1 //===- Chunks.h -------------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_COFF_CHUNKS_H
10 #define LLD_COFF_CHUNKS_H
13 #include "InputFiles.h"
14 #include "lld/Common/LLVM.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/PointerIntPair.h"
17 #include "llvm/ADT/iterator.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/MC/StringTableBuilder.h"
20 #include "llvm/Object/COFF.h"
26 using llvm::COFF::ImportDirectoryTableEntry
;
27 using llvm::object::COFFSymbolRef
;
28 using llvm::object::SectionRef
;
29 using llvm::object::coff_relocation
;
30 using llvm::object::coff_section
;
34 class DefinedImportData
;
38 class RuntimePseudoReloc
;
41 // Mask for permissions (discardable, writable, readable, executable, etc).
42 const uint32_t permMask
= 0xFE000000;
44 // Mask for section types (code, data, bss).
45 const uint32_t typeMask
= 0x000000E0;
47 // The log base 2 of the largest section alignment, which is log2(8192), or 13.
48 enum : unsigned { Log2MaxSectionAlignment
= 13 };
50 // A Chunk represents a chunk of data that will occupy space in the
51 // output (if the resolver chose that). It may or may not be backed by
52 // a section of an input file. It could be linker-created data, or
53 // doesn't even have actual data (if common or bss).
56 enum Kind
: uint8_t { SectionKind
, OtherKind
, ImportThunkKind
};
57 Kind
kind() const { return chunkKind
; }
59 // Returns the size of this chunk (even if this is a common or BSS.)
60 size_t getSize() const;
62 // Returns chunk alignment in power of two form. Value values are powers of
63 // two from 1 to 8192.
64 uint32_t getAlignment() const { return 1U << p2Align
; }
66 // Update the chunk section alignment measured in bytes. Internally alignment
68 void setAlignment(uint32_t align
) {
69 // Treat zero byte alignment as 1 byte alignment.
70 align
= align
? align
: 1;
71 assert(llvm::isPowerOf2_32(align
) && "alignment is not a power of 2");
72 p2Align
= llvm::Log2_32(align
);
73 assert(p2Align
<= Log2MaxSectionAlignment
&&
74 "impossible requested alignment");
77 // Write this chunk to a mmap'ed file, assuming Buf is pointing to
78 // beginning of the file. Because this function may use RVA values
79 // of other chunks for relocations, you need to set them properly
80 // before calling this function.
81 void writeTo(uint8_t *buf
) const;
83 // The writer sets and uses the addresses. In practice, PE images cannot be
84 // larger than 2GB. Chunks are always laid as part of the image, so Chunk RVAs
85 // can be stored with 32 bits.
86 uint32_t getRVA() const { return rva
; }
87 void setRVA(uint64_t v
) {
88 // This may truncate. The writer checks for overflow later.
92 // Returns readable/writable/executable bits.
93 uint32_t getOutputCharacteristics() const;
95 // Returns the section name if this is a section chunk.
96 // It is illegal to call this function on non-section chunks.
97 StringRef
getSectionName() const;
99 // An output section has pointers to chunks in the section, and each
100 // chunk has a back pointer to an output section.
101 void setOutputSectionIdx(uint16_t o
) { osidx
= o
; }
102 uint16_t getOutputSectionIdx() const { return osidx
; }
105 // Collect all locations that contain absolute addresses for base relocations.
106 void getBaserels(std::vector
<Baserel
> *res
);
108 // Returns a human-readable name of this chunk. Chunks are unnamed chunks of
109 // bytes, so this is used only for logging or debugging.
110 StringRef
getDebugName() const;
112 // Return true if this file has the hotpatch flag set to true in the
113 // S_COMPILE3 record in codeview debug info. Also returns true for some thunks
114 // synthesized by the linker.
115 bool isHotPatchable() const;
118 Chunk(Kind k
= OtherKind
) : chunkKind(k
), hasData(true), p2Align(0) {}
120 const Kind chunkKind
;
123 // Returns true if this has non-zero data. BSS chunks return
124 // false. If false is returned, the space occupied by this chunk
125 // will be filled with zeros. Corresponds to the
126 // IMAGE_SCN_CNT_UNINITIALIZED_DATA section characteristic bit.
130 // The alignment of this chunk, stored in log2 form. The writer uses the
134 // The output section index for this chunk. The first valid section number is
138 // The RVA of this chunk in the output. The writer sets a value.
142 class NonSectionChunk
: public Chunk
{
144 virtual ~NonSectionChunk() = default;
146 // Returns the size of this chunk (even if this is a common or BSS.)
147 virtual size_t getSize() const = 0;
149 virtual uint32_t getOutputCharacteristics() const { return 0; }
151 // Write this chunk to a mmap'ed file, assuming Buf is pointing to
152 // beginning of the file. Because this function may use RVA values
153 // of other chunks for relocations, you need to set them properly
154 // before calling this function.
155 virtual void writeTo(uint8_t *buf
) const {}
157 // Returns the section name if this is a section chunk.
158 // It is illegal to call this function on non-section chunks.
159 virtual StringRef
getSectionName() const {
160 llvm_unreachable("unimplemented getSectionName");
164 // Collect all locations that contain absolute addresses for base relocations.
165 virtual void getBaserels(std::vector
<Baserel
> *res
) {}
167 // Returns a human-readable name of this chunk. Chunks are unnamed chunks of
168 // bytes, so this is used only for logging or debugging.
169 virtual StringRef
getDebugName() const { return ""; }
171 static bool classof(const Chunk
*c
) { return c
->kind() != SectionKind
; }
174 NonSectionChunk(Kind k
= OtherKind
) : Chunk(k
) {}
177 // MinGW specific; information about one individual location in the image
178 // that needs to be fixed up at runtime after loading. This represents
179 // one individual element in the PseudoRelocTableChunk table.
180 class RuntimePseudoReloc
{
182 RuntimePseudoReloc(Defined
*sym
, SectionChunk
*target
, uint32_t targetOffset
,
184 : sym(sym
), target(target
), targetOffset(targetOffset
), flags(flags
) {}
187 SectionChunk
*target
;
188 uint32_t targetOffset
;
189 // The Flags field contains the size of the relocation, in bits. No other
190 // flags are currently defined.
194 // A chunk corresponding a section of an input file.
195 class SectionChunk final
: public Chunk
{
196 // Identical COMDAT Folding feature accesses section internal data.
200 class symbol_iterator
: public llvm::iterator_adaptor_base
<
201 symbol_iterator
, const coff_relocation
*,
202 std::random_access_iterator_tag
, Symbol
*> {
207 symbol_iterator(ObjFile
*file
, const coff_relocation
*i
)
208 : symbol_iterator::iterator_adaptor_base(i
), file(file
) {}
211 symbol_iterator() = default;
213 Symbol
*operator*() const { return file
->getSymbol(I
->SymbolTableIndex
); }
216 SectionChunk(ObjFile
*file
, const coff_section
*header
);
217 static bool classof(const Chunk
*c
) { return c
->kind() == SectionKind
; }
218 size_t getSize() const { return header
->SizeOfRawData
; }
219 ArrayRef
<uint8_t> getContents() const;
220 void writeTo(uint8_t *buf
) const;
222 // Defend against unsorted relocations. This may be overly conservative.
223 void sortRelocations();
225 // Write and relocate a portion of the section. This is intended to be called
226 // in a loop. Relocations must be sorted first.
227 void writeAndRelocateSubsection(ArrayRef
<uint8_t> sec
,
228 ArrayRef
<uint8_t> subsec
,
229 uint32_t &nextRelocIndex
, uint8_t *buf
) const;
231 uint32_t getOutputCharacteristics() const {
232 return header
->Characteristics
& (permMask
| typeMask
);
234 StringRef
getSectionName() const {
235 return StringRef(sectionNameData
, sectionNameSize
);
237 void getBaserels(std::vector
<Baserel
> *res
);
238 bool isCOMDAT() const;
239 void applyRelocation(uint8_t *off
, const coff_relocation
&rel
) const;
240 void applyRelX64(uint8_t *off
, uint16_t type
, OutputSection
*os
, uint64_t s
,
241 uint64_t p
, uint64_t imageBase
) const;
242 void applyRelX86(uint8_t *off
, uint16_t type
, OutputSection
*os
, uint64_t s
,
243 uint64_t p
, uint64_t imageBase
) const;
244 void applyRelARM(uint8_t *off
, uint16_t type
, OutputSection
*os
, uint64_t s
,
245 uint64_t p
, uint64_t imageBase
) const;
246 void applyRelARM64(uint8_t *off
, uint16_t type
, OutputSection
*os
, uint64_t s
,
247 uint64_t p
, uint64_t imageBase
) const;
249 void getRuntimePseudoRelocs(std::vector
<RuntimePseudoReloc
> &res
);
251 // Called if the garbage collector decides to not include this chunk
252 // in a final output. It's supposed to print out a log message to stdout.
253 void printDiscardedMessage() const;
255 // Adds COMDAT associative sections to this COMDAT section. A chunk
256 // and its children are treated as a group by the garbage collector.
257 void addAssociative(SectionChunk
*child
);
259 StringRef
getDebugName() const;
261 // True if this is a codeview debug info chunk. These will not be laid out in
262 // the image. Instead they will end up in the PDB, if one is requested.
263 bool isCodeView() const {
264 return getSectionName() == ".debug" || getSectionName().starts_with(".debug$");
267 // True if this is a DWARF debug info or exception handling chunk.
268 bool isDWARF() const {
269 return getSectionName().starts_with(".debug_") || getSectionName() == ".eh_frame";
272 // Allow iteration over the bodies of this chunk's relocated symbols.
273 llvm::iterator_range
<symbol_iterator
> symbols() const {
274 return llvm::make_range(symbol_iterator(file
, relocsData
),
275 symbol_iterator(file
, relocsData
+ relocsSize
));
278 ArrayRef
<coff_relocation
> getRelocs() const {
279 return llvm::ArrayRef(relocsData
, relocsSize
);
282 // Reloc setter used by ARM range extension thunk insertion.
283 void setRelocs(ArrayRef
<coff_relocation
> newRelocs
) {
284 relocsData
= newRelocs
.data();
285 relocsSize
= newRelocs
.size();
286 assert(relocsSize
== newRelocs
.size() && "reloc size truncation");
289 // Single linked list iterator for associated comdat children.
290 class AssociatedIterator
291 : public llvm::iterator_facade_base
<
292 AssociatedIterator
, std::forward_iterator_tag
, SectionChunk
> {
294 AssociatedIterator() = default;
295 AssociatedIterator(SectionChunk
*head
) : cur(head
) {}
296 bool operator==(const AssociatedIterator
&r
) const { return cur
== r
.cur
; }
297 // FIXME: Wrong const-ness, but it makes filter ranges work.
298 SectionChunk
&operator*() const { return *cur
; }
299 SectionChunk
&operator*() { return *cur
; }
300 AssociatedIterator
&operator++() {
301 cur
= cur
->assocChildren
;
306 SectionChunk
*cur
= nullptr;
309 // Allow iteration over the associated child chunks for this section.
310 llvm::iterator_range
<AssociatedIterator
> children() const {
311 // Associated sections do not have children. The assocChildren field is
312 // part of the parent's list of children.
313 bool isAssoc
= selection
== llvm::COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE
;
314 return llvm::make_range(
315 AssociatedIterator(isAssoc
? nullptr : assocChildren
),
316 AssociatedIterator(nullptr));
319 // The section ID this chunk belongs to in its Obj.
320 uint32_t getSectionNumber() const;
322 ArrayRef
<uint8_t> consumeDebugMagic();
324 static ArrayRef
<uint8_t> consumeDebugMagic(ArrayRef
<uint8_t> data
,
325 StringRef sectionName
);
327 static SectionChunk
*findByName(ArrayRef
<SectionChunk
*> sections
,
330 // The file that this chunk was created from.
333 // Pointer to the COFF section header in the input file.
334 const coff_section
*header
;
336 // The COMDAT leader symbol if this is a COMDAT chunk.
337 DefinedRegular
*sym
= nullptr;
339 // The CRC of the contents as described in the COFF spec 4.5.5.
340 // Auxiliary Format 5: Section Definitions. Used for ICF.
341 uint32_t checksum
= 0;
343 // Used by the garbage collector.
346 // Whether this section needs to be kept distinct from other sections during
347 // ICF. This is set by the driver using address-significance tables.
348 bool keepUnique
= false;
350 // The COMDAT selection if this is a COMDAT chunk.
351 llvm::COFF::COMDATType selection
= (llvm::COFF::COMDATType
)0;
353 // A pointer pointing to a replacement for this chunk.
354 // Initially it points to "this" object. If this chunk is merged
355 // with other chunk by ICF, it points to another chunk,
356 // and this chunk is considered as dead.
360 SectionChunk
*assocChildren
= nullptr;
362 // Used for ICF (Identical COMDAT Folding)
363 void replace(SectionChunk
*other
);
364 uint32_t eqClass
[2] = {0, 0};
366 // Relocations for this section. Size is stored below.
367 const coff_relocation
*relocsData
;
369 // Section name string. Size is stored below.
370 const char *sectionNameData
;
372 uint32_t relocsSize
= 0;
373 uint32_t sectionNameSize
= 0;
376 // Inline methods to implement faux-virtual dispatch for SectionChunk.
378 inline size_t Chunk::getSize() const {
379 if (isa
<SectionChunk
>(this))
380 return static_cast<const SectionChunk
*>(this)->getSize();
382 return static_cast<const NonSectionChunk
*>(this)->getSize();
385 inline uint32_t Chunk::getOutputCharacteristics() const {
386 if (isa
<SectionChunk
>(this))
387 return static_cast<const SectionChunk
*>(this)->getOutputCharacteristics();
389 return static_cast<const NonSectionChunk
*>(this)
390 ->getOutputCharacteristics();
393 inline void Chunk::writeTo(uint8_t *buf
) const {
394 if (isa
<SectionChunk
>(this))
395 static_cast<const SectionChunk
*>(this)->writeTo(buf
);
397 static_cast<const NonSectionChunk
*>(this)->writeTo(buf
);
400 inline StringRef
Chunk::getSectionName() const {
401 if (isa
<SectionChunk
>(this))
402 return static_cast<const SectionChunk
*>(this)->getSectionName();
404 return static_cast<const NonSectionChunk
*>(this)->getSectionName();
407 inline void Chunk::getBaserels(std::vector
<Baserel
> *res
) {
408 if (isa
<SectionChunk
>(this))
409 static_cast<SectionChunk
*>(this)->getBaserels(res
);
411 static_cast<NonSectionChunk
*>(this)->getBaserels(res
);
414 inline StringRef
Chunk::getDebugName() const {
415 if (isa
<SectionChunk
>(this))
416 return static_cast<const SectionChunk
*>(this)->getDebugName();
418 return static_cast<const NonSectionChunk
*>(this)->getDebugName();
421 // This class is used to implement an lld-specific feature (not implemented in
422 // MSVC) that minimizes the output size by finding string literals sharing tail
423 // parts and merging them.
425 // If string tail merging is enabled and a section is identified as containing a
426 // string literal, it is added to a MergeChunk with an appropriate alignment.
427 // The MergeChunk then tail merges the strings using the StringTableBuilder
428 // class and assigns RVAs and section offsets to each of the member chunks based
429 // on the offsets assigned by the StringTableBuilder.
430 class MergeChunk
: public NonSectionChunk
{
432 MergeChunk(uint32_t alignment
);
433 static void addSection(COFFLinkerContext
&ctx
, SectionChunk
*c
);
434 void finalizeContents();
435 void assignSubsectionRVAs();
437 uint32_t getOutputCharacteristics() const override
;
438 StringRef
getSectionName() const override
{ return ".rdata"; }
439 size_t getSize() const override
;
440 void writeTo(uint8_t *buf
) const override
;
442 std::vector
<SectionChunk
*> sections
;
445 llvm::StringTableBuilder builder
;
446 bool finalized
= false;
449 // A chunk for common symbols. Common chunks don't have actual data.
450 class CommonChunk
: public NonSectionChunk
{
452 CommonChunk(const COFFSymbolRef sym
);
453 size_t getSize() const override
{ return sym
.getValue(); }
454 uint32_t getOutputCharacteristics() const override
;
455 StringRef
getSectionName() const override
{ return ".bss"; }
458 const COFFSymbolRef sym
;
461 // A chunk for linker-created strings.
462 class StringChunk
: public NonSectionChunk
{
464 explicit StringChunk(StringRef s
) : str(s
) {}
465 size_t getSize() const override
{ return str
.size() + 1; }
466 void writeTo(uint8_t *buf
) const override
;
472 static const uint8_t importThunkX86
[] = {
473 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // JMP *0x0
476 static const uint8_t importThunkARM
[] = {
477 0x40, 0xf2, 0x00, 0x0c, // mov.w ip, #0
478 0xc0, 0xf2, 0x00, 0x0c, // mov.t ip, #0
479 0xdc, 0xf8, 0x00, 0xf0, // ldr.w pc, [ip]
482 static const uint8_t importThunkARM64
[] = {
483 0x10, 0x00, 0x00, 0x90, // adrp x16, #0
484 0x10, 0x02, 0x40, 0xf9, // ldr x16, [x16]
485 0x00, 0x02, 0x1f, 0xd6, // br x16
489 // A chunk for DLL import jump table entry. In a final output, its
490 // contents will be a JMP instruction to some __imp_ symbol.
491 class ImportThunkChunk
: public NonSectionChunk
{
493 ImportThunkChunk(COFFLinkerContext
&ctx
, Defined
*s
)
494 : NonSectionChunk(ImportThunkKind
), impSymbol(s
), ctx(ctx
) {}
495 static bool classof(const Chunk
*c
) { return c
->kind() == ImportThunkKind
; }
499 COFFLinkerContext
&ctx
;
502 class ImportThunkChunkX64
: public ImportThunkChunk
{
504 explicit ImportThunkChunkX64(COFFLinkerContext
&ctx
, Defined
*s
);
505 size_t getSize() const override
{ return sizeof(importThunkX86
); }
506 void writeTo(uint8_t *buf
) const override
;
509 class ImportThunkChunkX86
: public ImportThunkChunk
{
511 explicit ImportThunkChunkX86(COFFLinkerContext
&ctx
, Defined
*s
)
512 : ImportThunkChunk(ctx
, s
) {}
513 size_t getSize() const override
{ return sizeof(importThunkX86
); }
514 void getBaserels(std::vector
<Baserel
> *res
) override
;
515 void writeTo(uint8_t *buf
) const override
;
518 class ImportThunkChunkARM
: public ImportThunkChunk
{
520 explicit ImportThunkChunkARM(COFFLinkerContext
&ctx
, Defined
*s
)
521 : ImportThunkChunk(ctx
, s
) {
524 size_t getSize() const override
{ return sizeof(importThunkARM
); }
525 void getBaserels(std::vector
<Baserel
> *res
) override
;
526 void writeTo(uint8_t *buf
) const override
;
529 class ImportThunkChunkARM64
: public ImportThunkChunk
{
531 explicit ImportThunkChunkARM64(COFFLinkerContext
&ctx
, Defined
*s
)
532 : ImportThunkChunk(ctx
, s
) {
535 size_t getSize() const override
{ return sizeof(importThunkARM64
); }
536 void writeTo(uint8_t *buf
) const override
;
539 class RangeExtensionThunkARM
: public NonSectionChunk
{
541 explicit RangeExtensionThunkARM(COFFLinkerContext
&ctx
, Defined
*t
)
542 : target(t
), ctx(ctx
) {
545 size_t getSize() const override
;
546 void writeTo(uint8_t *buf
) const override
;
551 COFFLinkerContext
&ctx
;
554 class RangeExtensionThunkARM64
: public NonSectionChunk
{
556 explicit RangeExtensionThunkARM64(COFFLinkerContext
&ctx
, Defined
*t
)
557 : target(t
), ctx(ctx
) {
560 size_t getSize() const override
;
561 void writeTo(uint8_t *buf
) const override
;
566 COFFLinkerContext
&ctx
;
570 // See comments for DefinedLocalImport class.
571 class LocalImportChunk
: public NonSectionChunk
{
573 explicit LocalImportChunk(COFFLinkerContext
&ctx
, Defined
*s
);
574 size_t getSize() const override
;
575 void getBaserels(std::vector
<Baserel
> *res
) override
;
576 void writeTo(uint8_t *buf
) const override
;
580 COFFLinkerContext
&ctx
;
583 // Duplicate RVAs are not allowed in RVA tables, so unique symbols by chunk and
584 // offset into the chunk. Order does not matter as the RVA table will be sorted
586 struct ChunkAndOffset
{
590 struct DenseMapInfo
{
591 static ChunkAndOffset
getEmptyKey() {
592 return {llvm::DenseMapInfo
<Chunk
*>::getEmptyKey(), 0};
594 static ChunkAndOffset
getTombstoneKey() {
595 return {llvm::DenseMapInfo
<Chunk
*>::getTombstoneKey(), 0};
597 static unsigned getHashValue(const ChunkAndOffset
&co
) {
598 return llvm::DenseMapInfo
<std::pair
<Chunk
*, uint32_t>>::getHashValue(
599 {co
.inputChunk
, co
.offset
});
601 static bool isEqual(const ChunkAndOffset
&lhs
, const ChunkAndOffset
&rhs
) {
602 return lhs
.inputChunk
== rhs
.inputChunk
&& lhs
.offset
== rhs
.offset
;
607 using SymbolRVASet
= llvm::DenseSet
<ChunkAndOffset
>;
609 // Table which contains symbol RVAs. Used for /safeseh and /guard:cf.
610 class RVATableChunk
: public NonSectionChunk
{
612 explicit RVATableChunk(SymbolRVASet s
) : syms(std::move(s
)) {}
613 size_t getSize() const override
{ return syms
.size() * 4; }
614 void writeTo(uint8_t *buf
) const override
;
620 // Table which contains symbol RVAs with flags. Used for /guard:ehcont.
621 class RVAFlagTableChunk
: public NonSectionChunk
{
623 explicit RVAFlagTableChunk(SymbolRVASet s
) : syms(std::move(s
)) {}
624 size_t getSize() const override
{ return syms
.size() * 5; }
625 void writeTo(uint8_t *buf
) const override
;
632 // This class represents a block in .reloc section.
633 // See the PE/COFF spec 5.6 for details.
634 class BaserelChunk
: public NonSectionChunk
{
636 BaserelChunk(uint32_t page
, Baserel
*begin
, Baserel
*end
);
637 size_t getSize() const override
{ return data
.size(); }
638 void writeTo(uint8_t *buf
) const override
;
641 std::vector
<uint8_t> data
;
646 Baserel(uint32_t v
, uint8_t ty
) : rva(v
), type(ty
) {}
647 explicit Baserel(uint32_t v
, llvm::COFF::MachineTypes machine
)
648 : Baserel(v
, getDefaultType(machine
)) {}
649 uint8_t getDefaultType(llvm::COFF::MachineTypes machine
);
655 // This is a placeholder Chunk, to allow attaching a DefinedSynthetic to a
656 // specific place in a section, without any data. This is used for the MinGW
657 // specific symbol __RUNTIME_PSEUDO_RELOC_LIST_END__, even though the concept
658 // of an empty chunk isn't MinGW specific.
659 class EmptyChunk
: public NonSectionChunk
{
662 size_t getSize() const override
{ return 0; }
663 void writeTo(uint8_t *buf
) const override
{}
666 // MinGW specific, for the "automatic import of variables from DLLs" feature.
667 // This provides the table of runtime pseudo relocations, for variable
668 // references that turned out to need to be imported from a DLL even though
669 // the reference didn't use the dllimport attribute. The MinGW runtime will
670 // process this table after loading, before handling control over to user
672 class PseudoRelocTableChunk
: public NonSectionChunk
{
674 PseudoRelocTableChunk(std::vector
<RuntimePseudoReloc
> &relocs
)
675 : relocs(std::move(relocs
)) {
678 size_t getSize() const override
;
679 void writeTo(uint8_t *buf
) const override
;
682 std::vector
<RuntimePseudoReloc
> relocs
;
685 // MinGW specific. A Chunk that contains one pointer-sized absolute value.
686 class AbsolutePointerChunk
: public NonSectionChunk
{
688 AbsolutePointerChunk(COFFLinkerContext
&ctx
, uint64_t value
)
689 : value(value
), ctx(ctx
) {
690 setAlignment(getSize());
692 size_t getSize() const override
;
693 void writeTo(uint8_t *buf
) const override
;
697 COFFLinkerContext
&ctx
;
700 // Return true if this file has the hotpatch flag set to true in the S_COMPILE3
701 // record in codeview debug info. Also returns true for some thunks synthesized
703 inline bool Chunk::isHotPatchable() const {
704 if (auto *sc
= dyn_cast
<SectionChunk
>(this))
705 return sc
->file
->hotPatchable
;
706 else if (isa
<ImportThunkChunk
>(this))
711 void applyMOV32T(uint8_t *off
, uint32_t v
);
712 void applyBranch24T(uint8_t *off
, int32_t v
);
714 void applyArm64Addr(uint8_t *off
, uint64_t s
, uint64_t p
, int shift
);
715 void applyArm64Imm(uint8_t *off
, uint64_t imm
, uint32_t rangeLimit
);
716 void applyArm64Branch26(uint8_t *off
, int64_t v
);
718 // Convenience class for initializing a coff_section with specific flags.
721 FakeSection(int c
) { section
.Characteristics
= c
; }
723 coff_section section
;
726 // Convenience class for initializing a SectionChunk with specific flags.
727 class FakeSectionChunk
{
729 FakeSectionChunk(const coff_section
*section
) : chunk(nullptr, section
) {
730 // Comdats from LTO files can't be fully treated as regular comdats
731 // at this point; we don't know what size or contents they are going to
732 // have, so we can't do proper checking of such aspects of them.
733 chunk
.selection
= llvm::COFF::IMAGE_COMDAT_SELECT_ANY
;
739 } // namespace lld::coff
743 struct DenseMapInfo
<lld::coff::ChunkAndOffset
>
744 : lld::coff::ChunkAndOffset::DenseMapInfo
{};