1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements semantic analysis for CUDA constructs.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Sema.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/SmallVector.h"
27 using namespace clang
;
29 template <typename AttrT
> static bool hasExplicitAttr(const VarDecl
*D
) {
32 if (auto *A
= D
->getAttr
<AttrT
>())
33 return !A
->isImplicit();
37 void Sema::PushForceCUDAHostDevice() {
38 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
39 ForceCUDAHostDeviceDepth
++;
42 bool Sema::PopForceCUDAHostDevice() {
43 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
44 if (ForceCUDAHostDeviceDepth
== 0)
46 ForceCUDAHostDeviceDepth
--;
50 ExprResult
Sema::ActOnCUDAExecConfigExpr(Scope
*S
, SourceLocation LLLLoc
,
51 MultiExprArg ExecConfig
,
52 SourceLocation GGGLoc
) {
53 FunctionDecl
*ConfigDecl
= Context
.getcudaConfigureCallDecl();
55 return ExprError(Diag(LLLLoc
, diag::err_undeclared_var_use
)
56 << getCudaConfigureFuncName());
57 QualType ConfigQTy
= ConfigDecl
->getType();
59 DeclRefExpr
*ConfigDR
= new (Context
)
60 DeclRefExpr(Context
, ConfigDecl
, false, ConfigQTy
, VK_LValue
, LLLLoc
);
61 MarkFunctionReferenced(LLLLoc
, ConfigDecl
);
63 return BuildCallExpr(S
, ConfigDR
, LLLLoc
, ExecConfig
, GGGLoc
, nullptr,
64 /*IsExecConfig=*/true);
67 Sema::CUDAFunctionTarget
68 Sema::IdentifyCUDATarget(const ParsedAttributesView
&Attrs
) {
69 bool HasHostAttr
= false;
70 bool HasDeviceAttr
= false;
71 bool HasGlobalAttr
= false;
72 bool HasInvalidTargetAttr
= false;
73 for (const ParsedAttr
&AL
: Attrs
) {
74 switch (AL
.getKind()) {
75 case ParsedAttr::AT_CUDAGlobal
:
78 case ParsedAttr::AT_CUDAHost
:
81 case ParsedAttr::AT_CUDADevice
:
84 case ParsedAttr::AT_CUDAInvalidTarget
:
85 HasInvalidTargetAttr
= true;
92 if (HasInvalidTargetAttr
)
93 return CFT_InvalidTarget
;
98 if (HasHostAttr
&& HasDeviceAttr
)
99 return CFT_HostDevice
;
107 template <typename A
>
108 static bool hasAttr(const FunctionDecl
*D
, bool IgnoreImplicitAttr
) {
109 return D
->hasAttrs() && llvm::any_of(D
->getAttrs(), [&](Attr
*Attribute
) {
110 return isa
<A
>(Attribute
) &&
111 !(IgnoreImplicitAttr
&& Attribute
->isImplicit());
115 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
116 Sema::CUDAFunctionTarget
Sema::IdentifyCUDATarget(const FunctionDecl
*D
,
117 bool IgnoreImplicitHDAttr
) {
118 // Code that lives outside a function is run on the host.
122 if (D
->hasAttr
<CUDAInvalidTargetAttr
>())
123 return CFT_InvalidTarget
;
125 if (D
->hasAttr
<CUDAGlobalAttr
>())
128 if (hasAttr
<CUDADeviceAttr
>(D
, IgnoreImplicitHDAttr
)) {
129 if (hasAttr
<CUDAHostAttr
>(D
, IgnoreImplicitHDAttr
))
130 return CFT_HostDevice
;
132 } else if (hasAttr
<CUDAHostAttr
>(D
, IgnoreImplicitHDAttr
)) {
134 } else if ((D
->isImplicit() || !D
->isUserProvided()) &&
135 !IgnoreImplicitHDAttr
) {
136 // Some implicit declarations (like intrinsic functions) are not marked.
137 // Set the most lenient target on them for maximal flexibility.
138 return CFT_HostDevice
;
144 /// IdentifyTarget - Determine the CUDA compilation target for this variable.
145 Sema::CUDAVariableTarget
Sema::IdentifyCUDATarget(const VarDecl
*Var
) {
146 if (Var
->hasAttr
<HIPManagedAttr
>())
148 // Only constexpr and const variabless with implicit constant attribute
149 // are emitted on both sides. Such variables are promoted to device side
150 // only if they have static constant intializers on device side.
151 if ((Var
->isConstexpr() || Var
->getType().isConstQualified()) &&
152 Var
->hasAttr
<CUDAConstantAttr
>() &&
153 !hasExplicitAttr
<CUDAConstantAttr
>(Var
))
155 if (Var
->hasAttr
<CUDADeviceAttr
>() || Var
->hasAttr
<CUDAConstantAttr
>() ||
156 Var
->hasAttr
<CUDASharedAttr
>() ||
157 Var
->getType()->isCUDADeviceBuiltinSurfaceType() ||
158 Var
->getType()->isCUDADeviceBuiltinTextureType())
160 // Function-scope static variable without explicit device or constant
161 // attribute are emitted
162 // - on both sides in host device functions
163 // - on device side in device or global functions
164 if (auto *FD
= dyn_cast
<FunctionDecl
>(Var
->getDeclContext())) {
165 switch (IdentifyCUDATarget(FD
)) {
178 // * CUDA Call preference table
182 // Ph - preference in host mode
183 // Pd - preference in device mode
184 // H - handled in (x)
185 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
187 // | F | T | Ph | Pd | H |
188 // |----+----+-----+-----+-----+
189 // | d | d | N | N | (c) |
190 // | d | g | -- | -- | (a) |
191 // | d | h | -- | -- | (e) |
192 // | d | hd | HD | HD | (b) |
193 // | g | d | N | N | (c) |
194 // | g | g | -- | -- | (a) |
195 // | g | h | -- | -- | (e) |
196 // | g | hd | HD | HD | (b) |
197 // | h | d | -- | -- | (e) |
198 // | h | g | N | N | (c) |
199 // | h | h | N | N | (c) |
200 // | h | hd | HD | HD | (b) |
201 // | hd | d | WS | SS | (d) |
202 // | hd | g | SS | -- |(d/a)|
203 // | hd | h | SS | WS | (d) |
204 // | hd | hd | HD | HD | (b) |
206 Sema::CUDAFunctionPreference
207 Sema::IdentifyCUDAPreference(const FunctionDecl
*Caller
,
208 const FunctionDecl
*Callee
) {
209 assert(Callee
&& "Callee must be valid.");
210 CUDAFunctionTarget CallerTarget
= IdentifyCUDATarget(Caller
);
211 CUDAFunctionTarget CalleeTarget
= IdentifyCUDATarget(Callee
);
213 // If one of the targets is invalid, the check always fails, no matter what
214 // the other target is.
215 if (CallerTarget
== CFT_InvalidTarget
|| CalleeTarget
== CFT_InvalidTarget
)
218 // (a) Can't call global from some contexts until we support CUDA's
219 // dynamic parallelism.
220 if (CalleeTarget
== CFT_Global
&&
221 (CallerTarget
== CFT_Global
|| CallerTarget
== CFT_Device
))
224 // (b) Calling HostDevice is OK for everyone.
225 if (CalleeTarget
== CFT_HostDevice
)
226 return CFP_HostDevice
;
228 // (c) Best case scenarios
229 if (CalleeTarget
== CallerTarget
||
230 (CallerTarget
== CFT_Host
&& CalleeTarget
== CFT_Global
) ||
231 (CallerTarget
== CFT_Global
&& CalleeTarget
== CFT_Device
))
234 // (d) HostDevice behavior depends on compilation mode.
235 if (CallerTarget
== CFT_HostDevice
) {
236 // It's OK to call a compilation-mode matching function from an HD one.
237 if ((getLangOpts().CUDAIsDevice
&& CalleeTarget
== CFT_Device
) ||
238 (!getLangOpts().CUDAIsDevice
&&
239 (CalleeTarget
== CFT_Host
|| CalleeTarget
== CFT_Global
)))
242 // Calls from HD to non-mode-matching functions (i.e., to host functions
243 // when compiling in device mode or to device functions when compiling in
244 // host mode) are allowed at the sema level, but eventually rejected if
245 // they're ever codegened. TODO: Reject said calls earlier.
246 return CFP_WrongSide
;
249 // (e) Calling across device/host boundary is not something you should do.
250 if ((CallerTarget
== CFT_Host
&& CalleeTarget
== CFT_Device
) ||
251 (CallerTarget
== CFT_Device
&& CalleeTarget
== CFT_Host
) ||
252 (CallerTarget
== CFT_Global
&& CalleeTarget
== CFT_Host
))
255 llvm_unreachable("All cases should've been handled by now.");
258 template <typename AttrT
> static bool hasImplicitAttr(const FunctionDecl
*D
) {
261 if (auto *A
= D
->getAttr
<AttrT
>())
262 return A
->isImplicit();
263 return D
->isImplicit();
266 bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl
*D
) {
267 bool IsImplicitDevAttr
= hasImplicitAttr
<CUDADeviceAttr
>(D
);
268 bool IsImplicitHostAttr
= hasImplicitAttr
<CUDAHostAttr
>(D
);
269 return IsImplicitDevAttr
&& IsImplicitHostAttr
;
272 void Sema::EraseUnwantedCUDAMatches(
273 const FunctionDecl
*Caller
,
274 SmallVectorImpl
<std::pair
<DeclAccessPair
, FunctionDecl
*>> &Matches
) {
275 if (Matches
.size() <= 1)
278 using Pair
= std::pair
<DeclAccessPair
, FunctionDecl
*>;
280 // Gets the CUDA function preference for a call from Caller to Match.
281 auto GetCFP
= [&](const Pair
&Match
) {
282 return IdentifyCUDAPreference(Caller
, Match
.second
);
285 // Find the best call preference among the functions in Matches.
286 CUDAFunctionPreference BestCFP
= GetCFP(*std::max_element(
287 Matches
.begin(), Matches
.end(),
288 [&](const Pair
&M1
, const Pair
&M2
) { return GetCFP(M1
) < GetCFP(M2
); }));
290 // Erase all functions with lower priority.
291 llvm::erase_if(Matches
,
292 [&](const Pair
&Match
) { return GetCFP(Match
) < BestCFP
; });
295 /// When an implicitly-declared special member has to invoke more than one
296 /// base/field special member, conflicts may occur in the targets of these
297 /// members. For example, if one base's member __host__ and another's is
298 /// __device__, it's a conflict.
299 /// This function figures out if the given targets \param Target1 and
300 /// \param Target2 conflict, and if they do not it fills in
301 /// \param ResolvedTarget with a target that resolves for both calls.
302 /// \return true if there's a conflict, false otherwise.
304 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1
,
305 Sema::CUDAFunctionTarget Target2
,
306 Sema::CUDAFunctionTarget
*ResolvedTarget
) {
307 // Only free functions and static member functions may be global.
308 assert(Target1
!= Sema::CFT_Global
);
309 assert(Target2
!= Sema::CFT_Global
);
311 if (Target1
== Sema::CFT_HostDevice
) {
312 *ResolvedTarget
= Target2
;
313 } else if (Target2
== Sema::CFT_HostDevice
) {
314 *ResolvedTarget
= Target1
;
315 } else if (Target1
!= Target2
) {
318 *ResolvedTarget
= Target1
;
324 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl
*ClassDecl
,
325 CXXSpecialMember CSM
,
326 CXXMethodDecl
*MemberDecl
,
329 // If the defaulted special member is defined lexically outside of its
330 // owning class, or the special member already has explicit device or host
331 // attributes, do not infer.
332 bool InClass
= MemberDecl
->getLexicalParent() == MemberDecl
->getParent();
333 bool HasH
= MemberDecl
->hasAttr
<CUDAHostAttr
>();
334 bool HasD
= MemberDecl
->hasAttr
<CUDADeviceAttr
>();
335 bool HasExplicitAttr
=
336 (HasD
&& !MemberDecl
->getAttr
<CUDADeviceAttr
>()->isImplicit()) ||
337 (HasH
&& !MemberDecl
->getAttr
<CUDAHostAttr
>()->isImplicit());
338 if (!InClass
|| HasExplicitAttr
)
341 std::optional
<CUDAFunctionTarget
> InferredTarget
;
343 // We're going to invoke special member lookup; mark that these special
344 // members are called from this one, and not from its caller.
345 ContextRAII
MethodContext(*this, MemberDecl
);
347 // Look for special members in base classes that should be invoked from here.
348 // Infer the target of this member base on the ones it should call.
349 // Skip direct and indirect virtual bases for abstract classes.
350 llvm::SmallVector
<const CXXBaseSpecifier
*, 16> Bases
;
351 for (const auto &B
: ClassDecl
->bases()) {
352 if (!B
.isVirtual()) {
357 if (!ClassDecl
->isAbstract()) {
358 llvm::append_range(Bases
, llvm::make_pointer_range(ClassDecl
->vbases()));
361 for (const auto *B
: Bases
) {
362 const RecordType
*BaseType
= B
->getType()->getAs
<RecordType
>();
367 CXXRecordDecl
*BaseClassDecl
= cast
<CXXRecordDecl
>(BaseType
->getDecl());
368 Sema::SpecialMemberOverloadResult SMOR
=
369 LookupSpecialMember(BaseClassDecl
, CSM
,
370 /* ConstArg */ ConstRHS
,
371 /* VolatileArg */ false,
372 /* RValueThis */ false,
373 /* ConstThis */ false,
374 /* VolatileThis */ false);
376 if (!SMOR
.getMethod())
379 CUDAFunctionTarget BaseMethodTarget
= IdentifyCUDATarget(SMOR
.getMethod());
380 if (!InferredTarget
) {
381 InferredTarget
= BaseMethodTarget
;
383 bool ResolutionError
= resolveCalleeCUDATargetConflict(
384 *InferredTarget
, BaseMethodTarget
, &*InferredTarget
);
385 if (ResolutionError
) {
387 Diag(ClassDecl
->getLocation(),
388 diag::note_implicit_member_target_infer_collision
)
389 << (unsigned)CSM
<< *InferredTarget
<< BaseMethodTarget
;
391 MemberDecl
->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context
));
397 // Same as for bases, but now for special members of fields.
398 for (const auto *F
: ClassDecl
->fields()) {
399 if (F
->isInvalidDecl()) {
403 const RecordType
*FieldType
=
404 Context
.getBaseElementType(F
->getType())->getAs
<RecordType
>();
409 CXXRecordDecl
*FieldRecDecl
= cast
<CXXRecordDecl
>(FieldType
->getDecl());
410 Sema::SpecialMemberOverloadResult SMOR
=
411 LookupSpecialMember(FieldRecDecl
, CSM
,
412 /* ConstArg */ ConstRHS
&& !F
->isMutable(),
413 /* VolatileArg */ false,
414 /* RValueThis */ false,
415 /* ConstThis */ false,
416 /* VolatileThis */ false);
418 if (!SMOR
.getMethod())
421 CUDAFunctionTarget FieldMethodTarget
=
422 IdentifyCUDATarget(SMOR
.getMethod());
423 if (!InferredTarget
) {
424 InferredTarget
= FieldMethodTarget
;
426 bool ResolutionError
= resolveCalleeCUDATargetConflict(
427 *InferredTarget
, FieldMethodTarget
, &*InferredTarget
);
428 if (ResolutionError
) {
430 Diag(ClassDecl
->getLocation(),
431 diag::note_implicit_member_target_infer_collision
)
432 << (unsigned)CSM
<< *InferredTarget
<< FieldMethodTarget
;
434 MemberDecl
->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context
));
441 // If no target was inferred, mark this member as __host__ __device__;
442 // it's the least restrictive option that can be invoked from any target.
443 bool NeedsH
= true, NeedsD
= true;
444 if (InferredTarget
) {
445 if (*InferredTarget
== CFT_Device
)
447 else if (*InferredTarget
== CFT_Host
)
451 // We either setting attributes first time, or the inferred ones must match
452 // previously set ones.
454 MemberDecl
->addAttr(CUDADeviceAttr::CreateImplicit(Context
));
456 MemberDecl
->addAttr(CUDAHostAttr::CreateImplicit(Context
));
461 bool Sema::isEmptyCudaConstructor(SourceLocation Loc
, CXXConstructorDecl
*CD
) {
462 if (!CD
->isDefined() && CD
->isTemplateInstantiation())
463 InstantiateFunctionDefinition(Loc
, CD
->getFirstDecl());
465 // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
466 // empty at a point in the translation unit, if it is either a
467 // trivial constructor
471 // ... or it satisfies all of the following conditions:
472 // The constructor function has been defined.
473 // The constructor function has no parameters,
474 // and the function body is an empty compound statement.
475 if (!(CD
->hasTrivialBody() && CD
->getNumParams() == 0))
478 // Its class has no virtual functions and no virtual base classes.
479 if (CD
->getParent()->isDynamicClass())
482 // Union ctor does not call ctors of its data members.
483 if (CD
->getParent()->isUnion())
486 // The only form of initializer allowed is an empty constructor.
487 // This will recursively check all base classes and member initializers
488 if (!llvm::all_of(CD
->inits(), [&](const CXXCtorInitializer
*CI
) {
489 if (const CXXConstructExpr
*CE
=
490 dyn_cast
<CXXConstructExpr
>(CI
->getInit()))
491 return isEmptyCudaConstructor(Loc
, CE
->getConstructor());
499 bool Sema::isEmptyCudaDestructor(SourceLocation Loc
, CXXDestructorDecl
*DD
) {
500 // No destructor -> no problem.
504 if (!DD
->isDefined() && DD
->isTemplateInstantiation())
505 InstantiateFunctionDefinition(Loc
, DD
->getFirstDecl());
507 // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
508 // empty at a point in the translation unit, if it is either a
509 // trivial constructor
513 // ... or it satisfies all of the following conditions:
514 // The destructor function has been defined.
515 // and the function body is an empty compound statement.
516 if (!DD
->hasTrivialBody())
519 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
521 // Its class has no virtual functions and no virtual base classes.
522 if (ClassDecl
->isDynamicClass())
525 // Union does not have base class and union dtor does not call dtors of its
527 if (DD
->getParent()->isUnion())
530 // Only empty destructors are allowed. This will recursively check
531 // destructors for all base classes...
532 if (!llvm::all_of(ClassDecl
->bases(), [&](const CXXBaseSpecifier
&BS
) {
533 if (CXXRecordDecl
*RD
= BS
.getType()->getAsCXXRecordDecl())
534 return isEmptyCudaDestructor(Loc
, RD
->getDestructor());
539 // ... and member fields.
540 if (!llvm::all_of(ClassDecl
->fields(), [&](const FieldDecl
*Field
) {
541 if (CXXRecordDecl
*RD
= Field
->getType()
542 ->getBaseElementTypeUnsafe()
543 ->getAsCXXRecordDecl())
544 return isEmptyCudaDestructor(Loc
, RD
->getDestructor());
553 enum CUDAInitializerCheckKind
{
554 CICK_DeviceOrConstant
, // Check initializer for device/constant variable
555 CICK_Shared
, // Check initializer for shared variable
558 bool IsDependentVar(VarDecl
*VD
) {
559 if (VD
->getType()->isDependentType())
561 if (const auto *Init
= VD
->getInit())
562 return Init
->isValueDependent();
566 // Check whether a variable has an allowed initializer for a CUDA device side
567 // variable with global storage. \p VD may be a host variable to be checked for
568 // potential promotion to device side variable.
570 // CUDA/HIP allows only empty constructors as initializers for global
571 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
572 // __shared__ variables whether they are local or not (they all are implicitly
573 // static in CUDA). One exception is that CUDA allows constant initializers
574 // for __constant__ and __device__ variables.
575 bool HasAllowedCUDADeviceStaticInitializer(Sema
&S
, VarDecl
*VD
,
576 CUDAInitializerCheckKind CheckKind
) {
577 assert(!VD
->isInvalidDecl() && VD
->hasGlobalStorage());
578 assert(!IsDependentVar(VD
) && "do not check dependent var");
579 const Expr
*Init
= VD
->getInit();
580 auto IsEmptyInit
= [&](const Expr
*Init
) {
583 if (const auto *CE
= dyn_cast
<CXXConstructExpr
>(Init
)) {
584 return S
.isEmptyCudaConstructor(VD
->getLocation(), CE
->getConstructor());
588 auto IsConstantInit
= [&](const Expr
*Init
) {
590 ASTContext::CUDAConstantEvalContextRAII
EvalCtx(S
.Context
,
591 /*NoWronSidedVars=*/true);
592 return Init
->isConstantInitializer(S
.Context
,
593 VD
->getType()->isReferenceType());
595 auto HasEmptyDtor
= [&](VarDecl
*VD
) {
596 if (const auto *RD
= VD
->getType()->getAsCXXRecordDecl())
597 return S
.isEmptyCudaDestructor(VD
->getLocation(), RD
->getDestructor());
600 if (CheckKind
== CICK_Shared
)
601 return IsEmptyInit(Init
) && HasEmptyDtor(VD
);
602 return S
.LangOpts
.GPUAllowDeviceInit
||
603 ((IsEmptyInit(Init
) || IsConstantInit(Init
)) && HasEmptyDtor(VD
));
607 void Sema::checkAllowedCUDAInitializer(VarDecl
*VD
) {
608 // Do not check dependent variables since the ctor/dtor/initializer are not
609 // determined. Do it after instantiation.
610 if (VD
->isInvalidDecl() || !VD
->hasInit() || !VD
->hasGlobalStorage() ||
613 const Expr
*Init
= VD
->getInit();
614 bool IsSharedVar
= VD
->hasAttr
<CUDASharedAttr
>();
615 bool IsDeviceOrConstantVar
=
617 (VD
->hasAttr
<CUDADeviceAttr
>() || VD
->hasAttr
<CUDAConstantAttr
>());
618 if (IsDeviceOrConstantVar
|| IsSharedVar
) {
619 if (HasAllowedCUDADeviceStaticInitializer(
620 *this, VD
, IsSharedVar
? CICK_Shared
: CICK_DeviceOrConstant
))
622 Diag(VD
->getLocation(),
623 IsSharedVar
? diag::err_shared_var_init
: diag::err_dynamic_var_init
)
624 << Init
->getSourceRange();
625 VD
->setInvalidDecl();
627 // This is a host-side global variable. Check that the initializer is
628 // callable from the host side.
629 const FunctionDecl
*InitFn
= nullptr;
630 if (const CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(Init
)) {
631 InitFn
= CE
->getConstructor();
632 } else if (const CallExpr
*CE
= dyn_cast
<CallExpr
>(Init
)) {
633 InitFn
= CE
->getDirectCallee();
636 CUDAFunctionTarget InitFnTarget
= IdentifyCUDATarget(InitFn
);
637 if (InitFnTarget
!= CFT_Host
&& InitFnTarget
!= CFT_HostDevice
) {
638 Diag(VD
->getLocation(), diag::err_ref_bad_target_global_initializer
)
639 << InitFnTarget
<< InitFn
;
640 Diag(InitFn
->getLocation(), diag::note_previous_decl
) << InitFn
;
641 VD
->setInvalidDecl();
647 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
648 // treated as implicitly __host__ __device__, unless:
649 // * it is a variadic function (device-side variadic functions are not
651 // * a __device__ function with this signature was already declared, in which
652 // case in which case we output an error, unless the __device__ decl is in a
653 // system header, in which case we leave the constexpr function unattributed.
655 // In addition, all function decls are treated as __host__ __device__ when
656 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
657 // #pragma clang force_cuda_host_device_begin/end
659 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl
*NewD
,
660 const LookupResult
&Previous
) {
661 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
663 if (ForceCUDAHostDeviceDepth
> 0) {
664 if (!NewD
->hasAttr
<CUDAHostAttr
>())
665 NewD
->addAttr(CUDAHostAttr::CreateImplicit(Context
));
666 if (!NewD
->hasAttr
<CUDADeviceAttr
>())
667 NewD
->addAttr(CUDADeviceAttr::CreateImplicit(Context
));
671 if (!getLangOpts().CUDAHostDeviceConstexpr
|| !NewD
->isConstexpr() ||
672 NewD
->isVariadic() || NewD
->hasAttr
<CUDAHostAttr
>() ||
673 NewD
->hasAttr
<CUDADeviceAttr
>() || NewD
->hasAttr
<CUDAGlobalAttr
>())
676 // Is D a __device__ function with the same signature as NewD, ignoring CUDA
678 auto IsMatchingDeviceFn
= [&](NamedDecl
*D
) {
679 if (UsingShadowDecl
*Using
= dyn_cast
<UsingShadowDecl
>(D
))
680 D
= Using
->getTargetDecl();
681 FunctionDecl
*OldD
= D
->getAsFunction();
682 return OldD
&& OldD
->hasAttr
<CUDADeviceAttr
>() &&
683 !OldD
->hasAttr
<CUDAHostAttr
>() &&
684 !IsOverload(NewD
, OldD
, /* UseMemberUsingDeclRules = */ false,
685 /* ConsiderCudaAttrs = */ false);
687 auto It
= llvm::find_if(Previous
, IsMatchingDeviceFn
);
688 if (It
!= Previous
.end()) {
689 // We found a __device__ function with the same name and signature as NewD
690 // (ignoring CUDA attrs). This is an error unless that function is defined
691 // in a system header, in which case we simply return without making NewD
693 NamedDecl
*Match
= *It
;
694 if (!getSourceManager().isInSystemHeader(Match
->getLocation())) {
695 Diag(NewD
->getLocation(),
696 diag::err_cuda_unattributed_constexpr_cannot_overload_device
)
698 Diag(Match
->getLocation(),
699 diag::note_cuda_conflicting_device_function_declared_here
);
704 NewD
->addAttr(CUDAHostAttr::CreateImplicit(Context
));
705 NewD
->addAttr(CUDADeviceAttr::CreateImplicit(Context
));
708 // TODO: `__constant__` memory may be a limited resource for certain targets.
709 // A safeguard may be needed at the end of compilation pipeline if
710 // `__constant__` memory usage goes beyond limit.
711 void Sema::MaybeAddCUDAConstantAttr(VarDecl
*VD
) {
712 // Do not promote dependent variables since the cotr/dtor/initializer are
713 // not determined. Do it after instantiation.
714 if (getLangOpts().CUDAIsDevice
&& !VD
->hasAttr
<CUDAConstantAttr
>() &&
715 !VD
->hasAttr
<CUDASharedAttr
>() &&
716 (VD
->isFileVarDecl() || VD
->isStaticDataMember()) &&
717 !IsDependentVar(VD
) &&
718 ((VD
->isConstexpr() || VD
->getType().isConstQualified()) &&
719 HasAllowedCUDADeviceStaticInitializer(*this, VD
,
720 CICK_DeviceOrConstant
))) {
721 VD
->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
725 Sema::SemaDiagnosticBuilder
Sema::CUDADiagIfDeviceCode(SourceLocation Loc
,
727 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
728 FunctionDecl
*CurFunContext
= getCurFunctionDecl(/*AllowLambda=*/true);
729 SemaDiagnosticBuilder::Kind DiagKind
= [&] {
731 return SemaDiagnosticBuilder::K_Nop
;
732 switch (CurrentCUDATarget()) {
735 return SemaDiagnosticBuilder::K_Immediate
;
737 // An HD function counts as host code if we're compiling for host, and
738 // device code if we're compiling for device. Defer any errors in device
739 // mode until the function is known-emitted.
740 if (!getLangOpts().CUDAIsDevice
)
741 return SemaDiagnosticBuilder::K_Nop
;
742 if (IsLastErrorImmediate
&& Diags
.getDiagnosticIDs()->isBuiltinNote(DiagID
))
743 return SemaDiagnosticBuilder::K_Immediate
;
744 return (getEmissionStatus(CurFunContext
) ==
745 FunctionEmissionStatus::Emitted
)
746 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
747 : SemaDiagnosticBuilder::K_Deferred
;
749 return SemaDiagnosticBuilder::K_Nop
;
752 return SemaDiagnosticBuilder(DiagKind
, Loc
, DiagID
, CurFunContext
, *this);
755 Sema::SemaDiagnosticBuilder
Sema::CUDADiagIfHostCode(SourceLocation Loc
,
757 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
758 FunctionDecl
*CurFunContext
= getCurFunctionDecl(/*AllowLambda=*/true);
759 SemaDiagnosticBuilder::Kind DiagKind
= [&] {
761 return SemaDiagnosticBuilder::K_Nop
;
762 switch (CurrentCUDATarget()) {
764 return SemaDiagnosticBuilder::K_Immediate
;
766 // An HD function counts as host code if we're compiling for host, and
767 // device code if we're compiling for device. Defer any errors in device
768 // mode until the function is known-emitted.
769 if (getLangOpts().CUDAIsDevice
)
770 return SemaDiagnosticBuilder::K_Nop
;
771 if (IsLastErrorImmediate
&& Diags
.getDiagnosticIDs()->isBuiltinNote(DiagID
))
772 return SemaDiagnosticBuilder::K_Immediate
;
773 return (getEmissionStatus(CurFunContext
) ==
774 FunctionEmissionStatus::Emitted
)
775 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
776 : SemaDiagnosticBuilder::K_Deferred
;
778 return SemaDiagnosticBuilder::K_Nop
;
781 return SemaDiagnosticBuilder(DiagKind
, Loc
, DiagID
, CurFunContext
, *this);
784 bool Sema::CheckCUDACall(SourceLocation Loc
, FunctionDecl
*Callee
) {
785 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
786 assert(Callee
&& "Callee may not be null.");
788 auto &ExprEvalCtx
= ExprEvalContexts
.back();
789 if (ExprEvalCtx
.isUnevaluated() || ExprEvalCtx
.isConstantEvaluated())
792 // FIXME: Is bailing out early correct here? Should we instead assume that
793 // the caller is a global initializer?
794 FunctionDecl
*Caller
= getCurFunctionDecl(/*AllowLambda=*/true);
798 // If the caller is known-emitted, mark the callee as known-emitted.
799 // Otherwise, mark the call in our call graph so we can traverse it later.
800 bool CallerKnownEmitted
=
801 getEmissionStatus(Caller
) == FunctionEmissionStatus::Emitted
;
802 SemaDiagnosticBuilder::Kind DiagKind
= [this, Caller
, Callee
,
803 CallerKnownEmitted
] {
804 switch (IdentifyCUDAPreference(Caller
, Callee
)) {
807 assert(Caller
&& "Never/wrongSide calls require a non-null caller");
808 // If we know the caller will be emitted, we know this wrong-side call
809 // will be emitted, so it's an immediate error. Otherwise, defer the
810 // error until we know the caller is emitted.
811 return CallerKnownEmitted
812 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
813 : SemaDiagnosticBuilder::K_Deferred
;
815 return SemaDiagnosticBuilder::K_Nop
;
819 if (DiagKind
== SemaDiagnosticBuilder::K_Nop
) {
820 // For -fgpu-rdc, keep track of external kernels used by host functions.
821 if (LangOpts
.CUDAIsDevice
&& LangOpts
.GPURelocatableDeviceCode
&&
822 Callee
->hasAttr
<CUDAGlobalAttr
>() && !Callee
->isDefined())
823 getASTContext().CUDAExternalDeviceDeclODRUsedByHost
.insert(Callee
);
827 // Avoid emitting this error twice for the same location. Using a hashtable
828 // like this is unfortunate, but because we must continue parsing as normal
829 // after encountering a deferred error, it's otherwise very tricky for us to
830 // ensure that we only emit this deferred error once.
831 if (!LocsWithCUDACallDiags
.insert({Caller
, Loc
}).second
)
834 SemaDiagnosticBuilder(DiagKind
, Loc
, diag::err_ref_bad_target
, Caller
, *this)
835 << IdentifyCUDATarget(Callee
) << /*function*/ 0 << Callee
836 << IdentifyCUDATarget(Caller
);
837 if (!Callee
->getBuiltinID())
838 SemaDiagnosticBuilder(DiagKind
, Callee
->getLocation(),
839 diag::note_previous_decl
, Caller
, *this)
841 return DiagKind
!= SemaDiagnosticBuilder::K_Immediate
&&
842 DiagKind
!= SemaDiagnosticBuilder::K_ImmediateWithCallStack
;
845 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
846 // A lambda function may capture a stack variable by reference when it is
847 // defined and uses the capture by reference when the lambda is called. When
848 // the capture and use happen on different sides, the capture is invalid and
849 // should be diagnosed.
850 void Sema::CUDACheckLambdaCapture(CXXMethodDecl
*Callee
,
851 const sema::Capture
&Capture
) {
852 // In host compilation we only need to check lambda functions emitted on host
853 // side. In such lambda functions, a reference capture is invalid only
854 // if the lambda structure is populated by a device function or kernel then
855 // is passed to and called by a host function. However that is impossible,
856 // since a device function or kernel can only call a device function, also a
857 // kernel cannot pass a lambda back to a host function since we cannot
858 // define a kernel argument type which can hold the lambda before the lambda
859 // itself is defined.
860 if (!LangOpts
.CUDAIsDevice
)
863 // File-scope lambda can only do init captures for global variables, which
864 // results in passing by value for these global variables.
865 FunctionDecl
*Caller
= getCurFunctionDecl(/*AllowLambda=*/true);
869 // In device compilation, we only need to check lambda functions which are
870 // emitted on device side. For such lambdas, a reference capture is invalid
871 // only if the lambda structure is populated by a host function then passed
872 // to and called in a device function or kernel.
873 bool CalleeIsDevice
= Callee
->hasAttr
<CUDADeviceAttr
>();
875 !Caller
->hasAttr
<CUDAGlobalAttr
>() && !Caller
->hasAttr
<CUDADeviceAttr
>();
876 bool ShouldCheck
= CalleeIsDevice
&& CallerIsHost
;
877 if (!ShouldCheck
|| !Capture
.isReferenceCapture())
879 auto DiagKind
= SemaDiagnosticBuilder::K_Deferred
;
880 if (Capture
.isVariableCapture()) {
881 SemaDiagnosticBuilder(DiagKind
, Capture
.getLocation(),
882 diag::err_capture_bad_target
, Callee
, *this)
883 << Capture
.getVariable();
884 } else if (Capture
.isThisCapture()) {
885 // Capture of this pointer is allowed since this pointer may be pointing to
886 // managed memory which is accessible on both device and host sides. It only
887 // results in invalid memory access if this pointer points to memory not
888 // accessible on device side.
889 SemaDiagnosticBuilder(DiagKind
, Capture
.getLocation(),
890 diag::warn_maybe_capture_bad_target_this_ptr
, Callee
,
895 void Sema::CUDASetLambdaAttrs(CXXMethodDecl
*Method
) {
896 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
897 if (Method
->hasAttr
<CUDAHostAttr
>() || Method
->hasAttr
<CUDADeviceAttr
>())
899 Method
->addAttr(CUDADeviceAttr::CreateImplicit(Context
));
900 Method
->addAttr(CUDAHostAttr::CreateImplicit(Context
));
903 void Sema::checkCUDATargetOverload(FunctionDecl
*NewFD
,
904 const LookupResult
&Previous
) {
905 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
906 CUDAFunctionTarget NewTarget
= IdentifyCUDATarget(NewFD
);
907 for (NamedDecl
*OldND
: Previous
) {
908 FunctionDecl
*OldFD
= OldND
->getAsFunction();
912 CUDAFunctionTarget OldTarget
= IdentifyCUDATarget(OldFD
);
913 // Don't allow HD and global functions to overload other functions with the
914 // same signature. We allow overloading based on CUDA attributes so that
915 // functions can have different implementations on the host and device, but
916 // HD/global functions "exist" in some sense on both the host and device, so
917 // should have the same implementation on both sides.
918 if (NewTarget
!= OldTarget
&&
919 ((NewTarget
== CFT_HostDevice
) || (OldTarget
== CFT_HostDevice
) ||
920 (NewTarget
== CFT_Global
) || (OldTarget
== CFT_Global
)) &&
921 !IsOverload(NewFD
, OldFD
, /* UseMemberUsingDeclRules = */ false,
922 /* ConsiderCudaAttrs = */ false)) {
923 Diag(NewFD
->getLocation(), diag::err_cuda_ovl_target
)
924 << NewTarget
<< NewFD
->getDeclName() << OldTarget
<< OldFD
;
925 Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
926 NewFD
->setInvalidDecl();
932 template <typename AttrTy
>
933 static void copyAttrIfPresent(Sema
&S
, FunctionDecl
*FD
,
934 const FunctionDecl
&TemplateFD
) {
935 if (AttrTy
*Attribute
= TemplateFD
.getAttr
<AttrTy
>()) {
936 AttrTy
*Clone
= Attribute
->clone(S
.Context
);
937 Clone
->setInherited(true);
942 void Sema::inheritCUDATargetAttrs(FunctionDecl
*FD
,
943 const FunctionTemplateDecl
&TD
) {
944 const FunctionDecl
&TemplateFD
= *TD
.getTemplatedDecl();
945 copyAttrIfPresent
<CUDAGlobalAttr
>(*this, FD
, TemplateFD
);
946 copyAttrIfPresent
<CUDAHostAttr
>(*this, FD
, TemplateFD
);
947 copyAttrIfPresent
<CUDADeviceAttr
>(*this, FD
, TemplateFD
);
950 std::string
Sema::getCudaConfigureFuncName() const {
951 if (getLangOpts().HIP
)
952 return getLangOpts().HIPUseNewLaunchAPI
? "__hipPushCallConfiguration"
953 : "hipConfigureCall";
955 // New CUDA kernel launch sequence.
956 if (CudaFeatureEnabled(Context
.getTargetInfo().getSDKVersion(),
957 CudaFeature::CUDA_USES_NEW_LAUNCH
))
958 return "__cudaPushCallConfiguration";
960 // Legacy CUDA kernel configuration call
961 return "cudaConfigureCall";