1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for expressions.
11 //===----------------------------------------------------------------------===//
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Lex/LiteralSupport.h"
39 #include "clang/Lex/Preprocessor.h"
40 #include "clang/Sema/AnalysisBasedWarnings.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Designator.h"
44 #include "clang/Sema/EnterExpressionEvaluationContext.h"
45 #include "clang/Sema/Initialization.h"
46 #include "clang/Sema/Lookup.h"
47 #include "clang/Sema/Overload.h"
48 #include "clang/Sema/ParsedTemplate.h"
49 #include "clang/Sema/Scope.h"
50 #include "clang/Sema/ScopeInfo.h"
51 #include "clang/Sema/SemaFixItUtils.h"
52 #include "clang/Sema/SemaInternal.h"
53 #include "clang/Sema/Template.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/ConvertUTF.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/TypeSize.h"
62 using namespace clang
;
65 /// Determine whether the use of this declaration is valid, without
66 /// emitting diagnostics.
67 bool Sema::CanUseDecl(NamedDecl
*D
, bool TreatUnavailableAsInvalid
) {
68 // See if this is an auto-typed variable whose initializer we are parsing.
69 if (ParsingInitForAutoVars
.count(D
))
72 // See if this is a deleted function.
73 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
77 // If the function has a deduced return type, and we can't deduce it,
78 // then we can't use it either.
79 if (getLangOpts().CPlusPlus14
&& FD
->getReturnType()->isUndeducedType() &&
80 DeduceReturnType(FD
, SourceLocation(), /*Diagnose*/ false))
83 // See if this is an aligned allocation/deallocation function that is
85 if (TreatUnavailableAsInvalid
&&
86 isUnavailableAlignedAllocationFunction(*FD
))
90 // See if this function is unavailable.
91 if (TreatUnavailableAsInvalid
&& D
->getAvailability() == AR_Unavailable
&&
92 cast
<Decl
>(CurContext
)->getAvailability() != AR_Unavailable
)
95 if (isa
<UnresolvedUsingIfExistsDecl
>(D
))
101 static void DiagnoseUnusedOfDecl(Sema
&S
, NamedDecl
*D
, SourceLocation Loc
) {
102 // Warn if this is used but marked unused.
103 if (const auto *A
= D
->getAttr
<UnusedAttr
>()) {
104 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
105 // should diagnose them.
106 if (A
->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused
&&
107 A
->getSemanticSpelling() != UnusedAttr::C23_maybe_unused
) {
108 const Decl
*DC
= cast_or_null
<Decl
>(S
.getCurObjCLexicalContext());
109 if (DC
&& !DC
->hasAttr
<UnusedAttr
>())
110 S
.Diag(Loc
, diag::warn_used_but_marked_unused
) << D
;
115 /// Emit a note explaining that this function is deleted.
116 void Sema::NoteDeletedFunction(FunctionDecl
*Decl
) {
117 assert(Decl
&& Decl
->isDeleted());
119 if (Decl
->isDefaulted()) {
120 // If the method was explicitly defaulted, point at that declaration.
121 if (!Decl
->isImplicit())
122 Diag(Decl
->getLocation(), diag::note_implicitly_deleted
);
124 // Try to diagnose why this special member function was implicitly
125 // deleted. This might fail, if that reason no longer applies.
126 DiagnoseDeletedDefaultedFunction(Decl
);
130 auto *Ctor
= dyn_cast
<CXXConstructorDecl
>(Decl
);
131 if (Ctor
&& Ctor
->isInheritingConstructor())
132 return NoteDeletedInheritingConstructor(Ctor
);
134 Diag(Decl
->getLocation(), diag::note_availability_specified_here
)
138 /// Determine whether a FunctionDecl was ever declared with an
139 /// explicit storage class.
140 static bool hasAnyExplicitStorageClass(const FunctionDecl
*D
) {
141 for (auto *I
: D
->redecls()) {
142 if (I
->getStorageClass() != SC_None
)
148 /// Check whether we're in an extern inline function and referring to a
149 /// variable or function with internal linkage (C11 6.7.4p3).
151 /// This is only a warning because we used to silently accept this code, but
152 /// in many cases it will not behave correctly. This is not enabled in C++ mode
153 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
154 /// and so while there may still be user mistakes, most of the time we can't
155 /// prove that there are errors.
156 static void diagnoseUseOfInternalDeclInInlineFunction(Sema
&S
,
158 SourceLocation Loc
) {
159 // This is disabled under C++; there are too many ways for this to fire in
160 // contexts where the warning is a false positive, or where it is technically
161 // correct but benign.
162 if (S
.getLangOpts().CPlusPlus
)
165 // Check if this is an inlined function or method.
166 FunctionDecl
*Current
= S
.getCurFunctionDecl();
169 if (!Current
->isInlined())
171 if (!Current
->isExternallyVisible())
174 // Check if the decl has internal linkage.
175 if (D
->getFormalLinkage() != InternalLinkage
)
178 // Downgrade from ExtWarn to Extension if
179 // (1) the supposedly external inline function is in the main file,
180 // and probably won't be included anywhere else.
181 // (2) the thing we're referencing is a pure function.
182 // (3) the thing we're referencing is another inline function.
183 // This last can give us false negatives, but it's better than warning on
184 // wrappers for simple C library functions.
185 const FunctionDecl
*UsedFn
= dyn_cast
<FunctionDecl
>(D
);
186 bool DowngradeWarning
= S
.getSourceManager().isInMainFile(Loc
);
187 if (!DowngradeWarning
&& UsedFn
)
188 DowngradeWarning
= UsedFn
->isInlined() || UsedFn
->hasAttr
<ConstAttr
>();
190 S
.Diag(Loc
, DowngradeWarning
? diag::ext_internal_in_extern_inline_quiet
191 : diag::ext_internal_in_extern_inline
)
192 << /*IsVar=*/!UsedFn
<< D
;
194 S
.MaybeSuggestAddingStaticToDecl(Current
);
196 S
.Diag(D
->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at
)
200 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl
*Cur
) {
201 const FunctionDecl
*First
= Cur
->getFirstDecl();
203 // Suggest "static" on the function, if possible.
204 if (!hasAnyExplicitStorageClass(First
)) {
205 SourceLocation DeclBegin
= First
->getSourceRange().getBegin();
206 Diag(DeclBegin
, diag::note_convert_inline_to_static
)
207 << Cur
<< FixItHint::CreateInsertion(DeclBegin
, "static ");
211 /// Determine whether the use of this declaration is valid, and
212 /// emit any corresponding diagnostics.
214 /// This routine diagnoses various problems with referencing
215 /// declarations that can occur when using a declaration. For example,
216 /// it might warn if a deprecated or unavailable declaration is being
217 /// used, or produce an error (and return true) if a C++0x deleted
218 /// function is being used.
220 /// \returns true if there was an error (this declaration cannot be
221 /// referenced), false otherwise.
223 bool Sema::DiagnoseUseOfDecl(NamedDecl
*D
, ArrayRef
<SourceLocation
> Locs
,
224 const ObjCInterfaceDecl
*UnknownObjCClass
,
225 bool ObjCPropertyAccess
,
226 bool AvoidPartialAvailabilityChecks
,
227 ObjCInterfaceDecl
*ClassReceiver
,
228 bool SkipTrailingRequiresClause
) {
229 SourceLocation Loc
= Locs
.front();
230 if (getLangOpts().CPlusPlus
&& isa
<FunctionDecl
>(D
)) {
231 // If there were any diagnostics suppressed by template argument deduction,
233 auto Pos
= SuppressedDiagnostics
.find(D
->getCanonicalDecl());
234 if (Pos
!= SuppressedDiagnostics
.end()) {
235 for (const PartialDiagnosticAt
&Suppressed
: Pos
->second
)
236 Diag(Suppressed
.first
, Suppressed
.second
);
238 // Clear out the list of suppressed diagnostics, so that we don't emit
239 // them again for this specialization. However, we don't obsolete this
240 // entry from the table, because we want to avoid ever emitting these
241 // diagnostics again.
245 // C++ [basic.start.main]p3:
246 // The function 'main' shall not be used within a program.
247 if (cast
<FunctionDecl
>(D
)->isMain())
248 Diag(Loc
, diag::ext_main_used
);
250 diagnoseUnavailableAlignedAllocation(*cast
<FunctionDecl
>(D
), Loc
);
253 // See if this is an auto-typed variable whose initializer we are parsing.
254 if (ParsingInitForAutoVars
.count(D
)) {
255 if (isa
<BindingDecl
>(D
)) {
256 Diag(Loc
, diag::err_binding_cannot_appear_in_own_initializer
)
259 Diag(Loc
, diag::err_auto_variable_cannot_appear_in_own_initializer
)
260 << D
->getDeclName() << cast
<VarDecl
>(D
)->getType();
265 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
266 // See if this is a deleted function.
267 if (FD
->isDeleted()) {
268 auto *Ctor
= dyn_cast
<CXXConstructorDecl
>(FD
);
269 if (Ctor
&& Ctor
->isInheritingConstructor())
270 Diag(Loc
, diag::err_deleted_inherited_ctor_use
)
272 << Ctor
->getInheritedConstructor().getConstructor()->getParent();
274 Diag(Loc
, diag::err_deleted_function_use
);
275 NoteDeletedFunction(FD
);
280 // A program that refers explicitly or implicitly to a function with a
281 // trailing requires-clause whose constraint-expression is not satisfied,
282 // other than to declare it, is ill-formed. [...]
284 // See if this is a function with constraints that need to be satisfied.
285 // Check this before deducing the return type, as it might instantiate the
287 if (!SkipTrailingRequiresClause
&& FD
->getTrailingRequiresClause()) {
288 ConstraintSatisfaction Satisfaction
;
289 if (CheckFunctionConstraints(FD
, Satisfaction
, Loc
,
290 /*ForOverloadResolution*/ true))
291 // A diagnostic will have already been generated (non-constant
292 // constraint expression, for example)
294 if (!Satisfaction
.IsSatisfied
) {
296 diag::err_reference_to_function_with_unsatisfied_constraints
)
298 DiagnoseUnsatisfiedConstraint(Satisfaction
);
303 // If the function has a deduced return type, and we can't deduce it,
304 // then we can't use it either.
305 if (getLangOpts().CPlusPlus14
&& FD
->getReturnType()->isUndeducedType() &&
306 DeduceReturnType(FD
, Loc
))
309 if (getLangOpts().CUDA
&& !CheckCUDACall(Loc
, FD
))
314 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(D
)) {
315 // Lambdas are only default-constructible or assignable in C++2a onwards.
316 if (MD
->getParent()->isLambda() &&
317 ((isa
<CXXConstructorDecl
>(MD
) &&
318 cast
<CXXConstructorDecl
>(MD
)->isDefaultConstructor()) ||
319 MD
->isCopyAssignmentOperator() || MD
->isMoveAssignmentOperator())) {
320 Diag(Loc
, diag::warn_cxx17_compat_lambda_def_ctor_assign
)
321 << !isa
<CXXConstructorDecl
>(MD
);
325 auto getReferencedObjCProp
= [](const NamedDecl
*D
) ->
326 const ObjCPropertyDecl
* {
327 if (const auto *MD
= dyn_cast
<ObjCMethodDecl
>(D
))
328 return MD
->findPropertyDecl();
331 if (const ObjCPropertyDecl
*ObjCPDecl
= getReferencedObjCProp(D
)) {
332 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl
, Loc
))
334 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D
, Loc
)) {
338 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
339 // Only the variables omp_in and omp_out are allowed in the combiner.
340 // Only the variables omp_priv and omp_orig are allowed in the
341 // initializer-clause.
342 auto *DRD
= dyn_cast
<OMPDeclareReductionDecl
>(CurContext
);
343 if (LangOpts
.OpenMP
&& DRD
&& !CurContext
->containsDecl(D
) &&
345 Diag(Loc
, diag::err_omp_wrong_var_in_declare_reduction
)
346 << getCurFunction()->HasOMPDeclareReductionCombiner
;
347 Diag(D
->getLocation(), diag::note_entity_declared_at
) << D
;
351 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
352 // List-items in map clauses on this construct may only refer to the declared
353 // variable var and entities that could be referenced by a procedure defined
354 // at the same location.
355 // [OpenMP 5.2] Also allow iterator declared variables.
356 if (LangOpts
.OpenMP
&& isa
<VarDecl
>(D
) &&
357 !isOpenMPDeclareMapperVarDeclAllowed(cast
<VarDecl
>(D
))) {
358 Diag(Loc
, diag::err_omp_declare_mapper_wrong_var
)
359 << getOpenMPDeclareMapperVarName();
360 Diag(D
->getLocation(), diag::note_entity_declared_at
) << D
;
364 if (const auto *EmptyD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(D
)) {
365 Diag(Loc
, diag::err_use_of_empty_using_if_exists
);
366 Diag(EmptyD
->getLocation(), diag::note_empty_using_if_exists_here
);
370 DiagnoseAvailabilityOfDecl(D
, Locs
, UnknownObjCClass
, ObjCPropertyAccess
,
371 AvoidPartialAvailabilityChecks
, ClassReceiver
);
373 DiagnoseUnusedOfDecl(*this, D
, Loc
);
375 diagnoseUseOfInternalDeclInInlineFunction(*this, D
, Loc
);
377 if (D
->hasAttr
<AvailableOnlyInDefaultEvalMethodAttr
>()) {
378 if (getLangOpts().getFPEvalMethod() !=
379 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine
&&
380 PP
.getLastFPEvalPragmaLocation().isValid() &&
381 PP
.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
382 Diag(D
->getLocation(),
383 diag::err_type_available_only_in_default_eval_method
)
387 if (auto *VD
= dyn_cast
<ValueDecl
>(D
))
388 checkTypeSupport(VD
->getType(), Loc
, VD
);
390 if (LangOpts
.SYCLIsDevice
||
391 (LangOpts
.OpenMP
&& LangOpts
.OpenMPIsTargetDevice
)) {
392 if (!Context
.getTargetInfo().isTLSSupported())
393 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
394 if (VD
->getTLSKind() != VarDecl::TLS_None
)
395 targetDiag(*Locs
.begin(), diag::err_thread_unsupported
);
398 if (isa
<ParmVarDecl
>(D
) && isa
<RequiresExprBodyDecl
>(D
->getDeclContext()) &&
399 !isUnevaluatedContext()) {
400 // C++ [expr.prim.req.nested] p3
401 // A local parameter shall only appear as an unevaluated operand
402 // (Clause 8) within the constraint-expression.
403 Diag(Loc
, diag::err_requires_expr_parameter_referenced_in_evaluated_context
)
405 Diag(D
->getLocation(), diag::note_entity_declared_at
) << D
;
412 /// DiagnoseSentinelCalls - This routine checks whether a call or
413 /// message-send is to a declaration with the sentinel attribute, and
414 /// if so, it checks that the requirements of the sentinel are
416 void Sema::DiagnoseSentinelCalls(NamedDecl
*D
, SourceLocation Loc
,
417 ArrayRef
<Expr
*> Args
) {
418 const SentinelAttr
*attr
= D
->getAttr
<SentinelAttr
>();
422 // The number of formal parameters of the declaration.
423 unsigned numFormalParams
;
425 // The kind of declaration. This is also an index into a %select in
427 enum CalleeType
{ CT_Function
, CT_Method
, CT_Block
} calleeType
;
429 if (ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(D
)) {
430 numFormalParams
= MD
->param_size();
431 calleeType
= CT_Method
;
432 } else if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
433 numFormalParams
= FD
->param_size();
434 calleeType
= CT_Function
;
435 } else if (isa
<VarDecl
>(D
)) {
436 QualType type
= cast
<ValueDecl
>(D
)->getType();
437 const FunctionType
*fn
= nullptr;
438 if (const PointerType
*ptr
= type
->getAs
<PointerType
>()) {
439 fn
= ptr
->getPointeeType()->getAs
<FunctionType
>();
441 calleeType
= CT_Function
;
442 } else if (const BlockPointerType
*ptr
= type
->getAs
<BlockPointerType
>()) {
443 fn
= ptr
->getPointeeType()->castAs
<FunctionType
>();
444 calleeType
= CT_Block
;
449 if (const FunctionProtoType
*proto
= dyn_cast
<FunctionProtoType
>(fn
)) {
450 numFormalParams
= proto
->getNumParams();
458 // "nullPos" is the number of formal parameters at the end which
459 // effectively count as part of the variadic arguments. This is
460 // useful if you would prefer to not have *any* formal parameters,
461 // but the language forces you to have at least one.
462 unsigned nullPos
= attr
->getNullPos();
463 assert((nullPos
== 0 || nullPos
== 1) && "invalid null position on sentinel");
464 numFormalParams
= (nullPos
> numFormalParams
? 0 : numFormalParams
- nullPos
);
466 // The number of arguments which should follow the sentinel.
467 unsigned numArgsAfterSentinel
= attr
->getSentinel();
469 // If there aren't enough arguments for all the formal parameters,
470 // the sentinel, and the args after the sentinel, complain.
471 if (Args
.size() < numFormalParams
+ numArgsAfterSentinel
+ 1) {
472 Diag(Loc
, diag::warn_not_enough_argument
) << D
->getDeclName();
473 Diag(D
->getLocation(), diag::note_sentinel_here
) << int(calleeType
);
477 // Otherwise, find the sentinel expression.
478 Expr
*sentinelExpr
= Args
[Args
.size() - numArgsAfterSentinel
- 1];
479 if (!sentinelExpr
) return;
480 if (sentinelExpr
->isValueDependent()) return;
481 if (Context
.isSentinelNullExpr(sentinelExpr
)) return;
483 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
484 // or 'NULL' if those are actually defined in the context. Only use
485 // 'nil' for ObjC methods, where it's much more likely that the
486 // variadic arguments form a list of object pointers.
487 SourceLocation MissingNilLoc
= getLocForEndOfToken(sentinelExpr
->getEndLoc());
488 std::string NullValue
;
489 if (calleeType
== CT_Method
&& PP
.isMacroDefined("nil"))
491 else if (getLangOpts().CPlusPlus11
)
492 NullValue
= "nullptr";
493 else if (PP
.isMacroDefined("NULL"))
496 NullValue
= "(void*) 0";
498 if (MissingNilLoc
.isInvalid())
499 Diag(Loc
, diag::warn_missing_sentinel
) << int(calleeType
);
501 Diag(MissingNilLoc
, diag::warn_missing_sentinel
)
503 << FixItHint::CreateInsertion(MissingNilLoc
, ", " + NullValue
);
504 Diag(D
->getLocation(), diag::note_sentinel_here
) << int(calleeType
);
507 SourceRange
Sema::getExprRange(Expr
*E
) const {
508 return E
? E
->getSourceRange() : SourceRange();
511 //===----------------------------------------------------------------------===//
512 // Standard Promotions and Conversions
513 //===----------------------------------------------------------------------===//
515 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
516 ExprResult
Sema::DefaultFunctionArrayConversion(Expr
*E
, bool Diagnose
) {
517 // Handle any placeholder expressions which made it here.
518 if (E
->hasPlaceholderType()) {
519 ExprResult result
= CheckPlaceholderExpr(E
);
520 if (result
.isInvalid()) return ExprError();
524 QualType Ty
= E
->getType();
525 assert(!Ty
.isNull() && "DefaultFunctionArrayConversion - missing type");
527 if (Ty
->isFunctionType()) {
528 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenCasts()))
529 if (auto *FD
= dyn_cast
<FunctionDecl
>(DRE
->getDecl()))
530 if (!checkAddressOfFunctionIsAvailable(FD
, Diagnose
, E
->getExprLoc()))
533 E
= ImpCastExprToType(E
, Context
.getPointerType(Ty
),
534 CK_FunctionToPointerDecay
).get();
535 } else if (Ty
->isArrayType()) {
536 // In C90 mode, arrays only promote to pointers if the array expression is
537 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
538 // type 'array of type' is converted to an expression that has type 'pointer
539 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
540 // that has type 'array of type' ...". The relevant change is "an lvalue"
541 // (C90) to "an expression" (C99).
544 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
545 // T" can be converted to an rvalue of type "pointer to T".
547 if (getLangOpts().C99
|| getLangOpts().CPlusPlus
|| E
->isLValue()) {
548 ExprResult Res
= ImpCastExprToType(E
, Context
.getArrayDecayedType(Ty
),
549 CK_ArrayToPointerDecay
);
558 static void CheckForNullPointerDereference(Sema
&S
, Expr
*E
) {
559 // Check to see if we are dereferencing a null pointer. If so,
560 // and if not volatile-qualified, this is undefined behavior that the
561 // optimizer will delete, so warn about it. People sometimes try to use this
562 // to get a deterministic trap and are surprised by clang's behavior. This
563 // only handles the pattern "*null", which is a very syntactic check.
564 const auto *UO
= dyn_cast
<UnaryOperator
>(E
->IgnoreParenCasts());
565 if (UO
&& UO
->getOpcode() == UO_Deref
&&
566 UO
->getSubExpr()->getType()->isPointerType()) {
568 UO
->getSubExpr()->getType()->getPointeeType().getAddressSpace();
569 if ((!isTargetAddressSpace(AS
) ||
570 (isTargetAddressSpace(AS
) && toTargetAddressSpace(AS
) == 0)) &&
571 UO
->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
572 S
.Context
, Expr::NPC_ValueDependentIsNotNull
) &&
573 !UO
->getType().isVolatileQualified()) {
574 S
.DiagRuntimeBehavior(UO
->getOperatorLoc(), UO
,
575 S
.PDiag(diag::warn_indirection_through_null
)
576 << UO
->getSubExpr()->getSourceRange());
577 S
.DiagRuntimeBehavior(UO
->getOperatorLoc(), UO
,
578 S
.PDiag(diag::note_indirection_through_null
));
583 static void DiagnoseDirectIsaAccess(Sema
&S
, const ObjCIvarRefExpr
*OIRE
,
584 SourceLocation AssignLoc
,
586 const ObjCIvarDecl
*IV
= OIRE
->getDecl();
590 DeclarationName MemberName
= IV
->getDeclName();
591 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
592 if (!Member
|| !Member
->isStr("isa"))
595 const Expr
*Base
= OIRE
->getBase();
596 QualType BaseType
= Base
->getType();
598 BaseType
= BaseType
->getPointeeType();
599 if (const ObjCObjectType
*OTy
= BaseType
->getAs
<ObjCObjectType
>())
600 if (ObjCInterfaceDecl
*IDecl
= OTy
->getInterface()) {
601 ObjCInterfaceDecl
*ClassDeclared
= nullptr;
602 ObjCIvarDecl
*IV
= IDecl
->lookupInstanceVariable(Member
, ClassDeclared
);
603 if (!ClassDeclared
->getSuperClass()
604 && (*ClassDeclared
->ivar_begin()) == IV
) {
606 NamedDecl
*ObjectSetClass
=
607 S
.LookupSingleName(S
.TUScope
,
608 &S
.Context
.Idents
.get("object_setClass"),
609 SourceLocation(), S
.LookupOrdinaryName
);
610 if (ObjectSetClass
) {
611 SourceLocation RHSLocEnd
= S
.getLocForEndOfToken(RHS
->getEndLoc());
612 S
.Diag(OIRE
->getExprLoc(), diag::warn_objc_isa_assign
)
613 << FixItHint::CreateInsertion(OIRE
->getBeginLoc(),
615 << FixItHint::CreateReplacement(
616 SourceRange(OIRE
->getOpLoc(), AssignLoc
), ",")
617 << FixItHint::CreateInsertion(RHSLocEnd
, ")");
620 S
.Diag(OIRE
->getLocation(), diag::warn_objc_isa_assign
);
622 NamedDecl
*ObjectGetClass
=
623 S
.LookupSingleName(S
.TUScope
,
624 &S
.Context
.Idents
.get("object_getClass"),
625 SourceLocation(), S
.LookupOrdinaryName
);
627 S
.Diag(OIRE
->getExprLoc(), diag::warn_objc_isa_use
)
628 << FixItHint::CreateInsertion(OIRE
->getBeginLoc(),
630 << FixItHint::CreateReplacement(
631 SourceRange(OIRE
->getOpLoc(), OIRE
->getEndLoc()), ")");
633 S
.Diag(OIRE
->getLocation(), diag::warn_objc_isa_use
);
635 S
.Diag(IV
->getLocation(), diag::note_ivar_decl
);
640 ExprResult
Sema::DefaultLvalueConversion(Expr
*E
) {
641 // Handle any placeholder expressions which made it here.
642 if (E
->hasPlaceholderType()) {
643 ExprResult result
= CheckPlaceholderExpr(E
);
644 if (result
.isInvalid()) return ExprError();
648 // C++ [conv.lval]p1:
649 // A glvalue of a non-function, non-array type T can be
650 // converted to a prvalue.
651 if (!E
->isGLValue()) return E
;
653 QualType T
= E
->getType();
654 assert(!T
.isNull() && "r-value conversion on typeless expression?");
656 // lvalue-to-rvalue conversion cannot be applied to function or array types.
657 if (T
->isFunctionType() || T
->isArrayType())
660 // We don't want to throw lvalue-to-rvalue casts on top of
661 // expressions of certain types in C++.
662 if (getLangOpts().CPlusPlus
&&
663 (E
->getType() == Context
.OverloadTy
||
664 T
->isDependentType() ||
668 // The C standard is actually really unclear on this point, and
669 // DR106 tells us what the result should be but not why. It's
670 // generally best to say that void types just doesn't undergo
671 // lvalue-to-rvalue at all. Note that expressions of unqualified
672 // 'void' type are never l-values, but qualified void can be.
676 // OpenCL usually rejects direct accesses to values of 'half' type.
677 if (getLangOpts().OpenCL
&&
678 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
680 Diag(E
->getExprLoc(), diag::err_opencl_half_load_store
)
685 CheckForNullPointerDereference(*this, E
);
686 if (const ObjCIsaExpr
*OISA
= dyn_cast
<ObjCIsaExpr
>(E
->IgnoreParenCasts())) {
687 NamedDecl
*ObjectGetClass
= LookupSingleName(TUScope
,
688 &Context
.Idents
.get("object_getClass"),
689 SourceLocation(), LookupOrdinaryName
);
691 Diag(E
->getExprLoc(), diag::warn_objc_isa_use
)
692 << FixItHint::CreateInsertion(OISA
->getBeginLoc(), "object_getClass(")
693 << FixItHint::CreateReplacement(
694 SourceRange(OISA
->getOpLoc(), OISA
->getIsaMemberLoc()), ")");
696 Diag(E
->getExprLoc(), diag::warn_objc_isa_use
);
698 else if (const ObjCIvarRefExpr
*OIRE
=
699 dyn_cast
<ObjCIvarRefExpr
>(E
->IgnoreParenCasts()))
700 DiagnoseDirectIsaAccess(*this, OIRE
, SourceLocation(), /* Expr*/nullptr);
702 // C++ [conv.lval]p1:
703 // [...] If T is a non-class type, the type of the prvalue is the
704 // cv-unqualified version of T. Otherwise, the type of the
708 // If the lvalue has qualified type, the value has the unqualified
709 // version of the type of the lvalue; otherwise, the value has the
710 // type of the lvalue.
711 if (T
.hasQualifiers())
712 T
= T
.getUnqualifiedType();
714 // Under the MS ABI, lock down the inheritance model now.
715 if (T
->isMemberPointerType() &&
716 Context
.getTargetInfo().getCXXABI().isMicrosoft())
717 (void)isCompleteType(E
->getExprLoc(), T
);
719 ExprResult Res
= CheckLValueToRValueConversionOperand(E
);
724 // Loading a __weak object implicitly retains the value, so we need a cleanup to
726 if (E
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
)
727 Cleanup
.setExprNeedsCleanups(true);
729 if (E
->getType().isDestructedType() == QualType::DK_nontrivial_c_struct
)
730 Cleanup
.setExprNeedsCleanups(true);
732 // C++ [conv.lval]p3:
733 // If T is cv std::nullptr_t, the result is a null pointer constant.
734 CastKind CK
= T
->isNullPtrType() ? CK_NullToPointer
: CK_LValueToRValue
;
735 Res
= ImplicitCastExpr::Create(Context
, T
, CK
, E
, nullptr, VK_PRValue
,
736 CurFPFeatureOverrides());
739 // ... if the lvalue has atomic type, the value has the non-atomic version
740 // of the type of the lvalue ...
741 if (const AtomicType
*Atomic
= T
->getAs
<AtomicType
>()) {
742 T
= Atomic
->getValueType().getUnqualifiedType();
743 Res
= ImplicitCastExpr::Create(Context
, T
, CK_AtomicToNonAtomic
, Res
.get(),
744 nullptr, VK_PRValue
, FPOptionsOverride());
750 ExprResult
Sema::DefaultFunctionArrayLvalueConversion(Expr
*E
, bool Diagnose
) {
751 ExprResult Res
= DefaultFunctionArrayConversion(E
, Diagnose
);
754 Res
= DefaultLvalueConversion(Res
.get());
760 /// CallExprUnaryConversions - a special case of an unary conversion
761 /// performed on a function designator of a call expression.
762 ExprResult
Sema::CallExprUnaryConversions(Expr
*E
) {
763 QualType Ty
= E
->getType();
765 // Only do implicit cast for a function type, but not for a pointer
767 if (Ty
->isFunctionType()) {
768 Res
= ImpCastExprToType(E
, Context
.getPointerType(Ty
),
769 CK_FunctionToPointerDecay
);
773 Res
= DefaultLvalueConversion(Res
.get());
779 /// UsualUnaryConversions - Performs various conversions that are common to most
780 /// operators (C99 6.3). The conversions of array and function types are
781 /// sometimes suppressed. For example, the array->pointer conversion doesn't
782 /// apply if the array is an argument to the sizeof or address (&) operators.
783 /// In these instances, this routine should *not* be called.
784 ExprResult
Sema::UsualUnaryConversions(Expr
*E
) {
785 // First, convert to an r-value.
786 ExprResult Res
= DefaultFunctionArrayLvalueConversion(E
);
791 QualType Ty
= E
->getType();
792 assert(!Ty
.isNull() && "UsualUnaryConversions - missing type");
794 LangOptions::FPEvalMethodKind EvalMethod
= CurFPFeatures
.getFPEvalMethod();
795 if (EvalMethod
!= LangOptions::FEM_Source
&& Ty
->isFloatingType() &&
796 (getLangOpts().getFPEvalMethod() !=
797 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine
||
798 PP
.getLastFPEvalPragmaLocation().isValid())) {
799 switch (EvalMethod
) {
801 llvm_unreachable("Unrecognized float evaluation method");
803 case LangOptions::FEM_UnsetOnCommandLine
:
804 llvm_unreachable("Float evaluation method should be set by now");
806 case LangOptions::FEM_Double
:
807 if (Context
.getFloatingTypeOrder(Context
.DoubleTy
, Ty
) > 0)
808 // Widen the expression to double.
809 return Ty
->isComplexType()
810 ? ImpCastExprToType(E
,
811 Context
.getComplexType(Context
.DoubleTy
),
812 CK_FloatingComplexCast
)
813 : ImpCastExprToType(E
, Context
.DoubleTy
, CK_FloatingCast
);
815 case LangOptions::FEM_Extended
:
816 if (Context
.getFloatingTypeOrder(Context
.LongDoubleTy
, Ty
) > 0)
817 // Widen the expression to long double.
818 return Ty
->isComplexType()
820 E
, Context
.getComplexType(Context
.LongDoubleTy
),
821 CK_FloatingComplexCast
)
822 : ImpCastExprToType(E
, Context
.LongDoubleTy
,
828 // Half FP have to be promoted to float unless it is natively supported
829 if (Ty
->isHalfType() && !getLangOpts().NativeHalfType
)
830 return ImpCastExprToType(Res
.get(), Context
.FloatTy
, CK_FloatingCast
);
832 // Try to perform integral promotions if the object has a theoretically
834 if (Ty
->isIntegralOrUnscopedEnumerationType()) {
837 // The following may be used in an expression wherever an int or
838 // unsigned int may be used:
839 // - an object or expression with an integer type whose integer
840 // conversion rank is less than or equal to the rank of int
842 // - A bit-field of type _Bool, int, signed int, or unsigned int.
844 // If an int can represent all values of the original type, the
845 // value is converted to an int; otherwise, it is converted to an
846 // unsigned int. These are called the integer promotions. All
847 // other types are unchanged by the integer promotions.
849 QualType PTy
= Context
.isPromotableBitField(E
);
851 E
= ImpCastExprToType(E
, PTy
, CK_IntegralCast
).get();
854 if (Context
.isPromotableIntegerType(Ty
)) {
855 QualType PT
= Context
.getPromotedIntegerType(Ty
);
856 E
= ImpCastExprToType(E
, PT
, CK_IntegralCast
).get();
863 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
864 /// do not have a prototype. Arguments that have type float or __fp16
865 /// are promoted to double. All other argument types are converted by
866 /// UsualUnaryConversions().
867 ExprResult
Sema::DefaultArgumentPromotion(Expr
*E
) {
868 QualType Ty
= E
->getType();
869 assert(!Ty
.isNull() && "DefaultArgumentPromotion - missing type");
871 ExprResult Res
= UsualUnaryConversions(E
);
876 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
877 // promote to double.
878 // Note that default argument promotion applies only to float (and
879 // half/fp16); it does not apply to _Float16.
880 const BuiltinType
*BTy
= Ty
->getAs
<BuiltinType
>();
881 if (BTy
&& (BTy
->getKind() == BuiltinType::Half
||
882 BTy
->getKind() == BuiltinType::Float
)) {
883 if (getLangOpts().OpenCL
&&
884 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
885 if (BTy
->getKind() == BuiltinType::Half
) {
886 E
= ImpCastExprToType(E
, Context
.FloatTy
, CK_FloatingCast
).get();
889 E
= ImpCastExprToType(E
, Context
.DoubleTy
, CK_FloatingCast
).get();
893 getLangOpts().getExtendIntArgs() ==
894 LangOptions::ExtendArgsKind::ExtendTo64
&&
895 Context
.getTargetInfo().supportsExtendIntArgs() && Ty
->isIntegerType() &&
896 Context
.getTypeSizeInChars(BTy
) <
897 Context
.getTypeSizeInChars(Context
.LongLongTy
)) {
898 E
= (Ty
->isUnsignedIntegerType())
899 ? ImpCastExprToType(E
, Context
.UnsignedLongLongTy
, CK_IntegralCast
)
901 : ImpCastExprToType(E
, Context
.LongLongTy
, CK_IntegralCast
).get();
902 assert(8 == Context
.getTypeSizeInChars(Context
.LongLongTy
).getQuantity() &&
903 "Unexpected typesize for LongLongTy");
906 // C++ performs lvalue-to-rvalue conversion as a default argument
907 // promotion, even on class types, but note:
908 // C++11 [conv.lval]p2:
909 // When an lvalue-to-rvalue conversion occurs in an unevaluated
910 // operand or a subexpression thereof the value contained in the
911 // referenced object is not accessed. Otherwise, if the glvalue
912 // has a class type, the conversion copy-initializes a temporary
913 // of type T from the glvalue and the result of the conversion
914 // is a prvalue for the temporary.
915 // FIXME: add some way to gate this entire thing for correctness in
916 // potentially potentially evaluated contexts.
917 if (getLangOpts().CPlusPlus
&& E
->isGLValue() && !isUnevaluatedContext()) {
918 ExprResult Temp
= PerformCopyInitialization(
919 InitializedEntity::InitializeTemporary(E
->getType()),
921 if (Temp
.isInvalid())
929 /// Determine the degree of POD-ness for an expression.
930 /// Incomplete types are considered POD, since this check can be performed
931 /// when we're in an unevaluated context.
932 Sema::VarArgKind
Sema::isValidVarArgType(const QualType
&Ty
) {
933 if (Ty
->isIncompleteType()) {
934 // C++11 [expr.call]p7:
935 // After these conversions, if the argument does not have arithmetic,
936 // enumeration, pointer, pointer to member, or class type, the program
939 // Since we've already performed array-to-pointer and function-to-pointer
940 // decay, the only such type in C++ is cv void. This also handles
941 // initializer lists as variadic arguments.
942 if (Ty
->isVoidType())
945 if (Ty
->isObjCObjectType())
950 if (Ty
.isDestructedType() == QualType::DK_nontrivial_c_struct
)
953 if (Context
.getTargetInfo().getTriple().isWasm() &&
954 Ty
.isWebAssemblyReferenceType()) {
958 if (Ty
.isCXX98PODType(Context
))
961 // C++11 [expr.call]p7:
962 // Passing a potentially-evaluated argument of class type (Clause 9)
963 // having a non-trivial copy constructor, a non-trivial move constructor,
964 // or a non-trivial destructor, with no corresponding parameter,
965 // is conditionally-supported with implementation-defined semantics.
966 if (getLangOpts().CPlusPlus11
&& !Ty
->isDependentType())
967 if (CXXRecordDecl
*Record
= Ty
->getAsCXXRecordDecl())
968 if (!Record
->hasNonTrivialCopyConstructor() &&
969 !Record
->hasNonTrivialMoveConstructor() &&
970 !Record
->hasNonTrivialDestructor())
971 return VAK_ValidInCXX11
;
973 if (getLangOpts().ObjCAutoRefCount
&& Ty
->isObjCLifetimeType())
976 if (Ty
->isObjCObjectType())
979 if (getLangOpts().MSVCCompat
)
980 return VAK_MSVCUndefined
;
982 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
983 // permitted to reject them. We should consider doing so.
984 return VAK_Undefined
;
987 void Sema::checkVariadicArgument(const Expr
*E
, VariadicCallType CT
) {
988 // Don't allow one to pass an Objective-C interface to a vararg.
989 const QualType
&Ty
= E
->getType();
990 VarArgKind VAK
= isValidVarArgType(Ty
);
992 // Complain about passing non-POD types through varargs.
994 case VAK_ValidInCXX11
:
996 E
->getBeginLoc(), nullptr,
997 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg
) << Ty
<< CT
);
1000 if (Ty
->isRecordType()) {
1001 // This is unlikely to be what the user intended. If the class has a
1002 // 'c_str' member function, the user probably meant to call that.
1003 DiagRuntimeBehavior(E
->getBeginLoc(), nullptr,
1004 PDiag(diag::warn_pass_class_arg_to_vararg
)
1005 << Ty
<< CT
<< hasCStrMethod(E
) << ".c_str()");
1010 case VAK_MSVCUndefined
:
1011 DiagRuntimeBehavior(E
->getBeginLoc(), nullptr,
1012 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg
)
1013 << getLangOpts().CPlusPlus11
<< Ty
<< CT
);
1017 if (Ty
.isDestructedType() == QualType::DK_nontrivial_c_struct
)
1018 Diag(E
->getBeginLoc(),
1019 diag::err_cannot_pass_non_trivial_c_struct_to_vararg
)
1021 else if (Ty
->isObjCObjectType())
1022 DiagRuntimeBehavior(E
->getBeginLoc(), nullptr,
1023 PDiag(diag::err_cannot_pass_objc_interface_to_vararg
)
1026 Diag(E
->getBeginLoc(), diag::err_cannot_pass_to_vararg
)
1027 << isa
<InitListExpr
>(E
) << Ty
<< CT
;
1032 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1033 /// will create a trap if the resulting type is not a POD type.
1034 ExprResult
Sema::DefaultVariadicArgumentPromotion(Expr
*E
, VariadicCallType CT
,
1035 FunctionDecl
*FDecl
) {
1036 if (const BuiltinType
*PlaceholderTy
= E
->getType()->getAsPlaceholderType()) {
1037 // Strip the unbridged-cast placeholder expression off, if applicable.
1038 if (PlaceholderTy
->getKind() == BuiltinType::ARCUnbridgedCast
&&
1039 (CT
== VariadicMethod
||
1040 (FDecl
&& FDecl
->hasAttr
<CFAuditedTransferAttr
>()))) {
1041 E
= stripARCUnbridgedCast(E
);
1043 // Otherwise, do normal placeholder checking.
1045 ExprResult ExprRes
= CheckPlaceholderExpr(E
);
1046 if (ExprRes
.isInvalid())
1052 ExprResult ExprRes
= DefaultArgumentPromotion(E
);
1053 if (ExprRes
.isInvalid())
1056 // Copy blocks to the heap.
1057 if (ExprRes
.get()->getType()->isBlockPointerType())
1058 maybeExtendBlockObject(ExprRes
);
1062 // Diagnostics regarding non-POD argument types are
1063 // emitted along with format string checking in Sema::CheckFunctionCall().
1064 if (isValidVarArgType(E
->getType()) == VAK_Undefined
) {
1065 // Turn this into a trap.
1067 SourceLocation TemplateKWLoc
;
1069 Name
.setIdentifier(PP
.getIdentifierInfo("__builtin_trap"),
1071 ExprResult TrapFn
= ActOnIdExpression(TUScope
, SS
, TemplateKWLoc
, Name
,
1072 /*HasTrailingLParen=*/true,
1073 /*IsAddressOfOperand=*/false);
1074 if (TrapFn
.isInvalid())
1077 ExprResult Call
= BuildCallExpr(TUScope
, TrapFn
.get(), E
->getBeginLoc(),
1078 std::nullopt
, E
->getEndLoc());
1079 if (Call
.isInvalid())
1083 ActOnBinOp(TUScope
, E
->getBeginLoc(), tok::comma
, Call
.get(), E
);
1084 if (Comma
.isInvalid())
1089 if (!getLangOpts().CPlusPlus
&&
1090 RequireCompleteType(E
->getExprLoc(), E
->getType(),
1091 diag::err_call_incomplete_argument
))
1097 /// Converts an integer to complex float type. Helper function of
1098 /// UsualArithmeticConversions()
1100 /// \return false if the integer expression is an integer type and is
1101 /// successfully converted to the complex type.
1102 static bool handleIntegerToComplexFloatConversion(Sema
&S
, ExprResult
&IntExpr
,
1103 ExprResult
&ComplexExpr
,
1107 if (IntTy
->isComplexType() || IntTy
->isRealFloatingType()) return true;
1108 if (SkipCast
) return false;
1109 if (IntTy
->isIntegerType()) {
1110 QualType fpTy
= ComplexTy
->castAs
<ComplexType
>()->getElementType();
1111 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), fpTy
, CK_IntegralToFloating
);
1112 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), ComplexTy
,
1113 CK_FloatingRealToComplex
);
1115 assert(IntTy
->isComplexIntegerType());
1116 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), ComplexTy
,
1117 CK_IntegralComplexToFloatingComplex
);
1122 // This handles complex/complex, complex/float, or float/complex.
1123 // When both operands are complex, the shorter operand is converted to the
1124 // type of the longer, and that is the type of the result. This corresponds
1125 // to what is done when combining two real floating-point operands.
1126 // The fun begins when size promotion occur across type domains.
1127 // From H&S 6.3.4: When one operand is complex and the other is a real
1128 // floating-point type, the less precise type is converted, within it's
1129 // real or complex domain, to the precision of the other type. For example,
1130 // when combining a "long double" with a "double _Complex", the
1131 // "double _Complex" is promoted to "long double _Complex".
1132 static QualType
handleComplexFloatConversion(Sema
&S
, ExprResult
&Shorter
,
1133 QualType ShorterType
,
1134 QualType LongerType
,
1135 bool PromotePrecision
) {
1136 bool LongerIsComplex
= isa
<ComplexType
>(LongerType
.getCanonicalType());
1138 LongerIsComplex
? LongerType
: S
.Context
.getComplexType(LongerType
);
1140 if (PromotePrecision
) {
1141 if (isa
<ComplexType
>(ShorterType
.getCanonicalType())) {
1143 S
.ImpCastExprToType(Shorter
.get(), Result
, CK_FloatingComplexCast
);
1145 if (LongerIsComplex
)
1146 LongerType
= LongerType
->castAs
<ComplexType
>()->getElementType();
1147 Shorter
= S
.ImpCastExprToType(Shorter
.get(), LongerType
, CK_FloatingCast
);
1153 /// Handle arithmetic conversion with complex types. Helper function of
1154 /// UsualArithmeticConversions()
1155 static QualType
handleComplexConversion(Sema
&S
, ExprResult
&LHS
,
1156 ExprResult
&RHS
, QualType LHSType
,
1157 QualType RHSType
, bool IsCompAssign
) {
1158 // if we have an integer operand, the result is the complex type.
1159 if (!handleIntegerToComplexFloatConversion(S
, RHS
, LHS
, RHSType
, LHSType
,
1160 /*SkipCast=*/false))
1162 if (!handleIntegerToComplexFloatConversion(S
, LHS
, RHS
, LHSType
, RHSType
,
1163 /*SkipCast=*/IsCompAssign
))
1166 // Compute the rank of the two types, regardless of whether they are complex.
1167 int Order
= S
.Context
.getFloatingTypeOrder(LHSType
, RHSType
);
1169 // Promote the precision of the LHS if not an assignment.
1170 return handleComplexFloatConversion(S
, LHS
, LHSType
, RHSType
,
1171 /*PromotePrecision=*/!IsCompAssign
);
1172 // Promote the precision of the RHS unless it is already the same as the LHS.
1173 return handleComplexFloatConversion(S
, RHS
, RHSType
, LHSType
,
1174 /*PromotePrecision=*/Order
> 0);
1177 /// Handle arithmetic conversion from integer to float. Helper function
1178 /// of UsualArithmeticConversions()
1179 static QualType
handleIntToFloatConversion(Sema
&S
, ExprResult
&FloatExpr
,
1180 ExprResult
&IntExpr
,
1181 QualType FloatTy
, QualType IntTy
,
1182 bool ConvertFloat
, bool ConvertInt
) {
1183 if (IntTy
->isIntegerType()) {
1185 // Convert intExpr to the lhs floating point type.
1186 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), FloatTy
,
1187 CK_IntegralToFloating
);
1191 // Convert both sides to the appropriate complex float.
1192 assert(IntTy
->isComplexIntegerType());
1193 QualType result
= S
.Context
.getComplexType(FloatTy
);
1195 // _Complex int -> _Complex float
1197 IntExpr
= S
.ImpCastExprToType(IntExpr
.get(), result
,
1198 CK_IntegralComplexToFloatingComplex
);
1200 // float -> _Complex float
1202 FloatExpr
= S
.ImpCastExprToType(FloatExpr
.get(), result
,
1203 CK_FloatingRealToComplex
);
1208 /// Handle arithmethic conversion with floating point types. Helper
1209 /// function of UsualArithmeticConversions()
1210 static QualType
handleFloatConversion(Sema
&S
, ExprResult
&LHS
,
1211 ExprResult
&RHS
, QualType LHSType
,
1212 QualType RHSType
, bool IsCompAssign
) {
1213 bool LHSFloat
= LHSType
->isRealFloatingType();
1214 bool RHSFloat
= RHSType
->isRealFloatingType();
1216 // N1169 4.1.4: If one of the operands has a floating type and the other
1217 // operand has a fixed-point type, the fixed-point operand
1218 // is converted to the floating type [...]
1219 if (LHSType
->isFixedPointType() || RHSType
->isFixedPointType()) {
1221 RHS
= S
.ImpCastExprToType(RHS
.get(), LHSType
, CK_FixedPointToFloating
);
1222 else if (!IsCompAssign
)
1223 LHS
= S
.ImpCastExprToType(LHS
.get(), RHSType
, CK_FixedPointToFloating
);
1224 return LHSFloat
? LHSType
: RHSType
;
1227 // If we have two real floating types, convert the smaller operand
1228 // to the bigger result.
1229 if (LHSFloat
&& RHSFloat
) {
1230 int order
= S
.Context
.getFloatingTypeOrder(LHSType
, RHSType
);
1232 RHS
= S
.ImpCastExprToType(RHS
.get(), LHSType
, CK_FloatingCast
);
1236 assert(order
< 0 && "illegal float comparison");
1238 LHS
= S
.ImpCastExprToType(LHS
.get(), RHSType
, CK_FloatingCast
);
1243 // Half FP has to be promoted to float unless it is natively supported
1244 if (LHSType
->isHalfType() && !S
.getLangOpts().NativeHalfType
)
1245 LHSType
= S
.Context
.FloatTy
;
1247 return handleIntToFloatConversion(S
, LHS
, RHS
, LHSType
, RHSType
,
1248 /*ConvertFloat=*/!IsCompAssign
,
1249 /*ConvertInt=*/ true);
1252 return handleIntToFloatConversion(S
, RHS
, LHS
, RHSType
, LHSType
,
1253 /*ConvertFloat=*/ true,
1254 /*ConvertInt=*/!IsCompAssign
);
1257 /// Diagnose attempts to convert between __float128, __ibm128 and
1258 /// long double if there is no support for such conversion.
1259 /// Helper function of UsualArithmeticConversions().
1260 static bool unsupportedTypeConversion(const Sema
&S
, QualType LHSType
,
1262 // No issue if either is not a floating point type.
1263 if (!LHSType
->isFloatingType() || !RHSType
->isFloatingType())
1266 // No issue if both have the same 128-bit float semantics.
1267 auto *LHSComplex
= LHSType
->getAs
<ComplexType
>();
1268 auto *RHSComplex
= RHSType
->getAs
<ComplexType
>();
1270 QualType LHSElem
= LHSComplex
? LHSComplex
->getElementType() : LHSType
;
1271 QualType RHSElem
= RHSComplex
? RHSComplex
->getElementType() : RHSType
;
1273 const llvm::fltSemantics
&LHSSem
= S
.Context
.getFloatTypeSemantics(LHSElem
);
1274 const llvm::fltSemantics
&RHSSem
= S
.Context
.getFloatTypeSemantics(RHSElem
);
1276 if ((&LHSSem
!= &llvm::APFloat::PPCDoubleDouble() ||
1277 &RHSSem
!= &llvm::APFloat::IEEEquad()) &&
1278 (&LHSSem
!= &llvm::APFloat::IEEEquad() ||
1279 &RHSSem
!= &llvm::APFloat::PPCDoubleDouble()))
1285 typedef ExprResult
PerformCastFn(Sema
&S
, Expr
*operand
, QualType toType
);
1288 /// These helper callbacks are placed in an anonymous namespace to
1289 /// permit their use as function template parameters.
1290 ExprResult
doIntegralCast(Sema
&S
, Expr
*op
, QualType toType
) {
1291 return S
.ImpCastExprToType(op
, toType
, CK_IntegralCast
);
1294 ExprResult
doComplexIntegralCast(Sema
&S
, Expr
*op
, QualType toType
) {
1295 return S
.ImpCastExprToType(op
, S
.Context
.getComplexType(toType
),
1296 CK_IntegralComplexCast
);
1300 /// Handle integer arithmetic conversions. Helper function of
1301 /// UsualArithmeticConversions()
1302 template <PerformCastFn doLHSCast
, PerformCastFn doRHSCast
>
1303 static QualType
handleIntegerConversion(Sema
&S
, ExprResult
&LHS
,
1304 ExprResult
&RHS
, QualType LHSType
,
1305 QualType RHSType
, bool IsCompAssign
) {
1306 // The rules for this case are in C99 6.3.1.8
1307 int order
= S
.Context
.getIntegerTypeOrder(LHSType
, RHSType
);
1308 bool LHSSigned
= LHSType
->hasSignedIntegerRepresentation();
1309 bool RHSSigned
= RHSType
->hasSignedIntegerRepresentation();
1310 if (LHSSigned
== RHSSigned
) {
1311 // Same signedness; use the higher-ranked type
1313 RHS
= (*doRHSCast
)(S
, RHS
.get(), LHSType
);
1315 } else if (!IsCompAssign
)
1316 LHS
= (*doLHSCast
)(S
, LHS
.get(), RHSType
);
1318 } else if (order
!= (LHSSigned
? 1 : -1)) {
1319 // The unsigned type has greater than or equal rank to the
1320 // signed type, so use the unsigned type
1322 RHS
= (*doRHSCast
)(S
, RHS
.get(), LHSType
);
1324 } else if (!IsCompAssign
)
1325 LHS
= (*doLHSCast
)(S
, LHS
.get(), RHSType
);
1327 } else if (S
.Context
.getIntWidth(LHSType
) != S
.Context
.getIntWidth(RHSType
)) {
1328 // The two types are different widths; if we are here, that
1329 // means the signed type is larger than the unsigned type, so
1330 // use the signed type.
1332 RHS
= (*doRHSCast
)(S
, RHS
.get(), LHSType
);
1334 } else if (!IsCompAssign
)
1335 LHS
= (*doLHSCast
)(S
, LHS
.get(), RHSType
);
1338 // The signed type is higher-ranked than the unsigned type,
1339 // but isn't actually any bigger (like unsigned int and long
1340 // on most 32-bit systems). Use the unsigned type corresponding
1341 // to the signed type.
1343 S
.Context
.getCorrespondingUnsignedType(LHSSigned
? LHSType
: RHSType
);
1344 RHS
= (*doRHSCast
)(S
, RHS
.get(), result
);
1346 LHS
= (*doLHSCast
)(S
, LHS
.get(), result
);
1351 /// Handle conversions with GCC complex int extension. Helper function
1352 /// of UsualArithmeticConversions()
1353 static QualType
handleComplexIntConversion(Sema
&S
, ExprResult
&LHS
,
1354 ExprResult
&RHS
, QualType LHSType
,
1356 bool IsCompAssign
) {
1357 const ComplexType
*LHSComplexInt
= LHSType
->getAsComplexIntegerType();
1358 const ComplexType
*RHSComplexInt
= RHSType
->getAsComplexIntegerType();
1360 if (LHSComplexInt
&& RHSComplexInt
) {
1361 QualType LHSEltType
= LHSComplexInt
->getElementType();
1362 QualType RHSEltType
= RHSComplexInt
->getElementType();
1363 QualType ScalarType
=
1364 handleIntegerConversion
<doComplexIntegralCast
, doComplexIntegralCast
>
1365 (S
, LHS
, RHS
, LHSEltType
, RHSEltType
, IsCompAssign
);
1367 return S
.Context
.getComplexType(ScalarType
);
1370 if (LHSComplexInt
) {
1371 QualType LHSEltType
= LHSComplexInt
->getElementType();
1372 QualType ScalarType
=
1373 handleIntegerConversion
<doComplexIntegralCast
, doIntegralCast
>
1374 (S
, LHS
, RHS
, LHSEltType
, RHSType
, IsCompAssign
);
1375 QualType ComplexType
= S
.Context
.getComplexType(ScalarType
);
1376 RHS
= S
.ImpCastExprToType(RHS
.get(), ComplexType
,
1377 CK_IntegralRealToComplex
);
1382 assert(RHSComplexInt
);
1384 QualType RHSEltType
= RHSComplexInt
->getElementType();
1385 QualType ScalarType
=
1386 handleIntegerConversion
<doIntegralCast
, doComplexIntegralCast
>
1387 (S
, LHS
, RHS
, LHSType
, RHSEltType
, IsCompAssign
);
1388 QualType ComplexType
= S
.Context
.getComplexType(ScalarType
);
1391 LHS
= S
.ImpCastExprToType(LHS
.get(), ComplexType
,
1392 CK_IntegralRealToComplex
);
1396 /// Return the rank of a given fixed point or integer type. The value itself
1397 /// doesn't matter, but the values must be increasing with proper increasing
1398 /// rank as described in N1169 4.1.1.
1399 static unsigned GetFixedPointRank(QualType Ty
) {
1400 const auto *BTy
= Ty
->getAs
<BuiltinType
>();
1401 assert(BTy
&& "Expected a builtin type.");
1403 switch (BTy
->getKind()) {
1404 case BuiltinType::ShortFract
:
1405 case BuiltinType::UShortFract
:
1406 case BuiltinType::SatShortFract
:
1407 case BuiltinType::SatUShortFract
:
1409 case BuiltinType::Fract
:
1410 case BuiltinType::UFract
:
1411 case BuiltinType::SatFract
:
1412 case BuiltinType::SatUFract
:
1414 case BuiltinType::LongFract
:
1415 case BuiltinType::ULongFract
:
1416 case BuiltinType::SatLongFract
:
1417 case BuiltinType::SatULongFract
:
1419 case BuiltinType::ShortAccum
:
1420 case BuiltinType::UShortAccum
:
1421 case BuiltinType::SatShortAccum
:
1422 case BuiltinType::SatUShortAccum
:
1424 case BuiltinType::Accum
:
1425 case BuiltinType::UAccum
:
1426 case BuiltinType::SatAccum
:
1427 case BuiltinType::SatUAccum
:
1429 case BuiltinType::LongAccum
:
1430 case BuiltinType::ULongAccum
:
1431 case BuiltinType::SatLongAccum
:
1432 case BuiltinType::SatULongAccum
:
1435 if (BTy
->isInteger())
1437 llvm_unreachable("Unexpected fixed point or integer type");
1441 /// handleFixedPointConversion - Fixed point operations between fixed
1442 /// point types and integers or other fixed point types do not fall under
1443 /// usual arithmetic conversion since these conversions could result in loss
1444 /// of precsision (N1169 4.1.4). These operations should be calculated with
1445 /// the full precision of their result type (N1169 4.1.6.2.1).
1446 static QualType
handleFixedPointConversion(Sema
&S
, QualType LHSTy
,
1448 assert((LHSTy
->isFixedPointType() || RHSTy
->isFixedPointType()) &&
1449 "Expected at least one of the operands to be a fixed point type");
1450 assert((LHSTy
->isFixedPointOrIntegerType() ||
1451 RHSTy
->isFixedPointOrIntegerType()) &&
1452 "Special fixed point arithmetic operation conversions are only "
1453 "applied to ints or other fixed point types");
1455 // If one operand has signed fixed-point type and the other operand has
1456 // unsigned fixed-point type, then the unsigned fixed-point operand is
1457 // converted to its corresponding signed fixed-point type and the resulting
1458 // type is the type of the converted operand.
1459 if (RHSTy
->isSignedFixedPointType() && LHSTy
->isUnsignedFixedPointType())
1460 LHSTy
= S
.Context
.getCorrespondingSignedFixedPointType(LHSTy
);
1461 else if (RHSTy
->isUnsignedFixedPointType() && LHSTy
->isSignedFixedPointType())
1462 RHSTy
= S
.Context
.getCorrespondingSignedFixedPointType(RHSTy
);
1464 // The result type is the type with the highest rank, whereby a fixed-point
1465 // conversion rank is always greater than an integer conversion rank; if the
1466 // type of either of the operands is a saturating fixedpoint type, the result
1467 // type shall be the saturating fixed-point type corresponding to the type
1468 // with the highest rank; the resulting value is converted (taking into
1469 // account rounding and overflow) to the precision of the resulting type.
1470 // Same ranks between signed and unsigned types are resolved earlier, so both
1471 // types are either signed or both unsigned at this point.
1472 unsigned LHSTyRank
= GetFixedPointRank(LHSTy
);
1473 unsigned RHSTyRank
= GetFixedPointRank(RHSTy
);
1475 QualType ResultTy
= LHSTyRank
> RHSTyRank
? LHSTy
: RHSTy
;
1477 if (LHSTy
->isSaturatedFixedPointType() || RHSTy
->isSaturatedFixedPointType())
1478 ResultTy
= S
.Context
.getCorrespondingSaturatedType(ResultTy
);
1483 /// Check that the usual arithmetic conversions can be performed on this pair of
1484 /// expressions that might be of enumeration type.
1485 static void checkEnumArithmeticConversions(Sema
&S
, Expr
*LHS
, Expr
*RHS
,
1487 Sema::ArithConvKind ACK
) {
1488 // C++2a [expr.arith.conv]p1:
1489 // If one operand is of enumeration type and the other operand is of a
1490 // different enumeration type or a floating-point type, this behavior is
1491 // deprecated ([depr.arith.conv.enum]).
1493 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1494 // Eventually we will presumably reject these cases (in C++23 onwards?).
1495 QualType L
= LHS
->getType(), R
= RHS
->getType();
1496 bool LEnum
= L
->isUnscopedEnumerationType(),
1497 REnum
= R
->isUnscopedEnumerationType();
1498 bool IsCompAssign
= ACK
== Sema::ACK_CompAssign
;
1499 if ((!IsCompAssign
&& LEnum
&& R
->isFloatingType()) ||
1500 (REnum
&& L
->isFloatingType())) {
1501 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus20
1502 ? diag::warn_arith_conv_enum_float_cxx20
1503 : diag::warn_arith_conv_enum_float
)
1504 << LHS
->getSourceRange() << RHS
->getSourceRange()
1505 << (int)ACK
<< LEnum
<< L
<< R
;
1506 } else if (!IsCompAssign
&& LEnum
&& REnum
&&
1507 !S
.Context
.hasSameUnqualifiedType(L
, R
)) {
1509 if (!L
->castAs
<EnumType
>()->getDecl()->hasNameForLinkage() ||
1510 !R
->castAs
<EnumType
>()->getDecl()->hasNameForLinkage()) {
1511 // If either enumeration type is unnamed, it's less likely that the
1512 // user cares about this, but this situation is still deprecated in
1513 // C++2a. Use a different warning group.
1514 DiagID
= S
.getLangOpts().CPlusPlus20
1515 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1516 : diag::warn_arith_conv_mixed_anon_enum_types
;
1517 } else if (ACK
== Sema::ACK_Conditional
) {
1518 // Conditional expressions are separated out because they have
1519 // historically had a different warning flag.
1520 DiagID
= S
.getLangOpts().CPlusPlus20
1521 ? diag::warn_conditional_mixed_enum_types_cxx20
1522 : diag::warn_conditional_mixed_enum_types
;
1523 } else if (ACK
== Sema::ACK_Comparison
) {
1524 // Comparison expressions are separated out because they have
1525 // historically had a different warning flag.
1526 DiagID
= S
.getLangOpts().CPlusPlus20
1527 ? diag::warn_comparison_mixed_enum_types_cxx20
1528 : diag::warn_comparison_mixed_enum_types
;
1530 DiagID
= S
.getLangOpts().CPlusPlus20
1531 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1532 : diag::warn_arith_conv_mixed_enum_types
;
1534 S
.Diag(Loc
, DiagID
) << LHS
->getSourceRange() << RHS
->getSourceRange()
1535 << (int)ACK
<< L
<< R
;
1539 /// UsualArithmeticConversions - Performs various conversions that are common to
1540 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1541 /// routine returns the first non-arithmetic type found. The client is
1542 /// responsible for emitting appropriate error diagnostics.
1543 QualType
Sema::UsualArithmeticConversions(ExprResult
&LHS
, ExprResult
&RHS
,
1545 ArithConvKind ACK
) {
1546 checkEnumArithmeticConversions(*this, LHS
.get(), RHS
.get(), Loc
, ACK
);
1548 if (ACK
!= ACK_CompAssign
) {
1549 LHS
= UsualUnaryConversions(LHS
.get());
1550 if (LHS
.isInvalid())
1554 RHS
= UsualUnaryConversions(RHS
.get());
1555 if (RHS
.isInvalid())
1558 // For conversion purposes, we ignore any qualifiers.
1559 // For example, "const float" and "float" are equivalent.
1560 QualType LHSType
= LHS
.get()->getType().getUnqualifiedType();
1561 QualType RHSType
= RHS
.get()->getType().getUnqualifiedType();
1563 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1564 if (const AtomicType
*AtomicLHS
= LHSType
->getAs
<AtomicType
>())
1565 LHSType
= AtomicLHS
->getValueType();
1567 // If both types are identical, no conversion is needed.
1568 if (Context
.hasSameType(LHSType
, RHSType
))
1569 return Context
.getCommonSugaredType(LHSType
, RHSType
);
1571 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1572 // The caller can deal with this (e.g. pointer + int).
1573 if (!LHSType
->isArithmeticType() || !RHSType
->isArithmeticType())
1576 // Apply unary and bitfield promotions to the LHS's type.
1577 QualType LHSUnpromotedType
= LHSType
;
1578 if (Context
.isPromotableIntegerType(LHSType
))
1579 LHSType
= Context
.getPromotedIntegerType(LHSType
);
1580 QualType LHSBitfieldPromoteTy
= Context
.isPromotableBitField(LHS
.get());
1581 if (!LHSBitfieldPromoteTy
.isNull())
1582 LHSType
= LHSBitfieldPromoteTy
;
1583 if (LHSType
!= LHSUnpromotedType
&& ACK
!= ACK_CompAssign
)
1584 LHS
= ImpCastExprToType(LHS
.get(), LHSType
, CK_IntegralCast
);
1586 // If both types are identical, no conversion is needed.
1587 if (Context
.hasSameType(LHSType
, RHSType
))
1588 return Context
.getCommonSugaredType(LHSType
, RHSType
);
1590 // At this point, we have two different arithmetic types.
1592 // Diagnose attempts to convert between __ibm128, __float128 and long double
1593 // where such conversions currently can't be handled.
1594 if (unsupportedTypeConversion(*this, LHSType
, RHSType
))
1597 // Handle complex types first (C99 6.3.1.8p1).
1598 if (LHSType
->isComplexType() || RHSType
->isComplexType())
1599 return handleComplexConversion(*this, LHS
, RHS
, LHSType
, RHSType
,
1600 ACK
== ACK_CompAssign
);
1602 // Now handle "real" floating types (i.e. float, double, long double).
1603 if (LHSType
->isRealFloatingType() || RHSType
->isRealFloatingType())
1604 return handleFloatConversion(*this, LHS
, RHS
, LHSType
, RHSType
,
1605 ACK
== ACK_CompAssign
);
1607 // Handle GCC complex int extension.
1608 if (LHSType
->isComplexIntegerType() || RHSType
->isComplexIntegerType())
1609 return handleComplexIntConversion(*this, LHS
, RHS
, LHSType
, RHSType
,
1610 ACK
== ACK_CompAssign
);
1612 if (LHSType
->isFixedPointType() || RHSType
->isFixedPointType())
1613 return handleFixedPointConversion(*this, LHSType
, RHSType
);
1615 // Finally, we have two differing integer types.
1616 return handleIntegerConversion
<doIntegralCast
, doIntegralCast
>
1617 (*this, LHS
, RHS
, LHSType
, RHSType
, ACK
== ACK_CompAssign
);
1620 //===----------------------------------------------------------------------===//
1621 // Semantic Analysis for various Expression Types
1622 //===----------------------------------------------------------------------===//
1625 ExprResult
Sema::ActOnGenericSelectionExpr(
1626 SourceLocation KeyLoc
, SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
1627 bool PredicateIsExpr
, void *ControllingExprOrType
,
1628 ArrayRef
<ParsedType
> ArgTypes
, ArrayRef
<Expr
*> ArgExprs
) {
1629 unsigned NumAssocs
= ArgTypes
.size();
1630 assert(NumAssocs
== ArgExprs
.size());
1632 TypeSourceInfo
**Types
= new TypeSourceInfo
*[NumAssocs
];
1633 for (unsigned i
= 0; i
< NumAssocs
; ++i
) {
1635 (void) GetTypeFromParser(ArgTypes
[i
], &Types
[i
]);
1640 // If we have a controlling type, we need to convert it from a parsed type
1641 // into a semantic type and then pass that along.
1642 if (!PredicateIsExpr
) {
1643 TypeSourceInfo
*ControllingType
;
1644 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType
),
1646 assert(ControllingType
&& "couldn't get the type out of the parser");
1647 ControllingExprOrType
= ControllingType
;
1650 ExprResult ER
= CreateGenericSelectionExpr(
1651 KeyLoc
, DefaultLoc
, RParenLoc
, PredicateIsExpr
, ControllingExprOrType
,
1652 llvm::ArrayRef(Types
, NumAssocs
), ArgExprs
);
1657 ExprResult
Sema::CreateGenericSelectionExpr(
1658 SourceLocation KeyLoc
, SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
1659 bool PredicateIsExpr
, void *ControllingExprOrType
,
1660 ArrayRef
<TypeSourceInfo
*> Types
, ArrayRef
<Expr
*> Exprs
) {
1661 unsigned NumAssocs
= Types
.size();
1662 assert(NumAssocs
== Exprs
.size());
1663 assert(ControllingExprOrType
&&
1664 "Must have either a controlling expression or a controlling type");
1666 Expr
*ControllingExpr
= nullptr;
1667 TypeSourceInfo
*ControllingType
= nullptr;
1668 if (PredicateIsExpr
) {
1669 // Decay and strip qualifiers for the controlling expression type, and
1670 // handle placeholder type replacement. See committee discussion from WG14
1672 EnterExpressionEvaluationContext
Unevaluated(
1673 *this, Sema::ExpressionEvaluationContext::Unevaluated
);
1674 ExprResult R
= DefaultFunctionArrayLvalueConversion(
1675 reinterpret_cast<Expr
*>(ControllingExprOrType
));
1678 ControllingExpr
= R
.get();
1680 // The extension form uses the type directly rather than converting it.
1681 ControllingType
= reinterpret_cast<TypeSourceInfo
*>(ControllingExprOrType
);
1682 if (!ControllingType
)
1686 bool TypeErrorFound
= false,
1687 IsResultDependent
= ControllingExpr
1688 ? ControllingExpr
->isTypeDependent()
1689 : ControllingType
->getType()->isDependentType(),
1690 ContainsUnexpandedParameterPack
=
1692 ? ControllingExpr
->containsUnexpandedParameterPack()
1693 : ControllingType
->getType()->containsUnexpandedParameterPack();
1695 // The controlling expression is an unevaluated operand, so side effects are
1696 // likely unintended.
1697 if (!inTemplateInstantiation() && !IsResultDependent
&& ControllingExpr
&&
1698 ControllingExpr
->HasSideEffects(Context
, false))
1699 Diag(ControllingExpr
->getExprLoc(),
1700 diag::warn_side_effects_unevaluated_context
);
1702 for (unsigned i
= 0; i
< NumAssocs
; ++i
) {
1703 if (Exprs
[i
]->containsUnexpandedParameterPack())
1704 ContainsUnexpandedParameterPack
= true;
1707 if (Types
[i
]->getType()->containsUnexpandedParameterPack())
1708 ContainsUnexpandedParameterPack
= true;
1710 if (Types
[i
]->getType()->isDependentType()) {
1711 IsResultDependent
= true;
1713 // We relax the restriction on use of incomplete types and non-object
1714 // types with the type-based extension of _Generic. Allowing incomplete
1715 // objects means those can be used as "tags" for a type-safe way to map
1716 // to a value. Similarly, matching on function types rather than
1717 // function pointer types can be useful. However, the restriction on VM
1718 // types makes sense to retain as there are open questions about how
1719 // the selection can be made at compile time.
1721 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1722 // complete object type other than a variably modified type."
1724 if (ControllingExpr
&& Types
[i
]->getType()->isIncompleteType())
1725 D
= diag::err_assoc_type_incomplete
;
1726 else if (ControllingExpr
&& !Types
[i
]->getType()->isObjectType())
1727 D
= diag::err_assoc_type_nonobject
;
1728 else if (Types
[i
]->getType()->isVariablyModifiedType())
1729 D
= diag::err_assoc_type_variably_modified
;
1730 else if (ControllingExpr
) {
1731 // Because the controlling expression undergoes lvalue conversion,
1732 // array conversion, and function conversion, an association which is
1733 // of array type, function type, or is qualified can never be
1734 // reached. We will warn about this so users are less surprised by
1735 // the unreachable association. However, we don't have to handle
1736 // function types; that's not an object type, so it's handled above.
1738 // The logic is somewhat different for C++ because C++ has different
1739 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1740 // If T is a non-class type, the type of the prvalue is the cv-
1741 // unqualified version of T. Otherwise, the type of the prvalue is T.
1742 // The result of these rules is that all qualified types in an
1743 // association in C are unreachable, and in C++, only qualified non-
1744 // class types are unreachable.
1746 // NB: this does not apply when the first operand is a type rather
1747 // than an expression, because the type form does not undergo
1749 unsigned Reason
= 0;
1750 QualType QT
= Types
[i
]->getType();
1751 if (QT
->isArrayType())
1753 else if (QT
.hasQualifiers() &&
1754 (!LangOpts
.CPlusPlus
|| !QT
->isRecordType()))
1758 Diag(Types
[i
]->getTypeLoc().getBeginLoc(),
1759 diag::warn_unreachable_association
)
1760 << QT
<< (Reason
- 1);
1764 Diag(Types
[i
]->getTypeLoc().getBeginLoc(), D
)
1765 << Types
[i
]->getTypeLoc().getSourceRange()
1766 << Types
[i
]->getType();
1767 TypeErrorFound
= true;
1770 // C11 6.5.1.1p2 "No two generic associations in the same generic
1771 // selection shall specify compatible types."
1772 for (unsigned j
= i
+1; j
< NumAssocs
; ++j
)
1773 if (Types
[j
] && !Types
[j
]->getType()->isDependentType() &&
1774 Context
.typesAreCompatible(Types
[i
]->getType(),
1775 Types
[j
]->getType())) {
1776 Diag(Types
[j
]->getTypeLoc().getBeginLoc(),
1777 diag::err_assoc_compatible_types
)
1778 << Types
[j
]->getTypeLoc().getSourceRange()
1779 << Types
[j
]->getType()
1780 << Types
[i
]->getType();
1781 Diag(Types
[i
]->getTypeLoc().getBeginLoc(),
1782 diag::note_compat_assoc
)
1783 << Types
[i
]->getTypeLoc().getSourceRange()
1784 << Types
[i
]->getType();
1785 TypeErrorFound
= true;
1793 // If we determined that the generic selection is result-dependent, don't
1794 // try to compute the result expression.
1795 if (IsResultDependent
) {
1796 if (ControllingExpr
)
1797 return GenericSelectionExpr::Create(Context
, KeyLoc
, ControllingExpr
,
1798 Types
, Exprs
, DefaultLoc
, RParenLoc
,
1799 ContainsUnexpandedParameterPack
);
1800 return GenericSelectionExpr::Create(Context
, KeyLoc
, ControllingType
, Types
,
1801 Exprs
, DefaultLoc
, RParenLoc
,
1802 ContainsUnexpandedParameterPack
);
1805 SmallVector
<unsigned, 1> CompatIndices
;
1806 unsigned DefaultIndex
= -1U;
1807 // Look at the canonical type of the controlling expression in case it was a
1808 // deduced type like __auto_type. However, when issuing diagnostics, use the
1809 // type the user wrote in source rather than the canonical one.
1810 for (unsigned i
= 0; i
< NumAssocs
; ++i
) {
1813 else if (ControllingExpr
&&
1814 Context
.typesAreCompatible(
1815 ControllingExpr
->getType().getCanonicalType(),
1816 Types
[i
]->getType()))
1817 CompatIndices
.push_back(i
);
1818 else if (ControllingType
&&
1819 Context
.typesAreCompatible(
1820 ControllingType
->getType().getCanonicalType(),
1821 Types
[i
]->getType()))
1822 CompatIndices
.push_back(i
);
1825 auto GetControllingRangeAndType
= [](Expr
*ControllingExpr
,
1826 TypeSourceInfo
*ControllingType
) {
1827 // We strip parens here because the controlling expression is typically
1828 // parenthesized in macro definitions.
1829 if (ControllingExpr
)
1830 ControllingExpr
= ControllingExpr
->IgnoreParens();
1832 SourceRange SR
= ControllingExpr
1833 ? ControllingExpr
->getSourceRange()
1834 : ControllingType
->getTypeLoc().getSourceRange();
1835 QualType QT
= ControllingExpr
? ControllingExpr
->getType()
1836 : ControllingType
->getType();
1838 return std::make_pair(SR
, QT
);
1841 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1842 // type compatible with at most one of the types named in its generic
1843 // association list."
1844 if (CompatIndices
.size() > 1) {
1845 auto P
= GetControllingRangeAndType(ControllingExpr
, ControllingType
);
1846 SourceRange SR
= P
.first
;
1847 Diag(SR
.getBegin(), diag::err_generic_sel_multi_match
)
1848 << SR
<< P
.second
<< (unsigned)CompatIndices
.size();
1849 for (unsigned I
: CompatIndices
) {
1850 Diag(Types
[I
]->getTypeLoc().getBeginLoc(),
1851 diag::note_compat_assoc
)
1852 << Types
[I
]->getTypeLoc().getSourceRange()
1853 << Types
[I
]->getType();
1858 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1859 // its controlling expression shall have type compatible with exactly one of
1860 // the types named in its generic association list."
1861 if (DefaultIndex
== -1U && CompatIndices
.size() == 0) {
1862 auto P
= GetControllingRangeAndType(ControllingExpr
, ControllingType
);
1863 SourceRange SR
= P
.first
;
1864 Diag(SR
.getBegin(), diag::err_generic_sel_no_match
) << SR
<< P
.second
;
1868 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1869 // type name that is compatible with the type of the controlling expression,
1870 // then the result expression of the generic selection is the expression
1871 // in that generic association. Otherwise, the result expression of the
1872 // generic selection is the expression in the default generic association."
1873 unsigned ResultIndex
=
1874 CompatIndices
.size() ? CompatIndices
[0] : DefaultIndex
;
1876 if (ControllingExpr
) {
1877 return GenericSelectionExpr::Create(
1878 Context
, KeyLoc
, ControllingExpr
, Types
, Exprs
, DefaultLoc
, RParenLoc
,
1879 ContainsUnexpandedParameterPack
, ResultIndex
);
1881 return GenericSelectionExpr::Create(
1882 Context
, KeyLoc
, ControllingType
, Types
, Exprs
, DefaultLoc
, RParenLoc
,
1883 ContainsUnexpandedParameterPack
, ResultIndex
);
1886 static PredefinedExpr::IdentKind
getPredefinedExprKind(tok::TokenKind Kind
) {
1889 llvm_unreachable("unexpected TokenKind");
1890 case tok::kw___func__
:
1891 return PredefinedExpr::Func
; // [C99 6.4.2.2]
1892 case tok::kw___FUNCTION__
:
1893 return PredefinedExpr::Function
;
1894 case tok::kw___FUNCDNAME__
:
1895 return PredefinedExpr::FuncDName
; // [MS]
1896 case tok::kw___FUNCSIG__
:
1897 return PredefinedExpr::FuncSig
; // [MS]
1898 case tok::kw_L__FUNCTION__
:
1899 return PredefinedExpr::LFunction
; // [MS]
1900 case tok::kw_L__FUNCSIG__
:
1901 return PredefinedExpr::LFuncSig
; // [MS]
1902 case tok::kw___PRETTY_FUNCTION__
:
1903 return PredefinedExpr::PrettyFunction
; // [GNU]
1907 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1908 /// location of the token and the offset of the ud-suffix within it.
1909 static SourceLocation
getUDSuffixLoc(Sema
&S
, SourceLocation TokLoc
,
1911 return Lexer::AdvanceToTokenCharacter(TokLoc
, Offset
, S
.getSourceManager(),
1915 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1916 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1917 static ExprResult
BuildCookedLiteralOperatorCall(Sema
&S
, Scope
*Scope
,
1918 IdentifierInfo
*UDSuffix
,
1919 SourceLocation UDSuffixLoc
,
1920 ArrayRef
<Expr
*> Args
,
1921 SourceLocation LitEndLoc
) {
1922 assert(Args
.size() <= 2 && "too many arguments for literal operator");
1925 for (unsigned ArgIdx
= 0; ArgIdx
!= Args
.size(); ++ArgIdx
) {
1926 ArgTy
[ArgIdx
] = Args
[ArgIdx
]->getType();
1927 if (ArgTy
[ArgIdx
]->isArrayType())
1928 ArgTy
[ArgIdx
] = S
.Context
.getArrayDecayedType(ArgTy
[ArgIdx
]);
1931 DeclarationName OpName
=
1932 S
.Context
.DeclarationNames
.getCXXLiteralOperatorName(UDSuffix
);
1933 DeclarationNameInfo
OpNameInfo(OpName
, UDSuffixLoc
);
1934 OpNameInfo
.setCXXLiteralOperatorNameLoc(UDSuffixLoc
);
1936 LookupResult
R(S
, OpName
, UDSuffixLoc
, Sema::LookupOrdinaryName
);
1937 if (S
.LookupLiteralOperator(Scope
, R
, llvm::ArrayRef(ArgTy
, Args
.size()),
1938 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1939 /*AllowStringTemplatePack*/ false,
1940 /*DiagnoseMissing*/ true) == Sema::LOLR_Error
)
1943 return S
.BuildLiteralOperatorCall(R
, OpNameInfo
, Args
, LitEndLoc
);
1946 ExprResult
Sema::ActOnUnevaluatedStringLiteral(ArrayRef
<Token
> StringToks
) {
1947 // StringToks needs backing storage as it doesn't hold array elements itself
1948 std::vector
<Token
> ExpandedToks
;
1949 if (getLangOpts().MicrosoftExt
)
1950 StringToks
= ExpandedToks
= ExpandFunctionLocalPredefinedMacros(StringToks
);
1952 StringLiteralParser
Literal(StringToks
, PP
,
1953 StringLiteralEvalMethod::Unevaluated
);
1954 if (Literal
.hadError
)
1957 SmallVector
<SourceLocation
, 4> StringTokLocs
;
1958 for (const Token
&Tok
: StringToks
)
1959 StringTokLocs
.push_back(Tok
.getLocation());
1961 StringLiteral
*Lit
= StringLiteral::Create(
1962 Context
, Literal
.GetString(), StringLiteral::Unevaluated
, false, {},
1963 &StringTokLocs
[0], StringTokLocs
.size());
1965 if (!Literal
.getUDSuffix().empty()) {
1966 SourceLocation UDSuffixLoc
=
1967 getUDSuffixLoc(*this, StringTokLocs
[Literal
.getUDSuffixToken()],
1968 Literal
.getUDSuffixOffset());
1969 return ExprError(Diag(UDSuffixLoc
, diag::err_invalid_string_udl
));
1976 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef
<Token
> Toks
) {
1977 // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1978 // local macros that expand to string literals that may be concatenated.
1979 // These macros are expanded here (in Sema), because StringLiteralParser
1980 // (in Lex) doesn't know the enclosing function (because it hasn't been
1982 assert(getLangOpts().MicrosoftExt
);
1984 // Note: Although function local macros are defined only inside functions,
1985 // we ensure a valid `CurrentDecl` even outside of a function. This allows
1986 // expansion of macros into empty string literals without additional checks.
1987 Decl
*CurrentDecl
= getCurLocalScopeDecl();
1989 CurrentDecl
= Context
.getTranslationUnitDecl();
1991 std::vector
<Token
> ExpandedToks
;
1992 ExpandedToks
.reserve(Toks
.size());
1993 for (const Token
&Tok
: Toks
) {
1994 if (!isFunctionLocalStringLiteralMacro(Tok
.getKind(), getLangOpts())) {
1995 assert(tok::isStringLiteral(Tok
.getKind()));
1996 ExpandedToks
.emplace_back(Tok
);
1999 if (isa
<TranslationUnitDecl
>(CurrentDecl
))
2000 Diag(Tok
.getLocation(), diag::ext_predef_outside_function
);
2001 // Stringify predefined expression
2002 Diag(Tok
.getLocation(), diag::ext_string_literal_from_predefined
)
2004 SmallString
<64> Str
;
2005 llvm::raw_svector_ostream
OS(Str
);
2006 Token
&Exp
= ExpandedToks
.emplace_back();
2008 if (Tok
.getKind() == tok::kw_L__FUNCTION__
||
2009 Tok
.getKind() == tok::kw_L__FUNCSIG__
) {
2011 Exp
.setKind(tok::wide_string_literal
);
2013 Exp
.setKind(tok::string_literal
);
2016 << Lexer::Stringify(PredefinedExpr::ComputeName(
2017 getPredefinedExprKind(Tok
.getKind()), CurrentDecl
))
2019 PP
.CreateString(OS
.str(), Exp
, Tok
.getLocation(), Tok
.getEndLoc());
2021 return ExpandedToks
;
2024 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
2025 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
2026 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
2027 /// multiple tokens. However, the common case is that StringToks points to one
2031 Sema::ActOnStringLiteral(ArrayRef
<Token
> StringToks
, Scope
*UDLScope
) {
2032 assert(!StringToks
.empty() && "Must have at least one string!");
2034 // StringToks needs backing storage as it doesn't hold array elements itself
2035 std::vector
<Token
> ExpandedToks
;
2036 if (getLangOpts().MicrosoftExt
)
2037 StringToks
= ExpandedToks
= ExpandFunctionLocalPredefinedMacros(StringToks
);
2039 StringLiteralParser
Literal(StringToks
, PP
);
2040 if (Literal
.hadError
)
2043 SmallVector
<SourceLocation
, 4> StringTokLocs
;
2044 for (const Token
&Tok
: StringToks
)
2045 StringTokLocs
.push_back(Tok
.getLocation());
2047 QualType CharTy
= Context
.CharTy
;
2048 StringLiteral::StringKind Kind
= StringLiteral::Ordinary
;
2049 if (Literal
.isWide()) {
2050 CharTy
= Context
.getWideCharType();
2051 Kind
= StringLiteral::Wide
;
2052 } else if (Literal
.isUTF8()) {
2053 if (getLangOpts().Char8
)
2054 CharTy
= Context
.Char8Ty
;
2055 Kind
= StringLiteral::UTF8
;
2056 } else if (Literal
.isUTF16()) {
2057 CharTy
= Context
.Char16Ty
;
2058 Kind
= StringLiteral::UTF16
;
2059 } else if (Literal
.isUTF32()) {
2060 CharTy
= Context
.Char32Ty
;
2061 Kind
= StringLiteral::UTF32
;
2062 } else if (Literal
.isPascal()) {
2063 CharTy
= Context
.UnsignedCharTy
;
2066 // Warn on initializing an array of char from a u8 string literal; this
2067 // becomes ill-formed in C++2a.
2068 if (getLangOpts().CPlusPlus
&& !getLangOpts().CPlusPlus20
&&
2069 !getLangOpts().Char8
&& Kind
== StringLiteral::UTF8
) {
2070 Diag(StringTokLocs
.front(), diag::warn_cxx20_compat_utf8_string
);
2072 // Create removals for all 'u8' prefixes in the string literal(s). This
2073 // ensures C++2a compatibility (but may change the program behavior when
2074 // built by non-Clang compilers for which the execution character set is
2075 // not always UTF-8).
2076 auto RemovalDiag
= PDiag(diag::note_cxx20_compat_utf8_string_remove_u8
);
2077 SourceLocation RemovalDiagLoc
;
2078 for (const Token
&Tok
: StringToks
) {
2079 if (Tok
.getKind() == tok::utf8_string_literal
) {
2080 if (RemovalDiagLoc
.isInvalid())
2081 RemovalDiagLoc
= Tok
.getLocation();
2082 RemovalDiag
<< FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2084 Lexer::AdvanceToTokenCharacter(Tok
.getLocation(), 2,
2085 getSourceManager(), getLangOpts())));
2088 Diag(RemovalDiagLoc
, RemovalDiag
);
2092 Context
.getStringLiteralArrayType(CharTy
, Literal
.GetNumStringChars());
2094 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2095 StringLiteral
*Lit
= StringLiteral::Create(Context
, Literal
.GetString(),
2096 Kind
, Literal
.Pascal
, StrTy
,
2098 StringTokLocs
.size());
2099 if (Literal
.getUDSuffix().empty())
2102 // We're building a user-defined literal.
2103 IdentifierInfo
*UDSuffix
= &Context
.Idents
.get(Literal
.getUDSuffix());
2104 SourceLocation UDSuffixLoc
=
2105 getUDSuffixLoc(*this, StringTokLocs
[Literal
.getUDSuffixToken()],
2106 Literal
.getUDSuffixOffset());
2108 // Make sure we're allowed user-defined literals here.
2110 return ExprError(Diag(UDSuffixLoc
, diag::err_invalid_string_udl
));
2112 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2113 // operator "" X (str, len)
2114 QualType SizeType
= Context
.getSizeType();
2116 DeclarationName OpName
=
2117 Context
.DeclarationNames
.getCXXLiteralOperatorName(UDSuffix
);
2118 DeclarationNameInfo
OpNameInfo(OpName
, UDSuffixLoc
);
2119 OpNameInfo
.setCXXLiteralOperatorNameLoc(UDSuffixLoc
);
2121 QualType ArgTy
[] = {
2122 Context
.getArrayDecayedType(StrTy
), SizeType
2125 LookupResult
R(*this, OpName
, UDSuffixLoc
, LookupOrdinaryName
);
2126 switch (LookupLiteralOperator(UDLScope
, R
, ArgTy
,
2127 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2128 /*AllowStringTemplatePack*/ true,
2129 /*DiagnoseMissing*/ true, Lit
)) {
2132 llvm::APInt
Len(Context
.getIntWidth(SizeType
), Literal
.GetNumStringChars());
2133 IntegerLiteral
*LenArg
= IntegerLiteral::Create(Context
, Len
, SizeType
,
2135 Expr
*Args
[] = { Lit
, LenArg
};
2137 return BuildLiteralOperatorCall(R
, OpNameInfo
, Args
, StringTokLocs
.back());
2140 case LOLR_Template
: {
2141 TemplateArgumentListInfo ExplicitArgs
;
2142 TemplateArgument
Arg(Lit
);
2143 TemplateArgumentLocInfo
ArgInfo(Lit
);
2144 ExplicitArgs
.addArgument(TemplateArgumentLoc(Arg
, ArgInfo
));
2145 return BuildLiteralOperatorCall(R
, OpNameInfo
, std::nullopt
,
2146 StringTokLocs
.back(), &ExplicitArgs
);
2149 case LOLR_StringTemplatePack
: {
2150 TemplateArgumentListInfo ExplicitArgs
;
2152 unsigned CharBits
= Context
.getIntWidth(CharTy
);
2153 bool CharIsUnsigned
= CharTy
->isUnsignedIntegerType();
2154 llvm::APSInt
Value(CharBits
, CharIsUnsigned
);
2156 TemplateArgument
TypeArg(CharTy
);
2157 TemplateArgumentLocInfo
TypeArgInfo(Context
.getTrivialTypeSourceInfo(CharTy
));
2158 ExplicitArgs
.addArgument(TemplateArgumentLoc(TypeArg
, TypeArgInfo
));
2160 for (unsigned I
= 0, N
= Lit
->getLength(); I
!= N
; ++I
) {
2161 Value
= Lit
->getCodeUnit(I
);
2162 TemplateArgument
Arg(Context
, Value
, CharTy
);
2163 TemplateArgumentLocInfo ArgInfo
;
2164 ExplicitArgs
.addArgument(TemplateArgumentLoc(Arg
, ArgInfo
));
2166 return BuildLiteralOperatorCall(R
, OpNameInfo
, std::nullopt
,
2167 StringTokLocs
.back(), &ExplicitArgs
);
2170 case LOLR_ErrorNoDiagnostic
:
2171 llvm_unreachable("unexpected literal operator lookup result");
2175 llvm_unreachable("unexpected literal operator lookup result");
2179 Sema::BuildDeclRefExpr(ValueDecl
*D
, QualType Ty
, ExprValueKind VK
,
2181 const CXXScopeSpec
*SS
) {
2182 DeclarationNameInfo
NameInfo(D
->getDeclName(), Loc
);
2183 return BuildDeclRefExpr(D
, Ty
, VK
, NameInfo
, SS
);
2187 Sema::BuildDeclRefExpr(ValueDecl
*D
, QualType Ty
, ExprValueKind VK
,
2188 const DeclarationNameInfo
&NameInfo
,
2189 const CXXScopeSpec
*SS
, NamedDecl
*FoundD
,
2190 SourceLocation TemplateKWLoc
,
2191 const TemplateArgumentListInfo
*TemplateArgs
) {
2192 NestedNameSpecifierLoc NNS
=
2193 SS
? SS
->getWithLocInContext(Context
) : NestedNameSpecifierLoc();
2194 return BuildDeclRefExpr(D
, Ty
, VK
, NameInfo
, NNS
, FoundD
, TemplateKWLoc
,
2198 // CUDA/HIP: Check whether a captured reference variable is referencing a
2199 // host variable in a device or host device lambda.
2200 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema
&S
,
2202 if (!S
.getLangOpts().CUDA
|| !VD
->hasInit())
2204 assert(VD
->getType()->isReferenceType());
2206 // Check whether the reference variable is referencing a host variable.
2207 auto *DRE
= dyn_cast
<DeclRefExpr
>(VD
->getInit());
2210 auto *Referee
= dyn_cast
<VarDecl
>(DRE
->getDecl());
2211 if (!Referee
|| !Referee
->hasGlobalStorage() ||
2212 Referee
->hasAttr
<CUDADeviceAttr
>())
2215 // Check whether the current function is a device or host device lambda.
2216 // Check whether the reference variable is a capture by getDeclContext()
2217 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2218 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(S
.CurContext
);
2219 if (MD
&& MD
->getParent()->isLambda() &&
2220 MD
->getOverloadedOperator() == OO_Call
&& MD
->hasAttr
<CUDADeviceAttr
>() &&
2221 VD
->getDeclContext() != MD
)
2227 NonOdrUseReason
Sema::getNonOdrUseReasonInCurrentContext(ValueDecl
*D
) {
2228 // A declaration named in an unevaluated operand never constitutes an odr-use.
2229 if (isUnevaluatedContext())
2230 return NOUR_Unevaluated
;
2232 // C++2a [basic.def.odr]p4:
2233 // A variable x whose name appears as a potentially-evaluated expression e
2234 // is odr-used by e unless [...] x is a reference that is usable in
2235 // constant expressions.
2237 // If a reference variable referencing a host variable is captured in a
2238 // device or host device lambda, the value of the referee must be copied
2239 // to the capture and the reference variable must be treated as odr-use
2240 // since the value of the referee is not known at compile time and must
2241 // be loaded from the captured.
2242 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2243 if (VD
->getType()->isReferenceType() &&
2244 !(getLangOpts().OpenMP
&& isOpenMPCapturedDecl(D
)) &&
2245 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD
) &&
2246 VD
->isUsableInConstantExpressions(Context
))
2247 return NOUR_Constant
;
2250 // All remaining non-variable cases constitute an odr-use. For variables, we
2251 // need to wait and see how the expression is used.
2255 /// BuildDeclRefExpr - Build an expression that references a
2256 /// declaration that does not require a closure capture.
2258 Sema::BuildDeclRefExpr(ValueDecl
*D
, QualType Ty
, ExprValueKind VK
,
2259 const DeclarationNameInfo
&NameInfo
,
2260 NestedNameSpecifierLoc NNS
, NamedDecl
*FoundD
,
2261 SourceLocation TemplateKWLoc
,
2262 const TemplateArgumentListInfo
*TemplateArgs
) {
2263 bool RefersToCapturedVariable
= isa
<VarDecl
, BindingDecl
>(D
) &&
2264 NeedToCaptureVariable(D
, NameInfo
.getLoc());
2266 DeclRefExpr
*E
= DeclRefExpr::Create(
2267 Context
, NNS
, TemplateKWLoc
, D
, RefersToCapturedVariable
, NameInfo
, Ty
,
2268 VK
, FoundD
, TemplateArgs
, getNonOdrUseReasonInCurrentContext(D
));
2269 MarkDeclRefReferenced(E
);
2271 // C++ [except.spec]p17:
2272 // An exception-specification is considered to be needed when:
2273 // - in an expression, the function is the unique lookup result or
2274 // the selected member of a set of overloaded functions.
2276 // We delay doing this until after we've built the function reference and
2277 // marked it as used so that:
2278 // a) if the function is defaulted, we get errors from defining it before /
2279 // instead of errors from computing its exception specification, and
2280 // b) if the function is a defaulted comparison, we can use the body we
2281 // build when defining it as input to the exception specification
2282 // computation rather than computing a new body.
2283 if (const auto *FPT
= Ty
->getAs
<FunctionProtoType
>()) {
2284 if (isUnresolvedExceptionSpec(FPT
->getExceptionSpecType())) {
2285 if (const auto *NewFPT
= ResolveExceptionSpec(NameInfo
.getLoc(), FPT
))
2286 E
->setType(Context
.getQualifiedType(NewFPT
, Ty
.getQualifiers()));
2290 if (getLangOpts().ObjCWeak
&& isa
<VarDecl
>(D
) &&
2291 Ty
.getObjCLifetime() == Qualifiers::OCL_Weak
&& !isUnevaluatedContext() &&
2292 !Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
, E
->getBeginLoc()))
2293 getCurFunction()->recordUseOfWeak(E
);
2295 const auto *FD
= dyn_cast
<FieldDecl
>(D
);
2296 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(D
))
2297 FD
= IFD
->getAnonField();
2299 UnusedPrivateFields
.remove(FD
);
2300 // Just in case we're building an illegal pointer-to-member.
2301 if (FD
->isBitField())
2302 E
->setObjectKind(OK_BitField
);
2305 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2306 // designates a bit-field.
2307 if (const auto *BD
= dyn_cast
<BindingDecl
>(D
))
2308 if (const auto *BE
= BD
->getBinding())
2309 E
->setObjectKind(BE
->getObjectKind());
2314 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2315 /// possibly a list of template arguments.
2317 /// If this produces template arguments, it is permitted to call
2318 /// DecomposeTemplateName.
2320 /// This actually loses a lot of source location information for
2321 /// non-standard name kinds; we should consider preserving that in
2324 Sema::DecomposeUnqualifiedId(const UnqualifiedId
&Id
,
2325 TemplateArgumentListInfo
&Buffer
,
2326 DeclarationNameInfo
&NameInfo
,
2327 const TemplateArgumentListInfo
*&TemplateArgs
) {
2328 if (Id
.getKind() == UnqualifiedIdKind::IK_TemplateId
) {
2329 Buffer
.setLAngleLoc(Id
.TemplateId
->LAngleLoc
);
2330 Buffer
.setRAngleLoc(Id
.TemplateId
->RAngleLoc
);
2332 ASTTemplateArgsPtr
TemplateArgsPtr(Id
.TemplateId
->getTemplateArgs(),
2333 Id
.TemplateId
->NumArgs
);
2334 translateTemplateArguments(TemplateArgsPtr
, Buffer
);
2336 TemplateName TName
= Id
.TemplateId
->Template
.get();
2337 SourceLocation TNameLoc
= Id
.TemplateId
->TemplateNameLoc
;
2338 NameInfo
= Context
.getNameForTemplate(TName
, TNameLoc
);
2339 TemplateArgs
= &Buffer
;
2341 NameInfo
= GetNameFromUnqualifiedId(Id
);
2342 TemplateArgs
= nullptr;
2346 static void emitEmptyLookupTypoDiagnostic(
2347 const TypoCorrection
&TC
, Sema
&SemaRef
, const CXXScopeSpec
&SS
,
2348 DeclarationName Typo
, SourceLocation TypoLoc
, ArrayRef
<Expr
*> Args
,
2349 unsigned DiagnosticID
, unsigned DiagnosticSuggestID
) {
2351 SS
.isEmpty() ? nullptr : SemaRef
.computeDeclContext(SS
, false);
2353 // Emit a special diagnostic for failed member lookups.
2354 // FIXME: computing the declaration context might fail here (?)
2356 SemaRef
.Diag(TypoLoc
, diag::err_no_member
) << Typo
<< Ctx
2359 SemaRef
.Diag(TypoLoc
, DiagnosticID
) << Typo
;
2363 std::string CorrectedStr
= TC
.getAsString(SemaRef
.getLangOpts());
2364 bool DroppedSpecifier
=
2365 TC
.WillReplaceSpecifier() && Typo
.getAsString() == CorrectedStr
;
2366 unsigned NoteID
= TC
.getCorrectionDeclAs
<ImplicitParamDecl
>()
2367 ? diag::note_implicit_param_decl
2368 : diag::note_previous_decl
;
2370 SemaRef
.diagnoseTypo(TC
, SemaRef
.PDiag(DiagnosticSuggestID
) << Typo
,
2371 SemaRef
.PDiag(NoteID
));
2373 SemaRef
.diagnoseTypo(TC
, SemaRef
.PDiag(diag::err_no_member_suggest
)
2374 << Typo
<< Ctx
<< DroppedSpecifier
2376 SemaRef
.PDiag(NoteID
));
2379 /// Diagnose a lookup that found results in an enclosing class during error
2380 /// recovery. This usually indicates that the results were found in a dependent
2381 /// base class that could not be searched as part of a template definition.
2382 /// Always issues a diagnostic (though this may be only a warning in MS
2383 /// compatibility mode).
2385 /// Return \c true if the error is unrecoverable, or \c false if the caller
2386 /// should attempt to recover using these lookup results.
2387 bool Sema::DiagnoseDependentMemberLookup(const LookupResult
&R
) {
2388 // During a default argument instantiation the CurContext points
2389 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2390 // function parameter list, hence add an explicit check.
2391 bool isDefaultArgument
=
2392 !CodeSynthesisContexts
.empty() &&
2393 CodeSynthesisContexts
.back().Kind
==
2394 CodeSynthesisContext::DefaultFunctionArgumentInstantiation
;
2395 const auto *CurMethod
= dyn_cast
<CXXMethodDecl
>(CurContext
);
2396 bool isInstance
= CurMethod
&& CurMethod
->isInstance() &&
2397 R
.getNamingClass() == CurMethod
->getParent() &&
2400 // There are two ways we can find a class-scope declaration during template
2401 // instantiation that we did not find in the template definition: if it is a
2402 // member of a dependent base class, or if it is declared after the point of
2403 // use in the same class. Distinguish these by comparing the class in which
2404 // the member was found to the naming class of the lookup.
2405 unsigned DiagID
= diag::err_found_in_dependent_base
;
2406 unsigned NoteID
= diag::note_member_declared_at
;
2407 if (R
.getRepresentativeDecl()->getDeclContext()->Equals(R
.getNamingClass())) {
2408 DiagID
= getLangOpts().MSVCCompat
? diag::ext_found_later_in_class
2409 : diag::err_found_later_in_class
;
2410 } else if (getLangOpts().MSVCCompat
) {
2411 DiagID
= diag::ext_found_in_dependent_base
;
2412 NoteID
= diag::note_dependent_member_use
;
2416 // Give a code modification hint to insert 'this->'.
2417 Diag(R
.getNameLoc(), DiagID
)
2418 << R
.getLookupName()
2419 << FixItHint::CreateInsertion(R
.getNameLoc(), "this->");
2420 CheckCXXThisCapture(R
.getNameLoc());
2422 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2423 // they're not shadowed).
2424 Diag(R
.getNameLoc(), DiagID
) << R
.getLookupName();
2427 for (const NamedDecl
*D
: R
)
2428 Diag(D
->getLocation(), NoteID
);
2430 // Return true if we are inside a default argument instantiation
2431 // and the found name refers to an instance member function, otherwise
2432 // the caller will try to create an implicit member call and this is wrong
2433 // for default arguments.
2435 // FIXME: Is this special case necessary? We could allow the caller to
2437 if (isDefaultArgument
&& ((*R
.begin())->isCXXInstanceMember())) {
2438 Diag(R
.getNameLoc(), diag::err_member_call_without_object
);
2442 // Tell the callee to try to recover.
2446 /// Diagnose an empty lookup.
2448 /// \return false if new lookup candidates were found
2449 bool Sema::DiagnoseEmptyLookup(Scope
*S
, CXXScopeSpec
&SS
, LookupResult
&R
,
2450 CorrectionCandidateCallback
&CCC
,
2451 TemplateArgumentListInfo
*ExplicitTemplateArgs
,
2452 ArrayRef
<Expr
*> Args
, TypoExpr
**Out
) {
2453 DeclarationName Name
= R
.getLookupName();
2455 unsigned diagnostic
= diag::err_undeclared_var_use
;
2456 unsigned diagnostic_suggest
= diag::err_undeclared_var_use_suggest
;
2457 if (Name
.getNameKind() == DeclarationName::CXXOperatorName
||
2458 Name
.getNameKind() == DeclarationName::CXXLiteralOperatorName
||
2459 Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
) {
2460 diagnostic
= diag::err_undeclared_use
;
2461 diagnostic_suggest
= diag::err_undeclared_use_suggest
;
2464 // If the original lookup was an unqualified lookup, fake an
2465 // unqualified lookup. This is useful when (for example) the
2466 // original lookup would not have found something because it was a
2468 DeclContext
*DC
= SS
.isEmpty() ? CurContext
: nullptr;
2470 if (isa
<CXXRecordDecl
>(DC
)) {
2471 LookupQualifiedName(R
, DC
);
2474 // Don't give errors about ambiguities in this lookup.
2475 R
.suppressDiagnostics();
2477 // If there's a best viable function among the results, only mention
2478 // that one in the notes.
2479 OverloadCandidateSet
Candidates(R
.getNameLoc(),
2480 OverloadCandidateSet::CSK_Normal
);
2481 AddOverloadedCallCandidates(R
, ExplicitTemplateArgs
, Args
, Candidates
);
2482 OverloadCandidateSet::iterator Best
;
2483 if (Candidates
.BestViableFunction(*this, R
.getNameLoc(), Best
) ==
2486 R
.addDecl(Best
->FoundDecl
.getDecl(), Best
->FoundDecl
.getAccess());
2490 return DiagnoseDependentMemberLookup(R
);
2496 DC
= DC
->getLookupParent();
2499 // We didn't find anything, so try to correct for a typo.
2500 TypoCorrection Corrected
;
2502 SourceLocation TypoLoc
= R
.getNameLoc();
2503 assert(!ExplicitTemplateArgs
&&
2504 "Diagnosing an empty lookup with explicit template args!");
2505 *Out
= CorrectTypoDelayed(
2506 R
.getLookupNameInfo(), R
.getLookupKind(), S
, &SS
, CCC
,
2507 [=](const TypoCorrection
&TC
) {
2508 emitEmptyLookupTypoDiagnostic(TC
, *this, SS
, Name
, TypoLoc
, Args
,
2509 diagnostic
, diagnostic_suggest
);
2511 nullptr, CTK_ErrorRecovery
);
2515 (Corrected
= CorrectTypo(R
.getLookupNameInfo(), R
.getLookupKind(),
2516 S
, &SS
, CCC
, CTK_ErrorRecovery
))) {
2517 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
2518 bool DroppedSpecifier
=
2519 Corrected
.WillReplaceSpecifier() && Name
.getAsString() == CorrectedStr
;
2520 R
.setLookupName(Corrected
.getCorrection());
2522 bool AcceptableWithRecovery
= false;
2523 bool AcceptableWithoutRecovery
= false;
2524 NamedDecl
*ND
= Corrected
.getFoundDecl();
2526 if (Corrected
.isOverloaded()) {
2527 OverloadCandidateSet
OCS(R
.getNameLoc(),
2528 OverloadCandidateSet::CSK_Normal
);
2529 OverloadCandidateSet::iterator Best
;
2530 for (NamedDecl
*CD
: Corrected
) {
2531 if (FunctionTemplateDecl
*FTD
=
2532 dyn_cast
<FunctionTemplateDecl
>(CD
))
2533 AddTemplateOverloadCandidate(
2534 FTD
, DeclAccessPair::make(FTD
, AS_none
), ExplicitTemplateArgs
,
2536 else if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CD
))
2537 if (!ExplicitTemplateArgs
|| ExplicitTemplateArgs
->size() == 0)
2538 AddOverloadCandidate(FD
, DeclAccessPair::make(FD
, AS_none
),
2541 switch (OCS
.BestViableFunction(*this, R
.getNameLoc(), Best
)) {
2543 ND
= Best
->FoundDecl
;
2544 Corrected
.setCorrectionDecl(ND
);
2547 // FIXME: Arbitrarily pick the first declaration for the note.
2548 Corrected
.setCorrectionDecl(ND
);
2553 if (getLangOpts().CPlusPlus
&& ND
->isCXXClassMember()) {
2554 CXXRecordDecl
*Record
= nullptr;
2555 if (Corrected
.getCorrectionSpecifier()) {
2556 const Type
*Ty
= Corrected
.getCorrectionSpecifier()->getAsType();
2557 Record
= Ty
->getAsCXXRecordDecl();
2560 Record
= cast
<CXXRecordDecl
>(
2561 ND
->getDeclContext()->getRedeclContext());
2562 R
.setNamingClass(Record
);
2565 auto *UnderlyingND
= ND
->getUnderlyingDecl();
2566 AcceptableWithRecovery
= isa
<ValueDecl
>(UnderlyingND
) ||
2567 isa
<FunctionTemplateDecl
>(UnderlyingND
);
2568 // FIXME: If we ended up with a typo for a type name or
2569 // Objective-C class name, we're in trouble because the parser
2570 // is in the wrong place to recover. Suggest the typo
2571 // correction, but don't make it a fix-it since we're not going
2572 // to recover well anyway.
2573 AcceptableWithoutRecovery
= isa
<TypeDecl
>(UnderlyingND
) ||
2574 getAsTypeTemplateDecl(UnderlyingND
) ||
2575 isa
<ObjCInterfaceDecl
>(UnderlyingND
);
2577 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2578 // because we aren't able to recover.
2579 AcceptableWithoutRecovery
= true;
2582 if (AcceptableWithRecovery
|| AcceptableWithoutRecovery
) {
2583 unsigned NoteID
= Corrected
.getCorrectionDeclAs
<ImplicitParamDecl
>()
2584 ? diag::note_implicit_param_decl
2585 : diag::note_previous_decl
;
2587 diagnoseTypo(Corrected
, PDiag(diagnostic_suggest
) << Name
,
2588 PDiag(NoteID
), AcceptableWithRecovery
);
2590 diagnoseTypo(Corrected
, PDiag(diag::err_no_member_suggest
)
2591 << Name
<< computeDeclContext(SS
, false)
2592 << DroppedSpecifier
<< SS
.getRange(),
2593 PDiag(NoteID
), AcceptableWithRecovery
);
2595 // Tell the callee whether to try to recover.
2596 return !AcceptableWithRecovery
;
2601 // Emit a special diagnostic for failed member lookups.
2602 // FIXME: computing the declaration context might fail here (?)
2603 if (!SS
.isEmpty()) {
2604 Diag(R
.getNameLoc(), diag::err_no_member
)
2605 << Name
<< computeDeclContext(SS
, false)
2610 // Give up, we can't recover.
2611 Diag(R
.getNameLoc(), diagnostic
) << Name
;
2615 /// In Microsoft mode, if we are inside a template class whose parent class has
2616 /// dependent base classes, and we can't resolve an unqualified identifier, then
2617 /// assume the identifier is a member of a dependent base class. We can only
2618 /// recover successfully in static methods, instance methods, and other contexts
2619 /// where 'this' is available. This doesn't precisely match MSVC's
2620 /// instantiation model, but it's close enough.
2622 recoverFromMSUnqualifiedLookup(Sema
&S
, ASTContext
&Context
,
2623 DeclarationNameInfo
&NameInfo
,
2624 SourceLocation TemplateKWLoc
,
2625 const TemplateArgumentListInfo
*TemplateArgs
) {
2626 // Only try to recover from lookup into dependent bases in static methods or
2627 // contexts where 'this' is available.
2628 QualType ThisType
= S
.getCurrentThisType();
2629 const CXXRecordDecl
*RD
= nullptr;
2630 if (!ThisType
.isNull())
2631 RD
= ThisType
->getPointeeType()->getAsCXXRecordDecl();
2632 else if (auto *MD
= dyn_cast
<CXXMethodDecl
>(S
.CurContext
))
2633 RD
= MD
->getParent();
2634 if (!RD
|| !RD
->hasAnyDependentBases())
2637 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2638 // is available, suggest inserting 'this->' as a fixit.
2639 SourceLocation Loc
= NameInfo
.getLoc();
2640 auto DB
= S
.Diag(Loc
, diag::ext_undeclared_unqual_id_with_dependent_base
);
2641 DB
<< NameInfo
.getName() << RD
;
2643 if (!ThisType
.isNull()) {
2644 DB
<< FixItHint::CreateInsertion(Loc
, "this->");
2645 return CXXDependentScopeMemberExpr::Create(
2646 Context
, /*This=*/nullptr, ThisType
, /*IsArrow=*/true,
2647 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc
,
2648 /*FirstQualifierFoundInScope=*/nullptr, NameInfo
, TemplateArgs
);
2651 // Synthesize a fake NNS that points to the derived class. This will
2652 // perform name lookup during template instantiation.
2655 NestedNameSpecifier::Create(Context
, nullptr, true, RD
->getTypeForDecl());
2656 SS
.MakeTrivial(Context
, NNS
, SourceRange(Loc
, Loc
));
2657 return DependentScopeDeclRefExpr::Create(
2658 Context
, SS
.getWithLocInContext(Context
), TemplateKWLoc
, NameInfo
,
2663 Sema::ActOnIdExpression(Scope
*S
, CXXScopeSpec
&SS
,
2664 SourceLocation TemplateKWLoc
, UnqualifiedId
&Id
,
2665 bool HasTrailingLParen
, bool IsAddressOfOperand
,
2666 CorrectionCandidateCallback
*CCC
,
2667 bool IsInlineAsmIdentifier
, Token
*KeywordReplacement
) {
2668 assert(!(IsAddressOfOperand
&& HasTrailingLParen
) &&
2669 "cannot be direct & operand and have a trailing lparen");
2673 TemplateArgumentListInfo TemplateArgsBuffer
;
2675 // Decompose the UnqualifiedId into the following data.
2676 DeclarationNameInfo NameInfo
;
2677 const TemplateArgumentListInfo
*TemplateArgs
;
2678 DecomposeUnqualifiedId(Id
, TemplateArgsBuffer
, NameInfo
, TemplateArgs
);
2680 DeclarationName Name
= NameInfo
.getName();
2681 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
2682 SourceLocation NameLoc
= NameInfo
.getLoc();
2684 if (II
&& II
->isEditorPlaceholder()) {
2685 // FIXME: When typed placeholders are supported we can create a typed
2686 // placeholder expression node.
2690 // C++ [temp.dep.expr]p3:
2691 // An id-expression is type-dependent if it contains:
2692 // -- an identifier that was declared with a dependent type,
2693 // (note: handled after lookup)
2694 // -- a template-id that is dependent,
2695 // (note: handled in BuildTemplateIdExpr)
2696 // -- a conversion-function-id that specifies a dependent type,
2697 // -- a nested-name-specifier that contains a class-name that
2698 // names a dependent type.
2699 // Determine whether this is a member of an unknown specialization;
2700 // we need to handle these differently.
2701 bool DependentID
= false;
2702 if (Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
&&
2703 Name
.getCXXNameType()->isDependentType()) {
2705 } else if (SS
.isSet()) {
2706 if (DeclContext
*DC
= computeDeclContext(SS
, false)) {
2707 if (RequireCompleteDeclContext(SS
, DC
))
2715 return ActOnDependentIdExpression(SS
, TemplateKWLoc
, NameInfo
,
2716 IsAddressOfOperand
, TemplateArgs
);
2718 // Perform the required lookup.
2719 LookupResult
R(*this, NameInfo
,
2720 (Id
.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam
)
2721 ? LookupObjCImplicitSelfParam
2722 : LookupOrdinaryName
);
2723 if (TemplateKWLoc
.isValid() || TemplateArgs
) {
2724 // Lookup the template name again to correctly establish the context in
2725 // which it was found. This is really unfortunate as we already did the
2726 // lookup to determine that it was a template name in the first place. If
2727 // this becomes a performance hit, we can work harder to preserve those
2728 // results until we get here but it's likely not worth it.
2729 bool MemberOfUnknownSpecialization
;
2730 AssumedTemplateKind AssumedTemplate
;
2731 if (LookupTemplateName(R
, S
, SS
, QualType(), /*EnteringContext=*/false,
2732 MemberOfUnknownSpecialization
, TemplateKWLoc
,
2736 if (MemberOfUnknownSpecialization
||
2737 (R
.getResultKind() == LookupResult::NotFoundInCurrentInstantiation
))
2738 return ActOnDependentIdExpression(SS
, TemplateKWLoc
, NameInfo
,
2739 IsAddressOfOperand
, TemplateArgs
);
2741 bool IvarLookupFollowUp
= II
&& !SS
.isSet() && getCurMethodDecl();
2742 LookupParsedName(R
, S
, &SS
, !IvarLookupFollowUp
);
2744 // If the result might be in a dependent base class, this is a dependent
2746 if (R
.getResultKind() == LookupResult::NotFoundInCurrentInstantiation
)
2747 return ActOnDependentIdExpression(SS
, TemplateKWLoc
, NameInfo
,
2748 IsAddressOfOperand
, TemplateArgs
);
2750 // If this reference is in an Objective-C method, then we need to do
2751 // some special Objective-C lookup, too.
2752 if (IvarLookupFollowUp
) {
2753 ExprResult
E(LookupInObjCMethod(R
, S
, II
, true));
2757 if (Expr
*Ex
= E
.getAs
<Expr
>())
2762 if (R
.isAmbiguous())
2765 // This could be an implicitly declared function reference if the language
2766 // mode allows it as a feature.
2767 if (R
.empty() && HasTrailingLParen
&& II
&&
2768 getLangOpts().implicitFunctionsAllowed()) {
2769 NamedDecl
*D
= ImplicitlyDefineFunction(NameLoc
, *II
, S
);
2770 if (D
) R
.addDecl(D
);
2773 // Determine whether this name might be a candidate for
2774 // argument-dependent lookup.
2775 bool ADL
= UseArgumentDependentLookup(SS
, R
, HasTrailingLParen
);
2777 if (R
.empty() && !ADL
) {
2778 if (SS
.isEmpty() && getLangOpts().MSVCCompat
) {
2779 if (Expr
*E
= recoverFromMSUnqualifiedLookup(*this, Context
, NameInfo
,
2780 TemplateKWLoc
, TemplateArgs
))
2784 // Don't diagnose an empty lookup for inline assembly.
2785 if (IsInlineAsmIdentifier
)
2788 // If this name wasn't predeclared and if this is not a function
2789 // call, diagnose the problem.
2790 TypoExpr
*TE
= nullptr;
2791 DefaultFilterCCC
DefaultValidator(II
, SS
.isValid() ? SS
.getScopeRep()
2793 DefaultValidator
.IsAddressOfOperand
= IsAddressOfOperand
;
2794 assert((!CCC
|| CCC
->IsAddressOfOperand
== IsAddressOfOperand
) &&
2795 "Typo correction callback misconfigured");
2797 // Make sure the callback knows what the typo being diagnosed is.
2798 CCC
->setTypoName(II
);
2800 CCC
->setTypoNNS(SS
.getScopeRep());
2802 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2803 // a template name, but we happen to have always already looked up the name
2804 // before we get here if it must be a template name.
2805 if (DiagnoseEmptyLookup(S
, SS
, R
, CCC
? *CCC
: DefaultValidator
, nullptr,
2806 std::nullopt
, &TE
)) {
2807 if (TE
&& KeywordReplacement
) {
2808 auto &State
= getTypoExprState(TE
);
2809 auto BestTC
= State
.Consumer
->getNextCorrection();
2810 if (BestTC
.isKeyword()) {
2811 auto *II
= BestTC
.getCorrectionAsIdentifierInfo();
2812 if (State
.DiagHandler
)
2813 State
.DiagHandler(BestTC
);
2814 KeywordReplacement
->startToken();
2815 KeywordReplacement
->setKind(II
->getTokenID());
2816 KeywordReplacement
->setIdentifierInfo(II
);
2817 KeywordReplacement
->setLocation(BestTC
.getCorrectionRange().getBegin());
2818 // Clean up the state associated with the TypoExpr, since it has
2819 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2820 clearDelayedTypo(TE
);
2821 // Signal that a correction to a keyword was performed by returning a
2822 // valid-but-null ExprResult.
2823 return (Expr
*)nullptr;
2825 State
.Consumer
->resetCorrectionStream();
2827 return TE
? TE
: ExprError();
2830 assert(!R
.empty() &&
2831 "DiagnoseEmptyLookup returned false but added no results");
2833 // If we found an Objective-C instance variable, let
2834 // LookupInObjCMethod build the appropriate expression to
2835 // reference the ivar.
2836 if (ObjCIvarDecl
*Ivar
= R
.getAsSingle
<ObjCIvarDecl
>()) {
2838 ExprResult
E(LookupInObjCMethod(R
, S
, Ivar
->getIdentifier()));
2839 // In a hopelessly buggy code, Objective-C instance variable
2840 // lookup fails and no expression will be built to reference it.
2841 if (!E
.isInvalid() && !E
.get())
2847 // This is guaranteed from this point on.
2848 assert(!R
.empty() || ADL
);
2850 // Check whether this might be a C++ implicit instance member access.
2851 // C++ [class.mfct.non-static]p3:
2852 // When an id-expression that is not part of a class member access
2853 // syntax and not used to form a pointer to member is used in the
2854 // body of a non-static member function of class X, if name lookup
2855 // resolves the name in the id-expression to a non-static non-type
2856 // member of some class C, the id-expression is transformed into a
2857 // class member access expression using (*this) as the
2858 // postfix-expression to the left of the . operator.
2860 // But we don't actually need to do this for '&' operands if R
2861 // resolved to a function or overloaded function set, because the
2862 // expression is ill-formed if it actually works out to be a
2863 // non-static member function:
2865 // C++ [expr.ref]p4:
2866 // Otherwise, if E1.E2 refers to a non-static member function. . .
2867 // [t]he expression can be used only as the left-hand operand of a
2868 // member function call.
2870 // There are other safeguards against such uses, but it's important
2871 // to get this right here so that we don't end up making a
2872 // spuriously dependent expression if we're inside a dependent
2874 if (!R
.empty() && (*R
.begin())->isCXXClassMember()) {
2875 bool MightBeImplicitMember
;
2876 if (!IsAddressOfOperand
)
2877 MightBeImplicitMember
= true;
2878 else if (!SS
.isEmpty())
2879 MightBeImplicitMember
= false;
2880 else if (R
.isOverloadedResult())
2881 MightBeImplicitMember
= false;
2882 else if (R
.isUnresolvableResult())
2883 MightBeImplicitMember
= true;
2885 MightBeImplicitMember
= isa
<FieldDecl
>(R
.getFoundDecl()) ||
2886 isa
<IndirectFieldDecl
>(R
.getFoundDecl()) ||
2887 isa
<MSPropertyDecl
>(R
.getFoundDecl());
2889 if (MightBeImplicitMember
)
2890 return BuildPossibleImplicitMemberExpr(SS
, TemplateKWLoc
,
2891 R
, TemplateArgs
, S
);
2894 if (TemplateArgs
|| TemplateKWLoc
.isValid()) {
2896 // In C++1y, if this is a variable template id, then check it
2897 // in BuildTemplateIdExpr().
2898 // The single lookup result must be a variable template declaration.
2899 if (Id
.getKind() == UnqualifiedIdKind::IK_TemplateId
&& Id
.TemplateId
&&
2900 Id
.TemplateId
->Kind
== TNK_Var_template
) {
2901 assert(R
.getAsSingle
<VarTemplateDecl
>() &&
2902 "There should only be one declaration found.");
2905 return BuildTemplateIdExpr(SS
, TemplateKWLoc
, R
, ADL
, TemplateArgs
);
2908 return BuildDeclarationNameExpr(SS
, R
, ADL
);
2911 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2912 /// declaration name, generally during template instantiation.
2913 /// There's a large number of things which don't need to be done along
2915 ExprResult
Sema::BuildQualifiedDeclarationNameExpr(
2916 CXXScopeSpec
&SS
, const DeclarationNameInfo
&NameInfo
,
2917 bool IsAddressOfOperand
, const Scope
*S
, TypeSourceInfo
**RecoveryTSI
) {
2918 if (NameInfo
.getName().isDependentName())
2919 return BuildDependentDeclRefExpr(SS
, /*TemplateKWLoc=*/SourceLocation(),
2920 NameInfo
, /*TemplateArgs=*/nullptr);
2922 DeclContext
*DC
= computeDeclContext(SS
, false);
2924 return BuildDependentDeclRefExpr(SS
, /*TemplateKWLoc=*/SourceLocation(),
2925 NameInfo
, /*TemplateArgs=*/nullptr);
2927 if (RequireCompleteDeclContext(SS
, DC
))
2930 LookupResult
R(*this, NameInfo
, LookupOrdinaryName
);
2931 LookupQualifiedName(R
, DC
);
2933 if (R
.isAmbiguous())
2936 if (R
.getResultKind() == LookupResult::NotFoundInCurrentInstantiation
)
2937 return BuildDependentDeclRefExpr(SS
, /*TemplateKWLoc=*/SourceLocation(),
2938 NameInfo
, /*TemplateArgs=*/nullptr);
2941 // Don't diagnose problems with invalid record decl, the secondary no_member
2942 // diagnostic during template instantiation is likely bogus, e.g. if a class
2943 // is invalid because it's derived from an invalid base class, then missing
2944 // members were likely supposed to be inherited.
2945 if (const auto *CD
= dyn_cast
<CXXRecordDecl
>(DC
))
2946 if (CD
->isInvalidDecl())
2948 Diag(NameInfo
.getLoc(), diag::err_no_member
)
2949 << NameInfo
.getName() << DC
<< SS
.getRange();
2953 if (const TypeDecl
*TD
= R
.getAsSingle
<TypeDecl
>()) {
2954 // Diagnose a missing typename if this resolved unambiguously to a type in
2955 // a dependent context. If we can recover with a type, downgrade this to
2956 // a warning in Microsoft compatibility mode.
2957 unsigned DiagID
= diag::err_typename_missing
;
2958 if (RecoveryTSI
&& getLangOpts().MSVCCompat
)
2959 DiagID
= diag::ext_typename_missing
;
2960 SourceLocation Loc
= SS
.getBeginLoc();
2961 auto D
= Diag(Loc
, DiagID
);
2962 D
<< SS
.getScopeRep() << NameInfo
.getName().getAsString()
2963 << SourceRange(Loc
, NameInfo
.getEndLoc());
2965 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2970 // Only issue the fixit if we're prepared to recover.
2971 D
<< FixItHint::CreateInsertion(Loc
, "typename ");
2973 // Recover by pretending this was an elaborated type.
2974 QualType Ty
= Context
.getTypeDeclType(TD
);
2976 TLB
.pushTypeSpec(Ty
).setNameLoc(NameInfo
.getLoc());
2978 QualType ET
= getElaboratedType(ETK_None
, SS
, Ty
);
2979 ElaboratedTypeLoc QTL
= TLB
.push
<ElaboratedTypeLoc
>(ET
);
2980 QTL
.setElaboratedKeywordLoc(SourceLocation());
2981 QTL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
2983 *RecoveryTSI
= TLB
.getTypeSourceInfo(Context
, ET
);
2988 // Defend against this resolving to an implicit member access. We usually
2989 // won't get here if this might be a legitimate a class member (we end up in
2990 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2991 // a pointer-to-member or in an unevaluated context in C++11.
2992 if (!R
.empty() && (*R
.begin())->isCXXClassMember() && !IsAddressOfOperand
)
2993 return BuildPossibleImplicitMemberExpr(SS
,
2994 /*TemplateKWLoc=*/SourceLocation(),
2995 R
, /*TemplateArgs=*/nullptr, S
);
2997 return BuildDeclarationNameExpr(SS
, R
, /* ADL */ false);
3000 /// The parser has read a name in, and Sema has detected that we're currently
3001 /// inside an ObjC method. Perform some additional checks and determine if we
3002 /// should form a reference to an ivar.
3004 /// Ideally, most of this would be done by lookup, but there's
3005 /// actually quite a lot of extra work involved.
3006 DeclResult
Sema::LookupIvarInObjCMethod(LookupResult
&Lookup
, Scope
*S
,
3007 IdentifierInfo
*II
) {
3008 SourceLocation Loc
= Lookup
.getNameLoc();
3009 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
3011 // Check for error condition which is already reported.
3013 return DeclResult(true);
3015 // There are two cases to handle here. 1) scoped lookup could have failed,
3016 // in which case we should look for an ivar. 2) scoped lookup could have
3017 // found a decl, but that decl is outside the current instance method (i.e.
3018 // a global variable). In these two cases, we do a lookup for an ivar with
3019 // this name, if the lookup sucedes, we replace it our current decl.
3021 // If we're in a class method, we don't normally want to look for
3022 // ivars. But if we don't find anything else, and there's an
3023 // ivar, that's an error.
3024 bool IsClassMethod
= CurMethod
->isClassMethod();
3028 LookForIvars
= true;
3029 else if (IsClassMethod
)
3030 LookForIvars
= false;
3032 LookForIvars
= (Lookup
.isSingleResult() &&
3033 Lookup
.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
3034 ObjCInterfaceDecl
*IFace
= nullptr;
3036 IFace
= CurMethod
->getClassInterface();
3037 ObjCInterfaceDecl
*ClassDeclared
;
3038 ObjCIvarDecl
*IV
= nullptr;
3039 if (IFace
&& (IV
= IFace
->lookupInstanceVariable(II
, ClassDeclared
))) {
3040 // Diagnose using an ivar in a class method.
3041 if (IsClassMethod
) {
3042 Diag(Loc
, diag::err_ivar_use_in_class_method
) << IV
->getDeclName();
3043 return DeclResult(true);
3046 // Diagnose the use of an ivar outside of the declaring class.
3047 if (IV
->getAccessControl() == ObjCIvarDecl::Private
&&
3048 !declaresSameEntity(ClassDeclared
, IFace
) &&
3049 !getLangOpts().DebuggerSupport
)
3050 Diag(Loc
, diag::err_private_ivar_access
) << IV
->getDeclName();
3055 } else if (CurMethod
->isInstanceMethod()) {
3056 // We should warn if a local variable hides an ivar.
3057 if (ObjCInterfaceDecl
*IFace
= CurMethod
->getClassInterface()) {
3058 ObjCInterfaceDecl
*ClassDeclared
;
3059 if (ObjCIvarDecl
*IV
= IFace
->lookupInstanceVariable(II
, ClassDeclared
)) {
3060 if (IV
->getAccessControl() != ObjCIvarDecl::Private
||
3061 declaresSameEntity(IFace
, ClassDeclared
))
3062 Diag(Loc
, diag::warn_ivar_use_hidden
) << IV
->getDeclName();
3065 } else if (Lookup
.isSingleResult() &&
3066 Lookup
.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
3067 // If accessing a stand-alone ivar in a class method, this is an error.
3068 if (const ObjCIvarDecl
*IV
=
3069 dyn_cast
<ObjCIvarDecl
>(Lookup
.getFoundDecl())) {
3070 Diag(Loc
, diag::err_ivar_use_in_class_method
) << IV
->getDeclName();
3071 return DeclResult(true);
3075 // Didn't encounter an error, didn't find an ivar.
3076 return DeclResult(false);
3079 ExprResult
Sema::BuildIvarRefExpr(Scope
*S
, SourceLocation Loc
,
3081 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
3082 assert(CurMethod
&& CurMethod
->isInstanceMethod() &&
3083 "should not reference ivar from this context");
3085 ObjCInterfaceDecl
*IFace
= CurMethod
->getClassInterface();
3086 assert(IFace
&& "should not reference ivar from this context");
3088 // If we're referencing an invalid decl, just return this as a silent
3089 // error node. The error diagnostic was already emitted on the decl.
3090 if (IV
->isInvalidDecl())
3093 // Check if referencing a field with __attribute__((deprecated)).
3094 if (DiagnoseUseOfDecl(IV
, Loc
))
3097 // FIXME: This should use a new expr for a direct reference, don't
3098 // turn this into Self->ivar, just return a BareIVarExpr or something.
3099 IdentifierInfo
&II
= Context
.Idents
.get("self");
3100 UnqualifiedId SelfName
;
3101 SelfName
.setImplicitSelfParam(&II
);
3102 CXXScopeSpec SelfScopeSpec
;
3103 SourceLocation TemplateKWLoc
;
3104 ExprResult SelfExpr
=
3105 ActOnIdExpression(S
, SelfScopeSpec
, TemplateKWLoc
, SelfName
,
3106 /*HasTrailingLParen=*/false,
3107 /*IsAddressOfOperand=*/false);
3108 if (SelfExpr
.isInvalid())
3111 SelfExpr
= DefaultLvalueConversion(SelfExpr
.get());
3112 if (SelfExpr
.isInvalid())
3115 MarkAnyDeclReferenced(Loc
, IV
, true);
3117 ObjCMethodFamily MF
= CurMethod
->getMethodFamily();
3118 if (MF
!= OMF_init
&& MF
!= OMF_dealloc
&& MF
!= OMF_finalize
&&
3119 !IvarBacksCurrentMethodAccessor(IFace
, CurMethod
, IV
))
3120 Diag(Loc
, diag::warn_direct_ivar_access
) << IV
->getDeclName();
3122 ObjCIvarRefExpr
*Result
= new (Context
)
3123 ObjCIvarRefExpr(IV
, IV
->getUsageType(SelfExpr
.get()->getType()), Loc
,
3124 IV
->getLocation(), SelfExpr
.get(), true, true);
3126 if (IV
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
) {
3127 if (!isUnevaluatedContext() &&
3128 !Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
, Loc
))
3129 getCurFunction()->recordUseOfWeak(Result
);
3131 if (getLangOpts().ObjCAutoRefCount
&& !isUnevaluatedContext())
3132 if (const BlockDecl
*BD
= CurContext
->getInnermostBlockDecl())
3133 ImplicitlyRetainedSelfLocs
.push_back({Loc
, BD
});
3138 /// The parser has read a name in, and Sema has detected that we're currently
3139 /// inside an ObjC method. Perform some additional checks and determine if we
3140 /// should form a reference to an ivar. If so, build an expression referencing
3143 Sema::LookupInObjCMethod(LookupResult
&Lookup
, Scope
*S
,
3144 IdentifierInfo
*II
, bool AllowBuiltinCreation
) {
3145 // FIXME: Integrate this lookup step into LookupParsedName.
3146 DeclResult Ivar
= LookupIvarInObjCMethod(Lookup
, S
, II
);
3147 if (Ivar
.isInvalid())
3149 if (Ivar
.isUsable())
3150 return BuildIvarRefExpr(S
, Lookup
.getNameLoc(),
3151 cast
<ObjCIvarDecl
>(Ivar
.get()));
3153 if (Lookup
.empty() && II
&& AllowBuiltinCreation
)
3154 LookupBuiltin(Lookup
);
3156 // Sentinel value saying that we didn't do anything special.
3157 return ExprResult(false);
3160 /// Cast a base object to a member's actual type.
3162 /// There are two relevant checks:
3164 /// C++ [class.access.base]p7:
3166 /// If a class member access operator [...] is used to access a non-static
3167 /// data member or non-static member function, the reference is ill-formed if
3168 /// the left operand [...] cannot be implicitly converted to a pointer to the
3169 /// naming class of the right operand.
3171 /// C++ [expr.ref]p7:
3173 /// If E2 is a non-static data member or a non-static member function, the
3174 /// program is ill-formed if the class of which E2 is directly a member is an
3175 /// ambiguous base (11.8) of the naming class (11.9.3) of E2.
3177 /// Note that the latter check does not consider access; the access of the
3178 /// "real" base class is checked as appropriate when checking the access of the
3181 Sema::PerformObjectMemberConversion(Expr
*From
,
3182 NestedNameSpecifier
*Qualifier
,
3183 NamedDecl
*FoundDecl
,
3184 NamedDecl
*Member
) {
3185 const auto *RD
= dyn_cast
<CXXRecordDecl
>(Member
->getDeclContext());
3189 QualType DestRecordType
;
3191 QualType FromRecordType
;
3192 QualType FromType
= From
->getType();
3193 bool PointerConversions
= false;
3194 if (isa
<FieldDecl
>(Member
)) {
3195 DestRecordType
= Context
.getCanonicalType(Context
.getTypeDeclType(RD
));
3196 auto FromPtrType
= FromType
->getAs
<PointerType
>();
3197 DestRecordType
= Context
.getAddrSpaceQualType(
3198 DestRecordType
, FromPtrType
3199 ? FromType
->getPointeeType().getAddressSpace()
3200 : FromType
.getAddressSpace());
3203 DestType
= Context
.getPointerType(DestRecordType
);
3204 FromRecordType
= FromPtrType
->getPointeeType();
3205 PointerConversions
= true;
3207 DestType
= DestRecordType
;
3208 FromRecordType
= FromType
;
3210 } else if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(Member
)) {
3211 if (Method
->isStatic())
3214 DestType
= Method
->getThisType();
3215 DestRecordType
= DestType
->getPointeeType();
3217 if (FromType
->getAs
<PointerType
>()) {
3218 FromRecordType
= FromType
->getPointeeType();
3219 PointerConversions
= true;
3221 FromRecordType
= FromType
;
3222 DestType
= DestRecordType
;
3225 LangAS FromAS
= FromRecordType
.getAddressSpace();
3226 LangAS DestAS
= DestRecordType
.getAddressSpace();
3227 if (FromAS
!= DestAS
) {
3228 QualType FromRecordTypeWithoutAS
=
3229 Context
.removeAddrSpaceQualType(FromRecordType
);
3230 QualType FromTypeWithDestAS
=
3231 Context
.getAddrSpaceQualType(FromRecordTypeWithoutAS
, DestAS
);
3232 if (PointerConversions
)
3233 FromTypeWithDestAS
= Context
.getPointerType(FromTypeWithDestAS
);
3234 From
= ImpCastExprToType(From
, FromTypeWithDestAS
,
3235 CK_AddressSpaceConversion
, From
->getValueKind())
3239 // No conversion necessary.
3243 if (DestType
->isDependentType() || FromType
->isDependentType())
3246 // If the unqualified types are the same, no conversion is necessary.
3247 if (Context
.hasSameUnqualifiedType(FromRecordType
, DestRecordType
))
3250 SourceRange FromRange
= From
->getSourceRange();
3251 SourceLocation FromLoc
= FromRange
.getBegin();
3253 ExprValueKind VK
= From
->getValueKind();
3255 // C++ [class.member.lookup]p8:
3256 // [...] Ambiguities can often be resolved by qualifying a name with its
3259 // If the member was a qualified name and the qualified referred to a
3260 // specific base subobject type, we'll cast to that intermediate type
3261 // first and then to the object in which the member is declared. That allows
3262 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3264 // class Base { public: int x; };
3265 // class Derived1 : public Base { };
3266 // class Derived2 : public Base { };
3267 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3269 // void VeryDerived::f() {
3270 // x = 17; // error: ambiguous base subobjects
3271 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3273 if (Qualifier
&& Qualifier
->getAsType()) {
3274 QualType QType
= QualType(Qualifier
->getAsType(), 0);
3275 assert(QType
->isRecordType() && "lookup done with non-record type");
3277 QualType QRecordType
= QualType(QType
->castAs
<RecordType
>(), 0);
3279 // In C++98, the qualifier type doesn't actually have to be a base
3280 // type of the object type, in which case we just ignore it.
3281 // Otherwise build the appropriate casts.
3282 if (IsDerivedFrom(FromLoc
, FromRecordType
, QRecordType
)) {
3283 CXXCastPath BasePath
;
3284 if (CheckDerivedToBaseConversion(FromRecordType
, QRecordType
,
3285 FromLoc
, FromRange
, &BasePath
))
3288 if (PointerConversions
)
3289 QType
= Context
.getPointerType(QType
);
3290 From
= ImpCastExprToType(From
, QType
, CK_UncheckedDerivedToBase
,
3291 VK
, &BasePath
).get();
3294 FromRecordType
= QRecordType
;
3296 // If the qualifier type was the same as the destination type,
3298 if (Context
.hasSameUnqualifiedType(FromRecordType
, DestRecordType
))
3303 CXXCastPath BasePath
;
3304 if (CheckDerivedToBaseConversion(FromRecordType
, DestRecordType
,
3305 FromLoc
, FromRange
, &BasePath
,
3306 /*IgnoreAccess=*/true))
3309 return ImpCastExprToType(From
, DestType
, CK_UncheckedDerivedToBase
,
3313 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec
&SS
,
3314 const LookupResult
&R
,
3315 bool HasTrailingLParen
) {
3316 // Only when used directly as the postfix-expression of a call.
3317 if (!HasTrailingLParen
)
3320 // Never if a scope specifier was provided.
3324 // Only in C++ or ObjC++.
3325 if (!getLangOpts().CPlusPlus
)
3328 // Turn off ADL when we find certain kinds of declarations during
3330 for (const NamedDecl
*D
: R
) {
3331 // C++0x [basic.lookup.argdep]p3:
3332 // -- a declaration of a class member
3333 // Since using decls preserve this property, we check this on the
3335 if (D
->isCXXClassMember())
3338 // C++0x [basic.lookup.argdep]p3:
3339 // -- a block-scope function declaration that is not a
3340 // using-declaration
3341 // NOTE: we also trigger this for function templates (in fact, we
3342 // don't check the decl type at all, since all other decl types
3343 // turn off ADL anyway).
3344 if (isa
<UsingShadowDecl
>(D
))
3345 D
= cast
<UsingShadowDecl
>(D
)->getTargetDecl();
3346 else if (D
->getLexicalDeclContext()->isFunctionOrMethod())
3349 // C++0x [basic.lookup.argdep]p3:
3350 // -- a declaration that is neither a function or a function
3352 // And also for builtin functions.
3353 if (const auto *FDecl
= dyn_cast
<FunctionDecl
>(D
)) {
3354 // But also builtin functions.
3355 if (FDecl
->getBuiltinID() && FDecl
->isImplicit())
3357 } else if (!isa
<FunctionTemplateDecl
>(D
))
3365 /// Diagnoses obvious problems with the use of the given declaration
3366 /// as an expression. This is only actually called for lookups that
3367 /// were not overloaded, and it doesn't promise that the declaration
3368 /// will in fact be used.
3369 static bool CheckDeclInExpr(Sema
&S
, SourceLocation Loc
, NamedDecl
*D
,
3370 bool AcceptInvalid
) {
3371 if (D
->isInvalidDecl() && !AcceptInvalid
)
3374 if (isa
<TypedefNameDecl
>(D
)) {
3375 S
.Diag(Loc
, diag::err_unexpected_typedef
) << D
->getDeclName();
3379 if (isa
<ObjCInterfaceDecl
>(D
)) {
3380 S
.Diag(Loc
, diag::err_unexpected_interface
) << D
->getDeclName();
3384 if (isa
<NamespaceDecl
>(D
)) {
3385 S
.Diag(Loc
, diag::err_unexpected_namespace
) << D
->getDeclName();
3392 // Certain multiversion types should be treated as overloaded even when there is
3394 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult
&R
) {
3395 assert(R
.isSingleResult() && "Expected only a single result");
3396 const auto *FD
= dyn_cast
<FunctionDecl
>(R
.getFoundDecl());
3398 (FD
->isCPUDispatchMultiVersion() || FD
->isCPUSpecificMultiVersion());
3401 ExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec
&SS
,
3402 LookupResult
&R
, bool NeedsADL
,
3403 bool AcceptInvalidDecl
) {
3404 // If this is a single, fully-resolved result and we don't need ADL,
3405 // just build an ordinary singleton decl ref.
3406 if (!NeedsADL
&& R
.isSingleResult() &&
3407 !R
.getAsSingle
<FunctionTemplateDecl
>() &&
3408 !ShouldLookupResultBeMultiVersionOverload(R
))
3409 return BuildDeclarationNameExpr(SS
, R
.getLookupNameInfo(), R
.getFoundDecl(),
3410 R
.getRepresentativeDecl(), nullptr,
3413 // We only need to check the declaration if there's exactly one
3414 // result, because in the overloaded case the results can only be
3415 // functions and function templates.
3416 if (R
.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R
) &&
3417 CheckDeclInExpr(*this, R
.getNameLoc(), R
.getFoundDecl(),
3421 // Otherwise, just build an unresolved lookup expression. Suppress
3422 // any lookup-related diagnostics; we'll hash these out later, when
3423 // we've picked a target.
3424 R
.suppressDiagnostics();
3426 UnresolvedLookupExpr
*ULE
3427 = UnresolvedLookupExpr::Create(Context
, R
.getNamingClass(),
3428 SS
.getWithLocInContext(Context
),
3429 R
.getLookupNameInfo(),
3430 NeedsADL
, R
.isOverloadedResult(),
3431 R
.begin(), R
.end());
3436 static void diagnoseUncapturableValueReferenceOrBinding(Sema
&S
,
3440 /// Complete semantic analysis for a reference to the given declaration.
3441 ExprResult
Sema::BuildDeclarationNameExpr(
3442 const CXXScopeSpec
&SS
, const DeclarationNameInfo
&NameInfo
, NamedDecl
*D
,
3443 NamedDecl
*FoundD
, const TemplateArgumentListInfo
*TemplateArgs
,
3444 bool AcceptInvalidDecl
) {
3445 assert(D
&& "Cannot refer to a NULL declaration");
3446 assert(!isa
<FunctionTemplateDecl
>(D
) &&
3447 "Cannot refer unambiguously to a function template");
3449 SourceLocation Loc
= NameInfo
.getLoc();
3450 if (CheckDeclInExpr(*this, Loc
, D
, AcceptInvalidDecl
)) {
3451 // Recovery from invalid cases (e.g. D is an invalid Decl).
3452 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3453 // diagnostics, as invalid decls use int as a fallback type.
3454 return CreateRecoveryExpr(NameInfo
.getBeginLoc(), NameInfo
.getEndLoc(), {});
3457 if (TemplateDecl
*Template
= dyn_cast
<TemplateDecl
>(D
)) {
3458 // Specifically diagnose references to class templates that are missing
3459 // a template argument list.
3460 diagnoseMissingTemplateArguments(TemplateName(Template
), Loc
);
3464 // Make sure that we're referring to a value.
3465 if (!isa
<ValueDecl
, UnresolvedUsingIfExistsDecl
>(D
)) {
3466 Diag(Loc
, diag::err_ref_non_value
) << D
<< SS
.getRange();
3467 Diag(D
->getLocation(), diag::note_declared_at
);
3471 // Check whether this declaration can be used. Note that we suppress
3472 // this check when we're going to perform argument-dependent lookup
3473 // on this function name, because this might not be the function
3474 // that overload resolution actually selects.
3475 if (DiagnoseUseOfDecl(D
, Loc
))
3478 auto *VD
= cast
<ValueDecl
>(D
);
3480 // Only create DeclRefExpr's for valid Decl's.
3481 if (VD
->isInvalidDecl() && !AcceptInvalidDecl
)
3484 // Handle members of anonymous structs and unions. If we got here,
3485 // and the reference is to a class member indirect field, then this
3486 // must be the subject of a pointer-to-member expression.
3487 if (auto *IndirectField
= dyn_cast
<IndirectFieldDecl
>(VD
);
3488 IndirectField
&& !IndirectField
->isCXXClassMember())
3489 return BuildAnonymousStructUnionMemberReference(SS
, NameInfo
.getLoc(),
3492 QualType type
= VD
->getType();
3495 ExprValueKind valueKind
= VK_PRValue
;
3497 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3498 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3499 // is expanded by some outer '...' in the context of the use.
3500 type
= type
.getNonPackExpansionType();
3502 switch (D
->getKind()) {
3503 // Ignore all the non-ValueDecl kinds.
3504 #define ABSTRACT_DECL(kind)
3505 #define VALUE(type, base)
3506 #define DECL(type, base) case Decl::type:
3507 #include "clang/AST/DeclNodes.inc"
3508 llvm_unreachable("invalid value decl kind");
3510 // These shouldn't make it here.
3511 case Decl::ObjCAtDefsField
:
3512 llvm_unreachable("forming non-member reference to ivar?");
3514 // Enum constants are always r-values and never references.
3515 // Unresolved using declarations are dependent.
3516 case Decl::EnumConstant
:
3517 case Decl::UnresolvedUsingValue
:
3518 case Decl::OMPDeclareReduction
:
3519 case Decl::OMPDeclareMapper
:
3520 valueKind
= VK_PRValue
;
3523 // Fields and indirect fields that got here must be for
3524 // pointer-to-member expressions; we just call them l-values for
3525 // internal consistency, because this subexpression doesn't really
3526 // exist in the high-level semantics.
3528 case Decl::IndirectField
:
3529 case Decl::ObjCIvar
:
3530 assert(getLangOpts().CPlusPlus
&& "building reference to field in C?");
3532 // These can't have reference type in well-formed programs, but
3533 // for internal consistency we do this anyway.
3534 type
= type
.getNonReferenceType();
3535 valueKind
= VK_LValue
;
3538 // Non-type template parameters are either l-values or r-values
3539 // depending on the type.
3540 case Decl::NonTypeTemplateParm
: {
3541 if (const ReferenceType
*reftype
= type
->getAs
<ReferenceType
>()) {
3542 type
= reftype
->getPointeeType();
3543 valueKind
= VK_LValue
; // even if the parameter is an r-value reference
3547 // [expr.prim.id.unqual]p2:
3548 // If the entity is a template parameter object for a template
3549 // parameter of type T, the type of the expression is const T.
3550 // [...] The expression is an lvalue if the entity is a [...] template
3551 // parameter object.
3552 if (type
->isRecordType()) {
3553 type
= type
.getUnqualifiedType().withConst();
3554 valueKind
= VK_LValue
;
3558 // For non-references, we need to strip qualifiers just in case
3559 // the template parameter was declared as 'const int' or whatever.
3560 valueKind
= VK_PRValue
;
3561 type
= type
.getUnqualifiedType();
3566 case Decl::VarTemplateSpecialization
:
3567 case Decl::VarTemplatePartialSpecialization
:
3568 case Decl::Decomposition
:
3569 case Decl::OMPCapturedExpr
:
3570 // In C, "extern void blah;" is valid and is an r-value.
3571 if (!getLangOpts().CPlusPlus
&& !type
.hasQualifiers() &&
3572 type
->isVoidType()) {
3573 valueKind
= VK_PRValue
;
3578 case Decl::ImplicitParam
:
3579 case Decl::ParmVar
: {
3580 // These are always l-values.
3581 valueKind
= VK_LValue
;
3582 type
= type
.getNonReferenceType();
3584 // FIXME: Does the addition of const really only apply in
3585 // potentially-evaluated contexts? Since the variable isn't actually
3586 // captured in an unevaluated context, it seems that the answer is no.
3587 if (!isUnevaluatedContext()) {
3588 QualType CapturedType
= getCapturedDeclRefType(cast
<VarDecl
>(VD
), Loc
);
3589 if (!CapturedType
.isNull())
3590 type
= CapturedType
;
3597 // These are always lvalues.
3598 valueKind
= VK_LValue
;
3599 type
= type
.getNonReferenceType();
3602 case Decl::Function
: {
3603 if (unsigned BID
= cast
<FunctionDecl
>(VD
)->getBuiltinID()) {
3604 if (!Context
.BuiltinInfo
.isDirectlyAddressable(BID
)) {
3605 type
= Context
.BuiltinFnTy
;
3606 valueKind
= VK_PRValue
;
3611 const FunctionType
*fty
= type
->castAs
<FunctionType
>();
3613 // If we're referring to a function with an __unknown_anytype
3614 // result type, make the entire expression __unknown_anytype.
3615 if (fty
->getReturnType() == Context
.UnknownAnyTy
) {
3616 type
= Context
.UnknownAnyTy
;
3617 valueKind
= VK_PRValue
;
3621 // Functions are l-values in C++.
3622 if (getLangOpts().CPlusPlus
) {
3623 valueKind
= VK_LValue
;
3627 // C99 DR 316 says that, if a function type comes from a
3628 // function definition (without a prototype), that type is only
3629 // used for checking compatibility. Therefore, when referencing
3630 // the function, we pretend that we don't have the full function
3632 if (!cast
<FunctionDecl
>(VD
)->hasPrototype() && isa
<FunctionProtoType
>(fty
))
3633 type
= Context
.getFunctionNoProtoType(fty
->getReturnType(),
3636 // Functions are r-values in C.
3637 valueKind
= VK_PRValue
;
3641 case Decl::CXXDeductionGuide
:
3642 llvm_unreachable("building reference to deduction guide");
3644 case Decl::MSProperty
:
3646 case Decl::TemplateParamObject
:
3647 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3648 // capture in OpenMP, or duplicated between host and device?
3649 valueKind
= VK_LValue
;
3652 case Decl::UnnamedGlobalConstant
:
3653 valueKind
= VK_LValue
;
3656 case Decl::CXXMethod
:
3657 // If we're referring to a method with an __unknown_anytype
3658 // result type, make the entire expression __unknown_anytype.
3659 // This should only be possible with a type written directly.
3660 if (const FunctionProtoType
*proto
=
3661 dyn_cast
<FunctionProtoType
>(VD
->getType()))
3662 if (proto
->getReturnType() == Context
.UnknownAnyTy
) {
3663 type
= Context
.UnknownAnyTy
;
3664 valueKind
= VK_PRValue
;
3668 // C++ methods are l-values if static, r-values if non-static.
3669 if (cast
<CXXMethodDecl
>(VD
)->isStatic()) {
3670 valueKind
= VK_LValue
;
3675 case Decl::CXXConversion
:
3676 case Decl::CXXDestructor
:
3677 case Decl::CXXConstructor
:
3678 valueKind
= VK_PRValue
;
3683 BuildDeclRefExpr(VD
, type
, valueKind
, NameInfo
, &SS
, FoundD
,
3684 /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs
);
3685 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3686 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3687 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3689 if (VD
->isInvalidDecl() && E
)
3690 return CreateRecoveryExpr(E
->getBeginLoc(), E
->getEndLoc(), {E
});
3694 static void ConvertUTF8ToWideString(unsigned CharByteWidth
, StringRef Source
,
3695 SmallString
<32> &Target
) {
3696 Target
.resize(CharByteWidth
* (Source
.size() + 1));
3697 char *ResultPtr
= &Target
[0];
3698 const llvm::UTF8
*ErrorPtr
;
3700 llvm::ConvertUTF8toWide(CharByteWidth
, Source
, ResultPtr
, ErrorPtr
);
3703 Target
.resize(ResultPtr
- &Target
[0]);
3706 ExprResult
Sema::BuildPredefinedExpr(SourceLocation Loc
,
3707 PredefinedExpr::IdentKind IK
) {
3708 Decl
*currentDecl
= getCurLocalScopeDecl();
3710 Diag(Loc
, diag::ext_predef_outside_function
);
3711 currentDecl
= Context
.getTranslationUnitDecl();
3715 StringLiteral
*SL
= nullptr;
3716 if (cast
<DeclContext
>(currentDecl
)->isDependentContext())
3717 ResTy
= Context
.DependentTy
;
3719 // Pre-defined identifiers are of type char[x], where x is the length of
3721 auto Str
= PredefinedExpr::ComputeName(IK
, currentDecl
);
3722 unsigned Length
= Str
.length();
3724 llvm::APInt
LengthI(32, Length
+ 1);
3725 if (IK
== PredefinedExpr::LFunction
|| IK
== PredefinedExpr::LFuncSig
) {
3727 Context
.adjustStringLiteralBaseType(Context
.WideCharTy
.withConst());
3728 SmallString
<32> RawChars
;
3729 ConvertUTF8ToWideString(Context
.getTypeSizeInChars(ResTy
).getQuantity(),
3731 ResTy
= Context
.getConstantArrayType(ResTy
, LengthI
, nullptr,
3733 /*IndexTypeQuals*/ 0);
3734 SL
= StringLiteral::Create(Context
, RawChars
, StringLiteral::Wide
,
3735 /*Pascal*/ false, ResTy
, Loc
);
3737 ResTy
= Context
.adjustStringLiteralBaseType(Context
.CharTy
.withConst());
3738 ResTy
= Context
.getConstantArrayType(ResTy
, LengthI
, nullptr,
3740 /*IndexTypeQuals*/ 0);
3741 SL
= StringLiteral::Create(Context
, Str
, StringLiteral::Ordinary
,
3742 /*Pascal*/ false, ResTy
, Loc
);
3746 return PredefinedExpr::Create(Context
, Loc
, ResTy
, IK
, LangOpts
.MicrosoftExt
,
3750 ExprResult
Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc
,
3751 SourceLocation LParen
,
3752 SourceLocation RParen
,
3753 TypeSourceInfo
*TSI
) {
3754 return SYCLUniqueStableNameExpr::Create(Context
, OpLoc
, LParen
, RParen
, TSI
);
3757 ExprResult
Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc
,
3758 SourceLocation LParen
,
3759 SourceLocation RParen
,
3760 ParsedType ParsedTy
) {
3761 TypeSourceInfo
*TSI
= nullptr;
3762 QualType Ty
= GetTypeFromParser(ParsedTy
, &TSI
);
3767 TSI
= Context
.getTrivialTypeSourceInfo(Ty
, LParen
);
3769 return BuildSYCLUniqueStableNameExpr(OpLoc
, LParen
, RParen
, TSI
);
3772 ExprResult
Sema::ActOnPredefinedExpr(SourceLocation Loc
, tok::TokenKind Kind
) {
3773 return BuildPredefinedExpr(Loc
, getPredefinedExprKind(Kind
));
3776 ExprResult
Sema::ActOnCharacterConstant(const Token
&Tok
, Scope
*UDLScope
) {
3777 SmallString
<16> CharBuffer
;
3778 bool Invalid
= false;
3779 StringRef ThisTok
= PP
.getSpelling(Tok
, CharBuffer
, &Invalid
);
3783 CharLiteralParser
Literal(ThisTok
.begin(), ThisTok
.end(), Tok
.getLocation(),
3785 if (Literal
.hadError())
3789 if (Literal
.isWide())
3790 Ty
= Context
.WideCharTy
; // L'x' -> wchar_t in C and C++.
3791 else if (Literal
.isUTF8() && getLangOpts().C23
)
3792 Ty
= Context
.UnsignedCharTy
; // u8'x' -> unsigned char in C23
3793 else if (Literal
.isUTF8() && getLangOpts().Char8
)
3794 Ty
= Context
.Char8Ty
; // u8'x' -> char8_t when it exists.
3795 else if (Literal
.isUTF16())
3796 Ty
= Context
.Char16Ty
; // u'x' -> char16_t in C11 and C++11.
3797 else if (Literal
.isUTF32())
3798 Ty
= Context
.Char32Ty
; // U'x' -> char32_t in C11 and C++11.
3799 else if (!getLangOpts().CPlusPlus
|| Literal
.isMultiChar())
3800 Ty
= Context
.IntTy
; // 'x' -> int in C, 'wxyz' -> int in C++.
3802 Ty
= Context
.CharTy
; // 'x' -> char in C++;
3803 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3805 CharacterLiteral::CharacterKind Kind
= CharacterLiteral::Ascii
;
3806 if (Literal
.isWide())
3807 Kind
= CharacterLiteral::Wide
;
3808 else if (Literal
.isUTF16())
3809 Kind
= CharacterLiteral::UTF16
;
3810 else if (Literal
.isUTF32())
3811 Kind
= CharacterLiteral::UTF32
;
3812 else if (Literal
.isUTF8())
3813 Kind
= CharacterLiteral::UTF8
;
3815 Expr
*Lit
= new (Context
) CharacterLiteral(Literal
.getValue(), Kind
, Ty
,
3818 if (Literal
.getUDSuffix().empty())
3821 // We're building a user-defined literal.
3822 IdentifierInfo
*UDSuffix
= &Context
.Idents
.get(Literal
.getUDSuffix());
3823 SourceLocation UDSuffixLoc
=
3824 getUDSuffixLoc(*this, Tok
.getLocation(), Literal
.getUDSuffixOffset());
3826 // Make sure we're allowed user-defined literals here.
3828 return ExprError(Diag(UDSuffixLoc
, diag::err_invalid_character_udl
));
3830 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3831 // operator "" X (ch)
3832 return BuildCookedLiteralOperatorCall(*this, UDLScope
, UDSuffix
, UDSuffixLoc
,
3833 Lit
, Tok
.getLocation());
3836 ExprResult
Sema::ActOnIntegerConstant(SourceLocation Loc
, uint64_t Val
) {
3837 unsigned IntSize
= Context
.getTargetInfo().getIntWidth();
3838 return IntegerLiteral::Create(Context
, llvm::APInt(IntSize
, Val
),
3839 Context
.IntTy
, Loc
);
3842 static Expr
*BuildFloatingLiteral(Sema
&S
, NumericLiteralParser
&Literal
,
3843 QualType Ty
, SourceLocation Loc
) {
3844 const llvm::fltSemantics
&Format
= S
.Context
.getFloatTypeSemantics(Ty
);
3846 using llvm::APFloat
;
3847 APFloat
Val(Format
);
3849 APFloat::opStatus result
= Literal
.GetFloatValue(Val
);
3851 // Overflow is always an error, but underflow is only an error if
3852 // we underflowed to zero (APFloat reports denormals as underflow).
3853 if ((result
& APFloat::opOverflow
) ||
3854 ((result
& APFloat::opUnderflow
) && Val
.isZero())) {
3855 unsigned diagnostic
;
3856 SmallString
<20> buffer
;
3857 if (result
& APFloat::opOverflow
) {
3858 diagnostic
= diag::warn_float_overflow
;
3859 APFloat::getLargest(Format
).toString(buffer
);
3861 diagnostic
= diag::warn_float_underflow
;
3862 APFloat::getSmallest(Format
).toString(buffer
);
3865 S
.Diag(Loc
, diagnostic
)
3867 << StringRef(buffer
.data(), buffer
.size());
3870 bool isExact
= (result
== APFloat::opOK
);
3871 return FloatingLiteral::Create(S
.Context
, Val
, isExact
, Ty
, Loc
);
3874 bool Sema::CheckLoopHintExpr(Expr
*E
, SourceLocation Loc
) {
3875 assert(E
&& "Invalid expression");
3877 if (E
->isValueDependent())
3880 QualType QT
= E
->getType();
3881 if (!QT
->isIntegerType() || QT
->isBooleanType() || QT
->isCharType()) {
3882 Diag(E
->getExprLoc(), diag::err_pragma_loop_invalid_argument_type
) << QT
;
3886 llvm::APSInt ValueAPS
;
3887 ExprResult R
= VerifyIntegerConstantExpression(E
, &ValueAPS
);
3892 bool ValueIsPositive
= ValueAPS
.isStrictlyPositive();
3893 if (!ValueIsPositive
|| ValueAPS
.getActiveBits() > 31) {
3894 Diag(E
->getExprLoc(), diag::err_pragma_loop_invalid_argument_value
)
3895 << toString(ValueAPS
, 10) << ValueIsPositive
;
3902 ExprResult
Sema::ActOnNumericConstant(const Token
&Tok
, Scope
*UDLScope
) {
3903 // Fast path for a single digit (which is quite common). A single digit
3904 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3905 if (Tok
.getLength() == 1) {
3906 const char Val
= PP
.getSpellingOfSingleCharacterNumericConstant(Tok
);
3907 return ActOnIntegerConstant(Tok
.getLocation(), Val
-'0');
3910 SmallString
<128> SpellingBuffer
;
3911 // NumericLiteralParser wants to overread by one character. Add padding to
3912 // the buffer in case the token is copied to the buffer. If getSpelling()
3913 // returns a StringRef to the memory buffer, it should have a null char at
3914 // the EOF, so it is also safe.
3915 SpellingBuffer
.resize(Tok
.getLength() + 1);
3917 // Get the spelling of the token, which eliminates trigraphs, etc.
3918 bool Invalid
= false;
3919 StringRef TokSpelling
= PP
.getSpelling(Tok
, SpellingBuffer
, &Invalid
);
3923 NumericLiteralParser
Literal(TokSpelling
, Tok
.getLocation(),
3924 PP
.getSourceManager(), PP
.getLangOpts(),
3925 PP
.getTargetInfo(), PP
.getDiagnostics());
3926 if (Literal
.hadError
)
3929 if (Literal
.hasUDSuffix()) {
3930 // We're building a user-defined literal.
3931 const IdentifierInfo
*UDSuffix
= &Context
.Idents
.get(Literal
.getUDSuffix());
3932 SourceLocation UDSuffixLoc
=
3933 getUDSuffixLoc(*this, Tok
.getLocation(), Literal
.getUDSuffixOffset());
3935 // Make sure we're allowed user-defined literals here.
3937 return ExprError(Diag(UDSuffixLoc
, diag::err_invalid_numeric_udl
));
3940 if (Literal
.isFloatingLiteral()) {
3941 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3942 // long double, the literal is treated as a call of the form
3943 // operator "" X (f L)
3944 CookedTy
= Context
.LongDoubleTy
;
3946 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3947 // unsigned long long, the literal is treated as a call of the form
3948 // operator "" X (n ULL)
3949 CookedTy
= Context
.UnsignedLongLongTy
;
3952 DeclarationName OpName
=
3953 Context
.DeclarationNames
.getCXXLiteralOperatorName(UDSuffix
);
3954 DeclarationNameInfo
OpNameInfo(OpName
, UDSuffixLoc
);
3955 OpNameInfo
.setCXXLiteralOperatorNameLoc(UDSuffixLoc
);
3957 SourceLocation TokLoc
= Tok
.getLocation();
3959 // Perform literal operator lookup to determine if we're building a raw
3960 // literal or a cooked one.
3961 LookupResult
R(*this, OpName
, UDSuffixLoc
, LookupOrdinaryName
);
3962 switch (LookupLiteralOperator(UDLScope
, R
, CookedTy
,
3963 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3964 /*AllowStringTemplatePack*/ false,
3965 /*DiagnoseMissing*/ !Literal
.isImaginary
)) {
3966 case LOLR_ErrorNoDiagnostic
:
3967 // Lookup failure for imaginary constants isn't fatal, there's still the
3968 // GNU extension producing _Complex types.
3974 if (Literal
.isFloatingLiteral()) {
3975 Lit
= BuildFloatingLiteral(*this, Literal
, CookedTy
, Tok
.getLocation());
3977 llvm::APInt
ResultVal(Context
.getTargetInfo().getLongLongWidth(), 0);
3978 if (Literal
.GetIntegerValue(ResultVal
))
3979 Diag(Tok
.getLocation(), diag::err_integer_literal_too_large
)
3980 << /* Unsigned */ 1;
3981 Lit
= IntegerLiteral::Create(Context
, ResultVal
, CookedTy
,
3984 return BuildLiteralOperatorCall(R
, OpNameInfo
, Lit
, TokLoc
);
3988 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3989 // literal is treated as a call of the form
3990 // operator "" X ("n")
3991 unsigned Length
= Literal
.getUDSuffixOffset();
3992 QualType StrTy
= Context
.getConstantArrayType(
3993 Context
.adjustStringLiteralBaseType(Context
.CharTy
.withConst()),
3994 llvm::APInt(32, Length
+ 1), nullptr, ArrayType::Normal
, 0);
3996 StringLiteral::Create(Context
, StringRef(TokSpelling
.data(), Length
),
3997 StringLiteral::Ordinary
,
3998 /*Pascal*/ false, StrTy
, &TokLoc
, 1);
3999 return BuildLiteralOperatorCall(R
, OpNameInfo
, Lit
, TokLoc
);
4002 case LOLR_Template
: {
4003 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
4004 // template), L is treated as a call fo the form
4005 // operator "" X <'c1', 'c2', ... 'ck'>()
4006 // where n is the source character sequence c1 c2 ... ck.
4007 TemplateArgumentListInfo ExplicitArgs
;
4008 unsigned CharBits
= Context
.getIntWidth(Context
.CharTy
);
4009 bool CharIsUnsigned
= Context
.CharTy
->isUnsignedIntegerType();
4010 llvm::APSInt
Value(CharBits
, CharIsUnsigned
);
4011 for (unsigned I
= 0, N
= Literal
.getUDSuffixOffset(); I
!= N
; ++I
) {
4012 Value
= TokSpelling
[I
];
4013 TemplateArgument
Arg(Context
, Value
, Context
.CharTy
);
4014 TemplateArgumentLocInfo ArgInfo
;
4015 ExplicitArgs
.addArgument(TemplateArgumentLoc(Arg
, ArgInfo
));
4017 return BuildLiteralOperatorCall(R
, OpNameInfo
, std::nullopt
, TokLoc
,
4020 case LOLR_StringTemplatePack
:
4021 llvm_unreachable("unexpected literal operator lookup result");
4027 if (Literal
.isFixedPointLiteral()) {
4030 if (Literal
.isAccum
) {
4031 if (Literal
.isHalf
) {
4032 Ty
= Context
.ShortAccumTy
;
4033 } else if (Literal
.isLong
) {
4034 Ty
= Context
.LongAccumTy
;
4036 Ty
= Context
.AccumTy
;
4038 } else if (Literal
.isFract
) {
4039 if (Literal
.isHalf
) {
4040 Ty
= Context
.ShortFractTy
;
4041 } else if (Literal
.isLong
) {
4042 Ty
= Context
.LongFractTy
;
4044 Ty
= Context
.FractTy
;
4048 if (Literal
.isUnsigned
) Ty
= Context
.getCorrespondingUnsignedType(Ty
);
4050 bool isSigned
= !Literal
.isUnsigned
;
4051 unsigned scale
= Context
.getFixedPointScale(Ty
);
4052 unsigned bit_width
= Context
.getTypeInfo(Ty
).Width
;
4054 llvm::APInt
Val(bit_width
, 0, isSigned
);
4055 bool Overflowed
= Literal
.GetFixedPointValue(Val
, scale
);
4056 bool ValIsZero
= Val
.isZero() && !Overflowed
;
4058 auto MaxVal
= Context
.getFixedPointMax(Ty
).getValue();
4059 if (Literal
.isFract
&& Val
== MaxVal
+ 1 && !ValIsZero
)
4060 // Clause 6.4.4 - The value of a constant shall be in the range of
4061 // representable values for its type, with exception for constants of a
4062 // fract type with a value of exactly 1; such a constant shall denote
4063 // the maximal value for the type.
4065 else if (Val
.ugt(MaxVal
) || Overflowed
)
4066 Diag(Tok
.getLocation(), diag::err_too_large_for_fixed_point
);
4068 Res
= FixedPointLiteral::CreateFromRawInt(Context
, Val
, Ty
,
4069 Tok
.getLocation(), scale
);
4070 } else if (Literal
.isFloatingLiteral()) {
4072 if (Literal
.isHalf
){
4073 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
4074 Ty
= Context
.HalfTy
;
4076 Diag(Tok
.getLocation(), diag::err_half_const_requires_fp16
);
4079 } else if (Literal
.isFloat
)
4080 Ty
= Context
.FloatTy
;
4081 else if (Literal
.isLong
)
4082 Ty
= Context
.LongDoubleTy
;
4083 else if (Literal
.isFloat16
)
4084 Ty
= Context
.Float16Ty
;
4085 else if (Literal
.isFloat128
)
4086 Ty
= Context
.Float128Ty
;
4088 Ty
= Context
.DoubleTy
;
4090 Res
= BuildFloatingLiteral(*this, Literal
, Ty
, Tok
.getLocation());
4092 if (Ty
== Context
.DoubleTy
) {
4093 if (getLangOpts().SinglePrecisionConstants
) {
4094 if (Ty
->castAs
<BuiltinType
>()->getKind() != BuiltinType::Float
) {
4095 Res
= ImpCastExprToType(Res
, Context
.FloatTy
, CK_FloatingCast
).get();
4097 } else if (getLangOpts().OpenCL
&& !getOpenCLOptions().isAvailableOption(
4098 "cl_khr_fp64", getLangOpts())) {
4099 // Impose single-precision float type when cl_khr_fp64 is not enabled.
4100 Diag(Tok
.getLocation(), diag::warn_double_const_requires_fp64
)
4101 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
4102 Res
= ImpCastExprToType(Res
, Context
.FloatTy
, CK_FloatingCast
).get();
4105 } else if (!Literal
.isIntegerLiteral()) {
4110 // 'z/uz' literals are a C++23 feature.
4111 if (Literal
.isSizeT
)
4112 Diag(Tok
.getLocation(), getLangOpts().CPlusPlus
4113 ? getLangOpts().CPlusPlus23
4114 ? diag::warn_cxx20_compat_size_t_suffix
4115 : diag::ext_cxx23_size_t_suffix
4116 : diag::err_cxx23_size_t_suffix
);
4118 // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
4119 // but we do not currently support the suffix in C++ mode because it's not
4120 // entirely clear whether WG21 will prefer this suffix to return a library
4121 // type such as std::bit_int instead of returning a _BitInt.
4122 if (Literal
.isBitInt
&& !getLangOpts().CPlusPlus
)
4123 PP
.Diag(Tok
.getLocation(), getLangOpts().C23
4124 ? diag::warn_c23_compat_bitint_suffix
4125 : diag::ext_c23_bitint_suffix
);
4127 // Get the value in the widest-possible width. What is "widest" depends on
4128 // whether the literal is a bit-precise integer or not. For a bit-precise
4129 // integer type, try to scan the source to determine how many bits are
4130 // needed to represent the value. This may seem a bit expensive, but trying
4131 // to get the integer value from an overly-wide APInt is *extremely*
4132 // expensive, so the naive approach of assuming
4133 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4134 unsigned BitsNeeded
=
4135 Literal
.isBitInt
? llvm::APInt::getSufficientBitsNeeded(
4136 Literal
.getLiteralDigits(), Literal
.getRadix())
4137 : Context
.getTargetInfo().getIntMaxTWidth();
4138 llvm::APInt
ResultVal(BitsNeeded
, 0);
4140 if (Literal
.GetIntegerValue(ResultVal
)) {
4141 // If this value didn't fit into uintmax_t, error and force to ull.
4142 Diag(Tok
.getLocation(), diag::err_integer_literal_too_large
)
4143 << /* Unsigned */ 1;
4144 Ty
= Context
.UnsignedLongLongTy
;
4145 assert(Context
.getTypeSize(Ty
) == ResultVal
.getBitWidth() &&
4146 "long long is not intmax_t?");
4148 // If this value fits into a ULL, try to figure out what else it fits into
4149 // according to the rules of C99 6.4.4.1p5.
4151 // Octal, Hexadecimal, and integers with a U suffix are allowed to
4152 // be an unsigned int.
4153 bool AllowUnsigned
= Literal
.isUnsigned
|| Literal
.getRadix() != 10;
4155 // Check from smallest to largest, picking the smallest type we can.
4158 // Microsoft specific integer suffixes are explicitly sized.
4159 if (Literal
.MicrosoftInteger
) {
4160 if (Literal
.MicrosoftInteger
== 8 && !Literal
.isUnsigned
) {
4162 Ty
= Context
.CharTy
;
4164 Width
= Literal
.MicrosoftInteger
;
4165 Ty
= Context
.getIntTypeForBitwidth(Width
,
4166 /*Signed=*/!Literal
.isUnsigned
);
4170 // Bit-precise integer literals are automagically-sized based on the
4171 // width required by the literal.
4172 if (Literal
.isBitInt
) {
4173 // The signed version has one more bit for the sign value. There are no
4174 // zero-width bit-precise integers, even if the literal value is 0.
4175 Width
= std::max(ResultVal
.getActiveBits(), 1u) +
4176 (Literal
.isUnsigned
? 0u : 1u);
4178 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4179 // and reset the type to the largest supported width.
4180 unsigned int MaxBitIntWidth
=
4181 Context
.getTargetInfo().getMaxBitIntWidth();
4182 if (Width
> MaxBitIntWidth
) {
4183 Diag(Tok
.getLocation(), diag::err_integer_literal_too_large
)
4184 << Literal
.isUnsigned
;
4185 Width
= MaxBitIntWidth
;
4188 // Reset the result value to the smaller APInt and select the correct
4189 // type to be used. Note, we zext even for signed values because the
4190 // literal itself is always an unsigned value (a preceeding - is a
4191 // unary operator, not part of the literal).
4192 ResultVal
= ResultVal
.zextOrTrunc(Width
);
4193 Ty
= Context
.getBitIntType(Literal
.isUnsigned
, Width
);
4196 // Check C++23 size_t literals.
4197 if (Literal
.isSizeT
) {
4198 assert(!Literal
.MicrosoftInteger
&&
4199 "size_t literals can't be Microsoft literals");
4200 unsigned SizeTSize
= Context
.getTargetInfo().getTypeWidth(
4201 Context
.getTargetInfo().getSizeType());
4203 // Does it fit in size_t?
4204 if (ResultVal
.isIntN(SizeTSize
)) {
4205 // Does it fit in ssize_t?
4206 if (!Literal
.isUnsigned
&& ResultVal
[SizeTSize
- 1] == 0)
4207 Ty
= Context
.getSignedSizeType();
4208 else if (AllowUnsigned
)
4209 Ty
= Context
.getSizeType();
4214 if (Ty
.isNull() && !Literal
.isLong
&& !Literal
.isLongLong
&&
4216 // Are int/unsigned possibilities?
4217 unsigned IntSize
= Context
.getTargetInfo().getIntWidth();
4219 // Does it fit in a unsigned int?
4220 if (ResultVal
.isIntN(IntSize
)) {
4221 // Does it fit in a signed int?
4222 if (!Literal
.isUnsigned
&& ResultVal
[IntSize
-1] == 0)
4224 else if (AllowUnsigned
)
4225 Ty
= Context
.UnsignedIntTy
;
4230 // Are long/unsigned long possibilities?
4231 if (Ty
.isNull() && !Literal
.isLongLong
&& !Literal
.isSizeT
) {
4232 unsigned LongSize
= Context
.getTargetInfo().getLongWidth();
4234 // Does it fit in a unsigned long?
4235 if (ResultVal
.isIntN(LongSize
)) {
4236 // Does it fit in a signed long?
4237 if (!Literal
.isUnsigned
&& ResultVal
[LongSize
-1] == 0)
4238 Ty
= Context
.LongTy
;
4239 else if (AllowUnsigned
)
4240 Ty
= Context
.UnsignedLongTy
;
4241 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4243 else if (!getLangOpts().C99
&& !getLangOpts().CPlusPlus11
) {
4244 const unsigned LongLongSize
=
4245 Context
.getTargetInfo().getLongLongWidth();
4246 Diag(Tok
.getLocation(),
4247 getLangOpts().CPlusPlus
4249 ? diag::warn_old_implicitly_unsigned_long_cxx
4250 : /*C++98 UB*/ diag::
4251 ext_old_implicitly_unsigned_long_cxx
4252 : diag::warn_old_implicitly_unsigned_long
)
4253 << (LongLongSize
> LongSize
? /*will have type 'long long'*/ 0
4254 : /*will be ill-formed*/ 1);
4255 Ty
= Context
.UnsignedLongTy
;
4261 // Check long long if needed.
4262 if (Ty
.isNull() && !Literal
.isSizeT
) {
4263 unsigned LongLongSize
= Context
.getTargetInfo().getLongLongWidth();
4265 // Does it fit in a unsigned long long?
4266 if (ResultVal
.isIntN(LongLongSize
)) {
4267 // Does it fit in a signed long long?
4268 // To be compatible with MSVC, hex integer literals ending with the
4269 // LL or i64 suffix are always signed in Microsoft mode.
4270 if (!Literal
.isUnsigned
&& (ResultVal
[LongLongSize
-1] == 0 ||
4271 (getLangOpts().MSVCCompat
&& Literal
.isLongLong
)))
4272 Ty
= Context
.LongLongTy
;
4273 else if (AllowUnsigned
)
4274 Ty
= Context
.UnsignedLongLongTy
;
4275 Width
= LongLongSize
;
4277 // 'long long' is a C99 or C++11 feature, whether the literal
4278 // explicitly specified 'long long' or we needed the extra width.
4279 if (getLangOpts().CPlusPlus
)
4280 Diag(Tok
.getLocation(), getLangOpts().CPlusPlus11
4281 ? diag::warn_cxx98_compat_longlong
4282 : diag::ext_cxx11_longlong
);
4283 else if (!getLangOpts().C99
)
4284 Diag(Tok
.getLocation(), diag::ext_c99_longlong
);
4288 // If we still couldn't decide a type, we either have 'size_t' literal
4289 // that is out of range, or a decimal literal that does not fit in a
4290 // signed long long and has no U suffix.
4292 if (Literal
.isSizeT
)
4293 Diag(Tok
.getLocation(), diag::err_size_t_literal_too_large
)
4294 << Literal
.isUnsigned
;
4296 Diag(Tok
.getLocation(),
4297 diag::ext_integer_literal_too_large_for_signed
);
4298 Ty
= Context
.UnsignedLongLongTy
;
4299 Width
= Context
.getTargetInfo().getLongLongWidth();
4302 if (ResultVal
.getBitWidth() != Width
)
4303 ResultVal
= ResultVal
.trunc(Width
);
4305 Res
= IntegerLiteral::Create(Context
, ResultVal
, Ty
, Tok
.getLocation());
4308 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4309 if (Literal
.isImaginary
) {
4310 Res
= new (Context
) ImaginaryLiteral(Res
,
4311 Context
.getComplexType(Res
->getType()));
4313 Diag(Tok
.getLocation(), diag::ext_imaginary_constant
);
4318 ExprResult
Sema::ActOnParenExpr(SourceLocation L
, SourceLocation R
, Expr
*E
) {
4319 assert(E
&& "ActOnParenExpr() missing expr");
4320 QualType ExprTy
= E
->getType();
4321 if (getLangOpts().ProtectParens
&& CurFPFeatures
.getAllowFPReassociate() &&
4322 !E
->isLValue() && ExprTy
->hasFloatingRepresentation())
4323 return BuildBuiltinCallExpr(R
, Builtin::BI__arithmetic_fence
, E
);
4324 return new (Context
) ParenExpr(L
, R
, E
);
4327 static bool CheckVecStepTraitOperandType(Sema
&S
, QualType T
,
4329 SourceRange ArgRange
) {
4330 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4331 // scalar or vector data type argument..."
4332 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4333 // type (C99 6.2.5p18) or void.
4334 if (!(T
->isArithmeticType() || T
->isVoidType() || T
->isVectorType())) {
4335 S
.Diag(Loc
, diag::err_vecstep_non_scalar_vector_type
)
4340 assert((T
->isVoidType() || !T
->isIncompleteType()) &&
4341 "Scalar types should always be complete");
4345 static bool CheckExtensionTraitOperandType(Sema
&S
, QualType T
,
4347 SourceRange ArgRange
,
4348 UnaryExprOrTypeTrait TraitKind
) {
4349 // Invalid types must be hard errors for SFINAE in C++.
4350 if (S
.LangOpts
.CPlusPlus
)
4354 if (T
->isFunctionType() &&
4355 (TraitKind
== UETT_SizeOf
|| TraitKind
== UETT_AlignOf
||
4356 TraitKind
== UETT_PreferredAlignOf
)) {
4357 // sizeof(function)/alignof(function) is allowed as an extension.
4358 S
.Diag(Loc
, diag::ext_sizeof_alignof_function_type
)
4359 << getTraitSpelling(TraitKind
) << ArgRange
;
4363 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4364 // this is an error (OpenCL v1.1 s6.3.k)
4365 if (T
->isVoidType()) {
4366 unsigned DiagID
= S
.LangOpts
.OpenCL
? diag::err_opencl_sizeof_alignof_type
4367 : diag::ext_sizeof_alignof_void_type
;
4368 S
.Diag(Loc
, DiagID
) << getTraitSpelling(TraitKind
) << ArgRange
;
4375 static bool CheckObjCTraitOperandConstraints(Sema
&S
, QualType T
,
4377 SourceRange ArgRange
,
4378 UnaryExprOrTypeTrait TraitKind
) {
4379 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4380 // runtime doesn't allow it.
4381 if (!S
.LangOpts
.ObjCRuntime
.allowsSizeofAlignof() && T
->isObjCObjectType()) {
4382 S
.Diag(Loc
, diag::err_sizeof_nonfragile_interface
)
4383 << T
<< (TraitKind
== UETT_SizeOf
)
4391 /// Check whether E is a pointer from a decayed array type (the decayed
4392 /// pointer type is equal to T) and emit a warning if it is.
4393 static void warnOnSizeofOnArrayDecay(Sema
&S
, SourceLocation Loc
, QualType T
,
4395 // Don't warn if the operation changed the type.
4396 if (T
!= E
->getType())
4399 // Now look for array decays.
4400 const auto *ICE
= dyn_cast
<ImplicitCastExpr
>(E
);
4401 if (!ICE
|| ICE
->getCastKind() != CK_ArrayToPointerDecay
)
4404 S
.Diag(Loc
, diag::warn_sizeof_array_decay
) << ICE
->getSourceRange()
4406 << ICE
->getSubExpr()->getType();
4409 /// Check the constraints on expression operands to unary type expression
4410 /// and type traits.
4412 /// Completes any types necessary and validates the constraints on the operand
4413 /// expression. The logic mostly mirrors the type-based overload, but may modify
4414 /// the expression as it completes the type for that expression through template
4415 /// instantiation, etc.
4416 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr
*E
,
4417 UnaryExprOrTypeTrait ExprKind
) {
4418 QualType ExprTy
= E
->getType();
4419 assert(!ExprTy
->isReferenceType());
4421 bool IsUnevaluatedOperand
=
4422 (ExprKind
== UETT_SizeOf
|| ExprKind
== UETT_AlignOf
||
4423 ExprKind
== UETT_PreferredAlignOf
|| ExprKind
== UETT_VecStep
);
4424 if (IsUnevaluatedOperand
) {
4425 ExprResult Result
= CheckUnevaluatedOperand(E
);
4426 if (Result
.isInvalid())
4431 // The operand for sizeof and alignof is in an unevaluated expression context,
4432 // so side effects could result in unintended consequences.
4433 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4434 // used to build SFINAE gadgets.
4435 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4436 if (IsUnevaluatedOperand
&& !inTemplateInstantiation() &&
4437 !E
->isInstantiationDependent() &&
4438 !E
->getType()->isVariableArrayType() &&
4439 E
->HasSideEffects(Context
, false))
4440 Diag(E
->getExprLoc(), diag::warn_side_effects_unevaluated_context
);
4442 if (ExprKind
== UETT_VecStep
)
4443 return CheckVecStepTraitOperandType(*this, ExprTy
, E
->getExprLoc(),
4444 E
->getSourceRange());
4446 // Explicitly list some types as extensions.
4447 if (!CheckExtensionTraitOperandType(*this, ExprTy
, E
->getExprLoc(),
4448 E
->getSourceRange(), ExprKind
))
4451 // WebAssembly tables are always illegal operands to unary expressions and
4453 if (Context
.getTargetInfo().getTriple().isWasm() &&
4454 E
->getType()->isWebAssemblyTableType()) {
4455 Diag(E
->getExprLoc(), diag::err_wasm_table_invalid_uett_operand
)
4456 << getTraitSpelling(ExprKind
);
4460 // 'alignof' applied to an expression only requires the base element type of
4461 // the expression to be complete. 'sizeof' requires the expression's type to
4462 // be complete (and will attempt to complete it if it's an array of unknown
4464 if (ExprKind
== UETT_AlignOf
|| ExprKind
== UETT_PreferredAlignOf
) {
4465 if (RequireCompleteSizedType(
4466 E
->getExprLoc(), Context
.getBaseElementType(E
->getType()),
4467 diag::err_sizeof_alignof_incomplete_or_sizeless_type
,
4468 getTraitSpelling(ExprKind
), E
->getSourceRange()))
4471 if (RequireCompleteSizedExprType(
4472 E
, diag::err_sizeof_alignof_incomplete_or_sizeless_type
,
4473 getTraitSpelling(ExprKind
), E
->getSourceRange()))
4477 // Completing the expression's type may have changed it.
4478 ExprTy
= E
->getType();
4479 assert(!ExprTy
->isReferenceType());
4481 if (ExprTy
->isFunctionType()) {
4482 Diag(E
->getExprLoc(), diag::err_sizeof_alignof_function_type
)
4483 << getTraitSpelling(ExprKind
) << E
->getSourceRange();
4487 if (CheckObjCTraitOperandConstraints(*this, ExprTy
, E
->getExprLoc(),
4488 E
->getSourceRange(), ExprKind
))
4491 if (ExprKind
== UETT_SizeOf
) {
4492 if (const auto *DeclRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParens())) {
4493 if (const auto *PVD
= dyn_cast
<ParmVarDecl
>(DeclRef
->getFoundDecl())) {
4494 QualType OType
= PVD
->getOriginalType();
4495 QualType Type
= PVD
->getType();
4496 if (Type
->isPointerType() && OType
->isArrayType()) {
4497 Diag(E
->getExprLoc(), diag::warn_sizeof_array_param
)
4499 Diag(PVD
->getLocation(), diag::note_declared_at
);
4504 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4505 // decays into a pointer and returns an unintended result. This is most
4506 // likely a typo for "sizeof(array) op x".
4507 if (const auto *BO
= dyn_cast
<BinaryOperator
>(E
->IgnoreParens())) {
4508 warnOnSizeofOnArrayDecay(*this, BO
->getOperatorLoc(), BO
->getType(),
4510 warnOnSizeofOnArrayDecay(*this, BO
->getOperatorLoc(), BO
->getType(),
4518 static bool CheckAlignOfExpr(Sema
&S
, Expr
*E
, UnaryExprOrTypeTrait ExprKind
) {
4519 // Cannot know anything else if the expression is dependent.
4520 if (E
->isTypeDependent())
4523 if (E
->getObjectKind() == OK_BitField
) {
4524 S
.Diag(E
->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield
)
4525 << 1 << E
->getSourceRange();
4529 ValueDecl
*D
= nullptr;
4530 Expr
*Inner
= E
->IgnoreParens();
4531 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Inner
)) {
4533 } else if (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Inner
)) {
4534 D
= ME
->getMemberDecl();
4537 // If it's a field, require the containing struct to have a
4538 // complete definition so that we can compute the layout.
4540 // This can happen in C++11 onwards, either by naming the member
4541 // in a way that is not transformed into a member access expression
4542 // (in an unevaluated operand, for instance), or by naming the member
4543 // in a trailing-return-type.
4545 // For the record, since __alignof__ on expressions is a GCC
4546 // extension, GCC seems to permit this but always gives the
4547 // nonsensical answer 0.
4549 // We don't really need the layout here --- we could instead just
4550 // directly check for all the appropriate alignment-lowing
4551 // attributes --- but that would require duplicating a lot of
4552 // logic that just isn't worth duplicating for such a marginal
4554 if (FieldDecl
*FD
= dyn_cast_or_null
<FieldDecl
>(D
)) {
4555 // Fast path this check, since we at least know the record has a
4556 // definition if we can find a member of it.
4557 if (!FD
->getParent()->isCompleteDefinition()) {
4558 S
.Diag(E
->getExprLoc(), diag::err_alignof_member_of_incomplete_type
)
4559 << E
->getSourceRange();
4563 // Otherwise, if it's a field, and the field doesn't have
4564 // reference type, then it must have a complete type (or be a
4565 // flexible array member, which we explicitly want to
4566 // white-list anyway), which makes the following checks trivial.
4567 if (!FD
->getType()->isReferenceType())
4571 return S
.CheckUnaryExprOrTypeTraitOperand(E
, ExprKind
);
4574 bool Sema::CheckVecStepExpr(Expr
*E
) {
4575 E
= E
->IgnoreParens();
4577 // Cannot know anything else if the expression is dependent.
4578 if (E
->isTypeDependent())
4581 return CheckUnaryExprOrTypeTraitOperand(E
, UETT_VecStep
);
4584 static void captureVariablyModifiedType(ASTContext
&Context
, QualType T
,
4585 CapturingScopeInfo
*CSI
) {
4586 assert(T
->isVariablyModifiedType());
4587 assert(CSI
!= nullptr);
4589 // We're going to walk down into the type and look for VLA expressions.
4591 const Type
*Ty
= T
.getTypePtr();
4592 switch (Ty
->getTypeClass()) {
4593 #define TYPE(Class, Base)
4594 #define ABSTRACT_TYPE(Class, Base)
4595 #define NON_CANONICAL_TYPE(Class, Base)
4596 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4597 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4598 #include "clang/AST/TypeNodes.inc"
4601 // These types are never variably-modified.
4605 case Type::ExtVector
:
4606 case Type::ConstantMatrix
:
4609 case Type::TemplateSpecialization
:
4610 case Type::ObjCObject
:
4611 case Type::ObjCInterface
:
4612 case Type::ObjCObjectPointer
:
4613 case Type::ObjCTypeParam
:
4616 llvm_unreachable("type class is never variably-modified!");
4617 case Type::Elaborated
:
4618 T
= cast
<ElaboratedType
>(Ty
)->getNamedType();
4620 case Type::Adjusted
:
4621 T
= cast
<AdjustedType
>(Ty
)->getOriginalType();
4624 T
= cast
<DecayedType
>(Ty
)->getPointeeType();
4627 T
= cast
<PointerType
>(Ty
)->getPointeeType();
4629 case Type::BlockPointer
:
4630 T
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
4632 case Type::LValueReference
:
4633 case Type::RValueReference
:
4634 T
= cast
<ReferenceType
>(Ty
)->getPointeeType();
4636 case Type::MemberPointer
:
4637 T
= cast
<MemberPointerType
>(Ty
)->getPointeeType();
4639 case Type::ConstantArray
:
4640 case Type::IncompleteArray
:
4641 // Losing element qualification here is fine.
4642 T
= cast
<ArrayType
>(Ty
)->getElementType();
4644 case Type::VariableArray
: {
4645 // Losing element qualification here is fine.
4646 const VariableArrayType
*VAT
= cast
<VariableArrayType
>(Ty
);
4648 // Unknown size indication requires no size computation.
4649 // Otherwise, evaluate and record it.
4650 auto Size
= VAT
->getSizeExpr();
4651 if (Size
&& !CSI
->isVLATypeCaptured(VAT
) &&
4652 (isa
<CapturedRegionScopeInfo
>(CSI
) || isa
<LambdaScopeInfo
>(CSI
)))
4653 CSI
->addVLATypeCapture(Size
->getExprLoc(), VAT
, Context
.getSizeType());
4655 T
= VAT
->getElementType();
4658 case Type::FunctionProto
:
4659 case Type::FunctionNoProto
:
4660 T
= cast
<FunctionType
>(Ty
)->getReturnType();
4664 case Type::UnaryTransform
:
4665 case Type::Attributed
:
4666 case Type::BTFTagAttributed
:
4667 case Type::SubstTemplateTypeParm
:
4668 case Type::MacroQualified
:
4669 // Keep walking after single level desugaring.
4670 T
= T
.getSingleStepDesugaredType(Context
);
4673 T
= cast
<TypedefType
>(Ty
)->desugar();
4675 case Type::Decltype
:
4676 T
= cast
<DecltypeType
>(Ty
)->desugar();
4679 T
= cast
<UsingType
>(Ty
)->desugar();
4682 case Type::DeducedTemplateSpecialization
:
4683 T
= cast
<DeducedType
>(Ty
)->getDeducedType();
4685 case Type::TypeOfExpr
:
4686 T
= cast
<TypeOfExprType
>(Ty
)->getUnderlyingExpr()->getType();
4689 T
= cast
<AtomicType
>(Ty
)->getValueType();
4692 } while (!T
.isNull() && T
->isVariablyModifiedType());
4695 /// Check the constraints on operands to unary expression and type
4698 /// This will complete any types necessary, and validate the various constraints
4699 /// on those operands.
4701 /// The UsualUnaryConversions() function is *not* called by this routine.
4702 /// C99 6.3.2.1p[2-4] all state:
4703 /// Except when it is the operand of the sizeof operator ...
4705 /// C++ [expr.sizeof]p4
4706 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4707 /// standard conversions are not applied to the operand of sizeof.
4709 /// This policy is followed for all of the unary trait expressions.
4710 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType
,
4711 SourceLocation OpLoc
,
4712 SourceRange ExprRange
,
4713 UnaryExprOrTypeTrait ExprKind
,
4715 if (ExprType
->isDependentType())
4718 // C++ [expr.sizeof]p2:
4719 // When applied to a reference or a reference type, the result
4720 // is the size of the referenced type.
4721 // C++11 [expr.alignof]p3:
4722 // When alignof is applied to a reference type, the result
4723 // shall be the alignment of the referenced type.
4724 if (const ReferenceType
*Ref
= ExprType
->getAs
<ReferenceType
>())
4725 ExprType
= Ref
->getPointeeType();
4727 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4728 // When alignof or _Alignof is applied to an array type, the result
4729 // is the alignment of the element type.
4730 if (ExprKind
== UETT_AlignOf
|| ExprKind
== UETT_PreferredAlignOf
||
4731 ExprKind
== UETT_OpenMPRequiredSimdAlign
)
4732 ExprType
= Context
.getBaseElementType(ExprType
);
4734 if (ExprKind
== UETT_VecStep
)
4735 return CheckVecStepTraitOperandType(*this, ExprType
, OpLoc
, ExprRange
);
4737 // Explicitly list some types as extensions.
4738 if (!CheckExtensionTraitOperandType(*this, ExprType
, OpLoc
, ExprRange
,
4742 if (RequireCompleteSizedType(
4743 OpLoc
, ExprType
, diag::err_sizeof_alignof_incomplete_or_sizeless_type
,
4747 if (ExprType
->isFunctionType()) {
4748 Diag(OpLoc
, diag::err_sizeof_alignof_function_type
) << KWName
<< ExprRange
;
4752 // WebAssembly tables are always illegal operands to unary expressions and
4754 if (Context
.getTargetInfo().getTriple().isWasm() &&
4755 ExprType
->isWebAssemblyTableType()) {
4756 Diag(OpLoc
, diag::err_wasm_table_invalid_uett_operand
)
4757 << getTraitSpelling(ExprKind
);
4761 if (CheckObjCTraitOperandConstraints(*this, ExprType
, OpLoc
, ExprRange
,
4765 if (ExprType
->isVariablyModifiedType() && FunctionScopes
.size() > 1) {
4766 if (auto *TT
= ExprType
->getAs
<TypedefType
>()) {
4767 for (auto I
= FunctionScopes
.rbegin(),
4768 E
= std::prev(FunctionScopes
.rend());
4770 auto *CSI
= dyn_cast
<CapturingScopeInfo
>(*I
);
4773 DeclContext
*DC
= nullptr;
4774 if (auto *LSI
= dyn_cast
<LambdaScopeInfo
>(CSI
))
4775 DC
= LSI
->CallOperator
;
4776 else if (auto *CRSI
= dyn_cast
<CapturedRegionScopeInfo
>(CSI
))
4777 DC
= CRSI
->TheCapturedDecl
;
4778 else if (auto *BSI
= dyn_cast
<BlockScopeInfo
>(CSI
))
4781 if (DC
->containsDecl(TT
->getDecl()))
4783 captureVariablyModifiedType(Context
, ExprType
, CSI
);
4792 /// Build a sizeof or alignof expression given a type operand.
4793 ExprResult
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo
*TInfo
,
4794 SourceLocation OpLoc
,
4795 UnaryExprOrTypeTrait ExprKind
,
4800 QualType T
= TInfo
->getType();
4802 if (!T
->isDependentType() &&
4803 CheckUnaryExprOrTypeTraitOperand(T
, OpLoc
, R
, ExprKind
,
4804 getTraitSpelling(ExprKind
)))
4807 // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4808 // properly deal with VLAs in nested calls of sizeof and typeof.
4809 if (isUnevaluatedContext() && ExprKind
== UETT_SizeOf
&&
4810 TInfo
->getType()->isVariablyModifiedType())
4811 TInfo
= TransformToPotentiallyEvaluated(TInfo
);
4813 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4814 return new (Context
) UnaryExprOrTypeTraitExpr(
4815 ExprKind
, TInfo
, Context
.getSizeType(), OpLoc
, R
.getEnd());
4818 /// Build a sizeof or alignof expression given an expression
4821 Sema::CreateUnaryExprOrTypeTraitExpr(Expr
*E
, SourceLocation OpLoc
,
4822 UnaryExprOrTypeTrait ExprKind
) {
4823 ExprResult PE
= CheckPlaceholderExpr(E
);
4829 // Verify that the operand is valid.
4830 bool isInvalid
= false;
4831 if (E
->isTypeDependent()) {
4832 // Delay type-checking for type-dependent expressions.
4833 } else if (ExprKind
== UETT_AlignOf
|| ExprKind
== UETT_PreferredAlignOf
) {
4834 isInvalid
= CheckAlignOfExpr(*this, E
, ExprKind
);
4835 } else if (ExprKind
== UETT_VecStep
) {
4836 isInvalid
= CheckVecStepExpr(E
);
4837 } else if (ExprKind
== UETT_OpenMPRequiredSimdAlign
) {
4838 Diag(E
->getExprLoc(), diag::err_openmp_default_simd_align_expr
);
4840 } else if (E
->refersToBitField()) { // C99 6.5.3.4p1.
4841 Diag(E
->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield
) << 0;
4844 isInvalid
= CheckUnaryExprOrTypeTraitOperand(E
, UETT_SizeOf
);
4850 if (ExprKind
== UETT_SizeOf
&& E
->getType()->isVariableArrayType()) {
4851 PE
= TransformToPotentiallyEvaluated(E
);
4852 if (PE
.isInvalid()) return ExprError();
4856 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4857 return new (Context
) UnaryExprOrTypeTraitExpr(
4858 ExprKind
, E
, Context
.getSizeType(), OpLoc
, E
->getSourceRange().getEnd());
4861 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4862 /// expr and the same for @c alignof and @c __alignof
4863 /// Note that the ArgRange is invalid if isType is false.
4865 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc
,
4866 UnaryExprOrTypeTrait ExprKind
, bool IsType
,
4867 void *TyOrEx
, SourceRange ArgRange
) {
4868 // If error parsing type, ignore.
4869 if (!TyOrEx
) return ExprError();
4872 TypeSourceInfo
*TInfo
;
4873 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx
), &TInfo
);
4874 return CreateUnaryExprOrTypeTraitExpr(TInfo
, OpLoc
, ExprKind
, ArgRange
);
4877 Expr
*ArgEx
= (Expr
*)TyOrEx
;
4878 ExprResult Result
= CreateUnaryExprOrTypeTraitExpr(ArgEx
, OpLoc
, ExprKind
);
4882 bool Sema::CheckAlignasTypeArgument(StringRef KWName
, TypeSourceInfo
*TInfo
,
4883 SourceLocation OpLoc
, SourceRange R
) {
4886 return CheckUnaryExprOrTypeTraitOperand(TInfo
->getType(), OpLoc
, R
,
4887 UETT_AlignOf
, KWName
);
4890 /// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
4891 /// _Alignas(type-name) .
4892 /// [dcl.align] An alignment-specifier of the form
4893 /// alignas(type-id) has the same effect as alignas(alignof(type-id)).
4895 /// [N1570 6.7.5] _Alignas(type-name) is equivalent to
4896 /// _Alignas(_Alignof(type-name)).
4897 bool Sema::ActOnAlignasTypeArgument(StringRef KWName
, ParsedType Ty
,
4898 SourceLocation OpLoc
, SourceRange R
) {
4899 TypeSourceInfo
*TInfo
;
4900 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty
.getAsOpaquePtr()),
4902 return CheckAlignasTypeArgument(KWName
, TInfo
, OpLoc
, R
);
4905 static QualType
CheckRealImagOperand(Sema
&S
, ExprResult
&V
, SourceLocation Loc
,
4907 if (V
.get()->isTypeDependent())
4908 return S
.Context
.DependentTy
;
4910 // _Real and _Imag are only l-values for normal l-values.
4911 if (V
.get()->getObjectKind() != OK_Ordinary
) {
4912 V
= S
.DefaultLvalueConversion(V
.get());
4917 // These operators return the element type of a complex type.
4918 if (const ComplexType
*CT
= V
.get()->getType()->getAs
<ComplexType
>())
4919 return CT
->getElementType();
4921 // Otherwise they pass through real integer and floating point types here.
4922 if (V
.get()->getType()->isArithmeticType())
4923 return V
.get()->getType();
4925 // Test for placeholders.
4926 ExprResult PR
= S
.CheckPlaceholderExpr(V
.get());
4927 if (PR
.isInvalid()) return QualType();
4928 if (PR
.get() != V
.get()) {
4930 return CheckRealImagOperand(S
, V
, Loc
, IsReal
);
4933 // Reject anything else.
4934 S
.Diag(Loc
, diag::err_realimag_invalid_type
) << V
.get()->getType()
4935 << (IsReal
? "__real" : "__imag");
4942 Sema::ActOnPostfixUnaryOp(Scope
*S
, SourceLocation OpLoc
,
4943 tok::TokenKind Kind
, Expr
*Input
) {
4944 UnaryOperatorKind Opc
;
4946 default: llvm_unreachable("Unknown unary op!");
4947 case tok::plusplus
: Opc
= UO_PostInc
; break;
4948 case tok::minusminus
: Opc
= UO_PostDec
; break;
4951 // Since this might is a postfix expression, get rid of ParenListExprs.
4952 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Input
);
4953 if (Result
.isInvalid()) return ExprError();
4954 Input
= Result
.get();
4956 return BuildUnaryOp(S
, OpLoc
, Opc
, Input
);
4959 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4961 /// \return true on error
4962 static bool checkArithmeticOnObjCPointer(Sema
&S
,
4963 SourceLocation opLoc
,
4965 assert(op
->getType()->isObjCObjectPointerType());
4966 if (S
.LangOpts
.ObjCRuntime
.allowsPointerArithmetic() &&
4967 !S
.LangOpts
.ObjCSubscriptingLegacyRuntime
)
4970 S
.Diag(opLoc
, diag::err_arithmetic_nonfragile_interface
)
4971 << op
->getType()->castAs
<ObjCObjectPointerType
>()->getPointeeType()
4972 << op
->getSourceRange();
4976 static bool isMSPropertySubscriptExpr(Sema
&S
, Expr
*Base
) {
4977 auto *BaseNoParens
= Base
->IgnoreParens();
4978 if (auto *MSProp
= dyn_cast
<MSPropertyRefExpr
>(BaseNoParens
))
4979 return MSProp
->getPropertyDecl()->getType()->isArrayType();
4980 return isa
<MSPropertySubscriptExpr
>(BaseNoParens
);
4983 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4984 // Typically this is DependentTy, but can sometimes be more precise.
4986 // There are cases when we could determine a non-dependent type:
4987 // - LHS and RHS may have non-dependent types despite being type-dependent
4988 // (e.g. unbounded array static members of the current instantiation)
4989 // - one may be a dependent-sized array with known element type
4990 // - one may be a dependent-typed valid index (enum in current instantiation)
4992 // We *always* return a dependent type, in such cases it is DependentTy.
4993 // This avoids creating type-dependent expressions with non-dependent types.
4994 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4995 static QualType
getDependentArraySubscriptType(Expr
*LHS
, Expr
*RHS
,
4996 const ASTContext
&Ctx
) {
4997 assert(LHS
->isTypeDependent() || RHS
->isTypeDependent());
4998 QualType LTy
= LHS
->getType(), RTy
= RHS
->getType();
4999 QualType Result
= Ctx
.DependentTy
;
5000 if (RTy
->isIntegralOrUnscopedEnumerationType()) {
5001 if (const PointerType
*PT
= LTy
->getAs
<PointerType
>())
5002 Result
= PT
->getPointeeType();
5003 else if (const ArrayType
*AT
= LTy
->getAsArrayTypeUnsafe())
5004 Result
= AT
->getElementType();
5005 } else if (LTy
->isIntegralOrUnscopedEnumerationType()) {
5006 if (const PointerType
*PT
= RTy
->getAs
<PointerType
>())
5007 Result
= PT
->getPointeeType();
5008 else if (const ArrayType
*AT
= RTy
->getAsArrayTypeUnsafe())
5009 Result
= AT
->getElementType();
5011 // Ensure we return a dependent type.
5012 return Result
->isDependentType() ? Result
: Ctx
.DependentTy
;
5015 static bool checkArgsForPlaceholders(Sema
&S
, MultiExprArg args
);
5017 ExprResult
Sema::ActOnArraySubscriptExpr(Scope
*S
, Expr
*base
,
5018 SourceLocation lbLoc
,
5019 MultiExprArg ArgExprs
,
5020 SourceLocation rbLoc
) {
5022 if (base
&& !base
->getType().isNull() &&
5023 base
->hasPlaceholderType(BuiltinType::OMPArraySection
))
5024 return ActOnOMPArraySectionExpr(base
, lbLoc
, ArgExprs
.front(), SourceLocation(),
5025 SourceLocation(), /*Length*/ nullptr,
5026 /*Stride=*/nullptr, rbLoc
);
5028 // Since this might be a postfix expression, get rid of ParenListExprs.
5029 if (isa
<ParenListExpr
>(base
)) {
5030 ExprResult result
= MaybeConvertParenListExprToParenExpr(S
, base
);
5031 if (result
.isInvalid())
5033 base
= result
.get();
5036 // Check if base and idx form a MatrixSubscriptExpr.
5038 // Helper to check for comma expressions, which are not allowed as indices for
5039 // matrix subscript expressions.
5040 auto CheckAndReportCommaError
= [this, base
, rbLoc
](Expr
*E
) {
5041 if (isa
<BinaryOperator
>(E
) && cast
<BinaryOperator
>(E
)->isCommaOp()) {
5042 Diag(E
->getExprLoc(), diag::err_matrix_subscript_comma
)
5043 << SourceRange(base
->getBeginLoc(), rbLoc
);
5048 // The matrix subscript operator ([][])is considered a single operator.
5049 // Separating the index expressions by parenthesis is not allowed.
5050 if (base
&& !base
->getType().isNull() &&
5051 base
->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx
) &&
5052 !isa
<MatrixSubscriptExpr
>(base
)) {
5053 Diag(base
->getExprLoc(), diag::err_matrix_separate_incomplete_index
)
5054 << SourceRange(base
->getBeginLoc(), rbLoc
);
5057 // If the base is a MatrixSubscriptExpr, try to create a new
5058 // MatrixSubscriptExpr.
5059 auto *matSubscriptE
= dyn_cast
<MatrixSubscriptExpr
>(base
);
5060 if (matSubscriptE
) {
5061 assert(ArgExprs
.size() == 1);
5062 if (CheckAndReportCommaError(ArgExprs
.front()))
5065 assert(matSubscriptE
->isIncomplete() &&
5066 "base has to be an incomplete matrix subscript");
5067 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE
->getBase(),
5068 matSubscriptE
->getRowIdx(),
5069 ArgExprs
.front(), rbLoc
);
5071 if (base
->getType()->isWebAssemblyTableType()) {
5072 Diag(base
->getExprLoc(), diag::err_wasm_table_art
)
5073 << SourceRange(base
->getBeginLoc(), rbLoc
) << 3;
5077 // Handle any non-overload placeholder types in the base and index
5078 // expressions. We can't handle overloads here because the other
5079 // operand might be an overloadable type, in which case the overload
5080 // resolution for the operator overload should get the first crack
5082 bool IsMSPropertySubscript
= false;
5083 if (base
->getType()->isNonOverloadPlaceholderType()) {
5084 IsMSPropertySubscript
= isMSPropertySubscriptExpr(*this, base
);
5085 if (!IsMSPropertySubscript
) {
5086 ExprResult result
= CheckPlaceholderExpr(base
);
5087 if (result
.isInvalid())
5089 base
= result
.get();
5093 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5094 if (base
->getType()->isMatrixType()) {
5095 assert(ArgExprs
.size() == 1);
5096 if (CheckAndReportCommaError(ArgExprs
.front()))
5099 return CreateBuiltinMatrixSubscriptExpr(base
, ArgExprs
.front(), nullptr,
5103 if (ArgExprs
.size() == 1 && getLangOpts().CPlusPlus20
) {
5104 Expr
*idx
= ArgExprs
[0];
5105 if ((isa
<BinaryOperator
>(idx
) && cast
<BinaryOperator
>(idx
)->isCommaOp()) ||
5106 (isa
<CXXOperatorCallExpr
>(idx
) &&
5107 cast
<CXXOperatorCallExpr
>(idx
)->getOperator() == OO_Comma
)) {
5108 Diag(idx
->getExprLoc(), diag::warn_deprecated_comma_subscript
)
5109 << SourceRange(base
->getBeginLoc(), rbLoc
);
5113 if (ArgExprs
.size() == 1 &&
5114 ArgExprs
[0]->getType()->isNonOverloadPlaceholderType()) {
5115 ExprResult result
= CheckPlaceholderExpr(ArgExprs
[0]);
5116 if (result
.isInvalid())
5118 ArgExprs
[0] = result
.get();
5120 if (checkArgsForPlaceholders(*this, ArgExprs
))
5124 // Build an unanalyzed expression if either operand is type-dependent.
5125 if (getLangOpts().CPlusPlus
&& ArgExprs
.size() == 1 &&
5126 (base
->isTypeDependent() ||
5127 Expr::hasAnyTypeDependentArguments(ArgExprs
)) &&
5128 !isa
<PackExpansionExpr
>(ArgExprs
[0])) {
5129 return new (Context
) ArraySubscriptExpr(
5130 base
, ArgExprs
.front(),
5131 getDependentArraySubscriptType(base
, ArgExprs
.front(), getASTContext()),
5132 VK_LValue
, OK_Ordinary
, rbLoc
);
5135 // MSDN, property (C++)
5136 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5137 // This attribute can also be used in the declaration of an empty array in a
5138 // class or structure definition. For example:
5139 // __declspec(property(get=GetX, put=PutX)) int x[];
5140 // The above statement indicates that x[] can be used with one or more array
5141 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5142 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5143 if (IsMSPropertySubscript
) {
5144 assert(ArgExprs
.size() == 1);
5145 // Build MS property subscript expression if base is MS property reference
5146 // or MS property subscript.
5147 return new (Context
)
5148 MSPropertySubscriptExpr(base
, ArgExprs
.front(), Context
.PseudoObjectTy
,
5149 VK_LValue
, OK_Ordinary
, rbLoc
);
5152 // Use C++ overloaded-operator rules if either operand has record
5153 // type. The spec says to do this if either type is *overloadable*,
5154 // but enum types can't declare subscript operators or conversion
5155 // operators, so there's nothing interesting for overload resolution
5156 // to do if there aren't any record types involved.
5158 // ObjC pointers have their own subscripting logic that is not tied
5159 // to overload resolution and so should not take this path.
5160 if (getLangOpts().CPlusPlus
&& !base
->getType()->isObjCObjectPointerType() &&
5161 ((base
->getType()->isRecordType() ||
5162 (ArgExprs
.size() != 1 || isa
<PackExpansionExpr
>(ArgExprs
[0]) ||
5163 ArgExprs
[0]->getType()->isRecordType())))) {
5164 return CreateOverloadedArraySubscriptExpr(lbLoc
, rbLoc
, base
, ArgExprs
);
5168 CreateBuiltinArraySubscriptExpr(base
, lbLoc
, ArgExprs
.front(), rbLoc
);
5170 if (!Res
.isInvalid() && isa
<ArraySubscriptExpr
>(Res
.get()))
5171 CheckSubscriptAccessOfNoDeref(cast
<ArraySubscriptExpr
>(Res
.get()));
5176 ExprResult
Sema::tryConvertExprToType(Expr
*E
, QualType Ty
) {
5177 InitializedEntity Entity
= InitializedEntity::InitializeTemporary(Ty
);
5178 InitializationKind Kind
=
5179 InitializationKind::CreateCopy(E
->getBeginLoc(), SourceLocation());
5180 InitializationSequence
InitSeq(*this, Entity
, Kind
, E
);
5181 return InitSeq
.Perform(*this, Entity
, Kind
, E
);
5184 ExprResult
Sema::CreateBuiltinMatrixSubscriptExpr(Expr
*Base
, Expr
*RowIdx
,
5186 SourceLocation RBLoc
) {
5187 ExprResult BaseR
= CheckPlaceholderExpr(Base
);
5188 if (BaseR
.isInvalid())
5192 ExprResult RowR
= CheckPlaceholderExpr(RowIdx
);
5193 if (RowR
.isInvalid())
5195 RowIdx
= RowR
.get();
5198 return new (Context
) MatrixSubscriptExpr(
5199 Base
, RowIdx
, ColumnIdx
, Context
.IncompleteMatrixIdxTy
, RBLoc
);
5201 // Build an unanalyzed expression if any of the operands is type-dependent.
5202 if (Base
->isTypeDependent() || RowIdx
->isTypeDependent() ||
5203 ColumnIdx
->isTypeDependent())
5204 return new (Context
) MatrixSubscriptExpr(Base
, RowIdx
, ColumnIdx
,
5205 Context
.DependentTy
, RBLoc
);
5207 ExprResult ColumnR
= CheckPlaceholderExpr(ColumnIdx
);
5208 if (ColumnR
.isInvalid())
5210 ColumnIdx
= ColumnR
.get();
5212 // Check that IndexExpr is an integer expression. If it is a constant
5213 // expression, check that it is less than Dim (= the number of elements in the
5214 // corresponding dimension).
5215 auto IsIndexValid
= [&](Expr
*IndexExpr
, unsigned Dim
,
5216 bool IsColumnIdx
) -> Expr
* {
5217 if (!IndexExpr
->getType()->isIntegerType() &&
5218 !IndexExpr
->isTypeDependent()) {
5219 Diag(IndexExpr
->getBeginLoc(), diag::err_matrix_index_not_integer
)
5224 if (std::optional
<llvm::APSInt
> Idx
=
5225 IndexExpr
->getIntegerConstantExpr(Context
)) {
5226 if ((*Idx
< 0 || *Idx
>= Dim
)) {
5227 Diag(IndexExpr
->getBeginLoc(), diag::err_matrix_index_outside_range
)
5228 << IsColumnIdx
<< Dim
;
5233 ExprResult ConvExpr
=
5234 tryConvertExprToType(IndexExpr
, Context
.getSizeType());
5235 assert(!ConvExpr
.isInvalid() &&
5236 "should be able to convert any integer type to size type");
5237 return ConvExpr
.get();
5240 auto *MTy
= Base
->getType()->getAs
<ConstantMatrixType
>();
5241 RowIdx
= IsIndexValid(RowIdx
, MTy
->getNumRows(), false);
5242 ColumnIdx
= IsIndexValid(ColumnIdx
, MTy
->getNumColumns(), true);
5243 if (!RowIdx
|| !ColumnIdx
)
5246 return new (Context
) MatrixSubscriptExpr(Base
, RowIdx
, ColumnIdx
,
5247 MTy
->getElementType(), RBLoc
);
5250 void Sema::CheckAddressOfNoDeref(const Expr
*E
) {
5251 ExpressionEvaluationContextRecord
&LastRecord
= ExprEvalContexts
.back();
5252 const Expr
*StrippedExpr
= E
->IgnoreParenImpCasts();
5254 // For expressions like `&(*s).b`, the base is recorded and what should be
5256 const MemberExpr
*Member
= nullptr;
5257 while ((Member
= dyn_cast
<MemberExpr
>(StrippedExpr
)) && !Member
->isArrow())
5258 StrippedExpr
= Member
->getBase()->IgnoreParenImpCasts();
5260 LastRecord
.PossibleDerefs
.erase(StrippedExpr
);
5263 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr
*E
) {
5264 if (isUnevaluatedContext())
5267 QualType ResultTy
= E
->getType();
5268 ExpressionEvaluationContextRecord
&LastRecord
= ExprEvalContexts
.back();
5270 // Bail if the element is an array since it is not memory access.
5271 if (isa
<ArrayType
>(ResultTy
))
5274 if (ResultTy
->hasAttr(attr::NoDeref
)) {
5275 LastRecord
.PossibleDerefs
.insert(E
);
5279 // Check if the base type is a pointer to a member access of a struct
5280 // marked with noderef.
5281 const Expr
*Base
= E
->getBase();
5282 QualType BaseTy
= Base
->getType();
5283 if (!(isa
<ArrayType
>(BaseTy
) || isa
<PointerType
>(BaseTy
)))
5284 // Not a pointer access
5287 const MemberExpr
*Member
= nullptr;
5288 while ((Member
= dyn_cast
<MemberExpr
>(Base
->IgnoreParenCasts())) &&
5290 Base
= Member
->getBase();
5292 if (const auto *Ptr
= dyn_cast
<PointerType
>(Base
->getType())) {
5293 if (Ptr
->getPointeeType()->hasAttr(attr::NoDeref
))
5294 LastRecord
.PossibleDerefs
.insert(E
);
5298 ExprResult
Sema::ActOnOMPArraySectionExpr(Expr
*Base
, SourceLocation LBLoc
,
5300 SourceLocation ColonLocFirst
,
5301 SourceLocation ColonLocSecond
,
5302 Expr
*Length
, Expr
*Stride
,
5303 SourceLocation RBLoc
) {
5304 if (Base
->hasPlaceholderType() &&
5305 !Base
->hasPlaceholderType(BuiltinType::OMPArraySection
)) {
5306 ExprResult Result
= CheckPlaceholderExpr(Base
);
5307 if (Result
.isInvalid())
5309 Base
= Result
.get();
5311 if (LowerBound
&& LowerBound
->getType()->isNonOverloadPlaceholderType()) {
5312 ExprResult Result
= CheckPlaceholderExpr(LowerBound
);
5313 if (Result
.isInvalid())
5315 Result
= DefaultLvalueConversion(Result
.get());
5316 if (Result
.isInvalid())
5318 LowerBound
= Result
.get();
5320 if (Length
&& Length
->getType()->isNonOverloadPlaceholderType()) {
5321 ExprResult Result
= CheckPlaceholderExpr(Length
);
5322 if (Result
.isInvalid())
5324 Result
= DefaultLvalueConversion(Result
.get());
5325 if (Result
.isInvalid())
5327 Length
= Result
.get();
5329 if (Stride
&& Stride
->getType()->isNonOverloadPlaceholderType()) {
5330 ExprResult Result
= CheckPlaceholderExpr(Stride
);
5331 if (Result
.isInvalid())
5333 Result
= DefaultLvalueConversion(Result
.get());
5334 if (Result
.isInvalid())
5336 Stride
= Result
.get();
5339 // Build an unanalyzed expression if either operand is type-dependent.
5340 if (Base
->isTypeDependent() ||
5342 (LowerBound
->isTypeDependent() || LowerBound
->isValueDependent())) ||
5343 (Length
&& (Length
->isTypeDependent() || Length
->isValueDependent())) ||
5344 (Stride
&& (Stride
->isTypeDependent() || Stride
->isValueDependent()))) {
5345 return new (Context
) OMPArraySectionExpr(
5346 Base
, LowerBound
, Length
, Stride
, Context
.DependentTy
, VK_LValue
,
5347 OK_Ordinary
, ColonLocFirst
, ColonLocSecond
, RBLoc
);
5350 // Perform default conversions.
5351 QualType OriginalTy
= OMPArraySectionExpr::getBaseOriginalType(Base
);
5353 if (OriginalTy
->isAnyPointerType()) {
5354 ResultTy
= OriginalTy
->getPointeeType();
5355 } else if (OriginalTy
->isArrayType()) {
5356 ResultTy
= OriginalTy
->getAsArrayTypeUnsafe()->getElementType();
5359 Diag(Base
->getExprLoc(), diag::err_omp_typecheck_section_value
)
5360 << Base
->getSourceRange());
5364 auto Res
= PerformOpenMPImplicitIntegerConversion(LowerBound
->getExprLoc(),
5366 if (Res
.isInvalid())
5367 return ExprError(Diag(LowerBound
->getExprLoc(),
5368 diag::err_omp_typecheck_section_not_integer
)
5369 << 0 << LowerBound
->getSourceRange());
5370 LowerBound
= Res
.get();
5372 if (LowerBound
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
5373 LowerBound
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
5374 Diag(LowerBound
->getExprLoc(), diag::warn_omp_section_is_char
)
5375 << 0 << LowerBound
->getSourceRange();
5379 PerformOpenMPImplicitIntegerConversion(Length
->getExprLoc(), Length
);
5380 if (Res
.isInvalid())
5381 return ExprError(Diag(Length
->getExprLoc(),
5382 diag::err_omp_typecheck_section_not_integer
)
5383 << 1 << Length
->getSourceRange());
5386 if (Length
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
5387 Length
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
5388 Diag(Length
->getExprLoc(), diag::warn_omp_section_is_char
)
5389 << 1 << Length
->getSourceRange();
5393 PerformOpenMPImplicitIntegerConversion(Stride
->getExprLoc(), Stride
);
5394 if (Res
.isInvalid())
5395 return ExprError(Diag(Stride
->getExprLoc(),
5396 diag::err_omp_typecheck_section_not_integer
)
5397 << 1 << Stride
->getSourceRange());
5400 if (Stride
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
5401 Stride
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
5402 Diag(Stride
->getExprLoc(), diag::warn_omp_section_is_char
)
5403 << 1 << Stride
->getSourceRange();
5406 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5407 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5408 // type. Note that functions are not objects, and that (in C99 parlance)
5409 // incomplete types are not object types.
5410 if (ResultTy
->isFunctionType()) {
5411 Diag(Base
->getExprLoc(), diag::err_omp_section_function_type
)
5412 << ResultTy
<< Base
->getSourceRange();
5416 if (RequireCompleteType(Base
->getExprLoc(), ResultTy
,
5417 diag::err_omp_section_incomplete_type
, Base
))
5420 if (LowerBound
&& !OriginalTy
->isAnyPointerType()) {
5421 Expr::EvalResult Result
;
5422 if (LowerBound
->EvaluateAsInt(Result
, Context
)) {
5423 // OpenMP 5.0, [2.1.5 Array Sections]
5424 // The array section must be a subset of the original array.
5425 llvm::APSInt LowerBoundValue
= Result
.Val
.getInt();
5426 if (LowerBoundValue
.isNegative()) {
5427 Diag(LowerBound
->getExprLoc(), diag::err_omp_section_not_subset_of_array
)
5428 << LowerBound
->getSourceRange();
5435 Expr::EvalResult Result
;
5436 if (Length
->EvaluateAsInt(Result
, Context
)) {
5437 // OpenMP 5.0, [2.1.5 Array Sections]
5438 // The length must evaluate to non-negative integers.
5439 llvm::APSInt LengthValue
= Result
.Val
.getInt();
5440 if (LengthValue
.isNegative()) {
5441 Diag(Length
->getExprLoc(), diag::err_omp_section_length_negative
)
5442 << toString(LengthValue
, /*Radix=*/10, /*Signed=*/true)
5443 << Length
->getSourceRange();
5447 } else if (ColonLocFirst
.isValid() &&
5448 (OriginalTy
.isNull() || (!OriginalTy
->isConstantArrayType() &&
5449 !OriginalTy
->isVariableArrayType()))) {
5450 // OpenMP 5.0, [2.1.5 Array Sections]
5451 // When the size of the array dimension is not known, the length must be
5452 // specified explicitly.
5453 Diag(ColonLocFirst
, diag::err_omp_section_length_undefined
)
5454 << (!OriginalTy
.isNull() && OriginalTy
->isArrayType());
5459 Expr::EvalResult Result
;
5460 if (Stride
->EvaluateAsInt(Result
, Context
)) {
5461 // OpenMP 5.0, [2.1.5 Array Sections]
5462 // The stride must evaluate to a positive integer.
5463 llvm::APSInt StrideValue
= Result
.Val
.getInt();
5464 if (!StrideValue
.isStrictlyPositive()) {
5465 Diag(Stride
->getExprLoc(), diag::err_omp_section_stride_non_positive
)
5466 << toString(StrideValue
, /*Radix=*/10, /*Signed=*/true)
5467 << Stride
->getSourceRange();
5473 if (!Base
->hasPlaceholderType(BuiltinType::OMPArraySection
)) {
5474 ExprResult Result
= DefaultFunctionArrayLvalueConversion(Base
);
5475 if (Result
.isInvalid())
5477 Base
= Result
.get();
5479 return new (Context
) OMPArraySectionExpr(
5480 Base
, LowerBound
, Length
, Stride
, Context
.OMPArraySectionTy
, VK_LValue
,
5481 OK_Ordinary
, ColonLocFirst
, ColonLocSecond
, RBLoc
);
5484 ExprResult
Sema::ActOnOMPArrayShapingExpr(Expr
*Base
, SourceLocation LParenLoc
,
5485 SourceLocation RParenLoc
,
5486 ArrayRef
<Expr
*> Dims
,
5487 ArrayRef
<SourceRange
> Brackets
) {
5488 if (Base
->hasPlaceholderType()) {
5489 ExprResult Result
= CheckPlaceholderExpr(Base
);
5490 if (Result
.isInvalid())
5492 Result
= DefaultLvalueConversion(Result
.get());
5493 if (Result
.isInvalid())
5495 Base
= Result
.get();
5497 QualType BaseTy
= Base
->getType();
5498 // Delay analysis of the types/expressions if instantiation/specialization is
5500 if (!BaseTy
->isPointerType() && Base
->isTypeDependent())
5501 return OMPArrayShapingExpr::Create(Context
, Context
.DependentTy
, Base
,
5502 LParenLoc
, RParenLoc
, Dims
, Brackets
);
5503 if (!BaseTy
->isPointerType() ||
5504 (!Base
->isTypeDependent() &&
5505 BaseTy
->getPointeeType()->isIncompleteType()))
5506 return ExprError(Diag(Base
->getExprLoc(),
5507 diag::err_omp_non_pointer_type_array_shaping_base
)
5508 << Base
->getSourceRange());
5510 SmallVector
<Expr
*, 4> NewDims
;
5511 bool ErrorFound
= false;
5512 for (Expr
*Dim
: Dims
) {
5513 if (Dim
->hasPlaceholderType()) {
5514 ExprResult Result
= CheckPlaceholderExpr(Dim
);
5515 if (Result
.isInvalid()) {
5519 Result
= DefaultLvalueConversion(Result
.get());
5520 if (Result
.isInvalid()) {
5526 if (!Dim
->isTypeDependent()) {
5528 PerformOpenMPImplicitIntegerConversion(Dim
->getExprLoc(), Dim
);
5529 if (Result
.isInvalid()) {
5531 Diag(Dim
->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer
)
5532 << Dim
->getSourceRange();
5536 Expr::EvalResult EvResult
;
5537 if (!Dim
->isValueDependent() && Dim
->EvaluateAsInt(EvResult
, Context
)) {
5538 // OpenMP 5.0, [2.1.4 Array Shaping]
5539 // Each si is an integral type expression that must evaluate to a
5540 // positive integer.
5541 llvm::APSInt Value
= EvResult
.Val
.getInt();
5542 if (!Value
.isStrictlyPositive()) {
5543 Diag(Dim
->getExprLoc(), diag::err_omp_shaping_dimension_not_positive
)
5544 << toString(Value
, /*Radix=*/10, /*Signed=*/true)
5545 << Dim
->getSourceRange();
5551 NewDims
.push_back(Dim
);
5555 return OMPArrayShapingExpr::Create(Context
, Context
.OMPArrayShapingTy
, Base
,
5556 LParenLoc
, RParenLoc
, NewDims
, Brackets
);
5559 ExprResult
Sema::ActOnOMPIteratorExpr(Scope
*S
, SourceLocation IteratorKwLoc
,
5560 SourceLocation LLoc
, SourceLocation RLoc
,
5561 ArrayRef
<OMPIteratorData
> Data
) {
5562 SmallVector
<OMPIteratorExpr::IteratorDefinition
, 4> ID
;
5563 bool IsCorrect
= true;
5564 for (const OMPIteratorData
&D
: Data
) {
5565 TypeSourceInfo
*TInfo
= nullptr;
5566 SourceLocation StartLoc
;
5568 if (!D
.Type
.getAsOpaquePtr()) {
5569 // OpenMP 5.0, 2.1.6 Iterators
5570 // In an iterator-specifier, if the iterator-type is not specified then
5571 // the type of that iterator is of int type.
5572 DeclTy
= Context
.IntTy
;
5573 StartLoc
= D
.DeclIdentLoc
;
5575 DeclTy
= GetTypeFromParser(D
.Type
, &TInfo
);
5576 StartLoc
= TInfo
->getTypeLoc().getBeginLoc();
5579 bool IsDeclTyDependent
= DeclTy
->isDependentType() ||
5580 DeclTy
->containsUnexpandedParameterPack() ||
5581 DeclTy
->isInstantiationDependentType();
5582 if (!IsDeclTyDependent
) {
5583 if (!DeclTy
->isIntegralType(Context
) && !DeclTy
->isAnyPointerType()) {
5584 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5585 // The iterator-type must be an integral or pointer type.
5586 Diag(StartLoc
, diag::err_omp_iterator_not_integral_or_pointer
)
5591 if (DeclTy
.isConstant(Context
)) {
5592 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5593 // The iterator-type must not be const qualified.
5594 Diag(StartLoc
, diag::err_omp_iterator_not_integral_or_pointer
)
5601 // Iterator declaration.
5602 assert(D
.DeclIdent
&& "Identifier expected.");
5603 // Always try to create iterator declarator to avoid extra error messages
5604 // about unknown declarations use.
5605 auto *VD
= VarDecl::Create(Context
, CurContext
, StartLoc
, D
.DeclIdentLoc
,
5606 D
.DeclIdent
, DeclTy
, TInfo
, SC_None
);
5609 // Check for conflicting previous declaration.
5610 DeclarationNameInfo
NameInfo(VD
->getDeclName(), D
.DeclIdentLoc
);
5611 LookupResult
Previous(*this, NameInfo
, LookupOrdinaryName
,
5612 ForVisibleRedeclaration
);
5613 Previous
.suppressDiagnostics();
5614 LookupName(Previous
, S
);
5616 FilterLookupForScope(Previous
, CurContext
, S
, /*ConsiderLinkage=*/false,
5617 /*AllowInlineNamespace=*/false);
5618 if (!Previous
.empty()) {
5619 NamedDecl
*Old
= Previous
.getRepresentativeDecl();
5620 Diag(D
.DeclIdentLoc
, diag::err_redefinition
) << VD
->getDeclName();
5621 Diag(Old
->getLocation(), diag::note_previous_definition
);
5623 PushOnScopeChains(VD
, S
);
5626 CurContext
->addDecl(VD
);
5629 /// Act on the iterator variable declaration.
5630 ActOnOpenMPIteratorVarDecl(VD
);
5632 Expr
*Begin
= D
.Range
.Begin
;
5633 if (!IsDeclTyDependent
&& Begin
&& !Begin
->isTypeDependent()) {
5634 ExprResult BeginRes
=
5635 PerformImplicitConversion(Begin
, DeclTy
, AA_Converting
);
5636 Begin
= BeginRes
.get();
5638 Expr
*End
= D
.Range
.End
;
5639 if (!IsDeclTyDependent
&& End
&& !End
->isTypeDependent()) {
5640 ExprResult EndRes
= PerformImplicitConversion(End
, DeclTy
, AA_Converting
);
5643 Expr
*Step
= D
.Range
.Step
;
5644 if (!IsDeclTyDependent
&& Step
&& !Step
->isTypeDependent()) {
5645 if (!Step
->getType()->isIntegralType(Context
)) {
5646 Diag(Step
->getExprLoc(), diag::err_omp_iterator_step_not_integral
)
5647 << Step
<< Step
->getSourceRange();
5651 std::optional
<llvm::APSInt
> Result
=
5652 Step
->getIntegerConstantExpr(Context
);
5653 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5654 // If the step expression of a range-specification equals zero, the
5655 // behavior is unspecified.
5656 if (Result
&& Result
->isZero()) {
5657 Diag(Step
->getExprLoc(), diag::err_omp_iterator_step_constant_zero
)
5658 << Step
<< Step
->getSourceRange();
5663 if (!Begin
|| !End
|| !IsCorrect
) {
5667 OMPIteratorExpr::IteratorDefinition
&IDElem
= ID
.emplace_back();
5668 IDElem
.IteratorDecl
= VD
;
5669 IDElem
.AssignmentLoc
= D
.AssignLoc
;
5670 IDElem
.Range
.Begin
= Begin
;
5671 IDElem
.Range
.End
= End
;
5672 IDElem
.Range
.Step
= Step
;
5673 IDElem
.ColonLoc
= D
.ColonLoc
;
5674 IDElem
.SecondColonLoc
= D
.SecColonLoc
;
5677 // Invalidate all created iterator declarations if error is found.
5678 for (const OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
5679 if (Decl
*ID
= D
.IteratorDecl
)
5680 ID
->setInvalidDecl();
5684 SmallVector
<OMPIteratorHelperData
, 4> Helpers
;
5685 if (!CurContext
->isDependentContext()) {
5686 // Build number of ityeration for each iteration range.
5687 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5688 // ((Begini-Stepi-1-Endi) / -Stepi);
5689 for (OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
5691 ExprResult Res
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
, D
.Range
.End
,
5693 if(!Res
.isUsable()) {
5700 // (Endi - Begini) + Stepi
5701 Res
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
, Res
.get(), St
.get());
5702 if (!Res
.isUsable()) {
5706 // (Endi - Begini) + Stepi - 1
5708 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
, Res
.get(),
5709 ActOnIntegerConstant(D
.AssignmentLoc
, 1).get());
5710 if (!Res
.isUsable()) {
5714 // ((Endi - Begini) + Stepi - 1) / Stepi
5715 Res
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Div
, Res
.get(), St
.get());
5716 if (!Res
.isUsable()) {
5720 St1
= CreateBuiltinUnaryOp(D
.AssignmentLoc
, UO_Minus
, D
.Range
.Step
);
5722 ExprResult Res1
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
,
5723 D
.Range
.Begin
, D
.Range
.End
);
5724 if (!Res1
.isUsable()) {
5728 // (Begini - Endi) - Stepi
5730 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
, Res1
.get(), St1
.get());
5731 if (!Res1
.isUsable()) {
5735 // (Begini - Endi) - Stepi - 1
5737 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
, Res1
.get(),
5738 ActOnIntegerConstant(D
.AssignmentLoc
, 1).get());
5739 if (!Res1
.isUsable()) {
5743 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5745 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Div
, Res1
.get(), St1
.get());
5746 if (!Res1
.isUsable()) {
5752 CreateBuiltinBinOp(D
.AssignmentLoc
, BO_GT
, D
.Range
.Step
,
5753 ActOnIntegerConstant(D
.AssignmentLoc
, 0).get());
5754 if (!CmpRes
.isUsable()) {
5758 Res
= ActOnConditionalOp(D
.AssignmentLoc
, D
.AssignmentLoc
, CmpRes
.get(),
5759 Res
.get(), Res1
.get());
5760 if (!Res
.isUsable()) {
5765 Res
= ActOnFinishFullExpr(Res
.get(), /*DiscardedValue=*/false);
5766 if (!Res
.isUsable()) {
5771 // Build counter update.
5774 VarDecl::Create(Context
, CurContext
, D
.IteratorDecl
->getBeginLoc(),
5775 D
.IteratorDecl
->getBeginLoc(), nullptr,
5776 Res
.get()->getType(), nullptr, SC_None
);
5777 CounterVD
->setImplicit();
5779 BuildDeclRefExpr(CounterVD
, CounterVD
->getType(), VK_LValue
,
5780 D
.IteratorDecl
->getBeginLoc());
5781 // Build counter update.
5782 // I = Begini + counter * Stepi;
5783 ExprResult UpdateRes
;
5785 UpdateRes
= CreateBuiltinBinOp(
5786 D
.AssignmentLoc
, BO_Mul
,
5787 DefaultLvalueConversion(RefRes
.get()).get(), St
.get());
5789 UpdateRes
= DefaultLvalueConversion(RefRes
.get());
5791 if (!UpdateRes
.isUsable()) {
5795 UpdateRes
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
, D
.Range
.Begin
,
5797 if (!UpdateRes
.isUsable()) {
5802 BuildDeclRefExpr(cast
<VarDecl
>(D
.IteratorDecl
),
5803 cast
<VarDecl
>(D
.IteratorDecl
)->getType(), VK_LValue
,
5804 D
.IteratorDecl
->getBeginLoc());
5805 UpdateRes
= CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Assign
, VDRes
.get(),
5807 if (!UpdateRes
.isUsable()) {
5812 ActOnFinishFullExpr(UpdateRes
.get(), /*DiscardedValue=*/true);
5813 if (!UpdateRes
.isUsable()) {
5817 ExprResult CounterUpdateRes
=
5818 CreateBuiltinUnaryOp(D
.AssignmentLoc
, UO_PreInc
, RefRes
.get());
5819 if (!CounterUpdateRes
.isUsable()) {
5824 ActOnFinishFullExpr(CounterUpdateRes
.get(), /*DiscardedValue=*/true);
5825 if (!CounterUpdateRes
.isUsable()) {
5829 OMPIteratorHelperData
&HD
= Helpers
.emplace_back();
5830 HD
.CounterVD
= CounterVD
;
5831 HD
.Upper
= Res
.get();
5832 HD
.Update
= UpdateRes
.get();
5833 HD
.CounterUpdate
= CounterUpdateRes
.get();
5836 Helpers
.assign(ID
.size(), {});
5839 // Invalidate all created iterator declarations if error is found.
5840 for (const OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
5841 if (Decl
*ID
= D
.IteratorDecl
)
5842 ID
->setInvalidDecl();
5846 return OMPIteratorExpr::Create(Context
, Context
.OMPIteratorTy
, IteratorKwLoc
,
5847 LLoc
, RLoc
, ID
, Helpers
);
5851 Sema::CreateBuiltinArraySubscriptExpr(Expr
*Base
, SourceLocation LLoc
,
5852 Expr
*Idx
, SourceLocation RLoc
) {
5853 Expr
*LHSExp
= Base
;
5856 ExprValueKind VK
= VK_LValue
;
5857 ExprObjectKind OK
= OK_Ordinary
;
5859 // Per C++ core issue 1213, the result is an xvalue if either operand is
5860 // a non-lvalue array, and an lvalue otherwise.
5861 if (getLangOpts().CPlusPlus11
) {
5862 for (auto *Op
: {LHSExp
, RHSExp
}) {
5863 Op
= Op
->IgnoreImplicit();
5864 if (Op
->getType()->isArrayType() && !Op
->isLValue())
5869 // Perform default conversions.
5870 if (!LHSExp
->getType()->getAs
<VectorType
>()) {
5871 ExprResult Result
= DefaultFunctionArrayLvalueConversion(LHSExp
);
5872 if (Result
.isInvalid())
5874 LHSExp
= Result
.get();
5876 ExprResult Result
= DefaultFunctionArrayLvalueConversion(RHSExp
);
5877 if (Result
.isInvalid())
5879 RHSExp
= Result
.get();
5881 QualType LHSTy
= LHSExp
->getType(), RHSTy
= RHSExp
->getType();
5883 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5884 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5885 // in the subscript position. As a result, we need to derive the array base
5886 // and index from the expression types.
5887 Expr
*BaseExpr
, *IndexExpr
;
5888 QualType ResultType
;
5889 if (LHSTy
->isDependentType() || RHSTy
->isDependentType()) {
5893 getDependentArraySubscriptType(LHSExp
, RHSExp
, getASTContext());
5894 } else if (const PointerType
*PTy
= LHSTy
->getAs
<PointerType
>()) {
5897 ResultType
= PTy
->getPointeeType();
5898 } else if (const ObjCObjectPointerType
*PTy
=
5899 LHSTy
->getAs
<ObjCObjectPointerType
>()) {
5903 // Use custom logic if this should be the pseudo-object subscript
5905 if (!LangOpts
.isSubscriptPointerArithmetic())
5906 return BuildObjCSubscriptExpression(RLoc
, BaseExpr
, IndexExpr
, nullptr,
5909 ResultType
= PTy
->getPointeeType();
5910 } else if (const PointerType
*PTy
= RHSTy
->getAs
<PointerType
>()) {
5911 // Handle the uncommon case of "123[Ptr]".
5914 ResultType
= PTy
->getPointeeType();
5915 } else if (const ObjCObjectPointerType
*PTy
=
5916 RHSTy
->getAs
<ObjCObjectPointerType
>()) {
5917 // Handle the uncommon case of "123[Ptr]".
5920 ResultType
= PTy
->getPointeeType();
5921 if (!LangOpts
.isSubscriptPointerArithmetic()) {
5922 Diag(LLoc
, diag::err_subscript_nonfragile_interface
)
5923 << ResultType
<< BaseExpr
->getSourceRange();
5926 } else if (const VectorType
*VTy
= LHSTy
->getAs
<VectorType
>()) {
5927 BaseExpr
= LHSExp
; // vectors: V[123]
5929 // We apply C++ DR1213 to vector subscripting too.
5930 if (getLangOpts().CPlusPlus11
&& LHSExp
->isPRValue()) {
5931 ExprResult Materialized
= TemporaryMaterializationConversion(LHSExp
);
5932 if (Materialized
.isInvalid())
5934 LHSExp
= Materialized
.get();
5936 VK
= LHSExp
->getValueKind();
5937 if (VK
!= VK_PRValue
)
5938 OK
= OK_VectorComponent
;
5940 ResultType
= VTy
->getElementType();
5941 QualType BaseType
= BaseExpr
->getType();
5942 Qualifiers BaseQuals
= BaseType
.getQualifiers();
5943 Qualifiers MemberQuals
= ResultType
.getQualifiers();
5944 Qualifiers Combined
= BaseQuals
+ MemberQuals
;
5945 if (Combined
!= MemberQuals
)
5946 ResultType
= Context
.getQualifiedType(ResultType
, Combined
);
5947 } else if (LHSTy
->isBuiltinType() &&
5948 LHSTy
->getAs
<BuiltinType
>()->isSveVLSBuiltinType()) {
5949 const BuiltinType
*BTy
= LHSTy
->getAs
<BuiltinType
>();
5950 if (BTy
->isSVEBool())
5951 return ExprError(Diag(LLoc
, diag::err_subscript_svbool_t
)
5952 << LHSExp
->getSourceRange() << RHSExp
->getSourceRange());
5956 if (getLangOpts().CPlusPlus11
&& LHSExp
->isPRValue()) {
5957 ExprResult Materialized
= TemporaryMaterializationConversion(LHSExp
);
5958 if (Materialized
.isInvalid())
5960 LHSExp
= Materialized
.get();
5962 VK
= LHSExp
->getValueKind();
5963 if (VK
!= VK_PRValue
)
5964 OK
= OK_VectorComponent
;
5966 ResultType
= BTy
->getSveEltType(Context
);
5968 QualType BaseType
= BaseExpr
->getType();
5969 Qualifiers BaseQuals
= BaseType
.getQualifiers();
5970 Qualifiers MemberQuals
= ResultType
.getQualifiers();
5971 Qualifiers Combined
= BaseQuals
+ MemberQuals
;
5972 if (Combined
!= MemberQuals
)
5973 ResultType
= Context
.getQualifiedType(ResultType
, Combined
);
5974 } else if (LHSTy
->isArrayType()) {
5975 // If we see an array that wasn't promoted by
5976 // DefaultFunctionArrayLvalueConversion, it must be an array that
5977 // wasn't promoted because of the C90 rule that doesn't
5978 // allow promoting non-lvalue arrays. Warn, then
5979 // force the promotion here.
5980 Diag(LHSExp
->getBeginLoc(), diag::ext_subscript_non_lvalue
)
5981 << LHSExp
->getSourceRange();
5982 LHSExp
= ImpCastExprToType(LHSExp
, Context
.getArrayDecayedType(LHSTy
),
5983 CK_ArrayToPointerDecay
).get();
5984 LHSTy
= LHSExp
->getType();
5988 ResultType
= LHSTy
->castAs
<PointerType
>()->getPointeeType();
5989 } else if (RHSTy
->isArrayType()) {
5990 // Same as previous, except for 123[f().a] case
5991 Diag(RHSExp
->getBeginLoc(), diag::ext_subscript_non_lvalue
)
5992 << RHSExp
->getSourceRange();
5993 RHSExp
= ImpCastExprToType(RHSExp
, Context
.getArrayDecayedType(RHSTy
),
5994 CK_ArrayToPointerDecay
).get();
5995 RHSTy
= RHSExp
->getType();
5999 ResultType
= RHSTy
->castAs
<PointerType
>()->getPointeeType();
6001 return ExprError(Diag(LLoc
, diag::err_typecheck_subscript_value
)
6002 << LHSExp
->getSourceRange() << RHSExp
->getSourceRange());
6005 if (!IndexExpr
->getType()->isIntegerType() && !IndexExpr
->isTypeDependent())
6006 return ExprError(Diag(LLoc
, diag::err_typecheck_subscript_not_integer
)
6007 << IndexExpr
->getSourceRange());
6009 if ((IndexExpr
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
6010 IndexExpr
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
6011 && !IndexExpr
->isTypeDependent())
6012 Diag(LLoc
, diag::warn_subscript_is_char
) << IndexExpr
->getSourceRange();
6014 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
6015 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
6016 // type. Note that Functions are not objects, and that (in C99 parlance)
6017 // incomplete types are not object types.
6018 if (ResultType
->isFunctionType()) {
6019 Diag(BaseExpr
->getBeginLoc(), diag::err_subscript_function_type
)
6020 << ResultType
<< BaseExpr
->getSourceRange();
6024 if (ResultType
->isVoidType() && !getLangOpts().CPlusPlus
) {
6025 // GNU extension: subscripting on pointer to void
6026 Diag(LLoc
, diag::ext_gnu_subscript_void_type
)
6027 << BaseExpr
->getSourceRange();
6029 // C forbids expressions of unqualified void type from being l-values.
6030 // See IsCForbiddenLValueType.
6031 if (!ResultType
.hasQualifiers())
6033 } else if (!ResultType
->isDependentType() &&
6034 !ResultType
.isWebAssemblyReferenceType() &&
6035 RequireCompleteSizedType(
6037 diag::err_subscript_incomplete_or_sizeless_type
, BaseExpr
))
6040 assert(VK
== VK_PRValue
|| LangOpts
.CPlusPlus
||
6041 !ResultType
.isCForbiddenLValueType());
6043 if (LHSExp
->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
6044 FunctionScopes
.size() > 1) {
6046 LHSExp
->IgnoreParenImpCasts()->getType()->getAs
<TypedefType
>()) {
6047 for (auto I
= FunctionScopes
.rbegin(),
6048 E
= std::prev(FunctionScopes
.rend());
6050 auto *CSI
= dyn_cast
<CapturingScopeInfo
>(*I
);
6053 DeclContext
*DC
= nullptr;
6054 if (auto *LSI
= dyn_cast
<LambdaScopeInfo
>(CSI
))
6055 DC
= LSI
->CallOperator
;
6056 else if (auto *CRSI
= dyn_cast
<CapturedRegionScopeInfo
>(CSI
))
6057 DC
= CRSI
->TheCapturedDecl
;
6058 else if (auto *BSI
= dyn_cast
<BlockScopeInfo
>(CSI
))
6061 if (DC
->containsDecl(TT
->getDecl()))
6063 captureVariablyModifiedType(
6064 Context
, LHSExp
->IgnoreParenImpCasts()->getType(), CSI
);
6070 return new (Context
)
6071 ArraySubscriptExpr(LHSExp
, RHSExp
, ResultType
, VK
, OK
, RLoc
);
6074 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc
, FunctionDecl
*FD
,
6075 ParmVarDecl
*Param
, Expr
*RewrittenInit
,
6076 bool SkipImmediateInvocations
) {
6077 if (Param
->hasUnparsedDefaultArg()) {
6078 assert(!RewrittenInit
&& "Should not have a rewritten init expression yet");
6079 // If we've already cleared out the location for the default argument,
6080 // that means we're parsing it right now.
6081 if (!UnparsedDefaultArgLocs
.count(Param
)) {
6082 Diag(Param
->getBeginLoc(), diag::err_recursive_default_argument
) << FD
;
6083 Diag(CallLoc
, diag::note_recursive_default_argument_used_here
);
6084 Param
->setInvalidDecl();
6088 Diag(CallLoc
, diag::err_use_of_default_argument_to_function_declared_later
)
6089 << FD
<< cast
<CXXRecordDecl
>(FD
->getDeclContext());
6090 Diag(UnparsedDefaultArgLocs
[Param
],
6091 diag::note_default_argument_declared_here
);
6095 if (Param
->hasUninstantiatedDefaultArg()) {
6096 assert(!RewrittenInit
&& "Should not have a rewitten init expression yet");
6097 if (InstantiateDefaultArgument(CallLoc
, FD
, Param
))
6101 Expr
*Init
= RewrittenInit
? RewrittenInit
: Param
->getInit();
6102 assert(Init
&& "default argument but no initializer?");
6104 // If the default expression creates temporaries, we need to
6105 // push them to the current stack of expression temporaries so they'll
6106 // be properly destroyed.
6107 // FIXME: We should really be rebuilding the default argument with new
6108 // bound temporaries; see the comment in PR5810.
6109 // We don't need to do that with block decls, though, because
6110 // blocks in default argument expression can never capture anything.
6111 if (auto *InitWithCleanup
= dyn_cast
<ExprWithCleanups
>(Init
)) {
6112 // Set the "needs cleanups" bit regardless of whether there are
6113 // any explicit objects.
6114 Cleanup
.setExprNeedsCleanups(InitWithCleanup
->cleanupsHaveSideEffects());
6115 // Append all the objects to the cleanup list. Right now, this
6116 // should always be a no-op, because blocks in default argument
6117 // expressions should never be able to capture anything.
6118 assert(!InitWithCleanup
->getNumObjects() &&
6119 "default argument expression has capturing blocks?");
6121 // C++ [expr.const]p15.1:
6122 // An expression or conversion is in an immediate function context if it is
6123 // potentially evaluated and [...] its innermost enclosing non-block scope
6124 // is a function parameter scope of an immediate function.
6125 EnterExpressionEvaluationContext
EvalContext(
6127 FD
->isImmediateFunction()
6128 ? ExpressionEvaluationContext::ImmediateFunctionContext
6129 : ExpressionEvaluationContext::PotentiallyEvaluated
,
6131 ExprEvalContexts
.back().IsCurrentlyCheckingDefaultArgumentOrInitializer
=
6132 SkipImmediateInvocations
;
6133 runWithSufficientStackSpace(CallLoc
, [&] {
6134 MarkDeclarationsReferencedInExpr(Init
, /*SkipLocalVariables=*/true);
6139 struct ImmediateCallVisitor
: public RecursiveASTVisitor
<ImmediateCallVisitor
> {
6140 const ASTContext
&Context
;
6141 ImmediateCallVisitor(const ASTContext
&Ctx
) : Context(Ctx
) {}
6143 bool HasImmediateCalls
= false;
6144 bool shouldVisitImplicitCode() const { return true; }
6146 bool VisitCallExpr(CallExpr
*E
) {
6147 if (const FunctionDecl
*FD
= E
->getDirectCallee())
6148 HasImmediateCalls
|= FD
->isImmediateFunction();
6149 return RecursiveASTVisitor
<ImmediateCallVisitor
>::VisitStmt(E
);
6152 // SourceLocExpr are not immediate invocations
6153 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
6154 // need to be rebuilt so that they refer to the correct SourceLocation and
6156 bool VisitSourceLocExpr(SourceLocExpr
*E
) {
6157 HasImmediateCalls
= true;
6158 return RecursiveASTVisitor
<ImmediateCallVisitor
>::VisitStmt(E
);
6161 // A nested lambda might have parameters with immediate invocations
6162 // in their default arguments.
6163 // The compound statement is not visited (as it does not constitute a
6165 // FIXME: We should consider visiting and transforming captures
6166 // with init expressions.
6167 bool VisitLambdaExpr(LambdaExpr
*E
) {
6168 return VisitCXXMethodDecl(E
->getCallOperator());
6171 // Blocks don't support default parameters, and, as for lambdas,
6172 // we don't consider their body a subexpression.
6173 bool VisitBlockDecl(BlockDecl
*B
) { return false; }
6175 bool VisitCompoundStmt(CompoundStmt
*B
) { return false; }
6177 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr
*E
) {
6178 return TraverseStmt(E
->getExpr());
6181 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr
*E
) {
6182 return TraverseStmt(E
->getExpr());
6186 struct EnsureImmediateInvocationInDefaultArgs
6187 : TreeTransform
<EnsureImmediateInvocationInDefaultArgs
> {
6188 EnsureImmediateInvocationInDefaultArgs(Sema
&SemaRef
)
6189 : TreeTransform(SemaRef
) {}
6191 // Lambda can only have immediate invocations in the default
6192 // args of their parameters, which is transformed upon calling the closure.
6193 // The body is not a subexpression, so we have nothing to do.
6194 // FIXME: Immediate calls in capture initializers should be transformed.
6195 ExprResult
TransformLambdaExpr(LambdaExpr
*E
) { return E
; }
6196 ExprResult
TransformBlockExpr(BlockExpr
*E
) { return E
; }
6198 // Make sure we don't rebuild the this pointer as it would
6199 // cause it to incorrectly point it to the outermost class
6200 // in the case of nested struct initialization.
6201 ExprResult
TransformCXXThisExpr(CXXThisExpr
*E
) { return E
; }
6204 ExprResult
Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc
,
6205 FunctionDecl
*FD
, ParmVarDecl
*Param
,
6207 assert(Param
->hasDefaultArg() && "can't build nonexistent default arg");
6209 bool NestedDefaultChecking
= isCheckingDefaultArgumentOrInitializer();
6211 std::optional
<ExpressionEvaluationContextRecord::InitializationContext
>
6212 InitializationContext
=
6213 OutermostDeclarationWithDelayedImmediateInvocations();
6214 if (!InitializationContext
.has_value())
6215 InitializationContext
.emplace(CallLoc
, Param
, CurContext
);
6217 if (!Init
&& !Param
->hasUnparsedDefaultArg()) {
6218 // Mark that we are replacing a default argument first.
6219 // If we are instantiating a template we won't have to
6220 // retransform immediate calls.
6221 // C++ [expr.const]p15.1:
6222 // An expression or conversion is in an immediate function context if it
6223 // is potentially evaluated and [...] its innermost enclosing non-block
6224 // scope is a function parameter scope of an immediate function.
6225 EnterExpressionEvaluationContext
EvalContext(
6227 FD
->isImmediateFunction()
6228 ? ExpressionEvaluationContext::ImmediateFunctionContext
6229 : ExpressionEvaluationContext::PotentiallyEvaluated
,
6232 if (Param
->hasUninstantiatedDefaultArg()) {
6233 if (InstantiateDefaultArgument(CallLoc
, FD
, Param
))
6237 // An immediate invocation that is not evaluated where it appears is
6238 // evaluated and checked for whether it is a constant expression at the
6239 // point where the enclosing initializer is used in a function call.
6240 ImmediateCallVisitor
V(getASTContext());
6241 if (!NestedDefaultChecking
)
6242 V
.TraverseDecl(Param
);
6243 if (V
.HasImmediateCalls
) {
6244 ExprEvalContexts
.back().DelayedDefaultInitializationContext
= {
6245 CallLoc
, Param
, CurContext
};
6246 EnsureImmediateInvocationInDefaultArgs
Immediate(*this);
6248 runWithSufficientStackSpace(CallLoc
, [&] {
6249 Res
= Immediate
.TransformInitializer(Param
->getInit(),
6252 if (Res
.isInvalid())
6254 Res
= ConvertParamDefaultArgument(Param
, Res
.get(),
6255 Res
.get()->getBeginLoc());
6256 if (Res
.isInvalid())
6262 if (CheckCXXDefaultArgExpr(
6263 CallLoc
, FD
, Param
, Init
,
6264 /*SkipImmediateInvocations=*/NestedDefaultChecking
))
6267 return CXXDefaultArgExpr::Create(Context
, InitializationContext
->Loc
, Param
,
6268 Init
, InitializationContext
->Context
);
6271 ExprResult
Sema::BuildCXXDefaultInitExpr(SourceLocation Loc
, FieldDecl
*Field
) {
6272 assert(Field
->hasInClassInitializer());
6274 // If we might have already tried and failed to instantiate, don't try again.
6275 if (Field
->isInvalidDecl())
6278 CXXThisScopeRAII
This(*this, Field
->getParent(), Qualifiers());
6280 auto *ParentRD
= cast
<CXXRecordDecl
>(Field
->getParent());
6282 std::optional
<ExpressionEvaluationContextRecord::InitializationContext
>
6283 InitializationContext
=
6284 OutermostDeclarationWithDelayedImmediateInvocations();
6285 if (!InitializationContext
.has_value())
6286 InitializationContext
.emplace(Loc
, Field
, CurContext
);
6288 Expr
*Init
= nullptr;
6290 bool NestedDefaultChecking
= isCheckingDefaultArgumentOrInitializer();
6292 EnterExpressionEvaluationContext
EvalContext(
6293 *this, ExpressionEvaluationContext::PotentiallyEvaluated
, Field
);
6295 if (!Field
->getInClassInitializer()) {
6296 // Maybe we haven't instantiated the in-class initializer. Go check the
6297 // pattern FieldDecl to see if it has one.
6298 if (isTemplateInstantiation(ParentRD
->getTemplateSpecializationKind())) {
6299 CXXRecordDecl
*ClassPattern
= ParentRD
->getTemplateInstantiationPattern();
6300 DeclContext::lookup_result Lookup
=
6301 ClassPattern
->lookup(Field
->getDeclName());
6303 FieldDecl
*Pattern
= nullptr;
6304 for (auto *L
: Lookup
) {
6305 if ((Pattern
= dyn_cast
<FieldDecl
>(L
)))
6308 assert(Pattern
&& "We must have set the Pattern!");
6309 if (!Pattern
->hasInClassInitializer() ||
6310 InstantiateInClassInitializer(Loc
, Field
, Pattern
,
6311 getTemplateInstantiationArgs(Field
))) {
6312 Field
->setInvalidDecl();
6319 // An immediate invocation that is not evaluated where it appears is
6320 // evaluated and checked for whether it is a constant expression at the
6321 // point where the enclosing initializer is used in a [...] a constructor
6322 // definition, or an aggregate initialization.
6323 ImmediateCallVisitor
V(getASTContext());
6324 if (!NestedDefaultChecking
)
6325 V
.TraverseDecl(Field
);
6326 if (V
.HasImmediateCalls
) {
6327 ExprEvalContexts
.back().DelayedDefaultInitializationContext
= {Loc
, Field
,
6329 ExprEvalContexts
.back().IsCurrentlyCheckingDefaultArgumentOrInitializer
=
6330 NestedDefaultChecking
;
6332 EnsureImmediateInvocationInDefaultArgs
Immediate(*this);
6334 runWithSufficientStackSpace(Loc
, [&] {
6335 Res
= Immediate
.TransformInitializer(Field
->getInClassInitializer(),
6336 /*CXXDirectInit=*/false);
6338 if (!Res
.isInvalid())
6339 Res
= ConvertMemberDefaultInitExpression(Field
, Res
.get(), Loc
);
6340 if (Res
.isInvalid()) {
6341 Field
->setInvalidDecl();
6347 if (Field
->getInClassInitializer()) {
6348 Expr
*E
= Init
? Init
: Field
->getInClassInitializer();
6349 if (!NestedDefaultChecking
)
6350 runWithSufficientStackSpace(Loc
, [&] {
6351 MarkDeclarationsReferencedInExpr(E
, /*SkipLocalVariables=*/false);
6353 // C++11 [class.base.init]p7:
6354 // The initialization of each base and member constitutes a
6356 ExprResult Res
= ActOnFinishFullExpr(E
, /*DiscardedValue=*/false);
6357 if (Res
.isInvalid()) {
6358 Field
->setInvalidDecl();
6363 return CXXDefaultInitExpr::Create(Context
, InitializationContext
->Loc
,
6364 Field
, InitializationContext
->Context
,
6369 // If the brace-or-equal-initializer of a non-static data member
6370 // invokes a defaulted default constructor of its class or of an
6371 // enclosing class in a potentially evaluated subexpression, the
6372 // program is ill-formed.
6374 // This resolution is unworkable: the exception specification of the
6375 // default constructor can be needed in an unevaluated context, in
6376 // particular, in the operand of a noexcept-expression, and we can be
6377 // unable to compute an exception specification for an enclosed class.
6379 // Any attempt to resolve the exception specification of a defaulted default
6380 // constructor before the initializer is lexically complete will ultimately
6381 // come here at which point we can diagnose it.
6382 RecordDecl
*OutermostClass
= ParentRD
->getOuterLexicalRecordContext();
6383 Diag(Loc
, diag::err_default_member_initializer_not_yet_parsed
)
6384 << OutermostClass
<< Field
;
6385 Diag(Field
->getEndLoc(),
6386 diag::note_default_member_initializer_not_yet_parsed
);
6387 // Recover by marking the field invalid, unless we're in a SFINAE context.
6388 if (!isSFINAEContext())
6389 Field
->setInvalidDecl();
6393 Sema::VariadicCallType
6394 Sema::getVariadicCallType(FunctionDecl
*FDecl
, const FunctionProtoType
*Proto
,
6396 if (Proto
&& Proto
->isVariadic()) {
6397 if (isa_and_nonnull
<CXXConstructorDecl
>(FDecl
))
6398 return VariadicConstructor
;
6399 else if (Fn
&& Fn
->getType()->isBlockPointerType())
6400 return VariadicBlock
;
6402 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(FDecl
))
6403 if (Method
->isInstance())
6404 return VariadicMethod
;
6405 } else if (Fn
&& Fn
->getType() == Context
.BoundMemberTy
)
6406 return VariadicMethod
;
6407 return VariadicFunction
;
6409 return VariadicDoesNotApply
;
6413 class FunctionCallCCC final
: public FunctionCallFilterCCC
{
6415 FunctionCallCCC(Sema
&SemaRef
, const IdentifierInfo
*FuncName
,
6416 unsigned NumArgs
, MemberExpr
*ME
)
6417 : FunctionCallFilterCCC(SemaRef
, NumArgs
, false, ME
),
6418 FunctionName(FuncName
) {}
6420 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
6421 if (!candidate
.getCorrectionSpecifier() ||
6422 candidate
.getCorrectionAsIdentifierInfo() != FunctionName
) {
6426 return FunctionCallFilterCCC::ValidateCandidate(candidate
);
6429 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
6430 return std::make_unique
<FunctionCallCCC
>(*this);
6434 const IdentifierInfo
*const FunctionName
;
6438 static TypoCorrection
TryTypoCorrectionForCall(Sema
&S
, Expr
*Fn
,
6439 FunctionDecl
*FDecl
,
6440 ArrayRef
<Expr
*> Args
) {
6441 MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Fn
);
6442 DeclarationName FuncName
= FDecl
->getDeclName();
6443 SourceLocation NameLoc
= ME
? ME
->getMemberLoc() : Fn
->getBeginLoc();
6445 FunctionCallCCC
CCC(S
, FuncName
.getAsIdentifierInfo(), Args
.size(), ME
);
6446 if (TypoCorrection Corrected
= S
.CorrectTypo(
6447 DeclarationNameInfo(FuncName
, NameLoc
), Sema::LookupOrdinaryName
,
6448 S
.getScopeForContext(S
.CurContext
), nullptr, CCC
,
6449 Sema::CTK_ErrorRecovery
)) {
6450 if (NamedDecl
*ND
= Corrected
.getFoundDecl()) {
6451 if (Corrected
.isOverloaded()) {
6452 OverloadCandidateSet
OCS(NameLoc
, OverloadCandidateSet::CSK_Normal
);
6453 OverloadCandidateSet::iterator Best
;
6454 for (NamedDecl
*CD
: Corrected
) {
6455 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CD
))
6456 S
.AddOverloadCandidate(FD
, DeclAccessPair::make(FD
, AS_none
), Args
,
6459 switch (OCS
.BestViableFunction(S
, NameLoc
, Best
)) {
6461 ND
= Best
->FoundDecl
;
6462 Corrected
.setCorrectionDecl(ND
);
6468 ND
= ND
->getUnderlyingDecl();
6469 if (isa
<ValueDecl
>(ND
) || isa
<FunctionTemplateDecl
>(ND
))
6473 return TypoCorrection();
6476 /// ConvertArgumentsForCall - Converts the arguments specified in
6477 /// Args/NumArgs to the parameter types of the function FDecl with
6478 /// function prototype Proto. Call is the call expression itself, and
6479 /// Fn is the function expression. For a C++ member function, this
6480 /// routine does not attempt to convert the object argument. Returns
6481 /// true if the call is ill-formed.
6483 Sema::ConvertArgumentsForCall(CallExpr
*Call
, Expr
*Fn
,
6484 FunctionDecl
*FDecl
,
6485 const FunctionProtoType
*Proto
,
6486 ArrayRef
<Expr
*> Args
,
6487 SourceLocation RParenLoc
,
6488 bool IsExecConfig
) {
6489 // Bail out early if calling a builtin with custom typechecking.
6491 if (unsigned ID
= FDecl
->getBuiltinID())
6492 if (Context
.BuiltinInfo
.hasCustomTypechecking(ID
))
6495 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6496 // assignment, to the types of the corresponding parameter, ...
6497 unsigned NumParams
= Proto
->getNumParams();
6498 bool Invalid
= false;
6499 unsigned MinArgs
= FDecl
? FDecl
->getMinRequiredArguments() : NumParams
;
6500 unsigned FnKind
= Fn
->getType()->isBlockPointerType()
6502 : (IsExecConfig
? 3 /* kernel function (exec config) */
6503 : 0 /* function */);
6505 // If too few arguments are available (and we don't have default
6506 // arguments for the remaining parameters), don't make the call.
6507 if (Args
.size() < NumParams
) {
6508 if (Args
.size() < MinArgs
) {
6510 if (FDecl
&& (TC
= TryTypoCorrectionForCall(*this, Fn
, FDecl
, Args
))) {
6512 MinArgs
== NumParams
&& !Proto
->isVariadic()
6513 ? diag::err_typecheck_call_too_few_args_suggest
6514 : diag::err_typecheck_call_too_few_args_at_least_suggest
;
6515 diagnoseTypo(TC
, PDiag(diag_id
) << FnKind
<< MinArgs
6516 << static_cast<unsigned>(Args
.size())
6517 << TC
.getCorrectionRange());
6518 } else if (MinArgs
== 1 && FDecl
&& FDecl
->getParamDecl(0)->getDeclName())
6520 MinArgs
== NumParams
&& !Proto
->isVariadic()
6521 ? diag::err_typecheck_call_too_few_args_one
6522 : diag::err_typecheck_call_too_few_args_at_least_one
)
6523 << FnKind
<< FDecl
->getParamDecl(0) << Fn
->getSourceRange();
6525 Diag(RParenLoc
, MinArgs
== NumParams
&& !Proto
->isVariadic()
6526 ? diag::err_typecheck_call_too_few_args
6527 : diag::err_typecheck_call_too_few_args_at_least
)
6528 << FnKind
<< MinArgs
<< static_cast<unsigned>(Args
.size())
6529 << Fn
->getSourceRange();
6531 // Emit the location of the prototype.
6532 if (!TC
&& FDecl
&& !FDecl
->getBuiltinID() && !IsExecConfig
)
6533 Diag(FDecl
->getLocation(), diag::note_callee_decl
)
6534 << FDecl
<< FDecl
->getParametersSourceRange();
6538 // We reserve space for the default arguments when we create
6539 // the call expression, before calling ConvertArgumentsForCall.
6540 assert((Call
->getNumArgs() == NumParams
) &&
6541 "We should have reserved space for the default arguments before!");
6544 // If too many are passed and not variadic, error on the extras and drop
6546 if (Args
.size() > NumParams
) {
6547 if (!Proto
->isVariadic()) {
6549 if (FDecl
&& (TC
= TryTypoCorrectionForCall(*this, Fn
, FDecl
, Args
))) {
6551 MinArgs
== NumParams
&& !Proto
->isVariadic()
6552 ? diag::err_typecheck_call_too_many_args_suggest
6553 : diag::err_typecheck_call_too_many_args_at_most_suggest
;
6554 diagnoseTypo(TC
, PDiag(diag_id
) << FnKind
<< NumParams
6555 << static_cast<unsigned>(Args
.size())
6556 << TC
.getCorrectionRange());
6557 } else if (NumParams
== 1 && FDecl
&&
6558 FDecl
->getParamDecl(0)->getDeclName())
6559 Diag(Args
[NumParams
]->getBeginLoc(),
6560 MinArgs
== NumParams
6561 ? diag::err_typecheck_call_too_many_args_one
6562 : diag::err_typecheck_call_too_many_args_at_most_one
)
6563 << FnKind
<< FDecl
->getParamDecl(0)
6564 << static_cast<unsigned>(Args
.size()) << Fn
->getSourceRange()
6565 << SourceRange(Args
[NumParams
]->getBeginLoc(),
6566 Args
.back()->getEndLoc());
6568 Diag(Args
[NumParams
]->getBeginLoc(),
6569 MinArgs
== NumParams
6570 ? diag::err_typecheck_call_too_many_args
6571 : diag::err_typecheck_call_too_many_args_at_most
)
6572 << FnKind
<< NumParams
<< static_cast<unsigned>(Args
.size())
6573 << Fn
->getSourceRange()
6574 << SourceRange(Args
[NumParams
]->getBeginLoc(),
6575 Args
.back()->getEndLoc());
6577 // Emit the location of the prototype.
6578 if (!TC
&& FDecl
&& !FDecl
->getBuiltinID() && !IsExecConfig
)
6579 Diag(FDecl
->getLocation(), diag::note_callee_decl
)
6580 << FDecl
<< FDecl
->getParametersSourceRange();
6582 // This deletes the extra arguments.
6583 Call
->shrinkNumArgs(NumParams
);
6587 SmallVector
<Expr
*, 8> AllArgs
;
6588 VariadicCallType CallType
= getVariadicCallType(FDecl
, Proto
, Fn
);
6590 Invalid
= GatherArgumentsForCall(Call
->getBeginLoc(), FDecl
, Proto
, 0, Args
,
6594 unsigned TotalNumArgs
= AllArgs
.size();
6595 for (unsigned i
= 0; i
< TotalNumArgs
; ++i
)
6596 Call
->setArg(i
, AllArgs
[i
]);
6598 Call
->computeDependence();
6602 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc
, FunctionDecl
*FDecl
,
6603 const FunctionProtoType
*Proto
,
6604 unsigned FirstParam
, ArrayRef
<Expr
*> Args
,
6605 SmallVectorImpl
<Expr
*> &AllArgs
,
6606 VariadicCallType CallType
, bool AllowExplicit
,
6607 bool IsListInitialization
) {
6608 unsigned NumParams
= Proto
->getNumParams();
6609 bool Invalid
= false;
6611 // Continue to check argument types (even if we have too few/many args).
6612 for (unsigned i
= FirstParam
; i
< NumParams
; i
++) {
6613 QualType ProtoArgType
= Proto
->getParamType(i
);
6616 ParmVarDecl
*Param
= FDecl
? FDecl
->getParamDecl(i
) : nullptr;
6617 if (ArgIx
< Args
.size()) {
6618 Arg
= Args
[ArgIx
++];
6620 if (RequireCompleteType(Arg
->getBeginLoc(), ProtoArgType
,
6621 diag::err_call_incomplete_argument
, Arg
))
6624 // Strip the unbridged-cast placeholder expression off, if applicable.
6625 bool CFAudited
= false;
6626 if (Arg
->getType() == Context
.ARCUnbridgedCastTy
&&
6627 FDecl
&& FDecl
->hasAttr
<CFAuditedTransferAttr
>() &&
6628 (!Param
|| !Param
->hasAttr
<CFConsumedAttr
>()))
6629 Arg
= stripARCUnbridgedCast(Arg
);
6630 else if (getLangOpts().ObjCAutoRefCount
&&
6631 FDecl
&& FDecl
->hasAttr
<CFAuditedTransferAttr
>() &&
6632 (!Param
|| !Param
->hasAttr
<CFConsumedAttr
>()))
6635 if (Proto
->getExtParameterInfo(i
).isNoEscape() &&
6636 ProtoArgType
->isBlockPointerType())
6637 if (auto *BE
= dyn_cast
<BlockExpr
>(Arg
->IgnoreParenNoopCasts(Context
)))
6638 BE
->getBlockDecl()->setDoesNotEscape();
6640 InitializedEntity Entity
=
6641 Param
? InitializedEntity::InitializeParameter(Context
, Param
,
6643 : InitializedEntity::InitializeParameter(
6644 Context
, ProtoArgType
, Proto
->isParamConsumed(i
));
6646 // Remember that parameter belongs to a CF audited API.
6648 Entity
.setParameterCFAudited();
6650 ExprResult ArgE
= PerformCopyInitialization(
6651 Entity
, SourceLocation(), Arg
, IsListInitialization
, AllowExplicit
);
6652 if (ArgE
.isInvalid())
6655 Arg
= ArgE
.getAs
<Expr
>();
6657 assert(Param
&& "can't use default arguments without a known callee");
6659 ExprResult ArgExpr
= BuildCXXDefaultArgExpr(CallLoc
, FDecl
, Param
);
6660 if (ArgExpr
.isInvalid())
6663 Arg
= ArgExpr
.getAs
<Expr
>();
6666 // Check for array bounds violations for each argument to the call. This
6667 // check only triggers warnings when the argument isn't a more complex Expr
6668 // with its own checking, such as a BinaryOperator.
6669 CheckArrayAccess(Arg
);
6671 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6672 CheckStaticArrayArgument(CallLoc
, Param
, Arg
);
6674 AllArgs
.push_back(Arg
);
6677 // If this is a variadic call, handle args passed through "...".
6678 if (CallType
!= VariadicDoesNotApply
) {
6679 // Assume that extern "C" functions with variadic arguments that
6680 // return __unknown_anytype aren't *really* variadic.
6681 if (Proto
->getReturnType() == Context
.UnknownAnyTy
&& FDecl
&&
6682 FDecl
->isExternC()) {
6683 for (Expr
*A
: Args
.slice(ArgIx
)) {
6684 QualType paramType
; // ignored
6685 ExprResult arg
= checkUnknownAnyArg(CallLoc
, A
, paramType
);
6686 Invalid
|= arg
.isInvalid();
6687 AllArgs
.push_back(arg
.get());
6690 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6692 for (Expr
*A
: Args
.slice(ArgIx
)) {
6693 ExprResult Arg
= DefaultVariadicArgumentPromotion(A
, CallType
, FDecl
);
6694 Invalid
|= Arg
.isInvalid();
6695 AllArgs
.push_back(Arg
.get());
6699 // Check for array bounds violations.
6700 for (Expr
*A
: Args
.slice(ArgIx
))
6701 CheckArrayAccess(A
);
6706 static void DiagnoseCalleeStaticArrayParam(Sema
&S
, ParmVarDecl
*PVD
) {
6707 TypeLoc TL
= PVD
->getTypeSourceInfo()->getTypeLoc();
6708 if (DecayedTypeLoc DTL
= TL
.getAs
<DecayedTypeLoc
>())
6709 TL
= DTL
.getOriginalLoc();
6710 if (ArrayTypeLoc ATL
= TL
.getAs
<ArrayTypeLoc
>())
6711 S
.Diag(PVD
->getLocation(), diag::note_callee_static_array
)
6712 << ATL
.getLocalSourceRange();
6715 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6716 /// array parameter, check that it is non-null, and that if it is formed by
6717 /// array-to-pointer decay, the underlying array is sufficiently large.
6719 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6720 /// array type derivation, then for each call to the function, the value of the
6721 /// corresponding actual argument shall provide access to the first element of
6722 /// an array with at least as many elements as specified by the size expression.
6724 Sema::CheckStaticArrayArgument(SourceLocation CallLoc
,
6726 const Expr
*ArgExpr
) {
6727 // Static array parameters are not supported in C++.
6728 if (!Param
|| getLangOpts().CPlusPlus
)
6731 QualType OrigTy
= Param
->getOriginalType();
6733 const ArrayType
*AT
= Context
.getAsArrayType(OrigTy
);
6734 if (!AT
|| AT
->getSizeModifier() != ArrayType::Static
)
6737 if (ArgExpr
->isNullPointerConstant(Context
,
6738 Expr::NPC_NeverValueDependent
)) {
6739 Diag(CallLoc
, diag::warn_null_arg
) << ArgExpr
->getSourceRange();
6740 DiagnoseCalleeStaticArrayParam(*this, Param
);
6744 const ConstantArrayType
*CAT
= dyn_cast
<ConstantArrayType
>(AT
);
6748 const ConstantArrayType
*ArgCAT
=
6749 Context
.getAsConstantArrayType(ArgExpr
->IgnoreParenCasts()->getType());
6753 if (getASTContext().hasSameUnqualifiedType(CAT
->getElementType(),
6754 ArgCAT
->getElementType())) {
6755 if (ArgCAT
->getSize().ult(CAT
->getSize())) {
6756 Diag(CallLoc
, diag::warn_static_array_too_small
)
6757 << ArgExpr
->getSourceRange()
6758 << (unsigned)ArgCAT
->getSize().getZExtValue()
6759 << (unsigned)CAT
->getSize().getZExtValue() << 0;
6760 DiagnoseCalleeStaticArrayParam(*this, Param
);
6765 std::optional
<CharUnits
> ArgSize
=
6766 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT
);
6767 std::optional
<CharUnits
> ParmSize
=
6768 getASTContext().getTypeSizeInCharsIfKnown(CAT
);
6769 if (ArgSize
&& ParmSize
&& *ArgSize
< *ParmSize
) {
6770 Diag(CallLoc
, diag::warn_static_array_too_small
)
6771 << ArgExpr
->getSourceRange() << (unsigned)ArgSize
->getQuantity()
6772 << (unsigned)ParmSize
->getQuantity() << 1;
6773 DiagnoseCalleeStaticArrayParam(*this, Param
);
6777 /// Given a function expression of unknown-any type, try to rebuild it
6778 /// to have a function type.
6779 static ExprResult
rebuildUnknownAnyFunction(Sema
&S
, Expr
*fn
);
6781 /// Is the given type a placeholder that we need to lower out
6782 /// immediately during argument processing?
6783 static bool isPlaceholderToRemoveAsArg(QualType type
) {
6784 // Placeholders are never sugared.
6785 const BuiltinType
*placeholder
= dyn_cast
<BuiltinType
>(type
);
6786 if (!placeholder
) return false;
6788 switch (placeholder
->getKind()) {
6789 // Ignore all the non-placeholder types.
6790 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6791 case BuiltinType::Id:
6792 #include "clang/Basic/OpenCLImageTypes.def"
6793 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6794 case BuiltinType::Id:
6795 #include "clang/Basic/OpenCLExtensionTypes.def"
6796 // In practice we'll never use this, since all SVE types are sugared
6797 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6798 #define SVE_TYPE(Name, Id, SingletonId) \
6799 case BuiltinType::Id:
6800 #include "clang/Basic/AArch64SVEACLETypes.def"
6801 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6802 case BuiltinType::Id:
6803 #include "clang/Basic/PPCTypes.def"
6804 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6805 #include "clang/Basic/RISCVVTypes.def"
6806 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6807 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6808 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6809 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6810 #include "clang/AST/BuiltinTypes.def"
6813 // We cannot lower out overload sets; they might validly be resolved
6814 // by the call machinery.
6815 case BuiltinType::Overload
:
6818 // Unbridged casts in ARC can be handled in some call positions and
6819 // should be left in place.
6820 case BuiltinType::ARCUnbridgedCast
:
6823 // Pseudo-objects should be converted as soon as possible.
6824 case BuiltinType::PseudoObject
:
6827 // The debugger mode could theoretically but currently does not try
6828 // to resolve unknown-typed arguments based on known parameter types.
6829 case BuiltinType::UnknownAny
:
6832 // These are always invalid as call arguments and should be reported.
6833 case BuiltinType::BoundMember
:
6834 case BuiltinType::BuiltinFn
:
6835 case BuiltinType::IncompleteMatrixIdx
:
6836 case BuiltinType::OMPArraySection
:
6837 case BuiltinType::OMPArrayShaping
:
6838 case BuiltinType::OMPIterator
:
6842 llvm_unreachable("bad builtin type kind");
6845 /// Check an argument list for placeholders that we won't try to
6847 static bool checkArgsForPlaceholders(Sema
&S
, MultiExprArg args
) {
6848 // Apply this processing to all the arguments at once instead of
6849 // dying at the first failure.
6850 bool hasInvalid
= false;
6851 for (size_t i
= 0, e
= args
.size(); i
!= e
; i
++) {
6852 if (isPlaceholderToRemoveAsArg(args
[i
]->getType())) {
6853 ExprResult result
= S
.CheckPlaceholderExpr(args
[i
]);
6854 if (result
.isInvalid()) hasInvalid
= true;
6855 else args
[i
] = result
.get();
6861 /// If a builtin function has a pointer argument with no explicit address
6862 /// space, then it should be able to accept a pointer to any address
6863 /// space as input. In order to do this, we need to replace the
6864 /// standard builtin declaration with one that uses the same address space
6867 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6868 /// it does not contain any pointer arguments without
6869 /// an address space qualifer. Otherwise the rewritten
6870 /// FunctionDecl is returned.
6871 /// TODO: Handle pointer return types.
6872 static FunctionDecl
*rewriteBuiltinFunctionDecl(Sema
*Sema
, ASTContext
&Context
,
6873 FunctionDecl
*FDecl
,
6874 MultiExprArg ArgExprs
) {
6876 QualType DeclType
= FDecl
->getType();
6877 const FunctionProtoType
*FT
= dyn_cast
<FunctionProtoType
>(DeclType
);
6879 if (!Context
.BuiltinInfo
.hasPtrArgsOrResult(FDecl
->getBuiltinID()) || !FT
||
6880 ArgExprs
.size() < FT
->getNumParams())
6883 bool NeedsNewDecl
= false;
6885 SmallVector
<QualType
, 8> OverloadParams
;
6887 for (QualType ParamType
: FT
->param_types()) {
6889 // Convert array arguments to pointer to simplify type lookup.
6891 Sema
->DefaultFunctionArrayLvalueConversion(ArgExprs
[i
++]);
6892 if (ArgRes
.isInvalid())
6894 Expr
*Arg
= ArgRes
.get();
6895 QualType ArgType
= Arg
->getType();
6896 if (!ParamType
->isPointerType() || ParamType
.hasAddressSpace() ||
6897 !ArgType
->isPointerType() ||
6898 !ArgType
->getPointeeType().hasAddressSpace() ||
6899 isPtrSizeAddressSpace(ArgType
->getPointeeType().getAddressSpace())) {
6900 OverloadParams
.push_back(ParamType
);
6904 QualType PointeeType
= ParamType
->getPointeeType();
6905 if (PointeeType
.hasAddressSpace())
6908 NeedsNewDecl
= true;
6909 LangAS AS
= ArgType
->getPointeeType().getAddressSpace();
6911 PointeeType
= Context
.getAddrSpaceQualType(PointeeType
, AS
);
6912 OverloadParams
.push_back(Context
.getPointerType(PointeeType
));
6918 FunctionProtoType::ExtProtoInfo EPI
;
6919 EPI
.Variadic
= FT
->isVariadic();
6920 QualType OverloadTy
= Context
.getFunctionType(FT
->getReturnType(),
6921 OverloadParams
, EPI
);
6922 DeclContext
*Parent
= FDecl
->getParent();
6923 FunctionDecl
*OverloadDecl
= FunctionDecl::Create(
6924 Context
, Parent
, FDecl
->getLocation(), FDecl
->getLocation(),
6925 FDecl
->getIdentifier(), OverloadTy
,
6926 /*TInfo=*/nullptr, SC_Extern
, Sema
->getCurFPFeatures().isFPConstrained(),
6928 /*hasPrototype=*/true);
6929 SmallVector
<ParmVarDecl
*, 16> Params
;
6930 FT
= cast
<FunctionProtoType
>(OverloadTy
);
6931 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
6932 QualType ParamType
= FT
->getParamType(i
);
6934 ParmVarDecl::Create(Context
, OverloadDecl
, SourceLocation(),
6935 SourceLocation(), nullptr, ParamType
,
6936 /*TInfo=*/nullptr, SC_None
, nullptr);
6937 Parm
->setScopeInfo(0, i
);
6938 Params
.push_back(Parm
);
6940 OverloadDecl
->setParams(Params
);
6941 Sema
->mergeDeclAttributes(OverloadDecl
, FDecl
);
6942 return OverloadDecl
;
6945 static void checkDirectCallValidity(Sema
&S
, const Expr
*Fn
,
6946 FunctionDecl
*Callee
,
6947 MultiExprArg ArgExprs
) {
6948 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6949 // similar attributes) really don't like it when functions are called with an
6950 // invalid number of args.
6951 if (S
.TooManyArguments(Callee
->getNumParams(), ArgExprs
.size(),
6952 /*PartialOverloading=*/false) &&
6953 !Callee
->isVariadic())
6955 if (Callee
->getMinRequiredArguments() > ArgExprs
.size())
6958 if (const EnableIfAttr
*Attr
=
6959 S
.CheckEnableIf(Callee
, Fn
->getBeginLoc(), ArgExprs
, true)) {
6960 S
.Diag(Fn
->getBeginLoc(),
6961 isa
<CXXMethodDecl
>(Callee
)
6962 ? diag::err_ovl_no_viable_member_function_in_call
6963 : diag::err_ovl_no_viable_function_in_call
)
6964 << Callee
<< Callee
->getSourceRange();
6965 S
.Diag(Callee
->getLocation(),
6966 diag::note_ovl_candidate_disabled_by_function_cond_attr
)
6967 << Attr
->getCond()->getSourceRange() << Attr
->getMessage();
6972 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6973 const UnresolvedMemberExpr
*const UME
, Sema
&S
) {
6975 const auto GetFunctionLevelDCIfCXXClass
=
6976 [](Sema
&S
) -> const CXXRecordDecl
* {
6977 const DeclContext
*const DC
= S
.getFunctionLevelDeclContext();
6978 if (!DC
|| !DC
->getParent())
6981 // If the call to some member function was made from within a member
6982 // function body 'M' return return 'M's parent.
6983 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
))
6984 return MD
->getParent()->getCanonicalDecl();
6985 // else the call was made from within a default member initializer of a
6986 // class, so return the class.
6987 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(DC
))
6988 return RD
->getCanonicalDecl();
6991 // If our DeclContext is neither a member function nor a class (in the
6992 // case of a lambda in a default member initializer), we can't have an
6993 // enclosing 'this'.
6995 const CXXRecordDecl
*const CurParentClass
= GetFunctionLevelDCIfCXXClass(S
);
6996 if (!CurParentClass
)
6999 // The naming class for implicit member functions call is the class in which
7000 // name lookup starts.
7001 const CXXRecordDecl
*const NamingClass
=
7002 UME
->getNamingClass()->getCanonicalDecl();
7003 assert(NamingClass
&& "Must have naming class even for implicit access");
7005 // If the unresolved member functions were found in a 'naming class' that is
7006 // related (either the same or derived from) to the class that contains the
7007 // member function that itself contained the implicit member access.
7009 return CurParentClass
== NamingClass
||
7010 CurParentClass
->isDerivedFrom(NamingClass
);
7014 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7015 Sema
&S
, const UnresolvedMemberExpr
*const UME
, SourceLocation CallLoc
) {
7020 LambdaScopeInfo
*const CurLSI
= S
.getCurLambda();
7021 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
7022 // already been captured, or if this is an implicit member function call (if
7023 // it isn't, an attempt to capture 'this' should already have been made).
7024 if (!CurLSI
|| CurLSI
->ImpCaptureStyle
== CurLSI
->ImpCap_None
||
7025 !UME
->isImplicitAccess() || CurLSI
->isCXXThisCaptured())
7028 // Check if the naming class in which the unresolved members were found is
7029 // related (same as or is a base of) to the enclosing class.
7031 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME
, S
))
7035 DeclContext
*EnclosingFunctionCtx
= S
.CurContext
->getParent()->getParent();
7036 // If the enclosing function is not dependent, then this lambda is
7037 // capture ready, so if we can capture this, do so.
7038 if (!EnclosingFunctionCtx
->isDependentContext()) {
7039 // If the current lambda and all enclosing lambdas can capture 'this' -
7040 // then go ahead and capture 'this' (since our unresolved overload set
7041 // contains at least one non-static member function).
7042 if (!S
.CheckCXXThisCapture(CallLoc
, /*Explcit*/ false, /*Diagnose*/ false))
7043 S
.CheckCXXThisCapture(CallLoc
);
7044 } else if (S
.CurContext
->isDependentContext()) {
7045 // ... since this is an implicit member reference, that might potentially
7046 // involve a 'this' capture, mark 'this' for potential capture in
7047 // enclosing lambdas.
7048 if (CurLSI
->ImpCaptureStyle
!= CurLSI
->ImpCap_None
)
7049 CurLSI
->addPotentialThisCapture(CallLoc
);
7053 // Once a call is fully resolved, warn for unqualified calls to specific
7054 // C++ standard functions, like move and forward.
7055 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema
&S
,
7056 const CallExpr
*Call
) {
7057 // We are only checking unary move and forward so exit early here.
7058 if (Call
->getNumArgs() != 1)
7061 const Expr
*E
= Call
->getCallee()->IgnoreParenImpCasts();
7062 if (!E
|| isa
<UnresolvedLookupExpr
>(E
))
7064 const DeclRefExpr
*DRE
= dyn_cast_if_present
<DeclRefExpr
>(E
);
7065 if (!DRE
|| !DRE
->getLocation().isValid())
7068 if (DRE
->getQualifier())
7071 const FunctionDecl
*FD
= Call
->getDirectCallee();
7075 // Only warn for some functions deemed more frequent or problematic.
7076 unsigned BuiltinID
= FD
->getBuiltinID();
7077 if (BuiltinID
!= Builtin::BImove
&& BuiltinID
!= Builtin::BIforward
)
7080 S
.Diag(DRE
->getLocation(), diag::warn_unqualified_call_to_std_cast_function
)
7081 << FD
->getQualifiedNameAsString()
7082 << FixItHint::CreateInsertion(DRE
->getLocation(), "std::");
7085 ExprResult
Sema::ActOnCallExpr(Scope
*Scope
, Expr
*Fn
, SourceLocation LParenLoc
,
7086 MultiExprArg ArgExprs
, SourceLocation RParenLoc
,
7089 BuildCallExpr(Scope
, Fn
, LParenLoc
, ArgExprs
, RParenLoc
, ExecConfig
,
7090 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
7091 if (Call
.isInvalid())
7094 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
7096 if (const auto *ULE
= dyn_cast
<UnresolvedLookupExpr
>(Fn
);
7097 ULE
&& ULE
->hasExplicitTemplateArgs() &&
7098 ULE
->decls_begin() == ULE
->decls_end()) {
7099 Diag(Fn
->getExprLoc(), getLangOpts().CPlusPlus20
7100 ? diag::warn_cxx17_compat_adl_only_template_id
7101 : diag::ext_adl_only_template_id
)
7105 if (LangOpts
.OpenMP
)
7106 Call
= ActOnOpenMPCall(Call
, Scope
, LParenLoc
, ArgExprs
, RParenLoc
,
7108 if (LangOpts
.CPlusPlus
) {
7109 if (const auto *CE
= dyn_cast
<CallExpr
>(Call
.get()))
7110 DiagnosedUnqualifiedCallsToStdFunctions(*this, CE
);
7115 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
7116 /// This provides the location of the left/right parens and a list of comma
7118 ExprResult
Sema::BuildCallExpr(Scope
*Scope
, Expr
*Fn
, SourceLocation LParenLoc
,
7119 MultiExprArg ArgExprs
, SourceLocation RParenLoc
,
7120 Expr
*ExecConfig
, bool IsExecConfig
,
7121 bool AllowRecovery
) {
7122 // Since this might be a postfix expression, get rid of ParenListExprs.
7123 ExprResult Result
= MaybeConvertParenListExprToParenExpr(Scope
, Fn
);
7124 if (Result
.isInvalid()) return ExprError();
7127 if (checkArgsForPlaceholders(*this, ArgExprs
))
7130 if (getLangOpts().CPlusPlus
) {
7131 // If this is a pseudo-destructor expression, build the call immediately.
7132 if (isa
<CXXPseudoDestructorExpr
>(Fn
)) {
7133 if (!ArgExprs
.empty()) {
7134 // Pseudo-destructor calls should not have any arguments.
7135 Diag(Fn
->getBeginLoc(), diag::err_pseudo_dtor_call_with_args
)
7136 << FixItHint::CreateRemoval(
7137 SourceRange(ArgExprs
.front()->getBeginLoc(),
7138 ArgExprs
.back()->getEndLoc()));
7141 return CallExpr::Create(Context
, Fn
, /*Args=*/{}, Context
.VoidTy
,
7142 VK_PRValue
, RParenLoc
, CurFPFeatureOverrides());
7144 if (Fn
->getType() == Context
.PseudoObjectTy
) {
7145 ExprResult result
= CheckPlaceholderExpr(Fn
);
7146 if (result
.isInvalid()) return ExprError();
7150 // Determine whether this is a dependent call inside a C++ template,
7151 // in which case we won't do any semantic analysis now.
7152 if (Fn
->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs
)) {
7154 return CUDAKernelCallExpr::Create(Context
, Fn
,
7155 cast
<CallExpr
>(ExecConfig
), ArgExprs
,
7156 Context
.DependentTy
, VK_PRValue
,
7157 RParenLoc
, CurFPFeatureOverrides());
7160 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7161 *this, dyn_cast
<UnresolvedMemberExpr
>(Fn
->IgnoreParens()),
7164 return CallExpr::Create(Context
, Fn
, ArgExprs
, Context
.DependentTy
,
7165 VK_PRValue
, RParenLoc
, CurFPFeatureOverrides());
7169 // Determine whether this is a call to an object (C++ [over.call.object]).
7170 if (Fn
->getType()->isRecordType())
7171 return BuildCallToObjectOfClassType(Scope
, Fn
, LParenLoc
, ArgExprs
,
7174 if (Fn
->getType() == Context
.UnknownAnyTy
) {
7175 ExprResult result
= rebuildUnknownAnyFunction(*this, Fn
);
7176 if (result
.isInvalid()) return ExprError();
7180 if (Fn
->getType() == Context
.BoundMemberTy
) {
7181 return BuildCallToMemberFunction(Scope
, Fn
, LParenLoc
, ArgExprs
,
7182 RParenLoc
, ExecConfig
, IsExecConfig
,
7187 // Check for overloaded calls. This can happen even in C due to extensions.
7188 if (Fn
->getType() == Context
.OverloadTy
) {
7189 OverloadExpr::FindResult find
= OverloadExpr::find(Fn
);
7191 // We aren't supposed to apply this logic if there's an '&' involved.
7192 if (!find
.HasFormOfMemberPointer
) {
7193 if (Expr::hasAnyTypeDependentArguments(ArgExprs
))
7194 return CallExpr::Create(Context
, Fn
, ArgExprs
, Context
.DependentTy
,
7195 VK_PRValue
, RParenLoc
, CurFPFeatureOverrides());
7196 OverloadExpr
*ovl
= find
.Expression
;
7197 if (UnresolvedLookupExpr
*ULE
= dyn_cast
<UnresolvedLookupExpr
>(ovl
))
7198 return BuildOverloadedCallExpr(
7199 Scope
, Fn
, ULE
, LParenLoc
, ArgExprs
, RParenLoc
, ExecConfig
,
7200 /*AllowTypoCorrection=*/true, find
.IsAddressOfOperand
);
7201 return BuildCallToMemberFunction(Scope
, Fn
, LParenLoc
, ArgExprs
,
7202 RParenLoc
, ExecConfig
, IsExecConfig
,
7207 // If we're directly calling a function, get the appropriate declaration.
7208 if (Fn
->getType() == Context
.UnknownAnyTy
) {
7209 ExprResult result
= rebuildUnknownAnyFunction(*this, Fn
);
7210 if (result
.isInvalid()) return ExprError();
7214 Expr
*NakedFn
= Fn
->IgnoreParens();
7216 bool CallingNDeclIndirectly
= false;
7217 NamedDecl
*NDecl
= nullptr;
7218 if (UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(NakedFn
)) {
7219 if (UnOp
->getOpcode() == UO_AddrOf
) {
7220 CallingNDeclIndirectly
= true;
7221 NakedFn
= UnOp
->getSubExpr()->IgnoreParens();
7225 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(NakedFn
)) {
7226 NDecl
= DRE
->getDecl();
7228 FunctionDecl
*FDecl
= dyn_cast
<FunctionDecl
>(NDecl
);
7229 if (FDecl
&& FDecl
->getBuiltinID()) {
7230 // Rewrite the function decl for this builtin by replacing parameters
7231 // with no explicit address space with the address space of the arguments
7234 rewriteBuiltinFunctionDecl(this, Context
, FDecl
, ArgExprs
))) {
7236 Fn
= DeclRefExpr::Create(
7237 Context
, FDecl
->getQualifierLoc(), SourceLocation(), FDecl
, false,
7238 SourceLocation(), FDecl
->getType(), Fn
->getValueKind(), FDecl
,
7239 nullptr, DRE
->isNonOdrUse());
7242 } else if (auto *ME
= dyn_cast
<MemberExpr
>(NakedFn
))
7243 NDecl
= ME
->getMemberDecl();
7245 if (FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(NDecl
)) {
7246 if (CallingNDeclIndirectly
&& !checkAddressOfFunctionIsAvailable(
7247 FD
, /*Complain=*/true, Fn
->getBeginLoc()))
7250 checkDirectCallValidity(*this, Fn
, FD
, ArgExprs
);
7252 // If this expression is a call to a builtin function in HIP device
7253 // compilation, allow a pointer-type argument to default address space to be
7254 // passed as a pointer-type parameter to a non-default address space.
7255 // If Arg is declared in the default address space and Param is declared
7256 // in a non-default address space, perform an implicit address space cast to
7257 // the parameter type.
7258 if (getLangOpts().HIP
&& getLangOpts().CUDAIsDevice
&& FD
&&
7259 FD
->getBuiltinID()) {
7260 for (unsigned Idx
= 0; Idx
< FD
->param_size(); ++Idx
) {
7261 ParmVarDecl
*Param
= FD
->getParamDecl(Idx
);
7262 if (!ArgExprs
[Idx
] || !Param
|| !Param
->getType()->isPointerType() ||
7263 !ArgExprs
[Idx
]->getType()->isPointerType())
7266 auto ParamAS
= Param
->getType()->getPointeeType().getAddressSpace();
7267 auto ArgTy
= ArgExprs
[Idx
]->getType();
7268 auto ArgPtTy
= ArgTy
->getPointeeType();
7269 auto ArgAS
= ArgPtTy
.getAddressSpace();
7271 // Add address space cast if target address spaces are different
7272 bool NeedImplicitASC
=
7273 ParamAS
!= LangAS::Default
&& // Pointer params in generic AS don't need special handling.
7274 ( ArgAS
== LangAS::Default
|| // We do allow implicit conversion from generic AS
7275 // or from specific AS which has target AS matching that of Param.
7276 getASTContext().getTargetAddressSpace(ArgAS
) == getASTContext().getTargetAddressSpace(ParamAS
));
7277 if (!NeedImplicitASC
)
7280 // First, ensure that the Arg is an RValue.
7281 if (ArgExprs
[Idx
]->isGLValue()) {
7282 ArgExprs
[Idx
] = ImplicitCastExpr::Create(
7283 Context
, ArgExprs
[Idx
]->getType(), CK_NoOp
, ArgExprs
[Idx
],
7284 nullptr, VK_PRValue
, FPOptionsOverride());
7287 // Construct a new arg type with address space of Param
7288 Qualifiers ArgPtQuals
= ArgPtTy
.getQualifiers();
7289 ArgPtQuals
.setAddressSpace(ParamAS
);
7291 Context
.getQualifiedType(ArgPtTy
.getUnqualifiedType(), ArgPtQuals
);
7293 Context
.getQualifiedType(Context
.getPointerType(NewArgPtTy
),
7294 ArgTy
.getQualifiers());
7296 // Finally perform an implicit address space cast
7297 ArgExprs
[Idx
] = ImpCastExprToType(ArgExprs
[Idx
], NewArgTy
,
7298 CK_AddressSpaceConversion
)
7304 if (Context
.isDependenceAllowed() &&
7305 (Fn
->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs
))) {
7306 assert(!getLangOpts().CPlusPlus
);
7307 assert((Fn
->containsErrors() ||
7308 llvm::any_of(ArgExprs
,
7309 [](clang::Expr
*E
) { return E
->containsErrors(); })) &&
7310 "should only occur in error-recovery path.");
7311 return CallExpr::Create(Context
, Fn
, ArgExprs
, Context
.DependentTy
,
7312 VK_PRValue
, RParenLoc
, CurFPFeatureOverrides());
7314 return BuildResolvedCallExpr(Fn
, NDecl
, LParenLoc
, ArgExprs
, RParenLoc
,
7315 ExecConfig
, IsExecConfig
);
7318 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7319 // with the specified CallArgs
7320 Expr
*Sema::BuildBuiltinCallExpr(SourceLocation Loc
, Builtin::ID Id
,
7321 MultiExprArg CallArgs
) {
7322 StringRef Name
= Context
.BuiltinInfo
.getName(Id
);
7323 LookupResult
R(*this, &Context
.Idents
.get(Name
), Loc
,
7324 Sema::LookupOrdinaryName
);
7325 LookupName(R
, TUScope
, /*AllowBuiltinCreation=*/true);
7327 auto *BuiltInDecl
= R
.getAsSingle
<FunctionDecl
>();
7328 assert(BuiltInDecl
&& "failed to find builtin declaration");
7330 ExprResult DeclRef
=
7331 BuildDeclRefExpr(BuiltInDecl
, BuiltInDecl
->getType(), VK_LValue
, Loc
);
7332 assert(DeclRef
.isUsable() && "Builtin reference cannot fail");
7335 BuildCallExpr(/*Scope=*/nullptr, DeclRef
.get(), Loc
, CallArgs
, Loc
);
7337 assert(!Call
.isInvalid() && "Call to builtin cannot fail!");
7341 /// Parse a __builtin_astype expression.
7343 /// __builtin_astype( value, dst type )
7345 ExprResult
Sema::ActOnAsTypeExpr(Expr
*E
, ParsedType ParsedDestTy
,
7346 SourceLocation BuiltinLoc
,
7347 SourceLocation RParenLoc
) {
7348 QualType DstTy
= GetTypeFromParser(ParsedDestTy
);
7349 return BuildAsTypeExpr(E
, DstTy
, BuiltinLoc
, RParenLoc
);
7352 /// Create a new AsTypeExpr node (bitcast) from the arguments.
7353 ExprResult
Sema::BuildAsTypeExpr(Expr
*E
, QualType DestTy
,
7354 SourceLocation BuiltinLoc
,
7355 SourceLocation RParenLoc
) {
7356 ExprValueKind VK
= VK_PRValue
;
7357 ExprObjectKind OK
= OK_Ordinary
;
7358 QualType SrcTy
= E
->getType();
7359 if (!SrcTy
->isDependentType() &&
7360 Context
.getTypeSize(DestTy
) != Context
.getTypeSize(SrcTy
))
7362 Diag(BuiltinLoc
, diag::err_invalid_astype_of_different_size
)
7363 << DestTy
<< SrcTy
<< E
->getSourceRange());
7364 return new (Context
) AsTypeExpr(E
, DestTy
, VK
, OK
, BuiltinLoc
, RParenLoc
);
7367 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7368 /// provided arguments.
7370 /// __builtin_convertvector( value, dst type )
7372 ExprResult
Sema::ActOnConvertVectorExpr(Expr
*E
, ParsedType ParsedDestTy
,
7373 SourceLocation BuiltinLoc
,
7374 SourceLocation RParenLoc
) {
7375 TypeSourceInfo
*TInfo
;
7376 GetTypeFromParser(ParsedDestTy
, &TInfo
);
7377 return SemaConvertVectorExpr(E
, TInfo
, BuiltinLoc
, RParenLoc
);
7380 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7381 /// i.e. an expression not of \p OverloadTy. The expression should
7382 /// unary-convert to an expression of function-pointer or
7383 /// block-pointer type.
7385 /// \param NDecl the declaration being called, if available
7386 ExprResult
Sema::BuildResolvedCallExpr(Expr
*Fn
, NamedDecl
*NDecl
,
7387 SourceLocation LParenLoc
,
7388 ArrayRef
<Expr
*> Args
,
7389 SourceLocation RParenLoc
, Expr
*Config
,
7390 bool IsExecConfig
, ADLCallKind UsesADL
) {
7391 FunctionDecl
*FDecl
= dyn_cast_or_null
<FunctionDecl
>(NDecl
);
7392 unsigned BuiltinID
= (FDecl
? FDecl
->getBuiltinID() : 0);
7394 // Functions with 'interrupt' attribute cannot be called directly.
7395 if (FDecl
&& FDecl
->hasAttr
<AnyX86InterruptAttr
>()) {
7396 Diag(Fn
->getExprLoc(), diag::err_anyx86_interrupt_called
);
7400 // Interrupt handlers don't save off the VFP regs automatically on ARM,
7401 // so there's some risk when calling out to non-interrupt handler functions
7402 // that the callee might not preserve them. This is easy to diagnose here,
7403 // but can be very challenging to debug.
7404 // Likewise, X86 interrupt handlers may only call routines with attribute
7405 // no_caller_saved_registers since there is no efficient way to
7406 // save and restore the non-GPR state.
7407 if (auto *Caller
= getCurFunctionDecl()) {
7408 if (Caller
->hasAttr
<ARMInterruptAttr
>()) {
7409 bool VFP
= Context
.getTargetInfo().hasFeature("vfp");
7410 if (VFP
&& (!FDecl
|| !FDecl
->hasAttr
<ARMInterruptAttr
>())) {
7411 Diag(Fn
->getExprLoc(), diag::warn_arm_interrupt_calling_convention
);
7413 Diag(FDecl
->getLocation(), diag::note_callee_decl
) << FDecl
;
7416 if (Caller
->hasAttr
<AnyX86InterruptAttr
>() &&
7417 ((!FDecl
|| !FDecl
->hasAttr
<AnyX86NoCallerSavedRegistersAttr
>()))) {
7418 Diag(Fn
->getExprLoc(), diag::warn_anyx86_interrupt_regsave
);
7420 Diag(FDecl
->getLocation(), diag::note_callee_decl
) << FDecl
;
7424 // Promote the function operand.
7425 // We special-case function promotion here because we only allow promoting
7426 // builtin functions to function pointers in the callee of a call.
7430 Fn
->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn
)) {
7431 // Extract the return type from the (builtin) function pointer type.
7432 // FIXME Several builtins still have setType in
7433 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7434 // Builtins.def to ensure they are correct before removing setType calls.
7435 QualType FnPtrTy
= Context
.getPointerType(FDecl
->getType());
7436 Result
= ImpCastExprToType(Fn
, FnPtrTy
, CK_BuiltinFnToFnPtr
).get();
7437 ResultTy
= FDecl
->getCallResultType();
7439 Result
= CallExprUnaryConversions(Fn
);
7440 ResultTy
= Context
.BoolTy
;
7442 if (Result
.isInvalid())
7446 // Check for a valid function type, but only if it is not a builtin which
7447 // requires custom type checking. These will be handled by
7448 // CheckBuiltinFunctionCall below just after creation of the call expression.
7449 const FunctionType
*FuncT
= nullptr;
7450 if (!BuiltinID
|| !Context
.BuiltinInfo
.hasCustomTypechecking(BuiltinID
)) {
7452 if (const PointerType
*PT
= Fn
->getType()->getAs
<PointerType
>()) {
7453 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7454 // have type pointer to function".
7455 FuncT
= PT
->getPointeeType()->getAs
<FunctionType
>();
7457 return ExprError(Diag(LParenLoc
, diag::err_typecheck_call_not_function
)
7458 << Fn
->getType() << Fn
->getSourceRange());
7459 } else if (const BlockPointerType
*BPT
=
7460 Fn
->getType()->getAs
<BlockPointerType
>()) {
7461 FuncT
= BPT
->getPointeeType()->castAs
<FunctionType
>();
7463 // Handle calls to expressions of unknown-any type.
7464 if (Fn
->getType() == Context
.UnknownAnyTy
) {
7465 ExprResult rewrite
= rebuildUnknownAnyFunction(*this, Fn
);
7466 if (rewrite
.isInvalid())
7472 return ExprError(Diag(LParenLoc
, diag::err_typecheck_call_not_function
)
7473 << Fn
->getType() << Fn
->getSourceRange());
7477 // Get the number of parameters in the function prototype, if any.
7478 // We will allocate space for max(Args.size(), NumParams) arguments
7479 // in the call expression.
7480 const auto *Proto
= dyn_cast_or_null
<FunctionProtoType
>(FuncT
);
7481 unsigned NumParams
= Proto
? Proto
->getNumParams() : 0;
7485 assert(UsesADL
== ADLCallKind::NotADL
&&
7486 "CUDAKernelCallExpr should not use ADL");
7487 TheCall
= CUDAKernelCallExpr::Create(Context
, Fn
, cast
<CallExpr
>(Config
),
7488 Args
, ResultTy
, VK_PRValue
, RParenLoc
,
7489 CurFPFeatureOverrides(), NumParams
);
7492 CallExpr::Create(Context
, Fn
, Args
, ResultTy
, VK_PRValue
, RParenLoc
,
7493 CurFPFeatureOverrides(), NumParams
, UsesADL
);
7496 if (!Context
.isDependenceAllowed()) {
7497 // Forget about the nulled arguments since typo correction
7498 // do not handle them well.
7499 TheCall
->shrinkNumArgs(Args
.size());
7500 // C cannot always handle TypoExpr nodes in builtin calls and direct
7501 // function calls as their argument checking don't necessarily handle
7502 // dependent types properly, so make sure any TypoExprs have been
7504 ExprResult Result
= CorrectDelayedTyposInExpr(TheCall
);
7505 if (!Result
.isUsable()) return ExprError();
7506 CallExpr
*TheOldCall
= TheCall
;
7507 TheCall
= dyn_cast
<CallExpr
>(Result
.get());
7508 bool CorrectedTypos
= TheCall
!= TheOldCall
;
7509 if (!TheCall
) return Result
;
7510 Args
= llvm::ArrayRef(TheCall
->getArgs(), TheCall
->getNumArgs());
7512 // A new call expression node was created if some typos were corrected.
7513 // However it may not have been constructed with enough storage. In this
7514 // case, rebuild the node with enough storage. The waste of space is
7515 // immaterial since this only happens when some typos were corrected.
7516 if (CorrectedTypos
&& Args
.size() < NumParams
) {
7518 TheCall
= CUDAKernelCallExpr::Create(
7519 Context
, Fn
, cast
<CallExpr
>(Config
), Args
, ResultTy
, VK_PRValue
,
7520 RParenLoc
, CurFPFeatureOverrides(), NumParams
);
7523 CallExpr::Create(Context
, Fn
, Args
, ResultTy
, VK_PRValue
, RParenLoc
,
7524 CurFPFeatureOverrides(), NumParams
, UsesADL
);
7526 // We can now handle the nulled arguments for the default arguments.
7527 TheCall
->setNumArgsUnsafe(std::max
<unsigned>(Args
.size(), NumParams
));
7530 // Bail out early if calling a builtin with custom type checking.
7531 if (BuiltinID
&& Context
.BuiltinInfo
.hasCustomTypechecking(BuiltinID
))
7532 return CheckBuiltinFunctionCall(FDecl
, BuiltinID
, TheCall
);
7534 if (getLangOpts().CUDA
) {
7536 // CUDA: Kernel calls must be to global functions
7537 if (FDecl
&& !FDecl
->hasAttr
<CUDAGlobalAttr
>())
7538 return ExprError(Diag(LParenLoc
,diag::err_kern_call_not_global_function
)
7539 << FDecl
<< Fn
->getSourceRange());
7541 // CUDA: Kernel function must have 'void' return type
7542 if (!FuncT
->getReturnType()->isVoidType() &&
7543 !FuncT
->getReturnType()->getAs
<AutoType
>() &&
7544 !FuncT
->getReturnType()->isInstantiationDependentType())
7545 return ExprError(Diag(LParenLoc
, diag::err_kern_type_not_void_return
)
7546 << Fn
->getType() << Fn
->getSourceRange());
7548 // CUDA: Calls to global functions must be configured
7549 if (FDecl
&& FDecl
->hasAttr
<CUDAGlobalAttr
>())
7550 return ExprError(Diag(LParenLoc
, diag::err_global_call_not_config
)
7551 << FDecl
<< Fn
->getSourceRange());
7555 // Check for a valid return type
7556 if (CheckCallReturnType(FuncT
->getReturnType(), Fn
->getBeginLoc(), TheCall
,
7560 // We know the result type of the call, set it.
7561 TheCall
->setType(FuncT
->getCallResultType(Context
));
7562 TheCall
->setValueKind(Expr::getValueKindForType(FuncT
->getReturnType()));
7564 // WebAssembly tables can't be used as arguments.
7565 if (Context
.getTargetInfo().getTriple().isWasm()) {
7566 for (const Expr
*Arg
: Args
) {
7567 if (Arg
&& Arg
->getType()->isWebAssemblyTableType()) {
7568 return ExprError(Diag(Arg
->getExprLoc(),
7569 diag::err_wasm_table_as_function_parameter
));
7575 if (ConvertArgumentsForCall(TheCall
, Fn
, FDecl
, Proto
, Args
, RParenLoc
,
7579 assert(isa
<FunctionNoProtoType
>(FuncT
) && "Unknown FunctionType!");
7582 // Check if we have too few/too many template arguments, based
7583 // on our knowledge of the function definition.
7584 const FunctionDecl
*Def
= nullptr;
7585 if (FDecl
->hasBody(Def
) && Args
.size() != Def
->param_size()) {
7586 Proto
= Def
->getType()->getAs
<FunctionProtoType
>();
7587 if (!Proto
|| !(Proto
->isVariadic() && Args
.size() >= Def
->param_size()))
7588 Diag(RParenLoc
, diag::warn_call_wrong_number_of_arguments
)
7589 << (Args
.size() > Def
->param_size()) << FDecl
<< Fn
->getSourceRange();
7592 // If the function we're calling isn't a function prototype, but we have
7593 // a function prototype from a prior declaratiom, use that prototype.
7594 if (!FDecl
->hasPrototype())
7595 Proto
= FDecl
->getType()->getAs
<FunctionProtoType
>();
7598 // If we still haven't found a prototype to use but there are arguments to
7599 // the call, diagnose this as calling a function without a prototype.
7600 // However, if we found a function declaration, check to see if
7601 // -Wdeprecated-non-prototype was disabled where the function was declared.
7602 // If so, we will silence the diagnostic here on the assumption that this
7603 // interface is intentional and the user knows what they're doing. We will
7604 // also silence the diagnostic if there is a function declaration but it
7605 // was implicitly defined (the user already gets diagnostics about the
7606 // creation of the implicit function declaration, so the additional warning
7608 if (!Proto
&& !Args
.empty() &&
7609 (!FDecl
|| (!FDecl
->isImplicit() &&
7610 !Diags
.isIgnored(diag::warn_strict_uses_without_prototype
,
7611 FDecl
->getLocation()))))
7612 Diag(LParenLoc
, diag::warn_strict_uses_without_prototype
)
7613 << (FDecl
!= nullptr) << FDecl
;
7615 // Promote the arguments (C99 6.5.2.2p6).
7616 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++) {
7617 Expr
*Arg
= Args
[i
];
7619 if (Proto
&& i
< Proto
->getNumParams()) {
7620 InitializedEntity Entity
= InitializedEntity::InitializeParameter(
7621 Context
, Proto
->getParamType(i
), Proto
->isParamConsumed(i
));
7623 PerformCopyInitialization(Entity
, SourceLocation(), Arg
);
7624 if (ArgE
.isInvalid())
7627 Arg
= ArgE
.getAs
<Expr
>();
7630 ExprResult ArgE
= DefaultArgumentPromotion(Arg
);
7632 if (ArgE
.isInvalid())
7635 Arg
= ArgE
.getAs
<Expr
>();
7638 if (RequireCompleteType(Arg
->getBeginLoc(), Arg
->getType(),
7639 diag::err_call_incomplete_argument
, Arg
))
7642 TheCall
->setArg(i
, Arg
);
7644 TheCall
->computeDependence();
7647 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(FDecl
))
7648 if (!Method
->isStatic())
7649 return ExprError(Diag(LParenLoc
, diag::err_member_call_without_object
)
7650 << Fn
->getSourceRange());
7652 // Check for sentinels
7654 DiagnoseSentinelCalls(NDecl
, LParenLoc
, Args
);
7656 // Warn for unions passing across security boundary (CMSE).
7657 if (FuncT
!= nullptr && FuncT
->getCmseNSCallAttr()) {
7658 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++) {
7659 if (const auto *RT
=
7660 dyn_cast
<RecordType
>(Args
[i
]->getType().getCanonicalType())) {
7661 if (RT
->getDecl()->isOrContainsUnion())
7662 Diag(Args
[i
]->getBeginLoc(), diag::warn_cmse_nonsecure_union
)
7668 // Do special checking on direct calls to functions.
7670 if (CheckFunctionCall(FDecl
, TheCall
, Proto
))
7673 checkFortifiedBuiltinMemoryFunction(FDecl
, TheCall
);
7676 return CheckBuiltinFunctionCall(FDecl
, BuiltinID
, TheCall
);
7678 if (CheckPointerCall(NDecl
, TheCall
, Proto
))
7681 if (CheckOtherCall(TheCall
, Proto
))
7685 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall
), FDecl
);
7689 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc
, ParsedType Ty
,
7690 SourceLocation RParenLoc
, Expr
*InitExpr
) {
7691 assert(Ty
&& "ActOnCompoundLiteral(): missing type");
7692 assert(InitExpr
&& "ActOnCompoundLiteral(): missing expression");
7694 TypeSourceInfo
*TInfo
;
7695 QualType literalType
= GetTypeFromParser(Ty
, &TInfo
);
7697 TInfo
= Context
.getTrivialTypeSourceInfo(literalType
);
7699 return BuildCompoundLiteralExpr(LParenLoc
, TInfo
, RParenLoc
, InitExpr
);
7703 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc
, TypeSourceInfo
*TInfo
,
7704 SourceLocation RParenLoc
, Expr
*LiteralExpr
) {
7705 QualType literalType
= TInfo
->getType();
7707 if (literalType
->isArrayType()) {
7708 if (RequireCompleteSizedType(
7709 LParenLoc
, Context
.getBaseElementType(literalType
),
7710 diag::err_array_incomplete_or_sizeless_type
,
7711 SourceRange(LParenLoc
, LiteralExpr
->getSourceRange().getEnd())))
7713 if (literalType
->isVariableArrayType()) {
7714 // C23 6.7.10p4: An entity of variable length array type shall not be
7715 // initialized except by an empty initializer.
7717 // The C extension warnings are issued from ParseBraceInitializer() and
7718 // do not need to be issued here. However, we continue to issue an error
7719 // in the case there are initializers or we are compiling C++. We allow
7720 // use of VLAs in C++, but it's not clear we want to allow {} to zero
7721 // init a VLA in C++ in all cases (such as with non-trivial constructors).
7722 // FIXME: should we allow this construct in C++ when it makes sense to do
7724 std::optional
<unsigned> NumInits
;
7725 if (const auto *ILE
= dyn_cast
<InitListExpr
>(LiteralExpr
))
7726 NumInits
= ILE
->getNumInits();
7727 if ((LangOpts
.CPlusPlus
|| NumInits
.value_or(0)) &&
7728 !tryToFixVariablyModifiedVarType(TInfo
, literalType
, LParenLoc
,
7729 diag::err_variable_object_no_init
))
7732 } else if (!literalType
->isDependentType() &&
7733 RequireCompleteType(LParenLoc
, literalType
,
7734 diag::err_typecheck_decl_incomplete_type
,
7735 SourceRange(LParenLoc
, LiteralExpr
->getSourceRange().getEnd())))
7738 InitializedEntity Entity
7739 = InitializedEntity::InitializeCompoundLiteralInit(TInfo
);
7740 InitializationKind Kind
7741 = InitializationKind::CreateCStyleCast(LParenLoc
,
7742 SourceRange(LParenLoc
, RParenLoc
),
7744 InitializationSequence
InitSeq(*this, Entity
, Kind
, LiteralExpr
);
7745 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, LiteralExpr
,
7747 if (Result
.isInvalid())
7749 LiteralExpr
= Result
.get();
7751 bool isFileScope
= !CurContext
->isFunctionOrMethod();
7753 // In C, compound literals are l-values for some reason.
7754 // For GCC compatibility, in C++, file-scope array compound literals with
7755 // constant initializers are also l-values, and compound literals are
7756 // otherwise prvalues.
7758 // (GCC also treats C++ list-initialized file-scope array prvalues with
7759 // constant initializers as l-values, but that's non-conforming, so we don't
7760 // follow it there.)
7762 // FIXME: It would be better to handle the lvalue cases as materializing and
7763 // lifetime-extending a temporary object, but our materialized temporaries
7764 // representation only supports lifetime extension from a variable, not "out
7766 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7767 // is bound to the result of applying array-to-pointer decay to the compound
7769 // FIXME: GCC supports compound literals of reference type, which should
7770 // obviously have a value kind derived from the kind of reference involved.
7772 (getLangOpts().CPlusPlus
&& !(isFileScope
&& literalType
->isArrayType()))
7777 if (auto ILE
= dyn_cast
<InitListExpr
>(LiteralExpr
))
7778 for (unsigned i
= 0, j
= ILE
->getNumInits(); i
!= j
; i
++) {
7779 Expr
*Init
= ILE
->getInit(i
);
7780 ILE
->setInit(i
, ConstantExpr::Create(Context
, Init
));
7783 auto *E
= new (Context
) CompoundLiteralExpr(LParenLoc
, TInfo
, literalType
,
7784 VK
, LiteralExpr
, isFileScope
);
7786 if (!LiteralExpr
->isTypeDependent() &&
7787 !LiteralExpr
->isValueDependent() &&
7788 !literalType
->isDependentType()) // C99 6.5.2.5p3
7789 if (CheckForConstantInitializer(LiteralExpr
, literalType
))
7791 } else if (literalType
.getAddressSpace() != LangAS::opencl_private
&&
7792 literalType
.getAddressSpace() != LangAS::Default
) {
7793 // Embedded-C extensions to C99 6.5.2.5:
7794 // "If the compound literal occurs inside the body of a function, the
7795 // type name shall not be qualified by an address-space qualifier."
7796 Diag(LParenLoc
, diag::err_compound_literal_with_address_space
)
7797 << SourceRange(LParenLoc
, LiteralExpr
->getSourceRange().getEnd());
7801 if (!isFileScope
&& !getLangOpts().CPlusPlus
) {
7802 // Compound literals that have automatic storage duration are destroyed at
7803 // the end of the scope in C; in C++, they're just temporaries.
7805 // Emit diagnostics if it is or contains a C union type that is non-trivial
7807 if (E
->getType().hasNonTrivialToPrimitiveDestructCUnion())
7808 checkNonTrivialCUnion(E
->getType(), E
->getExprLoc(),
7809 NTCUC_CompoundLiteral
, NTCUK_Destruct
);
7811 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7812 if (literalType
.isDestructedType()) {
7813 Cleanup
.setExprNeedsCleanups(true);
7814 ExprCleanupObjects
.push_back(E
);
7815 getCurFunction()->setHasBranchProtectedScope();
7819 if (E
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7820 E
->getType().hasNonTrivialToPrimitiveCopyCUnion())
7821 checkNonTrivialCUnionInInitializer(E
->getInitializer(),
7822 E
->getInitializer()->getExprLoc());
7824 return MaybeBindToTemporary(E
);
7828 Sema::ActOnInitList(SourceLocation LBraceLoc
, MultiExprArg InitArgList
,
7829 SourceLocation RBraceLoc
) {
7830 // Only produce each kind of designated initialization diagnostic once.
7831 SourceLocation FirstDesignator
;
7832 bool DiagnosedArrayDesignator
= false;
7833 bool DiagnosedNestedDesignator
= false;
7834 bool DiagnosedMixedDesignator
= false;
7836 // Check that any designated initializers are syntactically valid in the
7837 // current language mode.
7838 for (unsigned I
= 0, E
= InitArgList
.size(); I
!= E
; ++I
) {
7839 if (auto *DIE
= dyn_cast
<DesignatedInitExpr
>(InitArgList
[I
])) {
7840 if (FirstDesignator
.isInvalid())
7841 FirstDesignator
= DIE
->getBeginLoc();
7843 if (!getLangOpts().CPlusPlus
)
7846 if (!DiagnosedNestedDesignator
&& DIE
->size() > 1) {
7847 DiagnosedNestedDesignator
= true;
7848 Diag(DIE
->getBeginLoc(), diag::ext_designated_init_nested
)
7849 << DIE
->getDesignatorsSourceRange();
7852 for (auto &Desig
: DIE
->designators()) {
7853 if (!Desig
.isFieldDesignator() && !DiagnosedArrayDesignator
) {
7854 DiagnosedArrayDesignator
= true;
7855 Diag(Desig
.getBeginLoc(), diag::ext_designated_init_array
)
7856 << Desig
.getSourceRange();
7860 if (!DiagnosedMixedDesignator
&&
7861 !isa
<DesignatedInitExpr
>(InitArgList
[0])) {
7862 DiagnosedMixedDesignator
= true;
7863 Diag(DIE
->getBeginLoc(), diag::ext_designated_init_mixed
)
7864 << DIE
->getSourceRange();
7865 Diag(InitArgList
[0]->getBeginLoc(), diag::note_designated_init_mixed
)
7866 << InitArgList
[0]->getSourceRange();
7868 } else if (getLangOpts().CPlusPlus
&& !DiagnosedMixedDesignator
&&
7869 isa
<DesignatedInitExpr
>(InitArgList
[0])) {
7870 DiagnosedMixedDesignator
= true;
7871 auto *DIE
= cast
<DesignatedInitExpr
>(InitArgList
[0]);
7872 Diag(DIE
->getBeginLoc(), diag::ext_designated_init_mixed
)
7873 << DIE
->getSourceRange();
7874 Diag(InitArgList
[I
]->getBeginLoc(), diag::note_designated_init_mixed
)
7875 << InitArgList
[I
]->getSourceRange();
7879 if (FirstDesignator
.isValid()) {
7880 // Only diagnose designated initiaization as a C++20 extension if we didn't
7881 // already diagnose use of (non-C++20) C99 designator syntax.
7882 if (getLangOpts().CPlusPlus
&& !DiagnosedArrayDesignator
&&
7883 !DiagnosedNestedDesignator
&& !DiagnosedMixedDesignator
) {
7884 Diag(FirstDesignator
, getLangOpts().CPlusPlus20
7885 ? diag::warn_cxx17_compat_designated_init
7886 : diag::ext_cxx_designated_init
);
7887 } else if (!getLangOpts().CPlusPlus
&& !getLangOpts().C99
) {
7888 Diag(FirstDesignator
, diag::ext_designated_init
);
7892 return BuildInitList(LBraceLoc
, InitArgList
, RBraceLoc
);
7896 Sema::BuildInitList(SourceLocation LBraceLoc
, MultiExprArg InitArgList
,
7897 SourceLocation RBraceLoc
) {
7898 // Semantic analysis for initializers is done by ActOnDeclarator() and
7899 // CheckInitializer() - it requires knowledge of the object being initialized.
7901 // Immediately handle non-overload placeholders. Overloads can be
7902 // resolved contextually, but everything else here can't.
7903 for (unsigned I
= 0, E
= InitArgList
.size(); I
!= E
; ++I
) {
7904 if (InitArgList
[I
]->getType()->isNonOverloadPlaceholderType()) {
7905 ExprResult result
= CheckPlaceholderExpr(InitArgList
[I
]);
7907 // Ignore failures; dropping the entire initializer list because
7908 // of one failure would be terrible for indexing/etc.
7909 if (result
.isInvalid()) continue;
7911 InitArgList
[I
] = result
.get();
7915 InitListExpr
*E
= new (Context
) InitListExpr(Context
, LBraceLoc
, InitArgList
,
7917 E
->setType(Context
.VoidTy
); // FIXME: just a place holder for now.
7921 /// Do an explicit extend of the given block pointer if we're in ARC.
7922 void Sema::maybeExtendBlockObject(ExprResult
&E
) {
7923 assert(E
.get()->getType()->isBlockPointerType());
7924 assert(E
.get()->isPRValue());
7926 // Only do this in an r-value context.
7927 if (!getLangOpts().ObjCAutoRefCount
) return;
7929 E
= ImplicitCastExpr::Create(
7930 Context
, E
.get()->getType(), CK_ARCExtendBlockObject
, E
.get(),
7931 /*base path*/ nullptr, VK_PRValue
, FPOptionsOverride());
7932 Cleanup
.setExprNeedsCleanups(true);
7935 /// Prepare a conversion of the given expression to an ObjC object
7937 CastKind
Sema::PrepareCastToObjCObjectPointer(ExprResult
&E
) {
7938 QualType type
= E
.get()->getType();
7939 if (type
->isObjCObjectPointerType()) {
7941 } else if (type
->isBlockPointerType()) {
7942 maybeExtendBlockObject(E
);
7943 return CK_BlockPointerToObjCPointerCast
;
7945 assert(type
->isPointerType());
7946 return CK_CPointerToObjCPointerCast
;
7950 /// Prepares for a scalar cast, performing all the necessary stages
7951 /// except the final cast and returning the kind required.
7952 CastKind
Sema::PrepareScalarCast(ExprResult
&Src
, QualType DestTy
) {
7953 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7954 // Also, callers should have filtered out the invalid cases with
7955 // pointers. Everything else should be possible.
7957 QualType SrcTy
= Src
.get()->getType();
7958 if (Context
.hasSameUnqualifiedType(SrcTy
, DestTy
))
7961 switch (Type::ScalarTypeKind SrcKind
= SrcTy
->getScalarTypeKind()) {
7962 case Type::STK_MemberPointer
:
7963 llvm_unreachable("member pointer type in C");
7965 case Type::STK_CPointer
:
7966 case Type::STK_BlockPointer
:
7967 case Type::STK_ObjCObjectPointer
:
7968 switch (DestTy
->getScalarTypeKind()) {
7969 case Type::STK_CPointer
: {
7970 LangAS SrcAS
= SrcTy
->getPointeeType().getAddressSpace();
7971 LangAS DestAS
= DestTy
->getPointeeType().getAddressSpace();
7972 if (SrcAS
!= DestAS
)
7973 return CK_AddressSpaceConversion
;
7974 if (Context
.hasCvrSimilarType(SrcTy
, DestTy
))
7978 case Type::STK_BlockPointer
:
7979 return (SrcKind
== Type::STK_BlockPointer
7980 ? CK_BitCast
: CK_AnyPointerToBlockPointerCast
);
7981 case Type::STK_ObjCObjectPointer
:
7982 if (SrcKind
== Type::STK_ObjCObjectPointer
)
7984 if (SrcKind
== Type::STK_CPointer
)
7985 return CK_CPointerToObjCPointerCast
;
7986 maybeExtendBlockObject(Src
);
7987 return CK_BlockPointerToObjCPointerCast
;
7988 case Type::STK_Bool
:
7989 return CK_PointerToBoolean
;
7990 case Type::STK_Integral
:
7991 return CK_PointerToIntegral
;
7992 case Type::STK_Floating
:
7993 case Type::STK_FloatingComplex
:
7994 case Type::STK_IntegralComplex
:
7995 case Type::STK_MemberPointer
:
7996 case Type::STK_FixedPoint
:
7997 llvm_unreachable("illegal cast from pointer");
7999 llvm_unreachable("Should have returned before this");
8001 case Type::STK_FixedPoint
:
8002 switch (DestTy
->getScalarTypeKind()) {
8003 case Type::STK_FixedPoint
:
8004 return CK_FixedPointCast
;
8005 case Type::STK_Bool
:
8006 return CK_FixedPointToBoolean
;
8007 case Type::STK_Integral
:
8008 return CK_FixedPointToIntegral
;
8009 case Type::STK_Floating
:
8010 return CK_FixedPointToFloating
;
8011 case Type::STK_IntegralComplex
:
8012 case Type::STK_FloatingComplex
:
8013 Diag(Src
.get()->getExprLoc(),
8014 diag::err_unimplemented_conversion_with_fixed_point_type
)
8016 return CK_IntegralCast
;
8017 case Type::STK_CPointer
:
8018 case Type::STK_ObjCObjectPointer
:
8019 case Type::STK_BlockPointer
:
8020 case Type::STK_MemberPointer
:
8021 llvm_unreachable("illegal cast to pointer type");
8023 llvm_unreachable("Should have returned before this");
8025 case Type::STK_Bool
: // casting from bool is like casting from an integer
8026 case Type::STK_Integral
:
8027 switch (DestTy
->getScalarTypeKind()) {
8028 case Type::STK_CPointer
:
8029 case Type::STK_ObjCObjectPointer
:
8030 case Type::STK_BlockPointer
:
8031 if (Src
.get()->isNullPointerConstant(Context
,
8032 Expr::NPC_ValueDependentIsNull
))
8033 return CK_NullToPointer
;
8034 return CK_IntegralToPointer
;
8035 case Type::STK_Bool
:
8036 return CK_IntegralToBoolean
;
8037 case Type::STK_Integral
:
8038 return CK_IntegralCast
;
8039 case Type::STK_Floating
:
8040 return CK_IntegralToFloating
;
8041 case Type::STK_IntegralComplex
:
8042 Src
= ImpCastExprToType(Src
.get(),
8043 DestTy
->castAs
<ComplexType
>()->getElementType(),
8045 return CK_IntegralRealToComplex
;
8046 case Type::STK_FloatingComplex
:
8047 Src
= ImpCastExprToType(Src
.get(),
8048 DestTy
->castAs
<ComplexType
>()->getElementType(),
8049 CK_IntegralToFloating
);
8050 return CK_FloatingRealToComplex
;
8051 case Type::STK_MemberPointer
:
8052 llvm_unreachable("member pointer type in C");
8053 case Type::STK_FixedPoint
:
8054 return CK_IntegralToFixedPoint
;
8056 llvm_unreachable("Should have returned before this");
8058 case Type::STK_Floating
:
8059 switch (DestTy
->getScalarTypeKind()) {
8060 case Type::STK_Floating
:
8061 return CK_FloatingCast
;
8062 case Type::STK_Bool
:
8063 return CK_FloatingToBoolean
;
8064 case Type::STK_Integral
:
8065 return CK_FloatingToIntegral
;
8066 case Type::STK_FloatingComplex
:
8067 Src
= ImpCastExprToType(Src
.get(),
8068 DestTy
->castAs
<ComplexType
>()->getElementType(),
8070 return CK_FloatingRealToComplex
;
8071 case Type::STK_IntegralComplex
:
8072 Src
= ImpCastExprToType(Src
.get(),
8073 DestTy
->castAs
<ComplexType
>()->getElementType(),
8074 CK_FloatingToIntegral
);
8075 return CK_IntegralRealToComplex
;
8076 case Type::STK_CPointer
:
8077 case Type::STK_ObjCObjectPointer
:
8078 case Type::STK_BlockPointer
:
8079 llvm_unreachable("valid float->pointer cast?");
8080 case Type::STK_MemberPointer
:
8081 llvm_unreachable("member pointer type in C");
8082 case Type::STK_FixedPoint
:
8083 return CK_FloatingToFixedPoint
;
8085 llvm_unreachable("Should have returned before this");
8087 case Type::STK_FloatingComplex
:
8088 switch (DestTy
->getScalarTypeKind()) {
8089 case Type::STK_FloatingComplex
:
8090 return CK_FloatingComplexCast
;
8091 case Type::STK_IntegralComplex
:
8092 return CK_FloatingComplexToIntegralComplex
;
8093 case Type::STK_Floating
: {
8094 QualType ET
= SrcTy
->castAs
<ComplexType
>()->getElementType();
8095 if (Context
.hasSameType(ET
, DestTy
))
8096 return CK_FloatingComplexToReal
;
8097 Src
= ImpCastExprToType(Src
.get(), ET
, CK_FloatingComplexToReal
);
8098 return CK_FloatingCast
;
8100 case Type::STK_Bool
:
8101 return CK_FloatingComplexToBoolean
;
8102 case Type::STK_Integral
:
8103 Src
= ImpCastExprToType(Src
.get(),
8104 SrcTy
->castAs
<ComplexType
>()->getElementType(),
8105 CK_FloatingComplexToReal
);
8106 return CK_FloatingToIntegral
;
8107 case Type::STK_CPointer
:
8108 case Type::STK_ObjCObjectPointer
:
8109 case Type::STK_BlockPointer
:
8110 llvm_unreachable("valid complex float->pointer cast?");
8111 case Type::STK_MemberPointer
:
8112 llvm_unreachable("member pointer type in C");
8113 case Type::STK_FixedPoint
:
8114 Diag(Src
.get()->getExprLoc(),
8115 diag::err_unimplemented_conversion_with_fixed_point_type
)
8117 return CK_IntegralCast
;
8119 llvm_unreachable("Should have returned before this");
8121 case Type::STK_IntegralComplex
:
8122 switch (DestTy
->getScalarTypeKind()) {
8123 case Type::STK_FloatingComplex
:
8124 return CK_IntegralComplexToFloatingComplex
;
8125 case Type::STK_IntegralComplex
:
8126 return CK_IntegralComplexCast
;
8127 case Type::STK_Integral
: {
8128 QualType ET
= SrcTy
->castAs
<ComplexType
>()->getElementType();
8129 if (Context
.hasSameType(ET
, DestTy
))
8130 return CK_IntegralComplexToReal
;
8131 Src
= ImpCastExprToType(Src
.get(), ET
, CK_IntegralComplexToReal
);
8132 return CK_IntegralCast
;
8134 case Type::STK_Bool
:
8135 return CK_IntegralComplexToBoolean
;
8136 case Type::STK_Floating
:
8137 Src
= ImpCastExprToType(Src
.get(),
8138 SrcTy
->castAs
<ComplexType
>()->getElementType(),
8139 CK_IntegralComplexToReal
);
8140 return CK_IntegralToFloating
;
8141 case Type::STK_CPointer
:
8142 case Type::STK_ObjCObjectPointer
:
8143 case Type::STK_BlockPointer
:
8144 llvm_unreachable("valid complex int->pointer cast?");
8145 case Type::STK_MemberPointer
:
8146 llvm_unreachable("member pointer type in C");
8147 case Type::STK_FixedPoint
:
8148 Diag(Src
.get()->getExprLoc(),
8149 diag::err_unimplemented_conversion_with_fixed_point_type
)
8151 return CK_IntegralCast
;
8153 llvm_unreachable("Should have returned before this");
8156 llvm_unreachable("Unhandled scalar cast");
8159 static bool breakDownVectorType(QualType type
, uint64_t &len
,
8160 QualType
&eltType
) {
8161 // Vectors are simple.
8162 if (const VectorType
*vecType
= type
->getAs
<VectorType
>()) {
8163 len
= vecType
->getNumElements();
8164 eltType
= vecType
->getElementType();
8165 assert(eltType
->isScalarType());
8169 // We allow lax conversion to and from non-vector types, but only if
8170 // they're real types (i.e. non-complex, non-pointer scalar types).
8171 if (!type
->isRealType()) return false;
8178 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
8179 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
8182 /// This will also return false if the two given types do not make sense from
8183 /// the perspective of SVE bitcasts.
8184 bool Sema::isValidSveBitcast(QualType srcTy
, QualType destTy
) {
8185 assert(srcTy
->isVectorType() || destTy
->isVectorType());
8187 auto ValidScalableConversion
= [](QualType FirstType
, QualType SecondType
) {
8188 if (!FirstType
->isSVESizelessBuiltinType())
8191 const auto *VecTy
= SecondType
->getAs
<VectorType
>();
8193 VecTy
->getVectorKind() == VectorType::SveFixedLengthDataVector
;
8196 return ValidScalableConversion(srcTy
, destTy
) ||
8197 ValidScalableConversion(destTy
, srcTy
);
8200 /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the
8201 /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV
8202 /// VLS type) allowed?
8204 /// This will also return false if the two given types do not make sense from
8205 /// the perspective of RVV bitcasts.
8206 bool Sema::isValidRVVBitcast(QualType srcTy
, QualType destTy
) {
8207 assert(srcTy
->isVectorType() || destTy
->isVectorType());
8209 auto ValidScalableConversion
= [](QualType FirstType
, QualType SecondType
) {
8210 if (!FirstType
->isRVVSizelessBuiltinType())
8213 const auto *VecTy
= SecondType
->getAs
<VectorType
>();
8215 VecTy
->getVectorKind() == VectorType::RVVFixedLengthDataVector
;
8218 return ValidScalableConversion(srcTy
, destTy
) ||
8219 ValidScalableConversion(destTy
, srcTy
);
8222 /// Are the two types matrix types and do they have the same dimensions i.e.
8223 /// do they have the same number of rows and the same number of columns?
8224 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy
, QualType destTy
) {
8225 if (!destTy
->isMatrixType() || !srcTy
->isMatrixType())
8228 const ConstantMatrixType
*matSrcType
= srcTy
->getAs
<ConstantMatrixType
>();
8229 const ConstantMatrixType
*matDestType
= destTy
->getAs
<ConstantMatrixType
>();
8231 return matSrcType
->getNumRows() == matDestType
->getNumRows() &&
8232 matSrcType
->getNumColumns() == matDestType
->getNumColumns();
8235 bool Sema::areVectorTypesSameSize(QualType SrcTy
, QualType DestTy
) {
8236 assert(DestTy
->isVectorType() || SrcTy
->isVectorType());
8238 uint64_t SrcLen
, DestLen
;
8239 QualType SrcEltTy
, DestEltTy
;
8240 if (!breakDownVectorType(SrcTy
, SrcLen
, SrcEltTy
))
8242 if (!breakDownVectorType(DestTy
, DestLen
, DestEltTy
))
8245 // ASTContext::getTypeSize will return the size rounded up to a
8246 // power of 2, so instead of using that, we need to use the raw
8247 // element size multiplied by the element count.
8248 uint64_t SrcEltSize
= Context
.getTypeSize(SrcEltTy
);
8249 uint64_t DestEltSize
= Context
.getTypeSize(DestEltTy
);
8251 return (SrcLen
* SrcEltSize
== DestLen
* DestEltSize
);
8254 // This returns true if at least one of the types is an altivec vector.
8255 bool Sema::anyAltivecTypes(QualType SrcTy
, QualType DestTy
) {
8256 assert((DestTy
->isVectorType() || SrcTy
->isVectorType()) &&
8257 "expected at least one type to be a vector here");
8259 bool IsSrcTyAltivec
=
8260 SrcTy
->isVectorType() && ((SrcTy
->castAs
<VectorType
>()->getVectorKind() ==
8261 VectorType::AltiVecVector
) ||
8262 (SrcTy
->castAs
<VectorType
>()->getVectorKind() ==
8263 VectorType::AltiVecBool
) ||
8264 (SrcTy
->castAs
<VectorType
>()->getVectorKind() ==
8265 VectorType::AltiVecPixel
));
8267 bool IsDestTyAltivec
= DestTy
->isVectorType() &&
8268 ((DestTy
->castAs
<VectorType
>()->getVectorKind() ==
8269 VectorType::AltiVecVector
) ||
8270 (DestTy
->castAs
<VectorType
>()->getVectorKind() ==
8271 VectorType::AltiVecBool
) ||
8272 (DestTy
->castAs
<VectorType
>()->getVectorKind() ==
8273 VectorType::AltiVecPixel
));
8275 return (IsSrcTyAltivec
|| IsDestTyAltivec
);
8278 /// Are the two types lax-compatible vector types? That is, given
8279 /// that one of them is a vector, do they have equal storage sizes,
8280 /// where the storage size is the number of elements times the element
8283 /// This will also return false if either of the types is neither a
8284 /// vector nor a real type.
8285 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy
, QualType destTy
) {
8286 assert(destTy
->isVectorType() || srcTy
->isVectorType());
8288 // Disallow lax conversions between scalars and ExtVectors (these
8289 // conversions are allowed for other vector types because common headers
8290 // depend on them). Most scalar OP ExtVector cases are handled by the
8291 // splat path anyway, which does what we want (convert, not bitcast).
8292 // What this rules out for ExtVectors is crazy things like char4*float.
8293 if (srcTy
->isScalarType() && destTy
->isExtVectorType()) return false;
8294 if (destTy
->isScalarType() && srcTy
->isExtVectorType()) return false;
8296 return areVectorTypesSameSize(srcTy
, destTy
);
8299 /// Is this a legal conversion between two types, one of which is
8300 /// known to be a vector type?
8301 bool Sema::isLaxVectorConversion(QualType srcTy
, QualType destTy
) {
8302 assert(destTy
->isVectorType() || srcTy
->isVectorType());
8304 switch (Context
.getLangOpts().getLaxVectorConversions()) {
8305 case LangOptions::LaxVectorConversionKind::None
:
8308 case LangOptions::LaxVectorConversionKind::Integer
:
8309 if (!srcTy
->isIntegralOrEnumerationType()) {
8310 auto *Vec
= srcTy
->getAs
<VectorType
>();
8311 if (!Vec
|| !Vec
->getElementType()->isIntegralOrEnumerationType())
8314 if (!destTy
->isIntegralOrEnumerationType()) {
8315 auto *Vec
= destTy
->getAs
<VectorType
>();
8316 if (!Vec
|| !Vec
->getElementType()->isIntegralOrEnumerationType())
8319 // OK, integer (vector) -> integer (vector) bitcast.
8322 case LangOptions::LaxVectorConversionKind::All
:
8326 return areLaxCompatibleVectorTypes(srcTy
, destTy
);
8329 bool Sema::CheckMatrixCast(SourceRange R
, QualType DestTy
, QualType SrcTy
,
8331 if (SrcTy
->isMatrixType() && DestTy
->isMatrixType()) {
8332 if (!areMatrixTypesOfTheSameDimension(SrcTy
, DestTy
)) {
8333 return Diag(R
.getBegin(), diag::err_invalid_conversion_between_matrixes
)
8334 << DestTy
<< SrcTy
<< R
;
8336 } else if (SrcTy
->isMatrixType()) {
8337 return Diag(R
.getBegin(),
8338 diag::err_invalid_conversion_between_matrix_and_type
)
8339 << SrcTy
<< DestTy
<< R
;
8340 } else if (DestTy
->isMatrixType()) {
8341 return Diag(R
.getBegin(),
8342 diag::err_invalid_conversion_between_matrix_and_type
)
8343 << DestTy
<< SrcTy
<< R
;
8346 Kind
= CK_MatrixCast
;
8350 bool Sema::CheckVectorCast(SourceRange R
, QualType VectorTy
, QualType Ty
,
8352 assert(VectorTy
->isVectorType() && "Not a vector type!");
8354 if (Ty
->isVectorType() || Ty
->isIntegralType(Context
)) {
8355 if (!areLaxCompatibleVectorTypes(Ty
, VectorTy
))
8356 return Diag(R
.getBegin(),
8357 Ty
->isVectorType() ?
8358 diag::err_invalid_conversion_between_vectors
:
8359 diag::err_invalid_conversion_between_vector_and_integer
)
8360 << VectorTy
<< Ty
<< R
;
8362 return Diag(R
.getBegin(),
8363 diag::err_invalid_conversion_between_vector_and_scalar
)
8364 << VectorTy
<< Ty
<< R
;
8370 ExprResult
Sema::prepareVectorSplat(QualType VectorTy
, Expr
*SplattedExpr
) {
8371 QualType DestElemTy
= VectorTy
->castAs
<VectorType
>()->getElementType();
8373 if (DestElemTy
== SplattedExpr
->getType())
8374 return SplattedExpr
;
8376 assert(DestElemTy
->isFloatingType() ||
8377 DestElemTy
->isIntegralOrEnumerationType());
8380 if (VectorTy
->isExtVectorType() && SplattedExpr
->getType()->isBooleanType()) {
8381 // OpenCL requires that we convert `true` boolean expressions to -1, but
8382 // only when splatting vectors.
8383 if (DestElemTy
->isFloatingType()) {
8384 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8385 // in two steps: boolean to signed integral, then to floating.
8386 ExprResult CastExprRes
= ImpCastExprToType(SplattedExpr
, Context
.IntTy
,
8387 CK_BooleanToSignedIntegral
);
8388 SplattedExpr
= CastExprRes
.get();
8389 CK
= CK_IntegralToFloating
;
8391 CK
= CK_BooleanToSignedIntegral
;
8394 ExprResult CastExprRes
= SplattedExpr
;
8395 CK
= PrepareScalarCast(CastExprRes
, DestElemTy
);
8396 if (CastExprRes
.isInvalid())
8398 SplattedExpr
= CastExprRes
.get();
8400 return ImpCastExprToType(SplattedExpr
, DestElemTy
, CK
);
8403 ExprResult
Sema::CheckExtVectorCast(SourceRange R
, QualType DestTy
,
8404 Expr
*CastExpr
, CastKind
&Kind
) {
8405 assert(DestTy
->isExtVectorType() && "Not an extended vector type!");
8407 QualType SrcTy
= CastExpr
->getType();
8409 // If SrcTy is a VectorType, the total size must match to explicitly cast to
8410 // an ExtVectorType.
8411 // In OpenCL, casts between vectors of different types are not allowed.
8412 // (See OpenCL 6.2).
8413 if (SrcTy
->isVectorType()) {
8414 if (!areLaxCompatibleVectorTypes(SrcTy
, DestTy
) ||
8415 (getLangOpts().OpenCL
&&
8416 !Context
.hasSameUnqualifiedType(DestTy
, SrcTy
))) {
8417 Diag(R
.getBegin(),diag::err_invalid_conversion_between_ext_vectors
)
8418 << DestTy
<< SrcTy
<< R
;
8425 // All non-pointer scalars can be cast to ExtVector type. The appropriate
8426 // conversion will take place first from scalar to elt type, and then
8427 // splat from elt type to vector.
8428 if (SrcTy
->isPointerType())
8429 return Diag(R
.getBegin(),
8430 diag::err_invalid_conversion_between_vector_and_scalar
)
8431 << DestTy
<< SrcTy
<< R
;
8433 Kind
= CK_VectorSplat
;
8434 return prepareVectorSplat(DestTy
, CastExpr
);
8438 Sema::ActOnCastExpr(Scope
*S
, SourceLocation LParenLoc
,
8439 Declarator
&D
, ParsedType
&Ty
,
8440 SourceLocation RParenLoc
, Expr
*CastExpr
) {
8441 assert(!D
.isInvalidType() && (CastExpr
!= nullptr) &&
8442 "ActOnCastExpr(): missing type or expr");
8444 TypeSourceInfo
*castTInfo
= GetTypeForDeclaratorCast(D
, CastExpr
->getType());
8445 if (D
.isInvalidType())
8448 if (getLangOpts().CPlusPlus
) {
8449 // Check that there are no default arguments (C++ only).
8450 CheckExtraCXXDefaultArguments(D
);
8452 // Make sure any TypoExprs have been dealt with.
8453 ExprResult Res
= CorrectDelayedTyposInExpr(CastExpr
);
8454 if (!Res
.isUsable())
8456 CastExpr
= Res
.get();
8459 checkUnusedDeclAttributes(D
);
8461 QualType castType
= castTInfo
->getType();
8462 Ty
= CreateParsedType(castType
, castTInfo
);
8464 bool isVectorLiteral
= false;
8466 // Check for an altivec or OpenCL literal,
8467 // i.e. all the elements are integer constants.
8468 ParenExpr
*PE
= dyn_cast
<ParenExpr
>(CastExpr
);
8469 ParenListExpr
*PLE
= dyn_cast
<ParenListExpr
>(CastExpr
);
8470 if ((getLangOpts().AltiVec
|| getLangOpts().ZVector
|| getLangOpts().OpenCL
)
8471 && castType
->isVectorType() && (PE
|| PLE
)) {
8472 if (PLE
&& PLE
->getNumExprs() == 0) {
8473 Diag(PLE
->getExprLoc(), diag::err_altivec_empty_initializer
);
8476 if (PE
|| PLE
->getNumExprs() == 1) {
8477 Expr
*E
= (PE
? PE
->getSubExpr() : PLE
->getExpr(0));
8478 if (!E
->isTypeDependent() && !E
->getType()->isVectorType())
8479 isVectorLiteral
= true;
8482 isVectorLiteral
= true;
8485 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8486 // then handle it as such.
8487 if (isVectorLiteral
)
8488 return BuildVectorLiteral(LParenLoc
, RParenLoc
, CastExpr
, castTInfo
);
8490 // If the Expr being casted is a ParenListExpr, handle it specially.
8491 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8492 // sequence of BinOp comma operators.
8493 if (isa
<ParenListExpr
>(CastExpr
)) {
8494 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, CastExpr
);
8495 if (Result
.isInvalid()) return ExprError();
8496 CastExpr
= Result
.get();
8499 if (getLangOpts().CPlusPlus
&& !castType
->isVoidType())
8500 Diag(LParenLoc
, diag::warn_old_style_cast
) << CastExpr
->getSourceRange();
8502 CheckTollFreeBridgeCast(castType
, CastExpr
);
8504 CheckObjCBridgeRelatedCast(castType
, CastExpr
);
8506 DiscardMisalignedMemberAddress(castType
.getTypePtr(), CastExpr
);
8508 return BuildCStyleCastExpr(LParenLoc
, castTInfo
, RParenLoc
, CastExpr
);
8511 ExprResult
Sema::BuildVectorLiteral(SourceLocation LParenLoc
,
8512 SourceLocation RParenLoc
, Expr
*E
,
8513 TypeSourceInfo
*TInfo
) {
8514 assert((isa
<ParenListExpr
>(E
) || isa
<ParenExpr
>(E
)) &&
8515 "Expected paren or paren list expression");
8520 SourceLocation LiteralLParenLoc
, LiteralRParenLoc
;
8521 if (ParenListExpr
*PE
= dyn_cast
<ParenListExpr
>(E
)) {
8522 LiteralLParenLoc
= PE
->getLParenLoc();
8523 LiteralRParenLoc
= PE
->getRParenLoc();
8524 exprs
= PE
->getExprs();
8525 numExprs
= PE
->getNumExprs();
8526 } else { // isa<ParenExpr> by assertion at function entrance
8527 LiteralLParenLoc
= cast
<ParenExpr
>(E
)->getLParen();
8528 LiteralRParenLoc
= cast
<ParenExpr
>(E
)->getRParen();
8529 subExpr
= cast
<ParenExpr
>(E
)->getSubExpr();
8534 QualType Ty
= TInfo
->getType();
8535 assert(Ty
->isVectorType() && "Expected vector type");
8537 SmallVector
<Expr
*, 8> initExprs
;
8538 const VectorType
*VTy
= Ty
->castAs
<VectorType
>();
8539 unsigned numElems
= VTy
->getNumElements();
8541 // '(...)' form of vector initialization in AltiVec: the number of
8542 // initializers must be one or must match the size of the vector.
8543 // If a single value is specified in the initializer then it will be
8544 // replicated to all the components of the vector
8545 if (CheckAltivecInitFromScalar(E
->getSourceRange(), Ty
,
8546 VTy
->getElementType()))
8548 if (ShouldSplatAltivecScalarInCast(VTy
)) {
8549 // The number of initializers must be one or must match the size of the
8550 // vector. If a single value is specified in the initializer then it will
8551 // be replicated to all the components of the vector
8552 if (numExprs
== 1) {
8553 QualType ElemTy
= VTy
->getElementType();
8554 ExprResult Literal
= DefaultLvalueConversion(exprs
[0]);
8555 if (Literal
.isInvalid())
8557 Literal
= ImpCastExprToType(Literal
.get(), ElemTy
,
8558 PrepareScalarCast(Literal
, ElemTy
));
8559 return BuildCStyleCastExpr(LParenLoc
, TInfo
, RParenLoc
, Literal
.get());
8561 else if (numExprs
< numElems
) {
8562 Diag(E
->getExprLoc(),
8563 diag::err_incorrect_number_of_vector_initializers
);
8567 initExprs
.append(exprs
, exprs
+ numExprs
);
8570 // For OpenCL, when the number of initializers is a single value,
8571 // it will be replicated to all components of the vector.
8572 if (getLangOpts().OpenCL
&&
8573 VTy
->getVectorKind() == VectorType::GenericVector
&&
8575 QualType ElemTy
= VTy
->getElementType();
8576 ExprResult Literal
= DefaultLvalueConversion(exprs
[0]);
8577 if (Literal
.isInvalid())
8579 Literal
= ImpCastExprToType(Literal
.get(), ElemTy
,
8580 PrepareScalarCast(Literal
, ElemTy
));
8581 return BuildCStyleCastExpr(LParenLoc
, TInfo
, RParenLoc
, Literal
.get());
8584 initExprs
.append(exprs
, exprs
+ numExprs
);
8586 // FIXME: This means that pretty-printing the final AST will produce curly
8587 // braces instead of the original commas.
8588 InitListExpr
*initE
= new (Context
) InitListExpr(Context
, LiteralLParenLoc
,
8589 initExprs
, LiteralRParenLoc
);
8591 return BuildCompoundLiteralExpr(LParenLoc
, TInfo
, RParenLoc
, initE
);
8594 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8595 /// the ParenListExpr into a sequence of comma binary operators.
8597 Sema::MaybeConvertParenListExprToParenExpr(Scope
*S
, Expr
*OrigExpr
) {
8598 ParenListExpr
*E
= dyn_cast
<ParenListExpr
>(OrigExpr
);
8602 ExprResult
Result(E
->getExpr(0));
8604 for (unsigned i
= 1, e
= E
->getNumExprs(); i
!= e
&& !Result
.isInvalid(); ++i
)
8605 Result
= ActOnBinOp(S
, E
->getExprLoc(), tok::comma
, Result
.get(),
8608 if (Result
.isInvalid()) return ExprError();
8610 return ActOnParenExpr(E
->getLParenLoc(), E
->getRParenLoc(), Result
.get());
8613 ExprResult
Sema::ActOnParenListExpr(SourceLocation L
,
8616 return ParenListExpr::Create(Context
, L
, Val
, R
);
8619 /// Emit a specialized diagnostic when one expression is a null pointer
8620 /// constant and the other is not a pointer. Returns true if a diagnostic is
8622 bool Sema::DiagnoseConditionalForNull(Expr
*LHSExpr
, Expr
*RHSExpr
,
8623 SourceLocation QuestionLoc
) {
8624 Expr
*NullExpr
= LHSExpr
;
8625 Expr
*NonPointerExpr
= RHSExpr
;
8626 Expr::NullPointerConstantKind NullKind
=
8627 NullExpr
->isNullPointerConstant(Context
,
8628 Expr::NPC_ValueDependentIsNotNull
);
8630 if (NullKind
== Expr::NPCK_NotNull
) {
8632 NonPointerExpr
= LHSExpr
;
8634 NullExpr
->isNullPointerConstant(Context
,
8635 Expr::NPC_ValueDependentIsNotNull
);
8638 if (NullKind
== Expr::NPCK_NotNull
)
8641 if (NullKind
== Expr::NPCK_ZeroExpression
)
8644 if (NullKind
== Expr::NPCK_ZeroLiteral
) {
8645 // In this case, check to make sure that we got here from a "NULL"
8646 // string in the source code.
8647 NullExpr
= NullExpr
->IgnoreParenImpCasts();
8648 SourceLocation loc
= NullExpr
->getExprLoc();
8649 if (!findMacroSpelling(loc
, "NULL"))
8653 int DiagType
= (NullKind
== Expr::NPCK_CXX11_nullptr
);
8654 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands_null
)
8655 << NonPointerExpr
->getType() << DiagType
8656 << NonPointerExpr
->getSourceRange();
8660 /// Return false if the condition expression is valid, true otherwise.
8661 static bool checkCondition(Sema
&S
, Expr
*Cond
, SourceLocation QuestionLoc
) {
8662 QualType CondTy
= Cond
->getType();
8664 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8665 if (S
.getLangOpts().OpenCL
&& CondTy
->isFloatingType()) {
8666 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_nonfloat
)
8667 << CondTy
<< Cond
->getSourceRange();
8672 if (CondTy
->isScalarType()) return false;
8674 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_scalar
)
8675 << CondTy
<< Cond
->getSourceRange();
8679 /// Return false if the NullExpr can be promoted to PointerTy,
8681 static bool checkConditionalNullPointer(Sema
&S
, ExprResult
&NullExpr
,
8682 QualType PointerTy
) {
8683 if ((!PointerTy
->isAnyPointerType() && !PointerTy
->isBlockPointerType()) ||
8684 !NullExpr
.get()->isNullPointerConstant(S
.Context
,
8685 Expr::NPC_ValueDependentIsNull
))
8688 NullExpr
= S
.ImpCastExprToType(NullExpr
.get(), PointerTy
, CK_NullToPointer
);
8692 /// Checks compatibility between two pointers and return the resulting
8694 static QualType
checkConditionalPointerCompatibility(Sema
&S
, ExprResult
&LHS
,
8696 SourceLocation Loc
) {
8697 QualType LHSTy
= LHS
.get()->getType();
8698 QualType RHSTy
= RHS
.get()->getType();
8700 if (S
.Context
.hasSameType(LHSTy
, RHSTy
)) {
8701 // Two identical pointers types are always compatible.
8702 return S
.Context
.getCommonSugaredType(LHSTy
, RHSTy
);
8705 QualType lhptee
, rhptee
;
8707 // Get the pointee types.
8708 bool IsBlockPointer
= false;
8709 if (const BlockPointerType
*LHSBTy
= LHSTy
->getAs
<BlockPointerType
>()) {
8710 lhptee
= LHSBTy
->getPointeeType();
8711 rhptee
= RHSTy
->castAs
<BlockPointerType
>()->getPointeeType();
8712 IsBlockPointer
= true;
8714 lhptee
= LHSTy
->castAs
<PointerType
>()->getPointeeType();
8715 rhptee
= RHSTy
->castAs
<PointerType
>()->getPointeeType();
8718 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8719 // differently qualified versions of compatible types, the result type is
8720 // a pointer to an appropriately qualified version of the composite
8723 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8724 // clause doesn't make sense for our extensions. E.g. address space 2 should
8725 // be incompatible with address space 3: they may live on different devices or
8727 Qualifiers lhQual
= lhptee
.getQualifiers();
8728 Qualifiers rhQual
= rhptee
.getQualifiers();
8730 LangAS ResultAddrSpace
= LangAS::Default
;
8731 LangAS LAddrSpace
= lhQual
.getAddressSpace();
8732 LangAS RAddrSpace
= rhQual
.getAddressSpace();
8734 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8735 // spaces is disallowed.
8736 if (lhQual
.isAddressSpaceSupersetOf(rhQual
))
8737 ResultAddrSpace
= LAddrSpace
;
8738 else if (rhQual
.isAddressSpaceSupersetOf(lhQual
))
8739 ResultAddrSpace
= RAddrSpace
;
8741 S
.Diag(Loc
, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers
)
8742 << LHSTy
<< RHSTy
<< 2 << LHS
.get()->getSourceRange()
8743 << RHS
.get()->getSourceRange();
8747 unsigned MergedCVRQual
= lhQual
.getCVRQualifiers() | rhQual
.getCVRQualifiers();
8748 auto LHSCastKind
= CK_BitCast
, RHSCastKind
= CK_BitCast
;
8749 lhQual
.removeCVRQualifiers();
8750 rhQual
.removeCVRQualifiers();
8752 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8753 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8754 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8755 // qual types are compatible iff
8756 // * corresponded types are compatible
8757 // * CVR qualifiers are equal
8758 // * address spaces are equal
8759 // Thus for conditional operator we merge CVR and address space unqualified
8760 // pointees and if there is a composite type we return a pointer to it with
8761 // merged qualifiers.
8763 LAddrSpace
== ResultAddrSpace
? CK_BitCast
: CK_AddressSpaceConversion
;
8765 RAddrSpace
== ResultAddrSpace
? CK_BitCast
: CK_AddressSpaceConversion
;
8766 lhQual
.removeAddressSpace();
8767 rhQual
.removeAddressSpace();
8769 lhptee
= S
.Context
.getQualifiedType(lhptee
.getUnqualifiedType(), lhQual
);
8770 rhptee
= S
.Context
.getQualifiedType(rhptee
.getUnqualifiedType(), rhQual
);
8772 QualType CompositeTy
= S
.Context
.mergeTypes(
8773 lhptee
, rhptee
, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8774 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8776 if (CompositeTy
.isNull()) {
8777 // In this situation, we assume void* type. No especially good
8778 // reason, but this is what gcc does, and we do have to pick
8779 // to get a consistent AST.
8780 QualType incompatTy
;
8781 incompatTy
= S
.Context
.getPointerType(
8782 S
.Context
.getAddrSpaceQualType(S
.Context
.VoidTy
, ResultAddrSpace
));
8783 LHS
= S
.ImpCastExprToType(LHS
.get(), incompatTy
, LHSCastKind
);
8784 RHS
= S
.ImpCastExprToType(RHS
.get(), incompatTy
, RHSCastKind
);
8786 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8787 // for casts between types with incompatible address space qualifiers.
8788 // For the following code the compiler produces casts between global and
8789 // local address spaces of the corresponded innermost pointees:
8790 // local int *global *a;
8791 // global int *global *b;
8792 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8793 S
.Diag(Loc
, diag::ext_typecheck_cond_incompatible_pointers
)
8794 << LHSTy
<< RHSTy
<< LHS
.get()->getSourceRange()
8795 << RHS
.get()->getSourceRange();
8800 // The pointer types are compatible.
8801 // In case of OpenCL ResultTy should have the address space qualifier
8802 // which is a superset of address spaces of both the 2nd and the 3rd
8803 // operands of the conditional operator.
8804 QualType ResultTy
= [&, ResultAddrSpace
]() {
8805 if (S
.getLangOpts().OpenCL
) {
8806 Qualifiers CompositeQuals
= CompositeTy
.getQualifiers();
8807 CompositeQuals
.setAddressSpace(ResultAddrSpace
);
8809 .getQualifiedType(CompositeTy
.getUnqualifiedType(), CompositeQuals
)
8810 .withCVRQualifiers(MergedCVRQual
);
8812 return CompositeTy
.withCVRQualifiers(MergedCVRQual
);
8815 ResultTy
= S
.Context
.getBlockPointerType(ResultTy
);
8817 ResultTy
= S
.Context
.getPointerType(ResultTy
);
8819 LHS
= S
.ImpCastExprToType(LHS
.get(), ResultTy
, LHSCastKind
);
8820 RHS
= S
.ImpCastExprToType(RHS
.get(), ResultTy
, RHSCastKind
);
8824 /// Return the resulting type when the operands are both block pointers.
8825 static QualType
checkConditionalBlockPointerCompatibility(Sema
&S
,
8828 SourceLocation Loc
) {
8829 QualType LHSTy
= LHS
.get()->getType();
8830 QualType RHSTy
= RHS
.get()->getType();
8832 if (!LHSTy
->isBlockPointerType() || !RHSTy
->isBlockPointerType()) {
8833 if (LHSTy
->isVoidPointerType() || RHSTy
->isVoidPointerType()) {
8834 QualType destType
= S
.Context
.getPointerType(S
.Context
.VoidTy
);
8835 LHS
= S
.ImpCastExprToType(LHS
.get(), destType
, CK_BitCast
);
8836 RHS
= S
.ImpCastExprToType(RHS
.get(), destType
, CK_BitCast
);
8839 S
.Diag(Loc
, diag::err_typecheck_cond_incompatible_operands
)
8840 << LHSTy
<< RHSTy
<< LHS
.get()->getSourceRange()
8841 << RHS
.get()->getSourceRange();
8845 // We have 2 block pointer types.
8846 return checkConditionalPointerCompatibility(S
, LHS
, RHS
, Loc
);
8849 /// Return the resulting type when the operands are both pointers.
8851 checkConditionalObjectPointersCompatibility(Sema
&S
, ExprResult
&LHS
,
8853 SourceLocation Loc
) {
8854 // get the pointer types
8855 QualType LHSTy
= LHS
.get()->getType();
8856 QualType RHSTy
= RHS
.get()->getType();
8858 // get the "pointed to" types
8859 QualType lhptee
= LHSTy
->castAs
<PointerType
>()->getPointeeType();
8860 QualType rhptee
= RHSTy
->castAs
<PointerType
>()->getPointeeType();
8862 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8863 if (lhptee
->isVoidType() && rhptee
->isIncompleteOrObjectType()) {
8864 // Figure out necessary qualifiers (C99 6.5.15p6)
8865 QualType destPointee
8866 = S
.Context
.getQualifiedType(lhptee
, rhptee
.getQualifiers());
8867 QualType destType
= S
.Context
.getPointerType(destPointee
);
8868 // Add qualifiers if necessary.
8869 LHS
= S
.ImpCastExprToType(LHS
.get(), destType
, CK_NoOp
);
8870 // Promote to void*.
8871 RHS
= S
.ImpCastExprToType(RHS
.get(), destType
, CK_BitCast
);
8874 if (rhptee
->isVoidType() && lhptee
->isIncompleteOrObjectType()) {
8875 QualType destPointee
8876 = S
.Context
.getQualifiedType(rhptee
, lhptee
.getQualifiers());
8877 QualType destType
= S
.Context
.getPointerType(destPointee
);
8878 // Add qualifiers if necessary.
8879 RHS
= S
.ImpCastExprToType(RHS
.get(), destType
, CK_NoOp
);
8880 // Promote to void*.
8881 LHS
= S
.ImpCastExprToType(LHS
.get(), destType
, CK_BitCast
);
8885 return checkConditionalPointerCompatibility(S
, LHS
, RHS
, Loc
);
8888 /// Return false if the first expression is not an integer and the second
8889 /// expression is not a pointer, true otherwise.
8890 static bool checkPointerIntegerMismatch(Sema
&S
, ExprResult
&Int
,
8891 Expr
* PointerExpr
, SourceLocation Loc
,
8892 bool IsIntFirstExpr
) {
8893 if (!PointerExpr
->getType()->isPointerType() ||
8894 !Int
.get()->getType()->isIntegerType())
8897 Expr
*Expr1
= IsIntFirstExpr
? Int
.get() : PointerExpr
;
8898 Expr
*Expr2
= IsIntFirstExpr
? PointerExpr
: Int
.get();
8900 S
.Diag(Loc
, diag::ext_typecheck_cond_pointer_integer_mismatch
)
8901 << Expr1
->getType() << Expr2
->getType()
8902 << Expr1
->getSourceRange() << Expr2
->getSourceRange();
8903 Int
= S
.ImpCastExprToType(Int
.get(), PointerExpr
->getType(),
8904 CK_IntegralToPointer
);
8908 /// Simple conversion between integer and floating point types.
8910 /// Used when handling the OpenCL conditional operator where the
8911 /// condition is a vector while the other operands are scalar.
8913 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8914 /// types are either integer or floating type. Between the two
8915 /// operands, the type with the higher rank is defined as the "result
8916 /// type". The other operand needs to be promoted to the same type. No
8917 /// other type promotion is allowed. We cannot use
8918 /// UsualArithmeticConversions() for this purpose, since it always
8919 /// promotes promotable types.
8920 static QualType
OpenCLArithmeticConversions(Sema
&S
, ExprResult
&LHS
,
8922 SourceLocation QuestionLoc
) {
8923 LHS
= S
.DefaultFunctionArrayLvalueConversion(LHS
.get());
8924 if (LHS
.isInvalid())
8926 RHS
= S
.DefaultFunctionArrayLvalueConversion(RHS
.get());
8927 if (RHS
.isInvalid())
8930 // For conversion purposes, we ignore any qualifiers.
8931 // For example, "const float" and "float" are equivalent.
8933 S
.Context
.getCanonicalType(LHS
.get()->getType()).getUnqualifiedType();
8935 S
.Context
.getCanonicalType(RHS
.get()->getType()).getUnqualifiedType();
8937 if (!LHSType
->isIntegerType() && !LHSType
->isRealFloatingType()) {
8938 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_int_float
)
8939 << LHSType
<< LHS
.get()->getSourceRange();
8943 if (!RHSType
->isIntegerType() && !RHSType
->isRealFloatingType()) {
8944 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_int_float
)
8945 << RHSType
<< RHS
.get()->getSourceRange();
8949 // If both types are identical, no conversion is needed.
8950 if (LHSType
== RHSType
)
8953 // Now handle "real" floating types (i.e. float, double, long double).
8954 if (LHSType
->isRealFloatingType() || RHSType
->isRealFloatingType())
8955 return handleFloatConversion(S
, LHS
, RHS
, LHSType
, RHSType
,
8956 /*IsCompAssign = */ false);
8958 // Finally, we have two differing integer types.
8959 return handleIntegerConversion
<doIntegralCast
, doIntegralCast
>
8960 (S
, LHS
, RHS
, LHSType
, RHSType
, /*IsCompAssign = */ false);
8963 /// Convert scalar operands to a vector that matches the
8964 /// condition in length.
8966 /// Used when handling the OpenCL conditional operator where the
8967 /// condition is a vector while the other operands are scalar.
8969 /// We first compute the "result type" for the scalar operands
8970 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8971 /// into a vector of that type where the length matches the condition
8972 /// vector type. s6.11.6 requires that the element types of the result
8973 /// and the condition must have the same number of bits.
8975 OpenCLConvertScalarsToVectors(Sema
&S
, ExprResult
&LHS
, ExprResult
&RHS
,
8976 QualType CondTy
, SourceLocation QuestionLoc
) {
8977 QualType ResTy
= OpenCLArithmeticConversions(S
, LHS
, RHS
, QuestionLoc
);
8978 if (ResTy
.isNull()) return QualType();
8980 const VectorType
*CV
= CondTy
->getAs
<VectorType
>();
8983 // Determine the vector result type
8984 unsigned NumElements
= CV
->getNumElements();
8985 QualType VectorTy
= S
.Context
.getExtVectorType(ResTy
, NumElements
);
8987 // Ensure that all types have the same number of bits
8988 if (S
.Context
.getTypeSize(CV
->getElementType())
8989 != S
.Context
.getTypeSize(ResTy
)) {
8990 // Since VectorTy is created internally, it does not pretty print
8991 // with an OpenCL name. Instead, we just print a description.
8992 std::string EleTyName
= ResTy
.getUnqualifiedType().getAsString();
8993 SmallString
<64> Str
;
8994 llvm::raw_svector_ostream
OS(Str
);
8995 OS
<< "(vector of " << NumElements
<< " '" << EleTyName
<< "' values)";
8996 S
.Diag(QuestionLoc
, diag::err_conditional_vector_element_size
)
8997 << CondTy
<< OS
.str();
9001 // Convert operands to the vector result type
9002 LHS
= S
.ImpCastExprToType(LHS
.get(), VectorTy
, CK_VectorSplat
);
9003 RHS
= S
.ImpCastExprToType(RHS
.get(), VectorTy
, CK_VectorSplat
);
9008 /// Return false if this is a valid OpenCL condition vector
9009 static bool checkOpenCLConditionVector(Sema
&S
, Expr
*Cond
,
9010 SourceLocation QuestionLoc
) {
9011 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
9013 const VectorType
*CondTy
= Cond
->getType()->getAs
<VectorType
>();
9015 QualType EleTy
= CondTy
->getElementType();
9016 if (EleTy
->isIntegerType()) return false;
9018 S
.Diag(QuestionLoc
, diag::err_typecheck_cond_expect_nonfloat
)
9019 << Cond
->getType() << Cond
->getSourceRange();
9023 /// Return false if the vector condition type and the vector
9024 /// result type are compatible.
9026 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
9027 /// number of elements, and their element types have the same number
9029 static bool checkVectorResult(Sema
&S
, QualType CondTy
, QualType VecResTy
,
9030 SourceLocation QuestionLoc
) {
9031 const VectorType
*CV
= CondTy
->getAs
<VectorType
>();
9032 const VectorType
*RV
= VecResTy
->getAs
<VectorType
>();
9035 if (CV
->getNumElements() != RV
->getNumElements()) {
9036 S
.Diag(QuestionLoc
, diag::err_conditional_vector_size
)
9037 << CondTy
<< VecResTy
;
9041 QualType CVE
= CV
->getElementType();
9042 QualType RVE
= RV
->getElementType();
9044 if (S
.Context
.getTypeSize(CVE
) != S
.Context
.getTypeSize(RVE
)) {
9045 S
.Diag(QuestionLoc
, diag::err_conditional_vector_element_size
)
9046 << CondTy
<< VecResTy
;
9053 /// Return the resulting type for the conditional operator in
9054 /// OpenCL (aka "ternary selection operator", OpenCL v1.1
9055 /// s6.3.i) when the condition is a vector type.
9057 OpenCLCheckVectorConditional(Sema
&S
, ExprResult
&Cond
,
9058 ExprResult
&LHS
, ExprResult
&RHS
,
9059 SourceLocation QuestionLoc
) {
9060 Cond
= S
.DefaultFunctionArrayLvalueConversion(Cond
.get());
9061 if (Cond
.isInvalid())
9063 QualType CondTy
= Cond
.get()->getType();
9065 if (checkOpenCLConditionVector(S
, Cond
.get(), QuestionLoc
))
9068 // If either operand is a vector then find the vector type of the
9069 // result as specified in OpenCL v1.1 s6.3.i.
9070 if (LHS
.get()->getType()->isVectorType() ||
9071 RHS
.get()->getType()->isVectorType()) {
9072 bool IsBoolVecLang
=
9073 !S
.getLangOpts().OpenCL
&& !S
.getLangOpts().OpenCLCPlusPlus
;
9075 S
.CheckVectorOperands(LHS
, RHS
, QuestionLoc
,
9076 /*isCompAssign*/ false,
9077 /*AllowBothBool*/ true,
9078 /*AllowBoolConversions*/ false,
9079 /*AllowBooleanOperation*/ IsBoolVecLang
,
9080 /*ReportInvalid*/ true);
9081 if (VecResTy
.isNull())
9083 // The result type must match the condition type as specified in
9084 // OpenCL v1.1 s6.11.6.
9085 if (checkVectorResult(S
, CondTy
, VecResTy
, QuestionLoc
))
9090 // Both operands are scalar.
9091 return OpenCLConvertScalarsToVectors(S
, LHS
, RHS
, CondTy
, QuestionLoc
);
9094 /// Return true if the Expr is block type
9095 static bool checkBlockType(Sema
&S
, const Expr
*E
) {
9096 if (const CallExpr
*CE
= dyn_cast
<CallExpr
>(E
)) {
9097 QualType Ty
= CE
->getCallee()->getType();
9098 if (Ty
->isBlockPointerType()) {
9099 S
.Diag(E
->getExprLoc(), diag::err_opencl_ternary_with_block
);
9106 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
9107 /// In that case, LHS = cond.
9109 QualType
Sema::CheckConditionalOperands(ExprResult
&Cond
, ExprResult
&LHS
,
9110 ExprResult
&RHS
, ExprValueKind
&VK
,
9112 SourceLocation QuestionLoc
) {
9114 ExprResult LHSResult
= CheckPlaceholderExpr(LHS
.get());
9115 if (!LHSResult
.isUsable()) return QualType();
9118 ExprResult RHSResult
= CheckPlaceholderExpr(RHS
.get());
9119 if (!RHSResult
.isUsable()) return QualType();
9122 // C++ is sufficiently different to merit its own checker.
9123 if (getLangOpts().CPlusPlus
)
9124 return CXXCheckConditionalOperands(Cond
, LHS
, RHS
, VK
, OK
, QuestionLoc
);
9129 if (Context
.isDependenceAllowed() &&
9130 (Cond
.get()->isTypeDependent() || LHS
.get()->isTypeDependent() ||
9131 RHS
.get()->isTypeDependent())) {
9132 assert(!getLangOpts().CPlusPlus
);
9133 assert((Cond
.get()->containsErrors() || LHS
.get()->containsErrors() ||
9134 RHS
.get()->containsErrors()) &&
9135 "should only occur in error-recovery path.");
9136 return Context
.DependentTy
;
9139 // The OpenCL operator with a vector condition is sufficiently
9140 // different to merit its own checker.
9141 if ((getLangOpts().OpenCL
&& Cond
.get()->getType()->isVectorType()) ||
9142 Cond
.get()->getType()->isExtVectorType())
9143 return OpenCLCheckVectorConditional(*this, Cond
, LHS
, RHS
, QuestionLoc
);
9145 // First, check the condition.
9146 Cond
= UsualUnaryConversions(Cond
.get());
9147 if (Cond
.isInvalid())
9149 if (checkCondition(*this, Cond
.get(), QuestionLoc
))
9152 // Now check the two expressions.
9153 if (LHS
.get()->getType()->isVectorType() ||
9154 RHS
.get()->getType()->isVectorType())
9155 return CheckVectorOperands(LHS
, RHS
, QuestionLoc
, /*isCompAssign*/ false,
9156 /*AllowBothBool*/ true,
9157 /*AllowBoolConversions*/ false,
9158 /*AllowBooleanOperation*/ false,
9159 /*ReportInvalid*/ true);
9162 UsualArithmeticConversions(LHS
, RHS
, QuestionLoc
, ACK_Conditional
);
9163 if (LHS
.isInvalid() || RHS
.isInvalid())
9166 // WebAssembly tables are not allowed as conditional LHS or RHS.
9167 QualType LHSTy
= LHS
.get()->getType();
9168 QualType RHSTy
= RHS
.get()->getType();
9169 if (LHSTy
->isWebAssemblyTableType() || RHSTy
->isWebAssemblyTableType()) {
9170 Diag(QuestionLoc
, diag::err_wasm_table_conditional_expression
)
9171 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9175 // Diagnose attempts to convert between __ibm128, __float128 and long double
9176 // where such conversions currently can't be handled.
9177 if (unsupportedTypeConversion(*this, LHSTy
, RHSTy
)) {
9179 diag::err_typecheck_cond_incompatible_operands
) << LHSTy
<< RHSTy
9180 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9184 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
9185 // selection operator (?:).
9186 if (getLangOpts().OpenCL
&&
9187 ((int)checkBlockType(*this, LHS
.get()) | (int)checkBlockType(*this, RHS
.get()))) {
9191 // If both operands have arithmetic type, do the usual arithmetic conversions
9192 // to find a common type: C99 6.5.15p3,5.
9193 if (LHSTy
->isArithmeticType() && RHSTy
->isArithmeticType()) {
9194 // Disallow invalid arithmetic conversions, such as those between bit-
9195 // precise integers types of different sizes, or between a bit-precise
9196 // integer and another type.
9197 if (ResTy
.isNull() && (LHSTy
->isBitIntType() || RHSTy
->isBitIntType())) {
9198 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands
)
9199 << LHSTy
<< RHSTy
<< LHS
.get()->getSourceRange()
9200 << RHS
.get()->getSourceRange();
9204 LHS
= ImpCastExprToType(LHS
.get(), ResTy
, PrepareScalarCast(LHS
, ResTy
));
9205 RHS
= ImpCastExprToType(RHS
.get(), ResTy
, PrepareScalarCast(RHS
, ResTy
));
9210 // And if they're both bfloat (which isn't arithmetic), that's fine too.
9211 if (LHSTy
->isBFloat16Type() && RHSTy
->isBFloat16Type()) {
9212 return Context
.getCommonSugaredType(LHSTy
, RHSTy
);
9215 // If both operands are the same structure or union type, the result is that
9217 if (const RecordType
*LHSRT
= LHSTy
->getAs
<RecordType
>()) { // C99 6.5.15p3
9218 if (const RecordType
*RHSRT
= RHSTy
->getAs
<RecordType
>())
9219 if (LHSRT
->getDecl() == RHSRT
->getDecl())
9220 // "If both the operands have structure or union type, the result has
9221 // that type." This implies that CV qualifiers are dropped.
9222 return Context
.getCommonSugaredType(LHSTy
.getUnqualifiedType(),
9223 RHSTy
.getUnqualifiedType());
9224 // FIXME: Type of conditional expression must be complete in C mode.
9227 // C99 6.5.15p5: "If both operands have void type, the result has void type."
9228 // The following || allows only one side to be void (a GCC-ism).
9229 if (LHSTy
->isVoidType() || RHSTy
->isVoidType()) {
9231 if (LHSTy
->isVoidType() && RHSTy
->isVoidType()) {
9232 ResTy
= Context
.getCommonSugaredType(LHSTy
, RHSTy
);
9233 } else if (RHSTy
->isVoidType()) {
9235 Diag(RHS
.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void
)
9236 << RHS
.get()->getSourceRange();
9239 Diag(LHS
.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void
)
9240 << LHS
.get()->getSourceRange();
9242 LHS
= ImpCastExprToType(LHS
.get(), ResTy
, CK_ToVoid
);
9243 RHS
= ImpCastExprToType(RHS
.get(), ResTy
, CK_ToVoid
);
9248 // ... if both the second and third operands have nullptr_t type, the
9249 // result also has that type.
9250 if (LHSTy
->isNullPtrType() && Context
.hasSameType(LHSTy
, RHSTy
))
9253 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
9254 // the type of the other operand."
9255 if (!checkConditionalNullPointer(*this, RHS
, LHSTy
)) return LHSTy
;
9256 if (!checkConditionalNullPointer(*this, LHS
, RHSTy
)) return RHSTy
;
9258 // All objective-c pointer type analysis is done here.
9259 QualType compositeType
= FindCompositeObjCPointerType(LHS
, RHS
,
9261 if (LHS
.isInvalid() || RHS
.isInvalid())
9263 if (!compositeType
.isNull())
9264 return compositeType
;
9267 // Handle block pointer types.
9268 if (LHSTy
->isBlockPointerType() || RHSTy
->isBlockPointerType())
9269 return checkConditionalBlockPointerCompatibility(*this, LHS
, RHS
,
9272 // Check constraints for C object pointers types (C99 6.5.15p3,6).
9273 if (LHSTy
->isPointerType() && RHSTy
->isPointerType())
9274 return checkConditionalObjectPointersCompatibility(*this, LHS
, RHS
,
9277 // GCC compatibility: soften pointer/integer mismatch. Note that
9278 // null pointers have been filtered out by this point.
9279 if (checkPointerIntegerMismatch(*this, LHS
, RHS
.get(), QuestionLoc
,
9280 /*IsIntFirstExpr=*/true))
9282 if (checkPointerIntegerMismatch(*this, RHS
, LHS
.get(), QuestionLoc
,
9283 /*IsIntFirstExpr=*/false))
9286 // Allow ?: operations in which both operands have the same
9287 // built-in sizeless type.
9288 if (LHSTy
->isSizelessBuiltinType() && Context
.hasSameType(LHSTy
, RHSTy
))
9289 return Context
.getCommonSugaredType(LHSTy
, RHSTy
);
9291 // Emit a better diagnostic if one of the expressions is a null pointer
9292 // constant and the other is not a pointer type. In this case, the user most
9293 // likely forgot to take the address of the other expression.
9294 if (DiagnoseConditionalForNull(LHS
.get(), RHS
.get(), QuestionLoc
))
9297 // Otherwise, the operands are not compatible.
9298 Diag(QuestionLoc
, diag::err_typecheck_cond_incompatible_operands
)
9299 << LHSTy
<< RHSTy
<< LHS
.get()->getSourceRange()
9300 << RHS
.get()->getSourceRange();
9304 /// FindCompositeObjCPointerType - Helper method to find composite type of
9305 /// two objective-c pointer types of the two input expressions.
9306 QualType
Sema::FindCompositeObjCPointerType(ExprResult
&LHS
, ExprResult
&RHS
,
9307 SourceLocation QuestionLoc
) {
9308 QualType LHSTy
= LHS
.get()->getType();
9309 QualType RHSTy
= RHS
.get()->getType();
9311 // Handle things like Class and struct objc_class*. Here we case the result
9312 // to the pseudo-builtin, because that will be implicitly cast back to the
9313 // redefinition type if an attempt is made to access its fields.
9314 if (LHSTy
->isObjCClassType() &&
9315 (Context
.hasSameType(RHSTy
, Context
.getObjCClassRedefinitionType()))) {
9316 RHS
= ImpCastExprToType(RHS
.get(), LHSTy
, CK_CPointerToObjCPointerCast
);
9319 if (RHSTy
->isObjCClassType() &&
9320 (Context
.hasSameType(LHSTy
, Context
.getObjCClassRedefinitionType()))) {
9321 LHS
= ImpCastExprToType(LHS
.get(), RHSTy
, CK_CPointerToObjCPointerCast
);
9324 // And the same for struct objc_object* / id
9325 if (LHSTy
->isObjCIdType() &&
9326 (Context
.hasSameType(RHSTy
, Context
.getObjCIdRedefinitionType()))) {
9327 RHS
= ImpCastExprToType(RHS
.get(), LHSTy
, CK_CPointerToObjCPointerCast
);
9330 if (RHSTy
->isObjCIdType() &&
9331 (Context
.hasSameType(LHSTy
, Context
.getObjCIdRedefinitionType()))) {
9332 LHS
= ImpCastExprToType(LHS
.get(), RHSTy
, CK_CPointerToObjCPointerCast
);
9335 // And the same for struct objc_selector* / SEL
9336 if (Context
.isObjCSelType(LHSTy
) &&
9337 (Context
.hasSameType(RHSTy
, Context
.getObjCSelRedefinitionType()))) {
9338 RHS
= ImpCastExprToType(RHS
.get(), LHSTy
, CK_BitCast
);
9341 if (Context
.isObjCSelType(RHSTy
) &&
9342 (Context
.hasSameType(LHSTy
, Context
.getObjCSelRedefinitionType()))) {
9343 LHS
= ImpCastExprToType(LHS
.get(), RHSTy
, CK_BitCast
);
9346 // Check constraints for Objective-C object pointers types.
9347 if (LHSTy
->isObjCObjectPointerType() && RHSTy
->isObjCObjectPointerType()) {
9349 if (Context
.getCanonicalType(LHSTy
) == Context
.getCanonicalType(RHSTy
)) {
9350 // Two identical object pointer types are always compatible.
9353 const ObjCObjectPointerType
*LHSOPT
= LHSTy
->castAs
<ObjCObjectPointerType
>();
9354 const ObjCObjectPointerType
*RHSOPT
= RHSTy
->castAs
<ObjCObjectPointerType
>();
9355 QualType compositeType
= LHSTy
;
9357 // If both operands are interfaces and either operand can be
9358 // assigned to the other, use that type as the composite
9359 // type. This allows
9360 // xxx ? (A*) a : (B*) b
9361 // where B is a subclass of A.
9363 // Additionally, as for assignment, if either type is 'id'
9364 // allow silent coercion. Finally, if the types are
9365 // incompatible then make sure to use 'id' as the composite
9366 // type so the result is acceptable for sending messages to.
9368 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9369 // It could return the composite type.
9370 if (!(compositeType
=
9371 Context
.areCommonBaseCompatible(LHSOPT
, RHSOPT
)).isNull()) {
9372 // Nothing more to do.
9373 } else if (Context
.canAssignObjCInterfaces(LHSOPT
, RHSOPT
)) {
9374 compositeType
= RHSOPT
->isObjCBuiltinType() ? RHSTy
: LHSTy
;
9375 } else if (Context
.canAssignObjCInterfaces(RHSOPT
, LHSOPT
)) {
9376 compositeType
= LHSOPT
->isObjCBuiltinType() ? LHSTy
: RHSTy
;
9377 } else if ((LHSOPT
->isObjCQualifiedIdType() ||
9378 RHSOPT
->isObjCQualifiedIdType()) &&
9379 Context
.ObjCQualifiedIdTypesAreCompatible(LHSOPT
, RHSOPT
,
9381 // Need to handle "id<xx>" explicitly.
9382 // GCC allows qualified id and any Objective-C type to devolve to
9383 // id. Currently localizing to here until clear this should be
9384 // part of ObjCQualifiedIdTypesAreCompatible.
9385 compositeType
= Context
.getObjCIdType();
9386 } else if (LHSTy
->isObjCIdType() || RHSTy
->isObjCIdType()) {
9387 compositeType
= Context
.getObjCIdType();
9389 Diag(QuestionLoc
, diag::ext_typecheck_cond_incompatible_operands
)
9391 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9392 QualType incompatTy
= Context
.getObjCIdType();
9393 LHS
= ImpCastExprToType(LHS
.get(), incompatTy
, CK_BitCast
);
9394 RHS
= ImpCastExprToType(RHS
.get(), incompatTy
, CK_BitCast
);
9397 // The object pointer types are compatible.
9398 LHS
= ImpCastExprToType(LHS
.get(), compositeType
, CK_BitCast
);
9399 RHS
= ImpCastExprToType(RHS
.get(), compositeType
, CK_BitCast
);
9400 return compositeType
;
9402 // Check Objective-C object pointer types and 'void *'
9403 if (LHSTy
->isVoidPointerType() && RHSTy
->isObjCObjectPointerType()) {
9404 if (getLangOpts().ObjCAutoRefCount
) {
9405 // ARC forbids the implicit conversion of object pointers to 'void *',
9406 // so these types are not compatible.
9407 Diag(QuestionLoc
, diag::err_cond_voidptr_arc
) << LHSTy
<< RHSTy
9408 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9412 QualType lhptee
= LHSTy
->castAs
<PointerType
>()->getPointeeType();
9413 QualType rhptee
= RHSTy
->castAs
<ObjCObjectPointerType
>()->getPointeeType();
9414 QualType destPointee
9415 = Context
.getQualifiedType(lhptee
, rhptee
.getQualifiers());
9416 QualType destType
= Context
.getPointerType(destPointee
);
9417 // Add qualifiers if necessary.
9418 LHS
= ImpCastExprToType(LHS
.get(), destType
, CK_NoOp
);
9419 // Promote to void*.
9420 RHS
= ImpCastExprToType(RHS
.get(), destType
, CK_BitCast
);
9423 if (LHSTy
->isObjCObjectPointerType() && RHSTy
->isVoidPointerType()) {
9424 if (getLangOpts().ObjCAutoRefCount
) {
9425 // ARC forbids the implicit conversion of object pointers to 'void *',
9426 // so these types are not compatible.
9427 Diag(QuestionLoc
, diag::err_cond_voidptr_arc
) << LHSTy
<< RHSTy
9428 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
9432 QualType lhptee
= LHSTy
->castAs
<ObjCObjectPointerType
>()->getPointeeType();
9433 QualType rhptee
= RHSTy
->castAs
<PointerType
>()->getPointeeType();
9434 QualType destPointee
9435 = Context
.getQualifiedType(rhptee
, lhptee
.getQualifiers());
9436 QualType destType
= Context
.getPointerType(destPointee
);
9437 // Add qualifiers if necessary.
9438 RHS
= ImpCastExprToType(RHS
.get(), destType
, CK_NoOp
);
9439 // Promote to void*.
9440 LHS
= ImpCastExprToType(LHS
.get(), destType
, CK_BitCast
);
9446 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9447 /// ParenRange in parentheses.
9448 static void SuggestParentheses(Sema
&Self
, SourceLocation Loc
,
9449 const PartialDiagnostic
&Note
,
9450 SourceRange ParenRange
) {
9451 SourceLocation EndLoc
= Self
.getLocForEndOfToken(ParenRange
.getEnd());
9452 if (ParenRange
.getBegin().isFileID() && ParenRange
.getEnd().isFileID() &&
9454 Self
.Diag(Loc
, Note
)
9455 << FixItHint::CreateInsertion(ParenRange
.getBegin(), "(")
9456 << FixItHint::CreateInsertion(EndLoc
, ")");
9458 // We can't display the parentheses, so just show the bare note.
9459 Self
.Diag(Loc
, Note
) << ParenRange
;
9463 static bool IsArithmeticOp(BinaryOperatorKind Opc
) {
9464 return BinaryOperator::isAdditiveOp(Opc
) ||
9465 BinaryOperator::isMultiplicativeOp(Opc
) ||
9466 BinaryOperator::isShiftOp(Opc
) || Opc
== BO_And
|| Opc
== BO_Or
;
9467 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9468 // not any of the logical operators. Bitwise-xor is commonly used as a
9469 // logical-xor because there is no logical-xor operator. The logical
9470 // operators, including uses of xor, have a high false positive rate for
9471 // precedence warnings.
9474 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9475 /// expression, either using a built-in or overloaded operator,
9476 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9478 static bool IsArithmeticBinaryExpr(Expr
*E
, BinaryOperatorKind
*Opcode
,
9480 // Don't strip parenthesis: we should not warn if E is in parenthesis.
9481 E
= E
->IgnoreImpCasts();
9482 E
= E
->IgnoreConversionOperatorSingleStep();
9483 E
= E
->IgnoreImpCasts();
9484 if (auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
9485 E
= MTE
->getSubExpr();
9486 E
= E
->IgnoreImpCasts();
9489 // Built-in binary operator.
9490 if (BinaryOperator
*OP
= dyn_cast
<BinaryOperator
>(E
)) {
9491 if (IsArithmeticOp(OP
->getOpcode())) {
9492 *Opcode
= OP
->getOpcode();
9493 *RHSExprs
= OP
->getRHS();
9498 // Overloaded operator.
9499 if (CXXOperatorCallExpr
*Call
= dyn_cast
<CXXOperatorCallExpr
>(E
)) {
9500 if (Call
->getNumArgs() != 2)
9503 // Make sure this is really a binary operator that is safe to pass into
9504 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9505 OverloadedOperatorKind OO
= Call
->getOperator();
9506 if (OO
< OO_Plus
|| OO
> OO_Arrow
||
9507 OO
== OO_PlusPlus
|| OO
== OO_MinusMinus
)
9510 BinaryOperatorKind OpKind
= BinaryOperator::getOverloadedOpcode(OO
);
9511 if (IsArithmeticOp(OpKind
)) {
9513 *RHSExprs
= Call
->getArg(1);
9521 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9522 /// or is a logical expression such as (x==y) which has int type, but is
9523 /// commonly interpreted as boolean.
9524 static bool ExprLooksBoolean(Expr
*E
) {
9525 E
= E
->IgnoreParenImpCasts();
9527 if (E
->getType()->isBooleanType())
9529 if (BinaryOperator
*OP
= dyn_cast
<BinaryOperator
>(E
))
9530 return OP
->isComparisonOp() || OP
->isLogicalOp();
9531 if (UnaryOperator
*OP
= dyn_cast
<UnaryOperator
>(E
))
9532 return OP
->getOpcode() == UO_LNot
;
9533 if (E
->getType()->isPointerType())
9535 // FIXME: What about overloaded operator calls returning "unspecified boolean
9536 // type"s (commonly pointer-to-members)?
9541 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9542 /// and binary operator are mixed in a way that suggests the programmer assumed
9543 /// the conditional operator has higher precedence, for example:
9544 /// "int x = a + someBinaryCondition ? 1 : 2".
9545 static void DiagnoseConditionalPrecedence(Sema
&Self
,
9546 SourceLocation OpLoc
,
9550 BinaryOperatorKind CondOpcode
;
9553 if (!IsArithmeticBinaryExpr(Condition
, &CondOpcode
, &CondRHS
))
9555 if (!ExprLooksBoolean(CondRHS
))
9558 // The condition is an arithmetic binary expression, with a right-
9559 // hand side that looks boolean, so warn.
9561 unsigned DiagID
= BinaryOperator::isBitwiseOp(CondOpcode
)
9562 ? diag::warn_precedence_bitwise_conditional
9563 : diag::warn_precedence_conditional
;
9565 Self
.Diag(OpLoc
, DiagID
)
9566 << Condition
->getSourceRange()
9567 << BinaryOperator::getOpcodeStr(CondOpcode
);
9571 Self
.PDiag(diag::note_precedence_silence
)
9572 << BinaryOperator::getOpcodeStr(CondOpcode
),
9573 SourceRange(Condition
->getBeginLoc(), Condition
->getEndLoc()));
9575 SuggestParentheses(Self
, OpLoc
,
9576 Self
.PDiag(diag::note_precedence_conditional_first
),
9577 SourceRange(CondRHS
->getBeginLoc(), RHSExpr
->getEndLoc()));
9580 /// Compute the nullability of a conditional expression.
9581 static QualType
computeConditionalNullability(QualType ResTy
, bool IsBin
,
9582 QualType LHSTy
, QualType RHSTy
,
9584 if (!ResTy
->isAnyPointerType())
9587 auto GetNullability
= [](QualType Ty
) {
9588 std::optional
<NullabilityKind
> Kind
= Ty
->getNullability();
9590 // For our purposes, treat _Nullable_result as _Nullable.
9591 if (*Kind
== NullabilityKind::NullableResult
)
9592 return NullabilityKind::Nullable
;
9595 return NullabilityKind::Unspecified
;
9598 auto LHSKind
= GetNullability(LHSTy
), RHSKind
= GetNullability(RHSTy
);
9599 NullabilityKind MergedKind
;
9601 // Compute nullability of a binary conditional expression.
9603 if (LHSKind
== NullabilityKind::NonNull
)
9604 MergedKind
= NullabilityKind::NonNull
;
9606 MergedKind
= RHSKind
;
9607 // Compute nullability of a normal conditional expression.
9609 if (LHSKind
== NullabilityKind::Nullable
||
9610 RHSKind
== NullabilityKind::Nullable
)
9611 MergedKind
= NullabilityKind::Nullable
;
9612 else if (LHSKind
== NullabilityKind::NonNull
)
9613 MergedKind
= RHSKind
;
9614 else if (RHSKind
== NullabilityKind::NonNull
)
9615 MergedKind
= LHSKind
;
9617 MergedKind
= NullabilityKind::Unspecified
;
9620 // Return if ResTy already has the correct nullability.
9621 if (GetNullability(ResTy
) == MergedKind
)
9624 // Strip all nullability from ResTy.
9625 while (ResTy
->getNullability())
9626 ResTy
= ResTy
.getSingleStepDesugaredType(Ctx
);
9628 // Create a new AttributedType with the new nullability kind.
9629 auto NewAttr
= AttributedType::getNullabilityAttrKind(MergedKind
);
9630 return Ctx
.getAttributedType(NewAttr
, ResTy
, ResTy
);
9633 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
9634 /// in the case of a the GNU conditional expr extension.
9635 ExprResult
Sema::ActOnConditionalOp(SourceLocation QuestionLoc
,
9636 SourceLocation ColonLoc
,
9637 Expr
*CondExpr
, Expr
*LHSExpr
,
9639 if (!Context
.isDependenceAllowed()) {
9640 // C cannot handle TypoExpr nodes in the condition because it
9641 // doesn't handle dependent types properly, so make sure any TypoExprs have
9642 // been dealt with before checking the operands.
9643 ExprResult CondResult
= CorrectDelayedTyposInExpr(CondExpr
);
9644 ExprResult LHSResult
= CorrectDelayedTyposInExpr(LHSExpr
);
9645 ExprResult RHSResult
= CorrectDelayedTyposInExpr(RHSExpr
);
9647 if (!CondResult
.isUsable())
9651 if (!LHSResult
.isUsable())
9655 if (!RHSResult
.isUsable())
9658 CondExpr
= CondResult
.get();
9659 LHSExpr
= LHSResult
.get();
9660 RHSExpr
= RHSResult
.get();
9663 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9664 // was the condition.
9665 OpaqueValueExpr
*opaqueValue
= nullptr;
9666 Expr
*commonExpr
= nullptr;
9668 commonExpr
= CondExpr
;
9669 // Lower out placeholder types first. This is important so that we don't
9670 // try to capture a placeholder. This happens in few cases in C++; such
9671 // as Objective-C++'s dictionary subscripting syntax.
9672 if (commonExpr
->hasPlaceholderType()) {
9673 ExprResult result
= CheckPlaceholderExpr(commonExpr
);
9674 if (!result
.isUsable()) return ExprError();
9675 commonExpr
= result
.get();
9677 // We usually want to apply unary conversions *before* saving, except
9678 // in the special case of a C++ l-value conditional.
9679 if (!(getLangOpts().CPlusPlus
9680 && !commonExpr
->isTypeDependent()
9681 && commonExpr
->getValueKind() == RHSExpr
->getValueKind()
9682 && commonExpr
->isGLValue()
9683 && commonExpr
->isOrdinaryOrBitFieldObject()
9684 && RHSExpr
->isOrdinaryOrBitFieldObject()
9685 && Context
.hasSameType(commonExpr
->getType(), RHSExpr
->getType()))) {
9686 ExprResult commonRes
= UsualUnaryConversions(commonExpr
);
9687 if (commonRes
.isInvalid())
9689 commonExpr
= commonRes
.get();
9692 // If the common expression is a class or array prvalue, materialize it
9693 // so that we can safely refer to it multiple times.
9694 if (commonExpr
->isPRValue() && (commonExpr
->getType()->isRecordType() ||
9695 commonExpr
->getType()->isArrayType())) {
9696 ExprResult MatExpr
= TemporaryMaterializationConversion(commonExpr
);
9697 if (MatExpr
.isInvalid())
9699 commonExpr
= MatExpr
.get();
9702 opaqueValue
= new (Context
) OpaqueValueExpr(commonExpr
->getExprLoc(),
9703 commonExpr
->getType(),
9704 commonExpr
->getValueKind(),
9705 commonExpr
->getObjectKind(),
9707 LHSExpr
= CondExpr
= opaqueValue
;
9710 QualType LHSTy
= LHSExpr
->getType(), RHSTy
= RHSExpr
->getType();
9711 ExprValueKind VK
= VK_PRValue
;
9712 ExprObjectKind OK
= OK_Ordinary
;
9713 ExprResult Cond
= CondExpr
, LHS
= LHSExpr
, RHS
= RHSExpr
;
9714 QualType result
= CheckConditionalOperands(Cond
, LHS
, RHS
,
9715 VK
, OK
, QuestionLoc
);
9716 if (result
.isNull() || Cond
.isInvalid() || LHS
.isInvalid() ||
9720 DiagnoseConditionalPrecedence(*this, QuestionLoc
, Cond
.get(), LHS
.get(),
9723 CheckBoolLikeConversion(Cond
.get(), QuestionLoc
);
9725 result
= computeConditionalNullability(result
, commonExpr
, LHSTy
, RHSTy
,
9729 return new (Context
)
9730 ConditionalOperator(Cond
.get(), QuestionLoc
, LHS
.get(), ColonLoc
,
9731 RHS
.get(), result
, VK
, OK
);
9733 return new (Context
) BinaryConditionalOperator(
9734 commonExpr
, opaqueValue
, Cond
.get(), LHS
.get(), RHS
.get(), QuestionLoc
,
9735 ColonLoc
, result
, VK
, OK
);
9738 // Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
9739 bool Sema::IsInvalidSMECallConversion(QualType FromType
, QualType ToType
,
9740 AArch64SMECallConversionKind C
) {
9741 unsigned FromAttributes
= 0, ToAttributes
= 0;
9742 if (const auto *FromFn
=
9743 dyn_cast
<FunctionProtoType
>(Context
.getCanonicalType(FromType
)))
9745 FromFn
->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask
;
9746 if (const auto *ToFn
=
9747 dyn_cast
<FunctionProtoType
>(Context
.getCanonicalType(ToType
)))
9749 ToFn
->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask
;
9751 if (FromAttributes
== ToAttributes
)
9754 // If the '__arm_preserves_za' is the only difference between the types,
9755 // check whether we're allowed to add or remove it.
9756 if ((FromAttributes
^ ToAttributes
) ==
9757 FunctionType::SME_PStateZAPreservedMask
) {
9759 case AArch64SMECallConversionKind::MatchExactly
:
9761 case AArch64SMECallConversionKind::MayAddPreservesZA
:
9762 return !(ToAttributes
& FunctionType::SME_PStateZAPreservedMask
);
9763 case AArch64SMECallConversionKind::MayDropPreservesZA
:
9764 return !(FromAttributes
& FunctionType::SME_PStateZAPreservedMask
);
9768 // There has been a mismatch of attributes
9772 // Check if we have a conversion between incompatible cmse function pointer
9773 // types, that is, a conversion between a function pointer with the
9774 // cmse_nonsecure_call attribute and one without.
9775 static bool IsInvalidCmseNSCallConversion(Sema
&S
, QualType FromType
,
9777 if (const auto *ToFn
=
9778 dyn_cast
<FunctionType
>(S
.Context
.getCanonicalType(ToType
))) {
9779 if (const auto *FromFn
=
9780 dyn_cast
<FunctionType
>(S
.Context
.getCanonicalType(FromType
))) {
9781 FunctionType::ExtInfo ToEInfo
= ToFn
->getExtInfo();
9782 FunctionType::ExtInfo FromEInfo
= FromFn
->getExtInfo();
9784 return ToEInfo
.getCmseNSCall() != FromEInfo
.getCmseNSCall();
9790 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9791 // being closely modeled after the C99 spec:-). The odd characteristic of this
9792 // routine is it effectively iqnores the qualifiers on the top level pointee.
9793 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9794 // FIXME: add a couple examples in this comment.
9795 static Sema::AssignConvertType
9796 checkPointerTypesForAssignment(Sema
&S
, QualType LHSType
, QualType RHSType
,
9797 SourceLocation Loc
) {
9798 assert(LHSType
.isCanonical() && "LHS not canonicalized!");
9799 assert(RHSType
.isCanonical() && "RHS not canonicalized!");
9801 // get the "pointed to" type (ignoring qualifiers at the top level)
9802 const Type
*lhptee
, *rhptee
;
9803 Qualifiers lhq
, rhq
;
9804 std::tie(lhptee
, lhq
) =
9805 cast
<PointerType
>(LHSType
)->getPointeeType().split().asPair();
9806 std::tie(rhptee
, rhq
) =
9807 cast
<PointerType
>(RHSType
)->getPointeeType().split().asPair();
9809 Sema::AssignConvertType ConvTy
= Sema::Compatible
;
9811 // C99 6.5.16.1p1: This following citation is common to constraints
9812 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9813 // qualifiers of the type *pointed to* by the right;
9815 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9816 if (lhq
.getObjCLifetime() != rhq
.getObjCLifetime() &&
9817 lhq
.compatiblyIncludesObjCLifetime(rhq
)) {
9818 // Ignore lifetime for further calculation.
9819 lhq
.removeObjCLifetime();
9820 rhq
.removeObjCLifetime();
9823 if (!lhq
.compatiblyIncludes(rhq
)) {
9824 // Treat address-space mismatches as fatal.
9825 if (!lhq
.isAddressSpaceSupersetOf(rhq
))
9826 return Sema::IncompatiblePointerDiscardsQualifiers
;
9828 // It's okay to add or remove GC or lifetime qualifiers when converting to
9830 else if (lhq
.withoutObjCGCAttr().withoutObjCLifetime()
9831 .compatiblyIncludes(
9832 rhq
.withoutObjCGCAttr().withoutObjCLifetime())
9833 && (lhptee
->isVoidType() || rhptee
->isVoidType()))
9836 // Treat lifetime mismatches as fatal.
9837 else if (lhq
.getObjCLifetime() != rhq
.getObjCLifetime())
9838 ConvTy
= Sema::IncompatiblePointerDiscardsQualifiers
;
9840 // For GCC/MS compatibility, other qualifier mismatches are treated
9841 // as still compatible in C.
9842 else ConvTy
= Sema::CompatiblePointerDiscardsQualifiers
;
9845 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9846 // incomplete type and the other is a pointer to a qualified or unqualified
9847 // version of void...
9848 if (lhptee
->isVoidType()) {
9849 if (rhptee
->isIncompleteOrObjectType())
9852 // As an extension, we allow cast to/from void* to function pointer.
9853 assert(rhptee
->isFunctionType());
9854 return Sema::FunctionVoidPointer
;
9857 if (rhptee
->isVoidType()) {
9858 if (lhptee
->isIncompleteOrObjectType())
9861 // As an extension, we allow cast to/from void* to function pointer.
9862 assert(lhptee
->isFunctionType());
9863 return Sema::FunctionVoidPointer
;
9866 if (!S
.Diags
.isIgnored(
9867 diag::warn_typecheck_convert_incompatible_function_pointer_strict
,
9869 RHSType
->isFunctionPointerType() && LHSType
->isFunctionPointerType() &&
9870 !S
.IsFunctionConversion(RHSType
, LHSType
, RHSType
))
9871 return Sema::IncompatibleFunctionPointerStrict
;
9873 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9874 // unqualified versions of compatible types, ...
9875 QualType ltrans
= QualType(lhptee
, 0), rtrans
= QualType(rhptee
, 0);
9876 if (!S
.Context
.typesAreCompatible(ltrans
, rtrans
)) {
9877 // Check if the pointee types are compatible ignoring the sign.
9878 // We explicitly check for char so that we catch "char" vs
9879 // "unsigned char" on systems where "char" is unsigned.
9880 if (lhptee
->isCharType())
9881 ltrans
= S
.Context
.UnsignedCharTy
;
9882 else if (lhptee
->hasSignedIntegerRepresentation())
9883 ltrans
= S
.Context
.getCorrespondingUnsignedType(ltrans
);
9885 if (rhptee
->isCharType())
9886 rtrans
= S
.Context
.UnsignedCharTy
;
9887 else if (rhptee
->hasSignedIntegerRepresentation())
9888 rtrans
= S
.Context
.getCorrespondingUnsignedType(rtrans
);
9890 if (ltrans
== rtrans
) {
9891 // Types are compatible ignoring the sign. Qualifier incompatibility
9892 // takes priority over sign incompatibility because the sign
9893 // warning can be disabled.
9894 if (ConvTy
!= Sema::Compatible
)
9897 return Sema::IncompatiblePointerSign
;
9900 // If we are a multi-level pointer, it's possible that our issue is simply
9901 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9902 // the eventual target type is the same and the pointers have the same
9903 // level of indirection, this must be the issue.
9904 if (isa
<PointerType
>(lhptee
) && isa
<PointerType
>(rhptee
)) {
9906 std::tie(lhptee
, lhq
) =
9907 cast
<PointerType
>(lhptee
)->getPointeeType().split().asPair();
9908 std::tie(rhptee
, rhq
) =
9909 cast
<PointerType
>(rhptee
)->getPointeeType().split().asPair();
9911 // Inconsistent address spaces at this point is invalid, even if the
9912 // address spaces would be compatible.
9913 // FIXME: This doesn't catch address space mismatches for pointers of
9914 // different nesting levels, like:
9915 // __local int *** a;
9917 // It's not clear how to actually determine when such pointers are
9918 // invalidly incompatible.
9919 if (lhq
.getAddressSpace() != rhq
.getAddressSpace())
9920 return Sema::IncompatibleNestedPointerAddressSpaceMismatch
;
9922 } while (isa
<PointerType
>(lhptee
) && isa
<PointerType
>(rhptee
));
9924 if (lhptee
== rhptee
)
9925 return Sema::IncompatibleNestedPointerQualifiers
;
9928 // General pointer incompatibility takes priority over qualifiers.
9929 if (RHSType
->isFunctionPointerType() && LHSType
->isFunctionPointerType())
9930 return Sema::IncompatibleFunctionPointer
;
9931 return Sema::IncompatiblePointer
;
9933 if (!S
.getLangOpts().CPlusPlus
&&
9934 S
.IsFunctionConversion(ltrans
, rtrans
, ltrans
))
9935 return Sema::IncompatibleFunctionPointer
;
9936 if (IsInvalidCmseNSCallConversion(S
, ltrans
, rtrans
))
9937 return Sema::IncompatibleFunctionPointer
;
9938 if (S
.IsInvalidSMECallConversion(
9940 Sema::AArch64SMECallConversionKind::MayDropPreservesZA
))
9941 return Sema::IncompatibleFunctionPointer
;
9945 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9946 /// block pointer types are compatible or whether a block and normal pointer
9947 /// are compatible. It is more restrict than comparing two function pointer
9949 static Sema::AssignConvertType
9950 checkBlockPointerTypesForAssignment(Sema
&S
, QualType LHSType
,
9952 assert(LHSType
.isCanonical() && "LHS not canonicalized!");
9953 assert(RHSType
.isCanonical() && "RHS not canonicalized!");
9955 QualType lhptee
, rhptee
;
9957 // get the "pointed to" type (ignoring qualifiers at the top level)
9958 lhptee
= cast
<BlockPointerType
>(LHSType
)->getPointeeType();
9959 rhptee
= cast
<BlockPointerType
>(RHSType
)->getPointeeType();
9961 // In C++, the types have to match exactly.
9962 if (S
.getLangOpts().CPlusPlus
)
9963 return Sema::IncompatibleBlockPointer
;
9965 Sema::AssignConvertType ConvTy
= Sema::Compatible
;
9967 // For blocks we enforce that qualifiers are identical.
9968 Qualifiers LQuals
= lhptee
.getLocalQualifiers();
9969 Qualifiers RQuals
= rhptee
.getLocalQualifiers();
9970 if (S
.getLangOpts().OpenCL
) {
9971 LQuals
.removeAddressSpace();
9972 RQuals
.removeAddressSpace();
9974 if (LQuals
!= RQuals
)
9975 ConvTy
= Sema::CompatiblePointerDiscardsQualifiers
;
9977 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9979 // The current behavior is similar to C++ lambdas. A block might be
9980 // assigned to a variable iff its return type and parameters are compatible
9981 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9982 // an assignment. Presumably it should behave in way that a function pointer
9983 // assignment does in C, so for each parameter and return type:
9984 // * CVR and address space of LHS should be a superset of CVR and address
9986 // * unqualified types should be compatible.
9987 if (S
.getLangOpts().OpenCL
) {
9988 if (!S
.Context
.typesAreBlockPointerCompatible(
9989 S
.Context
.getQualifiedType(LHSType
.getUnqualifiedType(), LQuals
),
9990 S
.Context
.getQualifiedType(RHSType
.getUnqualifiedType(), RQuals
)))
9991 return Sema::IncompatibleBlockPointer
;
9992 } else if (!S
.Context
.typesAreBlockPointerCompatible(LHSType
, RHSType
))
9993 return Sema::IncompatibleBlockPointer
;
9998 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9999 /// for assignment compatibility.
10000 static Sema::AssignConvertType
10001 checkObjCPointerTypesForAssignment(Sema
&S
, QualType LHSType
,
10002 QualType RHSType
) {
10003 assert(LHSType
.isCanonical() && "LHS was not canonicalized!");
10004 assert(RHSType
.isCanonical() && "RHS was not canonicalized!");
10006 if (LHSType
->isObjCBuiltinType()) {
10007 // Class is not compatible with ObjC object pointers.
10008 if (LHSType
->isObjCClassType() && !RHSType
->isObjCBuiltinType() &&
10009 !RHSType
->isObjCQualifiedClassType())
10010 return Sema::IncompatiblePointer
;
10011 return Sema::Compatible
;
10013 if (RHSType
->isObjCBuiltinType()) {
10014 if (RHSType
->isObjCClassType() && !LHSType
->isObjCBuiltinType() &&
10015 !LHSType
->isObjCQualifiedClassType())
10016 return Sema::IncompatiblePointer
;
10017 return Sema::Compatible
;
10019 QualType lhptee
= LHSType
->castAs
<ObjCObjectPointerType
>()->getPointeeType();
10020 QualType rhptee
= RHSType
->castAs
<ObjCObjectPointerType
>()->getPointeeType();
10022 if (!lhptee
.isAtLeastAsQualifiedAs(rhptee
) &&
10023 // make an exception for id<P>
10024 !LHSType
->isObjCQualifiedIdType())
10025 return Sema::CompatiblePointerDiscardsQualifiers
;
10027 if (S
.Context
.typesAreCompatible(LHSType
, RHSType
))
10028 return Sema::Compatible
;
10029 if (LHSType
->isObjCQualifiedIdType() || RHSType
->isObjCQualifiedIdType())
10030 return Sema::IncompatibleObjCQualifiedId
;
10031 return Sema::IncompatiblePointer
;
10034 Sema::AssignConvertType
10035 Sema::CheckAssignmentConstraints(SourceLocation Loc
,
10036 QualType LHSType
, QualType RHSType
) {
10037 // Fake up an opaque expression. We don't actually care about what
10038 // cast operations are required, so if CheckAssignmentConstraints
10039 // adds casts to this they'll be wasted, but fortunately that doesn't
10040 // usually happen on valid code.
10041 OpaqueValueExpr
RHSExpr(Loc
, RHSType
, VK_PRValue
);
10042 ExprResult RHSPtr
= &RHSExpr
;
10045 return CheckAssignmentConstraints(LHSType
, RHSPtr
, K
, /*ConvertRHS=*/false);
10048 /// This helper function returns true if QT is a vector type that has element
10049 /// type ElementType.
10050 static bool isVector(QualType QT
, QualType ElementType
) {
10051 if (const VectorType
*VT
= QT
->getAs
<VectorType
>())
10052 return VT
->getElementType().getCanonicalType() == ElementType
;
10056 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
10057 /// has code to accommodate several GCC extensions when type checking
10058 /// pointers. Here are some objectionable examples that GCC considers warnings:
10062 /// struct foo *pfoo;
10064 /// pint = pshort; // warning: assignment from incompatible pointer type
10065 /// a = pint; // warning: assignment makes integer from pointer without a cast
10066 /// pint = a; // warning: assignment makes pointer from integer without a cast
10067 /// pint = pfoo; // warning: assignment from incompatible pointer type
10069 /// As a result, the code for dealing with pointers is more complex than the
10070 /// C99 spec dictates.
10072 /// Sets 'Kind' for any result kind except Incompatible.
10073 Sema::AssignConvertType
10074 Sema::CheckAssignmentConstraints(QualType LHSType
, ExprResult
&RHS
,
10075 CastKind
&Kind
, bool ConvertRHS
) {
10076 QualType RHSType
= RHS
.get()->getType();
10077 QualType OrigLHSType
= LHSType
;
10079 // Get canonical types. We're not formatting these types, just comparing
10081 LHSType
= Context
.getCanonicalType(LHSType
).getUnqualifiedType();
10082 RHSType
= Context
.getCanonicalType(RHSType
).getUnqualifiedType();
10084 // Common case: no conversion required.
10085 if (LHSType
== RHSType
) {
10090 // If the LHS has an __auto_type, there are no additional type constraints
10091 // to be worried about.
10092 if (const auto *AT
= dyn_cast
<AutoType
>(LHSType
)) {
10093 if (AT
->isGNUAutoType()) {
10099 // If we have an atomic type, try a non-atomic assignment, then just add an
10100 // atomic qualification step.
10101 if (const AtomicType
*AtomicTy
= dyn_cast
<AtomicType
>(LHSType
)) {
10102 Sema::AssignConvertType result
=
10103 CheckAssignmentConstraints(AtomicTy
->getValueType(), RHS
, Kind
);
10104 if (result
!= Compatible
)
10106 if (Kind
!= CK_NoOp
&& ConvertRHS
)
10107 RHS
= ImpCastExprToType(RHS
.get(), AtomicTy
->getValueType(), Kind
);
10108 Kind
= CK_NonAtomicToAtomic
;
10112 // If the left-hand side is a reference type, then we are in a
10113 // (rare!) case where we've allowed the use of references in C,
10114 // e.g., as a parameter type in a built-in function. In this case,
10115 // just make sure that the type referenced is compatible with the
10116 // right-hand side type. The caller is responsible for adjusting
10117 // LHSType so that the resulting expression does not have reference
10119 if (const ReferenceType
*LHSTypeRef
= LHSType
->getAs
<ReferenceType
>()) {
10120 if (Context
.typesAreCompatible(LHSTypeRef
->getPointeeType(), RHSType
)) {
10121 Kind
= CK_LValueBitCast
;
10124 return Incompatible
;
10127 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
10128 // to the same ExtVector type.
10129 if (LHSType
->isExtVectorType()) {
10130 if (RHSType
->isExtVectorType())
10131 return Incompatible
;
10132 if (RHSType
->isArithmeticType()) {
10133 // CK_VectorSplat does T -> vector T, so first cast to the element type.
10135 RHS
= prepareVectorSplat(LHSType
, RHS
.get());
10136 Kind
= CK_VectorSplat
;
10141 // Conversions to or from vector type.
10142 if (LHSType
->isVectorType() || RHSType
->isVectorType()) {
10143 if (LHSType
->isVectorType() && RHSType
->isVectorType()) {
10144 // Allow assignments of an AltiVec vector type to an equivalent GCC
10145 // vector type and vice versa
10146 if (Context
.areCompatibleVectorTypes(LHSType
, RHSType
)) {
10151 // If we are allowing lax vector conversions, and LHS and RHS are both
10152 // vectors, the total size only needs to be the same. This is a bitcast;
10153 // no bits are changed but the result type is different.
10154 if (isLaxVectorConversion(RHSType
, LHSType
)) {
10155 // The default for lax vector conversions with Altivec vectors will
10156 // change, so if we are converting between vector types where
10157 // at least one is an Altivec vector, emit a warning.
10158 if (Context
.getTargetInfo().getTriple().isPPC() &&
10159 anyAltivecTypes(RHSType
, LHSType
) &&
10160 !Context
.areCompatibleVectorTypes(RHSType
, LHSType
))
10161 Diag(RHS
.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all
)
10162 << RHSType
<< LHSType
;
10164 return IncompatibleVectors
;
10168 // When the RHS comes from another lax conversion (e.g. binops between
10169 // scalars and vectors) the result is canonicalized as a vector. When the
10170 // LHS is also a vector, the lax is allowed by the condition above. Handle
10171 // the case where LHS is a scalar.
10172 if (LHSType
->isScalarType()) {
10173 const VectorType
*VecType
= RHSType
->getAs
<VectorType
>();
10174 if (VecType
&& VecType
->getNumElements() == 1 &&
10175 isLaxVectorConversion(RHSType
, LHSType
)) {
10176 if (Context
.getTargetInfo().getTriple().isPPC() &&
10177 (VecType
->getVectorKind() == VectorType::AltiVecVector
||
10178 VecType
->getVectorKind() == VectorType::AltiVecBool
||
10179 VecType
->getVectorKind() == VectorType::AltiVecPixel
))
10180 Diag(RHS
.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all
)
10181 << RHSType
<< LHSType
;
10182 ExprResult
*VecExpr
= &RHS
;
10183 *VecExpr
= ImpCastExprToType(VecExpr
->get(), LHSType
, CK_BitCast
);
10189 // Allow assignments between fixed-length and sizeless SVE vectors.
10190 if ((LHSType
->isSVESizelessBuiltinType() && RHSType
->isVectorType()) ||
10191 (LHSType
->isVectorType() && RHSType
->isSVESizelessBuiltinType()))
10192 if (Context
.areCompatibleSveTypes(LHSType
, RHSType
) ||
10193 Context
.areLaxCompatibleSveTypes(LHSType
, RHSType
)) {
10198 // Allow assignments between fixed-length and sizeless RVV vectors.
10199 if ((LHSType
->isRVVSizelessBuiltinType() && RHSType
->isVectorType()) ||
10200 (LHSType
->isVectorType() && RHSType
->isRVVSizelessBuiltinType())) {
10201 if (Context
.areCompatibleRVVTypes(LHSType
, RHSType
) ||
10202 Context
.areLaxCompatibleRVVTypes(LHSType
, RHSType
)) {
10208 return Incompatible
;
10211 // Diagnose attempts to convert between __ibm128, __float128 and long double
10212 // where such conversions currently can't be handled.
10213 if (unsupportedTypeConversion(*this, LHSType
, RHSType
))
10214 return Incompatible
;
10216 // Disallow assigning a _Complex to a real type in C++ mode since it simply
10217 // discards the imaginary part.
10218 if (getLangOpts().CPlusPlus
&& RHSType
->getAs
<ComplexType
>() &&
10219 !LHSType
->getAs
<ComplexType
>())
10220 return Incompatible
;
10222 // Arithmetic conversions.
10223 if (LHSType
->isArithmeticType() && RHSType
->isArithmeticType() &&
10224 !(getLangOpts().CPlusPlus
&& LHSType
->isEnumeralType())) {
10226 Kind
= PrepareScalarCast(RHS
, LHSType
);
10230 // Conversions to normal pointers.
10231 if (const PointerType
*LHSPointer
= dyn_cast
<PointerType
>(LHSType
)) {
10233 if (isa
<PointerType
>(RHSType
)) {
10234 LangAS AddrSpaceL
= LHSPointer
->getPointeeType().getAddressSpace();
10235 LangAS AddrSpaceR
= RHSType
->getPointeeType().getAddressSpace();
10236 if (AddrSpaceL
!= AddrSpaceR
)
10237 Kind
= CK_AddressSpaceConversion
;
10238 else if (Context
.hasCvrSimilarType(RHSType
, LHSType
))
10242 return checkPointerTypesForAssignment(*this, LHSType
, RHSType
,
10243 RHS
.get()->getBeginLoc());
10247 if (RHSType
->isIntegerType()) {
10248 Kind
= CK_IntegralToPointer
; // FIXME: null?
10249 return IntToPointer
;
10252 // C pointers are not compatible with ObjC object pointers,
10253 // with two exceptions:
10254 if (isa
<ObjCObjectPointerType
>(RHSType
)) {
10255 // - conversions to void*
10256 if (LHSPointer
->getPointeeType()->isVoidType()) {
10261 // - conversions from 'Class' to the redefinition type
10262 if (RHSType
->isObjCClassType() &&
10263 Context
.hasSameType(LHSType
,
10264 Context
.getObjCClassRedefinitionType())) {
10270 return IncompatiblePointer
;
10274 if (RHSType
->getAs
<BlockPointerType
>()) {
10275 if (LHSPointer
->getPointeeType()->isVoidType()) {
10276 LangAS AddrSpaceL
= LHSPointer
->getPointeeType().getAddressSpace();
10277 LangAS AddrSpaceR
= RHSType
->getAs
<BlockPointerType
>()
10279 .getAddressSpace();
10281 AddrSpaceL
!= AddrSpaceR
? CK_AddressSpaceConversion
: CK_BitCast
;
10286 return Incompatible
;
10289 // Conversions to block pointers.
10290 if (isa
<BlockPointerType
>(LHSType
)) {
10292 if (RHSType
->isBlockPointerType()) {
10293 LangAS AddrSpaceL
= LHSType
->getAs
<BlockPointerType
>()
10295 .getAddressSpace();
10296 LangAS AddrSpaceR
= RHSType
->getAs
<BlockPointerType
>()
10298 .getAddressSpace();
10299 Kind
= AddrSpaceL
!= AddrSpaceR
? CK_AddressSpaceConversion
: CK_BitCast
;
10300 return checkBlockPointerTypesForAssignment(*this, LHSType
, RHSType
);
10303 // int or null -> T^
10304 if (RHSType
->isIntegerType()) {
10305 Kind
= CK_IntegralToPointer
; // FIXME: null
10306 return IntToBlockPointer
;
10310 if (getLangOpts().ObjC
&& RHSType
->isObjCIdType()) {
10311 Kind
= CK_AnyPointerToBlockPointerCast
;
10316 if (const PointerType
*RHSPT
= RHSType
->getAs
<PointerType
>())
10317 if (RHSPT
->getPointeeType()->isVoidType()) {
10318 Kind
= CK_AnyPointerToBlockPointerCast
;
10322 return Incompatible
;
10325 // Conversions to Objective-C pointers.
10326 if (isa
<ObjCObjectPointerType
>(LHSType
)) {
10328 if (RHSType
->isObjCObjectPointerType()) {
10330 Sema::AssignConvertType result
=
10331 checkObjCPointerTypesForAssignment(*this, LHSType
, RHSType
);
10332 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10333 result
== Compatible
&&
10334 !CheckObjCARCUnavailableWeakConversion(OrigLHSType
, RHSType
))
10335 result
= IncompatibleObjCWeakRef
;
10339 // int or null -> A*
10340 if (RHSType
->isIntegerType()) {
10341 Kind
= CK_IntegralToPointer
; // FIXME: null
10342 return IntToPointer
;
10345 // In general, C pointers are not compatible with ObjC object pointers,
10346 // with two exceptions:
10347 if (isa
<PointerType
>(RHSType
)) {
10348 Kind
= CK_CPointerToObjCPointerCast
;
10350 // - conversions from 'void*'
10351 if (RHSType
->isVoidPointerType()) {
10355 // - conversions to 'Class' from its redefinition type
10356 if (LHSType
->isObjCClassType() &&
10357 Context
.hasSameType(RHSType
,
10358 Context
.getObjCClassRedefinitionType())) {
10362 return IncompatiblePointer
;
10365 // Only under strict condition T^ is compatible with an Objective-C pointer.
10366 if (RHSType
->isBlockPointerType() &&
10367 LHSType
->isBlockCompatibleObjCPointerType(Context
)) {
10369 maybeExtendBlockObject(RHS
);
10370 Kind
= CK_BlockPointerToObjCPointerCast
;
10374 return Incompatible
;
10377 // Conversion to nullptr_t (C23 only)
10378 if (getLangOpts().C23
&& LHSType
->isNullPtrType() &&
10379 RHS
.get()->isNullPointerConstant(Context
,
10380 Expr::NPC_ValueDependentIsNull
)) {
10381 // null -> nullptr_t
10382 Kind
= CK_NullToPointer
;
10386 // Conversions from pointers that are not covered by the above.
10387 if (isa
<PointerType
>(RHSType
)) {
10389 if (LHSType
== Context
.BoolTy
) {
10390 Kind
= CK_PointerToBoolean
;
10395 if (LHSType
->isIntegerType()) {
10396 Kind
= CK_PointerToIntegral
;
10397 return PointerToInt
;
10400 return Incompatible
;
10403 // Conversions from Objective-C pointers that are not covered by the above.
10404 if (isa
<ObjCObjectPointerType
>(RHSType
)) {
10406 if (LHSType
== Context
.BoolTy
) {
10407 Kind
= CK_PointerToBoolean
;
10412 if (LHSType
->isIntegerType()) {
10413 Kind
= CK_PointerToIntegral
;
10414 return PointerToInt
;
10417 return Incompatible
;
10420 // struct A -> struct B
10421 if (isa
<TagType
>(LHSType
) && isa
<TagType
>(RHSType
)) {
10422 if (Context
.typesAreCompatible(LHSType
, RHSType
)) {
10428 if (LHSType
->isSamplerT() && RHSType
->isIntegerType()) {
10429 Kind
= CK_IntToOCLSampler
;
10433 return Incompatible
;
10436 /// Constructs a transparent union from an expression that is
10437 /// used to initialize the transparent union.
10438 static void ConstructTransparentUnion(Sema
&S
, ASTContext
&C
,
10439 ExprResult
&EResult
, QualType UnionType
,
10440 FieldDecl
*Field
) {
10441 // Build an initializer list that designates the appropriate member
10442 // of the transparent union.
10443 Expr
*E
= EResult
.get();
10444 InitListExpr
*Initializer
= new (C
) InitListExpr(C
, SourceLocation(),
10445 E
, SourceLocation());
10446 Initializer
->setType(UnionType
);
10447 Initializer
->setInitializedFieldInUnion(Field
);
10449 // Build a compound literal constructing a value of the transparent
10450 // union type from this initializer list.
10451 TypeSourceInfo
*unionTInfo
= C
.getTrivialTypeSourceInfo(UnionType
);
10452 EResult
= new (C
) CompoundLiteralExpr(SourceLocation(), unionTInfo
, UnionType
,
10453 VK_PRValue
, Initializer
, false);
10456 Sema::AssignConvertType
10457 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType
,
10459 QualType RHSType
= RHS
.get()->getType();
10461 // If the ArgType is a Union type, we want to handle a potential
10462 // transparent_union GCC extension.
10463 const RecordType
*UT
= ArgType
->getAsUnionType();
10464 if (!UT
|| !UT
->getDecl()->hasAttr
<TransparentUnionAttr
>())
10465 return Incompatible
;
10467 // The field to initialize within the transparent union.
10468 RecordDecl
*UD
= UT
->getDecl();
10469 FieldDecl
*InitField
= nullptr;
10470 // It's compatible if the expression matches any of the fields.
10471 for (auto *it
: UD
->fields()) {
10472 if (it
->getType()->isPointerType()) {
10473 // If the transparent union contains a pointer type, we allow:
10475 // 2) null pointer constant
10476 if (RHSType
->isPointerType())
10477 if (RHSType
->castAs
<PointerType
>()->getPointeeType()->isVoidType()) {
10478 RHS
= ImpCastExprToType(RHS
.get(), it
->getType(), CK_BitCast
);
10483 if (RHS
.get()->isNullPointerConstant(Context
,
10484 Expr::NPC_ValueDependentIsNull
)) {
10485 RHS
= ImpCastExprToType(RHS
.get(), it
->getType(),
10493 if (CheckAssignmentConstraints(it
->getType(), RHS
, Kind
)
10495 RHS
= ImpCastExprToType(RHS
.get(), it
->getType(), Kind
);
10502 return Incompatible
;
10504 ConstructTransparentUnion(*this, Context
, RHS
, ArgType
, InitField
);
10508 Sema::AssignConvertType
10509 Sema::CheckSingleAssignmentConstraints(QualType LHSType
, ExprResult
&CallerRHS
,
10511 bool DiagnoseCFAudited
,
10513 // We need to be able to tell the caller whether we diagnosed a problem, if
10514 // they ask us to issue diagnostics.
10515 assert((ConvertRHS
|| !Diagnose
) && "can't indicate whether we diagnosed");
10517 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10518 // we can't avoid *all* modifications at the moment, so we need some somewhere
10519 // to put the updated value.
10520 ExprResult LocalRHS
= CallerRHS
;
10521 ExprResult
&RHS
= ConvertRHS
? CallerRHS
: LocalRHS
;
10523 if (const auto *LHSPtrType
= LHSType
->getAs
<PointerType
>()) {
10524 if (const auto *RHSPtrType
= RHS
.get()->getType()->getAs
<PointerType
>()) {
10525 if (RHSPtrType
->getPointeeType()->hasAttr(attr::NoDeref
) &&
10526 !LHSPtrType
->getPointeeType()->hasAttr(attr::NoDeref
)) {
10527 Diag(RHS
.get()->getExprLoc(),
10528 diag::warn_noderef_to_dereferenceable_pointer
)
10529 << RHS
.get()->getSourceRange();
10534 if (getLangOpts().CPlusPlus
) {
10535 if (!LHSType
->isRecordType() && !LHSType
->isAtomicType()) {
10536 // C++ 5.17p3: If the left operand is not of class type, the
10537 // expression is implicitly converted (C++ 4) to the
10538 // cv-unqualified type of the left operand.
10539 QualType RHSType
= RHS
.get()->getType();
10541 RHS
= PerformImplicitConversion(RHS
.get(), LHSType
.getUnqualifiedType(),
10544 ImplicitConversionSequence ICS
=
10545 TryImplicitConversion(RHS
.get(), LHSType
.getUnqualifiedType(),
10546 /*SuppressUserConversions=*/false,
10547 AllowedExplicit::None
,
10548 /*InOverloadResolution=*/false,
10550 /*AllowObjCWritebackConversion=*/false);
10551 if (ICS
.isFailure())
10552 return Incompatible
;
10553 RHS
= PerformImplicitConversion(RHS
.get(), LHSType
.getUnqualifiedType(),
10554 ICS
, AA_Assigning
);
10556 if (RHS
.isInvalid())
10557 return Incompatible
;
10558 Sema::AssignConvertType result
= Compatible
;
10559 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10560 !CheckObjCARCUnavailableWeakConversion(LHSType
, RHSType
))
10561 result
= IncompatibleObjCWeakRef
;
10565 // FIXME: Currently, we fall through and treat C++ classes like C
10567 // FIXME: We also fall through for atomics; not sure what should
10568 // happen there, though.
10569 } else if (RHS
.get()->getType() == Context
.OverloadTy
) {
10570 // As a set of extensions to C, we support overloading on functions. These
10571 // functions need to be resolved here.
10572 DeclAccessPair DAP
;
10573 if (FunctionDecl
*FD
= ResolveAddressOfOverloadedFunction(
10574 RHS
.get(), LHSType
, /*Complain=*/false, DAP
))
10575 RHS
= FixOverloadedFunctionReference(RHS
.get(), DAP
, FD
);
10577 return Incompatible
;
10580 // This check seems unnatural, however it is necessary to ensure the proper
10581 // conversion of functions/arrays. If the conversion were done for all
10582 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10583 // expressions that suppress this implicit conversion (&, sizeof). This needs
10584 // to happen before we check for null pointer conversions because C does not
10585 // undergo the same implicit conversions as C++ does above (by the calls to
10586 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10587 // lvalue to rvalue cast before checking for null pointer constraints. This
10588 // addresses code like: nullptr_t val; int *ptr; ptr = val;
10590 // Suppress this for references: C++ 8.5.3p5.
10591 if (!LHSType
->isReferenceType()) {
10592 // FIXME: We potentially allocate here even if ConvertRHS is false.
10593 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get(), Diagnose
);
10594 if (RHS
.isInvalid())
10595 return Incompatible
;
10598 // The constraints are expressed in terms of the atomic, qualified, or
10599 // unqualified type of the LHS.
10600 QualType LHSTypeAfterConversion
= LHSType
.getAtomicUnqualifiedType();
10602 // C99 6.5.16.1p1: the left operand is a pointer and the right is
10603 // a null pointer constant <C23>or its type is nullptr_t;</C23>.
10604 if ((LHSTypeAfterConversion
->isPointerType() ||
10605 LHSTypeAfterConversion
->isObjCObjectPointerType() ||
10606 LHSTypeAfterConversion
->isBlockPointerType()) &&
10607 ((getLangOpts().C23
&& RHS
.get()->getType()->isNullPtrType()) ||
10608 RHS
.get()->isNullPointerConstant(Context
,
10609 Expr::NPC_ValueDependentIsNull
))) {
10610 if (Diagnose
|| ConvertRHS
) {
10613 CheckPointerConversion(RHS
.get(), LHSType
, Kind
, Path
,
10614 /*IgnoreBaseAccess=*/false, Diagnose
);
10616 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, Kind
, VK_PRValue
, &Path
);
10620 // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
10621 // unqualified bool, and the right operand is a pointer or its type is
10623 if (getLangOpts().C23
&& LHSType
->isBooleanType() &&
10624 RHS
.get()->getType()->isNullPtrType()) {
10625 // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
10626 // only handles nullptr -> _Bool due to needing an extra conversion
10628 // We model this by converting from nullptr -> void * and then let the
10629 // conversion from void * -> _Bool happen naturally.
10630 if (Diagnose
|| ConvertRHS
) {
10633 CheckPointerConversion(RHS
.get(), Context
.VoidPtrTy
, Kind
, Path
,
10634 /*IgnoreBaseAccess=*/false, Diagnose
);
10636 RHS
= ImpCastExprToType(RHS
.get(), Context
.VoidPtrTy
, Kind
, VK_PRValue
,
10641 // OpenCL queue_t type assignment.
10642 if (LHSType
->isQueueT() && RHS
.get()->isNullPointerConstant(
10643 Context
, Expr::NPC_ValueDependentIsNull
)) {
10644 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
10649 Sema::AssignConvertType result
=
10650 CheckAssignmentConstraints(LHSType
, RHS
, Kind
, ConvertRHS
);
10652 // C99 6.5.16.1p2: The value of the right operand is converted to the
10653 // type of the assignment expression.
10654 // CheckAssignmentConstraints allows the left-hand side to be a reference,
10655 // so that we can use references in built-in functions even in C.
10656 // The getNonReferenceType() call makes sure that the resulting expression
10657 // does not have reference type.
10658 if (result
!= Incompatible
&& RHS
.get()->getType() != LHSType
) {
10659 QualType Ty
= LHSType
.getNonLValueExprType(Context
);
10660 Expr
*E
= RHS
.get();
10662 // Check for various Objective-C errors. If we are not reporting
10663 // diagnostics and just checking for errors, e.g., during overload
10664 // resolution, return Incompatible to indicate the failure.
10665 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10666 CheckObjCConversion(SourceRange(), Ty
, E
, CCK_ImplicitConversion
,
10667 Diagnose
, DiagnoseCFAudited
) != ACR_okay
) {
10669 return Incompatible
;
10671 if (getLangOpts().ObjC
&&
10672 (CheckObjCBridgeRelatedConversions(E
->getBeginLoc(), LHSType
,
10673 E
->getType(), E
, Diagnose
) ||
10674 CheckConversionToObjCLiteral(LHSType
, E
, Diagnose
))) {
10676 return Incompatible
;
10677 // Replace the expression with a corrected version and continue so we
10678 // can find further errors.
10684 RHS
= ImpCastExprToType(E
, Ty
, Kind
);
10691 /// The original operand to an operator, prior to the application of the usual
10692 /// arithmetic conversions and converting the arguments of a builtin operator
10694 struct OriginalOperand
{
10695 explicit OriginalOperand(Expr
*Op
) : Orig(Op
), Conversion(nullptr) {
10696 if (auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(Op
))
10697 Op
= MTE
->getSubExpr();
10698 if (auto *BTE
= dyn_cast
<CXXBindTemporaryExpr
>(Op
))
10699 Op
= BTE
->getSubExpr();
10700 if (auto *ICE
= dyn_cast
<ImplicitCastExpr
>(Op
)) {
10701 Orig
= ICE
->getSubExprAsWritten();
10702 Conversion
= ICE
->getConversionFunction();
10706 QualType
getType() const { return Orig
->getType(); }
10709 NamedDecl
*Conversion
;
10713 QualType
Sema::InvalidOperands(SourceLocation Loc
, ExprResult
&LHS
,
10715 OriginalOperand
OrigLHS(LHS
.get()), OrigRHS(RHS
.get());
10717 Diag(Loc
, diag::err_typecheck_invalid_operands
)
10718 << OrigLHS
.getType() << OrigRHS
.getType()
10719 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
10721 // If a user-defined conversion was applied to either of the operands prior
10722 // to applying the built-in operator rules, tell the user about it.
10723 if (OrigLHS
.Conversion
) {
10724 Diag(OrigLHS
.Conversion
->getLocation(),
10725 diag::note_typecheck_invalid_operands_converted
)
10726 << 0 << LHS
.get()->getType();
10728 if (OrigRHS
.Conversion
) {
10729 Diag(OrigRHS
.Conversion
->getLocation(),
10730 diag::note_typecheck_invalid_operands_converted
)
10731 << 1 << RHS
.get()->getType();
10737 // Diagnose cases where a scalar was implicitly converted to a vector and
10738 // diagnose the underlying types. Otherwise, diagnose the error
10739 // as invalid vector logical operands for non-C++ cases.
10740 QualType
Sema::InvalidLogicalVectorOperands(SourceLocation Loc
, ExprResult
&LHS
,
10742 QualType LHSType
= LHS
.get()->IgnoreImpCasts()->getType();
10743 QualType RHSType
= RHS
.get()->IgnoreImpCasts()->getType();
10745 bool LHSNatVec
= LHSType
->isVectorType();
10746 bool RHSNatVec
= RHSType
->isVectorType();
10748 if (!(LHSNatVec
&& RHSNatVec
)) {
10749 Expr
*Vector
= LHSNatVec
? LHS
.get() : RHS
.get();
10750 Expr
*NonVector
= !LHSNatVec
? LHS
.get() : RHS
.get();
10751 Diag(Loc
, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict
)
10752 << 0 << Vector
->getType() << NonVector
->IgnoreImpCasts()->getType()
10753 << Vector
->getSourceRange();
10757 Diag(Loc
, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict
)
10758 << 1 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
10759 << RHS
.get()->getSourceRange();
10764 /// Try to convert a value of non-vector type to a vector type by converting
10765 /// the type to the element type of the vector and then performing a splat.
10766 /// If the language is OpenCL, we only use conversions that promote scalar
10767 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10768 /// for float->int.
10770 /// OpenCL V2.0 6.2.6.p2:
10771 /// An error shall occur if any scalar operand type has greater rank
10772 /// than the type of the vector element.
10774 /// \param scalar - if non-null, actually perform the conversions
10775 /// \return true if the operation fails (but without diagnosing the failure)
10776 static bool tryVectorConvertAndSplat(Sema
&S
, ExprResult
*scalar
,
10778 QualType vectorEltTy
,
10780 unsigned &DiagID
) {
10781 // The conversion to apply to the scalar before splatting it,
10783 CastKind scalarCast
= CK_NoOp
;
10785 if (vectorEltTy
->isIntegralType(S
.Context
)) {
10786 if (S
.getLangOpts().OpenCL
&& (scalarTy
->isRealFloatingType() ||
10787 (scalarTy
->isIntegerType() &&
10788 S
.Context
.getIntegerTypeOrder(vectorEltTy
, scalarTy
) < 0))) {
10789 DiagID
= diag::err_opencl_scalar_type_rank_greater_than_vector_type
;
10792 if (!scalarTy
->isIntegralType(S
.Context
))
10794 scalarCast
= CK_IntegralCast
;
10795 } else if (vectorEltTy
->isRealFloatingType()) {
10796 if (scalarTy
->isRealFloatingType()) {
10797 if (S
.getLangOpts().OpenCL
&&
10798 S
.Context
.getFloatingTypeOrder(vectorEltTy
, scalarTy
) < 0) {
10799 DiagID
= diag::err_opencl_scalar_type_rank_greater_than_vector_type
;
10802 scalarCast
= CK_FloatingCast
;
10804 else if (scalarTy
->isIntegralType(S
.Context
))
10805 scalarCast
= CK_IntegralToFloating
;
10812 // Adjust scalar if desired.
10814 if (scalarCast
!= CK_NoOp
)
10815 *scalar
= S
.ImpCastExprToType(scalar
->get(), vectorEltTy
, scalarCast
);
10816 *scalar
= S
.ImpCastExprToType(scalar
->get(), vectorTy
, CK_VectorSplat
);
10821 /// Convert vector E to a vector with the same number of elements but different
10823 static ExprResult
convertVector(Expr
*E
, QualType ElementType
, Sema
&S
) {
10824 const auto *VecTy
= E
->getType()->getAs
<VectorType
>();
10825 assert(VecTy
&& "Expression E must be a vector");
10826 QualType NewVecTy
=
10827 VecTy
->isExtVectorType()
10828 ? S
.Context
.getExtVectorType(ElementType
, VecTy
->getNumElements())
10829 : S
.Context
.getVectorType(ElementType
, VecTy
->getNumElements(),
10830 VecTy
->getVectorKind());
10832 // Look through the implicit cast. Return the subexpression if its type is
10834 if (auto *ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
10835 if (ICE
->getSubExpr()->getType() == NewVecTy
)
10836 return ICE
->getSubExpr();
10838 auto Cast
= ElementType
->isIntegerType() ? CK_IntegralCast
: CK_FloatingCast
;
10839 return S
.ImpCastExprToType(E
, NewVecTy
, Cast
);
10842 /// Test if a (constant) integer Int can be casted to another integer type
10843 /// IntTy without losing precision.
10844 static bool canConvertIntToOtherIntTy(Sema
&S
, ExprResult
*Int
,
10845 QualType OtherIntTy
) {
10846 QualType IntTy
= Int
->get()->getType().getUnqualifiedType();
10848 // Reject cases where the value of the Int is unknown as that would
10849 // possibly cause truncation, but accept cases where the scalar can be
10850 // demoted without loss of precision.
10851 Expr::EvalResult EVResult
;
10852 bool CstInt
= Int
->get()->EvaluateAsInt(EVResult
, S
.Context
);
10853 int Order
= S
.Context
.getIntegerTypeOrder(OtherIntTy
, IntTy
);
10854 bool IntSigned
= IntTy
->hasSignedIntegerRepresentation();
10855 bool OtherIntSigned
= OtherIntTy
->hasSignedIntegerRepresentation();
10858 // If the scalar is constant and is of a higher order and has more active
10859 // bits that the vector element type, reject it.
10860 llvm::APSInt Result
= EVResult
.Val
.getInt();
10861 unsigned NumBits
= IntSigned
10862 ? (Result
.isNegative() ? Result
.getSignificantBits()
10863 : Result
.getActiveBits())
10864 : Result
.getActiveBits();
10865 if (Order
< 0 && S
.Context
.getIntWidth(OtherIntTy
) < NumBits
)
10868 // If the signedness of the scalar type and the vector element type
10869 // differs and the number of bits is greater than that of the vector
10870 // element reject it.
10871 return (IntSigned
!= OtherIntSigned
&&
10872 NumBits
> S
.Context
.getIntWidth(OtherIntTy
));
10875 // Reject cases where the value of the scalar is not constant and it's
10876 // order is greater than that of the vector element type.
10877 return (Order
< 0);
10880 /// Test if a (constant) integer Int can be casted to floating point type
10881 /// FloatTy without losing precision.
10882 static bool canConvertIntTyToFloatTy(Sema
&S
, ExprResult
*Int
,
10883 QualType FloatTy
) {
10884 QualType IntTy
= Int
->get()->getType().getUnqualifiedType();
10886 // Determine if the integer constant can be expressed as a floating point
10887 // number of the appropriate type.
10888 Expr::EvalResult EVResult
;
10889 bool CstInt
= Int
->get()->EvaluateAsInt(EVResult
, S
.Context
);
10893 // Reject constants that would be truncated if they were converted to
10894 // the floating point type. Test by simple to/from conversion.
10895 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10896 // could be avoided if there was a convertFromAPInt method
10897 // which could signal back if implicit truncation occurred.
10898 llvm::APSInt Result
= EVResult
.Val
.getInt();
10899 llvm::APFloat
Float(S
.Context
.getFloatTypeSemantics(FloatTy
));
10900 Float
.convertFromAPInt(Result
, IntTy
->hasSignedIntegerRepresentation(),
10901 llvm::APFloat::rmTowardZero
);
10902 llvm::APSInt
ConvertBack(S
.Context
.getIntWidth(IntTy
),
10903 !IntTy
->hasSignedIntegerRepresentation());
10904 bool Ignored
= false;
10905 Float
.convertToInteger(ConvertBack
, llvm::APFloat::rmNearestTiesToEven
,
10907 if (Result
!= ConvertBack
)
10910 // Reject types that cannot be fully encoded into the mantissa of
10912 Bits
= S
.Context
.getTypeSize(IntTy
);
10913 unsigned FloatPrec
= llvm::APFloat::semanticsPrecision(
10914 S
.Context
.getFloatTypeSemantics(FloatTy
));
10915 if (Bits
> FloatPrec
)
10922 /// Attempt to convert and splat Scalar into a vector whose types matches
10923 /// Vector following GCC conversion rules. The rule is that implicit
10924 /// conversion can occur when Scalar can be casted to match Vector's element
10925 /// type without causing truncation of Scalar.
10926 static bool tryGCCVectorConvertAndSplat(Sema
&S
, ExprResult
*Scalar
,
10927 ExprResult
*Vector
) {
10928 QualType ScalarTy
= Scalar
->get()->getType().getUnqualifiedType();
10929 QualType VectorTy
= Vector
->get()->getType().getUnqualifiedType();
10930 QualType VectorEltTy
;
10932 if (const auto *VT
= VectorTy
->getAs
<VectorType
>()) {
10933 assert(!isa
<ExtVectorType
>(VT
) &&
10934 "ExtVectorTypes should not be handled here!");
10935 VectorEltTy
= VT
->getElementType();
10936 } else if (VectorTy
->isSveVLSBuiltinType()) {
10938 VectorTy
->castAs
<BuiltinType
>()->getSveEltType(S
.getASTContext());
10940 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10943 // Reject cases where the vector element type or the scalar element type are
10944 // not integral or floating point types.
10945 if (!VectorEltTy
->isArithmeticType() || !ScalarTy
->isArithmeticType())
10948 // The conversion to apply to the scalar before splatting it,
10950 CastKind ScalarCast
= CK_NoOp
;
10952 // Accept cases where the vector elements are integers and the scalar is
10954 // FIXME: Notionally if the scalar was a floating point value with a precise
10955 // integral representation, we could cast it to an appropriate integer
10956 // type and then perform the rest of the checks here. GCC will perform
10957 // this conversion in some cases as determined by the input language.
10958 // We should accept it on a language independent basis.
10959 if (VectorEltTy
->isIntegralType(S
.Context
) &&
10960 ScalarTy
->isIntegralType(S
.Context
) &&
10961 S
.Context
.getIntegerTypeOrder(VectorEltTy
, ScalarTy
)) {
10963 if (canConvertIntToOtherIntTy(S
, Scalar
, VectorEltTy
))
10966 ScalarCast
= CK_IntegralCast
;
10967 } else if (VectorEltTy
->isIntegralType(S
.Context
) &&
10968 ScalarTy
->isRealFloatingType()) {
10969 if (S
.Context
.getTypeSize(VectorEltTy
) == S
.Context
.getTypeSize(ScalarTy
))
10970 ScalarCast
= CK_FloatingToIntegral
;
10973 } else if (VectorEltTy
->isRealFloatingType()) {
10974 if (ScalarTy
->isRealFloatingType()) {
10976 // Reject cases where the scalar type is not a constant and has a higher
10977 // Order than the vector element type.
10978 llvm::APFloat
Result(0.0);
10980 // Determine whether this is a constant scalar. In the event that the
10981 // value is dependent (and thus cannot be evaluated by the constant
10982 // evaluator), skip the evaluation. This will then diagnose once the
10983 // expression is instantiated.
10984 bool CstScalar
= Scalar
->get()->isValueDependent() ||
10985 Scalar
->get()->EvaluateAsFloat(Result
, S
.Context
);
10986 int Order
= S
.Context
.getFloatingTypeOrder(VectorEltTy
, ScalarTy
);
10987 if (!CstScalar
&& Order
< 0)
10990 // If the scalar cannot be safely casted to the vector element type,
10993 bool Truncated
= false;
10994 Result
.convert(S
.Context
.getFloatTypeSemantics(VectorEltTy
),
10995 llvm::APFloat::rmNearestTiesToEven
, &Truncated
);
11000 ScalarCast
= CK_FloatingCast
;
11001 } else if (ScalarTy
->isIntegralType(S
.Context
)) {
11002 if (canConvertIntTyToFloatTy(S
, Scalar
, VectorEltTy
))
11005 ScalarCast
= CK_IntegralToFloating
;
11008 } else if (ScalarTy
->isEnumeralType())
11011 // Adjust scalar if desired.
11012 if (ScalarCast
!= CK_NoOp
)
11013 *Scalar
= S
.ImpCastExprToType(Scalar
->get(), VectorEltTy
, ScalarCast
);
11014 *Scalar
= S
.ImpCastExprToType(Scalar
->get(), VectorTy
, CK_VectorSplat
);
11018 QualType
Sema::CheckVectorOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11019 SourceLocation Loc
, bool IsCompAssign
,
11020 bool AllowBothBool
,
11021 bool AllowBoolConversions
,
11022 bool AllowBoolOperation
,
11023 bool ReportInvalid
) {
11024 if (!IsCompAssign
) {
11025 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
11026 if (LHS
.isInvalid())
11029 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
11030 if (RHS
.isInvalid())
11033 // For conversion purposes, we ignore any qualifiers.
11034 // For example, "const float" and "float" are equivalent.
11035 QualType LHSType
= LHS
.get()->getType().getUnqualifiedType();
11036 QualType RHSType
= RHS
.get()->getType().getUnqualifiedType();
11038 const VectorType
*LHSVecType
= LHSType
->getAs
<VectorType
>();
11039 const VectorType
*RHSVecType
= RHSType
->getAs
<VectorType
>();
11040 assert(LHSVecType
|| RHSVecType
);
11042 // AltiVec-style "vector bool op vector bool" combinations are allowed
11043 // for some operators but not others.
11044 if (!AllowBothBool
&&
11045 LHSVecType
&& LHSVecType
->getVectorKind() == VectorType::AltiVecBool
&&
11046 RHSVecType
&& RHSVecType
->getVectorKind() == VectorType::AltiVecBool
)
11047 return ReportInvalid
? InvalidOperands(Loc
, LHS
, RHS
) : QualType();
11049 // This operation may not be performed on boolean vectors.
11050 if (!AllowBoolOperation
&&
11051 (LHSType
->isExtVectorBoolType() || RHSType
->isExtVectorBoolType()))
11052 return ReportInvalid
? InvalidOperands(Loc
, LHS
, RHS
) : QualType();
11054 // If the vector types are identical, return.
11055 if (Context
.hasSameType(LHSType
, RHSType
))
11056 return Context
.getCommonSugaredType(LHSType
, RHSType
);
11058 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
11059 if (LHSVecType
&& RHSVecType
&&
11060 Context
.areCompatibleVectorTypes(LHSType
, RHSType
)) {
11061 if (isa
<ExtVectorType
>(LHSVecType
)) {
11062 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
11067 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_BitCast
);
11071 // AllowBoolConversions says that bool and non-bool AltiVec vectors
11072 // can be mixed, with the result being the non-bool type. The non-bool
11073 // operand must have integer element type.
11074 if (AllowBoolConversions
&& LHSVecType
&& RHSVecType
&&
11075 LHSVecType
->getNumElements() == RHSVecType
->getNumElements() &&
11076 (Context
.getTypeSize(LHSVecType
->getElementType()) ==
11077 Context
.getTypeSize(RHSVecType
->getElementType()))) {
11078 if (LHSVecType
->getVectorKind() == VectorType::AltiVecVector
&&
11079 LHSVecType
->getElementType()->isIntegerType() &&
11080 RHSVecType
->getVectorKind() == VectorType::AltiVecBool
) {
11081 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
11084 if (!IsCompAssign
&&
11085 LHSVecType
->getVectorKind() == VectorType::AltiVecBool
&&
11086 RHSVecType
->getVectorKind() == VectorType::AltiVecVector
&&
11087 RHSVecType
->getElementType()->isIntegerType()) {
11088 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_BitCast
);
11093 // Expressions containing fixed-length and sizeless SVE/RVV vectors are
11094 // invalid since the ambiguity can affect the ABI.
11095 auto IsSveRVVConversion
= [](QualType FirstType
, QualType SecondType
,
11096 unsigned &SVEorRVV
) {
11097 const VectorType
*VecType
= SecondType
->getAs
<VectorType
>();
11099 if (FirstType
->isSizelessBuiltinType() && VecType
) {
11100 if (VecType
->getVectorKind() == VectorType::SveFixedLengthDataVector
||
11101 VecType
->getVectorKind() == VectorType::SveFixedLengthPredicateVector
)
11103 if (VecType
->getVectorKind() == VectorType::RVVFixedLengthDataVector
) {
11113 if (IsSveRVVConversion(LHSType
, RHSType
, SVEorRVV
) ||
11114 IsSveRVVConversion(RHSType
, LHSType
, SVEorRVV
)) {
11115 Diag(Loc
, diag::err_typecheck_sve_rvv_ambiguous
)
11116 << SVEorRVV
<< LHSType
<< RHSType
;
11120 // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
11121 // invalid since the ambiguity can affect the ABI.
11122 auto IsSveRVVGnuConversion
= [](QualType FirstType
, QualType SecondType
,
11123 unsigned &SVEorRVV
) {
11124 const VectorType
*FirstVecType
= FirstType
->getAs
<VectorType
>();
11125 const VectorType
*SecondVecType
= SecondType
->getAs
<VectorType
>();
11128 if (FirstVecType
&& SecondVecType
) {
11129 if (FirstVecType
->getVectorKind() == VectorType::GenericVector
) {
11130 if (SecondVecType
->getVectorKind() ==
11131 VectorType::SveFixedLengthDataVector
||
11132 SecondVecType
->getVectorKind() ==
11133 VectorType::SveFixedLengthPredicateVector
)
11135 if (SecondVecType
->getVectorKind() ==
11136 VectorType::RVVFixedLengthDataVector
) {
11144 if (SecondVecType
&&
11145 SecondVecType
->getVectorKind() == VectorType::GenericVector
) {
11146 if (FirstType
->isSVESizelessBuiltinType())
11148 if (FirstType
->isRVVSizelessBuiltinType()) {
11157 if (IsSveRVVGnuConversion(LHSType
, RHSType
, SVEorRVV
) ||
11158 IsSveRVVGnuConversion(RHSType
, LHSType
, SVEorRVV
)) {
11159 Diag(Loc
, diag::err_typecheck_sve_rvv_gnu_ambiguous
)
11160 << SVEorRVV
<< LHSType
<< RHSType
;
11164 // If there's a vector type and a scalar, try to convert the scalar to
11165 // the vector element type and splat.
11166 unsigned DiagID
= diag::err_typecheck_vector_not_convertable
;
11168 if (isa
<ExtVectorType
>(LHSVecType
)) {
11169 if (!tryVectorConvertAndSplat(*this, &RHS
, RHSType
,
11170 LHSVecType
->getElementType(), LHSType
,
11174 if (!tryGCCVectorConvertAndSplat(*this, &RHS
, &LHS
))
11179 if (isa
<ExtVectorType
>(RHSVecType
)) {
11180 if (!tryVectorConvertAndSplat(*this, (IsCompAssign
? nullptr : &LHS
),
11181 LHSType
, RHSVecType
->getElementType(),
11185 if (LHS
.get()->isLValue() ||
11186 !tryGCCVectorConvertAndSplat(*this, &LHS
, &RHS
))
11191 // FIXME: The code below also handles conversion between vectors and
11192 // non-scalars, we should break this down into fine grained specific checks
11193 // and emit proper diagnostics.
11194 QualType VecType
= LHSVecType
? LHSType
: RHSType
;
11195 const VectorType
*VT
= LHSVecType
? LHSVecType
: RHSVecType
;
11196 QualType OtherType
= LHSVecType
? RHSType
: LHSType
;
11197 ExprResult
*OtherExpr
= LHSVecType
? &RHS
: &LHS
;
11198 if (isLaxVectorConversion(OtherType
, VecType
)) {
11199 if (Context
.getTargetInfo().getTriple().isPPC() &&
11200 anyAltivecTypes(RHSType
, LHSType
) &&
11201 !Context
.areCompatibleVectorTypes(RHSType
, LHSType
))
11202 Diag(Loc
, diag::warn_deprecated_lax_vec_conv_all
) << RHSType
<< LHSType
;
11203 // If we're allowing lax vector conversions, only the total (data) size
11204 // needs to be the same. For non compound assignment, if one of the types is
11205 // scalar, the result is always the vector type.
11206 if (!IsCompAssign
) {
11207 *OtherExpr
= ImpCastExprToType(OtherExpr
->get(), VecType
, CK_BitCast
);
11209 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
11210 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
11211 // type. Note that this is already done by non-compound assignments in
11212 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
11213 // <1 x T> -> T. The result is also a vector type.
11214 } else if (OtherType
->isExtVectorType() || OtherType
->isVectorType() ||
11215 (OtherType
->isScalarType() && VT
->getNumElements() == 1)) {
11216 ExprResult
*RHSExpr
= &RHS
;
11217 *RHSExpr
= ImpCastExprToType(RHSExpr
->get(), LHSType
, CK_BitCast
);
11222 // Okay, the expression is invalid.
11224 // If there's a non-vector, non-real operand, diagnose that.
11225 if ((!RHSVecType
&& !RHSType
->isRealType()) ||
11226 (!LHSVecType
&& !LHSType
->isRealType())) {
11227 Diag(Loc
, diag::err_typecheck_vector_not_convertable_non_scalar
)
11228 << LHSType
<< RHSType
11229 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
11233 // OpenCL V1.1 6.2.6.p1:
11234 // If the operands are of more than one vector type, then an error shall
11235 // occur. Implicit conversions between vector types are not permitted, per
11237 if (getLangOpts().OpenCL
&&
11238 RHSVecType
&& isa
<ExtVectorType
>(RHSVecType
) &&
11239 LHSVecType
&& isa
<ExtVectorType
>(LHSVecType
)) {
11240 Diag(Loc
, diag::err_opencl_implicit_vector_conversion
) << LHSType
11246 // If there is a vector type that is not a ExtVector and a scalar, we reach
11247 // this point if scalar could not be converted to the vector's element type
11248 // without truncation.
11249 if ((RHSVecType
&& !isa
<ExtVectorType
>(RHSVecType
)) ||
11250 (LHSVecType
&& !isa
<ExtVectorType
>(LHSVecType
))) {
11251 QualType Scalar
= LHSVecType
? RHSType
: LHSType
;
11252 QualType Vector
= LHSVecType
? LHSType
: RHSType
;
11253 unsigned ScalarOrVector
= LHSVecType
&& RHSVecType
? 1 : 0;
11255 diag::err_typecheck_vector_not_convertable_implict_truncation
)
11256 << ScalarOrVector
<< Scalar
<< Vector
;
11261 // Otherwise, use the generic diagnostic.
11263 << LHSType
<< RHSType
11264 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
11268 QualType
Sema::CheckSizelessVectorOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11269 SourceLocation Loc
,
11271 ArithConvKind OperationKind
) {
11272 if (!IsCompAssign
) {
11273 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
11274 if (LHS
.isInvalid())
11277 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
11278 if (RHS
.isInvalid())
11281 QualType LHSType
= LHS
.get()->getType().getUnqualifiedType();
11282 QualType RHSType
= RHS
.get()->getType().getUnqualifiedType();
11284 const BuiltinType
*LHSBuiltinTy
= LHSType
->getAs
<BuiltinType
>();
11285 const BuiltinType
*RHSBuiltinTy
= RHSType
->getAs
<BuiltinType
>();
11287 unsigned DiagID
= diag::err_typecheck_invalid_operands
;
11288 if ((OperationKind
== ACK_Arithmetic
) &&
11289 ((LHSBuiltinTy
&& LHSBuiltinTy
->isSVEBool()) ||
11290 (RHSBuiltinTy
&& RHSBuiltinTy
->isSVEBool()))) {
11291 Diag(Loc
, DiagID
) << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
11292 << RHS
.get()->getSourceRange();
11296 if (Context
.hasSameType(LHSType
, RHSType
))
11299 if (LHSType
->isSveVLSBuiltinType() && !RHSType
->isSveVLSBuiltinType()) {
11300 if (!tryGCCVectorConvertAndSplat(*this, &RHS
, &LHS
))
11303 if (RHSType
->isSveVLSBuiltinType() && !LHSType
->isSveVLSBuiltinType()) {
11304 if (LHS
.get()->isLValue() ||
11305 !tryGCCVectorConvertAndSplat(*this, &LHS
, &RHS
))
11309 if ((!LHSType
->isSveVLSBuiltinType() && !LHSType
->isRealType()) ||
11310 (!RHSType
->isSveVLSBuiltinType() && !RHSType
->isRealType())) {
11311 Diag(Loc
, diag::err_typecheck_vector_not_convertable_non_scalar
)
11312 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
11313 << RHS
.get()->getSourceRange();
11317 if (LHSType
->isSveVLSBuiltinType() && RHSType
->isSveVLSBuiltinType() &&
11318 Context
.getBuiltinVectorTypeInfo(LHSBuiltinTy
).EC
!=
11319 Context
.getBuiltinVectorTypeInfo(RHSBuiltinTy
).EC
) {
11320 Diag(Loc
, diag::err_typecheck_vector_lengths_not_equal
)
11321 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
11322 << RHS
.get()->getSourceRange();
11326 if (LHSType
->isSveVLSBuiltinType() || RHSType
->isSveVLSBuiltinType()) {
11327 QualType Scalar
= LHSType
->isSveVLSBuiltinType() ? RHSType
: LHSType
;
11328 QualType Vector
= LHSType
->isSveVLSBuiltinType() ? LHSType
: RHSType
;
11329 bool ScalarOrVector
=
11330 LHSType
->isSveVLSBuiltinType() && RHSType
->isSveVLSBuiltinType();
11332 Diag(Loc
, diag::err_typecheck_vector_not_convertable_implict_truncation
)
11333 << ScalarOrVector
<< Scalar
<< Vector
;
11338 Diag(Loc
, DiagID
) << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
11339 << RHS
.get()->getSourceRange();
11343 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
11344 // expression. These are mainly cases where the null pointer is used as an
11345 // integer instead of a pointer.
11346 static void checkArithmeticNull(Sema
&S
, ExprResult
&LHS
, ExprResult
&RHS
,
11347 SourceLocation Loc
, bool IsCompare
) {
11348 // The canonical way to check for a GNU null is with isNullPointerConstant,
11349 // but we use a bit of a hack here for speed; this is a relatively
11350 // hot path, and isNullPointerConstant is slow.
11351 bool LHSNull
= isa
<GNUNullExpr
>(LHS
.get()->IgnoreParenImpCasts());
11352 bool RHSNull
= isa
<GNUNullExpr
>(RHS
.get()->IgnoreParenImpCasts());
11354 QualType NonNullType
= LHSNull
? RHS
.get()->getType() : LHS
.get()->getType();
11356 // Avoid analyzing cases where the result will either be invalid (and
11357 // diagnosed as such) or entirely valid and not something to warn about.
11358 if ((!LHSNull
&& !RHSNull
) || NonNullType
->isBlockPointerType() ||
11359 NonNullType
->isMemberPointerType() || NonNullType
->isFunctionType())
11362 // Comparison operations would not make sense with a null pointer no matter
11363 // what the other expression is.
11365 S
.Diag(Loc
, diag::warn_null_in_arithmetic_operation
)
11366 << (LHSNull
? LHS
.get()->getSourceRange() : SourceRange())
11367 << (RHSNull
? RHS
.get()->getSourceRange() : SourceRange());
11371 // The rest of the operations only make sense with a null pointer
11372 // if the other expression is a pointer.
11373 if (LHSNull
== RHSNull
|| NonNullType
->isAnyPointerType() ||
11374 NonNullType
->canDecayToPointerType())
11377 S
.Diag(Loc
, diag::warn_null_in_comparison_operation
)
11378 << LHSNull
/* LHS is NULL */ << NonNullType
11379 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
11382 static void DiagnoseDivisionSizeofPointerOrArray(Sema
&S
, Expr
*LHS
, Expr
*RHS
,
11383 SourceLocation Loc
) {
11384 const auto *LUE
= dyn_cast
<UnaryExprOrTypeTraitExpr
>(LHS
);
11385 const auto *RUE
= dyn_cast
<UnaryExprOrTypeTraitExpr
>(RHS
);
11388 if (LUE
->getKind() != UETT_SizeOf
|| LUE
->isArgumentType() ||
11389 RUE
->getKind() != UETT_SizeOf
)
11392 const Expr
*LHSArg
= LUE
->getArgumentExpr()->IgnoreParens();
11393 QualType LHSTy
= LHSArg
->getType();
11396 if (RUE
->isArgumentType())
11397 RHSTy
= RUE
->getArgumentType().getNonReferenceType();
11399 RHSTy
= RUE
->getArgumentExpr()->IgnoreParens()->getType();
11401 if (LHSTy
->isPointerType() && !RHSTy
->isPointerType()) {
11402 if (!S
.Context
.hasSameUnqualifiedType(LHSTy
->getPointeeType(), RHSTy
))
11405 S
.Diag(Loc
, diag::warn_division_sizeof_ptr
) << LHS
<< LHS
->getSourceRange();
11406 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(LHSArg
)) {
11407 if (const ValueDecl
*LHSArgDecl
= DRE
->getDecl())
11408 S
.Diag(LHSArgDecl
->getLocation(), diag::note_pointer_declared_here
)
11411 } else if (const auto *ArrayTy
= S
.Context
.getAsArrayType(LHSTy
)) {
11412 QualType ArrayElemTy
= ArrayTy
->getElementType();
11413 if (ArrayElemTy
!= S
.Context
.getBaseElementType(ArrayTy
) ||
11414 ArrayElemTy
->isDependentType() || RHSTy
->isDependentType() ||
11415 RHSTy
->isReferenceType() || ArrayElemTy
->isCharType() ||
11416 S
.Context
.getTypeSize(ArrayElemTy
) == S
.Context
.getTypeSize(RHSTy
))
11418 S
.Diag(Loc
, diag::warn_division_sizeof_array
)
11419 << LHSArg
->getSourceRange() << ArrayElemTy
<< RHSTy
;
11420 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(LHSArg
)) {
11421 if (const ValueDecl
*LHSArgDecl
= DRE
->getDecl())
11422 S
.Diag(LHSArgDecl
->getLocation(), diag::note_array_declared_here
)
11426 S
.Diag(Loc
, diag::note_precedence_silence
) << RHS
;
11430 static void DiagnoseBadDivideOrRemainderValues(Sema
& S
, ExprResult
&LHS
,
11432 SourceLocation Loc
, bool IsDiv
) {
11433 // Check for division/remainder by zero.
11434 Expr::EvalResult RHSValue
;
11435 if (!RHS
.get()->isValueDependent() &&
11436 RHS
.get()->EvaluateAsInt(RHSValue
, S
.Context
) &&
11437 RHSValue
.Val
.getInt() == 0)
11438 S
.DiagRuntimeBehavior(Loc
, RHS
.get(),
11439 S
.PDiag(diag::warn_remainder_division_by_zero
)
11440 << IsDiv
<< RHS
.get()->getSourceRange());
11443 QualType
Sema::CheckMultiplyDivideOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11444 SourceLocation Loc
,
11445 bool IsCompAssign
, bool IsDiv
) {
11446 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
11448 QualType LHSTy
= LHS
.get()->getType();
11449 QualType RHSTy
= RHS
.get()->getType();
11450 if (LHSTy
->isVectorType() || RHSTy
->isVectorType())
11451 return CheckVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
11452 /*AllowBothBool*/ getLangOpts().AltiVec
,
11453 /*AllowBoolConversions*/ false,
11454 /*AllowBooleanOperation*/ false,
11455 /*ReportInvalid*/ true);
11456 if (LHSTy
->isSveVLSBuiltinType() || RHSTy
->isSveVLSBuiltinType())
11457 return CheckSizelessVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
11460 (LHSTy
->isConstantMatrixType() || RHSTy
->isConstantMatrixType()))
11461 return CheckMatrixMultiplyOperands(LHS
, RHS
, Loc
, IsCompAssign
);
11462 // For division, only matrix-by-scalar is supported. Other combinations with
11463 // matrix types are invalid.
11464 if (IsDiv
&& LHSTy
->isConstantMatrixType() && RHSTy
->isArithmeticType())
11465 return CheckMatrixElementwiseOperands(LHS
, RHS
, Loc
, IsCompAssign
);
11467 QualType compType
= UsualArithmeticConversions(
11468 LHS
, RHS
, Loc
, IsCompAssign
? ACK_CompAssign
: ACK_Arithmetic
);
11469 if (LHS
.isInvalid() || RHS
.isInvalid())
11473 if (compType
.isNull() || !compType
->isArithmeticType())
11474 return InvalidOperands(Loc
, LHS
, RHS
);
11476 DiagnoseBadDivideOrRemainderValues(*this, LHS
, RHS
, Loc
, IsDiv
);
11477 DiagnoseDivisionSizeofPointerOrArray(*this, LHS
.get(), RHS
.get(), Loc
);
11482 QualType
Sema::CheckRemainderOperands(
11483 ExprResult
&LHS
, ExprResult
&RHS
, SourceLocation Loc
, bool IsCompAssign
) {
11484 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
11486 if (LHS
.get()->getType()->isVectorType() ||
11487 RHS
.get()->getType()->isVectorType()) {
11488 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
11489 RHS
.get()->getType()->hasIntegerRepresentation())
11490 return CheckVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
11491 /*AllowBothBool*/ getLangOpts().AltiVec
,
11492 /*AllowBoolConversions*/ false,
11493 /*AllowBooleanOperation*/ false,
11494 /*ReportInvalid*/ true);
11495 return InvalidOperands(Loc
, LHS
, RHS
);
11498 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
11499 RHS
.get()->getType()->isSveVLSBuiltinType()) {
11500 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
11501 RHS
.get()->getType()->hasIntegerRepresentation())
11502 return CheckSizelessVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
11505 return InvalidOperands(Loc
, LHS
, RHS
);
11508 QualType compType
= UsualArithmeticConversions(
11509 LHS
, RHS
, Loc
, IsCompAssign
? ACK_CompAssign
: ACK_Arithmetic
);
11510 if (LHS
.isInvalid() || RHS
.isInvalid())
11513 if (compType
.isNull() || !compType
->isIntegerType())
11514 return InvalidOperands(Loc
, LHS
, RHS
);
11515 DiagnoseBadDivideOrRemainderValues(*this, LHS
, RHS
, Loc
, false /* IsDiv */);
11519 /// Diagnose invalid arithmetic on two void pointers.
11520 static void diagnoseArithmeticOnTwoVoidPointers(Sema
&S
, SourceLocation Loc
,
11521 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11522 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus
11523 ? diag::err_typecheck_pointer_arith_void_type
11524 : diag::ext_gnu_void_ptr
)
11525 << 1 /* two pointers */ << LHSExpr
->getSourceRange()
11526 << RHSExpr
->getSourceRange();
11529 /// Diagnose invalid arithmetic on a void pointer.
11530 static void diagnoseArithmeticOnVoidPointer(Sema
&S
, SourceLocation Loc
,
11532 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus
11533 ? diag::err_typecheck_pointer_arith_void_type
11534 : diag::ext_gnu_void_ptr
)
11535 << 0 /* one pointer */ << Pointer
->getSourceRange();
11538 /// Diagnose invalid arithmetic on a null pointer.
11540 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11541 /// idiom, which we recognize as a GNU extension.
11543 static void diagnoseArithmeticOnNullPointer(Sema
&S
, SourceLocation Loc
,
11544 Expr
*Pointer
, bool IsGNUIdiom
) {
11546 S
.Diag(Loc
, diag::warn_gnu_null_ptr_arith
)
11547 << Pointer
->getSourceRange();
11549 S
.Diag(Loc
, diag::warn_pointer_arith_null_ptr
)
11550 << S
.getLangOpts().CPlusPlus
<< Pointer
->getSourceRange();
11553 /// Diagnose invalid subraction on a null pointer.
11555 static void diagnoseSubtractionOnNullPointer(Sema
&S
, SourceLocation Loc
,
11556 Expr
*Pointer
, bool BothNull
) {
11557 // Null - null is valid in C++ [expr.add]p7
11558 if (BothNull
&& S
.getLangOpts().CPlusPlus
)
11561 // Is this s a macro from a system header?
11562 if (S
.Diags
.getSuppressSystemWarnings() && S
.SourceMgr
.isInSystemMacro(Loc
))
11565 S
.DiagRuntimeBehavior(Loc
, Pointer
,
11566 S
.PDiag(diag::warn_pointer_sub_null_ptr
)
11567 << S
.getLangOpts().CPlusPlus
11568 << Pointer
->getSourceRange());
11571 /// Diagnose invalid arithmetic on two function pointers.
11572 static void diagnoseArithmeticOnTwoFunctionPointers(Sema
&S
, SourceLocation Loc
,
11573 Expr
*LHS
, Expr
*RHS
) {
11574 assert(LHS
->getType()->isAnyPointerType());
11575 assert(RHS
->getType()->isAnyPointerType());
11576 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus
11577 ? diag::err_typecheck_pointer_arith_function_type
11578 : diag::ext_gnu_ptr_func_arith
)
11579 << 1 /* two pointers */ << LHS
->getType()->getPointeeType()
11580 // We only show the second type if it differs from the first.
11581 << (unsigned)!S
.Context
.hasSameUnqualifiedType(LHS
->getType(),
11583 << RHS
->getType()->getPointeeType()
11584 << LHS
->getSourceRange() << RHS
->getSourceRange();
11587 /// Diagnose invalid arithmetic on a function pointer.
11588 static void diagnoseArithmeticOnFunctionPointer(Sema
&S
, SourceLocation Loc
,
11590 assert(Pointer
->getType()->isAnyPointerType());
11591 S
.Diag(Loc
, S
.getLangOpts().CPlusPlus
11592 ? diag::err_typecheck_pointer_arith_function_type
11593 : diag::ext_gnu_ptr_func_arith
)
11594 << 0 /* one pointer */ << Pointer
->getType()->getPointeeType()
11595 << 0 /* one pointer, so only one type */
11596 << Pointer
->getSourceRange();
11599 /// Emit error if Operand is incomplete pointer type
11601 /// \returns True if pointer has incomplete type
11602 static bool checkArithmeticIncompletePointerType(Sema
&S
, SourceLocation Loc
,
11604 QualType ResType
= Operand
->getType();
11605 if (const AtomicType
*ResAtomicType
= ResType
->getAs
<AtomicType
>())
11606 ResType
= ResAtomicType
->getValueType();
11608 assert(ResType
->isAnyPointerType() && !ResType
->isDependentType());
11609 QualType PointeeTy
= ResType
->getPointeeType();
11610 return S
.RequireCompleteSizedType(
11612 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type
,
11613 Operand
->getSourceRange());
11616 /// Check the validity of an arithmetic pointer operand.
11618 /// If the operand has pointer type, this code will check for pointer types
11619 /// which are invalid in arithmetic operations. These will be diagnosed
11620 /// appropriately, including whether or not the use is supported as an
11623 /// \returns True when the operand is valid to use (even if as an extension).
11624 static bool checkArithmeticOpPointerOperand(Sema
&S
, SourceLocation Loc
,
11626 QualType ResType
= Operand
->getType();
11627 if (const AtomicType
*ResAtomicType
= ResType
->getAs
<AtomicType
>())
11628 ResType
= ResAtomicType
->getValueType();
11630 if (!ResType
->isAnyPointerType()) return true;
11632 QualType PointeeTy
= ResType
->getPointeeType();
11633 if (PointeeTy
->isVoidType()) {
11634 diagnoseArithmeticOnVoidPointer(S
, Loc
, Operand
);
11635 return !S
.getLangOpts().CPlusPlus
;
11637 if (PointeeTy
->isFunctionType()) {
11638 diagnoseArithmeticOnFunctionPointer(S
, Loc
, Operand
);
11639 return !S
.getLangOpts().CPlusPlus
;
11642 if (checkArithmeticIncompletePointerType(S
, Loc
, Operand
)) return false;
11647 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11650 /// This routine will diagnose any invalid arithmetic on pointer operands much
11651 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11652 /// for emitting a single diagnostic even for operations where both LHS and RHS
11653 /// are (potentially problematic) pointers.
11655 /// \returns True when the operand is valid to use (even if as an extension).
11656 static bool checkArithmeticBinOpPointerOperands(Sema
&S
, SourceLocation Loc
,
11657 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11658 bool isLHSPointer
= LHSExpr
->getType()->isAnyPointerType();
11659 bool isRHSPointer
= RHSExpr
->getType()->isAnyPointerType();
11660 if (!isLHSPointer
&& !isRHSPointer
) return true;
11662 QualType LHSPointeeTy
, RHSPointeeTy
;
11663 if (isLHSPointer
) LHSPointeeTy
= LHSExpr
->getType()->getPointeeType();
11664 if (isRHSPointer
) RHSPointeeTy
= RHSExpr
->getType()->getPointeeType();
11666 // if both are pointers check if operation is valid wrt address spaces
11667 if (isLHSPointer
&& isRHSPointer
) {
11668 if (!LHSPointeeTy
.isAddressSpaceOverlapping(RHSPointeeTy
)) {
11670 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers
)
11671 << LHSExpr
->getType() << RHSExpr
->getType() << 1 /*arithmetic op*/
11672 << LHSExpr
->getSourceRange() << RHSExpr
->getSourceRange();
11677 // Check for arithmetic on pointers to incomplete types.
11678 bool isLHSVoidPtr
= isLHSPointer
&& LHSPointeeTy
->isVoidType();
11679 bool isRHSVoidPtr
= isRHSPointer
&& RHSPointeeTy
->isVoidType();
11680 if (isLHSVoidPtr
|| isRHSVoidPtr
) {
11681 if (!isRHSVoidPtr
) diagnoseArithmeticOnVoidPointer(S
, Loc
, LHSExpr
);
11682 else if (!isLHSVoidPtr
) diagnoseArithmeticOnVoidPointer(S
, Loc
, RHSExpr
);
11683 else diagnoseArithmeticOnTwoVoidPointers(S
, Loc
, LHSExpr
, RHSExpr
);
11685 return !S
.getLangOpts().CPlusPlus
;
11688 bool isLHSFuncPtr
= isLHSPointer
&& LHSPointeeTy
->isFunctionType();
11689 bool isRHSFuncPtr
= isRHSPointer
&& RHSPointeeTy
->isFunctionType();
11690 if (isLHSFuncPtr
|| isRHSFuncPtr
) {
11691 if (!isRHSFuncPtr
) diagnoseArithmeticOnFunctionPointer(S
, Loc
, LHSExpr
);
11692 else if (!isLHSFuncPtr
) diagnoseArithmeticOnFunctionPointer(S
, Loc
,
11694 else diagnoseArithmeticOnTwoFunctionPointers(S
, Loc
, LHSExpr
, RHSExpr
);
11696 return !S
.getLangOpts().CPlusPlus
;
11699 if (isLHSPointer
&& checkArithmeticIncompletePointerType(S
, Loc
, LHSExpr
))
11701 if (isRHSPointer
&& checkArithmeticIncompletePointerType(S
, Loc
, RHSExpr
))
11707 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11709 static void diagnoseStringPlusInt(Sema
&Self
, SourceLocation OpLoc
,
11710 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11711 StringLiteral
* StrExpr
= dyn_cast
<StringLiteral
>(LHSExpr
->IgnoreImpCasts());
11712 Expr
* IndexExpr
= RHSExpr
;
11714 StrExpr
= dyn_cast
<StringLiteral
>(RHSExpr
->IgnoreImpCasts());
11715 IndexExpr
= LHSExpr
;
11718 bool IsStringPlusInt
= StrExpr
&&
11719 IndexExpr
->getType()->isIntegralOrUnscopedEnumerationType();
11720 if (!IsStringPlusInt
|| IndexExpr
->isValueDependent())
11723 SourceRange
DiagRange(LHSExpr
->getBeginLoc(), RHSExpr
->getEndLoc());
11724 Self
.Diag(OpLoc
, diag::warn_string_plus_int
)
11725 << DiagRange
<< IndexExpr
->IgnoreImpCasts()->getType();
11727 // Only print a fixit for "str" + int, not for int + "str".
11728 if (IndexExpr
== RHSExpr
) {
11729 SourceLocation EndLoc
= Self
.getLocForEndOfToken(RHSExpr
->getEndLoc());
11730 Self
.Diag(OpLoc
, diag::note_string_plus_scalar_silence
)
11731 << FixItHint::CreateInsertion(LHSExpr
->getBeginLoc(), "&")
11732 << FixItHint::CreateReplacement(SourceRange(OpLoc
), "[")
11733 << FixItHint::CreateInsertion(EndLoc
, "]");
11735 Self
.Diag(OpLoc
, diag::note_string_plus_scalar_silence
);
11738 /// Emit a warning when adding a char literal to a string.
11739 static void diagnoseStringPlusChar(Sema
&Self
, SourceLocation OpLoc
,
11740 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11741 const Expr
*StringRefExpr
= LHSExpr
;
11742 const CharacterLiteral
*CharExpr
=
11743 dyn_cast
<CharacterLiteral
>(RHSExpr
->IgnoreImpCasts());
11746 CharExpr
= dyn_cast
<CharacterLiteral
>(LHSExpr
->IgnoreImpCasts());
11747 StringRefExpr
= RHSExpr
;
11750 if (!CharExpr
|| !StringRefExpr
)
11753 const QualType StringType
= StringRefExpr
->getType();
11755 // Return if not a PointerType.
11756 if (!StringType
->isAnyPointerType())
11759 // Return if not a CharacterType.
11760 if (!StringType
->getPointeeType()->isAnyCharacterType())
11763 ASTContext
&Ctx
= Self
.getASTContext();
11764 SourceRange
DiagRange(LHSExpr
->getBeginLoc(), RHSExpr
->getEndLoc());
11766 const QualType CharType
= CharExpr
->getType();
11767 if (!CharType
->isAnyCharacterType() &&
11768 CharType
->isIntegerType() &&
11769 llvm::isUIntN(Ctx
.getCharWidth(), CharExpr
->getValue())) {
11770 Self
.Diag(OpLoc
, diag::warn_string_plus_char
)
11771 << DiagRange
<< Ctx
.CharTy
;
11773 Self
.Diag(OpLoc
, diag::warn_string_plus_char
)
11774 << DiagRange
<< CharExpr
->getType();
11777 // Only print a fixit for str + char, not for char + str.
11778 if (isa
<CharacterLiteral
>(RHSExpr
->IgnoreImpCasts())) {
11779 SourceLocation EndLoc
= Self
.getLocForEndOfToken(RHSExpr
->getEndLoc());
11780 Self
.Diag(OpLoc
, diag::note_string_plus_scalar_silence
)
11781 << FixItHint::CreateInsertion(LHSExpr
->getBeginLoc(), "&")
11782 << FixItHint::CreateReplacement(SourceRange(OpLoc
), "[")
11783 << FixItHint::CreateInsertion(EndLoc
, "]");
11785 Self
.Diag(OpLoc
, diag::note_string_plus_scalar_silence
);
11789 /// Emit error when two pointers are incompatible.
11790 static void diagnosePointerIncompatibility(Sema
&S
, SourceLocation Loc
,
11791 Expr
*LHSExpr
, Expr
*RHSExpr
) {
11792 assert(LHSExpr
->getType()->isAnyPointerType());
11793 assert(RHSExpr
->getType()->isAnyPointerType());
11794 S
.Diag(Loc
, diag::err_typecheck_sub_ptr_compatible
)
11795 << LHSExpr
->getType() << RHSExpr
->getType() << LHSExpr
->getSourceRange()
11796 << RHSExpr
->getSourceRange();
11800 QualType
Sema::CheckAdditionOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11801 SourceLocation Loc
, BinaryOperatorKind Opc
,
11802 QualType
* CompLHSTy
) {
11803 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
11805 if (LHS
.get()->getType()->isVectorType() ||
11806 RHS
.get()->getType()->isVectorType()) {
11807 QualType compType
=
11808 CheckVectorOperands(LHS
, RHS
, Loc
, CompLHSTy
,
11809 /*AllowBothBool*/ getLangOpts().AltiVec
,
11810 /*AllowBoolConversions*/ getLangOpts().ZVector
,
11811 /*AllowBooleanOperation*/ false,
11812 /*ReportInvalid*/ true);
11813 if (CompLHSTy
) *CompLHSTy
= compType
;
11817 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
11818 RHS
.get()->getType()->isSveVLSBuiltinType()) {
11819 QualType compType
=
11820 CheckSizelessVectorOperands(LHS
, RHS
, Loc
, CompLHSTy
, ACK_Arithmetic
);
11822 *CompLHSTy
= compType
;
11826 if (LHS
.get()->getType()->isConstantMatrixType() ||
11827 RHS
.get()->getType()->isConstantMatrixType()) {
11828 QualType compType
=
11829 CheckMatrixElementwiseOperands(LHS
, RHS
, Loc
, CompLHSTy
);
11831 *CompLHSTy
= compType
;
11835 QualType compType
= UsualArithmeticConversions(
11836 LHS
, RHS
, Loc
, CompLHSTy
? ACK_CompAssign
: ACK_Arithmetic
);
11837 if (LHS
.isInvalid() || RHS
.isInvalid())
11840 // Diagnose "string literal" '+' int and string '+' "char literal".
11841 if (Opc
== BO_Add
) {
11842 diagnoseStringPlusInt(*this, Loc
, LHS
.get(), RHS
.get());
11843 diagnoseStringPlusChar(*this, Loc
, LHS
.get(), RHS
.get());
11846 // handle the common case first (both operands are arithmetic).
11847 if (!compType
.isNull() && compType
->isArithmeticType()) {
11848 if (CompLHSTy
) *CompLHSTy
= compType
;
11852 // Type-checking. Ultimately the pointer's going to be in PExp;
11853 // note that we bias towards the LHS being the pointer.
11854 Expr
*PExp
= LHS
.get(), *IExp
= RHS
.get();
11856 bool isObjCPointer
;
11857 if (PExp
->getType()->isPointerType()) {
11858 isObjCPointer
= false;
11859 } else if (PExp
->getType()->isObjCObjectPointerType()) {
11860 isObjCPointer
= true;
11862 std::swap(PExp
, IExp
);
11863 if (PExp
->getType()->isPointerType()) {
11864 isObjCPointer
= false;
11865 } else if (PExp
->getType()->isObjCObjectPointerType()) {
11866 isObjCPointer
= true;
11868 return InvalidOperands(Loc
, LHS
, RHS
);
11871 assert(PExp
->getType()->isAnyPointerType());
11873 if (!IExp
->getType()->isIntegerType())
11874 return InvalidOperands(Loc
, LHS
, RHS
);
11876 // Adding to a null pointer results in undefined behavior.
11877 if (PExp
->IgnoreParenCasts()->isNullPointerConstant(
11878 Context
, Expr::NPC_ValueDependentIsNotNull
)) {
11879 // In C++ adding zero to a null pointer is defined.
11880 Expr::EvalResult KnownVal
;
11881 if (!getLangOpts().CPlusPlus
||
11882 (!IExp
->isValueDependent() &&
11883 (!IExp
->EvaluateAsInt(KnownVal
, Context
) ||
11884 KnownVal
.Val
.getInt() != 0))) {
11885 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11886 bool IsGNUIdiom
= BinaryOperator::isNullPointerArithmeticExtension(
11887 Context
, BO_Add
, PExp
, IExp
);
11888 diagnoseArithmeticOnNullPointer(*this, Loc
, PExp
, IsGNUIdiom
);
11892 if (!checkArithmeticOpPointerOperand(*this, Loc
, PExp
))
11895 if (isObjCPointer
&& checkArithmeticOnObjCPointer(*this, Loc
, PExp
))
11898 // Check array bounds for pointer arithemtic
11899 CheckArrayAccess(PExp
, IExp
);
11902 QualType LHSTy
= Context
.isPromotableBitField(LHS
.get());
11903 if (LHSTy
.isNull()) {
11904 LHSTy
= LHS
.get()->getType();
11905 if (Context
.isPromotableIntegerType(LHSTy
))
11906 LHSTy
= Context
.getPromotedIntegerType(LHSTy
);
11908 *CompLHSTy
= LHSTy
;
11911 return PExp
->getType();
11915 QualType
Sema::CheckSubtractionOperands(ExprResult
&LHS
, ExprResult
&RHS
,
11916 SourceLocation Loc
,
11917 QualType
* CompLHSTy
) {
11918 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
11920 if (LHS
.get()->getType()->isVectorType() ||
11921 RHS
.get()->getType()->isVectorType()) {
11922 QualType compType
=
11923 CheckVectorOperands(LHS
, RHS
, Loc
, CompLHSTy
,
11924 /*AllowBothBool*/ getLangOpts().AltiVec
,
11925 /*AllowBoolConversions*/ getLangOpts().ZVector
,
11926 /*AllowBooleanOperation*/ false,
11927 /*ReportInvalid*/ true);
11928 if (CompLHSTy
) *CompLHSTy
= compType
;
11932 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
11933 RHS
.get()->getType()->isSveVLSBuiltinType()) {
11934 QualType compType
=
11935 CheckSizelessVectorOperands(LHS
, RHS
, Loc
, CompLHSTy
, ACK_Arithmetic
);
11937 *CompLHSTy
= compType
;
11941 if (LHS
.get()->getType()->isConstantMatrixType() ||
11942 RHS
.get()->getType()->isConstantMatrixType()) {
11943 QualType compType
=
11944 CheckMatrixElementwiseOperands(LHS
, RHS
, Loc
, CompLHSTy
);
11946 *CompLHSTy
= compType
;
11950 QualType compType
= UsualArithmeticConversions(
11951 LHS
, RHS
, Loc
, CompLHSTy
? ACK_CompAssign
: ACK_Arithmetic
);
11952 if (LHS
.isInvalid() || RHS
.isInvalid())
11955 // Enforce type constraints: C99 6.5.6p3.
11957 // Handle the common case first (both operands are arithmetic).
11958 if (!compType
.isNull() && compType
->isArithmeticType()) {
11959 if (CompLHSTy
) *CompLHSTy
= compType
;
11963 // Either ptr - int or ptr - ptr.
11964 if (LHS
.get()->getType()->isAnyPointerType()) {
11965 QualType lpointee
= LHS
.get()->getType()->getPointeeType();
11967 // Diagnose bad cases where we step over interface counts.
11968 if (LHS
.get()->getType()->isObjCObjectPointerType() &&
11969 checkArithmeticOnObjCPointer(*this, Loc
, LHS
.get()))
11972 // The result type of a pointer-int computation is the pointer type.
11973 if (RHS
.get()->getType()->isIntegerType()) {
11974 // Subtracting from a null pointer should produce a warning.
11975 // The last argument to the diagnose call says this doesn't match the
11976 // GNU int-to-pointer idiom.
11977 if (LHS
.get()->IgnoreParenCasts()->isNullPointerConstant(Context
,
11978 Expr::NPC_ValueDependentIsNotNull
)) {
11979 // In C++ adding zero to a null pointer is defined.
11980 Expr::EvalResult KnownVal
;
11981 if (!getLangOpts().CPlusPlus
||
11982 (!RHS
.get()->isValueDependent() &&
11983 (!RHS
.get()->EvaluateAsInt(KnownVal
, Context
) ||
11984 KnownVal
.Val
.getInt() != 0))) {
11985 diagnoseArithmeticOnNullPointer(*this, Loc
, LHS
.get(), false);
11989 if (!checkArithmeticOpPointerOperand(*this, Loc
, LHS
.get()))
11992 // Check array bounds for pointer arithemtic
11993 CheckArrayAccess(LHS
.get(), RHS
.get(), /*ArraySubscriptExpr*/nullptr,
11994 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11996 if (CompLHSTy
) *CompLHSTy
= LHS
.get()->getType();
11997 return LHS
.get()->getType();
12000 // Handle pointer-pointer subtractions.
12001 if (const PointerType
*RHSPTy
12002 = RHS
.get()->getType()->getAs
<PointerType
>()) {
12003 QualType rpointee
= RHSPTy
->getPointeeType();
12005 if (getLangOpts().CPlusPlus
) {
12006 // Pointee types must be the same: C++ [expr.add]
12007 if (!Context
.hasSameUnqualifiedType(lpointee
, rpointee
)) {
12008 diagnosePointerIncompatibility(*this, Loc
, LHS
.get(), RHS
.get());
12011 // Pointee types must be compatible C99 6.5.6p3
12012 if (!Context
.typesAreCompatible(
12013 Context
.getCanonicalType(lpointee
).getUnqualifiedType(),
12014 Context
.getCanonicalType(rpointee
).getUnqualifiedType())) {
12015 diagnosePointerIncompatibility(*this, Loc
, LHS
.get(), RHS
.get());
12020 if (!checkArithmeticBinOpPointerOperands(*this, Loc
,
12021 LHS
.get(), RHS
.get()))
12024 bool LHSIsNullPtr
= LHS
.get()->IgnoreParenCasts()->isNullPointerConstant(
12025 Context
, Expr::NPC_ValueDependentIsNotNull
);
12026 bool RHSIsNullPtr
= RHS
.get()->IgnoreParenCasts()->isNullPointerConstant(
12027 Context
, Expr::NPC_ValueDependentIsNotNull
);
12029 // Subtracting nullptr or from nullptr is suspect
12031 diagnoseSubtractionOnNullPointer(*this, Loc
, LHS
.get(), RHSIsNullPtr
);
12033 diagnoseSubtractionOnNullPointer(*this, Loc
, RHS
.get(), LHSIsNullPtr
);
12035 // The pointee type may have zero size. As an extension, a structure or
12036 // union may have zero size or an array may have zero length. In this
12037 // case subtraction does not make sense.
12038 if (!rpointee
->isVoidType() && !rpointee
->isFunctionType()) {
12039 CharUnits ElementSize
= Context
.getTypeSizeInChars(rpointee
);
12040 if (ElementSize
.isZero()) {
12041 Diag(Loc
,diag::warn_sub_ptr_zero_size_types
)
12042 << rpointee
.getUnqualifiedType()
12043 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12047 if (CompLHSTy
) *CompLHSTy
= LHS
.get()->getType();
12048 return Context
.getPointerDiffType();
12052 return InvalidOperands(Loc
, LHS
, RHS
);
12055 static bool isScopedEnumerationType(QualType T
) {
12056 if (const EnumType
*ET
= T
->getAs
<EnumType
>())
12057 return ET
->getDecl()->isScoped();
12061 static void DiagnoseBadShiftValues(Sema
& S
, ExprResult
&LHS
, ExprResult
&RHS
,
12062 SourceLocation Loc
, BinaryOperatorKind Opc
,
12063 QualType LHSType
) {
12064 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
12065 // so skip remaining warnings as we don't want to modify values within Sema.
12066 if (S
.getLangOpts().OpenCL
)
12069 // Check right/shifter operand
12070 Expr::EvalResult RHSResult
;
12071 if (RHS
.get()->isValueDependent() ||
12072 !RHS
.get()->EvaluateAsInt(RHSResult
, S
.Context
))
12074 llvm::APSInt Right
= RHSResult
.Val
.getInt();
12076 if (Right
.isNegative()) {
12077 S
.DiagRuntimeBehavior(Loc
, RHS
.get(),
12078 S
.PDiag(diag::warn_shift_negative
)
12079 << RHS
.get()->getSourceRange());
12083 QualType LHSExprType
= LHS
.get()->getType();
12084 uint64_t LeftSize
= S
.Context
.getTypeSize(LHSExprType
);
12085 if (LHSExprType
->isBitIntType())
12086 LeftSize
= S
.Context
.getIntWidth(LHSExprType
);
12087 else if (LHSExprType
->isFixedPointType()) {
12088 auto FXSema
= S
.Context
.getFixedPointSemantics(LHSExprType
);
12089 LeftSize
= FXSema
.getWidth() - (unsigned)FXSema
.hasUnsignedPadding();
12091 llvm::APInt
LeftBits(Right
.getBitWidth(), LeftSize
);
12092 if (Right
.uge(LeftBits
)) {
12093 S
.DiagRuntimeBehavior(Loc
, RHS
.get(),
12094 S
.PDiag(diag::warn_shift_gt_typewidth
)
12095 << RHS
.get()->getSourceRange());
12099 // FIXME: We probably need to handle fixed point types specially here.
12100 if (Opc
!= BO_Shl
|| LHSExprType
->isFixedPointType())
12103 // When left shifting an ICE which is signed, we can check for overflow which
12104 // according to C++ standards prior to C++2a has undefined behavior
12105 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
12106 // more than the maximum value representable in the result type, so never
12107 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
12108 // expression is still probably a bug.)
12109 Expr::EvalResult LHSResult
;
12110 if (LHS
.get()->isValueDependent() ||
12111 LHSType
->hasUnsignedIntegerRepresentation() ||
12112 !LHS
.get()->EvaluateAsInt(LHSResult
, S
.Context
))
12114 llvm::APSInt Left
= LHSResult
.Val
.getInt();
12116 // Don't warn if signed overflow is defined, then all the rest of the
12117 // diagnostics will not be triggered because the behavior is defined.
12118 // Also don't warn in C++20 mode (and newer), as signed left shifts
12119 // always wrap and never overflow.
12120 if (S
.getLangOpts().isSignedOverflowDefined() || S
.getLangOpts().CPlusPlus20
)
12123 // If LHS does not have a non-negative value then, the
12124 // behavior is undefined before C++2a. Warn about it.
12125 if (Left
.isNegative()) {
12126 S
.DiagRuntimeBehavior(Loc
, LHS
.get(),
12127 S
.PDiag(diag::warn_shift_lhs_negative
)
12128 << LHS
.get()->getSourceRange());
12132 llvm::APInt ResultBits
=
12133 static_cast<llvm::APInt
&>(Right
) + Left
.getSignificantBits();
12134 if (LeftBits
.uge(ResultBits
))
12136 llvm::APSInt Result
= Left
.extend(ResultBits
.getLimitedValue());
12137 Result
= Result
.shl(Right
);
12139 // Print the bit representation of the signed integer as an unsigned
12140 // hexadecimal number.
12141 SmallString
<40> HexResult
;
12142 Result
.toString(HexResult
, 16, /*Signed =*/false, /*Literal =*/true);
12144 // If we are only missing a sign bit, this is less likely to result in actual
12145 // bugs -- if the result is cast back to an unsigned type, it will have the
12146 // expected value. Thus we place this behind a different warning that can be
12147 // turned off separately if needed.
12148 if (LeftBits
== ResultBits
- 1) {
12149 S
.Diag(Loc
, diag::warn_shift_result_sets_sign_bit
)
12150 << HexResult
<< LHSType
12151 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12155 S
.Diag(Loc
, diag::warn_shift_result_gt_typewidth
)
12156 << HexResult
.str() << Result
.getSignificantBits() << LHSType
12157 << Left
.getBitWidth() << LHS
.get()->getSourceRange()
12158 << RHS
.get()->getSourceRange();
12161 /// Return the resulting type when a vector is shifted
12162 /// by a scalar or vector shift amount.
12163 static QualType
checkVectorShift(Sema
&S
, ExprResult
&LHS
, ExprResult
&RHS
,
12164 SourceLocation Loc
, bool IsCompAssign
) {
12165 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
12166 if ((S
.LangOpts
.OpenCL
|| S
.LangOpts
.ZVector
) &&
12167 !LHS
.get()->getType()->isVectorType()) {
12168 S
.Diag(Loc
, diag::err_shift_rhs_only_vector
)
12169 << RHS
.get()->getType() << LHS
.get()->getType()
12170 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12174 if (!IsCompAssign
) {
12175 LHS
= S
.UsualUnaryConversions(LHS
.get());
12176 if (LHS
.isInvalid()) return QualType();
12179 RHS
= S
.UsualUnaryConversions(RHS
.get());
12180 if (RHS
.isInvalid()) return QualType();
12182 QualType LHSType
= LHS
.get()->getType();
12183 // Note that LHS might be a scalar because the routine calls not only in
12185 const VectorType
*LHSVecTy
= LHSType
->getAs
<VectorType
>();
12186 QualType LHSEleType
= LHSVecTy
? LHSVecTy
->getElementType() : LHSType
;
12188 // Note that RHS might not be a vector.
12189 QualType RHSType
= RHS
.get()->getType();
12190 const VectorType
*RHSVecTy
= RHSType
->getAs
<VectorType
>();
12191 QualType RHSEleType
= RHSVecTy
? RHSVecTy
->getElementType() : RHSType
;
12193 // Do not allow shifts for boolean vectors.
12194 if ((LHSVecTy
&& LHSVecTy
->isExtVectorBoolType()) ||
12195 (RHSVecTy
&& RHSVecTy
->isExtVectorBoolType())) {
12196 S
.Diag(Loc
, diag::err_typecheck_invalid_operands
)
12197 << LHS
.get()->getType() << RHS
.get()->getType()
12198 << LHS
.get()->getSourceRange();
12202 // The operands need to be integers.
12203 if (!LHSEleType
->isIntegerType()) {
12204 S
.Diag(Loc
, diag::err_typecheck_expect_int
)
12205 << LHS
.get()->getType() << LHS
.get()->getSourceRange();
12209 if (!RHSEleType
->isIntegerType()) {
12210 S
.Diag(Loc
, diag::err_typecheck_expect_int
)
12211 << RHS
.get()->getType() << RHS
.get()->getSourceRange();
12219 if (LHSEleType
!= RHSEleType
) {
12220 LHS
= S
.ImpCastExprToType(LHS
.get(),RHSEleType
, CK_IntegralCast
);
12221 LHSEleType
= RHSEleType
;
12224 S
.Context
.getExtVectorType(LHSEleType
, RHSVecTy
->getNumElements());
12225 LHS
= S
.ImpCastExprToType(LHS
.get(), VecTy
, CK_VectorSplat
);
12227 } else if (RHSVecTy
) {
12228 // OpenCL v1.1 s6.3.j says that for vector types, the operators
12229 // are applied component-wise. So if RHS is a vector, then ensure
12230 // that the number of elements is the same as LHS...
12231 if (RHSVecTy
->getNumElements() != LHSVecTy
->getNumElements()) {
12232 S
.Diag(Loc
, diag::err_typecheck_vector_lengths_not_equal
)
12233 << LHS
.get()->getType() << RHS
.get()->getType()
12234 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12237 if (!S
.LangOpts
.OpenCL
&& !S
.LangOpts
.ZVector
) {
12238 const BuiltinType
*LHSBT
= LHSEleType
->getAs
<clang::BuiltinType
>();
12239 const BuiltinType
*RHSBT
= RHSEleType
->getAs
<clang::BuiltinType
>();
12240 if (LHSBT
!= RHSBT
&&
12241 S
.Context
.getTypeSize(LHSBT
) != S
.Context
.getTypeSize(RHSBT
)) {
12242 S
.Diag(Loc
, diag::warn_typecheck_vector_element_sizes_not_equal
)
12243 << LHS
.get()->getType() << RHS
.get()->getType()
12244 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12248 // ...else expand RHS to match the number of elements in LHS.
12250 S
.Context
.getExtVectorType(RHSEleType
, LHSVecTy
->getNumElements());
12251 RHS
= S
.ImpCastExprToType(RHS
.get(), VecTy
, CK_VectorSplat
);
12257 static QualType
checkSizelessVectorShift(Sema
&S
, ExprResult
&LHS
,
12258 ExprResult
&RHS
, SourceLocation Loc
,
12259 bool IsCompAssign
) {
12260 if (!IsCompAssign
) {
12261 LHS
= S
.UsualUnaryConversions(LHS
.get());
12262 if (LHS
.isInvalid())
12266 RHS
= S
.UsualUnaryConversions(RHS
.get());
12267 if (RHS
.isInvalid())
12270 QualType LHSType
= LHS
.get()->getType();
12271 const BuiltinType
*LHSBuiltinTy
= LHSType
->castAs
<BuiltinType
>();
12272 QualType LHSEleType
= LHSType
->isSveVLSBuiltinType()
12273 ? LHSBuiltinTy
->getSveEltType(S
.getASTContext())
12276 // Note that RHS might not be a vector
12277 QualType RHSType
= RHS
.get()->getType();
12278 const BuiltinType
*RHSBuiltinTy
= RHSType
->castAs
<BuiltinType
>();
12279 QualType RHSEleType
= RHSType
->isSveVLSBuiltinType()
12280 ? RHSBuiltinTy
->getSveEltType(S
.getASTContext())
12283 if ((LHSBuiltinTy
&& LHSBuiltinTy
->isSVEBool()) ||
12284 (RHSBuiltinTy
&& RHSBuiltinTy
->isSVEBool())) {
12285 S
.Diag(Loc
, diag::err_typecheck_invalid_operands
)
12286 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange();
12290 if (!LHSEleType
->isIntegerType()) {
12291 S
.Diag(Loc
, diag::err_typecheck_expect_int
)
12292 << LHS
.get()->getType() << LHS
.get()->getSourceRange();
12296 if (!RHSEleType
->isIntegerType()) {
12297 S
.Diag(Loc
, diag::err_typecheck_expect_int
)
12298 << RHS
.get()->getType() << RHS
.get()->getSourceRange();
12302 if (LHSType
->isSveVLSBuiltinType() && RHSType
->isSveVLSBuiltinType() &&
12303 (S
.Context
.getBuiltinVectorTypeInfo(LHSBuiltinTy
).EC
!=
12304 S
.Context
.getBuiltinVectorTypeInfo(RHSBuiltinTy
).EC
)) {
12305 S
.Diag(Loc
, diag::err_typecheck_invalid_operands
)
12306 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
12307 << RHS
.get()->getSourceRange();
12311 if (!LHSType
->isSveVLSBuiltinType()) {
12312 assert(RHSType
->isSveVLSBuiltinType());
12315 if (LHSEleType
!= RHSEleType
) {
12316 LHS
= S
.ImpCastExprToType(LHS
.get(), RHSEleType
, clang::CK_IntegralCast
);
12317 LHSEleType
= RHSEleType
;
12319 const llvm::ElementCount VecSize
=
12320 S
.Context
.getBuiltinVectorTypeInfo(RHSBuiltinTy
).EC
;
12322 S
.Context
.getScalableVectorType(LHSEleType
, VecSize
.getKnownMinValue());
12323 LHS
= S
.ImpCastExprToType(LHS
.get(), VecTy
, clang::CK_VectorSplat
);
12325 } else if (RHSBuiltinTy
&& RHSBuiltinTy
->isSveVLSBuiltinType()) {
12326 if (S
.Context
.getTypeSize(RHSBuiltinTy
) !=
12327 S
.Context
.getTypeSize(LHSBuiltinTy
)) {
12328 S
.Diag(Loc
, diag::err_typecheck_vector_lengths_not_equal
)
12329 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
12330 << RHS
.get()->getSourceRange();
12334 const llvm::ElementCount VecSize
=
12335 S
.Context
.getBuiltinVectorTypeInfo(LHSBuiltinTy
).EC
;
12336 if (LHSEleType
!= RHSEleType
) {
12337 RHS
= S
.ImpCastExprToType(RHS
.get(), LHSEleType
, clang::CK_IntegralCast
);
12338 RHSEleType
= LHSEleType
;
12341 S
.Context
.getScalableVectorType(RHSEleType
, VecSize
.getKnownMinValue());
12342 RHS
= S
.ImpCastExprToType(RHS
.get(), VecTy
, CK_VectorSplat
);
12349 QualType
Sema::CheckShiftOperands(ExprResult
&LHS
, ExprResult
&RHS
,
12350 SourceLocation Loc
, BinaryOperatorKind Opc
,
12351 bool IsCompAssign
) {
12352 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
12354 // Vector shifts promote their scalar inputs to vector type.
12355 if (LHS
.get()->getType()->isVectorType() ||
12356 RHS
.get()->getType()->isVectorType()) {
12357 if (LangOpts
.ZVector
) {
12358 // The shift operators for the z vector extensions work basically
12359 // like general shifts, except that neither the LHS nor the RHS is
12360 // allowed to be a "vector bool".
12361 if (auto LHSVecType
= LHS
.get()->getType()->getAs
<VectorType
>())
12362 if (LHSVecType
->getVectorKind() == VectorType::AltiVecBool
)
12363 return InvalidOperands(Loc
, LHS
, RHS
);
12364 if (auto RHSVecType
= RHS
.get()->getType()->getAs
<VectorType
>())
12365 if (RHSVecType
->getVectorKind() == VectorType::AltiVecBool
)
12366 return InvalidOperands(Loc
, LHS
, RHS
);
12368 return checkVectorShift(*this, LHS
, RHS
, Loc
, IsCompAssign
);
12371 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
12372 RHS
.get()->getType()->isSveVLSBuiltinType())
12373 return checkSizelessVectorShift(*this, LHS
, RHS
, Loc
, IsCompAssign
);
12375 // Shifts don't perform usual arithmetic conversions, they just do integer
12376 // promotions on each operand. C99 6.5.7p3
12378 // For the LHS, do usual unary conversions, but then reset them away
12379 // if this is a compound assignment.
12380 ExprResult OldLHS
= LHS
;
12381 LHS
= UsualUnaryConversions(LHS
.get());
12382 if (LHS
.isInvalid())
12384 QualType LHSType
= LHS
.get()->getType();
12385 if (IsCompAssign
) LHS
= OldLHS
;
12387 // The RHS is simpler.
12388 RHS
= UsualUnaryConversions(RHS
.get());
12389 if (RHS
.isInvalid())
12391 QualType RHSType
= RHS
.get()->getType();
12393 // C99 6.5.7p2: Each of the operands shall have integer type.
12394 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12395 if ((!LHSType
->isFixedPointOrIntegerType() &&
12396 !LHSType
->hasIntegerRepresentation()) ||
12397 !RHSType
->hasIntegerRepresentation())
12398 return InvalidOperands(Loc
, LHS
, RHS
);
12400 // C++0x: Don't allow scoped enums. FIXME: Use something better than
12401 // hasIntegerRepresentation() above instead of this.
12402 if (isScopedEnumerationType(LHSType
) ||
12403 isScopedEnumerationType(RHSType
)) {
12404 return InvalidOperands(Loc
, LHS
, RHS
);
12406 DiagnoseBadShiftValues(*this, LHS
, RHS
, Loc
, Opc
, LHSType
);
12408 // "The type of the result is that of the promoted left operand."
12412 /// Diagnose bad pointer comparisons.
12413 static void diagnoseDistinctPointerComparison(Sema
&S
, SourceLocation Loc
,
12414 ExprResult
&LHS
, ExprResult
&RHS
,
12416 S
.Diag(Loc
, IsError
? diag::err_typecheck_comparison_of_distinct_pointers
12417 : diag::ext_typecheck_comparison_of_distinct_pointers
)
12418 << LHS
.get()->getType() << RHS
.get()->getType()
12419 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12422 /// Returns false if the pointers are converted to a composite type,
12423 /// true otherwise.
12424 static bool convertPointersToCompositeType(Sema
&S
, SourceLocation Loc
,
12425 ExprResult
&LHS
, ExprResult
&RHS
) {
12426 // C++ [expr.rel]p2:
12427 // [...] Pointer conversions (4.10) and qualification
12428 // conversions (4.4) are performed on pointer operands (or on
12429 // a pointer operand and a null pointer constant) to bring
12430 // them to their composite pointer type. [...]
12432 // C++ [expr.eq]p1 uses the same notion for (in)equality
12433 // comparisons of pointers.
12435 QualType LHSType
= LHS
.get()->getType();
12436 QualType RHSType
= RHS
.get()->getType();
12437 assert(LHSType
->isPointerType() || RHSType
->isPointerType() ||
12438 LHSType
->isMemberPointerType() || RHSType
->isMemberPointerType());
12440 QualType T
= S
.FindCompositePointerType(Loc
, LHS
, RHS
);
12442 if ((LHSType
->isAnyPointerType() || LHSType
->isMemberPointerType()) &&
12443 (RHSType
->isAnyPointerType() || RHSType
->isMemberPointerType()))
12444 diagnoseDistinctPointerComparison(S
, Loc
, LHS
, RHS
, /*isError*/true);
12446 S
.InvalidOperands(Loc
, LHS
, RHS
);
12453 static void diagnoseFunctionPointerToVoidComparison(Sema
&S
, SourceLocation Loc
,
12457 S
.Diag(Loc
, IsError
? diag::err_typecheck_comparison_of_fptr_to_void
12458 : diag::ext_typecheck_comparison_of_fptr_to_void
)
12459 << LHS
.get()->getType() << RHS
.get()->getType()
12460 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
12463 static bool isObjCObjectLiteral(ExprResult
&E
) {
12464 switch (E
.get()->IgnoreParenImpCasts()->getStmtClass()) {
12465 case Stmt::ObjCArrayLiteralClass
:
12466 case Stmt::ObjCDictionaryLiteralClass
:
12467 case Stmt::ObjCStringLiteralClass
:
12468 case Stmt::ObjCBoxedExprClass
:
12471 // Note that ObjCBoolLiteral is NOT an object literal!
12476 static bool hasIsEqualMethod(Sema
&S
, const Expr
*LHS
, const Expr
*RHS
) {
12477 const ObjCObjectPointerType
*Type
=
12478 LHS
->getType()->getAs
<ObjCObjectPointerType
>();
12480 // If this is not actually an Objective-C object, bail out.
12484 // Get the LHS object's interface type.
12485 QualType InterfaceType
= Type
->getPointeeType();
12487 // If the RHS isn't an Objective-C object, bail out.
12488 if (!RHS
->getType()->isObjCObjectPointerType())
12491 // Try to find the -isEqual: method.
12492 Selector IsEqualSel
= S
.NSAPIObj
->getIsEqualSelector();
12493 ObjCMethodDecl
*Method
= S
.LookupMethodInObjectType(IsEqualSel
,
12495 /*IsInstance=*/true);
12497 if (Type
->isObjCIdType()) {
12498 // For 'id', just check the global pool.
12499 Method
= S
.LookupInstanceMethodInGlobalPool(IsEqualSel
, SourceRange(),
12500 /*receiverId=*/true);
12502 // Check protocols.
12503 Method
= S
.LookupMethodInQualifiedType(IsEqualSel
, Type
,
12504 /*IsInstance=*/true);
12511 QualType T
= Method
->parameters()[0]->getType();
12512 if (!T
->isObjCObjectPointerType())
12515 QualType R
= Method
->getReturnType();
12516 if (!R
->isScalarType())
12522 Sema::ObjCLiteralKind
Sema::CheckLiteralKind(Expr
*FromE
) {
12523 FromE
= FromE
->IgnoreParenImpCasts();
12524 switch (FromE
->getStmtClass()) {
12527 case Stmt::ObjCStringLiteralClass
:
12528 // "string literal"
12530 case Stmt::ObjCArrayLiteralClass
:
12533 case Stmt::ObjCDictionaryLiteralClass
:
12534 // "dictionary literal"
12535 return LK_Dictionary
;
12536 case Stmt::BlockExprClass
:
12538 case Stmt::ObjCBoxedExprClass
: {
12539 Expr
*Inner
= cast
<ObjCBoxedExpr
>(FromE
)->getSubExpr()->IgnoreParens();
12540 switch (Inner
->getStmtClass()) {
12541 case Stmt::IntegerLiteralClass
:
12542 case Stmt::FloatingLiteralClass
:
12543 case Stmt::CharacterLiteralClass
:
12544 case Stmt::ObjCBoolLiteralExprClass
:
12545 case Stmt::CXXBoolLiteralExprClass
:
12546 // "numeric literal"
12548 case Stmt::ImplicitCastExprClass
: {
12549 CastKind CK
= cast
<CastExpr
>(Inner
)->getCastKind();
12550 // Boolean literals can be represented by implicit casts.
12551 if (CK
== CK_IntegralToBoolean
|| CK
== CK_IntegralCast
)
12564 static void diagnoseObjCLiteralComparison(Sema
&S
, SourceLocation Loc
,
12565 ExprResult
&LHS
, ExprResult
&RHS
,
12566 BinaryOperator::Opcode Opc
){
12569 if (isObjCObjectLiteral(LHS
)) {
12570 Literal
= LHS
.get();
12573 Literal
= RHS
.get();
12577 // Don't warn on comparisons against nil.
12578 Other
= Other
->IgnoreParenCasts();
12579 if (Other
->isNullPointerConstant(S
.getASTContext(),
12580 Expr::NPC_ValueDependentIsNotNull
))
12583 // This should be kept in sync with warn_objc_literal_comparison.
12584 // LK_String should always be after the other literals, since it has its own
12586 Sema::ObjCLiteralKind LiteralKind
= S
.CheckLiteralKind(Literal
);
12587 assert(LiteralKind
!= Sema::LK_Block
);
12588 if (LiteralKind
== Sema::LK_None
) {
12589 llvm_unreachable("Unknown Objective-C object literal kind");
12592 if (LiteralKind
== Sema::LK_String
)
12593 S
.Diag(Loc
, diag::warn_objc_string_literal_comparison
)
12594 << Literal
->getSourceRange();
12596 S
.Diag(Loc
, diag::warn_objc_literal_comparison
)
12597 << LiteralKind
<< Literal
->getSourceRange();
12599 if (BinaryOperator::isEqualityOp(Opc
) &&
12600 hasIsEqualMethod(S
, LHS
.get(), RHS
.get())) {
12601 SourceLocation Start
= LHS
.get()->getBeginLoc();
12602 SourceLocation End
= S
.getLocForEndOfToken(RHS
.get()->getEndLoc());
12603 CharSourceRange OpRange
=
12604 CharSourceRange::getCharRange(Loc
, S
.getLocForEndOfToken(Loc
));
12606 S
.Diag(Loc
, diag::note_objc_literal_comparison_isequal
)
12607 << FixItHint::CreateInsertion(Start
, Opc
== BO_EQ
? "[" : "![")
12608 << FixItHint::CreateReplacement(OpRange
, " isEqual:")
12609 << FixItHint::CreateInsertion(End
, "]");
12613 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12614 static void diagnoseLogicalNotOnLHSofCheck(Sema
&S
, ExprResult
&LHS
,
12615 ExprResult
&RHS
, SourceLocation Loc
,
12616 BinaryOperatorKind Opc
) {
12617 // Check that left hand side is !something.
12618 UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(LHS
.get()->IgnoreImpCasts());
12619 if (!UO
|| UO
->getOpcode() != UO_LNot
) return;
12621 // Only check if the right hand side is non-bool arithmetic type.
12622 if (RHS
.get()->isKnownToHaveBooleanValue()) return;
12624 // Make sure that the something in !something is not bool.
12625 Expr
*SubExpr
= UO
->getSubExpr()->IgnoreImpCasts();
12626 if (SubExpr
->isKnownToHaveBooleanValue()) return;
12629 bool IsBitwiseOp
= Opc
== BO_And
|| Opc
== BO_Or
|| Opc
== BO_Xor
;
12630 S
.Diag(UO
->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check
)
12631 << Loc
<< IsBitwiseOp
;
12633 // First note suggest !(x < y)
12634 SourceLocation FirstOpen
= SubExpr
->getBeginLoc();
12635 SourceLocation FirstClose
= RHS
.get()->getEndLoc();
12636 FirstClose
= S
.getLocForEndOfToken(FirstClose
);
12637 if (FirstClose
.isInvalid())
12638 FirstOpen
= SourceLocation();
12639 S
.Diag(UO
->getOperatorLoc(), diag::note_logical_not_fix
)
12641 << FixItHint::CreateInsertion(FirstOpen
, "(")
12642 << FixItHint::CreateInsertion(FirstClose
, ")");
12644 // Second note suggests (!x) < y
12645 SourceLocation SecondOpen
= LHS
.get()->getBeginLoc();
12646 SourceLocation SecondClose
= LHS
.get()->getEndLoc();
12647 SecondClose
= S
.getLocForEndOfToken(SecondClose
);
12648 if (SecondClose
.isInvalid())
12649 SecondOpen
= SourceLocation();
12650 S
.Diag(UO
->getOperatorLoc(), diag::note_logical_not_silence_with_parens
)
12651 << FixItHint::CreateInsertion(SecondOpen
, "(")
12652 << FixItHint::CreateInsertion(SecondClose
, ")");
12655 // Returns true if E refers to a non-weak array.
12656 static bool checkForArray(const Expr
*E
) {
12657 const ValueDecl
*D
= nullptr;
12658 if (const DeclRefExpr
*DR
= dyn_cast
<DeclRefExpr
>(E
)) {
12660 } else if (const MemberExpr
*Mem
= dyn_cast
<MemberExpr
>(E
)) {
12661 if (Mem
->isImplicitAccess())
12662 D
= Mem
->getMemberDecl();
12666 return D
->getType()->isArrayType() && !D
->isWeak();
12669 /// Diagnose some forms of syntactically-obvious tautological comparison.
12670 static void diagnoseTautologicalComparison(Sema
&S
, SourceLocation Loc
,
12671 Expr
*LHS
, Expr
*RHS
,
12672 BinaryOperatorKind Opc
) {
12673 Expr
*LHSStripped
= LHS
->IgnoreParenImpCasts();
12674 Expr
*RHSStripped
= RHS
->IgnoreParenImpCasts();
12676 QualType LHSType
= LHS
->getType();
12677 QualType RHSType
= RHS
->getType();
12678 if (LHSType
->hasFloatingRepresentation() ||
12679 (LHSType
->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc
)) ||
12680 S
.inTemplateInstantiation())
12683 // WebAssembly Tables cannot be compared, therefore shouldn't emit
12684 // Tautological diagnostics.
12685 if (LHSType
->isWebAssemblyTableType() || RHSType
->isWebAssemblyTableType())
12688 // Comparisons between two array types are ill-formed for operator<=>, so
12689 // we shouldn't emit any additional warnings about it.
12690 if (Opc
== BO_Cmp
&& LHSType
->isArrayType() && RHSType
->isArrayType())
12693 // For non-floating point types, check for self-comparisons of the form
12694 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12695 // often indicate logic errors in the program.
12697 // NOTE: Don't warn about comparison expressions resulting from macro
12698 // expansion. Also don't warn about comparisons which are only self
12699 // comparisons within a template instantiation. The warnings should catch
12700 // obvious cases in the definition of the template anyways. The idea is to
12701 // warn when the typed comparison operator will always evaluate to the same
12704 // Used for indexing into %select in warn_comparison_always
12709 AlwaysEqual
, // std::strong_ordering::equal from operator<=>
12712 // C++2a [depr.array.comp]:
12713 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12714 // operands of array type are deprecated.
12715 if (S
.getLangOpts().CPlusPlus20
&& LHSStripped
->getType()->isArrayType() &&
12716 RHSStripped
->getType()->isArrayType()) {
12717 S
.Diag(Loc
, diag::warn_depr_array_comparison
)
12718 << LHS
->getSourceRange() << RHS
->getSourceRange()
12719 << LHSStripped
->getType() << RHSStripped
->getType();
12720 // Carry on to produce the tautological comparison warning, if this
12721 // expression is potentially-evaluated, we can resolve the array to a
12722 // non-weak declaration, and so on.
12725 if (!LHS
->getBeginLoc().isMacroID() && !RHS
->getBeginLoc().isMacroID()) {
12726 if (Expr::isSameComparisonOperand(LHS
, RHS
)) {
12732 Result
= AlwaysTrue
;
12737 Result
= AlwaysFalse
;
12740 Result
= AlwaysEqual
;
12743 Result
= AlwaysConstant
;
12746 S
.DiagRuntimeBehavior(Loc
, nullptr,
12747 S
.PDiag(diag::warn_comparison_always
)
12748 << 0 /*self-comparison*/
12750 } else if (checkForArray(LHSStripped
) && checkForArray(RHSStripped
)) {
12751 // What is it always going to evaluate to?
12754 case BO_EQ
: // e.g. array1 == array2
12755 Result
= AlwaysFalse
;
12757 case BO_NE
: // e.g. array1 != array2
12758 Result
= AlwaysTrue
;
12760 default: // e.g. array1 <= array2
12761 // The best we can say is 'a constant'
12762 Result
= AlwaysConstant
;
12765 S
.DiagRuntimeBehavior(Loc
, nullptr,
12766 S
.PDiag(diag::warn_comparison_always
)
12767 << 1 /*array comparison*/
12772 if (isa
<CastExpr
>(LHSStripped
))
12773 LHSStripped
= LHSStripped
->IgnoreParenCasts();
12774 if (isa
<CastExpr
>(RHSStripped
))
12775 RHSStripped
= RHSStripped
->IgnoreParenCasts();
12777 // Warn about comparisons against a string constant (unless the other
12778 // operand is null); the user probably wants string comparison function.
12779 Expr
*LiteralString
= nullptr;
12780 Expr
*LiteralStringStripped
= nullptr;
12781 if ((isa
<StringLiteral
>(LHSStripped
) || isa
<ObjCEncodeExpr
>(LHSStripped
)) &&
12782 !RHSStripped
->isNullPointerConstant(S
.Context
,
12783 Expr::NPC_ValueDependentIsNull
)) {
12784 LiteralString
= LHS
;
12785 LiteralStringStripped
= LHSStripped
;
12786 } else if ((isa
<StringLiteral
>(RHSStripped
) ||
12787 isa
<ObjCEncodeExpr
>(RHSStripped
)) &&
12788 !LHSStripped
->isNullPointerConstant(S
.Context
,
12789 Expr::NPC_ValueDependentIsNull
)) {
12790 LiteralString
= RHS
;
12791 LiteralStringStripped
= RHSStripped
;
12794 if (LiteralString
) {
12795 S
.DiagRuntimeBehavior(Loc
, nullptr,
12796 S
.PDiag(diag::warn_stringcompare
)
12797 << isa
<ObjCEncodeExpr
>(LiteralStringStripped
)
12798 << LiteralString
->getSourceRange());
12802 static ImplicitConversionKind
castKindToImplicitConversionKind(CastKind CK
) {
12806 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK
)
12809 llvm_unreachable("unhandled cast kind");
12811 case CK_UserDefinedConversion
:
12812 return ICK_Identity
;
12813 case CK_LValueToRValue
:
12814 return ICK_Lvalue_To_Rvalue
;
12815 case CK_ArrayToPointerDecay
:
12816 return ICK_Array_To_Pointer
;
12817 case CK_FunctionToPointerDecay
:
12818 return ICK_Function_To_Pointer
;
12819 case CK_IntegralCast
:
12820 return ICK_Integral_Conversion
;
12821 case CK_FloatingCast
:
12822 return ICK_Floating_Conversion
;
12823 case CK_IntegralToFloating
:
12824 case CK_FloatingToIntegral
:
12825 return ICK_Floating_Integral
;
12826 case CK_IntegralComplexCast
:
12827 case CK_FloatingComplexCast
:
12828 case CK_FloatingComplexToIntegralComplex
:
12829 case CK_IntegralComplexToFloatingComplex
:
12830 return ICK_Complex_Conversion
;
12831 case CK_FloatingComplexToReal
:
12832 case CK_FloatingRealToComplex
:
12833 case CK_IntegralComplexToReal
:
12834 case CK_IntegralRealToComplex
:
12835 return ICK_Complex_Real
;
12839 static bool checkThreeWayNarrowingConversion(Sema
&S
, QualType ToType
, Expr
*E
,
12841 SourceLocation Loc
) {
12842 // Check for a narrowing implicit conversion.
12843 StandardConversionSequence SCS
;
12844 SCS
.setAsIdentityConversion();
12845 SCS
.setToType(0, FromType
);
12846 SCS
.setToType(1, ToType
);
12847 if (const auto *ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
12848 SCS
.Second
= castKindToImplicitConversionKind(ICE
->getCastKind());
12850 APValue PreNarrowingValue
;
12851 QualType PreNarrowingType
;
12852 switch (SCS
.getNarrowingKind(S
.Context
, E
, PreNarrowingValue
,
12854 /*IgnoreFloatToIntegralConversion*/ true)) {
12855 case NK_Dependent_Narrowing
:
12856 // Implicit conversion to a narrower type, but the expression is
12857 // value-dependent so we can't tell whether it's actually narrowing.
12858 case NK_Not_Narrowing
:
12861 case NK_Constant_Narrowing
:
12862 // Implicit conversion to a narrower type, and the value is not a constant
12864 S
.Diag(E
->getBeginLoc(), diag::err_spaceship_argument_narrowing
)
12866 << PreNarrowingValue
.getAsString(S
.Context
, PreNarrowingType
) << ToType
;
12869 case NK_Variable_Narrowing
:
12870 // Implicit conversion to a narrower type, and the value is not a constant
12872 case NK_Type_Narrowing
:
12873 S
.Diag(E
->getBeginLoc(), diag::err_spaceship_argument_narrowing
)
12874 << /*Constant*/ 0 << FromType
<< ToType
;
12875 // TODO: It's not a constant expression, but what if the user intended it
12876 // to be? Can we produce notes to help them figure out why it isn't?
12879 llvm_unreachable("unhandled case in switch");
12882 static QualType
checkArithmeticOrEnumeralThreeWayCompare(Sema
&S
,
12885 SourceLocation Loc
) {
12886 QualType LHSType
= LHS
.get()->getType();
12887 QualType RHSType
= RHS
.get()->getType();
12888 // Dig out the original argument type and expression before implicit casts
12889 // were applied. These are the types/expressions we need to check the
12890 // [expr.spaceship] requirements against.
12891 ExprResult LHSStripped
= LHS
.get()->IgnoreParenImpCasts();
12892 ExprResult RHSStripped
= RHS
.get()->IgnoreParenImpCasts();
12893 QualType LHSStrippedType
= LHSStripped
.get()->getType();
12894 QualType RHSStrippedType
= RHSStripped
.get()->getType();
12896 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12897 // other is not, the program is ill-formed.
12898 if (LHSStrippedType
->isBooleanType() != RHSStrippedType
->isBooleanType()) {
12899 S
.InvalidOperands(Loc
, LHSStripped
, RHSStripped
);
12903 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12904 int NumEnumArgs
= (int)LHSStrippedType
->isEnumeralType() +
12905 RHSStrippedType
->isEnumeralType();
12906 if (NumEnumArgs
== 1) {
12907 bool LHSIsEnum
= LHSStrippedType
->isEnumeralType();
12908 QualType OtherTy
= LHSIsEnum
? RHSStrippedType
: LHSStrippedType
;
12909 if (OtherTy
->hasFloatingRepresentation()) {
12910 S
.InvalidOperands(Loc
, LHSStripped
, RHSStripped
);
12914 if (NumEnumArgs
== 2) {
12915 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12916 // type E, the operator yields the result of converting the operands
12917 // to the underlying type of E and applying <=> to the converted operands.
12918 if (!S
.Context
.hasSameUnqualifiedType(LHSStrippedType
, RHSStrippedType
)) {
12919 S
.InvalidOperands(Loc
, LHS
, RHS
);
12923 LHSStrippedType
->castAs
<EnumType
>()->getDecl()->getIntegerType();
12924 assert(IntType
->isArithmeticType());
12926 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12927 // promote the boolean type, and all other promotable integer types, to
12929 if (S
.Context
.isPromotableIntegerType(IntType
))
12930 IntType
= S
.Context
.getPromotedIntegerType(IntType
);
12932 LHS
= S
.ImpCastExprToType(LHS
.get(), IntType
, CK_IntegralCast
);
12933 RHS
= S
.ImpCastExprToType(RHS
.get(), IntType
, CK_IntegralCast
);
12934 LHSType
= RHSType
= IntType
;
12937 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12938 // usual arithmetic conversions are applied to the operands.
12940 S
.UsualArithmeticConversions(LHS
, RHS
, Loc
, Sema::ACK_Comparison
);
12941 if (LHS
.isInvalid() || RHS
.isInvalid())
12944 return S
.InvalidOperands(Loc
, LHS
, RHS
);
12946 std::optional
<ComparisonCategoryType
> CCT
=
12947 getComparisonCategoryForBuiltinCmp(Type
);
12949 return S
.InvalidOperands(Loc
, LHS
, RHS
);
12951 bool HasNarrowing
= checkThreeWayNarrowingConversion(
12952 S
, Type
, LHS
.get(), LHSType
, LHS
.get()->getBeginLoc());
12953 HasNarrowing
|= checkThreeWayNarrowingConversion(S
, Type
, RHS
.get(), RHSType
,
12954 RHS
.get()->getBeginLoc());
12958 assert(!Type
.isNull() && "composite type for <=> has not been set");
12960 return S
.CheckComparisonCategoryType(
12961 *CCT
, Loc
, Sema::ComparisonCategoryUsage::OperatorInExpression
);
12964 static QualType
checkArithmeticOrEnumeralCompare(Sema
&S
, ExprResult
&LHS
,
12966 SourceLocation Loc
,
12967 BinaryOperatorKind Opc
) {
12969 return checkArithmeticOrEnumeralThreeWayCompare(S
, LHS
, RHS
, Loc
);
12971 // C99 6.5.8p3 / C99 6.5.9p4
12973 S
.UsualArithmeticConversions(LHS
, RHS
, Loc
, Sema::ACK_Comparison
);
12974 if (LHS
.isInvalid() || RHS
.isInvalid())
12977 return S
.InvalidOperands(Loc
, LHS
, RHS
);
12978 assert(Type
->isArithmeticType() || Type
->isEnumeralType());
12980 if (Type
->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc
))
12981 return S
.InvalidOperands(Loc
, LHS
, RHS
);
12983 // Check for comparisons of floating point operands using != and ==.
12984 if (Type
->hasFloatingRepresentation())
12985 S
.CheckFloatComparison(Loc
, LHS
.get(), RHS
.get(), Opc
);
12987 // The result of comparisons is 'bool' in C++, 'int' in C.
12988 return S
.Context
.getLogicalOperationType();
12991 void Sema::CheckPtrComparisonWithNullChar(ExprResult
&E
, ExprResult
&NullE
) {
12992 if (!NullE
.get()->getType()->isAnyPointerType())
12994 int NullValue
= PP
.isMacroDefined("NULL") ? 0 : 1;
12995 if (!E
.get()->getType()->isAnyPointerType() &&
12996 E
.get()->isNullPointerConstant(Context
,
12997 Expr::NPC_ValueDependentIsNotNull
) ==
12998 Expr::NPCK_ZeroExpression
) {
12999 if (const auto *CL
= dyn_cast
<CharacterLiteral
>(E
.get())) {
13000 if (CL
->getValue() == 0)
13001 Diag(E
.get()->getExprLoc(), diag::warn_pointer_compare
)
13003 << FixItHint::CreateReplacement(E
.get()->getExprLoc(),
13004 NullValue
? "NULL" : "(void *)0");
13005 } else if (const auto *CE
= dyn_cast
<CStyleCastExpr
>(E
.get())) {
13006 TypeSourceInfo
*TI
= CE
->getTypeInfoAsWritten();
13007 QualType T
= Context
.getCanonicalType(TI
->getType()).getUnqualifiedType();
13008 if (T
== Context
.CharTy
)
13009 Diag(E
.get()->getExprLoc(), diag::warn_pointer_compare
)
13011 << FixItHint::CreateReplacement(E
.get()->getExprLoc(),
13012 NullValue
? "NULL" : "(void *)0");
13017 // C99 6.5.8, C++ [expr.rel]
13018 QualType
Sema::CheckCompareOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13019 SourceLocation Loc
,
13020 BinaryOperatorKind Opc
) {
13021 bool IsRelational
= BinaryOperator::isRelationalOp(Opc
);
13022 bool IsThreeWay
= Opc
== BO_Cmp
;
13023 bool IsOrdered
= IsRelational
|| IsThreeWay
;
13024 auto IsAnyPointerType
= [](ExprResult E
) {
13025 QualType Ty
= E
.get()->getType();
13026 return Ty
->isPointerType() || Ty
->isMemberPointerType();
13029 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
13030 // type, array-to-pointer, ..., conversions are performed on both operands to
13031 // bring them to their composite type.
13032 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
13033 // any type-related checks.
13034 if (!IsThreeWay
|| IsAnyPointerType(LHS
) || IsAnyPointerType(RHS
)) {
13035 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
13036 if (LHS
.isInvalid())
13038 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
13039 if (RHS
.isInvalid())
13042 LHS
= DefaultLvalueConversion(LHS
.get());
13043 if (LHS
.isInvalid())
13045 RHS
= DefaultLvalueConversion(RHS
.get());
13046 if (RHS
.isInvalid())
13050 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/true);
13051 if (!getLangOpts().CPlusPlus
&& BinaryOperator::isEqualityOp(Opc
)) {
13052 CheckPtrComparisonWithNullChar(LHS
, RHS
);
13053 CheckPtrComparisonWithNullChar(RHS
, LHS
);
13056 // Handle vector comparisons separately.
13057 if (LHS
.get()->getType()->isVectorType() ||
13058 RHS
.get()->getType()->isVectorType())
13059 return CheckVectorCompareOperands(LHS
, RHS
, Loc
, Opc
);
13061 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
13062 RHS
.get()->getType()->isSveVLSBuiltinType())
13063 return CheckSizelessVectorCompareOperands(LHS
, RHS
, Loc
, Opc
);
13065 diagnoseLogicalNotOnLHSofCheck(*this, LHS
, RHS
, Loc
, Opc
);
13066 diagnoseTautologicalComparison(*this, Loc
, LHS
.get(), RHS
.get(), Opc
);
13068 QualType LHSType
= LHS
.get()->getType();
13069 QualType RHSType
= RHS
.get()->getType();
13070 if ((LHSType
->isArithmeticType() || LHSType
->isEnumeralType()) &&
13071 (RHSType
->isArithmeticType() || RHSType
->isEnumeralType()))
13072 return checkArithmeticOrEnumeralCompare(*this, LHS
, RHS
, Loc
, Opc
);
13074 if ((LHSType
->isPointerType() &&
13075 LHSType
->getPointeeType().isWebAssemblyReferenceType()) ||
13076 (RHSType
->isPointerType() &&
13077 RHSType
->getPointeeType().isWebAssemblyReferenceType()))
13078 return InvalidOperands(Loc
, LHS
, RHS
);
13080 const Expr::NullPointerConstantKind LHSNullKind
=
13081 LHS
.get()->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
);
13082 const Expr::NullPointerConstantKind RHSNullKind
=
13083 RHS
.get()->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull
);
13084 bool LHSIsNull
= LHSNullKind
!= Expr::NPCK_NotNull
;
13085 bool RHSIsNull
= RHSNullKind
!= Expr::NPCK_NotNull
;
13087 auto computeResultTy
= [&]() {
13089 return Context
.getLogicalOperationType();
13090 assert(getLangOpts().CPlusPlus
);
13091 assert(Context
.hasSameType(LHS
.get()->getType(), RHS
.get()->getType()));
13093 QualType CompositeTy
= LHS
.get()->getType();
13094 assert(!CompositeTy
->isReferenceType());
13096 std::optional
<ComparisonCategoryType
> CCT
=
13097 getComparisonCategoryForBuiltinCmp(CompositeTy
);
13099 return InvalidOperands(Loc
, LHS
, RHS
);
13101 if (CompositeTy
->isPointerType() && LHSIsNull
!= RHSIsNull
) {
13102 // P0946R0: Comparisons between a null pointer constant and an object
13103 // pointer result in std::strong_equality, which is ill-formed under
13105 Diag(Loc
, diag::err_typecheck_three_way_comparison_of_pointer_and_zero
)
13106 << (LHSIsNull
? LHS
.get()->getSourceRange()
13107 : RHS
.get()->getSourceRange());
13111 return CheckComparisonCategoryType(
13112 *CCT
, Loc
, ComparisonCategoryUsage::OperatorInExpression
);
13115 if (!IsOrdered
&& LHSIsNull
!= RHSIsNull
) {
13116 bool IsEquality
= Opc
== BO_EQ
;
13118 DiagnoseAlwaysNonNullPointer(LHS
.get(), RHSNullKind
, IsEquality
,
13119 RHS
.get()->getSourceRange());
13121 DiagnoseAlwaysNonNullPointer(RHS
.get(), LHSNullKind
, IsEquality
,
13122 LHS
.get()->getSourceRange());
13125 if (IsOrdered
&& LHSType
->isFunctionPointerType() &&
13126 RHSType
->isFunctionPointerType()) {
13127 // Valid unless a relational comparison of function pointers
13128 bool IsError
= Opc
== BO_Cmp
;
13130 IsError
? diag::err_typecheck_ordered_comparison_of_function_pointers
13131 : getLangOpts().CPlusPlus
13132 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
13133 : diag::ext_typecheck_ordered_comparison_of_function_pointers
;
13134 Diag(Loc
, DiagID
) << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
13135 << RHS
.get()->getSourceRange();
13140 if ((LHSType
->isIntegerType() && !LHSIsNull
) ||
13141 (RHSType
->isIntegerType() && !RHSIsNull
)) {
13142 // Skip normal pointer conversion checks in this case; we have better
13143 // diagnostics for this below.
13144 } else if (getLangOpts().CPlusPlus
) {
13145 // Equality comparison of a function pointer to a void pointer is invalid,
13146 // but we allow it as an extension.
13147 // FIXME: If we really want to allow this, should it be part of composite
13148 // pointer type computation so it works in conditionals too?
13150 ((LHSType
->isFunctionPointerType() && RHSType
->isVoidPointerType()) ||
13151 (RHSType
->isFunctionPointerType() && LHSType
->isVoidPointerType()))) {
13152 // This is a gcc extension compatibility comparison.
13153 // In a SFINAE context, we treat this as a hard error to maintain
13154 // conformance with the C++ standard.
13155 diagnoseFunctionPointerToVoidComparison(
13156 *this, Loc
, LHS
, RHS
, /*isError*/ (bool)isSFINAEContext());
13158 if (isSFINAEContext())
13161 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
13162 return computeResultTy();
13165 // C++ [expr.eq]p2:
13166 // If at least one operand is a pointer [...] bring them to their
13167 // composite pointer type.
13168 // C++ [expr.spaceship]p6
13169 // If at least one of the operands is of pointer type, [...] bring them
13170 // to their composite pointer type.
13171 // C++ [expr.rel]p2:
13172 // If both operands are pointers, [...] bring them to their composite
13174 // For <=>, the only valid non-pointer types are arrays and functions, and
13175 // we already decayed those, so this is really the same as the relational
13176 // comparison rule.
13177 if ((int)LHSType
->isPointerType() + (int)RHSType
->isPointerType() >=
13178 (IsOrdered
? 2 : 1) &&
13179 (!LangOpts
.ObjCAutoRefCount
|| !(LHSType
->isObjCObjectPointerType() ||
13180 RHSType
->isObjCObjectPointerType()))) {
13181 if (convertPointersToCompositeType(*this, Loc
, LHS
, RHS
))
13183 return computeResultTy();
13185 } else if (LHSType
->isPointerType() &&
13186 RHSType
->isPointerType()) { // C99 6.5.8p2
13187 // All of the following pointer-related warnings are GCC extensions, except
13188 // when handling null pointer constants.
13189 QualType LCanPointeeTy
=
13190 LHSType
->castAs
<PointerType
>()->getPointeeType().getCanonicalType();
13191 QualType RCanPointeeTy
=
13192 RHSType
->castAs
<PointerType
>()->getPointeeType().getCanonicalType();
13194 // C99 6.5.9p2 and C99 6.5.8p2
13195 if (Context
.typesAreCompatible(LCanPointeeTy
.getUnqualifiedType(),
13196 RCanPointeeTy
.getUnqualifiedType())) {
13197 if (IsRelational
) {
13198 // Pointers both need to point to complete or incomplete types
13199 if ((LCanPointeeTy
->isIncompleteType() !=
13200 RCanPointeeTy
->isIncompleteType()) &&
13201 !getLangOpts().C11
) {
13202 Diag(Loc
, diag::ext_typecheck_compare_complete_incomplete_pointers
)
13203 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange()
13204 << LHSType
<< RHSType
<< LCanPointeeTy
->isIncompleteType()
13205 << RCanPointeeTy
->isIncompleteType();
13208 } else if (!IsRelational
&&
13209 (LCanPointeeTy
->isVoidType() || RCanPointeeTy
->isVoidType())) {
13210 // Valid unless comparison between non-null pointer and function pointer
13211 if ((LCanPointeeTy
->isFunctionType() || RCanPointeeTy
->isFunctionType())
13212 && !LHSIsNull
&& !RHSIsNull
)
13213 diagnoseFunctionPointerToVoidComparison(*this, Loc
, LHS
, RHS
,
13217 diagnoseDistinctPointerComparison(*this, Loc
, LHS
, RHS
, /*isError*/false);
13219 if (LCanPointeeTy
!= RCanPointeeTy
) {
13220 // Treat NULL constant as a special case in OpenCL.
13221 if (getLangOpts().OpenCL
&& !LHSIsNull
&& !RHSIsNull
) {
13222 if (!LCanPointeeTy
.isAddressSpaceOverlapping(RCanPointeeTy
)) {
13224 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers
)
13225 << LHSType
<< RHSType
<< 0 /* comparison */
13226 << LHS
.get()->getSourceRange() << RHS
.get()->getSourceRange();
13229 LangAS AddrSpaceL
= LCanPointeeTy
.getAddressSpace();
13230 LangAS AddrSpaceR
= RCanPointeeTy
.getAddressSpace();
13231 CastKind Kind
= AddrSpaceL
!= AddrSpaceR
? CK_AddressSpaceConversion
13233 if (LHSIsNull
&& !RHSIsNull
)
13234 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, Kind
);
13236 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, Kind
);
13238 return computeResultTy();
13242 // C++ [expr.eq]p4:
13243 // Two operands of type std::nullptr_t or one operand of type
13244 // std::nullptr_t and the other a null pointer constant compare
13247 // If both operands have type nullptr_t or one operand has type nullptr_t
13248 // and the other is a null pointer constant, they compare equal if the
13249 // former is a null pointer.
13250 if (!IsOrdered
&& LHSIsNull
&& RHSIsNull
) {
13251 if (LHSType
->isNullPtrType()) {
13252 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13253 return computeResultTy();
13255 if (RHSType
->isNullPtrType()) {
13256 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13257 return computeResultTy();
13261 if (!getLangOpts().CPlusPlus
&& !IsOrdered
&& (LHSIsNull
|| RHSIsNull
)) {
13263 // Otherwise, at least one operand is a pointer. If one is a pointer and
13264 // the other is a null pointer constant or has type nullptr_t, they
13266 if (LHSIsNull
&& RHSType
->isPointerType()) {
13267 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13268 return computeResultTy();
13270 if (RHSIsNull
&& LHSType
->isPointerType()) {
13271 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13272 return computeResultTy();
13276 // Comparison of Objective-C pointers and block pointers against nullptr_t.
13277 // These aren't covered by the composite pointer type rules.
13278 if (!IsOrdered
&& RHSType
->isNullPtrType() &&
13279 (LHSType
->isObjCObjectPointerType() || LHSType
->isBlockPointerType())) {
13280 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13281 return computeResultTy();
13283 if (!IsOrdered
&& LHSType
->isNullPtrType() &&
13284 (RHSType
->isObjCObjectPointerType() || RHSType
->isBlockPointerType())) {
13285 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13286 return computeResultTy();
13289 if (getLangOpts().CPlusPlus
) {
13290 if (IsRelational
&&
13291 ((LHSType
->isNullPtrType() && RHSType
->isPointerType()) ||
13292 (RHSType
->isNullPtrType() && LHSType
->isPointerType()))) {
13293 // HACK: Relational comparison of nullptr_t against a pointer type is
13294 // invalid per DR583, but we allow it within std::less<> and friends,
13295 // since otherwise common uses of it break.
13296 // FIXME: Consider removing this hack once LWG fixes std::less<> and
13297 // friends to have std::nullptr_t overload candidates.
13298 DeclContext
*DC
= CurContext
;
13299 if (isa
<FunctionDecl
>(DC
))
13300 DC
= DC
->getParent();
13301 if (auto *CTSD
= dyn_cast
<ClassTemplateSpecializationDecl
>(DC
)) {
13302 if (CTSD
->isInStdNamespace() &&
13303 llvm::StringSwitch
<bool>(CTSD
->getName())
13304 .Cases("less", "less_equal", "greater", "greater_equal", true)
13306 if (RHSType
->isNullPtrType())
13307 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13309 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13310 return computeResultTy();
13315 // C++ [expr.eq]p2:
13316 // If at least one operand is a pointer to member, [...] bring them to
13317 // their composite pointer type.
13319 (LHSType
->isMemberPointerType() || RHSType
->isMemberPointerType())) {
13320 if (convertPointersToCompositeType(*this, Loc
, LHS
, RHS
))
13323 return computeResultTy();
13327 // Handle block pointer types.
13328 if (!IsOrdered
&& LHSType
->isBlockPointerType() &&
13329 RHSType
->isBlockPointerType()) {
13330 QualType lpointee
= LHSType
->castAs
<BlockPointerType
>()->getPointeeType();
13331 QualType rpointee
= RHSType
->castAs
<BlockPointerType
>()->getPointeeType();
13333 if (!LHSIsNull
&& !RHSIsNull
&&
13334 !Context
.typesAreCompatible(lpointee
, rpointee
)) {
13335 Diag(Loc
, diag::err_typecheck_comparison_of_distinct_blocks
)
13336 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
13337 << RHS
.get()->getSourceRange();
13339 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
13340 return computeResultTy();
13343 // Allow block pointers to be compared with null pointer constants.
13345 && ((LHSType
->isBlockPointerType() && RHSType
->isPointerType())
13346 || (LHSType
->isPointerType() && RHSType
->isBlockPointerType()))) {
13347 if (!LHSIsNull
&& !RHSIsNull
) {
13348 if (!((RHSType
->isPointerType() && RHSType
->castAs
<PointerType
>()
13349 ->getPointeeType()->isVoidType())
13350 || (LHSType
->isPointerType() && LHSType
->castAs
<PointerType
>()
13351 ->getPointeeType()->isVoidType())))
13352 Diag(Loc
, diag::err_typecheck_comparison_of_distinct_blocks
)
13353 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
13354 << RHS
.get()->getSourceRange();
13356 if (LHSIsNull
&& !RHSIsNull
)
13357 LHS
= ImpCastExprToType(LHS
.get(), RHSType
,
13358 RHSType
->isPointerType() ? CK_BitCast
13359 : CK_AnyPointerToBlockPointerCast
);
13361 RHS
= ImpCastExprToType(RHS
.get(), LHSType
,
13362 LHSType
->isPointerType() ? CK_BitCast
13363 : CK_AnyPointerToBlockPointerCast
);
13364 return computeResultTy();
13367 if (LHSType
->isObjCObjectPointerType() ||
13368 RHSType
->isObjCObjectPointerType()) {
13369 const PointerType
*LPT
= LHSType
->getAs
<PointerType
>();
13370 const PointerType
*RPT
= RHSType
->getAs
<PointerType
>();
13372 bool LPtrToVoid
= LPT
? LPT
->getPointeeType()->isVoidType() : false;
13373 bool RPtrToVoid
= RPT
? RPT
->getPointeeType()->isVoidType() : false;
13375 if (!LPtrToVoid
&& !RPtrToVoid
&&
13376 !Context
.typesAreCompatible(LHSType
, RHSType
)) {
13377 diagnoseDistinctPointerComparison(*this, Loc
, LHS
, RHS
,
13380 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
13381 // the RHS, but we have test coverage for this behavior.
13382 // FIXME: Consider using convertPointersToCompositeType in C++.
13383 if (LHSIsNull
&& !RHSIsNull
) {
13384 Expr
*E
= LHS
.get();
13385 if (getLangOpts().ObjCAutoRefCount
)
13386 CheckObjCConversion(SourceRange(), RHSType
, E
,
13387 CCK_ImplicitConversion
);
13388 LHS
= ImpCastExprToType(E
, RHSType
,
13389 RPT
? CK_BitCast
:CK_CPointerToObjCPointerCast
);
13392 Expr
*E
= RHS
.get();
13393 if (getLangOpts().ObjCAutoRefCount
)
13394 CheckObjCConversion(SourceRange(), LHSType
, E
, CCK_ImplicitConversion
,
13396 /*DiagnoseCFAudited=*/false, Opc
);
13397 RHS
= ImpCastExprToType(E
, LHSType
,
13398 LPT
? CK_BitCast
:CK_CPointerToObjCPointerCast
);
13400 return computeResultTy();
13402 if (LHSType
->isObjCObjectPointerType() &&
13403 RHSType
->isObjCObjectPointerType()) {
13404 if (!Context
.areComparableObjCPointerTypes(LHSType
, RHSType
))
13405 diagnoseDistinctPointerComparison(*this, Loc
, LHS
, RHS
,
13407 if (isObjCObjectLiteral(LHS
) || isObjCObjectLiteral(RHS
))
13408 diagnoseObjCLiteralComparison(*this, Loc
, LHS
, RHS
, Opc
);
13410 if (LHSIsNull
&& !RHSIsNull
)
13411 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_BitCast
);
13413 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_BitCast
);
13414 return computeResultTy();
13417 if (!IsOrdered
&& LHSType
->isBlockPointerType() &&
13418 RHSType
->isBlockCompatibleObjCPointerType(Context
)) {
13419 LHS
= ImpCastExprToType(LHS
.get(), RHSType
,
13420 CK_BlockPointerToObjCPointerCast
);
13421 return computeResultTy();
13422 } else if (!IsOrdered
&&
13423 LHSType
->isBlockCompatibleObjCPointerType(Context
) &&
13424 RHSType
->isBlockPointerType()) {
13425 RHS
= ImpCastExprToType(RHS
.get(), LHSType
,
13426 CK_BlockPointerToObjCPointerCast
);
13427 return computeResultTy();
13430 if ((LHSType
->isAnyPointerType() && RHSType
->isIntegerType()) ||
13431 (LHSType
->isIntegerType() && RHSType
->isAnyPointerType())) {
13432 unsigned DiagID
= 0;
13433 bool isError
= false;
13434 if (LangOpts
.DebuggerSupport
) {
13435 // Under a debugger, allow the comparison of pointers to integers,
13436 // since users tend to want to compare addresses.
13437 } else if ((LHSIsNull
&& LHSType
->isIntegerType()) ||
13438 (RHSIsNull
&& RHSType
->isIntegerType())) {
13440 isError
= getLangOpts().CPlusPlus
;
13442 isError
? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13443 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero
;
13445 } else if (getLangOpts().CPlusPlus
) {
13446 DiagID
= diag::err_typecheck_comparison_of_pointer_integer
;
13448 } else if (IsOrdered
)
13449 DiagID
= diag::ext_typecheck_ordered_comparison_of_pointer_integer
;
13451 DiagID
= diag::ext_typecheck_comparison_of_pointer_integer
;
13455 << LHSType
<< RHSType
<< LHS
.get()->getSourceRange()
13456 << RHS
.get()->getSourceRange();
13461 if (LHSType
->isIntegerType())
13462 LHS
= ImpCastExprToType(LHS
.get(), RHSType
,
13463 LHSIsNull
? CK_NullToPointer
: CK_IntegralToPointer
);
13465 RHS
= ImpCastExprToType(RHS
.get(), LHSType
,
13466 RHSIsNull
? CK_NullToPointer
: CK_IntegralToPointer
);
13467 return computeResultTy();
13470 // Handle block pointers.
13471 if (!IsOrdered
&& RHSIsNull
13472 && LHSType
->isBlockPointerType() && RHSType
->isIntegerType()) {
13473 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13474 return computeResultTy();
13476 if (!IsOrdered
&& LHSIsNull
13477 && LHSType
->isIntegerType() && RHSType
->isBlockPointerType()) {
13478 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13479 return computeResultTy();
13482 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13483 if (LHSType
->isClkEventT() && RHSType
->isClkEventT()) {
13484 return computeResultTy();
13487 if (LHSType
->isQueueT() && RHSType
->isQueueT()) {
13488 return computeResultTy();
13491 if (LHSIsNull
&& RHSType
->isQueueT()) {
13492 LHS
= ImpCastExprToType(LHS
.get(), RHSType
, CK_NullToPointer
);
13493 return computeResultTy();
13496 if (LHSType
->isQueueT() && RHSIsNull
) {
13497 RHS
= ImpCastExprToType(RHS
.get(), LHSType
, CK_NullToPointer
);
13498 return computeResultTy();
13502 return InvalidOperands(Loc
, LHS
, RHS
);
13505 // Return a signed ext_vector_type that is of identical size and number of
13506 // elements. For floating point vectors, return an integer type of identical
13507 // size and number of elements. In the non ext_vector_type case, search from
13508 // the largest type to the smallest type to avoid cases where long long == long,
13509 // where long gets picked over long long.
13510 QualType
Sema::GetSignedVectorType(QualType V
) {
13511 const VectorType
*VTy
= V
->castAs
<VectorType
>();
13512 unsigned TypeSize
= Context
.getTypeSize(VTy
->getElementType());
13514 if (isa
<ExtVectorType
>(VTy
)) {
13515 if (VTy
->isExtVectorBoolType())
13516 return Context
.getExtVectorType(Context
.BoolTy
, VTy
->getNumElements());
13517 if (TypeSize
== Context
.getTypeSize(Context
.CharTy
))
13518 return Context
.getExtVectorType(Context
.CharTy
, VTy
->getNumElements());
13519 if (TypeSize
== Context
.getTypeSize(Context
.ShortTy
))
13520 return Context
.getExtVectorType(Context
.ShortTy
, VTy
->getNumElements());
13521 if (TypeSize
== Context
.getTypeSize(Context
.IntTy
))
13522 return Context
.getExtVectorType(Context
.IntTy
, VTy
->getNumElements());
13523 if (TypeSize
== Context
.getTypeSize(Context
.Int128Ty
))
13524 return Context
.getExtVectorType(Context
.Int128Ty
, VTy
->getNumElements());
13525 if (TypeSize
== Context
.getTypeSize(Context
.LongTy
))
13526 return Context
.getExtVectorType(Context
.LongTy
, VTy
->getNumElements());
13527 assert(TypeSize
== Context
.getTypeSize(Context
.LongLongTy
) &&
13528 "Unhandled vector element size in vector compare");
13529 return Context
.getExtVectorType(Context
.LongLongTy
, VTy
->getNumElements());
13532 if (TypeSize
== Context
.getTypeSize(Context
.Int128Ty
))
13533 return Context
.getVectorType(Context
.Int128Ty
, VTy
->getNumElements(),
13534 VectorType::GenericVector
);
13535 if (TypeSize
== Context
.getTypeSize(Context
.LongLongTy
))
13536 return Context
.getVectorType(Context
.LongLongTy
, VTy
->getNumElements(),
13537 VectorType::GenericVector
);
13538 if (TypeSize
== Context
.getTypeSize(Context
.LongTy
))
13539 return Context
.getVectorType(Context
.LongTy
, VTy
->getNumElements(),
13540 VectorType::GenericVector
);
13541 if (TypeSize
== Context
.getTypeSize(Context
.IntTy
))
13542 return Context
.getVectorType(Context
.IntTy
, VTy
->getNumElements(),
13543 VectorType::GenericVector
);
13544 if (TypeSize
== Context
.getTypeSize(Context
.ShortTy
))
13545 return Context
.getVectorType(Context
.ShortTy
, VTy
->getNumElements(),
13546 VectorType::GenericVector
);
13547 assert(TypeSize
== Context
.getTypeSize(Context
.CharTy
) &&
13548 "Unhandled vector element size in vector compare");
13549 return Context
.getVectorType(Context
.CharTy
, VTy
->getNumElements(),
13550 VectorType::GenericVector
);
13553 QualType
Sema::GetSignedSizelessVectorType(QualType V
) {
13554 const BuiltinType
*VTy
= V
->castAs
<BuiltinType
>();
13555 assert(VTy
->isSizelessBuiltinType() && "expected sizeless type");
13557 const QualType ETy
= V
->getSveEltType(Context
);
13558 const auto TypeSize
= Context
.getTypeSize(ETy
);
13560 const QualType IntTy
= Context
.getIntTypeForBitwidth(TypeSize
, true);
13561 const llvm::ElementCount VecSize
= Context
.getBuiltinVectorTypeInfo(VTy
).EC
;
13562 return Context
.getScalableVectorType(IntTy
, VecSize
.getKnownMinValue());
13565 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13566 /// operates on extended vector types. Instead of producing an IntTy result,
13567 /// like a scalar comparison, a vector comparison produces a vector of integer
13569 QualType
Sema::CheckVectorCompareOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13570 SourceLocation Loc
,
13571 BinaryOperatorKind Opc
) {
13572 if (Opc
== BO_Cmp
) {
13573 Diag(Loc
, diag::err_three_way_vector_comparison
);
13577 // Check to make sure we're operating on vectors of the same type and width,
13578 // Allowing one side to be a scalar of element type.
13580 CheckVectorOperands(LHS
, RHS
, Loc
, /*isCompAssign*/ false,
13581 /*AllowBothBool*/ true,
13582 /*AllowBoolConversions*/ getLangOpts().ZVector
,
13583 /*AllowBooleanOperation*/ true,
13584 /*ReportInvalid*/ true);
13585 if (vType
.isNull())
13588 QualType LHSType
= LHS
.get()->getType();
13590 // Determine the return type of a vector compare. By default clang will return
13591 // a scalar for all vector compares except vector bool and vector pixel.
13592 // With the gcc compiler we will always return a vector type and with the xl
13593 // compiler we will always return a scalar type. This switch allows choosing
13594 // which behavior is prefered.
13595 if (getLangOpts().AltiVec
) {
13596 switch (getLangOpts().getAltivecSrcCompat()) {
13597 case LangOptions::AltivecSrcCompatKind::Mixed
:
13598 // If AltiVec, the comparison results in a numeric type, i.e.
13599 // bool for C++, int for C
13600 if (vType
->castAs
<VectorType
>()->getVectorKind() ==
13601 VectorType::AltiVecVector
)
13602 return Context
.getLogicalOperationType();
13604 Diag(Loc
, diag::warn_deprecated_altivec_src_compat
);
13606 case LangOptions::AltivecSrcCompatKind::GCC
:
13607 // For GCC we always return the vector type.
13609 case LangOptions::AltivecSrcCompatKind::XL
:
13610 return Context
.getLogicalOperationType();
13615 // For non-floating point types, check for self-comparisons of the form
13616 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13617 // often indicate logic errors in the program.
13618 diagnoseTautologicalComparison(*this, Loc
, LHS
.get(), RHS
.get(), Opc
);
13620 // Check for comparisons of floating point operands using != and ==.
13621 if (LHSType
->hasFloatingRepresentation()) {
13622 assert(RHS
.get()->getType()->hasFloatingRepresentation());
13623 CheckFloatComparison(Loc
, LHS
.get(), RHS
.get(), Opc
);
13626 // Return a signed type for the vector.
13627 return GetSignedVectorType(vType
);
13630 QualType
Sema::CheckSizelessVectorCompareOperands(ExprResult
&LHS
,
13632 SourceLocation Loc
,
13633 BinaryOperatorKind Opc
) {
13634 if (Opc
== BO_Cmp
) {
13635 Diag(Loc
, diag::err_three_way_vector_comparison
);
13639 // Check to make sure we're operating on vectors of the same type and width,
13640 // Allowing one side to be a scalar of element type.
13641 QualType vType
= CheckSizelessVectorOperands(
13642 LHS
, RHS
, Loc
, /*isCompAssign*/ false, ACK_Comparison
);
13644 if (vType
.isNull())
13647 QualType LHSType
= LHS
.get()->getType();
13649 // For non-floating point types, check for self-comparisons of the form
13650 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13651 // often indicate logic errors in the program.
13652 diagnoseTautologicalComparison(*this, Loc
, LHS
.get(), RHS
.get(), Opc
);
13654 // Check for comparisons of floating point operands using != and ==.
13655 if (LHSType
->hasFloatingRepresentation()) {
13656 assert(RHS
.get()->getType()->hasFloatingRepresentation());
13657 CheckFloatComparison(Loc
, LHS
.get(), RHS
.get(), Opc
);
13660 const BuiltinType
*LHSBuiltinTy
= LHSType
->getAs
<BuiltinType
>();
13661 const BuiltinType
*RHSBuiltinTy
= RHS
.get()->getType()->getAs
<BuiltinType
>();
13663 if (LHSBuiltinTy
&& RHSBuiltinTy
&& LHSBuiltinTy
->isSVEBool() &&
13664 RHSBuiltinTy
->isSVEBool())
13667 // Return a signed type for the vector.
13668 return GetSignedSizelessVectorType(vType
);
13671 static void diagnoseXorMisusedAsPow(Sema
&S
, const ExprResult
&XorLHS
,
13672 const ExprResult
&XorRHS
,
13673 const SourceLocation Loc
) {
13674 // Do not diagnose macros.
13675 if (Loc
.isMacroID())
13678 // Do not diagnose if both LHS and RHS are macros.
13679 if (XorLHS
.get()->getExprLoc().isMacroID() &&
13680 XorRHS
.get()->getExprLoc().isMacroID())
13683 bool Negative
= false;
13684 bool ExplicitPlus
= false;
13685 const auto *LHSInt
= dyn_cast
<IntegerLiteral
>(XorLHS
.get());
13686 const auto *RHSInt
= dyn_cast
<IntegerLiteral
>(XorRHS
.get());
13691 // Check negative literals.
13692 if (const auto *UO
= dyn_cast
<UnaryOperator
>(XorRHS
.get())) {
13693 UnaryOperatorKind Opc
= UO
->getOpcode();
13694 if (Opc
!= UO_Minus
&& Opc
!= UO_Plus
)
13696 RHSInt
= dyn_cast
<IntegerLiteral
>(UO
->getSubExpr());
13699 Negative
= (Opc
== UO_Minus
);
13700 ExplicitPlus
= !Negative
;
13706 const llvm::APInt
&LeftSideValue
= LHSInt
->getValue();
13707 llvm::APInt RightSideValue
= RHSInt
->getValue();
13708 if (LeftSideValue
!= 2 && LeftSideValue
!= 10)
13711 if (LeftSideValue
.getBitWidth() != RightSideValue
.getBitWidth())
13714 CharSourceRange ExprRange
= CharSourceRange::getCharRange(
13715 LHSInt
->getBeginLoc(), S
.getLocForEndOfToken(RHSInt
->getLocation()));
13716 llvm::StringRef ExprStr
=
13717 Lexer::getSourceText(ExprRange
, S
.getSourceManager(), S
.getLangOpts());
13719 CharSourceRange XorRange
=
13720 CharSourceRange::getCharRange(Loc
, S
.getLocForEndOfToken(Loc
));
13721 llvm::StringRef XorStr
=
13722 Lexer::getSourceText(XorRange
, S
.getSourceManager(), S
.getLangOpts());
13723 // Do not diagnose if xor keyword/macro is used.
13724 if (XorStr
== "xor")
13727 std::string LHSStr
= std::string(Lexer::getSourceText(
13728 CharSourceRange::getTokenRange(LHSInt
->getSourceRange()),
13729 S
.getSourceManager(), S
.getLangOpts()));
13730 std::string RHSStr
= std::string(Lexer::getSourceText(
13731 CharSourceRange::getTokenRange(RHSInt
->getSourceRange()),
13732 S
.getSourceManager(), S
.getLangOpts()));
13735 RightSideValue
= -RightSideValue
;
13736 RHSStr
= "-" + RHSStr
;
13737 } else if (ExplicitPlus
) {
13738 RHSStr
= "+" + RHSStr
;
13741 StringRef LHSStrRef
= LHSStr
;
13742 StringRef RHSStrRef
= RHSStr
;
13743 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13745 if (LHSStrRef
.startswith("0b") || LHSStrRef
.startswith("0B") ||
13746 RHSStrRef
.startswith("0b") || RHSStrRef
.startswith("0B") ||
13747 LHSStrRef
.startswith("0x") || LHSStrRef
.startswith("0X") ||
13748 RHSStrRef
.startswith("0x") || RHSStrRef
.startswith("0X") ||
13749 (LHSStrRef
.size() > 1 && LHSStrRef
.startswith("0")) ||
13750 (RHSStrRef
.size() > 1 && RHSStrRef
.startswith("0")) ||
13751 LHSStrRef
.contains('\'') || RHSStrRef
.contains('\''))
13755 S
.getLangOpts().CPlusPlus
|| S
.getPreprocessor().isMacroDefined("xor");
13756 const llvm::APInt XorValue
= LeftSideValue
^ RightSideValue
;
13757 int64_t RightSideIntValue
= RightSideValue
.getSExtValue();
13758 if (LeftSideValue
== 2 && RightSideIntValue
>= 0) {
13759 std::string SuggestedExpr
= "1 << " + RHSStr
;
13760 bool Overflow
= false;
13761 llvm::APInt One
= (LeftSideValue
- 1);
13762 llvm::APInt PowValue
= One
.sshl_ov(RightSideValue
, Overflow
);
13764 if (RightSideIntValue
< 64)
13765 S
.Diag(Loc
, diag::warn_xor_used_as_pow_base
)
13766 << ExprStr
<< toString(XorValue
, 10, true) << ("1LL << " + RHSStr
)
13767 << FixItHint::CreateReplacement(ExprRange
, "1LL << " + RHSStr
);
13768 else if (RightSideIntValue
== 64)
13769 S
.Diag(Loc
, diag::warn_xor_used_as_pow
)
13770 << ExprStr
<< toString(XorValue
, 10, true);
13774 S
.Diag(Loc
, diag::warn_xor_used_as_pow_base_extra
)
13775 << ExprStr
<< toString(XorValue
, 10, true) << SuggestedExpr
13776 << toString(PowValue
, 10, true)
13777 << FixItHint::CreateReplacement(
13778 ExprRange
, (RightSideIntValue
== 0) ? "1" : SuggestedExpr
);
13781 S
.Diag(Loc
, diag::note_xor_used_as_pow_silence
)
13782 << ("0x2 ^ " + RHSStr
) << SuggestXor
;
13783 } else if (LeftSideValue
== 10) {
13784 std::string SuggestedValue
= "1e" + std::to_string(RightSideIntValue
);
13785 S
.Diag(Loc
, diag::warn_xor_used_as_pow_base
)
13786 << ExprStr
<< toString(XorValue
, 10, true) << SuggestedValue
13787 << FixItHint::CreateReplacement(ExprRange
, SuggestedValue
);
13788 S
.Diag(Loc
, diag::note_xor_used_as_pow_silence
)
13789 << ("0xA ^ " + RHSStr
) << SuggestXor
;
13793 QualType
Sema::CheckVectorLogicalOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13794 SourceLocation Loc
) {
13795 // Ensure that either both operands are of the same vector type, or
13796 // one operand is of a vector type and the other is of its element type.
13797 QualType vType
= CheckVectorOperands(LHS
, RHS
, Loc
, false,
13798 /*AllowBothBool*/ true,
13799 /*AllowBoolConversions*/ false,
13800 /*AllowBooleanOperation*/ false,
13801 /*ReportInvalid*/ false);
13802 if (vType
.isNull())
13803 return InvalidOperands(Loc
, LHS
, RHS
);
13804 if (getLangOpts().OpenCL
&&
13805 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13806 vType
->hasFloatingRepresentation())
13807 return InvalidOperands(Loc
, LHS
, RHS
);
13808 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13809 // usage of the logical operators && and || with vectors in C. This
13810 // check could be notionally dropped.
13811 if (!getLangOpts().CPlusPlus
&&
13812 !(isa
<ExtVectorType
>(vType
->getAs
<VectorType
>())))
13813 return InvalidLogicalVectorOperands(Loc
, LHS
, RHS
);
13815 return GetSignedVectorType(LHS
.get()->getType());
13818 QualType
Sema::CheckMatrixElementwiseOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13819 SourceLocation Loc
,
13820 bool IsCompAssign
) {
13821 if (!IsCompAssign
) {
13822 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
13823 if (LHS
.isInvalid())
13826 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
13827 if (RHS
.isInvalid())
13830 // For conversion purposes, we ignore any qualifiers.
13831 // For example, "const float" and "float" are equivalent.
13832 QualType LHSType
= LHS
.get()->getType().getUnqualifiedType();
13833 QualType RHSType
= RHS
.get()->getType().getUnqualifiedType();
13835 const MatrixType
*LHSMatType
= LHSType
->getAs
<MatrixType
>();
13836 const MatrixType
*RHSMatType
= RHSType
->getAs
<MatrixType
>();
13837 assert((LHSMatType
|| RHSMatType
) && "At least one operand must be a matrix");
13839 if (Context
.hasSameType(LHSType
, RHSType
))
13840 return Context
.getCommonSugaredType(LHSType
, RHSType
);
13842 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13843 // case we have to return InvalidOperands.
13844 ExprResult OriginalLHS
= LHS
;
13845 ExprResult OriginalRHS
= RHS
;
13846 if (LHSMatType
&& !RHSMatType
) {
13847 RHS
= tryConvertExprToType(RHS
.get(), LHSMatType
->getElementType());
13848 if (!RHS
.isInvalid())
13851 return InvalidOperands(Loc
, OriginalLHS
, OriginalRHS
);
13854 if (!LHSMatType
&& RHSMatType
) {
13855 LHS
= tryConvertExprToType(LHS
.get(), RHSMatType
->getElementType());
13856 if (!LHS
.isInvalid())
13858 return InvalidOperands(Loc
, OriginalLHS
, OriginalRHS
);
13861 return InvalidOperands(Loc
, LHS
, RHS
);
13864 QualType
Sema::CheckMatrixMultiplyOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13865 SourceLocation Loc
,
13866 bool IsCompAssign
) {
13867 if (!IsCompAssign
) {
13868 LHS
= DefaultFunctionArrayLvalueConversion(LHS
.get());
13869 if (LHS
.isInvalid())
13872 RHS
= DefaultFunctionArrayLvalueConversion(RHS
.get());
13873 if (RHS
.isInvalid())
13876 auto *LHSMatType
= LHS
.get()->getType()->getAs
<ConstantMatrixType
>();
13877 auto *RHSMatType
= RHS
.get()->getType()->getAs
<ConstantMatrixType
>();
13878 assert((LHSMatType
|| RHSMatType
) && "At least one operand must be a matrix");
13880 if (LHSMatType
&& RHSMatType
) {
13881 if (LHSMatType
->getNumColumns() != RHSMatType
->getNumRows())
13882 return InvalidOperands(Loc
, LHS
, RHS
);
13884 if (Context
.hasSameType(LHSMatType
, RHSMatType
))
13885 return Context
.getCommonSugaredType(
13886 LHS
.get()->getType().getUnqualifiedType(),
13887 RHS
.get()->getType().getUnqualifiedType());
13889 QualType LHSELTy
= LHSMatType
->getElementType(),
13890 RHSELTy
= RHSMatType
->getElementType();
13891 if (!Context
.hasSameType(LHSELTy
, RHSELTy
))
13892 return InvalidOperands(Loc
, LHS
, RHS
);
13894 return Context
.getConstantMatrixType(
13895 Context
.getCommonSugaredType(LHSELTy
, RHSELTy
),
13896 LHSMatType
->getNumRows(), RHSMatType
->getNumColumns());
13898 return CheckMatrixElementwiseOperands(LHS
, RHS
, Loc
, IsCompAssign
);
13901 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc
) {
13915 inline QualType
Sema::CheckBitwiseOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13916 SourceLocation Loc
,
13917 BinaryOperatorKind Opc
) {
13918 checkArithmeticNull(*this, LHS
, RHS
, Loc
, /*IsCompare=*/false);
13920 bool IsCompAssign
=
13921 Opc
== BO_AndAssign
|| Opc
== BO_OrAssign
|| Opc
== BO_XorAssign
;
13923 bool LegalBoolVecOperator
= isLegalBoolVectorBinaryOp(Opc
);
13925 if (LHS
.get()->getType()->isVectorType() ||
13926 RHS
.get()->getType()->isVectorType()) {
13927 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
13928 RHS
.get()->getType()->hasIntegerRepresentation())
13929 return CheckVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
13930 /*AllowBothBool*/ true,
13931 /*AllowBoolConversions*/ getLangOpts().ZVector
,
13932 /*AllowBooleanOperation*/ LegalBoolVecOperator
,
13933 /*ReportInvalid*/ true);
13934 return InvalidOperands(Loc
, LHS
, RHS
);
13937 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
13938 RHS
.get()->getType()->isSveVLSBuiltinType()) {
13939 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
13940 RHS
.get()->getType()->hasIntegerRepresentation())
13941 return CheckSizelessVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
13943 return InvalidOperands(Loc
, LHS
, RHS
);
13946 if (LHS
.get()->getType()->isSveVLSBuiltinType() ||
13947 RHS
.get()->getType()->isSveVLSBuiltinType()) {
13948 if (LHS
.get()->getType()->hasIntegerRepresentation() &&
13949 RHS
.get()->getType()->hasIntegerRepresentation())
13950 return CheckSizelessVectorOperands(LHS
, RHS
, Loc
, IsCompAssign
,
13952 return InvalidOperands(Loc
, LHS
, RHS
);
13956 diagnoseLogicalNotOnLHSofCheck(*this, LHS
, RHS
, Loc
, Opc
);
13958 if (LHS
.get()->getType()->hasFloatingRepresentation() ||
13959 RHS
.get()->getType()->hasFloatingRepresentation())
13960 return InvalidOperands(Loc
, LHS
, RHS
);
13962 ExprResult LHSResult
= LHS
, RHSResult
= RHS
;
13963 QualType compType
= UsualArithmeticConversions(
13964 LHSResult
, RHSResult
, Loc
, IsCompAssign
? ACK_CompAssign
: ACK_BitwiseOp
);
13965 if (LHSResult
.isInvalid() || RHSResult
.isInvalid())
13967 LHS
= LHSResult
.get();
13968 RHS
= RHSResult
.get();
13971 diagnoseXorMisusedAsPow(*this, LHS
, RHS
, Loc
);
13973 if (!compType
.isNull() && compType
->isIntegralOrUnscopedEnumerationType())
13975 return InvalidOperands(Loc
, LHS
, RHS
);
13979 inline QualType
Sema::CheckLogicalOperands(ExprResult
&LHS
, ExprResult
&RHS
,
13980 SourceLocation Loc
,
13981 BinaryOperatorKind Opc
) {
13982 // Check vector operands differently.
13983 if (LHS
.get()->getType()->isVectorType() ||
13984 RHS
.get()->getType()->isVectorType())
13985 return CheckVectorLogicalOperands(LHS
, RHS
, Loc
);
13987 bool EnumConstantInBoolContext
= false;
13988 for (const ExprResult
&HS
: {LHS
, RHS
}) {
13989 if (const auto *DREHS
= dyn_cast
<DeclRefExpr
>(HS
.get())) {
13990 const auto *ECDHS
= dyn_cast
<EnumConstantDecl
>(DREHS
->getDecl());
13991 if (ECDHS
&& ECDHS
->getInitVal() != 0 && ECDHS
->getInitVal() != 1)
13992 EnumConstantInBoolContext
= true;
13996 if (EnumConstantInBoolContext
)
13997 Diag(Loc
, diag::warn_enum_constant_in_bool_context
);
13999 // WebAssembly tables can't be used with logical operators.
14000 QualType LHSTy
= LHS
.get()->getType();
14001 QualType RHSTy
= RHS
.get()->getType();
14002 const auto *LHSATy
= dyn_cast
<ArrayType
>(LHSTy
);
14003 const auto *RHSATy
= dyn_cast
<ArrayType
>(RHSTy
);
14004 if ((LHSATy
&& LHSATy
->getElementType().isWebAssemblyReferenceType()) ||
14005 (RHSATy
&& RHSATy
->getElementType().isWebAssemblyReferenceType())) {
14006 return InvalidOperands(Loc
, LHS
, RHS
);
14009 // Diagnose cases where the user write a logical and/or but probably meant a
14010 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
14012 if (!EnumConstantInBoolContext
&& LHS
.get()->getType()->isIntegerType() &&
14013 !LHS
.get()->getType()->isBooleanType() &&
14014 RHS
.get()->getType()->isIntegerType() && !RHS
.get()->isValueDependent() &&
14015 // Don't warn in macros or template instantiations.
14016 !Loc
.isMacroID() && !inTemplateInstantiation()) {
14017 // If the RHS can be constant folded, and if it constant folds to something
14018 // that isn't 0 or 1 (which indicate a potential logical operation that
14019 // happened to fold to true/false) then warn.
14020 // Parens on the RHS are ignored.
14021 Expr::EvalResult EVResult
;
14022 if (RHS
.get()->EvaluateAsInt(EVResult
, Context
)) {
14023 llvm::APSInt Result
= EVResult
.Val
.getInt();
14024 if ((getLangOpts().Bool
&& !RHS
.get()->getType()->isBooleanType() &&
14025 !RHS
.get()->getExprLoc().isMacroID()) ||
14026 (Result
!= 0 && Result
!= 1)) {
14027 Diag(Loc
, diag::warn_logical_instead_of_bitwise
)
14028 << RHS
.get()->getSourceRange() << (Opc
== BO_LAnd
? "&&" : "||");
14029 // Suggest replacing the logical operator with the bitwise version
14030 Diag(Loc
, diag::note_logical_instead_of_bitwise_change_operator
)
14031 << (Opc
== BO_LAnd
? "&" : "|")
14032 << FixItHint::CreateReplacement(
14033 SourceRange(Loc
, getLocForEndOfToken(Loc
)),
14034 Opc
== BO_LAnd
? "&" : "|");
14035 if (Opc
== BO_LAnd
)
14036 // Suggest replacing "Foo() && kNonZero" with "Foo()"
14037 Diag(Loc
, diag::note_logical_instead_of_bitwise_remove_constant
)
14038 << FixItHint::CreateRemoval(
14039 SourceRange(getLocForEndOfToken(LHS
.get()->getEndLoc()),
14040 RHS
.get()->getEndLoc()));
14045 if (!Context
.getLangOpts().CPlusPlus
) {
14046 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
14047 // not operate on the built-in scalar and vector float types.
14048 if (Context
.getLangOpts().OpenCL
&&
14049 Context
.getLangOpts().OpenCLVersion
< 120) {
14050 if (LHS
.get()->getType()->isFloatingType() ||
14051 RHS
.get()->getType()->isFloatingType())
14052 return InvalidOperands(Loc
, LHS
, RHS
);
14055 LHS
= UsualUnaryConversions(LHS
.get());
14056 if (LHS
.isInvalid())
14059 RHS
= UsualUnaryConversions(RHS
.get());
14060 if (RHS
.isInvalid())
14063 if (!LHS
.get()->getType()->isScalarType() ||
14064 !RHS
.get()->getType()->isScalarType())
14065 return InvalidOperands(Loc
, LHS
, RHS
);
14067 return Context
.IntTy
;
14070 // The following is safe because we only use this method for
14071 // non-overloadable operands.
14073 // C++ [expr.log.and]p1
14074 // C++ [expr.log.or]p1
14075 // The operands are both contextually converted to type bool.
14076 ExprResult LHSRes
= PerformContextuallyConvertToBool(LHS
.get());
14077 if (LHSRes
.isInvalid())
14078 return InvalidOperands(Loc
, LHS
, RHS
);
14081 ExprResult RHSRes
= PerformContextuallyConvertToBool(RHS
.get());
14082 if (RHSRes
.isInvalid())
14083 return InvalidOperands(Loc
, LHS
, RHS
);
14086 // C++ [expr.log.and]p2
14087 // C++ [expr.log.or]p2
14088 // The result is a bool.
14089 return Context
.BoolTy
;
14092 static bool IsReadonlyMessage(Expr
*E
, Sema
&S
) {
14093 const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
);
14094 if (!ME
) return false;
14095 if (!isa
<FieldDecl
>(ME
->getMemberDecl())) return false;
14096 ObjCMessageExpr
*Base
= dyn_cast
<ObjCMessageExpr
>(
14097 ME
->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
14098 if (!Base
) return false;
14099 return Base
->getMethodDecl() != nullptr;
14102 /// Is the given expression (which must be 'const') a reference to a
14103 /// variable which was originally non-const, but which has become
14104 /// 'const' due to being captured within a block?
14105 enum NonConstCaptureKind
{ NCCK_None
, NCCK_Block
, NCCK_Lambda
};
14106 static NonConstCaptureKind
isReferenceToNonConstCapture(Sema
&S
, Expr
*E
) {
14107 assert(E
->isLValue() && E
->getType().isConstQualified());
14108 E
= E
->IgnoreParens();
14110 // Must be a reference to a declaration from an enclosing scope.
14111 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
);
14112 if (!DRE
) return NCCK_None
;
14113 if (!DRE
->refersToEnclosingVariableOrCapture()) return NCCK_None
;
14115 // The declaration must be a variable which is not declared 'const'.
14116 VarDecl
*var
= dyn_cast
<VarDecl
>(DRE
->getDecl());
14117 if (!var
) return NCCK_None
;
14118 if (var
->getType().isConstQualified()) return NCCK_None
;
14119 assert(var
->hasLocalStorage() && "capture added 'const' to non-local?");
14121 // Decide whether the first capture was for a block or a lambda.
14122 DeclContext
*DC
= S
.CurContext
, *Prev
= nullptr;
14123 // Decide whether the first capture was for a block or a lambda.
14125 // For init-capture, it is possible that the variable belongs to the
14126 // template pattern of the current context.
14127 if (auto *FD
= dyn_cast
<FunctionDecl
>(DC
))
14128 if (var
->isInitCapture() &&
14129 FD
->getTemplateInstantiationPattern() == var
->getDeclContext())
14131 if (DC
== var
->getDeclContext())
14134 DC
= DC
->getParent();
14136 // Unless we have an init-capture, we've gone one step too far.
14137 if (!var
->isInitCapture())
14139 return (isa
<BlockDecl
>(DC
) ? NCCK_Block
: NCCK_Lambda
);
14142 static bool IsTypeModifiable(QualType Ty
, bool IsDereference
) {
14143 Ty
= Ty
.getNonReferenceType();
14144 if (IsDereference
&& Ty
->isPointerType())
14145 Ty
= Ty
->getPointeeType();
14146 return !Ty
.isConstQualified();
14149 // Update err_typecheck_assign_const and note_typecheck_assign_const
14150 // when this enum is changed.
14157 ConstUnknown
, // Keep as last element
14160 /// Emit the "read-only variable not assignable" error and print notes to give
14161 /// more information about why the variable is not assignable, such as pointing
14162 /// to the declaration of a const variable, showing that a method is const, or
14163 /// that the function is returning a const reference.
14164 static void DiagnoseConstAssignment(Sema
&S
, const Expr
*E
,
14165 SourceLocation Loc
) {
14166 SourceRange ExprRange
= E
->getSourceRange();
14168 // Only emit one error on the first const found. All other consts will emit
14169 // a note to the error.
14170 bool DiagnosticEmitted
= false;
14172 // Track if the current expression is the result of a dereference, and if the
14173 // next checked expression is the result of a dereference.
14174 bool IsDereference
= false;
14175 bool NextIsDereference
= false;
14177 // Loop to process MemberExpr chains.
14179 IsDereference
= NextIsDereference
;
14181 E
= E
->IgnoreImplicit()->IgnoreParenImpCasts();
14182 if (const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
)) {
14183 NextIsDereference
= ME
->isArrow();
14184 const ValueDecl
*VD
= ME
->getMemberDecl();
14185 if (const FieldDecl
*Field
= dyn_cast
<FieldDecl
>(VD
)) {
14186 // Mutable fields can be modified even if the class is const.
14187 if (Field
->isMutable()) {
14188 assert(DiagnosticEmitted
&& "Expected diagnostic not emitted.");
14192 if (!IsTypeModifiable(Field
->getType(), IsDereference
)) {
14193 if (!DiagnosticEmitted
) {
14194 S
.Diag(Loc
, diag::err_typecheck_assign_const
)
14195 << ExprRange
<< ConstMember
<< false /*static*/ << Field
14196 << Field
->getType();
14197 DiagnosticEmitted
= true;
14199 S
.Diag(VD
->getLocation(), diag::note_typecheck_assign_const
)
14200 << ConstMember
<< false /*static*/ << Field
<< Field
->getType()
14201 << Field
->getSourceRange();
14205 } else if (const VarDecl
*VDecl
= dyn_cast
<VarDecl
>(VD
)) {
14206 if (VDecl
->getType().isConstQualified()) {
14207 if (!DiagnosticEmitted
) {
14208 S
.Diag(Loc
, diag::err_typecheck_assign_const
)
14209 << ExprRange
<< ConstMember
<< true /*static*/ << VDecl
14210 << VDecl
->getType();
14211 DiagnosticEmitted
= true;
14213 S
.Diag(VD
->getLocation(), diag::note_typecheck_assign_const
)
14214 << ConstMember
<< true /*static*/ << VDecl
<< VDecl
->getType()
14215 << VDecl
->getSourceRange();
14217 // Static fields do not inherit constness from parents.
14220 break; // End MemberExpr
14221 } else if (const ArraySubscriptExpr
*ASE
=
14222 dyn_cast
<ArraySubscriptExpr
>(E
)) {
14223 E
= ASE
->getBase()->IgnoreParenImpCasts();
14225 } else if (const ExtVectorElementExpr
*EVE
=
14226 dyn_cast
<ExtVectorElementExpr
>(E
)) {
14227 E
= EVE
->getBase()->IgnoreParenImpCasts();
14233 if (const CallExpr
*CE
= dyn_cast
<CallExpr
>(E
)) {
14235 const FunctionDecl
*FD
= CE
->getDirectCallee();
14236 if (FD
&& !IsTypeModifiable(FD
->getReturnType(), IsDereference
)) {
14237 if (!DiagnosticEmitted
) {
14238 S
.Diag(Loc
, diag::err_typecheck_assign_const
) << ExprRange
14239 << ConstFunction
<< FD
;
14240 DiagnosticEmitted
= true;
14242 S
.Diag(FD
->getReturnTypeSourceRange().getBegin(),
14243 diag::note_typecheck_assign_const
)
14244 << ConstFunction
<< FD
<< FD
->getReturnType()
14245 << FD
->getReturnTypeSourceRange();
14247 } else if (const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
14248 // Point to variable declaration.
14249 if (const ValueDecl
*VD
= DRE
->getDecl()) {
14250 if (!IsTypeModifiable(VD
->getType(), IsDereference
)) {
14251 if (!DiagnosticEmitted
) {
14252 S
.Diag(Loc
, diag::err_typecheck_assign_const
)
14253 << ExprRange
<< ConstVariable
<< VD
<< VD
->getType();
14254 DiagnosticEmitted
= true;
14256 S
.Diag(VD
->getLocation(), diag::note_typecheck_assign_const
)
14257 << ConstVariable
<< VD
<< VD
->getType() << VD
->getSourceRange();
14260 } else if (isa
<CXXThisExpr
>(E
)) {
14261 if (const DeclContext
*DC
= S
.getFunctionLevelDeclContext()) {
14262 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(DC
)) {
14263 if (MD
->isConst()) {
14264 if (!DiagnosticEmitted
) {
14265 S
.Diag(Loc
, diag::err_typecheck_assign_const
) << ExprRange
14266 << ConstMethod
<< MD
;
14267 DiagnosticEmitted
= true;
14269 S
.Diag(MD
->getLocation(), diag::note_typecheck_assign_const
)
14270 << ConstMethod
<< MD
<< MD
->getSourceRange();
14276 if (DiagnosticEmitted
)
14279 // Can't determine a more specific message, so display the generic error.
14280 S
.Diag(Loc
, diag::err_typecheck_assign_const
) << ExprRange
<< ConstUnknown
;
14283 enum OriginalExprKind
{
14289 static void DiagnoseRecursiveConstFields(Sema
&S
, const ValueDecl
*VD
,
14290 const RecordType
*Ty
,
14291 SourceLocation Loc
, SourceRange Range
,
14292 OriginalExprKind OEK
,
14293 bool &DiagnosticEmitted
) {
14294 std::vector
<const RecordType
*> RecordTypeList
;
14295 RecordTypeList
.push_back(Ty
);
14296 unsigned NextToCheckIndex
= 0;
14297 // We walk the record hierarchy breadth-first to ensure that we print
14298 // diagnostics in field nesting order.
14299 while (RecordTypeList
.size() > NextToCheckIndex
) {
14300 bool IsNested
= NextToCheckIndex
> 0;
14301 for (const FieldDecl
*Field
:
14302 RecordTypeList
[NextToCheckIndex
]->getDecl()->fields()) {
14303 // First, check every field for constness.
14304 QualType FieldTy
= Field
->getType();
14305 if (FieldTy
.isConstQualified()) {
14306 if (!DiagnosticEmitted
) {
14307 S
.Diag(Loc
, diag::err_typecheck_assign_const
)
14308 << Range
<< NestedConstMember
<< OEK
<< VD
14309 << IsNested
<< Field
;
14310 DiagnosticEmitted
= true;
14312 S
.Diag(Field
->getLocation(), diag::note_typecheck_assign_const
)
14313 << NestedConstMember
<< IsNested
<< Field
14314 << FieldTy
<< Field
->getSourceRange();
14317 // Then we append it to the list to check next in order.
14318 FieldTy
= FieldTy
.getCanonicalType();
14319 if (const auto *FieldRecTy
= FieldTy
->getAs
<RecordType
>()) {
14320 if (!llvm::is_contained(RecordTypeList
, FieldRecTy
))
14321 RecordTypeList
.push_back(FieldRecTy
);
14324 ++NextToCheckIndex
;
14328 /// Emit an error for the case where a record we are trying to assign to has a
14329 /// const-qualified field somewhere in its hierarchy.
14330 static void DiagnoseRecursiveConstFields(Sema
&S
, const Expr
*E
,
14331 SourceLocation Loc
) {
14332 QualType Ty
= E
->getType();
14333 assert(Ty
->isRecordType() && "lvalue was not record?");
14334 SourceRange Range
= E
->getSourceRange();
14335 const RecordType
*RTy
= Ty
.getCanonicalType()->getAs
<RecordType
>();
14336 bool DiagEmitted
= false;
14338 if (const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
))
14339 DiagnoseRecursiveConstFields(S
, ME
->getMemberDecl(), RTy
, Loc
,
14340 Range
, OEK_Member
, DiagEmitted
);
14341 else if (const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
))
14342 DiagnoseRecursiveConstFields(S
, DRE
->getDecl(), RTy
, Loc
,
14343 Range
, OEK_Variable
, DiagEmitted
);
14345 DiagnoseRecursiveConstFields(S
, nullptr, RTy
, Loc
,
14346 Range
, OEK_LValue
, DiagEmitted
);
14348 DiagnoseConstAssignment(S
, E
, Loc
);
14351 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
14352 /// emit an error and return true. If so, return false.
14353 static bool CheckForModifiableLvalue(Expr
*E
, SourceLocation Loc
, Sema
&S
) {
14354 assert(!E
->hasPlaceholderType(BuiltinType::PseudoObject
));
14356 S
.CheckShadowingDeclModification(E
, Loc
);
14358 SourceLocation OrigLoc
= Loc
;
14359 Expr::isModifiableLvalueResult IsLV
= E
->isModifiableLvalue(S
.Context
,
14361 if (IsLV
== Expr::MLV_ClassTemporary
&& IsReadonlyMessage(E
, S
))
14362 IsLV
= Expr::MLV_InvalidMessageExpression
;
14363 if (IsLV
== Expr::MLV_Valid
)
14366 unsigned DiagID
= 0;
14367 bool NeedType
= false;
14368 switch (IsLV
) { // C99 6.5.16p2
14369 case Expr::MLV_ConstQualified
:
14370 // Use a specialized diagnostic when we're assigning to an object
14371 // from an enclosing function or block.
14372 if (NonConstCaptureKind NCCK
= isReferenceToNonConstCapture(S
, E
)) {
14373 if (NCCK
== NCCK_Block
)
14374 DiagID
= diag::err_block_decl_ref_not_modifiable_lvalue
;
14376 DiagID
= diag::err_lambda_decl_ref_not_modifiable_lvalue
;
14380 // In ARC, use some specialized diagnostics for occasions where we
14381 // infer 'const'. These are always pseudo-strong variables.
14382 if (S
.getLangOpts().ObjCAutoRefCount
) {
14383 DeclRefExpr
*declRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenCasts());
14384 if (declRef
&& isa
<VarDecl
>(declRef
->getDecl())) {
14385 VarDecl
*var
= cast
<VarDecl
>(declRef
->getDecl());
14387 // Use the normal diagnostic if it's pseudo-__strong but the
14388 // user actually wrote 'const'.
14389 if (var
->isARCPseudoStrong() &&
14390 (!var
->getTypeSourceInfo() ||
14391 !var
->getTypeSourceInfo()->getType().isConstQualified())) {
14392 // There are three pseudo-strong cases:
14394 ObjCMethodDecl
*method
= S
.getCurMethodDecl();
14395 if (method
&& var
== method
->getSelfDecl()) {
14396 DiagID
= method
->isClassMethod()
14397 ? diag::err_typecheck_arc_assign_self_class_method
14398 : diag::err_typecheck_arc_assign_self
;
14400 // - Objective-C externally_retained attribute.
14401 } else if (var
->hasAttr
<ObjCExternallyRetainedAttr
>() ||
14402 isa
<ParmVarDecl
>(var
)) {
14403 DiagID
= diag::err_typecheck_arc_assign_externally_retained
;
14405 // - fast enumeration variables
14407 DiagID
= diag::err_typecheck_arr_assign_enumeration
;
14410 SourceRange Assign
;
14411 if (Loc
!= OrigLoc
)
14412 Assign
= SourceRange(OrigLoc
, OrigLoc
);
14413 S
.Diag(Loc
, DiagID
) << E
->getSourceRange() << Assign
;
14414 // We need to preserve the AST regardless, so migration tool
14421 // If none of the special cases above are triggered, then this is a
14422 // simple const assignment.
14424 DiagnoseConstAssignment(S
, E
, Loc
);
14429 case Expr::MLV_ConstAddrSpace
:
14430 DiagnoseConstAssignment(S
, E
, Loc
);
14432 case Expr::MLV_ConstQualifiedField
:
14433 DiagnoseRecursiveConstFields(S
, E
, Loc
);
14435 case Expr::MLV_ArrayType
:
14436 case Expr::MLV_ArrayTemporary
:
14437 DiagID
= diag::err_typecheck_array_not_modifiable_lvalue
;
14440 case Expr::MLV_NotObjectType
:
14441 DiagID
= diag::err_typecheck_non_object_not_modifiable_lvalue
;
14444 case Expr::MLV_LValueCast
:
14445 DiagID
= diag::err_typecheck_lvalue_casts_not_supported
;
14447 case Expr::MLV_Valid
:
14448 llvm_unreachable("did not take early return for MLV_Valid");
14449 case Expr::MLV_InvalidExpression
:
14450 case Expr::MLV_MemberFunction
:
14451 case Expr::MLV_ClassTemporary
:
14452 DiagID
= diag::err_typecheck_expression_not_modifiable_lvalue
;
14454 case Expr::MLV_IncompleteType
:
14455 case Expr::MLV_IncompleteVoidType
:
14456 return S
.RequireCompleteType(Loc
, E
->getType(),
14457 diag::err_typecheck_incomplete_type_not_modifiable_lvalue
, E
);
14458 case Expr::MLV_DuplicateVectorComponents
:
14459 DiagID
= diag::err_typecheck_duplicate_vector_components_not_mlvalue
;
14461 case Expr::MLV_NoSetterProperty
:
14462 llvm_unreachable("readonly properties should be processed differently");
14463 case Expr::MLV_InvalidMessageExpression
:
14464 DiagID
= diag::err_readonly_message_assignment
;
14466 case Expr::MLV_SubObjCPropertySetting
:
14467 DiagID
= diag::err_no_subobject_property_setting
;
14471 SourceRange Assign
;
14472 if (Loc
!= OrigLoc
)
14473 Assign
= SourceRange(OrigLoc
, OrigLoc
);
14475 S
.Diag(Loc
, DiagID
) << E
->getType() << E
->getSourceRange() << Assign
;
14477 S
.Diag(Loc
, DiagID
) << E
->getSourceRange() << Assign
;
14481 static void CheckIdentityFieldAssignment(Expr
*LHSExpr
, Expr
*RHSExpr
,
14482 SourceLocation Loc
,
14484 if (Sema
.inTemplateInstantiation())
14486 if (Sema
.isUnevaluatedContext())
14488 if (Loc
.isInvalid() || Loc
.isMacroID())
14490 if (LHSExpr
->getExprLoc().isMacroID() || RHSExpr
->getExprLoc().isMacroID())
14494 MemberExpr
*ML
= dyn_cast
<MemberExpr
>(LHSExpr
);
14495 MemberExpr
*MR
= dyn_cast
<MemberExpr
>(RHSExpr
);
14497 if (!(isa
<CXXThisExpr
>(ML
->getBase()) && isa
<CXXThisExpr
>(MR
->getBase())))
14499 const ValueDecl
*LHSDecl
=
14500 cast
<ValueDecl
>(ML
->getMemberDecl()->getCanonicalDecl());
14501 const ValueDecl
*RHSDecl
=
14502 cast
<ValueDecl
>(MR
->getMemberDecl()->getCanonicalDecl());
14503 if (LHSDecl
!= RHSDecl
)
14505 if (LHSDecl
->getType().isVolatileQualified())
14507 if (const ReferenceType
*RefTy
= LHSDecl
->getType()->getAs
<ReferenceType
>())
14508 if (RefTy
->getPointeeType().isVolatileQualified())
14511 Sema
.Diag(Loc
, diag::warn_identity_field_assign
) << 0;
14514 // Objective-C instance variables
14515 ObjCIvarRefExpr
*OL
= dyn_cast
<ObjCIvarRefExpr
>(LHSExpr
);
14516 ObjCIvarRefExpr
*OR
= dyn_cast
<ObjCIvarRefExpr
>(RHSExpr
);
14517 if (OL
&& OR
&& OL
->getDecl() == OR
->getDecl()) {
14518 DeclRefExpr
*RL
= dyn_cast
<DeclRefExpr
>(OL
->getBase()->IgnoreImpCasts());
14519 DeclRefExpr
*RR
= dyn_cast
<DeclRefExpr
>(OR
->getBase()->IgnoreImpCasts());
14520 if (RL
&& RR
&& RL
->getDecl() == RR
->getDecl())
14521 Sema
.Diag(Loc
, diag::warn_identity_field_assign
) << 1;
14526 QualType
Sema::CheckAssignmentOperands(Expr
*LHSExpr
, ExprResult
&RHS
,
14527 SourceLocation Loc
,
14528 QualType CompoundType
,
14529 BinaryOperatorKind Opc
) {
14530 assert(!LHSExpr
->hasPlaceholderType(BuiltinType::PseudoObject
));
14532 // Verify that LHS is a modifiable lvalue, and emit error if not.
14533 if (CheckForModifiableLvalue(LHSExpr
, Loc
, *this))
14536 QualType LHSType
= LHSExpr
->getType();
14537 QualType RHSType
= CompoundType
.isNull() ? RHS
.get()->getType() :
14539 // OpenCL v1.2 s6.1.1.1 p2:
14540 // The half data type can only be used to declare a pointer to a buffer that
14541 // contains half values
14542 if (getLangOpts().OpenCL
&&
14543 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14544 LHSType
->isHalfType()) {
14545 Diag(Loc
, diag::err_opencl_half_load_store
) << 1
14546 << LHSType
.getUnqualifiedType();
14550 // WebAssembly tables can't be used on RHS of an assignment expression.
14551 if (RHSType
->isWebAssemblyTableType()) {
14552 Diag(Loc
, diag::err_wasm_table_art
) << 0;
14556 AssignConvertType ConvTy
;
14557 if (CompoundType
.isNull()) {
14558 Expr
*RHSCheck
= RHS
.get();
14560 CheckIdentityFieldAssignment(LHSExpr
, RHSCheck
, Loc
, *this);
14562 QualType
LHSTy(LHSType
);
14563 ConvTy
= CheckSingleAssignmentConstraints(LHSTy
, RHS
);
14564 if (RHS
.isInvalid())
14566 // Special case of NSObject attributes on c-style pointer types.
14567 if (ConvTy
== IncompatiblePointer
&&
14568 ((Context
.isObjCNSObjectType(LHSType
) &&
14569 RHSType
->isObjCObjectPointerType()) ||
14570 (Context
.isObjCNSObjectType(RHSType
) &&
14571 LHSType
->isObjCObjectPointerType())))
14572 ConvTy
= Compatible
;
14574 if (ConvTy
== Compatible
&&
14575 LHSType
->isObjCObjectType())
14576 Diag(Loc
, diag::err_objc_object_assignment
)
14579 // If the RHS is a unary plus or minus, check to see if they = and + are
14580 // right next to each other. If so, the user may have typo'd "x =+ 4"
14581 // instead of "x += 4".
14582 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(RHSCheck
))
14583 RHSCheck
= ICE
->getSubExpr();
14584 if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(RHSCheck
)) {
14585 if ((UO
->getOpcode() == UO_Plus
|| UO
->getOpcode() == UO_Minus
) &&
14586 Loc
.isFileID() && UO
->getOperatorLoc().isFileID() &&
14587 // Only if the two operators are exactly adjacent.
14588 Loc
.getLocWithOffset(1) == UO
->getOperatorLoc() &&
14589 // And there is a space or other character before the subexpr of the
14590 // unary +/-. We don't want to warn on "x=-1".
14591 Loc
.getLocWithOffset(2) != UO
->getSubExpr()->getBeginLoc() &&
14592 UO
->getSubExpr()->getBeginLoc().isFileID()) {
14593 Diag(Loc
, diag::warn_not_compound_assign
)
14594 << (UO
->getOpcode() == UO_Plus
? "+" : "-")
14595 << SourceRange(UO
->getOperatorLoc(), UO
->getOperatorLoc());
14599 if (ConvTy
== Compatible
) {
14600 if (LHSType
.getObjCLifetime() == Qualifiers::OCL_Strong
) {
14601 // Warn about retain cycles where a block captures the LHS, but
14602 // not if the LHS is a simple variable into which the block is
14603 // being stored...unless that variable can be captured by reference!
14604 const Expr
*InnerLHS
= LHSExpr
->IgnoreParenCasts();
14605 const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(InnerLHS
);
14606 if (!DRE
|| DRE
->getDecl()->hasAttr
<BlocksAttr
>())
14607 checkRetainCycles(LHSExpr
, RHS
.get());
14610 if (LHSType
.getObjCLifetime() == Qualifiers::OCL_Strong
||
14611 LHSType
.isNonWeakInMRRWithObjCWeak(Context
)) {
14612 // It is safe to assign a weak reference into a strong variable.
14613 // Although this code can still have problems:
14614 // id x = self.weakProp;
14615 // id y = self.weakProp;
14616 // we do not warn to warn spuriously when 'x' and 'y' are on separate
14617 // paths through the function. This should be revisited if
14618 // -Wrepeated-use-of-weak is made flow-sensitive.
14619 // For ObjCWeak only, we do not warn if the assign is to a non-weak
14620 // variable, which will be valid for the current autorelease scope.
14621 if (!Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
,
14622 RHS
.get()->getBeginLoc()))
14623 getCurFunction()->markSafeWeakUse(RHS
.get());
14625 } else if (getLangOpts().ObjCAutoRefCount
|| getLangOpts().ObjCWeak
) {
14626 checkUnsafeExprAssigns(Loc
, LHSExpr
, RHS
.get());
14630 // Compound assignment "x += y"
14631 ConvTy
= CheckAssignmentConstraints(Loc
, LHSType
, RHSType
);
14634 if (DiagnoseAssignmentResult(ConvTy
, Loc
, LHSType
, RHSType
,
14635 RHS
.get(), AA_Assigning
))
14638 CheckForNullPointerDereference(*this, LHSExpr
);
14640 if (getLangOpts().CPlusPlus20
&& LHSType
.isVolatileQualified()) {
14641 if (CompoundType
.isNull()) {
14642 // C++2a [expr.ass]p5:
14643 // A simple-assignment whose left operand is of a volatile-qualified
14644 // type is deprecated unless the assignment is either a discarded-value
14645 // expression or an unevaluated operand
14646 ExprEvalContexts
.back().VolatileAssignmentLHSs
.push_back(LHSExpr
);
14650 // C11 6.5.16p3: The type of an assignment expression is the type of the
14651 // left operand would have after lvalue conversion.
14652 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14653 // qualified type, the value has the unqualified version of the type of the
14654 // lvalue; additionally, if the lvalue has atomic type, the value has the
14655 // non-atomic version of the type of the lvalue.
14656 // C++ 5.17p1: the type of the assignment expression is that of its left
14658 return getLangOpts().CPlusPlus
? LHSType
: LHSType
.getAtomicUnqualifiedType();
14661 // Scenarios to ignore if expression E is:
14662 // 1. an explicit cast expression into void
14663 // 2. a function call expression that returns void
14664 static bool IgnoreCommaOperand(const Expr
*E
, const ASTContext
&Context
) {
14665 E
= E
->IgnoreParens();
14667 if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(E
)) {
14668 if (CE
->getCastKind() == CK_ToVoid
) {
14672 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14673 if (CE
->getCastKind() == CK_Dependent
&& E
->getType()->isVoidType() &&
14674 CE
->getSubExpr()->getType()->isDependentType()) {
14679 if (const auto *CE
= dyn_cast
<CallExpr
>(E
))
14680 return CE
->getCallReturnType(Context
)->isVoidType();
14684 // Look for instances where it is likely the comma operator is confused with
14685 // another operator. There is an explicit list of acceptable expressions for
14686 // the left hand side of the comma operator, otherwise emit a warning.
14687 void Sema::DiagnoseCommaOperator(const Expr
*LHS
, SourceLocation Loc
) {
14688 // No warnings in macros
14689 if (Loc
.isMacroID())
14692 // Don't warn in template instantiations.
14693 if (inTemplateInstantiation())
14696 // Scope isn't fine-grained enough to explicitly list the specific cases, so
14697 // instead, skip more than needed, then call back into here with the
14698 // CommaVisitor in SemaStmt.cpp.
14699 // The listed locations are the initialization and increment portions
14700 // of a for loop. The additional checks are on the condition of
14701 // if statements, do/while loops, and for loops.
14702 // Differences in scope flags for C89 mode requires the extra logic.
14703 const unsigned ForIncrementFlags
=
14704 getLangOpts().C99
|| getLangOpts().CPlusPlus
14705 ? Scope::ControlScope
| Scope::ContinueScope
| Scope::BreakScope
14706 : Scope::ContinueScope
| Scope::BreakScope
;
14707 const unsigned ForInitFlags
= Scope::ControlScope
| Scope::DeclScope
;
14708 const unsigned ScopeFlags
= getCurScope()->getFlags();
14709 if ((ScopeFlags
& ForIncrementFlags
) == ForIncrementFlags
||
14710 (ScopeFlags
& ForInitFlags
) == ForInitFlags
)
14713 // If there are multiple comma operators used together, get the RHS of the
14714 // of the comma operator as the LHS.
14715 while (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(LHS
)) {
14716 if (BO
->getOpcode() != BO_Comma
)
14718 LHS
= BO
->getRHS();
14721 // Only allow some expressions on LHS to not warn.
14722 if (IgnoreCommaOperand(LHS
, Context
))
14725 Diag(Loc
, diag::warn_comma_operator
);
14726 Diag(LHS
->getBeginLoc(), diag::note_cast_to_void
)
14727 << LHS
->getSourceRange()
14728 << FixItHint::CreateInsertion(LHS
->getBeginLoc(),
14729 LangOpts
.CPlusPlus
? "static_cast<void>("
14731 << FixItHint::CreateInsertion(PP
.getLocForEndOfToken(LHS
->getEndLoc()),
14736 static QualType
CheckCommaOperands(Sema
&S
, ExprResult
&LHS
, ExprResult
&RHS
,
14737 SourceLocation Loc
) {
14738 LHS
= S
.CheckPlaceholderExpr(LHS
.get());
14739 RHS
= S
.CheckPlaceholderExpr(RHS
.get());
14740 if (LHS
.isInvalid() || RHS
.isInvalid())
14743 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14744 // operands, but not unary promotions.
14745 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14747 // So we treat the LHS as a ignored value, and in C++ we allow the
14748 // containing site to determine what should be done with the RHS.
14749 LHS
= S
.IgnoredValueConversions(LHS
.get());
14750 if (LHS
.isInvalid())
14753 S
.DiagnoseUnusedExprResult(LHS
.get(), diag::warn_unused_comma_left_operand
);
14755 if (!S
.getLangOpts().CPlusPlus
) {
14756 RHS
= S
.DefaultFunctionArrayLvalueConversion(RHS
.get());
14757 if (RHS
.isInvalid())
14759 if (!RHS
.get()->getType()->isVoidType())
14760 S
.RequireCompleteType(Loc
, RHS
.get()->getType(),
14761 diag::err_incomplete_type
);
14764 if (!S
.getDiagnostics().isIgnored(diag::warn_comma_operator
, Loc
))
14765 S
.DiagnoseCommaOperator(LHS
.get(), Loc
);
14767 return RHS
.get()->getType();
14770 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14771 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14772 static QualType
CheckIncrementDecrementOperand(Sema
&S
, Expr
*Op
,
14774 ExprObjectKind
&OK
,
14775 SourceLocation OpLoc
,
14776 bool IsInc
, bool IsPrefix
) {
14777 if (Op
->isTypeDependent())
14778 return S
.Context
.DependentTy
;
14780 QualType ResType
= Op
->getType();
14781 // Atomic types can be used for increment / decrement where the non-atomic
14782 // versions can, so ignore the _Atomic() specifier for the purpose of
14784 if (const AtomicType
*ResAtomicType
= ResType
->getAs
<AtomicType
>())
14785 ResType
= ResAtomicType
->getValueType();
14787 assert(!ResType
.isNull() && "no type for increment/decrement expression");
14789 if (S
.getLangOpts().CPlusPlus
&& ResType
->isBooleanType()) {
14790 // Decrement of bool is not allowed.
14792 S
.Diag(OpLoc
, diag::err_decrement_bool
) << Op
->getSourceRange();
14795 // Increment of bool sets it to true, but is deprecated.
14796 S
.Diag(OpLoc
, S
.getLangOpts().CPlusPlus17
? diag::ext_increment_bool
14797 : diag::warn_increment_bool
)
14798 << Op
->getSourceRange();
14799 } else if (S
.getLangOpts().CPlusPlus
&& ResType
->isEnumeralType()) {
14800 // Error on enum increments and decrements in C++ mode
14801 S
.Diag(OpLoc
, diag::err_increment_decrement_enum
) << IsInc
<< ResType
;
14803 } else if (ResType
->isRealType()) {
14805 } else if (ResType
->isPointerType()) {
14806 // C99 6.5.2.4p2, 6.5.6p2
14807 if (!checkArithmeticOpPointerOperand(S
, OpLoc
, Op
))
14809 } else if (ResType
->isObjCObjectPointerType()) {
14810 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14811 // Otherwise, we just need a complete type.
14812 if (checkArithmeticIncompletePointerType(S
, OpLoc
, Op
) ||
14813 checkArithmeticOnObjCPointer(S
, OpLoc
, Op
))
14815 } else if (ResType
->isAnyComplexType()) {
14816 // C99 does not support ++/-- on complex types, we allow as an extension.
14817 S
.Diag(OpLoc
, diag::ext_integer_increment_complex
)
14818 << ResType
<< Op
->getSourceRange();
14819 } else if (ResType
->isPlaceholderType()) {
14820 ExprResult PR
= S
.CheckPlaceholderExpr(Op
);
14821 if (PR
.isInvalid()) return QualType();
14822 return CheckIncrementDecrementOperand(S
, PR
.get(), VK
, OK
, OpLoc
,
14824 } else if (S
.getLangOpts().AltiVec
&& ResType
->isVectorType()) {
14825 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14826 } else if (S
.getLangOpts().ZVector
&& ResType
->isVectorType() &&
14827 (ResType
->castAs
<VectorType
>()->getVectorKind() !=
14828 VectorType::AltiVecBool
)) {
14829 // The z vector extensions allow ++ and -- for non-bool vectors.
14830 } else if(S
.getLangOpts().OpenCL
&& ResType
->isVectorType() &&
14831 ResType
->castAs
<VectorType
>()->getElementType()->isIntegerType()) {
14832 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14834 S
.Diag(OpLoc
, diag::err_typecheck_illegal_increment_decrement
)
14835 << ResType
<< int(IsInc
) << Op
->getSourceRange();
14838 // At this point, we know we have a real, complex or pointer type.
14839 // Now make sure the operand is a modifiable lvalue.
14840 if (CheckForModifiableLvalue(Op
, OpLoc
, S
))
14842 if (S
.getLangOpts().CPlusPlus20
&& ResType
.isVolatileQualified()) {
14843 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14844 // An operand with volatile-qualified type is deprecated
14845 S
.Diag(OpLoc
, diag::warn_deprecated_increment_decrement_volatile
)
14846 << IsInc
<< ResType
;
14848 // In C++, a prefix increment is the same type as the operand. Otherwise
14849 // (in C or with postfix), the increment is the unqualified type of the
14851 if (IsPrefix
&& S
.getLangOpts().CPlusPlus
) {
14853 OK
= Op
->getObjectKind();
14857 return ResType
.getUnqualifiedType();
14862 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14863 /// This routine allows us to typecheck complex/recursive expressions
14864 /// where the declaration is needed for type checking. We only need to
14865 /// handle cases when the expression references a function designator
14866 /// or is an lvalue. Here are some examples:
14868 /// - &*****f => f for f a function designator.
14870 /// - &s.zz[1].yy -> s, if zz is an array
14871 /// - *(x + 1) -> x, if x is an array
14872 /// - &"123"[2] -> 0
14873 /// - & __real__ x -> x
14875 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14877 static ValueDecl
*getPrimaryDecl(Expr
*E
) {
14878 switch (E
->getStmtClass()) {
14879 case Stmt::DeclRefExprClass
:
14880 return cast
<DeclRefExpr
>(E
)->getDecl();
14881 case Stmt::MemberExprClass
:
14882 // If this is an arrow operator, the address is an offset from
14883 // the base's value, so the object the base refers to is
14885 if (cast
<MemberExpr
>(E
)->isArrow())
14887 // Otherwise, the expression refers to a part of the base
14888 return getPrimaryDecl(cast
<MemberExpr
>(E
)->getBase());
14889 case Stmt::ArraySubscriptExprClass
: {
14890 // FIXME: This code shouldn't be necessary! We should catch the implicit
14891 // promotion of register arrays earlier.
14892 Expr
* Base
= cast
<ArraySubscriptExpr
>(E
)->getBase();
14893 if (ImplicitCastExpr
* ICE
= dyn_cast
<ImplicitCastExpr
>(Base
)) {
14894 if (ICE
->getSubExpr()->getType()->isArrayType())
14895 return getPrimaryDecl(ICE
->getSubExpr());
14899 case Stmt::UnaryOperatorClass
: {
14900 UnaryOperator
*UO
= cast
<UnaryOperator
>(E
);
14902 switch(UO
->getOpcode()) {
14906 return getPrimaryDecl(UO
->getSubExpr());
14911 case Stmt::ParenExprClass
:
14912 return getPrimaryDecl(cast
<ParenExpr
>(E
)->getSubExpr());
14913 case Stmt::ImplicitCastExprClass
:
14914 // If the result of an implicit cast is an l-value, we care about
14915 // the sub-expression; otherwise, the result here doesn't matter.
14916 return getPrimaryDecl(cast
<ImplicitCastExpr
>(E
)->getSubExpr());
14917 case Stmt::CXXUuidofExprClass
:
14918 return cast
<CXXUuidofExpr
>(E
)->getGuidDecl();
14927 AO_Vector_Element
= 1,
14928 AO_Property_Expansion
= 2,
14929 AO_Register_Variable
= 3,
14930 AO_Matrix_Element
= 4,
14934 /// Diagnose invalid operand for address of operations.
14936 /// \param Type The type of operand which cannot have its address taken.
14937 static void diagnoseAddressOfInvalidType(Sema
&S
, SourceLocation Loc
,
14938 Expr
*E
, unsigned Type
) {
14939 S
.Diag(Loc
, diag::err_typecheck_address_of
) << Type
<< E
->getSourceRange();
14942 /// CheckAddressOfOperand - The operand of & must be either a function
14943 /// designator or an lvalue designating an object. If it is an lvalue, the
14944 /// object cannot be declared with storage class register or be a bit field.
14945 /// Note: The usual conversions are *not* applied to the operand of the &
14946 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
14947 /// In C++, the operand might be an overloaded function name, in which case
14948 /// we allow the '&' but retain the overloaded-function type.
14949 QualType
Sema::CheckAddressOfOperand(ExprResult
&OrigOp
, SourceLocation OpLoc
) {
14950 if (const BuiltinType
*PTy
= OrigOp
.get()->getType()->getAsPlaceholderType()){
14951 if (PTy
->getKind() == BuiltinType::Overload
) {
14952 Expr
*E
= OrigOp
.get()->IgnoreParens();
14953 if (!isa
<OverloadExpr
>(E
)) {
14954 assert(cast
<UnaryOperator
>(E
)->getOpcode() == UO_AddrOf
);
14955 Diag(OpLoc
, diag::err_typecheck_invalid_lvalue_addrof_addrof_function
)
14956 << OrigOp
.get()->getSourceRange();
14960 OverloadExpr
*Ovl
= cast
<OverloadExpr
>(E
);
14961 if (isa
<UnresolvedMemberExpr
>(Ovl
))
14962 if (!ResolveSingleFunctionTemplateSpecialization(Ovl
)) {
14963 Diag(OpLoc
, diag::err_invalid_form_pointer_member_function
)
14964 << OrigOp
.get()->getSourceRange();
14968 return Context
.OverloadTy
;
14971 if (PTy
->getKind() == BuiltinType::UnknownAny
)
14972 return Context
.UnknownAnyTy
;
14974 if (PTy
->getKind() == BuiltinType::BoundMember
) {
14975 Diag(OpLoc
, diag::err_invalid_form_pointer_member_function
)
14976 << OrigOp
.get()->getSourceRange();
14980 OrigOp
= CheckPlaceholderExpr(OrigOp
.get());
14981 if (OrigOp
.isInvalid()) return QualType();
14984 if (OrigOp
.get()->isTypeDependent())
14985 return Context
.DependentTy
;
14987 assert(!OrigOp
.get()->hasPlaceholderType());
14989 // Make sure to ignore parentheses in subsequent checks
14990 Expr
*op
= OrigOp
.get()->IgnoreParens();
14992 // In OpenCL captures for blocks called as lambda functions
14993 // are located in the private address space. Blocks used in
14994 // enqueue_kernel can be located in a different address space
14995 // depending on a vendor implementation. Thus preventing
14996 // taking an address of the capture to avoid invalid AS casts.
14997 if (LangOpts
.OpenCL
) {
14998 auto* VarRef
= dyn_cast
<DeclRefExpr
>(op
);
14999 if (VarRef
&& VarRef
->refersToEnclosingVariableOrCapture()) {
15000 Diag(op
->getExprLoc(), diag::err_opencl_taking_address_capture
);
15005 if (getLangOpts().C99
) {
15006 // Implement C99-only parts of addressof rules.
15007 if (UnaryOperator
* uOp
= dyn_cast
<UnaryOperator
>(op
)) {
15008 if (uOp
->getOpcode() == UO_Deref
)
15009 // Per C99 6.5.3.2, the address of a deref always returns a valid result
15010 // (assuming the deref expression is valid).
15011 return uOp
->getSubExpr()->getType();
15013 // Technically, there should be a check for array subscript
15014 // expressions here, but the result of one is always an lvalue anyway.
15016 ValueDecl
*dcl
= getPrimaryDecl(op
);
15018 if (auto *FD
= dyn_cast_or_null
<FunctionDecl
>(dcl
))
15019 if (!checkAddressOfFunctionIsAvailable(FD
, /*Complain=*/true,
15020 op
->getBeginLoc()))
15023 Expr::LValueClassification lval
= op
->ClassifyLValue(Context
);
15024 unsigned AddressOfError
= AO_No_Error
;
15026 if (lval
== Expr::LV_ClassTemporary
|| lval
== Expr::LV_ArrayTemporary
) {
15027 bool sfinae
= (bool)isSFINAEContext();
15028 Diag(OpLoc
, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
15029 : diag::ext_typecheck_addrof_temporary
)
15030 << op
->getType() << op
->getSourceRange();
15033 // Materialize the temporary as an lvalue so that we can take its address.
15035 CreateMaterializeTemporaryExpr(op
->getType(), OrigOp
.get(), true);
15036 } else if (isa
<ObjCSelectorExpr
>(op
)) {
15037 return Context
.getPointerType(op
->getType());
15038 } else if (lval
== Expr::LV_MemberFunction
) {
15039 // If it's an instance method, make a member pointer.
15040 // The expression must have exactly the form &A::foo.
15042 // If the underlying expression isn't a decl ref, give up.
15043 if (!isa
<DeclRefExpr
>(op
)) {
15044 Diag(OpLoc
, diag::err_invalid_form_pointer_member_function
)
15045 << OrigOp
.get()->getSourceRange();
15048 DeclRefExpr
*DRE
= cast
<DeclRefExpr
>(op
);
15049 CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(DRE
->getDecl());
15051 // The id-expression was parenthesized.
15052 if (OrigOp
.get() != DRE
) {
15053 Diag(OpLoc
, diag::err_parens_pointer_member_function
)
15054 << OrigOp
.get()->getSourceRange();
15056 // The method was named without a qualifier.
15057 } else if (!DRE
->getQualifier()) {
15058 if (MD
->getParent()->getName().empty())
15059 Diag(OpLoc
, diag::err_unqualified_pointer_member_function
)
15060 << op
->getSourceRange();
15062 SmallString
<32> Str
;
15063 StringRef Qual
= (MD
->getParent()->getName() + "::").toStringRef(Str
);
15064 Diag(OpLoc
, diag::err_unqualified_pointer_member_function
)
15065 << op
->getSourceRange()
15066 << FixItHint::CreateInsertion(op
->getSourceRange().getBegin(), Qual
);
15070 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
15071 if (isa
<CXXDestructorDecl
>(MD
))
15072 Diag(OpLoc
, diag::err_typecheck_addrof_dtor
) << op
->getSourceRange();
15074 QualType MPTy
= Context
.getMemberPointerType(
15075 op
->getType(), Context
.getTypeDeclType(MD
->getParent()).getTypePtr());
15076 // Under the MS ABI, lock down the inheritance model now.
15077 if (Context
.getTargetInfo().getCXXABI().isMicrosoft())
15078 (void)isCompleteType(OpLoc
, MPTy
);
15080 } else if (lval
!= Expr::LV_Valid
&& lval
!= Expr::LV_IncompleteVoidType
) {
15082 // The operand must be either an l-value or a function designator
15083 if (!op
->getType()->isFunctionType()) {
15084 // Use a special diagnostic for loads from property references.
15085 if (isa
<PseudoObjectExpr
>(op
)) {
15086 AddressOfError
= AO_Property_Expansion
;
15088 Diag(OpLoc
, diag::err_typecheck_invalid_lvalue_addrof
)
15089 << op
->getType() << op
->getSourceRange();
15093 } else if (op
->getObjectKind() == OK_BitField
) { // C99 6.5.3.2p1
15094 // The operand cannot be a bit-field
15095 AddressOfError
= AO_Bit_Field
;
15096 } else if (op
->getObjectKind() == OK_VectorComponent
) {
15097 // The operand cannot be an element of a vector
15098 AddressOfError
= AO_Vector_Element
;
15099 } else if (op
->getObjectKind() == OK_MatrixComponent
) {
15100 // The operand cannot be an element of a matrix.
15101 AddressOfError
= AO_Matrix_Element
;
15102 } else if (dcl
) { // C99 6.5.3.2p1
15103 // We have an lvalue with a decl. Make sure the decl is not declared
15104 // with the register storage-class specifier.
15105 if (const VarDecl
*vd
= dyn_cast
<VarDecl
>(dcl
)) {
15106 // in C++ it is not error to take address of a register
15107 // variable (c++03 7.1.1P3)
15108 if (vd
->getStorageClass() == SC_Register
&&
15109 !getLangOpts().CPlusPlus
) {
15110 AddressOfError
= AO_Register_Variable
;
15112 } else if (isa
<MSPropertyDecl
>(dcl
)) {
15113 AddressOfError
= AO_Property_Expansion
;
15114 } else if (isa
<FunctionTemplateDecl
>(dcl
)) {
15115 return Context
.OverloadTy
;
15116 } else if (isa
<FieldDecl
>(dcl
) || isa
<IndirectFieldDecl
>(dcl
)) {
15117 // Okay: we can take the address of a field.
15118 // Could be a pointer to member, though, if there is an explicit
15119 // scope qualifier for the class.
15120 if (isa
<DeclRefExpr
>(op
) && cast
<DeclRefExpr
>(op
)->getQualifier()) {
15121 DeclContext
*Ctx
= dcl
->getDeclContext();
15122 if (Ctx
&& Ctx
->isRecord()) {
15123 if (dcl
->getType()->isReferenceType()) {
15125 diag::err_cannot_form_pointer_to_member_of_reference_type
)
15126 << dcl
->getDeclName() << dcl
->getType();
15130 while (cast
<RecordDecl
>(Ctx
)->isAnonymousStructOrUnion())
15131 Ctx
= Ctx
->getParent();
15133 QualType MPTy
= Context
.getMemberPointerType(
15135 Context
.getTypeDeclType(cast
<RecordDecl
>(Ctx
)).getTypePtr());
15136 // Under the MS ABI, lock down the inheritance model now.
15137 if (Context
.getTargetInfo().getCXXABI().isMicrosoft())
15138 (void)isCompleteType(OpLoc
, MPTy
);
15142 } else if (!isa
<FunctionDecl
, NonTypeTemplateParmDecl
, BindingDecl
,
15143 MSGuidDecl
, UnnamedGlobalConstantDecl
>(dcl
))
15144 llvm_unreachable("Unknown/unexpected decl type");
15147 if (AddressOfError
!= AO_No_Error
) {
15148 diagnoseAddressOfInvalidType(*this, OpLoc
, op
, AddressOfError
);
15152 if (lval
== Expr::LV_IncompleteVoidType
) {
15153 // Taking the address of a void variable is technically illegal, but we
15154 // allow it in cases which are otherwise valid.
15155 // Example: "extern void x; void* y = &x;".
15156 Diag(OpLoc
, diag::ext_typecheck_addrof_void
) << op
->getSourceRange();
15159 // If the operand has type "type", the result has type "pointer to type".
15160 if (op
->getType()->isObjCObjectType())
15161 return Context
.getObjCObjectPointerType(op
->getType());
15163 // Cannot take the address of WebAssembly references or tables.
15164 if (Context
.getTargetInfo().getTriple().isWasm()) {
15165 QualType OpTy
= op
->getType();
15166 if (OpTy
.isWebAssemblyReferenceType()) {
15167 Diag(OpLoc
, diag::err_wasm_ca_reference
)
15168 << 1 << OrigOp
.get()->getSourceRange();
15171 if (OpTy
->isWebAssemblyTableType()) {
15172 Diag(OpLoc
, diag::err_wasm_table_pr
)
15173 << 1 << OrigOp
.get()->getSourceRange();
15178 CheckAddressOfPackedMember(op
);
15180 return Context
.getPointerType(op
->getType());
15183 static void RecordModifiableNonNullParam(Sema
&S
, const Expr
*Exp
) {
15184 const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Exp
);
15187 const Decl
*D
= DRE
->getDecl();
15190 const ParmVarDecl
*Param
= dyn_cast
<ParmVarDecl
>(D
);
15193 if (const FunctionDecl
* FD
= dyn_cast
<FunctionDecl
>(Param
->getDeclContext()))
15194 if (!FD
->hasAttr
<NonNullAttr
>() && !Param
->hasAttr
<NonNullAttr
>())
15196 if (FunctionScopeInfo
*FD
= S
.getCurFunction())
15197 FD
->ModifiedNonNullParams
.insert(Param
);
15200 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
15201 static QualType
CheckIndirectionOperand(Sema
&S
, Expr
*Op
, ExprValueKind
&VK
,
15202 SourceLocation OpLoc
,
15203 bool IsAfterAmp
= false) {
15204 if (Op
->isTypeDependent())
15205 return S
.Context
.DependentTy
;
15207 ExprResult ConvResult
= S
.UsualUnaryConversions(Op
);
15208 if (ConvResult
.isInvalid())
15210 Op
= ConvResult
.get();
15211 QualType OpTy
= Op
->getType();
15214 if (isa
<CXXReinterpretCastExpr
>(Op
)) {
15215 QualType OpOrigType
= Op
->IgnoreParenCasts()->getType();
15216 S
.CheckCompatibleReinterpretCast(OpOrigType
, OpTy
, /*IsDereference*/true,
15217 Op
->getSourceRange());
15220 if (const PointerType
*PT
= OpTy
->getAs
<PointerType
>())
15222 Result
= PT
->getPointeeType();
15224 else if (const ObjCObjectPointerType
*OPT
=
15225 OpTy
->getAs
<ObjCObjectPointerType
>())
15226 Result
= OPT
->getPointeeType();
15228 ExprResult PR
= S
.CheckPlaceholderExpr(Op
);
15229 if (PR
.isInvalid()) return QualType();
15230 if (PR
.get() != Op
)
15231 return CheckIndirectionOperand(S
, PR
.get(), VK
, OpLoc
);
15234 if (Result
.isNull()) {
15235 S
.Diag(OpLoc
, diag::err_typecheck_indirection_requires_pointer
)
15236 << OpTy
<< Op
->getSourceRange();
15240 if (Result
->isVoidType()) {
15241 // C++ [expr.unary.op]p1:
15242 // [...] the expression to which [the unary * operator] is applied shall
15243 // be a pointer to an object type, or a pointer to a function type
15244 LangOptions LO
= S
.getLangOpts();
15246 S
.Diag(OpLoc
, diag::err_typecheck_indirection_through_void_pointer_cpp
)
15247 << OpTy
<< Op
->getSourceRange();
15248 else if (!(LO
.C99
&& IsAfterAmp
) && !S
.isUnevaluatedContext())
15249 S
.Diag(OpLoc
, diag::ext_typecheck_indirection_through_void_pointer
)
15250 << OpTy
<< Op
->getSourceRange();
15253 // Dereferences are usually l-values...
15256 // ...except that certain expressions are never l-values in C.
15257 if (!S
.getLangOpts().CPlusPlus
&& Result
.isCForbiddenLValueType())
15263 BinaryOperatorKind
Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind
) {
15264 BinaryOperatorKind Opc
;
15266 default: llvm_unreachable("Unknown binop!");
15267 case tok::periodstar
: Opc
= BO_PtrMemD
; break;
15268 case tok::arrowstar
: Opc
= BO_PtrMemI
; break;
15269 case tok::star
: Opc
= BO_Mul
; break;
15270 case tok::slash
: Opc
= BO_Div
; break;
15271 case tok::percent
: Opc
= BO_Rem
; break;
15272 case tok::plus
: Opc
= BO_Add
; break;
15273 case tok::minus
: Opc
= BO_Sub
; break;
15274 case tok::lessless
: Opc
= BO_Shl
; break;
15275 case tok::greatergreater
: Opc
= BO_Shr
; break;
15276 case tok::lessequal
: Opc
= BO_LE
; break;
15277 case tok::less
: Opc
= BO_LT
; break;
15278 case tok::greaterequal
: Opc
= BO_GE
; break;
15279 case tok::greater
: Opc
= BO_GT
; break;
15280 case tok::exclaimequal
: Opc
= BO_NE
; break;
15281 case tok::equalequal
: Opc
= BO_EQ
; break;
15282 case tok::spaceship
: Opc
= BO_Cmp
; break;
15283 case tok::amp
: Opc
= BO_And
; break;
15284 case tok::caret
: Opc
= BO_Xor
; break;
15285 case tok::pipe
: Opc
= BO_Or
; break;
15286 case tok::ampamp
: Opc
= BO_LAnd
; break;
15287 case tok::pipepipe
: Opc
= BO_LOr
; break;
15288 case tok::equal
: Opc
= BO_Assign
; break;
15289 case tok::starequal
: Opc
= BO_MulAssign
; break;
15290 case tok::slashequal
: Opc
= BO_DivAssign
; break;
15291 case tok::percentequal
: Opc
= BO_RemAssign
; break;
15292 case tok::plusequal
: Opc
= BO_AddAssign
; break;
15293 case tok::minusequal
: Opc
= BO_SubAssign
; break;
15294 case tok::lesslessequal
: Opc
= BO_ShlAssign
; break;
15295 case tok::greatergreaterequal
: Opc
= BO_ShrAssign
; break;
15296 case tok::ampequal
: Opc
= BO_AndAssign
; break;
15297 case tok::caretequal
: Opc
= BO_XorAssign
; break;
15298 case tok::pipeequal
: Opc
= BO_OrAssign
; break;
15299 case tok::comma
: Opc
= BO_Comma
; break;
15304 static inline UnaryOperatorKind
ConvertTokenKindToUnaryOpcode(
15305 tok::TokenKind Kind
) {
15306 UnaryOperatorKind Opc
;
15308 default: llvm_unreachable("Unknown unary op!");
15309 case tok::plusplus
: Opc
= UO_PreInc
; break;
15310 case tok::minusminus
: Opc
= UO_PreDec
; break;
15311 case tok::amp
: Opc
= UO_AddrOf
; break;
15312 case tok::star
: Opc
= UO_Deref
; break;
15313 case tok::plus
: Opc
= UO_Plus
; break;
15314 case tok::minus
: Opc
= UO_Minus
; break;
15315 case tok::tilde
: Opc
= UO_Not
; break;
15316 case tok::exclaim
: Opc
= UO_LNot
; break;
15317 case tok::kw___real
: Opc
= UO_Real
; break;
15318 case tok::kw___imag
: Opc
= UO_Imag
; break;
15319 case tok::kw___extension__
: Opc
= UO_Extension
; break;
15325 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl
*SelfAssigned
) {
15326 // Explore the case for adding 'this->' to the LHS of a self assignment, very
15327 // common for setters.
15330 // -void setX(int X) { X = X; }
15331 // +void setX(int X) { this->X = X; }
15334 // Only consider parameters for self assignment fixes.
15335 if (!isa
<ParmVarDecl
>(SelfAssigned
))
15337 const auto *Method
=
15338 dyn_cast_or_null
<CXXMethodDecl
>(getCurFunctionDecl(true));
15342 const CXXRecordDecl
*Parent
= Method
->getParent();
15343 // In theory this is fixable if the lambda explicitly captures this, but
15344 // that's added complexity that's rarely going to be used.
15345 if (Parent
->isLambda())
15348 // FIXME: Use an actual Lookup operation instead of just traversing fields
15349 // in order to get base class fields.
15351 llvm::find_if(Parent
->fields(),
15352 [Name(SelfAssigned
->getDeclName())](const FieldDecl
*F
) {
15353 return F
->getDeclName() == Name
;
15355 return (Field
!= Parent
->field_end()) ? *Field
: nullptr;
15358 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
15359 /// This warning suppressed in the event of macro expansions.
15360 static void DiagnoseSelfAssignment(Sema
&S
, Expr
*LHSExpr
, Expr
*RHSExpr
,
15361 SourceLocation OpLoc
, bool IsBuiltin
) {
15362 if (S
.inTemplateInstantiation())
15364 if (S
.isUnevaluatedContext())
15366 if (OpLoc
.isInvalid() || OpLoc
.isMacroID())
15368 LHSExpr
= LHSExpr
->IgnoreParenImpCasts();
15369 RHSExpr
= RHSExpr
->IgnoreParenImpCasts();
15370 const DeclRefExpr
*LHSDeclRef
= dyn_cast
<DeclRefExpr
>(LHSExpr
);
15371 const DeclRefExpr
*RHSDeclRef
= dyn_cast
<DeclRefExpr
>(RHSExpr
);
15372 if (!LHSDeclRef
|| !RHSDeclRef
||
15373 LHSDeclRef
->getLocation().isMacroID() ||
15374 RHSDeclRef
->getLocation().isMacroID())
15376 const ValueDecl
*LHSDecl
=
15377 cast
<ValueDecl
>(LHSDeclRef
->getDecl()->getCanonicalDecl());
15378 const ValueDecl
*RHSDecl
=
15379 cast
<ValueDecl
>(RHSDeclRef
->getDecl()->getCanonicalDecl());
15380 if (LHSDecl
!= RHSDecl
)
15382 if (LHSDecl
->getType().isVolatileQualified())
15384 if (const ReferenceType
*RefTy
= LHSDecl
->getType()->getAs
<ReferenceType
>())
15385 if (RefTy
->getPointeeType().isVolatileQualified())
15388 auto Diag
= S
.Diag(OpLoc
, IsBuiltin
? diag::warn_self_assignment_builtin
15389 : diag::warn_self_assignment_overloaded
)
15390 << LHSDeclRef
->getType() << LHSExpr
->getSourceRange()
15391 << RHSExpr
->getSourceRange();
15392 if (const FieldDecl
*SelfAssignField
=
15393 S
.getSelfAssignmentClassMemberCandidate(RHSDecl
))
15394 Diag
<< 1 << SelfAssignField
15395 << FixItHint::CreateInsertion(LHSDeclRef
->getBeginLoc(), "this->");
15400 /// Check if a bitwise-& is performed on an Objective-C pointer. This
15401 /// is usually indicative of introspection within the Objective-C pointer.
15402 static void checkObjCPointerIntrospection(Sema
&S
, ExprResult
&L
, ExprResult
&R
,
15403 SourceLocation OpLoc
) {
15404 if (!S
.getLangOpts().ObjC
)
15407 const Expr
*ObjCPointerExpr
= nullptr, *OtherExpr
= nullptr;
15408 const Expr
*LHS
= L
.get();
15409 const Expr
*RHS
= R
.get();
15411 if (LHS
->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15412 ObjCPointerExpr
= LHS
;
15415 else if (RHS
->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15416 ObjCPointerExpr
= RHS
;
15420 // This warning is deliberately made very specific to reduce false
15421 // positives with logic that uses '&' for hashing. This logic mainly
15422 // looks for code trying to introspect into tagged pointers, which
15423 // code should generally never do.
15424 if (ObjCPointerExpr
&& isa
<IntegerLiteral
>(OtherExpr
->IgnoreParenCasts())) {
15425 unsigned Diag
= diag::warn_objc_pointer_masking
;
15426 // Determine if we are introspecting the result of performSelectorXXX.
15427 const Expr
*Ex
= ObjCPointerExpr
->IgnoreParenCasts();
15428 // Special case messages to -performSelector and friends, which
15429 // can return non-pointer values boxed in a pointer value.
15430 // Some clients may wish to silence warnings in this subcase.
15431 if (const ObjCMessageExpr
*ME
= dyn_cast
<ObjCMessageExpr
>(Ex
)) {
15432 Selector S
= ME
->getSelector();
15433 StringRef SelArg0
= S
.getNameForSlot(0);
15434 if (SelArg0
.startswith("performSelector"))
15435 Diag
= diag::warn_objc_pointer_masking_performSelector
;
15438 S
.Diag(OpLoc
, Diag
)
15439 << ObjCPointerExpr
->getSourceRange();
15443 static NamedDecl
*getDeclFromExpr(Expr
*E
) {
15446 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
15447 return DRE
->getDecl();
15448 if (auto *ME
= dyn_cast
<MemberExpr
>(E
))
15449 return ME
->getMemberDecl();
15450 if (auto *IRE
= dyn_cast
<ObjCIvarRefExpr
>(E
))
15451 return IRE
->getDecl();
15455 // This helper function promotes a binary operator's operands (which are of a
15456 // half vector type) to a vector of floats and then truncates the result to
15457 // a vector of either half or short.
15458 static ExprResult
convertHalfVecBinOp(Sema
&S
, ExprResult LHS
, ExprResult RHS
,
15459 BinaryOperatorKind Opc
, QualType ResultTy
,
15460 ExprValueKind VK
, ExprObjectKind OK
,
15461 bool IsCompAssign
, SourceLocation OpLoc
,
15462 FPOptionsOverride FPFeatures
) {
15463 auto &Context
= S
.getASTContext();
15464 assert((isVector(ResultTy
, Context
.HalfTy
) ||
15465 isVector(ResultTy
, Context
.ShortTy
)) &&
15466 "Result must be a vector of half or short");
15467 assert(isVector(LHS
.get()->getType(), Context
.HalfTy
) &&
15468 isVector(RHS
.get()->getType(), Context
.HalfTy
) &&
15469 "both operands expected to be a half vector");
15471 RHS
= convertVector(RHS
.get(), Context
.FloatTy
, S
);
15472 QualType BinOpResTy
= RHS
.get()->getType();
15474 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15475 // change BinOpResTy to a vector of ints.
15476 if (isVector(ResultTy
, Context
.ShortTy
))
15477 BinOpResTy
= S
.GetSignedVectorType(BinOpResTy
);
15480 return CompoundAssignOperator::Create(Context
, LHS
.get(), RHS
.get(), Opc
,
15481 ResultTy
, VK
, OK
, OpLoc
, FPFeatures
,
15482 BinOpResTy
, BinOpResTy
);
15484 LHS
= convertVector(LHS
.get(), Context
.FloatTy
, S
);
15485 auto *BO
= BinaryOperator::Create(Context
, LHS
.get(), RHS
.get(), Opc
,
15486 BinOpResTy
, VK
, OK
, OpLoc
, FPFeatures
);
15487 return convertVector(BO
, ResultTy
->castAs
<VectorType
>()->getElementType(), S
);
15490 static std::pair
<ExprResult
, ExprResult
>
15491 CorrectDelayedTyposInBinOp(Sema
&S
, BinaryOperatorKind Opc
, Expr
*LHSExpr
,
15493 ExprResult LHS
= LHSExpr
, RHS
= RHSExpr
;
15494 if (!S
.Context
.isDependenceAllowed()) {
15495 // C cannot handle TypoExpr nodes on either side of a binop because it
15496 // doesn't handle dependent types properly, so make sure any TypoExprs have
15497 // been dealt with before checking the operands.
15498 LHS
= S
.CorrectDelayedTyposInExpr(LHS
);
15499 RHS
= S
.CorrectDelayedTyposInExpr(
15500 RHS
, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15501 [Opc
, LHS
](Expr
*E
) {
15502 if (Opc
!= BO_Assign
)
15503 return ExprResult(E
);
15504 // Avoid correcting the RHS to the same Expr as the LHS.
15505 Decl
*D
= getDeclFromExpr(E
);
15506 return (D
&& D
== getDeclFromExpr(LHS
.get())) ? ExprError() : E
;
15509 return std::make_pair(LHS
, RHS
);
15512 /// Returns true if conversion between vectors of halfs and vectors of floats
15514 static bool needsConversionOfHalfVec(bool OpRequiresConversion
, ASTContext
&Ctx
,
15515 Expr
*E0
, Expr
*E1
= nullptr) {
15516 if (!OpRequiresConversion
|| Ctx
.getLangOpts().NativeHalfType
||
15517 Ctx
.getTargetInfo().useFP16ConversionIntrinsics())
15520 auto HasVectorOfHalfType
= [&Ctx
](Expr
*E
) {
15521 QualType Ty
= E
->IgnoreImplicit()->getType();
15523 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15524 // to vectors of floats. Although the element type of the vectors is __fp16,
15525 // the vectors shouldn't be treated as storage-only types. See the
15526 // discussion here: https://reviews.llvm.org/rG825235c140e7
15527 if (const VectorType
*VT
= Ty
->getAs
<VectorType
>()) {
15528 if (VT
->getVectorKind() == VectorType::NeonVector
)
15530 return VT
->getElementType().getCanonicalType() == Ctx
.HalfTy
;
15535 return HasVectorOfHalfType(E0
) && (!E1
|| HasVectorOfHalfType(E1
));
15538 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15539 /// operator @p Opc at location @c TokLoc. This routine only supports
15540 /// built-in operations; ActOnBinOp handles overloaded operators.
15541 ExprResult
Sema::CreateBuiltinBinOp(SourceLocation OpLoc
,
15542 BinaryOperatorKind Opc
,
15543 Expr
*LHSExpr
, Expr
*RHSExpr
) {
15544 if (getLangOpts().CPlusPlus11
&& isa
<InitListExpr
>(RHSExpr
)) {
15545 // The syntax only allows initializer lists on the RHS of assignment,
15546 // so we don't need to worry about accepting invalid code for
15547 // non-assignment operators.
15549 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15550 // of x = {} is x = T().
15551 InitializationKind Kind
= InitializationKind::CreateDirectList(
15552 RHSExpr
->getBeginLoc(), RHSExpr
->getBeginLoc(), RHSExpr
->getEndLoc());
15553 InitializedEntity Entity
=
15554 InitializedEntity::InitializeTemporary(LHSExpr
->getType());
15555 InitializationSequence
InitSeq(*this, Entity
, Kind
, RHSExpr
);
15556 ExprResult Init
= InitSeq
.Perform(*this, Entity
, Kind
, RHSExpr
);
15557 if (Init
.isInvalid())
15559 RHSExpr
= Init
.get();
15562 ExprResult LHS
= LHSExpr
, RHS
= RHSExpr
;
15563 QualType ResultTy
; // Result type of the binary operator.
15564 // The following two variables are used for compound assignment operators
15565 QualType CompLHSTy
; // Type of LHS after promotions for computation
15566 QualType CompResultTy
; // Type of computation result
15567 ExprValueKind VK
= VK_PRValue
;
15568 ExprObjectKind OK
= OK_Ordinary
;
15569 bool ConvertHalfVec
= false;
15571 std::tie(LHS
, RHS
) = CorrectDelayedTyposInBinOp(*this, Opc
, LHSExpr
, RHSExpr
);
15572 if (!LHS
.isUsable() || !RHS
.isUsable())
15573 return ExprError();
15575 if (getLangOpts().OpenCL
) {
15576 QualType LHSTy
= LHSExpr
->getType();
15577 QualType RHSTy
= RHSExpr
->getType();
15578 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15579 // the ATOMIC_VAR_INIT macro.
15580 if (LHSTy
->isAtomicType() || RHSTy
->isAtomicType()) {
15581 SourceRange
SR(LHSExpr
->getBeginLoc(), RHSExpr
->getEndLoc());
15582 if (BO_Assign
== Opc
)
15583 Diag(OpLoc
, diag::err_opencl_atomic_init
) << 0 << SR
;
15585 ResultTy
= InvalidOperands(OpLoc
, LHS
, RHS
);
15586 return ExprError();
15589 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15590 // only with a builtin functions and therefore should be disallowed here.
15591 if (LHSTy
->isImageType() || RHSTy
->isImageType() ||
15592 LHSTy
->isSamplerT() || RHSTy
->isSamplerT() ||
15593 LHSTy
->isPipeType() || RHSTy
->isPipeType() ||
15594 LHSTy
->isBlockPointerType() || RHSTy
->isBlockPointerType()) {
15595 ResultTy
= InvalidOperands(OpLoc
, LHS
, RHS
);
15596 return ExprError();
15600 checkTypeSupport(LHSExpr
->getType(), OpLoc
, /*ValueDecl*/ nullptr);
15601 checkTypeSupport(RHSExpr
->getType(), OpLoc
, /*ValueDecl*/ nullptr);
15605 ResultTy
= CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, QualType(), Opc
);
15606 if (getLangOpts().CPlusPlus
&&
15607 LHS
.get()->getObjectKind() != OK_ObjCProperty
) {
15608 VK
= LHS
.get()->getValueKind();
15609 OK
= LHS
.get()->getObjectKind();
15611 if (!ResultTy
.isNull()) {
15612 DiagnoseSelfAssignment(*this, LHS
.get(), RHS
.get(), OpLoc
, true);
15613 DiagnoseSelfMove(LHS
.get(), RHS
.get(), OpLoc
);
15615 // Avoid copying a block to the heap if the block is assigned to a local
15616 // auto variable that is declared in the same scope as the block. This
15617 // optimization is unsafe if the local variable is declared in an outer
15618 // scope. For example:
15624 // // It is unsafe to invoke the block here if it wasn't copied to the
15628 if (auto *BE
= dyn_cast
<BlockExpr
>(RHS
.get()->IgnoreParens()))
15629 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(LHS
.get()->IgnoreParens()))
15630 if (auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()))
15631 if (VD
->hasLocalStorage() && getCurScope()->isDeclScope(VD
))
15632 BE
->getBlockDecl()->setCanAvoidCopyToHeap();
15634 if (LHS
.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15635 checkNonTrivialCUnion(LHS
.get()->getType(), LHS
.get()->getExprLoc(),
15636 NTCUC_Assignment
, NTCUK_Copy
);
15638 RecordModifiableNonNullParam(*this, LHS
.get());
15642 ResultTy
= CheckPointerToMemberOperands(LHS
, RHS
, VK
, OpLoc
,
15643 Opc
== BO_PtrMemI
);
15647 ConvertHalfVec
= true;
15648 ResultTy
= CheckMultiplyDivideOperands(LHS
, RHS
, OpLoc
, false,
15652 ResultTy
= CheckRemainderOperands(LHS
, RHS
, OpLoc
);
15655 ConvertHalfVec
= true;
15656 ResultTy
= CheckAdditionOperands(LHS
, RHS
, OpLoc
, Opc
);
15659 ConvertHalfVec
= true;
15660 ResultTy
= CheckSubtractionOperands(LHS
, RHS
, OpLoc
);
15664 ResultTy
= CheckShiftOperands(LHS
, RHS
, OpLoc
, Opc
);
15670 ConvertHalfVec
= true;
15671 ResultTy
= CheckCompareOperands(LHS
, RHS
, OpLoc
, Opc
);
15675 ConvertHalfVec
= true;
15676 ResultTy
= CheckCompareOperands(LHS
, RHS
, OpLoc
, Opc
);
15679 ConvertHalfVec
= true;
15680 ResultTy
= CheckCompareOperands(LHS
, RHS
, OpLoc
, Opc
);
15681 assert(ResultTy
.isNull() || ResultTy
->getAsCXXRecordDecl());
15684 checkObjCPointerIntrospection(*this, LHS
, RHS
, OpLoc
);
15688 ResultTy
= CheckBitwiseOperands(LHS
, RHS
, OpLoc
, Opc
);
15692 ConvertHalfVec
= true;
15693 ResultTy
= CheckLogicalOperands(LHS
, RHS
, OpLoc
, Opc
);
15697 ConvertHalfVec
= true;
15698 CompResultTy
= CheckMultiplyDivideOperands(LHS
, RHS
, OpLoc
, true,
15699 Opc
== BO_DivAssign
);
15700 CompLHSTy
= CompResultTy
;
15701 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15703 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15706 CompResultTy
= CheckRemainderOperands(LHS
, RHS
, OpLoc
, true);
15707 CompLHSTy
= CompResultTy
;
15708 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15710 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15713 ConvertHalfVec
= true;
15714 CompResultTy
= CheckAdditionOperands(LHS
, RHS
, OpLoc
, Opc
, &CompLHSTy
);
15715 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15717 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15720 ConvertHalfVec
= true;
15721 CompResultTy
= CheckSubtractionOperands(LHS
, RHS
, OpLoc
, &CompLHSTy
);
15722 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15724 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15728 CompResultTy
= CheckShiftOperands(LHS
, RHS
, OpLoc
, Opc
, true);
15729 CompLHSTy
= CompResultTy
;
15730 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15732 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15735 case BO_OrAssign
: // fallthrough
15736 DiagnoseSelfAssignment(*this, LHS
.get(), RHS
.get(), OpLoc
, true);
15739 CompResultTy
= CheckBitwiseOperands(LHS
, RHS
, OpLoc
, Opc
);
15740 CompLHSTy
= CompResultTy
;
15741 if (!CompResultTy
.isNull() && !LHS
.isInvalid() && !RHS
.isInvalid())
15743 CheckAssignmentOperands(LHS
.get(), RHS
, OpLoc
, CompResultTy
, Opc
);
15746 ResultTy
= CheckCommaOperands(*this, LHS
, RHS
, OpLoc
);
15747 if (getLangOpts().CPlusPlus
&& !RHS
.isInvalid()) {
15748 VK
= RHS
.get()->getValueKind();
15749 OK
= RHS
.get()->getObjectKind();
15753 if (ResultTy
.isNull() || LHS
.isInvalid() || RHS
.isInvalid())
15754 return ExprError();
15756 // Some of the binary operations require promoting operands of half vector to
15757 // float vectors and truncating the result back to half vector. For now, we do
15758 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15761 (Opc
== BO_Comma
|| isVector(RHS
.get()->getType(), Context
.HalfTy
) ==
15762 isVector(LHS
.get()->getType(), Context
.HalfTy
)) &&
15763 "both sides are half vectors or neither sides are");
15765 needsConversionOfHalfVec(ConvertHalfVec
, Context
, LHS
.get(), RHS
.get());
15767 // Check for array bounds violations for both sides of the BinaryOperator
15768 CheckArrayAccess(LHS
.get());
15769 CheckArrayAccess(RHS
.get());
15771 if (const ObjCIsaExpr
*OISA
= dyn_cast
<ObjCIsaExpr
>(LHS
.get()->IgnoreParenCasts())) {
15772 NamedDecl
*ObjectSetClass
= LookupSingleName(TUScope
,
15773 &Context
.Idents
.get("object_setClass"),
15774 SourceLocation(), LookupOrdinaryName
);
15775 if (ObjectSetClass
&& isa
<ObjCIsaExpr
>(LHS
.get())) {
15776 SourceLocation RHSLocEnd
= getLocForEndOfToken(RHS
.get()->getEndLoc());
15777 Diag(LHS
.get()->getExprLoc(), diag::warn_objc_isa_assign
)
15778 << FixItHint::CreateInsertion(LHS
.get()->getBeginLoc(),
15779 "object_setClass(")
15780 << FixItHint::CreateReplacement(SourceRange(OISA
->getOpLoc(), OpLoc
),
15782 << FixItHint::CreateInsertion(RHSLocEnd
, ")");
15785 Diag(LHS
.get()->getExprLoc(), diag::warn_objc_isa_assign
);
15787 else if (const ObjCIvarRefExpr
*OIRE
=
15788 dyn_cast
<ObjCIvarRefExpr
>(LHS
.get()->IgnoreParenCasts()))
15789 DiagnoseDirectIsaAccess(*this, OIRE
, OpLoc
, RHS
.get());
15791 // Opc is not a compound assignment if CompResultTy is null.
15792 if (CompResultTy
.isNull()) {
15793 if (ConvertHalfVec
)
15794 return convertHalfVecBinOp(*this, LHS
, RHS
, Opc
, ResultTy
, VK
, OK
, false,
15795 OpLoc
, CurFPFeatureOverrides());
15796 return BinaryOperator::Create(Context
, LHS
.get(), RHS
.get(), Opc
, ResultTy
,
15797 VK
, OK
, OpLoc
, CurFPFeatureOverrides());
15800 // Handle compound assignments.
15801 if (getLangOpts().CPlusPlus
&& LHS
.get()->getObjectKind() !=
15804 OK
= LHS
.get()->getObjectKind();
15807 // The LHS is not converted to the result type for fixed-point compound
15808 // assignment as the common type is computed on demand. Reset the CompLHSTy
15809 // to the LHS type we would have gotten after unary conversions.
15810 if (CompResultTy
->isFixedPointType())
15811 CompLHSTy
= UsualUnaryConversions(LHS
.get()).get()->getType();
15813 if (ConvertHalfVec
)
15814 return convertHalfVecBinOp(*this, LHS
, RHS
, Opc
, ResultTy
, VK
, OK
, true,
15815 OpLoc
, CurFPFeatureOverrides());
15817 return CompoundAssignOperator::Create(
15818 Context
, LHS
.get(), RHS
.get(), Opc
, ResultTy
, VK
, OK
, OpLoc
,
15819 CurFPFeatureOverrides(), CompLHSTy
, CompResultTy
);
15822 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15823 /// operators are mixed in a way that suggests that the programmer forgot that
15824 /// comparison operators have higher precedence. The most typical example of
15825 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15826 static void DiagnoseBitwisePrecedence(Sema
&Self
, BinaryOperatorKind Opc
,
15827 SourceLocation OpLoc
, Expr
*LHSExpr
,
15829 BinaryOperator
*LHSBO
= dyn_cast
<BinaryOperator
>(LHSExpr
);
15830 BinaryOperator
*RHSBO
= dyn_cast
<BinaryOperator
>(RHSExpr
);
15832 // Check that one of the sides is a comparison operator and the other isn't.
15833 bool isLeftComp
= LHSBO
&& LHSBO
->isComparisonOp();
15834 bool isRightComp
= RHSBO
&& RHSBO
->isComparisonOp();
15835 if (isLeftComp
== isRightComp
)
15838 // Bitwise operations are sometimes used as eager logical ops.
15839 // Don't diagnose this.
15840 bool isLeftBitwise
= LHSBO
&& LHSBO
->isBitwiseOp();
15841 bool isRightBitwise
= RHSBO
&& RHSBO
->isBitwiseOp();
15842 if (isLeftBitwise
|| isRightBitwise
)
15845 SourceRange DiagRange
= isLeftComp
15846 ? SourceRange(LHSExpr
->getBeginLoc(), OpLoc
)
15847 : SourceRange(OpLoc
, RHSExpr
->getEndLoc());
15848 StringRef OpStr
= isLeftComp
? LHSBO
->getOpcodeStr() : RHSBO
->getOpcodeStr();
15849 SourceRange ParensRange
=
15851 ? SourceRange(LHSBO
->getRHS()->getBeginLoc(), RHSExpr
->getEndLoc())
15852 : SourceRange(LHSExpr
->getBeginLoc(), RHSBO
->getLHS()->getEndLoc());
15854 Self
.Diag(OpLoc
, diag::warn_precedence_bitwise_rel
)
15855 << DiagRange
<< BinaryOperator::getOpcodeStr(Opc
) << OpStr
;
15856 SuggestParentheses(Self
, OpLoc
,
15857 Self
.PDiag(diag::note_precedence_silence
) << OpStr
,
15858 (isLeftComp
? LHSExpr
: RHSExpr
)->getSourceRange());
15859 SuggestParentheses(Self
, OpLoc
,
15860 Self
.PDiag(diag::note_precedence_bitwise_first
)
15861 << BinaryOperator::getOpcodeStr(Opc
),
15865 /// It accepts a '&&' expr that is inside a '||' one.
15866 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15867 /// in parentheses.
15869 EmitDiagnosticForLogicalAndInLogicalOr(Sema
&Self
, SourceLocation OpLoc
,
15870 BinaryOperator
*Bop
) {
15871 assert(Bop
->getOpcode() == BO_LAnd
);
15872 Self
.Diag(Bop
->getOperatorLoc(), diag::warn_logical_and_in_logical_or
)
15873 << Bop
->getSourceRange() << OpLoc
;
15874 SuggestParentheses(Self
, Bop
->getOperatorLoc(),
15875 Self
.PDiag(diag::note_precedence_silence
)
15876 << Bop
->getOpcodeStr(),
15877 Bop
->getSourceRange());
15880 /// Look for '&&' in the left hand of a '||' expr.
15881 static void DiagnoseLogicalAndInLogicalOrLHS(Sema
&S
, SourceLocation OpLoc
,
15882 Expr
*LHSExpr
, Expr
*RHSExpr
) {
15883 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(LHSExpr
)) {
15884 if (Bop
->getOpcode() == BO_LAnd
) {
15885 // If it's "string_literal && a || b" don't warn since the precedence
15887 if (!isa
<StringLiteral
>(Bop
->getLHS()->IgnoreParenImpCasts()))
15888 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, Bop
);
15889 } else if (Bop
->getOpcode() == BO_LOr
) {
15890 if (BinaryOperator
*RBop
= dyn_cast
<BinaryOperator
>(Bop
->getRHS())) {
15891 // If it's "a || b && string_literal || c" we didn't warn earlier for
15892 // "a || b && string_literal", but warn now.
15893 if (RBop
->getOpcode() == BO_LAnd
&&
15894 isa
<StringLiteral
>(RBop
->getRHS()->IgnoreParenImpCasts()))
15895 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, RBop
);
15901 /// Look for '&&' in the right hand of a '||' expr.
15902 static void DiagnoseLogicalAndInLogicalOrRHS(Sema
&S
, SourceLocation OpLoc
,
15903 Expr
*LHSExpr
, Expr
*RHSExpr
) {
15904 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(RHSExpr
)) {
15905 if (Bop
->getOpcode() == BO_LAnd
) {
15906 // If it's "a || b && string_literal" don't warn since the precedence
15908 if (!isa
<StringLiteral
>(Bop
->getRHS()->IgnoreParenImpCasts()))
15909 return EmitDiagnosticForLogicalAndInLogicalOr(S
, OpLoc
, Bop
);
15914 /// Look for bitwise op in the left or right hand of a bitwise op with
15915 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15916 /// the '&' expression in parentheses.
15917 static void DiagnoseBitwiseOpInBitwiseOp(Sema
&S
, BinaryOperatorKind Opc
,
15918 SourceLocation OpLoc
, Expr
*SubExpr
) {
15919 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(SubExpr
)) {
15920 if (Bop
->isBitwiseOp() && Bop
->getOpcode() < Opc
) {
15921 S
.Diag(Bop
->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op
)
15922 << Bop
->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc
)
15923 << Bop
->getSourceRange() << OpLoc
;
15924 SuggestParentheses(S
, Bop
->getOperatorLoc(),
15925 S
.PDiag(diag::note_precedence_silence
)
15926 << Bop
->getOpcodeStr(),
15927 Bop
->getSourceRange());
15932 static void DiagnoseAdditionInShift(Sema
&S
, SourceLocation OpLoc
,
15933 Expr
*SubExpr
, StringRef Shift
) {
15934 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(SubExpr
)) {
15935 if (Bop
->getOpcode() == BO_Add
|| Bop
->getOpcode() == BO_Sub
) {
15936 StringRef Op
= Bop
->getOpcodeStr();
15937 S
.Diag(Bop
->getOperatorLoc(), diag::warn_addition_in_bitshift
)
15938 << Bop
->getSourceRange() << OpLoc
<< Shift
<< Op
;
15939 SuggestParentheses(S
, Bop
->getOperatorLoc(),
15940 S
.PDiag(diag::note_precedence_silence
) << Op
,
15941 Bop
->getSourceRange());
15946 static void DiagnoseShiftCompare(Sema
&S
, SourceLocation OpLoc
,
15947 Expr
*LHSExpr
, Expr
*RHSExpr
) {
15948 CXXOperatorCallExpr
*OCE
= dyn_cast
<CXXOperatorCallExpr
>(LHSExpr
);
15952 FunctionDecl
*FD
= OCE
->getDirectCallee();
15953 if (!FD
|| !FD
->isOverloadedOperator())
15956 OverloadedOperatorKind Kind
= FD
->getOverloadedOperator();
15957 if (Kind
!= OO_LessLess
&& Kind
!= OO_GreaterGreater
)
15960 S
.Diag(OpLoc
, diag::warn_overloaded_shift_in_comparison
)
15961 << LHSExpr
->getSourceRange() << RHSExpr
->getSourceRange()
15962 << (Kind
== OO_LessLess
);
15963 SuggestParentheses(S
, OCE
->getOperatorLoc(),
15964 S
.PDiag(diag::note_precedence_silence
)
15965 << (Kind
== OO_LessLess
? "<<" : ">>"),
15966 OCE
->getSourceRange());
15967 SuggestParentheses(
15968 S
, OpLoc
, S
.PDiag(diag::note_evaluate_comparison_first
),
15969 SourceRange(OCE
->getArg(1)->getBeginLoc(), RHSExpr
->getEndLoc()));
15972 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15974 static void DiagnoseBinOpPrecedence(Sema
&Self
, BinaryOperatorKind Opc
,
15975 SourceLocation OpLoc
, Expr
*LHSExpr
,
15977 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15978 if (BinaryOperator::isBitwiseOp(Opc
))
15979 DiagnoseBitwisePrecedence(Self
, Opc
, OpLoc
, LHSExpr
, RHSExpr
);
15981 // Diagnose "arg1 & arg2 | arg3"
15982 if ((Opc
== BO_Or
|| Opc
== BO_Xor
) &&
15983 !OpLoc
.isMacroID()/* Don't warn in macros. */) {
15984 DiagnoseBitwiseOpInBitwiseOp(Self
, Opc
, OpLoc
, LHSExpr
);
15985 DiagnoseBitwiseOpInBitwiseOp(Self
, Opc
, OpLoc
, RHSExpr
);
15988 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15989 // We don't warn for 'assert(a || b && "bad")' since this is safe.
15990 if (Opc
== BO_LOr
&& !OpLoc
.isMacroID()/* Don't warn in macros. */) {
15991 DiagnoseLogicalAndInLogicalOrLHS(Self
, OpLoc
, LHSExpr
, RHSExpr
);
15992 DiagnoseLogicalAndInLogicalOrRHS(Self
, OpLoc
, LHSExpr
, RHSExpr
);
15995 if ((Opc
== BO_Shl
&& LHSExpr
->getType()->isIntegralType(Self
.getASTContext()))
15996 || Opc
== BO_Shr
) {
15997 StringRef Shift
= BinaryOperator::getOpcodeStr(Opc
);
15998 DiagnoseAdditionInShift(Self
, OpLoc
, LHSExpr
, Shift
);
15999 DiagnoseAdditionInShift(Self
, OpLoc
, RHSExpr
, Shift
);
16002 // Warn on overloaded shift operators and comparisons, such as:
16004 if (BinaryOperator::isComparisonOp(Opc
))
16005 DiagnoseShiftCompare(Self
, OpLoc
, LHSExpr
, RHSExpr
);
16008 // Binary Operators. 'Tok' is the token for the operator.
16009 ExprResult
Sema::ActOnBinOp(Scope
*S
, SourceLocation TokLoc
,
16010 tok::TokenKind Kind
,
16011 Expr
*LHSExpr
, Expr
*RHSExpr
) {
16012 BinaryOperatorKind Opc
= ConvertTokenKindToBinaryOpcode(Kind
);
16013 assert(LHSExpr
&& "ActOnBinOp(): missing left expression");
16014 assert(RHSExpr
&& "ActOnBinOp(): missing right expression");
16016 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
16017 DiagnoseBinOpPrecedence(*this, Opc
, TokLoc
, LHSExpr
, RHSExpr
);
16019 return BuildBinOp(S
, TokLoc
, Opc
, LHSExpr
, RHSExpr
);
16022 void Sema::LookupBinOp(Scope
*S
, SourceLocation OpLoc
, BinaryOperatorKind Opc
,
16023 UnresolvedSetImpl
&Functions
) {
16024 OverloadedOperatorKind OverOp
= BinaryOperator::getOverloadedOperator(Opc
);
16025 if (OverOp
!= OO_None
&& OverOp
!= OO_Equal
)
16026 LookupOverloadedOperatorName(OverOp
, S
, Functions
);
16028 // In C++20 onwards, we may have a second operator to look up.
16029 if (getLangOpts().CPlusPlus20
) {
16030 if (OverloadedOperatorKind ExtraOp
= getRewrittenOverloadedOperator(OverOp
))
16031 LookupOverloadedOperatorName(ExtraOp
, S
, Functions
);
16035 /// Build an overloaded binary operator expression in the given scope.
16036 static ExprResult
BuildOverloadedBinOp(Sema
&S
, Scope
*Sc
, SourceLocation OpLoc
,
16037 BinaryOperatorKind Opc
,
16038 Expr
*LHS
, Expr
*RHS
) {
16041 // In the non-overloaded case, we warn about self-assignment (x = x) for
16042 // both simple assignment and certain compound assignments where algebra
16043 // tells us the operation yields a constant result. When the operator is
16044 // overloaded, we can't do the latter because we don't want to assume that
16045 // those algebraic identities still apply; for example, a path-building
16046 // library might use operator/= to append paths. But it's still reasonable
16047 // to assume that simple assignment is just moving/copying values around
16048 // and so self-assignment is likely a bug.
16049 DiagnoseSelfAssignment(S
, LHS
, RHS
, OpLoc
, false);
16057 CheckIdentityFieldAssignment(LHS
, RHS
, OpLoc
, S
);
16063 // Find all of the overloaded operators visible from this point.
16064 UnresolvedSet
<16> Functions
;
16065 S
.LookupBinOp(Sc
, OpLoc
, Opc
, Functions
);
16067 // Build the (potentially-overloaded, potentially-dependent)
16068 // binary operation.
16069 return S
.CreateOverloadedBinOp(OpLoc
, Opc
, Functions
, LHS
, RHS
);
16072 ExprResult
Sema::BuildBinOp(Scope
*S
, SourceLocation OpLoc
,
16073 BinaryOperatorKind Opc
,
16074 Expr
*LHSExpr
, Expr
*RHSExpr
) {
16075 ExprResult LHS
, RHS
;
16076 std::tie(LHS
, RHS
) = CorrectDelayedTyposInBinOp(*this, Opc
, LHSExpr
, RHSExpr
);
16077 if (!LHS
.isUsable() || !RHS
.isUsable())
16078 return ExprError();
16079 LHSExpr
= LHS
.get();
16080 RHSExpr
= RHS
.get();
16082 // We want to end up calling one of checkPseudoObjectAssignment
16083 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
16084 // both expressions are overloadable or either is type-dependent),
16085 // or CreateBuiltinBinOp (in any other case). We also want to get
16086 // any placeholder types out of the way.
16088 // Handle pseudo-objects in the LHS.
16089 if (const BuiltinType
*pty
= LHSExpr
->getType()->getAsPlaceholderType()) {
16090 // Assignments with a pseudo-object l-value need special analysis.
16091 if (pty
->getKind() == BuiltinType::PseudoObject
&&
16092 BinaryOperator::isAssignmentOp(Opc
))
16093 return checkPseudoObjectAssignment(S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16095 // Don't resolve overloads if the other type is overloadable.
16096 if (getLangOpts().CPlusPlus
&& pty
->getKind() == BuiltinType::Overload
) {
16097 // We can't actually test that if we still have a placeholder,
16098 // though. Fortunately, none of the exceptions we see in that
16099 // code below are valid when the LHS is an overload set. Note
16100 // that an overload set can be dependently-typed, but it never
16101 // instantiates to having an overloadable type.
16102 ExprResult resolvedRHS
= CheckPlaceholderExpr(RHSExpr
);
16103 if (resolvedRHS
.isInvalid()) return ExprError();
16104 RHSExpr
= resolvedRHS
.get();
16106 if (RHSExpr
->isTypeDependent() ||
16107 RHSExpr
->getType()->isOverloadableType())
16108 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16111 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
16112 // template, diagnose the missing 'template' keyword instead of diagnosing
16113 // an invalid use of a bound member function.
16115 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
16116 // to C++1z [over.over]/1.4, but we already checked for that case above.
16117 if (Opc
== BO_LT
&& inTemplateInstantiation() &&
16118 (pty
->getKind() == BuiltinType::BoundMember
||
16119 pty
->getKind() == BuiltinType::Overload
)) {
16120 auto *OE
= dyn_cast
<OverloadExpr
>(LHSExpr
);
16121 if (OE
&& !OE
->hasTemplateKeyword() && !OE
->hasExplicitTemplateArgs() &&
16122 llvm::any_of(OE
->decls(), [](NamedDecl
*ND
) {
16123 return isa
<FunctionTemplateDecl
>(ND
);
16125 Diag(OE
->getQualifier() ? OE
->getQualifierLoc().getBeginLoc()
16126 : OE
->getNameLoc(),
16127 diag::err_template_kw_missing
)
16128 << OE
->getName().getAsString() << "";
16129 return ExprError();
16133 ExprResult LHS
= CheckPlaceholderExpr(LHSExpr
);
16134 if (LHS
.isInvalid()) return ExprError();
16135 LHSExpr
= LHS
.get();
16138 // Handle pseudo-objects in the RHS.
16139 if (const BuiltinType
*pty
= RHSExpr
->getType()->getAsPlaceholderType()) {
16140 // An overload in the RHS can potentially be resolved by the type
16141 // being assigned to.
16142 if (Opc
== BO_Assign
&& pty
->getKind() == BuiltinType::Overload
) {
16143 if (getLangOpts().CPlusPlus
&&
16144 (LHSExpr
->isTypeDependent() || RHSExpr
->isTypeDependent() ||
16145 LHSExpr
->getType()->isOverloadableType()))
16146 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16148 return CreateBuiltinBinOp(OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16151 // Don't resolve overloads if the other type is overloadable.
16152 if (getLangOpts().CPlusPlus
&& pty
->getKind() == BuiltinType::Overload
&&
16153 LHSExpr
->getType()->isOverloadableType())
16154 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16156 ExprResult resolvedRHS
= CheckPlaceholderExpr(RHSExpr
);
16157 if (!resolvedRHS
.isUsable()) return ExprError();
16158 RHSExpr
= resolvedRHS
.get();
16161 if (getLangOpts().CPlusPlus
) {
16162 // If either expression is type-dependent, always build an
16164 if (LHSExpr
->isTypeDependent() || RHSExpr
->isTypeDependent())
16165 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16167 // Otherwise, build an overloaded op if either expression has an
16168 // overloadable type.
16169 if (LHSExpr
->getType()->isOverloadableType() ||
16170 RHSExpr
->getType()->isOverloadableType())
16171 return BuildOverloadedBinOp(*this, S
, OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16174 if (getLangOpts().RecoveryAST
&&
16175 (LHSExpr
->isTypeDependent() || RHSExpr
->isTypeDependent())) {
16176 assert(!getLangOpts().CPlusPlus
);
16177 assert((LHSExpr
->containsErrors() || RHSExpr
->containsErrors()) &&
16178 "Should only occur in error-recovery path.");
16179 if (BinaryOperator::isCompoundAssignmentOp(Opc
))
16181 // An assignment expression has the value of the left operand after the
16182 // assignment, but is not an lvalue.
16183 return CompoundAssignOperator::Create(
16184 Context
, LHSExpr
, RHSExpr
, Opc
,
16185 LHSExpr
->getType().getUnqualifiedType(), VK_PRValue
, OK_Ordinary
,
16186 OpLoc
, CurFPFeatureOverrides());
16187 QualType ResultType
;
16190 ResultType
= LHSExpr
->getType().getUnqualifiedType();
16200 // These operators have a fixed result type regardless of operands.
16201 ResultType
= Context
.IntTy
;
16204 ResultType
= RHSExpr
->getType();
16207 ResultType
= Context
.DependentTy
;
16210 return BinaryOperator::Create(Context
, LHSExpr
, RHSExpr
, Opc
, ResultType
,
16211 VK_PRValue
, OK_Ordinary
, OpLoc
,
16212 CurFPFeatureOverrides());
16215 // Build a built-in binary operation.
16216 return CreateBuiltinBinOp(OpLoc
, Opc
, LHSExpr
, RHSExpr
);
16219 static bool isOverflowingIntegerType(ASTContext
&Ctx
, QualType T
) {
16220 if (T
.isNull() || T
->isDependentType())
16223 if (!Ctx
.isPromotableIntegerType(T
))
16226 return Ctx
.getIntWidth(T
) >= Ctx
.getIntWidth(Ctx
.IntTy
);
16229 ExprResult
Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc
,
16230 UnaryOperatorKind Opc
, Expr
*InputExpr
,
16232 ExprResult Input
= InputExpr
;
16233 ExprValueKind VK
= VK_PRValue
;
16234 ExprObjectKind OK
= OK_Ordinary
;
16235 QualType resultType
;
16236 bool CanOverflow
= false;
16238 bool ConvertHalfVec
= false;
16239 if (getLangOpts().OpenCL
) {
16240 QualType Ty
= InputExpr
->getType();
16241 // The only legal unary operation for atomics is '&'.
16242 if ((Opc
!= UO_AddrOf
&& Ty
->isAtomicType()) ||
16243 // OpenCL special types - image, sampler, pipe, and blocks are to be used
16244 // only with a builtin functions and therefore should be disallowed here.
16245 (Ty
->isImageType() || Ty
->isSamplerT() || Ty
->isPipeType()
16246 || Ty
->isBlockPointerType())) {
16247 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16248 << InputExpr
->getType()
16249 << Input
.get()->getSourceRange());
16253 if (getLangOpts().HLSL
&& OpLoc
.isValid()) {
16254 if (Opc
== UO_AddrOf
)
16255 return ExprError(Diag(OpLoc
, diag::err_hlsl_operator_unsupported
) << 0);
16256 if (Opc
== UO_Deref
)
16257 return ExprError(Diag(OpLoc
, diag::err_hlsl_operator_unsupported
) << 1);
16265 resultType
= CheckIncrementDecrementOperand(*this, Input
.get(), VK
, OK
,
16267 Opc
== UO_PreInc
||
16269 Opc
== UO_PreInc
||
16271 CanOverflow
= isOverflowingIntegerType(Context
, resultType
);
16274 resultType
= CheckAddressOfOperand(Input
, OpLoc
);
16275 CheckAddressOfNoDeref(InputExpr
);
16276 RecordModifiableNonNullParam(*this, InputExpr
);
16279 Input
= DefaultFunctionArrayLvalueConversion(Input
.get());
16280 if (Input
.isInvalid()) return ExprError();
16282 CheckIndirectionOperand(*this, Input
.get(), VK
, OpLoc
, IsAfterAmp
);
16287 CanOverflow
= Opc
== UO_Minus
&&
16288 isOverflowingIntegerType(Context
, Input
.get()->getType());
16289 Input
= UsualUnaryConversions(Input
.get());
16290 if (Input
.isInvalid()) return ExprError();
16291 // Unary plus and minus require promoting an operand of half vector to a
16292 // float vector and truncating the result back to a half vector. For now, we
16293 // do this only when HalfArgsAndReturns is set (that is, when the target is
16295 ConvertHalfVec
= needsConversionOfHalfVec(true, Context
, Input
.get());
16297 // If the operand is a half vector, promote it to a float vector.
16298 if (ConvertHalfVec
)
16299 Input
= convertVector(Input
.get(), Context
.FloatTy
, *this);
16300 resultType
= Input
.get()->getType();
16301 if (resultType
->isDependentType())
16303 if (resultType
->isArithmeticType()) // C99 6.5.3.3p1
16305 else if (resultType
->isVectorType() &&
16306 // The z vector extensions don't allow + or - with bool vectors.
16307 (!Context
.getLangOpts().ZVector
||
16308 resultType
->castAs
<VectorType
>()->getVectorKind() !=
16309 VectorType::AltiVecBool
))
16311 else if (resultType
->isSveVLSBuiltinType()) // SVE vectors allow + and -
16313 else if (getLangOpts().CPlusPlus
&& // C++ [expr.unary.op]p6
16315 resultType
->isPointerType())
16318 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16319 << resultType
<< Input
.get()->getSourceRange());
16321 case UO_Not
: // bitwise complement
16322 Input
= UsualUnaryConversions(Input
.get());
16323 if (Input
.isInvalid())
16324 return ExprError();
16325 resultType
= Input
.get()->getType();
16326 if (resultType
->isDependentType())
16328 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
16329 if (resultType
->isComplexType() || resultType
->isComplexIntegerType())
16330 // C99 does not support '~' for complex conjugation.
16331 Diag(OpLoc
, diag::ext_integer_complement_complex
)
16332 << resultType
<< Input
.get()->getSourceRange();
16333 else if (resultType
->hasIntegerRepresentation())
16335 else if (resultType
->isExtVectorType() && Context
.getLangOpts().OpenCL
) {
16336 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
16337 // on vector float types.
16338 QualType T
= resultType
->castAs
<ExtVectorType
>()->getElementType();
16339 if (!T
->isIntegerType())
16340 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16341 << resultType
<< Input
.get()->getSourceRange());
16343 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16344 << resultType
<< Input
.get()->getSourceRange());
16348 case UO_LNot
: // logical negation
16349 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
16350 Input
= DefaultFunctionArrayLvalueConversion(Input
.get());
16351 if (Input
.isInvalid()) return ExprError();
16352 resultType
= Input
.get()->getType();
16354 // Though we still have to promote half FP to float...
16355 if (resultType
->isHalfType() && !Context
.getLangOpts().NativeHalfType
) {
16356 Input
= ImpCastExprToType(Input
.get(), Context
.FloatTy
, CK_FloatingCast
).get();
16357 resultType
= Context
.FloatTy
;
16360 // WebAsembly tables can't be used in unary expressions.
16361 if (resultType
->isPointerType() &&
16362 resultType
->getPointeeType().isWebAssemblyReferenceType()) {
16363 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16364 << resultType
<< Input
.get()->getSourceRange());
16367 if (resultType
->isDependentType())
16369 if (resultType
->isScalarType() && !isScopedEnumerationType(resultType
)) {
16370 // C99 6.5.3.3p1: ok, fallthrough;
16371 if (Context
.getLangOpts().CPlusPlus
) {
16372 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
16373 // operand contextually converted to bool.
16374 Input
= ImpCastExprToType(Input
.get(), Context
.BoolTy
,
16375 ScalarTypeToBooleanCastKind(resultType
));
16376 } else if (Context
.getLangOpts().OpenCL
&&
16377 Context
.getLangOpts().OpenCLVersion
< 120) {
16378 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16379 // operate on scalar float types.
16380 if (!resultType
->isIntegerType() && !resultType
->isPointerType())
16381 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16382 << resultType
<< Input
.get()->getSourceRange());
16384 } else if (resultType
->isExtVectorType()) {
16385 if (Context
.getLangOpts().OpenCL
&&
16386 Context
.getLangOpts().getOpenCLCompatibleVersion() < 120) {
16387 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16388 // operate on vector float types.
16389 QualType T
= resultType
->castAs
<ExtVectorType
>()->getElementType();
16390 if (!T
->isIntegerType())
16391 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16392 << resultType
<< Input
.get()->getSourceRange());
16394 // Vector logical not returns the signed variant of the operand type.
16395 resultType
= GetSignedVectorType(resultType
);
16397 } else if (Context
.getLangOpts().CPlusPlus
&& resultType
->isVectorType()) {
16398 const VectorType
*VTy
= resultType
->castAs
<VectorType
>();
16399 if (VTy
->getVectorKind() != VectorType::GenericVector
)
16400 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16401 << resultType
<< Input
.get()->getSourceRange());
16403 // Vector logical not returns the signed variant of the operand type.
16404 resultType
= GetSignedVectorType(resultType
);
16407 return ExprError(Diag(OpLoc
, diag::err_typecheck_unary_expr
)
16408 << resultType
<< Input
.get()->getSourceRange());
16411 // LNot always has type int. C99 6.5.3.3p5.
16412 // In C++, it's bool. C++ 5.3.1p8
16413 resultType
= Context
.getLogicalOperationType();
16417 resultType
= CheckRealImagOperand(*this, Input
, OpLoc
, Opc
== UO_Real
);
16418 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
16419 // complex l-values to ordinary l-values and all other values to r-values.
16420 if (Input
.isInvalid()) return ExprError();
16421 if (Opc
== UO_Real
|| Input
.get()->getType()->isAnyComplexType()) {
16422 if (Input
.get()->isGLValue() &&
16423 Input
.get()->getObjectKind() == OK_Ordinary
)
16424 VK
= Input
.get()->getValueKind();
16425 } else if (!getLangOpts().CPlusPlus
) {
16426 // In C, a volatile scalar is read by __imag. In C++, it is not.
16427 Input
= DefaultLvalueConversion(Input
.get());
16431 resultType
= Input
.get()->getType();
16432 VK
= Input
.get()->getValueKind();
16433 OK
= Input
.get()->getObjectKind();
16436 // It's unnecessary to represent the pass-through operator co_await in the
16437 // AST; just return the input expression instead.
16438 assert(!Input
.get()->getType()->isDependentType() &&
16439 "the co_await expression must be non-dependant before "
16440 "building operator co_await");
16443 if (resultType
.isNull() || Input
.isInvalid())
16444 return ExprError();
16446 // Check for array bounds violations in the operand of the UnaryOperator,
16447 // except for the '*' and '&' operators that have to be handled specially
16448 // by CheckArrayAccess (as there are special cases like &array[arraysize]
16449 // that are explicitly defined as valid by the standard).
16450 if (Opc
!= UO_AddrOf
&& Opc
!= UO_Deref
)
16451 CheckArrayAccess(Input
.get());
16454 UnaryOperator::Create(Context
, Input
.get(), Opc
, resultType
, VK
, OK
,
16455 OpLoc
, CanOverflow
, CurFPFeatureOverrides());
16457 if (Opc
== UO_Deref
&& UO
->getType()->hasAttr(attr::NoDeref
) &&
16458 !isa
<ArrayType
>(UO
->getType().getDesugaredType(Context
)) &&
16459 !isUnevaluatedContext())
16460 ExprEvalContexts
.back().PossibleDerefs
.insert(UO
);
16462 // Convert the result back to a half vector.
16463 if (ConvertHalfVec
)
16464 return convertVector(UO
, Context
.HalfTy
, *this);
16468 /// Determine whether the given expression is a qualified member
16469 /// access expression, of a form that could be turned into a pointer to member
16470 /// with the address-of operator.
16471 bool Sema::isQualifiedMemberAccess(Expr
*E
) {
16472 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
16473 if (!DRE
->getQualifier())
16476 ValueDecl
*VD
= DRE
->getDecl();
16477 if (!VD
->isCXXClassMember())
16480 if (isa
<FieldDecl
>(VD
) || isa
<IndirectFieldDecl
>(VD
))
16482 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(VD
))
16483 return Method
->isInstance();
16488 if (UnresolvedLookupExpr
*ULE
= dyn_cast
<UnresolvedLookupExpr
>(E
)) {
16489 if (!ULE
->getQualifier())
16492 for (NamedDecl
*D
: ULE
->decls()) {
16493 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
16494 if (Method
->isInstance())
16497 // Overload set does not contain methods.
16508 ExprResult
Sema::BuildUnaryOp(Scope
*S
, SourceLocation OpLoc
,
16509 UnaryOperatorKind Opc
, Expr
*Input
,
16511 // First things first: handle placeholders so that the
16512 // overloaded-operator check considers the right type.
16513 if (const BuiltinType
*pty
= Input
->getType()->getAsPlaceholderType()) {
16514 // Increment and decrement of pseudo-object references.
16515 if (pty
->getKind() == BuiltinType::PseudoObject
&&
16516 UnaryOperator::isIncrementDecrementOp(Opc
))
16517 return checkPseudoObjectIncDec(S
, OpLoc
, Opc
, Input
);
16519 // extension is always a builtin operator.
16520 if (Opc
== UO_Extension
)
16521 return CreateBuiltinUnaryOp(OpLoc
, Opc
, Input
);
16523 // & gets special logic for several kinds of placeholder.
16524 // The builtin code knows what to do.
16525 if (Opc
== UO_AddrOf
&&
16526 (pty
->getKind() == BuiltinType::Overload
||
16527 pty
->getKind() == BuiltinType::UnknownAny
||
16528 pty
->getKind() == BuiltinType::BoundMember
))
16529 return CreateBuiltinUnaryOp(OpLoc
, Opc
, Input
);
16531 // Anything else needs to be handled now.
16532 ExprResult Result
= CheckPlaceholderExpr(Input
);
16533 if (Result
.isInvalid()) return ExprError();
16534 Input
= Result
.get();
16537 if (getLangOpts().CPlusPlus
&& Input
->getType()->isOverloadableType() &&
16538 UnaryOperator::getOverloadedOperator(Opc
) != OO_None
&&
16539 !(Opc
== UO_AddrOf
&& isQualifiedMemberAccess(Input
))) {
16540 // Find all of the overloaded operators visible from this point.
16541 UnresolvedSet
<16> Functions
;
16542 OverloadedOperatorKind OverOp
= UnaryOperator::getOverloadedOperator(Opc
);
16543 if (S
&& OverOp
!= OO_None
)
16544 LookupOverloadedOperatorName(OverOp
, S
, Functions
);
16546 return CreateOverloadedUnaryOp(OpLoc
, Opc
, Functions
, Input
);
16549 return CreateBuiltinUnaryOp(OpLoc
, Opc
, Input
, IsAfterAmp
);
16552 // Unary Operators. 'Tok' is the token for the operator.
16553 ExprResult
Sema::ActOnUnaryOp(Scope
*S
, SourceLocation OpLoc
, tok::TokenKind Op
,
16554 Expr
*Input
, bool IsAfterAmp
) {
16555 return BuildUnaryOp(S
, OpLoc
, ConvertTokenKindToUnaryOpcode(Op
), Input
,
16559 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
16560 ExprResult
Sema::ActOnAddrLabel(SourceLocation OpLoc
, SourceLocation LabLoc
,
16561 LabelDecl
*TheDecl
) {
16562 TheDecl
->markUsed(Context
);
16563 // Create the AST node. The address of a label always has type 'void*'.
16564 auto *Res
= new (Context
) AddrLabelExpr(
16565 OpLoc
, LabLoc
, TheDecl
, Context
.getPointerType(Context
.VoidTy
));
16567 if (getCurFunction())
16568 getCurFunction()->AddrLabels
.push_back(Res
);
16573 void Sema::ActOnStartStmtExpr() {
16574 PushExpressionEvaluationContext(ExprEvalContexts
.back().Context
);
16575 // Make sure we diagnose jumping into a statement expression.
16576 setFunctionHasBranchProtectedScope();
16579 void Sema::ActOnStmtExprError() {
16580 // Note that function is also called by TreeTransform when leaving a
16581 // StmtExpr scope without rebuilding anything.
16583 DiscardCleanupsInEvaluationContext();
16584 PopExpressionEvaluationContext();
16587 ExprResult
Sema::ActOnStmtExpr(Scope
*S
, SourceLocation LPLoc
, Stmt
*SubStmt
,
16588 SourceLocation RPLoc
) {
16589 return BuildStmtExpr(LPLoc
, SubStmt
, RPLoc
, getTemplateDepth(S
));
16592 ExprResult
Sema::BuildStmtExpr(SourceLocation LPLoc
, Stmt
*SubStmt
,
16593 SourceLocation RPLoc
, unsigned TemplateDepth
) {
16594 assert(SubStmt
&& isa
<CompoundStmt
>(SubStmt
) && "Invalid action invocation!");
16595 CompoundStmt
*Compound
= cast
<CompoundStmt
>(SubStmt
);
16597 if (hasAnyUnrecoverableErrorsInThisFunction())
16598 DiscardCleanupsInEvaluationContext();
16599 assert(!Cleanup
.exprNeedsCleanups() &&
16600 "cleanups within StmtExpr not correctly bound!");
16601 PopExpressionEvaluationContext();
16603 // FIXME: there are a variety of strange constraints to enforce here, for
16604 // example, it is not possible to goto into a stmt expression apparently.
16605 // More semantic analysis is needed.
16607 // If there are sub-stmts in the compound stmt, take the type of the last one
16608 // as the type of the stmtexpr.
16609 QualType Ty
= Context
.VoidTy
;
16610 bool StmtExprMayBindToTemp
= false;
16611 if (!Compound
->body_empty()) {
16612 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16613 if (const auto *LastStmt
=
16614 dyn_cast
<ValueStmt
>(Compound
->getStmtExprResult())) {
16615 if (const Expr
*Value
= LastStmt
->getExprStmt()) {
16616 StmtExprMayBindToTemp
= true;
16617 Ty
= Value
->getType();
16622 // FIXME: Check that expression type is complete/non-abstract; statement
16623 // expressions are not lvalues.
16624 Expr
*ResStmtExpr
=
16625 new (Context
) StmtExpr(Compound
, Ty
, LPLoc
, RPLoc
, TemplateDepth
);
16626 if (StmtExprMayBindToTemp
)
16627 return MaybeBindToTemporary(ResStmtExpr
);
16628 return ResStmtExpr
;
16631 ExprResult
Sema::ActOnStmtExprResult(ExprResult ER
) {
16632 if (ER
.isInvalid())
16633 return ExprError();
16635 // Do function/array conversion on the last expression, but not
16636 // lvalue-to-rvalue. However, initialize an unqualified type.
16637 ER
= DefaultFunctionArrayConversion(ER
.get());
16638 if (ER
.isInvalid())
16639 return ExprError();
16640 Expr
*E
= ER
.get();
16642 if (E
->isTypeDependent())
16645 // In ARC, if the final expression ends in a consume, splice
16646 // the consume out and bind it later. In the alternate case
16647 // (when dealing with a retainable type), the result
16648 // initialization will create a produce. In both cases the
16649 // result will be +1, and we'll need to balance that out with
16651 auto *Cast
= dyn_cast
<ImplicitCastExpr
>(E
);
16652 if (Cast
&& Cast
->getCastKind() == CK_ARCConsumeObject
)
16653 return Cast
->getSubExpr();
16655 // FIXME: Provide a better location for the initialization.
16656 return PerformCopyInitialization(
16657 InitializedEntity::InitializeStmtExprResult(
16658 E
->getBeginLoc(), E
->getType().getUnqualifiedType()),
16659 SourceLocation(), E
);
16662 ExprResult
Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc
,
16663 TypeSourceInfo
*TInfo
,
16664 ArrayRef
<OffsetOfComponent
> Components
,
16665 SourceLocation RParenLoc
) {
16666 QualType ArgTy
= TInfo
->getType();
16667 bool Dependent
= ArgTy
->isDependentType();
16668 SourceRange TypeRange
= TInfo
->getTypeLoc().getLocalSourceRange();
16670 // We must have at least one component that refers to the type, and the first
16671 // one is known to be a field designator. Verify that the ArgTy represents
16672 // a struct/union/class.
16673 if (!Dependent
&& !ArgTy
->isRecordType())
16674 return ExprError(Diag(BuiltinLoc
, diag::err_offsetof_record_type
)
16675 << ArgTy
<< TypeRange
);
16677 // Type must be complete per C99 7.17p3 because a declaring a variable
16678 // with an incomplete type would be ill-formed.
16680 && RequireCompleteType(BuiltinLoc
, ArgTy
,
16681 diag::err_offsetof_incomplete_type
, TypeRange
))
16682 return ExprError();
16684 bool DidWarnAboutNonPOD
= false;
16685 QualType CurrentType
= ArgTy
;
16686 SmallVector
<OffsetOfNode
, 4> Comps
;
16687 SmallVector
<Expr
*, 4> Exprs
;
16688 for (const OffsetOfComponent
&OC
: Components
) {
16689 if (OC
.isBrackets
) {
16690 // Offset of an array sub-field. TODO: Should we allow vector elements?
16691 if (!CurrentType
->isDependentType()) {
16692 const ArrayType
*AT
= Context
.getAsArrayType(CurrentType
);
16694 return ExprError(Diag(OC
.LocEnd
, diag::err_offsetof_array_type
)
16696 CurrentType
= AT
->getElementType();
16698 CurrentType
= Context
.DependentTy
;
16700 ExprResult IdxRval
= DefaultLvalueConversion(static_cast<Expr
*>(OC
.U
.E
));
16701 if (IdxRval
.isInvalid())
16702 return ExprError();
16703 Expr
*Idx
= IdxRval
.get();
16705 // The expression must be an integral expression.
16706 // FIXME: An integral constant expression?
16707 if (!Idx
->isTypeDependent() && !Idx
->isValueDependent() &&
16708 !Idx
->getType()->isIntegerType())
16710 Diag(Idx
->getBeginLoc(), diag::err_typecheck_subscript_not_integer
)
16711 << Idx
->getSourceRange());
16713 // Record this array index.
16714 Comps
.push_back(OffsetOfNode(OC
.LocStart
, Exprs
.size(), OC
.LocEnd
));
16715 Exprs
.push_back(Idx
);
16719 // Offset of a field.
16720 if (CurrentType
->isDependentType()) {
16721 // We have the offset of a field, but we can't look into the dependent
16722 // type. Just record the identifier of the field.
16723 Comps
.push_back(OffsetOfNode(OC
.LocStart
, OC
.U
.IdentInfo
, OC
.LocEnd
));
16724 CurrentType
= Context
.DependentTy
;
16728 // We need to have a complete type to look into.
16729 if (RequireCompleteType(OC
.LocStart
, CurrentType
,
16730 diag::err_offsetof_incomplete_type
))
16731 return ExprError();
16733 // Look for the designated field.
16734 const RecordType
*RC
= CurrentType
->getAs
<RecordType
>();
16736 return ExprError(Diag(OC
.LocEnd
, diag::err_offsetof_record_type
)
16738 RecordDecl
*RD
= RC
->getDecl();
16740 // C++ [lib.support.types]p5:
16741 // The macro offsetof accepts a restricted set of type arguments in this
16742 // International Standard. type shall be a POD structure or a POD union
16744 // C++11 [support.types]p4:
16745 // If type is not a standard-layout class (Clause 9), the results are
16747 if (CXXRecordDecl
*CRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
16748 bool IsSafe
= LangOpts
.CPlusPlus11
? CRD
->isStandardLayout() : CRD
->isPOD();
16750 LangOpts
.CPlusPlus11
? diag::ext_offsetof_non_standardlayout_type
16751 : diag::ext_offsetof_non_pod_type
;
16753 if (!IsSafe
&& !DidWarnAboutNonPOD
&&
16754 DiagRuntimeBehavior(BuiltinLoc
, nullptr,
16756 << SourceRange(Components
[0].LocStart
, OC
.LocEnd
)
16758 DidWarnAboutNonPOD
= true;
16761 // Look for the field.
16762 LookupResult
R(*this, OC
.U
.IdentInfo
, OC
.LocStart
, LookupMemberName
);
16763 LookupQualifiedName(R
, RD
);
16764 FieldDecl
*MemberDecl
= R
.getAsSingle
<FieldDecl
>();
16765 IndirectFieldDecl
*IndirectMemberDecl
= nullptr;
16767 if ((IndirectMemberDecl
= R
.getAsSingle
<IndirectFieldDecl
>()))
16768 MemberDecl
= IndirectMemberDecl
->getAnonField();
16772 // Lookup could be ambiguous when looking up a placeholder variable
16773 // __builtin_offsetof(S, _).
16774 // In that case we would already have emitted a diagnostic
16775 if (!R
.isAmbiguous())
16776 Diag(BuiltinLoc
, diag::err_no_member
)
16777 << OC
.U
.IdentInfo
<< RD
<< SourceRange(OC
.LocStart
, OC
.LocEnd
);
16778 return ExprError();
16782 // (If the specified member is a bit-field, the behavior is undefined.)
16784 // We diagnose this as an error.
16785 if (MemberDecl
->isBitField()) {
16786 Diag(OC
.LocEnd
, diag::err_offsetof_bitfield
)
16787 << MemberDecl
->getDeclName()
16788 << SourceRange(BuiltinLoc
, RParenLoc
);
16789 Diag(MemberDecl
->getLocation(), diag::note_bitfield_decl
);
16790 return ExprError();
16793 RecordDecl
*Parent
= MemberDecl
->getParent();
16794 if (IndirectMemberDecl
)
16795 Parent
= cast
<RecordDecl
>(IndirectMemberDecl
->getDeclContext());
16797 // If the member was found in a base class, introduce OffsetOfNodes for
16798 // the base class indirections.
16799 CXXBasePaths Paths
;
16800 if (IsDerivedFrom(OC
.LocStart
, CurrentType
, Context
.getTypeDeclType(Parent
),
16802 if (Paths
.getDetectedVirtual()) {
16803 Diag(OC
.LocEnd
, diag::err_offsetof_field_of_virtual_base
)
16804 << MemberDecl
->getDeclName()
16805 << SourceRange(BuiltinLoc
, RParenLoc
);
16806 return ExprError();
16809 CXXBasePath
&Path
= Paths
.front();
16810 for (const CXXBasePathElement
&B
: Path
)
16811 Comps
.push_back(OffsetOfNode(B
.Base
));
16814 if (IndirectMemberDecl
) {
16815 for (auto *FI
: IndirectMemberDecl
->chain()) {
16816 assert(isa
<FieldDecl
>(FI
));
16817 Comps
.push_back(OffsetOfNode(OC
.LocStart
,
16818 cast
<FieldDecl
>(FI
), OC
.LocEnd
));
16821 Comps
.push_back(OffsetOfNode(OC
.LocStart
, MemberDecl
, OC
.LocEnd
));
16823 CurrentType
= MemberDecl
->getType().getNonReferenceType();
16826 return OffsetOfExpr::Create(Context
, Context
.getSizeType(), BuiltinLoc
, TInfo
,
16827 Comps
, Exprs
, RParenLoc
);
16830 ExprResult
Sema::ActOnBuiltinOffsetOf(Scope
*S
,
16831 SourceLocation BuiltinLoc
,
16832 SourceLocation TypeLoc
,
16833 ParsedType ParsedArgTy
,
16834 ArrayRef
<OffsetOfComponent
> Components
,
16835 SourceLocation RParenLoc
) {
16837 TypeSourceInfo
*ArgTInfo
;
16838 QualType ArgTy
= GetTypeFromParser(ParsedArgTy
, &ArgTInfo
);
16839 if (ArgTy
.isNull())
16840 return ExprError();
16843 ArgTInfo
= Context
.getTrivialTypeSourceInfo(ArgTy
, TypeLoc
);
16845 return BuildBuiltinOffsetOf(BuiltinLoc
, ArgTInfo
, Components
, RParenLoc
);
16849 ExprResult
Sema::ActOnChooseExpr(SourceLocation BuiltinLoc
,
16851 Expr
*LHSExpr
, Expr
*RHSExpr
,
16852 SourceLocation RPLoc
) {
16853 assert((CondExpr
&& LHSExpr
&& RHSExpr
) && "Missing type argument(s)");
16855 ExprValueKind VK
= VK_PRValue
;
16856 ExprObjectKind OK
= OK_Ordinary
;
16858 bool CondIsTrue
= false;
16859 if (CondExpr
->isTypeDependent() || CondExpr
->isValueDependent()) {
16860 resType
= Context
.DependentTy
;
16862 // The conditional expression is required to be a constant expression.
16863 llvm::APSInt
condEval(32);
16864 ExprResult CondICE
= VerifyIntegerConstantExpression(
16865 CondExpr
, &condEval
, diag::err_typecheck_choose_expr_requires_constant
);
16866 if (CondICE
.isInvalid())
16867 return ExprError();
16868 CondExpr
= CondICE
.get();
16869 CondIsTrue
= condEval
.getZExtValue();
16871 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16872 Expr
*ActiveExpr
= CondIsTrue
? LHSExpr
: RHSExpr
;
16874 resType
= ActiveExpr
->getType();
16875 VK
= ActiveExpr
->getValueKind();
16876 OK
= ActiveExpr
->getObjectKind();
16879 return new (Context
) ChooseExpr(BuiltinLoc
, CondExpr
, LHSExpr
, RHSExpr
,
16880 resType
, VK
, OK
, RPLoc
, CondIsTrue
);
16883 //===----------------------------------------------------------------------===//
16884 // Clang Extensions.
16885 //===----------------------------------------------------------------------===//
16887 /// ActOnBlockStart - This callback is invoked when a block literal is started.
16888 void Sema::ActOnBlockStart(SourceLocation CaretLoc
, Scope
*CurScope
) {
16889 BlockDecl
*Block
= BlockDecl::Create(Context
, CurContext
, CaretLoc
);
16891 if (LangOpts
.CPlusPlus
) {
16892 MangleNumberingContext
*MCtx
;
16893 Decl
*ManglingContextDecl
;
16894 std::tie(MCtx
, ManglingContextDecl
) =
16895 getCurrentMangleNumberContext(Block
->getDeclContext());
16897 unsigned ManglingNumber
= MCtx
->getManglingNumber(Block
);
16898 Block
->setBlockMangling(ManglingNumber
, ManglingContextDecl
);
16902 PushBlockScope(CurScope
, Block
);
16903 CurContext
->addDecl(Block
);
16905 PushDeclContext(CurScope
, Block
);
16907 CurContext
= Block
;
16909 getCurBlock()->HasImplicitReturnType
= true;
16911 // Enter a new evaluation context to insulate the block from any
16912 // cleanups from the enclosing full-expression.
16913 PushExpressionEvaluationContext(
16914 ExpressionEvaluationContext::PotentiallyEvaluated
);
16917 void Sema::ActOnBlockArguments(SourceLocation CaretLoc
, Declarator
&ParamInfo
,
16919 assert(ParamInfo
.getIdentifier() == nullptr &&
16920 "block-id should have no identifier!");
16921 assert(ParamInfo
.getContext() == DeclaratorContext::BlockLiteral
);
16922 BlockScopeInfo
*CurBlock
= getCurBlock();
16924 TypeSourceInfo
*Sig
= GetTypeForDeclarator(ParamInfo
, CurScope
);
16925 QualType T
= Sig
->getType();
16927 // FIXME: We should allow unexpanded parameter packs here, but that would,
16928 // in turn, make the block expression contain unexpanded parameter packs.
16929 if (DiagnoseUnexpandedParameterPack(CaretLoc
, Sig
, UPPC_Block
)) {
16930 // Drop the parameters.
16931 FunctionProtoType::ExtProtoInfo EPI
;
16932 EPI
.HasTrailingReturn
= false;
16933 EPI
.TypeQuals
.addConst();
16934 T
= Context
.getFunctionType(Context
.DependentTy
, std::nullopt
, EPI
);
16935 Sig
= Context
.getTrivialTypeSourceInfo(T
);
16938 // GetTypeForDeclarator always produces a function type for a block
16939 // literal signature. Furthermore, it is always a FunctionProtoType
16940 // unless the function was written with a typedef.
16941 assert(T
->isFunctionType() &&
16942 "GetTypeForDeclarator made a non-function block signature");
16944 // Look for an explicit signature in that function type.
16945 FunctionProtoTypeLoc ExplicitSignature
;
16947 if ((ExplicitSignature
= Sig
->getTypeLoc()
16948 .getAsAdjusted
<FunctionProtoTypeLoc
>())) {
16950 // Check whether that explicit signature was synthesized by
16951 // GetTypeForDeclarator. If so, don't save that as part of the
16952 // written signature.
16953 if (ExplicitSignature
.getLocalRangeBegin() ==
16954 ExplicitSignature
.getLocalRangeEnd()) {
16955 // This would be much cheaper if we stored TypeLocs instead of
16956 // TypeSourceInfos.
16957 TypeLoc Result
= ExplicitSignature
.getReturnLoc();
16958 unsigned Size
= Result
.getFullDataSize();
16959 Sig
= Context
.CreateTypeSourceInfo(Result
.getType(), Size
);
16960 Sig
->getTypeLoc().initializeFullCopy(Result
, Size
);
16962 ExplicitSignature
= FunctionProtoTypeLoc();
16966 CurBlock
->TheDecl
->setSignatureAsWritten(Sig
);
16967 CurBlock
->FunctionType
= T
;
16969 const auto *Fn
= T
->castAs
<FunctionType
>();
16970 QualType RetTy
= Fn
->getReturnType();
16972 (isa
<FunctionProtoType
>(Fn
) && cast
<FunctionProtoType
>(Fn
)->isVariadic());
16974 CurBlock
->TheDecl
->setIsVariadic(isVariadic
);
16976 // Context.DependentTy is used as a placeholder for a missing block
16977 // return type. TODO: what should we do with declarators like:
16979 // If the answer is "apply template argument deduction"....
16980 if (RetTy
!= Context
.DependentTy
) {
16981 CurBlock
->ReturnType
= RetTy
;
16982 CurBlock
->TheDecl
->setBlockMissingReturnType(false);
16983 CurBlock
->HasImplicitReturnType
= false;
16986 // Push block parameters from the declarator if we had them.
16987 SmallVector
<ParmVarDecl
*, 8> Params
;
16988 if (ExplicitSignature
) {
16989 for (unsigned I
= 0, E
= ExplicitSignature
.getNumParams(); I
!= E
; ++I
) {
16990 ParmVarDecl
*Param
= ExplicitSignature
.getParam(I
);
16991 if (Param
->getIdentifier() == nullptr && !Param
->isImplicit() &&
16992 !Param
->isInvalidDecl() && !getLangOpts().CPlusPlus
) {
16993 // Diagnose this as an extension in C17 and earlier.
16994 if (!getLangOpts().C23
)
16995 Diag(Param
->getLocation(), diag::ext_parameter_name_omitted_c23
);
16997 Params
.push_back(Param
);
17000 // Fake up parameter variables if we have a typedef, like
17001 // ^ fntype { ... }
17002 } else if (const FunctionProtoType
*Fn
= T
->getAs
<FunctionProtoType
>()) {
17003 for (const auto &I
: Fn
->param_types()) {
17004 ParmVarDecl
*Param
= BuildParmVarDeclForTypedef(
17005 CurBlock
->TheDecl
, ParamInfo
.getBeginLoc(), I
);
17006 Params
.push_back(Param
);
17010 // Set the parameters on the block decl.
17011 if (!Params
.empty()) {
17012 CurBlock
->TheDecl
->setParams(Params
);
17013 CheckParmsForFunctionDef(CurBlock
->TheDecl
->parameters(),
17014 /*CheckParameterNames=*/false);
17017 // Finally we can process decl attributes.
17018 ProcessDeclAttributes(CurScope
, CurBlock
->TheDecl
, ParamInfo
);
17020 // Put the parameter variables in scope.
17021 for (auto *AI
: CurBlock
->TheDecl
->parameters()) {
17022 AI
->setOwningFunction(CurBlock
->TheDecl
);
17024 // If this has an identifier, add it to the scope stack.
17025 if (AI
->getIdentifier()) {
17026 CheckShadow(CurBlock
->TheScope
, AI
);
17028 PushOnScopeChains(AI
, CurBlock
->TheScope
);
17031 if (AI
->isInvalidDecl())
17032 CurBlock
->TheDecl
->setInvalidDecl();
17036 /// ActOnBlockError - If there is an error parsing a block, this callback
17037 /// is invoked to pop the information about the block from the action impl.
17038 void Sema::ActOnBlockError(SourceLocation CaretLoc
, Scope
*CurScope
) {
17039 // Leave the expression-evaluation context.
17040 DiscardCleanupsInEvaluationContext();
17041 PopExpressionEvaluationContext();
17043 // Pop off CurBlock, handle nested blocks.
17045 PopFunctionScopeInfo();
17048 /// ActOnBlockStmtExpr - This is called when the body of a block statement
17049 /// literal was successfully completed. ^(int x){...}
17050 ExprResult
Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc
,
17051 Stmt
*Body
, Scope
*CurScope
) {
17052 // If blocks are disabled, emit an error.
17053 if (!LangOpts
.Blocks
)
17054 Diag(CaretLoc
, diag::err_blocks_disable
) << LangOpts
.OpenCL
;
17056 // Leave the expression-evaluation context.
17057 if (hasAnyUnrecoverableErrorsInThisFunction())
17058 DiscardCleanupsInEvaluationContext();
17059 assert(!Cleanup
.exprNeedsCleanups() &&
17060 "cleanups within block not correctly bound!");
17061 PopExpressionEvaluationContext();
17063 BlockScopeInfo
*BSI
= cast
<BlockScopeInfo
>(FunctionScopes
.back());
17064 BlockDecl
*BD
= BSI
->TheDecl
;
17066 if (BSI
->HasImplicitReturnType
)
17067 deduceClosureReturnType(*BSI
);
17069 QualType RetTy
= Context
.VoidTy
;
17070 if (!BSI
->ReturnType
.isNull())
17071 RetTy
= BSI
->ReturnType
;
17073 bool NoReturn
= BD
->hasAttr
<NoReturnAttr
>();
17076 // If the user wrote a function type in some form, try to use that.
17077 if (!BSI
->FunctionType
.isNull()) {
17078 const FunctionType
*FTy
= BSI
->FunctionType
->castAs
<FunctionType
>();
17080 FunctionType::ExtInfo Ext
= FTy
->getExtInfo();
17081 if (NoReturn
&& !Ext
.getNoReturn()) Ext
= Ext
.withNoReturn(true);
17083 // Turn protoless block types into nullary block types.
17084 if (isa
<FunctionNoProtoType
>(FTy
)) {
17085 FunctionProtoType::ExtProtoInfo EPI
;
17087 BlockTy
= Context
.getFunctionType(RetTy
, std::nullopt
, EPI
);
17089 // Otherwise, if we don't need to change anything about the function type,
17090 // preserve its sugar structure.
17091 } else if (FTy
->getReturnType() == RetTy
&&
17092 (!NoReturn
|| FTy
->getNoReturnAttr())) {
17093 BlockTy
= BSI
->FunctionType
;
17095 // Otherwise, make the minimal modifications to the function type.
17097 const FunctionProtoType
*FPT
= cast
<FunctionProtoType
>(FTy
);
17098 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
17099 EPI
.TypeQuals
= Qualifiers();
17101 BlockTy
= Context
.getFunctionType(RetTy
, FPT
->getParamTypes(), EPI
);
17104 // If we don't have a function type, just build one from nothing.
17106 FunctionProtoType::ExtProtoInfo EPI
;
17107 EPI
.ExtInfo
= FunctionType::ExtInfo().withNoReturn(NoReturn
);
17108 BlockTy
= Context
.getFunctionType(RetTy
, std::nullopt
, EPI
);
17111 DiagnoseUnusedParameters(BD
->parameters());
17112 BlockTy
= Context
.getBlockPointerType(BlockTy
);
17114 // If needed, diagnose invalid gotos and switches in the block.
17115 if (getCurFunction()->NeedsScopeChecking() &&
17116 !PP
.isCodeCompletionEnabled())
17117 DiagnoseInvalidJumps(cast
<CompoundStmt
>(Body
));
17119 BD
->setBody(cast
<CompoundStmt
>(Body
));
17121 if (Body
&& getCurFunction()->HasPotentialAvailabilityViolations
)
17122 DiagnoseUnguardedAvailabilityViolations(BD
);
17124 // Try to apply the named return value optimization. We have to check again
17125 // if we can do this, though, because blocks keep return statements around
17126 // to deduce an implicit return type.
17127 if (getLangOpts().CPlusPlus
&& RetTy
->isRecordType() &&
17128 !BD
->isDependentContext())
17129 computeNRVO(Body
, BSI
);
17131 if (RetTy
.hasNonTrivialToPrimitiveDestructCUnion() ||
17132 RetTy
.hasNonTrivialToPrimitiveCopyCUnion())
17133 checkNonTrivialCUnion(RetTy
, BD
->getCaretLocation(), NTCUC_FunctionReturn
,
17134 NTCUK_Destruct
|NTCUK_Copy
);
17138 // Set the captured variables on the block.
17139 SmallVector
<BlockDecl::Capture
, 4> Captures
;
17140 for (Capture
&Cap
: BSI
->Captures
) {
17141 if (Cap
.isInvalid() || Cap
.isThisCapture())
17143 // Cap.getVariable() is always a VarDecl because
17144 // blocks cannot capture structured bindings or other ValueDecl kinds.
17145 auto *Var
= cast
<VarDecl
>(Cap
.getVariable());
17146 Expr
*CopyExpr
= nullptr;
17147 if (getLangOpts().CPlusPlus
&& Cap
.isCopyCapture()) {
17148 if (const RecordType
*Record
=
17149 Cap
.getCaptureType()->getAs
<RecordType
>()) {
17150 // The capture logic needs the destructor, so make sure we mark it.
17151 // Usually this is unnecessary because most local variables have
17152 // their destructors marked at declaration time, but parameters are
17153 // an exception because it's technically only the call site that
17154 // actually requires the destructor.
17155 if (isa
<ParmVarDecl
>(Var
))
17156 FinalizeVarWithDestructor(Var
, Record
);
17158 // Enter a separate potentially-evaluated context while building block
17159 // initializers to isolate their cleanups from those of the block
17161 // FIXME: Is this appropriate even when the block itself occurs in an
17162 // unevaluated operand?
17163 EnterExpressionEvaluationContext
EvalContext(
17164 *this, ExpressionEvaluationContext::PotentiallyEvaluated
);
17166 SourceLocation Loc
= Cap
.getLocation();
17168 ExprResult Result
= BuildDeclarationNameExpr(
17169 CXXScopeSpec(), DeclarationNameInfo(Var
->getDeclName(), Loc
), Var
);
17171 // According to the blocks spec, the capture of a variable from
17172 // the stack requires a const copy constructor. This is not true
17173 // of the copy/move done to move a __block variable to the heap.
17174 if (!Result
.isInvalid() &&
17175 !Result
.get()->getType().isConstQualified()) {
17176 Result
= ImpCastExprToType(Result
.get(),
17177 Result
.get()->getType().withConst(),
17178 CK_NoOp
, VK_LValue
);
17181 if (!Result
.isInvalid()) {
17182 Result
= PerformCopyInitialization(
17183 InitializedEntity::InitializeBlock(Var
->getLocation(),
17184 Cap
.getCaptureType()),
17185 Loc
, Result
.get());
17188 // Build a full-expression copy expression if initialization
17189 // succeeded and used a non-trivial constructor. Recover from
17190 // errors by pretending that the copy isn't necessary.
17191 if (!Result
.isInvalid() &&
17192 !cast
<CXXConstructExpr
>(Result
.get())->getConstructor()
17194 Result
= MaybeCreateExprWithCleanups(Result
);
17195 CopyExpr
= Result
.get();
17200 BlockDecl::Capture
NewCap(Var
, Cap
.isBlockCapture(), Cap
.isNested(),
17202 Captures
.push_back(NewCap
);
17204 BD
->setCaptures(Context
, Captures
, BSI
->CXXThisCaptureIndex
!= 0);
17206 // Pop the block scope now but keep it alive to the end of this function.
17207 AnalysisBasedWarnings::Policy WP
= AnalysisWarnings
.getDefaultPolicy();
17208 PoppedFunctionScopePtr ScopeRAII
= PopFunctionScopeInfo(&WP
, BD
, BlockTy
);
17210 BlockExpr
*Result
= new (Context
) BlockExpr(BD
, BlockTy
);
17212 // If the block isn't obviously global, i.e. it captures anything at
17213 // all, then we need to do a few things in the surrounding context:
17214 if (Result
->getBlockDecl()->hasCaptures()) {
17215 // First, this expression has a new cleanup object.
17216 ExprCleanupObjects
.push_back(Result
->getBlockDecl());
17217 Cleanup
.setExprNeedsCleanups(true);
17219 // It also gets a branch-protected scope if any of the captured
17220 // variables needs destruction.
17221 for (const auto &CI
: Result
->getBlockDecl()->captures()) {
17222 const VarDecl
*var
= CI
.getVariable();
17223 if (var
->getType().isDestructedType() != QualType::DK_none
) {
17224 setFunctionHasBranchProtectedScope();
17230 if (getCurFunction())
17231 getCurFunction()->addBlock(BD
);
17233 if (BD
->isInvalidDecl())
17234 return CreateRecoveryExpr(Result
->getBeginLoc(), Result
->getEndLoc(),
17235 {Result
}, Result
->getType());
17239 ExprResult
Sema::ActOnVAArg(SourceLocation BuiltinLoc
, Expr
*E
, ParsedType Ty
,
17240 SourceLocation RPLoc
) {
17241 TypeSourceInfo
*TInfo
;
17242 GetTypeFromParser(Ty
, &TInfo
);
17243 return BuildVAArgExpr(BuiltinLoc
, E
, TInfo
, RPLoc
);
17246 ExprResult
Sema::BuildVAArgExpr(SourceLocation BuiltinLoc
,
17247 Expr
*E
, TypeSourceInfo
*TInfo
,
17248 SourceLocation RPLoc
) {
17249 Expr
*OrigExpr
= E
;
17252 // CUDA device code does not support varargs.
17253 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
) {
17254 if (const FunctionDecl
*F
= dyn_cast
<FunctionDecl
>(CurContext
)) {
17255 CUDAFunctionTarget T
= IdentifyCUDATarget(F
);
17256 if (T
== CFT_Global
|| T
== CFT_Device
|| T
== CFT_HostDevice
)
17257 return ExprError(Diag(E
->getBeginLoc(), diag::err_va_arg_in_device
));
17261 // NVPTX does not support va_arg expression.
17262 if (getLangOpts().OpenMP
&& getLangOpts().OpenMPIsTargetDevice
&&
17263 Context
.getTargetInfo().getTriple().isNVPTX())
17264 targetDiag(E
->getBeginLoc(), diag::err_va_arg_in_device
);
17266 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
17267 // as Microsoft ABI on an actual Microsoft platform, where
17268 // __builtin_ms_va_list and __builtin_va_list are the same.)
17269 if (!E
->isTypeDependent() && Context
.getTargetInfo().hasBuiltinMSVaList() &&
17270 Context
.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList
) {
17271 QualType MSVaListType
= Context
.getBuiltinMSVaListType();
17272 if (Context
.hasSameType(MSVaListType
, E
->getType())) {
17273 if (CheckForModifiableLvalue(E
, BuiltinLoc
, *this))
17274 return ExprError();
17279 // Get the va_list type
17280 QualType VaListType
= Context
.getBuiltinVaListType();
17282 if (VaListType
->isArrayType()) {
17283 // Deal with implicit array decay; for example, on x86-64,
17284 // va_list is an array, but it's supposed to decay to
17285 // a pointer for va_arg.
17286 VaListType
= Context
.getArrayDecayedType(VaListType
);
17287 // Make sure the input expression also decays appropriately.
17288 ExprResult Result
= UsualUnaryConversions(E
);
17289 if (Result
.isInvalid())
17290 return ExprError();
17292 } else if (VaListType
->isRecordType() && getLangOpts().CPlusPlus
) {
17293 // If va_list is a record type and we are compiling in C++ mode,
17294 // check the argument using reference binding.
17295 InitializedEntity Entity
= InitializedEntity::InitializeParameter(
17296 Context
, Context
.getLValueReferenceType(VaListType
), false);
17297 ExprResult Init
= PerformCopyInitialization(Entity
, SourceLocation(), E
);
17298 if (Init
.isInvalid())
17299 return ExprError();
17300 E
= Init
.getAs
<Expr
>();
17302 // Otherwise, the va_list argument must be an l-value because
17303 // it is modified by va_arg.
17304 if (!E
->isTypeDependent() &&
17305 CheckForModifiableLvalue(E
, BuiltinLoc
, *this))
17306 return ExprError();
17310 if (!IsMS
&& !E
->isTypeDependent() &&
17311 !Context
.hasSameType(VaListType
, E
->getType()))
17313 Diag(E
->getBeginLoc(),
17314 diag::err_first_argument_to_va_arg_not_of_type_va_list
)
17315 << OrigExpr
->getType() << E
->getSourceRange());
17317 if (!TInfo
->getType()->isDependentType()) {
17318 if (RequireCompleteType(TInfo
->getTypeLoc().getBeginLoc(), TInfo
->getType(),
17319 diag::err_second_parameter_to_va_arg_incomplete
,
17320 TInfo
->getTypeLoc()))
17321 return ExprError();
17323 if (RequireNonAbstractType(TInfo
->getTypeLoc().getBeginLoc(),
17325 diag::err_second_parameter_to_va_arg_abstract
,
17326 TInfo
->getTypeLoc()))
17327 return ExprError();
17329 if (!TInfo
->getType().isPODType(Context
)) {
17330 Diag(TInfo
->getTypeLoc().getBeginLoc(),
17331 TInfo
->getType()->isObjCLifetimeType()
17332 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
17333 : diag::warn_second_parameter_to_va_arg_not_pod
)
17334 << TInfo
->getType()
17335 << TInfo
->getTypeLoc().getSourceRange();
17338 // Check for va_arg where arguments of the given type will be promoted
17339 // (i.e. this va_arg is guaranteed to have undefined behavior).
17340 QualType PromoteType
;
17341 if (Context
.isPromotableIntegerType(TInfo
->getType())) {
17342 PromoteType
= Context
.getPromotedIntegerType(TInfo
->getType());
17343 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
17344 // and C23 7.16.1.1p2 says, in part:
17345 // If type is not compatible with the type of the actual next argument
17346 // (as promoted according to the default argument promotions), the
17347 // behavior is undefined, except for the following cases:
17348 // - both types are pointers to qualified or unqualified versions of
17349 // compatible types;
17350 // - one type is compatible with a signed integer type, the other
17351 // type is compatible with the corresponding unsigned integer type,
17352 // and the value is representable in both types;
17353 // - one type is pointer to qualified or unqualified void and the
17354 // other is a pointer to a qualified or unqualified character type;
17355 // - or, the type of the next argument is nullptr_t and type is a
17356 // pointer type that has the same representation and alignment
17357 // requirements as a pointer to a character type.
17358 // Given that type compatibility is the primary requirement (ignoring
17359 // qualifications), you would think we could call typesAreCompatible()
17360 // directly to test this. However, in C++, that checks for *same type*,
17361 // which causes false positives when passing an enumeration type to
17362 // va_arg. Instead, get the underlying type of the enumeration and pass
17364 QualType UnderlyingType
= TInfo
->getType();
17365 if (const auto *ET
= UnderlyingType
->getAs
<EnumType
>())
17366 UnderlyingType
= ET
->getDecl()->getIntegerType();
17367 if (Context
.typesAreCompatible(PromoteType
, UnderlyingType
,
17368 /*CompareUnqualified*/ true))
17369 PromoteType
= QualType();
17371 // If the types are still not compatible, we need to test whether the
17372 // promoted type and the underlying type are the same except for
17373 // signedness. Ask the AST for the correctly corresponding type and see
17374 // if that's compatible.
17375 if (!PromoteType
.isNull() && !UnderlyingType
->isBooleanType() &&
17376 PromoteType
->isUnsignedIntegerType() !=
17377 UnderlyingType
->isUnsignedIntegerType()) {
17379 UnderlyingType
->isUnsignedIntegerType()
17380 ? Context
.getCorrespondingSignedType(UnderlyingType
)
17381 : Context
.getCorrespondingUnsignedType(UnderlyingType
);
17382 if (Context
.typesAreCompatible(PromoteType
, UnderlyingType
,
17383 /*CompareUnqualified*/ true))
17384 PromoteType
= QualType();
17387 if (TInfo
->getType()->isSpecificBuiltinType(BuiltinType::Float
))
17388 PromoteType
= Context
.DoubleTy
;
17389 if (!PromoteType
.isNull())
17390 DiagRuntimeBehavior(TInfo
->getTypeLoc().getBeginLoc(), E
,
17391 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible
)
17392 << TInfo
->getType()
17394 << TInfo
->getTypeLoc().getSourceRange());
17397 QualType T
= TInfo
->getType().getNonLValueExprType(Context
);
17398 return new (Context
) VAArgExpr(BuiltinLoc
, E
, TInfo
, RPLoc
, T
, IsMS
);
17401 ExprResult
Sema::ActOnGNUNullExpr(SourceLocation TokenLoc
) {
17402 // The type of __null will be int or long, depending on the size of
17403 // pointers on the target.
17405 unsigned pw
= Context
.getTargetInfo().getPointerWidth(LangAS::Default
);
17406 if (pw
== Context
.getTargetInfo().getIntWidth())
17407 Ty
= Context
.IntTy
;
17408 else if (pw
== Context
.getTargetInfo().getLongWidth())
17409 Ty
= Context
.LongTy
;
17410 else if (pw
== Context
.getTargetInfo().getLongLongWidth())
17411 Ty
= Context
.LongLongTy
;
17413 llvm_unreachable("I don't know size of pointer!");
17416 return new (Context
) GNUNullExpr(Ty
, TokenLoc
);
17419 static CXXRecordDecl
*LookupStdSourceLocationImpl(Sema
&S
, SourceLocation Loc
) {
17420 CXXRecordDecl
*ImplDecl
= nullptr;
17422 // Fetch the std::source_location::__impl decl.
17423 if (NamespaceDecl
*Std
= S
.getStdNamespace()) {
17424 LookupResult
ResultSL(S
, &S
.PP
.getIdentifierTable().get("source_location"),
17425 Loc
, Sema::LookupOrdinaryName
);
17426 if (S
.LookupQualifiedName(ResultSL
, Std
)) {
17427 if (auto *SLDecl
= ResultSL
.getAsSingle
<RecordDecl
>()) {
17428 LookupResult
ResultImpl(S
, &S
.PP
.getIdentifierTable().get("__impl"),
17429 Loc
, Sema::LookupOrdinaryName
);
17430 if ((SLDecl
->isCompleteDefinition() || SLDecl
->isBeingDefined()) &&
17431 S
.LookupQualifiedName(ResultImpl
, SLDecl
)) {
17432 ImplDecl
= ResultImpl
.getAsSingle
<CXXRecordDecl
>();
17438 if (!ImplDecl
|| !ImplDecl
->isCompleteDefinition()) {
17439 S
.Diag(Loc
, diag::err_std_source_location_impl_not_found
);
17443 // Verify that __impl is a trivial struct type, with no base classes, and with
17444 // only the four expected fields.
17445 if (ImplDecl
->isUnion() || !ImplDecl
->isStandardLayout() ||
17446 ImplDecl
->getNumBases() != 0) {
17447 S
.Diag(Loc
, diag::err_std_source_location_impl_malformed
);
17451 unsigned Count
= 0;
17452 for (FieldDecl
*F
: ImplDecl
->fields()) {
17453 StringRef Name
= F
->getName();
17455 if (Name
== "_M_file_name") {
17456 if (F
->getType() !=
17457 S
.Context
.getPointerType(S
.Context
.CharTy
.withConst()))
17460 } else if (Name
== "_M_function_name") {
17461 if (F
->getType() !=
17462 S
.Context
.getPointerType(S
.Context
.CharTy
.withConst()))
17465 } else if (Name
== "_M_line") {
17466 if (!F
->getType()->isIntegerType())
17469 } else if (Name
== "_M_column") {
17470 if (!F
->getType()->isIntegerType())
17474 Count
= 100; // invalid
17479 S
.Diag(Loc
, diag::err_std_source_location_impl_malformed
);
17486 ExprResult
Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind
,
17487 SourceLocation BuiltinLoc
,
17488 SourceLocation RPLoc
) {
17491 case SourceLocExpr::File
:
17492 case SourceLocExpr::FileName
:
17493 case SourceLocExpr::Function
:
17494 case SourceLocExpr::FuncSig
: {
17495 QualType ArrTy
= Context
.getStringLiteralArrayType(Context
.CharTy
, 0);
17497 Context
.getPointerType(ArrTy
->getAsArrayTypeUnsafe()->getElementType());
17500 case SourceLocExpr::Line
:
17501 case SourceLocExpr::Column
:
17502 ResultTy
= Context
.UnsignedIntTy
;
17504 case SourceLocExpr::SourceLocStruct
:
17505 if (!StdSourceLocationImplDecl
) {
17506 StdSourceLocationImplDecl
=
17507 LookupStdSourceLocationImpl(*this, BuiltinLoc
);
17508 if (!StdSourceLocationImplDecl
)
17509 return ExprError();
17511 ResultTy
= Context
.getPointerType(
17512 Context
.getRecordType(StdSourceLocationImplDecl
).withConst());
17516 return BuildSourceLocExpr(Kind
, ResultTy
, BuiltinLoc
, RPLoc
, CurContext
);
17519 ExprResult
Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind
,
17521 SourceLocation BuiltinLoc
,
17522 SourceLocation RPLoc
,
17523 DeclContext
*ParentContext
) {
17524 return new (Context
)
17525 SourceLocExpr(Context
, Kind
, ResultTy
, BuiltinLoc
, RPLoc
, ParentContext
);
17528 bool Sema::CheckConversionToObjCLiteral(QualType DstType
, Expr
*&Exp
,
17530 if (!getLangOpts().ObjC
)
17533 const ObjCObjectPointerType
*PT
= DstType
->getAs
<ObjCObjectPointerType
>();
17536 const ObjCInterfaceDecl
*ID
= PT
->getInterfaceDecl();
17538 // Ignore any parens, implicit casts (should only be
17539 // array-to-pointer decays), and not-so-opaque values. The last is
17540 // important for making this trigger for property assignments.
17541 Expr
*SrcExpr
= Exp
->IgnoreParenImpCasts();
17542 if (OpaqueValueExpr
*OV
= dyn_cast
<OpaqueValueExpr
>(SrcExpr
))
17543 if (OV
->getSourceExpr())
17544 SrcExpr
= OV
->getSourceExpr()->IgnoreParenImpCasts();
17546 if (auto *SL
= dyn_cast
<StringLiteral
>(SrcExpr
)) {
17547 if (!PT
->isObjCIdType() &&
17548 !(ID
&& ID
->getIdentifier()->isStr("NSString")))
17550 if (!SL
->isOrdinary())
17554 Diag(SL
->getBeginLoc(), diag::err_missing_atsign_prefix
)
17555 << /*string*/0 << FixItHint::CreateInsertion(SL
->getBeginLoc(), "@");
17556 Exp
= BuildObjCStringLiteral(SL
->getBeginLoc(), SL
).get();
17561 if ((isa
<IntegerLiteral
>(SrcExpr
) || isa
<CharacterLiteral
>(SrcExpr
) ||
17562 isa
<FloatingLiteral
>(SrcExpr
) || isa
<ObjCBoolLiteralExpr
>(SrcExpr
) ||
17563 isa
<CXXBoolLiteralExpr
>(SrcExpr
)) &&
17564 !SrcExpr
->isNullPointerConstant(
17565 getASTContext(), Expr::NPC_NeverValueDependent
)) {
17566 if (!ID
|| !ID
->getIdentifier()->isStr("NSNumber"))
17569 Diag(SrcExpr
->getBeginLoc(), diag::err_missing_atsign_prefix
)
17571 << FixItHint::CreateInsertion(SrcExpr
->getBeginLoc(), "@");
17573 BuildObjCNumericLiteral(SrcExpr
->getBeginLoc(), SrcExpr
).get();
17583 static bool maybeDiagnoseAssignmentToFunction(Sema
&S
, QualType DstType
,
17584 const Expr
*SrcExpr
) {
17585 if (!DstType
->isFunctionPointerType() ||
17586 !SrcExpr
->getType()->isFunctionType())
17589 auto *DRE
= dyn_cast
<DeclRefExpr
>(SrcExpr
->IgnoreParenImpCasts());
17593 auto *FD
= dyn_cast
<FunctionDecl
>(DRE
->getDecl());
17597 return !S
.checkAddressOfFunctionIsAvailable(FD
,
17599 SrcExpr
->getBeginLoc());
17602 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy
,
17603 SourceLocation Loc
,
17604 QualType DstType
, QualType SrcType
,
17605 Expr
*SrcExpr
, AssignmentAction Action
,
17606 bool *Complained
) {
17608 *Complained
= false;
17610 // Decode the result (notice that AST's are still created for extensions).
17611 bool CheckInferredResultType
= false;
17612 bool isInvalid
= false;
17613 unsigned DiagKind
= 0;
17614 ConversionFixItGenerator ConvHints
;
17615 bool MayHaveConvFixit
= false;
17616 bool MayHaveFunctionDiff
= false;
17617 const ObjCInterfaceDecl
*IFace
= nullptr;
17618 const ObjCProtocolDecl
*PDecl
= nullptr;
17622 DiagnoseAssignmentEnum(DstType
, SrcType
, SrcExpr
);
17626 if (getLangOpts().CPlusPlus
) {
17627 DiagKind
= diag::err_typecheck_convert_pointer_int
;
17630 DiagKind
= diag::ext_typecheck_convert_pointer_int
;
17632 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17633 MayHaveConvFixit
= true;
17636 if (getLangOpts().CPlusPlus
) {
17637 DiagKind
= diag::err_typecheck_convert_int_pointer
;
17640 DiagKind
= diag::ext_typecheck_convert_int_pointer
;
17642 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17643 MayHaveConvFixit
= true;
17645 case IncompatibleFunctionPointerStrict
:
17647 diag::warn_typecheck_convert_incompatible_function_pointer_strict
;
17648 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17649 MayHaveConvFixit
= true;
17651 case IncompatibleFunctionPointer
:
17652 if (getLangOpts().CPlusPlus
) {
17653 DiagKind
= diag::err_typecheck_convert_incompatible_function_pointer
;
17656 DiagKind
= diag::ext_typecheck_convert_incompatible_function_pointer
;
17658 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17659 MayHaveConvFixit
= true;
17661 case IncompatiblePointer
:
17662 if (Action
== AA_Passing_CFAudited
) {
17663 DiagKind
= diag::err_arc_typecheck_convert_incompatible_pointer
;
17664 } else if (getLangOpts().CPlusPlus
) {
17665 DiagKind
= diag::err_typecheck_convert_incompatible_pointer
;
17668 DiagKind
= diag::ext_typecheck_convert_incompatible_pointer
;
17670 CheckInferredResultType
= DstType
->isObjCObjectPointerType() &&
17671 SrcType
->isObjCObjectPointerType();
17672 if (!CheckInferredResultType
) {
17673 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17674 } else if (CheckInferredResultType
) {
17675 SrcType
= SrcType
.getUnqualifiedType();
17676 DstType
= DstType
.getUnqualifiedType();
17678 MayHaveConvFixit
= true;
17680 case IncompatiblePointerSign
:
17681 if (getLangOpts().CPlusPlus
) {
17682 DiagKind
= diag::err_typecheck_convert_incompatible_pointer_sign
;
17685 DiagKind
= diag::ext_typecheck_convert_incompatible_pointer_sign
;
17688 case FunctionVoidPointer
:
17689 if (getLangOpts().CPlusPlus
) {
17690 DiagKind
= diag::err_typecheck_convert_pointer_void_func
;
17693 DiagKind
= diag::ext_typecheck_convert_pointer_void_func
;
17696 case IncompatiblePointerDiscardsQualifiers
: {
17697 // Perform array-to-pointer decay if necessary.
17698 if (SrcType
->isArrayType()) SrcType
= Context
.getArrayDecayedType(SrcType
);
17702 Qualifiers lhq
= SrcType
->getPointeeType().getQualifiers();
17703 Qualifiers rhq
= DstType
->getPointeeType().getQualifiers();
17704 if (lhq
.getAddressSpace() != rhq
.getAddressSpace()) {
17705 DiagKind
= diag::err_typecheck_incompatible_address_space
;
17708 } else if (lhq
.getObjCLifetime() != rhq
.getObjCLifetime()) {
17709 DiagKind
= diag::err_typecheck_incompatible_ownership
;
17713 llvm_unreachable("unknown error case for discarding qualifiers!");
17716 case CompatiblePointerDiscardsQualifiers
:
17717 // If the qualifiers lost were because we were applying the
17718 // (deprecated) C++ conversion from a string literal to a char*
17719 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
17720 // Ideally, this check would be performed in
17721 // checkPointerTypesForAssignment. However, that would require a
17722 // bit of refactoring (so that the second argument is an
17723 // expression, rather than a type), which should be done as part
17724 // of a larger effort to fix checkPointerTypesForAssignment for
17726 if (getLangOpts().CPlusPlus
&&
17727 IsStringLiteralToNonConstPointerConversion(SrcExpr
, DstType
))
17729 if (getLangOpts().CPlusPlus
) {
17730 DiagKind
= diag::err_typecheck_convert_discards_qualifiers
;
17733 DiagKind
= diag::ext_typecheck_convert_discards_qualifiers
;
17737 case IncompatibleNestedPointerQualifiers
:
17738 if (getLangOpts().CPlusPlus
) {
17740 DiagKind
= diag::err_nested_pointer_qualifier_mismatch
;
17742 DiagKind
= diag::ext_nested_pointer_qualifier_mismatch
;
17745 case IncompatibleNestedPointerAddressSpaceMismatch
:
17746 DiagKind
= diag::err_typecheck_incompatible_nested_address_space
;
17749 case IntToBlockPointer
:
17750 DiagKind
= diag::err_int_to_block_pointer
;
17753 case IncompatibleBlockPointer
:
17754 DiagKind
= diag::err_typecheck_convert_incompatible_block_pointer
;
17757 case IncompatibleObjCQualifiedId
: {
17758 if (SrcType
->isObjCQualifiedIdType()) {
17759 const ObjCObjectPointerType
*srcOPT
=
17760 SrcType
->castAs
<ObjCObjectPointerType
>();
17761 for (auto *srcProto
: srcOPT
->quals()) {
17765 if (const ObjCInterfaceType
*IFaceT
=
17766 DstType
->castAs
<ObjCObjectPointerType
>()->getInterfaceType())
17767 IFace
= IFaceT
->getDecl();
17769 else if (DstType
->isObjCQualifiedIdType()) {
17770 const ObjCObjectPointerType
*dstOPT
=
17771 DstType
->castAs
<ObjCObjectPointerType
>();
17772 for (auto *dstProto
: dstOPT
->quals()) {
17776 if (const ObjCInterfaceType
*IFaceT
=
17777 SrcType
->castAs
<ObjCObjectPointerType
>()->getInterfaceType())
17778 IFace
= IFaceT
->getDecl();
17780 if (getLangOpts().CPlusPlus
) {
17781 DiagKind
= diag::err_incompatible_qualified_id
;
17784 DiagKind
= diag::warn_incompatible_qualified_id
;
17788 case IncompatibleVectors
:
17789 if (getLangOpts().CPlusPlus
) {
17790 DiagKind
= diag::err_incompatible_vectors
;
17793 DiagKind
= diag::warn_incompatible_vectors
;
17796 case IncompatibleObjCWeakRef
:
17797 DiagKind
= diag::err_arc_weak_unavailable_assign
;
17801 if (maybeDiagnoseAssignmentToFunction(*this, DstType
, SrcExpr
)) {
17803 *Complained
= true;
17807 DiagKind
= diag::err_typecheck_convert_incompatible
;
17808 ConvHints
.tryToFixConversion(SrcExpr
, SrcType
, DstType
, *this);
17809 MayHaveConvFixit
= true;
17811 MayHaveFunctionDiff
= true;
17815 QualType FirstType
, SecondType
;
17818 case AA_Initializing
:
17819 // The destination type comes first.
17820 FirstType
= DstType
;
17821 SecondType
= SrcType
;
17826 case AA_Passing_CFAudited
:
17827 case AA_Converting
:
17830 // The source type comes first.
17831 FirstType
= SrcType
;
17832 SecondType
= DstType
;
17836 PartialDiagnostic FDiag
= PDiag(DiagKind
);
17837 AssignmentAction ActionForDiag
= Action
;
17838 if (Action
== AA_Passing_CFAudited
)
17839 ActionForDiag
= AA_Passing
;
17841 FDiag
<< FirstType
<< SecondType
<< ActionForDiag
17842 << SrcExpr
->getSourceRange();
17844 if (DiagKind
== diag::ext_typecheck_convert_incompatible_pointer_sign
||
17845 DiagKind
== diag::err_typecheck_convert_incompatible_pointer_sign
) {
17846 auto isPlainChar
= [](const clang::Type
*Type
) {
17847 return Type
->isSpecificBuiltinType(BuiltinType::Char_S
) ||
17848 Type
->isSpecificBuiltinType(BuiltinType::Char_U
);
17850 FDiag
<< (isPlainChar(FirstType
->getPointeeOrArrayElementType()) ||
17851 isPlainChar(SecondType
->getPointeeOrArrayElementType()));
17854 // If we can fix the conversion, suggest the FixIts.
17855 if (!ConvHints
.isNull()) {
17856 for (FixItHint
&H
: ConvHints
.Hints
)
17860 if (MayHaveConvFixit
) { FDiag
<< (unsigned) (ConvHints
.Kind
); }
17862 if (MayHaveFunctionDiff
)
17863 HandleFunctionTypeMismatch(FDiag
, SecondType
, FirstType
);
17866 if ((DiagKind
== diag::warn_incompatible_qualified_id
||
17867 DiagKind
== diag::err_incompatible_qualified_id
) &&
17868 PDecl
&& IFace
&& !IFace
->hasDefinition())
17869 Diag(IFace
->getLocation(), diag::note_incomplete_class_and_qualified_id
)
17872 if (SecondType
== Context
.OverloadTy
)
17873 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr
).Expression
,
17874 FirstType
, /*TakingAddress=*/true);
17876 if (CheckInferredResultType
)
17877 EmitRelatedResultTypeNote(SrcExpr
);
17879 if (Action
== AA_Returning
&& ConvTy
== IncompatiblePointer
)
17880 EmitRelatedResultTypeNoteForReturn(DstType
);
17883 *Complained
= true;
17887 ExprResult
Sema::VerifyIntegerConstantExpression(Expr
*E
,
17888 llvm::APSInt
*Result
,
17889 AllowFoldKind CanFold
) {
17890 class SimpleICEDiagnoser
: public VerifyICEDiagnoser
{
17892 SemaDiagnosticBuilder
diagnoseNotICEType(Sema
&S
, SourceLocation Loc
,
17893 QualType T
) override
{
17894 return S
.Diag(Loc
, diag::err_ice_not_integral
)
17895 << T
<< S
.LangOpts
.CPlusPlus
;
17897 SemaDiagnosticBuilder
diagnoseNotICE(Sema
&S
, SourceLocation Loc
) override
{
17898 return S
.Diag(Loc
, diag::err_expr_not_ice
) << S
.LangOpts
.CPlusPlus
;
17902 return VerifyIntegerConstantExpression(E
, Result
, Diagnoser
, CanFold
);
17905 ExprResult
Sema::VerifyIntegerConstantExpression(Expr
*E
,
17906 llvm::APSInt
*Result
,
17908 AllowFoldKind CanFold
) {
17909 class IDDiagnoser
: public VerifyICEDiagnoser
{
17913 IDDiagnoser(unsigned DiagID
)
17914 : VerifyICEDiagnoser(DiagID
== 0), DiagID(DiagID
) { }
17916 SemaDiagnosticBuilder
diagnoseNotICE(Sema
&S
, SourceLocation Loc
) override
{
17917 return S
.Diag(Loc
, DiagID
);
17919 } Diagnoser(DiagID
);
17921 return VerifyIntegerConstantExpression(E
, Result
, Diagnoser
, CanFold
);
17924 Sema::SemaDiagnosticBuilder
17925 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema
&S
, SourceLocation Loc
,
17927 return diagnoseNotICE(S
, Loc
);
17930 Sema::SemaDiagnosticBuilder
17931 Sema::VerifyICEDiagnoser::diagnoseFold(Sema
&S
, SourceLocation Loc
) {
17932 return S
.Diag(Loc
, diag::ext_expr_not_ice
) << S
.LangOpts
.CPlusPlus
;
17936 Sema::VerifyIntegerConstantExpression(Expr
*E
, llvm::APSInt
*Result
,
17937 VerifyICEDiagnoser
&Diagnoser
,
17938 AllowFoldKind CanFold
) {
17939 SourceLocation DiagLoc
= E
->getBeginLoc();
17941 if (getLangOpts().CPlusPlus11
) {
17942 // C++11 [expr.const]p5:
17943 // If an expression of literal class type is used in a context where an
17944 // integral constant expression is required, then that class type shall
17945 // have a single non-explicit conversion function to an integral or
17946 // unscoped enumeration type
17947 ExprResult Converted
;
17948 class CXX11ConvertDiagnoser
: public ICEConvertDiagnoser
{
17949 VerifyICEDiagnoser
&BaseDiagnoser
;
17951 CXX11ConvertDiagnoser(VerifyICEDiagnoser
&BaseDiagnoser
)
17952 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17953 BaseDiagnoser
.Suppress
, true),
17954 BaseDiagnoser(BaseDiagnoser
) {}
17956 SemaDiagnosticBuilder
diagnoseNotInt(Sema
&S
, SourceLocation Loc
,
17957 QualType T
) override
{
17958 return BaseDiagnoser
.diagnoseNotICEType(S
, Loc
, T
);
17961 SemaDiagnosticBuilder
diagnoseIncomplete(
17962 Sema
&S
, SourceLocation Loc
, QualType T
) override
{
17963 return S
.Diag(Loc
, diag::err_ice_incomplete_type
) << T
;
17966 SemaDiagnosticBuilder
diagnoseExplicitConv(
17967 Sema
&S
, SourceLocation Loc
, QualType T
, QualType ConvTy
) override
{
17968 return S
.Diag(Loc
, diag::err_ice_explicit_conversion
) << T
<< ConvTy
;
17971 SemaDiagnosticBuilder
noteExplicitConv(
17972 Sema
&S
, CXXConversionDecl
*Conv
, QualType ConvTy
) override
{
17973 return S
.Diag(Conv
->getLocation(), diag::note_ice_conversion_here
)
17974 << ConvTy
->isEnumeralType() << ConvTy
;
17977 SemaDiagnosticBuilder
diagnoseAmbiguous(
17978 Sema
&S
, SourceLocation Loc
, QualType T
) override
{
17979 return S
.Diag(Loc
, diag::err_ice_ambiguous_conversion
) << T
;
17982 SemaDiagnosticBuilder
noteAmbiguous(
17983 Sema
&S
, CXXConversionDecl
*Conv
, QualType ConvTy
) override
{
17984 return S
.Diag(Conv
->getLocation(), diag::note_ice_conversion_here
)
17985 << ConvTy
->isEnumeralType() << ConvTy
;
17988 SemaDiagnosticBuilder
diagnoseConversion(
17989 Sema
&S
, SourceLocation Loc
, QualType T
, QualType ConvTy
) override
{
17990 llvm_unreachable("conversion functions are permitted");
17992 } ConvertDiagnoser(Diagnoser
);
17994 Converted
= PerformContextualImplicitConversion(DiagLoc
, E
,
17996 if (Converted
.isInvalid())
17998 E
= Converted
.get();
17999 if (!E
->getType()->isIntegralOrUnscopedEnumerationType())
18000 return ExprError();
18001 } else if (!E
->getType()->isIntegralOrUnscopedEnumerationType()) {
18002 // An ICE must be of integral or unscoped enumeration type.
18003 if (!Diagnoser
.Suppress
)
18004 Diagnoser
.diagnoseNotICEType(*this, DiagLoc
, E
->getType())
18005 << E
->getSourceRange();
18006 return ExprError();
18009 ExprResult RValueExpr
= DefaultLvalueConversion(E
);
18010 if (RValueExpr
.isInvalid())
18011 return ExprError();
18013 E
= RValueExpr
.get();
18015 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
18016 // in the non-ICE case.
18017 if (!getLangOpts().CPlusPlus11
&& E
->isIntegerConstantExpr(Context
)) {
18019 *Result
= E
->EvaluateKnownConstIntCheckOverflow(Context
);
18020 if (!isa
<ConstantExpr
>(E
))
18021 E
= Result
? ConstantExpr::Create(Context
, E
, APValue(*Result
))
18022 : ConstantExpr::Create(Context
, E
);
18026 Expr::EvalResult EvalResult
;
18027 SmallVector
<PartialDiagnosticAt
, 8> Notes
;
18028 EvalResult
.Diag
= &Notes
;
18030 // Try to evaluate the expression, and produce diagnostics explaining why it's
18031 // not a constant expression as a side-effect.
18033 E
->EvaluateAsRValue(EvalResult
, Context
, /*isConstantContext*/ true) &&
18034 EvalResult
.Val
.isInt() && !EvalResult
.HasSideEffects
;
18036 if (!isa
<ConstantExpr
>(E
))
18037 E
= ConstantExpr::Create(Context
, E
, EvalResult
.Val
);
18039 // In C++11, we can rely on diagnostics being produced for any expression
18040 // which is not a constant expression. If no diagnostics were produced, then
18041 // this is a constant expression.
18042 if (Folded
&& getLangOpts().CPlusPlus11
&& Notes
.empty()) {
18044 *Result
= EvalResult
.Val
.getInt();
18048 // If our only note is the usual "invalid subexpression" note, just point
18049 // the caret at its location rather than producing an essentially
18051 if (Notes
.size() == 1 && Notes
[0].second
.getDiagID() ==
18052 diag::note_invalid_subexpr_in_const_expr
) {
18053 DiagLoc
= Notes
[0].first
;
18057 if (!Folded
|| !CanFold
) {
18058 if (!Diagnoser
.Suppress
) {
18059 Diagnoser
.diagnoseNotICE(*this, DiagLoc
) << E
->getSourceRange();
18060 for (const PartialDiagnosticAt
&Note
: Notes
)
18061 Diag(Note
.first
, Note
.second
);
18064 return ExprError();
18067 Diagnoser
.diagnoseFold(*this, DiagLoc
) << E
->getSourceRange();
18068 for (const PartialDiagnosticAt
&Note
: Notes
)
18069 Diag(Note
.first
, Note
.second
);
18072 *Result
= EvalResult
.Val
.getInt();
18077 // Handle the case where we conclude a expression which we speculatively
18078 // considered to be unevaluated is actually evaluated.
18079 class TransformToPE
: public TreeTransform
<TransformToPE
> {
18080 typedef TreeTransform
<TransformToPE
> BaseTransform
;
18083 TransformToPE(Sema
&SemaRef
) : BaseTransform(SemaRef
) { }
18085 // Make sure we redo semantic analysis
18086 bool AlwaysRebuild() { return true; }
18087 bool ReplacingOriginal() { return true; }
18089 // We need to special-case DeclRefExprs referring to FieldDecls which
18090 // are not part of a member pointer formation; normal TreeTransforming
18091 // doesn't catch this case because of the way we represent them in the AST.
18092 // FIXME: This is a bit ugly; is it really the best way to handle this
18095 // Error on DeclRefExprs referring to FieldDecls.
18096 ExprResult
TransformDeclRefExpr(DeclRefExpr
*E
) {
18097 if (isa
<FieldDecl
>(E
->getDecl()) &&
18098 !SemaRef
.isUnevaluatedContext())
18099 return SemaRef
.Diag(E
->getLocation(),
18100 diag::err_invalid_non_static_member_use
)
18101 << E
->getDecl() << E
->getSourceRange();
18103 return BaseTransform::TransformDeclRefExpr(E
);
18106 // Exception: filter out member pointer formation
18107 ExprResult
TransformUnaryOperator(UnaryOperator
*E
) {
18108 if (E
->getOpcode() == UO_AddrOf
&& E
->getType()->isMemberPointerType())
18111 return BaseTransform::TransformUnaryOperator(E
);
18114 // The body of a lambda-expression is in a separate expression evaluation
18115 // context so never needs to be transformed.
18116 // FIXME: Ideally we wouldn't transform the closure type either, and would
18117 // just recreate the capture expressions and lambda expression.
18118 StmtResult
TransformLambdaBody(LambdaExpr
*E
, Stmt
*Body
) {
18119 return SkipLambdaBody(E
, Body
);
18124 ExprResult
Sema::TransformToPotentiallyEvaluated(Expr
*E
) {
18125 assert(isUnevaluatedContext() &&
18126 "Should only transform unevaluated expressions");
18127 ExprEvalContexts
.back().Context
=
18128 ExprEvalContexts
[ExprEvalContexts
.size()-2].Context
;
18129 if (isUnevaluatedContext())
18131 return TransformToPE(*this).TransformExpr(E
);
18134 TypeSourceInfo
*Sema::TransformToPotentiallyEvaluated(TypeSourceInfo
*TInfo
) {
18135 assert(isUnevaluatedContext() &&
18136 "Should only transform unevaluated expressions");
18137 ExprEvalContexts
.back().Context
=
18138 ExprEvalContexts
[ExprEvalContexts
.size() - 2].Context
;
18139 if (isUnevaluatedContext())
18141 return TransformToPE(*this).TransformType(TInfo
);
18145 Sema::PushExpressionEvaluationContext(
18146 ExpressionEvaluationContext NewContext
, Decl
*LambdaContextDecl
,
18147 ExpressionEvaluationContextRecord::ExpressionKind ExprContext
) {
18148 ExprEvalContexts
.emplace_back(NewContext
, ExprCleanupObjects
.size(), Cleanup
,
18149 LambdaContextDecl
, ExprContext
);
18151 // Discarded statements and immediate contexts nested in other
18152 // discarded statements or immediate context are themselves
18153 // a discarded statement or an immediate context, respectively.
18154 ExprEvalContexts
.back().InDiscardedStatement
=
18155 ExprEvalContexts
[ExprEvalContexts
.size() - 2]
18156 .isDiscardedStatementContext();
18158 // C++23 [expr.const]/p15
18159 // An expression or conversion is in an immediate function context if [...]
18160 // it is a subexpression of a manifestly constant-evaluated expression or
18162 const auto &Prev
= ExprEvalContexts
[ExprEvalContexts
.size() - 2];
18163 ExprEvalContexts
.back().InImmediateFunctionContext
=
18164 Prev
.isImmediateFunctionContext() || Prev
.isConstantEvaluated();
18166 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
=
18167 Prev
.InImmediateEscalatingFunctionContext
;
18170 if (!MaybeODRUseExprs
.empty())
18171 std::swap(MaybeODRUseExprs
, ExprEvalContexts
.back().SavedMaybeODRUseExprs
);
18175 Sema::PushExpressionEvaluationContext(
18176 ExpressionEvaluationContext NewContext
, ReuseLambdaContextDecl_t
,
18177 ExpressionEvaluationContextRecord::ExpressionKind ExprContext
) {
18178 Decl
*ClosureContextDecl
= ExprEvalContexts
.back().ManglingContextDecl
;
18179 PushExpressionEvaluationContext(NewContext
, ClosureContextDecl
, ExprContext
);
18184 const DeclRefExpr
*CheckPossibleDeref(Sema
&S
, const Expr
*PossibleDeref
) {
18185 PossibleDeref
= PossibleDeref
->IgnoreParenImpCasts();
18186 if (const auto *E
= dyn_cast
<UnaryOperator
>(PossibleDeref
)) {
18187 if (E
->getOpcode() == UO_Deref
)
18188 return CheckPossibleDeref(S
, E
->getSubExpr());
18189 } else if (const auto *E
= dyn_cast
<ArraySubscriptExpr
>(PossibleDeref
)) {
18190 return CheckPossibleDeref(S
, E
->getBase());
18191 } else if (const auto *E
= dyn_cast
<MemberExpr
>(PossibleDeref
)) {
18192 return CheckPossibleDeref(S
, E
->getBase());
18193 } else if (const auto E
= dyn_cast
<DeclRefExpr
>(PossibleDeref
)) {
18195 QualType Ty
= E
->getType();
18196 if (const auto *Ptr
= Ty
->getAs
<PointerType
>())
18197 Inner
= Ptr
->getPointeeType();
18198 else if (const auto *Arr
= S
.Context
.getAsArrayType(Ty
))
18199 Inner
= Arr
->getElementType();
18203 if (Inner
->hasAttr(attr::NoDeref
))
18211 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord
&Rec
) {
18212 for (const Expr
*E
: Rec
.PossibleDerefs
) {
18213 const DeclRefExpr
*DeclRef
= CheckPossibleDeref(*this, E
);
18215 const ValueDecl
*Decl
= DeclRef
->getDecl();
18216 Diag(E
->getExprLoc(), diag::warn_dereference_of_noderef_type
)
18217 << Decl
->getName() << E
->getSourceRange();
18218 Diag(Decl
->getLocation(), diag::note_previous_decl
) << Decl
->getName();
18220 Diag(E
->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl
)
18221 << E
->getSourceRange();
18224 Rec
.PossibleDerefs
.clear();
18227 /// Check whether E, which is either a discarded-value expression or an
18228 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
18229 /// and if so, remove it from the list of volatile-qualified assignments that
18230 /// we are going to warn are deprecated.
18231 void Sema::CheckUnusedVolatileAssignment(Expr
*E
) {
18232 if (!E
->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20
)
18235 // Note: ignoring parens here is not justified by the standard rules, but
18236 // ignoring parentheses seems like a more reasonable approach, and this only
18237 // drives a deprecation warning so doesn't affect conformance.
18238 if (auto *BO
= dyn_cast
<BinaryOperator
>(E
->IgnoreParenImpCasts())) {
18239 if (BO
->getOpcode() == BO_Assign
) {
18240 auto &LHSs
= ExprEvalContexts
.back().VolatileAssignmentLHSs
;
18241 llvm::erase_value(LHSs
, BO
->getLHS());
18246 void Sema::MarkExpressionAsImmediateEscalating(Expr
*E
) {
18247 assert(!FunctionScopes
.empty() && "Expected a function scope");
18248 assert(getLangOpts().CPlusPlus20
&&
18249 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
&&
18250 "Cannot mark an immediate escalating expression outside of an "
18251 "immediate escalating context");
18252 if (auto *Call
= dyn_cast
<CallExpr
>(E
->IgnoreImplicit());
18253 Call
&& Call
->getCallee()) {
18254 if (auto *DeclRef
=
18255 dyn_cast
<DeclRefExpr
>(Call
->getCallee()->IgnoreImplicit()))
18256 DeclRef
->setIsImmediateEscalating(true);
18257 } else if (auto *Ctr
= dyn_cast
<CXXConstructExpr
>(E
->IgnoreImplicit())) {
18258 Ctr
->setIsImmediateEscalating(true);
18259 } else if (auto *DeclRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreImplicit())) {
18260 DeclRef
->setIsImmediateEscalating(true);
18262 assert(false && "expected an immediately escalating expression");
18264 getCurFunction()->FoundImmediateEscalatingExpression
= true;
18267 ExprResult
Sema::CheckForImmediateInvocation(ExprResult E
, FunctionDecl
*Decl
) {
18268 if (isUnevaluatedContext() || !E
.isUsable() || !Decl
||
18269 !Decl
->isImmediateFunction() || isConstantEvaluated() ||
18270 isCheckingDefaultArgumentOrInitializer() ||
18271 RebuildingImmediateInvocation
|| isImmediateFunctionContext())
18274 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
18275 /// It's OK if this fails; we'll also remove this in
18276 /// HandleImmediateInvocations, but catching it here allows us to avoid
18277 /// walking the AST looking for it in simple cases.
18278 if (auto *Call
= dyn_cast
<CallExpr
>(E
.get()->IgnoreImplicit()))
18279 if (auto *DeclRef
=
18280 dyn_cast
<DeclRefExpr
>(Call
->getCallee()->IgnoreImplicit()))
18281 ExprEvalContexts
.back().ReferenceToConsteval
.erase(DeclRef
);
18283 // C++23 [expr.const]/p16
18284 // An expression or conversion is immediate-escalating if it is not initially
18285 // in an immediate function context and it is [...] an immediate invocation
18286 // that is not a constant expression and is not a subexpression of an
18287 // immediate invocation.
18289 auto CheckConstantExpressionAndKeepResult
= [&]() {
18290 llvm::SmallVector
<PartialDiagnosticAt
, 8> Notes
;
18291 Expr::EvalResult Eval
;
18292 Eval
.Diag
= &Notes
;
18293 bool Res
= E
.get()->EvaluateAsConstantExpr(
18294 Eval
, getASTContext(), ConstantExprKind::ImmediateInvocation
);
18295 if (Res
&& Notes
.empty()) {
18296 Cached
= std::move(Eval
.Val
);
18302 if (!E
.get()->isValueDependent() &&
18303 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
&&
18304 !CheckConstantExpressionAndKeepResult()) {
18305 MarkExpressionAsImmediateEscalating(E
.get());
18309 if (Cleanup
.exprNeedsCleanups()) {
18310 // Since an immediate invocation is a full expression itself - it requires
18311 // an additional ExprWithCleanups node, but it can participate to a bigger
18312 // full expression which actually requires cleanups to be run after so
18313 // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
18314 // may discard cleanups for outer expression too early.
18316 // Note that ExprWithCleanups created here must always have empty cleanup
18318 // - compound literals do not create cleanup objects in C++ and immediate
18319 // invocations are C++-only.
18320 // - blocks are not allowed inside constant expressions and compiler will
18321 // issue an error if they appear there.
18323 // Hence, in correct code any cleanup objects created inside current
18324 // evaluation context must be outside the immediate invocation.
18325 E
= ExprWithCleanups::Create(getASTContext(), E
.get(),
18326 Cleanup
.cleanupsHaveSideEffects(), {});
18329 ConstantExpr
*Res
= ConstantExpr::Create(
18330 getASTContext(), E
.get(),
18331 ConstantExpr::getStorageKind(Decl
->getReturnType().getTypePtr(),
18333 /*IsImmediateInvocation*/ true);
18334 if (Cached
.hasValue())
18335 Res
->MoveIntoResult(Cached
, getASTContext());
18336 /// Value-dependent constant expressions should not be immediately
18337 /// evaluated until they are instantiated.
18338 if (!Res
->isValueDependent())
18339 ExprEvalContexts
.back().ImmediateInvocationCandidates
.emplace_back(Res
, 0);
18343 static void EvaluateAndDiagnoseImmediateInvocation(
18344 Sema
&SemaRef
, Sema::ImmediateInvocationCandidate Candidate
) {
18345 llvm::SmallVector
<PartialDiagnosticAt
, 8> Notes
;
18346 Expr::EvalResult Eval
;
18347 Eval
.Diag
= &Notes
;
18348 ConstantExpr
*CE
= Candidate
.getPointer();
18349 bool Result
= CE
->EvaluateAsConstantExpr(
18350 Eval
, SemaRef
.getASTContext(), ConstantExprKind::ImmediateInvocation
);
18351 if (!Result
|| !Notes
.empty()) {
18352 SemaRef
.FailedImmediateInvocations
.insert(CE
);
18353 Expr
*InnerExpr
= CE
->getSubExpr()->IgnoreImplicit();
18354 if (auto *FunctionalCast
= dyn_cast
<CXXFunctionalCastExpr
>(InnerExpr
))
18355 InnerExpr
= FunctionalCast
->getSubExpr()->IgnoreImplicit();
18356 FunctionDecl
*FD
= nullptr;
18357 if (auto *Call
= dyn_cast
<CallExpr
>(InnerExpr
))
18358 FD
= cast
<FunctionDecl
>(Call
->getCalleeDecl());
18359 else if (auto *Call
= dyn_cast
<CXXConstructExpr
>(InnerExpr
))
18360 FD
= Call
->getConstructor();
18361 else if (auto *Cast
= dyn_cast
<CastExpr
>(InnerExpr
))
18362 FD
= dyn_cast_or_null
<FunctionDecl
>(Cast
->getConversionFunction());
18364 assert(FD
&& FD
->isImmediateFunction() &&
18365 "could not find an immediate function in this expression");
18366 SemaRef
.Diag(CE
->getBeginLoc(), diag::err_invalid_consteval_call
)
18367 << FD
<< FD
->isConsteval();
18369 SemaRef
.InnermostDeclarationWithDelayedImmediateInvocations()) {
18370 SemaRef
.Diag(Context
->Loc
, diag::note_invalid_consteval_initializer
)
18372 SemaRef
.Diag(Context
->Decl
->getBeginLoc(), diag::note_declared_at
);
18374 if (!FD
->isConsteval())
18375 SemaRef
.DiagnoseImmediateEscalatingReason(FD
);
18376 for (auto &Note
: Notes
)
18377 SemaRef
.Diag(Note
.first
, Note
.second
);
18380 CE
->MoveIntoResult(Eval
.Val
, SemaRef
.getASTContext());
18383 static void RemoveNestedImmediateInvocation(
18384 Sema
&SemaRef
, Sema::ExpressionEvaluationContextRecord
&Rec
,
18385 SmallVector
<Sema::ImmediateInvocationCandidate
, 4>::reverse_iterator It
) {
18386 struct ComplexRemove
: TreeTransform
<ComplexRemove
> {
18387 using Base
= TreeTransform
<ComplexRemove
>;
18388 llvm::SmallPtrSetImpl
<DeclRefExpr
*> &DRSet
;
18389 SmallVector
<Sema::ImmediateInvocationCandidate
, 4> &IISet
;
18390 SmallVector
<Sema::ImmediateInvocationCandidate
, 4>::reverse_iterator
18392 ComplexRemove(Sema
&SemaRef
, llvm::SmallPtrSetImpl
<DeclRefExpr
*> &DR
,
18393 SmallVector
<Sema::ImmediateInvocationCandidate
, 4> &II
,
18394 SmallVector
<Sema::ImmediateInvocationCandidate
,
18395 4>::reverse_iterator Current
)
18396 : Base(SemaRef
), DRSet(DR
), IISet(II
), CurrentII(Current
) {}
18397 void RemoveImmediateInvocation(ConstantExpr
* E
) {
18398 auto It
= std::find_if(CurrentII
, IISet
.rend(),
18399 [E
](Sema::ImmediateInvocationCandidate Elem
) {
18400 return Elem
.getPointer() == E
;
18402 // It is possible that some subexpression of the current immediate
18403 // invocation was handled from another expression evaluation context. Do
18404 // not handle the current immediate invocation if some of its
18405 // subexpressions failed before.
18406 if (It
== IISet
.rend()) {
18407 if (SemaRef
.FailedImmediateInvocations
.contains(E
))
18408 CurrentII
->setInt(1);
18410 It
->setInt(1); // Mark as deleted
18413 ExprResult
TransformConstantExpr(ConstantExpr
*E
) {
18414 if (!E
->isImmediateInvocation())
18415 return Base::TransformConstantExpr(E
);
18416 RemoveImmediateInvocation(E
);
18417 return Base::TransformExpr(E
->getSubExpr());
18419 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18420 /// we need to remove its DeclRefExpr from the DRSet.
18421 ExprResult
TransformCXXOperatorCallExpr(CXXOperatorCallExpr
*E
) {
18422 DRSet
.erase(cast
<DeclRefExpr
>(E
->getCallee()->IgnoreImplicit()));
18423 return Base::TransformCXXOperatorCallExpr(E
);
18425 /// Base::TransformInitializer skip ConstantExpr so we need to visit them
18427 ExprResult
TransformInitializer(Expr
*Init
, bool NotCopyInit
) {
18430 /// ConstantExpr are the first layer of implicit node to be removed so if
18431 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18432 if (auto *CE
= dyn_cast
<ConstantExpr
>(Init
))
18433 if (CE
->isImmediateInvocation())
18434 RemoveImmediateInvocation(CE
);
18435 return Base::TransformInitializer(Init
, NotCopyInit
);
18437 ExprResult
TransformDeclRefExpr(DeclRefExpr
*E
) {
18441 ExprResult
TransformLambdaExpr(LambdaExpr
*E
) {
18442 // Do not rebuild lambdas to avoid creating a new type.
18443 // Lambdas have already been processed inside their eval context.
18446 bool AlwaysRebuild() { return false; }
18447 bool ReplacingOriginal() { return true; }
18448 bool AllowSkippingCXXConstructExpr() {
18449 bool Res
= AllowSkippingFirstCXXConstructExpr
;
18450 AllowSkippingFirstCXXConstructExpr
= true;
18453 bool AllowSkippingFirstCXXConstructExpr
= true;
18454 } Transformer(SemaRef
, Rec
.ReferenceToConsteval
,
18455 Rec
.ImmediateInvocationCandidates
, It
);
18457 /// CXXConstructExpr with a single argument are getting skipped by
18458 /// TreeTransform in some situtation because they could be implicit. This
18459 /// can only occur for the top-level CXXConstructExpr because it is used
18460 /// nowhere in the expression being transformed therefore will not be rebuilt.
18461 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18462 /// skipping the first CXXConstructExpr.
18463 if (isa
<CXXConstructExpr
>(It
->getPointer()->IgnoreImplicit()))
18464 Transformer
.AllowSkippingFirstCXXConstructExpr
= false;
18466 ExprResult Res
= Transformer
.TransformExpr(It
->getPointer()->getSubExpr());
18467 // The result may not be usable in case of previous compilation errors.
18468 // In this case evaluation of the expression may result in crash so just
18469 // don't do anything further with the result.
18470 if (Res
.isUsable()) {
18471 Res
= SemaRef
.MaybeCreateExprWithCleanups(Res
);
18472 It
->getPointer()->setSubExpr(Res
.get());
18477 HandleImmediateInvocations(Sema
&SemaRef
,
18478 Sema::ExpressionEvaluationContextRecord
&Rec
) {
18479 if ((Rec
.ImmediateInvocationCandidates
.size() == 0 &&
18480 Rec
.ReferenceToConsteval
.size() == 0) ||
18481 SemaRef
.RebuildingImmediateInvocation
)
18484 /// When we have more than 1 ImmediateInvocationCandidates or previously
18485 /// failed immediate invocations, we need to check for nested
18486 /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18487 /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18489 if (Rec
.ImmediateInvocationCandidates
.size() > 1 ||
18490 !SemaRef
.FailedImmediateInvocations
.empty()) {
18492 /// Prevent sema calls during the tree transform from adding pointers that
18493 /// are already in the sets.
18494 llvm::SaveAndRestore
DisableIITracking(
18495 SemaRef
.RebuildingImmediateInvocation
, true);
18497 /// Prevent diagnostic during tree transfrom as they are duplicates
18498 Sema::TentativeAnalysisScope
DisableDiag(SemaRef
);
18500 for (auto It
= Rec
.ImmediateInvocationCandidates
.rbegin();
18501 It
!= Rec
.ImmediateInvocationCandidates
.rend(); It
++)
18503 RemoveNestedImmediateInvocation(SemaRef
, Rec
, It
);
18504 } else if (Rec
.ImmediateInvocationCandidates
.size() == 1 &&
18505 Rec
.ReferenceToConsteval
.size()) {
18506 struct SimpleRemove
: RecursiveASTVisitor
<SimpleRemove
> {
18507 llvm::SmallPtrSetImpl
<DeclRefExpr
*> &DRSet
;
18508 SimpleRemove(llvm::SmallPtrSetImpl
<DeclRefExpr
*> &S
) : DRSet(S
) {}
18509 bool VisitDeclRefExpr(DeclRefExpr
*E
) {
18511 return DRSet
.size();
18513 } Visitor(Rec
.ReferenceToConsteval
);
18514 Visitor
.TraverseStmt(
18515 Rec
.ImmediateInvocationCandidates
.front().getPointer()->getSubExpr());
18517 for (auto CE
: Rec
.ImmediateInvocationCandidates
)
18519 EvaluateAndDiagnoseImmediateInvocation(SemaRef
, CE
);
18520 for (auto *DR
: Rec
.ReferenceToConsteval
) {
18521 // If the expression is immediate escalating, it is not an error;
18522 // The outer context itself becomes immediate and further errors,
18523 // if any, will be handled by DiagnoseImmediateEscalatingReason.
18524 if (DR
->isImmediateEscalating())
18526 auto *FD
= cast
<FunctionDecl
>(DR
->getDecl());
18527 const NamedDecl
*ND
= FD
;
18528 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(ND
);
18529 MD
&& (MD
->isLambdaStaticInvoker() || isLambdaCallOperator(MD
)))
18530 ND
= MD
->getParent();
18532 // C++23 [expr.const]/p16
18533 // An expression or conversion is immediate-escalating if it is not
18534 // initially in an immediate function context and it is [...] a
18535 // potentially-evaluated id-expression that denotes an immediate function
18536 // that is not a subexpression of an immediate invocation.
18537 bool ImmediateEscalating
= false;
18538 bool IsPotentiallyEvaluated
=
18540 Sema::ExpressionEvaluationContext::PotentiallyEvaluated
||
18542 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
;
18543 if (SemaRef
.inTemplateInstantiation() && IsPotentiallyEvaluated
)
18544 ImmediateEscalating
= Rec
.InImmediateEscalatingFunctionContext
;
18546 if (!Rec
.InImmediateEscalatingFunctionContext
||
18547 (SemaRef
.inTemplateInstantiation() && !ImmediateEscalating
)) {
18548 SemaRef
.Diag(DR
->getBeginLoc(), diag::err_invalid_consteval_take_address
)
18549 << ND
<< isa
<CXXRecordDecl
>(ND
) << FD
->isConsteval();
18550 SemaRef
.Diag(ND
->getLocation(), diag::note_declared_at
);
18552 SemaRef
.InnermostDeclarationWithDelayedImmediateInvocations()) {
18553 SemaRef
.Diag(Context
->Loc
, diag::note_invalid_consteval_initializer
)
18555 SemaRef
.Diag(Context
->Decl
->getBeginLoc(), diag::note_declared_at
);
18557 if (FD
->isImmediateEscalating() && !FD
->isConsteval())
18558 SemaRef
.DiagnoseImmediateEscalatingReason(FD
);
18561 SemaRef
.MarkExpressionAsImmediateEscalating(DR
);
18566 void Sema::PopExpressionEvaluationContext() {
18567 ExpressionEvaluationContextRecord
& Rec
= ExprEvalContexts
.back();
18568 unsigned NumTypos
= Rec
.NumTypos
;
18570 if (!Rec
.Lambdas
.empty()) {
18571 using ExpressionKind
= ExpressionEvaluationContextRecord::ExpressionKind
;
18572 if (!getLangOpts().CPlusPlus20
&&
18573 (Rec
.ExprContext
== ExpressionKind::EK_TemplateArgument
||
18574 Rec
.isUnevaluated() ||
18575 (Rec
.isConstantEvaluated() && !getLangOpts().CPlusPlus17
))) {
18577 if (Rec
.isUnevaluated()) {
18578 // C++11 [expr.prim.lambda]p2:
18579 // A lambda-expression shall not appear in an unevaluated operand
18581 D
= diag::err_lambda_unevaluated_operand
;
18582 } else if (Rec
.isConstantEvaluated() && !getLangOpts().CPlusPlus17
) {
18583 // C++1y [expr.const]p2:
18584 // A conditional-expression e is a core constant expression unless the
18585 // evaluation of e, following the rules of the abstract machine, would
18586 // evaluate [...] a lambda-expression.
18587 D
= diag::err_lambda_in_constant_expression
;
18588 } else if (Rec
.ExprContext
== ExpressionKind::EK_TemplateArgument
) {
18589 // C++17 [expr.prim.lamda]p2:
18590 // A lambda-expression shall not appear [...] in a template-argument.
18591 D
= diag::err_lambda_in_invalid_context
;
18593 llvm_unreachable("Couldn't infer lambda error message.");
18595 for (const auto *L
: Rec
.Lambdas
)
18596 Diag(L
->getBeginLoc(), D
);
18600 WarnOnPendingNoDerefs(Rec
);
18601 HandleImmediateInvocations(*this, Rec
);
18603 // Warn on any volatile-qualified simple-assignments that are not discarded-
18604 // value expressions nor unevaluated operands (those cases get removed from
18605 // this list by CheckUnusedVolatileAssignment).
18606 for (auto *BO
: Rec
.VolatileAssignmentLHSs
)
18607 Diag(BO
->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile
)
18610 // When are coming out of an unevaluated context, clear out any
18611 // temporaries that we may have created as part of the evaluation of
18612 // the expression in that context: they aren't relevant because they
18613 // will never be constructed.
18614 if (Rec
.isUnevaluated() || Rec
.isConstantEvaluated()) {
18615 ExprCleanupObjects
.erase(ExprCleanupObjects
.begin() + Rec
.NumCleanupObjects
,
18616 ExprCleanupObjects
.end());
18617 Cleanup
= Rec
.ParentCleanup
;
18618 CleanupVarDeclMarking();
18619 std::swap(MaybeODRUseExprs
, Rec
.SavedMaybeODRUseExprs
);
18620 // Otherwise, merge the contexts together.
18622 Cleanup
.mergeFrom(Rec
.ParentCleanup
);
18623 MaybeODRUseExprs
.insert(Rec
.SavedMaybeODRUseExprs
.begin(),
18624 Rec
.SavedMaybeODRUseExprs
.end());
18627 // Pop the current expression evaluation context off the stack.
18628 ExprEvalContexts
.pop_back();
18630 // The global expression evaluation context record is never popped.
18631 ExprEvalContexts
.back().NumTypos
+= NumTypos
;
18634 void Sema::DiscardCleanupsInEvaluationContext() {
18635 ExprCleanupObjects
.erase(
18636 ExprCleanupObjects
.begin() + ExprEvalContexts
.back().NumCleanupObjects
,
18637 ExprCleanupObjects
.end());
18639 MaybeODRUseExprs
.clear();
18642 ExprResult
Sema::HandleExprEvaluationContextForTypeof(Expr
*E
) {
18643 ExprResult Result
= CheckPlaceholderExpr(E
);
18644 if (Result
.isInvalid())
18645 return ExprError();
18647 if (!E
->getType()->isVariablyModifiedType())
18649 return TransformToPotentiallyEvaluated(E
);
18652 /// Are we in a context that is potentially constant evaluated per C++20
18653 /// [expr.const]p12?
18654 static bool isPotentiallyConstantEvaluatedContext(Sema
&SemaRef
) {
18655 /// C++2a [expr.const]p12:
18656 // An expression or conversion is potentially constant evaluated if it is
18657 switch (SemaRef
.ExprEvalContexts
.back().Context
) {
18658 case Sema::ExpressionEvaluationContext::ConstantEvaluated
:
18659 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext
:
18661 // -- a manifestly constant-evaluated expression,
18662 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated
:
18663 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
18664 case Sema::ExpressionEvaluationContext::DiscardedStatement
:
18665 // -- a potentially-evaluated expression,
18666 case Sema::ExpressionEvaluationContext::UnevaluatedList
:
18667 // -- an immediate subexpression of a braced-init-list,
18669 // -- [FIXME] an expression of the form & cast-expression that occurs
18670 // within a templated entity
18671 // -- a subexpression of one of the above that is not a subexpression of
18672 // a nested unevaluated operand.
18675 case Sema::ExpressionEvaluationContext::Unevaluated
:
18676 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract
:
18677 // Expressions in this context are never evaluated.
18680 llvm_unreachable("Invalid context");
18683 /// Return true if this function has a calling convention that requires mangling
18684 /// in the size of the parameter pack.
18685 static bool funcHasParameterSizeMangling(Sema
&S
, FunctionDecl
*FD
) {
18686 // These manglings don't do anything on non-Windows or non-x86 platforms, so
18687 // we don't need parameter type sizes.
18688 const llvm::Triple
&TT
= S
.Context
.getTargetInfo().getTriple();
18689 if (!TT
.isOSWindows() || !TT
.isX86())
18692 // If this is C++ and this isn't an extern "C" function, parameters do not
18693 // need to be complete. In this case, C++ mangling will apply, which doesn't
18694 // use the size of the parameters.
18695 if (S
.getLangOpts().CPlusPlus
&& !FD
->isExternC())
18698 // Stdcall, fastcall, and vectorcall need this special treatment.
18699 CallingConv CC
= FD
->getType()->castAs
<FunctionType
>()->getCallConv();
18701 case CC_X86StdCall
:
18702 case CC_X86FastCall
:
18703 case CC_X86VectorCall
:
18711 /// Require that all of the parameter types of function be complete. Normally,
18712 /// parameter types are only required to be complete when a function is called
18713 /// or defined, but to mangle functions with certain calling conventions, the
18714 /// mangler needs to know the size of the parameter list. In this situation,
18715 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18716 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18717 /// result in a linker error. Clang doesn't implement this behavior, and instead
18718 /// attempts to error at compile time.
18719 static void CheckCompleteParameterTypesForMangler(Sema
&S
, FunctionDecl
*FD
,
18720 SourceLocation Loc
) {
18721 class ParamIncompleteTypeDiagnoser
: public Sema::TypeDiagnoser
{
18723 ParmVarDecl
*Param
;
18726 ParamIncompleteTypeDiagnoser(FunctionDecl
*FD
, ParmVarDecl
*Param
)
18727 : FD(FD
), Param(Param
) {}
18729 void diagnose(Sema
&S
, SourceLocation Loc
, QualType T
) override
{
18730 CallingConv CC
= FD
->getType()->castAs
<FunctionType
>()->getCallConv();
18733 case CC_X86StdCall
:
18734 CCName
= "stdcall";
18736 case CC_X86FastCall
:
18737 CCName
= "fastcall";
18739 case CC_X86VectorCall
:
18740 CCName
= "vectorcall";
18743 llvm_unreachable("CC does not need mangling");
18746 S
.Diag(Loc
, diag::err_cconv_incomplete_param_type
)
18747 << Param
->getDeclName() << FD
->getDeclName() << CCName
;
18751 for (ParmVarDecl
*Param
: FD
->parameters()) {
18752 ParamIncompleteTypeDiagnoser
Diagnoser(FD
, Param
);
18753 S
.RequireCompleteType(Loc
, Param
->getType(), Diagnoser
);
18758 enum class OdrUseContext
{
18759 /// Declarations in this context are not odr-used.
18761 /// Declarations in this context are formally odr-used, but this is a
18762 /// dependent context.
18764 /// Declarations in this context are odr-used but not actually used (yet).
18766 /// Declarations in this context are used.
18771 /// Are we within a context in which references to resolved functions or to
18772 /// variables result in odr-use?
18773 static OdrUseContext
isOdrUseContext(Sema
&SemaRef
) {
18774 OdrUseContext Result
;
18776 switch (SemaRef
.ExprEvalContexts
.back().Context
) {
18777 case Sema::ExpressionEvaluationContext::Unevaluated
:
18778 case Sema::ExpressionEvaluationContext::UnevaluatedList
:
18779 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract
:
18780 return OdrUseContext::None
;
18782 case Sema::ExpressionEvaluationContext::ConstantEvaluated
:
18783 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext
:
18784 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated
:
18785 Result
= OdrUseContext::Used
;
18788 case Sema::ExpressionEvaluationContext::DiscardedStatement
:
18789 Result
= OdrUseContext::FormallyOdrUsed
;
18792 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
18793 // A default argument formally results in odr-use, but doesn't actually
18794 // result in a use in any real sense until it itself is used.
18795 Result
= OdrUseContext::FormallyOdrUsed
;
18799 if (SemaRef
.CurContext
->isDependentContext())
18800 return OdrUseContext::Dependent
;
18805 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl
*Func
) {
18806 if (!Func
->isConstexpr())
18809 if (Func
->isImplicitlyInstantiable() || !Func
->isUserProvided())
18811 auto *CCD
= dyn_cast
<CXXConstructorDecl
>(Func
);
18812 return CCD
&& CCD
->getInheritedConstructor();
18815 /// Mark a function referenced, and check whether it is odr-used
18816 /// (C++ [basic.def.odr]p2, C99 6.9p3)
18817 void Sema::MarkFunctionReferenced(SourceLocation Loc
, FunctionDecl
*Func
,
18818 bool MightBeOdrUse
) {
18819 assert(Func
&& "No function?");
18821 Func
->setReferenced();
18823 // Recursive functions aren't really used until they're used from some other
18825 bool IsRecursiveCall
= CurContext
== Func
;
18827 // C++11 [basic.def.odr]p3:
18828 // A function whose name appears as a potentially-evaluated expression is
18829 // odr-used if it is the unique lookup result or the selected member of a
18830 // set of overloaded functions [...].
18832 // We (incorrectly) mark overload resolution as an unevaluated context, so we
18833 // can just check that here.
18834 OdrUseContext OdrUse
=
18835 MightBeOdrUse
? isOdrUseContext(*this) : OdrUseContext::None
;
18836 if (IsRecursiveCall
&& OdrUse
== OdrUseContext::Used
)
18837 OdrUse
= OdrUseContext::FormallyOdrUsed
;
18839 // Trivial default constructors and destructors are never actually used.
18840 // FIXME: What about other special members?
18841 if (Func
->isTrivial() && !Func
->hasAttr
<DLLExportAttr
>() &&
18842 OdrUse
== OdrUseContext::Used
) {
18843 if (auto *Constructor
= dyn_cast
<CXXConstructorDecl
>(Func
))
18844 if (Constructor
->isDefaultConstructor())
18845 OdrUse
= OdrUseContext::FormallyOdrUsed
;
18846 if (isa
<CXXDestructorDecl
>(Func
))
18847 OdrUse
= OdrUseContext::FormallyOdrUsed
;
18850 // C++20 [expr.const]p12:
18851 // A function [...] is needed for constant evaluation if it is [...] a
18852 // constexpr function that is named by an expression that is potentially
18853 // constant evaluated
18854 bool NeededForConstantEvaluation
=
18855 isPotentiallyConstantEvaluatedContext(*this) &&
18856 isImplicitlyDefinableConstexprFunction(Func
);
18858 // Determine whether we require a function definition to exist, per
18859 // C++11 [temp.inst]p3:
18860 // Unless a function template specialization has been explicitly
18861 // instantiated or explicitly specialized, the function template
18862 // specialization is implicitly instantiated when the specialization is
18863 // referenced in a context that requires a function definition to exist.
18864 // C++20 [temp.inst]p7:
18865 // The existence of a definition of a [...] function is considered to
18866 // affect the semantics of the program if the [...] function is needed for
18867 // constant evaluation by an expression
18868 // C++20 [basic.def.odr]p10:
18869 // Every program shall contain exactly one definition of every non-inline
18870 // function or variable that is odr-used in that program outside of a
18871 // discarded statement
18872 // C++20 [special]p1:
18873 // The implementation will implicitly define [defaulted special members]
18874 // if they are odr-used or needed for constant evaluation.
18876 // Note that we skip the implicit instantiation of templates that are only
18877 // used in unused default arguments or by recursive calls to themselves.
18878 // This is formally non-conforming, but seems reasonable in practice.
18879 bool NeedDefinition
= !IsRecursiveCall
&& (OdrUse
== OdrUseContext::Used
||
18880 NeededForConstantEvaluation
);
18882 // C++14 [temp.expl.spec]p6:
18883 // If a template [...] is explicitly specialized then that specialization
18884 // shall be declared before the first use of that specialization that would
18885 // cause an implicit instantiation to take place, in every translation unit
18886 // in which such a use occurs
18887 if (NeedDefinition
&&
18888 (Func
->getTemplateSpecializationKind() != TSK_Undeclared
||
18889 Func
->getMemberSpecializationInfo()))
18890 checkSpecializationReachability(Loc
, Func
);
18892 if (getLangOpts().CUDA
)
18893 CheckCUDACall(Loc
, Func
);
18895 // If we need a definition, try to create one.
18896 if (NeedDefinition
&& !Func
->getBody()) {
18897 runWithSufficientStackSpace(Loc
, [&] {
18898 if (CXXConstructorDecl
*Constructor
=
18899 dyn_cast
<CXXConstructorDecl
>(Func
)) {
18900 Constructor
= cast
<CXXConstructorDecl
>(Constructor
->getFirstDecl());
18901 if (Constructor
->isDefaulted() && !Constructor
->isDeleted()) {
18902 if (Constructor
->isDefaultConstructor()) {
18903 if (Constructor
->isTrivial() &&
18904 !Constructor
->hasAttr
<DLLExportAttr
>())
18906 DefineImplicitDefaultConstructor(Loc
, Constructor
);
18907 } else if (Constructor
->isCopyConstructor()) {
18908 DefineImplicitCopyConstructor(Loc
, Constructor
);
18909 } else if (Constructor
->isMoveConstructor()) {
18910 DefineImplicitMoveConstructor(Loc
, Constructor
);
18912 } else if (Constructor
->getInheritedConstructor()) {
18913 DefineInheritingConstructor(Loc
, Constructor
);
18915 } else if (CXXDestructorDecl
*Destructor
=
18916 dyn_cast
<CXXDestructorDecl
>(Func
)) {
18917 Destructor
= cast
<CXXDestructorDecl
>(Destructor
->getFirstDecl());
18918 if (Destructor
->isDefaulted() && !Destructor
->isDeleted()) {
18919 if (Destructor
->isTrivial() && !Destructor
->hasAttr
<DLLExportAttr
>())
18921 DefineImplicitDestructor(Loc
, Destructor
);
18923 if (Destructor
->isVirtual() && getLangOpts().AppleKext
)
18924 MarkVTableUsed(Loc
, Destructor
->getParent());
18925 } else if (CXXMethodDecl
*MethodDecl
= dyn_cast
<CXXMethodDecl
>(Func
)) {
18926 if (MethodDecl
->isOverloadedOperator() &&
18927 MethodDecl
->getOverloadedOperator() == OO_Equal
) {
18928 MethodDecl
= cast
<CXXMethodDecl
>(MethodDecl
->getFirstDecl());
18929 if (MethodDecl
->isDefaulted() && !MethodDecl
->isDeleted()) {
18930 if (MethodDecl
->isCopyAssignmentOperator())
18931 DefineImplicitCopyAssignment(Loc
, MethodDecl
);
18932 else if (MethodDecl
->isMoveAssignmentOperator())
18933 DefineImplicitMoveAssignment(Loc
, MethodDecl
);
18935 } else if (isa
<CXXConversionDecl
>(MethodDecl
) &&
18936 MethodDecl
->getParent()->isLambda()) {
18937 CXXConversionDecl
*Conversion
=
18938 cast
<CXXConversionDecl
>(MethodDecl
->getFirstDecl());
18939 if (Conversion
->isLambdaToBlockPointerConversion())
18940 DefineImplicitLambdaToBlockPointerConversion(Loc
, Conversion
);
18942 DefineImplicitLambdaToFunctionPointerConversion(Loc
, Conversion
);
18943 } else if (MethodDecl
->isVirtual() && getLangOpts().AppleKext
)
18944 MarkVTableUsed(Loc
, MethodDecl
->getParent());
18947 if (Func
->isDefaulted() && !Func
->isDeleted()) {
18948 DefaultedComparisonKind DCK
= getDefaultedComparisonKind(Func
);
18949 if (DCK
!= DefaultedComparisonKind::None
)
18950 DefineDefaultedComparison(Loc
, Func
, DCK
);
18953 // Implicit instantiation of function templates and member functions of
18954 // class templates.
18955 if (Func
->isImplicitlyInstantiable()) {
18956 TemplateSpecializationKind TSK
=
18957 Func
->getTemplateSpecializationKindForInstantiation();
18958 SourceLocation PointOfInstantiation
= Func
->getPointOfInstantiation();
18959 bool FirstInstantiation
= PointOfInstantiation
.isInvalid();
18960 if (FirstInstantiation
) {
18961 PointOfInstantiation
= Loc
;
18962 if (auto *MSI
= Func
->getMemberSpecializationInfo())
18963 MSI
->setPointOfInstantiation(Loc
);
18964 // FIXME: Notify listener.
18966 Func
->setTemplateSpecializationKind(TSK
, PointOfInstantiation
);
18967 } else if (TSK
!= TSK_ImplicitInstantiation
) {
18968 // Use the point of use as the point of instantiation, instead of the
18969 // point of explicit instantiation (which we track as the actual point
18970 // of instantiation). This gives better backtraces in diagnostics.
18971 PointOfInstantiation
= Loc
;
18974 if (FirstInstantiation
|| TSK
!= TSK_ImplicitInstantiation
||
18975 Func
->isConstexpr()) {
18976 if (isa
<CXXRecordDecl
>(Func
->getDeclContext()) &&
18977 cast
<CXXRecordDecl
>(Func
->getDeclContext())->isLocalClass() &&
18978 CodeSynthesisContexts
.size())
18979 PendingLocalImplicitInstantiations
.push_back(
18980 std::make_pair(Func
, PointOfInstantiation
));
18981 else if (Func
->isConstexpr())
18982 // Do not defer instantiations of constexpr functions, to avoid the
18983 // expression evaluator needing to call back into Sema if it sees a
18984 // call to such a function.
18985 InstantiateFunctionDefinition(PointOfInstantiation
, Func
);
18987 Func
->setInstantiationIsPending(true);
18988 PendingInstantiations
.push_back(
18989 std::make_pair(Func
, PointOfInstantiation
));
18990 // Notify the consumer that a function was implicitly instantiated.
18991 Consumer
.HandleCXXImplicitFunctionInstantiation(Func
);
18995 // Walk redefinitions, as some of them may be instantiable.
18996 for (auto *i
: Func
->redecls()) {
18997 if (!i
->isUsed(false) && i
->isImplicitlyInstantiable())
18998 MarkFunctionReferenced(Loc
, i
, MightBeOdrUse
);
19004 // If a constructor was defined in the context of a default parameter
19005 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
19006 // context), its initializers may not be referenced yet.
19007 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(Func
)) {
19008 EnterExpressionEvaluationContext
EvalContext(
19010 Constructor
->isImmediateFunction()
19011 ? ExpressionEvaluationContext::ImmediateFunctionContext
19012 : ExpressionEvaluationContext::PotentiallyEvaluated
,
19014 for (CXXCtorInitializer
*Init
: Constructor
->inits()) {
19015 if (Init
->isInClassMemberInitializer())
19016 runWithSufficientStackSpace(Init
->getSourceLocation(), [&]() {
19017 MarkDeclarationsReferencedInExpr(Init
->getInit());
19022 // C++14 [except.spec]p17:
19023 // An exception-specification is considered to be needed when:
19024 // - the function is odr-used or, if it appears in an unevaluated operand,
19025 // would be odr-used if the expression were potentially-evaluated;
19027 // Note, we do this even if MightBeOdrUse is false. That indicates that the
19028 // function is a pure virtual function we're calling, and in that case the
19029 // function was selected by overload resolution and we need to resolve its
19030 // exception specification for a different reason.
19031 const FunctionProtoType
*FPT
= Func
->getType()->getAs
<FunctionProtoType
>();
19032 if (FPT
&& isUnresolvedExceptionSpec(FPT
->getExceptionSpecType()))
19033 ResolveExceptionSpec(Loc
, FPT
);
19035 // If this is the first "real" use, act on that.
19036 if (OdrUse
== OdrUseContext::Used
&& !Func
->isUsed(/*CheckUsedAttr=*/false)) {
19037 // Keep track of used but undefined functions.
19038 if (!Func
->isDefined()) {
19039 if (mightHaveNonExternalLinkage(Func
))
19040 UndefinedButUsed
.insert(std::make_pair(Func
->getCanonicalDecl(), Loc
));
19041 else if (Func
->getMostRecentDecl()->isInlined() &&
19042 !LangOpts
.GNUInline
&&
19043 !Func
->getMostRecentDecl()->hasAttr
<GNUInlineAttr
>())
19044 UndefinedButUsed
.insert(std::make_pair(Func
->getCanonicalDecl(), Loc
));
19045 else if (isExternalWithNoLinkageType(Func
))
19046 UndefinedButUsed
.insert(std::make_pair(Func
->getCanonicalDecl(), Loc
));
19049 // Some x86 Windows calling conventions mangle the size of the parameter
19050 // pack into the name. Computing the size of the parameters requires the
19051 // parameter types to be complete. Check that now.
19052 if (funcHasParameterSizeMangling(*this, Func
))
19053 CheckCompleteParameterTypesForMangler(*this, Func
, Loc
);
19055 // In the MS C++ ABI, the compiler emits destructor variants where they are
19056 // used. If the destructor is used here but defined elsewhere, mark the
19057 // virtual base destructors referenced. If those virtual base destructors
19058 // are inline, this will ensure they are defined when emitting the complete
19059 // destructor variant. This checking may be redundant if the destructor is
19060 // provided later in this TU.
19061 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
19062 if (auto *Dtor
= dyn_cast
<CXXDestructorDecl
>(Func
)) {
19063 CXXRecordDecl
*Parent
= Dtor
->getParent();
19064 if (Parent
->getNumVBases() > 0 && !Dtor
->getBody())
19065 CheckCompleteDestructorVariant(Loc
, Dtor
);
19069 Func
->markUsed(Context
);
19073 /// Directly mark a variable odr-used. Given a choice, prefer to use
19074 /// MarkVariableReferenced since it does additional checks and then
19075 /// calls MarkVarDeclODRUsed.
19076 /// If the variable must be captured:
19077 /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
19078 /// - else capture it in the DeclContext that maps to the
19079 /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
19081 MarkVarDeclODRUsed(ValueDecl
*V
, SourceLocation Loc
, Sema
&SemaRef
,
19082 const unsigned *const FunctionScopeIndexToStopAt
= nullptr) {
19083 // Keep track of used but undefined variables.
19084 // FIXME: We shouldn't suppress this warning for static data members.
19085 VarDecl
*Var
= V
->getPotentiallyDecomposedVarDecl();
19086 assert(Var
&& "expected a capturable variable");
19088 if (Var
->hasDefinition(SemaRef
.Context
) == VarDecl::DeclarationOnly
&&
19089 (!Var
->isExternallyVisible() || Var
->isInline() ||
19090 SemaRef
.isExternalWithNoLinkageType(Var
)) &&
19091 !(Var
->isStaticDataMember() && Var
->hasInit())) {
19092 SourceLocation
&old
= SemaRef
.UndefinedButUsed
[Var
->getCanonicalDecl()];
19093 if (old
.isInvalid())
19096 QualType CaptureType
, DeclRefType
;
19097 if (SemaRef
.LangOpts
.OpenMP
)
19098 SemaRef
.tryCaptureOpenMPLambdas(V
);
19099 SemaRef
.tryCaptureVariable(V
, Loc
, Sema::TryCapture_Implicit
,
19100 /*EllipsisLoc*/ SourceLocation(),
19101 /*BuildAndDiagnose*/ true, CaptureType
,
19102 DeclRefType
, FunctionScopeIndexToStopAt
);
19104 if (SemaRef
.LangOpts
.CUDA
&& Var
->hasGlobalStorage()) {
19105 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(SemaRef
.CurContext
);
19106 auto VarTarget
= SemaRef
.IdentifyCUDATarget(Var
);
19107 auto UserTarget
= SemaRef
.IdentifyCUDATarget(FD
);
19108 if (VarTarget
== Sema::CVT_Host
&&
19109 (UserTarget
== Sema::CFT_Device
|| UserTarget
== Sema::CFT_HostDevice
||
19110 UserTarget
== Sema::CFT_Global
)) {
19111 // Diagnose ODR-use of host global variables in device functions.
19112 // Reference of device global variables in host functions is allowed
19113 // through shadow variables therefore it is not diagnosed.
19114 if (SemaRef
.LangOpts
.CUDAIsDevice
) {
19115 SemaRef
.targetDiag(Loc
, diag::err_ref_bad_target
)
19116 << /*host*/ 2 << /*variable*/ 1 << Var
<< UserTarget
;
19117 SemaRef
.targetDiag(Var
->getLocation(),
19118 Var
->getType().isConstQualified()
19119 ? diag::note_cuda_const_var_unpromoted
19120 : diag::note_cuda_host_var
);
19122 } else if (VarTarget
== Sema::CVT_Device
&&
19123 (UserTarget
== Sema::CFT_Host
||
19124 UserTarget
== Sema::CFT_HostDevice
)) {
19125 // Record a CUDA/HIP device side variable if it is ODR-used
19126 // by host code. This is done conservatively, when the variable is
19127 // referenced in any of the following contexts:
19128 // - a non-function context
19129 // - a host function
19130 // - a host device function
19131 // This makes the ODR-use of the device side variable by host code to
19132 // be visible in the device compilation for the compiler to be able to
19133 // emit template variables instantiated by host code only and to
19134 // externalize the static device side variable ODR-used by host code.
19135 if (!Var
->hasExternalStorage())
19136 SemaRef
.getASTContext().CUDADeviceVarODRUsedByHost
.insert(Var
);
19137 else if (SemaRef
.LangOpts
.GPURelocatableDeviceCode
)
19138 SemaRef
.getASTContext().CUDAExternalDeviceDeclODRUsedByHost
.insert(Var
);
19142 V
->markUsed(SemaRef
.Context
);
19145 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl
*Capture
,
19146 SourceLocation Loc
,
19147 unsigned CapturingScopeIndex
) {
19148 MarkVarDeclODRUsed(Capture
, Loc
, *this, &CapturingScopeIndex
);
19151 void diagnoseUncapturableValueReferenceOrBinding(Sema
&S
, SourceLocation loc
,
19153 DeclContext
*VarDC
= var
->getDeclContext();
19155 // If the parameter still belongs to the translation unit, then
19156 // we're actually just using one parameter in the declaration of
19158 if (isa
<ParmVarDecl
>(var
) &&
19159 isa
<TranslationUnitDecl
>(VarDC
))
19162 // For C code, don't diagnose about capture if we're not actually in code
19163 // right now; it's impossible to write a non-constant expression outside of
19164 // function context, so we'll get other (more useful) diagnostics later.
19166 // For C++, things get a bit more nasty... it would be nice to suppress this
19167 // diagnostic for certain cases like using a local variable in an array bound
19168 // for a member of a local class, but the correct predicate is not obvious.
19169 if (!S
.getLangOpts().CPlusPlus
&& !S
.CurContext
->isFunctionOrMethod())
19172 unsigned ValueKind
= isa
<BindingDecl
>(var
) ? 1 : 0;
19173 unsigned ContextKind
= 3; // unknown
19174 if (isa
<CXXMethodDecl
>(VarDC
) &&
19175 cast
<CXXRecordDecl
>(VarDC
->getParent())->isLambda()) {
19177 } else if (isa
<FunctionDecl
>(VarDC
)) {
19179 } else if (isa
<BlockDecl
>(VarDC
)) {
19183 S
.Diag(loc
, diag::err_reference_to_local_in_enclosing_context
)
19184 << var
<< ValueKind
<< ContextKind
<< VarDC
;
19185 S
.Diag(var
->getLocation(), diag::note_entity_declared_at
)
19188 // FIXME: Add additional diagnostic info about class etc. which prevents
19192 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo
*CSI
,
19194 bool &SubCapturesAreNested
,
19195 QualType
&CaptureType
,
19196 QualType
&DeclRefType
) {
19197 // Check whether we've already captured it.
19198 if (CSI
->CaptureMap
.count(Var
)) {
19199 // If we found a capture, any subcaptures are nested.
19200 SubCapturesAreNested
= true;
19202 // Retrieve the capture type for this variable.
19203 CaptureType
= CSI
->getCapture(Var
).getCaptureType();
19205 // Compute the type of an expression that refers to this variable.
19206 DeclRefType
= CaptureType
.getNonReferenceType();
19208 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
19209 // are mutable in the sense that user can change their value - they are
19210 // private instances of the captured declarations.
19211 const Capture
&Cap
= CSI
->getCapture(Var
);
19212 if (Cap
.isCopyCapture() &&
19213 !(isa
<LambdaScopeInfo
>(CSI
) && cast
<LambdaScopeInfo
>(CSI
)->Mutable
) &&
19214 !(isa
<CapturedRegionScopeInfo
>(CSI
) &&
19215 cast
<CapturedRegionScopeInfo
>(CSI
)->CapRegionKind
== CR_OpenMP
))
19216 DeclRefType
.addConst();
19222 // Only block literals, captured statements, and lambda expressions can
19223 // capture; other scopes don't work.
19224 static DeclContext
*getParentOfCapturingContextOrNull(DeclContext
*DC
,
19226 SourceLocation Loc
,
19227 const bool Diagnose
,
19229 if (isa
<BlockDecl
>(DC
) || isa
<CapturedDecl
>(DC
) || isLambdaCallOperator(DC
))
19230 return getLambdaAwareParentOfDeclContext(DC
);
19232 VarDecl
*Underlying
= Var
->getPotentiallyDecomposedVarDecl();
19234 if (Underlying
->hasLocalStorage() && Diagnose
)
19235 diagnoseUncapturableValueReferenceOrBinding(S
, Loc
, Var
);
19240 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19241 // certain types of variables (unnamed, variably modified types etc.)
19242 // so check for eligibility.
19243 static bool isVariableCapturable(CapturingScopeInfo
*CSI
, ValueDecl
*Var
,
19244 SourceLocation Loc
, const bool Diagnose
,
19247 assert((isa
<VarDecl
, BindingDecl
>(Var
)) &&
19248 "Only variables and structured bindings can be captured");
19250 bool IsBlock
= isa
<BlockScopeInfo
>(CSI
);
19251 bool IsLambda
= isa
<LambdaScopeInfo
>(CSI
);
19253 // Lambdas are not allowed to capture unnamed variables
19254 // (e.g. anonymous unions).
19255 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
19256 // assuming that's the intent.
19257 if (IsLambda
&& !Var
->getDeclName()) {
19259 S
.Diag(Loc
, diag::err_lambda_capture_anonymous_var
);
19260 S
.Diag(Var
->getLocation(), diag::note_declared_at
);
19265 // Prohibit variably-modified types in blocks; they're difficult to deal with.
19266 if (Var
->getType()->isVariablyModifiedType() && IsBlock
) {
19268 S
.Diag(Loc
, diag::err_ref_vm_type
);
19269 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19273 // Prohibit structs with flexible array members too.
19274 // We cannot capture what is in the tail end of the struct.
19275 if (const RecordType
*VTTy
= Var
->getType()->getAs
<RecordType
>()) {
19276 if (VTTy
->getDecl()->hasFlexibleArrayMember()) {
19279 S
.Diag(Loc
, diag::err_ref_flexarray_type
);
19281 S
.Diag(Loc
, diag::err_lambda_capture_flexarray_type
) << Var
;
19282 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19287 const bool HasBlocksAttr
= Var
->hasAttr
<BlocksAttr
>();
19288 // Lambdas and captured statements are not allowed to capture __block
19289 // variables; they don't support the expected semantics.
19290 if (HasBlocksAttr
&& (IsLambda
|| isa
<CapturedRegionScopeInfo
>(CSI
))) {
19292 S
.Diag(Loc
, diag::err_capture_block_variable
) << Var
<< !IsLambda
;
19293 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19297 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
19298 if (S
.getLangOpts().OpenCL
&& IsBlock
&&
19299 Var
->getType()->isBlockPointerType()) {
19301 S
.Diag(Loc
, diag::err_opencl_block_ref_block
);
19305 if (isa
<BindingDecl
>(Var
)) {
19306 if (!IsLambda
|| !S
.getLangOpts().CPlusPlus
) {
19308 diagnoseUncapturableValueReferenceOrBinding(S
, Loc
, Var
);
19310 } else if (Diagnose
&& S
.getLangOpts().CPlusPlus
) {
19311 S
.Diag(Loc
, S
.LangOpts
.CPlusPlus20
19312 ? diag::warn_cxx17_compat_capture_binding
19313 : diag::ext_capture_binding
)
19315 S
.Diag(Var
->getLocation(), diag::note_entity_declared_at
) << Var
;
19322 // Returns true if the capture by block was successful.
19323 static bool captureInBlock(BlockScopeInfo
*BSI
, ValueDecl
*Var
,
19324 SourceLocation Loc
, const bool BuildAndDiagnose
,
19325 QualType
&CaptureType
, QualType
&DeclRefType
,
19326 const bool Nested
, Sema
&S
, bool Invalid
) {
19327 bool ByRef
= false;
19329 // Blocks are not allowed to capture arrays, excepting OpenCL.
19330 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
19331 // (decayed to pointers).
19332 if (!Invalid
&& !S
.getLangOpts().OpenCL
&& CaptureType
->isArrayType()) {
19333 if (BuildAndDiagnose
) {
19334 S
.Diag(Loc
, diag::err_ref_array_type
);
19335 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19342 // Forbid the block-capture of autoreleasing variables.
19344 CaptureType
.getObjCLifetime() == Qualifiers::OCL_Autoreleasing
) {
19345 if (BuildAndDiagnose
) {
19346 S
.Diag(Loc
, diag::err_arc_autoreleasing_capture
)
19348 S
.Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19355 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19356 if (const auto *PT
= CaptureType
->getAs
<PointerType
>()) {
19357 QualType PointeeTy
= PT
->getPointeeType();
19359 if (!Invalid
&& PointeeTy
->getAs
<ObjCObjectPointerType
>() &&
19360 PointeeTy
.getObjCLifetime() == Qualifiers::OCL_Autoreleasing
&&
19361 !S
.Context
.hasDirectOwnershipQualifier(PointeeTy
)) {
19362 if (BuildAndDiagnose
) {
19363 SourceLocation VarLoc
= Var
->getLocation();
19364 S
.Diag(Loc
, diag::warn_block_capture_autoreleasing
);
19365 S
.Diag(VarLoc
, diag::note_declare_parameter_strong
);
19370 const bool HasBlocksAttr
= Var
->hasAttr
<BlocksAttr
>();
19371 if (HasBlocksAttr
|| CaptureType
->isReferenceType() ||
19372 (S
.getLangOpts().OpenMP
&& S
.isOpenMPCapturedDecl(Var
))) {
19373 // Block capture by reference does not change the capture or
19374 // declaration reference types.
19377 // Block capture by copy introduces 'const'.
19378 CaptureType
= CaptureType
.getNonReferenceType().withConst();
19379 DeclRefType
= CaptureType
;
19382 // Actually capture the variable.
19383 if (BuildAndDiagnose
)
19384 BSI
->addCapture(Var
, HasBlocksAttr
, ByRef
, Nested
, Loc
, SourceLocation(),
19385 CaptureType
, Invalid
);
19390 /// Capture the given variable in the captured region.
19391 static bool captureInCapturedRegion(
19392 CapturedRegionScopeInfo
*RSI
, ValueDecl
*Var
, SourceLocation Loc
,
19393 const bool BuildAndDiagnose
, QualType
&CaptureType
, QualType
&DeclRefType
,
19394 const bool RefersToCapturedVariable
, Sema::TryCaptureKind Kind
,
19395 bool IsTopScope
, Sema
&S
, bool Invalid
) {
19396 // By default, capture variables by reference.
19398 if (IsTopScope
&& Kind
!= Sema::TryCapture_Implicit
) {
19399 ByRef
= (Kind
== Sema::TryCapture_ExplicitByRef
);
19400 } else if (S
.getLangOpts().OpenMP
&& RSI
->CapRegionKind
== CR_OpenMP
) {
19401 // Using an LValue reference type is consistent with Lambdas (see below).
19402 if (S
.isOpenMPCapturedDecl(Var
)) {
19403 bool HasConst
= DeclRefType
.isConstQualified();
19404 DeclRefType
= DeclRefType
.getUnqualifiedType();
19405 // Don't lose diagnostics about assignments to const.
19407 DeclRefType
.addConst();
19409 // Do not capture firstprivates in tasks.
19410 if (S
.isOpenMPPrivateDecl(Var
, RSI
->OpenMPLevel
, RSI
->OpenMPCaptureLevel
) !=
19413 ByRef
= S
.isOpenMPCapturedByRef(Var
, RSI
->OpenMPLevel
,
19414 RSI
->OpenMPCaptureLevel
);
19418 CaptureType
= S
.Context
.getLValueReferenceType(DeclRefType
);
19420 CaptureType
= DeclRefType
;
19422 // Actually capture the variable.
19423 if (BuildAndDiagnose
)
19424 RSI
->addCapture(Var
, /*isBlock*/ false, ByRef
, RefersToCapturedVariable
,
19425 Loc
, SourceLocation(), CaptureType
, Invalid
);
19430 /// Capture the given variable in the lambda.
19431 static bool captureInLambda(LambdaScopeInfo
*LSI
, ValueDecl
*Var
,
19432 SourceLocation Loc
, const bool BuildAndDiagnose
,
19433 QualType
&CaptureType
, QualType
&DeclRefType
,
19434 const bool RefersToCapturedVariable
,
19435 const Sema::TryCaptureKind Kind
,
19436 SourceLocation EllipsisLoc
, const bool IsTopScope
,
19437 Sema
&S
, bool Invalid
) {
19438 // Determine whether we are capturing by reference or by value.
19439 bool ByRef
= false;
19440 if (IsTopScope
&& Kind
!= Sema::TryCapture_Implicit
) {
19441 ByRef
= (Kind
== Sema::TryCapture_ExplicitByRef
);
19443 ByRef
= (LSI
->ImpCaptureStyle
== LambdaScopeInfo::ImpCap_LambdaByref
);
19446 BindingDecl
*BD
= dyn_cast
<BindingDecl
>(Var
);
19447 // FIXME: We should support capturing structured bindings in OpenMP.
19448 if (!Invalid
&& BD
&& S
.LangOpts
.OpenMP
) {
19449 if (BuildAndDiagnose
) {
19450 S
.Diag(Loc
, diag::err_capture_binding_openmp
) << Var
;
19451 S
.Diag(Var
->getLocation(), diag::note_entity_declared_at
) << Var
;
19456 if (BuildAndDiagnose
&& S
.Context
.getTargetInfo().getTriple().isWasm() &&
19457 CaptureType
.getNonReferenceType().isWebAssemblyReferenceType()) {
19458 S
.Diag(Loc
, diag::err_wasm_ca_reference
) << 0;
19462 // Compute the type of the field that will capture this variable.
19464 // C++11 [expr.prim.lambda]p15:
19465 // An entity is captured by reference if it is implicitly or
19466 // explicitly captured but not captured by copy. It is
19467 // unspecified whether additional unnamed non-static data
19468 // members are declared in the closure type for entities
19469 // captured by reference.
19471 // FIXME: It is not clear whether we want to build an lvalue reference
19472 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19473 // to do the former, while EDG does the latter. Core issue 1249 will
19474 // clarify, but for now we follow GCC because it's a more permissive and
19475 // easily defensible position.
19476 CaptureType
= S
.Context
.getLValueReferenceType(DeclRefType
);
19478 // C++11 [expr.prim.lambda]p14:
19479 // For each entity captured by copy, an unnamed non-static
19480 // data member is declared in the closure type. The
19481 // declaration order of these members is unspecified. The type
19482 // of such a data member is the type of the corresponding
19483 // captured entity if the entity is not a reference to an
19484 // object, or the referenced type otherwise. [Note: If the
19485 // captured entity is a reference to a function, the
19486 // corresponding data member is also a reference to a
19487 // function. - end note ]
19488 if (const ReferenceType
*RefType
= CaptureType
->getAs
<ReferenceType
>()){
19489 if (!RefType
->getPointeeType()->isFunctionType())
19490 CaptureType
= RefType
->getPointeeType();
19493 // Forbid the lambda copy-capture of autoreleasing variables.
19495 CaptureType
.getObjCLifetime() == Qualifiers::OCL_Autoreleasing
) {
19496 if (BuildAndDiagnose
) {
19497 S
.Diag(Loc
, diag::err_arc_autoreleasing_capture
) << /*lambda*/ 1;
19498 S
.Diag(Var
->getLocation(), diag::note_previous_decl
)
19499 << Var
->getDeclName();
19506 // Make sure that by-copy captures are of a complete and non-abstract type.
19507 if (!Invalid
&& BuildAndDiagnose
) {
19508 if (!CaptureType
->isDependentType() &&
19509 S
.RequireCompleteSizedType(
19511 diag::err_capture_of_incomplete_or_sizeless_type
,
19512 Var
->getDeclName()))
19514 else if (S
.RequireNonAbstractType(Loc
, CaptureType
,
19515 diag::err_capture_of_abstract_type
))
19520 // Compute the type of a reference to this captured variable.
19522 DeclRefType
= CaptureType
.getNonReferenceType();
19524 // C++ [expr.prim.lambda]p5:
19525 // The closure type for a lambda-expression has a public inline
19526 // function call operator [...]. This function call operator is
19527 // declared const (9.3.1) if and only if the lambda-expression's
19528 // parameter-declaration-clause is not followed by mutable.
19529 DeclRefType
= CaptureType
.getNonReferenceType();
19530 if (!LSI
->Mutable
&& !CaptureType
->isReferenceType())
19531 DeclRefType
.addConst();
19534 // Add the capture.
19535 if (BuildAndDiagnose
)
19536 LSI
->addCapture(Var
, /*isBlock=*/false, ByRef
, RefersToCapturedVariable
,
19537 Loc
, EllipsisLoc
, CaptureType
, Invalid
);
19542 static bool canCaptureVariableByCopy(ValueDecl
*Var
,
19543 const ASTContext
&Context
) {
19544 // Offer a Copy fix even if the type is dependent.
19545 if (Var
->getType()->isDependentType())
19547 QualType T
= Var
->getType().getNonReferenceType();
19548 if (T
.isTriviallyCopyableType(Context
))
19550 if (CXXRecordDecl
*RD
= T
->getAsCXXRecordDecl()) {
19552 if (!(RD
= RD
->getDefinition()))
19554 if (RD
->hasSimpleCopyConstructor())
19556 if (RD
->hasUserDeclaredCopyConstructor())
19557 for (CXXConstructorDecl
*Ctor
: RD
->ctors())
19558 if (Ctor
->isCopyConstructor())
19559 return !Ctor
->isDeleted();
19564 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19565 /// default capture. Fixes may be omitted if they aren't allowed by the
19566 /// standard, for example we can't emit a default copy capture fix-it if we
19567 /// already explicitly copy capture capture another variable.
19568 static void buildLambdaCaptureFixit(Sema
&Sema
, LambdaScopeInfo
*LSI
,
19570 assert(LSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_None
);
19571 // Don't offer Capture by copy of default capture by copy fixes if Var is
19572 // known not to be copy constructible.
19573 bool ShouldOfferCopyFix
= canCaptureVariableByCopy(Var
, Sema
.getASTContext());
19575 SmallString
<32> FixBuffer
;
19576 StringRef Separator
= LSI
->NumExplicitCaptures
> 0 ? ", " : "";
19577 if (Var
->getDeclName().isIdentifier() && !Var
->getName().empty()) {
19578 SourceLocation VarInsertLoc
= LSI
->IntroducerRange
.getEnd();
19579 if (ShouldOfferCopyFix
) {
19580 // Offer fixes to insert an explicit capture for the variable.
19582 // [OtherCapture] -> [OtherCapture, VarName]
19583 FixBuffer
.assign({Separator
, Var
->getName()});
19584 Sema
.Diag(VarInsertLoc
, diag::note_lambda_variable_capture_fixit
)
19585 << Var
<< /*value*/ 0
19586 << FixItHint::CreateInsertion(VarInsertLoc
, FixBuffer
);
19588 // As above but capture by reference.
19589 FixBuffer
.assign({Separator
, "&", Var
->getName()});
19590 Sema
.Diag(VarInsertLoc
, diag::note_lambda_variable_capture_fixit
)
19591 << Var
<< /*reference*/ 1
19592 << FixItHint::CreateInsertion(VarInsertLoc
, FixBuffer
);
19595 // Only try to offer default capture if there are no captures excluding this
19596 // and init captures.
19599 // [&A, &B]: Don't offer.
19600 // [A, B]: Don't offer.
19601 if (llvm::any_of(LSI
->Captures
, [](Capture
&C
) {
19602 return !C
.isThisCapture() && !C
.isInitCapture();
19606 // The default capture specifiers, '=' or '&', must appear first in the
19608 SourceLocation DefaultInsertLoc
=
19609 LSI
->IntroducerRange
.getBegin().getLocWithOffset(1);
19611 if (ShouldOfferCopyFix
) {
19612 bool CanDefaultCopyCapture
= true;
19613 // [=, *this] OK since c++17
19614 // [=, this] OK since c++20
19615 if (LSI
->isCXXThisCaptured() && !Sema
.getLangOpts().CPlusPlus20
)
19616 CanDefaultCopyCapture
= Sema
.getLangOpts().CPlusPlus17
19617 ? LSI
->getCXXThisCapture().isCopyCapture()
19619 // We can't use default capture by copy if any captures already specified
19620 // capture by copy.
19621 if (CanDefaultCopyCapture
&& llvm::none_of(LSI
->Captures
, [](Capture
&C
) {
19622 return !C
.isThisCapture() && !C
.isInitCapture() && C
.isCopyCapture();
19624 FixBuffer
.assign({"=", Separator
});
19625 Sema
.Diag(DefaultInsertLoc
, diag::note_lambda_default_capture_fixit
)
19627 << FixItHint::CreateInsertion(DefaultInsertLoc
, FixBuffer
);
19631 // We can't use default capture by reference if any captures already specified
19632 // capture by reference.
19633 if (llvm::none_of(LSI
->Captures
, [](Capture
&C
) {
19634 return !C
.isInitCapture() && C
.isReferenceCapture() &&
19635 !C
.isThisCapture();
19637 FixBuffer
.assign({"&", Separator
});
19638 Sema
.Diag(DefaultInsertLoc
, diag::note_lambda_default_capture_fixit
)
19640 << FixItHint::CreateInsertion(DefaultInsertLoc
, FixBuffer
);
19644 bool Sema::tryCaptureVariable(
19645 ValueDecl
*Var
, SourceLocation ExprLoc
, TryCaptureKind Kind
,
19646 SourceLocation EllipsisLoc
, bool BuildAndDiagnose
, QualType
&CaptureType
,
19647 QualType
&DeclRefType
, const unsigned *const FunctionScopeIndexToStopAt
) {
19648 // An init-capture is notionally from the context surrounding its
19649 // declaration, but its parent DC is the lambda class.
19650 DeclContext
*VarDC
= Var
->getDeclContext();
19651 DeclContext
*DC
= CurContext
;
19653 // tryCaptureVariable is called every time a DeclRef is formed,
19654 // it can therefore have non-negigible impact on performances.
19655 // For local variables and when there is no capturing scope,
19656 // we can bailout early.
19657 if (CapturingFunctionScopes
== 0 && (!BuildAndDiagnose
|| VarDC
== DC
))
19660 const auto *VD
= dyn_cast
<VarDecl
>(Var
);
19662 if (VD
->isInitCapture())
19663 VarDC
= VarDC
->getParent();
19665 VD
= Var
->getPotentiallyDecomposedVarDecl();
19667 assert(VD
&& "Cannot capture a null variable");
19669 const unsigned MaxFunctionScopesIndex
= FunctionScopeIndexToStopAt
19670 ? *FunctionScopeIndexToStopAt
: FunctionScopes
.size() - 1;
19671 // We need to sync up the Declaration Context with the
19672 // FunctionScopeIndexToStopAt
19673 if (FunctionScopeIndexToStopAt
) {
19674 unsigned FSIndex
= FunctionScopes
.size() - 1;
19675 while (FSIndex
!= MaxFunctionScopesIndex
) {
19676 DC
= getLambdaAwareParentOfDeclContext(DC
);
19681 // Capture global variables if it is required to use private copy of this
19683 bool IsGlobal
= !VD
->hasLocalStorage();
19685 !(LangOpts
.OpenMP
&& isOpenMPCapturedDecl(Var
, /*CheckScopeInfo=*/true,
19686 MaxFunctionScopesIndex
)))
19689 if (isa
<VarDecl
>(Var
))
19690 Var
= cast
<VarDecl
>(Var
->getCanonicalDecl());
19692 // Walk up the stack to determine whether we can capture the variable,
19693 // performing the "simple" checks that don't depend on type. We stop when
19694 // we've either hit the declared scope of the variable or find an existing
19695 // capture of that variable. We start from the innermost capturing-entity
19696 // (the DC) and ensure that all intervening capturing-entities
19697 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19698 // declcontext can either capture the variable or have already captured
19700 CaptureType
= Var
->getType();
19701 DeclRefType
= CaptureType
.getNonReferenceType();
19702 bool Nested
= false;
19703 bool Explicit
= (Kind
!= TryCapture_Implicit
);
19704 unsigned FunctionScopesIndex
= MaxFunctionScopesIndex
;
19707 LambdaScopeInfo
*LSI
= nullptr;
19708 if (!FunctionScopes
.empty())
19709 LSI
= dyn_cast_or_null
<LambdaScopeInfo
>(
19710 FunctionScopes
[FunctionScopesIndex
]);
19712 bool IsInScopeDeclarationContext
=
19713 !LSI
|| LSI
->AfterParameterList
|| CurContext
== LSI
->CallOperator
;
19715 if (LSI
&& !LSI
->AfterParameterList
) {
19716 // This allows capturing parameters from a default value which does not
19718 if (isa
<ParmVarDecl
>(Var
) && !Var
->getDeclContext()->isFunctionOrMethod())
19721 // If the variable is declared in the current context, there is no need to
19723 if (IsInScopeDeclarationContext
&&
19724 FunctionScopesIndex
== MaxFunctionScopesIndex
&& VarDC
== DC
)
19727 // Only block literals, captured statements, and lambda expressions can
19728 // capture; other scopes don't work.
19729 DeclContext
*ParentDC
=
19730 !IsInScopeDeclarationContext
19732 : getParentOfCapturingContextOrNull(DC
, Var
, ExprLoc
,
19733 BuildAndDiagnose
, *this);
19734 // We need to check for the parent *first* because, if we *have*
19735 // private-captured a global variable, we need to recursively capture it in
19736 // intermediate blocks, lambdas, etc.
19739 FunctionScopesIndex
= MaxFunctionScopesIndex
- 1;
19745 FunctionScopeInfo
*FSI
= FunctionScopes
[FunctionScopesIndex
];
19746 CapturingScopeInfo
*CSI
= cast
<CapturingScopeInfo
>(FSI
);
19748 // Check whether we've already captured it.
19749 if (isVariableAlreadyCapturedInScopeInfo(CSI
, Var
, Nested
, CaptureType
,
19751 CSI
->getCapture(Var
).markUsed(BuildAndDiagnose
);
19755 // When evaluating some attributes (like enable_if) we might refer to a
19756 // function parameter appertaining to the same declaration as that
19758 if (const auto *Parm
= dyn_cast
<ParmVarDecl
>(Var
);
19759 Parm
&& Parm
->getDeclContext() == DC
)
19762 // If we are instantiating a generic lambda call operator body,
19763 // we do not want to capture new variables. What was captured
19764 // during either a lambdas transformation or initial parsing
19766 if (isGenericLambdaCallOperatorSpecialization(DC
)) {
19767 if (BuildAndDiagnose
) {
19768 LambdaScopeInfo
*LSI
= cast
<LambdaScopeInfo
>(CSI
);
19769 if (LSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_None
) {
19770 Diag(ExprLoc
, diag::err_lambda_impcap
) << Var
;
19771 Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19772 Diag(LSI
->Lambda
->getBeginLoc(), diag::note_lambda_decl
);
19773 buildLambdaCaptureFixit(*this, LSI
, Var
);
19775 diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc
, Var
);
19780 // Try to capture variable-length arrays types.
19781 if (Var
->getType()->isVariablyModifiedType()) {
19782 // We're going to walk down into the type and look for VLA
19784 QualType QTy
= Var
->getType();
19785 if (ParmVarDecl
*PVD
= dyn_cast_or_null
<ParmVarDecl
>(Var
))
19786 QTy
= PVD
->getOriginalType();
19787 captureVariablyModifiedType(Context
, QTy
, CSI
);
19790 if (getLangOpts().OpenMP
) {
19791 if (auto *RSI
= dyn_cast
<CapturedRegionScopeInfo
>(CSI
)) {
19792 // OpenMP private variables should not be captured in outer scope, so
19793 // just break here. Similarly, global variables that are captured in a
19794 // target region should not be captured outside the scope of the region.
19795 if (RSI
->CapRegionKind
== CR_OpenMP
) {
19796 OpenMPClauseKind IsOpenMPPrivateDecl
= isOpenMPPrivateDecl(
19797 Var
, RSI
->OpenMPLevel
, RSI
->OpenMPCaptureLevel
);
19798 // If the variable is private (i.e. not captured) and has variably
19799 // modified type, we still need to capture the type for correct
19800 // codegen in all regions, associated with the construct. Currently,
19801 // it is captured in the innermost captured region only.
19802 if (IsOpenMPPrivateDecl
!= OMPC_unknown
&&
19803 Var
->getType()->isVariablyModifiedType()) {
19804 QualType QTy
= Var
->getType();
19805 if (ParmVarDecl
*PVD
= dyn_cast_or_null
<ParmVarDecl
>(Var
))
19806 QTy
= PVD
->getOriginalType();
19807 for (int I
= 1, E
= getNumberOfConstructScopes(RSI
->OpenMPLevel
);
19809 auto *OuterRSI
= cast
<CapturedRegionScopeInfo
>(
19810 FunctionScopes
[FunctionScopesIndex
- I
]);
19811 assert(RSI
->OpenMPLevel
== OuterRSI
->OpenMPLevel
&&
19812 "Wrong number of captured regions associated with the "
19813 "OpenMP construct.");
19814 captureVariablyModifiedType(Context
, QTy
, OuterRSI
);
19818 IsOpenMPPrivateDecl
!= OMPC_private
&&
19819 isOpenMPTargetCapturedDecl(Var
, RSI
->OpenMPLevel
,
19820 RSI
->OpenMPCaptureLevel
);
19821 // Do not capture global if it is not privatized in outer regions.
19823 IsGlobal
&& isOpenMPGlobalCapturedDecl(Var
, RSI
->OpenMPLevel
,
19824 RSI
->OpenMPCaptureLevel
);
19826 // When we detect target captures we are looking from inside the
19827 // target region, therefore we need to propagate the capture from the
19828 // enclosing region. Therefore, the capture is not initially nested.
19830 adjustOpenMPTargetScopeIndex(FunctionScopesIndex
, RSI
->OpenMPLevel
);
19832 if (IsTargetCap
|| IsOpenMPPrivateDecl
== OMPC_private
||
19833 (IsGlobal
&& !IsGlobalCap
)) {
19834 Nested
= !IsTargetCap
;
19835 bool HasConst
= DeclRefType
.isConstQualified();
19836 DeclRefType
= DeclRefType
.getUnqualifiedType();
19837 // Don't lose diagnostics about assignments to const.
19839 DeclRefType
.addConst();
19840 CaptureType
= Context
.getLValueReferenceType(DeclRefType
);
19846 if (CSI
->ImpCaptureStyle
== CapturingScopeInfo::ImpCap_None
&& !Explicit
) {
19847 // No capture-default, and this is not an explicit capture
19848 // so cannot capture this variable.
19849 if (BuildAndDiagnose
) {
19850 Diag(ExprLoc
, diag::err_lambda_impcap
) << Var
;
19851 Diag(Var
->getLocation(), diag::note_previous_decl
) << Var
;
19852 auto *LSI
= cast
<LambdaScopeInfo
>(CSI
);
19854 Diag(LSI
->Lambda
->getBeginLoc(), diag::note_lambda_decl
);
19855 buildLambdaCaptureFixit(*this, LSI
, Var
);
19857 // FIXME: If we error out because an outer lambda can not implicitly
19858 // capture a variable that an inner lambda explicitly captures, we
19859 // should have the inner lambda do the explicit capture - because
19860 // it makes for cleaner diagnostics later. This would purely be done
19861 // so that the diagnostic does not misleadingly claim that a variable
19862 // can not be captured by a lambda implicitly even though it is captured
19863 // explicitly. Suggestion:
19864 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19865 // at the function head
19866 // - cache the StartingDeclContext - this must be a lambda
19867 // - captureInLambda in the innermost lambda the variable.
19872 FunctionScopesIndex
--;
19873 if (IsInScopeDeclarationContext
)
19875 } while (!VarDC
->Equals(DC
));
19877 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19878 // computing the type of the capture at each step, checking type-specific
19879 // requirements, and adding captures if requested.
19880 // If the variable had already been captured previously, we start capturing
19881 // at the lambda nested within that one.
19882 bool Invalid
= false;
19883 for (unsigned I
= ++FunctionScopesIndex
, N
= MaxFunctionScopesIndex
+ 1; I
!= N
;
19885 CapturingScopeInfo
*CSI
= cast
<CapturingScopeInfo
>(FunctionScopes
[I
]);
19887 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19888 // certain types of variables (unnamed, variably modified types etc.)
19889 // so check for eligibility.
19892 !isVariableCapturable(CSI
, Var
, ExprLoc
, BuildAndDiagnose
, *this);
19894 // After encountering an error, if we're actually supposed to capture, keep
19895 // capturing in nested contexts to suppress any follow-on diagnostics.
19896 if (Invalid
&& !BuildAndDiagnose
)
19899 if (BlockScopeInfo
*BSI
= dyn_cast
<BlockScopeInfo
>(CSI
)) {
19900 Invalid
= !captureInBlock(BSI
, Var
, ExprLoc
, BuildAndDiagnose
, CaptureType
,
19901 DeclRefType
, Nested
, *this, Invalid
);
19903 } else if (CapturedRegionScopeInfo
*RSI
= dyn_cast
<CapturedRegionScopeInfo
>(CSI
)) {
19904 Invalid
= !captureInCapturedRegion(
19905 RSI
, Var
, ExprLoc
, BuildAndDiagnose
, CaptureType
, DeclRefType
, Nested
,
19906 Kind
, /*IsTopScope*/ I
== N
- 1, *this, Invalid
);
19909 LambdaScopeInfo
*LSI
= cast
<LambdaScopeInfo
>(CSI
);
19911 !captureInLambda(LSI
, Var
, ExprLoc
, BuildAndDiagnose
, CaptureType
,
19912 DeclRefType
, Nested
, Kind
, EllipsisLoc
,
19913 /*IsTopScope*/ I
== N
- 1, *this, Invalid
);
19917 if (Invalid
&& !BuildAndDiagnose
)
19923 bool Sema::tryCaptureVariable(ValueDecl
*Var
, SourceLocation Loc
,
19924 TryCaptureKind Kind
, SourceLocation EllipsisLoc
) {
19925 QualType CaptureType
;
19926 QualType DeclRefType
;
19927 return tryCaptureVariable(Var
, Loc
, Kind
, EllipsisLoc
,
19928 /*BuildAndDiagnose=*/true, CaptureType
,
19929 DeclRefType
, nullptr);
19932 bool Sema::NeedToCaptureVariable(ValueDecl
*Var
, SourceLocation Loc
) {
19933 QualType CaptureType
;
19934 QualType DeclRefType
;
19935 return !tryCaptureVariable(Var
, Loc
, TryCapture_Implicit
, SourceLocation(),
19936 /*BuildAndDiagnose=*/false, CaptureType
,
19937 DeclRefType
, nullptr);
19940 QualType
Sema::getCapturedDeclRefType(ValueDecl
*Var
, SourceLocation Loc
) {
19941 QualType CaptureType
;
19942 QualType DeclRefType
;
19944 // Determine whether we can capture this variable.
19945 if (tryCaptureVariable(Var
, Loc
, TryCapture_Implicit
, SourceLocation(),
19946 /*BuildAndDiagnose=*/false, CaptureType
,
19947 DeclRefType
, nullptr))
19950 return DeclRefType
;
19954 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19955 // The produced TemplateArgumentListInfo* points to data stored within this
19956 // object, so should only be used in contexts where the pointer will not be
19957 // used after the CopiedTemplateArgs object is destroyed.
19958 class CopiedTemplateArgs
{
19960 TemplateArgumentListInfo TemplateArgStorage
;
19962 template<typename RefExpr
>
19963 CopiedTemplateArgs(RefExpr
*E
) : HasArgs(E
->hasExplicitTemplateArgs()) {
19965 E
->copyTemplateArgumentsInto(TemplateArgStorage
);
19967 operator TemplateArgumentListInfo
*()
19968 #ifdef __has_cpp_attribute
19969 #if __has_cpp_attribute(clang::lifetimebound)
19970 [[clang::lifetimebound
]]
19974 return HasArgs
? &TemplateArgStorage
: nullptr;
19979 /// Walk the set of potential results of an expression and mark them all as
19980 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19982 /// \return A new expression if we found any potential results, ExprEmpty() if
19983 /// not, and ExprError() if we diagnosed an error.
19984 static ExprResult
rebuildPotentialResultsAsNonOdrUsed(Sema
&S
, Expr
*E
,
19985 NonOdrUseReason NOUR
) {
19986 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19987 // an object that satisfies the requirements for appearing in a
19988 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19989 // is immediately applied." This function handles the lvalue-to-rvalue
19990 // conversion part.
19992 // If we encounter a node that claims to be an odr-use but shouldn't be, we
19993 // transform it into the relevant kind of non-odr-use node and rebuild the
19994 // tree of nodes leading to it.
19996 // This is a mini-TreeTransform that only transforms a restricted subset of
19997 // nodes (and only certain operands of them).
19999 // Rebuild a subexpression.
20000 auto Rebuild
= [&](Expr
*Sub
) {
20001 return rebuildPotentialResultsAsNonOdrUsed(S
, Sub
, NOUR
);
20004 // Check whether a potential result satisfies the requirements of NOUR.
20005 auto IsPotentialResultOdrUsed
= [&](NamedDecl
*D
) {
20006 // Any entity other than a VarDecl is always odr-used whenever it's named
20007 // in a potentially-evaluated expression.
20008 auto *VD
= dyn_cast
<VarDecl
>(D
);
20012 // C++2a [basic.def.odr]p4:
20013 // A variable x whose name appears as a potentially-evalauted expression
20014 // e is odr-used by e unless
20015 // -- x is a reference that is usable in constant expressions, or
20016 // -- x is a variable of non-reference type that is usable in constant
20017 // expressions and has no mutable subobjects, and e is an element of
20018 // the set of potential results of an expression of
20019 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20020 // conversion is applied, or
20021 // -- x is a variable of non-reference type, and e is an element of the
20022 // set of potential results of a discarded-value expression to which
20023 // the lvalue-to-rvalue conversion is not applied
20025 // We check the first bullet and the "potentially-evaluated" condition in
20026 // BuildDeclRefExpr. We check the type requirements in the second bullet
20027 // in CheckLValueToRValueConversionOperand below.
20030 case NOUR_Unevaluated
:
20031 llvm_unreachable("unexpected non-odr-use-reason");
20033 case NOUR_Constant
:
20034 // Constant references were handled when they were built.
20035 if (VD
->getType()->isReferenceType())
20037 if (auto *RD
= VD
->getType()->getAsCXXRecordDecl())
20038 if (RD
->hasMutableFields())
20040 if (!VD
->isUsableInConstantExpressions(S
.Context
))
20044 case NOUR_Discarded
:
20045 if (VD
->getType()->isReferenceType())
20052 // Mark that this expression does not constitute an odr-use.
20053 auto MarkNotOdrUsed
= [&] {
20054 S
.MaybeODRUseExprs
.remove(E
);
20055 if (LambdaScopeInfo
*LSI
= S
.getCurLambda())
20056 LSI
->markVariableExprAsNonODRUsed(E
);
20059 // C++2a [basic.def.odr]p2:
20060 // The set of potential results of an expression e is defined as follows:
20061 switch (E
->getStmtClass()) {
20062 // -- If e is an id-expression, ...
20063 case Expr::DeclRefExprClass
: {
20064 auto *DRE
= cast
<DeclRefExpr
>(E
);
20065 if (DRE
->isNonOdrUse() || IsPotentialResultOdrUsed(DRE
->getDecl()))
20068 // Rebuild as a non-odr-use DeclRefExpr.
20070 return DeclRefExpr::Create(
20071 S
.Context
, DRE
->getQualifierLoc(), DRE
->getTemplateKeywordLoc(),
20072 DRE
->getDecl(), DRE
->refersToEnclosingVariableOrCapture(),
20073 DRE
->getNameInfo(), DRE
->getType(), DRE
->getValueKind(),
20074 DRE
->getFoundDecl(), CopiedTemplateArgs(DRE
), NOUR
);
20077 case Expr::FunctionParmPackExprClass
: {
20078 auto *FPPE
= cast
<FunctionParmPackExpr
>(E
);
20079 // If any of the declarations in the pack is odr-used, then the expression
20080 // as a whole constitutes an odr-use.
20081 for (VarDecl
*D
: *FPPE
)
20082 if (IsPotentialResultOdrUsed(D
))
20083 return ExprEmpty();
20085 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
20086 // nothing cares about whether we marked this as an odr-use, but it might
20087 // be useful for non-compiler tools.
20092 // -- If e is a subscripting operation with an array operand...
20093 case Expr::ArraySubscriptExprClass
: {
20094 auto *ASE
= cast
<ArraySubscriptExpr
>(E
);
20095 Expr
*OldBase
= ASE
->getBase()->IgnoreImplicit();
20096 if (!OldBase
->getType()->isArrayType())
20098 ExprResult Base
= Rebuild(OldBase
);
20099 if (!Base
.isUsable())
20101 Expr
*LHS
= ASE
->getBase() == ASE
->getLHS() ? Base
.get() : ASE
->getLHS();
20102 Expr
*RHS
= ASE
->getBase() == ASE
->getRHS() ? Base
.get() : ASE
->getRHS();
20103 SourceLocation LBracketLoc
= ASE
->getBeginLoc(); // FIXME: Not stored.
20104 return S
.ActOnArraySubscriptExpr(nullptr, LHS
, LBracketLoc
, RHS
,
20105 ASE
->getRBracketLoc());
20108 case Expr::MemberExprClass
: {
20109 auto *ME
= cast
<MemberExpr
>(E
);
20110 // -- If e is a class member access expression [...] naming a non-static
20112 if (isa
<FieldDecl
>(ME
->getMemberDecl())) {
20113 ExprResult Base
= Rebuild(ME
->getBase());
20114 if (!Base
.isUsable())
20116 return MemberExpr::Create(
20117 S
.Context
, Base
.get(), ME
->isArrow(), ME
->getOperatorLoc(),
20118 ME
->getQualifierLoc(), ME
->getTemplateKeywordLoc(),
20119 ME
->getMemberDecl(), ME
->getFoundDecl(), ME
->getMemberNameInfo(),
20120 CopiedTemplateArgs(ME
), ME
->getType(), ME
->getValueKind(),
20121 ME
->getObjectKind(), ME
->isNonOdrUse());
20124 if (ME
->getMemberDecl()->isCXXInstanceMember())
20127 // -- If e is a class member access expression naming a static data member,
20129 if (ME
->isNonOdrUse() || IsPotentialResultOdrUsed(ME
->getMemberDecl()))
20132 // Rebuild as a non-odr-use MemberExpr.
20134 return MemberExpr::Create(
20135 S
.Context
, ME
->getBase(), ME
->isArrow(), ME
->getOperatorLoc(),
20136 ME
->getQualifierLoc(), ME
->getTemplateKeywordLoc(), ME
->getMemberDecl(),
20137 ME
->getFoundDecl(), ME
->getMemberNameInfo(), CopiedTemplateArgs(ME
),
20138 ME
->getType(), ME
->getValueKind(), ME
->getObjectKind(), NOUR
);
20141 case Expr::BinaryOperatorClass
: {
20142 auto *BO
= cast
<BinaryOperator
>(E
);
20143 Expr
*LHS
= BO
->getLHS();
20144 Expr
*RHS
= BO
->getRHS();
20145 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
20146 if (BO
->getOpcode() == BO_PtrMemD
) {
20147 ExprResult Sub
= Rebuild(LHS
);
20148 if (!Sub
.isUsable())
20151 // -- If e is a comma expression, ...
20152 } else if (BO
->getOpcode() == BO_Comma
) {
20153 ExprResult Sub
= Rebuild(RHS
);
20154 if (!Sub
.isUsable())
20160 return S
.BuildBinOp(nullptr, BO
->getOperatorLoc(), BO
->getOpcode(),
20164 // -- If e has the form (e1)...
20165 case Expr::ParenExprClass
: {
20166 auto *PE
= cast
<ParenExpr
>(E
);
20167 ExprResult Sub
= Rebuild(PE
->getSubExpr());
20168 if (!Sub
.isUsable())
20170 return S
.ActOnParenExpr(PE
->getLParen(), PE
->getRParen(), Sub
.get());
20173 // -- If e is a glvalue conditional expression, ...
20174 // We don't apply this to a binary conditional operator. FIXME: Should we?
20175 case Expr::ConditionalOperatorClass
: {
20176 auto *CO
= cast
<ConditionalOperator
>(E
);
20177 ExprResult LHS
= Rebuild(CO
->getLHS());
20178 if (LHS
.isInvalid())
20179 return ExprError();
20180 ExprResult RHS
= Rebuild(CO
->getRHS());
20181 if (RHS
.isInvalid())
20182 return ExprError();
20183 if (!LHS
.isUsable() && !RHS
.isUsable())
20184 return ExprEmpty();
20185 if (!LHS
.isUsable())
20186 LHS
= CO
->getLHS();
20187 if (!RHS
.isUsable())
20188 RHS
= CO
->getRHS();
20189 return S
.ActOnConditionalOp(CO
->getQuestionLoc(), CO
->getColonLoc(),
20190 CO
->getCond(), LHS
.get(), RHS
.get());
20193 // [Clang extension]
20194 // -- If e has the form __extension__ e1...
20195 case Expr::UnaryOperatorClass
: {
20196 auto *UO
= cast
<UnaryOperator
>(E
);
20197 if (UO
->getOpcode() != UO_Extension
)
20199 ExprResult Sub
= Rebuild(UO
->getSubExpr());
20200 if (!Sub
.isUsable())
20202 return S
.BuildUnaryOp(nullptr, UO
->getOperatorLoc(), UO_Extension
,
20206 // [Clang extension]
20207 // -- If e has the form _Generic(...), the set of potential results is the
20208 // union of the sets of potential results of the associated expressions.
20209 case Expr::GenericSelectionExprClass
: {
20210 auto *GSE
= cast
<GenericSelectionExpr
>(E
);
20212 SmallVector
<Expr
*, 4> AssocExprs
;
20213 bool AnyChanged
= false;
20214 for (Expr
*OrigAssocExpr
: GSE
->getAssocExprs()) {
20215 ExprResult AssocExpr
= Rebuild(OrigAssocExpr
);
20216 if (AssocExpr
.isInvalid())
20217 return ExprError();
20218 if (AssocExpr
.isUsable()) {
20219 AssocExprs
.push_back(AssocExpr
.get());
20222 AssocExprs
.push_back(OrigAssocExpr
);
20226 void *ExOrTy
= nullptr;
20227 bool IsExpr
= GSE
->isExprPredicate();
20229 ExOrTy
= GSE
->getControllingExpr();
20231 ExOrTy
= GSE
->getControllingType();
20232 return AnyChanged
? S
.CreateGenericSelectionExpr(
20233 GSE
->getGenericLoc(), GSE
->getDefaultLoc(),
20234 GSE
->getRParenLoc(), IsExpr
, ExOrTy
,
20235 GSE
->getAssocTypeSourceInfos(), AssocExprs
)
20239 // [Clang extension]
20240 // -- If e has the form __builtin_choose_expr(...), the set of potential
20241 // results is the union of the sets of potential results of the
20242 // second and third subexpressions.
20243 case Expr::ChooseExprClass
: {
20244 auto *CE
= cast
<ChooseExpr
>(E
);
20246 ExprResult LHS
= Rebuild(CE
->getLHS());
20247 if (LHS
.isInvalid())
20248 return ExprError();
20250 ExprResult RHS
= Rebuild(CE
->getLHS());
20251 if (RHS
.isInvalid())
20252 return ExprError();
20254 if (!LHS
.get() && !RHS
.get())
20255 return ExprEmpty();
20256 if (!LHS
.isUsable())
20257 LHS
= CE
->getLHS();
20258 if (!RHS
.isUsable())
20259 RHS
= CE
->getRHS();
20261 return S
.ActOnChooseExpr(CE
->getBuiltinLoc(), CE
->getCond(), LHS
.get(),
20262 RHS
.get(), CE
->getRParenLoc());
20265 // Step through non-syntactic nodes.
20266 case Expr::ConstantExprClass
: {
20267 auto *CE
= cast
<ConstantExpr
>(E
);
20268 ExprResult Sub
= Rebuild(CE
->getSubExpr());
20269 if (!Sub
.isUsable())
20271 return ConstantExpr::Create(S
.Context
, Sub
.get());
20274 // We could mostly rely on the recursive rebuilding to rebuild implicit
20275 // casts, but not at the top level, so rebuild them here.
20276 case Expr::ImplicitCastExprClass
: {
20277 auto *ICE
= cast
<ImplicitCastExpr
>(E
);
20278 // Only step through the narrow set of cast kinds we expect to encounter.
20279 // Anything else suggests we've left the region in which potential results
20281 switch (ICE
->getCastKind()) {
20283 case CK_DerivedToBase
:
20284 case CK_UncheckedDerivedToBase
: {
20285 ExprResult Sub
= Rebuild(ICE
->getSubExpr());
20286 if (!Sub
.isUsable())
20288 CXXCastPath
Path(ICE
->path());
20289 return S
.ImpCastExprToType(Sub
.get(), ICE
->getType(), ICE
->getCastKind(),
20290 ICE
->getValueKind(), &Path
);
20303 // Can't traverse through this node. Nothing to do.
20304 return ExprEmpty();
20307 ExprResult
Sema::CheckLValueToRValueConversionOperand(Expr
*E
) {
20308 // Check whether the operand is or contains an object of non-trivial C union
20310 if (E
->getType().isVolatileQualified() &&
20311 (E
->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20312 E
->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20313 checkNonTrivialCUnion(E
->getType(), E
->getExprLoc(),
20314 Sema::NTCUC_LValueToRValueVolatile
,
20315 NTCUK_Destruct
|NTCUK_Copy
);
20317 // C++2a [basic.def.odr]p4:
20318 // [...] an expression of non-volatile-qualified non-class type to which
20319 // the lvalue-to-rvalue conversion is applied [...]
20320 if (E
->getType().isVolatileQualified() || E
->getType()->getAs
<RecordType
>())
20323 ExprResult Result
=
20324 rebuildPotentialResultsAsNonOdrUsed(*this, E
, NOUR_Constant
);
20325 if (Result
.isInvalid())
20326 return ExprError();
20327 return Result
.get() ? Result
: E
;
20330 ExprResult
Sema::ActOnConstantExpression(ExprResult Res
) {
20331 Res
= CorrectDelayedTyposInExpr(Res
);
20333 if (!Res
.isUsable())
20336 // If a constant-expression is a reference to a variable where we delay
20337 // deciding whether it is an odr-use, just assume we will apply the
20338 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
20339 // (a non-type template argument), we have special handling anyway.
20340 return CheckLValueToRValueConversionOperand(Res
.get());
20343 void Sema::CleanupVarDeclMarking() {
20344 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20346 MaybeODRUseExprSet LocalMaybeODRUseExprs
;
20347 std::swap(LocalMaybeODRUseExprs
, MaybeODRUseExprs
);
20349 for (Expr
*E
: LocalMaybeODRUseExprs
) {
20350 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
20351 MarkVarDeclODRUsed(cast
<VarDecl
>(DRE
->getDecl()),
20352 DRE
->getLocation(), *this);
20353 } else if (auto *ME
= dyn_cast
<MemberExpr
>(E
)) {
20354 MarkVarDeclODRUsed(cast
<VarDecl
>(ME
->getMemberDecl()), ME
->getMemberLoc(),
20356 } else if (auto *FP
= dyn_cast
<FunctionParmPackExpr
>(E
)) {
20357 for (VarDecl
*VD
: *FP
)
20358 MarkVarDeclODRUsed(VD
, FP
->getParameterPackLocation(), *this);
20360 llvm_unreachable("Unexpected expression");
20364 assert(MaybeODRUseExprs
.empty() &&
20365 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20368 static void DoMarkPotentialCapture(Sema
&SemaRef
, SourceLocation Loc
,
20369 ValueDecl
*Var
, Expr
*E
) {
20370 VarDecl
*VD
= Var
->getPotentiallyDecomposedVarDecl();
20374 const bool RefersToEnclosingScope
=
20375 (SemaRef
.CurContext
!= VD
->getDeclContext() &&
20376 VD
->getDeclContext()->isFunctionOrMethod() && VD
->hasLocalStorage());
20377 if (RefersToEnclosingScope
) {
20378 LambdaScopeInfo
*const LSI
=
20379 SemaRef
.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20380 if (LSI
&& (!LSI
->CallOperator
||
20381 !LSI
->CallOperator
->Encloses(Var
->getDeclContext()))) {
20382 // If a variable could potentially be odr-used, defer marking it so
20383 // until we finish analyzing the full expression for any
20384 // lvalue-to-rvalue
20385 // or discarded value conversions that would obviate odr-use.
20386 // Add it to the list of potential captures that will be analyzed
20387 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20388 // unless the variable is a reference that was initialized by a constant
20389 // expression (this will never need to be captured or odr-used).
20391 // FIXME: We can simplify this a lot after implementing P0588R1.
20392 assert(E
&& "Capture variable should be used in an expression.");
20393 if (!Var
->getType()->isReferenceType() ||
20394 !VD
->isUsableInConstantExpressions(SemaRef
.Context
))
20395 LSI
->addPotentialCapture(E
->IgnoreParens());
20400 static void DoMarkVarDeclReferenced(
20401 Sema
&SemaRef
, SourceLocation Loc
, VarDecl
*Var
, Expr
*E
,
20402 llvm::DenseMap
<const VarDecl
*, int> &RefsMinusAssignments
) {
20403 assert((!E
|| isa
<DeclRefExpr
>(E
) || isa
<MemberExpr
>(E
) ||
20404 isa
<FunctionParmPackExpr
>(E
)) &&
20405 "Invalid Expr argument to DoMarkVarDeclReferenced");
20406 Var
->setReferenced();
20408 if (Var
->isInvalidDecl())
20411 auto *MSI
= Var
->getMemberSpecializationInfo();
20412 TemplateSpecializationKind TSK
= MSI
? MSI
->getTemplateSpecializationKind()
20413 : Var
->getTemplateSpecializationKind();
20415 OdrUseContext OdrUse
= isOdrUseContext(SemaRef
);
20416 bool UsableInConstantExpr
=
20417 Var
->mightBeUsableInConstantExpressions(SemaRef
.Context
);
20419 if (Var
->isLocalVarDeclOrParm() && !Var
->hasExternalStorage()) {
20420 RefsMinusAssignments
.insert({Var
, 0}).first
->getSecond()++;
20423 // C++20 [expr.const]p12:
20424 // A variable [...] is needed for constant evaluation if it is [...] a
20425 // variable whose name appears as a potentially constant evaluated
20426 // expression that is either a contexpr variable or is of non-volatile
20427 // const-qualified integral type or of reference type
20428 bool NeededForConstantEvaluation
=
20429 isPotentiallyConstantEvaluatedContext(SemaRef
) && UsableInConstantExpr
;
20431 bool NeedDefinition
=
20432 OdrUse
== OdrUseContext::Used
|| NeededForConstantEvaluation
;
20434 assert(!isa
<VarTemplatePartialSpecializationDecl
>(Var
) &&
20435 "Can't instantiate a partial template specialization.");
20437 // If this might be a member specialization of a static data member, check
20438 // the specialization is visible. We already did the checks for variable
20439 // template specializations when we created them.
20440 if (NeedDefinition
&& TSK
!= TSK_Undeclared
&&
20441 !isa
<VarTemplateSpecializationDecl
>(Var
))
20442 SemaRef
.checkSpecializationVisibility(Loc
, Var
);
20444 // Perform implicit instantiation of static data members, static data member
20445 // templates of class templates, and variable template specializations. Delay
20446 // instantiations of variable templates, except for those that could be used
20447 // in a constant expression.
20448 if (NeedDefinition
&& isTemplateInstantiation(TSK
)) {
20449 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20450 // instantiation declaration if a variable is usable in a constant
20451 // expression (among other cases).
20452 bool TryInstantiating
=
20453 TSK
== TSK_ImplicitInstantiation
||
20454 (TSK
== TSK_ExplicitInstantiationDeclaration
&& UsableInConstantExpr
);
20456 if (TryInstantiating
) {
20457 SourceLocation PointOfInstantiation
=
20458 MSI
? MSI
->getPointOfInstantiation() : Var
->getPointOfInstantiation();
20459 bool FirstInstantiation
= PointOfInstantiation
.isInvalid();
20460 if (FirstInstantiation
) {
20461 PointOfInstantiation
= Loc
;
20463 MSI
->setPointOfInstantiation(PointOfInstantiation
);
20464 // FIXME: Notify listener.
20466 Var
->setTemplateSpecializationKind(TSK
, PointOfInstantiation
);
20469 if (UsableInConstantExpr
) {
20470 // Do not defer instantiations of variables that could be used in a
20471 // constant expression.
20472 SemaRef
.runWithSufficientStackSpace(PointOfInstantiation
, [&] {
20473 SemaRef
.InstantiateVariableDefinition(PointOfInstantiation
, Var
);
20476 // Re-set the member to trigger a recomputation of the dependence bits
20477 // for the expression.
20478 if (auto *DRE
= dyn_cast_or_null
<DeclRefExpr
>(E
))
20479 DRE
->setDecl(DRE
->getDecl());
20480 else if (auto *ME
= dyn_cast_or_null
<MemberExpr
>(E
))
20481 ME
->setMemberDecl(ME
->getMemberDecl());
20482 } else if (FirstInstantiation
) {
20483 SemaRef
.PendingInstantiations
20484 .push_back(std::make_pair(Var
, PointOfInstantiation
));
20486 bool Inserted
= false;
20487 for (auto &I
: SemaRef
.SavedPendingInstantiations
) {
20488 auto Iter
= llvm::find_if(
20489 I
, [Var
](const Sema::PendingImplicitInstantiation
&P
) {
20490 return P
.first
== Var
;
20492 if (Iter
!= I
.end()) {
20493 SemaRef
.PendingInstantiations
.push_back(*Iter
);
20500 // FIXME: For a specialization of a variable template, we don't
20501 // distinguish between "declaration and type implicitly instantiated"
20502 // and "implicit instantiation of definition requested", so we have
20503 // no direct way to avoid enqueueing the pending instantiation
20505 if (isa
<VarTemplateSpecializationDecl
>(Var
) && !Inserted
)
20506 SemaRef
.PendingInstantiations
20507 .push_back(std::make_pair(Var
, PointOfInstantiation
));
20512 // C++2a [basic.def.odr]p4:
20513 // A variable x whose name appears as a potentially-evaluated expression e
20514 // is odr-used by e unless
20515 // -- x is a reference that is usable in constant expressions
20516 // -- x is a variable of non-reference type that is usable in constant
20517 // expressions and has no mutable subobjects [FIXME], and e is an
20518 // element of the set of potential results of an expression of
20519 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20520 // conversion is applied
20521 // -- x is a variable of non-reference type, and e is an element of the set
20522 // of potential results of a discarded-value expression to which the
20523 // lvalue-to-rvalue conversion is not applied [FIXME]
20525 // We check the first part of the second bullet here, and
20526 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20527 // FIXME: To get the third bullet right, we need to delay this even for
20528 // variables that are not usable in constant expressions.
20530 // If we already know this isn't an odr-use, there's nothing more to do.
20531 if (DeclRefExpr
*DRE
= dyn_cast_or_null
<DeclRefExpr
>(E
))
20532 if (DRE
->isNonOdrUse())
20534 if (MemberExpr
*ME
= dyn_cast_or_null
<MemberExpr
>(E
))
20535 if (ME
->isNonOdrUse())
20539 case OdrUseContext::None
:
20540 // In some cases, a variable may not have been marked unevaluated, if it
20541 // appears in a defaukt initializer.
20542 assert((!E
|| isa
<FunctionParmPackExpr
>(E
) ||
20543 SemaRef
.isUnevaluatedContext()) &&
20544 "missing non-odr-use marking for unevaluated decl ref");
20547 case OdrUseContext::FormallyOdrUsed
:
20548 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20552 case OdrUseContext::Used
:
20553 // If we might later find that this expression isn't actually an odr-use,
20554 // delay the marking.
20555 if (E
&& Var
->isUsableInConstantExpressions(SemaRef
.Context
))
20556 SemaRef
.MaybeODRUseExprs
.insert(E
);
20558 MarkVarDeclODRUsed(Var
, Loc
, SemaRef
);
20561 case OdrUseContext::Dependent
:
20562 // If this is a dependent context, we don't need to mark variables as
20563 // odr-used, but we may still need to track them for lambda capture.
20564 // FIXME: Do we also need to do this inside dependent typeid expressions
20565 // (which are modeled as unevaluated at this point)?
20566 DoMarkPotentialCapture(SemaRef
, Loc
, Var
, E
);
20571 static void DoMarkBindingDeclReferenced(Sema
&SemaRef
, SourceLocation Loc
,
20572 BindingDecl
*BD
, Expr
*E
) {
20573 BD
->setReferenced();
20575 if (BD
->isInvalidDecl())
20578 OdrUseContext OdrUse
= isOdrUseContext(SemaRef
);
20579 if (OdrUse
== OdrUseContext::Used
) {
20580 QualType CaptureType
, DeclRefType
;
20581 SemaRef
.tryCaptureVariable(BD
, Loc
, Sema::TryCapture_Implicit
,
20582 /*EllipsisLoc*/ SourceLocation(),
20583 /*BuildAndDiagnose*/ true, CaptureType
,
20585 /*FunctionScopeIndexToStopAt*/ nullptr);
20586 } else if (OdrUse
== OdrUseContext::Dependent
) {
20587 DoMarkPotentialCapture(SemaRef
, Loc
, BD
, E
);
20591 /// Mark a variable referenced, and check whether it is odr-used
20592 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
20593 /// used directly for normal expressions referring to VarDecl.
20594 void Sema::MarkVariableReferenced(SourceLocation Loc
, VarDecl
*Var
) {
20595 DoMarkVarDeclReferenced(*this, Loc
, Var
, nullptr, RefsMinusAssignments
);
20599 MarkExprReferenced(Sema
&SemaRef
, SourceLocation Loc
, Decl
*D
, Expr
*E
,
20600 bool MightBeOdrUse
,
20601 llvm::DenseMap
<const VarDecl
*, int> &RefsMinusAssignments
) {
20602 if (SemaRef
.isInOpenMPDeclareTargetContext())
20603 SemaRef
.checkDeclIsAllowedInOpenMPTarget(E
, D
);
20605 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(D
)) {
20606 DoMarkVarDeclReferenced(SemaRef
, Loc
, Var
, E
, RefsMinusAssignments
);
20610 if (BindingDecl
*Decl
= dyn_cast
<BindingDecl
>(D
)) {
20611 DoMarkBindingDeclReferenced(SemaRef
, Loc
, Decl
, E
);
20615 SemaRef
.MarkAnyDeclReferenced(Loc
, D
, MightBeOdrUse
);
20617 // If this is a call to a method via a cast, also mark the method in the
20618 // derived class used in case codegen can devirtualize the call.
20619 const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
);
20622 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(ME
->getMemberDecl());
20625 // Only attempt to devirtualize if this is truly a virtual call.
20626 bool IsVirtualCall
= MD
->isVirtual() &&
20627 ME
->performsVirtualDispatch(SemaRef
.getLangOpts());
20628 if (!IsVirtualCall
)
20631 // If it's possible to devirtualize the call, mark the called function
20633 CXXMethodDecl
*DM
= MD
->getDevirtualizedMethod(
20634 ME
->getBase(), SemaRef
.getLangOpts().AppleKext
);
20636 SemaRef
.MarkAnyDeclReferenced(Loc
, DM
, MightBeOdrUse
);
20639 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
20641 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
20642 /// handled with care if the DeclRefExpr is not newly-created.
20643 void Sema::MarkDeclRefReferenced(DeclRefExpr
*E
, const Expr
*Base
) {
20644 // TODO: update this with DR# once a defect report is filed.
20645 // C++11 defect. The address of a pure member should not be an ODR use, even
20646 // if it's a qualified reference.
20647 bool OdrUse
= true;
20648 if (const CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(E
->getDecl()))
20649 if (Method
->isVirtual() &&
20650 !Method
->getDevirtualizedMethod(Base
, getLangOpts().AppleKext
))
20653 if (auto *FD
= dyn_cast
<FunctionDecl
>(E
->getDecl())) {
20654 if (!isUnevaluatedContext() && !isConstantEvaluated() &&
20655 !isImmediateFunctionContext() &&
20656 !isCheckingDefaultArgumentOrInitializer() &&
20657 FD
->isImmediateFunction() && !RebuildingImmediateInvocation
&&
20658 !FD
->isDependentContext())
20659 ExprEvalContexts
.back().ReferenceToConsteval
.insert(E
);
20661 MarkExprReferenced(*this, E
->getLocation(), E
->getDecl(), E
, OdrUse
,
20662 RefsMinusAssignments
);
20665 /// Perform reference-marking and odr-use handling for a MemberExpr.
20666 void Sema::MarkMemberReferenced(MemberExpr
*E
) {
20667 // C++11 [basic.def.odr]p2:
20668 // A non-overloaded function whose name appears as a potentially-evaluated
20669 // expression or a member of a set of candidate functions, if selected by
20670 // overload resolution when referred to from a potentially-evaluated
20671 // expression, is odr-used, unless it is a pure virtual function and its
20672 // name is not explicitly qualified.
20673 bool MightBeOdrUse
= true;
20674 if (E
->performsVirtualDispatch(getLangOpts())) {
20675 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(E
->getMemberDecl()))
20676 if (Method
->isPure())
20677 MightBeOdrUse
= false;
20679 SourceLocation Loc
=
20680 E
->getMemberLoc().isValid() ? E
->getMemberLoc() : E
->getBeginLoc();
20681 MarkExprReferenced(*this, Loc
, E
->getMemberDecl(), E
, MightBeOdrUse
,
20682 RefsMinusAssignments
);
20685 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
20686 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr
*E
) {
20687 for (VarDecl
*VD
: *E
)
20688 MarkExprReferenced(*this, E
->getParameterPackLocation(), VD
, E
, true,
20689 RefsMinusAssignments
);
20692 /// Perform marking for a reference to an arbitrary declaration. It
20693 /// marks the declaration referenced, and performs odr-use checking for
20694 /// functions and variables. This method should not be used when building a
20695 /// normal expression which refers to a variable.
20696 void Sema::MarkAnyDeclReferenced(SourceLocation Loc
, Decl
*D
,
20697 bool MightBeOdrUse
) {
20698 if (MightBeOdrUse
) {
20699 if (auto *VD
= dyn_cast
<VarDecl
>(D
)) {
20700 MarkVariableReferenced(Loc
, VD
);
20704 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
20705 MarkFunctionReferenced(Loc
, FD
, MightBeOdrUse
);
20708 D
->setReferenced();
20712 // Mark all of the declarations used by a type as referenced.
20713 // FIXME: Not fully implemented yet! We need to have a better understanding
20714 // of when we're entering a context we should not recurse into.
20715 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20716 // TreeTransforms rebuilding the type in a new context. Rather than
20717 // duplicating the TreeTransform logic, we should consider reusing it here.
20718 // Currently that causes problems when rebuilding LambdaExprs.
20719 class MarkReferencedDecls
: public RecursiveASTVisitor
<MarkReferencedDecls
> {
20721 SourceLocation Loc
;
20724 typedef RecursiveASTVisitor
<MarkReferencedDecls
> Inherited
;
20726 MarkReferencedDecls(Sema
&S
, SourceLocation Loc
) : S(S
), Loc(Loc
) { }
20728 bool TraverseTemplateArgument(const TemplateArgument
&Arg
);
20732 bool MarkReferencedDecls::TraverseTemplateArgument(
20733 const TemplateArgument
&Arg
) {
20735 // A non-type template argument is a constant-evaluated context.
20736 EnterExpressionEvaluationContext
Evaluated(
20737 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
20738 if (Arg
.getKind() == TemplateArgument::Declaration
) {
20739 if (Decl
*D
= Arg
.getAsDecl())
20740 S
.MarkAnyDeclReferenced(Loc
, D
, true);
20741 } else if (Arg
.getKind() == TemplateArgument::Expression
) {
20742 S
.MarkDeclarationsReferencedInExpr(Arg
.getAsExpr(), false);
20746 return Inherited::TraverseTemplateArgument(Arg
);
20749 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc
, QualType T
) {
20750 MarkReferencedDecls
Marker(*this, Loc
);
20751 Marker
.TraverseType(T
);
20755 /// Helper class that marks all of the declarations referenced by
20756 /// potentially-evaluated subexpressions as "referenced".
20757 class EvaluatedExprMarker
: public UsedDeclVisitor
<EvaluatedExprMarker
> {
20759 typedef UsedDeclVisitor
<EvaluatedExprMarker
> Inherited
;
20760 bool SkipLocalVariables
;
20761 ArrayRef
<const Expr
*> StopAt
;
20763 EvaluatedExprMarker(Sema
&S
, bool SkipLocalVariables
,
20764 ArrayRef
<const Expr
*> StopAt
)
20765 : Inherited(S
), SkipLocalVariables(SkipLocalVariables
), StopAt(StopAt
) {}
20767 void visitUsedDecl(SourceLocation Loc
, Decl
*D
) {
20768 S
.MarkFunctionReferenced(Loc
, cast
<FunctionDecl
>(D
));
20771 void Visit(Expr
*E
) {
20772 if (llvm::is_contained(StopAt
, E
))
20774 Inherited::Visit(E
);
20777 void VisitConstantExpr(ConstantExpr
*E
) {
20778 // Don't mark declarations within a ConstantExpression, as this expression
20779 // will be evaluated and folded to a value.
20782 void VisitDeclRefExpr(DeclRefExpr
*E
) {
20783 // If we were asked not to visit local variables, don't.
20784 if (SkipLocalVariables
) {
20785 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(E
->getDecl()))
20786 if (VD
->hasLocalStorage())
20790 // FIXME: This can trigger the instantiation of the initializer of a
20791 // variable, which can cause the expression to become value-dependent
20792 // or error-dependent. Do we need to propagate the new dependence bits?
20793 S
.MarkDeclRefReferenced(E
);
20796 void VisitMemberExpr(MemberExpr
*E
) {
20797 S
.MarkMemberReferenced(E
);
20798 Visit(E
->getBase());
20803 /// Mark any declarations that appear within this expression or any
20804 /// potentially-evaluated subexpressions as "referenced".
20806 /// \param SkipLocalVariables If true, don't mark local variables as
20808 /// \param StopAt Subexpressions that we shouldn't recurse into.
20809 void Sema::MarkDeclarationsReferencedInExpr(Expr
*E
,
20810 bool SkipLocalVariables
,
20811 ArrayRef
<const Expr
*> StopAt
) {
20812 EvaluatedExprMarker(*this, SkipLocalVariables
, StopAt
).Visit(E
);
20815 /// Emit a diagnostic when statements are reachable.
20816 /// FIXME: check for reachability even in expressions for which we don't build a
20817 /// CFG (eg, in the initializer of a global or in a constant expression).
20819 /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20820 bool Sema::DiagIfReachable(SourceLocation Loc
, ArrayRef
<const Stmt
*> Stmts
,
20821 const PartialDiagnostic
&PD
) {
20822 if (!Stmts
.empty() && getCurFunctionOrMethodDecl()) {
20823 if (!FunctionScopes
.empty())
20824 FunctionScopes
.back()->PossiblyUnreachableDiags
.push_back(
20825 sema::PossiblyUnreachableDiag(PD
, Loc
, Stmts
));
20829 // The initializer of a constexpr variable or of the first declaration of a
20830 // static data member is not syntactically a constant evaluated constant,
20831 // but nonetheless is always required to be a constant expression, so we
20832 // can skip diagnosing.
20833 // FIXME: Using the mangling context here is a hack.
20834 if (auto *VD
= dyn_cast_or_null
<VarDecl
>(
20835 ExprEvalContexts
.back().ManglingContextDecl
)) {
20836 if (VD
->isConstexpr() ||
20837 (VD
->isStaticDataMember() && VD
->isFirstDecl() && !VD
->isInline()))
20839 // FIXME: For any other kind of variable, we should build a CFG for its
20840 // initializer and check whether the context in question is reachable.
20847 /// Emit a diagnostic that describes an effect on the run-time behavior
20848 /// of the program being compiled.
20850 /// This routine emits the given diagnostic when the code currently being
20851 /// type-checked is "potentially evaluated", meaning that there is a
20852 /// possibility that the code will actually be executable. Code in sizeof()
20853 /// expressions, code used only during overload resolution, etc., are not
20854 /// potentially evaluated. This routine will suppress such diagnostics or,
20855 /// in the absolutely nutty case of potentially potentially evaluated
20856 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20859 /// This routine should be used for all diagnostics that describe the run-time
20860 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20861 /// Failure to do so will likely result in spurious diagnostics or failures
20862 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20863 bool Sema::DiagRuntimeBehavior(SourceLocation Loc
, ArrayRef
<const Stmt
*> Stmts
,
20864 const PartialDiagnostic
&PD
) {
20866 if (ExprEvalContexts
.back().isDiscardedStatementContext())
20869 switch (ExprEvalContexts
.back().Context
) {
20870 case ExpressionEvaluationContext::Unevaluated
:
20871 case ExpressionEvaluationContext::UnevaluatedList
:
20872 case ExpressionEvaluationContext::UnevaluatedAbstract
:
20873 case ExpressionEvaluationContext::DiscardedStatement
:
20874 // The argument will never be evaluated, so don't complain.
20877 case ExpressionEvaluationContext::ConstantEvaluated
:
20878 case ExpressionEvaluationContext::ImmediateFunctionContext
:
20879 // Relevant diagnostics should be produced by constant evaluation.
20882 case ExpressionEvaluationContext::PotentiallyEvaluated
:
20883 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
20884 return DiagIfReachable(Loc
, Stmts
, PD
);
20890 bool Sema::DiagRuntimeBehavior(SourceLocation Loc
, const Stmt
*Statement
,
20891 const PartialDiagnostic
&PD
) {
20892 return DiagRuntimeBehavior(
20893 Loc
, Statement
? llvm::ArrayRef(Statement
) : std::nullopt
, PD
);
20896 bool Sema::CheckCallReturnType(QualType ReturnType
, SourceLocation Loc
,
20897 CallExpr
*CE
, FunctionDecl
*FD
) {
20898 if (ReturnType
->isVoidType() || !ReturnType
->isIncompleteType())
20901 // If we're inside a decltype's expression, don't check for a valid return
20902 // type or construct temporaries until we know whether this is the last call.
20903 if (ExprEvalContexts
.back().ExprContext
==
20904 ExpressionEvaluationContextRecord::EK_Decltype
) {
20905 ExprEvalContexts
.back().DelayedDecltypeCalls
.push_back(CE
);
20909 class CallReturnIncompleteDiagnoser
: public TypeDiagnoser
{
20914 CallReturnIncompleteDiagnoser(FunctionDecl
*FD
, CallExpr
*CE
)
20915 : FD(FD
), CE(CE
) { }
20917 void diagnose(Sema
&S
, SourceLocation Loc
, QualType T
) override
{
20919 S
.Diag(Loc
, diag::err_call_incomplete_return
)
20920 << T
<< CE
->getSourceRange();
20924 S
.Diag(Loc
, diag::err_call_function_incomplete_return
)
20925 << CE
->getSourceRange() << FD
<< T
;
20926 S
.Diag(FD
->getLocation(), diag::note_entity_declared_at
)
20927 << FD
->getDeclName();
20929 } Diagnoser(FD
, CE
);
20931 if (RequireCompleteType(Loc
, ReturnType
, Diagnoser
))
20937 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20938 // will prevent this condition from triggering, which is what we want.
20939 void Sema::DiagnoseAssignmentAsCondition(Expr
*E
) {
20940 SourceLocation Loc
;
20942 unsigned diagnostic
= diag::warn_condition_is_assignment
;
20943 bool IsOrAssign
= false;
20945 if (BinaryOperator
*Op
= dyn_cast
<BinaryOperator
>(E
)) {
20946 if (Op
->getOpcode() != BO_Assign
&& Op
->getOpcode() != BO_OrAssign
)
20949 IsOrAssign
= Op
->getOpcode() == BO_OrAssign
;
20951 // Greylist some idioms by putting them into a warning subcategory.
20952 if (ObjCMessageExpr
*ME
20953 = dyn_cast
<ObjCMessageExpr
>(Op
->getRHS()->IgnoreParenCasts())) {
20954 Selector Sel
= ME
->getSelector();
20956 // self = [<foo> init...]
20957 if (isSelfExpr(Op
->getLHS()) && ME
->getMethodFamily() == OMF_init
)
20958 diagnostic
= diag::warn_condition_is_idiomatic_assignment
;
20960 // <foo> = [<bar> nextObject]
20961 else if (Sel
.isUnarySelector() && Sel
.getNameForSlot(0) == "nextObject")
20962 diagnostic
= diag::warn_condition_is_idiomatic_assignment
;
20965 Loc
= Op
->getOperatorLoc();
20966 } else if (CXXOperatorCallExpr
*Op
= dyn_cast
<CXXOperatorCallExpr
>(E
)) {
20967 if (Op
->getOperator() != OO_Equal
&& Op
->getOperator() != OO_PipeEqual
)
20970 IsOrAssign
= Op
->getOperator() == OO_PipeEqual
;
20971 Loc
= Op
->getOperatorLoc();
20972 } else if (PseudoObjectExpr
*POE
= dyn_cast
<PseudoObjectExpr
>(E
))
20973 return DiagnoseAssignmentAsCondition(POE
->getSyntacticForm());
20975 // Not an assignment.
20979 Diag(Loc
, diagnostic
) << E
->getSourceRange();
20981 SourceLocation Open
= E
->getBeginLoc();
20982 SourceLocation Close
= getLocForEndOfToken(E
->getSourceRange().getEnd());
20983 Diag(Loc
, diag::note_condition_assign_silence
)
20984 << FixItHint::CreateInsertion(Open
, "(")
20985 << FixItHint::CreateInsertion(Close
, ")");
20988 Diag(Loc
, diag::note_condition_or_assign_to_comparison
)
20989 << FixItHint::CreateReplacement(Loc
, "!=");
20991 Diag(Loc
, diag::note_condition_assign_to_comparison
)
20992 << FixItHint::CreateReplacement(Loc
, "==");
20995 /// Redundant parentheses over an equality comparison can indicate
20996 /// that the user intended an assignment used as condition.
20997 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr
*ParenE
) {
20998 // Don't warn if the parens came from a macro.
20999 SourceLocation parenLoc
= ParenE
->getBeginLoc();
21000 if (parenLoc
.isInvalid() || parenLoc
.isMacroID())
21002 // Don't warn for dependent expressions.
21003 if (ParenE
->isTypeDependent())
21006 Expr
*E
= ParenE
->IgnoreParens();
21008 if (BinaryOperator
*opE
= dyn_cast
<BinaryOperator
>(E
))
21009 if (opE
->getOpcode() == BO_EQ
&&
21010 opE
->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context
)
21011 == Expr::MLV_Valid
) {
21012 SourceLocation Loc
= opE
->getOperatorLoc();
21014 Diag(Loc
, diag::warn_equality_with_extra_parens
) << E
->getSourceRange();
21015 SourceRange ParenERange
= ParenE
->getSourceRange();
21016 Diag(Loc
, diag::note_equality_comparison_silence
)
21017 << FixItHint::CreateRemoval(ParenERange
.getBegin())
21018 << FixItHint::CreateRemoval(ParenERange
.getEnd());
21019 Diag(Loc
, diag::note_equality_comparison_to_assign
)
21020 << FixItHint::CreateReplacement(Loc
, "=");
21024 ExprResult
Sema::CheckBooleanCondition(SourceLocation Loc
, Expr
*E
,
21025 bool IsConstexpr
) {
21026 DiagnoseAssignmentAsCondition(E
);
21027 if (ParenExpr
*parenE
= dyn_cast
<ParenExpr
>(E
))
21028 DiagnoseEqualityWithExtraParens(parenE
);
21030 ExprResult result
= CheckPlaceholderExpr(E
);
21031 if (result
.isInvalid()) return ExprError();
21034 if (!E
->isTypeDependent()) {
21035 if (getLangOpts().CPlusPlus
)
21036 return CheckCXXBooleanCondition(E
, IsConstexpr
); // C++ 6.4p4
21038 ExprResult ERes
= DefaultFunctionArrayLvalueConversion(E
);
21039 if (ERes
.isInvalid())
21040 return ExprError();
21043 QualType T
= E
->getType();
21044 if (!T
->isScalarType()) { // C99 6.8.4.1p1
21045 Diag(Loc
, diag::err_typecheck_statement_requires_scalar
)
21046 << T
<< E
->getSourceRange();
21047 return ExprError();
21049 CheckBoolLikeConversion(E
, Loc
);
21055 Sema::ConditionResult
Sema::ActOnCondition(Scope
*S
, SourceLocation Loc
,
21056 Expr
*SubExpr
, ConditionKind CK
,
21058 // MissingOK indicates whether having no condition expression is valid
21059 // (for loop) or invalid (e.g. while loop).
21061 return MissingOK
? ConditionResult() : ConditionError();
21065 case ConditionKind::Boolean
:
21066 Cond
= CheckBooleanCondition(Loc
, SubExpr
);
21069 case ConditionKind::ConstexprIf
:
21070 Cond
= CheckBooleanCondition(Loc
, SubExpr
, true);
21073 case ConditionKind::Switch
:
21074 Cond
= CheckSwitchCondition(Loc
, SubExpr
);
21077 if (Cond
.isInvalid()) {
21078 Cond
= CreateRecoveryExpr(SubExpr
->getBeginLoc(), SubExpr
->getEndLoc(),
21079 {SubExpr
}, PreferredConditionType(CK
));
21081 return ConditionError();
21083 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
21084 FullExprArg FullExpr
= MakeFullExpr(Cond
.get(), Loc
);
21085 if (!FullExpr
.get())
21086 return ConditionError();
21088 return ConditionResult(*this, nullptr, FullExpr
,
21089 CK
== ConditionKind::ConstexprIf
);
21093 /// A visitor for rebuilding a call to an __unknown_any expression
21094 /// to have an appropriate type.
21095 struct RebuildUnknownAnyFunction
21096 : StmtVisitor
<RebuildUnknownAnyFunction
, ExprResult
> {
21100 RebuildUnknownAnyFunction(Sema
&S
) : S(S
) {}
21102 ExprResult
VisitStmt(Stmt
*S
) {
21103 llvm_unreachable("unexpected statement!");
21106 ExprResult
VisitExpr(Expr
*E
) {
21107 S
.Diag(E
->getExprLoc(), diag::err_unsupported_unknown_any_call
)
21108 << E
->getSourceRange();
21109 return ExprError();
21112 /// Rebuild an expression which simply semantically wraps another
21113 /// expression which it shares the type and value kind of.
21114 template <class T
> ExprResult
rebuildSugarExpr(T
*E
) {
21115 ExprResult SubResult
= Visit(E
->getSubExpr());
21116 if (SubResult
.isInvalid()) return ExprError();
21118 Expr
*SubExpr
= SubResult
.get();
21119 E
->setSubExpr(SubExpr
);
21120 E
->setType(SubExpr
->getType());
21121 E
->setValueKind(SubExpr
->getValueKind());
21122 assert(E
->getObjectKind() == OK_Ordinary
);
21126 ExprResult
VisitParenExpr(ParenExpr
*E
) {
21127 return rebuildSugarExpr(E
);
21130 ExprResult
VisitUnaryExtension(UnaryOperator
*E
) {
21131 return rebuildSugarExpr(E
);
21134 ExprResult
VisitUnaryAddrOf(UnaryOperator
*E
) {
21135 ExprResult SubResult
= Visit(E
->getSubExpr());
21136 if (SubResult
.isInvalid()) return ExprError();
21138 Expr
*SubExpr
= SubResult
.get();
21139 E
->setSubExpr(SubExpr
);
21140 E
->setType(S
.Context
.getPointerType(SubExpr
->getType()));
21141 assert(E
->isPRValue());
21142 assert(E
->getObjectKind() == OK_Ordinary
);
21146 ExprResult
resolveDecl(Expr
*E
, ValueDecl
*VD
) {
21147 if (!isa
<FunctionDecl
>(VD
)) return VisitExpr(E
);
21149 E
->setType(VD
->getType());
21151 assert(E
->isPRValue());
21152 if (S
.getLangOpts().CPlusPlus
&&
21153 !(isa
<CXXMethodDecl
>(VD
) &&
21154 cast
<CXXMethodDecl
>(VD
)->isInstance()))
21155 E
->setValueKind(VK_LValue
);
21160 ExprResult
VisitMemberExpr(MemberExpr
*E
) {
21161 return resolveDecl(E
, E
->getMemberDecl());
21164 ExprResult
VisitDeclRefExpr(DeclRefExpr
*E
) {
21165 return resolveDecl(E
, E
->getDecl());
21170 /// Given a function expression of unknown-any type, try to rebuild it
21171 /// to have a function type.
21172 static ExprResult
rebuildUnknownAnyFunction(Sema
&S
, Expr
*FunctionExpr
) {
21173 ExprResult Result
= RebuildUnknownAnyFunction(S
).Visit(FunctionExpr
);
21174 if (Result
.isInvalid()) return ExprError();
21175 return S
.DefaultFunctionArrayConversion(Result
.get());
21179 /// A visitor for rebuilding an expression of type __unknown_anytype
21180 /// into one which resolves the type directly on the referring
21181 /// expression. Strict preservation of the original source
21182 /// structure is not a goal.
21183 struct RebuildUnknownAnyExpr
21184 : StmtVisitor
<RebuildUnknownAnyExpr
, ExprResult
> {
21188 /// The current destination type.
21191 RebuildUnknownAnyExpr(Sema
&S
, QualType CastType
)
21192 : S(S
), DestType(CastType
) {}
21194 ExprResult
VisitStmt(Stmt
*S
) {
21195 llvm_unreachable("unexpected statement!");
21198 ExprResult
VisitExpr(Expr
*E
) {
21199 S
.Diag(E
->getExprLoc(), diag::err_unsupported_unknown_any_expr
)
21200 << E
->getSourceRange();
21201 return ExprError();
21204 ExprResult
VisitCallExpr(CallExpr
*E
);
21205 ExprResult
VisitObjCMessageExpr(ObjCMessageExpr
*E
);
21207 /// Rebuild an expression which simply semantically wraps another
21208 /// expression which it shares the type and value kind of.
21209 template <class T
> ExprResult
rebuildSugarExpr(T
*E
) {
21210 ExprResult SubResult
= Visit(E
->getSubExpr());
21211 if (SubResult
.isInvalid()) return ExprError();
21212 Expr
*SubExpr
= SubResult
.get();
21213 E
->setSubExpr(SubExpr
);
21214 E
->setType(SubExpr
->getType());
21215 E
->setValueKind(SubExpr
->getValueKind());
21216 assert(E
->getObjectKind() == OK_Ordinary
);
21220 ExprResult
VisitParenExpr(ParenExpr
*E
) {
21221 return rebuildSugarExpr(E
);
21224 ExprResult
VisitUnaryExtension(UnaryOperator
*E
) {
21225 return rebuildSugarExpr(E
);
21228 ExprResult
VisitUnaryAddrOf(UnaryOperator
*E
) {
21229 const PointerType
*Ptr
= DestType
->getAs
<PointerType
>();
21231 S
.Diag(E
->getOperatorLoc(), diag::err_unknown_any_addrof
)
21232 << E
->getSourceRange();
21233 return ExprError();
21236 if (isa
<CallExpr
>(E
->getSubExpr())) {
21237 S
.Diag(E
->getOperatorLoc(), diag::err_unknown_any_addrof_call
)
21238 << E
->getSourceRange();
21239 return ExprError();
21242 assert(E
->isPRValue());
21243 assert(E
->getObjectKind() == OK_Ordinary
);
21244 E
->setType(DestType
);
21246 // Build the sub-expression as if it were an object of the pointee type.
21247 DestType
= Ptr
->getPointeeType();
21248 ExprResult SubResult
= Visit(E
->getSubExpr());
21249 if (SubResult
.isInvalid()) return ExprError();
21250 E
->setSubExpr(SubResult
.get());
21254 ExprResult
VisitImplicitCastExpr(ImplicitCastExpr
*E
);
21256 ExprResult
resolveDecl(Expr
*E
, ValueDecl
*VD
);
21258 ExprResult
VisitMemberExpr(MemberExpr
*E
) {
21259 return resolveDecl(E
, E
->getMemberDecl());
21262 ExprResult
VisitDeclRefExpr(DeclRefExpr
*E
) {
21263 return resolveDecl(E
, E
->getDecl());
21268 /// Rebuilds a call expression which yielded __unknown_anytype.
21269 ExprResult
RebuildUnknownAnyExpr::VisitCallExpr(CallExpr
*E
) {
21270 Expr
*CalleeExpr
= E
->getCallee();
21274 FK_FunctionPointer
,
21279 QualType CalleeType
= CalleeExpr
->getType();
21280 if (CalleeType
== S
.Context
.BoundMemberTy
) {
21281 assert(isa
<CXXMemberCallExpr
>(E
) || isa
<CXXOperatorCallExpr
>(E
));
21282 Kind
= FK_MemberFunction
;
21283 CalleeType
= Expr::findBoundMemberType(CalleeExpr
);
21284 } else if (const PointerType
*Ptr
= CalleeType
->getAs
<PointerType
>()) {
21285 CalleeType
= Ptr
->getPointeeType();
21286 Kind
= FK_FunctionPointer
;
21288 CalleeType
= CalleeType
->castAs
<BlockPointerType
>()->getPointeeType();
21289 Kind
= FK_BlockPointer
;
21291 const FunctionType
*FnType
= CalleeType
->castAs
<FunctionType
>();
21293 // Verify that this is a legal result type of a function.
21294 if (DestType
->isArrayType() || DestType
->isFunctionType()) {
21295 unsigned diagID
= diag::err_func_returning_array_function
;
21296 if (Kind
== FK_BlockPointer
)
21297 diagID
= diag::err_block_returning_array_function
;
21299 S
.Diag(E
->getExprLoc(), diagID
)
21300 << DestType
->isFunctionType() << DestType
;
21301 return ExprError();
21304 // Otherwise, go ahead and set DestType as the call's result.
21305 E
->setType(DestType
.getNonLValueExprType(S
.Context
));
21306 E
->setValueKind(Expr::getValueKindForType(DestType
));
21307 assert(E
->getObjectKind() == OK_Ordinary
);
21309 // Rebuild the function type, replacing the result type with DestType.
21310 const FunctionProtoType
*Proto
= dyn_cast
<FunctionProtoType
>(FnType
);
21312 // __unknown_anytype(...) is a special case used by the debugger when
21313 // it has no idea what a function's signature is.
21315 // We want to build this call essentially under the K&R
21316 // unprototyped rules, but making a FunctionNoProtoType in C++
21317 // would foul up all sorts of assumptions. However, we cannot
21318 // simply pass all arguments as variadic arguments, nor can we
21319 // portably just call the function under a non-variadic type; see
21320 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21321 // However, it turns out that in practice it is generally safe to
21322 // call a function declared as "A foo(B,C,D);" under the prototype
21323 // "A foo(B,C,D,...);". The only known exception is with the
21324 // Windows ABI, where any variadic function is implicitly cdecl
21325 // regardless of its normal CC. Therefore we change the parameter
21326 // types to match the types of the arguments.
21328 // This is a hack, but it is far superior to moving the
21329 // corresponding target-specific code from IR-gen to Sema/AST.
21331 ArrayRef
<QualType
> ParamTypes
= Proto
->getParamTypes();
21332 SmallVector
<QualType
, 8> ArgTypes
;
21333 if (ParamTypes
.empty() && Proto
->isVariadic()) { // the special case
21334 ArgTypes
.reserve(E
->getNumArgs());
21335 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; ++i
) {
21336 ArgTypes
.push_back(S
.Context
.getReferenceQualifiedType(E
->getArg(i
)));
21338 ParamTypes
= ArgTypes
;
21340 DestType
= S
.Context
.getFunctionType(DestType
, ParamTypes
,
21341 Proto
->getExtProtoInfo());
21343 DestType
= S
.Context
.getFunctionNoProtoType(DestType
,
21344 FnType
->getExtInfo());
21347 // Rebuild the appropriate pointer-to-function type.
21349 case FK_MemberFunction
:
21353 case FK_FunctionPointer
:
21354 DestType
= S
.Context
.getPointerType(DestType
);
21357 case FK_BlockPointer
:
21358 DestType
= S
.Context
.getBlockPointerType(DestType
);
21362 // Finally, we can recurse.
21363 ExprResult CalleeResult
= Visit(CalleeExpr
);
21364 if (!CalleeResult
.isUsable()) return ExprError();
21365 E
->setCallee(CalleeResult
.get());
21367 // Bind a temporary if necessary.
21368 return S
.MaybeBindToTemporary(E
);
21371 ExprResult
RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr
*E
) {
21372 // Verify that this is a legal result type of a call.
21373 if (DestType
->isArrayType() || DestType
->isFunctionType()) {
21374 S
.Diag(E
->getExprLoc(), diag::err_func_returning_array_function
)
21375 << DestType
->isFunctionType() << DestType
;
21376 return ExprError();
21379 // Rewrite the method result type if available.
21380 if (ObjCMethodDecl
*Method
= E
->getMethodDecl()) {
21381 assert(Method
->getReturnType() == S
.Context
.UnknownAnyTy
);
21382 Method
->setReturnType(DestType
);
21385 // Change the type of the message.
21386 E
->setType(DestType
.getNonReferenceType());
21387 E
->setValueKind(Expr::getValueKindForType(DestType
));
21389 return S
.MaybeBindToTemporary(E
);
21392 ExprResult
RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr
*E
) {
21393 // The only case we should ever see here is a function-to-pointer decay.
21394 if (E
->getCastKind() == CK_FunctionToPointerDecay
) {
21395 assert(E
->isPRValue());
21396 assert(E
->getObjectKind() == OK_Ordinary
);
21398 E
->setType(DestType
);
21400 // Rebuild the sub-expression as the pointee (function) type.
21401 DestType
= DestType
->castAs
<PointerType
>()->getPointeeType();
21403 ExprResult Result
= Visit(E
->getSubExpr());
21404 if (!Result
.isUsable()) return ExprError();
21406 E
->setSubExpr(Result
.get());
21408 } else if (E
->getCastKind() == CK_LValueToRValue
) {
21409 assert(E
->isPRValue());
21410 assert(E
->getObjectKind() == OK_Ordinary
);
21412 assert(isa
<BlockPointerType
>(E
->getType()));
21414 E
->setType(DestType
);
21416 // The sub-expression has to be a lvalue reference, so rebuild it as such.
21417 DestType
= S
.Context
.getLValueReferenceType(DestType
);
21419 ExprResult Result
= Visit(E
->getSubExpr());
21420 if (!Result
.isUsable()) return ExprError();
21422 E
->setSubExpr(Result
.get());
21425 llvm_unreachable("Unhandled cast type!");
21429 ExprResult
RebuildUnknownAnyExpr::resolveDecl(Expr
*E
, ValueDecl
*VD
) {
21430 ExprValueKind ValueKind
= VK_LValue
;
21431 QualType Type
= DestType
;
21433 // We know how to make this work for certain kinds of decls:
21436 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(VD
)) {
21437 if (const PointerType
*Ptr
= Type
->getAs
<PointerType
>()) {
21438 DestType
= Ptr
->getPointeeType();
21439 ExprResult Result
= resolveDecl(E
, VD
);
21440 if (Result
.isInvalid()) return ExprError();
21441 return S
.ImpCastExprToType(Result
.get(), Type
, CK_FunctionToPointerDecay
,
21445 if (!Type
->isFunctionType()) {
21446 S
.Diag(E
->getExprLoc(), diag::err_unknown_any_function
)
21447 << VD
<< E
->getSourceRange();
21448 return ExprError();
21450 if (const FunctionProtoType
*FT
= Type
->getAs
<FunctionProtoType
>()) {
21451 // We must match the FunctionDecl's type to the hack introduced in
21452 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21453 // type. See the lengthy commentary in that routine.
21454 QualType FDT
= FD
->getType();
21455 const FunctionType
*FnType
= FDT
->castAs
<FunctionType
>();
21456 const FunctionProtoType
*Proto
= dyn_cast_or_null
<FunctionProtoType
>(FnType
);
21457 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
);
21458 if (DRE
&& Proto
&& Proto
->getParamTypes().empty() && Proto
->isVariadic()) {
21459 SourceLocation Loc
= FD
->getLocation();
21460 FunctionDecl
*NewFD
= FunctionDecl::Create(
21461 S
.Context
, FD
->getDeclContext(), Loc
, Loc
,
21462 FD
->getNameInfo().getName(), DestType
, FD
->getTypeSourceInfo(),
21463 SC_None
, S
.getCurFPFeatures().isFPConstrained(),
21464 false /*isInlineSpecified*/, FD
->hasPrototype(),
21465 /*ConstexprKind*/ ConstexprSpecKind::Unspecified
);
21467 if (FD
->getQualifier())
21468 NewFD
->setQualifierInfo(FD
->getQualifierLoc());
21470 SmallVector
<ParmVarDecl
*, 16> Params
;
21471 for (const auto &AI
: FT
->param_types()) {
21472 ParmVarDecl
*Param
=
21473 S
.BuildParmVarDeclForTypedef(FD
, Loc
, AI
);
21474 Param
->setScopeInfo(0, Params
.size());
21475 Params
.push_back(Param
);
21477 NewFD
->setParams(Params
);
21478 DRE
->setDecl(NewFD
);
21479 VD
= DRE
->getDecl();
21483 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
))
21484 if (MD
->isInstance()) {
21485 ValueKind
= VK_PRValue
;
21486 Type
= S
.Context
.BoundMemberTy
;
21489 // Function references aren't l-values in C.
21490 if (!S
.getLangOpts().CPlusPlus
)
21491 ValueKind
= VK_PRValue
;
21494 } else if (isa
<VarDecl
>(VD
)) {
21495 if (const ReferenceType
*RefTy
= Type
->getAs
<ReferenceType
>()) {
21496 Type
= RefTy
->getPointeeType();
21497 } else if (Type
->isFunctionType()) {
21498 S
.Diag(E
->getExprLoc(), diag::err_unknown_any_var_function_type
)
21499 << VD
<< E
->getSourceRange();
21500 return ExprError();
21505 S
.Diag(E
->getExprLoc(), diag::err_unsupported_unknown_any_decl
)
21506 << VD
<< E
->getSourceRange();
21507 return ExprError();
21510 // Modifying the declaration like this is friendly to IR-gen but
21511 // also really dangerous.
21512 VD
->setType(DestType
);
21514 E
->setValueKind(ValueKind
);
21518 /// Check a cast of an unknown-any type. We intentionally only
21519 /// trigger this for C-style casts.
21520 ExprResult
Sema::checkUnknownAnyCast(SourceRange TypeRange
, QualType CastType
,
21521 Expr
*CastExpr
, CastKind
&CastKind
,
21522 ExprValueKind
&VK
, CXXCastPath
&Path
) {
21523 // The type we're casting to must be either void or complete.
21524 if (!CastType
->isVoidType() &&
21525 RequireCompleteType(TypeRange
.getBegin(), CastType
,
21526 diag::err_typecheck_cast_to_incomplete
))
21527 return ExprError();
21529 // Rewrite the casted expression from scratch.
21530 ExprResult result
= RebuildUnknownAnyExpr(*this, CastType
).Visit(CastExpr
);
21531 if (!result
.isUsable()) return ExprError();
21533 CastExpr
= result
.get();
21534 VK
= CastExpr
->getValueKind();
21535 CastKind
= CK_NoOp
;
21540 ExprResult
Sema::forceUnknownAnyToType(Expr
*E
, QualType ToType
) {
21541 return RebuildUnknownAnyExpr(*this, ToType
).Visit(E
);
21544 ExprResult
Sema::checkUnknownAnyArg(SourceLocation callLoc
,
21545 Expr
*arg
, QualType
¶mType
) {
21546 // If the syntactic form of the argument is not an explicit cast of
21547 // any sort, just do default argument promotion.
21548 ExplicitCastExpr
*castArg
= dyn_cast
<ExplicitCastExpr
>(arg
->IgnoreParens());
21550 ExprResult result
= DefaultArgumentPromotion(arg
);
21551 if (result
.isInvalid()) return ExprError();
21552 paramType
= result
.get()->getType();
21556 // Otherwise, use the type that was written in the explicit cast.
21557 assert(!arg
->hasPlaceholderType());
21558 paramType
= castArg
->getTypeAsWritten();
21560 // Copy-initialize a parameter of that type.
21561 InitializedEntity entity
=
21562 InitializedEntity::InitializeParameter(Context
, paramType
,
21563 /*consumed*/ false);
21564 return PerformCopyInitialization(entity
, callLoc
, arg
);
21567 static ExprResult
diagnoseUnknownAnyExpr(Sema
&S
, Expr
*E
) {
21569 unsigned diagID
= diag::err_uncasted_use_of_unknown_any
;
21571 E
= E
->IgnoreParenImpCasts();
21572 if (CallExpr
*call
= dyn_cast
<CallExpr
>(E
)) {
21573 E
= call
->getCallee();
21574 diagID
= diag::err_uncasted_call_of_unknown_any
;
21580 SourceLocation loc
;
21582 if (DeclRefExpr
*ref
= dyn_cast
<DeclRefExpr
>(E
)) {
21583 loc
= ref
->getLocation();
21584 d
= ref
->getDecl();
21585 } else if (MemberExpr
*mem
= dyn_cast
<MemberExpr
>(E
)) {
21586 loc
= mem
->getMemberLoc();
21587 d
= mem
->getMemberDecl();
21588 } else if (ObjCMessageExpr
*msg
= dyn_cast
<ObjCMessageExpr
>(E
)) {
21589 diagID
= diag::err_uncasted_call_of_unknown_any
;
21590 loc
= msg
->getSelectorStartLoc();
21591 d
= msg
->getMethodDecl();
21593 S
.Diag(loc
, diag::err_uncasted_send_to_unknown_any_method
)
21594 << static_cast<unsigned>(msg
->isClassMessage()) << msg
->getSelector()
21595 << orig
->getSourceRange();
21596 return ExprError();
21599 S
.Diag(E
->getExprLoc(), diag::err_unsupported_unknown_any_expr
)
21600 << E
->getSourceRange();
21601 return ExprError();
21604 S
.Diag(loc
, diagID
) << d
<< orig
->getSourceRange();
21606 // Never recoverable.
21607 return ExprError();
21610 /// Check for operands with placeholder types and complain if found.
21611 /// Returns ExprError() if there was an error and no recovery was possible.
21612 ExprResult
Sema::CheckPlaceholderExpr(Expr
*E
) {
21613 if (!Context
.isDependenceAllowed()) {
21614 // C cannot handle TypoExpr nodes on either side of a binop because it
21615 // doesn't handle dependent types properly, so make sure any TypoExprs have
21616 // been dealt with before checking the operands.
21617 ExprResult Result
= CorrectDelayedTyposInExpr(E
);
21618 if (!Result
.isUsable()) return ExprError();
21622 const BuiltinType
*placeholderType
= E
->getType()->getAsPlaceholderType();
21623 if (!placeholderType
) return E
;
21625 switch (placeholderType
->getKind()) {
21627 // Overloaded expressions.
21628 case BuiltinType::Overload
: {
21629 // Try to resolve a single function template specialization.
21630 // This is obligatory.
21631 ExprResult Result
= E
;
21632 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result
, false))
21635 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21636 // leaves Result unchanged on failure.
21638 if (resolveAndFixAddressOfSingleOverloadCandidate(Result
))
21641 // If that failed, try to recover with a call.
21642 tryToRecoverWithCall(Result
, PDiag(diag::err_ovl_unresolvable
),
21643 /*complain*/ true);
21647 // Bound member functions.
21648 case BuiltinType::BoundMember
: {
21649 ExprResult result
= E
;
21650 const Expr
*BME
= E
->IgnoreParens();
21651 PartialDiagnostic PD
= PDiag(diag::err_bound_member_function
);
21652 // Try to give a nicer diagnostic if it is a bound member that we recognize.
21653 if (isa
<CXXPseudoDestructorExpr
>(BME
)) {
21654 PD
= PDiag(diag::err_dtor_expr_without_call
) << /*pseudo-destructor*/ 1;
21655 } else if (const auto *ME
= dyn_cast
<MemberExpr
>(BME
)) {
21656 if (ME
->getMemberNameInfo().getName().getNameKind() ==
21657 DeclarationName::CXXDestructorName
)
21658 PD
= PDiag(diag::err_dtor_expr_without_call
) << /*destructor*/ 0;
21660 tryToRecoverWithCall(result
, PD
,
21661 /*complain*/ true);
21665 // ARC unbridged casts.
21666 case BuiltinType::ARCUnbridgedCast
: {
21667 Expr
*realCast
= stripARCUnbridgedCast(E
);
21668 diagnoseARCUnbridgedCast(realCast
);
21672 // Expressions of unknown type.
21673 case BuiltinType::UnknownAny
:
21674 return diagnoseUnknownAnyExpr(*this, E
);
21677 case BuiltinType::PseudoObject
:
21678 return checkPseudoObjectRValue(E
);
21680 case BuiltinType::BuiltinFn
: {
21681 // Accept __noop without parens by implicitly converting it to a call expr.
21682 auto *DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts());
21684 auto *FD
= cast
<FunctionDecl
>(DRE
->getDecl());
21685 unsigned BuiltinID
= FD
->getBuiltinID();
21686 if (BuiltinID
== Builtin::BI__noop
) {
21687 E
= ImpCastExprToType(E
, Context
.getPointerType(FD
->getType()),
21688 CK_BuiltinFnToFnPtr
)
21690 return CallExpr::Create(Context
, E
, /*Args=*/{}, Context
.IntTy
,
21691 VK_PRValue
, SourceLocation(),
21692 FPOptionsOverride());
21695 if (Context
.BuiltinInfo
.isInStdNamespace(BuiltinID
)) {
21696 // Any use of these other than a direct call is ill-formed as of C++20,
21697 // because they are not addressable functions. In earlier language
21698 // modes, warn and force an instantiation of the real body.
21699 Diag(E
->getBeginLoc(),
21700 getLangOpts().CPlusPlus20
21701 ? diag::err_use_of_unaddressable_function
21702 : diag::warn_cxx20_compat_use_of_unaddressable_function
);
21703 if (FD
->isImplicitlyInstantiable()) {
21704 // Require a definition here because a normal attempt at
21705 // instantiation for a builtin will be ignored, and we won't try
21706 // again later. We assume that the definition of the template
21707 // precedes this use.
21708 InstantiateFunctionDefinition(E
->getBeginLoc(), FD
,
21709 /*Recursive=*/false,
21710 /*DefinitionRequired=*/true,
21711 /*AtEndOfTU=*/false);
21713 // Produce a properly-typed reference to the function.
21715 SS
.Adopt(DRE
->getQualifierLoc());
21716 TemplateArgumentListInfo TemplateArgs
;
21717 DRE
->copyTemplateArgumentsInto(TemplateArgs
);
21718 return BuildDeclRefExpr(
21719 FD
, FD
->getType(), VK_LValue
, DRE
->getNameInfo(),
21720 DRE
->hasQualifier() ? &SS
: nullptr, DRE
->getFoundDecl(),
21721 DRE
->getTemplateKeywordLoc(),
21722 DRE
->hasExplicitTemplateArgs() ? &TemplateArgs
: nullptr);
21726 Diag(E
->getBeginLoc(), diag::err_builtin_fn_use
);
21727 return ExprError();
21730 case BuiltinType::IncompleteMatrixIdx
:
21731 Diag(cast
<MatrixSubscriptExpr
>(E
->IgnoreParens())
21734 diag::err_matrix_incomplete_index
);
21735 return ExprError();
21737 // Expressions of unknown type.
21738 case BuiltinType::OMPArraySection
:
21739 Diag(E
->getBeginLoc(), diag::err_omp_array_section_use
);
21740 return ExprError();
21742 // Expressions of unknown type.
21743 case BuiltinType::OMPArrayShaping
:
21744 return ExprError(Diag(E
->getBeginLoc(), diag::err_omp_array_shaping_use
));
21746 case BuiltinType::OMPIterator
:
21747 return ExprError(Diag(E
->getBeginLoc(), diag::err_omp_iterator_use
));
21749 // Everything else should be impossible.
21750 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21751 case BuiltinType::Id:
21752 #include "clang/Basic/OpenCLImageTypes.def"
21753 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21754 case BuiltinType::Id:
21755 #include "clang/Basic/OpenCLExtensionTypes.def"
21756 #define SVE_TYPE(Name, Id, SingletonId) \
21757 case BuiltinType::Id:
21758 #include "clang/Basic/AArch64SVEACLETypes.def"
21759 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21760 case BuiltinType::Id:
21761 #include "clang/Basic/PPCTypes.def"
21762 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21763 #include "clang/Basic/RISCVVTypes.def"
21764 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21765 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21766 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21767 #define PLACEHOLDER_TYPE(Id, SingletonId)
21768 #include "clang/AST/BuiltinTypes.def"
21772 llvm_unreachable("invalid placeholder type!");
21775 bool Sema::CheckCaseExpression(Expr
*E
) {
21776 if (E
->isTypeDependent())
21778 if (E
->isValueDependent() || E
->isIntegerConstantExpr(Context
))
21779 return E
->getType()->isIntegralOrEnumerationType();
21783 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21785 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc
, tok::TokenKind Kind
) {
21786 assert((Kind
== tok::kw___objc_yes
|| Kind
== tok::kw___objc_no
) &&
21787 "Unknown Objective-C Boolean value!");
21788 QualType BoolT
= Context
.ObjCBuiltinBoolTy
;
21789 if (!Context
.getBOOLDecl()) {
21790 LookupResult
Result(*this, &Context
.Idents
.get("BOOL"), OpLoc
,
21791 Sema::LookupOrdinaryName
);
21792 if (LookupName(Result
, getCurScope()) && Result
.isSingleResult()) {
21793 NamedDecl
*ND
= Result
.getFoundDecl();
21794 if (TypedefDecl
*TD
= dyn_cast
<TypedefDecl
>(ND
))
21795 Context
.setBOOLDecl(TD
);
21798 if (Context
.getBOOLDecl())
21799 BoolT
= Context
.getBOOLType();
21800 return new (Context
)
21801 ObjCBoolLiteralExpr(Kind
== tok::kw___objc_yes
, BoolT
, OpLoc
);
21804 ExprResult
Sema::ActOnObjCAvailabilityCheckExpr(
21805 llvm::ArrayRef
<AvailabilitySpec
> AvailSpecs
, SourceLocation AtLoc
,
21806 SourceLocation RParen
) {
21807 auto FindSpecVersion
=
21808 [&](StringRef Platform
) -> std::optional
<VersionTuple
> {
21809 auto Spec
= llvm::find_if(AvailSpecs
, [&](const AvailabilitySpec
&Spec
) {
21810 return Spec
.getPlatform() == Platform
;
21812 // Transcribe the "ios" availability check to "maccatalyst" when compiling
21813 // for "maccatalyst" if "maccatalyst" is not specified.
21814 if (Spec
== AvailSpecs
.end() && Platform
== "maccatalyst") {
21815 Spec
= llvm::find_if(AvailSpecs
, [&](const AvailabilitySpec
&Spec
) {
21816 return Spec
.getPlatform() == "ios";
21819 if (Spec
== AvailSpecs
.end())
21820 return std::nullopt
;
21821 return Spec
->getVersion();
21824 VersionTuple Version
;
21825 if (auto MaybeVersion
=
21826 FindSpecVersion(Context
.getTargetInfo().getPlatformName()))
21827 Version
= *MaybeVersion
;
21829 // The use of `@available` in the enclosing context should be analyzed to
21830 // warn when it's used inappropriately (i.e. not if(@available)).
21831 if (FunctionScopeInfo
*Context
= getCurFunctionAvailabilityContext())
21832 Context
->HasPotentialAvailabilityViolations
= true;
21834 return new (Context
)
21835 ObjCAvailabilityCheckExpr(Version
, AtLoc
, RParen
, Context
.BoolTy
);
21838 ExprResult
Sema::CreateRecoveryExpr(SourceLocation Begin
, SourceLocation End
,
21839 ArrayRef
<Expr
*> SubExprs
, QualType T
) {
21840 if (!Context
.getLangOpts().RecoveryAST
)
21841 return ExprError();
21843 if (isSFINAEContext())
21844 return ExprError();
21846 if (T
.isNull() || T
->isUndeducedType() ||
21847 !Context
.getLangOpts().RecoveryASTType
)
21848 // We don't know the concrete type, fallback to dependent type.
21849 T
= Context
.DependentTy
;
21851 return RecoveryExpr::Create(Context
, T
, Begin
, End
, SubExprs
);