[lld][WebAssembly] Add `--table-base` setting
[llvm-project.git] / clang / lib / Sema / SemaLambda.cpp
blob26d3a66d553192f72ebfa118ce6ecc0a24efbe0e
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ lambda expressions.
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include <optional>
25 using namespace clang;
26 using namespace sema;
28 /// Examines the FunctionScopeInfo stack to determine the nearest
29 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
30 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
31 /// If successful, returns the index into Sema's FunctionScopeInfo stack
32 /// of the capture-ready lambda's LambdaScopeInfo.
33 ///
34 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
35 /// lambda - is on top) to determine the index of the nearest enclosing/outer
36 /// lambda that is ready to capture the \p VarToCapture being referenced in
37 /// the current lambda.
38 /// As we climb down the stack, we want the index of the first such lambda -
39 /// that is the lambda with the highest index that is 'capture-ready'.
40 ///
41 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
42 /// - its enclosing context is non-dependent
43 /// - and if the chain of lambdas between L and the lambda in which
44 /// V is potentially used (i.e. the lambda at the top of the scope info
45 /// stack), can all capture or have already captured V.
46 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
47 ///
48 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
49 /// for whether it is 'capture-capable' (see
50 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
51 /// capture.
52 ///
53 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
54 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
55 /// is at the top of the stack and has the highest index.
56 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
57 ///
58 /// \returns An std::optional<unsigned> Index that if evaluates to 'true'
59 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
60 /// lambda which is capture-ready. If the return value evaluates to 'false'
61 /// then no lambda is capture-ready for \p VarToCapture.
63 static inline std::optional<unsigned>
64 getStackIndexOfNearestEnclosingCaptureReadyLambda(
65 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
66 ValueDecl *VarToCapture) {
67 // Label failure to capture.
68 const std::optional<unsigned> NoLambdaIsCaptureReady;
70 // Ignore all inner captured regions.
71 unsigned CurScopeIndex = FunctionScopes.size() - 1;
72 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
73 FunctionScopes[CurScopeIndex]))
74 --CurScopeIndex;
75 assert(
76 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
77 "The function on the top of sema's function-info stack must be a lambda");
79 // If VarToCapture is null, we are attempting to capture 'this'.
80 const bool IsCapturingThis = !VarToCapture;
81 const bool IsCapturingVariable = !IsCapturingThis;
83 // Start with the current lambda at the top of the stack (highest index).
84 DeclContext *EnclosingDC =
85 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
87 do {
88 const clang::sema::LambdaScopeInfo *LSI =
89 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
90 // IF we have climbed down to an intervening enclosing lambda that contains
91 // the variable declaration - it obviously can/must not capture the
92 // variable.
93 // Since its enclosing DC is dependent, all the lambdas between it and the
94 // innermost nested lambda are dependent (otherwise we wouldn't have
95 // arrived here) - so we don't yet have a lambda that can capture the
96 // variable.
97 if (IsCapturingVariable &&
98 VarToCapture->getDeclContext()->Equals(EnclosingDC))
99 return NoLambdaIsCaptureReady;
101 // For an enclosing lambda to be capture ready for an entity, all
102 // intervening lambda's have to be able to capture that entity. If even
103 // one of the intervening lambda's is not capable of capturing the entity
104 // then no enclosing lambda can ever capture that entity.
105 // For e.g.
106 // const int x = 10;
107 // [=](auto a) { #1
108 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
109 // [=](auto c) { #3
110 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
111 // }; }; };
112 // If they do not have a default implicit capture, check to see
113 // if the entity has already been explicitly captured.
114 // If even a single dependent enclosing lambda lacks the capability
115 // to ever capture this variable, there is no further enclosing
116 // non-dependent lambda that can capture this variable.
117 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
118 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
119 return NoLambdaIsCaptureReady;
120 if (IsCapturingThis && !LSI->isCXXThisCaptured())
121 return NoLambdaIsCaptureReady;
123 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
125 assert(CurScopeIndex);
126 --CurScopeIndex;
127 } while (!EnclosingDC->isTranslationUnit() &&
128 EnclosingDC->isDependentContext() &&
129 isLambdaCallOperator(EnclosingDC));
131 assert(CurScopeIndex < (FunctionScopes.size() - 1));
132 // If the enclosingDC is not dependent, then the immediately nested lambda
133 // (one index above) is capture-ready.
134 if (!EnclosingDC->isDependentContext())
135 return CurScopeIndex + 1;
136 return NoLambdaIsCaptureReady;
139 /// Examines the FunctionScopeInfo stack to determine the nearest
140 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
141 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
142 /// If successful, returns the index into Sema's FunctionScopeInfo stack
143 /// of the capture-capable lambda's LambdaScopeInfo.
145 /// Given the current stack of lambdas being processed by Sema and
146 /// the variable of interest, to identify the nearest enclosing lambda (to the
147 /// current lambda at the top of the stack) that can truly capture
148 /// a variable, it has to have the following two properties:
149 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
150 /// - climb down the stack (i.e. starting from the innermost and examining
151 /// each outer lambda step by step) checking if each enclosing
152 /// lambda can either implicitly or explicitly capture the variable.
153 /// Record the first such lambda that is enclosed in a non-dependent
154 /// context. If no such lambda currently exists return failure.
155 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
156 /// capture the variable by checking all its enclosing lambdas:
157 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
158 /// identified above in 'a' can also capture the variable (this is done
159 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
160 /// 'this' by passing in the index of the Lambda identified in step 'a')
162 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
163 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
164 /// is at the top of the stack.
166 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
169 /// \returns An std::optional<unsigned> Index that if evaluates to 'true'
170 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
171 /// lambda which is capture-capable. If the return value evaluates to 'false'
172 /// then no lambda is capture-capable for \p VarToCapture.
174 std::optional<unsigned>
175 clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
176 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
177 ValueDecl *VarToCapture, Sema &S) {
179 const std::optional<unsigned> NoLambdaIsCaptureCapable;
181 const std::optional<unsigned> OptionalStackIndex =
182 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
183 VarToCapture);
184 if (!OptionalStackIndex)
185 return NoLambdaIsCaptureCapable;
187 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex;
188 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
189 S.getCurGenericLambda()) &&
190 "The capture ready lambda for a potential capture can only be the "
191 "current lambda if it is a generic lambda");
193 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
194 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
196 // If VarToCapture is null, we are attempting to capture 'this'
197 const bool IsCapturingThis = !VarToCapture;
198 const bool IsCapturingVariable = !IsCapturingThis;
200 if (IsCapturingVariable) {
201 // Check if the capture-ready lambda can truly capture the variable, by
202 // checking whether all enclosing lambdas of the capture-ready lambda allow
203 // the capture - i.e. make sure it is capture-capable.
204 QualType CaptureType, DeclRefType;
205 const bool CanCaptureVariable =
206 !S.tryCaptureVariable(VarToCapture,
207 /*ExprVarIsUsedInLoc*/ SourceLocation(),
208 clang::Sema::TryCapture_Implicit,
209 /*EllipsisLoc*/ SourceLocation(),
210 /*BuildAndDiagnose*/ false, CaptureType,
211 DeclRefType, &IndexOfCaptureReadyLambda);
212 if (!CanCaptureVariable)
213 return NoLambdaIsCaptureCapable;
214 } else {
215 // Check if the capture-ready lambda can truly capture 'this' by checking
216 // whether all enclosing lambdas of the capture-ready lambda can capture
217 // 'this'.
218 const bool CanCaptureThis =
219 !S.CheckCXXThisCapture(
220 CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
221 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
222 &IndexOfCaptureReadyLambda);
223 if (!CanCaptureThis)
224 return NoLambdaIsCaptureCapable;
226 return IndexOfCaptureReadyLambda;
229 static inline TemplateParameterList *
230 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
231 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
232 LSI->GLTemplateParameterList = TemplateParameterList::Create(
233 SemaRef.Context,
234 /*Template kw loc*/ SourceLocation(),
235 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
236 LSI->TemplateParams,
237 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
238 LSI->RequiresClause.get());
240 return LSI->GLTemplateParameterList;
243 CXXRecordDecl *
244 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info,
245 unsigned LambdaDependencyKind,
246 LambdaCaptureDefault CaptureDefault) {
247 DeclContext *DC = CurContext;
248 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
249 DC = DC->getParent();
251 bool IsGenericLambda =
252 Info && getGenericLambdaTemplateParameterList(getCurLambda(), *this);
253 // Start constructing the lambda class.
254 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(
255 Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind,
256 IsGenericLambda, CaptureDefault);
257 DC->addDecl(Class);
259 return Class;
262 /// Determine whether the given context is or is enclosed in an inline
263 /// function.
264 static bool isInInlineFunction(const DeclContext *DC) {
265 while (!DC->isFileContext()) {
266 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
267 if (FD->isInlined())
268 return true;
270 DC = DC->getLexicalParent();
273 return false;
276 std::tuple<MangleNumberingContext *, Decl *>
277 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
278 // Compute the context for allocating mangling numbers in the current
279 // expression, if the ABI requires them.
280 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
282 enum ContextKind {
283 Normal,
284 DefaultArgument,
285 DataMember,
286 InlineVariable,
287 TemplatedVariable,
288 Concept
289 } Kind = Normal;
291 bool IsInNonspecializedTemplate =
292 inTemplateInstantiation() || CurContext->isDependentContext();
294 // Default arguments of member function parameters that appear in a class
295 // definition, as well as the initializers of data members, receive special
296 // treatment. Identify them.
297 if (ManglingContextDecl) {
298 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
299 if (const DeclContext *LexicalDC
300 = Param->getDeclContext()->getLexicalParent())
301 if (LexicalDC->isRecord())
302 Kind = DefaultArgument;
303 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
304 if (Var->getMostRecentDecl()->isInline())
305 Kind = InlineVariable;
306 else if (Var->getDeclContext()->isRecord() && IsInNonspecializedTemplate)
307 Kind = TemplatedVariable;
308 else if (Var->getDescribedVarTemplate())
309 Kind = TemplatedVariable;
310 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
311 if (!VTS->isExplicitSpecialization())
312 Kind = TemplatedVariable;
314 } else if (isa<FieldDecl>(ManglingContextDecl)) {
315 Kind = DataMember;
316 } else if (isa<ImplicitConceptSpecializationDecl>(ManglingContextDecl)) {
317 Kind = Concept;
321 // Itanium ABI [5.1.7]:
322 // In the following contexts [...] the one-definition rule requires closure
323 // types in different translation units to "correspond":
324 switch (Kind) {
325 case Normal: {
326 // -- the bodies of inline or templated functions
327 if ((IsInNonspecializedTemplate &&
328 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
329 isInInlineFunction(CurContext)) {
330 while (auto *CD = dyn_cast<CapturedDecl>(DC))
331 DC = CD->getParent();
332 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
335 return std::make_tuple(nullptr, nullptr);
338 case Concept:
339 // Concept definitions aren't code generated and thus aren't mangled,
340 // however the ManglingContextDecl is important for the purposes of
341 // re-forming the template argument list of the lambda for constraint
342 // evaluation.
343 case DataMember:
344 // -- default member initializers
345 case DefaultArgument:
346 // -- default arguments appearing in class definitions
347 case InlineVariable:
348 case TemplatedVariable:
349 // -- the initializers of inline or templated variables
350 return std::make_tuple(
351 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352 ManglingContextDecl),
353 ManglingContextDecl);
356 llvm_unreachable("unexpected context");
359 static QualType
360 buildTypeForLambdaCallOperator(Sema &S, clang::CXXRecordDecl *Class,
361 TemplateParameterList *TemplateParams,
362 TypeSourceInfo *MethodTypeInfo) {
363 assert(MethodTypeInfo && "expected a non null type");
365 QualType MethodType = MethodTypeInfo->getType();
366 // If a lambda appears in a dependent context or is a generic lambda (has
367 // template parameters) and has an 'auto' return type, deduce it to a
368 // dependent type.
369 if (Class->isDependentContext() || TemplateParams) {
370 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
371 QualType Result = FPT->getReturnType();
372 if (Result->isUndeducedType()) {
373 Result = S.SubstAutoTypeDependent(Result);
374 MethodType = S.Context.getFunctionType(Result, FPT->getParamTypes(),
375 FPT->getExtProtoInfo());
378 return MethodType;
381 void Sema::handleLambdaNumbering(
382 CXXRecordDecl *Class, CXXMethodDecl *Method,
383 std::optional<CXXRecordDecl::LambdaNumbering> NumberingOverride) {
384 if (NumberingOverride) {
385 Class->setLambdaNumbering(*NumberingOverride);
386 return;
389 ContextRAII ManglingContext(*this, Class->getDeclContext());
391 auto getMangleNumberingContext =
392 [this](CXXRecordDecl *Class,
393 Decl *ManglingContextDecl) -> MangleNumberingContext * {
394 // Get mangle numbering context if there's any extra decl context.
395 if (ManglingContextDecl)
396 return &Context.getManglingNumberContext(
397 ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
398 // Otherwise, from that lambda's decl context.
399 auto DC = Class->getDeclContext();
400 while (auto *CD = dyn_cast<CapturedDecl>(DC))
401 DC = CD->getParent();
402 return &Context.getManglingNumberContext(DC);
405 CXXRecordDecl::LambdaNumbering Numbering;
406 MangleNumberingContext *MCtx;
407 std::tie(MCtx, Numbering.ContextDecl) =
408 getCurrentMangleNumberContext(Class->getDeclContext());
409 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice ||
410 getLangOpts().SYCLIsHost)) {
411 // Force lambda numbering in CUDA/HIP as we need to name lambdas following
412 // ODR. Both device- and host-compilation need to have a consistent naming
413 // on kernel functions. As lambdas are potential part of these `__global__`
414 // function names, they needs numbering following ODR.
415 // Also force for SYCL, since we need this for the
416 // __builtin_sycl_unique_stable_name implementation, which depends on lambda
417 // mangling.
418 MCtx = getMangleNumberingContext(Class, Numbering.ContextDecl);
419 assert(MCtx && "Retrieving mangle numbering context failed!");
420 Numbering.HasKnownInternalLinkage = true;
422 if (MCtx) {
423 Numbering.IndexInContext = MCtx->getNextLambdaIndex();
424 Numbering.ManglingNumber = MCtx->getManglingNumber(Method);
425 Numbering.DeviceManglingNumber = MCtx->getDeviceManglingNumber(Method);
426 Class->setLambdaNumbering(Numbering);
428 if (auto *Source =
429 dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
430 Source->AssignedLambdaNumbering(Class);
434 static void buildLambdaScopeReturnType(Sema &S, LambdaScopeInfo *LSI,
435 CXXMethodDecl *CallOperator,
436 bool ExplicitResultType) {
437 if (ExplicitResultType) {
438 LSI->HasImplicitReturnType = false;
439 LSI->ReturnType = CallOperator->getReturnType();
440 if (!LSI->ReturnType->isDependentType() && !LSI->ReturnType->isVoidType())
441 S.RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
442 diag::err_lambda_incomplete_result);
443 } else {
444 LSI->HasImplicitReturnType = true;
448 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator,
449 SourceRange IntroducerRange,
450 LambdaCaptureDefault CaptureDefault,
451 SourceLocation CaptureDefaultLoc,
452 bool ExplicitParams, bool Mutable) {
453 LSI->CallOperator = CallOperator;
454 CXXRecordDecl *LambdaClass = CallOperator->getParent();
455 LSI->Lambda = LambdaClass;
456 if (CaptureDefault == LCD_ByCopy)
457 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
458 else if (CaptureDefault == LCD_ByRef)
459 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
460 LSI->CaptureDefaultLoc = CaptureDefaultLoc;
461 LSI->IntroducerRange = IntroducerRange;
462 LSI->ExplicitParams = ExplicitParams;
463 LSI->Mutable = Mutable;
466 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
467 LSI->finishedExplicitCaptures();
470 void Sema::ActOnLambdaExplicitTemplateParameterList(
471 LambdaIntroducer &Intro, SourceLocation LAngleLoc,
472 ArrayRef<NamedDecl *> TParams, SourceLocation RAngleLoc,
473 ExprResult RequiresClause) {
474 LambdaScopeInfo *LSI = getCurLambda();
475 assert(LSI && "Expected a lambda scope");
476 assert(LSI->NumExplicitTemplateParams == 0 &&
477 "Already acted on explicit template parameters");
478 assert(LSI->TemplateParams.empty() &&
479 "Explicit template parameters should come "
480 "before invented (auto) ones");
481 assert(!TParams.empty() &&
482 "No template parameters to act on");
483 LSI->TemplateParams.append(TParams.begin(), TParams.end());
484 LSI->NumExplicitTemplateParams = TParams.size();
485 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
486 LSI->RequiresClause = RequiresClause;
489 /// If this expression is an enumerator-like expression of some type
490 /// T, return the type T; otherwise, return null.
492 /// Pointer comparisons on the result here should always work because
493 /// it's derived from either the parent of an EnumConstantDecl
494 /// (i.e. the definition) or the declaration returned by
495 /// EnumType::getDecl() (i.e. the definition).
496 static EnumDecl *findEnumForBlockReturn(Expr *E) {
497 // An expression is an enumerator-like expression of type T if,
498 // ignoring parens and parens-like expressions:
499 E = E->IgnoreParens();
501 // - it is an enumerator whose enum type is T or
502 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
503 if (EnumConstantDecl *D
504 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
505 return cast<EnumDecl>(D->getDeclContext());
507 return nullptr;
510 // - it is a comma expression whose RHS is an enumerator-like
511 // expression of type T or
512 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
513 if (BO->getOpcode() == BO_Comma)
514 return findEnumForBlockReturn(BO->getRHS());
515 return nullptr;
518 // - it is a statement-expression whose value expression is an
519 // enumerator-like expression of type T or
520 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
521 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
522 return findEnumForBlockReturn(last);
523 return nullptr;
526 // - it is a ternary conditional operator (not the GNU ?:
527 // extension) whose second and third operands are
528 // enumerator-like expressions of type T or
529 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
530 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
531 if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
532 return ED;
533 return nullptr;
536 // (implicitly:)
537 // - it is an implicit integral conversion applied to an
538 // enumerator-like expression of type T or
539 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
540 // We can sometimes see integral conversions in valid
541 // enumerator-like expressions.
542 if (ICE->getCastKind() == CK_IntegralCast)
543 return findEnumForBlockReturn(ICE->getSubExpr());
545 // Otherwise, just rely on the type.
548 // - it is an expression of that formal enum type.
549 if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
550 return ET->getDecl();
553 // Otherwise, nope.
554 return nullptr;
557 /// Attempt to find a type T for which the returned expression of the
558 /// given statement is an enumerator-like expression of that type.
559 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
560 if (Expr *retValue = ret->getRetValue())
561 return findEnumForBlockReturn(retValue);
562 return nullptr;
565 /// Attempt to find a common type T for which all of the returned
566 /// expressions in a block are enumerator-like expressions of that
567 /// type.
568 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
569 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
571 // Try to find one for the first return.
572 EnumDecl *ED = findEnumForBlockReturn(*i);
573 if (!ED) return nullptr;
575 // Check that the rest of the returns have the same enum.
576 for (++i; i != e; ++i) {
577 if (findEnumForBlockReturn(*i) != ED)
578 return nullptr;
581 // Never infer an anonymous enum type.
582 if (!ED->hasNameForLinkage()) return nullptr;
584 return ED;
587 /// Adjust the given return statements so that they formally return
588 /// the given type. It should require, at most, an IntegralCast.
589 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
590 QualType returnType) {
591 for (ArrayRef<ReturnStmt*>::iterator
592 i = returns.begin(), e = returns.end(); i != e; ++i) {
593 ReturnStmt *ret = *i;
594 Expr *retValue = ret->getRetValue();
595 if (S.Context.hasSameType(retValue->getType(), returnType))
596 continue;
598 // Right now we only support integral fixup casts.
599 assert(returnType->isIntegralOrUnscopedEnumerationType());
600 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
602 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
604 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
605 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
606 /*base path*/ nullptr, VK_PRValue,
607 FPOptionsOverride());
608 if (cleanups) {
609 cleanups->setSubExpr(E);
610 } else {
611 ret->setRetValue(E);
616 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
617 assert(CSI.HasImplicitReturnType);
618 // If it was ever a placeholder, it had to been deduced to DependentTy.
619 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
620 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
621 "lambda expressions use auto deduction in C++14 onwards");
623 // C++ core issue 975:
624 // If a lambda-expression does not include a trailing-return-type,
625 // it is as if the trailing-return-type denotes the following type:
626 // - if there are no return statements in the compound-statement,
627 // or all return statements return either an expression of type
628 // void or no expression or braced-init-list, the type void;
629 // - otherwise, if all return statements return an expression
630 // and the types of the returned expressions after
631 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
632 // array-to-pointer conversion (4.2 [conv.array]), and
633 // function-to-pointer conversion (4.3 [conv.func]) are the
634 // same, that common type;
635 // - otherwise, the program is ill-formed.
637 // C++ core issue 1048 additionally removes top-level cv-qualifiers
638 // from the types of returned expressions to match the C++14 auto
639 // deduction rules.
641 // In addition, in blocks in non-C++ modes, if all of the return
642 // statements are enumerator-like expressions of some type T, where
643 // T has a name for linkage, then we infer the return type of the
644 // block to be that type.
646 // First case: no return statements, implicit void return type.
647 ASTContext &Ctx = getASTContext();
648 if (CSI.Returns.empty()) {
649 // It's possible there were simply no /valid/ return statements.
650 // In this case, the first one we found may have at least given us a type.
651 if (CSI.ReturnType.isNull())
652 CSI.ReturnType = Ctx.VoidTy;
653 return;
656 // Second case: at least one return statement has dependent type.
657 // Delay type checking until instantiation.
658 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
659 if (CSI.ReturnType->isDependentType())
660 return;
662 // Try to apply the enum-fuzz rule.
663 if (!getLangOpts().CPlusPlus) {
664 assert(isa<BlockScopeInfo>(CSI));
665 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
666 if (ED) {
667 CSI.ReturnType = Context.getTypeDeclType(ED);
668 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
669 return;
673 // Third case: only one return statement. Don't bother doing extra work!
674 if (CSI.Returns.size() == 1)
675 return;
677 // General case: many return statements.
678 // Check that they all have compatible return types.
680 // We require the return types to strictly match here.
681 // Note that we've already done the required promotions as part of
682 // processing the return statement.
683 for (const ReturnStmt *RS : CSI.Returns) {
684 const Expr *RetE = RS->getRetValue();
686 QualType ReturnType =
687 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
688 if (Context.getCanonicalFunctionResultType(ReturnType) ==
689 Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
690 // Use the return type with the strictest possible nullability annotation.
691 auto RetTyNullability = ReturnType->getNullability();
692 auto BlockNullability = CSI.ReturnType->getNullability();
693 if (BlockNullability &&
694 (!RetTyNullability ||
695 hasWeakerNullability(*RetTyNullability, *BlockNullability)))
696 CSI.ReturnType = ReturnType;
697 continue;
700 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
701 // TODO: It's possible that the *first* return is the divergent one.
702 Diag(RS->getBeginLoc(),
703 diag::err_typecheck_missing_return_type_incompatible)
704 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
705 // Continue iterating so that we keep emitting diagnostics.
709 QualType Sema::buildLambdaInitCaptureInitialization(
710 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
711 std::optional<unsigned> NumExpansions, IdentifierInfo *Id,
712 bool IsDirectInit, Expr *&Init) {
713 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
714 // deduce against.
715 QualType DeductType = Context.getAutoDeductType();
716 TypeLocBuilder TLB;
717 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
718 TL.setNameLoc(Loc);
719 if (ByRef) {
720 DeductType = BuildReferenceType(DeductType, true, Loc, Id);
721 assert(!DeductType.isNull() && "can't build reference to auto");
722 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
724 if (EllipsisLoc.isValid()) {
725 if (Init->containsUnexpandedParameterPack()) {
726 Diag(EllipsisLoc, getLangOpts().CPlusPlus20
727 ? diag::warn_cxx17_compat_init_capture_pack
728 : diag::ext_init_capture_pack);
729 DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
730 /*ExpectPackInType=*/false);
731 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
732 } else {
733 // Just ignore the ellipsis for now and form a non-pack variable. We'll
734 // diagnose this later when we try to capture it.
737 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
739 // Deduce the type of the init capture.
740 QualType DeducedType = deduceVarTypeFromInitializer(
741 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
742 SourceRange(Loc, Loc), IsDirectInit, Init);
743 if (DeducedType.isNull())
744 return QualType();
746 // Are we a non-list direct initialization?
747 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
749 // Perform initialization analysis and ensure any implicit conversions
750 // (such as lvalue-to-rvalue) are enforced.
751 InitializedEntity Entity =
752 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
753 InitializationKind Kind =
754 IsDirectInit
755 ? (CXXDirectInit ? InitializationKind::CreateDirect(
756 Loc, Init->getBeginLoc(), Init->getEndLoc())
757 : InitializationKind::CreateDirectList(Loc))
758 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
760 MultiExprArg Args = Init;
761 if (CXXDirectInit)
762 Args =
763 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
764 QualType DclT;
765 InitializationSequence InitSeq(*this, Entity, Kind, Args);
766 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
768 if (Result.isInvalid())
769 return QualType();
771 Init = Result.getAs<Expr>();
772 return DeducedType;
775 VarDecl *Sema::createLambdaInitCaptureVarDecl(
776 SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc,
777 IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx) {
778 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
779 // rather than reconstructing it here.
780 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
781 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
782 PETL.setEllipsisLoc(EllipsisLoc);
784 // Create a dummy variable representing the init-capture. This is not actually
785 // used as a variable, and only exists as a way to name and refer to the
786 // init-capture.
787 // FIXME: Pass in separate source locations for '&' and identifier.
788 VarDecl *NewVD = VarDecl::Create(Context, DeclCtx, Loc, Loc, Id,
789 InitCaptureType, TSI, SC_Auto);
790 NewVD->setInitCapture(true);
791 NewVD->setReferenced(true);
792 // FIXME: Pass in a VarDecl::InitializationStyle.
793 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
794 NewVD->markUsed(Context);
795 NewVD->setInit(Init);
796 if (NewVD->isParameterPack())
797 getCurLambda()->LocalPacks.push_back(NewVD);
798 return NewVD;
801 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef) {
802 assert(Var->isInitCapture() && "init capture flag should be set");
803 LSI->addCapture(Var, /*isBlock=*/false, ByRef,
804 /*isNested=*/false, Var->getLocation(), SourceLocation(),
805 Var->getType(), /*Invalid=*/false);
808 // Unlike getCurLambda, getCurrentLambdaScopeUnsafe doesn't
809 // check that the current lambda is in a consistent or fully constructed state.
810 static LambdaScopeInfo *getCurrentLambdaScopeUnsafe(Sema &S) {
811 assert(!S.FunctionScopes.empty());
812 return cast<LambdaScopeInfo>(S.FunctionScopes[S.FunctionScopes.size() - 1]);
815 static TypeSourceInfo *
816 getDummyLambdaType(Sema &S, SourceLocation Loc = SourceLocation()) {
817 // C++11 [expr.prim.lambda]p4:
818 // If a lambda-expression does not include a lambda-declarator, it is as
819 // if the lambda-declarator were ().
820 FunctionProtoType::ExtProtoInfo EPI(S.Context.getDefaultCallingConvention(
821 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
822 EPI.HasTrailingReturn = true;
823 EPI.TypeQuals.addConst();
824 LangAS AS = S.getDefaultCXXMethodAddrSpace();
825 if (AS != LangAS::Default)
826 EPI.TypeQuals.addAddressSpace(AS);
828 // C++1y [expr.prim.lambda]:
829 // The lambda return type is 'auto', which is replaced by the
830 // trailing-return type if provided and/or deduced from 'return'
831 // statements
832 // We don't do this before C++1y, because we don't support deduced return
833 // types there.
834 QualType DefaultTypeForNoTrailingReturn = S.getLangOpts().CPlusPlus14
835 ? S.Context.getAutoDeductType()
836 : S.Context.DependentTy;
837 QualType MethodTy = S.Context.getFunctionType(DefaultTypeForNoTrailingReturn,
838 std::nullopt, EPI);
839 return S.Context.getTrivialTypeSourceInfo(MethodTy, Loc);
842 static TypeSourceInfo *getLambdaType(Sema &S, LambdaIntroducer &Intro,
843 Declarator &ParamInfo, Scope *CurScope,
844 SourceLocation Loc,
845 bool &ExplicitResultType) {
847 ExplicitResultType = false;
849 assert(
850 (ParamInfo.getDeclSpec().getStorageClassSpec() ==
851 DeclSpec::SCS_unspecified ||
852 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) &&
853 "Unexpected storage specifier");
854 bool IsLambdaStatic =
855 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static;
857 TypeSourceInfo *MethodTyInfo;
859 if (ParamInfo.getNumTypeObjects() == 0) {
860 MethodTyInfo = getDummyLambdaType(S, Loc);
861 } else {
862 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
863 ExplicitResultType = FTI.hasTrailingReturnType();
864 if (!FTI.hasMutableQualifier() && !IsLambdaStatic)
865 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, Loc);
867 if (ExplicitResultType && S.getLangOpts().HLSL) {
868 QualType RetTy = FTI.getTrailingReturnType().get();
869 if (!RetTy.isNull()) {
870 // HLSL does not support specifying an address space on a lambda return
871 // type.
872 LangAS AddressSpace = RetTy.getAddressSpace();
873 if (AddressSpace != LangAS::Default)
874 S.Diag(FTI.getTrailingReturnTypeLoc(),
875 diag::err_return_value_with_address_space);
879 MethodTyInfo = S.GetTypeForDeclarator(ParamInfo, CurScope);
880 assert(MethodTyInfo && "no type from lambda-declarator");
882 // Check for unexpanded parameter packs in the method type.
883 if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
884 S.DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
885 S.UPPC_DeclarationType);
887 return MethodTyInfo;
890 CXXMethodDecl *Sema::CreateLambdaCallOperator(SourceRange IntroducerRange,
891 CXXRecordDecl *Class) {
893 // C++20 [expr.prim.lambda.closure]p3:
894 // The closure type for a lambda-expression has a public inline function
895 // call operator (for a non-generic lambda) or function call operator
896 // template (for a generic lambda) whose parameters and return type are
897 // described by the lambda-expression's parameter-declaration-clause
898 // and trailing-return-type respectively.
899 DeclarationName MethodName =
900 Context.DeclarationNames.getCXXOperatorName(OO_Call);
901 DeclarationNameLoc MethodNameLoc =
902 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange.getBegin());
903 CXXMethodDecl *Method = CXXMethodDecl::Create(
904 Context, Class, SourceLocation(),
905 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
906 MethodNameLoc),
907 QualType(), /*Tinfo=*/nullptr, SC_None,
908 getCurFPFeatures().isFPConstrained(),
909 /*isInline=*/true, ConstexprSpecKind::Unspecified, SourceLocation(),
910 /*TrailingRequiresClause=*/nullptr);
911 Method->setAccess(AS_public);
912 return Method;
915 void Sema::CompleteLambdaCallOperator(
916 CXXMethodDecl *Method, SourceLocation LambdaLoc,
917 SourceLocation CallOperatorLoc, Expr *TrailingRequiresClause,
918 TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind,
919 StorageClass SC, ArrayRef<ParmVarDecl *> Params,
920 bool HasExplicitResultType) {
922 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this);
924 if (TrailingRequiresClause)
925 Method->setTrailingRequiresClause(TrailingRequiresClause);
927 TemplateParameterList *TemplateParams =
928 getGenericLambdaTemplateParameterList(LSI, *this);
930 DeclContext *DC = Method->getLexicalDeclContext();
931 Method->setLexicalDeclContext(LSI->Lambda);
932 if (TemplateParams) {
933 FunctionTemplateDecl *TemplateMethod = FunctionTemplateDecl::Create(
934 Context, LSI->Lambda, Method->getLocation(), Method->getDeclName(),
935 TemplateParams, Method);
936 TemplateMethod->setAccess(AS_public);
937 Method->setDescribedFunctionTemplate(TemplateMethod);
938 LSI->Lambda->addDecl(TemplateMethod);
939 TemplateMethod->setLexicalDeclContext(DC);
940 } else {
941 LSI->Lambda->addDecl(Method);
943 LSI->Lambda->setLambdaIsGeneric(TemplateParams);
944 LSI->Lambda->setLambdaTypeInfo(MethodTyInfo);
946 Method->setLexicalDeclContext(DC);
947 Method->setLocation(LambdaLoc);
948 Method->setInnerLocStart(CallOperatorLoc);
949 Method->setTypeSourceInfo(MethodTyInfo);
950 Method->setType(buildTypeForLambdaCallOperator(*this, LSI->Lambda,
951 TemplateParams, MethodTyInfo));
952 Method->setConstexprKind(ConstexprKind);
953 Method->setStorageClass(SC);
954 if (!Params.empty()) {
955 CheckParmsForFunctionDef(Params, /*CheckParameterNames=*/false);
956 Method->setParams(Params);
957 for (auto P : Method->parameters()) {
958 assert(P && "null in a parameter list");
959 P->setOwningFunction(Method);
963 buildLambdaScopeReturnType(*this, LSI, Method, HasExplicitResultType);
966 void Sema::ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro,
967 Scope *CurrentScope) {
969 LambdaScopeInfo *LSI = getCurLambda();
970 assert(LSI && "LambdaScopeInfo should be on stack!");
972 if (Intro.Default == LCD_ByCopy)
973 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
974 else if (Intro.Default == LCD_ByRef)
975 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
976 LSI->CaptureDefaultLoc = Intro.DefaultLoc;
977 LSI->IntroducerRange = Intro.Range;
978 LSI->AfterParameterList = false;
980 assert(LSI->NumExplicitTemplateParams == 0);
982 // Determine if we're within a context where we know that the lambda will
983 // be dependent, because there are template parameters in scope.
984 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind =
985 CXXRecordDecl::LDK_Unknown;
986 if (LSI->NumExplicitTemplateParams > 0) {
987 Scope *TemplateParamScope = CurScope->getTemplateParamParent();
988 assert(TemplateParamScope &&
989 "Lambda with explicit template param list should establish a "
990 "template param scope");
991 assert(TemplateParamScope->getParent());
992 if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr)
993 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
994 } else if (CurScope->getTemplateParamParent() != nullptr) {
995 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
998 CXXRecordDecl *Class = createLambdaClosureType(
999 Intro.Range, /*Info=*/nullptr, LambdaDependencyKind, Intro.Default);
1000 LSI->Lambda = Class;
1002 CXXMethodDecl *Method = CreateLambdaCallOperator(Intro.Range, Class);
1003 LSI->CallOperator = Method;
1004 Method->setLexicalDeclContext(CurContext);
1006 PushDeclContext(CurScope, Method);
1008 bool ContainsUnexpandedParameterPack = false;
1010 // Distinct capture names, for diagnostics.
1011 llvm::DenseMap<IdentifierInfo *, ValueDecl *> CaptureNames;
1013 // Handle explicit captures.
1014 SourceLocation PrevCaptureLoc =
1015 Intro.Default == LCD_None ? Intro.Range.getBegin() : Intro.DefaultLoc;
1016 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1017 PrevCaptureLoc = C->Loc, ++C) {
1018 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1019 if (C->Kind == LCK_StarThis)
1020 Diag(C->Loc, !getLangOpts().CPlusPlus17
1021 ? diag::ext_star_this_lambda_capture_cxx17
1022 : diag::warn_cxx14_compat_star_this_lambda_capture);
1024 // C++11 [expr.prim.lambda]p8:
1025 // An identifier or this shall not appear more than once in a
1026 // lambda-capture.
1027 if (LSI->isCXXThisCaptured()) {
1028 Diag(C->Loc, diag::err_capture_more_than_once)
1029 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1030 << FixItHint::CreateRemoval(
1031 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1032 continue;
1035 // C++20 [expr.prim.lambda]p8:
1036 // If a lambda-capture includes a capture-default that is =,
1037 // each simple-capture of that lambda-capture shall be of the form
1038 // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1039 // redundant but accepted for compatibility with ISO C++14. --end note ]
1040 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1041 Diag(C->Loc, !getLangOpts().CPlusPlus20
1042 ? diag::ext_equals_this_lambda_capture_cxx20
1043 : diag::warn_cxx17_compat_equals_this_lambda_capture);
1045 // C++11 [expr.prim.lambda]p12:
1046 // If this is captured by a local lambda expression, its nearest
1047 // enclosing function shall be a non-static member function.
1048 QualType ThisCaptureType = getCurrentThisType();
1049 if (ThisCaptureType.isNull()) {
1050 Diag(C->Loc, diag::err_this_capture) << true;
1051 continue;
1054 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1055 /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1056 C->Kind == LCK_StarThis);
1057 if (!LSI->Captures.empty())
1058 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1059 continue;
1062 assert(C->Id && "missing identifier for capture");
1064 if (C->Init.isInvalid())
1065 continue;
1067 ValueDecl *Var = nullptr;
1068 if (C->Init.isUsable()) {
1069 Diag(C->Loc, getLangOpts().CPlusPlus14
1070 ? diag::warn_cxx11_compat_init_capture
1071 : diag::ext_init_capture);
1073 // If the initializer expression is usable, but the InitCaptureType
1074 // is not, then an error has occurred - so ignore the capture for now.
1075 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1076 // FIXME: we should create the init capture variable and mark it invalid
1077 // in this case.
1078 if (C->InitCaptureType.get().isNull())
1079 continue;
1081 if (C->Init.get()->containsUnexpandedParameterPack() &&
1082 !C->InitCaptureType.get()->getAs<PackExpansionType>())
1083 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1085 unsigned InitStyle;
1086 switch (C->InitKind) {
1087 case LambdaCaptureInitKind::NoInit:
1088 llvm_unreachable("not an init-capture?");
1089 case LambdaCaptureInitKind::CopyInit:
1090 InitStyle = VarDecl::CInit;
1091 break;
1092 case LambdaCaptureInitKind::DirectInit:
1093 InitStyle = VarDecl::CallInit;
1094 break;
1095 case LambdaCaptureInitKind::ListInit:
1096 InitStyle = VarDecl::ListInit;
1097 break;
1099 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1100 C->EllipsisLoc, C->Id, InitStyle,
1101 C->Init.get(), Method);
1102 assert(Var && "createLambdaInitCaptureVarDecl returned a null VarDecl?");
1103 if (auto *V = dyn_cast<VarDecl>(Var))
1104 CheckShadow(CurrentScope, V);
1105 PushOnScopeChains(Var, CurrentScope, false);
1106 } else {
1107 assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1108 "init capture has valid but null init?");
1110 // C++11 [expr.prim.lambda]p8:
1111 // If a lambda-capture includes a capture-default that is &, the
1112 // identifiers in the lambda-capture shall not be preceded by &.
1113 // If a lambda-capture includes a capture-default that is =, [...]
1114 // each identifier it contains shall be preceded by &.
1115 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1116 Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1117 << FixItHint::CreateRemoval(
1118 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1119 continue;
1120 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1121 Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1122 << FixItHint::CreateRemoval(
1123 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1124 continue;
1127 // C++11 [expr.prim.lambda]p10:
1128 // The identifiers in a capture-list are looked up using the usual
1129 // rules for unqualified name lookup (3.4.1)
1130 DeclarationNameInfo Name(C->Id, C->Loc);
1131 LookupResult R(*this, Name, LookupOrdinaryName);
1132 LookupName(R, CurScope);
1133 if (R.isAmbiguous())
1134 continue;
1135 if (R.empty()) {
1136 // FIXME: Disable corrections that would add qualification?
1137 CXXScopeSpec ScopeSpec;
1138 DeclFilterCCC<VarDecl> Validator{};
1139 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1140 continue;
1143 if (auto *BD = R.getAsSingle<BindingDecl>())
1144 Var = BD;
1145 else
1146 Var = R.getAsSingle<VarDecl>();
1147 if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1148 continue;
1151 // C++11 [expr.prim.lambda]p10:
1152 // [...] each such lookup shall find a variable with automatic storage
1153 // duration declared in the reaching scope of the local lambda expression.
1154 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1155 if (!Var) {
1156 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1157 continue;
1160 // C++11 [expr.prim.lambda]p8:
1161 // An identifier or this shall not appear more than once in a
1162 // lambda-capture.
1163 if (auto [It, Inserted] = CaptureNames.insert(std::pair{C->Id, Var});
1164 !Inserted) {
1165 if (C->InitKind == LambdaCaptureInitKind::NoInit &&
1166 !Var->isInitCapture()) {
1167 Diag(C->Loc, diag::err_capture_more_than_once)
1168 << C->Id << It->second->getBeginLoc()
1169 << FixItHint::CreateRemoval(
1170 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1171 Var->setInvalidDecl();
1172 } else if (Var && Var->isPlaceholderVar(getLangOpts())) {
1173 DiagPlaceholderVariableDefinition(C->Loc);
1174 } else {
1175 // Previous capture captured something different (one or both was
1176 // an init-capture): no fixit.
1177 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1178 continue;
1182 // Ignore invalid decls; they'll just confuse the code later.
1183 if (Var->isInvalidDecl())
1184 continue;
1186 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
1188 if (!Underlying->hasLocalStorage()) {
1189 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1190 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1191 continue;
1194 // C++11 [expr.prim.lambda]p23:
1195 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1196 SourceLocation EllipsisLoc;
1197 if (C->EllipsisLoc.isValid()) {
1198 if (Var->isParameterPack()) {
1199 EllipsisLoc = C->EllipsisLoc;
1200 } else {
1201 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1202 << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1203 : SourceRange(C->Loc));
1205 // Just ignore the ellipsis.
1207 } else if (Var->isParameterPack()) {
1208 ContainsUnexpandedParameterPack = true;
1211 if (C->Init.isUsable()) {
1212 addInitCapture(LSI, cast<VarDecl>(Var), C->Kind == LCK_ByRef);
1213 PushOnScopeChains(Var, CurScope, false);
1214 } else {
1215 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef
1216 : TryCapture_ExplicitByVal;
1217 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1219 if (!LSI->Captures.empty())
1220 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1222 finishLambdaExplicitCaptures(LSI);
1223 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1224 PopDeclContext();
1227 void Sema::ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro,
1228 SourceLocation MutableLoc) {
1230 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this);
1231 LSI->Mutable = MutableLoc.isValid();
1232 ContextRAII Context(*this, LSI->CallOperator, /*NewThisContext*/ false);
1234 // C++11 [expr.prim.lambda]p9:
1235 // A lambda-expression whose smallest enclosing scope is a block scope is a
1236 // local lambda expression; any other lambda expression shall not have a
1237 // capture-default or simple-capture in its lambda-introducer.
1239 // For simple-captures, this is covered by the check below that any named
1240 // entity is a variable that can be captured.
1242 // For DR1632, we also allow a capture-default in any context where we can
1243 // odr-use 'this' (in particular, in a default initializer for a non-static
1244 // data member).
1245 if (Intro.Default != LCD_None &&
1246 !LSI->Lambda->getParent()->isFunctionOrMethod() &&
1247 (getCurrentThisType().isNull() ||
1248 CheckCXXThisCapture(SourceLocation(), /*Explicit=*/true,
1249 /*BuildAndDiagnose=*/false)))
1250 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1253 void Sema::ActOnLambdaClosureParameters(
1254 Scope *LambdaScope, MutableArrayRef<DeclaratorChunk::ParamInfo> Params) {
1255 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this);
1256 PushDeclContext(LambdaScope, LSI->CallOperator);
1258 for (const DeclaratorChunk::ParamInfo &P : Params) {
1259 auto *Param = cast<ParmVarDecl>(P.Param);
1260 Param->setOwningFunction(LSI->CallOperator);
1261 if (Param->getIdentifier())
1262 PushOnScopeChains(Param, LambdaScope, false);
1265 LSI->AfterParameterList = true;
1268 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
1269 Declarator &ParamInfo,
1270 const DeclSpec &DS) {
1272 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this);
1273 LSI->CallOperator->setConstexprKind(DS.getConstexprSpecifier());
1275 SmallVector<ParmVarDecl *, 8> Params;
1276 bool ExplicitResultType;
1278 SourceLocation TypeLoc, CallOperatorLoc;
1279 if (ParamInfo.getNumTypeObjects() == 0) {
1280 CallOperatorLoc = TypeLoc = Intro.Range.getEnd();
1281 } else {
1282 unsigned Index;
1283 ParamInfo.isFunctionDeclarator(Index);
1284 const auto &Object = ParamInfo.getTypeObject(Index);
1285 TypeLoc =
1286 Object.Loc.isValid() ? Object.Loc : ParamInfo.getSourceRange().getEnd();
1287 CallOperatorLoc = ParamInfo.getSourceRange().getEnd();
1290 CXXRecordDecl *Class = LSI->Lambda;
1291 CXXMethodDecl *Method = LSI->CallOperator;
1293 TypeSourceInfo *MethodTyInfo = getLambdaType(
1294 *this, Intro, ParamInfo, getCurScope(), TypeLoc, ExplicitResultType);
1296 LSI->ExplicitParams = ParamInfo.getNumTypeObjects() != 0;
1298 if (ParamInfo.isFunctionDeclarator() != 0 &&
1299 !FTIHasSingleVoidParameter(ParamInfo.getFunctionTypeInfo())) {
1300 const auto &FTI = ParamInfo.getFunctionTypeInfo();
1301 Params.reserve(Params.size());
1302 for (unsigned I = 0; I < FTI.NumParams; ++I) {
1303 auto *Param = cast<ParmVarDecl>(FTI.Params[I].Param);
1304 Param->setScopeInfo(0, Params.size());
1305 Params.push_back(Param);
1309 bool IsLambdaStatic =
1310 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static;
1312 CompleteLambdaCallOperator(
1313 Method, Intro.Range.getBegin(), CallOperatorLoc,
1314 ParamInfo.getTrailingRequiresClause(), MethodTyInfo,
1315 ParamInfo.getDeclSpec().getConstexprSpecifier(),
1316 IsLambdaStatic ? SC_Static : SC_None, Params, ExplicitResultType);
1318 CheckCXXDefaultArguments(Method);
1320 // This represents the function body for the lambda function, check if we
1321 // have to apply optnone due to a pragma.
1322 AddRangeBasedOptnone(Method);
1324 // code_seg attribute on lambda apply to the method.
1325 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(
1326 Method, /*IsDefinition=*/true))
1327 Method->addAttr(A);
1329 // Attributes on the lambda apply to the method.
1330 ProcessDeclAttributes(CurScope, Method, ParamInfo);
1332 // CUDA lambdas get implicit host and device attributes.
1333 if (getLangOpts().CUDA)
1334 CUDASetLambdaAttrs(Method);
1336 // OpenMP lambdas might get assumumption attributes.
1337 if (LangOpts.OpenMP)
1338 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1340 handleLambdaNumbering(Class, Method);
1342 for (auto &&C : LSI->Captures) {
1343 if (!C.isVariableCapture())
1344 continue;
1345 ValueDecl *Var = C.getVariable();
1346 if (Var && Var->isInitCapture()) {
1347 PushOnScopeChains(Var, CurScope, false);
1351 auto CheckRedefinition = [&](ParmVarDecl *Param) {
1352 for (const auto &Capture : Intro.Captures) {
1353 if (Capture.Id == Param->getIdentifier()) {
1354 Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
1355 Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
1356 << Capture.Id << true;
1357 return false;
1360 return true;
1363 for (ParmVarDecl *P : Params) {
1364 if (!P->getIdentifier())
1365 continue;
1366 if (CheckRedefinition(P))
1367 CheckShadow(CurScope, P);
1368 PushOnScopeChains(P, CurScope);
1371 // C++23 [expr.prim.lambda.capture]p5:
1372 // If an identifier in a capture appears as the declarator-id of a parameter
1373 // of the lambda-declarator's parameter-declaration-clause or as the name of a
1374 // template parameter of the lambda-expression's template-parameter-list, the
1375 // program is ill-formed.
1376 TemplateParameterList *TemplateParams =
1377 getGenericLambdaTemplateParameterList(LSI, *this);
1378 if (TemplateParams) {
1379 for (const auto *TP : TemplateParams->asArray()) {
1380 if (!TP->getIdentifier())
1381 continue;
1382 for (const auto &Capture : Intro.Captures) {
1383 if (Capture.Id == TP->getIdentifier()) {
1384 Diag(Capture.Loc, diag::err_template_param_shadow) << Capture.Id;
1385 Diag(TP->getLocation(), diag::note_template_param_here);
1391 // C++20: dcl.decl.general p4:
1392 // The optional requires-clause ([temp.pre]) in an init-declarator or
1393 // member-declarator shall be present only if the declarator declares a
1394 // templated function ([dcl.fct]).
1395 if (Expr *TRC = Method->getTrailingRequiresClause()) {
1396 // [temp.pre]/8:
1397 // An entity is templated if it is
1398 // - a template,
1399 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
1400 // templated entity,
1401 // - a member of a templated entity,
1402 // - an enumerator for an enumeration that is a templated entity, or
1403 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
1404 // appearing in the declaration of a templated entity. [Note 6: A local
1405 // class, a local or block variable, or a friend function defined in a
1406 // templated entity is a templated entity. — end note]
1408 // A templated function is a function template or a function that is
1409 // templated. A templated class is a class template or a class that is
1410 // templated. A templated variable is a variable template or a variable
1411 // that is templated.
1413 // Note: we only have to check if this is defined in a template entity, OR
1414 // if we are a template, since the rest don't apply. The requires clause
1415 // applies to the call operator, which we already know is a member function,
1416 // AND defined.
1417 if (!Method->getDescribedFunctionTemplate() && !Method->isTemplated()) {
1418 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function);
1422 // Enter a new evaluation context to insulate the lambda from any
1423 // cleanups from the enclosing full-expression.
1424 PushExpressionEvaluationContext(
1425 LSI->CallOperator->isConsteval()
1426 ? ExpressionEvaluationContext::ImmediateFunctionContext
1427 : ExpressionEvaluationContext::PotentiallyEvaluated);
1428 ExprEvalContexts.back().InImmediateFunctionContext =
1429 LSI->CallOperator->isConsteval();
1430 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
1431 getLangOpts().CPlusPlus20 && LSI->CallOperator->isImmediateEscalating();
1434 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1435 bool IsInstantiation) {
1436 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1438 // Leave the expression-evaluation context.
1439 DiscardCleanupsInEvaluationContext();
1440 PopExpressionEvaluationContext();
1442 // Leave the context of the lambda.
1443 if (!IsInstantiation)
1444 PopDeclContext();
1446 // Finalize the lambda.
1447 CXXRecordDecl *Class = LSI->Lambda;
1448 Class->setInvalidDecl();
1449 SmallVector<Decl*, 4> Fields(Class->fields());
1450 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1451 SourceLocation(), ParsedAttributesView());
1452 CheckCompletedCXXClass(nullptr, Class);
1454 PopFunctionScopeInfo();
1457 template <typename Func>
1458 static void repeatForLambdaConversionFunctionCallingConvs(
1459 Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1460 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1461 CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1462 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1463 CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1464 CallingConv CallOpCC = CallOpProto.getCallConv();
1466 /// Implement emitting a version of the operator for many of the calling
1467 /// conventions for MSVC, as described here:
1468 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1469 /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1470 /// vectorcall are generated by MSVC when it is supported by the target.
1471 /// Additionally, we are ensuring that the default-free/default-member and
1472 /// call-operator calling convention are generated as well.
1473 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1474 /// 'member default', despite MSVC not doing so. We do this in order to ensure
1475 /// that someone who intentionally places 'thiscall' on the lambda call
1476 /// operator will still get that overload, since we don't have the a way of
1477 /// detecting the attribute by the time we get here.
1478 if (S.getLangOpts().MSVCCompat) {
1479 CallingConv Convs[] = {
1480 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1481 DefaultFree, DefaultMember, CallOpCC};
1482 llvm::sort(Convs);
1483 llvm::iterator_range<CallingConv *> Range(
1484 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1485 const TargetInfo &TI = S.getASTContext().getTargetInfo();
1487 for (CallingConv C : Range) {
1488 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1489 F(C);
1491 return;
1494 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1495 F(DefaultFree);
1496 F(DefaultMember);
1497 } else {
1498 F(CallOpCC);
1502 // Returns the 'standard' calling convention to be used for the lambda
1503 // conversion function, that is, the 'free' function calling convention unless
1504 // it is overridden by a non-default calling convention attribute.
1505 static CallingConv
1506 getLambdaConversionFunctionCallConv(Sema &S,
1507 const FunctionProtoType *CallOpProto) {
1508 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1509 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1510 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1511 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1512 CallingConv CallOpCC = CallOpProto->getCallConv();
1514 // If the call-operator hasn't been changed, return both the 'free' and
1515 // 'member' function calling convention.
1516 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1517 return DefaultFree;
1518 return CallOpCC;
1521 QualType Sema::getLambdaConversionFunctionResultType(
1522 const FunctionProtoType *CallOpProto, CallingConv CC) {
1523 const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1524 CallOpProto->getExtProtoInfo();
1525 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1526 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1527 InvokerExtInfo.TypeQuals = Qualifiers();
1528 assert(InvokerExtInfo.RefQualifier == RQ_None &&
1529 "Lambda's call operator should not have a reference qualifier");
1530 return Context.getFunctionType(CallOpProto->getReturnType(),
1531 CallOpProto->getParamTypes(), InvokerExtInfo);
1534 /// Add a lambda's conversion to function pointer, as described in
1535 /// C++11 [expr.prim.lambda]p6.
1536 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1537 CXXRecordDecl *Class,
1538 CXXMethodDecl *CallOperator,
1539 QualType InvokerFunctionTy) {
1540 // This conversion is explicitly disabled if the lambda's function has
1541 // pass_object_size attributes on any of its parameters.
1542 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1543 return P->hasAttr<PassObjectSizeAttr>();
1545 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1546 return;
1548 // Add the conversion to function pointer.
1549 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1551 // Create the type of the conversion function.
1552 FunctionProtoType::ExtProtoInfo ConvExtInfo(
1553 S.Context.getDefaultCallingConvention(
1554 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1555 // The conversion function is always const and noexcept.
1556 ConvExtInfo.TypeQuals = Qualifiers();
1557 ConvExtInfo.TypeQuals.addConst();
1558 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1559 QualType ConvTy =
1560 S.Context.getFunctionType(PtrToFunctionTy, std::nullopt, ConvExtInfo);
1562 SourceLocation Loc = IntroducerRange.getBegin();
1563 DeclarationName ConversionName
1564 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1565 S.Context.getCanonicalType(PtrToFunctionTy));
1566 // Construct a TypeSourceInfo for the conversion function, and wire
1567 // all the parameters appropriately for the FunctionProtoTypeLoc
1568 // so that everything works during transformation/instantiation of
1569 // generic lambdas.
1570 // The main reason for wiring up the parameters of the conversion
1571 // function with that of the call operator is so that constructs
1572 // like the following work:
1573 // auto L = [](auto b) { <-- 1
1574 // return [](auto a) -> decltype(a) { <-- 2
1575 // return a;
1576 // };
1577 // };
1578 // int (*fp)(int) = L(5);
1579 // Because the trailing return type can contain DeclRefExprs that refer
1580 // to the original call operator's variables, we hijack the call
1581 // operators ParmVarDecls below.
1582 TypeSourceInfo *ConvNamePtrToFunctionTSI =
1583 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1584 DeclarationNameLoc ConvNameLoc =
1585 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI);
1587 // The conversion function is a conversion to a pointer-to-function.
1588 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1589 FunctionProtoTypeLoc ConvTL =
1590 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1591 // Get the result of the conversion function which is a pointer-to-function.
1592 PointerTypeLoc PtrToFunctionTL =
1593 ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1594 // Do the same for the TypeSourceInfo that is used to name the conversion
1595 // operator.
1596 PointerTypeLoc ConvNamePtrToFunctionTL =
1597 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1599 // Get the underlying function types that the conversion function will
1600 // be converting to (should match the type of the call operator).
1601 FunctionProtoTypeLoc CallOpConvTL =
1602 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1603 FunctionProtoTypeLoc CallOpConvNameTL =
1604 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1606 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1607 // These parameter's are essentially used to transform the name and
1608 // the type of the conversion operator. By using the same parameters
1609 // as the call operator's we don't have to fix any back references that
1610 // the trailing return type of the call operator's uses (such as
1611 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1612 // - we can simply use the return type of the call operator, and
1613 // everything should work.
1614 SmallVector<ParmVarDecl *, 4> InvokerParams;
1615 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1616 ParmVarDecl *From = CallOperator->getParamDecl(I);
1618 InvokerParams.push_back(ParmVarDecl::Create(
1619 S.Context,
1620 // Temporarily add to the TU. This is set to the invoker below.
1621 S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1622 From->getLocation(), From->getIdentifier(), From->getType(),
1623 From->getTypeSourceInfo(), From->getStorageClass(),
1624 /*DefArg=*/nullptr));
1625 CallOpConvTL.setParam(I, From);
1626 CallOpConvNameTL.setParam(I, From);
1629 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1630 S.Context, Class, Loc,
1631 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1632 S.getCurFPFeatures().isFPConstrained(),
1633 /*isInline=*/true, ExplicitSpecifier(),
1634 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1635 : ConstexprSpecKind::Unspecified,
1636 CallOperator->getBody()->getEndLoc());
1637 Conversion->setAccess(AS_public);
1638 Conversion->setImplicit(true);
1640 // A non-generic lambda may still be a templated entity. We need to preserve
1641 // constraints when converting the lambda to a function pointer. See GH63181.
1642 if (Expr *Requires = CallOperator->getTrailingRequiresClause())
1643 Conversion->setTrailingRequiresClause(Requires);
1645 if (Class->isGenericLambda()) {
1646 // Create a template version of the conversion operator, using the template
1647 // parameter list of the function call operator.
1648 FunctionTemplateDecl *TemplateCallOperator =
1649 CallOperator->getDescribedFunctionTemplate();
1650 FunctionTemplateDecl *ConversionTemplate =
1651 FunctionTemplateDecl::Create(S.Context, Class,
1652 Loc, ConversionName,
1653 TemplateCallOperator->getTemplateParameters(),
1654 Conversion);
1655 ConversionTemplate->setAccess(AS_public);
1656 ConversionTemplate->setImplicit(true);
1657 Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1658 Class->addDecl(ConversionTemplate);
1659 } else
1660 Class->addDecl(Conversion);
1662 // If the lambda is not static, we need to add a static member
1663 // function that will be the result of the conversion with a
1664 // certain unique ID.
1665 // When it is static we just return the static call operator instead.
1666 if (CallOperator->isInstance()) {
1667 DeclarationName InvokerName =
1668 &S.Context.Idents.get(getLambdaStaticInvokerName());
1669 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1670 // we should get a prebuilt TrivialTypeSourceInfo from Context
1671 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1672 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1673 // loop below and then use its Params to set Invoke->setParams(...) below.
1674 // This would avoid the 'const' qualifier of the calloperator from
1675 // contaminating the type of the invoker, which is currently adjusted
1676 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1677 // trailing return type of the invoker would require a visitor to rebuild
1678 // the trailing return type and adjusting all back DeclRefExpr's to refer
1679 // to the new static invoker parameters - not the call operator's.
1680 CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1681 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1682 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1683 S.getCurFPFeatures().isFPConstrained(),
1684 /*isInline=*/true, CallOperator->getConstexprKind(),
1685 CallOperator->getBody()->getEndLoc());
1686 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1687 InvokerParams[I]->setOwningFunction(Invoke);
1688 Invoke->setParams(InvokerParams);
1689 Invoke->setAccess(AS_private);
1690 Invoke->setImplicit(true);
1691 if (Class->isGenericLambda()) {
1692 FunctionTemplateDecl *TemplateCallOperator =
1693 CallOperator->getDescribedFunctionTemplate();
1694 FunctionTemplateDecl *StaticInvokerTemplate =
1695 FunctionTemplateDecl::Create(
1696 S.Context, Class, Loc, InvokerName,
1697 TemplateCallOperator->getTemplateParameters(), Invoke);
1698 StaticInvokerTemplate->setAccess(AS_private);
1699 StaticInvokerTemplate->setImplicit(true);
1700 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1701 Class->addDecl(StaticInvokerTemplate);
1702 } else
1703 Class->addDecl(Invoke);
1707 /// Add a lambda's conversion to function pointers, as described in
1708 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1709 /// single pointer conversion. In the event that the default calling convention
1710 /// for free and member functions is different, it will emit both conventions.
1711 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1712 CXXRecordDecl *Class,
1713 CXXMethodDecl *CallOperator) {
1714 const FunctionProtoType *CallOpProto =
1715 CallOperator->getType()->castAs<FunctionProtoType>();
1717 repeatForLambdaConversionFunctionCallingConvs(
1718 S, *CallOpProto, [&](CallingConv CC) {
1719 QualType InvokerFunctionTy =
1720 S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1721 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1722 InvokerFunctionTy);
1726 /// Add a lambda's conversion to block pointer.
1727 static void addBlockPointerConversion(Sema &S,
1728 SourceRange IntroducerRange,
1729 CXXRecordDecl *Class,
1730 CXXMethodDecl *CallOperator) {
1731 const FunctionProtoType *CallOpProto =
1732 CallOperator->getType()->castAs<FunctionProtoType>();
1733 QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1734 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1735 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1737 FunctionProtoType::ExtProtoInfo ConversionEPI(
1738 S.Context.getDefaultCallingConvention(
1739 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1740 ConversionEPI.TypeQuals = Qualifiers();
1741 ConversionEPI.TypeQuals.addConst();
1742 QualType ConvTy =
1743 S.Context.getFunctionType(BlockPtrTy, std::nullopt, ConversionEPI);
1745 SourceLocation Loc = IntroducerRange.getBegin();
1746 DeclarationName Name
1747 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1748 S.Context.getCanonicalType(BlockPtrTy));
1749 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc(
1750 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc));
1751 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1752 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1753 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1754 S.getCurFPFeatures().isFPConstrained(),
1755 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1756 CallOperator->getBody()->getEndLoc());
1757 Conversion->setAccess(AS_public);
1758 Conversion->setImplicit(true);
1759 Class->addDecl(Conversion);
1762 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1763 SourceLocation ImplicitCaptureLoc,
1764 bool IsOpenMPMapping) {
1765 // VLA captures don't have a stored initialization expression.
1766 if (Cap.isVLATypeCapture())
1767 return ExprResult();
1769 // An init-capture is initialized directly from its stored initializer.
1770 if (Cap.isInitCapture())
1771 return cast<VarDecl>(Cap.getVariable())->getInit();
1773 // For anything else, build an initialization expression. For an implicit
1774 // capture, the capture notionally happens at the capture-default, so use
1775 // that location here.
1776 SourceLocation Loc =
1777 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1779 // C++11 [expr.prim.lambda]p21:
1780 // When the lambda-expression is evaluated, the entities that
1781 // are captured by copy are used to direct-initialize each
1782 // corresponding non-static data member of the resulting closure
1783 // object. (For array members, the array elements are
1784 // direct-initialized in increasing subscript order.) These
1785 // initializations are performed in the (unspecified) order in
1786 // which the non-static data members are declared.
1788 // C++ [expr.prim.lambda]p12:
1789 // An entity captured by a lambda-expression is odr-used (3.2) in
1790 // the scope containing the lambda-expression.
1791 ExprResult Init;
1792 IdentifierInfo *Name = nullptr;
1793 if (Cap.isThisCapture()) {
1794 QualType ThisTy = getCurrentThisType();
1795 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1796 if (Cap.isCopyCapture())
1797 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1798 else
1799 Init = This;
1800 } else {
1801 assert(Cap.isVariableCapture() && "unknown kind of capture");
1802 ValueDecl *Var = Cap.getVariable();
1803 Name = Var->getIdentifier();
1804 Init = BuildDeclarationNameExpr(
1805 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1808 // In OpenMP, the capture kind doesn't actually describe how to capture:
1809 // variables are "mapped" onto the device in a process that does not formally
1810 // make a copy, even for a "copy capture".
1811 if (IsOpenMPMapping)
1812 return Init;
1814 if (Init.isInvalid())
1815 return ExprError();
1817 Expr *InitExpr = Init.get();
1818 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1819 Name, Cap.getCaptureType(), Loc);
1820 InitializationKind InitKind =
1821 InitializationKind::CreateDirect(Loc, Loc, Loc);
1822 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1823 return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1826 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1827 Scope *CurScope) {
1828 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1829 ActOnFinishFunctionBody(LSI.CallOperator, Body);
1830 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1833 static LambdaCaptureDefault
1834 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1835 switch (ICS) {
1836 case CapturingScopeInfo::ImpCap_None:
1837 return LCD_None;
1838 case CapturingScopeInfo::ImpCap_LambdaByval:
1839 return LCD_ByCopy;
1840 case CapturingScopeInfo::ImpCap_CapturedRegion:
1841 case CapturingScopeInfo::ImpCap_LambdaByref:
1842 return LCD_ByRef;
1843 case CapturingScopeInfo::ImpCap_Block:
1844 llvm_unreachable("block capture in lambda");
1846 llvm_unreachable("Unknown implicit capture style");
1849 bool Sema::CaptureHasSideEffects(const Capture &From) {
1850 if (From.isInitCapture()) {
1851 Expr *Init = cast<VarDecl>(From.getVariable())->getInit();
1852 if (Init && Init->HasSideEffects(Context))
1853 return true;
1856 if (!From.isCopyCapture())
1857 return false;
1859 const QualType T = From.isThisCapture()
1860 ? getCurrentThisType()->getPointeeType()
1861 : From.getCaptureType();
1863 if (T.isVolatileQualified())
1864 return true;
1866 const Type *BaseT = T->getBaseElementTypeUnsafe();
1867 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1868 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1869 !RD->hasTrivialDestructor();
1871 return false;
1874 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1875 const Capture &From) {
1876 if (CaptureHasSideEffects(From))
1877 return false;
1879 if (From.isVLATypeCapture())
1880 return false;
1882 // FIXME: maybe we should warn on these if we can find a sensible diagnostic
1883 // message
1884 if (From.isInitCapture() &&
1885 From.getVariable()->isPlaceholderVar(getLangOpts()))
1886 return false;
1888 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1889 if (From.isThisCapture())
1890 diag << "'this'";
1891 else
1892 diag << From.getVariable();
1893 diag << From.isNonODRUsed();
1894 diag << FixItHint::CreateRemoval(CaptureRange);
1895 return true;
1898 /// Create a field within the lambda class or captured statement record for the
1899 /// given capture.
1900 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1901 const sema::Capture &Capture) {
1902 SourceLocation Loc = Capture.getLocation();
1903 QualType FieldType = Capture.getCaptureType();
1905 TypeSourceInfo *TSI = nullptr;
1906 if (Capture.isVariableCapture()) {
1907 const auto *Var = dyn_cast_or_null<VarDecl>(Capture.getVariable());
1908 if (Var && Var->isInitCapture())
1909 TSI = Var->getTypeSourceInfo();
1912 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1913 // appropriate, at least for an implicit capture.
1914 if (!TSI)
1915 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1917 // Build the non-static data member.
1918 FieldDecl *Field =
1919 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1920 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1921 /*Mutable=*/false, ICIS_NoInit);
1922 // If the variable being captured has an invalid type, mark the class as
1923 // invalid as well.
1924 if (!FieldType->isDependentType()) {
1925 if (RequireCompleteSizedType(Loc, FieldType,
1926 diag::err_field_incomplete_or_sizeless)) {
1927 RD->setInvalidDecl();
1928 Field->setInvalidDecl();
1929 } else {
1930 NamedDecl *Def;
1931 FieldType->isIncompleteType(&Def);
1932 if (Def && Def->isInvalidDecl()) {
1933 RD->setInvalidDecl();
1934 Field->setInvalidDecl();
1938 Field->setImplicit(true);
1939 Field->setAccess(AS_private);
1940 RD->addDecl(Field);
1942 if (Capture.isVLATypeCapture())
1943 Field->setCapturedVLAType(Capture.getCapturedVLAType());
1945 return Field;
1948 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1949 LambdaScopeInfo *LSI) {
1950 // Collect information from the lambda scope.
1951 SmallVector<LambdaCapture, 4> Captures;
1952 SmallVector<Expr *, 4> CaptureInits;
1953 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1954 LambdaCaptureDefault CaptureDefault =
1955 mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1956 CXXRecordDecl *Class;
1957 CXXMethodDecl *CallOperator;
1958 SourceRange IntroducerRange;
1959 bool ExplicitParams;
1960 bool ExplicitResultType;
1961 CleanupInfo LambdaCleanup;
1962 bool ContainsUnexpandedParameterPack;
1963 bool IsGenericLambda;
1965 CallOperator = LSI->CallOperator;
1966 Class = LSI->Lambda;
1967 IntroducerRange = LSI->IntroducerRange;
1968 ExplicitParams = LSI->ExplicitParams;
1969 ExplicitResultType = !LSI->HasImplicitReturnType;
1970 LambdaCleanup = LSI->Cleanup;
1971 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1972 IsGenericLambda = Class->isGenericLambda();
1974 CallOperator->setLexicalDeclContext(Class);
1975 Decl *TemplateOrNonTemplateCallOperatorDecl =
1976 CallOperator->getDescribedFunctionTemplate()
1977 ? CallOperator->getDescribedFunctionTemplate()
1978 : cast<Decl>(CallOperator);
1980 // FIXME: Is this really the best choice? Keeping the lexical decl context
1981 // set as CurContext seems more faithful to the source.
1982 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1984 PopExpressionEvaluationContext();
1986 // True if the current capture has a used capture or default before it.
1987 bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1988 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1989 CaptureDefaultLoc : IntroducerRange.getBegin();
1991 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1992 const Capture &From = LSI->Captures[I];
1994 if (From.isInvalid())
1995 return ExprError();
1997 assert(!From.isBlockCapture() && "Cannot capture __block variables");
1998 bool IsImplicit = I >= LSI->NumExplicitCaptures;
1999 SourceLocation ImplicitCaptureLoc =
2000 IsImplicit ? CaptureDefaultLoc : SourceLocation();
2002 // Use source ranges of explicit captures for fixits where available.
2003 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
2005 // Warn about unused explicit captures.
2006 bool IsCaptureUsed = true;
2007 if (!CurContext->isDependentContext() && !IsImplicit &&
2008 !From.isODRUsed()) {
2009 // Initialized captures that are non-ODR used may not be eliminated.
2010 // FIXME: Where did the IsGenericLambda here come from?
2011 bool NonODRUsedInitCapture =
2012 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
2013 if (!NonODRUsedInitCapture) {
2014 bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
2015 SourceRange FixItRange;
2016 if (CaptureRange.isValid()) {
2017 if (!CurHasPreviousCapture && !IsLast) {
2018 // If there are no captures preceding this capture, remove the
2019 // following comma.
2020 FixItRange = SourceRange(CaptureRange.getBegin(),
2021 getLocForEndOfToken(CaptureRange.getEnd()));
2022 } else {
2023 // Otherwise, remove the comma since the last used capture.
2024 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
2025 CaptureRange.getEnd());
2029 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
2033 if (CaptureRange.isValid()) {
2034 CurHasPreviousCapture |= IsCaptureUsed;
2035 PrevCaptureLoc = CaptureRange.getEnd();
2038 // Map the capture to our AST representation.
2039 LambdaCapture Capture = [&] {
2040 if (From.isThisCapture()) {
2041 // Capturing 'this' implicitly with a default of '[=]' is deprecated,
2042 // because it results in a reference capture. Don't warn prior to
2043 // C++2a; there's nothing that can be done about it before then.
2044 if (getLangOpts().CPlusPlus20 && IsImplicit &&
2045 CaptureDefault == LCD_ByCopy) {
2046 Diag(From.getLocation(), diag::warn_deprecated_this_capture);
2047 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
2048 << FixItHint::CreateInsertion(
2049 getLocForEndOfToken(CaptureDefaultLoc), ", this");
2051 return LambdaCapture(From.getLocation(), IsImplicit,
2052 From.isCopyCapture() ? LCK_StarThis : LCK_This);
2053 } else if (From.isVLATypeCapture()) {
2054 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
2055 } else {
2056 assert(From.isVariableCapture() && "unknown kind of capture");
2057 ValueDecl *Var = From.getVariable();
2058 LambdaCaptureKind Kind =
2059 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
2060 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
2061 From.getEllipsisLoc());
2063 }();
2065 // Form the initializer for the capture field.
2066 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
2068 // FIXME: Skip this capture if the capture is not used, the initializer
2069 // has no side-effects, the type of the capture is trivial, and the
2070 // lambda is not externally visible.
2072 // Add a FieldDecl for the capture and form its initializer.
2073 BuildCaptureField(Class, From);
2074 Captures.push_back(Capture);
2075 CaptureInits.push_back(Init.get());
2077 if (LangOpts.CUDA)
2078 CUDACheckLambdaCapture(CallOperator, From);
2081 Class->setCaptures(Context, Captures);
2083 // C++11 [expr.prim.lambda]p6:
2084 // The closure type for a lambda-expression with no lambda-capture
2085 // has a public non-virtual non-explicit const conversion function
2086 // to pointer to function having the same parameter and return
2087 // types as the closure type's function call operator.
2088 if (Captures.empty() && CaptureDefault == LCD_None)
2089 addFunctionPointerConversions(*this, IntroducerRange, Class,
2090 CallOperator);
2092 // Objective-C++:
2093 // The closure type for a lambda-expression has a public non-virtual
2094 // non-explicit const conversion function to a block pointer having the
2095 // same parameter and return types as the closure type's function call
2096 // operator.
2097 // FIXME: Fix generic lambda to block conversions.
2098 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
2099 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
2101 // Finalize the lambda class.
2102 SmallVector<Decl*, 4> Fields(Class->fields());
2103 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
2104 SourceLocation(), ParsedAttributesView());
2105 CheckCompletedCXXClass(nullptr, Class);
2108 Cleanup.mergeFrom(LambdaCleanup);
2110 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
2111 CaptureDefault, CaptureDefaultLoc,
2112 ExplicitParams, ExplicitResultType,
2113 CaptureInits, EndLoc,
2114 ContainsUnexpandedParameterPack);
2115 // If the lambda expression's call operator is not explicitly marked constexpr
2116 // and we are not in a dependent context, analyze the call operator to infer
2117 // its constexpr-ness, suppressing diagnostics while doing so.
2118 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
2119 !CallOperator->isConstexpr() &&
2120 !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
2121 !Class->getDeclContext()->isDependentContext()) {
2122 CallOperator->setConstexprKind(
2123 CheckConstexprFunctionDefinition(CallOperator,
2124 CheckConstexprKind::CheckValid)
2125 ? ConstexprSpecKind::Constexpr
2126 : ConstexprSpecKind::Unspecified);
2129 // Emit delayed shadowing warnings now that the full capture list is known.
2130 DiagnoseShadowingLambdaDecls(LSI);
2132 if (!CurContext->isDependentContext()) {
2133 switch (ExprEvalContexts.back().Context) {
2134 // C++11 [expr.prim.lambda]p2:
2135 // A lambda-expression shall not appear in an unevaluated operand
2136 // (Clause 5).
2137 case ExpressionEvaluationContext::Unevaluated:
2138 case ExpressionEvaluationContext::UnevaluatedList:
2139 case ExpressionEvaluationContext::UnevaluatedAbstract:
2140 // C++1y [expr.const]p2:
2141 // A conditional-expression e is a core constant expression unless the
2142 // evaluation of e, following the rules of the abstract machine, would
2143 // evaluate [...] a lambda-expression.
2145 // This is technically incorrect, there are some constant evaluated contexts
2146 // where this should be allowed. We should probably fix this when DR1607 is
2147 // ratified, it lays out the exact set of conditions where we shouldn't
2148 // allow a lambda-expression.
2149 case ExpressionEvaluationContext::ConstantEvaluated:
2150 case ExpressionEvaluationContext::ImmediateFunctionContext:
2151 // We don't actually diagnose this case immediately, because we
2152 // could be within a context where we might find out later that
2153 // the expression is potentially evaluated (e.g., for typeid).
2154 ExprEvalContexts.back().Lambdas.push_back(Lambda);
2155 break;
2157 case ExpressionEvaluationContext::DiscardedStatement:
2158 case ExpressionEvaluationContext::PotentiallyEvaluated:
2159 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
2160 break;
2164 return MaybeBindToTemporary(Lambda);
2167 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
2168 SourceLocation ConvLocation,
2169 CXXConversionDecl *Conv,
2170 Expr *Src) {
2171 // Make sure that the lambda call operator is marked used.
2172 CXXRecordDecl *Lambda = Conv->getParent();
2173 CXXMethodDecl *CallOperator
2174 = cast<CXXMethodDecl>(
2175 Lambda->lookup(
2176 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
2177 CallOperator->setReferenced();
2178 CallOperator->markUsed(Context);
2180 ExprResult Init = PerformCopyInitialization(
2181 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()),
2182 CurrentLocation, Src);
2183 if (!Init.isInvalid())
2184 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
2186 if (Init.isInvalid())
2187 return ExprError();
2189 // Create the new block to be returned.
2190 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
2192 // Set the type information.
2193 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
2194 Block->setIsVariadic(CallOperator->isVariadic());
2195 Block->setBlockMissingReturnType(false);
2197 // Add parameters.
2198 SmallVector<ParmVarDecl *, 4> BlockParams;
2199 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
2200 ParmVarDecl *From = CallOperator->getParamDecl(I);
2201 BlockParams.push_back(ParmVarDecl::Create(
2202 Context, Block, From->getBeginLoc(), From->getLocation(),
2203 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
2204 From->getStorageClass(),
2205 /*DefArg=*/nullptr));
2207 Block->setParams(BlockParams);
2209 Block->setIsConversionFromLambda(true);
2211 // Add capture. The capture uses a fake variable, which doesn't correspond
2212 // to any actual memory location. However, the initializer copy-initializes
2213 // the lambda object.
2214 TypeSourceInfo *CapVarTSI =
2215 Context.getTrivialTypeSourceInfo(Src->getType());
2216 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2217 ConvLocation, nullptr,
2218 Src->getType(), CapVarTSI,
2219 SC_None);
2220 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2221 /*nested=*/false, /*copy=*/Init.get());
2222 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2224 // Add a fake function body to the block. IR generation is responsible
2225 // for filling in the actual body, which cannot be expressed as an AST.
2226 Block->setBody(new (Context) CompoundStmt(ConvLocation));
2228 // Create the block literal expression.
2229 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2230 ExprCleanupObjects.push_back(Block);
2231 Cleanup.setExprNeedsCleanups(true);
2233 return BuildBlock;