[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / clang / lib / Analysis / ThreadSafety.cpp
blob34260ac8f4e7d6f86bf59558127b9e2761e5741d
1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
15 //===----------------------------------------------------------------------===//
17 #include "clang/Analysis/Analyses/ThreadSafety.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/OperationKinds.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33 #include "clang/Analysis/AnalysisDeclContext.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <functional>
53 #include <iterator>
54 #include <memory>
55 #include <optional>
56 #include <string>
57 #include <type_traits>
58 #include <utility>
59 #include <vector>
61 using namespace clang;
62 using namespace threadSafety;
64 // Key method definition
65 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
67 /// Issue a warning about an invalid lock expression
68 static void warnInvalidLock(ThreadSafetyHandler &Handler,
69 const Expr *MutexExp, const NamedDecl *D,
70 const Expr *DeclExp, StringRef Kind) {
71 SourceLocation Loc;
72 if (DeclExp)
73 Loc = DeclExp->getExprLoc();
75 // FIXME: add a note about the attribute location in MutexExp or D
76 if (Loc.isValid())
77 Handler.handleInvalidLockExp(Loc);
80 namespace {
82 /// A set of CapabilityExpr objects, which are compiled from thread safety
83 /// attributes on a function.
84 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85 public:
86 /// Push M onto list, but discard duplicates.
87 void push_back_nodup(const CapabilityExpr &CapE) {
88 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) {
89 return CapE.equals(CapE2);
90 }))
91 push_back(CapE);
95 class FactManager;
96 class FactSet;
98 /// This is a helper class that stores a fact that is known at a
99 /// particular point in program execution. Currently, a fact is a capability,
100 /// along with additional information, such as where it was acquired, whether
101 /// it is exclusive or shared, etc.
103 /// FIXME: this analysis does not currently support re-entrant locking.
104 class FactEntry : public CapabilityExpr {
105 public:
106 /// Where a fact comes from.
107 enum SourceKind {
108 Acquired, ///< The fact has been directly acquired.
109 Asserted, ///< The fact has been asserted to be held.
110 Declared, ///< The fact is assumed to be held by callers.
111 Managed, ///< The fact has been acquired through a scoped capability.
114 private:
115 /// Exclusive or shared.
116 LockKind LKind : 8;
118 // How it was acquired.
119 SourceKind Source : 8;
121 /// Where it was acquired.
122 SourceLocation AcquireLoc;
124 public:
125 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
126 SourceKind Src)
127 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
128 virtual ~FactEntry() = default;
130 LockKind kind() const { return LKind; }
131 SourceLocation loc() const { return AcquireLoc; }
133 bool asserted() const { return Source == Asserted; }
134 bool declared() const { return Source == Declared; }
135 bool managed() const { return Source == Managed; }
137 virtual void
138 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
139 SourceLocation JoinLoc, LockErrorKind LEK,
140 ThreadSafetyHandler &Handler) const = 0;
141 virtual void handleLock(FactSet &FSet, FactManager &FactMan,
142 const FactEntry &entry,
143 ThreadSafetyHandler &Handler) const = 0;
144 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
145 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
146 bool FullyRemove,
147 ThreadSafetyHandler &Handler) const = 0;
149 // Return true if LKind >= LK, where exclusive > shared
150 bool isAtLeast(LockKind LK) const {
151 return (LKind == LK_Exclusive) || (LK == LK_Shared);
155 using FactID = unsigned short;
157 /// FactManager manages the memory for all facts that are created during
158 /// the analysis of a single routine.
159 class FactManager {
160 private:
161 std::vector<std::unique_ptr<const FactEntry>> Facts;
163 public:
164 FactID newFact(std::unique_ptr<FactEntry> Entry) {
165 Facts.push_back(std::move(Entry));
166 return static_cast<unsigned short>(Facts.size() - 1);
169 const FactEntry &operator[](FactID F) const { return *Facts[F]; }
172 /// A FactSet is the set of facts that are known to be true at a
173 /// particular program point. FactSets must be small, because they are
174 /// frequently copied, and are thus implemented as a set of indices into a
175 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2
176 /// locks, so we can get away with doing a linear search for lookup. Note
177 /// that a hashtable or map is inappropriate in this case, because lookups
178 /// may involve partial pattern matches, rather than exact matches.
179 class FactSet {
180 private:
181 using FactVec = SmallVector<FactID, 4>;
183 FactVec FactIDs;
185 public:
186 using iterator = FactVec::iterator;
187 using const_iterator = FactVec::const_iterator;
189 iterator begin() { return FactIDs.begin(); }
190 const_iterator begin() const { return FactIDs.begin(); }
192 iterator end() { return FactIDs.end(); }
193 const_iterator end() const { return FactIDs.end(); }
195 bool isEmpty() const { return FactIDs.size() == 0; }
197 // Return true if the set contains only negative facts
198 bool isEmpty(FactManager &FactMan) const {
199 for (const auto FID : *this) {
200 if (!FactMan[FID].negative())
201 return false;
203 return true;
206 void addLockByID(FactID ID) { FactIDs.push_back(ID); }
208 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
209 FactID F = FM.newFact(std::move(Entry));
210 FactIDs.push_back(F);
211 return F;
214 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
215 unsigned n = FactIDs.size();
216 if (n == 0)
217 return false;
219 for (unsigned i = 0; i < n-1; ++i) {
220 if (FM[FactIDs[i]].matches(CapE)) {
221 FactIDs[i] = FactIDs[n-1];
222 FactIDs.pop_back();
223 return true;
226 if (FM[FactIDs[n-1]].matches(CapE)) {
227 FactIDs.pop_back();
228 return true;
230 return false;
233 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
234 return std::find_if(begin(), end(), [&](FactID ID) {
235 return FM[ID].matches(CapE);
239 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
240 auto I = std::find_if(begin(), end(), [&](FactID ID) {
241 return FM[ID].matches(CapE);
243 return I != end() ? &FM[*I] : nullptr;
246 const FactEntry *findLockUniv(FactManager &FM,
247 const CapabilityExpr &CapE) const {
248 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
249 return FM[ID].matchesUniv(CapE);
251 return I != end() ? &FM[*I] : nullptr;
254 const FactEntry *findPartialMatch(FactManager &FM,
255 const CapabilityExpr &CapE) const {
256 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
257 return FM[ID].partiallyMatches(CapE);
259 return I != end() ? &FM[*I] : nullptr;
262 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
263 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
264 return FM[ID].valueDecl() == Vd;
266 return I != end();
270 class ThreadSafetyAnalyzer;
272 } // namespace
274 namespace clang {
275 namespace threadSafety {
277 class BeforeSet {
278 private:
279 using BeforeVect = SmallVector<const ValueDecl *, 4>;
281 struct BeforeInfo {
282 BeforeVect Vect;
283 int Visited = 0;
285 BeforeInfo() = default;
286 BeforeInfo(BeforeInfo &&) = default;
289 using BeforeMap =
290 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
291 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
293 public:
294 BeforeSet() = default;
296 BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
297 ThreadSafetyAnalyzer& Analyzer);
299 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
300 ThreadSafetyAnalyzer &Analyzer);
302 void checkBeforeAfter(const ValueDecl* Vd,
303 const FactSet& FSet,
304 ThreadSafetyAnalyzer& Analyzer,
305 SourceLocation Loc, StringRef CapKind);
307 private:
308 BeforeMap BMap;
309 CycleMap CycMap;
312 } // namespace threadSafety
313 } // namespace clang
315 namespace {
317 class LocalVariableMap;
319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
321 /// A side (entry or exit) of a CFG node.
322 enum CFGBlockSide { CBS_Entry, CBS_Exit };
324 /// CFGBlockInfo is a struct which contains all the information that is
325 /// maintained for each block in the CFG. See LocalVariableMap for more
326 /// information about the contexts.
327 struct CFGBlockInfo {
328 // Lockset held at entry to block
329 FactSet EntrySet;
331 // Lockset held at exit from block
332 FactSet ExitSet;
334 // Context held at entry to block
335 LocalVarContext EntryContext;
337 // Context held at exit from block
338 LocalVarContext ExitContext;
340 // Location of first statement in block
341 SourceLocation EntryLoc;
343 // Location of last statement in block.
344 SourceLocation ExitLoc;
346 // Used to replay contexts later
347 unsigned EntryIndex;
349 // Is this block reachable?
350 bool Reachable = false;
352 const FactSet &getSet(CFGBlockSide Side) const {
353 return Side == CBS_Entry ? EntrySet : ExitSet;
356 SourceLocation getLocation(CFGBlockSide Side) const {
357 return Side == CBS_Entry ? EntryLoc : ExitLoc;
360 private:
361 CFGBlockInfo(LocalVarContext EmptyCtx)
362 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
364 public:
365 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
368 // A LocalVariableMap maintains a map from local variables to their currently
369 // valid definitions. It provides SSA-like functionality when traversing the
370 // CFG. Like SSA, each definition or assignment to a variable is assigned a
371 // unique name (an integer), which acts as the SSA name for that definition.
372 // The total set of names is shared among all CFG basic blocks.
373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374 // with their SSA-names. Instead, we compute a Context for each point in the
375 // code, which maps local variables to the appropriate SSA-name. This map
376 // changes with each assignment.
378 // The map is computed in a single pass over the CFG. Subsequent analyses can
379 // then query the map to find the appropriate Context for a statement, and use
380 // that Context to look up the definitions of variables.
381 class LocalVariableMap {
382 public:
383 using Context = LocalVarContext;
385 /// A VarDefinition consists of an expression, representing the value of the
386 /// variable, along with the context in which that expression should be
387 /// interpreted. A reference VarDefinition does not itself contain this
388 /// information, but instead contains a pointer to a previous VarDefinition.
389 struct VarDefinition {
390 public:
391 friend class LocalVariableMap;
393 // The original declaration for this variable.
394 const NamedDecl *Dec;
396 // The expression for this variable, OR
397 const Expr *Exp = nullptr;
399 // Reference to another VarDefinition
400 unsigned Ref = 0;
402 // The map with which Exp should be interpreted.
403 Context Ctx;
405 bool isReference() const { return !Exp; }
407 private:
408 // Create ordinary variable definition
409 VarDefinition(const NamedDecl *D, const Expr *E, Context C)
410 : Dec(D), Exp(E), Ctx(C) {}
412 // Create reference to previous definition
413 VarDefinition(const NamedDecl *D, unsigned R, Context C)
414 : Dec(D), Ref(R), Ctx(C) {}
417 private:
418 Context::Factory ContextFactory;
419 std::vector<VarDefinition> VarDefinitions;
420 std::vector<std::pair<const Stmt *, Context>> SavedContexts;
422 public:
423 LocalVariableMap() {
424 // index 0 is a placeholder for undefined variables (aka phi-nodes).
425 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
428 /// Look up a definition, within the given context.
429 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
430 const unsigned *i = Ctx.lookup(D);
431 if (!i)
432 return nullptr;
433 assert(*i < VarDefinitions.size());
434 return &VarDefinitions[*i];
437 /// Look up the definition for D within the given context. Returns
438 /// NULL if the expression is not statically known. If successful, also
439 /// modifies Ctx to hold the context of the return Expr.
440 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
441 const unsigned *P = Ctx.lookup(D);
442 if (!P)
443 return nullptr;
445 unsigned i = *P;
446 while (i > 0) {
447 if (VarDefinitions[i].Exp) {
448 Ctx = VarDefinitions[i].Ctx;
449 return VarDefinitions[i].Exp;
451 i = VarDefinitions[i].Ref;
453 return nullptr;
456 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
458 /// Return the next context after processing S. This function is used by
459 /// clients of the class to get the appropriate context when traversing the
460 /// CFG. It must be called for every assignment or DeclStmt.
461 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
462 if (SavedContexts[CtxIndex+1].first == S) {
463 CtxIndex++;
464 Context Result = SavedContexts[CtxIndex].second;
465 return Result;
467 return C;
470 void dumpVarDefinitionName(unsigned i) {
471 if (i == 0) {
472 llvm::errs() << "Undefined";
473 return;
475 const NamedDecl *Dec = VarDefinitions[i].Dec;
476 if (!Dec) {
477 llvm::errs() << "<<NULL>>";
478 return;
480 Dec->printName(llvm::errs());
481 llvm::errs() << "." << i << " " << ((const void*) Dec);
484 /// Dumps an ASCII representation of the variable map to llvm::errs()
485 void dump() {
486 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
487 const Expr *Exp = VarDefinitions[i].Exp;
488 unsigned Ref = VarDefinitions[i].Ref;
490 dumpVarDefinitionName(i);
491 llvm::errs() << " = ";
492 if (Exp) Exp->dump();
493 else {
494 dumpVarDefinitionName(Ref);
495 llvm::errs() << "\n";
500 /// Dumps an ASCII representation of a Context to llvm::errs()
501 void dumpContext(Context C) {
502 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
503 const NamedDecl *D = I.getKey();
504 D->printName(llvm::errs());
505 llvm::errs() << " -> ";
506 dumpVarDefinitionName(I.getData());
507 llvm::errs() << "\n";
511 /// Builds the variable map.
512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513 std::vector<CFGBlockInfo> &BlockInfo);
515 protected:
516 friend class VarMapBuilder;
518 // Get the current context index
519 unsigned getContextIndex() { return SavedContexts.size()-1; }
521 // Save the current context for later replay
522 void saveContext(const Stmt *S, Context C) {
523 SavedContexts.push_back(std::make_pair(S, C));
526 // Adds a new definition to the given context, and returns a new context.
527 // This method should be called when declaring a new variable.
528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529 assert(!Ctx.contains(D));
530 unsigned newID = VarDefinitions.size();
531 Context NewCtx = ContextFactory.add(Ctx, D, newID);
532 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533 return NewCtx;
536 // Add a new reference to an existing definition.
537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538 unsigned newID = VarDefinitions.size();
539 Context NewCtx = ContextFactory.add(Ctx, D, newID);
540 VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541 return NewCtx;
544 // Updates a definition only if that definition is already in the map.
545 // This method should be called when assigning to an existing variable.
546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547 if (Ctx.contains(D)) {
548 unsigned newID = VarDefinitions.size();
549 Context NewCtx = ContextFactory.remove(Ctx, D);
550 NewCtx = ContextFactory.add(NewCtx, D, newID);
551 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552 return NewCtx;
554 return Ctx;
557 // Removes a definition from the context, but keeps the variable name
558 // as a valid variable. The index 0 is a placeholder for cleared definitions.
559 Context clearDefinition(const NamedDecl *D, Context Ctx) {
560 Context NewCtx = Ctx;
561 if (NewCtx.contains(D)) {
562 NewCtx = ContextFactory.remove(NewCtx, D);
563 NewCtx = ContextFactory.add(NewCtx, D, 0);
565 return NewCtx;
568 // Remove a definition entirely frmo the context.
569 Context removeDefinition(const NamedDecl *D, Context Ctx) {
570 Context NewCtx = Ctx;
571 if (NewCtx.contains(D)) {
572 NewCtx = ContextFactory.remove(NewCtx, D);
574 return NewCtx;
577 Context intersectContexts(Context C1, Context C2);
578 Context createReferenceContext(Context C);
579 void intersectBackEdge(Context C1, Context C2);
582 } // namespace
584 // This has to be defined after LocalVariableMap.
585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586 return CFGBlockInfo(M.getEmptyContext());
589 namespace {
591 /// Visitor which builds a LocalVariableMap
592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593 public:
594 LocalVariableMap* VMap;
595 LocalVariableMap::Context Ctx;
597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598 : VMap(VM), Ctx(C) {}
600 void VisitDeclStmt(const DeclStmt *S);
601 void VisitBinaryOperator(const BinaryOperator *BO);
604 } // namespace
606 // Add new local variables to the variable map
607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608 bool modifiedCtx = false;
609 const DeclGroupRef DGrp = S->getDeclGroup();
610 for (const auto *D : DGrp) {
611 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612 const Expr *E = VD->getInit();
614 // Add local variables with trivial type to the variable map
615 QualType T = VD->getType();
616 if (T.isTrivialType(VD->getASTContext())) {
617 Ctx = VMap->addDefinition(VD, E, Ctx);
618 modifiedCtx = true;
622 if (modifiedCtx)
623 VMap->saveContext(S, Ctx);
626 // Update local variable definitions in variable map
627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628 if (!BO->isAssignmentOp())
629 return;
631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
633 // Update the variable map and current context.
634 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635 const ValueDecl *VDec = DRE->getDecl();
636 if (Ctx.lookup(VDec)) {
637 if (BO->getOpcode() == BO_Assign)
638 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639 else
640 // FIXME -- handle compound assignment operators
641 Ctx = VMap->clearDefinition(VDec, Ctx);
642 VMap->saveContext(BO, Ctx);
647 // Computes the intersection of two contexts. The intersection is the
648 // set of variables which have the same definition in both contexts;
649 // variables with different definitions are discarded.
650 LocalVariableMap::Context
651 LocalVariableMap::intersectContexts(Context C1, Context C2) {
652 Context Result = C1;
653 for (const auto &P : C1) {
654 const NamedDecl *Dec = P.first;
655 const unsigned *i2 = C2.lookup(Dec);
656 if (!i2) // variable doesn't exist on second path
657 Result = removeDefinition(Dec, Result);
658 else if (*i2 != P.second) // variable exists, but has different definition
659 Result = clearDefinition(Dec, Result);
661 return Result;
664 // For every variable in C, create a new variable that refers to the
665 // definition in C. Return a new context that contains these new variables.
666 // (We use this for a naive implementation of SSA on loop back-edges.)
667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668 Context Result = getEmptyContext();
669 for (const auto &P : C)
670 Result = addReference(P.first, P.second, Result);
671 return Result;
674 // This routine also takes the intersection of C1 and C2, but it does so by
675 // altering the VarDefinitions. C1 must be the result of an earlier call to
676 // createReferenceContext.
677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678 for (const auto &P : C1) {
679 unsigned i1 = P.second;
680 VarDefinition *VDef = &VarDefinitions[i1];
681 assert(VDef->isReference());
683 const unsigned *i2 = C2.lookup(P.first);
684 if (!i2 || (*i2 != i1))
685 VDef->Ref = 0; // Mark this variable as undefined
689 // Traverse the CFG in topological order, so all predecessors of a block
690 // (excluding back-edges) are visited before the block itself. At
691 // each point in the code, we calculate a Context, which holds the set of
692 // variable definitions which are visible at that point in execution.
693 // Visible variables are mapped to their definitions using an array that
694 // contains all definitions.
696 // At join points in the CFG, the set is computed as the intersection of
697 // the incoming sets along each edge, E.g.
699 // { Context | VarDefinitions }
700 // int x = 0; { x -> x1 | x1 = 0 }
701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
706 // This is essentially a simpler and more naive version of the standard SSA
707 // algorithm. Those definitions that remain in the intersection are from blocks
708 // that strictly dominate the current block. We do not bother to insert proper
709 // phi nodes, because they are not used in our analysis; instead, wherever
710 // a phi node would be required, we simply remove that definition from the
711 // context (E.g. x above).
713 // The initial traversal does not capture back-edges, so those need to be
714 // handled on a separate pass. Whenever the first pass encounters an
715 // incoming back edge, it duplicates the context, creating new definitions
716 // that refer back to the originals. (These correspond to places where SSA
717 // might have to insert a phi node.) On the second pass, these definitions are
718 // set to NULL if the variable has changed on the back-edge (i.e. a phi
719 // node was actually required.) E.g.
721 // { Context | VarDefinitions }
722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
725 // ... { y -> y1 | x3 = 2, x2 = 1, ... }
726 void LocalVariableMap::traverseCFG(CFG *CFGraph,
727 const PostOrderCFGView *SortedGraph,
728 std::vector<CFGBlockInfo> &BlockInfo) {
729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
731 for (const auto *CurrBlock : *SortedGraph) {
732 unsigned CurrBlockID = CurrBlock->getBlockID();
733 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
735 VisitedBlocks.insert(CurrBlock);
737 // Calculate the entry context for the current block
738 bool HasBackEdges = false;
739 bool CtxInit = true;
740 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
741 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
742 // if *PI -> CurrBlock is a back edge, so skip it
743 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
744 HasBackEdges = true;
745 continue;
748 unsigned PrevBlockID = (*PI)->getBlockID();
749 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
751 if (CtxInit) {
752 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
753 CtxInit = false;
755 else {
756 CurrBlockInfo->EntryContext =
757 intersectContexts(CurrBlockInfo->EntryContext,
758 PrevBlockInfo->ExitContext);
762 // Duplicate the context if we have back-edges, so we can call
763 // intersectBackEdges later.
764 if (HasBackEdges)
765 CurrBlockInfo->EntryContext =
766 createReferenceContext(CurrBlockInfo->EntryContext);
768 // Create a starting context index for the current block
769 saveContext(nullptr, CurrBlockInfo->EntryContext);
770 CurrBlockInfo->EntryIndex = getContextIndex();
772 // Visit all the statements in the basic block.
773 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
774 for (const auto &BI : *CurrBlock) {
775 switch (BI.getKind()) {
776 case CFGElement::Statement: {
777 CFGStmt CS = BI.castAs<CFGStmt>();
778 VMapBuilder.Visit(CS.getStmt());
779 break;
781 default:
782 break;
785 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
787 // Mark variables on back edges as "unknown" if they've been changed.
788 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
789 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
790 // if CurrBlock -> *SI is *not* a back edge
791 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
792 continue;
794 CFGBlock *FirstLoopBlock = *SI;
795 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
796 Context LoopEnd = CurrBlockInfo->ExitContext;
797 intersectBackEdge(LoopBegin, LoopEnd);
801 // Put an extra entry at the end of the indexed context array
802 unsigned exitID = CFGraph->getExit().getBlockID();
803 saveContext(nullptr, BlockInfo[exitID].ExitContext);
806 /// Find the appropriate source locations to use when producing diagnostics for
807 /// each block in the CFG.
808 static void findBlockLocations(CFG *CFGraph,
809 const PostOrderCFGView *SortedGraph,
810 std::vector<CFGBlockInfo> &BlockInfo) {
811 for (const auto *CurrBlock : *SortedGraph) {
812 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
814 // Find the source location of the last statement in the block, if the
815 // block is not empty.
816 if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
817 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
818 } else {
819 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
820 BE = CurrBlock->rend(); BI != BE; ++BI) {
821 // FIXME: Handle other CFGElement kinds.
822 if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
823 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
824 break;
829 if (CurrBlockInfo->ExitLoc.isValid()) {
830 // This block contains at least one statement. Find the source location
831 // of the first statement in the block.
832 for (const auto &BI : *CurrBlock) {
833 // FIXME: Handle other CFGElement kinds.
834 if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
835 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
836 break;
839 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
840 CurrBlock != &CFGraph->getExit()) {
841 // The block is empty, and has a single predecessor. Use its exit
842 // location.
843 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
844 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
845 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
846 // The block is empty, and has a single successor. Use its entry
847 // location.
848 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
854 namespace {
856 class LockableFactEntry : public FactEntry {
857 public:
858 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
859 SourceKind Src = Acquired)
860 : FactEntry(CE, LK, Loc, Src) {}
862 void
863 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
864 SourceLocation JoinLoc, LockErrorKind LEK,
865 ThreadSafetyHandler &Handler) const override {
866 if (!asserted() && !negative() && !isUniversal()) {
867 Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc,
868 LEK);
872 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
873 ThreadSafetyHandler &Handler) const override {
874 Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(),
875 entry.loc());
878 void handleUnlock(FactSet &FSet, FactManager &FactMan,
879 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
880 bool FullyRemove,
881 ThreadSafetyHandler &Handler) const override {
882 FSet.removeLock(FactMan, Cp);
883 if (!Cp.negative()) {
884 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
885 !Cp, LK_Exclusive, UnlockLoc));
890 class ScopedLockableFactEntry : public FactEntry {
891 private:
892 enum UnderlyingCapabilityKind {
893 UCK_Acquired, ///< Any kind of acquired capability.
894 UCK_ReleasedShared, ///< Shared capability that was released.
895 UCK_ReleasedExclusive, ///< Exclusive capability that was released.
898 struct UnderlyingCapability {
899 CapabilityExpr Cap;
900 UnderlyingCapabilityKind Kind;
903 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
905 public:
906 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
909 void addLock(const CapabilityExpr &M) {
910 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired});
913 void addExclusiveUnlock(const CapabilityExpr &M) {
914 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive});
917 void addSharedUnlock(const CapabilityExpr &M) {
918 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared});
921 void
922 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923 SourceLocation JoinLoc, LockErrorKind LEK,
924 ThreadSafetyHandler &Handler) const override {
925 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
926 const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap);
927 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
928 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
929 // If this scoped lock manages another mutex, and if the underlying
930 // mutex is still/not held, then warn about the underlying mutex.
931 Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(),
932 UnderlyingMutex.Cap.toString(), loc(),
933 JoinLoc, LEK);
938 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
939 ThreadSafetyHandler &Handler) const override {
940 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
941 if (UnderlyingMutex.Kind == UCK_Acquired)
942 lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(),
943 &Handler);
944 else
945 unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler);
949 void handleUnlock(FactSet &FSet, FactManager &FactMan,
950 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
951 bool FullyRemove,
952 ThreadSafetyHandler &Handler) const override {
953 assert(!Cp.negative() && "Managing object cannot be negative.");
954 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
955 // Remove/lock the underlying mutex if it exists/is still unlocked; warn
956 // on double unlocking/locking if we're not destroying the scoped object.
957 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
958 if (UnderlyingMutex.Kind == UCK_Acquired) {
959 unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler);
960 } else {
961 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
962 ? LK_Shared
963 : LK_Exclusive;
964 lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler);
967 if (FullyRemove)
968 FSet.removeLock(FactMan, Cp);
971 private:
972 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
973 LockKind kind, SourceLocation loc,
974 ThreadSafetyHandler *Handler) const {
975 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
976 if (Handler)
977 Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(),
978 loc);
979 } else {
980 FSet.removeLock(FactMan, !Cp);
981 FSet.addLock(FactMan,
982 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
986 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
987 SourceLocation loc, ThreadSafetyHandler *Handler) const {
988 if (FSet.findLock(FactMan, Cp)) {
989 FSet.removeLock(FactMan, Cp);
990 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
991 !Cp, LK_Exclusive, loc));
992 } else if (Handler) {
993 SourceLocation PrevLoc;
994 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
995 PrevLoc = Neg->loc();
996 Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc);
1001 /// Class which implements the core thread safety analysis routines.
1002 class ThreadSafetyAnalyzer {
1003 friend class BuildLockset;
1004 friend class threadSafety::BeforeSet;
1006 llvm::BumpPtrAllocator Bpa;
1007 threadSafety::til::MemRegionRef Arena;
1008 threadSafety::SExprBuilder SxBuilder;
1010 ThreadSafetyHandler &Handler;
1011 const CXXMethodDecl *CurrentMethod = nullptr;
1012 LocalVariableMap LocalVarMap;
1013 FactManager FactMan;
1014 std::vector<CFGBlockInfo> BlockInfo;
1016 BeforeSet *GlobalBeforeSet;
1018 public:
1019 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1020 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1022 bool inCurrentScope(const CapabilityExpr &CapE);
1024 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1025 bool ReqAttr = false);
1026 void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1027 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1029 template <typename AttrType>
1030 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1031 const NamedDecl *D, til::SExpr *Self = nullptr);
1033 template <class AttrType>
1034 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1035 const NamedDecl *D,
1036 const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1037 Expr *BrE, bool Neg);
1039 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1040 bool &Negate);
1042 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1043 const CFGBlock* PredBlock,
1044 const CFGBlock *CurrBlock);
1046 bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1048 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1049 SourceLocation JoinLoc, LockErrorKind EntryLEK,
1050 LockErrorKind ExitLEK);
1052 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1053 SourceLocation JoinLoc, LockErrorKind LEK) {
1054 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK);
1057 void runAnalysis(AnalysisDeclContext &AC);
1060 } // namespace
1062 /// Process acquired_before and acquired_after attributes on Vd.
1063 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1064 ThreadSafetyAnalyzer& Analyzer) {
1065 // Create a new entry for Vd.
1066 BeforeInfo *Info = nullptr;
1068 // Keep InfoPtr in its own scope in case BMap is modified later and the
1069 // reference becomes invalid.
1070 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1071 if (!InfoPtr)
1072 InfoPtr.reset(new BeforeInfo());
1073 Info = InfoPtr.get();
1076 for (const auto *At : Vd->attrs()) {
1077 switch (At->getKind()) {
1078 case attr::AcquiredBefore: {
1079 const auto *A = cast<AcquiredBeforeAttr>(At);
1081 // Read exprs from the attribute, and add them to BeforeVect.
1082 for (const auto *Arg : A->args()) {
1083 CapabilityExpr Cp =
1084 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1085 if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1086 Info->Vect.push_back(Cpvd);
1087 const auto It = BMap.find(Cpvd);
1088 if (It == BMap.end())
1089 insertAttrExprs(Cpvd, Analyzer);
1092 break;
1094 case attr::AcquiredAfter: {
1095 const auto *A = cast<AcquiredAfterAttr>(At);
1097 // Read exprs from the attribute, and add them to BeforeVect.
1098 for (const auto *Arg : A->args()) {
1099 CapabilityExpr Cp =
1100 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1101 if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1102 // Get entry for mutex listed in attribute
1103 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1104 ArgInfo->Vect.push_back(Vd);
1107 break;
1109 default:
1110 break;
1114 return Info;
1117 BeforeSet::BeforeInfo *
1118 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1119 ThreadSafetyAnalyzer &Analyzer) {
1120 auto It = BMap.find(Vd);
1121 BeforeInfo *Info = nullptr;
1122 if (It == BMap.end())
1123 Info = insertAttrExprs(Vd, Analyzer);
1124 else
1125 Info = It->second.get();
1126 assert(Info && "BMap contained nullptr?");
1127 return Info;
1130 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1131 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1132 const FactSet& FSet,
1133 ThreadSafetyAnalyzer& Analyzer,
1134 SourceLocation Loc, StringRef CapKind) {
1135 SmallVector<BeforeInfo*, 8> InfoVect;
1137 // Do a depth-first traversal of Vd.
1138 // Return true if there are cycles.
1139 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1140 if (!Vd)
1141 return false;
1143 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1145 if (Info->Visited == 1)
1146 return true;
1148 if (Info->Visited == 2)
1149 return false;
1151 if (Info->Vect.empty())
1152 return false;
1154 InfoVect.push_back(Info);
1155 Info->Visited = 1;
1156 for (const auto *Vdb : Info->Vect) {
1157 // Exclude mutexes in our immediate before set.
1158 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1159 StringRef L1 = StartVd->getName();
1160 StringRef L2 = Vdb->getName();
1161 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1163 // Transitively search other before sets, and warn on cycles.
1164 if (traverse(Vdb)) {
1165 if (!CycMap.contains(Vd)) {
1166 CycMap.insert(std::make_pair(Vd, true));
1167 StringRef L1 = Vd->getName();
1168 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1172 Info->Visited = 2;
1173 return false;
1176 traverse(StartVd);
1178 for (auto *Info : InfoVect)
1179 Info->Visited = 0;
1182 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1183 static const ValueDecl *getValueDecl(const Expr *Exp) {
1184 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1185 return getValueDecl(CE->getSubExpr());
1187 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1188 return DR->getDecl();
1190 if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1191 return ME->getMemberDecl();
1193 return nullptr;
1196 namespace {
1198 template <typename Ty>
1199 class has_arg_iterator_range {
1200 using yes = char[1];
1201 using no = char[2];
1203 template <typename Inner>
1204 static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1206 template <typename>
1207 static no& test(...);
1209 public:
1210 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1213 } // namespace
1215 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1216 const threadSafety::til::SExpr *SExp = CapE.sexpr();
1217 assert(SExp && "Null expressions should be ignored");
1219 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1220 const ValueDecl *VD = LP->clangDecl();
1221 // Variables defined in a function are always inaccessible.
1222 if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1223 return false;
1224 // For now we consider static class members to be inaccessible.
1225 if (isa<CXXRecordDecl>(VD->getDeclContext()))
1226 return false;
1227 // Global variables are always in scope.
1228 return true;
1231 // Members are in scope from methods of the same class.
1232 if (const auto *P = dyn_cast<til::Project>(SExp)) {
1233 if (!CurrentMethod)
1234 return false;
1235 const ValueDecl *VD = P->clangDecl();
1236 return VD->getDeclContext() == CurrentMethod->getDeclContext();
1239 return false;
1242 /// Add a new lock to the lockset, warning if the lock is already there.
1243 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1244 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1245 std::unique_ptr<FactEntry> Entry,
1246 bool ReqAttr) {
1247 if (Entry->shouldIgnore())
1248 return;
1250 if (!ReqAttr && !Entry->negative()) {
1251 // look for the negative capability, and remove it from the fact set.
1252 CapabilityExpr NegC = !*Entry;
1253 const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1254 if (Nen) {
1255 FSet.removeLock(FactMan, NegC);
1257 else {
1258 if (inCurrentScope(*Entry) && !Entry->asserted())
1259 Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(),
1260 NegC.toString(), Entry->loc());
1264 // Check before/after constraints
1265 if (Handler.issueBetaWarnings() &&
1266 !Entry->asserted() && !Entry->declared()) {
1267 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1268 Entry->loc(), Entry->getKind());
1271 // FIXME: Don't always warn when we have support for reentrant locks.
1272 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1273 if (!Entry->asserted())
1274 Cp->handleLock(FSet, FactMan, *Entry, Handler);
1275 } else {
1276 FSet.addLock(FactMan, std::move(Entry));
1280 /// Remove a lock from the lockset, warning if the lock is not there.
1281 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1282 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1283 SourceLocation UnlockLoc,
1284 bool FullyRemove, LockKind ReceivedKind) {
1285 if (Cp.shouldIgnore())
1286 return;
1288 const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1289 if (!LDat) {
1290 SourceLocation PrevLoc;
1291 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1292 PrevLoc = Neg->loc();
1293 Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc,
1294 PrevLoc);
1295 return;
1298 // Generic lock removal doesn't care about lock kind mismatches, but
1299 // otherwise diagnose when the lock kinds are mismatched.
1300 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1301 Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(),
1302 ReceivedKind, LDat->loc(), UnlockLoc);
1305 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1308 /// Extract the list of mutexIDs from the attribute on an expression,
1309 /// and push them onto Mtxs, discarding any duplicates.
1310 template <typename AttrType>
1311 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1312 const Expr *Exp, const NamedDecl *D,
1313 til::SExpr *Self) {
1314 if (Attr->args_size() == 0) {
1315 // The mutex held is the "this" object.
1316 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self);
1317 if (Cp.isInvalid()) {
1318 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1319 return;
1321 //else
1322 if (!Cp.shouldIgnore())
1323 Mtxs.push_back_nodup(Cp);
1324 return;
1327 for (const auto *Arg : Attr->args()) {
1328 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1329 if (Cp.isInvalid()) {
1330 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1331 continue;
1333 //else
1334 if (!Cp.shouldIgnore())
1335 Mtxs.push_back_nodup(Cp);
1339 /// Extract the list of mutexIDs from a trylock attribute. If the
1340 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1341 /// any duplicates.
1342 template <class AttrType>
1343 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1344 const Expr *Exp, const NamedDecl *D,
1345 const CFGBlock *PredBlock,
1346 const CFGBlock *CurrBlock,
1347 Expr *BrE, bool Neg) {
1348 // Find out which branch has the lock
1349 bool branch = false;
1350 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1351 branch = BLE->getValue();
1352 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1353 branch = ILE->getValue().getBoolValue();
1355 int branchnum = branch ? 0 : 1;
1356 if (Neg)
1357 branchnum = !branchnum;
1359 // If we've taken the trylock branch, then add the lock
1360 int i = 0;
1361 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1362 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1363 if (*SI == CurrBlock && i == branchnum)
1364 getMutexIDs(Mtxs, Attr, Exp, D);
1368 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1369 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1370 TCond = false;
1371 return true;
1372 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1373 TCond = BLE->getValue();
1374 return true;
1375 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1376 TCond = ILE->getValue().getBoolValue();
1377 return true;
1378 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1379 return getStaticBooleanValue(CE->getSubExpr(), TCond);
1380 return false;
1383 // If Cond can be traced back to a function call, return the call expression.
1384 // The negate variable should be called with false, and will be set to true
1385 // if the function call is negated, e.g. if (!mu.tryLock(...))
1386 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1387 LocalVarContext C,
1388 bool &Negate) {
1389 if (!Cond)
1390 return nullptr;
1392 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1393 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1394 return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1395 return CallExp;
1397 else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1398 return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1399 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1400 return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1401 else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1402 return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1403 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1404 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1405 return getTrylockCallExpr(E, C, Negate);
1407 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1408 if (UOP->getOpcode() == UO_LNot) {
1409 Negate = !Negate;
1410 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1412 return nullptr;
1414 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1415 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1416 if (BOP->getOpcode() == BO_NE)
1417 Negate = !Negate;
1419 bool TCond = false;
1420 if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1421 if (!TCond) Negate = !Negate;
1422 return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1424 TCond = false;
1425 if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1426 if (!TCond) Negate = !Negate;
1427 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1429 return nullptr;
1431 if (BOP->getOpcode() == BO_LAnd) {
1432 // LHS must have been evaluated in a different block.
1433 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1435 if (BOP->getOpcode() == BO_LOr)
1436 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1437 return nullptr;
1438 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1439 bool TCond, FCond;
1440 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1441 getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1442 if (TCond && !FCond)
1443 return getTrylockCallExpr(COP->getCond(), C, Negate);
1444 if (!TCond && FCond) {
1445 Negate = !Negate;
1446 return getTrylockCallExpr(COP->getCond(), C, Negate);
1450 return nullptr;
1453 /// Find the lockset that holds on the edge between PredBlock
1454 /// and CurrBlock. The edge set is the exit set of PredBlock (passed
1455 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1456 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1457 const FactSet &ExitSet,
1458 const CFGBlock *PredBlock,
1459 const CFGBlock *CurrBlock) {
1460 Result = ExitSet;
1462 const Stmt *Cond = PredBlock->getTerminatorCondition();
1463 // We don't acquire try-locks on ?: branches, only when its result is used.
1464 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1465 return;
1467 bool Negate = false;
1468 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1469 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1471 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1472 if (!Exp)
1473 return;
1475 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1476 if(!FunDecl || !FunDecl->hasAttrs())
1477 return;
1479 CapExprSet ExclusiveLocksToAdd;
1480 CapExprSet SharedLocksToAdd;
1482 // If the condition is a call to a Trylock function, then grab the attributes
1483 for (const auto *Attr : FunDecl->attrs()) {
1484 switch (Attr->getKind()) {
1485 case attr::TryAcquireCapability: {
1486 auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1487 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1488 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1489 Negate);
1490 break;
1492 case attr::ExclusiveTrylockFunction: {
1493 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1494 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1495 A->getSuccessValue(), Negate);
1496 break;
1498 case attr::SharedTrylockFunction: {
1499 const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1500 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1501 A->getSuccessValue(), Negate);
1502 break;
1504 default:
1505 break;
1509 // Add and remove locks.
1510 SourceLocation Loc = Exp->getExprLoc();
1511 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1512 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1513 LK_Exclusive, Loc));
1514 for (const auto &SharedLockToAdd : SharedLocksToAdd)
1515 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1516 LK_Shared, Loc));
1519 namespace {
1521 /// We use this class to visit different types of expressions in
1522 /// CFGBlocks, and build up the lockset.
1523 /// An expression may cause us to add or remove locks from the lockset, or else
1524 /// output error messages related to missing locks.
1525 /// FIXME: In future, we may be able to not inherit from a visitor.
1526 class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1527 friend class ThreadSafetyAnalyzer;
1529 ThreadSafetyAnalyzer *Analyzer;
1530 FactSet FSet;
1531 /// Maps constructed objects to `this` placeholder prior to initialization.
1532 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1533 LocalVariableMap::Context LVarCtx;
1534 unsigned CtxIndex;
1536 // helper functions
1537 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1538 Expr *MutexExp, ProtectedOperationKind POK,
1539 til::LiteralPtr *Self, SourceLocation Loc);
1540 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1541 til::LiteralPtr *Self, SourceLocation Loc);
1543 void checkAccess(const Expr *Exp, AccessKind AK,
1544 ProtectedOperationKind POK = POK_VarAccess);
1545 void checkPtAccess(const Expr *Exp, AccessKind AK,
1546 ProtectedOperationKind POK = POK_VarAccess);
1548 void handleCall(const Expr *Exp, const NamedDecl *D,
1549 til::LiteralPtr *Self = nullptr,
1550 SourceLocation Loc = SourceLocation());
1551 void examineArguments(const FunctionDecl *FD,
1552 CallExpr::const_arg_iterator ArgBegin,
1553 CallExpr::const_arg_iterator ArgEnd,
1554 bool SkipFirstParam = false);
1556 public:
1557 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1558 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1559 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1561 void VisitUnaryOperator(const UnaryOperator *UO);
1562 void VisitBinaryOperator(const BinaryOperator *BO);
1563 void VisitCastExpr(const CastExpr *CE);
1564 void VisitCallExpr(const CallExpr *Exp);
1565 void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1566 void VisitDeclStmt(const DeclStmt *S);
1567 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1570 } // namespace
1572 /// Warn if the LSet does not contain a lock sufficient to protect access
1573 /// of at least the passed in AccessKind.
1574 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1575 AccessKind AK, Expr *MutexExp,
1576 ProtectedOperationKind POK,
1577 til::LiteralPtr *Self,
1578 SourceLocation Loc) {
1579 LockKind LK = getLockKindFromAccessKind(AK);
1581 CapabilityExpr Cp =
1582 Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1583 if (Cp.isInvalid()) {
1584 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind());
1585 return;
1586 } else if (Cp.shouldIgnore()) {
1587 return;
1590 if (Cp.negative()) {
1591 // Negative capabilities act like locks excluded
1592 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1593 if (LDat) {
1594 Analyzer->Handler.handleFunExcludesLock(
1595 Cp.getKind(), D->getNameAsString(), (!Cp).toString(), Loc);
1596 return;
1599 // If this does not refer to a negative capability in the same class,
1600 // then stop here.
1601 if (!Analyzer->inCurrentScope(Cp))
1602 return;
1604 // Otherwise the negative requirement must be propagated to the caller.
1605 LDat = FSet.findLock(Analyzer->FactMan, Cp);
1606 if (!LDat) {
1607 Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1609 return;
1612 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1613 bool NoError = true;
1614 if (!LDat) {
1615 // No exact match found. Look for a partial match.
1616 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1617 if (LDat) {
1618 // Warn that there's no precise match.
1619 std::string PartMatchStr = LDat->toString();
1620 StringRef PartMatchName(PartMatchStr);
1621 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1622 LK, Loc, &PartMatchName);
1623 } else {
1624 // Warn that there's no match at all.
1625 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1626 LK, Loc);
1628 NoError = false;
1630 // Make sure the mutex we found is the right kind.
1631 if (NoError && LDat && !LDat->isAtLeast(LK)) {
1632 Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1633 LK, Loc);
1637 /// Warn if the LSet contains the given lock.
1638 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1639 Expr *MutexExp, til::LiteralPtr *Self,
1640 SourceLocation Loc) {
1641 CapabilityExpr Cp =
1642 Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1643 if (Cp.isInvalid()) {
1644 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind());
1645 return;
1646 } else if (Cp.shouldIgnore()) {
1647 return;
1650 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
1651 if (LDat) {
1652 Analyzer->Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1653 Cp.toString(), Loc);
1657 /// Checks guarded_by and pt_guarded_by attributes.
1658 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1659 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1660 /// Similarly, we check if the access is to an expression that dereferences
1661 /// a pointer marked with pt_guarded_by.
1662 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1663 ProtectedOperationKind POK) {
1664 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1666 SourceLocation Loc = Exp->getExprLoc();
1668 // Local variables of reference type cannot be re-assigned;
1669 // map them to their initializer.
1670 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1671 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1672 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1673 if (const auto *E = VD->getInit()) {
1674 // Guard against self-initialization. e.g., int &i = i;
1675 if (E == Exp)
1676 break;
1677 Exp = E;
1678 continue;
1681 break;
1684 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1685 // For dereferences
1686 if (UO->getOpcode() == UO_Deref)
1687 checkPtAccess(UO->getSubExpr(), AK, POK);
1688 return;
1691 if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) {
1692 switch (BO->getOpcode()) {
1693 case BO_PtrMemD: // .*
1694 return checkAccess(BO->getLHS(), AK, POK);
1695 case BO_PtrMemI: // ->*
1696 return checkPtAccess(BO->getLHS(), AK, POK);
1697 default:
1698 return;
1702 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1703 checkPtAccess(AE->getLHS(), AK, POK);
1704 return;
1707 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1708 if (ME->isArrow())
1709 checkPtAccess(ME->getBase(), AK, POK);
1710 else
1711 checkAccess(ME->getBase(), AK, POK);
1714 const ValueDecl *D = getValueDecl(Exp);
1715 if (!D || !D->hasAttrs())
1716 return;
1718 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1719 Analyzer->Handler.handleNoMutexHeld(D, POK, AK, Loc);
1722 for (const auto *I : D->specific_attrs<GuardedByAttr>())
1723 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, nullptr, Loc);
1726 /// Checks pt_guarded_by and pt_guarded_var attributes.
1727 /// POK is the same operationKind that was passed to checkAccess.
1728 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1729 ProtectedOperationKind POK) {
1730 while (true) {
1731 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1732 Exp = PE->getSubExpr();
1733 continue;
1735 if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1736 if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1737 // If it's an actual array, and not a pointer, then it's elements
1738 // are protected by GUARDED_BY, not PT_GUARDED_BY;
1739 checkAccess(CE->getSubExpr(), AK, POK);
1740 return;
1742 Exp = CE->getSubExpr();
1743 continue;
1745 break;
1748 // Pass by reference warnings are under a different flag.
1749 ProtectedOperationKind PtPOK = POK_VarDereference;
1750 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1752 const ValueDecl *D = getValueDecl(Exp);
1753 if (!D || !D->hasAttrs())
1754 return;
1756 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1757 Analyzer->Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc());
1759 for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1760 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, nullptr,
1761 Exp->getExprLoc());
1764 /// Process a function call, method call, constructor call,
1765 /// or destructor call. This involves looking at the attributes on the
1766 /// corresponding function/method/constructor/destructor, issuing warnings,
1767 /// and updating the locksets accordingly.
1769 /// FIXME: For classes annotated with one of the guarded annotations, we need
1770 /// to treat const method calls as reads and non-const method calls as writes,
1771 /// and check that the appropriate locks are held. Non-const method calls with
1772 /// the same signature as const method calls can be also treated as reads.
1774 /// \param Exp The call expression.
1775 /// \param D The callee declaration.
1776 /// \param Self If \p Exp = nullptr, the implicit this argument.
1777 /// \param Loc If \p Exp = nullptr, the location.
1778 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1779 til::LiteralPtr *Self, SourceLocation Loc) {
1780 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1781 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1782 CapExprSet ScopedReqsAndExcludes;
1784 // Figure out if we're constructing an object of scoped lockable class
1785 CapabilityExpr Scp;
1786 if (Exp) {
1787 assert(!Self);
1788 const auto *TagT = Exp->getType()->getAs<TagType>();
1789 if (TagT && Exp->isPRValue()) {
1790 std::pair<til::LiteralPtr *, StringRef> Placeholder =
1791 Analyzer->SxBuilder.createThisPlaceholder(Exp);
1792 [[maybe_unused]] auto inserted =
1793 ConstructedObjects.insert({Exp, Placeholder.first});
1794 assert(inserted.second && "Are we visiting the same expression again?");
1795 if (isa<CXXConstructExpr>(Exp))
1796 Self = Placeholder.first;
1797 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1798 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1801 assert(Loc.isInvalid());
1802 Loc = Exp->getExprLoc();
1805 for(const Attr *At : D->attrs()) {
1806 switch (At->getKind()) {
1807 // When we encounter a lock function, we need to add the lock to our
1808 // lockset.
1809 case attr::AcquireCapability: {
1810 const auto *A = cast<AcquireCapabilityAttr>(At);
1811 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1812 : ExclusiveLocksToAdd,
1813 A, Exp, D, Self);
1814 break;
1817 // An assert will add a lock to the lockset, but will not generate
1818 // a warning if it is already there, and will not generate a warning
1819 // if it is not removed.
1820 case attr::AssertExclusiveLock: {
1821 const auto *A = cast<AssertExclusiveLockAttr>(At);
1823 CapExprSet AssertLocks;
1824 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1825 for (const auto &AssertLock : AssertLocks)
1826 Analyzer->addLock(
1827 FSet, std::make_unique<LockableFactEntry>(
1828 AssertLock, LK_Exclusive, Loc, FactEntry::Asserted));
1829 break;
1831 case attr::AssertSharedLock: {
1832 const auto *A = cast<AssertSharedLockAttr>(At);
1834 CapExprSet AssertLocks;
1835 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1836 for (const auto &AssertLock : AssertLocks)
1837 Analyzer->addLock(
1838 FSet, std::make_unique<LockableFactEntry>(
1839 AssertLock, LK_Shared, Loc, FactEntry::Asserted));
1840 break;
1843 case attr::AssertCapability: {
1844 const auto *A = cast<AssertCapabilityAttr>(At);
1845 CapExprSet AssertLocks;
1846 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1847 for (const auto &AssertLock : AssertLocks)
1848 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1849 AssertLock,
1850 A->isShared() ? LK_Shared : LK_Exclusive,
1851 Loc, FactEntry::Asserted));
1852 break;
1855 // When we encounter an unlock function, we need to remove unlocked
1856 // mutexes from the lockset, and flag a warning if they are not there.
1857 case attr::ReleaseCapability: {
1858 const auto *A = cast<ReleaseCapabilityAttr>(At);
1859 if (A->isGeneric())
1860 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1861 else if (A->isShared())
1862 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1863 else
1864 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1865 break;
1868 case attr::RequiresCapability: {
1869 const auto *A = cast<RequiresCapabilityAttr>(At);
1870 for (auto *Arg : A->args()) {
1871 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1872 POK_FunctionCall, Self, Loc);
1873 // use for adopting a lock
1874 if (!Scp.shouldIgnore())
1875 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1877 break;
1880 case attr::LocksExcluded: {
1881 const auto *A = cast<LocksExcludedAttr>(At);
1882 for (auto *Arg : A->args()) {
1883 warnIfMutexHeld(D, Exp, Arg, Self, Loc);
1884 // use for deferring a lock
1885 if (!Scp.shouldIgnore())
1886 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1888 break;
1891 // Ignore attributes unrelated to thread-safety
1892 default:
1893 break;
1897 // Remove locks first to allow lock upgrading/downgrading.
1898 // FIXME -- should only fully remove if the attribute refers to 'this'.
1899 bool Dtor = isa<CXXDestructorDecl>(D);
1900 for (const auto &M : ExclusiveLocksToRemove)
1901 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive);
1902 for (const auto &M : SharedLocksToRemove)
1903 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared);
1904 for (const auto &M : GenericLocksToRemove)
1905 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic);
1907 // Add locks.
1908 FactEntry::SourceKind Source =
1909 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
1910 for (const auto &M : ExclusiveLocksToAdd)
1911 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive,
1912 Loc, Source));
1913 for (const auto &M : SharedLocksToAdd)
1914 Analyzer->addLock(
1915 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source));
1917 if (!Scp.shouldIgnore()) {
1918 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1919 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc);
1920 for (const auto &M : ExclusiveLocksToAdd)
1921 ScopedEntry->addLock(M);
1922 for (const auto &M : SharedLocksToAdd)
1923 ScopedEntry->addLock(M);
1924 for (const auto &M : ScopedReqsAndExcludes)
1925 ScopedEntry->addLock(M);
1926 for (const auto &M : ExclusiveLocksToRemove)
1927 ScopedEntry->addExclusiveUnlock(M);
1928 for (const auto &M : SharedLocksToRemove)
1929 ScopedEntry->addSharedUnlock(M);
1930 Analyzer->addLock(FSet, std::move(ScopedEntry));
1934 /// For unary operations which read and write a variable, we need to
1935 /// check whether we hold any required mutexes. Reads are checked in
1936 /// VisitCastExpr.
1937 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1938 switch (UO->getOpcode()) {
1939 case UO_PostDec:
1940 case UO_PostInc:
1941 case UO_PreDec:
1942 case UO_PreInc:
1943 checkAccess(UO->getSubExpr(), AK_Written);
1944 break;
1945 default:
1946 break;
1950 /// For binary operations which assign to a variable (writes), we need to check
1951 /// whether we hold any required mutexes.
1952 /// FIXME: Deal with non-primitive types.
1953 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1954 if (!BO->isAssignmentOp())
1955 return;
1957 // adjust the context
1958 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1960 checkAccess(BO->getLHS(), AK_Written);
1963 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1964 /// need to ensure we hold any required mutexes.
1965 /// FIXME: Deal with non-primitive types.
1966 void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1967 if (CE->getCastKind() != CK_LValueToRValue)
1968 return;
1969 checkAccess(CE->getSubExpr(), AK_Read);
1972 void BuildLockset::examineArguments(const FunctionDecl *FD,
1973 CallExpr::const_arg_iterator ArgBegin,
1974 CallExpr::const_arg_iterator ArgEnd,
1975 bool SkipFirstParam) {
1976 // Currently we can't do anything if we don't know the function declaration.
1977 if (!FD)
1978 return;
1980 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
1981 // only turns off checking within the body of a function, but we also
1982 // use it to turn off checking in arguments to the function. This
1983 // could result in some false negatives, but the alternative is to
1984 // create yet another attribute.
1985 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
1986 return;
1988 const ArrayRef<ParmVarDecl *> Params = FD->parameters();
1989 auto Param = Params.begin();
1990 if (SkipFirstParam)
1991 ++Param;
1993 // There can be default arguments, so we stop when one iterator is at end().
1994 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
1995 ++Param, ++Arg) {
1996 QualType Qt = (*Param)->getType();
1997 if (Qt->isReferenceType())
1998 checkAccess(*Arg, AK_Read, POK_PassByRef);
2002 void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2003 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2004 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2005 // ME can be null when calling a method pointer
2006 const CXXMethodDecl *MD = CE->getMethodDecl();
2008 if (ME && MD) {
2009 if (ME->isArrow()) {
2010 // Should perhaps be AK_Written if !MD->isConst().
2011 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2012 } else {
2013 // Should perhaps be AK_Written if !MD->isConst().
2014 checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2018 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2019 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2020 OverloadedOperatorKind OEop = OE->getOperator();
2021 switch (OEop) {
2022 case OO_Equal:
2023 case OO_PlusEqual:
2024 case OO_MinusEqual:
2025 case OO_StarEqual:
2026 case OO_SlashEqual:
2027 case OO_PercentEqual:
2028 case OO_CaretEqual:
2029 case OO_AmpEqual:
2030 case OO_PipeEqual:
2031 case OO_LessLessEqual:
2032 case OO_GreaterGreaterEqual:
2033 checkAccess(OE->getArg(1), AK_Read);
2034 [[fallthrough]];
2035 case OO_PlusPlus:
2036 case OO_MinusMinus:
2037 checkAccess(OE->getArg(0), AK_Written);
2038 break;
2039 case OO_Star:
2040 case OO_ArrowStar:
2041 case OO_Arrow:
2042 case OO_Subscript:
2043 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2044 // Grrr. operator* can be multiplication...
2045 checkPtAccess(OE->getArg(0), AK_Read);
2047 [[fallthrough]];
2048 default: {
2049 // TODO: get rid of this, and rely on pass-by-ref instead.
2050 const Expr *Obj = OE->getArg(0);
2051 checkAccess(Obj, AK_Read);
2052 // Check the remaining arguments. For method operators, the first
2053 // argument is the implicit self argument, and doesn't appear in the
2054 // FunctionDecl, but for non-methods it does.
2055 const FunctionDecl *FD = OE->getDirectCallee();
2056 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2057 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2058 break;
2061 } else {
2062 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2065 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2066 if(!D || !D->hasAttrs())
2067 return;
2068 handleCall(Exp, D);
2071 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2072 const CXXConstructorDecl *D = Exp->getConstructor();
2073 if (D && D->isCopyConstructor()) {
2074 const Expr* Source = Exp->getArg(0);
2075 checkAccess(Source, AK_Read);
2076 } else {
2077 examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2079 if (D && D->hasAttrs())
2080 handleCall(Exp, D);
2083 static const Expr *UnpackConstruction(const Expr *E) {
2084 if (auto *CE = dyn_cast<CastExpr>(E))
2085 if (CE->getCastKind() == CK_NoOp)
2086 E = CE->getSubExpr()->IgnoreParens();
2087 if (auto *CE = dyn_cast<CastExpr>(E))
2088 if (CE->getCastKind() == CK_ConstructorConversion ||
2089 CE->getCastKind() == CK_UserDefinedConversion)
2090 E = CE->getSubExpr();
2091 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2092 E = BTE->getSubExpr();
2093 return E;
2096 void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2097 // adjust the context
2098 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2100 for (auto *D : S->getDeclGroup()) {
2101 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2102 const Expr *E = VD->getInit();
2103 if (!E)
2104 continue;
2105 E = E->IgnoreParens();
2107 // handle constructors that involve temporaries
2108 if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2109 E = EWC->getSubExpr()->IgnoreParens();
2110 E = UnpackConstruction(E);
2112 if (auto Object = ConstructedObjects.find(E);
2113 Object != ConstructedObjects.end()) {
2114 Object->second->setClangDecl(VD);
2115 ConstructedObjects.erase(Object);
2121 void BuildLockset::VisitMaterializeTemporaryExpr(
2122 const MaterializeTemporaryExpr *Exp) {
2123 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2124 if (auto Object =
2125 ConstructedObjects.find(UnpackConstruction(Exp->getSubExpr()));
2126 Object != ConstructedObjects.end()) {
2127 Object->second->setClangDecl(ExtD);
2128 ConstructedObjects.erase(Object);
2133 /// Given two facts merging on a join point, possibly warn and decide whether to
2134 /// keep or replace.
2136 /// \param CanModify Whether we can replace \p A by \p B.
2137 /// \return false if we should keep \p A, true if we should take \p B.
2138 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2139 bool CanModify) {
2140 if (A.kind() != B.kind()) {
2141 // For managed capabilities, the destructor should unlock in the right mode
2142 // anyway. For asserted capabilities no unlocking is needed.
2143 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2144 // The shared capability subsumes the exclusive capability, if possible.
2145 bool ShouldTakeB = B.kind() == LK_Shared;
2146 if (CanModify || !ShouldTakeB)
2147 return ShouldTakeB;
2149 Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(),
2150 A.loc());
2151 // Take the exclusive capability to reduce further warnings.
2152 return CanModify && B.kind() == LK_Exclusive;
2153 } else {
2154 // The non-asserted capability is the one we want to track.
2155 return CanModify && A.asserted() && !B.asserted();
2159 /// Compute the intersection of two locksets and issue warnings for any
2160 /// locks in the symmetric difference.
2162 /// This function is used at a merge point in the CFG when comparing the lockset
2163 /// of each branch being merged. For example, given the following sequence:
2164 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2165 /// are the same. In the event of a difference, we use the intersection of these
2166 /// two locksets at the start of D.
2168 /// \param EntrySet A lockset for entry into a (possibly new) block.
2169 /// \param ExitSet The lockset on exiting a preceding block.
2170 /// \param JoinLoc The location of the join point for error reporting
2171 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2172 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2173 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2174 const FactSet &ExitSet,
2175 SourceLocation JoinLoc,
2176 LockErrorKind EntryLEK,
2177 LockErrorKind ExitLEK) {
2178 FactSet EntrySetOrig = EntrySet;
2180 // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2181 for (const auto &Fact : ExitSet) {
2182 const FactEntry &ExitFact = FactMan[Fact];
2184 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact);
2185 if (EntryIt != EntrySet.end()) {
2186 if (join(FactMan[*EntryIt], ExitFact,
2187 EntryLEK != LEK_LockedSomeLoopIterations))
2188 *EntryIt = Fact;
2189 } else if (!ExitFact.managed()) {
2190 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc,
2191 EntryLEK, Handler);
2195 // Find locks in EntrySet that are not in ExitSet, and remove them.
2196 for (const auto &Fact : EntrySetOrig) {
2197 const FactEntry *EntryFact = &FactMan[Fact];
2198 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact);
2200 if (!ExitFact) {
2201 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations)
2202 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc,
2203 ExitLEK, Handler);
2204 if (ExitLEK == LEK_LockedSomePredecessors)
2205 EntrySet.removeLock(FactMan, *EntryFact);
2210 // Return true if block B never continues to its successors.
2211 static bool neverReturns(const CFGBlock *B) {
2212 if (B->hasNoReturnElement())
2213 return true;
2214 if (B->empty())
2215 return false;
2217 CFGElement Last = B->back();
2218 if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2219 if (isa<CXXThrowExpr>(S->getStmt()))
2220 return true;
2222 return false;
2225 /// Check a function's CFG for thread-safety violations.
2227 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2228 /// at the end of each block, and issue warnings for thread safety violations.
2229 /// Each block in the CFG is traversed exactly once.
2230 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2231 // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2232 // For now, we just use the walker to set things up.
2233 threadSafety::CFGWalker walker;
2234 if (!walker.init(AC))
2235 return;
2237 // AC.dumpCFG(true);
2238 // threadSafety::printSCFG(walker);
2240 CFG *CFGraph = walker.getGraph();
2241 const NamedDecl *D = walker.getDecl();
2242 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2243 CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2245 if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2246 return;
2248 // FIXME: Do something a bit more intelligent inside constructor and
2249 // destructor code. Constructors and destructors must assume unique access
2250 // to 'this', so checks on member variable access is disabled, but we should
2251 // still enable checks on other objects.
2252 if (isa<CXXConstructorDecl>(D))
2253 return; // Don't check inside constructors.
2254 if (isa<CXXDestructorDecl>(D))
2255 return; // Don't check inside destructors.
2257 Handler.enterFunction(CurrentFunction);
2259 BlockInfo.resize(CFGraph->getNumBlockIDs(),
2260 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2262 // We need to explore the CFG via a "topological" ordering.
2263 // That way, we will be guaranteed to have information about required
2264 // predecessor locksets when exploring a new block.
2265 const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2266 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2268 // Mark entry block as reachable
2269 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2271 // Compute SSA names for local variables
2272 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2274 // Fill in source locations for all CFGBlocks.
2275 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2277 CapExprSet ExclusiveLocksAcquired;
2278 CapExprSet SharedLocksAcquired;
2279 CapExprSet LocksReleased;
2281 // Add locks from exclusive_locks_required and shared_locks_required
2282 // to initial lockset. Also turn off checking for lock and unlock functions.
2283 // FIXME: is there a more intelligent way to check lock/unlock functions?
2284 if (!SortedGraph->empty() && D->hasAttrs()) {
2285 const CFGBlock *FirstBlock = *SortedGraph->begin();
2286 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2288 CapExprSet ExclusiveLocksToAdd;
2289 CapExprSet SharedLocksToAdd;
2291 SourceLocation Loc = D->getLocation();
2292 for (const auto *Attr : D->attrs()) {
2293 Loc = Attr->getLocation();
2294 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2295 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2296 nullptr, D);
2297 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2298 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2299 // We must ignore such methods.
2300 if (A->args_size() == 0)
2301 return;
2302 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2303 nullptr, D);
2304 getMutexIDs(LocksReleased, A, nullptr, D);
2305 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2306 if (A->args_size() == 0)
2307 return;
2308 getMutexIDs(A->isShared() ? SharedLocksAcquired
2309 : ExclusiveLocksAcquired,
2310 A, nullptr, D);
2311 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2312 // Don't try to check trylock functions for now.
2313 return;
2314 } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2315 // Don't try to check trylock functions for now.
2316 return;
2317 } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2318 // Don't try to check trylock functions for now.
2319 return;
2323 // FIXME -- Loc can be wrong here.
2324 for (const auto &Mu : ExclusiveLocksToAdd) {
2325 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2326 FactEntry::Declared);
2327 addLock(InitialLockset, std::move(Entry), true);
2329 for (const auto &Mu : SharedLocksToAdd) {
2330 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2331 FactEntry::Declared);
2332 addLock(InitialLockset, std::move(Entry), true);
2336 for (const auto *CurrBlock : *SortedGraph) {
2337 unsigned CurrBlockID = CurrBlock->getBlockID();
2338 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2340 // Use the default initial lockset in case there are no predecessors.
2341 VisitedBlocks.insert(CurrBlock);
2343 // Iterate through the predecessor blocks and warn if the lockset for all
2344 // predecessors is not the same. We take the entry lockset of the current
2345 // block to be the intersection of all previous locksets.
2346 // FIXME: By keeping the intersection, we may output more errors in future
2347 // for a lock which is not in the intersection, but was in the union. We
2348 // may want to also keep the union in future. As an example, let's say
2349 // the intersection contains Mutex L, and the union contains L and M.
2350 // Later we unlock M. At this point, we would output an error because we
2351 // never locked M; although the real error is probably that we forgot to
2352 // lock M on all code paths. Conversely, let's say that later we lock M.
2353 // In this case, we should compare against the intersection instead of the
2354 // union because the real error is probably that we forgot to unlock M on
2355 // all code paths.
2356 bool LocksetInitialized = false;
2357 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2358 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2359 // if *PI -> CurrBlock is a back edge
2360 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2361 continue;
2363 unsigned PrevBlockID = (*PI)->getBlockID();
2364 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2366 // Ignore edges from blocks that can't return.
2367 if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2368 continue;
2370 // Okay, we can reach this block from the entry.
2371 CurrBlockInfo->Reachable = true;
2373 FactSet PrevLockset;
2374 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2376 if (!LocksetInitialized) {
2377 CurrBlockInfo->EntrySet = PrevLockset;
2378 LocksetInitialized = true;
2379 } else {
2380 // Surprisingly 'continue' doesn't always produce back edges, because
2381 // the CFG has empty "transition" blocks where they meet with the end
2382 // of the regular loop body. We still want to diagnose them as loop.
2383 intersectAndWarn(
2384 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc,
2385 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt())
2386 ? LEK_LockedSomeLoopIterations
2387 : LEK_LockedSomePredecessors);
2391 // Skip rest of block if it's not reachable.
2392 if (!CurrBlockInfo->Reachable)
2393 continue;
2395 BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2397 // Visit all the statements in the basic block.
2398 for (const auto &BI : *CurrBlock) {
2399 switch (BI.getKind()) {
2400 case CFGElement::Statement: {
2401 CFGStmt CS = BI.castAs<CFGStmt>();
2402 LocksetBuilder.Visit(CS.getStmt());
2403 break;
2405 // Ignore BaseDtor and MemberDtor for now.
2406 case CFGElement::AutomaticObjectDtor: {
2407 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2408 const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2409 if (!DD->hasAttrs())
2410 break;
2412 LocksetBuilder.handleCall(nullptr, DD,
2413 SxBuilder.createVariable(AD.getVarDecl()),
2414 AD.getTriggerStmt()->getEndLoc());
2415 break;
2417 case CFGElement::TemporaryDtor: {
2418 auto TD = BI.castAs<CFGTemporaryDtor>();
2420 // Clean up constructed object even if there are no attributes to
2421 // keep the number of objects in limbo as small as possible.
2422 if (auto Object = LocksetBuilder.ConstructedObjects.find(
2423 TD.getBindTemporaryExpr()->getSubExpr());
2424 Object != LocksetBuilder.ConstructedObjects.end()) {
2425 const auto *DD = TD.getDestructorDecl(AC.getASTContext());
2426 if (DD->hasAttrs())
2427 // TODO: the location here isn't quite correct.
2428 LocksetBuilder.handleCall(nullptr, DD, Object->second,
2429 TD.getBindTemporaryExpr()->getEndLoc());
2430 LocksetBuilder.ConstructedObjects.erase(Object);
2432 break;
2434 default:
2435 break;
2438 CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2440 // For every back edge from CurrBlock (the end of the loop) to another block
2441 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2442 // the one held at the beginning of FirstLoopBlock. We can look up the
2443 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2444 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2445 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2446 // if CurrBlock -> *SI is *not* a back edge
2447 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2448 continue;
2450 CFGBlock *FirstLoopBlock = *SI;
2451 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2452 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2453 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc,
2454 LEK_LockedSomeLoopIterations);
2458 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2459 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
2461 // Skip the final check if the exit block is unreachable.
2462 if (!Final->Reachable)
2463 return;
2465 // By default, we expect all locks held on entry to be held on exit.
2466 FactSet ExpectedExitSet = Initial->EntrySet;
2468 // Adjust the expected exit set by adding or removing locks, as declared
2469 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
2470 // issue the appropriate warning.
2471 // FIXME: the location here is not quite right.
2472 for (const auto &Lock : ExclusiveLocksAcquired)
2473 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2474 Lock, LK_Exclusive, D->getLocation()));
2475 for (const auto &Lock : SharedLocksAcquired)
2476 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2477 Lock, LK_Shared, D->getLocation()));
2478 for (const auto &Lock : LocksReleased)
2479 ExpectedExitSet.removeLock(FactMan, Lock);
2481 // FIXME: Should we call this function for all blocks which exit the function?
2482 intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc,
2483 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
2485 Handler.leaveFunction(CurrentFunction);
2488 /// Check a function's CFG for thread-safety violations.
2490 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2491 /// at the end of each block, and issue warnings for thread safety violations.
2492 /// Each block in the CFG is traversed exactly once.
2493 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2494 ThreadSafetyHandler &Handler,
2495 BeforeSet **BSet) {
2496 if (!*BSet)
2497 *BSet = new BeforeSet;
2498 ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2499 Analyzer.runAnalysis(AC);
2502 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2504 /// Helper function that returns a LockKind required for the given level
2505 /// of access.
2506 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2507 switch (AK) {
2508 case AK_Read :
2509 return LK_Shared;
2510 case AK_Written :
2511 return LK_Exclusive;
2513 llvm_unreachable("Unknown AccessKind");