[RISCV] Refactor predicates for rvv intrinsic patterns.
[llvm-project.git] / llvm / lib / Bitcode / Writer / BitcodeWriter.cpp
blobbedae66df69ec1055067419aa790bbca2529b6c7
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/MC/TargetRegistry.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <optional>
80 #include <string>
81 #include <utility>
82 #include <vector>
84 using namespace llvm;
86 static cl::opt<unsigned>
87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
88 cl::desc("Number of metadatas above which we emit an index "
89 "to enable lazy-loading"));
90 static cl::opt<uint32_t> FlushThreshold(
91 "bitcode-flush-threshold", cl::Hidden, cl::init(512),
92 cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
94 static cl::opt<bool> WriteRelBFToSummary(
95 "write-relbf-to-summary", cl::Hidden, cl::init(false),
96 cl::desc("Write relative block frequency to function summary "));
98 namespace llvm {
99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
102 namespace {
104 /// These are manifest constants used by the bitcode writer. They do not need to
105 /// be kept in sync with the reader, but need to be consistent within this file.
106 enum {
107 // VALUE_SYMTAB_BLOCK abbrev id's.
108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109 VST_ENTRY_7_ABBREV,
110 VST_ENTRY_6_ABBREV,
111 VST_BBENTRY_6_ABBREV,
113 // CONSTANTS_BLOCK abbrev id's.
114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115 CONSTANTS_INTEGER_ABBREV,
116 CONSTANTS_CE_CAST_Abbrev,
117 CONSTANTS_NULL_Abbrev,
119 // FUNCTION_BLOCK abbrev id's.
120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
121 FUNCTION_INST_UNOP_ABBREV,
122 FUNCTION_INST_UNOP_FLAGS_ABBREV,
123 FUNCTION_INST_BINOP_ABBREV,
124 FUNCTION_INST_BINOP_FLAGS_ABBREV,
125 FUNCTION_INST_CAST_ABBREV,
126 FUNCTION_INST_RET_VOID_ABBREV,
127 FUNCTION_INST_RET_VAL_ABBREV,
128 FUNCTION_INST_UNREACHABLE_ABBREV,
129 FUNCTION_INST_GEP_ABBREV,
132 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
133 /// file type.
134 class BitcodeWriterBase {
135 protected:
136 /// The stream created and owned by the client.
137 BitstreamWriter &Stream;
139 StringTableBuilder &StrtabBuilder;
141 public:
142 /// Constructs a BitcodeWriterBase object that writes to the provided
143 /// \p Stream.
144 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
145 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
147 protected:
148 void writeModuleVersion();
151 void BitcodeWriterBase::writeModuleVersion() {
152 // VERSION: [version#]
153 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
156 /// Base class to manage the module bitcode writing, currently subclassed for
157 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
158 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
159 protected:
160 /// The Module to write to bitcode.
161 const Module &M;
163 /// Enumerates ids for all values in the module.
164 ValueEnumerator VE;
166 /// Optional per-module index to write for ThinLTO.
167 const ModuleSummaryIndex *Index;
169 /// Map that holds the correspondence between GUIDs in the summary index,
170 /// that came from indirect call profiles, and a value id generated by this
171 /// class to use in the VST and summary block records.
172 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
174 /// Tracks the last value id recorded in the GUIDToValueMap.
175 unsigned GlobalValueId;
177 /// Saves the offset of the VSTOffset record that must eventually be
178 /// backpatched with the offset of the actual VST.
179 uint64_t VSTOffsetPlaceholder = 0;
181 public:
182 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
183 /// writing to the provided \p Buffer.
184 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
185 BitstreamWriter &Stream,
186 bool ShouldPreserveUseListOrder,
187 const ModuleSummaryIndex *Index)
188 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
189 VE(M, ShouldPreserveUseListOrder), Index(Index) {
190 // Assign ValueIds to any callee values in the index that came from
191 // indirect call profiles and were recorded as a GUID not a Value*
192 // (which would have been assigned an ID by the ValueEnumerator).
193 // The starting ValueId is just after the number of values in the
194 // ValueEnumerator, so that they can be emitted in the VST.
195 GlobalValueId = VE.getValues().size();
196 if (!Index)
197 return;
198 for (const auto &GUIDSummaryLists : *Index)
199 // Examine all summaries for this GUID.
200 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
201 if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
202 // For each call in the function summary, see if the call
203 // is to a GUID (which means it is for an indirect call,
204 // otherwise we would have a Value for it). If so, synthesize
205 // a value id.
206 for (auto &CallEdge : FS->calls())
207 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
208 assignValueId(CallEdge.first.getGUID());
211 protected:
212 void writePerModuleGlobalValueSummary();
214 private:
215 void writePerModuleFunctionSummaryRecord(
216 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
217 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
218 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
219 void writeModuleLevelReferences(const GlobalVariable &V,
220 SmallVector<uint64_t, 64> &NameVals,
221 unsigned FSModRefsAbbrev,
222 unsigned FSModVTableRefsAbbrev);
224 void assignValueId(GlobalValue::GUID ValGUID) {
225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
228 unsigned getValueId(GlobalValue::GUID ValGUID) {
229 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
230 // Expect that any GUID value had a value Id assigned by an
231 // earlier call to assignValueId.
232 assert(VMI != GUIDToValueIdMap.end() &&
233 "GUID does not have assigned value Id");
234 return VMI->second;
237 // Helper to get the valueId for the type of value recorded in VI.
238 unsigned getValueId(ValueInfo VI) {
239 if (!VI.haveGVs() || !VI.getValue())
240 return getValueId(VI.getGUID());
241 return VE.getValueID(VI.getValue());
244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
247 /// Class to manage the bitcode writing for a module.
248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
249 /// Pointer to the buffer allocated by caller for bitcode writing.
250 const SmallVectorImpl<char> &Buffer;
252 /// True if a module hash record should be written.
253 bool GenerateHash;
255 /// If non-null, when GenerateHash is true, the resulting hash is written
256 /// into ModHash.
257 ModuleHash *ModHash;
259 SHA1 Hasher;
261 /// The start bit of the identification block.
262 uint64_t BitcodeStartBit;
264 public:
265 /// Constructs a ModuleBitcodeWriter object for the given Module,
266 /// writing to the provided \p Buffer.
267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
268 StringTableBuilder &StrtabBuilder,
269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
270 const ModuleSummaryIndex *Index, bool GenerateHash,
271 ModuleHash *ModHash = nullptr)
272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
273 ShouldPreserveUseListOrder, Index),
274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
275 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
277 /// Emit the current module to the bitstream.
278 void write();
280 private:
281 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
283 size_t addToStrtab(StringRef Str);
285 void writeAttributeGroupTable();
286 void writeAttributeTable();
287 void writeTypeTable();
288 void writeComdats();
289 void writeValueSymbolTableForwardDecl();
290 void writeModuleInfo();
291 void writeValueAsMetadata(const ValueAsMetadata *MD,
292 SmallVectorImpl<uint64_t> &Record);
293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
294 unsigned Abbrev);
295 unsigned createDILocationAbbrev();
296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
297 unsigned &Abbrev);
298 unsigned createGenericDINodeAbbrev();
299 void writeGenericDINode(const GenericDINode *N,
300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
302 unsigned Abbrev);
303 void writeDIGenericSubrange(const DIGenericSubrange *N,
304 SmallVectorImpl<uint64_t> &Record,
305 unsigned Abbrev);
306 void writeDIEnumerator(const DIEnumerator *N,
307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
309 unsigned Abbrev);
310 void writeDIStringType(const DIStringType *N,
311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312 void writeDIDerivedType(const DIDerivedType *N,
313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314 void writeDICompositeType(const DICompositeType *N,
315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316 void writeDISubroutineType(const DISubroutineType *N,
317 SmallVectorImpl<uint64_t> &Record,
318 unsigned Abbrev);
319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
320 unsigned Abbrev);
321 void writeDICompileUnit(const DICompileUnit *N,
322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323 void writeDISubprogram(const DISubprogram *N,
324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325 void writeDILexicalBlock(const DILexicalBlock *N,
326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
328 SmallVectorImpl<uint64_t> &Record,
329 unsigned Abbrev);
330 void writeDICommonBlock(const DICommonBlock *N,
331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
333 unsigned Abbrev);
334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
335 unsigned Abbrev);
336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
337 unsigned Abbrev);
338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
339 unsigned Abbrev);
340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
341 unsigned Abbrev);
342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
343 unsigned Abbrev);
344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
345 SmallVectorImpl<uint64_t> &Record,
346 unsigned Abbrev);
347 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
348 SmallVectorImpl<uint64_t> &Record,
349 unsigned Abbrev);
350 void writeDIGlobalVariable(const DIGlobalVariable *N,
351 SmallVectorImpl<uint64_t> &Record,
352 unsigned Abbrev);
353 void writeDILocalVariable(const DILocalVariable *N,
354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
355 void writeDILabel(const DILabel *N,
356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
357 void writeDIExpression(const DIExpression *N,
358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
360 SmallVectorImpl<uint64_t> &Record,
361 unsigned Abbrev);
362 void writeDIObjCProperty(const DIObjCProperty *N,
363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
364 void writeDIImportedEntity(const DIImportedEntity *N,
365 SmallVectorImpl<uint64_t> &Record,
366 unsigned Abbrev);
367 unsigned createNamedMetadataAbbrev();
368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
369 unsigned createMetadataStringsAbbrev();
370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
371 SmallVectorImpl<uint64_t> &Record);
372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
373 SmallVectorImpl<uint64_t> &Record,
374 std::vector<unsigned> *MDAbbrevs = nullptr,
375 std::vector<uint64_t> *IndexPos = nullptr);
376 void writeModuleMetadata();
377 void writeFunctionMetadata(const Function &F);
378 void writeFunctionMetadataAttachment(const Function &F);
379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
380 const GlobalObject &GO);
381 void writeModuleMetadataKinds();
382 void writeOperandBundleTags();
383 void writeSyncScopeNames();
384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
385 void writeModuleConstants();
386 bool pushValueAndType(const Value *V, unsigned InstID,
387 SmallVectorImpl<unsigned> &Vals);
388 void writeOperandBundles(const CallBase &CB, unsigned InstID);
389 void pushValue(const Value *V, unsigned InstID,
390 SmallVectorImpl<unsigned> &Vals);
391 void pushValueSigned(const Value *V, unsigned InstID,
392 SmallVectorImpl<uint64_t> &Vals);
393 void writeInstruction(const Instruction &I, unsigned InstID,
394 SmallVectorImpl<unsigned> &Vals);
395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
396 void writeGlobalValueSymbolTable(
397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
398 void writeUseList(UseListOrder &&Order);
399 void writeUseListBlock(const Function *F);
400 void
401 writeFunction(const Function &F,
402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
403 void writeBlockInfo();
404 void writeModuleHash(size_t BlockStartPos);
406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
407 return unsigned(SSID);
410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
413 /// Class to manage the bitcode writing for a combined index.
414 class IndexBitcodeWriter : public BitcodeWriterBase {
415 /// The combined index to write to bitcode.
416 const ModuleSummaryIndex &Index;
418 /// When writing a subset of the index for distributed backends, client
419 /// provides a map of modules to the corresponding GUIDs/summaries to write.
420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
422 /// Map that holds the correspondence between the GUID used in the combined
423 /// index and a value id generated by this class to use in references.
424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
426 // The sorted stack id indices actually used in the summary entries being
427 // written, which will be a subset of those in the full index in the case of
428 // distributed indexes.
429 std::vector<unsigned> StackIdIndices;
431 /// Tracks the last value id recorded in the GUIDToValueMap.
432 unsigned GlobalValueId = 0;
434 public:
435 /// Constructs a IndexBitcodeWriter object for the given combined index,
436 /// writing to the provided \p Buffer. When writing a subset of the index
437 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
438 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
439 const ModuleSummaryIndex &Index,
440 const std::map<std::string, GVSummaryMapTy>
441 *ModuleToSummariesForIndex = nullptr)
442 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
443 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
444 // Assign unique value ids to all summaries to be written, for use
445 // in writing out the call graph edges. Save the mapping from GUID
446 // to the new global value id to use when writing those edges, which
447 // are currently saved in the index in terms of GUID.
448 forEachSummary([&](GVInfo I, bool IsAliasee) {
449 GUIDToValueIdMap[I.first] = ++GlobalValueId;
450 if (IsAliasee)
451 return;
452 auto *FS = dyn_cast<FunctionSummary>(I.second);
453 if (!FS)
454 return;
455 // Record all stack id indices actually used in the summary entries being
456 // written, so that we can compact them in the case of distributed ThinLTO
457 // indexes.
458 for (auto &CI : FS->callsites())
459 for (auto Idx : CI.StackIdIndices)
460 StackIdIndices.push_back(Idx);
461 for (auto &AI : FS->allocs())
462 for (auto &MIB : AI.MIBs)
463 for (auto Idx : MIB.StackIdIndices)
464 StackIdIndices.push_back(Idx);
466 llvm::sort(StackIdIndices);
467 StackIdIndices.erase(
468 std::unique(StackIdIndices.begin(), StackIdIndices.end()),
469 StackIdIndices.end());
472 /// The below iterator returns the GUID and associated summary.
473 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
475 /// Calls the callback for each value GUID and summary to be written to
476 /// bitcode. This hides the details of whether they are being pulled from the
477 /// entire index or just those in a provided ModuleToSummariesForIndex map.
478 template<typename Functor>
479 void forEachSummary(Functor Callback) {
480 if (ModuleToSummariesForIndex) {
481 for (auto &M : *ModuleToSummariesForIndex)
482 for (auto &Summary : M.second) {
483 Callback(Summary, false);
484 // Ensure aliasee is handled, e.g. for assigning a valueId,
485 // even if we are not importing the aliasee directly (the
486 // imported alias will contain a copy of aliasee).
487 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
488 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
490 } else {
491 for (auto &Summaries : Index)
492 for (auto &Summary : Summaries.second.SummaryList)
493 Callback({Summaries.first, Summary.get()}, false);
497 /// Calls the callback for each entry in the modulePaths StringMap that
498 /// should be written to the module path string table. This hides the details
499 /// of whether they are being pulled from the entire index or just those in a
500 /// provided ModuleToSummariesForIndex map.
501 template <typename Functor> void forEachModule(Functor Callback) {
502 if (ModuleToSummariesForIndex) {
503 for (const auto &M : *ModuleToSummariesForIndex) {
504 const auto &MPI = Index.modulePaths().find(M.first);
505 if (MPI == Index.modulePaths().end()) {
506 // This should only happen if the bitcode file was empty, in which
507 // case we shouldn't be importing (the ModuleToSummariesForIndex
508 // would only include the module we are writing and index for).
509 assert(ModuleToSummariesForIndex->size() == 1);
510 continue;
512 Callback(*MPI);
514 } else {
515 for (const auto &MPSE : Index.modulePaths())
516 Callback(MPSE);
520 /// Main entry point for writing a combined index to bitcode.
521 void write();
523 private:
524 void writeModStrings();
525 void writeCombinedGlobalValueSummary();
527 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
528 auto VMI = GUIDToValueIdMap.find(ValGUID);
529 if (VMI == GUIDToValueIdMap.end())
530 return std::nullopt;
531 return VMI->second;
534 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
537 } // end anonymous namespace
539 static unsigned getEncodedCastOpcode(unsigned Opcode) {
540 switch (Opcode) {
541 default: llvm_unreachable("Unknown cast instruction!");
542 case Instruction::Trunc : return bitc::CAST_TRUNC;
543 case Instruction::ZExt : return bitc::CAST_ZEXT;
544 case Instruction::SExt : return bitc::CAST_SEXT;
545 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
546 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
547 case Instruction::UIToFP : return bitc::CAST_UITOFP;
548 case Instruction::SIToFP : return bitc::CAST_SITOFP;
549 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
550 case Instruction::FPExt : return bitc::CAST_FPEXT;
551 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
552 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
553 case Instruction::BitCast : return bitc::CAST_BITCAST;
554 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
558 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
559 switch (Opcode) {
560 default: llvm_unreachable("Unknown binary instruction!");
561 case Instruction::FNeg: return bitc::UNOP_FNEG;
565 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
566 switch (Opcode) {
567 default: llvm_unreachable("Unknown binary instruction!");
568 case Instruction::Add:
569 case Instruction::FAdd: return bitc::BINOP_ADD;
570 case Instruction::Sub:
571 case Instruction::FSub: return bitc::BINOP_SUB;
572 case Instruction::Mul:
573 case Instruction::FMul: return bitc::BINOP_MUL;
574 case Instruction::UDiv: return bitc::BINOP_UDIV;
575 case Instruction::FDiv:
576 case Instruction::SDiv: return bitc::BINOP_SDIV;
577 case Instruction::URem: return bitc::BINOP_UREM;
578 case Instruction::FRem:
579 case Instruction::SRem: return bitc::BINOP_SREM;
580 case Instruction::Shl: return bitc::BINOP_SHL;
581 case Instruction::LShr: return bitc::BINOP_LSHR;
582 case Instruction::AShr: return bitc::BINOP_ASHR;
583 case Instruction::And: return bitc::BINOP_AND;
584 case Instruction::Or: return bitc::BINOP_OR;
585 case Instruction::Xor: return bitc::BINOP_XOR;
589 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
590 switch (Op) {
591 default: llvm_unreachable("Unknown RMW operation!");
592 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
593 case AtomicRMWInst::Add: return bitc::RMW_ADD;
594 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
595 case AtomicRMWInst::And: return bitc::RMW_AND;
596 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
597 case AtomicRMWInst::Or: return bitc::RMW_OR;
598 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
599 case AtomicRMWInst::Max: return bitc::RMW_MAX;
600 case AtomicRMWInst::Min: return bitc::RMW_MIN;
601 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
602 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
603 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
604 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
605 case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
606 case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
607 case AtomicRMWInst::UIncWrap:
608 return bitc::RMW_UINC_WRAP;
609 case AtomicRMWInst::UDecWrap:
610 return bitc::RMW_UDEC_WRAP;
614 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
615 switch (Ordering) {
616 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
617 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
618 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
619 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
620 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
621 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
622 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
624 llvm_unreachable("Invalid ordering");
627 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
628 StringRef Str, unsigned AbbrevToUse) {
629 SmallVector<unsigned, 64> Vals;
631 // Code: [strchar x N]
632 for (char C : Str) {
633 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
634 AbbrevToUse = 0;
635 Vals.push_back(C);
638 // Emit the finished record.
639 Stream.EmitRecord(Code, Vals, AbbrevToUse);
642 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
643 switch (Kind) {
644 case Attribute::Alignment:
645 return bitc::ATTR_KIND_ALIGNMENT;
646 case Attribute::AllocAlign:
647 return bitc::ATTR_KIND_ALLOC_ALIGN;
648 case Attribute::AllocSize:
649 return bitc::ATTR_KIND_ALLOC_SIZE;
650 case Attribute::AlwaysInline:
651 return bitc::ATTR_KIND_ALWAYS_INLINE;
652 case Attribute::Builtin:
653 return bitc::ATTR_KIND_BUILTIN;
654 case Attribute::ByVal:
655 return bitc::ATTR_KIND_BY_VAL;
656 case Attribute::Convergent:
657 return bitc::ATTR_KIND_CONVERGENT;
658 case Attribute::InAlloca:
659 return bitc::ATTR_KIND_IN_ALLOCA;
660 case Attribute::Cold:
661 return bitc::ATTR_KIND_COLD;
662 case Attribute::DisableSanitizerInstrumentation:
663 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
664 case Attribute::FnRetThunkExtern:
665 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
666 case Attribute::Hot:
667 return bitc::ATTR_KIND_HOT;
668 case Attribute::ElementType:
669 return bitc::ATTR_KIND_ELEMENTTYPE;
670 case Attribute::InlineHint:
671 return bitc::ATTR_KIND_INLINE_HINT;
672 case Attribute::InReg:
673 return bitc::ATTR_KIND_IN_REG;
674 case Attribute::JumpTable:
675 return bitc::ATTR_KIND_JUMP_TABLE;
676 case Attribute::MinSize:
677 return bitc::ATTR_KIND_MIN_SIZE;
678 case Attribute::AllocatedPointer:
679 return bitc::ATTR_KIND_ALLOCATED_POINTER;
680 case Attribute::AllocKind:
681 return bitc::ATTR_KIND_ALLOC_KIND;
682 case Attribute::Memory:
683 return bitc::ATTR_KIND_MEMORY;
684 case Attribute::NoFPClass:
685 return bitc::ATTR_KIND_NOFPCLASS;
686 case Attribute::Naked:
687 return bitc::ATTR_KIND_NAKED;
688 case Attribute::Nest:
689 return bitc::ATTR_KIND_NEST;
690 case Attribute::NoAlias:
691 return bitc::ATTR_KIND_NO_ALIAS;
692 case Attribute::NoBuiltin:
693 return bitc::ATTR_KIND_NO_BUILTIN;
694 case Attribute::NoCallback:
695 return bitc::ATTR_KIND_NO_CALLBACK;
696 case Attribute::NoCapture:
697 return bitc::ATTR_KIND_NO_CAPTURE;
698 case Attribute::NoDuplicate:
699 return bitc::ATTR_KIND_NO_DUPLICATE;
700 case Attribute::NoFree:
701 return bitc::ATTR_KIND_NOFREE;
702 case Attribute::NoImplicitFloat:
703 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
704 case Attribute::NoInline:
705 return bitc::ATTR_KIND_NO_INLINE;
706 case Attribute::NoRecurse:
707 return bitc::ATTR_KIND_NO_RECURSE;
708 case Attribute::NoMerge:
709 return bitc::ATTR_KIND_NO_MERGE;
710 case Attribute::NonLazyBind:
711 return bitc::ATTR_KIND_NON_LAZY_BIND;
712 case Attribute::NonNull:
713 return bitc::ATTR_KIND_NON_NULL;
714 case Attribute::Dereferenceable:
715 return bitc::ATTR_KIND_DEREFERENCEABLE;
716 case Attribute::DereferenceableOrNull:
717 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
718 case Attribute::NoRedZone:
719 return bitc::ATTR_KIND_NO_RED_ZONE;
720 case Attribute::NoReturn:
721 return bitc::ATTR_KIND_NO_RETURN;
722 case Attribute::NoSync:
723 return bitc::ATTR_KIND_NOSYNC;
724 case Attribute::NoCfCheck:
725 return bitc::ATTR_KIND_NOCF_CHECK;
726 case Attribute::NoProfile:
727 return bitc::ATTR_KIND_NO_PROFILE;
728 case Attribute::SkipProfile:
729 return bitc::ATTR_KIND_SKIP_PROFILE;
730 case Attribute::NoUnwind:
731 return bitc::ATTR_KIND_NO_UNWIND;
732 case Attribute::NoSanitizeBounds:
733 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
734 case Attribute::NoSanitizeCoverage:
735 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
736 case Attribute::NullPointerIsValid:
737 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
738 case Attribute::OptForFuzzing:
739 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
740 case Attribute::OptimizeForSize:
741 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
742 case Attribute::OptimizeNone:
743 return bitc::ATTR_KIND_OPTIMIZE_NONE;
744 case Attribute::ReadNone:
745 return bitc::ATTR_KIND_READ_NONE;
746 case Attribute::ReadOnly:
747 return bitc::ATTR_KIND_READ_ONLY;
748 case Attribute::Returned:
749 return bitc::ATTR_KIND_RETURNED;
750 case Attribute::ReturnsTwice:
751 return bitc::ATTR_KIND_RETURNS_TWICE;
752 case Attribute::SExt:
753 return bitc::ATTR_KIND_S_EXT;
754 case Attribute::Speculatable:
755 return bitc::ATTR_KIND_SPECULATABLE;
756 case Attribute::StackAlignment:
757 return bitc::ATTR_KIND_STACK_ALIGNMENT;
758 case Attribute::StackProtect:
759 return bitc::ATTR_KIND_STACK_PROTECT;
760 case Attribute::StackProtectReq:
761 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
762 case Attribute::StackProtectStrong:
763 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
764 case Attribute::SafeStack:
765 return bitc::ATTR_KIND_SAFESTACK;
766 case Attribute::ShadowCallStack:
767 return bitc::ATTR_KIND_SHADOWCALLSTACK;
768 case Attribute::StrictFP:
769 return bitc::ATTR_KIND_STRICT_FP;
770 case Attribute::StructRet:
771 return bitc::ATTR_KIND_STRUCT_RET;
772 case Attribute::SanitizeAddress:
773 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
774 case Attribute::SanitizeHWAddress:
775 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
776 case Attribute::SanitizeThread:
777 return bitc::ATTR_KIND_SANITIZE_THREAD;
778 case Attribute::SanitizeMemory:
779 return bitc::ATTR_KIND_SANITIZE_MEMORY;
780 case Attribute::SpeculativeLoadHardening:
781 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
782 case Attribute::SwiftError:
783 return bitc::ATTR_KIND_SWIFT_ERROR;
784 case Attribute::SwiftSelf:
785 return bitc::ATTR_KIND_SWIFT_SELF;
786 case Attribute::SwiftAsync:
787 return bitc::ATTR_KIND_SWIFT_ASYNC;
788 case Attribute::UWTable:
789 return bitc::ATTR_KIND_UW_TABLE;
790 case Attribute::VScaleRange:
791 return bitc::ATTR_KIND_VSCALE_RANGE;
792 case Attribute::WillReturn:
793 return bitc::ATTR_KIND_WILLRETURN;
794 case Attribute::WriteOnly:
795 return bitc::ATTR_KIND_WRITEONLY;
796 case Attribute::ZExt:
797 return bitc::ATTR_KIND_Z_EXT;
798 case Attribute::ImmArg:
799 return bitc::ATTR_KIND_IMMARG;
800 case Attribute::SanitizeMemTag:
801 return bitc::ATTR_KIND_SANITIZE_MEMTAG;
802 case Attribute::Preallocated:
803 return bitc::ATTR_KIND_PREALLOCATED;
804 case Attribute::NoUndef:
805 return bitc::ATTR_KIND_NOUNDEF;
806 case Attribute::ByRef:
807 return bitc::ATTR_KIND_BYREF;
808 case Attribute::MustProgress:
809 return bitc::ATTR_KIND_MUSTPROGRESS;
810 case Attribute::PresplitCoroutine:
811 return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
812 case Attribute::EndAttrKinds:
813 llvm_unreachable("Can not encode end-attribute kinds marker.");
814 case Attribute::None:
815 llvm_unreachable("Can not encode none-attribute.");
816 case Attribute::EmptyKey:
817 case Attribute::TombstoneKey:
818 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
821 llvm_unreachable("Trying to encode unknown attribute");
824 void ModuleBitcodeWriter::writeAttributeGroupTable() {
825 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
826 VE.getAttributeGroups();
827 if (AttrGrps.empty()) return;
829 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
831 SmallVector<uint64_t, 64> Record;
832 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
833 unsigned AttrListIndex = Pair.first;
834 AttributeSet AS = Pair.second;
835 Record.push_back(VE.getAttributeGroupID(Pair));
836 Record.push_back(AttrListIndex);
838 for (Attribute Attr : AS) {
839 if (Attr.isEnumAttribute()) {
840 Record.push_back(0);
841 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
842 } else if (Attr.isIntAttribute()) {
843 Record.push_back(1);
844 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
845 Record.push_back(Attr.getValueAsInt());
846 } else if (Attr.isStringAttribute()) {
847 StringRef Kind = Attr.getKindAsString();
848 StringRef Val = Attr.getValueAsString();
850 Record.push_back(Val.empty() ? 3 : 4);
851 Record.append(Kind.begin(), Kind.end());
852 Record.push_back(0);
853 if (!Val.empty()) {
854 Record.append(Val.begin(), Val.end());
855 Record.push_back(0);
857 } else {
858 assert(Attr.isTypeAttribute());
859 Type *Ty = Attr.getValueAsType();
860 Record.push_back(Ty ? 6 : 5);
861 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
862 if (Ty)
863 Record.push_back(VE.getTypeID(Attr.getValueAsType()));
867 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
868 Record.clear();
871 Stream.ExitBlock();
874 void ModuleBitcodeWriter::writeAttributeTable() {
875 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
876 if (Attrs.empty()) return;
878 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
880 SmallVector<uint64_t, 64> Record;
881 for (const AttributeList &AL : Attrs) {
882 for (unsigned i : AL.indexes()) {
883 AttributeSet AS = AL.getAttributes(i);
884 if (AS.hasAttributes())
885 Record.push_back(VE.getAttributeGroupID({i, AS}));
888 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
889 Record.clear();
892 Stream.ExitBlock();
895 /// WriteTypeTable - Write out the type table for a module.
896 void ModuleBitcodeWriter::writeTypeTable() {
897 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
899 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
900 SmallVector<uint64_t, 64> TypeVals;
902 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
904 // Abbrev for TYPE_CODE_OPAQUE_POINTER.
905 auto Abbv = std::make_shared<BitCodeAbbrev>();
906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
907 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
908 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
910 // Abbrev for TYPE_CODE_FUNCTION.
911 Abbv = std::make_shared<BitCodeAbbrev>();
912 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
916 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
918 // Abbrev for TYPE_CODE_STRUCT_ANON.
919 Abbv = std::make_shared<BitCodeAbbrev>();
920 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
924 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
926 // Abbrev for TYPE_CODE_STRUCT_NAME.
927 Abbv = std::make_shared<BitCodeAbbrev>();
928 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
931 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
933 // Abbrev for TYPE_CODE_STRUCT_NAMED.
934 Abbv = std::make_shared<BitCodeAbbrev>();
935 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
939 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
941 // Abbrev for TYPE_CODE_ARRAY.
942 Abbv = std::make_shared<BitCodeAbbrev>();
943 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
946 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
948 // Emit an entry count so the reader can reserve space.
949 TypeVals.push_back(TypeList.size());
950 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
951 TypeVals.clear();
953 // Loop over all of the types, emitting each in turn.
954 for (Type *T : TypeList) {
955 int AbbrevToUse = 0;
956 unsigned Code = 0;
958 switch (T->getTypeID()) {
959 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
960 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
961 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break;
962 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
963 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
964 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
965 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
966 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
967 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
968 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
969 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
970 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break;
971 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
972 case Type::IntegerTyID:
973 // INTEGER: [width]
974 Code = bitc::TYPE_CODE_INTEGER;
975 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
976 break;
977 case Type::PointerTyID: {
978 PointerType *PTy = cast<PointerType>(T);
979 unsigned AddressSpace = PTy->getAddressSpace();
980 if (PTy->isOpaque()) {
981 // OPAQUE_POINTER: [address space]
982 Code = bitc::TYPE_CODE_OPAQUE_POINTER;
983 TypeVals.push_back(AddressSpace);
984 if (AddressSpace == 0)
985 AbbrevToUse = OpaquePtrAbbrev;
986 } else {
987 // POINTER: [pointee type, address space]
988 Code = bitc::TYPE_CODE_POINTER;
989 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType()));
990 TypeVals.push_back(AddressSpace);
992 break;
994 case Type::FunctionTyID: {
995 FunctionType *FT = cast<FunctionType>(T);
996 // FUNCTION: [isvararg, retty, paramty x N]
997 Code = bitc::TYPE_CODE_FUNCTION;
998 TypeVals.push_back(FT->isVarArg());
999 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1000 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1001 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1002 AbbrevToUse = FunctionAbbrev;
1003 break;
1005 case Type::StructTyID: {
1006 StructType *ST = cast<StructType>(T);
1007 // STRUCT: [ispacked, eltty x N]
1008 TypeVals.push_back(ST->isPacked());
1009 // Output all of the element types.
1010 for (Type *ET : ST->elements())
1011 TypeVals.push_back(VE.getTypeID(ET));
1013 if (ST->isLiteral()) {
1014 Code = bitc::TYPE_CODE_STRUCT_ANON;
1015 AbbrevToUse = StructAnonAbbrev;
1016 } else {
1017 if (ST->isOpaque()) {
1018 Code = bitc::TYPE_CODE_OPAQUE;
1019 } else {
1020 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1021 AbbrevToUse = StructNamedAbbrev;
1024 // Emit the name if it is present.
1025 if (!ST->getName().empty())
1026 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1027 StructNameAbbrev);
1029 break;
1031 case Type::ArrayTyID: {
1032 ArrayType *AT = cast<ArrayType>(T);
1033 // ARRAY: [numelts, eltty]
1034 Code = bitc::TYPE_CODE_ARRAY;
1035 TypeVals.push_back(AT->getNumElements());
1036 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1037 AbbrevToUse = ArrayAbbrev;
1038 break;
1040 case Type::FixedVectorTyID:
1041 case Type::ScalableVectorTyID: {
1042 VectorType *VT = cast<VectorType>(T);
1043 // VECTOR [numelts, eltty] or
1044 // [numelts, eltty, scalable]
1045 Code = bitc::TYPE_CODE_VECTOR;
1046 TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1047 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1048 if (isa<ScalableVectorType>(VT))
1049 TypeVals.push_back(true);
1050 break;
1052 case Type::TargetExtTyID: {
1053 TargetExtType *TET = cast<TargetExtType>(T);
1054 Code = bitc::TYPE_CODE_TARGET_TYPE;
1055 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1056 StructNameAbbrev);
1057 TypeVals.push_back(TET->getNumTypeParameters());
1058 for (Type *InnerTy : TET->type_params())
1059 TypeVals.push_back(VE.getTypeID(InnerTy));
1060 for (unsigned IntParam : TET->int_params())
1061 TypeVals.push_back(IntParam);
1062 break;
1064 case Type::TypedPointerTyID:
1065 llvm_unreachable("Typed pointers cannot be added to IR modules");
1068 // Emit the finished record.
1069 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1070 TypeVals.clear();
1073 Stream.ExitBlock();
1076 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1077 switch (Linkage) {
1078 case GlobalValue::ExternalLinkage:
1079 return 0;
1080 case GlobalValue::WeakAnyLinkage:
1081 return 16;
1082 case GlobalValue::AppendingLinkage:
1083 return 2;
1084 case GlobalValue::InternalLinkage:
1085 return 3;
1086 case GlobalValue::LinkOnceAnyLinkage:
1087 return 18;
1088 case GlobalValue::ExternalWeakLinkage:
1089 return 7;
1090 case GlobalValue::CommonLinkage:
1091 return 8;
1092 case GlobalValue::PrivateLinkage:
1093 return 9;
1094 case GlobalValue::WeakODRLinkage:
1095 return 17;
1096 case GlobalValue::LinkOnceODRLinkage:
1097 return 19;
1098 case GlobalValue::AvailableExternallyLinkage:
1099 return 12;
1101 llvm_unreachable("Invalid linkage");
1104 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1105 return getEncodedLinkage(GV.getLinkage());
1108 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1109 uint64_t RawFlags = 0;
1110 RawFlags |= Flags.ReadNone;
1111 RawFlags |= (Flags.ReadOnly << 1);
1112 RawFlags |= (Flags.NoRecurse << 2);
1113 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1114 RawFlags |= (Flags.NoInline << 4);
1115 RawFlags |= (Flags.AlwaysInline << 5);
1116 RawFlags |= (Flags.NoUnwind << 6);
1117 RawFlags |= (Flags.MayThrow << 7);
1118 RawFlags |= (Flags.HasUnknownCall << 8);
1119 RawFlags |= (Flags.MustBeUnreachable << 9);
1120 return RawFlags;
1123 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1124 // in BitcodeReader.cpp.
1125 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1126 uint64_t RawFlags = 0;
1128 RawFlags |= Flags.NotEligibleToImport; // bool
1129 RawFlags |= (Flags.Live << 1);
1130 RawFlags |= (Flags.DSOLocal << 2);
1131 RawFlags |= (Flags.CanAutoHide << 3);
1133 // Linkage don't need to be remapped at that time for the summary. Any future
1134 // change to the getEncodedLinkage() function will need to be taken into
1135 // account here as well.
1136 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1138 RawFlags |= (Flags.Visibility << 8); // 2 bits
1140 return RawFlags;
1143 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1144 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1145 (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1146 return RawFlags;
1149 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1150 switch (GV.getVisibility()) {
1151 case GlobalValue::DefaultVisibility: return 0;
1152 case GlobalValue::HiddenVisibility: return 1;
1153 case GlobalValue::ProtectedVisibility: return 2;
1155 llvm_unreachable("Invalid visibility");
1158 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1159 switch (GV.getDLLStorageClass()) {
1160 case GlobalValue::DefaultStorageClass: return 0;
1161 case GlobalValue::DLLImportStorageClass: return 1;
1162 case GlobalValue::DLLExportStorageClass: return 2;
1164 llvm_unreachable("Invalid DLL storage class");
1167 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1168 switch (GV.getThreadLocalMode()) {
1169 case GlobalVariable::NotThreadLocal: return 0;
1170 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1171 case GlobalVariable::LocalDynamicTLSModel: return 2;
1172 case GlobalVariable::InitialExecTLSModel: return 3;
1173 case GlobalVariable::LocalExecTLSModel: return 4;
1175 llvm_unreachable("Invalid TLS model");
1178 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1179 switch (C.getSelectionKind()) {
1180 case Comdat::Any:
1181 return bitc::COMDAT_SELECTION_KIND_ANY;
1182 case Comdat::ExactMatch:
1183 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1184 case Comdat::Largest:
1185 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1186 case Comdat::NoDeduplicate:
1187 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1188 case Comdat::SameSize:
1189 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1191 llvm_unreachable("Invalid selection kind");
1194 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1195 switch (GV.getUnnamedAddr()) {
1196 case GlobalValue::UnnamedAddr::None: return 0;
1197 case GlobalValue::UnnamedAddr::Local: return 2;
1198 case GlobalValue::UnnamedAddr::Global: return 1;
1200 llvm_unreachable("Invalid unnamed_addr");
1203 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1204 if (GenerateHash)
1205 Hasher.update(Str);
1206 return StrtabBuilder.add(Str);
1209 void ModuleBitcodeWriter::writeComdats() {
1210 SmallVector<unsigned, 64> Vals;
1211 for (const Comdat *C : VE.getComdats()) {
1212 // COMDAT: [strtab offset, strtab size, selection_kind]
1213 Vals.push_back(addToStrtab(C->getName()));
1214 Vals.push_back(C->getName().size());
1215 Vals.push_back(getEncodedComdatSelectionKind(*C));
1216 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1217 Vals.clear();
1221 /// Write a record that will eventually hold the word offset of the
1222 /// module-level VST. For now the offset is 0, which will be backpatched
1223 /// after the real VST is written. Saves the bit offset to backpatch.
1224 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1225 // Write a placeholder value in for the offset of the real VST,
1226 // which is written after the function blocks so that it can include
1227 // the offset of each function. The placeholder offset will be
1228 // updated when the real VST is written.
1229 auto Abbv = std::make_shared<BitCodeAbbrev>();
1230 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1231 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1232 // hold the real VST offset. Must use fixed instead of VBR as we don't
1233 // know how many VBR chunks to reserve ahead of time.
1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1235 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1237 // Emit the placeholder
1238 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1239 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1241 // Compute and save the bit offset to the placeholder, which will be
1242 // patched when the real VST is written. We can simply subtract the 32-bit
1243 // fixed size from the current bit number to get the location to backpatch.
1244 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1247 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1249 /// Determine the encoding to use for the given string name and length.
1250 static StringEncoding getStringEncoding(StringRef Str) {
1251 bool isChar6 = true;
1252 for (char C : Str) {
1253 if (isChar6)
1254 isChar6 = BitCodeAbbrevOp::isChar6(C);
1255 if ((unsigned char)C & 128)
1256 // don't bother scanning the rest.
1257 return SE_Fixed8;
1259 if (isChar6)
1260 return SE_Char6;
1261 return SE_Fixed7;
1264 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1265 "Sanitizer Metadata is too large for naive serialization.");
1266 static unsigned
1267 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1268 return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1269 (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1272 /// Emit top-level description of module, including target triple, inline asm,
1273 /// descriptors for global variables, and function prototype info.
1274 /// Returns the bit offset to backpatch with the location of the real VST.
1275 void ModuleBitcodeWriter::writeModuleInfo() {
1276 // Emit various pieces of data attached to a module.
1277 if (!M.getTargetTriple().empty())
1278 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1279 0 /*TODO*/);
1280 const std::string &DL = M.getDataLayoutStr();
1281 if (!DL.empty())
1282 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1283 if (!M.getModuleInlineAsm().empty())
1284 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1285 0 /*TODO*/);
1287 // Emit information about sections and GC, computing how many there are. Also
1288 // compute the maximum alignment value.
1289 std::map<std::string, unsigned> SectionMap;
1290 std::map<std::string, unsigned> GCMap;
1291 MaybeAlign MaxAlignment;
1292 unsigned MaxGlobalType = 0;
1293 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1294 if (A)
1295 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1297 for (const GlobalVariable &GV : M.globals()) {
1298 UpdateMaxAlignment(GV.getAlign());
1299 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1300 if (GV.hasSection()) {
1301 // Give section names unique ID's.
1302 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1303 if (!Entry) {
1304 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1305 0 /*TODO*/);
1306 Entry = SectionMap.size();
1310 for (const Function &F : M) {
1311 UpdateMaxAlignment(F.getAlign());
1312 if (F.hasSection()) {
1313 // Give section names unique ID's.
1314 unsigned &Entry = SectionMap[std::string(F.getSection())];
1315 if (!Entry) {
1316 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1317 0 /*TODO*/);
1318 Entry = SectionMap.size();
1321 if (F.hasGC()) {
1322 // Same for GC names.
1323 unsigned &Entry = GCMap[F.getGC()];
1324 if (!Entry) {
1325 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1326 0 /*TODO*/);
1327 Entry = GCMap.size();
1332 // Emit abbrev for globals, now that we know # sections and max alignment.
1333 unsigned SimpleGVarAbbrev = 0;
1334 if (!M.global_empty()) {
1335 // Add an abbrev for common globals with no visibility or thread localness.
1336 auto Abbv = std::make_shared<BitCodeAbbrev>();
1337 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1341 Log2_32_Ceil(MaxGlobalType+1)));
1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1343 //| explicitType << 1
1344 //| constant
1345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1347 if (!MaxAlignment) // Alignment.
1348 Abbv->Add(BitCodeAbbrevOp(0));
1349 else {
1350 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1352 Log2_32_Ceil(MaxEncAlignment+1)));
1354 if (SectionMap.empty()) // Section.
1355 Abbv->Add(BitCodeAbbrevOp(0));
1356 else
1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1358 Log2_32_Ceil(SectionMap.size()+1)));
1359 // Don't bother emitting vis + thread local.
1360 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1363 SmallVector<unsigned, 64> Vals;
1364 // Emit the module's source file name.
1366 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1367 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1368 if (Bits == SE_Char6)
1369 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1370 else if (Bits == SE_Fixed7)
1371 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1373 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1374 auto Abbv = std::make_shared<BitCodeAbbrev>();
1375 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1377 Abbv->Add(AbbrevOpToUse);
1378 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1380 for (const auto P : M.getSourceFileName())
1381 Vals.push_back((unsigned char)P);
1383 // Emit the finished record.
1384 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1385 Vals.clear();
1388 // Emit the global variable information.
1389 for (const GlobalVariable &GV : M.globals()) {
1390 unsigned AbbrevToUse = 0;
1392 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1393 // linkage, alignment, section, visibility, threadlocal,
1394 // unnamed_addr, externally_initialized, dllstorageclass,
1395 // comdat, attributes, DSO_Local, GlobalSanitizer]
1396 Vals.push_back(addToStrtab(GV.getName()));
1397 Vals.push_back(GV.getName().size());
1398 Vals.push_back(VE.getTypeID(GV.getValueType()));
1399 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1400 Vals.push_back(GV.isDeclaration() ? 0 :
1401 (VE.getValueID(GV.getInitializer()) + 1));
1402 Vals.push_back(getEncodedLinkage(GV));
1403 Vals.push_back(getEncodedAlign(GV.getAlign()));
1404 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1405 : 0);
1406 if (GV.isThreadLocal() ||
1407 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1408 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1409 GV.isExternallyInitialized() ||
1410 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1411 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1412 GV.hasPartition() || GV.hasSanitizerMetadata()) {
1413 Vals.push_back(getEncodedVisibility(GV));
1414 Vals.push_back(getEncodedThreadLocalMode(GV));
1415 Vals.push_back(getEncodedUnnamedAddr(GV));
1416 Vals.push_back(GV.isExternallyInitialized());
1417 Vals.push_back(getEncodedDLLStorageClass(GV));
1418 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1420 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1421 Vals.push_back(VE.getAttributeListID(AL));
1423 Vals.push_back(GV.isDSOLocal());
1424 Vals.push_back(addToStrtab(GV.getPartition()));
1425 Vals.push_back(GV.getPartition().size());
1427 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1428 GV.getSanitizerMetadata())
1429 : 0));
1430 } else {
1431 AbbrevToUse = SimpleGVarAbbrev;
1434 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1435 Vals.clear();
1438 // Emit the function proto information.
1439 for (const Function &F : M) {
1440 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1441 // linkage, paramattrs, alignment, section, visibility, gc,
1442 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1443 // prefixdata, personalityfn, DSO_Local, addrspace]
1444 Vals.push_back(addToStrtab(F.getName()));
1445 Vals.push_back(F.getName().size());
1446 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1447 Vals.push_back(F.getCallingConv());
1448 Vals.push_back(F.isDeclaration());
1449 Vals.push_back(getEncodedLinkage(F));
1450 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1451 Vals.push_back(getEncodedAlign(F.getAlign()));
1452 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1453 : 0);
1454 Vals.push_back(getEncodedVisibility(F));
1455 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1456 Vals.push_back(getEncodedUnnamedAddr(F));
1457 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1458 : 0);
1459 Vals.push_back(getEncodedDLLStorageClass(F));
1460 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1461 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1462 : 0);
1463 Vals.push_back(
1464 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1466 Vals.push_back(F.isDSOLocal());
1467 Vals.push_back(F.getAddressSpace());
1468 Vals.push_back(addToStrtab(F.getPartition()));
1469 Vals.push_back(F.getPartition().size());
1471 unsigned AbbrevToUse = 0;
1472 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1473 Vals.clear();
1476 // Emit the alias information.
1477 for (const GlobalAlias &A : M.aliases()) {
1478 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1479 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1480 // DSO_Local]
1481 Vals.push_back(addToStrtab(A.getName()));
1482 Vals.push_back(A.getName().size());
1483 Vals.push_back(VE.getTypeID(A.getValueType()));
1484 Vals.push_back(A.getType()->getAddressSpace());
1485 Vals.push_back(VE.getValueID(A.getAliasee()));
1486 Vals.push_back(getEncodedLinkage(A));
1487 Vals.push_back(getEncodedVisibility(A));
1488 Vals.push_back(getEncodedDLLStorageClass(A));
1489 Vals.push_back(getEncodedThreadLocalMode(A));
1490 Vals.push_back(getEncodedUnnamedAddr(A));
1491 Vals.push_back(A.isDSOLocal());
1492 Vals.push_back(addToStrtab(A.getPartition()));
1493 Vals.push_back(A.getPartition().size());
1495 unsigned AbbrevToUse = 0;
1496 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1497 Vals.clear();
1500 // Emit the ifunc information.
1501 for (const GlobalIFunc &I : M.ifuncs()) {
1502 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1503 // val#, linkage, visibility, DSO_Local]
1504 Vals.push_back(addToStrtab(I.getName()));
1505 Vals.push_back(I.getName().size());
1506 Vals.push_back(VE.getTypeID(I.getValueType()));
1507 Vals.push_back(I.getType()->getAddressSpace());
1508 Vals.push_back(VE.getValueID(I.getResolver()));
1509 Vals.push_back(getEncodedLinkage(I));
1510 Vals.push_back(getEncodedVisibility(I));
1511 Vals.push_back(I.isDSOLocal());
1512 Vals.push_back(addToStrtab(I.getPartition()));
1513 Vals.push_back(I.getPartition().size());
1514 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1515 Vals.clear();
1518 writeValueSymbolTableForwardDecl();
1521 static uint64_t getOptimizationFlags(const Value *V) {
1522 uint64_t Flags = 0;
1524 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1525 if (OBO->hasNoSignedWrap())
1526 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1527 if (OBO->hasNoUnsignedWrap())
1528 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1529 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1530 if (PEO->isExact())
1531 Flags |= 1 << bitc::PEO_EXACT;
1532 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1533 if (FPMO->hasAllowReassoc())
1534 Flags |= bitc::AllowReassoc;
1535 if (FPMO->hasNoNaNs())
1536 Flags |= bitc::NoNaNs;
1537 if (FPMO->hasNoInfs())
1538 Flags |= bitc::NoInfs;
1539 if (FPMO->hasNoSignedZeros())
1540 Flags |= bitc::NoSignedZeros;
1541 if (FPMO->hasAllowReciprocal())
1542 Flags |= bitc::AllowReciprocal;
1543 if (FPMO->hasAllowContract())
1544 Flags |= bitc::AllowContract;
1545 if (FPMO->hasApproxFunc())
1546 Flags |= bitc::ApproxFunc;
1549 return Flags;
1552 void ModuleBitcodeWriter::writeValueAsMetadata(
1553 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1554 // Mimic an MDNode with a value as one operand.
1555 Value *V = MD->getValue();
1556 Record.push_back(VE.getTypeID(V->getType()));
1557 Record.push_back(VE.getValueID(V));
1558 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1559 Record.clear();
1562 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1563 SmallVectorImpl<uint64_t> &Record,
1564 unsigned Abbrev) {
1565 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1566 Metadata *MD = N->getOperand(i);
1567 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1568 "Unexpected function-local metadata");
1569 Record.push_back(VE.getMetadataOrNullID(MD));
1571 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1572 : bitc::METADATA_NODE,
1573 Record, Abbrev);
1574 Record.clear();
1577 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1578 // Assume the column is usually under 128, and always output the inlined-at
1579 // location (it's never more expensive than building an array size 1).
1580 auto Abbv = std::make_shared<BitCodeAbbrev>();
1581 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1588 return Stream.EmitAbbrev(std::move(Abbv));
1591 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1592 SmallVectorImpl<uint64_t> &Record,
1593 unsigned &Abbrev) {
1594 if (!Abbrev)
1595 Abbrev = createDILocationAbbrev();
1597 Record.push_back(N->isDistinct());
1598 Record.push_back(N->getLine());
1599 Record.push_back(N->getColumn());
1600 Record.push_back(VE.getMetadataID(N->getScope()));
1601 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1602 Record.push_back(N->isImplicitCode());
1604 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1605 Record.clear();
1608 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1609 // Assume the column is usually under 128, and always output the inlined-at
1610 // location (it's never more expensive than building an array size 1).
1611 auto Abbv = std::make_shared<BitCodeAbbrev>();
1612 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1619 return Stream.EmitAbbrev(std::move(Abbv));
1622 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1623 SmallVectorImpl<uint64_t> &Record,
1624 unsigned &Abbrev) {
1625 if (!Abbrev)
1626 Abbrev = createGenericDINodeAbbrev();
1628 Record.push_back(N->isDistinct());
1629 Record.push_back(N->getTag());
1630 Record.push_back(0); // Per-tag version field; unused for now.
1632 for (auto &I : N->operands())
1633 Record.push_back(VE.getMetadataOrNullID(I));
1635 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1636 Record.clear();
1639 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1640 SmallVectorImpl<uint64_t> &Record,
1641 unsigned Abbrev) {
1642 const uint64_t Version = 2 << 1;
1643 Record.push_back((uint64_t)N->isDistinct() | Version);
1644 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1645 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1646 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1647 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1649 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1650 Record.clear();
1653 void ModuleBitcodeWriter::writeDIGenericSubrange(
1654 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1655 unsigned Abbrev) {
1656 Record.push_back((uint64_t)N->isDistinct());
1657 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1658 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1659 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1660 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1662 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1663 Record.clear();
1666 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1667 if ((int64_t)V >= 0)
1668 Vals.push_back(V << 1);
1669 else
1670 Vals.push_back((-V << 1) | 1);
1673 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1674 // We have an arbitrary precision integer value to write whose
1675 // bit width is > 64. However, in canonical unsigned integer
1676 // format it is likely that the high bits are going to be zero.
1677 // So, we only write the number of active words.
1678 unsigned NumWords = A.getActiveWords();
1679 const uint64_t *RawData = A.getRawData();
1680 for (unsigned i = 0; i < NumWords; i++)
1681 emitSignedInt64(Vals, RawData[i]);
1684 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1685 SmallVectorImpl<uint64_t> &Record,
1686 unsigned Abbrev) {
1687 const uint64_t IsBigInt = 1 << 2;
1688 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1689 Record.push_back(N->getValue().getBitWidth());
1690 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1691 emitWideAPInt(Record, N->getValue());
1693 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1694 Record.clear();
1697 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1698 SmallVectorImpl<uint64_t> &Record,
1699 unsigned Abbrev) {
1700 Record.push_back(N->isDistinct());
1701 Record.push_back(N->getTag());
1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1703 Record.push_back(N->getSizeInBits());
1704 Record.push_back(N->getAlignInBits());
1705 Record.push_back(N->getEncoding());
1706 Record.push_back(N->getFlags());
1708 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1709 Record.clear();
1712 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1713 SmallVectorImpl<uint64_t> &Record,
1714 unsigned Abbrev) {
1715 Record.push_back(N->isDistinct());
1716 Record.push_back(N->getTag());
1717 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1718 Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1719 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1720 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1721 Record.push_back(N->getSizeInBits());
1722 Record.push_back(N->getAlignInBits());
1723 Record.push_back(N->getEncoding());
1725 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1726 Record.clear();
1729 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1730 SmallVectorImpl<uint64_t> &Record,
1731 unsigned Abbrev) {
1732 Record.push_back(N->isDistinct());
1733 Record.push_back(N->getTag());
1734 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1735 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1736 Record.push_back(N->getLine());
1737 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1738 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1739 Record.push_back(N->getSizeInBits());
1740 Record.push_back(N->getAlignInBits());
1741 Record.push_back(N->getOffsetInBits());
1742 Record.push_back(N->getFlags());
1743 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1745 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1746 // that there is no DWARF address space associated with DIDerivedType.
1747 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1748 Record.push_back(*DWARFAddressSpace + 1);
1749 else
1750 Record.push_back(0);
1752 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1754 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1755 Record.clear();
1758 void ModuleBitcodeWriter::writeDICompositeType(
1759 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1760 unsigned Abbrev) {
1761 const unsigned IsNotUsedInOldTypeRef = 0x2;
1762 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1763 Record.push_back(N->getTag());
1764 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1765 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1766 Record.push_back(N->getLine());
1767 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1768 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1769 Record.push_back(N->getSizeInBits());
1770 Record.push_back(N->getAlignInBits());
1771 Record.push_back(N->getOffsetInBits());
1772 Record.push_back(N->getFlags());
1773 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1774 Record.push_back(N->getRuntimeLang());
1775 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1776 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1777 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1778 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1779 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1780 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1781 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1782 Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1783 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1785 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1786 Record.clear();
1789 void ModuleBitcodeWriter::writeDISubroutineType(
1790 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1791 unsigned Abbrev) {
1792 const unsigned HasNoOldTypeRefs = 0x2;
1793 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1794 Record.push_back(N->getFlags());
1795 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1796 Record.push_back(N->getCC());
1798 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1799 Record.clear();
1802 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1803 SmallVectorImpl<uint64_t> &Record,
1804 unsigned Abbrev) {
1805 Record.push_back(N->isDistinct());
1806 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1807 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1808 if (N->getRawChecksum()) {
1809 Record.push_back(N->getRawChecksum()->Kind);
1810 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1811 } else {
1812 // Maintain backwards compatibility with the old internal representation of
1813 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1814 Record.push_back(0);
1815 Record.push_back(VE.getMetadataOrNullID(nullptr));
1817 auto Source = N->getRawSource();
1818 if (Source)
1819 Record.push_back(VE.getMetadataOrNullID(Source));
1821 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1822 Record.clear();
1825 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1826 SmallVectorImpl<uint64_t> &Record,
1827 unsigned Abbrev) {
1828 assert(N->isDistinct() && "Expected distinct compile units");
1829 Record.push_back(/* IsDistinct */ true);
1830 Record.push_back(N->getSourceLanguage());
1831 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1832 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1833 Record.push_back(N->isOptimized());
1834 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1835 Record.push_back(N->getRuntimeVersion());
1836 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1837 Record.push_back(N->getEmissionKind());
1838 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1839 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1840 Record.push_back(/* subprograms */ 0);
1841 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1842 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1843 Record.push_back(N->getDWOId());
1844 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1845 Record.push_back(N->getSplitDebugInlining());
1846 Record.push_back(N->getDebugInfoForProfiling());
1847 Record.push_back((unsigned)N->getNameTableKind());
1848 Record.push_back(N->getRangesBaseAddress());
1849 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1850 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1852 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1853 Record.clear();
1856 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1857 SmallVectorImpl<uint64_t> &Record,
1858 unsigned Abbrev) {
1859 const uint64_t HasUnitFlag = 1 << 1;
1860 const uint64_t HasSPFlagsFlag = 1 << 2;
1861 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1862 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1864 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1865 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1866 Record.push_back(N->getLine());
1867 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1868 Record.push_back(N->getScopeLine());
1869 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1870 Record.push_back(N->getSPFlags());
1871 Record.push_back(N->getVirtualIndex());
1872 Record.push_back(N->getFlags());
1873 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1874 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1875 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1876 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1877 Record.push_back(N->getThisAdjustment());
1878 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1879 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1880 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
1882 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1883 Record.clear();
1886 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1887 SmallVectorImpl<uint64_t> &Record,
1888 unsigned Abbrev) {
1889 Record.push_back(N->isDistinct());
1890 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1891 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1892 Record.push_back(N->getLine());
1893 Record.push_back(N->getColumn());
1895 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1896 Record.clear();
1899 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1900 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1901 unsigned Abbrev) {
1902 Record.push_back(N->isDistinct());
1903 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1904 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1905 Record.push_back(N->getDiscriminator());
1907 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1908 Record.clear();
1911 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1912 SmallVectorImpl<uint64_t> &Record,
1913 unsigned Abbrev) {
1914 Record.push_back(N->isDistinct());
1915 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1916 Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1917 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1918 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1919 Record.push_back(N->getLineNo());
1921 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1922 Record.clear();
1925 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1926 SmallVectorImpl<uint64_t> &Record,
1927 unsigned Abbrev) {
1928 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1929 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1932 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1933 Record.clear();
1936 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1937 SmallVectorImpl<uint64_t> &Record,
1938 unsigned Abbrev) {
1939 Record.push_back(N->isDistinct());
1940 Record.push_back(N->getMacinfoType());
1941 Record.push_back(N->getLine());
1942 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1943 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1945 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1946 Record.clear();
1949 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1950 SmallVectorImpl<uint64_t> &Record,
1951 unsigned Abbrev) {
1952 Record.push_back(N->isDistinct());
1953 Record.push_back(N->getMacinfoType());
1954 Record.push_back(N->getLine());
1955 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1956 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1958 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1959 Record.clear();
1962 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
1963 SmallVectorImpl<uint64_t> &Record,
1964 unsigned Abbrev) {
1965 Record.reserve(N->getArgs().size());
1966 for (ValueAsMetadata *MD : N->getArgs())
1967 Record.push_back(VE.getMetadataID(MD));
1969 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev);
1970 Record.clear();
1973 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1974 SmallVectorImpl<uint64_t> &Record,
1975 unsigned Abbrev) {
1976 Record.push_back(N->isDistinct());
1977 for (auto &I : N->operands())
1978 Record.push_back(VE.getMetadataOrNullID(I));
1979 Record.push_back(N->getLineNo());
1980 Record.push_back(N->getIsDecl());
1982 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1983 Record.clear();
1986 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
1987 SmallVectorImpl<uint64_t> &Record,
1988 unsigned Abbrev) {
1989 // There are no arguments for this metadata type.
1990 Record.push_back(N->isDistinct());
1991 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
1992 Record.clear();
1995 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1996 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1997 unsigned Abbrev) {
1998 Record.push_back(N->isDistinct());
1999 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2000 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2001 Record.push_back(N->isDefault());
2003 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2004 Record.clear();
2007 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2008 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2009 unsigned Abbrev) {
2010 Record.push_back(N->isDistinct());
2011 Record.push_back(N->getTag());
2012 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2013 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2014 Record.push_back(N->isDefault());
2015 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2017 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2018 Record.clear();
2021 void ModuleBitcodeWriter::writeDIGlobalVariable(
2022 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2023 unsigned Abbrev) {
2024 const uint64_t Version = 2 << 1;
2025 Record.push_back((uint64_t)N->isDistinct() | Version);
2026 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2027 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2028 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2029 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2030 Record.push_back(N->getLine());
2031 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2032 Record.push_back(N->isLocalToUnit());
2033 Record.push_back(N->isDefinition());
2034 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2035 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2036 Record.push_back(N->getAlignInBits());
2037 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2039 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2040 Record.clear();
2043 void ModuleBitcodeWriter::writeDILocalVariable(
2044 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2045 unsigned Abbrev) {
2046 // In order to support all possible bitcode formats in BitcodeReader we need
2047 // to distinguish the following cases:
2048 // 1) Record has no artificial tag (Record[1]),
2049 // has no obsolete inlinedAt field (Record[9]).
2050 // In this case Record size will be 8, HasAlignment flag is false.
2051 // 2) Record has artificial tag (Record[1]),
2052 // has no obsolete inlignedAt field (Record[9]).
2053 // In this case Record size will be 9, HasAlignment flag is false.
2054 // 3) Record has both artificial tag (Record[1]) and
2055 // obsolete inlignedAt field (Record[9]).
2056 // In this case Record size will be 10, HasAlignment flag is false.
2057 // 4) Record has neither artificial tag, nor inlignedAt field, but
2058 // HasAlignment flag is true and Record[8] contains alignment value.
2059 const uint64_t HasAlignmentFlag = 1 << 1;
2060 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2061 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2062 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2063 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2064 Record.push_back(N->getLine());
2065 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2066 Record.push_back(N->getArg());
2067 Record.push_back(N->getFlags());
2068 Record.push_back(N->getAlignInBits());
2069 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2071 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2072 Record.clear();
2075 void ModuleBitcodeWriter::writeDILabel(
2076 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2077 unsigned Abbrev) {
2078 Record.push_back((uint64_t)N->isDistinct());
2079 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2080 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2081 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2082 Record.push_back(N->getLine());
2084 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2085 Record.clear();
2088 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2089 SmallVectorImpl<uint64_t> &Record,
2090 unsigned Abbrev) {
2091 Record.reserve(N->getElements().size() + 1);
2092 const uint64_t Version = 3 << 1;
2093 Record.push_back((uint64_t)N->isDistinct() | Version);
2094 Record.append(N->elements_begin(), N->elements_end());
2096 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2097 Record.clear();
2100 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2101 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2102 unsigned Abbrev) {
2103 Record.push_back(N->isDistinct());
2104 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2105 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2107 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2108 Record.clear();
2111 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2112 SmallVectorImpl<uint64_t> &Record,
2113 unsigned Abbrev) {
2114 Record.push_back(N->isDistinct());
2115 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2116 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2117 Record.push_back(N->getLine());
2118 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2119 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2120 Record.push_back(N->getAttributes());
2121 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2123 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2124 Record.clear();
2127 void ModuleBitcodeWriter::writeDIImportedEntity(
2128 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2129 unsigned Abbrev) {
2130 Record.push_back(N->isDistinct());
2131 Record.push_back(N->getTag());
2132 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2133 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2134 Record.push_back(N->getLine());
2135 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2136 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2137 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2139 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2140 Record.clear();
2143 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2144 auto Abbv = std::make_shared<BitCodeAbbrev>();
2145 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2148 return Stream.EmitAbbrev(std::move(Abbv));
2151 void ModuleBitcodeWriter::writeNamedMetadata(
2152 SmallVectorImpl<uint64_t> &Record) {
2153 if (M.named_metadata_empty())
2154 return;
2156 unsigned Abbrev = createNamedMetadataAbbrev();
2157 for (const NamedMDNode &NMD : M.named_metadata()) {
2158 // Write name.
2159 StringRef Str = NMD.getName();
2160 Record.append(Str.bytes_begin(), Str.bytes_end());
2161 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2162 Record.clear();
2164 // Write named metadata operands.
2165 for (const MDNode *N : NMD.operands())
2166 Record.push_back(VE.getMetadataID(N));
2167 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2168 Record.clear();
2172 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2173 auto Abbv = std::make_shared<BitCodeAbbrev>();
2174 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2178 return Stream.EmitAbbrev(std::move(Abbv));
2181 /// Write out a record for MDString.
2183 /// All the metadata strings in a metadata block are emitted in a single
2184 /// record. The sizes and strings themselves are shoved into a blob.
2185 void ModuleBitcodeWriter::writeMetadataStrings(
2186 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2187 if (Strings.empty())
2188 return;
2190 // Start the record with the number of strings.
2191 Record.push_back(bitc::METADATA_STRINGS);
2192 Record.push_back(Strings.size());
2194 // Emit the sizes of the strings in the blob.
2195 SmallString<256> Blob;
2197 BitstreamWriter W(Blob);
2198 for (const Metadata *MD : Strings)
2199 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2200 W.FlushToWord();
2203 // Add the offset to the strings to the record.
2204 Record.push_back(Blob.size());
2206 // Add the strings to the blob.
2207 for (const Metadata *MD : Strings)
2208 Blob.append(cast<MDString>(MD)->getString());
2210 // Emit the final record.
2211 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2212 Record.clear();
2215 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2216 enum MetadataAbbrev : unsigned {
2217 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2218 #include "llvm/IR/Metadata.def"
2219 LastPlusOne
2222 void ModuleBitcodeWriter::writeMetadataRecords(
2223 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2224 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2225 if (MDs.empty())
2226 return;
2228 // Initialize MDNode abbreviations.
2229 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2230 #include "llvm/IR/Metadata.def"
2232 for (const Metadata *MD : MDs) {
2233 if (IndexPos)
2234 IndexPos->push_back(Stream.GetCurrentBitNo());
2235 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2236 assert(N->isResolved() && "Expected forward references to be resolved");
2238 switch (N->getMetadataID()) {
2239 default:
2240 llvm_unreachable("Invalid MDNode subclass");
2241 #define HANDLE_MDNODE_LEAF(CLASS) \
2242 case Metadata::CLASS##Kind: \
2243 if (MDAbbrevs) \
2244 write##CLASS(cast<CLASS>(N), Record, \
2245 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2246 else \
2247 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2248 continue;
2249 #include "llvm/IR/Metadata.def"
2252 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2256 void ModuleBitcodeWriter::writeModuleMetadata() {
2257 if (!VE.hasMDs() && M.named_metadata_empty())
2258 return;
2260 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2261 SmallVector<uint64_t, 64> Record;
2263 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2264 // block and load any metadata.
2265 std::vector<unsigned> MDAbbrevs;
2267 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2268 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2269 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2270 createGenericDINodeAbbrev();
2272 auto Abbv = std::make_shared<BitCodeAbbrev>();
2273 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2276 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2278 Abbv = std::make_shared<BitCodeAbbrev>();
2279 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2282 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2284 // Emit MDStrings together upfront.
2285 writeMetadataStrings(VE.getMDStrings(), Record);
2287 // We only emit an index for the metadata record if we have more than a given
2288 // (naive) threshold of metadatas, otherwise it is not worth it.
2289 if (VE.getNonMDStrings().size() > IndexThreshold) {
2290 // Write a placeholder value in for the offset of the metadata index,
2291 // which is written after the records, so that it can include
2292 // the offset of each entry. The placeholder offset will be
2293 // updated after all records are emitted.
2294 uint64_t Vals[] = {0, 0};
2295 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2298 // Compute and save the bit offset to the current position, which will be
2299 // patched when we emit the index later. We can simply subtract the 64-bit
2300 // fixed size from the current bit number to get the location to backpatch.
2301 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2303 // This index will contain the bitpos for each individual record.
2304 std::vector<uint64_t> IndexPos;
2305 IndexPos.reserve(VE.getNonMDStrings().size());
2307 // Write all the records
2308 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2310 if (VE.getNonMDStrings().size() > IndexThreshold) {
2311 // Now that we have emitted all the records we will emit the index. But
2312 // first
2313 // backpatch the forward reference so that the reader can skip the records
2314 // efficiently.
2315 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2316 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2318 // Delta encode the index.
2319 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2320 for (auto &Elt : IndexPos) {
2321 auto EltDelta = Elt - PreviousValue;
2322 PreviousValue = Elt;
2323 Elt = EltDelta;
2325 // Emit the index record.
2326 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2327 IndexPos.clear();
2330 // Write the named metadata now.
2331 writeNamedMetadata(Record);
2333 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2334 SmallVector<uint64_t, 4> Record;
2335 Record.push_back(VE.getValueID(&GO));
2336 pushGlobalMetadataAttachment(Record, GO);
2337 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2339 for (const Function &F : M)
2340 if (F.isDeclaration() && F.hasMetadata())
2341 AddDeclAttachedMetadata(F);
2342 // FIXME: Only store metadata for declarations here, and move data for global
2343 // variable definitions to a separate block (PR28134).
2344 for (const GlobalVariable &GV : M.globals())
2345 if (GV.hasMetadata())
2346 AddDeclAttachedMetadata(GV);
2348 Stream.ExitBlock();
2351 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2352 if (!VE.hasMDs())
2353 return;
2355 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2356 SmallVector<uint64_t, 64> Record;
2357 writeMetadataStrings(VE.getMDStrings(), Record);
2358 writeMetadataRecords(VE.getNonMDStrings(), Record);
2359 Stream.ExitBlock();
2362 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2363 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2364 // [n x [id, mdnode]]
2365 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2366 GO.getAllMetadata(MDs);
2367 for (const auto &I : MDs) {
2368 Record.push_back(I.first);
2369 Record.push_back(VE.getMetadataID(I.second));
2373 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2374 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2376 SmallVector<uint64_t, 64> Record;
2378 if (F.hasMetadata()) {
2379 pushGlobalMetadataAttachment(Record, F);
2380 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2381 Record.clear();
2384 // Write metadata attachments
2385 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2386 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2387 for (const BasicBlock &BB : F)
2388 for (const Instruction &I : BB) {
2389 MDs.clear();
2390 I.getAllMetadataOtherThanDebugLoc(MDs);
2392 // If no metadata, ignore instruction.
2393 if (MDs.empty()) continue;
2395 Record.push_back(VE.getInstructionID(&I));
2397 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2398 Record.push_back(MDs[i].first);
2399 Record.push_back(VE.getMetadataID(MDs[i].second));
2401 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2402 Record.clear();
2405 Stream.ExitBlock();
2408 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2409 SmallVector<uint64_t, 64> Record;
2411 // Write metadata kinds
2412 // METADATA_KIND - [n x [id, name]]
2413 SmallVector<StringRef, 8> Names;
2414 M.getMDKindNames(Names);
2416 if (Names.empty()) return;
2418 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2420 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2421 Record.push_back(MDKindID);
2422 StringRef KName = Names[MDKindID];
2423 Record.append(KName.begin(), KName.end());
2425 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2426 Record.clear();
2429 Stream.ExitBlock();
2432 void ModuleBitcodeWriter::writeOperandBundleTags() {
2433 // Write metadata kinds
2435 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2437 // OPERAND_BUNDLE_TAG - [strchr x N]
2439 SmallVector<StringRef, 8> Tags;
2440 M.getOperandBundleTags(Tags);
2442 if (Tags.empty())
2443 return;
2445 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2447 SmallVector<uint64_t, 64> Record;
2449 for (auto Tag : Tags) {
2450 Record.append(Tag.begin(), Tag.end());
2452 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2453 Record.clear();
2456 Stream.ExitBlock();
2459 void ModuleBitcodeWriter::writeSyncScopeNames() {
2460 SmallVector<StringRef, 8> SSNs;
2461 M.getContext().getSyncScopeNames(SSNs);
2462 if (SSNs.empty())
2463 return;
2465 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2467 SmallVector<uint64_t, 64> Record;
2468 for (auto SSN : SSNs) {
2469 Record.append(SSN.begin(), SSN.end());
2470 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2471 Record.clear();
2474 Stream.ExitBlock();
2477 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2478 bool isGlobal) {
2479 if (FirstVal == LastVal) return;
2481 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2483 unsigned AggregateAbbrev = 0;
2484 unsigned String8Abbrev = 0;
2485 unsigned CString7Abbrev = 0;
2486 unsigned CString6Abbrev = 0;
2487 // If this is a constant pool for the module, emit module-specific abbrevs.
2488 if (isGlobal) {
2489 // Abbrev for CST_CODE_AGGREGATE.
2490 auto Abbv = std::make_shared<BitCodeAbbrev>();
2491 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2494 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2496 // Abbrev for CST_CODE_STRING.
2497 Abbv = std::make_shared<BitCodeAbbrev>();
2498 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2501 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2502 // Abbrev for CST_CODE_CSTRING.
2503 Abbv = std::make_shared<BitCodeAbbrev>();
2504 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2507 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2508 // Abbrev for CST_CODE_CSTRING.
2509 Abbv = std::make_shared<BitCodeAbbrev>();
2510 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2513 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2516 SmallVector<uint64_t, 64> Record;
2518 const ValueEnumerator::ValueList &Vals = VE.getValues();
2519 Type *LastTy = nullptr;
2520 for (unsigned i = FirstVal; i != LastVal; ++i) {
2521 const Value *V = Vals[i].first;
2522 // If we need to switch types, do so now.
2523 if (V->getType() != LastTy) {
2524 LastTy = V->getType();
2525 Record.push_back(VE.getTypeID(LastTy));
2526 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2527 CONSTANTS_SETTYPE_ABBREV);
2528 Record.clear();
2531 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2532 Record.push_back(VE.getTypeID(IA->getFunctionType()));
2533 Record.push_back(
2534 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2535 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2537 // Add the asm string.
2538 const std::string &AsmStr = IA->getAsmString();
2539 Record.push_back(AsmStr.size());
2540 Record.append(AsmStr.begin(), AsmStr.end());
2542 // Add the constraint string.
2543 const std::string &ConstraintStr = IA->getConstraintString();
2544 Record.push_back(ConstraintStr.size());
2545 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2546 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2547 Record.clear();
2548 continue;
2550 const Constant *C = cast<Constant>(V);
2551 unsigned Code = -1U;
2552 unsigned AbbrevToUse = 0;
2553 if (C->isNullValue()) {
2554 Code = bitc::CST_CODE_NULL;
2555 } else if (isa<PoisonValue>(C)) {
2556 Code = bitc::CST_CODE_POISON;
2557 } else if (isa<UndefValue>(C)) {
2558 Code = bitc::CST_CODE_UNDEF;
2559 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2560 if (IV->getBitWidth() <= 64) {
2561 uint64_t V = IV->getSExtValue();
2562 emitSignedInt64(Record, V);
2563 Code = bitc::CST_CODE_INTEGER;
2564 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2565 } else { // Wide integers, > 64 bits in size.
2566 emitWideAPInt(Record, IV->getValue());
2567 Code = bitc::CST_CODE_WIDE_INTEGER;
2569 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2570 Code = bitc::CST_CODE_FLOAT;
2571 Type *Ty = CFP->getType();
2572 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2573 Ty->isDoubleTy()) {
2574 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2575 } else if (Ty->isX86_FP80Ty()) {
2576 // api needed to prevent premature destruction
2577 // bits are not in the same order as a normal i80 APInt, compensate.
2578 APInt api = CFP->getValueAPF().bitcastToAPInt();
2579 const uint64_t *p = api.getRawData();
2580 Record.push_back((p[1] << 48) | (p[0] >> 16));
2581 Record.push_back(p[0] & 0xffffLL);
2582 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2583 APInt api = CFP->getValueAPF().bitcastToAPInt();
2584 const uint64_t *p = api.getRawData();
2585 Record.push_back(p[0]);
2586 Record.push_back(p[1]);
2587 } else {
2588 assert(0 && "Unknown FP type!");
2590 } else if (isa<ConstantDataSequential>(C) &&
2591 cast<ConstantDataSequential>(C)->isString()) {
2592 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2593 // Emit constant strings specially.
2594 unsigned NumElts = Str->getNumElements();
2595 // If this is a null-terminated string, use the denser CSTRING encoding.
2596 if (Str->isCString()) {
2597 Code = bitc::CST_CODE_CSTRING;
2598 --NumElts; // Don't encode the null, which isn't allowed by char6.
2599 } else {
2600 Code = bitc::CST_CODE_STRING;
2601 AbbrevToUse = String8Abbrev;
2603 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2604 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2605 for (unsigned i = 0; i != NumElts; ++i) {
2606 unsigned char V = Str->getElementAsInteger(i);
2607 Record.push_back(V);
2608 isCStr7 &= (V & 128) == 0;
2609 if (isCStrChar6)
2610 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2613 if (isCStrChar6)
2614 AbbrevToUse = CString6Abbrev;
2615 else if (isCStr7)
2616 AbbrevToUse = CString7Abbrev;
2617 } else if (const ConstantDataSequential *CDS =
2618 dyn_cast<ConstantDataSequential>(C)) {
2619 Code = bitc::CST_CODE_DATA;
2620 Type *EltTy = CDS->getElementType();
2621 if (isa<IntegerType>(EltTy)) {
2622 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2623 Record.push_back(CDS->getElementAsInteger(i));
2624 } else {
2625 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2626 Record.push_back(
2627 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2629 } else if (isa<ConstantAggregate>(C)) {
2630 Code = bitc::CST_CODE_AGGREGATE;
2631 for (const Value *Op : C->operands())
2632 Record.push_back(VE.getValueID(Op));
2633 AbbrevToUse = AggregateAbbrev;
2634 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2635 switch (CE->getOpcode()) {
2636 default:
2637 if (Instruction::isCast(CE->getOpcode())) {
2638 Code = bitc::CST_CODE_CE_CAST;
2639 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2640 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2641 Record.push_back(VE.getValueID(C->getOperand(0)));
2642 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2643 } else {
2644 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2645 Code = bitc::CST_CODE_CE_BINOP;
2646 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2647 Record.push_back(VE.getValueID(C->getOperand(0)));
2648 Record.push_back(VE.getValueID(C->getOperand(1)));
2649 uint64_t Flags = getOptimizationFlags(CE);
2650 if (Flags != 0)
2651 Record.push_back(Flags);
2653 break;
2654 case Instruction::FNeg: {
2655 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2656 Code = bitc::CST_CODE_CE_UNOP;
2657 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2658 Record.push_back(VE.getValueID(C->getOperand(0)));
2659 uint64_t Flags = getOptimizationFlags(CE);
2660 if (Flags != 0)
2661 Record.push_back(Flags);
2662 break;
2664 case Instruction::GetElementPtr: {
2665 Code = bitc::CST_CODE_CE_GEP;
2666 const auto *GO = cast<GEPOperator>(C);
2667 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2668 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) {
2669 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2670 Record.push_back((*Idx << 1) | GO->isInBounds());
2671 } else if (GO->isInBounds())
2672 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2673 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2674 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2675 Record.push_back(VE.getValueID(C->getOperand(i)));
2677 break;
2679 case Instruction::ExtractElement:
2680 Code = bitc::CST_CODE_CE_EXTRACTELT;
2681 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2682 Record.push_back(VE.getValueID(C->getOperand(0)));
2683 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2684 Record.push_back(VE.getValueID(C->getOperand(1)));
2685 break;
2686 case Instruction::InsertElement:
2687 Code = bitc::CST_CODE_CE_INSERTELT;
2688 Record.push_back(VE.getValueID(C->getOperand(0)));
2689 Record.push_back(VE.getValueID(C->getOperand(1)));
2690 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2691 Record.push_back(VE.getValueID(C->getOperand(2)));
2692 break;
2693 case Instruction::ShuffleVector:
2694 // If the return type and argument types are the same, this is a
2695 // standard shufflevector instruction. If the types are different,
2696 // then the shuffle is widening or truncating the input vectors, and
2697 // the argument type must also be encoded.
2698 if (C->getType() == C->getOperand(0)->getType()) {
2699 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2700 } else {
2701 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2702 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2704 Record.push_back(VE.getValueID(C->getOperand(0)));
2705 Record.push_back(VE.getValueID(C->getOperand(1)));
2706 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2707 break;
2708 case Instruction::ICmp:
2709 case Instruction::FCmp:
2710 Code = bitc::CST_CODE_CE_CMP;
2711 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2712 Record.push_back(VE.getValueID(C->getOperand(0)));
2713 Record.push_back(VE.getValueID(C->getOperand(1)));
2714 Record.push_back(CE->getPredicate());
2715 break;
2717 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2718 Code = bitc::CST_CODE_BLOCKADDRESS;
2719 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2720 Record.push_back(VE.getValueID(BA->getFunction()));
2721 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2722 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2723 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2724 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2725 Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2726 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2727 Code = bitc::CST_CODE_NO_CFI_VALUE;
2728 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2729 Record.push_back(VE.getValueID(NC->getGlobalValue()));
2730 } else {
2731 #ifndef NDEBUG
2732 C->dump();
2733 #endif
2734 llvm_unreachable("Unknown constant!");
2736 Stream.EmitRecord(Code, Record, AbbrevToUse);
2737 Record.clear();
2740 Stream.ExitBlock();
2743 void ModuleBitcodeWriter::writeModuleConstants() {
2744 const ValueEnumerator::ValueList &Vals = VE.getValues();
2746 // Find the first constant to emit, which is the first non-globalvalue value.
2747 // We know globalvalues have been emitted by WriteModuleInfo.
2748 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2749 if (!isa<GlobalValue>(Vals[i].first)) {
2750 writeConstants(i, Vals.size(), true);
2751 return;
2756 /// pushValueAndType - The file has to encode both the value and type id for
2757 /// many values, because we need to know what type to create for forward
2758 /// references. However, most operands are not forward references, so this type
2759 /// field is not needed.
2761 /// This function adds V's value ID to Vals. If the value ID is higher than the
2762 /// instruction ID, then it is a forward reference, and it also includes the
2763 /// type ID. The value ID that is written is encoded relative to the InstID.
2764 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2765 SmallVectorImpl<unsigned> &Vals) {
2766 unsigned ValID = VE.getValueID(V);
2767 // Make encoding relative to the InstID.
2768 Vals.push_back(InstID - ValID);
2769 if (ValID >= InstID) {
2770 Vals.push_back(VE.getTypeID(V->getType()));
2771 return true;
2773 return false;
2776 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2777 unsigned InstID) {
2778 SmallVector<unsigned, 64> Record;
2779 LLVMContext &C = CS.getContext();
2781 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2782 const auto &Bundle = CS.getOperandBundleAt(i);
2783 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2785 for (auto &Input : Bundle.Inputs)
2786 pushValueAndType(Input, InstID, Record);
2788 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2789 Record.clear();
2793 /// pushValue - Like pushValueAndType, but where the type of the value is
2794 /// omitted (perhaps it was already encoded in an earlier operand).
2795 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2796 SmallVectorImpl<unsigned> &Vals) {
2797 unsigned ValID = VE.getValueID(V);
2798 Vals.push_back(InstID - ValID);
2801 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2802 SmallVectorImpl<uint64_t> &Vals) {
2803 unsigned ValID = VE.getValueID(V);
2804 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2805 emitSignedInt64(Vals, diff);
2808 /// WriteInstruction - Emit an instruction to the specified stream.
2809 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2810 unsigned InstID,
2811 SmallVectorImpl<unsigned> &Vals) {
2812 unsigned Code = 0;
2813 unsigned AbbrevToUse = 0;
2814 VE.setInstructionID(&I);
2815 switch (I.getOpcode()) {
2816 default:
2817 if (Instruction::isCast(I.getOpcode())) {
2818 Code = bitc::FUNC_CODE_INST_CAST;
2819 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2820 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2821 Vals.push_back(VE.getTypeID(I.getType()));
2822 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2823 } else {
2824 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2825 Code = bitc::FUNC_CODE_INST_BINOP;
2826 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2827 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2828 pushValue(I.getOperand(1), InstID, Vals);
2829 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2830 uint64_t Flags = getOptimizationFlags(&I);
2831 if (Flags != 0) {
2832 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2833 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2834 Vals.push_back(Flags);
2837 break;
2838 case Instruction::FNeg: {
2839 Code = bitc::FUNC_CODE_INST_UNOP;
2840 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2841 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2842 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2843 uint64_t Flags = getOptimizationFlags(&I);
2844 if (Flags != 0) {
2845 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2846 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2847 Vals.push_back(Flags);
2849 break;
2851 case Instruction::GetElementPtr: {
2852 Code = bitc::FUNC_CODE_INST_GEP;
2853 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2854 auto &GEPInst = cast<GetElementPtrInst>(I);
2855 Vals.push_back(GEPInst.isInBounds());
2856 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2857 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2858 pushValueAndType(I.getOperand(i), InstID, Vals);
2859 break;
2861 case Instruction::ExtractValue: {
2862 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2863 pushValueAndType(I.getOperand(0), InstID, Vals);
2864 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2865 Vals.append(EVI->idx_begin(), EVI->idx_end());
2866 break;
2868 case Instruction::InsertValue: {
2869 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2870 pushValueAndType(I.getOperand(0), InstID, Vals);
2871 pushValueAndType(I.getOperand(1), InstID, Vals);
2872 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2873 Vals.append(IVI->idx_begin(), IVI->idx_end());
2874 break;
2876 case Instruction::Select: {
2877 Code = bitc::FUNC_CODE_INST_VSELECT;
2878 pushValueAndType(I.getOperand(1), InstID, Vals);
2879 pushValue(I.getOperand(2), InstID, Vals);
2880 pushValueAndType(I.getOperand(0), InstID, Vals);
2881 uint64_t Flags = getOptimizationFlags(&I);
2882 if (Flags != 0)
2883 Vals.push_back(Flags);
2884 break;
2886 case Instruction::ExtractElement:
2887 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2888 pushValueAndType(I.getOperand(0), InstID, Vals);
2889 pushValueAndType(I.getOperand(1), InstID, Vals);
2890 break;
2891 case Instruction::InsertElement:
2892 Code = bitc::FUNC_CODE_INST_INSERTELT;
2893 pushValueAndType(I.getOperand(0), InstID, Vals);
2894 pushValue(I.getOperand(1), InstID, Vals);
2895 pushValueAndType(I.getOperand(2), InstID, Vals);
2896 break;
2897 case Instruction::ShuffleVector:
2898 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2899 pushValueAndType(I.getOperand(0), InstID, Vals);
2900 pushValue(I.getOperand(1), InstID, Vals);
2901 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2902 Vals);
2903 break;
2904 case Instruction::ICmp:
2905 case Instruction::FCmp: {
2906 // compare returning Int1Ty or vector of Int1Ty
2907 Code = bitc::FUNC_CODE_INST_CMP2;
2908 pushValueAndType(I.getOperand(0), InstID, Vals);
2909 pushValue(I.getOperand(1), InstID, Vals);
2910 Vals.push_back(cast<CmpInst>(I).getPredicate());
2911 uint64_t Flags = getOptimizationFlags(&I);
2912 if (Flags != 0)
2913 Vals.push_back(Flags);
2914 break;
2917 case Instruction::Ret:
2919 Code = bitc::FUNC_CODE_INST_RET;
2920 unsigned NumOperands = I.getNumOperands();
2921 if (NumOperands == 0)
2922 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2923 else if (NumOperands == 1) {
2924 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2925 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2926 } else {
2927 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2928 pushValueAndType(I.getOperand(i), InstID, Vals);
2931 break;
2932 case Instruction::Br:
2934 Code = bitc::FUNC_CODE_INST_BR;
2935 const BranchInst &II = cast<BranchInst>(I);
2936 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2937 if (II.isConditional()) {
2938 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2939 pushValue(II.getCondition(), InstID, Vals);
2942 break;
2943 case Instruction::Switch:
2945 Code = bitc::FUNC_CODE_INST_SWITCH;
2946 const SwitchInst &SI = cast<SwitchInst>(I);
2947 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2948 pushValue(SI.getCondition(), InstID, Vals);
2949 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2950 for (auto Case : SI.cases()) {
2951 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2952 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2955 break;
2956 case Instruction::IndirectBr:
2957 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2958 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2959 // Encode the address operand as relative, but not the basic blocks.
2960 pushValue(I.getOperand(0), InstID, Vals);
2961 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2962 Vals.push_back(VE.getValueID(I.getOperand(i)));
2963 break;
2965 case Instruction::Invoke: {
2966 const InvokeInst *II = cast<InvokeInst>(&I);
2967 const Value *Callee = II->getCalledOperand();
2968 FunctionType *FTy = II->getFunctionType();
2970 if (II->hasOperandBundles())
2971 writeOperandBundles(*II, InstID);
2973 Code = bitc::FUNC_CODE_INST_INVOKE;
2975 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2976 Vals.push_back(II->getCallingConv() | 1 << 13);
2977 Vals.push_back(VE.getValueID(II->getNormalDest()));
2978 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2979 Vals.push_back(VE.getTypeID(FTy));
2980 pushValueAndType(Callee, InstID, Vals);
2982 // Emit value #'s for the fixed parameters.
2983 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2984 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2986 // Emit type/value pairs for varargs params.
2987 if (FTy->isVarArg()) {
2988 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
2989 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2991 break;
2993 case Instruction::Resume:
2994 Code = bitc::FUNC_CODE_INST_RESUME;
2995 pushValueAndType(I.getOperand(0), InstID, Vals);
2996 break;
2997 case Instruction::CleanupRet: {
2998 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2999 const auto &CRI = cast<CleanupReturnInst>(I);
3000 pushValue(CRI.getCleanupPad(), InstID, Vals);
3001 if (CRI.hasUnwindDest())
3002 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3003 break;
3005 case Instruction::CatchRet: {
3006 Code = bitc::FUNC_CODE_INST_CATCHRET;
3007 const auto &CRI = cast<CatchReturnInst>(I);
3008 pushValue(CRI.getCatchPad(), InstID, Vals);
3009 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3010 break;
3012 case Instruction::CleanupPad:
3013 case Instruction::CatchPad: {
3014 const auto &FuncletPad = cast<FuncletPadInst>(I);
3015 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3016 : bitc::FUNC_CODE_INST_CLEANUPPAD;
3017 pushValue(FuncletPad.getParentPad(), InstID, Vals);
3019 unsigned NumArgOperands = FuncletPad.arg_size();
3020 Vals.push_back(NumArgOperands);
3021 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3022 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3023 break;
3025 case Instruction::CatchSwitch: {
3026 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3027 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3029 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3031 unsigned NumHandlers = CatchSwitch.getNumHandlers();
3032 Vals.push_back(NumHandlers);
3033 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3034 Vals.push_back(VE.getValueID(CatchPadBB));
3036 if (CatchSwitch.hasUnwindDest())
3037 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3038 break;
3040 case Instruction::CallBr: {
3041 const CallBrInst *CBI = cast<CallBrInst>(&I);
3042 const Value *Callee = CBI->getCalledOperand();
3043 FunctionType *FTy = CBI->getFunctionType();
3045 if (CBI->hasOperandBundles())
3046 writeOperandBundles(*CBI, InstID);
3048 Code = bitc::FUNC_CODE_INST_CALLBR;
3050 Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3052 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3053 1 << bitc::CALL_EXPLICIT_TYPE);
3055 Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3056 Vals.push_back(CBI->getNumIndirectDests());
3057 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3058 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3060 Vals.push_back(VE.getTypeID(FTy));
3061 pushValueAndType(Callee, InstID, Vals);
3063 // Emit value #'s for the fixed parameters.
3064 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3065 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3067 // Emit type/value pairs for varargs params.
3068 if (FTy->isVarArg()) {
3069 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3070 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3072 break;
3074 case Instruction::Unreachable:
3075 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3076 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3077 break;
3079 case Instruction::PHI: {
3080 const PHINode &PN = cast<PHINode>(I);
3081 Code = bitc::FUNC_CODE_INST_PHI;
3082 // With the newer instruction encoding, forward references could give
3083 // negative valued IDs. This is most common for PHIs, so we use
3084 // signed VBRs.
3085 SmallVector<uint64_t, 128> Vals64;
3086 Vals64.push_back(VE.getTypeID(PN.getType()));
3087 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3088 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3089 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3092 uint64_t Flags = getOptimizationFlags(&I);
3093 if (Flags != 0)
3094 Vals64.push_back(Flags);
3096 // Emit a Vals64 vector and exit.
3097 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3098 Vals64.clear();
3099 return;
3102 case Instruction::LandingPad: {
3103 const LandingPadInst &LP = cast<LandingPadInst>(I);
3104 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3105 Vals.push_back(VE.getTypeID(LP.getType()));
3106 Vals.push_back(LP.isCleanup());
3107 Vals.push_back(LP.getNumClauses());
3108 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3109 if (LP.isCatch(I))
3110 Vals.push_back(LandingPadInst::Catch);
3111 else
3112 Vals.push_back(LandingPadInst::Filter);
3113 pushValueAndType(LP.getClause(I), InstID, Vals);
3115 break;
3118 case Instruction::Alloca: {
3119 Code = bitc::FUNC_CODE_INST_ALLOCA;
3120 const AllocaInst &AI = cast<AllocaInst>(I);
3121 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3122 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3123 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3124 using APV = AllocaPackedValues;
3125 unsigned Record = 0;
3126 unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3127 Bitfield::set<APV::AlignLower>(
3128 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3129 Bitfield::set<APV::AlignUpper>(Record,
3130 EncodedAlign >> APV::AlignLower::Bits);
3131 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3132 Bitfield::set<APV::ExplicitType>(Record, true);
3133 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3134 Vals.push_back(Record);
3136 unsigned AS = AI.getAddressSpace();
3137 if (AS != M.getDataLayout().getAllocaAddrSpace())
3138 Vals.push_back(AS);
3139 break;
3142 case Instruction::Load:
3143 if (cast<LoadInst>(I).isAtomic()) {
3144 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3145 pushValueAndType(I.getOperand(0), InstID, Vals);
3146 } else {
3147 Code = bitc::FUNC_CODE_INST_LOAD;
3148 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3149 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3151 Vals.push_back(VE.getTypeID(I.getType()));
3152 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3153 Vals.push_back(cast<LoadInst>(I).isVolatile());
3154 if (cast<LoadInst>(I).isAtomic()) {
3155 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3156 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3158 break;
3159 case Instruction::Store:
3160 if (cast<StoreInst>(I).isAtomic())
3161 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3162 else
3163 Code = bitc::FUNC_CODE_INST_STORE;
3164 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3165 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3166 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3167 Vals.push_back(cast<StoreInst>(I).isVolatile());
3168 if (cast<StoreInst>(I).isAtomic()) {
3169 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3170 Vals.push_back(
3171 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3173 break;
3174 case Instruction::AtomicCmpXchg:
3175 Code = bitc::FUNC_CODE_INST_CMPXCHG;
3176 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3177 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3178 pushValue(I.getOperand(2), InstID, Vals); // newval.
3179 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3180 Vals.push_back(
3181 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3182 Vals.push_back(
3183 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3184 Vals.push_back(
3185 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3186 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3187 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3188 break;
3189 case Instruction::AtomicRMW:
3190 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3191 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3192 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3193 Vals.push_back(
3194 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3195 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3196 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3197 Vals.push_back(
3198 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3199 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3200 break;
3201 case Instruction::Fence:
3202 Code = bitc::FUNC_CODE_INST_FENCE;
3203 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3204 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3205 break;
3206 case Instruction::Call: {
3207 const CallInst &CI = cast<CallInst>(I);
3208 FunctionType *FTy = CI.getFunctionType();
3210 if (CI.hasOperandBundles())
3211 writeOperandBundles(CI, InstID);
3213 Code = bitc::FUNC_CODE_INST_CALL;
3215 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3217 unsigned Flags = getOptimizationFlags(&I);
3218 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3219 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3220 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3221 1 << bitc::CALL_EXPLICIT_TYPE |
3222 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3223 unsigned(Flags != 0) << bitc::CALL_FMF);
3224 if (Flags != 0)
3225 Vals.push_back(Flags);
3227 Vals.push_back(VE.getTypeID(FTy));
3228 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3230 // Emit value #'s for the fixed parameters.
3231 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3232 // Check for labels (can happen with asm labels).
3233 if (FTy->getParamType(i)->isLabelTy())
3234 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3235 else
3236 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3239 // Emit type/value pairs for varargs params.
3240 if (FTy->isVarArg()) {
3241 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3242 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3244 break;
3246 case Instruction::VAArg:
3247 Code = bitc::FUNC_CODE_INST_VAARG;
3248 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3249 pushValue(I.getOperand(0), InstID, Vals); // valist.
3250 Vals.push_back(VE.getTypeID(I.getType())); // restype.
3251 break;
3252 case Instruction::Freeze:
3253 Code = bitc::FUNC_CODE_INST_FREEZE;
3254 pushValueAndType(I.getOperand(0), InstID, Vals);
3255 break;
3258 Stream.EmitRecord(Code, Vals, AbbrevToUse);
3259 Vals.clear();
3262 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3263 /// to allow clients to efficiently find the function body.
3264 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3265 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3266 // Get the offset of the VST we are writing, and backpatch it into
3267 // the VST forward declaration record.
3268 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3269 // The BitcodeStartBit was the stream offset of the identification block.
3270 VSTOffset -= bitcodeStartBit();
3271 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3272 // Note that we add 1 here because the offset is relative to one word
3273 // before the start of the identification block, which was historically
3274 // always the start of the regular bitcode header.
3275 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3277 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3279 auto Abbv = std::make_shared<BitCodeAbbrev>();
3280 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3283 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3285 for (const Function &F : M) {
3286 uint64_t Record[2];
3288 if (F.isDeclaration())
3289 continue;
3291 Record[0] = VE.getValueID(&F);
3293 // Save the word offset of the function (from the start of the
3294 // actual bitcode written to the stream).
3295 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3296 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3297 // Note that we add 1 here because the offset is relative to one word
3298 // before the start of the identification block, which was historically
3299 // always the start of the regular bitcode header.
3300 Record[1] = BitcodeIndex / 32 + 1;
3302 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3305 Stream.ExitBlock();
3308 /// Emit names for arguments, instructions and basic blocks in a function.
3309 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3310 const ValueSymbolTable &VST) {
3311 if (VST.empty())
3312 return;
3314 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3316 // FIXME: Set up the abbrev, we know how many values there are!
3317 // FIXME: We know if the type names can use 7-bit ascii.
3318 SmallVector<uint64_t, 64> NameVals;
3320 for (const ValueName &Name : VST) {
3321 // Figure out the encoding to use for the name.
3322 StringEncoding Bits = getStringEncoding(Name.getKey());
3324 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3325 NameVals.push_back(VE.getValueID(Name.getValue()));
3327 // VST_CODE_ENTRY: [valueid, namechar x N]
3328 // VST_CODE_BBENTRY: [bbid, namechar x N]
3329 unsigned Code;
3330 if (isa<BasicBlock>(Name.getValue())) {
3331 Code = bitc::VST_CODE_BBENTRY;
3332 if (Bits == SE_Char6)
3333 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3334 } else {
3335 Code = bitc::VST_CODE_ENTRY;
3336 if (Bits == SE_Char6)
3337 AbbrevToUse = VST_ENTRY_6_ABBREV;
3338 else if (Bits == SE_Fixed7)
3339 AbbrevToUse = VST_ENTRY_7_ABBREV;
3342 for (const auto P : Name.getKey())
3343 NameVals.push_back((unsigned char)P);
3345 // Emit the finished record.
3346 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3347 NameVals.clear();
3350 Stream.ExitBlock();
3353 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3354 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3355 unsigned Code;
3356 if (isa<BasicBlock>(Order.V))
3357 Code = bitc::USELIST_CODE_BB;
3358 else
3359 Code = bitc::USELIST_CODE_DEFAULT;
3361 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3362 Record.push_back(VE.getValueID(Order.V));
3363 Stream.EmitRecord(Code, Record);
3366 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3367 assert(VE.shouldPreserveUseListOrder() &&
3368 "Expected to be preserving use-list order");
3370 auto hasMore = [&]() {
3371 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3373 if (!hasMore())
3374 // Nothing to do.
3375 return;
3377 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3378 while (hasMore()) {
3379 writeUseList(std::move(VE.UseListOrders.back()));
3380 VE.UseListOrders.pop_back();
3382 Stream.ExitBlock();
3385 /// Emit a function body to the module stream.
3386 void ModuleBitcodeWriter::writeFunction(
3387 const Function &F,
3388 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3389 // Save the bitcode index of the start of this function block for recording
3390 // in the VST.
3391 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3393 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3394 VE.incorporateFunction(F);
3396 SmallVector<unsigned, 64> Vals;
3398 // Emit the number of basic blocks, so the reader can create them ahead of
3399 // time.
3400 Vals.push_back(VE.getBasicBlocks().size());
3401 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3402 Vals.clear();
3404 // If there are function-local constants, emit them now.
3405 unsigned CstStart, CstEnd;
3406 VE.getFunctionConstantRange(CstStart, CstEnd);
3407 writeConstants(CstStart, CstEnd, false);
3409 // If there is function-local metadata, emit it now.
3410 writeFunctionMetadata(F);
3412 // Keep a running idea of what the instruction ID is.
3413 unsigned InstID = CstEnd;
3415 bool NeedsMetadataAttachment = F.hasMetadata();
3417 DILocation *LastDL = nullptr;
3418 SmallSetVector<Function *, 4> BlockAddressUsers;
3420 // Finally, emit all the instructions, in order.
3421 for (const BasicBlock &BB : F) {
3422 for (const Instruction &I : BB) {
3423 writeInstruction(I, InstID, Vals);
3425 if (!I.getType()->isVoidTy())
3426 ++InstID;
3428 // If the instruction has metadata, write a metadata attachment later.
3429 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3431 // If the instruction has a debug location, emit it.
3432 DILocation *DL = I.getDebugLoc();
3433 if (!DL)
3434 continue;
3436 if (DL == LastDL) {
3437 // Just repeat the same debug loc as last time.
3438 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3439 continue;
3442 Vals.push_back(DL->getLine());
3443 Vals.push_back(DL->getColumn());
3444 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3445 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3446 Vals.push_back(DL->isImplicitCode());
3447 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3448 Vals.clear();
3450 LastDL = DL;
3453 if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3454 SmallVector<Value *> Worklist{BA};
3455 SmallPtrSet<Value *, 8> Visited{BA};
3456 while (!Worklist.empty()) {
3457 Value *V = Worklist.pop_back_val();
3458 for (User *U : V->users()) {
3459 if (auto *I = dyn_cast<Instruction>(U)) {
3460 Function *P = I->getFunction();
3461 if (P != &F)
3462 BlockAddressUsers.insert(P);
3463 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3464 Visited.insert(U).second)
3465 Worklist.push_back(U);
3471 if (!BlockAddressUsers.empty()) {
3472 Vals.resize(BlockAddressUsers.size());
3473 for (auto I : llvm::enumerate(BlockAddressUsers))
3474 Vals[I.index()] = VE.getValueID(I.value());
3475 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3476 Vals.clear();
3479 // Emit names for all the instructions etc.
3480 if (auto *Symtab = F.getValueSymbolTable())
3481 writeFunctionLevelValueSymbolTable(*Symtab);
3483 if (NeedsMetadataAttachment)
3484 writeFunctionMetadataAttachment(F);
3485 if (VE.shouldPreserveUseListOrder())
3486 writeUseListBlock(&F);
3487 VE.purgeFunction();
3488 Stream.ExitBlock();
3491 // Emit blockinfo, which defines the standard abbreviations etc.
3492 void ModuleBitcodeWriter::writeBlockInfo() {
3493 // We only want to emit block info records for blocks that have multiple
3494 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3495 // Other blocks can define their abbrevs inline.
3496 Stream.EnterBlockInfoBlock();
3498 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3499 auto Abbv = std::make_shared<BitCodeAbbrev>();
3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3504 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3505 VST_ENTRY_8_ABBREV)
3506 llvm_unreachable("Unexpected abbrev ordering!");
3509 { // 7-bit fixed width VST_CODE_ENTRY strings.
3510 auto Abbv = std::make_shared<BitCodeAbbrev>();
3511 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3515 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3516 VST_ENTRY_7_ABBREV)
3517 llvm_unreachable("Unexpected abbrev ordering!");
3519 { // 6-bit char6 VST_CODE_ENTRY strings.
3520 auto Abbv = std::make_shared<BitCodeAbbrev>();
3521 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3525 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3526 VST_ENTRY_6_ABBREV)
3527 llvm_unreachable("Unexpected abbrev ordering!");
3529 { // 6-bit char6 VST_CODE_BBENTRY strings.
3530 auto Abbv = std::make_shared<BitCodeAbbrev>();
3531 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3535 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3536 VST_BBENTRY_6_ABBREV)
3537 llvm_unreachable("Unexpected abbrev ordering!");
3540 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3541 auto Abbv = std::make_shared<BitCodeAbbrev>();
3542 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3544 VE.computeBitsRequiredForTypeIndicies()));
3545 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3546 CONSTANTS_SETTYPE_ABBREV)
3547 llvm_unreachable("Unexpected abbrev ordering!");
3550 { // INTEGER abbrev for CONSTANTS_BLOCK.
3551 auto Abbv = std::make_shared<BitCodeAbbrev>();
3552 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3554 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3555 CONSTANTS_INTEGER_ABBREV)
3556 llvm_unreachable("Unexpected abbrev ordering!");
3559 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3560 auto Abbv = std::make_shared<BitCodeAbbrev>();
3561 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3564 VE.computeBitsRequiredForTypeIndicies()));
3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3567 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3568 CONSTANTS_CE_CAST_Abbrev)
3569 llvm_unreachable("Unexpected abbrev ordering!");
3571 { // NULL abbrev for CONSTANTS_BLOCK.
3572 auto Abbv = std::make_shared<BitCodeAbbrev>();
3573 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3574 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3575 CONSTANTS_NULL_Abbrev)
3576 llvm_unreachable("Unexpected abbrev ordering!");
3579 // FIXME: This should only use space for first class types!
3581 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3582 auto Abbv = std::make_shared<BitCodeAbbrev>();
3583 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3586 VE.computeBitsRequiredForTypeIndicies()));
3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3589 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3590 FUNCTION_INST_LOAD_ABBREV)
3591 llvm_unreachable("Unexpected abbrev ordering!");
3593 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3594 auto Abbv = std::make_shared<BitCodeAbbrev>();
3595 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3598 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3599 FUNCTION_INST_UNOP_ABBREV)
3600 llvm_unreachable("Unexpected abbrev ordering!");
3602 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3603 auto Abbv = std::make_shared<BitCodeAbbrev>();
3604 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3608 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3609 FUNCTION_INST_UNOP_FLAGS_ABBREV)
3610 llvm_unreachable("Unexpected abbrev ordering!");
3612 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3613 auto Abbv = std::make_shared<BitCodeAbbrev>();
3614 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3618 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3619 FUNCTION_INST_BINOP_ABBREV)
3620 llvm_unreachable("Unexpected abbrev ordering!");
3622 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3623 auto Abbv = std::make_shared<BitCodeAbbrev>();
3624 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3629 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3630 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3631 llvm_unreachable("Unexpected abbrev ordering!");
3633 { // INST_CAST abbrev for FUNCTION_BLOCK.
3634 auto Abbv = std::make_shared<BitCodeAbbrev>();
3635 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3638 VE.computeBitsRequiredForTypeIndicies()));
3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3640 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3641 FUNCTION_INST_CAST_ABBREV)
3642 llvm_unreachable("Unexpected abbrev ordering!");
3645 { // INST_RET abbrev for FUNCTION_BLOCK.
3646 auto Abbv = std::make_shared<BitCodeAbbrev>();
3647 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3648 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3649 FUNCTION_INST_RET_VOID_ABBREV)
3650 llvm_unreachable("Unexpected abbrev ordering!");
3652 { // INST_RET abbrev for FUNCTION_BLOCK.
3653 auto Abbv = std::make_shared<BitCodeAbbrev>();
3654 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3656 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3657 FUNCTION_INST_RET_VAL_ABBREV)
3658 llvm_unreachable("Unexpected abbrev ordering!");
3660 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3661 auto Abbv = std::make_shared<BitCodeAbbrev>();
3662 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3663 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3664 FUNCTION_INST_UNREACHABLE_ABBREV)
3665 llvm_unreachable("Unexpected abbrev ordering!");
3668 auto Abbv = std::make_shared<BitCodeAbbrev>();
3669 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3672 Log2_32_Ceil(VE.getTypes().size() + 1)));
3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3675 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3676 FUNCTION_INST_GEP_ABBREV)
3677 llvm_unreachable("Unexpected abbrev ordering!");
3680 Stream.ExitBlock();
3683 /// Write the module path strings, currently only used when generating
3684 /// a combined index file.
3685 void IndexBitcodeWriter::writeModStrings() {
3686 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3688 // TODO: See which abbrev sizes we actually need to emit
3690 // 8-bit fixed-width MST_ENTRY strings.
3691 auto Abbv = std::make_shared<BitCodeAbbrev>();
3692 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3696 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3698 // 7-bit fixed width MST_ENTRY strings.
3699 Abbv = std::make_shared<BitCodeAbbrev>();
3700 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3704 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3706 // 6-bit char6 MST_ENTRY strings.
3707 Abbv = std::make_shared<BitCodeAbbrev>();
3708 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3712 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3714 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3715 Abbv = std::make_shared<BitCodeAbbrev>();
3716 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3722 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3724 SmallVector<unsigned, 64> Vals;
3725 forEachModule(
3726 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3727 StringRef Key = MPSE.getKey();
3728 const auto &Value = MPSE.getValue();
3729 StringEncoding Bits = getStringEncoding(Key);
3730 unsigned AbbrevToUse = Abbrev8Bit;
3731 if (Bits == SE_Char6)
3732 AbbrevToUse = Abbrev6Bit;
3733 else if (Bits == SE_Fixed7)
3734 AbbrevToUse = Abbrev7Bit;
3736 Vals.push_back(Value.first);
3737 Vals.append(Key.begin(), Key.end());
3739 // Emit the finished record.
3740 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3742 // Emit an optional hash for the module now
3743 const auto &Hash = Value.second;
3744 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3745 Vals.assign(Hash.begin(), Hash.end());
3746 // Emit the hash record.
3747 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3750 Vals.clear();
3752 Stream.ExitBlock();
3755 /// Write the function type metadata related records that need to appear before
3756 /// a function summary entry (whether per-module or combined).
3757 template <typename Fn>
3758 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3759 FunctionSummary *FS,
3760 Fn GetValueID) {
3761 if (!FS->type_tests().empty())
3762 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3764 SmallVector<uint64_t, 64> Record;
3766 auto WriteVFuncIdVec = [&](uint64_t Ty,
3767 ArrayRef<FunctionSummary::VFuncId> VFs) {
3768 if (VFs.empty())
3769 return;
3770 Record.clear();
3771 for (auto &VF : VFs) {
3772 Record.push_back(VF.GUID);
3773 Record.push_back(VF.Offset);
3775 Stream.EmitRecord(Ty, Record);
3778 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3779 FS->type_test_assume_vcalls());
3780 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3781 FS->type_checked_load_vcalls());
3783 auto WriteConstVCallVec = [&](uint64_t Ty,
3784 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3785 for (auto &VC : VCs) {
3786 Record.clear();
3787 Record.push_back(VC.VFunc.GUID);
3788 Record.push_back(VC.VFunc.Offset);
3789 llvm::append_range(Record, VC.Args);
3790 Stream.EmitRecord(Ty, Record);
3794 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3795 FS->type_test_assume_const_vcalls());
3796 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3797 FS->type_checked_load_const_vcalls());
3799 auto WriteRange = [&](ConstantRange Range) {
3800 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3801 assert(Range.getLower().getNumWords() == 1);
3802 assert(Range.getUpper().getNumWords() == 1);
3803 emitSignedInt64(Record, *Range.getLower().getRawData());
3804 emitSignedInt64(Record, *Range.getUpper().getRawData());
3807 if (!FS->paramAccesses().empty()) {
3808 Record.clear();
3809 for (auto &Arg : FS->paramAccesses()) {
3810 size_t UndoSize = Record.size();
3811 Record.push_back(Arg.ParamNo);
3812 WriteRange(Arg.Use);
3813 Record.push_back(Arg.Calls.size());
3814 for (auto &Call : Arg.Calls) {
3815 Record.push_back(Call.ParamNo);
3816 std::optional<unsigned> ValueID = GetValueID(Call.Callee);
3817 if (!ValueID) {
3818 // If ValueID is unknown we can't drop just this call, we must drop
3819 // entire parameter.
3820 Record.resize(UndoSize);
3821 break;
3823 Record.push_back(*ValueID);
3824 WriteRange(Call.Offsets);
3827 if (!Record.empty())
3828 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3832 /// Collect type IDs from type tests used by function.
3833 static void
3834 getReferencedTypeIds(FunctionSummary *FS,
3835 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3836 if (!FS->type_tests().empty())
3837 for (auto &TT : FS->type_tests())
3838 ReferencedTypeIds.insert(TT);
3840 auto GetReferencedTypesFromVFuncIdVec =
3841 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3842 for (auto &VF : VFs)
3843 ReferencedTypeIds.insert(VF.GUID);
3846 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3847 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3849 auto GetReferencedTypesFromConstVCallVec =
3850 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3851 for (auto &VC : VCs)
3852 ReferencedTypeIds.insert(VC.VFunc.GUID);
3855 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3856 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3859 static void writeWholeProgramDevirtResolutionByArg(
3860 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3861 const WholeProgramDevirtResolution::ByArg &ByArg) {
3862 NameVals.push_back(args.size());
3863 llvm::append_range(NameVals, args);
3865 NameVals.push_back(ByArg.TheKind);
3866 NameVals.push_back(ByArg.Info);
3867 NameVals.push_back(ByArg.Byte);
3868 NameVals.push_back(ByArg.Bit);
3871 static void writeWholeProgramDevirtResolution(
3872 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3873 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3874 NameVals.push_back(Id);
3876 NameVals.push_back(Wpd.TheKind);
3877 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3878 NameVals.push_back(Wpd.SingleImplName.size());
3880 NameVals.push_back(Wpd.ResByArg.size());
3881 for (auto &A : Wpd.ResByArg)
3882 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3885 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3886 StringTableBuilder &StrtabBuilder,
3887 const std::string &Id,
3888 const TypeIdSummary &Summary) {
3889 NameVals.push_back(StrtabBuilder.add(Id));
3890 NameVals.push_back(Id.size());
3892 NameVals.push_back(Summary.TTRes.TheKind);
3893 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3894 NameVals.push_back(Summary.TTRes.AlignLog2);
3895 NameVals.push_back(Summary.TTRes.SizeM1);
3896 NameVals.push_back(Summary.TTRes.BitMask);
3897 NameVals.push_back(Summary.TTRes.InlineBits);
3899 for (auto &W : Summary.WPDRes)
3900 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3901 W.second);
3904 static void writeTypeIdCompatibleVtableSummaryRecord(
3905 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3906 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3907 ValueEnumerator &VE) {
3908 NameVals.push_back(StrtabBuilder.add(Id));
3909 NameVals.push_back(Id.size());
3911 for (auto &P : Summary) {
3912 NameVals.push_back(P.AddressPointOffset);
3913 NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3917 static void writeFunctionHeapProfileRecords(
3918 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
3919 unsigned AllocAbbrev, bool PerModule,
3920 std::function<unsigned(const ValueInfo &VI)> GetValueID,
3921 std::function<unsigned(unsigned)> GetStackIndex) {
3922 SmallVector<uint64_t> Record;
3924 for (auto &CI : FS->callsites()) {
3925 Record.clear();
3926 // Per module callsite clones should always have a single entry of
3927 // value 0.
3928 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
3929 Record.push_back(GetValueID(CI.Callee));
3930 if (!PerModule) {
3931 Record.push_back(CI.StackIdIndices.size());
3932 Record.push_back(CI.Clones.size());
3934 for (auto Id : CI.StackIdIndices)
3935 Record.push_back(GetStackIndex(Id));
3936 if (!PerModule) {
3937 for (auto V : CI.Clones)
3938 Record.push_back(V);
3940 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
3941 : bitc::FS_COMBINED_CALLSITE_INFO,
3942 Record, CallsiteAbbrev);
3945 for (auto &AI : FS->allocs()) {
3946 Record.clear();
3947 // Per module alloc versions should always have a single entry of
3948 // value 0.
3949 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
3950 if (!PerModule) {
3951 Record.push_back(AI.MIBs.size());
3952 Record.push_back(AI.Versions.size());
3954 for (auto &MIB : AI.MIBs) {
3955 Record.push_back((uint8_t)MIB.AllocType);
3956 Record.push_back(MIB.StackIdIndices.size());
3957 for (auto Id : MIB.StackIdIndices)
3958 Record.push_back(GetStackIndex(Id));
3960 if (!PerModule) {
3961 for (auto V : AI.Versions)
3962 Record.push_back(V);
3964 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
3965 : bitc::FS_COMBINED_ALLOC_INFO,
3966 Record, AllocAbbrev);
3970 // Helper to emit a single function summary record.
3971 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3972 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3973 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3974 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) {
3975 NameVals.push_back(ValueID);
3977 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3979 writeFunctionTypeMetadataRecords(
3980 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
3981 return {VE.getValueID(VI.getValue())};
3984 writeFunctionHeapProfileRecords(
3985 Stream, FS, CallsiteAbbrev, AllocAbbrev,
3986 /*PerModule*/ true,
3987 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
3988 /*GetStackIndex*/ [&](unsigned I) { return I; });
3990 auto SpecialRefCnts = FS->specialRefCounts();
3991 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3992 NameVals.push_back(FS->instCount());
3993 NameVals.push_back(getEncodedFFlags(FS->fflags()));
3994 NameVals.push_back(FS->refs().size());
3995 NameVals.push_back(SpecialRefCnts.first); // rorefcnt
3996 NameVals.push_back(SpecialRefCnts.second); // worefcnt
3998 for (auto &RI : FS->refs())
3999 NameVals.push_back(VE.getValueID(RI.getValue()));
4001 bool HasProfileData =
4002 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
4003 for (auto &ECI : FS->calls()) {
4004 NameVals.push_back(getValueId(ECI.first));
4005 if (HasProfileData)
4006 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
4007 else if (WriteRelBFToSummary)
4008 NameVals.push_back(ECI.second.RelBlockFreq);
4011 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4012 unsigned Code =
4013 (HasProfileData ? bitc::FS_PERMODULE_PROFILE
4014 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
4015 : bitc::FS_PERMODULE));
4017 // Emit the finished record.
4018 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4019 NameVals.clear();
4022 // Collect the global value references in the given variable's initializer,
4023 // and emit them in a summary record.
4024 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4025 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4026 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4027 auto VI = Index->getValueInfo(V.getGUID());
4028 if (!VI || VI.getSummaryList().empty()) {
4029 // Only declarations should not have a summary (a declaration might however
4030 // have a summary if the def was in module level asm).
4031 assert(V.isDeclaration());
4032 return;
4034 auto *Summary = VI.getSummaryList()[0].get();
4035 NameVals.push_back(VE.getValueID(&V));
4036 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4037 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4038 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4040 auto VTableFuncs = VS->vTableFuncs();
4041 if (!VTableFuncs.empty())
4042 NameVals.push_back(VS->refs().size());
4044 unsigned SizeBeforeRefs = NameVals.size();
4045 for (auto &RI : VS->refs())
4046 NameVals.push_back(VE.getValueID(RI.getValue()));
4047 // Sort the refs for determinism output, the vector returned by FS->refs() has
4048 // been initialized from a DenseSet.
4049 llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4051 if (VTableFuncs.empty())
4052 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4053 FSModRefsAbbrev);
4054 else {
4055 // VTableFuncs pairs should already be sorted by offset.
4056 for (auto &P : VTableFuncs) {
4057 NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4058 NameVals.push_back(P.VTableOffset);
4061 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4062 FSModVTableRefsAbbrev);
4064 NameVals.clear();
4067 /// Emit the per-module summary section alongside the rest of
4068 /// the module's bitcode.
4069 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4070 // By default we compile with ThinLTO if the module has a summary, but the
4071 // client can request full LTO with a module flag.
4072 bool IsThinLTO = true;
4073 if (auto *MD =
4074 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4075 IsThinLTO = MD->getZExtValue();
4076 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4077 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4080 Stream.EmitRecord(
4081 bitc::FS_VERSION,
4082 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4084 // Write the index flags.
4085 uint64_t Flags = 0;
4086 // Bits 1-3 are set only in the combined index, skip them.
4087 if (Index->enableSplitLTOUnit())
4088 Flags |= 0x8;
4089 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4091 if (Index->begin() == Index->end()) {
4092 Stream.ExitBlock();
4093 return;
4096 for (const auto &GVI : valueIds()) {
4097 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4098 ArrayRef<uint64_t>{GVI.second, GVI.first});
4101 if (!Index->stackIds().empty()) {
4102 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4103 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4104 // numids x stackid
4105 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4106 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4107 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4108 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4111 // Abbrev for FS_PERMODULE_PROFILE.
4112 auto Abbv = std::make_shared<BitCodeAbbrev>();
4113 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4121 // numrefs x valueid, n x (valueid, hotness)
4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4124 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4126 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
4127 Abbv = std::make_shared<BitCodeAbbrev>();
4128 if (WriteRelBFToSummary)
4129 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4130 else
4131 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4139 // numrefs x valueid, n x (valueid [, rel_block_freq])
4140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4142 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4144 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4145 Abbv = std::make_shared<BitCodeAbbrev>();
4146 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4151 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4153 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4154 Abbv = std::make_shared<BitCodeAbbrev>();
4155 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4159 // numrefs x valueid, n x (valueid , offset)
4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4162 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4164 // Abbrev for FS_ALIAS.
4165 Abbv = std::make_shared<BitCodeAbbrev>();
4166 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4170 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4172 // Abbrev for FS_TYPE_ID_METADATA
4173 Abbv = std::make_shared<BitCodeAbbrev>();
4174 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4177 // n x (valueid , offset)
4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4180 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4182 Abbv = std::make_shared<BitCodeAbbrev>();
4183 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4185 // n x stackidindex
4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4188 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4190 Abbv = std::make_shared<BitCodeAbbrev>();
4191 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4192 // n x (alloc type, numstackids, numstackids x stackidindex)
4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4195 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4197 SmallVector<uint64_t, 64> NameVals;
4198 // Iterate over the list of functions instead of the Index to
4199 // ensure the ordering is stable.
4200 for (const Function &F : M) {
4201 // Summary emission does not support anonymous functions, they have to
4202 // renamed using the anonymous function renaming pass.
4203 if (!F.hasName())
4204 report_fatal_error("Unexpected anonymous function when writing summary");
4206 ValueInfo VI = Index->getValueInfo(F.getGUID());
4207 if (!VI || VI.getSummaryList().empty()) {
4208 // Only declarations should not have a summary (a declaration might
4209 // however have a summary if the def was in module level asm).
4210 assert(F.isDeclaration());
4211 continue;
4213 auto *Summary = VI.getSummaryList()[0].get();
4214 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
4215 FSCallsAbbrev, FSCallsProfileAbbrev,
4216 CallsiteAbbrev, AllocAbbrev, F);
4219 // Capture references from GlobalVariable initializers, which are outside
4220 // of a function scope.
4221 for (const GlobalVariable &G : M.globals())
4222 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4223 FSModVTableRefsAbbrev);
4225 for (const GlobalAlias &A : M.aliases()) {
4226 auto *Aliasee = A.getAliaseeObject();
4227 // Skip ifunc and nameless functions which don't have an entry in the
4228 // summary.
4229 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4230 continue;
4231 auto AliasId = VE.getValueID(&A);
4232 auto AliaseeId = VE.getValueID(Aliasee);
4233 NameVals.push_back(AliasId);
4234 auto *Summary = Index->getGlobalValueSummary(A);
4235 AliasSummary *AS = cast<AliasSummary>(Summary);
4236 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4237 NameVals.push_back(AliaseeId);
4238 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4239 NameVals.clear();
4242 for (auto &S : Index->typeIdCompatibleVtableMap()) {
4243 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4244 S.second, VE);
4245 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4246 TypeIdCompatibleVtableAbbrev);
4247 NameVals.clear();
4250 if (Index->getBlockCount())
4251 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4252 ArrayRef<uint64_t>{Index->getBlockCount()});
4254 Stream.ExitBlock();
4257 /// Emit the combined summary section into the combined index file.
4258 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4259 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4260 Stream.EmitRecord(
4261 bitc::FS_VERSION,
4262 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4264 // Write the index flags.
4265 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4267 for (const auto &GVI : valueIds()) {
4268 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4269 ArrayRef<uint64_t>{GVI.second, GVI.first});
4272 if (!StackIdIndices.empty()) {
4273 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4274 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4275 // numids x stackid
4276 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4277 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4278 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4279 // Write the stack ids used by this index, which will be a subset of those in
4280 // the full index in the case of distributed indexes.
4281 std::vector<uint64_t> StackIds;
4282 for (auto &I : StackIdIndices)
4283 StackIds.push_back(Index.getStackIdAtIndex(I));
4284 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4287 // Abbrev for FS_COMBINED.
4288 auto Abbv = std::make_shared<BitCodeAbbrev>();
4289 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4299 // numrefs x valueid, n x (valueid)
4300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4302 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4304 // Abbrev for FS_COMBINED_PROFILE.
4305 Abbv = std::make_shared<BitCodeAbbrev>();
4306 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4316 // numrefs x valueid, n x (valueid, hotness)
4317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4319 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4321 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4322 Abbv = std::make_shared<BitCodeAbbrev>();
4323 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4329 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4331 // Abbrev for FS_COMBINED_ALIAS.
4332 Abbv = std::make_shared<BitCodeAbbrev>();
4333 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4338 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4340 Abbv = std::make_shared<BitCodeAbbrev>();
4341 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4345 // numstackindices x stackidindex, numver x version
4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4348 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4350 Abbv = std::make_shared<BitCodeAbbrev>();
4351 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4354 // nummib x (alloc type, numstackids, numstackids x stackidindex),
4355 // numver x version
4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4358 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4360 // The aliases are emitted as a post-pass, and will point to the value
4361 // id of the aliasee. Save them in a vector for post-processing.
4362 SmallVector<AliasSummary *, 64> Aliases;
4364 // Save the value id for each summary for alias emission.
4365 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4367 SmallVector<uint64_t, 64> NameVals;
4369 // Set that will be populated during call to writeFunctionTypeMetadataRecords
4370 // with the type ids referenced by this index file.
4371 std::set<GlobalValue::GUID> ReferencedTypeIds;
4373 // For local linkage, we also emit the original name separately
4374 // immediately after the record.
4375 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4376 // We don't need to emit the original name if we are writing the index for
4377 // distributed backends (in which case ModuleToSummariesForIndex is
4378 // non-null). The original name is only needed during the thin link, since
4379 // for SamplePGO the indirect call targets for local functions have
4380 // have the original name annotated in profile.
4381 // Continue to emit it when writing out the entire combined index, which is
4382 // used in testing the thin link via llvm-lto.
4383 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4384 return;
4385 NameVals.push_back(S.getOriginalName());
4386 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4387 NameVals.clear();
4390 std::set<GlobalValue::GUID> DefOrUseGUIDs;
4391 forEachSummary([&](GVInfo I, bool IsAliasee) {
4392 GlobalValueSummary *S = I.second;
4393 assert(S);
4394 DefOrUseGUIDs.insert(I.first);
4395 for (const ValueInfo &VI : S->refs())
4396 DefOrUseGUIDs.insert(VI.getGUID());
4398 auto ValueId = getValueId(I.first);
4399 assert(ValueId);
4400 SummaryToValueIdMap[S] = *ValueId;
4402 // If this is invoked for an aliasee, we want to record the above
4403 // mapping, but then not emit a summary entry (if the aliasee is
4404 // to be imported, we will invoke this separately with IsAliasee=false).
4405 if (IsAliasee)
4406 return;
4408 if (auto *AS = dyn_cast<AliasSummary>(S)) {
4409 // Will process aliases as a post-pass because the reader wants all
4410 // global to be loaded first.
4411 Aliases.push_back(AS);
4412 return;
4415 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4416 NameVals.push_back(*ValueId);
4417 NameVals.push_back(Index.getModuleId(VS->modulePath()));
4418 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4419 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4420 for (auto &RI : VS->refs()) {
4421 auto RefValueId = getValueId(RI.getGUID());
4422 if (!RefValueId)
4423 continue;
4424 NameVals.push_back(*RefValueId);
4427 // Emit the finished record.
4428 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4429 FSModRefsAbbrev);
4430 NameVals.clear();
4431 MaybeEmitOriginalName(*S);
4432 return;
4435 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4436 if (!VI)
4437 return std::nullopt;
4438 return getValueId(VI.getGUID());
4441 auto *FS = cast<FunctionSummary>(S);
4442 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4443 getReferencedTypeIds(FS, ReferencedTypeIds);
4445 writeFunctionHeapProfileRecords(
4446 Stream, FS, CallsiteAbbrev, AllocAbbrev,
4447 /*PerModule*/ false,
4448 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned {
4449 std::optional<unsigned> ValueID = GetValueId(VI);
4450 // This can happen in shared index files for distributed ThinLTO if
4451 // the callee function summary is not included. Record 0 which we
4452 // will have to deal with conservatively when doing any kind of
4453 // validation in the ThinLTO backends.
4454 if (!ValueID)
4455 return 0;
4456 return *ValueID;
4458 /*GetStackIndex*/ [&](unsigned I) {
4459 // Get the corresponding index into the list of StackIdIndices
4460 // actually being written for this combined index (which may be a
4461 // subset in the case of distributed indexes).
4462 auto Lower = llvm::lower_bound(StackIdIndices, I);
4463 return std::distance(StackIdIndices.begin(), Lower);
4466 NameVals.push_back(*ValueId);
4467 NameVals.push_back(Index.getModuleId(FS->modulePath()));
4468 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4469 NameVals.push_back(FS->instCount());
4470 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4471 NameVals.push_back(FS->entryCount());
4473 // Fill in below
4474 NameVals.push_back(0); // numrefs
4475 NameVals.push_back(0); // rorefcnt
4476 NameVals.push_back(0); // worefcnt
4478 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4479 for (auto &RI : FS->refs()) {
4480 auto RefValueId = getValueId(RI.getGUID());
4481 if (!RefValueId)
4482 continue;
4483 NameVals.push_back(*RefValueId);
4484 if (RI.isReadOnly())
4485 RORefCnt++;
4486 else if (RI.isWriteOnly())
4487 WORefCnt++;
4488 Count++;
4490 NameVals[6] = Count;
4491 NameVals[7] = RORefCnt;
4492 NameVals[8] = WORefCnt;
4494 bool HasProfileData = false;
4495 for (auto &EI : FS->calls()) {
4496 HasProfileData |=
4497 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4498 if (HasProfileData)
4499 break;
4502 for (auto &EI : FS->calls()) {
4503 // If this GUID doesn't have a value id, it doesn't have a function
4504 // summary and we don't need to record any calls to it.
4505 std::optional<unsigned> CallValueId = GetValueId(EI.first);
4506 if (!CallValueId)
4507 continue;
4508 NameVals.push_back(*CallValueId);
4509 if (HasProfileData)
4510 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4513 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4514 unsigned Code =
4515 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4517 // Emit the finished record.
4518 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4519 NameVals.clear();
4520 MaybeEmitOriginalName(*S);
4523 for (auto *AS : Aliases) {
4524 auto AliasValueId = SummaryToValueIdMap[AS];
4525 assert(AliasValueId);
4526 NameVals.push_back(AliasValueId);
4527 NameVals.push_back(Index.getModuleId(AS->modulePath()));
4528 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4529 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4530 assert(AliaseeValueId);
4531 NameVals.push_back(AliaseeValueId);
4533 // Emit the finished record.
4534 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4535 NameVals.clear();
4536 MaybeEmitOriginalName(*AS);
4538 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4539 getReferencedTypeIds(FS, ReferencedTypeIds);
4542 if (!Index.cfiFunctionDefs().empty()) {
4543 for (auto &S : Index.cfiFunctionDefs()) {
4544 if (DefOrUseGUIDs.count(
4545 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4546 NameVals.push_back(StrtabBuilder.add(S));
4547 NameVals.push_back(S.size());
4550 if (!NameVals.empty()) {
4551 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4552 NameVals.clear();
4556 if (!Index.cfiFunctionDecls().empty()) {
4557 for (auto &S : Index.cfiFunctionDecls()) {
4558 if (DefOrUseGUIDs.count(
4559 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4560 NameVals.push_back(StrtabBuilder.add(S));
4561 NameVals.push_back(S.size());
4564 if (!NameVals.empty()) {
4565 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4566 NameVals.clear();
4570 // Walk the GUIDs that were referenced, and write the
4571 // corresponding type id records.
4572 for (auto &T : ReferencedTypeIds) {
4573 auto TidIter = Index.typeIds().equal_range(T);
4574 for (auto It = TidIter.first; It != TidIter.second; ++It) {
4575 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4576 It->second.second);
4577 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4578 NameVals.clear();
4582 if (Index.getBlockCount())
4583 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4584 ArrayRef<uint64_t>{Index.getBlockCount()});
4586 Stream.ExitBlock();
4589 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4590 /// current llvm version, and a record for the epoch number.
4591 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4592 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4594 // Write the "user readable" string identifying the bitcode producer
4595 auto Abbv = std::make_shared<BitCodeAbbrev>();
4596 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4599 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4600 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4601 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4603 // Write the epoch version
4604 Abbv = std::make_shared<BitCodeAbbrev>();
4605 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4607 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4608 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4609 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4610 Stream.ExitBlock();
4613 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4614 // Emit the module's hash.
4615 // MODULE_CODE_HASH: [5*i32]
4616 if (GenerateHash) {
4617 uint32_t Vals[5];
4618 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4619 Buffer.size() - BlockStartPos));
4620 std::array<uint8_t, 20> Hash = Hasher.result();
4621 for (int Pos = 0; Pos < 20; Pos += 4) {
4622 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4625 // Emit the finished record.
4626 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4628 if (ModHash)
4629 // Save the written hash value.
4630 llvm::copy(Vals, std::begin(*ModHash));
4634 void ModuleBitcodeWriter::write() {
4635 writeIdentificationBlock(Stream);
4637 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4638 size_t BlockStartPos = Buffer.size();
4640 writeModuleVersion();
4642 // Emit blockinfo, which defines the standard abbreviations etc.
4643 writeBlockInfo();
4645 // Emit information describing all of the types in the module.
4646 writeTypeTable();
4648 // Emit information about attribute groups.
4649 writeAttributeGroupTable();
4651 // Emit information about parameter attributes.
4652 writeAttributeTable();
4654 writeComdats();
4656 // Emit top-level description of module, including target triple, inline asm,
4657 // descriptors for global variables, and function prototype info.
4658 writeModuleInfo();
4660 // Emit constants.
4661 writeModuleConstants();
4663 // Emit metadata kind names.
4664 writeModuleMetadataKinds();
4666 // Emit metadata.
4667 writeModuleMetadata();
4669 // Emit module-level use-lists.
4670 if (VE.shouldPreserveUseListOrder())
4671 writeUseListBlock(nullptr);
4673 writeOperandBundleTags();
4674 writeSyncScopeNames();
4676 // Emit function bodies.
4677 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4678 for (const Function &F : M)
4679 if (!F.isDeclaration())
4680 writeFunction(F, FunctionToBitcodeIndex);
4682 // Need to write after the above call to WriteFunction which populates
4683 // the summary information in the index.
4684 if (Index)
4685 writePerModuleGlobalValueSummary();
4687 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4689 writeModuleHash(BlockStartPos);
4691 Stream.ExitBlock();
4694 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4695 uint32_t &Position) {
4696 support::endian::write32le(&Buffer[Position], Value);
4697 Position += 4;
4700 /// If generating a bc file on darwin, we have to emit a
4701 /// header and trailer to make it compatible with the system archiver. To do
4702 /// this we emit the following header, and then emit a trailer that pads the
4703 /// file out to be a multiple of 16 bytes.
4705 /// struct bc_header {
4706 /// uint32_t Magic; // 0x0B17C0DE
4707 /// uint32_t Version; // Version, currently always 0.
4708 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4709 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4710 /// uint32_t CPUType; // CPU specifier.
4711 /// ... potentially more later ...
4712 /// };
4713 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4714 const Triple &TT) {
4715 unsigned CPUType = ~0U;
4717 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4718 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4719 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4720 // specific constants here because they are implicitly part of the Darwin ABI.
4721 enum {
4722 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4723 DARWIN_CPU_TYPE_X86 = 7,
4724 DARWIN_CPU_TYPE_ARM = 12,
4725 DARWIN_CPU_TYPE_POWERPC = 18
4728 Triple::ArchType Arch = TT.getArch();
4729 if (Arch == Triple::x86_64)
4730 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4731 else if (Arch == Triple::x86)
4732 CPUType = DARWIN_CPU_TYPE_X86;
4733 else if (Arch == Triple::ppc)
4734 CPUType = DARWIN_CPU_TYPE_POWERPC;
4735 else if (Arch == Triple::ppc64)
4736 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4737 else if (Arch == Triple::arm || Arch == Triple::thumb)
4738 CPUType = DARWIN_CPU_TYPE_ARM;
4740 // Traditional Bitcode starts after header.
4741 assert(Buffer.size() >= BWH_HeaderSize &&
4742 "Expected header size to be reserved");
4743 unsigned BCOffset = BWH_HeaderSize;
4744 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4746 // Write the magic and version.
4747 unsigned Position = 0;
4748 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4749 writeInt32ToBuffer(0, Buffer, Position); // Version.
4750 writeInt32ToBuffer(BCOffset, Buffer, Position);
4751 writeInt32ToBuffer(BCSize, Buffer, Position);
4752 writeInt32ToBuffer(CPUType, Buffer, Position);
4754 // If the file is not a multiple of 16 bytes, insert dummy padding.
4755 while (Buffer.size() & 15)
4756 Buffer.push_back(0);
4759 /// Helper to write the header common to all bitcode files.
4760 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4761 // Emit the file header.
4762 Stream.Emit((unsigned)'B', 8);
4763 Stream.Emit((unsigned)'C', 8);
4764 Stream.Emit(0x0, 4);
4765 Stream.Emit(0xC, 4);
4766 Stream.Emit(0xE, 4);
4767 Stream.Emit(0xD, 4);
4770 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4771 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4772 writeBitcodeHeader(*Stream);
4775 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4777 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4778 Stream->EnterSubblock(Block, 3);
4780 auto Abbv = std::make_shared<BitCodeAbbrev>();
4781 Abbv->Add(BitCodeAbbrevOp(Record));
4782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4783 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4785 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4787 Stream->ExitBlock();
4790 void BitcodeWriter::writeSymtab() {
4791 assert(!WroteStrtab && !WroteSymtab);
4793 // If any module has module-level inline asm, we will require a registered asm
4794 // parser for the target so that we can create an accurate symbol table for
4795 // the module.
4796 for (Module *M : Mods) {
4797 if (M->getModuleInlineAsm().empty())
4798 continue;
4800 std::string Err;
4801 const Triple TT(M->getTargetTriple());
4802 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4803 if (!T || !T->hasMCAsmParser())
4804 return;
4807 WroteSymtab = true;
4808 SmallVector<char, 0> Symtab;
4809 // The irsymtab::build function may be unable to create a symbol table if the
4810 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4811 // table is not required for correctness, but we still want to be able to
4812 // write malformed modules to bitcode files, so swallow the error.
4813 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4814 consumeError(std::move(E));
4815 return;
4818 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4819 {Symtab.data(), Symtab.size()});
4822 void BitcodeWriter::writeStrtab() {
4823 assert(!WroteStrtab);
4825 std::vector<char> Strtab;
4826 StrtabBuilder.finalizeInOrder();
4827 Strtab.resize(StrtabBuilder.getSize());
4828 StrtabBuilder.write((uint8_t *)Strtab.data());
4830 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4831 {Strtab.data(), Strtab.size()});
4833 WroteStrtab = true;
4836 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4837 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4838 WroteStrtab = true;
4841 void BitcodeWriter::writeModule(const Module &M,
4842 bool ShouldPreserveUseListOrder,
4843 const ModuleSummaryIndex *Index,
4844 bool GenerateHash, ModuleHash *ModHash) {
4845 assert(!WroteStrtab);
4847 // The Mods vector is used by irsymtab::build, which requires non-const
4848 // Modules in case it needs to materialize metadata. But the bitcode writer
4849 // requires that the module is materialized, so we can cast to non-const here,
4850 // after checking that it is in fact materialized.
4851 assert(M.isMaterialized());
4852 Mods.push_back(const_cast<Module *>(&M));
4854 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4855 ShouldPreserveUseListOrder, Index,
4856 GenerateHash, ModHash);
4857 ModuleWriter.write();
4860 void BitcodeWriter::writeIndex(
4861 const ModuleSummaryIndex *Index,
4862 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4863 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4864 ModuleToSummariesForIndex);
4865 IndexWriter.write();
4868 /// Write the specified module to the specified output stream.
4869 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4870 bool ShouldPreserveUseListOrder,
4871 const ModuleSummaryIndex *Index,
4872 bool GenerateHash, ModuleHash *ModHash) {
4873 SmallVector<char, 0> Buffer;
4874 Buffer.reserve(256*1024);
4876 // If this is darwin or another generic macho target, reserve space for the
4877 // header.
4878 Triple TT(M.getTargetTriple());
4879 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4880 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4882 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4883 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4884 ModHash);
4885 Writer.writeSymtab();
4886 Writer.writeStrtab();
4888 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4889 emitDarwinBCHeaderAndTrailer(Buffer, TT);
4891 // Write the generated bitstream to "Out".
4892 if (!Buffer.empty())
4893 Out.write((char *)&Buffer.front(), Buffer.size());
4896 void IndexBitcodeWriter::write() {
4897 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4899 writeModuleVersion();
4901 // Write the module paths in the combined index.
4902 writeModStrings();
4904 // Write the summary combined index records.
4905 writeCombinedGlobalValueSummary();
4907 Stream.ExitBlock();
4910 // Write the specified module summary index to the given raw output stream,
4911 // where it will be written in a new bitcode block. This is used when
4912 // writing the combined index file for ThinLTO. When writing a subset of the
4913 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4914 void llvm::writeIndexToFile(
4915 const ModuleSummaryIndex &Index, raw_ostream &Out,
4916 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4917 SmallVector<char, 0> Buffer;
4918 Buffer.reserve(256 * 1024);
4920 BitcodeWriter Writer(Buffer);
4921 Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4922 Writer.writeStrtab();
4924 Out.write((char *)&Buffer.front(), Buffer.size());
4927 namespace {
4929 /// Class to manage the bitcode writing for a thin link bitcode file.
4930 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4931 /// ModHash is for use in ThinLTO incremental build, generated while writing
4932 /// the module bitcode file.
4933 const ModuleHash *ModHash;
4935 public:
4936 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4937 BitstreamWriter &Stream,
4938 const ModuleSummaryIndex &Index,
4939 const ModuleHash &ModHash)
4940 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4941 /*ShouldPreserveUseListOrder=*/false, &Index),
4942 ModHash(&ModHash) {}
4944 void write();
4946 private:
4947 void writeSimplifiedModuleInfo();
4950 } // end anonymous namespace
4952 // This function writes a simpilified module info for thin link bitcode file.
4953 // It only contains the source file name along with the name(the offset and
4954 // size in strtab) and linkage for global values. For the global value info
4955 // entry, in order to keep linkage at offset 5, there are three zeros used
4956 // as padding.
4957 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4958 SmallVector<unsigned, 64> Vals;
4959 // Emit the module's source file name.
4961 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4962 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4963 if (Bits == SE_Char6)
4964 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4965 else if (Bits == SE_Fixed7)
4966 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4968 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4969 auto Abbv = std::make_shared<BitCodeAbbrev>();
4970 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4972 Abbv->Add(AbbrevOpToUse);
4973 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4975 for (const auto P : M.getSourceFileName())
4976 Vals.push_back((unsigned char)P);
4978 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4979 Vals.clear();
4982 // Emit the global variable information.
4983 for (const GlobalVariable &GV : M.globals()) {
4984 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4985 Vals.push_back(StrtabBuilder.add(GV.getName()));
4986 Vals.push_back(GV.getName().size());
4987 Vals.push_back(0);
4988 Vals.push_back(0);
4989 Vals.push_back(0);
4990 Vals.push_back(getEncodedLinkage(GV));
4992 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4993 Vals.clear();
4996 // Emit the function proto information.
4997 for (const Function &F : M) {
4998 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4999 Vals.push_back(StrtabBuilder.add(F.getName()));
5000 Vals.push_back(F.getName().size());
5001 Vals.push_back(0);
5002 Vals.push_back(0);
5003 Vals.push_back(0);
5004 Vals.push_back(getEncodedLinkage(F));
5006 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5007 Vals.clear();
5010 // Emit the alias information.
5011 for (const GlobalAlias &A : M.aliases()) {
5012 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5013 Vals.push_back(StrtabBuilder.add(A.getName()));
5014 Vals.push_back(A.getName().size());
5015 Vals.push_back(0);
5016 Vals.push_back(0);
5017 Vals.push_back(0);
5018 Vals.push_back(getEncodedLinkage(A));
5020 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5021 Vals.clear();
5024 // Emit the ifunc information.
5025 for (const GlobalIFunc &I : M.ifuncs()) {
5026 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5027 Vals.push_back(StrtabBuilder.add(I.getName()));
5028 Vals.push_back(I.getName().size());
5029 Vals.push_back(0);
5030 Vals.push_back(0);
5031 Vals.push_back(0);
5032 Vals.push_back(getEncodedLinkage(I));
5034 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5035 Vals.clear();
5039 void ThinLinkBitcodeWriter::write() {
5040 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5042 writeModuleVersion();
5044 writeSimplifiedModuleInfo();
5046 writePerModuleGlobalValueSummary();
5048 // Write module hash.
5049 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5051 Stream.ExitBlock();
5054 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5055 const ModuleSummaryIndex &Index,
5056 const ModuleHash &ModHash) {
5057 assert(!WroteStrtab);
5059 // The Mods vector is used by irsymtab::build, which requires non-const
5060 // Modules in case it needs to materialize metadata. But the bitcode writer
5061 // requires that the module is materialized, so we can cast to non-const here,
5062 // after checking that it is in fact materialized.
5063 assert(M.isMaterialized());
5064 Mods.push_back(const_cast<Module *>(&M));
5066 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5067 ModHash);
5068 ThinLinkWriter.write();
5071 // Write the specified thin link bitcode file to the given raw output stream,
5072 // where it will be written in a new bitcode block. This is used when
5073 // writing the per-module index file for ThinLTO.
5074 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5075 const ModuleSummaryIndex &Index,
5076 const ModuleHash &ModHash) {
5077 SmallVector<char, 0> Buffer;
5078 Buffer.reserve(256 * 1024);
5080 BitcodeWriter Writer(Buffer);
5081 Writer.writeThinLinkBitcode(M, Index, ModHash);
5082 Writer.writeSymtab();
5083 Writer.writeStrtab();
5085 Out.write((char *)&Buffer.front(), Buffer.size());
5088 static const char *getSectionNameForBitcode(const Triple &T) {
5089 switch (T.getObjectFormat()) {
5090 case Triple::MachO:
5091 return "__LLVM,__bitcode";
5092 case Triple::COFF:
5093 case Triple::ELF:
5094 case Triple::Wasm:
5095 case Triple::UnknownObjectFormat:
5096 return ".llvmbc";
5097 case Triple::GOFF:
5098 llvm_unreachable("GOFF is not yet implemented");
5099 break;
5100 case Triple::SPIRV:
5101 llvm_unreachable("SPIRV is not yet implemented");
5102 break;
5103 case Triple::XCOFF:
5104 llvm_unreachable("XCOFF is not yet implemented");
5105 break;
5106 case Triple::DXContainer:
5107 llvm_unreachable("DXContainer is not yet implemented");
5108 break;
5110 llvm_unreachable("Unimplemented ObjectFormatType");
5113 static const char *getSectionNameForCommandline(const Triple &T) {
5114 switch (T.getObjectFormat()) {
5115 case Triple::MachO:
5116 return "__LLVM,__cmdline";
5117 case Triple::COFF:
5118 case Triple::ELF:
5119 case Triple::Wasm:
5120 case Triple::UnknownObjectFormat:
5121 return ".llvmcmd";
5122 case Triple::GOFF:
5123 llvm_unreachable("GOFF is not yet implemented");
5124 break;
5125 case Triple::SPIRV:
5126 llvm_unreachable("SPIRV is not yet implemented");
5127 break;
5128 case Triple::XCOFF:
5129 llvm_unreachable("XCOFF is not yet implemented");
5130 break;
5131 case Triple::DXContainer:
5132 llvm_unreachable("DXC is not yet implemented");
5133 break;
5135 llvm_unreachable("Unimplemented ObjectFormatType");
5138 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5139 bool EmbedBitcode, bool EmbedCmdline,
5140 const std::vector<uint8_t> &CmdArgs) {
5141 // Save llvm.compiler.used and remove it.
5142 SmallVector<Constant *, 2> UsedArray;
5143 SmallVector<GlobalValue *, 4> UsedGlobals;
5144 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
5145 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5146 for (auto *GV : UsedGlobals) {
5147 if (GV->getName() != "llvm.embedded.module" &&
5148 GV->getName() != "llvm.cmdline")
5149 UsedArray.push_back(
5150 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5152 if (Used)
5153 Used->eraseFromParent();
5155 // Embed the bitcode for the llvm module.
5156 std::string Data;
5157 ArrayRef<uint8_t> ModuleData;
5158 Triple T(M.getTargetTriple());
5160 if (EmbedBitcode) {
5161 if (Buf.getBufferSize() == 0 ||
5162 !isBitcode((const unsigned char *)Buf.getBufferStart(),
5163 (const unsigned char *)Buf.getBufferEnd())) {
5164 // If the input is LLVM Assembly, bitcode is produced by serializing
5165 // the module. Use-lists order need to be preserved in this case.
5166 llvm::raw_string_ostream OS(Data);
5167 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5168 ModuleData =
5169 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5170 } else
5171 // If the input is LLVM bitcode, write the input byte stream directly.
5172 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5173 Buf.getBufferSize());
5175 llvm::Constant *ModuleConstant =
5176 llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5177 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5178 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5179 ModuleConstant);
5180 GV->setSection(getSectionNameForBitcode(T));
5181 // Set alignment to 1 to prevent padding between two contributions from input
5182 // sections after linking.
5183 GV->setAlignment(Align(1));
5184 UsedArray.push_back(
5185 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5186 if (llvm::GlobalVariable *Old =
5187 M.getGlobalVariable("llvm.embedded.module", true)) {
5188 assert(Old->hasZeroLiveUses() &&
5189 "llvm.embedded.module can only be used once in llvm.compiler.used");
5190 GV->takeName(Old);
5191 Old->eraseFromParent();
5192 } else {
5193 GV->setName("llvm.embedded.module");
5196 // Skip if only bitcode needs to be embedded.
5197 if (EmbedCmdline) {
5198 // Embed command-line options.
5199 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5200 CmdArgs.size());
5201 llvm::Constant *CmdConstant =
5202 llvm::ConstantDataArray::get(M.getContext(), CmdData);
5203 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5204 llvm::GlobalValue::PrivateLinkage,
5205 CmdConstant);
5206 GV->setSection(getSectionNameForCommandline(T));
5207 GV->setAlignment(Align(1));
5208 UsedArray.push_back(
5209 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5210 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5211 assert(Old->hasZeroLiveUses() &&
5212 "llvm.cmdline can only be used once in llvm.compiler.used");
5213 GV->takeName(Old);
5214 Old->eraseFromParent();
5215 } else {
5216 GV->setName("llvm.cmdline");
5220 if (UsedArray.empty())
5221 return;
5223 // Recreate llvm.compiler.used.
5224 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5225 auto *NewUsed = new GlobalVariable(
5226 M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5227 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5228 NewUsed->setSection("llvm.metadata");