1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements type-related semantic analysis.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/Type.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "clang/AST/TypeLocVisitor.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/Specifiers.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/DelayedDiagnostic.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/Template.h"
37 #include "clang/Sema/TemplateInstCallback.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/StringExtras.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/Support/ErrorHandling.h"
47 using namespace clang
;
49 enum TypeDiagSelector
{
55 /// isOmittedBlockReturnType - Return true if this declarator is missing a
56 /// return type because this is a omitted return type on a block literal.
57 static bool isOmittedBlockReturnType(const Declarator
&D
) {
58 if (D
.getContext() != DeclaratorContext::BlockLiteral
||
59 D
.getDeclSpec().hasTypeSpecifier())
62 if (D
.getNumTypeObjects() == 0)
63 return true; // ^{ ... }
65 if (D
.getNumTypeObjects() == 1 &&
66 D
.getTypeObject(0).Kind
== DeclaratorChunk::Function
)
67 return true; // ^(int X, float Y) { ... }
72 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
73 /// doesn't apply to the given type.
74 static void diagnoseBadTypeAttribute(Sema
&S
, const ParsedAttr
&attr
,
76 TypeDiagSelector WhichType
;
77 bool useExpansionLoc
= true;
78 switch (attr
.getKind()) {
79 case ParsedAttr::AT_ObjCGC
:
80 WhichType
= TDS_Pointer
;
82 case ParsedAttr::AT_ObjCOwnership
:
83 WhichType
= TDS_ObjCObjOrBlock
;
86 // Assume everything else was a function attribute.
87 WhichType
= TDS_Function
;
88 useExpansionLoc
= false;
92 SourceLocation loc
= attr
.getLoc();
93 StringRef name
= attr
.getAttrName()->getName();
95 // The GC attributes are usually written with macros; special-case them.
96 IdentifierInfo
*II
= attr
.isArgIdent(0) ? attr
.getArgAsIdent(0)->Ident
98 if (useExpansionLoc
&& loc
.isMacroID() && II
) {
99 if (II
->isStr("strong")) {
100 if (S
.findMacroSpelling(loc
, "__strong")) name
= "__strong";
101 } else if (II
->isStr("weak")) {
102 if (S
.findMacroSpelling(loc
, "__weak")) name
= "__weak";
106 S
.Diag(loc
, attr
.isRegularKeywordAttribute()
107 ? diag::err_type_attribute_wrong_type
108 : diag::warn_type_attribute_wrong_type
)
109 << name
<< WhichType
<< type
;
112 // objc_gc applies to Objective-C pointers or, otherwise, to the
113 // smallest available pointer type (i.e. 'void*' in 'void**').
114 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
115 case ParsedAttr::AT_ObjCGC: \
116 case ParsedAttr::AT_ObjCOwnership
118 // Calling convention attributes.
119 #define CALLING_CONV_ATTRS_CASELIST \
120 case ParsedAttr::AT_CDecl: \
121 case ParsedAttr::AT_FastCall: \
122 case ParsedAttr::AT_StdCall: \
123 case ParsedAttr::AT_ThisCall: \
124 case ParsedAttr::AT_RegCall: \
125 case ParsedAttr::AT_Pascal: \
126 case ParsedAttr::AT_SwiftCall: \
127 case ParsedAttr::AT_SwiftAsyncCall: \
128 case ParsedAttr::AT_VectorCall: \
129 case ParsedAttr::AT_AArch64VectorPcs: \
130 case ParsedAttr::AT_AArch64SVEPcs: \
131 case ParsedAttr::AT_AMDGPUKernelCall: \
132 case ParsedAttr::AT_MSABI: \
133 case ParsedAttr::AT_SysVABI: \
134 case ParsedAttr::AT_Pcs: \
135 case ParsedAttr::AT_IntelOclBicc: \
136 case ParsedAttr::AT_PreserveMost: \
137 case ParsedAttr::AT_PreserveAll
139 // Function type attributes.
140 #define FUNCTION_TYPE_ATTRS_CASELIST \
141 case ParsedAttr::AT_NSReturnsRetained: \
142 case ParsedAttr::AT_NoReturn: \
143 case ParsedAttr::AT_Regparm: \
144 case ParsedAttr::AT_CmseNSCall: \
145 case ParsedAttr::AT_ArmStreaming: \
146 case ParsedAttr::AT_ArmStreamingCompatible: \
147 case ParsedAttr::AT_ArmSharedZA: \
148 case ParsedAttr::AT_ArmPreservesZA: \
149 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
150 case ParsedAttr::AT_AnyX86NoCfCheck: \
151 CALLING_CONV_ATTRS_CASELIST
153 // Microsoft-specific type qualifiers.
154 #define MS_TYPE_ATTRS_CASELIST \
155 case ParsedAttr::AT_Ptr32: \
156 case ParsedAttr::AT_Ptr64: \
157 case ParsedAttr::AT_SPtr: \
158 case ParsedAttr::AT_UPtr
160 // Nullability qualifiers.
161 #define NULLABILITY_TYPE_ATTRS_CASELIST \
162 case ParsedAttr::AT_TypeNonNull: \
163 case ParsedAttr::AT_TypeNullable: \
164 case ParsedAttr::AT_TypeNullableResult: \
165 case ParsedAttr::AT_TypeNullUnspecified
168 /// An object which stores processing state for the entire
169 /// GetTypeForDeclarator process.
170 class TypeProcessingState
{
173 /// The declarator being processed.
174 Declarator
&declarator
;
176 /// The index of the declarator chunk we're currently processing.
177 /// May be the total number of valid chunks, indicating the
181 /// The original set of attributes on the DeclSpec.
182 SmallVector
<ParsedAttr
*, 2> savedAttrs
;
184 /// A list of attributes to diagnose the uselessness of when the
185 /// processing is complete.
186 SmallVector
<ParsedAttr
*, 2> ignoredTypeAttrs
;
188 /// Attributes corresponding to AttributedTypeLocs that we have not yet
190 // FIXME: The two-phase mechanism by which we construct Types and fill
191 // their TypeLocs makes it hard to correctly assign these. We keep the
192 // attributes in creation order as an attempt to make them line up
194 using TypeAttrPair
= std::pair
<const AttributedType
*, const Attr
*>;
195 SmallVector
<TypeAttrPair
, 8> AttrsForTypes
;
196 bool AttrsForTypesSorted
= true;
198 /// MacroQualifiedTypes mapping to macro expansion locations that will be
199 /// stored in a MacroQualifiedTypeLoc.
200 llvm::DenseMap
<const MacroQualifiedType
*, SourceLocation
> LocsForMacros
;
202 /// Flag to indicate we parsed a noderef attribute. This is used for
203 /// validating that noderef was used on a pointer or array.
207 TypeProcessingState(Sema
&sema
, Declarator
&declarator
)
208 : sema(sema
), declarator(declarator
),
209 chunkIndex(declarator
.getNumTypeObjects()), parsedNoDeref(false) {}
211 Sema
&getSema() const {
215 Declarator
&getDeclarator() const {
219 bool isProcessingDeclSpec() const {
220 return chunkIndex
== declarator
.getNumTypeObjects();
223 unsigned getCurrentChunkIndex() const {
227 void setCurrentChunkIndex(unsigned idx
) {
228 assert(idx
<= declarator
.getNumTypeObjects());
232 ParsedAttributesView
&getCurrentAttributes() const {
233 if (isProcessingDeclSpec())
234 return getMutableDeclSpec().getAttributes();
235 return declarator
.getTypeObject(chunkIndex
).getAttrs();
238 /// Save the current set of attributes on the DeclSpec.
239 void saveDeclSpecAttrs() {
240 // Don't try to save them multiple times.
241 if (!savedAttrs
.empty())
244 DeclSpec
&spec
= getMutableDeclSpec();
245 llvm::append_range(savedAttrs
,
246 llvm::make_pointer_range(spec
.getAttributes()));
249 /// Record that we had nowhere to put the given type attribute.
250 /// We will diagnose such attributes later.
251 void addIgnoredTypeAttr(ParsedAttr
&attr
) {
252 ignoredTypeAttrs
.push_back(&attr
);
255 /// Diagnose all the ignored type attributes, given that the
256 /// declarator worked out to the given type.
257 void diagnoseIgnoredTypeAttrs(QualType type
) const {
258 for (auto *Attr
: ignoredTypeAttrs
)
259 diagnoseBadTypeAttribute(getSema(), *Attr
, type
);
262 /// Get an attributed type for the given attribute, and remember the Attr
263 /// object so that we can attach it to the AttributedTypeLoc.
264 QualType
getAttributedType(Attr
*A
, QualType ModifiedType
,
265 QualType EquivType
) {
267 sema
.Context
.getAttributedType(A
->getKind(), ModifiedType
, EquivType
);
268 AttrsForTypes
.push_back({cast
<AttributedType
>(T
.getTypePtr()), A
});
269 AttrsForTypesSorted
= false;
273 /// Get a BTFTagAttributed type for the btf_type_tag attribute.
274 QualType
getBTFTagAttributedType(const BTFTypeTagAttr
*BTFAttr
,
275 QualType WrappedType
) {
276 return sema
.Context
.getBTFTagAttributedType(BTFAttr
, WrappedType
);
279 /// Completely replace the \c auto in \p TypeWithAuto by
280 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
282 QualType
ReplaceAutoType(QualType TypeWithAuto
, QualType Replacement
) {
283 QualType T
= sema
.ReplaceAutoType(TypeWithAuto
, Replacement
);
284 if (auto *AttrTy
= TypeWithAuto
->getAs
<AttributedType
>()) {
285 // Attributed type still should be an attributed type after replacement.
286 auto *NewAttrTy
= cast
<AttributedType
>(T
.getTypePtr());
287 for (TypeAttrPair
&A
: AttrsForTypes
) {
288 if (A
.first
== AttrTy
)
291 AttrsForTypesSorted
= false;
296 /// Extract and remove the Attr* for a given attributed type.
297 const Attr
*takeAttrForAttributedType(const AttributedType
*AT
) {
298 if (!AttrsForTypesSorted
) {
299 llvm::stable_sort(AttrsForTypes
, llvm::less_first());
300 AttrsForTypesSorted
= true;
303 // FIXME: This is quadratic if we have lots of reuses of the same
305 for (auto It
= std::partition_point(
306 AttrsForTypes
.begin(), AttrsForTypes
.end(),
307 [=](const TypeAttrPair
&A
) { return A
.first
< AT
; });
308 It
!= AttrsForTypes
.end() && It
->first
== AT
; ++It
) {
310 const Attr
*Result
= It
->second
;
311 It
->second
= nullptr;
316 llvm_unreachable("no Attr* for AttributedType*");
320 getExpansionLocForMacroQualifiedType(const MacroQualifiedType
*MQT
) const {
321 auto FoundLoc
= LocsForMacros
.find(MQT
);
322 assert(FoundLoc
!= LocsForMacros
.end() &&
323 "Unable to find macro expansion location for MacroQualifedType");
324 return FoundLoc
->second
;
327 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType
*MQT
,
328 SourceLocation Loc
) {
329 LocsForMacros
[MQT
] = Loc
;
332 void setParsedNoDeref(bool parsed
) { parsedNoDeref
= parsed
; }
334 bool didParseNoDeref() const { return parsedNoDeref
; }
336 ~TypeProcessingState() {
337 if (savedAttrs
.empty())
340 getMutableDeclSpec().getAttributes().clearListOnly();
341 for (ParsedAttr
*AL
: savedAttrs
)
342 getMutableDeclSpec().getAttributes().addAtEnd(AL
);
346 DeclSpec
&getMutableDeclSpec() const {
347 return const_cast<DeclSpec
&>(declarator
.getDeclSpec());
350 } // end anonymous namespace
352 static void moveAttrFromListToList(ParsedAttr
&attr
,
353 ParsedAttributesView
&fromList
,
354 ParsedAttributesView
&toList
) {
355 fromList
.remove(&attr
);
356 toList
.addAtEnd(&attr
);
359 /// The location of a type attribute.
360 enum TypeAttrLocation
{
361 /// The attribute is in the decl-specifier-seq.
363 /// The attribute is part of a DeclaratorChunk.
365 /// The attribute is immediately after the declaration's name.
369 static void processTypeAttrs(TypeProcessingState
&state
, QualType
&type
,
370 TypeAttrLocation TAL
,
371 const ParsedAttributesView
&attrs
);
373 static bool handleFunctionTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
376 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState
&state
,
377 ParsedAttr
&attr
, QualType
&type
);
379 static bool handleObjCGCTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
382 static bool handleObjCOwnershipTypeAttr(TypeProcessingState
&state
,
383 ParsedAttr
&attr
, QualType
&type
);
385 static bool handleObjCPointerTypeAttr(TypeProcessingState
&state
,
386 ParsedAttr
&attr
, QualType
&type
) {
387 if (attr
.getKind() == ParsedAttr::AT_ObjCGC
)
388 return handleObjCGCTypeAttr(state
, attr
, type
);
389 assert(attr
.getKind() == ParsedAttr::AT_ObjCOwnership
);
390 return handleObjCOwnershipTypeAttr(state
, attr
, type
);
393 /// Given the index of a declarator chunk, check whether that chunk
394 /// directly specifies the return type of a function and, if so, find
395 /// an appropriate place for it.
397 /// \param i - a notional index which the search will start
398 /// immediately inside
400 /// \param onlyBlockPointers Whether we should only look into block
401 /// pointer types (vs. all pointer types).
402 static DeclaratorChunk
*maybeMovePastReturnType(Declarator
&declarator
,
404 bool onlyBlockPointers
) {
405 assert(i
<= declarator
.getNumTypeObjects());
407 DeclaratorChunk
*result
= nullptr;
409 // First, look inwards past parens for a function declarator.
410 for (; i
!= 0; --i
) {
411 DeclaratorChunk
&fnChunk
= declarator
.getTypeObject(i
-1);
412 switch (fnChunk
.Kind
) {
413 case DeclaratorChunk::Paren
:
416 // If we find anything except a function, bail out.
417 case DeclaratorChunk::Pointer
:
418 case DeclaratorChunk::BlockPointer
:
419 case DeclaratorChunk::Array
:
420 case DeclaratorChunk::Reference
:
421 case DeclaratorChunk::MemberPointer
:
422 case DeclaratorChunk::Pipe
:
425 // If we do find a function declarator, scan inwards from that,
426 // looking for a (block-)pointer declarator.
427 case DeclaratorChunk::Function
:
428 for (--i
; i
!= 0; --i
) {
429 DeclaratorChunk
&ptrChunk
= declarator
.getTypeObject(i
-1);
430 switch (ptrChunk
.Kind
) {
431 case DeclaratorChunk::Paren
:
432 case DeclaratorChunk::Array
:
433 case DeclaratorChunk::Function
:
434 case DeclaratorChunk::Reference
:
435 case DeclaratorChunk::Pipe
:
438 case DeclaratorChunk::MemberPointer
:
439 case DeclaratorChunk::Pointer
:
440 if (onlyBlockPointers
)
445 case DeclaratorChunk::BlockPointer
:
449 llvm_unreachable("bad declarator chunk kind");
452 // If we run out of declarators doing that, we're done.
455 llvm_unreachable("bad declarator chunk kind");
457 // Okay, reconsider from our new point.
461 // Ran out of chunks, bail out.
465 /// Given that an objc_gc attribute was written somewhere on a
466 /// declaration *other* than on the declarator itself (for which, use
467 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
468 /// didn't apply in whatever position it was written in, try to move
469 /// it to a more appropriate position.
470 static void distributeObjCPointerTypeAttr(TypeProcessingState
&state
,
471 ParsedAttr
&attr
, QualType type
) {
472 Declarator
&declarator
= state
.getDeclarator();
474 // Move it to the outermost normal or block pointer declarator.
475 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
476 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
477 switch (chunk
.Kind
) {
478 case DeclaratorChunk::Pointer
:
479 case DeclaratorChunk::BlockPointer
: {
480 // But don't move an ARC ownership attribute to the return type
482 DeclaratorChunk
*destChunk
= nullptr;
483 if (state
.isProcessingDeclSpec() &&
484 attr
.getKind() == ParsedAttr::AT_ObjCOwnership
)
485 destChunk
= maybeMovePastReturnType(declarator
, i
- 1,
486 /*onlyBlockPointers=*/true);
487 if (!destChunk
) destChunk
= &chunk
;
489 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
490 destChunk
->getAttrs());
494 case DeclaratorChunk::Paren
:
495 case DeclaratorChunk::Array
:
498 // We may be starting at the return type of a block.
499 case DeclaratorChunk::Function
:
500 if (state
.isProcessingDeclSpec() &&
501 attr
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
502 if (DeclaratorChunk
*dest
= maybeMovePastReturnType(
504 /*onlyBlockPointers=*/true)) {
505 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
512 // Don't walk through these.
513 case DeclaratorChunk::Reference
:
514 case DeclaratorChunk::MemberPointer
:
515 case DeclaratorChunk::Pipe
:
521 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
524 /// Distribute an objc_gc type attribute that was written on the
526 static void distributeObjCPointerTypeAttrFromDeclarator(
527 TypeProcessingState
&state
, ParsedAttr
&attr
, QualType
&declSpecType
) {
528 Declarator
&declarator
= state
.getDeclarator();
530 // objc_gc goes on the innermost pointer to something that's not a
532 unsigned innermost
= -1U;
533 bool considerDeclSpec
= true;
534 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
535 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
536 switch (chunk
.Kind
) {
537 case DeclaratorChunk::Pointer
:
538 case DeclaratorChunk::BlockPointer
:
542 case DeclaratorChunk::Reference
:
543 case DeclaratorChunk::MemberPointer
:
544 case DeclaratorChunk::Paren
:
545 case DeclaratorChunk::Array
:
546 case DeclaratorChunk::Pipe
:
549 case DeclaratorChunk::Function
:
550 considerDeclSpec
= false;
556 // That might actually be the decl spec if we weren't blocked by
557 // anything in the declarator.
558 if (considerDeclSpec
) {
559 if (handleObjCPointerTypeAttr(state
, attr
, declSpecType
)) {
560 // Splice the attribute into the decl spec. Prevents the
561 // attribute from being applied multiple times and gives
562 // the source-location-filler something to work with.
563 state
.saveDeclSpecAttrs();
564 declarator
.getMutableDeclSpec().getAttributes().takeOneFrom(
565 declarator
.getAttributes(), &attr
);
570 // Otherwise, if we found an appropriate chunk, splice the attribute
572 if (innermost
!= -1U) {
573 moveAttrFromListToList(attr
, declarator
.getAttributes(),
574 declarator
.getTypeObject(innermost
).getAttrs());
578 // Otherwise, diagnose when we're done building the type.
579 declarator
.getAttributes().remove(&attr
);
580 state
.addIgnoredTypeAttr(attr
);
583 /// A function type attribute was written somewhere in a declaration
584 /// *other* than on the declarator itself or in the decl spec. Given
585 /// that it didn't apply in whatever position it was written in, try
586 /// to move it to a more appropriate position.
587 static void distributeFunctionTypeAttr(TypeProcessingState
&state
,
588 ParsedAttr
&attr
, QualType type
) {
589 Declarator
&declarator
= state
.getDeclarator();
591 // Try to push the attribute from the return type of a function to
592 // the function itself.
593 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
594 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
595 switch (chunk
.Kind
) {
596 case DeclaratorChunk::Function
:
597 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
601 case DeclaratorChunk::Paren
:
602 case DeclaratorChunk::Pointer
:
603 case DeclaratorChunk::BlockPointer
:
604 case DeclaratorChunk::Array
:
605 case DeclaratorChunk::Reference
:
606 case DeclaratorChunk::MemberPointer
:
607 case DeclaratorChunk::Pipe
:
612 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
615 /// Try to distribute a function type attribute to the innermost
616 /// function chunk or type. Returns true if the attribute was
617 /// distributed, false if no location was found.
618 static bool distributeFunctionTypeAttrToInnermost(
619 TypeProcessingState
&state
, ParsedAttr
&attr
,
620 ParsedAttributesView
&attrList
, QualType
&declSpecType
) {
621 Declarator
&declarator
= state
.getDeclarator();
623 // Put it on the innermost function chunk, if there is one.
624 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
625 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
626 if (chunk
.Kind
!= DeclaratorChunk::Function
) continue;
628 moveAttrFromListToList(attr
, attrList
, chunk
.getAttrs());
632 return handleFunctionTypeAttr(state
, attr
, declSpecType
);
635 /// A function type attribute was written in the decl spec. Try to
636 /// apply it somewhere.
637 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState
&state
,
639 QualType
&declSpecType
) {
640 state
.saveDeclSpecAttrs();
642 // Try to distribute to the innermost.
643 if (distributeFunctionTypeAttrToInnermost(
644 state
, attr
, state
.getCurrentAttributes(), declSpecType
))
647 // If that failed, diagnose the bad attribute when the declarator is
649 state
.addIgnoredTypeAttr(attr
);
652 /// A function type attribute was written on the declarator or declaration.
653 /// Try to apply it somewhere.
654 /// `Attrs` is the attribute list containing the declaration (either of the
655 /// declarator or the declaration).
656 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState
&state
,
658 QualType
&declSpecType
) {
659 Declarator
&declarator
= state
.getDeclarator();
661 // Try to distribute to the innermost.
662 if (distributeFunctionTypeAttrToInnermost(
663 state
, attr
, declarator
.getAttributes(), declSpecType
))
666 // If that failed, diagnose the bad attribute when the declarator is
668 declarator
.getAttributes().remove(&attr
);
669 state
.addIgnoredTypeAttr(attr
);
672 /// Given that there are attributes written on the declarator or declaration
673 /// itself, try to distribute any type attributes to the appropriate
674 /// declarator chunk.
676 /// These are attributes like the following:
679 /// but not necessarily this:
682 /// `Attrs` is the attribute list containing the declaration (either of the
683 /// declarator or the declaration).
684 static void distributeTypeAttrsFromDeclarator(TypeProcessingState
&state
,
685 QualType
&declSpecType
) {
686 // The called functions in this loop actually remove things from the current
687 // list, so iterating over the existing list isn't possible. Instead, make a
688 // non-owning copy and iterate over that.
689 ParsedAttributesView AttrsCopy
{state
.getDeclarator().getAttributes()};
690 for (ParsedAttr
&attr
: AttrsCopy
) {
691 // Do not distribute [[]] attributes. They have strict rules for what
692 // they appertain to.
693 if (attr
.isStandardAttributeSyntax() || attr
.isRegularKeywordAttribute())
696 switch (attr
.getKind()) {
697 OBJC_POINTER_TYPE_ATTRS_CASELIST
:
698 distributeObjCPointerTypeAttrFromDeclarator(state
, attr
, declSpecType
);
701 FUNCTION_TYPE_ATTRS_CASELIST
:
702 distributeFunctionTypeAttrFromDeclarator(state
, attr
, declSpecType
);
705 MS_TYPE_ATTRS_CASELIST
:
706 // Microsoft type attributes cannot go after the declarator-id.
709 NULLABILITY_TYPE_ATTRS_CASELIST
:
710 // Nullability specifiers cannot go after the declarator-id.
712 // Objective-C __kindof does not get distributed.
713 case ParsedAttr::AT_ObjCKindOf
:
722 /// Add a synthetic '()' to a block-literal declarator if it is
723 /// required, given the return type.
724 static void maybeSynthesizeBlockSignature(TypeProcessingState
&state
,
725 QualType declSpecType
) {
726 Declarator
&declarator
= state
.getDeclarator();
728 // First, check whether the declarator would produce a function,
729 // i.e. whether the innermost semantic chunk is a function.
730 if (declarator
.isFunctionDeclarator()) {
731 // If so, make that declarator a prototyped declarator.
732 declarator
.getFunctionTypeInfo().hasPrototype
= true;
736 // If there are any type objects, the type as written won't name a
737 // function, regardless of the decl spec type. This is because a
738 // block signature declarator is always an abstract-declarator, and
739 // abstract-declarators can't just be parentheses chunks. Therefore
740 // we need to build a function chunk unless there are no type
741 // objects and the decl spec type is a function.
742 if (!declarator
.getNumTypeObjects() && declSpecType
->isFunctionType())
745 // Note that there *are* cases with invalid declarators where
746 // declarators consist solely of parentheses. In general, these
747 // occur only in failed efforts to make function declarators, so
748 // faking up the function chunk is still the right thing to do.
750 // Otherwise, we need to fake up a function declarator.
751 SourceLocation loc
= declarator
.getBeginLoc();
753 // ...and *prepend* it to the declarator.
754 SourceLocation NoLoc
;
755 declarator
.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
757 /*IsAmbiguous=*/false,
761 /*EllipsisLoc=*/NoLoc
,
763 /*RefQualifierIsLvalueRef=*/true,
764 /*RefQualifierLoc=*/NoLoc
,
765 /*MutableLoc=*/NoLoc
, EST_None
,
766 /*ESpecRange=*/SourceRange(),
767 /*Exceptions=*/nullptr,
768 /*ExceptionRanges=*/nullptr,
770 /*NoexceptExpr=*/nullptr,
771 /*ExceptionSpecTokens=*/nullptr,
772 /*DeclsInPrototype=*/std::nullopt
, loc
, loc
, declarator
));
774 // For consistency, make sure the state still has us as processing
776 assert(state
.getCurrentChunkIndex() == declarator
.getNumTypeObjects() - 1);
777 state
.setCurrentChunkIndex(declarator
.getNumTypeObjects());
780 static void diagnoseAndRemoveTypeQualifiers(Sema
&S
, const DeclSpec
&DS
,
785 // If this occurs outside a template instantiation, warn the user about
786 // it; they probably didn't mean to specify a redundant qualifier.
787 typedef std::pair
<DeclSpec::TQ
, SourceLocation
> QualLoc
;
788 for (QualLoc Qual
: {QualLoc(DeclSpec::TQ_const
, DS
.getConstSpecLoc()),
789 QualLoc(DeclSpec::TQ_restrict
, DS
.getRestrictSpecLoc()),
790 QualLoc(DeclSpec::TQ_volatile
, DS
.getVolatileSpecLoc()),
791 QualLoc(DeclSpec::TQ_atomic
, DS
.getAtomicSpecLoc())}) {
792 if (!(RemoveTQs
& Qual
.first
))
795 if (!S
.inTemplateInstantiation()) {
796 if (TypeQuals
& Qual
.first
)
797 S
.Diag(Qual
.second
, DiagID
)
798 << DeclSpec::getSpecifierName(Qual
.first
) << TypeSoFar
799 << FixItHint::CreateRemoval(Qual
.second
);
802 TypeQuals
&= ~Qual
.first
;
806 /// Return true if this is omitted block return type. Also check type
807 /// attributes and type qualifiers when returning true.
808 static bool checkOmittedBlockReturnType(Sema
&S
, Declarator
&declarator
,
810 if (!isOmittedBlockReturnType(declarator
))
813 // Warn if we see type attributes for omitted return type on a block literal.
814 SmallVector
<ParsedAttr
*, 2> ToBeRemoved
;
815 for (ParsedAttr
&AL
: declarator
.getMutableDeclSpec().getAttributes()) {
816 if (AL
.isInvalid() || !AL
.isTypeAttr())
819 diag::warn_block_literal_attributes_on_omitted_return_type
)
821 ToBeRemoved
.push_back(&AL
);
823 // Remove bad attributes from the list.
824 for (ParsedAttr
*AL
: ToBeRemoved
)
825 declarator
.getMutableDeclSpec().getAttributes().remove(AL
);
827 // Warn if we see type qualifiers for omitted return type on a block literal.
828 const DeclSpec
&DS
= declarator
.getDeclSpec();
829 unsigned TypeQuals
= DS
.getTypeQualifiers();
830 diagnoseAndRemoveTypeQualifiers(S
, DS
, TypeQuals
, Result
, (unsigned)-1,
831 diag::warn_block_literal_qualifiers_on_omitted_return_type
);
832 declarator
.getMutableDeclSpec().ClearTypeQualifiers();
837 /// Apply Objective-C type arguments to the given type.
838 static QualType
applyObjCTypeArgs(Sema
&S
, SourceLocation loc
, QualType type
,
839 ArrayRef
<TypeSourceInfo
*> typeArgs
,
840 SourceRange typeArgsRange
, bool failOnError
,
842 // We can only apply type arguments to an Objective-C class type.
843 const auto *objcObjectType
= type
->getAs
<ObjCObjectType
>();
844 if (!objcObjectType
|| !objcObjectType
->getInterface()) {
845 S
.Diag(loc
, diag::err_objc_type_args_non_class
)
854 // The class type must be parameterized.
855 ObjCInterfaceDecl
*objcClass
= objcObjectType
->getInterface();
856 ObjCTypeParamList
*typeParams
= objcClass
->getTypeParamList();
858 S
.Diag(loc
, diag::err_objc_type_args_non_parameterized_class
)
859 << objcClass
->getDeclName()
860 << FixItHint::CreateRemoval(typeArgsRange
);
868 // The type must not already be specialized.
869 if (objcObjectType
->isSpecialized()) {
870 S
.Diag(loc
, diag::err_objc_type_args_specialized_class
)
872 << FixItHint::CreateRemoval(typeArgsRange
);
880 // Check the type arguments.
881 SmallVector
<QualType
, 4> finalTypeArgs
;
882 unsigned numTypeParams
= typeParams
->size();
883 bool anyPackExpansions
= false;
884 for (unsigned i
= 0, n
= typeArgs
.size(); i
!= n
; ++i
) {
885 TypeSourceInfo
*typeArgInfo
= typeArgs
[i
];
886 QualType typeArg
= typeArgInfo
->getType();
888 // Type arguments cannot have explicit qualifiers or nullability.
889 // We ignore indirect sources of these, e.g. behind typedefs or
890 // template arguments.
891 if (TypeLoc qual
= typeArgInfo
->getTypeLoc().findExplicitQualifierLoc()) {
892 bool diagnosed
= false;
893 SourceRange rangeToRemove
;
894 if (auto attr
= qual
.getAs
<AttributedTypeLoc
>()) {
895 rangeToRemove
= attr
.getLocalSourceRange();
896 if (attr
.getTypePtr()->getImmediateNullability()) {
897 typeArg
= attr
.getTypePtr()->getModifiedType();
898 S
.Diag(attr
.getBeginLoc(),
899 diag::err_objc_type_arg_explicit_nullability
)
900 << typeArg
<< FixItHint::CreateRemoval(rangeToRemove
);
905 // When rebuilding, qualifiers might have gotten here through a
906 // final substitution.
907 if (!rebuilding
&& !diagnosed
) {
908 S
.Diag(qual
.getBeginLoc(), diag::err_objc_type_arg_qualified
)
909 << typeArg
<< typeArg
.getQualifiers().getAsString()
910 << FixItHint::CreateRemoval(rangeToRemove
);
914 // Remove qualifiers even if they're non-local.
915 typeArg
= typeArg
.getUnqualifiedType();
917 finalTypeArgs
.push_back(typeArg
);
919 if (typeArg
->getAs
<PackExpansionType
>())
920 anyPackExpansions
= true;
922 // Find the corresponding type parameter, if there is one.
923 ObjCTypeParamDecl
*typeParam
= nullptr;
924 if (!anyPackExpansions
) {
925 if (i
< numTypeParams
) {
926 typeParam
= typeParams
->begin()[i
];
928 // Too many arguments.
929 S
.Diag(loc
, diag::err_objc_type_args_wrong_arity
)
931 << objcClass
->getDeclName()
932 << (unsigned)typeArgs
.size()
934 S
.Diag(objcClass
->getLocation(), diag::note_previous_decl
)
944 // Objective-C object pointer types must be substitutable for the bounds.
945 if (const auto *typeArgObjC
= typeArg
->getAs
<ObjCObjectPointerType
>()) {
946 // If we don't have a type parameter to match against, assume
947 // everything is fine. There was a prior pack expansion that
948 // means we won't be able to match anything.
950 assert(anyPackExpansions
&& "Too many arguments?");
954 // Retrieve the bound.
955 QualType bound
= typeParam
->getUnderlyingType();
956 const auto *boundObjC
= bound
->castAs
<ObjCObjectPointerType
>();
958 // Determine whether the type argument is substitutable for the bound.
959 if (typeArgObjC
->isObjCIdType()) {
960 // When the type argument is 'id', the only acceptable type
961 // parameter bound is 'id'.
962 if (boundObjC
->isObjCIdType())
964 } else if (S
.Context
.canAssignObjCInterfaces(boundObjC
, typeArgObjC
)) {
965 // Otherwise, we follow the assignability rules.
969 // Diagnose the mismatch.
970 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
971 diag::err_objc_type_arg_does_not_match_bound
)
972 << typeArg
<< bound
<< typeParam
->getDeclName();
973 S
.Diag(typeParam
->getLocation(), diag::note_objc_type_param_here
)
974 << typeParam
->getDeclName();
982 // Block pointer types are permitted for unqualified 'id' bounds.
983 if (typeArg
->isBlockPointerType()) {
984 // If we don't have a type parameter to match against, assume
985 // everything is fine. There was a prior pack expansion that
986 // means we won't be able to match anything.
988 assert(anyPackExpansions
&& "Too many arguments?");
992 // Retrieve the bound.
993 QualType bound
= typeParam
->getUnderlyingType();
994 if (bound
->isBlockCompatibleObjCPointerType(S
.Context
))
997 // Diagnose the mismatch.
998 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
999 diag::err_objc_type_arg_does_not_match_bound
)
1000 << typeArg
<< bound
<< typeParam
->getDeclName();
1001 S
.Diag(typeParam
->getLocation(), diag::note_objc_type_param_here
)
1002 << typeParam
->getDeclName();
1010 // Dependent types will be checked at instantiation time.
1011 if (typeArg
->isDependentType()) {
1015 // Diagnose non-id-compatible type arguments.
1016 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
1017 diag::err_objc_type_arg_not_id_compatible
)
1018 << typeArg
<< typeArgInfo
->getTypeLoc().getSourceRange();
1026 // Make sure we didn't have the wrong number of arguments.
1027 if (!anyPackExpansions
&& finalTypeArgs
.size() != numTypeParams
) {
1028 S
.Diag(loc
, diag::err_objc_type_args_wrong_arity
)
1029 << (typeArgs
.size() < typeParams
->size())
1030 << objcClass
->getDeclName()
1031 << (unsigned)finalTypeArgs
.size()
1032 << (unsigned)numTypeParams
;
1033 S
.Diag(objcClass
->getLocation(), diag::note_previous_decl
)
1042 // Success. Form the specialized type.
1043 return S
.Context
.getObjCObjectType(type
, finalTypeArgs
, { }, false);
1046 QualType
Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl
*Decl
,
1047 SourceLocation ProtocolLAngleLoc
,
1048 ArrayRef
<ObjCProtocolDecl
*> Protocols
,
1049 ArrayRef
<SourceLocation
> ProtocolLocs
,
1050 SourceLocation ProtocolRAngleLoc
,
1052 QualType Result
= QualType(Decl
->getTypeForDecl(), 0);
1053 if (!Protocols
.empty()) {
1055 Result
= Context
.applyObjCProtocolQualifiers(Result
, Protocols
,
1058 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers
)
1059 << SourceRange(ProtocolLAngleLoc
, ProtocolRAngleLoc
);
1060 if (FailOnError
) Result
= QualType();
1062 if (FailOnError
&& Result
.isNull())
1069 QualType
Sema::BuildObjCObjectType(
1070 QualType BaseType
, SourceLocation Loc
, SourceLocation TypeArgsLAngleLoc
,
1071 ArrayRef
<TypeSourceInfo
*> TypeArgs
, SourceLocation TypeArgsRAngleLoc
,
1072 SourceLocation ProtocolLAngleLoc
, ArrayRef
<ObjCProtocolDecl
*> Protocols
,
1073 ArrayRef
<SourceLocation
> ProtocolLocs
, SourceLocation ProtocolRAngleLoc
,
1074 bool FailOnError
, bool Rebuilding
) {
1075 QualType Result
= BaseType
;
1076 if (!TypeArgs
.empty()) {
1078 applyObjCTypeArgs(*this, Loc
, Result
, TypeArgs
,
1079 SourceRange(TypeArgsLAngleLoc
, TypeArgsRAngleLoc
),
1080 FailOnError
, Rebuilding
);
1081 if (FailOnError
&& Result
.isNull())
1085 if (!Protocols
.empty()) {
1087 Result
= Context
.applyObjCProtocolQualifiers(Result
, Protocols
,
1090 Diag(Loc
, diag::err_invalid_protocol_qualifiers
)
1091 << SourceRange(ProtocolLAngleLoc
, ProtocolRAngleLoc
);
1092 if (FailOnError
) Result
= QualType();
1094 if (FailOnError
&& Result
.isNull())
1101 TypeResult
Sema::actOnObjCProtocolQualifierType(
1102 SourceLocation lAngleLoc
,
1103 ArrayRef
<Decl
*> protocols
,
1104 ArrayRef
<SourceLocation
> protocolLocs
,
1105 SourceLocation rAngleLoc
) {
1106 // Form id<protocol-list>.
1107 QualType Result
= Context
.getObjCObjectType(
1108 Context
.ObjCBuiltinIdTy
, {},
1109 llvm::ArrayRef((ObjCProtocolDecl
*const *)protocols
.data(),
1112 Result
= Context
.getObjCObjectPointerType(Result
);
1114 TypeSourceInfo
*ResultTInfo
= Context
.CreateTypeSourceInfo(Result
);
1115 TypeLoc ResultTL
= ResultTInfo
->getTypeLoc();
1117 auto ObjCObjectPointerTL
= ResultTL
.castAs
<ObjCObjectPointerTypeLoc
>();
1118 ObjCObjectPointerTL
.setStarLoc(SourceLocation()); // implicit
1120 auto ObjCObjectTL
= ObjCObjectPointerTL
.getPointeeLoc()
1121 .castAs
<ObjCObjectTypeLoc
>();
1122 ObjCObjectTL
.setHasBaseTypeAsWritten(false);
1123 ObjCObjectTL
.getBaseLoc().initialize(Context
, SourceLocation());
1125 // No type arguments.
1126 ObjCObjectTL
.setTypeArgsLAngleLoc(SourceLocation());
1127 ObjCObjectTL
.setTypeArgsRAngleLoc(SourceLocation());
1129 // Fill in protocol qualifiers.
1130 ObjCObjectTL
.setProtocolLAngleLoc(lAngleLoc
);
1131 ObjCObjectTL
.setProtocolRAngleLoc(rAngleLoc
);
1132 for (unsigned i
= 0, n
= protocols
.size(); i
!= n
; ++i
)
1133 ObjCObjectTL
.setProtocolLoc(i
, protocolLocs
[i
]);
1135 // We're done. Return the completed type to the parser.
1136 return CreateParsedType(Result
, ResultTInfo
);
1139 TypeResult
Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1142 ParsedType BaseType
,
1143 SourceLocation TypeArgsLAngleLoc
,
1144 ArrayRef
<ParsedType
> TypeArgs
,
1145 SourceLocation TypeArgsRAngleLoc
,
1146 SourceLocation ProtocolLAngleLoc
,
1147 ArrayRef
<Decl
*> Protocols
,
1148 ArrayRef
<SourceLocation
> ProtocolLocs
,
1149 SourceLocation ProtocolRAngleLoc
) {
1150 TypeSourceInfo
*BaseTypeInfo
= nullptr;
1151 QualType T
= GetTypeFromParser(BaseType
, &BaseTypeInfo
);
1155 // Handle missing type-source info.
1157 BaseTypeInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
1159 // Extract type arguments.
1160 SmallVector
<TypeSourceInfo
*, 4> ActualTypeArgInfos
;
1161 for (unsigned i
= 0, n
= TypeArgs
.size(); i
!= n
; ++i
) {
1162 TypeSourceInfo
*TypeArgInfo
= nullptr;
1163 QualType TypeArg
= GetTypeFromParser(TypeArgs
[i
], &TypeArgInfo
);
1164 if (TypeArg
.isNull()) {
1165 ActualTypeArgInfos
.clear();
1169 assert(TypeArgInfo
&& "No type source info?");
1170 ActualTypeArgInfos
.push_back(TypeArgInfo
);
1173 // Build the object type.
1174 QualType Result
= BuildObjCObjectType(
1175 T
, BaseTypeInfo
->getTypeLoc().getSourceRange().getBegin(),
1176 TypeArgsLAngleLoc
, ActualTypeArgInfos
, TypeArgsRAngleLoc
,
1178 llvm::ArrayRef((ObjCProtocolDecl
*const *)Protocols
.data(),
1180 ProtocolLocs
, ProtocolRAngleLoc
,
1181 /*FailOnError=*/false,
1182 /*Rebuilding=*/false);
1187 // Create source information for this type.
1188 TypeSourceInfo
*ResultTInfo
= Context
.CreateTypeSourceInfo(Result
);
1189 TypeLoc ResultTL
= ResultTInfo
->getTypeLoc();
1191 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1192 // object pointer type. Fill in source information for it.
1193 if (auto ObjCObjectPointerTL
= ResultTL
.getAs
<ObjCObjectPointerTypeLoc
>()) {
1194 // The '*' is implicit.
1195 ObjCObjectPointerTL
.setStarLoc(SourceLocation());
1196 ResultTL
= ObjCObjectPointerTL
.getPointeeLoc();
1199 if (auto OTPTL
= ResultTL
.getAs
<ObjCTypeParamTypeLoc
>()) {
1200 // Protocol qualifier information.
1201 if (OTPTL
.getNumProtocols() > 0) {
1202 assert(OTPTL
.getNumProtocols() == Protocols
.size());
1203 OTPTL
.setProtocolLAngleLoc(ProtocolLAngleLoc
);
1204 OTPTL
.setProtocolRAngleLoc(ProtocolRAngleLoc
);
1205 for (unsigned i
= 0, n
= Protocols
.size(); i
!= n
; ++i
)
1206 OTPTL
.setProtocolLoc(i
, ProtocolLocs
[i
]);
1209 // We're done. Return the completed type to the parser.
1210 return CreateParsedType(Result
, ResultTInfo
);
1213 auto ObjCObjectTL
= ResultTL
.castAs
<ObjCObjectTypeLoc
>();
1215 // Type argument information.
1216 if (ObjCObjectTL
.getNumTypeArgs() > 0) {
1217 assert(ObjCObjectTL
.getNumTypeArgs() == ActualTypeArgInfos
.size());
1218 ObjCObjectTL
.setTypeArgsLAngleLoc(TypeArgsLAngleLoc
);
1219 ObjCObjectTL
.setTypeArgsRAngleLoc(TypeArgsRAngleLoc
);
1220 for (unsigned i
= 0, n
= ActualTypeArgInfos
.size(); i
!= n
; ++i
)
1221 ObjCObjectTL
.setTypeArgTInfo(i
, ActualTypeArgInfos
[i
]);
1223 ObjCObjectTL
.setTypeArgsLAngleLoc(SourceLocation());
1224 ObjCObjectTL
.setTypeArgsRAngleLoc(SourceLocation());
1227 // Protocol qualifier information.
1228 if (ObjCObjectTL
.getNumProtocols() > 0) {
1229 assert(ObjCObjectTL
.getNumProtocols() == Protocols
.size());
1230 ObjCObjectTL
.setProtocolLAngleLoc(ProtocolLAngleLoc
);
1231 ObjCObjectTL
.setProtocolRAngleLoc(ProtocolRAngleLoc
);
1232 for (unsigned i
= 0, n
= Protocols
.size(); i
!= n
; ++i
)
1233 ObjCObjectTL
.setProtocolLoc(i
, ProtocolLocs
[i
]);
1235 ObjCObjectTL
.setProtocolLAngleLoc(SourceLocation());
1236 ObjCObjectTL
.setProtocolRAngleLoc(SourceLocation());
1240 ObjCObjectTL
.setHasBaseTypeAsWritten(true);
1241 if (ObjCObjectTL
.getType() == T
)
1242 ObjCObjectTL
.getBaseLoc().initializeFullCopy(BaseTypeInfo
->getTypeLoc());
1244 ObjCObjectTL
.getBaseLoc().initialize(Context
, Loc
);
1246 // We're done. Return the completed type to the parser.
1247 return CreateParsedType(Result
, ResultTInfo
);
1250 static OpenCLAccessAttr::Spelling
1251 getImageAccess(const ParsedAttributesView
&Attrs
) {
1252 for (const ParsedAttr
&AL
: Attrs
)
1253 if (AL
.getKind() == ParsedAttr::AT_OpenCLAccess
)
1254 return static_cast<OpenCLAccessAttr::Spelling
>(AL
.getSemanticSpelling());
1255 return OpenCLAccessAttr::Keyword_read_only
;
1258 static UnaryTransformType::UTTKind
1259 TSTToUnaryTransformType(DeclSpec::TST SwitchTST
) {
1260 switch (SwitchTST
) {
1261 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \
1263 return UnaryTransformType::Enum;
1264 #include "clang/Basic/TransformTypeTraits.def"
1266 llvm_unreachable("attempted to parse a non-unary transform builtin");
1270 /// Convert the specified declspec to the appropriate type
1272 /// \param state Specifies the declarator containing the declaration specifier
1273 /// to be converted, along with other associated processing state.
1274 /// \returns The type described by the declaration specifiers. This function
1275 /// never returns null.
1276 static QualType
ConvertDeclSpecToType(TypeProcessingState
&state
) {
1277 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1280 Sema
&S
= state
.getSema();
1281 Declarator
&declarator
= state
.getDeclarator();
1282 DeclSpec
&DS
= declarator
.getMutableDeclSpec();
1283 SourceLocation DeclLoc
= declarator
.getIdentifierLoc();
1284 if (DeclLoc
.isInvalid())
1285 DeclLoc
= DS
.getBeginLoc();
1287 ASTContext
&Context
= S
.Context
;
1290 switch (DS
.getTypeSpecType()) {
1291 case DeclSpec::TST_void
:
1292 Result
= Context
.VoidTy
;
1294 case DeclSpec::TST_char
:
1295 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
)
1296 Result
= Context
.CharTy
;
1297 else if (DS
.getTypeSpecSign() == TypeSpecifierSign::Signed
)
1298 Result
= Context
.SignedCharTy
;
1300 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
&&
1301 "Unknown TSS value");
1302 Result
= Context
.UnsignedCharTy
;
1305 case DeclSpec::TST_wchar
:
1306 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
)
1307 Result
= Context
.WCharTy
;
1308 else if (DS
.getTypeSpecSign() == TypeSpecifierSign::Signed
) {
1309 S
.Diag(DS
.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec
)
1310 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1311 Context
.getPrintingPolicy());
1312 Result
= Context
.getSignedWCharType();
1314 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
&&
1315 "Unknown TSS value");
1316 S
.Diag(DS
.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec
)
1317 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1318 Context
.getPrintingPolicy());
1319 Result
= Context
.getUnsignedWCharType();
1322 case DeclSpec::TST_char8
:
1323 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1324 "Unknown TSS value");
1325 Result
= Context
.Char8Ty
;
1327 case DeclSpec::TST_char16
:
1328 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1329 "Unknown TSS value");
1330 Result
= Context
.Char16Ty
;
1332 case DeclSpec::TST_char32
:
1333 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1334 "Unknown TSS value");
1335 Result
= Context
.Char32Ty
;
1337 case DeclSpec::TST_unspecified
:
1338 // If this is a missing declspec in a block literal return context, then it
1339 // is inferred from the return statements inside the block.
1340 // The declspec is always missing in a lambda expr context; it is either
1341 // specified with a trailing return type or inferred.
1342 if (S
.getLangOpts().CPlusPlus14
&&
1343 declarator
.getContext() == DeclaratorContext::LambdaExpr
) {
1344 // In C++1y, a lambda's implicit return type is 'auto'.
1345 Result
= Context
.getAutoDeductType();
1347 } else if (declarator
.getContext() == DeclaratorContext::LambdaExpr
||
1348 checkOmittedBlockReturnType(S
, declarator
,
1349 Context
.DependentTy
)) {
1350 Result
= Context
.DependentTy
;
1354 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1355 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1356 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1357 // Note that the one exception to this is function definitions, which are
1358 // allowed to be completely missing a declspec. This is handled in the
1359 // parser already though by it pretending to have seen an 'int' in this
1361 if (S
.getLangOpts().isImplicitIntRequired()) {
1362 S
.Diag(DeclLoc
, diag::warn_missing_type_specifier
)
1363 << DS
.getSourceRange()
1364 << FixItHint::CreateInsertion(DS
.getBeginLoc(), "int");
1365 } else if (!DS
.hasTypeSpecifier()) {
1366 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1367 // "At least one type specifier shall be given in the declaration
1368 // specifiers in each declaration, and in the specifier-qualifier list in
1369 // each struct declaration and type name."
1370 if (!S
.getLangOpts().isImplicitIntAllowed() && !DS
.isTypeSpecPipe()) {
1371 S
.Diag(DeclLoc
, diag::err_missing_type_specifier
)
1372 << DS
.getSourceRange();
1374 // When this occurs, often something is very broken with the value
1375 // being declared, poison it as invalid so we don't get chains of
1377 declarator
.setInvalidType(true);
1378 } else if (S
.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1379 DS
.isTypeSpecPipe()) {
1380 S
.Diag(DeclLoc
, diag::err_missing_actual_pipe_type
)
1381 << DS
.getSourceRange();
1382 declarator
.setInvalidType(true);
1384 assert(S
.getLangOpts().isImplicitIntAllowed() &&
1385 "implicit int is disabled?");
1386 S
.Diag(DeclLoc
, diag::ext_missing_type_specifier
)
1387 << DS
.getSourceRange()
1388 << FixItHint::CreateInsertion(DS
.getBeginLoc(), "int");
1393 case DeclSpec::TST_int
: {
1394 if (DS
.getTypeSpecSign() != TypeSpecifierSign::Unsigned
) {
1395 switch (DS
.getTypeSpecWidth()) {
1396 case TypeSpecifierWidth::Unspecified
:
1397 Result
= Context
.IntTy
;
1399 case TypeSpecifierWidth::Short
:
1400 Result
= Context
.ShortTy
;
1402 case TypeSpecifierWidth::Long
:
1403 Result
= Context
.LongTy
;
1405 case TypeSpecifierWidth::LongLong
:
1406 Result
= Context
.LongLongTy
;
1408 // 'long long' is a C99 or C++11 feature.
1409 if (!S
.getLangOpts().C99
) {
1410 if (S
.getLangOpts().CPlusPlus
)
1411 S
.Diag(DS
.getTypeSpecWidthLoc(),
1412 S
.getLangOpts().CPlusPlus11
?
1413 diag::warn_cxx98_compat_longlong
: diag::ext_cxx11_longlong
);
1415 S
.Diag(DS
.getTypeSpecWidthLoc(), diag::ext_c99_longlong
);
1420 switch (DS
.getTypeSpecWidth()) {
1421 case TypeSpecifierWidth::Unspecified
:
1422 Result
= Context
.UnsignedIntTy
;
1424 case TypeSpecifierWidth::Short
:
1425 Result
= Context
.UnsignedShortTy
;
1427 case TypeSpecifierWidth::Long
:
1428 Result
= Context
.UnsignedLongTy
;
1430 case TypeSpecifierWidth::LongLong
:
1431 Result
= Context
.UnsignedLongLongTy
;
1433 // 'long long' is a C99 or C++11 feature.
1434 if (!S
.getLangOpts().C99
) {
1435 if (S
.getLangOpts().CPlusPlus
)
1436 S
.Diag(DS
.getTypeSpecWidthLoc(),
1437 S
.getLangOpts().CPlusPlus11
?
1438 diag::warn_cxx98_compat_longlong
: diag::ext_cxx11_longlong
);
1440 S
.Diag(DS
.getTypeSpecWidthLoc(), diag::ext_c99_longlong
);
1447 case DeclSpec::TST_bitint
: {
1448 if (!S
.Context
.getTargetInfo().hasBitIntType())
1449 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
) << "_BitInt";
1451 S
.BuildBitIntType(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
,
1452 DS
.getRepAsExpr(), DS
.getBeginLoc());
1453 if (Result
.isNull()) {
1454 Result
= Context
.IntTy
;
1455 declarator
.setInvalidType(true);
1459 case DeclSpec::TST_accum
: {
1460 switch (DS
.getTypeSpecWidth()) {
1461 case TypeSpecifierWidth::Short
:
1462 Result
= Context
.ShortAccumTy
;
1464 case TypeSpecifierWidth::Unspecified
:
1465 Result
= Context
.AccumTy
;
1467 case TypeSpecifierWidth::Long
:
1468 Result
= Context
.LongAccumTy
;
1470 case TypeSpecifierWidth::LongLong
:
1471 llvm_unreachable("Unable to specify long long as _Accum width");
1474 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1475 Result
= Context
.getCorrespondingUnsignedType(Result
);
1477 if (DS
.isTypeSpecSat())
1478 Result
= Context
.getCorrespondingSaturatedType(Result
);
1482 case DeclSpec::TST_fract
: {
1483 switch (DS
.getTypeSpecWidth()) {
1484 case TypeSpecifierWidth::Short
:
1485 Result
= Context
.ShortFractTy
;
1487 case TypeSpecifierWidth::Unspecified
:
1488 Result
= Context
.FractTy
;
1490 case TypeSpecifierWidth::Long
:
1491 Result
= Context
.LongFractTy
;
1493 case TypeSpecifierWidth::LongLong
:
1494 llvm_unreachable("Unable to specify long long as _Fract width");
1497 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1498 Result
= Context
.getCorrespondingUnsignedType(Result
);
1500 if (DS
.isTypeSpecSat())
1501 Result
= Context
.getCorrespondingSaturatedType(Result
);
1505 case DeclSpec::TST_int128
:
1506 if (!S
.Context
.getTargetInfo().hasInt128Type() &&
1507 !(S
.getLangOpts().SYCLIsDevice
|| S
.getLangOpts().CUDAIsDevice
||
1508 (S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
)))
1509 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1511 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1512 Result
= Context
.UnsignedInt128Ty
;
1514 Result
= Context
.Int128Ty
;
1516 case DeclSpec::TST_float16
:
1517 // CUDA host and device may have different _Float16 support, therefore
1518 // do not diagnose _Float16 usage to avoid false alarm.
1519 // ToDo: more precise diagnostics for CUDA.
1520 if (!S
.Context
.getTargetInfo().hasFloat16Type() && !S
.getLangOpts().CUDA
&&
1521 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
))
1522 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1524 Result
= Context
.Float16Ty
;
1526 case DeclSpec::TST_half
: Result
= Context
.HalfTy
; break;
1527 case DeclSpec::TST_BFloat16
:
1528 if (!S
.Context
.getTargetInfo().hasBFloat16Type() &&
1529 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
) &&
1530 !S
.getLangOpts().SYCLIsDevice
)
1531 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
) << "__bf16";
1532 Result
= Context
.BFloat16Ty
;
1534 case DeclSpec::TST_float
: Result
= Context
.FloatTy
; break;
1535 case DeclSpec::TST_double
:
1536 if (DS
.getTypeSpecWidth() == TypeSpecifierWidth::Long
)
1537 Result
= Context
.LongDoubleTy
;
1539 Result
= Context
.DoubleTy
;
1540 if (S
.getLangOpts().OpenCL
) {
1541 if (!S
.getOpenCLOptions().isSupported("cl_khr_fp64", S
.getLangOpts()))
1542 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1544 << (S
.getLangOpts().getOpenCLCompatibleVersion() == 300
1545 ? "cl_khr_fp64 and __opencl_c_fp64"
1547 else if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S
.getLangOpts()))
1548 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma
);
1551 case DeclSpec::TST_float128
:
1552 if (!S
.Context
.getTargetInfo().hasFloat128Type() &&
1553 !S
.getLangOpts().SYCLIsDevice
&&
1554 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
))
1555 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1557 Result
= Context
.Float128Ty
;
1559 case DeclSpec::TST_ibm128
:
1560 if (!S
.Context
.getTargetInfo().hasIbm128Type() &&
1561 !S
.getLangOpts().SYCLIsDevice
&&
1562 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsTargetDevice
))
1563 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
) << "__ibm128";
1564 Result
= Context
.Ibm128Ty
;
1566 case DeclSpec::TST_bool
:
1567 Result
= Context
.BoolTy
; // _Bool or bool
1569 case DeclSpec::TST_decimal32
: // _Decimal32
1570 case DeclSpec::TST_decimal64
: // _Decimal64
1571 case DeclSpec::TST_decimal128
: // _Decimal128
1572 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_decimal_unsupported
);
1573 Result
= Context
.IntTy
;
1574 declarator
.setInvalidType(true);
1576 case DeclSpec::TST_class
:
1577 case DeclSpec::TST_enum
:
1578 case DeclSpec::TST_union
:
1579 case DeclSpec::TST_struct
:
1580 case DeclSpec::TST_interface
: {
1581 TagDecl
*D
= dyn_cast_or_null
<TagDecl
>(DS
.getRepAsDecl());
1583 // This can happen in C++ with ambiguous lookups.
1584 Result
= Context
.IntTy
;
1585 declarator
.setInvalidType(true);
1589 // If the type is deprecated or unavailable, diagnose it.
1590 S
.DiagnoseUseOfDecl(D
, DS
.getTypeSpecTypeNameLoc());
1592 assert(DS
.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified
&&
1593 DS
.getTypeSpecComplex() == 0 &&
1594 DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1595 "No qualifiers on tag names!");
1597 // TypeQuals handled by caller.
1598 Result
= Context
.getTypeDeclType(D
);
1600 // In both C and C++, make an ElaboratedType.
1601 ElaboratedTypeKeyword Keyword
1602 = ElaboratedType::getKeywordForTypeSpec(DS
.getTypeSpecType());
1603 Result
= S
.getElaboratedType(Keyword
, DS
.getTypeSpecScope(), Result
,
1604 DS
.isTypeSpecOwned() ? D
: nullptr);
1607 case DeclSpec::TST_typename
: {
1608 assert(DS
.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified
&&
1609 DS
.getTypeSpecComplex() == 0 &&
1610 DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1611 "Can't handle qualifiers on typedef names yet!");
1612 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1613 if (Result
.isNull()) {
1614 declarator
.setInvalidType(true);
1617 // TypeQuals handled by caller.
1620 case DeclSpec::TST_typeof_unqualType
:
1621 case DeclSpec::TST_typeofType
:
1622 // FIXME: Preserve type source info.
1623 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1624 assert(!Result
.isNull() && "Didn't get a type for typeof?");
1625 if (!Result
->isDependentType())
1626 if (const TagType
*TT
= Result
->getAs
<TagType
>())
1627 S
.DiagnoseUseOfDecl(TT
->getDecl(), DS
.getTypeSpecTypeLoc());
1628 // TypeQuals handled by caller.
1629 Result
= Context
.getTypeOfType(
1630 Result
, DS
.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1631 ? TypeOfKind::Unqualified
1632 : TypeOfKind::Qualified
);
1634 case DeclSpec::TST_typeof_unqualExpr
:
1635 case DeclSpec::TST_typeofExpr
: {
1636 Expr
*E
= DS
.getRepAsExpr();
1637 assert(E
&& "Didn't get an expression for typeof?");
1638 // TypeQuals handled by caller.
1639 Result
= S
.BuildTypeofExprType(E
, DS
.getTypeSpecType() ==
1640 DeclSpec::TST_typeof_unqualExpr
1641 ? TypeOfKind::Unqualified
1642 : TypeOfKind::Qualified
);
1643 if (Result
.isNull()) {
1644 Result
= Context
.IntTy
;
1645 declarator
.setInvalidType(true);
1649 case DeclSpec::TST_decltype
: {
1650 Expr
*E
= DS
.getRepAsExpr();
1651 assert(E
&& "Didn't get an expression for decltype?");
1652 // TypeQuals handled by caller.
1653 Result
= S
.BuildDecltypeType(E
);
1654 if (Result
.isNull()) {
1655 Result
= Context
.IntTy
;
1656 declarator
.setInvalidType(true);
1660 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1661 #include "clang/Basic/TransformTypeTraits.def"
1662 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1663 assert(!Result
.isNull() && "Didn't get a type for the transformation?");
1664 Result
= S
.BuildUnaryTransformType(
1665 Result
, TSTToUnaryTransformType(DS
.getTypeSpecType()),
1666 DS
.getTypeSpecTypeLoc());
1667 if (Result
.isNull()) {
1668 Result
= Context
.IntTy
;
1669 declarator
.setInvalidType(true);
1673 case DeclSpec::TST_auto
:
1674 case DeclSpec::TST_decltype_auto
: {
1675 auto AutoKW
= DS
.getTypeSpecType() == DeclSpec::TST_decltype_auto
1676 ? AutoTypeKeyword::DecltypeAuto
1677 : AutoTypeKeyword::Auto
;
1679 ConceptDecl
*TypeConstraintConcept
= nullptr;
1680 llvm::SmallVector
<TemplateArgument
, 8> TemplateArgs
;
1681 if (DS
.isConstrainedAuto()) {
1682 if (TemplateIdAnnotation
*TemplateId
= DS
.getRepAsTemplateId()) {
1683 TypeConstraintConcept
=
1684 cast
<ConceptDecl
>(TemplateId
->Template
.get().getAsTemplateDecl());
1685 TemplateArgumentListInfo TemplateArgsInfo
;
1686 TemplateArgsInfo
.setLAngleLoc(TemplateId
->LAngleLoc
);
1687 TemplateArgsInfo
.setRAngleLoc(TemplateId
->RAngleLoc
);
1688 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
1689 TemplateId
->NumArgs
);
1690 S
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
1691 for (const auto &ArgLoc
: TemplateArgsInfo
.arguments())
1692 TemplateArgs
.push_back(ArgLoc
.getArgument());
1694 declarator
.setInvalidType(true);
1697 Result
= S
.Context
.getAutoType(QualType(), AutoKW
,
1698 /*IsDependent*/ false, /*IsPack=*/false,
1699 TypeConstraintConcept
, TemplateArgs
);
1703 case DeclSpec::TST_auto_type
:
1704 Result
= Context
.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType
, false);
1707 case DeclSpec::TST_unknown_anytype
:
1708 Result
= Context
.UnknownAnyTy
;
1711 case DeclSpec::TST_atomic
:
1712 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1713 assert(!Result
.isNull() && "Didn't get a type for _Atomic?");
1714 Result
= S
.BuildAtomicType(Result
, DS
.getTypeSpecTypeLoc());
1715 if (Result
.isNull()) {
1716 Result
= Context
.IntTy
;
1717 declarator
.setInvalidType(true);
1721 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
1722 case DeclSpec::TST_##ImgType##_t: \
1723 switch (getImageAccess(DS.getAttributes())) { \
1724 case OpenCLAccessAttr::Keyword_write_only: \
1725 Result = Context.Id##WOTy; \
1727 case OpenCLAccessAttr::Keyword_read_write: \
1728 Result = Context.Id##RWTy; \
1730 case OpenCLAccessAttr::Keyword_read_only: \
1731 Result = Context.Id##ROTy; \
1733 case OpenCLAccessAttr::SpellingNotCalculated: \
1734 llvm_unreachable("Spelling not yet calculated"); \
1737 #include "clang/Basic/OpenCLImageTypes.def"
1739 case DeclSpec::TST_error
:
1740 Result
= Context
.IntTy
;
1741 declarator
.setInvalidType(true);
1745 // FIXME: we want resulting declarations to be marked invalid, but claiming
1746 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1748 if (Result
->containsErrors())
1749 declarator
.setInvalidType();
1751 if (S
.getLangOpts().OpenCL
) {
1752 const auto &OpenCLOptions
= S
.getOpenCLOptions();
1753 bool IsOpenCLC30Compatible
=
1754 S
.getLangOpts().getOpenCLCompatibleVersion() == 300;
1755 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1757 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1758 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1759 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1760 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1761 // only when the optional feature is supported
1762 if ((Result
->isImageType() || Result
->isSamplerT()) &&
1763 (IsOpenCLC30Compatible
&&
1764 !OpenCLOptions
.isSupported("__opencl_c_images", S
.getLangOpts()))) {
1765 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1766 << 0 << Result
<< "__opencl_c_images";
1767 declarator
.setInvalidType();
1768 } else if (Result
->isOCLImage3dWOType() &&
1769 !OpenCLOptions
.isSupported("cl_khr_3d_image_writes",
1771 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1773 << (IsOpenCLC30Compatible
1774 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1775 : "cl_khr_3d_image_writes");
1776 declarator
.setInvalidType();
1780 bool IsFixedPointType
= DS
.getTypeSpecType() == DeclSpec::TST_accum
||
1781 DS
.getTypeSpecType() == DeclSpec::TST_fract
;
1783 // Only fixed point types can be saturated
1784 if (DS
.isTypeSpecSat() && !IsFixedPointType
)
1785 S
.Diag(DS
.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec
)
1786 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1787 Context
.getPrintingPolicy());
1789 // Handle complex types.
1790 if (DS
.getTypeSpecComplex() == DeclSpec::TSC_complex
) {
1791 if (S
.getLangOpts().Freestanding
)
1792 S
.Diag(DS
.getTypeSpecComplexLoc(), diag::ext_freestanding_complex
);
1793 Result
= Context
.getComplexType(Result
);
1794 } else if (DS
.isTypeAltiVecVector()) {
1795 unsigned typeSize
= static_cast<unsigned>(Context
.getTypeSize(Result
));
1796 assert(typeSize
> 0 && "type size for vector must be greater than 0 bits");
1797 VectorType::VectorKind VecKind
= VectorType::AltiVecVector
;
1798 if (DS
.isTypeAltiVecPixel())
1799 VecKind
= VectorType::AltiVecPixel
;
1800 else if (DS
.isTypeAltiVecBool())
1801 VecKind
= VectorType::AltiVecBool
;
1802 Result
= Context
.getVectorType(Result
, 128/typeSize
, VecKind
);
1805 // FIXME: Imaginary.
1806 if (DS
.getTypeSpecComplex() == DeclSpec::TSC_imaginary
)
1807 S
.Diag(DS
.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported
);
1809 // Before we process any type attributes, synthesize a block literal
1810 // function declarator if necessary.
1811 if (declarator
.getContext() == DeclaratorContext::BlockLiteral
)
1812 maybeSynthesizeBlockSignature(state
, Result
);
1814 // Apply any type attributes from the decl spec. This may cause the
1815 // list of type attributes to be temporarily saved while the type
1816 // attributes are pushed around.
1817 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1818 if (!DS
.isTypeSpecPipe()) {
1819 // We also apply declaration attributes that "slide" to the decl spec.
1820 // Ordering can be important for attributes. The decalaration attributes
1821 // come syntactically before the decl spec attributes, so we process them
1823 ParsedAttributesView SlidingAttrs
;
1824 for (ParsedAttr
&AL
: declarator
.getDeclarationAttributes()) {
1825 if (AL
.slidesFromDeclToDeclSpecLegacyBehavior()) {
1826 SlidingAttrs
.addAtEnd(&AL
);
1828 // For standard syntax attributes, which would normally appertain to the
1829 // declaration here, suggest moving them to the type instead. But only
1830 // do this for our own vendor attributes; moving other vendors'
1831 // attributes might hurt portability.
1832 // There's one special case that we need to deal with here: The
1833 // `MatrixType` attribute may only be used in a typedef declaration. If
1834 // it's being used anywhere else, don't output the warning as
1835 // ProcessDeclAttributes() will output an error anyway.
1836 if (AL
.isStandardAttributeSyntax() && AL
.isClangScope() &&
1837 !(AL
.getKind() == ParsedAttr::AT_MatrixType
&&
1838 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
)) {
1839 S
.Diag(AL
.getLoc(), diag::warn_type_attribute_deprecated_on_decl
)
1844 // During this call to processTypeAttrs(),
1845 // TypeProcessingState::getCurrentAttributes() will erroneously return a
1846 // reference to the DeclSpec attributes, rather than the declaration
1847 // attributes. However, this doesn't matter, as getCurrentAttributes()
1848 // is only called when distributing attributes from one attribute list
1849 // to another. Declaration attributes are always C++11 attributes, and these
1850 // are never distributed.
1851 processTypeAttrs(state
, Result
, TAL_DeclSpec
, SlidingAttrs
);
1852 processTypeAttrs(state
, Result
, TAL_DeclSpec
, DS
.getAttributes());
1855 // Apply const/volatile/restrict qualifiers to T.
1856 if (unsigned TypeQuals
= DS
.getTypeQualifiers()) {
1857 // Warn about CV qualifiers on function types.
1859 // If the specification of a function type includes any type qualifiers,
1860 // the behavior is undefined.
1861 // C++11 [dcl.fct]p7:
1862 // The effect of a cv-qualifier-seq in a function declarator is not the
1863 // same as adding cv-qualification on top of the function type. In the
1864 // latter case, the cv-qualifiers are ignored.
1865 if (Result
->isFunctionType()) {
1866 diagnoseAndRemoveTypeQualifiers(
1867 S
, DS
, TypeQuals
, Result
, DeclSpec::TQ_const
| DeclSpec::TQ_volatile
,
1868 S
.getLangOpts().CPlusPlus
1869 ? diag::warn_typecheck_function_qualifiers_ignored
1870 : diag::warn_typecheck_function_qualifiers_unspecified
);
1871 // No diagnostic for 'restrict' or '_Atomic' applied to a
1872 // function type; we'll diagnose those later, in BuildQualifiedType.
1875 // C++11 [dcl.ref]p1:
1876 // Cv-qualified references are ill-formed except when the
1877 // cv-qualifiers are introduced through the use of a typedef-name
1878 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1880 // There don't appear to be any other contexts in which a cv-qualified
1881 // reference type could be formed, so the 'ill-formed' clause here appears
1883 if (TypeQuals
&& Result
->isReferenceType()) {
1884 diagnoseAndRemoveTypeQualifiers(
1885 S
, DS
, TypeQuals
, Result
,
1886 DeclSpec::TQ_const
| DeclSpec::TQ_volatile
| DeclSpec::TQ_atomic
,
1887 diag::warn_typecheck_reference_qualifiers
);
1890 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1891 // than once in the same specifier-list or qualifier-list, either directly
1892 // or via one or more typedefs."
1893 if (!S
.getLangOpts().C99
&& !S
.getLangOpts().CPlusPlus
1894 && TypeQuals
& Result
.getCVRQualifiers()) {
1895 if (TypeQuals
& DeclSpec::TQ_const
&& Result
.isConstQualified()) {
1896 S
.Diag(DS
.getConstSpecLoc(), diag::ext_duplicate_declspec
)
1900 if (TypeQuals
& DeclSpec::TQ_volatile
&& Result
.isVolatileQualified()) {
1901 S
.Diag(DS
.getVolatileSpecLoc(), diag::ext_duplicate_declspec
)
1905 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1906 // produce a warning in this case.
1909 QualType Qualified
= S
.BuildQualifiedType(Result
, DeclLoc
, TypeQuals
, &DS
);
1911 // If adding qualifiers fails, just use the unqualified type.
1912 if (Qualified
.isNull())
1913 declarator
.setInvalidType(true);
1918 assert(!Result
.isNull() && "This function should not return a null type");
1922 static std::string
getPrintableNameForEntity(DeclarationName Entity
) {
1924 return Entity
.getAsString();
1929 static bool isDependentOrGNUAutoType(QualType T
) {
1930 if (T
->isDependentType())
1933 const auto *AT
= dyn_cast
<AutoType
>(T
);
1934 return AT
&& AT
->isGNUAutoType();
1937 QualType
Sema::BuildQualifiedType(QualType T
, SourceLocation Loc
,
1938 Qualifiers Qs
, const DeclSpec
*DS
) {
1942 // Ignore any attempt to form a cv-qualified reference.
1943 if (T
->isReferenceType()) {
1945 Qs
.removeVolatile();
1948 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1949 // object or incomplete types shall not be restrict-qualified."
1950 if (Qs
.hasRestrict()) {
1951 unsigned DiagID
= 0;
1954 if (T
->isAnyPointerType() || T
->isReferenceType() ||
1955 T
->isMemberPointerType()) {
1957 if (T
->isObjCObjectPointerType())
1959 else if (const MemberPointerType
*PTy
= T
->getAs
<MemberPointerType
>())
1960 EltTy
= PTy
->getPointeeType();
1962 EltTy
= T
->getPointeeType();
1964 // If we have a pointer or reference, the pointee must have an object
1966 if (!EltTy
->isIncompleteOrObjectType()) {
1967 DiagID
= diag::err_typecheck_invalid_restrict_invalid_pointee
;
1970 } else if (!isDependentOrGNUAutoType(T
)) {
1971 // For an __auto_type variable, we may not have seen the initializer yet
1972 // and so have no idea whether the underlying type is a pointer type or
1974 DiagID
= diag::err_typecheck_invalid_restrict_not_pointer
;
1979 Diag(DS
? DS
->getRestrictSpecLoc() : Loc
, DiagID
) << ProblemTy
;
1980 Qs
.removeRestrict();
1984 return Context
.getQualifiedType(T
, Qs
);
1987 QualType
Sema::BuildQualifiedType(QualType T
, SourceLocation Loc
,
1988 unsigned CVRAU
, const DeclSpec
*DS
) {
1992 // Ignore any attempt to form a cv-qualified reference.
1993 if (T
->isReferenceType())
1995 ~(DeclSpec::TQ_const
| DeclSpec::TQ_volatile
| DeclSpec::TQ_atomic
);
1997 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1999 unsigned CVR
= CVRAU
& ~(DeclSpec::TQ_atomic
| DeclSpec::TQ_unaligned
);
2002 // If the same qualifier appears more than once in the same
2003 // specifier-qualifier-list, either directly or via one or more typedefs,
2004 // the behavior is the same as if it appeared only once.
2006 // It's not specified what happens when the _Atomic qualifier is applied to
2007 // a type specified with the _Atomic specifier, but we assume that this
2008 // should be treated as if the _Atomic qualifier appeared multiple times.
2009 if (CVRAU
& DeclSpec::TQ_atomic
&& !T
->isAtomicType()) {
2011 // If other qualifiers appear along with the _Atomic qualifier in a
2012 // specifier-qualifier-list, the resulting type is the so-qualified
2015 // Don't need to worry about array types here, since _Atomic can't be
2016 // applied to such types.
2017 SplitQualType Split
= T
.getSplitUnqualifiedType();
2018 T
= BuildAtomicType(QualType(Split
.Ty
, 0),
2019 DS
? DS
->getAtomicSpecLoc() : Loc
);
2022 Split
.Quals
.addCVRQualifiers(CVR
);
2023 return BuildQualifiedType(T
, Loc
, Split
.Quals
);
2026 Qualifiers Q
= Qualifiers::fromCVRMask(CVR
);
2027 Q
.setUnaligned(CVRAU
& DeclSpec::TQ_unaligned
);
2028 return BuildQualifiedType(T
, Loc
, Q
, DS
);
2031 /// Build a paren type including \p T.
2032 QualType
Sema::BuildParenType(QualType T
) {
2033 return Context
.getParenType(T
);
2036 /// Given that we're building a pointer or reference to the given
2037 static QualType
inferARCLifetimeForPointee(Sema
&S
, QualType type
,
2040 // Bail out if retention is unrequired or already specified.
2041 if (!type
->isObjCLifetimeType() ||
2042 type
.getObjCLifetime() != Qualifiers::OCL_None
)
2045 Qualifiers::ObjCLifetime implicitLifetime
= Qualifiers::OCL_None
;
2047 // If the object type is const-qualified, we can safely use
2048 // __unsafe_unretained. This is safe (because there are no read
2049 // barriers), and it'll be safe to coerce anything but __weak* to
2050 // the resulting type.
2051 if (type
.isConstQualified()) {
2052 implicitLifetime
= Qualifiers::OCL_ExplicitNone
;
2054 // Otherwise, check whether the static type does not require
2055 // retaining. This currently only triggers for Class (possibly
2056 // protocol-qualifed, and arrays thereof).
2057 } else if (type
->isObjCARCImplicitlyUnretainedType()) {
2058 implicitLifetime
= Qualifiers::OCL_ExplicitNone
;
2060 // If we are in an unevaluated context, like sizeof, skip adding a
2062 } else if (S
.isUnevaluatedContext()) {
2065 // If that failed, give an error and recover using __strong. __strong
2066 // is the option most likely to prevent spurious second-order diagnostics,
2067 // like when binding a reference to a field.
2069 // These types can show up in private ivars in system headers, so
2070 // we need this to not be an error in those cases. Instead we
2072 if (S
.DelayedDiagnostics
.shouldDelayDiagnostics()) {
2073 S
.DelayedDiagnostics
.add(
2074 sema::DelayedDiagnostic::makeForbiddenType(loc
,
2075 diag::err_arc_indirect_no_ownership
, type
, isReference
));
2077 S
.Diag(loc
, diag::err_arc_indirect_no_ownership
) << type
<< isReference
;
2079 implicitLifetime
= Qualifiers::OCL_Strong
;
2081 assert(implicitLifetime
&& "didn't infer any lifetime!");
2084 qs
.addObjCLifetime(implicitLifetime
);
2085 return S
.Context
.getQualifiedType(type
, qs
);
2088 static std::string
getFunctionQualifiersAsString(const FunctionProtoType
*FnTy
){
2089 std::string Quals
= FnTy
->getMethodQuals().getAsString();
2091 switch (FnTy
->getRefQualifier()) {
2112 /// Kinds of declarator that cannot contain a qualified function type.
2114 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2115 /// a function type with a cv-qualifier or a ref-qualifier can only appear
2116 /// at the topmost level of a type.
2118 /// Parens and member pointers are permitted. We don't diagnose array and
2119 /// function declarators, because they don't allow function types at all.
2121 /// The values of this enum are used in diagnostics.
2122 enum QualifiedFunctionKind
{ QFK_BlockPointer
, QFK_Pointer
, QFK_Reference
};
2123 } // end anonymous namespace
2125 /// Check whether the type T is a qualified function type, and if it is,
2126 /// diagnose that it cannot be contained within the given kind of declarator.
2127 static bool checkQualifiedFunction(Sema
&S
, QualType T
, SourceLocation Loc
,
2128 QualifiedFunctionKind QFK
) {
2129 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2130 const FunctionProtoType
*FPT
= T
->getAs
<FunctionProtoType
>();
2132 (FPT
->getMethodQuals().empty() && FPT
->getRefQualifier() == RQ_None
))
2135 S
.Diag(Loc
, diag::err_compound_qualified_function_type
)
2136 << QFK
<< isa
<FunctionType
>(T
.IgnoreParens()) << T
2137 << getFunctionQualifiersAsString(FPT
);
2141 bool Sema::CheckQualifiedFunctionForTypeId(QualType T
, SourceLocation Loc
) {
2142 const FunctionProtoType
*FPT
= T
->getAs
<FunctionProtoType
>();
2144 (FPT
->getMethodQuals().empty() && FPT
->getRefQualifier() == RQ_None
))
2147 Diag(Loc
, diag::err_qualified_function_typeid
)
2148 << T
<< getFunctionQualifiersAsString(FPT
);
2152 // Helper to deduce addr space of a pointee type in OpenCL mode.
2153 static QualType
deduceOpenCLPointeeAddrSpace(Sema
&S
, QualType PointeeType
) {
2154 if (!PointeeType
->isUndeducedAutoType() && !PointeeType
->isDependentType() &&
2155 !PointeeType
->isSamplerT() &&
2156 !PointeeType
.hasAddressSpace())
2157 PointeeType
= S
.getASTContext().getAddrSpaceQualType(
2158 PointeeType
, S
.getASTContext().getDefaultOpenCLPointeeAddrSpace());
2162 /// Build a pointer type.
2164 /// \param T The type to which we'll be building a pointer.
2166 /// \param Loc The location of the entity whose type involves this
2167 /// pointer type or, if there is no such entity, the location of the
2168 /// type that will have pointer type.
2170 /// \param Entity The name of the entity that involves the pointer
2173 /// \returns A suitable pointer type, if there are no
2174 /// errors. Otherwise, returns a NULL type.
2175 QualType
Sema::BuildPointerType(QualType T
,
2176 SourceLocation Loc
, DeclarationName Entity
) {
2177 if (T
->isReferenceType()) {
2178 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2179 Diag(Loc
, diag::err_illegal_decl_pointer_to_reference
)
2180 << getPrintableNameForEntity(Entity
) << T
;
2184 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
2185 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2187 Diag(Loc
, diag::err_opencl_function_pointer
) << /*pointer*/ 0;
2191 if (getLangOpts().HLSL
&& Loc
.isValid()) {
2192 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 0;
2196 if (checkQualifiedFunction(*this, T
, Loc
, QFK_Pointer
))
2199 assert(!T
->isObjCObjectType() && "Should build ObjCObjectPointerType");
2201 // In ARC, it is forbidden to build pointers to unqualified pointers.
2202 if (getLangOpts().ObjCAutoRefCount
)
2203 T
= inferARCLifetimeForPointee(*this, T
, Loc
, /*reference*/ false);
2205 if (getLangOpts().OpenCL
)
2206 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
2208 // In WebAssembly, pointers to reference types and pointers to tables are
2210 if (getASTContext().getTargetInfo().getTriple().isWasm()) {
2211 if (T
.isWebAssemblyReferenceType()) {
2212 Diag(Loc
, diag::err_wasm_reference_pr
) << 0;
2216 // We need to desugar the type here in case T is a ParenType.
2217 if (T
->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
2218 Diag(Loc
, diag::err_wasm_table_pr
) << 0;
2223 // Build the pointer type.
2224 return Context
.getPointerType(T
);
2227 /// Build a reference type.
2229 /// \param T The type to which we'll be building a reference.
2231 /// \param Loc The location of the entity whose type involves this
2232 /// reference type or, if there is no such entity, the location of the
2233 /// type that will have reference type.
2235 /// \param Entity The name of the entity that involves the reference
2238 /// \returns A suitable reference type, if there are no
2239 /// errors. Otherwise, returns a NULL type.
2240 QualType
Sema::BuildReferenceType(QualType T
, bool SpelledAsLValue
,
2242 DeclarationName Entity
) {
2243 assert(Context
.getCanonicalType(T
) != Context
.OverloadTy
&&
2244 "Unresolved overloaded function type");
2246 // C++0x [dcl.ref]p6:
2247 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2248 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2249 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2250 // the type "lvalue reference to T", while an attempt to create the type
2251 // "rvalue reference to cv TR" creates the type TR.
2252 bool LValueRef
= SpelledAsLValue
|| T
->getAs
<LValueReferenceType
>();
2254 // C++ [dcl.ref]p4: There shall be no references to references.
2256 // According to C++ DR 106, references to references are only
2257 // diagnosed when they are written directly (e.g., "int & &"),
2258 // but not when they happen via a typedef:
2260 // typedef int& intref;
2261 // typedef intref& intref2;
2263 // Parser::ParseDeclaratorInternal diagnoses the case where
2264 // references are written directly; here, we handle the
2265 // collapsing of references-to-references as described in C++0x.
2266 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2269 // A declarator that specifies the type "reference to cv void"
2271 if (T
->isVoidType()) {
2272 Diag(Loc
, diag::err_reference_to_void
);
2276 if (getLangOpts().HLSL
&& Loc
.isValid()) {
2277 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 1;
2281 if (checkQualifiedFunction(*this, T
, Loc
, QFK_Reference
))
2284 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
2285 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2287 Diag(Loc
, diag::err_opencl_function_pointer
) << /*reference*/ 1;
2291 // In ARC, it is forbidden to build references to unqualified pointers.
2292 if (getLangOpts().ObjCAutoRefCount
)
2293 T
= inferARCLifetimeForPointee(*this, T
, Loc
, /*reference*/ true);
2295 if (getLangOpts().OpenCL
)
2296 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
2298 // In WebAssembly, references to reference types and tables are illegal.
2299 if (getASTContext().getTargetInfo().getTriple().isWasm() &&
2300 T
.isWebAssemblyReferenceType()) {
2301 Diag(Loc
, diag::err_wasm_reference_pr
) << 1;
2304 if (T
->isWebAssemblyTableType()) {
2305 Diag(Loc
, diag::err_wasm_table_pr
) << 1;
2309 // Handle restrict on references.
2311 return Context
.getLValueReferenceType(T
, SpelledAsLValue
);
2312 return Context
.getRValueReferenceType(T
);
2315 /// Build a Read-only Pipe type.
2317 /// \param T The type to which we'll be building a Pipe.
2319 /// \param Loc We do not use it for now.
2321 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2323 QualType
Sema::BuildReadPipeType(QualType T
, SourceLocation Loc
) {
2324 return Context
.getReadPipeType(T
);
2327 /// Build a Write-only Pipe type.
2329 /// \param T The type to which we'll be building a Pipe.
2331 /// \param Loc We do not use it for now.
2333 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2335 QualType
Sema::BuildWritePipeType(QualType T
, SourceLocation Loc
) {
2336 return Context
.getWritePipeType(T
);
2339 /// Build a bit-precise integer type.
2341 /// \param IsUnsigned Boolean representing the signedness of the type.
2343 /// \param BitWidth Size of this int type in bits, or an expression representing
2346 /// \param Loc Location of the keyword.
2347 QualType
Sema::BuildBitIntType(bool IsUnsigned
, Expr
*BitWidth
,
2348 SourceLocation Loc
) {
2349 if (BitWidth
->isInstantiationDependent())
2350 return Context
.getDependentBitIntType(IsUnsigned
, BitWidth
);
2352 llvm::APSInt
Bits(32);
2354 VerifyIntegerConstantExpression(BitWidth
, &Bits
, /*FIXME*/ AllowFold
);
2356 if (ICE
.isInvalid())
2359 size_t NumBits
= Bits
.getZExtValue();
2360 if (!IsUnsigned
&& NumBits
< 2) {
2361 Diag(Loc
, diag::err_bit_int_bad_size
) << 0;
2365 if (IsUnsigned
&& NumBits
< 1) {
2366 Diag(Loc
, diag::err_bit_int_bad_size
) << 1;
2370 const TargetInfo
&TI
= getASTContext().getTargetInfo();
2371 if (NumBits
> TI
.getMaxBitIntWidth()) {
2372 Diag(Loc
, diag::err_bit_int_max_size
)
2373 << IsUnsigned
<< static_cast<uint64_t>(TI
.getMaxBitIntWidth());
2377 return Context
.getBitIntType(IsUnsigned
, NumBits
);
2380 /// Check whether the specified array bound can be evaluated using the relevant
2381 /// language rules. If so, returns the possibly-converted expression and sets
2382 /// SizeVal to the size. If not, but the expression might be a VLA bound,
2383 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
2385 static ExprResult
checkArraySize(Sema
&S
, Expr
*&ArraySize
,
2386 llvm::APSInt
&SizeVal
, unsigned VLADiag
,
2388 if (S
.getLangOpts().CPlusPlus14
&&
2390 !ArraySize
->getType()->isIntegralOrUnscopedEnumerationType())) {
2391 // C++14 [dcl.array]p1:
2392 // The constant-expression shall be a converted constant expression of
2393 // type std::size_t.
2395 // Don't apply this rule if we might be forming a VLA: in that case, we
2396 // allow non-constant expressions and constant-folding. We only need to use
2397 // the converted constant expression rules (to properly convert the source)
2398 // when the source expression is of class type.
2399 return S
.CheckConvertedConstantExpression(
2400 ArraySize
, S
.Context
.getSizeType(), SizeVal
, Sema::CCEK_ArrayBound
);
2403 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2404 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2405 class VLADiagnoser
: public Sema::VerifyICEDiagnoser
{
2411 VLADiagnoser(unsigned VLADiag
, bool VLAIsError
)
2412 : VLADiag(VLADiag
), VLAIsError(VLAIsError
) {}
2414 Sema::SemaDiagnosticBuilder
diagnoseNotICEType(Sema
&S
, SourceLocation Loc
,
2415 QualType T
) override
{
2416 return S
.Diag(Loc
, diag::err_array_size_non_int
) << T
;
2419 Sema::SemaDiagnosticBuilder
diagnoseNotICE(Sema
&S
,
2420 SourceLocation Loc
) override
{
2421 IsVLA
= !VLAIsError
;
2422 return S
.Diag(Loc
, VLADiag
);
2425 Sema::SemaDiagnosticBuilder
diagnoseFold(Sema
&S
,
2426 SourceLocation Loc
) override
{
2427 return S
.Diag(Loc
, diag::ext_vla_folded_to_constant
);
2429 } Diagnoser(VLADiag
, VLAIsError
);
2432 S
.VerifyIntegerConstantExpression(ArraySize
, &SizeVal
, Diagnoser
);
2433 if (Diagnoser
.IsVLA
)
2434 return ExprResult();
2438 bool Sema::checkArrayElementAlignment(QualType EltTy
, SourceLocation Loc
) {
2439 EltTy
= Context
.getBaseElementType(EltTy
);
2440 if (EltTy
->isIncompleteType() || EltTy
->isDependentType() ||
2441 EltTy
->isUndeducedType())
2444 CharUnits Size
= Context
.getTypeSizeInChars(EltTy
);
2445 CharUnits Alignment
= Context
.getTypeAlignInChars(EltTy
);
2447 if (Size
.isMultipleOf(Alignment
))
2450 Diag(Loc
, diag::err_array_element_alignment
)
2451 << EltTy
<< Size
.getQuantity() << Alignment
.getQuantity();
2455 /// Build an array type.
2457 /// \param T The type of each element in the array.
2459 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2461 /// \param ArraySize Expression describing the size of the array.
2463 /// \param Brackets The range from the opening '[' to the closing ']'.
2465 /// \param Entity The name of the entity that involves the array
2468 /// \returns A suitable array type, if there are no errors. Otherwise,
2469 /// returns a NULL type.
2470 QualType
Sema::BuildArrayType(QualType T
, ArrayType::ArraySizeModifier ASM
,
2471 Expr
*ArraySize
, unsigned Quals
,
2472 SourceRange Brackets
, DeclarationName Entity
) {
2474 SourceLocation Loc
= Brackets
.getBegin();
2475 if (getLangOpts().CPlusPlus
) {
2476 // C++ [dcl.array]p1:
2477 // T is called the array element type; this type shall not be a reference
2478 // type, the (possibly cv-qualified) type void, a function type or an
2479 // abstract class type.
2481 // C++ [dcl.array]p3:
2482 // When several "array of" specifications are adjacent, [...] only the
2483 // first of the constant expressions that specify the bounds of the arrays
2486 // Note: function types are handled in the common path with C.
2487 if (T
->isReferenceType()) {
2488 Diag(Loc
, diag::err_illegal_decl_array_of_references
)
2489 << getPrintableNameForEntity(Entity
) << T
;
2493 if (T
->isVoidType() || T
->isIncompleteArrayType()) {
2494 Diag(Loc
, diag::err_array_incomplete_or_sizeless_type
) << 0 << T
;
2498 if (RequireNonAbstractType(Brackets
.getBegin(), T
,
2499 diag::err_array_of_abstract_type
))
2502 // Mentioning a member pointer type for an array type causes us to lock in
2503 // an inheritance model, even if it's inside an unused typedef.
2504 if (Context
.getTargetInfo().getCXXABI().isMicrosoft())
2505 if (const MemberPointerType
*MPTy
= T
->getAs
<MemberPointerType
>())
2506 if (!MPTy
->getClass()->isDependentType())
2507 (void)isCompleteType(Loc
, T
);
2510 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2511 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2512 if (!T
.isWebAssemblyReferenceType() &&
2513 RequireCompleteSizedType(Loc
, T
,
2514 diag::err_array_incomplete_or_sizeless_type
))
2518 // Multi-dimensional arrays of WebAssembly references are not allowed.
2519 if (Context
.getTargetInfo().getTriple().isWasm() && T
->isArrayType()) {
2520 const auto *ATy
= dyn_cast
<ArrayType
>(T
);
2521 if (ATy
&& ATy
->getElementType().isWebAssemblyReferenceType()) {
2522 Diag(Loc
, diag::err_wasm_reftype_multidimensional_array
);
2527 if (T
->isSizelessType() && !T
.isWebAssemblyReferenceType()) {
2528 Diag(Loc
, diag::err_array_incomplete_or_sizeless_type
) << 1 << T
;
2532 if (T
->isFunctionType()) {
2533 Diag(Loc
, diag::err_illegal_decl_array_of_functions
)
2534 << getPrintableNameForEntity(Entity
) << T
;
2538 if (const RecordType
*EltTy
= T
->getAs
<RecordType
>()) {
2539 // If the element type is a struct or union that contains a variadic
2540 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2541 if (EltTy
->getDecl()->hasFlexibleArrayMember())
2542 Diag(Loc
, diag::ext_flexible_array_in_array
) << T
;
2543 } else if (T
->isObjCObjectType()) {
2544 Diag(Loc
, diag::err_objc_array_of_interfaces
) << T
;
2548 if (!checkArrayElementAlignment(T
, Loc
))
2551 // Do placeholder conversions on the array size expression.
2552 if (ArraySize
&& ArraySize
->hasPlaceholderType()) {
2553 ExprResult Result
= CheckPlaceholderExpr(ArraySize
);
2554 if (Result
.isInvalid()) return QualType();
2555 ArraySize
= Result
.get();
2558 // Do lvalue-to-rvalue conversions on the array size expression.
2559 if (ArraySize
&& !ArraySize
->isPRValue()) {
2560 ExprResult Result
= DefaultLvalueConversion(ArraySize
);
2561 if (Result
.isInvalid())
2564 ArraySize
= Result
.get();
2567 // C99 6.7.5.2p1: The size expression shall have integer type.
2568 // C++11 allows contextual conversions to such types.
2569 if (!getLangOpts().CPlusPlus11
&&
2570 ArraySize
&& !ArraySize
->isTypeDependent() &&
2571 !ArraySize
->getType()->isIntegralOrUnscopedEnumerationType()) {
2572 Diag(ArraySize
->getBeginLoc(), diag::err_array_size_non_int
)
2573 << ArraySize
->getType() << ArraySize
->getSourceRange();
2577 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2580 if (getLangOpts().OpenCL
) {
2581 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2582 VLADiag
= diag::err_opencl_vla
;
2584 } else if (getLangOpts().C99
) {
2585 VLADiag
= diag::warn_vla_used
;
2587 } else if (isSFINAEContext()) {
2588 VLADiag
= diag::err_vla_in_sfinae
;
2590 } else if (getLangOpts().OpenMP
&& isInOpenMPTaskUntiedContext()) {
2591 VLADiag
= diag::err_openmp_vla_in_task_untied
;
2594 VLADiag
= diag::ext_vla
;
2598 llvm::APSInt
ConstVal(Context
.getTypeSize(Context
.getSizeType()));
2600 if (ASM
== ArrayType::Star
) {
2605 T
= Context
.getVariableArrayType(T
, nullptr, ASM
, Quals
, Brackets
);
2607 T
= Context
.getIncompleteArrayType(T
, ASM
, Quals
);
2609 } else if (ArraySize
->isTypeDependent() || ArraySize
->isValueDependent()) {
2610 T
= Context
.getDependentSizedArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2613 checkArraySize(*this, ArraySize
, ConstVal
, VLADiag
, VLAIsError
);
2617 if (!R
.isUsable()) {
2618 // C99: an array with a non-ICE size is a VLA. We accept any expression
2619 // that we can fold to a non-zero positive value as a non-VLA as an
2621 T
= Context
.getVariableArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2622 } else if (!T
->isDependentType() && !T
->isIncompleteType() &&
2623 !T
->isConstantSizeType()) {
2624 // C99: an array with an element type that has a non-constant-size is a
2626 // FIXME: Add a note to explain why this isn't a VLA.
2630 T
= Context
.getVariableArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2632 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2633 // have a value greater than zero.
2634 // In C++, this follows from narrowing conversions being disallowed.
2635 if (ConstVal
.isSigned() && ConstVal
.isNegative()) {
2637 Diag(ArraySize
->getBeginLoc(), diag::err_decl_negative_array_size
)
2638 << getPrintableNameForEntity(Entity
)
2639 << ArraySize
->getSourceRange();
2641 Diag(ArraySize
->getBeginLoc(),
2642 diag::err_typecheck_negative_array_size
)
2643 << ArraySize
->getSourceRange();
2646 if (ConstVal
== 0 && !T
.isWebAssemblyReferenceType()) {
2647 // GCC accepts zero sized static arrays. We allow them when
2648 // we're not in a SFINAE context.
2649 Diag(ArraySize
->getBeginLoc(),
2650 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2651 : diag::ext_typecheck_zero_array_size
)
2652 << 0 << ArraySize
->getSourceRange();
2655 // Is the array too large?
2656 unsigned ActiveSizeBits
=
2657 (!T
->isDependentType() && !T
->isVariablyModifiedType() &&
2658 !T
->isIncompleteType() && !T
->isUndeducedType())
2659 ? ConstantArrayType::getNumAddressingBits(Context
, T
, ConstVal
)
2660 : ConstVal
.getActiveBits();
2661 if (ActiveSizeBits
> ConstantArrayType::getMaxSizeBits(Context
)) {
2662 Diag(ArraySize
->getBeginLoc(), diag::err_array_too_large
)
2663 << toString(ConstVal
, 10) << ArraySize
->getSourceRange();
2667 T
= Context
.getConstantArrayType(T
, ConstVal
, ArraySize
, ASM
, Quals
);
2671 if (T
->isVariableArrayType() && !Context
.getTargetInfo().isVLASupported()) {
2672 // CUDA device code and some other targets don't support VLAs.
2673 bool IsCUDADevice
= (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
);
2675 IsCUDADevice
? diag::err_cuda_vla
: diag::err_vla_unsupported
)
2676 << (IsCUDADevice
? CurrentCUDATarget() : 0);
2679 // If this is not C99, diagnose array size modifiers on non-VLAs.
2680 if (!getLangOpts().C99
&& !T
->isVariableArrayType() &&
2681 (ASM
!= ArrayType::Normal
|| Quals
!= 0)) {
2682 Diag(Loc
, getLangOpts().CPlusPlus
? diag::err_c99_array_usage_cxx
2683 : diag::ext_c99_array_usage
)
2687 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2688 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2689 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2690 if (getLangOpts().OpenCL
) {
2691 const QualType ArrType
= Context
.getBaseElementType(T
);
2692 if (ArrType
->isBlockPointerType() || ArrType
->isPipeType() ||
2693 ArrType
->isSamplerT() || ArrType
->isImageType()) {
2694 Diag(Loc
, diag::err_opencl_invalid_type_array
) << ArrType
;
2702 QualType
Sema::BuildVectorType(QualType CurType
, Expr
*SizeExpr
,
2703 SourceLocation AttrLoc
) {
2704 // The base type must be integer (not Boolean or enumeration) or float, and
2705 // can't already be a vector.
2706 if ((!CurType
->isDependentType() &&
2707 (!CurType
->isBuiltinType() || CurType
->isBooleanType() ||
2708 (!CurType
->isIntegerType() && !CurType
->isRealFloatingType())) &&
2709 !CurType
->isBitIntType()) ||
2710 CurType
->isArrayType()) {
2711 Diag(AttrLoc
, diag::err_attribute_invalid_vector_type
) << CurType
;
2714 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2715 if (const auto *BIT
= CurType
->getAs
<BitIntType
>()) {
2716 unsigned NumBits
= BIT
->getNumBits();
2717 if (!llvm::isPowerOf2_32(NumBits
) || NumBits
< 8) {
2718 Diag(AttrLoc
, diag::err_attribute_invalid_bitint_vector_type
)
2724 if (SizeExpr
->isTypeDependent() || SizeExpr
->isValueDependent())
2725 return Context
.getDependentVectorType(CurType
, SizeExpr
, AttrLoc
,
2726 VectorType::GenericVector
);
2728 std::optional
<llvm::APSInt
> VecSize
=
2729 SizeExpr
->getIntegerConstantExpr(Context
);
2731 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2732 << "vector_size" << AANT_ArgumentIntegerConstant
2733 << SizeExpr
->getSourceRange();
2737 if (CurType
->isDependentType())
2738 return Context
.getDependentVectorType(CurType
, SizeExpr
, AttrLoc
,
2739 VectorType::GenericVector
);
2741 // vecSize is specified in bytes - convert to bits.
2742 if (!VecSize
->isIntN(61)) {
2743 // Bit size will overflow uint64.
2744 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2745 << SizeExpr
->getSourceRange() << "vector";
2748 uint64_t VectorSizeBits
= VecSize
->getZExtValue() * 8;
2749 unsigned TypeSize
= static_cast<unsigned>(Context
.getTypeSize(CurType
));
2751 if (VectorSizeBits
== 0) {
2752 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2753 << SizeExpr
->getSourceRange() << "vector";
2757 if (!TypeSize
|| VectorSizeBits
% TypeSize
) {
2758 Diag(AttrLoc
, diag::err_attribute_invalid_size
)
2759 << SizeExpr
->getSourceRange();
2763 if (VectorSizeBits
/ TypeSize
> std::numeric_limits
<uint32_t>::max()) {
2764 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2765 << SizeExpr
->getSourceRange() << "vector";
2769 return Context
.getVectorType(CurType
, VectorSizeBits
/ TypeSize
,
2770 VectorType::GenericVector
);
2773 /// Build an ext-vector type.
2775 /// Run the required checks for the extended vector type.
2776 QualType
Sema::BuildExtVectorType(QualType T
, Expr
*ArraySize
,
2777 SourceLocation AttrLoc
) {
2778 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2779 // in conjunction with complex types (pointers, arrays, functions, etc.).
2781 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2782 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2783 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2784 // of bool aren't allowed.
2786 // We explictly allow bool elements in ext_vector_type for C/C++.
2787 bool IsNoBoolVecLang
= getLangOpts().OpenCL
|| getLangOpts().OpenCLCPlusPlus
;
2788 if ((!T
->isDependentType() && !T
->isIntegerType() &&
2789 !T
->isRealFloatingType()) ||
2790 (IsNoBoolVecLang
&& T
->isBooleanType())) {
2791 Diag(AttrLoc
, diag::err_attribute_invalid_vector_type
) << T
;
2795 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2796 if (T
->isBitIntType()) {
2797 unsigned NumBits
= T
->castAs
<BitIntType
>()->getNumBits();
2798 if (!llvm::isPowerOf2_32(NumBits
) || NumBits
< 8) {
2799 Diag(AttrLoc
, diag::err_attribute_invalid_bitint_vector_type
)
2805 if (!ArraySize
->isTypeDependent() && !ArraySize
->isValueDependent()) {
2806 std::optional
<llvm::APSInt
> vecSize
=
2807 ArraySize
->getIntegerConstantExpr(Context
);
2809 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2810 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2811 << ArraySize
->getSourceRange();
2815 if (!vecSize
->isIntN(32)) {
2816 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2817 << ArraySize
->getSourceRange() << "vector";
2820 // Unlike gcc's vector_size attribute, the size is specified as the
2821 // number of elements, not the number of bytes.
2822 unsigned vectorSize
= static_cast<unsigned>(vecSize
->getZExtValue());
2824 if (vectorSize
== 0) {
2825 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2826 << ArraySize
->getSourceRange() << "vector";
2830 return Context
.getExtVectorType(T
, vectorSize
);
2833 return Context
.getDependentSizedExtVectorType(T
, ArraySize
, AttrLoc
);
2836 QualType
Sema::BuildMatrixType(QualType ElementTy
, Expr
*NumRows
, Expr
*NumCols
,
2837 SourceLocation AttrLoc
) {
2838 assert(Context
.getLangOpts().MatrixTypes
&&
2839 "Should never build a matrix type when it is disabled");
2841 // Check element type, if it is not dependent.
2842 if (!ElementTy
->isDependentType() &&
2843 !MatrixType::isValidElementType(ElementTy
)) {
2844 Diag(AttrLoc
, diag::err_attribute_invalid_matrix_type
) << ElementTy
;
2848 if (NumRows
->isTypeDependent() || NumCols
->isTypeDependent() ||
2849 NumRows
->isValueDependent() || NumCols
->isValueDependent())
2850 return Context
.getDependentSizedMatrixType(ElementTy
, NumRows
, NumCols
,
2853 std::optional
<llvm::APSInt
> ValueRows
=
2854 NumRows
->getIntegerConstantExpr(Context
);
2855 std::optional
<llvm::APSInt
> ValueColumns
=
2856 NumCols
->getIntegerConstantExpr(Context
);
2858 auto const RowRange
= NumRows
->getSourceRange();
2859 auto const ColRange
= NumCols
->getSourceRange();
2861 // Both are row and column expressions are invalid.
2862 if (!ValueRows
&& !ValueColumns
) {
2863 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2864 << "matrix_type" << AANT_ArgumentIntegerConstant
<< RowRange
2869 // Only the row expression is invalid.
2871 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2872 << "matrix_type" << AANT_ArgumentIntegerConstant
<< RowRange
;
2876 // Only the column expression is invalid.
2877 if (!ValueColumns
) {
2878 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2879 << "matrix_type" << AANT_ArgumentIntegerConstant
<< ColRange
;
2883 // Check the matrix dimensions.
2884 unsigned MatrixRows
= static_cast<unsigned>(ValueRows
->getZExtValue());
2885 unsigned MatrixColumns
= static_cast<unsigned>(ValueColumns
->getZExtValue());
2886 if (MatrixRows
== 0 && MatrixColumns
== 0) {
2887 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2888 << "matrix" << RowRange
<< ColRange
;
2891 if (MatrixRows
== 0) {
2892 Diag(AttrLoc
, diag::err_attribute_zero_size
) << "matrix" << RowRange
;
2895 if (MatrixColumns
== 0) {
2896 Diag(AttrLoc
, diag::err_attribute_zero_size
) << "matrix" << ColRange
;
2899 if (!ConstantMatrixType::isDimensionValid(MatrixRows
)) {
2900 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2901 << RowRange
<< "matrix row";
2904 if (!ConstantMatrixType::isDimensionValid(MatrixColumns
)) {
2905 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2906 << ColRange
<< "matrix column";
2909 return Context
.getConstantMatrixType(ElementTy
, MatrixRows
, MatrixColumns
);
2912 bool Sema::CheckFunctionReturnType(QualType T
, SourceLocation Loc
) {
2913 if (T
->isArrayType() || T
->isFunctionType()) {
2914 Diag(Loc
, diag::err_func_returning_array_function
)
2915 << T
->isFunctionType() << T
;
2919 // Functions cannot return half FP.
2920 if (T
->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns
&&
2921 !Context
.getTargetInfo().allowHalfArgsAndReturns()) {
2922 Diag(Loc
, diag::err_parameters_retval_cannot_have_fp16_type
) << 1 <<
2923 FixItHint::CreateInsertion(Loc
, "*");
2927 // Methods cannot return interface types. All ObjC objects are
2928 // passed by reference.
2929 if (T
->isObjCObjectType()) {
2930 Diag(Loc
, diag::err_object_cannot_be_passed_returned_by_value
)
2931 << 0 << T
<< FixItHint::CreateInsertion(Loc
, "*");
2935 if (T
.hasNonTrivialToPrimitiveDestructCUnion() ||
2936 T
.hasNonTrivialToPrimitiveCopyCUnion())
2937 checkNonTrivialCUnion(T
, Loc
, NTCUC_FunctionReturn
,
2938 NTCUK_Destruct
|NTCUK_Copy
);
2940 // C++2a [dcl.fct]p12:
2941 // A volatile-qualified return type is deprecated
2942 if (T
.isVolatileQualified() && getLangOpts().CPlusPlus20
)
2943 Diag(Loc
, diag::warn_deprecated_volatile_return
) << T
;
2945 if (T
.getAddressSpace() != LangAS::Default
&& getLangOpts().HLSL
)
2950 /// Check the extended parameter information. Most of the necessary
2951 /// checking should occur when applying the parameter attribute; the
2952 /// only other checks required are positional restrictions.
2953 static void checkExtParameterInfos(Sema
&S
, ArrayRef
<QualType
> paramTypes
,
2954 const FunctionProtoType::ExtProtoInfo
&EPI
,
2955 llvm::function_ref
<SourceLocation(unsigned)> getParamLoc
) {
2956 assert(EPI
.ExtParameterInfos
&& "shouldn't get here without param infos");
2958 bool emittedError
= false;
2959 auto actualCC
= EPI
.ExtInfo
.getCC();
2960 enum class RequiredCC
{ OnlySwift
, SwiftOrSwiftAsync
};
2961 auto checkCompatible
= [&](unsigned paramIndex
, RequiredCC required
) {
2963 (required
== RequiredCC::OnlySwift
)
2964 ? (actualCC
== CC_Swift
)
2965 : (actualCC
== CC_Swift
|| actualCC
== CC_SwiftAsync
);
2966 if (isCompatible
|| emittedError
)
2968 S
.Diag(getParamLoc(paramIndex
), diag::err_swift_param_attr_not_swiftcall
)
2969 << getParameterABISpelling(EPI
.ExtParameterInfos
[paramIndex
].getABI())
2970 << (required
== RequiredCC::OnlySwift
);
2971 emittedError
= true;
2973 for (size_t paramIndex
= 0, numParams
= paramTypes
.size();
2974 paramIndex
!= numParams
; ++paramIndex
) {
2975 switch (EPI
.ExtParameterInfos
[paramIndex
].getABI()) {
2976 // Nothing interesting to check for orindary-ABI parameters.
2977 case ParameterABI::Ordinary
:
2980 // swift_indirect_result parameters must be a prefix of the function
2982 case ParameterABI::SwiftIndirectResult
:
2983 checkCompatible(paramIndex
, RequiredCC::SwiftOrSwiftAsync
);
2984 if (paramIndex
!= 0 &&
2985 EPI
.ExtParameterInfos
[paramIndex
- 1].getABI()
2986 != ParameterABI::SwiftIndirectResult
) {
2987 S
.Diag(getParamLoc(paramIndex
),
2988 diag::err_swift_indirect_result_not_first
);
2992 case ParameterABI::SwiftContext
:
2993 checkCompatible(paramIndex
, RequiredCC::SwiftOrSwiftAsync
);
2996 // SwiftAsyncContext is not limited to swiftasynccall functions.
2997 case ParameterABI::SwiftAsyncContext
:
3000 // swift_error parameters must be preceded by a swift_context parameter.
3001 case ParameterABI::SwiftErrorResult
:
3002 checkCompatible(paramIndex
, RequiredCC::OnlySwift
);
3003 if (paramIndex
== 0 ||
3004 EPI
.ExtParameterInfos
[paramIndex
- 1].getABI() !=
3005 ParameterABI::SwiftContext
) {
3006 S
.Diag(getParamLoc(paramIndex
),
3007 diag::err_swift_error_result_not_after_swift_context
);
3011 llvm_unreachable("bad ABI kind");
3015 QualType
Sema::BuildFunctionType(QualType T
,
3016 MutableArrayRef
<QualType
> ParamTypes
,
3017 SourceLocation Loc
, DeclarationName Entity
,
3018 const FunctionProtoType::ExtProtoInfo
&EPI
) {
3019 bool Invalid
= false;
3021 Invalid
|= CheckFunctionReturnType(T
, Loc
);
3023 for (unsigned Idx
= 0, Cnt
= ParamTypes
.size(); Idx
< Cnt
; ++Idx
) {
3024 // FIXME: Loc is too inprecise here, should use proper locations for args.
3025 QualType ParamType
= Context
.getAdjustedParameterType(ParamTypes
[Idx
]);
3026 if (ParamType
->isVoidType()) {
3027 Diag(Loc
, diag::err_param_with_void_type
);
3029 } else if (ParamType
->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns
&&
3030 !Context
.getTargetInfo().allowHalfArgsAndReturns()) {
3031 // Disallow half FP arguments.
3032 Diag(Loc
, diag::err_parameters_retval_cannot_have_fp16_type
) << 0 <<
3033 FixItHint::CreateInsertion(Loc
, "*");
3035 } else if (ParamType
->isWebAssemblyTableType()) {
3036 Diag(Loc
, diag::err_wasm_table_as_function_parameter
);
3040 // C++2a [dcl.fct]p4:
3041 // A parameter with volatile-qualified type is deprecated
3042 if (ParamType
.isVolatileQualified() && getLangOpts().CPlusPlus20
)
3043 Diag(Loc
, diag::warn_deprecated_volatile_param
) << ParamType
;
3045 ParamTypes
[Idx
] = ParamType
;
3048 if (EPI
.ExtParameterInfos
) {
3049 checkExtParameterInfos(*this, ParamTypes
, EPI
,
3050 [=](unsigned i
) { return Loc
; });
3053 if (EPI
.ExtInfo
.getProducesResult()) {
3054 // This is just a warning, so we can't fail to build if we see it.
3055 checkNSReturnsRetainedReturnType(Loc
, T
);
3061 return Context
.getFunctionType(T
, ParamTypes
, EPI
);
3064 /// Build a member pointer type \c T Class::*.
3066 /// \param T the type to which the member pointer refers.
3067 /// \param Class the class type into which the member pointer points.
3068 /// \param Loc the location where this type begins
3069 /// \param Entity the name of the entity that will have this member pointer type
3071 /// \returns a member pointer type, if successful, or a NULL type if there was
3073 QualType
Sema::BuildMemberPointerType(QualType T
, QualType Class
,
3075 DeclarationName Entity
) {
3076 // Verify that we're not building a pointer to pointer to function with
3077 // exception specification.
3078 if (CheckDistantExceptionSpec(T
)) {
3079 Diag(Loc
, diag::err_distant_exception_spec
);
3083 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
3084 // with reference type, or "cv void."
3085 if (T
->isReferenceType()) {
3086 Diag(Loc
, diag::err_illegal_decl_mempointer_to_reference
)
3087 << getPrintableNameForEntity(Entity
) << T
;
3091 if (T
->isVoidType()) {
3092 Diag(Loc
, diag::err_illegal_decl_mempointer_to_void
)
3093 << getPrintableNameForEntity(Entity
);
3097 if (!Class
->isDependentType() && !Class
->isRecordType()) {
3098 Diag(Loc
, diag::err_mempointer_in_nonclass_type
) << Class
;
3102 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
3103 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
3105 Diag(Loc
, diag::err_opencl_function_pointer
) << /*pointer*/ 0;
3109 if (getLangOpts().HLSL
&& Loc
.isValid()) {
3110 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 0;
3114 // Adjust the default free function calling convention to the default method
3115 // calling convention.
3117 (Entity
.getNameKind() == DeclarationName::CXXConstructorName
) ||
3118 (Entity
.getNameKind() == DeclarationName::CXXDestructorName
);
3119 if (T
->isFunctionType())
3120 adjustMemberFunctionCC(T
, /*IsStatic=*/false, IsCtorOrDtor
, Loc
);
3122 return Context
.getMemberPointerType(T
, Class
.getTypePtr());
3125 /// Build a block pointer type.
3127 /// \param T The type to which we'll be building a block pointer.
3129 /// \param Loc The source location, used for diagnostics.
3131 /// \param Entity The name of the entity that involves the block pointer
3134 /// \returns A suitable block pointer type, if there are no
3135 /// errors. Otherwise, returns a NULL type.
3136 QualType
Sema::BuildBlockPointerType(QualType T
,
3138 DeclarationName Entity
) {
3139 if (!T
->isFunctionType()) {
3140 Diag(Loc
, diag::err_nonfunction_block_type
);
3144 if (checkQualifiedFunction(*this, T
, Loc
, QFK_BlockPointer
))
3147 if (getLangOpts().OpenCL
)
3148 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
3150 return Context
.getBlockPointerType(T
);
3153 QualType
Sema::GetTypeFromParser(ParsedType Ty
, TypeSourceInfo
**TInfo
) {
3154 QualType QT
= Ty
.get();
3156 if (TInfo
) *TInfo
= nullptr;
3160 TypeSourceInfo
*DI
= nullptr;
3161 if (const LocInfoType
*LIT
= dyn_cast
<LocInfoType
>(QT
)) {
3162 QT
= LIT
->getType();
3163 DI
= LIT
->getTypeSourceInfo();
3166 if (TInfo
) *TInfo
= DI
;
3170 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState
&state
,
3171 Qualifiers::ObjCLifetime ownership
,
3172 unsigned chunkIndex
);
3174 /// Given that this is the declaration of a parameter under ARC,
3175 /// attempt to infer attributes and such for pointer-to-whatever
3177 static void inferARCWriteback(TypeProcessingState
&state
,
3178 QualType
&declSpecType
) {
3179 Sema
&S
= state
.getSema();
3180 Declarator
&declarator
= state
.getDeclarator();
3182 // TODO: should we care about decl qualifiers?
3184 // Check whether the declarator has the expected form. We walk
3185 // from the inside out in order to make the block logic work.
3186 unsigned outermostPointerIndex
= 0;
3187 bool isBlockPointer
= false;
3188 unsigned numPointers
= 0;
3189 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
3190 unsigned chunkIndex
= i
;
3191 DeclaratorChunk
&chunk
= declarator
.getTypeObject(chunkIndex
);
3192 switch (chunk
.Kind
) {
3193 case DeclaratorChunk::Paren
:
3197 case DeclaratorChunk::Reference
:
3198 case DeclaratorChunk::Pointer
:
3199 // Count the number of pointers. Treat references
3200 // interchangeably as pointers; if they're mis-ordered, normal
3201 // type building will discover that.
3202 outermostPointerIndex
= chunkIndex
;
3206 case DeclaratorChunk::BlockPointer
:
3207 // If we have a pointer to block pointer, that's an acceptable
3208 // indirect reference; anything else is not an application of
3210 if (numPointers
!= 1) return;
3212 outermostPointerIndex
= chunkIndex
;
3213 isBlockPointer
= true;
3215 // We don't care about pointer structure in return values here.
3218 case DeclaratorChunk::Array
: // suppress if written (id[])?
3219 case DeclaratorChunk::Function
:
3220 case DeclaratorChunk::MemberPointer
:
3221 case DeclaratorChunk::Pipe
:
3227 // If we have *one* pointer, then we want to throw the qualifier on
3228 // the declaration-specifiers, which means that it needs to be a
3229 // retainable object type.
3230 if (numPointers
== 1) {
3231 // If it's not a retainable object type, the rule doesn't apply.
3232 if (!declSpecType
->isObjCRetainableType()) return;
3234 // If it already has lifetime, don't do anything.
3235 if (declSpecType
.getObjCLifetime()) return;
3237 // Otherwise, modify the type in-place.
3240 if (declSpecType
->isObjCARCImplicitlyUnretainedType())
3241 qs
.addObjCLifetime(Qualifiers::OCL_ExplicitNone
);
3243 qs
.addObjCLifetime(Qualifiers::OCL_Autoreleasing
);
3244 declSpecType
= S
.Context
.getQualifiedType(declSpecType
, qs
);
3246 // If we have *two* pointers, then we want to throw the qualifier on
3247 // the outermost pointer.
3248 } else if (numPointers
== 2) {
3249 // If we don't have a block pointer, we need to check whether the
3250 // declaration-specifiers gave us something that will turn into a
3251 // retainable object pointer after we slap the first pointer on it.
3252 if (!isBlockPointer
&& !declSpecType
->isObjCObjectType())
3255 // Look for an explicit lifetime attribute there.
3256 DeclaratorChunk
&chunk
= declarator
.getTypeObject(outermostPointerIndex
);
3257 if (chunk
.Kind
!= DeclaratorChunk::Pointer
&&
3258 chunk
.Kind
!= DeclaratorChunk::BlockPointer
)
3260 for (const ParsedAttr
&AL
: chunk
.getAttrs())
3261 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
)
3264 transferARCOwnershipToDeclaratorChunk(state
, Qualifiers::OCL_Autoreleasing
,
3265 outermostPointerIndex
);
3267 // Any other number of pointers/references does not trigger the rule.
3270 // TODO: mark whether we did this inference?
3273 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID
, unsigned Quals
,
3274 SourceLocation FallbackLoc
,
3275 SourceLocation ConstQualLoc
,
3276 SourceLocation VolatileQualLoc
,
3277 SourceLocation RestrictQualLoc
,
3278 SourceLocation AtomicQualLoc
,
3279 SourceLocation UnalignedQualLoc
) {
3287 } const QualKinds
[5] = {
3288 { "const", DeclSpec::TQ_const
, ConstQualLoc
},
3289 { "volatile", DeclSpec::TQ_volatile
, VolatileQualLoc
},
3290 { "restrict", DeclSpec::TQ_restrict
, RestrictQualLoc
},
3291 { "__unaligned", DeclSpec::TQ_unaligned
, UnalignedQualLoc
},
3292 { "_Atomic", DeclSpec::TQ_atomic
, AtomicQualLoc
}
3295 SmallString
<32> QualStr
;
3296 unsigned NumQuals
= 0;
3298 FixItHint FixIts
[5];
3300 // Build a string naming the redundant qualifiers.
3301 for (auto &E
: QualKinds
) {
3302 if (Quals
& E
.Mask
) {
3303 if (!QualStr
.empty()) QualStr
+= ' ';
3306 // If we have a location for the qualifier, offer a fixit.
3307 SourceLocation QualLoc
= E
.Loc
;
3308 if (QualLoc
.isValid()) {
3309 FixIts
[NumQuals
] = FixItHint::CreateRemoval(QualLoc
);
3310 if (Loc
.isInvalid() ||
3311 getSourceManager().isBeforeInTranslationUnit(QualLoc
, Loc
))
3319 Diag(Loc
.isInvalid() ? FallbackLoc
: Loc
, DiagID
)
3320 << QualStr
<< NumQuals
<< FixIts
[0] << FixIts
[1] << FixIts
[2] << FixIts
[3];
3323 // Diagnose pointless type qualifiers on the return type of a function.
3324 static void diagnoseRedundantReturnTypeQualifiers(Sema
&S
, QualType RetTy
,
3326 unsigned FunctionChunkIndex
) {
3327 const DeclaratorChunk::FunctionTypeInfo
&FTI
=
3328 D
.getTypeObject(FunctionChunkIndex
).Fun
;
3329 if (FTI
.hasTrailingReturnType()) {
3330 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3331 RetTy
.getLocalCVRQualifiers(),
3332 FTI
.getTrailingReturnTypeLoc());
3336 for (unsigned OuterChunkIndex
= FunctionChunkIndex
+ 1,
3337 End
= D
.getNumTypeObjects();
3338 OuterChunkIndex
!= End
; ++OuterChunkIndex
) {
3339 DeclaratorChunk
&OuterChunk
= D
.getTypeObject(OuterChunkIndex
);
3340 switch (OuterChunk
.Kind
) {
3341 case DeclaratorChunk::Paren
:
3344 case DeclaratorChunk::Pointer
: {
3345 DeclaratorChunk::PointerTypeInfo
&PTI
= OuterChunk
.Ptr
;
3346 S
.diagnoseIgnoredQualifiers(
3347 diag::warn_qual_return_type
,
3351 PTI
.VolatileQualLoc
,
3352 PTI
.RestrictQualLoc
,
3354 PTI
.UnalignedQualLoc
);
3358 case DeclaratorChunk::Function
:
3359 case DeclaratorChunk::BlockPointer
:
3360 case DeclaratorChunk::Reference
:
3361 case DeclaratorChunk::Array
:
3362 case DeclaratorChunk::MemberPointer
:
3363 case DeclaratorChunk::Pipe
:
3364 // FIXME: We can't currently provide an accurate source location and a
3365 // fix-it hint for these.
3366 unsigned AtomicQual
= RetTy
->isAtomicType() ? DeclSpec::TQ_atomic
: 0;
3367 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3368 RetTy
.getCVRQualifiers() | AtomicQual
,
3369 D
.getIdentifierLoc());
3373 llvm_unreachable("unknown declarator chunk kind");
3376 // If the qualifiers come from a conversion function type, don't diagnose
3377 // them -- they're not necessarily redundant, since such a conversion
3378 // operator can be explicitly called as "x.operator const int()".
3379 if (D
.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId
)
3382 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3383 // which are present there.
3384 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3385 D
.getDeclSpec().getTypeQualifiers(),
3386 D
.getIdentifierLoc(),
3387 D
.getDeclSpec().getConstSpecLoc(),
3388 D
.getDeclSpec().getVolatileSpecLoc(),
3389 D
.getDeclSpec().getRestrictSpecLoc(),
3390 D
.getDeclSpec().getAtomicSpecLoc(),
3391 D
.getDeclSpec().getUnalignedSpecLoc());
3394 static std::pair
<QualType
, TypeSourceInfo
*>
3395 InventTemplateParameter(TypeProcessingState
&state
, QualType T
,
3396 TypeSourceInfo
*TrailingTSI
, AutoType
*Auto
,
3397 InventedTemplateParameterInfo
&Info
) {
3398 Sema
&S
= state
.getSema();
3399 Declarator
&D
= state
.getDeclarator();
3401 const unsigned TemplateParameterDepth
= Info
.AutoTemplateParameterDepth
;
3402 const unsigned AutoParameterPosition
= Info
.TemplateParams
.size();
3403 const bool IsParameterPack
= D
.hasEllipsis();
3405 // If auto is mentioned in a lambda parameter or abbreviated function
3406 // template context, convert it to a template parameter type.
3408 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3409 // template parameter type. Template parameters are temporarily added
3410 // to the TU until the associated TemplateDecl is created.
3411 TemplateTypeParmDecl
*InventedTemplateParam
=
3412 TemplateTypeParmDecl::Create(
3413 S
.Context
, S
.Context
.getTranslationUnitDecl(),
3414 /*KeyLoc=*/D
.getDeclSpec().getTypeSpecTypeLoc(),
3415 /*NameLoc=*/D
.getIdentifierLoc(),
3416 TemplateParameterDepth
, AutoParameterPosition
,
3417 S
.InventAbbreviatedTemplateParameterTypeName(
3418 D
.getIdentifier(), AutoParameterPosition
), false,
3419 IsParameterPack
, /*HasTypeConstraint=*/Auto
->isConstrained());
3420 InventedTemplateParam
->setImplicit();
3421 Info
.TemplateParams
.push_back(InventedTemplateParam
);
3423 // Attach type constraints to the new parameter.
3424 if (Auto
->isConstrained()) {
3426 // The 'auto' appears in a trailing return type we've already built;
3427 // extract its type constraints to attach to the template parameter.
3428 AutoTypeLoc AutoLoc
= TrailingTSI
->getTypeLoc().getContainedAutoTypeLoc();
3429 TemplateArgumentListInfo
TAL(AutoLoc
.getLAngleLoc(), AutoLoc
.getRAngleLoc());
3430 bool Invalid
= false;
3431 for (unsigned Idx
= 0; Idx
< AutoLoc
.getNumArgs(); ++Idx
) {
3432 if (D
.getEllipsisLoc().isInvalid() && !Invalid
&&
3433 S
.DiagnoseUnexpandedParameterPack(AutoLoc
.getArgLoc(Idx
),
3434 Sema::UPPC_TypeConstraint
))
3436 TAL
.addArgument(AutoLoc
.getArgLoc(Idx
));
3440 S
.AttachTypeConstraint(
3441 AutoLoc
.getNestedNameSpecifierLoc(), AutoLoc
.getConceptNameInfo(),
3442 AutoLoc
.getNamedConcept(),
3443 AutoLoc
.hasExplicitTemplateArgs() ? &TAL
: nullptr,
3444 InventedTemplateParam
, D
.getEllipsisLoc());
3447 // The 'auto' appears in the decl-specifiers; we've not finished forming
3448 // TypeSourceInfo for it yet.
3449 TemplateIdAnnotation
*TemplateId
= D
.getDeclSpec().getRepAsTemplateId();
3450 TemplateArgumentListInfo TemplateArgsInfo
;
3451 bool Invalid
= false;
3452 if (TemplateId
->LAngleLoc
.isValid()) {
3453 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
3454 TemplateId
->NumArgs
);
3455 S
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
3457 if (D
.getEllipsisLoc().isInvalid()) {
3458 for (TemplateArgumentLoc Arg
: TemplateArgsInfo
.arguments()) {
3459 if (S
.DiagnoseUnexpandedParameterPack(Arg
,
3460 Sema::UPPC_TypeConstraint
)) {
3468 S
.AttachTypeConstraint(
3469 D
.getDeclSpec().getTypeSpecScope().getWithLocInContext(S
.Context
),
3470 DeclarationNameInfo(DeclarationName(TemplateId
->Name
),
3471 TemplateId
->TemplateNameLoc
),
3472 cast
<ConceptDecl
>(TemplateId
->Template
.get().getAsTemplateDecl()),
3473 TemplateId
->LAngleLoc
.isValid() ? &TemplateArgsInfo
: nullptr,
3474 InventedTemplateParam
, D
.getEllipsisLoc());
3479 // Replace the 'auto' in the function parameter with this invented
3480 // template type parameter.
3481 // FIXME: Retain some type sugar to indicate that this was written
3483 QualType
Replacement(InventedTemplateParam
->getTypeForDecl(), 0);
3484 QualType NewT
= state
.ReplaceAutoType(T
, Replacement
);
3485 TypeSourceInfo
*NewTSI
=
3486 TrailingTSI
? S
.ReplaceAutoTypeSourceInfo(TrailingTSI
, Replacement
)
3488 return {NewT
, NewTSI
};
3491 static TypeSourceInfo
*
3492 GetTypeSourceInfoForDeclarator(TypeProcessingState
&State
,
3493 QualType T
, TypeSourceInfo
*ReturnTypeInfo
);
3495 static QualType
GetDeclSpecTypeForDeclarator(TypeProcessingState
&state
,
3496 TypeSourceInfo
*&ReturnTypeInfo
) {
3497 Sema
&SemaRef
= state
.getSema();
3498 Declarator
&D
= state
.getDeclarator();
3500 ReturnTypeInfo
= nullptr;
3502 // The TagDecl owned by the DeclSpec.
3503 TagDecl
*OwnedTagDecl
= nullptr;
3505 switch (D
.getName().getKind()) {
3506 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
3507 case UnqualifiedIdKind::IK_OperatorFunctionId
:
3508 case UnqualifiedIdKind::IK_Identifier
:
3509 case UnqualifiedIdKind::IK_LiteralOperatorId
:
3510 case UnqualifiedIdKind::IK_TemplateId
:
3511 T
= ConvertDeclSpecToType(state
);
3513 if (!D
.isInvalidType() && D
.getDeclSpec().isTypeSpecOwned()) {
3514 OwnedTagDecl
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
3515 // Owned declaration is embedded in declarator.
3516 OwnedTagDecl
->setEmbeddedInDeclarator(true);
3520 case UnqualifiedIdKind::IK_ConstructorName
:
3521 case UnqualifiedIdKind::IK_ConstructorTemplateId
:
3522 case UnqualifiedIdKind::IK_DestructorName
:
3523 // Constructors and destructors don't have return types. Use
3525 T
= SemaRef
.Context
.VoidTy
;
3526 processTypeAttrs(state
, T
, TAL_DeclSpec
,
3527 D
.getMutableDeclSpec().getAttributes());
3530 case UnqualifiedIdKind::IK_DeductionGuideName
:
3531 // Deduction guides have a trailing return type and no type in their
3532 // decl-specifier sequence. Use a placeholder return type for now.
3533 T
= SemaRef
.Context
.DependentTy
;
3536 case UnqualifiedIdKind::IK_ConversionFunctionId
:
3537 // The result type of a conversion function is the type that it
3539 T
= SemaRef
.GetTypeFromParser(D
.getName().ConversionFunctionId
,
3544 // Note: We don't need to distribute declaration attributes (i.e.
3545 // D.getDeclarationAttributes()) because those are always C++11 attributes,
3546 // and those don't get distributed.
3547 distributeTypeAttrsFromDeclarator(state
, T
);
3549 // Find the deduced type in this type. Look in the trailing return type if we
3550 // have one, otherwise in the DeclSpec type.
3551 // FIXME: The standard wording doesn't currently describe this.
3552 DeducedType
*Deduced
= T
->getContainedDeducedType();
3553 bool DeducedIsTrailingReturnType
= false;
3554 if (Deduced
&& isa
<AutoType
>(Deduced
) && D
.hasTrailingReturnType()) {
3555 QualType T
= SemaRef
.GetTypeFromParser(D
.getTrailingReturnType());
3556 Deduced
= T
.isNull() ? nullptr : T
->getContainedDeducedType();
3557 DeducedIsTrailingReturnType
= true;
3560 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3562 AutoType
*Auto
= dyn_cast
<AutoType
>(Deduced
);
3565 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3566 // class template argument deduction)?
3567 bool IsCXXAutoType
=
3568 (Auto
&& Auto
->getKeyword() != AutoTypeKeyword::GNUAutoType
);
3569 bool IsDeducedReturnType
= false;
3571 switch (D
.getContext()) {
3572 case DeclaratorContext::LambdaExpr
:
3573 // Declared return type of a lambda-declarator is implicit and is always
3576 case DeclaratorContext::ObjCParameter
:
3577 case DeclaratorContext::ObjCResult
:
3580 case DeclaratorContext::RequiresExpr
:
3583 case DeclaratorContext::Prototype
:
3584 case DeclaratorContext::LambdaExprParameter
: {
3585 InventedTemplateParameterInfo
*Info
= nullptr;
3586 if (D
.getContext() == DeclaratorContext::Prototype
) {
3587 // With concepts we allow 'auto' in function parameters.
3588 if (!SemaRef
.getLangOpts().CPlusPlus20
|| !Auto
||
3589 Auto
->getKeyword() != AutoTypeKeyword::Auto
) {
3592 } else if (!SemaRef
.getCurScope()->isFunctionDeclarationScope()) {
3597 Info
= &SemaRef
.InventedParameterInfos
.back();
3599 // In C++14, generic lambdas allow 'auto' in their parameters.
3600 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !Auto
||
3601 Auto
->getKeyword() != AutoTypeKeyword::Auto
) {
3605 Info
= SemaRef
.getCurLambda();
3606 assert(Info
&& "No LambdaScopeInfo on the stack!");
3609 // We'll deal with inventing template parameters for 'auto' in trailing
3610 // return types when we pick up the trailing return type when processing
3611 // the function chunk.
3612 if (!DeducedIsTrailingReturnType
)
3613 T
= InventTemplateParameter(state
, T
, nullptr, Auto
, *Info
).first
;
3616 case DeclaratorContext::Member
: {
3617 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static
||
3618 D
.isFunctionDeclarator())
3620 bool Cxx
= SemaRef
.getLangOpts().CPlusPlus
;
3621 if (isa
<ObjCContainerDecl
>(SemaRef
.CurContext
)) {
3622 Error
= 6; // Interface member.
3624 switch (cast
<TagDecl
>(SemaRef
.CurContext
)->getTagKind()) {
3625 case TTK_Enum
: llvm_unreachable("unhandled tag kind");
3626 case TTK_Struct
: Error
= Cxx
? 1 : 2; /* Struct member */ break;
3627 case TTK_Union
: Error
= Cxx
? 3 : 4; /* Union member */ break;
3628 case TTK_Class
: Error
= 5; /* Class member */ break;
3629 case TTK_Interface
: Error
= 6; /* Interface member */ break;
3632 if (D
.getDeclSpec().isFriendSpecified())
3633 Error
= 20; // Friend type
3636 case DeclaratorContext::CXXCatch
:
3637 case DeclaratorContext::ObjCCatch
:
3638 Error
= 7; // Exception declaration
3640 case DeclaratorContext::TemplateParam
:
3641 if (isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3642 !SemaRef
.getLangOpts().CPlusPlus20
)
3643 Error
= 19; // Template parameter (until C++20)
3644 else if (!SemaRef
.getLangOpts().CPlusPlus17
)
3645 Error
= 8; // Template parameter (until C++17)
3647 case DeclaratorContext::BlockLiteral
:
3648 Error
= 9; // Block literal
3650 case DeclaratorContext::TemplateArg
:
3651 // Within a template argument list, a deduced template specialization
3652 // type will be reinterpreted as a template template argument.
3653 if (isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3654 !D
.getNumTypeObjects() &&
3655 D
.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier
)
3658 case DeclaratorContext::TemplateTypeArg
:
3659 Error
= 10; // Template type argument
3661 case DeclaratorContext::AliasDecl
:
3662 case DeclaratorContext::AliasTemplate
:
3663 Error
= 12; // Type alias
3665 case DeclaratorContext::TrailingReturn
:
3666 case DeclaratorContext::TrailingReturnVar
:
3667 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !IsCXXAutoType
)
3668 Error
= 13; // Function return type
3669 IsDeducedReturnType
= true;
3671 case DeclaratorContext::ConversionId
:
3672 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !IsCXXAutoType
)
3673 Error
= 14; // conversion-type-id
3674 IsDeducedReturnType
= true;
3676 case DeclaratorContext::FunctionalCast
:
3677 if (isa
<DeducedTemplateSpecializationType
>(Deduced
))
3679 if (SemaRef
.getLangOpts().CPlusPlus23
&& IsCXXAutoType
&&
3680 !Auto
->isDecltypeAuto())
3683 case DeclaratorContext::TypeName
:
3684 case DeclaratorContext::Association
:
3685 Error
= 15; // Generic
3687 case DeclaratorContext::File
:
3688 case DeclaratorContext::Block
:
3689 case DeclaratorContext::ForInit
:
3690 case DeclaratorContext::SelectionInit
:
3691 case DeclaratorContext::Condition
:
3692 // FIXME: P0091R3 (erroneously) does not permit class template argument
3693 // deduction in conditions, for-init-statements, and other declarations
3694 // that are not simple-declarations.
3696 case DeclaratorContext::CXXNew
:
3697 // FIXME: P0091R3 does not permit class template argument deduction here,
3698 // but we follow GCC and allow it anyway.
3699 if (!IsCXXAutoType
&& !isa
<DeducedTemplateSpecializationType
>(Deduced
))
3700 Error
= 17; // 'new' type
3702 case DeclaratorContext::KNRTypeList
:
3703 Error
= 18; // K&R function parameter
3707 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
)
3710 // In Objective-C it is an error to use 'auto' on a function declarator
3711 // (and everywhere for '__auto_type').
3712 if (D
.isFunctionDeclarator() &&
3713 (!SemaRef
.getLangOpts().CPlusPlus11
|| !IsCXXAutoType
))
3716 SourceRange AutoRange
= D
.getDeclSpec().getTypeSpecTypeLoc();
3717 if (D
.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId
)
3718 AutoRange
= D
.getName().getSourceRange();
3723 switch (Auto
->getKeyword()) {
3724 case AutoTypeKeyword::Auto
: Kind
= 0; break;
3725 case AutoTypeKeyword::DecltypeAuto
: Kind
= 1; break;
3726 case AutoTypeKeyword::GNUAutoType
: Kind
= 2; break;
3729 assert(isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3730 "unknown auto type");
3734 auto *DTST
= dyn_cast
<DeducedTemplateSpecializationType
>(Deduced
);
3735 TemplateName TN
= DTST
? DTST
->getTemplateName() : TemplateName();
3737 SemaRef
.Diag(AutoRange
.getBegin(), diag::err_auto_not_allowed
)
3738 << Kind
<< Error
<< (int)SemaRef
.getTemplateNameKindForDiagnostics(TN
)
3739 << QualType(Deduced
, 0) << AutoRange
;
3740 if (auto *TD
= TN
.getAsTemplateDecl())
3741 SemaRef
.Diag(TD
->getLocation(), diag::note_template_decl_here
);
3743 T
= SemaRef
.Context
.IntTy
;
3744 D
.setInvalidType(true);
3745 } else if (Auto
&& D
.getContext() != DeclaratorContext::LambdaExpr
) {
3746 // If there was a trailing return type, we already got
3747 // warn_cxx98_compat_trailing_return_type in the parser.
3748 SemaRef
.Diag(AutoRange
.getBegin(),
3749 D
.getContext() == DeclaratorContext::LambdaExprParameter
3750 ? diag::warn_cxx11_compat_generic_lambda
3751 : IsDeducedReturnType
3752 ? diag::warn_cxx11_compat_deduced_return_type
3753 : diag::warn_cxx98_compat_auto_type_specifier
)
3758 if (SemaRef
.getLangOpts().CPlusPlus
&&
3759 OwnedTagDecl
&& OwnedTagDecl
->isCompleteDefinition()) {
3760 // Check the contexts where C++ forbids the declaration of a new class
3761 // or enumeration in a type-specifier-seq.
3762 unsigned DiagID
= 0;
3763 switch (D
.getContext()) {
3764 case DeclaratorContext::TrailingReturn
:
3765 case DeclaratorContext::TrailingReturnVar
:
3766 // Class and enumeration definitions are syntactically not allowed in
3767 // trailing return types.
3768 llvm_unreachable("parser should not have allowed this");
3770 case DeclaratorContext::File
:
3771 case DeclaratorContext::Member
:
3772 case DeclaratorContext::Block
:
3773 case DeclaratorContext::ForInit
:
3774 case DeclaratorContext::SelectionInit
:
3775 case DeclaratorContext::BlockLiteral
:
3776 case DeclaratorContext::LambdaExpr
:
3777 // C++11 [dcl.type]p3:
3778 // A type-specifier-seq shall not define a class or enumeration unless
3779 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3780 // the declaration of a template-declaration.
3781 case DeclaratorContext::AliasDecl
:
3783 case DeclaratorContext::AliasTemplate
:
3784 DiagID
= diag::err_type_defined_in_alias_template
;
3786 case DeclaratorContext::TypeName
:
3787 case DeclaratorContext::FunctionalCast
:
3788 case DeclaratorContext::ConversionId
:
3789 case DeclaratorContext::TemplateParam
:
3790 case DeclaratorContext::CXXNew
:
3791 case DeclaratorContext::CXXCatch
:
3792 case DeclaratorContext::ObjCCatch
:
3793 case DeclaratorContext::TemplateArg
:
3794 case DeclaratorContext::TemplateTypeArg
:
3795 case DeclaratorContext::Association
:
3796 DiagID
= diag::err_type_defined_in_type_specifier
;
3798 case DeclaratorContext::Prototype
:
3799 case DeclaratorContext::LambdaExprParameter
:
3800 case DeclaratorContext::ObjCParameter
:
3801 case DeclaratorContext::ObjCResult
:
3802 case DeclaratorContext::KNRTypeList
:
3803 case DeclaratorContext::RequiresExpr
:
3805 // Types shall not be defined in return or parameter types.
3806 DiagID
= diag::err_type_defined_in_param_type
;
3808 case DeclaratorContext::Condition
:
3810 // The type-specifier-seq shall not contain typedef and shall not declare
3811 // a new class or enumeration.
3812 DiagID
= diag::err_type_defined_in_condition
;
3817 SemaRef
.Diag(OwnedTagDecl
->getLocation(), DiagID
)
3818 << SemaRef
.Context
.getTypeDeclType(OwnedTagDecl
);
3819 D
.setInvalidType(true);
3823 assert(!T
.isNull() && "This function should not return a null type");
3827 /// Produce an appropriate diagnostic for an ambiguity between a function
3828 /// declarator and a C++ direct-initializer.
3829 static void warnAboutAmbiguousFunction(Sema
&S
, Declarator
&D
,
3830 DeclaratorChunk
&DeclType
, QualType RT
) {
3831 const DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
3832 assert(FTI
.isAmbiguous
&& "no direct-initializer / function ambiguity");
3834 // If the return type is void there is no ambiguity.
3835 if (RT
->isVoidType())
3838 // An initializer for a non-class type can have at most one argument.
3839 if (!RT
->isRecordType() && FTI
.NumParams
> 1)
3842 // An initializer for a reference must have exactly one argument.
3843 if (RT
->isReferenceType() && FTI
.NumParams
!= 1)
3846 // Only warn if this declarator is declaring a function at block scope, and
3847 // doesn't have a storage class (such as 'extern') specified.
3848 if (!D
.isFunctionDeclarator() ||
3849 D
.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration
||
3850 !S
.CurContext
->isFunctionOrMethod() ||
3851 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified
)
3854 // Inside a condition, a direct initializer is not permitted. We allow one to
3855 // be parsed in order to give better diagnostics in condition parsing.
3856 if (D
.getContext() == DeclaratorContext::Condition
)
3859 SourceRange
ParenRange(DeclType
.Loc
, DeclType
.EndLoc
);
3861 S
.Diag(DeclType
.Loc
,
3862 FTI
.NumParams
? diag::warn_parens_disambiguated_as_function_declaration
3863 : diag::warn_empty_parens_are_function_decl
)
3866 // If the declaration looks like:
3869 // and name lookup finds a function named 'f', then the ',' was
3870 // probably intended to be a ';'.
3871 if (!D
.isFirstDeclarator() && D
.getIdentifier()) {
3872 FullSourceLoc
Comma(D
.getCommaLoc(), S
.SourceMgr
);
3873 FullSourceLoc
Name(D
.getIdentifierLoc(), S
.SourceMgr
);
3874 if (Comma
.getFileID() != Name
.getFileID() ||
3875 Comma
.getSpellingLineNumber() != Name
.getSpellingLineNumber()) {
3876 LookupResult
Result(S
, D
.getIdentifier(), SourceLocation(),
3877 Sema::LookupOrdinaryName
);
3878 if (S
.LookupName(Result
, S
.getCurScope()))
3879 S
.Diag(D
.getCommaLoc(), diag::note_empty_parens_function_call
)
3880 << FixItHint::CreateReplacement(D
.getCommaLoc(), ";")
3881 << D
.getIdentifier();
3882 Result
.suppressDiagnostics();
3886 if (FTI
.NumParams
> 0) {
3887 // For a declaration with parameters, eg. "T var(T());", suggest adding
3888 // parens around the first parameter to turn the declaration into a
3889 // variable declaration.
3890 SourceRange Range
= FTI
.Params
[0].Param
->getSourceRange();
3891 SourceLocation B
= Range
.getBegin();
3892 SourceLocation E
= S
.getLocForEndOfToken(Range
.getEnd());
3893 // FIXME: Maybe we should suggest adding braces instead of parens
3894 // in C++11 for classes that don't have an initializer_list constructor.
3895 S
.Diag(B
, diag::note_additional_parens_for_variable_declaration
)
3896 << FixItHint::CreateInsertion(B
, "(")
3897 << FixItHint::CreateInsertion(E
, ")");
3899 // For a declaration without parameters, eg. "T var();", suggest replacing
3900 // the parens with an initializer to turn the declaration into a variable
3902 const CXXRecordDecl
*RD
= RT
->getAsCXXRecordDecl();
3904 // Empty parens mean value-initialization, and no parens mean
3905 // default initialization. These are equivalent if the default
3906 // constructor is user-provided or if zero-initialization is a
3908 if (RD
&& RD
->hasDefinition() &&
3909 (RD
->isEmpty() || RD
->hasUserProvidedDefaultConstructor()))
3910 S
.Diag(DeclType
.Loc
, diag::note_empty_parens_default_ctor
)
3911 << FixItHint::CreateRemoval(ParenRange
);
3914 S
.getFixItZeroInitializerForType(RT
, ParenRange
.getBegin());
3915 if (Init
.empty() && S
.LangOpts
.CPlusPlus11
)
3918 S
.Diag(DeclType
.Loc
, diag::note_empty_parens_zero_initialize
)
3919 << FixItHint::CreateReplacement(ParenRange
, Init
);
3924 /// Produce an appropriate diagnostic for a declarator with top-level
3926 static void warnAboutRedundantParens(Sema
&S
, Declarator
&D
, QualType T
) {
3927 DeclaratorChunk
&Paren
= D
.getTypeObject(D
.getNumTypeObjects() - 1);
3928 assert(Paren
.Kind
== DeclaratorChunk::Paren
&&
3929 "do not have redundant top-level parentheses");
3931 // This is a syntactic check; we're not interested in cases that arise
3932 // during template instantiation.
3933 if (S
.inTemplateInstantiation())
3936 // Check whether this could be intended to be a construction of a temporary
3937 // object in C++ via a function-style cast.
3938 bool CouldBeTemporaryObject
=
3939 S
.getLangOpts().CPlusPlus
&& D
.isExpressionContext() &&
3940 !D
.isInvalidType() && D
.getIdentifier() &&
3941 D
.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier
&&
3942 (T
->isRecordType() || T
->isDependentType()) &&
3943 D
.getDeclSpec().getTypeQualifiers() == 0 && D
.isFirstDeclarator();
3945 bool StartsWithDeclaratorId
= true;
3946 for (auto &C
: D
.type_objects()) {
3948 case DeclaratorChunk::Paren
:
3952 case DeclaratorChunk::Pointer
:
3953 StartsWithDeclaratorId
= false;
3956 case DeclaratorChunk::Array
:
3958 CouldBeTemporaryObject
= false;
3961 case DeclaratorChunk::Reference
:
3962 // FIXME: Suppress the warning here if there is no initializer; we're
3963 // going to give an error anyway.
3964 // We assume that something like 'T (&x) = y;' is highly likely to not
3965 // be intended to be a temporary object.
3966 CouldBeTemporaryObject
= false;
3967 StartsWithDeclaratorId
= false;
3970 case DeclaratorChunk::Function
:
3971 // In a new-type-id, function chunks require parentheses.
3972 if (D
.getContext() == DeclaratorContext::CXXNew
)
3974 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3975 // redundant-parens warning, but we don't know whether the function
3976 // chunk was syntactically valid as an expression here.
3977 CouldBeTemporaryObject
= false;
3980 case DeclaratorChunk::BlockPointer
:
3981 case DeclaratorChunk::MemberPointer
:
3982 case DeclaratorChunk::Pipe
:
3983 // These cannot appear in expressions.
3984 CouldBeTemporaryObject
= false;
3985 StartsWithDeclaratorId
= false;
3990 // FIXME: If there is an initializer, assume that this is not intended to be
3991 // a construction of a temporary object.
3993 // Check whether the name has already been declared; if not, this is not a
3994 // function-style cast.
3995 if (CouldBeTemporaryObject
) {
3996 LookupResult
Result(S
, D
.getIdentifier(), SourceLocation(),
3997 Sema::LookupOrdinaryName
);
3998 if (!S
.LookupName(Result
, S
.getCurScope()))
3999 CouldBeTemporaryObject
= false;
4000 Result
.suppressDiagnostics();
4003 SourceRange
ParenRange(Paren
.Loc
, Paren
.EndLoc
);
4005 if (!CouldBeTemporaryObject
) {
4006 // If we have A (::B), the parentheses affect the meaning of the program.
4007 // Suppress the warning in that case. Don't bother looking at the DeclSpec
4008 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
4009 // formally unambiguous.
4010 if (StartsWithDeclaratorId
&& D
.getCXXScopeSpec().isValid()) {
4011 for (NestedNameSpecifier
*NNS
= D
.getCXXScopeSpec().getScopeRep(); NNS
;
4012 NNS
= NNS
->getPrefix()) {
4013 if (NNS
->getKind() == NestedNameSpecifier::Global
)
4018 S
.Diag(Paren
.Loc
, diag::warn_redundant_parens_around_declarator
)
4019 << ParenRange
<< FixItHint::CreateRemoval(Paren
.Loc
)
4020 << FixItHint::CreateRemoval(Paren
.EndLoc
);
4024 S
.Diag(Paren
.Loc
, diag::warn_parens_disambiguated_as_variable_declaration
)
4025 << ParenRange
<< D
.getIdentifier();
4026 auto *RD
= T
->getAsCXXRecordDecl();
4027 if (!RD
|| !RD
->hasDefinition() || RD
->hasNonTrivialDestructor())
4028 S
.Diag(Paren
.Loc
, diag::note_raii_guard_add_name
)
4029 << FixItHint::CreateInsertion(Paren
.Loc
, " varname") << T
4030 << D
.getIdentifier();
4031 // FIXME: A cast to void is probably a better suggestion in cases where it's
4032 // valid (when there is no initializer and we're not in a condition).
4033 S
.Diag(D
.getBeginLoc(), diag::note_function_style_cast_add_parentheses
)
4034 << FixItHint::CreateInsertion(D
.getBeginLoc(), "(")
4035 << FixItHint::CreateInsertion(S
.getLocForEndOfToken(D
.getEndLoc()), ")");
4036 S
.Diag(Paren
.Loc
, diag::note_remove_parens_for_variable_declaration
)
4037 << FixItHint::CreateRemoval(Paren
.Loc
)
4038 << FixItHint::CreateRemoval(Paren
.EndLoc
);
4041 /// Helper for figuring out the default CC for a function declarator type. If
4042 /// this is the outermost chunk, then we can determine the CC from the
4043 /// declarator context. If not, then this could be either a member function
4044 /// type or normal function type.
4045 static CallingConv
getCCForDeclaratorChunk(
4046 Sema
&S
, Declarator
&D
, const ParsedAttributesView
&AttrList
,
4047 const DeclaratorChunk::FunctionTypeInfo
&FTI
, unsigned ChunkIndex
) {
4048 assert(D
.getTypeObject(ChunkIndex
).Kind
== DeclaratorChunk::Function
);
4050 // Check for an explicit CC attribute.
4051 for (const ParsedAttr
&AL
: AttrList
) {
4052 switch (AL
.getKind()) {
4053 CALLING_CONV_ATTRS_CASELIST
: {
4054 // Ignore attributes that don't validate or can't apply to the
4055 // function type. We'll diagnose the failure to apply them in
4056 // handleFunctionTypeAttr.
4058 if (!S
.CheckCallingConvAttr(AL
, CC
) &&
4059 (!FTI
.isVariadic
|| supportsVariadicCall(CC
))) {
4070 bool IsCXXInstanceMethod
= false;
4072 if (S
.getLangOpts().CPlusPlus
) {
4073 // Look inwards through parentheses to see if this chunk will form a
4074 // member pointer type or if we're the declarator. Any type attributes
4075 // between here and there will override the CC we choose here.
4076 unsigned I
= ChunkIndex
;
4077 bool FoundNonParen
= false;
4078 while (I
&& !FoundNonParen
) {
4080 if (D
.getTypeObject(I
).Kind
!= DeclaratorChunk::Paren
)
4081 FoundNonParen
= true;
4084 if (FoundNonParen
) {
4085 // If we're not the declarator, we're a regular function type unless we're
4086 // in a member pointer.
4087 IsCXXInstanceMethod
=
4088 D
.getTypeObject(I
).Kind
== DeclaratorChunk::MemberPointer
;
4089 } else if (D
.getContext() == DeclaratorContext::LambdaExpr
) {
4090 // This can only be a call operator for a lambda, which is an instance
4092 IsCXXInstanceMethod
= true;
4094 // We're the innermost decl chunk, so must be a function declarator.
4095 assert(D
.isFunctionDeclarator());
4097 // If we're inside a record, we're declaring a method, but it could be
4098 // explicitly or implicitly static.
4099 IsCXXInstanceMethod
=
4100 D
.isFirstDeclarationOfMember() &&
4101 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&&
4102 !D
.isStaticMember();
4106 CallingConv CC
= S
.Context
.getDefaultCallingConvention(FTI
.isVariadic
,
4107 IsCXXInstanceMethod
);
4109 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
4110 // and AMDGPU targets, hence it cannot be treated as a calling
4111 // convention attribute. This is the simplest place to infer
4112 // calling convention for OpenCL kernels.
4113 if (S
.getLangOpts().OpenCL
) {
4114 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
4115 if (AL
.getKind() == ParsedAttr::AT_OpenCLKernel
) {
4116 CC
= CC_OpenCLKernel
;
4120 } else if (S
.getLangOpts().CUDA
) {
4121 // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
4122 // sure the kernels will be marked with the right calling convention so that
4123 // they will be visible by the APIs that ingest SPIR-V.
4124 llvm::Triple Triple
= S
.Context
.getTargetInfo().getTriple();
4125 if (Triple
.getArch() == llvm::Triple::spirv32
||
4126 Triple
.getArch() == llvm::Triple::spirv64
) {
4127 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
4128 if (AL
.getKind() == ParsedAttr::AT_CUDAGlobal
) {
4129 CC
= CC_OpenCLKernel
;
4140 /// A simple notion of pointer kinds, which matches up with the various
4141 /// pointer declarators.
4142 enum class SimplePointerKind
{
4148 } // end anonymous namespace
4150 IdentifierInfo
*Sema::getNullabilityKeyword(NullabilityKind nullability
) {
4151 switch (nullability
) {
4152 case NullabilityKind::NonNull
:
4153 if (!Ident__Nonnull
)
4154 Ident__Nonnull
= PP
.getIdentifierInfo("_Nonnull");
4155 return Ident__Nonnull
;
4157 case NullabilityKind::Nullable
:
4158 if (!Ident__Nullable
)
4159 Ident__Nullable
= PP
.getIdentifierInfo("_Nullable");
4160 return Ident__Nullable
;
4162 case NullabilityKind::NullableResult
:
4163 if (!Ident__Nullable_result
)
4164 Ident__Nullable_result
= PP
.getIdentifierInfo("_Nullable_result");
4165 return Ident__Nullable_result
;
4167 case NullabilityKind::Unspecified
:
4168 if (!Ident__Null_unspecified
)
4169 Ident__Null_unspecified
= PP
.getIdentifierInfo("_Null_unspecified");
4170 return Ident__Null_unspecified
;
4172 llvm_unreachable("Unknown nullability kind.");
4175 /// Retrieve the identifier "NSError".
4176 IdentifierInfo
*Sema::getNSErrorIdent() {
4178 Ident_NSError
= PP
.getIdentifierInfo("NSError");
4180 return Ident_NSError
;
4183 /// Check whether there is a nullability attribute of any kind in the given
4185 static bool hasNullabilityAttr(const ParsedAttributesView
&attrs
) {
4186 for (const ParsedAttr
&AL
: attrs
) {
4187 if (AL
.getKind() == ParsedAttr::AT_TypeNonNull
||
4188 AL
.getKind() == ParsedAttr::AT_TypeNullable
||
4189 AL
.getKind() == ParsedAttr::AT_TypeNullableResult
||
4190 AL
.getKind() == ParsedAttr::AT_TypeNullUnspecified
)
4198 /// Describes the kind of a pointer a declarator describes.
4199 enum class PointerDeclaratorKind
{
4202 // Single-level pointer.
4204 // Multi-level pointer (of any pointer kind).
4207 MaybePointerToCFRef
,
4211 NSErrorPointerPointer
,
4214 /// Describes a declarator chunk wrapping a pointer that marks inference as
4216 // These values must be kept in sync with diagnostics.
4217 enum class PointerWrappingDeclaratorKind
{
4218 /// Pointer is top-level.
4220 /// Pointer is an array element.
4222 /// Pointer is the referent type of a C++ reference.
4225 } // end anonymous namespace
4227 /// Classify the given declarator, whose type-specified is \c type, based on
4228 /// what kind of pointer it refers to.
4230 /// This is used to determine the default nullability.
4231 static PointerDeclaratorKind
4232 classifyPointerDeclarator(Sema
&S
, QualType type
, Declarator
&declarator
,
4233 PointerWrappingDeclaratorKind
&wrappingKind
) {
4234 unsigned numNormalPointers
= 0;
4236 // For any dependent type, we consider it a non-pointer.
4237 if (type
->isDependentType())
4238 return PointerDeclaratorKind::NonPointer
;
4240 // Look through the declarator chunks to identify pointers.
4241 for (unsigned i
= 0, n
= declarator
.getNumTypeObjects(); i
!= n
; ++i
) {
4242 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
4243 switch (chunk
.Kind
) {
4244 case DeclaratorChunk::Array
:
4245 if (numNormalPointers
== 0)
4246 wrappingKind
= PointerWrappingDeclaratorKind::Array
;
4249 case DeclaratorChunk::Function
:
4250 case DeclaratorChunk::Pipe
:
4253 case DeclaratorChunk::BlockPointer
:
4254 case DeclaratorChunk::MemberPointer
:
4255 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4256 : PointerDeclaratorKind::SingleLevelPointer
;
4258 case DeclaratorChunk::Paren
:
4261 case DeclaratorChunk::Reference
:
4262 if (numNormalPointers
== 0)
4263 wrappingKind
= PointerWrappingDeclaratorKind::Reference
;
4266 case DeclaratorChunk::Pointer
:
4267 ++numNormalPointers
;
4268 if (numNormalPointers
> 2)
4269 return PointerDeclaratorKind::MultiLevelPointer
;
4274 // Then, dig into the type specifier itself.
4275 unsigned numTypeSpecifierPointers
= 0;
4277 // Decompose normal pointers.
4278 if (auto ptrType
= type
->getAs
<PointerType
>()) {
4279 ++numNormalPointers
;
4281 if (numNormalPointers
> 2)
4282 return PointerDeclaratorKind::MultiLevelPointer
;
4284 type
= ptrType
->getPointeeType();
4285 ++numTypeSpecifierPointers
;
4289 // Decompose block pointers.
4290 if (type
->getAs
<BlockPointerType
>()) {
4291 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4292 : PointerDeclaratorKind::SingleLevelPointer
;
4295 // Decompose member pointers.
4296 if (type
->getAs
<MemberPointerType
>()) {
4297 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4298 : PointerDeclaratorKind::SingleLevelPointer
;
4301 // Look at Objective-C object pointers.
4302 if (auto objcObjectPtr
= type
->getAs
<ObjCObjectPointerType
>()) {
4303 ++numNormalPointers
;
4304 ++numTypeSpecifierPointers
;
4306 // If this is NSError**, report that.
4307 if (auto objcClassDecl
= objcObjectPtr
->getInterfaceDecl()) {
4308 if (objcClassDecl
->getIdentifier() == S
.getNSErrorIdent() &&
4309 numNormalPointers
== 2 && numTypeSpecifierPointers
< 2) {
4310 return PointerDeclaratorKind::NSErrorPointerPointer
;
4317 // Look at Objective-C class types.
4318 if (auto objcClass
= type
->getAs
<ObjCInterfaceType
>()) {
4319 if (objcClass
->getInterface()->getIdentifier() == S
.getNSErrorIdent()) {
4320 if (numNormalPointers
== 2 && numTypeSpecifierPointers
< 2)
4321 return PointerDeclaratorKind::NSErrorPointerPointer
;
4327 // If at this point we haven't seen a pointer, we won't see one.
4328 if (numNormalPointers
== 0)
4329 return PointerDeclaratorKind::NonPointer
;
4331 if (auto recordType
= type
->getAs
<RecordType
>()) {
4332 RecordDecl
*recordDecl
= recordType
->getDecl();
4334 // If this is CFErrorRef*, report it as such.
4335 if (numNormalPointers
== 2 && numTypeSpecifierPointers
< 2 &&
4336 S
.isCFError(recordDecl
)) {
4337 return PointerDeclaratorKind::CFErrorRefPointer
;
4345 switch (numNormalPointers
) {
4347 return PointerDeclaratorKind::NonPointer
;
4350 return PointerDeclaratorKind::SingleLevelPointer
;
4353 return PointerDeclaratorKind::MaybePointerToCFRef
;
4356 return PointerDeclaratorKind::MultiLevelPointer
;
4360 bool Sema::isCFError(RecordDecl
*RD
) {
4361 // If we already know about CFError, test it directly.
4363 return CFError
== RD
;
4365 // Check whether this is CFError, which we identify based on its bridge to
4366 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4367 // declared with "objc_bridge_mutable", so look for either one of the two
4369 if (RD
->getTagKind() == TTK_Struct
) {
4370 IdentifierInfo
*bridgedType
= nullptr;
4371 if (auto bridgeAttr
= RD
->getAttr
<ObjCBridgeAttr
>())
4372 bridgedType
= bridgeAttr
->getBridgedType();
4373 else if (auto bridgeAttr
= RD
->getAttr
<ObjCBridgeMutableAttr
>())
4374 bridgedType
= bridgeAttr
->getBridgedType();
4376 if (bridgedType
== getNSErrorIdent()) {
4385 static FileID
getNullabilityCompletenessCheckFileID(Sema
&S
,
4386 SourceLocation loc
) {
4387 // If we're anywhere in a function, method, or closure context, don't perform
4388 // completeness checks.
4389 for (DeclContext
*ctx
= S
.CurContext
; ctx
; ctx
= ctx
->getParent()) {
4390 if (ctx
->isFunctionOrMethod())
4393 if (ctx
->isFileContext())
4397 // We only care about the expansion location.
4398 loc
= S
.SourceMgr
.getExpansionLoc(loc
);
4399 FileID file
= S
.SourceMgr
.getFileID(loc
);
4400 if (file
.isInvalid())
4403 // Retrieve file information.
4404 bool invalid
= false;
4405 const SrcMgr::SLocEntry
&sloc
= S
.SourceMgr
.getSLocEntry(file
, &invalid
);
4406 if (invalid
|| !sloc
.isFile())
4409 // We don't want to perform completeness checks on the main file or in
4411 const SrcMgr::FileInfo
&fileInfo
= sloc
.getFile();
4412 if (fileInfo
.getIncludeLoc().isInvalid())
4414 if (fileInfo
.getFileCharacteristic() != SrcMgr::C_User
&&
4415 S
.Diags
.getSuppressSystemWarnings()) {
4422 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4423 /// taking into account whitespace before and after.
4424 template <typename DiagBuilderT
>
4425 static void fixItNullability(Sema
&S
, DiagBuilderT
&Diag
,
4426 SourceLocation PointerLoc
,
4427 NullabilityKind Nullability
) {
4428 assert(PointerLoc
.isValid());
4429 if (PointerLoc
.isMacroID())
4432 SourceLocation FixItLoc
= S
.getLocForEndOfToken(PointerLoc
);
4433 if (!FixItLoc
.isValid() || FixItLoc
== PointerLoc
)
4436 const char *NextChar
= S
.SourceMgr
.getCharacterData(FixItLoc
);
4440 SmallString
<32> InsertionTextBuf
{" "};
4441 InsertionTextBuf
+= getNullabilitySpelling(Nullability
);
4442 InsertionTextBuf
+= " ";
4443 StringRef InsertionText
= InsertionTextBuf
.str();
4445 if (isWhitespace(*NextChar
)) {
4446 InsertionText
= InsertionText
.drop_back();
4447 } else if (NextChar
[-1] == '[') {
4448 if (NextChar
[0] == ']')
4449 InsertionText
= InsertionText
.drop_back().drop_front();
4451 InsertionText
= InsertionText
.drop_front();
4452 } else if (!isAsciiIdentifierContinue(NextChar
[0], /*allow dollar*/ true) &&
4453 !isAsciiIdentifierContinue(NextChar
[-1], /*allow dollar*/ true)) {
4454 InsertionText
= InsertionText
.drop_back().drop_front();
4457 Diag
<< FixItHint::CreateInsertion(FixItLoc
, InsertionText
);
4460 static void emitNullabilityConsistencyWarning(Sema
&S
,
4461 SimplePointerKind PointerKind
,
4462 SourceLocation PointerLoc
,
4463 SourceLocation PointerEndLoc
) {
4464 assert(PointerLoc
.isValid());
4466 if (PointerKind
== SimplePointerKind::Array
) {
4467 S
.Diag(PointerLoc
, diag::warn_nullability_missing_array
);
4469 S
.Diag(PointerLoc
, diag::warn_nullability_missing
)
4470 << static_cast<unsigned>(PointerKind
);
4473 auto FixItLoc
= PointerEndLoc
.isValid() ? PointerEndLoc
: PointerLoc
;
4474 if (FixItLoc
.isMacroID())
4477 auto addFixIt
= [&](NullabilityKind Nullability
) {
4478 auto Diag
= S
.Diag(FixItLoc
, diag::note_nullability_fix_it
);
4479 Diag
<< static_cast<unsigned>(Nullability
);
4480 Diag
<< static_cast<unsigned>(PointerKind
);
4481 fixItNullability(S
, Diag
, FixItLoc
, Nullability
);
4483 addFixIt(NullabilityKind::Nullable
);
4484 addFixIt(NullabilityKind::NonNull
);
4487 /// Complains about missing nullability if the file containing \p pointerLoc
4488 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4491 /// If the file has \e not seen other uses of nullability, this particular
4492 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4494 checkNullabilityConsistency(Sema
&S
, SimplePointerKind pointerKind
,
4495 SourceLocation pointerLoc
,
4496 SourceLocation pointerEndLoc
= SourceLocation()) {
4497 // Determine which file we're performing consistency checking for.
4498 FileID file
= getNullabilityCompletenessCheckFileID(S
, pointerLoc
);
4499 if (file
.isInvalid())
4502 // If we haven't seen any type nullability in this file, we won't warn now
4504 FileNullability
&fileNullability
= S
.NullabilityMap
[file
];
4505 if (!fileNullability
.SawTypeNullability
) {
4506 // If this is the first pointer declarator in the file, and the appropriate
4507 // warning is on, record it in case we need to diagnose it retroactively.
4508 diag::kind diagKind
;
4509 if (pointerKind
== SimplePointerKind::Array
)
4510 diagKind
= diag::warn_nullability_missing_array
;
4512 diagKind
= diag::warn_nullability_missing
;
4514 if (fileNullability
.PointerLoc
.isInvalid() &&
4515 !S
.Context
.getDiagnostics().isIgnored(diagKind
, pointerLoc
)) {
4516 fileNullability
.PointerLoc
= pointerLoc
;
4517 fileNullability
.PointerEndLoc
= pointerEndLoc
;
4518 fileNullability
.PointerKind
= static_cast<unsigned>(pointerKind
);
4524 // Complain about missing nullability.
4525 emitNullabilityConsistencyWarning(S
, pointerKind
, pointerLoc
, pointerEndLoc
);
4528 /// Marks that a nullability feature has been used in the file containing
4531 /// If this file already had pointer types in it that were missing nullability,
4532 /// the first such instance is retroactively diagnosed.
4534 /// \sa checkNullabilityConsistency
4535 static void recordNullabilitySeen(Sema
&S
, SourceLocation loc
) {
4536 FileID file
= getNullabilityCompletenessCheckFileID(S
, loc
);
4537 if (file
.isInvalid())
4540 FileNullability
&fileNullability
= S
.NullabilityMap
[file
];
4541 if (fileNullability
.SawTypeNullability
)
4543 fileNullability
.SawTypeNullability
= true;
4545 // If we haven't seen any type nullability before, now we have. Retroactively
4546 // diagnose the first unannotated pointer, if there was one.
4547 if (fileNullability
.PointerLoc
.isInvalid())
4550 auto kind
= static_cast<SimplePointerKind
>(fileNullability
.PointerKind
);
4551 emitNullabilityConsistencyWarning(S
, kind
, fileNullability
.PointerLoc
,
4552 fileNullability
.PointerEndLoc
);
4555 /// Returns true if any of the declarator chunks before \p endIndex include a
4556 /// level of indirection: array, pointer, reference, or pointer-to-member.
4558 /// Because declarator chunks are stored in outer-to-inner order, testing
4559 /// every chunk before \p endIndex is testing all chunks that embed the current
4560 /// chunk as part of their type.
4562 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4563 /// end index, in which case all chunks are tested.
4564 static bool hasOuterPointerLikeChunk(const Declarator
&D
, unsigned endIndex
) {
4565 unsigned i
= endIndex
;
4567 // Walk outwards along the declarator chunks.
4569 const DeclaratorChunk
&DC
= D
.getTypeObject(i
);
4571 case DeclaratorChunk::Paren
:
4573 case DeclaratorChunk::Array
:
4574 case DeclaratorChunk::Pointer
:
4575 case DeclaratorChunk::Reference
:
4576 case DeclaratorChunk::MemberPointer
:
4578 case DeclaratorChunk::Function
:
4579 case DeclaratorChunk::BlockPointer
:
4580 case DeclaratorChunk::Pipe
:
4581 // These are invalid anyway, so just ignore.
4588 static bool IsNoDerefableChunk(const DeclaratorChunk
&Chunk
) {
4589 return (Chunk
.Kind
== DeclaratorChunk::Pointer
||
4590 Chunk
.Kind
== DeclaratorChunk::Array
);
4593 template<typename AttrT
>
4594 static AttrT
*createSimpleAttr(ASTContext
&Ctx
, ParsedAttr
&AL
) {
4595 AL
.setUsedAsTypeAttr();
4596 return ::new (Ctx
) AttrT(Ctx
, AL
);
4599 static Attr
*createNullabilityAttr(ASTContext
&Ctx
, ParsedAttr
&Attr
,
4600 NullabilityKind NK
) {
4602 case NullabilityKind::NonNull
:
4603 return createSimpleAttr
<TypeNonNullAttr
>(Ctx
, Attr
);
4605 case NullabilityKind::Nullable
:
4606 return createSimpleAttr
<TypeNullableAttr
>(Ctx
, Attr
);
4608 case NullabilityKind::NullableResult
:
4609 return createSimpleAttr
<TypeNullableResultAttr
>(Ctx
, Attr
);
4611 case NullabilityKind::Unspecified
:
4612 return createSimpleAttr
<TypeNullUnspecifiedAttr
>(Ctx
, Attr
);
4614 llvm_unreachable("unknown NullabilityKind");
4617 // Diagnose whether this is a case with the multiple addr spaces.
4618 // Returns true if this is an invalid case.
4619 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4620 // by qualifiers for two or more different address spaces."
4621 static bool DiagnoseMultipleAddrSpaceAttributes(Sema
&S
, LangAS ASOld
,
4623 SourceLocation AttrLoc
) {
4624 if (ASOld
!= LangAS::Default
) {
4625 if (ASOld
!= ASNew
) {
4626 S
.Diag(AttrLoc
, diag::err_attribute_address_multiple_qualifiers
);
4629 // Emit a warning if they are identical; it's likely unintended.
4631 diag::warn_attribute_address_multiple_identical_qualifiers
);
4636 static TypeSourceInfo
*GetFullTypeForDeclarator(TypeProcessingState
&state
,
4637 QualType declSpecType
,
4638 TypeSourceInfo
*TInfo
) {
4639 // The TypeSourceInfo that this function returns will not be a null type.
4640 // If there is an error, this function will fill in a dummy type as fallback.
4641 QualType T
= declSpecType
;
4642 Declarator
&D
= state
.getDeclarator();
4643 Sema
&S
= state
.getSema();
4644 ASTContext
&Context
= S
.Context
;
4645 const LangOptions
&LangOpts
= S
.getLangOpts();
4647 // The name we're declaring, if any.
4648 DeclarationName Name
;
4649 if (D
.getIdentifier())
4650 Name
= D
.getIdentifier();
4652 // Does this declaration declare a typedef-name?
4653 bool IsTypedefName
=
4654 D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
||
4655 D
.getContext() == DeclaratorContext::AliasDecl
||
4656 D
.getContext() == DeclaratorContext::AliasTemplate
;
4658 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4659 bool IsQualifiedFunction
= T
->isFunctionProtoType() &&
4660 (!T
->castAs
<FunctionProtoType
>()->getMethodQuals().empty() ||
4661 T
->castAs
<FunctionProtoType
>()->getRefQualifier() != RQ_None
);
4663 // If T is 'decltype(auto)', the only declarators we can have are parens
4664 // and at most one function declarator if this is a function declaration.
4665 // If T is a deduced class template specialization type, we can have no
4666 // declarator chunks at all.
4667 if (auto *DT
= T
->getAs
<DeducedType
>()) {
4668 const AutoType
*AT
= T
->getAs
<AutoType
>();
4669 bool IsClassTemplateDeduction
= isa
<DeducedTemplateSpecializationType
>(DT
);
4670 if ((AT
&& AT
->isDecltypeAuto()) || IsClassTemplateDeduction
) {
4671 for (unsigned I
= 0, E
= D
.getNumTypeObjects(); I
!= E
; ++I
) {
4672 unsigned Index
= E
- I
- 1;
4673 DeclaratorChunk
&DeclChunk
= D
.getTypeObject(Index
);
4674 unsigned DiagId
= IsClassTemplateDeduction
4675 ? diag::err_deduced_class_template_compound_type
4676 : diag::err_decltype_auto_compound_type
;
4677 unsigned DiagKind
= 0;
4678 switch (DeclChunk
.Kind
) {
4679 case DeclaratorChunk::Paren
:
4680 // FIXME: Rejecting this is a little silly.
4681 if (IsClassTemplateDeduction
) {
4686 case DeclaratorChunk::Function
: {
4687 if (IsClassTemplateDeduction
) {
4692 if (D
.isFunctionDeclarationContext() &&
4693 D
.isFunctionDeclarator(FnIndex
) && FnIndex
== Index
)
4695 DiagId
= diag::err_decltype_auto_function_declarator_not_declaration
;
4698 case DeclaratorChunk::Pointer
:
4699 case DeclaratorChunk::BlockPointer
:
4700 case DeclaratorChunk::MemberPointer
:
4703 case DeclaratorChunk::Reference
:
4706 case DeclaratorChunk::Array
:
4709 case DeclaratorChunk::Pipe
:
4713 S
.Diag(DeclChunk
.Loc
, DiagId
) << DiagKind
;
4714 D
.setInvalidType(true);
4720 // Determine whether we should infer _Nonnull on pointer types.
4721 std::optional
<NullabilityKind
> inferNullability
;
4722 bool inferNullabilityCS
= false;
4723 bool inferNullabilityInnerOnly
= false;
4724 bool inferNullabilityInnerOnlyComplete
= false;
4726 // Are we in an assume-nonnull region?
4727 bool inAssumeNonNullRegion
= false;
4728 SourceLocation assumeNonNullLoc
= S
.PP
.getPragmaAssumeNonNullLoc();
4729 if (assumeNonNullLoc
.isValid()) {
4730 inAssumeNonNullRegion
= true;
4731 recordNullabilitySeen(S
, assumeNonNullLoc
);
4734 // Whether to complain about missing nullability specifiers or not.
4738 /// Complain on the inner pointers (but not the outermost
4741 /// Complain about any pointers that don't have nullability
4742 /// specified or inferred.
4744 } complainAboutMissingNullability
= CAMN_No
;
4745 unsigned NumPointersRemaining
= 0;
4746 auto complainAboutInferringWithinChunk
= PointerWrappingDeclaratorKind::None
;
4748 if (IsTypedefName
) {
4749 // For typedefs, we do not infer any nullability (the default),
4750 // and we only complain about missing nullability specifiers on
4752 complainAboutMissingNullability
= CAMN_InnerPointers
;
4754 if (T
->canHaveNullability(/*ResultIfUnknown*/ false) &&
4755 !T
->getNullability()) {
4756 // Note that we allow but don't require nullability on dependent types.
4757 ++NumPointersRemaining
;
4760 for (unsigned i
= 0, n
= D
.getNumTypeObjects(); i
!= n
; ++i
) {
4761 DeclaratorChunk
&chunk
= D
.getTypeObject(i
);
4762 switch (chunk
.Kind
) {
4763 case DeclaratorChunk::Array
:
4764 case DeclaratorChunk::Function
:
4765 case DeclaratorChunk::Pipe
:
4768 case DeclaratorChunk::BlockPointer
:
4769 case DeclaratorChunk::MemberPointer
:
4770 ++NumPointersRemaining
;
4773 case DeclaratorChunk::Paren
:
4774 case DeclaratorChunk::Reference
:
4777 case DeclaratorChunk::Pointer
:
4778 ++NumPointersRemaining
;
4783 bool isFunctionOrMethod
= false;
4784 switch (auto context
= state
.getDeclarator().getContext()) {
4785 case DeclaratorContext::ObjCParameter
:
4786 case DeclaratorContext::ObjCResult
:
4787 case DeclaratorContext::Prototype
:
4788 case DeclaratorContext::TrailingReturn
:
4789 case DeclaratorContext::TrailingReturnVar
:
4790 isFunctionOrMethod
= true;
4793 case DeclaratorContext::Member
:
4794 if (state
.getDeclarator().isObjCIvar() && !isFunctionOrMethod
) {
4795 complainAboutMissingNullability
= CAMN_No
;
4799 // Weak properties are inferred to be nullable.
4800 if (state
.getDeclarator().isObjCWeakProperty()) {
4801 // Weak properties cannot be nonnull, and should not complain about
4802 // missing nullable attributes during completeness checks.
4803 complainAboutMissingNullability
= CAMN_No
;
4804 if (inAssumeNonNullRegion
) {
4805 inferNullability
= NullabilityKind::Nullable
;
4812 case DeclaratorContext::File
:
4813 case DeclaratorContext::KNRTypeList
: {
4814 complainAboutMissingNullability
= CAMN_Yes
;
4816 // Nullability inference depends on the type and declarator.
4817 auto wrappingKind
= PointerWrappingDeclaratorKind::None
;
4818 switch (classifyPointerDeclarator(S
, T
, D
, wrappingKind
)) {
4819 case PointerDeclaratorKind::NonPointer
:
4820 case PointerDeclaratorKind::MultiLevelPointer
:
4821 // Cannot infer nullability.
4824 case PointerDeclaratorKind::SingleLevelPointer
:
4825 // Infer _Nonnull if we are in an assumes-nonnull region.
4826 if (inAssumeNonNullRegion
) {
4827 complainAboutInferringWithinChunk
= wrappingKind
;
4828 inferNullability
= NullabilityKind::NonNull
;
4829 inferNullabilityCS
= (context
== DeclaratorContext::ObjCParameter
||
4830 context
== DeclaratorContext::ObjCResult
);
4834 case PointerDeclaratorKind::CFErrorRefPointer
:
4835 case PointerDeclaratorKind::NSErrorPointerPointer
:
4836 // Within a function or method signature, infer _Nullable at both
4838 if (isFunctionOrMethod
&& inAssumeNonNullRegion
)
4839 inferNullability
= NullabilityKind::Nullable
;
4842 case PointerDeclaratorKind::MaybePointerToCFRef
:
4843 if (isFunctionOrMethod
) {
4844 // On pointer-to-pointer parameters marked cf_returns_retained or
4845 // cf_returns_not_retained, if the outer pointer is explicit then
4846 // infer the inner pointer as _Nullable.
4847 auto hasCFReturnsAttr
=
4848 [](const ParsedAttributesView
&AttrList
) -> bool {
4849 return AttrList
.hasAttribute(ParsedAttr::AT_CFReturnsRetained
) ||
4850 AttrList
.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained
);
4852 if (const auto *InnermostChunk
= D
.getInnermostNonParenChunk()) {
4853 if (hasCFReturnsAttr(D
.getDeclarationAttributes()) ||
4854 hasCFReturnsAttr(D
.getAttributes()) ||
4855 hasCFReturnsAttr(InnermostChunk
->getAttrs()) ||
4856 hasCFReturnsAttr(D
.getDeclSpec().getAttributes())) {
4857 inferNullability
= NullabilityKind::Nullable
;
4858 inferNullabilityInnerOnly
= true;
4867 case DeclaratorContext::ConversionId
:
4868 complainAboutMissingNullability
= CAMN_Yes
;
4871 case DeclaratorContext::AliasDecl
:
4872 case DeclaratorContext::AliasTemplate
:
4873 case DeclaratorContext::Block
:
4874 case DeclaratorContext::BlockLiteral
:
4875 case DeclaratorContext::Condition
:
4876 case DeclaratorContext::CXXCatch
:
4877 case DeclaratorContext::CXXNew
:
4878 case DeclaratorContext::ForInit
:
4879 case DeclaratorContext::SelectionInit
:
4880 case DeclaratorContext::LambdaExpr
:
4881 case DeclaratorContext::LambdaExprParameter
:
4882 case DeclaratorContext::ObjCCatch
:
4883 case DeclaratorContext::TemplateParam
:
4884 case DeclaratorContext::TemplateArg
:
4885 case DeclaratorContext::TemplateTypeArg
:
4886 case DeclaratorContext::TypeName
:
4887 case DeclaratorContext::FunctionalCast
:
4888 case DeclaratorContext::RequiresExpr
:
4889 case DeclaratorContext::Association
:
4890 // Don't infer in these contexts.
4895 // Local function that returns true if its argument looks like a va_list.
4896 auto isVaList
= [&S
](QualType T
) -> bool {
4897 auto *typedefTy
= T
->getAs
<TypedefType
>();
4900 TypedefDecl
*vaListTypedef
= S
.Context
.getBuiltinVaListDecl();
4902 if (typedefTy
->getDecl() == vaListTypedef
)
4904 if (auto *name
= typedefTy
->getDecl()->getIdentifier())
4905 if (name
->isStr("va_list"))
4907 typedefTy
= typedefTy
->desugar()->getAs
<TypedefType
>();
4908 } while (typedefTy
);
4912 // Local function that checks the nullability for a given pointer declarator.
4913 // Returns true if _Nonnull was inferred.
4914 auto inferPointerNullability
=
4915 [&](SimplePointerKind pointerKind
, SourceLocation pointerLoc
,
4916 SourceLocation pointerEndLoc
,
4917 ParsedAttributesView
&attrs
, AttributePool
&Pool
) -> ParsedAttr
* {
4918 // We've seen a pointer.
4919 if (NumPointersRemaining
> 0)
4920 --NumPointersRemaining
;
4922 // If a nullability attribute is present, there's nothing to do.
4923 if (hasNullabilityAttr(attrs
))
4926 // If we're supposed to infer nullability, do so now.
4927 if (inferNullability
&& !inferNullabilityInnerOnlyComplete
) {
4928 ParsedAttr::Form form
=
4930 ? ParsedAttr::Form::ContextSensitiveKeyword()
4931 : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4932 false /*IsRegularKeywordAttribute*/);
4933 ParsedAttr
*nullabilityAttr
= Pool
.create(
4934 S
.getNullabilityKeyword(*inferNullability
), SourceRange(pointerLoc
),
4935 nullptr, SourceLocation(), nullptr, 0, form
);
4937 attrs
.addAtEnd(nullabilityAttr
);
4939 if (inferNullabilityCS
) {
4940 state
.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4941 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability
);
4944 if (pointerLoc
.isValid() &&
4945 complainAboutInferringWithinChunk
!=
4946 PointerWrappingDeclaratorKind::None
) {
4948 S
.Diag(pointerLoc
, diag::warn_nullability_inferred_on_nested_type
);
4949 Diag
<< static_cast<int>(complainAboutInferringWithinChunk
);
4950 fixItNullability(S
, Diag
, pointerLoc
, NullabilityKind::NonNull
);
4953 if (inferNullabilityInnerOnly
)
4954 inferNullabilityInnerOnlyComplete
= true;
4955 return nullabilityAttr
;
4958 // If we're supposed to complain about missing nullability, do so
4959 // now if it's truly missing.
4960 switch (complainAboutMissingNullability
) {
4964 case CAMN_InnerPointers
:
4965 if (NumPointersRemaining
== 0)
4970 checkNullabilityConsistency(S
, pointerKind
, pointerLoc
, pointerEndLoc
);
4975 // If the type itself could have nullability but does not, infer pointer
4976 // nullability and perform consistency checking.
4977 if (S
.CodeSynthesisContexts
.empty()) {
4978 if (T
->canHaveNullability(/*ResultIfUnknown*/ false) &&
4979 !T
->getNullability()) {
4981 // Record that we've seen a pointer, but do nothing else.
4982 if (NumPointersRemaining
> 0)
4983 --NumPointersRemaining
;
4985 SimplePointerKind pointerKind
= SimplePointerKind::Pointer
;
4986 if (T
->isBlockPointerType())
4987 pointerKind
= SimplePointerKind::BlockPointer
;
4988 else if (T
->isMemberPointerType())
4989 pointerKind
= SimplePointerKind::MemberPointer
;
4991 if (auto *attr
= inferPointerNullability(
4992 pointerKind
, D
.getDeclSpec().getTypeSpecTypeLoc(),
4993 D
.getDeclSpec().getEndLoc(),
4994 D
.getMutableDeclSpec().getAttributes(),
4995 D
.getMutableDeclSpec().getAttributePool())) {
4996 T
= state
.getAttributedType(
4997 createNullabilityAttr(Context
, *attr
, *inferNullability
), T
, T
);
5002 if (complainAboutMissingNullability
== CAMN_Yes
&& T
->isArrayType() &&
5003 !T
->getNullability() && !isVaList(T
) && D
.isPrototypeContext() &&
5004 !hasOuterPointerLikeChunk(D
, D
.getNumTypeObjects())) {
5005 checkNullabilityConsistency(S
, SimplePointerKind::Array
,
5006 D
.getDeclSpec().getTypeSpecTypeLoc());
5010 bool ExpectNoDerefChunk
=
5011 state
.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref
);
5013 // Walk the DeclTypeInfo, building the recursive type as we go.
5014 // DeclTypeInfos are ordered from the identifier out, which is
5015 // opposite of what we want :).
5017 // Track if the produced type matches the structure of the declarator.
5018 // This is used later to decide if we can fill `TypeLoc` from
5019 // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
5020 // an error by replacing the type with `int`.
5021 bool AreDeclaratorChunksValid
= true;
5022 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
5023 unsigned chunkIndex
= e
- i
- 1;
5024 state
.setCurrentChunkIndex(chunkIndex
);
5025 DeclaratorChunk
&DeclType
= D
.getTypeObject(chunkIndex
);
5026 IsQualifiedFunction
&= DeclType
.Kind
== DeclaratorChunk::Paren
;
5027 switch (DeclType
.Kind
) {
5028 case DeclaratorChunk::Paren
:
5030 warnAboutRedundantParens(S
, D
, T
);
5031 T
= S
.BuildParenType(T
);
5033 case DeclaratorChunk::BlockPointer
:
5034 // If blocks are disabled, emit an error.
5035 if (!LangOpts
.Blocks
)
5036 S
.Diag(DeclType
.Loc
, diag::err_blocks_disable
) << LangOpts
.OpenCL
;
5038 // Handle pointer nullability.
5039 inferPointerNullability(SimplePointerKind::BlockPointer
, DeclType
.Loc
,
5040 DeclType
.EndLoc
, DeclType
.getAttrs(),
5041 state
.getDeclarator().getAttributePool());
5043 T
= S
.BuildBlockPointerType(T
, D
.getIdentifierLoc(), Name
);
5044 if (DeclType
.Cls
.TypeQuals
|| LangOpts
.OpenCL
) {
5045 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
5046 // qualified with const.
5047 if (LangOpts
.OpenCL
)
5048 DeclType
.Cls
.TypeQuals
|= DeclSpec::TQ_const
;
5049 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Cls
.TypeQuals
);
5052 case DeclaratorChunk::Pointer
:
5053 // Verify that we're not building a pointer to pointer to function with
5054 // exception specification.
5055 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
5056 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
5057 D
.setInvalidType(true);
5058 // Build the type anyway.
5061 // Handle pointer nullability
5062 inferPointerNullability(SimplePointerKind::Pointer
, DeclType
.Loc
,
5063 DeclType
.EndLoc
, DeclType
.getAttrs(),
5064 state
.getDeclarator().getAttributePool());
5066 if (LangOpts
.ObjC
&& T
->getAs
<ObjCObjectType
>()) {
5067 T
= Context
.getObjCObjectPointerType(T
);
5068 if (DeclType
.Ptr
.TypeQuals
)
5069 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Ptr
.TypeQuals
);
5073 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
5074 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
5075 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
5076 if (LangOpts
.OpenCL
) {
5077 if (T
->isImageType() || T
->isSamplerT() || T
->isPipeType() ||
5078 T
->isBlockPointerType()) {
5079 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_pointer_to_type
) << T
;
5080 D
.setInvalidType(true);
5084 T
= S
.BuildPointerType(T
, DeclType
.Loc
, Name
);
5085 if (DeclType
.Ptr
.TypeQuals
)
5086 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Ptr
.TypeQuals
);
5088 case DeclaratorChunk::Reference
: {
5089 // Verify that we're not building a reference to pointer to function with
5090 // exception specification.
5091 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
5092 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
5093 D
.setInvalidType(true);
5094 // Build the type anyway.
5096 T
= S
.BuildReferenceType(T
, DeclType
.Ref
.LValueRef
, DeclType
.Loc
, Name
);
5098 if (DeclType
.Ref
.HasRestrict
)
5099 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, Qualifiers::Restrict
);
5102 case DeclaratorChunk::Array
: {
5103 // Verify that we're not building an array of pointers to function with
5104 // exception specification.
5105 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
5106 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
5107 D
.setInvalidType(true);
5108 // Build the type anyway.
5110 DeclaratorChunk::ArrayTypeInfo
&ATI
= DeclType
.Arr
;
5111 Expr
*ArraySize
= static_cast<Expr
*>(ATI
.NumElts
);
5112 ArrayType::ArraySizeModifier ASM
;
5114 // Microsoft property fields can have multiple sizeless array chunks
5115 // (i.e. int x[][][]). Skip all of these except one to avoid creating
5116 // bad incomplete array types.
5117 if (chunkIndex
!= 0 && !ArraySize
&&
5118 D
.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
5119 // This is a sizeless chunk. If the next is also, skip this one.
5120 DeclaratorChunk
&NextDeclType
= D
.getTypeObject(chunkIndex
- 1);
5121 if (NextDeclType
.Kind
== DeclaratorChunk::Array
&&
5122 !NextDeclType
.Arr
.NumElts
)
5127 ASM
= ArrayType::Star
;
5128 else if (ATI
.hasStatic
)
5129 ASM
= ArrayType::Static
;
5131 ASM
= ArrayType::Normal
;
5132 if (ASM
== ArrayType::Star
&& !D
.isPrototypeContext()) {
5133 // FIXME: This check isn't quite right: it allows star in prototypes
5134 // for function definitions, and disallows some edge cases detailed
5135 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
5136 S
.Diag(DeclType
.Loc
, diag::err_array_star_outside_prototype
);
5137 ASM
= ArrayType::Normal
;
5138 D
.setInvalidType(true);
5141 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
5142 // shall appear only in a declaration of a function parameter with an
5144 if (ASM
== ArrayType::Static
|| ATI
.TypeQuals
) {
5145 if (!(D
.isPrototypeContext() ||
5146 D
.getContext() == DeclaratorContext::KNRTypeList
)) {
5147 S
.Diag(DeclType
.Loc
, diag::err_array_static_outside_prototype
) <<
5148 (ASM
== ArrayType::Static
? "'static'" : "type qualifier");
5149 // Remove the 'static' and the type qualifiers.
5150 if (ASM
== ArrayType::Static
)
5151 ASM
= ArrayType::Normal
;
5153 D
.setInvalidType(true);
5156 // C99 6.7.5.2p1: ... and then only in the outermost array type
5158 if (hasOuterPointerLikeChunk(D
, chunkIndex
)) {
5159 S
.Diag(DeclType
.Loc
, diag::err_array_static_not_outermost
) <<
5160 (ASM
== ArrayType::Static
? "'static'" : "type qualifier");
5161 if (ASM
== ArrayType::Static
)
5162 ASM
= ArrayType::Normal
;
5164 D
.setInvalidType(true);
5168 // Array parameters can be marked nullable as well, although it's not
5169 // necessary if they're marked 'static'.
5170 if (complainAboutMissingNullability
== CAMN_Yes
&&
5171 !hasNullabilityAttr(DeclType
.getAttrs()) &&
5172 ASM
!= ArrayType::Static
&&
5173 D
.isPrototypeContext() &&
5174 !hasOuterPointerLikeChunk(D
, chunkIndex
)) {
5175 checkNullabilityConsistency(S
, SimplePointerKind::Array
, DeclType
.Loc
);
5178 T
= S
.BuildArrayType(T
, ASM
, ArraySize
, ATI
.TypeQuals
,
5179 SourceRange(DeclType
.Loc
, DeclType
.EndLoc
), Name
);
5182 case DeclaratorChunk::Function
: {
5183 // If the function declarator has a prototype (i.e. it is not () and
5184 // does not have a K&R-style identifier list), then the arguments are part
5185 // of the type, otherwise the argument list is ().
5186 DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
5187 IsQualifiedFunction
=
5188 FTI
.hasMethodTypeQualifiers() || FTI
.hasRefQualifier();
5190 // Check for auto functions and trailing return type and adjust the
5191 // return type accordingly.
5192 if (!D
.isInvalidType()) {
5193 // trailing-return-type is only required if we're declaring a function,
5194 // and not, for instance, a pointer to a function.
5195 if (D
.getDeclSpec().hasAutoTypeSpec() &&
5196 !FTI
.hasTrailingReturnType() && chunkIndex
== 0) {
5197 if (!S
.getLangOpts().CPlusPlus14
) {
5198 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5199 D
.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
5200 ? diag::err_auto_missing_trailing_return
5201 : diag::err_deduced_return_type
);
5203 D
.setInvalidType(true);
5204 AreDeclaratorChunksValid
= false;
5206 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5207 diag::warn_cxx11_compat_deduced_return_type
);
5209 } else if (FTI
.hasTrailingReturnType()) {
5210 // T must be exactly 'auto' at this point. See CWG issue 681.
5211 if (isa
<ParenType
>(T
)) {
5212 S
.Diag(D
.getBeginLoc(), diag::err_trailing_return_in_parens
)
5213 << T
<< D
.getSourceRange();
5214 D
.setInvalidType(true);
5215 // FIXME: recover and fill decls in `TypeLoc`s.
5216 AreDeclaratorChunksValid
= false;
5217 } else if (D
.getName().getKind() ==
5218 UnqualifiedIdKind::IK_DeductionGuideName
) {
5219 if (T
!= Context
.DependentTy
) {
5220 S
.Diag(D
.getDeclSpec().getBeginLoc(),
5221 diag::err_deduction_guide_with_complex_decl
)
5222 << D
.getSourceRange();
5223 D
.setInvalidType(true);
5224 // FIXME: recover and fill decls in `TypeLoc`s.
5225 AreDeclaratorChunksValid
= false;
5227 } else if (D
.getContext() != DeclaratorContext::LambdaExpr
&&
5228 (T
.hasQualifiers() || !isa
<AutoType
>(T
) ||
5229 cast
<AutoType
>(T
)->getKeyword() !=
5230 AutoTypeKeyword::Auto
||
5231 cast
<AutoType
>(T
)->isConstrained())) {
5232 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5233 diag::err_trailing_return_without_auto
)
5234 << T
<< D
.getDeclSpec().getSourceRange();
5235 D
.setInvalidType(true);
5236 // FIXME: recover and fill decls in `TypeLoc`s.
5237 AreDeclaratorChunksValid
= false;
5239 T
= S
.GetTypeFromParser(FTI
.getTrailingReturnType(), &TInfo
);
5241 // An error occurred parsing the trailing return type.
5243 D
.setInvalidType(true);
5244 } else if (AutoType
*Auto
= T
->getContainedAutoType()) {
5245 // If the trailing return type contains an `auto`, we may need to
5246 // invent a template parameter for it, for cases like
5247 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5248 InventedTemplateParameterInfo
*InventedParamInfo
= nullptr;
5249 if (D
.getContext() == DeclaratorContext::Prototype
)
5250 InventedParamInfo
= &S
.InventedParameterInfos
.back();
5251 else if (D
.getContext() == DeclaratorContext::LambdaExprParameter
)
5252 InventedParamInfo
= S
.getCurLambda();
5253 if (InventedParamInfo
) {
5254 std::tie(T
, TInfo
) = InventTemplateParameter(
5255 state
, T
, TInfo
, Auto
, *InventedParamInfo
);
5259 // This function type is not the type of the entity being declared,
5260 // so checking the 'auto' is not the responsibility of this chunk.
5264 // C99 6.7.5.3p1: The return type may not be a function or array type.
5265 // For conversion functions, we'll diagnose this particular error later.
5266 if (!D
.isInvalidType() && (T
->isArrayType() || T
->isFunctionType()) &&
5267 (D
.getName().getKind() !=
5268 UnqualifiedIdKind::IK_ConversionFunctionId
)) {
5269 unsigned diagID
= diag::err_func_returning_array_function
;
5270 // Last processing chunk in block context means this function chunk
5271 // represents the block.
5272 if (chunkIndex
== 0 &&
5273 D
.getContext() == DeclaratorContext::BlockLiteral
)
5274 diagID
= diag::err_block_returning_array_function
;
5275 S
.Diag(DeclType
.Loc
, diagID
) << T
->isFunctionType() << T
;
5277 D
.setInvalidType(true);
5278 AreDeclaratorChunksValid
= false;
5281 // Do not allow returning half FP value.
5282 // FIXME: This really should be in BuildFunctionType.
5283 if (T
->isHalfType()) {
5284 if (S
.getLangOpts().OpenCL
) {
5285 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5287 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_invalid_return
)
5288 << T
<< 0 /*pointer hint*/;
5289 D
.setInvalidType(true);
5291 } else if (!S
.getLangOpts().NativeHalfArgsAndReturns
&&
5292 !S
.Context
.getTargetInfo().allowHalfArgsAndReturns()) {
5293 S
.Diag(D
.getIdentifierLoc(),
5294 diag::err_parameters_retval_cannot_have_fp16_type
) << 1;
5295 D
.setInvalidType(true);
5299 if (LangOpts
.OpenCL
) {
5300 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5302 if (T
->isBlockPointerType() || T
->isImageType() || T
->isSamplerT() ||
5304 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_invalid_return
)
5305 << T
<< 1 /*hint off*/;
5306 D
.setInvalidType(true);
5308 // OpenCL doesn't support variadic functions and blocks
5309 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5310 // We also allow here any toolchain reserved identifiers.
5311 if (FTI
.isVariadic
&&
5312 !S
.getOpenCLOptions().isAvailableOption(
5313 "__cl_clang_variadic_functions", S
.getLangOpts()) &&
5314 !(D
.getIdentifier() &&
5315 ((D
.getIdentifier()->getName() == "printf" &&
5316 LangOpts
.getOpenCLCompatibleVersion() >= 120) ||
5317 D
.getIdentifier()->getName().startswith("__")))) {
5318 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_variadic_function
);
5319 D
.setInvalidType(true);
5323 // Methods cannot return interface types. All ObjC objects are
5324 // passed by reference.
5325 if (T
->isObjCObjectType()) {
5326 SourceLocation DiagLoc
, FixitLoc
;
5328 DiagLoc
= TInfo
->getTypeLoc().getBeginLoc();
5329 FixitLoc
= S
.getLocForEndOfToken(TInfo
->getTypeLoc().getEndLoc());
5331 DiagLoc
= D
.getDeclSpec().getTypeSpecTypeLoc();
5332 FixitLoc
= S
.getLocForEndOfToken(D
.getDeclSpec().getEndLoc());
5334 S
.Diag(DiagLoc
, diag::err_object_cannot_be_passed_returned_by_value
)
5336 << FixItHint::CreateInsertion(FixitLoc
, "*");
5338 T
= Context
.getObjCObjectPointerType(T
);
5341 TLB
.pushFullCopy(TInfo
->getTypeLoc());
5342 ObjCObjectPointerTypeLoc TLoc
= TLB
.push
<ObjCObjectPointerTypeLoc
>(T
);
5343 TLoc
.setStarLoc(FixitLoc
);
5344 TInfo
= TLB
.getTypeSourceInfo(Context
, T
);
5346 AreDeclaratorChunksValid
= false;
5349 D
.setInvalidType(true);
5352 // cv-qualifiers on return types are pointless except when the type is a
5353 // class type in C++.
5354 if ((T
.getCVRQualifiers() || T
->isAtomicType()) &&
5355 !(S
.getLangOpts().CPlusPlus
&&
5356 (T
->isDependentType() || T
->isRecordType()))) {
5357 if (T
->isVoidType() && !S
.getLangOpts().CPlusPlus
&&
5358 D
.getFunctionDefinitionKind() ==
5359 FunctionDefinitionKind::Definition
) {
5360 // [6.9.1/3] qualified void return is invalid on a C
5361 // function definition. Apparently ok on declarations and
5362 // in C++ though (!)
5363 S
.Diag(DeclType
.Loc
, diag::err_func_returning_qualified_void
) << T
;
5365 diagnoseRedundantReturnTypeQualifiers(S
, T
, D
, chunkIndex
);
5367 // C++2a [dcl.fct]p12:
5368 // A volatile-qualified return type is deprecated
5369 if (T
.isVolatileQualified() && S
.getLangOpts().CPlusPlus20
)
5370 S
.Diag(DeclType
.Loc
, diag::warn_deprecated_volatile_return
) << T
;
5373 // Objective-C ARC ownership qualifiers are ignored on the function
5374 // return type (by type canonicalization). Complain if this attribute
5375 // was written here.
5376 if (T
.getQualifiers().hasObjCLifetime()) {
5377 SourceLocation AttrLoc
;
5378 if (chunkIndex
+ 1 < D
.getNumTypeObjects()) {
5379 DeclaratorChunk ReturnTypeChunk
= D
.getTypeObject(chunkIndex
+ 1);
5380 for (const ParsedAttr
&AL
: ReturnTypeChunk
.getAttrs()) {
5381 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
5382 AttrLoc
= AL
.getLoc();
5387 if (AttrLoc
.isInvalid()) {
5388 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
5389 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
5390 AttrLoc
= AL
.getLoc();
5396 if (AttrLoc
.isValid()) {
5397 // The ownership attributes are almost always written via
5399 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5400 if (AttrLoc
.isMacroID())
5402 S
.SourceMgr
.getImmediateExpansionRange(AttrLoc
).getBegin();
5404 S
.Diag(AttrLoc
, diag::warn_arc_lifetime_result_type
)
5405 << T
.getQualifiers().getObjCLifetime();
5409 if (LangOpts
.CPlusPlus
&& D
.getDeclSpec().hasTagDefinition()) {
5411 // Types shall not be defined in return or parameter types.
5412 TagDecl
*Tag
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
5413 S
.Diag(Tag
->getLocation(), diag::err_type_defined_in_result_type
)
5414 << Context
.getTypeDeclType(Tag
);
5417 // Exception specs are not allowed in typedefs. Complain, but add it
5419 if (IsTypedefName
&& FTI
.getExceptionSpecType() && !LangOpts
.CPlusPlus17
)
5420 S
.Diag(FTI
.getExceptionSpecLocBeg(),
5421 diag::err_exception_spec_in_typedef
)
5422 << (D
.getContext() == DeclaratorContext::AliasDecl
||
5423 D
.getContext() == DeclaratorContext::AliasTemplate
);
5425 // If we see "T var();" or "T var(T());" at block scope, it is probably
5426 // an attempt to initialize a variable, not a function declaration.
5427 if (FTI
.isAmbiguous
)
5428 warnAboutAmbiguousFunction(S
, D
, DeclType
, T
);
5430 FunctionType::ExtInfo
EI(
5431 getCCForDeclaratorChunk(S
, D
, DeclType
.getAttrs(), FTI
, chunkIndex
));
5433 // OpenCL disallows functions without a prototype, but it doesn't enforce
5434 // strict prototypes as in C23 because it allows a function definition to
5435 // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5436 if (!FTI
.NumParams
&& !FTI
.isVariadic
&&
5437 !LangOpts
.requiresStrictPrototypes() && !LangOpts
.OpenCL
) {
5438 // Simple void foo(), where the incoming T is the result type.
5439 T
= Context
.getFunctionNoProtoType(T
, EI
);
5441 // We allow a zero-parameter variadic function in C if the
5442 // function is marked with the "overloadable" attribute. Scan
5443 // for this attribute now. We also allow it in C23 per WG14 N2975.
5444 if (!FTI
.NumParams
&& FTI
.isVariadic
&& !LangOpts
.CPlusPlus
) {
5446 S
.Diag(FTI
.getEllipsisLoc(),
5447 diag::warn_c17_compat_ellipsis_only_parameter
);
5448 else if (!D
.getDeclarationAttributes().hasAttribute(
5449 ParsedAttr::AT_Overloadable
) &&
5450 !D
.getAttributes().hasAttribute(
5451 ParsedAttr::AT_Overloadable
) &&
5452 !D
.getDeclSpec().getAttributes().hasAttribute(
5453 ParsedAttr::AT_Overloadable
))
5454 S
.Diag(FTI
.getEllipsisLoc(), diag::err_ellipsis_first_param
);
5457 if (FTI
.NumParams
&& FTI
.Params
[0].Param
== nullptr) {
5458 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5460 S
.Diag(FTI
.Params
[0].IdentLoc
,
5461 diag::err_ident_list_in_fn_declaration
);
5462 D
.setInvalidType(true);
5463 // Recover by creating a K&R-style function type, if possible.
5464 T
= (!LangOpts
.requiresStrictPrototypes() && !LangOpts
.OpenCL
)
5465 ? Context
.getFunctionNoProtoType(T
, EI
)
5467 AreDeclaratorChunksValid
= false;
5471 FunctionProtoType::ExtProtoInfo EPI
;
5473 EPI
.Variadic
= FTI
.isVariadic
;
5474 EPI
.EllipsisLoc
= FTI
.getEllipsisLoc();
5475 EPI
.HasTrailingReturn
= FTI
.hasTrailingReturnType();
5476 EPI
.TypeQuals
.addCVRUQualifiers(
5477 FTI
.MethodQualifiers
? FTI
.MethodQualifiers
->getTypeQualifiers()
5479 EPI
.RefQualifier
= !FTI
.hasRefQualifier()? RQ_None
5480 : FTI
.RefQualifierIsLValueRef
? RQ_LValue
5483 // Otherwise, we have a function with a parameter list that is
5484 // potentially variadic.
5485 SmallVector
<QualType
, 16> ParamTys
;
5486 ParamTys
.reserve(FTI
.NumParams
);
5488 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16>
5489 ExtParameterInfos(FTI
.NumParams
);
5490 bool HasAnyInterestingExtParameterInfos
= false;
5492 for (unsigned i
= 0, e
= FTI
.NumParams
; i
!= e
; ++i
) {
5493 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
5494 QualType ParamTy
= Param
->getType();
5495 assert(!ParamTy
.isNull() && "Couldn't parse type?");
5497 // Look for 'void'. void is allowed only as a single parameter to a
5498 // function with no other parameters (C99 6.7.5.3p10). We record
5499 // int(void) as a FunctionProtoType with an empty parameter list.
5500 if (ParamTy
->isVoidType()) {
5501 // If this is something like 'float(int, void)', reject it. 'void'
5502 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5503 // have parameters of incomplete type.
5504 if (FTI
.NumParams
!= 1 || FTI
.isVariadic
) {
5505 S
.Diag(FTI
.Params
[i
].IdentLoc
, diag::err_void_only_param
);
5506 ParamTy
= Context
.IntTy
;
5507 Param
->setType(ParamTy
);
5508 } else if (FTI
.Params
[i
].Ident
) {
5509 // Reject, but continue to parse 'int(void abc)'.
5510 S
.Diag(FTI
.Params
[i
].IdentLoc
, diag::err_param_with_void_type
);
5511 ParamTy
= Context
.IntTy
;
5512 Param
->setType(ParamTy
);
5514 // Reject, but continue to parse 'float(const void)'.
5515 if (ParamTy
.hasQualifiers())
5516 S
.Diag(DeclType
.Loc
, diag::err_void_param_qualified
);
5518 // Do not add 'void' to the list.
5521 } else if (ParamTy
->isHalfType()) {
5522 // Disallow half FP parameters.
5523 // FIXME: This really should be in BuildFunctionType.
5524 if (S
.getLangOpts().OpenCL
) {
5525 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5527 S
.Diag(Param
->getLocation(), diag::err_opencl_invalid_param
)
5530 Param
->setInvalidDecl();
5532 } else if (!S
.getLangOpts().NativeHalfArgsAndReturns
&&
5533 !S
.Context
.getTargetInfo().allowHalfArgsAndReturns()) {
5534 S
.Diag(Param
->getLocation(),
5535 diag::err_parameters_retval_cannot_have_fp16_type
) << 0;
5538 } else if (!FTI
.hasPrototype
) {
5539 if (Context
.isPromotableIntegerType(ParamTy
)) {
5540 ParamTy
= Context
.getPromotedIntegerType(ParamTy
);
5541 Param
->setKNRPromoted(true);
5542 } else if (const BuiltinType
*BTy
= ParamTy
->getAs
<BuiltinType
>()) {
5543 if (BTy
->getKind() == BuiltinType::Float
) {
5544 ParamTy
= Context
.DoubleTy
;
5545 Param
->setKNRPromoted(true);
5548 } else if (S
.getLangOpts().OpenCL
&& ParamTy
->isBlockPointerType()) {
5549 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5550 S
.Diag(Param
->getLocation(), diag::err_opencl_invalid_param
)
5551 << ParamTy
<< 1 /*hint off*/;
5555 if (LangOpts
.ObjCAutoRefCount
&& Param
->hasAttr
<NSConsumedAttr
>()) {
5556 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withIsConsumed(true);
5557 HasAnyInterestingExtParameterInfos
= true;
5560 if (auto attr
= Param
->getAttr
<ParameterABIAttr
>()) {
5561 ExtParameterInfos
[i
] =
5562 ExtParameterInfos
[i
].withABI(attr
->getABI());
5563 HasAnyInterestingExtParameterInfos
= true;
5566 if (Param
->hasAttr
<PassObjectSizeAttr
>()) {
5567 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withHasPassObjectSize();
5568 HasAnyInterestingExtParameterInfos
= true;
5571 if (Param
->hasAttr
<NoEscapeAttr
>()) {
5572 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withIsNoEscape(true);
5573 HasAnyInterestingExtParameterInfos
= true;
5576 ParamTys
.push_back(ParamTy
);
5579 if (HasAnyInterestingExtParameterInfos
) {
5580 EPI
.ExtParameterInfos
= ExtParameterInfos
.data();
5581 checkExtParameterInfos(S
, ParamTys
, EPI
,
5582 [&](unsigned i
) { return FTI
.Params
[i
].Param
->getLocation(); });
5585 SmallVector
<QualType
, 4> Exceptions
;
5586 SmallVector
<ParsedType
, 2> DynamicExceptions
;
5587 SmallVector
<SourceRange
, 2> DynamicExceptionRanges
;
5588 Expr
*NoexceptExpr
= nullptr;
5590 if (FTI
.getExceptionSpecType() == EST_Dynamic
) {
5591 // FIXME: It's rather inefficient to have to split into two vectors
5593 unsigned N
= FTI
.getNumExceptions();
5594 DynamicExceptions
.reserve(N
);
5595 DynamicExceptionRanges
.reserve(N
);
5596 for (unsigned I
= 0; I
!= N
; ++I
) {
5597 DynamicExceptions
.push_back(FTI
.Exceptions
[I
].Ty
);
5598 DynamicExceptionRanges
.push_back(FTI
.Exceptions
[I
].Range
);
5600 } else if (isComputedNoexcept(FTI
.getExceptionSpecType())) {
5601 NoexceptExpr
= FTI
.NoexceptExpr
;
5604 S
.checkExceptionSpecification(D
.isFunctionDeclarationContext(),
5605 FTI
.getExceptionSpecType(),
5607 DynamicExceptionRanges
,
5612 // FIXME: Set address space from attrs for C++ mode here.
5613 // OpenCLCPlusPlus: A class member function has an address space.
5614 auto IsClassMember
= [&]() {
5615 return (!state
.getDeclarator().getCXXScopeSpec().isEmpty() &&
5616 state
.getDeclarator()
5619 ->getKind() == NestedNameSpecifier::TypeSpec
) ||
5620 state
.getDeclarator().getContext() ==
5621 DeclaratorContext::Member
||
5622 state
.getDeclarator().getContext() ==
5623 DeclaratorContext::LambdaExpr
;
5626 if (state
.getSema().getLangOpts().OpenCLCPlusPlus
&& IsClassMember()) {
5627 LangAS ASIdx
= LangAS::Default
;
5628 // Take address space attr if any and mark as invalid to avoid adding
5629 // them later while creating QualType.
5630 if (FTI
.MethodQualifiers
)
5631 for (ParsedAttr
&attr
: FTI
.MethodQualifiers
->getAttributes()) {
5632 LangAS ASIdxNew
= attr
.asOpenCLLangAS();
5633 if (DiagnoseMultipleAddrSpaceAttributes(S
, ASIdx
, ASIdxNew
,
5635 D
.setInvalidType(true);
5639 // If a class member function's address space is not set, set it to
5642 (ASIdx
== LangAS::Default
? S
.getDefaultCXXMethodAddrSpace()
5644 EPI
.TypeQuals
.addAddressSpace(AS
);
5646 T
= Context
.getFunctionType(T
, ParamTys
, EPI
);
5650 case DeclaratorChunk::MemberPointer
: {
5651 // The scope spec must refer to a class, or be dependent.
5652 CXXScopeSpec
&SS
= DeclType
.Mem
.Scope();
5655 // Handle pointer nullability.
5656 inferPointerNullability(SimplePointerKind::MemberPointer
, DeclType
.Loc
,
5657 DeclType
.EndLoc
, DeclType
.getAttrs(),
5658 state
.getDeclarator().getAttributePool());
5660 if (SS
.isInvalid()) {
5661 // Avoid emitting extra errors if we already errored on the scope.
5662 D
.setInvalidType(true);
5663 } else if (S
.isDependentScopeSpecifier(SS
) ||
5664 isa_and_nonnull
<CXXRecordDecl
>(S
.computeDeclContext(SS
))) {
5665 NestedNameSpecifier
*NNS
= SS
.getScopeRep();
5666 NestedNameSpecifier
*NNSPrefix
= NNS
->getPrefix();
5667 switch (NNS
->getKind()) {
5668 case NestedNameSpecifier::Identifier
:
5669 ClsType
= Context
.getDependentNameType(ETK_None
, NNSPrefix
,
5670 NNS
->getAsIdentifier());
5673 case NestedNameSpecifier::Namespace
:
5674 case NestedNameSpecifier::NamespaceAlias
:
5675 case NestedNameSpecifier::Global
:
5676 case NestedNameSpecifier::Super
:
5677 llvm_unreachable("Nested-name-specifier must name a type");
5679 case NestedNameSpecifier::TypeSpec
:
5680 case NestedNameSpecifier::TypeSpecWithTemplate
:
5681 ClsType
= QualType(NNS
->getAsType(), 0);
5682 // Note: if the NNS has a prefix and ClsType is a nondependent
5683 // TemplateSpecializationType, then the NNS prefix is NOT included
5684 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5685 // NOTE: in particular, no wrap occurs if ClsType already is an
5686 // Elaborated, DependentName, or DependentTemplateSpecialization.
5687 if (isa
<TemplateSpecializationType
>(NNS
->getAsType()))
5688 ClsType
= Context
.getElaboratedType(ETK_None
, NNSPrefix
, ClsType
);
5692 S
.Diag(DeclType
.Mem
.Scope().getBeginLoc(),
5693 diag::err_illegal_decl_mempointer_in_nonclass
)
5694 << (D
.getIdentifier() ? D
.getIdentifier()->getName() : "type name")
5695 << DeclType
.Mem
.Scope().getRange();
5696 D
.setInvalidType(true);
5699 if (!ClsType
.isNull())
5700 T
= S
.BuildMemberPointerType(T
, ClsType
, DeclType
.Loc
,
5703 AreDeclaratorChunksValid
= false;
5707 D
.setInvalidType(true);
5708 AreDeclaratorChunksValid
= false;
5709 } else if (DeclType
.Mem
.TypeQuals
) {
5710 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Mem
.TypeQuals
);
5715 case DeclaratorChunk::Pipe
: {
5716 T
= S
.BuildReadPipeType(T
, DeclType
.Loc
);
5717 processTypeAttrs(state
, T
, TAL_DeclSpec
,
5718 D
.getMutableDeclSpec().getAttributes());
5724 D
.setInvalidType(true);
5726 AreDeclaratorChunksValid
= false;
5729 // See if there are any attributes on this declarator chunk.
5730 processTypeAttrs(state
, T
, TAL_DeclChunk
, DeclType
.getAttrs());
5732 if (DeclType
.Kind
!= DeclaratorChunk::Paren
) {
5733 if (ExpectNoDerefChunk
&& !IsNoDerefableChunk(DeclType
))
5734 S
.Diag(DeclType
.Loc
, diag::warn_noderef_on_non_pointer_or_array
);
5736 ExpectNoDerefChunk
= state
.didParseNoDeref();
5740 if (ExpectNoDerefChunk
)
5741 S
.Diag(state
.getDeclarator().getBeginLoc(),
5742 diag::warn_noderef_on_non_pointer_or_array
);
5744 // GNU warning -Wstrict-prototypes
5745 // Warn if a function declaration or definition is without a prototype.
5746 // This warning is issued for all kinds of unprototyped function
5747 // declarations (i.e. function type typedef, function pointer etc.)
5749 // The empty list in a function declarator that is not part of a definition
5750 // of that function specifies that no information about the number or types
5751 // of the parameters is supplied.
5752 // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5753 // function declarations whose behavior changes in C23.
5754 if (!LangOpts
.requiresStrictPrototypes()) {
5755 bool IsBlock
= false;
5756 for (const DeclaratorChunk
&DeclType
: D
.type_objects()) {
5757 switch (DeclType
.Kind
) {
5758 case DeclaratorChunk::BlockPointer
:
5761 case DeclaratorChunk::Function
: {
5762 const DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
5763 // We suppress the warning when there's no LParen location, as this
5764 // indicates the declaration was an implicit declaration, which gets
5765 // warned about separately via -Wimplicit-function-declaration. We also
5766 // suppress the warning when we know the function has a prototype.
5767 if (!FTI
.hasPrototype
&& FTI
.NumParams
== 0 && !FTI
.isVariadic
&&
5768 FTI
.getLParenLoc().isValid())
5769 S
.Diag(DeclType
.Loc
, diag::warn_strict_prototypes
)
5771 << FixItHint::CreateInsertion(FTI
.getRParenLoc(), "void");
5781 assert(!T
.isNull() && "T must not be null after this point");
5783 if (LangOpts
.CPlusPlus
&& T
->isFunctionType()) {
5784 const FunctionProtoType
*FnTy
= T
->getAs
<FunctionProtoType
>();
5785 assert(FnTy
&& "Why oh why is there not a FunctionProtoType here?");
5788 // A cv-qualifier-seq shall only be part of the function type
5789 // for a nonstatic member function, the function type to which a pointer
5790 // to member refers, or the top-level function type of a function typedef
5793 // Core issue 547 also allows cv-qualifiers on function types that are
5794 // top-level template type arguments.
5795 enum { NonMember
, Member
, DeductionGuide
} Kind
= NonMember
;
5796 if (D
.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName
)
5797 Kind
= DeductionGuide
;
5798 else if (!D
.getCXXScopeSpec().isSet()) {
5799 if ((D
.getContext() == DeclaratorContext::Member
||
5800 D
.getContext() == DeclaratorContext::LambdaExpr
) &&
5801 !D
.getDeclSpec().isFriendSpecified())
5804 DeclContext
*DC
= S
.computeDeclContext(D
.getCXXScopeSpec());
5805 if (!DC
|| DC
->isRecord())
5809 // C++11 [dcl.fct]p6 (w/DR1417):
5810 // An attempt to specify a function type with a cv-qualifier-seq or a
5811 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5812 // - the function type for a non-static member function,
5813 // - the function type to which a pointer to member refers,
5814 // - the top-level function type of a function typedef declaration or
5815 // alias-declaration,
5816 // - the type-id in the default argument of a type-parameter, or
5817 // - the type-id of a template-argument for a type-parameter
5819 // FIXME: Checking this here is insufficient. We accept-invalid on:
5821 // template<typename T> struct S { void f(T); };
5822 // S<int() const> s;
5824 // ... for instance.
5825 if (IsQualifiedFunction
&&
5827 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static
) &&
5828 !IsTypedefName
&& D
.getContext() != DeclaratorContext::TemplateArg
&&
5829 D
.getContext() != DeclaratorContext::TemplateTypeArg
) {
5830 SourceLocation Loc
= D
.getBeginLoc();
5831 SourceRange RemovalRange
;
5833 if (D
.isFunctionDeclarator(I
)) {
5834 SmallVector
<SourceLocation
, 4> RemovalLocs
;
5835 const DeclaratorChunk
&Chunk
= D
.getTypeObject(I
);
5836 assert(Chunk
.Kind
== DeclaratorChunk::Function
);
5838 if (Chunk
.Fun
.hasRefQualifier())
5839 RemovalLocs
.push_back(Chunk
.Fun
.getRefQualifierLoc());
5841 if (Chunk
.Fun
.hasMethodTypeQualifiers())
5842 Chunk
.Fun
.MethodQualifiers
->forEachQualifier(
5843 [&](DeclSpec::TQ TypeQual
, StringRef QualName
,
5844 SourceLocation SL
) { RemovalLocs
.push_back(SL
); });
5846 if (!RemovalLocs
.empty()) {
5847 llvm::sort(RemovalLocs
,
5848 BeforeThanCompare
<SourceLocation
>(S
.getSourceManager()));
5849 RemovalRange
= SourceRange(RemovalLocs
.front(), RemovalLocs
.back());
5850 Loc
= RemovalLocs
.front();
5854 S
.Diag(Loc
, diag::err_invalid_qualified_function_type
)
5855 << Kind
<< D
.isFunctionDeclarator() << T
5856 << getFunctionQualifiersAsString(FnTy
)
5857 << FixItHint::CreateRemoval(RemovalRange
);
5859 // Strip the cv-qualifiers and ref-qualifiers from the type.
5860 FunctionProtoType::ExtProtoInfo EPI
= FnTy
->getExtProtoInfo();
5861 EPI
.TypeQuals
.removeCVRQualifiers();
5862 EPI
.RefQualifier
= RQ_None
;
5864 T
= Context
.getFunctionType(FnTy
->getReturnType(), FnTy
->getParamTypes(),
5866 // Rebuild any parens around the identifier in the function type.
5867 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
5868 if (D
.getTypeObject(i
).Kind
!= DeclaratorChunk::Paren
)
5870 T
= S
.BuildParenType(T
);
5875 // Apply any undistributed attributes from the declaration or declarator.
5876 ParsedAttributesView NonSlidingAttrs
;
5877 for (ParsedAttr
&AL
: D
.getDeclarationAttributes()) {
5878 if (!AL
.slidesFromDeclToDeclSpecLegacyBehavior()) {
5879 NonSlidingAttrs
.addAtEnd(&AL
);
5882 processTypeAttrs(state
, T
, TAL_DeclName
, NonSlidingAttrs
);
5883 processTypeAttrs(state
, T
, TAL_DeclName
, D
.getAttributes());
5885 // Diagnose any ignored type attributes.
5886 state
.diagnoseIgnoredTypeAttrs(T
);
5888 // C++0x [dcl.constexpr]p9:
5889 // A constexpr specifier used in an object declaration declares the object
5891 if (D
.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr
&&
5895 // C++2a [dcl.fct]p4:
5896 // A parameter with volatile-qualified type is deprecated
5897 if (T
.isVolatileQualified() && S
.getLangOpts().CPlusPlus20
&&
5898 (D
.getContext() == DeclaratorContext::Prototype
||
5899 D
.getContext() == DeclaratorContext::LambdaExprParameter
))
5900 S
.Diag(D
.getIdentifierLoc(), diag::warn_deprecated_volatile_param
) << T
;
5902 // If there was an ellipsis in the declarator, the declaration declares a
5903 // parameter pack whose type may be a pack expansion type.
5904 if (D
.hasEllipsis()) {
5905 // C++0x [dcl.fct]p13:
5906 // A declarator-id or abstract-declarator containing an ellipsis shall
5907 // only be used in a parameter-declaration. Such a parameter-declaration
5908 // is a parameter pack (14.5.3). [...]
5909 switch (D
.getContext()) {
5910 case DeclaratorContext::Prototype
:
5911 case DeclaratorContext::LambdaExprParameter
:
5912 case DeclaratorContext::RequiresExpr
:
5913 // C++0x [dcl.fct]p13:
5914 // [...] When it is part of a parameter-declaration-clause, the
5915 // parameter pack is a function parameter pack (14.5.3). The type T
5916 // of the declarator-id of the function parameter pack shall contain
5917 // a template parameter pack; each template parameter pack in T is
5918 // expanded by the function parameter pack.
5920 // We represent function parameter packs as function parameters whose
5921 // type is a pack expansion.
5922 if (!T
->containsUnexpandedParameterPack() &&
5923 (!LangOpts
.CPlusPlus20
|| !T
->getContainedAutoType())) {
5924 S
.Diag(D
.getEllipsisLoc(),
5925 diag::err_function_parameter_pack_without_parameter_packs
)
5926 << T
<< D
.getSourceRange();
5927 D
.setEllipsisLoc(SourceLocation());
5929 T
= Context
.getPackExpansionType(T
, std::nullopt
,
5930 /*ExpectPackInType=*/false);
5933 case DeclaratorContext::TemplateParam
:
5934 // C++0x [temp.param]p15:
5935 // If a template-parameter is a [...] is a parameter-declaration that
5936 // declares a parameter pack (8.3.5), then the template-parameter is a
5937 // template parameter pack (14.5.3).
5939 // Note: core issue 778 clarifies that, if there are any unexpanded
5940 // parameter packs in the type of the non-type template parameter, then
5941 // it expands those parameter packs.
5942 if (T
->containsUnexpandedParameterPack())
5943 T
= Context
.getPackExpansionType(T
, std::nullopt
);
5945 S
.Diag(D
.getEllipsisLoc(),
5946 LangOpts
.CPlusPlus11
5947 ? diag::warn_cxx98_compat_variadic_templates
5948 : diag::ext_variadic_templates
);
5951 case DeclaratorContext::File
:
5952 case DeclaratorContext::KNRTypeList
:
5953 case DeclaratorContext::ObjCParameter
: // FIXME: special diagnostic here?
5954 case DeclaratorContext::ObjCResult
: // FIXME: special diagnostic here?
5955 case DeclaratorContext::TypeName
:
5956 case DeclaratorContext::FunctionalCast
:
5957 case DeclaratorContext::CXXNew
:
5958 case DeclaratorContext::AliasDecl
:
5959 case DeclaratorContext::AliasTemplate
:
5960 case DeclaratorContext::Member
:
5961 case DeclaratorContext::Block
:
5962 case DeclaratorContext::ForInit
:
5963 case DeclaratorContext::SelectionInit
:
5964 case DeclaratorContext::Condition
:
5965 case DeclaratorContext::CXXCatch
:
5966 case DeclaratorContext::ObjCCatch
:
5967 case DeclaratorContext::BlockLiteral
:
5968 case DeclaratorContext::LambdaExpr
:
5969 case DeclaratorContext::ConversionId
:
5970 case DeclaratorContext::TrailingReturn
:
5971 case DeclaratorContext::TrailingReturnVar
:
5972 case DeclaratorContext::TemplateArg
:
5973 case DeclaratorContext::TemplateTypeArg
:
5974 case DeclaratorContext::Association
:
5975 // FIXME: We may want to allow parameter packs in block-literal contexts
5977 S
.Diag(D
.getEllipsisLoc(),
5978 diag::err_ellipsis_in_declarator_not_parameter
);
5979 D
.setEllipsisLoc(SourceLocation());
5984 assert(!T
.isNull() && "T must not be null at the end of this function");
5985 if (!AreDeclaratorChunksValid
)
5986 return Context
.getTrivialTypeSourceInfo(T
);
5987 return GetTypeSourceInfoForDeclarator(state
, T
, TInfo
);
5990 /// GetTypeForDeclarator - Convert the type for the specified
5991 /// declarator to Type instances.
5993 /// The result of this call will never be null, but the associated
5994 /// type may be a null type if there's an unrecoverable error.
5995 TypeSourceInfo
*Sema::GetTypeForDeclarator(Declarator
&D
, Scope
*S
) {
5996 // Determine the type of the declarator. Not all forms of declarator
5999 TypeProcessingState
state(*this, D
);
6001 TypeSourceInfo
*ReturnTypeInfo
= nullptr;
6002 QualType T
= GetDeclSpecTypeForDeclarator(state
, ReturnTypeInfo
);
6003 if (D
.isPrototypeContext() && getLangOpts().ObjCAutoRefCount
)
6004 inferARCWriteback(state
, T
);
6006 return GetFullTypeForDeclarator(state
, T
, ReturnTypeInfo
);
6009 static void transferARCOwnershipToDeclSpec(Sema
&S
,
6010 QualType
&declSpecTy
,
6011 Qualifiers::ObjCLifetime ownership
) {
6012 if (declSpecTy
->isObjCRetainableType() &&
6013 declSpecTy
.getObjCLifetime() == Qualifiers::OCL_None
) {
6015 qs
.addObjCLifetime(ownership
);
6016 declSpecTy
= S
.Context
.getQualifiedType(declSpecTy
, qs
);
6020 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState
&state
,
6021 Qualifiers::ObjCLifetime ownership
,
6022 unsigned chunkIndex
) {
6023 Sema
&S
= state
.getSema();
6024 Declarator
&D
= state
.getDeclarator();
6026 // Look for an explicit lifetime attribute.
6027 DeclaratorChunk
&chunk
= D
.getTypeObject(chunkIndex
);
6028 if (chunk
.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership
))
6031 const char *attrStr
= nullptr;
6032 switch (ownership
) {
6033 case Qualifiers::OCL_None
: llvm_unreachable("no ownership!");
6034 case Qualifiers::OCL_ExplicitNone
: attrStr
= "none"; break;
6035 case Qualifiers::OCL_Strong
: attrStr
= "strong"; break;
6036 case Qualifiers::OCL_Weak
: attrStr
= "weak"; break;
6037 case Qualifiers::OCL_Autoreleasing
: attrStr
= "autoreleasing"; break;
6040 IdentifierLoc
*Arg
= new (S
.Context
) IdentifierLoc
;
6041 Arg
->Ident
= &S
.Context
.Idents
.get(attrStr
);
6042 Arg
->Loc
= SourceLocation();
6044 ArgsUnion
Args(Arg
);
6046 // If there wasn't one, add one (with an invalid source location
6047 // so that we don't make an AttributedType for it).
6048 ParsedAttr
*attr
= D
.getAttributePool().create(
6049 &S
.Context
.Idents
.get("objc_ownership"), SourceLocation(),
6050 /*scope*/ nullptr, SourceLocation(),
6051 /*args*/ &Args
, 1, ParsedAttr::Form::GNU());
6052 chunk
.getAttrs().addAtEnd(attr
);
6053 // TODO: mark whether we did this inference?
6056 /// Used for transferring ownership in casts resulting in l-values.
6057 static void transferARCOwnership(TypeProcessingState
&state
,
6058 QualType
&declSpecTy
,
6059 Qualifiers::ObjCLifetime ownership
) {
6060 Sema
&S
= state
.getSema();
6061 Declarator
&D
= state
.getDeclarator();
6064 bool hasIndirection
= false;
6065 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
6066 DeclaratorChunk
&chunk
= D
.getTypeObject(i
);
6067 switch (chunk
.Kind
) {
6068 case DeclaratorChunk::Paren
:
6072 case DeclaratorChunk::Array
:
6073 case DeclaratorChunk::Reference
:
6074 case DeclaratorChunk::Pointer
:
6076 hasIndirection
= true;
6080 case DeclaratorChunk::BlockPointer
:
6082 transferARCOwnershipToDeclaratorChunk(state
, ownership
, i
);
6085 case DeclaratorChunk::Function
:
6086 case DeclaratorChunk::MemberPointer
:
6087 case DeclaratorChunk::Pipe
:
6095 DeclaratorChunk
&chunk
= D
.getTypeObject(inner
);
6096 if (chunk
.Kind
== DeclaratorChunk::Pointer
) {
6097 if (declSpecTy
->isObjCRetainableType())
6098 return transferARCOwnershipToDeclSpec(S
, declSpecTy
, ownership
);
6099 if (declSpecTy
->isObjCObjectType() && hasIndirection
)
6100 return transferARCOwnershipToDeclaratorChunk(state
, ownership
, inner
);
6102 assert(chunk
.Kind
== DeclaratorChunk::Array
||
6103 chunk
.Kind
== DeclaratorChunk::Reference
);
6104 return transferARCOwnershipToDeclSpec(S
, declSpecTy
, ownership
);
6108 TypeSourceInfo
*Sema::GetTypeForDeclaratorCast(Declarator
&D
, QualType FromTy
) {
6109 TypeProcessingState
state(*this, D
);
6111 TypeSourceInfo
*ReturnTypeInfo
= nullptr;
6112 QualType declSpecTy
= GetDeclSpecTypeForDeclarator(state
, ReturnTypeInfo
);
6114 if (getLangOpts().ObjC
) {
6115 Qualifiers::ObjCLifetime ownership
= Context
.getInnerObjCOwnership(FromTy
);
6116 if (ownership
!= Qualifiers::OCL_None
)
6117 transferARCOwnership(state
, declSpecTy
, ownership
);
6120 return GetFullTypeForDeclarator(state
, declSpecTy
, ReturnTypeInfo
);
6123 static void fillAttributedTypeLoc(AttributedTypeLoc TL
,
6124 TypeProcessingState
&State
) {
6125 TL
.setAttr(State
.takeAttrForAttributedType(TL
.getTypePtr()));
6128 static void fillMatrixTypeLoc(MatrixTypeLoc MTL
,
6129 const ParsedAttributesView
&Attrs
) {
6130 for (const ParsedAttr
&AL
: Attrs
) {
6131 if (AL
.getKind() == ParsedAttr::AT_MatrixType
) {
6132 MTL
.setAttrNameLoc(AL
.getLoc());
6133 MTL
.setAttrRowOperand(AL
.getArgAsExpr(0));
6134 MTL
.setAttrColumnOperand(AL
.getArgAsExpr(1));
6135 MTL
.setAttrOperandParensRange(SourceRange());
6140 llvm_unreachable("no matrix_type attribute found at the expected location!");
6144 class TypeSpecLocFiller
: public TypeLocVisitor
<TypeSpecLocFiller
> {
6146 ASTContext
&Context
;
6147 TypeProcessingState
&State
;
6151 TypeSpecLocFiller(Sema
&S
, ASTContext
&Context
, TypeProcessingState
&State
,
6153 : SemaRef(S
), Context(Context
), State(State
), DS(DS
) {}
6155 void VisitAttributedTypeLoc(AttributedTypeLoc TL
) {
6156 Visit(TL
.getModifiedLoc());
6157 fillAttributedTypeLoc(TL
, State
);
6159 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL
) {
6160 Visit(TL
.getWrappedLoc());
6162 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL
) {
6163 Visit(TL
.getInnerLoc());
6165 State
.getExpansionLocForMacroQualifiedType(TL
.getTypePtr()));
6167 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL
) {
6168 Visit(TL
.getUnqualifiedLoc());
6170 // Allow to fill pointee's type locations, e.g.,
6171 // int __attr * __attr * __attr *p;
6172 void VisitPointerTypeLoc(PointerTypeLoc TL
) { Visit(TL
.getNextTypeLoc()); }
6173 void VisitTypedefTypeLoc(TypedefTypeLoc TL
) {
6174 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6176 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL
) {
6177 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6178 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
6179 // addition field. What we have is good enough for display of location
6180 // of 'fixit' on interface name.
6181 TL
.setNameEndLoc(DS
.getEndLoc());
6183 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL
) {
6184 TypeSourceInfo
*RepTInfo
= nullptr;
6185 Sema::GetTypeFromParser(DS
.getRepAsType(), &RepTInfo
);
6186 TL
.copy(RepTInfo
->getTypeLoc());
6188 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL
) {
6189 TypeSourceInfo
*RepTInfo
= nullptr;
6190 Sema::GetTypeFromParser(DS
.getRepAsType(), &RepTInfo
);
6191 TL
.copy(RepTInfo
->getTypeLoc());
6193 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL
) {
6194 TypeSourceInfo
*TInfo
= nullptr;
6195 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6197 // If we got no declarator info from previous Sema routines,
6198 // just fill with the typespec loc.
6200 TL
.initialize(Context
, DS
.getTypeSpecTypeNameLoc());
6204 TypeLoc OldTL
= TInfo
->getTypeLoc();
6205 if (TInfo
->getType()->getAs
<ElaboratedType
>()) {
6206 ElaboratedTypeLoc ElabTL
= OldTL
.castAs
<ElaboratedTypeLoc
>();
6207 TemplateSpecializationTypeLoc NamedTL
= ElabTL
.getNamedTypeLoc()
6208 .castAs
<TemplateSpecializationTypeLoc
>();
6211 TL
.copy(OldTL
.castAs
<TemplateSpecializationTypeLoc
>());
6212 assert(TL
.getRAngleLoc() == OldTL
.castAs
<TemplateSpecializationTypeLoc
>().getRAngleLoc());
6216 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL
) {
6217 assert(DS
.getTypeSpecType() == DeclSpec::TST_typeofExpr
||
6218 DS
.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr
);
6219 TL
.setTypeofLoc(DS
.getTypeSpecTypeLoc());
6220 TL
.setParensRange(DS
.getTypeofParensRange());
6222 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL
) {
6223 assert(DS
.getTypeSpecType() == DeclSpec::TST_typeofType
||
6224 DS
.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
);
6225 TL
.setTypeofLoc(DS
.getTypeSpecTypeLoc());
6226 TL
.setParensRange(DS
.getTypeofParensRange());
6227 assert(DS
.getRepAsType());
6228 TypeSourceInfo
*TInfo
= nullptr;
6229 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6230 TL
.setUnmodifiedTInfo(TInfo
);
6232 void VisitDecltypeTypeLoc(DecltypeTypeLoc TL
) {
6233 assert(DS
.getTypeSpecType() == DeclSpec::TST_decltype
);
6234 TL
.setDecltypeLoc(DS
.getTypeSpecTypeLoc());
6235 TL
.setRParenLoc(DS
.getTypeofParensRange().getEnd());
6237 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL
) {
6238 assert(DS
.isTransformTypeTrait(DS
.getTypeSpecType()));
6239 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6240 TL
.setParensRange(DS
.getTypeofParensRange());
6241 assert(DS
.getRepAsType());
6242 TypeSourceInfo
*TInfo
= nullptr;
6243 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6244 TL
.setUnderlyingTInfo(TInfo
);
6246 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL
) {
6247 // By default, use the source location of the type specifier.
6248 TL
.setBuiltinLoc(DS
.getTypeSpecTypeLoc());
6249 if (TL
.needsExtraLocalData()) {
6250 // Set info for the written builtin specifiers.
6251 TL
.getWrittenBuiltinSpecs() = DS
.getWrittenBuiltinSpecs();
6252 // Try to have a meaningful source location.
6253 if (TL
.getWrittenSignSpec() != TypeSpecifierSign::Unspecified
)
6254 TL
.expandBuiltinRange(DS
.getTypeSpecSignLoc());
6255 if (TL
.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified
)
6256 TL
.expandBuiltinRange(DS
.getTypeSpecWidthRange());
6259 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL
) {
6260 if (DS
.getTypeSpecType() == TST_typename
) {
6261 TypeSourceInfo
*TInfo
= nullptr;
6262 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6264 if (auto ETL
= TInfo
->getTypeLoc().getAs
<ElaboratedTypeLoc
>()) {
6269 const ElaboratedType
*T
= TL
.getTypePtr();
6270 TL
.setElaboratedKeywordLoc(T
->getKeyword() != ETK_None
6271 ? DS
.getTypeSpecTypeLoc()
6272 : SourceLocation());
6273 const CXXScopeSpec
& SS
= DS
.getTypeSpecScope();
6274 TL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
6275 Visit(TL
.getNextTypeLoc().getUnqualifiedLoc());
6277 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL
) {
6278 assert(DS
.getTypeSpecType() == TST_typename
);
6279 TypeSourceInfo
*TInfo
= nullptr;
6280 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6282 TL
.copy(TInfo
->getTypeLoc().castAs
<DependentNameTypeLoc
>());
6284 void VisitDependentTemplateSpecializationTypeLoc(
6285 DependentTemplateSpecializationTypeLoc TL
) {
6286 assert(DS
.getTypeSpecType() == TST_typename
);
6287 TypeSourceInfo
*TInfo
= nullptr;
6288 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6291 TInfo
->getTypeLoc().castAs
<DependentTemplateSpecializationTypeLoc
>());
6293 void VisitAutoTypeLoc(AutoTypeLoc TL
) {
6294 assert(DS
.getTypeSpecType() == TST_auto
||
6295 DS
.getTypeSpecType() == TST_decltype_auto
||
6296 DS
.getTypeSpecType() == TST_auto_type
||
6297 DS
.getTypeSpecType() == TST_unspecified
);
6298 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6299 if (DS
.getTypeSpecType() == TST_decltype_auto
)
6300 TL
.setRParenLoc(DS
.getTypeofParensRange().getEnd());
6301 if (!DS
.isConstrainedAuto())
6303 TemplateIdAnnotation
*TemplateId
= DS
.getRepAsTemplateId();
6306 if (DS
.getTypeSpecScope().isNotEmpty())
6307 TL
.setNestedNameSpecifierLoc(
6308 DS
.getTypeSpecScope().getWithLocInContext(Context
));
6310 TL
.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
6311 TL
.setTemplateKWLoc(TemplateId
->TemplateKWLoc
);
6312 TL
.setConceptNameLoc(TemplateId
->TemplateNameLoc
);
6313 TL
.setFoundDecl(nullptr);
6314 TL
.setLAngleLoc(TemplateId
->LAngleLoc
);
6315 TL
.setRAngleLoc(TemplateId
->RAngleLoc
);
6316 if (TemplateId
->NumArgs
== 0)
6318 TemplateArgumentListInfo TemplateArgsInfo
;
6319 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
6320 TemplateId
->NumArgs
);
6321 SemaRef
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
6322 for (unsigned I
= 0; I
< TemplateId
->NumArgs
; ++I
)
6323 TL
.setArgLocInfo(I
, TemplateArgsInfo
.arguments()[I
].getLocInfo());
6325 void VisitTagTypeLoc(TagTypeLoc TL
) {
6326 TL
.setNameLoc(DS
.getTypeSpecTypeNameLoc());
6328 void VisitAtomicTypeLoc(AtomicTypeLoc TL
) {
6329 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6330 // or an _Atomic qualifier.
6331 if (DS
.getTypeSpecType() == DeclSpec::TST_atomic
) {
6332 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6333 TL
.setParensRange(DS
.getTypeofParensRange());
6335 TypeSourceInfo
*TInfo
= nullptr;
6336 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6338 TL
.getValueLoc().initializeFullCopy(TInfo
->getTypeLoc());
6340 TL
.setKWLoc(DS
.getAtomicSpecLoc());
6341 // No parens, to indicate this was spelled as an _Atomic qualifier.
6342 TL
.setParensRange(SourceRange());
6343 Visit(TL
.getValueLoc());
6347 void VisitPipeTypeLoc(PipeTypeLoc TL
) {
6348 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6350 TypeSourceInfo
*TInfo
= nullptr;
6351 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6352 TL
.getValueLoc().initializeFullCopy(TInfo
->getTypeLoc());
6355 void VisitExtIntTypeLoc(BitIntTypeLoc TL
) {
6356 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6359 void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL
) {
6360 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6363 void VisitTypeLoc(TypeLoc TL
) {
6364 // FIXME: add other typespec types and change this to an assert.
6365 TL
.initialize(Context
, DS
.getTypeSpecTypeLoc());
6369 class DeclaratorLocFiller
: public TypeLocVisitor
<DeclaratorLocFiller
> {
6370 ASTContext
&Context
;
6371 TypeProcessingState
&State
;
6372 const DeclaratorChunk
&Chunk
;
6375 DeclaratorLocFiller(ASTContext
&Context
, TypeProcessingState
&State
,
6376 const DeclaratorChunk
&Chunk
)
6377 : Context(Context
), State(State
), Chunk(Chunk
) {}
6379 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL
) {
6380 llvm_unreachable("qualified type locs not expected here!");
6382 void VisitDecayedTypeLoc(DecayedTypeLoc TL
) {
6383 llvm_unreachable("decayed type locs not expected here!");
6386 void VisitAttributedTypeLoc(AttributedTypeLoc TL
) {
6387 fillAttributedTypeLoc(TL
, State
);
6389 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL
) {
6392 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL
) {
6395 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL
) {
6396 assert(Chunk
.Kind
== DeclaratorChunk::BlockPointer
);
6397 TL
.setCaretLoc(Chunk
.Loc
);
6399 void VisitPointerTypeLoc(PointerTypeLoc TL
) {
6400 assert(Chunk
.Kind
== DeclaratorChunk::Pointer
);
6401 TL
.setStarLoc(Chunk
.Loc
);
6403 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL
) {
6404 assert(Chunk
.Kind
== DeclaratorChunk::Pointer
);
6405 TL
.setStarLoc(Chunk
.Loc
);
6407 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL
) {
6408 assert(Chunk
.Kind
== DeclaratorChunk::MemberPointer
);
6409 const CXXScopeSpec
& SS
= Chunk
.Mem
.Scope();
6410 NestedNameSpecifierLoc NNSLoc
= SS
.getWithLocInContext(Context
);
6412 const Type
* ClsTy
= TL
.getClass();
6413 QualType ClsQT
= QualType(ClsTy
, 0);
6414 TypeSourceInfo
*ClsTInfo
= Context
.CreateTypeSourceInfo(ClsQT
, 0);
6415 // Now copy source location info into the type loc component.
6416 TypeLoc ClsTL
= ClsTInfo
->getTypeLoc();
6417 switch (NNSLoc
.getNestedNameSpecifier()->getKind()) {
6418 case NestedNameSpecifier::Identifier
:
6419 assert(isa
<DependentNameType
>(ClsTy
) && "Unexpected TypeLoc");
6421 DependentNameTypeLoc DNTLoc
= ClsTL
.castAs
<DependentNameTypeLoc
>();
6422 DNTLoc
.setElaboratedKeywordLoc(SourceLocation());
6423 DNTLoc
.setQualifierLoc(NNSLoc
.getPrefix());
6424 DNTLoc
.setNameLoc(NNSLoc
.getLocalBeginLoc());
6428 case NestedNameSpecifier::TypeSpec
:
6429 case NestedNameSpecifier::TypeSpecWithTemplate
:
6430 if (isa
<ElaboratedType
>(ClsTy
)) {
6431 ElaboratedTypeLoc ETLoc
= ClsTL
.castAs
<ElaboratedTypeLoc
>();
6432 ETLoc
.setElaboratedKeywordLoc(SourceLocation());
6433 ETLoc
.setQualifierLoc(NNSLoc
.getPrefix());
6434 TypeLoc NamedTL
= ETLoc
.getNamedTypeLoc();
6435 NamedTL
.initializeFullCopy(NNSLoc
.getTypeLoc());
6437 ClsTL
.initializeFullCopy(NNSLoc
.getTypeLoc());
6441 case NestedNameSpecifier::Namespace
:
6442 case NestedNameSpecifier::NamespaceAlias
:
6443 case NestedNameSpecifier::Global
:
6444 case NestedNameSpecifier::Super
:
6445 llvm_unreachable("Nested-name-specifier must name a type");
6448 // Finally fill in MemberPointerLocInfo fields.
6449 TL
.setStarLoc(Chunk
.Mem
.StarLoc
);
6450 TL
.setClassTInfo(ClsTInfo
);
6452 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL
) {
6453 assert(Chunk
.Kind
== DeclaratorChunk::Reference
);
6454 // 'Amp' is misleading: this might have been originally
6455 /// spelled with AmpAmp.
6456 TL
.setAmpLoc(Chunk
.Loc
);
6458 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL
) {
6459 assert(Chunk
.Kind
== DeclaratorChunk::Reference
);
6460 assert(!Chunk
.Ref
.LValueRef
);
6461 TL
.setAmpAmpLoc(Chunk
.Loc
);
6463 void VisitArrayTypeLoc(ArrayTypeLoc TL
) {
6464 assert(Chunk
.Kind
== DeclaratorChunk::Array
);
6465 TL
.setLBracketLoc(Chunk
.Loc
);
6466 TL
.setRBracketLoc(Chunk
.EndLoc
);
6467 TL
.setSizeExpr(static_cast<Expr
*>(Chunk
.Arr
.NumElts
));
6469 void VisitFunctionTypeLoc(FunctionTypeLoc TL
) {
6470 assert(Chunk
.Kind
== DeclaratorChunk::Function
);
6471 TL
.setLocalRangeBegin(Chunk
.Loc
);
6472 TL
.setLocalRangeEnd(Chunk
.EndLoc
);
6474 const DeclaratorChunk::FunctionTypeInfo
&FTI
= Chunk
.Fun
;
6475 TL
.setLParenLoc(FTI
.getLParenLoc());
6476 TL
.setRParenLoc(FTI
.getRParenLoc());
6477 for (unsigned i
= 0, e
= TL
.getNumParams(), tpi
= 0; i
!= e
; ++i
) {
6478 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
6479 TL
.setParam(tpi
++, Param
);
6481 TL
.setExceptionSpecRange(FTI
.getExceptionSpecRange());
6483 void VisitParenTypeLoc(ParenTypeLoc TL
) {
6484 assert(Chunk
.Kind
== DeclaratorChunk::Paren
);
6485 TL
.setLParenLoc(Chunk
.Loc
);
6486 TL
.setRParenLoc(Chunk
.EndLoc
);
6488 void VisitPipeTypeLoc(PipeTypeLoc TL
) {
6489 assert(Chunk
.Kind
== DeclaratorChunk::Pipe
);
6490 TL
.setKWLoc(Chunk
.Loc
);
6492 void VisitBitIntTypeLoc(BitIntTypeLoc TL
) {
6493 TL
.setNameLoc(Chunk
.Loc
);
6495 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL
) {
6496 TL
.setExpansionLoc(Chunk
.Loc
);
6498 void VisitVectorTypeLoc(VectorTypeLoc TL
) { TL
.setNameLoc(Chunk
.Loc
); }
6499 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL
) {
6500 TL
.setNameLoc(Chunk
.Loc
);
6502 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL
) {
6503 TL
.setNameLoc(Chunk
.Loc
);
6506 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL
) {
6507 TL
.setNameLoc(Chunk
.Loc
);
6509 void VisitMatrixTypeLoc(MatrixTypeLoc TL
) {
6510 fillMatrixTypeLoc(TL
, Chunk
.getAttrs());
6513 void VisitTypeLoc(TypeLoc TL
) {
6514 llvm_unreachable("unsupported TypeLoc kind in declarator!");
6517 } // end anonymous namespace
6519 static void fillAtomicQualLoc(AtomicTypeLoc ATL
, const DeclaratorChunk
&Chunk
) {
6521 switch (Chunk
.Kind
) {
6522 case DeclaratorChunk::Function
:
6523 case DeclaratorChunk::Array
:
6524 case DeclaratorChunk::Paren
:
6525 case DeclaratorChunk::Pipe
:
6526 llvm_unreachable("cannot be _Atomic qualified");
6528 case DeclaratorChunk::Pointer
:
6529 Loc
= Chunk
.Ptr
.AtomicQualLoc
;
6532 case DeclaratorChunk::BlockPointer
:
6533 case DeclaratorChunk::Reference
:
6534 case DeclaratorChunk::MemberPointer
:
6535 // FIXME: Provide a source location for the _Atomic keyword.
6540 ATL
.setParensRange(SourceRange());
6544 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL
,
6545 const ParsedAttributesView
&Attrs
) {
6546 for (const ParsedAttr
&AL
: Attrs
) {
6547 if (AL
.getKind() == ParsedAttr::AT_AddressSpace
) {
6548 DASTL
.setAttrNameLoc(AL
.getLoc());
6549 DASTL
.setAttrExprOperand(AL
.getArgAsExpr(0));
6550 DASTL
.setAttrOperandParensRange(SourceRange());
6556 "no address_space attribute found at the expected location!");
6559 /// Create and instantiate a TypeSourceInfo with type source information.
6561 /// \param T QualType referring to the type as written in source code.
6563 /// \param ReturnTypeInfo For declarators whose return type does not show
6564 /// up in the normal place in the declaration specifiers (such as a C++
6565 /// conversion function), this pointer will refer to a type source information
6566 /// for that return type.
6567 static TypeSourceInfo
*
6568 GetTypeSourceInfoForDeclarator(TypeProcessingState
&State
,
6569 QualType T
, TypeSourceInfo
*ReturnTypeInfo
) {
6570 Sema
&S
= State
.getSema();
6571 Declarator
&D
= State
.getDeclarator();
6573 TypeSourceInfo
*TInfo
= S
.Context
.CreateTypeSourceInfo(T
);
6574 UnqualTypeLoc CurrTL
= TInfo
->getTypeLoc().getUnqualifiedLoc();
6576 // Handle parameter packs whose type is a pack expansion.
6577 if (isa
<PackExpansionType
>(T
)) {
6578 CurrTL
.castAs
<PackExpansionTypeLoc
>().setEllipsisLoc(D
.getEllipsisLoc());
6579 CurrTL
= CurrTL
.getNextTypeLoc().getUnqualifiedLoc();
6582 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
6583 // Microsoft property fields can have multiple sizeless array chunks
6584 // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6585 if (CurrTL
.getTypeLocClass() == TypeLoc::IncompleteArray
&& e
!= 1 &&
6586 D
.getDeclSpec().getAttributes().hasMSPropertyAttr())
6589 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6590 // declarator chunk.
6591 if (AtomicTypeLoc ATL
= CurrTL
.getAs
<AtomicTypeLoc
>()) {
6592 fillAtomicQualLoc(ATL
, D
.getTypeObject(i
));
6593 CurrTL
= ATL
.getValueLoc().getUnqualifiedLoc();
6596 bool HasDesugaredTypeLoc
= true;
6597 while (HasDesugaredTypeLoc
) {
6598 switch (CurrTL
.getTypeLocClass()) {
6599 case TypeLoc::MacroQualified
: {
6600 auto TL
= CurrTL
.castAs
<MacroQualifiedTypeLoc
>();
6602 State
.getExpansionLocForMacroQualifiedType(TL
.getTypePtr()));
6603 CurrTL
= TL
.getNextTypeLoc().getUnqualifiedLoc();
6607 case TypeLoc::Attributed
: {
6608 auto TL
= CurrTL
.castAs
<AttributedTypeLoc
>();
6609 fillAttributedTypeLoc(TL
, State
);
6610 CurrTL
= TL
.getNextTypeLoc().getUnqualifiedLoc();
6614 case TypeLoc::Adjusted
:
6615 case TypeLoc::BTFTagAttributed
: {
6616 CurrTL
= CurrTL
.getNextTypeLoc().getUnqualifiedLoc();
6620 case TypeLoc::DependentAddressSpace
: {
6621 auto TL
= CurrTL
.castAs
<DependentAddressSpaceTypeLoc
>();
6622 fillDependentAddressSpaceTypeLoc(TL
, D
.getTypeObject(i
).getAttrs());
6623 CurrTL
= TL
.getPointeeTypeLoc().getUnqualifiedLoc();
6628 HasDesugaredTypeLoc
= false;
6633 DeclaratorLocFiller(S
.Context
, State
, D
.getTypeObject(i
)).Visit(CurrTL
);
6634 CurrTL
= CurrTL
.getNextTypeLoc().getUnqualifiedLoc();
6637 // If we have different source information for the return type, use
6638 // that. This really only applies to C++ conversion functions.
6639 if (ReturnTypeInfo
) {
6640 TypeLoc TL
= ReturnTypeInfo
->getTypeLoc();
6641 assert(TL
.getFullDataSize() == CurrTL
.getFullDataSize());
6642 memcpy(CurrTL
.getOpaqueData(), TL
.getOpaqueData(), TL
.getFullDataSize());
6644 TypeSpecLocFiller(S
, S
.Context
, State
, D
.getDeclSpec()).Visit(CurrTL
);
6650 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6651 ParsedType
Sema::CreateParsedType(QualType T
, TypeSourceInfo
*TInfo
) {
6652 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6653 // and Sema during declaration parsing. Try deallocating/caching them when
6654 // it's appropriate, instead of allocating them and keeping them around.
6655 LocInfoType
*LocT
= (LocInfoType
*)BumpAlloc
.Allocate(sizeof(LocInfoType
),
6657 new (LocT
) LocInfoType(T
, TInfo
);
6658 assert(LocT
->getTypeClass() != T
->getTypeClass() &&
6659 "LocInfoType's TypeClass conflicts with an existing Type class");
6660 return ParsedType::make(QualType(LocT
, 0));
6663 void LocInfoType::getAsStringInternal(std::string
&Str
,
6664 const PrintingPolicy
&Policy
) const {
6665 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6666 " was used directly instead of getting the QualType through"
6667 " GetTypeFromParser");
6670 TypeResult
Sema::ActOnTypeName(Scope
*S
, Declarator
&D
) {
6671 // C99 6.7.6: Type names have no identifier. This is already validated by
6673 assert(D
.getIdentifier() == nullptr &&
6674 "Type name should have no identifier!");
6676 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
6677 QualType T
= TInfo
->getType();
6678 if (D
.isInvalidType())
6681 // Make sure there are no unused decl attributes on the declarator.
6682 // We don't want to do this for ObjC parameters because we're going
6683 // to apply them to the actual parameter declaration.
6684 // Likewise, we don't want to do this for alias declarations, because
6685 // we are actually going to build a declaration from this eventually.
6686 if (D
.getContext() != DeclaratorContext::ObjCParameter
&&
6687 D
.getContext() != DeclaratorContext::AliasDecl
&&
6688 D
.getContext() != DeclaratorContext::AliasTemplate
)
6689 checkUnusedDeclAttributes(D
);
6691 if (getLangOpts().CPlusPlus
) {
6692 // Check that there are no default arguments (C++ only).
6693 CheckExtraCXXDefaultArguments(D
);
6696 return CreateParsedType(T
, TInfo
);
6699 ParsedType
Sema::ActOnObjCInstanceType(SourceLocation Loc
) {
6700 QualType T
= Context
.getObjCInstanceType();
6701 TypeSourceInfo
*TInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
6702 return CreateParsedType(T
, TInfo
);
6705 //===----------------------------------------------------------------------===//
6706 // Type Attribute Processing
6707 //===----------------------------------------------------------------------===//
6709 /// Build an AddressSpace index from a constant expression and diagnose any
6710 /// errors related to invalid address_spaces. Returns true on successfully
6711 /// building an AddressSpace index.
6712 static bool BuildAddressSpaceIndex(Sema
&S
, LangAS
&ASIdx
,
6713 const Expr
*AddrSpace
,
6714 SourceLocation AttrLoc
) {
6715 if (!AddrSpace
->isValueDependent()) {
6716 std::optional
<llvm::APSInt
> OptAddrSpace
=
6717 AddrSpace
->getIntegerConstantExpr(S
.Context
);
6718 if (!OptAddrSpace
) {
6719 S
.Diag(AttrLoc
, diag::err_attribute_argument_type
)
6720 << "'address_space'" << AANT_ArgumentIntegerConstant
6721 << AddrSpace
->getSourceRange();
6724 llvm::APSInt
&addrSpace
= *OptAddrSpace
;
6727 if (addrSpace
.isSigned()) {
6728 if (addrSpace
.isNegative()) {
6729 S
.Diag(AttrLoc
, diag::err_attribute_address_space_negative
)
6730 << AddrSpace
->getSourceRange();
6733 addrSpace
.setIsSigned(false);
6736 llvm::APSInt
max(addrSpace
.getBitWidth());
6738 Qualifiers::MaxAddressSpace
- (unsigned)LangAS::FirstTargetAddressSpace
;
6740 if (addrSpace
> max
) {
6741 S
.Diag(AttrLoc
, diag::err_attribute_address_space_too_high
)
6742 << (unsigned)max
.getZExtValue() << AddrSpace
->getSourceRange();
6747 getLangASFromTargetAS(static_cast<unsigned>(addrSpace
.getZExtValue()));
6751 // Default value for DependentAddressSpaceTypes
6752 ASIdx
= LangAS::Default
;
6756 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6757 /// is uninstantiated. If instantiated it will apply the appropriate address
6758 /// space to the type. This function allows dependent template variables to be
6759 /// used in conjunction with the address_space attribute
6760 QualType
Sema::BuildAddressSpaceAttr(QualType
&T
, LangAS ASIdx
, Expr
*AddrSpace
,
6761 SourceLocation AttrLoc
) {
6762 if (!AddrSpace
->isValueDependent()) {
6763 if (DiagnoseMultipleAddrSpaceAttributes(*this, T
.getAddressSpace(), ASIdx
,
6767 return Context
.getAddrSpaceQualType(T
, ASIdx
);
6770 // A check with similar intentions as checking if a type already has an
6771 // address space except for on a dependent types, basically if the
6772 // current type is already a DependentAddressSpaceType then its already
6773 // lined up to have another address space on it and we can't have
6774 // multiple address spaces on the one pointer indirection
6775 if (T
->getAs
<DependentAddressSpaceType
>()) {
6776 Diag(AttrLoc
, diag::err_attribute_address_multiple_qualifiers
);
6780 return Context
.getDependentAddressSpaceType(T
, AddrSpace
, AttrLoc
);
6783 QualType
Sema::BuildAddressSpaceAttr(QualType
&T
, Expr
*AddrSpace
,
6784 SourceLocation AttrLoc
) {
6786 if (!BuildAddressSpaceIndex(*this, ASIdx
, AddrSpace
, AttrLoc
))
6788 return BuildAddressSpaceAttr(T
, ASIdx
, AddrSpace
, AttrLoc
);
6791 static void HandleBTFTypeTagAttribute(QualType
&Type
, const ParsedAttr
&Attr
,
6792 TypeProcessingState
&State
) {
6793 Sema
&S
= State
.getSema();
6795 // Check the number of attribute arguments.
6796 if (Attr
.getNumArgs() != 1) {
6797 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
6803 // Ensure the argument is a string.
6804 auto *StrLiteral
= dyn_cast
<StringLiteral
>(Attr
.getArgAsExpr(0));
6806 S
.Diag(Attr
.getLoc(), diag::err_attribute_argument_type
)
6807 << Attr
<< AANT_ArgumentString
;
6812 ASTContext
&Ctx
= S
.Context
;
6813 StringRef BTFTypeTag
= StrLiteral
->getString();
6814 Type
= State
.getBTFTagAttributedType(
6815 ::new (Ctx
) BTFTypeTagAttr(Ctx
, Attr
, BTFTypeTag
), Type
);
6818 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6819 /// specified type. The attribute contains 1 argument, the id of the address
6820 /// space for the type.
6821 static void HandleAddressSpaceTypeAttribute(QualType
&Type
,
6822 const ParsedAttr
&Attr
,
6823 TypeProcessingState
&State
) {
6824 Sema
&S
= State
.getSema();
6826 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6827 // qualified by an address-space qualifier."
6828 if (Type
->isFunctionType()) {
6829 S
.Diag(Attr
.getLoc(), diag::err_attribute_address_function_type
);
6835 if (Attr
.getKind() == ParsedAttr::AT_AddressSpace
) {
6837 // Check the attribute arguments.
6838 if (Attr
.getNumArgs() != 1) {
6839 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
6845 Expr
*ASArgExpr
= static_cast<Expr
*>(Attr
.getArgAsExpr(0));
6847 if (!BuildAddressSpaceIndex(S
, ASIdx
, ASArgExpr
, Attr
.getLoc())) {
6852 ASTContext
&Ctx
= S
.Context
;
6854 ::new (Ctx
) AddressSpaceAttr(Ctx
, Attr
, static_cast<unsigned>(ASIdx
));
6856 // If the expression is not value dependent (not templated), then we can
6857 // apply the address space qualifiers just to the equivalent type.
6858 // Otherwise, we make an AttributedType with the modified and equivalent
6859 // type the same, and wrap it in a DependentAddressSpaceType. When this
6860 // dependent type is resolved, the qualifier is added to the equivalent type
6863 if (!ASArgExpr
->isValueDependent()) {
6864 QualType EquivType
=
6865 S
.BuildAddressSpaceAttr(Type
, ASIdx
, ASArgExpr
, Attr
.getLoc());
6866 if (EquivType
.isNull()) {
6870 T
= State
.getAttributedType(ASAttr
, Type
, EquivType
);
6872 T
= State
.getAttributedType(ASAttr
, Type
, Type
);
6873 T
= S
.BuildAddressSpaceAttr(T
, ASIdx
, ASArgExpr
, Attr
.getLoc());
6881 // The keyword-based type attributes imply which address space to use.
6882 ASIdx
= S
.getLangOpts().SYCLIsDevice
? Attr
.asSYCLLangAS()
6883 : Attr
.asOpenCLLangAS();
6884 if (S
.getLangOpts().HLSL
)
6885 ASIdx
= Attr
.asHLSLLangAS();
6887 if (ASIdx
== LangAS::Default
)
6888 llvm_unreachable("Invalid address space");
6890 if (DiagnoseMultipleAddrSpaceAttributes(S
, Type
.getAddressSpace(), ASIdx
,
6896 Type
= S
.Context
.getAddrSpaceQualType(Type
, ASIdx
);
6900 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6901 /// attribute on the specified type.
6903 /// Returns 'true' if the attribute was handled.
6904 static bool handleObjCOwnershipTypeAttr(TypeProcessingState
&state
,
6905 ParsedAttr
&attr
, QualType
&type
) {
6906 bool NonObjCPointer
= false;
6908 if (!type
->isDependentType() && !type
->isUndeducedType()) {
6909 if (const PointerType
*ptr
= type
->getAs
<PointerType
>()) {
6910 QualType pointee
= ptr
->getPointeeType();
6911 if (pointee
->isObjCRetainableType() || pointee
->isPointerType())
6913 // It is important not to lose the source info that there was an attribute
6914 // applied to non-objc pointer. We will create an attributed type but
6915 // its type will be the same as the original type.
6916 NonObjCPointer
= true;
6917 } else if (!type
->isObjCRetainableType()) {
6921 // Don't accept an ownership attribute in the declspec if it would
6922 // just be the return type of a block pointer.
6923 if (state
.isProcessingDeclSpec()) {
6924 Declarator
&D
= state
.getDeclarator();
6925 if (maybeMovePastReturnType(D
, D
.getNumTypeObjects(),
6926 /*onlyBlockPointers=*/true))
6931 Sema
&S
= state
.getSema();
6932 SourceLocation AttrLoc
= attr
.getLoc();
6933 if (AttrLoc
.isMacroID())
6935 S
.getSourceManager().getImmediateExpansionRange(AttrLoc
).getBegin();
6937 if (!attr
.isArgIdent(0)) {
6938 S
.Diag(AttrLoc
, diag::err_attribute_argument_type
) << attr
6939 << AANT_ArgumentString
;
6944 IdentifierInfo
*II
= attr
.getArgAsIdent(0)->Ident
;
6945 Qualifiers::ObjCLifetime lifetime
;
6946 if (II
->isStr("none"))
6947 lifetime
= Qualifiers::OCL_ExplicitNone
;
6948 else if (II
->isStr("strong"))
6949 lifetime
= Qualifiers::OCL_Strong
;
6950 else if (II
->isStr("weak"))
6951 lifetime
= Qualifiers::OCL_Weak
;
6952 else if (II
->isStr("autoreleasing"))
6953 lifetime
= Qualifiers::OCL_Autoreleasing
;
6955 S
.Diag(AttrLoc
, diag::warn_attribute_type_not_supported
) << attr
<< II
;
6960 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6961 // outside of ARC mode.
6962 if (!S
.getLangOpts().ObjCAutoRefCount
&&
6963 lifetime
!= Qualifiers::OCL_Weak
&&
6964 lifetime
!= Qualifiers::OCL_ExplicitNone
) {
6968 SplitQualType underlyingType
= type
.split();
6970 // Check for redundant/conflicting ownership qualifiers.
6971 if (Qualifiers::ObjCLifetime previousLifetime
6972 = type
.getQualifiers().getObjCLifetime()) {
6973 // If it's written directly, that's an error.
6974 if (S
.Context
.hasDirectOwnershipQualifier(type
)) {
6975 S
.Diag(AttrLoc
, diag::err_attr_objc_ownership_redundant
)
6980 // Otherwise, if the qualifiers actually conflict, pull sugar off
6981 // and remove the ObjCLifetime qualifiers.
6982 if (previousLifetime
!= lifetime
) {
6983 // It's possible to have multiple local ObjCLifetime qualifiers. We
6984 // can't stop after we reach a type that is directly qualified.
6985 const Type
*prevTy
= nullptr;
6986 while (!prevTy
|| prevTy
!= underlyingType
.Ty
) {
6987 prevTy
= underlyingType
.Ty
;
6988 underlyingType
= underlyingType
.getSingleStepDesugaredType();
6990 underlyingType
.Quals
.removeObjCLifetime();
6994 underlyingType
.Quals
.addObjCLifetime(lifetime
);
6996 if (NonObjCPointer
) {
6997 StringRef name
= attr
.getAttrName()->getName();
6999 case Qualifiers::OCL_None
:
7000 case Qualifiers::OCL_ExplicitNone
:
7002 case Qualifiers::OCL_Strong
: name
= "__strong"; break;
7003 case Qualifiers::OCL_Weak
: name
= "__weak"; break;
7004 case Qualifiers::OCL_Autoreleasing
: name
= "__autoreleasing"; break;
7006 S
.Diag(AttrLoc
, diag::warn_type_attribute_wrong_type
) << name
7007 << TDS_ObjCObjOrBlock
<< type
;
7010 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
7011 // because having both 'T' and '__unsafe_unretained T' exist in the type
7012 // system causes unfortunate widespread consistency problems. (For example,
7013 // they're not considered compatible types, and we mangle them identicially
7014 // as template arguments.) These problems are all individually fixable,
7015 // but it's easier to just not add the qualifier and instead sniff it out
7016 // in specific places using isObjCInertUnsafeUnretainedType().
7018 // Doing this does means we miss some trivial consistency checks that
7019 // would've triggered in ARC, but that's better than trying to solve all
7020 // the coexistence problems with __unsafe_unretained.
7021 if (!S
.getLangOpts().ObjCAutoRefCount
&&
7022 lifetime
== Qualifiers::OCL_ExplicitNone
) {
7023 type
= state
.getAttributedType(
7024 createSimpleAttr
<ObjCInertUnsafeUnretainedAttr
>(S
.Context
, attr
),
7029 QualType origType
= type
;
7030 if (!NonObjCPointer
)
7031 type
= S
.Context
.getQualifiedType(underlyingType
);
7033 // If we have a valid source location for the attribute, use an
7034 // AttributedType instead.
7035 if (AttrLoc
.isValid()) {
7036 type
= state
.getAttributedType(::new (S
.Context
)
7037 ObjCOwnershipAttr(S
.Context
, attr
, II
),
7041 auto diagnoseOrDelay
= [](Sema
&S
, SourceLocation loc
,
7042 unsigned diagnostic
, QualType type
) {
7043 if (S
.DelayedDiagnostics
.shouldDelayDiagnostics()) {
7044 S
.DelayedDiagnostics
.add(
7045 sema::DelayedDiagnostic::makeForbiddenType(
7046 S
.getSourceManager().getExpansionLoc(loc
),
7047 diagnostic
, type
, /*ignored*/ 0));
7049 S
.Diag(loc
, diagnostic
);
7053 // Sometimes, __weak isn't allowed.
7054 if (lifetime
== Qualifiers::OCL_Weak
&&
7055 !S
.getLangOpts().ObjCWeak
&& !NonObjCPointer
) {
7057 // Use a specialized diagnostic if the runtime just doesn't support them.
7058 unsigned diagnostic
=
7059 (S
.getLangOpts().ObjCWeakRuntime
? diag::err_arc_weak_disabled
7060 : diag::err_arc_weak_no_runtime
);
7062 // In any case, delay the diagnostic until we know what we're parsing.
7063 diagnoseOrDelay(S
, AttrLoc
, diagnostic
, type
);
7069 // Forbid __weak for class objects marked as
7070 // objc_arc_weak_reference_unavailable
7071 if (lifetime
== Qualifiers::OCL_Weak
) {
7072 if (const ObjCObjectPointerType
*ObjT
=
7073 type
->getAs
<ObjCObjectPointerType
>()) {
7074 if (ObjCInterfaceDecl
*Class
= ObjT
->getInterfaceDecl()) {
7075 if (Class
->isArcWeakrefUnavailable()) {
7076 S
.Diag(AttrLoc
, diag::err_arc_unsupported_weak_class
);
7077 S
.Diag(ObjT
->getInterfaceDecl()->getLocation(),
7078 diag::note_class_declared
);
7087 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
7088 /// attribute on the specified type. Returns true to indicate that
7089 /// the attribute was handled, false to indicate that the type does
7090 /// not permit the attribute.
7091 static bool handleObjCGCTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
7093 Sema
&S
= state
.getSema();
7095 // Delay if this isn't some kind of pointer.
7096 if (!type
->isPointerType() &&
7097 !type
->isObjCObjectPointerType() &&
7098 !type
->isBlockPointerType())
7101 if (type
.getObjCGCAttr() != Qualifiers::GCNone
) {
7102 S
.Diag(attr
.getLoc(), diag::err_attribute_multiple_objc_gc
);
7107 // Check the attribute arguments.
7108 if (!attr
.isArgIdent(0)) {
7109 S
.Diag(attr
.getLoc(), diag::err_attribute_argument_type
)
7110 << attr
<< AANT_ArgumentString
;
7114 Qualifiers::GC GCAttr
;
7115 if (attr
.getNumArgs() > 1) {
7116 S
.Diag(attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << attr
7122 IdentifierInfo
*II
= attr
.getArgAsIdent(0)->Ident
;
7123 if (II
->isStr("weak"))
7124 GCAttr
= Qualifiers::Weak
;
7125 else if (II
->isStr("strong"))
7126 GCAttr
= Qualifiers::Strong
;
7128 S
.Diag(attr
.getLoc(), diag::warn_attribute_type_not_supported
)
7134 QualType origType
= type
;
7135 type
= S
.Context
.getObjCGCQualType(origType
, GCAttr
);
7137 // Make an attributed type to preserve the source information.
7138 if (attr
.getLoc().isValid())
7139 type
= state
.getAttributedType(
7140 ::new (S
.Context
) ObjCGCAttr(S
.Context
, attr
, II
), origType
, type
);
7146 /// A helper class to unwrap a type down to a function for the
7147 /// purposes of applying attributes there.
7150 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
7151 /// if (unwrapped.isFunctionType()) {
7152 /// const FunctionType *fn = unwrapped.get();
7153 /// // change fn somehow
7154 /// T = unwrapped.wrap(fn);
7156 struct FunctionTypeUnwrapper
{
7170 const FunctionType
*Fn
;
7171 SmallVector
<unsigned char /*WrapKind*/, 8> Stack
;
7173 FunctionTypeUnwrapper(Sema
&S
, QualType T
) : Original(T
) {
7175 const Type
*Ty
= T
.getTypePtr();
7176 if (isa
<FunctionType
>(Ty
)) {
7177 Fn
= cast
<FunctionType
>(Ty
);
7179 } else if (isa
<ParenType
>(Ty
)) {
7180 T
= cast
<ParenType
>(Ty
)->getInnerType();
7181 Stack
.push_back(Parens
);
7182 } else if (isa
<ConstantArrayType
>(Ty
) || isa
<VariableArrayType
>(Ty
) ||
7183 isa
<IncompleteArrayType
>(Ty
)) {
7184 T
= cast
<ArrayType
>(Ty
)->getElementType();
7185 Stack
.push_back(Array
);
7186 } else if (isa
<PointerType
>(Ty
)) {
7187 T
= cast
<PointerType
>(Ty
)->getPointeeType();
7188 Stack
.push_back(Pointer
);
7189 } else if (isa
<BlockPointerType
>(Ty
)) {
7190 T
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
7191 Stack
.push_back(BlockPointer
);
7192 } else if (isa
<MemberPointerType
>(Ty
)) {
7193 T
= cast
<MemberPointerType
>(Ty
)->getPointeeType();
7194 Stack
.push_back(MemberPointer
);
7195 } else if (isa
<ReferenceType
>(Ty
)) {
7196 T
= cast
<ReferenceType
>(Ty
)->getPointeeType();
7197 Stack
.push_back(Reference
);
7198 } else if (isa
<AttributedType
>(Ty
)) {
7199 T
= cast
<AttributedType
>(Ty
)->getEquivalentType();
7200 Stack
.push_back(Attributed
);
7201 } else if (isa
<MacroQualifiedType
>(Ty
)) {
7202 T
= cast
<MacroQualifiedType
>(Ty
)->getUnderlyingType();
7203 Stack
.push_back(MacroQualified
);
7205 const Type
*DTy
= Ty
->getUnqualifiedDesugaredType();
7211 T
= QualType(DTy
, 0);
7212 Stack
.push_back(Desugar
);
7217 bool isFunctionType() const { return (Fn
!= nullptr); }
7218 const FunctionType
*get() const { return Fn
; }
7220 QualType
wrap(Sema
&S
, const FunctionType
*New
) {
7221 // If T wasn't modified from the unwrapped type, do nothing.
7222 if (New
== get()) return Original
;
7225 return wrap(S
.Context
, Original
, 0);
7229 QualType
wrap(ASTContext
&C
, QualType Old
, unsigned I
) {
7230 if (I
== Stack
.size())
7231 return C
.getQualifiedType(Fn
, Old
.getQualifiers());
7233 // Build up the inner type, applying the qualifiers from the old
7234 // type to the new type.
7235 SplitQualType SplitOld
= Old
.split();
7237 // As a special case, tail-recurse if there are no qualifiers.
7238 if (SplitOld
.Quals
.empty())
7239 return wrap(C
, SplitOld
.Ty
, I
);
7240 return C
.getQualifiedType(wrap(C
, SplitOld
.Ty
, I
), SplitOld
.Quals
);
7243 QualType
wrap(ASTContext
&C
, const Type
*Old
, unsigned I
) {
7244 if (I
== Stack
.size()) return QualType(Fn
, 0);
7246 switch (static_cast<WrapKind
>(Stack
[I
++])) {
7248 // This is the point at which we potentially lose source
7250 return wrap(C
, Old
->getUnqualifiedDesugaredType(), I
);
7253 return wrap(C
, cast
<AttributedType
>(Old
)->getEquivalentType(), I
);
7256 QualType New
= wrap(C
, cast
<ParenType
>(Old
)->getInnerType(), I
);
7257 return C
.getParenType(New
);
7260 case MacroQualified
:
7261 return wrap(C
, cast
<MacroQualifiedType
>(Old
)->getUnderlyingType(), I
);
7264 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(Old
)) {
7265 QualType New
= wrap(C
, CAT
->getElementType(), I
);
7266 return C
.getConstantArrayType(New
, CAT
->getSize(), CAT
->getSizeExpr(),
7267 CAT
->getSizeModifier(),
7268 CAT
->getIndexTypeCVRQualifiers());
7271 if (const auto *VAT
= dyn_cast
<VariableArrayType
>(Old
)) {
7272 QualType New
= wrap(C
, VAT
->getElementType(), I
);
7273 return C
.getVariableArrayType(
7274 New
, VAT
->getSizeExpr(), VAT
->getSizeModifier(),
7275 VAT
->getIndexTypeCVRQualifiers(), VAT
->getBracketsRange());
7278 const auto *IAT
= cast
<IncompleteArrayType
>(Old
);
7279 QualType New
= wrap(C
, IAT
->getElementType(), I
);
7280 return C
.getIncompleteArrayType(New
, IAT
->getSizeModifier(),
7281 IAT
->getIndexTypeCVRQualifiers());
7285 QualType New
= wrap(C
, cast
<PointerType
>(Old
)->getPointeeType(), I
);
7286 return C
.getPointerType(New
);
7289 case BlockPointer
: {
7290 QualType New
= wrap(C
, cast
<BlockPointerType
>(Old
)->getPointeeType(),I
);
7291 return C
.getBlockPointerType(New
);
7294 case MemberPointer
: {
7295 const MemberPointerType
*OldMPT
= cast
<MemberPointerType
>(Old
);
7296 QualType New
= wrap(C
, OldMPT
->getPointeeType(), I
);
7297 return C
.getMemberPointerType(New
, OldMPT
->getClass());
7301 const ReferenceType
*OldRef
= cast
<ReferenceType
>(Old
);
7302 QualType New
= wrap(C
, OldRef
->getPointeeType(), I
);
7303 if (isa
<LValueReferenceType
>(OldRef
))
7304 return C
.getLValueReferenceType(New
, OldRef
->isSpelledAsLValue());
7306 return C
.getRValueReferenceType(New
);
7310 llvm_unreachable("unknown wrapping kind");
7313 } // end anonymous namespace
7315 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState
&State
,
7316 ParsedAttr
&PAttr
, QualType
&Type
) {
7317 Sema
&S
= State
.getSema();
7320 switch (PAttr
.getKind()) {
7321 default: llvm_unreachable("Unknown attribute kind");
7322 case ParsedAttr::AT_Ptr32
:
7323 A
= createSimpleAttr
<Ptr32Attr
>(S
.Context
, PAttr
);
7325 case ParsedAttr::AT_Ptr64
:
7326 A
= createSimpleAttr
<Ptr64Attr
>(S
.Context
, PAttr
);
7328 case ParsedAttr::AT_SPtr
:
7329 A
= createSimpleAttr
<SPtrAttr
>(S
.Context
, PAttr
);
7331 case ParsedAttr::AT_UPtr
:
7332 A
= createSimpleAttr
<UPtrAttr
>(S
.Context
, PAttr
);
7336 std::bitset
<attr::LastAttr
> Attrs
;
7337 QualType Desugared
= Type
;
7339 if (const TypedefType
*TT
= dyn_cast
<TypedefType
>(Desugared
)) {
7340 Desugared
= TT
->desugar();
7342 } else if (const ElaboratedType
*ET
= dyn_cast
<ElaboratedType
>(Desugared
)) {
7343 Desugared
= ET
->desugar();
7346 const AttributedType
*AT
= dyn_cast
<AttributedType
>(Desugared
);
7349 Attrs
[AT
->getAttrKind()] = true;
7350 Desugared
= AT
->getModifiedType();
7353 // You cannot specify duplicate type attributes, so if the attribute has
7354 // already been applied, flag it.
7355 attr::Kind NewAttrKind
= A
->getKind();
7356 if (Attrs
[NewAttrKind
]) {
7357 S
.Diag(PAttr
.getLoc(), diag::warn_duplicate_attribute_exact
) << PAttr
;
7360 Attrs
[NewAttrKind
] = true;
7362 // You cannot have both __sptr and __uptr on the same type, nor can you
7363 // have __ptr32 and __ptr64.
7364 if (Attrs
[attr::Ptr32
] && Attrs
[attr::Ptr64
]) {
7365 S
.Diag(PAttr
.getLoc(), diag::err_attributes_are_not_compatible
)
7367 << "'__ptr64'" << /*isRegularKeyword=*/0;
7369 } else if (Attrs
[attr::SPtr
] && Attrs
[attr::UPtr
]) {
7370 S
.Diag(PAttr
.getLoc(), diag::err_attributes_are_not_compatible
)
7372 << "'__uptr'" << /*isRegularKeyword=*/0;
7376 // Check the raw (i.e., desugared) Canonical type to see if it
7377 // is a pointer type.
7378 if (!isa
<PointerType
>(Desugared
)) {
7379 // Pointer type qualifiers can only operate on pointer types, but not
7380 // pointer-to-member types.
7381 if (Type
->isMemberPointerType())
7382 S
.Diag(PAttr
.getLoc(), diag::err_attribute_no_member_pointers
) << PAttr
;
7384 S
.Diag(PAttr
.getLoc(), diag::err_attribute_pointers_only
) << PAttr
<< 0;
7388 // Add address space to type based on its attributes.
7389 LangAS ASIdx
= LangAS::Default
;
7391 S
.Context
.getTargetInfo().getPointerWidth(LangAS::Default
);
7392 if (PtrWidth
== 32) {
7393 if (Attrs
[attr::Ptr64
])
7394 ASIdx
= LangAS::ptr64
;
7395 else if (Attrs
[attr::UPtr
])
7396 ASIdx
= LangAS::ptr32_uptr
;
7397 } else if (PtrWidth
== 64 && Attrs
[attr::Ptr32
]) {
7398 if (Attrs
[attr::UPtr
])
7399 ASIdx
= LangAS::ptr32_uptr
;
7401 ASIdx
= LangAS::ptr32_sptr
;
7404 QualType Pointee
= Type
->getPointeeType();
7405 if (ASIdx
!= LangAS::Default
)
7406 Pointee
= S
.Context
.getAddrSpaceQualType(
7407 S
.Context
.removeAddrSpaceQualType(Pointee
), ASIdx
);
7408 Type
= State
.getAttributedType(A
, Type
, S
.Context
.getPointerType(Pointee
));
7412 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState
&State
,
7413 QualType
&QT
, ParsedAttr
&PAttr
) {
7414 assert(PAttr
.getKind() == ParsedAttr::AT_WebAssemblyFuncref
);
7416 Sema
&S
= State
.getSema();
7417 Attr
*A
= createSimpleAttr
<WebAssemblyFuncrefAttr
>(S
.Context
, PAttr
);
7419 std::bitset
<attr::LastAttr
> Attrs
;
7420 attr::Kind NewAttrKind
= A
->getKind();
7421 const auto *AT
= dyn_cast
<AttributedType
>(QT
);
7423 Attrs
[AT
->getAttrKind()] = true;
7424 AT
= dyn_cast
<AttributedType
>(AT
->getModifiedType());
7427 // You cannot specify duplicate type attributes, so if the attribute has
7428 // already been applied, flag it.
7429 if (Attrs
[NewAttrKind
]) {
7430 S
.Diag(PAttr
.getLoc(), diag::warn_duplicate_attribute_exact
) << PAttr
;
7434 // Add address space to type based on its attributes.
7435 LangAS ASIdx
= LangAS::wasm_funcref
;
7436 QualType Pointee
= QT
->getPointeeType();
7437 Pointee
= S
.Context
.getAddrSpaceQualType(
7438 S
.Context
.removeAddrSpaceQualType(Pointee
), ASIdx
);
7439 QT
= State
.getAttributedType(A
, QT
, S
.Context
.getPointerType(Pointee
));
7443 /// Map a nullability attribute kind to a nullability kind.
7444 static NullabilityKind
mapNullabilityAttrKind(ParsedAttr::Kind kind
) {
7446 case ParsedAttr::AT_TypeNonNull
:
7447 return NullabilityKind::NonNull
;
7449 case ParsedAttr::AT_TypeNullable
:
7450 return NullabilityKind::Nullable
;
7452 case ParsedAttr::AT_TypeNullableResult
:
7453 return NullabilityKind::NullableResult
;
7455 case ParsedAttr::AT_TypeNullUnspecified
:
7456 return NullabilityKind::Unspecified
;
7459 llvm_unreachable("not a nullability attribute kind");
7463 /// Applies a nullability type specifier to the given type, if possible.
7465 /// \param state The type processing state.
7467 /// \param type The type to which the nullability specifier will be
7468 /// added. On success, this type will be updated appropriately.
7470 /// \param attr The attribute as written on the type.
7472 /// \param allowOnArrayType Whether to accept nullability specifiers on an
7473 /// array type (e.g., because it will decay to a pointer).
7475 /// \returns true if a problem has been diagnosed, false on success.
7476 static bool checkNullabilityTypeSpecifier(TypeProcessingState
&state
,
7479 bool allowOnArrayType
) {
7480 Sema
&S
= state
.getSema();
7482 NullabilityKind nullability
= mapNullabilityAttrKind(attr
.getKind());
7483 SourceLocation nullabilityLoc
= attr
.getLoc();
7484 bool isContextSensitive
= attr
.isContextSensitiveKeywordAttribute();
7486 recordNullabilitySeen(S
, nullabilityLoc
);
7488 // Check for existing nullability attributes on the type.
7489 QualType desugared
= type
;
7490 while (auto attributed
= dyn_cast
<AttributedType
>(desugared
.getTypePtr())) {
7491 // Check whether there is already a null
7492 if (auto existingNullability
= attributed
->getImmediateNullability()) {
7493 // Duplicated nullability.
7494 if (nullability
== *existingNullability
) {
7495 S
.Diag(nullabilityLoc
, diag::warn_nullability_duplicate
)
7496 << DiagNullabilityKind(nullability
, isContextSensitive
)
7497 << FixItHint::CreateRemoval(nullabilityLoc
);
7502 // Conflicting nullability.
7503 S
.Diag(nullabilityLoc
, diag::err_nullability_conflicting
)
7504 << DiagNullabilityKind(nullability
, isContextSensitive
)
7505 << DiagNullabilityKind(*existingNullability
, false);
7509 desugared
= attributed
->getModifiedType();
7512 // If there is already a different nullability specifier, complain.
7513 // This (unlike the code above) looks through typedefs that might
7514 // have nullability specifiers on them, which means we cannot
7515 // provide a useful Fix-It.
7516 if (auto existingNullability
= desugared
->getNullability()) {
7517 if (nullability
!= *existingNullability
) {
7518 S
.Diag(nullabilityLoc
, diag::err_nullability_conflicting
)
7519 << DiagNullabilityKind(nullability
, isContextSensitive
)
7520 << DiagNullabilityKind(*existingNullability
, false);
7522 // Try to find the typedef with the existing nullability specifier.
7523 if (auto typedefType
= desugared
->getAs
<TypedefType
>()) {
7524 TypedefNameDecl
*typedefDecl
= typedefType
->getDecl();
7525 QualType underlyingType
= typedefDecl
->getUnderlyingType();
7526 if (auto typedefNullability
7527 = AttributedType::stripOuterNullability(underlyingType
)) {
7528 if (*typedefNullability
== *existingNullability
) {
7529 S
.Diag(typedefDecl
->getLocation(), diag::note_nullability_here
)
7530 << DiagNullabilityKind(*existingNullability
, false);
7539 // If this definitely isn't a pointer type, reject the specifier.
7540 if (!desugared
->canHaveNullability() &&
7541 !(allowOnArrayType
&& desugared
->isArrayType())) {
7542 S
.Diag(nullabilityLoc
, diag::err_nullability_nonpointer
)
7543 << DiagNullabilityKind(nullability
, isContextSensitive
) << type
;
7547 // For the context-sensitive keywords/Objective-C property
7548 // attributes, require that the type be a single-level pointer.
7549 if (isContextSensitive
) {
7550 // Make sure that the pointee isn't itself a pointer type.
7551 const Type
*pointeeType
= nullptr;
7552 if (desugared
->isArrayType())
7553 pointeeType
= desugared
->getArrayElementTypeNoTypeQual();
7554 else if (desugared
->isAnyPointerType())
7555 pointeeType
= desugared
->getPointeeType().getTypePtr();
7557 if (pointeeType
&& (pointeeType
->isAnyPointerType() ||
7558 pointeeType
->isObjCObjectPointerType() ||
7559 pointeeType
->isMemberPointerType())) {
7560 S
.Diag(nullabilityLoc
, diag::err_nullability_cs_multilevel
)
7561 << DiagNullabilityKind(nullability
, true)
7563 S
.Diag(nullabilityLoc
, diag::note_nullability_type_specifier
)
7564 << DiagNullabilityKind(nullability
, false)
7566 << FixItHint::CreateReplacement(nullabilityLoc
,
7567 getNullabilitySpelling(nullability
));
7572 // Form the attributed type.
7573 type
= state
.getAttributedType(
7574 createNullabilityAttr(S
.Context
, attr
, nullability
), type
, type
);
7578 /// Check the application of the Objective-C '__kindof' qualifier to
7580 static bool checkObjCKindOfType(TypeProcessingState
&state
, QualType
&type
,
7582 Sema
&S
= state
.getSema();
7584 if (isa
<ObjCTypeParamType
>(type
)) {
7585 // Build the attributed type to record where __kindof occurred.
7586 type
= state
.getAttributedType(
7587 createSimpleAttr
<ObjCKindOfAttr
>(S
.Context
, attr
), type
, type
);
7591 // Find out if it's an Objective-C object or object pointer type;
7592 const ObjCObjectPointerType
*ptrType
= type
->getAs
<ObjCObjectPointerType
>();
7593 const ObjCObjectType
*objType
= ptrType
? ptrType
->getObjectType()
7594 : type
->getAs
<ObjCObjectType
>();
7596 // If not, we can't apply __kindof.
7598 // FIXME: Handle dependent types that aren't yet object types.
7599 S
.Diag(attr
.getLoc(), diag::err_objc_kindof_nonobject
)
7604 // Rebuild the "equivalent" type, which pushes __kindof down into
7606 // There is no need to apply kindof on an unqualified id type.
7607 QualType equivType
= S
.Context
.getObjCObjectType(
7608 objType
->getBaseType(), objType
->getTypeArgsAsWritten(),
7609 objType
->getProtocols(),
7610 /*isKindOf=*/objType
->isObjCUnqualifiedId() ? false : true);
7612 // If we started with an object pointer type, rebuild it.
7614 equivType
= S
.Context
.getObjCObjectPointerType(equivType
);
7615 if (auto nullability
= type
->getNullability()) {
7616 // We create a nullability attribute from the __kindof attribute.
7617 // Make sure that will make sense.
7618 assert(attr
.getAttributeSpellingListIndex() == 0 &&
7619 "multiple spellings for __kindof?");
7620 Attr
*A
= createNullabilityAttr(S
.Context
, attr
, *nullability
);
7621 A
->setImplicit(true);
7622 equivType
= state
.getAttributedType(A
, equivType
, equivType
);
7626 // Build the attributed type to record where __kindof occurred.
7627 type
= state
.getAttributedType(
7628 createSimpleAttr
<ObjCKindOfAttr
>(S
.Context
, attr
), type
, equivType
);
7632 /// Distribute a nullability type attribute that cannot be applied to
7633 /// the type specifier to a pointer, block pointer, or member pointer
7634 /// declarator, complaining if necessary.
7636 /// \returns true if the nullability annotation was distributed, false
7638 static bool distributeNullabilityTypeAttr(TypeProcessingState
&state
,
7639 QualType type
, ParsedAttr
&attr
) {
7640 Declarator
&declarator
= state
.getDeclarator();
7642 /// Attempt to move the attribute to the specified chunk.
7643 auto moveToChunk
= [&](DeclaratorChunk
&chunk
, bool inFunction
) -> bool {
7644 // If there is already a nullability attribute there, don't add
7646 if (hasNullabilityAttr(chunk
.getAttrs()))
7649 // Complain about the nullability qualifier being in the wrong
7656 PK_MemberFunctionPointer
,
7658 = chunk
.Kind
== DeclaratorChunk::Pointer
? (inFunction
? PK_FunctionPointer
7660 : chunk
.Kind
== DeclaratorChunk::BlockPointer
? PK_BlockPointer
7661 : inFunction
? PK_MemberFunctionPointer
: PK_MemberPointer
;
7663 auto diag
= state
.getSema().Diag(attr
.getLoc(),
7664 diag::warn_nullability_declspec
)
7665 << DiagNullabilityKind(mapNullabilityAttrKind(attr
.getKind()),
7666 attr
.isContextSensitiveKeywordAttribute())
7668 << static_cast<unsigned>(pointerKind
);
7670 // FIXME: MemberPointer chunks don't carry the location of the *.
7671 if (chunk
.Kind
!= DeclaratorChunk::MemberPointer
) {
7672 diag
<< FixItHint::CreateRemoval(attr
.getLoc())
7673 << FixItHint::CreateInsertion(
7674 state
.getSema().getPreprocessor().getLocForEndOfToken(
7676 " " + attr
.getAttrName()->getName().str() + " ");
7679 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
7684 // Move it to the outermost pointer, member pointer, or block
7685 // pointer declarator.
7686 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
7687 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
7688 switch (chunk
.Kind
) {
7689 case DeclaratorChunk::Pointer
:
7690 case DeclaratorChunk::BlockPointer
:
7691 case DeclaratorChunk::MemberPointer
:
7692 return moveToChunk(chunk
, false);
7694 case DeclaratorChunk::Paren
:
7695 case DeclaratorChunk::Array
:
7698 case DeclaratorChunk::Function
:
7699 // Try to move past the return type to a function/block/member
7700 // function pointer.
7701 if (DeclaratorChunk
*dest
= maybeMovePastReturnType(
7703 /*onlyBlockPointers=*/false)) {
7704 return moveToChunk(*dest
, true);
7709 // Don't walk through these.
7710 case DeclaratorChunk::Reference
:
7711 case DeclaratorChunk::Pipe
:
7719 static Attr
*getCCTypeAttr(ASTContext
&Ctx
, ParsedAttr
&Attr
) {
7720 assert(!Attr
.isInvalid());
7721 switch (Attr
.getKind()) {
7723 llvm_unreachable("not a calling convention attribute");
7724 case ParsedAttr::AT_CDecl
:
7725 return createSimpleAttr
<CDeclAttr
>(Ctx
, Attr
);
7726 case ParsedAttr::AT_FastCall
:
7727 return createSimpleAttr
<FastCallAttr
>(Ctx
, Attr
);
7728 case ParsedAttr::AT_StdCall
:
7729 return createSimpleAttr
<StdCallAttr
>(Ctx
, Attr
);
7730 case ParsedAttr::AT_ThisCall
:
7731 return createSimpleAttr
<ThisCallAttr
>(Ctx
, Attr
);
7732 case ParsedAttr::AT_RegCall
:
7733 return createSimpleAttr
<RegCallAttr
>(Ctx
, Attr
);
7734 case ParsedAttr::AT_Pascal
:
7735 return createSimpleAttr
<PascalAttr
>(Ctx
, Attr
);
7736 case ParsedAttr::AT_SwiftCall
:
7737 return createSimpleAttr
<SwiftCallAttr
>(Ctx
, Attr
);
7738 case ParsedAttr::AT_SwiftAsyncCall
:
7739 return createSimpleAttr
<SwiftAsyncCallAttr
>(Ctx
, Attr
);
7740 case ParsedAttr::AT_VectorCall
:
7741 return createSimpleAttr
<VectorCallAttr
>(Ctx
, Attr
);
7742 case ParsedAttr::AT_AArch64VectorPcs
:
7743 return createSimpleAttr
<AArch64VectorPcsAttr
>(Ctx
, Attr
);
7744 case ParsedAttr::AT_AArch64SVEPcs
:
7745 return createSimpleAttr
<AArch64SVEPcsAttr
>(Ctx
, Attr
);
7746 case ParsedAttr::AT_ArmStreaming
:
7747 return createSimpleAttr
<ArmStreamingAttr
>(Ctx
, Attr
);
7748 case ParsedAttr::AT_AMDGPUKernelCall
:
7749 return createSimpleAttr
<AMDGPUKernelCallAttr
>(Ctx
, Attr
);
7750 case ParsedAttr::AT_Pcs
: {
7751 // The attribute may have had a fixit applied where we treated an
7752 // identifier as a string literal. The contents of the string are valid,
7753 // but the form may not be.
7755 if (Attr
.isArgExpr(0))
7756 Str
= cast
<StringLiteral
>(Attr
.getArgAsExpr(0))->getString();
7758 Str
= Attr
.getArgAsIdent(0)->Ident
->getName();
7759 PcsAttr::PCSType Type
;
7760 if (!PcsAttr::ConvertStrToPCSType(Str
, Type
))
7761 llvm_unreachable("already validated the attribute");
7762 return ::new (Ctx
) PcsAttr(Ctx
, Attr
, Type
);
7764 case ParsedAttr::AT_IntelOclBicc
:
7765 return createSimpleAttr
<IntelOclBiccAttr
>(Ctx
, Attr
);
7766 case ParsedAttr::AT_MSABI
:
7767 return createSimpleAttr
<MSABIAttr
>(Ctx
, Attr
);
7768 case ParsedAttr::AT_SysVABI
:
7769 return createSimpleAttr
<SysVABIAttr
>(Ctx
, Attr
);
7770 case ParsedAttr::AT_PreserveMost
:
7771 return createSimpleAttr
<PreserveMostAttr
>(Ctx
, Attr
);
7772 case ParsedAttr::AT_PreserveAll
:
7773 return createSimpleAttr
<PreserveAllAttr
>(Ctx
, Attr
);
7775 llvm_unreachable("unexpected attribute kind!");
7778 static bool checkMutualExclusion(TypeProcessingState
&state
,
7779 const FunctionProtoType::ExtProtoInfo
&EPI
,
7781 AttributeCommonInfo::Kind OtherKind
) {
7782 auto OtherAttr
= std::find_if(
7783 state
.getCurrentAttributes().begin(), state
.getCurrentAttributes().end(),
7784 [OtherKind
](const ParsedAttr
&A
) { return A
.getKind() == OtherKind
; });
7785 if (OtherAttr
== state
.getCurrentAttributes().end() || OtherAttr
->isInvalid())
7788 Sema
&S
= state
.getSema();
7789 S
.Diag(Attr
.getLoc(), diag::err_attributes_are_not_compatible
)
7790 << *OtherAttr
<< Attr
7791 << (OtherAttr
->isRegularKeywordAttribute() ||
7792 Attr
.isRegularKeywordAttribute());
7793 S
.Diag(OtherAttr
->getLoc(), diag::note_conflicting_attribute
);
7798 /// Process an individual function attribute. Returns true to
7799 /// indicate that the attribute was handled, false if it wasn't.
7800 static bool handleFunctionTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
7802 Sema
&S
= state
.getSema();
7804 FunctionTypeUnwrapper
unwrapped(S
, type
);
7806 if (attr
.getKind() == ParsedAttr::AT_NoReturn
) {
7807 if (S
.CheckAttrNoArgs(attr
))
7810 // Delay if this is not a function type.
7811 if (!unwrapped
.isFunctionType())
7814 // Otherwise we can process right away.
7815 FunctionType::ExtInfo EI
= unwrapped
.get()->getExtInfo().withNoReturn(true);
7816 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7820 if (attr
.getKind() == ParsedAttr::AT_CmseNSCall
) {
7821 // Delay if this is not a function type.
7822 if (!unwrapped
.isFunctionType())
7825 // Ignore if we don't have CMSE enabled.
7826 if (!S
.getLangOpts().Cmse
) {
7827 S
.Diag(attr
.getLoc(), diag::warn_attribute_ignored
) << attr
;
7832 // Otherwise we can process right away.
7833 FunctionType::ExtInfo EI
=
7834 unwrapped
.get()->getExtInfo().withCmseNSCall(true);
7835 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7839 // ns_returns_retained is not always a type attribute, but if we got
7840 // here, we're treating it as one right now.
7841 if (attr
.getKind() == ParsedAttr::AT_NSReturnsRetained
) {
7842 if (attr
.getNumArgs()) return true;
7844 // Delay if this is not a function type.
7845 if (!unwrapped
.isFunctionType())
7848 // Check whether the return type is reasonable.
7849 if (S
.checkNSReturnsRetainedReturnType(attr
.getLoc(),
7850 unwrapped
.get()->getReturnType()))
7853 // Only actually change the underlying type in ARC builds.
7854 QualType origType
= type
;
7855 if (state
.getSema().getLangOpts().ObjCAutoRefCount
) {
7856 FunctionType::ExtInfo EI
7857 = unwrapped
.get()->getExtInfo().withProducesResult(true);
7858 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7860 type
= state
.getAttributedType(
7861 createSimpleAttr
<NSReturnsRetainedAttr
>(S
.Context
, attr
),
7866 if (attr
.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters
) {
7867 if (S
.CheckAttrTarget(attr
) || S
.CheckAttrNoArgs(attr
))
7870 // Delay if this is not a function type.
7871 if (!unwrapped
.isFunctionType())
7874 FunctionType::ExtInfo EI
=
7875 unwrapped
.get()->getExtInfo().withNoCallerSavedRegs(true);
7876 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7880 if (attr
.getKind() == ParsedAttr::AT_AnyX86NoCfCheck
) {
7881 if (!S
.getLangOpts().CFProtectionBranch
) {
7882 S
.Diag(attr
.getLoc(), diag::warn_nocf_check_attribute_ignored
);
7887 if (S
.CheckAttrTarget(attr
) || S
.CheckAttrNoArgs(attr
))
7890 // If this is not a function type, warning will be asserted by subject
7892 if (!unwrapped
.isFunctionType())
7895 FunctionType::ExtInfo EI
=
7896 unwrapped
.get()->getExtInfo().withNoCfCheck(true);
7897 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7901 if (attr
.getKind() == ParsedAttr::AT_Regparm
) {
7903 if (S
.CheckRegparmAttr(attr
, value
))
7906 // Delay if this is not a function type.
7907 if (!unwrapped
.isFunctionType())
7910 // Diagnose regparm with fastcall.
7911 const FunctionType
*fn
= unwrapped
.get();
7912 CallingConv CC
= fn
->getCallConv();
7913 if (CC
== CC_X86FastCall
) {
7914 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
7915 << FunctionType::getNameForCallConv(CC
) << "regparm"
7916 << attr
.isRegularKeywordAttribute();
7921 FunctionType::ExtInfo EI
=
7922 unwrapped
.get()->getExtInfo().withRegParm(value
);
7923 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7927 if (attr
.getKind() == ParsedAttr::AT_ArmStreaming
||
7928 attr
.getKind() == ParsedAttr::AT_ArmStreamingCompatible
||
7929 attr
.getKind() == ParsedAttr::AT_ArmSharedZA
||
7930 attr
.getKind() == ParsedAttr::AT_ArmPreservesZA
){
7931 if (S
.CheckAttrTarget(attr
) || S
.CheckAttrNoArgs(attr
))
7934 if (!unwrapped
.isFunctionType())
7937 const auto *FnTy
= unwrapped
.get()->getAs
<FunctionProtoType
>();
7939 // SME ACLE attributes are not supported on K&R-style unprototyped C
7941 S
.Diag(attr
.getLoc(), diag::warn_attribute_wrong_decl_type
) <<
7942 attr
<< attr
.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType
;
7947 FunctionProtoType::ExtProtoInfo EPI
= FnTy
->getExtProtoInfo();
7948 switch (attr
.getKind()) {
7949 case ParsedAttr::AT_ArmStreaming
:
7950 if (checkMutualExclusion(state
, EPI
, attr
,
7951 ParsedAttr::AT_ArmStreamingCompatible
))
7953 EPI
.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask
);
7955 case ParsedAttr::AT_ArmStreamingCompatible
:
7956 if (checkMutualExclusion(state
, EPI
, attr
, ParsedAttr::AT_ArmStreaming
))
7958 EPI
.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask
);
7960 case ParsedAttr::AT_ArmSharedZA
:
7961 EPI
.setArmSMEAttribute(FunctionType::SME_PStateZASharedMask
);
7963 case ParsedAttr::AT_ArmPreservesZA
:
7964 EPI
.setArmSMEAttribute(FunctionType::SME_PStateZAPreservedMask
);
7967 llvm_unreachable("Unsupported attribute");
7970 QualType newtype
= S
.Context
.getFunctionType(FnTy
->getReturnType(),
7971 FnTy
->getParamTypes(), EPI
);
7972 type
= unwrapped
.wrap(S
, newtype
->getAs
<FunctionType
>());
7976 if (attr
.getKind() == ParsedAttr::AT_NoThrow
) {
7977 // Delay if this is not a function type.
7978 if (!unwrapped
.isFunctionType())
7981 if (S
.CheckAttrNoArgs(attr
)) {
7986 // Otherwise we can process right away.
7987 auto *Proto
= unwrapped
.get()->castAs
<FunctionProtoType
>();
7989 // MSVC ignores nothrow if it is in conflict with an explicit exception
7991 if (Proto
->hasExceptionSpec()) {
7992 switch (Proto
->getExceptionSpecType()) {
7994 llvm_unreachable("This doesn't have an exception spec!");
7996 case EST_DynamicNone
:
7997 case EST_BasicNoexcept
:
7998 case EST_NoexceptTrue
:
8000 // Exception spec doesn't conflict with nothrow, so don't warn.
8003 case EST_Uninstantiated
:
8004 case EST_DependentNoexcept
:
8005 case EST_Unevaluated
:
8006 // We don't have enough information to properly determine if there is a
8007 // conflict, so suppress the warning.
8011 case EST_NoexceptFalse
:
8012 S
.Diag(attr
.getLoc(), diag::warn_nothrow_attribute_ignored
);
8018 type
= unwrapped
.wrap(
8020 .getFunctionTypeWithExceptionSpec(
8022 FunctionProtoType::ExceptionSpecInfo
{EST_NoThrow
})
8023 ->getAs
<FunctionType
>());
8027 // Delay if the type didn't work out to a function.
8028 if (!unwrapped
.isFunctionType()) return false;
8030 // Otherwise, a calling convention.
8032 if (S
.CheckCallingConvAttr(attr
, CC
))
8035 const FunctionType
*fn
= unwrapped
.get();
8036 CallingConv CCOld
= fn
->getCallConv();
8037 Attr
*CCAttr
= getCCTypeAttr(S
.Context
, attr
);
8040 // Error out on when there's already an attribute on the type
8041 // and the CCs don't match.
8042 if (S
.getCallingConvAttributedType(type
)) {
8043 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
8044 << FunctionType::getNameForCallConv(CC
)
8045 << FunctionType::getNameForCallConv(CCOld
)
8046 << attr
.isRegularKeywordAttribute();
8052 // Diagnose use of variadic functions with calling conventions that
8053 // don't support them (e.g. because they're callee-cleanup).
8054 // We delay warning about this on unprototyped function declarations
8055 // until after redeclaration checking, just in case we pick up a
8056 // prototype that way. And apparently we also "delay" warning about
8057 // unprototyped function types in general, despite not necessarily having
8058 // much ability to diagnose it later.
8059 if (!supportsVariadicCall(CC
)) {
8060 const FunctionProtoType
*FnP
= dyn_cast
<FunctionProtoType
>(fn
);
8061 if (FnP
&& FnP
->isVariadic()) {
8062 // stdcall and fastcall are ignored with a warning for GCC and MS
8064 if (CC
== CC_X86StdCall
|| CC
== CC_X86FastCall
)
8065 return S
.Diag(attr
.getLoc(), diag::warn_cconv_unsupported
)
8066 << FunctionType::getNameForCallConv(CC
)
8067 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction
;
8070 return S
.Diag(attr
.getLoc(), diag::err_cconv_varargs
)
8071 << FunctionType::getNameForCallConv(CC
);
8075 // Also diagnose fastcall with regparm.
8076 if (CC
== CC_X86FastCall
&& fn
->getHasRegParm()) {
8077 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
8078 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall
)
8079 << attr
.isRegularKeywordAttribute();
8084 // Modify the CC from the wrapped function type, wrap it all back, and then
8085 // wrap the whole thing in an AttributedType as written. The modified type
8086 // might have a different CC if we ignored the attribute.
8087 QualType Equivalent
;
8091 auto EI
= unwrapped
.get()->getExtInfo().withCallingConv(CC
);
8093 unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
8095 type
= state
.getAttributedType(CCAttr
, type
, Equivalent
);
8099 bool Sema::hasExplicitCallingConv(QualType T
) {
8100 const AttributedType
*AT
;
8102 // Stop if we'd be stripping off a typedef sugar node to reach the
8104 while ((AT
= T
->getAs
<AttributedType
>()) &&
8105 AT
->getAs
<TypedefType
>() == T
->getAs
<TypedefType
>()) {
8106 if (AT
->isCallingConv())
8108 T
= AT
->getModifiedType();
8113 void Sema::adjustMemberFunctionCC(QualType
&T
, bool IsStatic
, bool IsCtorOrDtor
,
8114 SourceLocation Loc
) {
8115 FunctionTypeUnwrapper
Unwrapped(*this, T
);
8116 const FunctionType
*FT
= Unwrapped
.get();
8117 bool IsVariadic
= (isa
<FunctionProtoType
>(FT
) &&
8118 cast
<FunctionProtoType
>(FT
)->isVariadic());
8119 CallingConv CurCC
= FT
->getCallConv();
8120 CallingConv ToCC
= Context
.getDefaultCallingConvention(IsVariadic
, !IsStatic
);
8125 // MS compiler ignores explicit calling convention attributes on structors. We
8126 // should do the same.
8127 if (Context
.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor
) {
8128 // Issue a warning on ignored calling convention -- except of __stdcall.
8129 // Again, this is what MS compiler does.
8130 if (CurCC
!= CC_X86StdCall
)
8131 Diag(Loc
, diag::warn_cconv_unsupported
)
8132 << FunctionType::getNameForCallConv(CurCC
)
8133 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor
;
8134 // Default adjustment.
8136 // Only adjust types with the default convention. For example, on Windows
8137 // we should adjust a __cdecl type to __thiscall for instance methods, and a
8138 // __thiscall type to __cdecl for static methods.
8139 CallingConv DefaultCC
=
8140 Context
.getDefaultCallingConvention(IsVariadic
, IsStatic
);
8142 if (CurCC
!= DefaultCC
)
8145 if (hasExplicitCallingConv(T
))
8149 FT
= Context
.adjustFunctionType(FT
, FT
->getExtInfo().withCallingConv(ToCC
));
8150 QualType Wrapped
= Unwrapped
.wrap(*this, FT
);
8151 T
= Context
.getAdjustedType(T
, Wrapped
);
8154 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8155 /// and float scalars, although arrays, pointers, and function return values are
8156 /// allowed in conjunction with this construct. Aggregates with this attribute
8157 /// are invalid, even if they are of the same size as a corresponding scalar.
8158 /// The raw attribute should contain precisely 1 argument, the vector size for
8159 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8160 /// this routine will return a new vector type.
8161 static void HandleVectorSizeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8163 // Check the attribute arguments.
8164 if (Attr
.getNumArgs() != 1) {
8165 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
8171 Expr
*SizeExpr
= Attr
.getArgAsExpr(0);
8172 QualType T
= S
.BuildVectorType(CurType
, SizeExpr
, Attr
.getLoc());
8179 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8181 static void HandleExtVectorTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8183 // check the attribute arguments.
8184 if (Attr
.getNumArgs() != 1) {
8185 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
8190 Expr
*SizeExpr
= Attr
.getArgAsExpr(0);
8191 QualType T
= S
.BuildExtVectorType(CurType
, SizeExpr
, Attr
.getLoc());
8196 static bool isPermittedNeonBaseType(QualType
&Ty
,
8197 VectorType::VectorKind VecKind
, Sema
&S
) {
8198 const BuiltinType
*BTy
= Ty
->getAs
<BuiltinType
>();
8202 llvm::Triple Triple
= S
.Context
.getTargetInfo().getTriple();
8204 // Signed poly is mathematically wrong, but has been baked into some ABIs by
8206 bool IsPolyUnsigned
= Triple
.getArch() == llvm::Triple::aarch64
||
8207 Triple
.getArch() == llvm::Triple::aarch64_32
||
8208 Triple
.getArch() == llvm::Triple::aarch64_be
;
8209 if (VecKind
== VectorType::NeonPolyVector
) {
8210 if (IsPolyUnsigned
) {
8211 // AArch64 polynomial vectors are unsigned.
8212 return BTy
->getKind() == BuiltinType::UChar
||
8213 BTy
->getKind() == BuiltinType::UShort
||
8214 BTy
->getKind() == BuiltinType::ULong
||
8215 BTy
->getKind() == BuiltinType::ULongLong
;
8217 // AArch32 polynomial vectors are signed.
8218 return BTy
->getKind() == BuiltinType::SChar
||
8219 BTy
->getKind() == BuiltinType::Short
||
8220 BTy
->getKind() == BuiltinType::LongLong
;
8224 // Non-polynomial vector types: the usual suspects are allowed, as well as
8225 // float64_t on AArch64.
8226 if ((Triple
.isArch64Bit() || Triple
.getArch() == llvm::Triple::aarch64_32
) &&
8227 BTy
->getKind() == BuiltinType::Double
)
8230 return BTy
->getKind() == BuiltinType::SChar
||
8231 BTy
->getKind() == BuiltinType::UChar
||
8232 BTy
->getKind() == BuiltinType::Short
||
8233 BTy
->getKind() == BuiltinType::UShort
||
8234 BTy
->getKind() == BuiltinType::Int
||
8235 BTy
->getKind() == BuiltinType::UInt
||
8236 BTy
->getKind() == BuiltinType::Long
||
8237 BTy
->getKind() == BuiltinType::ULong
||
8238 BTy
->getKind() == BuiltinType::LongLong
||
8239 BTy
->getKind() == BuiltinType::ULongLong
||
8240 BTy
->getKind() == BuiltinType::Float
||
8241 BTy
->getKind() == BuiltinType::Half
||
8242 BTy
->getKind() == BuiltinType::BFloat16
;
8245 static bool verifyValidIntegerConstantExpr(Sema
&S
, const ParsedAttr
&Attr
,
8246 llvm::APSInt
&Result
) {
8247 const auto *AttrExpr
= Attr
.getArgAsExpr(0);
8248 if (!AttrExpr
->isTypeDependent()) {
8249 if (std::optional
<llvm::APSInt
> Res
=
8250 AttrExpr
->getIntegerConstantExpr(S
.Context
)) {
8255 S
.Diag(Attr
.getLoc(), diag::err_attribute_argument_type
)
8256 << Attr
<< AANT_ArgumentIntegerConstant
<< AttrExpr
->getSourceRange();
8261 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8262 /// "neon_polyvector_type" attributes are used to create vector types that
8263 /// are mangled according to ARM's ABI. Otherwise, these types are identical
8264 /// to those created with the "vector_size" attribute. Unlike "vector_size"
8265 /// the argument to these Neon attributes is the number of vector elements,
8266 /// not the vector size in bytes. The vector width and element type must
8267 /// match one of the standard Neon vector types.
8268 static void HandleNeonVectorTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8269 Sema
&S
, VectorType::VectorKind VecKind
) {
8270 bool IsTargetCUDAAndHostARM
= false;
8271 if (S
.getLangOpts().CUDAIsDevice
) {
8272 const TargetInfo
*AuxTI
= S
.getASTContext().getAuxTargetInfo();
8273 IsTargetCUDAAndHostARM
=
8274 AuxTI
&& (AuxTI
->getTriple().isAArch64() || AuxTI
->getTriple().isARM());
8277 // Target must have NEON (or MVE, whose vectors are similar enough
8278 // not to need a separate attribute)
8279 if (!(S
.Context
.getTargetInfo().hasFeature("neon") ||
8280 S
.Context
.getTargetInfo().hasFeature("mve") ||
8281 IsTargetCUDAAndHostARM
)) {
8282 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
)
8283 << Attr
<< "'neon' or 'mve'";
8287 // Check the attribute arguments.
8288 if (Attr
.getNumArgs() != 1) {
8289 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8294 // The number of elements must be an ICE.
8295 llvm::APSInt
numEltsInt(32);
8296 if (!verifyValidIntegerConstantExpr(S
, Attr
, numEltsInt
))
8299 // Only certain element types are supported for Neon vectors.
8300 if (!isPermittedNeonBaseType(CurType
, VecKind
, S
) &&
8301 !IsTargetCUDAAndHostARM
) {
8302 S
.Diag(Attr
.getLoc(), diag::err_attribute_invalid_vector_type
) << CurType
;
8307 // The total size of the vector must be 64 or 128 bits.
8308 unsigned typeSize
= static_cast<unsigned>(S
.Context
.getTypeSize(CurType
));
8309 unsigned numElts
= static_cast<unsigned>(numEltsInt
.getZExtValue());
8310 unsigned vecSize
= typeSize
* numElts
;
8311 if (vecSize
!= 64 && vecSize
!= 128) {
8312 S
.Diag(Attr
.getLoc(), diag::err_attribute_bad_neon_vector_size
) << CurType
;
8317 CurType
= S
.Context
.getVectorType(CurType
, numElts
, VecKind
);
8320 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8321 /// used to create fixed-length versions of sizeless SVE types defined by
8322 /// the ACLE, such as svint32_t and svbool_t.
8323 static void HandleArmSveVectorBitsTypeAttr(QualType
&CurType
, ParsedAttr
&Attr
,
8325 // Target must have SVE.
8326 if (!S
.Context
.getTargetInfo().hasFeature("sve")) {
8327 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
) << Attr
<< "'sve'";
8332 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8333 // if <bits>+ syntax is used.
8334 if (!S
.getLangOpts().VScaleMin
||
8335 S
.getLangOpts().VScaleMin
!= S
.getLangOpts().VScaleMax
) {
8336 S
.Diag(Attr
.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported
)
8342 // Check the attribute arguments.
8343 if (Attr
.getNumArgs() != 1) {
8344 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8350 // The vector size must be an integer constant expression.
8351 llvm::APSInt
SveVectorSizeInBits(32);
8352 if (!verifyValidIntegerConstantExpr(S
, Attr
, SveVectorSizeInBits
))
8355 unsigned VecSize
= static_cast<unsigned>(SveVectorSizeInBits
.getZExtValue());
8357 // The attribute vector size must match -msve-vector-bits.
8358 if (VecSize
!= S
.getLangOpts().VScaleMin
* 128) {
8359 S
.Diag(Attr
.getLoc(), diag::err_attribute_bad_sve_vector_size
)
8360 << VecSize
<< S
.getLangOpts().VScaleMin
* 128;
8365 // Attribute can only be attached to a single SVE vector or predicate type.
8366 if (!CurType
->isSveVLSBuiltinType()) {
8367 S
.Diag(Attr
.getLoc(), diag::err_attribute_invalid_sve_type
)
8373 const auto *BT
= CurType
->castAs
<BuiltinType
>();
8375 QualType EltType
= CurType
->getSveEltType(S
.Context
);
8376 unsigned TypeSize
= S
.Context
.getTypeSize(EltType
);
8377 VectorType::VectorKind VecKind
= VectorType::SveFixedLengthDataVector
;
8378 if (BT
->getKind() == BuiltinType::SveBool
) {
8379 // Predicates are represented as i8.
8380 VecSize
/= S
.Context
.getCharWidth() * S
.Context
.getCharWidth();
8381 VecKind
= VectorType::SveFixedLengthPredicateVector
;
8383 VecSize
/= TypeSize
;
8384 CurType
= S
.Context
.getVectorType(EltType
, VecSize
, VecKind
);
8387 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState
&State
,
8390 const VectorType
*VT
= dyn_cast
<VectorType
>(CurType
);
8391 if (!VT
|| VT
->getVectorKind() != VectorType::NeonVector
) {
8392 State
.getSema().Diag(Attr
.getLoc(),
8393 diag::err_attribute_arm_mve_polymorphism
);
8399 State
.getAttributedType(createSimpleAttr
<ArmMveStrictPolymorphismAttr
>(
8400 State
.getSema().Context
, Attr
),
8404 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8405 /// used to create fixed-length versions of sizeless RVV types such as
8407 static void HandleRISCVRVVVectorBitsTypeAttr(QualType
&CurType
,
8408 ParsedAttr
&Attr
, Sema
&S
) {
8409 // Target must have vector extension.
8410 if (!S
.Context
.getTargetInfo().hasFeature("zve32x")) {
8411 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
)
8412 << Attr
<< "'zve32x'";
8417 auto VScale
= S
.Context
.getTargetInfo().getVScaleRange(S
.getLangOpts());
8418 if (!VScale
|| !VScale
->first
|| VScale
->first
!= VScale
->second
) {
8419 S
.Diag(Attr
.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported
)
8425 // Check the attribute arguments.
8426 if (Attr
.getNumArgs() != 1) {
8427 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8433 // The vector size must be an integer constant expression.
8434 llvm::APSInt
RVVVectorSizeInBits(32);
8435 if (!verifyValidIntegerConstantExpr(S
, Attr
, RVVVectorSizeInBits
))
8438 // Attribute can only be attached to a single RVV vector type.
8439 if (!CurType
->isRVVVLSBuiltinType()) {
8440 S
.Diag(Attr
.getLoc(), diag::err_attribute_invalid_rvv_type
)
8446 unsigned VecSize
= static_cast<unsigned>(RVVVectorSizeInBits
.getZExtValue());
8448 ASTContext::BuiltinVectorTypeInfo Info
=
8449 S
.Context
.getBuiltinVectorTypeInfo(CurType
->castAs
<BuiltinType
>());
8450 unsigned EltSize
= S
.Context
.getTypeSize(Info
.ElementType
);
8451 unsigned MinElts
= Info
.EC
.getKnownMinValue();
8453 // The attribute vector size must match -mrvv-vector-bits.
8454 unsigned ExpectedSize
= VScale
->first
* MinElts
* EltSize
;
8455 if (VecSize
!= ExpectedSize
) {
8456 S
.Diag(Attr
.getLoc(), diag::err_attribute_bad_rvv_vector_size
)
8457 << VecSize
<< ExpectedSize
;
8462 VectorType::VectorKind VecKind
= VectorType::RVVFixedLengthDataVector
;
8464 CurType
= S
.Context
.getVectorType(Info
.ElementType
, VecSize
, VecKind
);
8467 /// Handle OpenCL Access Qualifier Attribute.
8468 static void HandleOpenCLAccessAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8470 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8471 if (!(CurType
->isImageType() || CurType
->isPipeType())) {
8472 S
.Diag(Attr
.getLoc(), diag::err_opencl_invalid_access_qualifier
);
8477 if (const TypedefType
* TypedefTy
= CurType
->getAs
<TypedefType
>()) {
8478 QualType BaseTy
= TypedefTy
->desugar();
8480 std::string PrevAccessQual
;
8481 if (BaseTy
->isPipeType()) {
8482 if (TypedefTy
->getDecl()->hasAttr
<OpenCLAccessAttr
>()) {
8483 OpenCLAccessAttr
*Attr
=
8484 TypedefTy
->getDecl()->getAttr
<OpenCLAccessAttr
>();
8485 PrevAccessQual
= Attr
->getSpelling();
8487 PrevAccessQual
= "read_only";
8489 } else if (const BuiltinType
* ImgType
= BaseTy
->getAs
<BuiltinType
>()) {
8491 switch (ImgType
->getKind()) {
8492 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8493 case BuiltinType::Id: \
8494 PrevAccessQual = #Access; \
8496 #include "clang/Basic/OpenCLImageTypes.def"
8498 llvm_unreachable("Unable to find corresponding image type.");
8501 llvm_unreachable("unexpected type");
8503 StringRef AttrName
= Attr
.getAttrName()->getName();
8504 if (PrevAccessQual
== AttrName
.ltrim("_")) {
8505 // Duplicated qualifiers
8506 S
.Diag(Attr
.getLoc(), diag::warn_duplicate_declspec
)
8507 << AttrName
<< Attr
.getRange();
8509 // Contradicting qualifiers
8510 S
.Diag(Attr
.getLoc(), diag::err_opencl_multiple_access_qualifiers
);
8513 S
.Diag(TypedefTy
->getDecl()->getBeginLoc(),
8514 diag::note_opencl_typedef_access_qualifier
) << PrevAccessQual
;
8515 } else if (CurType
->isPipeType()) {
8516 if (Attr
.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only
) {
8517 QualType ElemType
= CurType
->castAs
<PipeType
>()->getElementType();
8518 CurType
= S
.Context
.getWritePipeType(ElemType
);
8523 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8524 static void HandleMatrixTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8526 if (!S
.getLangOpts().MatrixTypes
) {
8527 S
.Diag(Attr
.getLoc(), diag::err_builtin_matrix_disabled
);
8531 if (Attr
.getNumArgs() != 2) {
8532 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8537 Expr
*RowsExpr
= Attr
.getArgAsExpr(0);
8538 Expr
*ColsExpr
= Attr
.getArgAsExpr(1);
8539 QualType T
= S
.BuildMatrixType(CurType
, RowsExpr
, ColsExpr
, Attr
.getLoc());
8544 static void HandleAnnotateTypeAttr(TypeProcessingState
&State
,
8545 QualType
&CurType
, const ParsedAttr
&PA
) {
8546 Sema
&S
= State
.getSema();
8548 if (PA
.getNumArgs() < 1) {
8549 S
.Diag(PA
.getLoc(), diag::err_attribute_too_few_arguments
) << PA
<< 1;
8553 // Make sure that there is a string literal as the annotation's first
8556 if (!S
.checkStringLiteralArgumentAttr(PA
, 0, Str
))
8559 llvm::SmallVector
<Expr
*, 4> Args
;
8560 Args
.reserve(PA
.getNumArgs() - 1);
8561 for (unsigned Idx
= 1; Idx
< PA
.getNumArgs(); Idx
++) {
8562 assert(!PA
.isArgIdent(Idx
));
8563 Args
.push_back(PA
.getArgAsExpr(Idx
));
8565 if (!S
.ConstantFoldAttrArgs(PA
, Args
))
8567 auto *AnnotateTypeAttr
=
8568 AnnotateTypeAttr::Create(S
.Context
, Str
, Args
.data(), Args
.size(), PA
);
8569 CurType
= State
.getAttributedType(AnnotateTypeAttr
, CurType
, CurType
);
8572 static void HandleLifetimeBoundAttr(TypeProcessingState
&State
,
8575 if (State
.getDeclarator().isDeclarationOfFunction()) {
8576 CurType
= State
.getAttributedType(
8577 createSimpleAttr
<LifetimeBoundAttr
>(State
.getSema().Context
, Attr
),
8582 static void processTypeAttrs(TypeProcessingState
&state
, QualType
&type
,
8583 TypeAttrLocation TAL
,
8584 const ParsedAttributesView
&attrs
) {
8586 state
.setParsedNoDeref(false);
8590 // Scan through and apply attributes to this type where it makes sense. Some
8591 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8592 // type, but others can be present in the type specifiers even though they
8593 // apply to the decl. Here we apply type attributes and ignore the rest.
8595 // This loop modifies the list pretty frequently, but we still need to make
8596 // sure we visit every element once. Copy the attributes list, and iterate
8598 ParsedAttributesView AttrsCopy
{attrs
};
8599 for (ParsedAttr
&attr
: AttrsCopy
) {
8601 // Skip attributes that were marked to be invalid.
8602 if (attr
.isInvalid())
8605 if (attr
.isStandardAttributeSyntax() || attr
.isRegularKeywordAttribute()) {
8606 // [[gnu::...]] attributes are treated as declaration attributes, so may
8607 // not appertain to a DeclaratorChunk. If we handle them as type
8608 // attributes, accept them in that position and diagnose the GCC
8610 if (attr
.isGNUScope()) {
8611 assert(attr
.isStandardAttributeSyntax());
8612 bool IsTypeAttr
= attr
.isTypeAttr();
8613 if (TAL
== TAL_DeclChunk
) {
8614 state
.getSema().Diag(attr
.getLoc(),
8616 ? diag::warn_gcc_ignores_type_attr
8617 : diag::warn_cxx11_gnu_attribute_on_type
)
8622 } else if (TAL
!= TAL_DeclSpec
&& TAL
!= TAL_DeclChunk
&&
8623 !attr
.isTypeAttr()) {
8624 // Otherwise, only consider type processing for a C++11 attribute if
8625 // - it has actually been applied to a type (decl-specifier-seq or
8626 // declarator chunk), or
8627 // - it is a type attribute, irrespective of where it was applied (so
8628 // that we can support the legacy behavior of some type attributes
8629 // that can be applied to the declaration name).
8634 // If this is an attribute we can handle, do so now,
8635 // otherwise, add it to the FnAttrs list for rechaining.
8636 switch (attr
.getKind()) {
8638 // A [[]] attribute on a declarator chunk must appertain to a type.
8639 if ((attr
.isStandardAttributeSyntax() ||
8640 attr
.isRegularKeywordAttribute()) &&
8641 TAL
== TAL_DeclChunk
) {
8642 state
.getSema().Diag(attr
.getLoc(), diag::err_attribute_not_type_attr
)
8643 << attr
<< attr
.isRegularKeywordAttribute();
8644 attr
.setUsedAsTypeAttr();
8648 case ParsedAttr::UnknownAttribute
:
8649 if (attr
.isStandardAttributeSyntax()) {
8650 state
.getSema().Diag(attr
.getLoc(),
8651 diag::warn_unknown_attribute_ignored
)
8652 << attr
<< attr
.getRange();
8653 // Mark the attribute as invalid so we don't emit the same diagnostic
8659 case ParsedAttr::IgnoredAttribute
:
8662 case ParsedAttr::AT_BTFTypeTag
:
8663 HandleBTFTypeTagAttribute(type
, attr
, state
);
8664 attr
.setUsedAsTypeAttr();
8667 case ParsedAttr::AT_MayAlias
:
8668 // FIXME: This attribute needs to actually be handled, but if we ignore
8669 // it it breaks large amounts of Linux software.
8670 attr
.setUsedAsTypeAttr();
8672 case ParsedAttr::AT_OpenCLPrivateAddressSpace
:
8673 case ParsedAttr::AT_OpenCLGlobalAddressSpace
:
8674 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace
:
8675 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace
:
8676 case ParsedAttr::AT_OpenCLLocalAddressSpace
:
8677 case ParsedAttr::AT_OpenCLConstantAddressSpace
:
8678 case ParsedAttr::AT_OpenCLGenericAddressSpace
:
8679 case ParsedAttr::AT_HLSLGroupSharedAddressSpace
:
8680 case ParsedAttr::AT_AddressSpace
:
8681 HandleAddressSpaceTypeAttribute(type
, attr
, state
);
8682 attr
.setUsedAsTypeAttr();
8684 OBJC_POINTER_TYPE_ATTRS_CASELIST
:
8685 if (!handleObjCPointerTypeAttr(state
, attr
, type
))
8686 distributeObjCPointerTypeAttr(state
, attr
, type
);
8687 attr
.setUsedAsTypeAttr();
8689 case ParsedAttr::AT_VectorSize
:
8690 HandleVectorSizeAttr(type
, attr
, state
.getSema());
8691 attr
.setUsedAsTypeAttr();
8693 case ParsedAttr::AT_ExtVectorType
:
8694 HandleExtVectorTypeAttr(type
, attr
, state
.getSema());
8695 attr
.setUsedAsTypeAttr();
8697 case ParsedAttr::AT_NeonVectorType
:
8698 HandleNeonVectorTypeAttr(type
, attr
, state
.getSema(),
8699 VectorType::NeonVector
);
8700 attr
.setUsedAsTypeAttr();
8702 case ParsedAttr::AT_NeonPolyVectorType
:
8703 HandleNeonVectorTypeAttr(type
, attr
, state
.getSema(),
8704 VectorType::NeonPolyVector
);
8705 attr
.setUsedAsTypeAttr();
8707 case ParsedAttr::AT_ArmSveVectorBits
:
8708 HandleArmSveVectorBitsTypeAttr(type
, attr
, state
.getSema());
8709 attr
.setUsedAsTypeAttr();
8711 case ParsedAttr::AT_ArmMveStrictPolymorphism
: {
8712 HandleArmMveStrictPolymorphismAttr(state
, type
, attr
);
8713 attr
.setUsedAsTypeAttr();
8716 case ParsedAttr::AT_RISCVRVVVectorBits
:
8717 HandleRISCVRVVVectorBitsTypeAttr(type
, attr
, state
.getSema());
8718 attr
.setUsedAsTypeAttr();
8720 case ParsedAttr::AT_OpenCLAccess
:
8721 HandleOpenCLAccessAttr(type
, attr
, state
.getSema());
8722 attr
.setUsedAsTypeAttr();
8724 case ParsedAttr::AT_LifetimeBound
:
8725 if (TAL
== TAL_DeclChunk
)
8726 HandleLifetimeBoundAttr(state
, type
, attr
);
8729 case ParsedAttr::AT_NoDeref
: {
8730 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8731 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8732 // For the time being, we simply emit a warning that the attribute is
8734 if (attr
.isStandardAttributeSyntax()) {
8735 state
.getSema().Diag(attr
.getLoc(), diag::warn_attribute_ignored
)
8739 ASTContext
&Ctx
= state
.getSema().Context
;
8740 type
= state
.getAttributedType(createSimpleAttr
<NoDerefAttr
>(Ctx
, attr
),
8742 attr
.setUsedAsTypeAttr();
8743 state
.setParsedNoDeref(true);
8747 case ParsedAttr::AT_MatrixType
:
8748 HandleMatrixTypeAttr(type
, attr
, state
.getSema());
8749 attr
.setUsedAsTypeAttr();
8752 case ParsedAttr::AT_WebAssemblyFuncref
: {
8753 if (!HandleWebAssemblyFuncrefAttr(state
, type
, attr
))
8754 attr
.setUsedAsTypeAttr();
8758 MS_TYPE_ATTRS_CASELIST
:
8759 if (!handleMSPointerTypeQualifierAttr(state
, attr
, type
))
8760 attr
.setUsedAsTypeAttr();
8764 NULLABILITY_TYPE_ATTRS_CASELIST
:
8765 // Either add nullability here or try to distribute it. We
8766 // don't want to distribute the nullability specifier past any
8767 // dependent type, because that complicates the user model.
8768 if (type
->canHaveNullability() || type
->isDependentType() ||
8769 type
->isArrayType() ||
8770 !distributeNullabilityTypeAttr(state
, type
, attr
)) {
8772 if (TAL
== TAL_DeclChunk
)
8773 endIndex
= state
.getCurrentChunkIndex();
8775 endIndex
= state
.getDeclarator().getNumTypeObjects();
8776 bool allowOnArrayType
=
8777 state
.getDeclarator().isPrototypeContext() &&
8778 !hasOuterPointerLikeChunk(state
.getDeclarator(), endIndex
);
8779 if (checkNullabilityTypeSpecifier(
8783 allowOnArrayType
)) {
8787 attr
.setUsedAsTypeAttr();
8791 case ParsedAttr::AT_ObjCKindOf
:
8792 // '__kindof' must be part of the decl-specifiers.
8799 state
.getSema().Diag(attr
.getLoc(),
8800 diag::err_objc_kindof_wrong_position
)
8801 << FixItHint::CreateRemoval(attr
.getLoc())
8802 << FixItHint::CreateInsertion(
8803 state
.getDeclarator().getDeclSpec().getBeginLoc(),
8808 // Apply it regardless.
8809 if (checkObjCKindOfType(state
, type
, attr
))
8813 case ParsedAttr::AT_NoThrow
:
8814 // Exception Specifications aren't generally supported in C mode throughout
8815 // clang, so revert to attribute-based handling for C.
8816 if (!state
.getSema().getLangOpts().CPlusPlus
)
8819 FUNCTION_TYPE_ATTRS_CASELIST
:
8820 attr
.setUsedAsTypeAttr();
8822 // Attributes with standard syntax have strict rules for what they
8823 // appertain to and hence should not use the "distribution" logic below.
8824 if (attr
.isStandardAttributeSyntax() ||
8825 attr
.isRegularKeywordAttribute()) {
8826 if (!handleFunctionTypeAttr(state
, attr
, type
)) {
8827 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
8833 // Never process function type attributes as part of the
8834 // declaration-specifiers.
8835 if (TAL
== TAL_DeclSpec
)
8836 distributeFunctionTypeAttrFromDeclSpec(state
, attr
, type
);
8838 // Otherwise, handle the possible delays.
8839 else if (!handleFunctionTypeAttr(state
, attr
, type
))
8840 distributeFunctionTypeAttr(state
, attr
, type
);
8842 case ParsedAttr::AT_AcquireHandle
: {
8843 if (!type
->isFunctionType())
8846 if (attr
.getNumArgs() != 1) {
8847 state
.getSema().Diag(attr
.getLoc(),
8848 diag::err_attribute_wrong_number_arguments
)
8854 StringRef HandleType
;
8855 if (!state
.getSema().checkStringLiteralArgumentAttr(attr
, 0, HandleType
))
8857 type
= state
.getAttributedType(
8858 AcquireHandleAttr::Create(state
.getSema().Context
, HandleType
, attr
),
8860 attr
.setUsedAsTypeAttr();
8863 case ParsedAttr::AT_AnnotateType
: {
8864 HandleAnnotateTypeAttr(state
, type
, attr
);
8865 attr
.setUsedAsTypeAttr();
8870 // Handle attributes that are defined in a macro. We do not want this to be
8871 // applied to ObjC builtin attributes.
8872 if (isa
<AttributedType
>(type
) && attr
.hasMacroIdentifier() &&
8873 !type
.getQualifiers().hasObjCLifetime() &&
8874 !type
.getQualifiers().hasObjCGCAttr() &&
8875 attr
.getKind() != ParsedAttr::AT_ObjCGC
&&
8876 attr
.getKind() != ParsedAttr::AT_ObjCOwnership
) {
8877 const IdentifierInfo
*MacroII
= attr
.getMacroIdentifier();
8878 type
= state
.getSema().Context
.getMacroQualifiedType(type
, MacroII
);
8879 state
.setExpansionLocForMacroQualifiedType(
8880 cast
<MacroQualifiedType
>(type
.getTypePtr()),
8881 attr
.getMacroExpansionLoc());
8886 void Sema::completeExprArrayBound(Expr
*E
) {
8887 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParens())) {
8888 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(DRE
->getDecl())) {
8889 if (isTemplateInstantiation(Var
->getTemplateSpecializationKind())) {
8890 auto *Def
= Var
->getDefinition();
8892 SourceLocation PointOfInstantiation
= E
->getExprLoc();
8893 runWithSufficientStackSpace(PointOfInstantiation
, [&] {
8894 InstantiateVariableDefinition(PointOfInstantiation
, Var
);
8896 Def
= Var
->getDefinition();
8898 // If we don't already have a point of instantiation, and we managed
8899 // to instantiate a definition, this is the point of instantiation.
8900 // Otherwise, we don't request an end-of-TU instantiation, so this is
8901 // not a point of instantiation.
8902 // FIXME: Is this really the right behavior?
8903 if (Var
->getPointOfInstantiation().isInvalid() && Def
) {
8904 assert(Var
->getTemplateSpecializationKind() ==
8905 TSK_ImplicitInstantiation
&&
8906 "explicit instantiation with no point of instantiation");
8907 Var
->setTemplateSpecializationKind(
8908 Var
->getTemplateSpecializationKind(), PointOfInstantiation
);
8912 // Update the type to the definition's type both here and within the
8916 QualType T
= Def
->getType();
8918 // FIXME: Update the type on all intervening expressions.
8922 // We still go on to try to complete the type independently, as it
8923 // may also require instantiations or diagnostics if it remains
8930 QualType
Sema::getCompletedType(Expr
*E
) {
8931 // Incomplete array types may be completed by the initializer attached to
8932 // their definitions. For static data members of class templates and for
8933 // variable templates, we need to instantiate the definition to get this
8934 // initializer and complete the type.
8935 if (E
->getType()->isIncompleteArrayType())
8936 completeExprArrayBound(E
);
8938 // FIXME: Are there other cases which require instantiating something other
8939 // than the type to complete the type of an expression?
8941 return E
->getType();
8944 /// Ensure that the type of the given expression is complete.
8946 /// This routine checks whether the expression \p E has a complete type. If the
8947 /// expression refers to an instantiable construct, that instantiation is
8948 /// performed as needed to complete its type. Furthermore
8949 /// Sema::RequireCompleteType is called for the expression's type (or in the
8950 /// case of a reference type, the referred-to type).
8952 /// \param E The expression whose type is required to be complete.
8953 /// \param Kind Selects which completeness rules should be applied.
8954 /// \param Diagnoser The object that will emit a diagnostic if the type is
8957 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8959 bool Sema::RequireCompleteExprType(Expr
*E
, CompleteTypeKind Kind
,
8960 TypeDiagnoser
&Diagnoser
) {
8961 return RequireCompleteType(E
->getExprLoc(), getCompletedType(E
), Kind
,
8965 bool Sema::RequireCompleteExprType(Expr
*E
, unsigned DiagID
) {
8966 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
8967 return RequireCompleteExprType(E
, CompleteTypeKind::Default
, Diagnoser
);
8970 /// Ensure that the type T is a complete type.
8972 /// This routine checks whether the type @p T is complete in any
8973 /// context where a complete type is required. If @p T is a complete
8974 /// type, returns false. If @p T is a class template specialization,
8975 /// this routine then attempts to perform class template
8976 /// instantiation. If instantiation fails, or if @p T is incomplete
8977 /// and cannot be completed, issues the diagnostic @p diag (giving it
8978 /// the type @p T) and returns true.
8980 /// @param Loc The location in the source that the incomplete type
8981 /// diagnostic should refer to.
8983 /// @param T The type that this routine is examining for completeness.
8985 /// @param Kind Selects which completeness rules should be applied.
8987 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8988 /// @c false otherwise.
8989 bool Sema::RequireCompleteType(SourceLocation Loc
, QualType T
,
8990 CompleteTypeKind Kind
,
8991 TypeDiagnoser
&Diagnoser
) {
8992 if (RequireCompleteTypeImpl(Loc
, T
, Kind
, &Diagnoser
))
8994 if (const TagType
*Tag
= T
->getAs
<TagType
>()) {
8995 if (!Tag
->getDecl()->isCompleteDefinitionRequired()) {
8996 Tag
->getDecl()->setCompleteDefinitionRequired();
8997 Consumer
.HandleTagDeclRequiredDefinition(Tag
->getDecl());
9003 bool Sema::hasStructuralCompatLayout(Decl
*D
, Decl
*Suggested
) {
9004 llvm::DenseSet
<std::pair
<Decl
*, Decl
*>> NonEquivalentDecls
;
9008 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
9009 // and isolate from other C++ specific checks.
9010 StructuralEquivalenceContext
Ctx(
9011 D
->getASTContext(), Suggested
->getASTContext(), NonEquivalentDecls
,
9012 StructuralEquivalenceKind::Default
,
9013 false /*StrictTypeSpelling*/, true /*Complain*/,
9014 true /*ErrorOnTagTypeMismatch*/);
9015 return Ctx
.IsEquivalent(D
, Suggested
);
9018 bool Sema::hasAcceptableDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
9019 AcceptableKind Kind
, bool OnlyNeedComplete
) {
9020 // Easy case: if we don't have modules, all declarations are visible.
9021 if (!getLangOpts().Modules
&& !getLangOpts().ModulesLocalVisibility
)
9024 // If this definition was instantiated from a template, map back to the
9025 // pattern from which it was instantiated.
9026 if (isa
<TagDecl
>(D
) && cast
<TagDecl
>(D
)->isBeingDefined()) {
9027 // We're in the middle of defining it; this definition should be treated
9030 } else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(D
)) {
9031 if (auto *Pattern
= RD
->getTemplateInstantiationPattern())
9033 D
= RD
->getDefinition();
9034 } else if (auto *ED
= dyn_cast
<EnumDecl
>(D
)) {
9035 if (auto *Pattern
= ED
->getTemplateInstantiationPattern())
9037 if (OnlyNeedComplete
&& (ED
->isFixed() || getLangOpts().MSVCCompat
)) {
9038 // If the enum has a fixed underlying type, it may have been forward
9039 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9040 // the enum and assign it the underlying type of `int`. Since we're only
9041 // looking for a complete type (not a definition), any visible declaration
9043 *Suggested
= nullptr;
9044 for (auto *Redecl
: ED
->redecls()) {
9045 if (isAcceptable(Redecl
, Kind
))
9047 if (Redecl
->isThisDeclarationADefinition() ||
9048 (Redecl
->isCanonicalDecl() && !*Suggested
))
9049 *Suggested
= Redecl
;
9054 D
= ED
->getDefinition();
9055 } else if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
9056 if (auto *Pattern
= FD
->getTemplateInstantiationPattern())
9058 D
= FD
->getDefinition();
9059 } else if (auto *VD
= dyn_cast
<VarDecl
>(D
)) {
9060 if (auto *Pattern
= VD
->getTemplateInstantiationPattern())
9062 D
= VD
->getDefinition();
9065 assert(D
&& "missing definition for pattern of instantiated definition");
9069 auto DefinitionIsAcceptable
= [&] {
9070 // The (primary) definition might be in a visible module.
9071 if (isAcceptable(D
, Kind
))
9074 // A visible module might have a merged definition instead.
9075 if (D
->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D
)
9076 : hasVisibleMergedDefinition(D
)) {
9077 if (CodeSynthesisContexts
.empty() &&
9078 !getLangOpts().ModulesLocalVisibility
) {
9079 // Cache the fact that this definition is implicitly visible because
9080 // there is a visible merged definition.
9081 D
->setVisibleDespiteOwningModule();
9089 if (DefinitionIsAcceptable())
9092 // The external source may have additional definitions of this entity that are
9093 // visible, so complete the redeclaration chain now and ask again.
9094 if (auto *Source
= Context
.getExternalSource()) {
9095 Source
->CompleteRedeclChain(D
);
9096 return DefinitionIsAcceptable();
9102 /// Determine whether there is any declaration of \p D that was ever a
9103 /// definition (perhaps before module merging) and is currently visible.
9104 /// \param D The definition of the entity.
9105 /// \param Suggested Filled in with the declaration that should be made visible
9106 /// in order to provide a definition of this entity.
9107 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9108 /// not defined. This only matters for enums with a fixed underlying
9109 /// type, since in all other cases, a type is complete if and only if it
9111 bool Sema::hasVisibleDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
9112 bool OnlyNeedComplete
) {
9113 return hasAcceptableDefinition(D
, Suggested
, Sema::AcceptableKind::Visible
,
9117 /// Determine whether there is any declaration of \p D that was ever a
9118 /// definition (perhaps before module merging) and is currently
9120 /// \param D The definition of the entity.
9121 /// \param Suggested Filled in with the declaration that should be made
9123 /// in order to provide a definition of this entity.
9124 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9125 /// not defined. This only matters for enums with a fixed underlying
9126 /// type, since in all other cases, a type is complete if and only if it
9128 bool Sema::hasReachableDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
9129 bool OnlyNeedComplete
) {
9130 return hasAcceptableDefinition(D
, Suggested
, Sema::AcceptableKind::Reachable
,
9134 /// Locks in the inheritance model for the given class and all of its bases.
9135 static void assignInheritanceModel(Sema
&S
, CXXRecordDecl
*RD
) {
9136 RD
= RD
->getMostRecentNonInjectedDecl();
9137 if (!RD
->hasAttr
<MSInheritanceAttr
>()) {
9138 MSInheritanceModel IM
;
9139 bool BestCase
= false;
9140 switch (S
.MSPointerToMemberRepresentationMethod
) {
9141 case LangOptions::PPTMK_BestCase
:
9143 IM
= RD
->calculateInheritanceModel();
9145 case LangOptions::PPTMK_FullGeneralitySingleInheritance
:
9146 IM
= MSInheritanceModel::Single
;
9148 case LangOptions::PPTMK_FullGeneralityMultipleInheritance
:
9149 IM
= MSInheritanceModel::Multiple
;
9151 case LangOptions::PPTMK_FullGeneralityVirtualInheritance
:
9152 IM
= MSInheritanceModel::Unspecified
;
9156 SourceRange Loc
= S
.ImplicitMSInheritanceAttrLoc
.isValid()
9157 ? S
.ImplicitMSInheritanceAttrLoc
9158 : RD
->getSourceRange();
9159 RD
->addAttr(MSInheritanceAttr::CreateImplicit(
9160 S
.getASTContext(), BestCase
, Loc
, MSInheritanceAttr::Spelling(IM
)));
9161 S
.Consumer
.AssignInheritanceModel(RD
);
9165 /// The implementation of RequireCompleteType
9166 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc
, QualType T
,
9167 CompleteTypeKind Kind
,
9168 TypeDiagnoser
*Diagnoser
) {
9169 // FIXME: Add this assertion to make sure we always get instantiation points.
9170 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9171 // FIXME: Add this assertion to help us flush out problems with
9172 // checking for dependent types and type-dependent expressions.
9174 // assert(!T->isDependentType() &&
9175 // "Can't ask whether a dependent type is complete");
9177 if (const MemberPointerType
*MPTy
= T
->getAs
<MemberPointerType
>()) {
9178 if (!MPTy
->getClass()->isDependentType()) {
9179 if (getLangOpts().CompleteMemberPointers
&&
9180 !MPTy
->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9181 RequireCompleteType(Loc
, QualType(MPTy
->getClass(), 0), Kind
,
9182 diag::err_memptr_incomplete
))
9185 // We lock in the inheritance model once somebody has asked us to ensure
9186 // that a pointer-to-member type is complete.
9187 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
9188 (void)isCompleteType(Loc
, QualType(MPTy
->getClass(), 0));
9189 assignInheritanceModel(*this, MPTy
->getMostRecentCXXRecordDecl());
9194 NamedDecl
*Def
= nullptr;
9195 bool AcceptSizeless
= (Kind
== CompleteTypeKind::AcceptSizeless
);
9196 bool Incomplete
= (T
->isIncompleteType(&Def
) ||
9197 (!AcceptSizeless
&& T
->isSizelessBuiltinType()));
9199 // Check that any necessary explicit specializations are visible. For an
9200 // enum, we just need the declaration, so don't check this.
9201 if (Def
&& !isa
<EnumDecl
>(Def
))
9202 checkSpecializationReachability(Loc
, Def
);
9204 // If we have a complete type, we're done.
9206 NamedDecl
*Suggested
= nullptr;
9208 !hasReachableDefinition(Def
, &Suggested
, /*OnlyNeedComplete=*/true)) {
9209 // If the user is going to see an error here, recover by making the
9210 // definition visible.
9211 bool TreatAsComplete
= Diagnoser
&& !isSFINAEContext();
9212 if (Diagnoser
&& Suggested
)
9213 diagnoseMissingImport(Loc
, Suggested
, MissingImportKind::Definition
,
9214 /*Recover*/ TreatAsComplete
);
9215 return !TreatAsComplete
;
9216 } else if (Def
&& !TemplateInstCallbacks
.empty()) {
9217 CodeSynthesisContext TempInst
;
9218 TempInst
.Kind
= CodeSynthesisContext::Memoization
;
9219 TempInst
.Template
= Def
;
9220 TempInst
.Entity
= Def
;
9221 TempInst
.PointOfInstantiation
= Loc
;
9222 atTemplateBegin(TemplateInstCallbacks
, *this, TempInst
);
9223 atTemplateEnd(TemplateInstCallbacks
, *this, TempInst
);
9229 TagDecl
*Tag
= dyn_cast_or_null
<TagDecl
>(Def
);
9230 ObjCInterfaceDecl
*IFace
= dyn_cast_or_null
<ObjCInterfaceDecl
>(Def
);
9232 // Give the external source a chance to provide a definition of the type.
9233 // This is kept separate from completing the redeclaration chain so that
9234 // external sources such as LLDB can avoid synthesizing a type definition
9235 // unless it's actually needed.
9237 // Avoid diagnosing invalid decls as incomplete.
9238 if (Def
->isInvalidDecl())
9241 // Give the external AST source a chance to complete the type.
9242 if (auto *Source
= Context
.getExternalSource()) {
9243 if (Tag
&& Tag
->hasExternalLexicalStorage())
9244 Source
->CompleteType(Tag
);
9245 if (IFace
&& IFace
->hasExternalLexicalStorage())
9246 Source
->CompleteType(IFace
);
9247 // If the external source completed the type, go through the motions
9248 // again to ensure we're allowed to use the completed type.
9249 if (!T
->isIncompleteType())
9250 return RequireCompleteTypeImpl(Loc
, T
, Kind
, Diagnoser
);
9254 // If we have a class template specialization or a class member of a
9255 // class template specialization, or an array with known size of such,
9256 // try to instantiate it.
9257 if (auto *RD
= dyn_cast_or_null
<CXXRecordDecl
>(Tag
)) {
9258 bool Instantiated
= false;
9259 bool Diagnosed
= false;
9260 if (RD
->isDependentContext()) {
9261 // Don't try to instantiate a dependent class (eg, a member template of
9262 // an instantiated class template specialization).
9263 // FIXME: Can this ever happen?
9264 } else if (auto *ClassTemplateSpec
=
9265 dyn_cast
<ClassTemplateSpecializationDecl
>(RD
)) {
9266 if (ClassTemplateSpec
->getSpecializationKind() == TSK_Undeclared
) {
9267 runWithSufficientStackSpace(Loc
, [&] {
9268 Diagnosed
= InstantiateClassTemplateSpecialization(
9269 Loc
, ClassTemplateSpec
, TSK_ImplicitInstantiation
,
9270 /*Complain=*/Diagnoser
);
9272 Instantiated
= true;
9275 CXXRecordDecl
*Pattern
= RD
->getInstantiatedFromMemberClass();
9276 if (!RD
->isBeingDefined() && Pattern
) {
9277 MemberSpecializationInfo
*MSI
= RD
->getMemberSpecializationInfo();
9278 assert(MSI
&& "Missing member specialization information?");
9279 // This record was instantiated from a class within a template.
9280 if (MSI
->getTemplateSpecializationKind() !=
9281 TSK_ExplicitSpecialization
) {
9282 runWithSufficientStackSpace(Loc
, [&] {
9283 Diagnosed
= InstantiateClass(Loc
, RD
, Pattern
,
9284 getTemplateInstantiationArgs(RD
),
9285 TSK_ImplicitInstantiation
,
9286 /*Complain=*/Diagnoser
);
9288 Instantiated
= true;
9294 // Instantiate* might have already complained that the template is not
9295 // defined, if we asked it to.
9296 if (Diagnoser
&& Diagnosed
)
9298 // If we instantiated a definition, check that it's usable, even if
9299 // instantiation produced an error, so that repeated calls to this
9300 // function give consistent answers.
9301 if (!T
->isIncompleteType())
9302 return RequireCompleteTypeImpl(Loc
, T
, Kind
, Diagnoser
);
9306 // FIXME: If we didn't instantiate a definition because of an explicit
9307 // specialization declaration, check that it's visible.
9312 Diagnoser
->diagnose(*this, Loc
, T
);
9314 // If the type was a forward declaration of a class/struct/union
9315 // type, produce a note.
9316 if (Tag
&& !Tag
->isInvalidDecl() && !Tag
->getLocation().isInvalid())
9317 Diag(Tag
->getLocation(),
9318 Tag
->isBeingDefined() ? diag::note_type_being_defined
9319 : diag::note_forward_declaration
)
9320 << Context
.getTagDeclType(Tag
);
9322 // If the Objective-C class was a forward declaration, produce a note.
9323 if (IFace
&& !IFace
->isInvalidDecl() && !IFace
->getLocation().isInvalid())
9324 Diag(IFace
->getLocation(), diag::note_forward_class
);
9326 // If we have external information that we can use to suggest a fix,
9329 ExternalSource
->MaybeDiagnoseMissingCompleteType(Loc
, T
);
9334 bool Sema::RequireCompleteType(SourceLocation Loc
, QualType T
,
9335 CompleteTypeKind Kind
, unsigned DiagID
) {
9336 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
9337 return RequireCompleteType(Loc
, T
, Kind
, Diagnoser
);
9340 /// Get diagnostic %select index for tag kind for
9341 /// literal type diagnostic message.
9342 /// WARNING: Indexes apply to particular diagnostics only!
9344 /// \returns diagnostic %select index.
9345 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag
) {
9347 case TTK_Struct
: return 0;
9348 case TTK_Interface
: return 1;
9349 case TTK_Class
: return 2;
9350 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9354 /// Ensure that the type T is a literal type.
9356 /// This routine checks whether the type @p T is a literal type. If @p T is an
9357 /// incomplete type, an attempt is made to complete it. If @p T is a literal
9358 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
9359 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
9360 /// it the type @p T), along with notes explaining why the type is not a
9361 /// literal type, and returns true.
9363 /// @param Loc The location in the source that the non-literal type
9364 /// diagnostic should refer to.
9366 /// @param T The type that this routine is examining for literalness.
9368 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
9370 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
9371 /// @c false otherwise.
9372 bool Sema::RequireLiteralType(SourceLocation Loc
, QualType T
,
9373 TypeDiagnoser
&Diagnoser
) {
9374 assert(!T
->isDependentType() && "type should not be dependent");
9376 QualType ElemType
= Context
.getBaseElementType(T
);
9377 if ((isCompleteType(Loc
, ElemType
) || ElemType
->isVoidType()) &&
9378 T
->isLiteralType(Context
))
9381 Diagnoser
.diagnose(*this, Loc
, T
);
9383 if (T
->isVariableArrayType())
9386 const RecordType
*RT
= ElemType
->getAs
<RecordType
>();
9390 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RT
->getDecl());
9392 // A partially-defined class type can't be a literal type, because a literal
9393 // class type must have a trivial destructor (which can't be checked until
9394 // the class definition is complete).
9395 if (RequireCompleteType(Loc
, ElemType
, diag::note_non_literal_incomplete
, T
))
9398 // [expr.prim.lambda]p3:
9399 // This class type is [not] a literal type.
9400 if (RD
->isLambda() && !getLangOpts().CPlusPlus17
) {
9401 Diag(RD
->getLocation(), diag::note_non_literal_lambda
);
9405 // If the class has virtual base classes, then it's not an aggregate, and
9406 // cannot have any constexpr constructors or a trivial default constructor,
9407 // so is non-literal. This is better to diagnose than the resulting absence
9408 // of constexpr constructors.
9409 if (RD
->getNumVBases()) {
9410 Diag(RD
->getLocation(), diag::note_non_literal_virtual_base
)
9411 << getLiteralDiagFromTagKind(RD
->getTagKind()) << RD
->getNumVBases();
9412 for (const auto &I
: RD
->vbases())
9413 Diag(I
.getBeginLoc(), diag::note_constexpr_virtual_base_here
)
9414 << I
.getSourceRange();
9415 } else if (!RD
->isAggregate() && !RD
->hasConstexprNonCopyMoveConstructor() &&
9416 !RD
->hasTrivialDefaultConstructor()) {
9417 Diag(RD
->getLocation(), diag::note_non_literal_no_constexpr_ctors
) << RD
;
9418 } else if (RD
->hasNonLiteralTypeFieldsOrBases()) {
9419 for (const auto &I
: RD
->bases()) {
9420 if (!I
.getType()->isLiteralType(Context
)) {
9421 Diag(I
.getBeginLoc(), diag::note_non_literal_base_class
)
9422 << RD
<< I
.getType() << I
.getSourceRange();
9426 for (const auto *I
: RD
->fields()) {
9427 if (!I
->getType()->isLiteralType(Context
) ||
9428 I
->getType().isVolatileQualified()) {
9429 Diag(I
->getLocation(), diag::note_non_literal_field
)
9430 << RD
<< I
<< I
->getType()
9431 << I
->getType().isVolatileQualified();
9435 } else if (getLangOpts().CPlusPlus20
? !RD
->hasConstexprDestructor()
9436 : !RD
->hasTrivialDestructor()) {
9437 // All fields and bases are of literal types, so have trivial or constexpr
9438 // destructors. If this class's destructor is non-trivial / non-constexpr,
9439 // it must be user-declared.
9440 CXXDestructorDecl
*Dtor
= RD
->getDestructor();
9441 assert(Dtor
&& "class has literal fields and bases but no dtor?");
9445 if (getLangOpts().CPlusPlus20
) {
9446 Diag(Dtor
->getLocation(), diag::note_non_literal_non_constexpr_dtor
)
9449 Diag(Dtor
->getLocation(), Dtor
->isUserProvided()
9450 ? diag::note_non_literal_user_provided_dtor
9451 : diag::note_non_literal_nontrivial_dtor
)
9453 if (!Dtor
->isUserProvided())
9454 SpecialMemberIsTrivial(Dtor
, CXXDestructor
, TAH_IgnoreTrivialABI
,
9462 bool Sema::RequireLiteralType(SourceLocation Loc
, QualType T
, unsigned DiagID
) {
9463 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
9464 return RequireLiteralType(Loc
, T
, Diagnoser
);
9467 /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
9468 /// by the nested-name-specifier contained in SS, and that is (re)declared by
9469 /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
9470 QualType
Sema::getElaboratedType(ElaboratedTypeKeyword Keyword
,
9471 const CXXScopeSpec
&SS
, QualType T
,
9472 TagDecl
*OwnedTagDecl
) {
9475 return Context
.getElaboratedType(
9476 Keyword
, SS
.isValid() ? SS
.getScopeRep() : nullptr, T
, OwnedTagDecl
);
9479 QualType
Sema::BuildTypeofExprType(Expr
*E
, TypeOfKind Kind
) {
9480 assert(!E
->hasPlaceholderType() && "unexpected placeholder");
9482 if (!getLangOpts().CPlusPlus
&& E
->refersToBitField())
9483 Diag(E
->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield
)
9484 << (Kind
== TypeOfKind::Unqualified
? 3 : 2);
9486 if (!E
->isTypeDependent()) {
9487 QualType T
= E
->getType();
9488 if (const TagType
*TT
= T
->getAs
<TagType
>())
9489 DiagnoseUseOfDecl(TT
->getDecl(), E
->getExprLoc());
9491 return Context
.getTypeOfExprType(E
, Kind
);
9494 /// getDecltypeForExpr - Given an expr, will return the decltype for
9495 /// that expression, according to the rules in C++11
9496 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9497 QualType
Sema::getDecltypeForExpr(Expr
*E
) {
9498 if (E
->isTypeDependent())
9499 return Context
.DependentTy
;
9502 if (auto *ImplCastExpr
= dyn_cast
<ImplicitCastExpr
>(E
))
9503 IDExpr
= ImplCastExpr
->getSubExpr();
9505 // C++11 [dcl.type.simple]p4:
9506 // The type denoted by decltype(e) is defined as follows:
9509 // - if E is an unparenthesized id-expression naming a non-type
9510 // template-parameter (13.2), decltype(E) is the type of the
9511 // template-parameter after performing any necessary type deduction
9512 // Note that this does not pick up the implicit 'const' for a template
9513 // parameter object. This rule makes no difference before C++20 so we apply
9514 // it unconditionally.
9515 if (const auto *SNTTPE
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(IDExpr
))
9516 return SNTTPE
->getParameterType(Context
);
9518 // - if e is an unparenthesized id-expression or an unparenthesized class
9519 // member access (5.2.5), decltype(e) is the type of the entity named
9520 // by e. If there is no such entity, or if e names a set of overloaded
9521 // functions, the program is ill-formed;
9523 // We apply the same rules for Objective-C ivar and property references.
9524 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(IDExpr
)) {
9525 const ValueDecl
*VD
= DRE
->getDecl();
9526 QualType T
= VD
->getType();
9527 return isa
<TemplateParamObjectDecl
>(VD
) ? T
.getUnqualifiedType() : T
;
9529 if (const auto *ME
= dyn_cast
<MemberExpr
>(IDExpr
)) {
9530 if (const auto *VD
= ME
->getMemberDecl())
9531 if (isa
<FieldDecl
>(VD
) || isa
<VarDecl
>(VD
))
9532 return VD
->getType();
9533 } else if (const auto *IR
= dyn_cast
<ObjCIvarRefExpr
>(IDExpr
)) {
9534 return IR
->getDecl()->getType();
9535 } else if (const auto *PR
= dyn_cast
<ObjCPropertyRefExpr
>(IDExpr
)) {
9536 if (PR
->isExplicitProperty())
9537 return PR
->getExplicitProperty()->getType();
9538 } else if (const auto *PE
= dyn_cast
<PredefinedExpr
>(IDExpr
)) {
9539 return PE
->getType();
9542 // C++11 [expr.lambda.prim]p18:
9543 // Every occurrence of decltype((x)) where x is a possibly
9544 // parenthesized id-expression that names an entity of automatic
9545 // storage duration is treated as if x were transformed into an
9546 // access to a corresponding data member of the closure type that
9547 // would have been declared if x were an odr-use of the denoted
9549 if (getCurLambda() && isa
<ParenExpr
>(IDExpr
)) {
9550 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(IDExpr
->IgnoreParens())) {
9551 if (auto *Var
= dyn_cast
<VarDecl
>(DRE
->getDecl())) {
9552 QualType T
= getCapturedDeclRefType(Var
, DRE
->getLocation());
9554 return Context
.getLValueReferenceType(T
);
9559 return Context
.getReferenceQualifiedType(E
);
9562 QualType
Sema::BuildDecltypeType(Expr
*E
, bool AsUnevaluated
) {
9563 assert(!E
->hasPlaceholderType() && "unexpected placeholder");
9565 if (AsUnevaluated
&& CodeSynthesisContexts
.empty() &&
9566 !E
->isInstantiationDependent() && E
->HasSideEffects(Context
, false)) {
9567 // The expression operand for decltype is in an unevaluated expression
9568 // context, so side effects could result in unintended consequences.
9569 // Exclude instantiation-dependent expressions, because 'decltype' is often
9570 // used to build SFINAE gadgets.
9571 Diag(E
->getExprLoc(), diag::warn_side_effects_unevaluated_context
);
9573 return Context
.getDecltypeType(E
, getDecltypeForExpr(E
));
9576 static QualType
GetEnumUnderlyingType(Sema
&S
, QualType BaseType
,
9577 SourceLocation Loc
) {
9578 assert(BaseType
->isEnumeralType());
9579 EnumDecl
*ED
= BaseType
->castAs
<EnumType
>()->getDecl();
9580 assert(ED
&& "EnumType has no EnumDecl");
9582 S
.DiagnoseUseOfDecl(ED
, Loc
);
9584 QualType Underlying
= ED
->getIntegerType();
9585 assert(!Underlying
.isNull());
9590 QualType
Sema::BuiltinEnumUnderlyingType(QualType BaseType
,
9591 SourceLocation Loc
) {
9592 if (!BaseType
->isEnumeralType()) {
9593 Diag(Loc
, diag::err_only_enums_have_underlying_types
);
9597 // The enum could be incomplete if we're parsing its definition or
9598 // recovering from an error.
9599 NamedDecl
*FwdDecl
= nullptr;
9600 if (BaseType
->isIncompleteType(&FwdDecl
)) {
9601 Diag(Loc
, diag::err_underlying_type_of_incomplete_enum
) << BaseType
;
9602 Diag(FwdDecl
->getLocation(), diag::note_forward_declaration
) << FwdDecl
;
9606 return GetEnumUnderlyingType(*this, BaseType
, Loc
);
9609 QualType
Sema::BuiltinAddPointer(QualType BaseType
, SourceLocation Loc
) {
9610 QualType Pointer
= BaseType
.isReferenceable() || BaseType
->isVoidType()
9611 ? BuildPointerType(BaseType
.getNonReferenceType(), Loc
,
9615 return Pointer
.isNull() ? QualType() : Pointer
;
9618 QualType
Sema::BuiltinRemovePointer(QualType BaseType
, SourceLocation Loc
) {
9619 // We don't want block pointers or ObjectiveC's id type.
9620 if (!BaseType
->isAnyPointerType() || BaseType
->isObjCIdType())
9623 return BaseType
->getPointeeType();
9626 QualType
Sema::BuiltinDecay(QualType BaseType
, SourceLocation Loc
) {
9627 QualType Underlying
= BaseType
.getNonReferenceType();
9628 if (Underlying
->isArrayType())
9629 return Context
.getDecayedType(Underlying
);
9631 if (Underlying
->isFunctionType())
9632 return BuiltinAddPointer(BaseType
, Loc
);
9634 SplitQualType Split
= Underlying
.getSplitUnqualifiedType();
9635 // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9636 // in the same group of qualifiers as 'const' and 'volatile', we're extending
9637 // '__decay(T)' so that it removes all qualifiers.
9638 Split
.Quals
.removeCVRQualifiers();
9639 return Context
.getQualifiedType(Split
);
9642 QualType
Sema::BuiltinAddReference(QualType BaseType
, UTTKind UKind
,
9643 SourceLocation Loc
) {
9644 assert(LangOpts
.CPlusPlus
);
9645 QualType Reference
=
9646 BaseType
.isReferenceable()
9647 ? BuildReferenceType(BaseType
,
9648 UKind
== UnaryTransformType::AddLvalueReference
,
9649 Loc
, DeclarationName())
9651 return Reference
.isNull() ? QualType() : Reference
;
9654 QualType
Sema::BuiltinRemoveExtent(QualType BaseType
, UTTKind UKind
,
9655 SourceLocation Loc
) {
9656 if (UKind
== UnaryTransformType::RemoveAllExtents
)
9657 return Context
.getBaseElementType(BaseType
);
9659 if (const auto *AT
= Context
.getAsArrayType(BaseType
))
9660 return AT
->getElementType();
9665 QualType
Sema::BuiltinRemoveReference(QualType BaseType
, UTTKind UKind
,
9666 SourceLocation Loc
) {
9667 assert(LangOpts
.CPlusPlus
);
9668 QualType T
= BaseType
.getNonReferenceType();
9669 if (UKind
== UTTKind::RemoveCVRef
&&
9670 (T
.isConstQualified() || T
.isVolatileQualified())) {
9672 QualType Unqual
= Context
.getUnqualifiedArrayType(T
, Quals
);
9673 Quals
.removeConst();
9674 Quals
.removeVolatile();
9675 T
= Context
.getQualifiedType(Unqual
, Quals
);
9680 QualType
Sema::BuiltinChangeCVRQualifiers(QualType BaseType
, UTTKind UKind
,
9681 SourceLocation Loc
) {
9682 if ((BaseType
->isReferenceType() && UKind
!= UTTKind::RemoveRestrict
) ||
9683 BaseType
->isFunctionType())
9687 QualType Unqual
= Context
.getUnqualifiedArrayType(BaseType
, Quals
);
9689 if (UKind
== UTTKind::RemoveConst
|| UKind
== UTTKind::RemoveCV
)
9690 Quals
.removeConst();
9691 if (UKind
== UTTKind::RemoveVolatile
|| UKind
== UTTKind::RemoveCV
)
9692 Quals
.removeVolatile();
9693 if (UKind
== UTTKind::RemoveRestrict
)
9694 Quals
.removeRestrict();
9696 return Context
.getQualifiedType(Unqual
, Quals
);
9699 static QualType
ChangeIntegralSignedness(Sema
&S
, QualType BaseType
,
9701 SourceLocation Loc
) {
9702 if (BaseType
->isEnumeralType()) {
9703 QualType Underlying
= GetEnumUnderlyingType(S
, BaseType
, Loc
);
9704 if (auto *BitInt
= dyn_cast
<BitIntType
>(Underlying
)) {
9705 unsigned int Bits
= BitInt
->getNumBits();
9707 return S
.Context
.getBitIntType(!IsMakeSigned
, Bits
);
9709 S
.Diag(Loc
, diag::err_make_signed_integral_only
)
9710 << IsMakeSigned
<< /*_BitInt(1)*/ true << BaseType
<< 1 << Underlying
;
9713 if (Underlying
->isBooleanType()) {
9714 S
.Diag(Loc
, diag::err_make_signed_integral_only
)
9715 << IsMakeSigned
<< /*_BitInt(1)*/ false << BaseType
<< 1
9721 bool Int128Unsupported
= !S
.Context
.getTargetInfo().hasInt128Type();
9722 std::array
<CanQualType
*, 6> AllSignedIntegers
= {
9723 &S
.Context
.SignedCharTy
, &S
.Context
.ShortTy
, &S
.Context
.IntTy
,
9724 &S
.Context
.LongTy
, &S
.Context
.LongLongTy
, &S
.Context
.Int128Ty
};
9725 ArrayRef
<CanQualType
*> AvailableSignedIntegers(
9726 AllSignedIntegers
.data(), AllSignedIntegers
.size() - Int128Unsupported
);
9727 std::array
<CanQualType
*, 6> AllUnsignedIntegers
= {
9728 &S
.Context
.UnsignedCharTy
, &S
.Context
.UnsignedShortTy
,
9729 &S
.Context
.UnsignedIntTy
, &S
.Context
.UnsignedLongTy
,
9730 &S
.Context
.UnsignedLongLongTy
, &S
.Context
.UnsignedInt128Ty
};
9731 ArrayRef
<CanQualType
*> AvailableUnsignedIntegers(AllUnsignedIntegers
.data(),
9732 AllUnsignedIntegers
.size() -
9734 ArrayRef
<CanQualType
*> *Consider
=
9735 IsMakeSigned
? &AvailableSignedIntegers
: &AvailableUnsignedIntegers
;
9737 uint64_t BaseSize
= S
.Context
.getTypeSize(BaseType
);
9739 llvm::find_if(*Consider
, [&S
, BaseSize
](const CanQual
<Type
> *T
) {
9740 return BaseSize
== S
.Context
.getTypeSize(T
->getTypePtr());
9743 assert(Result
!= Consider
->end());
9744 return QualType((*Result
)->getTypePtr(), 0);
9747 QualType
Sema::BuiltinChangeSignedness(QualType BaseType
, UTTKind UKind
,
9748 SourceLocation Loc
) {
9749 bool IsMakeSigned
= UKind
== UnaryTransformType::MakeSigned
;
9750 if ((!BaseType
->isIntegerType() && !BaseType
->isEnumeralType()) ||
9751 BaseType
->isBooleanType() ||
9752 (BaseType
->isBitIntType() &&
9753 BaseType
->getAs
<BitIntType
>()->getNumBits() < 2)) {
9754 Diag(Loc
, diag::err_make_signed_integral_only
)
9755 << IsMakeSigned
<< BaseType
->isBitIntType() << BaseType
<< 0;
9759 bool IsNonIntIntegral
=
9760 BaseType
->isChar16Type() || BaseType
->isChar32Type() ||
9761 BaseType
->isWideCharType() || BaseType
->isEnumeralType();
9763 QualType Underlying
=
9765 ? ChangeIntegralSignedness(*this, BaseType
, IsMakeSigned
, Loc
)
9766 : IsMakeSigned
? Context
.getCorrespondingSignedType(BaseType
)
9767 : Context
.getCorrespondingUnsignedType(BaseType
);
9768 if (Underlying
.isNull())
9770 return Context
.getQualifiedType(Underlying
, BaseType
.getQualifiers());
9773 QualType
Sema::BuildUnaryTransformType(QualType BaseType
, UTTKind UKind
,
9774 SourceLocation Loc
) {
9775 if (BaseType
->isDependentType())
9776 return Context
.getUnaryTransformType(BaseType
, BaseType
, UKind
);
9779 case UnaryTransformType::EnumUnderlyingType
: {
9780 Result
= BuiltinEnumUnderlyingType(BaseType
, Loc
);
9783 case UnaryTransformType::AddPointer
: {
9784 Result
= BuiltinAddPointer(BaseType
, Loc
);
9787 case UnaryTransformType::RemovePointer
: {
9788 Result
= BuiltinRemovePointer(BaseType
, Loc
);
9791 case UnaryTransformType::Decay
: {
9792 Result
= BuiltinDecay(BaseType
, Loc
);
9795 case UnaryTransformType::AddLvalueReference
:
9796 case UnaryTransformType::AddRvalueReference
: {
9797 Result
= BuiltinAddReference(BaseType
, UKind
, Loc
);
9800 case UnaryTransformType::RemoveAllExtents
:
9801 case UnaryTransformType::RemoveExtent
: {
9802 Result
= BuiltinRemoveExtent(BaseType
, UKind
, Loc
);
9805 case UnaryTransformType::RemoveCVRef
:
9806 case UnaryTransformType::RemoveReference
: {
9807 Result
= BuiltinRemoveReference(BaseType
, UKind
, Loc
);
9810 case UnaryTransformType::RemoveConst
:
9811 case UnaryTransformType::RemoveCV
:
9812 case UnaryTransformType::RemoveRestrict
:
9813 case UnaryTransformType::RemoveVolatile
: {
9814 Result
= BuiltinChangeCVRQualifiers(BaseType
, UKind
, Loc
);
9817 case UnaryTransformType::MakeSigned
:
9818 case UnaryTransformType::MakeUnsigned
: {
9819 Result
= BuiltinChangeSignedness(BaseType
, UKind
, Loc
);
9824 return !Result
.isNull()
9825 ? Context
.getUnaryTransformType(BaseType
, Result
, UKind
)
9829 QualType
Sema::BuildAtomicType(QualType T
, SourceLocation Loc
) {
9830 if (!isDependentOrGNUAutoType(T
)) {
9831 // FIXME: It isn't entirely clear whether incomplete atomic types
9832 // are allowed or not; for simplicity, ban them for the moment.
9833 if (RequireCompleteType(Loc
, T
, diag::err_atomic_specifier_bad_type
, 0))
9836 int DisallowedKind
= -1;
9837 if (T
->isArrayType())
9839 else if (T
->isFunctionType())
9841 else if (T
->isReferenceType())
9843 else if (T
->isAtomicType())
9845 else if (T
.hasQualifiers())
9847 else if (T
->isSizelessType())
9849 else if (!T
.isTriviallyCopyableType(Context
))
9850 // Some other non-trivially-copyable type (probably a C++ class)
9852 else if (T
->isBitIntType())
9855 if (DisallowedKind
!= -1) {
9856 Diag(Loc
, diag::err_atomic_specifier_bad_type
) << DisallowedKind
<< T
;
9860 // FIXME: Do we need any handling for ARC here?
9863 // Build the pointer type.
9864 return Context
.getAtomicType(T
);