[RISCV] Refactor predicates for rvv intrinsic patterns.
[llvm-project.git] / llvm / lib / Analysis / ModuleSummaryAnalysis.cpp
blob3830edc4532552192ac2e670c80a68ac1fe5535a
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryProfileInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/StackSafetyAnalysis.h"
30 #include "llvm/Analysis/TypeMetadataUtils.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
59 using namespace llvm;
60 using namespace llvm::memprof;
62 #define DEBUG_TYPE "module-summary-analysis"
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
66 namespace llvm {
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
68 FunctionSummary::FSHT_None;
69 } // namespace llvm
71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
72 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
73 cl::desc("Force all edges in the function summary to cold"),
74 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
75 clEnumValN(FunctionSummary::FSHT_AllNonCritical,
76 "all-non-critical", "All non-critical edges."),
77 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
79 static cl::opt<std::string> ModuleSummaryDotFile(
80 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
81 cl::desc("File to emit dot graph of new summary into"));
83 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
85 // Walk through the operands of a given User via worklist iteration and populate
86 // the set of GlobalValue references encountered. Invoked either on an
87 // Instruction or a GlobalVariable (which walks its initializer).
88 // Return true if any of the operands contains blockaddress. This is important
89 // to know when computing summary for global var, because if global variable
90 // references basic block address we can't import it separately from function
91 // containing that basic block. For simplicity we currently don't import such
92 // global vars at all. When importing function we aren't interested if any
93 // instruction in it takes an address of any basic block, because instruction
94 // can only take an address of basic block located in the same function.
95 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
96 SetVector<ValueInfo> &RefEdges,
97 SmallPtrSet<const User *, 8> &Visited) {
98 bool HasBlockAddress = false;
99 SmallVector<const User *, 32> Worklist;
100 if (Visited.insert(CurUser).second)
101 Worklist.push_back(CurUser);
103 while (!Worklist.empty()) {
104 const User *U = Worklist.pop_back_val();
105 const auto *CB = dyn_cast<CallBase>(U);
107 for (const auto &OI : U->operands()) {
108 const User *Operand = dyn_cast<User>(OI);
109 if (!Operand)
110 continue;
111 if (isa<BlockAddress>(Operand)) {
112 HasBlockAddress = true;
113 continue;
115 if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
116 // We have a reference to a global value. This should be added to
117 // the reference set unless it is a callee. Callees are handled
118 // specially by WriteFunction and are added to a separate list.
119 if (!(CB && CB->isCallee(&OI)))
120 RefEdges.insert(Index.getOrInsertValueInfo(GV));
121 continue;
123 if (Visited.insert(Operand).second)
124 Worklist.push_back(Operand);
127 return HasBlockAddress;
130 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
131 ProfileSummaryInfo *PSI) {
132 if (!PSI)
133 return CalleeInfo::HotnessType::Unknown;
134 if (PSI->isHotCount(ProfileCount))
135 return CalleeInfo::HotnessType::Hot;
136 if (PSI->isColdCount(ProfileCount))
137 return CalleeInfo::HotnessType::Cold;
138 return CalleeInfo::HotnessType::None;
141 static bool isNonRenamableLocal(const GlobalValue &GV) {
142 return GV.hasSection() && GV.hasLocalLinkage();
145 /// Determine whether this call has all constant integer arguments (excluding
146 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
147 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
148 SetVector<FunctionSummary::VFuncId> &VCalls,
149 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
150 std::vector<uint64_t> Args;
151 // Start from the second argument to skip the "this" pointer.
152 for (auto &Arg : drop_begin(Call.CB.args())) {
153 auto *CI = dyn_cast<ConstantInt>(Arg);
154 if (!CI || CI->getBitWidth() > 64) {
155 VCalls.insert({Guid, Call.Offset});
156 return;
158 Args.push_back(CI->getZExtValue());
160 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
163 /// If this intrinsic call requires that we add information to the function
164 /// summary, do so via the non-constant reference arguments.
165 static void addIntrinsicToSummary(
166 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
167 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
168 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
169 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
170 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
171 DominatorTree &DT) {
172 switch (CI->getCalledFunction()->getIntrinsicID()) {
173 case Intrinsic::type_test:
174 case Intrinsic::public_type_test: {
175 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
176 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
177 if (!TypeId)
178 break;
179 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
181 // Produce a summary from type.test intrinsics. We only summarize type.test
182 // intrinsics that are used other than by an llvm.assume intrinsic.
183 // Intrinsics that are assumed are relevant only to the devirtualization
184 // pass, not the type test lowering pass.
185 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
186 return !isa<AssumeInst>(CIU.getUser());
188 if (HasNonAssumeUses)
189 TypeTests.insert(Guid);
191 SmallVector<DevirtCallSite, 4> DevirtCalls;
192 SmallVector<CallInst *, 4> Assumes;
193 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
194 for (auto &Call : DevirtCalls)
195 addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
196 TypeTestAssumeConstVCalls);
198 break;
201 case Intrinsic::type_checked_load: {
202 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
203 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
204 if (!TypeId)
205 break;
206 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
208 SmallVector<DevirtCallSite, 4> DevirtCalls;
209 SmallVector<Instruction *, 4> LoadedPtrs;
210 SmallVector<Instruction *, 4> Preds;
211 bool HasNonCallUses = false;
212 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
213 HasNonCallUses, CI, DT);
214 // Any non-call uses of the result of llvm.type.checked.load will
215 // prevent us from optimizing away the llvm.type.test.
216 if (HasNonCallUses)
217 TypeTests.insert(Guid);
218 for (auto &Call : DevirtCalls)
219 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
220 TypeCheckedLoadConstVCalls);
222 break;
224 default:
225 break;
229 static bool isNonVolatileLoad(const Instruction *I) {
230 if (const auto *LI = dyn_cast<LoadInst>(I))
231 return !LI->isVolatile();
233 return false;
236 static bool isNonVolatileStore(const Instruction *I) {
237 if (const auto *SI = dyn_cast<StoreInst>(I))
238 return !SI->isVolatile();
240 return false;
243 // Returns true if the function definition must be unreachable.
245 // Note if this helper function returns true, `F` is guaranteed
246 // to be unreachable; if it returns false, `F` might still
247 // be unreachable but not covered by this helper function.
248 static bool mustBeUnreachableFunction(const Function &F) {
249 // A function must be unreachable if its entry block ends with an
250 // 'unreachable'.
251 assert(!F.isDeclaration());
252 return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
255 static void computeFunctionSummary(
256 ModuleSummaryIndex &Index, const Module &M, const Function &F,
257 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
258 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
259 bool IsThinLTO,
260 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
261 // Summary not currently supported for anonymous functions, they should
262 // have been named.
263 assert(F.hasName());
265 unsigned NumInsts = 0;
266 // Map from callee ValueId to profile count. Used to accumulate profile
267 // counts for all static calls to a given callee.
268 MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
269 SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
270 SetVector<GlobalValue::GUID> TypeTests;
271 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
272 TypeCheckedLoadVCalls;
273 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
274 TypeCheckedLoadConstVCalls;
275 ICallPromotionAnalysis ICallAnalysis;
276 SmallPtrSet<const User *, 8> Visited;
278 // Add personality function, prefix data and prologue data to function's ref
279 // list.
280 findRefEdges(Index, &F, RefEdges, Visited);
281 std::vector<const Instruction *> NonVolatileLoads;
282 std::vector<const Instruction *> NonVolatileStores;
284 std::vector<CallsiteInfo> Callsites;
285 std::vector<AllocInfo> Allocs;
287 #ifndef NDEBUG
288 DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
289 #endif
291 bool HasInlineAsmMaybeReferencingInternal = false;
292 bool HasIndirBranchToBlockAddress = false;
293 bool HasUnknownCall = false;
294 bool MayThrow = false;
295 for (const BasicBlock &BB : F) {
296 // We don't allow inlining of function with indirect branch to blockaddress.
297 // If the blockaddress escapes the function, e.g., via a global variable,
298 // inlining may lead to an invalid cross-function reference. So we shouldn't
299 // import such function either.
300 if (BB.hasAddressTaken()) {
301 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
302 if (!isa<CallBrInst>(*U)) {
303 HasIndirBranchToBlockAddress = true;
304 break;
308 for (const Instruction &I : BB) {
309 if (I.isDebugOrPseudoInst())
310 continue;
311 ++NumInsts;
313 // Regular LTO module doesn't participate in ThinLTO import,
314 // so no reference from it can be read/writeonly, since this
315 // would require importing variable as local copy
316 if (IsThinLTO) {
317 if (isNonVolatileLoad(&I)) {
318 // Postpone processing of non-volatile load instructions
319 // See comments below
320 Visited.insert(&I);
321 NonVolatileLoads.push_back(&I);
322 continue;
323 } else if (isNonVolatileStore(&I)) {
324 Visited.insert(&I);
325 NonVolatileStores.push_back(&I);
326 // All references from second operand of store (destination address)
327 // can be considered write-only if they're not referenced by any
328 // non-store instruction. References from first operand of store
329 // (stored value) can't be treated either as read- or as write-only
330 // so we add them to RefEdges as we do with all other instructions
331 // except non-volatile load.
332 Value *Stored = I.getOperand(0);
333 if (auto *GV = dyn_cast<GlobalValue>(Stored))
334 // findRefEdges will try to examine GV operands, so instead
335 // of calling it we should add GV to RefEdges directly.
336 RefEdges.insert(Index.getOrInsertValueInfo(GV));
337 else if (auto *U = dyn_cast<User>(Stored))
338 findRefEdges(Index, U, RefEdges, Visited);
339 continue;
342 findRefEdges(Index, &I, RefEdges, Visited);
343 const auto *CB = dyn_cast<CallBase>(&I);
344 if (!CB) {
345 if (I.mayThrow())
346 MayThrow = true;
347 continue;
350 const auto *CI = dyn_cast<CallInst>(&I);
351 // Since we don't know exactly which local values are referenced in inline
352 // assembly, conservatively mark the function as possibly referencing
353 // a local value from inline assembly to ensure we don't export a
354 // reference (which would require renaming and promotion of the
355 // referenced value).
356 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
357 HasInlineAsmMaybeReferencingInternal = true;
359 auto *CalledValue = CB->getCalledOperand();
360 auto *CalledFunction = CB->getCalledFunction();
361 if (CalledValue && !CalledFunction) {
362 CalledValue = CalledValue->stripPointerCasts();
363 // Stripping pointer casts can reveal a called function.
364 CalledFunction = dyn_cast<Function>(CalledValue);
366 // Check if this is an alias to a function. If so, get the
367 // called aliasee for the checks below.
368 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
369 assert(!CalledFunction && "Expected null called function in callsite for alias");
370 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
372 // Check if this is a direct call to a known function or a known
373 // intrinsic, or an indirect call with profile data.
374 if (CalledFunction) {
375 if (CI && CalledFunction->isIntrinsic()) {
376 addIntrinsicToSummary(
377 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
378 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
379 continue;
381 // We should have named any anonymous globals
382 assert(CalledFunction->hasName());
383 auto ScaledCount = PSI->getProfileCount(*CB, BFI);
384 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
385 : CalleeInfo::HotnessType::Unknown;
386 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
387 Hotness = CalleeInfo::HotnessType::Cold;
389 // Use the original CalledValue, in case it was an alias. We want
390 // to record the call edge to the alias in that case. Eventually
391 // an alias summary will be created to associate the alias and
392 // aliasee.
393 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
394 cast<GlobalValue>(CalledValue))];
395 ValueInfo.updateHotness(Hotness);
396 // Add the relative block frequency to CalleeInfo if there is no profile
397 // information.
398 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
399 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
400 uint64_t EntryFreq = BFI->getEntryFreq();
401 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
403 } else {
404 HasUnknownCall = true;
405 // Skip inline assembly calls.
406 if (CI && CI->isInlineAsm())
407 continue;
408 // Skip direct calls.
409 if (!CalledValue || isa<Constant>(CalledValue))
410 continue;
412 // Check if the instruction has a callees metadata. If so, add callees
413 // to CallGraphEdges to reflect the references from the metadata, and
414 // to enable importing for subsequent indirect call promotion and
415 // inlining.
416 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
417 for (const auto &Op : MD->operands()) {
418 Function *Callee = mdconst::extract_or_null<Function>(Op);
419 if (Callee)
420 CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
424 uint32_t NumVals, NumCandidates;
425 uint64_t TotalCount;
426 auto CandidateProfileData =
427 ICallAnalysis.getPromotionCandidatesForInstruction(
428 &I, NumVals, TotalCount, NumCandidates);
429 for (const auto &Candidate : CandidateProfileData)
430 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
431 .updateHotness(getHotness(Candidate.Count, PSI));
434 // Summarize memprof related metadata. This is only needed for ThinLTO.
435 if (!IsThinLTO)
436 continue;
438 // TODO: Skip indirect calls for now. Need to handle these better, likely
439 // by creating multiple Callsites, one per target, then speculatively
440 // devirtualize while applying clone info in the ThinLTO backends. This
441 // will also be important because we will have a different set of clone
442 // versions per target. This handling needs to match that in the ThinLTO
443 // backend so we handle things consistently for matching of callsite
444 // summaries to instructions.
445 if (!CalledFunction)
446 continue;
448 // Ensure we keep this analysis in sync with the handling in the ThinLTO
449 // backend (see MemProfContextDisambiguation::applyImport). Save this call
450 // so that we can skip it in checking the reverse case later.
451 assert(mayHaveMemprofSummary(CB));
452 #ifndef NDEBUG
453 CallsThatMayHaveMemprofSummary.insert(CB);
454 #endif
456 // Compute the list of stack ids first (so we can trim them from the stack
457 // ids on any MIBs).
458 CallStack<MDNode, MDNode::op_iterator> InstCallsite(
459 I.getMetadata(LLVMContext::MD_callsite));
460 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
461 if (MemProfMD) {
462 std::vector<MIBInfo> MIBs;
463 for (auto &MDOp : MemProfMD->operands()) {
464 auto *MIBMD = cast<const MDNode>(MDOp);
465 MDNode *StackNode = getMIBStackNode(MIBMD);
466 assert(StackNode);
467 SmallVector<unsigned> StackIdIndices;
468 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
469 // Collapse out any on the allocation call (inlining).
470 for (auto ContextIter =
471 StackContext.beginAfterSharedPrefix(InstCallsite);
472 ContextIter != StackContext.end(); ++ContextIter) {
473 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
474 // If this is a direct recursion, simply skip the duplicate
475 // entries. If this is mutual recursion, handling is left to
476 // the LTO link analysis client.
477 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
478 StackIdIndices.push_back(StackIdIdx);
480 MIBs.push_back(
481 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
483 Allocs.push_back(AllocInfo(std::move(MIBs)));
484 } else if (!InstCallsite.empty()) {
485 SmallVector<unsigned> StackIdIndices;
486 for (auto StackId : InstCallsite)
487 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
488 // Use the original CalledValue, in case it was an alias. We want
489 // to record the call edge to the alias in that case. Eventually
490 // an alias summary will be created to associate the alias and
491 // aliasee.
492 auto CalleeValueInfo =
493 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
494 Callsites.push_back({CalleeValueInfo, StackIdIndices});
499 if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
500 Index.addBlockCount(F.size());
502 std::vector<ValueInfo> Refs;
503 if (IsThinLTO) {
504 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
505 SetVector<ValueInfo> &Edges,
506 SmallPtrSet<const User *, 8> &Cache) {
507 for (const auto *I : Instrs) {
508 Cache.erase(I);
509 findRefEdges(Index, I, Edges, Cache);
513 // By now we processed all instructions in a function, except
514 // non-volatile loads and non-volatile value stores. Let's find
515 // ref edges for both of instruction sets
516 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
517 // We can add some values to the Visited set when processing load
518 // instructions which are also used by stores in NonVolatileStores.
519 // For example this can happen if we have following code:
521 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
522 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
524 // After processing loads we'll add bitcast to the Visited set, and if
525 // we use the same set while processing stores, we'll never see store
526 // to @bar and @bar will be mistakenly treated as readonly.
527 SmallPtrSet<const llvm::User *, 8> StoreCache;
528 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
530 // If both load and store instruction reference the same variable
531 // we won't be able to optimize it. Add all such reference edges
532 // to RefEdges set.
533 for (const auto &VI : StoreRefEdges)
534 if (LoadRefEdges.remove(VI))
535 RefEdges.insert(VI);
537 unsigned RefCnt = RefEdges.size();
538 // All new reference edges inserted in two loops below are either
539 // read or write only. They will be grouped in the end of RefEdges
540 // vector, so we can use a single integer value to identify them.
541 for (const auto &VI : LoadRefEdges)
542 RefEdges.insert(VI);
544 unsigned FirstWORef = RefEdges.size();
545 for (const auto &VI : StoreRefEdges)
546 RefEdges.insert(VI);
548 Refs = RefEdges.takeVector();
549 for (; RefCnt < FirstWORef; ++RefCnt)
550 Refs[RefCnt].setReadOnly();
552 for (; RefCnt < Refs.size(); ++RefCnt)
553 Refs[RefCnt].setWriteOnly();
554 } else {
555 Refs = RefEdges.takeVector();
557 // Explicit add hot edges to enforce importing for designated GUIDs for
558 // sample PGO, to enable the same inlines as the profiled optimized binary.
559 for (auto &I : F.getImportGUIDs())
560 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
561 ForceSummaryEdgesCold == FunctionSummary::FSHT_All
562 ? CalleeInfo::HotnessType::Cold
563 : CalleeInfo::HotnessType::Critical);
565 #ifndef NDEBUG
566 // Make sure that all calls we decided could not have memprof summaries get a
567 // false value for mayHaveMemprofSummary, to ensure that this handling remains
568 // in sync with the ThinLTO backend handling.
569 if (IsThinLTO) {
570 for (const BasicBlock &BB : F) {
571 for (const Instruction &I : BB) {
572 const auto *CB = dyn_cast<CallBase>(&I);
573 if (!CB)
574 continue;
575 // We already checked these above.
576 if (CallsThatMayHaveMemprofSummary.count(CB))
577 continue;
578 assert(!mayHaveMemprofSummary(CB));
582 #endif
584 bool NonRenamableLocal = isNonRenamableLocal(F);
585 bool NotEligibleForImport = NonRenamableLocal ||
586 HasInlineAsmMaybeReferencingInternal ||
587 HasIndirBranchToBlockAddress;
588 GlobalValueSummary::GVFlags Flags(
589 F.getLinkage(), F.getVisibility(), NotEligibleForImport,
590 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable());
591 FunctionSummary::FFlags FunFlags{
592 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
593 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
594 // FIXME: refactor this to use the same code that inliner is using.
595 // Don't try to import functions with noinline attribute.
596 F.getAttributes().hasFnAttr(Attribute::NoInline),
597 F.hasFnAttribute(Attribute::AlwaysInline),
598 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
599 mustBeUnreachableFunction(F)};
600 std::vector<FunctionSummary::ParamAccess> ParamAccesses;
601 if (auto *SSI = GetSSICallback(F))
602 ParamAccesses = SSI->getParamAccesses(Index);
603 auto FuncSummary = std::make_unique<FunctionSummary>(
604 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
605 CallGraphEdges.takeVector(), TypeTests.takeVector(),
606 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
607 TypeTestAssumeConstVCalls.takeVector(),
608 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
609 std::move(Callsites), std::move(Allocs));
610 if (NonRenamableLocal)
611 CantBePromoted.insert(F.getGUID());
612 Index.addGlobalValueSummary(F, std::move(FuncSummary));
615 /// Find function pointers referenced within the given vtable initializer
616 /// (or subset of an initializer) \p I. The starting offset of \p I within
617 /// the vtable initializer is \p StartingOffset. Any discovered function
618 /// pointers are added to \p VTableFuncs along with their cumulative offset
619 /// within the initializer.
620 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
621 const Module &M, ModuleSummaryIndex &Index,
622 VTableFuncList &VTableFuncs) {
623 // First check if this is a function pointer.
624 if (I->getType()->isPointerTy()) {
625 auto C = I->stripPointerCasts();
626 auto A = dyn_cast<GlobalAlias>(C);
627 if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
628 auto GV = dyn_cast<GlobalValue>(C);
629 assert(GV);
630 // We can disregard __cxa_pure_virtual as a possible call target, as
631 // calls to pure virtuals are UB.
632 if (GV && GV->getName() != "__cxa_pure_virtual")
633 VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
634 return;
638 // Walk through the elements in the constant struct or array and recursively
639 // look for virtual function pointers.
640 const DataLayout &DL = M.getDataLayout();
641 if (auto *C = dyn_cast<ConstantStruct>(I)) {
642 StructType *STy = dyn_cast<StructType>(C->getType());
643 assert(STy);
644 const StructLayout *SL = DL.getStructLayout(C->getType());
646 for (auto EI : llvm::enumerate(STy->elements())) {
647 auto Offset = SL->getElementOffset(EI.index());
648 unsigned Op = SL->getElementContainingOffset(Offset);
649 findFuncPointers(cast<Constant>(I->getOperand(Op)),
650 StartingOffset + Offset, M, Index, VTableFuncs);
652 } else if (auto *C = dyn_cast<ConstantArray>(I)) {
653 ArrayType *ATy = C->getType();
654 Type *EltTy = ATy->getElementType();
655 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
656 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
657 findFuncPointers(cast<Constant>(I->getOperand(i)),
658 StartingOffset + i * EltSize, M, Index, VTableFuncs);
663 // Identify the function pointers referenced by vtable definition \p V.
664 static void computeVTableFuncs(ModuleSummaryIndex &Index,
665 const GlobalVariable &V, const Module &M,
666 VTableFuncList &VTableFuncs) {
667 if (!V.isConstant())
668 return;
670 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
671 VTableFuncs);
673 #ifndef NDEBUG
674 // Validate that the VTableFuncs list is ordered by offset.
675 uint64_t PrevOffset = 0;
676 for (auto &P : VTableFuncs) {
677 // The findVFuncPointers traversal should have encountered the
678 // functions in offset order. We need to use ">=" since PrevOffset
679 // starts at 0.
680 assert(P.VTableOffset >= PrevOffset);
681 PrevOffset = P.VTableOffset;
683 #endif
686 /// Record vtable definition \p V for each type metadata it references.
687 static void
688 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
689 const GlobalVariable &V,
690 SmallVectorImpl<MDNode *> &Types) {
691 for (MDNode *Type : Types) {
692 auto TypeID = Type->getOperand(1).get();
694 uint64_t Offset =
695 cast<ConstantInt>(
696 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
697 ->getZExtValue();
699 if (auto *TypeId = dyn_cast<MDString>(TypeID))
700 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
701 .push_back({Offset, Index.getOrInsertValueInfo(&V)});
705 static void computeVariableSummary(ModuleSummaryIndex &Index,
706 const GlobalVariable &V,
707 DenseSet<GlobalValue::GUID> &CantBePromoted,
708 const Module &M,
709 SmallVectorImpl<MDNode *> &Types) {
710 SetVector<ValueInfo> RefEdges;
711 SmallPtrSet<const User *, 8> Visited;
712 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
713 bool NonRenamableLocal = isNonRenamableLocal(V);
714 GlobalValueSummary::GVFlags Flags(
715 V.getLinkage(), V.getVisibility(), NonRenamableLocal,
716 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable());
718 VTableFuncList VTableFuncs;
719 // If splitting is not enabled, then we compute the summary information
720 // necessary for index-based whole program devirtualization.
721 if (!Index.enableSplitLTOUnit()) {
722 Types.clear();
723 V.getMetadata(LLVMContext::MD_type, Types);
724 if (!Types.empty()) {
725 // Identify the function pointers referenced by this vtable definition.
726 computeVTableFuncs(Index, V, M, VTableFuncs);
728 // Record this vtable definition for each type metadata it references.
729 recordTypeIdCompatibleVtableReferences(Index, V, Types);
733 // Don't mark variables we won't be able to internalize as read/write-only.
734 bool CanBeInternalized =
735 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
736 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
737 bool Constant = V.isConstant();
738 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
739 Constant ? false : CanBeInternalized,
740 Constant, V.getVCallVisibility());
741 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
742 RefEdges.takeVector());
743 if (NonRenamableLocal)
744 CantBePromoted.insert(V.getGUID());
745 if (HasBlockAddress)
746 GVarSummary->setNotEligibleToImport();
747 if (!VTableFuncs.empty())
748 GVarSummary->setVTableFuncs(VTableFuncs);
749 Index.addGlobalValueSummary(V, std::move(GVarSummary));
752 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
753 DenseSet<GlobalValue::GUID> &CantBePromoted) {
754 // Skip summary for indirect function aliases as summary for aliasee will not
755 // be emitted.
756 const GlobalObject *Aliasee = A.getAliaseeObject();
757 if (isa<GlobalIFunc>(Aliasee))
758 return;
759 bool NonRenamableLocal = isNonRenamableLocal(A);
760 GlobalValueSummary::GVFlags Flags(
761 A.getLinkage(), A.getVisibility(), NonRenamableLocal,
762 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable());
763 auto AS = std::make_unique<AliasSummary>(Flags);
764 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
765 assert(AliaseeVI && "Alias expects aliasee summary to be available");
766 assert(AliaseeVI.getSummaryList().size() == 1 &&
767 "Expected a single entry per aliasee in per-module index");
768 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
769 if (NonRenamableLocal)
770 CantBePromoted.insert(A.getGUID());
771 Index.addGlobalValueSummary(A, std::move(AS));
774 // Set LiveRoot flag on entries matching the given value name.
775 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
776 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
777 for (const auto &Summary : VI.getSummaryList())
778 Summary->setLive(true);
781 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
782 const Module &M,
783 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
784 ProfileSummaryInfo *PSI,
785 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
786 assert(PSI);
787 bool EnableSplitLTOUnit = false;
788 if (auto *MD = mdconst::extract_or_null<ConstantInt>(
789 M.getModuleFlag("EnableSplitLTOUnit")))
790 EnableSplitLTOUnit = MD->getZExtValue();
791 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
793 // Identify the local values in the llvm.used and llvm.compiler.used sets,
794 // which should not be exported as they would then require renaming and
795 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
796 // here because we use this information to mark functions containing inline
797 // assembly calls as not importable.
798 SmallPtrSet<GlobalValue *, 4> LocalsUsed;
799 SmallVector<GlobalValue *, 4> Used;
800 // First collect those in the llvm.used set.
801 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
802 // Next collect those in the llvm.compiler.used set.
803 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
804 DenseSet<GlobalValue::GUID> CantBePromoted;
805 for (auto *V : Used) {
806 if (V->hasLocalLinkage()) {
807 LocalsUsed.insert(V);
808 CantBePromoted.insert(V->getGUID());
812 bool HasLocalInlineAsmSymbol = false;
813 if (!M.getModuleInlineAsm().empty()) {
814 // Collect the local values defined by module level asm, and set up
815 // summaries for these symbols so that they can be marked as NoRename,
816 // to prevent export of any use of them in regular IR that would require
817 // renaming within the module level asm. Note we don't need to create a
818 // summary for weak or global defs, as they don't need to be flagged as
819 // NoRename, and defs in module level asm can't be imported anyway.
820 // Also, any values used but not defined within module level asm should
821 // be listed on the llvm.used or llvm.compiler.used global and marked as
822 // referenced from there.
823 ModuleSymbolTable::CollectAsmSymbols(
824 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
825 // Symbols not marked as Weak or Global are local definitions.
826 if (Flags & (object::BasicSymbolRef::SF_Weak |
827 object::BasicSymbolRef::SF_Global))
828 return;
829 HasLocalInlineAsmSymbol = true;
830 GlobalValue *GV = M.getNamedValue(Name);
831 if (!GV)
832 return;
833 assert(GV->isDeclaration() && "Def in module asm already has definition");
834 GlobalValueSummary::GVFlags GVFlags(
835 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
836 /* NotEligibleToImport = */ true,
837 /* Live = */ true,
838 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable());
839 CantBePromoted.insert(GV->getGUID());
840 // Create the appropriate summary type.
841 if (Function *F = dyn_cast<Function>(GV)) {
842 std::unique_ptr<FunctionSummary> Summary =
843 std::make_unique<FunctionSummary>(
844 GVFlags, /*InstCount=*/0,
845 FunctionSummary::FFlags{
846 F->hasFnAttribute(Attribute::ReadNone),
847 F->hasFnAttribute(Attribute::ReadOnly),
848 F->hasFnAttribute(Attribute::NoRecurse),
849 F->returnDoesNotAlias(),
850 /* NoInline = */ false,
851 F->hasFnAttribute(Attribute::AlwaysInline),
852 F->hasFnAttribute(Attribute::NoUnwind),
853 /* MayThrow */ true,
854 /* HasUnknownCall */ true,
855 /* MustBeUnreachable */ false},
856 /*EntryCount=*/0, ArrayRef<ValueInfo>{},
857 ArrayRef<FunctionSummary::EdgeTy>{},
858 ArrayRef<GlobalValue::GUID>{},
859 ArrayRef<FunctionSummary::VFuncId>{},
860 ArrayRef<FunctionSummary::VFuncId>{},
861 ArrayRef<FunctionSummary::ConstVCall>{},
862 ArrayRef<FunctionSummary::ConstVCall>{},
863 ArrayRef<FunctionSummary::ParamAccess>{},
864 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
865 Index.addGlobalValueSummary(*GV, std::move(Summary));
866 } else {
867 std::unique_ptr<GlobalVarSummary> Summary =
868 std::make_unique<GlobalVarSummary>(
869 GVFlags,
870 GlobalVarSummary::GVarFlags(
871 false, false, cast<GlobalVariable>(GV)->isConstant(),
872 GlobalObject::VCallVisibilityPublic),
873 ArrayRef<ValueInfo>{});
874 Index.addGlobalValueSummary(*GV, std::move(Summary));
879 bool IsThinLTO = true;
880 if (auto *MD =
881 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
882 IsThinLTO = MD->getZExtValue();
884 // Compute summaries for all functions defined in module, and save in the
885 // index.
886 for (const auto &F : M) {
887 if (F.isDeclaration())
888 continue;
890 DominatorTree DT(const_cast<Function &>(F));
891 BlockFrequencyInfo *BFI = nullptr;
892 std::unique_ptr<BlockFrequencyInfo> BFIPtr;
893 if (GetBFICallback)
894 BFI = GetBFICallback(F);
895 else if (F.hasProfileData()) {
896 LoopInfo LI{DT};
897 BranchProbabilityInfo BPI{F, LI};
898 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
899 BFI = BFIPtr.get();
902 computeFunctionSummary(Index, M, F, BFI, PSI, DT,
903 !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
904 CantBePromoted, IsThinLTO, GetSSICallback);
907 // Compute summaries for all variables defined in module, and save in the
908 // index.
909 SmallVector<MDNode *, 2> Types;
910 for (const GlobalVariable &G : M.globals()) {
911 if (G.isDeclaration())
912 continue;
913 computeVariableSummary(Index, G, CantBePromoted, M, Types);
916 // Compute summaries for all aliases defined in module, and save in the
917 // index.
918 for (const GlobalAlias &A : M.aliases())
919 computeAliasSummary(Index, A, CantBePromoted);
921 // Iterate through ifuncs, set their resolvers all alive.
922 for (const GlobalIFunc &I : M.ifuncs()) {
923 I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
924 Index.getGlobalValueSummary(GV)->setLive(true);
928 for (auto *V : LocalsUsed) {
929 auto *Summary = Index.getGlobalValueSummary(*V);
930 assert(Summary && "Missing summary for global value");
931 Summary->setNotEligibleToImport();
934 // The linker doesn't know about these LLVM produced values, so we need
935 // to flag them as live in the index to ensure index-based dead value
936 // analysis treats them as live roots of the analysis.
937 setLiveRoot(Index, "llvm.used");
938 setLiveRoot(Index, "llvm.compiler.used");
939 setLiveRoot(Index, "llvm.global_ctors");
940 setLiveRoot(Index, "llvm.global_dtors");
941 setLiveRoot(Index, "llvm.global.annotations");
943 for (auto &GlobalList : Index) {
944 // Ignore entries for references that are undefined in the current module.
945 if (GlobalList.second.SummaryList.empty())
946 continue;
948 assert(GlobalList.second.SummaryList.size() == 1 &&
949 "Expected module's index to have one summary per GUID");
950 auto &Summary = GlobalList.second.SummaryList[0];
951 if (!IsThinLTO) {
952 Summary->setNotEligibleToImport();
953 continue;
956 bool AllRefsCanBeExternallyReferenced =
957 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
958 return !CantBePromoted.count(VI.getGUID());
960 if (!AllRefsCanBeExternallyReferenced) {
961 Summary->setNotEligibleToImport();
962 continue;
965 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
966 bool AllCallsCanBeExternallyReferenced = llvm::all_of(
967 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
968 return !CantBePromoted.count(Edge.first.getGUID());
970 if (!AllCallsCanBeExternallyReferenced)
971 Summary->setNotEligibleToImport();
975 if (!ModuleSummaryDotFile.empty()) {
976 std::error_code EC;
977 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
978 if (EC)
979 report_fatal_error(Twine("Failed to open dot file ") +
980 ModuleSummaryDotFile + ": " + EC.message() + "\n");
981 Index.exportToDot(OSDot, {});
984 return Index;
987 AnalysisKey ModuleSummaryIndexAnalysis::Key;
989 ModuleSummaryIndex
990 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
991 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
992 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
993 bool NeedSSI = needsParamAccessSummary(M);
994 return buildModuleSummaryIndex(
996 [&FAM](const Function &F) {
997 return &FAM.getResult<BlockFrequencyAnalysis>(
998 *const_cast<Function *>(&F));
1000 &PSI,
1001 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1002 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1003 const_cast<Function &>(F))
1004 : nullptr;
1008 char ModuleSummaryIndexWrapperPass::ID = 0;
1010 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1011 "Module Summary Analysis", false, true)
1012 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1013 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1014 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1015 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1016 "Module Summary Analysis", false, true)
1018 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1019 return new ModuleSummaryIndexWrapperPass();
1022 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1023 : ModulePass(ID) {
1024 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1027 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1028 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1029 bool NeedSSI = needsParamAccessSummary(M);
1030 Index.emplace(buildModuleSummaryIndex(
1032 [this](const Function &F) {
1033 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1034 *const_cast<Function *>(&F))
1035 .getBFI());
1037 PSI,
1038 [&](const Function &F) -> const StackSafetyInfo * {
1039 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1040 const_cast<Function &>(F))
1041 .getResult()
1042 : nullptr;
1043 }));
1044 return false;
1047 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1048 Index.reset();
1049 return false;
1052 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1053 AU.setPreservesAll();
1054 AU.addRequired<BlockFrequencyInfoWrapperPass>();
1055 AU.addRequired<ProfileSummaryInfoWrapperPass>();
1056 AU.addRequired<StackSafetyInfoWrapperPass>();
1059 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1061 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1062 const ModuleSummaryIndex *Index)
1063 : ImmutablePass(ID), Index(Index) {
1064 initializeImmutableModuleSummaryIndexWrapperPassPass(
1065 *PassRegistry::getPassRegistry());
1068 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1069 AnalysisUsage &AU) const {
1070 AU.setPreservesAll();
1073 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1074 const ModuleSummaryIndex *Index) {
1075 return new ImmutableModuleSummaryIndexWrapperPass(Index);
1078 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1079 "Module summary info", false, true)
1081 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1082 if (!CB)
1083 return false;
1084 if (CB->isDebugOrPseudoInst())
1085 return false;
1086 auto *CI = dyn_cast<CallInst>(CB);
1087 auto *CalledValue = CB->getCalledOperand();
1088 auto *CalledFunction = CB->getCalledFunction();
1089 if (CalledValue && !CalledFunction) {
1090 CalledValue = CalledValue->stripPointerCasts();
1091 // Stripping pointer casts can reveal a called function.
1092 CalledFunction = dyn_cast<Function>(CalledValue);
1094 // Check if this is an alias to a function. If so, get the
1095 // called aliasee for the checks below.
1096 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1097 assert(!CalledFunction &&
1098 "Expected null called function in callsite for alias");
1099 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1101 // Check if this is a direct call to a known function or a known
1102 // intrinsic, or an indirect call with profile data.
1103 if (CalledFunction) {
1104 if (CI && CalledFunction->isIntrinsic())
1105 return false;
1106 } else {
1107 // TODO: For now skip indirect calls. See comments in
1108 // computeFunctionSummary for what is needed to handle this.
1109 return false;
1111 return true;