1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryProfileInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/StackSafetyAnalysis.h"
30 #include "llvm/Analysis/TypeMetadataUtils.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
60 using namespace llvm::memprof
;
62 #define DEBUG_TYPE "module-summary-analysis"
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
=
68 FunctionSummary::FSHT_None
;
71 static cl::opt
<FunctionSummary::ForceSummaryHotnessType
, true> FSEC(
72 "force-summary-edges-cold", cl::Hidden
, cl::location(ForceSummaryEdgesCold
),
73 cl::desc("Force all edges in the function summary to cold"),
74 cl::values(clEnumValN(FunctionSummary::FSHT_None
, "none", "None."),
75 clEnumValN(FunctionSummary::FSHT_AllNonCritical
,
76 "all-non-critical", "All non-critical edges."),
77 clEnumValN(FunctionSummary::FSHT_All
, "all", "All edges.")));
79 static cl::opt
<std::string
> ModuleSummaryDotFile(
80 "module-summary-dot-file", cl::Hidden
, cl::value_desc("filename"),
81 cl::desc("File to emit dot graph of new summary into"));
83 extern cl::opt
<bool> ScalePartialSampleProfileWorkingSetSize
;
85 // Walk through the operands of a given User via worklist iteration and populate
86 // the set of GlobalValue references encountered. Invoked either on an
87 // Instruction or a GlobalVariable (which walks its initializer).
88 // Return true if any of the operands contains blockaddress. This is important
89 // to know when computing summary for global var, because if global variable
90 // references basic block address we can't import it separately from function
91 // containing that basic block. For simplicity we currently don't import such
92 // global vars at all. When importing function we aren't interested if any
93 // instruction in it takes an address of any basic block, because instruction
94 // can only take an address of basic block located in the same function.
95 static bool findRefEdges(ModuleSummaryIndex
&Index
, const User
*CurUser
,
96 SetVector
<ValueInfo
> &RefEdges
,
97 SmallPtrSet
<const User
*, 8> &Visited
) {
98 bool HasBlockAddress
= false;
99 SmallVector
<const User
*, 32> Worklist
;
100 if (Visited
.insert(CurUser
).second
)
101 Worklist
.push_back(CurUser
);
103 while (!Worklist
.empty()) {
104 const User
*U
= Worklist
.pop_back_val();
105 const auto *CB
= dyn_cast
<CallBase
>(U
);
107 for (const auto &OI
: U
->operands()) {
108 const User
*Operand
= dyn_cast
<User
>(OI
);
111 if (isa
<BlockAddress
>(Operand
)) {
112 HasBlockAddress
= true;
115 if (auto *GV
= dyn_cast
<GlobalValue
>(Operand
)) {
116 // We have a reference to a global value. This should be added to
117 // the reference set unless it is a callee. Callees are handled
118 // specially by WriteFunction and are added to a separate list.
119 if (!(CB
&& CB
->isCallee(&OI
)))
120 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
123 if (Visited
.insert(Operand
).second
)
124 Worklist
.push_back(Operand
);
127 return HasBlockAddress
;
130 static CalleeInfo::HotnessType
getHotness(uint64_t ProfileCount
,
131 ProfileSummaryInfo
*PSI
) {
133 return CalleeInfo::HotnessType::Unknown
;
134 if (PSI
->isHotCount(ProfileCount
))
135 return CalleeInfo::HotnessType::Hot
;
136 if (PSI
->isColdCount(ProfileCount
))
137 return CalleeInfo::HotnessType::Cold
;
138 return CalleeInfo::HotnessType::None
;
141 static bool isNonRenamableLocal(const GlobalValue
&GV
) {
142 return GV
.hasSection() && GV
.hasLocalLinkage();
145 /// Determine whether this call has all constant integer arguments (excluding
146 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
147 static void addVCallToSet(DevirtCallSite Call
, GlobalValue::GUID Guid
,
148 SetVector
<FunctionSummary::VFuncId
> &VCalls
,
149 SetVector
<FunctionSummary::ConstVCall
> &ConstVCalls
) {
150 std::vector
<uint64_t> Args
;
151 // Start from the second argument to skip the "this" pointer.
152 for (auto &Arg
: drop_begin(Call
.CB
.args())) {
153 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
154 if (!CI
|| CI
->getBitWidth() > 64) {
155 VCalls
.insert({Guid
, Call
.Offset
});
158 Args
.push_back(CI
->getZExtValue());
160 ConstVCalls
.insert({{Guid
, Call
.Offset
}, std::move(Args
)});
163 /// If this intrinsic call requires that we add information to the function
164 /// summary, do so via the non-constant reference arguments.
165 static void addIntrinsicToSummary(
166 const CallInst
*CI
, SetVector
<GlobalValue::GUID
> &TypeTests
,
167 SetVector
<FunctionSummary::VFuncId
> &TypeTestAssumeVCalls
,
168 SetVector
<FunctionSummary::VFuncId
> &TypeCheckedLoadVCalls
,
169 SetVector
<FunctionSummary::ConstVCall
> &TypeTestAssumeConstVCalls
,
170 SetVector
<FunctionSummary::ConstVCall
> &TypeCheckedLoadConstVCalls
,
172 switch (CI
->getCalledFunction()->getIntrinsicID()) {
173 case Intrinsic::type_test
:
174 case Intrinsic::public_type_test
: {
175 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(1));
176 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
179 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
181 // Produce a summary from type.test intrinsics. We only summarize type.test
182 // intrinsics that are used other than by an llvm.assume intrinsic.
183 // Intrinsics that are assumed are relevant only to the devirtualization
184 // pass, not the type test lowering pass.
185 bool HasNonAssumeUses
= llvm::any_of(CI
->uses(), [](const Use
&CIU
) {
186 return !isa
<AssumeInst
>(CIU
.getUser());
188 if (HasNonAssumeUses
)
189 TypeTests
.insert(Guid
);
191 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
192 SmallVector
<CallInst
*, 4> Assumes
;
193 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
194 for (auto &Call
: DevirtCalls
)
195 addVCallToSet(Call
, Guid
, TypeTestAssumeVCalls
,
196 TypeTestAssumeConstVCalls
);
201 case Intrinsic::type_checked_load
: {
202 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(2));
203 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
206 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
208 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
209 SmallVector
<Instruction
*, 4> LoadedPtrs
;
210 SmallVector
<Instruction
*, 4> Preds
;
211 bool HasNonCallUses
= false;
212 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
213 HasNonCallUses
, CI
, DT
);
214 // Any non-call uses of the result of llvm.type.checked.load will
215 // prevent us from optimizing away the llvm.type.test.
217 TypeTests
.insert(Guid
);
218 for (auto &Call
: DevirtCalls
)
219 addVCallToSet(Call
, Guid
, TypeCheckedLoadVCalls
,
220 TypeCheckedLoadConstVCalls
);
229 static bool isNonVolatileLoad(const Instruction
*I
) {
230 if (const auto *LI
= dyn_cast
<LoadInst
>(I
))
231 return !LI
->isVolatile();
236 static bool isNonVolatileStore(const Instruction
*I
) {
237 if (const auto *SI
= dyn_cast
<StoreInst
>(I
))
238 return !SI
->isVolatile();
243 // Returns true if the function definition must be unreachable.
245 // Note if this helper function returns true, `F` is guaranteed
246 // to be unreachable; if it returns false, `F` might still
247 // be unreachable but not covered by this helper function.
248 static bool mustBeUnreachableFunction(const Function
&F
) {
249 // A function must be unreachable if its entry block ends with an
251 assert(!F
.isDeclaration());
252 return isa
<UnreachableInst
>(F
.getEntryBlock().getTerminator());
255 static void computeFunctionSummary(
256 ModuleSummaryIndex
&Index
, const Module
&M
, const Function
&F
,
257 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
, DominatorTree
&DT
,
258 bool HasLocalsInUsedOrAsm
, DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
260 std::function
<const StackSafetyInfo
*(const Function
&F
)> GetSSICallback
) {
261 // Summary not currently supported for anonymous functions, they should
265 unsigned NumInsts
= 0;
266 // Map from callee ValueId to profile count. Used to accumulate profile
267 // counts for all static calls to a given callee.
268 MapVector
<ValueInfo
, CalleeInfo
> CallGraphEdges
;
269 SetVector
<ValueInfo
> RefEdges
, LoadRefEdges
, StoreRefEdges
;
270 SetVector
<GlobalValue::GUID
> TypeTests
;
271 SetVector
<FunctionSummary::VFuncId
> TypeTestAssumeVCalls
,
272 TypeCheckedLoadVCalls
;
273 SetVector
<FunctionSummary::ConstVCall
> TypeTestAssumeConstVCalls
,
274 TypeCheckedLoadConstVCalls
;
275 ICallPromotionAnalysis ICallAnalysis
;
276 SmallPtrSet
<const User
*, 8> Visited
;
278 // Add personality function, prefix data and prologue data to function's ref
280 findRefEdges(Index
, &F
, RefEdges
, Visited
);
281 std::vector
<const Instruction
*> NonVolatileLoads
;
282 std::vector
<const Instruction
*> NonVolatileStores
;
284 std::vector
<CallsiteInfo
> Callsites
;
285 std::vector
<AllocInfo
> Allocs
;
288 DenseSet
<const CallBase
*> CallsThatMayHaveMemprofSummary
;
291 bool HasInlineAsmMaybeReferencingInternal
= false;
292 bool HasIndirBranchToBlockAddress
= false;
293 bool HasUnknownCall
= false;
294 bool MayThrow
= false;
295 for (const BasicBlock
&BB
: F
) {
296 // We don't allow inlining of function with indirect branch to blockaddress.
297 // If the blockaddress escapes the function, e.g., via a global variable,
298 // inlining may lead to an invalid cross-function reference. So we shouldn't
299 // import such function either.
300 if (BB
.hasAddressTaken()) {
301 for (User
*U
: BlockAddress::get(const_cast<BasicBlock
*>(&BB
))->users())
302 if (!isa
<CallBrInst
>(*U
)) {
303 HasIndirBranchToBlockAddress
= true;
308 for (const Instruction
&I
: BB
) {
309 if (I
.isDebugOrPseudoInst())
313 // Regular LTO module doesn't participate in ThinLTO import,
314 // so no reference from it can be read/writeonly, since this
315 // would require importing variable as local copy
317 if (isNonVolatileLoad(&I
)) {
318 // Postpone processing of non-volatile load instructions
319 // See comments below
321 NonVolatileLoads
.push_back(&I
);
323 } else if (isNonVolatileStore(&I
)) {
325 NonVolatileStores
.push_back(&I
);
326 // All references from second operand of store (destination address)
327 // can be considered write-only if they're not referenced by any
328 // non-store instruction. References from first operand of store
329 // (stored value) can't be treated either as read- or as write-only
330 // so we add them to RefEdges as we do with all other instructions
331 // except non-volatile load.
332 Value
*Stored
= I
.getOperand(0);
333 if (auto *GV
= dyn_cast
<GlobalValue
>(Stored
))
334 // findRefEdges will try to examine GV operands, so instead
335 // of calling it we should add GV to RefEdges directly.
336 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
337 else if (auto *U
= dyn_cast
<User
>(Stored
))
338 findRefEdges(Index
, U
, RefEdges
, Visited
);
342 findRefEdges(Index
, &I
, RefEdges
, Visited
);
343 const auto *CB
= dyn_cast
<CallBase
>(&I
);
350 const auto *CI
= dyn_cast
<CallInst
>(&I
);
351 // Since we don't know exactly which local values are referenced in inline
352 // assembly, conservatively mark the function as possibly referencing
353 // a local value from inline assembly to ensure we don't export a
354 // reference (which would require renaming and promotion of the
355 // referenced value).
356 if (HasLocalsInUsedOrAsm
&& CI
&& CI
->isInlineAsm())
357 HasInlineAsmMaybeReferencingInternal
= true;
359 auto *CalledValue
= CB
->getCalledOperand();
360 auto *CalledFunction
= CB
->getCalledFunction();
361 if (CalledValue
&& !CalledFunction
) {
362 CalledValue
= CalledValue
->stripPointerCasts();
363 // Stripping pointer casts can reveal a called function.
364 CalledFunction
= dyn_cast
<Function
>(CalledValue
);
366 // Check if this is an alias to a function. If so, get the
367 // called aliasee for the checks below.
368 if (auto *GA
= dyn_cast
<GlobalAlias
>(CalledValue
)) {
369 assert(!CalledFunction
&& "Expected null called function in callsite for alias");
370 CalledFunction
= dyn_cast
<Function
>(GA
->getAliaseeObject());
372 // Check if this is a direct call to a known function or a known
373 // intrinsic, or an indirect call with profile data.
374 if (CalledFunction
) {
375 if (CI
&& CalledFunction
->isIntrinsic()) {
376 addIntrinsicToSummary(
377 CI
, TypeTests
, TypeTestAssumeVCalls
, TypeCheckedLoadVCalls
,
378 TypeTestAssumeConstVCalls
, TypeCheckedLoadConstVCalls
, DT
);
381 // We should have named any anonymous globals
382 assert(CalledFunction
->hasName());
383 auto ScaledCount
= PSI
->getProfileCount(*CB
, BFI
);
384 auto Hotness
= ScaledCount
? getHotness(*ScaledCount
, PSI
)
385 : CalleeInfo::HotnessType::Unknown
;
386 if (ForceSummaryEdgesCold
!= FunctionSummary::FSHT_None
)
387 Hotness
= CalleeInfo::HotnessType::Cold
;
389 // Use the original CalledValue, in case it was an alias. We want
390 // to record the call edge to the alias in that case. Eventually
391 // an alias summary will be created to associate the alias and
393 auto &ValueInfo
= CallGraphEdges
[Index
.getOrInsertValueInfo(
394 cast
<GlobalValue
>(CalledValue
))];
395 ValueInfo
.updateHotness(Hotness
);
396 // Add the relative block frequency to CalleeInfo if there is no profile
398 if (BFI
!= nullptr && Hotness
== CalleeInfo::HotnessType::Unknown
) {
399 uint64_t BBFreq
= BFI
->getBlockFreq(&BB
).getFrequency();
400 uint64_t EntryFreq
= BFI
->getEntryFreq();
401 ValueInfo
.updateRelBlockFreq(BBFreq
, EntryFreq
);
404 HasUnknownCall
= true;
405 // Skip inline assembly calls.
406 if (CI
&& CI
->isInlineAsm())
408 // Skip direct calls.
409 if (!CalledValue
|| isa
<Constant
>(CalledValue
))
412 // Check if the instruction has a callees metadata. If so, add callees
413 // to CallGraphEdges to reflect the references from the metadata, and
414 // to enable importing for subsequent indirect call promotion and
416 if (auto *MD
= I
.getMetadata(LLVMContext::MD_callees
)) {
417 for (const auto &Op
: MD
->operands()) {
418 Function
*Callee
= mdconst::extract_or_null
<Function
>(Op
);
420 CallGraphEdges
[Index
.getOrInsertValueInfo(Callee
)];
424 uint32_t NumVals
, NumCandidates
;
426 auto CandidateProfileData
=
427 ICallAnalysis
.getPromotionCandidatesForInstruction(
428 &I
, NumVals
, TotalCount
, NumCandidates
);
429 for (const auto &Candidate
: CandidateProfileData
)
430 CallGraphEdges
[Index
.getOrInsertValueInfo(Candidate
.Value
)]
431 .updateHotness(getHotness(Candidate
.Count
, PSI
));
434 // Summarize memprof related metadata. This is only needed for ThinLTO.
438 // TODO: Skip indirect calls for now. Need to handle these better, likely
439 // by creating multiple Callsites, one per target, then speculatively
440 // devirtualize while applying clone info in the ThinLTO backends. This
441 // will also be important because we will have a different set of clone
442 // versions per target. This handling needs to match that in the ThinLTO
443 // backend so we handle things consistently for matching of callsite
444 // summaries to instructions.
448 // Ensure we keep this analysis in sync with the handling in the ThinLTO
449 // backend (see MemProfContextDisambiguation::applyImport). Save this call
450 // so that we can skip it in checking the reverse case later.
451 assert(mayHaveMemprofSummary(CB
));
453 CallsThatMayHaveMemprofSummary
.insert(CB
);
456 // Compute the list of stack ids first (so we can trim them from the stack
458 CallStack
<MDNode
, MDNode::op_iterator
> InstCallsite(
459 I
.getMetadata(LLVMContext::MD_callsite
));
460 auto *MemProfMD
= I
.getMetadata(LLVMContext::MD_memprof
);
462 std::vector
<MIBInfo
> MIBs
;
463 for (auto &MDOp
: MemProfMD
->operands()) {
464 auto *MIBMD
= cast
<const MDNode
>(MDOp
);
465 MDNode
*StackNode
= getMIBStackNode(MIBMD
);
467 SmallVector
<unsigned> StackIdIndices
;
468 CallStack
<MDNode
, MDNode::op_iterator
> StackContext(StackNode
);
469 // Collapse out any on the allocation call (inlining).
470 for (auto ContextIter
=
471 StackContext
.beginAfterSharedPrefix(InstCallsite
);
472 ContextIter
!= StackContext
.end(); ++ContextIter
) {
473 unsigned StackIdIdx
= Index
.addOrGetStackIdIndex(*ContextIter
);
474 // If this is a direct recursion, simply skip the duplicate
475 // entries. If this is mutual recursion, handling is left to
476 // the LTO link analysis client.
477 if (StackIdIndices
.empty() || StackIdIndices
.back() != StackIdIdx
)
478 StackIdIndices
.push_back(StackIdIdx
);
481 MIBInfo(getMIBAllocType(MIBMD
), std::move(StackIdIndices
)));
483 Allocs
.push_back(AllocInfo(std::move(MIBs
)));
484 } else if (!InstCallsite
.empty()) {
485 SmallVector
<unsigned> StackIdIndices
;
486 for (auto StackId
: InstCallsite
)
487 StackIdIndices
.push_back(Index
.addOrGetStackIdIndex(StackId
));
488 // Use the original CalledValue, in case it was an alias. We want
489 // to record the call edge to the alias in that case. Eventually
490 // an alias summary will be created to associate the alias and
492 auto CalleeValueInfo
=
493 Index
.getOrInsertValueInfo(cast
<GlobalValue
>(CalledValue
));
494 Callsites
.push_back({CalleeValueInfo
, StackIdIndices
});
499 if (PSI
->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize
)
500 Index
.addBlockCount(F
.size());
502 std::vector
<ValueInfo
> Refs
;
504 auto AddRefEdges
= [&](const std::vector
<const Instruction
*> &Instrs
,
505 SetVector
<ValueInfo
> &Edges
,
506 SmallPtrSet
<const User
*, 8> &Cache
) {
507 for (const auto *I
: Instrs
) {
509 findRefEdges(Index
, I
, Edges
, Cache
);
513 // By now we processed all instructions in a function, except
514 // non-volatile loads and non-volatile value stores. Let's find
515 // ref edges for both of instruction sets
516 AddRefEdges(NonVolatileLoads
, LoadRefEdges
, Visited
);
517 // We can add some values to the Visited set when processing load
518 // instructions which are also used by stores in NonVolatileStores.
519 // For example this can happen if we have following code:
521 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
522 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
524 // After processing loads we'll add bitcast to the Visited set, and if
525 // we use the same set while processing stores, we'll never see store
526 // to @bar and @bar will be mistakenly treated as readonly.
527 SmallPtrSet
<const llvm::User
*, 8> StoreCache
;
528 AddRefEdges(NonVolatileStores
, StoreRefEdges
, StoreCache
);
530 // If both load and store instruction reference the same variable
531 // we won't be able to optimize it. Add all such reference edges
533 for (const auto &VI
: StoreRefEdges
)
534 if (LoadRefEdges
.remove(VI
))
537 unsigned RefCnt
= RefEdges
.size();
538 // All new reference edges inserted in two loops below are either
539 // read or write only. They will be grouped in the end of RefEdges
540 // vector, so we can use a single integer value to identify them.
541 for (const auto &VI
: LoadRefEdges
)
544 unsigned FirstWORef
= RefEdges
.size();
545 for (const auto &VI
: StoreRefEdges
)
548 Refs
= RefEdges
.takeVector();
549 for (; RefCnt
< FirstWORef
; ++RefCnt
)
550 Refs
[RefCnt
].setReadOnly();
552 for (; RefCnt
< Refs
.size(); ++RefCnt
)
553 Refs
[RefCnt
].setWriteOnly();
555 Refs
= RefEdges
.takeVector();
557 // Explicit add hot edges to enforce importing for designated GUIDs for
558 // sample PGO, to enable the same inlines as the profiled optimized binary.
559 for (auto &I
: F
.getImportGUIDs())
560 CallGraphEdges
[Index
.getOrInsertValueInfo(I
)].updateHotness(
561 ForceSummaryEdgesCold
== FunctionSummary::FSHT_All
562 ? CalleeInfo::HotnessType::Cold
563 : CalleeInfo::HotnessType::Critical
);
566 // Make sure that all calls we decided could not have memprof summaries get a
567 // false value for mayHaveMemprofSummary, to ensure that this handling remains
568 // in sync with the ThinLTO backend handling.
570 for (const BasicBlock
&BB
: F
) {
571 for (const Instruction
&I
: BB
) {
572 const auto *CB
= dyn_cast
<CallBase
>(&I
);
575 // We already checked these above.
576 if (CallsThatMayHaveMemprofSummary
.count(CB
))
578 assert(!mayHaveMemprofSummary(CB
));
584 bool NonRenamableLocal
= isNonRenamableLocal(F
);
585 bool NotEligibleForImport
= NonRenamableLocal
||
586 HasInlineAsmMaybeReferencingInternal
||
587 HasIndirBranchToBlockAddress
;
588 GlobalValueSummary::GVFlags
Flags(
589 F
.getLinkage(), F
.getVisibility(), NotEligibleForImport
,
590 /* Live = */ false, F
.isDSOLocal(), F
.canBeOmittedFromSymbolTable());
591 FunctionSummary::FFlags FunFlags
{
592 F
.doesNotAccessMemory(), F
.onlyReadsMemory() && !F
.doesNotAccessMemory(),
593 F
.hasFnAttribute(Attribute::NoRecurse
), F
.returnDoesNotAlias(),
594 // FIXME: refactor this to use the same code that inliner is using.
595 // Don't try to import functions with noinline attribute.
596 F
.getAttributes().hasFnAttr(Attribute::NoInline
),
597 F
.hasFnAttribute(Attribute::AlwaysInline
),
598 F
.hasFnAttribute(Attribute::NoUnwind
), MayThrow
, HasUnknownCall
,
599 mustBeUnreachableFunction(F
)};
600 std::vector
<FunctionSummary::ParamAccess
> ParamAccesses
;
601 if (auto *SSI
= GetSSICallback(F
))
602 ParamAccesses
= SSI
->getParamAccesses(Index
);
603 auto FuncSummary
= std::make_unique
<FunctionSummary
>(
604 Flags
, NumInsts
, FunFlags
, /*EntryCount=*/0, std::move(Refs
),
605 CallGraphEdges
.takeVector(), TypeTests
.takeVector(),
606 TypeTestAssumeVCalls
.takeVector(), TypeCheckedLoadVCalls
.takeVector(),
607 TypeTestAssumeConstVCalls
.takeVector(),
608 TypeCheckedLoadConstVCalls
.takeVector(), std::move(ParamAccesses
),
609 std::move(Callsites
), std::move(Allocs
));
610 if (NonRenamableLocal
)
611 CantBePromoted
.insert(F
.getGUID());
612 Index
.addGlobalValueSummary(F
, std::move(FuncSummary
));
615 /// Find function pointers referenced within the given vtable initializer
616 /// (or subset of an initializer) \p I. The starting offset of \p I within
617 /// the vtable initializer is \p StartingOffset. Any discovered function
618 /// pointers are added to \p VTableFuncs along with their cumulative offset
619 /// within the initializer.
620 static void findFuncPointers(const Constant
*I
, uint64_t StartingOffset
,
621 const Module
&M
, ModuleSummaryIndex
&Index
,
622 VTableFuncList
&VTableFuncs
) {
623 // First check if this is a function pointer.
624 if (I
->getType()->isPointerTy()) {
625 auto C
= I
->stripPointerCasts();
626 auto A
= dyn_cast
<GlobalAlias
>(C
);
627 if (isa
<Function
>(C
) || (A
&& isa
<Function
>(A
->getAliasee()))) {
628 auto GV
= dyn_cast
<GlobalValue
>(C
);
630 // We can disregard __cxa_pure_virtual as a possible call target, as
631 // calls to pure virtuals are UB.
632 if (GV
&& GV
->getName() != "__cxa_pure_virtual")
633 VTableFuncs
.push_back({Index
.getOrInsertValueInfo(GV
), StartingOffset
});
638 // Walk through the elements in the constant struct or array and recursively
639 // look for virtual function pointers.
640 const DataLayout
&DL
= M
.getDataLayout();
641 if (auto *C
= dyn_cast
<ConstantStruct
>(I
)) {
642 StructType
*STy
= dyn_cast
<StructType
>(C
->getType());
644 const StructLayout
*SL
= DL
.getStructLayout(C
->getType());
646 for (auto EI
: llvm::enumerate(STy
->elements())) {
647 auto Offset
= SL
->getElementOffset(EI
.index());
648 unsigned Op
= SL
->getElementContainingOffset(Offset
);
649 findFuncPointers(cast
<Constant
>(I
->getOperand(Op
)),
650 StartingOffset
+ Offset
, M
, Index
, VTableFuncs
);
652 } else if (auto *C
= dyn_cast
<ConstantArray
>(I
)) {
653 ArrayType
*ATy
= C
->getType();
654 Type
*EltTy
= ATy
->getElementType();
655 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
656 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
657 findFuncPointers(cast
<Constant
>(I
->getOperand(i
)),
658 StartingOffset
+ i
* EltSize
, M
, Index
, VTableFuncs
);
663 // Identify the function pointers referenced by vtable definition \p V.
664 static void computeVTableFuncs(ModuleSummaryIndex
&Index
,
665 const GlobalVariable
&V
, const Module
&M
,
666 VTableFuncList
&VTableFuncs
) {
670 findFuncPointers(V
.getInitializer(), /*StartingOffset=*/0, M
, Index
,
674 // Validate that the VTableFuncs list is ordered by offset.
675 uint64_t PrevOffset
= 0;
676 for (auto &P
: VTableFuncs
) {
677 // The findVFuncPointers traversal should have encountered the
678 // functions in offset order. We need to use ">=" since PrevOffset
680 assert(P
.VTableOffset
>= PrevOffset
);
681 PrevOffset
= P
.VTableOffset
;
686 /// Record vtable definition \p V for each type metadata it references.
688 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex
&Index
,
689 const GlobalVariable
&V
,
690 SmallVectorImpl
<MDNode
*> &Types
) {
691 for (MDNode
*Type
: Types
) {
692 auto TypeID
= Type
->getOperand(1).get();
696 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
699 if (auto *TypeId
= dyn_cast
<MDString
>(TypeID
))
700 Index
.getOrInsertTypeIdCompatibleVtableSummary(TypeId
->getString())
701 .push_back({Offset
, Index
.getOrInsertValueInfo(&V
)});
705 static void computeVariableSummary(ModuleSummaryIndex
&Index
,
706 const GlobalVariable
&V
,
707 DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
709 SmallVectorImpl
<MDNode
*> &Types
) {
710 SetVector
<ValueInfo
> RefEdges
;
711 SmallPtrSet
<const User
*, 8> Visited
;
712 bool HasBlockAddress
= findRefEdges(Index
, &V
, RefEdges
, Visited
);
713 bool NonRenamableLocal
= isNonRenamableLocal(V
);
714 GlobalValueSummary::GVFlags
Flags(
715 V
.getLinkage(), V
.getVisibility(), NonRenamableLocal
,
716 /* Live = */ false, V
.isDSOLocal(), V
.canBeOmittedFromSymbolTable());
718 VTableFuncList VTableFuncs
;
719 // If splitting is not enabled, then we compute the summary information
720 // necessary for index-based whole program devirtualization.
721 if (!Index
.enableSplitLTOUnit()) {
723 V
.getMetadata(LLVMContext::MD_type
, Types
);
724 if (!Types
.empty()) {
725 // Identify the function pointers referenced by this vtable definition.
726 computeVTableFuncs(Index
, V
, M
, VTableFuncs
);
728 // Record this vtable definition for each type metadata it references.
729 recordTypeIdCompatibleVtableReferences(Index
, V
, Types
);
733 // Don't mark variables we won't be able to internalize as read/write-only.
734 bool CanBeInternalized
=
735 !V
.hasComdat() && !V
.hasAppendingLinkage() && !V
.isInterposable() &&
736 !V
.hasAvailableExternallyLinkage() && !V
.hasDLLExportStorageClass();
737 bool Constant
= V
.isConstant();
738 GlobalVarSummary::GVarFlags
VarFlags(CanBeInternalized
,
739 Constant
? false : CanBeInternalized
,
740 Constant
, V
.getVCallVisibility());
741 auto GVarSummary
= std::make_unique
<GlobalVarSummary
>(Flags
, VarFlags
,
742 RefEdges
.takeVector());
743 if (NonRenamableLocal
)
744 CantBePromoted
.insert(V
.getGUID());
746 GVarSummary
->setNotEligibleToImport();
747 if (!VTableFuncs
.empty())
748 GVarSummary
->setVTableFuncs(VTableFuncs
);
749 Index
.addGlobalValueSummary(V
, std::move(GVarSummary
));
752 static void computeAliasSummary(ModuleSummaryIndex
&Index
, const GlobalAlias
&A
,
753 DenseSet
<GlobalValue::GUID
> &CantBePromoted
) {
754 // Skip summary for indirect function aliases as summary for aliasee will not
756 const GlobalObject
*Aliasee
= A
.getAliaseeObject();
757 if (isa
<GlobalIFunc
>(Aliasee
))
759 bool NonRenamableLocal
= isNonRenamableLocal(A
);
760 GlobalValueSummary::GVFlags
Flags(
761 A
.getLinkage(), A
.getVisibility(), NonRenamableLocal
,
762 /* Live = */ false, A
.isDSOLocal(), A
.canBeOmittedFromSymbolTable());
763 auto AS
= std::make_unique
<AliasSummary
>(Flags
);
764 auto AliaseeVI
= Index
.getValueInfo(Aliasee
->getGUID());
765 assert(AliaseeVI
&& "Alias expects aliasee summary to be available");
766 assert(AliaseeVI
.getSummaryList().size() == 1 &&
767 "Expected a single entry per aliasee in per-module index");
768 AS
->setAliasee(AliaseeVI
, AliaseeVI
.getSummaryList()[0].get());
769 if (NonRenamableLocal
)
770 CantBePromoted
.insert(A
.getGUID());
771 Index
.addGlobalValueSummary(A
, std::move(AS
));
774 // Set LiveRoot flag on entries matching the given value name.
775 static void setLiveRoot(ModuleSummaryIndex
&Index
, StringRef Name
) {
776 if (ValueInfo VI
= Index
.getValueInfo(GlobalValue::getGUID(Name
)))
777 for (const auto &Summary
: VI
.getSummaryList())
778 Summary
->setLive(true);
781 ModuleSummaryIndex
llvm::buildModuleSummaryIndex(
783 std::function
<BlockFrequencyInfo
*(const Function
&F
)> GetBFICallback
,
784 ProfileSummaryInfo
*PSI
,
785 std::function
<const StackSafetyInfo
*(const Function
&F
)> GetSSICallback
) {
787 bool EnableSplitLTOUnit
= false;
788 if (auto *MD
= mdconst::extract_or_null
<ConstantInt
>(
789 M
.getModuleFlag("EnableSplitLTOUnit")))
790 EnableSplitLTOUnit
= MD
->getZExtValue();
791 ModuleSummaryIndex
Index(/*HaveGVs=*/true, EnableSplitLTOUnit
);
793 // Identify the local values in the llvm.used and llvm.compiler.used sets,
794 // which should not be exported as they would then require renaming and
795 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
796 // here because we use this information to mark functions containing inline
797 // assembly calls as not importable.
798 SmallPtrSet
<GlobalValue
*, 4> LocalsUsed
;
799 SmallVector
<GlobalValue
*, 4> Used
;
800 // First collect those in the llvm.used set.
801 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed=*/false);
802 // Next collect those in the llvm.compiler.used set.
803 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed=*/true);
804 DenseSet
<GlobalValue::GUID
> CantBePromoted
;
805 for (auto *V
: Used
) {
806 if (V
->hasLocalLinkage()) {
807 LocalsUsed
.insert(V
);
808 CantBePromoted
.insert(V
->getGUID());
812 bool HasLocalInlineAsmSymbol
= false;
813 if (!M
.getModuleInlineAsm().empty()) {
814 // Collect the local values defined by module level asm, and set up
815 // summaries for these symbols so that they can be marked as NoRename,
816 // to prevent export of any use of them in regular IR that would require
817 // renaming within the module level asm. Note we don't need to create a
818 // summary for weak or global defs, as they don't need to be flagged as
819 // NoRename, and defs in module level asm can't be imported anyway.
820 // Also, any values used but not defined within module level asm should
821 // be listed on the llvm.used or llvm.compiler.used global and marked as
822 // referenced from there.
823 ModuleSymbolTable::CollectAsmSymbols(
824 M
, [&](StringRef Name
, object::BasicSymbolRef::Flags Flags
) {
825 // Symbols not marked as Weak or Global are local definitions.
826 if (Flags
& (object::BasicSymbolRef::SF_Weak
|
827 object::BasicSymbolRef::SF_Global
))
829 HasLocalInlineAsmSymbol
= true;
830 GlobalValue
*GV
= M
.getNamedValue(Name
);
833 assert(GV
->isDeclaration() && "Def in module asm already has definition");
834 GlobalValueSummary::GVFlags
GVFlags(
835 GlobalValue::InternalLinkage
, GlobalValue::DefaultVisibility
,
836 /* NotEligibleToImport = */ true,
838 /* Local */ GV
->isDSOLocal(), GV
->canBeOmittedFromSymbolTable());
839 CantBePromoted
.insert(GV
->getGUID());
840 // Create the appropriate summary type.
841 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
842 std::unique_ptr
<FunctionSummary
> Summary
=
843 std::make_unique
<FunctionSummary
>(
844 GVFlags
, /*InstCount=*/0,
845 FunctionSummary::FFlags
{
846 F
->hasFnAttribute(Attribute::ReadNone
),
847 F
->hasFnAttribute(Attribute::ReadOnly
),
848 F
->hasFnAttribute(Attribute::NoRecurse
),
849 F
->returnDoesNotAlias(),
850 /* NoInline = */ false,
851 F
->hasFnAttribute(Attribute::AlwaysInline
),
852 F
->hasFnAttribute(Attribute::NoUnwind
),
854 /* HasUnknownCall */ true,
855 /* MustBeUnreachable */ false},
856 /*EntryCount=*/0, ArrayRef
<ValueInfo
>{},
857 ArrayRef
<FunctionSummary::EdgeTy
>{},
858 ArrayRef
<GlobalValue::GUID
>{},
859 ArrayRef
<FunctionSummary::VFuncId
>{},
860 ArrayRef
<FunctionSummary::VFuncId
>{},
861 ArrayRef
<FunctionSummary::ConstVCall
>{},
862 ArrayRef
<FunctionSummary::ConstVCall
>{},
863 ArrayRef
<FunctionSummary::ParamAccess
>{},
864 ArrayRef
<CallsiteInfo
>{}, ArrayRef
<AllocInfo
>{});
865 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
867 std::unique_ptr
<GlobalVarSummary
> Summary
=
868 std::make_unique
<GlobalVarSummary
>(
870 GlobalVarSummary::GVarFlags(
871 false, false, cast
<GlobalVariable
>(GV
)->isConstant(),
872 GlobalObject::VCallVisibilityPublic
),
873 ArrayRef
<ValueInfo
>{});
874 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
879 bool IsThinLTO
= true;
881 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
882 IsThinLTO
= MD
->getZExtValue();
884 // Compute summaries for all functions defined in module, and save in the
886 for (const auto &F
: M
) {
887 if (F
.isDeclaration())
890 DominatorTree
DT(const_cast<Function
&>(F
));
891 BlockFrequencyInfo
*BFI
= nullptr;
892 std::unique_ptr
<BlockFrequencyInfo
> BFIPtr
;
894 BFI
= GetBFICallback(F
);
895 else if (F
.hasProfileData()) {
897 BranchProbabilityInfo BPI
{F
, LI
};
898 BFIPtr
= std::make_unique
<BlockFrequencyInfo
>(F
, BPI
, LI
);
902 computeFunctionSummary(Index
, M
, F
, BFI
, PSI
, DT
,
903 !LocalsUsed
.empty() || HasLocalInlineAsmSymbol
,
904 CantBePromoted
, IsThinLTO
, GetSSICallback
);
907 // Compute summaries for all variables defined in module, and save in the
909 SmallVector
<MDNode
*, 2> Types
;
910 for (const GlobalVariable
&G
: M
.globals()) {
911 if (G
.isDeclaration())
913 computeVariableSummary(Index
, G
, CantBePromoted
, M
, Types
);
916 // Compute summaries for all aliases defined in module, and save in the
918 for (const GlobalAlias
&A
: M
.aliases())
919 computeAliasSummary(Index
, A
, CantBePromoted
);
921 // Iterate through ifuncs, set their resolvers all alive.
922 for (const GlobalIFunc
&I
: M
.ifuncs()) {
923 I
.applyAlongResolverPath([&Index
](const GlobalValue
&GV
) {
924 Index
.getGlobalValueSummary(GV
)->setLive(true);
928 for (auto *V
: LocalsUsed
) {
929 auto *Summary
= Index
.getGlobalValueSummary(*V
);
930 assert(Summary
&& "Missing summary for global value");
931 Summary
->setNotEligibleToImport();
934 // The linker doesn't know about these LLVM produced values, so we need
935 // to flag them as live in the index to ensure index-based dead value
936 // analysis treats them as live roots of the analysis.
937 setLiveRoot(Index
, "llvm.used");
938 setLiveRoot(Index
, "llvm.compiler.used");
939 setLiveRoot(Index
, "llvm.global_ctors");
940 setLiveRoot(Index
, "llvm.global_dtors");
941 setLiveRoot(Index
, "llvm.global.annotations");
943 for (auto &GlobalList
: Index
) {
944 // Ignore entries for references that are undefined in the current module.
945 if (GlobalList
.second
.SummaryList
.empty())
948 assert(GlobalList
.second
.SummaryList
.size() == 1 &&
949 "Expected module's index to have one summary per GUID");
950 auto &Summary
= GlobalList
.second
.SummaryList
[0];
952 Summary
->setNotEligibleToImport();
956 bool AllRefsCanBeExternallyReferenced
=
957 llvm::all_of(Summary
->refs(), [&](const ValueInfo
&VI
) {
958 return !CantBePromoted
.count(VI
.getGUID());
960 if (!AllRefsCanBeExternallyReferenced
) {
961 Summary
->setNotEligibleToImport();
965 if (auto *FuncSummary
= dyn_cast
<FunctionSummary
>(Summary
.get())) {
966 bool AllCallsCanBeExternallyReferenced
= llvm::all_of(
967 FuncSummary
->calls(), [&](const FunctionSummary::EdgeTy
&Edge
) {
968 return !CantBePromoted
.count(Edge
.first
.getGUID());
970 if (!AllCallsCanBeExternallyReferenced
)
971 Summary
->setNotEligibleToImport();
975 if (!ModuleSummaryDotFile
.empty()) {
977 raw_fd_ostream
OSDot(ModuleSummaryDotFile
, EC
, sys::fs::OpenFlags::OF_None
);
979 report_fatal_error(Twine("Failed to open dot file ") +
980 ModuleSummaryDotFile
+ ": " + EC
.message() + "\n");
981 Index
.exportToDot(OSDot
, {});
987 AnalysisKey
ModuleSummaryIndexAnalysis::Key
;
990 ModuleSummaryIndexAnalysis::run(Module
&M
, ModuleAnalysisManager
&AM
) {
991 ProfileSummaryInfo
&PSI
= AM
.getResult
<ProfileSummaryAnalysis
>(M
);
992 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
993 bool NeedSSI
= needsParamAccessSummary(M
);
994 return buildModuleSummaryIndex(
996 [&FAM
](const Function
&F
) {
997 return &FAM
.getResult
<BlockFrequencyAnalysis
>(
998 *const_cast<Function
*>(&F
));
1001 [&FAM
, NeedSSI
](const Function
&F
) -> const StackSafetyInfo
* {
1002 return NeedSSI
? &FAM
.getResult
<StackSafetyAnalysis
>(
1003 const_cast<Function
&>(F
))
1008 char ModuleSummaryIndexWrapperPass::ID
= 0;
1010 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
1011 "Module Summary Analysis", false, true)
1012 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
1013 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
1014 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass
)
1015 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
1016 "Module Summary Analysis", false, true)
1018 ModulePass
*llvm::createModuleSummaryIndexWrapperPass() {
1019 return new ModuleSummaryIndexWrapperPass();
1022 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1024 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1027 bool ModuleSummaryIndexWrapperPass::runOnModule(Module
&M
) {
1028 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
1029 bool NeedSSI
= needsParamAccessSummary(M
);
1030 Index
.emplace(buildModuleSummaryIndex(
1032 [this](const Function
&F
) {
1033 return &(this->getAnalysis
<BlockFrequencyInfoWrapperPass
>(
1034 *const_cast<Function
*>(&F
))
1038 [&](const Function
&F
) -> const StackSafetyInfo
* {
1039 return NeedSSI
? &getAnalysis
<StackSafetyInfoWrapperPass
>(
1040 const_cast<Function
&>(F
))
1047 bool ModuleSummaryIndexWrapperPass::doFinalization(Module
&M
) {
1052 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1053 AU
.setPreservesAll();
1054 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
1055 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
1056 AU
.addRequired
<StackSafetyInfoWrapperPass
>();
1059 char ImmutableModuleSummaryIndexWrapperPass::ID
= 0;
1061 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1062 const ModuleSummaryIndex
*Index
)
1063 : ImmutablePass(ID
), Index(Index
) {
1064 initializeImmutableModuleSummaryIndexWrapperPassPass(
1065 *PassRegistry::getPassRegistry());
1068 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1069 AnalysisUsage
&AU
) const {
1070 AU
.setPreservesAll();
1073 ImmutablePass
*llvm::createImmutableModuleSummaryIndexWrapperPass(
1074 const ModuleSummaryIndex
*Index
) {
1075 return new ImmutableModuleSummaryIndexWrapperPass(Index
);
1078 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass
, "module-summary-info",
1079 "Module summary info", false, true)
1081 bool llvm::mayHaveMemprofSummary(const CallBase
*CB
) {
1084 if (CB
->isDebugOrPseudoInst())
1086 auto *CI
= dyn_cast
<CallInst
>(CB
);
1087 auto *CalledValue
= CB
->getCalledOperand();
1088 auto *CalledFunction
= CB
->getCalledFunction();
1089 if (CalledValue
&& !CalledFunction
) {
1090 CalledValue
= CalledValue
->stripPointerCasts();
1091 // Stripping pointer casts can reveal a called function.
1092 CalledFunction
= dyn_cast
<Function
>(CalledValue
);
1094 // Check if this is an alias to a function. If so, get the
1095 // called aliasee for the checks below.
1096 if (auto *GA
= dyn_cast
<GlobalAlias
>(CalledValue
)) {
1097 assert(!CalledFunction
&&
1098 "Expected null called function in callsite for alias");
1099 CalledFunction
= dyn_cast
<Function
>(GA
->getAliaseeObject());
1101 // Check if this is a direct call to a known function or a known
1102 // intrinsic, or an indirect call with profile data.
1103 if (CalledFunction
) {
1104 if (CI
&& CalledFunction
->isIntrinsic())
1107 // TODO: For now skip indirect calls. See comments in
1108 // computeFunctionSummary for what is needed to handle this.