1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This coordinates the per-module state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
75 using namespace clang
;
76 using namespace CodeGen
;
78 static llvm::cl::opt
<bool> LimitedCoverage(
79 "limited-coverage-experimental", llvm::cl::Hidden
,
80 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
82 static const char AnnotationSection
[] = "llvm.metadata";
84 static CGCXXABI
*createCXXABI(CodeGenModule
&CGM
) {
85 switch (CGM
.getContext().getCXXABIKind()) {
86 case TargetCXXABI::AppleARM64
:
87 case TargetCXXABI::Fuchsia
:
88 case TargetCXXABI::GenericAArch64
:
89 case TargetCXXABI::GenericARM
:
90 case TargetCXXABI::iOS
:
91 case TargetCXXABI::WatchOS
:
92 case TargetCXXABI::GenericMIPS
:
93 case TargetCXXABI::GenericItanium
:
94 case TargetCXXABI::WebAssembly
:
95 case TargetCXXABI::XL
:
96 return CreateItaniumCXXABI(CGM
);
97 case TargetCXXABI::Microsoft
:
98 return CreateMicrosoftCXXABI(CGM
);
101 llvm_unreachable("invalid C++ ABI kind");
104 static std::unique_ptr
<TargetCodeGenInfo
>
105 createTargetCodeGenInfo(CodeGenModule
&CGM
) {
106 const TargetInfo
&Target
= CGM
.getTarget();
107 const llvm::Triple
&Triple
= Target
.getTriple();
108 const CodeGenOptions
&CodeGenOpts
= CGM
.getCodeGenOpts();
110 switch (Triple
.getArch()) {
112 return createDefaultTargetCodeGenInfo(CGM
);
114 case llvm::Triple::le32
:
115 return createPNaClTargetCodeGenInfo(CGM
);
116 case llvm::Triple::m68k
:
117 return createM68kTargetCodeGenInfo(CGM
);
118 case llvm::Triple::mips
:
119 case llvm::Triple::mipsel
:
120 if (Triple
.getOS() == llvm::Triple::NaCl
)
121 return createPNaClTargetCodeGenInfo(CGM
);
122 return createMIPSTargetCodeGenInfo(CGM
, /*IsOS32=*/true);
124 case llvm::Triple::mips64
:
125 case llvm::Triple::mips64el
:
126 return createMIPSTargetCodeGenInfo(CGM
, /*IsOS32=*/false);
128 case llvm::Triple::avr
: {
129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130 // on avrtiny. For passing return value, R18~R25 are used on avr, and
131 // R22~R25 are used on avrtiny.
132 unsigned NPR
= Target
.getABI() == "avrtiny" ? 6 : 18;
133 unsigned NRR
= Target
.getABI() == "avrtiny" ? 4 : 8;
134 return createAVRTargetCodeGenInfo(CGM
, NPR
, NRR
);
137 case llvm::Triple::aarch64
:
138 case llvm::Triple::aarch64_32
:
139 case llvm::Triple::aarch64_be
: {
140 AArch64ABIKind Kind
= AArch64ABIKind::AAPCS
;
141 if (Target
.getABI() == "darwinpcs")
142 Kind
= AArch64ABIKind::DarwinPCS
;
143 else if (Triple
.isOSWindows())
144 return createWindowsAArch64TargetCodeGenInfo(CGM
, AArch64ABIKind::Win64
);
146 return createAArch64TargetCodeGenInfo(CGM
, Kind
);
149 case llvm::Triple::wasm32
:
150 case llvm::Triple::wasm64
: {
151 WebAssemblyABIKind Kind
= WebAssemblyABIKind::MVP
;
152 if (Target
.getABI() == "experimental-mv")
153 Kind
= WebAssemblyABIKind::ExperimentalMV
;
154 return createWebAssemblyTargetCodeGenInfo(CGM
, Kind
);
157 case llvm::Triple::arm
:
158 case llvm::Triple::armeb
:
159 case llvm::Triple::thumb
:
160 case llvm::Triple::thumbeb
: {
161 if (Triple
.getOS() == llvm::Triple::Win32
)
162 return createWindowsARMTargetCodeGenInfo(CGM
, ARMABIKind::AAPCS_VFP
);
164 ARMABIKind Kind
= ARMABIKind::AAPCS
;
165 StringRef ABIStr
= Target
.getABI();
166 if (ABIStr
== "apcs-gnu")
167 Kind
= ARMABIKind::APCS
;
168 else if (ABIStr
== "aapcs16")
169 Kind
= ARMABIKind::AAPCS16_VFP
;
170 else if (CodeGenOpts
.FloatABI
== "hard" ||
171 (CodeGenOpts
.FloatABI
!= "soft" &&
172 (Triple
.getEnvironment() == llvm::Triple::GNUEABIHF
||
173 Triple
.getEnvironment() == llvm::Triple::MuslEABIHF
||
174 Triple
.getEnvironment() == llvm::Triple::EABIHF
)))
175 Kind
= ARMABIKind::AAPCS_VFP
;
177 return createARMTargetCodeGenInfo(CGM
, Kind
);
180 case llvm::Triple::ppc
: {
181 if (Triple
.isOSAIX())
182 return createAIXTargetCodeGenInfo(CGM
, /*Is64Bit=*/false);
185 CodeGenOpts
.FloatABI
== "soft" || Target
.hasFeature("spe");
186 return createPPC32TargetCodeGenInfo(CGM
, IsSoftFloat
);
188 case llvm::Triple::ppcle
: {
189 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
190 return createPPC32TargetCodeGenInfo(CGM
, IsSoftFloat
);
192 case llvm::Triple::ppc64
:
193 if (Triple
.isOSAIX())
194 return createAIXTargetCodeGenInfo(CGM
, /*Is64Bit=*/true);
196 if (Triple
.isOSBinFormatELF()) {
197 PPC64_SVR4_ABIKind Kind
= PPC64_SVR4_ABIKind::ELFv1
;
198 if (Target
.getABI() == "elfv2")
199 Kind
= PPC64_SVR4_ABIKind::ELFv2
;
200 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
202 return createPPC64_SVR4_TargetCodeGenInfo(CGM
, Kind
, IsSoftFloat
);
204 return createPPC64TargetCodeGenInfo(CGM
);
205 case llvm::Triple::ppc64le
: {
206 assert(Triple
.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207 PPC64_SVR4_ABIKind Kind
= PPC64_SVR4_ABIKind::ELFv2
;
208 if (Target
.getABI() == "elfv1")
209 Kind
= PPC64_SVR4_ABIKind::ELFv1
;
210 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
212 return createPPC64_SVR4_TargetCodeGenInfo(CGM
, Kind
, IsSoftFloat
);
215 case llvm::Triple::nvptx
:
216 case llvm::Triple::nvptx64
:
217 return createNVPTXTargetCodeGenInfo(CGM
);
219 case llvm::Triple::msp430
:
220 return createMSP430TargetCodeGenInfo(CGM
);
222 case llvm::Triple::riscv32
:
223 case llvm::Triple::riscv64
: {
224 StringRef ABIStr
= Target
.getABI();
225 unsigned XLen
= Target
.getPointerWidth(LangAS::Default
);
226 unsigned ABIFLen
= 0;
227 if (ABIStr
.endswith("f"))
229 else if (ABIStr
.endswith("d"))
231 return createRISCVTargetCodeGenInfo(CGM
, XLen
, ABIFLen
);
234 case llvm::Triple::systemz
: {
235 bool SoftFloat
= CodeGenOpts
.FloatABI
== "soft";
236 bool HasVector
= !SoftFloat
&& Target
.getABI() == "vector";
237 return createSystemZTargetCodeGenInfo(CGM
, HasVector
, SoftFloat
);
240 case llvm::Triple::tce
:
241 case llvm::Triple::tcele
:
242 return createTCETargetCodeGenInfo(CGM
);
244 case llvm::Triple::x86
: {
245 bool IsDarwinVectorABI
= Triple
.isOSDarwin();
246 bool IsWin32FloatStructABI
= Triple
.isOSWindows() && !Triple
.isOSCygMing();
248 if (Triple
.getOS() == llvm::Triple::Win32
) {
249 return createWinX86_32TargetCodeGenInfo(
250 CGM
, IsDarwinVectorABI
, IsWin32FloatStructABI
,
251 CodeGenOpts
.NumRegisterParameters
);
253 return createX86_32TargetCodeGenInfo(
254 CGM
, IsDarwinVectorABI
, IsWin32FloatStructABI
,
255 CodeGenOpts
.NumRegisterParameters
, CodeGenOpts
.FloatABI
== "soft");
258 case llvm::Triple::x86_64
: {
259 StringRef ABI
= Target
.getABI();
260 X86AVXABILevel AVXLevel
= (ABI
== "avx512" ? X86AVXABILevel::AVX512
261 : ABI
== "avx" ? X86AVXABILevel::AVX
262 : X86AVXABILevel::None
);
264 switch (Triple
.getOS()) {
265 case llvm::Triple::Win32
:
266 return createWinX86_64TargetCodeGenInfo(CGM
, AVXLevel
);
268 return createX86_64TargetCodeGenInfo(CGM
, AVXLevel
);
271 case llvm::Triple::hexagon
:
272 return createHexagonTargetCodeGenInfo(CGM
);
273 case llvm::Triple::lanai
:
274 return createLanaiTargetCodeGenInfo(CGM
);
275 case llvm::Triple::r600
:
276 return createAMDGPUTargetCodeGenInfo(CGM
);
277 case llvm::Triple::amdgcn
:
278 return createAMDGPUTargetCodeGenInfo(CGM
);
279 case llvm::Triple::sparc
:
280 return createSparcV8TargetCodeGenInfo(CGM
);
281 case llvm::Triple::sparcv9
:
282 return createSparcV9TargetCodeGenInfo(CGM
);
283 case llvm::Triple::xcore
:
284 return createXCoreTargetCodeGenInfo(CGM
);
285 case llvm::Triple::arc
:
286 return createARCTargetCodeGenInfo(CGM
);
287 case llvm::Triple::spir
:
288 case llvm::Triple::spir64
:
289 return createCommonSPIRTargetCodeGenInfo(CGM
);
290 case llvm::Triple::spirv32
:
291 case llvm::Triple::spirv64
:
292 return createSPIRVTargetCodeGenInfo(CGM
);
293 case llvm::Triple::ve
:
294 return createVETargetCodeGenInfo(CGM
);
295 case llvm::Triple::csky
: {
296 bool IsSoftFloat
= !Target
.hasFeature("hard-float-abi");
298 Target
.hasFeature("fpuv2_df") || Target
.hasFeature("fpuv3_df");
299 return createCSKYTargetCodeGenInfo(CGM
, IsSoftFloat
? 0
303 case llvm::Triple::bpfeb
:
304 case llvm::Triple::bpfel
:
305 return createBPFTargetCodeGenInfo(CGM
);
306 case llvm::Triple::loongarch32
:
307 case llvm::Triple::loongarch64
: {
308 StringRef ABIStr
= Target
.getABI();
309 unsigned ABIFRLen
= 0;
310 if (ABIStr
.endswith("f"))
312 else if (ABIStr
.endswith("d"))
314 return createLoongArchTargetCodeGenInfo(
315 CGM
, Target
.getPointerWidth(LangAS::Default
), ABIFRLen
);
320 const TargetCodeGenInfo
&CodeGenModule::getTargetCodeGenInfo() {
321 if (!TheTargetCodeGenInfo
)
322 TheTargetCodeGenInfo
= createTargetCodeGenInfo(*this);
323 return *TheTargetCodeGenInfo
;
326 CodeGenModule::CodeGenModule(ASTContext
&C
,
327 IntrusiveRefCntPtr
<llvm::vfs::FileSystem
> FS
,
328 const HeaderSearchOptions
&HSO
,
329 const PreprocessorOptions
&PPO
,
330 const CodeGenOptions
&CGO
, llvm::Module
&M
,
331 DiagnosticsEngine
&diags
,
332 CoverageSourceInfo
*CoverageInfo
)
333 : Context(C
), LangOpts(C
.getLangOpts()), FS(FS
), HeaderSearchOpts(HSO
),
334 PreprocessorOpts(PPO
), CodeGenOpts(CGO
), TheModule(M
), Diags(diags
),
335 Target(C
.getTargetInfo()), ABI(createCXXABI(*this)),
336 VMContext(M
.getContext()), Types(*this), VTables(*this),
337 SanitizerMD(new SanitizerMetadata(*this)) {
339 // Initialize the type cache.
340 llvm::LLVMContext
&LLVMContext
= M
.getContext();
341 VoidTy
= llvm::Type::getVoidTy(LLVMContext
);
342 Int8Ty
= llvm::Type::getInt8Ty(LLVMContext
);
343 Int16Ty
= llvm::Type::getInt16Ty(LLVMContext
);
344 Int32Ty
= llvm::Type::getInt32Ty(LLVMContext
);
345 Int64Ty
= llvm::Type::getInt64Ty(LLVMContext
);
346 HalfTy
= llvm::Type::getHalfTy(LLVMContext
);
347 BFloatTy
= llvm::Type::getBFloatTy(LLVMContext
);
348 FloatTy
= llvm::Type::getFloatTy(LLVMContext
);
349 DoubleTy
= llvm::Type::getDoubleTy(LLVMContext
);
350 PointerWidthInBits
= C
.getTargetInfo().getPointerWidth(LangAS::Default
);
351 PointerAlignInBytes
=
352 C
.toCharUnitsFromBits(C
.getTargetInfo().getPointerAlign(LangAS::Default
))
355 C
.toCharUnitsFromBits(C
.getTargetInfo().getMaxPointerWidth()).getQuantity();
357 C
.toCharUnitsFromBits(C
.getTargetInfo().getIntAlign()).getQuantity();
359 llvm::IntegerType::get(LLVMContext
, C
.getTargetInfo().getCharWidth());
360 IntTy
= llvm::IntegerType::get(LLVMContext
, C
.getTargetInfo().getIntWidth());
361 IntPtrTy
= llvm::IntegerType::get(LLVMContext
,
362 C
.getTargetInfo().getMaxPointerWidth());
363 Int8PtrTy
= Int8Ty
->getPointerTo(0);
364 Int8PtrPtrTy
= Int8PtrTy
->getPointerTo(0);
365 const llvm::DataLayout
&DL
= M
.getDataLayout();
366 AllocaInt8PtrTy
= Int8Ty
->getPointerTo(DL
.getAllocaAddrSpace());
367 GlobalsInt8PtrTy
= Int8Ty
->getPointerTo(DL
.getDefaultGlobalsAddressSpace());
368 ConstGlobalsPtrTy
= Int8Ty
->getPointerTo(
369 C
.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
370 ASTAllocaAddressSpace
= getTargetCodeGenInfo().getASTAllocaAddressSpace();
372 // Build C++20 Module initializers.
373 // TODO: Add Microsoft here once we know the mangling required for the
376 LangOpts
.CPlusPlusModules
&& getCXXABI().getMangleContext().getKind() ==
377 ItaniumMangleContext::MK_Itanium
;
379 RuntimeCC
= getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
384 createOpenCLRuntime();
386 createOpenMPRuntime();
392 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
393 if (LangOpts
.Sanitize
.has(SanitizerKind::Thread
) ||
394 (!CodeGenOpts
.RelaxedAliasing
&& CodeGenOpts
.OptimizationLevel
> 0))
395 TBAA
.reset(new CodeGenTBAA(Context
, TheModule
, CodeGenOpts
, getLangOpts(),
396 getCXXABI().getMangleContext()));
398 // If debug info or coverage generation is enabled, create the CGDebugInfo
400 if (CodeGenOpts
.getDebugInfo() != llvm::codegenoptions::NoDebugInfo
||
401 CodeGenOpts
.CoverageNotesFile
.size() ||
402 CodeGenOpts
.CoverageDataFile
.size())
403 DebugInfo
.reset(new CGDebugInfo(*this));
405 Block
.GlobalUniqueCount
= 0;
407 if (C
.getLangOpts().ObjC
)
408 ObjCData
.reset(new ObjCEntrypoints());
410 if (CodeGenOpts
.hasProfileClangUse()) {
411 auto ReaderOrErr
= llvm::IndexedInstrProfReader::create(
412 CodeGenOpts
.ProfileInstrumentUsePath
, *FS
,
413 CodeGenOpts
.ProfileRemappingFile
);
414 // We're checking for profile read errors in CompilerInvocation, so if
415 // there was an error it should've already been caught. If it hasn't been
416 // somehow, trip an assertion.
418 PGOReader
= std::move(ReaderOrErr
.get());
421 // If coverage mapping generation is enabled, create the
422 // CoverageMappingModuleGen object.
423 if (CodeGenOpts
.CoverageMapping
)
424 CoverageMapping
.reset(new CoverageMappingModuleGen(*this, *CoverageInfo
));
426 // Generate the module name hash here if needed.
427 if (CodeGenOpts
.UniqueInternalLinkageNames
&&
428 !getModule().getSourceFileName().empty()) {
429 std::string Path
= getModule().getSourceFileName();
430 // Check if a path substitution is needed from the MacroPrefixMap.
431 for (const auto &Entry
: LangOpts
.MacroPrefixMap
)
432 if (Path
.rfind(Entry
.first
, 0) != std::string::npos
) {
433 Path
= Entry
.second
+ Path
.substr(Entry
.first
.size());
436 ModuleNameHash
= llvm::getUniqueInternalLinkagePostfix(Path
);
440 CodeGenModule::~CodeGenModule() {}
442 void CodeGenModule::createObjCRuntime() {
443 // This is just isGNUFamily(), but we want to force implementors of
444 // new ABIs to decide how best to do this.
445 switch (LangOpts
.ObjCRuntime
.getKind()) {
446 case ObjCRuntime::GNUstep
:
447 case ObjCRuntime::GCC
:
448 case ObjCRuntime::ObjFW
:
449 ObjCRuntime
.reset(CreateGNUObjCRuntime(*this));
452 case ObjCRuntime::FragileMacOSX
:
453 case ObjCRuntime::MacOSX
:
454 case ObjCRuntime::iOS
:
455 case ObjCRuntime::WatchOS
:
456 ObjCRuntime
.reset(CreateMacObjCRuntime(*this));
459 llvm_unreachable("bad runtime kind");
462 void CodeGenModule::createOpenCLRuntime() {
463 OpenCLRuntime
.reset(new CGOpenCLRuntime(*this));
466 void CodeGenModule::createOpenMPRuntime() {
467 // Select a specialized code generation class based on the target, if any.
468 // If it does not exist use the default implementation.
469 switch (getTriple().getArch()) {
470 case llvm::Triple::nvptx
:
471 case llvm::Triple::nvptx64
:
472 case llvm::Triple::amdgcn
:
473 assert(getLangOpts().OpenMPIsTargetDevice
&&
474 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
475 OpenMPRuntime
.reset(new CGOpenMPRuntimeGPU(*this));
478 if (LangOpts
.OpenMPSimd
)
479 OpenMPRuntime
.reset(new CGOpenMPSIMDRuntime(*this));
481 OpenMPRuntime
.reset(new CGOpenMPRuntime(*this));
486 void CodeGenModule::createCUDARuntime() {
487 CUDARuntime
.reset(CreateNVCUDARuntime(*this));
490 void CodeGenModule::createHLSLRuntime() {
491 HLSLRuntime
.reset(new CGHLSLRuntime(*this));
494 void CodeGenModule::addReplacement(StringRef Name
, llvm::Constant
*C
) {
495 Replacements
[Name
] = C
;
498 void CodeGenModule::applyReplacements() {
499 for (auto &I
: Replacements
) {
500 StringRef MangledName
= I
.first
;
501 llvm::Constant
*Replacement
= I
.second
;
502 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
505 auto *OldF
= cast
<llvm::Function
>(Entry
);
506 auto *NewF
= dyn_cast
<llvm::Function
>(Replacement
);
508 if (auto *Alias
= dyn_cast
<llvm::GlobalAlias
>(Replacement
)) {
509 NewF
= dyn_cast
<llvm::Function
>(Alias
->getAliasee());
511 auto *CE
= cast
<llvm::ConstantExpr
>(Replacement
);
512 assert(CE
->getOpcode() == llvm::Instruction::BitCast
||
513 CE
->getOpcode() == llvm::Instruction::GetElementPtr
);
514 NewF
= dyn_cast
<llvm::Function
>(CE
->getOperand(0));
518 // Replace old with new, but keep the old order.
519 OldF
->replaceAllUsesWith(Replacement
);
521 NewF
->removeFromParent();
522 OldF
->getParent()->getFunctionList().insertAfter(OldF
->getIterator(),
525 OldF
->eraseFromParent();
529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue
*GV
, llvm::Constant
*C
) {
530 GlobalValReplacements
.push_back(std::make_pair(GV
, C
));
533 void CodeGenModule::applyGlobalValReplacements() {
534 for (auto &I
: GlobalValReplacements
) {
535 llvm::GlobalValue
*GV
= I
.first
;
536 llvm::Constant
*C
= I
.second
;
538 GV
->replaceAllUsesWith(C
);
539 GV
->eraseFromParent();
543 // This is only used in aliases that we created and we know they have a
545 static const llvm::GlobalValue
*getAliasedGlobal(const llvm::GlobalValue
*GV
) {
546 const llvm::Constant
*C
;
547 if (auto *GA
= dyn_cast
<llvm::GlobalAlias
>(GV
))
548 C
= GA
->getAliasee();
549 else if (auto *GI
= dyn_cast
<llvm::GlobalIFunc
>(GV
))
550 C
= GI
->getResolver();
554 const auto *AliaseeGV
= dyn_cast
<llvm::GlobalValue
>(C
->stripPointerCasts());
558 const llvm::GlobalValue
*FinalGV
= AliaseeGV
->getAliaseeObject();
565 static bool checkAliasedGlobal(
566 DiagnosticsEngine
&Diags
, SourceLocation Location
, bool IsIFunc
,
567 const llvm::GlobalValue
*Alias
, const llvm::GlobalValue
*&GV
,
568 const llvm::MapVector
<GlobalDecl
, StringRef
> &MangledDeclNames
,
569 SourceRange AliasRange
) {
570 GV
= getAliasedGlobal(Alias
);
572 Diags
.Report(Location
, diag::err_cyclic_alias
) << IsIFunc
;
576 if (GV
->isDeclaration()) {
577 Diags
.Report(Location
, diag::err_alias_to_undefined
) << IsIFunc
<< IsIFunc
;
578 Diags
.Report(Location
, diag::note_alias_requires_mangled_name
)
579 << IsIFunc
<< IsIFunc
;
580 // Provide a note if the given function is not found and exists as a
582 for (const auto &[Decl
, Name
] : MangledDeclNames
) {
583 if (const auto *ND
= dyn_cast
<NamedDecl
>(Decl
.getDecl())) {
584 if (ND
->getName() == GV
->getName()) {
585 Diags
.Report(Location
, diag::note_alias_mangled_name_alternative
)
587 << FixItHint::CreateReplacement(
589 (Twine(IsIFunc
? "ifunc" : "alias") + "(\"" + Name
+ "\")")
598 // Check resolver function type.
599 const auto *F
= dyn_cast
<llvm::Function
>(GV
);
601 Diags
.Report(Location
, diag::err_alias_to_undefined
)
602 << IsIFunc
<< IsIFunc
;
606 llvm::FunctionType
*FTy
= F
->getFunctionType();
607 if (!FTy
->getReturnType()->isPointerTy()) {
608 Diags
.Report(Location
, diag::err_ifunc_resolver_return
);
616 void CodeGenModule::checkAliases() {
617 // Check if the constructed aliases are well formed. It is really unfortunate
618 // that we have to do this in CodeGen, but we only construct mangled names
619 // and aliases during codegen.
621 DiagnosticsEngine
&Diags
= getDiags();
622 for (const GlobalDecl
&GD
: Aliases
) {
623 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
624 SourceLocation Location
;
626 bool IsIFunc
= D
->hasAttr
<IFuncAttr
>();
627 if (const Attr
*A
= D
->getDefiningAttr()) {
628 Location
= A
->getLocation();
629 Range
= A
->getRange();
631 llvm_unreachable("Not an alias or ifunc?");
633 StringRef MangledName
= getMangledName(GD
);
634 llvm::GlobalValue
*Alias
= GetGlobalValue(MangledName
);
635 const llvm::GlobalValue
*GV
= nullptr;
636 if (!checkAliasedGlobal(Diags
, Location
, IsIFunc
, Alias
, GV
,
637 MangledDeclNames
, Range
)) {
642 llvm::Constant
*Aliasee
=
643 IsIFunc
? cast
<llvm::GlobalIFunc
>(Alias
)->getResolver()
644 : cast
<llvm::GlobalAlias
>(Alias
)->getAliasee();
646 llvm::GlobalValue
*AliaseeGV
;
647 if (auto CE
= dyn_cast
<llvm::ConstantExpr
>(Aliasee
))
648 AliaseeGV
= cast
<llvm::GlobalValue
>(CE
->getOperand(0));
650 AliaseeGV
= cast
<llvm::GlobalValue
>(Aliasee
);
652 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>()) {
653 StringRef AliasSection
= SA
->getName();
654 if (AliasSection
!= AliaseeGV
->getSection())
655 Diags
.Report(SA
->getLocation(), diag::warn_alias_with_section
)
656 << AliasSection
<< IsIFunc
<< IsIFunc
;
659 // We have to handle alias to weak aliases in here. LLVM itself disallows
660 // this since the object semantics would not match the IL one. For
661 // compatibility with gcc we implement it by just pointing the alias
662 // to its aliasee's aliasee. We also warn, since the user is probably
663 // expecting the link to be weak.
664 if (auto *GA
= dyn_cast
<llvm::GlobalAlias
>(AliaseeGV
)) {
665 if (GA
->isInterposable()) {
666 Diags
.Report(Location
, diag::warn_alias_to_weak_alias
)
667 << GV
->getName() << GA
->getName() << IsIFunc
;
668 Aliasee
= llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
669 GA
->getAliasee(), Alias
->getType());
672 cast
<llvm::GlobalIFunc
>(Alias
)->setResolver(Aliasee
);
674 cast
<llvm::GlobalAlias
>(Alias
)->setAliasee(Aliasee
);
681 for (const GlobalDecl
&GD
: Aliases
) {
682 StringRef MangledName
= getMangledName(GD
);
683 llvm::GlobalValue
*Alias
= GetGlobalValue(MangledName
);
684 Alias
->replaceAllUsesWith(llvm::UndefValue::get(Alias
->getType()));
685 Alias
->eraseFromParent();
689 void CodeGenModule::clear() {
690 DeferredDeclsToEmit
.clear();
691 EmittedDeferredDecls
.clear();
693 OpenMPRuntime
->clear();
696 void InstrProfStats::reportDiagnostics(DiagnosticsEngine
&Diags
,
697 StringRef MainFile
) {
698 if (!hasDiagnostics())
700 if (VisitedInMainFile
> 0 && VisitedInMainFile
== MissingInMainFile
) {
701 if (MainFile
.empty())
702 MainFile
= "<stdin>";
703 Diags
.Report(diag::warn_profile_data_unprofiled
) << MainFile
;
706 Diags
.Report(diag::warn_profile_data_out_of_date
) << Visited
<< Mismatched
;
709 Diags
.Report(diag::warn_profile_data_missing
) << Visited
<< Missing
;
713 static void setVisibilityFromDLLStorageClass(const clang::LangOptions
&LO
,
715 if (!LO
.VisibilityFromDLLStorageClass
)
718 llvm::GlobalValue::VisibilityTypes DLLExportVisibility
=
719 CodeGenModule::GetLLVMVisibility(LO
.getDLLExportVisibility());
720 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility
=
721 CodeGenModule::GetLLVMVisibility(LO
.getNoDLLStorageClassVisibility());
722 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility
=
723 CodeGenModule::GetLLVMVisibility(LO
.getExternDeclDLLImportVisibility());
724 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility
=
725 CodeGenModule::GetLLVMVisibility(
726 LO
.getExternDeclNoDLLStorageClassVisibility());
728 for (llvm::GlobalValue
&GV
: M
.global_values()) {
729 if (GV
.hasAppendingLinkage() || GV
.hasLocalLinkage())
732 // Reset DSO locality before setting the visibility. This removes
733 // any effects that visibility options and annotations may have
734 // had on the DSO locality. Setting the visibility will implicitly set
735 // appropriate globals to DSO Local; however, this will be pessimistic
736 // w.r.t. to the normal compiler IRGen.
737 GV
.setDSOLocal(false);
739 if (GV
.isDeclarationForLinker()) {
740 GV
.setVisibility(GV
.getDLLStorageClass() ==
741 llvm::GlobalValue::DLLImportStorageClass
742 ? ExternDeclDLLImportVisibility
743 : ExternDeclNoDLLStorageClassVisibility
);
745 GV
.setVisibility(GV
.getDLLStorageClass() ==
746 llvm::GlobalValue::DLLExportStorageClass
747 ? DLLExportVisibility
748 : NoDLLStorageClassVisibility
);
751 GV
.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
755 void CodeGenModule::Release() {
756 Module
*Primary
= getContext().getCurrentNamedModule();
757 if (CXX20ModuleInits
&& Primary
&& !Primary
->isHeaderLikeModule())
758 EmitModuleInitializers(Primary
);
760 DeferredDecls
.insert(EmittedDeferredDecls
.begin(),
761 EmittedDeferredDecls
.end());
762 EmittedDeferredDecls
.clear();
763 EmitVTablesOpportunistically();
764 applyGlobalValReplacements();
766 emitMultiVersionFunctions();
768 if (Context
.getLangOpts().IncrementalExtensions
&&
769 GlobalTopLevelStmtBlockInFlight
.first
) {
770 const TopLevelStmtDecl
*TLSD
= GlobalTopLevelStmtBlockInFlight
.second
;
771 GlobalTopLevelStmtBlockInFlight
.first
->FinishFunction(TLSD
->getEndLoc());
772 GlobalTopLevelStmtBlockInFlight
= {nullptr, nullptr};
775 // Module implementations are initialized the same way as a regular TU that
776 // imports one or more modules.
777 if (CXX20ModuleInits
&& Primary
&& Primary
->isInterfaceOrPartition())
778 EmitCXXModuleInitFunc(Primary
);
780 EmitCXXGlobalInitFunc();
781 EmitCXXGlobalCleanUpFunc();
782 registerGlobalDtorsWithAtExit();
783 EmitCXXThreadLocalInitFunc();
785 if (llvm::Function
*ObjCInitFunction
= ObjCRuntime
->ModuleInitFunction())
786 AddGlobalCtor(ObjCInitFunction
);
787 if (Context
.getLangOpts().CUDA
&& CUDARuntime
) {
788 if (llvm::Function
*CudaCtorFunction
= CUDARuntime
->finalizeModule())
789 AddGlobalCtor(CudaCtorFunction
);
792 if (llvm::Function
*OpenMPRequiresDirectiveRegFun
=
793 OpenMPRuntime
->emitRequiresDirectiveRegFun()) {
794 AddGlobalCtor(OpenMPRequiresDirectiveRegFun
, 0);
796 OpenMPRuntime
->createOffloadEntriesAndInfoMetadata();
797 OpenMPRuntime
->clear();
800 getModule().setProfileSummary(
801 PGOReader
->getSummary(/* UseCS */ false).getMD(VMContext
),
802 llvm::ProfileSummary::PSK_Instr
);
803 if (PGOStats
.hasDiagnostics())
804 PGOStats
.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName
);
806 llvm::stable_sort(GlobalCtors
, [](const Structor
&L
, const Structor
&R
) {
807 return L
.LexOrder
< R
.LexOrder
;
809 EmitCtorList(GlobalCtors
, "llvm.global_ctors");
810 EmitCtorList(GlobalDtors
, "llvm.global_dtors");
811 EmitGlobalAnnotations();
812 EmitStaticExternCAliases();
814 EmitDeferredUnusedCoverageMappings();
815 CodeGenPGO(*this).setValueProfilingFlag(getModule());
817 CoverageMapping
->emit();
818 if (CodeGenOpts
.SanitizeCfiCrossDso
) {
819 CodeGenFunction(*this).EmitCfiCheckFail();
820 CodeGenFunction(*this).EmitCfiCheckStub();
822 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
))
824 emitAtAvailableLinkGuard();
825 if (Context
.getTargetInfo().getTriple().isWasm())
828 if (getTriple().isAMDGPU()) {
829 // Emit amdgpu_code_object_version module flag, which is code object version
831 if (getTarget().getTargetOpts().CodeObjectVersion
!=
832 TargetOptions::COV_None
) {
833 getModule().addModuleFlag(llvm::Module::Error
,
834 "amdgpu_code_object_version",
835 getTarget().getTargetOpts().CodeObjectVersion
);
838 // Currently, "-mprintf-kind" option is only supported for HIP
840 auto *MDStr
= llvm::MDString::get(
841 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal
==
842 TargetOptions::AMDGPUPrintfKind::Hostcall
)
845 getModule().addModuleFlag(llvm::Module::Error
, "amdgpu_printf_kind",
850 // Emit a global array containing all external kernels or device variables
851 // used by host functions and mark it as used for CUDA/HIP. This is necessary
852 // to get kernels or device variables in archives linked in even if these
853 // kernels or device variables are only used in host functions.
854 if (!Context
.CUDAExternalDeviceDeclODRUsedByHost
.empty()) {
855 SmallVector
<llvm::Constant
*, 8> UsedArray
;
856 for (auto D
: Context
.CUDAExternalDeviceDeclODRUsedByHost
) {
858 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
))
859 GD
= GlobalDecl(FD
, KernelReferenceKind::Kernel
);
862 UsedArray
.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
863 GetAddrOfGlobal(GD
), Int8PtrTy
));
866 llvm::ArrayType
*ATy
= llvm::ArrayType::get(Int8PtrTy
, UsedArray
.size());
868 auto *GV
= new llvm::GlobalVariable(
869 getModule(), ATy
, false, llvm::GlobalValue::InternalLinkage
,
870 llvm::ConstantArray::get(ATy
, UsedArray
), "__clang_gpu_used_external");
871 addCompilerUsedGlobal(GV
);
878 if (CodeGenOpts
.Autolink
&&
879 (Context
.getLangOpts().Modules
|| !LinkerOptionsMetadata
.empty())) {
880 EmitModuleLinkOptions();
883 // On ELF we pass the dependent library specifiers directly to the linker
884 // without manipulating them. This is in contrast to other platforms where
885 // they are mapped to a specific linker option by the compiler. This
886 // difference is a result of the greater variety of ELF linkers and the fact
887 // that ELF linkers tend to handle libraries in a more complicated fashion
888 // than on other platforms. This forces us to defer handling the dependent
889 // libs to the linker.
891 // CUDA/HIP device and host libraries are different. Currently there is no
892 // way to differentiate dependent libraries for host or device. Existing
893 // usage of #pragma comment(lib, *) is intended for host libraries on
894 // Windows. Therefore emit llvm.dependent-libraries only for host.
895 if (!ELFDependentLibraries
.empty() && !Context
.getLangOpts().CUDAIsDevice
) {
896 auto *NMD
= getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
897 for (auto *MD
: ELFDependentLibraries
)
901 // Record mregparm value now so it is visible through rest of codegen.
902 if (Context
.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
)
903 getModule().addModuleFlag(llvm::Module::Error
, "NumRegisterParameters",
904 CodeGenOpts
.NumRegisterParameters
);
906 if (CodeGenOpts
.DwarfVersion
) {
907 getModule().addModuleFlag(llvm::Module::Max
, "Dwarf Version",
908 CodeGenOpts
.DwarfVersion
);
911 if (CodeGenOpts
.Dwarf64
)
912 getModule().addModuleFlag(llvm::Module::Max
, "DWARF64", 1);
914 if (Context
.getLangOpts().SemanticInterposition
)
915 // Require various optimization to respect semantic interposition.
916 getModule().setSemanticInterposition(true);
918 if (CodeGenOpts
.EmitCodeView
) {
919 // Indicate that we want CodeView in the metadata.
920 getModule().addModuleFlag(llvm::Module::Warning
, "CodeView", 1);
922 if (CodeGenOpts
.CodeViewGHash
) {
923 getModule().addModuleFlag(llvm::Module::Warning
, "CodeViewGHash", 1);
925 if (CodeGenOpts
.ControlFlowGuard
) {
926 // Function ID tables and checks for Control Flow Guard (cfguard=2).
927 getModule().addModuleFlag(llvm::Module::Warning
, "cfguard", 2);
928 } else if (CodeGenOpts
.ControlFlowGuardNoChecks
) {
929 // Function ID tables for Control Flow Guard (cfguard=1).
930 getModule().addModuleFlag(llvm::Module::Warning
, "cfguard", 1);
932 if (CodeGenOpts
.EHContGuard
) {
933 // Function ID tables for EH Continuation Guard.
934 getModule().addModuleFlag(llvm::Module::Warning
, "ehcontguard", 1);
936 if (Context
.getLangOpts().Kernel
) {
937 // Note if we are compiling with /kernel.
938 getModule().addModuleFlag(llvm::Module::Warning
, "ms-kernel", 1);
940 if (CodeGenOpts
.OptimizationLevel
> 0 && CodeGenOpts
.StrictVTablePointers
) {
941 // We don't support LTO with 2 with different StrictVTablePointers
942 // FIXME: we could support it by stripping all the information introduced
943 // by StrictVTablePointers.
945 getModule().addModuleFlag(llvm::Module::Error
, "StrictVTablePointers",1);
947 llvm::Metadata
*Ops
[2] = {
948 llvm::MDString::get(VMContext
, "StrictVTablePointers"),
949 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
950 llvm::Type::getInt32Ty(VMContext
), 1))};
952 getModule().addModuleFlag(llvm::Module::Require
,
953 "StrictVTablePointersRequirement",
954 llvm::MDNode::get(VMContext
, Ops
));
956 if (getModuleDebugInfo())
957 // We support a single version in the linked module. The LLVM
958 // parser will drop debug info with a different version number
959 // (and warn about it, too).
960 getModule().addModuleFlag(llvm::Module::Warning
, "Debug Info Version",
961 llvm::DEBUG_METADATA_VERSION
);
963 // We need to record the widths of enums and wchar_t, so that we can generate
964 // the correct build attributes in the ARM backend. wchar_size is also used by
965 // TargetLibraryInfo.
966 uint64_t WCharWidth
=
967 Context
.getTypeSizeInChars(Context
.getWideCharType()).getQuantity();
968 getModule().addModuleFlag(llvm::Module::Error
, "wchar_size", WCharWidth
);
970 llvm::Triple::ArchType Arch
= Context
.getTargetInfo().getTriple().getArch();
971 if ( Arch
== llvm::Triple::arm
972 || Arch
== llvm::Triple::armeb
973 || Arch
== llvm::Triple::thumb
974 || Arch
== llvm::Triple::thumbeb
) {
975 // The minimum width of an enum in bytes
976 uint64_t EnumWidth
= Context
.getLangOpts().ShortEnums
? 1 : 4;
977 getModule().addModuleFlag(llvm::Module::Error
, "min_enum_size", EnumWidth
);
980 if (Arch
== llvm::Triple::riscv32
|| Arch
== llvm::Triple::riscv64
) {
981 StringRef ABIStr
= Target
.getABI();
982 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
983 getModule().addModuleFlag(llvm::Module::Error
, "target-abi",
984 llvm::MDString::get(Ctx
, ABIStr
));
987 if (CodeGenOpts
.SanitizeCfiCrossDso
) {
988 // Indicate that we want cross-DSO control flow integrity checks.
989 getModule().addModuleFlag(llvm::Module::Override
, "Cross-DSO CFI", 1);
992 if (CodeGenOpts
.WholeProgramVTables
) {
993 // Indicate whether VFE was enabled for this module, so that the
994 // vcall_visibility metadata added under whole program vtables is handled
995 // appropriately in the optimizer.
996 getModule().addModuleFlag(llvm::Module::Error
, "Virtual Function Elim",
997 CodeGenOpts
.VirtualFunctionElimination
);
1000 if (LangOpts
.Sanitize
.has(SanitizerKind::CFIICall
)) {
1001 getModule().addModuleFlag(llvm::Module::Override
,
1002 "CFI Canonical Jump Tables",
1003 CodeGenOpts
.SanitizeCfiCanonicalJumpTables
);
1006 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
)) {
1007 getModule().addModuleFlag(llvm::Module::Override
, "kcfi", 1);
1008 // KCFI assumes patchable-function-prefix is the same for all indirectly
1009 // called functions. Store the expected offset for code generation.
1010 if (CodeGenOpts
.PatchableFunctionEntryOffset
)
1011 getModule().addModuleFlag(llvm::Module::Override
, "kcfi-offset",
1012 CodeGenOpts
.PatchableFunctionEntryOffset
);
1015 if (CodeGenOpts
.CFProtectionReturn
&&
1016 Target
.checkCFProtectionReturnSupported(getDiags())) {
1017 // Indicate that we want to instrument return control flow protection.
1018 getModule().addModuleFlag(llvm::Module::Min
, "cf-protection-return",
1022 if (CodeGenOpts
.CFProtectionBranch
&&
1023 Target
.checkCFProtectionBranchSupported(getDiags())) {
1024 // Indicate that we want to instrument branch control flow protection.
1025 getModule().addModuleFlag(llvm::Module::Min
, "cf-protection-branch",
1029 if (CodeGenOpts
.FunctionReturnThunks
)
1030 getModule().addModuleFlag(llvm::Module::Override
, "function_return_thunk_extern", 1);
1032 if (CodeGenOpts
.IndirectBranchCSPrefix
)
1033 getModule().addModuleFlag(llvm::Module::Override
, "indirect_branch_cs_prefix", 1);
1035 // Add module metadata for return address signing (ignoring
1036 // non-leaf/all) and stack tagging. These are actually turned on by function
1037 // attributes, but we use module metadata to emit build attributes. This is
1038 // needed for LTO, where the function attributes are inside bitcode
1039 // serialised into a global variable by the time build attributes are
1040 // emitted, so we can't access them. LTO objects could be compiled with
1041 // different flags therefore module flags are set to "Min" behavior to achieve
1042 // the same end result of the normal build where e.g BTI is off if any object
1043 // doesn't support it.
1044 if (Context
.getTargetInfo().hasFeature("ptrauth") &&
1045 LangOpts
.getSignReturnAddressScope() !=
1046 LangOptions::SignReturnAddressScopeKind::None
)
1047 getModule().addModuleFlag(llvm::Module::Override
,
1048 "sign-return-address-buildattr", 1);
1049 if (LangOpts
.Sanitize
.has(SanitizerKind::MemtagStack
))
1050 getModule().addModuleFlag(llvm::Module::Override
,
1051 "tag-stack-memory-buildattr", 1);
1053 if (Arch
== llvm::Triple::thumb
|| Arch
== llvm::Triple::thumbeb
||
1054 Arch
== llvm::Triple::arm
|| Arch
== llvm::Triple::armeb
||
1055 Arch
== llvm::Triple::aarch64
|| Arch
== llvm::Triple::aarch64_32
||
1056 Arch
== llvm::Triple::aarch64_be
) {
1057 if (LangOpts
.BranchTargetEnforcement
)
1058 getModule().addModuleFlag(llvm::Module::Min
, "branch-target-enforcement",
1060 if (LangOpts
.hasSignReturnAddress())
1061 getModule().addModuleFlag(llvm::Module::Min
, "sign-return-address", 1);
1062 if (LangOpts
.isSignReturnAddressScopeAll())
1063 getModule().addModuleFlag(llvm::Module::Min
, "sign-return-address-all",
1065 if (!LangOpts
.isSignReturnAddressWithAKey())
1066 getModule().addModuleFlag(llvm::Module::Min
,
1067 "sign-return-address-with-bkey", 1);
1070 if (!CodeGenOpts
.MemoryProfileOutput
.empty()) {
1071 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1072 getModule().addModuleFlag(
1073 llvm::Module::Error
, "MemProfProfileFilename",
1074 llvm::MDString::get(Ctx
, CodeGenOpts
.MemoryProfileOutput
));
1077 if (LangOpts
.CUDAIsDevice
&& getTriple().isNVPTX()) {
1078 // Indicate whether __nvvm_reflect should be configured to flush denormal
1079 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
1081 getModule().addModuleFlag(llvm::Module::Override
, "nvvm-reflect-ftz",
1082 CodeGenOpts
.FP32DenormalMode
.Output
!=
1083 llvm::DenormalMode::IEEE
);
1086 if (LangOpts
.EHAsynch
)
1087 getModule().addModuleFlag(llvm::Module::Warning
, "eh-asynch", 1);
1089 // Indicate whether this Module was compiled with -fopenmp
1090 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
)
1091 getModule().addModuleFlag(llvm::Module::Max
, "openmp", LangOpts
.OpenMP
);
1092 if (getLangOpts().OpenMPIsTargetDevice
)
1093 getModule().addModuleFlag(llvm::Module::Max
, "openmp-device",
1096 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1097 if (LangOpts
.OpenCL
|| (LangOpts
.CUDAIsDevice
&& getTriple().isSPIRV())) {
1098 EmitOpenCLMetadata();
1099 // Emit SPIR version.
1100 if (getTriple().isSPIR()) {
1101 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1102 // opencl.spir.version named metadata.
1103 // C++ for OpenCL has a distinct mapping for version compatibility with
1105 auto Version
= LangOpts
.getOpenCLCompatibleVersion();
1106 llvm::Metadata
*SPIRVerElts
[] = {
1107 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1108 Int32Ty
, Version
/ 100)),
1109 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1110 Int32Ty
, (Version
/ 100 > 1) ? 0 : 2))};
1111 llvm::NamedMDNode
*SPIRVerMD
=
1112 TheModule
.getOrInsertNamedMetadata("opencl.spir.version");
1113 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1114 SPIRVerMD
->addOperand(llvm::MDNode::get(Ctx
, SPIRVerElts
));
1118 // HLSL related end of code gen work items.
1120 getHLSLRuntime().finishCodeGen();
1122 if (uint32_t PLevel
= Context
.getLangOpts().PICLevel
) {
1123 assert(PLevel
< 3 && "Invalid PIC Level");
1124 getModule().setPICLevel(static_cast<llvm::PICLevel::Level
>(PLevel
));
1125 if (Context
.getLangOpts().PIE
)
1126 getModule().setPIELevel(static_cast<llvm::PIELevel::Level
>(PLevel
));
1129 if (getCodeGenOpts().CodeModel
.size() > 0) {
1130 unsigned CM
= llvm::StringSwitch
<unsigned>(getCodeGenOpts().CodeModel
)
1131 .Case("tiny", llvm::CodeModel::Tiny
)
1132 .Case("small", llvm::CodeModel::Small
)
1133 .Case("kernel", llvm::CodeModel::Kernel
)
1134 .Case("medium", llvm::CodeModel::Medium
)
1135 .Case("large", llvm::CodeModel::Large
)
1138 llvm::CodeModel::Model codeModel
= static_cast<llvm::CodeModel::Model
>(CM
);
1139 getModule().setCodeModel(codeModel
);
1143 if (CodeGenOpts
.NoPLT
)
1144 getModule().setRtLibUseGOT();
1145 if (getTriple().isOSBinFormatELF() &&
1146 CodeGenOpts
.DirectAccessExternalData
!=
1147 getModule().getDirectAccessExternalData()) {
1148 getModule().setDirectAccessExternalData(
1149 CodeGenOpts
.DirectAccessExternalData
);
1151 if (CodeGenOpts
.UnwindTables
)
1152 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts
.UnwindTables
));
1154 switch (CodeGenOpts
.getFramePointer()) {
1155 case CodeGenOptions::FramePointerKind::None
:
1156 // 0 ("none") is the default.
1158 case CodeGenOptions::FramePointerKind::NonLeaf
:
1159 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf
);
1161 case CodeGenOptions::FramePointerKind::All
:
1162 getModule().setFramePointer(llvm::FramePointerKind::All
);
1166 SimplifyPersonality();
1168 if (getCodeGenOpts().EmitDeclMetadata
)
1171 if (getCodeGenOpts().CoverageNotesFile
.size() ||
1172 getCodeGenOpts().CoverageDataFile
.size())
1175 if (CGDebugInfo
*DI
= getModuleDebugInfo())
1178 if (getCodeGenOpts().EmitVersionIdentMetadata
)
1179 EmitVersionIdentMetadata();
1181 if (!getCodeGenOpts().RecordCommandLine
.empty())
1182 EmitCommandLineMetadata();
1184 if (!getCodeGenOpts().StackProtectorGuard
.empty())
1185 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard
);
1186 if (!getCodeGenOpts().StackProtectorGuardReg
.empty())
1187 getModule().setStackProtectorGuardReg(
1188 getCodeGenOpts().StackProtectorGuardReg
);
1189 if (!getCodeGenOpts().StackProtectorGuardSymbol
.empty())
1190 getModule().setStackProtectorGuardSymbol(
1191 getCodeGenOpts().StackProtectorGuardSymbol
);
1192 if (getCodeGenOpts().StackProtectorGuardOffset
!= INT_MAX
)
1193 getModule().setStackProtectorGuardOffset(
1194 getCodeGenOpts().StackProtectorGuardOffset
);
1195 if (getCodeGenOpts().StackAlignment
)
1196 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment
);
1197 if (getCodeGenOpts().SkipRaxSetup
)
1198 getModule().addModuleFlag(llvm::Module::Override
, "SkipRaxSetup", 1);
1199 if (getLangOpts().RegCall4
)
1200 getModule().addModuleFlag(llvm::Module::Override
, "RegCallv4", 1);
1202 if (getContext().getTargetInfo().getMaxTLSAlign())
1203 getModule().addModuleFlag(llvm::Module::Error
, "MaxTLSAlign",
1204 getContext().getTargetInfo().getMaxTLSAlign());
1206 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames
);
1208 EmitBackendOptionsMetadata(getCodeGenOpts());
1210 // If there is device offloading code embed it in the host now.
1211 EmbedObject(&getModule(), CodeGenOpts
, getDiags());
1213 // Set visibility from DLL storage class
1214 // We do this at the end of LLVM IR generation; after any operation
1215 // that might affect the DLL storage class or the visibility, and
1216 // before anything that might act on these.
1217 setVisibilityFromDLLStorageClass(LangOpts
, getModule());
1220 void CodeGenModule::EmitOpenCLMetadata() {
1221 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1222 // opencl.ocl.version named metadata node.
1223 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1224 auto Version
= LangOpts
.getOpenCLCompatibleVersion();
1225 llvm::Metadata
*OCLVerElts
[] = {
1226 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1227 Int32Ty
, Version
/ 100)),
1228 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1229 Int32Ty
, (Version
% 100) / 10))};
1230 llvm::NamedMDNode
*OCLVerMD
=
1231 TheModule
.getOrInsertNamedMetadata("opencl.ocl.version");
1232 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1233 OCLVerMD
->addOperand(llvm::MDNode::get(Ctx
, OCLVerElts
));
1236 void CodeGenModule::EmitBackendOptionsMetadata(
1237 const CodeGenOptions
&CodeGenOpts
) {
1238 if (getTriple().isRISCV()) {
1239 getModule().addModuleFlag(llvm::Module::Min
, "SmallDataLimit",
1240 CodeGenOpts
.SmallDataLimit
);
1244 void CodeGenModule::UpdateCompletedType(const TagDecl
*TD
) {
1245 // Make sure that this type is translated.
1246 Types
.UpdateCompletedType(TD
);
1249 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl
*RD
) {
1250 // Make sure that this type is translated.
1251 Types
.RefreshTypeCacheForClass(RD
);
1254 llvm::MDNode
*CodeGenModule::getTBAATypeInfo(QualType QTy
) {
1257 return TBAA
->getTypeInfo(QTy
);
1260 TBAAAccessInfo
CodeGenModule::getTBAAAccessInfo(QualType AccessType
) {
1262 return TBAAAccessInfo();
1263 if (getLangOpts().CUDAIsDevice
) {
1264 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1266 if (AccessType
->isCUDADeviceBuiltinSurfaceType()) {
1267 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1269 return TBAAAccessInfo();
1270 } else if (AccessType
->isCUDADeviceBuiltinTextureType()) {
1271 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1273 return TBAAAccessInfo();
1276 return TBAA
->getAccessInfo(AccessType
);
1280 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type
*VTablePtrType
) {
1282 return TBAAAccessInfo();
1283 return TBAA
->getVTablePtrAccessInfo(VTablePtrType
);
1286 llvm::MDNode
*CodeGenModule::getTBAAStructInfo(QualType QTy
) {
1289 return TBAA
->getTBAAStructInfo(QTy
);
1292 llvm::MDNode
*CodeGenModule::getTBAABaseTypeInfo(QualType QTy
) {
1295 return TBAA
->getBaseTypeInfo(QTy
);
1298 llvm::MDNode
*CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info
) {
1301 return TBAA
->getAccessTagInfo(Info
);
1304 TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo
,
1305 TBAAAccessInfo TargetInfo
) {
1307 return TBAAAccessInfo();
1308 return TBAA
->mergeTBAAInfoForCast(SourceInfo
, TargetInfo
);
1312 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA
,
1313 TBAAAccessInfo InfoB
) {
1315 return TBAAAccessInfo();
1316 return TBAA
->mergeTBAAInfoForConditionalOperator(InfoA
, InfoB
);
1320 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo
,
1321 TBAAAccessInfo SrcInfo
) {
1323 return TBAAAccessInfo();
1324 return TBAA
->mergeTBAAInfoForConditionalOperator(DestInfo
, SrcInfo
);
1327 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction
*Inst
,
1328 TBAAAccessInfo TBAAInfo
) {
1329 if (llvm::MDNode
*Tag
= getTBAAAccessTagInfo(TBAAInfo
))
1330 Inst
->setMetadata(llvm::LLVMContext::MD_tbaa
, Tag
);
1333 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1334 llvm::Instruction
*I
, const CXXRecordDecl
*RD
) {
1335 I
->setMetadata(llvm::LLVMContext::MD_invariant_group
,
1336 llvm::MDNode::get(getLLVMContext(), {}));
1339 void CodeGenModule::Error(SourceLocation loc
, StringRef message
) {
1340 unsigned diagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
, "%0");
1341 getDiags().Report(Context
.getFullLoc(loc
), diagID
) << message
;
1344 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1345 /// specified stmt yet.
1346 void CodeGenModule::ErrorUnsupported(const Stmt
*S
, const char *Type
) {
1347 unsigned DiagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
,
1348 "cannot compile this %0 yet");
1349 std::string Msg
= Type
;
1350 getDiags().Report(Context
.getFullLoc(S
->getBeginLoc()), DiagID
)
1351 << Msg
<< S
->getSourceRange();
1354 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1355 /// specified decl yet.
1356 void CodeGenModule::ErrorUnsupported(const Decl
*D
, const char *Type
) {
1357 unsigned DiagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
,
1358 "cannot compile this %0 yet");
1359 std::string Msg
= Type
;
1360 getDiags().Report(Context
.getFullLoc(D
->getLocation()), DiagID
) << Msg
;
1363 llvm::ConstantInt
*CodeGenModule::getSize(CharUnits size
) {
1364 return llvm::ConstantInt::get(SizeTy
, size
.getQuantity());
1367 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue
*GV
,
1368 const NamedDecl
*D
) const {
1369 // Internal definitions always have default visibility.
1370 if (GV
->hasLocalLinkage()) {
1371 GV
->setVisibility(llvm::GlobalValue::DefaultVisibility
);
1376 // Set visibility for definitions, and for declarations if requested globally
1377 // or set explicitly.
1378 LinkageInfo LV
= D
->getLinkageAndVisibility();
1379 if (GV
->hasDLLExportStorageClass() || GV
->hasDLLImportStorageClass()) {
1380 // Reject incompatible dlllstorage and visibility annotations.
1381 if (!LV
.isVisibilityExplicit())
1383 if (GV
->hasDLLExportStorageClass()) {
1384 if (LV
.getVisibility() == HiddenVisibility
)
1385 getDiags().Report(D
->getLocation(),
1386 diag::err_hidden_visibility_dllexport
);
1387 } else if (LV
.getVisibility() != DefaultVisibility
) {
1388 getDiags().Report(D
->getLocation(),
1389 diag::err_non_default_visibility_dllimport
);
1394 if (LV
.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls
||
1395 !GV
->isDeclarationForLinker())
1396 GV
->setVisibility(GetLLVMVisibility(LV
.getVisibility()));
1399 static bool shouldAssumeDSOLocal(const CodeGenModule
&CGM
,
1400 llvm::GlobalValue
*GV
) {
1401 if (GV
->hasLocalLinkage())
1404 if (!GV
->hasDefaultVisibility() && !GV
->hasExternalWeakLinkage())
1407 // DLLImport explicitly marks the GV as external.
1408 if (GV
->hasDLLImportStorageClass())
1411 const llvm::Triple
&TT
= CGM
.getTriple();
1412 if (TT
.isWindowsGNUEnvironment()) {
1413 // In MinGW, variables without DLLImport can still be automatically
1414 // imported from a DLL by the linker; don't mark variables that
1415 // potentially could come from another DLL as DSO local.
1417 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1418 // (and this actually happens in the public interface of libstdc++), so
1419 // such variables can't be marked as DSO local. (Native TLS variables
1420 // can't be dllimported at all, though.)
1421 if (GV
->isDeclarationForLinker() && isa
<llvm::GlobalVariable
>(GV
) &&
1422 (!GV
->isThreadLocal() || CGM
.getCodeGenOpts().EmulatedTLS
))
1426 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1427 // remain unresolved in the link, they can be resolved to zero, which is
1428 // outside the current DSO.
1429 if (TT
.isOSBinFormatCOFF() && GV
->hasExternalWeakLinkage())
1432 // Every other GV is local on COFF.
1433 // Make an exception for windows OS in the triple: Some firmware builds use
1434 // *-win32-macho triples. This (accidentally?) produced windows relocations
1435 // without GOT tables in older clang versions; Keep this behaviour.
1436 // FIXME: even thread local variables?
1437 if (TT
.isOSBinFormatCOFF() || (TT
.isOSWindows() && TT
.isOSBinFormatMachO()))
1440 // Only handle COFF and ELF for now.
1441 if (!TT
.isOSBinFormatELF())
1444 // If this is not an executable, don't assume anything is local.
1445 const auto &CGOpts
= CGM
.getCodeGenOpts();
1446 llvm::Reloc::Model RM
= CGOpts
.RelocationModel
;
1447 const auto &LOpts
= CGM
.getLangOpts();
1448 if (RM
!= llvm::Reloc::Static
&& !LOpts
.PIE
) {
1449 // On ELF, if -fno-semantic-interposition is specified and the target
1450 // supports local aliases, there will be neither CC1
1451 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1452 // dso_local on the function if using a local alias is preferable (can avoid
1453 // PLT indirection).
1454 if (!(isa
<llvm::Function
>(GV
) && GV
->canBenefitFromLocalAlias()))
1456 return !(CGM
.getLangOpts().SemanticInterposition
||
1457 CGM
.getLangOpts().HalfNoSemanticInterposition
);
1460 // A definition cannot be preempted from an executable.
1461 if (!GV
->isDeclarationForLinker())
1464 // Most PIC code sequences that assume that a symbol is local cannot produce a
1465 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1466 // depended, it seems worth it to handle it here.
1467 if (RM
== llvm::Reloc::PIC_
&& GV
->hasExternalWeakLinkage())
1470 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1474 if (CGOpts
.DirectAccessExternalData
) {
1475 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1476 // for non-thread-local variables. If the symbol is not defined in the
1477 // executable, a copy relocation will be needed at link time. dso_local is
1478 // excluded for thread-local variables because they generally don't support
1479 // copy relocations.
1480 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(GV
))
1481 if (!Var
->isThreadLocal())
1484 // -fno-pic sets dso_local on a function declaration to allow direct
1485 // accesses when taking its address (similar to a data symbol). If the
1486 // function is not defined in the executable, a canonical PLT entry will be
1487 // needed at link time. -fno-direct-access-external-data can avoid the
1488 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1489 // it could just cause trouble without providing perceptible benefits.
1490 if (isa
<llvm::Function
>(GV
) && !CGOpts
.NoPLT
&& RM
== llvm::Reloc::Static
)
1494 // If we can use copy relocations we can assume it is local.
1496 // Otherwise don't assume it is local.
1500 void CodeGenModule::setDSOLocal(llvm::GlobalValue
*GV
) const {
1501 GV
->setDSOLocal(shouldAssumeDSOLocal(*this, GV
));
1504 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue
*GV
,
1505 GlobalDecl GD
) const {
1506 const auto *D
= dyn_cast
<NamedDecl
>(GD
.getDecl());
1507 // C++ destructors have a few C++ ABI specific special cases.
1508 if (const auto *Dtor
= dyn_cast_or_null
<CXXDestructorDecl
>(D
)) {
1509 getCXXABI().setCXXDestructorDLLStorage(GV
, Dtor
, GD
.getDtorType());
1512 setDLLImportDLLExport(GV
, D
);
1515 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue
*GV
,
1516 const NamedDecl
*D
) const {
1517 if (D
&& D
->isExternallyVisible()) {
1518 if (D
->hasAttr
<DLLImportAttr
>())
1519 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
1520 else if ((D
->hasAttr
<DLLExportAttr
>() ||
1521 shouldMapVisibilityToDLLExport(D
)) &&
1522 !GV
->isDeclarationForLinker())
1523 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass
);
1527 void CodeGenModule::setGVProperties(llvm::GlobalValue
*GV
,
1528 GlobalDecl GD
) const {
1529 setDLLImportDLLExport(GV
, GD
);
1530 setGVPropertiesAux(GV
, dyn_cast
<NamedDecl
>(GD
.getDecl()));
1533 void CodeGenModule::setGVProperties(llvm::GlobalValue
*GV
,
1534 const NamedDecl
*D
) const {
1535 setDLLImportDLLExport(GV
, D
);
1536 setGVPropertiesAux(GV
, D
);
1539 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue
*GV
,
1540 const NamedDecl
*D
) const {
1541 setGlobalVisibility(GV
, D
);
1543 GV
->setPartition(CodeGenOpts
.SymbolPartition
);
1546 static llvm::GlobalVariable::ThreadLocalMode
GetLLVMTLSModel(StringRef S
) {
1547 return llvm::StringSwitch
<llvm::GlobalVariable::ThreadLocalMode
>(S
)
1548 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel
)
1549 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel
)
1550 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel
)
1551 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel
);
1554 llvm::GlobalVariable::ThreadLocalMode
1555 CodeGenModule::GetDefaultLLVMTLSModel() const {
1556 switch (CodeGenOpts
.getDefaultTLSModel()) {
1557 case CodeGenOptions::GeneralDynamicTLSModel
:
1558 return llvm::GlobalVariable::GeneralDynamicTLSModel
;
1559 case CodeGenOptions::LocalDynamicTLSModel
:
1560 return llvm::GlobalVariable::LocalDynamicTLSModel
;
1561 case CodeGenOptions::InitialExecTLSModel
:
1562 return llvm::GlobalVariable::InitialExecTLSModel
;
1563 case CodeGenOptions::LocalExecTLSModel
:
1564 return llvm::GlobalVariable::LocalExecTLSModel
;
1566 llvm_unreachable("Invalid TLS model!");
1569 void CodeGenModule::setTLSMode(llvm::GlobalValue
*GV
, const VarDecl
&D
) const {
1570 assert(D
.getTLSKind() && "setting TLS mode on non-TLS var!");
1572 llvm::GlobalValue::ThreadLocalMode TLM
;
1573 TLM
= GetDefaultLLVMTLSModel();
1575 // Override the TLS model if it is explicitly specified.
1576 if (const TLSModelAttr
*Attr
= D
.getAttr
<TLSModelAttr
>()) {
1577 TLM
= GetLLVMTLSModel(Attr
->getModel());
1580 GV
->setThreadLocalMode(TLM
);
1583 static std::string
getCPUSpecificMangling(const CodeGenModule
&CGM
,
1585 const TargetInfo
&Target
= CGM
.getTarget();
1586 return (Twine('.') + Twine(Target
.CPUSpecificManglingCharacter(Name
))).str();
1589 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule
&CGM
,
1590 const CPUSpecificAttr
*Attr
,
1593 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1596 Out
<< getCPUSpecificMangling(CGM
, Attr
->getCPUName(CPUIndex
)->getName());
1597 else if (CGM
.getTarget().supportsIFunc())
1601 static void AppendTargetVersionMangling(const CodeGenModule
&CGM
,
1602 const TargetVersionAttr
*Attr
,
1604 if (Attr
->isDefaultVersion())
1607 const TargetInfo
&TI
= CGM
.getTarget();
1608 llvm::SmallVector
<StringRef
, 8> Feats
;
1609 Attr
->getFeatures(Feats
);
1610 llvm::stable_sort(Feats
, [&TI
](const StringRef FeatL
, const StringRef FeatR
) {
1611 return TI
.multiVersionSortPriority(FeatL
) <
1612 TI
.multiVersionSortPriority(FeatR
);
1614 for (const auto &Feat
: Feats
) {
1620 static void AppendTargetMangling(const CodeGenModule
&CGM
,
1621 const TargetAttr
*Attr
, raw_ostream
&Out
) {
1622 if (Attr
->isDefaultVersion())
1626 const TargetInfo
&Target
= CGM
.getTarget();
1627 ParsedTargetAttr Info
= Target
.parseTargetAttr(Attr
->getFeaturesStr());
1628 llvm::sort(Info
.Features
, [&Target
](StringRef LHS
, StringRef RHS
) {
1629 // Multiversioning doesn't allow "no-${feature}", so we can
1630 // only have "+" prefixes here.
1631 assert(LHS
.startswith("+") && RHS
.startswith("+") &&
1632 "Features should always have a prefix.");
1633 return Target
.multiVersionSortPriority(LHS
.substr(1)) >
1634 Target
.multiVersionSortPriority(RHS
.substr(1));
1637 bool IsFirst
= true;
1639 if (!Info
.CPU
.empty()) {
1641 Out
<< "arch_" << Info
.CPU
;
1644 for (StringRef Feat
: Info
.Features
) {
1648 Out
<< Feat
.substr(1);
1652 // Returns true if GD is a function decl with internal linkage and
1653 // needs a unique suffix after the mangled name.
1654 static bool isUniqueInternalLinkageDecl(GlobalDecl GD
,
1655 CodeGenModule
&CGM
) {
1656 const Decl
*D
= GD
.getDecl();
1657 return !CGM
.getModuleNameHash().empty() && isa
<FunctionDecl
>(D
) &&
1658 (CGM
.getFunctionLinkage(GD
) == llvm::GlobalValue::InternalLinkage
);
1661 static void AppendTargetClonesMangling(const CodeGenModule
&CGM
,
1662 const TargetClonesAttr
*Attr
,
1663 unsigned VersionIndex
,
1665 const TargetInfo
&TI
= CGM
.getTarget();
1666 if (TI
.getTriple().isAArch64()) {
1667 StringRef FeatureStr
= Attr
->getFeatureStr(VersionIndex
);
1668 if (FeatureStr
== "default")
1671 SmallVector
<StringRef
, 8> Features
;
1672 FeatureStr
.split(Features
, "+");
1673 llvm::stable_sort(Features
,
1674 [&TI
](const StringRef FeatL
, const StringRef FeatR
) {
1675 return TI
.multiVersionSortPriority(FeatL
) <
1676 TI
.multiVersionSortPriority(FeatR
);
1678 for (auto &Feat
: Features
) {
1684 StringRef FeatureStr
= Attr
->getFeatureStr(VersionIndex
);
1685 if (FeatureStr
.startswith("arch="))
1686 Out
<< "arch_" << FeatureStr
.substr(sizeof("arch=") - 1);
1690 Out
<< '.' << Attr
->getMangledIndex(VersionIndex
);
1694 static std::string
getMangledNameImpl(CodeGenModule
&CGM
, GlobalDecl GD
,
1695 const NamedDecl
*ND
,
1696 bool OmitMultiVersionMangling
= false) {
1697 SmallString
<256> Buffer
;
1698 llvm::raw_svector_ostream
Out(Buffer
);
1699 MangleContext
&MC
= CGM
.getCXXABI().getMangleContext();
1700 if (!CGM
.getModuleNameHash().empty())
1701 MC
.needsUniqueInternalLinkageNames();
1702 bool ShouldMangle
= MC
.shouldMangleDeclName(ND
);
1704 MC
.mangleName(GD
.getWithDecl(ND
), Out
);
1706 IdentifierInfo
*II
= ND
->getIdentifier();
1707 assert(II
&& "Attempt to mangle unnamed decl.");
1708 const auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
1711 FD
->getType()->castAs
<FunctionType
>()->getCallConv() == CC_X86RegCall
) {
1712 if (CGM
.getLangOpts().RegCall4
)
1713 Out
<< "__regcall4__" << II
->getName();
1715 Out
<< "__regcall3__" << II
->getName();
1716 } else if (FD
&& FD
->hasAttr
<CUDAGlobalAttr
>() &&
1717 GD
.getKernelReferenceKind() == KernelReferenceKind::Stub
) {
1718 Out
<< "__device_stub__" << II
->getName();
1720 Out
<< II
->getName();
1724 // Check if the module name hash should be appended for internal linkage
1725 // symbols. This should come before multi-version target suffixes are
1726 // appended. This is to keep the name and module hash suffix of the
1727 // internal linkage function together. The unique suffix should only be
1728 // added when name mangling is done to make sure that the final name can
1729 // be properly demangled. For example, for C functions without prototypes,
1730 // name mangling is not done and the unique suffix should not be appeneded
1732 if (ShouldMangle
&& isUniqueInternalLinkageDecl(GD
, CGM
)) {
1733 assert(CGM
.getCodeGenOpts().UniqueInternalLinkageNames
&&
1734 "Hash computed when not explicitly requested");
1735 Out
<< CGM
.getModuleNameHash();
1738 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
1739 if (FD
->isMultiVersion() && !OmitMultiVersionMangling
) {
1740 switch (FD
->getMultiVersionKind()) {
1741 case MultiVersionKind::CPUDispatch
:
1742 case MultiVersionKind::CPUSpecific
:
1743 AppendCPUSpecificCPUDispatchMangling(CGM
,
1744 FD
->getAttr
<CPUSpecificAttr
>(),
1745 GD
.getMultiVersionIndex(), Out
);
1747 case MultiVersionKind::Target
:
1748 AppendTargetMangling(CGM
, FD
->getAttr
<TargetAttr
>(), Out
);
1750 case MultiVersionKind::TargetVersion
:
1751 AppendTargetVersionMangling(CGM
, FD
->getAttr
<TargetVersionAttr
>(), Out
);
1753 case MultiVersionKind::TargetClones
:
1754 AppendTargetClonesMangling(CGM
, FD
->getAttr
<TargetClonesAttr
>(),
1755 GD
.getMultiVersionIndex(), Out
);
1757 case MultiVersionKind::None
:
1758 llvm_unreachable("None multiversion type isn't valid here");
1762 // Make unique name for device side static file-scope variable for HIP.
1763 if (CGM
.getContext().shouldExternalize(ND
) &&
1764 CGM
.getLangOpts().GPURelocatableDeviceCode
&&
1765 CGM
.getLangOpts().CUDAIsDevice
)
1766 CGM
.printPostfixForExternalizedDecl(Out
, ND
);
1768 return std::string(Out
.str());
1771 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD
,
1772 const FunctionDecl
*FD
,
1773 StringRef
&CurName
) {
1774 if (!FD
->isMultiVersion())
1777 // Get the name of what this would be without the 'target' attribute. This
1778 // allows us to lookup the version that was emitted when this wasn't a
1779 // multiversion function.
1780 std::string NonTargetName
=
1781 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
1783 if (lookupRepresentativeDecl(NonTargetName
, OtherGD
)) {
1784 assert(OtherGD
.getCanonicalDecl()
1787 ->isMultiVersion() &&
1788 "Other GD should now be a multiversioned function");
1789 // OtherFD is the version of this function that was mangled BEFORE
1790 // becoming a MultiVersion function. It potentially needs to be updated.
1791 const FunctionDecl
*OtherFD
= OtherGD
.getCanonicalDecl()
1794 ->getMostRecentDecl();
1795 std::string OtherName
= getMangledNameImpl(*this, OtherGD
, OtherFD
);
1796 // This is so that if the initial version was already the 'default'
1797 // version, we don't try to update it.
1798 if (OtherName
!= NonTargetName
) {
1799 // Remove instead of erase, since others may have stored the StringRef
1801 const auto ExistingRecord
= Manglings
.find(NonTargetName
);
1802 if (ExistingRecord
!= std::end(Manglings
))
1803 Manglings
.remove(&(*ExistingRecord
));
1804 auto Result
= Manglings
.insert(std::make_pair(OtherName
, OtherGD
));
1805 StringRef OtherNameRef
= MangledDeclNames
[OtherGD
.getCanonicalDecl()] =
1806 Result
.first
->first();
1807 // If this is the current decl is being created, make sure we update the name.
1808 if (GD
.getCanonicalDecl() == OtherGD
.getCanonicalDecl())
1809 CurName
= OtherNameRef
;
1810 if (llvm::GlobalValue
*Entry
= GetGlobalValue(NonTargetName
))
1811 Entry
->setName(OtherName
);
1816 StringRef
CodeGenModule::getMangledName(GlobalDecl GD
) {
1817 GlobalDecl CanonicalGD
= GD
.getCanonicalDecl();
1819 // Some ABIs don't have constructor variants. Make sure that base and
1820 // complete constructors get mangled the same.
1821 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(CanonicalGD
.getDecl())) {
1822 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1823 CXXCtorType OrigCtorType
= GD
.getCtorType();
1824 assert(OrigCtorType
== Ctor_Base
|| OrigCtorType
== Ctor_Complete
);
1825 if (OrigCtorType
== Ctor_Base
)
1826 CanonicalGD
= GlobalDecl(CD
, Ctor_Complete
);
1830 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1831 // static device variable depends on whether the variable is referenced by
1832 // a host or device host function. Therefore the mangled name cannot be
1834 if (!LangOpts
.CUDAIsDevice
|| !getContext().mayExternalize(GD
.getDecl())) {
1835 auto FoundName
= MangledDeclNames
.find(CanonicalGD
);
1836 if (FoundName
!= MangledDeclNames
.end())
1837 return FoundName
->second
;
1840 // Keep the first result in the case of a mangling collision.
1841 const auto *ND
= cast
<NamedDecl
>(GD
.getDecl());
1842 std::string MangledName
= getMangledNameImpl(*this, GD
, ND
);
1844 // Ensure either we have different ABIs between host and device compilations,
1845 // says host compilation following MSVC ABI but device compilation follows
1846 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1847 // mangling should be the same after name stubbing. The later checking is
1848 // very important as the device kernel name being mangled in host-compilation
1849 // is used to resolve the device binaries to be executed. Inconsistent naming
1850 // result in undefined behavior. Even though we cannot check that naming
1851 // directly between host- and device-compilations, the host- and
1852 // device-mangling in host compilation could help catching certain ones.
1853 assert(!isa
<FunctionDecl
>(ND
) || !ND
->hasAttr
<CUDAGlobalAttr
>() ||
1854 getContext().shouldExternalize(ND
) || getLangOpts().CUDAIsDevice
||
1855 (getContext().getAuxTargetInfo() &&
1856 (getContext().getAuxTargetInfo()->getCXXABI() !=
1857 getContext().getTargetInfo().getCXXABI())) ||
1858 getCUDARuntime().getDeviceSideName(ND
) ==
1861 GD
.getWithKernelReferenceKind(KernelReferenceKind::Kernel
),
1864 auto Result
= Manglings
.insert(std::make_pair(MangledName
, GD
));
1865 return MangledDeclNames
[CanonicalGD
] = Result
.first
->first();
1868 StringRef
CodeGenModule::getBlockMangledName(GlobalDecl GD
,
1869 const BlockDecl
*BD
) {
1870 MangleContext
&MangleCtx
= getCXXABI().getMangleContext();
1871 const Decl
*D
= GD
.getDecl();
1873 SmallString
<256> Buffer
;
1874 llvm::raw_svector_ostream
Out(Buffer
);
1876 MangleCtx
.mangleGlobalBlock(BD
,
1877 dyn_cast_or_null
<VarDecl
>(initializedGlobalDecl
.getDecl()), Out
);
1878 else if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(D
))
1879 MangleCtx
.mangleCtorBlock(CD
, GD
.getCtorType(), BD
, Out
);
1880 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(D
))
1881 MangleCtx
.mangleDtorBlock(DD
, GD
.getDtorType(), BD
, Out
);
1883 MangleCtx
.mangleBlock(cast
<DeclContext
>(D
), BD
, Out
);
1885 auto Result
= Manglings
.insert(std::make_pair(Out
.str(), BD
));
1886 return Result
.first
->first();
1889 const GlobalDecl
CodeGenModule::getMangledNameDecl(StringRef Name
) {
1890 auto it
= MangledDeclNames
.begin();
1891 while (it
!= MangledDeclNames
.end()) {
1892 if (it
->second
== Name
)
1896 return GlobalDecl();
1899 llvm::GlobalValue
*CodeGenModule::GetGlobalValue(StringRef Name
) {
1900 return getModule().getNamedValue(Name
);
1903 /// AddGlobalCtor - Add a function to the list that will be called before
1905 void CodeGenModule::AddGlobalCtor(llvm::Function
*Ctor
, int Priority
,
1907 llvm::Constant
*AssociatedData
) {
1908 // FIXME: Type coercion of void()* types.
1909 GlobalCtors
.push_back(Structor(Priority
, LexOrder
, Ctor
, AssociatedData
));
1912 /// AddGlobalDtor - Add a function to the list that will be called
1913 /// when the module is unloaded.
1914 void CodeGenModule::AddGlobalDtor(llvm::Function
*Dtor
, int Priority
,
1915 bool IsDtorAttrFunc
) {
1916 if (CodeGenOpts
.RegisterGlobalDtorsWithAtExit
&&
1917 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc
)) {
1918 DtorsUsingAtExit
[Priority
].push_back(Dtor
);
1922 // FIXME: Type coercion of void()* types.
1923 GlobalDtors
.push_back(Structor(Priority
, ~0U, Dtor
, nullptr));
1926 void CodeGenModule::EmitCtorList(CtorList
&Fns
, const char *GlobalName
) {
1927 if (Fns
.empty()) return;
1929 // Ctor function type is void()*.
1930 llvm::FunctionType
* CtorFTy
= llvm::FunctionType::get(VoidTy
, false);
1931 llvm::Type
*CtorPFTy
= llvm::PointerType::get(CtorFTy
,
1932 TheModule
.getDataLayout().getProgramAddressSpace());
1934 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1935 llvm::StructType
*CtorStructTy
= llvm::StructType::get(
1936 Int32Ty
, CtorPFTy
, VoidPtrTy
);
1938 // Construct the constructor and destructor arrays.
1939 ConstantInitBuilder
builder(*this);
1940 auto ctors
= builder
.beginArray(CtorStructTy
);
1941 for (const auto &I
: Fns
) {
1942 auto ctor
= ctors
.beginStruct(CtorStructTy
);
1943 ctor
.addInt(Int32Ty
, I
.Priority
);
1944 ctor
.add(llvm::ConstantExpr::getBitCast(I
.Initializer
, CtorPFTy
));
1945 if (I
.AssociatedData
)
1946 ctor
.add(llvm::ConstantExpr::getBitCast(I
.AssociatedData
, VoidPtrTy
));
1948 ctor
.addNullPointer(VoidPtrTy
);
1949 ctor
.finishAndAddTo(ctors
);
1953 ctors
.finishAndCreateGlobal(GlobalName
, getPointerAlign(),
1955 llvm::GlobalValue::AppendingLinkage
);
1957 // The LTO linker doesn't seem to like it when we set an alignment
1958 // on appending variables. Take it off as a workaround.
1959 list
->setAlignment(std::nullopt
);
1964 llvm::GlobalValue::LinkageTypes
1965 CodeGenModule::getFunctionLinkage(GlobalDecl GD
) {
1966 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
1968 GVALinkage Linkage
= getContext().GetGVALinkageForFunction(D
);
1970 if (const auto *Dtor
= dyn_cast
<CXXDestructorDecl
>(D
))
1971 return getCXXABI().getCXXDestructorLinkage(Linkage
, Dtor
, GD
.getDtorType());
1973 if (isa
<CXXConstructorDecl
>(D
) &&
1974 cast
<CXXConstructorDecl
>(D
)->isInheritingConstructor() &&
1975 Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
1976 // Our approach to inheriting constructors is fundamentally different from
1977 // that used by the MS ABI, so keep our inheriting constructor thunks
1978 // internal rather than trying to pick an unambiguous mangling for them.
1979 return llvm::GlobalValue::InternalLinkage
;
1982 return getLLVMLinkageForDeclarator(D
, Linkage
);
1985 llvm::ConstantInt
*CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata
*MD
) {
1986 llvm::MDString
*MDS
= dyn_cast
<llvm::MDString
>(MD
);
1987 if (!MDS
) return nullptr;
1989 return llvm::ConstantInt::get(Int64Ty
, llvm::MD5Hash(MDS
->getString()));
1992 llvm::ConstantInt
*CodeGenModule::CreateKCFITypeId(QualType T
) {
1993 if (auto *FnType
= T
->getAs
<FunctionProtoType
>())
1994 T
= getContext().getFunctionType(
1995 FnType
->getReturnType(), FnType
->getParamTypes(),
1996 FnType
->getExtProtoInfo().withExceptionSpec(EST_None
));
1998 std::string OutName
;
1999 llvm::raw_string_ostream
Out(OutName
);
2000 getCXXABI().getMangleContext().mangleTypeName(
2001 T
, Out
, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
);
2003 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
)
2004 Out
<< ".normalized";
2006 return llvm::ConstantInt::get(Int32Ty
,
2007 static_cast<uint32_t>(llvm::xxHash64(OutName
)));
2010 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD
,
2011 const CGFunctionInfo
&Info
,
2012 llvm::Function
*F
, bool IsThunk
) {
2013 unsigned CallingConv
;
2014 llvm::AttributeList PAL
;
2015 ConstructAttributeList(F
->getName(), Info
, GD
, PAL
, CallingConv
,
2016 /*AttrOnCallSite=*/false, IsThunk
);
2017 F
->setAttributes(PAL
);
2018 F
->setCallingConv(static_cast<llvm::CallingConv::ID
>(CallingConv
));
2021 static void removeImageAccessQualifier(std::string
& TyName
) {
2022 std::string
ReadOnlyQual("__read_only");
2023 std::string::size_type ReadOnlyPos
= TyName
.find(ReadOnlyQual
);
2024 if (ReadOnlyPos
!= std::string::npos
)
2025 // "+ 1" for the space after access qualifier.
2026 TyName
.erase(ReadOnlyPos
, ReadOnlyQual
.size() + 1);
2028 std::string
WriteOnlyQual("__write_only");
2029 std::string::size_type WriteOnlyPos
= TyName
.find(WriteOnlyQual
);
2030 if (WriteOnlyPos
!= std::string::npos
)
2031 TyName
.erase(WriteOnlyPos
, WriteOnlyQual
.size() + 1);
2033 std::string
ReadWriteQual("__read_write");
2034 std::string::size_type ReadWritePos
= TyName
.find(ReadWriteQual
);
2035 if (ReadWritePos
!= std::string::npos
)
2036 TyName
.erase(ReadWritePos
, ReadWriteQual
.size() + 1);
2041 // Returns the address space id that should be produced to the
2042 // kernel_arg_addr_space metadata. This is always fixed to the ids
2043 // as specified in the SPIR 2.0 specification in order to differentiate
2044 // for example in clGetKernelArgInfo() implementation between the address
2045 // spaces with targets without unique mapping to the OpenCL address spaces
2046 // (basically all single AS CPUs).
2047 static unsigned ArgInfoAddressSpace(LangAS AS
) {
2049 case LangAS::opencl_global
:
2051 case LangAS::opencl_constant
:
2053 case LangAS::opencl_local
:
2055 case LangAS::opencl_generic
:
2056 return 4; // Not in SPIR 2.0 specs.
2057 case LangAS::opencl_global_device
:
2059 case LangAS::opencl_global_host
:
2062 return 0; // Assume private.
2066 void CodeGenModule::GenKernelArgMetadata(llvm::Function
*Fn
,
2067 const FunctionDecl
*FD
,
2068 CodeGenFunction
*CGF
) {
2069 assert(((FD
&& CGF
) || (!FD
&& !CGF
)) &&
2070 "Incorrect use - FD and CGF should either be both null or not!");
2071 // Create MDNodes that represent the kernel arg metadata.
2072 // Each MDNode is a list in the form of "key", N number of values which is
2073 // the same number of values as their are kernel arguments.
2075 const PrintingPolicy
&Policy
= Context
.getPrintingPolicy();
2077 // MDNode for the kernel argument address space qualifiers.
2078 SmallVector
<llvm::Metadata
*, 8> addressQuals
;
2080 // MDNode for the kernel argument access qualifiers (images only).
2081 SmallVector
<llvm::Metadata
*, 8> accessQuals
;
2083 // MDNode for the kernel argument type names.
2084 SmallVector
<llvm::Metadata
*, 8> argTypeNames
;
2086 // MDNode for the kernel argument base type names.
2087 SmallVector
<llvm::Metadata
*, 8> argBaseTypeNames
;
2089 // MDNode for the kernel argument type qualifiers.
2090 SmallVector
<llvm::Metadata
*, 8> argTypeQuals
;
2092 // MDNode for the kernel argument names.
2093 SmallVector
<llvm::Metadata
*, 8> argNames
;
2096 for (unsigned i
= 0, e
= FD
->getNumParams(); i
!= e
; ++i
) {
2097 const ParmVarDecl
*parm
= FD
->getParamDecl(i
);
2098 // Get argument name.
2099 argNames
.push_back(llvm::MDString::get(VMContext
, parm
->getName()));
2101 if (!getLangOpts().OpenCL
)
2103 QualType ty
= parm
->getType();
2104 std::string typeQuals
;
2106 // Get image and pipe access qualifier:
2107 if (ty
->isImageType() || ty
->isPipeType()) {
2108 const Decl
*PDecl
= parm
;
2109 if (const auto *TD
= ty
->getAs
<TypedefType
>())
2110 PDecl
= TD
->getDecl();
2111 const OpenCLAccessAttr
*A
= PDecl
->getAttr
<OpenCLAccessAttr
>();
2112 if (A
&& A
->isWriteOnly())
2113 accessQuals
.push_back(llvm::MDString::get(VMContext
, "write_only"));
2114 else if (A
&& A
->isReadWrite())
2115 accessQuals
.push_back(llvm::MDString::get(VMContext
, "read_write"));
2117 accessQuals
.push_back(llvm::MDString::get(VMContext
, "read_only"));
2119 accessQuals
.push_back(llvm::MDString::get(VMContext
, "none"));
2121 auto getTypeSpelling
= [&](QualType Ty
) {
2122 auto typeName
= Ty
.getUnqualifiedType().getAsString(Policy
);
2124 if (Ty
.isCanonical()) {
2125 StringRef typeNameRef
= typeName
;
2126 // Turn "unsigned type" to "utype"
2127 if (typeNameRef
.consume_front("unsigned "))
2128 return std::string("u") + typeNameRef
.str();
2129 if (typeNameRef
.consume_front("signed "))
2130 return typeNameRef
.str();
2136 if (ty
->isPointerType()) {
2137 QualType pointeeTy
= ty
->getPointeeType();
2139 // Get address qualifier.
2140 addressQuals
.push_back(
2141 llvm::ConstantAsMetadata::get(CGF
->Builder
.getInt32(
2142 ArgInfoAddressSpace(pointeeTy
.getAddressSpace()))));
2144 // Get argument type name.
2145 std::string typeName
= getTypeSpelling(pointeeTy
) + "*";
2146 std::string baseTypeName
=
2147 getTypeSpelling(pointeeTy
.getCanonicalType()) + "*";
2148 argTypeNames
.push_back(llvm::MDString::get(VMContext
, typeName
));
2149 argBaseTypeNames
.push_back(
2150 llvm::MDString::get(VMContext
, baseTypeName
));
2152 // Get argument type qualifiers:
2153 if (ty
.isRestrictQualified())
2154 typeQuals
= "restrict";
2155 if (pointeeTy
.isConstQualified() ||
2156 (pointeeTy
.getAddressSpace() == LangAS::opencl_constant
))
2157 typeQuals
+= typeQuals
.empty() ? "const" : " const";
2158 if (pointeeTy
.isVolatileQualified())
2159 typeQuals
+= typeQuals
.empty() ? "volatile" : " volatile";
2161 uint32_t AddrSpc
= 0;
2162 bool isPipe
= ty
->isPipeType();
2163 if (ty
->isImageType() || isPipe
)
2164 AddrSpc
= ArgInfoAddressSpace(LangAS::opencl_global
);
2166 addressQuals
.push_back(
2167 llvm::ConstantAsMetadata::get(CGF
->Builder
.getInt32(AddrSpc
)));
2169 // Get argument type name.
2170 ty
= isPipe
? ty
->castAs
<PipeType
>()->getElementType() : ty
;
2171 std::string typeName
= getTypeSpelling(ty
);
2172 std::string baseTypeName
= getTypeSpelling(ty
.getCanonicalType());
2174 // Remove access qualifiers on images
2175 // (as they are inseparable from type in clang implementation,
2176 // but OpenCL spec provides a special query to get access qualifier
2177 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2178 if (ty
->isImageType()) {
2179 removeImageAccessQualifier(typeName
);
2180 removeImageAccessQualifier(baseTypeName
);
2183 argTypeNames
.push_back(llvm::MDString::get(VMContext
, typeName
));
2184 argBaseTypeNames
.push_back(
2185 llvm::MDString::get(VMContext
, baseTypeName
));
2190 argTypeQuals
.push_back(llvm::MDString::get(VMContext
, typeQuals
));
2193 if (getLangOpts().OpenCL
) {
2194 Fn
->setMetadata("kernel_arg_addr_space",
2195 llvm::MDNode::get(VMContext
, addressQuals
));
2196 Fn
->setMetadata("kernel_arg_access_qual",
2197 llvm::MDNode::get(VMContext
, accessQuals
));
2198 Fn
->setMetadata("kernel_arg_type",
2199 llvm::MDNode::get(VMContext
, argTypeNames
));
2200 Fn
->setMetadata("kernel_arg_base_type",
2201 llvm::MDNode::get(VMContext
, argBaseTypeNames
));
2202 Fn
->setMetadata("kernel_arg_type_qual",
2203 llvm::MDNode::get(VMContext
, argTypeQuals
));
2205 if (getCodeGenOpts().EmitOpenCLArgMetadata
||
2206 getCodeGenOpts().HIPSaveKernelArgName
)
2207 Fn
->setMetadata("kernel_arg_name",
2208 llvm::MDNode::get(VMContext
, argNames
));
2211 /// Determines whether the language options require us to model
2212 /// unwind exceptions. We treat -fexceptions as mandating this
2213 /// except under the fragile ObjC ABI with only ObjC exceptions
2214 /// enabled. This means, for example, that C with -fexceptions
2216 static bool hasUnwindExceptions(const LangOptions
&LangOpts
) {
2217 // If exceptions are completely disabled, obviously this is false.
2218 if (!LangOpts
.Exceptions
) return false;
2220 // If C++ exceptions are enabled, this is true.
2221 if (LangOpts
.CXXExceptions
) return true;
2223 // If ObjC exceptions are enabled, this depends on the ABI.
2224 if (LangOpts
.ObjCExceptions
) {
2225 return LangOpts
.ObjCRuntime
.hasUnwindExceptions();
2231 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule
&CGM
,
2232 const CXXMethodDecl
*MD
) {
2233 // Check that the type metadata can ever actually be used by a call.
2234 if (!CGM
.getCodeGenOpts().LTOUnit
||
2235 !CGM
.HasHiddenLTOVisibility(MD
->getParent()))
2238 // Only functions whose address can be taken with a member function pointer
2239 // need this sort of type metadata.
2240 return !MD
->isStatic() && !MD
->isVirtual() && !isa
<CXXConstructorDecl
>(MD
) &&
2241 !isa
<CXXDestructorDecl
>(MD
);
2244 SmallVector
<const CXXRecordDecl
*, 0>
2245 CodeGenModule::getMostBaseClasses(const CXXRecordDecl
*RD
) {
2246 llvm::SetVector
<const CXXRecordDecl
*> MostBases
;
2248 std::function
<void (const CXXRecordDecl
*)> CollectMostBases
;
2249 CollectMostBases
= [&](const CXXRecordDecl
*RD
) {
2250 if (RD
->getNumBases() == 0)
2251 MostBases
.insert(RD
);
2252 for (const CXXBaseSpecifier
&B
: RD
->bases())
2253 CollectMostBases(B
.getType()->getAsCXXRecordDecl());
2255 CollectMostBases(RD
);
2256 return MostBases
.takeVector();
2259 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl
*D
,
2260 llvm::Function
*F
) {
2261 llvm::AttrBuilder
B(F
->getContext());
2263 if ((!D
|| !D
->hasAttr
<NoUwtableAttr
>()) && CodeGenOpts
.UnwindTables
)
2264 B
.addUWTableAttr(llvm::UWTableKind(CodeGenOpts
.UnwindTables
));
2266 if (CodeGenOpts
.StackClashProtector
)
2267 B
.addAttribute("probe-stack", "inline-asm");
2269 if (!hasUnwindExceptions(LangOpts
))
2270 B
.addAttribute(llvm::Attribute::NoUnwind
);
2272 if (D
&& D
->hasAttr
<NoStackProtectorAttr
>())
2274 else if (D
&& D
->hasAttr
<StrictGuardStackCheckAttr
>() &&
2275 LangOpts
.getStackProtector() == LangOptions::SSPOn
)
2276 B
.addAttribute(llvm::Attribute::StackProtectStrong
);
2277 else if (LangOpts
.getStackProtector() == LangOptions::SSPOn
)
2278 B
.addAttribute(llvm::Attribute::StackProtect
);
2279 else if (LangOpts
.getStackProtector() == LangOptions::SSPStrong
)
2280 B
.addAttribute(llvm::Attribute::StackProtectStrong
);
2281 else if (LangOpts
.getStackProtector() == LangOptions::SSPReq
)
2282 B
.addAttribute(llvm::Attribute::StackProtectReq
);
2285 // If we don't have a declaration to control inlining, the function isn't
2286 // explicitly marked as alwaysinline for semantic reasons, and inlining is
2287 // disabled, mark the function as noinline.
2288 if (!F
->hasFnAttribute(llvm::Attribute::AlwaysInline
) &&
2289 CodeGenOpts
.getInlining() == CodeGenOptions::OnlyAlwaysInlining
)
2290 B
.addAttribute(llvm::Attribute::NoInline
);
2296 // Handle SME attributes that apply to function definitions,
2297 // rather than to function prototypes.
2298 if (D
->hasAttr
<ArmLocallyStreamingAttr
>())
2299 B
.addAttribute("aarch64_pstate_sm_body");
2301 if (D
->hasAttr
<ArmNewZAAttr
>())
2302 B
.addAttribute("aarch64_pstate_za_new");
2304 // Track whether we need to add the optnone LLVM attribute,
2305 // starting with the default for this optimization level.
2306 bool ShouldAddOptNone
=
2307 !CodeGenOpts
.DisableO0ImplyOptNone
&& CodeGenOpts
.OptimizationLevel
== 0;
2308 // We can't add optnone in the following cases, it won't pass the verifier.
2309 ShouldAddOptNone
&= !D
->hasAttr
<MinSizeAttr
>();
2310 ShouldAddOptNone
&= !D
->hasAttr
<AlwaysInlineAttr
>();
2312 // Add optnone, but do so only if the function isn't always_inline.
2313 if ((ShouldAddOptNone
|| D
->hasAttr
<OptimizeNoneAttr
>()) &&
2314 !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2315 B
.addAttribute(llvm::Attribute::OptimizeNone
);
2317 // OptimizeNone implies noinline; we should not be inlining such functions.
2318 B
.addAttribute(llvm::Attribute::NoInline
);
2320 // We still need to handle naked functions even though optnone subsumes
2321 // much of their semantics.
2322 if (D
->hasAttr
<NakedAttr
>())
2323 B
.addAttribute(llvm::Attribute::Naked
);
2325 // OptimizeNone wins over OptimizeForSize and MinSize.
2326 F
->removeFnAttr(llvm::Attribute::OptimizeForSize
);
2327 F
->removeFnAttr(llvm::Attribute::MinSize
);
2328 } else if (D
->hasAttr
<NakedAttr
>()) {
2329 // Naked implies noinline: we should not be inlining such functions.
2330 B
.addAttribute(llvm::Attribute::Naked
);
2331 B
.addAttribute(llvm::Attribute::NoInline
);
2332 } else if (D
->hasAttr
<NoDuplicateAttr
>()) {
2333 B
.addAttribute(llvm::Attribute::NoDuplicate
);
2334 } else if (D
->hasAttr
<NoInlineAttr
>() && !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2335 // Add noinline if the function isn't always_inline.
2336 B
.addAttribute(llvm::Attribute::NoInline
);
2337 } else if (D
->hasAttr
<AlwaysInlineAttr
>() &&
2338 !F
->hasFnAttribute(llvm::Attribute::NoInline
)) {
2339 // (noinline wins over always_inline, and we can't specify both in IR)
2340 B
.addAttribute(llvm::Attribute::AlwaysInline
);
2341 } else if (CodeGenOpts
.getInlining() == CodeGenOptions::OnlyAlwaysInlining
) {
2342 // If we're not inlining, then force everything that isn't always_inline to
2343 // carry an explicit noinline attribute.
2344 if (!F
->hasFnAttribute(llvm::Attribute::AlwaysInline
))
2345 B
.addAttribute(llvm::Attribute::NoInline
);
2347 // Otherwise, propagate the inline hint attribute and potentially use its
2348 // absence to mark things as noinline.
2349 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2350 // Search function and template pattern redeclarations for inline.
2351 auto CheckForInline
= [](const FunctionDecl
*FD
) {
2352 auto CheckRedeclForInline
= [](const FunctionDecl
*Redecl
) {
2353 return Redecl
->isInlineSpecified();
2355 if (any_of(FD
->redecls(), CheckRedeclForInline
))
2357 const FunctionDecl
*Pattern
= FD
->getTemplateInstantiationPattern();
2360 return any_of(Pattern
->redecls(), CheckRedeclForInline
);
2362 if (CheckForInline(FD
)) {
2363 B
.addAttribute(llvm::Attribute::InlineHint
);
2364 } else if (CodeGenOpts
.getInlining() ==
2365 CodeGenOptions::OnlyHintInlining
&&
2367 !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2368 B
.addAttribute(llvm::Attribute::NoInline
);
2373 // Add other optimization related attributes if we are optimizing this
2375 if (!D
->hasAttr
<OptimizeNoneAttr
>()) {
2376 if (D
->hasAttr
<ColdAttr
>()) {
2377 if (!ShouldAddOptNone
)
2378 B
.addAttribute(llvm::Attribute::OptimizeForSize
);
2379 B
.addAttribute(llvm::Attribute::Cold
);
2381 if (D
->hasAttr
<HotAttr
>())
2382 B
.addAttribute(llvm::Attribute::Hot
);
2383 if (D
->hasAttr
<MinSizeAttr
>())
2384 B
.addAttribute(llvm::Attribute::MinSize
);
2389 unsigned alignment
= D
->getMaxAlignment() / Context
.getCharWidth();
2391 F
->setAlignment(llvm::Align(alignment
));
2393 if (!D
->hasAttr
<AlignedAttr
>())
2394 if (LangOpts
.FunctionAlignment
)
2395 F
->setAlignment(llvm::Align(1ull << LangOpts
.FunctionAlignment
));
2397 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2398 // reserve a bit for differentiating between virtual and non-virtual member
2399 // functions. If the current target's C++ ABI requires this and this is a
2400 // member function, set its alignment accordingly.
2401 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2402 if (F
->getPointerAlignment(getDataLayout()) < 2 && isa
<CXXMethodDecl
>(D
))
2403 F
->setAlignment(std::max(llvm::Align(2), F
->getAlign().valueOrOne()));
2406 // In the cross-dso CFI mode with canonical jump tables, we want !type
2407 // attributes on definitions only.
2408 if (CodeGenOpts
.SanitizeCfiCrossDso
&&
2409 CodeGenOpts
.SanitizeCfiCanonicalJumpTables
) {
2410 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2411 // Skip available_externally functions. They won't be codegen'ed in the
2412 // current module anyway.
2413 if (getContext().GetGVALinkageForFunction(FD
) != GVA_AvailableExternally
)
2414 CreateFunctionTypeMetadataForIcall(FD
, F
);
2418 // Emit type metadata on member functions for member function pointer checks.
2419 // These are only ever necessary on definitions; we're guaranteed that the
2420 // definition will be present in the LTO unit as a result of LTO visibility.
2421 auto *MD
= dyn_cast
<CXXMethodDecl
>(D
);
2422 if (MD
&& requiresMemberFunctionPointerTypeMetadata(*this, MD
)) {
2423 for (const CXXRecordDecl
*Base
: getMostBaseClasses(MD
->getParent())) {
2424 llvm::Metadata
*Id
=
2425 CreateMetadataIdentifierForType(Context
.getMemberPointerType(
2426 MD
->getType(), Context
.getRecordType(Base
).getTypePtr()));
2427 F
->addTypeMetadata(0, Id
);
2432 void CodeGenModule::SetCommonAttributes(GlobalDecl GD
, llvm::GlobalValue
*GV
) {
2433 const Decl
*D
= GD
.getDecl();
2434 if (isa_and_nonnull
<NamedDecl
>(D
))
2435 setGVProperties(GV
, GD
);
2437 GV
->setVisibility(llvm::GlobalValue::DefaultVisibility
);
2439 if (D
&& D
->hasAttr
<UsedAttr
>())
2440 addUsedOrCompilerUsedGlobal(GV
);
2442 if (const auto *VD
= dyn_cast_if_present
<VarDecl
>(D
);
2444 ((CodeGenOpts
.KeepPersistentStorageVariables
&&
2445 (VD
->getStorageDuration() == SD_Static
||
2446 VD
->getStorageDuration() == SD_Thread
)) ||
2447 (CodeGenOpts
.KeepStaticConsts
&& VD
->getStorageDuration() == SD_Static
&&
2448 VD
->getType().isConstQualified())))
2449 addUsedOrCompilerUsedGlobal(GV
);
2452 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD
,
2453 llvm::AttrBuilder
&Attrs
,
2454 bool SetTargetFeatures
) {
2455 // Add target-cpu and target-features attributes to functions. If
2456 // we have a decl for the function and it has a target attribute then
2457 // parse that and add it to the feature set.
2458 StringRef TargetCPU
= getTarget().getTargetOpts().CPU
;
2459 StringRef TuneCPU
= getTarget().getTargetOpts().TuneCPU
;
2460 std::vector
<std::string
> Features
;
2461 const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(GD
.getDecl());
2462 FD
= FD
? FD
->getMostRecentDecl() : FD
;
2463 const auto *TD
= FD
? FD
->getAttr
<TargetAttr
>() : nullptr;
2464 const auto *TV
= FD
? FD
->getAttr
<TargetVersionAttr
>() : nullptr;
2465 assert((!TD
|| !TV
) && "both target_version and target specified");
2466 const auto *SD
= FD
? FD
->getAttr
<CPUSpecificAttr
>() : nullptr;
2467 const auto *TC
= FD
? FD
->getAttr
<TargetClonesAttr
>() : nullptr;
2468 bool AddedAttr
= false;
2469 if (TD
|| TV
|| SD
|| TC
) {
2470 llvm::StringMap
<bool> FeatureMap
;
2471 getContext().getFunctionFeatureMap(FeatureMap
, GD
);
2473 // Produce the canonical string for this set of features.
2474 for (const llvm::StringMap
<bool>::value_type
&Entry
: FeatureMap
)
2475 Features
.push_back((Entry
.getValue() ? "+" : "-") + Entry
.getKey().str());
2477 // Now add the target-cpu and target-features to the function.
2478 // While we populated the feature map above, we still need to
2479 // get and parse the target attribute so we can get the cpu for
2482 ParsedTargetAttr ParsedAttr
=
2483 Target
.parseTargetAttr(TD
->getFeaturesStr());
2484 if (!ParsedAttr
.CPU
.empty() &&
2485 getTarget().isValidCPUName(ParsedAttr
.CPU
)) {
2486 TargetCPU
= ParsedAttr
.CPU
;
2487 TuneCPU
= ""; // Clear the tune CPU.
2489 if (!ParsedAttr
.Tune
.empty() &&
2490 getTarget().isValidCPUName(ParsedAttr
.Tune
))
2491 TuneCPU
= ParsedAttr
.Tune
;
2495 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2496 // favor this processor.
2497 TuneCPU
= SD
->getCPUName(GD
.getMultiVersionIndex())->getName();
2500 // Otherwise just add the existing target cpu and target features to the
2502 Features
= getTarget().getTargetOpts().Features
;
2505 if (!TargetCPU
.empty()) {
2506 Attrs
.addAttribute("target-cpu", TargetCPU
);
2509 if (!TuneCPU
.empty()) {
2510 Attrs
.addAttribute("tune-cpu", TuneCPU
);
2513 if (!Features
.empty() && SetTargetFeatures
) {
2514 llvm::erase_if(Features
, [&](const std::string
& F
) {
2515 return getTarget().isReadOnlyFeature(F
.substr(1));
2517 llvm::sort(Features
);
2518 Attrs
.addAttribute("target-features", llvm::join(Features
, ","));
2525 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD
,
2526 llvm::GlobalObject
*GO
) {
2527 const Decl
*D
= GD
.getDecl();
2528 SetCommonAttributes(GD
, GO
);
2531 if (auto *GV
= dyn_cast
<llvm::GlobalVariable
>(GO
)) {
2532 if (D
->hasAttr
<RetainAttr
>())
2534 if (auto *SA
= D
->getAttr
<PragmaClangBSSSectionAttr
>())
2535 GV
->addAttribute("bss-section", SA
->getName());
2536 if (auto *SA
= D
->getAttr
<PragmaClangDataSectionAttr
>())
2537 GV
->addAttribute("data-section", SA
->getName());
2538 if (auto *SA
= D
->getAttr
<PragmaClangRodataSectionAttr
>())
2539 GV
->addAttribute("rodata-section", SA
->getName());
2540 if (auto *SA
= D
->getAttr
<PragmaClangRelroSectionAttr
>())
2541 GV
->addAttribute("relro-section", SA
->getName());
2544 if (auto *F
= dyn_cast
<llvm::Function
>(GO
)) {
2545 if (D
->hasAttr
<RetainAttr
>())
2547 if (auto *SA
= D
->getAttr
<PragmaClangTextSectionAttr
>())
2548 if (!D
->getAttr
<SectionAttr
>())
2549 F
->addFnAttr("implicit-section-name", SA
->getName());
2551 llvm::AttrBuilder
Attrs(F
->getContext());
2552 if (GetCPUAndFeaturesAttributes(GD
, Attrs
)) {
2553 // We know that GetCPUAndFeaturesAttributes will always have the
2554 // newest set, since it has the newest possible FunctionDecl, so the
2555 // new ones should replace the old.
2556 llvm::AttributeMask RemoveAttrs
;
2557 RemoveAttrs
.addAttribute("target-cpu");
2558 RemoveAttrs
.addAttribute("target-features");
2559 RemoveAttrs
.addAttribute("tune-cpu");
2560 F
->removeFnAttrs(RemoveAttrs
);
2561 F
->addFnAttrs(Attrs
);
2565 if (const auto *CSA
= D
->getAttr
<CodeSegAttr
>())
2566 GO
->setSection(CSA
->getName());
2567 else if (const auto *SA
= D
->getAttr
<SectionAttr
>())
2568 GO
->setSection(SA
->getName());
2571 getTargetCodeGenInfo().setTargetAttributes(D
, GO
, *this);
2574 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD
,
2576 const CGFunctionInfo
&FI
) {
2577 const Decl
*D
= GD
.getDecl();
2578 SetLLVMFunctionAttributes(GD
, FI
, F
, /*IsThunk=*/false);
2579 SetLLVMFunctionAttributesForDefinition(D
, F
);
2581 F
->setLinkage(llvm::Function::InternalLinkage
);
2583 setNonAliasAttributes(GD
, F
);
2586 static void setLinkageForGV(llvm::GlobalValue
*GV
, const NamedDecl
*ND
) {
2587 // Set linkage and visibility in case we never see a definition.
2588 LinkageInfo LV
= ND
->getLinkageAndVisibility();
2589 // Don't set internal linkage on declarations.
2590 // "extern_weak" is overloaded in LLVM; we probably should have
2591 // separate linkage types for this.
2592 if (isExternallyVisible(LV
.getLinkage()) &&
2593 (ND
->hasAttr
<WeakAttr
>() || ND
->isWeakImported()))
2594 GV
->setLinkage(llvm::GlobalValue::ExternalWeakLinkage
);
2597 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl
*FD
,
2598 llvm::Function
*F
) {
2599 // Only if we are checking indirect calls.
2600 if (!LangOpts
.Sanitize
.has(SanitizerKind::CFIICall
))
2603 // Non-static class methods are handled via vtable or member function pointer
2604 // checks elsewhere.
2605 if (isa
<CXXMethodDecl
>(FD
) && !cast
<CXXMethodDecl
>(FD
)->isStatic())
2608 llvm::Metadata
*MD
= CreateMetadataIdentifierForType(FD
->getType());
2609 F
->addTypeMetadata(0, MD
);
2610 F
->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD
->getType()));
2612 // Emit a hash-based bit set entry for cross-DSO calls.
2613 if (CodeGenOpts
.SanitizeCfiCrossDso
)
2614 if (auto CrossDsoTypeId
= CreateCrossDsoCfiTypeId(MD
))
2615 F
->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId
));
2618 void CodeGenModule::setKCFIType(const FunctionDecl
*FD
, llvm::Function
*F
) {
2619 llvm::LLVMContext
&Ctx
= F
->getContext();
2620 llvm::MDBuilder
MDB(Ctx
);
2621 F
->setMetadata(llvm::LLVMContext::MD_kcfi_type
,
2623 Ctx
, MDB
.createConstant(CreateKCFITypeId(FD
->getType()))));
2626 static bool allowKCFIIdentifier(StringRef Name
) {
2627 // KCFI type identifier constants are only necessary for external assembly
2628 // functions, which means it's safe to skip unusual names. Subset of
2629 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2630 return llvm::all_of(Name
, [](const char &C
) {
2631 return llvm::isAlnum(C
) || C
== '_' || C
== '.';
2635 void CodeGenModule::finalizeKCFITypes() {
2636 llvm::Module
&M
= getModule();
2637 for (auto &F
: M
.functions()) {
2638 // Remove KCFI type metadata from non-address-taken local functions.
2639 bool AddressTaken
= F
.hasAddressTaken();
2640 if (!AddressTaken
&& F
.hasLocalLinkage())
2641 F
.eraseMetadata(llvm::LLVMContext::MD_kcfi_type
);
2643 // Generate a constant with the expected KCFI type identifier for all
2644 // address-taken function declarations to support annotating indirectly
2645 // called assembly functions.
2646 if (!AddressTaken
|| !F
.isDeclaration())
2649 const llvm::ConstantInt
*Type
;
2650 if (const llvm::MDNode
*MD
= F
.getMetadata(llvm::LLVMContext::MD_kcfi_type
))
2651 Type
= llvm::mdconst::extract
<llvm::ConstantInt
>(MD
->getOperand(0));
2655 StringRef Name
= F
.getName();
2656 if (!allowKCFIIdentifier(Name
))
2659 std::string Asm
= (".weak __kcfi_typeid_" + Name
+ "\n.set __kcfi_typeid_" +
2660 Name
+ ", " + Twine(Type
->getZExtValue()) + "\n")
2662 M
.appendModuleInlineAsm(Asm
);
2666 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD
, llvm::Function
*F
,
2667 bool IsIncompleteFunction
,
2670 if (llvm::Intrinsic::ID IID
= F
->getIntrinsicID()) {
2671 // If this is an intrinsic function, set the function's attributes
2672 // to the intrinsic's attributes.
2673 F
->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID
));
2677 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
2679 if (!IsIncompleteFunction
)
2680 SetLLVMFunctionAttributes(GD
, getTypes().arrangeGlobalDeclaration(GD
), F
,
2683 // Add the Returned attribute for "this", except for iOS 5 and earlier
2684 // where substantial code, including the libstdc++ dylib, was compiled with
2685 // GCC and does not actually return "this".
2686 if (!IsThunk
&& getCXXABI().HasThisReturn(GD
) &&
2687 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2688 assert(!F
->arg_empty() &&
2689 F
->arg_begin()->getType()
2690 ->canLosslesslyBitCastTo(F
->getReturnType()) &&
2691 "unexpected this return");
2692 F
->addParamAttr(0, llvm::Attribute::Returned
);
2695 // Only a few attributes are set on declarations; these may later be
2696 // overridden by a definition.
2698 setLinkageForGV(F
, FD
);
2699 setGVProperties(F
, FD
);
2701 // Setup target-specific attributes.
2702 if (!IsIncompleteFunction
&& F
->isDeclaration())
2703 getTargetCodeGenInfo().setTargetAttributes(FD
, F
, *this);
2705 if (const auto *CSA
= FD
->getAttr
<CodeSegAttr
>())
2706 F
->setSection(CSA
->getName());
2707 else if (const auto *SA
= FD
->getAttr
<SectionAttr
>())
2708 F
->setSection(SA
->getName());
2710 if (const auto *EA
= FD
->getAttr
<ErrorAttr
>()) {
2712 F
->addFnAttr("dontcall-error", EA
->getUserDiagnostic());
2713 else if (EA
->isWarning())
2714 F
->addFnAttr("dontcall-warn", EA
->getUserDiagnostic());
2717 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2718 if (FD
->isInlineBuiltinDeclaration()) {
2719 const FunctionDecl
*FDBody
;
2720 bool HasBody
= FD
->hasBody(FDBody
);
2722 assert(HasBody
&& "Inline builtin declarations should always have an "
2724 if (shouldEmitFunction(FDBody
))
2725 F
->addFnAttr(llvm::Attribute::NoBuiltin
);
2728 if (FD
->isReplaceableGlobalAllocationFunction()) {
2729 // A replaceable global allocation function does not act like a builtin by
2730 // default, only if it is invoked by a new-expression or delete-expression.
2731 F
->addFnAttr(llvm::Attribute::NoBuiltin
);
2734 if (isa
<CXXConstructorDecl
>(FD
) || isa
<CXXDestructorDecl
>(FD
))
2735 F
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2736 else if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
))
2737 if (MD
->isVirtual())
2738 F
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2740 // Don't emit entries for function declarations in the cross-DSO mode. This
2741 // is handled with better precision by the receiving DSO. But if jump tables
2742 // are non-canonical then we need type metadata in order to produce the local
2744 if (!CodeGenOpts
.SanitizeCfiCrossDso
||
2745 !CodeGenOpts
.SanitizeCfiCanonicalJumpTables
)
2746 CreateFunctionTypeMetadataForIcall(FD
, F
);
2748 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
))
2751 if (getLangOpts().OpenMP
&& FD
->hasAttr
<OMPDeclareSimdDeclAttr
>())
2752 getOpenMPRuntime().emitDeclareSimdFunction(FD
, F
);
2754 if (CodeGenOpts
.InlineMaxStackSize
!= UINT_MAX
)
2755 F
->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts
.InlineMaxStackSize
));
2757 if (const auto *CB
= FD
->getAttr
<CallbackAttr
>()) {
2758 // Annotate the callback behavior as metadata:
2759 // - The callback callee (as argument number).
2760 // - The callback payloads (as argument numbers).
2761 llvm::LLVMContext
&Ctx
= F
->getContext();
2762 llvm::MDBuilder
MDB(Ctx
);
2764 // The payload indices are all but the first one in the encoding. The first
2765 // identifies the callback callee.
2766 int CalleeIdx
= *CB
->encoding_begin();
2767 ArrayRef
<int> PayloadIndices(CB
->encoding_begin() + 1, CB
->encoding_end());
2768 F
->addMetadata(llvm::LLVMContext::MD_callback
,
2769 *llvm::MDNode::get(Ctx
, {MDB
.createCallbackEncoding(
2770 CalleeIdx
, PayloadIndices
,
2771 /* VarArgsArePassed */ false)}));
2775 void CodeGenModule::addUsedGlobal(llvm::GlobalValue
*GV
) {
2776 assert((isa
<llvm::Function
>(GV
) || !GV
->isDeclaration()) &&
2777 "Only globals with definition can force usage.");
2778 LLVMUsed
.emplace_back(GV
);
2781 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue
*GV
) {
2782 assert(!GV
->isDeclaration() &&
2783 "Only globals with definition can force usage.");
2784 LLVMCompilerUsed
.emplace_back(GV
);
2787 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue
*GV
) {
2788 assert((isa
<llvm::Function
>(GV
) || !GV
->isDeclaration()) &&
2789 "Only globals with definition can force usage.");
2790 if (getTriple().isOSBinFormatELF())
2791 LLVMCompilerUsed
.emplace_back(GV
);
2793 LLVMUsed
.emplace_back(GV
);
2796 static void emitUsed(CodeGenModule
&CGM
, StringRef Name
,
2797 std::vector
<llvm::WeakTrackingVH
> &List
) {
2798 // Don't create llvm.used if there is no need.
2802 // Convert List to what ConstantArray needs.
2803 SmallVector
<llvm::Constant
*, 8> UsedArray
;
2804 UsedArray
.resize(List
.size());
2805 for (unsigned i
= 0, e
= List
.size(); i
!= e
; ++i
) {
2807 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2808 cast
<llvm::Constant
>(&*List
[i
]), CGM
.Int8PtrTy
);
2811 if (UsedArray
.empty())
2813 llvm::ArrayType
*ATy
= llvm::ArrayType::get(CGM
.Int8PtrTy
, UsedArray
.size());
2815 auto *GV
= new llvm::GlobalVariable(
2816 CGM
.getModule(), ATy
, false, llvm::GlobalValue::AppendingLinkage
,
2817 llvm::ConstantArray::get(ATy
, UsedArray
), Name
);
2819 GV
->setSection("llvm.metadata");
2822 void CodeGenModule::emitLLVMUsed() {
2823 emitUsed(*this, "llvm.used", LLVMUsed
);
2824 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed
);
2827 void CodeGenModule::AppendLinkerOptions(StringRef Opts
) {
2828 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opts
);
2829 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts
));
2832 void CodeGenModule::AddDetectMismatch(StringRef Name
, StringRef Value
) {
2833 llvm::SmallString
<32> Opt
;
2834 getTargetCodeGenInfo().getDetectMismatchOption(Name
, Value
, Opt
);
2837 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opt
);
2838 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts
));
2841 void CodeGenModule::AddDependentLib(StringRef Lib
) {
2842 auto &C
= getLLVMContext();
2843 if (getTarget().getTriple().isOSBinFormatELF()) {
2844 ELFDependentLibraries
.push_back(
2845 llvm::MDNode::get(C
, llvm::MDString::get(C
, Lib
)));
2849 llvm::SmallString
<24> Opt
;
2850 getTargetCodeGenInfo().getDependentLibraryOption(Lib
, Opt
);
2851 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opt
);
2852 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(C
, MDOpts
));
2855 /// Add link options implied by the given module, including modules
2856 /// it depends on, using a postorder walk.
2857 static void addLinkOptionsPostorder(CodeGenModule
&CGM
, Module
*Mod
,
2858 SmallVectorImpl
<llvm::MDNode
*> &Metadata
,
2859 llvm::SmallPtrSet
<Module
*, 16> &Visited
) {
2860 // Import this module's parent.
2861 if (Mod
->Parent
&& Visited
.insert(Mod
->Parent
).second
) {
2862 addLinkOptionsPostorder(CGM
, Mod
->Parent
, Metadata
, Visited
);
2865 // Import this module's dependencies.
2866 for (Module
*Import
: llvm::reverse(Mod
->Imports
)) {
2867 if (Visited
.insert(Import
).second
)
2868 addLinkOptionsPostorder(CGM
, Import
, Metadata
, Visited
);
2871 // Add linker options to link against the libraries/frameworks
2872 // described by this module.
2873 llvm::LLVMContext
&Context
= CGM
.getLLVMContext();
2874 bool IsELF
= CGM
.getTarget().getTriple().isOSBinFormatELF();
2876 // For modules that use export_as for linking, use that module
2878 if (Mod
->UseExportAsModuleLinkName
)
2881 for (const Module::LinkLibrary
&LL
: llvm::reverse(Mod
->LinkLibraries
)) {
2882 // Link against a framework. Frameworks are currently Darwin only, so we
2883 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2884 if (LL
.IsFramework
) {
2885 llvm::Metadata
*Args
[2] = {llvm::MDString::get(Context
, "-framework"),
2886 llvm::MDString::get(Context
, LL
.Library
)};
2888 Metadata
.push_back(llvm::MDNode::get(Context
, Args
));
2892 // Link against a library.
2894 llvm::Metadata
*Args
[2] = {
2895 llvm::MDString::get(Context
, "lib"),
2896 llvm::MDString::get(Context
, LL
.Library
),
2898 Metadata
.push_back(llvm::MDNode::get(Context
, Args
));
2900 llvm::SmallString
<24> Opt
;
2901 CGM
.getTargetCodeGenInfo().getDependentLibraryOption(LL
.Library
, Opt
);
2902 auto *OptString
= llvm::MDString::get(Context
, Opt
);
2903 Metadata
.push_back(llvm::MDNode::get(Context
, OptString
));
2908 void CodeGenModule::EmitModuleInitializers(clang::Module
*Primary
) {
2909 // Emit the initializers in the order that sub-modules appear in the
2910 // source, first Global Module Fragments, if present.
2911 if (auto GMF
= Primary
->getGlobalModuleFragment()) {
2912 for (Decl
*D
: getContext().getModuleInitializers(GMF
)) {
2913 if (isa
<ImportDecl
>(D
))
2915 assert(isa
<VarDecl
>(D
) && "GMF initializer decl is not a var?");
2916 EmitTopLevelDecl(D
);
2919 // Second any associated with the module, itself.
2920 for (Decl
*D
: getContext().getModuleInitializers(Primary
)) {
2921 // Skip import decls, the inits for those are called explicitly.
2922 if (isa
<ImportDecl
>(D
))
2924 EmitTopLevelDecl(D
);
2926 // Third any associated with the Privat eMOdule Fragment, if present.
2927 if (auto PMF
= Primary
->getPrivateModuleFragment()) {
2928 for (Decl
*D
: getContext().getModuleInitializers(PMF
)) {
2929 assert(isa
<VarDecl
>(D
) && "PMF initializer decl is not a var?");
2930 EmitTopLevelDecl(D
);
2935 void CodeGenModule::EmitModuleLinkOptions() {
2936 // Collect the set of all of the modules we want to visit to emit link
2937 // options, which is essentially the imported modules and all of their
2938 // non-explicit child modules.
2939 llvm::SetVector
<clang::Module
*> LinkModules
;
2940 llvm::SmallPtrSet
<clang::Module
*, 16> Visited
;
2941 SmallVector
<clang::Module
*, 16> Stack
;
2943 // Seed the stack with imported modules.
2944 for (Module
*M
: ImportedModules
) {
2945 // Do not add any link flags when an implementation TU of a module imports
2946 // a header of that same module.
2947 if (M
->getTopLevelModuleName() == getLangOpts().CurrentModule
&&
2948 !getLangOpts().isCompilingModule())
2950 if (Visited
.insert(M
).second
)
2954 // Find all of the modules to import, making a little effort to prune
2955 // non-leaf modules.
2956 while (!Stack
.empty()) {
2957 clang::Module
*Mod
= Stack
.pop_back_val();
2959 bool AnyChildren
= false;
2961 // Visit the submodules of this module.
2962 for (const auto &SM
: Mod
->submodules()) {
2963 // Skip explicit children; they need to be explicitly imported to be
2968 if (Visited
.insert(SM
).second
) {
2969 Stack
.push_back(SM
);
2974 // We didn't find any children, so add this module to the list of
2975 // modules to link against.
2977 LinkModules
.insert(Mod
);
2981 // Add link options for all of the imported modules in reverse topological
2982 // order. We don't do anything to try to order import link flags with respect
2983 // to linker options inserted by things like #pragma comment().
2984 SmallVector
<llvm::MDNode
*, 16> MetadataArgs
;
2986 for (Module
*M
: LinkModules
)
2987 if (Visited
.insert(M
).second
)
2988 addLinkOptionsPostorder(*this, M
, MetadataArgs
, Visited
);
2989 std::reverse(MetadataArgs
.begin(), MetadataArgs
.end());
2990 LinkerOptionsMetadata
.append(MetadataArgs
.begin(), MetadataArgs
.end());
2992 // Add the linker options metadata flag.
2993 auto *NMD
= getModule().getOrInsertNamedMetadata("llvm.linker.options");
2994 for (auto *MD
: LinkerOptionsMetadata
)
2995 NMD
->addOperand(MD
);
2998 void CodeGenModule::EmitDeferred() {
2999 // Emit deferred declare target declarations.
3000 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
)
3001 getOpenMPRuntime().emitDeferredTargetDecls();
3003 // Emit code for any potentially referenced deferred decls. Since a
3004 // previously unused static decl may become used during the generation of code
3005 // for a static function, iterate until no changes are made.
3007 if (!DeferredVTables
.empty()) {
3008 EmitDeferredVTables();
3010 // Emitting a vtable doesn't directly cause more vtables to
3011 // become deferred, although it can cause functions to be
3012 // emitted that then need those vtables.
3013 assert(DeferredVTables
.empty());
3016 // Emit CUDA/HIP static device variables referenced by host code only.
3017 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3018 // needed for further handling.
3019 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
)
3020 llvm::append_range(DeferredDeclsToEmit
,
3021 getContext().CUDADeviceVarODRUsedByHost
);
3023 // Stop if we're out of both deferred vtables and deferred declarations.
3024 if (DeferredDeclsToEmit
.empty())
3027 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3028 // work, it will not interfere with this.
3029 std::vector
<GlobalDecl
> CurDeclsToEmit
;
3030 CurDeclsToEmit
.swap(DeferredDeclsToEmit
);
3032 for (GlobalDecl
&D
: CurDeclsToEmit
) {
3033 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3034 // to get GlobalValue with exactly the type we need, not something that
3035 // might had been created for another decl with the same mangled name but
3037 llvm::GlobalValue
*GV
= dyn_cast
<llvm::GlobalValue
>(
3038 GetAddrOfGlobal(D
, ForDefinition
));
3040 // In case of different address spaces, we may still get a cast, even with
3041 // IsForDefinition equal to true. Query mangled names table to get
3044 GV
= GetGlobalValue(getMangledName(D
));
3046 // Make sure GetGlobalValue returned non-null.
3049 // Check to see if we've already emitted this. This is necessary
3050 // for a couple of reasons: first, decls can end up in the
3051 // deferred-decls queue multiple times, and second, decls can end
3052 // up with definitions in unusual ways (e.g. by an extern inline
3053 // function acquiring a strong function redefinition). Just
3054 // ignore these cases.
3055 if (!GV
->isDeclaration())
3058 // If this is OpenMP, check if it is legal to emit this global normally.
3059 if (LangOpts
.OpenMP
&& OpenMPRuntime
&& OpenMPRuntime
->emitTargetGlobal(D
))
3062 // Otherwise, emit the definition and move on to the next one.
3063 EmitGlobalDefinition(D
, GV
);
3065 // If we found out that we need to emit more decls, do that recursively.
3066 // This has the advantage that the decls are emitted in a DFS and related
3067 // ones are close together, which is convenient for testing.
3068 if (!DeferredVTables
.empty() || !DeferredDeclsToEmit
.empty()) {
3070 assert(DeferredVTables
.empty() && DeferredDeclsToEmit
.empty());
3075 void CodeGenModule::EmitVTablesOpportunistically() {
3076 // Try to emit external vtables as available_externally if they have emitted
3077 // all inlined virtual functions. It runs after EmitDeferred() and therefore
3078 // is not allowed to create new references to things that need to be emitted
3079 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3081 assert((OpportunisticVTables
.empty() || shouldOpportunisticallyEmitVTables())
3082 && "Only emit opportunistic vtables with optimizations");
3084 for (const CXXRecordDecl
*RD
: OpportunisticVTables
) {
3085 assert(getVTables().isVTableExternal(RD
) &&
3086 "This queue should only contain external vtables");
3087 if (getCXXABI().canSpeculativelyEmitVTable(RD
))
3088 VTables
.GenerateClassData(RD
);
3090 OpportunisticVTables
.clear();
3093 void CodeGenModule::EmitGlobalAnnotations() {
3094 if (Annotations
.empty())
3097 // Create a new global variable for the ConstantStruct in the Module.
3098 llvm::Constant
*Array
= llvm::ConstantArray::get(llvm::ArrayType::get(
3099 Annotations
[0]->getType(), Annotations
.size()), Annotations
);
3100 auto *gv
= new llvm::GlobalVariable(getModule(), Array
->getType(), false,
3101 llvm::GlobalValue::AppendingLinkage
,
3102 Array
, "llvm.global.annotations");
3103 gv
->setSection(AnnotationSection
);
3106 llvm::Constant
*CodeGenModule::EmitAnnotationString(StringRef Str
) {
3107 llvm::Constant
*&AStr
= AnnotationStrings
[Str
];
3111 // Not found yet, create a new global.
3112 llvm::Constant
*s
= llvm::ConstantDataArray::getString(getLLVMContext(), Str
);
3113 auto *gv
= new llvm::GlobalVariable(
3114 getModule(), s
->getType(), true, llvm::GlobalValue::PrivateLinkage
, s
,
3115 ".str", nullptr, llvm::GlobalValue::NotThreadLocal
,
3116 ConstGlobalsPtrTy
->getAddressSpace());
3117 gv
->setSection(AnnotationSection
);
3118 gv
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3123 llvm::Constant
*CodeGenModule::EmitAnnotationUnit(SourceLocation Loc
) {
3124 SourceManager
&SM
= getContext().getSourceManager();
3125 PresumedLoc PLoc
= SM
.getPresumedLoc(Loc
);
3127 return EmitAnnotationString(PLoc
.getFilename());
3128 return EmitAnnotationString(SM
.getBufferName(Loc
));
3131 llvm::Constant
*CodeGenModule::EmitAnnotationLineNo(SourceLocation L
) {
3132 SourceManager
&SM
= getContext().getSourceManager();
3133 PresumedLoc PLoc
= SM
.getPresumedLoc(L
);
3134 unsigned LineNo
= PLoc
.isValid() ? PLoc
.getLine() :
3135 SM
.getExpansionLineNumber(L
);
3136 return llvm::ConstantInt::get(Int32Ty
, LineNo
);
3139 llvm::Constant
*CodeGenModule::EmitAnnotationArgs(const AnnotateAttr
*Attr
) {
3140 ArrayRef
<Expr
*> Exprs
= {Attr
->args_begin(), Attr
->args_size()};
3142 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy
);
3144 llvm::FoldingSetNodeID ID
;
3145 for (Expr
*E
: Exprs
) {
3146 ID
.Add(cast
<clang::ConstantExpr
>(E
)->getAPValueResult());
3148 llvm::Constant
*&Lookup
= AnnotationArgs
[ID
.ComputeHash()];
3152 llvm::SmallVector
<llvm::Constant
*, 4> LLVMArgs
;
3153 LLVMArgs
.reserve(Exprs
.size());
3154 ConstantEmitter
ConstEmiter(*this);
3155 llvm::transform(Exprs
, std::back_inserter(LLVMArgs
), [&](const Expr
*E
) {
3156 const auto *CE
= cast
<clang::ConstantExpr
>(E
);
3157 return ConstEmiter
.emitAbstract(CE
->getBeginLoc(), CE
->getAPValueResult(),
3160 auto *Struct
= llvm::ConstantStruct::getAnon(LLVMArgs
);
3161 auto *GV
= new llvm::GlobalVariable(getModule(), Struct
->getType(), true,
3162 llvm::GlobalValue::PrivateLinkage
, Struct
,
3164 GV
->setSection(AnnotationSection
);
3165 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3166 auto *Bitcasted
= llvm::ConstantExpr::getBitCast(GV
, GlobalsInt8PtrTy
);
3172 llvm::Constant
*CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue
*GV
,
3173 const AnnotateAttr
*AA
,
3175 // Get the globals for file name, annotation, and the line number.
3176 llvm::Constant
*AnnoGV
= EmitAnnotationString(AA
->getAnnotation()),
3177 *UnitGV
= EmitAnnotationUnit(L
),
3178 *LineNoCst
= EmitAnnotationLineNo(L
),
3179 *Args
= EmitAnnotationArgs(AA
);
3181 llvm::Constant
*GVInGlobalsAS
= GV
;
3182 if (GV
->getAddressSpace() !=
3183 getDataLayout().getDefaultGlobalsAddressSpace()) {
3184 GVInGlobalsAS
= llvm::ConstantExpr::getAddrSpaceCast(
3185 GV
, GV
->getValueType()->getPointerTo(
3186 getDataLayout().getDefaultGlobalsAddressSpace()));
3189 // Create the ConstantStruct for the global annotation.
3190 llvm::Constant
*Fields
[] = {
3191 llvm::ConstantExpr::getBitCast(GVInGlobalsAS
, GlobalsInt8PtrTy
),
3192 llvm::ConstantExpr::getBitCast(AnnoGV
, ConstGlobalsPtrTy
),
3193 llvm::ConstantExpr::getBitCast(UnitGV
, ConstGlobalsPtrTy
),
3197 return llvm::ConstantStruct::getAnon(Fields
);
3200 void CodeGenModule::AddGlobalAnnotations(const ValueDecl
*D
,
3201 llvm::GlobalValue
*GV
) {
3202 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
3203 // Get the struct elements for these annotations.
3204 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>())
3205 Annotations
.push_back(EmitAnnotateAttr(GV
, I
, D
->getLocation()));
3208 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind
, llvm::Function
*Fn
,
3209 SourceLocation Loc
) const {
3210 const auto &NoSanitizeL
= getContext().getNoSanitizeList();
3211 // NoSanitize by function name.
3212 if (NoSanitizeL
.containsFunction(Kind
, Fn
->getName()))
3214 // NoSanitize by location. Check "mainfile" prefix.
3215 auto &SM
= Context
.getSourceManager();
3216 const FileEntry
&MainFile
= *SM
.getFileEntryForID(SM
.getMainFileID());
3217 if (NoSanitizeL
.containsMainFile(Kind
, MainFile
.getName()))
3220 // Check "src" prefix.
3222 return NoSanitizeL
.containsLocation(Kind
, Loc
);
3223 // If location is unknown, this may be a compiler-generated function. Assume
3224 // it's located in the main file.
3225 return NoSanitizeL
.containsFile(Kind
, MainFile
.getName());
3228 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind
,
3229 llvm::GlobalVariable
*GV
,
3230 SourceLocation Loc
, QualType Ty
,
3231 StringRef Category
) const {
3232 const auto &NoSanitizeL
= getContext().getNoSanitizeList();
3233 if (NoSanitizeL
.containsGlobal(Kind
, GV
->getName(), Category
))
3235 auto &SM
= Context
.getSourceManager();
3236 if (NoSanitizeL
.containsMainFile(
3237 Kind
, SM
.getFileEntryForID(SM
.getMainFileID())->getName(), Category
))
3239 if (NoSanitizeL
.containsLocation(Kind
, Loc
, Category
))
3242 // Check global type.
3244 // Drill down the array types: if global variable of a fixed type is
3245 // not sanitized, we also don't instrument arrays of them.
3246 while (auto AT
= dyn_cast
<ArrayType
>(Ty
.getTypePtr()))
3247 Ty
= AT
->getElementType();
3248 Ty
= Ty
.getCanonicalType().getUnqualifiedType();
3249 // Only record types (classes, structs etc.) are ignored.
3250 if (Ty
->isRecordType()) {
3251 std::string TypeStr
= Ty
.getAsString(getContext().getPrintingPolicy());
3252 if (NoSanitizeL
.containsType(Kind
, TypeStr
, Category
))
3259 bool CodeGenModule::imbueXRayAttrs(llvm::Function
*Fn
, SourceLocation Loc
,
3260 StringRef Category
) const {
3261 const auto &XRayFilter
= getContext().getXRayFilter();
3262 using ImbueAttr
= XRayFunctionFilter::ImbueAttribute
;
3263 auto Attr
= ImbueAttr::NONE
;
3265 Attr
= XRayFilter
.shouldImbueLocation(Loc
, Category
);
3266 if (Attr
== ImbueAttr::NONE
)
3267 Attr
= XRayFilter
.shouldImbueFunction(Fn
->getName());
3269 case ImbueAttr::NONE
:
3271 case ImbueAttr::ALWAYS
:
3272 Fn
->addFnAttr("function-instrument", "xray-always");
3274 case ImbueAttr::ALWAYS_ARG1
:
3275 Fn
->addFnAttr("function-instrument", "xray-always");
3276 Fn
->addFnAttr("xray-log-args", "1");
3278 case ImbueAttr::NEVER
:
3279 Fn
->addFnAttr("function-instrument", "xray-never");
3285 ProfileList::ExclusionType
3286 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function
*Fn
,
3287 SourceLocation Loc
) const {
3288 const auto &ProfileList
= getContext().getProfileList();
3289 // If the profile list is empty, then instrument everything.
3290 if (ProfileList
.isEmpty())
3291 return ProfileList::Allow
;
3292 CodeGenOptions::ProfileInstrKind Kind
= getCodeGenOpts().getProfileInstr();
3293 // First, check the function name.
3294 if (auto V
= ProfileList
.isFunctionExcluded(Fn
->getName(), Kind
))
3296 // Next, check the source location.
3298 if (auto V
= ProfileList
.isLocationExcluded(Loc
, Kind
))
3300 // If location is unknown, this may be a compiler-generated function. Assume
3301 // it's located in the main file.
3302 auto &SM
= Context
.getSourceManager();
3303 if (const auto *MainFile
= SM
.getFileEntryForID(SM
.getMainFileID()))
3304 if (auto V
= ProfileList
.isFileExcluded(MainFile
->getName(), Kind
))
3306 return ProfileList
.getDefault(Kind
);
3309 ProfileList::ExclusionType
3310 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function
*Fn
,
3311 SourceLocation Loc
) const {
3312 auto V
= isFunctionBlockedByProfileList(Fn
, Loc
);
3313 if (V
!= ProfileList::Allow
)
3316 auto NumGroups
= getCodeGenOpts().ProfileTotalFunctionGroups
;
3317 if (NumGroups
> 1) {
3318 auto Group
= llvm::crc32(arrayRefFromStringRef(Fn
->getName())) % NumGroups
;
3319 if (Group
!= getCodeGenOpts().ProfileSelectedFunctionGroup
)
3320 return ProfileList::Skip
;
3322 return ProfileList::Allow
;
3325 bool CodeGenModule::MustBeEmitted(const ValueDecl
*Global
) {
3326 // Never defer when EmitAllDecls is specified.
3327 if (LangOpts
.EmitAllDecls
)
3330 const auto *VD
= dyn_cast
<VarDecl
>(Global
);
3332 ((CodeGenOpts
.KeepPersistentStorageVariables
&&
3333 (VD
->getStorageDuration() == SD_Static
||
3334 VD
->getStorageDuration() == SD_Thread
)) ||
3335 (CodeGenOpts
.KeepStaticConsts
&& VD
->getStorageDuration() == SD_Static
&&
3336 VD
->getType().isConstQualified())))
3339 return getContext().DeclMustBeEmitted(Global
);
3342 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl
*Global
) {
3343 // In OpenMP 5.0 variables and function may be marked as
3344 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3345 // that they must be emitted on the host/device. To be sure we need to have
3346 // seen a declare target with an explicit mentioning of the function, we know
3347 // we have if the level of the declare target attribute is -1. Note that we
3348 // check somewhere else if we should emit this at all.
3349 if (LangOpts
.OpenMP
>= 50 && !LangOpts
.OpenMPSimd
) {
3350 std::optional
<OMPDeclareTargetDeclAttr
*> ActiveAttr
=
3351 OMPDeclareTargetDeclAttr::getActiveAttr(Global
);
3352 if (!ActiveAttr
|| (*ActiveAttr
)->getLevel() != (unsigned)-1)
3356 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Global
)) {
3357 if (FD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
3358 // Implicit template instantiations may change linkage if they are later
3359 // explicitly instantiated, so they should not be emitted eagerly.
3362 if (const auto *VD
= dyn_cast
<VarDecl
>(Global
)) {
3363 if (Context
.getInlineVariableDefinitionKind(VD
) ==
3364 ASTContext::InlineVariableDefinitionKind::WeakUnknown
)
3365 // A definition of an inline constexpr static data member may change
3366 // linkage later if it's redeclared outside the class.
3368 if (CXX20ModuleInits
&& VD
->getOwningModule() &&
3369 !VD
->getOwningModule()->isModuleMapModule()) {
3370 // For CXX20, module-owned initializers need to be deferred, since it is
3371 // not known at this point if they will be run for the current module or
3372 // as part of the initializer for an imported one.
3376 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3377 // codegen for global variables, because they may be marked as threadprivate.
3378 if (LangOpts
.OpenMP
&& LangOpts
.OpenMPUseTLS
&&
3379 getContext().getTargetInfo().isTLSSupported() && isa
<VarDecl
>(Global
) &&
3380 !Global
->getType().isConstantStorage(getContext(), false, false) &&
3381 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global
))
3387 ConstantAddress
CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl
*GD
) {
3388 StringRef Name
= getMangledName(GD
);
3390 // The UUID descriptor should be pointer aligned.
3391 CharUnits Alignment
= CharUnits::fromQuantity(PointerAlignInBytes
);
3393 // Look for an existing global.
3394 if (llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
))
3395 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3397 ConstantEmitter
Emitter(*this);
3398 llvm::Constant
*Init
;
3400 APValue
&V
= GD
->getAsAPValue();
3401 if (!V
.isAbsent()) {
3402 // If possible, emit the APValue version of the initializer. In particular,
3403 // this gets the type of the constant right.
3404 Init
= Emitter
.emitForInitializer(
3405 GD
->getAsAPValue(), GD
->getType().getAddressSpace(), GD
->getType());
3407 // As a fallback, directly construct the constant.
3408 // FIXME: This may get padding wrong under esoteric struct layout rules.
3409 // MSVC appears to create a complete type 'struct __s_GUID' that it
3410 // presumably uses to represent these constants.
3411 MSGuidDecl::Parts Parts
= GD
->getParts();
3412 llvm::Constant
*Fields
[4] = {
3413 llvm::ConstantInt::get(Int32Ty
, Parts
.Part1
),
3414 llvm::ConstantInt::get(Int16Ty
, Parts
.Part2
),
3415 llvm::ConstantInt::get(Int16Ty
, Parts
.Part3
),
3416 llvm::ConstantDataArray::getRaw(
3417 StringRef(reinterpret_cast<char *>(Parts
.Part4And5
), 8), 8,
3419 Init
= llvm::ConstantStruct::getAnon(Fields
);
3422 auto *GV
= new llvm::GlobalVariable(
3423 getModule(), Init
->getType(),
3424 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage
, Init
, Name
);
3425 if (supportsCOMDAT())
3426 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
3429 if (!V
.isAbsent()) {
3430 Emitter
.finalize(GV
);
3431 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3434 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(GD
->getType());
3435 llvm::Constant
*Addr
= llvm::ConstantExpr::getBitCast(
3436 GV
, Ty
->getPointerTo(GV
->getAddressSpace()));
3437 return ConstantAddress(Addr
, Ty
, Alignment
);
3440 ConstantAddress
CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3441 const UnnamedGlobalConstantDecl
*GCD
) {
3442 CharUnits Alignment
= getContext().getTypeAlignInChars(GCD
->getType());
3444 llvm::GlobalVariable
**Entry
= nullptr;
3445 Entry
= &UnnamedGlobalConstantDeclMap
[GCD
];
3447 return ConstantAddress(*Entry
, (*Entry
)->getValueType(), Alignment
);
3449 ConstantEmitter
Emitter(*this);
3450 llvm::Constant
*Init
;
3452 const APValue
&V
= GCD
->getValue();
3454 assert(!V
.isAbsent());
3455 Init
= Emitter
.emitForInitializer(V
, GCD
->getType().getAddressSpace(),
3458 auto *GV
= new llvm::GlobalVariable(getModule(), Init
->getType(),
3459 /*isConstant=*/true,
3460 llvm::GlobalValue::PrivateLinkage
, Init
,
3462 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3463 GV
->setAlignment(Alignment
.getAsAlign());
3465 Emitter
.finalize(GV
);
3468 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3471 ConstantAddress
CodeGenModule::GetAddrOfTemplateParamObject(
3472 const TemplateParamObjectDecl
*TPO
) {
3473 StringRef Name
= getMangledName(TPO
);
3474 CharUnits Alignment
= getNaturalTypeAlignment(TPO
->getType());
3476 if (llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
))
3477 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3479 ConstantEmitter
Emitter(*this);
3480 llvm::Constant
*Init
= Emitter
.emitForInitializer(
3481 TPO
->getValue(), TPO
->getType().getAddressSpace(), TPO
->getType());
3484 ErrorUnsupported(TPO
, "template parameter object");
3485 return ConstantAddress::invalid();
3488 llvm::GlobalValue::LinkageTypes Linkage
=
3489 isExternallyVisible(TPO
->getLinkageAndVisibility().getLinkage())
3490 ? llvm::GlobalValue::LinkOnceODRLinkage
3491 : llvm::GlobalValue::InternalLinkage
;
3492 auto *GV
= new llvm::GlobalVariable(getModule(), Init
->getType(),
3493 /*isConstant=*/true, Linkage
, Init
, Name
);
3494 setGVProperties(GV
, TPO
);
3495 if (supportsCOMDAT())
3496 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
3497 Emitter
.finalize(GV
);
3499 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3502 ConstantAddress
CodeGenModule::GetWeakRefReference(const ValueDecl
*VD
) {
3503 const AliasAttr
*AA
= VD
->getAttr
<AliasAttr
>();
3504 assert(AA
&& "No alias?");
3506 CharUnits Alignment
= getContext().getDeclAlign(VD
);
3507 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(VD
->getType());
3509 // See if there is already something with the target's name in the module.
3510 llvm::GlobalValue
*Entry
= GetGlobalValue(AA
->getAliasee());
3512 unsigned AS
= getTypes().getTargetAddressSpace(VD
->getType());
3513 auto Ptr
= llvm::ConstantExpr::getBitCast(Entry
, DeclTy
->getPointerTo(AS
));
3514 return ConstantAddress(Ptr
, DeclTy
, Alignment
);
3517 llvm::Constant
*Aliasee
;
3518 if (isa
<llvm::FunctionType
>(DeclTy
))
3519 Aliasee
= GetOrCreateLLVMFunction(AA
->getAliasee(), DeclTy
,
3520 GlobalDecl(cast
<FunctionDecl
>(VD
)),
3521 /*ForVTable=*/false);
3523 Aliasee
= GetOrCreateLLVMGlobal(AA
->getAliasee(), DeclTy
, LangAS::Default
,
3526 auto *F
= cast
<llvm::GlobalValue
>(Aliasee
);
3527 F
->setLinkage(llvm::Function::ExternalWeakLinkage
);
3528 WeakRefReferences
.insert(F
);
3530 return ConstantAddress(Aliasee
, DeclTy
, Alignment
);
3533 void CodeGenModule::EmitGlobal(GlobalDecl GD
) {
3534 const auto *Global
= cast
<ValueDecl
>(GD
.getDecl());
3536 // Weak references don't produce any output by themselves.
3537 if (Global
->hasAttr
<WeakRefAttr
>())
3540 // If this is an alias definition (which otherwise looks like a declaration)
3542 if (Global
->hasAttr
<AliasAttr
>())
3543 return EmitAliasDefinition(GD
);
3545 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3546 if (Global
->hasAttr
<IFuncAttr
>())
3547 return emitIFuncDefinition(GD
);
3549 // If this is a cpu_dispatch multiversion function, emit the resolver.
3550 if (Global
->hasAttr
<CPUDispatchAttr
>())
3551 return emitCPUDispatchDefinition(GD
);
3553 // If this is CUDA, be selective about which declarations we emit.
3554 if (LangOpts
.CUDA
) {
3555 if (LangOpts
.CUDAIsDevice
) {
3556 if (!Global
->hasAttr
<CUDADeviceAttr
>() &&
3557 !Global
->hasAttr
<CUDAGlobalAttr
>() &&
3558 !Global
->hasAttr
<CUDAConstantAttr
>() &&
3559 !Global
->hasAttr
<CUDASharedAttr
>() &&
3560 !Global
->getType()->isCUDADeviceBuiltinSurfaceType() &&
3561 !Global
->getType()->isCUDADeviceBuiltinTextureType())
3564 // We need to emit host-side 'shadows' for all global
3565 // device-side variables because the CUDA runtime needs their
3566 // size and host-side address in order to provide access to
3567 // their device-side incarnations.
3569 // So device-only functions are the only things we skip.
3570 if (isa
<FunctionDecl
>(Global
) && !Global
->hasAttr
<CUDAHostAttr
>() &&
3571 Global
->hasAttr
<CUDADeviceAttr
>())
3574 assert((isa
<FunctionDecl
>(Global
) || isa
<VarDecl
>(Global
)) &&
3575 "Expected Variable or Function");
3579 if (LangOpts
.OpenMP
) {
3580 // If this is OpenMP, check if it is legal to emit this global normally.
3581 if (OpenMPRuntime
&& OpenMPRuntime
->emitTargetGlobal(GD
))
3583 if (auto *DRD
= dyn_cast
<OMPDeclareReductionDecl
>(Global
)) {
3584 if (MustBeEmitted(Global
))
3585 EmitOMPDeclareReduction(DRD
);
3588 if (auto *DMD
= dyn_cast
<OMPDeclareMapperDecl
>(Global
)) {
3589 if (MustBeEmitted(Global
))
3590 EmitOMPDeclareMapper(DMD
);
3595 // Ignore declarations, they will be emitted on their first use.
3596 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Global
)) {
3597 // Forward declarations are emitted lazily on first use.
3598 if (!FD
->doesThisDeclarationHaveABody()) {
3599 if (!FD
->doesDeclarationForceExternallyVisibleDefinition())
3602 StringRef MangledName
= getMangledName(GD
);
3604 // Compute the function info and LLVM type.
3605 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
3606 llvm::Type
*Ty
= getTypes().GetFunctionType(FI
);
3608 GetOrCreateLLVMFunction(MangledName
, Ty
, GD
, /*ForVTable=*/false,
3609 /*DontDefer=*/false);
3613 const auto *VD
= cast
<VarDecl
>(Global
);
3614 assert(VD
->isFileVarDecl() && "Cannot emit local var decl as global.");
3615 if (VD
->isThisDeclarationADefinition() != VarDecl::Definition
&&
3616 !Context
.isMSStaticDataMemberInlineDefinition(VD
)) {
3617 if (LangOpts
.OpenMP
) {
3618 // Emit declaration of the must-be-emitted declare target variable.
3619 if (std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
3620 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
)) {
3622 // If this variable has external storage and doesn't require special
3623 // link handling we defer to its canonical definition.
3624 if (VD
->hasExternalStorage() &&
3625 Res
!= OMPDeclareTargetDeclAttr::MT_Link
)
3628 bool UnifiedMemoryEnabled
=
3629 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3630 if ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
3631 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
3632 !UnifiedMemoryEnabled
) {
3633 (void)GetAddrOfGlobalVar(VD
);
3635 assert(((*Res
== OMPDeclareTargetDeclAttr::MT_Link
) ||
3636 ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
3637 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
3638 UnifiedMemoryEnabled
)) &&
3639 "Link clause or to clause with unified memory expected.");
3640 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD
);
3646 // If this declaration may have caused an inline variable definition to
3647 // change linkage, make sure that it's emitted.
3648 if (Context
.getInlineVariableDefinitionKind(VD
) ==
3649 ASTContext::InlineVariableDefinitionKind::Strong
)
3650 GetAddrOfGlobalVar(VD
);
3655 // Defer code generation to first use when possible, e.g. if this is an inline
3656 // function. If the global must always be emitted, do it eagerly if possible
3657 // to benefit from cache locality.
3658 if (MustBeEmitted(Global
) && MayBeEmittedEagerly(Global
)) {
3659 // Emit the definition if it can't be deferred.
3660 EmitGlobalDefinition(GD
);
3661 addEmittedDeferredDecl(GD
);
3665 // If we're deferring emission of a C++ variable with an
3666 // initializer, remember the order in which it appeared in the file.
3667 if (getLangOpts().CPlusPlus
&& isa
<VarDecl
>(Global
) &&
3668 cast
<VarDecl
>(Global
)->hasInit()) {
3669 DelayedCXXInitPosition
[Global
] = CXXGlobalInits
.size();
3670 CXXGlobalInits
.push_back(nullptr);
3673 StringRef MangledName
= getMangledName(GD
);
3674 if (GetGlobalValue(MangledName
) != nullptr) {
3675 // The value has already been used and should therefore be emitted.
3676 addDeferredDeclToEmit(GD
);
3677 } else if (MustBeEmitted(Global
)) {
3678 // The value must be emitted, but cannot be emitted eagerly.
3679 assert(!MayBeEmittedEagerly(Global
));
3680 addDeferredDeclToEmit(GD
);
3682 // Otherwise, remember that we saw a deferred decl with this name. The
3683 // first use of the mangled name will cause it to move into
3684 // DeferredDeclsToEmit.
3685 DeferredDecls
[MangledName
] = GD
;
3689 // Check if T is a class type with a destructor that's not dllimport.
3690 static bool HasNonDllImportDtor(QualType T
) {
3691 if (const auto *RT
= T
->getBaseElementTypeUnsafe()->getAs
<RecordType
>())
3692 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
3693 if (RD
->getDestructor() && !RD
->getDestructor()->hasAttr
<DLLImportAttr
>())
3700 struct FunctionIsDirectlyRecursive
3701 : public ConstStmtVisitor
<FunctionIsDirectlyRecursive
, bool> {
3702 const StringRef Name
;
3703 const Builtin::Context
&BI
;
3704 FunctionIsDirectlyRecursive(StringRef N
, const Builtin::Context
&C
)
3707 bool VisitCallExpr(const CallExpr
*E
) {
3708 const FunctionDecl
*FD
= E
->getDirectCallee();
3711 AsmLabelAttr
*Attr
= FD
->getAttr
<AsmLabelAttr
>();
3712 if (Attr
&& Name
== Attr
->getLabel())
3714 unsigned BuiltinID
= FD
->getBuiltinID();
3715 if (!BuiltinID
|| !BI
.isLibFunction(BuiltinID
))
3717 StringRef BuiltinName
= BI
.getName(BuiltinID
);
3718 if (BuiltinName
.startswith("__builtin_") &&
3719 Name
== BuiltinName
.slice(strlen("__builtin_"), StringRef::npos
)) {
3725 bool VisitStmt(const Stmt
*S
) {
3726 for (const Stmt
*Child
: S
->children())
3727 if (Child
&& this->Visit(Child
))
3733 // Make sure we're not referencing non-imported vars or functions.
3734 struct DLLImportFunctionVisitor
3735 : public RecursiveASTVisitor
<DLLImportFunctionVisitor
> {
3736 bool SafeToInline
= true;
3738 bool shouldVisitImplicitCode() const { return true; }
3740 bool VisitVarDecl(VarDecl
*VD
) {
3741 if (VD
->getTLSKind()) {
3742 // A thread-local variable cannot be imported.
3743 SafeToInline
= false;
3744 return SafeToInline
;
3747 // A variable definition might imply a destructor call.
3748 if (VD
->isThisDeclarationADefinition())
3749 SafeToInline
= !HasNonDllImportDtor(VD
->getType());
3751 return SafeToInline
;
3754 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
) {
3755 if (const auto *D
= E
->getTemporary()->getDestructor())
3756 SafeToInline
= D
->hasAttr
<DLLImportAttr
>();
3757 return SafeToInline
;
3760 bool VisitDeclRefExpr(DeclRefExpr
*E
) {
3761 ValueDecl
*VD
= E
->getDecl();
3762 if (isa
<FunctionDecl
>(VD
))
3763 SafeToInline
= VD
->hasAttr
<DLLImportAttr
>();
3764 else if (VarDecl
*V
= dyn_cast
<VarDecl
>(VD
))
3765 SafeToInline
= !V
->hasGlobalStorage() || V
->hasAttr
<DLLImportAttr
>();
3766 return SafeToInline
;
3769 bool VisitCXXConstructExpr(CXXConstructExpr
*E
) {
3770 SafeToInline
= E
->getConstructor()->hasAttr
<DLLImportAttr
>();
3771 return SafeToInline
;
3774 bool VisitCXXMemberCallExpr(CXXMemberCallExpr
*E
) {
3775 CXXMethodDecl
*M
= E
->getMethodDecl();
3777 // Call through a pointer to member function. This is safe to inline.
3778 SafeToInline
= true;
3780 SafeToInline
= M
->hasAttr
<DLLImportAttr
>();
3782 return SafeToInline
;
3785 bool VisitCXXDeleteExpr(CXXDeleteExpr
*E
) {
3786 SafeToInline
= E
->getOperatorDelete()->hasAttr
<DLLImportAttr
>();
3787 return SafeToInline
;
3790 bool VisitCXXNewExpr(CXXNewExpr
*E
) {
3791 SafeToInline
= E
->getOperatorNew()->hasAttr
<DLLImportAttr
>();
3792 return SafeToInline
;
3797 // isTriviallyRecursive - Check if this function calls another
3798 // decl that, because of the asm attribute or the other decl being a builtin,
3799 // ends up pointing to itself.
3801 CodeGenModule::isTriviallyRecursive(const FunctionDecl
*FD
) {
3803 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD
)) {
3804 // asm labels are a special kind of mangling we have to support.
3805 AsmLabelAttr
*Attr
= FD
->getAttr
<AsmLabelAttr
>();
3808 Name
= Attr
->getLabel();
3810 Name
= FD
->getName();
3813 FunctionIsDirectlyRecursive
Walker(Name
, Context
.BuiltinInfo
);
3814 const Stmt
*Body
= FD
->getBody();
3815 return Body
? Walker
.Visit(Body
) : false;
3818 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD
) {
3819 if (getFunctionLinkage(GD
) != llvm::Function::AvailableExternallyLinkage
)
3821 const auto *F
= cast
<FunctionDecl
>(GD
.getDecl());
3822 if (CodeGenOpts
.OptimizationLevel
== 0 && !F
->hasAttr
<AlwaysInlineAttr
>())
3825 if (F
->hasAttr
<DLLImportAttr
>() && !F
->hasAttr
<AlwaysInlineAttr
>()) {
3826 // Check whether it would be safe to inline this dllimport function.
3827 DLLImportFunctionVisitor Visitor
;
3828 Visitor
.TraverseFunctionDecl(const_cast<FunctionDecl
*>(F
));
3829 if (!Visitor
.SafeToInline
)
3832 if (const CXXDestructorDecl
*Dtor
= dyn_cast
<CXXDestructorDecl
>(F
)) {
3833 // Implicit destructor invocations aren't captured in the AST, so the
3834 // check above can't see them. Check for them manually here.
3835 for (const Decl
*Member
: Dtor
->getParent()->decls())
3836 if (isa
<FieldDecl
>(Member
))
3837 if (HasNonDllImportDtor(cast
<FieldDecl
>(Member
)->getType()))
3839 for (const CXXBaseSpecifier
&B
: Dtor
->getParent()->bases())
3840 if (HasNonDllImportDtor(B
.getType()))
3845 // Inline builtins declaration must be emitted. They often are fortified
3847 if (F
->isInlineBuiltinDeclaration())
3850 // PR9614. Avoid cases where the source code is lying to us. An available
3851 // externally function should have an equivalent function somewhere else,
3852 // but a function that calls itself through asm label/`__builtin_` trickery is
3853 // clearly not equivalent to the real implementation.
3854 // This happens in glibc's btowc and in some configure checks.
3855 return !isTriviallyRecursive(F
);
3858 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3859 return CodeGenOpts
.OptimizationLevel
> 0;
3862 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD
,
3863 llvm::GlobalValue
*GV
) {
3864 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
3866 if (FD
->isCPUSpecificMultiVersion()) {
3867 auto *Spec
= FD
->getAttr
<CPUSpecificAttr
>();
3868 for (unsigned I
= 0; I
< Spec
->cpus_size(); ++I
)
3869 EmitGlobalFunctionDefinition(GD
.getWithMultiVersionIndex(I
), nullptr);
3870 } else if (FD
->isTargetClonesMultiVersion()) {
3871 auto *Clone
= FD
->getAttr
<TargetClonesAttr
>();
3872 for (unsigned I
= 0; I
< Clone
->featuresStrs_size(); ++I
)
3873 if (Clone
->isFirstOfVersion(I
))
3874 EmitGlobalFunctionDefinition(GD
.getWithMultiVersionIndex(I
), nullptr);
3875 // Ensure that the resolver function is also emitted.
3876 GetOrCreateMultiVersionResolver(GD
);
3878 EmitGlobalFunctionDefinition(GD
, GV
);
3881 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD
, llvm::GlobalValue
*GV
) {
3882 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
3884 PrettyStackTraceDecl
CrashInfo(const_cast<ValueDecl
*>(D
), D
->getLocation(),
3885 Context
.getSourceManager(),
3886 "Generating code for declaration");
3888 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
3889 // At -O0, don't generate IR for functions with available_externally
3891 if (!shouldEmitFunction(GD
))
3894 llvm::TimeTraceScope
TimeScope("CodeGen Function", [&]() {
3896 llvm::raw_string_ostream
OS(Name
);
3897 FD
->getNameForDiagnostic(OS
, getContext().getPrintingPolicy(),
3898 /*Qualified=*/true);
3902 if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
3903 // Make sure to emit the definition(s) before we emit the thunks.
3904 // This is necessary for the generation of certain thunks.
3905 if (isa
<CXXConstructorDecl
>(Method
) || isa
<CXXDestructorDecl
>(Method
))
3906 ABI
->emitCXXStructor(GD
);
3907 else if (FD
->isMultiVersion())
3908 EmitMultiVersionFunctionDefinition(GD
, GV
);
3910 EmitGlobalFunctionDefinition(GD
, GV
);
3912 if (Method
->isVirtual())
3913 getVTables().EmitThunks(GD
);
3918 if (FD
->isMultiVersion())
3919 return EmitMultiVersionFunctionDefinition(GD
, GV
);
3920 return EmitGlobalFunctionDefinition(GD
, GV
);
3923 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
3924 return EmitGlobalVarDefinition(VD
, !VD
->hasDefinition());
3926 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3929 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue
*Old
,
3930 llvm::Function
*NewFn
);
3933 TargetMVPriority(const TargetInfo
&TI
,
3934 const CodeGenFunction::MultiVersionResolverOption
&RO
) {
3935 unsigned Priority
= 0;
3936 unsigned NumFeatures
= 0;
3937 for (StringRef Feat
: RO
.Conditions
.Features
) {
3938 Priority
= std::max(Priority
, TI
.multiVersionSortPriority(Feat
));
3942 if (!RO
.Conditions
.Architecture
.empty())
3943 Priority
= std::max(
3944 Priority
, TI
.multiVersionSortPriority(RO
.Conditions
.Architecture
));
3946 Priority
+= TI
.multiVersionFeatureCost() * NumFeatures
;
3951 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3952 // TU can forward declare the function without causing problems. Particularly
3953 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3954 // work with internal linkage functions, so that the same function name can be
3955 // used with internal linkage in multiple TUs.
3956 llvm::GlobalValue::LinkageTypes
getMultiversionLinkage(CodeGenModule
&CGM
,
3958 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
3959 if (FD
->getFormalLinkage() == InternalLinkage
)
3960 return llvm::GlobalValue::InternalLinkage
;
3961 return llvm::GlobalValue::WeakODRLinkage
;
3964 void CodeGenModule::emitMultiVersionFunctions() {
3965 std::vector
<GlobalDecl
> MVFuncsToEmit
;
3966 MultiVersionFuncs
.swap(MVFuncsToEmit
);
3967 for (GlobalDecl GD
: MVFuncsToEmit
) {
3968 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
3969 assert(FD
&& "Expected a FunctionDecl");
3971 SmallVector
<CodeGenFunction::MultiVersionResolverOption
, 10> Options
;
3972 if (FD
->isTargetMultiVersion()) {
3973 getContext().forEachMultiversionedFunctionVersion(
3974 FD
, [this, &GD
, &Options
](const FunctionDecl
*CurFD
) {
3976 (CurFD
->isDefined() ? CurFD
->getDefinition() : CurFD
)};
3977 StringRef MangledName
= getMangledName(CurGD
);
3978 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
3980 if (CurFD
->isDefined()) {
3981 EmitGlobalFunctionDefinition(CurGD
, nullptr);
3982 Func
= GetGlobalValue(MangledName
);
3984 const CGFunctionInfo
&FI
=
3985 getTypes().arrangeGlobalDeclaration(GD
);
3986 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
3987 Func
= GetAddrOfFunction(CurGD
, Ty
, /*ForVTable=*/false,
3988 /*DontDefer=*/false, ForDefinition
);
3990 assert(Func
&& "This should have just been created");
3992 if (CurFD
->getMultiVersionKind() == MultiVersionKind::Target
) {
3993 const auto *TA
= CurFD
->getAttr
<TargetAttr
>();
3994 llvm::SmallVector
<StringRef
, 8> Feats
;
3995 TA
->getAddedFeatures(Feats
);
3996 Options
.emplace_back(cast
<llvm::Function
>(Func
),
3997 TA
->getArchitecture(), Feats
);
3999 const auto *TVA
= CurFD
->getAttr
<TargetVersionAttr
>();
4000 llvm::SmallVector
<StringRef
, 8> Feats
;
4001 TVA
->getFeatures(Feats
);
4002 Options
.emplace_back(cast
<llvm::Function
>(Func
),
4003 /*Architecture*/ "", Feats
);
4006 } else if (FD
->isTargetClonesMultiVersion()) {
4007 const auto *TC
= FD
->getAttr
<TargetClonesAttr
>();
4008 for (unsigned VersionIndex
= 0; VersionIndex
< TC
->featuresStrs_size();
4010 if (!TC
->isFirstOfVersion(VersionIndex
))
4012 GlobalDecl CurGD
{(FD
->isDefined() ? FD
->getDefinition() : FD
),
4014 StringRef Version
= TC
->getFeatureStr(VersionIndex
);
4015 StringRef MangledName
= getMangledName(CurGD
);
4016 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
4018 if (FD
->isDefined()) {
4019 EmitGlobalFunctionDefinition(CurGD
, nullptr);
4020 Func
= GetGlobalValue(MangledName
);
4022 const CGFunctionInfo
&FI
=
4023 getTypes().arrangeGlobalDeclaration(CurGD
);
4024 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
4025 Func
= GetAddrOfFunction(CurGD
, Ty
, /*ForVTable=*/false,
4026 /*DontDefer=*/false, ForDefinition
);
4028 assert(Func
&& "This should have just been created");
4031 StringRef Architecture
;
4032 llvm::SmallVector
<StringRef
, 1> Feature
;
4034 if (getTarget().getTriple().isAArch64()) {
4035 if (Version
!= "default") {
4036 llvm::SmallVector
<StringRef
, 8> VerFeats
;
4037 Version
.split(VerFeats
, "+");
4038 for (auto &CurFeat
: VerFeats
)
4039 Feature
.push_back(CurFeat
.trim());
4042 if (Version
.startswith("arch="))
4043 Architecture
= Version
.drop_front(sizeof("arch=") - 1);
4044 else if (Version
!= "default")
4045 Feature
.push_back(Version
);
4048 Options
.emplace_back(cast
<llvm::Function
>(Func
), Architecture
, Feature
);
4051 assert(0 && "Expected a target or target_clones multiversion function");
4055 llvm::Constant
*ResolverConstant
= GetOrCreateMultiVersionResolver(GD
);
4056 if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(ResolverConstant
))
4057 ResolverConstant
= IFunc
->getResolver();
4058 llvm::Function
*ResolverFunc
= cast
<llvm::Function
>(ResolverConstant
);
4060 ResolverFunc
->setLinkage(getMultiversionLinkage(*this, GD
));
4062 if (supportsCOMDAT())
4063 ResolverFunc
->setComdat(
4064 getModule().getOrInsertComdat(ResolverFunc
->getName()));
4066 const TargetInfo
&TI
= getTarget();
4068 Options
, [&TI
](const CodeGenFunction::MultiVersionResolverOption
&LHS
,
4069 const CodeGenFunction::MultiVersionResolverOption
&RHS
) {
4070 return TargetMVPriority(TI
, LHS
) > TargetMVPriority(TI
, RHS
);
4072 CodeGenFunction
CGF(*this);
4073 CGF
.EmitMultiVersionResolver(ResolverFunc
, Options
);
4076 // Ensure that any additions to the deferred decls list caused by emitting a
4077 // variant are emitted. This can happen when the variant itself is inline and
4078 // calls a function without linkage.
4079 if (!MVFuncsToEmit
.empty())
4082 // Ensure that any additions to the multiversion funcs list from either the
4083 // deferred decls or the multiversion functions themselves are emitted.
4084 if (!MultiVersionFuncs
.empty())
4085 emitMultiVersionFunctions();
4088 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD
) {
4089 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4090 assert(FD
&& "Not a FunctionDecl?");
4091 assert(FD
->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4092 const auto *DD
= FD
->getAttr
<CPUDispatchAttr
>();
4093 assert(DD
&& "Not a cpu_dispatch Function?");
4095 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4096 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
4098 StringRef ResolverName
= getMangledName(GD
);
4099 UpdateMultiVersionNames(GD
, FD
, ResolverName
);
4101 llvm::Type
*ResolverType
;
4102 GlobalDecl ResolverGD
;
4103 if (getTarget().supportsIFunc()) {
4104 ResolverType
= llvm::FunctionType::get(
4105 llvm::PointerType::get(DeclTy
,
4106 getTypes().getTargetAddressSpace(FD
->getType())),
4110 ResolverType
= DeclTy
;
4114 auto *ResolverFunc
= cast
<llvm::Function
>(GetOrCreateLLVMFunction(
4115 ResolverName
, ResolverType
, ResolverGD
, /*ForVTable=*/false));
4116 ResolverFunc
->setLinkage(getMultiversionLinkage(*this, GD
));
4117 if (supportsCOMDAT())
4118 ResolverFunc
->setComdat(
4119 getModule().getOrInsertComdat(ResolverFunc
->getName()));
4121 SmallVector
<CodeGenFunction::MultiVersionResolverOption
, 10> Options
;
4122 const TargetInfo
&Target
= getTarget();
4124 for (const IdentifierInfo
*II
: DD
->cpus()) {
4125 // Get the name of the target function so we can look it up/create it.
4126 std::string MangledName
= getMangledNameImpl(*this, GD
, FD
, true) +
4127 getCPUSpecificMangling(*this, II
->getName());
4129 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
4132 GlobalDecl ExistingDecl
= Manglings
.lookup(MangledName
);
4133 if (ExistingDecl
.getDecl() &&
4134 ExistingDecl
.getDecl()->getAsFunction()->isDefined()) {
4135 EmitGlobalFunctionDefinition(ExistingDecl
, nullptr);
4136 Func
= GetGlobalValue(MangledName
);
4138 if (!ExistingDecl
.getDecl())
4139 ExistingDecl
= GD
.getWithMultiVersionIndex(Index
);
4141 Func
= GetOrCreateLLVMFunction(
4142 MangledName
, DeclTy
, ExistingDecl
,
4143 /*ForVTable=*/false, /*DontDefer=*/true,
4144 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition
);
4148 llvm::SmallVector
<StringRef
, 32> Features
;
4149 Target
.getCPUSpecificCPUDispatchFeatures(II
->getName(), Features
);
4150 llvm::transform(Features
, Features
.begin(),
4151 [](StringRef Str
) { return Str
.substr(1); });
4152 llvm::erase_if(Features
, [&Target
](StringRef Feat
) {
4153 return !Target
.validateCpuSupports(Feat
);
4155 Options
.emplace_back(cast
<llvm::Function
>(Func
), StringRef
{}, Features
);
4160 Options
, [](const CodeGenFunction::MultiVersionResolverOption
&LHS
,
4161 const CodeGenFunction::MultiVersionResolverOption
&RHS
) {
4162 return llvm::X86::getCpuSupportsMask(LHS
.Conditions
.Features
) >
4163 llvm::X86::getCpuSupportsMask(RHS
.Conditions
.Features
);
4166 // If the list contains multiple 'default' versions, such as when it contains
4167 // 'pentium' and 'generic', don't emit the call to the generic one (since we
4168 // always run on at least a 'pentium'). We do this by deleting the 'least
4169 // advanced' (read, lowest mangling letter).
4170 while (Options
.size() > 1 &&
4171 llvm::X86::getCpuSupportsMask(
4172 (Options
.end() - 2)->Conditions
.Features
) == 0) {
4173 StringRef LHSName
= (Options
.end() - 2)->Function
->getName();
4174 StringRef RHSName
= (Options
.end() - 1)->Function
->getName();
4175 if (LHSName
.compare(RHSName
) < 0)
4176 Options
.erase(Options
.end() - 2);
4178 Options
.erase(Options
.end() - 1);
4181 CodeGenFunction
CGF(*this);
4182 CGF
.EmitMultiVersionResolver(ResolverFunc
, Options
);
4184 if (getTarget().supportsIFunc()) {
4185 llvm::GlobalValue::LinkageTypes Linkage
= getMultiversionLinkage(*this, GD
);
4186 auto *IFunc
= cast
<llvm::GlobalValue
>(GetOrCreateMultiVersionResolver(GD
));
4188 // Fix up function declarations that were created for cpu_specific before
4189 // cpu_dispatch was known
4190 if (!isa
<llvm::GlobalIFunc
>(IFunc
)) {
4191 assert(cast
<llvm::Function
>(IFunc
)->isDeclaration());
4192 auto *GI
= llvm::GlobalIFunc::create(DeclTy
, 0, Linkage
, "", ResolverFunc
,
4194 GI
->takeName(IFunc
);
4195 IFunc
->replaceAllUsesWith(GI
);
4196 IFunc
->eraseFromParent();
4200 std::string AliasName
= getMangledNameImpl(
4201 *this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4202 llvm::Constant
*AliasFunc
= GetGlobalValue(AliasName
);
4204 auto *GA
= llvm::GlobalAlias::create(DeclTy
, 0, Linkage
, AliasName
, IFunc
,
4206 SetCommonAttributes(GD
, GA
);
4211 /// If a dispatcher for the specified mangled name is not in the module, create
4212 /// and return an llvm Function with the specified type.
4213 llvm::Constant
*CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD
) {
4214 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4215 assert(FD
&& "Not a FunctionDecl?");
4217 std::string MangledName
=
4218 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4220 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4221 // a separate resolver).
4222 std::string ResolverName
= MangledName
;
4223 if (getTarget().supportsIFunc())
4224 ResolverName
+= ".ifunc";
4225 else if (FD
->isTargetMultiVersion())
4226 ResolverName
+= ".resolver";
4228 // If the resolver has already been created, just return it.
4229 if (llvm::GlobalValue
*ResolverGV
= GetGlobalValue(ResolverName
))
4232 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4233 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
4235 // The resolver needs to be created. For target and target_clones, defer
4236 // creation until the end of the TU.
4237 if (FD
->isTargetMultiVersion() || FD
->isTargetClonesMultiVersion())
4238 MultiVersionFuncs
.push_back(GD
);
4240 // For cpu_specific, don't create an ifunc yet because we don't know if the
4241 // cpu_dispatch will be emitted in this translation unit.
4242 if (getTarget().supportsIFunc() && !FD
->isCPUSpecificMultiVersion()) {
4243 llvm::Type
*ResolverType
= llvm::FunctionType::get(
4244 llvm::PointerType::get(DeclTy
,
4245 getTypes().getTargetAddressSpace(FD
->getType())),
4247 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
4248 MangledName
+ ".resolver", ResolverType
, GlobalDecl
{},
4249 /*ForVTable=*/false);
4250 llvm::GlobalIFunc
*GIF
=
4251 llvm::GlobalIFunc::create(DeclTy
, 0, getMultiversionLinkage(*this, GD
),
4252 "", Resolver
, &getModule());
4253 GIF
->setName(ResolverName
);
4254 SetCommonAttributes(FD
, GIF
);
4259 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
4260 ResolverName
, DeclTy
, GlobalDecl
{}, /*ForVTable=*/false);
4261 assert(isa
<llvm::GlobalValue
>(Resolver
) &&
4262 "Resolver should be created for the first time");
4263 SetCommonAttributes(FD
, cast
<llvm::GlobalValue
>(Resolver
));
4267 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4268 /// module, create and return an llvm Function with the specified type. If there
4269 /// is something in the module with the specified name, return it potentially
4270 /// bitcasted to the right type.
4272 /// If D is non-null, it specifies a decl that correspond to this. This is used
4273 /// to set the attributes on the function when it is first created.
4274 llvm::Constant
*CodeGenModule::GetOrCreateLLVMFunction(
4275 StringRef MangledName
, llvm::Type
*Ty
, GlobalDecl GD
, bool ForVTable
,
4276 bool DontDefer
, bool IsThunk
, llvm::AttributeList ExtraAttrs
,
4277 ForDefinition_t IsForDefinition
) {
4278 const Decl
*D
= GD
.getDecl();
4280 // Any attempts to use a MultiVersion function should result in retrieving
4281 // the iFunc instead. Name Mangling will handle the rest of the changes.
4282 if (const FunctionDecl
*FD
= cast_or_null
<FunctionDecl
>(D
)) {
4283 // For the device mark the function as one that should be emitted.
4284 if (getLangOpts().OpenMPIsTargetDevice
&& OpenMPRuntime
&&
4285 !OpenMPRuntime
->markAsGlobalTarget(GD
) && FD
->isDefined() &&
4286 !DontDefer
&& !IsForDefinition
) {
4287 if (const FunctionDecl
*FDDef
= FD
->getDefinition()) {
4289 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(FDDef
))
4290 GDDef
= GlobalDecl(CD
, GD
.getCtorType());
4291 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(FDDef
))
4292 GDDef
= GlobalDecl(DD
, GD
.getDtorType());
4294 GDDef
= GlobalDecl(FDDef
);
4299 if (FD
->isMultiVersion()) {
4300 UpdateMultiVersionNames(GD
, FD
, MangledName
);
4301 if (!IsForDefinition
)
4302 return GetOrCreateMultiVersionResolver(GD
);
4306 // Lookup the entry, lazily creating it if necessary.
4307 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
4309 if (WeakRefReferences
.erase(Entry
)) {
4310 const FunctionDecl
*FD
= cast_or_null
<FunctionDecl
>(D
);
4311 if (FD
&& !FD
->hasAttr
<WeakAttr
>())
4312 Entry
->setLinkage(llvm::Function::ExternalLinkage
);
4315 // Handle dropped DLL attributes.
4316 if (D
&& !D
->hasAttr
<DLLImportAttr
>() && !D
->hasAttr
<DLLExportAttr
>() &&
4317 !shouldMapVisibilityToDLLExport(cast_or_null
<NamedDecl
>(D
))) {
4318 Entry
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
4322 // If there are two attempts to define the same mangled name, issue an
4324 if (IsForDefinition
&& !Entry
->isDeclaration()) {
4326 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4327 // to make sure that we issue an error only once.
4328 if (lookupRepresentativeDecl(MangledName
, OtherGD
) &&
4329 (GD
.getCanonicalDecl().getDecl() !=
4330 OtherGD
.getCanonicalDecl().getDecl()) &&
4331 DiagnosedConflictingDefinitions
.insert(GD
).second
) {
4332 getDiags().Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
4334 getDiags().Report(OtherGD
.getDecl()->getLocation(),
4335 diag::note_previous_definition
);
4339 if ((isa
<llvm::Function
>(Entry
) || isa
<llvm::GlobalAlias
>(Entry
)) &&
4340 (Entry
->getValueType() == Ty
)) {
4344 // Make sure the result is of the correct type.
4345 // (If function is requested for a definition, we always need to create a new
4346 // function, not just return a bitcast.)
4347 if (!IsForDefinition
)
4348 return llvm::ConstantExpr::getBitCast(
4349 Entry
, Ty
->getPointerTo(Entry
->getAddressSpace()));
4352 // This function doesn't have a complete type (for example, the return
4353 // type is an incomplete struct). Use a fake type instead, and make
4354 // sure not to try to set attributes.
4355 bool IsIncompleteFunction
= false;
4357 llvm::FunctionType
*FTy
;
4358 if (isa
<llvm::FunctionType
>(Ty
)) {
4359 FTy
= cast
<llvm::FunctionType
>(Ty
);
4361 FTy
= llvm::FunctionType::get(VoidTy
, false);
4362 IsIncompleteFunction
= true;
4366 llvm::Function::Create(FTy
, llvm::Function::ExternalLinkage
,
4367 Entry
? StringRef() : MangledName
, &getModule());
4369 // If we already created a function with the same mangled name (but different
4370 // type) before, take its name and add it to the list of functions to be
4371 // replaced with F at the end of CodeGen.
4373 // This happens if there is a prototype for a function (e.g. "int f()") and
4374 // then a definition of a different type (e.g. "int f(int x)").
4378 // This might be an implementation of a function without a prototype, in
4379 // which case, try to do special replacement of calls which match the new
4380 // prototype. The really key thing here is that we also potentially drop
4381 // arguments from the call site so as to make a direct call, which makes the
4382 // inliner happier and suppresses a number of optimizer warnings (!) about
4383 // dropping arguments.
4384 if (!Entry
->use_empty()) {
4385 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry
, F
);
4386 Entry
->removeDeadConstantUsers();
4389 llvm::Constant
*BC
= llvm::ConstantExpr::getBitCast(
4390 F
, Entry
->getValueType()->getPointerTo(Entry
->getAddressSpace()));
4391 addGlobalValReplacement(Entry
, BC
);
4394 assert(F
->getName() == MangledName
&& "name was uniqued!");
4396 SetFunctionAttributes(GD
, F
, IsIncompleteFunction
, IsThunk
);
4397 if (ExtraAttrs
.hasFnAttrs()) {
4398 llvm::AttrBuilder
B(F
->getContext(), ExtraAttrs
.getFnAttrs());
4403 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4404 // each other bottoming out with the base dtor. Therefore we emit non-base
4405 // dtors on usage, even if there is no dtor definition in the TU.
4406 if (isa_and_nonnull
<CXXDestructorDecl
>(D
) &&
4407 getCXXABI().useThunkForDtorVariant(cast
<CXXDestructorDecl
>(D
),
4409 addDeferredDeclToEmit(GD
);
4411 // This is the first use or definition of a mangled name. If there is a
4412 // deferred decl with this name, remember that we need to emit it at the end
4414 auto DDI
= DeferredDecls
.find(MangledName
);
4415 if (DDI
!= DeferredDecls
.end()) {
4416 // Move the potentially referenced deferred decl to the
4417 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4418 // don't need it anymore).
4419 addDeferredDeclToEmit(DDI
->second
);
4420 DeferredDecls
.erase(DDI
);
4422 // Otherwise, there are cases we have to worry about where we're
4423 // using a declaration for which we must emit a definition but where
4424 // we might not find a top-level definition:
4425 // - member functions defined inline in their classes
4426 // - friend functions defined inline in some class
4427 // - special member functions with implicit definitions
4428 // If we ever change our AST traversal to walk into class methods,
4429 // this will be unnecessary.
4431 // We also don't emit a definition for a function if it's going to be an
4432 // entry in a vtable, unless it's already marked as used.
4433 } else if (getLangOpts().CPlusPlus
&& D
) {
4434 // Look for a declaration that's lexically in a record.
4435 for (const auto *FD
= cast
<FunctionDecl
>(D
)->getMostRecentDecl(); FD
;
4436 FD
= FD
->getPreviousDecl()) {
4437 if (isa
<CXXRecordDecl
>(FD
->getLexicalDeclContext())) {
4438 if (FD
->doesThisDeclarationHaveABody()) {
4439 addDeferredDeclToEmit(GD
.getWithDecl(FD
));
4447 // Make sure the result is of the requested type.
4448 if (!IsIncompleteFunction
) {
4449 assert(F
->getFunctionType() == Ty
);
4453 return llvm::ConstantExpr::getBitCast(F
,
4454 Ty
->getPointerTo(F
->getAddressSpace()));
4457 /// GetAddrOfFunction - Return the address of the given function. If Ty is
4458 /// non-null, then this function will use the specified type if it has to
4459 /// create it (this occurs when we see a definition of the function).
4461 CodeGenModule::GetAddrOfFunction(GlobalDecl GD
, llvm::Type
*Ty
, bool ForVTable
,
4463 ForDefinition_t IsForDefinition
) {
4464 // If there was no specific requested type, just convert it now.
4466 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4467 Ty
= getTypes().ConvertType(FD
->getType());
4470 // Devirtualized destructor calls may come through here instead of via
4471 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4472 // of the complete destructor when necessary.
4473 if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(GD
.getDecl())) {
4474 if (getTarget().getCXXABI().isMicrosoft() &&
4475 GD
.getDtorType() == Dtor_Complete
&&
4476 DD
->getParent()->getNumVBases() == 0)
4477 GD
= GlobalDecl(DD
, Dtor_Base
);
4480 StringRef MangledName
= getMangledName(GD
);
4481 auto *F
= GetOrCreateLLVMFunction(MangledName
, Ty
, GD
, ForVTable
, DontDefer
,
4482 /*IsThunk=*/false, llvm::AttributeList(),
4484 // Returns kernel handle for HIP kernel stub function.
4485 if (LangOpts
.CUDA
&& !LangOpts
.CUDAIsDevice
&&
4486 cast
<FunctionDecl
>(GD
.getDecl())->hasAttr
<CUDAGlobalAttr
>()) {
4487 auto *Handle
= getCUDARuntime().getKernelHandle(
4488 cast
<llvm::Function
>(F
->stripPointerCasts()), GD
);
4489 if (IsForDefinition
)
4491 return llvm::ConstantExpr::getBitCast(Handle
, Ty
->getPointerTo());
4496 llvm::Constant
*CodeGenModule::GetFunctionStart(const ValueDecl
*Decl
) {
4497 llvm::GlobalValue
*F
=
4498 cast
<llvm::GlobalValue
>(GetAddrOfFunction(Decl
)->stripPointerCasts());
4500 return llvm::ConstantExpr::getBitCast(
4501 llvm::NoCFIValue::get(F
),
4502 llvm::PointerType::get(VMContext
, F
->getAddressSpace()));
4505 static const FunctionDecl
*
4506 GetRuntimeFunctionDecl(ASTContext
&C
, StringRef Name
) {
4507 TranslationUnitDecl
*TUDecl
= C
.getTranslationUnitDecl();
4508 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
4510 IdentifierInfo
&CII
= C
.Idents
.get(Name
);
4511 for (const auto *Result
: DC
->lookup(&CII
))
4512 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Result
))
4515 if (!C
.getLangOpts().CPlusPlus
)
4518 // Demangle the premangled name from getTerminateFn()
4519 IdentifierInfo
&CXXII
=
4520 (Name
== "_ZSt9terminatev" || Name
== "?terminate@@YAXXZ")
4521 ? C
.Idents
.get("terminate")
4522 : C
.Idents
.get(Name
);
4524 for (const auto &N
: {"__cxxabiv1", "std"}) {
4525 IdentifierInfo
&NS
= C
.Idents
.get(N
);
4526 for (const auto *Result
: DC
->lookup(&NS
)) {
4527 const NamespaceDecl
*ND
= dyn_cast
<NamespaceDecl
>(Result
);
4528 if (auto *LSD
= dyn_cast
<LinkageSpecDecl
>(Result
))
4529 for (const auto *Result
: LSD
->lookup(&NS
))
4530 if ((ND
= dyn_cast
<NamespaceDecl
>(Result
)))
4534 for (const auto *Result
: ND
->lookup(&CXXII
))
4535 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Result
))
4543 /// CreateRuntimeFunction - Create a new runtime function with the specified
4545 llvm::FunctionCallee
4546 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType
*FTy
, StringRef Name
,
4547 llvm::AttributeList ExtraAttrs
, bool Local
,
4548 bool AssumeConvergent
) {
4549 if (AssumeConvergent
) {
4551 ExtraAttrs
.addFnAttribute(VMContext
, llvm::Attribute::Convergent
);
4555 GetOrCreateLLVMFunction(Name
, FTy
, GlobalDecl(), /*ForVTable=*/false,
4556 /*DontDefer=*/false, /*IsThunk=*/false,
4559 if (auto *F
= dyn_cast
<llvm::Function
>(C
)) {
4561 F
->setCallingConv(getRuntimeCC());
4563 // In Windows Itanium environments, try to mark runtime functions
4564 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4565 // will link their standard library statically or dynamically. Marking
4566 // functions imported when they are not imported can cause linker errors
4568 if (!Local
&& getTriple().isWindowsItaniumEnvironment() &&
4569 !getCodeGenOpts().LTOVisibilityPublicStd
) {
4570 const FunctionDecl
*FD
= GetRuntimeFunctionDecl(Context
, Name
);
4571 if (!FD
|| FD
->hasAttr
<DLLImportAttr
>()) {
4572 F
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
4573 F
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
4583 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4584 /// create and return an llvm GlobalVariable with the specified type and address
4585 /// space. If there is something in the module with the specified name, return
4586 /// it potentially bitcasted to the right type.
4588 /// If D is non-null, it specifies a decl that correspond to this. This is used
4589 /// to set the attributes on the global when it is first created.
4591 /// If IsForDefinition is true, it is guaranteed that an actual global with
4592 /// type Ty will be returned, not conversion of a variable with the same
4593 /// mangled name but some other type.
4595 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName
, llvm::Type
*Ty
,
4596 LangAS AddrSpace
, const VarDecl
*D
,
4597 ForDefinition_t IsForDefinition
) {
4598 // Lookup the entry, lazily creating it if necessary.
4599 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
4600 unsigned TargetAS
= getContext().getTargetAddressSpace(AddrSpace
);
4602 if (WeakRefReferences
.erase(Entry
)) {
4603 if (D
&& !D
->hasAttr
<WeakAttr
>())
4604 Entry
->setLinkage(llvm::Function::ExternalLinkage
);
4607 // Handle dropped DLL attributes.
4608 if (D
&& !D
->hasAttr
<DLLImportAttr
>() && !D
->hasAttr
<DLLExportAttr
>() &&
4609 !shouldMapVisibilityToDLLExport(D
))
4610 Entry
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
4612 if (LangOpts
.OpenMP
&& !LangOpts
.OpenMPSimd
&& D
)
4613 getOpenMPRuntime().registerTargetGlobalVariable(D
, Entry
);
4615 if (Entry
->getValueType() == Ty
&& Entry
->getAddressSpace() == TargetAS
)
4618 // If there are two attempts to define the same mangled name, issue an
4620 if (IsForDefinition
&& !Entry
->isDeclaration()) {
4622 const VarDecl
*OtherD
;
4624 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4625 // to make sure that we issue an error only once.
4626 if (D
&& lookupRepresentativeDecl(MangledName
, OtherGD
) &&
4627 (D
->getCanonicalDecl() != OtherGD
.getCanonicalDecl().getDecl()) &&
4628 (OtherD
= dyn_cast
<VarDecl
>(OtherGD
.getDecl())) &&
4629 OtherD
->hasInit() &&
4630 DiagnosedConflictingDefinitions
.insert(D
).second
) {
4631 getDiags().Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
4633 getDiags().Report(OtherGD
.getDecl()->getLocation(),
4634 diag::note_previous_definition
);
4638 // Make sure the result is of the correct type.
4639 if (Entry
->getType()->getAddressSpace() != TargetAS
) {
4640 return llvm::ConstantExpr::getAddrSpaceCast(Entry
,
4641 Ty
->getPointerTo(TargetAS
));
4644 // (If global is requested for a definition, we always need to create a new
4645 // global, not just return a bitcast.)
4646 if (!IsForDefinition
)
4647 return llvm::ConstantExpr::getBitCast(Entry
, Ty
->getPointerTo(TargetAS
));
4650 auto DAddrSpace
= GetGlobalVarAddressSpace(D
);
4652 auto *GV
= new llvm::GlobalVariable(
4653 getModule(), Ty
, false, llvm::GlobalValue::ExternalLinkage
, nullptr,
4654 MangledName
, nullptr, llvm::GlobalVariable::NotThreadLocal
,
4655 getContext().getTargetAddressSpace(DAddrSpace
));
4657 // If we already created a global with the same mangled name (but different
4658 // type) before, take its name and remove it from its parent.
4660 GV
->takeName(Entry
);
4662 if (!Entry
->use_empty()) {
4663 llvm::Constant
*NewPtrForOldDecl
=
4664 llvm::ConstantExpr::getBitCast(GV
, Entry
->getType());
4665 Entry
->replaceAllUsesWith(NewPtrForOldDecl
);
4668 Entry
->eraseFromParent();
4671 // This is the first use or definition of a mangled name. If there is a
4672 // deferred decl with this name, remember that we need to emit it at the end
4674 auto DDI
= DeferredDecls
.find(MangledName
);
4675 if (DDI
!= DeferredDecls
.end()) {
4676 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4677 // list, and remove it from DeferredDecls (since we don't need it anymore).
4678 addDeferredDeclToEmit(DDI
->second
);
4679 DeferredDecls
.erase(DDI
);
4682 // Handle things which are present even on external declarations.
4684 if (LangOpts
.OpenMP
&& !LangOpts
.OpenMPSimd
)
4685 getOpenMPRuntime().registerTargetGlobalVariable(D
, GV
);
4687 // FIXME: This code is overly simple and should be merged with other global
4689 GV
->setConstant(D
->getType().isConstantStorage(getContext(), false, false));
4691 GV
->setAlignment(getContext().getDeclAlign(D
).getAsAlign());
4693 setLinkageForGV(GV
, D
);
4695 if (D
->getTLSKind()) {
4696 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
)
4697 CXXThreadLocals
.push_back(D
);
4701 setGVProperties(GV
, D
);
4703 // If required by the ABI, treat declarations of static data members with
4704 // inline initializers as definitions.
4705 if (getContext().isMSStaticDataMemberInlineDefinition(D
)) {
4706 EmitGlobalVarDefinition(D
);
4709 // Emit section information for extern variables.
4710 if (D
->hasExternalStorage()) {
4711 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>())
4712 GV
->setSection(SA
->getName());
4715 // Handle XCore specific ABI requirements.
4716 if (getTriple().getArch() == llvm::Triple::xcore
&&
4717 D
->getLanguageLinkage() == CLanguageLinkage
&&
4718 D
->getType().isConstant(Context
) &&
4719 isExternallyVisible(D
->getLinkageAndVisibility().getLinkage()))
4720 GV
->setSection(".cp.rodata");
4722 // Check if we a have a const declaration with an initializer, we may be
4723 // able to emit it as available_externally to expose it's value to the
4725 if (Context
.getLangOpts().CPlusPlus
&& GV
->hasExternalLinkage() &&
4726 D
->getType().isConstQualified() && !GV
->hasInitializer() &&
4727 !D
->hasDefinition() && D
->hasInit() && !D
->hasAttr
<DLLImportAttr
>()) {
4728 const auto *Record
=
4729 Context
.getBaseElementType(D
->getType())->getAsCXXRecordDecl();
4730 bool HasMutableFields
= Record
&& Record
->hasMutableFields();
4731 if (!HasMutableFields
) {
4732 const VarDecl
*InitDecl
;
4733 const Expr
*InitExpr
= D
->getAnyInitializer(InitDecl
);
4735 ConstantEmitter
emitter(*this);
4736 llvm::Constant
*Init
= emitter
.tryEmitForInitializer(*InitDecl
);
4738 auto *InitType
= Init
->getType();
4739 if (GV
->getValueType() != InitType
) {
4740 // The type of the initializer does not match the definition.
4741 // This happens when an initializer has a different type from
4742 // the type of the global (because of padding at the end of a
4743 // structure for instance).
4744 GV
->setName(StringRef());
4745 // Make a new global with the correct type, this is now guaranteed
4747 auto *NewGV
= cast
<llvm::GlobalVariable
>(
4748 GetAddrOfGlobalVar(D
, InitType
, IsForDefinition
)
4749 ->stripPointerCasts());
4751 // Erase the old global, since it is no longer used.
4752 GV
->eraseFromParent();
4755 GV
->setInitializer(Init
);
4756 GV
->setConstant(true);
4757 GV
->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage
);
4759 emitter
.finalize(GV
);
4767 D
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
) {
4768 getTargetCodeGenInfo().setTargetAttributes(D
, GV
, *this);
4769 // External HIP managed variables needed to be recorded for transformation
4770 // in both device and host compilations.
4771 if (getLangOpts().CUDA
&& D
&& D
->hasAttr
<HIPManagedAttr
>() &&
4772 D
->hasExternalStorage())
4773 getCUDARuntime().handleVarRegistration(D
, *GV
);
4777 SanitizerMD
->reportGlobal(GV
, *D
);
4780 D
? D
->getType().getAddressSpace()
4781 : (LangOpts
.OpenCL
? LangAS::opencl_global
: LangAS::Default
);
4782 assert(getContext().getTargetAddressSpace(ExpectedAS
) == TargetAS
);
4783 if (DAddrSpace
!= ExpectedAS
) {
4784 return getTargetCodeGenInfo().performAddrSpaceCast(
4785 *this, GV
, DAddrSpace
, ExpectedAS
, Ty
->getPointerTo(TargetAS
));
4792 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD
, ForDefinition_t IsForDefinition
) {
4793 const Decl
*D
= GD
.getDecl();
4795 if (isa
<CXXConstructorDecl
>(D
) || isa
<CXXDestructorDecl
>(D
))
4796 return getAddrOfCXXStructor(GD
, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4797 /*DontDefer=*/false, IsForDefinition
);
4799 if (isa
<CXXMethodDecl
>(D
)) {
4801 &getTypes().arrangeCXXMethodDeclaration(cast
<CXXMethodDecl
>(D
));
4802 auto Ty
= getTypes().GetFunctionType(*FInfo
);
4803 return GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false, /*DontDefer=*/false,
4807 if (isa
<FunctionDecl
>(D
)) {
4808 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4809 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
4810 return GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false, /*DontDefer=*/false,
4814 return GetAddrOfGlobalVar(cast
<VarDecl
>(D
), /*Ty=*/nullptr, IsForDefinition
);
4817 llvm::GlobalVariable
*CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4818 StringRef Name
, llvm::Type
*Ty
, llvm::GlobalValue::LinkageTypes Linkage
,
4819 llvm::Align Alignment
) {
4820 llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
);
4821 llvm::GlobalVariable
*OldGV
= nullptr;
4824 // Check if the variable has the right type.
4825 if (GV
->getValueType() == Ty
)
4828 // Because C++ name mangling, the only way we can end up with an already
4829 // existing global with the same name is if it has been declared extern "C".
4830 assert(GV
->isDeclaration() && "Declaration has wrong type!");
4834 // Create a new variable.
4835 GV
= new llvm::GlobalVariable(getModule(), Ty
, /*isConstant=*/true,
4836 Linkage
, nullptr, Name
);
4839 // Replace occurrences of the old variable if needed.
4840 GV
->takeName(OldGV
);
4842 if (!OldGV
->use_empty()) {
4843 llvm::Constant
*NewPtrForOldDecl
=
4844 llvm::ConstantExpr::getBitCast(GV
, OldGV
->getType());
4845 OldGV
->replaceAllUsesWith(NewPtrForOldDecl
);
4848 OldGV
->eraseFromParent();
4851 if (supportsCOMDAT() && GV
->isWeakForLinker() &&
4852 !GV
->hasAvailableExternallyLinkage())
4853 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
4855 GV
->setAlignment(Alignment
);
4860 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4861 /// given global variable. If Ty is non-null and if the global doesn't exist,
4862 /// then it will be created with the specified type instead of whatever the
4863 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4864 /// that an actual global with type Ty will be returned, not conversion of a
4865 /// variable with the same mangled name but some other type.
4866 llvm::Constant
*CodeGenModule::GetAddrOfGlobalVar(const VarDecl
*D
,
4868 ForDefinition_t IsForDefinition
) {
4869 assert(D
->hasGlobalStorage() && "Not a global variable");
4870 QualType ASTTy
= D
->getType();
4872 Ty
= getTypes().ConvertTypeForMem(ASTTy
);
4874 StringRef MangledName
= getMangledName(D
);
4875 return GetOrCreateLLVMGlobal(MangledName
, Ty
, ASTTy
.getAddressSpace(), D
,
4879 /// CreateRuntimeVariable - Create a new runtime global variable with the
4880 /// specified type and name.
4882 CodeGenModule::CreateRuntimeVariable(llvm::Type
*Ty
,
4884 LangAS AddrSpace
= getContext().getLangOpts().OpenCL
? LangAS::opencl_global
4886 auto *Ret
= GetOrCreateLLVMGlobal(Name
, Ty
, AddrSpace
, nullptr);
4887 setDSOLocal(cast
<llvm::GlobalValue
>(Ret
->stripPointerCasts()));
4891 void CodeGenModule::EmitTentativeDefinition(const VarDecl
*D
) {
4892 assert(!D
->getInit() && "Cannot emit definite definitions here!");
4894 StringRef MangledName
= getMangledName(D
);
4895 llvm::GlobalValue
*GV
= GetGlobalValue(MangledName
);
4897 // We already have a definition, not declaration, with the same mangled name.
4898 // Emitting of declaration is not required (and actually overwrites emitted
4900 if (GV
&& !GV
->isDeclaration())
4903 // If we have not seen a reference to this variable yet, place it into the
4904 // deferred declarations table to be emitted if needed later.
4905 if (!MustBeEmitted(D
) && !GV
) {
4906 DeferredDecls
[MangledName
] = D
;
4910 // The tentative definition is the only definition.
4911 EmitGlobalVarDefinition(D
);
4914 void CodeGenModule::EmitExternalDeclaration(const VarDecl
*D
) {
4915 EmitExternalVarDeclaration(D
);
4918 CharUnits
CodeGenModule::GetTargetTypeStoreSize(llvm::Type
*Ty
) const {
4919 return Context
.toCharUnitsFromBits(
4920 getDataLayout().getTypeStoreSizeInBits(Ty
));
4923 LangAS
CodeGenModule::GetGlobalVarAddressSpace(const VarDecl
*D
) {
4924 if (LangOpts
.OpenCL
) {
4925 LangAS AS
= D
? D
->getType().getAddressSpace() : LangAS::opencl_global
;
4926 assert(AS
== LangAS::opencl_global
||
4927 AS
== LangAS::opencl_global_device
||
4928 AS
== LangAS::opencl_global_host
||
4929 AS
== LangAS::opencl_constant
||
4930 AS
== LangAS::opencl_local
||
4931 AS
>= LangAS::FirstTargetAddressSpace
);
4935 if (LangOpts
.SYCLIsDevice
&&
4936 (!D
|| D
->getType().getAddressSpace() == LangAS::Default
))
4937 return LangAS::sycl_global
;
4939 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
) {
4941 if (D
->hasAttr
<CUDAConstantAttr
>())
4942 return LangAS::cuda_constant
;
4943 if (D
->hasAttr
<CUDASharedAttr
>())
4944 return LangAS::cuda_shared
;
4945 if (D
->hasAttr
<CUDADeviceAttr
>())
4946 return LangAS::cuda_device
;
4947 if (D
->getType().isConstQualified())
4948 return LangAS::cuda_constant
;
4950 return LangAS::cuda_device
;
4953 if (LangOpts
.OpenMP
) {
4955 if (OpenMPRuntime
->hasAllocateAttributeForGlobalVar(D
, AS
))
4958 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D
);
4961 LangAS
CodeGenModule::GetGlobalConstantAddressSpace() const {
4962 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4963 if (LangOpts
.OpenCL
)
4964 return LangAS::opencl_constant
;
4965 if (LangOpts
.SYCLIsDevice
)
4966 return LangAS::sycl_global
;
4967 if (LangOpts
.HIP
&& LangOpts
.CUDAIsDevice
&& getTriple().isSPIRV())
4968 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4969 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4970 // with OpVariable instructions with Generic storage class which is not
4971 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4972 // UniformConstant storage class is not viable as pointers to it may not be
4973 // casted to Generic pointers which are used to model HIP's "flat" pointers.
4974 return LangAS::cuda_device
;
4975 if (auto AS
= getTarget().getConstantAddressSpace())
4977 return LangAS::Default
;
4980 // In address space agnostic languages, string literals are in default address
4981 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4982 // emitted in constant address space in LLVM IR. To be consistent with other
4983 // parts of AST, string literal global variables in constant address space
4984 // need to be casted to default address space before being put into address
4985 // map and referenced by other part of CodeGen.
4986 // In OpenCL, string literals are in constant address space in AST, therefore
4987 // they should not be casted to default address space.
4988 static llvm::Constant
*
4989 castStringLiteralToDefaultAddressSpace(CodeGenModule
&CGM
,
4990 llvm::GlobalVariable
*GV
) {
4991 llvm::Constant
*Cast
= GV
;
4992 if (!CGM
.getLangOpts().OpenCL
) {
4993 auto AS
= CGM
.GetGlobalConstantAddressSpace();
4994 if (AS
!= LangAS::Default
)
4995 Cast
= CGM
.getTargetCodeGenInfo().performAddrSpaceCast(
4996 CGM
, GV
, AS
, LangAS::Default
,
4997 GV
->getValueType()->getPointerTo(
4998 CGM
.getContext().getTargetAddressSpace(LangAS::Default
)));
5003 template<typename SomeDecl
>
5004 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl
*D
,
5005 llvm::GlobalValue
*GV
) {
5006 if (!getLangOpts().CPlusPlus
)
5009 // Must have 'used' attribute, or else inline assembly can't rely on
5010 // the name existing.
5011 if (!D
->template hasAttr
<UsedAttr
>())
5014 // Must have internal linkage and an ordinary name.
5015 if (!D
->getIdentifier() || D
->getFormalLinkage() != InternalLinkage
)
5018 // Must be in an extern "C" context. Entities declared directly within
5019 // a record are not extern "C" even if the record is in such a context.
5020 const SomeDecl
*First
= D
->getFirstDecl();
5021 if (First
->getDeclContext()->isRecord() || !First
->isInExternCContext())
5024 // OK, this is an internal linkage entity inside an extern "C" linkage
5025 // specification. Make a note of that so we can give it the "expected"
5026 // mangled name if nothing else is using that name.
5027 std::pair
<StaticExternCMap::iterator
, bool> R
=
5028 StaticExternCValues
.insert(std::make_pair(D
->getIdentifier(), GV
));
5030 // If we have multiple internal linkage entities with the same name
5031 // in extern "C" regions, none of them gets that name.
5033 R
.first
->second
= nullptr;
5036 static bool shouldBeInCOMDAT(CodeGenModule
&CGM
, const Decl
&D
) {
5037 if (!CGM
.supportsCOMDAT())
5040 if (D
.hasAttr
<SelectAnyAttr
>())
5044 if (auto *VD
= dyn_cast
<VarDecl
>(&D
))
5045 Linkage
= CGM
.getContext().GetGVALinkageForVariable(VD
);
5047 Linkage
= CGM
.getContext().GetGVALinkageForFunction(cast
<FunctionDecl
>(&D
));
5051 case GVA_AvailableExternally
:
5052 case GVA_StrongExternal
:
5054 case GVA_DiscardableODR
:
5058 llvm_unreachable("No such linkage");
5061 bool CodeGenModule::supportsCOMDAT() const {
5062 return getTriple().supportsCOMDAT();
5065 void CodeGenModule::maybeSetTrivialComdat(const Decl
&D
,
5066 llvm::GlobalObject
&GO
) {
5067 if (!shouldBeInCOMDAT(*this, D
))
5069 GO
.setComdat(TheModule
.getOrInsertComdat(GO
.getName()));
5072 /// Pass IsTentative as true if you want to create a tentative definition.
5073 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl
*D
,
5075 // OpenCL global variables of sampler type are translated to function calls,
5076 // therefore no need to be translated.
5077 QualType ASTTy
= D
->getType();
5078 if (getLangOpts().OpenCL
&& ASTTy
->isSamplerT())
5081 // If this is OpenMP device, check if it is legal to emit this global
5083 if (LangOpts
.OpenMPIsTargetDevice
&& OpenMPRuntime
&&
5084 OpenMPRuntime
->emitTargetGlobalVariable(D
))
5087 llvm::TrackingVH
<llvm::Constant
> Init
;
5088 bool NeedsGlobalCtor
= false;
5089 // Whether the definition of the variable is available externally.
5090 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5091 // since this is the job for its original source.
5092 bool IsDefinitionAvailableExternally
=
5093 getContext().GetGVALinkageForVariable(D
) == GVA_AvailableExternally
;
5094 bool NeedsGlobalDtor
=
5095 !IsDefinitionAvailableExternally
&&
5096 D
->needsDestruction(getContext()) == QualType::DK_cxx_destructor
;
5098 const VarDecl
*InitDecl
;
5099 const Expr
*InitExpr
= D
->getAnyInitializer(InitDecl
);
5101 std::optional
<ConstantEmitter
> emitter
;
5103 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5104 // as part of their declaration." Sema has already checked for
5105 // error cases, so we just need to set Init to UndefValue.
5106 bool IsCUDASharedVar
=
5107 getLangOpts().CUDAIsDevice
&& D
->hasAttr
<CUDASharedAttr
>();
5108 // Shadows of initialized device-side global variables are also left
5110 // Managed Variables should be initialized on both host side and device side.
5111 bool IsCUDAShadowVar
=
5112 !getLangOpts().CUDAIsDevice
&& !D
->hasAttr
<HIPManagedAttr
>() &&
5113 (D
->hasAttr
<CUDAConstantAttr
>() || D
->hasAttr
<CUDADeviceAttr
>() ||
5114 D
->hasAttr
<CUDASharedAttr
>());
5115 bool IsCUDADeviceShadowVar
=
5116 getLangOpts().CUDAIsDevice
&& !D
->hasAttr
<HIPManagedAttr
>() &&
5117 (D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
5118 D
->getType()->isCUDADeviceBuiltinTextureType());
5119 if (getLangOpts().CUDA
&&
5120 (IsCUDASharedVar
|| IsCUDAShadowVar
|| IsCUDADeviceShadowVar
))
5121 Init
= llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy
));
5122 else if (D
->hasAttr
<LoaderUninitializedAttr
>())
5123 Init
= llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy
));
5124 else if (!InitExpr
) {
5125 // This is a tentative definition; tentative definitions are
5126 // implicitly initialized with { 0 }.
5128 // Note that tentative definitions are only emitted at the end of
5129 // a translation unit, so they should never have incomplete
5130 // type. In addition, EmitTentativeDefinition makes sure that we
5131 // never attempt to emit a tentative definition if a real one
5132 // exists. A use may still exists, however, so we still may need
5134 assert(!ASTTy
->isIncompleteType() && "Unexpected incomplete type");
5135 Init
= EmitNullConstant(D
->getType());
5137 initializedGlobalDecl
= GlobalDecl(D
);
5138 emitter
.emplace(*this);
5139 llvm::Constant
*Initializer
= emitter
->tryEmitForInitializer(*InitDecl
);
5141 QualType T
= InitExpr
->getType();
5142 if (D
->getType()->isReferenceType())
5145 if (getLangOpts().CPlusPlus
) {
5146 if (InitDecl
->hasFlexibleArrayInit(getContext()))
5147 ErrorUnsupported(D
, "flexible array initializer");
5148 Init
= EmitNullConstant(T
);
5150 if (!IsDefinitionAvailableExternally
)
5151 NeedsGlobalCtor
= true;
5153 ErrorUnsupported(D
, "static initializer");
5154 Init
= llvm::UndefValue::get(getTypes().ConvertType(T
));
5158 // We don't need an initializer, so remove the entry for the delayed
5159 // initializer position (just in case this entry was delayed) if we
5160 // also don't need to register a destructor.
5161 if (getLangOpts().CPlusPlus
&& !NeedsGlobalDtor
)
5162 DelayedCXXInitPosition
.erase(D
);
5165 CharUnits VarSize
= getContext().getTypeSizeInChars(ASTTy
) +
5166 InitDecl
->getFlexibleArrayInitChars(getContext());
5167 CharUnits CstSize
= CharUnits::fromQuantity(
5168 getDataLayout().getTypeAllocSize(Init
->getType()));
5169 assert(VarSize
== CstSize
&& "Emitted constant has unexpected size");
5174 llvm::Type
* InitType
= Init
->getType();
5175 llvm::Constant
*Entry
=
5176 GetAddrOfGlobalVar(D
, InitType
, ForDefinition_t(!IsTentative
));
5178 // Strip off pointer casts if we got them.
5179 Entry
= Entry
->stripPointerCasts();
5181 // Entry is now either a Function or GlobalVariable.
5182 auto *GV
= dyn_cast
<llvm::GlobalVariable
>(Entry
);
5184 // We have a definition after a declaration with the wrong type.
5185 // We must make a new GlobalVariable* and update everything that used OldGV
5186 // (a declaration or tentative definition) with the new GlobalVariable*
5187 // (which will be a definition).
5189 // This happens if there is a prototype for a global (e.g.
5190 // "extern int x[];") and then a definition of a different type (e.g.
5191 // "int x[10];"). This also happens when an initializer has a different type
5192 // from the type of the global (this happens with unions).
5193 if (!GV
|| GV
->getValueType() != InitType
||
5194 GV
->getType()->getAddressSpace() !=
5195 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D
))) {
5197 // Move the old entry aside so that we'll create a new one.
5198 Entry
->setName(StringRef());
5200 // Make a new global with the correct type, this is now guaranteed to work.
5201 GV
= cast
<llvm::GlobalVariable
>(
5202 GetAddrOfGlobalVar(D
, InitType
, ForDefinition_t(!IsTentative
))
5203 ->stripPointerCasts());
5205 // Replace all uses of the old global with the new global
5206 llvm::Constant
*NewPtrForOldDecl
=
5207 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
,
5209 Entry
->replaceAllUsesWith(NewPtrForOldDecl
);
5211 // Erase the old global, since it is no longer used.
5212 cast
<llvm::GlobalValue
>(Entry
)->eraseFromParent();
5215 MaybeHandleStaticInExternC(D
, GV
);
5217 if (D
->hasAttr
<AnnotateAttr
>())
5218 AddGlobalAnnotations(D
, GV
);
5220 // Set the llvm linkage type as appropriate.
5221 llvm::GlobalValue::LinkageTypes Linkage
= getLLVMLinkageVarDefinition(D
);
5223 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5224 // the device. [...]"
5225 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5226 // __device__, declares a variable that: [...]
5227 // Is accessible from all the threads within the grid and from the host
5228 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5229 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5230 if (LangOpts
.CUDA
) {
5231 if (LangOpts
.CUDAIsDevice
) {
5232 if (Linkage
!= llvm::GlobalValue::InternalLinkage
&&
5233 (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>() ||
5234 D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
5235 D
->getType()->isCUDADeviceBuiltinTextureType()))
5236 GV
->setExternallyInitialized(true);
5238 getCUDARuntime().internalizeDeviceSideVar(D
, Linkage
);
5240 getCUDARuntime().handleVarRegistration(D
, *GV
);
5243 GV
->setInitializer(Init
);
5245 emitter
->finalize(GV
);
5247 // If it is safe to mark the global 'constant', do so now.
5248 GV
->setConstant(!NeedsGlobalCtor
&& !NeedsGlobalDtor
&&
5249 D
->getType().isConstantStorage(getContext(), true, true));
5251 // If it is in a read-only section, mark it 'constant'.
5252 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>()) {
5253 const ASTContext::SectionInfo
&SI
= Context
.SectionInfos
[SA
->getName()];
5254 if ((SI
.SectionFlags
& ASTContext::PSF_Write
) == 0)
5255 GV
->setConstant(true);
5258 CharUnits AlignVal
= getContext().getDeclAlign(D
);
5259 // Check for alignment specifed in an 'omp allocate' directive.
5260 if (std::optional
<CharUnits
> AlignValFromAllocate
=
5261 getOMPAllocateAlignment(D
))
5262 AlignVal
= *AlignValFromAllocate
;
5263 GV
->setAlignment(AlignVal
.getAsAlign());
5265 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5266 // function is only defined alongside the variable, not also alongside
5267 // callers. Normally, all accesses to a thread_local go through the
5268 // thread-wrapper in order to ensure initialization has occurred, underlying
5269 // variable will never be used other than the thread-wrapper, so it can be
5270 // converted to internal linkage.
5272 // However, if the variable has the 'constinit' attribute, it _can_ be
5273 // referenced directly, without calling the thread-wrapper, so the linkage
5274 // must not be changed.
5276 // Additionally, if the variable isn't plain external linkage, e.g. if it's
5277 // weak or linkonce, the de-duplication semantics are important to preserve,
5278 // so we don't change the linkage.
5279 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
&&
5280 Linkage
== llvm::GlobalValue::ExternalLinkage
&&
5281 Context
.getTargetInfo().getTriple().isOSDarwin() &&
5282 !D
->hasAttr
<ConstInitAttr
>())
5283 Linkage
= llvm::GlobalValue::InternalLinkage
;
5285 GV
->setLinkage(Linkage
);
5286 if (D
->hasAttr
<DLLImportAttr
>())
5287 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
5288 else if (D
->hasAttr
<DLLExportAttr
>())
5289 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass
);
5291 GV
->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass
);
5293 if (Linkage
== llvm::GlobalVariable::CommonLinkage
) {
5294 // common vars aren't constant even if declared const.
5295 GV
->setConstant(false);
5296 // Tentative definition of global variables may be initialized with
5297 // non-zero null pointers. In this case they should have weak linkage
5298 // since common linkage must have zero initializer and must not have
5299 // explicit section therefore cannot have non-zero initial value.
5300 if (!GV
->getInitializer()->isNullValue())
5301 GV
->setLinkage(llvm::GlobalVariable::WeakAnyLinkage
);
5304 setNonAliasAttributes(D
, GV
);
5306 if (D
->getTLSKind() && !GV
->isThreadLocal()) {
5307 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
)
5308 CXXThreadLocals
.push_back(D
);
5312 maybeSetTrivialComdat(*D
, *GV
);
5314 // Emit the initializer function if necessary.
5315 if (NeedsGlobalCtor
|| NeedsGlobalDtor
)
5316 EmitCXXGlobalVarDeclInitFunc(D
, GV
, NeedsGlobalCtor
);
5318 SanitizerMD
->reportGlobal(GV
, *D
, NeedsGlobalCtor
);
5320 // Emit global variable debug information.
5321 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5322 if (getCodeGenOpts().hasReducedDebugInfo())
5323 DI
->EmitGlobalVariable(GV
, D
);
5326 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl
*D
) {
5327 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5328 if (getCodeGenOpts().hasReducedDebugInfo()) {
5329 QualType ASTTy
= D
->getType();
5330 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(D
->getType());
5331 llvm::Constant
*GV
=
5332 GetOrCreateLLVMGlobal(D
->getName(), Ty
, ASTTy
.getAddressSpace(), D
);
5333 DI
->EmitExternalVariable(
5334 cast
<llvm::GlobalVariable
>(GV
->stripPointerCasts()), D
);
5338 static bool isVarDeclStrongDefinition(const ASTContext
&Context
,
5339 CodeGenModule
&CGM
, const VarDecl
*D
,
5341 // Don't give variables common linkage if -fno-common was specified unless it
5342 // was overridden by a NoCommon attribute.
5343 if ((NoCommon
|| D
->hasAttr
<NoCommonAttr
>()) && !D
->hasAttr
<CommonAttr
>())
5347 // A declaration of an identifier for an object that has file scope without
5348 // an initializer, and without a storage-class specifier or with the
5349 // storage-class specifier static, constitutes a tentative definition.
5350 if (D
->getInit() || D
->hasExternalStorage())
5353 // A variable cannot be both common and exist in a section.
5354 if (D
->hasAttr
<SectionAttr
>())
5357 // A variable cannot be both common and exist in a section.
5358 // We don't try to determine which is the right section in the front-end.
5359 // If no specialized section name is applicable, it will resort to default.
5360 if (D
->hasAttr
<PragmaClangBSSSectionAttr
>() ||
5361 D
->hasAttr
<PragmaClangDataSectionAttr
>() ||
5362 D
->hasAttr
<PragmaClangRelroSectionAttr
>() ||
5363 D
->hasAttr
<PragmaClangRodataSectionAttr
>())
5366 // Thread local vars aren't considered common linkage.
5367 if (D
->getTLSKind())
5370 // Tentative definitions marked with WeakImportAttr are true definitions.
5371 if (D
->hasAttr
<WeakImportAttr
>())
5374 // A variable cannot be both common and exist in a comdat.
5375 if (shouldBeInCOMDAT(CGM
, *D
))
5378 // Declarations with a required alignment do not have common linkage in MSVC
5380 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
5381 if (D
->hasAttr
<AlignedAttr
>())
5383 QualType VarType
= D
->getType();
5384 if (Context
.isAlignmentRequired(VarType
))
5387 if (const auto *RT
= VarType
->getAs
<RecordType
>()) {
5388 const RecordDecl
*RD
= RT
->getDecl();
5389 for (const FieldDecl
*FD
: RD
->fields()) {
5390 if (FD
->isBitField())
5392 if (FD
->hasAttr
<AlignedAttr
>())
5394 if (Context
.isAlignmentRequired(FD
->getType()))
5400 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5401 // common symbols, so symbols with greater alignment requirements cannot be
5403 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5404 // alignments for common symbols via the aligncomm directive, so this
5405 // restriction only applies to MSVC environments.
5406 if (Context
.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5407 Context
.getTypeAlignIfKnown(D
->getType()) >
5408 Context
.toBits(CharUnits::fromQuantity(32)))
5414 llvm::GlobalValue::LinkageTypes
5415 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl
*D
,
5416 GVALinkage Linkage
) {
5417 if (Linkage
== GVA_Internal
)
5418 return llvm::Function::InternalLinkage
;
5420 if (D
->hasAttr
<WeakAttr
>())
5421 return llvm::GlobalVariable::WeakAnyLinkage
;
5423 if (const auto *FD
= D
->getAsFunction())
5424 if (FD
->isMultiVersion() && Linkage
== GVA_AvailableExternally
)
5425 return llvm::GlobalVariable::LinkOnceAnyLinkage
;
5427 // We are guaranteed to have a strong definition somewhere else,
5428 // so we can use available_externally linkage.
5429 if (Linkage
== GVA_AvailableExternally
)
5430 return llvm::GlobalValue::AvailableExternallyLinkage
;
5432 // Note that Apple's kernel linker doesn't support symbol
5433 // coalescing, so we need to avoid linkonce and weak linkages there.
5434 // Normally, this means we just map to internal, but for explicit
5435 // instantiations we'll map to external.
5437 // In C++, the compiler has to emit a definition in every translation unit
5438 // that references the function. We should use linkonce_odr because
5439 // a) if all references in this translation unit are optimized away, we
5440 // don't need to codegen it. b) if the function persists, it needs to be
5441 // merged with other definitions. c) C++ has the ODR, so we know the
5442 // definition is dependable.
5443 if (Linkage
== GVA_DiscardableODR
)
5444 return !Context
.getLangOpts().AppleKext
? llvm::Function::LinkOnceODRLinkage
5445 : llvm::Function::InternalLinkage
;
5447 // An explicit instantiation of a template has weak linkage, since
5448 // explicit instantiations can occur in multiple translation units
5449 // and must all be equivalent. However, we are not allowed to
5450 // throw away these explicit instantiations.
5452 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5453 // so say that CUDA templates are either external (for kernels) or internal.
5454 // This lets llvm perform aggressive inter-procedural optimizations. For
5455 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5456 // therefore we need to follow the normal linkage paradigm.
5457 if (Linkage
== GVA_StrongODR
) {
5458 if (getLangOpts().AppleKext
)
5459 return llvm::Function::ExternalLinkage
;
5460 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
&&
5461 !getLangOpts().GPURelocatableDeviceCode
)
5462 return D
->hasAttr
<CUDAGlobalAttr
>() ? llvm::Function::ExternalLinkage
5463 : llvm::Function::InternalLinkage
;
5464 return llvm::Function::WeakODRLinkage
;
5467 // C++ doesn't have tentative definitions and thus cannot have common
5469 if (!getLangOpts().CPlusPlus
&& isa
<VarDecl
>(D
) &&
5470 !isVarDeclStrongDefinition(Context
, *this, cast
<VarDecl
>(D
),
5471 CodeGenOpts
.NoCommon
))
5472 return llvm::GlobalVariable::CommonLinkage
;
5474 // selectany symbols are externally visible, so use weak instead of
5475 // linkonce. MSVC optimizes away references to const selectany globals, so
5476 // all definitions should be the same and ODR linkage should be used.
5477 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5478 if (D
->hasAttr
<SelectAnyAttr
>())
5479 return llvm::GlobalVariable::WeakODRLinkage
;
5481 // Otherwise, we have strong external linkage.
5482 assert(Linkage
== GVA_StrongExternal
);
5483 return llvm::GlobalVariable::ExternalLinkage
;
5486 llvm::GlobalValue::LinkageTypes
5487 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl
*VD
) {
5488 GVALinkage Linkage
= getContext().GetGVALinkageForVariable(VD
);
5489 return getLLVMLinkageForDeclarator(VD
, Linkage
);
5492 /// Replace the uses of a function that was declared with a non-proto type.
5493 /// We want to silently drop extra arguments from call sites
5494 static void replaceUsesOfNonProtoConstant(llvm::Constant
*old
,
5495 llvm::Function
*newFn
) {
5497 if (old
->use_empty()) return;
5499 llvm::Type
*newRetTy
= newFn
->getReturnType();
5500 SmallVector
<llvm::Value
*, 4> newArgs
;
5502 for (llvm::Value::use_iterator ui
= old
->use_begin(), ue
= old
->use_end();
5504 llvm::Value::use_iterator use
= ui
++; // Increment before the use is erased.
5505 llvm::User
*user
= use
->getUser();
5507 // Recognize and replace uses of bitcasts. Most calls to
5508 // unprototyped functions will use bitcasts.
5509 if (auto *bitcast
= dyn_cast
<llvm::ConstantExpr
>(user
)) {
5510 if (bitcast
->getOpcode() == llvm::Instruction::BitCast
)
5511 replaceUsesOfNonProtoConstant(bitcast
, newFn
);
5515 // Recognize calls to the function.
5516 llvm::CallBase
*callSite
= dyn_cast
<llvm::CallBase
>(user
);
5517 if (!callSite
) continue;
5518 if (!callSite
->isCallee(&*use
))
5521 // If the return types don't match exactly, then we can't
5522 // transform this call unless it's dead.
5523 if (callSite
->getType() != newRetTy
&& !callSite
->use_empty())
5526 // Get the call site's attribute list.
5527 SmallVector
<llvm::AttributeSet
, 8> newArgAttrs
;
5528 llvm::AttributeList oldAttrs
= callSite
->getAttributes();
5530 // If the function was passed too few arguments, don't transform.
5531 unsigned newNumArgs
= newFn
->arg_size();
5532 if (callSite
->arg_size() < newNumArgs
)
5535 // If extra arguments were passed, we silently drop them.
5536 // If any of the types mismatch, we don't transform.
5538 bool dontTransform
= false;
5539 for (llvm::Argument
&A
: newFn
->args()) {
5540 if (callSite
->getArgOperand(argNo
)->getType() != A
.getType()) {
5541 dontTransform
= true;
5545 // Add any parameter attributes.
5546 newArgAttrs
.push_back(oldAttrs
.getParamAttrs(argNo
));
5552 // Okay, we can transform this. Create the new call instruction and copy
5553 // over the required information.
5554 newArgs
.append(callSite
->arg_begin(), callSite
->arg_begin() + argNo
);
5556 // Copy over any operand bundles.
5557 SmallVector
<llvm::OperandBundleDef
, 1> newBundles
;
5558 callSite
->getOperandBundlesAsDefs(newBundles
);
5560 llvm::CallBase
*newCall
;
5561 if (isa
<llvm::CallInst
>(callSite
)) {
5563 llvm::CallInst::Create(newFn
, newArgs
, newBundles
, "", callSite
);
5565 auto *oldInvoke
= cast
<llvm::InvokeInst
>(callSite
);
5566 newCall
= llvm::InvokeInst::Create(newFn
, oldInvoke
->getNormalDest(),
5567 oldInvoke
->getUnwindDest(), newArgs
,
5568 newBundles
, "", callSite
);
5570 newArgs
.clear(); // for the next iteration
5572 if (!newCall
->getType()->isVoidTy())
5573 newCall
->takeName(callSite
);
5574 newCall
->setAttributes(
5575 llvm::AttributeList::get(newFn
->getContext(), oldAttrs
.getFnAttrs(),
5576 oldAttrs
.getRetAttrs(), newArgAttrs
));
5577 newCall
->setCallingConv(callSite
->getCallingConv());
5579 // Finally, remove the old call, replacing any uses with the new one.
5580 if (!callSite
->use_empty())
5581 callSite
->replaceAllUsesWith(newCall
);
5583 // Copy debug location attached to CI.
5584 if (callSite
->getDebugLoc())
5585 newCall
->setDebugLoc(callSite
->getDebugLoc());
5587 callSite
->eraseFromParent();
5591 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5592 /// implement a function with no prototype, e.g. "int foo() {}". If there are
5593 /// existing call uses of the old function in the module, this adjusts them to
5594 /// call the new function directly.
5596 /// This is not just a cleanup: the always_inline pass requires direct calls to
5597 /// functions to be able to inline them. If there is a bitcast in the way, it
5598 /// won't inline them. Instcombine normally deletes these calls, but it isn't
5600 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue
*Old
,
5601 llvm::Function
*NewFn
) {
5602 // If we're redefining a global as a function, don't transform it.
5603 if (!isa
<llvm::Function
>(Old
)) return;
5605 replaceUsesOfNonProtoConstant(Old
, NewFn
);
5608 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl
*VD
) {
5609 auto DK
= VD
->isThisDeclarationADefinition();
5610 if (DK
== VarDecl::Definition
&& VD
->hasAttr
<DLLImportAttr
>())
5613 TemplateSpecializationKind TSK
= VD
->getTemplateSpecializationKind();
5614 // If we have a definition, this might be a deferred decl. If the
5615 // instantiation is explicit, make sure we emit it at the end.
5616 if (VD
->getDefinition() && TSK
== TSK_ExplicitInstantiationDefinition
)
5617 GetAddrOfGlobalVar(VD
);
5619 EmitTopLevelDecl(VD
);
5622 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD
,
5623 llvm::GlobalValue
*GV
) {
5624 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
5626 // Compute the function info and LLVM type.
5627 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
5628 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
5630 // Get or create the prototype for the function.
5631 if (!GV
|| (GV
->getValueType() != Ty
))
5632 GV
= cast
<llvm::GlobalValue
>(GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false,
5637 if (!GV
->isDeclaration())
5640 // We need to set linkage and visibility on the function before
5641 // generating code for it because various parts of IR generation
5642 // want to propagate this information down (e.g. to local static
5644 auto *Fn
= cast
<llvm::Function
>(GV
);
5645 setFunctionLinkage(GD
, Fn
);
5647 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5648 setGVProperties(Fn
, GD
);
5650 MaybeHandleStaticInExternC(D
, Fn
);
5652 maybeSetTrivialComdat(*D
, *Fn
);
5654 CodeGenFunction(*this).GenerateCode(GD
, Fn
, FI
);
5656 setNonAliasAttributes(GD
, Fn
);
5657 SetLLVMFunctionAttributesForDefinition(D
, Fn
);
5659 if (const ConstructorAttr
*CA
= D
->getAttr
<ConstructorAttr
>())
5660 AddGlobalCtor(Fn
, CA
->getPriority());
5661 if (const DestructorAttr
*DA
= D
->getAttr
<DestructorAttr
>())
5662 AddGlobalDtor(Fn
, DA
->getPriority(), true);
5663 if (D
->hasAttr
<AnnotateAttr
>())
5664 AddGlobalAnnotations(D
, Fn
);
5665 if (getLangOpts().OpenMP
&& D
->hasAttr
<OMPDeclareTargetDeclAttr
>())
5666 getOpenMPRuntime().emitDeclareTargetFunction(D
, GV
);
5669 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD
) {
5670 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
5671 const AliasAttr
*AA
= D
->getAttr
<AliasAttr
>();
5672 assert(AA
&& "Not an alias?");
5674 StringRef MangledName
= getMangledName(GD
);
5676 if (AA
->getAliasee() == MangledName
) {
5677 Diags
.Report(AA
->getLocation(), diag::err_cyclic_alias
) << 0;
5681 // If there is a definition in the module, then it wins over the alias.
5682 // This is dubious, but allow it to be safe. Just ignore the alias.
5683 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
5684 if (Entry
&& !Entry
->isDeclaration())
5687 Aliases
.push_back(GD
);
5689 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(D
->getType());
5691 // Create a reference to the named value. This ensures that it is emitted
5692 // if a deferred decl.
5693 llvm::Constant
*Aliasee
;
5694 llvm::GlobalValue::LinkageTypes LT
;
5695 if (isa
<llvm::FunctionType
>(DeclTy
)) {
5696 Aliasee
= GetOrCreateLLVMFunction(AA
->getAliasee(), DeclTy
, GD
,
5697 /*ForVTable=*/false);
5698 LT
= getFunctionLinkage(GD
);
5700 Aliasee
= GetOrCreateLLVMGlobal(AA
->getAliasee(), DeclTy
, LangAS::Default
,
5702 if (const auto *VD
= dyn_cast
<VarDecl
>(GD
.getDecl()))
5703 LT
= getLLVMLinkageVarDefinition(VD
);
5705 LT
= getFunctionLinkage(GD
);
5708 // Create the new alias itself, but don't set a name yet.
5709 unsigned AS
= Aliasee
->getType()->getPointerAddressSpace();
5711 llvm::GlobalAlias::create(DeclTy
, AS
, LT
, "", Aliasee
, &getModule());
5714 if (GA
->getAliasee() == Entry
) {
5715 Diags
.Report(AA
->getLocation(), diag::err_cyclic_alias
) << 0;
5719 assert(Entry
->isDeclaration());
5721 // If there is a declaration in the module, then we had an extern followed
5722 // by the alias, as in:
5723 // extern int test6();
5725 // int test6() __attribute__((alias("test7")));
5727 // Remove it and replace uses of it with the alias.
5728 GA
->takeName(Entry
);
5730 Entry
->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA
,
5732 Entry
->eraseFromParent();
5734 GA
->setName(MangledName
);
5737 // Set attributes which are particular to an alias; this is a
5738 // specialization of the attributes which may be set on a global
5739 // variable/function.
5740 if (D
->hasAttr
<WeakAttr
>() || D
->hasAttr
<WeakRefAttr
>() ||
5741 D
->isWeakImported()) {
5742 GA
->setLinkage(llvm::Function::WeakAnyLinkage
);
5745 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
5746 if (VD
->getTLSKind())
5747 setTLSMode(GA
, *VD
);
5749 SetCommonAttributes(GD
, GA
);
5751 // Emit global alias debug information.
5752 if (isa
<VarDecl
>(D
))
5753 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5754 DI
->EmitGlobalAlias(cast
<llvm::GlobalValue
>(GA
->getAliasee()->stripPointerCasts()), GD
);
5757 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD
) {
5758 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
5759 const IFuncAttr
*IFA
= D
->getAttr
<IFuncAttr
>();
5760 assert(IFA
&& "Not an ifunc?");
5762 StringRef MangledName
= getMangledName(GD
);
5764 if (IFA
->getResolver() == MangledName
) {
5765 Diags
.Report(IFA
->getLocation(), diag::err_cyclic_alias
) << 1;
5769 // Report an error if some definition overrides ifunc.
5770 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
5771 if (Entry
&& !Entry
->isDeclaration()) {
5773 if (lookupRepresentativeDecl(MangledName
, OtherGD
) &&
5774 DiagnosedConflictingDefinitions
.insert(GD
).second
) {
5775 Diags
.Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
5777 Diags
.Report(OtherGD
.getDecl()->getLocation(),
5778 diag::note_previous_definition
);
5783 Aliases
.push_back(GD
);
5785 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(D
->getType());
5786 llvm::Type
*ResolverTy
= llvm::GlobalIFunc::getResolverFunctionType(DeclTy
);
5787 llvm::Constant
*Resolver
=
5788 GetOrCreateLLVMFunction(IFA
->getResolver(), ResolverTy
, {},
5789 /*ForVTable=*/false);
5790 llvm::GlobalIFunc
*GIF
=
5791 llvm::GlobalIFunc::create(DeclTy
, 0, llvm::Function::ExternalLinkage
,
5792 "", Resolver
, &getModule());
5794 if (GIF
->getResolver() == Entry
) {
5795 Diags
.Report(IFA
->getLocation(), diag::err_cyclic_alias
) << 1;
5798 assert(Entry
->isDeclaration());
5800 // If there is a declaration in the module, then we had an extern followed
5801 // by the ifunc, as in:
5802 // extern int test();
5804 // int test() __attribute__((ifunc("resolver")));
5806 // Remove it and replace uses of it with the ifunc.
5807 GIF
->takeName(Entry
);
5809 Entry
->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF
,
5811 Entry
->eraseFromParent();
5813 GIF
->setName(MangledName
);
5814 if (auto *F
= dyn_cast
<llvm::Function
>(Resolver
)) {
5815 F
->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation
);
5817 SetCommonAttributes(GD
, GIF
);
5820 llvm::Function
*CodeGenModule::getIntrinsic(unsigned IID
,
5821 ArrayRef
<llvm::Type
*> Tys
) {
5822 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID
)IID
,
5826 static llvm::StringMapEntry
<llvm::GlobalVariable
*> &
5827 GetConstantCFStringEntry(llvm::StringMap
<llvm::GlobalVariable
*> &Map
,
5828 const StringLiteral
*Literal
, bool TargetIsLSB
,
5829 bool &IsUTF16
, unsigned &StringLength
) {
5830 StringRef String
= Literal
->getString();
5831 unsigned NumBytes
= String
.size();
5833 // Check for simple case.
5834 if (!Literal
->containsNonAsciiOrNull()) {
5835 StringLength
= NumBytes
;
5836 return *Map
.insert(std::make_pair(String
, nullptr)).first
;
5839 // Otherwise, convert the UTF8 literals into a string of shorts.
5842 SmallVector
<llvm::UTF16
, 128> ToBuf(NumBytes
+ 1); // +1 for ending nulls.
5843 const llvm::UTF8
*FromPtr
= (const llvm::UTF8
*)String
.data();
5844 llvm::UTF16
*ToPtr
= &ToBuf
[0];
5846 (void)llvm::ConvertUTF8toUTF16(&FromPtr
, FromPtr
+ NumBytes
, &ToPtr
,
5847 ToPtr
+ NumBytes
, llvm::strictConversion
);
5849 // ConvertUTF8toUTF16 returns the length in ToPtr.
5850 StringLength
= ToPtr
- &ToBuf
[0];
5852 // Add an explicit null.
5854 return *Map
.insert(std::make_pair(
5855 StringRef(reinterpret_cast<const char *>(ToBuf
.data()),
5856 (StringLength
+ 1) * 2),
5861 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral
*Literal
) {
5862 unsigned StringLength
= 0;
5863 bool isUTF16
= false;
5864 llvm::StringMapEntry
<llvm::GlobalVariable
*> &Entry
=
5865 GetConstantCFStringEntry(CFConstantStringMap
, Literal
,
5866 getDataLayout().isLittleEndian(), isUTF16
,
5869 if (auto *C
= Entry
.second
)
5870 return ConstantAddress(
5871 C
, C
->getValueType(), CharUnits::fromQuantity(C
->getAlignment()));
5873 llvm::Constant
*Zero
= llvm::Constant::getNullValue(Int32Ty
);
5874 llvm::Constant
*Zeros
[] = { Zero
, Zero
};
5876 const ASTContext
&Context
= getContext();
5877 const llvm::Triple
&Triple
= getTriple();
5879 const auto CFRuntime
= getLangOpts().CFRuntime
;
5880 const bool IsSwiftABI
=
5881 static_cast<unsigned>(CFRuntime
) >=
5882 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift
);
5883 const bool IsSwift4_1
= CFRuntime
== LangOptions::CoreFoundationABI::Swift4_1
;
5885 // If we don't already have it, get __CFConstantStringClassReference.
5886 if (!CFConstantStringClassRef
) {
5887 const char *CFConstantStringClassName
= "__CFConstantStringClassReference";
5888 llvm::Type
*Ty
= getTypes().ConvertType(getContext().IntTy
);
5889 Ty
= llvm::ArrayType::get(Ty
, 0);
5891 switch (CFRuntime
) {
5893 case LangOptions::CoreFoundationABI::Swift
: [[fallthrough
]];
5894 case LangOptions::CoreFoundationABI::Swift5_0
:
5895 CFConstantStringClassName
=
5896 Triple
.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5897 : "$s10Foundation19_NSCFConstantStringCN";
5900 case LangOptions::CoreFoundationABI::Swift4_2
:
5901 CFConstantStringClassName
=
5902 Triple
.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5903 : "$S10Foundation19_NSCFConstantStringCN";
5906 case LangOptions::CoreFoundationABI::Swift4_1
:
5907 CFConstantStringClassName
=
5908 Triple
.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5909 : "__T010Foundation19_NSCFConstantStringCN";
5914 llvm::Constant
*C
= CreateRuntimeVariable(Ty
, CFConstantStringClassName
);
5916 if (Triple
.isOSBinFormatELF() || Triple
.isOSBinFormatCOFF()) {
5917 llvm::GlobalValue
*GV
= nullptr;
5919 if ((GV
= dyn_cast
<llvm::GlobalValue
>(C
))) {
5920 IdentifierInfo
&II
= Context
.Idents
.get(GV
->getName());
5921 TranslationUnitDecl
*TUDecl
= Context
.getTranslationUnitDecl();
5922 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
5924 const VarDecl
*VD
= nullptr;
5925 for (const auto *Result
: DC
->lookup(&II
))
5926 if ((VD
= dyn_cast
<VarDecl
>(Result
)))
5929 if (Triple
.isOSBinFormatELF()) {
5931 GV
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
5933 GV
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
5934 if (!VD
|| !VD
->hasAttr
<DLLExportAttr
>())
5935 GV
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
5937 GV
->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass
);
5944 // Decay array -> ptr
5945 CFConstantStringClassRef
=
5946 IsSwiftABI
? llvm::ConstantExpr::getPtrToInt(C
, Ty
)
5947 : llvm::ConstantExpr::getGetElementPtr(Ty
, C
, Zeros
);
5950 QualType CFTy
= Context
.getCFConstantStringType();
5952 auto *STy
= cast
<llvm::StructType
>(getTypes().ConvertType(CFTy
));
5954 ConstantInitBuilder
Builder(*this);
5955 auto Fields
= Builder
.beginStruct(STy
);
5958 Fields
.add(cast
<llvm::Constant
>(CFConstantStringClassRef
));
5962 Fields
.addInt(IntPtrTy
, IsSwift4_1
? 0x05 : 0x01);
5963 Fields
.addInt(Int64Ty
, isUTF16
? 0x07d0 : 0x07c8);
5965 Fields
.addInt(IntTy
, isUTF16
? 0x07d0 : 0x07C8);
5969 llvm::Constant
*C
= nullptr;
5971 auto Arr
= llvm::ArrayRef(
5972 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry
.first().data())),
5973 Entry
.first().size() / 2);
5974 C
= llvm::ConstantDataArray::get(VMContext
, Arr
);
5976 C
= llvm::ConstantDataArray::getString(VMContext
, Entry
.first());
5979 // Note: -fwritable-strings doesn't make the backing store strings of
5980 // CFStrings writable.
5982 new llvm::GlobalVariable(getModule(), C
->getType(), /*isConstant=*/true,
5983 llvm::GlobalValue::PrivateLinkage
, C
, ".str");
5984 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
5985 // Don't enforce the target's minimum global alignment, since the only use
5986 // of the string is via this class initializer.
5987 CharUnits Align
= isUTF16
? Context
.getTypeAlignInChars(Context
.ShortTy
)
5988 : Context
.getTypeAlignInChars(Context
.CharTy
);
5989 GV
->setAlignment(Align
.getAsAlign());
5991 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5992 // Without it LLVM can merge the string with a non unnamed_addr one during
5993 // LTO. Doing that changes the section it ends in, which surprises ld64.
5994 if (Triple
.isOSBinFormatMachO())
5995 GV
->setSection(isUTF16
? "__TEXT,__ustring"
5996 : "__TEXT,__cstring,cstring_literals");
5997 // Make sure the literal ends up in .rodata to allow for safe ICF and for
5998 // the static linker to adjust permissions to read-only later on.
5999 else if (Triple
.isOSBinFormatELF())
6000 GV
->setSection(".rodata");
6003 llvm::Constant
*Str
=
6004 llvm::ConstantExpr::getGetElementPtr(GV
->getValueType(), GV
, Zeros
);
6007 // Cast the UTF16 string to the correct type.
6008 Str
= llvm::ConstantExpr::getBitCast(Str
, Int8PtrTy
);
6012 llvm::IntegerType
*LengthTy
=
6013 llvm::IntegerType::get(getModule().getContext(),
6014 Context
.getTargetInfo().getLongWidth());
6016 if (CFRuntime
== LangOptions::CoreFoundationABI::Swift4_1
||
6017 CFRuntime
== LangOptions::CoreFoundationABI::Swift4_2
)
6020 LengthTy
= IntPtrTy
;
6022 Fields
.addInt(LengthTy
, StringLength
);
6024 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6025 // properly aligned on 32-bit platforms.
6026 CharUnits Alignment
=
6027 IsSwiftABI
? Context
.toCharUnitsFromBits(64) : getPointerAlign();
6030 GV
= Fields
.finishAndCreateGlobal("_unnamed_cfstring_", Alignment
,
6031 /*isConstant=*/false,
6032 llvm::GlobalVariable::PrivateLinkage
);
6033 GV
->addAttribute("objc_arc_inert");
6034 switch (Triple
.getObjectFormat()) {
6035 case llvm::Triple::UnknownObjectFormat
:
6036 llvm_unreachable("unknown file format");
6037 case llvm::Triple::DXContainer
:
6038 case llvm::Triple::GOFF
:
6039 case llvm::Triple::SPIRV
:
6040 case llvm::Triple::XCOFF
:
6041 llvm_unreachable("unimplemented");
6042 case llvm::Triple::COFF
:
6043 case llvm::Triple::ELF
:
6044 case llvm::Triple::Wasm
:
6045 GV
->setSection("cfstring");
6047 case llvm::Triple::MachO
:
6048 GV
->setSection("__DATA,__cfstring");
6053 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
6056 bool CodeGenModule::getExpressionLocationsEnabled() const {
6057 return !CodeGenOpts
.EmitCodeView
|| CodeGenOpts
.DebugColumnInfo
;
6060 QualType
CodeGenModule::getObjCFastEnumerationStateType() {
6061 if (ObjCFastEnumerationStateType
.isNull()) {
6062 RecordDecl
*D
= Context
.buildImplicitRecord("__objcFastEnumerationState");
6063 D
->startDefinition();
6065 QualType FieldTypes
[] = {
6066 Context
.UnsignedLongTy
,
6067 Context
.getPointerType(Context
.getObjCIdType()),
6068 Context
.getPointerType(Context
.UnsignedLongTy
),
6069 Context
.getConstantArrayType(Context
.UnsignedLongTy
,
6070 llvm::APInt(32, 5), nullptr, ArrayType::Normal
, 0)
6073 for (size_t i
= 0; i
< 4; ++i
) {
6074 FieldDecl
*Field
= FieldDecl::Create(Context
,
6077 SourceLocation(), nullptr,
6078 FieldTypes
[i
], /*TInfo=*/nullptr,
6079 /*BitWidth=*/nullptr,
6082 Field
->setAccess(AS_public
);
6086 D
->completeDefinition();
6087 ObjCFastEnumerationStateType
= Context
.getTagDeclType(D
);
6090 return ObjCFastEnumerationStateType
;
6094 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral
*E
) {
6095 assert(!E
->getType()->isPointerType() && "Strings are always arrays");
6097 // Don't emit it as the address of the string, emit the string data itself
6098 // as an inline array.
6099 if (E
->getCharByteWidth() == 1) {
6100 SmallString
<64> Str(E
->getString());
6102 // Resize the string to the right size, which is indicated by its type.
6103 const ConstantArrayType
*CAT
= Context
.getAsConstantArrayType(E
->getType());
6104 assert(CAT
&& "String literal not of constant array type!");
6105 Str
.resize(CAT
->getSize().getZExtValue());
6106 return llvm::ConstantDataArray::getString(VMContext
, Str
, false);
6109 auto *AType
= cast
<llvm::ArrayType
>(getTypes().ConvertType(E
->getType()));
6110 llvm::Type
*ElemTy
= AType
->getElementType();
6111 unsigned NumElements
= AType
->getNumElements();
6113 // Wide strings have either 2-byte or 4-byte elements.
6114 if (ElemTy
->getPrimitiveSizeInBits() == 16) {
6115 SmallVector
<uint16_t, 32> Elements
;
6116 Elements
.reserve(NumElements
);
6118 for(unsigned i
= 0, e
= E
->getLength(); i
!= e
; ++i
)
6119 Elements
.push_back(E
->getCodeUnit(i
));
6120 Elements
.resize(NumElements
);
6121 return llvm::ConstantDataArray::get(VMContext
, Elements
);
6124 assert(ElemTy
->getPrimitiveSizeInBits() == 32);
6125 SmallVector
<uint32_t, 32> Elements
;
6126 Elements
.reserve(NumElements
);
6128 for(unsigned i
= 0, e
= E
->getLength(); i
!= e
; ++i
)
6129 Elements
.push_back(E
->getCodeUnit(i
));
6130 Elements
.resize(NumElements
);
6131 return llvm::ConstantDataArray::get(VMContext
, Elements
);
6134 static llvm::GlobalVariable
*
6135 GenerateStringLiteral(llvm::Constant
*C
, llvm::GlobalValue::LinkageTypes LT
,
6136 CodeGenModule
&CGM
, StringRef GlobalName
,
6137 CharUnits Alignment
) {
6138 unsigned AddrSpace
= CGM
.getContext().getTargetAddressSpace(
6139 CGM
.GetGlobalConstantAddressSpace());
6141 llvm::Module
&M
= CGM
.getModule();
6142 // Create a global variable for this string
6143 auto *GV
= new llvm::GlobalVariable(
6144 M
, C
->getType(), !CGM
.getLangOpts().WritableStrings
, LT
, C
, GlobalName
,
6145 nullptr, llvm::GlobalVariable::NotThreadLocal
, AddrSpace
);
6146 GV
->setAlignment(Alignment
.getAsAlign());
6147 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
6148 if (GV
->isWeakForLinker()) {
6149 assert(CGM
.supportsCOMDAT() && "Only COFF uses weak string literals");
6150 GV
->setComdat(M
.getOrInsertComdat(GV
->getName()));
6152 CGM
.setDSOLocal(GV
);
6157 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6158 /// constant array for the given string literal.
6160 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral
*S
,
6162 CharUnits Alignment
= getContext().getAlignOfGlobalVarInChars(S
->getType());
6164 llvm::Constant
*C
= GetConstantArrayFromStringLiteral(S
);
6165 llvm::GlobalVariable
**Entry
= nullptr;
6166 if (!LangOpts
.WritableStrings
) {
6167 Entry
= &ConstantStringMap
[C
];
6168 if (auto GV
= *Entry
) {
6169 if (uint64_t(Alignment
.getQuantity()) > GV
->getAlignment())
6170 GV
->setAlignment(Alignment
.getAsAlign());
6171 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6172 GV
->getValueType(), Alignment
);
6176 SmallString
<256> MangledNameBuffer
;
6177 StringRef GlobalVariableName
;
6178 llvm::GlobalValue::LinkageTypes LT
;
6180 // Mangle the string literal if that's how the ABI merges duplicate strings.
6181 // Don't do it if they are writable, since we don't want writes in one TU to
6182 // affect strings in another.
6183 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S
) &&
6184 !LangOpts
.WritableStrings
) {
6185 llvm::raw_svector_ostream
Out(MangledNameBuffer
);
6186 getCXXABI().getMangleContext().mangleStringLiteral(S
, Out
);
6187 LT
= llvm::GlobalValue::LinkOnceODRLinkage
;
6188 GlobalVariableName
= MangledNameBuffer
;
6190 LT
= llvm::GlobalValue::PrivateLinkage
;
6191 GlobalVariableName
= Name
;
6194 auto GV
= GenerateStringLiteral(C
, LT
, *this, GlobalVariableName
, Alignment
);
6196 CGDebugInfo
*DI
= getModuleDebugInfo();
6197 if (DI
&& getCodeGenOpts().hasReducedDebugInfo())
6198 DI
->AddStringLiteralDebugInfo(GV
, S
);
6203 SanitizerMD
->reportGlobal(GV
, S
->getStrTokenLoc(0), "<string literal>");
6205 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6206 GV
->getValueType(), Alignment
);
6209 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6210 /// array for the given ObjCEncodeExpr node.
6212 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr
*E
) {
6214 getContext().getObjCEncodingForType(E
->getEncodedType(), Str
);
6216 return GetAddrOfConstantCString(Str
);
6219 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6220 /// the literal and a terminating '\0' character.
6221 /// The result has pointer to array type.
6222 ConstantAddress
CodeGenModule::GetAddrOfConstantCString(
6223 const std::string
&Str
, const char *GlobalName
) {
6224 StringRef
StrWithNull(Str
.c_str(), Str
.size() + 1);
6225 CharUnits Alignment
=
6226 getContext().getAlignOfGlobalVarInChars(getContext().CharTy
);
6229 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull
, false);
6231 // Don't share any string literals if strings aren't constant.
6232 llvm::GlobalVariable
**Entry
= nullptr;
6233 if (!LangOpts
.WritableStrings
) {
6234 Entry
= &ConstantStringMap
[C
];
6235 if (auto GV
= *Entry
) {
6236 if (uint64_t(Alignment
.getQuantity()) > GV
->getAlignment())
6237 GV
->setAlignment(Alignment
.getAsAlign());
6238 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6239 GV
->getValueType(), Alignment
);
6243 // Get the default prefix if a name wasn't specified.
6245 GlobalName
= ".str";
6246 // Create a global variable for this.
6247 auto GV
= GenerateStringLiteral(C
, llvm::GlobalValue::PrivateLinkage
, *this,
6248 GlobalName
, Alignment
);
6252 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6253 GV
->getValueType(), Alignment
);
6256 ConstantAddress
CodeGenModule::GetAddrOfGlobalTemporary(
6257 const MaterializeTemporaryExpr
*E
, const Expr
*Init
) {
6258 assert((E
->getStorageDuration() == SD_Static
||
6259 E
->getStorageDuration() == SD_Thread
) && "not a global temporary");
6260 const auto *VD
= cast
<VarDecl
>(E
->getExtendingDecl());
6262 // If we're not materializing a subobject of the temporary, keep the
6263 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6264 QualType MaterializedType
= Init
->getType();
6265 if (Init
== E
->getSubExpr())
6266 MaterializedType
= E
->getType();
6268 CharUnits Align
= getContext().getTypeAlignInChars(MaterializedType
);
6270 auto InsertResult
= MaterializedGlobalTemporaryMap
.insert({E
, nullptr});
6271 if (!InsertResult
.second
) {
6272 // We've seen this before: either we already created it or we're in the
6273 // process of doing so.
6274 if (!InsertResult
.first
->second
) {
6275 // We recursively re-entered this function, probably during emission of
6276 // the initializer. Create a placeholder. We'll clean this up in the
6277 // outer call, at the end of this function.
6278 llvm::Type
*Type
= getTypes().ConvertTypeForMem(MaterializedType
);
6279 InsertResult
.first
->second
= new llvm::GlobalVariable(
6280 getModule(), Type
, false, llvm::GlobalVariable::InternalLinkage
,
6283 return ConstantAddress(InsertResult
.first
->second
,
6284 llvm::cast
<llvm::GlobalVariable
>(
6285 InsertResult
.first
->second
->stripPointerCasts())
6290 // FIXME: If an externally-visible declaration extends multiple temporaries,
6291 // we need to give each temporary the same name in every translation unit (and
6292 // we also need to make the temporaries externally-visible).
6293 SmallString
<256> Name
;
6294 llvm::raw_svector_ostream
Out(Name
);
6295 getCXXABI().getMangleContext().mangleReferenceTemporary(
6296 VD
, E
->getManglingNumber(), Out
);
6298 APValue
*Value
= nullptr;
6299 if (E
->getStorageDuration() == SD_Static
&& VD
&& VD
->evaluateValue()) {
6300 // If the initializer of the extending declaration is a constant
6301 // initializer, we should have a cached constant initializer for this
6302 // temporary. Note that this might have a different value from the value
6303 // computed by evaluating the initializer if the surrounding constant
6304 // expression modifies the temporary.
6305 Value
= E
->getOrCreateValue(false);
6308 // Try evaluating it now, it might have a constant initializer.
6309 Expr::EvalResult EvalResult
;
6310 if (!Value
&& Init
->EvaluateAsRValue(EvalResult
, getContext()) &&
6311 !EvalResult
.hasSideEffects())
6312 Value
= &EvalResult
.Val
;
6315 VD
? GetGlobalVarAddressSpace(VD
) : MaterializedType
.getAddressSpace();
6317 std::optional
<ConstantEmitter
> emitter
;
6318 llvm::Constant
*InitialValue
= nullptr;
6319 bool Constant
= false;
6322 // The temporary has a constant initializer, use it.
6323 emitter
.emplace(*this);
6324 InitialValue
= emitter
->emitForInitializer(*Value
, AddrSpace
,
6327 MaterializedType
.isConstantStorage(getContext(), /*ExcludeCtor*/ Value
,
6328 /*ExcludeDtor*/ false);
6329 Type
= InitialValue
->getType();
6331 // No initializer, the initialization will be provided when we
6332 // initialize the declaration which performed lifetime extension.
6333 Type
= getTypes().ConvertTypeForMem(MaterializedType
);
6336 // Create a global variable for this lifetime-extended temporary.
6337 llvm::GlobalValue::LinkageTypes Linkage
= getLLVMLinkageVarDefinition(VD
);
6338 if (Linkage
== llvm::GlobalVariable::ExternalLinkage
) {
6339 const VarDecl
*InitVD
;
6340 if (VD
->isStaticDataMember() && VD
->getAnyInitializer(InitVD
) &&
6341 isa
<CXXRecordDecl
>(InitVD
->getLexicalDeclContext())) {
6342 // Temporaries defined inside a class get linkonce_odr linkage because the
6343 // class can be defined in multiple translation units.
6344 Linkage
= llvm::GlobalVariable::LinkOnceODRLinkage
;
6346 // There is no need for this temporary to have external linkage if the
6347 // VarDecl has external linkage.
6348 Linkage
= llvm::GlobalVariable::InternalLinkage
;
6351 auto TargetAS
= getContext().getTargetAddressSpace(AddrSpace
);
6352 auto *GV
= new llvm::GlobalVariable(
6353 getModule(), Type
, Constant
, Linkage
, InitialValue
, Name
.c_str(),
6354 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal
, TargetAS
);
6355 if (emitter
) emitter
->finalize(GV
);
6356 // Don't assign dllimport or dllexport to local linkage globals.
6357 if (!llvm::GlobalValue::isLocalLinkage(Linkage
)) {
6358 setGVProperties(GV
, VD
);
6359 if (GV
->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass
)
6360 // The reference temporary should never be dllexport.
6361 GV
->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass
);
6363 GV
->setAlignment(Align
.getAsAlign());
6364 if (supportsCOMDAT() && GV
->isWeakForLinker())
6365 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
6366 if (VD
->getTLSKind())
6367 setTLSMode(GV
, *VD
);
6368 llvm::Constant
*CV
= GV
;
6369 if (AddrSpace
!= LangAS::Default
)
6370 CV
= getTargetCodeGenInfo().performAddrSpaceCast(
6371 *this, GV
, AddrSpace
, LangAS::Default
,
6373 getContext().getTargetAddressSpace(LangAS::Default
)));
6375 // Update the map with the new temporary. If we created a placeholder above,
6376 // replace it with the new global now.
6377 llvm::Constant
*&Entry
= MaterializedGlobalTemporaryMap
[E
];
6379 Entry
->replaceAllUsesWith(
6380 llvm::ConstantExpr::getBitCast(CV
, Entry
->getType()));
6381 llvm::cast
<llvm::GlobalVariable
>(Entry
)->eraseFromParent();
6385 return ConstantAddress(CV
, Type
, Align
);
6388 /// EmitObjCPropertyImplementations - Emit information for synthesized
6389 /// properties for an implementation.
6390 void CodeGenModule::EmitObjCPropertyImplementations(const
6391 ObjCImplementationDecl
*D
) {
6392 for (const auto *PID
: D
->property_impls()) {
6393 // Dynamic is just for type-checking.
6394 if (PID
->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize
) {
6395 ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
6397 // Determine which methods need to be implemented, some may have
6398 // been overridden. Note that ::isPropertyAccessor is not the method
6399 // we want, that just indicates if the decl came from a
6400 // property. What we want to know is if the method is defined in
6401 // this implementation.
6402 auto *Getter
= PID
->getGetterMethodDecl();
6403 if (!Getter
|| Getter
->isSynthesizedAccessorStub())
6404 CodeGenFunction(*this).GenerateObjCGetter(
6405 const_cast<ObjCImplementationDecl
*>(D
), PID
);
6406 auto *Setter
= PID
->getSetterMethodDecl();
6407 if (!PD
->isReadOnly() && (!Setter
|| Setter
->isSynthesizedAccessorStub()))
6408 CodeGenFunction(*this).GenerateObjCSetter(
6409 const_cast<ObjCImplementationDecl
*>(D
), PID
);
6414 static bool needsDestructMethod(ObjCImplementationDecl
*impl
) {
6415 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
6416 for (const ObjCIvarDecl
*ivar
= iface
->all_declared_ivar_begin();
6417 ivar
; ivar
= ivar
->getNextIvar())
6418 if (ivar
->getType().isDestructedType())
6424 static bool AllTrivialInitializers(CodeGenModule
&CGM
,
6425 ObjCImplementationDecl
*D
) {
6426 CodeGenFunction
CGF(CGM
);
6427 for (ObjCImplementationDecl::init_iterator B
= D
->init_begin(),
6428 E
= D
->init_end(); B
!= E
; ++B
) {
6429 CXXCtorInitializer
*CtorInitExp
= *B
;
6430 Expr
*Init
= CtorInitExp
->getInit();
6431 if (!CGF
.isTrivialInitializer(Init
))
6437 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6438 /// for an implementation.
6439 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl
*D
) {
6440 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6441 if (needsDestructMethod(D
)) {
6442 IdentifierInfo
*II
= &getContext().Idents
.get(".cxx_destruct");
6443 Selector cxxSelector
= getContext().Selectors
.getSelector(0, &II
);
6444 ObjCMethodDecl
*DTORMethod
= ObjCMethodDecl::Create(
6445 getContext(), D
->getLocation(), D
->getLocation(), cxxSelector
,
6446 getContext().VoidTy
, nullptr, D
,
6447 /*isInstance=*/true, /*isVariadic=*/false,
6448 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6449 /*isImplicitlyDeclared=*/true,
6450 /*isDefined=*/false, ObjCMethodDecl::Required
);
6451 D
->addInstanceMethod(DTORMethod
);
6452 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D
, DTORMethod
, false);
6453 D
->setHasDestructors(true);
6456 // If the implementation doesn't have any ivar initializers, we don't need
6457 // a .cxx_construct.
6458 if (D
->getNumIvarInitializers() == 0 ||
6459 AllTrivialInitializers(*this, D
))
6462 IdentifierInfo
*II
= &getContext().Idents
.get(".cxx_construct");
6463 Selector cxxSelector
= getContext().Selectors
.getSelector(0, &II
);
6464 // The constructor returns 'self'.
6465 ObjCMethodDecl
*CTORMethod
= ObjCMethodDecl::Create(
6466 getContext(), D
->getLocation(), D
->getLocation(), cxxSelector
,
6467 getContext().getObjCIdType(), nullptr, D
, /*isInstance=*/true,
6468 /*isVariadic=*/false,
6469 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6470 /*isImplicitlyDeclared=*/true,
6471 /*isDefined=*/false, ObjCMethodDecl::Required
);
6472 D
->addInstanceMethod(CTORMethod
);
6473 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D
, CTORMethod
, true);
6474 D
->setHasNonZeroConstructors(true);
6477 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6478 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl
*LSD
) {
6479 if (LSD
->getLanguage() != LinkageSpecDecl::lang_c
&&
6480 LSD
->getLanguage() != LinkageSpecDecl::lang_cxx
) {
6481 ErrorUnsupported(LSD
, "linkage spec");
6485 EmitDeclContext(LSD
);
6488 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl
*D
) {
6489 // Device code should not be at top level.
6490 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
)
6493 std::unique_ptr
<CodeGenFunction
> &CurCGF
=
6494 GlobalTopLevelStmtBlockInFlight
.first
;
6496 // We emitted a top-level stmt but after it there is initialization.
6497 // Stop squashing the top-level stmts into a single function.
6498 if (CurCGF
&& CXXGlobalInits
.back() != CurCGF
->CurFn
) {
6499 CurCGF
->FinishFunction(D
->getEndLoc());
6504 // void __stmts__N(void)
6505 // FIXME: Ask the ABI name mangler to pick a name.
6506 std::string Name
= "__stmts__" + llvm::utostr(CXXGlobalInits
.size());
6507 FunctionArgList Args
;
6508 QualType RetTy
= getContext().VoidTy
;
6509 const CGFunctionInfo
&FnInfo
=
6510 getTypes().arrangeBuiltinFunctionDeclaration(RetTy
, Args
);
6511 llvm::FunctionType
*FnTy
= getTypes().GetFunctionType(FnInfo
);
6512 llvm::Function
*Fn
= llvm::Function::Create(
6513 FnTy
, llvm::GlobalValue::InternalLinkage
, Name
, &getModule());
6515 CurCGF
.reset(new CodeGenFunction(*this));
6516 GlobalTopLevelStmtBlockInFlight
.second
= D
;
6517 CurCGF
->StartFunction(GlobalDecl(), RetTy
, Fn
, FnInfo
, Args
,
6518 D
->getBeginLoc(), D
->getBeginLoc());
6519 CXXGlobalInits
.push_back(Fn
);
6522 CurCGF
->EmitStmt(D
->getStmt());
6525 void CodeGenModule::EmitDeclContext(const DeclContext
*DC
) {
6526 for (auto *I
: DC
->decls()) {
6527 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6528 // are themselves considered "top-level", so EmitTopLevelDecl on an
6529 // ObjCImplDecl does not recursively visit them. We need to do that in
6530 // case they're nested inside another construct (LinkageSpecDecl /
6531 // ExportDecl) that does stop them from being considered "top-level".
6532 if (auto *OID
= dyn_cast
<ObjCImplDecl
>(I
)) {
6533 for (auto *M
: OID
->methods())
6534 EmitTopLevelDecl(M
);
6537 EmitTopLevelDecl(I
);
6541 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6542 void CodeGenModule::EmitTopLevelDecl(Decl
*D
) {
6543 // Ignore dependent declarations.
6544 if (D
->isTemplated())
6547 // Consteval function shouldn't be emitted.
6548 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
); FD
&& FD
->isImmediateFunction())
6551 switch (D
->getKind()) {
6552 case Decl::CXXConversion
:
6553 case Decl::CXXMethod
:
6554 case Decl::Function
:
6555 EmitGlobal(cast
<FunctionDecl
>(D
));
6556 // Always provide some coverage mapping
6557 // even for the functions that aren't emitted.
6558 AddDeferredUnusedCoverageMapping(D
);
6561 case Decl::CXXDeductionGuide
:
6562 // Function-like, but does not result in code emission.
6566 case Decl::Decomposition
:
6567 case Decl::VarTemplateSpecialization
:
6568 EmitGlobal(cast
<VarDecl
>(D
));
6569 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
))
6570 for (auto *B
: DD
->bindings())
6571 if (auto *HD
= B
->getHoldingVar())
6575 // Indirect fields from global anonymous structs and unions can be
6576 // ignored; only the actual variable requires IR gen support.
6577 case Decl::IndirectField
:
6581 case Decl::Namespace
:
6582 EmitDeclContext(cast
<NamespaceDecl
>(D
));
6584 case Decl::ClassTemplateSpecialization
: {
6585 const auto *Spec
= cast
<ClassTemplateSpecializationDecl
>(D
);
6586 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6587 if (Spec
->getSpecializationKind() ==
6588 TSK_ExplicitInstantiationDefinition
&&
6589 Spec
->hasDefinition())
6590 DI
->completeTemplateDefinition(*Spec
);
6592 case Decl::CXXRecord
: {
6593 CXXRecordDecl
*CRD
= cast
<CXXRecordDecl
>(D
);
6594 if (CGDebugInfo
*DI
= getModuleDebugInfo()) {
6595 if (CRD
->hasDefinition())
6596 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(D
)));
6597 if (auto *ES
= D
->getASTContext().getExternalSource())
6598 if (ES
->hasExternalDefinitions(D
) == ExternalASTSource::EK_Never
)
6599 DI
->completeUnusedClass(*CRD
);
6601 // Emit any static data members, they may be definitions.
6602 for (auto *I
: CRD
->decls())
6603 if (isa
<VarDecl
>(I
) || isa
<CXXRecordDecl
>(I
))
6604 EmitTopLevelDecl(I
);
6607 // No code generation needed.
6608 case Decl::UsingShadow
:
6609 case Decl::ClassTemplate
:
6610 case Decl::VarTemplate
:
6612 case Decl::VarTemplatePartialSpecialization
:
6613 case Decl::FunctionTemplate
:
6614 case Decl::TypeAliasTemplate
:
6619 case Decl::Using
: // using X; [C++]
6620 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6621 DI
->EmitUsingDecl(cast
<UsingDecl
>(*D
));
6623 case Decl::UsingEnum
: // using enum X; [C++]
6624 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6625 DI
->EmitUsingEnumDecl(cast
<UsingEnumDecl
>(*D
));
6627 case Decl::NamespaceAlias
:
6628 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6629 DI
->EmitNamespaceAlias(cast
<NamespaceAliasDecl
>(*D
));
6631 case Decl::UsingDirective
: // using namespace X; [C++]
6632 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6633 DI
->EmitUsingDirective(cast
<UsingDirectiveDecl
>(*D
));
6635 case Decl::CXXConstructor
:
6636 getCXXABI().EmitCXXConstructors(cast
<CXXConstructorDecl
>(D
));
6638 case Decl::CXXDestructor
:
6639 getCXXABI().EmitCXXDestructors(cast
<CXXDestructorDecl
>(D
));
6642 case Decl::StaticAssert
:
6646 // Objective-C Decls
6648 // Forward declarations, no (immediate) code generation.
6649 case Decl::ObjCInterface
:
6650 case Decl::ObjCCategory
:
6653 case Decl::ObjCProtocol
: {
6654 auto *Proto
= cast
<ObjCProtocolDecl
>(D
);
6655 if (Proto
->isThisDeclarationADefinition())
6656 ObjCRuntime
->GenerateProtocol(Proto
);
6660 case Decl::ObjCCategoryImpl
:
6661 // Categories have properties but don't support synthesize so we
6662 // can ignore them here.
6663 ObjCRuntime
->GenerateCategory(cast
<ObjCCategoryImplDecl
>(D
));
6666 case Decl::ObjCImplementation
: {
6667 auto *OMD
= cast
<ObjCImplementationDecl
>(D
);
6668 EmitObjCPropertyImplementations(OMD
);
6669 EmitObjCIvarInitializations(OMD
);
6670 ObjCRuntime
->GenerateClass(OMD
);
6671 // Emit global variable debug information.
6672 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6673 if (getCodeGenOpts().hasReducedDebugInfo())
6674 DI
->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6675 OMD
->getClassInterface()), OMD
->getLocation());
6678 case Decl::ObjCMethod
: {
6679 auto *OMD
= cast
<ObjCMethodDecl
>(D
);
6680 // If this is not a prototype, emit the body.
6682 CodeGenFunction(*this).GenerateObjCMethod(OMD
);
6685 case Decl::ObjCCompatibleAlias
:
6686 ObjCRuntime
->RegisterAlias(cast
<ObjCCompatibleAliasDecl
>(D
));
6689 case Decl::PragmaComment
: {
6690 const auto *PCD
= cast
<PragmaCommentDecl
>(D
);
6691 switch (PCD
->getCommentKind()) {
6693 llvm_unreachable("unexpected pragma comment kind");
6695 AppendLinkerOptions(PCD
->getArg());
6698 AddDependentLib(PCD
->getArg());
6703 break; // We ignore all of these.
6708 case Decl::PragmaDetectMismatch
: {
6709 const auto *PDMD
= cast
<PragmaDetectMismatchDecl
>(D
);
6710 AddDetectMismatch(PDMD
->getName(), PDMD
->getValue());
6714 case Decl::LinkageSpec
:
6715 EmitLinkageSpec(cast
<LinkageSpecDecl
>(D
));
6718 case Decl::FileScopeAsm
: {
6719 // File-scope asm is ignored during device-side CUDA compilation.
6720 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
)
6722 // File-scope asm is ignored during device-side OpenMP compilation.
6723 if (LangOpts
.OpenMPIsTargetDevice
)
6725 // File-scope asm is ignored during device-side SYCL compilation.
6726 if (LangOpts
.SYCLIsDevice
)
6728 auto *AD
= cast
<FileScopeAsmDecl
>(D
);
6729 getModule().appendModuleInlineAsm(AD
->getAsmString()->getString());
6733 case Decl::TopLevelStmt
:
6734 EmitTopLevelStmt(cast
<TopLevelStmtDecl
>(D
));
6737 case Decl::Import
: {
6738 auto *Import
= cast
<ImportDecl
>(D
);
6740 // If we've already imported this module, we're done.
6741 if (!ImportedModules
.insert(Import
->getImportedModule()))
6744 // Emit debug information for direct imports.
6745 if (!Import
->getImportedOwningModule()) {
6746 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6747 DI
->EmitImportDecl(*Import
);
6750 // For C++ standard modules we are done - we will call the module
6751 // initializer for imported modules, and that will likewise call those for
6752 // any imports it has.
6753 if (CXX20ModuleInits
&& Import
->getImportedOwningModule() &&
6754 !Import
->getImportedOwningModule()->isModuleMapModule())
6757 // For clang C++ module map modules the initializers for sub-modules are
6760 // Find all of the submodules and emit the module initializers.
6761 llvm::SmallPtrSet
<clang::Module
*, 16> Visited
;
6762 SmallVector
<clang::Module
*, 16> Stack
;
6763 Visited
.insert(Import
->getImportedModule());
6764 Stack
.push_back(Import
->getImportedModule());
6766 while (!Stack
.empty()) {
6767 clang::Module
*Mod
= Stack
.pop_back_val();
6768 if (!EmittedModuleInitializers
.insert(Mod
).second
)
6771 for (auto *D
: Context
.getModuleInitializers(Mod
))
6772 EmitTopLevelDecl(D
);
6774 // Visit the submodules of this module.
6775 for (auto *Submodule
: Mod
->submodules()) {
6776 // Skip explicit children; they need to be explicitly imported to emit
6777 // the initializers.
6778 if (Submodule
->IsExplicit
)
6781 if (Visited
.insert(Submodule
).second
)
6782 Stack
.push_back(Submodule
);
6789 EmitDeclContext(cast
<ExportDecl
>(D
));
6792 case Decl::OMPThreadPrivate
:
6793 EmitOMPThreadPrivateDecl(cast
<OMPThreadPrivateDecl
>(D
));
6796 case Decl::OMPAllocate
:
6797 EmitOMPAllocateDecl(cast
<OMPAllocateDecl
>(D
));
6800 case Decl::OMPDeclareReduction
:
6801 EmitOMPDeclareReduction(cast
<OMPDeclareReductionDecl
>(D
));
6804 case Decl::OMPDeclareMapper
:
6805 EmitOMPDeclareMapper(cast
<OMPDeclareMapperDecl
>(D
));
6808 case Decl::OMPRequires
:
6809 EmitOMPRequiresDecl(cast
<OMPRequiresDecl
>(D
));
6813 case Decl::TypeAlias
: // using foo = bar; [C++11]
6814 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6815 DI
->EmitAndRetainType(
6816 getContext().getTypedefType(cast
<TypedefNameDecl
>(D
)));
6820 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6821 if (cast
<RecordDecl
>(D
)->getDefinition())
6822 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(D
)));
6826 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6827 if (cast
<EnumDecl
>(D
)->getDefinition())
6828 DI
->EmitAndRetainType(getContext().getEnumType(cast
<EnumDecl
>(D
)));
6831 case Decl::HLSLBuffer
:
6832 getHLSLRuntime().addBuffer(cast
<HLSLBufferDecl
>(D
));
6836 // Make sure we handled everything we should, every other kind is a
6837 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
6838 // function. Need to recode Decl::Kind to do that easily.
6839 assert(isa
<TypeDecl
>(D
) && "Unsupported decl kind");
6844 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl
*D
) {
6845 // Do we need to generate coverage mapping?
6846 if (!CodeGenOpts
.CoverageMapping
)
6848 switch (D
->getKind()) {
6849 case Decl::CXXConversion
:
6850 case Decl::CXXMethod
:
6851 case Decl::Function
:
6852 case Decl::ObjCMethod
:
6853 case Decl::CXXConstructor
:
6854 case Decl::CXXDestructor
: {
6855 if (!cast
<FunctionDecl
>(D
)->doesThisDeclarationHaveABody())
6857 SourceManager
&SM
= getContext().getSourceManager();
6858 if (LimitedCoverage
&& SM
.getMainFileID() != SM
.getFileID(D
->getBeginLoc()))
6860 auto I
= DeferredEmptyCoverageMappingDecls
.find(D
);
6861 if (I
== DeferredEmptyCoverageMappingDecls
.end())
6862 DeferredEmptyCoverageMappingDecls
[D
] = true;
6870 void CodeGenModule::ClearUnusedCoverageMapping(const Decl
*D
) {
6871 // Do we need to generate coverage mapping?
6872 if (!CodeGenOpts
.CoverageMapping
)
6874 if (const auto *Fn
= dyn_cast
<FunctionDecl
>(D
)) {
6875 if (Fn
->isTemplateInstantiation())
6876 ClearUnusedCoverageMapping(Fn
->getTemplateInstantiationPattern());
6878 auto I
= DeferredEmptyCoverageMappingDecls
.find(D
);
6879 if (I
== DeferredEmptyCoverageMappingDecls
.end())
6880 DeferredEmptyCoverageMappingDecls
[D
] = false;
6885 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6886 // We call takeVector() here to avoid use-after-free.
6887 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6888 // we deserialize function bodies to emit coverage info for them, and that
6889 // deserializes more declarations. How should we handle that case?
6890 for (const auto &Entry
: DeferredEmptyCoverageMappingDecls
.takeVector()) {
6893 const Decl
*D
= Entry
.first
;
6894 switch (D
->getKind()) {
6895 case Decl::CXXConversion
:
6896 case Decl::CXXMethod
:
6897 case Decl::Function
:
6898 case Decl::ObjCMethod
: {
6899 CodeGenPGO
PGO(*this);
6900 GlobalDecl
GD(cast
<FunctionDecl
>(D
));
6901 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6902 getFunctionLinkage(GD
));
6905 case Decl::CXXConstructor
: {
6906 CodeGenPGO
PGO(*this);
6907 GlobalDecl
GD(cast
<CXXConstructorDecl
>(D
), Ctor_Base
);
6908 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6909 getFunctionLinkage(GD
));
6912 case Decl::CXXDestructor
: {
6913 CodeGenPGO
PGO(*this);
6914 GlobalDecl
GD(cast
<CXXDestructorDecl
>(D
), Dtor_Base
);
6915 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6916 getFunctionLinkage(GD
));
6925 void CodeGenModule::EmitMainVoidAlias() {
6926 // In order to transition away from "__original_main" gracefully, emit an
6927 // alias for "main" in the no-argument case so that libc can detect when
6928 // new-style no-argument main is in used.
6929 if (llvm::Function
*F
= getModule().getFunction("main")) {
6930 if (!F
->isDeclaration() && F
->arg_size() == 0 && !F
->isVarArg() &&
6931 F
->getReturnType()->isIntegerTy(Context
.getTargetInfo().getIntWidth())) {
6932 auto *GA
= llvm::GlobalAlias::create("__main_void", F
);
6933 GA
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
6938 /// Turns the given pointer into a constant.
6939 static llvm::Constant
*GetPointerConstant(llvm::LLVMContext
&Context
,
6941 uintptr_t PtrInt
= reinterpret_cast<uintptr_t>(Ptr
);
6942 llvm::Type
*i64
= llvm::Type::getInt64Ty(Context
);
6943 return llvm::ConstantInt::get(i64
, PtrInt
);
6946 static void EmitGlobalDeclMetadata(CodeGenModule
&CGM
,
6947 llvm::NamedMDNode
*&GlobalMetadata
,
6949 llvm::GlobalValue
*Addr
) {
6950 if (!GlobalMetadata
)
6952 CGM
.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6954 // TODO: should we report variant information for ctors/dtors?
6955 llvm::Metadata
*Ops
[] = {llvm::ConstantAsMetadata::get(Addr
),
6956 llvm::ConstantAsMetadata::get(GetPointerConstant(
6957 CGM
.getLLVMContext(), D
.getDecl()))};
6958 GlobalMetadata
->addOperand(llvm::MDNode::get(CGM
.getLLVMContext(), Ops
));
6961 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue
*Elem
,
6962 llvm::GlobalValue
*CppFunc
) {
6963 // Store the list of ifuncs we need to replace uses in.
6964 llvm::SmallVector
<llvm::GlobalIFunc
*> IFuncs
;
6965 // List of ConstantExprs that we should be able to delete when we're done
6967 llvm::SmallVector
<llvm::ConstantExpr
*> CEs
;
6969 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6970 if (Elem
== CppFunc
)
6973 // First make sure that all users of this are ifuncs (or ifuncs via a
6974 // bitcast), and collect the list of ifuncs and CEs so we can work on them
6976 for (llvm::User
*User
: Elem
->users()) {
6977 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6978 // ifunc directly. In any other case, just give up, as we don't know what we
6979 // could break by changing those.
6980 if (auto *ConstExpr
= dyn_cast
<llvm::ConstantExpr
>(User
)) {
6981 if (ConstExpr
->getOpcode() != llvm::Instruction::BitCast
)
6984 for (llvm::User
*CEUser
: ConstExpr
->users()) {
6985 if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(CEUser
)) {
6986 IFuncs
.push_back(IFunc
);
6991 CEs
.push_back(ConstExpr
);
6992 } else if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(User
)) {
6993 IFuncs
.push_back(IFunc
);
6995 // This user is one we don't know how to handle, so fail redirection. This
6996 // will result in an ifunc retaining a resolver name that will ultimately
6997 // fail to be resolved to a defined function.
7002 // Now we know this is a valid case where we can do this alias replacement, we
7003 // need to remove all of the references to Elem (and the bitcasts!) so we can
7005 for (llvm::GlobalIFunc
*IFunc
: IFuncs
)
7006 IFunc
->setResolver(nullptr);
7007 for (llvm::ConstantExpr
*ConstExpr
: CEs
)
7008 ConstExpr
->destroyConstant();
7010 // We should now be out of uses for the 'old' version of this function, so we
7011 // can erase it as well.
7012 Elem
->eraseFromParent();
7014 for (llvm::GlobalIFunc
*IFunc
: IFuncs
) {
7015 // The type of the resolver is always just a function-type that returns the
7016 // type of the IFunc, so create that here. If the type of the actual
7017 // resolver doesn't match, it just gets bitcast to the right thing.
7019 llvm::FunctionType::get(IFunc
->getType(), /*isVarArg*/ false);
7020 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
7021 CppFunc
->getName(), ResolverTy
, {}, /*ForVTable*/ false);
7022 IFunc
->setResolver(Resolver
);
7027 /// For each function which is declared within an extern "C" region and marked
7028 /// as 'used', but has internal linkage, create an alias from the unmangled
7029 /// name to the mangled name if possible. People expect to be able to refer
7030 /// to such functions with an unmangled name from inline assembly within the
7031 /// same translation unit.
7032 void CodeGenModule::EmitStaticExternCAliases() {
7033 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7035 for (auto &I
: StaticExternCValues
) {
7036 IdentifierInfo
*Name
= I
.first
;
7037 llvm::GlobalValue
*Val
= I
.second
;
7039 // If Val is null, that implies there were multiple declarations that each
7040 // had a claim to the unmangled name. In this case, generation of the alias
7041 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7045 llvm::GlobalValue
*ExistingElem
=
7046 getModule().getNamedValue(Name
->getName());
7048 // If there is either not something already by this name, or we were able to
7049 // replace all uses from IFuncs, create the alias.
7050 if (!ExistingElem
|| CheckAndReplaceExternCIFuncs(ExistingElem
, Val
))
7051 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name
->getName(), Val
));
7055 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName
,
7056 GlobalDecl
&Result
) const {
7057 auto Res
= Manglings
.find(MangledName
);
7058 if (Res
== Manglings
.end())
7060 Result
= Res
->getValue();
7064 /// Emits metadata nodes associating all the global values in the
7065 /// current module with the Decls they came from. This is useful for
7066 /// projects using IR gen as a subroutine.
7068 /// Since there's currently no way to associate an MDNode directly
7069 /// with an llvm::GlobalValue, we create a global named metadata
7070 /// with the name 'clang.global.decl.ptrs'.
7071 void CodeGenModule::EmitDeclMetadata() {
7072 llvm::NamedMDNode
*GlobalMetadata
= nullptr;
7074 for (auto &I
: MangledDeclNames
) {
7075 llvm::GlobalValue
*Addr
= getModule().getNamedValue(I
.second
);
7076 // Some mangled names don't necessarily have an associated GlobalValue
7077 // in this module, e.g. if we mangled it for DebugInfo.
7079 EmitGlobalDeclMetadata(*this, GlobalMetadata
, I
.first
, Addr
);
7083 /// Emits metadata nodes for all the local variables in the current
7085 void CodeGenFunction::EmitDeclMetadata() {
7086 if (LocalDeclMap
.empty()) return;
7088 llvm::LLVMContext
&Context
= getLLVMContext();
7090 // Find the unique metadata ID for this name.
7091 unsigned DeclPtrKind
= Context
.getMDKindID("clang.decl.ptr");
7093 llvm::NamedMDNode
*GlobalMetadata
= nullptr;
7095 for (auto &I
: LocalDeclMap
) {
7096 const Decl
*D
= I
.first
;
7097 llvm::Value
*Addr
= I
.second
.getPointer();
7098 if (auto *Alloca
= dyn_cast
<llvm::AllocaInst
>(Addr
)) {
7099 llvm::Value
*DAddr
= GetPointerConstant(getLLVMContext(), D
);
7100 Alloca
->setMetadata(
7101 DeclPtrKind
, llvm::MDNode::get(
7102 Context
, llvm::ValueAsMetadata::getConstant(DAddr
)));
7103 } else if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
)) {
7104 GlobalDecl GD
= GlobalDecl(cast
<VarDecl
>(D
));
7105 EmitGlobalDeclMetadata(CGM
, GlobalMetadata
, GD
, GV
);
7110 void CodeGenModule::EmitVersionIdentMetadata() {
7111 llvm::NamedMDNode
*IdentMetadata
=
7112 TheModule
.getOrInsertNamedMetadata("llvm.ident");
7113 std::string Version
= getClangFullVersion();
7114 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7116 llvm::Metadata
*IdentNode
[] = {llvm::MDString::get(Ctx
, Version
)};
7117 IdentMetadata
->addOperand(llvm::MDNode::get(Ctx
, IdentNode
));
7120 void CodeGenModule::EmitCommandLineMetadata() {
7121 llvm::NamedMDNode
*CommandLineMetadata
=
7122 TheModule
.getOrInsertNamedMetadata("llvm.commandline");
7123 std::string CommandLine
= getCodeGenOpts().RecordCommandLine
;
7124 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7126 llvm::Metadata
*CommandLineNode
[] = {llvm::MDString::get(Ctx
, CommandLine
)};
7127 CommandLineMetadata
->addOperand(llvm::MDNode::get(Ctx
, CommandLineNode
));
7130 void CodeGenModule::EmitCoverageFile() {
7131 llvm::NamedMDNode
*CUNode
= TheModule
.getNamedMetadata("llvm.dbg.cu");
7135 llvm::NamedMDNode
*GCov
= TheModule
.getOrInsertNamedMetadata("llvm.gcov");
7136 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7137 auto *CoverageDataFile
=
7138 llvm::MDString::get(Ctx
, getCodeGenOpts().CoverageDataFile
);
7139 auto *CoverageNotesFile
=
7140 llvm::MDString::get(Ctx
, getCodeGenOpts().CoverageNotesFile
);
7141 for (int i
= 0, e
= CUNode
->getNumOperands(); i
!= e
; ++i
) {
7142 llvm::MDNode
*CU
= CUNode
->getOperand(i
);
7143 llvm::Metadata
*Elts
[] = {CoverageNotesFile
, CoverageDataFile
, CU
};
7144 GCov
->addOperand(llvm::MDNode::get(Ctx
, Elts
));
7148 llvm::Constant
*CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty
,
7150 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7151 // FIXME: should we even be calling this method if RTTI is disabled
7152 // and it's not for EH?
7153 if (!shouldEmitRTTI(ForEH
))
7154 return llvm::Constant::getNullValue(GlobalsInt8PtrTy
);
7156 if (ForEH
&& Ty
->isObjCObjectPointerType() &&
7157 LangOpts
.ObjCRuntime
.isGNUFamily())
7158 return ObjCRuntime
->GetEHType(Ty
);
7160 return getCXXABI().getAddrOfRTTIDescriptor(Ty
);
7163 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl
*D
) {
7164 // Do not emit threadprivates in simd-only mode.
7165 if (LangOpts
.OpenMP
&& LangOpts
.OpenMPSimd
)
7167 for (auto RefExpr
: D
->varlists()) {
7168 auto *VD
= cast
<VarDecl
>(cast
<DeclRefExpr
>(RefExpr
)->getDecl());
7170 VD
->getAnyInitializer() &&
7171 !VD
->getAnyInitializer()->isConstantInitializer(getContext(),
7174 Address
Addr(GetAddrOfGlobalVar(VD
),
7175 getTypes().ConvertTypeForMem(VD
->getType()),
7176 getContext().getDeclAlign(VD
));
7177 if (auto InitFunction
= getOpenMPRuntime().emitThreadPrivateVarDefinition(
7178 VD
, Addr
, RefExpr
->getBeginLoc(), PerformInit
))
7179 CXXGlobalInits
.push_back(InitFunction
);
7184 CodeGenModule::CreateMetadataIdentifierImpl(QualType T
, MetadataTypeMap
&Map
,
7186 if (auto *FnType
= T
->getAs
<FunctionProtoType
>())
7187 T
= getContext().getFunctionType(
7188 FnType
->getReturnType(), FnType
->getParamTypes(),
7189 FnType
->getExtProtoInfo().withExceptionSpec(EST_None
));
7191 llvm::Metadata
*&InternalId
= Map
[T
.getCanonicalType()];
7195 if (isExternallyVisible(T
->getLinkage())) {
7196 std::string OutName
;
7197 llvm::raw_string_ostream
Out(OutName
);
7198 getCXXABI().getMangleContext().mangleTypeName(
7199 T
, Out
, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
);
7201 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
)
7202 Out
<< ".normalized";
7206 InternalId
= llvm::MDString::get(getLLVMContext(), Out
.str());
7208 InternalId
= llvm::MDNode::getDistinct(getLLVMContext(),
7209 llvm::ArrayRef
<llvm::Metadata
*>());
7215 llvm::Metadata
*CodeGenModule::CreateMetadataIdentifierForType(QualType T
) {
7216 return CreateMetadataIdentifierImpl(T
, MetadataIdMap
, "");
7220 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T
) {
7221 return CreateMetadataIdentifierImpl(T
, VirtualMetadataIdMap
, ".virtual");
7224 // Generalize pointer types to a void pointer with the qualifiers of the
7225 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7226 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7228 static QualType
GeneralizeType(ASTContext
&Ctx
, QualType Ty
) {
7229 if (!Ty
->isPointerType())
7232 return Ctx
.getPointerType(
7233 QualType(Ctx
.VoidTy
).withCVRQualifiers(
7234 Ty
->getPointeeType().getCVRQualifiers()));
7237 // Apply type generalization to a FunctionType's return and argument types
7238 static QualType
GeneralizeFunctionType(ASTContext
&Ctx
, QualType Ty
) {
7239 if (auto *FnType
= Ty
->getAs
<FunctionProtoType
>()) {
7240 SmallVector
<QualType
, 8> GeneralizedParams
;
7241 for (auto &Param
: FnType
->param_types())
7242 GeneralizedParams
.push_back(GeneralizeType(Ctx
, Param
));
7244 return Ctx
.getFunctionType(
7245 GeneralizeType(Ctx
, FnType
->getReturnType()),
7246 GeneralizedParams
, FnType
->getExtProtoInfo());
7249 if (auto *FnType
= Ty
->getAs
<FunctionNoProtoType
>())
7250 return Ctx
.getFunctionNoProtoType(
7251 GeneralizeType(Ctx
, FnType
->getReturnType()));
7253 llvm_unreachable("Encountered unknown FunctionType");
7256 llvm::Metadata
*CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T
) {
7257 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T
),
7258 GeneralizedMetadataIdMap
, ".generalized");
7261 /// Returns whether this module needs the "all-vtables" type identifier.
7262 bool CodeGenModule::NeedAllVtablesTypeId() const {
7263 // Returns true if at least one of vtable-based CFI checkers is enabled and
7264 // is not in the trapping mode.
7265 return ((LangOpts
.Sanitize
.has(SanitizerKind::CFIVCall
) &&
7266 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIVCall
)) ||
7267 (LangOpts
.Sanitize
.has(SanitizerKind::CFINVCall
) &&
7268 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFINVCall
)) ||
7269 (LangOpts
.Sanitize
.has(SanitizerKind::CFIDerivedCast
) &&
7270 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIDerivedCast
)) ||
7271 (LangOpts
.Sanitize
.has(SanitizerKind::CFIUnrelatedCast
) &&
7272 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIUnrelatedCast
)));
7275 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable
*VTable
,
7277 const CXXRecordDecl
*RD
) {
7278 llvm::Metadata
*MD
=
7279 CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
7280 VTable
->addTypeMetadata(Offset
.getQuantity(), MD
);
7282 if (CodeGenOpts
.SanitizeCfiCrossDso
)
7283 if (auto CrossDsoTypeId
= CreateCrossDsoCfiTypeId(MD
))
7284 VTable
->addTypeMetadata(Offset
.getQuantity(),
7285 llvm::ConstantAsMetadata::get(CrossDsoTypeId
));
7287 if (NeedAllVtablesTypeId()) {
7288 llvm::Metadata
*MD
= llvm::MDString::get(getLLVMContext(), "all-vtables");
7289 VTable
->addTypeMetadata(Offset
.getQuantity(), MD
);
7293 llvm::SanitizerStatReport
&CodeGenModule::getSanStats() {
7295 SanStats
= std::make_unique
<llvm::SanitizerStatReport
>(&getModule());
7301 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr
*E
,
7302 CodeGenFunction
&CGF
) {
7303 llvm::Constant
*C
= ConstantEmitter(CGF
).emitAbstract(E
, E
->getType());
7304 auto *SamplerT
= getOpenCLRuntime().getSamplerType(E
->getType().getTypePtr());
7305 auto *FTy
= llvm::FunctionType::get(SamplerT
, {C
->getType()}, false);
7306 auto *Call
= CGF
.EmitRuntimeCall(
7307 CreateRuntimeFunction(FTy
, "__translate_sampler_initializer"), {C
});
7311 CharUnits
CodeGenModule::getNaturalPointeeTypeAlignment(
7312 QualType T
, LValueBaseInfo
*BaseInfo
, TBAAAccessInfo
*TBAAInfo
) {
7313 return getNaturalTypeAlignment(T
->getPointeeType(), BaseInfo
, TBAAInfo
,
7314 /* forPointeeType= */ true);
7317 CharUnits
CodeGenModule::getNaturalTypeAlignment(QualType T
,
7318 LValueBaseInfo
*BaseInfo
,
7319 TBAAAccessInfo
*TBAAInfo
,
7320 bool forPointeeType
) {
7322 *TBAAInfo
= getTBAAAccessInfo(T
);
7324 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7325 // that doesn't return the information we need to compute BaseInfo.
7327 // Honor alignment typedef attributes even on incomplete types.
7328 // We also honor them straight for C++ class types, even as pointees;
7329 // there's an expressivity gap here.
7330 if (auto TT
= T
->getAs
<TypedefType
>()) {
7331 if (auto Align
= TT
->getDecl()->getMaxAlignment()) {
7333 *BaseInfo
= LValueBaseInfo(AlignmentSource::AttributedType
);
7334 return getContext().toCharUnitsFromBits(Align
);
7338 bool AlignForArray
= T
->isArrayType();
7340 // Analyze the base element type, so we don't get confused by incomplete
7342 T
= getContext().getBaseElementType(T
);
7344 if (T
->isIncompleteType()) {
7345 // We could try to replicate the logic from
7346 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7347 // type is incomplete, so it's impossible to test. We could try to reuse
7348 // getTypeAlignIfKnown, but that doesn't return the information we need
7349 // to set BaseInfo. So just ignore the possibility that the alignment is
7350 // greater than one.
7352 *BaseInfo
= LValueBaseInfo(AlignmentSource::Type
);
7353 return CharUnits::One();
7357 *BaseInfo
= LValueBaseInfo(AlignmentSource::Type
);
7359 CharUnits Alignment
;
7360 const CXXRecordDecl
*RD
;
7361 if (T
.getQualifiers().hasUnaligned()) {
7362 Alignment
= CharUnits::One();
7363 } else if (forPointeeType
&& !AlignForArray
&&
7364 (RD
= T
->getAsCXXRecordDecl())) {
7365 // For C++ class pointees, we don't know whether we're pointing at a
7366 // base or a complete object, so we generally need to use the
7367 // non-virtual alignment.
7368 Alignment
= getClassPointerAlignment(RD
);
7370 Alignment
= getContext().getTypeAlignInChars(T
);
7373 // Cap to the global maximum type alignment unless the alignment
7374 // was somehow explicit on the type.
7375 if (unsigned MaxAlign
= getLangOpts().MaxTypeAlign
) {
7376 if (Alignment
.getQuantity() > MaxAlign
&&
7377 !getContext().isAlignmentRequired(T
))
7378 Alignment
= CharUnits::fromQuantity(MaxAlign
);
7383 bool CodeGenModule::stopAutoInit() {
7384 unsigned StopAfter
= getContext().getLangOpts().TrivialAutoVarInitStopAfter
;
7386 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7388 if (NumAutoVarInit
>= StopAfter
) {
7391 if (!NumAutoVarInit
) {
7392 unsigned DiagID
= getDiags().getCustomDiagID(
7393 DiagnosticsEngine::Warning
,
7394 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7395 "number of times ftrivial-auto-var-init=%1 gets applied.");
7396 getDiags().Report(DiagID
)
7398 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7399 LangOptions::TrivialAutoVarInitKind::Zero
7408 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream
&OS
,
7409 const Decl
*D
) const {
7410 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7411 // postfix beginning with '.' since the symbol name can be demangled.
7413 OS
<< (isa
<VarDecl
>(D
) ? ".static." : ".intern.");
7415 OS
<< (isa
<VarDecl
>(D
) ? "__static__" : "__intern__");
7417 // If the CUID is not specified we try to generate a unique postfix.
7418 if (getLangOpts().CUID
.empty()) {
7419 SourceManager
&SM
= getContext().getSourceManager();
7420 PresumedLoc PLoc
= SM
.getPresumedLoc(D
->getLocation());
7421 assert(PLoc
.isValid() && "Source location is expected to be valid.");
7423 // Get the hash of the user defined macros.
7425 llvm::MD5::MD5Result Result
;
7426 for (const auto &Arg
: PreprocessorOpts
.Macros
)
7427 Hash
.update(Arg
.first
);
7430 // Get the UniqueID for the file containing the decl.
7431 llvm::sys::fs::UniqueID ID
;
7432 if (auto EC
= llvm::sys::fs::getUniqueID(PLoc
.getFilename(), ID
)) {
7433 PLoc
= SM
.getPresumedLoc(D
->getLocation(), /*UseLineDirectives=*/false);
7434 assert(PLoc
.isValid() && "Source location is expected to be valid.");
7435 if (auto EC
= llvm::sys::fs::getUniqueID(PLoc
.getFilename(), ID
))
7436 SM
.getDiagnostics().Report(diag::err_cannot_open_file
)
7437 << PLoc
.getFilename() << EC
.message();
7439 OS
<< llvm::format("%x", ID
.getFile()) << llvm::format("%x", ID
.getDevice())
7440 << "_" << llvm::utohexstr(Result
.low(), /*LowerCase=*/true, /*Width=*/8);
7442 OS
<< getContext().getCUIDHash();
7446 void CodeGenModule::moveLazyEmissionStates(CodeGenModule
*NewBuilder
) {
7447 assert(DeferredDeclsToEmit
.empty() &&
7448 "Should have emitted all decls deferred to emit.");
7449 assert(NewBuilder
->DeferredDecls
.empty() &&
7450 "Newly created module should not have deferred decls");
7451 NewBuilder
->DeferredDecls
= std::move(DeferredDecls
);
7452 assert(EmittedDeferredDecls
.empty() &&
7453 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7455 assert(NewBuilder
->DeferredVTables
.empty() &&
7456 "Newly created module should not have deferred vtables");
7457 NewBuilder
->DeferredVTables
= std::move(DeferredVTables
);
7459 assert(NewBuilder
->MangledDeclNames
.empty() &&
7460 "Newly created module should not have mangled decl names");
7461 assert(NewBuilder
->Manglings
.empty() &&
7462 "Newly created module should not have manglings");
7463 NewBuilder
->Manglings
= std::move(Manglings
);
7465 NewBuilder
->WeakRefReferences
= std::move(WeakRefReferences
);
7467 NewBuilder
->TBAA
= std::move(TBAA
);
7469 NewBuilder
->ABI
->MangleCtx
= std::move(ABI
->MangleCtx
);