1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/Analysis/StackSafetyAnalysis.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Bitcode/BitcodeReader.h"
23 #include "llvm/Bitcode/BitcodeWriter.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/DiagnosticPrinter.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMRemarkStreamer.h"
30 #include "llvm/IR/LegacyPassManager.h"
31 #include "llvm/IR/Mangler.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/LTO/LTOBackend.h"
34 #include "llvm/LTO/SummaryBasedOptimizations.h"
35 #include "llvm/Linker/IRMover.h"
36 #include "llvm/MC/TargetRegistry.h"
37 #include "llvm/Object/IRObjectFile.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/FileSystem.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/Path.h"
44 #include "llvm/Support/SHA1.h"
45 #include "llvm/Support/SourceMgr.h"
46 #include "llvm/Support/ThreadPool.h"
47 #include "llvm/Support/Threading.h"
48 #include "llvm/Support/TimeProfiler.h"
49 #include "llvm/Support/ToolOutputFile.h"
50 #include "llvm/Support/VCSRevision.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Transforms/IPO.h"
54 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
55 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
56 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
57 #include "llvm/Transforms/Utils/SplitModule.h"
64 using namespace object
;
66 #define DEBUG_TYPE "lto"
69 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden
,
70 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
73 /// Enable global value internalization in LTO.
74 cl::opt
<bool> EnableLTOInternalization(
75 "enable-lto-internalization", cl::init(true), cl::Hidden
,
76 cl::desc("Enable global value internalization in LTO"));
79 /// Indicate we are linking with an allocator that supports hot/cold operator
81 extern cl::opt
<bool> SupportsHotColdNew
;
83 /// Enable MemProf context disambiguation for thin link.
84 extern cl::opt
<bool> EnableMemProfContextDisambiguation
;
86 // Computes a unique hash for the Module considering the current list of
87 // export/import and other global analysis results.
88 // The hash is produced in \p Key.
89 void llvm::computeLTOCacheKey(
90 SmallString
<40> &Key
, const Config
&Conf
, const ModuleSummaryIndex
&Index
,
91 StringRef ModuleID
, const FunctionImporter::ImportMapTy
&ImportList
,
92 const FunctionImporter::ExportSetTy
&ExportList
,
93 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
94 const GVSummaryMapTy
&DefinedGlobals
,
95 const std::set
<GlobalValue::GUID
> &CfiFunctionDefs
,
96 const std::set
<GlobalValue::GUID
> &CfiFunctionDecls
) {
97 // Compute the unique hash for this entry.
98 // This is based on the current compiler version, the module itself, the
99 // export list, the hash for every single module in the import list, the
100 // list of ResolvedODR for the module, and the list of preserved symbols.
103 // Start with the compiler revision
104 Hasher
.update(LLVM_VERSION_STRING
);
106 Hasher
.update(LLVM_REVISION
);
109 // Include the parts of the LTO configuration that affect code generation.
110 auto AddString
= [&](StringRef Str
) {
112 Hasher
.update(ArrayRef
<uint8_t>{0});
114 auto AddUnsigned
= [&](unsigned I
) {
116 support::endian::write32le(Data
, I
);
117 Hasher
.update(ArrayRef
<uint8_t>{Data
, 4});
119 auto AddUint64
= [&](uint64_t I
) {
121 support::endian::write64le(Data
, I
);
122 Hasher
.update(ArrayRef
<uint8_t>{Data
, 8});
125 // FIXME: Hash more of Options. For now all clients initialize Options from
126 // command-line flags (which is unsupported in production), but may set
127 // RelaxELFRelocations. The clang driver can also pass FunctionSections,
128 // DataSections and DebuggerTuning via command line flags.
129 AddUnsigned(Conf
.Options
.RelaxELFRelocations
);
130 AddUnsigned(Conf
.Options
.FunctionSections
);
131 AddUnsigned(Conf
.Options
.DataSections
);
132 AddUnsigned((unsigned)Conf
.Options
.DebuggerTuning
);
133 for (auto &A
: Conf
.MAttrs
)
136 AddUnsigned(*Conf
.RelocModel
);
140 AddUnsigned(*Conf
.CodeModel
);
143 for (const auto &S
: Conf
.MllvmArgs
)
145 AddUnsigned(Conf
.CGOptLevel
);
146 AddUnsigned(Conf
.CGFileType
);
147 AddUnsigned(Conf
.OptLevel
);
148 AddUnsigned(Conf
.Freestanding
);
149 AddString(Conf
.OptPipeline
);
150 AddString(Conf
.AAPipeline
);
151 AddString(Conf
.OverrideTriple
);
152 AddString(Conf
.DefaultTriple
);
153 AddString(Conf
.DwoDir
);
155 // Include the hash for the current module
156 auto ModHash
= Index
.getModuleHash(ModuleID
);
157 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
159 std::vector
<uint64_t> ExportsGUID
;
160 ExportsGUID
.reserve(ExportList
.size());
161 for (const auto &VI
: ExportList
) {
162 auto GUID
= VI
.getGUID();
163 ExportsGUID
.push_back(GUID
);
166 // Sort the export list elements GUIDs.
167 llvm::sort(ExportsGUID
);
168 for (uint64_t GUID
: ExportsGUID
) {
169 // The export list can impact the internalization, be conservative here
170 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&GUID
, sizeof(GUID
)));
173 // Include the hash for every module we import functions from. The set of
174 // imported symbols for each module may affect code generation and is
175 // sensitive to link order, so include that as well.
176 using ImportMapIteratorTy
= FunctionImporter::ImportMapTy::const_iterator
;
177 std::vector
<ImportMapIteratorTy
> ImportModulesVector
;
178 ImportModulesVector
.reserve(ImportList
.size());
180 for (ImportMapIteratorTy It
= ImportList
.begin(); It
!= ImportList
.end();
182 ImportModulesVector
.push_back(It
);
184 llvm::sort(ImportModulesVector
,
185 [](const ImportMapIteratorTy
&Lhs
, const ImportMapIteratorTy
&Rhs
)
186 -> bool { return Lhs
->getKey() < Rhs
->getKey(); });
187 for (const ImportMapIteratorTy
&EntryIt
: ImportModulesVector
) {
188 auto ModHash
= Index
.getModuleHash(EntryIt
->first());
189 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
191 AddUint64(EntryIt
->second
.size());
192 for (auto &Fn
: EntryIt
->second
)
196 // Include the hash for the resolved ODR.
197 for (auto &Entry
: ResolvedODR
) {
198 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.first
,
199 sizeof(GlobalValue::GUID
)));
200 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.second
,
201 sizeof(GlobalValue::LinkageTypes
)));
204 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
205 // defined in this module.
206 std::set
<GlobalValue::GUID
> UsedCfiDefs
;
207 std::set
<GlobalValue::GUID
> UsedCfiDecls
;
209 // Typeids used in this module.
210 std::set
<GlobalValue::GUID
> UsedTypeIds
;
212 auto AddUsedCfiGlobal
= [&](GlobalValue::GUID ValueGUID
) {
213 if (CfiFunctionDefs
.count(ValueGUID
))
214 UsedCfiDefs
.insert(ValueGUID
);
215 if (CfiFunctionDecls
.count(ValueGUID
))
216 UsedCfiDecls
.insert(ValueGUID
);
219 auto AddUsedThings
= [&](GlobalValueSummary
*GS
) {
221 AddUnsigned(GS
->getVisibility());
222 AddUnsigned(GS
->isLive());
223 AddUnsigned(GS
->canAutoHide());
224 for (const ValueInfo
&VI
: GS
->refs()) {
225 AddUnsigned(VI
.isDSOLocal(Index
.withDSOLocalPropagation()));
226 AddUsedCfiGlobal(VI
.getGUID());
228 if (auto *GVS
= dyn_cast
<GlobalVarSummary
>(GS
)) {
229 AddUnsigned(GVS
->maybeReadOnly());
230 AddUnsigned(GVS
->maybeWriteOnly());
232 if (auto *FS
= dyn_cast
<FunctionSummary
>(GS
)) {
233 for (auto &TT
: FS
->type_tests())
234 UsedTypeIds
.insert(TT
);
235 for (auto &TT
: FS
->type_test_assume_vcalls())
236 UsedTypeIds
.insert(TT
.GUID
);
237 for (auto &TT
: FS
->type_checked_load_vcalls())
238 UsedTypeIds
.insert(TT
.GUID
);
239 for (auto &TT
: FS
->type_test_assume_const_vcalls())
240 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
241 for (auto &TT
: FS
->type_checked_load_const_vcalls())
242 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
243 for (auto &ET
: FS
->calls()) {
244 AddUnsigned(ET
.first
.isDSOLocal(Index
.withDSOLocalPropagation()));
245 AddUsedCfiGlobal(ET
.first
.getGUID());
250 // Include the hash for the linkage type to reflect internalization and weak
251 // resolution, and collect any used type identifier resolutions.
252 for (auto &GS
: DefinedGlobals
) {
253 GlobalValue::LinkageTypes Linkage
= GS
.second
->linkage();
255 ArrayRef
<uint8_t>((const uint8_t *)&Linkage
, sizeof(Linkage
)));
256 AddUsedCfiGlobal(GS
.first
);
257 AddUsedThings(GS
.second
);
260 // Imported functions may introduce new uses of type identifier resolutions,
261 // so we need to collect their used resolutions as well.
262 for (auto &ImpM
: ImportList
)
263 for (auto &ImpF
: ImpM
.second
) {
264 GlobalValueSummary
*S
= Index
.findSummaryInModule(ImpF
, ImpM
.first());
266 // If this is an alias, we also care about any types/etc. that the aliasee
268 if (auto *AS
= dyn_cast_or_null
<AliasSummary
>(S
))
269 AddUsedThings(AS
->getBaseObject());
272 auto AddTypeIdSummary
= [&](StringRef TId
, const TypeIdSummary
&S
) {
275 AddUnsigned(S
.TTRes
.TheKind
);
276 AddUnsigned(S
.TTRes
.SizeM1BitWidth
);
278 AddUint64(S
.TTRes
.AlignLog2
);
279 AddUint64(S
.TTRes
.SizeM1
);
280 AddUint64(S
.TTRes
.BitMask
);
281 AddUint64(S
.TTRes
.InlineBits
);
283 AddUint64(S
.WPDRes
.size());
284 for (auto &WPD
: S
.WPDRes
) {
285 AddUnsigned(WPD
.first
);
286 AddUnsigned(WPD
.second
.TheKind
);
287 AddString(WPD
.second
.SingleImplName
);
289 AddUint64(WPD
.second
.ResByArg
.size());
290 for (auto &ByArg
: WPD
.second
.ResByArg
) {
291 AddUint64(ByArg
.first
.size());
292 for (uint64_t Arg
: ByArg
.first
)
294 AddUnsigned(ByArg
.second
.TheKind
);
295 AddUint64(ByArg
.second
.Info
);
296 AddUnsigned(ByArg
.second
.Byte
);
297 AddUnsigned(ByArg
.second
.Bit
);
302 // Include the hash for all type identifiers used by this module.
303 for (GlobalValue::GUID TId
: UsedTypeIds
) {
304 auto TidIter
= Index
.typeIds().equal_range(TId
);
305 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
)
306 AddTypeIdSummary(It
->second
.first
, It
->second
.second
);
309 AddUnsigned(UsedCfiDefs
.size());
310 for (auto &V
: UsedCfiDefs
)
313 AddUnsigned(UsedCfiDecls
.size());
314 for (auto &V
: UsedCfiDecls
)
317 if (!Conf
.SampleProfile
.empty()) {
318 auto FileOrErr
= MemoryBuffer::getFile(Conf
.SampleProfile
);
320 Hasher
.update(FileOrErr
.get()->getBuffer());
322 if (!Conf
.ProfileRemapping
.empty()) {
323 FileOrErr
= MemoryBuffer::getFile(Conf
.ProfileRemapping
);
325 Hasher
.update(FileOrErr
.get()->getBuffer());
330 Key
= toHex(Hasher
.result());
333 static void thinLTOResolvePrevailingGUID(
334 const Config
&C
, ValueInfo VI
,
335 DenseSet
<GlobalValueSummary
*> &GlobalInvolvedWithAlias
,
336 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
338 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
340 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
341 GlobalValue::VisibilityTypes Visibility
=
342 C
.VisibilityScheme
== Config::ELF
? VI
.getELFVisibility()
343 : GlobalValue::DefaultVisibility
;
344 for (auto &S
: VI
.getSummaryList()) {
345 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
346 // Ignore local and appending linkage values since the linker
347 // doesn't resolve them.
348 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
349 GlobalValue::isAppendingLinkage(S
->linkage()))
351 // We need to emit only one of these. The prevailing module will keep it,
352 // but turned into a weak, while the others will drop it when possible.
353 // This is both a compile-time optimization and a correctness
354 // transformation. This is necessary for correctness when we have exported
355 // a reference - we need to convert the linkonce to weak to
356 // ensure a copy is kept to satisfy the exported reference.
357 // FIXME: We may want to split the compile time and correctness
358 // aspects into separate routines.
359 if (isPrevailing(VI
.getGUID(), S
.get())) {
360 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
)) {
361 S
->setLinkage(GlobalValue::getWeakLinkage(
362 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
363 // The kept copy is eligible for auto-hiding (hidden visibility) if all
364 // copies were (i.e. they were all linkonce_odr global unnamed addr).
365 // If any copy is not (e.g. it was originally weak_odr), then the symbol
366 // must remain externally available (e.g. a weak_odr from an explicitly
367 // instantiated template). Additionally, if it is in the
368 // GUIDPreservedSymbols set, that means that it is visibile outside
369 // the summary (e.g. in a native object or a bitcode file without
370 // summary), and in that case we cannot hide it as it isn't possible to
372 S
->setCanAutoHide(VI
.canAutoHide() &&
373 !GUIDPreservedSymbols
.count(VI
.getGUID()));
375 if (C
.VisibilityScheme
== Config::FromPrevailing
)
376 Visibility
= S
->getVisibility();
378 // Alias and aliasee can't be turned into available_externally.
379 else if (!isa
<AliasSummary
>(S
.get()) &&
380 !GlobalInvolvedWithAlias
.count(S
.get()))
381 S
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
383 // For ELF, set visibility to the computed visibility from summaries. We
384 // don't track visibility from declarations so this may be more relaxed than
385 // the most constraining one.
386 if (C
.VisibilityScheme
== Config::ELF
)
387 S
->setVisibility(Visibility
);
389 if (S
->linkage() != OriginalLinkage
)
390 recordNewLinkage(S
->modulePath(), VI
.getGUID(), S
->linkage());
393 if (C
.VisibilityScheme
== Config::FromPrevailing
) {
394 for (auto &S
: VI
.getSummaryList()) {
395 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
396 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
397 GlobalValue::isAppendingLinkage(S
->linkage()))
399 S
->setVisibility(Visibility
);
404 /// Resolve linkage for prevailing symbols in the \p Index.
406 // We'd like to drop these functions if they are no longer referenced in the
407 // current module. However there is a chance that another module is still
408 // referencing them because of the import. We make sure we always emit at least
410 void llvm::thinLTOResolvePrevailingInIndex(
411 const Config
&C
, ModuleSummaryIndex
&Index
,
412 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
414 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
416 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
417 // We won't optimize the globals that are referenced by an alias for now
418 // Ideally we should turn the alias into a global and duplicate the definition
420 DenseSet
<GlobalValueSummary
*> GlobalInvolvedWithAlias
;
421 for (auto &I
: Index
)
422 for (auto &S
: I
.second
.SummaryList
)
423 if (auto AS
= dyn_cast
<AliasSummary
>(S
.get()))
424 GlobalInvolvedWithAlias
.insert(&AS
->getAliasee());
426 for (auto &I
: Index
)
427 thinLTOResolvePrevailingGUID(C
, Index
.getValueInfo(I
),
428 GlobalInvolvedWithAlias
, isPrevailing
,
429 recordNewLinkage
, GUIDPreservedSymbols
);
432 static bool isWeakObjectWithRWAccess(GlobalValueSummary
*GVS
) {
433 if (auto *VarSummary
= dyn_cast
<GlobalVarSummary
>(GVS
->getBaseObject()))
434 return !VarSummary
->maybeReadOnly() && !VarSummary
->maybeWriteOnly() &&
435 (VarSummary
->linkage() == GlobalValue::WeakODRLinkage
||
436 VarSummary
->linkage() == GlobalValue::LinkOnceODRLinkage
);
440 static void thinLTOInternalizeAndPromoteGUID(
441 ValueInfo VI
, function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
442 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
444 for (auto &S
: VI
.getSummaryList()) {
445 if (isExported(S
->modulePath(), VI
)) {
446 if (GlobalValue::isLocalLinkage(S
->linkage()))
447 S
->setLinkage(GlobalValue::ExternalLinkage
);
448 } else if (EnableLTOInternalization
&&
449 // Ignore local and appending linkage values since the linker
450 // doesn't resolve them.
451 !GlobalValue::isLocalLinkage(S
->linkage()) &&
452 (!GlobalValue::isInterposableLinkage(S
->linkage()) ||
453 isPrevailing(VI
.getGUID(), S
.get())) &&
454 S
->linkage() != GlobalValue::AppendingLinkage
&&
455 // We can't internalize available_externally globals because this
456 // can break function pointer equality.
457 S
->linkage() != GlobalValue::AvailableExternallyLinkage
&&
458 // Functions and read-only variables with linkonce_odr and
459 // weak_odr linkage can be internalized. We can't internalize
460 // linkonce_odr and weak_odr variables which are both modified
461 // and read somewhere in the program because reads and writes
462 // will become inconsistent.
463 !isWeakObjectWithRWAccess(S
.get()))
464 S
->setLinkage(GlobalValue::InternalLinkage
);
468 // Update the linkages in the given \p Index to mark exported values
469 // as external and non-exported values as internal.
470 void llvm::thinLTOInternalizeAndPromoteInIndex(
471 ModuleSummaryIndex
&Index
,
472 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
473 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
475 for (auto &I
: Index
)
476 thinLTOInternalizeAndPromoteGUID(Index
.getValueInfo(I
), isExported
,
480 // Requires a destructor for std::vector<InputModule>.
481 InputFile::~InputFile() = default;
483 Expected
<std::unique_ptr
<InputFile
>> InputFile::create(MemoryBufferRef Object
) {
484 std::unique_ptr
<InputFile
> File(new InputFile
);
486 Expected
<IRSymtabFile
> FOrErr
= readIRSymtab(Object
);
488 return FOrErr
.takeError();
490 File
->TargetTriple
= FOrErr
->TheReader
.getTargetTriple();
491 File
->SourceFileName
= FOrErr
->TheReader
.getSourceFileName();
492 File
->COFFLinkerOpts
= FOrErr
->TheReader
.getCOFFLinkerOpts();
493 File
->DependentLibraries
= FOrErr
->TheReader
.getDependentLibraries();
494 File
->ComdatTable
= FOrErr
->TheReader
.getComdatTable();
496 for (unsigned I
= 0; I
!= FOrErr
->Mods
.size(); ++I
) {
497 size_t Begin
= File
->Symbols
.size();
498 for (const irsymtab::Reader::SymbolRef
&Sym
:
499 FOrErr
->TheReader
.module_symbols(I
))
500 // Skip symbols that are irrelevant to LTO. Note that this condition needs
501 // to match the one in Skip() in LTO::addRegularLTO().
502 if (Sym
.isGlobal() && !Sym
.isFormatSpecific())
503 File
->Symbols
.push_back(Sym
);
504 File
->ModuleSymIndices
.push_back({Begin
, File
->Symbols
.size()});
507 File
->Mods
= FOrErr
->Mods
;
508 File
->Strtab
= std::move(FOrErr
->Strtab
);
509 return std::move(File
);
512 StringRef
InputFile::getName() const {
513 return Mods
[0].getModuleIdentifier();
516 BitcodeModule
&InputFile::getSingleBitcodeModule() {
517 assert(Mods
.size() == 1 && "Expect only one bitcode module");
521 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel
,
523 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel
),
524 Ctx(Conf
), CombinedModule(std::make_unique
<Module
>("ld-temp.o", Ctx
)),
525 Mover(std::make_unique
<IRMover
>(*CombinedModule
)) {}
527 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend
)
528 : Backend(Backend
), CombinedIndex(/*HaveGVs*/ false) {
531 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
534 LTO::LTO(Config Conf
, ThinBackend Backend
,
535 unsigned ParallelCodeGenParallelismLevel
)
536 : Conf(std::move(Conf
)),
537 RegularLTO(ParallelCodeGenParallelismLevel
, this->Conf
),
538 ThinLTO(std::move(Backend
)) {}
540 // Requires a destructor for MapVector<BitcodeModule>.
541 LTO::~LTO() = default;
543 // Add the symbols in the given module to the GlobalResolutions map, and resolve
545 void LTO::addModuleToGlobalRes(ArrayRef
<InputFile::Symbol
> Syms
,
546 ArrayRef
<SymbolResolution
> Res
,
547 unsigned Partition
, bool InSummary
) {
548 auto *ResI
= Res
.begin();
549 auto *ResE
= Res
.end();
551 const Triple
TT(RegularLTO
.CombinedModule
->getTargetTriple());
552 for (const InputFile::Symbol
&Sym
: Syms
) {
553 assert(ResI
!= ResE
);
554 SymbolResolution Res
= *ResI
++;
556 StringRef Name
= Sym
.getName();
557 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the
558 // way they are handled by lld), otherwise we can end up with two
559 // global resolutions (one with and one for a copy of the symbol without).
560 if (TT
.isOSBinFormatCOFF() && Name
.startswith("__imp_"))
561 Name
= Name
.substr(strlen("__imp_"));
562 auto &GlobalRes
= GlobalResolutions
[Name
];
563 GlobalRes
.UnnamedAddr
&= Sym
.isUnnamedAddr();
564 if (Res
.Prevailing
) {
565 assert(!GlobalRes
.Prevailing
&&
566 "Multiple prevailing defs are not allowed");
567 GlobalRes
.Prevailing
= true;
568 GlobalRes
.IRName
= std::string(Sym
.getIRName());
569 } else if (!GlobalRes
.Prevailing
&& GlobalRes
.IRName
.empty()) {
570 // Sometimes it can be two copies of symbol in a module and prevailing
571 // symbol can have no IR name. That might happen if symbol is defined in
572 // module level inline asm block. In case we have multiple modules with
573 // the same symbol we want to use IR name of the prevailing symbol.
574 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
575 // we can later use it to check if there is any prevailing copy in IR.
576 GlobalRes
.IRName
= std::string(Sym
.getIRName());
579 // In rare occasion, the symbol used to initialize GlobalRes has a different
580 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a
581 // symbol is referenced through its mangled name, say @"\01_symbol" while
582 // the IRName is @symbol (the prefix underscore comes from MachO mangling).
583 // In that case, we have the same actual Symbol that can get two different
584 // GUID, leading to some invalid internalization. Workaround this by marking
585 // the GlobalRes external.
587 // FIXME: instead of this check, it would be desirable to compute GUIDs
588 // based on mangled name, but this requires an access to the Target Triple
589 // and would be relatively invasive on the codebase.
590 if (GlobalRes
.IRName
!= Sym
.getIRName()) {
591 GlobalRes
.Partition
= GlobalResolution::External
;
592 GlobalRes
.VisibleOutsideSummary
= true;
595 // Set the partition to external if we know it is re-defined by the linker
596 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
597 // regular object, is referenced from llvm.compiler.used/llvm.used, or was
598 // already recorded as being referenced from a different partition.
599 if (Res
.LinkerRedefined
|| Res
.VisibleToRegularObj
|| Sym
.isUsed() ||
600 (GlobalRes
.Partition
!= GlobalResolution::Unknown
&&
601 GlobalRes
.Partition
!= Partition
)) {
602 GlobalRes
.Partition
= GlobalResolution::External
;
604 // First recorded reference, save the current partition.
605 GlobalRes
.Partition
= Partition
;
607 // Flag as visible outside of summary if visible from a regular object or
608 // from a module that does not have a summary.
609 GlobalRes
.VisibleOutsideSummary
|=
610 (Res
.VisibleToRegularObj
|| Sym
.isUsed() || !InSummary
);
612 GlobalRes
.ExportDynamic
|= Res
.ExportDynamic
;
616 static void writeToResolutionFile(raw_ostream
&OS
, InputFile
*Input
,
617 ArrayRef
<SymbolResolution
> Res
) {
618 StringRef Path
= Input
->getName();
620 auto ResI
= Res
.begin();
621 for (const InputFile::Symbol
&Sym
: Input
->symbols()) {
622 assert(ResI
!= Res
.end());
623 SymbolResolution Res
= *ResI
++;
625 OS
<< "-r=" << Path
<< ',' << Sym
.getName() << ',';
628 if (Res
.FinalDefinitionInLinkageUnit
)
630 if (Res
.VisibleToRegularObj
)
632 if (Res
.LinkerRedefined
)
637 assert(ResI
== Res
.end());
640 Error
LTO::add(std::unique_ptr
<InputFile
> Input
,
641 ArrayRef
<SymbolResolution
> Res
) {
642 assert(!CalledGetMaxTasks
);
644 if (Conf
.ResolutionFile
)
645 writeToResolutionFile(*Conf
.ResolutionFile
, Input
.get(), Res
);
647 if (RegularLTO
.CombinedModule
->getTargetTriple().empty()) {
648 RegularLTO
.CombinedModule
->setTargetTriple(Input
->getTargetTriple());
649 if (Triple(Input
->getTargetTriple()).isOSBinFormatELF())
650 Conf
.VisibilityScheme
= Config::ELF
;
653 const SymbolResolution
*ResI
= Res
.begin();
654 for (unsigned I
= 0; I
!= Input
->Mods
.size(); ++I
)
655 if (Error Err
= addModule(*Input
, I
, ResI
, Res
.end()))
658 assert(ResI
== Res
.end());
659 return Error::success();
662 Error
LTO::addModule(InputFile
&Input
, unsigned ModI
,
663 const SymbolResolution
*&ResI
,
664 const SymbolResolution
*ResE
) {
665 Expected
<BitcodeLTOInfo
> LTOInfo
= Input
.Mods
[ModI
].getLTOInfo();
667 return LTOInfo
.takeError();
669 if (EnableSplitLTOUnit
) {
670 // If only some modules were split, flag this in the index so that
671 // we can skip or error on optimizations that need consistently split
672 // modules (whole program devirt and lower type tests).
673 if (*EnableSplitLTOUnit
!= LTOInfo
->EnableSplitLTOUnit
)
674 ThinLTO
.CombinedIndex
.setPartiallySplitLTOUnits();
676 EnableSplitLTOUnit
= LTOInfo
->EnableSplitLTOUnit
;
678 BitcodeModule BM
= Input
.Mods
[ModI
];
679 auto ModSyms
= Input
.module_symbols(ModI
);
680 addModuleToGlobalRes(ModSyms
, {ResI
, ResE
},
681 LTOInfo
->IsThinLTO
? ThinLTO
.ModuleMap
.size() + 1 : 0,
682 LTOInfo
->HasSummary
);
684 if (LTOInfo
->IsThinLTO
)
685 return addThinLTO(BM
, ModSyms
, ResI
, ResE
);
687 RegularLTO
.EmptyCombinedModule
= false;
688 Expected
<RegularLTOState::AddedModule
> ModOrErr
=
689 addRegularLTO(BM
, ModSyms
, ResI
, ResE
);
691 return ModOrErr
.takeError();
693 if (!LTOInfo
->HasSummary
)
694 return linkRegularLTO(std::move(*ModOrErr
), /*LivenessFromIndex=*/false);
696 // Regular LTO module summaries are added to a dummy module that represents
697 // the combined regular LTO module.
698 if (Error Err
= BM
.readSummary(ThinLTO
.CombinedIndex
, "", -1ull))
700 RegularLTO
.ModsWithSummaries
.push_back(std::move(*ModOrErr
));
701 return Error::success();
704 // Checks whether the given global value is in a non-prevailing comdat
705 // (comdat containing values the linker indicated were not prevailing,
706 // which we then dropped to available_externally), and if so, removes
707 // it from the comdat. This is called for all global values to ensure the
708 // comdat is empty rather than leaving an incomplete comdat. It is needed for
709 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
710 // and thin LTO modules) compilation. Since the regular LTO module will be
711 // linked first in the final native link, we want to make sure the linker
712 // doesn't select any of these incomplete comdats that would be left
713 // in the regular LTO module without this cleanup.
715 handleNonPrevailingComdat(GlobalValue
&GV
,
716 std::set
<const Comdat
*> &NonPrevailingComdats
) {
717 Comdat
*C
= GV
.getComdat();
721 if (!NonPrevailingComdats
.count(C
))
724 // Additionally need to drop all global values from the comdat to
725 // available_externally, to satisfy the COMDAT requirement that all members
726 // are discarded as a unit. The non-local linkage global values avoid
727 // duplicate definition linker errors.
728 GV
.setLinkage(GlobalValue::AvailableExternallyLinkage
);
730 if (auto GO
= dyn_cast
<GlobalObject
>(&GV
))
731 GO
->setComdat(nullptr);
734 // Add a regular LTO object to the link.
735 // The resulting module needs to be linked into the combined LTO module with
737 Expected
<LTO::RegularLTOState::AddedModule
>
738 LTO::addRegularLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
739 const SymbolResolution
*&ResI
,
740 const SymbolResolution
*ResE
) {
741 RegularLTOState::AddedModule Mod
;
742 Expected
<std::unique_ptr
<Module
>> MOrErr
=
743 BM
.getLazyModule(RegularLTO
.Ctx
, /*ShouldLazyLoadMetadata*/ true,
744 /*IsImporting*/ false);
746 return MOrErr
.takeError();
747 Module
&M
= **MOrErr
;
748 Mod
.M
= std::move(*MOrErr
);
750 if (Error Err
= M
.materializeMetadata())
751 return std::move(Err
);
754 ModuleSymbolTable SymTab
;
755 SymTab
.addModule(&M
);
757 for (GlobalVariable
&GV
: M
.globals())
758 if (GV
.hasAppendingLinkage())
759 Mod
.Keep
.push_back(&GV
);
761 DenseSet
<GlobalObject
*> AliasedGlobals
;
762 for (auto &GA
: M
.aliases())
763 if (GlobalObject
*GO
= GA
.getAliaseeObject())
764 AliasedGlobals
.insert(GO
);
766 // In this function we need IR GlobalValues matching the symbols in Syms
767 // (which is not backed by a module), so we need to enumerate them in the same
768 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
769 // matches the order of an irsymtab, but when we read the irsymtab in
770 // InputFile::create we omit some symbols that are irrelevant to LTO. The
771 // Skip() function skips the same symbols from the module as InputFile does
772 // from the symbol table.
773 auto MsymI
= SymTab
.symbols().begin(), MsymE
= SymTab
.symbols().end();
775 while (MsymI
!= MsymE
) {
776 auto Flags
= SymTab
.getSymbolFlags(*MsymI
);
777 if ((Flags
& object::BasicSymbolRef::SF_Global
) &&
778 !(Flags
& object::BasicSymbolRef::SF_FormatSpecific
))
785 std::set
<const Comdat
*> NonPrevailingComdats
;
786 SmallSet
<StringRef
, 2> NonPrevailingAsmSymbols
;
787 for (const InputFile::Symbol
&Sym
: Syms
) {
788 assert(ResI
!= ResE
);
789 SymbolResolution Res
= *ResI
++;
791 assert(MsymI
!= MsymE
);
792 ModuleSymbolTable::Symbol Msym
= *MsymI
++;
795 if (GlobalValue
*GV
= dyn_cast_if_present
<GlobalValue
*>(Msym
)) {
796 if (Res
.Prevailing
) {
797 if (Sym
.isUndefined())
799 Mod
.Keep
.push_back(GV
);
800 // For symbols re-defined with linker -wrap and -defsym options,
801 // set the linkage to weak to inhibit IPO. The linkage will be
802 // restored by the linker.
803 if (Res
.LinkerRedefined
)
804 GV
->setLinkage(GlobalValue::WeakAnyLinkage
);
806 GlobalValue::LinkageTypes OriginalLinkage
= GV
->getLinkage();
807 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
))
808 GV
->setLinkage(GlobalValue::getWeakLinkage(
809 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
810 } else if (isa
<GlobalObject
>(GV
) &&
811 (GV
->hasLinkOnceODRLinkage() || GV
->hasWeakODRLinkage() ||
812 GV
->hasAvailableExternallyLinkage()) &&
813 !AliasedGlobals
.count(cast
<GlobalObject
>(GV
))) {
814 // Any of the above three types of linkage indicates that the
815 // chosen prevailing symbol will have the same semantics as this copy of
816 // the symbol, so we may be able to link it with available_externally
817 // linkage. We will decide later whether to do that when we link this
818 // module (in linkRegularLTO), based on whether it is undefined.
819 Mod
.Keep
.push_back(GV
);
820 GV
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
822 NonPrevailingComdats
.insert(GV
->getComdat());
823 cast
<GlobalObject
>(GV
)->setComdat(nullptr);
826 // Set the 'local' flag based on the linker resolution for this symbol.
827 if (Res
.FinalDefinitionInLinkageUnit
) {
828 GV
->setDSOLocal(true);
829 if (GV
->hasDLLImportStorageClass())
830 GV
->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
831 DefaultStorageClass
);
833 } else if (auto *AS
=
834 dyn_cast_if_present
<ModuleSymbolTable::AsmSymbol
*>(Msym
)) {
835 // Collect non-prevailing symbols.
837 NonPrevailingAsmSymbols
.insert(AS
->first
);
839 llvm_unreachable("unknown symbol type");
842 // Common resolution: collect the maximum size/alignment over all commons.
843 // We also record if we see an instance of a common as prevailing, so that
844 // if none is prevailing we can ignore it later.
845 if (Sym
.isCommon()) {
846 // FIXME: We should figure out what to do about commons defined by asm.
847 // For now they aren't reported correctly by ModuleSymbolTable.
848 auto &CommonRes
= RegularLTO
.Commons
[std::string(Sym
.getIRName())];
849 CommonRes
.Size
= std::max(CommonRes
.Size
, Sym
.getCommonSize());
850 if (uint32_t SymAlignValue
= Sym
.getCommonAlignment()) {
851 CommonRes
.Alignment
=
852 std::max(Align(SymAlignValue
), CommonRes
.Alignment
);
854 CommonRes
.Prevailing
|= Res
.Prevailing
;
858 if (!M
.getComdatSymbolTable().empty())
859 for (GlobalValue
&GV
: M
.global_values())
860 handleNonPrevailingComdat(GV
, NonPrevailingComdats
);
862 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
864 if (!M
.getModuleInlineAsm().empty()) {
865 std::string NewIA
= ".lto_discard";
866 if (!NonPrevailingAsmSymbols
.empty()) {
867 // Don't dicard a symbol if there is a live .symver for it.
868 ModuleSymbolTable::CollectAsmSymvers(
869 M
, [&](StringRef Name
, StringRef Alias
) {
870 if (!NonPrevailingAsmSymbols
.count(Alias
))
871 NonPrevailingAsmSymbols
.erase(Name
);
873 NewIA
+= " " + llvm::join(NonPrevailingAsmSymbols
, ", ");
876 M
.setModuleInlineAsm(NewIA
+ M
.getModuleInlineAsm());
879 assert(MsymI
== MsymE
);
880 return std::move(Mod
);
883 Error
LTO::linkRegularLTO(RegularLTOState::AddedModule Mod
,
884 bool LivenessFromIndex
) {
885 std::vector
<GlobalValue
*> Keep
;
886 for (GlobalValue
*GV
: Mod
.Keep
) {
887 if (LivenessFromIndex
&& !ThinLTO
.CombinedIndex
.isGUIDLive(GV
->getGUID())) {
888 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
889 if (DiagnosticOutputFile
) {
890 if (Error Err
= F
->materialize())
892 OptimizationRemarkEmitter
ORE(F
, nullptr);
893 ORE
.emit(OptimizationRemark(DEBUG_TYPE
, "deadfunction", F
)
894 << ore::NV("Function", F
)
895 << " not added to the combined module ");
901 if (!GV
->hasAvailableExternallyLinkage()) {
906 // Only link available_externally definitions if we don't already have a
908 GlobalValue
*CombinedGV
=
909 RegularLTO
.CombinedModule
->getNamedValue(GV
->getName());
910 if (CombinedGV
&& !CombinedGV
->isDeclaration())
916 return RegularLTO
.Mover
->move(std::move(Mod
.M
), Keep
, nullptr,
917 /* IsPerformingImport */ false);
920 // Add a ThinLTO module to the link.
921 Error
LTO::addThinLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
922 const SymbolResolution
*&ResI
,
923 const SymbolResolution
*ResE
) {
924 const SymbolResolution
*ResITmp
= ResI
;
925 for (const InputFile::Symbol
&Sym
: Syms
) {
926 assert(ResITmp
!= ResE
);
927 SymbolResolution Res
= *ResITmp
++;
929 if (!Sym
.getIRName().empty()) {
930 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
931 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
933 ThinLTO
.PrevailingModuleForGUID
[GUID
] = BM
.getModuleIdentifier();
937 uint64_t ModuleId
= ThinLTO
.ModuleMap
.size();
939 BM
.readSummary(ThinLTO
.CombinedIndex
, BM
.getModuleIdentifier(),
940 ModuleId
, [&](GlobalValue::GUID GUID
) {
941 return ThinLTO
.PrevailingModuleForGUID
[GUID
] ==
942 BM
.getModuleIdentifier();
945 LLVM_DEBUG(dbgs() << "Module " << ModuleId
<< ": " << BM
.getModuleIdentifier()
948 for (const InputFile::Symbol
&Sym
: Syms
) {
949 assert(ResI
!= ResE
);
950 SymbolResolution Res
= *ResI
++;
952 if (!Sym
.getIRName().empty()) {
953 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
954 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
955 if (Res
.Prevailing
) {
956 assert(ThinLTO
.PrevailingModuleForGUID
[GUID
] ==
957 BM
.getModuleIdentifier());
959 // For linker redefined symbols (via --wrap or --defsym) we want to
960 // switch the linkage to `weak` to prevent IPOs from happening.
961 // Find the summary in the module for this very GV and record the new
962 // linkage so that we can switch it when we import the GV.
963 if (Res
.LinkerRedefined
)
964 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
965 GUID
, BM
.getModuleIdentifier()))
966 S
->setLinkage(GlobalValue::WeakAnyLinkage
);
969 // If the linker resolved the symbol to a local definition then mark it
970 // as local in the summary for the module we are adding.
971 if (Res
.FinalDefinitionInLinkageUnit
) {
972 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
973 GUID
, BM
.getModuleIdentifier())) {
974 S
->setDSOLocal(true);
980 if (!ThinLTO
.ModuleMap
.insert({BM
.getModuleIdentifier(), BM
}).second
)
981 return make_error
<StringError
>(
982 "Expected at most one ThinLTO module per bitcode file",
983 inconvertibleErrorCode());
985 if (!Conf
.ThinLTOModulesToCompile
.empty()) {
986 if (!ThinLTO
.ModulesToCompile
)
987 ThinLTO
.ModulesToCompile
= ModuleMapType();
988 // This is a fuzzy name matching where only modules with name containing the
989 // specified switch values are going to be compiled.
990 for (const std::string
&Name
: Conf
.ThinLTOModulesToCompile
) {
991 if (BM
.getModuleIdentifier().contains(Name
)) {
992 ThinLTO
.ModulesToCompile
->insert({BM
.getModuleIdentifier(), BM
});
993 llvm::errs() << "[ThinLTO] Selecting " << BM
.getModuleIdentifier()
999 return Error::success();
1002 unsigned LTO::getMaxTasks() const {
1003 CalledGetMaxTasks
= true;
1004 auto ModuleCount
= ThinLTO
.ModulesToCompile
? ThinLTO
.ModulesToCompile
->size()
1005 : ThinLTO
.ModuleMap
.size();
1006 return RegularLTO
.ParallelCodeGenParallelismLevel
+ ModuleCount
;
1009 // If only some of the modules were split, we cannot correctly handle
1010 // code that contains type tests or type checked loads.
1011 Error
LTO::checkPartiallySplit() {
1012 if (!ThinLTO
.CombinedIndex
.partiallySplitLTOUnits())
1013 return Error::success();
1015 Function
*TypeTestFunc
= RegularLTO
.CombinedModule
->getFunction(
1016 Intrinsic::getName(Intrinsic::type_test
));
1017 Function
*TypeCheckedLoadFunc
= RegularLTO
.CombinedModule
->getFunction(
1018 Intrinsic::getName(Intrinsic::type_checked_load
));
1020 // First check if there are type tests / type checked loads in the
1021 // merged regular LTO module IR.
1022 if ((TypeTestFunc
&& !TypeTestFunc
->use_empty()) ||
1023 (TypeCheckedLoadFunc
&& !TypeCheckedLoadFunc
->use_empty()))
1024 return make_error
<StringError
>(
1025 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1026 inconvertibleErrorCode());
1028 // Otherwise check if there are any recorded in the combined summary from the
1030 for (auto &P
: ThinLTO
.CombinedIndex
) {
1031 for (auto &S
: P
.second
.SummaryList
) {
1032 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
1035 if (!FS
->type_test_assume_vcalls().empty() ||
1036 !FS
->type_checked_load_vcalls().empty() ||
1037 !FS
->type_test_assume_const_vcalls().empty() ||
1038 !FS
->type_checked_load_const_vcalls().empty() ||
1039 !FS
->type_tests().empty())
1040 return make_error
<StringError
>(
1041 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1042 inconvertibleErrorCode());
1045 return Error::success();
1048 Error
LTO::run(AddStreamFn AddStream
, FileCache Cache
) {
1049 // Compute "dead" symbols, we don't want to import/export these!
1050 DenseSet
<GlobalValue::GUID
> GUIDPreservedSymbols
;
1051 DenseMap
<GlobalValue::GUID
, PrevailingType
> GUIDPrevailingResolutions
;
1052 for (auto &Res
: GlobalResolutions
) {
1053 // Normally resolution have IR name of symbol. We can do nothing here
1054 // otherwise. See comments in GlobalResolution struct for more details.
1055 if (Res
.second
.IRName
.empty())
1058 GlobalValue::GUID GUID
= GlobalValue::getGUID(
1059 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1061 if (Res
.second
.VisibleOutsideSummary
&& Res
.second
.Prevailing
)
1062 GUIDPreservedSymbols
.insert(GUID
);
1064 if (Res
.second
.ExportDynamic
)
1065 DynamicExportSymbols
.insert(GUID
);
1067 GUIDPrevailingResolutions
[GUID
] =
1068 Res
.second
.Prevailing
? PrevailingType::Yes
: PrevailingType::No
;
1071 auto isPrevailing
= [&](GlobalValue::GUID G
) {
1072 auto It
= GUIDPrevailingResolutions
.find(G
);
1073 if (It
== GUIDPrevailingResolutions
.end())
1074 return PrevailingType::Unknown
;
1077 computeDeadSymbolsWithConstProp(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
,
1078 isPrevailing
, Conf
.OptLevel
> 0);
1080 // Setup output file to emit statistics.
1081 auto StatsFileOrErr
= setupStatsFile(Conf
.StatsFile
);
1082 if (!StatsFileOrErr
)
1083 return StatsFileOrErr
.takeError();
1084 std::unique_ptr
<ToolOutputFile
> StatsFile
= std::move(StatsFileOrErr
.get());
1086 // TODO: Ideally this would be controlled automatically by detecting that we
1087 // are linking with an allocator that supports these interfaces, rather than
1088 // an internal option (which would still be needed for tests, however). For
1089 // example, if the library exported a symbol like __malloc_hot_cold the linker
1090 // could recognize that and set a flag in the lto::Config.
1091 if (SupportsHotColdNew
)
1092 ThinLTO
.CombinedIndex
.setWithSupportsHotColdNew();
1094 Error Result
= runRegularLTO(AddStream
);
1096 Result
= runThinLTO(AddStream
, Cache
, GUIDPreservedSymbols
);
1099 PrintStatisticsJSON(StatsFile
->os());
1104 void lto::updateMemProfAttributes(Module
&Mod
,
1105 const ModuleSummaryIndex
&Index
) {
1106 if (Index
.withSupportsHotColdNew())
1109 // The profile matcher applies hotness attributes directly for allocations,
1110 // and those will cause us to generate calls to the hot/cold interfaces
1111 // unconditionally. If supports-hot-cold-new was not enabled in the LTO
1112 // link then assume we don't want these calls (e.g. not linking with
1113 // the appropriate library, or otherwise trying to disable this behavior).
1114 for (auto &F
: Mod
) {
1115 for (auto &BB
: F
) {
1116 for (auto &I
: BB
) {
1117 auto *CI
= dyn_cast
<CallBase
>(&I
);
1120 if (CI
->hasFnAttr("memprof"))
1121 CI
->removeFnAttr("memprof");
1122 // Strip off all memprof metadata as it is no longer needed.
1123 // Importantly, this avoids the addition of new memprof attributes
1124 // after inlining propagation.
1125 // TODO: If we support additional types of MemProf metadata beyond hot
1126 // and cold, we will need to update the metadata based on the allocator
1127 // APIs supported instead of completely stripping all.
1128 CI
->setMetadata(LLVMContext::MD_memprof
, nullptr);
1129 CI
->setMetadata(LLVMContext::MD_callsite
, nullptr);
1135 Error
LTO::runRegularLTO(AddStreamFn AddStream
) {
1136 // Setup optimization remarks.
1137 auto DiagFileOrErr
= lto::setupLLVMOptimizationRemarks(
1138 RegularLTO
.CombinedModule
->getContext(), Conf
.RemarksFilename
,
1139 Conf
.RemarksPasses
, Conf
.RemarksFormat
, Conf
.RemarksWithHotness
,
1140 Conf
.RemarksHotnessThreshold
);
1142 return DiagFileOrErr
.takeError();
1143 DiagnosticOutputFile
= std::move(*DiagFileOrErr
);
1145 // Finalize linking of regular LTO modules containing summaries now that
1146 // we have computed liveness information.
1147 for (auto &M
: RegularLTO
.ModsWithSummaries
)
1148 if (Error Err
= linkRegularLTO(std::move(M
),
1149 /*LivenessFromIndex=*/true))
1152 // Ensure we don't have inconsistently split LTO units with type tests.
1153 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take
1154 // this path both cases but eventually this should be split into two and
1155 // do the ThinLTO checks in `runThinLTO`.
1156 if (Error Err
= checkPartiallySplit())
1159 // Make sure commons have the right size/alignment: we kept the largest from
1160 // all the prevailing when adding the inputs, and we apply it here.
1161 const DataLayout
&DL
= RegularLTO
.CombinedModule
->getDataLayout();
1162 for (auto &I
: RegularLTO
.Commons
) {
1163 if (!I
.second
.Prevailing
)
1164 // Don't do anything if no instance of this common was prevailing.
1166 GlobalVariable
*OldGV
= RegularLTO
.CombinedModule
->getNamedGlobal(I
.first
);
1167 if (OldGV
&& DL
.getTypeAllocSize(OldGV
->getValueType()) == I
.second
.Size
) {
1168 // Don't create a new global if the type is already correct, just make
1169 // sure the alignment is correct.
1170 OldGV
->setAlignment(I
.second
.Alignment
);
1174 ArrayType::get(Type::getInt8Ty(RegularLTO
.Ctx
), I
.second
.Size
);
1175 auto *GV
= new GlobalVariable(*RegularLTO
.CombinedModule
, Ty
, false,
1176 GlobalValue::CommonLinkage
,
1177 ConstantAggregateZero::get(Ty
), "");
1178 GV
->setAlignment(I
.second
.Alignment
);
1180 OldGV
->replaceAllUsesWith(ConstantExpr::getBitCast(GV
, OldGV
->getType()));
1181 GV
->takeName(OldGV
);
1182 OldGV
->eraseFromParent();
1184 GV
->setName(I
.first
);
1188 updateMemProfAttributes(*RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
);
1190 // If allowed, upgrade public vcall visibility metadata to linkage unit
1191 // visibility before whole program devirtualization in the optimizer.
1192 updateVCallVisibilityInModule(*RegularLTO
.CombinedModule
,
1193 Conf
.HasWholeProgramVisibility
,
1194 DynamicExportSymbols
);
1195 updatePublicTypeTestCalls(*RegularLTO
.CombinedModule
,
1196 Conf
.HasWholeProgramVisibility
);
1198 if (Conf
.PreOptModuleHook
&&
1199 !Conf
.PreOptModuleHook(0, *RegularLTO
.CombinedModule
))
1200 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1202 if (!Conf
.CodeGenOnly
) {
1203 for (const auto &R
: GlobalResolutions
) {
1204 if (!R
.second
.isPrevailingIRSymbol())
1206 if (R
.second
.Partition
!= 0 &&
1207 R
.second
.Partition
!= GlobalResolution::External
)
1211 RegularLTO
.CombinedModule
->getNamedValue(R
.second
.IRName
);
1212 // Ignore symbols defined in other partitions.
1213 // Also skip declarations, which are not allowed to have internal linkage.
1214 if (!GV
|| GV
->hasLocalLinkage() || GV
->isDeclaration())
1216 GV
->setUnnamedAddr(R
.second
.UnnamedAddr
? GlobalValue::UnnamedAddr::Global
1217 : GlobalValue::UnnamedAddr::None
);
1218 if (EnableLTOInternalization
&& R
.second
.Partition
== 0)
1219 GV
->setLinkage(GlobalValue::InternalLinkage
);
1222 RegularLTO
.CombinedModule
->addModuleFlag(Module::Error
, "LTOPostLink", 1);
1224 if (Conf
.PostInternalizeModuleHook
&&
1225 !Conf
.PostInternalizeModuleHook(0, *RegularLTO
.CombinedModule
))
1226 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1229 if (!RegularLTO
.EmptyCombinedModule
|| Conf
.AlwaysEmitRegularLTOObj
) {
1231 backend(Conf
, AddStream
, RegularLTO
.ParallelCodeGenParallelismLevel
,
1232 *RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
))
1236 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1239 static const char *libcallRoutineNames
[] = {
1240 #define HANDLE_LIBCALL(code, name) name,
1241 #include "llvm/IR/RuntimeLibcalls.def"
1242 #undef HANDLE_LIBCALL
1245 ArrayRef
<const char*> LTO::getRuntimeLibcallSymbols() {
1246 return ArrayRef(libcallRoutineNames
);
1249 /// This class defines the interface to the ThinLTO backend.
1250 class lto::ThinBackendProc
{
1253 ModuleSummaryIndex
&CombinedIndex
;
1254 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
;
1255 lto::IndexWriteCallback OnWrite
;
1256 bool ShouldEmitImportsFiles
;
1259 ThinBackendProc(const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1260 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1261 lto::IndexWriteCallback OnWrite
, bool ShouldEmitImportsFiles
)
1262 : Conf(Conf
), CombinedIndex(CombinedIndex
),
1263 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries
),
1264 OnWrite(OnWrite
), ShouldEmitImportsFiles(ShouldEmitImportsFiles
) {}
1266 virtual ~ThinBackendProc() = default;
1267 virtual Error
start(
1268 unsigned Task
, BitcodeModule BM
,
1269 const FunctionImporter::ImportMapTy
&ImportList
,
1270 const FunctionImporter::ExportSetTy
&ExportList
,
1271 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1272 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) = 0;
1273 virtual Error
wait() = 0;
1274 virtual unsigned getThreadCount() = 0;
1276 // Write sharded indices and (optionally) imports to disk
1277 Error
emitFiles(const FunctionImporter::ImportMapTy
&ImportList
,
1278 llvm::StringRef ModulePath
,
1279 const std::string
&NewModulePath
) {
1280 std::map
<std::string
, GVSummaryMapTy
> ModuleToSummariesForIndex
;
1282 gatherImportedSummariesForModule(ModulePath
, ModuleToDefinedGVSummaries
,
1283 ImportList
, ModuleToSummariesForIndex
);
1285 raw_fd_ostream
OS(NewModulePath
+ ".thinlto.bc", EC
,
1286 sys::fs::OpenFlags::OF_None
);
1288 return errorCodeToError(EC
);
1289 writeIndexToFile(CombinedIndex
, OS
, &ModuleToSummariesForIndex
);
1291 if (ShouldEmitImportsFiles
) {
1292 EC
= EmitImportsFiles(ModulePath
, NewModulePath
+ ".imports",
1293 ModuleToSummariesForIndex
);
1295 return errorCodeToError(EC
);
1297 return Error::success();
1302 class InProcessThinBackend
: public ThinBackendProc
{
1303 ThreadPool BackendThreadPool
;
1304 AddStreamFn AddStream
;
1306 std::set
<GlobalValue::GUID
> CfiFunctionDefs
;
1307 std::set
<GlobalValue::GUID
> CfiFunctionDecls
;
1309 std::optional
<Error
> Err
;
1312 bool ShouldEmitIndexFiles
;
1315 InProcessThinBackend(
1316 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1317 ThreadPoolStrategy ThinLTOParallelism
,
1318 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1319 AddStreamFn AddStream
, FileCache Cache
, lto::IndexWriteCallback OnWrite
,
1320 bool ShouldEmitIndexFiles
, bool ShouldEmitImportsFiles
)
1321 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
,
1322 OnWrite
, ShouldEmitImportsFiles
),
1323 BackendThreadPool(ThinLTOParallelism
), AddStream(std::move(AddStream
)),
1324 Cache(std::move(Cache
)), ShouldEmitIndexFiles(ShouldEmitIndexFiles
) {
1325 for (auto &Name
: CombinedIndex
.cfiFunctionDefs())
1326 CfiFunctionDefs
.insert(
1327 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1328 for (auto &Name
: CombinedIndex
.cfiFunctionDecls())
1329 CfiFunctionDecls
.insert(
1330 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1333 Error
runThinLTOBackendThread(
1334 AddStreamFn AddStream
, FileCache Cache
, unsigned Task
, BitcodeModule BM
,
1335 ModuleSummaryIndex
&CombinedIndex
,
1336 const FunctionImporter::ImportMapTy
&ImportList
,
1337 const FunctionImporter::ExportSetTy
&ExportList
,
1338 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1339 const GVSummaryMapTy
&DefinedGlobals
,
1340 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1341 auto RunThinBackend
= [&](AddStreamFn AddStream
) {
1342 LTOLLVMContext
BackendContext(Conf
);
1343 Expected
<std::unique_ptr
<Module
>> MOrErr
= BM
.parseModule(BackendContext
);
1345 return MOrErr
.takeError();
1347 return thinBackend(Conf
, Task
, AddStream
, **MOrErr
, CombinedIndex
,
1348 ImportList
, DefinedGlobals
, &ModuleMap
);
1351 auto ModuleID
= BM
.getModuleIdentifier();
1353 if (ShouldEmitIndexFiles
) {
1354 if (auto E
= emitFiles(ImportList
, ModuleID
, ModuleID
.str()))
1358 if (!Cache
|| !CombinedIndex
.modulePaths().count(ModuleID
) ||
1359 all_of(CombinedIndex
.getModuleHash(ModuleID
),
1360 [](uint32_t V
) { return V
== 0; }))
1361 // Cache disabled or no entry for this module in the combined index or
1363 return RunThinBackend(AddStream
);
1365 SmallString
<40> Key
;
1366 // The module may be cached, this helps handling it.
1367 computeLTOCacheKey(Key
, Conf
, CombinedIndex
, ModuleID
, ImportList
,
1368 ExportList
, ResolvedODR
, DefinedGlobals
, CfiFunctionDefs
,
1370 Expected
<AddStreamFn
> CacheAddStreamOrErr
= Cache(Task
, Key
, ModuleID
);
1371 if (Error Err
= CacheAddStreamOrErr
.takeError())
1373 AddStreamFn
&CacheAddStream
= *CacheAddStreamOrErr
;
1375 return RunThinBackend(CacheAddStream
);
1377 return Error::success();
1381 unsigned Task
, BitcodeModule BM
,
1382 const FunctionImporter::ImportMapTy
&ImportList
,
1383 const FunctionImporter::ExportSetTy
&ExportList
,
1384 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1385 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1386 StringRef ModulePath
= BM
.getModuleIdentifier();
1387 assert(ModuleToDefinedGVSummaries
.count(ModulePath
));
1388 const GVSummaryMapTy
&DefinedGlobals
=
1389 ModuleToDefinedGVSummaries
.find(ModulePath
)->second
;
1390 BackendThreadPool
.async(
1391 [=](BitcodeModule BM
, ModuleSummaryIndex
&CombinedIndex
,
1392 const FunctionImporter::ImportMapTy
&ImportList
,
1393 const FunctionImporter::ExportSetTy
&ExportList
,
1394 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>
1396 const GVSummaryMapTy
&DefinedGlobals
,
1397 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1398 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1399 timeTraceProfilerInitialize(Conf
.TimeTraceGranularity
,
1401 Error E
= runThinLTOBackendThread(
1402 AddStream
, Cache
, Task
, BM
, CombinedIndex
, ImportList
, ExportList
,
1403 ResolvedODR
, DefinedGlobals
, ModuleMap
);
1405 std::unique_lock
<std::mutex
> L(ErrMu
);
1407 Err
= joinErrors(std::move(*Err
), std::move(E
));
1411 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1412 timeTraceProfilerFinishThread();
1414 BM
, std::ref(CombinedIndex
), std::ref(ImportList
), std::ref(ExportList
),
1415 std::ref(ResolvedODR
), std::ref(DefinedGlobals
), std::ref(ModuleMap
));
1418 OnWrite(std::string(ModulePath
));
1419 return Error::success();
1422 Error
wait() override
{
1423 BackendThreadPool
.wait();
1425 return std::move(*Err
);
1427 return Error::success();
1430 unsigned getThreadCount() override
{
1431 return BackendThreadPool
.getThreadCount();
1434 } // end anonymous namespace
1436 ThinBackend
lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism
,
1437 lto::IndexWriteCallback OnWrite
,
1438 bool ShouldEmitIndexFiles
,
1439 bool ShouldEmitImportsFiles
) {
1440 return [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1441 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1442 AddStreamFn AddStream
, FileCache Cache
) {
1443 return std::make_unique
<InProcessThinBackend
>(
1444 Conf
, CombinedIndex
, Parallelism
, ModuleToDefinedGVSummaries
, AddStream
,
1445 Cache
, OnWrite
, ShouldEmitIndexFiles
, ShouldEmitImportsFiles
);
1449 // Given the original \p Path to an output file, replace any path
1450 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1451 // resulting directory if it does not yet exist.
1452 std::string
lto::getThinLTOOutputFile(StringRef Path
, StringRef OldPrefix
,
1453 StringRef NewPrefix
) {
1454 if (OldPrefix
.empty() && NewPrefix
.empty())
1455 return std::string(Path
);
1456 SmallString
<128> NewPath(Path
);
1457 llvm::sys::path::replace_path_prefix(NewPath
, OldPrefix
, NewPrefix
);
1458 StringRef ParentPath
= llvm::sys::path::parent_path(NewPath
.str());
1459 if (!ParentPath
.empty()) {
1460 // Make sure the new directory exists, creating it if necessary.
1461 if (std::error_code EC
= llvm::sys::fs::create_directories(ParentPath
))
1462 llvm::errs() << "warning: could not create directory '" << ParentPath
1463 << "': " << EC
.message() << '\n';
1465 return std::string(NewPath
.str());
1469 class WriteIndexesThinBackend
: public ThinBackendProc
{
1470 std::string OldPrefix
, NewPrefix
, NativeObjectPrefix
;
1471 raw_fd_ostream
*LinkedObjectsFile
;
1474 WriteIndexesThinBackend(
1475 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1476 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1477 std::string OldPrefix
, std::string NewPrefix
,
1478 std::string NativeObjectPrefix
, bool ShouldEmitImportsFiles
,
1479 raw_fd_ostream
*LinkedObjectsFile
, lto::IndexWriteCallback OnWrite
)
1480 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
,
1481 OnWrite
, ShouldEmitImportsFiles
),
1482 OldPrefix(OldPrefix
), NewPrefix(NewPrefix
),
1483 NativeObjectPrefix(NativeObjectPrefix
),
1484 LinkedObjectsFile(LinkedObjectsFile
) {}
1487 unsigned Task
, BitcodeModule BM
,
1488 const FunctionImporter::ImportMapTy
&ImportList
,
1489 const FunctionImporter::ExportSetTy
&ExportList
,
1490 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1491 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1492 StringRef ModulePath
= BM
.getModuleIdentifier();
1493 std::string NewModulePath
=
1494 getThinLTOOutputFile(ModulePath
, OldPrefix
, NewPrefix
);
1496 if (LinkedObjectsFile
) {
1497 std::string ObjectPrefix
=
1498 NativeObjectPrefix
.empty() ? NewPrefix
: NativeObjectPrefix
;
1499 std::string LinkedObjectsFilePath
=
1500 getThinLTOOutputFile(ModulePath
, OldPrefix
, ObjectPrefix
);
1501 *LinkedObjectsFile
<< LinkedObjectsFilePath
<< '\n';
1504 if (auto E
= emitFiles(ImportList
, ModulePath
, NewModulePath
))
1508 OnWrite(std::string(ModulePath
));
1509 return Error::success();
1512 Error
wait() override
{ return Error::success(); }
1514 // WriteIndexesThinBackend should always return 1 to prevent module
1515 // re-ordering and avoid non-determinism in the final link.
1516 unsigned getThreadCount() override
{ return 1; }
1518 } // end anonymous namespace
1520 ThinBackend
lto::createWriteIndexesThinBackend(
1521 std::string OldPrefix
, std::string NewPrefix
,
1522 std::string NativeObjectPrefix
, bool ShouldEmitImportsFiles
,
1523 raw_fd_ostream
*LinkedObjectsFile
, IndexWriteCallback OnWrite
) {
1524 return [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1525 const StringMap
<GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1526 AddStreamFn AddStream
, FileCache Cache
) {
1527 return std::make_unique
<WriteIndexesThinBackend
>(
1528 Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
, OldPrefix
, NewPrefix
,
1529 NativeObjectPrefix
, ShouldEmitImportsFiles
, LinkedObjectsFile
, OnWrite
);
1533 Error
LTO::runThinLTO(AddStreamFn AddStream
, FileCache Cache
,
1534 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
1535 ThinLTO
.CombinedIndex
.releaseTemporaryMemory();
1536 timeTraceProfilerBegin("ThinLink", StringRef(""));
1537 auto TimeTraceScopeExit
= llvm::make_scope_exit([]() {
1538 if (llvm::timeTraceProfilerEnabled())
1539 llvm::timeTraceProfilerEnd();
1541 if (ThinLTO
.ModuleMap
.empty())
1542 return Error::success();
1544 if (ThinLTO
.ModulesToCompile
&& ThinLTO
.ModulesToCompile
->empty()) {
1545 llvm::errs() << "warning: [ThinLTO] No module compiled\n";
1546 return Error::success();
1549 if (Conf
.CombinedIndexHook
&&
1550 !Conf
.CombinedIndexHook(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
))
1551 return Error::success();
1553 // Collect for each module the list of function it defines (GUID ->
1555 StringMap
<GVSummaryMapTy
>
1556 ModuleToDefinedGVSummaries(ThinLTO
.ModuleMap
.size());
1557 ThinLTO
.CombinedIndex
.collectDefinedGVSummariesPerModule(
1558 ModuleToDefinedGVSummaries
);
1559 // Create entries for any modules that didn't have any GV summaries
1560 // (either they didn't have any GVs to start with, or we suppressed
1561 // generation of the summaries because they e.g. had inline assembly
1562 // uses that couldn't be promoted/renamed on export). This is so
1563 // InProcessThinBackend::start can still launch a backend thread, which
1564 // is passed the map of summaries for the module, without any special
1565 // handling for this case.
1566 for (auto &Mod
: ThinLTO
.ModuleMap
)
1567 if (!ModuleToDefinedGVSummaries
.count(Mod
.first
))
1568 ModuleToDefinedGVSummaries
.try_emplace(Mod
.first
);
1570 // Synthesize entry counts for functions in the CombinedIndex.
1571 computeSyntheticCounts(ThinLTO
.CombinedIndex
);
1573 StringMap
<FunctionImporter::ImportMapTy
> ImportLists(
1574 ThinLTO
.ModuleMap
.size());
1575 StringMap
<FunctionImporter::ExportSetTy
> ExportLists(
1576 ThinLTO
.ModuleMap
.size());
1577 StringMap
<std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>> ResolvedODR
;
1580 ThinLTO
.CombinedIndex
.dumpSCCs(outs());
1582 std::set
<GlobalValue::GUID
> ExportedGUIDs
;
1584 if (hasWholeProgramVisibility(Conf
.HasWholeProgramVisibility
))
1585 ThinLTO
.CombinedIndex
.setWithWholeProgramVisibility();
1586 // If allowed, upgrade public vcall visibility to linkage unit visibility in
1587 // the summaries before whole program devirtualization below.
1588 updateVCallVisibilityInIndex(ThinLTO
.CombinedIndex
,
1589 Conf
.HasWholeProgramVisibility
,
1590 DynamicExportSymbols
);
1592 // Perform index-based WPD. This will return immediately if there are
1593 // no index entries in the typeIdMetadata map (e.g. if we are instead
1594 // performing IR-based WPD in hybrid regular/thin LTO mode).
1595 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> LocalWPDTargetsMap
;
1596 runWholeProgramDevirtOnIndex(ThinLTO
.CombinedIndex
, ExportedGUIDs
,
1597 LocalWPDTargetsMap
);
1599 auto isPrevailing
= [&](GlobalValue::GUID GUID
, const GlobalValueSummary
*S
) {
1600 return ThinLTO
.PrevailingModuleForGUID
[GUID
] == S
->modulePath();
1602 if (EnableMemProfContextDisambiguation
) {
1603 MemProfContextDisambiguation ContextDisambiguation
;
1604 ContextDisambiguation
.run(ThinLTO
.CombinedIndex
, isPrevailing
);
1607 if (Conf
.OptLevel
> 0)
1608 ComputeCrossModuleImport(ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1609 isPrevailing
, ImportLists
, ExportLists
);
1611 // Figure out which symbols need to be internalized. This also needs to happen
1612 // at -O0 because summary-based DCE is implemented using internalization, and
1613 // we must apply DCE consistently with the full LTO module in order to avoid
1614 // undefined references during the final link.
1615 for (auto &Res
: GlobalResolutions
) {
1616 // If the symbol does not have external references or it is not prevailing,
1617 // then not need to mark it as exported from a ThinLTO partition.
1618 if (Res
.second
.Partition
!= GlobalResolution::External
||
1619 !Res
.second
.isPrevailingIRSymbol())
1621 auto GUID
= GlobalValue::getGUID(
1622 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1623 // Mark exported unless index-based analysis determined it to be dead.
1624 if (ThinLTO
.CombinedIndex
.isGUIDLive(GUID
))
1625 ExportedGUIDs
.insert(GUID
);
1628 // Any functions referenced by the jump table in the regular LTO object must
1630 for (auto &Def
: ThinLTO
.CombinedIndex
.cfiFunctionDefs())
1631 ExportedGUIDs
.insert(
1632 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def
)));
1633 for (auto &Decl
: ThinLTO
.CombinedIndex
.cfiFunctionDecls())
1634 ExportedGUIDs
.insert(
1635 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl
)));
1637 auto isExported
= [&](StringRef ModuleIdentifier
, ValueInfo VI
) {
1638 const auto &ExportList
= ExportLists
.find(ModuleIdentifier
);
1639 return (ExportList
!= ExportLists
.end() && ExportList
->second
.count(VI
)) ||
1640 ExportedGUIDs
.count(VI
.getGUID());
1643 // Update local devirtualized targets that were exported by cross-module
1644 // importing or by other devirtualizations marked in the ExportedGUIDs set.
1645 updateIndexWPDForExports(ThinLTO
.CombinedIndex
, isExported
,
1646 LocalWPDTargetsMap
);
1648 thinLTOInternalizeAndPromoteInIndex(ThinLTO
.CombinedIndex
, isExported
,
1651 auto recordNewLinkage
= [&](StringRef ModuleIdentifier
,
1652 GlobalValue::GUID GUID
,
1653 GlobalValue::LinkageTypes NewLinkage
) {
1654 ResolvedODR
[ModuleIdentifier
][GUID
] = NewLinkage
;
1656 thinLTOResolvePrevailingInIndex(Conf
, ThinLTO
.CombinedIndex
, isPrevailing
,
1657 recordNewLinkage
, GUIDPreservedSymbols
);
1659 thinLTOPropagateFunctionAttrs(ThinLTO
.CombinedIndex
, isPrevailing
);
1661 generateParamAccessSummary(ThinLTO
.CombinedIndex
);
1663 if (llvm::timeTraceProfilerEnabled())
1664 llvm::timeTraceProfilerEnd();
1666 TimeTraceScopeExit
.release();
1668 std::unique_ptr
<ThinBackendProc
> BackendProc
=
1669 ThinLTO
.Backend(Conf
, ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1673 ThinLTO
.ModulesToCompile
? *ThinLTO
.ModulesToCompile
: ThinLTO
.ModuleMap
;
1675 auto ProcessOneModule
= [&](int I
) -> Error
{
1676 auto &Mod
= *(ModuleMap
.begin() + I
);
1677 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
1678 // combined module and parallel code generation partitions.
1679 return BackendProc
->start(RegularLTO
.ParallelCodeGenParallelismLevel
+ I
,
1680 Mod
.second
, ImportLists
[Mod
.first
],
1681 ExportLists
[Mod
.first
], ResolvedODR
[Mod
.first
],
1685 if (BackendProc
->getThreadCount() == 1) {
1686 // Process the modules in the order they were provided on the command-line.
1687 // It is important for this codepath to be used for WriteIndexesThinBackend,
1688 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same
1689 // order as the inputs, which otherwise would affect the final link order.
1690 for (int I
= 0, E
= ModuleMap
.size(); I
!= E
; ++I
)
1691 if (Error E
= ProcessOneModule(I
))
1694 // When executing in parallel, process largest bitsize modules first to
1695 // improve parallelism, and avoid starving the thread pool near the end.
1696 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out
1698 std::vector
<BitcodeModule
*> ModulesVec
;
1699 ModulesVec
.reserve(ModuleMap
.size());
1700 for (auto &Mod
: ModuleMap
)
1701 ModulesVec
.push_back(&Mod
.second
);
1702 for (int I
: generateModulesOrdering(ModulesVec
))
1703 if (Error E
= ProcessOneModule(I
))
1706 return BackendProc
->wait();
1709 Expected
<std::unique_ptr
<ToolOutputFile
>> lto::setupLLVMOptimizationRemarks(
1710 LLVMContext
&Context
, StringRef RemarksFilename
, StringRef RemarksPasses
,
1711 StringRef RemarksFormat
, bool RemarksWithHotness
,
1712 std::optional
<uint64_t> RemarksHotnessThreshold
, int Count
) {
1713 std::string Filename
= std::string(RemarksFilename
);
1714 // For ThinLTO, file.opt.<format> becomes
1715 // file.opt.<format>.thin.<num>.<format>.
1716 if (!Filename
.empty() && Count
!= -1)
1718 (Twine(Filename
) + ".thin." + llvm::utostr(Count
) + "." + RemarksFormat
)
1721 auto ResultOrErr
= llvm::setupLLVMOptimizationRemarks(
1722 Context
, Filename
, RemarksPasses
, RemarksFormat
, RemarksWithHotness
,
1723 RemarksHotnessThreshold
);
1724 if (Error E
= ResultOrErr
.takeError())
1725 return std::move(E
);
1728 (*ResultOrErr
)->keep();
1733 Expected
<std::unique_ptr
<ToolOutputFile
>>
1734 lto::setupStatsFile(StringRef StatsFilename
) {
1735 // Setup output file to emit statistics.
1736 if (StatsFilename
.empty())
1739 llvm::EnableStatistics(false);
1742 std::make_unique
<ToolOutputFile
>(StatsFilename
, EC
, sys::fs::OF_None
);
1744 return errorCodeToError(EC
);
1747 return std::move(StatsFile
);
1750 // Compute the ordering we will process the inputs: the rough heuristic here
1751 // is to sort them per size so that the largest module get schedule as soon as
1752 // possible. This is purely a compile-time optimization.
1753 std::vector
<int> lto::generateModulesOrdering(ArrayRef
<BitcodeModule
*> R
) {
1754 auto Seq
= llvm::seq
<int>(0, R
.size());
1755 std::vector
<int> ModulesOrdering(Seq
.begin(), Seq
.end());
1756 llvm::sort(ModulesOrdering
, [&](int LeftIndex
, int RightIndex
) {
1757 auto LSize
= R
[LeftIndex
]->getBuffer().size();
1758 auto RSize
= R
[RightIndex
]->getBuffer().size();
1759 return LSize
> RSize
;
1761 return ModulesOrdering
;