin::Context
&C
)
3910 bool VisitCallExpr(const CallExpr
*E
) {
3911 const FunctionDecl
*FD
= E
->getDirectCallee();
3914 AsmLabelAttr
*Attr
= FD
->getAttr
<AsmLabelAttr
>();
3915 if (Attr
&& Name
== Attr
->getLabel())
3917 unsigned BuiltinID
= FD
->getBuiltinID();
3918 if (!BuiltinID
|| !BI
.isLibFunction(BuiltinID
))
3920 StringRef BuiltinName
= BI
.getName(BuiltinID
);
3921 if (BuiltinName
.starts_with("__builtin_") &&
3922 Name
== BuiltinName
.slice(strlen("__builtin_"), StringRef::npos
)) {
3928 bool VisitStmt(const Stmt
*S
) {
3929 for (const Stmt
*Child
: S
->children())
3930 if (Child
&& this->Visit(Child
))
3936 // Make sure we're not referencing non-imported vars or functions.
3937 struct DLLImportFunctionVisitor
3938 : public RecursiveASTVisitor
<DLLImportFunctionVisitor
> {
3939 bool SafeToInline
= true;
3941 bool shouldVisitImplicitCode() const { return true; }
3943 bool VisitVarDecl(VarDecl
*VD
) {
3944 if (VD
->getTLSKind()) {
3945 // A thread-local variable cannot be imported.
3946 SafeToInline
= false;
3947 return SafeToInline
;
3950 // A variable definition might imply a destructor call.
3951 if (VD
->isThisDeclarationADefinition())
3952 SafeToInline
= !HasNonDllImportDtor(VD
->getType());
3954 return SafeToInline
;
3957 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
) {
3958 if (const auto *D
= E
->getTemporary()->getDestructor())
3959 SafeToInline
= D
->hasAttr
<DLLImportAttr
>();
3960 return SafeToInline
;
3963 bool VisitDeclRefExpr(DeclRefExpr
*E
) {
3964 ValueDecl
*VD
= E
->getDecl();
3965 if (isa
<FunctionDecl
>(VD
))
3966 SafeToInline
= VD
->hasAttr
<DLLImportAttr
>();
3967 else if (VarDecl
*V
= dyn_cast
<VarDecl
>(VD
))
3968 SafeToInline
= !V
->hasGlobalStorage() || V
->hasAttr
<DLLImportAttr
>();
3969 return SafeToInline
;
3972 bool VisitCXXConstructExpr(CXXConstructExpr
*E
) {
3973 SafeToInline
= E
->getConstructor()->hasAttr
<DLLImportAttr
>();
3974 return SafeToInline
;
3977 bool VisitCXXMemberCallExpr(CXXMemberCallExpr
*E
) {
3978 CXXMethodDecl
*M
= E
->getMethodDecl();
3980 // Call through a pointer to member function. This is safe to inline.
3981 SafeToInline
= true;
3983 SafeToInline
= M
->hasAttr
<DLLImportAttr
>();
3985 return SafeToInline
;
3988 bool VisitCXXDeleteExpr(CXXDeleteExpr
*E
) {
3989 SafeToInline
= E
->getOperatorDelete()->hasAttr
<DLLImportAttr
>();
3990 return SafeToInline
;
3993 bool VisitCXXNewExpr(CXXNewExpr
*E
) {
3994 SafeToInline
= E
->getOperatorNew()->hasAttr
<DLLImportAttr
>();
3995 return SafeToInline
;
4000 // isTriviallyRecursive - Check if this function calls another
4001 // decl that, because of the asm attribute or the other decl being a builtin,
4002 // ends up pointing to itself.
4004 CodeGenModule::isTriviallyRecursive(const FunctionDecl
*FD
) {
4006 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD
)) {
4007 // asm labels are a special kind of mangling we have to support.
4008 AsmLabelAttr
*Attr
= FD
->getAttr
<AsmLabelAttr
>();
4011 Name
= Attr
->getLabel();
4013 Name
= FD
->getName();
4016 FunctionIsDirectlyRecursive
Walker(Name
, Context
.BuiltinInfo
);
4017 const Stmt
*Body
= FD
->getBody();
4018 return Body
? Walker
.Visit(Body
) : false;
4021 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD
) {
4022 if (getFunctionLinkage(GD
) != llvm::Function::AvailableExternallyLinkage
)
4025 const auto *F
= cast
<FunctionDecl
>(GD
.getDecl());
4026 if (CodeGenOpts
.OptimizationLevel
== 0 && !F
->hasAttr
<AlwaysInlineAttr
>())
4029 // We don't import function bodies from other named module units since that
4030 // behavior may break ABI compatibility of the current unit.
4031 if (const Module
*M
= F
->getOwningModule();
4032 M
&& M
->getTopLevelModule()->isNamedModule() &&
4033 getContext().getCurrentNamedModule() != M
->getTopLevelModule()) {
4034 // There are practices to mark template member function as always-inline
4035 // and mark the template as extern explicit instantiation but not give
4036 // the definition for member function. So we have to emit the function
4037 // from explicitly instantiation with always-inline.
4039 // See https://github.com/llvm/llvm-project/issues/86893 for details.
4041 // TODO: Maybe it is better to give it a warning if we call a non-inline
4042 // function from other module units which is marked as always-inline.
4043 if (!F
->isTemplateInstantiation() || !F
->hasAttr
<AlwaysInlineAttr
>()) {
4048 if (F
->hasAttr
<NoInlineAttr
>())
4051 if (F
->hasAttr
<DLLImportAttr
>() && !F
->hasAttr
<AlwaysInlineAttr
>()) {
4052 // Check whether it would be safe to inline this dllimport function.
4053 DLLImportFunctionVisitor Visitor
;
4054 Visitor
.TraverseFunctionDecl(const_cast<FunctionDecl
*>(F
));
4055 if (!Visitor
.SafeToInline
)
4058 if (const CXXDestructorDecl
*Dtor
= dyn_cast
<CXXDestructorDecl
>(F
)) {
4059 // Implicit destructor invocations aren't captured in the AST, so the
4060 // check above can't see them. Check for them manually here.
4061 for (const Decl
*Member
: Dtor
->getParent()->decls())
4062 if (isa
<FieldDecl
>(Member
))
4063 if (HasNonDllImportDtor(cast
<FieldDecl
>(Member
)->getType()))
4065 for (const CXXBaseSpecifier
&B
: Dtor
->getParent()->bases())
4066 if (HasNonDllImportDtor(B
.getType()))
4071 // Inline builtins declaration must be emitted. They often are fortified
4073 if (F
->isInlineBuiltinDeclaration())
4076 // PR9614. Avoid cases where the source code is lying to us. An available
4077 // externally function should have an equivalent function somewhere else,
4078 // but a function that calls itself through asm label/`__builtin_` trickery is
4079 // clearly not equivalent to the real implementation.
4080 // This happens in glibc's btowc and in some configure checks.
4081 return !isTriviallyRecursive(F
);
4084 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4085 return CodeGenOpts
.OptimizationLevel
> 0;
4088 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD
,
4089 llvm::GlobalValue
*GV
) {
4090 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4092 if (FD
->isCPUSpecificMultiVersion()) {
4093 auto *Spec
= FD
->getAttr
<CPUSpecificAttr
>();
4094 for (unsigned I
= 0; I
< Spec
->cpus_size(); ++I
)
4095 EmitGlobalFunctionDefinition(GD
.getWithMultiVersionIndex(I
), nullptr);
4096 } else if (auto *TC
= FD
->getAttr
<TargetClonesAttr
>()) {
4097 for (unsigned I
= 0; I
< TC
->featuresStrs_size(); ++I
)
4098 // AArch64 favors the default target version over the clone if any.
4099 if ((!TC
->isDefaultVersion(I
) || !getTarget().getTriple().isAArch64()) &&
4100 TC
->isFirstOfVersion(I
))
4101 EmitGlobalFunctionDefinition(GD
.getWithMultiVersionIndex(I
), nullptr);
4102 // Ensure that the resolver function is also emitted.
4103 GetOrCreateMultiVersionResolver(GD
);
4105 EmitGlobalFunctionDefinition(GD
, GV
);
4107 // Defer the resolver emission until we can reason whether the TU
4108 // contains a default target version implementation.
4109 if (FD
->isTargetVersionMultiVersion())
4110 AddDeferredMultiVersionResolverToEmit(GD
);
4113 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD
, llvm::GlobalValue
*GV
) {
4114 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
4116 PrettyStackTraceDecl
CrashInfo(const_cast<ValueDecl
*>(D
), D
->getLocation(),
4117 Context
.getSourceManager(),
4118 "Generating code for declaration");
4120 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
4121 // At -O0, don't generate IR for functions with available_externally
4123 if (!shouldEmitFunction(GD
))
4126 llvm::TimeTraceScope
TimeScope("CodeGen Function", [&]() {
4128 llvm::raw_string_ostream
OS(Name
);
4129 FD
->getNameForDiagnostic(OS
, getContext().getPrintingPolicy(),
4130 /*Qualified=*/true);
4134 if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
4135 // Make sure to emit the definition(s) before we emit the thunks.
4136 // This is necessary for the generation of certain thunks.
4137 if (isa
<CXXConstructorDecl
>(Method
) || isa
<CXXDestructorDecl
>(Method
))
4138 ABI
->emitCXXStructor(GD
);
4139 else if (FD
->isMultiVersion())
4140 EmitMultiVersionFunctionDefinition(GD
, GV
);
4142 EmitGlobalFunctionDefinition(GD
, GV
);
4144 if (Method
->isVirtual())
4145 getVTables().EmitThunks(GD
);
4150 if (FD
->isMultiVersion())
4151 return EmitMultiVersionFunctionDefinition(GD
, GV
);
4152 return EmitGlobalFunctionDefinition(GD
, GV
);
4155 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
4156 return EmitGlobalVarDefinition(VD
, !VD
->hasDefinition());
4158 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4161 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue
*Old
,
4162 llvm::Function
*NewFn
);
4165 TargetMVPriority(const TargetInfo
&TI
,
4166 const CodeGenFunction::MultiVersionResolverOption
&RO
) {
4167 unsigned Priority
= 0;
4168 unsigned NumFeatures
= 0;
4169 for (StringRef Feat
: RO
.Conditions
.Features
) {
4170 Priority
= std::max(Priority
, TI
.multiVersionSortPriority(Feat
));
4174 if (!RO
.Conditions
.Architecture
.empty())
4175 Priority
= std::max(
4176 Priority
, TI
.multiVersionSortPriority(RO
.Conditions
.Architecture
));
4178 Priority
+= TI
.multiVersionFeatureCost() * NumFeatures
;
4183 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4184 // TU can forward declare the function without causing problems. Particularly
4185 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4186 // work with internal linkage functions, so that the same function name can be
4187 // used with internal linkage in multiple TUs.
4188 llvm::GlobalValue::LinkageTypes
getMultiversionLinkage(CodeGenModule
&CGM
,
4190 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
4191 if (FD
->getFormalLinkage() == Linkage::Internal
)
4192 return llvm::GlobalValue::InternalLinkage
;
4193 return llvm::GlobalValue::WeakODRLinkage
;
4196 void CodeGenModule::emitMultiVersionFunctions() {
4197 std::vector
<GlobalDecl
> MVFuncsToEmit
;
4198 MultiVersionFuncs
.swap(MVFuncsToEmit
);
4199 for (GlobalDecl GD
: MVFuncsToEmit
) {
4200 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4201 assert(FD
&& "Expected a FunctionDecl");
4203 auto createFunction
= [&](const FunctionDecl
*Decl
, unsigned MVIdx
= 0) {
4204 GlobalDecl CurGD
{Decl
->isDefined() ? Decl
->getDefinition() : Decl
, MVIdx
};
4205 StringRef MangledName
= getMangledName(CurGD
);
4206 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
4208 if (Decl
->isDefined()) {
4209 EmitGlobalFunctionDefinition(CurGD
, nullptr);
4210 Func
= GetGlobalValue(MangledName
);
4212 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(CurGD
);
4213 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
4214 Func
= GetAddrOfFunction(CurGD
, Ty
, /*ForVTable=*/false,
4215 /*DontDefer=*/false, ForDefinition
);
4217 assert(Func
&& "This should have just been created");
4219 return cast
<llvm::Function
>(Func
);
4222 // For AArch64, a resolver is only emitted if a function marked with
4223 // target_version("default")) or target_clones() is present and defined
4224 // in this TU. For other architectures it is always emitted.
4225 bool ShouldEmitResolver
= !getTarget().getTriple().isAArch64();
4226 SmallVector
<CodeGenFunction::MultiVersionResolverOption
, 10> Options
;
4228 getContext().forEachMultiversionedFunctionVersion(
4229 FD
, [&](const FunctionDecl
*CurFD
) {
4230 llvm::SmallVector
<StringRef
, 8> Feats
;
4231 bool IsDefined
= CurFD
->doesThisDeclarationHaveABody();
4233 if (const auto *TA
= CurFD
->getAttr
<TargetAttr
>()) {
4234 TA
->getAddedFeatures(Feats
);
4235 llvm::Function
*Func
= createFunction(CurFD
);
4236 Options
.emplace_back(Func
, TA
->getArchitecture(), Feats
);
4237 } else if (const auto *TVA
= CurFD
->getAttr
<TargetVersionAttr
>()) {
4238 if (TVA
->isDefaultVersion() && IsDefined
)
4239 ShouldEmitResolver
= true;
4240 TVA
->getFeatures(Feats
);
4241 llvm::Function
*Func
= createFunction(CurFD
);
4242 Options
.emplace_back(Func
, /*Architecture*/ "", Feats
);
4243 } else if (const auto *TC
= CurFD
->getAttr
<TargetClonesAttr
>()) {
4245 ShouldEmitResolver
= true;
4246 for (unsigned I
= 0; I
< TC
->featuresStrs_size(); ++I
) {
4247 if (!TC
->isFirstOfVersion(I
))
4250 llvm::Function
*Func
= createFunction(CurFD
, I
);
4251 StringRef Architecture
;
4253 if (getTarget().getTriple().isAArch64())
4254 TC
->getFeatures(Feats
, I
);
4256 StringRef Version
= TC
->getFeatureStr(I
);
4257 if (Version
.starts_with("arch="))
4258 Architecture
= Version
.drop_front(sizeof("arch=") - 1);
4259 else if (Version
!= "default")
4260 Feats
.push_back(Version
);
4262 Options
.emplace_back(Func
, Architecture
, Feats
);
4265 llvm_unreachable("unexpected MultiVersionKind");
4268 if (!ShouldEmitResolver
)
4271 llvm::Constant
*ResolverConstant
= GetOrCreateMultiVersionResolver(GD
);
4272 if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(ResolverConstant
)) {
4273 ResolverConstant
= IFunc
->getResolver();
4274 if (FD
->isTargetClonesMultiVersion() &&
4275 !getTarget().getTriple().isAArch64()) {
4276 std::string MangledName
= getMangledNameImpl(
4277 *this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4278 if (!GetGlobalValue(MangledName
+ ".ifunc")) {
4279 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4280 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
4281 // In prior versions of Clang, the mangling for ifuncs incorrectly
4282 // included an .ifunc suffix. This alias is generated for backward
4283 // compatibility. It is deprecated, and may be removed in the future.
4284 auto *Alias
= llvm::GlobalAlias::create(
4285 DeclTy
, 0, getMultiversionLinkage(*this, GD
),
4286 MangledName
+ ".ifunc", IFunc
, &getModule());
4287 SetCommonAttributes(FD
, Alias
);
4291 llvm::Function
*ResolverFunc
= cast
<llvm::Function
>(ResolverConstant
);
4293 ResolverFunc
->setLinkage(getMultiversionLinkage(*this, GD
));
4295 if (!ResolverFunc
->hasLocalLinkage() && supportsCOMDAT())
4296 ResolverFunc
->setComdat(
4297 getModule().getOrInsertComdat(ResolverFunc
->getName()));
4299 const TargetInfo
&TI
= getTarget();
4301 Options
, [&TI
](const CodeGenFunction::MultiVersionResolverOption
&LHS
,
4302 const CodeGenFunction::MultiVersionResolverOption
&RHS
) {
4303 return TargetMVPriority(TI
, LHS
) > TargetMVPriority(TI
, RHS
);
4305 CodeGenFunction
CGF(*this);
4306 CGF
.EmitMultiVersionResolver(ResolverFunc
, Options
);
4309 // Ensure that any additions to the deferred decls list caused by emitting a
4310 // variant are emitted. This can happen when the variant itself is inline and
4311 // calls a function without linkage.
4312 if (!MVFuncsToEmit
.empty())
4315 // Ensure that any additions to the multiversion funcs list from either the
4316 // deferred decls or the multiversion functions themselves are emitted.
4317 if (!MultiVersionFuncs
.empty())
4318 emitMultiVersionFunctions();
4321 static void replaceDeclarationWith(llvm::GlobalValue
*Old
,
4322 llvm::Constant
*New
) {
4323 assert(cast
<llvm::Function
>(Old
)->isDeclaration() && "Not a declaration");
4325 Old
->replaceAllUsesWith(New
);
4326 Old
->eraseFromParent();
4329 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD
) {
4330 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4331 assert(FD
&& "Not a FunctionDecl?");
4332 assert(FD
->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4333 const auto *DD
= FD
->getAttr
<CPUDispatchAttr
>();
4334 assert(DD
&& "Not a cpu_dispatch Function?");
4336 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4337 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
4339 StringRef ResolverName
= getMangledName(GD
);
4340 UpdateMultiVersionNames(GD
, FD
, ResolverName
);
4342 llvm::Type
*ResolverType
;
4343 GlobalDecl ResolverGD
;
4344 if (getTarget().supportsIFunc()) {
4345 ResolverType
= llvm::FunctionType::get(
4346 llvm::PointerType::get(DeclTy
,
4347 getTypes().getTargetAddressSpace(FD
->getType())),
4351 ResolverType
= DeclTy
;
4355 auto *ResolverFunc
= cast
<llvm::Function
>(GetOrCreateLLVMFunction(
4356 ResolverName
, ResolverType
, ResolverGD
, /*ForVTable=*/false));
4357 ResolverFunc
->setLinkage(getMultiversionLinkage(*this, GD
));
4358 if (supportsCOMDAT())
4359 ResolverFunc
->setComdat(
4360 getModule().getOrInsertComdat(ResolverFunc
->getName()));
4362 SmallVector
<CodeGenFunction::MultiVersionResolverOption
, 10> Options
;
4363 const TargetInfo
&Target
= getTarget();
4365 for (const IdentifierInfo
*II
: DD
->cpus()) {
4366 // Get the name of the target function so we can look it up/create it.
4367 std::string MangledName
= getMangledNameImpl(*this, GD
, FD
, true) +
4368 getCPUSpecificMangling(*this, II
->getName());
4370 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
4373 GlobalDecl ExistingDecl
= Manglings
.lookup(MangledName
);
4374 if (ExistingDecl
.getDecl() &&
4375 ExistingDecl
.getDecl()->getAsFunction()->isDefined()) {
4376 EmitGlobalFunctionDefinition(ExistingDecl
, nullptr);
4377 Func
= GetGlobalValue(MangledName
);
4379 if (!ExistingDecl
.getDecl())
4380 ExistingDecl
= GD
.getWithMultiVersionIndex(Index
);
4382 Func
= GetOrCreateLLVMFunction(
4383 MangledName
, DeclTy
, ExistingDecl
,
4384 /*ForVTable=*/false, /*DontDefer=*/true,
4385 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition
);
4389 llvm::SmallVector
<StringRef
, 32> Features
;
4390 Target
.getCPUSpecificCPUDispatchFeatures(II
->getName(), Features
);
4391 llvm::transform(Features
, Features
.begin(),
4392 [](StringRef Str
) { return Str
.substr(1); });
4393 llvm::erase_if(Features
, [&Target
](StringRef Feat
) {
4394 return !Target
.validateCpuSupports(Feat
);
4396 Options
.emplace_back(cast
<llvm::Function
>(Func
), StringRef
{}, Features
);
4401 Options
, [](const CodeGenFunction::MultiVersionResolverOption
&LHS
,
4402 const CodeGenFunction::MultiVersionResolverOption
&RHS
) {
4403 return llvm::X86::getCpuSupportsMask(LHS
.Conditions
.Features
) >
4404 llvm::X86::getCpuSupportsMask(RHS
.Conditions
.Features
);
4407 // If the list contains multiple 'default' versions, such as when it contains
4408 // 'pentium' and 'generic', don't emit the call to the generic one (since we
4409 // always run on at least a 'pentium'). We do this by deleting the 'least
4410 // advanced' (read, lowest mangling letter).
4411 while (Options
.size() > 1 &&
4412 llvm::all_of(llvm::X86::getCpuSupportsMask(
4413 (Options
.end() - 2)->Conditions
.Features
),
4414 [](auto X
) { return X
== 0; })) {
4415 StringRef LHSName
= (Options
.end() - 2)->Function
->getName();
4416 StringRef RHSName
= (Options
.end() - 1)->Function
->getName();
4417 if (LHSName
.compare(RHSName
) < 0)
4418 Options
.erase(Options
.end() - 2);
4420 Options
.erase(Options
.end() - 1);
4423 CodeGenFunction
CGF(*this);
4424 CGF
.EmitMultiVersionResolver(ResolverFunc
, Options
);
4426 if (getTarget().supportsIFunc()) {
4427 llvm::GlobalValue::LinkageTypes Linkage
= getMultiversionLinkage(*this, GD
);
4428 auto *IFunc
= cast
<llvm::GlobalValue
>(GetOrCreateMultiVersionResolver(GD
));
4430 // Fix up function declarations that were created for cpu_specific before
4431 // cpu_dispatch was known
4432 if (!isa
<llvm::GlobalIFunc
>(IFunc
)) {
4433 auto *GI
= llvm::GlobalIFunc::create(DeclTy
, 0, Linkage
, "", ResolverFunc
,
4435 replaceDeclarationWith(IFunc
, GI
);
4439 std::string AliasName
= getMangledNameImpl(
4440 *this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4441 llvm::Constant
*AliasFunc
= GetGlobalValue(AliasName
);
4443 auto *GA
= llvm::GlobalAlias::create(DeclTy
, 0, Linkage
, AliasName
, IFunc
,
4445 SetCommonAttributes(GD
, GA
);
4450 /// Adds a declaration to the list of multi version functions if not present.
4451 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD
) {
4452 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4453 assert(FD
&& "Not a FunctionDecl?");
4455 if (FD
->isTargetVersionMultiVersion() || FD
->isTargetClonesMultiVersion()) {
4456 std::string MangledName
=
4457 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4458 if (!DeferredResolversToEmit
.insert(MangledName
).second
)
4461 MultiVersionFuncs
.push_back(GD
);
4464 /// If a dispatcher for the specified mangled name is not in the module, create
4465 /// and return it. The dispatcher is either an llvm Function with the specified
4466 /// type, or a global ifunc.
4467 llvm::Constant
*CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD
) {
4468 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4469 assert(FD
&& "Not a FunctionDecl?");
4471 std::string MangledName
=
4472 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4474 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4475 // a separate resolver).
4476 std::string ResolverName
= MangledName
;
4477 if (getTarget().supportsIFunc()) {
4478 switch (FD
->getMultiVersionKind()) {
4479 case MultiVersionKind::None
:
4480 llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4481 case MultiVersionKind::Target
:
4482 case MultiVersionKind::CPUSpecific
:
4483 case MultiVersionKind::CPUDispatch
:
4484 ResolverName
+= ".ifunc";
4486 case MultiVersionKind::TargetClones
:
4487 case MultiVersionKind::TargetVersion
:
4490 } else if (FD
->isTargetMultiVersion()) {
4491 ResolverName
+= ".resolver";
4494 // If the resolver has already been created, just return it. This lookup may
4495 // yield a function declaration instead of a resolver on AArch64. That is
4496 // because we didn't know whether a resolver will be generated when we first
4497 // encountered a use of the symbol named after this resolver. Therefore,
4498 // targets which support ifuncs should not return here unless we actually
4500 llvm::GlobalValue
*ResolverGV
= GetGlobalValue(ResolverName
);
4502 (isa
<llvm::GlobalIFunc
>(ResolverGV
) || !getTarget().supportsIFunc()))
4505 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4506 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
4508 // The resolver needs to be created. For target and target_clones, defer
4509 // creation until the end of the TU.
4510 if (FD
->isTargetMultiVersion() || FD
->isTargetClonesMultiVersion())
4511 AddDeferredMultiVersionResolverToEmit(GD
);
4513 // For cpu_specific, don't create an ifunc yet because we don't know if the
4514 // cpu_dispatch will be emitted in this translation unit.
4515 if (getTarget().supportsIFunc() && !FD
->isCPUSpecificMultiVersion()) {
4516 llvm::Type
*ResolverType
= llvm::FunctionType::get(
4517 llvm::PointerType::get(DeclTy
,
4518 getTypes().getTargetAddressSpace(FD
->getType())),
4520 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
4521 MangledName
+ ".resolver", ResolverType
, GlobalDecl
{},
4522 /*ForVTable=*/false);
4523 llvm::GlobalIFunc
*GIF
=
4524 llvm::GlobalIFunc::create(DeclTy
, 0, getMultiversionLinkage(*this, GD
),
4525 "", Resolver
, &getModule());
4526 GIF
->setName(ResolverName
);
4527 SetCommonAttributes(FD
, GIF
);
4529 replaceDeclarationWith(ResolverGV
, GIF
);
4533 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
4534 ResolverName
, DeclTy
, GlobalDecl
{}, /*ForVTable=*/false);
4535 assert(isa
<llvm::GlobalValue
>(Resolver
) &&
4536 "Resolver should be created for the first time");
4537 SetCommonAttributes(FD
, cast
<llvm::GlobalValue
>(Resolver
));
4539 replaceDeclarationWith(ResolverGV
, Resolver
);
4543 bool CodeGenModule::shouldDropDLLAttribute(const Decl
*D
,
4544 const llvm::GlobalValue
*GV
) const {
4545 auto SC
= GV
->getDLLStorageClass();
4546 if (SC
== llvm::GlobalValue::DefaultStorageClass
)
4548 const Decl
*MRD
= D
->getMostRecentDecl();
4549 return (((SC
== llvm::GlobalValue::DLLImportStorageClass
&&
4550 !MRD
->hasAttr
<DLLImportAttr
>()) ||
4551 (SC
== llvm::GlobalValue::DLLExportStorageClass
&&
4552 !MRD
->hasAttr
<DLLExportAttr
>())) &&
4553 !shouldMapVisibilityToDLLExport(cast
<NamedDecl
>(MRD
)));
4556 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4557 /// module, create and return an llvm Function with the specified type. If there
4558 /// is something in the module with the specified name, return it potentially
4559 /// bitcasted to the right type.
4561 /// If D is non-null, it specifies a decl that correspond to this. This is used
4562 /// to set the attributes on the function when it is first created.
4563 llvm::Constant
*CodeGenModule::GetOrCreateLLVMFunction(
4564 StringRef MangledName
, llvm::Type
*Ty
, GlobalDecl GD
, bool ForVTable
,
4565 bool DontDefer
, bool IsThunk
, llvm::AttributeList ExtraAttrs
,
4566 ForDefinition_t IsForDefinition
) {
4567 const Decl
*D
= GD
.getDecl();
4569 std::string NameWithoutMultiVersionMangling
;
4570 // Any attempts to use a MultiVersion function should result in retrieving
4571 // the iFunc instead. Name Mangling will handle the rest of the changes.
4572 if (const FunctionDecl
*FD
= cast_or_null
<FunctionDecl
>(D
)) {
4573 // For the device mark the function as one that should be emitted.
4574 if (getLangOpts().OpenMPIsTargetDevice
&& OpenMPRuntime
&&
4575 !OpenMPRuntime
->markAsGlobalTarget(GD
) && FD
->isDefined() &&
4576 !DontDefer
&& !IsForDefinition
) {
4577 if (const FunctionDecl
*FDDef
= FD
->getDefinition()) {
4579 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(FDDef
))
4580 GDDef
= GlobalDecl(CD
, GD
.getCtorType());
4581 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(FDDef
))
4582 GDDef
= GlobalDecl(DD
, GD
.getDtorType());
4584 GDDef
= GlobalDecl(FDDef
);
4589 if (FD
->isMultiVersion()) {
4590 UpdateMultiVersionNames(GD
, FD
, MangledName
);
4591 if (!IsForDefinition
) {
4592 // On AArch64 we do not immediatelly emit an ifunc resolver when a
4593 // function is used. Instead we defer the emission until we see a
4594 // default definition. In the meantime we just reference the symbol
4595 // without FMV mangling (it may or may not be replaced later).
4596 if (getTarget().getTriple().isAArch64()) {
4597 AddDeferredMultiVersionResolverToEmit(GD
);
4598 NameWithoutMultiVersionMangling
= getMangledNameImpl(
4599 *this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4601 return GetOrCreateMultiVersionResolver(GD
);
4606 if (!NameWithoutMultiVersionMangling
.empty())
4607 MangledName
= NameWithoutMultiVersionMangling
;
4609 // Lookup the entry, lazily creating it if necessary.
4610 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
4612 if (WeakRefReferences
.erase(Entry
)) {
4613 const FunctionDecl
*FD
= cast_or_null
<FunctionDecl
>(D
);
4614 if (FD
&& !FD
->hasAttr
<WeakAttr
>())
4615 Entry
->setLinkage(llvm::Function::ExternalLinkage
);
4618 // Handle dropped DLL attributes.
4619 if (D
&& shouldDropDLLAttribute(D
, Entry
)) {
4620 Entry
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
4624 // If there are two attempts to define the same mangled name, issue an
4626 if (IsForDefinition
&& !Entry
->isDeclaration()) {
4628 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4629 // to make sure that we issue an error only once.
4630 if (lookupRepresentativeDecl(MangledName
, OtherGD
) &&
4631 (GD
.getCanonicalDecl().getDecl() !=
4632 OtherGD
.getCanonicalDecl().getDecl()) &&
4633 DiagnosedConflictingDefinitions
.insert(GD
).second
) {
4634 getDiags().Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
4636 getDiags().Report(OtherGD
.getDecl()->getLocation(),
4637 diag::note_previous_definition
);
4641 if ((isa
<llvm::Function
>(Entry
) || isa
<llvm::GlobalAlias
>(Entry
)) &&
4642 (Entry
->getValueType() == Ty
)) {
4646 // Make sure the result is of the correct type.
4647 // (If function is requested for a definition, we always need to create a new
4648 // function, not just return a bitcast.)
4649 if (!IsForDefinition
)
4653 // This function doesn't have a complete type (for example, the return
4654 // type is an incomplete struct). Use a fake type instead, and make
4655 // sure not to try to set attributes.
4656 bool IsIncompleteFunction
= false;
4658 llvm::FunctionType
*FTy
;
4659 if (isa
<llvm::FunctionType
>(Ty
)) {
4660 FTy
= cast
<llvm::FunctionType
>(Ty
);
4662 FTy
= llvm::FunctionType::get(VoidTy
, false);
4663 IsIncompleteFunction
= true;
4667 llvm::Function::Create(FTy
, llvm::Function::ExternalLinkage
,
4668 Entry
? StringRef() : MangledName
, &getModule());
4670 // Store the declaration associated with this function so it is potentially
4671 // updated by further declarations or definitions and emitted at the end.
4672 if (D
&& D
->hasAttr
<AnnotateAttr
>())
4673 DeferredAnnotations
[MangledName
] = cast
<ValueDecl
>(D
);
4675 // If we already created a function with the same mangled name (but different
4676 // type) before, take its name and add it to the list of functions to be
4677 // replaced with F at the end of CodeGen.
4679 // This happens if there is a prototype for a function (e.g. "int f()") and
4680 // then a definition of a different type (e.g. "int f(int x)").
4684 // This might be an implementation of a function without a prototype, in
4685 // which case, try to do special replacement of calls which match the new
4686 // prototype. The really key thing here is that we also potentially drop
4687 // arguments from the call site so as to make a direct call, which makes the
4688 // inliner happier and suppresses a number of optimizer warnings (!) about
4689 // dropping arguments.
4690 if (!Entry
->use_empty()) {
4691 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry
, F
);
4692 Entry
->removeDeadConstantUsers();
4695 addGlobalValReplacement(Entry
, F
);
4698 assert(F
->getName() == MangledName
&& "name was uniqued!");
4700 SetFunctionAttributes(GD
, F
, IsIncompleteFunction
, IsThunk
);
4701 if (ExtraAttrs
.hasFnAttrs()) {
4702 llvm::AttrBuilder
B(F
->getContext(), ExtraAttrs
.getFnAttrs());
4707 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4708 // each other bottoming out with the base dtor. Therefore we emit non-base
4709 // dtors on usage, even if there is no dtor definition in the TU.
4710 if (isa_and_nonnull
<CXXDestructorDecl
>(D
) &&
4711 getCXXABI().useThunkForDtorVariant(cast
<CXXDestructorDecl
>(D
),
4713 addDeferredDeclToEmit(GD
);
4715 // This is the first use or definition of a mangled name. If there is a
4716 // deferred decl with this name, remember that we need to emit it at the end
4718 auto DDI
= DeferredDecls
.find(MangledName
);
4719 if (DDI
!= DeferredDecls
.end()) {
4720 // Move the potentially referenced deferred decl to the
4721 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4722 // don't need it anymore).
4723 addDeferredDeclToEmit(DDI
->second
);
4724 DeferredDecls
.erase(DDI
);
4726 // Otherwise, there are cases we have to worry about where we're
4727 // using a declaration for which we must emit a definition but where
4728 // we might not find a top-level definition:
4729 // - member functions defined inline in their classes
4730 // - friend functions defined inline in some class
4731 // - special member functions with implicit definitions
4732 // If we ever change our AST traversal to walk into class methods,
4733 // this will be unnecessary.
4735 // We also don't emit a definition for a function if it's going to be an
4736 // entry in a vtable, unless it's already marked as used.
4737 } else if (getLangOpts().CPlusPlus
&& D
) {
4738 // Look for a declaration that's lexically in a record.
4739 for (const auto *FD
= cast
<FunctionDecl
>(D
)->getMostRecentDecl(); FD
;
4740 FD
= FD
->getPreviousDecl()) {
4741 if (isa
<CXXRecordDecl
>(FD
->getLexicalDeclContext())) {
4742 if (FD
->doesThisDeclarationHaveABody()) {
4743 addDeferredDeclToEmit(GD
.getWithDecl(FD
));
4751 // Make sure the result is of the requested type.
4752 if (!IsIncompleteFunction
) {
4753 assert(F
->getFunctionType() == Ty
);
4760 /// GetAddrOfFunction - Return the address of the given function. If Ty is
4761 /// non-null, then this function will use the specified type if it has to
4762 /// create it (this occurs when we see a definition of the function).
4764 CodeGenModule::GetAddrOfFunction(GlobalDecl GD
, llvm::Type
*Ty
, bool ForVTable
,
4766 ForDefinition_t IsForDefinition
) {
4767 // If there was no specific requested type, just convert it now.
4769 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4770 Ty
= getTypes().ConvertType(FD
->getType());
4773 // Devirtualized destructor calls may come through here instead of via
4774 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4775 // of the complete destructor when necessary.
4776 if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(GD
.getDecl())) {
4777 if (getTarget().getCXXABI().isMicrosoft() &&
4778 GD
.getDtorType() == Dtor_Complete
&&
4779 DD
->getParent()->getNumVBases() == 0)
4780 GD
= GlobalDecl(DD
, Dtor_Base
);
4783 StringRef MangledName
= getMangledName(GD
);
4784 auto *F
= GetOrCreateLLVMFunction(MangledName
, Ty
, GD
, ForVTable
, DontDefer
,
4785 /*IsThunk=*/false, llvm::AttributeList(),
4787 // Returns kernel handle for HIP kernel stub function.
4788 if (LangOpts
.CUDA
&& !LangOpts
.CUDAIsDevice
&&
4789 cast
<FunctionDecl
>(GD
.getDecl())->hasAttr
<CUDAGlobalAttr
>()) {
4790 auto *Handle
= getCUDARuntime().getKernelHandle(
4791 cast
<llvm::Function
>(F
->stripPointerCasts()), GD
);
4792 if (IsForDefinition
)
4799 llvm::Constant
*CodeGenModule::GetFunctionStart(const ValueDecl
*Decl
) {
4800 llvm::GlobalValue
*F
=
4801 cast
<llvm::GlobalValue
>(GetAddrOfFunction(Decl
)->stripPointerCasts());
4803 return llvm::NoCFIValue::get(F
);
4806 static const FunctionDecl
*
4807 GetRuntimeFunctionDecl(ASTContext
&C
, StringRef Name
) {
4808 TranslationUnitDecl
*TUDecl
= C
.getTranslationUnitDecl();
4809 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
4811 IdentifierInfo
&CII
= C
.Idents
.get(Name
);
4812 for (const auto *Result
: DC
->lookup(&CII
))
4813 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Result
))
4816 if (!C
.getLangOpts().CPlusPlus
)
4819 // Demangle the premangled name from getTerminateFn()
4820 IdentifierInfo
&CXXII
=
4821 (Name
== "_ZSt9terminatev" || Name
== "?terminate@@YAXXZ")
4822 ? C
.Idents
.get("terminate")
4823 : C
.Idents
.get(Name
);
4825 for (const auto &N
: {"__cxxabiv1", "std"}) {
4826 IdentifierInfo
&NS
= C
.Idents
.get(N
);
4827 for (const auto *Result
: DC
->lookup(&NS
)) {
4828 const NamespaceDecl
*ND
= dyn_cast
<NamespaceDecl
>(Result
);
4829 if (auto *LSD
= dyn_cast
<LinkageSpecDecl
>(Result
))
4830 for (const auto *Result
: LSD
->lookup(&NS
))
4831 if ((ND
= dyn_cast
<NamespaceDecl
>(Result
)))
4835 for (const auto *Result
: ND
->lookup(&CXXII
))
4836 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Result
))
4844 /// CreateRuntimeFunction - Create a new runtime function with the specified
4846 llvm::FunctionCallee
4847 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType
*FTy
, StringRef Name
,
4848 llvm::AttributeList ExtraAttrs
, bool Local
,
4849 bool AssumeConvergent
) {
4850 if (AssumeConvergent
) {
4852 ExtraAttrs
.addFnAttribute(VMContext
, llvm::Attribute::Convergent
);
4856 GetOrCreateLLVMFunction(Name
, FTy
, GlobalDecl(), /*ForVTable=*/false,
4857 /*DontDefer=*/false, /*IsThunk=*/false,
4860 if (auto *F
= dyn_cast
<llvm::Function
>(C
)) {
4862 F
->setCallingConv(getRuntimeCC());
4864 // In Windows Itanium environments, try to mark runtime functions
4865 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4866 // will link their standard library statically or dynamically. Marking
4867 // functions imported when they are not imported can cause linker errors
4869 if (!Local
&& getTriple().isWindowsItaniumEnvironment() &&
4870 !getCodeGenOpts().LTOVisibilityPublicStd
) {
4871 const FunctionDecl
*FD
= GetRuntimeFunctionDecl(Context
, Name
);
4872 if (!FD
|| FD
->hasAttr
<DLLImportAttr
>()) {
4873 F
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
4874 F
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
4878 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4879 // of trying to approximate the attributes using the LLVM function
4880 // signature. This requires revising the API of CreateRuntimeFunction().
4881 markRegisterParameterAttributes(F
);
4888 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4889 /// create and return an llvm GlobalVariable with the specified type and address
4890 /// space. If there is something in the module with the specified name, return
4891 /// it potentially bitcasted to the right type.
4893 /// If D is non-null, it specifies a decl that correspond to this. This is used
4894 /// to set the attributes on the global when it is first created.
4896 /// If IsForDefinition is true, it is guaranteed that an actual global with
4897 /// type Ty will be returned, not conversion of a variable with the same
4898 /// mangled name but some other type.
4900 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName
, llvm::Type
*Ty
,
4901 LangAS AddrSpace
, const VarDecl
*D
,
4902 ForDefinition_t IsForDefinition
) {
4903 // Lookup the entry, lazily creating it if necessary.
4904 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
4905 unsigned TargetAS
= getContext().getTargetAddressSpace(AddrSpace
);
4907 if (WeakRefReferences
.erase(Entry
)) {
4908 if (D
&& !D
->hasAttr
<WeakAttr
>())
4909 Entry
->setLinkage(llvm::Function::ExternalLinkage
);
4912 // Handle dropped DLL attributes.
4913 if (D
&& shouldDropDLLAttribute(D
, Entry
))
4914 Entry
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
4916 if (LangOpts
.OpenMP
&& !LangOpts
.OpenMPSimd
&& D
)
4917 getOpenMPRuntime().registerTargetGlobalVariable(D
, Entry
);
4919 if (Entry
->getValueType() == Ty
&& Entry
->getAddressSpace() == TargetAS
)
4922 // If there are two attempts to define the same mangled name, issue an
4924 if (IsForDefinition
&& !Entry
->isDeclaration()) {
4926 const VarDecl
*OtherD
;
4928 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4929 // to make sure that we issue an error only once.
4930 if (D
&& lookupRepresentativeDecl(MangledName
, OtherGD
) &&
4931 (D
->getCanonicalDecl() != OtherGD
.getCanonicalDecl().getDecl()) &&
4932 (OtherD
= dyn_cast
<VarDecl
>(OtherGD
.getDecl())) &&
4933 OtherD
->hasInit() &&
4934 DiagnosedConflictingDefinitions
.insert(D
).second
) {
4935 getDiags().Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
4937 getDiags().Report(OtherGD
.getDecl()->getLocation(),
4938 diag::note_previous_definition
);
4942 // Make sure the result is of the correct type.
4943 if (Entry
->getType()->getAddressSpace() != TargetAS
)
4944 return llvm::ConstantExpr::getAddrSpaceCast(
4945 Entry
, llvm::PointerType::get(Ty
->getContext(), TargetAS
));
4947 // (If global is requested for a definition, we always need to create a new
4948 // global, not just return a bitcast.)
4949 if (!IsForDefinition
)
4953 auto DAddrSpace
= GetGlobalVarAddressSpace(D
);
4955 auto *GV
= new llvm::GlobalVariable(
4956 getModule(), Ty
, false, llvm::GlobalValue::ExternalLinkage
, nullptr,
4957 MangledName
, nullptr, llvm::GlobalVariable::NotThreadLocal
,
4958 getContext().getTargetAddressSpace(DAddrSpace
));
4960 // If we already created a global with the same mangled name (but different
4961 // type) before, take its name and remove it from its parent.
4963 GV
->takeName(Entry
);
4965 if (!Entry
->use_empty()) {
4966 Entry
->replaceAllUsesWith(GV
);
4969 Entry
->eraseFromParent();
4972 // This is the first use or definition of a mangled name. If there is a
4973 // deferred decl with this name, remember that we need to emit it at the end
4975 auto DDI
= DeferredDecls
.find(MangledName
);
4976 if (DDI
!= DeferredDecls
.end()) {
4977 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4978 // list, and remove it from DeferredDecls (since we don't need it anymore).
4979 addDeferredDeclToEmit(DDI
->second
);
4980 DeferredDecls
.erase(DDI
);
4983 // Handle things which are present even on external declarations.
4985 if (LangOpts
.OpenMP
&& !LangOpts
.OpenMPSimd
)
4986 getOpenMPRuntime().registerTargetGlobalVariable(D
, GV
);
4988 // FIXME: This code is overly simple and should be merged with other global
4990 GV
->setConstant(D
->getType().isConstantStorage(getContext(), false, false));
4992 GV
->setAlignment(getContext().getDeclAlign(D
).getAsAlign());
4994 setLinkageForGV(GV
, D
);
4996 if (D
->getTLSKind()) {
4997 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
)
4998 CXXThreadLocals
.push_back(D
);
5002 setGVProperties(GV
, D
);
5004 // If required by the ABI, treat declarations of static data members with
5005 // inline initializers as definitions.
5006 if (getContext().isMSStaticDataMemberInlineDefinition(D
)) {
5007 EmitGlobalVarDefinition(D
);
5010 // Emit section information for extern variables.
5011 if (D
->hasExternalStorage()) {
5012 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>())
5013 GV
->setSection(SA
->getName());
5016 // Handle XCore specific ABI requirements.
5017 if (getTriple().getArch() == llvm::Triple::xcore
&&
5018 D
->getLanguageLinkage() == CLanguageLinkage
&&
5019 D
->getType().isConstant(Context
) &&
5020 isExternallyVisible(D
->getLinkageAndVisibility().getLinkage()))
5021 GV
->setSection(".cp.rodata");
5023 // Handle code model attribute
5024 if (const auto *CMA
= D
->getAttr
<CodeModelAttr
>())
5025 GV
->setCodeModel(CMA
->getModel());
5027 // Check if we a have a const declaration with an initializer, we may be
5028 // able to emit it as available_externally to expose it's value to the
5030 if (Context
.getLangOpts().CPlusPlus
&& GV
->hasExternalLinkage() &&
5031 D
->getType().isConstQualified() && !GV
->hasInitializer() &&
5032 !D
->hasDefinition() && D
->hasInit() && !D
->hasAttr
<DLLImportAttr
>()) {
5033 const auto *Record
=
5034 Context
.getBaseElementType(D
->getType())->getAsCXXRecordDecl();
5035 bool HasMutableFields
= Record
&& Record
->hasMutableFields();
5036 if (!HasMutableFields
) {
5037 const VarDecl
*InitDecl
;
5038 const Expr
*InitExpr
= D
->getAnyInitializer(InitDecl
);
5040 ConstantEmitter
emitter(*this);
5041 llvm::Constant
*Init
= emitter
.tryEmitForInitializer(*InitDecl
);
5043 auto *InitType
= Init
->getType();
5044 if (GV
->getValueType() != InitType
) {
5045 // The type of the initializer does not match the definition.
5046 // This happens when an initializer has a different type from
5047 // the type of the global (because of padding at the end of a
5048 // structure for instance).
5049 GV
->setName(StringRef());
5050 // Make a new global with the correct type, this is now guaranteed
5052 auto *NewGV
= cast
<llvm::GlobalVariable
>(
5053 GetAddrOfGlobalVar(D
, InitType
, IsForDefinition
)
5054 ->stripPointerCasts());
5056 // Erase the old global, since it is no longer used.
5057 GV
->eraseFromParent();
5060 GV
->setInitializer(Init
);
5061 GV
->setConstant(true);
5062 GV
->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage
);
5064 emitter
.finalize(GV
);
5072 D
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
) {
5073 getTargetCodeGenInfo().setTargetAttributes(D
, GV
, *this);
5074 // External HIP managed variables needed to be recorded for transformation
5075 // in both device and host compilations.
5076 if (getLangOpts().CUDA
&& D
&& D
->hasAttr
<HIPManagedAttr
>() &&
5077 D
->hasExternalStorage())
5078 getCUDARuntime().handleVarRegistration(D
, *GV
);
5082 SanitizerMD
->reportGlobal(GV
, *D
);
5085 D
? D
->getType().getAddressSpace()
5086 : (LangOpts
.OpenCL
? LangAS::opencl_global
: LangAS::Default
);
5087 assert(getContext().getTargetAddressSpace(ExpectedAS
) == TargetAS
);
5088 if (DAddrSpace
!= ExpectedAS
) {
5089 return getTargetCodeGenInfo().performAddrSpaceCast(
5090 *this, GV
, DAddrSpace
, ExpectedAS
,
5091 llvm::PointerType::get(getLLVMContext(), TargetAS
));
5098 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD
, ForDefinition_t IsForDefinition
) {
5099 const Decl
*D
= GD
.getDecl();
5101 if (isa
<CXXConstructorDecl
>(D
) || isa
<CXXDestructorDecl
>(D
))
5102 return getAddrOfCXXStructor(GD
, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5103 /*DontDefer=*/false, IsForDefinition
);
5105 if (isa
<CXXMethodDecl
>(D
)) {
5107 &getTypes().arrangeCXXMethodDeclaration(cast
<CXXMethodDecl
>(D
));
5108 auto Ty
= getTypes().GetFunctionType(*FInfo
);
5109 return GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false, /*DontDefer=*/false,
5113 if (isa
<FunctionDecl
>(D
)) {
5114 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
5115 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
5116 return GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false, /*DontDefer=*/false,
5120 return GetAddrOfGlobalVar(cast
<VarDecl
>(D
), /*Ty=*/nullptr, IsForDefinition
);
5123 llvm::GlobalVariable
*CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5124 StringRef Name
, llvm::Type
*Ty
, llvm::GlobalValue::LinkageTypes Linkage
,
5125 llvm::Align Alignment
) {
5126 llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
);
5127 llvm::GlobalVariable
*OldGV
= nullptr;
5130 // Check if the variable has the right type.
5131 if (GV
->getValueType() == Ty
)
5134 // Because C++ name mangling, the only way we can end up with an already
5135 // existing global with the same name is if it has been declared extern "C".
5136 assert(GV
->isDeclaration() && "Declaration has wrong type!");
5140 // Create a new variable.
5141 GV
= new llvm::GlobalVariable(getModule(), Ty
, /*isConstant=*/true,
5142 Linkage
, nullptr, Name
);
5145 // Replace occurrences of the old variable if needed.
5146 GV
->takeName(OldGV
);
5148 if (!OldGV
->use_empty()) {
5149 OldGV
->replaceAllUsesWith(GV
);
5152 OldGV
->eraseFromParent();
5155 if (supportsCOMDAT() && GV
->isWeakForLinker() &&
5156 !GV
->hasAvailableExternallyLinkage())
5157 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
5159 GV
->setAlignment(Alignment
);
5164 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5165 /// given global variable. If Ty is non-null and if the global doesn't exist,
5166 /// then it will be created with the specified type instead of whatever the
5167 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5168 /// that an actual global with type Ty will be returned, not conversion of a
5169 /// variable with the same mangled name but some other type.
5170 llvm::Constant
*CodeGenModule::GetAddrOfGlobalVar(const VarDecl
*D
,
5172 ForDefinition_t IsForDefinition
) {
5173 assert(D
->hasGlobalStorage() && "Not a global variable");
5174 QualType ASTTy
= D
->getType();
5176 Ty
= getTypes().ConvertTypeForMem(ASTTy
);
5178 StringRef MangledName
= getMangledName(D
);
5179 return GetOrCreateLLVMGlobal(MangledName
, Ty
, ASTTy
.getAddressSpace(), D
,
5183 /// CreateRuntimeVariable - Create a new runtime global variable with the
5184 /// specified type and name.
5186 CodeGenModule::CreateRuntimeVariable(llvm::Type
*Ty
,
5188 LangAS AddrSpace
= getContext().getLangOpts().OpenCL
? LangAS::opencl_global
5190 auto *Ret
= GetOrCreateLLVMGlobal(Name
, Ty
, AddrSpace
, nullptr);
5191 setDSOLocal(cast
<llvm::GlobalValue
>(Ret
->stripPointerCasts()));
5195 void CodeGenModule::EmitTentativeDefinition(const VarDecl
*D
) {
5196 assert(!D
->getInit() && "Cannot emit definite definitions here!");
5198 StringRef MangledName
= getMangledName(D
);
5199 llvm::GlobalValue
*GV
= GetGlobalValue(MangledName
);
5201 // We already have a definition, not declaration, with the same mangled name.
5202 // Emitting of declaration is not required (and actually overwrites emitted
5204 if (GV
&& !GV
->isDeclaration())
5207 // If we have not seen a reference to this variable yet, place it into the
5208 // deferred declarations table to be emitted if needed later.
5209 if (!MustBeEmitted(D
) && !GV
) {
5210 DeferredDecls
[MangledName
] = D
;
5214 // The tentative definition is the only definition.
5215 EmitGlobalVarDefinition(D
);
5218 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl
*D
) {
5219 if (auto const *V
= dyn_cast
<const VarDecl
>(D
))
5220 EmitExternalVarDeclaration(V
);
5221 if (auto const *FD
= dyn_cast
<const FunctionDecl
>(D
))
5222 EmitExternalFunctionDeclaration(FD
);
5225 CharUnits
CodeGenModule::GetTargetTypeStoreSize(llvm::Type
*Ty
) const {
5226 return Context
.toCharUnitsFromBits(
5227 getDataLayout().getTypeStoreSizeInBits(Ty
));
5230 LangAS
CodeGenModule::GetGlobalVarAddressSpace(const VarDecl
*D
) {
5231 if (LangOpts
.OpenCL
) {
5232 LangAS AS
= D
? D
->getType().getAddressSpace() : LangAS::opencl_global
;
5233 assert(AS
== LangAS::opencl_global
||
5234 AS
== LangAS::opencl_global_device
||
5235 AS
== LangAS::opencl_global_host
||
5236 AS
== LangAS::opencl_constant
||
5237 AS
== LangAS::opencl_local
||
5238 AS
>= LangAS::FirstTargetAddressSpace
);
5242 if (LangOpts
.SYCLIsDevice
&&
5243 (!D
|| D
->getType().getAddressSpace() == LangAS::Default
))
5244 return LangAS::sycl_global
;
5246 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
) {
5248 if (D
->hasAttr
<CUDAConstantAttr
>())
5249 return LangAS::cuda_constant
;
5250 if (D
->hasAttr
<CUDASharedAttr
>())
5251 return LangAS::cuda_shared
;
5252 if (D
->hasAttr
<CUDADeviceAttr
>())
5253 return LangAS::cuda_device
;
5254 if (D
->getType().isConstQualified())
5255 return LangAS::cuda_constant
;
5257 return LangAS::cuda_device
;
5260 if (LangOpts
.OpenMP
) {
5262 if (OpenMPRuntime
->hasAllocateAttributeForGlobalVar(D
, AS
))
5265 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D
);
5268 LangAS
CodeGenModule::GetGlobalConstantAddressSpace() const {
5269 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5270 if (LangOpts
.OpenCL
)
5271 return LangAS::opencl_constant
;
5272 if (LangOpts
.SYCLIsDevice
)
5273 return LangAS::sycl_global
;
5274 if (LangOpts
.HIP
&& LangOpts
.CUDAIsDevice
&& getTriple().isSPIRV())
5275 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5276 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5277 // with OpVariable instructions with Generic storage class which is not
5278 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5279 // UniformConstant storage class is not viable as pointers to it may not be
5280 // casted to Generic pointers which are used to model HIP's "flat" pointers.
5281 return LangAS::cuda_device
;
5282 if (auto AS
= getTarget().getConstantAddressSpace())
5284 return LangAS::Default
;
5287 // In address space agnostic languages, string literals are in default address
5288 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5289 // emitted in constant address space in LLVM IR. To be consistent with other
5290 // parts of AST, string literal global variables in constant address space
5291 // need to be casted to default address space before being put into address
5292 // map and referenced by other part of CodeGen.
5293 // In OpenCL, string literals are in constant address space in AST, therefore
5294 // they should not be casted to default address space.
5295 static llvm::Constant
*
5296 castStringLiteralToDefaultAddressSpace(CodeGenModule
&CGM
,
5297 llvm::GlobalVariable
*GV
) {
5298 llvm::Constant
*Cast
= GV
;
5299 if (!CGM
.getLangOpts().OpenCL
) {
5300 auto AS
= CGM
.GetGlobalConstantAddressSpace();
5301 if (AS
!= LangAS::Default
)
5302 Cast
= CGM
.getTargetCodeGenInfo().performAddrSpaceCast(
5303 CGM
, GV
, AS
, LangAS::Default
,
5304 llvm::PointerType::get(
5305 CGM
.getLLVMContext(),
5306 CGM
.getContext().getTargetAddressSpace(LangAS::Default
)));
5311 template<typename SomeDecl
>
5312 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl
*D
,
5313 llvm::GlobalValue
*GV
) {
5314 if (!getLangOpts().CPlusPlus
)
5317 // Must have 'used' attribute, or else inline assembly can't rely on
5318 // the name existing.
5319 if (!D
->template hasAttr
<UsedAttr
>())
5322 // Must have internal linkage and an ordinary name.
5323 if (!D
->getIdentifier() || D
->getFormalLinkage() != Linkage::Internal
)
5326 // Must be in an extern "C" context. Entities declared directly within
5327 // a record are not extern "C" even if the record is in such a context.
5328 const SomeDecl
*First
= D
->getFirstDecl();
5329 if (First
->getDeclContext()->isRecord() || !First
->isInExternCContext())
5332 // OK, this is an internal linkage entity inside an extern "C" linkage
5333 // specification. Make a note of that so we can give it the "expected"
5334 // mangled name if nothing else is using that name.
5335 std::pair
<StaticExternCMap::iterator
, bool> R
=
5336 StaticExternCValues
.insert(std::make_pair(D
->getIdentifier(), GV
));
5338 // If we have multiple internal linkage entities with the same name
5339 // in extern "C" regions, none of them gets that name.
5341 R
.first
->second
= nullptr;
5344 static bool shouldBeInCOMDAT(CodeGenModule
&CGM
, const Decl
&D
) {
5345 if (!CGM
.supportsCOMDAT())
5348 if (D
.hasAttr
<SelectAnyAttr
>())
5352 if (auto *VD
= dyn_cast
<VarDecl
>(&D
))
5353 Linkage
= CGM
.getContext().GetGVALinkageForVariable(VD
);
5355 Linkage
= CGM
.getContext().GetGVALinkageForFunction(cast
<FunctionDecl
>(&D
));
5359 case GVA_AvailableExternally
:
5360 case GVA_StrongExternal
:
5362 case GVA_DiscardableODR
:
5366 llvm_unreachable("No such linkage");
5369 bool CodeGenModule::supportsCOMDAT() const {
5370 return getTriple().supportsCOMDAT();
5373 void CodeGenModule::maybeSetTrivialComdat(const Decl
&D
,
5374 llvm::GlobalObject
&GO
) {
5375 if (!shouldBeInCOMDAT(*this, D
))
5377 GO
.setComdat(TheModule
.getOrInsertComdat(GO
.getName()));
5380 const ABIInfo
&CodeGenModule::getABIInfo() {
5381 return getTargetCodeGenInfo().getABIInfo();
5384 /// Pass IsTentative as true if you want to create a tentative definition.
5385 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl
*D
,
5387 // OpenCL global variables of sampler type are translated to function calls,
5388 // therefore no need to be translated.
5389 QualType ASTTy
= D
->getType();
5390 if (getLangOpts().OpenCL
&& ASTTy
->isSamplerT())
5393 // If this is OpenMP device, check if it is legal to emit this global
5395 if (LangOpts
.OpenMPIsTargetDevice
&& OpenMPRuntime
&&
5396 OpenMPRuntime
->emitTargetGlobalVariable(D
))
5399 llvm::TrackingVH
<llvm::Constant
> Init
;
5400 bool NeedsGlobalCtor
= false;
5401 // Whether the definition of the variable is available externally.
5402 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5403 // since this is the job for its original source.
5404 bool IsDefinitionAvailableExternally
=
5405 getContext().GetGVALinkageForVariable(D
) == GVA_AvailableExternally
;
5406 bool NeedsGlobalDtor
=
5407 !IsDefinitionAvailableExternally
&&
5408 D
->needsDestruction(getContext()) == QualType::DK_cxx_destructor
;
5410 // It is helpless to emit the definition for an available_externally variable
5411 // which can't be marked as const.
5412 // We don't need to check if it needs global ctor or dtor. See the above
5413 // comment for ideas.
5414 if (IsDefinitionAvailableExternally
&&
5415 (!D
->hasConstantInitialization() ||
5416 // TODO: Update this when we have interface to check constexpr
5418 D
->needsDestruction(getContext()) ||
5419 !D
->getType().isConstantStorage(getContext(), true, true)))
5422 const VarDecl
*InitDecl
;
5423 const Expr
*InitExpr
= D
->getAnyInitializer(InitDecl
);
5425 std::optional
<ConstantEmitter
> emitter
;
5427 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5428 // as part of their declaration." Sema has already checked for
5429 // error cases, so we just need to set Init to UndefValue.
5430 bool IsCUDASharedVar
=
5431 getLangOpts().CUDAIsDevice
&& D
->hasAttr
<CUDASharedAttr
>();
5432 // Shadows of initialized device-side global variables are also left
5434 // Managed Variables should be initialized on both host side and device side.
5435 bool IsCUDAShadowVar
=
5436 !getLangOpts().CUDAIsDevice
&& !D
->hasAttr
<HIPManagedAttr
>() &&
5437 (D
->hasAttr
<CUDAConstantAttr
>() || D
->hasAttr
<CUDADeviceAttr
>() ||
5438 D
->hasAttr
<CUDASharedAttr
>());
5439 bool IsCUDADeviceShadowVar
=
5440 getLangOpts().CUDAIsDevice
&& !D
->hasAttr
<HIPManagedAttr
>() &&
5441 (D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
5442 D
->getType()->isCUDADeviceBuiltinTextureType());
5443 if (getLangOpts().CUDA
&&
5444 (IsCUDASharedVar
|| IsCUDAShadowVar
|| IsCUDADeviceShadowVar
))
5445 Init
= llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy
));
5446 else if (D
->hasAttr
<LoaderUninitializedAttr
>())
5447 Init
= llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy
));
5448 else if (!InitExpr
) {
5449 // This is a tentative definition; tentative definitions are
5450 // implicitly initialized with { 0 }.
5452 // Note that tentative definitions are only emitted at the end of
5453 // a translation unit, so they should never have incomplete
5454 // type. In addition, EmitTentativeDefinition makes sure that we
5455 // never attempt to emit a tentative definition if a real one
5456 // exists. A use may still exists, however, so we still may need
5458 assert(!ASTTy
->isIncompleteType() && "Unexpected incomplete type");
5459 Init
= EmitNullConstant(D
->getType());
5461 initializedGlobalDecl
= GlobalDecl(D
);
5462 emitter
.emplace(*this);
5463 llvm::Constant
*Initializer
= emitter
->tryEmitForInitializer(*InitDecl
);
5465 QualType T
= InitExpr
->getType();
5466 if (D
->getType()->isReferenceType())
5469 if (getLangOpts().CPlusPlus
) {
5470 if (InitDecl
->hasFlexibleArrayInit(getContext()))
5471 ErrorUnsupported(D
, "flexible array initializer");
5472 Init
= EmitNullConstant(T
);
5474 if (!IsDefinitionAvailableExternally
)
5475 NeedsGlobalCtor
= true;
5477 ErrorUnsupported(D
, "static initializer");
5478 Init
= llvm::UndefValue::get(getTypes().ConvertType(T
));
5482 // We don't need an initializer, so remove the entry for the delayed
5483 // initializer position (just in case this entry was delayed) if we
5484 // also don't need to register a destructor.
5485 if (getLangOpts().CPlusPlus
&& !NeedsGlobalDtor
)
5486 DelayedCXXInitPosition
.erase(D
);
5489 CharUnits VarSize
= getContext().getTypeSizeInChars(ASTTy
) +
5490 InitDecl
->getFlexibleArrayInitChars(getContext());
5491 CharUnits CstSize
= CharUnits::fromQuantity(
5492 getDataLayout().getTypeAllocSize(Init
->getType()));
5493 assert(VarSize
== CstSize
&& "Emitted constant has unexpected size");
5498 llvm::Type
* InitType
= Init
->getType();
5499 llvm::Constant
*Entry
=
5500 GetAddrOfGlobalVar(D
, InitType
, ForDefinition_t(!IsTentative
));
5502 // Strip off pointer casts if we got them.
5503 Entry
= Entry
->stripPointerCasts();
5505 // Entry is now either a Function or GlobalVariable.
5506 auto *GV
= dyn_cast
<llvm::GlobalVariable
>(Entry
);
5508 // We have a definition after a declaration with the wrong type.
5509 // We must make a new GlobalVariable* and update everything that used OldGV
5510 // (a declaration or tentative definition) with the new GlobalVariable*
5511 // (which will be a definition).
5513 // This happens if there is a prototype for a global (e.g.
5514 // "extern int x[];") and then a definition of a different type (e.g.
5515 // "int x[10];"). This also happens when an initializer has a different type
5516 // from the type of the global (this happens with unions).
5517 if (!GV
|| GV
->getValueType() != InitType
||
5518 GV
->getType()->getAddressSpace() !=
5519 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D
))) {
5521 // Move the old entry aside so that we'll create a new one.
5522 Entry
->setName(StringRef());
5524 // Make a new global with the correct type, this is now guaranteed to work.
5525 GV
= cast
<llvm::GlobalVariable
>(
5526 GetAddrOfGlobalVar(D
, InitType
, ForDefinition_t(!IsTentative
))
5527 ->stripPointerCasts());
5529 // Replace all uses of the old global with the new global
5530 llvm::Constant
*NewPtrForOldDecl
=
5531 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
,
5533 Entry
->replaceAllUsesWith(NewPtrForOldDecl
);
5535 // Erase the old global, since it is no longer used.
5536 cast
<llvm::GlobalValue
>(Entry
)->eraseFromParent();
5539 MaybeHandleStaticInExternC(D
, GV
);
5541 if (D
->hasAttr
<AnnotateAttr
>())
5542 AddGlobalAnnotations(D
, GV
);
5544 // Set the llvm linkage type as appropriate.
5545 llvm::GlobalValue::LinkageTypes Linkage
= getLLVMLinkageVarDefinition(D
);
5547 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5548 // the device. [...]"
5549 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5550 // __device__, declares a variable that: [...]
5551 // Is accessible from all the threads within the grid and from the host
5552 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5553 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5554 if (LangOpts
.CUDA
) {
5555 if (LangOpts
.CUDAIsDevice
) {
5556 if (Linkage
!= llvm::GlobalValue::InternalLinkage
&&
5557 (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>() ||
5558 D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
5559 D
->getType()->isCUDADeviceBuiltinTextureType()))
5560 GV
->setExternallyInitialized(true);
5562 getCUDARuntime().internalizeDeviceSideVar(D
, Linkage
);
5564 getCUDARuntime().handleVarRegistration(D
, *GV
);
5567 GV
->setInitializer(Init
);
5569 emitter
->finalize(GV
);
5571 // If it is safe to mark the global 'constant', do so now.
5572 GV
->setConstant(!NeedsGlobalCtor
&& !NeedsGlobalDtor
&&
5573 D
->getType().isConstantStorage(getContext(), true, true));
5575 // If it is in a read-only section, mark it 'constant'.
5576 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>()) {
5577 const ASTContext::SectionInfo
&SI
= Context
.SectionInfos
[SA
->getName()];
5578 if ((SI
.SectionFlags
& ASTContext::PSF_Write
) == 0)
5579 GV
->setConstant(true);
5582 CharUnits AlignVal
= getContext().getDeclAlign(D
);
5583 // Check for alignment specifed in an 'omp allocate' directive.
5584 if (std::optional
<CharUnits
> AlignValFromAllocate
=
5585 getOMPAllocateAlignment(D
))
5586 AlignVal
= *AlignValFromAllocate
;
5587 GV
->setAlignment(AlignVal
.getAsAlign());
5589 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5590 // function is only defined alongside the variable, not also alongside
5591 // callers. Normally, all accesses to a thread_local go through the
5592 // thread-wrapper in order to ensure initialization has occurred, underlying
5593 // variable will never be used other than the thread-wrapper, so it can be
5594 // converted to internal linkage.
5596 // However, if the variable has the 'constinit' attribute, it _can_ be
5597 // referenced directly, without calling the thread-wrapper, so the linkage
5598 // must not be changed.
5600 // Additionally, if the variable isn't plain external linkage, e.g. if it's
5601 // weak or linkonce, the de-duplication semantics are important to preserve,
5602 // so we don't change the linkage.
5603 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
&&
5604 Linkage
== llvm::GlobalValue::ExternalLinkage
&&
5605 Context
.getTargetInfo().getTriple().isOSDarwin() &&
5606 !D
->hasAttr
<ConstInitAttr
>())
5607 Linkage
= llvm::GlobalValue::InternalLinkage
;
5609 GV
->setLinkage(Linkage
);
5610 if (D
->hasAttr
<DLLImportAttr
>())
5611 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
5612 else if (D
->hasAttr
<DLLExportAttr
>())
5613 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass
);
5615 GV
->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass
);
5617 if (Linkage
== llvm::GlobalVariable::CommonLinkage
) {
5618 // common vars aren't constant even if declared const.
5619 GV
->setConstant(false);
5620 // Tentative definition of global variables may be initialized with
5621 // non-zero null pointers. In this case they should have weak linkage
5622 // since common linkage must have zero initializer and must not have
5623 // explicit section therefore cannot have non-zero initial value.
5624 if (!GV
->getInitializer()->isNullValue())
5625 GV
->setLinkage(llvm::GlobalVariable::WeakAnyLinkage
);
5628 setNonAliasAttributes(D
, GV
);
5630 if (D
->getTLSKind() && !GV
->isThreadLocal()) {
5631 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
)
5632 CXXThreadLocals
.push_back(D
);
5636 maybeSetTrivialComdat(*D
, *GV
);
5638 // Emit the initializer function if necessary.
5639 if (NeedsGlobalCtor
|| NeedsGlobalDtor
)
5640 EmitCXXGlobalVarDeclInitFunc(D
, GV
, NeedsGlobalCtor
);
5642 SanitizerMD
->reportGlobal(GV
, *D
, NeedsGlobalCtor
);
5644 // Emit global variable debug information.
5645 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5646 if (getCodeGenOpts().hasReducedDebugInfo())
5647 DI
->EmitGlobalVariable(GV
, D
);
5650 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl
*D
) {
5651 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5652 if (getCodeGenOpts().hasReducedDebugInfo()) {
5653 QualType ASTTy
= D
->getType();
5654 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(D
->getType());
5655 llvm::Constant
*GV
=
5656 GetOrCreateLLVMGlobal(D
->getName(), Ty
, ASTTy
.getAddressSpace(), D
);
5657 DI
->EmitExternalVariable(
5658 cast
<llvm::GlobalVariable
>(GV
->stripPointerCasts()), D
);
5662 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl
*FD
) {
5663 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5664 if (getCodeGenOpts().hasReducedDebugInfo()) {
5665 auto *Ty
= getTypes().ConvertType(FD
->getType());
5666 StringRef MangledName
= getMangledName(FD
);
5667 auto *Fn
= dyn_cast
<llvm::Function
>(
5668 GetOrCreateLLVMFunction(MangledName
, Ty
, FD
, /* ForVTable */ false));
5669 if (!Fn
->getSubprogram())
5670 DI
->EmitFunctionDecl(FD
, FD
->getLocation(), FD
->getType(), Fn
);
5674 static bool isVarDeclStrongDefinition(const ASTContext
&Context
,
5675 CodeGenModule
&CGM
, const VarDecl
*D
,
5677 // Don't give variables common linkage if -fno-common was specified unless it
5678 // was overridden by a NoCommon attribute.
5679 if ((NoCommon
|| D
->hasAttr
<NoCommonAttr
>()) && !D
->hasAttr
<CommonAttr
>())
5683 // A declaration of an identifier for an object that has file scope without
5684 // an initializer, and without a storage-class specifier or with the
5685 // storage-class specifier static, constitutes a tentative definition.
5686 if (D
->getInit() || D
->hasExternalStorage())
5689 // A variable cannot be both common and exist in a section.
5690 if (D
->hasAttr
<SectionAttr
>())
5693 // A variable cannot be both common and exist in a section.
5694 // We don't try to determine which is the right section in the front-end.
5695 // If no specialized section name is applicable, it will resort to default.
5696 if (D
->hasAttr
<PragmaClangBSSSectionAttr
>() ||
5697 D
->hasAttr
<PragmaClangDataSectionAttr
>() ||
5698 D
->hasAttr
<PragmaClangRelroSectionAttr
>() ||
5699 D
->hasAttr
<PragmaClangRodataSectionAttr
>())
5702 // Thread local vars aren't considered common linkage.
5703 if (D
->getTLSKind())
5706 // Tentative definitions marked with WeakImportAttr are true definitions.
5707 if (D
->hasAttr
<WeakImportAttr
>())
5710 // A variable cannot be both common and exist in a comdat.
5711 if (shouldBeInCOMDAT(CGM
, *D
))
5714 // Declarations with a required alignment do not have common linkage in MSVC
5716 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
5717 if (D
->hasAttr
<AlignedAttr
>())
5719 QualType VarType
= D
->getType();
5720 if (Context
.isAlignmentRequired(VarType
))
5723 if (const auto *RT
= VarType
->getAs
<RecordType
>()) {
5724 const RecordDecl
*RD
= RT
->getDecl();
5725 for (const FieldDecl
*FD
: RD
->fields()) {
5726 if (FD
->isBitField())
5728 if (FD
->hasAttr
<AlignedAttr
>())
5730 if (Context
.isAlignmentRequired(FD
->getType()))
5736 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5737 // common symbols, so symbols with greater alignment requirements cannot be
5739 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5740 // alignments for common symbols via the aligncomm directive, so this
5741 // restriction only applies to MSVC environments.
5742 if (Context
.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5743 Context
.getTypeAlignIfKnown(D
->getType()) >
5744 Context
.toBits(CharUnits::fromQuantity(32)))
5750 llvm::GlobalValue::LinkageTypes
5751 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl
*D
,
5752 GVALinkage Linkage
) {
5753 if (Linkage
== GVA_Internal
)
5754 return llvm::Function::InternalLinkage
;
5756 if (D
->hasAttr
<WeakAttr
>())
5757 return llvm::GlobalVariable::WeakAnyLinkage
;
5759 if (const auto *FD
= D
->getAsFunction())
5760 if (FD
->isMultiVersion() && Linkage
== GVA_AvailableExternally
)
5761 return llvm::GlobalVariable::LinkOnceAnyLinkage
;
5763 // We are guaranteed to have a strong definition somewhere else,
5764 // so we can use available_externally linkage.
5765 if (Linkage
== GVA_AvailableExternally
)
5766 return llvm::GlobalValue::AvailableExternallyLinkage
;
5768 // Note that Apple's kernel linker doesn't support symbol
5769 // coalescing, so we need to avoid linkonce and weak linkages there.
5770 // Normally, this means we just map to internal, but for explicit
5771 // instantiations we'll map to external.
5773 // In C++, the compiler has to emit a definition in every translation unit
5774 // that references the function. We should use linkonce_odr because
5775 // a) if all references in this translation unit are optimized away, we
5776 // don't need to codegen it. b) if the function persists, it needs to be
5777 // merged with other definitions. c) C++ has the ODR, so we know the
5778 // definition is dependable.
5779 if (Linkage
== GVA_DiscardableODR
)
5780 return !Context
.getLangOpts().AppleKext
? llvm::Function::LinkOnceODRLinkage
5781 : llvm::Function::InternalLinkage
;
5783 // An explicit instantiation of a template has weak linkage, since
5784 // explicit instantiations can occur in multiple translation units
5785 // and must all be equivalent. However, we are not allowed to
5786 // throw away these explicit instantiations.
5788 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5789 // so say that CUDA templates are either external (for kernels) or internal.
5790 // This lets llvm perform aggressive inter-procedural optimizations. For
5791 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5792 // therefore we need to follow the normal linkage paradigm.
5793 if (Linkage
== GVA_StrongODR
) {
5794 if (getLangOpts().AppleKext
)
5795 return llvm::Function::ExternalLinkage
;
5796 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
&&
5797 !getLangOpts().GPURelocatableDeviceCode
)
5798 return D
->hasAttr
<CUDAGlobalAttr
>() ? llvm::Function::ExternalLinkage
5799 : llvm::Function::InternalLinkage
;
5800 return llvm::Function::WeakODRLinkage
;
5803 // C++ doesn't have tentative definitions and thus cannot have common
5805 if (!getLangOpts().CPlusPlus
&& isa
<VarDecl
>(D
) &&
5806 !isVarDeclStrongDefinition(Context
, *this, cast
<VarDecl
>(D
),
5807 CodeGenOpts
.NoCommon
))
5808 return llvm::GlobalVariable::CommonLinkage
;
5810 // selectany symbols are externally visible, so use weak instead of
5811 // linkonce. MSVC optimizes away references to const selectany globals, so
5812 // all definitions should be the same and ODR linkage should be used.
5813 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5814 if (D
->hasAttr
<SelectAnyAttr
>())
5815 return llvm::GlobalVariable::WeakODRLinkage
;
5817 // Otherwise, we have strong external linkage.
5818 assert(Linkage
== GVA_StrongExternal
);
5819 return llvm::GlobalVariable::ExternalLinkage
;
5822 llvm::GlobalValue::LinkageTypes
5823 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl
*VD
) {
5824 GVALinkage Linkage
= getContext().GetGVALinkageForVariable(VD
);
5825 return getLLVMLinkageForDeclarator(VD
, Linkage
);
5828 /// Replace the uses of a function that was declared with a non-proto type.
5829 /// We want to silently drop extra arguments from call sites
5830 static void replaceUsesOfNonProtoConstant(llvm::Constant
*old
,
5831 llvm::Function
*newFn
) {
5833 if (old
->use_empty())
5836 llvm::Type
*newRetTy
= newFn
->getReturnType();
5837 SmallVector
<llvm::Value
*, 4> newArgs
;
5839 SmallVector
<llvm::CallBase
*> callSitesToBeRemovedFromParent
;
5841 for (llvm::Value::use_iterator ui
= old
->use_begin(), ue
= old
->use_end();
5843 llvm::User
*user
= ui
->getUser();
5845 // Recognize and replace uses of bitcasts. Most calls to
5846 // unprototyped functions will use bitcasts.
5847 if (auto *bitcast
= dyn_cast
<llvm::ConstantExpr
>(user
)) {
5848 if (bitcast
->getOpcode() == llvm::Instruction::BitCast
)
5849 replaceUsesOfNonProtoConstant(bitcast
, newFn
);
5853 // Recognize calls to the function.
5854 llvm::CallBase
*callSite
= dyn_cast
<llvm::CallBase
>(user
);
5857 if (!callSite
->isCallee(&*ui
))
5860 // If the return types don't match exactly, then we can't
5861 // transform this call unless it's dead.
5862 if (callSite
->getType() != newRetTy
&& !callSite
->use_empty())
5865 // Get the call site's attribute list.
5866 SmallVector
<llvm::AttributeSet
, 8> newArgAttrs
;
5867 llvm::AttributeList oldAttrs
= callSite
->getAttributes();
5869 // If the function was passed too few arguments, don't transform.
5870 unsigned newNumArgs
= newFn
->arg_size();
5871 if (callSite
->arg_size() < newNumArgs
)
5874 // If extra arguments were passed, we silently drop them.
5875 // If any of the types mismatch, we don't transform.
5877 bool dontTransform
= false;
5878 for (llvm::Argument
&A
: newFn
->args()) {
5879 if (callSite
->getArgOperand(argNo
)->getType() != A
.getType()) {
5880 dontTransform
= true;
5884 // Add any parameter attributes.
5885 newArgAttrs
.push_back(oldAttrs
.getParamAttrs(argNo
));
5891 // Okay, we can transform this. Create the new call instruction and copy
5892 // over the required information.
5893 newArgs
.append(callSite
->arg_begin(), callSite
->arg_begin() + argNo
);
5895 // Copy over any operand bundles.
5896 SmallVector
<llvm::OperandBundleDef
, 1> newBundles
;
5897 callSite
->getOperandBundlesAsDefs(newBundles
);
5899 llvm::CallBase
*newCall
;
5900 if (isa
<llvm::CallInst
>(callSite
)) {
5902 llvm::CallInst::Create(newFn
, newArgs
, newBundles
, "", callSite
);
5904 auto *oldInvoke
= cast
<llvm::InvokeInst
>(callSite
);
5905 newCall
= llvm::InvokeInst::Create(newFn
, oldInvoke
->getNormalDest(),
5906 oldInvoke
->getUnwindDest(), newArgs
,
5907 newBundles
, "", callSite
);
5909 newArgs
.clear(); // for the next iteration
5911 if (!newCall
->getType()->isVoidTy())
5912 newCall
->takeName(callSite
);
5913 newCall
->setAttributes(
5914 llvm::AttributeList::get(newFn
->getContext(), oldAttrs
.getFnAttrs(),
5915 oldAttrs
.getRetAttrs(), newArgAttrs
));
5916 newCall
->setCallingConv(callSite
->getCallingConv());
5918 // Finally, remove the old call, replacing any uses with the new one.
5919 if (!callSite
->use_empty())
5920 callSite
->replaceAllUsesWith(newCall
);
5922 // Copy debug location attached to CI.
5923 if (callSite
->getDebugLoc())
5924 newCall
->setDebugLoc(callSite
->getDebugLoc());
5926 callSitesToBeRemovedFromParent
.push_back(callSite
);
5929 for (auto *callSite
: callSitesToBeRemovedFromParent
) {
5930 callSite
->eraseFromParent();
5934 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5935 /// implement a function with no prototype, e.g. "int foo() {}". If there are
5936 /// existing call uses of the old function in the module, this adjusts them to
5937 /// call the new function directly.
5939 /// This is not just a cleanup: the always_inline pass requires direct calls to
5940 /// functions to be able to inline them. If there is a bitcast in the way, it
5941 /// won't inline them. Instcombine normally deletes these calls, but it isn't
5943 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue
*Old
,
5944 llvm::Function
*NewFn
) {
5945 // If we're redefining a global as a function, don't transform it.
5946 if (!isa
<llvm::Function
>(Old
)) return;
5948 replaceUsesOfNonProtoConstant(Old
, NewFn
);
5951 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl
*VD
) {
5952 auto DK
= VD
->isThisDeclarationADefinition();
5953 if ((DK
== VarDecl::Definition
&& VD
->hasAttr
<DLLImportAttr
>()) ||
5954 (LangOpts
.CUDA
&& !shouldEmitCUDAGlobalVar(VD
)))
5957 TemplateSpecializationKind TSK
= VD
->getTemplateSpecializationKind();
5958 // If we have a definition, this might be a deferred decl. If the
5959 // instantiation is explicit, make sure we emit it at the end.
5960 if (VD
->getDefinition() && TSK
== TSK_ExplicitInstantiationDefinition
)
5961 GetAddrOfGlobalVar(VD
);
5963 EmitTopLevelDecl(VD
);
5966 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD
,
5967 llvm::GlobalValue
*GV
) {
5968 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
5970 // Compute the function info and LLVM type.
5971 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
5972 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
5974 // Get or create the prototype for the function.
5975 if (!GV
|| (GV
->getValueType() != Ty
))
5976 GV
= cast
<llvm::GlobalValue
>(GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false,
5981 if (!GV
->isDeclaration())
5984 // We need to set linkage and visibility on the function before
5985 // generating code for it because various parts of IR generation
5986 // want to propagate this information down (e.g. to local static
5988 auto *Fn
= cast
<llvm::Function
>(GV
);
5989 setFunctionLinkage(GD
, Fn
);
5991 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5992 setGVProperties(Fn
, GD
);
5994 MaybeHandleStaticInExternC(D
, Fn
);
5996 maybeSetTrivialComdat(*D
, *Fn
);
5998 CodeGenFunction(*this).GenerateCode(GD
, Fn
, FI
);
6000 setNonAliasAttributes(GD
, Fn
);
6001 SetLLVMFunctionAttributesForDefinition(D
, Fn
);
6003 if (const ConstructorAttr
*CA
= D
->getAttr
<ConstructorAttr
>())
6004 AddGlobalCtor(Fn
, CA
->getPriority());
6005 if (const DestructorAttr
*DA
= D
->getAttr
<DestructorAttr
>())
6006 AddGlobalDtor(Fn
, DA
->getPriority(), true);
6007 if (getLangOpts().OpenMP
&& D
->hasAttr
<OMPDeclareTargetDeclAttr
>())
6008 getOpenMPRuntime().emitDeclareTargetFunction(D
, GV
);
6011 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD
) {
6012 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
6013 const AliasAttr
*AA
= D
->getAttr
<AliasAttr
>();
6014 assert(AA
&& "Not an alias?");
6016 StringRef MangledName
= getMangledName(GD
);
6018 if (AA
->getAliasee() == MangledName
) {
6019 Diags
.Report(AA
->getLocation(), diag::err_cyclic_alias
) << 0;
6023 // If there is a definition in the module, then it wins over the alias.
6024 // This is dubious, but allow it to be safe. Just ignore the alias.
6025 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
6026 if (Entry
&& !Entry
->isDeclaration())
6029 Aliases
.push_back(GD
);
6031 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(D
->getType());
6033 // Create a reference to the named value. This ensures that it is emitted
6034 // if a deferred decl.
6035 llvm::Constant
*Aliasee
;
6036 llvm::GlobalValue::LinkageTypes LT
;
6037 if (isa
<llvm::FunctionType
>(DeclTy
)) {
6038 Aliasee
= GetOrCreateLLVMFunction(AA
->getAliasee(), DeclTy
, GD
,
6039 /*ForVTable=*/false);
6040 LT
= getFunctionLinkage(GD
);
6042 Aliasee
= GetOrCreateLLVMGlobal(AA
->getAliasee(), DeclTy
, LangAS::Default
,
6044 if (const auto *VD
= dyn_cast
<VarDecl
>(GD
.getDecl()))
6045 LT
= getLLVMLinkageVarDefinition(VD
);
6047 LT
= getFunctionLinkage(GD
);
6050 // Create the new alias itself, but don't set a name yet.
6051 unsigned AS
= Aliasee
->getType()->getPointerAddressSpace();
6053 llvm::GlobalAlias::create(DeclTy
, AS
, LT
, "", Aliasee
, &getModule());
6056 if (GA
->getAliasee() == Entry
) {
6057 Diags
.Report(AA
->getLocation(), diag::err_cyclic_alias
) << 0;
6061 assert(Entry
->isDeclaration());
6063 // If there is a declaration in the module, then we had an extern followed
6064 // by the alias, as in:
6065 // extern int test6();
6067 // int test6() __attribute__((alias("test7")));
6069 // Remove it and replace uses of it with the alias.
6070 GA
->takeName(Entry
);
6072 Entry
->replaceAllUsesWith(GA
);
6073 Entry
->eraseFromParent();
6075 GA
->setName(MangledName
);
6078 // Set attributes which are particular to an alias; this is a
6079 // specialization of the attributes which may be set on a global
6080 // variable/function.
6081 if (D
->hasAttr
<WeakAttr
>() || D
->hasAttr
<WeakRefAttr
>() ||
6082 D
->isWeakImported()) {
6083 GA
->setLinkage(llvm::Function::WeakAnyLinkage
);
6086 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
6087 if (VD
->getTLSKind())
6088 setTLSMode(GA
, *VD
);
6090 SetCommonAttributes(GD
, GA
);
6092 // Emit global alias debug information.
6093 if (isa
<VarDecl
>(D
))
6094 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6095 DI
->EmitGlobalAlias(cast
<llvm::GlobalValue
>(GA
->getAliasee()->stripPointerCasts()), GD
);
6098 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD
) {
6099 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
6100 const IFuncAttr
*IFA
= D
->getAttr
<IFuncAttr
>();
6101 assert(IFA
&& "Not an ifunc?");
6103 StringRef MangledName
= getMangledName(GD
);
6105 if (IFA
->getResolver() == MangledName
) {
6106 Diags
.Report(IFA
->getLocation(), diag::err_cyclic_alias
) << 1;
6110 // Report an error if some definition overrides ifunc.
6111 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
6112 if (Entry
&& !Entry
->isDeclaration()) {
6114 if (lookupRepresentativeDecl(MangledName
, OtherGD
) &&
6115 DiagnosedConflictingDefinitions
.insert(GD
).second
) {
6116 Diags
.Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
6118 Diags
.Report(OtherGD
.getDecl()->getLocation(),
6119 diag::note_previous_definition
);
6124 Aliases
.push_back(GD
);
6126 // The resolver might not be visited yet. Specify a dummy non-function type to
6127 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6128 // was emitted) or the whole function will be replaced (if the resolver has
6129 // not been emitted).
6130 llvm::Constant
*Resolver
=
6131 GetOrCreateLLVMFunction(IFA
->getResolver(), VoidTy
, {},
6132 /*ForVTable=*/false);
6133 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(D
->getType());
6134 llvm::GlobalIFunc
*GIF
=
6135 llvm::GlobalIFunc::create(DeclTy
, 0, llvm::Function::ExternalLinkage
,
6136 "", Resolver
, &getModule());
6138 if (GIF
->getResolver() == Entry
) {
6139 Diags
.Report(IFA
->getLocation(), diag::err_cyclic_alias
) << 1;
6142 assert(Entry
->isDeclaration());
6144 // If there is a declaration in the module, then we had an extern followed
6145 // by the ifunc, as in:
6146 // extern int test();
6148 // int test() __attribute__((ifunc("resolver")));
6150 // Remove it and replace uses of it with the ifunc.
6151 GIF
->takeName(Entry
);
6153 Entry
->replaceAllUsesWith(GIF
);
6154 Entry
->eraseFromParent();
6156 GIF
->setName(MangledName
);
6157 SetCommonAttributes(GD
, GIF
);
6160 llvm::Function
*CodeGenModule::getIntrinsic(unsigned IID
,
6161 ArrayRef
<llvm::Type
*> Tys
) {
6162 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID
)IID
,
6166 static llvm::StringMapEntry
<llvm::GlobalVariable
*> &
6167 GetConstantCFStringEntry(llvm::StringMap
<llvm::GlobalVariable
*> &Map
,
6168 const StringLiteral
*Literal
, bool TargetIsLSB
,
6169 bool &IsUTF16
, unsigned &StringLength
) {
6170 StringRef String
= Literal
->getString();
6171 unsigned NumBytes
= String
.size();
6173 // Check for simple case.
6174 if (!Literal
->containsNonAsciiOrNull()) {
6175 StringLength
= NumBytes
;
6176 return *Map
.insert(std::make_pair(String
, nullptr)).first
;
6179 // Otherwise, convert the UTF8 literals into a string of shorts.
6182 SmallVector
<llvm::UTF16
, 128> ToBuf(NumBytes
+ 1); // +1 for ending nulls.
6183 const llvm::UTF8
*FromPtr
= (const llvm::UTF8
*)String
.data();
6184 llvm::UTF16
*ToPtr
= &ToBuf
[0];
6186 (void)llvm::ConvertUTF8toUTF16(&FromPtr
, FromPtr
+ NumBytes
, &ToPtr
,
6187 ToPtr
+ NumBytes
, llvm::strictConversion
);
6189 // ConvertUTF8toUTF16 returns the length in ToPtr.
6190 StringLength
= ToPtr
- &ToBuf
[0];
6192 // Add an explicit null.
6194 return *Map
.insert(std::make_pair(
6195 StringRef(reinterpret_cast<const char *>(ToBuf
.data()),
6196 (StringLength
+ 1) * 2),
6201 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral
*Literal
) {
6202 unsigned StringLength
= 0;
6203 bool isUTF16
= false;
6204 llvm::StringMapEntry
<llvm::GlobalVariable
*> &Entry
=
6205 GetConstantCFStringEntry(CFConstantStringMap
, Literal
,
6206 getDataLayout().isLittleEndian(), isUTF16
,
6209 if (auto *C
= Entry
.second
)
6210 return ConstantAddress(
6211 C
, C
->getValueType(), CharUnits::fromQuantity(C
->getAlignment()));
6213 const ASTContext
&Context
= getContext();
6214 const llvm::Triple
&Triple
= getTriple();
6216 const auto CFRuntime
= getLangOpts().CFRuntime
;
6217 const bool IsSwiftABI
=
6218 static_cast<unsigned>(CFRuntime
) >=
6219 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift
);
6220 const bool IsSwift4_1
= CFRuntime
== LangOptions::CoreFoundationABI::Swift4_1
;
6222 // If we don't already have it, get __CFConstantStringClassReference.
6223 if (!CFConstantStringClassRef
) {
6224 const char *CFConstantStringClassName
= "__CFConstantStringClassReference";
6225 llvm::Type
*Ty
= getTypes().ConvertType(getContext().IntTy
);
6226 Ty
= llvm::ArrayType::get(Ty
, 0);
6228 switch (CFRuntime
) {
6230 case LangOptions::CoreFoundationABI::Swift
: [[fallthrough
]];
6231 case LangOptions::CoreFoundationABI::Swift5_0
:
6232 CFConstantStringClassName
=
6233 Triple
.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6234 : "$s10Foundation19_NSCFConstantStringCN";
6237 case LangOptions::CoreFoundationABI::Swift4_2
:
6238 CFConstantStringClassName
=
6239 Triple
.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6240 : "$S10Foundation19_NSCFConstantStringCN";
6243 case LangOptions::CoreFoundationABI::Swift4_1
:
6244 CFConstantStringClassName
=
6245 Triple
.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6246 : "__T010Foundation19_NSCFConstantStringCN";
6251 llvm::Constant
*C
= CreateRuntimeVariable(Ty
, CFConstantStringClassName
);
6253 if (Triple
.isOSBinFormatELF() || Triple
.isOSBinFormatCOFF()) {
6254 llvm::GlobalValue
*GV
= nullptr;
6256 if ((GV
= dyn_cast
<llvm::GlobalValue
>(C
))) {
6257 IdentifierInfo
&II
= Context
.Idents
.get(GV
->getName());
6258 TranslationUnitDecl
*TUDecl
= Context
.getTranslationUnitDecl();
6259 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
6261 const VarDecl
*VD
= nullptr;
6262 for (const auto *Result
: DC
->lookup(&II
))
6263 if ((VD
= dyn_cast
<VarDecl
>(Result
)))
6266 if (Triple
.isOSBinFormatELF()) {
6268 GV
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
6270 GV
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
6271 if (!VD
|| !VD
->hasAttr
<DLLExportAttr
>())
6272 GV
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
6274 GV
->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass
);
6281 // Decay array -> ptr
6282 CFConstantStringClassRef
=
6283 IsSwiftABI
? llvm::ConstantExpr::getPtrToInt(C
, Ty
) : C
;
6286 QualType CFTy
= Context
.getCFConstantStringType();
6288 auto *STy
= cast
<llvm::StructType
>(getTypes().ConvertType(CFTy
));
6290 ConstantInitBuilder
Builder(*this);
6291 auto Fields
= Builder
.beginStruct(STy
);
6294 Fields
.add(cast
<llvm::Constant
>(CFConstantStringClassRef
));
6298 Fields
.addInt(IntPtrTy
, IsSwift4_1
? 0x05 : 0x01);
6299 Fields
.addInt(Int64Ty
, isUTF16
? 0x07d0 : 0x07c8);
6301 Fields
.addInt(IntTy
, isUTF16
? 0x07d0 : 0x07C8);
6305 llvm::Constant
*C
= nullptr;
6307 auto Arr
= llvm::ArrayRef(
6308 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry
.first().data())),
6309 Entry
.first().size() / 2);
6310 C
= llvm::ConstantDataArray::get(VMContext
, Arr
);
6312 C
= llvm::ConstantDataArray::getString(VMContext
, Entry
.first());
6315 // Note: -fwritable-strings doesn't make the backing store strings of
6316 // CFStrings writable.
6318 new llvm::GlobalVariable(getModule(), C
->getType(), /*isConstant=*/true,
6319 llvm::GlobalValue::PrivateLinkage
, C
, ".str");
6320 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
6321 // Don't enforce the target's minimum global alignment, since the only use
6322 // of the string is via this class initializer.
6323 CharUnits Align
= isUTF16
? Context
.getTypeAlignInChars(Context
.ShortTy
)
6324 : Context
.getTypeAlignInChars(Context
.CharTy
);
6325 GV
->setAlignment(Align
.getAsAlign());
6327 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6328 // Without it LLVM can merge the string with a non unnamed_addr one during
6329 // LTO. Doing that changes the section it ends in, which surprises ld64.
6330 if (Triple
.isOSBinFormatMachO())
6331 GV
->setSection(isUTF16
? "__TEXT,__ustring"
6332 : "__TEXT,__cstring,cstring_literals");
6333 // Make sure the literal ends up in .rodata to allow for safe ICF and for
6334 // the static linker to adjust permissions to read-only later on.
6335 else if (Triple
.isOSBinFormatELF())
6336 GV
->setSection(".rodata");
6342 llvm::IntegerType
*LengthTy
=
6343 llvm::IntegerType::get(getModule().getContext(),
6344 Context
.getTargetInfo().getLongWidth());
6346 if (CFRuntime
== LangOptions::CoreFoundationABI::Swift4_1
||
6347 CFRuntime
== LangOptions::CoreFoundationABI::Swift4_2
)
6350 LengthTy
= IntPtrTy
;
6352 Fields
.addInt(LengthTy
, StringLength
);
6354 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6355 // properly aligned on 32-bit platforms.
6356 CharUnits Alignment
=
6357 IsSwiftABI
? Context
.toCharUnitsFromBits(64) : getPointerAlign();
6360 GV
= Fields
.finishAndCreateGlobal("_unnamed_cfstring_", Alignment
,
6361 /*isConstant=*/false,
6362 llvm::GlobalVariable::PrivateLinkage
);
6363 GV
->addAttribute("objc_arc_inert");
6364 switch (Triple
.getObjectFormat()) {
6365 case llvm::Triple::UnknownObjectFormat
:
6366 llvm_unreachable("unknown file format");
6367 case llvm::Triple::DXContainer
:
6368 case llvm::Triple::GOFF
:
6369 case llvm::Triple::SPIRV
:
6370 case llvm::Triple::XCOFF
:
6371 llvm_unreachable("unimplemented");
6372 case llvm::Triple::COFF
:
6373 case llvm::Triple::ELF
:
6374 case llvm::Triple::Wasm
:
6375 GV
->setSection("cfstring");
6377 case llvm::Triple::MachO
:
6378 GV
->setSection("__DATA,__cfstring");
6383 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
6386 bool CodeGenModule::getExpressionLocationsEnabled() const {
6387 return !CodeGenOpts
.EmitCodeView
|| CodeGenOpts
.DebugColumnInfo
;
6390 QualType
CodeGenModule::getObjCFastEnumerationStateType() {
6391 if (ObjCFastEnumerationStateType
.isNull()) {
6392 RecordDecl
*D
= Context
.buildImplicitRecord("__objcFastEnumerationState");
6393 D
->startDefinition();
6395 QualType FieldTypes
[] = {
6396 Context
.UnsignedLongTy
, Context
.getPointerType(Context
.getObjCIdType()),
6397 Context
.getPointerType(Context
.UnsignedLongTy
),
6398 Context
.getConstantArrayType(Context
.UnsignedLongTy
, llvm::APInt(32, 5),
6399 nullptr, ArraySizeModifier::Normal
, 0)};
6401 for (size_t i
= 0; i
< 4; ++i
) {
6402 FieldDecl
*Field
= FieldDecl::Create(Context
,
6405 SourceLocation(), nullptr,
6406 FieldTypes
[i
], /*TInfo=*/nullptr,
6407 /*BitWidth=*/nullptr,
6410 Field
->setAccess(AS_public
);
6414 D
->completeDefinition();
6415 ObjCFastEnumerationStateType
= Context
.getTagDeclType(D
);
6418 return ObjCFastEnumerationStateType
;
6422 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral
*E
) {
6423 assert(!E
->getType()->isPointerType() && "Strings are always arrays");
6425 // Don't emit it as the address of the string, emit the string data itself
6426 // as an inline array.
6427 if (E
->getCharByteWidth() == 1) {
6428 SmallString
<64> Str(E
->getString());
6430 // Resize the string to the right size, which is indicated by its type.
6431 const ConstantArrayType
*CAT
= Context
.getAsConstantArrayType(E
->getType());
6432 assert(CAT
&& "String literal not of constant array type!");
6433 Str
.resize(CAT
->getZExtSize());
6434 return llvm::ConstantDataArray::getString(VMContext
, Str
, false);
6437 auto *AType
= cast
<llvm::ArrayType
>(getTypes().ConvertType(E
->getType()));
6438 llvm::Type
*ElemTy
= AType
->getElementType();
6439 unsigned NumElements
= AType
->getNumElements();
6441 // Wide strings have either 2-byte or 4-byte elements.
6442 if (ElemTy
->getPrimitiveSizeInBits() == 16) {
6443 SmallVector
<uint16_t, 32> Elements
;
6444 Elements
.reserve(NumElements
);
6446 for(unsigned i
= 0, e
= E
->getLength(); i
!= e
; ++i
)
6447 Elements
.push_back(E
->getCodeUnit(i
));
6448 Elements
.resize(NumElements
);
6449 return llvm::ConstantDataArray::get(VMContext
, Elements
);
6452 assert(ElemTy
->getPrimitiveSizeInBits() == 32);
6453 SmallVector
<uint32_t, 32> Elements
;
6454 Elements
.reserve(NumElements
);
6456 for(unsigned i
= 0, e
= E
->getLength(); i
!= e
; ++i
)
6457 Elements
.push_back(E
->getCodeUnit(i
));
6458 Elements
.resize(NumElements
);
6459 return llvm::ConstantDataArray::get(VMContext
, Elements
);
6462 static llvm::GlobalVariable
*
6463 GenerateStringLiteral(llvm::Constant
*C
, llvm::GlobalValue::LinkageTypes LT
,
6464 CodeGenModule
&CGM
, StringRef GlobalName
,
6465 CharUnits Alignment
) {
6466 unsigned AddrSpace
= CGM
.getContext().getTargetAddressSpace(
6467 CGM
.GetGlobalConstantAddressSpace());
6469 llvm::Module
&M
= CGM
.getModule();
6470 // Create a global variable for this string
6471 auto *GV
= new llvm::GlobalVariable(
6472 M
, C
->getType(), !CGM
.getLangOpts().WritableStrings
, LT
, C
, GlobalName
,
6473 nullptr, llvm::GlobalVariable::NotThreadLocal
, AddrSpace
);
6474 GV
->setAlignment(Alignment
.getAsAlign());
6475 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
6476 if (GV
->isWeakForLinker()) {
6477 assert(CGM
.supportsCOMDAT() && "Only COFF uses weak string literals");
6478 GV
->setComdat(M
.getOrInsertComdat(GV
->getName()));
6480 CGM
.setDSOLocal(GV
);
6485 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6486 /// constant array for the given string literal.
6488 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral
*S
,
6490 CharUnits Alignment
=
6491 getContext().getAlignOfGlobalVarInChars(S
->getType(), /*VD=*/nullptr);
6493 llvm::Constant
*C
= GetConstantArrayFromStringLiteral(S
);
6494 llvm::GlobalVariable
**Entry
= nullptr;
6495 if (!LangOpts
.WritableStrings
) {
6496 Entry
= &ConstantStringMap
[C
];
6497 if (auto GV
= *Entry
) {
6498 if (uint64_t(Alignment
.getQuantity()) > GV
->getAlignment())
6499 GV
->setAlignment(Alignment
.getAsAlign());
6500 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6501 GV
->getValueType(), Alignment
);
6505 SmallString
<256> MangledNameBuffer
;
6506 StringRef GlobalVariableName
;
6507 llvm::GlobalValue::LinkageTypes LT
;
6509 // Mangle the string literal if that's how the ABI merges duplicate strings.
6510 // Don't do it if they are writable, since we don't want writes in one TU to
6511 // affect strings in another.
6512 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S
) &&
6513 !LangOpts
.WritableStrings
) {
6514 llvm::raw_svector_ostream
Out(MangledNameBuffer
);
6515 getCXXABI().getMangleContext().mangleStringLiteral(S
, Out
);
6516 LT
= llvm::GlobalValue::LinkOnceODRLinkage
;
6517 GlobalVariableName
= MangledNameBuffer
;
6519 LT
= llvm::GlobalValue::PrivateLinkage
;
6520 GlobalVariableName
= Name
;
6523 auto GV
= GenerateStringLiteral(C
, LT
, *this, GlobalVariableName
, Alignment
);
6525 CGDebugInfo
*DI
= getModuleDebugInfo();
6526 if (DI
&& getCodeGenOpts().hasReducedDebugInfo())
6527 DI
->AddStringLiteralDebugInfo(GV
, S
);
6532 SanitizerMD
->reportGlobal(GV
, S
->getStrTokenLoc(0), "<string literal>");
6534 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6535 GV
->getValueType(), Alignment
);
6538 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6539 /// array for the given ObjCEncodeExpr node.
6541 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr
*E
) {
6543 getContext().getObjCEncodingForType(E
->getEncodedType(), Str
);
6545 return GetAddrOfConstantCString(Str
);
6548 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6549 /// the literal and a terminating '\0' character.
6550 /// The result has pointer to array type.
6551 ConstantAddress
CodeGenModule::GetAddrOfConstantCString(
6552 const std::string
&Str
, const char *GlobalName
) {
6553 StringRef
StrWithNull(Str
.c_str(), Str
.size() + 1);
6554 CharUnits Alignment
= getContext().getAlignOfGlobalVarInChars(
6555 getContext().CharTy
, /*VD=*/nullptr);
6558 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull
, false);
6560 // Don't share any string literals if strings aren't constant.
6561 llvm::GlobalVariable
**Entry
= nullptr;
6562 if (!LangOpts
.WritableStrings
) {
6563 Entry
= &ConstantStringMap
[C
];
6564 if (auto GV
= *Entry
) {
6565 if (uint64_t(Alignment
.getQuantity()) > GV
->getAlignment())
6566 GV
->setAlignment(Alignment
.getAsAlign());
6567 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6568 GV
->getValueType(), Alignment
);
6572 // Get the default prefix if a name wasn't specified.
6574 GlobalName
= ".str";
6575 // Create a global variable for this.
6576 auto GV
= GenerateStringLiteral(C
, llvm::GlobalValue::PrivateLinkage
, *this,
6577 GlobalName
, Alignment
);
6581 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6582 GV
->getValueType(), Alignment
);
6585 ConstantAddress
CodeGenModule::GetAddrOfGlobalTemporary(
6586 const MaterializeTemporaryExpr
*E
, const Expr
*Init
) {
6587 assert((E
->getStorageDuration() == SD_Static
||
6588 E
->getStorageDuration() == SD_Thread
) && "not a global temporary");
6589 const auto *VD
= cast
<VarDecl
>(E
->getExtendingDecl());
6591 // If we're not materializing a subobject of the temporary, keep the
6592 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6593 QualType MaterializedType
= Init
->getType();
6594 if (Init
== E
->getSubExpr())
6595 MaterializedType
= E
->getType();
6597 CharUnits Align
= getContext().getTypeAlignInChars(MaterializedType
);
6599 auto InsertResult
= MaterializedGlobalTemporaryMap
.insert({E
, nullptr});
6600 if (!InsertResult
.second
) {
6601 // We've seen this before: either we already created it or we're in the
6602 // process of doing so.
6603 if (!InsertResult
.first
->second
) {
6604 // We recursively re-entered this function, probably during emission of
6605 // the initializer. Create a placeholder. We'll clean this up in the
6606 // outer call, at the end of this function.
6607 llvm::Type
*Type
= getTypes().ConvertTypeForMem(MaterializedType
);
6608 InsertResult
.first
->second
= new llvm::GlobalVariable(
6609 getModule(), Type
, false, llvm::GlobalVariable::InternalLinkage
,
6612 return ConstantAddress(InsertResult
.first
->second
,
6613 llvm::cast
<llvm::GlobalVariable
>(
6614 InsertResult
.first
->second
->stripPointerCasts())
6619 // FIXME: If an externally-visible declaration extends multiple temporaries,
6620 // we need to give each temporary the same name in every translation unit (and
6621 // we also need to make the temporaries externally-visible).
6622 SmallString
<256> Name
;
6623 llvm::raw_svector_ostream
Out(Name
);
6624 getCXXABI().getMangleContext().mangleReferenceTemporary(
6625 VD
, E
->getManglingNumber(), Out
);
6627 APValue
*Value
= nullptr;
6628 if (E
->getStorageDuration() == SD_Static
&& VD
->evaluateValue()) {
6629 // If the initializer of the extending declaration is a constant
6630 // initializer, we should have a cached constant initializer for this
6631 // temporary. Note that this might have a different value from the value
6632 // computed by evaluating the initializer if the surrounding constant
6633 // expression modifies the temporary.
6634 Value
= E
->getOrCreateValue(false);
6637 // Try evaluating it now, it might have a constant initializer.
6638 Expr::EvalResult EvalResult
;
6639 if (!Value
&& Init
->EvaluateAsRValue(EvalResult
, getContext()) &&
6640 !EvalResult
.hasSideEffects())
6641 Value
= &EvalResult
.Val
;
6643 LangAS AddrSpace
= GetGlobalVarAddressSpace(VD
);
6645 std::optional
<ConstantEmitter
> emitter
;
6646 llvm::Constant
*InitialValue
= nullptr;
6647 bool Constant
= false;
6650 // The temporary has a constant initializer, use it.
6651 emitter
.emplace(*this);
6652 InitialValue
= emitter
->emitForInitializer(*Value
, AddrSpace
,
6655 MaterializedType
.isConstantStorage(getContext(), /*ExcludeCtor*/ Value
,
6656 /*ExcludeDtor*/ false);
6657 Type
= InitialValue
->getType();
6659 // No initializer, the initialization will be provided when we
6660 // initialize the declaration which performed lifetime extension.
6661 Type
= getTypes().ConvertTypeForMem(MaterializedType
);
6664 // Create a global variable for this lifetime-extended temporary.
6665 llvm::GlobalValue::LinkageTypes Linkage
= getLLVMLinkageVarDefinition(VD
);
6666 if (Linkage
== llvm::GlobalVariable::ExternalLinkage
) {
6667 const VarDecl
*InitVD
;
6668 if (VD
->isStaticDataMember() && VD
->getAnyInitializer(InitVD
) &&
6669 isa
<CXXRecordDecl
>(InitVD
->getLexicalDeclContext())) {
6670 // Temporaries defined inside a class get linkonce_odr linkage because the
6671 // class can be defined in multiple translation units.
6672 Linkage
= llvm::GlobalVariable::LinkOnceODRLinkage
;
6674 // There is no need for this temporary to have external linkage if the
6675 // VarDecl has external linkage.
6676 Linkage
= llvm::GlobalVariable::InternalLinkage
;
6679 auto TargetAS
= getContext().getTargetAddressSpace(AddrSpace
);
6680 auto *GV
= new llvm::GlobalVariable(
6681 getModule(), Type
, Constant
, Linkage
, InitialValue
, Name
.c_str(),
6682 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal
, TargetAS
);
6683 if (emitter
) emitter
->finalize(GV
);
6684 // Don't assign dllimport or dllexport to local linkage globals.
6685 if (!llvm::GlobalValue::isLocalLinkage(Linkage
)) {
6686 setGVProperties(GV
, VD
);
6687 if (GV
->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass
)
6688 // The reference temporary should never be dllexport.
6689 GV
->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass
);
6691 GV
->setAlignment(Align
.getAsAlign());
6692 if (supportsCOMDAT() && GV
->isWeakForLinker())
6693 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
6694 if (VD
->getTLSKind())
6695 setTLSMode(GV
, *VD
);
6696 llvm::Constant
*CV
= GV
;
6697 if (AddrSpace
!= LangAS::Default
)
6698 CV
= getTargetCodeGenInfo().performAddrSpaceCast(
6699 *this, GV
, AddrSpace
, LangAS::Default
,
6700 llvm::PointerType::get(
6702 getContext().getTargetAddressSpace(LangAS::Default
)));
6704 // Update the map with the new temporary. If we created a placeholder above,
6705 // replace it with the new global now.
6706 llvm::Constant
*&Entry
= MaterializedGlobalTemporaryMap
[E
];
6708 Entry
->replaceAllUsesWith(CV
);
6709 llvm::cast
<llvm::GlobalVariable
>(Entry
)->eraseFromParent();
6713 return ConstantAddress(CV
, Type
, Align
);
6716 /// EmitObjCPropertyImplementations - Emit information for synthesized
6717 /// properties for an implementation.
6718 void CodeGenModule::EmitObjCPropertyImplementations(const
6719 ObjCImplementationDecl
*D
) {
6720 for (const auto *PID
: D
->property_impls()) {
6721 // Dynamic is just for type-checking.
6722 if (PID
->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize
) {
6723 ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
6725 // Determine which methods need to be implemented, some may have
6726 // been overridden. Note that ::isPropertyAccessor is not the method
6727 // we want, that just indicates if the decl came from a
6728 // property. What we want to know is if the method is defined in
6729 // this implementation.
6730 auto *Getter
= PID
->getGetterMethodDecl();
6731 if (!Getter
|| Getter
->isSynthesizedAccessorStub())
6732 CodeGenFunction(*this).GenerateObjCGetter(
6733 const_cast<ObjCImplementationDecl
*>(D
), PID
);
6734 auto *Setter
= PID
->getSetterMethodDecl();
6735 if (!PD
->isReadOnly() && (!Setter
|| Setter
->isSynthesizedAccessorStub()))
6736 CodeGenFunction(*this).GenerateObjCSetter(
6737 const_cast<ObjCImplementationDecl
*>(D
), PID
);
6742 static bool needsDestructMethod(ObjCImplementationDecl
*impl
) {
6743 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
6744 for (const ObjCIvarDecl
*ivar
= iface
->all_declared_ivar_begin();
6745 ivar
; ivar
= ivar
->getNextIvar())
6746 if (ivar
->getType().isDestructedType())
6752 static bool AllTrivialInitializers(CodeGenModule
&CGM
,
6753 ObjCImplementationDecl
*D
) {
6754 CodeGenFunction
CGF(CGM
);
6755 for (ObjCImplementationDecl::init_iterator B
= D
->init_begin(),
6756 E
= D
->init_end(); B
!= E
; ++B
) {
6757 CXXCtorInitializer
*CtorInitExp
= *B
;
6758 Expr
*Init
= CtorInitExp
->getInit();
6759 if (!CGF
.isTrivialInitializer(Init
))
6765 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6766 /// for an implementation.
6767 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl
*D
) {
6768 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6769 if (needsDestructMethod(D
)) {
6770 const IdentifierInfo
*II
= &getContext().Idents
.get(".cxx_destruct");
6771 Selector cxxSelector
= getContext().Selectors
.getSelector(0, &II
);
6772 ObjCMethodDecl
*DTORMethod
= ObjCMethodDecl::Create(
6773 getContext(), D
->getLocation(), D
->getLocation(), cxxSelector
,
6774 getContext().VoidTy
, nullptr, D
,
6775 /*isInstance=*/true, /*isVariadic=*/false,
6776 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6777 /*isImplicitlyDeclared=*/true,
6778 /*isDefined=*/false, ObjCImplementationControl::Required
);
6779 D
->addInstanceMethod(DTORMethod
);
6780 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D
, DTORMethod
, false);
6781 D
->setHasDestructors(true);
6784 // If the implementation doesn't have any ivar initializers, we don't need
6785 // a .cxx_construct.
6786 if (D
->getNumIvarInitializers() == 0 ||
6787 AllTrivialInitializers(*this, D
))
6790 const IdentifierInfo
*II
= &getContext().Idents
.get(".cxx_construct");
6791 Selector cxxSelector
= getContext().Selectors
.getSelector(0, &II
);
6792 // The constructor returns 'self'.
6793 ObjCMethodDecl
*CTORMethod
= ObjCMethodDecl::Create(
6794 getContext(), D
->getLocation(), D
->getLocation(), cxxSelector
,
6795 getContext().getObjCIdType(), nullptr, D
, /*isInstance=*/true,
6796 /*isVariadic=*/false,
6797 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6798 /*isImplicitlyDeclared=*/true,
6799 /*isDefined=*/false, ObjCImplementationControl::Required
);
6800 D
->addInstanceMethod(CTORMethod
);
6801 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D
, CTORMethod
, true);
6802 D
->setHasNonZeroConstructors(true);
6805 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6806 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl
*LSD
) {
6807 if (LSD
->getLanguage() != LinkageSpecLanguageIDs::C
&&
6808 LSD
->getLanguage() != LinkageSpecLanguageIDs::CXX
) {
6809 ErrorUnsupported(LSD
, "linkage spec");
6813 EmitDeclContext(LSD
);
6816 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl
*D
) {
6817 // Device code should not be at top level.
6818 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
)
6821 std::unique_ptr
<CodeGenFunction
> &CurCGF
=
6822 GlobalTopLevelStmtBlockInFlight
.first
;
6824 // We emitted a top-level stmt but after it there is initialization.
6825 // Stop squashing the top-level stmts into a single function.
6826 if (CurCGF
&& CXXGlobalInits
.back() != CurCGF
->CurFn
) {
6827 CurCGF
->FinishFunction(D
->getEndLoc());
6832 // void __stmts__N(void)
6833 // FIXME: Ask the ABI name mangler to pick a name.
6834 std::string Name
= "__stmts__" + llvm::utostr(CXXGlobalInits
.size());
6835 FunctionArgList Args
;
6836 QualType RetTy
= getContext().VoidTy
;
6837 const CGFunctionInfo
&FnInfo
=
6838 getTypes().arrangeBuiltinFunctionDeclaration(RetTy
, Args
);
6839 llvm::FunctionType
*FnTy
= getTypes().GetFunctionType(FnInfo
);
6840 llvm::Function
*Fn
= llvm::Function::Create(
6841 FnTy
, llvm::GlobalValue::InternalLinkage
, Name
, &getModule());
6843 CurCGF
.reset(new CodeGenFunction(*this));
6844 GlobalTopLevelStmtBlockInFlight
.second
= D
;
6845 CurCGF
->StartFunction(GlobalDecl(), RetTy
, Fn
, FnInfo
, Args
,
6846 D
->getBeginLoc(), D
->getBeginLoc());
6847 CXXGlobalInits
.push_back(Fn
);
6850 CurCGF
->EmitStmt(D
->getStmt());
6853 void CodeGenModule::EmitDeclContext(const DeclContext
*DC
) {
6854 for (auto *I
: DC
->decls()) {
6855 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6856 // are themselves considered "top-level", so EmitTopLevelDecl on an
6857 // ObjCImplDecl does not recursively visit them. We need to do that in
6858 // case they're nested inside another construct (LinkageSpecDecl /
6859 // ExportDecl) that does stop them from being considered "top-level".
6860 if (auto *OID
= dyn_cast
<ObjCImplDecl
>(I
)) {
6861 for (auto *M
: OID
->methods())
6862 EmitTopLevelDecl(M
);
6865 EmitTopLevelDecl(I
);
6869 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6870 void CodeGenModule::EmitTopLevelDecl(Decl
*D
) {
6871 // Ignore dependent declarations.
6872 if (D
->isTemplated())
6875 // Consteval function shouldn't be emitted.
6876 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
); FD
&& FD
->isImmediateFunction())
6879 switch (D
->getKind()) {
6880 case Decl::CXXConversion
:
6881 case Decl::CXXMethod
:
6882 case Decl::Function
:
6883 EmitGlobal(cast
<FunctionDecl
>(D
));
6884 // Always provide some coverage mapping
6885 // even for the functions that aren't emitted.
6886 AddDeferredUnusedCoverageMapping(D
);
6889 case Decl::CXXDeductionGuide
:
6890 // Function-like, but does not result in code emission.
6894 case Decl::Decomposition
:
6895 case Decl::VarTemplateSpecialization
:
6896 EmitGlobal(cast
<VarDecl
>(D
));
6897 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
))
6898 for (auto *B
: DD
->bindings())
6899 if (auto *HD
= B
->getHoldingVar())
6903 // Indirect fields from global anonymous structs and unions can be
6904 // ignored; only the actual variable requires IR gen support.
6905 case Decl::IndirectField
:
6909 case Decl::Namespace
:
6910 EmitDeclContext(cast
<NamespaceDecl
>(D
));
6912 case Decl::ClassTemplateSpecialization
: {
6913 const auto *Spec
= cast
<ClassTemplateSpecializationDecl
>(D
);
6914 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6915 if (Spec
->getSpecializationKind() ==
6916 TSK_ExplicitInstantiationDefinition
&&
6917 Spec
->hasDefinition())
6918 DI
->completeTemplateDefinition(*Spec
);
6920 case Decl::CXXRecord
: {
6921 CXXRecordDecl
*CRD
= cast
<CXXRecordDecl
>(D
);
6922 if (CGDebugInfo
*DI
= getModuleDebugInfo()) {
6923 if (CRD
->hasDefinition())
6924 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(D
)));
6925 if (auto *ES
= D
->getASTContext().getExternalSource())
6926 if (ES
->hasExternalDefinitions(D
) == ExternalASTSource::EK_Never
)
6927 DI
->completeUnusedClass(*CRD
);
6929 // Emit any static data members, they may be definitions.
6930 for (auto *I
: CRD
->decls())
6931 if (isa
<VarDecl
>(I
) || isa
<CXXRecordDecl
>(I
))
6932 EmitTopLevelDecl(I
);
6935 // No code generation needed.
6936 case Decl::UsingShadow
:
6937 case Decl::ClassTemplate
:
6938 case Decl::VarTemplate
:
6940 case Decl::VarTemplatePartialSpecialization
:
6941 case Decl::FunctionTemplate
:
6942 case Decl::TypeAliasTemplate
:
6947 case Decl::Using
: // using X; [C++]
6948 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6949 DI
->EmitUsingDecl(cast
<UsingDecl
>(*D
));
6951 case Decl::UsingEnum
: // using enum X; [C++]
6952 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6953 DI
->EmitUsingEnumDecl(cast
<UsingEnumDecl
>(*D
));
6955 case Decl::NamespaceAlias
:
6956 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6957 DI
->EmitNamespaceAlias(cast
<NamespaceAliasDecl
>(*D
));
6959 case Decl::UsingDirective
: // using namespace X; [C++]
6960 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6961 DI
->EmitUsingDirective(cast
<UsingDirectiveDecl
>(*D
));
6963 case Decl::CXXConstructor
:
6964 getCXXABI().EmitCXXConstructors(cast
<CXXConstructorDecl
>(D
));
6966 case Decl::CXXDestructor
:
6967 getCXXABI().EmitCXXDestructors(cast
<CXXDestructorDecl
>(D
));
6970 case Decl::StaticAssert
:
6974 // Objective-C Decls
6976 // Forward declarations, no (immediate) code generation.
6977 case Decl::ObjCInterface
:
6978 case Decl::ObjCCategory
:
6981 case Decl::ObjCProtocol
: {
6982 auto *Proto
= cast
<ObjCProtocolDecl
>(D
);
6983 if (Proto
->isThisDeclarationADefinition())
6984 ObjCRuntime
->GenerateProtocol(Proto
);
6988 case Decl::ObjCCategoryImpl
:
6989 // Categories have properties but don't support synthesize so we
6990 // can ignore them here.
6991 ObjCRuntime
->GenerateCategory(cast
<ObjCCategoryImplDecl
>(D
));
6994 case Decl::ObjCImplementation
: {
6995 auto *OMD
= cast
<ObjCImplementationDecl
>(D
);
6996 EmitObjCPropertyImplementations(OMD
);
6997 EmitObjCIvarInitializations(OMD
);
6998 ObjCRuntime
->GenerateClass(OMD
);
6999 // Emit global variable debug information.
7000 if (CGDebugInfo
*DI
= getModuleDebugInfo())
7001 if (getCodeGenOpts().hasReducedDebugInfo())
7002 DI
->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7003 OMD
->getClassInterface()), OMD
->getLocation());
7006 case Decl::ObjCMethod
: {
7007 auto *OMD
= cast
<ObjCMethodDecl
>(D
);
7008 // If this is not a prototype, emit the body.
7010 CodeGenFunction(*this).GenerateObjCMethod(OMD
);
7013 case Decl::ObjCCompatibleAlias
:
7014 ObjCRuntime
->RegisterAlias(cast
<ObjCCompatibleAliasDecl
>(D
));
7017 case Decl::PragmaComment
: {
7018 const auto *PCD
= cast
<PragmaCommentDecl
>(D
);
7019 switch (PCD
->getCommentKind()) {
7021 llvm_unreachable("unexpected pragma comment kind");
7023 AppendLinkerOptions(PCD
->getArg());
7026 AddDependentLib(PCD
->getArg());
7031 break; // We ignore all of these.
7036 case Decl::PragmaDetectMismatch
: {
7037 const auto *PDMD
= cast
<PragmaDetectMismatchDecl
>(D
);
7038 AddDetectMismatch(PDMD
->getName(), PDMD
->getValue());
7042 case Decl::LinkageSpec
:
7043 EmitLinkageSpec(cast
<LinkageSpecDecl
>(D
));
7046 case Decl::FileScopeAsm
: {
7047 // File-scope asm is ignored during device-side CUDA compilation.
7048 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
)
7050 // File-scope asm is ignored during device-side OpenMP compilation.
7051 if (LangOpts
.OpenMPIsTargetDevice
)
7053 // File-scope asm is ignored during device-side SYCL compilation.
7054 if (LangOpts
.SYCLIsDevice
)
7056 auto *AD
= cast
<FileScopeAsmDecl
>(D
);
7057 getModule().appendModuleInlineAsm(AD
->getAsmString()->getString());
7061 case Decl::TopLevelStmt
:
7062 EmitTopLevelStmt(cast
<TopLevelStmtDecl
>(D
));
7065 case Decl::Import
: {
7066 auto *Import
= cast
<ImportDecl
>(D
);
7068 // If we've already imported this module, we're done.
7069 if (!ImportedModules
.insert(Import
->getImportedModule()))
7072 // Emit debug information for direct imports.
7073 if (!Import
->getImportedOwningModule()) {
7074 if (CGDebugInfo
*DI
= getModuleDebugInfo())
7075 DI
->EmitImportDecl(*Import
);
7078 // For C++ standard modules we are done - we will call the module
7079 // initializer for imported modules, and that will likewise call those for
7080 // any imports it has.
7081 if (CXX20ModuleInits
&& Import
->getImportedOwningModule() &&
7082 !Import
->getImportedOwningModule()->isModuleMapModule())
7085 // For clang C++ module map modules the initializers for sub-modules are
7088 // Find all of the submodules and emit the module initializers.
7089 llvm::SmallPtrSet
<clang::Module
*, 16> Visited
;
7090 SmallVector
<clang::Module
*, 16> Stack
;
7091 Visited
.insert(Import
->getImportedModule());
7092 Stack
.push_back(Import
->getImportedModule());
7094 while (!Stack
.empty()) {
7095 clang::Module
*Mod
= Stack
.pop_back_val();
7096 if (!EmittedModuleInitializers
.insert(Mod
).second
)
7099 for (auto *D
: Context
.getModuleInitializers(Mod
))
7100 EmitTopLevelDecl(D
);
7102 // Visit the submodules of this module.
7103 for (auto *Submodule
: Mod
->submodules()) {
7104 // Skip explicit children; they need to be explicitly imported to emit
7105 // the initializers.
7106 if (Submodule
->IsExplicit
)
7109 if (Visited
.insert(Submodule
).second
)
7110 Stack
.push_back(Submodule
);
7117 EmitDeclContext(cast
<ExportDecl
>(D
));
7120 case Decl::OMPThreadPrivate
:
7121 EmitOMPThreadPrivateDecl(cast
<OMPThreadPrivateDecl
>(D
));
7124 case Decl::OMPAllocate
:
7125 EmitOMPAllocateDecl(cast
<OMPAllocateDecl
>(D
));
7128 case Decl::OMPDeclareReduction
:
7129 EmitOMPDeclareReduction(cast
<OMPDeclareReductionDecl
>(D
));
7132 case Decl::OMPDeclareMapper
:
7133 EmitOMPDeclareMapper(cast
<OMPDeclareMapperDecl
>(D
));
7136 case Decl::OMPRequires
:
7137 EmitOMPRequiresDecl(cast
<OMPRequiresDecl
>(D
));
7141 case Decl::TypeAlias
: // using foo = bar; [C++11]
7142 if (CGDebugInfo
*DI
= getModuleDebugInfo())
7143 DI
->EmitAndRetainType(
7144 getContext().getTypedefType(cast
<TypedefNameDecl
>(D
)));
7148 if (CGDebugInfo
*DI
= getModuleDebugInfo())
7149 if (cast
<RecordDecl
>(D
)->getDefinition())
7150 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(D
)));
7154 if (CGDebugInfo
*DI
= getModuleDebugInfo())
7155 if (cast
<EnumDecl
>(D
)->getDefinition())
7156 DI
->EmitAndRetainType(getContext().getEnumType(cast
<EnumDecl
>(D
)));
7159 case Decl::HLSLBuffer
:
7160 getHLSLRuntime().addBuffer(cast
<HLSLBufferDecl
>(D
));
7164 // Make sure we handled everything we should, every other kind is a
7165 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
7166 // function. Need to recode Decl::Kind to do that easily.
7167 assert(isa
<TypeDecl
>(D
) && "Unsupported decl kind");
7172 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl
*D
) {
7173 // Do we need to generate coverage mapping?
7174 if (!CodeGenOpts
.CoverageMapping
)
7176 switch (D
->getKind()) {
7177 case Decl::CXXConversion
:
7178 case Decl::CXXMethod
:
7179 case Decl::Function
:
7180 case Decl::ObjCMethod
:
7181 case Decl::CXXConstructor
:
7182 case Decl::CXXDestructor
: {
7183 if (!cast
<FunctionDecl
>(D
)->doesThisDeclarationHaveABody())
7185 SourceManager
&SM
= getContext().getSourceManager();
7186 if (LimitedCoverage
&& SM
.getMainFileID() != SM
.getFileID(D
->getBeginLoc()))
7188 if (!llvm::coverage::SystemHeadersCoverage
&&
7189 SM
.isInSystemHeader(D
->getBeginLoc()))
7191 DeferredEmptyCoverageMappingDecls
.try_emplace(D
, true);
7199 void CodeGenModule::ClearUnusedCoverageMapping(const Decl
*D
) {
7200 // Do we need to generate coverage mapping?
7201 if (!CodeGenOpts
.CoverageMapping
)
7203 if (const auto *Fn
= dyn_cast
<FunctionDecl
>(D
)) {
7204 if (Fn
->isTemplateInstantiation())
7205 ClearUnusedCoverageMapping(Fn
->getTemplateInstantiationPattern());
7207 DeferredEmptyCoverageMappingDecls
.insert_or_assign(D
, false);
7210 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7211 // We call takeVector() here to avoid use-after-free.
7212 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7213 // we deserialize function bodies to emit coverage info for them, and that
7214 // deserializes more declarations. How should we handle that case?
7215 for (const auto &Entry
: DeferredEmptyCoverageMappingDecls
.takeVector()) {
7218 const Decl
*D
= Entry
.first
;
7219 switch (D
->getKind()) {
7220 case Decl::CXXConversion
:
7221 case Decl::CXXMethod
:
7222 case Decl::Function
:
7223 case Decl::ObjCMethod
: {
7224 CodeGenPGO
PGO(*this);
7225 GlobalDecl
GD(cast
<FunctionDecl
>(D
));
7226 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
7227 getFunctionLinkage(GD
));
7230 case Decl::CXXConstructor
: {
7231 CodeGenPGO
PGO(*this);
7232 GlobalDecl
GD(cast
<CXXConstructorDecl
>(D
), Ctor_Base
);
7233 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
7234 getFunctionLinkage(GD
));
7237 case Decl::CXXDestructor
: {
7238 CodeGenPGO
PGO(*this);
7239 GlobalDecl
GD(cast
<CXXDestructorDecl
>(D
), Dtor_Base
);
7240 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
7241 getFunctionLinkage(GD
));
7250 void CodeGenModule::EmitMainVoidAlias() {
7251 // In order to transition away from "__original_main" gracefully, emit an
7252 // alias for "main" in the no-argument case so that libc can detect when
7253 // new-style no-argument main is in used.
7254 if (llvm::Function
*F
= getModule().getFunction("main")) {
7255 if (!F
->isDeclaration() && F
->arg_size() == 0 && !F
->isVarArg() &&
7256 F
->getReturnType()->isIntegerTy(Context
.getTargetInfo().getIntWidth())) {
7257 auto *GA
= llvm::GlobalAlias::create("__main_void", F
);
7258 GA
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
7263 /// Turns the given pointer into a constant.
7264 static llvm::Constant
*GetPointerConstant(llvm::LLVMContext
&Context
,
7266 uintptr_t PtrInt
= reinterpret_cast<uintptr_t>(Ptr
);
7267 llvm::Type
*i64
= llvm::Type::getInt64Ty(Context
);
7268 return llvm::ConstantInt::get(i64
, PtrInt
);
7271 static void EmitGlobalDeclMetadata(CodeGenModule
&CGM
,
7272 llvm::NamedMDNode
*&GlobalMetadata
,
7274 llvm::GlobalValue
*Addr
) {
7275 if (!GlobalMetadata
)
7277 CGM
.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7279 // TODO: should we report variant information for ctors/dtors?
7280 llvm::Metadata
*Ops
[] = {llvm::ConstantAsMetadata::get(Addr
),
7281 llvm::ConstantAsMetadata::get(GetPointerConstant(
7282 CGM
.getLLVMContext(), D
.getDecl()))};
7283 GlobalMetadata
->addOperand(llvm::MDNode::get(CGM
.getLLVMContext(), Ops
));
7286 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue
*Elem
,
7287 llvm::GlobalValue
*CppFunc
) {
7288 // Store the list of ifuncs we need to replace uses in.
7289 llvm::SmallVector
<llvm::GlobalIFunc
*> IFuncs
;
7290 // List of ConstantExprs that we should be able to delete when we're done
7292 llvm::SmallVector
<llvm::ConstantExpr
*> CEs
;
7294 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7295 if (Elem
== CppFunc
)
7298 // First make sure that all users of this are ifuncs (or ifuncs via a
7299 // bitcast), and collect the list of ifuncs and CEs so we can work on them
7301 for (llvm::User
*User
: Elem
->users()) {
7302 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7303 // ifunc directly. In any other case, just give up, as we don't know what we
7304 // could break by changing those.
7305 if (auto *ConstExpr
= dyn_cast
<llvm::ConstantExpr
>(User
)) {
7306 if (ConstExpr
->getOpcode() != llvm::Instruction::BitCast
)
7309 for (llvm::User
*CEUser
: ConstExpr
->users()) {
7310 if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(CEUser
)) {
7311 IFuncs
.push_back(IFunc
);
7316 CEs
.push_back(ConstExpr
);
7317 } else if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(User
)) {
7318 IFuncs
.push_back(IFunc
);
7320 // This user is one we don't know how to handle, so fail redirection. This
7321 // will result in an ifunc retaining a resolver name that will ultimately
7322 // fail to be resolved to a defined function.
7327 // Now we know this is a valid case where we can do this alias replacement, we
7328 // need to remove all of the references to Elem (and the bitcasts!) so we can
7330 for (llvm::GlobalIFunc
*IFunc
: IFuncs
)
7331 IFunc
->setResolver(nullptr);
7332 for (llvm::ConstantExpr
*ConstExpr
: CEs
)
7333 ConstExpr
->destroyConstant();
7335 // We should now be out of uses for the 'old' version of this function, so we
7336 // can erase it as well.
7337 Elem
->eraseFromParent();
7339 for (llvm::GlobalIFunc
*IFunc
: IFuncs
) {
7340 // The type of the resolver is always just a function-type that returns the
7341 // type of the IFunc, so create that here. If the type of the actual
7342 // resolver doesn't match, it just gets bitcast to the right thing.
7344 llvm::FunctionType::get(IFunc
->getType(), /*isVarArg*/ false);
7345 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
7346 CppFunc
->getName(), ResolverTy
, {}, /*ForVTable*/ false);
7347 IFunc
->setResolver(Resolver
);
7352 /// For each function which is declared within an extern "C" region and marked
7353 /// as 'used', but has internal linkage, create an alias from the unmangled
7354 /// name to the mangled name if possible. People expect to be able to refer
7355 /// to such functions with an unmangled name from inline assembly within the
7356 /// same translation unit.
7357 void CodeGenModule::EmitStaticExternCAliases() {
7358 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7360 for (auto &I
: StaticExternCValues
) {
7361 const IdentifierInfo
*Name
= I
.first
;
7362 llvm::GlobalValue
*Val
= I
.second
;
7364 // If Val is null, that implies there were multiple declarations that each
7365 // had a claim to the unmangled name. In this case, generation of the alias
7366 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7370 llvm::GlobalValue
*ExistingElem
=
7371 getModule().getNamedValue(Name
->getName());
7373 // If there is either not something already by this name, or we were able to
7374 // replace all uses from IFuncs, create the alias.
7375 if (!ExistingElem
|| CheckAndReplaceExternCIFuncs(ExistingElem
, Val
))
7376 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name
->getName(), Val
));
7380 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName
,
7381 GlobalDecl
&Result
) const {
7382 auto Res
= Manglings
.find(MangledName
);
7383 if (Res
== Manglings
.end())
7385 Result
= Res
->getValue();
7389 /// Emits metadata nodes associating all the global values in the
7390 /// current module with the Decls they came from. This is useful for
7391 /// projects using IR gen as a subroutine.
7393 /// Since there's currently no way to associate an MDNode directly
7394 /// with an llvm::GlobalValue, we create a global named metadata
7395 /// with the name 'clang.global.decl.ptrs'.
7396 void CodeGenModule::EmitDeclMetadata() {
7397 llvm::NamedMDNode
*GlobalMetadata
= nullptr;
7399 for (auto &I
: MangledDeclNames
) {
7400 llvm::GlobalValue
*Addr
= getModule().getNamedValue(I
.second
);
7401 // Some mangled names don't necessarily have an associated GlobalValue
7402 // in this module, e.g. if we mangled it for DebugInfo.
7404 EmitGlobalDeclMetadata(*this, GlobalMetadata
, I
.first
, Addr
);
7408 /// Emits metadata nodes for all the local variables in the current
7410 void CodeGenFunction::EmitDeclMetadata() {
7411 if (LocalDeclMap
.empty()) return;
7413 llvm::LLVMContext
&Context
= getLLVMContext();
7415 // Find the unique metadata ID for this name.
7416 unsigned DeclPtrKind
= Context
.getMDKindID("clang.decl.ptr");
7418 llvm::NamedMDNode
*GlobalMetadata
= nullptr;
7420 for (auto &I
: LocalDeclMap
) {
7421 const Decl
*D
= I
.first
;
7422 llvm::Value
*Addr
= I
.second
.emitRawPointer(*this);
7423 if (auto *Alloca
= dyn_cast
<llvm::AllocaInst
>(Addr
)) {
7424 llvm::Value
*DAddr
= GetPointerConstant(getLLVMContext(), D
);
7425 Alloca
->setMetadata(
7426 DeclPtrKind
, llvm::MDNode::get(
7427 Context
, llvm::ValueAsMetadata::getConstant(DAddr
)));
7428 } else if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
)) {
7429 GlobalDecl GD
= GlobalDecl(cast
<VarDecl
>(D
));
7430 EmitGlobalDeclMetadata(CGM
, GlobalMetadata
, GD
, GV
);
7435 void CodeGenModule::EmitVersionIdentMetadata() {
7436 llvm::NamedMDNode
*IdentMetadata
=
7437 TheModule
.getOrInsertNamedMetadata("llvm.ident");
7438 std::string Version
= getClangFullVersion();
7439 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7441 llvm::Metadata
*IdentNode
[] = {llvm::MDString::get(Ctx
, Version
)};
7442 IdentMetadata
->addOperand(llvm::MDNode::get(Ctx
, IdentNode
));
7445 void CodeGenModule::EmitCommandLineMetadata() {
7446 llvm::NamedMDNode
*CommandLineMetadata
=
7447 TheModule
.getOrInsertNamedMetadata("llvm.commandline");
7448 std::string CommandLine
= getCodeGenOpts().RecordCommandLine
;
7449 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7451 llvm::Metadata
*CommandLineNode
[] = {llvm::MDString::get(Ctx
, CommandLine
)};
7452 CommandLineMetadata
->addOperand(llvm::MDNode::get(Ctx
, CommandLineNode
));
7455 void CodeGenModule::EmitCoverageFile() {
7456 llvm::NamedMDNode
*CUNode
= TheModule
.getNamedMetadata("llvm.dbg.cu");
7460 llvm::NamedMDNode
*GCov
= TheModule
.getOrInsertNamedMetadata("llvm.gcov");
7461 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7462 auto *CoverageDataFile
=
7463 llvm::MDString::get(Ctx
, getCodeGenOpts().CoverageDataFile
);
7464 auto *CoverageNotesFile
=
7465 llvm::MDString::get(Ctx
, getCodeGenOpts().CoverageNotesFile
);
7466 for (int i
= 0, e
= CUNode
->getNumOperands(); i
!= e
; ++i
) {
7467 llvm::MDNode
*CU
= CUNode
->getOperand(i
);
7468 llvm::Metadata
*Elts
[] = {CoverageNotesFile
, CoverageDataFile
, CU
};
7469 GCov
->addOperand(llvm::MDNode::get(Ctx
, Elts
));
7473 llvm::Constant
*CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty
,
7475 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7476 // FIXME: should we even be calling this method if RTTI is disabled
7477 // and it's not for EH?
7478 if (!shouldEmitRTTI(ForEH
))
7479 return llvm::Constant::getNullValue(GlobalsInt8PtrTy
);
7481 if (ForEH
&& Ty
->isObjCObjectPointerType() &&
7482 LangOpts
.ObjCRuntime
.isGNUFamily())
7483 return ObjCRuntime
->GetEHType(Ty
);
7485 return getCXXABI().getAddrOfRTTIDescriptor(Ty
);
7488 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl
*D
) {
7489 // Do not emit threadprivates in simd-only mode.
7490 if (LangOpts
.OpenMP
&& LangOpts
.OpenMPSimd
)
7492 for (auto RefExpr
: D
->varlists()) {
7493 auto *VD
= cast
<VarDecl
>(cast
<DeclRefExpr
>(RefExpr
)->getDecl());
7495 VD
->getAnyInitializer() &&
7496 !VD
->getAnyInitializer()->isConstantInitializer(getContext(),
7499 Address
Addr(GetAddrOfGlobalVar(VD
),
7500 getTypes().ConvertTypeForMem(VD
->getType()),
7501 getContext().getDeclAlign(VD
));
7502 if (auto InitFunction
= getOpenMPRuntime().emitThreadPrivateVarDefinition(
7503 VD
, Addr
, RefExpr
->getBeginLoc(), PerformInit
))
7504 CXXGlobalInits
.push_back(InitFunction
);
7509 CodeGenModule::CreateMetadataIdentifierImpl(QualType T
, MetadataTypeMap
&Map
,
7511 if (auto *FnType
= T
->getAs
<FunctionProtoType
>())
7512 T
= getContext().getFunctionType(
7513 FnType
->getReturnType(), FnType
->getParamTypes(),
7514 FnType
->getExtProtoInfo().withExceptionSpec(EST_None
));
7516 llvm::Metadata
*&InternalId
= Map
[T
.getCanonicalType()];
7520 if (isExternallyVisible(T
->getLinkage())) {
7521 std::string OutName
;
7522 llvm::raw_string_ostream
Out(OutName
);
7523 getCXXABI().getMangleContext().mangleCanonicalTypeName(
7524 T
, Out
, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
);
7526 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
)
7527 Out
<< ".normalized";
7531 InternalId
= llvm::MDString::get(getLLVMContext(), Out
.str());
7533 InternalId
= llvm::MDNode::getDistinct(getLLVMContext(),
7534 llvm::ArrayRef
<llvm::Metadata
*>());
7540 llvm::Metadata
*CodeGenModule::CreateMetadataIdentifierForType(QualType T
) {
7541 return CreateMetadataIdentifierImpl(T
, MetadataIdMap
, "");
7545 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T
) {
7546 return CreateMetadataIdentifierImpl(T
, VirtualMetadataIdMap
, ".virtual");
7549 // Generalize pointer types to a void pointer with the qualifiers of the
7550 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7551 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7553 static QualType
GeneralizeType(ASTContext
&Ctx
, QualType Ty
) {
7554 if (!Ty
->isPointerType())
7557 return Ctx
.getPointerType(
7558 QualType(Ctx
.VoidTy
).withCVRQualifiers(
7559 Ty
->getPointeeType().getCVRQualifiers()));
7562 // Apply type generalization to a FunctionType's return and argument types
7563 static QualType
GeneralizeFunctionType(ASTContext
&Ctx
, QualType Ty
) {
7564 if (auto *FnType
= Ty
->getAs
<FunctionProtoType
>()) {
7565 SmallVector
<QualType
, 8> GeneralizedParams
;
7566 for (auto &Param
: FnType
->param_types())
7567 GeneralizedParams
.push_back(GeneralizeType(Ctx
, Param
));
7569 return Ctx
.getFunctionType(
7570 GeneralizeType(Ctx
, FnType
->getReturnType()),
7571 GeneralizedParams
, FnType
->getExtProtoInfo());
7574 if (auto *FnType
= Ty
->getAs
<FunctionNoProtoType
>())
7575 return Ctx
.getFunctionNoProtoType(
7576 GeneralizeType(Ctx
, FnType
->getReturnType()));
7578 llvm_unreachable("Encountered unknown FunctionType");
7581 llvm::Metadata
*CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T
) {
7582 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T
),
7583 GeneralizedMetadataIdMap
, ".generalized");
7586 /// Returns whether this module needs the "all-vtables" type identifier.
7587 bool CodeGenModule::NeedAllVtablesTypeId() const {
7588 // Returns true if at least one of vtable-based CFI checkers is enabled and
7589 // is not in the trapping mode.
7590 return ((LangOpts
.Sanitize
.has(SanitizerKind::CFIVCall
) &&
7591 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIVCall
)) ||
7592 (LangOpts
.Sanitize
.has(SanitizerKind::CFINVCall
) &&
7593 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFINVCall
)) ||
7594 (LangOpts
.Sanitize
.has(SanitizerKind::CFIDerivedCast
) &&
7595 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIDerivedCast
)) ||
7596 (LangOpts
.Sanitize
.has(SanitizerKind::CFIUnrelatedCast
) &&
7597 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIUnrelatedCast
)));
7600 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable
*VTable
,
7602 const CXXRecordDecl
*RD
) {
7603 llvm::Metadata
*MD
=
7604 CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
7605 VTable
->addTypeMetadata(Offset
.getQuantity(), MD
);
7607 if (CodeGenOpts
.SanitizeCfiCrossDso
)
7608 if (auto CrossDsoTypeId
= CreateCrossDsoCfiTypeId(MD
))
7609 VTable
->addTypeMetadata(Offset
.getQuantity(),
7610 llvm::ConstantAsMetadata::get(CrossDsoTypeId
));
7612 if (NeedAllVtablesTypeId()) {
7613 llvm::Metadata
*MD
= llvm::MDString::get(getLLVMContext(), "all-vtables");
7614 VTable
->addTypeMetadata(Offset
.getQuantity(), MD
);
7618 llvm::SanitizerStatReport
&CodeGenModule::getSanStats() {
7620 SanStats
= std::make_unique
<llvm::SanitizerStatReport
>(&getModule());
7626 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr
*E
,
7627 CodeGenFunction
&CGF
) {
7628 llvm::Constant
*C
= ConstantEmitter(CGF
).emitAbstract(E
, E
->getType());
7629 auto *SamplerT
= getOpenCLRuntime().getSamplerType(E
->getType().getTypePtr());
7630 auto *FTy
= llvm::FunctionType::get(SamplerT
, {C
->getType()}, false);
7631 auto *Call
= CGF
.EmitRuntimeCall(
7632 CreateRuntimeFunction(FTy
, "__translate_sampler_initializer"), {C
});
7636 CharUnits
CodeGenModule::getNaturalPointeeTypeAlignment(
7637 QualType T
, LValueBaseInfo
*BaseInfo
, TBAAAccessInfo
*TBAAInfo
) {
7638 return getNaturalTypeAlignment(T
->getPointeeType(), BaseInfo
, TBAAInfo
,
7639 /* forPointeeType= */ true);
7642 CharUnits
CodeGenModule::getNaturalTypeAlignment(QualType T
,
7643 LValueBaseInfo
*BaseInfo
,
7644 TBAAAccessInfo
*TBAAInfo
,
7645 bool forPointeeType
) {
7647 *TBAAInfo
= getTBAAAccessInfo(T
);
7649 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7650 // that doesn't return the information we need to compute BaseInfo.
7652 // Honor alignment typedef attributes even on incomplete types.
7653 // We also honor them straight for C++ class types, even as pointees;
7654 // there's an expressivity gap here.
7655 if (auto TT
= T
->getAs
<TypedefType
>()) {
7656 if (auto Align
= TT
->getDecl()->getMaxAlignment()) {
7658 *BaseInfo
= LValueBaseInfo(AlignmentSource::AttributedType
);
7659 return getContext().toCharUnitsFromBits(Align
);
7663 bool AlignForArray
= T
->isArrayType();
7665 // Analyze the base element type, so we don't get confused by incomplete
7667 T
= getContext().getBaseElementType(T
);
7669 if (T
->isIncompleteType()) {
7670 // We could try to replicate the logic from
7671 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7672 // type is incomplete, so it's impossible to test. We could try to reuse
7673 // getTypeAlignIfKnown, but that doesn't return the information we need
7674 // to set BaseInfo. So just ignore the possibility that the alignment is
7675 // greater than one.
7677 *BaseInfo
= LValueBaseInfo(AlignmentSource::Type
);
7678 return CharUnits::One();
7682 *BaseInfo
= LValueBaseInfo(AlignmentSource::Type
);
7684 CharUnits Alignment
;
7685 const CXXRecordDecl
*RD
;
7686 if (T
.getQualifiers().hasUnaligned()) {
7687 Alignment
= CharUnits::One();
7688 } else if (forPointeeType
&& !AlignForArray
&&
7689 (RD
= T
->getAsCXXRecordDecl())) {
7690 // For C++ class pointees, we don't know whether we're pointing at a
7691 // base or a complete object, so we generally need to use the
7692 // non-virtual alignment.
7693 Alignment
= getClassPointerAlignment(RD
);
7695 Alignment
= getContext().getTypeAlignInChars(T
);
7698 // Cap to the global maximum type alignment unless the alignment
7699 // was somehow explicit on the type.
7700 if (unsigned MaxAlign
= getLangOpts().MaxTypeAlign
) {
7701 if (Alignment
.getQuantity() > MaxAlign
&&
7702 !getContext().isAlignmentRequired(T
))
7703 Alignment
= CharUnits::fromQuantity(MaxAlign
);
7708 bool CodeGenModule::stopAutoInit() {
7709 unsigned StopAfter
= getContext().getLangOpts().TrivialAutoVarInitStopAfter
;
7711 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7713 if (NumAutoVarInit
>= StopAfter
) {
7716 if (!NumAutoVarInit
) {
7717 unsigned DiagID
= getDiags().getCustomDiagID(
7718 DiagnosticsEngine::Warning
,
7719 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7720 "number of times ftrivial-auto-var-init=%1 gets applied.");
7721 getDiags().Report(DiagID
)
7723 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7724 LangOptions::TrivialAutoVarInitKind::Zero
7733 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream
&OS
,
7734 const Decl
*D
) const {
7735 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7736 // postfix beginning with '.' since the symbol name can be demangled.
7738 OS
<< (isa
<VarDecl
>(D
) ? ".static." : ".intern.");
7740 OS
<< (isa
<VarDecl
>(D
) ? "__static__" : "__intern__");
7742 // If the CUID is not specified we try to generate a unique postfix.
7743 if (getLangOpts().CUID
.empty()) {
7744 SourceManager
&SM
= getContext().getSourceManager();
7745 PresumedLoc PLoc
= SM
.getPresumedLoc(D
->getLocation());
7746 assert(PLoc
.isValid() && "Source location is expected to be valid.");
7748 // Get the hash of the user defined macros.
7750 llvm::MD5::MD5Result Result
;
7751 for (const auto &Arg
: PreprocessorOpts
.Macros
)
7752 Hash
.update(Arg
.first
);
7755 // Get the UniqueID for the file containing the decl.
7756 llvm::sys::fs::UniqueID ID
;
7757 if (llvm::sys::fs::getUniqueID(PLoc
.getFilename(), ID
)) {
7758 PLoc
= SM
.getPresumedLoc(D
->getLocation(), /*UseLineDirectives=*/false);
7759 assert(PLoc
.isValid() && "Source location is expected to be valid.");
7760 if (auto EC
= llvm::sys::fs::getUniqueID(PLoc
.getFilename(), ID
))
7761 SM
.getDiagnostics().Report(diag::err_cannot_open_file
)
7762 << PLoc
.getFilename() << EC
.message();
7764 OS
<< llvm::format("%x", ID
.getFile()) << llvm::format("%x", ID
.getDevice())
7765 << "_" << llvm::utohexstr(Result
.low(), /*LowerCase=*/true, /*Width=*/8);
7767 OS
<< getContext().getCUIDHash();
7771 void CodeGenModule::moveLazyEmissionStates(CodeGenModule
*NewBuilder
) {
7772 assert(DeferredDeclsToEmit
.empty() &&
7773 "Should have emitted all decls deferred to emit.");
7774 assert(NewBuilder
->DeferredDecls
.empty() &&
7775 "Newly created module should not have deferred decls");
7776 NewBuilder
->DeferredDecls
= std::move(DeferredDecls
);
7777 assert(EmittedDeferredDecls
.empty() &&
7778 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7780 assert(NewBuilder
->DeferredVTables
.empty() &&
7781 "Newly created module should not have deferred vtables");
7782 NewBuilder
->DeferredVTables
= std::move(DeferredVTables
);
7784 assert(NewBuilder
->MangledDeclNames
.empty() &&
7785 "Newly created module should not have mangled decl names");
7786 assert(NewBuilder
->Manglings
.empty() &&
7787 "Newly created module should not have manglings");
7788 NewBuilder
->Manglings
= std::move(Manglings
);
7790 NewBuilder
->WeakRefReferences
= std::move(WeakRefReferences
);
7792 NewBuilder
->ABI
->MangleCtx
= std::move(ABI
->MangleCtx
);