[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / Sema / SemaExpr.cpp
blob84ec4d7bb0ef08ef2bfb99e7fd409a1aa269ffd4
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for expressions.
11 //===----------------------------------------------------------------------===//
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Designator.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/OperationKinds.h"
29 #include "clang/AST/ParentMapContext.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/Type.h"
32 #include "clang/AST/TypeLoc.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/DiagnosticSema.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Lex/LiteralSupport.h"
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Sema/AnalysisBasedWarnings.h"
42 #include "clang/Sema/DeclSpec.h"
43 #include "clang/Sema/DelayedDiagnostic.h"
44 #include "clang/Sema/Initialization.h"
45 #include "clang/Sema/Lookup.h"
46 #include "clang/Sema/Overload.h"
47 #include "clang/Sema/ParsedTemplate.h"
48 #include "clang/Sema/Scope.h"
49 #include "clang/Sema/ScopeInfo.h"
50 #include "clang/Sema/SemaFixItUtils.h"
51 #include "clang/Sema/SemaInternal.h"
52 #include "clang/Sema/Template.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/SaveAndRestore.h"
58 #include "llvm/Support/TypeSize.h"
59 #include <optional>
61 using namespace clang;
62 using namespace sema;
64 /// Determine whether the use of this declaration is valid, without
65 /// emitting diagnostics.
66 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
67 // See if this is an auto-typed variable whose initializer we are parsing.
68 if (ParsingInitForAutoVars.count(D))
69 return false;
71 // See if this is a deleted function.
72 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73 if (FD->isDeleted())
74 return false;
76 // If the function has a deduced return type, and we can't deduce it,
77 // then we can't use it either.
78 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
79 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
80 return false;
82 // See if this is an aligned allocation/deallocation function that is
83 // unavailable.
84 if (TreatUnavailableAsInvalid &&
85 isUnavailableAlignedAllocationFunction(*FD))
86 return false;
89 // See if this function is unavailable.
90 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
91 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
92 return false;
94 if (isa<UnresolvedUsingIfExistsDecl>(D))
95 return false;
97 return true;
100 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
101 // Warn if this is used but marked unused.
102 if (const auto *A = D->getAttr<UnusedAttr>()) {
103 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
104 // should diagnose them.
105 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
106 A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
107 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
108 if (DC && !DC->hasAttr<UnusedAttr>())
109 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
114 /// Emit a note explaining that this function is deleted.
115 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
116 assert(Decl && Decl->isDeleted());
118 if (Decl->isDefaulted()) {
119 // If the method was explicitly defaulted, point at that declaration.
120 if (!Decl->isImplicit())
121 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
123 // Try to diagnose why this special member function was implicitly
124 // deleted. This might fail, if that reason no longer applies.
125 DiagnoseDeletedDefaultedFunction(Decl);
126 return;
129 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
130 if (Ctor && Ctor->isInheritingConstructor())
131 return NoteDeletedInheritingConstructor(Ctor);
133 Diag(Decl->getLocation(), diag::note_availability_specified_here)
134 << Decl << 1;
137 /// Determine whether a FunctionDecl was ever declared with an
138 /// explicit storage class.
139 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
140 for (auto *I : D->redecls()) {
141 if (I->getStorageClass() != SC_None)
142 return true;
144 return false;
147 /// Check whether we're in an extern inline function and referring to a
148 /// variable or function with internal linkage (C11 6.7.4p3).
150 /// This is only a warning because we used to silently accept this code, but
151 /// in many cases it will not behave correctly. This is not enabled in C++ mode
152 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
153 /// and so while there may still be user mistakes, most of the time we can't
154 /// prove that there are errors.
155 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
156 const NamedDecl *D,
157 SourceLocation Loc) {
158 // This is disabled under C++; there are too many ways for this to fire in
159 // contexts where the warning is a false positive, or where it is technically
160 // correct but benign.
161 if (S.getLangOpts().CPlusPlus)
162 return;
164 // Check if this is an inlined function or method.
165 FunctionDecl *Current = S.getCurFunctionDecl();
166 if (!Current)
167 return;
168 if (!Current->isInlined())
169 return;
170 if (!Current->isExternallyVisible())
171 return;
173 // Check if the decl has internal linkage.
174 if (D->getFormalLinkage() != InternalLinkage)
175 return;
177 // Downgrade from ExtWarn to Extension if
178 // (1) the supposedly external inline function is in the main file,
179 // and probably won't be included anywhere else.
180 // (2) the thing we're referencing is a pure function.
181 // (3) the thing we're referencing is another inline function.
182 // This last can give us false negatives, but it's better than warning on
183 // wrappers for simple C library functions.
184 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
185 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
186 if (!DowngradeWarning && UsedFn)
187 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
189 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
190 : diag::ext_internal_in_extern_inline)
191 << /*IsVar=*/!UsedFn << D;
193 S.MaybeSuggestAddingStaticToDecl(Current);
195 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
196 << D;
199 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
200 const FunctionDecl *First = Cur->getFirstDecl();
202 // Suggest "static" on the function, if possible.
203 if (!hasAnyExplicitStorageClass(First)) {
204 SourceLocation DeclBegin = First->getSourceRange().getBegin();
205 Diag(DeclBegin, diag::note_convert_inline_to_static)
206 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
210 /// Determine whether the use of this declaration is valid, and
211 /// emit any corresponding diagnostics.
213 /// This routine diagnoses various problems with referencing
214 /// declarations that can occur when using a declaration. For example,
215 /// it might warn if a deprecated or unavailable declaration is being
216 /// used, or produce an error (and return true) if a C++0x deleted
217 /// function is being used.
219 /// \returns true if there was an error (this declaration cannot be
220 /// referenced), false otherwise.
222 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
223 const ObjCInterfaceDecl *UnknownObjCClass,
224 bool ObjCPropertyAccess,
225 bool AvoidPartialAvailabilityChecks,
226 ObjCInterfaceDecl *ClassReceiver,
227 bool SkipTrailingRequiresClause) {
228 SourceLocation Loc = Locs.front();
229 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
230 // If there were any diagnostics suppressed by template argument deduction,
231 // emit them now.
232 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
233 if (Pos != SuppressedDiagnostics.end()) {
234 for (const PartialDiagnosticAt &Suppressed : Pos->second)
235 Diag(Suppressed.first, Suppressed.second);
237 // Clear out the list of suppressed diagnostics, so that we don't emit
238 // them again for this specialization. However, we don't obsolete this
239 // entry from the table, because we want to avoid ever emitting these
240 // diagnostics again.
241 Pos->second.clear();
244 // C++ [basic.start.main]p3:
245 // The function 'main' shall not be used within a program.
246 if (cast<FunctionDecl>(D)->isMain())
247 Diag(Loc, diag::ext_main_used);
249 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
252 // See if this is an auto-typed variable whose initializer we are parsing.
253 if (ParsingInitForAutoVars.count(D)) {
254 if (isa<BindingDecl>(D)) {
255 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
256 << D->getDeclName();
257 } else {
258 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
259 << D->getDeclName() << cast<VarDecl>(D)->getType();
261 return true;
264 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265 // See if this is a deleted function.
266 if (FD->isDeleted()) {
267 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
268 if (Ctor && Ctor->isInheritingConstructor())
269 Diag(Loc, diag::err_deleted_inherited_ctor_use)
270 << Ctor->getParent()
271 << Ctor->getInheritedConstructor().getConstructor()->getParent();
272 else
273 Diag(Loc, diag::err_deleted_function_use);
274 NoteDeletedFunction(FD);
275 return true;
278 // [expr.prim.id]p4
279 // A program that refers explicitly or implicitly to a function with a
280 // trailing requires-clause whose constraint-expression is not satisfied,
281 // other than to declare it, is ill-formed. [...]
283 // See if this is a function with constraints that need to be satisfied.
284 // Check this before deducing the return type, as it might instantiate the
285 // definition.
286 if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
287 ConstraintSatisfaction Satisfaction;
288 if (CheckFunctionConstraints(FD, Satisfaction, Loc,
289 /*ForOverloadResolution*/ true))
290 // A diagnostic will have already been generated (non-constant
291 // constraint expression, for example)
292 return true;
293 if (!Satisfaction.IsSatisfied) {
294 Diag(Loc,
295 diag::err_reference_to_function_with_unsatisfied_constraints)
296 << D;
297 DiagnoseUnsatisfiedConstraint(Satisfaction);
298 return true;
302 // If the function has a deduced return type, and we can't deduce it,
303 // then we can't use it either.
304 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
305 DeduceReturnType(FD, Loc))
306 return true;
308 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
309 return true;
311 if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
312 return true;
315 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
316 // Lambdas are only default-constructible or assignable in C++2a onwards.
317 if (MD->getParent()->isLambda() &&
318 ((isa<CXXConstructorDecl>(MD) &&
319 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
320 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
321 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
322 << !isa<CXXConstructorDecl>(MD);
326 auto getReferencedObjCProp = [](const NamedDecl *D) ->
327 const ObjCPropertyDecl * {
328 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
329 return MD->findPropertyDecl();
330 return nullptr;
332 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
333 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
334 return true;
335 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
336 return true;
339 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
340 // Only the variables omp_in and omp_out are allowed in the combiner.
341 // Only the variables omp_priv and omp_orig are allowed in the
342 // initializer-clause.
343 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
344 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
345 isa<VarDecl>(D)) {
346 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
347 << getCurFunction()->HasOMPDeclareReductionCombiner;
348 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
349 return true;
352 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
353 // List-items in map clauses on this construct may only refer to the declared
354 // variable var and entities that could be referenced by a procedure defined
355 // at the same location.
356 // [OpenMP 5.2] Also allow iterator declared variables.
357 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
358 !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
359 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
360 << getOpenMPDeclareMapperVarName();
361 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
362 return true;
365 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
366 Diag(Loc, diag::err_use_of_empty_using_if_exists);
367 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
368 return true;
371 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
372 AvoidPartialAvailabilityChecks, ClassReceiver);
374 DiagnoseUnusedOfDecl(*this, D, Loc);
376 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
378 if (auto *VD = dyn_cast<ValueDecl>(D))
379 checkTypeSupport(VD->getType(), Loc, VD);
381 if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
382 if (!Context.getTargetInfo().isTLSSupported())
383 if (const auto *VD = dyn_cast<VarDecl>(D))
384 if (VD->getTLSKind() != VarDecl::TLS_None)
385 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
388 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
389 !isUnevaluatedContext()) {
390 // C++ [expr.prim.req.nested] p3
391 // A local parameter shall only appear as an unevaluated operand
392 // (Clause 8) within the constraint-expression.
393 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
394 << D;
395 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
396 return true;
399 return false;
402 /// DiagnoseSentinelCalls - This routine checks whether a call or
403 /// message-send is to a declaration with the sentinel attribute, and
404 /// if so, it checks that the requirements of the sentinel are
405 /// satisfied.
406 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
407 ArrayRef<Expr *> Args) {
408 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
409 if (!attr)
410 return;
412 // The number of formal parameters of the declaration.
413 unsigned numFormalParams;
415 // The kind of declaration. This is also an index into a %select in
416 // the diagnostic.
417 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
419 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
420 numFormalParams = MD->param_size();
421 calleeType = CT_Method;
422 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
423 numFormalParams = FD->param_size();
424 calleeType = CT_Function;
425 } else if (isa<VarDecl>(D)) {
426 QualType type = cast<ValueDecl>(D)->getType();
427 const FunctionType *fn = nullptr;
428 if (const PointerType *ptr = type->getAs<PointerType>()) {
429 fn = ptr->getPointeeType()->getAs<FunctionType>();
430 if (!fn) return;
431 calleeType = CT_Function;
432 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
433 fn = ptr->getPointeeType()->castAs<FunctionType>();
434 calleeType = CT_Block;
435 } else {
436 return;
439 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
440 numFormalParams = proto->getNumParams();
441 } else {
442 numFormalParams = 0;
444 } else {
445 return;
448 // "nullPos" is the number of formal parameters at the end which
449 // effectively count as part of the variadic arguments. This is
450 // useful if you would prefer to not have *any* formal parameters,
451 // but the language forces you to have at least one.
452 unsigned nullPos = attr->getNullPos();
453 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
454 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
456 // The number of arguments which should follow the sentinel.
457 unsigned numArgsAfterSentinel = attr->getSentinel();
459 // If there aren't enough arguments for all the formal parameters,
460 // the sentinel, and the args after the sentinel, complain.
461 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
462 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
463 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
464 return;
467 // Otherwise, find the sentinel expression.
468 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
469 if (!sentinelExpr) return;
470 if (sentinelExpr->isValueDependent()) return;
471 if (Context.isSentinelNullExpr(sentinelExpr)) return;
473 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
474 // or 'NULL' if those are actually defined in the context. Only use
475 // 'nil' for ObjC methods, where it's much more likely that the
476 // variadic arguments form a list of object pointers.
477 SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
478 std::string NullValue;
479 if (calleeType == CT_Method && PP.isMacroDefined("nil"))
480 NullValue = "nil";
481 else if (getLangOpts().CPlusPlus11)
482 NullValue = "nullptr";
483 else if (PP.isMacroDefined("NULL"))
484 NullValue = "NULL";
485 else
486 NullValue = "(void*) 0";
488 if (MissingNilLoc.isInvalid())
489 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
490 else
491 Diag(MissingNilLoc, diag::warn_missing_sentinel)
492 << int(calleeType)
493 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
494 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
497 SourceRange Sema::getExprRange(Expr *E) const {
498 return E ? E->getSourceRange() : SourceRange();
501 //===----------------------------------------------------------------------===//
502 // Standard Promotions and Conversions
503 //===----------------------------------------------------------------------===//
505 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
506 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
507 // Handle any placeholder expressions which made it here.
508 if (E->hasPlaceholderType()) {
509 ExprResult result = CheckPlaceholderExpr(E);
510 if (result.isInvalid()) return ExprError();
511 E = result.get();
514 QualType Ty = E->getType();
515 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
517 if (Ty->isFunctionType()) {
518 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
519 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
520 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
521 return ExprError();
523 E = ImpCastExprToType(E, Context.getPointerType(Ty),
524 CK_FunctionToPointerDecay).get();
525 } else if (Ty->isArrayType()) {
526 // In C90 mode, arrays only promote to pointers if the array expression is
527 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
528 // type 'array of type' is converted to an expression that has type 'pointer
529 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
530 // that has type 'array of type' ...". The relevant change is "an lvalue"
531 // (C90) to "an expression" (C99).
533 // C++ 4.2p1:
534 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
535 // T" can be converted to an rvalue of type "pointer to T".
537 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
538 ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
539 CK_ArrayToPointerDecay);
540 if (Res.isInvalid())
541 return ExprError();
542 E = Res.get();
545 return E;
548 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
549 // Check to see if we are dereferencing a null pointer. If so,
550 // and if not volatile-qualified, this is undefined behavior that the
551 // optimizer will delete, so warn about it. People sometimes try to use this
552 // to get a deterministic trap and are surprised by clang's behavior. This
553 // only handles the pattern "*null", which is a very syntactic check.
554 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
555 if (UO && UO->getOpcode() == UO_Deref &&
556 UO->getSubExpr()->getType()->isPointerType()) {
557 const LangAS AS =
558 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
559 if ((!isTargetAddressSpace(AS) ||
560 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
561 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
562 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
563 !UO->getType().isVolatileQualified()) {
564 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
565 S.PDiag(diag::warn_indirection_through_null)
566 << UO->getSubExpr()->getSourceRange());
567 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
568 S.PDiag(diag::note_indirection_through_null));
573 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
574 SourceLocation AssignLoc,
575 const Expr* RHS) {
576 const ObjCIvarDecl *IV = OIRE->getDecl();
577 if (!IV)
578 return;
580 DeclarationName MemberName = IV->getDeclName();
581 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
582 if (!Member || !Member->isStr("isa"))
583 return;
585 const Expr *Base = OIRE->getBase();
586 QualType BaseType = Base->getType();
587 if (OIRE->isArrow())
588 BaseType = BaseType->getPointeeType();
589 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
590 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
591 ObjCInterfaceDecl *ClassDeclared = nullptr;
592 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
593 if (!ClassDeclared->getSuperClass()
594 && (*ClassDeclared->ivar_begin()) == IV) {
595 if (RHS) {
596 NamedDecl *ObjectSetClass =
597 S.LookupSingleName(S.TUScope,
598 &S.Context.Idents.get("object_setClass"),
599 SourceLocation(), S.LookupOrdinaryName);
600 if (ObjectSetClass) {
601 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
602 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
603 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
604 "object_setClass(")
605 << FixItHint::CreateReplacement(
606 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
607 << FixItHint::CreateInsertion(RHSLocEnd, ")");
609 else
610 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
611 } else {
612 NamedDecl *ObjectGetClass =
613 S.LookupSingleName(S.TUScope,
614 &S.Context.Idents.get("object_getClass"),
615 SourceLocation(), S.LookupOrdinaryName);
616 if (ObjectGetClass)
617 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
618 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
619 "object_getClass(")
620 << FixItHint::CreateReplacement(
621 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
622 else
623 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
625 S.Diag(IV->getLocation(), diag::note_ivar_decl);
630 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
631 // Handle any placeholder expressions which made it here.
632 if (E->hasPlaceholderType()) {
633 ExprResult result = CheckPlaceholderExpr(E);
634 if (result.isInvalid()) return ExprError();
635 E = result.get();
638 // C++ [conv.lval]p1:
639 // A glvalue of a non-function, non-array type T can be
640 // converted to a prvalue.
641 if (!E->isGLValue()) return E;
643 QualType T = E->getType();
644 assert(!T.isNull() && "r-value conversion on typeless expression?");
646 // lvalue-to-rvalue conversion cannot be applied to function or array types.
647 if (T->isFunctionType() || T->isArrayType())
648 return E;
650 // We don't want to throw lvalue-to-rvalue casts on top of
651 // expressions of certain types in C++.
652 if (getLangOpts().CPlusPlus &&
653 (E->getType() == Context.OverloadTy ||
654 T->isDependentType() ||
655 T->isRecordType()))
656 return E;
658 // The C standard is actually really unclear on this point, and
659 // DR106 tells us what the result should be but not why. It's
660 // generally best to say that void types just doesn't undergo
661 // lvalue-to-rvalue at all. Note that expressions of unqualified
662 // 'void' type are never l-values, but qualified void can be.
663 if (T->isVoidType())
664 return E;
666 // OpenCL usually rejects direct accesses to values of 'half' type.
667 if (getLangOpts().OpenCL &&
668 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
669 T->isHalfType()) {
670 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
671 << 0 << T;
672 return ExprError();
675 CheckForNullPointerDereference(*this, E);
676 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
677 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
678 &Context.Idents.get("object_getClass"),
679 SourceLocation(), LookupOrdinaryName);
680 if (ObjectGetClass)
681 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
682 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
683 << FixItHint::CreateReplacement(
684 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
685 else
686 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
688 else if (const ObjCIvarRefExpr *OIRE =
689 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
690 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
692 // C++ [conv.lval]p1:
693 // [...] If T is a non-class type, the type of the prvalue is the
694 // cv-unqualified version of T. Otherwise, the type of the
695 // rvalue is T.
697 // C99 6.3.2.1p2:
698 // If the lvalue has qualified type, the value has the unqualified
699 // version of the type of the lvalue; otherwise, the value has the
700 // type of the lvalue.
701 if (T.hasQualifiers())
702 T = T.getUnqualifiedType();
704 // Under the MS ABI, lock down the inheritance model now.
705 if (T->isMemberPointerType() &&
706 Context.getTargetInfo().getCXXABI().isMicrosoft())
707 (void)isCompleteType(E->getExprLoc(), T);
709 ExprResult Res = CheckLValueToRValueConversionOperand(E);
710 if (Res.isInvalid())
711 return Res;
712 E = Res.get();
714 // Loading a __weak object implicitly retains the value, so we need a cleanup to
715 // balance that.
716 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
717 Cleanup.setExprNeedsCleanups(true);
719 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
720 Cleanup.setExprNeedsCleanups(true);
722 // C++ [conv.lval]p3:
723 // If T is cv std::nullptr_t, the result is a null pointer constant.
724 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
725 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
726 CurFPFeatureOverrides());
728 // C11 6.3.2.1p2:
729 // ... if the lvalue has atomic type, the value has the non-atomic version
730 // of the type of the lvalue ...
731 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
732 T = Atomic->getValueType().getUnqualifiedType();
733 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
734 nullptr, VK_PRValue, FPOptionsOverride());
737 return Res;
740 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
741 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
742 if (Res.isInvalid())
743 return ExprError();
744 Res = DefaultLvalueConversion(Res.get());
745 if (Res.isInvalid())
746 return ExprError();
747 return Res;
750 /// CallExprUnaryConversions - a special case of an unary conversion
751 /// performed on a function designator of a call expression.
752 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
753 QualType Ty = E->getType();
754 ExprResult Res = E;
755 // Only do implicit cast for a function type, but not for a pointer
756 // to function type.
757 if (Ty->isFunctionType()) {
758 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
759 CK_FunctionToPointerDecay);
760 if (Res.isInvalid())
761 return ExprError();
763 Res = DefaultLvalueConversion(Res.get());
764 if (Res.isInvalid())
765 return ExprError();
766 return Res.get();
769 /// UsualUnaryConversions - Performs various conversions that are common to most
770 /// operators (C99 6.3). The conversions of array and function types are
771 /// sometimes suppressed. For example, the array->pointer conversion doesn't
772 /// apply if the array is an argument to the sizeof or address (&) operators.
773 /// In these instances, this routine should *not* be called.
774 ExprResult Sema::UsualUnaryConversions(Expr *E) {
775 // First, convert to an r-value.
776 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
777 if (Res.isInvalid())
778 return ExprError();
779 E = Res.get();
781 QualType Ty = E->getType();
782 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
784 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
785 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
786 (getLangOpts().getFPEvalMethod() !=
787 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
788 PP.getLastFPEvalPragmaLocation().isValid())) {
789 switch (EvalMethod) {
790 default:
791 llvm_unreachable("Unrecognized float evaluation method");
792 break;
793 case LangOptions::FEM_UnsetOnCommandLine:
794 llvm_unreachable("Float evaluation method should be set by now");
795 break;
796 case LangOptions::FEM_Double:
797 if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
798 // Widen the expression to double.
799 return Ty->isComplexType()
800 ? ImpCastExprToType(E,
801 Context.getComplexType(Context.DoubleTy),
802 CK_FloatingComplexCast)
803 : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
804 break;
805 case LangOptions::FEM_Extended:
806 if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
807 // Widen the expression to long double.
808 return Ty->isComplexType()
809 ? ImpCastExprToType(
810 E, Context.getComplexType(Context.LongDoubleTy),
811 CK_FloatingComplexCast)
812 : ImpCastExprToType(E, Context.LongDoubleTy,
813 CK_FloatingCast);
814 break;
818 // Half FP have to be promoted to float unless it is natively supported
819 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
820 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
822 // Try to perform integral promotions if the object has a theoretically
823 // promotable type.
824 if (Ty->isIntegralOrUnscopedEnumerationType()) {
825 // C99 6.3.1.1p2:
827 // The following may be used in an expression wherever an int or
828 // unsigned int may be used:
829 // - an object or expression with an integer type whose integer
830 // conversion rank is less than or equal to the rank of int
831 // and unsigned int.
832 // - A bit-field of type _Bool, int, signed int, or unsigned int.
834 // If an int can represent all values of the original type, the
835 // value is converted to an int; otherwise, it is converted to an
836 // unsigned int. These are called the integer promotions. All
837 // other types are unchanged by the integer promotions.
839 QualType PTy = Context.isPromotableBitField(E);
840 if (!PTy.isNull()) {
841 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
842 return E;
844 if (Context.isPromotableIntegerType(Ty)) {
845 QualType PT = Context.getPromotedIntegerType(Ty);
846 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
847 return E;
850 return E;
853 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
854 /// do not have a prototype. Arguments that have type float or __fp16
855 /// are promoted to double. All other argument types are converted by
856 /// UsualUnaryConversions().
857 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
858 QualType Ty = E->getType();
859 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
861 ExprResult Res = UsualUnaryConversions(E);
862 if (Res.isInvalid())
863 return ExprError();
864 E = Res.get();
866 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
867 // promote to double.
868 // Note that default argument promotion applies only to float (and
869 // half/fp16); it does not apply to _Float16.
870 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
871 if (BTy && (BTy->getKind() == BuiltinType::Half ||
872 BTy->getKind() == BuiltinType::Float)) {
873 if (getLangOpts().OpenCL &&
874 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
875 if (BTy->getKind() == BuiltinType::Half) {
876 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
878 } else {
879 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
882 if (BTy &&
883 getLangOpts().getExtendIntArgs() ==
884 LangOptions::ExtendArgsKind::ExtendTo64 &&
885 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
886 Context.getTypeSizeInChars(BTy) <
887 Context.getTypeSizeInChars(Context.LongLongTy)) {
888 E = (Ty->isUnsignedIntegerType())
889 ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
890 .get()
891 : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
892 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
893 "Unexpected typesize for LongLongTy");
896 // C++ performs lvalue-to-rvalue conversion as a default argument
897 // promotion, even on class types, but note:
898 // C++11 [conv.lval]p2:
899 // When an lvalue-to-rvalue conversion occurs in an unevaluated
900 // operand or a subexpression thereof the value contained in the
901 // referenced object is not accessed. Otherwise, if the glvalue
902 // has a class type, the conversion copy-initializes a temporary
903 // of type T from the glvalue and the result of the conversion
904 // is a prvalue for the temporary.
905 // FIXME: add some way to gate this entire thing for correctness in
906 // potentially potentially evaluated contexts.
907 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
908 ExprResult Temp = PerformCopyInitialization(
909 InitializedEntity::InitializeTemporary(E->getType()),
910 E->getExprLoc(), E);
911 if (Temp.isInvalid())
912 return ExprError();
913 E = Temp.get();
916 return E;
919 /// Determine the degree of POD-ness for an expression.
920 /// Incomplete types are considered POD, since this check can be performed
921 /// when we're in an unevaluated context.
922 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
923 if (Ty->isIncompleteType()) {
924 // C++11 [expr.call]p7:
925 // After these conversions, if the argument does not have arithmetic,
926 // enumeration, pointer, pointer to member, or class type, the program
927 // is ill-formed.
929 // Since we've already performed array-to-pointer and function-to-pointer
930 // decay, the only such type in C++ is cv void. This also handles
931 // initializer lists as variadic arguments.
932 if (Ty->isVoidType())
933 return VAK_Invalid;
935 if (Ty->isObjCObjectType())
936 return VAK_Invalid;
937 return VAK_Valid;
940 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
941 return VAK_Invalid;
943 if (Ty.isCXX98PODType(Context))
944 return VAK_Valid;
946 // C++11 [expr.call]p7:
947 // Passing a potentially-evaluated argument of class type (Clause 9)
948 // having a non-trivial copy constructor, a non-trivial move constructor,
949 // or a non-trivial destructor, with no corresponding parameter,
950 // is conditionally-supported with implementation-defined semantics.
951 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
952 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
953 if (!Record->hasNonTrivialCopyConstructor() &&
954 !Record->hasNonTrivialMoveConstructor() &&
955 !Record->hasNonTrivialDestructor())
956 return VAK_ValidInCXX11;
958 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
959 return VAK_Valid;
961 if (Ty->isObjCObjectType())
962 return VAK_Invalid;
964 if (getLangOpts().MSVCCompat)
965 return VAK_MSVCUndefined;
967 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
968 // permitted to reject them. We should consider doing so.
969 return VAK_Undefined;
972 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
973 // Don't allow one to pass an Objective-C interface to a vararg.
974 const QualType &Ty = E->getType();
975 VarArgKind VAK = isValidVarArgType(Ty);
977 // Complain about passing non-POD types through varargs.
978 switch (VAK) {
979 case VAK_ValidInCXX11:
980 DiagRuntimeBehavior(
981 E->getBeginLoc(), nullptr,
982 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
983 [[fallthrough]];
984 case VAK_Valid:
985 if (Ty->isRecordType()) {
986 // This is unlikely to be what the user intended. If the class has a
987 // 'c_str' member function, the user probably meant to call that.
988 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
989 PDiag(diag::warn_pass_class_arg_to_vararg)
990 << Ty << CT << hasCStrMethod(E) << ".c_str()");
992 break;
994 case VAK_Undefined:
995 case VAK_MSVCUndefined:
996 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
997 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
998 << getLangOpts().CPlusPlus11 << Ty << CT);
999 break;
1001 case VAK_Invalid:
1002 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1003 Diag(E->getBeginLoc(),
1004 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1005 << Ty << CT;
1006 else if (Ty->isObjCObjectType())
1007 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1008 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1009 << Ty << CT);
1010 else
1011 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1012 << isa<InitListExpr>(E) << Ty << CT;
1013 break;
1017 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1018 /// will create a trap if the resulting type is not a POD type.
1019 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1020 FunctionDecl *FDecl) {
1021 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1022 // Strip the unbridged-cast placeholder expression off, if applicable.
1023 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1024 (CT == VariadicMethod ||
1025 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1026 E = stripARCUnbridgedCast(E);
1028 // Otherwise, do normal placeholder checking.
1029 } else {
1030 ExprResult ExprRes = CheckPlaceholderExpr(E);
1031 if (ExprRes.isInvalid())
1032 return ExprError();
1033 E = ExprRes.get();
1037 ExprResult ExprRes = DefaultArgumentPromotion(E);
1038 if (ExprRes.isInvalid())
1039 return ExprError();
1041 // Copy blocks to the heap.
1042 if (ExprRes.get()->getType()->isBlockPointerType())
1043 maybeExtendBlockObject(ExprRes);
1045 E = ExprRes.get();
1047 // Diagnostics regarding non-POD argument types are
1048 // emitted along with format string checking in Sema::CheckFunctionCall().
1049 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1050 // Turn this into a trap.
1051 CXXScopeSpec SS;
1052 SourceLocation TemplateKWLoc;
1053 UnqualifiedId Name;
1054 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1055 E->getBeginLoc());
1056 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1057 /*HasTrailingLParen=*/true,
1058 /*IsAddressOfOperand=*/false);
1059 if (TrapFn.isInvalid())
1060 return ExprError();
1062 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1063 std::nullopt, E->getEndLoc());
1064 if (Call.isInvalid())
1065 return ExprError();
1067 ExprResult Comma =
1068 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1069 if (Comma.isInvalid())
1070 return ExprError();
1071 return Comma.get();
1074 if (!getLangOpts().CPlusPlus &&
1075 RequireCompleteType(E->getExprLoc(), E->getType(),
1076 diag::err_call_incomplete_argument))
1077 return ExprError();
1079 return E;
1082 /// Converts an integer to complex float type. Helper function of
1083 /// UsualArithmeticConversions()
1085 /// \return false if the integer expression is an integer type and is
1086 /// successfully converted to the complex type.
1087 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1088 ExprResult &ComplexExpr,
1089 QualType IntTy,
1090 QualType ComplexTy,
1091 bool SkipCast) {
1092 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1093 if (SkipCast) return false;
1094 if (IntTy->isIntegerType()) {
1095 QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1096 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1097 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1098 CK_FloatingRealToComplex);
1099 } else {
1100 assert(IntTy->isComplexIntegerType());
1101 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1102 CK_IntegralComplexToFloatingComplex);
1104 return false;
1107 // This handles complex/complex, complex/float, or float/complex.
1108 // When both operands are complex, the shorter operand is converted to the
1109 // type of the longer, and that is the type of the result. This corresponds
1110 // to what is done when combining two real floating-point operands.
1111 // The fun begins when size promotion occur across type domains.
1112 // From H&S 6.3.4: When one operand is complex and the other is a real
1113 // floating-point type, the less precise type is converted, within it's
1114 // real or complex domain, to the precision of the other type. For example,
1115 // when combining a "long double" with a "double _Complex", the
1116 // "double _Complex" is promoted to "long double _Complex".
1117 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1118 QualType ShorterType,
1119 QualType LongerType,
1120 bool PromotePrecision) {
1121 bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1122 QualType Result =
1123 LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1125 if (PromotePrecision) {
1126 if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1127 Shorter =
1128 S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1129 } else {
1130 if (LongerIsComplex)
1131 LongerType = LongerType->castAs<ComplexType>()->getElementType();
1132 Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1135 return Result;
1138 /// Handle arithmetic conversion with complex types. Helper function of
1139 /// UsualArithmeticConversions()
1140 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1141 ExprResult &RHS, QualType LHSType,
1142 QualType RHSType, bool IsCompAssign) {
1143 // if we have an integer operand, the result is the complex type.
1144 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1145 /*SkipCast=*/false))
1146 return LHSType;
1147 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1148 /*SkipCast=*/IsCompAssign))
1149 return RHSType;
1151 // Compute the rank of the two types, regardless of whether they are complex.
1152 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1153 if (Order < 0)
1154 // Promote the precision of the LHS if not an assignment.
1155 return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1156 /*PromotePrecision=*/!IsCompAssign);
1157 // Promote the precision of the RHS unless it is already the same as the LHS.
1158 return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1159 /*PromotePrecision=*/Order > 0);
1162 /// Handle arithmetic conversion from integer to float. Helper function
1163 /// of UsualArithmeticConversions()
1164 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1165 ExprResult &IntExpr,
1166 QualType FloatTy, QualType IntTy,
1167 bool ConvertFloat, bool ConvertInt) {
1168 if (IntTy->isIntegerType()) {
1169 if (ConvertInt)
1170 // Convert intExpr to the lhs floating point type.
1171 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1172 CK_IntegralToFloating);
1173 return FloatTy;
1176 // Convert both sides to the appropriate complex float.
1177 assert(IntTy->isComplexIntegerType());
1178 QualType result = S.Context.getComplexType(FloatTy);
1180 // _Complex int -> _Complex float
1181 if (ConvertInt)
1182 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1183 CK_IntegralComplexToFloatingComplex);
1185 // float -> _Complex float
1186 if (ConvertFloat)
1187 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1188 CK_FloatingRealToComplex);
1190 return result;
1193 /// Handle arithmethic conversion with floating point types. Helper
1194 /// function of UsualArithmeticConversions()
1195 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1196 ExprResult &RHS, QualType LHSType,
1197 QualType RHSType, bool IsCompAssign) {
1198 bool LHSFloat = LHSType->isRealFloatingType();
1199 bool RHSFloat = RHSType->isRealFloatingType();
1201 // N1169 4.1.4: If one of the operands has a floating type and the other
1202 // operand has a fixed-point type, the fixed-point operand
1203 // is converted to the floating type [...]
1204 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1205 if (LHSFloat)
1206 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1207 else if (!IsCompAssign)
1208 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1209 return LHSFloat ? LHSType : RHSType;
1212 // If we have two real floating types, convert the smaller operand
1213 // to the bigger result.
1214 if (LHSFloat && RHSFloat) {
1215 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1216 if (order > 0) {
1217 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1218 return LHSType;
1221 assert(order < 0 && "illegal float comparison");
1222 if (!IsCompAssign)
1223 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1224 return RHSType;
1227 if (LHSFloat) {
1228 // Half FP has to be promoted to float unless it is natively supported
1229 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1230 LHSType = S.Context.FloatTy;
1232 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1233 /*ConvertFloat=*/!IsCompAssign,
1234 /*ConvertInt=*/ true);
1236 assert(RHSFloat);
1237 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1238 /*ConvertFloat=*/ true,
1239 /*ConvertInt=*/!IsCompAssign);
1242 /// Diagnose attempts to convert between __float128, __ibm128 and
1243 /// long double if there is no support for such conversion.
1244 /// Helper function of UsualArithmeticConversions().
1245 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1246 QualType RHSType) {
1247 // No issue if either is not a floating point type.
1248 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1249 return false;
1251 // No issue if both have the same 128-bit float semantics.
1252 auto *LHSComplex = LHSType->getAs<ComplexType>();
1253 auto *RHSComplex = RHSType->getAs<ComplexType>();
1255 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1256 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1258 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1259 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1261 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1262 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1263 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1264 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1265 return false;
1267 return true;
1270 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1272 namespace {
1273 /// These helper callbacks are placed in an anonymous namespace to
1274 /// permit their use as function template parameters.
1275 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1276 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1279 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1280 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1281 CK_IntegralComplexCast);
1285 /// Handle integer arithmetic conversions. Helper function of
1286 /// UsualArithmeticConversions()
1287 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1288 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1289 ExprResult &RHS, QualType LHSType,
1290 QualType RHSType, bool IsCompAssign) {
1291 // The rules for this case are in C99 6.3.1.8
1292 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1293 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1294 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1295 if (LHSSigned == RHSSigned) {
1296 // Same signedness; use the higher-ranked type
1297 if (order >= 0) {
1298 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1299 return LHSType;
1300 } else if (!IsCompAssign)
1301 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1302 return RHSType;
1303 } else if (order != (LHSSigned ? 1 : -1)) {
1304 // The unsigned type has greater than or equal rank to the
1305 // signed type, so use the unsigned type
1306 if (RHSSigned) {
1307 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1308 return LHSType;
1309 } else if (!IsCompAssign)
1310 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1311 return RHSType;
1312 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1313 // The two types are different widths; if we are here, that
1314 // means the signed type is larger than the unsigned type, so
1315 // use the signed type.
1316 if (LHSSigned) {
1317 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1318 return LHSType;
1319 } else if (!IsCompAssign)
1320 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1321 return RHSType;
1322 } else {
1323 // The signed type is higher-ranked than the unsigned type,
1324 // but isn't actually any bigger (like unsigned int and long
1325 // on most 32-bit systems). Use the unsigned type corresponding
1326 // to the signed type.
1327 QualType result =
1328 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1329 RHS = (*doRHSCast)(S, RHS.get(), result);
1330 if (!IsCompAssign)
1331 LHS = (*doLHSCast)(S, LHS.get(), result);
1332 return result;
1336 /// Handle conversions with GCC complex int extension. Helper function
1337 /// of UsualArithmeticConversions()
1338 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1339 ExprResult &RHS, QualType LHSType,
1340 QualType RHSType,
1341 bool IsCompAssign) {
1342 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1343 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1345 if (LHSComplexInt && RHSComplexInt) {
1346 QualType LHSEltType = LHSComplexInt->getElementType();
1347 QualType RHSEltType = RHSComplexInt->getElementType();
1348 QualType ScalarType =
1349 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1350 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1352 return S.Context.getComplexType(ScalarType);
1355 if (LHSComplexInt) {
1356 QualType LHSEltType = LHSComplexInt->getElementType();
1357 QualType ScalarType =
1358 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1359 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1360 QualType ComplexType = S.Context.getComplexType(ScalarType);
1361 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1362 CK_IntegralRealToComplex);
1364 return ComplexType;
1367 assert(RHSComplexInt);
1369 QualType RHSEltType = RHSComplexInt->getElementType();
1370 QualType ScalarType =
1371 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1372 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1373 QualType ComplexType = S.Context.getComplexType(ScalarType);
1375 if (!IsCompAssign)
1376 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1377 CK_IntegralRealToComplex);
1378 return ComplexType;
1381 /// Return the rank of a given fixed point or integer type. The value itself
1382 /// doesn't matter, but the values must be increasing with proper increasing
1383 /// rank as described in N1169 4.1.1.
1384 static unsigned GetFixedPointRank(QualType Ty) {
1385 const auto *BTy = Ty->getAs<BuiltinType>();
1386 assert(BTy && "Expected a builtin type.");
1388 switch (BTy->getKind()) {
1389 case BuiltinType::ShortFract:
1390 case BuiltinType::UShortFract:
1391 case BuiltinType::SatShortFract:
1392 case BuiltinType::SatUShortFract:
1393 return 1;
1394 case BuiltinType::Fract:
1395 case BuiltinType::UFract:
1396 case BuiltinType::SatFract:
1397 case BuiltinType::SatUFract:
1398 return 2;
1399 case BuiltinType::LongFract:
1400 case BuiltinType::ULongFract:
1401 case BuiltinType::SatLongFract:
1402 case BuiltinType::SatULongFract:
1403 return 3;
1404 case BuiltinType::ShortAccum:
1405 case BuiltinType::UShortAccum:
1406 case BuiltinType::SatShortAccum:
1407 case BuiltinType::SatUShortAccum:
1408 return 4;
1409 case BuiltinType::Accum:
1410 case BuiltinType::UAccum:
1411 case BuiltinType::SatAccum:
1412 case BuiltinType::SatUAccum:
1413 return 5;
1414 case BuiltinType::LongAccum:
1415 case BuiltinType::ULongAccum:
1416 case BuiltinType::SatLongAccum:
1417 case BuiltinType::SatULongAccum:
1418 return 6;
1419 default:
1420 if (BTy->isInteger())
1421 return 0;
1422 llvm_unreachable("Unexpected fixed point or integer type");
1426 /// handleFixedPointConversion - Fixed point operations between fixed
1427 /// point types and integers or other fixed point types do not fall under
1428 /// usual arithmetic conversion since these conversions could result in loss
1429 /// of precsision (N1169 4.1.4). These operations should be calculated with
1430 /// the full precision of their result type (N1169 4.1.6.2.1).
1431 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1432 QualType RHSTy) {
1433 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1434 "Expected at least one of the operands to be a fixed point type");
1435 assert((LHSTy->isFixedPointOrIntegerType() ||
1436 RHSTy->isFixedPointOrIntegerType()) &&
1437 "Special fixed point arithmetic operation conversions are only "
1438 "applied to ints or other fixed point types");
1440 // If one operand has signed fixed-point type and the other operand has
1441 // unsigned fixed-point type, then the unsigned fixed-point operand is
1442 // converted to its corresponding signed fixed-point type and the resulting
1443 // type is the type of the converted operand.
1444 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1445 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1446 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1447 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1449 // The result type is the type with the highest rank, whereby a fixed-point
1450 // conversion rank is always greater than an integer conversion rank; if the
1451 // type of either of the operands is a saturating fixedpoint type, the result
1452 // type shall be the saturating fixed-point type corresponding to the type
1453 // with the highest rank; the resulting value is converted (taking into
1454 // account rounding and overflow) to the precision of the resulting type.
1455 // Same ranks between signed and unsigned types are resolved earlier, so both
1456 // types are either signed or both unsigned at this point.
1457 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1458 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1460 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1462 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1463 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1465 return ResultTy;
1468 /// Check that the usual arithmetic conversions can be performed on this pair of
1469 /// expressions that might be of enumeration type.
1470 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1471 SourceLocation Loc,
1472 Sema::ArithConvKind ACK) {
1473 // C++2a [expr.arith.conv]p1:
1474 // If one operand is of enumeration type and the other operand is of a
1475 // different enumeration type or a floating-point type, this behavior is
1476 // deprecated ([depr.arith.conv.enum]).
1478 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1479 // Eventually we will presumably reject these cases (in C++23 onwards?).
1480 QualType L = LHS->getType(), R = RHS->getType();
1481 bool LEnum = L->isUnscopedEnumerationType(),
1482 REnum = R->isUnscopedEnumerationType();
1483 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1484 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1485 (REnum && L->isFloatingType())) {
1486 S.Diag(Loc, S.getLangOpts().CPlusPlus20
1487 ? diag::warn_arith_conv_enum_float_cxx20
1488 : diag::warn_arith_conv_enum_float)
1489 << LHS->getSourceRange() << RHS->getSourceRange()
1490 << (int)ACK << LEnum << L << R;
1491 } else if (!IsCompAssign && LEnum && REnum &&
1492 !S.Context.hasSameUnqualifiedType(L, R)) {
1493 unsigned DiagID;
1494 if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1495 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1496 // If either enumeration type is unnamed, it's less likely that the
1497 // user cares about this, but this situation is still deprecated in
1498 // C++2a. Use a different warning group.
1499 DiagID = S.getLangOpts().CPlusPlus20
1500 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1501 : diag::warn_arith_conv_mixed_anon_enum_types;
1502 } else if (ACK == Sema::ACK_Conditional) {
1503 // Conditional expressions are separated out because they have
1504 // historically had a different warning flag.
1505 DiagID = S.getLangOpts().CPlusPlus20
1506 ? diag::warn_conditional_mixed_enum_types_cxx20
1507 : diag::warn_conditional_mixed_enum_types;
1508 } else if (ACK == Sema::ACK_Comparison) {
1509 // Comparison expressions are separated out because they have
1510 // historically had a different warning flag.
1511 DiagID = S.getLangOpts().CPlusPlus20
1512 ? diag::warn_comparison_mixed_enum_types_cxx20
1513 : diag::warn_comparison_mixed_enum_types;
1514 } else {
1515 DiagID = S.getLangOpts().CPlusPlus20
1516 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1517 : diag::warn_arith_conv_mixed_enum_types;
1519 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1520 << (int)ACK << L << R;
1524 /// UsualArithmeticConversions - Performs various conversions that are common to
1525 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1526 /// routine returns the first non-arithmetic type found. The client is
1527 /// responsible for emitting appropriate error diagnostics.
1528 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1529 SourceLocation Loc,
1530 ArithConvKind ACK) {
1531 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1533 if (ACK != ACK_CompAssign) {
1534 LHS = UsualUnaryConversions(LHS.get());
1535 if (LHS.isInvalid())
1536 return QualType();
1539 RHS = UsualUnaryConversions(RHS.get());
1540 if (RHS.isInvalid())
1541 return QualType();
1543 // For conversion purposes, we ignore any qualifiers.
1544 // For example, "const float" and "float" are equivalent.
1545 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1546 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1548 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1549 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1550 LHSType = AtomicLHS->getValueType();
1552 // If both types are identical, no conversion is needed.
1553 if (Context.hasSameType(LHSType, RHSType))
1554 return Context.getCommonSugaredType(LHSType, RHSType);
1556 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1557 // The caller can deal with this (e.g. pointer + int).
1558 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1559 return QualType();
1561 // Apply unary and bitfield promotions to the LHS's type.
1562 QualType LHSUnpromotedType = LHSType;
1563 if (Context.isPromotableIntegerType(LHSType))
1564 LHSType = Context.getPromotedIntegerType(LHSType);
1565 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1566 if (!LHSBitfieldPromoteTy.isNull())
1567 LHSType = LHSBitfieldPromoteTy;
1568 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1569 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1571 // If both types are identical, no conversion is needed.
1572 if (Context.hasSameType(LHSType, RHSType))
1573 return Context.getCommonSugaredType(LHSType, RHSType);
1575 // At this point, we have two different arithmetic types.
1577 // Diagnose attempts to convert between __ibm128, __float128 and long double
1578 // where such conversions currently can't be handled.
1579 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1580 return QualType();
1582 // Handle complex types first (C99 6.3.1.8p1).
1583 if (LHSType->isComplexType() || RHSType->isComplexType())
1584 return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1585 ACK == ACK_CompAssign);
1587 // Now handle "real" floating types (i.e. float, double, long double).
1588 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1589 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1590 ACK == ACK_CompAssign);
1592 // Handle GCC complex int extension.
1593 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1594 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1595 ACK == ACK_CompAssign);
1597 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1598 return handleFixedPointConversion(*this, LHSType, RHSType);
1600 // Finally, we have two differing integer types.
1601 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1602 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1605 //===----------------------------------------------------------------------===//
1606 // Semantic Analysis for various Expression Types
1607 //===----------------------------------------------------------------------===//
1610 ExprResult
1611 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1612 SourceLocation DefaultLoc,
1613 SourceLocation RParenLoc,
1614 Expr *ControllingExpr,
1615 ArrayRef<ParsedType> ArgTypes,
1616 ArrayRef<Expr *> ArgExprs) {
1617 unsigned NumAssocs = ArgTypes.size();
1618 assert(NumAssocs == ArgExprs.size());
1620 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1621 for (unsigned i = 0; i < NumAssocs; ++i) {
1622 if (ArgTypes[i])
1623 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1624 else
1625 Types[i] = nullptr;
1628 ExprResult ER =
1629 CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, ControllingExpr,
1630 llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1631 delete [] Types;
1632 return ER;
1635 ExprResult
1636 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1637 SourceLocation DefaultLoc,
1638 SourceLocation RParenLoc,
1639 Expr *ControllingExpr,
1640 ArrayRef<TypeSourceInfo *> Types,
1641 ArrayRef<Expr *> Exprs) {
1642 unsigned NumAssocs = Types.size();
1643 assert(NumAssocs == Exprs.size());
1645 // Decay and strip qualifiers for the controlling expression type, and handle
1646 // placeholder type replacement. See committee discussion from WG14 DR423.
1648 EnterExpressionEvaluationContext Unevaluated(
1649 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1650 ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1651 if (R.isInvalid())
1652 return ExprError();
1653 ControllingExpr = R.get();
1656 bool TypeErrorFound = false,
1657 IsResultDependent = ControllingExpr->isTypeDependent(),
1658 ContainsUnexpandedParameterPack
1659 = ControllingExpr->containsUnexpandedParameterPack();
1661 // The controlling expression is an unevaluated operand, so side effects are
1662 // likely unintended.
1663 if (!inTemplateInstantiation() && !IsResultDependent &&
1664 ControllingExpr->HasSideEffects(Context, false))
1665 Diag(ControllingExpr->getExprLoc(),
1666 diag::warn_side_effects_unevaluated_context);
1668 for (unsigned i = 0; i < NumAssocs; ++i) {
1669 if (Exprs[i]->containsUnexpandedParameterPack())
1670 ContainsUnexpandedParameterPack = true;
1672 if (Types[i]) {
1673 if (Types[i]->getType()->containsUnexpandedParameterPack())
1674 ContainsUnexpandedParameterPack = true;
1676 if (Types[i]->getType()->isDependentType()) {
1677 IsResultDependent = true;
1678 } else {
1679 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1680 // complete object type other than a variably modified type."
1681 unsigned D = 0;
1682 if (Types[i]->getType()->isIncompleteType())
1683 D = diag::err_assoc_type_incomplete;
1684 else if (!Types[i]->getType()->isObjectType())
1685 D = diag::err_assoc_type_nonobject;
1686 else if (Types[i]->getType()->isVariablyModifiedType())
1687 D = diag::err_assoc_type_variably_modified;
1688 else {
1689 // Because the controlling expression undergoes lvalue conversion,
1690 // array conversion, and function conversion, an association which is
1691 // of array type, function type, or is qualified can never be
1692 // reached. We will warn about this so users are less surprised by
1693 // the unreachable association. However, we don't have to handle
1694 // function types; that's not an object type, so it's handled above.
1696 // The logic is somewhat different for C++ because C++ has different
1697 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1698 // If T is a non-class type, the type of the prvalue is the cv-
1699 // unqualified version of T. Otherwise, the type of the prvalue is T.
1700 // The result of these rules is that all qualified types in an
1701 // association in C are unreachable, and in C++, only qualified non-
1702 // class types are unreachable.
1703 unsigned Reason = 0;
1704 QualType QT = Types[i]->getType();
1705 if (QT->isArrayType())
1706 Reason = 1;
1707 else if (QT.hasQualifiers() &&
1708 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1709 Reason = 2;
1711 if (Reason)
1712 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1713 diag::warn_unreachable_association)
1714 << QT << (Reason - 1);
1717 if (D != 0) {
1718 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1719 << Types[i]->getTypeLoc().getSourceRange()
1720 << Types[i]->getType();
1721 TypeErrorFound = true;
1724 // C11 6.5.1.1p2 "No two generic associations in the same generic
1725 // selection shall specify compatible types."
1726 for (unsigned j = i+1; j < NumAssocs; ++j)
1727 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1728 Context.typesAreCompatible(Types[i]->getType(),
1729 Types[j]->getType())) {
1730 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1731 diag::err_assoc_compatible_types)
1732 << Types[j]->getTypeLoc().getSourceRange()
1733 << Types[j]->getType()
1734 << Types[i]->getType();
1735 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1736 diag::note_compat_assoc)
1737 << Types[i]->getTypeLoc().getSourceRange()
1738 << Types[i]->getType();
1739 TypeErrorFound = true;
1744 if (TypeErrorFound)
1745 return ExprError();
1747 // If we determined that the generic selection is result-dependent, don't
1748 // try to compute the result expression.
1749 if (IsResultDependent)
1750 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1751 Exprs, DefaultLoc, RParenLoc,
1752 ContainsUnexpandedParameterPack);
1754 SmallVector<unsigned, 1> CompatIndices;
1755 unsigned DefaultIndex = -1U;
1756 // Look at the canonical type of the controlling expression in case it was a
1757 // deduced type like __auto_type. However, when issuing diagnostics, use the
1758 // type the user wrote in source rather than the canonical one.
1759 for (unsigned i = 0; i < NumAssocs; ++i) {
1760 if (!Types[i])
1761 DefaultIndex = i;
1762 else if (Context.typesAreCompatible(
1763 ControllingExpr->getType().getCanonicalType(),
1764 Types[i]->getType()))
1765 CompatIndices.push_back(i);
1768 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1769 // type compatible with at most one of the types named in its generic
1770 // association list."
1771 if (CompatIndices.size() > 1) {
1772 // We strip parens here because the controlling expression is typically
1773 // parenthesized in macro definitions.
1774 ControllingExpr = ControllingExpr->IgnoreParens();
1775 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1776 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1777 << (unsigned)CompatIndices.size();
1778 for (unsigned I : CompatIndices) {
1779 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1780 diag::note_compat_assoc)
1781 << Types[I]->getTypeLoc().getSourceRange()
1782 << Types[I]->getType();
1784 return ExprError();
1787 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1788 // its controlling expression shall have type compatible with exactly one of
1789 // the types named in its generic association list."
1790 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1791 // We strip parens here because the controlling expression is typically
1792 // parenthesized in macro definitions.
1793 ControllingExpr = ControllingExpr->IgnoreParens();
1794 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1795 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1796 return ExprError();
1799 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1800 // type name that is compatible with the type of the controlling expression,
1801 // then the result expression of the generic selection is the expression
1802 // in that generic association. Otherwise, the result expression of the
1803 // generic selection is the expression in the default generic association."
1804 unsigned ResultIndex =
1805 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1807 return GenericSelectionExpr::Create(
1808 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1809 ContainsUnexpandedParameterPack, ResultIndex);
1812 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1813 /// location of the token and the offset of the ud-suffix within it.
1814 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1815 unsigned Offset) {
1816 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1817 S.getLangOpts());
1820 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1821 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1822 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1823 IdentifierInfo *UDSuffix,
1824 SourceLocation UDSuffixLoc,
1825 ArrayRef<Expr*> Args,
1826 SourceLocation LitEndLoc) {
1827 assert(Args.size() <= 2 && "too many arguments for literal operator");
1829 QualType ArgTy[2];
1830 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1831 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1832 if (ArgTy[ArgIdx]->isArrayType())
1833 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1836 DeclarationName OpName =
1837 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1838 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1839 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1841 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1842 if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1843 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1844 /*AllowStringTemplatePack*/ false,
1845 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1846 return ExprError();
1848 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1851 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1852 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1853 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1854 /// multiple tokens. However, the common case is that StringToks points to one
1855 /// string.
1857 ExprResult
1858 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1859 assert(!StringToks.empty() && "Must have at least one string!");
1861 StringLiteralParser Literal(StringToks, PP);
1862 if (Literal.hadError)
1863 return ExprError();
1865 SmallVector<SourceLocation, 4> StringTokLocs;
1866 for (const Token &Tok : StringToks)
1867 StringTokLocs.push_back(Tok.getLocation());
1869 QualType CharTy = Context.CharTy;
1870 StringLiteral::StringKind Kind = StringLiteral::Ordinary;
1871 if (Literal.isWide()) {
1872 CharTy = Context.getWideCharType();
1873 Kind = StringLiteral::Wide;
1874 } else if (Literal.isUTF8()) {
1875 if (getLangOpts().Char8)
1876 CharTy = Context.Char8Ty;
1877 Kind = StringLiteral::UTF8;
1878 } else if (Literal.isUTF16()) {
1879 CharTy = Context.Char16Ty;
1880 Kind = StringLiteral::UTF16;
1881 } else if (Literal.isUTF32()) {
1882 CharTy = Context.Char32Ty;
1883 Kind = StringLiteral::UTF32;
1884 } else if (Literal.isPascal()) {
1885 CharTy = Context.UnsignedCharTy;
1888 // Warn on initializing an array of char from a u8 string literal; this
1889 // becomes ill-formed in C++2a.
1890 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1891 !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1892 Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1894 // Create removals for all 'u8' prefixes in the string literal(s). This
1895 // ensures C++2a compatibility (but may change the program behavior when
1896 // built by non-Clang compilers for which the execution character set is
1897 // not always UTF-8).
1898 auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1899 SourceLocation RemovalDiagLoc;
1900 for (const Token &Tok : StringToks) {
1901 if (Tok.getKind() == tok::utf8_string_literal) {
1902 if (RemovalDiagLoc.isInvalid())
1903 RemovalDiagLoc = Tok.getLocation();
1904 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1905 Tok.getLocation(),
1906 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1907 getSourceManager(), getLangOpts())));
1910 Diag(RemovalDiagLoc, RemovalDiag);
1913 QualType StrTy =
1914 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1916 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1917 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1918 Kind, Literal.Pascal, StrTy,
1919 &StringTokLocs[0],
1920 StringTokLocs.size());
1921 if (Literal.getUDSuffix().empty())
1922 return Lit;
1924 // We're building a user-defined literal.
1925 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1926 SourceLocation UDSuffixLoc =
1927 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1928 Literal.getUDSuffixOffset());
1930 // Make sure we're allowed user-defined literals here.
1931 if (!UDLScope)
1932 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1934 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1935 // operator "" X (str, len)
1936 QualType SizeType = Context.getSizeType();
1938 DeclarationName OpName =
1939 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1940 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1941 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1943 QualType ArgTy[] = {
1944 Context.getArrayDecayedType(StrTy), SizeType
1947 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1948 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1949 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1950 /*AllowStringTemplatePack*/ true,
1951 /*DiagnoseMissing*/ true, Lit)) {
1953 case LOLR_Cooked: {
1954 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1955 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1956 StringTokLocs[0]);
1957 Expr *Args[] = { Lit, LenArg };
1959 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1962 case LOLR_Template: {
1963 TemplateArgumentListInfo ExplicitArgs;
1964 TemplateArgument Arg(Lit);
1965 TemplateArgumentLocInfo ArgInfo(Lit);
1966 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1967 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
1968 StringTokLocs.back(), &ExplicitArgs);
1971 case LOLR_StringTemplatePack: {
1972 TemplateArgumentListInfo ExplicitArgs;
1974 unsigned CharBits = Context.getIntWidth(CharTy);
1975 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1976 llvm::APSInt Value(CharBits, CharIsUnsigned);
1978 TemplateArgument TypeArg(CharTy);
1979 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1980 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1982 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1983 Value = Lit->getCodeUnit(I);
1984 TemplateArgument Arg(Context, Value, CharTy);
1985 TemplateArgumentLocInfo ArgInfo;
1986 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1988 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
1989 StringTokLocs.back(), &ExplicitArgs);
1991 case LOLR_Raw:
1992 case LOLR_ErrorNoDiagnostic:
1993 llvm_unreachable("unexpected literal operator lookup result");
1994 case LOLR_Error:
1995 return ExprError();
1997 llvm_unreachable("unexpected literal operator lookup result");
2000 DeclRefExpr *
2001 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2002 SourceLocation Loc,
2003 const CXXScopeSpec *SS) {
2004 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2005 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2008 DeclRefExpr *
2009 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2010 const DeclarationNameInfo &NameInfo,
2011 const CXXScopeSpec *SS, NamedDecl *FoundD,
2012 SourceLocation TemplateKWLoc,
2013 const TemplateArgumentListInfo *TemplateArgs) {
2014 NestedNameSpecifierLoc NNS =
2015 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2016 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2017 TemplateArgs);
2020 // CUDA/HIP: Check whether a captured reference variable is referencing a
2021 // host variable in a device or host device lambda.
2022 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2023 VarDecl *VD) {
2024 if (!S.getLangOpts().CUDA || !VD->hasInit())
2025 return false;
2026 assert(VD->getType()->isReferenceType());
2028 // Check whether the reference variable is referencing a host variable.
2029 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2030 if (!DRE)
2031 return false;
2032 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2033 if (!Referee || !Referee->hasGlobalStorage() ||
2034 Referee->hasAttr<CUDADeviceAttr>())
2035 return false;
2037 // Check whether the current function is a device or host device lambda.
2038 // Check whether the reference variable is a capture by getDeclContext()
2039 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2040 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2041 if (MD && MD->getParent()->isLambda() &&
2042 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2043 VD->getDeclContext() != MD)
2044 return true;
2046 return false;
2049 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2050 // A declaration named in an unevaluated operand never constitutes an odr-use.
2051 if (isUnevaluatedContext())
2052 return NOUR_Unevaluated;
2054 // C++2a [basic.def.odr]p4:
2055 // A variable x whose name appears as a potentially-evaluated expression e
2056 // is odr-used by e unless [...] x is a reference that is usable in
2057 // constant expressions.
2058 // CUDA/HIP:
2059 // If a reference variable referencing a host variable is captured in a
2060 // device or host device lambda, the value of the referee must be copied
2061 // to the capture and the reference variable must be treated as odr-use
2062 // since the value of the referee is not known at compile time and must
2063 // be loaded from the captured.
2064 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2065 if (VD->getType()->isReferenceType() &&
2066 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2067 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2068 VD->isUsableInConstantExpressions(Context))
2069 return NOUR_Constant;
2072 // All remaining non-variable cases constitute an odr-use. For variables, we
2073 // need to wait and see how the expression is used.
2074 return NOUR_None;
2077 /// BuildDeclRefExpr - Build an expression that references a
2078 /// declaration that does not require a closure capture.
2079 DeclRefExpr *
2080 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2081 const DeclarationNameInfo &NameInfo,
2082 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2083 SourceLocation TemplateKWLoc,
2084 const TemplateArgumentListInfo *TemplateArgs) {
2085 bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2086 NeedToCaptureVariable(D, NameInfo.getLoc());
2088 DeclRefExpr *E = DeclRefExpr::Create(
2089 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2090 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2091 MarkDeclRefReferenced(E);
2093 // C++ [except.spec]p17:
2094 // An exception-specification is considered to be needed when:
2095 // - in an expression, the function is the unique lookup result or
2096 // the selected member of a set of overloaded functions.
2098 // We delay doing this until after we've built the function reference and
2099 // marked it as used so that:
2100 // a) if the function is defaulted, we get errors from defining it before /
2101 // instead of errors from computing its exception specification, and
2102 // b) if the function is a defaulted comparison, we can use the body we
2103 // build when defining it as input to the exception specification
2104 // computation rather than computing a new body.
2105 if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2106 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2107 if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2108 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2112 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2113 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2114 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2115 getCurFunction()->recordUseOfWeak(E);
2117 FieldDecl *FD = dyn_cast<FieldDecl>(D);
2118 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2119 FD = IFD->getAnonField();
2120 if (FD) {
2121 UnusedPrivateFields.remove(FD);
2122 // Just in case we're building an illegal pointer-to-member.
2123 if (FD->isBitField())
2124 E->setObjectKind(OK_BitField);
2127 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2128 // designates a bit-field.
2129 if (auto *BD = dyn_cast<BindingDecl>(D))
2130 if (auto *BE = BD->getBinding())
2131 E->setObjectKind(BE->getObjectKind());
2133 return E;
2136 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2137 /// possibly a list of template arguments.
2139 /// If this produces template arguments, it is permitted to call
2140 /// DecomposeTemplateName.
2142 /// This actually loses a lot of source location information for
2143 /// non-standard name kinds; we should consider preserving that in
2144 /// some way.
2145 void
2146 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2147 TemplateArgumentListInfo &Buffer,
2148 DeclarationNameInfo &NameInfo,
2149 const TemplateArgumentListInfo *&TemplateArgs) {
2150 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2151 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2152 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2154 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2155 Id.TemplateId->NumArgs);
2156 translateTemplateArguments(TemplateArgsPtr, Buffer);
2158 TemplateName TName = Id.TemplateId->Template.get();
2159 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2160 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2161 TemplateArgs = &Buffer;
2162 } else {
2163 NameInfo = GetNameFromUnqualifiedId(Id);
2164 TemplateArgs = nullptr;
2168 static void emitEmptyLookupTypoDiagnostic(
2169 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2170 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2171 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2172 DeclContext *Ctx =
2173 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2174 if (!TC) {
2175 // Emit a special diagnostic for failed member lookups.
2176 // FIXME: computing the declaration context might fail here (?)
2177 if (Ctx)
2178 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2179 << SS.getRange();
2180 else
2181 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2182 return;
2185 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2186 bool DroppedSpecifier =
2187 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2188 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2189 ? diag::note_implicit_param_decl
2190 : diag::note_previous_decl;
2191 if (!Ctx)
2192 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2193 SemaRef.PDiag(NoteID));
2194 else
2195 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2196 << Typo << Ctx << DroppedSpecifier
2197 << SS.getRange(),
2198 SemaRef.PDiag(NoteID));
2201 /// Diagnose a lookup that found results in an enclosing class during error
2202 /// recovery. This usually indicates that the results were found in a dependent
2203 /// base class that could not be searched as part of a template definition.
2204 /// Always issues a diagnostic (though this may be only a warning in MS
2205 /// compatibility mode).
2207 /// Return \c true if the error is unrecoverable, or \c false if the caller
2208 /// should attempt to recover using these lookup results.
2209 bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2210 // During a default argument instantiation the CurContext points
2211 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2212 // function parameter list, hence add an explicit check.
2213 bool isDefaultArgument =
2214 !CodeSynthesisContexts.empty() &&
2215 CodeSynthesisContexts.back().Kind ==
2216 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2217 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2218 bool isInstance = CurMethod && CurMethod->isInstance() &&
2219 R.getNamingClass() == CurMethod->getParent() &&
2220 !isDefaultArgument;
2222 // There are two ways we can find a class-scope declaration during template
2223 // instantiation that we did not find in the template definition: if it is a
2224 // member of a dependent base class, or if it is declared after the point of
2225 // use in the same class. Distinguish these by comparing the class in which
2226 // the member was found to the naming class of the lookup.
2227 unsigned DiagID = diag::err_found_in_dependent_base;
2228 unsigned NoteID = diag::note_member_declared_at;
2229 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2230 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2231 : diag::err_found_later_in_class;
2232 } else if (getLangOpts().MSVCCompat) {
2233 DiagID = diag::ext_found_in_dependent_base;
2234 NoteID = diag::note_dependent_member_use;
2237 if (isInstance) {
2238 // Give a code modification hint to insert 'this->'.
2239 Diag(R.getNameLoc(), DiagID)
2240 << R.getLookupName()
2241 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2242 CheckCXXThisCapture(R.getNameLoc());
2243 } else {
2244 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2245 // they're not shadowed).
2246 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2249 for (NamedDecl *D : R)
2250 Diag(D->getLocation(), NoteID);
2252 // Return true if we are inside a default argument instantiation
2253 // and the found name refers to an instance member function, otherwise
2254 // the caller will try to create an implicit member call and this is wrong
2255 // for default arguments.
2257 // FIXME: Is this special case necessary? We could allow the caller to
2258 // diagnose this.
2259 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2260 Diag(R.getNameLoc(), diag::err_member_call_without_object);
2261 return true;
2264 // Tell the callee to try to recover.
2265 return false;
2268 /// Diagnose an empty lookup.
2270 /// \return false if new lookup candidates were found
2271 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2272 CorrectionCandidateCallback &CCC,
2273 TemplateArgumentListInfo *ExplicitTemplateArgs,
2274 ArrayRef<Expr *> Args, TypoExpr **Out) {
2275 DeclarationName Name = R.getLookupName();
2277 unsigned diagnostic = diag::err_undeclared_var_use;
2278 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2279 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2280 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2281 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2282 diagnostic = diag::err_undeclared_use;
2283 diagnostic_suggest = diag::err_undeclared_use_suggest;
2286 // If the original lookup was an unqualified lookup, fake an
2287 // unqualified lookup. This is useful when (for example) the
2288 // original lookup would not have found something because it was a
2289 // dependent name.
2290 DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2291 while (DC) {
2292 if (isa<CXXRecordDecl>(DC)) {
2293 LookupQualifiedName(R, DC);
2295 if (!R.empty()) {
2296 // Don't give errors about ambiguities in this lookup.
2297 R.suppressDiagnostics();
2299 // If there's a best viable function among the results, only mention
2300 // that one in the notes.
2301 OverloadCandidateSet Candidates(R.getNameLoc(),
2302 OverloadCandidateSet::CSK_Normal);
2303 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2304 OverloadCandidateSet::iterator Best;
2305 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2306 OR_Success) {
2307 R.clear();
2308 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2309 R.resolveKind();
2312 return DiagnoseDependentMemberLookup(R);
2315 R.clear();
2318 DC = DC->getLookupParent();
2321 // We didn't find anything, so try to correct for a typo.
2322 TypoCorrection Corrected;
2323 if (S && Out) {
2324 SourceLocation TypoLoc = R.getNameLoc();
2325 assert(!ExplicitTemplateArgs &&
2326 "Diagnosing an empty lookup with explicit template args!");
2327 *Out = CorrectTypoDelayed(
2328 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2329 [=](const TypoCorrection &TC) {
2330 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2331 diagnostic, diagnostic_suggest);
2333 nullptr, CTK_ErrorRecovery);
2334 if (*Out)
2335 return true;
2336 } else if (S &&
2337 (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2338 S, &SS, CCC, CTK_ErrorRecovery))) {
2339 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2340 bool DroppedSpecifier =
2341 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2342 R.setLookupName(Corrected.getCorrection());
2344 bool AcceptableWithRecovery = false;
2345 bool AcceptableWithoutRecovery = false;
2346 NamedDecl *ND = Corrected.getFoundDecl();
2347 if (ND) {
2348 if (Corrected.isOverloaded()) {
2349 OverloadCandidateSet OCS(R.getNameLoc(),
2350 OverloadCandidateSet::CSK_Normal);
2351 OverloadCandidateSet::iterator Best;
2352 for (NamedDecl *CD : Corrected) {
2353 if (FunctionTemplateDecl *FTD =
2354 dyn_cast<FunctionTemplateDecl>(CD))
2355 AddTemplateOverloadCandidate(
2356 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2357 Args, OCS);
2358 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2359 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2360 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2361 Args, OCS);
2363 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2364 case OR_Success:
2365 ND = Best->FoundDecl;
2366 Corrected.setCorrectionDecl(ND);
2367 break;
2368 default:
2369 // FIXME: Arbitrarily pick the first declaration for the note.
2370 Corrected.setCorrectionDecl(ND);
2371 break;
2374 R.addDecl(ND);
2375 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2376 CXXRecordDecl *Record = nullptr;
2377 if (Corrected.getCorrectionSpecifier()) {
2378 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2379 Record = Ty->getAsCXXRecordDecl();
2381 if (!Record)
2382 Record = cast<CXXRecordDecl>(
2383 ND->getDeclContext()->getRedeclContext());
2384 R.setNamingClass(Record);
2387 auto *UnderlyingND = ND->getUnderlyingDecl();
2388 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2389 isa<FunctionTemplateDecl>(UnderlyingND);
2390 // FIXME: If we ended up with a typo for a type name or
2391 // Objective-C class name, we're in trouble because the parser
2392 // is in the wrong place to recover. Suggest the typo
2393 // correction, but don't make it a fix-it since we're not going
2394 // to recover well anyway.
2395 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2396 getAsTypeTemplateDecl(UnderlyingND) ||
2397 isa<ObjCInterfaceDecl>(UnderlyingND);
2398 } else {
2399 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2400 // because we aren't able to recover.
2401 AcceptableWithoutRecovery = true;
2404 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2405 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2406 ? diag::note_implicit_param_decl
2407 : diag::note_previous_decl;
2408 if (SS.isEmpty())
2409 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2410 PDiag(NoteID), AcceptableWithRecovery);
2411 else
2412 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2413 << Name << computeDeclContext(SS, false)
2414 << DroppedSpecifier << SS.getRange(),
2415 PDiag(NoteID), AcceptableWithRecovery);
2417 // Tell the callee whether to try to recover.
2418 return !AcceptableWithRecovery;
2421 R.clear();
2423 // Emit a special diagnostic for failed member lookups.
2424 // FIXME: computing the declaration context might fail here (?)
2425 if (!SS.isEmpty()) {
2426 Diag(R.getNameLoc(), diag::err_no_member)
2427 << Name << computeDeclContext(SS, false)
2428 << SS.getRange();
2429 return true;
2432 // Give up, we can't recover.
2433 Diag(R.getNameLoc(), diagnostic) << Name;
2434 return true;
2437 /// In Microsoft mode, if we are inside a template class whose parent class has
2438 /// dependent base classes, and we can't resolve an unqualified identifier, then
2439 /// assume the identifier is a member of a dependent base class. We can only
2440 /// recover successfully in static methods, instance methods, and other contexts
2441 /// where 'this' is available. This doesn't precisely match MSVC's
2442 /// instantiation model, but it's close enough.
2443 static Expr *
2444 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2445 DeclarationNameInfo &NameInfo,
2446 SourceLocation TemplateKWLoc,
2447 const TemplateArgumentListInfo *TemplateArgs) {
2448 // Only try to recover from lookup into dependent bases in static methods or
2449 // contexts where 'this' is available.
2450 QualType ThisType = S.getCurrentThisType();
2451 const CXXRecordDecl *RD = nullptr;
2452 if (!ThisType.isNull())
2453 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2454 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2455 RD = MD->getParent();
2456 if (!RD || !RD->hasAnyDependentBases())
2457 return nullptr;
2459 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2460 // is available, suggest inserting 'this->' as a fixit.
2461 SourceLocation Loc = NameInfo.getLoc();
2462 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2463 DB << NameInfo.getName() << RD;
2465 if (!ThisType.isNull()) {
2466 DB << FixItHint::CreateInsertion(Loc, "this->");
2467 return CXXDependentScopeMemberExpr::Create(
2468 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2469 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2470 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2473 // Synthesize a fake NNS that points to the derived class. This will
2474 // perform name lookup during template instantiation.
2475 CXXScopeSpec SS;
2476 auto *NNS =
2477 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2478 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2479 return DependentScopeDeclRefExpr::Create(
2480 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2481 TemplateArgs);
2484 ExprResult
2485 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2486 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2487 bool HasTrailingLParen, bool IsAddressOfOperand,
2488 CorrectionCandidateCallback *CCC,
2489 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2490 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2491 "cannot be direct & operand and have a trailing lparen");
2492 if (SS.isInvalid())
2493 return ExprError();
2495 TemplateArgumentListInfo TemplateArgsBuffer;
2497 // Decompose the UnqualifiedId into the following data.
2498 DeclarationNameInfo NameInfo;
2499 const TemplateArgumentListInfo *TemplateArgs;
2500 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2502 DeclarationName Name = NameInfo.getName();
2503 IdentifierInfo *II = Name.getAsIdentifierInfo();
2504 SourceLocation NameLoc = NameInfo.getLoc();
2506 if (II && II->isEditorPlaceholder()) {
2507 // FIXME: When typed placeholders are supported we can create a typed
2508 // placeholder expression node.
2509 return ExprError();
2512 // C++ [temp.dep.expr]p3:
2513 // An id-expression is type-dependent if it contains:
2514 // -- an identifier that was declared with a dependent type,
2515 // (note: handled after lookup)
2516 // -- a template-id that is dependent,
2517 // (note: handled in BuildTemplateIdExpr)
2518 // -- a conversion-function-id that specifies a dependent type,
2519 // -- a nested-name-specifier that contains a class-name that
2520 // names a dependent type.
2521 // Determine whether this is a member of an unknown specialization;
2522 // we need to handle these differently.
2523 bool DependentID = false;
2524 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2525 Name.getCXXNameType()->isDependentType()) {
2526 DependentID = true;
2527 } else if (SS.isSet()) {
2528 if (DeclContext *DC = computeDeclContext(SS, false)) {
2529 if (RequireCompleteDeclContext(SS, DC))
2530 return ExprError();
2531 } else {
2532 DependentID = true;
2536 if (DependentID)
2537 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2538 IsAddressOfOperand, TemplateArgs);
2540 // Perform the required lookup.
2541 LookupResult R(*this, NameInfo,
2542 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2543 ? LookupObjCImplicitSelfParam
2544 : LookupOrdinaryName);
2545 if (TemplateKWLoc.isValid() || TemplateArgs) {
2546 // Lookup the template name again to correctly establish the context in
2547 // which it was found. This is really unfortunate as we already did the
2548 // lookup to determine that it was a template name in the first place. If
2549 // this becomes a performance hit, we can work harder to preserve those
2550 // results until we get here but it's likely not worth it.
2551 bool MemberOfUnknownSpecialization;
2552 AssumedTemplateKind AssumedTemplate;
2553 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2554 MemberOfUnknownSpecialization, TemplateKWLoc,
2555 &AssumedTemplate))
2556 return ExprError();
2558 if (MemberOfUnknownSpecialization ||
2559 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2560 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2561 IsAddressOfOperand, TemplateArgs);
2562 } else {
2563 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2564 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2566 // If the result might be in a dependent base class, this is a dependent
2567 // id-expression.
2568 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2569 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2570 IsAddressOfOperand, TemplateArgs);
2572 // If this reference is in an Objective-C method, then we need to do
2573 // some special Objective-C lookup, too.
2574 if (IvarLookupFollowUp) {
2575 ExprResult E(LookupInObjCMethod(R, S, II, true));
2576 if (E.isInvalid())
2577 return ExprError();
2579 if (Expr *Ex = E.getAs<Expr>())
2580 return Ex;
2584 if (R.isAmbiguous())
2585 return ExprError();
2587 // This could be an implicitly declared function reference if the language
2588 // mode allows it as a feature.
2589 if (R.empty() && HasTrailingLParen && II &&
2590 getLangOpts().implicitFunctionsAllowed()) {
2591 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2592 if (D) R.addDecl(D);
2595 // Determine whether this name might be a candidate for
2596 // argument-dependent lookup.
2597 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2599 if (R.empty() && !ADL) {
2600 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2601 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2602 TemplateKWLoc, TemplateArgs))
2603 return E;
2606 // Don't diagnose an empty lookup for inline assembly.
2607 if (IsInlineAsmIdentifier)
2608 return ExprError();
2610 // If this name wasn't predeclared and if this is not a function
2611 // call, diagnose the problem.
2612 TypoExpr *TE = nullptr;
2613 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2614 : nullptr);
2615 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2616 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2617 "Typo correction callback misconfigured");
2618 if (CCC) {
2619 // Make sure the callback knows what the typo being diagnosed is.
2620 CCC->setTypoName(II);
2621 if (SS.isValid())
2622 CCC->setTypoNNS(SS.getScopeRep());
2624 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2625 // a template name, but we happen to have always already looked up the name
2626 // before we get here if it must be a template name.
2627 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2628 std::nullopt, &TE)) {
2629 if (TE && KeywordReplacement) {
2630 auto &State = getTypoExprState(TE);
2631 auto BestTC = State.Consumer->getNextCorrection();
2632 if (BestTC.isKeyword()) {
2633 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2634 if (State.DiagHandler)
2635 State.DiagHandler(BestTC);
2636 KeywordReplacement->startToken();
2637 KeywordReplacement->setKind(II->getTokenID());
2638 KeywordReplacement->setIdentifierInfo(II);
2639 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2640 // Clean up the state associated with the TypoExpr, since it has
2641 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2642 clearDelayedTypo(TE);
2643 // Signal that a correction to a keyword was performed by returning a
2644 // valid-but-null ExprResult.
2645 return (Expr*)nullptr;
2647 State.Consumer->resetCorrectionStream();
2649 return TE ? TE : ExprError();
2652 assert(!R.empty() &&
2653 "DiagnoseEmptyLookup returned false but added no results");
2655 // If we found an Objective-C instance variable, let
2656 // LookupInObjCMethod build the appropriate expression to
2657 // reference the ivar.
2658 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2659 R.clear();
2660 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2661 // In a hopelessly buggy code, Objective-C instance variable
2662 // lookup fails and no expression will be built to reference it.
2663 if (!E.isInvalid() && !E.get())
2664 return ExprError();
2665 return E;
2669 // This is guaranteed from this point on.
2670 assert(!R.empty() || ADL);
2672 // Check whether this might be a C++ implicit instance member access.
2673 // C++ [class.mfct.non-static]p3:
2674 // When an id-expression that is not part of a class member access
2675 // syntax and not used to form a pointer to member is used in the
2676 // body of a non-static member function of class X, if name lookup
2677 // resolves the name in the id-expression to a non-static non-type
2678 // member of some class C, the id-expression is transformed into a
2679 // class member access expression using (*this) as the
2680 // postfix-expression to the left of the . operator.
2682 // But we don't actually need to do this for '&' operands if R
2683 // resolved to a function or overloaded function set, because the
2684 // expression is ill-formed if it actually works out to be a
2685 // non-static member function:
2687 // C++ [expr.ref]p4:
2688 // Otherwise, if E1.E2 refers to a non-static member function. . .
2689 // [t]he expression can be used only as the left-hand operand of a
2690 // member function call.
2692 // There are other safeguards against such uses, but it's important
2693 // to get this right here so that we don't end up making a
2694 // spuriously dependent expression if we're inside a dependent
2695 // instance method.
2696 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2697 bool MightBeImplicitMember;
2698 if (!IsAddressOfOperand)
2699 MightBeImplicitMember = true;
2700 else if (!SS.isEmpty())
2701 MightBeImplicitMember = false;
2702 else if (R.isOverloadedResult())
2703 MightBeImplicitMember = false;
2704 else if (R.isUnresolvableResult())
2705 MightBeImplicitMember = true;
2706 else
2707 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2708 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2709 isa<MSPropertyDecl>(R.getFoundDecl());
2711 if (MightBeImplicitMember)
2712 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2713 R, TemplateArgs, S);
2716 if (TemplateArgs || TemplateKWLoc.isValid()) {
2718 // In C++1y, if this is a variable template id, then check it
2719 // in BuildTemplateIdExpr().
2720 // The single lookup result must be a variable template declaration.
2721 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2722 Id.TemplateId->Kind == TNK_Var_template) {
2723 assert(R.getAsSingle<VarTemplateDecl>() &&
2724 "There should only be one declaration found.");
2727 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2730 return BuildDeclarationNameExpr(SS, R, ADL);
2733 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2734 /// declaration name, generally during template instantiation.
2735 /// There's a large number of things which don't need to be done along
2736 /// this path.
2737 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2738 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2739 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2740 if (NameInfo.getName().isDependentName())
2741 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2742 NameInfo, /*TemplateArgs=*/nullptr);
2744 DeclContext *DC = computeDeclContext(SS, false);
2745 if (!DC)
2746 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2747 NameInfo, /*TemplateArgs=*/nullptr);
2749 if (RequireCompleteDeclContext(SS, DC))
2750 return ExprError();
2752 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2753 LookupQualifiedName(R, DC);
2755 if (R.isAmbiguous())
2756 return ExprError();
2758 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2759 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2760 NameInfo, /*TemplateArgs=*/nullptr);
2762 if (R.empty()) {
2763 // Don't diagnose problems with invalid record decl, the secondary no_member
2764 // diagnostic during template instantiation is likely bogus, e.g. if a class
2765 // is invalid because it's derived from an invalid base class, then missing
2766 // members were likely supposed to be inherited.
2767 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2768 if (CD->isInvalidDecl())
2769 return ExprError();
2770 Diag(NameInfo.getLoc(), diag::err_no_member)
2771 << NameInfo.getName() << DC << SS.getRange();
2772 return ExprError();
2775 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2776 // Diagnose a missing typename if this resolved unambiguously to a type in
2777 // a dependent context. If we can recover with a type, downgrade this to
2778 // a warning in Microsoft compatibility mode.
2779 unsigned DiagID = diag::err_typename_missing;
2780 if (RecoveryTSI && getLangOpts().MSVCCompat)
2781 DiagID = diag::ext_typename_missing;
2782 SourceLocation Loc = SS.getBeginLoc();
2783 auto D = Diag(Loc, DiagID);
2784 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2785 << SourceRange(Loc, NameInfo.getEndLoc());
2787 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2788 // context.
2789 if (!RecoveryTSI)
2790 return ExprError();
2792 // Only issue the fixit if we're prepared to recover.
2793 D << FixItHint::CreateInsertion(Loc, "typename ");
2795 // Recover by pretending this was an elaborated type.
2796 QualType Ty = Context.getTypeDeclType(TD);
2797 TypeLocBuilder TLB;
2798 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2800 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2801 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2802 QTL.setElaboratedKeywordLoc(SourceLocation());
2803 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2805 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2807 return ExprEmpty();
2810 // Defend against this resolving to an implicit member access. We usually
2811 // won't get here if this might be a legitimate a class member (we end up in
2812 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2813 // a pointer-to-member or in an unevaluated context in C++11.
2814 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2815 return BuildPossibleImplicitMemberExpr(SS,
2816 /*TemplateKWLoc=*/SourceLocation(),
2817 R, /*TemplateArgs=*/nullptr, S);
2819 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2822 /// The parser has read a name in, and Sema has detected that we're currently
2823 /// inside an ObjC method. Perform some additional checks and determine if we
2824 /// should form a reference to an ivar.
2826 /// Ideally, most of this would be done by lookup, but there's
2827 /// actually quite a lot of extra work involved.
2828 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2829 IdentifierInfo *II) {
2830 SourceLocation Loc = Lookup.getNameLoc();
2831 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2833 // Check for error condition which is already reported.
2834 if (!CurMethod)
2835 return DeclResult(true);
2837 // There are two cases to handle here. 1) scoped lookup could have failed,
2838 // in which case we should look for an ivar. 2) scoped lookup could have
2839 // found a decl, but that decl is outside the current instance method (i.e.
2840 // a global variable). In these two cases, we do a lookup for an ivar with
2841 // this name, if the lookup sucedes, we replace it our current decl.
2843 // If we're in a class method, we don't normally want to look for
2844 // ivars. But if we don't find anything else, and there's an
2845 // ivar, that's an error.
2846 bool IsClassMethod = CurMethod->isClassMethod();
2848 bool LookForIvars;
2849 if (Lookup.empty())
2850 LookForIvars = true;
2851 else if (IsClassMethod)
2852 LookForIvars = false;
2853 else
2854 LookForIvars = (Lookup.isSingleResult() &&
2855 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2856 ObjCInterfaceDecl *IFace = nullptr;
2857 if (LookForIvars) {
2858 IFace = CurMethod->getClassInterface();
2859 ObjCInterfaceDecl *ClassDeclared;
2860 ObjCIvarDecl *IV = nullptr;
2861 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2862 // Diagnose using an ivar in a class method.
2863 if (IsClassMethod) {
2864 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2865 return DeclResult(true);
2868 // Diagnose the use of an ivar outside of the declaring class.
2869 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2870 !declaresSameEntity(ClassDeclared, IFace) &&
2871 !getLangOpts().DebuggerSupport)
2872 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2874 // Success.
2875 return IV;
2877 } else if (CurMethod->isInstanceMethod()) {
2878 // We should warn if a local variable hides an ivar.
2879 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2880 ObjCInterfaceDecl *ClassDeclared;
2881 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2882 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2883 declaresSameEntity(IFace, ClassDeclared))
2884 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2887 } else if (Lookup.isSingleResult() &&
2888 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2889 // If accessing a stand-alone ivar in a class method, this is an error.
2890 if (const ObjCIvarDecl *IV =
2891 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2892 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2893 return DeclResult(true);
2897 // Didn't encounter an error, didn't find an ivar.
2898 return DeclResult(false);
2901 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2902 ObjCIvarDecl *IV) {
2903 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2904 assert(CurMethod && CurMethod->isInstanceMethod() &&
2905 "should not reference ivar from this context");
2907 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2908 assert(IFace && "should not reference ivar from this context");
2910 // If we're referencing an invalid decl, just return this as a silent
2911 // error node. The error diagnostic was already emitted on the decl.
2912 if (IV->isInvalidDecl())
2913 return ExprError();
2915 // Check if referencing a field with __attribute__((deprecated)).
2916 if (DiagnoseUseOfDecl(IV, Loc))
2917 return ExprError();
2919 // FIXME: This should use a new expr for a direct reference, don't
2920 // turn this into Self->ivar, just return a BareIVarExpr or something.
2921 IdentifierInfo &II = Context.Idents.get("self");
2922 UnqualifiedId SelfName;
2923 SelfName.setImplicitSelfParam(&II);
2924 CXXScopeSpec SelfScopeSpec;
2925 SourceLocation TemplateKWLoc;
2926 ExprResult SelfExpr =
2927 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2928 /*HasTrailingLParen=*/false,
2929 /*IsAddressOfOperand=*/false);
2930 if (SelfExpr.isInvalid())
2931 return ExprError();
2933 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2934 if (SelfExpr.isInvalid())
2935 return ExprError();
2937 MarkAnyDeclReferenced(Loc, IV, true);
2939 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2940 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2941 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2942 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2944 ObjCIvarRefExpr *Result = new (Context)
2945 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2946 IV->getLocation(), SelfExpr.get(), true, true);
2948 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2949 if (!isUnevaluatedContext() &&
2950 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2951 getCurFunction()->recordUseOfWeak(Result);
2953 if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
2954 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2955 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2957 return Result;
2960 /// The parser has read a name in, and Sema has detected that we're currently
2961 /// inside an ObjC method. Perform some additional checks and determine if we
2962 /// should form a reference to an ivar. If so, build an expression referencing
2963 /// that ivar.
2964 ExprResult
2965 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2966 IdentifierInfo *II, bool AllowBuiltinCreation) {
2967 // FIXME: Integrate this lookup step into LookupParsedName.
2968 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2969 if (Ivar.isInvalid())
2970 return ExprError();
2971 if (Ivar.isUsable())
2972 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2973 cast<ObjCIvarDecl>(Ivar.get()));
2975 if (Lookup.empty() && II && AllowBuiltinCreation)
2976 LookupBuiltin(Lookup);
2978 // Sentinel value saying that we didn't do anything special.
2979 return ExprResult(false);
2982 /// Cast a base object to a member's actual type.
2984 /// There are two relevant checks:
2986 /// C++ [class.access.base]p7:
2988 /// If a class member access operator [...] is used to access a non-static
2989 /// data member or non-static member function, the reference is ill-formed if
2990 /// the left operand [...] cannot be implicitly converted to a pointer to the
2991 /// naming class of the right operand.
2993 /// C++ [expr.ref]p7:
2995 /// If E2 is a non-static data member or a non-static member function, the
2996 /// program is ill-formed if the class of which E2 is directly a member is an
2997 /// ambiguous base (11.8) of the naming class (11.9.3) of E2.
2999 /// Note that the latter check does not consider access; the access of the
3000 /// "real" base class is checked as appropriate when checking the access of the
3001 /// member name.
3002 ExprResult
3003 Sema::PerformObjectMemberConversion(Expr *From,
3004 NestedNameSpecifier *Qualifier,
3005 NamedDecl *FoundDecl,
3006 NamedDecl *Member) {
3007 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3008 if (!RD)
3009 return From;
3011 QualType DestRecordType;
3012 QualType DestType;
3013 QualType FromRecordType;
3014 QualType FromType = From->getType();
3015 bool PointerConversions = false;
3016 if (isa<FieldDecl>(Member)) {
3017 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3018 auto FromPtrType = FromType->getAs<PointerType>();
3019 DestRecordType = Context.getAddrSpaceQualType(
3020 DestRecordType, FromPtrType
3021 ? FromType->getPointeeType().getAddressSpace()
3022 : FromType.getAddressSpace());
3024 if (FromPtrType) {
3025 DestType = Context.getPointerType(DestRecordType);
3026 FromRecordType = FromPtrType->getPointeeType();
3027 PointerConversions = true;
3028 } else {
3029 DestType = DestRecordType;
3030 FromRecordType = FromType;
3032 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
3033 if (Method->isStatic())
3034 return From;
3036 DestType = Method->getThisType();
3037 DestRecordType = DestType->getPointeeType();
3039 if (FromType->getAs<PointerType>()) {
3040 FromRecordType = FromType->getPointeeType();
3041 PointerConversions = true;
3042 } else {
3043 FromRecordType = FromType;
3044 DestType = DestRecordType;
3047 LangAS FromAS = FromRecordType.getAddressSpace();
3048 LangAS DestAS = DestRecordType.getAddressSpace();
3049 if (FromAS != DestAS) {
3050 QualType FromRecordTypeWithoutAS =
3051 Context.removeAddrSpaceQualType(FromRecordType);
3052 QualType FromTypeWithDestAS =
3053 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3054 if (PointerConversions)
3055 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3056 From = ImpCastExprToType(From, FromTypeWithDestAS,
3057 CK_AddressSpaceConversion, From->getValueKind())
3058 .get();
3060 } else {
3061 // No conversion necessary.
3062 return From;
3065 if (DestType->isDependentType() || FromType->isDependentType())
3066 return From;
3068 // If the unqualified types are the same, no conversion is necessary.
3069 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3070 return From;
3072 SourceRange FromRange = From->getSourceRange();
3073 SourceLocation FromLoc = FromRange.getBegin();
3075 ExprValueKind VK = From->getValueKind();
3077 // C++ [class.member.lookup]p8:
3078 // [...] Ambiguities can often be resolved by qualifying a name with its
3079 // class name.
3081 // If the member was a qualified name and the qualified referred to a
3082 // specific base subobject type, we'll cast to that intermediate type
3083 // first and then to the object in which the member is declared. That allows
3084 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3086 // class Base { public: int x; };
3087 // class Derived1 : public Base { };
3088 // class Derived2 : public Base { };
3089 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3091 // void VeryDerived::f() {
3092 // x = 17; // error: ambiguous base subobjects
3093 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3094 // }
3095 if (Qualifier && Qualifier->getAsType()) {
3096 QualType QType = QualType(Qualifier->getAsType(), 0);
3097 assert(QType->isRecordType() && "lookup done with non-record type");
3099 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3101 // In C++98, the qualifier type doesn't actually have to be a base
3102 // type of the object type, in which case we just ignore it.
3103 // Otherwise build the appropriate casts.
3104 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3105 CXXCastPath BasePath;
3106 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3107 FromLoc, FromRange, &BasePath))
3108 return ExprError();
3110 if (PointerConversions)
3111 QType = Context.getPointerType(QType);
3112 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3113 VK, &BasePath).get();
3115 FromType = QType;
3116 FromRecordType = QRecordType;
3118 // If the qualifier type was the same as the destination type,
3119 // we're done.
3120 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3121 return From;
3125 CXXCastPath BasePath;
3126 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3127 FromLoc, FromRange, &BasePath,
3128 /*IgnoreAccess=*/true))
3129 return ExprError();
3131 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3132 VK, &BasePath);
3135 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3136 const LookupResult &R,
3137 bool HasTrailingLParen) {
3138 // Only when used directly as the postfix-expression of a call.
3139 if (!HasTrailingLParen)
3140 return false;
3142 // Never if a scope specifier was provided.
3143 if (SS.isSet())
3144 return false;
3146 // Only in C++ or ObjC++.
3147 if (!getLangOpts().CPlusPlus)
3148 return false;
3150 // Turn off ADL when we find certain kinds of declarations during
3151 // normal lookup:
3152 for (NamedDecl *D : R) {
3153 // C++0x [basic.lookup.argdep]p3:
3154 // -- a declaration of a class member
3155 // Since using decls preserve this property, we check this on the
3156 // original decl.
3157 if (D->isCXXClassMember())
3158 return false;
3160 // C++0x [basic.lookup.argdep]p3:
3161 // -- a block-scope function declaration that is not a
3162 // using-declaration
3163 // NOTE: we also trigger this for function templates (in fact, we
3164 // don't check the decl type at all, since all other decl types
3165 // turn off ADL anyway).
3166 if (isa<UsingShadowDecl>(D))
3167 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3168 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3169 return false;
3171 // C++0x [basic.lookup.argdep]p3:
3172 // -- a declaration that is neither a function or a function
3173 // template
3174 // And also for builtin functions.
3175 if (isa<FunctionDecl>(D)) {
3176 FunctionDecl *FDecl = cast<FunctionDecl>(D);
3178 // But also builtin functions.
3179 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3180 return false;
3181 } else if (!isa<FunctionTemplateDecl>(D))
3182 return false;
3185 return true;
3189 /// Diagnoses obvious problems with the use of the given declaration
3190 /// as an expression. This is only actually called for lookups that
3191 /// were not overloaded, and it doesn't promise that the declaration
3192 /// will in fact be used.
3193 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3194 bool AcceptInvalid) {
3195 if (D->isInvalidDecl() && !AcceptInvalid)
3196 return true;
3198 if (isa<TypedefNameDecl>(D)) {
3199 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3200 return true;
3203 if (isa<ObjCInterfaceDecl>(D)) {
3204 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3205 return true;
3208 if (isa<NamespaceDecl>(D)) {
3209 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3210 return true;
3213 return false;
3216 // Certain multiversion types should be treated as overloaded even when there is
3217 // only one result.
3218 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3219 assert(R.isSingleResult() && "Expected only a single result");
3220 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3221 return FD &&
3222 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3225 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3226 LookupResult &R, bool NeedsADL,
3227 bool AcceptInvalidDecl) {
3228 // If this is a single, fully-resolved result and we don't need ADL,
3229 // just build an ordinary singleton decl ref.
3230 if (!NeedsADL && R.isSingleResult() &&
3231 !R.getAsSingle<FunctionTemplateDecl>() &&
3232 !ShouldLookupResultBeMultiVersionOverload(R))
3233 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3234 R.getRepresentativeDecl(), nullptr,
3235 AcceptInvalidDecl);
3237 // We only need to check the declaration if there's exactly one
3238 // result, because in the overloaded case the results can only be
3239 // functions and function templates.
3240 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3241 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3242 AcceptInvalidDecl))
3243 return ExprError();
3245 // Otherwise, just build an unresolved lookup expression. Suppress
3246 // any lookup-related diagnostics; we'll hash these out later, when
3247 // we've picked a target.
3248 R.suppressDiagnostics();
3250 UnresolvedLookupExpr *ULE
3251 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3252 SS.getWithLocInContext(Context),
3253 R.getLookupNameInfo(),
3254 NeedsADL, R.isOverloadedResult(),
3255 R.begin(), R.end());
3257 return ULE;
3260 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3261 SourceLocation loc,
3262 ValueDecl *var);
3264 /// Complete semantic analysis for a reference to the given declaration.
3265 ExprResult Sema::BuildDeclarationNameExpr(
3266 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3267 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3268 bool AcceptInvalidDecl) {
3269 assert(D && "Cannot refer to a NULL declaration");
3270 assert(!isa<FunctionTemplateDecl>(D) &&
3271 "Cannot refer unambiguously to a function template");
3273 SourceLocation Loc = NameInfo.getLoc();
3274 if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3275 // Recovery from invalid cases (e.g. D is an invalid Decl).
3276 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3277 // diagnostics, as invalid decls use int as a fallback type.
3278 return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3281 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3282 // Specifically diagnose references to class templates that are missing
3283 // a template argument list.
3284 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3285 return ExprError();
3288 // Make sure that we're referring to a value.
3289 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3290 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3291 Diag(D->getLocation(), diag::note_declared_at);
3292 return ExprError();
3295 // Check whether this declaration can be used. Note that we suppress
3296 // this check when we're going to perform argument-dependent lookup
3297 // on this function name, because this might not be the function
3298 // that overload resolution actually selects.
3299 if (DiagnoseUseOfDecl(D, Loc))
3300 return ExprError();
3302 auto *VD = cast<ValueDecl>(D);
3304 // Only create DeclRefExpr's for valid Decl's.
3305 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3306 return ExprError();
3308 // Handle members of anonymous structs and unions. If we got here,
3309 // and the reference is to a class member indirect field, then this
3310 // must be the subject of a pointer-to-member expression.
3311 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3312 if (!indirectField->isCXXClassMember())
3313 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3314 indirectField);
3316 QualType type = VD->getType();
3317 if (type.isNull())
3318 return ExprError();
3319 ExprValueKind valueKind = VK_PRValue;
3321 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3322 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3323 // is expanded by some outer '...' in the context of the use.
3324 type = type.getNonPackExpansionType();
3326 switch (D->getKind()) {
3327 // Ignore all the non-ValueDecl kinds.
3328 #define ABSTRACT_DECL(kind)
3329 #define VALUE(type, base)
3330 #define DECL(type, base) case Decl::type:
3331 #include "clang/AST/DeclNodes.inc"
3332 llvm_unreachable("invalid value decl kind");
3334 // These shouldn't make it here.
3335 case Decl::ObjCAtDefsField:
3336 llvm_unreachable("forming non-member reference to ivar?");
3338 // Enum constants are always r-values and never references.
3339 // Unresolved using declarations are dependent.
3340 case Decl::EnumConstant:
3341 case Decl::UnresolvedUsingValue:
3342 case Decl::OMPDeclareReduction:
3343 case Decl::OMPDeclareMapper:
3344 valueKind = VK_PRValue;
3345 break;
3347 // Fields and indirect fields that got here must be for
3348 // pointer-to-member expressions; we just call them l-values for
3349 // internal consistency, because this subexpression doesn't really
3350 // exist in the high-level semantics.
3351 case Decl::Field:
3352 case Decl::IndirectField:
3353 case Decl::ObjCIvar:
3354 assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3356 // These can't have reference type in well-formed programs, but
3357 // for internal consistency we do this anyway.
3358 type = type.getNonReferenceType();
3359 valueKind = VK_LValue;
3360 break;
3362 // Non-type template parameters are either l-values or r-values
3363 // depending on the type.
3364 case Decl::NonTypeTemplateParm: {
3365 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3366 type = reftype->getPointeeType();
3367 valueKind = VK_LValue; // even if the parameter is an r-value reference
3368 break;
3371 // [expr.prim.id.unqual]p2:
3372 // If the entity is a template parameter object for a template
3373 // parameter of type T, the type of the expression is const T.
3374 // [...] The expression is an lvalue if the entity is a [...] template
3375 // parameter object.
3376 if (type->isRecordType()) {
3377 type = type.getUnqualifiedType().withConst();
3378 valueKind = VK_LValue;
3379 break;
3382 // For non-references, we need to strip qualifiers just in case
3383 // the template parameter was declared as 'const int' or whatever.
3384 valueKind = VK_PRValue;
3385 type = type.getUnqualifiedType();
3386 break;
3389 case Decl::Var:
3390 case Decl::VarTemplateSpecialization:
3391 case Decl::VarTemplatePartialSpecialization:
3392 case Decl::Decomposition:
3393 case Decl::OMPCapturedExpr:
3394 // In C, "extern void blah;" is valid and is an r-value.
3395 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3396 type->isVoidType()) {
3397 valueKind = VK_PRValue;
3398 break;
3400 [[fallthrough]];
3402 case Decl::ImplicitParam:
3403 case Decl::ParmVar: {
3404 // These are always l-values.
3405 valueKind = VK_LValue;
3406 type = type.getNonReferenceType();
3408 // FIXME: Does the addition of const really only apply in
3409 // potentially-evaluated contexts? Since the variable isn't actually
3410 // captured in an unevaluated context, it seems that the answer is no.
3411 if (!isUnevaluatedContext()) {
3412 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3413 if (!CapturedType.isNull())
3414 type = CapturedType;
3417 break;
3420 case Decl::Binding:
3421 // These are always lvalues.
3422 valueKind = VK_LValue;
3423 type = type.getNonReferenceType();
3424 break;
3426 case Decl::Function: {
3427 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3428 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3429 type = Context.BuiltinFnTy;
3430 valueKind = VK_PRValue;
3431 break;
3435 const FunctionType *fty = type->castAs<FunctionType>();
3437 // If we're referring to a function with an __unknown_anytype
3438 // result type, make the entire expression __unknown_anytype.
3439 if (fty->getReturnType() == Context.UnknownAnyTy) {
3440 type = Context.UnknownAnyTy;
3441 valueKind = VK_PRValue;
3442 break;
3445 // Functions are l-values in C++.
3446 if (getLangOpts().CPlusPlus) {
3447 valueKind = VK_LValue;
3448 break;
3451 // C99 DR 316 says that, if a function type comes from a
3452 // function definition (without a prototype), that type is only
3453 // used for checking compatibility. Therefore, when referencing
3454 // the function, we pretend that we don't have the full function
3455 // type.
3456 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3457 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3458 fty->getExtInfo());
3460 // Functions are r-values in C.
3461 valueKind = VK_PRValue;
3462 break;
3465 case Decl::CXXDeductionGuide:
3466 llvm_unreachable("building reference to deduction guide");
3468 case Decl::MSProperty:
3469 case Decl::MSGuid:
3470 case Decl::TemplateParamObject:
3471 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3472 // capture in OpenMP, or duplicated between host and device?
3473 valueKind = VK_LValue;
3474 break;
3476 case Decl::UnnamedGlobalConstant:
3477 valueKind = VK_LValue;
3478 break;
3480 case Decl::CXXMethod:
3481 // If we're referring to a method with an __unknown_anytype
3482 // result type, make the entire expression __unknown_anytype.
3483 // This should only be possible with a type written directly.
3484 if (const FunctionProtoType *proto =
3485 dyn_cast<FunctionProtoType>(VD->getType()))
3486 if (proto->getReturnType() == Context.UnknownAnyTy) {
3487 type = Context.UnknownAnyTy;
3488 valueKind = VK_PRValue;
3489 break;
3492 // C++ methods are l-values if static, r-values if non-static.
3493 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3494 valueKind = VK_LValue;
3495 break;
3497 [[fallthrough]];
3499 case Decl::CXXConversion:
3500 case Decl::CXXDestructor:
3501 case Decl::CXXConstructor:
3502 valueKind = VK_PRValue;
3503 break;
3506 auto *E =
3507 BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3508 /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3509 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3510 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3511 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3512 // diagnostics).
3513 if (VD->isInvalidDecl() && E)
3514 return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3515 return E;
3518 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3519 SmallString<32> &Target) {
3520 Target.resize(CharByteWidth * (Source.size() + 1));
3521 char *ResultPtr = &Target[0];
3522 const llvm::UTF8 *ErrorPtr;
3523 bool success =
3524 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3525 (void)success;
3526 assert(success);
3527 Target.resize(ResultPtr - &Target[0]);
3530 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3531 PredefinedExpr::IdentKind IK) {
3532 // Pick the current block, lambda, captured statement or function.
3533 Decl *currentDecl = nullptr;
3534 if (const BlockScopeInfo *BSI = getCurBlock())
3535 currentDecl = BSI->TheDecl;
3536 else if (const LambdaScopeInfo *LSI = getCurLambda())
3537 currentDecl = LSI->CallOperator;
3538 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3539 currentDecl = CSI->TheCapturedDecl;
3540 else
3541 currentDecl = getCurFunctionOrMethodDecl();
3543 if (!currentDecl) {
3544 Diag(Loc, diag::ext_predef_outside_function);
3545 currentDecl = Context.getTranslationUnitDecl();
3548 QualType ResTy;
3549 StringLiteral *SL = nullptr;
3550 if (cast<DeclContext>(currentDecl)->isDependentContext())
3551 ResTy = Context.DependentTy;
3552 else {
3553 // Pre-defined identifiers are of type char[x], where x is the length of
3554 // the string.
3555 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3556 unsigned Length = Str.length();
3558 llvm::APInt LengthI(32, Length + 1);
3559 if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3560 ResTy =
3561 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3562 SmallString<32> RawChars;
3563 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3564 Str, RawChars);
3565 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3566 ArrayType::Normal,
3567 /*IndexTypeQuals*/ 0);
3568 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3569 /*Pascal*/ false, ResTy, Loc);
3570 } else {
3571 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3572 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3573 ArrayType::Normal,
3574 /*IndexTypeQuals*/ 0);
3575 SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary,
3576 /*Pascal*/ false, ResTy, Loc);
3580 return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3583 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3584 SourceLocation LParen,
3585 SourceLocation RParen,
3586 TypeSourceInfo *TSI) {
3587 return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3590 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3591 SourceLocation LParen,
3592 SourceLocation RParen,
3593 ParsedType ParsedTy) {
3594 TypeSourceInfo *TSI = nullptr;
3595 QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3597 if (Ty.isNull())
3598 return ExprError();
3599 if (!TSI)
3600 TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3602 return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3605 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3606 PredefinedExpr::IdentKind IK;
3608 switch (Kind) {
3609 default: llvm_unreachable("Unknown simple primary expr!");
3610 case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3611 case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3612 case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3613 case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3614 case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3615 case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3616 case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3619 return BuildPredefinedExpr(Loc, IK);
3622 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3623 SmallString<16> CharBuffer;
3624 bool Invalid = false;
3625 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3626 if (Invalid)
3627 return ExprError();
3629 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3630 PP, Tok.getKind());
3631 if (Literal.hadError())
3632 return ExprError();
3634 QualType Ty;
3635 if (Literal.isWide())
3636 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3637 else if (Literal.isUTF8() && getLangOpts().C2x)
3638 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x
3639 else if (Literal.isUTF8() && getLangOpts().Char8)
3640 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3641 else if (Literal.isUTF16())
3642 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3643 else if (Literal.isUTF32())
3644 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3645 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3646 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3647 else
3648 Ty = Context.CharTy; // 'x' -> char in C++;
3649 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3651 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3652 if (Literal.isWide())
3653 Kind = CharacterLiteral::Wide;
3654 else if (Literal.isUTF16())
3655 Kind = CharacterLiteral::UTF16;
3656 else if (Literal.isUTF32())
3657 Kind = CharacterLiteral::UTF32;
3658 else if (Literal.isUTF8())
3659 Kind = CharacterLiteral::UTF8;
3661 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3662 Tok.getLocation());
3664 if (Literal.getUDSuffix().empty())
3665 return Lit;
3667 // We're building a user-defined literal.
3668 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3669 SourceLocation UDSuffixLoc =
3670 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3672 // Make sure we're allowed user-defined literals here.
3673 if (!UDLScope)
3674 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3676 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3677 // operator "" X (ch)
3678 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3679 Lit, Tok.getLocation());
3682 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3683 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3684 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3685 Context.IntTy, Loc);
3688 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3689 QualType Ty, SourceLocation Loc) {
3690 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3692 using llvm::APFloat;
3693 APFloat Val(Format);
3695 APFloat::opStatus result = Literal.GetFloatValue(Val);
3697 // Overflow is always an error, but underflow is only an error if
3698 // we underflowed to zero (APFloat reports denormals as underflow).
3699 if ((result & APFloat::opOverflow) ||
3700 ((result & APFloat::opUnderflow) && Val.isZero())) {
3701 unsigned diagnostic;
3702 SmallString<20> buffer;
3703 if (result & APFloat::opOverflow) {
3704 diagnostic = diag::warn_float_overflow;
3705 APFloat::getLargest(Format).toString(buffer);
3706 } else {
3707 diagnostic = diag::warn_float_underflow;
3708 APFloat::getSmallest(Format).toString(buffer);
3711 S.Diag(Loc, diagnostic)
3712 << Ty
3713 << StringRef(buffer.data(), buffer.size());
3716 bool isExact = (result == APFloat::opOK);
3717 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3720 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3721 assert(E && "Invalid expression");
3723 if (E->isValueDependent())
3724 return false;
3726 QualType QT = E->getType();
3727 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3728 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3729 return true;
3732 llvm::APSInt ValueAPS;
3733 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3735 if (R.isInvalid())
3736 return true;
3738 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3739 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3740 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3741 << toString(ValueAPS, 10) << ValueIsPositive;
3742 return true;
3745 return false;
3748 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3749 // Fast path for a single digit (which is quite common). A single digit
3750 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3751 if (Tok.getLength() == 1) {
3752 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3753 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3756 SmallString<128> SpellingBuffer;
3757 // NumericLiteralParser wants to overread by one character. Add padding to
3758 // the buffer in case the token is copied to the buffer. If getSpelling()
3759 // returns a StringRef to the memory buffer, it should have a null char at
3760 // the EOF, so it is also safe.
3761 SpellingBuffer.resize(Tok.getLength() + 1);
3763 // Get the spelling of the token, which eliminates trigraphs, etc.
3764 bool Invalid = false;
3765 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3766 if (Invalid)
3767 return ExprError();
3769 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3770 PP.getSourceManager(), PP.getLangOpts(),
3771 PP.getTargetInfo(), PP.getDiagnostics());
3772 if (Literal.hadError)
3773 return ExprError();
3775 if (Literal.hasUDSuffix()) {
3776 // We're building a user-defined literal.
3777 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3778 SourceLocation UDSuffixLoc =
3779 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3781 // Make sure we're allowed user-defined literals here.
3782 if (!UDLScope)
3783 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3785 QualType CookedTy;
3786 if (Literal.isFloatingLiteral()) {
3787 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3788 // long double, the literal is treated as a call of the form
3789 // operator "" X (f L)
3790 CookedTy = Context.LongDoubleTy;
3791 } else {
3792 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3793 // unsigned long long, the literal is treated as a call of the form
3794 // operator "" X (n ULL)
3795 CookedTy = Context.UnsignedLongLongTy;
3798 DeclarationName OpName =
3799 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3800 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3801 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3803 SourceLocation TokLoc = Tok.getLocation();
3805 // Perform literal operator lookup to determine if we're building a raw
3806 // literal or a cooked one.
3807 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3808 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3809 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3810 /*AllowStringTemplatePack*/ false,
3811 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3812 case LOLR_ErrorNoDiagnostic:
3813 // Lookup failure for imaginary constants isn't fatal, there's still the
3814 // GNU extension producing _Complex types.
3815 break;
3816 case LOLR_Error:
3817 return ExprError();
3818 case LOLR_Cooked: {
3819 Expr *Lit;
3820 if (Literal.isFloatingLiteral()) {
3821 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3822 } else {
3823 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3824 if (Literal.GetIntegerValue(ResultVal))
3825 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3826 << /* Unsigned */ 1;
3827 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3828 Tok.getLocation());
3830 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3833 case LOLR_Raw: {
3834 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3835 // literal is treated as a call of the form
3836 // operator "" X ("n")
3837 unsigned Length = Literal.getUDSuffixOffset();
3838 QualType StrTy = Context.getConstantArrayType(
3839 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3840 llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3841 Expr *Lit =
3842 StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3843 StringLiteral::Ordinary,
3844 /*Pascal*/ false, StrTy, &TokLoc, 1);
3845 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3848 case LOLR_Template: {
3849 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3850 // template), L is treated as a call fo the form
3851 // operator "" X <'c1', 'c2', ... 'ck'>()
3852 // where n is the source character sequence c1 c2 ... ck.
3853 TemplateArgumentListInfo ExplicitArgs;
3854 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3855 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3856 llvm::APSInt Value(CharBits, CharIsUnsigned);
3857 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3858 Value = TokSpelling[I];
3859 TemplateArgument Arg(Context, Value, Context.CharTy);
3860 TemplateArgumentLocInfo ArgInfo;
3861 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3863 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
3864 &ExplicitArgs);
3866 case LOLR_StringTemplatePack:
3867 llvm_unreachable("unexpected literal operator lookup result");
3871 Expr *Res;
3873 if (Literal.isFixedPointLiteral()) {
3874 QualType Ty;
3876 if (Literal.isAccum) {
3877 if (Literal.isHalf) {
3878 Ty = Context.ShortAccumTy;
3879 } else if (Literal.isLong) {
3880 Ty = Context.LongAccumTy;
3881 } else {
3882 Ty = Context.AccumTy;
3884 } else if (Literal.isFract) {
3885 if (Literal.isHalf) {
3886 Ty = Context.ShortFractTy;
3887 } else if (Literal.isLong) {
3888 Ty = Context.LongFractTy;
3889 } else {
3890 Ty = Context.FractTy;
3894 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3896 bool isSigned = !Literal.isUnsigned;
3897 unsigned scale = Context.getFixedPointScale(Ty);
3898 unsigned bit_width = Context.getTypeInfo(Ty).Width;
3900 llvm::APInt Val(bit_width, 0, isSigned);
3901 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3902 bool ValIsZero = Val.isZero() && !Overflowed;
3904 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3905 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3906 // Clause 6.4.4 - The value of a constant shall be in the range of
3907 // representable values for its type, with exception for constants of a
3908 // fract type with a value of exactly 1; such a constant shall denote
3909 // the maximal value for the type.
3910 --Val;
3911 else if (Val.ugt(MaxVal) || Overflowed)
3912 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3914 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3915 Tok.getLocation(), scale);
3916 } else if (Literal.isFloatingLiteral()) {
3917 QualType Ty;
3918 if (Literal.isHalf){
3919 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3920 Ty = Context.HalfTy;
3921 else {
3922 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3923 return ExprError();
3925 } else if (Literal.isFloat)
3926 Ty = Context.FloatTy;
3927 else if (Literal.isLong)
3928 Ty = Context.LongDoubleTy;
3929 else if (Literal.isFloat16)
3930 Ty = Context.Float16Ty;
3931 else if (Literal.isFloat128)
3932 Ty = Context.Float128Ty;
3933 else
3934 Ty = Context.DoubleTy;
3936 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3938 if (Ty == Context.DoubleTy) {
3939 if (getLangOpts().SinglePrecisionConstants) {
3940 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3941 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3943 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3944 "cl_khr_fp64", getLangOpts())) {
3945 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3946 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3947 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3948 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3951 } else if (!Literal.isIntegerLiteral()) {
3952 return ExprError();
3953 } else {
3954 QualType Ty;
3956 // 'z/uz' literals are a C++2b feature.
3957 if (Literal.isSizeT)
3958 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3959 ? getLangOpts().CPlusPlus2b
3960 ? diag::warn_cxx20_compat_size_t_suffix
3961 : diag::ext_cxx2b_size_t_suffix
3962 : diag::err_cxx2b_size_t_suffix);
3964 // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++,
3965 // but we do not currently support the suffix in C++ mode because it's not
3966 // entirely clear whether WG21 will prefer this suffix to return a library
3967 // type such as std::bit_int instead of returning a _BitInt.
3968 if (Literal.isBitInt && !getLangOpts().CPlusPlus)
3969 PP.Diag(Tok.getLocation(), getLangOpts().C2x
3970 ? diag::warn_c2x_compat_bitint_suffix
3971 : diag::ext_c2x_bitint_suffix);
3973 // Get the value in the widest-possible width. What is "widest" depends on
3974 // whether the literal is a bit-precise integer or not. For a bit-precise
3975 // integer type, try to scan the source to determine how many bits are
3976 // needed to represent the value. This may seem a bit expensive, but trying
3977 // to get the integer value from an overly-wide APInt is *extremely*
3978 // expensive, so the naive approach of assuming
3979 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3980 unsigned BitsNeeded =
3981 Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3982 Literal.getLiteralDigits(), Literal.getRadix())
3983 : Context.getTargetInfo().getIntMaxTWidth();
3984 llvm::APInt ResultVal(BitsNeeded, 0);
3986 if (Literal.GetIntegerValue(ResultVal)) {
3987 // If this value didn't fit into uintmax_t, error and force to ull.
3988 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3989 << /* Unsigned */ 1;
3990 Ty = Context.UnsignedLongLongTy;
3991 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3992 "long long is not intmax_t?");
3993 } else {
3994 // If this value fits into a ULL, try to figure out what else it fits into
3995 // according to the rules of C99 6.4.4.1p5.
3997 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3998 // be an unsigned int.
3999 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4001 // Check from smallest to largest, picking the smallest type we can.
4002 unsigned Width = 0;
4004 // Microsoft specific integer suffixes are explicitly sized.
4005 if (Literal.MicrosoftInteger) {
4006 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4007 Width = 8;
4008 Ty = Context.CharTy;
4009 } else {
4010 Width = Literal.MicrosoftInteger;
4011 Ty = Context.getIntTypeForBitwidth(Width,
4012 /*Signed=*/!Literal.isUnsigned);
4016 // Bit-precise integer literals are automagically-sized based on the
4017 // width required by the literal.
4018 if (Literal.isBitInt) {
4019 // The signed version has one more bit for the sign value. There are no
4020 // zero-width bit-precise integers, even if the literal value is 0.
4021 Width = std::max(ResultVal.getActiveBits(), 1u) +
4022 (Literal.isUnsigned ? 0u : 1u);
4024 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4025 // and reset the type to the largest supported width.
4026 unsigned int MaxBitIntWidth =
4027 Context.getTargetInfo().getMaxBitIntWidth();
4028 if (Width > MaxBitIntWidth) {
4029 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4030 << Literal.isUnsigned;
4031 Width = MaxBitIntWidth;
4034 // Reset the result value to the smaller APInt and select the correct
4035 // type to be used. Note, we zext even for signed values because the
4036 // literal itself is always an unsigned value (a preceeding - is a
4037 // unary operator, not part of the literal).
4038 ResultVal = ResultVal.zextOrTrunc(Width);
4039 Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4042 // Check C++2b size_t literals.
4043 if (Literal.isSizeT) {
4044 assert(!Literal.MicrosoftInteger &&
4045 "size_t literals can't be Microsoft literals");
4046 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4047 Context.getTargetInfo().getSizeType());
4049 // Does it fit in size_t?
4050 if (ResultVal.isIntN(SizeTSize)) {
4051 // Does it fit in ssize_t?
4052 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4053 Ty = Context.getSignedSizeType();
4054 else if (AllowUnsigned)
4055 Ty = Context.getSizeType();
4056 Width = SizeTSize;
4060 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4061 !Literal.isSizeT) {
4062 // Are int/unsigned possibilities?
4063 unsigned IntSize = Context.getTargetInfo().getIntWidth();
4065 // Does it fit in a unsigned int?
4066 if (ResultVal.isIntN(IntSize)) {
4067 // Does it fit in a signed int?
4068 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4069 Ty = Context.IntTy;
4070 else if (AllowUnsigned)
4071 Ty = Context.UnsignedIntTy;
4072 Width = IntSize;
4076 // Are long/unsigned long possibilities?
4077 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4078 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4080 // Does it fit in a unsigned long?
4081 if (ResultVal.isIntN(LongSize)) {
4082 // Does it fit in a signed long?
4083 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4084 Ty = Context.LongTy;
4085 else if (AllowUnsigned)
4086 Ty = Context.UnsignedLongTy;
4087 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4088 // is compatible.
4089 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4090 const unsigned LongLongSize =
4091 Context.getTargetInfo().getLongLongWidth();
4092 Diag(Tok.getLocation(),
4093 getLangOpts().CPlusPlus
4094 ? Literal.isLong
4095 ? diag::warn_old_implicitly_unsigned_long_cxx
4096 : /*C++98 UB*/ diag::
4097 ext_old_implicitly_unsigned_long_cxx
4098 : diag::warn_old_implicitly_unsigned_long)
4099 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4100 : /*will be ill-formed*/ 1);
4101 Ty = Context.UnsignedLongTy;
4103 Width = LongSize;
4107 // Check long long if needed.
4108 if (Ty.isNull() && !Literal.isSizeT) {
4109 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4111 // Does it fit in a unsigned long long?
4112 if (ResultVal.isIntN(LongLongSize)) {
4113 // Does it fit in a signed long long?
4114 // To be compatible with MSVC, hex integer literals ending with the
4115 // LL or i64 suffix are always signed in Microsoft mode.
4116 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4117 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4118 Ty = Context.LongLongTy;
4119 else if (AllowUnsigned)
4120 Ty = Context.UnsignedLongLongTy;
4121 Width = LongLongSize;
4123 // 'long long' is a C99 or C++11 feature, whether the literal
4124 // explicitly specified 'long long' or we needed the extra width.
4125 if (getLangOpts().CPlusPlus)
4126 Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4127 ? diag::warn_cxx98_compat_longlong
4128 : diag::ext_cxx11_longlong);
4129 else if (!getLangOpts().C99)
4130 Diag(Tok.getLocation(), diag::ext_c99_longlong);
4134 // If we still couldn't decide a type, we either have 'size_t' literal
4135 // that is out of range, or a decimal literal that does not fit in a
4136 // signed long long and has no U suffix.
4137 if (Ty.isNull()) {
4138 if (Literal.isSizeT)
4139 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4140 << Literal.isUnsigned;
4141 else
4142 Diag(Tok.getLocation(),
4143 diag::ext_integer_literal_too_large_for_signed);
4144 Ty = Context.UnsignedLongLongTy;
4145 Width = Context.getTargetInfo().getLongLongWidth();
4148 if (ResultVal.getBitWidth() != Width)
4149 ResultVal = ResultVal.trunc(Width);
4151 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4154 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4155 if (Literal.isImaginary) {
4156 Res = new (Context) ImaginaryLiteral(Res,
4157 Context.getComplexType(Res->getType()));
4159 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4161 return Res;
4164 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4165 assert(E && "ActOnParenExpr() missing expr");
4166 QualType ExprTy = E->getType();
4167 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4168 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4169 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4170 return new (Context) ParenExpr(L, R, E);
4173 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4174 SourceLocation Loc,
4175 SourceRange ArgRange) {
4176 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4177 // scalar or vector data type argument..."
4178 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4179 // type (C99 6.2.5p18) or void.
4180 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4181 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4182 << T << ArgRange;
4183 return true;
4186 assert((T->isVoidType() || !T->isIncompleteType()) &&
4187 "Scalar types should always be complete");
4188 return false;
4191 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4192 SourceLocation Loc,
4193 SourceRange ArgRange,
4194 UnaryExprOrTypeTrait TraitKind) {
4195 // Invalid types must be hard errors for SFINAE in C++.
4196 if (S.LangOpts.CPlusPlus)
4197 return true;
4199 // C99 6.5.3.4p1:
4200 if (T->isFunctionType() &&
4201 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4202 TraitKind == UETT_PreferredAlignOf)) {
4203 // sizeof(function)/alignof(function) is allowed as an extension.
4204 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4205 << getTraitSpelling(TraitKind) << ArgRange;
4206 return false;
4209 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4210 // this is an error (OpenCL v1.1 s6.3.k)
4211 if (T->isVoidType()) {
4212 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4213 : diag::ext_sizeof_alignof_void_type;
4214 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4215 return false;
4218 return true;
4221 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4222 SourceLocation Loc,
4223 SourceRange ArgRange,
4224 UnaryExprOrTypeTrait TraitKind) {
4225 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4226 // runtime doesn't allow it.
4227 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4228 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4229 << T << (TraitKind == UETT_SizeOf)
4230 << ArgRange;
4231 return true;
4234 return false;
4237 /// Check whether E is a pointer from a decayed array type (the decayed
4238 /// pointer type is equal to T) and emit a warning if it is.
4239 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4240 Expr *E) {
4241 // Don't warn if the operation changed the type.
4242 if (T != E->getType())
4243 return;
4245 // Now look for array decays.
4246 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4247 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4248 return;
4250 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4251 << ICE->getType()
4252 << ICE->getSubExpr()->getType();
4255 /// Check the constraints on expression operands to unary type expression
4256 /// and type traits.
4258 /// Completes any types necessary and validates the constraints on the operand
4259 /// expression. The logic mostly mirrors the type-based overload, but may modify
4260 /// the expression as it completes the type for that expression through template
4261 /// instantiation, etc.
4262 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4263 UnaryExprOrTypeTrait ExprKind) {
4264 QualType ExprTy = E->getType();
4265 assert(!ExprTy->isReferenceType());
4267 bool IsUnevaluatedOperand =
4268 (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4269 ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4270 if (IsUnevaluatedOperand) {
4271 ExprResult Result = CheckUnevaluatedOperand(E);
4272 if (Result.isInvalid())
4273 return true;
4274 E = Result.get();
4277 // The operand for sizeof and alignof is in an unevaluated expression context,
4278 // so side effects could result in unintended consequences.
4279 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4280 // used to build SFINAE gadgets.
4281 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4282 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4283 !E->isInstantiationDependent() &&
4284 !E->getType()->isVariableArrayType() &&
4285 E->HasSideEffects(Context, false))
4286 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4288 if (ExprKind == UETT_VecStep)
4289 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4290 E->getSourceRange());
4292 // Explicitly list some types as extensions.
4293 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4294 E->getSourceRange(), ExprKind))
4295 return false;
4297 // 'alignof' applied to an expression only requires the base element type of
4298 // the expression to be complete. 'sizeof' requires the expression's type to
4299 // be complete (and will attempt to complete it if it's an array of unknown
4300 // bound).
4301 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4302 if (RequireCompleteSizedType(
4303 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4304 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4305 getTraitSpelling(ExprKind), E->getSourceRange()))
4306 return true;
4307 } else {
4308 if (RequireCompleteSizedExprType(
4309 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4310 getTraitSpelling(ExprKind), E->getSourceRange()))
4311 return true;
4314 // Completing the expression's type may have changed it.
4315 ExprTy = E->getType();
4316 assert(!ExprTy->isReferenceType());
4318 if (ExprTy->isFunctionType()) {
4319 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4320 << getTraitSpelling(ExprKind) << E->getSourceRange();
4321 return true;
4324 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4325 E->getSourceRange(), ExprKind))
4326 return true;
4328 if (ExprKind == UETT_SizeOf) {
4329 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4330 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4331 QualType OType = PVD->getOriginalType();
4332 QualType Type = PVD->getType();
4333 if (Type->isPointerType() && OType->isArrayType()) {
4334 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4335 << Type << OType;
4336 Diag(PVD->getLocation(), diag::note_declared_at);
4341 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4342 // decays into a pointer and returns an unintended result. This is most
4343 // likely a typo for "sizeof(array) op x".
4344 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4345 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4346 BO->getLHS());
4347 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4348 BO->getRHS());
4352 return false;
4355 /// Check the constraints on operands to unary expression and type
4356 /// traits.
4358 /// This will complete any types necessary, and validate the various constraints
4359 /// on those operands.
4361 /// The UsualUnaryConversions() function is *not* called by this routine.
4362 /// C99 6.3.2.1p[2-4] all state:
4363 /// Except when it is the operand of the sizeof operator ...
4365 /// C++ [expr.sizeof]p4
4366 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4367 /// standard conversions are not applied to the operand of sizeof.
4369 /// This policy is followed for all of the unary trait expressions.
4370 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4371 SourceLocation OpLoc,
4372 SourceRange ExprRange,
4373 UnaryExprOrTypeTrait ExprKind) {
4374 if (ExprType->isDependentType())
4375 return false;
4377 // C++ [expr.sizeof]p2:
4378 // When applied to a reference or a reference type, the result
4379 // is the size of the referenced type.
4380 // C++11 [expr.alignof]p3:
4381 // When alignof is applied to a reference type, the result
4382 // shall be the alignment of the referenced type.
4383 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4384 ExprType = Ref->getPointeeType();
4386 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4387 // When alignof or _Alignof is applied to an array type, the result
4388 // is the alignment of the element type.
4389 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4390 ExprKind == UETT_OpenMPRequiredSimdAlign)
4391 ExprType = Context.getBaseElementType(ExprType);
4393 if (ExprKind == UETT_VecStep)
4394 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4396 // Explicitly list some types as extensions.
4397 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4398 ExprKind))
4399 return false;
4401 if (RequireCompleteSizedType(
4402 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4403 getTraitSpelling(ExprKind), ExprRange))
4404 return true;
4406 if (ExprType->isFunctionType()) {
4407 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4408 << getTraitSpelling(ExprKind) << ExprRange;
4409 return true;
4412 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4413 ExprKind))
4414 return true;
4416 return false;
4419 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4420 // Cannot know anything else if the expression is dependent.
4421 if (E->isTypeDependent())
4422 return false;
4424 if (E->getObjectKind() == OK_BitField) {
4425 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4426 << 1 << E->getSourceRange();
4427 return true;
4430 ValueDecl *D = nullptr;
4431 Expr *Inner = E->IgnoreParens();
4432 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4433 D = DRE->getDecl();
4434 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4435 D = ME->getMemberDecl();
4438 // If it's a field, require the containing struct to have a
4439 // complete definition so that we can compute the layout.
4441 // This can happen in C++11 onwards, either by naming the member
4442 // in a way that is not transformed into a member access expression
4443 // (in an unevaluated operand, for instance), or by naming the member
4444 // in a trailing-return-type.
4446 // For the record, since __alignof__ on expressions is a GCC
4447 // extension, GCC seems to permit this but always gives the
4448 // nonsensical answer 0.
4450 // We don't really need the layout here --- we could instead just
4451 // directly check for all the appropriate alignment-lowing
4452 // attributes --- but that would require duplicating a lot of
4453 // logic that just isn't worth duplicating for such a marginal
4454 // use-case.
4455 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4456 // Fast path this check, since we at least know the record has a
4457 // definition if we can find a member of it.
4458 if (!FD->getParent()->isCompleteDefinition()) {
4459 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4460 << E->getSourceRange();
4461 return true;
4464 // Otherwise, if it's a field, and the field doesn't have
4465 // reference type, then it must have a complete type (or be a
4466 // flexible array member, which we explicitly want to
4467 // white-list anyway), which makes the following checks trivial.
4468 if (!FD->getType()->isReferenceType())
4469 return false;
4472 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4475 bool Sema::CheckVecStepExpr(Expr *E) {
4476 E = E->IgnoreParens();
4478 // Cannot know anything else if the expression is dependent.
4479 if (E->isTypeDependent())
4480 return false;
4482 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4485 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4486 CapturingScopeInfo *CSI) {
4487 assert(T->isVariablyModifiedType());
4488 assert(CSI != nullptr);
4490 // We're going to walk down into the type and look for VLA expressions.
4491 do {
4492 const Type *Ty = T.getTypePtr();
4493 switch (Ty->getTypeClass()) {
4494 #define TYPE(Class, Base)
4495 #define ABSTRACT_TYPE(Class, Base)
4496 #define NON_CANONICAL_TYPE(Class, Base)
4497 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4498 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4499 #include "clang/AST/TypeNodes.inc"
4500 T = QualType();
4501 break;
4502 // These types are never variably-modified.
4503 case Type::Builtin:
4504 case Type::Complex:
4505 case Type::Vector:
4506 case Type::ExtVector:
4507 case Type::ConstantMatrix:
4508 case Type::Record:
4509 case Type::Enum:
4510 case Type::TemplateSpecialization:
4511 case Type::ObjCObject:
4512 case Type::ObjCInterface:
4513 case Type::ObjCObjectPointer:
4514 case Type::ObjCTypeParam:
4515 case Type::Pipe:
4516 case Type::BitInt:
4517 llvm_unreachable("type class is never variably-modified!");
4518 case Type::Elaborated:
4519 T = cast<ElaboratedType>(Ty)->getNamedType();
4520 break;
4521 case Type::Adjusted:
4522 T = cast<AdjustedType>(Ty)->getOriginalType();
4523 break;
4524 case Type::Decayed:
4525 T = cast<DecayedType>(Ty)->getPointeeType();
4526 break;
4527 case Type::Pointer:
4528 T = cast<PointerType>(Ty)->getPointeeType();
4529 break;
4530 case Type::BlockPointer:
4531 T = cast<BlockPointerType>(Ty)->getPointeeType();
4532 break;
4533 case Type::LValueReference:
4534 case Type::RValueReference:
4535 T = cast<ReferenceType>(Ty)->getPointeeType();
4536 break;
4537 case Type::MemberPointer:
4538 T = cast<MemberPointerType>(Ty)->getPointeeType();
4539 break;
4540 case Type::ConstantArray:
4541 case Type::IncompleteArray:
4542 // Losing element qualification here is fine.
4543 T = cast<ArrayType>(Ty)->getElementType();
4544 break;
4545 case Type::VariableArray: {
4546 // Losing element qualification here is fine.
4547 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4549 // Unknown size indication requires no size computation.
4550 // Otherwise, evaluate and record it.
4551 auto Size = VAT->getSizeExpr();
4552 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4553 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4554 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4556 T = VAT->getElementType();
4557 break;
4559 case Type::FunctionProto:
4560 case Type::FunctionNoProto:
4561 T = cast<FunctionType>(Ty)->getReturnType();
4562 break;
4563 case Type::Paren:
4564 case Type::TypeOf:
4565 case Type::UnaryTransform:
4566 case Type::Attributed:
4567 case Type::BTFTagAttributed:
4568 case Type::SubstTemplateTypeParm:
4569 case Type::MacroQualified:
4570 // Keep walking after single level desugaring.
4571 T = T.getSingleStepDesugaredType(Context);
4572 break;
4573 case Type::Typedef:
4574 T = cast<TypedefType>(Ty)->desugar();
4575 break;
4576 case Type::Decltype:
4577 T = cast<DecltypeType>(Ty)->desugar();
4578 break;
4579 case Type::Using:
4580 T = cast<UsingType>(Ty)->desugar();
4581 break;
4582 case Type::Auto:
4583 case Type::DeducedTemplateSpecialization:
4584 T = cast<DeducedType>(Ty)->getDeducedType();
4585 break;
4586 case Type::TypeOfExpr:
4587 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4588 break;
4589 case Type::Atomic:
4590 T = cast<AtomicType>(Ty)->getValueType();
4591 break;
4593 } while (!T.isNull() && T->isVariablyModifiedType());
4596 /// Build a sizeof or alignof expression given a type operand.
4597 ExprResult
4598 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4599 SourceLocation OpLoc,
4600 UnaryExprOrTypeTrait ExprKind,
4601 SourceRange R) {
4602 if (!TInfo)
4603 return ExprError();
4605 QualType T = TInfo->getType();
4607 if (!T->isDependentType() &&
4608 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4609 return ExprError();
4611 if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4612 if (auto *TT = T->getAs<TypedefType>()) {
4613 for (auto I = FunctionScopes.rbegin(),
4614 E = std::prev(FunctionScopes.rend());
4615 I != E; ++I) {
4616 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4617 if (CSI == nullptr)
4618 break;
4619 DeclContext *DC = nullptr;
4620 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4621 DC = LSI->CallOperator;
4622 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4623 DC = CRSI->TheCapturedDecl;
4624 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4625 DC = BSI->TheDecl;
4626 if (DC) {
4627 if (DC->containsDecl(TT->getDecl()))
4628 break;
4629 captureVariablyModifiedType(Context, T, CSI);
4635 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4636 if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4637 TInfo->getType()->isVariablyModifiedType())
4638 TInfo = TransformToPotentiallyEvaluated(TInfo);
4640 return new (Context) UnaryExprOrTypeTraitExpr(
4641 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4644 /// Build a sizeof or alignof expression given an expression
4645 /// operand.
4646 ExprResult
4647 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4648 UnaryExprOrTypeTrait ExprKind) {
4649 ExprResult PE = CheckPlaceholderExpr(E);
4650 if (PE.isInvalid())
4651 return ExprError();
4653 E = PE.get();
4655 // Verify that the operand is valid.
4656 bool isInvalid = false;
4657 if (E->isTypeDependent()) {
4658 // Delay type-checking for type-dependent expressions.
4659 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4660 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4661 } else if (ExprKind == UETT_VecStep) {
4662 isInvalid = CheckVecStepExpr(E);
4663 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4664 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4665 isInvalid = true;
4666 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4667 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4668 isInvalid = true;
4669 } else {
4670 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4673 if (isInvalid)
4674 return ExprError();
4676 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4677 PE = TransformToPotentiallyEvaluated(E);
4678 if (PE.isInvalid()) return ExprError();
4679 E = PE.get();
4682 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4683 return new (Context) UnaryExprOrTypeTraitExpr(
4684 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4687 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4688 /// expr and the same for @c alignof and @c __alignof
4689 /// Note that the ArgRange is invalid if isType is false.
4690 ExprResult
4691 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4692 UnaryExprOrTypeTrait ExprKind, bool IsType,
4693 void *TyOrEx, SourceRange ArgRange) {
4694 // If error parsing type, ignore.
4695 if (!TyOrEx) return ExprError();
4697 if (IsType) {
4698 TypeSourceInfo *TInfo;
4699 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4700 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4703 Expr *ArgEx = (Expr *)TyOrEx;
4704 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4705 return Result;
4708 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4709 bool IsReal) {
4710 if (V.get()->isTypeDependent())
4711 return S.Context.DependentTy;
4713 // _Real and _Imag are only l-values for normal l-values.
4714 if (V.get()->getObjectKind() != OK_Ordinary) {
4715 V = S.DefaultLvalueConversion(V.get());
4716 if (V.isInvalid())
4717 return QualType();
4720 // These operators return the element type of a complex type.
4721 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4722 return CT->getElementType();
4724 // Otherwise they pass through real integer and floating point types here.
4725 if (V.get()->getType()->isArithmeticType())
4726 return V.get()->getType();
4728 // Test for placeholders.
4729 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4730 if (PR.isInvalid()) return QualType();
4731 if (PR.get() != V.get()) {
4732 V = PR;
4733 return CheckRealImagOperand(S, V, Loc, IsReal);
4736 // Reject anything else.
4737 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4738 << (IsReal ? "__real" : "__imag");
4739 return QualType();
4744 ExprResult
4745 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4746 tok::TokenKind Kind, Expr *Input) {
4747 UnaryOperatorKind Opc;
4748 switch (Kind) {
4749 default: llvm_unreachable("Unknown unary op!");
4750 case tok::plusplus: Opc = UO_PostInc; break;
4751 case tok::minusminus: Opc = UO_PostDec; break;
4754 // Since this might is a postfix expression, get rid of ParenListExprs.
4755 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4756 if (Result.isInvalid()) return ExprError();
4757 Input = Result.get();
4759 return BuildUnaryOp(S, OpLoc, Opc, Input);
4762 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4764 /// \return true on error
4765 static bool checkArithmeticOnObjCPointer(Sema &S,
4766 SourceLocation opLoc,
4767 Expr *op) {
4768 assert(op->getType()->isObjCObjectPointerType());
4769 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4770 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4771 return false;
4773 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4774 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4775 << op->getSourceRange();
4776 return true;
4779 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4780 auto *BaseNoParens = Base->IgnoreParens();
4781 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4782 return MSProp->getPropertyDecl()->getType()->isArrayType();
4783 return isa<MSPropertySubscriptExpr>(BaseNoParens);
4786 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4787 // Typically this is DependentTy, but can sometimes be more precise.
4789 // There are cases when we could determine a non-dependent type:
4790 // - LHS and RHS may have non-dependent types despite being type-dependent
4791 // (e.g. unbounded array static members of the current instantiation)
4792 // - one may be a dependent-sized array with known element type
4793 // - one may be a dependent-typed valid index (enum in current instantiation)
4795 // We *always* return a dependent type, in such cases it is DependentTy.
4796 // This avoids creating type-dependent expressions with non-dependent types.
4797 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4798 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4799 const ASTContext &Ctx) {
4800 assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4801 QualType LTy = LHS->getType(), RTy = RHS->getType();
4802 QualType Result = Ctx.DependentTy;
4803 if (RTy->isIntegralOrUnscopedEnumerationType()) {
4804 if (const PointerType *PT = LTy->getAs<PointerType>())
4805 Result = PT->getPointeeType();
4806 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4807 Result = AT->getElementType();
4808 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4809 if (const PointerType *PT = RTy->getAs<PointerType>())
4810 Result = PT->getPointeeType();
4811 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4812 Result = AT->getElementType();
4814 // Ensure we return a dependent type.
4815 return Result->isDependentType() ? Result : Ctx.DependentTy;
4818 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
4820 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4821 SourceLocation lbLoc,
4822 MultiExprArg ArgExprs,
4823 SourceLocation rbLoc) {
4825 if (base && !base->getType().isNull() &&
4826 base->hasPlaceholderType(BuiltinType::OMPArraySection))
4827 return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
4828 SourceLocation(), /*Length*/ nullptr,
4829 /*Stride=*/nullptr, rbLoc);
4831 // Since this might be a postfix expression, get rid of ParenListExprs.
4832 if (isa<ParenListExpr>(base)) {
4833 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4834 if (result.isInvalid())
4835 return ExprError();
4836 base = result.get();
4839 // Check if base and idx form a MatrixSubscriptExpr.
4841 // Helper to check for comma expressions, which are not allowed as indices for
4842 // matrix subscript expressions.
4843 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4844 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4845 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4846 << SourceRange(base->getBeginLoc(), rbLoc);
4847 return true;
4849 return false;
4851 // The matrix subscript operator ([][])is considered a single operator.
4852 // Separating the index expressions by parenthesis is not allowed.
4853 if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4854 !isa<MatrixSubscriptExpr>(base)) {
4855 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4856 << SourceRange(base->getBeginLoc(), rbLoc);
4857 return ExprError();
4859 // If the base is a MatrixSubscriptExpr, try to create a new
4860 // MatrixSubscriptExpr.
4861 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4862 if (matSubscriptE) {
4863 assert(ArgExprs.size() == 1);
4864 if (CheckAndReportCommaError(ArgExprs.front()))
4865 return ExprError();
4867 assert(matSubscriptE->isIncomplete() &&
4868 "base has to be an incomplete matrix subscript");
4869 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4870 matSubscriptE->getRowIdx(),
4871 ArgExprs.front(), rbLoc);
4874 // Handle any non-overload placeholder types in the base and index
4875 // expressions. We can't handle overloads here because the other
4876 // operand might be an overloadable type, in which case the overload
4877 // resolution for the operator overload should get the first crack
4878 // at the overload.
4879 bool IsMSPropertySubscript = false;
4880 if (base->getType()->isNonOverloadPlaceholderType()) {
4881 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4882 if (!IsMSPropertySubscript) {
4883 ExprResult result = CheckPlaceholderExpr(base);
4884 if (result.isInvalid())
4885 return ExprError();
4886 base = result.get();
4890 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4891 if (base->getType()->isMatrixType()) {
4892 assert(ArgExprs.size() == 1);
4893 if (CheckAndReportCommaError(ArgExprs.front()))
4894 return ExprError();
4896 return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4897 rbLoc);
4900 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4901 Expr *idx = ArgExprs[0];
4902 if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4903 (isa<CXXOperatorCallExpr>(idx) &&
4904 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4905 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4906 << SourceRange(base->getBeginLoc(), rbLoc);
4910 if (ArgExprs.size() == 1 &&
4911 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4912 ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4913 if (result.isInvalid())
4914 return ExprError();
4915 ArgExprs[0] = result.get();
4916 } else {
4917 if (checkArgsForPlaceholders(*this, ArgExprs))
4918 return ExprError();
4921 // Build an unanalyzed expression if either operand is type-dependent.
4922 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4923 (base->isTypeDependent() ||
4924 Expr::hasAnyTypeDependentArguments(ArgExprs))) {
4925 return new (Context) ArraySubscriptExpr(
4926 base, ArgExprs.front(),
4927 getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4928 VK_LValue, OK_Ordinary, rbLoc);
4931 // MSDN, property (C++)
4932 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4933 // This attribute can also be used in the declaration of an empty array in a
4934 // class or structure definition. For example:
4935 // __declspec(property(get=GetX, put=PutX)) int x[];
4936 // The above statement indicates that x[] can be used with one or more array
4937 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4938 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4939 if (IsMSPropertySubscript) {
4940 assert(ArgExprs.size() == 1);
4941 // Build MS property subscript expression if base is MS property reference
4942 // or MS property subscript.
4943 return new (Context)
4944 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4945 VK_LValue, OK_Ordinary, rbLoc);
4948 // Use C++ overloaded-operator rules if either operand has record
4949 // type. The spec says to do this if either type is *overloadable*,
4950 // but enum types can't declare subscript operators or conversion
4951 // operators, so there's nothing interesting for overload resolution
4952 // to do if there aren't any record types involved.
4954 // ObjC pointers have their own subscripting logic that is not tied
4955 // to overload resolution and so should not take this path.
4956 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4957 ((base->getType()->isRecordType() ||
4958 (ArgExprs.size() != 1 || ArgExprs[0]->getType()->isRecordType())))) {
4959 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4962 ExprResult Res =
4963 CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4965 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4966 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4968 return Res;
4971 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4972 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4973 InitializationKind Kind =
4974 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4975 InitializationSequence InitSeq(*this, Entity, Kind, E);
4976 return InitSeq.Perform(*this, Entity, Kind, E);
4979 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4980 Expr *ColumnIdx,
4981 SourceLocation RBLoc) {
4982 ExprResult BaseR = CheckPlaceholderExpr(Base);
4983 if (BaseR.isInvalid())
4984 return BaseR;
4985 Base = BaseR.get();
4987 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4988 if (RowR.isInvalid())
4989 return RowR;
4990 RowIdx = RowR.get();
4992 if (!ColumnIdx)
4993 return new (Context) MatrixSubscriptExpr(
4994 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4996 // Build an unanalyzed expression if any of the operands is type-dependent.
4997 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4998 ColumnIdx->isTypeDependent())
4999 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5000 Context.DependentTy, RBLoc);
5002 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5003 if (ColumnR.isInvalid())
5004 return ColumnR;
5005 ColumnIdx = ColumnR.get();
5007 // Check that IndexExpr is an integer expression. If it is a constant
5008 // expression, check that it is less than Dim (= the number of elements in the
5009 // corresponding dimension).
5010 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5011 bool IsColumnIdx) -> Expr * {
5012 if (!IndexExpr->getType()->isIntegerType() &&
5013 !IndexExpr->isTypeDependent()) {
5014 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5015 << IsColumnIdx;
5016 return nullptr;
5019 if (std::optional<llvm::APSInt> Idx =
5020 IndexExpr->getIntegerConstantExpr(Context)) {
5021 if ((*Idx < 0 || *Idx >= Dim)) {
5022 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5023 << IsColumnIdx << Dim;
5024 return nullptr;
5028 ExprResult ConvExpr =
5029 tryConvertExprToType(IndexExpr, Context.getSizeType());
5030 assert(!ConvExpr.isInvalid() &&
5031 "should be able to convert any integer type to size type");
5032 return ConvExpr.get();
5035 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5036 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5037 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5038 if (!RowIdx || !ColumnIdx)
5039 return ExprError();
5041 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5042 MTy->getElementType(), RBLoc);
5045 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5046 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5047 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5049 // For expressions like `&(*s).b`, the base is recorded and what should be
5050 // checked.
5051 const MemberExpr *Member = nullptr;
5052 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5053 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5055 LastRecord.PossibleDerefs.erase(StrippedExpr);
5058 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5059 if (isUnevaluatedContext())
5060 return;
5062 QualType ResultTy = E->getType();
5063 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5065 // Bail if the element is an array since it is not memory access.
5066 if (isa<ArrayType>(ResultTy))
5067 return;
5069 if (ResultTy->hasAttr(attr::NoDeref)) {
5070 LastRecord.PossibleDerefs.insert(E);
5071 return;
5074 // Check if the base type is a pointer to a member access of a struct
5075 // marked with noderef.
5076 const Expr *Base = E->getBase();
5077 QualType BaseTy = Base->getType();
5078 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5079 // Not a pointer access
5080 return;
5082 const MemberExpr *Member = nullptr;
5083 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5084 Member->isArrow())
5085 Base = Member->getBase();
5087 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5088 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5089 LastRecord.PossibleDerefs.insert(E);
5093 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5094 Expr *LowerBound,
5095 SourceLocation ColonLocFirst,
5096 SourceLocation ColonLocSecond,
5097 Expr *Length, Expr *Stride,
5098 SourceLocation RBLoc) {
5099 if (Base->hasPlaceholderType() &&
5100 !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5101 ExprResult Result = CheckPlaceholderExpr(Base);
5102 if (Result.isInvalid())
5103 return ExprError();
5104 Base = Result.get();
5106 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5107 ExprResult Result = CheckPlaceholderExpr(LowerBound);
5108 if (Result.isInvalid())
5109 return ExprError();
5110 Result = DefaultLvalueConversion(Result.get());
5111 if (Result.isInvalid())
5112 return ExprError();
5113 LowerBound = Result.get();
5115 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5116 ExprResult Result = CheckPlaceholderExpr(Length);
5117 if (Result.isInvalid())
5118 return ExprError();
5119 Result = DefaultLvalueConversion(Result.get());
5120 if (Result.isInvalid())
5121 return ExprError();
5122 Length = Result.get();
5124 if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5125 ExprResult Result = CheckPlaceholderExpr(Stride);
5126 if (Result.isInvalid())
5127 return ExprError();
5128 Result = DefaultLvalueConversion(Result.get());
5129 if (Result.isInvalid())
5130 return ExprError();
5131 Stride = Result.get();
5134 // Build an unanalyzed expression if either operand is type-dependent.
5135 if (Base->isTypeDependent() ||
5136 (LowerBound &&
5137 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5138 (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5139 (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5140 return new (Context) OMPArraySectionExpr(
5141 Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5142 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5145 // Perform default conversions.
5146 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5147 QualType ResultTy;
5148 if (OriginalTy->isAnyPointerType()) {
5149 ResultTy = OriginalTy->getPointeeType();
5150 } else if (OriginalTy->isArrayType()) {
5151 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5152 } else {
5153 return ExprError(
5154 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5155 << Base->getSourceRange());
5157 // C99 6.5.2.1p1
5158 if (LowerBound) {
5159 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5160 LowerBound);
5161 if (Res.isInvalid())
5162 return ExprError(Diag(LowerBound->getExprLoc(),
5163 diag::err_omp_typecheck_section_not_integer)
5164 << 0 << LowerBound->getSourceRange());
5165 LowerBound = Res.get();
5167 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5168 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5169 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5170 << 0 << LowerBound->getSourceRange();
5172 if (Length) {
5173 auto Res =
5174 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5175 if (Res.isInvalid())
5176 return ExprError(Diag(Length->getExprLoc(),
5177 diag::err_omp_typecheck_section_not_integer)
5178 << 1 << Length->getSourceRange());
5179 Length = Res.get();
5181 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5182 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5183 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5184 << 1 << Length->getSourceRange();
5186 if (Stride) {
5187 ExprResult Res =
5188 PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5189 if (Res.isInvalid())
5190 return ExprError(Diag(Stride->getExprLoc(),
5191 diag::err_omp_typecheck_section_not_integer)
5192 << 1 << Stride->getSourceRange());
5193 Stride = Res.get();
5195 if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5196 Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5197 Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5198 << 1 << Stride->getSourceRange();
5201 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5202 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5203 // type. Note that functions are not objects, and that (in C99 parlance)
5204 // incomplete types are not object types.
5205 if (ResultTy->isFunctionType()) {
5206 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5207 << ResultTy << Base->getSourceRange();
5208 return ExprError();
5211 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5212 diag::err_omp_section_incomplete_type, Base))
5213 return ExprError();
5215 if (LowerBound && !OriginalTy->isAnyPointerType()) {
5216 Expr::EvalResult Result;
5217 if (LowerBound->EvaluateAsInt(Result, Context)) {
5218 // OpenMP 5.0, [2.1.5 Array Sections]
5219 // The array section must be a subset of the original array.
5220 llvm::APSInt LowerBoundValue = Result.Val.getInt();
5221 if (LowerBoundValue.isNegative()) {
5222 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5223 << LowerBound->getSourceRange();
5224 return ExprError();
5229 if (Length) {
5230 Expr::EvalResult Result;
5231 if (Length->EvaluateAsInt(Result, Context)) {
5232 // OpenMP 5.0, [2.1.5 Array Sections]
5233 // The length must evaluate to non-negative integers.
5234 llvm::APSInt LengthValue = Result.Val.getInt();
5235 if (LengthValue.isNegative()) {
5236 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5237 << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5238 << Length->getSourceRange();
5239 return ExprError();
5242 } else if (ColonLocFirst.isValid() &&
5243 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5244 !OriginalTy->isVariableArrayType()))) {
5245 // OpenMP 5.0, [2.1.5 Array Sections]
5246 // When the size of the array dimension is not known, the length must be
5247 // specified explicitly.
5248 Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5249 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5250 return ExprError();
5253 if (Stride) {
5254 Expr::EvalResult Result;
5255 if (Stride->EvaluateAsInt(Result, Context)) {
5256 // OpenMP 5.0, [2.1.5 Array Sections]
5257 // The stride must evaluate to a positive integer.
5258 llvm::APSInt StrideValue = Result.Val.getInt();
5259 if (!StrideValue.isStrictlyPositive()) {
5260 Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5261 << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5262 << Stride->getSourceRange();
5263 return ExprError();
5268 if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5269 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5270 if (Result.isInvalid())
5271 return ExprError();
5272 Base = Result.get();
5274 return new (Context) OMPArraySectionExpr(
5275 Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5276 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5279 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5280 SourceLocation RParenLoc,
5281 ArrayRef<Expr *> Dims,
5282 ArrayRef<SourceRange> Brackets) {
5283 if (Base->hasPlaceholderType()) {
5284 ExprResult Result = CheckPlaceholderExpr(Base);
5285 if (Result.isInvalid())
5286 return ExprError();
5287 Result = DefaultLvalueConversion(Result.get());
5288 if (Result.isInvalid())
5289 return ExprError();
5290 Base = Result.get();
5292 QualType BaseTy = Base->getType();
5293 // Delay analysis of the types/expressions if instantiation/specialization is
5294 // required.
5295 if (!BaseTy->isPointerType() && Base->isTypeDependent())
5296 return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5297 LParenLoc, RParenLoc, Dims, Brackets);
5298 if (!BaseTy->isPointerType() ||
5299 (!Base->isTypeDependent() &&
5300 BaseTy->getPointeeType()->isIncompleteType()))
5301 return ExprError(Diag(Base->getExprLoc(),
5302 diag::err_omp_non_pointer_type_array_shaping_base)
5303 << Base->getSourceRange());
5305 SmallVector<Expr *, 4> NewDims;
5306 bool ErrorFound = false;
5307 for (Expr *Dim : Dims) {
5308 if (Dim->hasPlaceholderType()) {
5309 ExprResult Result = CheckPlaceholderExpr(Dim);
5310 if (Result.isInvalid()) {
5311 ErrorFound = true;
5312 continue;
5314 Result = DefaultLvalueConversion(Result.get());
5315 if (Result.isInvalid()) {
5316 ErrorFound = true;
5317 continue;
5319 Dim = Result.get();
5321 if (!Dim->isTypeDependent()) {
5322 ExprResult Result =
5323 PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5324 if (Result.isInvalid()) {
5325 ErrorFound = true;
5326 Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5327 << Dim->getSourceRange();
5328 continue;
5330 Dim = Result.get();
5331 Expr::EvalResult EvResult;
5332 if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5333 // OpenMP 5.0, [2.1.4 Array Shaping]
5334 // Each si is an integral type expression that must evaluate to a
5335 // positive integer.
5336 llvm::APSInt Value = EvResult.Val.getInt();
5337 if (!Value.isStrictlyPositive()) {
5338 Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5339 << toString(Value, /*Radix=*/10, /*Signed=*/true)
5340 << Dim->getSourceRange();
5341 ErrorFound = true;
5342 continue;
5346 NewDims.push_back(Dim);
5348 if (ErrorFound)
5349 return ExprError();
5350 return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5351 LParenLoc, RParenLoc, NewDims, Brackets);
5354 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5355 SourceLocation LLoc, SourceLocation RLoc,
5356 ArrayRef<OMPIteratorData> Data) {
5357 SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5358 bool IsCorrect = true;
5359 for (const OMPIteratorData &D : Data) {
5360 TypeSourceInfo *TInfo = nullptr;
5361 SourceLocation StartLoc;
5362 QualType DeclTy;
5363 if (!D.Type.getAsOpaquePtr()) {
5364 // OpenMP 5.0, 2.1.6 Iterators
5365 // In an iterator-specifier, if the iterator-type is not specified then
5366 // the type of that iterator is of int type.
5367 DeclTy = Context.IntTy;
5368 StartLoc = D.DeclIdentLoc;
5369 } else {
5370 DeclTy = GetTypeFromParser(D.Type, &TInfo);
5371 StartLoc = TInfo->getTypeLoc().getBeginLoc();
5374 bool IsDeclTyDependent = DeclTy->isDependentType() ||
5375 DeclTy->containsUnexpandedParameterPack() ||
5376 DeclTy->isInstantiationDependentType();
5377 if (!IsDeclTyDependent) {
5378 if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5379 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5380 // The iterator-type must be an integral or pointer type.
5381 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5382 << DeclTy;
5383 IsCorrect = false;
5384 continue;
5386 if (DeclTy.isConstant(Context)) {
5387 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5388 // The iterator-type must not be const qualified.
5389 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5390 << DeclTy;
5391 IsCorrect = false;
5392 continue;
5396 // Iterator declaration.
5397 assert(D.DeclIdent && "Identifier expected.");
5398 // Always try to create iterator declarator to avoid extra error messages
5399 // about unknown declarations use.
5400 auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5401 D.DeclIdent, DeclTy, TInfo, SC_None);
5402 VD->setImplicit();
5403 if (S) {
5404 // Check for conflicting previous declaration.
5405 DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5406 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5407 ForVisibleRedeclaration);
5408 Previous.suppressDiagnostics();
5409 LookupName(Previous, S);
5411 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5412 /*AllowInlineNamespace=*/false);
5413 if (!Previous.empty()) {
5414 NamedDecl *Old = Previous.getRepresentativeDecl();
5415 Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5416 Diag(Old->getLocation(), diag::note_previous_definition);
5417 } else {
5418 PushOnScopeChains(VD, S);
5420 } else {
5421 CurContext->addDecl(VD);
5424 /// Act on the iterator variable declaration.
5425 ActOnOpenMPIteratorVarDecl(VD);
5427 Expr *Begin = D.Range.Begin;
5428 if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5429 ExprResult BeginRes =
5430 PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5431 Begin = BeginRes.get();
5433 Expr *End = D.Range.End;
5434 if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5435 ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5436 End = EndRes.get();
5438 Expr *Step = D.Range.Step;
5439 if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5440 if (!Step->getType()->isIntegralType(Context)) {
5441 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5442 << Step << Step->getSourceRange();
5443 IsCorrect = false;
5444 continue;
5446 std::optional<llvm::APSInt> Result =
5447 Step->getIntegerConstantExpr(Context);
5448 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5449 // If the step expression of a range-specification equals zero, the
5450 // behavior is unspecified.
5451 if (Result && Result->isZero()) {
5452 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5453 << Step << Step->getSourceRange();
5454 IsCorrect = false;
5455 continue;
5458 if (!Begin || !End || !IsCorrect) {
5459 IsCorrect = false;
5460 continue;
5462 OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5463 IDElem.IteratorDecl = VD;
5464 IDElem.AssignmentLoc = D.AssignLoc;
5465 IDElem.Range.Begin = Begin;
5466 IDElem.Range.End = End;
5467 IDElem.Range.Step = Step;
5468 IDElem.ColonLoc = D.ColonLoc;
5469 IDElem.SecondColonLoc = D.SecColonLoc;
5471 if (!IsCorrect) {
5472 // Invalidate all created iterator declarations if error is found.
5473 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5474 if (Decl *ID = D.IteratorDecl)
5475 ID->setInvalidDecl();
5477 return ExprError();
5479 SmallVector<OMPIteratorHelperData, 4> Helpers;
5480 if (!CurContext->isDependentContext()) {
5481 // Build number of ityeration for each iteration range.
5482 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5483 // ((Begini-Stepi-1-Endi) / -Stepi);
5484 for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5485 // (Endi - Begini)
5486 ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5487 D.Range.Begin);
5488 if(!Res.isUsable()) {
5489 IsCorrect = false;
5490 continue;
5492 ExprResult St, St1;
5493 if (D.Range.Step) {
5494 St = D.Range.Step;
5495 // (Endi - Begini) + Stepi
5496 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5497 if (!Res.isUsable()) {
5498 IsCorrect = false;
5499 continue;
5501 // (Endi - Begini) + Stepi - 1
5502 Res =
5503 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5504 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5505 if (!Res.isUsable()) {
5506 IsCorrect = false;
5507 continue;
5509 // ((Endi - Begini) + Stepi - 1) / Stepi
5510 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5511 if (!Res.isUsable()) {
5512 IsCorrect = false;
5513 continue;
5515 St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5516 // (Begini - Endi)
5517 ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5518 D.Range.Begin, D.Range.End);
5519 if (!Res1.isUsable()) {
5520 IsCorrect = false;
5521 continue;
5523 // (Begini - Endi) - Stepi
5524 Res1 =
5525 CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5526 if (!Res1.isUsable()) {
5527 IsCorrect = false;
5528 continue;
5530 // (Begini - Endi) - Stepi - 1
5531 Res1 =
5532 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5533 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5534 if (!Res1.isUsable()) {
5535 IsCorrect = false;
5536 continue;
5538 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5539 Res1 =
5540 CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5541 if (!Res1.isUsable()) {
5542 IsCorrect = false;
5543 continue;
5545 // Stepi > 0.
5546 ExprResult CmpRes =
5547 CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5548 ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5549 if (!CmpRes.isUsable()) {
5550 IsCorrect = false;
5551 continue;
5553 Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5554 Res.get(), Res1.get());
5555 if (!Res.isUsable()) {
5556 IsCorrect = false;
5557 continue;
5560 Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5561 if (!Res.isUsable()) {
5562 IsCorrect = false;
5563 continue;
5566 // Build counter update.
5567 // Build counter.
5568 auto *CounterVD =
5569 VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5570 D.IteratorDecl->getBeginLoc(), nullptr,
5571 Res.get()->getType(), nullptr, SC_None);
5572 CounterVD->setImplicit();
5573 ExprResult RefRes =
5574 BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5575 D.IteratorDecl->getBeginLoc());
5576 // Build counter update.
5577 // I = Begini + counter * Stepi;
5578 ExprResult UpdateRes;
5579 if (D.Range.Step) {
5580 UpdateRes = CreateBuiltinBinOp(
5581 D.AssignmentLoc, BO_Mul,
5582 DefaultLvalueConversion(RefRes.get()).get(), St.get());
5583 } else {
5584 UpdateRes = DefaultLvalueConversion(RefRes.get());
5586 if (!UpdateRes.isUsable()) {
5587 IsCorrect = false;
5588 continue;
5590 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5591 UpdateRes.get());
5592 if (!UpdateRes.isUsable()) {
5593 IsCorrect = false;
5594 continue;
5596 ExprResult VDRes =
5597 BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5598 cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5599 D.IteratorDecl->getBeginLoc());
5600 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5601 UpdateRes.get());
5602 if (!UpdateRes.isUsable()) {
5603 IsCorrect = false;
5604 continue;
5606 UpdateRes =
5607 ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5608 if (!UpdateRes.isUsable()) {
5609 IsCorrect = false;
5610 continue;
5612 ExprResult CounterUpdateRes =
5613 CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5614 if (!CounterUpdateRes.isUsable()) {
5615 IsCorrect = false;
5616 continue;
5618 CounterUpdateRes =
5619 ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5620 if (!CounterUpdateRes.isUsable()) {
5621 IsCorrect = false;
5622 continue;
5624 OMPIteratorHelperData &HD = Helpers.emplace_back();
5625 HD.CounterVD = CounterVD;
5626 HD.Upper = Res.get();
5627 HD.Update = UpdateRes.get();
5628 HD.CounterUpdate = CounterUpdateRes.get();
5630 } else {
5631 Helpers.assign(ID.size(), {});
5633 if (!IsCorrect) {
5634 // Invalidate all created iterator declarations if error is found.
5635 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5636 if (Decl *ID = D.IteratorDecl)
5637 ID->setInvalidDecl();
5639 return ExprError();
5641 return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5642 LLoc, RLoc, ID, Helpers);
5645 ExprResult
5646 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5647 Expr *Idx, SourceLocation RLoc) {
5648 Expr *LHSExp = Base;
5649 Expr *RHSExp = Idx;
5651 ExprValueKind VK = VK_LValue;
5652 ExprObjectKind OK = OK_Ordinary;
5654 // Per C++ core issue 1213, the result is an xvalue if either operand is
5655 // a non-lvalue array, and an lvalue otherwise.
5656 if (getLangOpts().CPlusPlus11) {
5657 for (auto *Op : {LHSExp, RHSExp}) {
5658 Op = Op->IgnoreImplicit();
5659 if (Op->getType()->isArrayType() && !Op->isLValue())
5660 VK = VK_XValue;
5664 // Perform default conversions.
5665 if (!LHSExp->getType()->getAs<VectorType>()) {
5666 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5667 if (Result.isInvalid())
5668 return ExprError();
5669 LHSExp = Result.get();
5671 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5672 if (Result.isInvalid())
5673 return ExprError();
5674 RHSExp = Result.get();
5676 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5678 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5679 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5680 // in the subscript position. As a result, we need to derive the array base
5681 // and index from the expression types.
5682 Expr *BaseExpr, *IndexExpr;
5683 QualType ResultType;
5684 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5685 BaseExpr = LHSExp;
5686 IndexExpr = RHSExp;
5687 ResultType =
5688 getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5689 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5690 BaseExpr = LHSExp;
5691 IndexExpr = RHSExp;
5692 ResultType = PTy->getPointeeType();
5693 } else if (const ObjCObjectPointerType *PTy =
5694 LHSTy->getAs<ObjCObjectPointerType>()) {
5695 BaseExpr = LHSExp;
5696 IndexExpr = RHSExp;
5698 // Use custom logic if this should be the pseudo-object subscript
5699 // expression.
5700 if (!LangOpts.isSubscriptPointerArithmetic())
5701 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5702 nullptr);
5704 ResultType = PTy->getPointeeType();
5705 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5706 // Handle the uncommon case of "123[Ptr]".
5707 BaseExpr = RHSExp;
5708 IndexExpr = LHSExp;
5709 ResultType = PTy->getPointeeType();
5710 } else if (const ObjCObjectPointerType *PTy =
5711 RHSTy->getAs<ObjCObjectPointerType>()) {
5712 // Handle the uncommon case of "123[Ptr]".
5713 BaseExpr = RHSExp;
5714 IndexExpr = LHSExp;
5715 ResultType = PTy->getPointeeType();
5716 if (!LangOpts.isSubscriptPointerArithmetic()) {
5717 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5718 << ResultType << BaseExpr->getSourceRange();
5719 return ExprError();
5721 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5722 BaseExpr = LHSExp; // vectors: V[123]
5723 IndexExpr = RHSExp;
5724 // We apply C++ DR1213 to vector subscripting too.
5725 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5726 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5727 if (Materialized.isInvalid())
5728 return ExprError();
5729 LHSExp = Materialized.get();
5731 VK = LHSExp->getValueKind();
5732 if (VK != VK_PRValue)
5733 OK = OK_VectorComponent;
5735 ResultType = VTy->getElementType();
5736 QualType BaseType = BaseExpr->getType();
5737 Qualifiers BaseQuals = BaseType.getQualifiers();
5738 Qualifiers MemberQuals = ResultType.getQualifiers();
5739 Qualifiers Combined = BaseQuals + MemberQuals;
5740 if (Combined != MemberQuals)
5741 ResultType = Context.getQualifiedType(ResultType, Combined);
5742 } else if (LHSTy->isBuiltinType() &&
5743 LHSTy->getAs<BuiltinType>()->isVLSTBuiltinType()) {
5744 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5745 if (BTy->isSVEBool())
5746 return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5747 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5749 BaseExpr = LHSExp;
5750 IndexExpr = RHSExp;
5751 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5752 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5753 if (Materialized.isInvalid())
5754 return ExprError();
5755 LHSExp = Materialized.get();
5757 VK = LHSExp->getValueKind();
5758 if (VK != VK_PRValue)
5759 OK = OK_VectorComponent;
5761 ResultType = BTy->getSveEltType(Context);
5763 QualType BaseType = BaseExpr->getType();
5764 Qualifiers BaseQuals = BaseType.getQualifiers();
5765 Qualifiers MemberQuals = ResultType.getQualifiers();
5766 Qualifiers Combined = BaseQuals + MemberQuals;
5767 if (Combined != MemberQuals)
5768 ResultType = Context.getQualifiedType(ResultType, Combined);
5769 } else if (LHSTy->isArrayType()) {
5770 // If we see an array that wasn't promoted by
5771 // DefaultFunctionArrayLvalueConversion, it must be an array that
5772 // wasn't promoted because of the C90 rule that doesn't
5773 // allow promoting non-lvalue arrays. Warn, then
5774 // force the promotion here.
5775 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5776 << LHSExp->getSourceRange();
5777 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5778 CK_ArrayToPointerDecay).get();
5779 LHSTy = LHSExp->getType();
5781 BaseExpr = LHSExp;
5782 IndexExpr = RHSExp;
5783 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5784 } else if (RHSTy->isArrayType()) {
5785 // Same as previous, except for 123[f().a] case
5786 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5787 << RHSExp->getSourceRange();
5788 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5789 CK_ArrayToPointerDecay).get();
5790 RHSTy = RHSExp->getType();
5792 BaseExpr = RHSExp;
5793 IndexExpr = LHSExp;
5794 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5795 } else {
5796 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5797 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5799 // C99 6.5.2.1p1
5800 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5801 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5802 << IndexExpr->getSourceRange());
5804 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5805 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5806 && !IndexExpr->isTypeDependent())
5807 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5809 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5810 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5811 // type. Note that Functions are not objects, and that (in C99 parlance)
5812 // incomplete types are not object types.
5813 if (ResultType->isFunctionType()) {
5814 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5815 << ResultType << BaseExpr->getSourceRange();
5816 return ExprError();
5819 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5820 // GNU extension: subscripting on pointer to void
5821 Diag(LLoc, diag::ext_gnu_subscript_void_type)
5822 << BaseExpr->getSourceRange();
5824 // C forbids expressions of unqualified void type from being l-values.
5825 // See IsCForbiddenLValueType.
5826 if (!ResultType.hasQualifiers())
5827 VK = VK_PRValue;
5828 } else if (!ResultType->isDependentType() &&
5829 RequireCompleteSizedType(
5830 LLoc, ResultType,
5831 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5832 return ExprError();
5834 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5835 !ResultType.isCForbiddenLValueType());
5837 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5838 FunctionScopes.size() > 1) {
5839 if (auto *TT =
5840 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5841 for (auto I = FunctionScopes.rbegin(),
5842 E = std::prev(FunctionScopes.rend());
5843 I != E; ++I) {
5844 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5845 if (CSI == nullptr)
5846 break;
5847 DeclContext *DC = nullptr;
5848 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5849 DC = LSI->CallOperator;
5850 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5851 DC = CRSI->TheCapturedDecl;
5852 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5853 DC = BSI->TheDecl;
5854 if (DC) {
5855 if (DC->containsDecl(TT->getDecl()))
5856 break;
5857 captureVariablyModifiedType(
5858 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5864 return new (Context)
5865 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5868 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5869 ParmVarDecl *Param, Expr *RewrittenInit,
5870 bool SkipImmediateInvocations) {
5871 if (Param->hasUnparsedDefaultArg()) {
5872 assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5873 // If we've already cleared out the location for the default argument,
5874 // that means we're parsing it right now.
5875 if (!UnparsedDefaultArgLocs.count(Param)) {
5876 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5877 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5878 Param->setInvalidDecl();
5879 return true;
5882 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5883 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5884 Diag(UnparsedDefaultArgLocs[Param],
5885 diag::note_default_argument_declared_here);
5886 return true;
5889 if (Param->hasUninstantiatedDefaultArg()) {
5890 assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5891 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5892 return true;
5895 Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5896 assert(Init && "default argument but no initializer?");
5898 // If the default expression creates temporaries, we need to
5899 // push them to the current stack of expression temporaries so they'll
5900 // be properly destroyed.
5901 // FIXME: We should really be rebuilding the default argument with new
5902 // bound temporaries; see the comment in PR5810.
5903 // We don't need to do that with block decls, though, because
5904 // blocks in default argument expression can never capture anything.
5905 if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
5906 // Set the "needs cleanups" bit regardless of whether there are
5907 // any explicit objects.
5908 Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5909 // Append all the objects to the cleanup list. Right now, this
5910 // should always be a no-op, because blocks in default argument
5911 // expressions should never be able to capture anything.
5912 assert(!InitWithCleanup->getNumObjects() &&
5913 "default argument expression has capturing blocks?");
5915 EnterExpressionEvaluationContext EvalContext(
5916 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5917 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5918 SkipImmediateInvocations;
5919 MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables*/ true);
5920 return false;
5923 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
5924 bool HasImmediateCalls = false;
5926 bool shouldVisitImplicitCode() const { return true; }
5928 bool VisitCallExpr(CallExpr *E) {
5929 if (const FunctionDecl *FD = E->getDirectCallee())
5930 HasImmediateCalls |= FD->isConsteval();
5931 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5934 // SourceLocExpr are not immediate invocations
5935 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5936 // need to be rebuilt so that they refer to the correct SourceLocation and
5937 // DeclContext.
5938 bool VisitSourceLocExpr(SourceLocExpr *E) {
5939 HasImmediateCalls = true;
5940 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5943 // A nested lambda might have parameters with immediate invocations
5944 // in their default arguments.
5945 // The compound statement is not visited (as it does not constitute a
5946 // subexpression).
5947 // FIXME: We should consider visiting and transforming captures
5948 // with init expressions.
5949 bool VisitLambdaExpr(LambdaExpr *E) {
5950 return VisitCXXMethodDecl(E->getCallOperator());
5953 // Blocks don't support default parameters, and, as for lambdas,
5954 // we don't consider their body a subexpression.
5955 bool VisitBlockDecl(BlockDecl *B) { return false; }
5957 bool VisitCompoundStmt(CompoundStmt *B) { return false; }
5959 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
5960 return TraverseStmt(E->getExpr());
5963 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
5964 return TraverseStmt(E->getExpr());
5968 struct EnsureImmediateInvocationInDefaultArgs
5969 : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5970 EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5971 : TreeTransform(SemaRef) {}
5973 // Lambda can only have immediate invocations in the default
5974 // args of their parameters, which is transformed upon calling the closure.
5975 // The body is not a subexpression, so we have nothing to do.
5976 // FIXME: Immediate calls in capture initializers should be transformed.
5977 ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5978 ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5980 // Make sure we don't rebuild the this pointer as it would
5981 // cause it to incorrectly point it to the outermost class
5982 // in the case of nested struct initialization.
5983 ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5986 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5987 FunctionDecl *FD, ParmVarDecl *Param,
5988 Expr *Init) {
5989 assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5991 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5993 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5994 InitializationContext =
5995 OutermostDeclarationWithDelayedImmediateInvocations();
5996 if (!InitializationContext.has_value())
5997 InitializationContext.emplace(CallLoc, Param, CurContext);
5999 if (!Init && !Param->hasUnparsedDefaultArg()) {
6000 // Mark that we are replacing a default argument first.
6001 // If we are instantiating a template we won't have to
6002 // retransform immediate calls.
6003 EnterExpressionEvaluationContext EvalContext(
6004 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
6006 if (Param->hasUninstantiatedDefaultArg()) {
6007 if (InstantiateDefaultArgument(CallLoc, FD, Param))
6008 return ExprError();
6010 // CWG2631
6011 // An immediate invocation that is not evaluated where it appears is
6012 // evaluated and checked for whether it is a constant expression at the
6013 // point where the enclosing initializer is used in a function call.
6014 ImmediateCallVisitor V;
6015 if (!NestedDefaultChecking)
6016 V.TraverseDecl(Param);
6017 if (V.HasImmediateCalls) {
6018 ExprEvalContexts.back().DelayedDefaultInitializationContext = {
6019 CallLoc, Param, CurContext};
6020 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6021 ExprResult Res = Immediate.TransformInitializer(Param->getInit(),
6022 /*NotCopy=*/false);
6023 if (Res.isInvalid())
6024 return ExprError();
6025 Res = ConvertParamDefaultArgument(Param, Res.get(),
6026 Res.get()->getBeginLoc());
6027 if (Res.isInvalid())
6028 return ExprError();
6029 Init = Res.get();
6033 if (CheckCXXDefaultArgExpr(
6034 CallLoc, FD, Param, Init,
6035 /*SkipImmediateInvocations=*/NestedDefaultChecking))
6036 return ExprError();
6038 return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
6039 Init, InitializationContext->Context);
6042 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
6043 assert(Field->hasInClassInitializer());
6045 // If we might have already tried and failed to instantiate, don't try again.
6046 if (Field->isInvalidDecl())
6047 return ExprError();
6049 auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
6051 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6052 InitializationContext =
6053 OutermostDeclarationWithDelayedImmediateInvocations();
6054 if (!InitializationContext.has_value())
6055 InitializationContext.emplace(Loc, Field, CurContext);
6057 Expr *Init = nullptr;
6059 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6061 EnterExpressionEvaluationContext EvalContext(
6062 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
6064 if (!Field->getInClassInitializer()) {
6065 // Maybe we haven't instantiated the in-class initializer. Go check the
6066 // pattern FieldDecl to see if it has one.
6067 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
6068 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
6069 DeclContext::lookup_result Lookup =
6070 ClassPattern->lookup(Field->getDeclName());
6072 FieldDecl *Pattern = nullptr;
6073 for (auto *L : Lookup) {
6074 if ((Pattern = dyn_cast<FieldDecl>(L)))
6075 break;
6077 assert(Pattern && "We must have set the Pattern!");
6078 if (!Pattern->hasInClassInitializer() ||
6079 InstantiateInClassInitializer(Loc, Field, Pattern,
6080 getTemplateInstantiationArgs(Field))) {
6081 Field->setInvalidDecl();
6082 return ExprError();
6087 // CWG2631
6088 // An immediate invocation that is not evaluated where it appears is
6089 // evaluated and checked for whether it is a constant expression at the
6090 // point where the enclosing initializer is used in a [...] a constructor
6091 // definition, or an aggregate initialization.
6092 ImmediateCallVisitor V;
6093 if (!NestedDefaultChecking)
6094 V.TraverseDecl(Field);
6095 if (V.HasImmediateCalls) {
6096 ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
6097 CurContext};
6098 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6099 NestedDefaultChecking;
6101 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6103 ExprResult Res =
6104 Immediate.TransformInitializer(Field->getInClassInitializer(),
6105 /*CXXDirectInit=*/false);
6106 if (!Res.isInvalid())
6107 Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
6108 if (Res.isInvalid()) {
6109 Field->setInvalidDecl();
6110 return ExprError();
6112 Init = Res.get();
6115 if (Field->getInClassInitializer()) {
6116 Expr *E = Init ? Init : Field->getInClassInitializer();
6117 if (!NestedDefaultChecking)
6118 MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
6119 // C++11 [class.base.init]p7:
6120 // The initialization of each base and member constitutes a
6121 // full-expression.
6122 ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
6123 if (Res.isInvalid()) {
6124 Field->setInvalidDecl();
6125 return ExprError();
6127 Init = Res.get();
6129 return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
6130 Field, InitializationContext->Context,
6131 Init);
6134 // DR1351:
6135 // If the brace-or-equal-initializer of a non-static data member
6136 // invokes a defaulted default constructor of its class or of an
6137 // enclosing class in a potentially evaluated subexpression, the
6138 // program is ill-formed.
6140 // This resolution is unworkable: the exception specification of the
6141 // default constructor can be needed in an unevaluated context, in
6142 // particular, in the operand of a noexcept-expression, and we can be
6143 // unable to compute an exception specification for an enclosed class.
6145 // Any attempt to resolve the exception specification of a defaulted default
6146 // constructor before the initializer is lexically complete will ultimately
6147 // come here at which point we can diagnose it.
6148 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
6149 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
6150 << OutermostClass << Field;
6151 Diag(Field->getEndLoc(),
6152 diag::note_default_member_initializer_not_yet_parsed);
6153 // Recover by marking the field invalid, unless we're in a SFINAE context.
6154 if (!isSFINAEContext())
6155 Field->setInvalidDecl();
6156 return ExprError();
6159 Sema::VariadicCallType
6160 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
6161 Expr *Fn) {
6162 if (Proto && Proto->isVariadic()) {
6163 if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
6164 return VariadicConstructor;
6165 else if (Fn && Fn->getType()->isBlockPointerType())
6166 return VariadicBlock;
6167 else if (FDecl) {
6168 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6169 if (Method->isInstance())
6170 return VariadicMethod;
6171 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
6172 return VariadicMethod;
6173 return VariadicFunction;
6175 return VariadicDoesNotApply;
6178 namespace {
6179 class FunctionCallCCC final : public FunctionCallFilterCCC {
6180 public:
6181 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
6182 unsigned NumArgs, MemberExpr *ME)
6183 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
6184 FunctionName(FuncName) {}
6186 bool ValidateCandidate(const TypoCorrection &candidate) override {
6187 if (!candidate.getCorrectionSpecifier() ||
6188 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
6189 return false;
6192 return FunctionCallFilterCCC::ValidateCandidate(candidate);
6195 std::unique_ptr<CorrectionCandidateCallback> clone() override {
6196 return std::make_unique<FunctionCallCCC>(*this);
6199 private:
6200 const IdentifierInfo *const FunctionName;
6204 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
6205 FunctionDecl *FDecl,
6206 ArrayRef<Expr *> Args) {
6207 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
6208 DeclarationName FuncName = FDecl->getDeclName();
6209 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
6211 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
6212 if (TypoCorrection Corrected = S.CorrectTypo(
6213 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
6214 S.getScopeForContext(S.CurContext), nullptr, CCC,
6215 Sema::CTK_ErrorRecovery)) {
6216 if (NamedDecl *ND = Corrected.getFoundDecl()) {
6217 if (Corrected.isOverloaded()) {
6218 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
6219 OverloadCandidateSet::iterator Best;
6220 for (NamedDecl *CD : Corrected) {
6221 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
6222 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
6223 OCS);
6225 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
6226 case OR_Success:
6227 ND = Best->FoundDecl;
6228 Corrected.setCorrectionDecl(ND);
6229 break;
6230 default:
6231 break;
6234 ND = ND->getUnderlyingDecl();
6235 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
6236 return Corrected;
6239 return TypoCorrection();
6242 /// ConvertArgumentsForCall - Converts the arguments specified in
6243 /// Args/NumArgs to the parameter types of the function FDecl with
6244 /// function prototype Proto. Call is the call expression itself, and
6245 /// Fn is the function expression. For a C++ member function, this
6246 /// routine does not attempt to convert the object argument. Returns
6247 /// true if the call is ill-formed.
6248 bool
6249 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6250 FunctionDecl *FDecl,
6251 const FunctionProtoType *Proto,
6252 ArrayRef<Expr *> Args,
6253 SourceLocation RParenLoc,
6254 bool IsExecConfig) {
6255 // Bail out early if calling a builtin with custom typechecking.
6256 if (FDecl)
6257 if (unsigned ID = FDecl->getBuiltinID())
6258 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6259 return false;
6261 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6262 // assignment, to the types of the corresponding parameter, ...
6263 unsigned NumParams = Proto->getNumParams();
6264 bool Invalid = false;
6265 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6266 unsigned FnKind = Fn->getType()->isBlockPointerType()
6267 ? 1 /* block */
6268 : (IsExecConfig ? 3 /* kernel function (exec config) */
6269 : 0 /* function */);
6271 // If too few arguments are available (and we don't have default
6272 // arguments for the remaining parameters), don't make the call.
6273 if (Args.size() < NumParams) {
6274 if (Args.size() < MinArgs) {
6275 TypoCorrection TC;
6276 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6277 unsigned diag_id =
6278 MinArgs == NumParams && !Proto->isVariadic()
6279 ? diag::err_typecheck_call_too_few_args_suggest
6280 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6281 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
6282 << static_cast<unsigned>(Args.size())
6283 << TC.getCorrectionRange());
6284 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
6285 Diag(RParenLoc,
6286 MinArgs == NumParams && !Proto->isVariadic()
6287 ? diag::err_typecheck_call_too_few_args_one
6288 : diag::err_typecheck_call_too_few_args_at_least_one)
6289 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
6290 else
6291 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6292 ? diag::err_typecheck_call_too_few_args
6293 : diag::err_typecheck_call_too_few_args_at_least)
6294 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
6295 << Fn->getSourceRange();
6297 // Emit the location of the prototype.
6298 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6299 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6301 return true;
6303 // We reserve space for the default arguments when we create
6304 // the call expression, before calling ConvertArgumentsForCall.
6305 assert((Call->getNumArgs() == NumParams) &&
6306 "We should have reserved space for the default arguments before!");
6309 // If too many are passed and not variadic, error on the extras and drop
6310 // them.
6311 if (Args.size() > NumParams) {
6312 if (!Proto->isVariadic()) {
6313 TypoCorrection TC;
6314 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6315 unsigned diag_id =
6316 MinArgs == NumParams && !Proto->isVariadic()
6317 ? diag::err_typecheck_call_too_many_args_suggest
6318 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6319 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
6320 << static_cast<unsigned>(Args.size())
6321 << TC.getCorrectionRange());
6322 } else if (NumParams == 1 && FDecl &&
6323 FDecl->getParamDecl(0)->getDeclName())
6324 Diag(Args[NumParams]->getBeginLoc(),
6325 MinArgs == NumParams
6326 ? diag::err_typecheck_call_too_many_args_one
6327 : diag::err_typecheck_call_too_many_args_at_most_one)
6328 << FnKind << FDecl->getParamDecl(0)
6329 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
6330 << SourceRange(Args[NumParams]->getBeginLoc(),
6331 Args.back()->getEndLoc());
6332 else
6333 Diag(Args[NumParams]->getBeginLoc(),
6334 MinArgs == NumParams
6335 ? diag::err_typecheck_call_too_many_args
6336 : diag::err_typecheck_call_too_many_args_at_most)
6337 << FnKind << NumParams << static_cast<unsigned>(Args.size())
6338 << Fn->getSourceRange()
6339 << SourceRange(Args[NumParams]->getBeginLoc(),
6340 Args.back()->getEndLoc());
6342 // Emit the location of the prototype.
6343 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6344 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6346 // This deletes the extra arguments.
6347 Call->shrinkNumArgs(NumParams);
6348 return true;
6351 SmallVector<Expr *, 8> AllArgs;
6352 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6354 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6355 AllArgs, CallType);
6356 if (Invalid)
6357 return true;
6358 unsigned TotalNumArgs = AllArgs.size();
6359 for (unsigned i = 0; i < TotalNumArgs; ++i)
6360 Call->setArg(i, AllArgs[i]);
6362 Call->computeDependence();
6363 return false;
6366 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6367 const FunctionProtoType *Proto,
6368 unsigned FirstParam, ArrayRef<Expr *> Args,
6369 SmallVectorImpl<Expr *> &AllArgs,
6370 VariadicCallType CallType, bool AllowExplicit,
6371 bool IsListInitialization) {
6372 unsigned NumParams = Proto->getNumParams();
6373 bool Invalid = false;
6374 size_t ArgIx = 0;
6375 // Continue to check argument types (even if we have too few/many args).
6376 for (unsigned i = FirstParam; i < NumParams; i++) {
6377 QualType ProtoArgType = Proto->getParamType(i);
6379 Expr *Arg;
6380 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6381 if (ArgIx < Args.size()) {
6382 Arg = Args[ArgIx++];
6384 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6385 diag::err_call_incomplete_argument, Arg))
6386 return true;
6388 // Strip the unbridged-cast placeholder expression off, if applicable.
6389 bool CFAudited = false;
6390 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6391 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6392 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6393 Arg = stripARCUnbridgedCast(Arg);
6394 else if (getLangOpts().ObjCAutoRefCount &&
6395 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6396 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6397 CFAudited = true;
6399 if (Proto->getExtParameterInfo(i).isNoEscape() &&
6400 ProtoArgType->isBlockPointerType())
6401 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6402 BE->getBlockDecl()->setDoesNotEscape();
6404 InitializedEntity Entity =
6405 Param ? InitializedEntity::InitializeParameter(Context, Param,
6406 ProtoArgType)
6407 : InitializedEntity::InitializeParameter(
6408 Context, ProtoArgType, Proto->isParamConsumed(i));
6410 // Remember that parameter belongs to a CF audited API.
6411 if (CFAudited)
6412 Entity.setParameterCFAudited();
6414 ExprResult ArgE = PerformCopyInitialization(
6415 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6416 if (ArgE.isInvalid())
6417 return true;
6419 Arg = ArgE.getAs<Expr>();
6420 } else {
6421 assert(Param && "can't use default arguments without a known callee");
6423 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6424 if (ArgExpr.isInvalid())
6425 return true;
6427 Arg = ArgExpr.getAs<Expr>();
6430 // Check for array bounds violations for each argument to the call. This
6431 // check only triggers warnings when the argument isn't a more complex Expr
6432 // with its own checking, such as a BinaryOperator.
6433 CheckArrayAccess(Arg);
6435 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6436 CheckStaticArrayArgument(CallLoc, Param, Arg);
6438 AllArgs.push_back(Arg);
6441 // If this is a variadic call, handle args passed through "...".
6442 if (CallType != VariadicDoesNotApply) {
6443 // Assume that extern "C" functions with variadic arguments that
6444 // return __unknown_anytype aren't *really* variadic.
6445 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6446 FDecl->isExternC()) {
6447 for (Expr *A : Args.slice(ArgIx)) {
6448 QualType paramType; // ignored
6449 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6450 Invalid |= arg.isInvalid();
6451 AllArgs.push_back(arg.get());
6454 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6455 } else {
6456 for (Expr *A : Args.slice(ArgIx)) {
6457 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6458 Invalid |= Arg.isInvalid();
6459 AllArgs.push_back(Arg.get());
6463 // Check for array bounds violations.
6464 for (Expr *A : Args.slice(ArgIx))
6465 CheckArrayAccess(A);
6467 return Invalid;
6470 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6471 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6472 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6473 TL = DTL.getOriginalLoc();
6474 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6475 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6476 << ATL.getLocalSourceRange();
6479 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6480 /// array parameter, check that it is non-null, and that if it is formed by
6481 /// array-to-pointer decay, the underlying array is sufficiently large.
6483 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6484 /// array type derivation, then for each call to the function, the value of the
6485 /// corresponding actual argument shall provide access to the first element of
6486 /// an array with at least as many elements as specified by the size expression.
6487 void
6488 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6489 ParmVarDecl *Param,
6490 const Expr *ArgExpr) {
6491 // Static array parameters are not supported in C++.
6492 if (!Param || getLangOpts().CPlusPlus)
6493 return;
6495 QualType OrigTy = Param->getOriginalType();
6497 const ArrayType *AT = Context.getAsArrayType(OrigTy);
6498 if (!AT || AT->getSizeModifier() != ArrayType::Static)
6499 return;
6501 if (ArgExpr->isNullPointerConstant(Context,
6502 Expr::NPC_NeverValueDependent)) {
6503 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6504 DiagnoseCalleeStaticArrayParam(*this, Param);
6505 return;
6508 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6509 if (!CAT)
6510 return;
6512 const ConstantArrayType *ArgCAT =
6513 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6514 if (!ArgCAT)
6515 return;
6517 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6518 ArgCAT->getElementType())) {
6519 if (ArgCAT->getSize().ult(CAT->getSize())) {
6520 Diag(CallLoc, diag::warn_static_array_too_small)
6521 << ArgExpr->getSourceRange()
6522 << (unsigned)ArgCAT->getSize().getZExtValue()
6523 << (unsigned)CAT->getSize().getZExtValue() << 0;
6524 DiagnoseCalleeStaticArrayParam(*this, Param);
6526 return;
6529 std::optional<CharUnits> ArgSize =
6530 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6531 std::optional<CharUnits> ParmSize =
6532 getASTContext().getTypeSizeInCharsIfKnown(CAT);
6533 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6534 Diag(CallLoc, diag::warn_static_array_too_small)
6535 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6536 << (unsigned)ParmSize->getQuantity() << 1;
6537 DiagnoseCalleeStaticArrayParam(*this, Param);
6541 /// Given a function expression of unknown-any type, try to rebuild it
6542 /// to have a function type.
6543 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6545 /// Is the given type a placeholder that we need to lower out
6546 /// immediately during argument processing?
6547 static bool isPlaceholderToRemoveAsArg(QualType type) {
6548 // Placeholders are never sugared.
6549 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6550 if (!placeholder) return false;
6552 switch (placeholder->getKind()) {
6553 // Ignore all the non-placeholder types.
6554 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6555 case BuiltinType::Id:
6556 #include "clang/Basic/OpenCLImageTypes.def"
6557 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6558 case BuiltinType::Id:
6559 #include "clang/Basic/OpenCLExtensionTypes.def"
6560 // In practice we'll never use this, since all SVE types are sugared
6561 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6562 #define SVE_TYPE(Name, Id, SingletonId) \
6563 case BuiltinType::Id:
6564 #include "clang/Basic/AArch64SVEACLETypes.def"
6565 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6566 case BuiltinType::Id:
6567 #include "clang/Basic/PPCTypes.def"
6568 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6569 #include "clang/Basic/RISCVVTypes.def"
6570 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6571 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6572 #include "clang/AST/BuiltinTypes.def"
6573 return false;
6575 // We cannot lower out overload sets; they might validly be resolved
6576 // by the call machinery.
6577 case BuiltinType::Overload:
6578 return false;
6580 // Unbridged casts in ARC can be handled in some call positions and
6581 // should be left in place.
6582 case BuiltinType::ARCUnbridgedCast:
6583 return false;
6585 // Pseudo-objects should be converted as soon as possible.
6586 case BuiltinType::PseudoObject:
6587 return true;
6589 // The debugger mode could theoretically but currently does not try
6590 // to resolve unknown-typed arguments based on known parameter types.
6591 case BuiltinType::UnknownAny:
6592 return true;
6594 // These are always invalid as call arguments and should be reported.
6595 case BuiltinType::BoundMember:
6596 case BuiltinType::BuiltinFn:
6597 case BuiltinType::IncompleteMatrixIdx:
6598 case BuiltinType::OMPArraySection:
6599 case BuiltinType::OMPArrayShaping:
6600 case BuiltinType::OMPIterator:
6601 return true;
6604 llvm_unreachable("bad builtin type kind");
6607 /// Check an argument list for placeholders that we won't try to
6608 /// handle later.
6609 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6610 // Apply this processing to all the arguments at once instead of
6611 // dying at the first failure.
6612 bool hasInvalid = false;
6613 for (size_t i = 0, e = args.size(); i != e; i++) {
6614 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6615 ExprResult result = S.CheckPlaceholderExpr(args[i]);
6616 if (result.isInvalid()) hasInvalid = true;
6617 else args[i] = result.get();
6620 return hasInvalid;
6623 /// If a builtin function has a pointer argument with no explicit address
6624 /// space, then it should be able to accept a pointer to any address
6625 /// space as input. In order to do this, we need to replace the
6626 /// standard builtin declaration with one that uses the same address space
6627 /// as the call.
6629 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6630 /// it does not contain any pointer arguments without
6631 /// an address space qualifer. Otherwise the rewritten
6632 /// FunctionDecl is returned.
6633 /// TODO: Handle pointer return types.
6634 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6635 FunctionDecl *FDecl,
6636 MultiExprArg ArgExprs) {
6638 QualType DeclType = FDecl->getType();
6639 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6641 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6642 ArgExprs.size() < FT->getNumParams())
6643 return nullptr;
6645 bool NeedsNewDecl = false;
6646 unsigned i = 0;
6647 SmallVector<QualType, 8> OverloadParams;
6649 for (QualType ParamType : FT->param_types()) {
6651 // Convert array arguments to pointer to simplify type lookup.
6652 ExprResult ArgRes =
6653 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6654 if (ArgRes.isInvalid())
6655 return nullptr;
6656 Expr *Arg = ArgRes.get();
6657 QualType ArgType = Arg->getType();
6658 if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6659 !ArgType->isPointerType() ||
6660 !ArgType->getPointeeType().hasAddressSpace() ||
6661 isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6662 OverloadParams.push_back(ParamType);
6663 continue;
6666 QualType PointeeType = ParamType->getPointeeType();
6667 if (PointeeType.hasAddressSpace())
6668 continue;
6670 NeedsNewDecl = true;
6671 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6673 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6674 OverloadParams.push_back(Context.getPointerType(PointeeType));
6677 if (!NeedsNewDecl)
6678 return nullptr;
6680 FunctionProtoType::ExtProtoInfo EPI;
6681 EPI.Variadic = FT->isVariadic();
6682 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6683 OverloadParams, EPI);
6684 DeclContext *Parent = FDecl->getParent();
6685 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6686 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6687 FDecl->getIdentifier(), OverloadTy,
6688 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6689 false,
6690 /*hasPrototype=*/true);
6691 SmallVector<ParmVarDecl*, 16> Params;
6692 FT = cast<FunctionProtoType>(OverloadTy);
6693 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6694 QualType ParamType = FT->getParamType(i);
6695 ParmVarDecl *Parm =
6696 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6697 SourceLocation(), nullptr, ParamType,
6698 /*TInfo=*/nullptr, SC_None, nullptr);
6699 Parm->setScopeInfo(0, i);
6700 Params.push_back(Parm);
6702 OverloadDecl->setParams(Params);
6703 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6704 return OverloadDecl;
6707 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6708 FunctionDecl *Callee,
6709 MultiExprArg ArgExprs) {
6710 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6711 // similar attributes) really don't like it when functions are called with an
6712 // invalid number of args.
6713 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6714 /*PartialOverloading=*/false) &&
6715 !Callee->isVariadic())
6716 return;
6717 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6718 return;
6720 if (const EnableIfAttr *Attr =
6721 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6722 S.Diag(Fn->getBeginLoc(),
6723 isa<CXXMethodDecl>(Callee)
6724 ? diag::err_ovl_no_viable_member_function_in_call
6725 : diag::err_ovl_no_viable_function_in_call)
6726 << Callee << Callee->getSourceRange();
6727 S.Diag(Callee->getLocation(),
6728 diag::note_ovl_candidate_disabled_by_function_cond_attr)
6729 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6730 return;
6734 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6735 const UnresolvedMemberExpr *const UME, Sema &S) {
6737 const auto GetFunctionLevelDCIfCXXClass =
6738 [](Sema &S) -> const CXXRecordDecl * {
6739 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6740 if (!DC || !DC->getParent())
6741 return nullptr;
6743 // If the call to some member function was made from within a member
6744 // function body 'M' return return 'M's parent.
6745 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6746 return MD->getParent()->getCanonicalDecl();
6747 // else the call was made from within a default member initializer of a
6748 // class, so return the class.
6749 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6750 return RD->getCanonicalDecl();
6751 return nullptr;
6753 // If our DeclContext is neither a member function nor a class (in the
6754 // case of a lambda in a default member initializer), we can't have an
6755 // enclosing 'this'.
6757 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6758 if (!CurParentClass)
6759 return false;
6761 // The naming class for implicit member functions call is the class in which
6762 // name lookup starts.
6763 const CXXRecordDecl *const NamingClass =
6764 UME->getNamingClass()->getCanonicalDecl();
6765 assert(NamingClass && "Must have naming class even for implicit access");
6767 // If the unresolved member functions were found in a 'naming class' that is
6768 // related (either the same or derived from) to the class that contains the
6769 // member function that itself contained the implicit member access.
6771 return CurParentClass == NamingClass ||
6772 CurParentClass->isDerivedFrom(NamingClass);
6775 static void
6776 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6777 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6779 if (!UME)
6780 return;
6782 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6783 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6784 // already been captured, or if this is an implicit member function call (if
6785 // it isn't, an attempt to capture 'this' should already have been made).
6786 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6787 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6788 return;
6790 // Check if the naming class in which the unresolved members were found is
6791 // related (same as or is a base of) to the enclosing class.
6793 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6794 return;
6797 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6798 // If the enclosing function is not dependent, then this lambda is
6799 // capture ready, so if we can capture this, do so.
6800 if (!EnclosingFunctionCtx->isDependentContext()) {
6801 // If the current lambda and all enclosing lambdas can capture 'this' -
6802 // then go ahead and capture 'this' (since our unresolved overload set
6803 // contains at least one non-static member function).
6804 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6805 S.CheckCXXThisCapture(CallLoc);
6806 } else if (S.CurContext->isDependentContext()) {
6807 // ... since this is an implicit member reference, that might potentially
6808 // involve a 'this' capture, mark 'this' for potential capture in
6809 // enclosing lambdas.
6810 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6811 CurLSI->addPotentialThisCapture(CallLoc);
6815 // Once a call is fully resolved, warn for unqualified calls to specific
6816 // C++ standard functions, like move and forward.
6817 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) {
6818 // We are only checking unary move and forward so exit early here.
6819 if (Call->getNumArgs() != 1)
6820 return;
6822 Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6823 if (!E || isa<UnresolvedLookupExpr>(E))
6824 return;
6825 DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E);
6826 if (!DRE || !DRE->getLocation().isValid())
6827 return;
6829 if (DRE->getQualifier())
6830 return;
6832 const FunctionDecl *FD = Call->getDirectCallee();
6833 if (!FD)
6834 return;
6836 // Only warn for some functions deemed more frequent or problematic.
6837 unsigned BuiltinID = FD->getBuiltinID();
6838 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6839 return;
6841 S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6842 << FD->getQualifiedNameAsString()
6843 << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6846 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6847 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6848 Expr *ExecConfig) {
6849 ExprResult Call =
6850 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6851 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6852 if (Call.isInvalid())
6853 return Call;
6855 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6856 // language modes.
6857 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6858 if (ULE->hasExplicitTemplateArgs() &&
6859 ULE->decls_begin() == ULE->decls_end()) {
6860 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6861 ? diag::warn_cxx17_compat_adl_only_template_id
6862 : diag::ext_adl_only_template_id)
6863 << ULE->getName();
6867 if (LangOpts.OpenMP)
6868 Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6869 ExecConfig);
6870 if (LangOpts.CPlusPlus) {
6871 CallExpr *CE = dyn_cast<CallExpr>(Call.get());
6872 if (CE)
6873 DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6875 return Call;
6878 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6879 /// This provides the location of the left/right parens and a list of comma
6880 /// locations.
6881 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6882 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6883 Expr *ExecConfig, bool IsExecConfig,
6884 bool AllowRecovery) {
6885 // Since this might be a postfix expression, get rid of ParenListExprs.
6886 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6887 if (Result.isInvalid()) return ExprError();
6888 Fn = Result.get();
6890 if (checkArgsForPlaceholders(*this, ArgExprs))
6891 return ExprError();
6893 if (getLangOpts().CPlusPlus) {
6894 // If this is a pseudo-destructor expression, build the call immediately.
6895 if (isa<CXXPseudoDestructorExpr>(Fn)) {
6896 if (!ArgExprs.empty()) {
6897 // Pseudo-destructor calls should not have any arguments.
6898 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6899 << FixItHint::CreateRemoval(
6900 SourceRange(ArgExprs.front()->getBeginLoc(),
6901 ArgExprs.back()->getEndLoc()));
6904 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6905 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6907 if (Fn->getType() == Context.PseudoObjectTy) {
6908 ExprResult result = CheckPlaceholderExpr(Fn);
6909 if (result.isInvalid()) return ExprError();
6910 Fn = result.get();
6913 // Determine whether this is a dependent call inside a C++ template,
6914 // in which case we won't do any semantic analysis now.
6915 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6916 if (ExecConfig) {
6917 return CUDAKernelCallExpr::Create(Context, Fn,
6918 cast<CallExpr>(ExecConfig), ArgExprs,
6919 Context.DependentTy, VK_PRValue,
6920 RParenLoc, CurFPFeatureOverrides());
6921 } else {
6923 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6924 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6925 Fn->getBeginLoc());
6927 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6928 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6932 // Determine whether this is a call to an object (C++ [over.call.object]).
6933 if (Fn->getType()->isRecordType())
6934 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6935 RParenLoc);
6937 if (Fn->getType() == Context.UnknownAnyTy) {
6938 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6939 if (result.isInvalid()) return ExprError();
6940 Fn = result.get();
6943 if (Fn->getType() == Context.BoundMemberTy) {
6944 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6945 RParenLoc, ExecConfig, IsExecConfig,
6946 AllowRecovery);
6950 // Check for overloaded calls. This can happen even in C due to extensions.
6951 if (Fn->getType() == Context.OverloadTy) {
6952 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6954 // We aren't supposed to apply this logic if there's an '&' involved.
6955 if (!find.HasFormOfMemberPointer) {
6956 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6957 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6958 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6959 OverloadExpr *ovl = find.Expression;
6960 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6961 return BuildOverloadedCallExpr(
6962 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6963 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6964 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6965 RParenLoc, ExecConfig, IsExecConfig,
6966 AllowRecovery);
6970 // If we're directly calling a function, get the appropriate declaration.
6971 if (Fn->getType() == Context.UnknownAnyTy) {
6972 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6973 if (result.isInvalid()) return ExprError();
6974 Fn = result.get();
6977 Expr *NakedFn = Fn->IgnoreParens();
6979 bool CallingNDeclIndirectly = false;
6980 NamedDecl *NDecl = nullptr;
6981 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6982 if (UnOp->getOpcode() == UO_AddrOf) {
6983 CallingNDeclIndirectly = true;
6984 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6988 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6989 NDecl = DRE->getDecl();
6991 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6992 if (FDecl && FDecl->getBuiltinID()) {
6993 // Rewrite the function decl for this builtin by replacing parameters
6994 // with no explicit address space with the address space of the arguments
6995 // in ArgExprs.
6996 if ((FDecl =
6997 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6998 NDecl = FDecl;
6999 Fn = DeclRefExpr::Create(
7000 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
7001 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
7002 nullptr, DRE->isNonOdrUse());
7005 } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
7006 NDecl = ME->getMemberDecl();
7008 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
7009 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
7010 FD, /*Complain=*/true, Fn->getBeginLoc()))
7011 return ExprError();
7013 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
7015 // If this expression is a call to a builtin function in HIP device
7016 // compilation, allow a pointer-type argument to default address space to be
7017 // passed as a pointer-type parameter to a non-default address space.
7018 // If Arg is declared in the default address space and Param is declared
7019 // in a non-default address space, perform an implicit address space cast to
7020 // the parameter type.
7021 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
7022 FD->getBuiltinID()) {
7023 for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
7024 ParmVarDecl *Param = FD->getParamDecl(Idx);
7025 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
7026 !ArgExprs[Idx]->getType()->isPointerType())
7027 continue;
7029 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
7030 auto ArgTy = ArgExprs[Idx]->getType();
7031 auto ArgPtTy = ArgTy->getPointeeType();
7032 auto ArgAS = ArgPtTy.getAddressSpace();
7034 // Add address space cast if target address spaces are different
7035 bool NeedImplicitASC =
7036 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
7037 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
7038 // or from specific AS which has target AS matching that of Param.
7039 getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
7040 if (!NeedImplicitASC)
7041 continue;
7043 // First, ensure that the Arg is an RValue.
7044 if (ArgExprs[Idx]->isGLValue()) {
7045 ArgExprs[Idx] = ImplicitCastExpr::Create(
7046 Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
7047 nullptr, VK_PRValue, FPOptionsOverride());
7050 // Construct a new arg type with address space of Param
7051 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
7052 ArgPtQuals.setAddressSpace(ParamAS);
7053 auto NewArgPtTy =
7054 Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
7055 auto NewArgTy =
7056 Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
7057 ArgTy.getQualifiers());
7059 // Finally perform an implicit address space cast
7060 ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
7061 CK_AddressSpaceConversion)
7062 .get();
7067 if (Context.isDependenceAllowed() &&
7068 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
7069 assert(!getLangOpts().CPlusPlus);
7070 assert((Fn->containsErrors() ||
7071 llvm::any_of(ArgExprs,
7072 [](clang::Expr *E) { return E->containsErrors(); })) &&
7073 "should only occur in error-recovery path.");
7074 QualType ReturnType =
7075 llvm::isa_and_nonnull<FunctionDecl>(NDecl)
7076 ? cast<FunctionDecl>(NDecl)->getCallResultType()
7077 : Context.DependentTy;
7078 return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
7079 Expr::getValueKindForType(ReturnType), RParenLoc,
7080 CurFPFeatureOverrides());
7082 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
7083 ExecConfig, IsExecConfig);
7086 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7087 // with the specified CallArgs
7088 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
7089 MultiExprArg CallArgs) {
7090 StringRef Name = Context.BuiltinInfo.getName(Id);
7091 LookupResult R(*this, &Context.Idents.get(Name), Loc,
7092 Sema::LookupOrdinaryName);
7093 LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
7095 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
7096 assert(BuiltInDecl && "failed to find builtin declaration");
7098 ExprResult DeclRef =
7099 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
7100 assert(DeclRef.isUsable() && "Builtin reference cannot fail");
7102 ExprResult Call =
7103 BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
7105 assert(!Call.isInvalid() && "Call to builtin cannot fail!");
7106 return Call.get();
7109 /// Parse a __builtin_astype expression.
7111 /// __builtin_astype( value, dst type )
7113 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
7114 SourceLocation BuiltinLoc,
7115 SourceLocation RParenLoc) {
7116 QualType DstTy = GetTypeFromParser(ParsedDestTy);
7117 return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
7120 /// Create a new AsTypeExpr node (bitcast) from the arguments.
7121 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
7122 SourceLocation BuiltinLoc,
7123 SourceLocation RParenLoc) {
7124 ExprValueKind VK = VK_PRValue;
7125 ExprObjectKind OK = OK_Ordinary;
7126 QualType SrcTy = E->getType();
7127 if (!SrcTy->isDependentType() &&
7128 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
7129 return ExprError(
7130 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
7131 << DestTy << SrcTy << E->getSourceRange());
7132 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
7135 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7136 /// provided arguments.
7138 /// __builtin_convertvector( value, dst type )
7140 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
7141 SourceLocation BuiltinLoc,
7142 SourceLocation RParenLoc) {
7143 TypeSourceInfo *TInfo;
7144 GetTypeFromParser(ParsedDestTy, &TInfo);
7145 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
7148 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7149 /// i.e. an expression not of \p OverloadTy. The expression should
7150 /// unary-convert to an expression of function-pointer or
7151 /// block-pointer type.
7153 /// \param NDecl the declaration being called, if available
7154 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
7155 SourceLocation LParenLoc,
7156 ArrayRef<Expr *> Args,
7157 SourceLocation RParenLoc, Expr *Config,
7158 bool IsExecConfig, ADLCallKind UsesADL) {
7159 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
7160 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
7162 // Functions with 'interrupt' attribute cannot be called directly.
7163 if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
7164 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
7165 return ExprError();
7168 // Interrupt handlers don't save off the VFP regs automatically on ARM,
7169 // so there's some risk when calling out to non-interrupt handler functions
7170 // that the callee might not preserve them. This is easy to diagnose here,
7171 // but can be very challenging to debug.
7172 // Likewise, X86 interrupt handlers may only call routines with attribute
7173 // no_caller_saved_registers since there is no efficient way to
7174 // save and restore the non-GPR state.
7175 if (auto *Caller = getCurFunctionDecl()) {
7176 if (Caller->hasAttr<ARMInterruptAttr>()) {
7177 bool VFP = Context.getTargetInfo().hasFeature("vfp");
7178 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
7179 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
7180 if (FDecl)
7181 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7184 if (Caller->hasAttr<AnyX86InterruptAttr>() &&
7185 ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
7186 Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
7187 if (FDecl)
7188 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7192 // Promote the function operand.
7193 // We special-case function promotion here because we only allow promoting
7194 // builtin functions to function pointers in the callee of a call.
7195 ExprResult Result;
7196 QualType ResultTy;
7197 if (BuiltinID &&
7198 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
7199 // Extract the return type from the (builtin) function pointer type.
7200 // FIXME Several builtins still have setType in
7201 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7202 // Builtins.def to ensure they are correct before removing setType calls.
7203 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
7204 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
7205 ResultTy = FDecl->getCallResultType();
7206 } else {
7207 Result = CallExprUnaryConversions(Fn);
7208 ResultTy = Context.BoolTy;
7210 if (Result.isInvalid())
7211 return ExprError();
7212 Fn = Result.get();
7214 // Check for a valid function type, but only if it is not a builtin which
7215 // requires custom type checking. These will be handled by
7216 // CheckBuiltinFunctionCall below just after creation of the call expression.
7217 const FunctionType *FuncT = nullptr;
7218 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
7219 retry:
7220 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
7221 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7222 // have type pointer to function".
7223 FuncT = PT->getPointeeType()->getAs<FunctionType>();
7224 if (!FuncT)
7225 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7226 << Fn->getType() << Fn->getSourceRange());
7227 } else if (const BlockPointerType *BPT =
7228 Fn->getType()->getAs<BlockPointerType>()) {
7229 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
7230 } else {
7231 // Handle calls to expressions of unknown-any type.
7232 if (Fn->getType() == Context.UnknownAnyTy) {
7233 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
7234 if (rewrite.isInvalid())
7235 return ExprError();
7236 Fn = rewrite.get();
7237 goto retry;
7240 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7241 << Fn->getType() << Fn->getSourceRange());
7245 // Get the number of parameters in the function prototype, if any.
7246 // We will allocate space for max(Args.size(), NumParams) arguments
7247 // in the call expression.
7248 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7249 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7251 CallExpr *TheCall;
7252 if (Config) {
7253 assert(UsesADL == ADLCallKind::NotADL &&
7254 "CUDAKernelCallExpr should not use ADL");
7255 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7256 Args, ResultTy, VK_PRValue, RParenLoc,
7257 CurFPFeatureOverrides(), NumParams);
7258 } else {
7259 TheCall =
7260 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7261 CurFPFeatureOverrides(), NumParams, UsesADL);
7264 if (!Context.isDependenceAllowed()) {
7265 // Forget about the nulled arguments since typo correction
7266 // do not handle them well.
7267 TheCall->shrinkNumArgs(Args.size());
7268 // C cannot always handle TypoExpr nodes in builtin calls and direct
7269 // function calls as their argument checking don't necessarily handle
7270 // dependent types properly, so make sure any TypoExprs have been
7271 // dealt with.
7272 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7273 if (!Result.isUsable()) return ExprError();
7274 CallExpr *TheOldCall = TheCall;
7275 TheCall = dyn_cast<CallExpr>(Result.get());
7276 bool CorrectedTypos = TheCall != TheOldCall;
7277 if (!TheCall) return Result;
7278 Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7280 // A new call expression node was created if some typos were corrected.
7281 // However it may not have been constructed with enough storage. In this
7282 // case, rebuild the node with enough storage. The waste of space is
7283 // immaterial since this only happens when some typos were corrected.
7284 if (CorrectedTypos && Args.size() < NumParams) {
7285 if (Config)
7286 TheCall = CUDAKernelCallExpr::Create(
7287 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7288 RParenLoc, CurFPFeatureOverrides(), NumParams);
7289 else
7290 TheCall =
7291 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7292 CurFPFeatureOverrides(), NumParams, UsesADL);
7294 // We can now handle the nulled arguments for the default arguments.
7295 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7298 // Bail out early if calling a builtin with custom type checking.
7299 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7300 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7302 if (getLangOpts().CUDA) {
7303 if (Config) {
7304 // CUDA: Kernel calls must be to global functions
7305 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7306 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7307 << FDecl << Fn->getSourceRange());
7309 // CUDA: Kernel function must have 'void' return type
7310 if (!FuncT->getReturnType()->isVoidType() &&
7311 !FuncT->getReturnType()->getAs<AutoType>() &&
7312 !FuncT->getReturnType()->isInstantiationDependentType())
7313 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7314 << Fn->getType() << Fn->getSourceRange());
7315 } else {
7316 // CUDA: Calls to global functions must be configured
7317 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7318 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7319 << FDecl << Fn->getSourceRange());
7323 // Check for a valid return type
7324 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7325 FDecl))
7326 return ExprError();
7328 // We know the result type of the call, set it.
7329 TheCall->setType(FuncT->getCallResultType(Context));
7330 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7332 if (Proto) {
7333 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7334 IsExecConfig))
7335 return ExprError();
7336 } else {
7337 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7339 if (FDecl) {
7340 // Check if we have too few/too many template arguments, based
7341 // on our knowledge of the function definition.
7342 const FunctionDecl *Def = nullptr;
7343 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7344 Proto = Def->getType()->getAs<FunctionProtoType>();
7345 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7346 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7347 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7350 // If the function we're calling isn't a function prototype, but we have
7351 // a function prototype from a prior declaratiom, use that prototype.
7352 if (!FDecl->hasPrototype())
7353 Proto = FDecl->getType()->getAs<FunctionProtoType>();
7356 // If we still haven't found a prototype to use but there are arguments to
7357 // the call, diagnose this as calling a function without a prototype.
7358 // However, if we found a function declaration, check to see if
7359 // -Wdeprecated-non-prototype was disabled where the function was declared.
7360 // If so, we will silence the diagnostic here on the assumption that this
7361 // interface is intentional and the user knows what they're doing. We will
7362 // also silence the diagnostic if there is a function declaration but it
7363 // was implicitly defined (the user already gets diagnostics about the
7364 // creation of the implicit function declaration, so the additional warning
7365 // is not helpful).
7366 if (!Proto && !Args.empty() &&
7367 (!FDecl || (!FDecl->isImplicit() &&
7368 !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7369 FDecl->getLocation()))))
7370 Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7371 << (FDecl != nullptr) << FDecl;
7373 // Promote the arguments (C99 6.5.2.2p6).
7374 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7375 Expr *Arg = Args[i];
7377 if (Proto && i < Proto->getNumParams()) {
7378 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7379 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7380 ExprResult ArgE =
7381 PerformCopyInitialization(Entity, SourceLocation(), Arg);
7382 if (ArgE.isInvalid())
7383 return true;
7385 Arg = ArgE.getAs<Expr>();
7387 } else {
7388 ExprResult ArgE = DefaultArgumentPromotion(Arg);
7390 if (ArgE.isInvalid())
7391 return true;
7393 Arg = ArgE.getAs<Expr>();
7396 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7397 diag::err_call_incomplete_argument, Arg))
7398 return ExprError();
7400 TheCall->setArg(i, Arg);
7402 TheCall->computeDependence();
7405 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7406 if (!Method->isStatic())
7407 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7408 << Fn->getSourceRange());
7410 // Check for sentinels
7411 if (NDecl)
7412 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7414 // Warn for unions passing across security boundary (CMSE).
7415 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7416 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7417 if (const auto *RT =
7418 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7419 if (RT->getDecl()->isOrContainsUnion())
7420 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7421 << 0 << i;
7426 // Do special checking on direct calls to functions.
7427 if (FDecl) {
7428 if (CheckFunctionCall(FDecl, TheCall, Proto))
7429 return ExprError();
7431 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7433 if (BuiltinID)
7434 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7435 } else if (NDecl) {
7436 if (CheckPointerCall(NDecl, TheCall, Proto))
7437 return ExprError();
7438 } else {
7439 if (CheckOtherCall(TheCall, Proto))
7440 return ExprError();
7443 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7446 ExprResult
7447 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7448 SourceLocation RParenLoc, Expr *InitExpr) {
7449 assert(Ty && "ActOnCompoundLiteral(): missing type");
7450 assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7452 TypeSourceInfo *TInfo;
7453 QualType literalType = GetTypeFromParser(Ty, &TInfo);
7454 if (!TInfo)
7455 TInfo = Context.getTrivialTypeSourceInfo(literalType);
7457 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7460 ExprResult
7461 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7462 SourceLocation RParenLoc, Expr *LiteralExpr) {
7463 QualType literalType = TInfo->getType();
7465 if (literalType->isArrayType()) {
7466 if (RequireCompleteSizedType(
7467 LParenLoc, Context.getBaseElementType(literalType),
7468 diag::err_array_incomplete_or_sizeless_type,
7469 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7470 return ExprError();
7471 if (literalType->isVariableArrayType()) {
7472 if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7473 diag::err_variable_object_no_init)) {
7474 return ExprError();
7477 } else if (!literalType->isDependentType() &&
7478 RequireCompleteType(LParenLoc, literalType,
7479 diag::err_typecheck_decl_incomplete_type,
7480 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7481 return ExprError();
7483 InitializedEntity Entity
7484 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7485 InitializationKind Kind
7486 = InitializationKind::CreateCStyleCast(LParenLoc,
7487 SourceRange(LParenLoc, RParenLoc),
7488 /*InitList=*/true);
7489 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7490 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7491 &literalType);
7492 if (Result.isInvalid())
7493 return ExprError();
7494 LiteralExpr = Result.get();
7496 bool isFileScope = !CurContext->isFunctionOrMethod();
7498 // In C, compound literals are l-values for some reason.
7499 // For GCC compatibility, in C++, file-scope array compound literals with
7500 // constant initializers are also l-values, and compound literals are
7501 // otherwise prvalues.
7503 // (GCC also treats C++ list-initialized file-scope array prvalues with
7504 // constant initializers as l-values, but that's non-conforming, so we don't
7505 // follow it there.)
7507 // FIXME: It would be better to handle the lvalue cases as materializing and
7508 // lifetime-extending a temporary object, but our materialized temporaries
7509 // representation only supports lifetime extension from a variable, not "out
7510 // of thin air".
7511 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7512 // is bound to the result of applying array-to-pointer decay to the compound
7513 // literal.
7514 // FIXME: GCC supports compound literals of reference type, which should
7515 // obviously have a value kind derived from the kind of reference involved.
7516 ExprValueKind VK =
7517 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7518 ? VK_PRValue
7519 : VK_LValue;
7521 if (isFileScope)
7522 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7523 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7524 Expr *Init = ILE->getInit(i);
7525 ILE->setInit(i, ConstantExpr::Create(Context, Init));
7528 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7529 VK, LiteralExpr, isFileScope);
7530 if (isFileScope) {
7531 if (!LiteralExpr->isTypeDependent() &&
7532 !LiteralExpr->isValueDependent() &&
7533 !literalType->isDependentType()) // C99 6.5.2.5p3
7534 if (CheckForConstantInitializer(LiteralExpr, literalType))
7535 return ExprError();
7536 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7537 literalType.getAddressSpace() != LangAS::Default) {
7538 // Embedded-C extensions to C99 6.5.2.5:
7539 // "If the compound literal occurs inside the body of a function, the
7540 // type name shall not be qualified by an address-space qualifier."
7541 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7542 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7543 return ExprError();
7546 if (!isFileScope && !getLangOpts().CPlusPlus) {
7547 // Compound literals that have automatic storage duration are destroyed at
7548 // the end of the scope in C; in C++, they're just temporaries.
7550 // Emit diagnostics if it is or contains a C union type that is non-trivial
7551 // to destruct.
7552 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7553 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7554 NTCUC_CompoundLiteral, NTCUK_Destruct);
7556 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7557 if (literalType.isDestructedType()) {
7558 Cleanup.setExprNeedsCleanups(true);
7559 ExprCleanupObjects.push_back(E);
7560 getCurFunction()->setHasBranchProtectedScope();
7564 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7565 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7566 checkNonTrivialCUnionInInitializer(E->getInitializer(),
7567 E->getInitializer()->getExprLoc());
7569 return MaybeBindToTemporary(E);
7572 ExprResult
7573 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7574 SourceLocation RBraceLoc) {
7575 // Only produce each kind of designated initialization diagnostic once.
7576 SourceLocation FirstDesignator;
7577 bool DiagnosedArrayDesignator = false;
7578 bool DiagnosedNestedDesignator = false;
7579 bool DiagnosedMixedDesignator = false;
7581 // Check that any designated initializers are syntactically valid in the
7582 // current language mode.
7583 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7584 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7585 if (FirstDesignator.isInvalid())
7586 FirstDesignator = DIE->getBeginLoc();
7588 if (!getLangOpts().CPlusPlus)
7589 break;
7591 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7592 DiagnosedNestedDesignator = true;
7593 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7594 << DIE->getDesignatorsSourceRange();
7597 for (auto &Desig : DIE->designators()) {
7598 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7599 DiagnosedArrayDesignator = true;
7600 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7601 << Desig.getSourceRange();
7605 if (!DiagnosedMixedDesignator &&
7606 !isa<DesignatedInitExpr>(InitArgList[0])) {
7607 DiagnosedMixedDesignator = true;
7608 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7609 << DIE->getSourceRange();
7610 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7611 << InitArgList[0]->getSourceRange();
7613 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7614 isa<DesignatedInitExpr>(InitArgList[0])) {
7615 DiagnosedMixedDesignator = true;
7616 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7617 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7618 << DIE->getSourceRange();
7619 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7620 << InitArgList[I]->getSourceRange();
7624 if (FirstDesignator.isValid()) {
7625 // Only diagnose designated initiaization as a C++20 extension if we didn't
7626 // already diagnose use of (non-C++20) C99 designator syntax.
7627 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7628 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7629 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7630 ? diag::warn_cxx17_compat_designated_init
7631 : diag::ext_cxx_designated_init);
7632 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7633 Diag(FirstDesignator, diag::ext_designated_init);
7637 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7640 ExprResult
7641 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7642 SourceLocation RBraceLoc) {
7643 // Semantic analysis for initializers is done by ActOnDeclarator() and
7644 // CheckInitializer() - it requires knowledge of the object being initialized.
7646 // Immediately handle non-overload placeholders. Overloads can be
7647 // resolved contextually, but everything else here can't.
7648 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7649 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7650 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7652 // Ignore failures; dropping the entire initializer list because
7653 // of one failure would be terrible for indexing/etc.
7654 if (result.isInvalid()) continue;
7656 InitArgList[I] = result.get();
7660 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7661 RBraceLoc);
7662 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7663 return E;
7666 /// Do an explicit extend of the given block pointer if we're in ARC.
7667 void Sema::maybeExtendBlockObject(ExprResult &E) {
7668 assert(E.get()->getType()->isBlockPointerType());
7669 assert(E.get()->isPRValue());
7671 // Only do this in an r-value context.
7672 if (!getLangOpts().ObjCAutoRefCount) return;
7674 E = ImplicitCastExpr::Create(
7675 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7676 /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7677 Cleanup.setExprNeedsCleanups(true);
7680 /// Prepare a conversion of the given expression to an ObjC object
7681 /// pointer type.
7682 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7683 QualType type = E.get()->getType();
7684 if (type->isObjCObjectPointerType()) {
7685 return CK_BitCast;
7686 } else if (type->isBlockPointerType()) {
7687 maybeExtendBlockObject(E);
7688 return CK_BlockPointerToObjCPointerCast;
7689 } else {
7690 assert(type->isPointerType());
7691 return CK_CPointerToObjCPointerCast;
7695 /// Prepares for a scalar cast, performing all the necessary stages
7696 /// except the final cast and returning the kind required.
7697 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7698 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7699 // Also, callers should have filtered out the invalid cases with
7700 // pointers. Everything else should be possible.
7702 QualType SrcTy = Src.get()->getType();
7703 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7704 return CK_NoOp;
7706 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7707 case Type::STK_MemberPointer:
7708 llvm_unreachable("member pointer type in C");
7710 case Type::STK_CPointer:
7711 case Type::STK_BlockPointer:
7712 case Type::STK_ObjCObjectPointer:
7713 switch (DestTy->getScalarTypeKind()) {
7714 case Type::STK_CPointer: {
7715 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7716 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7717 if (SrcAS != DestAS)
7718 return CK_AddressSpaceConversion;
7719 if (Context.hasCvrSimilarType(SrcTy, DestTy))
7720 return CK_NoOp;
7721 return CK_BitCast;
7723 case Type::STK_BlockPointer:
7724 return (SrcKind == Type::STK_BlockPointer
7725 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7726 case Type::STK_ObjCObjectPointer:
7727 if (SrcKind == Type::STK_ObjCObjectPointer)
7728 return CK_BitCast;
7729 if (SrcKind == Type::STK_CPointer)
7730 return CK_CPointerToObjCPointerCast;
7731 maybeExtendBlockObject(Src);
7732 return CK_BlockPointerToObjCPointerCast;
7733 case Type::STK_Bool:
7734 return CK_PointerToBoolean;
7735 case Type::STK_Integral:
7736 return CK_PointerToIntegral;
7737 case Type::STK_Floating:
7738 case Type::STK_FloatingComplex:
7739 case Type::STK_IntegralComplex:
7740 case Type::STK_MemberPointer:
7741 case Type::STK_FixedPoint:
7742 llvm_unreachable("illegal cast from pointer");
7744 llvm_unreachable("Should have returned before this");
7746 case Type::STK_FixedPoint:
7747 switch (DestTy->getScalarTypeKind()) {
7748 case Type::STK_FixedPoint:
7749 return CK_FixedPointCast;
7750 case Type::STK_Bool:
7751 return CK_FixedPointToBoolean;
7752 case Type::STK_Integral:
7753 return CK_FixedPointToIntegral;
7754 case Type::STK_Floating:
7755 return CK_FixedPointToFloating;
7756 case Type::STK_IntegralComplex:
7757 case Type::STK_FloatingComplex:
7758 Diag(Src.get()->getExprLoc(),
7759 diag::err_unimplemented_conversion_with_fixed_point_type)
7760 << DestTy;
7761 return CK_IntegralCast;
7762 case Type::STK_CPointer:
7763 case Type::STK_ObjCObjectPointer:
7764 case Type::STK_BlockPointer:
7765 case Type::STK_MemberPointer:
7766 llvm_unreachable("illegal cast to pointer type");
7768 llvm_unreachable("Should have returned before this");
7770 case Type::STK_Bool: // casting from bool is like casting from an integer
7771 case Type::STK_Integral:
7772 switch (DestTy->getScalarTypeKind()) {
7773 case Type::STK_CPointer:
7774 case Type::STK_ObjCObjectPointer:
7775 case Type::STK_BlockPointer:
7776 if (Src.get()->isNullPointerConstant(Context,
7777 Expr::NPC_ValueDependentIsNull))
7778 return CK_NullToPointer;
7779 return CK_IntegralToPointer;
7780 case Type::STK_Bool:
7781 return CK_IntegralToBoolean;
7782 case Type::STK_Integral:
7783 return CK_IntegralCast;
7784 case Type::STK_Floating:
7785 return CK_IntegralToFloating;
7786 case Type::STK_IntegralComplex:
7787 Src = ImpCastExprToType(Src.get(),
7788 DestTy->castAs<ComplexType>()->getElementType(),
7789 CK_IntegralCast);
7790 return CK_IntegralRealToComplex;
7791 case Type::STK_FloatingComplex:
7792 Src = ImpCastExprToType(Src.get(),
7793 DestTy->castAs<ComplexType>()->getElementType(),
7794 CK_IntegralToFloating);
7795 return CK_FloatingRealToComplex;
7796 case Type::STK_MemberPointer:
7797 llvm_unreachable("member pointer type in C");
7798 case Type::STK_FixedPoint:
7799 return CK_IntegralToFixedPoint;
7801 llvm_unreachable("Should have returned before this");
7803 case Type::STK_Floating:
7804 switch (DestTy->getScalarTypeKind()) {
7805 case Type::STK_Floating:
7806 return CK_FloatingCast;
7807 case Type::STK_Bool:
7808 return CK_FloatingToBoolean;
7809 case Type::STK_Integral:
7810 return CK_FloatingToIntegral;
7811 case Type::STK_FloatingComplex:
7812 Src = ImpCastExprToType(Src.get(),
7813 DestTy->castAs<ComplexType>()->getElementType(),
7814 CK_FloatingCast);
7815 return CK_FloatingRealToComplex;
7816 case Type::STK_IntegralComplex:
7817 Src = ImpCastExprToType(Src.get(),
7818 DestTy->castAs<ComplexType>()->getElementType(),
7819 CK_FloatingToIntegral);
7820 return CK_IntegralRealToComplex;
7821 case Type::STK_CPointer:
7822 case Type::STK_ObjCObjectPointer:
7823 case Type::STK_BlockPointer:
7824 llvm_unreachable("valid float->pointer cast?");
7825 case Type::STK_MemberPointer:
7826 llvm_unreachable("member pointer type in C");
7827 case Type::STK_FixedPoint:
7828 return CK_FloatingToFixedPoint;
7830 llvm_unreachable("Should have returned before this");
7832 case Type::STK_FloatingComplex:
7833 switch (DestTy->getScalarTypeKind()) {
7834 case Type::STK_FloatingComplex:
7835 return CK_FloatingComplexCast;
7836 case Type::STK_IntegralComplex:
7837 return CK_FloatingComplexToIntegralComplex;
7838 case Type::STK_Floating: {
7839 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7840 if (Context.hasSameType(ET, DestTy))
7841 return CK_FloatingComplexToReal;
7842 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7843 return CK_FloatingCast;
7845 case Type::STK_Bool:
7846 return CK_FloatingComplexToBoolean;
7847 case Type::STK_Integral:
7848 Src = ImpCastExprToType(Src.get(),
7849 SrcTy->castAs<ComplexType>()->getElementType(),
7850 CK_FloatingComplexToReal);
7851 return CK_FloatingToIntegral;
7852 case Type::STK_CPointer:
7853 case Type::STK_ObjCObjectPointer:
7854 case Type::STK_BlockPointer:
7855 llvm_unreachable("valid complex float->pointer cast?");
7856 case Type::STK_MemberPointer:
7857 llvm_unreachable("member pointer type in C");
7858 case Type::STK_FixedPoint:
7859 Diag(Src.get()->getExprLoc(),
7860 diag::err_unimplemented_conversion_with_fixed_point_type)
7861 << SrcTy;
7862 return CK_IntegralCast;
7864 llvm_unreachable("Should have returned before this");
7866 case Type::STK_IntegralComplex:
7867 switch (DestTy->getScalarTypeKind()) {
7868 case Type::STK_FloatingComplex:
7869 return CK_IntegralComplexToFloatingComplex;
7870 case Type::STK_IntegralComplex:
7871 return CK_IntegralComplexCast;
7872 case Type::STK_Integral: {
7873 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7874 if (Context.hasSameType(ET, DestTy))
7875 return CK_IntegralComplexToReal;
7876 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7877 return CK_IntegralCast;
7879 case Type::STK_Bool:
7880 return CK_IntegralComplexToBoolean;
7881 case Type::STK_Floating:
7882 Src = ImpCastExprToType(Src.get(),
7883 SrcTy->castAs<ComplexType>()->getElementType(),
7884 CK_IntegralComplexToReal);
7885 return CK_IntegralToFloating;
7886 case Type::STK_CPointer:
7887 case Type::STK_ObjCObjectPointer:
7888 case Type::STK_BlockPointer:
7889 llvm_unreachable("valid complex int->pointer cast?");
7890 case Type::STK_MemberPointer:
7891 llvm_unreachable("member pointer type in C");
7892 case Type::STK_FixedPoint:
7893 Diag(Src.get()->getExprLoc(),
7894 diag::err_unimplemented_conversion_with_fixed_point_type)
7895 << SrcTy;
7896 return CK_IntegralCast;
7898 llvm_unreachable("Should have returned before this");
7901 llvm_unreachable("Unhandled scalar cast");
7904 static bool breakDownVectorType(QualType type, uint64_t &len,
7905 QualType &eltType) {
7906 // Vectors are simple.
7907 if (const VectorType *vecType = type->getAs<VectorType>()) {
7908 len = vecType->getNumElements();
7909 eltType = vecType->getElementType();
7910 assert(eltType->isScalarType());
7911 return true;
7914 // We allow lax conversion to and from non-vector types, but only if
7915 // they're real types (i.e. non-complex, non-pointer scalar types).
7916 if (!type->isRealType()) return false;
7918 len = 1;
7919 eltType = type;
7920 return true;
7923 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7924 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7925 /// allowed?
7927 /// This will also return false if the two given types do not make sense from
7928 /// the perspective of SVE bitcasts.
7929 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7930 assert(srcTy->isVectorType() || destTy->isVectorType());
7932 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7933 if (!FirstType->isSizelessBuiltinType())
7934 return false;
7936 const auto *VecTy = SecondType->getAs<VectorType>();
7937 return VecTy &&
7938 VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7941 return ValidScalableConversion(srcTy, destTy) ||
7942 ValidScalableConversion(destTy, srcTy);
7945 /// Are the two types matrix types and do they have the same dimensions i.e.
7946 /// do they have the same number of rows and the same number of columns?
7947 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7948 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7949 return false;
7951 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7952 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7954 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7955 matSrcType->getNumColumns() == matDestType->getNumColumns();
7958 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7959 assert(DestTy->isVectorType() || SrcTy->isVectorType());
7961 uint64_t SrcLen, DestLen;
7962 QualType SrcEltTy, DestEltTy;
7963 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7964 return false;
7965 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7966 return false;
7968 // ASTContext::getTypeSize will return the size rounded up to a
7969 // power of 2, so instead of using that, we need to use the raw
7970 // element size multiplied by the element count.
7971 uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7972 uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7974 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7977 // This returns true if at least one of the types is an altivec vector.
7978 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7979 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7980 "expected at least one type to be a vector here");
7982 bool IsSrcTyAltivec =
7983 SrcTy->isVectorType() && (SrcTy->castAs<VectorType>()->getVectorKind() ==
7984 VectorType::AltiVecVector);
7985 bool IsDestTyAltivec = DestTy->isVectorType() &&
7986 (DestTy->castAs<VectorType>()->getVectorKind() ==
7987 VectorType::AltiVecVector);
7989 return (IsSrcTyAltivec || IsDestTyAltivec);
7992 // This returns true if both vectors have the same element type.
7993 bool Sema::areSameVectorElemTypes(QualType SrcTy, QualType DestTy) {
7994 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7995 "expected at least one type to be a vector here");
7997 uint64_t SrcLen, DestLen;
7998 QualType SrcEltTy, DestEltTy;
7999 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
8000 return false;
8001 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
8002 return false;
8004 return (SrcEltTy == DestEltTy);
8007 /// Are the two types lax-compatible vector types? That is, given
8008 /// that one of them is a vector, do they have equal storage sizes,
8009 /// where the storage size is the number of elements times the element
8010 /// size?
8012 /// This will also return false if either of the types is neither a
8013 /// vector nor a real type.
8014 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
8015 assert(destTy->isVectorType() || srcTy->isVectorType());
8017 // Disallow lax conversions between scalars and ExtVectors (these
8018 // conversions are allowed for other vector types because common headers
8019 // depend on them). Most scalar OP ExtVector cases are handled by the
8020 // splat path anyway, which does what we want (convert, not bitcast).
8021 // What this rules out for ExtVectors is crazy things like char4*float.
8022 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
8023 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
8025 return areVectorTypesSameSize(srcTy, destTy);
8028 /// Is this a legal conversion between two types, one of which is
8029 /// known to be a vector type?
8030 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
8031 assert(destTy->isVectorType() || srcTy->isVectorType());
8033 switch (Context.getLangOpts().getLaxVectorConversions()) {
8034 case LangOptions::LaxVectorConversionKind::None:
8035 return false;
8037 case LangOptions::LaxVectorConversionKind::Integer:
8038 if (!srcTy->isIntegralOrEnumerationType()) {
8039 auto *Vec = srcTy->getAs<VectorType>();
8040 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8041 return false;
8043 if (!destTy->isIntegralOrEnumerationType()) {
8044 auto *Vec = destTy->getAs<VectorType>();
8045 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8046 return false;
8048 // OK, integer (vector) -> integer (vector) bitcast.
8049 break;
8051 case LangOptions::LaxVectorConversionKind::All:
8052 break;
8055 return areLaxCompatibleVectorTypes(srcTy, destTy);
8058 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
8059 CastKind &Kind) {
8060 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
8061 if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
8062 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
8063 << DestTy << SrcTy << R;
8065 } else if (SrcTy->isMatrixType()) {
8066 return Diag(R.getBegin(),
8067 diag::err_invalid_conversion_between_matrix_and_type)
8068 << SrcTy << DestTy << R;
8069 } else if (DestTy->isMatrixType()) {
8070 return Diag(R.getBegin(),
8071 diag::err_invalid_conversion_between_matrix_and_type)
8072 << DestTy << SrcTy << R;
8075 Kind = CK_MatrixCast;
8076 return false;
8079 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
8080 CastKind &Kind) {
8081 assert(VectorTy->isVectorType() && "Not a vector type!");
8083 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
8084 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
8085 return Diag(R.getBegin(),
8086 Ty->isVectorType() ?
8087 diag::err_invalid_conversion_between_vectors :
8088 diag::err_invalid_conversion_between_vector_and_integer)
8089 << VectorTy << Ty << R;
8090 } else
8091 return Diag(R.getBegin(),
8092 diag::err_invalid_conversion_between_vector_and_scalar)
8093 << VectorTy << Ty << R;
8095 Kind = CK_BitCast;
8096 return false;
8099 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
8100 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
8102 if (DestElemTy == SplattedExpr->getType())
8103 return SplattedExpr;
8105 assert(DestElemTy->isFloatingType() ||
8106 DestElemTy->isIntegralOrEnumerationType());
8108 CastKind CK;
8109 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
8110 // OpenCL requires that we convert `true` boolean expressions to -1, but
8111 // only when splatting vectors.
8112 if (DestElemTy->isFloatingType()) {
8113 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8114 // in two steps: boolean to signed integral, then to floating.
8115 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
8116 CK_BooleanToSignedIntegral);
8117 SplattedExpr = CastExprRes.get();
8118 CK = CK_IntegralToFloating;
8119 } else {
8120 CK = CK_BooleanToSignedIntegral;
8122 } else {
8123 ExprResult CastExprRes = SplattedExpr;
8124 CK = PrepareScalarCast(CastExprRes, DestElemTy);
8125 if (CastExprRes.isInvalid())
8126 return ExprError();
8127 SplattedExpr = CastExprRes.get();
8129 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
8132 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
8133 Expr *CastExpr, CastKind &Kind) {
8134 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
8136 QualType SrcTy = CastExpr->getType();
8138 // If SrcTy is a VectorType, the total size must match to explicitly cast to
8139 // an ExtVectorType.
8140 // In OpenCL, casts between vectors of different types are not allowed.
8141 // (See OpenCL 6.2).
8142 if (SrcTy->isVectorType()) {
8143 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
8144 (getLangOpts().OpenCL &&
8145 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
8146 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
8147 << DestTy << SrcTy << R;
8148 return ExprError();
8150 Kind = CK_BitCast;
8151 return CastExpr;
8154 // All non-pointer scalars can be cast to ExtVector type. The appropriate
8155 // conversion will take place first from scalar to elt type, and then
8156 // splat from elt type to vector.
8157 if (SrcTy->isPointerType())
8158 return Diag(R.getBegin(),
8159 diag::err_invalid_conversion_between_vector_and_scalar)
8160 << DestTy << SrcTy << R;
8162 Kind = CK_VectorSplat;
8163 return prepareVectorSplat(DestTy, CastExpr);
8166 ExprResult
8167 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
8168 Declarator &D, ParsedType &Ty,
8169 SourceLocation RParenLoc, Expr *CastExpr) {
8170 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
8171 "ActOnCastExpr(): missing type or expr");
8173 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
8174 if (D.isInvalidType())
8175 return ExprError();
8177 if (getLangOpts().CPlusPlus) {
8178 // Check that there are no default arguments (C++ only).
8179 CheckExtraCXXDefaultArguments(D);
8180 } else {
8181 // Make sure any TypoExprs have been dealt with.
8182 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
8183 if (!Res.isUsable())
8184 return ExprError();
8185 CastExpr = Res.get();
8188 checkUnusedDeclAttributes(D);
8190 QualType castType = castTInfo->getType();
8191 Ty = CreateParsedType(castType, castTInfo);
8193 bool isVectorLiteral = false;
8195 // Check for an altivec or OpenCL literal,
8196 // i.e. all the elements are integer constants.
8197 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
8198 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
8199 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
8200 && castType->isVectorType() && (PE || PLE)) {
8201 if (PLE && PLE->getNumExprs() == 0) {
8202 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
8203 return ExprError();
8205 if (PE || PLE->getNumExprs() == 1) {
8206 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
8207 if (!E->isTypeDependent() && !E->getType()->isVectorType())
8208 isVectorLiteral = true;
8210 else
8211 isVectorLiteral = true;
8214 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8215 // then handle it as such.
8216 if (isVectorLiteral)
8217 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
8219 // If the Expr being casted is a ParenListExpr, handle it specially.
8220 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8221 // sequence of BinOp comma operators.
8222 if (isa<ParenListExpr>(CastExpr)) {
8223 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
8224 if (Result.isInvalid()) return ExprError();
8225 CastExpr = Result.get();
8228 if (getLangOpts().CPlusPlus && !castType->isVoidType())
8229 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
8231 CheckTollFreeBridgeCast(castType, CastExpr);
8233 CheckObjCBridgeRelatedCast(castType, CastExpr);
8235 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
8237 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
8240 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8241 SourceLocation RParenLoc, Expr *E,
8242 TypeSourceInfo *TInfo) {
8243 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8244 "Expected paren or paren list expression");
8246 Expr **exprs;
8247 unsigned numExprs;
8248 Expr *subExpr;
8249 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8250 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8251 LiteralLParenLoc = PE->getLParenLoc();
8252 LiteralRParenLoc = PE->getRParenLoc();
8253 exprs = PE->getExprs();
8254 numExprs = PE->getNumExprs();
8255 } else { // isa<ParenExpr> by assertion at function entrance
8256 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8257 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8258 subExpr = cast<ParenExpr>(E)->getSubExpr();
8259 exprs = &subExpr;
8260 numExprs = 1;
8263 QualType Ty = TInfo->getType();
8264 assert(Ty->isVectorType() && "Expected vector type");
8266 SmallVector<Expr *, 8> initExprs;
8267 const VectorType *VTy = Ty->castAs<VectorType>();
8268 unsigned numElems = VTy->getNumElements();
8270 // '(...)' form of vector initialization in AltiVec: the number of
8271 // initializers must be one or must match the size of the vector.
8272 // If a single value is specified in the initializer then it will be
8273 // replicated to all the components of the vector
8274 if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8275 VTy->getElementType()))
8276 return ExprError();
8277 if (ShouldSplatAltivecScalarInCast(VTy)) {
8278 // The number of initializers must be one or must match the size of the
8279 // vector. If a single value is specified in the initializer then it will
8280 // be replicated to all the components of the vector
8281 if (numExprs == 1) {
8282 QualType ElemTy = VTy->getElementType();
8283 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8284 if (Literal.isInvalid())
8285 return ExprError();
8286 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8287 PrepareScalarCast(Literal, ElemTy));
8288 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8290 else if (numExprs < numElems) {
8291 Diag(E->getExprLoc(),
8292 diag::err_incorrect_number_of_vector_initializers);
8293 return ExprError();
8295 else
8296 initExprs.append(exprs, exprs + numExprs);
8298 else {
8299 // For OpenCL, when the number of initializers is a single value,
8300 // it will be replicated to all components of the vector.
8301 if (getLangOpts().OpenCL &&
8302 VTy->getVectorKind() == VectorType::GenericVector &&
8303 numExprs == 1) {
8304 QualType ElemTy = VTy->getElementType();
8305 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8306 if (Literal.isInvalid())
8307 return ExprError();
8308 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8309 PrepareScalarCast(Literal, ElemTy));
8310 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8313 initExprs.append(exprs, exprs + numExprs);
8315 // FIXME: This means that pretty-printing the final AST will produce curly
8316 // braces instead of the original commas.
8317 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8318 initExprs, LiteralRParenLoc);
8319 initE->setType(Ty);
8320 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8323 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8324 /// the ParenListExpr into a sequence of comma binary operators.
8325 ExprResult
8326 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8327 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8328 if (!E)
8329 return OrigExpr;
8331 ExprResult Result(E->getExpr(0));
8333 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8334 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8335 E->getExpr(i));
8337 if (Result.isInvalid()) return ExprError();
8339 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8342 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8343 SourceLocation R,
8344 MultiExprArg Val) {
8345 return ParenListExpr::Create(Context, L, Val, R);
8348 /// Emit a specialized diagnostic when one expression is a null pointer
8349 /// constant and the other is not a pointer. Returns true if a diagnostic is
8350 /// emitted.
8351 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
8352 SourceLocation QuestionLoc) {
8353 Expr *NullExpr = LHSExpr;
8354 Expr *NonPointerExpr = RHSExpr;
8355 Expr::NullPointerConstantKind NullKind =
8356 NullExpr->isNullPointerConstant(Context,
8357 Expr::NPC_ValueDependentIsNotNull);
8359 if (NullKind == Expr::NPCK_NotNull) {
8360 NullExpr = RHSExpr;
8361 NonPointerExpr = LHSExpr;
8362 NullKind =
8363 NullExpr->isNullPointerConstant(Context,
8364 Expr::NPC_ValueDependentIsNotNull);
8367 if (NullKind == Expr::NPCK_NotNull)
8368 return false;
8370 if (NullKind == Expr::NPCK_ZeroExpression)
8371 return false;
8373 if (NullKind == Expr::NPCK_ZeroLiteral) {
8374 // In this case, check to make sure that we got here from a "NULL"
8375 // string in the source code.
8376 NullExpr = NullExpr->IgnoreParenImpCasts();
8377 SourceLocation loc = NullExpr->getExprLoc();
8378 if (!findMacroSpelling(loc, "NULL"))
8379 return false;
8382 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8383 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8384 << NonPointerExpr->getType() << DiagType
8385 << NonPointerExpr->getSourceRange();
8386 return true;
8389 /// Return false if the condition expression is valid, true otherwise.
8390 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
8391 QualType CondTy = Cond->getType();
8393 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8394 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8395 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8396 << CondTy << Cond->getSourceRange();
8397 return true;
8400 // C99 6.5.15p2
8401 if (CondTy->isScalarType()) return false;
8403 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8404 << CondTy << Cond->getSourceRange();
8405 return true;
8408 /// Return false if the NullExpr can be promoted to PointerTy,
8409 /// true otherwise.
8410 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8411 QualType PointerTy) {
8412 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8413 !NullExpr.get()->isNullPointerConstant(S.Context,
8414 Expr::NPC_ValueDependentIsNull))
8415 return true;
8417 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8418 return false;
8421 /// Checks compatibility between two pointers and return the resulting
8422 /// type.
8423 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8424 ExprResult &RHS,
8425 SourceLocation Loc) {
8426 QualType LHSTy = LHS.get()->getType();
8427 QualType RHSTy = RHS.get()->getType();
8429 if (S.Context.hasSameType(LHSTy, RHSTy)) {
8430 // Two identical pointers types are always compatible.
8431 return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8434 QualType lhptee, rhptee;
8436 // Get the pointee types.
8437 bool IsBlockPointer = false;
8438 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8439 lhptee = LHSBTy->getPointeeType();
8440 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8441 IsBlockPointer = true;
8442 } else {
8443 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8444 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8447 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8448 // differently qualified versions of compatible types, the result type is
8449 // a pointer to an appropriately qualified version of the composite
8450 // type.
8452 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8453 // clause doesn't make sense for our extensions. E.g. address space 2 should
8454 // be incompatible with address space 3: they may live on different devices or
8455 // anything.
8456 Qualifiers lhQual = lhptee.getQualifiers();
8457 Qualifiers rhQual = rhptee.getQualifiers();
8459 LangAS ResultAddrSpace = LangAS::Default;
8460 LangAS LAddrSpace = lhQual.getAddressSpace();
8461 LangAS RAddrSpace = rhQual.getAddressSpace();
8463 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8464 // spaces is disallowed.
8465 if (lhQual.isAddressSpaceSupersetOf(rhQual))
8466 ResultAddrSpace = LAddrSpace;
8467 else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8468 ResultAddrSpace = RAddrSpace;
8469 else {
8470 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8471 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8472 << RHS.get()->getSourceRange();
8473 return QualType();
8476 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8477 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8478 lhQual.removeCVRQualifiers();
8479 rhQual.removeCVRQualifiers();
8481 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8482 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8483 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8484 // qual types are compatible iff
8485 // * corresponded types are compatible
8486 // * CVR qualifiers are equal
8487 // * address spaces are equal
8488 // Thus for conditional operator we merge CVR and address space unqualified
8489 // pointees and if there is a composite type we return a pointer to it with
8490 // merged qualifiers.
8491 LHSCastKind =
8492 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8493 RHSCastKind =
8494 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8495 lhQual.removeAddressSpace();
8496 rhQual.removeAddressSpace();
8498 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8499 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8501 QualType CompositeTy = S.Context.mergeTypes(
8502 lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8503 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8505 if (CompositeTy.isNull()) {
8506 // In this situation, we assume void* type. No especially good
8507 // reason, but this is what gcc does, and we do have to pick
8508 // to get a consistent AST.
8509 QualType incompatTy;
8510 incompatTy = S.Context.getPointerType(
8511 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8512 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8513 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8515 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8516 // for casts between types with incompatible address space qualifiers.
8517 // For the following code the compiler produces casts between global and
8518 // local address spaces of the corresponded innermost pointees:
8519 // local int *global *a;
8520 // global int *global *b;
8521 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8522 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8523 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8524 << RHS.get()->getSourceRange();
8526 return incompatTy;
8529 // The pointer types are compatible.
8530 // In case of OpenCL ResultTy should have the address space qualifier
8531 // which is a superset of address spaces of both the 2nd and the 3rd
8532 // operands of the conditional operator.
8533 QualType ResultTy = [&, ResultAddrSpace]() {
8534 if (S.getLangOpts().OpenCL) {
8535 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8536 CompositeQuals.setAddressSpace(ResultAddrSpace);
8537 return S.Context
8538 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8539 .withCVRQualifiers(MergedCVRQual);
8541 return CompositeTy.withCVRQualifiers(MergedCVRQual);
8542 }();
8543 if (IsBlockPointer)
8544 ResultTy = S.Context.getBlockPointerType(ResultTy);
8545 else
8546 ResultTy = S.Context.getPointerType(ResultTy);
8548 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8549 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8550 return ResultTy;
8553 /// Return the resulting type when the operands are both block pointers.
8554 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8555 ExprResult &LHS,
8556 ExprResult &RHS,
8557 SourceLocation Loc) {
8558 QualType LHSTy = LHS.get()->getType();
8559 QualType RHSTy = RHS.get()->getType();
8561 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8562 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8563 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8564 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8565 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8566 return destType;
8568 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8569 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8570 << RHS.get()->getSourceRange();
8571 return QualType();
8574 // We have 2 block pointer types.
8575 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8578 /// Return the resulting type when the operands are both pointers.
8579 static QualType
8580 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8581 ExprResult &RHS,
8582 SourceLocation Loc) {
8583 // get the pointer types
8584 QualType LHSTy = LHS.get()->getType();
8585 QualType RHSTy = RHS.get()->getType();
8587 // get the "pointed to" types
8588 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8589 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8591 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8592 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8593 // Figure out necessary qualifiers (C99 6.5.15p6)
8594 QualType destPointee
8595 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8596 QualType destType = S.Context.getPointerType(destPointee);
8597 // Add qualifiers if necessary.
8598 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8599 // Promote to void*.
8600 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8601 return destType;
8603 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8604 QualType destPointee
8605 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8606 QualType destType = S.Context.getPointerType(destPointee);
8607 // Add qualifiers if necessary.
8608 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8609 // Promote to void*.
8610 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8611 return destType;
8614 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8617 /// Return false if the first expression is not an integer and the second
8618 /// expression is not a pointer, true otherwise.
8619 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8620 Expr* PointerExpr, SourceLocation Loc,
8621 bool IsIntFirstExpr) {
8622 if (!PointerExpr->getType()->isPointerType() ||
8623 !Int.get()->getType()->isIntegerType())
8624 return false;
8626 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8627 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8629 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8630 << Expr1->getType() << Expr2->getType()
8631 << Expr1->getSourceRange() << Expr2->getSourceRange();
8632 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8633 CK_IntegralToPointer);
8634 return true;
8637 /// Simple conversion between integer and floating point types.
8639 /// Used when handling the OpenCL conditional operator where the
8640 /// condition is a vector while the other operands are scalar.
8642 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8643 /// types are either integer or floating type. Between the two
8644 /// operands, the type with the higher rank is defined as the "result
8645 /// type". The other operand needs to be promoted to the same type. No
8646 /// other type promotion is allowed. We cannot use
8647 /// UsualArithmeticConversions() for this purpose, since it always
8648 /// promotes promotable types.
8649 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8650 ExprResult &RHS,
8651 SourceLocation QuestionLoc) {
8652 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8653 if (LHS.isInvalid())
8654 return QualType();
8655 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8656 if (RHS.isInvalid())
8657 return QualType();
8659 // For conversion purposes, we ignore any qualifiers.
8660 // For example, "const float" and "float" are equivalent.
8661 QualType LHSType =
8662 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8663 QualType RHSType =
8664 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8666 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8667 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8668 << LHSType << LHS.get()->getSourceRange();
8669 return QualType();
8672 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8673 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8674 << RHSType << RHS.get()->getSourceRange();
8675 return QualType();
8678 // If both types are identical, no conversion is needed.
8679 if (LHSType == RHSType)
8680 return LHSType;
8682 // Now handle "real" floating types (i.e. float, double, long double).
8683 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8684 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8685 /*IsCompAssign = */ false);
8687 // Finally, we have two differing integer types.
8688 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8689 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8692 /// Convert scalar operands to a vector that matches the
8693 /// condition in length.
8695 /// Used when handling the OpenCL conditional operator where the
8696 /// condition is a vector while the other operands are scalar.
8698 /// We first compute the "result type" for the scalar operands
8699 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8700 /// into a vector of that type where the length matches the condition
8701 /// vector type. s6.11.6 requires that the element types of the result
8702 /// and the condition must have the same number of bits.
8703 static QualType
8704 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8705 QualType CondTy, SourceLocation QuestionLoc) {
8706 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8707 if (ResTy.isNull()) return QualType();
8709 const VectorType *CV = CondTy->getAs<VectorType>();
8710 assert(CV);
8712 // Determine the vector result type
8713 unsigned NumElements = CV->getNumElements();
8714 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8716 // Ensure that all types have the same number of bits
8717 if (S.Context.getTypeSize(CV->getElementType())
8718 != S.Context.getTypeSize(ResTy)) {
8719 // Since VectorTy is created internally, it does not pretty print
8720 // with an OpenCL name. Instead, we just print a description.
8721 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8722 SmallString<64> Str;
8723 llvm::raw_svector_ostream OS(Str);
8724 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8725 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8726 << CondTy << OS.str();
8727 return QualType();
8730 // Convert operands to the vector result type
8731 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8732 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8734 return VectorTy;
8737 /// Return false if this is a valid OpenCL condition vector
8738 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8739 SourceLocation QuestionLoc) {
8740 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8741 // integral type.
8742 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8743 assert(CondTy);
8744 QualType EleTy = CondTy->getElementType();
8745 if (EleTy->isIntegerType()) return false;
8747 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8748 << Cond->getType() << Cond->getSourceRange();
8749 return true;
8752 /// Return false if the vector condition type and the vector
8753 /// result type are compatible.
8755 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8756 /// number of elements, and their element types have the same number
8757 /// of bits.
8758 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8759 SourceLocation QuestionLoc) {
8760 const VectorType *CV = CondTy->getAs<VectorType>();
8761 const VectorType *RV = VecResTy->getAs<VectorType>();
8762 assert(CV && RV);
8764 if (CV->getNumElements() != RV->getNumElements()) {
8765 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8766 << CondTy << VecResTy;
8767 return true;
8770 QualType CVE = CV->getElementType();
8771 QualType RVE = RV->getElementType();
8773 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8774 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8775 << CondTy << VecResTy;
8776 return true;
8779 return false;
8782 /// Return the resulting type for the conditional operator in
8783 /// OpenCL (aka "ternary selection operator", OpenCL v1.1
8784 /// s6.3.i) when the condition is a vector type.
8785 static QualType
8786 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8787 ExprResult &LHS, ExprResult &RHS,
8788 SourceLocation QuestionLoc) {
8789 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8790 if (Cond.isInvalid())
8791 return QualType();
8792 QualType CondTy = Cond.get()->getType();
8794 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8795 return QualType();
8797 // If either operand is a vector then find the vector type of the
8798 // result as specified in OpenCL v1.1 s6.3.i.
8799 if (LHS.get()->getType()->isVectorType() ||
8800 RHS.get()->getType()->isVectorType()) {
8801 bool IsBoolVecLang =
8802 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8803 QualType VecResTy =
8804 S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8805 /*isCompAssign*/ false,
8806 /*AllowBothBool*/ true,
8807 /*AllowBoolConversions*/ false,
8808 /*AllowBooleanOperation*/ IsBoolVecLang,
8809 /*ReportInvalid*/ true);
8810 if (VecResTy.isNull())
8811 return QualType();
8812 // The result type must match the condition type as specified in
8813 // OpenCL v1.1 s6.11.6.
8814 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8815 return QualType();
8816 return VecResTy;
8819 // Both operands are scalar.
8820 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8823 /// Return true if the Expr is block type
8824 static bool checkBlockType(Sema &S, const Expr *E) {
8825 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8826 QualType Ty = CE->getCallee()->getType();
8827 if (Ty->isBlockPointerType()) {
8828 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8829 return true;
8832 return false;
8835 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8836 /// In that case, LHS = cond.
8837 /// C99 6.5.15
8838 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8839 ExprResult &RHS, ExprValueKind &VK,
8840 ExprObjectKind &OK,
8841 SourceLocation QuestionLoc) {
8843 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8844 if (!LHSResult.isUsable()) return QualType();
8845 LHS = LHSResult;
8847 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8848 if (!RHSResult.isUsable()) return QualType();
8849 RHS = RHSResult;
8851 // C++ is sufficiently different to merit its own checker.
8852 if (getLangOpts().CPlusPlus)
8853 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8855 VK = VK_PRValue;
8856 OK = OK_Ordinary;
8858 if (Context.isDependenceAllowed() &&
8859 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8860 RHS.get()->isTypeDependent())) {
8861 assert(!getLangOpts().CPlusPlus);
8862 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8863 RHS.get()->containsErrors()) &&
8864 "should only occur in error-recovery path.");
8865 return Context.DependentTy;
8868 // The OpenCL operator with a vector condition is sufficiently
8869 // different to merit its own checker.
8870 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8871 Cond.get()->getType()->isExtVectorType())
8872 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8874 // First, check the condition.
8875 Cond = UsualUnaryConversions(Cond.get());
8876 if (Cond.isInvalid())
8877 return QualType();
8878 if (checkCondition(*this, Cond.get(), QuestionLoc))
8879 return QualType();
8881 // Now check the two expressions.
8882 if (LHS.get()->getType()->isVectorType() ||
8883 RHS.get()->getType()->isVectorType())
8884 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8885 /*AllowBothBool*/ true,
8886 /*AllowBoolConversions*/ false,
8887 /*AllowBooleanOperation*/ false,
8888 /*ReportInvalid*/ true);
8890 QualType ResTy =
8891 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8892 if (LHS.isInvalid() || RHS.isInvalid())
8893 return QualType();
8895 QualType LHSTy = LHS.get()->getType();
8896 QualType RHSTy = RHS.get()->getType();
8898 // Diagnose attempts to convert between __ibm128, __float128 and long double
8899 // where such conversions currently can't be handled.
8900 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8901 Diag(QuestionLoc,
8902 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8903 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8904 return QualType();
8907 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8908 // selection operator (?:).
8909 if (getLangOpts().OpenCL &&
8910 ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8911 return QualType();
8914 // If both operands have arithmetic type, do the usual arithmetic conversions
8915 // to find a common type: C99 6.5.15p3,5.
8916 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8917 // Disallow invalid arithmetic conversions, such as those between bit-
8918 // precise integers types of different sizes, or between a bit-precise
8919 // integer and another type.
8920 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8921 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8922 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8923 << RHS.get()->getSourceRange();
8924 return QualType();
8927 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8928 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8930 return ResTy;
8933 // And if they're both bfloat (which isn't arithmetic), that's fine too.
8934 if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8935 return Context.getCommonSugaredType(LHSTy, RHSTy);
8938 // If both operands are the same structure or union type, the result is that
8939 // type.
8940 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8941 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8942 if (LHSRT->getDecl() == RHSRT->getDecl())
8943 // "If both the operands have structure or union type, the result has
8944 // that type." This implies that CV qualifiers are dropped.
8945 return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
8946 RHSTy.getUnqualifiedType());
8947 // FIXME: Type of conditional expression must be complete in C mode.
8950 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8951 // The following || allows only one side to be void (a GCC-ism).
8952 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8953 QualType ResTy;
8954 if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8955 ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
8956 } else if (RHSTy->isVoidType()) {
8957 ResTy = RHSTy;
8958 Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8959 << RHS.get()->getSourceRange();
8960 } else {
8961 ResTy = LHSTy;
8962 Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8963 << LHS.get()->getSourceRange();
8965 LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
8966 RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
8967 return ResTy;
8970 // C2x 6.5.15p7:
8971 // ... if both the second and third operands have nullptr_t type, the
8972 // result also has that type.
8973 if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
8974 return ResTy;
8976 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8977 // the type of the other operand."
8978 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8979 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8981 // All objective-c pointer type analysis is done here.
8982 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8983 QuestionLoc);
8984 if (LHS.isInvalid() || RHS.isInvalid())
8985 return QualType();
8986 if (!compositeType.isNull())
8987 return compositeType;
8990 // Handle block pointer types.
8991 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8992 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8993 QuestionLoc);
8995 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8996 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8997 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8998 QuestionLoc);
9000 // GCC compatibility: soften pointer/integer mismatch. Note that
9001 // null pointers have been filtered out by this point.
9002 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
9003 /*IsIntFirstExpr=*/true))
9004 return RHSTy;
9005 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
9006 /*IsIntFirstExpr=*/false))
9007 return LHSTy;
9009 // Allow ?: operations in which both operands have the same
9010 // built-in sizeless type.
9011 if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
9012 return Context.getCommonSugaredType(LHSTy, RHSTy);
9014 // Emit a better diagnostic if one of the expressions is a null pointer
9015 // constant and the other is not a pointer type. In this case, the user most
9016 // likely forgot to take the address of the other expression.
9017 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
9018 return QualType();
9020 // Otherwise, the operands are not compatible.
9021 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9022 << LHSTy << RHSTy << LHS.get()->getSourceRange()
9023 << RHS.get()->getSourceRange();
9024 return QualType();
9027 /// FindCompositeObjCPointerType - Helper method to find composite type of
9028 /// two objective-c pointer types of the two input expressions.
9029 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
9030 SourceLocation QuestionLoc) {
9031 QualType LHSTy = LHS.get()->getType();
9032 QualType RHSTy = RHS.get()->getType();
9034 // Handle things like Class and struct objc_class*. Here we case the result
9035 // to the pseudo-builtin, because that will be implicitly cast back to the
9036 // redefinition type if an attempt is made to access its fields.
9037 if (LHSTy->isObjCClassType() &&
9038 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
9039 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9040 return LHSTy;
9042 if (RHSTy->isObjCClassType() &&
9043 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
9044 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9045 return RHSTy;
9047 // And the same for struct objc_object* / id
9048 if (LHSTy->isObjCIdType() &&
9049 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
9050 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9051 return LHSTy;
9053 if (RHSTy->isObjCIdType() &&
9054 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
9055 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9056 return RHSTy;
9058 // And the same for struct objc_selector* / SEL
9059 if (Context.isObjCSelType(LHSTy) &&
9060 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
9061 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
9062 return LHSTy;
9064 if (Context.isObjCSelType(RHSTy) &&
9065 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
9066 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
9067 return RHSTy;
9069 // Check constraints for Objective-C object pointers types.
9070 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
9072 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
9073 // Two identical object pointer types are always compatible.
9074 return LHSTy;
9076 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
9077 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
9078 QualType compositeType = LHSTy;
9080 // If both operands are interfaces and either operand can be
9081 // assigned to the other, use that type as the composite
9082 // type. This allows
9083 // xxx ? (A*) a : (B*) b
9084 // where B is a subclass of A.
9086 // Additionally, as for assignment, if either type is 'id'
9087 // allow silent coercion. Finally, if the types are
9088 // incompatible then make sure to use 'id' as the composite
9089 // type so the result is acceptable for sending messages to.
9091 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9092 // It could return the composite type.
9093 if (!(compositeType =
9094 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
9095 // Nothing more to do.
9096 } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
9097 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
9098 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
9099 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
9100 } else if ((LHSOPT->isObjCQualifiedIdType() ||
9101 RHSOPT->isObjCQualifiedIdType()) &&
9102 Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
9103 true)) {
9104 // Need to handle "id<xx>" explicitly.
9105 // GCC allows qualified id and any Objective-C type to devolve to
9106 // id. Currently localizing to here until clear this should be
9107 // part of ObjCQualifiedIdTypesAreCompatible.
9108 compositeType = Context.getObjCIdType();
9109 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
9110 compositeType = Context.getObjCIdType();
9111 } else {
9112 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
9113 << LHSTy << RHSTy
9114 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9115 QualType incompatTy = Context.getObjCIdType();
9116 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
9117 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
9118 return incompatTy;
9120 // The object pointer types are compatible.
9121 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
9122 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
9123 return compositeType;
9125 // Check Objective-C object pointer types and 'void *'
9126 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
9127 if (getLangOpts().ObjCAutoRefCount) {
9128 // ARC forbids the implicit conversion of object pointers to 'void *',
9129 // so these types are not compatible.
9130 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9131 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9132 LHS = RHS = true;
9133 return QualType();
9135 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
9136 QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9137 QualType destPointee
9138 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
9139 QualType destType = Context.getPointerType(destPointee);
9140 // Add qualifiers if necessary.
9141 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
9142 // Promote to void*.
9143 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
9144 return destType;
9146 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
9147 if (getLangOpts().ObjCAutoRefCount) {
9148 // ARC forbids the implicit conversion of object pointers to 'void *',
9149 // so these types are not compatible.
9150 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9151 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9152 LHS = RHS = true;
9153 return QualType();
9155 QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9156 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
9157 QualType destPointee
9158 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
9159 QualType destType = Context.getPointerType(destPointee);
9160 // Add qualifiers if necessary.
9161 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
9162 // Promote to void*.
9163 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
9164 return destType;
9166 return QualType();
9169 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9170 /// ParenRange in parentheses.
9171 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
9172 const PartialDiagnostic &Note,
9173 SourceRange ParenRange) {
9174 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
9175 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
9176 EndLoc.isValid()) {
9177 Self.Diag(Loc, Note)
9178 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
9179 << FixItHint::CreateInsertion(EndLoc, ")");
9180 } else {
9181 // We can't display the parentheses, so just show the bare note.
9182 Self.Diag(Loc, Note) << ParenRange;
9186 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
9187 return BinaryOperator::isAdditiveOp(Opc) ||
9188 BinaryOperator::isMultiplicativeOp(Opc) ||
9189 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
9190 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9191 // not any of the logical operators. Bitwise-xor is commonly used as a
9192 // logical-xor because there is no logical-xor operator. The logical
9193 // operators, including uses of xor, have a high false positive rate for
9194 // precedence warnings.
9197 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9198 /// expression, either using a built-in or overloaded operator,
9199 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9200 /// expression.
9201 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
9202 Expr **RHSExprs) {
9203 // Don't strip parenthesis: we should not warn if E is in parenthesis.
9204 E = E->IgnoreImpCasts();
9205 E = E->IgnoreConversionOperatorSingleStep();
9206 E = E->IgnoreImpCasts();
9207 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
9208 E = MTE->getSubExpr();
9209 E = E->IgnoreImpCasts();
9212 // Built-in binary operator.
9213 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
9214 if (IsArithmeticOp(OP->getOpcode())) {
9215 *Opcode = OP->getOpcode();
9216 *RHSExprs = OP->getRHS();
9217 return true;
9221 // Overloaded operator.
9222 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
9223 if (Call->getNumArgs() != 2)
9224 return false;
9226 // Make sure this is really a binary operator that is safe to pass into
9227 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9228 OverloadedOperatorKind OO = Call->getOperator();
9229 if (OO < OO_Plus || OO > OO_Arrow ||
9230 OO == OO_PlusPlus || OO == OO_MinusMinus)
9231 return false;
9233 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
9234 if (IsArithmeticOp(OpKind)) {
9235 *Opcode = OpKind;
9236 *RHSExprs = Call->getArg(1);
9237 return true;
9241 return false;
9244 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9245 /// or is a logical expression such as (x==y) which has int type, but is
9246 /// commonly interpreted as boolean.
9247 static bool ExprLooksBoolean(Expr *E) {
9248 E = E->IgnoreParenImpCasts();
9250 if (E->getType()->isBooleanType())
9251 return true;
9252 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
9253 return OP->isComparisonOp() || OP->isLogicalOp();
9254 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
9255 return OP->getOpcode() == UO_LNot;
9256 if (E->getType()->isPointerType())
9257 return true;
9258 // FIXME: What about overloaded operator calls returning "unspecified boolean
9259 // type"s (commonly pointer-to-members)?
9261 return false;
9264 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9265 /// and binary operator are mixed in a way that suggests the programmer assumed
9266 /// the conditional operator has higher precedence, for example:
9267 /// "int x = a + someBinaryCondition ? 1 : 2".
9268 static void DiagnoseConditionalPrecedence(Sema &Self,
9269 SourceLocation OpLoc,
9270 Expr *Condition,
9271 Expr *LHSExpr,
9272 Expr *RHSExpr) {
9273 BinaryOperatorKind CondOpcode;
9274 Expr *CondRHS;
9276 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9277 return;
9278 if (!ExprLooksBoolean(CondRHS))
9279 return;
9281 // The condition is an arithmetic binary expression, with a right-
9282 // hand side that looks boolean, so warn.
9284 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9285 ? diag::warn_precedence_bitwise_conditional
9286 : diag::warn_precedence_conditional;
9288 Self.Diag(OpLoc, DiagID)
9289 << Condition->getSourceRange()
9290 << BinaryOperator::getOpcodeStr(CondOpcode);
9292 SuggestParentheses(
9293 Self, OpLoc,
9294 Self.PDiag(diag::note_precedence_silence)
9295 << BinaryOperator::getOpcodeStr(CondOpcode),
9296 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9298 SuggestParentheses(Self, OpLoc,
9299 Self.PDiag(diag::note_precedence_conditional_first),
9300 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9303 /// Compute the nullability of a conditional expression.
9304 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9305 QualType LHSTy, QualType RHSTy,
9306 ASTContext &Ctx) {
9307 if (!ResTy->isAnyPointerType())
9308 return ResTy;
9310 auto GetNullability = [](QualType Ty) {
9311 std::optional<NullabilityKind> Kind = Ty->getNullability();
9312 if (Kind) {
9313 // For our purposes, treat _Nullable_result as _Nullable.
9314 if (*Kind == NullabilityKind::NullableResult)
9315 return NullabilityKind::Nullable;
9316 return *Kind;
9318 return NullabilityKind::Unspecified;
9321 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9322 NullabilityKind MergedKind;
9324 // Compute nullability of a binary conditional expression.
9325 if (IsBin) {
9326 if (LHSKind == NullabilityKind::NonNull)
9327 MergedKind = NullabilityKind::NonNull;
9328 else
9329 MergedKind = RHSKind;
9330 // Compute nullability of a normal conditional expression.
9331 } else {
9332 if (LHSKind == NullabilityKind::Nullable ||
9333 RHSKind == NullabilityKind::Nullable)
9334 MergedKind = NullabilityKind::Nullable;
9335 else if (LHSKind == NullabilityKind::NonNull)
9336 MergedKind = RHSKind;
9337 else if (RHSKind == NullabilityKind::NonNull)
9338 MergedKind = LHSKind;
9339 else
9340 MergedKind = NullabilityKind::Unspecified;
9343 // Return if ResTy already has the correct nullability.
9344 if (GetNullability(ResTy) == MergedKind)
9345 return ResTy;
9347 // Strip all nullability from ResTy.
9348 while (ResTy->getNullability())
9349 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9351 // Create a new AttributedType with the new nullability kind.
9352 auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9353 return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9356 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
9357 /// in the case of a the GNU conditional expr extension.
9358 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9359 SourceLocation ColonLoc,
9360 Expr *CondExpr, Expr *LHSExpr,
9361 Expr *RHSExpr) {
9362 if (!Context.isDependenceAllowed()) {
9363 // C cannot handle TypoExpr nodes in the condition because it
9364 // doesn't handle dependent types properly, so make sure any TypoExprs have
9365 // been dealt with before checking the operands.
9366 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9367 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9368 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9370 if (!CondResult.isUsable())
9371 return ExprError();
9373 if (LHSExpr) {
9374 if (!LHSResult.isUsable())
9375 return ExprError();
9378 if (!RHSResult.isUsable())
9379 return ExprError();
9381 CondExpr = CondResult.get();
9382 LHSExpr = LHSResult.get();
9383 RHSExpr = RHSResult.get();
9386 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9387 // was the condition.
9388 OpaqueValueExpr *opaqueValue = nullptr;
9389 Expr *commonExpr = nullptr;
9390 if (!LHSExpr) {
9391 commonExpr = CondExpr;
9392 // Lower out placeholder types first. This is important so that we don't
9393 // try to capture a placeholder. This happens in few cases in C++; such
9394 // as Objective-C++'s dictionary subscripting syntax.
9395 if (commonExpr->hasPlaceholderType()) {
9396 ExprResult result = CheckPlaceholderExpr(commonExpr);
9397 if (!result.isUsable()) return ExprError();
9398 commonExpr = result.get();
9400 // We usually want to apply unary conversions *before* saving, except
9401 // in the special case of a C++ l-value conditional.
9402 if (!(getLangOpts().CPlusPlus
9403 && !commonExpr->isTypeDependent()
9404 && commonExpr->getValueKind() == RHSExpr->getValueKind()
9405 && commonExpr->isGLValue()
9406 && commonExpr->isOrdinaryOrBitFieldObject()
9407 && RHSExpr->isOrdinaryOrBitFieldObject()
9408 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9409 ExprResult commonRes = UsualUnaryConversions(commonExpr);
9410 if (commonRes.isInvalid())
9411 return ExprError();
9412 commonExpr = commonRes.get();
9415 // If the common expression is a class or array prvalue, materialize it
9416 // so that we can safely refer to it multiple times.
9417 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9418 commonExpr->getType()->isArrayType())) {
9419 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9420 if (MatExpr.isInvalid())
9421 return ExprError();
9422 commonExpr = MatExpr.get();
9425 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9426 commonExpr->getType(),
9427 commonExpr->getValueKind(),
9428 commonExpr->getObjectKind(),
9429 commonExpr);
9430 LHSExpr = CondExpr = opaqueValue;
9433 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9434 ExprValueKind VK = VK_PRValue;
9435 ExprObjectKind OK = OK_Ordinary;
9436 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9437 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9438 VK, OK, QuestionLoc);
9439 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9440 RHS.isInvalid())
9441 return ExprError();
9443 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9444 RHS.get());
9446 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9448 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9449 Context);
9451 if (!commonExpr)
9452 return new (Context)
9453 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9454 RHS.get(), result, VK, OK);
9456 return new (Context) BinaryConditionalOperator(
9457 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9458 ColonLoc, result, VK, OK);
9461 // Check if we have a conversion between incompatible cmse function pointer
9462 // types, that is, a conversion between a function pointer with the
9463 // cmse_nonsecure_call attribute and one without.
9464 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9465 QualType ToType) {
9466 if (const auto *ToFn =
9467 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9468 if (const auto *FromFn =
9469 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9470 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9471 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9473 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9476 return false;
9479 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9480 // being closely modeled after the C99 spec:-). The odd characteristic of this
9481 // routine is it effectively iqnores the qualifiers on the top level pointee.
9482 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9483 // FIXME: add a couple examples in this comment.
9484 static Sema::AssignConvertType
9485 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
9486 SourceLocation Loc) {
9487 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9488 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9490 // get the "pointed to" type (ignoring qualifiers at the top level)
9491 const Type *lhptee, *rhptee;
9492 Qualifiers lhq, rhq;
9493 std::tie(lhptee, lhq) =
9494 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9495 std::tie(rhptee, rhq) =
9496 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9498 Sema::AssignConvertType ConvTy = Sema::Compatible;
9500 // C99 6.5.16.1p1: This following citation is common to constraints
9501 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9502 // qualifiers of the type *pointed to* by the right;
9504 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9505 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9506 lhq.compatiblyIncludesObjCLifetime(rhq)) {
9507 // Ignore lifetime for further calculation.
9508 lhq.removeObjCLifetime();
9509 rhq.removeObjCLifetime();
9512 if (!lhq.compatiblyIncludes(rhq)) {
9513 // Treat address-space mismatches as fatal.
9514 if (!lhq.isAddressSpaceSupersetOf(rhq))
9515 return Sema::IncompatiblePointerDiscardsQualifiers;
9517 // It's okay to add or remove GC or lifetime qualifiers when converting to
9518 // and from void*.
9519 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9520 .compatiblyIncludes(
9521 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9522 && (lhptee->isVoidType() || rhptee->isVoidType()))
9523 ; // keep old
9525 // Treat lifetime mismatches as fatal.
9526 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9527 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9529 // For GCC/MS compatibility, other qualifier mismatches are treated
9530 // as still compatible in C.
9531 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9534 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9535 // incomplete type and the other is a pointer to a qualified or unqualified
9536 // version of void...
9537 if (lhptee->isVoidType()) {
9538 if (rhptee->isIncompleteOrObjectType())
9539 return ConvTy;
9541 // As an extension, we allow cast to/from void* to function pointer.
9542 assert(rhptee->isFunctionType());
9543 return Sema::FunctionVoidPointer;
9546 if (rhptee->isVoidType()) {
9547 if (lhptee->isIncompleteOrObjectType())
9548 return ConvTy;
9550 // As an extension, we allow cast to/from void* to function pointer.
9551 assert(lhptee->isFunctionType());
9552 return Sema::FunctionVoidPointer;
9555 if (!S.Diags.isIgnored(
9556 diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9557 Loc) &&
9558 RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9559 !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9560 return Sema::IncompatibleFunctionPointerStrict;
9562 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9563 // unqualified versions of compatible types, ...
9564 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9565 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9566 // Check if the pointee types are compatible ignoring the sign.
9567 // We explicitly check for char so that we catch "char" vs
9568 // "unsigned char" on systems where "char" is unsigned.
9569 if (lhptee->isCharType())
9570 ltrans = S.Context.UnsignedCharTy;
9571 else if (lhptee->hasSignedIntegerRepresentation())
9572 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9574 if (rhptee->isCharType())
9575 rtrans = S.Context.UnsignedCharTy;
9576 else if (rhptee->hasSignedIntegerRepresentation())
9577 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9579 if (ltrans == rtrans) {
9580 // Types are compatible ignoring the sign. Qualifier incompatibility
9581 // takes priority over sign incompatibility because the sign
9582 // warning can be disabled.
9583 if (ConvTy != Sema::Compatible)
9584 return ConvTy;
9586 return Sema::IncompatiblePointerSign;
9589 // If we are a multi-level pointer, it's possible that our issue is simply
9590 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9591 // the eventual target type is the same and the pointers have the same
9592 // level of indirection, this must be the issue.
9593 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9594 do {
9595 std::tie(lhptee, lhq) =
9596 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9597 std::tie(rhptee, rhq) =
9598 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9600 // Inconsistent address spaces at this point is invalid, even if the
9601 // address spaces would be compatible.
9602 // FIXME: This doesn't catch address space mismatches for pointers of
9603 // different nesting levels, like:
9604 // __local int *** a;
9605 // int ** b = a;
9606 // It's not clear how to actually determine when such pointers are
9607 // invalidly incompatible.
9608 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9609 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9611 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9613 if (lhptee == rhptee)
9614 return Sema::IncompatibleNestedPointerQualifiers;
9617 // General pointer incompatibility takes priority over qualifiers.
9618 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9619 return Sema::IncompatibleFunctionPointer;
9620 return Sema::IncompatiblePointer;
9622 if (!S.getLangOpts().CPlusPlus &&
9623 S.IsFunctionConversion(ltrans, rtrans, ltrans))
9624 return Sema::IncompatibleFunctionPointer;
9625 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9626 return Sema::IncompatibleFunctionPointer;
9627 return ConvTy;
9630 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9631 /// block pointer types are compatible or whether a block and normal pointer
9632 /// are compatible. It is more restrict than comparing two function pointer
9633 // types.
9634 static Sema::AssignConvertType
9635 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9636 QualType RHSType) {
9637 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9638 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9640 QualType lhptee, rhptee;
9642 // get the "pointed to" type (ignoring qualifiers at the top level)
9643 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9644 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9646 // In C++, the types have to match exactly.
9647 if (S.getLangOpts().CPlusPlus)
9648 return Sema::IncompatibleBlockPointer;
9650 Sema::AssignConvertType ConvTy = Sema::Compatible;
9652 // For blocks we enforce that qualifiers are identical.
9653 Qualifiers LQuals = lhptee.getLocalQualifiers();
9654 Qualifiers RQuals = rhptee.getLocalQualifiers();
9655 if (S.getLangOpts().OpenCL) {
9656 LQuals.removeAddressSpace();
9657 RQuals.removeAddressSpace();
9659 if (LQuals != RQuals)
9660 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9662 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9663 // assignment.
9664 // The current behavior is similar to C++ lambdas. A block might be
9665 // assigned to a variable iff its return type and parameters are compatible
9666 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9667 // an assignment. Presumably it should behave in way that a function pointer
9668 // assignment does in C, so for each parameter and return type:
9669 // * CVR and address space of LHS should be a superset of CVR and address
9670 // space of RHS.
9671 // * unqualified types should be compatible.
9672 if (S.getLangOpts().OpenCL) {
9673 if (!S.Context.typesAreBlockPointerCompatible(
9674 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9675 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9676 return Sema::IncompatibleBlockPointer;
9677 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9678 return Sema::IncompatibleBlockPointer;
9680 return ConvTy;
9683 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9684 /// for assignment compatibility.
9685 static Sema::AssignConvertType
9686 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9687 QualType RHSType) {
9688 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9689 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9691 if (LHSType->isObjCBuiltinType()) {
9692 // Class is not compatible with ObjC object pointers.
9693 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9694 !RHSType->isObjCQualifiedClassType())
9695 return Sema::IncompatiblePointer;
9696 return Sema::Compatible;
9698 if (RHSType->isObjCBuiltinType()) {
9699 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9700 !LHSType->isObjCQualifiedClassType())
9701 return Sema::IncompatiblePointer;
9702 return Sema::Compatible;
9704 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9705 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9707 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9708 // make an exception for id<P>
9709 !LHSType->isObjCQualifiedIdType())
9710 return Sema::CompatiblePointerDiscardsQualifiers;
9712 if (S.Context.typesAreCompatible(LHSType, RHSType))
9713 return Sema::Compatible;
9714 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9715 return Sema::IncompatibleObjCQualifiedId;
9716 return Sema::IncompatiblePointer;
9719 Sema::AssignConvertType
9720 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9721 QualType LHSType, QualType RHSType) {
9722 // Fake up an opaque expression. We don't actually care about what
9723 // cast operations are required, so if CheckAssignmentConstraints
9724 // adds casts to this they'll be wasted, but fortunately that doesn't
9725 // usually happen on valid code.
9726 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9727 ExprResult RHSPtr = &RHSExpr;
9728 CastKind K;
9730 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9733 /// This helper function returns true if QT is a vector type that has element
9734 /// type ElementType.
9735 static bool isVector(QualType QT, QualType ElementType) {
9736 if (const VectorType *VT = QT->getAs<VectorType>())
9737 return VT->getElementType().getCanonicalType() == ElementType;
9738 return false;
9741 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9742 /// has code to accommodate several GCC extensions when type checking
9743 /// pointers. Here are some objectionable examples that GCC considers warnings:
9745 /// int a, *pint;
9746 /// short *pshort;
9747 /// struct foo *pfoo;
9749 /// pint = pshort; // warning: assignment from incompatible pointer type
9750 /// a = pint; // warning: assignment makes integer from pointer without a cast
9751 /// pint = a; // warning: assignment makes pointer from integer without a cast
9752 /// pint = pfoo; // warning: assignment from incompatible pointer type
9754 /// As a result, the code for dealing with pointers is more complex than the
9755 /// C99 spec dictates.
9757 /// Sets 'Kind' for any result kind except Incompatible.
9758 Sema::AssignConvertType
9759 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9760 CastKind &Kind, bool ConvertRHS) {
9761 QualType RHSType = RHS.get()->getType();
9762 QualType OrigLHSType = LHSType;
9764 // Get canonical types. We're not formatting these types, just comparing
9765 // them.
9766 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9767 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9769 // Common case: no conversion required.
9770 if (LHSType == RHSType) {
9771 Kind = CK_NoOp;
9772 return Compatible;
9775 // If the LHS has an __auto_type, there are no additional type constraints
9776 // to be worried about.
9777 if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9778 if (AT->isGNUAutoType()) {
9779 Kind = CK_NoOp;
9780 return Compatible;
9784 // If we have an atomic type, try a non-atomic assignment, then just add an
9785 // atomic qualification step.
9786 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9787 Sema::AssignConvertType result =
9788 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9789 if (result != Compatible)
9790 return result;
9791 if (Kind != CK_NoOp && ConvertRHS)
9792 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9793 Kind = CK_NonAtomicToAtomic;
9794 return Compatible;
9797 // If the left-hand side is a reference type, then we are in a
9798 // (rare!) case where we've allowed the use of references in C,
9799 // e.g., as a parameter type in a built-in function. In this case,
9800 // just make sure that the type referenced is compatible with the
9801 // right-hand side type. The caller is responsible for adjusting
9802 // LHSType so that the resulting expression does not have reference
9803 // type.
9804 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9805 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9806 Kind = CK_LValueBitCast;
9807 return Compatible;
9809 return Incompatible;
9812 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9813 // to the same ExtVector type.
9814 if (LHSType->isExtVectorType()) {
9815 if (RHSType->isExtVectorType())
9816 return Incompatible;
9817 if (RHSType->isArithmeticType()) {
9818 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9819 if (ConvertRHS)
9820 RHS = prepareVectorSplat(LHSType, RHS.get());
9821 Kind = CK_VectorSplat;
9822 return Compatible;
9826 // Conversions to or from vector type.
9827 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9828 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9829 // Allow assignments of an AltiVec vector type to an equivalent GCC
9830 // vector type and vice versa
9831 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9832 Kind = CK_BitCast;
9833 return Compatible;
9836 // If we are allowing lax vector conversions, and LHS and RHS are both
9837 // vectors, the total size only needs to be the same. This is a bitcast;
9838 // no bits are changed but the result type is different.
9839 if (isLaxVectorConversion(RHSType, LHSType)) {
9840 // The default for lax vector conversions with Altivec vectors will
9841 // change, so if we are converting between vector types where
9842 // at least one is an Altivec vector, emit a warning.
9843 if (anyAltivecTypes(RHSType, LHSType) &&
9844 !areSameVectorElemTypes(RHSType, LHSType))
9845 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9846 << RHSType << LHSType;
9847 Kind = CK_BitCast;
9848 return IncompatibleVectors;
9852 // When the RHS comes from another lax conversion (e.g. binops between
9853 // scalars and vectors) the result is canonicalized as a vector. When the
9854 // LHS is also a vector, the lax is allowed by the condition above. Handle
9855 // the case where LHS is a scalar.
9856 if (LHSType->isScalarType()) {
9857 const VectorType *VecType = RHSType->getAs<VectorType>();
9858 if (VecType && VecType->getNumElements() == 1 &&
9859 isLaxVectorConversion(RHSType, LHSType)) {
9860 if (VecType->getVectorKind() == VectorType::AltiVecVector)
9861 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9862 << RHSType << LHSType;
9863 ExprResult *VecExpr = &RHS;
9864 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9865 Kind = CK_BitCast;
9866 return Compatible;
9870 // Allow assignments between fixed-length and sizeless SVE vectors.
9871 if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9872 (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9873 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9874 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9875 Kind = CK_BitCast;
9876 return Compatible;
9879 return Incompatible;
9882 // Diagnose attempts to convert between __ibm128, __float128 and long double
9883 // where such conversions currently can't be handled.
9884 if (unsupportedTypeConversion(*this, LHSType, RHSType))
9885 return Incompatible;
9887 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9888 // discards the imaginary part.
9889 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9890 !LHSType->getAs<ComplexType>())
9891 return Incompatible;
9893 // Arithmetic conversions.
9894 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9895 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9896 if (ConvertRHS)
9897 Kind = PrepareScalarCast(RHS, LHSType);
9898 return Compatible;
9901 // Conversions to normal pointers.
9902 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9903 // U* -> T*
9904 if (isa<PointerType>(RHSType)) {
9905 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9906 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9907 if (AddrSpaceL != AddrSpaceR)
9908 Kind = CK_AddressSpaceConversion;
9909 else if (Context.hasCvrSimilarType(RHSType, LHSType))
9910 Kind = CK_NoOp;
9911 else
9912 Kind = CK_BitCast;
9913 return checkPointerTypesForAssignment(*this, LHSType, RHSType,
9914 RHS.get()->getBeginLoc());
9917 // int -> T*
9918 if (RHSType->isIntegerType()) {
9919 Kind = CK_IntegralToPointer; // FIXME: null?
9920 return IntToPointer;
9923 // C pointers are not compatible with ObjC object pointers,
9924 // with two exceptions:
9925 if (isa<ObjCObjectPointerType>(RHSType)) {
9926 // - conversions to void*
9927 if (LHSPointer->getPointeeType()->isVoidType()) {
9928 Kind = CK_BitCast;
9929 return Compatible;
9932 // - conversions from 'Class' to the redefinition type
9933 if (RHSType->isObjCClassType() &&
9934 Context.hasSameType(LHSType,
9935 Context.getObjCClassRedefinitionType())) {
9936 Kind = CK_BitCast;
9937 return Compatible;
9940 Kind = CK_BitCast;
9941 return IncompatiblePointer;
9944 // U^ -> void*
9945 if (RHSType->getAs<BlockPointerType>()) {
9946 if (LHSPointer->getPointeeType()->isVoidType()) {
9947 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9948 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9949 ->getPointeeType()
9950 .getAddressSpace();
9951 Kind =
9952 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9953 return Compatible;
9957 return Incompatible;
9960 // Conversions to block pointers.
9961 if (isa<BlockPointerType>(LHSType)) {
9962 // U^ -> T^
9963 if (RHSType->isBlockPointerType()) {
9964 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9965 ->getPointeeType()
9966 .getAddressSpace();
9967 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9968 ->getPointeeType()
9969 .getAddressSpace();
9970 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9971 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9974 // int or null -> T^
9975 if (RHSType->isIntegerType()) {
9976 Kind = CK_IntegralToPointer; // FIXME: null
9977 return IntToBlockPointer;
9980 // id -> T^
9981 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9982 Kind = CK_AnyPointerToBlockPointerCast;
9983 return Compatible;
9986 // void* -> T^
9987 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9988 if (RHSPT->getPointeeType()->isVoidType()) {
9989 Kind = CK_AnyPointerToBlockPointerCast;
9990 return Compatible;
9993 return Incompatible;
9996 // Conversions to Objective-C pointers.
9997 if (isa<ObjCObjectPointerType>(LHSType)) {
9998 // A* -> B*
9999 if (RHSType->isObjCObjectPointerType()) {
10000 Kind = CK_BitCast;
10001 Sema::AssignConvertType result =
10002 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
10003 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10004 result == Compatible &&
10005 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
10006 result = IncompatibleObjCWeakRef;
10007 return result;
10010 // int or null -> A*
10011 if (RHSType->isIntegerType()) {
10012 Kind = CK_IntegralToPointer; // FIXME: null
10013 return IntToPointer;
10016 // In general, C pointers are not compatible with ObjC object pointers,
10017 // with two exceptions:
10018 if (isa<PointerType>(RHSType)) {
10019 Kind = CK_CPointerToObjCPointerCast;
10021 // - conversions from 'void*'
10022 if (RHSType->isVoidPointerType()) {
10023 return Compatible;
10026 // - conversions to 'Class' from its redefinition type
10027 if (LHSType->isObjCClassType() &&
10028 Context.hasSameType(RHSType,
10029 Context.getObjCClassRedefinitionType())) {
10030 return Compatible;
10033 return IncompatiblePointer;
10036 // Only under strict condition T^ is compatible with an Objective-C pointer.
10037 if (RHSType->isBlockPointerType() &&
10038 LHSType->isBlockCompatibleObjCPointerType(Context)) {
10039 if (ConvertRHS)
10040 maybeExtendBlockObject(RHS);
10041 Kind = CK_BlockPointerToObjCPointerCast;
10042 return Compatible;
10045 return Incompatible;
10048 // Conversions from pointers that are not covered by the above.
10049 if (isa<PointerType>(RHSType)) {
10050 // T* -> _Bool
10051 if (LHSType == Context.BoolTy) {
10052 Kind = CK_PointerToBoolean;
10053 return Compatible;
10056 // T* -> int
10057 if (LHSType->isIntegerType()) {
10058 Kind = CK_PointerToIntegral;
10059 return PointerToInt;
10062 return Incompatible;
10065 // Conversions from Objective-C pointers that are not covered by the above.
10066 if (isa<ObjCObjectPointerType>(RHSType)) {
10067 // T* -> _Bool
10068 if (LHSType == Context.BoolTy) {
10069 Kind = CK_PointerToBoolean;
10070 return Compatible;
10073 // T* -> int
10074 if (LHSType->isIntegerType()) {
10075 Kind = CK_PointerToIntegral;
10076 return PointerToInt;
10079 return Incompatible;
10082 // struct A -> struct B
10083 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
10084 if (Context.typesAreCompatible(LHSType, RHSType)) {
10085 Kind = CK_NoOp;
10086 return Compatible;
10090 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
10091 Kind = CK_IntToOCLSampler;
10092 return Compatible;
10095 return Incompatible;
10098 /// Constructs a transparent union from an expression that is
10099 /// used to initialize the transparent union.
10100 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
10101 ExprResult &EResult, QualType UnionType,
10102 FieldDecl *Field) {
10103 // Build an initializer list that designates the appropriate member
10104 // of the transparent union.
10105 Expr *E = EResult.get();
10106 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
10107 E, SourceLocation());
10108 Initializer->setType(UnionType);
10109 Initializer->setInitializedFieldInUnion(Field);
10111 // Build a compound literal constructing a value of the transparent
10112 // union type from this initializer list.
10113 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
10114 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
10115 VK_PRValue, Initializer, false);
10118 Sema::AssignConvertType
10119 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
10120 ExprResult &RHS) {
10121 QualType RHSType = RHS.get()->getType();
10123 // If the ArgType is a Union type, we want to handle a potential
10124 // transparent_union GCC extension.
10125 const RecordType *UT = ArgType->getAsUnionType();
10126 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
10127 return Incompatible;
10129 // The field to initialize within the transparent union.
10130 RecordDecl *UD = UT->getDecl();
10131 FieldDecl *InitField = nullptr;
10132 // It's compatible if the expression matches any of the fields.
10133 for (auto *it : UD->fields()) {
10134 if (it->getType()->isPointerType()) {
10135 // If the transparent union contains a pointer type, we allow:
10136 // 1) void pointer
10137 // 2) null pointer constant
10138 if (RHSType->isPointerType())
10139 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
10140 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
10141 InitField = it;
10142 break;
10145 if (RHS.get()->isNullPointerConstant(Context,
10146 Expr::NPC_ValueDependentIsNull)) {
10147 RHS = ImpCastExprToType(RHS.get(), it->getType(),
10148 CK_NullToPointer);
10149 InitField = it;
10150 break;
10154 CastKind Kind;
10155 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
10156 == Compatible) {
10157 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
10158 InitField = it;
10159 break;
10163 if (!InitField)
10164 return Incompatible;
10166 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
10167 return Compatible;
10170 Sema::AssignConvertType
10171 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
10172 bool Diagnose,
10173 bool DiagnoseCFAudited,
10174 bool ConvertRHS) {
10175 // We need to be able to tell the caller whether we diagnosed a problem, if
10176 // they ask us to issue diagnostics.
10177 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
10179 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10180 // we can't avoid *all* modifications at the moment, so we need some somewhere
10181 // to put the updated value.
10182 ExprResult LocalRHS = CallerRHS;
10183 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
10185 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
10186 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
10187 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
10188 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
10189 Diag(RHS.get()->getExprLoc(),
10190 diag::warn_noderef_to_dereferenceable_pointer)
10191 << RHS.get()->getSourceRange();
10196 if (getLangOpts().CPlusPlus) {
10197 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
10198 // C++ 5.17p3: If the left operand is not of class type, the
10199 // expression is implicitly converted (C++ 4) to the
10200 // cv-unqualified type of the left operand.
10201 QualType RHSType = RHS.get()->getType();
10202 if (Diagnose) {
10203 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10204 AA_Assigning);
10205 } else {
10206 ImplicitConversionSequence ICS =
10207 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10208 /*SuppressUserConversions=*/false,
10209 AllowedExplicit::None,
10210 /*InOverloadResolution=*/false,
10211 /*CStyle=*/false,
10212 /*AllowObjCWritebackConversion=*/false);
10213 if (ICS.isFailure())
10214 return Incompatible;
10215 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10216 ICS, AA_Assigning);
10218 if (RHS.isInvalid())
10219 return Incompatible;
10220 Sema::AssignConvertType result = Compatible;
10221 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10222 !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
10223 result = IncompatibleObjCWeakRef;
10224 return result;
10227 // FIXME: Currently, we fall through and treat C++ classes like C
10228 // structures.
10229 // FIXME: We also fall through for atomics; not sure what should
10230 // happen there, though.
10231 } else if (RHS.get()->getType() == Context.OverloadTy) {
10232 // As a set of extensions to C, we support overloading on functions. These
10233 // functions need to be resolved here.
10234 DeclAccessPair DAP;
10235 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
10236 RHS.get(), LHSType, /*Complain=*/false, DAP))
10237 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
10238 else
10239 return Incompatible;
10242 // This check seems unnatural, however it is necessary to ensure the proper
10243 // conversion of functions/arrays. If the conversion were done for all
10244 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10245 // expressions that suppress this implicit conversion (&, sizeof). This needs
10246 // to happen before we check for null pointer conversions because C does not
10247 // undergo the same implicit conversions as C++ does above (by the calls to
10248 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10249 // lvalue to rvalue cast before checking for null pointer constraints. This
10250 // addresses code like: nullptr_t val; int *ptr; ptr = val;
10252 // Suppress this for references: C++ 8.5.3p5.
10253 if (!LHSType->isReferenceType()) {
10254 // FIXME: We potentially allocate here even if ConvertRHS is false.
10255 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10256 if (RHS.isInvalid())
10257 return Incompatible;
10260 // C99 6.5.16.1p1: the left operand is a pointer and the right is
10261 // a null pointer constant.
10262 if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
10263 LHSType->isBlockPointerType()) &&
10264 RHS.get()->isNullPointerConstant(Context,
10265 Expr::NPC_ValueDependentIsNull)) {
10266 if (Diagnose || ConvertRHS) {
10267 CastKind Kind;
10268 CXXCastPath Path;
10269 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
10270 /*IgnoreBaseAccess=*/false, Diagnose);
10271 if (ConvertRHS)
10272 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10274 return Compatible;
10277 // OpenCL queue_t type assignment.
10278 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10279 Context, Expr::NPC_ValueDependentIsNull)) {
10280 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10281 return Compatible;
10284 CastKind Kind;
10285 Sema::AssignConvertType result =
10286 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10288 // C99 6.5.16.1p2: The value of the right operand is converted to the
10289 // type of the assignment expression.
10290 // CheckAssignmentConstraints allows the left-hand side to be a reference,
10291 // so that we can use references in built-in functions even in C.
10292 // The getNonReferenceType() call makes sure that the resulting expression
10293 // does not have reference type.
10294 if (result != Incompatible && RHS.get()->getType() != LHSType) {
10295 QualType Ty = LHSType.getNonLValueExprType(Context);
10296 Expr *E = RHS.get();
10298 // Check for various Objective-C errors. If we are not reporting
10299 // diagnostics and just checking for errors, e.g., during overload
10300 // resolution, return Incompatible to indicate the failure.
10301 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10302 CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10303 Diagnose, DiagnoseCFAudited) != ACR_okay) {
10304 if (!Diagnose)
10305 return Incompatible;
10307 if (getLangOpts().ObjC &&
10308 (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10309 E->getType(), E, Diagnose) ||
10310 CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10311 if (!Diagnose)
10312 return Incompatible;
10313 // Replace the expression with a corrected version and continue so we
10314 // can find further errors.
10315 RHS = E;
10316 return Compatible;
10319 if (ConvertRHS)
10320 RHS = ImpCastExprToType(E, Ty, Kind);
10323 return result;
10326 namespace {
10327 /// The original operand to an operator, prior to the application of the usual
10328 /// arithmetic conversions and converting the arguments of a builtin operator
10329 /// candidate.
10330 struct OriginalOperand {
10331 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10332 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10333 Op = MTE->getSubExpr();
10334 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10335 Op = BTE->getSubExpr();
10336 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10337 Orig = ICE->getSubExprAsWritten();
10338 Conversion = ICE->getConversionFunction();
10342 QualType getType() const { return Orig->getType(); }
10344 Expr *Orig;
10345 NamedDecl *Conversion;
10349 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10350 ExprResult &RHS) {
10351 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10353 Diag(Loc, diag::err_typecheck_invalid_operands)
10354 << OrigLHS.getType() << OrigRHS.getType()
10355 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10357 // If a user-defined conversion was applied to either of the operands prior
10358 // to applying the built-in operator rules, tell the user about it.
10359 if (OrigLHS.Conversion) {
10360 Diag(OrigLHS.Conversion->getLocation(),
10361 diag::note_typecheck_invalid_operands_converted)
10362 << 0 << LHS.get()->getType();
10364 if (OrigRHS.Conversion) {
10365 Diag(OrigRHS.Conversion->getLocation(),
10366 diag::note_typecheck_invalid_operands_converted)
10367 << 1 << RHS.get()->getType();
10370 return QualType();
10373 // Diagnose cases where a scalar was implicitly converted to a vector and
10374 // diagnose the underlying types. Otherwise, diagnose the error
10375 // as invalid vector logical operands for non-C++ cases.
10376 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10377 ExprResult &RHS) {
10378 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10379 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10381 bool LHSNatVec = LHSType->isVectorType();
10382 bool RHSNatVec = RHSType->isVectorType();
10384 if (!(LHSNatVec && RHSNatVec)) {
10385 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10386 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10387 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10388 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10389 << Vector->getSourceRange();
10390 return QualType();
10393 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10394 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10395 << RHS.get()->getSourceRange();
10397 return QualType();
10400 /// Try to convert a value of non-vector type to a vector type by converting
10401 /// the type to the element type of the vector and then performing a splat.
10402 /// If the language is OpenCL, we only use conversions that promote scalar
10403 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10404 /// for float->int.
10406 /// OpenCL V2.0 6.2.6.p2:
10407 /// An error shall occur if any scalar operand type has greater rank
10408 /// than the type of the vector element.
10410 /// \param scalar - if non-null, actually perform the conversions
10411 /// \return true if the operation fails (but without diagnosing the failure)
10412 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10413 QualType scalarTy,
10414 QualType vectorEltTy,
10415 QualType vectorTy,
10416 unsigned &DiagID) {
10417 // The conversion to apply to the scalar before splatting it,
10418 // if necessary.
10419 CastKind scalarCast = CK_NoOp;
10421 if (vectorEltTy->isIntegralType(S.Context)) {
10422 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10423 (scalarTy->isIntegerType() &&
10424 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10425 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10426 return true;
10428 if (!scalarTy->isIntegralType(S.Context))
10429 return true;
10430 scalarCast = CK_IntegralCast;
10431 } else if (vectorEltTy->isRealFloatingType()) {
10432 if (scalarTy->isRealFloatingType()) {
10433 if (S.getLangOpts().OpenCL &&
10434 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10435 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10436 return true;
10438 scalarCast = CK_FloatingCast;
10440 else if (scalarTy->isIntegralType(S.Context))
10441 scalarCast = CK_IntegralToFloating;
10442 else
10443 return true;
10444 } else {
10445 return true;
10448 // Adjust scalar if desired.
10449 if (scalar) {
10450 if (scalarCast != CK_NoOp)
10451 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10452 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10454 return false;
10457 /// Convert vector E to a vector with the same number of elements but different
10458 /// element type.
10459 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10460 const auto *VecTy = E->getType()->getAs<VectorType>();
10461 assert(VecTy && "Expression E must be a vector");
10462 QualType NewVecTy =
10463 VecTy->isExtVectorType()
10464 ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10465 : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10466 VecTy->getVectorKind());
10468 // Look through the implicit cast. Return the subexpression if its type is
10469 // NewVecTy.
10470 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10471 if (ICE->getSubExpr()->getType() == NewVecTy)
10472 return ICE->getSubExpr();
10474 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10475 return S.ImpCastExprToType(E, NewVecTy, Cast);
10478 /// Test if a (constant) integer Int can be casted to another integer type
10479 /// IntTy without losing precision.
10480 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10481 QualType OtherIntTy) {
10482 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10484 // Reject cases where the value of the Int is unknown as that would
10485 // possibly cause truncation, but accept cases where the scalar can be
10486 // demoted without loss of precision.
10487 Expr::EvalResult EVResult;
10488 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10489 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10490 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10491 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10493 if (CstInt) {
10494 // If the scalar is constant and is of a higher order and has more active
10495 // bits that the vector element type, reject it.
10496 llvm::APSInt Result = EVResult.Val.getInt();
10497 unsigned NumBits = IntSigned
10498 ? (Result.isNegative() ? Result.getMinSignedBits()
10499 : Result.getActiveBits())
10500 : Result.getActiveBits();
10501 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10502 return true;
10504 // If the signedness of the scalar type and the vector element type
10505 // differs and the number of bits is greater than that of the vector
10506 // element reject it.
10507 return (IntSigned != OtherIntSigned &&
10508 NumBits > S.Context.getIntWidth(OtherIntTy));
10511 // Reject cases where the value of the scalar is not constant and it's
10512 // order is greater than that of the vector element type.
10513 return (Order < 0);
10516 /// Test if a (constant) integer Int can be casted to floating point type
10517 /// FloatTy without losing precision.
10518 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10519 QualType FloatTy) {
10520 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10522 // Determine if the integer constant can be expressed as a floating point
10523 // number of the appropriate type.
10524 Expr::EvalResult EVResult;
10525 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10527 uint64_t Bits = 0;
10528 if (CstInt) {
10529 // Reject constants that would be truncated if they were converted to
10530 // the floating point type. Test by simple to/from conversion.
10531 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10532 // could be avoided if there was a convertFromAPInt method
10533 // which could signal back if implicit truncation occurred.
10534 llvm::APSInt Result = EVResult.Val.getInt();
10535 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10536 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10537 llvm::APFloat::rmTowardZero);
10538 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10539 !IntTy->hasSignedIntegerRepresentation());
10540 bool Ignored = false;
10541 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10542 &Ignored);
10543 if (Result != ConvertBack)
10544 return true;
10545 } else {
10546 // Reject types that cannot be fully encoded into the mantissa of
10547 // the float.
10548 Bits = S.Context.getTypeSize(IntTy);
10549 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10550 S.Context.getFloatTypeSemantics(FloatTy));
10551 if (Bits > FloatPrec)
10552 return true;
10555 return false;
10558 /// Attempt to convert and splat Scalar into a vector whose types matches
10559 /// Vector following GCC conversion rules. The rule is that implicit
10560 /// conversion can occur when Scalar can be casted to match Vector's element
10561 /// type without causing truncation of Scalar.
10562 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10563 ExprResult *Vector) {
10564 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10565 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10566 QualType VectorEltTy;
10568 if (const auto *VT = VectorTy->getAs<VectorType>()) {
10569 assert(!isa<ExtVectorType>(VT) &&
10570 "ExtVectorTypes should not be handled here!");
10571 VectorEltTy = VT->getElementType();
10572 } else if (VectorTy->isVLSTBuiltinType()) {
10573 VectorEltTy =
10574 VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10575 } else {
10576 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10579 // Reject cases where the vector element type or the scalar element type are
10580 // not integral or floating point types.
10581 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10582 return true;
10584 // The conversion to apply to the scalar before splatting it,
10585 // if necessary.
10586 CastKind ScalarCast = CK_NoOp;
10588 // Accept cases where the vector elements are integers and the scalar is
10589 // an integer.
10590 // FIXME: Notionally if the scalar was a floating point value with a precise
10591 // integral representation, we could cast it to an appropriate integer
10592 // type and then perform the rest of the checks here. GCC will perform
10593 // this conversion in some cases as determined by the input language.
10594 // We should accept it on a language independent basis.
10595 if (VectorEltTy->isIntegralType(S.Context) &&
10596 ScalarTy->isIntegralType(S.Context) &&
10597 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10599 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10600 return true;
10602 ScalarCast = CK_IntegralCast;
10603 } else if (VectorEltTy->isIntegralType(S.Context) &&
10604 ScalarTy->isRealFloatingType()) {
10605 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10606 ScalarCast = CK_FloatingToIntegral;
10607 else
10608 return true;
10609 } else if (VectorEltTy->isRealFloatingType()) {
10610 if (ScalarTy->isRealFloatingType()) {
10612 // Reject cases where the scalar type is not a constant and has a higher
10613 // Order than the vector element type.
10614 llvm::APFloat Result(0.0);
10616 // Determine whether this is a constant scalar. In the event that the
10617 // value is dependent (and thus cannot be evaluated by the constant
10618 // evaluator), skip the evaluation. This will then diagnose once the
10619 // expression is instantiated.
10620 bool CstScalar = Scalar->get()->isValueDependent() ||
10621 Scalar->get()->EvaluateAsFloat(Result, S.Context);
10622 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10623 if (!CstScalar && Order < 0)
10624 return true;
10626 // If the scalar cannot be safely casted to the vector element type,
10627 // reject it.
10628 if (CstScalar) {
10629 bool Truncated = false;
10630 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10631 llvm::APFloat::rmNearestTiesToEven, &Truncated);
10632 if (Truncated)
10633 return true;
10636 ScalarCast = CK_FloatingCast;
10637 } else if (ScalarTy->isIntegralType(S.Context)) {
10638 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10639 return true;
10641 ScalarCast = CK_IntegralToFloating;
10642 } else
10643 return true;
10644 } else if (ScalarTy->isEnumeralType())
10645 return true;
10647 // Adjust scalar if desired.
10648 if (Scalar) {
10649 if (ScalarCast != CK_NoOp)
10650 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10651 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10653 return false;
10656 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10657 SourceLocation Loc, bool IsCompAssign,
10658 bool AllowBothBool,
10659 bool AllowBoolConversions,
10660 bool AllowBoolOperation,
10661 bool ReportInvalid) {
10662 if (!IsCompAssign) {
10663 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10664 if (LHS.isInvalid())
10665 return QualType();
10667 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10668 if (RHS.isInvalid())
10669 return QualType();
10671 // For conversion purposes, we ignore any qualifiers.
10672 // For example, "const float" and "float" are equivalent.
10673 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10674 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10676 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10677 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10678 assert(LHSVecType || RHSVecType);
10680 if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
10681 (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
10682 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10684 // AltiVec-style "vector bool op vector bool" combinations are allowed
10685 // for some operators but not others.
10686 if (!AllowBothBool &&
10687 LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10688 RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10689 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10691 // This operation may not be performed on boolean vectors.
10692 if (!AllowBoolOperation &&
10693 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10694 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10696 // If the vector types are identical, return.
10697 if (Context.hasSameType(LHSType, RHSType))
10698 return Context.getCommonSugaredType(LHSType, RHSType);
10700 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10701 if (LHSVecType && RHSVecType &&
10702 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10703 if (isa<ExtVectorType>(LHSVecType)) {
10704 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10705 return LHSType;
10708 if (!IsCompAssign)
10709 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10710 return RHSType;
10713 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10714 // can be mixed, with the result being the non-bool type. The non-bool
10715 // operand must have integer element type.
10716 if (AllowBoolConversions && LHSVecType && RHSVecType &&
10717 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10718 (Context.getTypeSize(LHSVecType->getElementType()) ==
10719 Context.getTypeSize(RHSVecType->getElementType()))) {
10720 if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10721 LHSVecType->getElementType()->isIntegerType() &&
10722 RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10723 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10724 return LHSType;
10726 if (!IsCompAssign &&
10727 LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10728 RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10729 RHSVecType->getElementType()->isIntegerType()) {
10730 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10731 return RHSType;
10735 // Expressions containing fixed-length and sizeless SVE vectors are invalid
10736 // since the ambiguity can affect the ABI.
10737 auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10738 const VectorType *VecType = SecondType->getAs<VectorType>();
10739 return FirstType->isSizelessBuiltinType() && VecType &&
10740 (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10741 VecType->getVectorKind() ==
10742 VectorType::SveFixedLengthPredicateVector);
10745 if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
10746 Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10747 return QualType();
10750 // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10751 // since the ambiguity can affect the ABI.
10752 auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10753 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10754 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10756 if (FirstVecType && SecondVecType)
10757 return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10758 (SecondVecType->getVectorKind() ==
10759 VectorType::SveFixedLengthDataVector ||
10760 SecondVecType->getVectorKind() ==
10761 VectorType::SveFixedLengthPredicateVector);
10763 return FirstType->isSizelessBuiltinType() && SecondVecType &&
10764 SecondVecType->getVectorKind() == VectorType::GenericVector;
10767 if (IsSveGnuConversion(LHSType, RHSType) ||
10768 IsSveGnuConversion(RHSType, LHSType)) {
10769 Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10770 return QualType();
10773 // If there's a vector type and a scalar, try to convert the scalar to
10774 // the vector element type and splat.
10775 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10776 if (!RHSVecType) {
10777 if (isa<ExtVectorType>(LHSVecType)) {
10778 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10779 LHSVecType->getElementType(), LHSType,
10780 DiagID))
10781 return LHSType;
10782 } else {
10783 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10784 return LHSType;
10787 if (!LHSVecType) {
10788 if (isa<ExtVectorType>(RHSVecType)) {
10789 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10790 LHSType, RHSVecType->getElementType(),
10791 RHSType, DiagID))
10792 return RHSType;
10793 } else {
10794 if (LHS.get()->isLValue() ||
10795 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10796 return RHSType;
10800 // FIXME: The code below also handles conversion between vectors and
10801 // non-scalars, we should break this down into fine grained specific checks
10802 // and emit proper diagnostics.
10803 QualType VecType = LHSVecType ? LHSType : RHSType;
10804 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10805 QualType OtherType = LHSVecType ? RHSType : LHSType;
10806 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10807 if (isLaxVectorConversion(OtherType, VecType)) {
10808 if (anyAltivecTypes(RHSType, LHSType) &&
10809 !areSameVectorElemTypes(RHSType, LHSType))
10810 Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10811 // If we're allowing lax vector conversions, only the total (data) size
10812 // needs to be the same. For non compound assignment, if one of the types is
10813 // scalar, the result is always the vector type.
10814 if (!IsCompAssign) {
10815 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10816 return VecType;
10817 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10818 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10819 // type. Note that this is already done by non-compound assignments in
10820 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10821 // <1 x T> -> T. The result is also a vector type.
10822 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10823 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10824 ExprResult *RHSExpr = &RHS;
10825 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10826 return VecType;
10830 // Okay, the expression is invalid.
10832 // If there's a non-vector, non-real operand, diagnose that.
10833 if ((!RHSVecType && !RHSType->isRealType()) ||
10834 (!LHSVecType && !LHSType->isRealType())) {
10835 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10836 << LHSType << RHSType
10837 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10838 return QualType();
10841 // OpenCL V1.1 6.2.6.p1:
10842 // If the operands are of more than one vector type, then an error shall
10843 // occur. Implicit conversions between vector types are not permitted, per
10844 // section 6.2.1.
10845 if (getLangOpts().OpenCL &&
10846 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10847 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10848 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10849 << RHSType;
10850 return QualType();
10854 // If there is a vector type that is not a ExtVector and a scalar, we reach
10855 // this point if scalar could not be converted to the vector's element type
10856 // without truncation.
10857 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10858 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10859 QualType Scalar = LHSVecType ? RHSType : LHSType;
10860 QualType Vector = LHSVecType ? LHSType : RHSType;
10861 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10862 Diag(Loc,
10863 diag::err_typecheck_vector_not_convertable_implict_truncation)
10864 << ScalarOrVector << Scalar << Vector;
10866 return QualType();
10869 // Otherwise, use the generic diagnostic.
10870 Diag(Loc, DiagID)
10871 << LHSType << RHSType
10872 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10873 return QualType();
10876 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10877 SourceLocation Loc,
10878 bool IsCompAssign,
10879 ArithConvKind OperationKind) {
10880 if (!IsCompAssign) {
10881 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10882 if (LHS.isInvalid())
10883 return QualType();
10885 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10886 if (RHS.isInvalid())
10887 return QualType();
10889 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10890 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10892 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10893 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10895 unsigned DiagID = diag::err_typecheck_invalid_operands;
10896 if ((OperationKind == ACK_Arithmetic) &&
10897 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10898 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10899 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10900 << RHS.get()->getSourceRange();
10901 return QualType();
10904 if (Context.hasSameType(LHSType, RHSType))
10905 return LHSType;
10907 if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) {
10908 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10909 return LHSType;
10911 if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) {
10912 if (LHS.get()->isLValue() ||
10913 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10914 return RHSType;
10917 if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) ||
10918 (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) {
10919 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10920 << LHSType << RHSType << LHS.get()->getSourceRange()
10921 << RHS.get()->getSourceRange();
10922 return QualType();
10925 if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
10926 Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10927 Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10928 Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10929 << LHSType << RHSType << LHS.get()->getSourceRange()
10930 << RHS.get()->getSourceRange();
10931 return QualType();
10934 if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) {
10935 QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType;
10936 QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType;
10937 bool ScalarOrVector =
10938 LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType();
10940 Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10941 << ScalarOrVector << Scalar << Vector;
10943 return QualType();
10946 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10947 << RHS.get()->getSourceRange();
10948 return QualType();
10951 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10952 // expression. These are mainly cases where the null pointer is used as an
10953 // integer instead of a pointer.
10954 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10955 SourceLocation Loc, bool IsCompare) {
10956 // The canonical way to check for a GNU null is with isNullPointerConstant,
10957 // but we use a bit of a hack here for speed; this is a relatively
10958 // hot path, and isNullPointerConstant is slow.
10959 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10960 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10962 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10964 // Avoid analyzing cases where the result will either be invalid (and
10965 // diagnosed as such) or entirely valid and not something to warn about.
10966 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10967 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10968 return;
10970 // Comparison operations would not make sense with a null pointer no matter
10971 // what the other expression is.
10972 if (!IsCompare) {
10973 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10974 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10975 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10976 return;
10979 // The rest of the operations only make sense with a null pointer
10980 // if the other expression is a pointer.
10981 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10982 NonNullType->canDecayToPointerType())
10983 return;
10985 S.Diag(Loc, diag::warn_null_in_comparison_operation)
10986 << LHSNull /* LHS is NULL */ << NonNullType
10987 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10990 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10991 SourceLocation Loc) {
10992 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10993 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10994 if (!LUE || !RUE)
10995 return;
10996 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10997 RUE->getKind() != UETT_SizeOf)
10998 return;
11000 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
11001 QualType LHSTy = LHSArg->getType();
11002 QualType RHSTy;
11004 if (RUE->isArgumentType())
11005 RHSTy = RUE->getArgumentType().getNonReferenceType();
11006 else
11007 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
11009 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
11010 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
11011 return;
11013 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
11014 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11015 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11016 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
11017 << LHSArgDecl;
11019 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
11020 QualType ArrayElemTy = ArrayTy->getElementType();
11021 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
11022 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
11023 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
11024 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
11025 return;
11026 S.Diag(Loc, diag::warn_division_sizeof_array)
11027 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
11028 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11029 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11030 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
11031 << LHSArgDecl;
11034 S.Diag(Loc, diag::note_precedence_silence) << RHS;
11038 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
11039 ExprResult &RHS,
11040 SourceLocation Loc, bool IsDiv) {
11041 // Check for division/remainder by zero.
11042 Expr::EvalResult RHSValue;
11043 if (!RHS.get()->isValueDependent() &&
11044 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
11045 RHSValue.Val.getInt() == 0)
11046 S.DiagRuntimeBehavior(Loc, RHS.get(),
11047 S.PDiag(diag::warn_remainder_division_by_zero)
11048 << IsDiv << RHS.get()->getSourceRange());
11051 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
11052 SourceLocation Loc,
11053 bool IsCompAssign, bool IsDiv) {
11054 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11056 QualType LHSTy = LHS.get()->getType();
11057 QualType RHSTy = RHS.get()->getType();
11058 if (LHSTy->isVectorType() || RHSTy->isVectorType())
11059 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11060 /*AllowBothBool*/ getLangOpts().AltiVec,
11061 /*AllowBoolConversions*/ false,
11062 /*AllowBooleanOperation*/ false,
11063 /*ReportInvalid*/ true);
11064 if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType())
11065 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11066 ACK_Arithmetic);
11067 if (!IsDiv &&
11068 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
11069 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
11070 // For division, only matrix-by-scalar is supported. Other combinations with
11071 // matrix types are invalid.
11072 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
11073 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
11075 QualType compType = UsualArithmeticConversions(
11076 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11077 if (LHS.isInvalid() || RHS.isInvalid())
11078 return QualType();
11081 if (compType.isNull() || !compType->isArithmeticType())
11082 return InvalidOperands(Loc, LHS, RHS);
11083 if (IsDiv) {
11084 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
11085 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
11087 return compType;
11090 QualType Sema::CheckRemainderOperands(
11091 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
11092 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11094 if (LHS.get()->getType()->isVectorType() ||
11095 RHS.get()->getType()->isVectorType()) {
11096 if (LHS.get()->getType()->hasIntegerRepresentation() &&
11097 RHS.get()->getType()->hasIntegerRepresentation())
11098 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11099 /*AllowBothBool*/ getLangOpts().AltiVec,
11100 /*AllowBoolConversions*/ false,
11101 /*AllowBooleanOperation*/ false,
11102 /*ReportInvalid*/ true);
11103 return InvalidOperands(Loc, LHS, RHS);
11106 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11107 RHS.get()->getType()->isVLSTBuiltinType()) {
11108 if (LHS.get()->getType()->hasIntegerRepresentation() &&
11109 RHS.get()->getType()->hasIntegerRepresentation())
11110 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11111 ACK_Arithmetic);
11113 return InvalidOperands(Loc, LHS, RHS);
11116 QualType compType = UsualArithmeticConversions(
11117 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11118 if (LHS.isInvalid() || RHS.isInvalid())
11119 return QualType();
11121 if (compType.isNull() || !compType->isIntegerType())
11122 return InvalidOperands(Loc, LHS, RHS);
11123 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
11124 return compType;
11127 /// Diagnose invalid arithmetic on two void pointers.
11128 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
11129 Expr *LHSExpr, Expr *RHSExpr) {
11130 S.Diag(Loc, S.getLangOpts().CPlusPlus
11131 ? diag::err_typecheck_pointer_arith_void_type
11132 : diag::ext_gnu_void_ptr)
11133 << 1 /* two pointers */ << LHSExpr->getSourceRange()
11134 << RHSExpr->getSourceRange();
11137 /// Diagnose invalid arithmetic on a void pointer.
11138 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
11139 Expr *Pointer) {
11140 S.Diag(Loc, S.getLangOpts().CPlusPlus
11141 ? diag::err_typecheck_pointer_arith_void_type
11142 : diag::ext_gnu_void_ptr)
11143 << 0 /* one pointer */ << Pointer->getSourceRange();
11146 /// Diagnose invalid arithmetic on a null pointer.
11148 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11149 /// idiom, which we recognize as a GNU extension.
11151 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11152 Expr *Pointer, bool IsGNUIdiom) {
11153 if (IsGNUIdiom)
11154 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11155 << Pointer->getSourceRange();
11156 else
11157 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11158 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11161 /// Diagnose invalid subraction on a null pointer.
11163 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11164 Expr *Pointer, bool BothNull) {
11165 // Null - null is valid in C++ [expr.add]p7
11166 if (BothNull && S.getLangOpts().CPlusPlus)
11167 return;
11169 // Is this s a macro from a system header?
11170 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
11171 return;
11173 S.DiagRuntimeBehavior(Loc, Pointer,
11174 S.PDiag(diag::warn_pointer_sub_null_ptr)
11175 << S.getLangOpts().CPlusPlus
11176 << Pointer->getSourceRange());
11179 /// Diagnose invalid arithmetic on two function pointers.
11180 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11181 Expr *LHS, Expr *RHS) {
11182 assert(LHS->getType()->isAnyPointerType());
11183 assert(RHS->getType()->isAnyPointerType());
11184 S.Diag(Loc, S.getLangOpts().CPlusPlus
11185 ? diag::err_typecheck_pointer_arith_function_type
11186 : diag::ext_gnu_ptr_func_arith)
11187 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11188 // We only show the second type if it differs from the first.
11189 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11190 RHS->getType())
11191 << RHS->getType()->getPointeeType()
11192 << LHS->getSourceRange() << RHS->getSourceRange();
11195 /// Diagnose invalid arithmetic on a function pointer.
11196 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11197 Expr *Pointer) {
11198 assert(Pointer->getType()->isAnyPointerType());
11199 S.Diag(Loc, S.getLangOpts().CPlusPlus
11200 ? diag::err_typecheck_pointer_arith_function_type
11201 : diag::ext_gnu_ptr_func_arith)
11202 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11203 << 0 /* one pointer, so only one type */
11204 << Pointer->getSourceRange();
11207 /// Emit error if Operand is incomplete pointer type
11209 /// \returns True if pointer has incomplete type
11210 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11211 Expr *Operand) {
11212 QualType ResType = Operand->getType();
11213 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11214 ResType = ResAtomicType->getValueType();
11216 assert(ResType->isAnyPointerType() && !ResType->isDependentType());
11217 QualType PointeeTy = ResType->getPointeeType();
11218 return S.RequireCompleteSizedType(
11219 Loc, PointeeTy,
11220 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11221 Operand->getSourceRange());
11224 /// Check the validity of an arithmetic pointer operand.
11226 /// If the operand has pointer type, this code will check for pointer types
11227 /// which are invalid in arithmetic operations. These will be diagnosed
11228 /// appropriately, including whether or not the use is supported as an
11229 /// extension.
11231 /// \returns True when the operand is valid to use (even if as an extension).
11232 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11233 Expr *Operand) {
11234 QualType ResType = Operand->getType();
11235 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11236 ResType = ResAtomicType->getValueType();
11238 if (!ResType->isAnyPointerType()) return true;
11240 QualType PointeeTy = ResType->getPointeeType();
11241 if (PointeeTy->isVoidType()) {
11242 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
11243 return !S.getLangOpts().CPlusPlus;
11245 if (PointeeTy->isFunctionType()) {
11246 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
11247 return !S.getLangOpts().CPlusPlus;
11250 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11252 return true;
11255 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11256 /// operands.
11258 /// This routine will diagnose any invalid arithmetic on pointer operands much
11259 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11260 /// for emitting a single diagnostic even for operations where both LHS and RHS
11261 /// are (potentially problematic) pointers.
11263 /// \returns True when the operand is valid to use (even if as an extension).
11264 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11265 Expr *LHSExpr, Expr *RHSExpr) {
11266 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11267 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11268 if (!isLHSPointer && !isRHSPointer) return true;
11270 QualType LHSPointeeTy, RHSPointeeTy;
11271 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11272 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11274 // if both are pointers check if operation is valid wrt address spaces
11275 if (isLHSPointer && isRHSPointer) {
11276 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11277 S.Diag(Loc,
11278 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11279 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11280 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11281 return false;
11285 // Check for arithmetic on pointers to incomplete types.
11286 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11287 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11288 if (isLHSVoidPtr || isRHSVoidPtr) {
11289 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11290 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11291 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11293 return !S.getLangOpts().CPlusPlus;
11296 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11297 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11298 if (isLHSFuncPtr || isRHSFuncPtr) {
11299 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11300 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11301 RHSExpr);
11302 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11304 return !S.getLangOpts().CPlusPlus;
11307 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11308 return false;
11309 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11310 return false;
11312 return true;
11315 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11316 /// literal.
11317 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11318 Expr *LHSExpr, Expr *RHSExpr) {
11319 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11320 Expr* IndexExpr = RHSExpr;
11321 if (!StrExpr) {
11322 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11323 IndexExpr = LHSExpr;
11326 bool IsStringPlusInt = StrExpr &&
11327 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11328 if (!IsStringPlusInt || IndexExpr->isValueDependent())
11329 return;
11331 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11332 Self.Diag(OpLoc, diag::warn_string_plus_int)
11333 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11335 // Only print a fixit for "str" + int, not for int + "str".
11336 if (IndexExpr == RHSExpr) {
11337 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11338 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11339 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11340 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11341 << FixItHint::CreateInsertion(EndLoc, "]");
11342 } else
11343 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11346 /// Emit a warning when adding a char literal to a string.
11347 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11348 Expr *LHSExpr, Expr *RHSExpr) {
11349 const Expr *StringRefExpr = LHSExpr;
11350 const CharacterLiteral *CharExpr =
11351 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11353 if (!CharExpr) {
11354 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11355 StringRefExpr = RHSExpr;
11358 if (!CharExpr || !StringRefExpr)
11359 return;
11361 const QualType StringType = StringRefExpr->getType();
11363 // Return if not a PointerType.
11364 if (!StringType->isAnyPointerType())
11365 return;
11367 // Return if not a CharacterType.
11368 if (!StringType->getPointeeType()->isAnyCharacterType())
11369 return;
11371 ASTContext &Ctx = Self.getASTContext();
11372 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11374 const QualType CharType = CharExpr->getType();
11375 if (!CharType->isAnyCharacterType() &&
11376 CharType->isIntegerType() &&
11377 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11378 Self.Diag(OpLoc, diag::warn_string_plus_char)
11379 << DiagRange << Ctx.CharTy;
11380 } else {
11381 Self.Diag(OpLoc, diag::warn_string_plus_char)
11382 << DiagRange << CharExpr->getType();
11385 // Only print a fixit for str + char, not for char + str.
11386 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11387 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11388 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11389 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11390 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11391 << FixItHint::CreateInsertion(EndLoc, "]");
11392 } else {
11393 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11397 /// Emit error when two pointers are incompatible.
11398 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11399 Expr *LHSExpr, Expr *RHSExpr) {
11400 assert(LHSExpr->getType()->isAnyPointerType());
11401 assert(RHSExpr->getType()->isAnyPointerType());
11402 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11403 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11404 << RHSExpr->getSourceRange();
11407 // C99 6.5.6
11408 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11409 SourceLocation Loc, BinaryOperatorKind Opc,
11410 QualType* CompLHSTy) {
11411 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11413 if (LHS.get()->getType()->isVectorType() ||
11414 RHS.get()->getType()->isVectorType()) {
11415 QualType compType =
11416 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11417 /*AllowBothBool*/ getLangOpts().AltiVec,
11418 /*AllowBoolConversions*/ getLangOpts().ZVector,
11419 /*AllowBooleanOperation*/ false,
11420 /*ReportInvalid*/ true);
11421 if (CompLHSTy) *CompLHSTy = compType;
11422 return compType;
11425 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11426 RHS.get()->getType()->isVLSTBuiltinType()) {
11427 QualType compType =
11428 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11429 if (CompLHSTy)
11430 *CompLHSTy = compType;
11431 return compType;
11434 if (LHS.get()->getType()->isConstantMatrixType() ||
11435 RHS.get()->getType()->isConstantMatrixType()) {
11436 QualType compType =
11437 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11438 if (CompLHSTy)
11439 *CompLHSTy = compType;
11440 return compType;
11443 QualType compType = UsualArithmeticConversions(
11444 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11445 if (LHS.isInvalid() || RHS.isInvalid())
11446 return QualType();
11448 // Diagnose "string literal" '+' int and string '+' "char literal".
11449 if (Opc == BO_Add) {
11450 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11451 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11454 // handle the common case first (both operands are arithmetic).
11455 if (!compType.isNull() && compType->isArithmeticType()) {
11456 if (CompLHSTy) *CompLHSTy = compType;
11457 return compType;
11460 // Type-checking. Ultimately the pointer's going to be in PExp;
11461 // note that we bias towards the LHS being the pointer.
11462 Expr *PExp = LHS.get(), *IExp = RHS.get();
11464 bool isObjCPointer;
11465 if (PExp->getType()->isPointerType()) {
11466 isObjCPointer = false;
11467 } else if (PExp->getType()->isObjCObjectPointerType()) {
11468 isObjCPointer = true;
11469 } else {
11470 std::swap(PExp, IExp);
11471 if (PExp->getType()->isPointerType()) {
11472 isObjCPointer = false;
11473 } else if (PExp->getType()->isObjCObjectPointerType()) {
11474 isObjCPointer = true;
11475 } else {
11476 return InvalidOperands(Loc, LHS, RHS);
11479 assert(PExp->getType()->isAnyPointerType());
11481 if (!IExp->getType()->isIntegerType())
11482 return InvalidOperands(Loc, LHS, RHS);
11484 // Adding to a null pointer results in undefined behavior.
11485 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11486 Context, Expr::NPC_ValueDependentIsNotNull)) {
11487 // In C++ adding zero to a null pointer is defined.
11488 Expr::EvalResult KnownVal;
11489 if (!getLangOpts().CPlusPlus ||
11490 (!IExp->isValueDependent() &&
11491 (!IExp->EvaluateAsInt(KnownVal, Context) ||
11492 KnownVal.Val.getInt() != 0))) {
11493 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11494 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11495 Context, BO_Add, PExp, IExp);
11496 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11500 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11501 return QualType();
11503 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11504 return QualType();
11506 // Check array bounds for pointer arithemtic
11507 CheckArrayAccess(PExp, IExp);
11509 if (CompLHSTy) {
11510 QualType LHSTy = Context.isPromotableBitField(LHS.get());
11511 if (LHSTy.isNull()) {
11512 LHSTy = LHS.get()->getType();
11513 if (Context.isPromotableIntegerType(LHSTy))
11514 LHSTy = Context.getPromotedIntegerType(LHSTy);
11516 *CompLHSTy = LHSTy;
11519 return PExp->getType();
11522 // C99 6.5.6
11523 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11524 SourceLocation Loc,
11525 QualType* CompLHSTy) {
11526 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11528 if (LHS.get()->getType()->isVectorType() ||
11529 RHS.get()->getType()->isVectorType()) {
11530 QualType compType =
11531 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11532 /*AllowBothBool*/ getLangOpts().AltiVec,
11533 /*AllowBoolConversions*/ getLangOpts().ZVector,
11534 /*AllowBooleanOperation*/ false,
11535 /*ReportInvalid*/ true);
11536 if (CompLHSTy) *CompLHSTy = compType;
11537 return compType;
11540 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11541 RHS.get()->getType()->isVLSTBuiltinType()) {
11542 QualType compType =
11543 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11544 if (CompLHSTy)
11545 *CompLHSTy = compType;
11546 return compType;
11549 if (LHS.get()->getType()->isConstantMatrixType() ||
11550 RHS.get()->getType()->isConstantMatrixType()) {
11551 QualType compType =
11552 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11553 if (CompLHSTy)
11554 *CompLHSTy = compType;
11555 return compType;
11558 QualType compType = UsualArithmeticConversions(
11559 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11560 if (LHS.isInvalid() || RHS.isInvalid())
11561 return QualType();
11563 // Enforce type constraints: C99 6.5.6p3.
11565 // Handle the common case first (both operands are arithmetic).
11566 if (!compType.isNull() && compType->isArithmeticType()) {
11567 if (CompLHSTy) *CompLHSTy = compType;
11568 return compType;
11571 // Either ptr - int or ptr - ptr.
11572 if (LHS.get()->getType()->isAnyPointerType()) {
11573 QualType lpointee = LHS.get()->getType()->getPointeeType();
11575 // Diagnose bad cases where we step over interface counts.
11576 if (LHS.get()->getType()->isObjCObjectPointerType() &&
11577 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11578 return QualType();
11580 // The result type of a pointer-int computation is the pointer type.
11581 if (RHS.get()->getType()->isIntegerType()) {
11582 // Subtracting from a null pointer should produce a warning.
11583 // The last argument to the diagnose call says this doesn't match the
11584 // GNU int-to-pointer idiom.
11585 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11586 Expr::NPC_ValueDependentIsNotNull)) {
11587 // In C++ adding zero to a null pointer is defined.
11588 Expr::EvalResult KnownVal;
11589 if (!getLangOpts().CPlusPlus ||
11590 (!RHS.get()->isValueDependent() &&
11591 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11592 KnownVal.Val.getInt() != 0))) {
11593 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11597 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11598 return QualType();
11600 // Check array bounds for pointer arithemtic
11601 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11602 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11604 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11605 return LHS.get()->getType();
11608 // Handle pointer-pointer subtractions.
11609 if (const PointerType *RHSPTy
11610 = RHS.get()->getType()->getAs<PointerType>()) {
11611 QualType rpointee = RHSPTy->getPointeeType();
11613 if (getLangOpts().CPlusPlus) {
11614 // Pointee types must be the same: C++ [expr.add]
11615 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11616 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11618 } else {
11619 // Pointee types must be compatible C99 6.5.6p3
11620 if (!Context.typesAreCompatible(
11621 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11622 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11623 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11624 return QualType();
11628 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11629 LHS.get(), RHS.get()))
11630 return QualType();
11632 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11633 Context, Expr::NPC_ValueDependentIsNotNull);
11634 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11635 Context, Expr::NPC_ValueDependentIsNotNull);
11637 // Subtracting nullptr or from nullptr is suspect
11638 if (LHSIsNullPtr)
11639 diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11640 if (RHSIsNullPtr)
11641 diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11643 // The pointee type may have zero size. As an extension, a structure or
11644 // union may have zero size or an array may have zero length. In this
11645 // case subtraction does not make sense.
11646 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11647 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11648 if (ElementSize.isZero()) {
11649 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11650 << rpointee.getUnqualifiedType()
11651 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11655 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11656 return Context.getPointerDiffType();
11660 return InvalidOperands(Loc, LHS, RHS);
11663 static bool isScopedEnumerationType(QualType T) {
11664 if (const EnumType *ET = T->getAs<EnumType>())
11665 return ET->getDecl()->isScoped();
11666 return false;
11669 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11670 SourceLocation Loc, BinaryOperatorKind Opc,
11671 QualType LHSType) {
11672 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11673 // so skip remaining warnings as we don't want to modify values within Sema.
11674 if (S.getLangOpts().OpenCL)
11675 return;
11677 // Check right/shifter operand
11678 Expr::EvalResult RHSResult;
11679 if (RHS.get()->isValueDependent() ||
11680 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11681 return;
11682 llvm::APSInt Right = RHSResult.Val.getInt();
11684 if (Right.isNegative()) {
11685 S.DiagRuntimeBehavior(Loc, RHS.get(),
11686 S.PDiag(diag::warn_shift_negative)
11687 << RHS.get()->getSourceRange());
11688 return;
11691 QualType LHSExprType = LHS.get()->getType();
11692 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11693 if (LHSExprType->isBitIntType())
11694 LeftSize = S.Context.getIntWidth(LHSExprType);
11695 else if (LHSExprType->isFixedPointType()) {
11696 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11697 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11699 llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
11700 if (Right.uge(LeftBits)) {
11701 S.DiagRuntimeBehavior(Loc, RHS.get(),
11702 S.PDiag(diag::warn_shift_gt_typewidth)
11703 << RHS.get()->getSourceRange());
11704 return;
11707 // FIXME: We probably need to handle fixed point types specially here.
11708 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11709 return;
11711 // When left shifting an ICE which is signed, we can check for overflow which
11712 // according to C++ standards prior to C++2a has undefined behavior
11713 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11714 // more than the maximum value representable in the result type, so never
11715 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11716 // expression is still probably a bug.)
11717 Expr::EvalResult LHSResult;
11718 if (LHS.get()->isValueDependent() ||
11719 LHSType->hasUnsignedIntegerRepresentation() ||
11720 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11721 return;
11722 llvm::APSInt Left = LHSResult.Val.getInt();
11724 // Don't warn if signed overflow is defined, then all the rest of the
11725 // diagnostics will not be triggered because the behavior is defined.
11726 // Also don't warn in C++20 mode (and newer), as signed left shifts
11727 // always wrap and never overflow.
11728 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11729 return;
11731 // If LHS does not have a non-negative value then, the
11732 // behavior is undefined before C++2a. Warn about it.
11733 if (Left.isNegative()) {
11734 S.DiagRuntimeBehavior(Loc, LHS.get(),
11735 S.PDiag(diag::warn_shift_lhs_negative)
11736 << LHS.get()->getSourceRange());
11737 return;
11740 llvm::APInt ResultBits =
11741 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
11742 if (LeftBits.uge(ResultBits))
11743 return;
11744 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11745 Result = Result.shl(Right);
11747 // Print the bit representation of the signed integer as an unsigned
11748 // hexadecimal number.
11749 SmallString<40> HexResult;
11750 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11752 // If we are only missing a sign bit, this is less likely to result in actual
11753 // bugs -- if the result is cast back to an unsigned type, it will have the
11754 // expected value. Thus we place this behind a different warning that can be
11755 // turned off separately if needed.
11756 if (LeftBits == ResultBits - 1) {
11757 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11758 << HexResult << LHSType
11759 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11760 return;
11763 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11764 << HexResult.str() << Result.getMinSignedBits() << LHSType
11765 << Left.getBitWidth() << LHS.get()->getSourceRange()
11766 << RHS.get()->getSourceRange();
11769 /// Return the resulting type when a vector is shifted
11770 /// by a scalar or vector shift amount.
11771 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11772 SourceLocation Loc, bool IsCompAssign) {
11773 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11774 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11775 !LHS.get()->getType()->isVectorType()) {
11776 S.Diag(Loc, diag::err_shift_rhs_only_vector)
11777 << RHS.get()->getType() << LHS.get()->getType()
11778 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11779 return QualType();
11782 if (!IsCompAssign) {
11783 LHS = S.UsualUnaryConversions(LHS.get());
11784 if (LHS.isInvalid()) return QualType();
11787 RHS = S.UsualUnaryConversions(RHS.get());
11788 if (RHS.isInvalid()) return QualType();
11790 QualType LHSType = LHS.get()->getType();
11791 // Note that LHS might be a scalar because the routine calls not only in
11792 // OpenCL case.
11793 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11794 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11796 // Note that RHS might not be a vector.
11797 QualType RHSType = RHS.get()->getType();
11798 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11799 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11801 // Do not allow shifts for boolean vectors.
11802 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11803 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11804 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11805 << LHS.get()->getType() << RHS.get()->getType()
11806 << LHS.get()->getSourceRange();
11807 return QualType();
11810 // The operands need to be integers.
11811 if (!LHSEleType->isIntegerType()) {
11812 S.Diag(Loc, diag::err_typecheck_expect_int)
11813 << LHS.get()->getType() << LHS.get()->getSourceRange();
11814 return QualType();
11817 if (!RHSEleType->isIntegerType()) {
11818 S.Diag(Loc, diag::err_typecheck_expect_int)
11819 << RHS.get()->getType() << RHS.get()->getSourceRange();
11820 return QualType();
11823 if (!LHSVecTy) {
11824 assert(RHSVecTy);
11825 if (IsCompAssign)
11826 return RHSType;
11827 if (LHSEleType != RHSEleType) {
11828 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11829 LHSEleType = RHSEleType;
11831 QualType VecTy =
11832 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11833 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11834 LHSType = VecTy;
11835 } else if (RHSVecTy) {
11836 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11837 // are applied component-wise. So if RHS is a vector, then ensure
11838 // that the number of elements is the same as LHS...
11839 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11840 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11841 << LHS.get()->getType() << RHS.get()->getType()
11842 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11843 return QualType();
11845 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11846 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11847 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11848 if (LHSBT != RHSBT &&
11849 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11850 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11851 << LHS.get()->getType() << RHS.get()->getType()
11852 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11855 } else {
11856 // ...else expand RHS to match the number of elements in LHS.
11857 QualType VecTy =
11858 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11859 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11862 return LHSType;
11865 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11866 ExprResult &RHS, SourceLocation Loc,
11867 bool IsCompAssign) {
11868 if (!IsCompAssign) {
11869 LHS = S.UsualUnaryConversions(LHS.get());
11870 if (LHS.isInvalid())
11871 return QualType();
11874 RHS = S.UsualUnaryConversions(RHS.get());
11875 if (RHS.isInvalid())
11876 return QualType();
11878 QualType LHSType = LHS.get()->getType();
11879 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11880 QualType LHSEleType = LHSType->isVLSTBuiltinType()
11881 ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11882 : LHSType;
11884 // Note that RHS might not be a vector
11885 QualType RHSType = RHS.get()->getType();
11886 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11887 QualType RHSEleType = RHSType->isVLSTBuiltinType()
11888 ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11889 : RHSType;
11891 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11892 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11893 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11894 << LHSType << RHSType << LHS.get()->getSourceRange();
11895 return QualType();
11898 if (!LHSEleType->isIntegerType()) {
11899 S.Diag(Loc, diag::err_typecheck_expect_int)
11900 << LHS.get()->getType() << LHS.get()->getSourceRange();
11901 return QualType();
11904 if (!RHSEleType->isIntegerType()) {
11905 S.Diag(Loc, diag::err_typecheck_expect_int)
11906 << RHS.get()->getType() << RHS.get()->getSourceRange();
11907 return QualType();
11910 if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
11911 (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11912 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11913 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11914 << LHSType << RHSType << LHS.get()->getSourceRange()
11915 << RHS.get()->getSourceRange();
11916 return QualType();
11919 if (!LHSType->isVLSTBuiltinType()) {
11920 assert(RHSType->isVLSTBuiltinType());
11921 if (IsCompAssign)
11922 return RHSType;
11923 if (LHSEleType != RHSEleType) {
11924 LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11925 LHSEleType = RHSEleType;
11927 const llvm::ElementCount VecSize =
11928 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11929 QualType VecTy =
11930 S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11931 LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11932 LHSType = VecTy;
11933 } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) {
11934 if (S.Context.getTypeSize(RHSBuiltinTy) !=
11935 S.Context.getTypeSize(LHSBuiltinTy)) {
11936 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11937 << LHSType << RHSType << LHS.get()->getSourceRange()
11938 << RHS.get()->getSourceRange();
11939 return QualType();
11941 } else {
11942 const llvm::ElementCount VecSize =
11943 S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11944 if (LHSEleType != RHSEleType) {
11945 RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11946 RHSEleType = LHSEleType;
11948 QualType VecTy =
11949 S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11950 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11953 return LHSType;
11956 // C99 6.5.7
11957 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11958 SourceLocation Loc, BinaryOperatorKind Opc,
11959 bool IsCompAssign) {
11960 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11962 // Vector shifts promote their scalar inputs to vector type.
11963 if (LHS.get()->getType()->isVectorType() ||
11964 RHS.get()->getType()->isVectorType()) {
11965 if (LangOpts.ZVector) {
11966 // The shift operators for the z vector extensions work basically
11967 // like general shifts, except that neither the LHS nor the RHS is
11968 // allowed to be a "vector bool".
11969 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11970 if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11971 return InvalidOperands(Loc, LHS, RHS);
11972 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11973 if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11974 return InvalidOperands(Loc, LHS, RHS);
11976 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11979 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11980 RHS.get()->getType()->isVLSTBuiltinType())
11981 return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11983 // Shifts don't perform usual arithmetic conversions, they just do integer
11984 // promotions on each operand. C99 6.5.7p3
11986 // For the LHS, do usual unary conversions, but then reset them away
11987 // if this is a compound assignment.
11988 ExprResult OldLHS = LHS;
11989 LHS = UsualUnaryConversions(LHS.get());
11990 if (LHS.isInvalid())
11991 return QualType();
11992 QualType LHSType = LHS.get()->getType();
11993 if (IsCompAssign) LHS = OldLHS;
11995 // The RHS is simpler.
11996 RHS = UsualUnaryConversions(RHS.get());
11997 if (RHS.isInvalid())
11998 return QualType();
11999 QualType RHSType = RHS.get()->getType();
12001 // C99 6.5.7p2: Each of the operands shall have integer type.
12002 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12003 if ((!LHSType->isFixedPointOrIntegerType() &&
12004 !LHSType->hasIntegerRepresentation()) ||
12005 !RHSType->hasIntegerRepresentation())
12006 return InvalidOperands(Loc, LHS, RHS);
12008 // C++0x: Don't allow scoped enums. FIXME: Use something better than
12009 // hasIntegerRepresentation() above instead of this.
12010 if (isScopedEnumerationType(LHSType) ||
12011 isScopedEnumerationType(RHSType)) {
12012 return InvalidOperands(Loc, LHS, RHS);
12014 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
12016 // "The type of the result is that of the promoted left operand."
12017 return LHSType;
12020 /// Diagnose bad pointer comparisons.
12021 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
12022 ExprResult &LHS, ExprResult &RHS,
12023 bool IsError) {
12024 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
12025 : diag::ext_typecheck_comparison_of_distinct_pointers)
12026 << LHS.get()->getType() << RHS.get()->getType()
12027 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12030 /// Returns false if the pointers are converted to a composite type,
12031 /// true otherwise.
12032 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
12033 ExprResult &LHS, ExprResult &RHS) {
12034 // C++ [expr.rel]p2:
12035 // [...] Pointer conversions (4.10) and qualification
12036 // conversions (4.4) are performed on pointer operands (or on
12037 // a pointer operand and a null pointer constant) to bring
12038 // them to their composite pointer type. [...]
12040 // C++ [expr.eq]p1 uses the same notion for (in)equality
12041 // comparisons of pointers.
12043 QualType LHSType = LHS.get()->getType();
12044 QualType RHSType = RHS.get()->getType();
12045 assert(LHSType->isPointerType() || RHSType->isPointerType() ||
12046 LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
12048 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
12049 if (T.isNull()) {
12050 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
12051 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
12052 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
12053 else
12054 S.InvalidOperands(Loc, LHS, RHS);
12055 return true;
12058 return false;
12061 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
12062 ExprResult &LHS,
12063 ExprResult &RHS,
12064 bool IsError) {
12065 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
12066 : diag::ext_typecheck_comparison_of_fptr_to_void)
12067 << LHS.get()->getType() << RHS.get()->getType()
12068 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12071 static bool isObjCObjectLiteral(ExprResult &E) {
12072 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
12073 case Stmt::ObjCArrayLiteralClass:
12074 case Stmt::ObjCDictionaryLiteralClass:
12075 case Stmt::ObjCStringLiteralClass:
12076 case Stmt::ObjCBoxedExprClass:
12077 return true;
12078 default:
12079 // Note that ObjCBoolLiteral is NOT an object literal!
12080 return false;
12084 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
12085 const ObjCObjectPointerType *Type =
12086 LHS->getType()->getAs<ObjCObjectPointerType>();
12088 // If this is not actually an Objective-C object, bail out.
12089 if (!Type)
12090 return false;
12092 // Get the LHS object's interface type.
12093 QualType InterfaceType = Type->getPointeeType();
12095 // If the RHS isn't an Objective-C object, bail out.
12096 if (!RHS->getType()->isObjCObjectPointerType())
12097 return false;
12099 // Try to find the -isEqual: method.
12100 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
12101 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
12102 InterfaceType,
12103 /*IsInstance=*/true);
12104 if (!Method) {
12105 if (Type->isObjCIdType()) {
12106 // For 'id', just check the global pool.
12107 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
12108 /*receiverId=*/true);
12109 } else {
12110 // Check protocols.
12111 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
12112 /*IsInstance=*/true);
12116 if (!Method)
12117 return false;
12119 QualType T = Method->parameters()[0]->getType();
12120 if (!T->isObjCObjectPointerType())
12121 return false;
12123 QualType R = Method->getReturnType();
12124 if (!R->isScalarType())
12125 return false;
12127 return true;
12130 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
12131 FromE = FromE->IgnoreParenImpCasts();
12132 switch (FromE->getStmtClass()) {
12133 default:
12134 break;
12135 case Stmt::ObjCStringLiteralClass:
12136 // "string literal"
12137 return LK_String;
12138 case Stmt::ObjCArrayLiteralClass:
12139 // "array literal"
12140 return LK_Array;
12141 case Stmt::ObjCDictionaryLiteralClass:
12142 // "dictionary literal"
12143 return LK_Dictionary;
12144 case Stmt::BlockExprClass:
12145 return LK_Block;
12146 case Stmt::ObjCBoxedExprClass: {
12147 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
12148 switch (Inner->getStmtClass()) {
12149 case Stmt::IntegerLiteralClass:
12150 case Stmt::FloatingLiteralClass:
12151 case Stmt::CharacterLiteralClass:
12152 case Stmt::ObjCBoolLiteralExprClass:
12153 case Stmt::CXXBoolLiteralExprClass:
12154 // "numeric literal"
12155 return LK_Numeric;
12156 case Stmt::ImplicitCastExprClass: {
12157 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
12158 // Boolean literals can be represented by implicit casts.
12159 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
12160 return LK_Numeric;
12161 break;
12163 default:
12164 break;
12166 return LK_Boxed;
12169 return LK_None;
12172 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12173 ExprResult &LHS, ExprResult &RHS,
12174 BinaryOperator::Opcode Opc){
12175 Expr *Literal;
12176 Expr *Other;
12177 if (isObjCObjectLiteral(LHS)) {
12178 Literal = LHS.get();
12179 Other = RHS.get();
12180 } else {
12181 Literal = RHS.get();
12182 Other = LHS.get();
12185 // Don't warn on comparisons against nil.
12186 Other = Other->IgnoreParenCasts();
12187 if (Other->isNullPointerConstant(S.getASTContext(),
12188 Expr::NPC_ValueDependentIsNotNull))
12189 return;
12191 // This should be kept in sync with warn_objc_literal_comparison.
12192 // LK_String should always be after the other literals, since it has its own
12193 // warning flag.
12194 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
12195 assert(LiteralKind != Sema::LK_Block);
12196 if (LiteralKind == Sema::LK_None) {
12197 llvm_unreachable("Unknown Objective-C object literal kind");
12200 if (LiteralKind == Sema::LK_String)
12201 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12202 << Literal->getSourceRange();
12203 else
12204 S.Diag(Loc, diag::warn_objc_literal_comparison)
12205 << LiteralKind << Literal->getSourceRange();
12207 if (BinaryOperator::isEqualityOp(Opc) &&
12208 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
12209 SourceLocation Start = LHS.get()->getBeginLoc();
12210 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
12211 CharSourceRange OpRange =
12212 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12214 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12215 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12216 << FixItHint::CreateReplacement(OpRange, " isEqual:")
12217 << FixItHint::CreateInsertion(End, "]");
12221 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12222 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12223 ExprResult &RHS, SourceLocation Loc,
12224 BinaryOperatorKind Opc) {
12225 // Check that left hand side is !something.
12226 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
12227 if (!UO || UO->getOpcode() != UO_LNot) return;
12229 // Only check if the right hand side is non-bool arithmetic type.
12230 if (RHS.get()->isKnownToHaveBooleanValue()) return;
12232 // Make sure that the something in !something is not bool.
12233 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12234 if (SubExpr->isKnownToHaveBooleanValue()) return;
12236 // Emit warning.
12237 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12238 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12239 << Loc << IsBitwiseOp;
12241 // First note suggest !(x < y)
12242 SourceLocation FirstOpen = SubExpr->getBeginLoc();
12243 SourceLocation FirstClose = RHS.get()->getEndLoc();
12244 FirstClose = S.getLocForEndOfToken(FirstClose);
12245 if (FirstClose.isInvalid())
12246 FirstOpen = SourceLocation();
12247 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12248 << IsBitwiseOp
12249 << FixItHint::CreateInsertion(FirstOpen, "(")
12250 << FixItHint::CreateInsertion(FirstClose, ")");
12252 // Second note suggests (!x) < y
12253 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12254 SourceLocation SecondClose = LHS.get()->getEndLoc();
12255 SecondClose = S.getLocForEndOfToken(SecondClose);
12256 if (SecondClose.isInvalid())
12257 SecondOpen = SourceLocation();
12258 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12259 << FixItHint::CreateInsertion(SecondOpen, "(")
12260 << FixItHint::CreateInsertion(SecondClose, ")");
12263 // Returns true if E refers to a non-weak array.
12264 static bool checkForArray(const Expr *E) {
12265 const ValueDecl *D = nullptr;
12266 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12267 D = DR->getDecl();
12268 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12269 if (Mem->isImplicitAccess())
12270 D = Mem->getMemberDecl();
12272 if (!D)
12273 return false;
12274 return D->getType()->isArrayType() && !D->isWeak();
12277 /// Diagnose some forms of syntactically-obvious tautological comparison.
12278 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12279 Expr *LHS, Expr *RHS,
12280 BinaryOperatorKind Opc) {
12281 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12282 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12284 QualType LHSType = LHS->getType();
12285 QualType RHSType = RHS->getType();
12286 if (LHSType->hasFloatingRepresentation() ||
12287 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12288 S.inTemplateInstantiation())
12289 return;
12291 // Comparisons between two array types are ill-formed for operator<=>, so
12292 // we shouldn't emit any additional warnings about it.
12293 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12294 return;
12296 // For non-floating point types, check for self-comparisons of the form
12297 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12298 // often indicate logic errors in the program.
12300 // NOTE: Don't warn about comparison expressions resulting from macro
12301 // expansion. Also don't warn about comparisons which are only self
12302 // comparisons within a template instantiation. The warnings should catch
12303 // obvious cases in the definition of the template anyways. The idea is to
12304 // warn when the typed comparison operator will always evaluate to the same
12305 // result.
12307 // Used for indexing into %select in warn_comparison_always
12308 enum {
12309 AlwaysConstant,
12310 AlwaysTrue,
12311 AlwaysFalse,
12312 AlwaysEqual, // std::strong_ordering::equal from operator<=>
12315 // C++2a [depr.array.comp]:
12316 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12317 // operands of array type are deprecated.
12318 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12319 RHSStripped->getType()->isArrayType()) {
12320 S.Diag(Loc, diag::warn_depr_array_comparison)
12321 << LHS->getSourceRange() << RHS->getSourceRange()
12322 << LHSStripped->getType() << RHSStripped->getType();
12323 // Carry on to produce the tautological comparison warning, if this
12324 // expression is potentially-evaluated, we can resolve the array to a
12325 // non-weak declaration, and so on.
12328 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12329 if (Expr::isSameComparisonOperand(LHS, RHS)) {
12330 unsigned Result;
12331 switch (Opc) {
12332 case BO_EQ:
12333 case BO_LE:
12334 case BO_GE:
12335 Result = AlwaysTrue;
12336 break;
12337 case BO_NE:
12338 case BO_LT:
12339 case BO_GT:
12340 Result = AlwaysFalse;
12341 break;
12342 case BO_Cmp:
12343 Result = AlwaysEqual;
12344 break;
12345 default:
12346 Result = AlwaysConstant;
12347 break;
12349 S.DiagRuntimeBehavior(Loc, nullptr,
12350 S.PDiag(diag::warn_comparison_always)
12351 << 0 /*self-comparison*/
12352 << Result);
12353 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12354 // What is it always going to evaluate to?
12355 unsigned Result;
12356 switch (Opc) {
12357 case BO_EQ: // e.g. array1 == array2
12358 Result = AlwaysFalse;
12359 break;
12360 case BO_NE: // e.g. array1 != array2
12361 Result = AlwaysTrue;
12362 break;
12363 default: // e.g. array1 <= array2
12364 // The best we can say is 'a constant'
12365 Result = AlwaysConstant;
12366 break;
12368 S.DiagRuntimeBehavior(Loc, nullptr,
12369 S.PDiag(diag::warn_comparison_always)
12370 << 1 /*array comparison*/
12371 << Result);
12375 if (isa<CastExpr>(LHSStripped))
12376 LHSStripped = LHSStripped->IgnoreParenCasts();
12377 if (isa<CastExpr>(RHSStripped))
12378 RHSStripped = RHSStripped->IgnoreParenCasts();
12380 // Warn about comparisons against a string constant (unless the other
12381 // operand is null); the user probably wants string comparison function.
12382 Expr *LiteralString = nullptr;
12383 Expr *LiteralStringStripped = nullptr;
12384 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12385 !RHSStripped->isNullPointerConstant(S.Context,
12386 Expr::NPC_ValueDependentIsNull)) {
12387 LiteralString = LHS;
12388 LiteralStringStripped = LHSStripped;
12389 } else if ((isa<StringLiteral>(RHSStripped) ||
12390 isa<ObjCEncodeExpr>(RHSStripped)) &&
12391 !LHSStripped->isNullPointerConstant(S.Context,
12392 Expr::NPC_ValueDependentIsNull)) {
12393 LiteralString = RHS;
12394 LiteralStringStripped = RHSStripped;
12397 if (LiteralString) {
12398 S.DiagRuntimeBehavior(Loc, nullptr,
12399 S.PDiag(diag::warn_stringcompare)
12400 << isa<ObjCEncodeExpr>(LiteralStringStripped)
12401 << LiteralString->getSourceRange());
12405 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12406 switch (CK) {
12407 default: {
12408 #ifndef NDEBUG
12409 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12410 << "\n";
12411 #endif
12412 llvm_unreachable("unhandled cast kind");
12414 case CK_UserDefinedConversion:
12415 return ICK_Identity;
12416 case CK_LValueToRValue:
12417 return ICK_Lvalue_To_Rvalue;
12418 case CK_ArrayToPointerDecay:
12419 return ICK_Array_To_Pointer;
12420 case CK_FunctionToPointerDecay:
12421 return ICK_Function_To_Pointer;
12422 case CK_IntegralCast:
12423 return ICK_Integral_Conversion;
12424 case CK_FloatingCast:
12425 return ICK_Floating_Conversion;
12426 case CK_IntegralToFloating:
12427 case CK_FloatingToIntegral:
12428 return ICK_Floating_Integral;
12429 case CK_IntegralComplexCast:
12430 case CK_FloatingComplexCast:
12431 case CK_FloatingComplexToIntegralComplex:
12432 case CK_IntegralComplexToFloatingComplex:
12433 return ICK_Complex_Conversion;
12434 case CK_FloatingComplexToReal:
12435 case CK_FloatingRealToComplex:
12436 case CK_IntegralComplexToReal:
12437 case CK_IntegralRealToComplex:
12438 return ICK_Complex_Real;
12442 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12443 QualType FromType,
12444 SourceLocation Loc) {
12445 // Check for a narrowing implicit conversion.
12446 StandardConversionSequence SCS;
12447 SCS.setAsIdentityConversion();
12448 SCS.setToType(0, FromType);
12449 SCS.setToType(1, ToType);
12450 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12451 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12453 APValue PreNarrowingValue;
12454 QualType PreNarrowingType;
12455 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12456 PreNarrowingType,
12457 /*IgnoreFloatToIntegralConversion*/ true)) {
12458 case NK_Dependent_Narrowing:
12459 // Implicit conversion to a narrower type, but the expression is
12460 // value-dependent so we can't tell whether it's actually narrowing.
12461 case NK_Not_Narrowing:
12462 return false;
12464 case NK_Constant_Narrowing:
12465 // Implicit conversion to a narrower type, and the value is not a constant
12466 // expression.
12467 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12468 << /*Constant*/ 1
12469 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12470 return true;
12472 case NK_Variable_Narrowing:
12473 // Implicit conversion to a narrower type, and the value is not a constant
12474 // expression.
12475 case NK_Type_Narrowing:
12476 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12477 << /*Constant*/ 0 << FromType << ToType;
12478 // TODO: It's not a constant expression, but what if the user intended it
12479 // to be? Can we produce notes to help them figure out why it isn't?
12480 return true;
12482 llvm_unreachable("unhandled case in switch");
12485 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12486 ExprResult &LHS,
12487 ExprResult &RHS,
12488 SourceLocation Loc) {
12489 QualType LHSType = LHS.get()->getType();
12490 QualType RHSType = RHS.get()->getType();
12491 // Dig out the original argument type and expression before implicit casts
12492 // were applied. These are the types/expressions we need to check the
12493 // [expr.spaceship] requirements against.
12494 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12495 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12496 QualType LHSStrippedType = LHSStripped.get()->getType();
12497 QualType RHSStrippedType = RHSStripped.get()->getType();
12499 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12500 // other is not, the program is ill-formed.
12501 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12502 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12503 return QualType();
12506 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12507 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12508 RHSStrippedType->isEnumeralType();
12509 if (NumEnumArgs == 1) {
12510 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12511 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12512 if (OtherTy->hasFloatingRepresentation()) {
12513 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12514 return QualType();
12517 if (NumEnumArgs == 2) {
12518 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12519 // type E, the operator yields the result of converting the operands
12520 // to the underlying type of E and applying <=> to the converted operands.
12521 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12522 S.InvalidOperands(Loc, LHS, RHS);
12523 return QualType();
12525 QualType IntType =
12526 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12527 assert(IntType->isArithmeticType());
12529 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12530 // promote the boolean type, and all other promotable integer types, to
12531 // avoid this.
12532 if (S.Context.isPromotableIntegerType(IntType))
12533 IntType = S.Context.getPromotedIntegerType(IntType);
12535 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12536 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12537 LHSType = RHSType = IntType;
12540 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12541 // usual arithmetic conversions are applied to the operands.
12542 QualType Type =
12543 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12544 if (LHS.isInvalid() || RHS.isInvalid())
12545 return QualType();
12546 if (Type.isNull())
12547 return S.InvalidOperands(Loc, LHS, RHS);
12549 std::optional<ComparisonCategoryType> CCT =
12550 getComparisonCategoryForBuiltinCmp(Type);
12551 if (!CCT)
12552 return S.InvalidOperands(Loc, LHS, RHS);
12554 bool HasNarrowing = checkThreeWayNarrowingConversion(
12555 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12556 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12557 RHS.get()->getBeginLoc());
12558 if (HasNarrowing)
12559 return QualType();
12561 assert(!Type.isNull() && "composite type for <=> has not been set");
12563 return S.CheckComparisonCategoryType(
12564 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
12567 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12568 ExprResult &RHS,
12569 SourceLocation Loc,
12570 BinaryOperatorKind Opc) {
12571 if (Opc == BO_Cmp)
12572 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12574 // C99 6.5.8p3 / C99 6.5.9p4
12575 QualType Type =
12576 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12577 if (LHS.isInvalid() || RHS.isInvalid())
12578 return QualType();
12579 if (Type.isNull())
12580 return S.InvalidOperands(Loc, LHS, RHS);
12581 assert(Type->isArithmeticType() || Type->isEnumeralType());
12583 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12584 return S.InvalidOperands(Loc, LHS, RHS);
12586 // Check for comparisons of floating point operands using != and ==.
12587 if (Type->hasFloatingRepresentation())
12588 S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12590 // The result of comparisons is 'bool' in C++, 'int' in C.
12591 return S.Context.getLogicalOperationType();
12594 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12595 if (!NullE.get()->getType()->isAnyPointerType())
12596 return;
12597 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12598 if (!E.get()->getType()->isAnyPointerType() &&
12599 E.get()->isNullPointerConstant(Context,
12600 Expr::NPC_ValueDependentIsNotNull) ==
12601 Expr::NPCK_ZeroExpression) {
12602 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12603 if (CL->getValue() == 0)
12604 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12605 << NullValue
12606 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12607 NullValue ? "NULL" : "(void *)0");
12608 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12609 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12610 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12611 if (T == Context.CharTy)
12612 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12613 << NullValue
12614 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12615 NullValue ? "NULL" : "(void *)0");
12620 // C99 6.5.8, C++ [expr.rel]
12621 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12622 SourceLocation Loc,
12623 BinaryOperatorKind Opc) {
12624 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12625 bool IsThreeWay = Opc == BO_Cmp;
12626 bool IsOrdered = IsRelational || IsThreeWay;
12627 auto IsAnyPointerType = [](ExprResult E) {
12628 QualType Ty = E.get()->getType();
12629 return Ty->isPointerType() || Ty->isMemberPointerType();
12632 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12633 // type, array-to-pointer, ..., conversions are performed on both operands to
12634 // bring them to their composite type.
12635 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12636 // any type-related checks.
12637 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12638 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12639 if (LHS.isInvalid())
12640 return QualType();
12641 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12642 if (RHS.isInvalid())
12643 return QualType();
12644 } else {
12645 LHS = DefaultLvalueConversion(LHS.get());
12646 if (LHS.isInvalid())
12647 return QualType();
12648 RHS = DefaultLvalueConversion(RHS.get());
12649 if (RHS.isInvalid())
12650 return QualType();
12653 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12654 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12655 CheckPtrComparisonWithNullChar(LHS, RHS);
12656 CheckPtrComparisonWithNullChar(RHS, LHS);
12659 // Handle vector comparisons separately.
12660 if (LHS.get()->getType()->isVectorType() ||
12661 RHS.get()->getType()->isVectorType())
12662 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12664 if (LHS.get()->getType()->isVLSTBuiltinType() ||
12665 RHS.get()->getType()->isVLSTBuiltinType())
12666 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12668 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12669 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12671 QualType LHSType = LHS.get()->getType();
12672 QualType RHSType = RHS.get()->getType();
12673 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12674 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12675 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12677 const Expr::NullPointerConstantKind LHSNullKind =
12678 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12679 const Expr::NullPointerConstantKind RHSNullKind =
12680 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12681 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12682 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12684 auto computeResultTy = [&]() {
12685 if (Opc != BO_Cmp)
12686 return Context.getLogicalOperationType();
12687 assert(getLangOpts().CPlusPlus);
12688 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12690 QualType CompositeTy = LHS.get()->getType();
12691 assert(!CompositeTy->isReferenceType());
12693 std::optional<ComparisonCategoryType> CCT =
12694 getComparisonCategoryForBuiltinCmp(CompositeTy);
12695 if (!CCT)
12696 return InvalidOperands(Loc, LHS, RHS);
12698 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12699 // P0946R0: Comparisons between a null pointer constant and an object
12700 // pointer result in std::strong_equality, which is ill-formed under
12701 // P1959R0.
12702 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12703 << (LHSIsNull ? LHS.get()->getSourceRange()
12704 : RHS.get()->getSourceRange());
12705 return QualType();
12708 return CheckComparisonCategoryType(
12709 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12712 if (!IsOrdered && LHSIsNull != RHSIsNull) {
12713 bool IsEquality = Opc == BO_EQ;
12714 if (RHSIsNull)
12715 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12716 RHS.get()->getSourceRange());
12717 else
12718 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12719 LHS.get()->getSourceRange());
12722 if (IsOrdered && LHSType->isFunctionPointerType() &&
12723 RHSType->isFunctionPointerType()) {
12724 // Valid unless a relational comparison of function pointers
12725 bool IsError = Opc == BO_Cmp;
12726 auto DiagID =
12727 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12728 : getLangOpts().CPlusPlus
12729 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12730 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12731 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12732 << RHS.get()->getSourceRange();
12733 if (IsError)
12734 return QualType();
12737 if ((LHSType->isIntegerType() && !LHSIsNull) ||
12738 (RHSType->isIntegerType() && !RHSIsNull)) {
12739 // Skip normal pointer conversion checks in this case; we have better
12740 // diagnostics for this below.
12741 } else if (getLangOpts().CPlusPlus) {
12742 // Equality comparison of a function pointer to a void pointer is invalid,
12743 // but we allow it as an extension.
12744 // FIXME: If we really want to allow this, should it be part of composite
12745 // pointer type computation so it works in conditionals too?
12746 if (!IsOrdered &&
12747 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12748 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12749 // This is a gcc extension compatibility comparison.
12750 // In a SFINAE context, we treat this as a hard error to maintain
12751 // conformance with the C++ standard.
12752 diagnoseFunctionPointerToVoidComparison(
12753 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12755 if (isSFINAEContext())
12756 return QualType();
12758 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12759 return computeResultTy();
12762 // C++ [expr.eq]p2:
12763 // If at least one operand is a pointer [...] bring them to their
12764 // composite pointer type.
12765 // C++ [expr.spaceship]p6
12766 // If at least one of the operands is of pointer type, [...] bring them
12767 // to their composite pointer type.
12768 // C++ [expr.rel]p2:
12769 // If both operands are pointers, [...] bring them to their composite
12770 // pointer type.
12771 // For <=>, the only valid non-pointer types are arrays and functions, and
12772 // we already decayed those, so this is really the same as the relational
12773 // comparison rule.
12774 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12775 (IsOrdered ? 2 : 1) &&
12776 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12777 RHSType->isObjCObjectPointerType()))) {
12778 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12779 return QualType();
12780 return computeResultTy();
12782 } else if (LHSType->isPointerType() &&
12783 RHSType->isPointerType()) { // C99 6.5.8p2
12784 // All of the following pointer-related warnings are GCC extensions, except
12785 // when handling null pointer constants.
12786 QualType LCanPointeeTy =
12787 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12788 QualType RCanPointeeTy =
12789 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12791 // C99 6.5.9p2 and C99 6.5.8p2
12792 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12793 RCanPointeeTy.getUnqualifiedType())) {
12794 if (IsRelational) {
12795 // Pointers both need to point to complete or incomplete types
12796 if ((LCanPointeeTy->isIncompleteType() !=
12797 RCanPointeeTy->isIncompleteType()) &&
12798 !getLangOpts().C11) {
12799 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12800 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12801 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12802 << RCanPointeeTy->isIncompleteType();
12805 } else if (!IsRelational &&
12806 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12807 // Valid unless comparison between non-null pointer and function pointer
12808 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12809 && !LHSIsNull && !RHSIsNull)
12810 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12811 /*isError*/false);
12812 } else {
12813 // Invalid
12814 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12816 if (LCanPointeeTy != RCanPointeeTy) {
12817 // Treat NULL constant as a special case in OpenCL.
12818 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12819 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12820 Diag(Loc,
12821 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12822 << LHSType << RHSType << 0 /* comparison */
12823 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12826 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12827 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12828 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12829 : CK_BitCast;
12830 if (LHSIsNull && !RHSIsNull)
12831 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12832 else
12833 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12835 return computeResultTy();
12839 // C++ [expr.eq]p4:
12840 // Two operands of type std::nullptr_t or one operand of type
12841 // std::nullptr_t and the other a null pointer constant compare
12842 // equal.
12843 // C2x 6.5.9p5:
12844 // If both operands have type nullptr_t or one operand has type nullptr_t
12845 // and the other is a null pointer constant, they compare equal.
12846 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12847 if (LHSType->isNullPtrType()) {
12848 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12849 return computeResultTy();
12851 if (RHSType->isNullPtrType()) {
12852 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12853 return computeResultTy();
12857 if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12858 // C2x 6.5.9p6:
12859 // Otherwise, at least one operand is a pointer. If one is a pointer and
12860 // the other is a null pointer constant, the null pointer constant is
12861 // converted to the type of the pointer.
12862 if (LHSIsNull && RHSType->isPointerType()) {
12863 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12864 return computeResultTy();
12866 if (RHSIsNull && LHSType->isPointerType()) {
12867 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12868 return computeResultTy();
12872 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12873 // These aren't covered by the composite pointer type rules.
12874 if (!IsOrdered && RHSType->isNullPtrType() &&
12875 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12876 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12877 return computeResultTy();
12879 if (!IsOrdered && LHSType->isNullPtrType() &&
12880 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12881 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12882 return computeResultTy();
12885 if (getLangOpts().CPlusPlus) {
12886 if (IsRelational &&
12887 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12888 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12889 // HACK: Relational comparison of nullptr_t against a pointer type is
12890 // invalid per DR583, but we allow it within std::less<> and friends,
12891 // since otherwise common uses of it break.
12892 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12893 // friends to have std::nullptr_t overload candidates.
12894 DeclContext *DC = CurContext;
12895 if (isa<FunctionDecl>(DC))
12896 DC = DC->getParent();
12897 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12898 if (CTSD->isInStdNamespace() &&
12899 llvm::StringSwitch<bool>(CTSD->getName())
12900 .Cases("less", "less_equal", "greater", "greater_equal", true)
12901 .Default(false)) {
12902 if (RHSType->isNullPtrType())
12903 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12904 else
12905 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12906 return computeResultTy();
12911 // C++ [expr.eq]p2:
12912 // If at least one operand is a pointer to member, [...] bring them to
12913 // their composite pointer type.
12914 if (!IsOrdered &&
12915 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12916 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12917 return QualType();
12918 else
12919 return computeResultTy();
12923 // Handle block pointer types.
12924 if (!IsOrdered && LHSType->isBlockPointerType() &&
12925 RHSType->isBlockPointerType()) {
12926 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12927 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12929 if (!LHSIsNull && !RHSIsNull &&
12930 !Context.typesAreCompatible(lpointee, rpointee)) {
12931 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12932 << LHSType << RHSType << LHS.get()->getSourceRange()
12933 << RHS.get()->getSourceRange();
12935 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12936 return computeResultTy();
12939 // Allow block pointers to be compared with null pointer constants.
12940 if (!IsOrdered
12941 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12942 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12943 if (!LHSIsNull && !RHSIsNull) {
12944 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12945 ->getPointeeType()->isVoidType())
12946 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12947 ->getPointeeType()->isVoidType())))
12948 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12949 << LHSType << RHSType << LHS.get()->getSourceRange()
12950 << RHS.get()->getSourceRange();
12952 if (LHSIsNull && !RHSIsNull)
12953 LHS = ImpCastExprToType(LHS.get(), RHSType,
12954 RHSType->isPointerType() ? CK_BitCast
12955 : CK_AnyPointerToBlockPointerCast);
12956 else
12957 RHS = ImpCastExprToType(RHS.get(), LHSType,
12958 LHSType->isPointerType() ? CK_BitCast
12959 : CK_AnyPointerToBlockPointerCast);
12960 return computeResultTy();
12963 if (LHSType->isObjCObjectPointerType() ||
12964 RHSType->isObjCObjectPointerType()) {
12965 const PointerType *LPT = LHSType->getAs<PointerType>();
12966 const PointerType *RPT = RHSType->getAs<PointerType>();
12967 if (LPT || RPT) {
12968 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12969 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12971 if (!LPtrToVoid && !RPtrToVoid &&
12972 !Context.typesAreCompatible(LHSType, RHSType)) {
12973 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12974 /*isError*/false);
12976 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12977 // the RHS, but we have test coverage for this behavior.
12978 // FIXME: Consider using convertPointersToCompositeType in C++.
12979 if (LHSIsNull && !RHSIsNull) {
12980 Expr *E = LHS.get();
12981 if (getLangOpts().ObjCAutoRefCount)
12982 CheckObjCConversion(SourceRange(), RHSType, E,
12983 CCK_ImplicitConversion);
12984 LHS = ImpCastExprToType(E, RHSType,
12985 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12987 else {
12988 Expr *E = RHS.get();
12989 if (getLangOpts().ObjCAutoRefCount)
12990 CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12991 /*Diagnose=*/true,
12992 /*DiagnoseCFAudited=*/false, Opc);
12993 RHS = ImpCastExprToType(E, LHSType,
12994 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12996 return computeResultTy();
12998 if (LHSType->isObjCObjectPointerType() &&
12999 RHSType->isObjCObjectPointerType()) {
13000 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
13001 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13002 /*isError*/false);
13003 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
13004 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
13006 if (LHSIsNull && !RHSIsNull)
13007 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
13008 else
13009 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13010 return computeResultTy();
13013 if (!IsOrdered && LHSType->isBlockPointerType() &&
13014 RHSType->isBlockCompatibleObjCPointerType(Context)) {
13015 LHS = ImpCastExprToType(LHS.get(), RHSType,
13016 CK_BlockPointerToObjCPointerCast);
13017 return computeResultTy();
13018 } else if (!IsOrdered &&
13019 LHSType->isBlockCompatibleObjCPointerType(Context) &&
13020 RHSType->isBlockPointerType()) {
13021 RHS = ImpCastExprToType(RHS.get(), LHSType,
13022 CK_BlockPointerToObjCPointerCast);
13023 return computeResultTy();
13026 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
13027 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
13028 unsigned DiagID = 0;
13029 bool isError = false;
13030 if (LangOpts.DebuggerSupport) {
13031 // Under a debugger, allow the comparison of pointers to integers,
13032 // since users tend to want to compare addresses.
13033 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
13034 (RHSIsNull && RHSType->isIntegerType())) {
13035 if (IsOrdered) {
13036 isError = getLangOpts().CPlusPlus;
13037 DiagID =
13038 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13039 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
13041 } else if (getLangOpts().CPlusPlus) {
13042 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
13043 isError = true;
13044 } else if (IsOrdered)
13045 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
13046 else
13047 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
13049 if (DiagID) {
13050 Diag(Loc, DiagID)
13051 << LHSType << RHSType << LHS.get()->getSourceRange()
13052 << RHS.get()->getSourceRange();
13053 if (isError)
13054 return QualType();
13057 if (LHSType->isIntegerType())
13058 LHS = ImpCastExprToType(LHS.get(), RHSType,
13059 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13060 else
13061 RHS = ImpCastExprToType(RHS.get(), LHSType,
13062 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13063 return computeResultTy();
13066 // Handle block pointers.
13067 if (!IsOrdered && RHSIsNull
13068 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
13069 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13070 return computeResultTy();
13072 if (!IsOrdered && LHSIsNull
13073 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
13074 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13075 return computeResultTy();
13078 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13079 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
13080 return computeResultTy();
13083 if (LHSType->isQueueT() && RHSType->isQueueT()) {
13084 return computeResultTy();
13087 if (LHSIsNull && RHSType->isQueueT()) {
13088 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13089 return computeResultTy();
13092 if (LHSType->isQueueT() && RHSIsNull) {
13093 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13094 return computeResultTy();
13098 return InvalidOperands(Loc, LHS, RHS);
13101 // Return a signed ext_vector_type that is of identical size and number of
13102 // elements. For floating point vectors, return an integer type of identical
13103 // size and number of elements. In the non ext_vector_type case, search from
13104 // the largest type to the smallest type to avoid cases where long long == long,
13105 // where long gets picked over long long.
13106 QualType Sema::GetSignedVectorType(QualType V) {
13107 const VectorType *VTy = V->castAs<VectorType>();
13108 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
13110 if (isa<ExtVectorType>(VTy)) {
13111 if (VTy->isExtVectorBoolType())
13112 return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
13113 if (TypeSize == Context.getTypeSize(Context.CharTy))
13114 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
13115 if (TypeSize == Context.getTypeSize(Context.ShortTy))
13116 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
13117 if (TypeSize == Context.getTypeSize(Context.IntTy))
13118 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
13119 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13120 return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
13121 if (TypeSize == Context.getTypeSize(Context.LongTy))
13122 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
13123 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13124 "Unhandled vector element size in vector compare");
13125 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
13128 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13129 return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
13130 VectorType::GenericVector);
13131 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13132 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
13133 VectorType::GenericVector);
13134 if (TypeSize == Context.getTypeSize(Context.LongTy))
13135 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
13136 VectorType::GenericVector);
13137 if (TypeSize == Context.getTypeSize(Context.IntTy))
13138 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
13139 VectorType::GenericVector);
13140 if (TypeSize == Context.getTypeSize(Context.ShortTy))
13141 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
13142 VectorType::GenericVector);
13143 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13144 "Unhandled vector element size in vector compare");
13145 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
13146 VectorType::GenericVector);
13149 QualType Sema::GetSignedSizelessVectorType(QualType V) {
13150 const BuiltinType *VTy = V->castAs<BuiltinType>();
13151 assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13153 const QualType ETy = V->getSveEltType(Context);
13154 const auto TypeSize = Context.getTypeSize(ETy);
13156 const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
13157 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
13158 return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
13161 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13162 /// operates on extended vector types. Instead of producing an IntTy result,
13163 /// like a scalar comparison, a vector comparison produces a vector of integer
13164 /// types.
13165 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13166 SourceLocation Loc,
13167 BinaryOperatorKind Opc) {
13168 if (Opc == BO_Cmp) {
13169 Diag(Loc, diag::err_three_way_vector_comparison);
13170 return QualType();
13173 // Check to make sure we're operating on vectors of the same type and width,
13174 // Allowing one side to be a scalar of element type.
13175 QualType vType =
13176 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
13177 /*AllowBothBool*/ true,
13178 /*AllowBoolConversions*/ getLangOpts().ZVector,
13179 /*AllowBooleanOperation*/ true,
13180 /*ReportInvalid*/ true);
13181 if (vType.isNull())
13182 return vType;
13184 QualType LHSType = LHS.get()->getType();
13186 // Determine the return type of a vector compare. By default clang will return
13187 // a scalar for all vector compares except vector bool and vector pixel.
13188 // With the gcc compiler we will always return a vector type and with the xl
13189 // compiler we will always return a scalar type. This switch allows choosing
13190 // which behavior is prefered.
13191 if (getLangOpts().AltiVec) {
13192 switch (getLangOpts().getAltivecSrcCompat()) {
13193 case LangOptions::AltivecSrcCompatKind::Mixed:
13194 // If AltiVec, the comparison results in a numeric type, i.e.
13195 // bool for C++, int for C
13196 if (vType->castAs<VectorType>()->getVectorKind() ==
13197 VectorType::AltiVecVector)
13198 return Context.getLogicalOperationType();
13199 else
13200 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13201 break;
13202 case LangOptions::AltivecSrcCompatKind::GCC:
13203 // For GCC we always return the vector type.
13204 break;
13205 case LangOptions::AltivecSrcCompatKind::XL:
13206 return Context.getLogicalOperationType();
13207 break;
13211 // For non-floating point types, check for self-comparisons of the form
13212 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13213 // often indicate logic errors in the program.
13214 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13216 // Check for comparisons of floating point operands using != and ==.
13217 if (LHSType->hasFloatingRepresentation()) {
13218 assert(RHS.get()->getType()->hasFloatingRepresentation());
13219 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13222 // Return a signed type for the vector.
13223 return GetSignedVectorType(vType);
13226 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13227 ExprResult &RHS,
13228 SourceLocation Loc,
13229 BinaryOperatorKind Opc) {
13230 if (Opc == BO_Cmp) {
13231 Diag(Loc, diag::err_three_way_vector_comparison);
13232 return QualType();
13235 // Check to make sure we're operating on vectors of the same type and width,
13236 // Allowing one side to be a scalar of element type.
13237 QualType vType = CheckSizelessVectorOperands(
13238 LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
13240 if (vType.isNull())
13241 return vType;
13243 QualType LHSType = LHS.get()->getType();
13245 // For non-floating point types, check for self-comparisons of the form
13246 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13247 // often indicate logic errors in the program.
13248 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13250 // Check for comparisons of floating point operands using != and ==.
13251 if (LHSType->hasFloatingRepresentation()) {
13252 assert(RHS.get()->getType()->hasFloatingRepresentation());
13253 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13256 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13257 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13259 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13260 RHSBuiltinTy->isSVEBool())
13261 return LHSType;
13263 // Return a signed type for the vector.
13264 return GetSignedSizelessVectorType(vType);
13267 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13268 const ExprResult &XorRHS,
13269 const SourceLocation Loc) {
13270 // Do not diagnose macros.
13271 if (Loc.isMacroID())
13272 return;
13274 // Do not diagnose if both LHS and RHS are macros.
13275 if (XorLHS.get()->getExprLoc().isMacroID() &&
13276 XorRHS.get()->getExprLoc().isMacroID())
13277 return;
13279 bool Negative = false;
13280 bool ExplicitPlus = false;
13281 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13282 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13284 if (!LHSInt)
13285 return;
13286 if (!RHSInt) {
13287 // Check negative literals.
13288 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13289 UnaryOperatorKind Opc = UO->getOpcode();
13290 if (Opc != UO_Minus && Opc != UO_Plus)
13291 return;
13292 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13293 if (!RHSInt)
13294 return;
13295 Negative = (Opc == UO_Minus);
13296 ExplicitPlus = !Negative;
13297 } else {
13298 return;
13302 const llvm::APInt &LeftSideValue = LHSInt->getValue();
13303 llvm::APInt RightSideValue = RHSInt->getValue();
13304 if (LeftSideValue != 2 && LeftSideValue != 10)
13305 return;
13307 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13308 return;
13310 CharSourceRange ExprRange = CharSourceRange::getCharRange(
13311 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13312 llvm::StringRef ExprStr =
13313 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13315 CharSourceRange XorRange =
13316 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13317 llvm::StringRef XorStr =
13318 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13319 // Do not diagnose if xor keyword/macro is used.
13320 if (XorStr == "xor")
13321 return;
13323 std::string LHSStr = std::string(Lexer::getSourceText(
13324 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13325 S.getSourceManager(), S.getLangOpts()));
13326 std::string RHSStr = std::string(Lexer::getSourceText(
13327 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13328 S.getSourceManager(), S.getLangOpts()));
13330 if (Negative) {
13331 RightSideValue = -RightSideValue;
13332 RHSStr = "-" + RHSStr;
13333 } else if (ExplicitPlus) {
13334 RHSStr = "+" + RHSStr;
13337 StringRef LHSStrRef = LHSStr;
13338 StringRef RHSStrRef = RHSStr;
13339 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13340 // literals.
13341 if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
13342 RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
13343 LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
13344 RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
13345 (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
13346 (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
13347 LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13348 return;
13350 bool SuggestXor =
13351 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13352 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13353 int64_t RightSideIntValue = RightSideValue.getSExtValue();
13354 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13355 std::string SuggestedExpr = "1 << " + RHSStr;
13356 bool Overflow = false;
13357 llvm::APInt One = (LeftSideValue - 1);
13358 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13359 if (Overflow) {
13360 if (RightSideIntValue < 64)
13361 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13362 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13363 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13364 else if (RightSideIntValue == 64)
13365 S.Diag(Loc, diag::warn_xor_used_as_pow)
13366 << ExprStr << toString(XorValue, 10, true);
13367 else
13368 return;
13369 } else {
13370 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13371 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13372 << toString(PowValue, 10, true)
13373 << FixItHint::CreateReplacement(
13374 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13377 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13378 << ("0x2 ^ " + RHSStr) << SuggestXor;
13379 } else if (LeftSideValue == 10) {
13380 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13381 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13382 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13383 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13384 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13385 << ("0xA ^ " + RHSStr) << SuggestXor;
13389 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13390 SourceLocation Loc) {
13391 // Ensure that either both operands are of the same vector type, or
13392 // one operand is of a vector type and the other is of its element type.
13393 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13394 /*AllowBothBool*/ true,
13395 /*AllowBoolConversions*/ false,
13396 /*AllowBooleanOperation*/ false,
13397 /*ReportInvalid*/ false);
13398 if (vType.isNull())
13399 return InvalidOperands(Loc, LHS, RHS);
13400 if (getLangOpts().OpenCL &&
13401 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13402 vType->hasFloatingRepresentation())
13403 return InvalidOperands(Loc, LHS, RHS);
13404 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13405 // usage of the logical operators && and || with vectors in C. This
13406 // check could be notionally dropped.
13407 if (!getLangOpts().CPlusPlus &&
13408 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13409 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13411 return GetSignedVectorType(LHS.get()->getType());
13414 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13415 SourceLocation Loc,
13416 bool IsCompAssign) {
13417 if (!IsCompAssign) {
13418 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13419 if (LHS.isInvalid())
13420 return QualType();
13422 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13423 if (RHS.isInvalid())
13424 return QualType();
13426 // For conversion purposes, we ignore any qualifiers.
13427 // For example, "const float" and "float" are equivalent.
13428 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13429 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13431 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13432 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13433 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13435 if (Context.hasSameType(LHSType, RHSType))
13436 return Context.getCommonSugaredType(LHSType, RHSType);
13438 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13439 // case we have to return InvalidOperands.
13440 ExprResult OriginalLHS = LHS;
13441 ExprResult OriginalRHS = RHS;
13442 if (LHSMatType && !RHSMatType) {
13443 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13444 if (!RHS.isInvalid())
13445 return LHSType;
13447 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13450 if (!LHSMatType && RHSMatType) {
13451 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13452 if (!LHS.isInvalid())
13453 return RHSType;
13454 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13457 return InvalidOperands(Loc, LHS, RHS);
13460 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13461 SourceLocation Loc,
13462 bool IsCompAssign) {
13463 if (!IsCompAssign) {
13464 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13465 if (LHS.isInvalid())
13466 return QualType();
13468 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13469 if (RHS.isInvalid())
13470 return QualType();
13472 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13473 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13474 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13476 if (LHSMatType && RHSMatType) {
13477 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13478 return InvalidOperands(Loc, LHS, RHS);
13480 if (Context.hasSameType(LHSMatType, RHSMatType))
13481 return Context.getCommonSugaredType(
13482 LHS.get()->getType().getUnqualifiedType(),
13483 RHS.get()->getType().getUnqualifiedType());
13485 QualType LHSELTy = LHSMatType->getElementType(),
13486 RHSELTy = RHSMatType->getElementType();
13487 if (!Context.hasSameType(LHSELTy, RHSELTy))
13488 return InvalidOperands(Loc, LHS, RHS);
13490 return Context.getConstantMatrixType(
13491 Context.getCommonSugaredType(LHSELTy, RHSELTy),
13492 LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13494 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13497 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13498 switch (Opc) {
13499 default:
13500 return false;
13501 case BO_And:
13502 case BO_AndAssign:
13503 case BO_Or:
13504 case BO_OrAssign:
13505 case BO_Xor:
13506 case BO_XorAssign:
13507 return true;
13511 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13512 SourceLocation Loc,
13513 BinaryOperatorKind Opc) {
13514 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13516 bool IsCompAssign =
13517 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13519 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13521 if (LHS.get()->getType()->isVectorType() ||
13522 RHS.get()->getType()->isVectorType()) {
13523 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13524 RHS.get()->getType()->hasIntegerRepresentation())
13525 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13526 /*AllowBothBool*/ true,
13527 /*AllowBoolConversions*/ getLangOpts().ZVector,
13528 /*AllowBooleanOperation*/ LegalBoolVecOperator,
13529 /*ReportInvalid*/ true);
13530 return InvalidOperands(Loc, LHS, RHS);
13533 if (LHS.get()->getType()->isVLSTBuiltinType() ||
13534 RHS.get()->getType()->isVLSTBuiltinType()) {
13535 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13536 RHS.get()->getType()->hasIntegerRepresentation())
13537 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13538 ACK_BitwiseOp);
13539 return InvalidOperands(Loc, LHS, RHS);
13542 if (LHS.get()->getType()->isVLSTBuiltinType() ||
13543 RHS.get()->getType()->isVLSTBuiltinType()) {
13544 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13545 RHS.get()->getType()->hasIntegerRepresentation())
13546 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13547 ACK_BitwiseOp);
13548 return InvalidOperands(Loc, LHS, RHS);
13551 if (Opc == BO_And)
13552 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13554 if (LHS.get()->getType()->hasFloatingRepresentation() ||
13555 RHS.get()->getType()->hasFloatingRepresentation())
13556 return InvalidOperands(Loc, LHS, RHS);
13558 ExprResult LHSResult = LHS, RHSResult = RHS;
13559 QualType compType = UsualArithmeticConversions(
13560 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
13561 if (LHSResult.isInvalid() || RHSResult.isInvalid())
13562 return QualType();
13563 LHS = LHSResult.get();
13564 RHS = RHSResult.get();
13566 if (Opc == BO_Xor)
13567 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
13569 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13570 return compType;
13571 return InvalidOperands(Loc, LHS, RHS);
13574 // C99 6.5.[13,14]
13575 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13576 SourceLocation Loc,
13577 BinaryOperatorKind Opc) {
13578 // Check vector operands differently.
13579 if (LHS.get()->getType()->isVectorType() ||
13580 RHS.get()->getType()->isVectorType())
13581 return CheckVectorLogicalOperands(LHS, RHS, Loc);
13583 bool EnumConstantInBoolContext = false;
13584 for (const ExprResult &HS : {LHS, RHS}) {
13585 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13586 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13587 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13588 EnumConstantInBoolContext = true;
13592 if (EnumConstantInBoolContext)
13593 Diag(Loc, diag::warn_enum_constant_in_bool_context);
13595 // Diagnose cases where the user write a logical and/or but probably meant a
13596 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
13597 // is a constant.
13598 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13599 !LHS.get()->getType()->isBooleanType() &&
13600 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13601 // Don't warn in macros or template instantiations.
13602 !Loc.isMacroID() && !inTemplateInstantiation()) {
13603 // If the RHS can be constant folded, and if it constant folds to something
13604 // that isn't 0 or 1 (which indicate a potential logical operation that
13605 // happened to fold to true/false) then warn.
13606 // Parens on the RHS are ignored.
13607 Expr::EvalResult EVResult;
13608 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13609 llvm::APSInt Result = EVResult.Val.getInt();
13610 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
13611 !RHS.get()->getExprLoc().isMacroID()) ||
13612 (Result != 0 && Result != 1)) {
13613 Diag(Loc, diag::warn_logical_instead_of_bitwise)
13614 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13615 // Suggest replacing the logical operator with the bitwise version
13616 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13617 << (Opc == BO_LAnd ? "&" : "|")
13618 << FixItHint::CreateReplacement(
13619 SourceRange(Loc, getLocForEndOfToken(Loc)),
13620 Opc == BO_LAnd ? "&" : "|");
13621 if (Opc == BO_LAnd)
13622 // Suggest replacing "Foo() && kNonZero" with "Foo()"
13623 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13624 << FixItHint::CreateRemoval(
13625 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13626 RHS.get()->getEndLoc()));
13631 if (!Context.getLangOpts().CPlusPlus) {
13632 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13633 // not operate on the built-in scalar and vector float types.
13634 if (Context.getLangOpts().OpenCL &&
13635 Context.getLangOpts().OpenCLVersion < 120) {
13636 if (LHS.get()->getType()->isFloatingType() ||
13637 RHS.get()->getType()->isFloatingType())
13638 return InvalidOperands(Loc, LHS, RHS);
13641 LHS = UsualUnaryConversions(LHS.get());
13642 if (LHS.isInvalid())
13643 return QualType();
13645 RHS = UsualUnaryConversions(RHS.get());
13646 if (RHS.isInvalid())
13647 return QualType();
13649 if (!LHS.get()->getType()->isScalarType() ||
13650 !RHS.get()->getType()->isScalarType())
13651 return InvalidOperands(Loc, LHS, RHS);
13653 return Context.IntTy;
13656 // The following is safe because we only use this method for
13657 // non-overloadable operands.
13659 // C++ [expr.log.and]p1
13660 // C++ [expr.log.or]p1
13661 // The operands are both contextually converted to type bool.
13662 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13663 if (LHSRes.isInvalid())
13664 return InvalidOperands(Loc, LHS, RHS);
13665 LHS = LHSRes;
13667 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13668 if (RHSRes.isInvalid())
13669 return InvalidOperands(Loc, LHS, RHS);
13670 RHS = RHSRes;
13672 // C++ [expr.log.and]p2
13673 // C++ [expr.log.or]p2
13674 // The result is a bool.
13675 return Context.BoolTy;
13678 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13679 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13680 if (!ME) return false;
13681 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13682 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13683 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13684 if (!Base) return false;
13685 return Base->getMethodDecl() != nullptr;
13688 /// Is the given expression (which must be 'const') a reference to a
13689 /// variable which was originally non-const, but which has become
13690 /// 'const' due to being captured within a block?
13691 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13692 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13693 assert(E->isLValue() && E->getType().isConstQualified());
13694 E = E->IgnoreParens();
13696 // Must be a reference to a declaration from an enclosing scope.
13697 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13698 if (!DRE) return NCCK_None;
13699 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13701 // The declaration must be a variable which is not declared 'const'.
13702 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
13703 if (!var) return NCCK_None;
13704 if (var->getType().isConstQualified()) return NCCK_None;
13705 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
13707 // Decide whether the first capture was for a block or a lambda.
13708 DeclContext *DC = S.CurContext, *Prev = nullptr;
13709 // Decide whether the first capture was for a block or a lambda.
13710 while (DC) {
13711 // For init-capture, it is possible that the variable belongs to the
13712 // template pattern of the current context.
13713 if (auto *FD = dyn_cast<FunctionDecl>(DC))
13714 if (var->isInitCapture() &&
13715 FD->getTemplateInstantiationPattern() == var->getDeclContext())
13716 break;
13717 if (DC == var->getDeclContext())
13718 break;
13719 Prev = DC;
13720 DC = DC->getParent();
13722 // Unless we have an init-capture, we've gone one step too far.
13723 if (!var->isInitCapture())
13724 DC = Prev;
13725 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13728 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13729 Ty = Ty.getNonReferenceType();
13730 if (IsDereference && Ty->isPointerType())
13731 Ty = Ty->getPointeeType();
13732 return !Ty.isConstQualified();
13735 // Update err_typecheck_assign_const and note_typecheck_assign_const
13736 // when this enum is changed.
13737 enum {
13738 ConstFunction,
13739 ConstVariable,
13740 ConstMember,
13741 ConstMethod,
13742 NestedConstMember,
13743 ConstUnknown, // Keep as last element
13746 /// Emit the "read-only variable not assignable" error and print notes to give
13747 /// more information about why the variable is not assignable, such as pointing
13748 /// to the declaration of a const variable, showing that a method is const, or
13749 /// that the function is returning a const reference.
13750 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13751 SourceLocation Loc) {
13752 SourceRange ExprRange = E->getSourceRange();
13754 // Only emit one error on the first const found. All other consts will emit
13755 // a note to the error.
13756 bool DiagnosticEmitted = false;
13758 // Track if the current expression is the result of a dereference, and if the
13759 // next checked expression is the result of a dereference.
13760 bool IsDereference = false;
13761 bool NextIsDereference = false;
13763 // Loop to process MemberExpr chains.
13764 while (true) {
13765 IsDereference = NextIsDereference;
13767 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13768 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13769 NextIsDereference = ME->isArrow();
13770 const ValueDecl *VD = ME->getMemberDecl();
13771 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13772 // Mutable fields can be modified even if the class is const.
13773 if (Field->isMutable()) {
13774 assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13775 break;
13778 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13779 if (!DiagnosticEmitted) {
13780 S.Diag(Loc, diag::err_typecheck_assign_const)
13781 << ExprRange << ConstMember << false /*static*/ << Field
13782 << Field->getType();
13783 DiagnosticEmitted = true;
13785 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13786 << ConstMember << false /*static*/ << Field << Field->getType()
13787 << Field->getSourceRange();
13789 E = ME->getBase();
13790 continue;
13791 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13792 if (VDecl->getType().isConstQualified()) {
13793 if (!DiagnosticEmitted) {
13794 S.Diag(Loc, diag::err_typecheck_assign_const)
13795 << ExprRange << ConstMember << true /*static*/ << VDecl
13796 << VDecl->getType();
13797 DiagnosticEmitted = true;
13799 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13800 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13801 << VDecl->getSourceRange();
13803 // Static fields do not inherit constness from parents.
13804 break;
13806 break; // End MemberExpr
13807 } else if (const ArraySubscriptExpr *ASE =
13808 dyn_cast<ArraySubscriptExpr>(E)) {
13809 E = ASE->getBase()->IgnoreParenImpCasts();
13810 continue;
13811 } else if (const ExtVectorElementExpr *EVE =
13812 dyn_cast<ExtVectorElementExpr>(E)) {
13813 E = EVE->getBase()->IgnoreParenImpCasts();
13814 continue;
13816 break;
13819 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13820 // Function calls
13821 const FunctionDecl *FD = CE->getDirectCallee();
13822 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13823 if (!DiagnosticEmitted) {
13824 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13825 << ConstFunction << FD;
13826 DiagnosticEmitted = true;
13828 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13829 diag::note_typecheck_assign_const)
13830 << ConstFunction << FD << FD->getReturnType()
13831 << FD->getReturnTypeSourceRange();
13833 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13834 // Point to variable declaration.
13835 if (const ValueDecl *VD = DRE->getDecl()) {
13836 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13837 if (!DiagnosticEmitted) {
13838 S.Diag(Loc, diag::err_typecheck_assign_const)
13839 << ExprRange << ConstVariable << VD << VD->getType();
13840 DiagnosticEmitted = true;
13842 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13843 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13846 } else if (isa<CXXThisExpr>(E)) {
13847 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13848 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13849 if (MD->isConst()) {
13850 if (!DiagnosticEmitted) {
13851 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13852 << ConstMethod << MD;
13853 DiagnosticEmitted = true;
13855 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13856 << ConstMethod << MD << MD->getSourceRange();
13862 if (DiagnosticEmitted)
13863 return;
13865 // Can't determine a more specific message, so display the generic error.
13866 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13869 enum OriginalExprKind {
13870 OEK_Variable,
13871 OEK_Member,
13872 OEK_LValue
13875 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13876 const RecordType *Ty,
13877 SourceLocation Loc, SourceRange Range,
13878 OriginalExprKind OEK,
13879 bool &DiagnosticEmitted) {
13880 std::vector<const RecordType *> RecordTypeList;
13881 RecordTypeList.push_back(Ty);
13882 unsigned NextToCheckIndex = 0;
13883 // We walk the record hierarchy breadth-first to ensure that we print
13884 // diagnostics in field nesting order.
13885 while (RecordTypeList.size() > NextToCheckIndex) {
13886 bool IsNested = NextToCheckIndex > 0;
13887 for (const FieldDecl *Field :
13888 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13889 // First, check every field for constness.
13890 QualType FieldTy = Field->getType();
13891 if (FieldTy.isConstQualified()) {
13892 if (!DiagnosticEmitted) {
13893 S.Diag(Loc, diag::err_typecheck_assign_const)
13894 << Range << NestedConstMember << OEK << VD
13895 << IsNested << Field;
13896 DiagnosticEmitted = true;
13898 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13899 << NestedConstMember << IsNested << Field
13900 << FieldTy << Field->getSourceRange();
13903 // Then we append it to the list to check next in order.
13904 FieldTy = FieldTy.getCanonicalType();
13905 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13906 if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13907 RecordTypeList.push_back(FieldRecTy);
13910 ++NextToCheckIndex;
13914 /// Emit an error for the case where a record we are trying to assign to has a
13915 /// const-qualified field somewhere in its hierarchy.
13916 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13917 SourceLocation Loc) {
13918 QualType Ty = E->getType();
13919 assert(Ty->isRecordType() && "lvalue was not record?");
13920 SourceRange Range = E->getSourceRange();
13921 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13922 bool DiagEmitted = false;
13924 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13925 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13926 Range, OEK_Member, DiagEmitted);
13927 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13928 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13929 Range, OEK_Variable, DiagEmitted);
13930 else
13931 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13932 Range, OEK_LValue, DiagEmitted);
13933 if (!DiagEmitted)
13934 DiagnoseConstAssignment(S, E, Loc);
13937 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13938 /// emit an error and return true. If so, return false.
13939 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13940 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13942 S.CheckShadowingDeclModification(E, Loc);
13944 SourceLocation OrigLoc = Loc;
13945 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13946 &Loc);
13947 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13948 IsLV = Expr::MLV_InvalidMessageExpression;
13949 if (IsLV == Expr::MLV_Valid)
13950 return false;
13952 unsigned DiagID = 0;
13953 bool NeedType = false;
13954 switch (IsLV) { // C99 6.5.16p2
13955 case Expr::MLV_ConstQualified:
13956 // Use a specialized diagnostic when we're assigning to an object
13957 // from an enclosing function or block.
13958 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13959 if (NCCK == NCCK_Block)
13960 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13961 else
13962 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13963 break;
13966 // In ARC, use some specialized diagnostics for occasions where we
13967 // infer 'const'. These are always pseudo-strong variables.
13968 if (S.getLangOpts().ObjCAutoRefCount) {
13969 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13970 if (declRef && isa<VarDecl>(declRef->getDecl())) {
13971 VarDecl *var = cast<VarDecl>(declRef->getDecl());
13973 // Use the normal diagnostic if it's pseudo-__strong but the
13974 // user actually wrote 'const'.
13975 if (var->isARCPseudoStrong() &&
13976 (!var->getTypeSourceInfo() ||
13977 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13978 // There are three pseudo-strong cases:
13979 // - self
13980 ObjCMethodDecl *method = S.getCurMethodDecl();
13981 if (method && var == method->getSelfDecl()) {
13982 DiagID = method->isClassMethod()
13983 ? diag::err_typecheck_arc_assign_self_class_method
13984 : diag::err_typecheck_arc_assign_self;
13986 // - Objective-C externally_retained attribute.
13987 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13988 isa<ParmVarDecl>(var)) {
13989 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13991 // - fast enumeration variables
13992 } else {
13993 DiagID = diag::err_typecheck_arr_assign_enumeration;
13996 SourceRange Assign;
13997 if (Loc != OrigLoc)
13998 Assign = SourceRange(OrigLoc, OrigLoc);
13999 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14000 // We need to preserve the AST regardless, so migration tool
14001 // can do its job.
14002 return false;
14007 // If none of the special cases above are triggered, then this is a
14008 // simple const assignment.
14009 if (DiagID == 0) {
14010 DiagnoseConstAssignment(S, E, Loc);
14011 return true;
14014 break;
14015 case Expr::MLV_ConstAddrSpace:
14016 DiagnoseConstAssignment(S, E, Loc);
14017 return true;
14018 case Expr::MLV_ConstQualifiedField:
14019 DiagnoseRecursiveConstFields(S, E, Loc);
14020 return true;
14021 case Expr::MLV_ArrayType:
14022 case Expr::MLV_ArrayTemporary:
14023 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
14024 NeedType = true;
14025 break;
14026 case Expr::MLV_NotObjectType:
14027 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
14028 NeedType = true;
14029 break;
14030 case Expr::MLV_LValueCast:
14031 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
14032 break;
14033 case Expr::MLV_Valid:
14034 llvm_unreachable("did not take early return for MLV_Valid");
14035 case Expr::MLV_InvalidExpression:
14036 case Expr::MLV_MemberFunction:
14037 case Expr::MLV_ClassTemporary:
14038 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
14039 break;
14040 case Expr::MLV_IncompleteType:
14041 case Expr::MLV_IncompleteVoidType:
14042 return S.RequireCompleteType(Loc, E->getType(),
14043 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
14044 case Expr::MLV_DuplicateVectorComponents:
14045 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
14046 break;
14047 case Expr::MLV_NoSetterProperty:
14048 llvm_unreachable("readonly properties should be processed differently");
14049 case Expr::MLV_InvalidMessageExpression:
14050 DiagID = diag::err_readonly_message_assignment;
14051 break;
14052 case Expr::MLV_SubObjCPropertySetting:
14053 DiagID = diag::err_no_subobject_property_setting;
14054 break;
14057 SourceRange Assign;
14058 if (Loc != OrigLoc)
14059 Assign = SourceRange(OrigLoc, OrigLoc);
14060 if (NeedType)
14061 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14062 else
14063 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14064 return true;
14067 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14068 SourceLocation Loc,
14069 Sema &Sema) {
14070 if (Sema.inTemplateInstantiation())
14071 return;
14072 if (Sema.isUnevaluatedContext())
14073 return;
14074 if (Loc.isInvalid() || Loc.isMacroID())
14075 return;
14076 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14077 return;
14079 // C / C++ fields
14080 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
14081 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
14082 if (ML && MR) {
14083 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
14084 return;
14085 const ValueDecl *LHSDecl =
14086 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14087 const ValueDecl *RHSDecl =
14088 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14089 if (LHSDecl != RHSDecl)
14090 return;
14091 if (LHSDecl->getType().isVolatileQualified())
14092 return;
14093 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14094 if (RefTy->getPointeeType().isVolatileQualified())
14095 return;
14097 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14100 // Objective-C instance variables
14101 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
14102 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
14103 if (OL && OR && OL->getDecl() == OR->getDecl()) {
14104 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
14105 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
14106 if (RL && RR && RL->getDecl() == RR->getDecl())
14107 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14111 // C99 6.5.16.1
14112 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14113 SourceLocation Loc,
14114 QualType CompoundType,
14115 BinaryOperatorKind Opc) {
14116 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14118 // Verify that LHS is a modifiable lvalue, and emit error if not.
14119 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
14120 return QualType();
14122 QualType LHSType = LHSExpr->getType();
14123 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14124 CompoundType;
14125 // OpenCL v1.2 s6.1.1.1 p2:
14126 // The half data type can only be used to declare a pointer to a buffer that
14127 // contains half values
14128 if (getLangOpts().OpenCL &&
14129 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14130 LHSType->isHalfType()) {
14131 Diag(Loc, diag::err_opencl_half_load_store) << 1
14132 << LHSType.getUnqualifiedType();
14133 return QualType();
14136 AssignConvertType ConvTy;
14137 if (CompoundType.isNull()) {
14138 Expr *RHSCheck = RHS.get();
14140 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
14142 QualType LHSTy(LHSType);
14143 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
14144 if (RHS.isInvalid())
14145 return QualType();
14146 // Special case of NSObject attributes on c-style pointer types.
14147 if (ConvTy == IncompatiblePointer &&
14148 ((Context.isObjCNSObjectType(LHSType) &&
14149 RHSType->isObjCObjectPointerType()) ||
14150 (Context.isObjCNSObjectType(RHSType) &&
14151 LHSType->isObjCObjectPointerType())))
14152 ConvTy = Compatible;
14154 if (ConvTy == Compatible &&
14155 LHSType->isObjCObjectType())
14156 Diag(Loc, diag::err_objc_object_assignment)
14157 << LHSType;
14159 // If the RHS is a unary plus or minus, check to see if they = and + are
14160 // right next to each other. If so, the user may have typo'd "x =+ 4"
14161 // instead of "x += 4".
14162 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
14163 RHSCheck = ICE->getSubExpr();
14164 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
14165 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14166 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14167 // Only if the two operators are exactly adjacent.
14168 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
14169 // And there is a space or other character before the subexpr of the
14170 // unary +/-. We don't want to warn on "x=-1".
14171 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
14172 UO->getSubExpr()->getBeginLoc().isFileID()) {
14173 Diag(Loc, diag::warn_not_compound_assign)
14174 << (UO->getOpcode() == UO_Plus ? "+" : "-")
14175 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14179 if (ConvTy == Compatible) {
14180 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14181 // Warn about retain cycles where a block captures the LHS, but
14182 // not if the LHS is a simple variable into which the block is
14183 // being stored...unless that variable can be captured by reference!
14184 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14185 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
14186 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14187 checkRetainCycles(LHSExpr, RHS.get());
14190 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14191 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14192 // It is safe to assign a weak reference into a strong variable.
14193 // Although this code can still have problems:
14194 // id x = self.weakProp;
14195 // id y = self.weakProp;
14196 // we do not warn to warn spuriously when 'x' and 'y' are on separate
14197 // paths through the function. This should be revisited if
14198 // -Wrepeated-use-of-weak is made flow-sensitive.
14199 // For ObjCWeak only, we do not warn if the assign is to a non-weak
14200 // variable, which will be valid for the current autorelease scope.
14201 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14202 RHS.get()->getBeginLoc()))
14203 getCurFunction()->markSafeWeakUse(RHS.get());
14205 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14206 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
14209 } else {
14210 // Compound assignment "x += y"
14211 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14214 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
14215 RHS.get(), AA_Assigning))
14216 return QualType();
14218 CheckForNullPointerDereference(*this, LHSExpr);
14220 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14221 if (CompoundType.isNull()) {
14222 // C++2a [expr.ass]p5:
14223 // A simple-assignment whose left operand is of a volatile-qualified
14224 // type is deprecated unless the assignment is either a discarded-value
14225 // expression or an unevaluated operand
14226 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
14230 // C11 6.5.16p3: The type of an assignment expression is the type of the
14231 // left operand would have after lvalue conversion.
14232 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14233 // qualified type, the value has the unqualified version of the type of the
14234 // lvalue; additionally, if the lvalue has atomic type, the value has the
14235 // non-atomic version of the type of the lvalue.
14236 // C++ 5.17p1: the type of the assignment expression is that of its left
14237 // operand.
14238 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14241 // Scenarios to ignore if expression E is:
14242 // 1. an explicit cast expression into void
14243 // 2. a function call expression that returns void
14244 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14245 E = E->IgnoreParens();
14247 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
14248 if (CE->getCastKind() == CK_ToVoid) {
14249 return true;
14252 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14253 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14254 CE->getSubExpr()->getType()->isDependentType()) {
14255 return true;
14259 if (const auto *CE = dyn_cast<CallExpr>(E))
14260 return CE->getCallReturnType(Context)->isVoidType();
14261 return false;
14264 // Look for instances where it is likely the comma operator is confused with
14265 // another operator. There is an explicit list of acceptable expressions for
14266 // the left hand side of the comma operator, otherwise emit a warning.
14267 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14268 // No warnings in macros
14269 if (Loc.isMacroID())
14270 return;
14272 // Don't warn in template instantiations.
14273 if (inTemplateInstantiation())
14274 return;
14276 // Scope isn't fine-grained enough to explicitly list the specific cases, so
14277 // instead, skip more than needed, then call back into here with the
14278 // CommaVisitor in SemaStmt.cpp.
14279 // The listed locations are the initialization and increment portions
14280 // of a for loop. The additional checks are on the condition of
14281 // if statements, do/while loops, and for loops.
14282 // Differences in scope flags for C89 mode requires the extra logic.
14283 const unsigned ForIncrementFlags =
14284 getLangOpts().C99 || getLangOpts().CPlusPlus
14285 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14286 : Scope::ContinueScope | Scope::BreakScope;
14287 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14288 const unsigned ScopeFlags = getCurScope()->getFlags();
14289 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14290 (ScopeFlags & ForInitFlags) == ForInitFlags)
14291 return;
14293 // If there are multiple comma operators used together, get the RHS of the
14294 // of the comma operator as the LHS.
14295 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14296 if (BO->getOpcode() != BO_Comma)
14297 break;
14298 LHS = BO->getRHS();
14301 // Only allow some expressions on LHS to not warn.
14302 if (IgnoreCommaOperand(LHS, Context))
14303 return;
14305 Diag(Loc, diag::warn_comma_operator);
14306 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14307 << LHS->getSourceRange()
14308 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14309 LangOpts.CPlusPlus ? "static_cast<void>("
14310 : "(void)(")
14311 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14312 ")");
14315 // C99 6.5.17
14316 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14317 SourceLocation Loc) {
14318 LHS = S.CheckPlaceholderExpr(LHS.get());
14319 RHS = S.CheckPlaceholderExpr(RHS.get());
14320 if (LHS.isInvalid() || RHS.isInvalid())
14321 return QualType();
14323 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14324 // operands, but not unary promotions.
14325 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14327 // So we treat the LHS as a ignored value, and in C++ we allow the
14328 // containing site to determine what should be done with the RHS.
14329 LHS = S.IgnoredValueConversions(LHS.get());
14330 if (LHS.isInvalid())
14331 return QualType();
14333 S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14335 if (!S.getLangOpts().CPlusPlus) {
14336 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14337 if (RHS.isInvalid())
14338 return QualType();
14339 if (!RHS.get()->getType()->isVoidType())
14340 S.RequireCompleteType(Loc, RHS.get()->getType(),
14341 diag::err_incomplete_type);
14344 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14345 S.DiagnoseCommaOperator(LHS.get(), Loc);
14347 return RHS.get()->getType();
14350 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14351 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14352 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14353 ExprValueKind &VK,
14354 ExprObjectKind &OK,
14355 SourceLocation OpLoc,
14356 bool IsInc, bool IsPrefix) {
14357 if (Op->isTypeDependent())
14358 return S.Context.DependentTy;
14360 QualType ResType = Op->getType();
14361 // Atomic types can be used for increment / decrement where the non-atomic
14362 // versions can, so ignore the _Atomic() specifier for the purpose of
14363 // checking.
14364 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14365 ResType = ResAtomicType->getValueType();
14367 assert(!ResType.isNull() && "no type for increment/decrement expression");
14369 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14370 // Decrement of bool is not allowed.
14371 if (!IsInc) {
14372 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14373 return QualType();
14375 // Increment of bool sets it to true, but is deprecated.
14376 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14377 : diag::warn_increment_bool)
14378 << Op->getSourceRange();
14379 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14380 // Error on enum increments and decrements in C++ mode
14381 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14382 return QualType();
14383 } else if (ResType->isRealType()) {
14384 // OK!
14385 } else if (ResType->isPointerType()) {
14386 // C99 6.5.2.4p2, 6.5.6p2
14387 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14388 return QualType();
14389 } else if (ResType->isObjCObjectPointerType()) {
14390 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14391 // Otherwise, we just need a complete type.
14392 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14393 checkArithmeticOnObjCPointer(S, OpLoc, Op))
14394 return QualType();
14395 } else if (ResType->isAnyComplexType()) {
14396 // C99 does not support ++/-- on complex types, we allow as an extension.
14397 S.Diag(OpLoc, diag::ext_integer_increment_complex)
14398 << ResType << Op->getSourceRange();
14399 } else if (ResType->isPlaceholderType()) {
14400 ExprResult PR = S.CheckPlaceholderExpr(Op);
14401 if (PR.isInvalid()) return QualType();
14402 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14403 IsInc, IsPrefix);
14404 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14405 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14406 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14407 (ResType->castAs<VectorType>()->getVectorKind() !=
14408 VectorType::AltiVecBool)) {
14409 // The z vector extensions allow ++ and -- for non-bool vectors.
14410 } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
14411 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14412 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14413 } else {
14414 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14415 << ResType << int(IsInc) << Op->getSourceRange();
14416 return QualType();
14418 // At this point, we know we have a real, complex or pointer type.
14419 // Now make sure the operand is a modifiable lvalue.
14420 if (CheckForModifiableLvalue(Op, OpLoc, S))
14421 return QualType();
14422 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14423 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14424 // An operand with volatile-qualified type is deprecated
14425 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14426 << IsInc << ResType;
14428 // In C++, a prefix increment is the same type as the operand. Otherwise
14429 // (in C or with postfix), the increment is the unqualified type of the
14430 // operand.
14431 if (IsPrefix && S.getLangOpts().CPlusPlus) {
14432 VK = VK_LValue;
14433 OK = Op->getObjectKind();
14434 return ResType;
14435 } else {
14436 VK = VK_PRValue;
14437 return ResType.getUnqualifiedType();
14442 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14443 /// This routine allows us to typecheck complex/recursive expressions
14444 /// where the declaration is needed for type checking. We only need to
14445 /// handle cases when the expression references a function designator
14446 /// or is an lvalue. Here are some examples:
14447 /// - &(x) => x
14448 /// - &*****f => f for f a function designator.
14449 /// - &s.xx => s
14450 /// - &s.zz[1].yy -> s, if zz is an array
14451 /// - *(x + 1) -> x, if x is an array
14452 /// - &"123"[2] -> 0
14453 /// - & __real__ x -> x
14455 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14456 /// members.
14457 static ValueDecl *getPrimaryDecl(Expr *E) {
14458 switch (E->getStmtClass()) {
14459 case Stmt::DeclRefExprClass:
14460 return cast<DeclRefExpr>(E)->getDecl();
14461 case Stmt::MemberExprClass:
14462 // If this is an arrow operator, the address is an offset from
14463 // the base's value, so the object the base refers to is
14464 // irrelevant.
14465 if (cast<MemberExpr>(E)->isArrow())
14466 return nullptr;
14467 // Otherwise, the expression refers to a part of the base
14468 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14469 case Stmt::ArraySubscriptExprClass: {
14470 // FIXME: This code shouldn't be necessary! We should catch the implicit
14471 // promotion of register arrays earlier.
14472 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14473 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14474 if (ICE->getSubExpr()->getType()->isArrayType())
14475 return getPrimaryDecl(ICE->getSubExpr());
14477 return nullptr;
14479 case Stmt::UnaryOperatorClass: {
14480 UnaryOperator *UO = cast<UnaryOperator>(E);
14482 switch(UO->getOpcode()) {
14483 case UO_Real:
14484 case UO_Imag:
14485 case UO_Extension:
14486 return getPrimaryDecl(UO->getSubExpr());
14487 default:
14488 return nullptr;
14491 case Stmt::ParenExprClass:
14492 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14493 case Stmt::ImplicitCastExprClass:
14494 // If the result of an implicit cast is an l-value, we care about
14495 // the sub-expression; otherwise, the result here doesn't matter.
14496 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14497 case Stmt::CXXUuidofExprClass:
14498 return cast<CXXUuidofExpr>(E)->getGuidDecl();
14499 default:
14500 return nullptr;
14504 namespace {
14505 enum {
14506 AO_Bit_Field = 0,
14507 AO_Vector_Element = 1,
14508 AO_Property_Expansion = 2,
14509 AO_Register_Variable = 3,
14510 AO_Matrix_Element = 4,
14511 AO_No_Error = 5
14514 /// Diagnose invalid operand for address of operations.
14516 /// \param Type The type of operand which cannot have its address taken.
14517 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14518 Expr *E, unsigned Type) {
14519 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14522 /// CheckAddressOfOperand - The operand of & must be either a function
14523 /// designator or an lvalue designating an object. If it is an lvalue, the
14524 /// object cannot be declared with storage class register or be a bit field.
14525 /// Note: The usual conversions are *not* applied to the operand of the &
14526 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
14527 /// In C++, the operand might be an overloaded function name, in which case
14528 /// we allow the '&' but retain the overloaded-function type.
14529 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14530 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14531 if (PTy->getKind() == BuiltinType::Overload) {
14532 Expr *E = OrigOp.get()->IgnoreParens();
14533 if (!isa<OverloadExpr>(E)) {
14534 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14535 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14536 << OrigOp.get()->getSourceRange();
14537 return QualType();
14540 OverloadExpr *Ovl = cast<OverloadExpr>(E);
14541 if (isa<UnresolvedMemberExpr>(Ovl))
14542 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
14543 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14544 << OrigOp.get()->getSourceRange();
14545 return QualType();
14548 return Context.OverloadTy;
14551 if (PTy->getKind() == BuiltinType::UnknownAny)
14552 return Context.UnknownAnyTy;
14554 if (PTy->getKind() == BuiltinType::BoundMember) {
14555 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14556 << OrigOp.get()->getSourceRange();
14557 return QualType();
14560 OrigOp = CheckPlaceholderExpr(OrigOp.get());
14561 if (OrigOp.isInvalid()) return QualType();
14564 if (OrigOp.get()->isTypeDependent())
14565 return Context.DependentTy;
14567 assert(!OrigOp.get()->hasPlaceholderType());
14569 // Make sure to ignore parentheses in subsequent checks
14570 Expr *op = OrigOp.get()->IgnoreParens();
14572 // In OpenCL captures for blocks called as lambda functions
14573 // are located in the private address space. Blocks used in
14574 // enqueue_kernel can be located in a different address space
14575 // depending on a vendor implementation. Thus preventing
14576 // taking an address of the capture to avoid invalid AS casts.
14577 if (LangOpts.OpenCL) {
14578 auto* VarRef = dyn_cast<DeclRefExpr>(op);
14579 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14580 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14581 return QualType();
14585 if (getLangOpts().C99) {
14586 // Implement C99-only parts of addressof rules.
14587 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14588 if (uOp->getOpcode() == UO_Deref)
14589 // Per C99 6.5.3.2, the address of a deref always returns a valid result
14590 // (assuming the deref expression is valid).
14591 return uOp->getSubExpr()->getType();
14593 // Technically, there should be a check for array subscript
14594 // expressions here, but the result of one is always an lvalue anyway.
14596 ValueDecl *dcl = getPrimaryDecl(op);
14598 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14599 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14600 op->getBeginLoc()))
14601 return QualType();
14603 Expr::LValueClassification lval = op->ClassifyLValue(Context);
14604 unsigned AddressOfError = AO_No_Error;
14606 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14607 bool sfinae = (bool)isSFINAEContext();
14608 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14609 : diag::ext_typecheck_addrof_temporary)
14610 << op->getType() << op->getSourceRange();
14611 if (sfinae)
14612 return QualType();
14613 // Materialize the temporary as an lvalue so that we can take its address.
14614 OrigOp = op =
14615 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14616 } else if (isa<ObjCSelectorExpr>(op)) {
14617 return Context.getPointerType(op->getType());
14618 } else if (lval == Expr::LV_MemberFunction) {
14619 // If it's an instance method, make a member pointer.
14620 // The expression must have exactly the form &A::foo.
14622 // If the underlying expression isn't a decl ref, give up.
14623 if (!isa<DeclRefExpr>(op)) {
14624 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14625 << OrigOp.get()->getSourceRange();
14626 return QualType();
14628 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14629 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14631 // The id-expression was parenthesized.
14632 if (OrigOp.get() != DRE) {
14633 Diag(OpLoc, diag::err_parens_pointer_member_function)
14634 << OrigOp.get()->getSourceRange();
14636 // The method was named without a qualifier.
14637 } else if (!DRE->getQualifier()) {
14638 if (MD->getParent()->getName().empty())
14639 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14640 << op->getSourceRange();
14641 else {
14642 SmallString<32> Str;
14643 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14644 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14645 << op->getSourceRange()
14646 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
14650 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14651 if (isa<CXXDestructorDecl>(MD))
14652 Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
14654 QualType MPTy = Context.getMemberPointerType(
14655 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14656 // Under the MS ABI, lock down the inheritance model now.
14657 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14658 (void)isCompleteType(OpLoc, MPTy);
14659 return MPTy;
14660 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14661 // C99 6.5.3.2p1
14662 // The operand must be either an l-value or a function designator
14663 if (!op->getType()->isFunctionType()) {
14664 // Use a special diagnostic for loads from property references.
14665 if (isa<PseudoObjectExpr>(op)) {
14666 AddressOfError = AO_Property_Expansion;
14667 } else {
14668 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14669 << op->getType() << op->getSourceRange();
14670 return QualType();
14673 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14674 // The operand cannot be a bit-field
14675 AddressOfError = AO_Bit_Field;
14676 } else if (op->getObjectKind() == OK_VectorComponent) {
14677 // The operand cannot be an element of a vector
14678 AddressOfError = AO_Vector_Element;
14679 } else if (op->getObjectKind() == OK_MatrixComponent) {
14680 // The operand cannot be an element of a matrix.
14681 AddressOfError = AO_Matrix_Element;
14682 } else if (dcl) { // C99 6.5.3.2p1
14683 // We have an lvalue with a decl. Make sure the decl is not declared
14684 // with the register storage-class specifier.
14685 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14686 // in C++ it is not error to take address of a register
14687 // variable (c++03 7.1.1P3)
14688 if (vd->getStorageClass() == SC_Register &&
14689 !getLangOpts().CPlusPlus) {
14690 AddressOfError = AO_Register_Variable;
14692 } else if (isa<MSPropertyDecl>(dcl)) {
14693 AddressOfError = AO_Property_Expansion;
14694 } else if (isa<FunctionTemplateDecl>(dcl)) {
14695 return Context.OverloadTy;
14696 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14697 // Okay: we can take the address of a field.
14698 // Could be a pointer to member, though, if there is an explicit
14699 // scope qualifier for the class.
14700 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
14701 DeclContext *Ctx = dcl->getDeclContext();
14702 if (Ctx && Ctx->isRecord()) {
14703 if (dcl->getType()->isReferenceType()) {
14704 Diag(OpLoc,
14705 diag::err_cannot_form_pointer_to_member_of_reference_type)
14706 << dcl->getDeclName() << dcl->getType();
14707 return QualType();
14710 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14711 Ctx = Ctx->getParent();
14713 QualType MPTy = Context.getMemberPointerType(
14714 op->getType(),
14715 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14716 // Under the MS ABI, lock down the inheritance model now.
14717 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14718 (void)isCompleteType(OpLoc, MPTy);
14719 return MPTy;
14722 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14723 MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14724 llvm_unreachable("Unknown/unexpected decl type");
14727 if (AddressOfError != AO_No_Error) {
14728 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14729 return QualType();
14732 if (lval == Expr::LV_IncompleteVoidType) {
14733 // Taking the address of a void variable is technically illegal, but we
14734 // allow it in cases which are otherwise valid.
14735 // Example: "extern void x; void* y = &x;".
14736 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14739 // If the operand has type "type", the result has type "pointer to type".
14740 if (op->getType()->isObjCObjectType())
14741 return Context.getObjCObjectPointerType(op->getType());
14743 CheckAddressOfPackedMember(op);
14745 return Context.getPointerType(op->getType());
14748 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14749 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14750 if (!DRE)
14751 return;
14752 const Decl *D = DRE->getDecl();
14753 if (!D)
14754 return;
14755 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14756 if (!Param)
14757 return;
14758 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14759 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14760 return;
14761 if (FunctionScopeInfo *FD = S.getCurFunction())
14762 FD->ModifiedNonNullParams.insert(Param);
14765 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14766 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14767 SourceLocation OpLoc,
14768 bool IsAfterAmp = false) {
14769 if (Op->isTypeDependent())
14770 return S.Context.DependentTy;
14772 ExprResult ConvResult = S.UsualUnaryConversions(Op);
14773 if (ConvResult.isInvalid())
14774 return QualType();
14775 Op = ConvResult.get();
14776 QualType OpTy = Op->getType();
14777 QualType Result;
14779 if (isa<CXXReinterpretCastExpr>(Op)) {
14780 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14781 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14782 Op->getSourceRange());
14785 if (const PointerType *PT = OpTy->getAs<PointerType>())
14787 Result = PT->getPointeeType();
14789 else if (const ObjCObjectPointerType *OPT =
14790 OpTy->getAs<ObjCObjectPointerType>())
14791 Result = OPT->getPointeeType();
14792 else {
14793 ExprResult PR = S.CheckPlaceholderExpr(Op);
14794 if (PR.isInvalid()) return QualType();
14795 if (PR.get() != Op)
14796 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14799 if (Result.isNull()) {
14800 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14801 << OpTy << Op->getSourceRange();
14802 return QualType();
14805 if (Result->isVoidType()) {
14806 // C++ [expr.unary.op]p1:
14807 // [...] the expression to which [the unary * operator] is applied shall
14808 // be a pointer to an object type, or a pointer to a function type
14809 LangOptions LO = S.getLangOpts();
14810 if (LO.CPlusPlus)
14811 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer_cpp)
14812 << OpTy << Op->getSourceRange();
14813 else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14814 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14815 << OpTy << Op->getSourceRange();
14818 // Dereferences are usually l-values...
14819 VK = VK_LValue;
14821 // ...except that certain expressions are never l-values in C.
14822 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14823 VK = VK_PRValue;
14825 return Result;
14828 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14829 BinaryOperatorKind Opc;
14830 switch (Kind) {
14831 default: llvm_unreachable("Unknown binop!");
14832 case tok::periodstar: Opc = BO_PtrMemD; break;
14833 case tok::arrowstar: Opc = BO_PtrMemI; break;
14834 case tok::star: Opc = BO_Mul; break;
14835 case tok::slash: Opc = BO_Div; break;
14836 case tok::percent: Opc = BO_Rem; break;
14837 case tok::plus: Opc = BO_Add; break;
14838 case tok::minus: Opc = BO_Sub; break;
14839 case tok::lessless: Opc = BO_Shl; break;
14840 case tok::greatergreater: Opc = BO_Shr; break;
14841 case tok::lessequal: Opc = BO_LE; break;
14842 case tok::less: Opc = BO_LT; break;
14843 case tok::greaterequal: Opc = BO_GE; break;
14844 case tok::greater: Opc = BO_GT; break;
14845 case tok::exclaimequal: Opc = BO_NE; break;
14846 case tok::equalequal: Opc = BO_EQ; break;
14847 case tok::spaceship: Opc = BO_Cmp; break;
14848 case tok::amp: Opc = BO_And; break;
14849 case tok::caret: Opc = BO_Xor; break;
14850 case tok::pipe: Opc = BO_Or; break;
14851 case tok::ampamp: Opc = BO_LAnd; break;
14852 case tok::pipepipe: Opc = BO_LOr; break;
14853 case tok::equal: Opc = BO_Assign; break;
14854 case tok::starequal: Opc = BO_MulAssign; break;
14855 case tok::slashequal: Opc = BO_DivAssign; break;
14856 case tok::percentequal: Opc = BO_RemAssign; break;
14857 case tok::plusequal: Opc = BO_AddAssign; break;
14858 case tok::minusequal: Opc = BO_SubAssign; break;
14859 case tok::lesslessequal: Opc = BO_ShlAssign; break;
14860 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
14861 case tok::ampequal: Opc = BO_AndAssign; break;
14862 case tok::caretequal: Opc = BO_XorAssign; break;
14863 case tok::pipeequal: Opc = BO_OrAssign; break;
14864 case tok::comma: Opc = BO_Comma; break;
14866 return Opc;
14869 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14870 tok::TokenKind Kind) {
14871 UnaryOperatorKind Opc;
14872 switch (Kind) {
14873 default: llvm_unreachable("Unknown unary op!");
14874 case tok::plusplus: Opc = UO_PreInc; break;
14875 case tok::minusminus: Opc = UO_PreDec; break;
14876 case tok::amp: Opc = UO_AddrOf; break;
14877 case tok::star: Opc = UO_Deref; break;
14878 case tok::plus: Opc = UO_Plus; break;
14879 case tok::minus: Opc = UO_Minus; break;
14880 case tok::tilde: Opc = UO_Not; break;
14881 case tok::exclaim: Opc = UO_LNot; break;
14882 case tok::kw___real: Opc = UO_Real; break;
14883 case tok::kw___imag: Opc = UO_Imag; break;
14884 case tok::kw___extension__: Opc = UO_Extension; break;
14886 return Opc;
14889 const FieldDecl *
14890 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14891 // Explore the case for adding 'this->' to the LHS of a self assignment, very
14892 // common for setters.
14893 // struct A {
14894 // int X;
14895 // -void setX(int X) { X = X; }
14896 // +void setX(int X) { this->X = X; }
14897 // };
14899 // Only consider parameters for self assignment fixes.
14900 if (!isa<ParmVarDecl>(SelfAssigned))
14901 return nullptr;
14902 const auto *Method =
14903 dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14904 if (!Method)
14905 return nullptr;
14907 const CXXRecordDecl *Parent = Method->getParent();
14908 // In theory this is fixable if the lambda explicitly captures this, but
14909 // that's added complexity that's rarely going to be used.
14910 if (Parent->isLambda())
14911 return nullptr;
14913 // FIXME: Use an actual Lookup operation instead of just traversing fields
14914 // in order to get base class fields.
14915 auto Field =
14916 llvm::find_if(Parent->fields(),
14917 [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14918 return F->getDeclName() == Name;
14920 return (Field != Parent->field_end()) ? *Field : nullptr;
14923 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14924 /// This warning suppressed in the event of macro expansions.
14925 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14926 SourceLocation OpLoc, bool IsBuiltin) {
14927 if (S.inTemplateInstantiation())
14928 return;
14929 if (S.isUnevaluatedContext())
14930 return;
14931 if (OpLoc.isInvalid() || OpLoc.isMacroID())
14932 return;
14933 LHSExpr = LHSExpr->IgnoreParenImpCasts();
14934 RHSExpr = RHSExpr->IgnoreParenImpCasts();
14935 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14936 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14937 if (!LHSDeclRef || !RHSDeclRef ||
14938 LHSDeclRef->getLocation().isMacroID() ||
14939 RHSDeclRef->getLocation().isMacroID())
14940 return;
14941 const ValueDecl *LHSDecl =
14942 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14943 const ValueDecl *RHSDecl =
14944 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14945 if (LHSDecl != RHSDecl)
14946 return;
14947 if (LHSDecl->getType().isVolatileQualified())
14948 return;
14949 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14950 if (RefTy->getPointeeType().isVolatileQualified())
14951 return;
14953 auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14954 : diag::warn_self_assignment_overloaded)
14955 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14956 << RHSExpr->getSourceRange();
14957 if (const FieldDecl *SelfAssignField =
14958 S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14959 Diag << 1 << SelfAssignField
14960 << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14961 else
14962 Diag << 0;
14965 /// Check if a bitwise-& is performed on an Objective-C pointer. This
14966 /// is usually indicative of introspection within the Objective-C pointer.
14967 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14968 SourceLocation OpLoc) {
14969 if (!S.getLangOpts().ObjC)
14970 return;
14972 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14973 const Expr *LHS = L.get();
14974 const Expr *RHS = R.get();
14976 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14977 ObjCPointerExpr = LHS;
14978 OtherExpr = RHS;
14980 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14981 ObjCPointerExpr = RHS;
14982 OtherExpr = LHS;
14985 // This warning is deliberately made very specific to reduce false
14986 // positives with logic that uses '&' for hashing. This logic mainly
14987 // looks for code trying to introspect into tagged pointers, which
14988 // code should generally never do.
14989 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14990 unsigned Diag = diag::warn_objc_pointer_masking;
14991 // Determine if we are introspecting the result of performSelectorXXX.
14992 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14993 // Special case messages to -performSelector and friends, which
14994 // can return non-pointer values boxed in a pointer value.
14995 // Some clients may wish to silence warnings in this subcase.
14996 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14997 Selector S = ME->getSelector();
14998 StringRef SelArg0 = S.getNameForSlot(0);
14999 if (SelArg0.startswith("performSelector"))
15000 Diag = diag::warn_objc_pointer_masking_performSelector;
15003 S.Diag(OpLoc, Diag)
15004 << ObjCPointerExpr->getSourceRange();
15008 static NamedDecl *getDeclFromExpr(Expr *E) {
15009 if (!E)
15010 return nullptr;
15011 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
15012 return DRE->getDecl();
15013 if (auto *ME = dyn_cast<MemberExpr>(E))
15014 return ME->getMemberDecl();
15015 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
15016 return IRE->getDecl();
15017 return nullptr;
15020 // This helper function promotes a binary operator's operands (which are of a
15021 // half vector type) to a vector of floats and then truncates the result to
15022 // a vector of either half or short.
15023 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15024 BinaryOperatorKind Opc, QualType ResultTy,
15025 ExprValueKind VK, ExprObjectKind OK,
15026 bool IsCompAssign, SourceLocation OpLoc,
15027 FPOptionsOverride FPFeatures) {
15028 auto &Context = S.getASTContext();
15029 assert((isVector(ResultTy, Context.HalfTy) ||
15030 isVector(ResultTy, Context.ShortTy)) &&
15031 "Result must be a vector of half or short");
15032 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15033 isVector(RHS.get()->getType(), Context.HalfTy) &&
15034 "both operands expected to be a half vector");
15036 RHS = convertVector(RHS.get(), Context.FloatTy, S);
15037 QualType BinOpResTy = RHS.get()->getType();
15039 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15040 // change BinOpResTy to a vector of ints.
15041 if (isVector(ResultTy, Context.ShortTy))
15042 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
15044 if (IsCompAssign)
15045 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15046 ResultTy, VK, OK, OpLoc, FPFeatures,
15047 BinOpResTy, BinOpResTy);
15049 LHS = convertVector(LHS.get(), Context.FloatTy, S);
15050 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15051 BinOpResTy, VK, OK, OpLoc, FPFeatures);
15052 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15055 static std::pair<ExprResult, ExprResult>
15056 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15057 Expr *RHSExpr) {
15058 ExprResult LHS = LHSExpr, RHS = RHSExpr;
15059 if (!S.Context.isDependenceAllowed()) {
15060 // C cannot handle TypoExpr nodes on either side of a binop because it
15061 // doesn't handle dependent types properly, so make sure any TypoExprs have
15062 // been dealt with before checking the operands.
15063 LHS = S.CorrectDelayedTyposInExpr(LHS);
15064 RHS = S.CorrectDelayedTyposInExpr(
15065 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15066 [Opc, LHS](Expr *E) {
15067 if (Opc != BO_Assign)
15068 return ExprResult(E);
15069 // Avoid correcting the RHS to the same Expr as the LHS.
15070 Decl *D = getDeclFromExpr(E);
15071 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15074 return std::make_pair(LHS, RHS);
15077 /// Returns true if conversion between vectors of halfs and vectors of floats
15078 /// is needed.
15079 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15080 Expr *E0, Expr *E1 = nullptr) {
15081 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15082 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15083 return false;
15085 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15086 QualType Ty = E->IgnoreImplicit()->getType();
15088 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15089 // to vectors of floats. Although the element type of the vectors is __fp16,
15090 // the vectors shouldn't be treated as storage-only types. See the
15091 // discussion here: https://reviews.llvm.org/rG825235c140e7
15092 if (const VectorType *VT = Ty->getAs<VectorType>()) {
15093 if (VT->getVectorKind() == VectorType::NeonVector)
15094 return false;
15095 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15097 return false;
15100 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15103 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15104 /// operator @p Opc at location @c TokLoc. This routine only supports
15105 /// built-in operations; ActOnBinOp handles overloaded operators.
15106 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15107 BinaryOperatorKind Opc,
15108 Expr *LHSExpr, Expr *RHSExpr) {
15109 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
15110 // The syntax only allows initializer lists on the RHS of assignment,
15111 // so we don't need to worry about accepting invalid code for
15112 // non-assignment operators.
15113 // C++11 5.17p9:
15114 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15115 // of x = {} is x = T().
15116 InitializationKind Kind = InitializationKind::CreateDirectList(
15117 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15118 InitializedEntity Entity =
15119 InitializedEntity::InitializeTemporary(LHSExpr->getType());
15120 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15121 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
15122 if (Init.isInvalid())
15123 return Init;
15124 RHSExpr = Init.get();
15127 ExprResult LHS = LHSExpr, RHS = RHSExpr;
15128 QualType ResultTy; // Result type of the binary operator.
15129 // The following two variables are used for compound assignment operators
15130 QualType CompLHSTy; // Type of LHS after promotions for computation
15131 QualType CompResultTy; // Type of computation result
15132 ExprValueKind VK = VK_PRValue;
15133 ExprObjectKind OK = OK_Ordinary;
15134 bool ConvertHalfVec = false;
15136 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15137 if (!LHS.isUsable() || !RHS.isUsable())
15138 return ExprError();
15140 if (getLangOpts().OpenCL) {
15141 QualType LHSTy = LHSExpr->getType();
15142 QualType RHSTy = RHSExpr->getType();
15143 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15144 // the ATOMIC_VAR_INIT macro.
15145 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15146 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15147 if (BO_Assign == Opc)
15148 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15149 else
15150 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15151 return ExprError();
15154 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15155 // only with a builtin functions and therefore should be disallowed here.
15156 if (LHSTy->isImageType() || RHSTy->isImageType() ||
15157 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15158 LHSTy->isPipeType() || RHSTy->isPipeType() ||
15159 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15160 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15161 return ExprError();
15165 checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15166 checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15168 switch (Opc) {
15169 case BO_Assign:
15170 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
15171 if (getLangOpts().CPlusPlus &&
15172 LHS.get()->getObjectKind() != OK_ObjCProperty) {
15173 VK = LHS.get()->getValueKind();
15174 OK = LHS.get()->getObjectKind();
15176 if (!ResultTy.isNull()) {
15177 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15178 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
15180 // Avoid copying a block to the heap if the block is assigned to a local
15181 // auto variable that is declared in the same scope as the block. This
15182 // optimization is unsafe if the local variable is declared in an outer
15183 // scope. For example:
15185 // BlockTy b;
15186 // {
15187 // b = ^{...};
15188 // }
15189 // // It is unsafe to invoke the block here if it wasn't copied to the
15190 // // heap.
15191 // b();
15193 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
15194 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
15195 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
15196 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15197 BE->getBlockDecl()->setCanAvoidCopyToHeap();
15199 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15200 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
15201 NTCUC_Assignment, NTCUK_Copy);
15203 RecordModifiableNonNullParam(*this, LHS.get());
15204 break;
15205 case BO_PtrMemD:
15206 case BO_PtrMemI:
15207 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15208 Opc == BO_PtrMemI);
15209 break;
15210 case BO_Mul:
15211 case BO_Div:
15212 ConvertHalfVec = true;
15213 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
15214 Opc == BO_Div);
15215 break;
15216 case BO_Rem:
15217 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
15218 break;
15219 case BO_Add:
15220 ConvertHalfVec = true;
15221 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
15222 break;
15223 case BO_Sub:
15224 ConvertHalfVec = true;
15225 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
15226 break;
15227 case BO_Shl:
15228 case BO_Shr:
15229 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
15230 break;
15231 case BO_LE:
15232 case BO_LT:
15233 case BO_GE:
15234 case BO_GT:
15235 ConvertHalfVec = true;
15236 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15237 break;
15238 case BO_EQ:
15239 case BO_NE:
15240 ConvertHalfVec = true;
15241 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15242 break;
15243 case BO_Cmp:
15244 ConvertHalfVec = true;
15245 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15246 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15247 break;
15248 case BO_And:
15249 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
15250 [[fallthrough]];
15251 case BO_Xor:
15252 case BO_Or:
15253 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15254 break;
15255 case BO_LAnd:
15256 case BO_LOr:
15257 ConvertHalfVec = true;
15258 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
15259 break;
15260 case BO_MulAssign:
15261 case BO_DivAssign:
15262 ConvertHalfVec = true;
15263 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
15264 Opc == BO_DivAssign);
15265 CompLHSTy = CompResultTy;
15266 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15267 ResultTy =
15268 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15269 break;
15270 case BO_RemAssign:
15271 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
15272 CompLHSTy = CompResultTy;
15273 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15274 ResultTy =
15275 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15276 break;
15277 case BO_AddAssign:
15278 ConvertHalfVec = true;
15279 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15280 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15281 ResultTy =
15282 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15283 break;
15284 case BO_SubAssign:
15285 ConvertHalfVec = true;
15286 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15287 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15288 ResultTy =
15289 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15290 break;
15291 case BO_ShlAssign:
15292 case BO_ShrAssign:
15293 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15294 CompLHSTy = CompResultTy;
15295 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15296 ResultTy =
15297 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15298 break;
15299 case BO_AndAssign:
15300 case BO_OrAssign: // fallthrough
15301 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15302 [[fallthrough]];
15303 case BO_XorAssign:
15304 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15305 CompLHSTy = CompResultTy;
15306 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15307 ResultTy =
15308 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15309 break;
15310 case BO_Comma:
15311 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15312 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15313 VK = RHS.get()->getValueKind();
15314 OK = RHS.get()->getObjectKind();
15316 break;
15318 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15319 return ExprError();
15321 // Some of the binary operations require promoting operands of half vector to
15322 // float vectors and truncating the result back to half vector. For now, we do
15323 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15324 // arm64).
15325 assert(
15326 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15327 isVector(LHS.get()->getType(), Context.HalfTy)) &&
15328 "both sides are half vectors or neither sides are");
15329 ConvertHalfVec =
15330 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15332 // Check for array bounds violations for both sides of the BinaryOperator
15333 CheckArrayAccess(LHS.get());
15334 CheckArrayAccess(RHS.get());
15336 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15337 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15338 &Context.Idents.get("object_setClass"),
15339 SourceLocation(), LookupOrdinaryName);
15340 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15341 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15342 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15343 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15344 "object_setClass(")
15345 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15346 ",")
15347 << FixItHint::CreateInsertion(RHSLocEnd, ")");
15349 else
15350 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15352 else if (const ObjCIvarRefExpr *OIRE =
15353 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15354 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15356 // Opc is not a compound assignment if CompResultTy is null.
15357 if (CompResultTy.isNull()) {
15358 if (ConvertHalfVec)
15359 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15360 OpLoc, CurFPFeatureOverrides());
15361 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15362 VK, OK, OpLoc, CurFPFeatureOverrides());
15365 // Handle compound assignments.
15366 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15367 OK_ObjCProperty) {
15368 VK = VK_LValue;
15369 OK = LHS.get()->getObjectKind();
15372 // The LHS is not converted to the result type for fixed-point compound
15373 // assignment as the common type is computed on demand. Reset the CompLHSTy
15374 // to the LHS type we would have gotten after unary conversions.
15375 if (CompResultTy->isFixedPointType())
15376 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15378 if (ConvertHalfVec)
15379 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15380 OpLoc, CurFPFeatureOverrides());
15382 return CompoundAssignOperator::Create(
15383 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15384 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15387 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15388 /// operators are mixed in a way that suggests that the programmer forgot that
15389 /// comparison operators have higher precedence. The most typical example of
15390 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15391 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15392 SourceLocation OpLoc, Expr *LHSExpr,
15393 Expr *RHSExpr) {
15394 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15395 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15397 // Check that one of the sides is a comparison operator and the other isn't.
15398 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15399 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15400 if (isLeftComp == isRightComp)
15401 return;
15403 // Bitwise operations are sometimes used as eager logical ops.
15404 // Don't diagnose this.
15405 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15406 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15407 if (isLeftBitwise || isRightBitwise)
15408 return;
15410 SourceRange DiagRange = isLeftComp
15411 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15412 : SourceRange(OpLoc, RHSExpr->getEndLoc());
15413 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15414 SourceRange ParensRange =
15415 isLeftComp
15416 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15417 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15419 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15420 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15421 SuggestParentheses(Self, OpLoc,
15422 Self.PDiag(diag::note_precedence_silence) << OpStr,
15423 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15424 SuggestParentheses(Self, OpLoc,
15425 Self.PDiag(diag::note_precedence_bitwise_first)
15426 << BinaryOperator::getOpcodeStr(Opc),
15427 ParensRange);
15430 /// It accepts a '&&' expr that is inside a '||' one.
15431 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15432 /// in parentheses.
15433 static void
15434 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15435 BinaryOperator *Bop) {
15436 assert(Bop->getOpcode() == BO_LAnd);
15437 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15438 << Bop->getSourceRange() << OpLoc;
15439 SuggestParentheses(Self, Bop->getOperatorLoc(),
15440 Self.PDiag(diag::note_precedence_silence)
15441 << Bop->getOpcodeStr(),
15442 Bop->getSourceRange());
15445 /// Look for '&&' in the left hand of a '||' expr.
15446 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15447 Expr *LHSExpr, Expr *RHSExpr) {
15448 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15449 if (Bop->getOpcode() == BO_LAnd) {
15450 // If it's "string_literal && a || b" don't warn since the precedence
15451 // doesn't matter.
15452 if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15453 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15454 } else if (Bop->getOpcode() == BO_LOr) {
15455 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15456 // If it's "a || b && string_literal || c" we didn't warn earlier for
15457 // "a || b && string_literal", but warn now.
15458 if (RBop->getOpcode() == BO_LAnd &&
15459 isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15460 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15466 /// Look for '&&' in the right hand of a '||' expr.
15467 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15468 Expr *LHSExpr, Expr *RHSExpr) {
15469 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15470 if (Bop->getOpcode() == BO_LAnd) {
15471 // If it's "a || b && string_literal" don't warn since the precedence
15472 // doesn't matter.
15473 if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15474 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15479 /// Look for bitwise op in the left or right hand of a bitwise op with
15480 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15481 /// the '&' expression in parentheses.
15482 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15483 SourceLocation OpLoc, Expr *SubExpr) {
15484 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15485 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15486 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15487 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15488 << Bop->getSourceRange() << OpLoc;
15489 SuggestParentheses(S, Bop->getOperatorLoc(),
15490 S.PDiag(diag::note_precedence_silence)
15491 << Bop->getOpcodeStr(),
15492 Bop->getSourceRange());
15497 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15498 Expr *SubExpr, StringRef Shift) {
15499 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15500 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15501 StringRef Op = Bop->getOpcodeStr();
15502 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15503 << Bop->getSourceRange() << OpLoc << Shift << Op;
15504 SuggestParentheses(S, Bop->getOperatorLoc(),
15505 S.PDiag(diag::note_precedence_silence) << Op,
15506 Bop->getSourceRange());
15511 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15512 Expr *LHSExpr, Expr *RHSExpr) {
15513 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15514 if (!OCE)
15515 return;
15517 FunctionDecl *FD = OCE->getDirectCallee();
15518 if (!FD || !FD->isOverloadedOperator())
15519 return;
15521 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15522 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15523 return;
15525 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15526 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15527 << (Kind == OO_LessLess);
15528 SuggestParentheses(S, OCE->getOperatorLoc(),
15529 S.PDiag(diag::note_precedence_silence)
15530 << (Kind == OO_LessLess ? "<<" : ">>"),
15531 OCE->getSourceRange());
15532 SuggestParentheses(
15533 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15534 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15537 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15538 /// precedence.
15539 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15540 SourceLocation OpLoc, Expr *LHSExpr,
15541 Expr *RHSExpr){
15542 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15543 if (BinaryOperator::isBitwiseOp(Opc))
15544 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15546 // Diagnose "arg1 & arg2 | arg3"
15547 if ((Opc == BO_Or || Opc == BO_Xor) &&
15548 !OpLoc.isMacroID()/* Don't warn in macros. */) {
15549 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15550 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15553 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15554 // We don't warn for 'assert(a || b && "bad")' since this is safe.
15555 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15556 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15557 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15560 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15561 || Opc == BO_Shr) {
15562 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15563 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15564 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15567 // Warn on overloaded shift operators and comparisons, such as:
15568 // cout << 5 == 4;
15569 if (BinaryOperator::isComparisonOp(Opc))
15570 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15573 // Binary Operators. 'Tok' is the token for the operator.
15574 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15575 tok::TokenKind Kind,
15576 Expr *LHSExpr, Expr *RHSExpr) {
15577 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15578 assert(LHSExpr && "ActOnBinOp(): missing left expression");
15579 assert(RHSExpr && "ActOnBinOp(): missing right expression");
15581 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15582 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15584 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15587 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15588 UnresolvedSetImpl &Functions) {
15589 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15590 if (OverOp != OO_None && OverOp != OO_Equal)
15591 LookupOverloadedOperatorName(OverOp, S, Functions);
15593 // In C++20 onwards, we may have a second operator to look up.
15594 if (getLangOpts().CPlusPlus20) {
15595 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15596 LookupOverloadedOperatorName(ExtraOp, S, Functions);
15600 /// Build an overloaded binary operator expression in the given scope.
15601 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15602 BinaryOperatorKind Opc,
15603 Expr *LHS, Expr *RHS) {
15604 switch (Opc) {
15605 case BO_Assign:
15606 case BO_DivAssign:
15607 case BO_RemAssign:
15608 case BO_SubAssign:
15609 case BO_AndAssign:
15610 case BO_OrAssign:
15611 case BO_XorAssign:
15612 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15613 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15614 break;
15615 default:
15616 break;
15619 // Find all of the overloaded operators visible from this point.
15620 UnresolvedSet<16> Functions;
15621 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15623 // Build the (potentially-overloaded, potentially-dependent)
15624 // binary operation.
15625 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15628 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15629 BinaryOperatorKind Opc,
15630 Expr *LHSExpr, Expr *RHSExpr) {
15631 ExprResult LHS, RHS;
15632 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15633 if (!LHS.isUsable() || !RHS.isUsable())
15634 return ExprError();
15635 LHSExpr = LHS.get();
15636 RHSExpr = RHS.get();
15638 // We want to end up calling one of checkPseudoObjectAssignment
15639 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15640 // both expressions are overloadable or either is type-dependent),
15641 // or CreateBuiltinBinOp (in any other case). We also want to get
15642 // any placeholder types out of the way.
15644 // Handle pseudo-objects in the LHS.
15645 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15646 // Assignments with a pseudo-object l-value need special analysis.
15647 if (pty->getKind() == BuiltinType::PseudoObject &&
15648 BinaryOperator::isAssignmentOp(Opc))
15649 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15651 // Don't resolve overloads if the other type is overloadable.
15652 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15653 // We can't actually test that if we still have a placeholder,
15654 // though. Fortunately, none of the exceptions we see in that
15655 // code below are valid when the LHS is an overload set. Note
15656 // that an overload set can be dependently-typed, but it never
15657 // instantiates to having an overloadable type.
15658 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15659 if (resolvedRHS.isInvalid()) return ExprError();
15660 RHSExpr = resolvedRHS.get();
15662 if (RHSExpr->isTypeDependent() ||
15663 RHSExpr->getType()->isOverloadableType())
15664 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15667 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15668 // template, diagnose the missing 'template' keyword instead of diagnosing
15669 // an invalid use of a bound member function.
15671 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15672 // to C++1z [over.over]/1.4, but we already checked for that case above.
15673 if (Opc == BO_LT && inTemplateInstantiation() &&
15674 (pty->getKind() == BuiltinType::BoundMember ||
15675 pty->getKind() == BuiltinType::Overload)) {
15676 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15677 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15678 llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15679 return isa<FunctionTemplateDecl>(ND);
15680 })) {
15681 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15682 : OE->getNameLoc(),
15683 diag::err_template_kw_missing)
15684 << OE->getName().getAsString() << "";
15685 return ExprError();
15689 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15690 if (LHS.isInvalid()) return ExprError();
15691 LHSExpr = LHS.get();
15694 // Handle pseudo-objects in the RHS.
15695 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15696 // An overload in the RHS can potentially be resolved by the type
15697 // being assigned to.
15698 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15699 if (getLangOpts().CPlusPlus &&
15700 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15701 LHSExpr->getType()->isOverloadableType()))
15702 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15704 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15707 // Don't resolve overloads if the other type is overloadable.
15708 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15709 LHSExpr->getType()->isOverloadableType())
15710 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15712 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15713 if (!resolvedRHS.isUsable()) return ExprError();
15714 RHSExpr = resolvedRHS.get();
15717 if (getLangOpts().CPlusPlus) {
15718 // If either expression is type-dependent, always build an
15719 // overloaded op.
15720 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
15721 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15723 // Otherwise, build an overloaded op if either expression has an
15724 // overloadable type.
15725 if (LHSExpr->getType()->isOverloadableType() ||
15726 RHSExpr->getType()->isOverloadableType())
15727 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15730 if (getLangOpts().RecoveryAST &&
15731 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15732 assert(!getLangOpts().CPlusPlus);
15733 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15734 "Should only occur in error-recovery path.");
15735 if (BinaryOperator::isCompoundAssignmentOp(Opc))
15736 // C [6.15.16] p3:
15737 // An assignment expression has the value of the left operand after the
15738 // assignment, but is not an lvalue.
15739 return CompoundAssignOperator::Create(
15740 Context, LHSExpr, RHSExpr, Opc,
15741 LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15742 OpLoc, CurFPFeatureOverrides());
15743 QualType ResultType;
15744 switch (Opc) {
15745 case BO_Assign:
15746 ResultType = LHSExpr->getType().getUnqualifiedType();
15747 break;
15748 case BO_LT:
15749 case BO_GT:
15750 case BO_LE:
15751 case BO_GE:
15752 case BO_EQ:
15753 case BO_NE:
15754 case BO_LAnd:
15755 case BO_LOr:
15756 // These operators have a fixed result type regardless of operands.
15757 ResultType = Context.IntTy;
15758 break;
15759 case BO_Comma:
15760 ResultType = RHSExpr->getType();
15761 break;
15762 default:
15763 ResultType = Context.DependentTy;
15764 break;
15766 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15767 VK_PRValue, OK_Ordinary, OpLoc,
15768 CurFPFeatureOverrides());
15771 // Build a built-in binary operation.
15772 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15775 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15776 if (T.isNull() || T->isDependentType())
15777 return false;
15779 if (!Ctx.isPromotableIntegerType(T))
15780 return true;
15782 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15785 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15786 UnaryOperatorKind Opc, Expr *InputExpr,
15787 bool IsAfterAmp) {
15788 ExprResult Input = InputExpr;
15789 ExprValueKind VK = VK_PRValue;
15790 ExprObjectKind OK = OK_Ordinary;
15791 QualType resultType;
15792 bool CanOverflow = false;
15794 bool ConvertHalfVec = false;
15795 if (getLangOpts().OpenCL) {
15796 QualType Ty = InputExpr->getType();
15797 // The only legal unary operation for atomics is '&'.
15798 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15799 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15800 // only with a builtin functions and therefore should be disallowed here.
15801 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15802 || Ty->isBlockPointerType())) {
15803 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15804 << InputExpr->getType()
15805 << Input.get()->getSourceRange());
15809 if (getLangOpts().HLSL && OpLoc.isValid()) {
15810 if (Opc == UO_AddrOf)
15811 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15812 if (Opc == UO_Deref)
15813 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15816 switch (Opc) {
15817 case UO_PreInc:
15818 case UO_PreDec:
15819 case UO_PostInc:
15820 case UO_PostDec:
15821 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
15822 OpLoc,
15823 Opc == UO_PreInc ||
15824 Opc == UO_PostInc,
15825 Opc == UO_PreInc ||
15826 Opc == UO_PreDec);
15827 CanOverflow = isOverflowingIntegerType(Context, resultType);
15828 break;
15829 case UO_AddrOf:
15830 resultType = CheckAddressOfOperand(Input, OpLoc);
15831 CheckAddressOfNoDeref(InputExpr);
15832 RecordModifiableNonNullParam(*this, InputExpr);
15833 break;
15834 case UO_Deref: {
15835 Input = DefaultFunctionArrayLvalueConversion(Input.get());
15836 if (Input.isInvalid()) return ExprError();
15837 resultType =
15838 CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
15839 break;
15841 case UO_Plus:
15842 case UO_Minus:
15843 CanOverflow = Opc == UO_Minus &&
15844 isOverflowingIntegerType(Context, Input.get()->getType());
15845 Input = UsualUnaryConversions(Input.get());
15846 if (Input.isInvalid()) return ExprError();
15847 // Unary plus and minus require promoting an operand of half vector to a
15848 // float vector and truncating the result back to a half vector. For now, we
15849 // do this only when HalfArgsAndReturns is set (that is, when the target is
15850 // arm or arm64).
15851 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15853 // If the operand is a half vector, promote it to a float vector.
15854 if (ConvertHalfVec)
15855 Input = convertVector(Input.get(), Context.FloatTy, *this);
15856 resultType = Input.get()->getType();
15857 if (resultType->isDependentType())
15858 break;
15859 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15860 break;
15861 else if (resultType->isVectorType() &&
15862 // The z vector extensions don't allow + or - with bool vectors.
15863 (!Context.getLangOpts().ZVector ||
15864 resultType->castAs<VectorType>()->getVectorKind() !=
15865 VectorType::AltiVecBool))
15866 break;
15867 else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and -
15868 break;
15869 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15870 Opc == UO_Plus &&
15871 resultType->isPointerType())
15872 break;
15874 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15875 << resultType << Input.get()->getSourceRange());
15877 case UO_Not: // bitwise complement
15878 Input = UsualUnaryConversions(Input.get());
15879 if (Input.isInvalid())
15880 return ExprError();
15881 resultType = Input.get()->getType();
15882 if (resultType->isDependentType())
15883 break;
15884 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15885 if (resultType->isComplexType() || resultType->isComplexIntegerType())
15886 // C99 does not support '~' for complex conjugation.
15887 Diag(OpLoc, diag::ext_integer_complement_complex)
15888 << resultType << Input.get()->getSourceRange();
15889 else if (resultType->hasIntegerRepresentation())
15890 break;
15891 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15892 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15893 // on vector float types.
15894 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15895 if (!T->isIntegerType())
15896 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15897 << resultType << Input.get()->getSourceRange());
15898 } else {
15899 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15900 << resultType << Input.get()->getSourceRange());
15902 break;
15904 case UO_LNot: // logical negation
15905 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15906 Input = DefaultFunctionArrayLvalueConversion(Input.get());
15907 if (Input.isInvalid()) return ExprError();
15908 resultType = Input.get()->getType();
15910 // Though we still have to promote half FP to float...
15911 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15912 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
15913 resultType = Context.FloatTy;
15916 if (resultType->isDependentType())
15917 break;
15918 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15919 // C99 6.5.3.3p1: ok, fallthrough;
15920 if (Context.getLangOpts().CPlusPlus) {
15921 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15922 // operand contextually converted to bool.
15923 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15924 ScalarTypeToBooleanCastKind(resultType));
15925 } else if (Context.getLangOpts().OpenCL &&
15926 Context.getLangOpts().OpenCLVersion < 120) {
15927 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15928 // operate on scalar float types.
15929 if (!resultType->isIntegerType() && !resultType->isPointerType())
15930 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15931 << resultType << Input.get()->getSourceRange());
15933 } else if (resultType->isExtVectorType()) {
15934 if (Context.getLangOpts().OpenCL &&
15935 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15936 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15937 // operate on vector float types.
15938 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15939 if (!T->isIntegerType())
15940 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15941 << resultType << Input.get()->getSourceRange());
15943 // Vector logical not returns the signed variant of the operand type.
15944 resultType = GetSignedVectorType(resultType);
15945 break;
15946 } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
15947 const VectorType *VTy = resultType->castAs<VectorType>();
15948 if (VTy->getVectorKind() != VectorType::GenericVector)
15949 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15950 << resultType << Input.get()->getSourceRange());
15952 // Vector logical not returns the signed variant of the operand type.
15953 resultType = GetSignedVectorType(resultType);
15954 break;
15955 } else {
15956 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15957 << resultType << Input.get()->getSourceRange());
15960 // LNot always has type int. C99 6.5.3.3p5.
15961 // In C++, it's bool. C++ 5.3.1p8
15962 resultType = Context.getLogicalOperationType();
15963 break;
15964 case UO_Real:
15965 case UO_Imag:
15966 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15967 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
15968 // complex l-values to ordinary l-values and all other values to r-values.
15969 if (Input.isInvalid()) return ExprError();
15970 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15971 if (Input.get()->isGLValue() &&
15972 Input.get()->getObjectKind() == OK_Ordinary)
15973 VK = Input.get()->getValueKind();
15974 } else if (!getLangOpts().CPlusPlus) {
15975 // In C, a volatile scalar is read by __imag. In C++, it is not.
15976 Input = DefaultLvalueConversion(Input.get());
15978 break;
15979 case UO_Extension:
15980 resultType = Input.get()->getType();
15981 VK = Input.get()->getValueKind();
15982 OK = Input.get()->getObjectKind();
15983 break;
15984 case UO_Coawait:
15985 // It's unnecessary to represent the pass-through operator co_await in the
15986 // AST; just return the input expression instead.
15987 assert(!Input.get()->getType()->isDependentType() &&
15988 "the co_await expression must be non-dependant before "
15989 "building operator co_await");
15990 return Input;
15992 if (resultType.isNull() || Input.isInvalid())
15993 return ExprError();
15995 // Check for array bounds violations in the operand of the UnaryOperator,
15996 // except for the '*' and '&' operators that have to be handled specially
15997 // by CheckArrayAccess (as there are special cases like &array[arraysize]
15998 // that are explicitly defined as valid by the standard).
15999 if (Opc != UO_AddrOf && Opc != UO_Deref)
16000 CheckArrayAccess(Input.get());
16002 auto *UO =
16003 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
16004 OpLoc, CanOverflow, CurFPFeatureOverrides());
16006 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16007 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16008 !isUnevaluatedContext())
16009 ExprEvalContexts.back().PossibleDerefs.insert(UO);
16011 // Convert the result back to a half vector.
16012 if (ConvertHalfVec)
16013 return convertVector(UO, Context.HalfTy, *this);
16014 return UO;
16017 /// Determine whether the given expression is a qualified member
16018 /// access expression, of a form that could be turned into a pointer to member
16019 /// with the address-of operator.
16020 bool Sema::isQualifiedMemberAccess(Expr *E) {
16021 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16022 if (!DRE->getQualifier())
16023 return false;
16025 ValueDecl *VD = DRE->getDecl();
16026 if (!VD->isCXXClassMember())
16027 return false;
16029 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
16030 return true;
16031 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
16032 return Method->isInstance();
16034 return false;
16037 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
16038 if (!ULE->getQualifier())
16039 return false;
16041 for (NamedDecl *D : ULE->decls()) {
16042 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16043 if (Method->isInstance())
16044 return true;
16045 } else {
16046 // Overload set does not contain methods.
16047 break;
16051 return false;
16054 return false;
16057 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16058 UnaryOperatorKind Opc, Expr *Input,
16059 bool IsAfterAmp) {
16060 // First things first: handle placeholders so that the
16061 // overloaded-operator check considers the right type.
16062 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16063 // Increment and decrement of pseudo-object references.
16064 if (pty->getKind() == BuiltinType::PseudoObject &&
16065 UnaryOperator::isIncrementDecrementOp(Opc))
16066 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
16068 // extension is always a builtin operator.
16069 if (Opc == UO_Extension)
16070 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16072 // & gets special logic for several kinds of placeholder.
16073 // The builtin code knows what to do.
16074 if (Opc == UO_AddrOf &&
16075 (pty->getKind() == BuiltinType::Overload ||
16076 pty->getKind() == BuiltinType::UnknownAny ||
16077 pty->getKind() == BuiltinType::BoundMember))
16078 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16080 // Anything else needs to be handled now.
16081 ExprResult Result = CheckPlaceholderExpr(Input);
16082 if (Result.isInvalid()) return ExprError();
16083 Input = Result.get();
16086 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16087 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16088 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
16089 // Find all of the overloaded operators visible from this point.
16090 UnresolvedSet<16> Functions;
16091 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16092 if (S && OverOp != OO_None)
16093 LookupOverloadedOperatorName(OverOp, S, Functions);
16095 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
16098 return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
16101 // Unary Operators. 'Tok' is the token for the operator.
16102 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16103 Expr *Input, bool IsAfterAmp) {
16104 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
16105 IsAfterAmp);
16108 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
16109 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16110 LabelDecl *TheDecl) {
16111 TheDecl->markUsed(Context);
16112 // Create the AST node. The address of a label always has type 'void*'.
16113 auto *Res = new (Context) AddrLabelExpr(
16114 OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16116 if (getCurFunction())
16117 getCurFunction()->AddrLabels.push_back(Res);
16119 return Res;
16122 void Sema::ActOnStartStmtExpr() {
16123 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
16126 void Sema::ActOnStmtExprError() {
16127 // Note that function is also called by TreeTransform when leaving a
16128 // StmtExpr scope without rebuilding anything.
16130 DiscardCleanupsInEvaluationContext();
16131 PopExpressionEvaluationContext();
16134 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16135 SourceLocation RPLoc) {
16136 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
16139 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16140 SourceLocation RPLoc, unsigned TemplateDepth) {
16141 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16142 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
16144 if (hasAnyUnrecoverableErrorsInThisFunction())
16145 DiscardCleanupsInEvaluationContext();
16146 assert(!Cleanup.exprNeedsCleanups() &&
16147 "cleanups within StmtExpr not correctly bound!");
16148 PopExpressionEvaluationContext();
16150 // FIXME: there are a variety of strange constraints to enforce here, for
16151 // example, it is not possible to goto into a stmt expression apparently.
16152 // More semantic analysis is needed.
16154 // If there are sub-stmts in the compound stmt, take the type of the last one
16155 // as the type of the stmtexpr.
16156 QualType Ty = Context.VoidTy;
16157 bool StmtExprMayBindToTemp = false;
16158 if (!Compound->body_empty()) {
16159 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16160 if (const auto *LastStmt =
16161 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
16162 if (const Expr *Value = LastStmt->getExprStmt()) {
16163 StmtExprMayBindToTemp = true;
16164 Ty = Value->getType();
16169 // FIXME: Check that expression type is complete/non-abstract; statement
16170 // expressions are not lvalues.
16171 Expr *ResStmtExpr =
16172 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16173 if (StmtExprMayBindToTemp)
16174 return MaybeBindToTemporary(ResStmtExpr);
16175 return ResStmtExpr;
16178 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16179 if (ER.isInvalid())
16180 return ExprError();
16182 // Do function/array conversion on the last expression, but not
16183 // lvalue-to-rvalue. However, initialize an unqualified type.
16184 ER = DefaultFunctionArrayConversion(ER.get());
16185 if (ER.isInvalid())
16186 return ExprError();
16187 Expr *E = ER.get();
16189 if (E->isTypeDependent())
16190 return E;
16192 // In ARC, if the final expression ends in a consume, splice
16193 // the consume out and bind it later. In the alternate case
16194 // (when dealing with a retainable type), the result
16195 // initialization will create a produce. In both cases the
16196 // result will be +1, and we'll need to balance that out with
16197 // a bind.
16198 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
16199 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16200 return Cast->getSubExpr();
16202 // FIXME: Provide a better location for the initialization.
16203 return PerformCopyInitialization(
16204 InitializedEntity::InitializeStmtExprResult(
16205 E->getBeginLoc(), E->getType().getUnqualifiedType()),
16206 SourceLocation(), E);
16209 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16210 TypeSourceInfo *TInfo,
16211 ArrayRef<OffsetOfComponent> Components,
16212 SourceLocation RParenLoc) {
16213 QualType ArgTy = TInfo->getType();
16214 bool Dependent = ArgTy->isDependentType();
16215 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16217 // We must have at least one component that refers to the type, and the first
16218 // one is known to be a field designator. Verify that the ArgTy represents
16219 // a struct/union/class.
16220 if (!Dependent && !ArgTy->isRecordType())
16221 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16222 << ArgTy << TypeRange);
16224 // Type must be complete per C99 7.17p3 because a declaring a variable
16225 // with an incomplete type would be ill-formed.
16226 if (!Dependent
16227 && RequireCompleteType(BuiltinLoc, ArgTy,
16228 diag::err_offsetof_incomplete_type, TypeRange))
16229 return ExprError();
16231 bool DidWarnAboutNonPOD = false;
16232 QualType CurrentType = ArgTy;
16233 SmallVector<OffsetOfNode, 4> Comps;
16234 SmallVector<Expr*, 4> Exprs;
16235 for (const OffsetOfComponent &OC : Components) {
16236 if (OC.isBrackets) {
16237 // Offset of an array sub-field. TODO: Should we allow vector elements?
16238 if (!CurrentType->isDependentType()) {
16239 const ArrayType *AT = Context.getAsArrayType(CurrentType);
16240 if(!AT)
16241 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16242 << CurrentType);
16243 CurrentType = AT->getElementType();
16244 } else
16245 CurrentType = Context.DependentTy;
16247 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
16248 if (IdxRval.isInvalid())
16249 return ExprError();
16250 Expr *Idx = IdxRval.get();
16252 // The expression must be an integral expression.
16253 // FIXME: An integral constant expression?
16254 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16255 !Idx->getType()->isIntegerType())
16256 return ExprError(
16257 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16258 << Idx->getSourceRange());
16260 // Record this array index.
16261 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16262 Exprs.push_back(Idx);
16263 continue;
16266 // Offset of a field.
16267 if (CurrentType->isDependentType()) {
16268 // We have the offset of a field, but we can't look into the dependent
16269 // type. Just record the identifier of the field.
16270 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16271 CurrentType = Context.DependentTy;
16272 continue;
16275 // We need to have a complete type to look into.
16276 if (RequireCompleteType(OC.LocStart, CurrentType,
16277 diag::err_offsetof_incomplete_type))
16278 return ExprError();
16280 // Look for the designated field.
16281 const RecordType *RC = CurrentType->getAs<RecordType>();
16282 if (!RC)
16283 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16284 << CurrentType);
16285 RecordDecl *RD = RC->getDecl();
16287 // C++ [lib.support.types]p5:
16288 // The macro offsetof accepts a restricted set of type arguments in this
16289 // International Standard. type shall be a POD structure or a POD union
16290 // (clause 9).
16291 // C++11 [support.types]p4:
16292 // If type is not a standard-layout class (Clause 9), the results are
16293 // undefined.
16294 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16295 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16296 unsigned DiagID =
16297 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16298 : diag::ext_offsetof_non_pod_type;
16300 if (!IsSafe && !DidWarnAboutNonPOD &&
16301 DiagRuntimeBehavior(BuiltinLoc, nullptr,
16302 PDiag(DiagID)
16303 << SourceRange(Components[0].LocStart, OC.LocEnd)
16304 << CurrentType))
16305 DidWarnAboutNonPOD = true;
16308 // Look for the field.
16309 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16310 LookupQualifiedName(R, RD);
16311 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16312 IndirectFieldDecl *IndirectMemberDecl = nullptr;
16313 if (!MemberDecl) {
16314 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16315 MemberDecl = IndirectMemberDecl->getAnonField();
16318 if (!MemberDecl)
16319 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
16320 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
16321 OC.LocEnd));
16323 // C99 7.17p3:
16324 // (If the specified member is a bit-field, the behavior is undefined.)
16326 // We diagnose this as an error.
16327 if (MemberDecl->isBitField()) {
16328 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16329 << MemberDecl->getDeclName()
16330 << SourceRange(BuiltinLoc, RParenLoc);
16331 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16332 return ExprError();
16335 RecordDecl *Parent = MemberDecl->getParent();
16336 if (IndirectMemberDecl)
16337 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16339 // If the member was found in a base class, introduce OffsetOfNodes for
16340 // the base class indirections.
16341 CXXBasePaths Paths;
16342 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16343 Paths)) {
16344 if (Paths.getDetectedVirtual()) {
16345 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16346 << MemberDecl->getDeclName()
16347 << SourceRange(BuiltinLoc, RParenLoc);
16348 return ExprError();
16351 CXXBasePath &Path = Paths.front();
16352 for (const CXXBasePathElement &B : Path)
16353 Comps.push_back(OffsetOfNode(B.Base));
16356 if (IndirectMemberDecl) {
16357 for (auto *FI : IndirectMemberDecl->chain()) {
16358 assert(isa<FieldDecl>(FI));
16359 Comps.push_back(OffsetOfNode(OC.LocStart,
16360 cast<FieldDecl>(FI), OC.LocEnd));
16362 } else
16363 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16365 CurrentType = MemberDecl->getType().getNonReferenceType();
16368 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16369 Comps, Exprs, RParenLoc);
16372 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16373 SourceLocation BuiltinLoc,
16374 SourceLocation TypeLoc,
16375 ParsedType ParsedArgTy,
16376 ArrayRef<OffsetOfComponent> Components,
16377 SourceLocation RParenLoc) {
16379 TypeSourceInfo *ArgTInfo;
16380 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16381 if (ArgTy.isNull())
16382 return ExprError();
16384 if (!ArgTInfo)
16385 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16387 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16391 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16392 Expr *CondExpr,
16393 Expr *LHSExpr, Expr *RHSExpr,
16394 SourceLocation RPLoc) {
16395 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16397 ExprValueKind VK = VK_PRValue;
16398 ExprObjectKind OK = OK_Ordinary;
16399 QualType resType;
16400 bool CondIsTrue = false;
16401 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16402 resType = Context.DependentTy;
16403 } else {
16404 // The conditional expression is required to be a constant expression.
16405 llvm::APSInt condEval(32);
16406 ExprResult CondICE = VerifyIntegerConstantExpression(
16407 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16408 if (CondICE.isInvalid())
16409 return ExprError();
16410 CondExpr = CondICE.get();
16411 CondIsTrue = condEval.getZExtValue();
16413 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16414 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16416 resType = ActiveExpr->getType();
16417 VK = ActiveExpr->getValueKind();
16418 OK = ActiveExpr->getObjectKind();
16421 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16422 resType, VK, OK, RPLoc, CondIsTrue);
16425 //===----------------------------------------------------------------------===//
16426 // Clang Extensions.
16427 //===----------------------------------------------------------------------===//
16429 /// ActOnBlockStart - This callback is invoked when a block literal is started.
16430 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16431 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16433 if (LangOpts.CPlusPlus) {
16434 MangleNumberingContext *MCtx;
16435 Decl *ManglingContextDecl;
16436 std::tie(MCtx, ManglingContextDecl) =
16437 getCurrentMangleNumberContext(Block->getDeclContext());
16438 if (MCtx) {
16439 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16440 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16444 PushBlockScope(CurScope, Block);
16445 CurContext->addDecl(Block);
16446 if (CurScope)
16447 PushDeclContext(CurScope, Block);
16448 else
16449 CurContext = Block;
16451 getCurBlock()->HasImplicitReturnType = true;
16453 // Enter a new evaluation context to insulate the block from any
16454 // cleanups from the enclosing full-expression.
16455 PushExpressionEvaluationContext(
16456 ExpressionEvaluationContext::PotentiallyEvaluated);
16459 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16460 Scope *CurScope) {
16461 assert(ParamInfo.getIdentifier() == nullptr &&
16462 "block-id should have no identifier!");
16463 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16464 BlockScopeInfo *CurBlock = getCurBlock();
16466 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
16467 QualType T = Sig->getType();
16469 // FIXME: We should allow unexpanded parameter packs here, but that would,
16470 // in turn, make the block expression contain unexpanded parameter packs.
16471 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16472 // Drop the parameters.
16473 FunctionProtoType::ExtProtoInfo EPI;
16474 EPI.HasTrailingReturn = false;
16475 EPI.TypeQuals.addConst();
16476 T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
16477 Sig = Context.getTrivialTypeSourceInfo(T);
16480 // GetTypeForDeclarator always produces a function type for a block
16481 // literal signature. Furthermore, it is always a FunctionProtoType
16482 // unless the function was written with a typedef.
16483 assert(T->isFunctionType() &&
16484 "GetTypeForDeclarator made a non-function block signature");
16486 // Look for an explicit signature in that function type.
16487 FunctionProtoTypeLoc ExplicitSignature;
16489 if ((ExplicitSignature = Sig->getTypeLoc()
16490 .getAsAdjusted<FunctionProtoTypeLoc>())) {
16492 // Check whether that explicit signature was synthesized by
16493 // GetTypeForDeclarator. If so, don't save that as part of the
16494 // written signature.
16495 if (ExplicitSignature.getLocalRangeBegin() ==
16496 ExplicitSignature.getLocalRangeEnd()) {
16497 // This would be much cheaper if we stored TypeLocs instead of
16498 // TypeSourceInfos.
16499 TypeLoc Result = ExplicitSignature.getReturnLoc();
16500 unsigned Size = Result.getFullDataSize();
16501 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16502 Sig->getTypeLoc().initializeFullCopy(Result, Size);
16504 ExplicitSignature = FunctionProtoTypeLoc();
16508 CurBlock->TheDecl->setSignatureAsWritten(Sig);
16509 CurBlock->FunctionType = T;
16511 const auto *Fn = T->castAs<FunctionType>();
16512 QualType RetTy = Fn->getReturnType();
16513 bool isVariadic =
16514 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16516 CurBlock->TheDecl->setIsVariadic(isVariadic);
16518 // Context.DependentTy is used as a placeholder for a missing block
16519 // return type. TODO: what should we do with declarators like:
16520 // ^ * { ... }
16521 // If the answer is "apply template argument deduction"....
16522 if (RetTy != Context.DependentTy) {
16523 CurBlock->ReturnType = RetTy;
16524 CurBlock->TheDecl->setBlockMissingReturnType(false);
16525 CurBlock->HasImplicitReturnType = false;
16528 // Push block parameters from the declarator if we had them.
16529 SmallVector<ParmVarDecl*, 8> Params;
16530 if (ExplicitSignature) {
16531 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16532 ParmVarDecl *Param = ExplicitSignature.getParam(I);
16533 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16534 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16535 // Diagnose this as an extension in C17 and earlier.
16536 if (!getLangOpts().C2x)
16537 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
16539 Params.push_back(Param);
16542 // Fake up parameter variables if we have a typedef, like
16543 // ^ fntype { ... }
16544 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16545 for (const auto &I : Fn->param_types()) {
16546 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16547 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16548 Params.push_back(Param);
16552 // Set the parameters on the block decl.
16553 if (!Params.empty()) {
16554 CurBlock->TheDecl->setParams(Params);
16555 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16556 /*CheckParameterNames=*/false);
16559 // Finally we can process decl attributes.
16560 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16562 // Put the parameter variables in scope.
16563 for (auto *AI : CurBlock->TheDecl->parameters()) {
16564 AI->setOwningFunction(CurBlock->TheDecl);
16566 // If this has an identifier, add it to the scope stack.
16567 if (AI->getIdentifier()) {
16568 CheckShadow(CurBlock->TheScope, AI);
16570 PushOnScopeChains(AI, CurBlock->TheScope);
16575 /// ActOnBlockError - If there is an error parsing a block, this callback
16576 /// is invoked to pop the information about the block from the action impl.
16577 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16578 // Leave the expression-evaluation context.
16579 DiscardCleanupsInEvaluationContext();
16580 PopExpressionEvaluationContext();
16582 // Pop off CurBlock, handle nested blocks.
16583 PopDeclContext();
16584 PopFunctionScopeInfo();
16587 /// ActOnBlockStmtExpr - This is called when the body of a block statement
16588 /// literal was successfully completed. ^(int x){...}
16589 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16590 Stmt *Body, Scope *CurScope) {
16591 // If blocks are disabled, emit an error.
16592 if (!LangOpts.Blocks)
16593 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16595 // Leave the expression-evaluation context.
16596 if (hasAnyUnrecoverableErrorsInThisFunction())
16597 DiscardCleanupsInEvaluationContext();
16598 assert(!Cleanup.exprNeedsCleanups() &&
16599 "cleanups within block not correctly bound!");
16600 PopExpressionEvaluationContext();
16602 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16603 BlockDecl *BD = BSI->TheDecl;
16605 if (BSI->HasImplicitReturnType)
16606 deduceClosureReturnType(*BSI);
16608 QualType RetTy = Context.VoidTy;
16609 if (!BSI->ReturnType.isNull())
16610 RetTy = BSI->ReturnType;
16612 bool NoReturn = BD->hasAttr<NoReturnAttr>();
16613 QualType BlockTy;
16615 // If the user wrote a function type in some form, try to use that.
16616 if (!BSI->FunctionType.isNull()) {
16617 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16619 FunctionType::ExtInfo Ext = FTy->getExtInfo();
16620 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16622 // Turn protoless block types into nullary block types.
16623 if (isa<FunctionNoProtoType>(FTy)) {
16624 FunctionProtoType::ExtProtoInfo EPI;
16625 EPI.ExtInfo = Ext;
16626 BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16628 // Otherwise, if we don't need to change anything about the function type,
16629 // preserve its sugar structure.
16630 } else if (FTy->getReturnType() == RetTy &&
16631 (!NoReturn || FTy->getNoReturnAttr())) {
16632 BlockTy = BSI->FunctionType;
16634 // Otherwise, make the minimal modifications to the function type.
16635 } else {
16636 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16637 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16638 EPI.TypeQuals = Qualifiers();
16639 EPI.ExtInfo = Ext;
16640 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16643 // If we don't have a function type, just build one from nothing.
16644 } else {
16645 FunctionProtoType::ExtProtoInfo EPI;
16646 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16647 BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16650 DiagnoseUnusedParameters(BD->parameters());
16651 BlockTy = Context.getBlockPointerType(BlockTy);
16653 // If needed, diagnose invalid gotos and switches in the block.
16654 if (getCurFunction()->NeedsScopeChecking() &&
16655 !PP.isCodeCompletionEnabled())
16656 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16658 BD->setBody(cast<CompoundStmt>(Body));
16660 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16661 DiagnoseUnguardedAvailabilityViolations(BD);
16663 // Try to apply the named return value optimization. We have to check again
16664 // if we can do this, though, because blocks keep return statements around
16665 // to deduce an implicit return type.
16666 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16667 !BD->isDependentContext())
16668 computeNRVO(Body, BSI);
16670 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16671 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16672 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16673 NTCUK_Destruct|NTCUK_Copy);
16675 PopDeclContext();
16677 // Set the captured variables on the block.
16678 SmallVector<BlockDecl::Capture, 4> Captures;
16679 for (Capture &Cap : BSI->Captures) {
16680 if (Cap.isInvalid() || Cap.isThisCapture())
16681 continue;
16682 // Cap.getVariable() is always a VarDecl because
16683 // blocks cannot capture structured bindings or other ValueDecl kinds.
16684 auto *Var = cast<VarDecl>(Cap.getVariable());
16685 Expr *CopyExpr = nullptr;
16686 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16687 if (const RecordType *Record =
16688 Cap.getCaptureType()->getAs<RecordType>()) {
16689 // The capture logic needs the destructor, so make sure we mark it.
16690 // Usually this is unnecessary because most local variables have
16691 // their destructors marked at declaration time, but parameters are
16692 // an exception because it's technically only the call site that
16693 // actually requires the destructor.
16694 if (isa<ParmVarDecl>(Var))
16695 FinalizeVarWithDestructor(Var, Record);
16697 // Enter a separate potentially-evaluated context while building block
16698 // initializers to isolate their cleanups from those of the block
16699 // itself.
16700 // FIXME: Is this appropriate even when the block itself occurs in an
16701 // unevaluated operand?
16702 EnterExpressionEvaluationContext EvalContext(
16703 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16705 SourceLocation Loc = Cap.getLocation();
16707 ExprResult Result = BuildDeclarationNameExpr(
16708 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16710 // According to the blocks spec, the capture of a variable from
16711 // the stack requires a const copy constructor. This is not true
16712 // of the copy/move done to move a __block variable to the heap.
16713 if (!Result.isInvalid() &&
16714 !Result.get()->getType().isConstQualified()) {
16715 Result = ImpCastExprToType(Result.get(),
16716 Result.get()->getType().withConst(),
16717 CK_NoOp, VK_LValue);
16720 if (!Result.isInvalid()) {
16721 Result = PerformCopyInitialization(
16722 InitializedEntity::InitializeBlock(Var->getLocation(),
16723 Cap.getCaptureType()),
16724 Loc, Result.get());
16727 // Build a full-expression copy expression if initialization
16728 // succeeded and used a non-trivial constructor. Recover from
16729 // errors by pretending that the copy isn't necessary.
16730 if (!Result.isInvalid() &&
16731 !cast<CXXConstructExpr>(Result.get())->getConstructor()
16732 ->isTrivial()) {
16733 Result = MaybeCreateExprWithCleanups(Result);
16734 CopyExpr = Result.get();
16739 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16740 CopyExpr);
16741 Captures.push_back(NewCap);
16743 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16745 // Pop the block scope now but keep it alive to the end of this function.
16746 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16747 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16749 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
16751 // If the block isn't obviously global, i.e. it captures anything at
16752 // all, then we need to do a few things in the surrounding context:
16753 if (Result->getBlockDecl()->hasCaptures()) {
16754 // First, this expression has a new cleanup object.
16755 ExprCleanupObjects.push_back(Result->getBlockDecl());
16756 Cleanup.setExprNeedsCleanups(true);
16758 // It also gets a branch-protected scope if any of the captured
16759 // variables needs destruction.
16760 for (const auto &CI : Result->getBlockDecl()->captures()) {
16761 const VarDecl *var = CI.getVariable();
16762 if (var->getType().isDestructedType() != QualType::DK_none) {
16763 setFunctionHasBranchProtectedScope();
16764 break;
16769 if (getCurFunction())
16770 getCurFunction()->addBlock(BD);
16772 return Result;
16775 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16776 SourceLocation RPLoc) {
16777 TypeSourceInfo *TInfo;
16778 GetTypeFromParser(Ty, &TInfo);
16779 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16782 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16783 Expr *E, TypeSourceInfo *TInfo,
16784 SourceLocation RPLoc) {
16785 Expr *OrigExpr = E;
16786 bool IsMS = false;
16788 // CUDA device code does not support varargs.
16789 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16790 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16791 CUDAFunctionTarget T = IdentifyCUDATarget(F);
16792 if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
16793 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16797 // NVPTX does not support va_arg expression.
16798 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
16799 Context.getTargetInfo().getTriple().isNVPTX())
16800 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16802 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16803 // as Microsoft ABI on an actual Microsoft platform, where
16804 // __builtin_ms_va_list and __builtin_va_list are the same.)
16805 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16806 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16807 QualType MSVaListType = Context.getBuiltinMSVaListType();
16808 if (Context.hasSameType(MSVaListType, E->getType())) {
16809 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16810 return ExprError();
16811 IsMS = true;
16815 // Get the va_list type
16816 QualType VaListType = Context.getBuiltinVaListType();
16817 if (!IsMS) {
16818 if (VaListType->isArrayType()) {
16819 // Deal with implicit array decay; for example, on x86-64,
16820 // va_list is an array, but it's supposed to decay to
16821 // a pointer for va_arg.
16822 VaListType = Context.getArrayDecayedType(VaListType);
16823 // Make sure the input expression also decays appropriately.
16824 ExprResult Result = UsualUnaryConversions(E);
16825 if (Result.isInvalid())
16826 return ExprError();
16827 E = Result.get();
16828 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16829 // If va_list is a record type and we are compiling in C++ mode,
16830 // check the argument using reference binding.
16831 InitializedEntity Entity = InitializedEntity::InitializeParameter(
16832 Context, Context.getLValueReferenceType(VaListType), false);
16833 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16834 if (Init.isInvalid())
16835 return ExprError();
16836 E = Init.getAs<Expr>();
16837 } else {
16838 // Otherwise, the va_list argument must be an l-value because
16839 // it is modified by va_arg.
16840 if (!E->isTypeDependent() &&
16841 CheckForModifiableLvalue(E, BuiltinLoc, *this))
16842 return ExprError();
16846 if (!IsMS && !E->isTypeDependent() &&
16847 !Context.hasSameType(VaListType, E->getType()))
16848 return ExprError(
16849 Diag(E->getBeginLoc(),
16850 diag::err_first_argument_to_va_arg_not_of_type_va_list)
16851 << OrigExpr->getType() << E->getSourceRange());
16853 if (!TInfo->getType()->isDependentType()) {
16854 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16855 diag::err_second_parameter_to_va_arg_incomplete,
16856 TInfo->getTypeLoc()))
16857 return ExprError();
16859 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16860 TInfo->getType(),
16861 diag::err_second_parameter_to_va_arg_abstract,
16862 TInfo->getTypeLoc()))
16863 return ExprError();
16865 if (!TInfo->getType().isPODType(Context)) {
16866 Diag(TInfo->getTypeLoc().getBeginLoc(),
16867 TInfo->getType()->isObjCLifetimeType()
16868 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16869 : diag::warn_second_parameter_to_va_arg_not_pod)
16870 << TInfo->getType()
16871 << TInfo->getTypeLoc().getSourceRange();
16874 // Check for va_arg where arguments of the given type will be promoted
16875 // (i.e. this va_arg is guaranteed to have undefined behavior).
16876 QualType PromoteType;
16877 if (Context.isPromotableIntegerType(TInfo->getType())) {
16878 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16879 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16880 // and C2x 7.16.1.1p2 says, in part:
16881 // If type is not compatible with the type of the actual next argument
16882 // (as promoted according to the default argument promotions), the
16883 // behavior is undefined, except for the following cases:
16884 // - both types are pointers to qualified or unqualified versions of
16885 // compatible types;
16886 // - one type is a signed integer type, the other type is the
16887 // corresponding unsigned integer type, and the value is
16888 // representable in both types;
16889 // - one type is pointer to qualified or unqualified void and the
16890 // other is a pointer to a qualified or unqualified character type.
16891 // Given that type compatibility is the primary requirement (ignoring
16892 // qualifications), you would think we could call typesAreCompatible()
16893 // directly to test this. However, in C++, that checks for *same type*,
16894 // which causes false positives when passing an enumeration type to
16895 // va_arg. Instead, get the underlying type of the enumeration and pass
16896 // that.
16897 QualType UnderlyingType = TInfo->getType();
16898 if (const auto *ET = UnderlyingType->getAs<EnumType>())
16899 UnderlyingType = ET->getDecl()->getIntegerType();
16900 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16901 /*CompareUnqualified*/ true))
16902 PromoteType = QualType();
16904 // If the types are still not compatible, we need to test whether the
16905 // promoted type and the underlying type are the same except for
16906 // signedness. Ask the AST for the correctly corresponding type and see
16907 // if that's compatible.
16908 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16909 PromoteType->isUnsignedIntegerType() !=
16910 UnderlyingType->isUnsignedIntegerType()) {
16911 UnderlyingType =
16912 UnderlyingType->isUnsignedIntegerType()
16913 ? Context.getCorrespondingSignedType(UnderlyingType)
16914 : Context.getCorrespondingUnsignedType(UnderlyingType);
16915 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16916 /*CompareUnqualified*/ true))
16917 PromoteType = QualType();
16920 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16921 PromoteType = Context.DoubleTy;
16922 if (!PromoteType.isNull())
16923 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16924 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16925 << TInfo->getType()
16926 << PromoteType
16927 << TInfo->getTypeLoc().getSourceRange());
16930 QualType T = TInfo->getType().getNonLValueExprType(Context);
16931 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16934 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16935 // The type of __null will be int or long, depending on the size of
16936 // pointers on the target.
16937 QualType Ty;
16938 unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
16939 if (pw == Context.getTargetInfo().getIntWidth())
16940 Ty = Context.IntTy;
16941 else if (pw == Context.getTargetInfo().getLongWidth())
16942 Ty = Context.LongTy;
16943 else if (pw == Context.getTargetInfo().getLongLongWidth())
16944 Ty = Context.LongLongTy;
16945 else {
16946 llvm_unreachable("I don't know size of pointer!");
16949 return new (Context) GNUNullExpr(Ty, TokenLoc);
16952 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16953 CXXRecordDecl *ImplDecl = nullptr;
16955 // Fetch the std::source_location::__impl decl.
16956 if (NamespaceDecl *Std = S.getStdNamespace()) {
16957 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16958 Loc, Sema::LookupOrdinaryName);
16959 if (S.LookupQualifiedName(ResultSL, Std)) {
16960 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16961 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16962 Loc, Sema::LookupOrdinaryName);
16963 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16964 S.LookupQualifiedName(ResultImpl, SLDecl)) {
16965 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16971 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16972 S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16973 return nullptr;
16976 // Verify that __impl is a trivial struct type, with no base classes, and with
16977 // only the four expected fields.
16978 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16979 ImplDecl->getNumBases() != 0) {
16980 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16981 return nullptr;
16984 unsigned Count = 0;
16985 for (FieldDecl *F : ImplDecl->fields()) {
16986 StringRef Name = F->getName();
16988 if (Name == "_M_file_name") {
16989 if (F->getType() !=
16990 S.Context.getPointerType(S.Context.CharTy.withConst()))
16991 break;
16992 Count++;
16993 } else if (Name == "_M_function_name") {
16994 if (F->getType() !=
16995 S.Context.getPointerType(S.Context.CharTy.withConst()))
16996 break;
16997 Count++;
16998 } else if (Name == "_M_line") {
16999 if (!F->getType()->isIntegerType())
17000 break;
17001 Count++;
17002 } else if (Name == "_M_column") {
17003 if (!F->getType()->isIntegerType())
17004 break;
17005 Count++;
17006 } else {
17007 Count = 100; // invalid
17008 break;
17011 if (Count != 4) {
17012 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17013 return nullptr;
17016 return ImplDecl;
17019 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
17020 SourceLocation BuiltinLoc,
17021 SourceLocation RPLoc) {
17022 QualType ResultTy;
17023 switch (Kind) {
17024 case SourceLocExpr::File:
17025 case SourceLocExpr::Function: {
17026 QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
17027 ResultTy =
17028 Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17029 break;
17031 case SourceLocExpr::Line:
17032 case SourceLocExpr::Column:
17033 ResultTy = Context.UnsignedIntTy;
17034 break;
17035 case SourceLocExpr::SourceLocStruct:
17036 if (!StdSourceLocationImplDecl) {
17037 StdSourceLocationImplDecl =
17038 LookupStdSourceLocationImpl(*this, BuiltinLoc);
17039 if (!StdSourceLocationImplDecl)
17040 return ExprError();
17042 ResultTy = Context.getPointerType(
17043 Context.getRecordType(StdSourceLocationImplDecl).withConst());
17044 break;
17047 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
17050 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
17051 QualType ResultTy,
17052 SourceLocation BuiltinLoc,
17053 SourceLocation RPLoc,
17054 DeclContext *ParentContext) {
17055 return new (Context)
17056 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17059 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
17060 bool Diagnose) {
17061 if (!getLangOpts().ObjC)
17062 return false;
17064 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
17065 if (!PT)
17066 return false;
17067 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
17069 // Ignore any parens, implicit casts (should only be
17070 // array-to-pointer decays), and not-so-opaque values. The last is
17071 // important for making this trigger for property assignments.
17072 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
17073 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
17074 if (OV->getSourceExpr())
17075 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
17077 if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
17078 if (!PT->isObjCIdType() &&
17079 !(ID && ID->getIdentifier()->isStr("NSString")))
17080 return false;
17081 if (!SL->isOrdinary())
17082 return false;
17084 if (Diagnose) {
17085 Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
17086 << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
17087 Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
17089 return true;
17092 if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
17093 isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
17094 isa<CXXBoolLiteralExpr>(SrcExpr)) &&
17095 !SrcExpr->isNullPointerConstant(
17096 getASTContext(), Expr::NPC_NeverValueDependent)) {
17097 if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
17098 return false;
17099 if (Diagnose) {
17100 Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
17101 << /*number*/1
17102 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
17103 Expr *NumLit =
17104 BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
17105 if (NumLit)
17106 Exp = NumLit;
17108 return true;
17111 return false;
17114 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17115 const Expr *SrcExpr) {
17116 if (!DstType->isFunctionPointerType() ||
17117 !SrcExpr->getType()->isFunctionType())
17118 return false;
17120 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
17121 if (!DRE)
17122 return false;
17124 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
17125 if (!FD)
17126 return false;
17128 return !S.checkAddressOfFunctionIsAvailable(FD,
17129 /*Complain=*/true,
17130 SrcExpr->getBeginLoc());
17133 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17134 SourceLocation Loc,
17135 QualType DstType, QualType SrcType,
17136 Expr *SrcExpr, AssignmentAction Action,
17137 bool *Complained) {
17138 if (Complained)
17139 *Complained = false;
17141 // Decode the result (notice that AST's are still created for extensions).
17142 bool CheckInferredResultType = false;
17143 bool isInvalid = false;
17144 unsigned DiagKind = 0;
17145 ConversionFixItGenerator ConvHints;
17146 bool MayHaveConvFixit = false;
17147 bool MayHaveFunctionDiff = false;
17148 const ObjCInterfaceDecl *IFace = nullptr;
17149 const ObjCProtocolDecl *PDecl = nullptr;
17151 switch (ConvTy) {
17152 case Compatible:
17153 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17154 return false;
17156 case PointerToInt:
17157 if (getLangOpts().CPlusPlus) {
17158 DiagKind = diag::err_typecheck_convert_pointer_int;
17159 isInvalid = true;
17160 } else {
17161 DiagKind = diag::ext_typecheck_convert_pointer_int;
17163 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17164 MayHaveConvFixit = true;
17165 break;
17166 case IntToPointer:
17167 if (getLangOpts().CPlusPlus) {
17168 DiagKind = diag::err_typecheck_convert_int_pointer;
17169 isInvalid = true;
17170 } else {
17171 DiagKind = diag::ext_typecheck_convert_int_pointer;
17173 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17174 MayHaveConvFixit = true;
17175 break;
17176 case IncompatibleFunctionPointerStrict:
17177 DiagKind =
17178 diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17179 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17180 MayHaveConvFixit = true;
17181 break;
17182 case IncompatibleFunctionPointer:
17183 if (getLangOpts().CPlusPlus) {
17184 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17185 isInvalid = true;
17186 } else {
17187 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17189 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17190 MayHaveConvFixit = true;
17191 break;
17192 case IncompatiblePointer:
17193 if (Action == AA_Passing_CFAudited) {
17194 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17195 } else if (getLangOpts().CPlusPlus) {
17196 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17197 isInvalid = true;
17198 } else {
17199 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17201 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17202 SrcType->isObjCObjectPointerType();
17203 if (!CheckInferredResultType) {
17204 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17205 } else if (CheckInferredResultType) {
17206 SrcType = SrcType.getUnqualifiedType();
17207 DstType = DstType.getUnqualifiedType();
17209 MayHaveConvFixit = true;
17210 break;
17211 case IncompatiblePointerSign:
17212 if (getLangOpts().CPlusPlus) {
17213 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17214 isInvalid = true;
17215 } else {
17216 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17218 break;
17219 case FunctionVoidPointer:
17220 if (getLangOpts().CPlusPlus) {
17221 DiagKind = diag::err_typecheck_convert_pointer_void_func;
17222 isInvalid = true;
17223 } else {
17224 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17226 break;
17227 case IncompatiblePointerDiscardsQualifiers: {
17228 // Perform array-to-pointer decay if necessary.
17229 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
17231 isInvalid = true;
17233 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17234 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17235 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17236 DiagKind = diag::err_typecheck_incompatible_address_space;
17237 break;
17239 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17240 DiagKind = diag::err_typecheck_incompatible_ownership;
17241 break;
17244 llvm_unreachable("unknown error case for discarding qualifiers!");
17245 // fallthrough
17247 case CompatiblePointerDiscardsQualifiers:
17248 // If the qualifiers lost were because we were applying the
17249 // (deprecated) C++ conversion from a string literal to a char*
17250 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
17251 // Ideally, this check would be performed in
17252 // checkPointerTypesForAssignment. However, that would require a
17253 // bit of refactoring (so that the second argument is an
17254 // expression, rather than a type), which should be done as part
17255 // of a larger effort to fix checkPointerTypesForAssignment for
17256 // C++ semantics.
17257 if (getLangOpts().CPlusPlus &&
17258 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
17259 return false;
17260 if (getLangOpts().CPlusPlus) {
17261 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
17262 isInvalid = true;
17263 } else {
17264 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
17267 break;
17268 case IncompatibleNestedPointerQualifiers:
17269 if (getLangOpts().CPlusPlus) {
17270 isInvalid = true;
17271 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17272 } else {
17273 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17275 break;
17276 case IncompatibleNestedPointerAddressSpaceMismatch:
17277 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17278 isInvalid = true;
17279 break;
17280 case IntToBlockPointer:
17281 DiagKind = diag::err_int_to_block_pointer;
17282 isInvalid = true;
17283 break;
17284 case IncompatibleBlockPointer:
17285 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17286 isInvalid = true;
17287 break;
17288 case IncompatibleObjCQualifiedId: {
17289 if (SrcType->isObjCQualifiedIdType()) {
17290 const ObjCObjectPointerType *srcOPT =
17291 SrcType->castAs<ObjCObjectPointerType>();
17292 for (auto *srcProto : srcOPT->quals()) {
17293 PDecl = srcProto;
17294 break;
17296 if (const ObjCInterfaceType *IFaceT =
17297 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17298 IFace = IFaceT->getDecl();
17300 else if (DstType->isObjCQualifiedIdType()) {
17301 const ObjCObjectPointerType *dstOPT =
17302 DstType->castAs<ObjCObjectPointerType>();
17303 for (auto *dstProto : dstOPT->quals()) {
17304 PDecl = dstProto;
17305 break;
17307 if (const ObjCInterfaceType *IFaceT =
17308 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17309 IFace = IFaceT->getDecl();
17311 if (getLangOpts().CPlusPlus) {
17312 DiagKind = diag::err_incompatible_qualified_id;
17313 isInvalid = true;
17314 } else {
17315 DiagKind = diag::warn_incompatible_qualified_id;
17317 break;
17319 case IncompatibleVectors:
17320 if (getLangOpts().CPlusPlus) {
17321 DiagKind = diag::err_incompatible_vectors;
17322 isInvalid = true;
17323 } else {
17324 DiagKind = diag::warn_incompatible_vectors;
17326 break;
17327 case IncompatibleObjCWeakRef:
17328 DiagKind = diag::err_arc_weak_unavailable_assign;
17329 isInvalid = true;
17330 break;
17331 case Incompatible:
17332 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17333 if (Complained)
17334 *Complained = true;
17335 return true;
17338 DiagKind = diag::err_typecheck_convert_incompatible;
17339 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17340 MayHaveConvFixit = true;
17341 isInvalid = true;
17342 MayHaveFunctionDiff = true;
17343 break;
17346 QualType FirstType, SecondType;
17347 switch (Action) {
17348 case AA_Assigning:
17349 case AA_Initializing:
17350 // The destination type comes first.
17351 FirstType = DstType;
17352 SecondType = SrcType;
17353 break;
17355 case AA_Returning:
17356 case AA_Passing:
17357 case AA_Passing_CFAudited:
17358 case AA_Converting:
17359 case AA_Sending:
17360 case AA_Casting:
17361 // The source type comes first.
17362 FirstType = SrcType;
17363 SecondType = DstType;
17364 break;
17367 PartialDiagnostic FDiag = PDiag(DiagKind);
17368 AssignmentAction ActionForDiag = Action;
17369 if (Action == AA_Passing_CFAudited)
17370 ActionForDiag = AA_Passing;
17372 FDiag << FirstType << SecondType << ActionForDiag
17373 << SrcExpr->getSourceRange();
17375 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17376 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17377 auto isPlainChar = [](const clang::Type *Type) {
17378 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17379 Type->isSpecificBuiltinType(BuiltinType::Char_U);
17381 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17382 isPlainChar(SecondType->getPointeeOrArrayElementType()));
17385 // If we can fix the conversion, suggest the FixIts.
17386 if (!ConvHints.isNull()) {
17387 for (FixItHint &H : ConvHints.Hints)
17388 FDiag << H;
17391 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17393 if (MayHaveFunctionDiff)
17394 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17396 Diag(Loc, FDiag);
17397 if ((DiagKind == diag::warn_incompatible_qualified_id ||
17398 DiagKind == diag::err_incompatible_qualified_id) &&
17399 PDecl && IFace && !IFace->hasDefinition())
17400 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17401 << IFace << PDecl;
17403 if (SecondType == Context.OverloadTy)
17404 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17405 FirstType, /*TakingAddress=*/true);
17407 if (CheckInferredResultType)
17408 EmitRelatedResultTypeNote(SrcExpr);
17410 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17411 EmitRelatedResultTypeNoteForReturn(DstType);
17413 if (Complained)
17414 *Complained = true;
17415 return isInvalid;
17418 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17419 llvm::APSInt *Result,
17420 AllowFoldKind CanFold) {
17421 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17422 public:
17423 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17424 QualType T) override {
17425 return S.Diag(Loc, diag::err_ice_not_integral)
17426 << T << S.LangOpts.CPlusPlus;
17428 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17429 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17431 } Diagnoser;
17433 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17436 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17437 llvm::APSInt *Result,
17438 unsigned DiagID,
17439 AllowFoldKind CanFold) {
17440 class IDDiagnoser : public VerifyICEDiagnoser {
17441 unsigned DiagID;
17443 public:
17444 IDDiagnoser(unsigned DiagID)
17445 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17447 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17448 return S.Diag(Loc, DiagID);
17450 } Diagnoser(DiagID);
17452 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17455 Sema::SemaDiagnosticBuilder
17456 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17457 QualType T) {
17458 return diagnoseNotICE(S, Loc);
17461 Sema::SemaDiagnosticBuilder
17462 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17463 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17466 ExprResult
17467 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17468 VerifyICEDiagnoser &Diagnoser,
17469 AllowFoldKind CanFold) {
17470 SourceLocation DiagLoc = E->getBeginLoc();
17472 if (getLangOpts().CPlusPlus11) {
17473 // C++11 [expr.const]p5:
17474 // If an expression of literal class type is used in a context where an
17475 // integral constant expression is required, then that class type shall
17476 // have a single non-explicit conversion function to an integral or
17477 // unscoped enumeration type
17478 ExprResult Converted;
17479 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17480 VerifyICEDiagnoser &BaseDiagnoser;
17481 public:
17482 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17483 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17484 BaseDiagnoser.Suppress, true),
17485 BaseDiagnoser(BaseDiagnoser) {}
17487 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17488 QualType T) override {
17489 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17492 SemaDiagnosticBuilder diagnoseIncomplete(
17493 Sema &S, SourceLocation Loc, QualType T) override {
17494 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17497 SemaDiagnosticBuilder diagnoseExplicitConv(
17498 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17499 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17502 SemaDiagnosticBuilder noteExplicitConv(
17503 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17504 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17505 << ConvTy->isEnumeralType() << ConvTy;
17508 SemaDiagnosticBuilder diagnoseAmbiguous(
17509 Sema &S, SourceLocation Loc, QualType T) override {
17510 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17513 SemaDiagnosticBuilder noteAmbiguous(
17514 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17515 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17516 << ConvTy->isEnumeralType() << ConvTy;
17519 SemaDiagnosticBuilder diagnoseConversion(
17520 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17521 llvm_unreachable("conversion functions are permitted");
17523 } ConvertDiagnoser(Diagnoser);
17525 Converted = PerformContextualImplicitConversion(DiagLoc, E,
17526 ConvertDiagnoser);
17527 if (Converted.isInvalid())
17528 return Converted;
17529 E = Converted.get();
17530 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17531 return ExprError();
17532 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17533 // An ICE must be of integral or unscoped enumeration type.
17534 if (!Diagnoser.Suppress)
17535 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17536 << E->getSourceRange();
17537 return ExprError();
17540 ExprResult RValueExpr = DefaultLvalueConversion(E);
17541 if (RValueExpr.isInvalid())
17542 return ExprError();
17544 E = RValueExpr.get();
17546 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17547 // in the non-ICE case.
17548 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17549 if (Result)
17550 *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
17551 if (!isa<ConstantExpr>(E))
17552 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17553 : ConstantExpr::Create(Context, E);
17554 return E;
17557 Expr::EvalResult EvalResult;
17558 SmallVector<PartialDiagnosticAt, 8> Notes;
17559 EvalResult.Diag = &Notes;
17561 // Try to evaluate the expression, and produce diagnostics explaining why it's
17562 // not a constant expression as a side-effect.
17563 bool Folded =
17564 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17565 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
17567 if (!isa<ConstantExpr>(E))
17568 E = ConstantExpr::Create(Context, E, EvalResult.Val);
17570 // In C++11, we can rely on diagnostics being produced for any expression
17571 // which is not a constant expression. If no diagnostics were produced, then
17572 // this is a constant expression.
17573 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17574 if (Result)
17575 *Result = EvalResult.Val.getInt();
17576 return E;
17579 // If our only note is the usual "invalid subexpression" note, just point
17580 // the caret at its location rather than producing an essentially
17581 // redundant note.
17582 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17583 diag::note_invalid_subexpr_in_const_expr) {
17584 DiagLoc = Notes[0].first;
17585 Notes.clear();
17588 if (!Folded || !CanFold) {
17589 if (!Diagnoser.Suppress) {
17590 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17591 for (const PartialDiagnosticAt &Note : Notes)
17592 Diag(Note.first, Note.second);
17595 return ExprError();
17598 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17599 for (const PartialDiagnosticAt &Note : Notes)
17600 Diag(Note.first, Note.second);
17602 if (Result)
17603 *Result = EvalResult.Val.getInt();
17604 return E;
17607 namespace {
17608 // Handle the case where we conclude a expression which we speculatively
17609 // considered to be unevaluated is actually evaluated.
17610 class TransformToPE : public TreeTransform<TransformToPE> {
17611 typedef TreeTransform<TransformToPE> BaseTransform;
17613 public:
17614 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17616 // Make sure we redo semantic analysis
17617 bool AlwaysRebuild() { return true; }
17618 bool ReplacingOriginal() { return true; }
17620 // We need to special-case DeclRefExprs referring to FieldDecls which
17621 // are not part of a member pointer formation; normal TreeTransforming
17622 // doesn't catch this case because of the way we represent them in the AST.
17623 // FIXME: This is a bit ugly; is it really the best way to handle this
17624 // case?
17626 // Error on DeclRefExprs referring to FieldDecls.
17627 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17628 if (isa<FieldDecl>(E->getDecl()) &&
17629 !SemaRef.isUnevaluatedContext())
17630 return SemaRef.Diag(E->getLocation(),
17631 diag::err_invalid_non_static_member_use)
17632 << E->getDecl() << E->getSourceRange();
17634 return BaseTransform::TransformDeclRefExpr(E);
17637 // Exception: filter out member pointer formation
17638 ExprResult TransformUnaryOperator(UnaryOperator *E) {
17639 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17640 return E;
17642 return BaseTransform::TransformUnaryOperator(E);
17645 // The body of a lambda-expression is in a separate expression evaluation
17646 // context so never needs to be transformed.
17647 // FIXME: Ideally we wouldn't transform the closure type either, and would
17648 // just recreate the capture expressions and lambda expression.
17649 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17650 return SkipLambdaBody(E, Body);
17655 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17656 assert(isUnevaluatedContext() &&
17657 "Should only transform unevaluated expressions");
17658 ExprEvalContexts.back().Context =
17659 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17660 if (isUnevaluatedContext())
17661 return E;
17662 return TransformToPE(*this).TransformExpr(E);
17665 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17666 assert(isUnevaluatedContext() &&
17667 "Should only transform unevaluated expressions");
17668 ExprEvalContexts.back().Context =
17669 ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
17670 if (isUnevaluatedContext())
17671 return TInfo;
17672 return TransformToPE(*this).TransformType(TInfo);
17675 void
17676 Sema::PushExpressionEvaluationContext(
17677 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17678 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17679 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17680 LambdaContextDecl, ExprContext);
17682 // Discarded statements and immediate contexts nested in other
17683 // discarded statements or immediate context are themselves
17684 // a discarded statement or an immediate context, respectively.
17685 ExprEvalContexts.back().InDiscardedStatement =
17686 ExprEvalContexts[ExprEvalContexts.size() - 2]
17687 .isDiscardedStatementContext();
17688 ExprEvalContexts.back().InImmediateFunctionContext =
17689 ExprEvalContexts[ExprEvalContexts.size() - 2]
17690 .isImmediateFunctionContext();
17692 Cleanup.reset();
17693 if (!MaybeODRUseExprs.empty())
17694 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17697 void
17698 Sema::PushExpressionEvaluationContext(
17699 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17700 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17701 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17702 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17705 namespace {
17707 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17708 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17709 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17710 if (E->getOpcode() == UO_Deref)
17711 return CheckPossibleDeref(S, E->getSubExpr());
17712 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17713 return CheckPossibleDeref(S, E->getBase());
17714 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17715 return CheckPossibleDeref(S, E->getBase());
17716 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17717 QualType Inner;
17718 QualType Ty = E->getType();
17719 if (const auto *Ptr = Ty->getAs<PointerType>())
17720 Inner = Ptr->getPointeeType();
17721 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17722 Inner = Arr->getElementType();
17723 else
17724 return nullptr;
17726 if (Inner->hasAttr(attr::NoDeref))
17727 return E;
17729 return nullptr;
17732 } // namespace
17734 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17735 for (const Expr *E : Rec.PossibleDerefs) {
17736 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17737 if (DeclRef) {
17738 const ValueDecl *Decl = DeclRef->getDecl();
17739 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17740 << Decl->getName() << E->getSourceRange();
17741 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17742 } else {
17743 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17744 << E->getSourceRange();
17747 Rec.PossibleDerefs.clear();
17750 /// Check whether E, which is either a discarded-value expression or an
17751 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
17752 /// and if so, remove it from the list of volatile-qualified assignments that
17753 /// we are going to warn are deprecated.
17754 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17755 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17756 return;
17758 // Note: ignoring parens here is not justified by the standard rules, but
17759 // ignoring parentheses seems like a more reasonable approach, and this only
17760 // drives a deprecation warning so doesn't affect conformance.
17761 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17762 if (BO->getOpcode() == BO_Assign) {
17763 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17764 llvm::erase_value(LHSs, BO->getLHS());
17769 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17770 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17771 !Decl->isConsteval() || isConstantEvaluated() ||
17772 isCheckingDefaultArgumentOrInitializer() ||
17773 RebuildingImmediateInvocation || isImmediateFunctionContext())
17774 return E;
17776 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17777 /// It's OK if this fails; we'll also remove this in
17778 /// HandleImmediateInvocations, but catching it here allows us to avoid
17779 /// walking the AST looking for it in simple cases.
17780 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17781 if (auto *DeclRef =
17782 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17783 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17785 E = MaybeCreateExprWithCleanups(E);
17787 ConstantExpr *Res = ConstantExpr::Create(
17788 getASTContext(), E.get(),
17789 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17790 getASTContext()),
17791 /*IsImmediateInvocation*/ true);
17792 /// Value-dependent constant expressions should not be immediately
17793 /// evaluated until they are instantiated.
17794 if (!Res->isValueDependent())
17795 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17796 return Res;
17799 static void EvaluateAndDiagnoseImmediateInvocation(
17800 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17801 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17802 Expr::EvalResult Eval;
17803 Eval.Diag = &Notes;
17804 ConstantExpr *CE = Candidate.getPointer();
17805 bool Result = CE->EvaluateAsConstantExpr(
17806 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17807 if (!Result || !Notes.empty()) {
17808 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17809 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17810 InnerExpr = FunctionalCast->getSubExpr();
17811 FunctionDecl *FD = nullptr;
17812 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17813 FD = cast<FunctionDecl>(Call->getCalleeDecl());
17814 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17815 FD = Call->getConstructor();
17816 else
17817 llvm_unreachable("unhandled decl kind");
17818 assert(FD && FD->isConsteval());
17819 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
17820 if (auto Context =
17821 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17822 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17823 << Context->Decl;
17824 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17826 for (auto &Note : Notes)
17827 SemaRef.Diag(Note.first, Note.second);
17828 return;
17830 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17833 static void RemoveNestedImmediateInvocation(
17834 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17835 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17836 struct ComplexRemove : TreeTransform<ComplexRemove> {
17837 using Base = TreeTransform<ComplexRemove>;
17838 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17839 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17840 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17841 CurrentII;
17842 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17843 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17844 SmallVector<Sema::ImmediateInvocationCandidate,
17845 4>::reverse_iterator Current)
17846 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17847 void RemoveImmediateInvocation(ConstantExpr* E) {
17848 auto It = std::find_if(CurrentII, IISet.rend(),
17849 [E](Sema::ImmediateInvocationCandidate Elem) {
17850 return Elem.getPointer() == E;
17852 assert(It != IISet.rend() &&
17853 "ConstantExpr marked IsImmediateInvocation should "
17854 "be present");
17855 It->setInt(1); // Mark as deleted
17857 ExprResult TransformConstantExpr(ConstantExpr *E) {
17858 if (!E->isImmediateInvocation())
17859 return Base::TransformConstantExpr(E);
17860 RemoveImmediateInvocation(E);
17861 return Base::TransformExpr(E->getSubExpr());
17863 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17864 /// we need to remove its DeclRefExpr from the DRSet.
17865 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17866 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17867 return Base::TransformCXXOperatorCallExpr(E);
17869 /// Base::TransformInitializer skip ConstantExpr so we need to visit them
17870 /// here.
17871 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17872 if (!Init)
17873 return Init;
17874 /// ConstantExpr are the first layer of implicit node to be removed so if
17875 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17876 if (auto *CE = dyn_cast<ConstantExpr>(Init))
17877 if (CE->isImmediateInvocation())
17878 RemoveImmediateInvocation(CE);
17879 return Base::TransformInitializer(Init, NotCopyInit);
17881 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17882 DRSet.erase(E);
17883 return E;
17885 ExprResult TransformLambdaExpr(LambdaExpr *E) {
17886 // Do not rebuild lambdas to avoid creating a new type.
17887 // Lambdas have already been processed inside their eval context.
17888 return E;
17890 bool AlwaysRebuild() { return false; }
17891 bool ReplacingOriginal() { return true; }
17892 bool AllowSkippingCXXConstructExpr() {
17893 bool Res = AllowSkippingFirstCXXConstructExpr;
17894 AllowSkippingFirstCXXConstructExpr = true;
17895 return Res;
17897 bool AllowSkippingFirstCXXConstructExpr = true;
17898 } Transformer(SemaRef, Rec.ReferenceToConsteval,
17899 Rec.ImmediateInvocationCandidates, It);
17901 /// CXXConstructExpr with a single argument are getting skipped by
17902 /// TreeTransform in some situtation because they could be implicit. This
17903 /// can only occur for the top-level CXXConstructExpr because it is used
17904 /// nowhere in the expression being transformed therefore will not be rebuilt.
17905 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17906 /// skipping the first CXXConstructExpr.
17907 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17908 Transformer.AllowSkippingFirstCXXConstructExpr = false;
17910 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17911 // The result may not be usable in case of previous compilation errors.
17912 // In this case evaluation of the expression may result in crash so just
17913 // don't do anything further with the result.
17914 if (Res.isUsable()) {
17915 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17916 It->getPointer()->setSubExpr(Res.get());
17920 static void
17921 HandleImmediateInvocations(Sema &SemaRef,
17922 Sema::ExpressionEvaluationContextRecord &Rec) {
17923 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17924 Rec.ReferenceToConsteval.size() == 0) ||
17925 SemaRef.RebuildingImmediateInvocation)
17926 return;
17928 /// When we have more then 1 ImmediateInvocationCandidates we need to check
17929 /// for nested ImmediateInvocationCandidates. when we have only 1 we only
17930 /// need to remove ReferenceToConsteval in the immediate invocation.
17931 if (Rec.ImmediateInvocationCandidates.size() > 1) {
17933 /// Prevent sema calls during the tree transform from adding pointers that
17934 /// are already in the sets.
17935 llvm::SaveAndRestore DisableIITracking(
17936 SemaRef.RebuildingImmediateInvocation, true);
17938 /// Prevent diagnostic during tree transfrom as they are duplicates
17939 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17941 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17942 It != Rec.ImmediateInvocationCandidates.rend(); It++)
17943 if (!It->getInt())
17944 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17945 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17946 Rec.ReferenceToConsteval.size()) {
17947 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
17948 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17949 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17950 bool VisitDeclRefExpr(DeclRefExpr *E) {
17951 DRSet.erase(E);
17952 return DRSet.size();
17954 } Visitor(Rec.ReferenceToConsteval);
17955 Visitor.TraverseStmt(
17956 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17958 for (auto CE : Rec.ImmediateInvocationCandidates)
17959 if (!CE.getInt())
17960 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17961 for (auto *DR : Rec.ReferenceToConsteval) {
17962 auto *FD = cast<FunctionDecl>(DR->getDecl());
17963 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17964 << FD;
17965 SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
17969 void Sema::PopExpressionEvaluationContext() {
17970 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17971 unsigned NumTypos = Rec.NumTypos;
17973 if (!Rec.Lambdas.empty()) {
17974 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17975 if (!getLangOpts().CPlusPlus20 &&
17976 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17977 Rec.isUnevaluated() ||
17978 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17979 unsigned D;
17980 if (Rec.isUnevaluated()) {
17981 // C++11 [expr.prim.lambda]p2:
17982 // A lambda-expression shall not appear in an unevaluated operand
17983 // (Clause 5).
17984 D = diag::err_lambda_unevaluated_operand;
17985 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17986 // C++1y [expr.const]p2:
17987 // A conditional-expression e is a core constant expression unless the
17988 // evaluation of e, following the rules of the abstract machine, would
17989 // evaluate [...] a lambda-expression.
17990 D = diag::err_lambda_in_constant_expression;
17991 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17992 // C++17 [expr.prim.lamda]p2:
17993 // A lambda-expression shall not appear [...] in a template-argument.
17994 D = diag::err_lambda_in_invalid_context;
17995 } else
17996 llvm_unreachable("Couldn't infer lambda error message.");
17998 for (const auto *L : Rec.Lambdas)
17999 Diag(L->getBeginLoc(), D);
18003 WarnOnPendingNoDerefs(Rec);
18004 HandleImmediateInvocations(*this, Rec);
18006 // Warn on any volatile-qualified simple-assignments that are not discarded-
18007 // value expressions nor unevaluated operands (those cases get removed from
18008 // this list by CheckUnusedVolatileAssignment).
18009 for (auto *BO : Rec.VolatileAssignmentLHSs)
18010 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18011 << BO->getType();
18013 // When are coming out of an unevaluated context, clear out any
18014 // temporaries that we may have created as part of the evaluation of
18015 // the expression in that context: they aren't relevant because they
18016 // will never be constructed.
18017 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18018 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18019 ExprCleanupObjects.end());
18020 Cleanup = Rec.ParentCleanup;
18021 CleanupVarDeclMarking();
18022 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
18023 // Otherwise, merge the contexts together.
18024 } else {
18025 Cleanup.mergeFrom(Rec.ParentCleanup);
18026 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
18027 Rec.SavedMaybeODRUseExprs.end());
18030 // Pop the current expression evaluation context off the stack.
18031 ExprEvalContexts.pop_back();
18033 // The global expression evaluation context record is never popped.
18034 ExprEvalContexts.back().NumTypos += NumTypos;
18037 void Sema::DiscardCleanupsInEvaluationContext() {
18038 ExprCleanupObjects.erase(
18039 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18040 ExprCleanupObjects.end());
18041 Cleanup.reset();
18042 MaybeODRUseExprs.clear();
18045 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18046 ExprResult Result = CheckPlaceholderExpr(E);
18047 if (Result.isInvalid())
18048 return ExprError();
18049 E = Result.get();
18050 if (!E->getType()->isVariablyModifiedType())
18051 return E;
18052 return TransformToPotentiallyEvaluated(E);
18055 /// Are we in a context that is potentially constant evaluated per C++20
18056 /// [expr.const]p12?
18057 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18058 /// C++2a [expr.const]p12:
18059 // An expression or conversion is potentially constant evaluated if it is
18060 switch (SemaRef.ExprEvalContexts.back().Context) {
18061 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18062 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18064 // -- a manifestly constant-evaluated expression,
18065 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18066 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18067 case Sema::ExpressionEvaluationContext::DiscardedStatement:
18068 // -- a potentially-evaluated expression,
18069 case Sema::ExpressionEvaluationContext::UnevaluatedList:
18070 // -- an immediate subexpression of a braced-init-list,
18072 // -- [FIXME] an expression of the form & cast-expression that occurs
18073 // within a templated entity
18074 // -- a subexpression of one of the above that is not a subexpression of
18075 // a nested unevaluated operand.
18076 return true;
18078 case Sema::ExpressionEvaluationContext::Unevaluated:
18079 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18080 // Expressions in this context are never evaluated.
18081 return false;
18083 llvm_unreachable("Invalid context");
18086 /// Return true if this function has a calling convention that requires mangling
18087 /// in the size of the parameter pack.
18088 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18089 // These manglings don't do anything on non-Windows or non-x86 platforms, so
18090 // we don't need parameter type sizes.
18091 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
18092 if (!TT.isOSWindows() || !TT.isX86())
18093 return false;
18095 // If this is C++ and this isn't an extern "C" function, parameters do not
18096 // need to be complete. In this case, C++ mangling will apply, which doesn't
18097 // use the size of the parameters.
18098 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18099 return false;
18101 // Stdcall, fastcall, and vectorcall need this special treatment.
18102 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18103 switch (CC) {
18104 case CC_X86StdCall:
18105 case CC_X86FastCall:
18106 case CC_X86VectorCall:
18107 return true;
18108 default:
18109 break;
18111 return false;
18114 /// Require that all of the parameter types of function be complete. Normally,
18115 /// parameter types are only required to be complete when a function is called
18116 /// or defined, but to mangle functions with certain calling conventions, the
18117 /// mangler needs to know the size of the parameter list. In this situation,
18118 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18119 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18120 /// result in a linker error. Clang doesn't implement this behavior, and instead
18121 /// attempts to error at compile time.
18122 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18123 SourceLocation Loc) {
18124 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18125 FunctionDecl *FD;
18126 ParmVarDecl *Param;
18128 public:
18129 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18130 : FD(FD), Param(Param) {}
18132 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18133 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18134 StringRef CCName;
18135 switch (CC) {
18136 case CC_X86StdCall:
18137 CCName = "stdcall";
18138 break;
18139 case CC_X86FastCall:
18140 CCName = "fastcall";
18141 break;
18142 case CC_X86VectorCall:
18143 CCName = "vectorcall";
18144 break;
18145 default:
18146 llvm_unreachable("CC does not need mangling");
18149 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18150 << Param->getDeclName() << FD->getDeclName() << CCName;
18154 for (ParmVarDecl *Param : FD->parameters()) {
18155 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18156 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18160 namespace {
18161 enum class OdrUseContext {
18162 /// Declarations in this context are not odr-used.
18163 None,
18164 /// Declarations in this context are formally odr-used, but this is a
18165 /// dependent context.
18166 Dependent,
18167 /// Declarations in this context are odr-used but not actually used (yet).
18168 FormallyOdrUsed,
18169 /// Declarations in this context are used.
18170 Used
18174 /// Are we within a context in which references to resolved functions or to
18175 /// variables result in odr-use?
18176 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18177 OdrUseContext Result;
18179 switch (SemaRef.ExprEvalContexts.back().Context) {
18180 case Sema::ExpressionEvaluationContext::Unevaluated:
18181 case Sema::ExpressionEvaluationContext::UnevaluatedList:
18182 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18183 return OdrUseContext::None;
18185 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18186 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18187 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18188 Result = OdrUseContext::Used;
18189 break;
18191 case Sema::ExpressionEvaluationContext::DiscardedStatement:
18192 Result = OdrUseContext::FormallyOdrUsed;
18193 break;
18195 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18196 // A default argument formally results in odr-use, but doesn't actually
18197 // result in a use in any real sense until it itself is used.
18198 Result = OdrUseContext::FormallyOdrUsed;
18199 break;
18202 if (SemaRef.CurContext->isDependentContext())
18203 return OdrUseContext::Dependent;
18205 return Result;
18208 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18209 if (!Func->isConstexpr())
18210 return false;
18212 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18213 return true;
18214 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18215 return CCD && CCD->getInheritedConstructor();
18218 /// Mark a function referenced, and check whether it is odr-used
18219 /// (C++ [basic.def.odr]p2, C99 6.9p3)
18220 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18221 bool MightBeOdrUse) {
18222 assert(Func && "No function?");
18224 Func->setReferenced();
18226 // Recursive functions aren't really used until they're used from some other
18227 // context.
18228 bool IsRecursiveCall = CurContext == Func;
18230 // C++11 [basic.def.odr]p3:
18231 // A function whose name appears as a potentially-evaluated expression is
18232 // odr-used if it is the unique lookup result or the selected member of a
18233 // set of overloaded functions [...].
18235 // We (incorrectly) mark overload resolution as an unevaluated context, so we
18236 // can just check that here.
18237 OdrUseContext OdrUse =
18238 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18239 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18240 OdrUse = OdrUseContext::FormallyOdrUsed;
18242 // Trivial default constructors and destructors are never actually used.
18243 // FIXME: What about other special members?
18244 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18245 OdrUse == OdrUseContext::Used) {
18246 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18247 if (Constructor->isDefaultConstructor())
18248 OdrUse = OdrUseContext::FormallyOdrUsed;
18249 if (isa<CXXDestructorDecl>(Func))
18250 OdrUse = OdrUseContext::FormallyOdrUsed;
18253 // C++20 [expr.const]p12:
18254 // A function [...] is needed for constant evaluation if it is [...] a
18255 // constexpr function that is named by an expression that is potentially
18256 // constant evaluated
18257 bool NeededForConstantEvaluation =
18258 isPotentiallyConstantEvaluatedContext(*this) &&
18259 isImplicitlyDefinableConstexprFunction(Func);
18261 // Determine whether we require a function definition to exist, per
18262 // C++11 [temp.inst]p3:
18263 // Unless a function template specialization has been explicitly
18264 // instantiated or explicitly specialized, the function template
18265 // specialization is implicitly instantiated when the specialization is
18266 // referenced in a context that requires a function definition to exist.
18267 // C++20 [temp.inst]p7:
18268 // The existence of a definition of a [...] function is considered to
18269 // affect the semantics of the program if the [...] function is needed for
18270 // constant evaluation by an expression
18271 // C++20 [basic.def.odr]p10:
18272 // Every program shall contain exactly one definition of every non-inline
18273 // function or variable that is odr-used in that program outside of a
18274 // discarded statement
18275 // C++20 [special]p1:
18276 // The implementation will implicitly define [defaulted special members]
18277 // if they are odr-used or needed for constant evaluation.
18279 // Note that we skip the implicit instantiation of templates that are only
18280 // used in unused default arguments or by recursive calls to themselves.
18281 // This is formally non-conforming, but seems reasonable in practice.
18282 bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18283 NeededForConstantEvaluation);
18285 // C++14 [temp.expl.spec]p6:
18286 // If a template [...] is explicitly specialized then that specialization
18287 // shall be declared before the first use of that specialization that would
18288 // cause an implicit instantiation to take place, in every translation unit
18289 // in which such a use occurs
18290 if (NeedDefinition &&
18291 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18292 Func->getMemberSpecializationInfo()))
18293 checkSpecializationReachability(Loc, Func);
18295 if (getLangOpts().CUDA)
18296 CheckCUDACall(Loc, Func);
18298 if (getLangOpts().SYCLIsDevice)
18299 checkSYCLDeviceFunction(Loc, Func);
18301 // If we need a definition, try to create one.
18302 if (NeedDefinition && !Func->getBody()) {
18303 runWithSufficientStackSpace(Loc, [&] {
18304 if (CXXConstructorDecl *Constructor =
18305 dyn_cast<CXXConstructorDecl>(Func)) {
18306 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18307 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18308 if (Constructor->isDefaultConstructor()) {
18309 if (Constructor->isTrivial() &&
18310 !Constructor->hasAttr<DLLExportAttr>())
18311 return;
18312 DefineImplicitDefaultConstructor(Loc, Constructor);
18313 } else if (Constructor->isCopyConstructor()) {
18314 DefineImplicitCopyConstructor(Loc, Constructor);
18315 } else if (Constructor->isMoveConstructor()) {
18316 DefineImplicitMoveConstructor(Loc, Constructor);
18318 } else if (Constructor->getInheritedConstructor()) {
18319 DefineInheritingConstructor(Loc, Constructor);
18321 } else if (CXXDestructorDecl *Destructor =
18322 dyn_cast<CXXDestructorDecl>(Func)) {
18323 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18324 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18325 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18326 return;
18327 DefineImplicitDestructor(Loc, Destructor);
18329 if (Destructor->isVirtual() && getLangOpts().AppleKext)
18330 MarkVTableUsed(Loc, Destructor->getParent());
18331 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18332 if (MethodDecl->isOverloadedOperator() &&
18333 MethodDecl->getOverloadedOperator() == OO_Equal) {
18334 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18335 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18336 if (MethodDecl->isCopyAssignmentOperator())
18337 DefineImplicitCopyAssignment(Loc, MethodDecl);
18338 else if (MethodDecl->isMoveAssignmentOperator())
18339 DefineImplicitMoveAssignment(Loc, MethodDecl);
18341 } else if (isa<CXXConversionDecl>(MethodDecl) &&
18342 MethodDecl->getParent()->isLambda()) {
18343 CXXConversionDecl *Conversion =
18344 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18345 if (Conversion->isLambdaToBlockPointerConversion())
18346 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18347 else
18348 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18349 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18350 MarkVTableUsed(Loc, MethodDecl->getParent());
18353 if (Func->isDefaulted() && !Func->isDeleted()) {
18354 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
18355 if (DCK != DefaultedComparisonKind::None)
18356 DefineDefaultedComparison(Loc, Func, DCK);
18359 // Implicit instantiation of function templates and member functions of
18360 // class templates.
18361 if (Func->isImplicitlyInstantiable()) {
18362 TemplateSpecializationKind TSK =
18363 Func->getTemplateSpecializationKindForInstantiation();
18364 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18365 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18366 if (FirstInstantiation) {
18367 PointOfInstantiation = Loc;
18368 if (auto *MSI = Func->getMemberSpecializationInfo())
18369 MSI->setPointOfInstantiation(Loc);
18370 // FIXME: Notify listener.
18371 else
18372 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18373 } else if (TSK != TSK_ImplicitInstantiation) {
18374 // Use the point of use as the point of instantiation, instead of the
18375 // point of explicit instantiation (which we track as the actual point
18376 // of instantiation). This gives better backtraces in diagnostics.
18377 PointOfInstantiation = Loc;
18380 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18381 Func->isConstexpr()) {
18382 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18383 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18384 CodeSynthesisContexts.size())
18385 PendingLocalImplicitInstantiations.push_back(
18386 std::make_pair(Func, PointOfInstantiation));
18387 else if (Func->isConstexpr())
18388 // Do not defer instantiations of constexpr functions, to avoid the
18389 // expression evaluator needing to call back into Sema if it sees a
18390 // call to such a function.
18391 InstantiateFunctionDefinition(PointOfInstantiation, Func);
18392 else {
18393 Func->setInstantiationIsPending(true);
18394 PendingInstantiations.push_back(
18395 std::make_pair(Func, PointOfInstantiation));
18396 // Notify the consumer that a function was implicitly instantiated.
18397 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18400 } else {
18401 // Walk redefinitions, as some of them may be instantiable.
18402 for (auto *i : Func->redecls()) {
18403 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18404 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18410 // If a constructor was defined in the context of a default parameter
18411 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18412 // context), its initializers may not be referenced yet.
18413 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
18414 for (CXXCtorInitializer *Init : Constructor->inits()) {
18415 if (Init->isInClassMemberInitializer())
18416 MarkDeclarationsReferencedInExpr(Init->getInit());
18420 // C++14 [except.spec]p17:
18421 // An exception-specification is considered to be needed when:
18422 // - the function is odr-used or, if it appears in an unevaluated operand,
18423 // would be odr-used if the expression were potentially-evaluated;
18425 // Note, we do this even if MightBeOdrUse is false. That indicates that the
18426 // function is a pure virtual function we're calling, and in that case the
18427 // function was selected by overload resolution and we need to resolve its
18428 // exception specification for a different reason.
18429 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18430 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18431 ResolveExceptionSpec(Loc, FPT);
18433 // If this is the first "real" use, act on that.
18434 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18435 // Keep track of used but undefined functions.
18436 if (!Func->isDefined()) {
18437 if (mightHaveNonExternalLinkage(Func))
18438 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18439 else if (Func->getMostRecentDecl()->isInlined() &&
18440 !LangOpts.GNUInline &&
18441 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18442 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18443 else if (isExternalWithNoLinkageType(Func))
18444 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18447 // Some x86 Windows calling conventions mangle the size of the parameter
18448 // pack into the name. Computing the size of the parameters requires the
18449 // parameter types to be complete. Check that now.
18450 if (funcHasParameterSizeMangling(*this, Func))
18451 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18453 // In the MS C++ ABI, the compiler emits destructor variants where they are
18454 // used. If the destructor is used here but defined elsewhere, mark the
18455 // virtual base destructors referenced. If those virtual base destructors
18456 // are inline, this will ensure they are defined when emitting the complete
18457 // destructor variant. This checking may be redundant if the destructor is
18458 // provided later in this TU.
18459 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18460 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18461 CXXRecordDecl *Parent = Dtor->getParent();
18462 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18463 CheckCompleteDestructorVariant(Loc, Dtor);
18467 Func->markUsed(Context);
18471 /// Directly mark a variable odr-used. Given a choice, prefer to use
18472 /// MarkVariableReferenced since it does additional checks and then
18473 /// calls MarkVarDeclODRUsed.
18474 /// If the variable must be captured:
18475 /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18476 /// - else capture it in the DeclContext that maps to the
18477 /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18478 static void
18479 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18480 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18481 // Keep track of used but undefined variables.
18482 // FIXME: We shouldn't suppress this warning for static data members.
18483 VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18484 assert(Var && "expected a capturable variable");
18486 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18487 (!Var->isExternallyVisible() || Var->isInline() ||
18488 SemaRef.isExternalWithNoLinkageType(Var)) &&
18489 !(Var->isStaticDataMember() && Var->hasInit())) {
18490 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18491 if (old.isInvalid())
18492 old = Loc;
18494 QualType CaptureType, DeclRefType;
18495 if (SemaRef.LangOpts.OpenMP)
18496 SemaRef.tryCaptureOpenMPLambdas(V);
18497 SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
18498 /*EllipsisLoc*/ SourceLocation(),
18499 /*BuildAndDiagnose*/ true, CaptureType,
18500 DeclRefType, FunctionScopeIndexToStopAt);
18502 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18503 auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18504 auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
18505 auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
18506 if (VarTarget == Sema::CVT_Host &&
18507 (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
18508 UserTarget == Sema::CFT_Global)) {
18509 // Diagnose ODR-use of host global variables in device functions.
18510 // Reference of device global variables in host functions is allowed
18511 // through shadow variables therefore it is not diagnosed.
18512 if (SemaRef.LangOpts.CUDAIsDevice) {
18513 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18514 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
18515 SemaRef.targetDiag(Var->getLocation(),
18516 Var->getType().isConstQualified()
18517 ? diag::note_cuda_const_var_unpromoted
18518 : diag::note_cuda_host_var);
18520 } else if (VarTarget == Sema::CVT_Device &&
18521 (UserTarget == Sema::CFT_Host ||
18522 UserTarget == Sema::CFT_HostDevice)) {
18523 // Record a CUDA/HIP device side variable if it is ODR-used
18524 // by host code. This is done conservatively, when the variable is
18525 // referenced in any of the following contexts:
18526 // - a non-function context
18527 // - a host function
18528 // - a host device function
18529 // This makes the ODR-use of the device side variable by host code to
18530 // be visible in the device compilation for the compiler to be able to
18531 // emit template variables instantiated by host code only and to
18532 // externalize the static device side variable ODR-used by host code.
18533 if (!Var->hasExternalStorage())
18534 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18535 else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
18536 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18540 V->markUsed(SemaRef.Context);
18543 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18544 SourceLocation Loc,
18545 unsigned CapturingScopeIndex) {
18546 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18549 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18550 ValueDecl *var) {
18551 DeclContext *VarDC = var->getDeclContext();
18553 // If the parameter still belongs to the translation unit, then
18554 // we're actually just using one parameter in the declaration of
18555 // the next.
18556 if (isa<ParmVarDecl>(var) &&
18557 isa<TranslationUnitDecl>(VarDC))
18558 return;
18560 // For C code, don't diagnose about capture if we're not actually in code
18561 // right now; it's impossible to write a non-constant expression outside of
18562 // function context, so we'll get other (more useful) diagnostics later.
18564 // For C++, things get a bit more nasty... it would be nice to suppress this
18565 // diagnostic for certain cases like using a local variable in an array bound
18566 // for a member of a local class, but the correct predicate is not obvious.
18567 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18568 return;
18570 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18571 unsigned ContextKind = 3; // unknown
18572 if (isa<CXXMethodDecl>(VarDC) &&
18573 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18574 ContextKind = 2;
18575 } else if (isa<FunctionDecl>(VarDC)) {
18576 ContextKind = 0;
18577 } else if (isa<BlockDecl>(VarDC)) {
18578 ContextKind = 1;
18581 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18582 << var << ValueKind << ContextKind << VarDC;
18583 S.Diag(var->getLocation(), diag::note_entity_declared_at)
18584 << var;
18586 // FIXME: Add additional diagnostic info about class etc. which prevents
18587 // capture.
18590 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18591 ValueDecl *Var,
18592 bool &SubCapturesAreNested,
18593 QualType &CaptureType,
18594 QualType &DeclRefType) {
18595 // Check whether we've already captured it.
18596 if (CSI->CaptureMap.count(Var)) {
18597 // If we found a capture, any subcaptures are nested.
18598 SubCapturesAreNested = true;
18600 // Retrieve the capture type for this variable.
18601 CaptureType = CSI->getCapture(Var).getCaptureType();
18603 // Compute the type of an expression that refers to this variable.
18604 DeclRefType = CaptureType.getNonReferenceType();
18606 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18607 // are mutable in the sense that user can change their value - they are
18608 // private instances of the captured declarations.
18609 const Capture &Cap = CSI->getCapture(Var);
18610 if (Cap.isCopyCapture() &&
18611 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
18612 !(isa<CapturedRegionScopeInfo>(CSI) &&
18613 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18614 DeclRefType.addConst();
18615 return true;
18617 return false;
18620 // Only block literals, captured statements, and lambda expressions can
18621 // capture; other scopes don't work.
18622 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18623 ValueDecl *Var,
18624 SourceLocation Loc,
18625 const bool Diagnose,
18626 Sema &S) {
18627 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18628 return getLambdaAwareParentOfDeclContext(DC);
18630 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18631 if (Underlying) {
18632 if (Underlying->hasLocalStorage() && Diagnose)
18633 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18635 return nullptr;
18638 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18639 // certain types of variables (unnamed, variably modified types etc.)
18640 // so check for eligibility.
18641 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18642 SourceLocation Loc, const bool Diagnose,
18643 Sema &S) {
18645 assert((isa<VarDecl, BindingDecl>(Var)) &&
18646 "Only variables and structured bindings can be captured");
18648 bool IsBlock = isa<BlockScopeInfo>(CSI);
18649 bool IsLambda = isa<LambdaScopeInfo>(CSI);
18651 // Lambdas are not allowed to capture unnamed variables
18652 // (e.g. anonymous unions).
18653 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18654 // assuming that's the intent.
18655 if (IsLambda && !Var->getDeclName()) {
18656 if (Diagnose) {
18657 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18658 S.Diag(Var->getLocation(), diag::note_declared_at);
18660 return false;
18663 // Prohibit variably-modified types in blocks; they're difficult to deal with.
18664 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18665 if (Diagnose) {
18666 S.Diag(Loc, diag::err_ref_vm_type);
18667 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18669 return false;
18671 // Prohibit structs with flexible array members too.
18672 // We cannot capture what is in the tail end of the struct.
18673 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18674 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18675 if (Diagnose) {
18676 if (IsBlock)
18677 S.Diag(Loc, diag::err_ref_flexarray_type);
18678 else
18679 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18680 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18682 return false;
18685 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18686 // Lambdas and captured statements are not allowed to capture __block
18687 // variables; they don't support the expected semantics.
18688 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18689 if (Diagnose) {
18690 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18691 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18693 return false;
18695 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18696 if (S.getLangOpts().OpenCL && IsBlock &&
18697 Var->getType()->isBlockPointerType()) {
18698 if (Diagnose)
18699 S.Diag(Loc, diag::err_opencl_block_ref_block);
18700 return false;
18703 if (isa<BindingDecl>(Var)) {
18704 if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18705 if (Diagnose)
18706 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18707 return false;
18708 } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18709 S.Diag(Loc, S.LangOpts.CPlusPlus20
18710 ? diag::warn_cxx17_compat_capture_binding
18711 : diag::ext_capture_binding)
18712 << Var;
18713 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18717 return true;
18720 // Returns true if the capture by block was successful.
18721 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18722 SourceLocation Loc, const bool BuildAndDiagnose,
18723 QualType &CaptureType, QualType &DeclRefType,
18724 const bool Nested, Sema &S, bool Invalid) {
18725 bool ByRef = false;
18727 // Blocks are not allowed to capture arrays, excepting OpenCL.
18728 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18729 // (decayed to pointers).
18730 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18731 if (BuildAndDiagnose) {
18732 S.Diag(Loc, diag::err_ref_array_type);
18733 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18734 Invalid = true;
18735 } else {
18736 return false;
18740 // Forbid the block-capture of autoreleasing variables.
18741 if (!Invalid &&
18742 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18743 if (BuildAndDiagnose) {
18744 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18745 << /*block*/ 0;
18746 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18747 Invalid = true;
18748 } else {
18749 return false;
18753 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18754 if (const auto *PT = CaptureType->getAs<PointerType>()) {
18755 QualType PointeeTy = PT->getPointeeType();
18757 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18758 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18759 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18760 if (BuildAndDiagnose) {
18761 SourceLocation VarLoc = Var->getLocation();
18762 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18763 S.Diag(VarLoc, diag::note_declare_parameter_strong);
18768 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18769 if (HasBlocksAttr || CaptureType->isReferenceType() ||
18770 (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
18771 // Block capture by reference does not change the capture or
18772 // declaration reference types.
18773 ByRef = true;
18774 } else {
18775 // Block capture by copy introduces 'const'.
18776 CaptureType = CaptureType.getNonReferenceType().withConst();
18777 DeclRefType = CaptureType;
18780 // Actually capture the variable.
18781 if (BuildAndDiagnose)
18782 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18783 CaptureType, Invalid);
18785 return !Invalid;
18788 /// Capture the given variable in the captured region.
18789 static bool captureInCapturedRegion(
18790 CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18791 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18792 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18793 bool IsTopScope, Sema &S, bool Invalid) {
18794 // By default, capture variables by reference.
18795 bool ByRef = true;
18796 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18797 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18798 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18799 // Using an LValue reference type is consistent with Lambdas (see below).
18800 if (S.isOpenMPCapturedDecl(Var)) {
18801 bool HasConst = DeclRefType.isConstQualified();
18802 DeclRefType = DeclRefType.getUnqualifiedType();
18803 // Don't lose diagnostics about assignments to const.
18804 if (HasConst)
18805 DeclRefType.addConst();
18807 // Do not capture firstprivates in tasks.
18808 if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
18809 OMPC_unknown)
18810 return true;
18811 ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18812 RSI->OpenMPCaptureLevel);
18815 if (ByRef)
18816 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18817 else
18818 CaptureType = DeclRefType;
18820 // Actually capture the variable.
18821 if (BuildAndDiagnose)
18822 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18823 Loc, SourceLocation(), CaptureType, Invalid);
18825 return !Invalid;
18828 /// Capture the given variable in the lambda.
18829 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18830 SourceLocation Loc, const bool BuildAndDiagnose,
18831 QualType &CaptureType, QualType &DeclRefType,
18832 const bool RefersToCapturedVariable,
18833 const Sema::TryCaptureKind Kind,
18834 SourceLocation EllipsisLoc, const bool IsTopScope,
18835 Sema &S, bool Invalid) {
18836 // Determine whether we are capturing by reference or by value.
18837 bool ByRef = false;
18838 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18839 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18840 } else {
18841 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18844 BindingDecl *BD = dyn_cast<BindingDecl>(Var);
18845 // FIXME: We should support capturing structured bindings in OpenMP.
18846 if (!Invalid && BD && S.LangOpts.OpenMP) {
18847 if (BuildAndDiagnose) {
18848 S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
18849 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18851 Invalid = true;
18854 // Compute the type of the field that will capture this variable.
18855 if (ByRef) {
18856 // C++11 [expr.prim.lambda]p15:
18857 // An entity is captured by reference if it is implicitly or
18858 // explicitly captured but not captured by copy. It is
18859 // unspecified whether additional unnamed non-static data
18860 // members are declared in the closure type for entities
18861 // captured by reference.
18863 // FIXME: It is not clear whether we want to build an lvalue reference
18864 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18865 // to do the former, while EDG does the latter. Core issue 1249 will
18866 // clarify, but for now we follow GCC because it's a more permissive and
18867 // easily defensible position.
18868 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18869 } else {
18870 // C++11 [expr.prim.lambda]p14:
18871 // For each entity captured by copy, an unnamed non-static
18872 // data member is declared in the closure type. The
18873 // declaration order of these members is unspecified. The type
18874 // of such a data member is the type of the corresponding
18875 // captured entity if the entity is not a reference to an
18876 // object, or the referenced type otherwise. [Note: If the
18877 // captured entity is a reference to a function, the
18878 // corresponding data member is also a reference to a
18879 // function. - end note ]
18880 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18881 if (!RefType->getPointeeType()->isFunctionType())
18882 CaptureType = RefType->getPointeeType();
18885 // Forbid the lambda copy-capture of autoreleasing variables.
18886 if (!Invalid &&
18887 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18888 if (BuildAndDiagnose) {
18889 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18890 S.Diag(Var->getLocation(), diag::note_previous_decl)
18891 << Var->getDeclName();
18892 Invalid = true;
18893 } else {
18894 return false;
18898 // Make sure that by-copy captures are of a complete and non-abstract type.
18899 if (!Invalid && BuildAndDiagnose) {
18900 if (!CaptureType->isDependentType() &&
18901 S.RequireCompleteSizedType(
18902 Loc, CaptureType,
18903 diag::err_capture_of_incomplete_or_sizeless_type,
18904 Var->getDeclName()))
18905 Invalid = true;
18906 else if (S.RequireNonAbstractType(Loc, CaptureType,
18907 diag::err_capture_of_abstract_type))
18908 Invalid = true;
18912 // Compute the type of a reference to this captured variable.
18913 if (ByRef)
18914 DeclRefType = CaptureType.getNonReferenceType();
18915 else {
18916 // C++ [expr.prim.lambda]p5:
18917 // The closure type for a lambda-expression has a public inline
18918 // function call operator [...]. This function call operator is
18919 // declared const (9.3.1) if and only if the lambda-expression's
18920 // parameter-declaration-clause is not followed by mutable.
18921 DeclRefType = CaptureType.getNonReferenceType();
18922 if (!LSI->Mutable && !CaptureType->isReferenceType())
18923 DeclRefType.addConst();
18926 // Add the capture.
18927 if (BuildAndDiagnose)
18928 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18929 Loc, EllipsisLoc, CaptureType, Invalid);
18931 return !Invalid;
18934 static bool canCaptureVariableByCopy(ValueDecl *Var,
18935 const ASTContext &Context) {
18936 // Offer a Copy fix even if the type is dependent.
18937 if (Var->getType()->isDependentType())
18938 return true;
18939 QualType T = Var->getType().getNonReferenceType();
18940 if (T.isTriviallyCopyableType(Context))
18941 return true;
18942 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18944 if (!(RD = RD->getDefinition()))
18945 return false;
18946 if (RD->hasSimpleCopyConstructor())
18947 return true;
18948 if (RD->hasUserDeclaredCopyConstructor())
18949 for (CXXConstructorDecl *Ctor : RD->ctors())
18950 if (Ctor->isCopyConstructor())
18951 return !Ctor->isDeleted();
18953 return false;
18956 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18957 /// default capture. Fixes may be omitted if they aren't allowed by the
18958 /// standard, for example we can't emit a default copy capture fix-it if we
18959 /// already explicitly copy capture capture another variable.
18960 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18961 ValueDecl *Var) {
18962 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18963 // Don't offer Capture by copy of default capture by copy fixes if Var is
18964 // known not to be copy constructible.
18965 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18967 SmallString<32> FixBuffer;
18968 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18969 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18970 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18971 if (ShouldOfferCopyFix) {
18972 // Offer fixes to insert an explicit capture for the variable.
18973 // [] -> [VarName]
18974 // [OtherCapture] -> [OtherCapture, VarName]
18975 FixBuffer.assign({Separator, Var->getName()});
18976 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18977 << Var << /*value*/ 0
18978 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18980 // As above but capture by reference.
18981 FixBuffer.assign({Separator, "&", Var->getName()});
18982 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18983 << Var << /*reference*/ 1
18984 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18987 // Only try to offer default capture if there are no captures excluding this
18988 // and init captures.
18989 // [this]: OK.
18990 // [X = Y]: OK.
18991 // [&A, &B]: Don't offer.
18992 // [A, B]: Don't offer.
18993 if (llvm::any_of(LSI->Captures, [](Capture &C) {
18994 return !C.isThisCapture() && !C.isInitCapture();
18996 return;
18998 // The default capture specifiers, '=' or '&', must appear first in the
18999 // capture body.
19000 SourceLocation DefaultInsertLoc =
19001 LSI->IntroducerRange.getBegin().getLocWithOffset(1);
19003 if (ShouldOfferCopyFix) {
19004 bool CanDefaultCopyCapture = true;
19005 // [=, *this] OK since c++17
19006 // [=, this] OK since c++20
19007 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19008 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19009 ? LSI->getCXXThisCapture().isCopyCapture()
19010 : false;
19011 // We can't use default capture by copy if any captures already specified
19012 // capture by copy.
19013 if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
19014 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19015 })) {
19016 FixBuffer.assign({"=", Separator});
19017 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19018 << /*value*/ 0
19019 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19023 // We can't use default capture by reference if any captures already specified
19024 // capture by reference.
19025 if (llvm::none_of(LSI->Captures, [](Capture &C) {
19026 return !C.isInitCapture() && C.isReferenceCapture() &&
19027 !C.isThisCapture();
19028 })) {
19029 FixBuffer.assign({"&", Separator});
19030 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19031 << /*reference*/ 1
19032 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19036 bool Sema::tryCaptureVariable(
19037 ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19038 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19039 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19040 // An init-capture is notionally from the context surrounding its
19041 // declaration, but its parent DC is the lambda class.
19042 DeclContext *VarDC = Var->getDeclContext();
19043 const auto *VD = dyn_cast<VarDecl>(Var);
19044 if (VD) {
19045 if (VD->isInitCapture())
19046 VarDC = VarDC->getParent();
19047 } else {
19048 VD = Var->getPotentiallyDecomposedVarDecl();
19050 assert(VD && "Cannot capture a null variable");
19052 DeclContext *DC = CurContext;
19053 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19054 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19055 // We need to sync up the Declaration Context with the
19056 // FunctionScopeIndexToStopAt
19057 if (FunctionScopeIndexToStopAt) {
19058 unsigned FSIndex = FunctionScopes.size() - 1;
19059 while (FSIndex != MaxFunctionScopesIndex) {
19060 DC = getLambdaAwareParentOfDeclContext(DC);
19061 --FSIndex;
19066 // If the variable is declared in the current context, there is no need to
19067 // capture it.
19068 if (VarDC == DC) return true;
19070 // Capture global variables if it is required to use private copy of this
19071 // variable.
19072 bool IsGlobal = !VD->hasLocalStorage();
19073 if (IsGlobal &&
19074 !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19075 MaxFunctionScopesIndex)))
19076 return true;
19078 if (isa<VarDecl>(Var))
19079 Var = cast<VarDecl>(Var->getCanonicalDecl());
19081 // Walk up the stack to determine whether we can capture the variable,
19082 // performing the "simple" checks that don't depend on type. We stop when
19083 // we've either hit the declared scope of the variable or find an existing
19084 // capture of that variable. We start from the innermost capturing-entity
19085 // (the DC) and ensure that all intervening capturing-entities
19086 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19087 // declcontext can either capture the variable or have already captured
19088 // the variable.
19089 CaptureType = Var->getType();
19090 DeclRefType = CaptureType.getNonReferenceType();
19091 bool Nested = false;
19092 bool Explicit = (Kind != TryCapture_Implicit);
19093 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19094 do {
19095 // Only block literals, captured statements, and lambda expressions can
19096 // capture; other scopes don't work.
19097 DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
19098 ExprLoc,
19099 BuildAndDiagnose,
19100 *this);
19101 // We need to check for the parent *first* because, if we *have*
19102 // private-captured a global variable, we need to recursively capture it in
19103 // intermediate blocks, lambdas, etc.
19104 if (!ParentDC) {
19105 if (IsGlobal) {
19106 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19107 break;
19109 return true;
19112 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
19113 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19116 // Check whether we've already captured it.
19117 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19118 DeclRefType)) {
19119 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19120 break;
19122 // If we are instantiating a generic lambda call operator body,
19123 // we do not want to capture new variables. What was captured
19124 // during either a lambdas transformation or initial parsing
19125 // should be used.
19126 if (isGenericLambdaCallOperatorSpecialization(DC)) {
19127 if (BuildAndDiagnose) {
19128 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19129 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19130 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19131 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19132 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19133 buildLambdaCaptureFixit(*this, LSI, Var);
19134 } else
19135 diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19137 return true;
19140 // Try to capture variable-length arrays types.
19141 if (Var->getType()->isVariablyModifiedType()) {
19142 // We're going to walk down into the type and look for VLA
19143 // expressions.
19144 QualType QTy = Var->getType();
19145 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19146 QTy = PVD->getOriginalType();
19147 captureVariablyModifiedType(Context, QTy, CSI);
19150 if (getLangOpts().OpenMP) {
19151 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19152 // OpenMP private variables should not be captured in outer scope, so
19153 // just break here. Similarly, global variables that are captured in a
19154 // target region should not be captured outside the scope of the region.
19155 if (RSI->CapRegionKind == CR_OpenMP) {
19156 OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
19157 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19158 // If the variable is private (i.e. not captured) and has variably
19159 // modified type, we still need to capture the type for correct
19160 // codegen in all regions, associated with the construct. Currently,
19161 // it is captured in the innermost captured region only.
19162 if (IsOpenMPPrivateDecl != OMPC_unknown &&
19163 Var->getType()->isVariablyModifiedType()) {
19164 QualType QTy = Var->getType();
19165 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19166 QTy = PVD->getOriginalType();
19167 for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
19168 I < E; ++I) {
19169 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19170 FunctionScopes[FunctionScopesIndex - I]);
19171 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19172 "Wrong number of captured regions associated with the "
19173 "OpenMP construct.");
19174 captureVariablyModifiedType(Context, QTy, OuterRSI);
19177 bool IsTargetCap =
19178 IsOpenMPPrivateDecl != OMPC_private &&
19179 isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19180 RSI->OpenMPCaptureLevel);
19181 // Do not capture global if it is not privatized in outer regions.
19182 bool IsGlobalCap =
19183 IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
19184 RSI->OpenMPCaptureLevel);
19186 // When we detect target captures we are looking from inside the
19187 // target region, therefore we need to propagate the capture from the
19188 // enclosing region. Therefore, the capture is not initially nested.
19189 if (IsTargetCap)
19190 adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
19192 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19193 (IsGlobal && !IsGlobalCap)) {
19194 Nested = !IsTargetCap;
19195 bool HasConst = DeclRefType.isConstQualified();
19196 DeclRefType = DeclRefType.getUnqualifiedType();
19197 // Don't lose diagnostics about assignments to const.
19198 if (HasConst)
19199 DeclRefType.addConst();
19200 CaptureType = Context.getLValueReferenceType(DeclRefType);
19201 break;
19206 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19207 // No capture-default, and this is not an explicit capture
19208 // so cannot capture this variable.
19209 if (BuildAndDiagnose) {
19210 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19211 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19212 auto *LSI = cast<LambdaScopeInfo>(CSI);
19213 if (LSI->Lambda) {
19214 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19215 buildLambdaCaptureFixit(*this, LSI, Var);
19217 // FIXME: If we error out because an outer lambda can not implicitly
19218 // capture a variable that an inner lambda explicitly captures, we
19219 // should have the inner lambda do the explicit capture - because
19220 // it makes for cleaner diagnostics later. This would purely be done
19221 // so that the diagnostic does not misleadingly claim that a variable
19222 // can not be captured by a lambda implicitly even though it is captured
19223 // explicitly. Suggestion:
19224 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19225 // at the function head
19226 // - cache the StartingDeclContext - this must be a lambda
19227 // - captureInLambda in the innermost lambda the variable.
19229 return true;
19232 FunctionScopesIndex--;
19233 DC = ParentDC;
19234 Explicit = false;
19235 } while (!VarDC->Equals(DC));
19237 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19238 // computing the type of the capture at each step, checking type-specific
19239 // requirements, and adding captures if requested.
19240 // If the variable had already been captured previously, we start capturing
19241 // at the lambda nested within that one.
19242 bool Invalid = false;
19243 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19244 ++I) {
19245 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19247 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19248 // certain types of variables (unnamed, variably modified types etc.)
19249 // so check for eligibility.
19250 if (!Invalid)
19251 Invalid =
19252 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19254 // After encountering an error, if we're actually supposed to capture, keep
19255 // capturing in nested contexts to suppress any follow-on diagnostics.
19256 if (Invalid && !BuildAndDiagnose)
19257 return true;
19259 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19260 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19261 DeclRefType, Nested, *this, Invalid);
19262 Nested = true;
19263 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19264 Invalid = !captureInCapturedRegion(
19265 RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19266 Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19267 Nested = true;
19268 } else {
19269 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19270 Invalid =
19271 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19272 DeclRefType, Nested, Kind, EllipsisLoc,
19273 /*IsTopScope*/ I == N - 1, *this, Invalid);
19274 Nested = true;
19277 if (Invalid && !BuildAndDiagnose)
19278 return true;
19280 return Invalid;
19283 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19284 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19285 QualType CaptureType;
19286 QualType DeclRefType;
19287 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19288 /*BuildAndDiagnose=*/true, CaptureType,
19289 DeclRefType, nullptr);
19292 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19293 QualType CaptureType;
19294 QualType DeclRefType;
19295 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19296 /*BuildAndDiagnose=*/false, CaptureType,
19297 DeclRefType, nullptr);
19300 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19301 QualType CaptureType;
19302 QualType DeclRefType;
19304 // Determine whether we can capture this variable.
19305 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19306 /*BuildAndDiagnose=*/false, CaptureType,
19307 DeclRefType, nullptr))
19308 return QualType();
19310 return DeclRefType;
19313 namespace {
19314 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19315 // The produced TemplateArgumentListInfo* points to data stored within this
19316 // object, so should only be used in contexts where the pointer will not be
19317 // used after the CopiedTemplateArgs object is destroyed.
19318 class CopiedTemplateArgs {
19319 bool HasArgs;
19320 TemplateArgumentListInfo TemplateArgStorage;
19321 public:
19322 template<typename RefExpr>
19323 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19324 if (HasArgs)
19325 E->copyTemplateArgumentsInto(TemplateArgStorage);
19327 operator TemplateArgumentListInfo*()
19328 #ifdef __has_cpp_attribute
19329 #if __has_cpp_attribute(clang::lifetimebound)
19330 [[clang::lifetimebound]]
19331 #endif
19332 #endif
19334 return HasArgs ? &TemplateArgStorage : nullptr;
19339 /// Walk the set of potential results of an expression and mark them all as
19340 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19342 /// \return A new expression if we found any potential results, ExprEmpty() if
19343 /// not, and ExprError() if we diagnosed an error.
19344 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19345 NonOdrUseReason NOUR) {
19346 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19347 // an object that satisfies the requirements for appearing in a
19348 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19349 // is immediately applied." This function handles the lvalue-to-rvalue
19350 // conversion part.
19352 // If we encounter a node that claims to be an odr-use but shouldn't be, we
19353 // transform it into the relevant kind of non-odr-use node and rebuild the
19354 // tree of nodes leading to it.
19356 // This is a mini-TreeTransform that only transforms a restricted subset of
19357 // nodes (and only certain operands of them).
19359 // Rebuild a subexpression.
19360 auto Rebuild = [&](Expr *Sub) {
19361 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19364 // Check whether a potential result satisfies the requirements of NOUR.
19365 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19366 // Any entity other than a VarDecl is always odr-used whenever it's named
19367 // in a potentially-evaluated expression.
19368 auto *VD = dyn_cast<VarDecl>(D);
19369 if (!VD)
19370 return true;
19372 // C++2a [basic.def.odr]p4:
19373 // A variable x whose name appears as a potentially-evalauted expression
19374 // e is odr-used by e unless
19375 // -- x is a reference that is usable in constant expressions, or
19376 // -- x is a variable of non-reference type that is usable in constant
19377 // expressions and has no mutable subobjects, and e is an element of
19378 // the set of potential results of an expression of
19379 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19380 // conversion is applied, or
19381 // -- x is a variable of non-reference type, and e is an element of the
19382 // set of potential results of a discarded-value expression to which
19383 // the lvalue-to-rvalue conversion is not applied
19385 // We check the first bullet and the "potentially-evaluated" condition in
19386 // BuildDeclRefExpr. We check the type requirements in the second bullet
19387 // in CheckLValueToRValueConversionOperand below.
19388 switch (NOUR) {
19389 case NOUR_None:
19390 case NOUR_Unevaluated:
19391 llvm_unreachable("unexpected non-odr-use-reason");
19393 case NOUR_Constant:
19394 // Constant references were handled when they were built.
19395 if (VD->getType()->isReferenceType())
19396 return true;
19397 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19398 if (RD->hasMutableFields())
19399 return true;
19400 if (!VD->isUsableInConstantExpressions(S.Context))
19401 return true;
19402 break;
19404 case NOUR_Discarded:
19405 if (VD->getType()->isReferenceType())
19406 return true;
19407 break;
19409 return false;
19412 // Mark that this expression does not constitute an odr-use.
19413 auto MarkNotOdrUsed = [&] {
19414 S.MaybeODRUseExprs.remove(E);
19415 if (LambdaScopeInfo *LSI = S.getCurLambda())
19416 LSI->markVariableExprAsNonODRUsed(E);
19419 // C++2a [basic.def.odr]p2:
19420 // The set of potential results of an expression e is defined as follows:
19421 switch (E->getStmtClass()) {
19422 // -- If e is an id-expression, ...
19423 case Expr::DeclRefExprClass: {
19424 auto *DRE = cast<DeclRefExpr>(E);
19425 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19426 break;
19428 // Rebuild as a non-odr-use DeclRefExpr.
19429 MarkNotOdrUsed();
19430 return DeclRefExpr::Create(
19431 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19432 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19433 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19434 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19437 case Expr::FunctionParmPackExprClass: {
19438 auto *FPPE = cast<FunctionParmPackExpr>(E);
19439 // If any of the declarations in the pack is odr-used, then the expression
19440 // as a whole constitutes an odr-use.
19441 for (VarDecl *D : *FPPE)
19442 if (IsPotentialResultOdrUsed(D))
19443 return ExprEmpty();
19445 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19446 // nothing cares about whether we marked this as an odr-use, but it might
19447 // be useful for non-compiler tools.
19448 MarkNotOdrUsed();
19449 break;
19452 // -- If e is a subscripting operation with an array operand...
19453 case Expr::ArraySubscriptExprClass: {
19454 auto *ASE = cast<ArraySubscriptExpr>(E);
19455 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19456 if (!OldBase->getType()->isArrayType())
19457 break;
19458 ExprResult Base = Rebuild(OldBase);
19459 if (!Base.isUsable())
19460 return Base;
19461 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19462 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19463 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19464 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19465 ASE->getRBracketLoc());
19468 case Expr::MemberExprClass: {
19469 auto *ME = cast<MemberExpr>(E);
19470 // -- If e is a class member access expression [...] naming a non-static
19471 // data member...
19472 if (isa<FieldDecl>(ME->getMemberDecl())) {
19473 ExprResult Base = Rebuild(ME->getBase());
19474 if (!Base.isUsable())
19475 return Base;
19476 return MemberExpr::Create(
19477 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19478 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19479 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19480 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19481 ME->getObjectKind(), ME->isNonOdrUse());
19484 if (ME->getMemberDecl()->isCXXInstanceMember())
19485 break;
19487 // -- If e is a class member access expression naming a static data member,
19488 // ...
19489 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19490 break;
19492 // Rebuild as a non-odr-use MemberExpr.
19493 MarkNotOdrUsed();
19494 return MemberExpr::Create(
19495 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19496 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19497 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19498 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19501 case Expr::BinaryOperatorClass: {
19502 auto *BO = cast<BinaryOperator>(E);
19503 Expr *LHS = BO->getLHS();
19504 Expr *RHS = BO->getRHS();
19505 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19506 if (BO->getOpcode() == BO_PtrMemD) {
19507 ExprResult Sub = Rebuild(LHS);
19508 if (!Sub.isUsable())
19509 return Sub;
19510 LHS = Sub.get();
19511 // -- If e is a comma expression, ...
19512 } else if (BO->getOpcode() == BO_Comma) {
19513 ExprResult Sub = Rebuild(RHS);
19514 if (!Sub.isUsable())
19515 return Sub;
19516 RHS = Sub.get();
19517 } else {
19518 break;
19520 return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
19521 LHS, RHS);
19524 // -- If e has the form (e1)...
19525 case Expr::ParenExprClass: {
19526 auto *PE = cast<ParenExpr>(E);
19527 ExprResult Sub = Rebuild(PE->getSubExpr());
19528 if (!Sub.isUsable())
19529 return Sub;
19530 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19533 // -- If e is a glvalue conditional expression, ...
19534 // We don't apply this to a binary conditional operator. FIXME: Should we?
19535 case Expr::ConditionalOperatorClass: {
19536 auto *CO = cast<ConditionalOperator>(E);
19537 ExprResult LHS = Rebuild(CO->getLHS());
19538 if (LHS.isInvalid())
19539 return ExprError();
19540 ExprResult RHS = Rebuild(CO->getRHS());
19541 if (RHS.isInvalid())
19542 return ExprError();
19543 if (!LHS.isUsable() && !RHS.isUsable())
19544 return ExprEmpty();
19545 if (!LHS.isUsable())
19546 LHS = CO->getLHS();
19547 if (!RHS.isUsable())
19548 RHS = CO->getRHS();
19549 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19550 CO->getCond(), LHS.get(), RHS.get());
19553 // [Clang extension]
19554 // -- If e has the form __extension__ e1...
19555 case Expr::UnaryOperatorClass: {
19556 auto *UO = cast<UnaryOperator>(E);
19557 if (UO->getOpcode() != UO_Extension)
19558 break;
19559 ExprResult Sub = Rebuild(UO->getSubExpr());
19560 if (!Sub.isUsable())
19561 return Sub;
19562 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19563 Sub.get());
19566 // [Clang extension]
19567 // -- If e has the form _Generic(...), the set of potential results is the
19568 // union of the sets of potential results of the associated expressions.
19569 case Expr::GenericSelectionExprClass: {
19570 auto *GSE = cast<GenericSelectionExpr>(E);
19572 SmallVector<Expr *, 4> AssocExprs;
19573 bool AnyChanged = false;
19574 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19575 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19576 if (AssocExpr.isInvalid())
19577 return ExprError();
19578 if (AssocExpr.isUsable()) {
19579 AssocExprs.push_back(AssocExpr.get());
19580 AnyChanged = true;
19581 } else {
19582 AssocExprs.push_back(OrigAssocExpr);
19586 return AnyChanged ? S.CreateGenericSelectionExpr(
19587 GSE->getGenericLoc(), GSE->getDefaultLoc(),
19588 GSE->getRParenLoc(), GSE->getControllingExpr(),
19589 GSE->getAssocTypeSourceInfos(), AssocExprs)
19590 : ExprEmpty();
19593 // [Clang extension]
19594 // -- If e has the form __builtin_choose_expr(...), the set of potential
19595 // results is the union of the sets of potential results of the
19596 // second and third subexpressions.
19597 case Expr::ChooseExprClass: {
19598 auto *CE = cast<ChooseExpr>(E);
19600 ExprResult LHS = Rebuild(CE->getLHS());
19601 if (LHS.isInvalid())
19602 return ExprError();
19604 ExprResult RHS = Rebuild(CE->getLHS());
19605 if (RHS.isInvalid())
19606 return ExprError();
19608 if (!LHS.get() && !RHS.get())
19609 return ExprEmpty();
19610 if (!LHS.isUsable())
19611 LHS = CE->getLHS();
19612 if (!RHS.isUsable())
19613 RHS = CE->getRHS();
19615 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19616 RHS.get(), CE->getRParenLoc());
19619 // Step through non-syntactic nodes.
19620 case Expr::ConstantExprClass: {
19621 auto *CE = cast<ConstantExpr>(E);
19622 ExprResult Sub = Rebuild(CE->getSubExpr());
19623 if (!Sub.isUsable())
19624 return Sub;
19625 return ConstantExpr::Create(S.Context, Sub.get());
19628 // We could mostly rely on the recursive rebuilding to rebuild implicit
19629 // casts, but not at the top level, so rebuild them here.
19630 case Expr::ImplicitCastExprClass: {
19631 auto *ICE = cast<ImplicitCastExpr>(E);
19632 // Only step through the narrow set of cast kinds we expect to encounter.
19633 // Anything else suggests we've left the region in which potential results
19634 // can be found.
19635 switch (ICE->getCastKind()) {
19636 case CK_NoOp:
19637 case CK_DerivedToBase:
19638 case CK_UncheckedDerivedToBase: {
19639 ExprResult Sub = Rebuild(ICE->getSubExpr());
19640 if (!Sub.isUsable())
19641 return Sub;
19642 CXXCastPath Path(ICE->path());
19643 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19644 ICE->getValueKind(), &Path);
19647 default:
19648 break;
19650 break;
19653 default:
19654 break;
19657 // Can't traverse through this node. Nothing to do.
19658 return ExprEmpty();
19661 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19662 // Check whether the operand is or contains an object of non-trivial C union
19663 // type.
19664 if (E->getType().isVolatileQualified() &&
19665 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19666 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19667 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19668 Sema::NTCUC_LValueToRValueVolatile,
19669 NTCUK_Destruct|NTCUK_Copy);
19671 // C++2a [basic.def.odr]p4:
19672 // [...] an expression of non-volatile-qualified non-class type to which
19673 // the lvalue-to-rvalue conversion is applied [...]
19674 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19675 return E;
19677 ExprResult Result =
19678 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19679 if (Result.isInvalid())
19680 return ExprError();
19681 return Result.get() ? Result : E;
19684 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19685 Res = CorrectDelayedTyposInExpr(Res);
19687 if (!Res.isUsable())
19688 return Res;
19690 // If a constant-expression is a reference to a variable where we delay
19691 // deciding whether it is an odr-use, just assume we will apply the
19692 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
19693 // (a non-type template argument), we have special handling anyway.
19694 return CheckLValueToRValueConversionOperand(Res.get());
19697 void Sema::CleanupVarDeclMarking() {
19698 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19699 // call.
19700 MaybeODRUseExprSet LocalMaybeODRUseExprs;
19701 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19703 for (Expr *E : LocalMaybeODRUseExprs) {
19704 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19705 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19706 DRE->getLocation(), *this);
19707 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19708 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19709 *this);
19710 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19711 for (VarDecl *VD : *FP)
19712 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19713 } else {
19714 llvm_unreachable("Unexpected expression");
19718 assert(MaybeODRUseExprs.empty() &&
19719 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19722 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
19723 ValueDecl *Var, Expr *E) {
19724 VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
19725 if (!VD)
19726 return;
19728 const bool RefersToEnclosingScope =
19729 (SemaRef.CurContext != VD->getDeclContext() &&
19730 VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
19731 if (RefersToEnclosingScope) {
19732 LambdaScopeInfo *const LSI =
19733 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19734 if (LSI && (!LSI->CallOperator ||
19735 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19736 // If a variable could potentially be odr-used, defer marking it so
19737 // until we finish analyzing the full expression for any
19738 // lvalue-to-rvalue
19739 // or discarded value conversions that would obviate odr-use.
19740 // Add it to the list of potential captures that will be analyzed
19741 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19742 // unless the variable is a reference that was initialized by a constant
19743 // expression (this will never need to be captured or odr-used).
19745 // FIXME: We can simplify this a lot after implementing P0588R1.
19746 assert(E && "Capture variable should be used in an expression.");
19747 if (!Var->getType()->isReferenceType() ||
19748 !VD->isUsableInConstantExpressions(SemaRef.Context))
19749 LSI->addPotentialCapture(E->IgnoreParens());
19754 static void DoMarkVarDeclReferenced(
19755 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19756 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19757 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19758 isa<FunctionParmPackExpr>(E)) &&
19759 "Invalid Expr argument to DoMarkVarDeclReferenced");
19760 Var->setReferenced();
19762 if (Var->isInvalidDecl())
19763 return;
19765 auto *MSI = Var->getMemberSpecializationInfo();
19766 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19767 : Var->getTemplateSpecializationKind();
19769 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19770 bool UsableInConstantExpr =
19771 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19773 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19774 RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19777 // C++20 [expr.const]p12:
19778 // A variable [...] is needed for constant evaluation if it is [...] a
19779 // variable whose name appears as a potentially constant evaluated
19780 // expression that is either a contexpr variable or is of non-volatile
19781 // const-qualified integral type or of reference type
19782 bool NeededForConstantEvaluation =
19783 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19785 bool NeedDefinition =
19786 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19788 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19789 "Can't instantiate a partial template specialization.");
19791 // If this might be a member specialization of a static data member, check
19792 // the specialization is visible. We already did the checks for variable
19793 // template specializations when we created them.
19794 if (NeedDefinition && TSK != TSK_Undeclared &&
19795 !isa<VarTemplateSpecializationDecl>(Var))
19796 SemaRef.checkSpecializationVisibility(Loc, Var);
19798 // Perform implicit instantiation of static data members, static data member
19799 // templates of class templates, and variable template specializations. Delay
19800 // instantiations of variable templates, except for those that could be used
19801 // in a constant expression.
19802 if (NeedDefinition && isTemplateInstantiation(TSK)) {
19803 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19804 // instantiation declaration if a variable is usable in a constant
19805 // expression (among other cases).
19806 bool TryInstantiating =
19807 TSK == TSK_ImplicitInstantiation ||
19808 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19810 if (TryInstantiating) {
19811 SourceLocation PointOfInstantiation =
19812 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19813 bool FirstInstantiation = PointOfInstantiation.isInvalid();
19814 if (FirstInstantiation) {
19815 PointOfInstantiation = Loc;
19816 if (MSI)
19817 MSI->setPointOfInstantiation(PointOfInstantiation);
19818 // FIXME: Notify listener.
19819 else
19820 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19823 if (UsableInConstantExpr) {
19824 // Do not defer instantiations of variables that could be used in a
19825 // constant expression.
19826 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19827 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19830 // Re-set the member to trigger a recomputation of the dependence bits
19831 // for the expression.
19832 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19833 DRE->setDecl(DRE->getDecl());
19834 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19835 ME->setMemberDecl(ME->getMemberDecl());
19836 } else if (FirstInstantiation ||
19837 isa<VarTemplateSpecializationDecl>(Var)) {
19838 // FIXME: For a specialization of a variable template, we don't
19839 // distinguish between "declaration and type implicitly instantiated"
19840 // and "implicit instantiation of definition requested", so we have
19841 // no direct way to avoid enqueueing the pending instantiation
19842 // multiple times.
19843 SemaRef.PendingInstantiations
19844 .push_back(std::make_pair(Var, PointOfInstantiation));
19849 // C++2a [basic.def.odr]p4:
19850 // A variable x whose name appears as a potentially-evaluated expression e
19851 // is odr-used by e unless
19852 // -- x is a reference that is usable in constant expressions
19853 // -- x is a variable of non-reference type that is usable in constant
19854 // expressions and has no mutable subobjects [FIXME], and e is an
19855 // element of the set of potential results of an expression of
19856 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19857 // conversion is applied
19858 // -- x is a variable of non-reference type, and e is an element of the set
19859 // of potential results of a discarded-value expression to which the
19860 // lvalue-to-rvalue conversion is not applied [FIXME]
19862 // We check the first part of the second bullet here, and
19863 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19864 // FIXME: To get the third bullet right, we need to delay this even for
19865 // variables that are not usable in constant expressions.
19867 // If we already know this isn't an odr-use, there's nothing more to do.
19868 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19869 if (DRE->isNonOdrUse())
19870 return;
19871 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19872 if (ME->isNonOdrUse())
19873 return;
19875 switch (OdrUse) {
19876 case OdrUseContext::None:
19877 // In some cases, a variable may not have been marked unevaluated, if it
19878 // appears in a defaukt initializer.
19879 assert((!E || isa<FunctionParmPackExpr>(E) ||
19880 SemaRef.isUnevaluatedContext()) &&
19881 "missing non-odr-use marking for unevaluated decl ref");
19882 break;
19884 case OdrUseContext::FormallyOdrUsed:
19885 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19886 // behavior.
19887 break;
19889 case OdrUseContext::Used:
19890 // If we might later find that this expression isn't actually an odr-use,
19891 // delay the marking.
19892 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19893 SemaRef.MaybeODRUseExprs.insert(E);
19894 else
19895 MarkVarDeclODRUsed(Var, Loc, SemaRef);
19896 break;
19898 case OdrUseContext::Dependent:
19899 // If this is a dependent context, we don't need to mark variables as
19900 // odr-used, but we may still need to track them for lambda capture.
19901 // FIXME: Do we also need to do this inside dependent typeid expressions
19902 // (which are modeled as unevaluated at this point)?
19903 DoMarkPotentialCapture(SemaRef, Loc, Var, E);
19904 break;
19908 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
19909 BindingDecl *BD, Expr *E) {
19910 BD->setReferenced();
19912 if (BD->isInvalidDecl())
19913 return;
19915 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19916 if (OdrUse == OdrUseContext::Used) {
19917 QualType CaptureType, DeclRefType;
19918 SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
19919 /*EllipsisLoc*/ SourceLocation(),
19920 /*BuildAndDiagnose*/ true, CaptureType,
19921 DeclRefType,
19922 /*FunctionScopeIndexToStopAt*/ nullptr);
19923 } else if (OdrUse == OdrUseContext::Dependent) {
19924 DoMarkPotentialCapture(SemaRef, Loc, BD, E);
19928 /// Mark a variable referenced, and check whether it is odr-used
19929 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
19930 /// used directly for normal expressions referring to VarDecl.
19931 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19932 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19935 static void
19936 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19937 bool MightBeOdrUse,
19938 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19939 if (SemaRef.isInOpenMPDeclareTargetContext())
19940 SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
19942 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
19943 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19944 return;
19947 if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
19948 DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
19949 return;
19952 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19954 // If this is a call to a method via a cast, also mark the method in the
19955 // derived class used in case codegen can devirtualize the call.
19956 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
19957 if (!ME)
19958 return;
19959 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
19960 if (!MD)
19961 return;
19962 // Only attempt to devirtualize if this is truly a virtual call.
19963 bool IsVirtualCall = MD->isVirtual() &&
19964 ME->performsVirtualDispatch(SemaRef.getLangOpts());
19965 if (!IsVirtualCall)
19966 return;
19968 // If it's possible to devirtualize the call, mark the called function
19969 // referenced.
19970 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19971 ME->getBase(), SemaRef.getLangOpts().AppleKext);
19972 if (DM)
19973 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
19976 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
19978 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
19979 /// handled with care if the DeclRefExpr is not newly-created.
19980 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19981 // TODO: update this with DR# once a defect report is filed.
19982 // C++11 defect. The address of a pure member should not be an ODR use, even
19983 // if it's a qualified reference.
19984 bool OdrUse = true;
19985 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
19986 if (Method->isVirtual() &&
19987 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
19988 OdrUse = false;
19990 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
19991 if (!isUnevaluatedContext() && !isConstantEvaluated() &&
19992 !isImmediateFunctionContext() &&
19993 !isCheckingDefaultArgumentOrInitializer() && FD->isConsteval() &&
19994 !RebuildingImmediateInvocation && !FD->isDependentContext())
19995 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
19996 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
19997 RefsMinusAssignments);
20000 /// Perform reference-marking and odr-use handling for a MemberExpr.
20001 void Sema::MarkMemberReferenced(MemberExpr *E) {
20002 // C++11 [basic.def.odr]p2:
20003 // A non-overloaded function whose name appears as a potentially-evaluated
20004 // expression or a member of a set of candidate functions, if selected by
20005 // overload resolution when referred to from a potentially-evaluated
20006 // expression, is odr-used, unless it is a pure virtual function and its
20007 // name is not explicitly qualified.
20008 bool MightBeOdrUse = true;
20009 if (E->performsVirtualDispatch(getLangOpts())) {
20010 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20011 if (Method->isPure())
20012 MightBeOdrUse = false;
20014 SourceLocation Loc =
20015 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20016 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20017 RefsMinusAssignments);
20020 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
20021 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20022 for (VarDecl *VD : *E)
20023 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20024 RefsMinusAssignments);
20027 /// Perform marking for a reference to an arbitrary declaration. It
20028 /// marks the declaration referenced, and performs odr-use checking for
20029 /// functions and variables. This method should not be used when building a
20030 /// normal expression which refers to a variable.
20031 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20032 bool MightBeOdrUse) {
20033 if (MightBeOdrUse) {
20034 if (auto *VD = dyn_cast<VarDecl>(D)) {
20035 MarkVariableReferenced(Loc, VD);
20036 return;
20039 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20040 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20041 return;
20043 D->setReferenced();
20046 namespace {
20047 // Mark all of the declarations used by a type as referenced.
20048 // FIXME: Not fully implemented yet! We need to have a better understanding
20049 // of when we're entering a context we should not recurse into.
20050 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20051 // TreeTransforms rebuilding the type in a new context. Rather than
20052 // duplicating the TreeTransform logic, we should consider reusing it here.
20053 // Currently that causes problems when rebuilding LambdaExprs.
20054 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
20055 Sema &S;
20056 SourceLocation Loc;
20058 public:
20059 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
20061 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
20063 bool TraverseTemplateArgument(const TemplateArgument &Arg);
20067 bool MarkReferencedDecls::TraverseTemplateArgument(
20068 const TemplateArgument &Arg) {
20070 // A non-type template argument is a constant-evaluated context.
20071 EnterExpressionEvaluationContext Evaluated(
20072 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20073 if (Arg.getKind() == TemplateArgument::Declaration) {
20074 if (Decl *D = Arg.getAsDecl())
20075 S.MarkAnyDeclReferenced(Loc, D, true);
20076 } else if (Arg.getKind() == TemplateArgument::Expression) {
20077 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20081 return Inherited::TraverseTemplateArgument(Arg);
20084 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20085 MarkReferencedDecls Marker(*this, Loc);
20086 Marker.TraverseType(T);
20089 namespace {
20090 /// Helper class that marks all of the declarations referenced by
20091 /// potentially-evaluated subexpressions as "referenced".
20092 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20093 public:
20094 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20095 bool SkipLocalVariables;
20096 ArrayRef<const Expr *> StopAt;
20098 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20099 ArrayRef<const Expr *> StopAt)
20100 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20102 void visitUsedDecl(SourceLocation Loc, Decl *D) {
20103 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20106 void Visit(Expr *E) {
20107 if (llvm::is_contained(StopAt, E))
20108 return;
20109 Inherited::Visit(E);
20112 void VisitConstantExpr(ConstantExpr *E) {
20113 // Don't mark declarations within a ConstantExpression, as this expression
20114 // will be evaluated and folded to a value.
20117 void VisitDeclRefExpr(DeclRefExpr *E) {
20118 // If we were asked not to visit local variables, don't.
20119 if (SkipLocalVariables) {
20120 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20121 if (VD->hasLocalStorage())
20122 return;
20125 // FIXME: This can trigger the instantiation of the initializer of a
20126 // variable, which can cause the expression to become value-dependent
20127 // or error-dependent. Do we need to propagate the new dependence bits?
20128 S.MarkDeclRefReferenced(E);
20131 void VisitMemberExpr(MemberExpr *E) {
20132 S.MarkMemberReferenced(E);
20133 Visit(E->getBase());
20136 } // namespace
20138 /// Mark any declarations that appear within this expression or any
20139 /// potentially-evaluated subexpressions as "referenced".
20141 /// \param SkipLocalVariables If true, don't mark local variables as
20142 /// 'referenced'.
20143 /// \param StopAt Subexpressions that we shouldn't recurse into.
20144 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20145 bool SkipLocalVariables,
20146 ArrayRef<const Expr*> StopAt) {
20147 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20150 /// Emit a diagnostic when statements are reachable.
20151 /// FIXME: check for reachability even in expressions for which we don't build a
20152 /// CFG (eg, in the initializer of a global or in a constant expression).
20153 /// For example,
20154 /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20155 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20156 const PartialDiagnostic &PD) {
20157 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20158 if (!FunctionScopes.empty())
20159 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20160 sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20161 return true;
20164 // The initializer of a constexpr variable or of the first declaration of a
20165 // static data member is not syntactically a constant evaluated constant,
20166 // but nonetheless is always required to be a constant expression, so we
20167 // can skip diagnosing.
20168 // FIXME: Using the mangling context here is a hack.
20169 if (auto *VD = dyn_cast_or_null<VarDecl>(
20170 ExprEvalContexts.back().ManglingContextDecl)) {
20171 if (VD->isConstexpr() ||
20172 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20173 return false;
20174 // FIXME: For any other kind of variable, we should build a CFG for its
20175 // initializer and check whether the context in question is reachable.
20178 Diag(Loc, PD);
20179 return true;
20182 /// Emit a diagnostic that describes an effect on the run-time behavior
20183 /// of the program being compiled.
20185 /// This routine emits the given diagnostic when the code currently being
20186 /// type-checked is "potentially evaluated", meaning that there is a
20187 /// possibility that the code will actually be executable. Code in sizeof()
20188 /// expressions, code used only during overload resolution, etc., are not
20189 /// potentially evaluated. This routine will suppress such diagnostics or,
20190 /// in the absolutely nutty case of potentially potentially evaluated
20191 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20192 /// later.
20194 /// This routine should be used for all diagnostics that describe the run-time
20195 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20196 /// Failure to do so will likely result in spurious diagnostics or failures
20197 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20198 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20199 const PartialDiagnostic &PD) {
20201 if (ExprEvalContexts.back().isDiscardedStatementContext())
20202 return false;
20204 switch (ExprEvalContexts.back().Context) {
20205 case ExpressionEvaluationContext::Unevaluated:
20206 case ExpressionEvaluationContext::UnevaluatedList:
20207 case ExpressionEvaluationContext::UnevaluatedAbstract:
20208 case ExpressionEvaluationContext::DiscardedStatement:
20209 // The argument will never be evaluated, so don't complain.
20210 break;
20212 case ExpressionEvaluationContext::ConstantEvaluated:
20213 case ExpressionEvaluationContext::ImmediateFunctionContext:
20214 // Relevant diagnostics should be produced by constant evaluation.
20215 break;
20217 case ExpressionEvaluationContext::PotentiallyEvaluated:
20218 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20219 return DiagIfReachable(Loc, Stmts, PD);
20222 return false;
20225 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20226 const PartialDiagnostic &PD) {
20227 return DiagRuntimeBehavior(
20228 Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
20231 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20232 CallExpr *CE, FunctionDecl *FD) {
20233 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20234 return false;
20236 // If we're inside a decltype's expression, don't check for a valid return
20237 // type or construct temporaries until we know whether this is the last call.
20238 if (ExprEvalContexts.back().ExprContext ==
20239 ExpressionEvaluationContextRecord::EK_Decltype) {
20240 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
20241 return false;
20244 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20245 FunctionDecl *FD;
20246 CallExpr *CE;
20248 public:
20249 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20250 : FD(FD), CE(CE) { }
20252 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20253 if (!FD) {
20254 S.Diag(Loc, diag::err_call_incomplete_return)
20255 << T << CE->getSourceRange();
20256 return;
20259 S.Diag(Loc, diag::err_call_function_incomplete_return)
20260 << CE->getSourceRange() << FD << T;
20261 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
20262 << FD->getDeclName();
20264 } Diagnoser(FD, CE);
20266 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
20267 return true;
20269 return false;
20272 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20273 // will prevent this condition from triggering, which is what we want.
20274 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20275 SourceLocation Loc;
20277 unsigned diagnostic = diag::warn_condition_is_assignment;
20278 bool IsOrAssign = false;
20280 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
20281 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20282 return;
20284 IsOrAssign = Op->getOpcode() == BO_OrAssign;
20286 // Greylist some idioms by putting them into a warning subcategory.
20287 if (ObjCMessageExpr *ME
20288 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
20289 Selector Sel = ME->getSelector();
20291 // self = [<foo> init...]
20292 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20293 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20295 // <foo> = [<bar> nextObject]
20296 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20297 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20300 Loc = Op->getOperatorLoc();
20301 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
20302 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20303 return;
20305 IsOrAssign = Op->getOperator() == OO_PipeEqual;
20306 Loc = Op->getOperatorLoc();
20307 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
20308 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
20309 else {
20310 // Not an assignment.
20311 return;
20314 Diag(Loc, diagnostic) << E->getSourceRange();
20316 SourceLocation Open = E->getBeginLoc();
20317 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
20318 Diag(Loc, diag::note_condition_assign_silence)
20319 << FixItHint::CreateInsertion(Open, "(")
20320 << FixItHint::CreateInsertion(Close, ")");
20322 if (IsOrAssign)
20323 Diag(Loc, diag::note_condition_or_assign_to_comparison)
20324 << FixItHint::CreateReplacement(Loc, "!=");
20325 else
20326 Diag(Loc, diag::note_condition_assign_to_comparison)
20327 << FixItHint::CreateReplacement(Loc, "==");
20330 /// Redundant parentheses over an equality comparison can indicate
20331 /// that the user intended an assignment used as condition.
20332 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20333 // Don't warn if the parens came from a macro.
20334 SourceLocation parenLoc = ParenE->getBeginLoc();
20335 if (parenLoc.isInvalid() || parenLoc.isMacroID())
20336 return;
20337 // Don't warn for dependent expressions.
20338 if (ParenE->isTypeDependent())
20339 return;
20341 Expr *E = ParenE->IgnoreParens();
20343 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
20344 if (opE->getOpcode() == BO_EQ &&
20345 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
20346 == Expr::MLV_Valid) {
20347 SourceLocation Loc = opE->getOperatorLoc();
20349 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20350 SourceRange ParenERange = ParenE->getSourceRange();
20351 Diag(Loc, diag::note_equality_comparison_silence)
20352 << FixItHint::CreateRemoval(ParenERange.getBegin())
20353 << FixItHint::CreateRemoval(ParenERange.getEnd());
20354 Diag(Loc, diag::note_equality_comparison_to_assign)
20355 << FixItHint::CreateReplacement(Loc, "=");
20359 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20360 bool IsConstexpr) {
20361 DiagnoseAssignmentAsCondition(E);
20362 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
20363 DiagnoseEqualityWithExtraParens(parenE);
20365 ExprResult result = CheckPlaceholderExpr(E);
20366 if (result.isInvalid()) return ExprError();
20367 E = result.get();
20369 if (!E->isTypeDependent()) {
20370 if (getLangOpts().CPlusPlus)
20371 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20373 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20374 if (ERes.isInvalid())
20375 return ExprError();
20376 E = ERes.get();
20378 QualType T = E->getType();
20379 if (!T->isScalarType()) { // C99 6.8.4.1p1
20380 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20381 << T << E->getSourceRange();
20382 return ExprError();
20384 CheckBoolLikeConversion(E, Loc);
20387 return E;
20390 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20391 Expr *SubExpr, ConditionKind CK,
20392 bool MissingOK) {
20393 // MissingOK indicates whether having no condition expression is valid
20394 // (for loop) or invalid (e.g. while loop).
20395 if (!SubExpr)
20396 return MissingOK ? ConditionResult() : ConditionError();
20398 ExprResult Cond;
20399 switch (CK) {
20400 case ConditionKind::Boolean:
20401 Cond = CheckBooleanCondition(Loc, SubExpr);
20402 break;
20404 case ConditionKind::ConstexprIf:
20405 Cond = CheckBooleanCondition(Loc, SubExpr, true);
20406 break;
20408 case ConditionKind::Switch:
20409 Cond = CheckSwitchCondition(Loc, SubExpr);
20410 break;
20412 if (Cond.isInvalid()) {
20413 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20414 {SubExpr}, PreferredConditionType(CK));
20415 if (!Cond.get())
20416 return ConditionError();
20418 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20419 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20420 if (!FullExpr.get())
20421 return ConditionError();
20423 return ConditionResult(*this, nullptr, FullExpr,
20424 CK == ConditionKind::ConstexprIf);
20427 namespace {
20428 /// A visitor for rebuilding a call to an __unknown_any expression
20429 /// to have an appropriate type.
20430 struct RebuildUnknownAnyFunction
20431 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20433 Sema &S;
20435 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20437 ExprResult VisitStmt(Stmt *S) {
20438 llvm_unreachable("unexpected statement!");
20441 ExprResult VisitExpr(Expr *E) {
20442 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20443 << E->getSourceRange();
20444 return ExprError();
20447 /// Rebuild an expression which simply semantically wraps another
20448 /// expression which it shares the type and value kind of.
20449 template <class T> ExprResult rebuildSugarExpr(T *E) {
20450 ExprResult SubResult = Visit(E->getSubExpr());
20451 if (SubResult.isInvalid()) return ExprError();
20453 Expr *SubExpr = SubResult.get();
20454 E->setSubExpr(SubExpr);
20455 E->setType(SubExpr->getType());
20456 E->setValueKind(SubExpr->getValueKind());
20457 assert(E->getObjectKind() == OK_Ordinary);
20458 return E;
20461 ExprResult VisitParenExpr(ParenExpr *E) {
20462 return rebuildSugarExpr(E);
20465 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20466 return rebuildSugarExpr(E);
20469 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20470 ExprResult SubResult = Visit(E->getSubExpr());
20471 if (SubResult.isInvalid()) return ExprError();
20473 Expr *SubExpr = SubResult.get();
20474 E->setSubExpr(SubExpr);
20475 E->setType(S.Context.getPointerType(SubExpr->getType()));
20476 assert(E->isPRValue());
20477 assert(E->getObjectKind() == OK_Ordinary);
20478 return E;
20481 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20482 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20484 E->setType(VD->getType());
20486 assert(E->isPRValue());
20487 if (S.getLangOpts().CPlusPlus &&
20488 !(isa<CXXMethodDecl>(VD) &&
20489 cast<CXXMethodDecl>(VD)->isInstance()))
20490 E->setValueKind(VK_LValue);
20492 return E;
20495 ExprResult VisitMemberExpr(MemberExpr *E) {
20496 return resolveDecl(E, E->getMemberDecl());
20499 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20500 return resolveDecl(E, E->getDecl());
20505 /// Given a function expression of unknown-any type, try to rebuild it
20506 /// to have a function type.
20507 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20508 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20509 if (Result.isInvalid()) return ExprError();
20510 return S.DefaultFunctionArrayConversion(Result.get());
20513 namespace {
20514 /// A visitor for rebuilding an expression of type __unknown_anytype
20515 /// into one which resolves the type directly on the referring
20516 /// expression. Strict preservation of the original source
20517 /// structure is not a goal.
20518 struct RebuildUnknownAnyExpr
20519 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20521 Sema &S;
20523 /// The current destination type.
20524 QualType DestType;
20526 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20527 : S(S), DestType(CastType) {}
20529 ExprResult VisitStmt(Stmt *S) {
20530 llvm_unreachable("unexpected statement!");
20533 ExprResult VisitExpr(Expr *E) {
20534 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20535 << E->getSourceRange();
20536 return ExprError();
20539 ExprResult VisitCallExpr(CallExpr *E);
20540 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20542 /// Rebuild an expression which simply semantically wraps another
20543 /// expression which it shares the type and value kind of.
20544 template <class T> ExprResult rebuildSugarExpr(T *E) {
20545 ExprResult SubResult = Visit(E->getSubExpr());
20546 if (SubResult.isInvalid()) return ExprError();
20547 Expr *SubExpr = SubResult.get();
20548 E->setSubExpr(SubExpr);
20549 E->setType(SubExpr->getType());
20550 E->setValueKind(SubExpr->getValueKind());
20551 assert(E->getObjectKind() == OK_Ordinary);
20552 return E;
20555 ExprResult VisitParenExpr(ParenExpr *E) {
20556 return rebuildSugarExpr(E);
20559 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20560 return rebuildSugarExpr(E);
20563 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20564 const PointerType *Ptr = DestType->getAs<PointerType>();
20565 if (!Ptr) {
20566 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20567 << E->getSourceRange();
20568 return ExprError();
20571 if (isa<CallExpr>(E->getSubExpr())) {
20572 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20573 << E->getSourceRange();
20574 return ExprError();
20577 assert(E->isPRValue());
20578 assert(E->getObjectKind() == OK_Ordinary);
20579 E->setType(DestType);
20581 // Build the sub-expression as if it were an object of the pointee type.
20582 DestType = Ptr->getPointeeType();
20583 ExprResult SubResult = Visit(E->getSubExpr());
20584 if (SubResult.isInvalid()) return ExprError();
20585 E->setSubExpr(SubResult.get());
20586 return E;
20589 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20591 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20593 ExprResult VisitMemberExpr(MemberExpr *E) {
20594 return resolveDecl(E, E->getMemberDecl());
20597 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20598 return resolveDecl(E, E->getDecl());
20603 /// Rebuilds a call expression which yielded __unknown_anytype.
20604 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20605 Expr *CalleeExpr = E->getCallee();
20607 enum FnKind {
20608 FK_MemberFunction,
20609 FK_FunctionPointer,
20610 FK_BlockPointer
20613 FnKind Kind;
20614 QualType CalleeType = CalleeExpr->getType();
20615 if (CalleeType == S.Context.BoundMemberTy) {
20616 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20617 Kind = FK_MemberFunction;
20618 CalleeType = Expr::findBoundMemberType(CalleeExpr);
20619 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20620 CalleeType = Ptr->getPointeeType();
20621 Kind = FK_FunctionPointer;
20622 } else {
20623 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20624 Kind = FK_BlockPointer;
20626 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20628 // Verify that this is a legal result type of a function.
20629 if (DestType->isArrayType() || DestType->isFunctionType()) {
20630 unsigned diagID = diag::err_func_returning_array_function;
20631 if (Kind == FK_BlockPointer)
20632 diagID = diag::err_block_returning_array_function;
20634 S.Diag(E->getExprLoc(), diagID)
20635 << DestType->isFunctionType() << DestType;
20636 return ExprError();
20639 // Otherwise, go ahead and set DestType as the call's result.
20640 E->setType(DestType.getNonLValueExprType(S.Context));
20641 E->setValueKind(Expr::getValueKindForType(DestType));
20642 assert(E->getObjectKind() == OK_Ordinary);
20644 // Rebuild the function type, replacing the result type with DestType.
20645 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20646 if (Proto) {
20647 // __unknown_anytype(...) is a special case used by the debugger when
20648 // it has no idea what a function's signature is.
20650 // We want to build this call essentially under the K&R
20651 // unprototyped rules, but making a FunctionNoProtoType in C++
20652 // would foul up all sorts of assumptions. However, we cannot
20653 // simply pass all arguments as variadic arguments, nor can we
20654 // portably just call the function under a non-variadic type; see
20655 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20656 // However, it turns out that in practice it is generally safe to
20657 // call a function declared as "A foo(B,C,D);" under the prototype
20658 // "A foo(B,C,D,...);". The only known exception is with the
20659 // Windows ABI, where any variadic function is implicitly cdecl
20660 // regardless of its normal CC. Therefore we change the parameter
20661 // types to match the types of the arguments.
20663 // This is a hack, but it is far superior to moving the
20664 // corresponding target-specific code from IR-gen to Sema/AST.
20666 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20667 SmallVector<QualType, 8> ArgTypes;
20668 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20669 ArgTypes.reserve(E->getNumArgs());
20670 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20671 ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20673 ParamTypes = ArgTypes;
20675 DestType = S.Context.getFunctionType(DestType, ParamTypes,
20676 Proto->getExtProtoInfo());
20677 } else {
20678 DestType = S.Context.getFunctionNoProtoType(DestType,
20679 FnType->getExtInfo());
20682 // Rebuild the appropriate pointer-to-function type.
20683 switch (Kind) {
20684 case FK_MemberFunction:
20685 // Nothing to do.
20686 break;
20688 case FK_FunctionPointer:
20689 DestType = S.Context.getPointerType(DestType);
20690 break;
20692 case FK_BlockPointer:
20693 DestType = S.Context.getBlockPointerType(DestType);
20694 break;
20697 // Finally, we can recurse.
20698 ExprResult CalleeResult = Visit(CalleeExpr);
20699 if (!CalleeResult.isUsable()) return ExprError();
20700 E->setCallee(CalleeResult.get());
20702 // Bind a temporary if necessary.
20703 return S.MaybeBindToTemporary(E);
20706 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20707 // Verify that this is a legal result type of a call.
20708 if (DestType->isArrayType() || DestType->isFunctionType()) {
20709 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20710 << DestType->isFunctionType() << DestType;
20711 return ExprError();
20714 // Rewrite the method result type if available.
20715 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20716 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20717 Method->setReturnType(DestType);
20720 // Change the type of the message.
20721 E->setType(DestType.getNonReferenceType());
20722 E->setValueKind(Expr::getValueKindForType(DestType));
20724 return S.MaybeBindToTemporary(E);
20727 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20728 // The only case we should ever see here is a function-to-pointer decay.
20729 if (E->getCastKind() == CK_FunctionToPointerDecay) {
20730 assert(E->isPRValue());
20731 assert(E->getObjectKind() == OK_Ordinary);
20733 E->setType(DestType);
20735 // Rebuild the sub-expression as the pointee (function) type.
20736 DestType = DestType->castAs<PointerType>()->getPointeeType();
20738 ExprResult Result = Visit(E->getSubExpr());
20739 if (!Result.isUsable()) return ExprError();
20741 E->setSubExpr(Result.get());
20742 return E;
20743 } else if (E->getCastKind() == CK_LValueToRValue) {
20744 assert(E->isPRValue());
20745 assert(E->getObjectKind() == OK_Ordinary);
20747 assert(isa<BlockPointerType>(E->getType()));
20749 E->setType(DestType);
20751 // The sub-expression has to be a lvalue reference, so rebuild it as such.
20752 DestType = S.Context.getLValueReferenceType(DestType);
20754 ExprResult Result = Visit(E->getSubExpr());
20755 if (!Result.isUsable()) return ExprError();
20757 E->setSubExpr(Result.get());
20758 return E;
20759 } else {
20760 llvm_unreachable("Unhandled cast type!");
20764 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20765 ExprValueKind ValueKind = VK_LValue;
20766 QualType Type = DestType;
20768 // We know how to make this work for certain kinds of decls:
20770 // - functions
20771 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20772 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20773 DestType = Ptr->getPointeeType();
20774 ExprResult Result = resolveDecl(E, VD);
20775 if (Result.isInvalid()) return ExprError();
20776 return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20777 VK_PRValue);
20780 if (!Type->isFunctionType()) {
20781 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20782 << VD << E->getSourceRange();
20783 return ExprError();
20785 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20786 // We must match the FunctionDecl's type to the hack introduced in
20787 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20788 // type. See the lengthy commentary in that routine.
20789 QualType FDT = FD->getType();
20790 const FunctionType *FnType = FDT->castAs<FunctionType>();
20791 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20792 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20793 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20794 SourceLocation Loc = FD->getLocation();
20795 FunctionDecl *NewFD = FunctionDecl::Create(
20796 S.Context, FD->getDeclContext(), Loc, Loc,
20797 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20798 SC_None, S.getCurFPFeatures().isFPConstrained(),
20799 false /*isInlineSpecified*/, FD->hasPrototype(),
20800 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20802 if (FD->getQualifier())
20803 NewFD->setQualifierInfo(FD->getQualifierLoc());
20805 SmallVector<ParmVarDecl*, 16> Params;
20806 for (const auto &AI : FT->param_types()) {
20807 ParmVarDecl *Param =
20808 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20809 Param->setScopeInfo(0, Params.size());
20810 Params.push_back(Param);
20812 NewFD->setParams(Params);
20813 DRE->setDecl(NewFD);
20814 VD = DRE->getDecl();
20818 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20819 if (MD->isInstance()) {
20820 ValueKind = VK_PRValue;
20821 Type = S.Context.BoundMemberTy;
20824 // Function references aren't l-values in C.
20825 if (!S.getLangOpts().CPlusPlus)
20826 ValueKind = VK_PRValue;
20828 // - variables
20829 } else if (isa<VarDecl>(VD)) {
20830 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20831 Type = RefTy->getPointeeType();
20832 } else if (Type->isFunctionType()) {
20833 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20834 << VD << E->getSourceRange();
20835 return ExprError();
20838 // - nothing else
20839 } else {
20840 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20841 << VD << E->getSourceRange();
20842 return ExprError();
20845 // Modifying the declaration like this is friendly to IR-gen but
20846 // also really dangerous.
20847 VD->setType(DestType);
20848 E->setType(Type);
20849 E->setValueKind(ValueKind);
20850 return E;
20853 /// Check a cast of an unknown-any type. We intentionally only
20854 /// trigger this for C-style casts.
20855 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20856 Expr *CastExpr, CastKind &CastKind,
20857 ExprValueKind &VK, CXXCastPath &Path) {
20858 // The type we're casting to must be either void or complete.
20859 if (!CastType->isVoidType() &&
20860 RequireCompleteType(TypeRange.getBegin(), CastType,
20861 diag::err_typecheck_cast_to_incomplete))
20862 return ExprError();
20864 // Rewrite the casted expression from scratch.
20865 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20866 if (!result.isUsable()) return ExprError();
20868 CastExpr = result.get();
20869 VK = CastExpr->getValueKind();
20870 CastKind = CK_NoOp;
20872 return CastExpr;
20875 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20876 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20879 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20880 Expr *arg, QualType &paramType) {
20881 // If the syntactic form of the argument is not an explicit cast of
20882 // any sort, just do default argument promotion.
20883 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20884 if (!castArg) {
20885 ExprResult result = DefaultArgumentPromotion(arg);
20886 if (result.isInvalid()) return ExprError();
20887 paramType = result.get()->getType();
20888 return result;
20891 // Otherwise, use the type that was written in the explicit cast.
20892 assert(!arg->hasPlaceholderType());
20893 paramType = castArg->getTypeAsWritten();
20895 // Copy-initialize a parameter of that type.
20896 InitializedEntity entity =
20897 InitializedEntity::InitializeParameter(Context, paramType,
20898 /*consumed*/ false);
20899 return PerformCopyInitialization(entity, callLoc, arg);
20902 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20903 Expr *orig = E;
20904 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20905 while (true) {
20906 E = E->IgnoreParenImpCasts();
20907 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20908 E = call->getCallee();
20909 diagID = diag::err_uncasted_call_of_unknown_any;
20910 } else {
20911 break;
20915 SourceLocation loc;
20916 NamedDecl *d;
20917 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20918 loc = ref->getLocation();
20919 d = ref->getDecl();
20920 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20921 loc = mem->getMemberLoc();
20922 d = mem->getMemberDecl();
20923 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20924 diagID = diag::err_uncasted_call_of_unknown_any;
20925 loc = msg->getSelectorStartLoc();
20926 d = msg->getMethodDecl();
20927 if (!d) {
20928 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20929 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20930 << orig->getSourceRange();
20931 return ExprError();
20933 } else {
20934 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20935 << E->getSourceRange();
20936 return ExprError();
20939 S.Diag(loc, diagID) << d << orig->getSourceRange();
20941 // Never recoverable.
20942 return ExprError();
20945 /// Check for operands with placeholder types and complain if found.
20946 /// Returns ExprError() if there was an error and no recovery was possible.
20947 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20948 if (!Context.isDependenceAllowed()) {
20949 // C cannot handle TypoExpr nodes on either side of a binop because it
20950 // doesn't handle dependent types properly, so make sure any TypoExprs have
20951 // been dealt with before checking the operands.
20952 ExprResult Result = CorrectDelayedTyposInExpr(E);
20953 if (!Result.isUsable()) return ExprError();
20954 E = Result.get();
20957 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20958 if (!placeholderType) return E;
20960 switch (placeholderType->getKind()) {
20962 // Overloaded expressions.
20963 case BuiltinType::Overload: {
20964 // Try to resolve a single function template specialization.
20965 // This is obligatory.
20966 ExprResult Result = E;
20967 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
20968 return Result;
20970 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20971 // leaves Result unchanged on failure.
20972 Result = E;
20973 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
20974 return Result;
20976 // If that failed, try to recover with a call.
20977 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
20978 /*complain*/ true);
20979 return Result;
20982 // Bound member functions.
20983 case BuiltinType::BoundMember: {
20984 ExprResult result = E;
20985 const Expr *BME = E->IgnoreParens();
20986 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
20987 // Try to give a nicer diagnostic if it is a bound member that we recognize.
20988 if (isa<CXXPseudoDestructorExpr>(BME)) {
20989 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
20990 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
20991 if (ME->getMemberNameInfo().getName().getNameKind() ==
20992 DeclarationName::CXXDestructorName)
20993 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
20995 tryToRecoverWithCall(result, PD,
20996 /*complain*/ true);
20997 return result;
21000 // ARC unbridged casts.
21001 case BuiltinType::ARCUnbridgedCast: {
21002 Expr *realCast = stripARCUnbridgedCast(E);
21003 diagnoseARCUnbridgedCast(realCast);
21004 return realCast;
21007 // Expressions of unknown type.
21008 case BuiltinType::UnknownAny:
21009 return diagnoseUnknownAnyExpr(*this, E);
21011 // Pseudo-objects.
21012 case BuiltinType::PseudoObject:
21013 return checkPseudoObjectRValue(E);
21015 case BuiltinType::BuiltinFn: {
21016 // Accept __noop without parens by implicitly converting it to a call expr.
21017 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21018 if (DRE) {
21019 auto *FD = cast<FunctionDecl>(DRE->getDecl());
21020 unsigned BuiltinID = FD->getBuiltinID();
21021 if (BuiltinID == Builtin::BI__noop) {
21022 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21023 CK_BuiltinFnToFnPtr)
21024 .get();
21025 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21026 VK_PRValue, SourceLocation(),
21027 FPOptionsOverride());
21030 if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21031 // Any use of these other than a direct call is ill-formed as of C++20,
21032 // because they are not addressable functions. In earlier language
21033 // modes, warn and force an instantiation of the real body.
21034 Diag(E->getBeginLoc(),
21035 getLangOpts().CPlusPlus20
21036 ? diag::err_use_of_unaddressable_function
21037 : diag::warn_cxx20_compat_use_of_unaddressable_function);
21038 if (FD->isImplicitlyInstantiable()) {
21039 // Require a definition here because a normal attempt at
21040 // instantiation for a builtin will be ignored, and we won't try
21041 // again later. We assume that the definition of the template
21042 // precedes this use.
21043 InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21044 /*Recursive=*/false,
21045 /*DefinitionRequired=*/true,
21046 /*AtEndOfTU=*/false);
21048 // Produce a properly-typed reference to the function.
21049 CXXScopeSpec SS;
21050 SS.Adopt(DRE->getQualifierLoc());
21051 TemplateArgumentListInfo TemplateArgs;
21052 DRE->copyTemplateArgumentsInto(TemplateArgs);
21053 return BuildDeclRefExpr(
21054 FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21055 DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21056 DRE->getTemplateKeywordLoc(),
21057 DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21061 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21062 return ExprError();
21065 case BuiltinType::IncompleteMatrixIdx:
21066 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21067 ->getRowIdx()
21068 ->getBeginLoc(),
21069 diag::err_matrix_incomplete_index);
21070 return ExprError();
21072 // Expressions of unknown type.
21073 case BuiltinType::OMPArraySection:
21074 Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
21075 return ExprError();
21077 // Expressions of unknown type.
21078 case BuiltinType::OMPArrayShaping:
21079 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21081 case BuiltinType::OMPIterator:
21082 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21084 // Everything else should be impossible.
21085 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21086 case BuiltinType::Id:
21087 #include "clang/Basic/OpenCLImageTypes.def"
21088 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21089 case BuiltinType::Id:
21090 #include "clang/Basic/OpenCLExtensionTypes.def"
21091 #define SVE_TYPE(Name, Id, SingletonId) \
21092 case BuiltinType::Id:
21093 #include "clang/Basic/AArch64SVEACLETypes.def"
21094 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21095 case BuiltinType::Id:
21096 #include "clang/Basic/PPCTypes.def"
21097 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21098 #include "clang/Basic/RISCVVTypes.def"
21099 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21100 #define PLACEHOLDER_TYPE(Id, SingletonId)
21101 #include "clang/AST/BuiltinTypes.def"
21102 break;
21105 llvm_unreachable("invalid placeholder type!");
21108 bool Sema::CheckCaseExpression(Expr *E) {
21109 if (E->isTypeDependent())
21110 return true;
21111 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21112 return E->getType()->isIntegralOrEnumerationType();
21113 return false;
21116 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21117 ExprResult
21118 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
21119 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
21120 "Unknown Objective-C Boolean value!");
21121 QualType BoolT = Context.ObjCBuiltinBoolTy;
21122 if (!Context.getBOOLDecl()) {
21123 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
21124 Sema::LookupOrdinaryName);
21125 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
21126 NamedDecl *ND = Result.getFoundDecl();
21127 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
21128 Context.setBOOLDecl(TD);
21131 if (Context.getBOOLDecl())
21132 BoolT = Context.getBOOLType();
21133 return new (Context)
21134 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
21137 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
21138 llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
21139 SourceLocation RParen) {
21140 auto FindSpecVersion =
21141 [&](StringRef Platform) -> std::optional<VersionTuple> {
21142 auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21143 return Spec.getPlatform() == Platform;
21145 // Transcribe the "ios" availability check to "maccatalyst" when compiling
21146 // for "maccatalyst" if "maccatalyst" is not specified.
21147 if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
21148 Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21149 return Spec.getPlatform() == "ios";
21152 if (Spec == AvailSpecs.end())
21153 return std::nullopt;
21154 return Spec->getVersion();
21157 VersionTuple Version;
21158 if (auto MaybeVersion =
21159 FindSpecVersion(Context.getTargetInfo().getPlatformName()))
21160 Version = *MaybeVersion;
21162 // The use of `@available` in the enclosing context should be analyzed to
21163 // warn when it's used inappropriately (i.e. not if(@available)).
21164 if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
21165 Context->HasPotentialAvailabilityViolations = true;
21167 return new (Context)
21168 ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
21171 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21172 ArrayRef<Expr *> SubExprs, QualType T) {
21173 if (!Context.getLangOpts().RecoveryAST)
21174 return ExprError();
21176 if (isSFINAEContext())
21177 return ExprError();
21179 if (T.isNull() || T->isUndeducedType() ||
21180 !Context.getLangOpts().RecoveryASTType)
21181 // We don't know the concrete type, fallback to dependent type.
21182 T = Context.DependentTy;
21184 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);