[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / clang / lib / Sema / SemaCoroutine.cpp
blobc7d88f7784c187e90b7183db821e8d1136664b1f
1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ Coroutines.
11 // This file contains references to sections of the Coroutines TS, which
12 // can be found at http://wg21.link/coroutines.
14 //===----------------------------------------------------------------------===//
16 #include "CoroutineStmtBuilder.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Basic/Builtins.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Overload.h"
25 #include "clang/Sema/ScopeInfo.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "llvm/ADT/SmallSet.h"
29 using namespace clang;
30 using namespace sema;
32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
33 SourceLocation Loc, bool &Res) {
34 DeclarationName DN = S.PP.getIdentifierInfo(Name);
35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
36 // Suppress diagnostics when a private member is selected. The same warnings
37 // will be produced again when building the call.
38 LR.suppressDiagnostics();
39 Res = S.LookupQualifiedName(LR, RD);
40 return LR;
43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
44 SourceLocation Loc) {
45 bool Res;
46 lookupMember(S, Name, RD, Loc, Res);
47 return Res;
50 /// Look up the std::coroutine_traits<...>::promise_type for the given
51 /// function type.
52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
53 SourceLocation KwLoc) {
54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
55 const SourceLocation FuncLoc = FD->getLocation();
57 ClassTemplateDecl *CoroTraits =
58 S.lookupCoroutineTraits(KwLoc, FuncLoc);
59 if (!CoroTraits)
60 return QualType();
62 // Form template argument list for coroutine_traits<R, P1, P2, ...> according
63 // to [dcl.fct.def.coroutine]3
64 TemplateArgumentListInfo Args(KwLoc, KwLoc);
65 auto AddArg = [&](QualType T) {
66 Args.addArgument(TemplateArgumentLoc(
67 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
69 AddArg(FnType->getReturnType());
70 // If the function is a non-static member function, add the type
71 // of the implicit object parameter before the formal parameters.
72 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
73 if (MD->isInstance()) {
74 // [over.match.funcs]4
75 // For non-static member functions, the type of the implicit object
76 // parameter is
77 // -- "lvalue reference to cv X" for functions declared without a
78 // ref-qualifier or with the & ref-qualifier
79 // -- "rvalue reference to cv X" for functions declared with the &&
80 // ref-qualifier
81 QualType T = MD->getThisType()->castAs<PointerType>()->getPointeeType();
82 T = FnType->getRefQualifier() == RQ_RValue
83 ? S.Context.getRValueReferenceType(T)
84 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
85 AddArg(T);
88 for (QualType T : FnType->getParamTypes())
89 AddArg(T);
91 // Build the template-id.
92 QualType CoroTrait =
93 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
94 if (CoroTrait.isNull())
95 return QualType();
96 if (S.RequireCompleteType(KwLoc, CoroTrait,
97 diag::err_coroutine_type_missing_specialization))
98 return QualType();
100 auto *RD = CoroTrait->getAsCXXRecordDecl();
101 assert(RD && "specialization of class template is not a class?");
103 // Look up the ::promise_type member.
104 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
105 Sema::LookupOrdinaryName);
106 S.LookupQualifiedName(R, RD);
107 auto *Promise = R.getAsSingle<TypeDecl>();
108 if (!Promise) {
109 S.Diag(FuncLoc,
110 diag::err_implied_std_coroutine_traits_promise_type_not_found)
111 << RD;
112 return QualType();
114 // The promise type is required to be a class type.
115 QualType PromiseType = S.Context.getTypeDeclType(Promise);
117 auto buildElaboratedType = [&]() {
118 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace());
119 NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
120 CoroTrait.getTypePtr());
121 return S.Context.getElaboratedType(ETK_None, NNS, PromiseType);
124 if (!PromiseType->getAsCXXRecordDecl()) {
125 S.Diag(FuncLoc,
126 diag::err_implied_std_coroutine_traits_promise_type_not_class)
127 << buildElaboratedType();
128 return QualType();
130 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
131 diag::err_coroutine_promise_type_incomplete))
132 return QualType();
134 return PromiseType;
137 /// Look up the std::coroutine_handle<PromiseType>.
138 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
139 SourceLocation Loc) {
140 if (PromiseType.isNull())
141 return QualType();
143 NamespaceDecl *CoroNamespace = S.getStdNamespace();
144 assert(CoroNamespace && "Should already be diagnosed");
146 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
147 Loc, Sema::LookupOrdinaryName);
148 if (!S.LookupQualifiedName(Result, CoroNamespace)) {
149 S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
150 << "std::coroutine_handle";
151 return QualType();
154 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
155 if (!CoroHandle) {
156 Result.suppressDiagnostics();
157 // We found something weird. Complain about the first thing we found.
158 NamedDecl *Found = *Result.begin();
159 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
160 return QualType();
163 // Form template argument list for coroutine_handle<Promise>.
164 TemplateArgumentListInfo Args(Loc, Loc);
165 Args.addArgument(TemplateArgumentLoc(
166 TemplateArgument(PromiseType),
167 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
169 // Build the template-id.
170 QualType CoroHandleType =
171 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
172 if (CoroHandleType.isNull())
173 return QualType();
174 if (S.RequireCompleteType(Loc, CoroHandleType,
175 diag::err_coroutine_type_missing_specialization))
176 return QualType();
178 return CoroHandleType;
181 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
182 StringRef Keyword) {
183 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
184 // a function body.
185 // FIXME: This also covers [expr.await]p2: "An await-expression shall not
186 // appear in a default argument." But the diagnostic QoI here could be
187 // improved to inform the user that default arguments specifically are not
188 // allowed.
189 auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
190 if (!FD) {
191 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
192 ? diag::err_coroutine_objc_method
193 : diag::err_coroutine_outside_function) << Keyword;
194 return false;
197 // An enumeration for mapping the diagnostic type to the correct diagnostic
198 // selection index.
199 enum InvalidFuncDiag {
200 DiagCtor = 0,
201 DiagDtor,
202 DiagMain,
203 DiagConstexpr,
204 DiagAutoRet,
205 DiagVarargs,
206 DiagConsteval,
208 bool Diagnosed = false;
209 auto DiagInvalid = [&](InvalidFuncDiag ID) {
210 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
211 Diagnosed = true;
212 return false;
215 // Diagnose when a constructor, destructor
216 // or the function 'main' are declared as a coroutine.
217 auto *MD = dyn_cast<CXXMethodDecl>(FD);
218 // [class.ctor]p11: "A constructor shall not be a coroutine."
219 if (MD && isa<CXXConstructorDecl>(MD))
220 return DiagInvalid(DiagCtor);
221 // [class.dtor]p17: "A destructor shall not be a coroutine."
222 else if (MD && isa<CXXDestructorDecl>(MD))
223 return DiagInvalid(DiagDtor);
224 // [basic.start.main]p3: "The function main shall not be a coroutine."
225 else if (FD->isMain())
226 return DiagInvalid(DiagMain);
228 // Emit a diagnostics for each of the following conditions which is not met.
229 // [expr.const]p2: "An expression e is a core constant expression unless the
230 // evaluation of e [...] would evaluate one of the following expressions:
231 // [...] an await-expression [...] a yield-expression."
232 if (FD->isConstexpr())
233 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
234 // [dcl.spec.auto]p15: "A function declared with a return type that uses a
235 // placeholder type shall not be a coroutine."
236 if (FD->getReturnType()->isUndeducedType())
237 DiagInvalid(DiagAutoRet);
238 // [dcl.fct.def.coroutine]p1
239 // The parameter-declaration-clause of the coroutine shall not terminate with
240 // an ellipsis that is not part of a parameter-declaration.
241 if (FD->isVariadic())
242 DiagInvalid(DiagVarargs);
244 return !Diagnosed;
247 /// Build a call to 'operator co_await' if there is a suitable operator for
248 /// the given expression.
249 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
250 UnresolvedLookupExpr *Lookup) {
251 UnresolvedSet<16> Functions;
252 Functions.append(Lookup->decls_begin(), Lookup->decls_end());
253 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
256 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
257 SourceLocation Loc, Expr *E) {
258 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
259 if (R.isInvalid())
260 return ExprError();
261 return SemaRef.BuildOperatorCoawaitCall(Loc, E,
262 cast<UnresolvedLookupExpr>(R.get()));
265 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
266 SourceLocation Loc) {
267 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
268 if (CoroHandleType.isNull())
269 return ExprError();
271 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
272 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
273 Sema::LookupOrdinaryName);
274 if (!S.LookupQualifiedName(Found, LookupCtx)) {
275 S.Diag(Loc, diag::err_coroutine_handle_missing_member)
276 << "from_address";
277 return ExprError();
280 Expr *FramePtr =
281 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
283 CXXScopeSpec SS;
284 ExprResult FromAddr =
285 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
286 if (FromAddr.isInvalid())
287 return ExprError();
289 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
292 struct ReadySuspendResumeResult {
293 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
294 Expr *Results[3];
295 OpaqueValueExpr *OpaqueValue;
296 bool IsInvalid;
299 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
300 StringRef Name, MultiExprArg Args) {
301 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
303 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
304 CXXScopeSpec SS;
305 ExprResult Result = S.BuildMemberReferenceExpr(
306 Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
307 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
308 /*Scope=*/nullptr);
309 if (Result.isInvalid())
310 return ExprError();
312 // We meant exactly what we asked for. No need for typo correction.
313 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
314 S.clearDelayedTypo(TE);
315 S.Diag(Loc, diag::err_no_member)
316 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
317 << Base->getSourceRange();
318 return ExprError();
321 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc();
322 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr);
325 // See if return type is coroutine-handle and if so, invoke builtin coro-resume
326 // on its address. This is to enable the support for coroutine-handle
327 // returning await_suspend that results in a guaranteed tail call to the target
328 // coroutine.
329 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
330 SourceLocation Loc) {
331 if (RetType->isReferenceType())
332 return nullptr;
333 Type const *T = RetType.getTypePtr();
334 if (!T->isClassType() && !T->isStructureType())
335 return nullptr;
337 // FIXME: Add convertability check to coroutine_handle<>. Possibly via
338 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
339 // a private function in SemaExprCXX.cpp
341 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt);
342 if (AddressExpr.isInvalid())
343 return nullptr;
345 Expr *JustAddress = AddressExpr.get();
347 // Check that the type of AddressExpr is void*
348 if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
349 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
350 diag::warn_coroutine_handle_address_invalid_return_type)
351 << JustAddress->getType();
353 // Clean up temporary objects so that they don't live across suspension points
354 // unnecessarily. We choose to clean up before the call to
355 // __builtin_coro_resume so that the cleanup code are not inserted in-between
356 // the resume call and return instruction, which would interfere with the
357 // musttail call contract.
358 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress);
359 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
360 JustAddress);
363 /// Build calls to await_ready, await_suspend, and await_resume for a co_await
364 /// expression.
365 /// The generated AST tries to clean up temporary objects as early as
366 /// possible so that they don't live across suspension points if possible.
367 /// Having temporary objects living across suspension points unnecessarily can
368 /// lead to large frame size, and also lead to memory corruptions if the
369 /// coroutine frame is destroyed after coming back from suspension. This is done
370 /// by wrapping both the await_ready call and the await_suspend call with
371 /// ExprWithCleanups. In the end of this function, we also need to explicitly
372 /// set cleanup state so that the CoawaitExpr is also wrapped with an
373 /// ExprWithCleanups to clean up the awaiter associated with the co_await
374 /// expression.
375 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
376 SourceLocation Loc, Expr *E) {
377 OpaqueValueExpr *Operand = new (S.Context)
378 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
380 // Assume valid until we see otherwise.
381 // Further operations are responsible for setting IsInalid to true.
382 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
384 using ACT = ReadySuspendResumeResult::AwaitCallType;
386 auto BuildSubExpr = [&](ACT CallType, StringRef Func,
387 MultiExprArg Arg) -> Expr * {
388 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
389 if (Result.isInvalid()) {
390 Calls.IsInvalid = true;
391 return nullptr;
393 Calls.Results[CallType] = Result.get();
394 return Result.get();
397 CallExpr *AwaitReady = cast_or_null<CallExpr>(
398 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt));
399 if (!AwaitReady)
400 return Calls;
401 if (!AwaitReady->getType()->isDependentType()) {
402 // [expr.await]p3 [...]
403 // — await-ready is the expression e.await_ready(), contextually converted
404 // to bool.
405 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
406 if (Conv.isInvalid()) {
407 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
408 diag::note_await_ready_no_bool_conversion);
409 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
410 << AwaitReady->getDirectCallee() << E->getSourceRange();
411 Calls.IsInvalid = true;
412 } else
413 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
416 ExprResult CoroHandleRes =
417 buildCoroutineHandle(S, CoroPromise->getType(), Loc);
418 if (CoroHandleRes.isInvalid()) {
419 Calls.IsInvalid = true;
420 return Calls;
422 Expr *CoroHandle = CoroHandleRes.get();
423 CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
424 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
425 if (!AwaitSuspend)
426 return Calls;
427 if (!AwaitSuspend->getType()->isDependentType()) {
428 // [expr.await]p3 [...]
429 // - await-suspend is the expression e.await_suspend(h), which shall be
430 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some
431 // type Z.
432 QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
434 // Support for coroutine_handle returning await_suspend.
435 if (Expr *TailCallSuspend =
436 maybeTailCall(S, RetType, AwaitSuspend, Loc))
437 // Note that we don't wrap the expression with ExprWithCleanups here
438 // because that might interfere with tailcall contract (e.g. inserting
439 // clean up instructions in-between tailcall and return). Instead
440 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
441 // call.
442 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
443 else {
444 // non-class prvalues always have cv-unqualified types
445 if (RetType->isReferenceType() ||
446 (!RetType->isBooleanType() && !RetType->isVoidType())) {
447 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
448 diag::err_await_suspend_invalid_return_type)
449 << RetType;
450 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
451 << AwaitSuspend->getDirectCallee();
452 Calls.IsInvalid = true;
453 } else
454 Calls.Results[ACT::ACT_Suspend] =
455 S.MaybeCreateExprWithCleanups(AwaitSuspend);
459 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt);
461 // Make sure the awaiter object gets a chance to be cleaned up.
462 S.Cleanup.setExprNeedsCleanups(true);
464 return Calls;
467 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
468 SourceLocation Loc, StringRef Name,
469 MultiExprArg Args) {
471 // Form a reference to the promise.
472 ExprResult PromiseRef = S.BuildDeclRefExpr(
473 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
474 if (PromiseRef.isInvalid())
475 return ExprError();
477 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
480 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
481 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
482 auto *FD = cast<FunctionDecl>(CurContext);
483 bool IsThisDependentType = [&] {
484 if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(FD))
485 return MD->isInstance() && MD->getThisType()->isDependentType();
486 else
487 return false;
488 }();
490 QualType T = FD->getType()->isDependentType() || IsThisDependentType
491 ? Context.DependentTy
492 : lookupPromiseType(*this, FD, Loc);
493 if (T.isNull())
494 return nullptr;
496 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
497 &PP.getIdentifierTable().get("__promise"), T,
498 Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
499 VD->setImplicit();
500 CheckVariableDeclarationType(VD);
501 if (VD->isInvalidDecl())
502 return nullptr;
504 auto *ScopeInfo = getCurFunction();
506 // Build a list of arguments, based on the coroutine function's arguments,
507 // that if present will be passed to the promise type's constructor.
508 llvm::SmallVector<Expr *, 4> CtorArgExprs;
510 // Add implicit object parameter.
511 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
512 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
513 ExprResult ThisExpr = ActOnCXXThis(Loc);
514 if (ThisExpr.isInvalid())
515 return nullptr;
516 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
517 if (ThisExpr.isInvalid())
518 return nullptr;
519 CtorArgExprs.push_back(ThisExpr.get());
523 // Add the coroutine function's parameters.
524 auto &Moves = ScopeInfo->CoroutineParameterMoves;
525 for (auto *PD : FD->parameters()) {
526 if (PD->getType()->isDependentType())
527 continue;
529 auto RefExpr = ExprEmpty();
530 auto Move = Moves.find(PD);
531 assert(Move != Moves.end() &&
532 "Coroutine function parameter not inserted into move map");
533 // If a reference to the function parameter exists in the coroutine
534 // frame, use that reference.
535 auto *MoveDecl =
536 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
537 RefExpr =
538 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
539 ExprValueKind::VK_LValue, FD->getLocation());
540 if (RefExpr.isInvalid())
541 return nullptr;
542 CtorArgExprs.push_back(RefExpr.get());
545 // If we have a non-zero number of constructor arguments, try to use them.
546 // Otherwise, fall back to the promise type's default constructor.
547 if (!CtorArgExprs.empty()) {
548 // Create an initialization sequence for the promise type using the
549 // constructor arguments, wrapped in a parenthesized list expression.
550 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
551 CtorArgExprs, FD->getLocation());
552 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
553 InitializationKind Kind = InitializationKind::CreateForInit(
554 VD->getLocation(), /*DirectInit=*/true, PLE);
555 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
556 /*TopLevelOfInitList=*/false,
557 /*TreatUnavailableAsInvalid=*/false);
559 // [dcl.fct.def.coroutine]5.7
560 // promise-constructor-arguments is determined as follows: overload
561 // resolution is performed on a promise constructor call created by
562 // assembling an argument list q_1 ... q_n . If a viable constructor is
563 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
564 // , ..., q_n ), otherwise promise-constructor-arguments is empty.
565 if (InitSeq) {
566 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
567 if (Result.isInvalid()) {
568 VD->setInvalidDecl();
569 } else if (Result.get()) {
570 VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
571 VD->setInitStyle(VarDecl::CallInit);
572 CheckCompleteVariableDeclaration(VD);
574 } else
575 ActOnUninitializedDecl(VD);
576 } else
577 ActOnUninitializedDecl(VD);
579 FD->addDecl(VD);
580 return VD;
583 /// Check that this is a context in which a coroutine suspension can appear.
584 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
585 StringRef Keyword,
586 bool IsImplicit = false) {
587 if (!isValidCoroutineContext(S, Loc, Keyword))
588 return nullptr;
590 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
592 auto *ScopeInfo = S.getCurFunction();
593 assert(ScopeInfo && "missing function scope for function");
595 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
596 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
598 if (ScopeInfo->CoroutinePromise)
599 return ScopeInfo;
601 if (!S.buildCoroutineParameterMoves(Loc))
602 return nullptr;
604 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
605 if (!ScopeInfo->CoroutinePromise)
606 return nullptr;
608 return ScopeInfo;
611 /// Recursively check \p E and all its children to see if any call target
612 /// (including constructor call) is declared noexcept. Also any value returned
613 /// from the call has a noexcept destructor.
614 static void checkNoThrow(Sema &S, const Stmt *E,
615 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
616 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
617 // In the case of dtor, the call to dtor is implicit and hence we should
618 // pass nullptr to canCalleeThrow.
619 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
620 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
621 // co_await promise.final_suspend() could end up calling
622 // __builtin_coro_resume for symmetric transfer if await_suspend()
623 // returns a handle. In that case, even __builtin_coro_resume is not
624 // declared as noexcept and may throw, it does not throw _into_ the
625 // coroutine that just suspended, but rather throws back out from
626 // whoever called coroutine_handle::resume(), hence we claim that
627 // logically it does not throw.
628 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
629 return;
631 if (ThrowingDecls.empty()) {
632 // [dcl.fct.def.coroutine]p15
633 // The expression co_await promise.final_suspend() shall not be
634 // potentially-throwing ([except.spec]).
636 // First time seeing an error, emit the error message.
637 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
638 diag::err_coroutine_promise_final_suspend_requires_nothrow);
640 ThrowingDecls.insert(D);
644 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
645 CXXConstructorDecl *Ctor = CE->getConstructor();
646 checkDeclNoexcept(Ctor);
647 // Check the corresponding destructor of the constructor.
648 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
649 } else if (auto *CE = dyn_cast<CallExpr>(E)) {
650 if (CE->isTypeDependent())
651 return;
653 checkDeclNoexcept(CE->getCalleeDecl());
654 QualType ReturnType = CE->getCallReturnType(S.getASTContext());
655 // Check the destructor of the call return type, if any.
656 if (ReturnType.isDestructedType() ==
657 QualType::DestructionKind::DK_cxx_destructor) {
658 const auto *T =
659 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
660 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
661 /*IsDtor=*/true);
663 } else
664 for (const auto *Child : E->children()) {
665 if (!Child)
666 continue;
667 checkNoThrow(S, Child, ThrowingDecls);
671 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
672 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
673 // We first collect all declarations that should not throw but not declared
674 // with noexcept. We then sort them based on the location before printing.
675 // This is to avoid emitting the same note multiple times on the same
676 // declaration, and also provide a deterministic order for the messages.
677 checkNoThrow(*this, FinalSuspend, ThrowingDecls);
678 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
679 ThrowingDecls.end()};
680 sort(SortedDecls, [](const Decl *A, const Decl *B) {
681 return A->getEndLoc() < B->getEndLoc();
683 for (const auto *D : SortedDecls) {
684 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
686 return ThrowingDecls.empty();
689 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
690 StringRef Keyword) {
691 if (!checkCoroutineContext(*this, KWLoc, Keyword))
692 return false;
693 auto *ScopeInfo = getCurFunction();
694 assert(ScopeInfo->CoroutinePromise);
696 // If we have existing coroutine statements then we have already built
697 // the initial and final suspend points.
698 if (!ScopeInfo->NeedsCoroutineSuspends)
699 return true;
701 ScopeInfo->setNeedsCoroutineSuspends(false);
703 auto *Fn = cast<FunctionDecl>(CurContext);
704 SourceLocation Loc = Fn->getLocation();
705 // Build the initial suspend point
706 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
707 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise,
708 Loc, Name, std::nullopt);
709 if (Operand.isInvalid())
710 return StmtError();
711 ExprResult Suspend =
712 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
713 if (Suspend.isInvalid())
714 return StmtError();
715 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
716 /*IsImplicit*/ true);
717 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
718 if (Suspend.isInvalid()) {
719 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
720 << ((Name == "initial_suspend") ? 0 : 1);
721 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
722 return StmtError();
724 return cast<Stmt>(Suspend.get());
727 StmtResult InitSuspend = buildSuspends("initial_suspend");
728 if (InitSuspend.isInvalid())
729 return true;
731 StmtResult FinalSuspend = buildSuspends("final_suspend");
732 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
733 return true;
735 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
737 return true;
740 // Recursively walks up the scope hierarchy until either a 'catch' or a function
741 // scope is found, whichever comes first.
742 static bool isWithinCatchScope(Scope *S) {
743 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
744 // lambdas that use 'co_await' are allowed. The loop below ends when a
745 // function scope is found in order to ensure the following behavior:
747 // void foo() { // <- function scope
748 // try { //
749 // co_await x; // <- 'co_await' is OK within a function scope
750 // } catch { // <- catch scope
751 // co_await x; // <- 'co_await' is not OK within a catch scope
752 // []() { // <- function scope
753 // co_await x; // <- 'co_await' is OK within a function scope
754 // }();
755 // }
756 // }
757 while (S && !S->isFunctionScope()) {
758 if (S->isCatchScope())
759 return true;
760 S = S->getParent();
762 return false;
765 // [expr.await]p2, emphasis added: "An await-expression shall appear only in
766 // a *potentially evaluated* expression within the compound-statement of a
767 // function-body *outside of a handler* [...] A context within a function
768 // where an await-expression can appear is called a suspension context of the
769 // function."
770 static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
771 StringRef Keyword) {
772 // First emphasis of [expr.await]p2: must be a potentially evaluated context.
773 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
774 // \c sizeof.
775 if (S.isUnevaluatedContext()) {
776 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
777 return false;
780 // Second emphasis of [expr.await]p2: must be outside of an exception handler.
781 if (isWithinCatchScope(S.getCurScope())) {
782 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
783 return false;
786 return true;
789 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
790 if (!checkSuspensionContext(*this, Loc, "co_await"))
791 return ExprError();
793 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
794 CorrectDelayedTyposInExpr(E);
795 return ExprError();
798 if (E->hasPlaceholderType()) {
799 ExprResult R = CheckPlaceholderExpr(E);
800 if (R.isInvalid()) return ExprError();
801 E = R.get();
803 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
804 if (Lookup.isInvalid())
805 return ExprError();
806 return BuildUnresolvedCoawaitExpr(Loc, E,
807 cast<UnresolvedLookupExpr>(Lookup.get()));
810 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
811 DeclarationName OpName =
812 Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
813 LookupResult Operators(*this, OpName, SourceLocation(),
814 Sema::LookupOperatorName);
815 LookupName(Operators, S);
817 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
818 const auto &Functions = Operators.asUnresolvedSet();
819 bool IsOverloaded =
820 Functions.size() > 1 ||
821 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
822 Expr *CoawaitOp = UnresolvedLookupExpr::Create(
823 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
824 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded,
825 Functions.begin(), Functions.end());
826 assert(CoawaitOp);
827 return CoawaitOp;
830 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
831 // DependentCoawaitExpr if needed.
832 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
833 UnresolvedLookupExpr *Lookup) {
834 auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
835 if (!FSI)
836 return ExprError();
838 if (Operand->hasPlaceholderType()) {
839 ExprResult R = CheckPlaceholderExpr(Operand);
840 if (R.isInvalid())
841 return ExprError();
842 Operand = R.get();
845 auto *Promise = FSI->CoroutinePromise;
846 if (Promise->getType()->isDependentType()) {
847 Expr *Res = new (Context)
848 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
849 return Res;
852 auto *RD = Promise->getType()->getAsCXXRecordDecl();
853 auto *Transformed = Operand;
854 if (lookupMember(*this, "await_transform", RD, Loc)) {
855 ExprResult R =
856 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
857 if (R.isInvalid()) {
858 Diag(Loc,
859 diag::note_coroutine_promise_implicit_await_transform_required_here)
860 << Operand->getSourceRange();
861 return ExprError();
863 Transformed = R.get();
865 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
866 if (Awaiter.isInvalid())
867 return ExprError();
869 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
872 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
873 Expr *Awaiter, bool IsImplicit) {
874 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
875 if (!Coroutine)
876 return ExprError();
878 if (Awaiter->hasPlaceholderType()) {
879 ExprResult R = CheckPlaceholderExpr(Awaiter);
880 if (R.isInvalid()) return ExprError();
881 Awaiter = R.get();
884 if (Awaiter->getType()->isDependentType()) {
885 Expr *Res = new (Context)
886 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
887 return Res;
890 // If the expression is a temporary, materialize it as an lvalue so that we
891 // can use it multiple times.
892 if (Awaiter->isPRValue())
893 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
895 // The location of the `co_await` token cannot be used when constructing
896 // the member call expressions since it's before the location of `Expr`, which
897 // is used as the start of the member call expression.
898 SourceLocation CallLoc = Awaiter->getExprLoc();
900 // Build the await_ready, await_suspend, await_resume calls.
901 ReadySuspendResumeResult RSS =
902 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
903 if (RSS.IsInvalid)
904 return ExprError();
906 Expr *Res = new (Context)
907 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
908 RSS.Results[2], RSS.OpaqueValue, IsImplicit);
910 return Res;
913 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
914 if (!checkSuspensionContext(*this, Loc, "co_yield"))
915 return ExprError();
917 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
918 CorrectDelayedTyposInExpr(E);
919 return ExprError();
922 // Build yield_value call.
923 ExprResult Awaitable = buildPromiseCall(
924 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
925 if (Awaitable.isInvalid())
926 return ExprError();
928 // Build 'operator co_await' call.
929 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
930 if (Awaitable.isInvalid())
931 return ExprError();
933 return BuildCoyieldExpr(Loc, Awaitable.get());
935 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
936 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
937 if (!Coroutine)
938 return ExprError();
940 if (E->hasPlaceholderType()) {
941 ExprResult R = CheckPlaceholderExpr(E);
942 if (R.isInvalid()) return ExprError();
943 E = R.get();
946 Expr *Operand = E;
948 if (E->getType()->isDependentType()) {
949 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
950 return Res;
953 // If the expression is a temporary, materialize it as an lvalue so that we
954 // can use it multiple times.
955 if (E->isPRValue())
956 E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
958 // Build the await_ready, await_suspend, await_resume calls.
959 ReadySuspendResumeResult RSS = buildCoawaitCalls(
960 *this, Coroutine->CoroutinePromise, Loc, E);
961 if (RSS.IsInvalid)
962 return ExprError();
964 Expr *Res =
965 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
966 RSS.Results[2], RSS.OpaqueValue);
968 return Res;
971 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
972 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
973 CorrectDelayedTyposInExpr(E);
974 return StmtError();
976 return BuildCoreturnStmt(Loc, E);
979 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
980 bool IsImplicit) {
981 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
982 if (!FSI)
983 return StmtError();
985 if (E && E->hasPlaceholderType() &&
986 !E->hasPlaceholderType(BuiltinType::Overload)) {
987 ExprResult R = CheckPlaceholderExpr(E);
988 if (R.isInvalid()) return StmtError();
989 E = R.get();
992 VarDecl *Promise = FSI->CoroutinePromise;
993 ExprResult PC;
994 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
995 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
996 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
997 } else {
998 E = MakeFullDiscardedValueExpr(E).get();
999 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt);
1001 if (PC.isInvalid())
1002 return StmtError();
1004 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
1006 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1007 return Res;
1010 /// Look up the std::nothrow object.
1011 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1012 NamespaceDecl *Std = S.getStdNamespace();
1013 assert(Std && "Should already be diagnosed");
1015 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1016 Sema::LookupOrdinaryName);
1017 if (!S.LookupQualifiedName(Result, Std)) {
1018 // <coroutine> is not requred to include <new>, so we couldn't omit
1019 // the check here.
1020 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1021 return nullptr;
1024 auto *VD = Result.getAsSingle<VarDecl>();
1025 if (!VD) {
1026 Result.suppressDiagnostics();
1027 // We found something weird. Complain about the first thing we found.
1028 NamedDecl *Found = *Result.begin();
1029 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1030 return nullptr;
1033 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1034 if (DR.isInvalid())
1035 return nullptr;
1037 return DR.get();
1040 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
1041 SourceLocation Loc) {
1042 EnumDecl *StdAlignValT = S.getStdAlignValT();
1043 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
1044 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl);
1047 // Find an appropriate delete for the promise.
1048 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1049 FunctionDecl *&OperatorDelete) {
1050 DeclarationName DeleteName =
1051 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1053 auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1054 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1056 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
1058 // [dcl.fct.def.coroutine]p12
1059 // The deallocation function's name is looked up by searching for it in the
1060 // scope of the promise type. If nothing is found, a search is performed in
1061 // the global scope.
1062 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
1063 /*Diagnose*/ true, /*WantSize*/ true,
1064 /*WantAligned*/ Overaligned))
1065 return false;
1067 // [dcl.fct.def.coroutine]p12
1068 // If both a usual deallocation function with only a pointer parameter and a
1069 // usual deallocation function with both a pointer parameter and a size
1070 // parameter are found, then the selected deallocation function shall be the
1071 // one with two parameters. Otherwise, the selected deallocation function
1072 // shall be the function with one parameter.
1073 if (!OperatorDelete) {
1074 // Look for a global declaration.
1075 // Coroutines can always provide their required size.
1076 const bool CanProvideSize = true;
1077 // Sema::FindUsualDeallocationFunction will try to find the one with two
1078 // parameters first. It will return the deallocation function with one
1079 // parameter if failed.
1080 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1081 Overaligned, DeleteName);
1083 if (!OperatorDelete)
1084 return false;
1087 S.MarkFunctionReferenced(Loc, OperatorDelete);
1088 return true;
1092 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1093 FunctionScopeInfo *Fn = getCurFunction();
1094 assert(Fn && Fn->isCoroutine() && "not a coroutine");
1095 if (!Body) {
1096 assert(FD->isInvalidDecl() &&
1097 "a null body is only allowed for invalid declarations");
1098 return;
1100 // We have a function that uses coroutine keywords, but we failed to build
1101 // the promise type.
1102 if (!Fn->CoroutinePromise)
1103 return FD->setInvalidDecl();
1105 if (isa<CoroutineBodyStmt>(Body)) {
1106 // Nothing todo. the body is already a transformed coroutine body statement.
1107 return;
1110 // The always_inline attribute doesn't reliably apply to a coroutine,
1111 // because the coroutine will be split into pieces and some pieces
1112 // might be called indirectly, as in a virtual call. Even the ramp
1113 // function cannot be inlined at -O0, due to pipeline ordering
1114 // problems (see https://llvm.org/PR53413). Tell the user about it.
1115 if (FD->hasAttr<AlwaysInlineAttr>())
1116 Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1118 // [stmt.return.coroutine]p1:
1119 // A coroutine shall not enclose a return statement ([stmt.return]).
1120 if (Fn->FirstReturnLoc.isValid()) {
1121 assert(Fn->FirstCoroutineStmtLoc.isValid() &&
1122 "first coroutine location not set");
1123 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1124 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1125 << Fn->getFirstCoroutineStmtKeyword();
1128 // Coroutines will get splitted into pieces. The GNU address of label
1129 // extension wouldn't be meaningful in coroutines.
1130 for (AddrLabelExpr *ALE : Fn->AddrLabels)
1131 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
1133 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1134 if (Builder.isInvalid() || !Builder.buildStatements())
1135 return FD->setInvalidDecl();
1137 // Build body for the coroutine wrapper statement.
1138 Body = CoroutineBodyStmt::Create(Context, Builder);
1141 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) {
1142 if (auto *CS = dyn_cast<CompoundStmt>(Body))
1143 return CS;
1145 // The body of the coroutine may be a try statement if it is in
1146 // 'function-try-block' syntax. Here we wrap it into a compound
1147 // statement for consistency.
1148 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type");
1149 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(),
1150 SourceLocation(), SourceLocation());
1153 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1154 sema::FunctionScopeInfo &Fn,
1155 Stmt *Body)
1156 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1157 IsPromiseDependentType(
1158 !Fn.CoroutinePromise ||
1159 Fn.CoroutinePromise->getType()->isDependentType()) {
1160 this->Body = buildCoroutineBody(Body, S.getASTContext());
1162 for (auto KV : Fn.CoroutineParameterMoves)
1163 this->ParamMovesVector.push_back(KV.second);
1164 this->ParamMoves = this->ParamMovesVector;
1166 if (!IsPromiseDependentType) {
1167 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1168 assert(PromiseRecordDecl && "Type should have already been checked");
1170 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1173 bool CoroutineStmtBuilder::buildStatements() {
1174 assert(this->IsValid && "coroutine already invalid");
1175 this->IsValid = makeReturnObject();
1176 if (this->IsValid && !IsPromiseDependentType)
1177 buildDependentStatements();
1178 return this->IsValid;
1181 bool CoroutineStmtBuilder::buildDependentStatements() {
1182 assert(this->IsValid && "coroutine already invalid");
1183 assert(!this->IsPromiseDependentType &&
1184 "coroutine cannot have a dependent promise type");
1185 this->IsValid = makeOnException() && makeOnFallthrough() &&
1186 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1187 makeNewAndDeleteExpr();
1188 return this->IsValid;
1191 bool CoroutineStmtBuilder::makePromiseStmt() {
1192 // Form a declaration statement for the promise declaration, so that AST
1193 // visitors can more easily find it.
1194 StmtResult PromiseStmt =
1195 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1196 if (PromiseStmt.isInvalid())
1197 return false;
1199 this->Promise = PromiseStmt.get();
1200 return true;
1203 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1204 if (Fn.hasInvalidCoroutineSuspends())
1205 return false;
1206 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1207 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1208 return true;
1211 static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1212 CXXRecordDecl *PromiseRecordDecl,
1213 FunctionScopeInfo &Fn) {
1214 auto Loc = E->getExprLoc();
1215 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1216 auto *Decl = DeclRef->getDecl();
1217 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1218 if (Method->isStatic())
1219 return true;
1220 else
1221 Loc = Decl->getLocation();
1225 S.Diag(
1226 Loc,
1227 diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1228 << PromiseRecordDecl;
1229 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1230 << Fn.getFirstCoroutineStmtKeyword();
1231 return false;
1234 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1235 assert(!IsPromiseDependentType &&
1236 "cannot make statement while the promise type is dependent");
1238 // [dcl.fct.def.coroutine]p10
1239 // If a search for the name get_return_object_on_allocation_failure in
1240 // the scope of the promise type ([class.member.lookup]) finds any
1241 // declarations, then the result of a call to an allocation function used to
1242 // obtain storage for the coroutine state is assumed to return nullptr if it
1243 // fails to obtain storage, ... If the allocation function returns nullptr,
1244 // ... and the return value is obtained by a call to
1245 // T::get_return_object_on_allocation_failure(), where T is the
1246 // promise type.
1247 DeclarationName DN =
1248 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1249 LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1250 if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1251 return true;
1253 CXXScopeSpec SS;
1254 ExprResult DeclNameExpr =
1255 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1256 if (DeclNameExpr.isInvalid())
1257 return false;
1259 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1260 return false;
1262 ExprResult ReturnObjectOnAllocationFailure =
1263 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1264 if (ReturnObjectOnAllocationFailure.isInvalid())
1265 return false;
1267 StmtResult ReturnStmt =
1268 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1269 if (ReturnStmt.isInvalid()) {
1270 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1271 << DN;
1272 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1273 << Fn.getFirstCoroutineStmtKeyword();
1274 return false;
1277 this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1278 return true;
1281 // Collect placement arguments for allocation function of coroutine FD.
1282 // Return true if we collect placement arguments succesfully. Return false,
1283 // otherwise.
1284 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1285 SmallVectorImpl<Expr *> &PlacementArgs) {
1286 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1287 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
1288 ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1289 if (ThisExpr.isInvalid())
1290 return false;
1291 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1292 if (ThisExpr.isInvalid())
1293 return false;
1294 PlacementArgs.push_back(ThisExpr.get());
1298 for (auto *PD : FD.parameters()) {
1299 if (PD->getType()->isDependentType())
1300 continue;
1302 // Build a reference to the parameter.
1303 auto PDLoc = PD->getLocation();
1304 ExprResult PDRefExpr =
1305 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1306 ExprValueKind::VK_LValue, PDLoc);
1307 if (PDRefExpr.isInvalid())
1308 return false;
1310 PlacementArgs.push_back(PDRefExpr.get());
1313 return true;
1316 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1317 // Form and check allocation and deallocation calls.
1318 assert(!IsPromiseDependentType &&
1319 "cannot make statement while the promise type is dependent");
1320 QualType PromiseType = Fn.CoroutinePromise->getType();
1322 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1323 return false;
1325 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1327 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1328 // parameter list composed of the requested size of the coroutine state being
1329 // allocated, followed by the coroutine function's arguments. If a matching
1330 // allocation function exists, use it. Otherwise, use an allocation function
1331 // that just takes the requested size.
1333 // [dcl.fct.def.coroutine]p9
1334 // An implementation may need to allocate additional storage for a
1335 // coroutine.
1336 // This storage is known as the coroutine state and is obtained by calling a
1337 // non-array allocation function ([basic.stc.dynamic.allocation]). The
1338 // allocation function's name is looked up by searching for it in the scope of
1339 // the promise type.
1340 // - If any declarations are found, overload resolution is performed on a
1341 // function call created by assembling an argument list. The first argument is
1342 // the amount of space requested, and has type std::size_t. The
1343 // lvalues p1 ... pn are the succeeding arguments.
1345 // ...where "p1 ... pn" are defined earlier as:
1347 // [dcl.fct.def.coroutine]p3
1348 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1349 // Pn>`
1350 // , where R is the return type of the function, and `P1, ..., Pn` are the
1351 // sequence of types of the non-object function parameters, preceded by the
1352 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1353 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1354 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1355 // the i-th non-object function parameter for a non-static member function,
1356 // and p_i denotes the i-th function parameter otherwise. For a non-static
1357 // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1358 // lvalue that denotes the parameter copy corresponding to p_i.
1360 FunctionDecl *OperatorNew = nullptr;
1361 SmallVector<Expr *, 1> PlacementArgs;
1363 const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1364 DeclarationName NewName =
1365 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1366 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1368 if (PromiseType->isRecordType())
1369 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1371 return !R.empty() && !R.isAmbiguous();
1372 }();
1374 // Helper function to indicate whether the last lookup found the aligned
1375 // allocation function.
1376 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
1377 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1378 Sema::AFS_Both,
1379 bool WithoutPlacementArgs = false,
1380 bool ForceNonAligned = false) {
1381 // [dcl.fct.def.coroutine]p9
1382 // The allocation function's name is looked up by searching for it in the
1383 // scope of the promise type.
1384 // - If any declarations are found, ...
1385 // - If no declarations are found in the scope of the promise type, a search
1386 // is performed in the global scope.
1387 if (NewScope == Sema::AFS_Both)
1388 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1390 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation;
1391 FunctionDecl *UnusedResult = nullptr;
1392 S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
1393 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1394 /*isArray*/ false, PassAlignment,
1395 WithoutPlacementArgs ? MultiExprArg{}
1396 : PlacementArgs,
1397 OperatorNew, UnusedResult, /*Diagnose*/ false);
1400 // We don't expect to call to global operator new with (size, p0, …, pn).
1401 // So if we choose to lookup the allocation function in global scope, we
1402 // shouldn't lookup placement arguments.
1403 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1404 return false;
1406 LookupAllocationFunction();
1408 if (PromiseContainsNew && !PlacementArgs.empty()) {
1409 // [dcl.fct.def.coroutine]p9
1410 // If no viable function is found ([over.match.viable]), overload
1411 // resolution
1412 // is performed again on a function call created by passing just the amount
1413 // of space required as an argument of type std::size_t.
1415 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
1416 // Otherwise, overload resolution is performed again on a function call
1417 // created
1418 // by passing the amount of space requested as an argument of type
1419 // std::size_t as the first argument, and the requested alignment as
1420 // an argument of type std:align_val_t as the second argument.
1421 if (!OperatorNew ||
1422 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
1423 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1424 /*WithoutPlacementArgs*/ true);
1427 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1428 // Otherwise, overload resolution is performed again on a function call
1429 // created
1430 // by passing the amount of space requested as an argument of type
1431 // std::size_t as the first argument, and the lvalues p1 ... pn as the
1432 // succeeding arguments. Otherwise, overload resolution is performed again
1433 // on a function call created by passing just the amount of space required as
1434 // an argument of type std::size_t.
1436 // So within the proposed change in P2014RO, the priority order of aligned
1437 // allocation functions wiht promise_type is:
1439 // void* operator new( std::size_t, std::align_val_t, placement_args... );
1440 // void* operator new( std::size_t, std::align_val_t);
1441 // void* operator new( std::size_t, placement_args... );
1442 // void* operator new( std::size_t);
1444 // Helper variable to emit warnings.
1445 bool FoundNonAlignedInPromise = false;
1446 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation)
1447 if (!OperatorNew || !PassAlignment) {
1448 FoundNonAlignedInPromise = OperatorNew;
1450 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1451 /*WithoutPlacementArgs*/ false,
1452 /*ForceNonAligned*/ true);
1454 if (!OperatorNew && !PlacementArgs.empty())
1455 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1456 /*WithoutPlacementArgs*/ true,
1457 /*ForceNonAligned*/ true);
1460 bool IsGlobalOverload =
1461 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1462 // If we didn't find a class-local new declaration and non-throwing new
1463 // was is required then we need to lookup the non-throwing global operator
1464 // instead.
1465 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1466 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1467 if (!StdNoThrow)
1468 return false;
1469 PlacementArgs = {StdNoThrow};
1470 OperatorNew = nullptr;
1471 LookupAllocationFunction(Sema::AFS_Global);
1474 // If we found a non-aligned allocation function in the promise_type,
1475 // it indicates the user forgot to update the allocation function. Let's emit
1476 // a warning here.
1477 if (FoundNonAlignedInPromise) {
1478 S.Diag(OperatorNew->getLocation(),
1479 diag::warn_non_aligned_allocation_function)
1480 << &FD;
1483 if (!OperatorNew) {
1484 if (PromiseContainsNew)
1485 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1486 else if (RequiresNoThrowAlloc)
1487 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
1488 << &FD << S.getLangOpts().CoroAlignedAllocation;
1490 return false;
1493 if (RequiresNoThrowAlloc) {
1494 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1495 if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1496 S.Diag(OperatorNew->getLocation(),
1497 diag::err_coroutine_promise_new_requires_nothrow)
1498 << OperatorNew;
1499 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1500 << OperatorNew;
1501 return false;
1505 FunctionDecl *OperatorDelete = nullptr;
1506 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
1507 // FIXME: We should add an error here. According to:
1508 // [dcl.fct.def.coroutine]p12
1509 // If no usual deallocation function is found, the program is ill-formed.
1510 return false;
1513 Expr *FramePtr =
1514 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1516 Expr *FrameSize =
1517 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1519 Expr *FrameAlignment = nullptr;
1521 if (S.getLangOpts().CoroAlignedAllocation) {
1522 FrameAlignment =
1523 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
1525 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
1526 if (!AlignValTy)
1527 return false;
1529 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy,
1530 FrameAlignment, SourceRange(Loc, Loc),
1531 SourceRange(Loc, Loc))
1532 .get();
1535 // Make new call.
1536 ExprResult NewRef =
1537 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1538 if (NewRef.isInvalid())
1539 return false;
1541 SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1542 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
1543 NewArgs.push_back(FrameAlignment);
1545 if (OperatorNew->getNumParams() > NewArgs.size())
1546 llvm::append_range(NewArgs, PlacementArgs);
1548 ExprResult NewExpr =
1549 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1550 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1551 if (NewExpr.isInvalid())
1552 return false;
1554 // Make delete call.
1556 QualType OpDeleteQualType = OperatorDelete->getType();
1558 ExprResult DeleteRef =
1559 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1560 if (DeleteRef.isInvalid())
1561 return false;
1563 Expr *CoroFree =
1564 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1566 SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1568 // [dcl.fct.def.coroutine]p12
1569 // The selected deallocation function shall be called with the address of
1570 // the block of storage to be reclaimed as its first argument. If a
1571 // deallocation function with a parameter of type std::size_t is
1572 // used, the size of the block is passed as the corresponding argument.
1573 const auto *OpDeleteType =
1574 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1575 if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
1576 S.getASTContext().hasSameUnqualifiedType(
1577 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType()))
1578 DeleteArgs.push_back(FrameSize);
1580 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1581 // If deallocation function lookup finds a usual deallocation function with
1582 // a pointer parameter, size parameter and alignment parameter then this
1583 // will be the selected deallocation function, otherwise if lookup finds a
1584 // usual deallocation function with both a pointer parameter and a size
1585 // parameter, then this will be the selected deallocation function.
1586 // Otherwise, if lookup finds a usual deallocation function with only a
1587 // pointer parameter, then this will be the selected deallocation
1588 // function.
1590 // So we are not forced to pass alignment to the deallocation function.
1591 if (S.getLangOpts().CoroAlignedAllocation &&
1592 OpDeleteType->getNumParams() > DeleteArgs.size() &&
1593 S.getASTContext().hasSameUnqualifiedType(
1594 OpDeleteType->getParamType(DeleteArgs.size()),
1595 FrameAlignment->getType()))
1596 DeleteArgs.push_back(FrameAlignment);
1598 ExprResult DeleteExpr =
1599 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1600 DeleteExpr =
1601 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1602 if (DeleteExpr.isInvalid())
1603 return false;
1605 this->Allocate = NewExpr.get();
1606 this->Deallocate = DeleteExpr.get();
1608 return true;
1611 bool CoroutineStmtBuilder::makeOnFallthrough() {
1612 assert(!IsPromiseDependentType &&
1613 "cannot make statement while the promise type is dependent");
1615 // [dcl.fct.def.coroutine]/p6
1616 // If searches for the names return_void and return_value in the scope of
1617 // the promise type each find any declarations, the program is ill-formed.
1618 // [Note 1: If return_void is found, flowing off the end of a coroutine is
1619 // equivalent to a co_return with no operand. Otherwise, flowing off the end
1620 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1621 // end note]
1622 bool HasRVoid, HasRValue;
1623 LookupResult LRVoid =
1624 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1625 LookupResult LRValue =
1626 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1628 StmtResult Fallthrough;
1629 if (HasRVoid && HasRValue) {
1630 // FIXME Improve this diagnostic
1631 S.Diag(FD.getLocation(),
1632 diag::err_coroutine_promise_incompatible_return_functions)
1633 << PromiseRecordDecl;
1634 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1635 diag::note_member_first_declared_here)
1636 << LRVoid.getLookupName();
1637 S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1638 diag::note_member_first_declared_here)
1639 << LRValue.getLookupName();
1640 return false;
1641 } else if (!HasRVoid && !HasRValue) {
1642 // We need to set 'Fallthrough'. Otherwise the other analysis part might
1643 // think the coroutine has defined a return_value method. So it might emit
1644 // **false** positive warning. e.g.,
1646 // promise_without_return_func foo() {
1647 // co_await something();
1648 // }
1650 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1651 // co_return statements, which isn't correct.
1652 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1653 if (Fallthrough.isInvalid())
1654 return false;
1655 } else if (HasRVoid) {
1656 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1657 /*IsImplicit*/false);
1658 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1659 if (Fallthrough.isInvalid())
1660 return false;
1663 this->OnFallthrough = Fallthrough.get();
1664 return true;
1667 bool CoroutineStmtBuilder::makeOnException() {
1668 // Try to form 'p.unhandled_exception();'
1669 assert(!IsPromiseDependentType &&
1670 "cannot make statement while the promise type is dependent");
1672 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1674 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1675 auto DiagID =
1676 RequireUnhandledException
1677 ? diag::err_coroutine_promise_unhandled_exception_required
1678 : diag::
1679 warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1680 S.Diag(Loc, DiagID) << PromiseRecordDecl;
1681 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1682 << PromiseRecordDecl;
1683 return !RequireUnhandledException;
1686 // If exceptions are disabled, don't try to build OnException.
1687 if (!S.getLangOpts().CXXExceptions)
1688 return true;
1690 ExprResult UnhandledException = buildPromiseCall(
1691 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt);
1692 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1693 /*DiscardedValue*/ false);
1694 if (UnhandledException.isInvalid())
1695 return false;
1697 // Since the body of the coroutine will be wrapped in try-catch, it will
1698 // be incompatible with SEH __try if present in a function.
1699 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1700 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1701 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1702 << Fn.getFirstCoroutineStmtKeyword();
1703 return false;
1706 this->OnException = UnhandledException.get();
1707 return true;
1710 bool CoroutineStmtBuilder::makeReturnObject() {
1711 // [dcl.fct.def.coroutine]p7
1712 // The expression promise.get_return_object() is used to initialize the
1713 // returned reference or prvalue result object of a call to a coroutine.
1714 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1715 "get_return_object", std::nullopt);
1716 if (ReturnObject.isInvalid())
1717 return false;
1719 this->ReturnValue = ReturnObject.get();
1720 return true;
1723 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1724 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1725 auto *MethodDecl = MbrRef->getMethodDecl();
1726 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1727 << MethodDecl;
1729 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1730 << Fn.getFirstCoroutineStmtKeyword();
1733 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1734 assert(!IsPromiseDependentType &&
1735 "cannot make statement while the promise type is dependent");
1736 assert(this->ReturnValue && "ReturnValue must be already formed");
1738 QualType const GroType = this->ReturnValue->getType();
1739 assert(!GroType->isDependentType() &&
1740 "get_return_object type must no longer be dependent");
1742 QualType const FnRetType = FD.getReturnType();
1743 assert(!FnRetType->isDependentType() &&
1744 "get_return_object type must no longer be dependent");
1746 // The call to get_­return_­object is sequenced before the call to
1747 // initial_­suspend and is invoked at most once, but there are caveats
1748 // regarding on whether the prvalue result object may be initialized
1749 // directly/eager or delayed, depending on the types involved.
1751 // More info at https://github.com/cplusplus/papers/issues/1414
1752 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType);
1754 if (FnRetType->isVoidType()) {
1755 ExprResult Res =
1756 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1757 if (Res.isInvalid())
1758 return false;
1760 if (!GroMatchesRetType)
1761 this->ResultDecl = Res.get();
1762 return true;
1765 if (GroType->isVoidType()) {
1766 // Trigger a nice error message.
1767 InitializedEntity Entity =
1768 InitializedEntity::InitializeResult(Loc, FnRetType);
1769 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1770 noteMemberDeclaredHere(S, ReturnValue, Fn);
1771 return false;
1774 StmtResult ReturnStmt;
1775 clang::VarDecl *GroDecl = nullptr;
1776 if (GroMatchesRetType) {
1777 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1778 } else {
1779 GroDecl = VarDecl::Create(
1780 S.Context, &FD, FD.getLocation(), FD.getLocation(),
1781 &S.PP.getIdentifierTable().get("__coro_gro"), GroType,
1782 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None);
1783 GroDecl->setImplicit();
1785 S.CheckVariableDeclarationType(GroDecl);
1786 if (GroDecl->isInvalidDecl())
1787 return false;
1789 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl);
1790 ExprResult Res =
1791 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1792 if (Res.isInvalid())
1793 return false;
1795 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false);
1796 if (Res.isInvalid())
1797 return false;
1799 S.AddInitializerToDecl(GroDecl, Res.get(),
1800 /*DirectInit=*/false);
1802 S.FinalizeDeclaration(GroDecl);
1804 // Form a declaration statement for the return declaration, so that AST
1805 // visitors can more easily find it.
1806 StmtResult GroDeclStmt =
1807 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc);
1808 if (GroDeclStmt.isInvalid())
1809 return false;
1811 this->ResultDecl = GroDeclStmt.get();
1813 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
1814 if (declRef.isInvalid())
1815 return false;
1817 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get());
1820 if (ReturnStmt.isInvalid()) {
1821 noteMemberDeclaredHere(S, ReturnValue, Fn);
1822 return false;
1825 if (!GroMatchesRetType &&
1826 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl)
1827 GroDecl->setNRVOVariable(true);
1829 this->ReturnStmt = ReturnStmt.get();
1830 return true;
1833 // Create a static_cast\<T&&>(expr).
1834 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1835 if (T.isNull())
1836 T = E->getType();
1837 QualType TargetType = S.BuildReferenceType(
1838 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1839 SourceLocation ExprLoc = E->getBeginLoc();
1840 TypeSourceInfo *TargetLoc =
1841 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1843 return S
1844 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1845 SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1846 .get();
1849 /// Build a variable declaration for move parameter.
1850 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1851 IdentifierInfo *II) {
1852 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1853 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1854 TInfo, SC_None);
1855 Decl->setImplicit();
1856 return Decl;
1859 // Build statements that move coroutine function parameters to the coroutine
1860 // frame, and store them on the function scope info.
1861 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1862 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1863 auto *FD = cast<FunctionDecl>(CurContext);
1865 auto *ScopeInfo = getCurFunction();
1866 if (!ScopeInfo->CoroutineParameterMoves.empty())
1867 return false;
1869 // [dcl.fct.def.coroutine]p13
1870 // When a coroutine is invoked, after initializing its parameters
1871 // ([expr.call]), a copy is created for each coroutine parameter. For a
1872 // parameter of type cv T, the copy is a variable of type cv T with
1873 // automatic storage duration that is direct-initialized from an xvalue of
1874 // type T referring to the parameter.
1875 for (auto *PD : FD->parameters()) {
1876 if (PD->getType()->isDependentType())
1877 continue;
1879 ExprResult PDRefExpr =
1880 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1881 ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1882 if (PDRefExpr.isInvalid())
1883 return false;
1885 Expr *CExpr = nullptr;
1886 if (PD->getType()->getAsCXXRecordDecl() ||
1887 PD->getType()->isRValueReferenceType())
1888 CExpr = castForMoving(*this, PDRefExpr.get());
1889 else
1890 CExpr = PDRefExpr.get();
1891 // [dcl.fct.def.coroutine]p13
1892 // The initialization and destruction of each parameter copy occurs in the
1893 // context of the called coroutine.
1894 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1895 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1897 // Convert decl to a statement.
1898 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1899 if (Stmt.isInvalid())
1900 return false;
1902 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1904 return true;
1907 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1908 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
1909 if (!Res)
1910 return StmtError();
1911 return Res;
1914 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
1915 SourceLocation FuncLoc) {
1916 if (StdCoroutineTraitsCache)
1917 return StdCoroutineTraitsCache;
1919 IdentifierInfo const &TraitIdent =
1920 PP.getIdentifierTable().get("coroutine_traits");
1922 NamespaceDecl *StdSpace = getStdNamespace();
1923 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1924 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace);
1926 if (!Found) {
1927 // The goggles, we found nothing!
1928 Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
1929 << "std::coroutine_traits";
1930 return nullptr;
1933 // coroutine_traits is required to be a class template.
1934 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
1935 if (!StdCoroutineTraitsCache) {
1936 Result.suppressDiagnostics();
1937 NamedDecl *Found = *Result.begin();
1938 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
1939 return nullptr;
1942 return StdCoroutineTraitsCache;