1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRangeList.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/MC/TargetRegistry.h"
62 #include "llvm/Object/IRSymtab.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/SHA1.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/TargetParser/Triple.h"
87 static cl::opt
<unsigned>
88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden
, cl::init(25),
89 cl::desc("Number of metadatas above which we emit an index "
90 "to enable lazy-loading"));
91 static cl::opt
<uint32_t> FlushThreshold(
92 "bitcode-flush-threshold", cl::Hidden
, cl::init(512),
93 cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
95 static cl::opt
<bool> WriteRelBFToSummary(
96 "write-relbf-to-summary", cl::Hidden
, cl::init(false),
97 cl::desc("Write relative block frequency to function summary "));
100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
;
103 extern bool WriteNewDbgInfoFormatToBitcode
;
104 extern llvm::cl::opt
<bool> UseNewDbgInfoFormat
;
108 /// These are manifest constants used by the bitcode writer. They do not need to
109 /// be kept in sync with the reader, but need to be consistent within this file.
111 // VALUE_SYMTAB_BLOCK abbrev id's.
112 VST_ENTRY_8_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
115 VST_BBENTRY_6_ABBREV
,
117 // CONSTANTS_BLOCK abbrev id's.
118 CONSTANTS_SETTYPE_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
119 CONSTANTS_INTEGER_ABBREV
,
120 CONSTANTS_CE_CAST_Abbrev
,
121 CONSTANTS_NULL_Abbrev
,
123 // FUNCTION_BLOCK abbrev id's.
124 FUNCTION_INST_LOAD_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
125 FUNCTION_INST_UNOP_ABBREV
,
126 FUNCTION_INST_UNOP_FLAGS_ABBREV
,
127 FUNCTION_INST_BINOP_ABBREV
,
128 FUNCTION_INST_BINOP_FLAGS_ABBREV
,
129 FUNCTION_INST_CAST_ABBREV
,
130 FUNCTION_INST_CAST_FLAGS_ABBREV
,
131 FUNCTION_INST_RET_VOID_ABBREV
,
132 FUNCTION_INST_RET_VAL_ABBREV
,
133 FUNCTION_INST_UNREACHABLE_ABBREV
,
134 FUNCTION_INST_GEP_ABBREV
,
135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV
,
138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
140 class BitcodeWriterBase
{
142 /// The stream created and owned by the client.
143 BitstreamWriter
&Stream
;
145 StringTableBuilder
&StrtabBuilder
;
148 /// Constructs a BitcodeWriterBase object that writes to the provided
150 BitcodeWriterBase(BitstreamWriter
&Stream
, StringTableBuilder
&StrtabBuilder
)
151 : Stream(Stream
), StrtabBuilder(StrtabBuilder
) {}
154 void writeModuleVersion();
157 void BitcodeWriterBase::writeModuleVersion() {
158 // VERSION: [version#]
159 Stream
.EmitRecord(bitc::MODULE_CODE_VERSION
, ArrayRef
<uint64_t>{2});
162 /// Base class to manage the module bitcode writing, currently subclassed for
163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
164 class ModuleBitcodeWriterBase
: public BitcodeWriterBase
{
166 /// The Module to write to bitcode.
169 /// Enumerates ids for all values in the module.
172 /// Optional per-module index to write for ThinLTO.
173 const ModuleSummaryIndex
*Index
;
175 /// Map that holds the correspondence between GUIDs in the summary index,
176 /// that came from indirect call profiles, and a value id generated by this
177 /// class to use in the VST and summary block records.
178 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
180 /// Tracks the last value id recorded in the GUIDToValueMap.
181 unsigned GlobalValueId
;
183 /// Saves the offset of the VSTOffset record that must eventually be
184 /// backpatched with the offset of the actual VST.
185 uint64_t VSTOffsetPlaceholder
= 0;
188 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
189 /// writing to the provided \p Buffer.
190 ModuleBitcodeWriterBase(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
191 BitstreamWriter
&Stream
,
192 bool ShouldPreserveUseListOrder
,
193 const ModuleSummaryIndex
*Index
)
194 : BitcodeWriterBase(Stream
, StrtabBuilder
), M(M
),
195 VE(M
, ShouldPreserveUseListOrder
), Index(Index
) {
196 // Assign ValueIds to any callee values in the index that came from
197 // indirect call profiles and were recorded as a GUID not a Value*
198 // (which would have been assigned an ID by the ValueEnumerator).
199 // The starting ValueId is just after the number of values in the
200 // ValueEnumerator, so that they can be emitted in the VST.
201 GlobalValueId
= VE
.getValues().size();
204 for (const auto &GUIDSummaryLists
: *Index
)
205 // Examine all summaries for this GUID.
206 for (auto &Summary
: GUIDSummaryLists
.second
.SummaryList
)
207 if (auto FS
= dyn_cast
<FunctionSummary
>(Summary
.get())) {
208 // For each call in the function summary, see if the call
209 // is to a GUID (which means it is for an indirect call,
210 // otherwise we would have a Value for it). If so, synthesize
212 for (auto &CallEdge
: FS
->calls())
213 if (!CallEdge
.first
.haveGVs() || !CallEdge
.first
.getValue())
214 assignValueId(CallEdge
.first
.getGUID());
216 // For each referenced variables in the function summary, see if the
217 // variable is represented by a GUID (as opposed to a symbol to
218 // declarations or definitions in the module). If so, synthesize a
220 for (auto &RefEdge
: FS
->refs())
221 if (!RefEdge
.haveGVs() || !RefEdge
.getValue())
222 assignValueId(RefEdge
.getGUID());
227 void writePerModuleGlobalValueSummary();
230 void writePerModuleFunctionSummaryRecord(
231 SmallVector
<uint64_t, 64> &NameVals
, GlobalValueSummary
*Summary
,
232 unsigned ValueID
, unsigned FSCallsAbbrev
, unsigned FSCallsProfileAbbrev
,
233 unsigned CallsiteAbbrev
, unsigned AllocAbbrev
, unsigned ContextIdAbbvId
,
235 void writeModuleLevelReferences(const GlobalVariable
&V
,
236 SmallVector
<uint64_t, 64> &NameVals
,
237 unsigned FSModRefsAbbrev
,
238 unsigned FSModVTableRefsAbbrev
);
240 void assignValueId(GlobalValue::GUID ValGUID
) {
241 GUIDToValueIdMap
[ValGUID
] = ++GlobalValueId
;
244 unsigned getValueId(GlobalValue::GUID ValGUID
) {
245 const auto &VMI
= GUIDToValueIdMap
.find(ValGUID
);
246 // Expect that any GUID value had a value Id assigned by an
247 // earlier call to assignValueId.
248 assert(VMI
!= GUIDToValueIdMap
.end() &&
249 "GUID does not have assigned value Id");
253 // Helper to get the valueId for the type of value recorded in VI.
254 unsigned getValueId(ValueInfo VI
) {
255 if (!VI
.haveGVs() || !VI
.getValue())
256 return getValueId(VI
.getGUID());
257 return VE
.getValueID(VI
.getValue());
260 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
263 /// Class to manage the bitcode writing for a module.
264 class ModuleBitcodeWriter
: public ModuleBitcodeWriterBase
{
265 /// True if a module hash record should be written.
268 /// If non-null, when GenerateHash is true, the resulting hash is written
274 /// The start bit of the identification block.
275 uint64_t BitcodeStartBit
;
278 /// Constructs a ModuleBitcodeWriter object for the given Module,
279 /// writing to the provided \p Buffer.
280 ModuleBitcodeWriter(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
281 BitstreamWriter
&Stream
, bool ShouldPreserveUseListOrder
,
282 const ModuleSummaryIndex
*Index
, bool GenerateHash
,
283 ModuleHash
*ModHash
= nullptr)
284 : ModuleBitcodeWriterBase(M
, StrtabBuilder
, Stream
,
285 ShouldPreserveUseListOrder
, Index
),
286 GenerateHash(GenerateHash
), ModHash(ModHash
),
287 BitcodeStartBit(Stream
.GetCurrentBitNo()) {}
289 /// Emit the current module to the bitstream.
293 uint64_t bitcodeStartBit() { return BitcodeStartBit
; }
295 size_t addToStrtab(StringRef Str
);
297 void writeAttributeGroupTable();
298 void writeAttributeTable();
299 void writeTypeTable();
301 void writeValueSymbolTableForwardDecl();
302 void writeModuleInfo();
303 void writeValueAsMetadata(const ValueAsMetadata
*MD
,
304 SmallVectorImpl
<uint64_t> &Record
);
305 void writeMDTuple(const MDTuple
*N
, SmallVectorImpl
<uint64_t> &Record
,
307 unsigned createDILocationAbbrev();
308 void writeDILocation(const DILocation
*N
, SmallVectorImpl
<uint64_t> &Record
,
310 unsigned createGenericDINodeAbbrev();
311 void writeGenericDINode(const GenericDINode
*N
,
312 SmallVectorImpl
<uint64_t> &Record
, unsigned &Abbrev
);
313 void writeDISubrange(const DISubrange
*N
, SmallVectorImpl
<uint64_t> &Record
,
315 void writeDIGenericSubrange(const DIGenericSubrange
*N
,
316 SmallVectorImpl
<uint64_t> &Record
,
318 void writeDIEnumerator(const DIEnumerator
*N
,
319 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
320 void writeDIBasicType(const DIBasicType
*N
, SmallVectorImpl
<uint64_t> &Record
,
322 void writeDIStringType(const DIStringType
*N
,
323 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
324 void writeDIDerivedType(const DIDerivedType
*N
,
325 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
326 void writeDICompositeType(const DICompositeType
*N
,
327 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
328 void writeDISubroutineType(const DISubroutineType
*N
,
329 SmallVectorImpl
<uint64_t> &Record
,
331 void writeDIFile(const DIFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
333 void writeDICompileUnit(const DICompileUnit
*N
,
334 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
335 void writeDISubprogram(const DISubprogram
*N
,
336 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
337 void writeDILexicalBlock(const DILexicalBlock
*N
,
338 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
339 void writeDILexicalBlockFile(const DILexicalBlockFile
*N
,
340 SmallVectorImpl
<uint64_t> &Record
,
342 void writeDICommonBlock(const DICommonBlock
*N
,
343 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
344 void writeDINamespace(const DINamespace
*N
, SmallVectorImpl
<uint64_t> &Record
,
346 void writeDIMacro(const DIMacro
*N
, SmallVectorImpl
<uint64_t> &Record
,
348 void writeDIMacroFile(const DIMacroFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
350 void writeDIArgList(const DIArgList
*N
, SmallVectorImpl
<uint64_t> &Record
);
351 void writeDIModule(const DIModule
*N
, SmallVectorImpl
<uint64_t> &Record
,
353 void writeDIAssignID(const DIAssignID
*N
, SmallVectorImpl
<uint64_t> &Record
,
355 void writeDITemplateTypeParameter(const DITemplateTypeParameter
*N
,
356 SmallVectorImpl
<uint64_t> &Record
,
358 void writeDITemplateValueParameter(const DITemplateValueParameter
*N
,
359 SmallVectorImpl
<uint64_t> &Record
,
361 void writeDIGlobalVariable(const DIGlobalVariable
*N
,
362 SmallVectorImpl
<uint64_t> &Record
,
364 void writeDILocalVariable(const DILocalVariable
*N
,
365 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
366 void writeDILabel(const DILabel
*N
,
367 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
368 void writeDIExpression(const DIExpression
*N
,
369 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
370 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression
*N
,
371 SmallVectorImpl
<uint64_t> &Record
,
373 void writeDIObjCProperty(const DIObjCProperty
*N
,
374 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
375 void writeDIImportedEntity(const DIImportedEntity
*N
,
376 SmallVectorImpl
<uint64_t> &Record
,
378 unsigned createNamedMetadataAbbrev();
379 void writeNamedMetadata(SmallVectorImpl
<uint64_t> &Record
);
380 unsigned createMetadataStringsAbbrev();
381 void writeMetadataStrings(ArrayRef
<const Metadata
*> Strings
,
382 SmallVectorImpl
<uint64_t> &Record
);
383 void writeMetadataRecords(ArrayRef
<const Metadata
*> MDs
,
384 SmallVectorImpl
<uint64_t> &Record
,
385 std::vector
<unsigned> *MDAbbrevs
= nullptr,
386 std::vector
<uint64_t> *IndexPos
= nullptr);
387 void writeModuleMetadata();
388 void writeFunctionMetadata(const Function
&F
);
389 void writeFunctionMetadataAttachment(const Function
&F
);
390 void pushGlobalMetadataAttachment(SmallVectorImpl
<uint64_t> &Record
,
391 const GlobalObject
&GO
);
392 void writeModuleMetadataKinds();
393 void writeOperandBundleTags();
394 void writeSyncScopeNames();
395 void writeConstants(unsigned FirstVal
, unsigned LastVal
, bool isGlobal
);
396 void writeModuleConstants();
397 bool pushValueAndType(const Value
*V
, unsigned InstID
,
398 SmallVectorImpl
<unsigned> &Vals
);
399 bool pushValueOrMetadata(const Value
*V
, unsigned InstID
,
400 SmallVectorImpl
<unsigned> &Vals
);
401 void writeOperandBundles(const CallBase
&CB
, unsigned InstID
);
402 void pushValue(const Value
*V
, unsigned InstID
,
403 SmallVectorImpl
<unsigned> &Vals
);
404 void pushValueSigned(const Value
*V
, unsigned InstID
,
405 SmallVectorImpl
<uint64_t> &Vals
);
406 void writeInstruction(const Instruction
&I
, unsigned InstID
,
407 SmallVectorImpl
<unsigned> &Vals
);
408 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable
&VST
);
409 void writeGlobalValueSymbolTable(
410 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
411 void writeUseList(UseListOrder
&&Order
);
412 void writeUseListBlock(const Function
*F
);
414 writeFunction(const Function
&F
,
415 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
416 void writeBlockInfo();
417 void writeModuleHash(StringRef View
);
419 unsigned getEncodedSyncScopeID(SyncScope::ID SSID
) {
420 return unsigned(SSID
);
423 unsigned getEncodedAlign(MaybeAlign Alignment
) { return encode(Alignment
); }
426 /// Class to manage the bitcode writing for a combined index.
427 class IndexBitcodeWriter
: public BitcodeWriterBase
{
428 /// The combined index to write to bitcode.
429 const ModuleSummaryIndex
&Index
;
431 /// When writing combined summaries, provides the set of global value
432 /// summaries for which the value (function, function alias, etc) should be
433 /// imported as a declaration.
434 const GVSummaryPtrSet
*DecSummaries
= nullptr;
436 /// When writing a subset of the index for distributed backends, client
437 /// provides a map of modules to the corresponding GUIDs/summaries to write.
438 const ModuleToSummariesForIndexTy
*ModuleToSummariesForIndex
;
440 /// Map that holds the correspondence between the GUID used in the combined
441 /// index and a value id generated by this class to use in references.
442 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
444 // The stack ids used by this index, which will be a subset of those in
445 // the full index in the case of distributed indexes.
446 std::vector
<uint64_t> StackIds
;
448 // Keep a map of the stack id indices used by records being written for this
449 // index to the index of the corresponding stack id in the above StackIds
450 // vector. Ensures we write each referenced stack id once.
451 DenseMap
<unsigned, unsigned> StackIdIndicesToIndex
;
453 /// Tracks the last value id recorded in the GUIDToValueMap.
454 unsigned GlobalValueId
= 0;
456 /// Tracks the assignment of module paths in the module path string table to
457 /// an id assigned for use in summary references to the module path.
458 DenseMap
<StringRef
, uint64_t> ModuleIdMap
;
461 /// Constructs a IndexBitcodeWriter object for the given combined index,
462 /// writing to the provided \p Buffer. When writing a subset of the index
463 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
464 /// If provided, \p DecSummaries specifies the set of summaries for which
465 /// the corresponding functions or aliased functions should be imported as a
466 /// declaration (but not definition) for each module.
468 BitstreamWriter
&Stream
, StringTableBuilder
&StrtabBuilder
,
469 const ModuleSummaryIndex
&Index
,
470 const GVSummaryPtrSet
*DecSummaries
= nullptr,
471 const ModuleToSummariesForIndexTy
*ModuleToSummariesForIndex
= nullptr)
472 : BitcodeWriterBase(Stream
, StrtabBuilder
), Index(Index
),
473 DecSummaries(DecSummaries
),
474 ModuleToSummariesForIndex(ModuleToSummariesForIndex
) {
476 // See if the StackIdIndex was already added to the StackId map and
477 // vector. If not, record it.
478 auto RecordStackIdReference
= [&](unsigned StackIdIndex
) {
479 // If the StackIdIndex is not yet in the map, the below insert ensures
480 // that it will point to the new StackIds vector entry we push to just
483 StackIdIndicesToIndex
.insert({StackIdIndex
, StackIds
.size()});
485 StackIds
.push_back(Index
.getStackIdAtIndex(StackIdIndex
));
488 // Assign unique value ids to all summaries to be written, for use
489 // in writing out the call graph edges. Save the mapping from GUID
490 // to the new global value id to use when writing those edges, which
491 // are currently saved in the index in terms of GUID.
492 forEachSummary([&](GVInfo I
, bool IsAliasee
) {
493 GUIDToValueIdMap
[I
.first
] = ++GlobalValueId
;
496 auto *FS
= dyn_cast
<FunctionSummary
>(I
.second
);
499 // Record all stack id indices actually used in the summary entries being
500 // written, so that we can compact them in the case of distributed ThinLTO
502 for (auto &CI
: FS
->callsites()) {
503 // If the stack id list is empty, this callsite info was synthesized for
504 // a missing tail call frame. Ensure that the callee's GUID gets a value
505 // id. Normally we only generate these for defined summaries, which in
506 // the case of distributed ThinLTO is only the functions already defined
507 // in the module or that we want to import. We don't bother to include
508 // all the callee symbols as they aren't normally needed in the backend.
509 // However, for the synthesized callsite infos we do need the callee
510 // GUID in the backend so that we can correlate the identified callee
511 // with this callsite info (which for non-tail calls is done by the
512 // ordering of the callsite infos and verified via stack ids).
513 if (CI
.StackIdIndices
.empty()) {
514 GUIDToValueIdMap
[CI
.Callee
.getGUID()] = ++GlobalValueId
;
517 for (auto Idx
: CI
.StackIdIndices
)
518 RecordStackIdReference(Idx
);
520 for (auto &AI
: FS
->allocs())
521 for (auto &MIB
: AI
.MIBs
)
522 for (auto Idx
: MIB
.StackIdIndices
)
523 RecordStackIdReference(Idx
);
527 /// The below iterator returns the GUID and associated summary.
528 using GVInfo
= std::pair
<GlobalValue::GUID
, GlobalValueSummary
*>;
530 /// Calls the callback for each value GUID and summary to be written to
531 /// bitcode. This hides the details of whether they are being pulled from the
532 /// entire index or just those in a provided ModuleToSummariesForIndex map.
533 template<typename Functor
>
534 void forEachSummary(Functor Callback
) {
535 if (ModuleToSummariesForIndex
) {
536 for (auto &M
: *ModuleToSummariesForIndex
)
537 for (auto &Summary
: M
.second
) {
538 Callback(Summary
, false);
539 // Ensure aliasee is handled, e.g. for assigning a valueId,
540 // even if we are not importing the aliasee directly (the
541 // imported alias will contain a copy of aliasee).
542 if (auto *AS
= dyn_cast
<AliasSummary
>(Summary
.getSecond()))
543 Callback({AS
->getAliaseeGUID(), &AS
->getAliasee()}, true);
546 for (auto &Summaries
: Index
)
547 for (auto &Summary
: Summaries
.second
.SummaryList
)
548 Callback({Summaries
.first
, Summary
.get()}, false);
552 /// Calls the callback for each entry in the modulePaths StringMap that
553 /// should be written to the module path string table. This hides the details
554 /// of whether they are being pulled from the entire index or just those in a
555 /// provided ModuleToSummariesForIndex map.
556 template <typename Functor
> void forEachModule(Functor Callback
) {
557 if (ModuleToSummariesForIndex
) {
558 for (const auto &M
: *ModuleToSummariesForIndex
) {
559 const auto &MPI
= Index
.modulePaths().find(M
.first
);
560 if (MPI
== Index
.modulePaths().end()) {
561 // This should only happen if the bitcode file was empty, in which
562 // case we shouldn't be importing (the ModuleToSummariesForIndex
563 // would only include the module we are writing and index for).
564 assert(ModuleToSummariesForIndex
->size() == 1);
570 // Since StringMap iteration order isn't guaranteed, order by path string
572 // FIXME: Make this a vector of StringMapEntry instead to avoid the later
574 std::vector
<StringRef
> ModulePaths
;
575 for (auto &[ModPath
, _
] : Index
.modulePaths())
576 ModulePaths
.push_back(ModPath
);
577 llvm::sort(ModulePaths
.begin(), ModulePaths
.end());
578 for (auto &ModPath
: ModulePaths
)
579 Callback(*Index
.modulePaths().find(ModPath
));
583 /// Main entry point for writing a combined index to bitcode.
587 void writeModStrings();
588 void writeCombinedGlobalValueSummary();
590 std::optional
<unsigned> getValueId(GlobalValue::GUID ValGUID
) {
591 auto VMI
= GUIDToValueIdMap
.find(ValGUID
);
592 if (VMI
== GUIDToValueIdMap
.end())
597 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
600 } // end anonymous namespace
602 static unsigned getEncodedCastOpcode(unsigned Opcode
) {
604 default: llvm_unreachable("Unknown cast instruction!");
605 case Instruction::Trunc
: return bitc::CAST_TRUNC
;
606 case Instruction::ZExt
: return bitc::CAST_ZEXT
;
607 case Instruction::SExt
: return bitc::CAST_SEXT
;
608 case Instruction::FPToUI
: return bitc::CAST_FPTOUI
;
609 case Instruction::FPToSI
: return bitc::CAST_FPTOSI
;
610 case Instruction::UIToFP
: return bitc::CAST_UITOFP
;
611 case Instruction::SIToFP
: return bitc::CAST_SITOFP
;
612 case Instruction::FPTrunc
: return bitc::CAST_FPTRUNC
;
613 case Instruction::FPExt
: return bitc::CAST_FPEXT
;
614 case Instruction::PtrToInt
: return bitc::CAST_PTRTOINT
;
615 case Instruction::IntToPtr
: return bitc::CAST_INTTOPTR
;
616 case Instruction::BitCast
: return bitc::CAST_BITCAST
;
617 case Instruction::AddrSpaceCast
: return bitc::CAST_ADDRSPACECAST
;
621 static unsigned getEncodedUnaryOpcode(unsigned Opcode
) {
623 default: llvm_unreachable("Unknown binary instruction!");
624 case Instruction::FNeg
: return bitc::UNOP_FNEG
;
628 static unsigned getEncodedBinaryOpcode(unsigned Opcode
) {
630 default: llvm_unreachable("Unknown binary instruction!");
631 case Instruction::Add
:
632 case Instruction::FAdd
: return bitc::BINOP_ADD
;
633 case Instruction::Sub
:
634 case Instruction::FSub
: return bitc::BINOP_SUB
;
635 case Instruction::Mul
:
636 case Instruction::FMul
: return bitc::BINOP_MUL
;
637 case Instruction::UDiv
: return bitc::BINOP_UDIV
;
638 case Instruction::FDiv
:
639 case Instruction::SDiv
: return bitc::BINOP_SDIV
;
640 case Instruction::URem
: return bitc::BINOP_UREM
;
641 case Instruction::FRem
:
642 case Instruction::SRem
: return bitc::BINOP_SREM
;
643 case Instruction::Shl
: return bitc::BINOP_SHL
;
644 case Instruction::LShr
: return bitc::BINOP_LSHR
;
645 case Instruction::AShr
: return bitc::BINOP_ASHR
;
646 case Instruction::And
: return bitc::BINOP_AND
;
647 case Instruction::Or
: return bitc::BINOP_OR
;
648 case Instruction::Xor
: return bitc::BINOP_XOR
;
652 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op
) {
654 default: llvm_unreachable("Unknown RMW operation!");
655 case AtomicRMWInst::Xchg
: return bitc::RMW_XCHG
;
656 case AtomicRMWInst::Add
: return bitc::RMW_ADD
;
657 case AtomicRMWInst::Sub
: return bitc::RMW_SUB
;
658 case AtomicRMWInst::And
: return bitc::RMW_AND
;
659 case AtomicRMWInst::Nand
: return bitc::RMW_NAND
;
660 case AtomicRMWInst::Or
: return bitc::RMW_OR
;
661 case AtomicRMWInst::Xor
: return bitc::RMW_XOR
;
662 case AtomicRMWInst::Max
: return bitc::RMW_MAX
;
663 case AtomicRMWInst::Min
: return bitc::RMW_MIN
;
664 case AtomicRMWInst::UMax
: return bitc::RMW_UMAX
;
665 case AtomicRMWInst::UMin
: return bitc::RMW_UMIN
;
666 case AtomicRMWInst::FAdd
: return bitc::RMW_FADD
;
667 case AtomicRMWInst::FSub
: return bitc::RMW_FSUB
;
668 case AtomicRMWInst::FMax
: return bitc::RMW_FMAX
;
669 case AtomicRMWInst::FMin
: return bitc::RMW_FMIN
;
670 case AtomicRMWInst::UIncWrap
:
671 return bitc::RMW_UINC_WRAP
;
672 case AtomicRMWInst::UDecWrap
:
673 return bitc::RMW_UDEC_WRAP
;
674 case AtomicRMWInst::USubCond
:
675 return bitc::RMW_USUB_COND
;
676 case AtomicRMWInst::USubSat
:
677 return bitc::RMW_USUB_SAT
;
681 static unsigned getEncodedOrdering(AtomicOrdering Ordering
) {
683 case AtomicOrdering::NotAtomic
: return bitc::ORDERING_NOTATOMIC
;
684 case AtomicOrdering::Unordered
: return bitc::ORDERING_UNORDERED
;
685 case AtomicOrdering::Monotonic
: return bitc::ORDERING_MONOTONIC
;
686 case AtomicOrdering::Acquire
: return bitc::ORDERING_ACQUIRE
;
687 case AtomicOrdering::Release
: return bitc::ORDERING_RELEASE
;
688 case AtomicOrdering::AcquireRelease
: return bitc::ORDERING_ACQREL
;
689 case AtomicOrdering::SequentiallyConsistent
: return bitc::ORDERING_SEQCST
;
691 llvm_unreachable("Invalid ordering");
694 static void writeStringRecord(BitstreamWriter
&Stream
, unsigned Code
,
695 StringRef Str
, unsigned AbbrevToUse
) {
696 SmallVector
<unsigned, 64> Vals
;
698 // Code: [strchar x N]
700 if (AbbrevToUse
&& !BitCodeAbbrevOp::isChar6(C
))
705 // Emit the finished record.
706 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
709 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind
) {
711 case Attribute::Alignment
:
712 return bitc::ATTR_KIND_ALIGNMENT
;
713 case Attribute::AllocAlign
:
714 return bitc::ATTR_KIND_ALLOC_ALIGN
;
715 case Attribute::AllocSize
:
716 return bitc::ATTR_KIND_ALLOC_SIZE
;
717 case Attribute::AlwaysInline
:
718 return bitc::ATTR_KIND_ALWAYS_INLINE
;
719 case Attribute::Builtin
:
720 return bitc::ATTR_KIND_BUILTIN
;
721 case Attribute::ByVal
:
722 return bitc::ATTR_KIND_BY_VAL
;
723 case Attribute::Convergent
:
724 return bitc::ATTR_KIND_CONVERGENT
;
725 case Attribute::InAlloca
:
726 return bitc::ATTR_KIND_IN_ALLOCA
;
727 case Attribute::Cold
:
728 return bitc::ATTR_KIND_COLD
;
729 case Attribute::DisableSanitizerInstrumentation
:
730 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION
;
731 case Attribute::FnRetThunkExtern
:
732 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN
;
734 return bitc::ATTR_KIND_HOT
;
735 case Attribute::ElementType
:
736 return bitc::ATTR_KIND_ELEMENTTYPE
;
737 case Attribute::HybridPatchable
:
738 return bitc::ATTR_KIND_HYBRID_PATCHABLE
;
739 case Attribute::InlineHint
:
740 return bitc::ATTR_KIND_INLINE_HINT
;
741 case Attribute::InReg
:
742 return bitc::ATTR_KIND_IN_REG
;
743 case Attribute::JumpTable
:
744 return bitc::ATTR_KIND_JUMP_TABLE
;
745 case Attribute::MinSize
:
746 return bitc::ATTR_KIND_MIN_SIZE
;
747 case Attribute::AllocatedPointer
:
748 return bitc::ATTR_KIND_ALLOCATED_POINTER
;
749 case Attribute::AllocKind
:
750 return bitc::ATTR_KIND_ALLOC_KIND
;
751 case Attribute::Memory
:
752 return bitc::ATTR_KIND_MEMORY
;
753 case Attribute::NoFPClass
:
754 return bitc::ATTR_KIND_NOFPCLASS
;
755 case Attribute::Naked
:
756 return bitc::ATTR_KIND_NAKED
;
757 case Attribute::Nest
:
758 return bitc::ATTR_KIND_NEST
;
759 case Attribute::NoAlias
:
760 return bitc::ATTR_KIND_NO_ALIAS
;
761 case Attribute::NoBuiltin
:
762 return bitc::ATTR_KIND_NO_BUILTIN
;
763 case Attribute::NoCallback
:
764 return bitc::ATTR_KIND_NO_CALLBACK
;
765 case Attribute::NoCapture
:
766 return bitc::ATTR_KIND_NO_CAPTURE
;
767 case Attribute::NoDivergenceSource
:
768 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE
;
769 case Attribute::NoDuplicate
:
770 return bitc::ATTR_KIND_NO_DUPLICATE
;
771 case Attribute::NoFree
:
772 return bitc::ATTR_KIND_NOFREE
;
773 case Attribute::NoImplicitFloat
:
774 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT
;
775 case Attribute::NoInline
:
776 return bitc::ATTR_KIND_NO_INLINE
;
777 case Attribute::NoRecurse
:
778 return bitc::ATTR_KIND_NO_RECURSE
;
779 case Attribute::NoMerge
:
780 return bitc::ATTR_KIND_NO_MERGE
;
781 case Attribute::NonLazyBind
:
782 return bitc::ATTR_KIND_NON_LAZY_BIND
;
783 case Attribute::NonNull
:
784 return bitc::ATTR_KIND_NON_NULL
;
785 case Attribute::Dereferenceable
:
786 return bitc::ATTR_KIND_DEREFERENCEABLE
;
787 case Attribute::DereferenceableOrNull
:
788 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL
;
789 case Attribute::NoRedZone
:
790 return bitc::ATTR_KIND_NO_RED_ZONE
;
791 case Attribute::NoReturn
:
792 return bitc::ATTR_KIND_NO_RETURN
;
793 case Attribute::NoSync
:
794 return bitc::ATTR_KIND_NOSYNC
;
795 case Attribute::NoCfCheck
:
796 return bitc::ATTR_KIND_NOCF_CHECK
;
797 case Attribute::NoProfile
:
798 return bitc::ATTR_KIND_NO_PROFILE
;
799 case Attribute::SkipProfile
:
800 return bitc::ATTR_KIND_SKIP_PROFILE
;
801 case Attribute::NoUnwind
:
802 return bitc::ATTR_KIND_NO_UNWIND
;
803 case Attribute::NoSanitizeBounds
:
804 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS
;
805 case Attribute::NoSanitizeCoverage
:
806 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE
;
807 case Attribute::NullPointerIsValid
:
808 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID
;
809 case Attribute::OptimizeForDebugging
:
810 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING
;
811 case Attribute::OptForFuzzing
:
812 return bitc::ATTR_KIND_OPT_FOR_FUZZING
;
813 case Attribute::OptimizeForSize
:
814 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE
;
815 case Attribute::OptimizeNone
:
816 return bitc::ATTR_KIND_OPTIMIZE_NONE
;
817 case Attribute::ReadNone
:
818 return bitc::ATTR_KIND_READ_NONE
;
819 case Attribute::ReadOnly
:
820 return bitc::ATTR_KIND_READ_ONLY
;
821 case Attribute::Returned
:
822 return bitc::ATTR_KIND_RETURNED
;
823 case Attribute::ReturnsTwice
:
824 return bitc::ATTR_KIND_RETURNS_TWICE
;
825 case Attribute::SExt
:
826 return bitc::ATTR_KIND_S_EXT
;
827 case Attribute::Speculatable
:
828 return bitc::ATTR_KIND_SPECULATABLE
;
829 case Attribute::StackAlignment
:
830 return bitc::ATTR_KIND_STACK_ALIGNMENT
;
831 case Attribute::StackProtect
:
832 return bitc::ATTR_KIND_STACK_PROTECT
;
833 case Attribute::StackProtectReq
:
834 return bitc::ATTR_KIND_STACK_PROTECT_REQ
;
835 case Attribute::StackProtectStrong
:
836 return bitc::ATTR_KIND_STACK_PROTECT_STRONG
;
837 case Attribute::SafeStack
:
838 return bitc::ATTR_KIND_SAFESTACK
;
839 case Attribute::ShadowCallStack
:
840 return bitc::ATTR_KIND_SHADOWCALLSTACK
;
841 case Attribute::StrictFP
:
842 return bitc::ATTR_KIND_STRICT_FP
;
843 case Attribute::StructRet
:
844 return bitc::ATTR_KIND_STRUCT_RET
;
845 case Attribute::SanitizeAddress
:
846 return bitc::ATTR_KIND_SANITIZE_ADDRESS
;
847 case Attribute::SanitizeHWAddress
:
848 return bitc::ATTR_KIND_SANITIZE_HWADDRESS
;
849 case Attribute::SanitizeThread
:
850 return bitc::ATTR_KIND_SANITIZE_THREAD
;
851 case Attribute::SanitizeMemory
:
852 return bitc::ATTR_KIND_SANITIZE_MEMORY
;
853 case Attribute::SanitizeNumericalStability
:
854 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY
;
855 case Attribute::SanitizeRealtime
:
856 return bitc::ATTR_KIND_SANITIZE_REALTIME
;
857 case Attribute::SanitizeRealtimeBlocking
:
858 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING
;
859 case Attribute::SpeculativeLoadHardening
:
860 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING
;
861 case Attribute::SwiftError
:
862 return bitc::ATTR_KIND_SWIFT_ERROR
;
863 case Attribute::SwiftSelf
:
864 return bitc::ATTR_KIND_SWIFT_SELF
;
865 case Attribute::SwiftAsync
:
866 return bitc::ATTR_KIND_SWIFT_ASYNC
;
867 case Attribute::UWTable
:
868 return bitc::ATTR_KIND_UW_TABLE
;
869 case Attribute::VScaleRange
:
870 return bitc::ATTR_KIND_VSCALE_RANGE
;
871 case Attribute::WillReturn
:
872 return bitc::ATTR_KIND_WILLRETURN
;
873 case Attribute::WriteOnly
:
874 return bitc::ATTR_KIND_WRITEONLY
;
875 case Attribute::ZExt
:
876 return bitc::ATTR_KIND_Z_EXT
;
877 case Attribute::ImmArg
:
878 return bitc::ATTR_KIND_IMMARG
;
879 case Attribute::SanitizeMemTag
:
880 return bitc::ATTR_KIND_SANITIZE_MEMTAG
;
881 case Attribute::Preallocated
:
882 return bitc::ATTR_KIND_PREALLOCATED
;
883 case Attribute::NoUndef
:
884 return bitc::ATTR_KIND_NOUNDEF
;
885 case Attribute::ByRef
:
886 return bitc::ATTR_KIND_BYREF
;
887 case Attribute::MustProgress
:
888 return bitc::ATTR_KIND_MUSTPROGRESS
;
889 case Attribute::PresplitCoroutine
:
890 return bitc::ATTR_KIND_PRESPLIT_COROUTINE
;
891 case Attribute::Writable
:
892 return bitc::ATTR_KIND_WRITABLE
;
893 case Attribute::CoroDestroyOnlyWhenComplete
:
894 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE
;
895 case Attribute::CoroElideSafe
:
896 return bitc::ATTR_KIND_CORO_ELIDE_SAFE
;
897 case Attribute::DeadOnUnwind
:
898 return bitc::ATTR_KIND_DEAD_ON_UNWIND
;
899 case Attribute::Range
:
900 return bitc::ATTR_KIND_RANGE
;
901 case Attribute::Initializes
:
902 return bitc::ATTR_KIND_INITIALIZES
;
903 case Attribute::NoExt
:
904 return bitc::ATTR_KIND_NO_EXT
;
905 case Attribute::EndAttrKinds
:
906 llvm_unreachable("Can not encode end-attribute kinds marker.");
907 case Attribute::None
:
908 llvm_unreachable("Can not encode none-attribute.");
909 case Attribute::EmptyKey
:
910 case Attribute::TombstoneKey
:
911 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
914 llvm_unreachable("Trying to encode unknown attribute");
917 static void emitSignedInt64(SmallVectorImpl
<uint64_t> &Vals
, uint64_t V
) {
919 Vals
.push_back(V
<< 1);
921 Vals
.push_back((-V
<< 1) | 1);
924 static void emitWideAPInt(SmallVectorImpl
<uint64_t> &Vals
, const APInt
&A
) {
925 // We have an arbitrary precision integer value to write whose
926 // bit width is > 64. However, in canonical unsigned integer
927 // format it is likely that the high bits are going to be zero.
928 // So, we only write the number of active words.
929 unsigned NumWords
= A
.getActiveWords();
930 const uint64_t *RawData
= A
.getRawData();
931 for (unsigned i
= 0; i
< NumWords
; i
++)
932 emitSignedInt64(Vals
, RawData
[i
]);
935 static void emitConstantRange(SmallVectorImpl
<uint64_t> &Record
,
936 const ConstantRange
&CR
, bool EmitBitWidth
) {
937 unsigned BitWidth
= CR
.getBitWidth();
939 Record
.push_back(BitWidth
);
941 Record
.push_back(CR
.getLower().getActiveWords() |
942 (uint64_t(CR
.getUpper().getActiveWords()) << 32));
943 emitWideAPInt(Record
, CR
.getLower());
944 emitWideAPInt(Record
, CR
.getUpper());
946 emitSignedInt64(Record
, CR
.getLower().getSExtValue());
947 emitSignedInt64(Record
, CR
.getUpper().getSExtValue());
951 void ModuleBitcodeWriter::writeAttributeGroupTable() {
952 const std::vector
<ValueEnumerator::IndexAndAttrSet
> &AttrGrps
=
953 VE
.getAttributeGroups();
954 if (AttrGrps
.empty()) return;
956 Stream
.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID
, 3);
958 SmallVector
<uint64_t, 64> Record
;
959 for (ValueEnumerator::IndexAndAttrSet Pair
: AttrGrps
) {
960 unsigned AttrListIndex
= Pair
.first
;
961 AttributeSet AS
= Pair
.second
;
962 Record
.push_back(VE
.getAttributeGroupID(Pair
));
963 Record
.push_back(AttrListIndex
);
965 for (Attribute Attr
: AS
) {
966 if (Attr
.isEnumAttribute()) {
968 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
969 } else if (Attr
.isIntAttribute()) {
971 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
972 Record
.push_back(Attr
.getValueAsInt());
973 } else if (Attr
.isStringAttribute()) {
974 StringRef Kind
= Attr
.getKindAsString();
975 StringRef Val
= Attr
.getValueAsString();
977 Record
.push_back(Val
.empty() ? 3 : 4);
978 Record
.append(Kind
.begin(), Kind
.end());
981 Record
.append(Val
.begin(), Val
.end());
984 } else if (Attr
.isTypeAttribute()) {
985 Type
*Ty
= Attr
.getValueAsType();
986 Record
.push_back(Ty
? 6 : 5);
987 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
989 Record
.push_back(VE
.getTypeID(Attr
.getValueAsType()));
990 } else if (Attr
.isConstantRangeAttribute()) {
992 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
993 emitConstantRange(Record
, Attr
.getValueAsConstantRange(),
994 /*EmitBitWidth=*/true);
996 assert(Attr
.isConstantRangeListAttribute());
998 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
999 ArrayRef
<ConstantRange
> Val
= Attr
.getValueAsConstantRangeList();
1000 Record
.push_back(Val
.size());
1001 Record
.push_back(Val
[0].getBitWidth());
1002 for (auto &CR
: Val
)
1003 emitConstantRange(Record
, CR
, /*EmitBitWidth=*/false);
1007 Stream
.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY
, Record
);
1014 void ModuleBitcodeWriter::writeAttributeTable() {
1015 const std::vector
<AttributeList
> &Attrs
= VE
.getAttributeLists();
1016 if (Attrs
.empty()) return;
1018 Stream
.EnterSubblock(bitc::PARAMATTR_BLOCK_ID
, 3);
1020 SmallVector
<uint64_t, 64> Record
;
1021 for (const AttributeList
&AL
: Attrs
) {
1022 for (unsigned i
: AL
.indexes()) {
1023 AttributeSet AS
= AL
.getAttributes(i
);
1024 if (AS
.hasAttributes())
1025 Record
.push_back(VE
.getAttributeGroupID({i
, AS
}));
1028 Stream
.EmitRecord(bitc::PARAMATTR_CODE_ENTRY
, Record
);
1035 /// WriteTypeTable - Write out the type table for a module.
1036 void ModuleBitcodeWriter::writeTypeTable() {
1037 const ValueEnumerator::TypeList
&TypeList
= VE
.getTypes();
1039 Stream
.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW
, 4 /*count from # abbrevs */);
1040 SmallVector
<uint64_t, 64> TypeVals
;
1042 uint64_t NumBits
= VE
.computeBitsRequiredForTypeIndices();
1044 // Abbrev for TYPE_CODE_OPAQUE_POINTER.
1045 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1046 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER
));
1047 Abbv
->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
1048 unsigned OpaquePtrAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1050 // Abbrev for TYPE_CODE_FUNCTION.
1051 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1052 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION
));
1053 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // isvararg
1054 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1055 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
1056 unsigned FunctionAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1058 // Abbrev for TYPE_CODE_STRUCT_ANON.
1059 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1060 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON
));
1061 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
1062 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1063 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
1064 unsigned StructAnonAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1066 // Abbrev for TYPE_CODE_STRUCT_NAME.
1067 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1068 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME
));
1069 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1070 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
1071 unsigned StructNameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1073 // Abbrev for TYPE_CODE_STRUCT_NAMED.
1074 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1075 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED
));
1076 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
1077 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1078 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
1079 unsigned StructNamedAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1081 // Abbrev for TYPE_CODE_ARRAY.
1082 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1083 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY
));
1084 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // size
1085 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
1086 unsigned ArrayAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1088 // Emit an entry count so the reader can reserve space.
1089 TypeVals
.push_back(TypeList
.size());
1090 Stream
.EmitRecord(bitc::TYPE_CODE_NUMENTRY
, TypeVals
);
1093 // Loop over all of the types, emitting each in turn.
1094 for (Type
*T
: TypeList
) {
1095 int AbbrevToUse
= 0;
1098 switch (T
->getTypeID()) {
1099 case Type::VoidTyID
: Code
= bitc::TYPE_CODE_VOID
; break;
1100 case Type::HalfTyID
: Code
= bitc::TYPE_CODE_HALF
; break;
1101 case Type::BFloatTyID
: Code
= bitc::TYPE_CODE_BFLOAT
; break;
1102 case Type::FloatTyID
: Code
= bitc::TYPE_CODE_FLOAT
; break;
1103 case Type::DoubleTyID
: Code
= bitc::TYPE_CODE_DOUBLE
; break;
1104 case Type::X86_FP80TyID
: Code
= bitc::TYPE_CODE_X86_FP80
; break;
1105 case Type::FP128TyID
: Code
= bitc::TYPE_CODE_FP128
; break;
1106 case Type::PPC_FP128TyID
: Code
= bitc::TYPE_CODE_PPC_FP128
; break;
1107 case Type::LabelTyID
: Code
= bitc::TYPE_CODE_LABEL
; break;
1108 case Type::MetadataTyID
:
1109 Code
= bitc::TYPE_CODE_METADATA
;
1111 case Type::X86_AMXTyID
: Code
= bitc::TYPE_CODE_X86_AMX
; break;
1112 case Type::TokenTyID
: Code
= bitc::TYPE_CODE_TOKEN
; break;
1113 case Type::IntegerTyID
:
1115 Code
= bitc::TYPE_CODE_INTEGER
;
1116 TypeVals
.push_back(cast
<IntegerType
>(T
)->getBitWidth());
1118 case Type::PointerTyID
: {
1119 PointerType
*PTy
= cast
<PointerType
>(T
);
1120 unsigned AddressSpace
= PTy
->getAddressSpace();
1121 // OPAQUE_POINTER: [address space]
1122 Code
= bitc::TYPE_CODE_OPAQUE_POINTER
;
1123 TypeVals
.push_back(AddressSpace
);
1124 if (AddressSpace
== 0)
1125 AbbrevToUse
= OpaquePtrAbbrev
;
1128 case Type::FunctionTyID
: {
1129 FunctionType
*FT
= cast
<FunctionType
>(T
);
1130 // FUNCTION: [isvararg, retty, paramty x N]
1131 Code
= bitc::TYPE_CODE_FUNCTION
;
1132 TypeVals
.push_back(FT
->isVarArg());
1133 TypeVals
.push_back(VE
.getTypeID(FT
->getReturnType()));
1134 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
)
1135 TypeVals
.push_back(VE
.getTypeID(FT
->getParamType(i
)));
1136 AbbrevToUse
= FunctionAbbrev
;
1139 case Type::StructTyID
: {
1140 StructType
*ST
= cast
<StructType
>(T
);
1141 // STRUCT: [ispacked, eltty x N]
1142 TypeVals
.push_back(ST
->isPacked());
1143 // Output all of the element types.
1144 for (Type
*ET
: ST
->elements())
1145 TypeVals
.push_back(VE
.getTypeID(ET
));
1147 if (ST
->isLiteral()) {
1148 Code
= bitc::TYPE_CODE_STRUCT_ANON
;
1149 AbbrevToUse
= StructAnonAbbrev
;
1151 if (ST
->isOpaque()) {
1152 Code
= bitc::TYPE_CODE_OPAQUE
;
1154 Code
= bitc::TYPE_CODE_STRUCT_NAMED
;
1155 AbbrevToUse
= StructNamedAbbrev
;
1158 // Emit the name if it is present.
1159 if (!ST
->getName().empty())
1160 writeStringRecord(Stream
, bitc::TYPE_CODE_STRUCT_NAME
, ST
->getName(),
1165 case Type::ArrayTyID
: {
1166 ArrayType
*AT
= cast
<ArrayType
>(T
);
1167 // ARRAY: [numelts, eltty]
1168 Code
= bitc::TYPE_CODE_ARRAY
;
1169 TypeVals
.push_back(AT
->getNumElements());
1170 TypeVals
.push_back(VE
.getTypeID(AT
->getElementType()));
1171 AbbrevToUse
= ArrayAbbrev
;
1174 case Type::FixedVectorTyID
:
1175 case Type::ScalableVectorTyID
: {
1176 VectorType
*VT
= cast
<VectorType
>(T
);
1177 // VECTOR [numelts, eltty] or
1178 // [numelts, eltty, scalable]
1179 Code
= bitc::TYPE_CODE_VECTOR
;
1180 TypeVals
.push_back(VT
->getElementCount().getKnownMinValue());
1181 TypeVals
.push_back(VE
.getTypeID(VT
->getElementType()));
1182 if (isa
<ScalableVectorType
>(VT
))
1183 TypeVals
.push_back(true);
1186 case Type::TargetExtTyID
: {
1187 TargetExtType
*TET
= cast
<TargetExtType
>(T
);
1188 Code
= bitc::TYPE_CODE_TARGET_TYPE
;
1189 writeStringRecord(Stream
, bitc::TYPE_CODE_STRUCT_NAME
, TET
->getName(),
1191 TypeVals
.push_back(TET
->getNumTypeParameters());
1192 for (Type
*InnerTy
: TET
->type_params())
1193 TypeVals
.push_back(VE
.getTypeID(InnerTy
));
1194 for (unsigned IntParam
: TET
->int_params())
1195 TypeVals
.push_back(IntParam
);
1198 case Type::TypedPointerTyID
:
1199 llvm_unreachable("Typed pointers cannot be added to IR modules");
1202 // Emit the finished record.
1203 Stream
.EmitRecord(Code
, TypeVals
, AbbrevToUse
);
1210 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage
) {
1212 case GlobalValue::ExternalLinkage
:
1214 case GlobalValue::WeakAnyLinkage
:
1216 case GlobalValue::AppendingLinkage
:
1218 case GlobalValue::InternalLinkage
:
1220 case GlobalValue::LinkOnceAnyLinkage
:
1222 case GlobalValue::ExternalWeakLinkage
:
1224 case GlobalValue::CommonLinkage
:
1226 case GlobalValue::PrivateLinkage
:
1228 case GlobalValue::WeakODRLinkage
:
1230 case GlobalValue::LinkOnceODRLinkage
:
1232 case GlobalValue::AvailableExternallyLinkage
:
1235 llvm_unreachable("Invalid linkage");
1238 static unsigned getEncodedLinkage(const GlobalValue
&GV
) {
1239 return getEncodedLinkage(GV
.getLinkage());
1242 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags
) {
1243 uint64_t RawFlags
= 0;
1244 RawFlags
|= Flags
.ReadNone
;
1245 RawFlags
|= (Flags
.ReadOnly
<< 1);
1246 RawFlags
|= (Flags
.NoRecurse
<< 2);
1247 RawFlags
|= (Flags
.ReturnDoesNotAlias
<< 3);
1248 RawFlags
|= (Flags
.NoInline
<< 4);
1249 RawFlags
|= (Flags
.AlwaysInline
<< 5);
1250 RawFlags
|= (Flags
.NoUnwind
<< 6);
1251 RawFlags
|= (Flags
.MayThrow
<< 7);
1252 RawFlags
|= (Flags
.HasUnknownCall
<< 8);
1253 RawFlags
|= (Flags
.MustBeUnreachable
<< 9);
1257 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1258 // in BitcodeReader.cpp.
1259 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags
,
1260 bool ImportAsDecl
= false) {
1261 uint64_t RawFlags
= 0;
1263 RawFlags
|= Flags
.NotEligibleToImport
; // bool
1264 RawFlags
|= (Flags
.Live
<< 1);
1265 RawFlags
|= (Flags
.DSOLocal
<< 2);
1266 RawFlags
|= (Flags
.CanAutoHide
<< 3);
1268 // Linkage don't need to be remapped at that time for the summary. Any future
1269 // change to the getEncodedLinkage() function will need to be taken into
1270 // account here as well.
1271 RawFlags
= (RawFlags
<< 4) | Flags
.Linkage
; // 4 bits
1273 RawFlags
|= (Flags
.Visibility
<< 8); // 2 bits
1275 unsigned ImportType
= Flags
.ImportType
| ImportAsDecl
;
1276 RawFlags
|= (ImportType
<< 10); // 1 bit
1281 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags
) {
1282 uint64_t RawFlags
= Flags
.MaybeReadOnly
| (Flags
.MaybeWriteOnly
<< 1) |
1283 (Flags
.Constant
<< 2) | Flags
.VCallVisibility
<< 3;
1287 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo
&CI
) {
1288 uint64_t RawFlags
= 0;
1290 RawFlags
|= CI
.Hotness
; // 3 bits
1291 RawFlags
|= (CI
.HasTailCall
<< 3); // 1 bit
1296 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo
&CI
) {
1297 uint64_t RawFlags
= 0;
1299 RawFlags
|= CI
.RelBlockFreq
; // CalleeInfo::RelBlockFreqBits bits
1300 RawFlags
|= (CI
.HasTailCall
<< CalleeInfo::RelBlockFreqBits
); // 1 bit
1305 static unsigned getEncodedVisibility(const GlobalValue
&GV
) {
1306 switch (GV
.getVisibility()) {
1307 case GlobalValue::DefaultVisibility
: return 0;
1308 case GlobalValue::HiddenVisibility
: return 1;
1309 case GlobalValue::ProtectedVisibility
: return 2;
1311 llvm_unreachable("Invalid visibility");
1314 static unsigned getEncodedDLLStorageClass(const GlobalValue
&GV
) {
1315 switch (GV
.getDLLStorageClass()) {
1316 case GlobalValue::DefaultStorageClass
: return 0;
1317 case GlobalValue::DLLImportStorageClass
: return 1;
1318 case GlobalValue::DLLExportStorageClass
: return 2;
1320 llvm_unreachable("Invalid DLL storage class");
1323 static unsigned getEncodedThreadLocalMode(const GlobalValue
&GV
) {
1324 switch (GV
.getThreadLocalMode()) {
1325 case GlobalVariable::NotThreadLocal
: return 0;
1326 case GlobalVariable::GeneralDynamicTLSModel
: return 1;
1327 case GlobalVariable::LocalDynamicTLSModel
: return 2;
1328 case GlobalVariable::InitialExecTLSModel
: return 3;
1329 case GlobalVariable::LocalExecTLSModel
: return 4;
1331 llvm_unreachable("Invalid TLS model");
1334 static unsigned getEncodedComdatSelectionKind(const Comdat
&C
) {
1335 switch (C
.getSelectionKind()) {
1337 return bitc::COMDAT_SELECTION_KIND_ANY
;
1338 case Comdat::ExactMatch
:
1339 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH
;
1340 case Comdat::Largest
:
1341 return bitc::COMDAT_SELECTION_KIND_LARGEST
;
1342 case Comdat::NoDeduplicate
:
1343 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES
;
1344 case Comdat::SameSize
:
1345 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE
;
1347 llvm_unreachable("Invalid selection kind");
1350 static unsigned getEncodedUnnamedAddr(const GlobalValue
&GV
) {
1351 switch (GV
.getUnnamedAddr()) {
1352 case GlobalValue::UnnamedAddr::None
: return 0;
1353 case GlobalValue::UnnamedAddr::Local
: return 2;
1354 case GlobalValue::UnnamedAddr::Global
: return 1;
1356 llvm_unreachable("Invalid unnamed_addr");
1359 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str
) {
1362 return StrtabBuilder
.add(Str
);
1365 void ModuleBitcodeWriter::writeComdats() {
1366 SmallVector
<unsigned, 64> Vals
;
1367 for (const Comdat
*C
: VE
.getComdats()) {
1368 // COMDAT: [strtab offset, strtab size, selection_kind]
1369 Vals
.push_back(addToStrtab(C
->getName()));
1370 Vals
.push_back(C
->getName().size());
1371 Vals
.push_back(getEncodedComdatSelectionKind(*C
));
1372 Stream
.EmitRecord(bitc::MODULE_CODE_COMDAT
, Vals
, /*AbbrevToUse=*/0);
1377 /// Write a record that will eventually hold the word offset of the
1378 /// module-level VST. For now the offset is 0, which will be backpatched
1379 /// after the real VST is written. Saves the bit offset to backpatch.
1380 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1381 // Write a placeholder value in for the offset of the real VST,
1382 // which is written after the function blocks so that it can include
1383 // the offset of each function. The placeholder offset will be
1384 // updated when the real VST is written.
1385 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1386 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET
));
1387 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1388 // hold the real VST offset. Must use fixed instead of VBR as we don't
1389 // know how many VBR chunks to reserve ahead of time.
1390 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
1391 unsigned VSTOffsetAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1393 // Emit the placeholder
1394 uint64_t Vals
[] = {bitc::MODULE_CODE_VSTOFFSET
, 0};
1395 Stream
.EmitRecordWithAbbrev(VSTOffsetAbbrev
, Vals
);
1397 // Compute and save the bit offset to the placeholder, which will be
1398 // patched when the real VST is written. We can simply subtract the 32-bit
1399 // fixed size from the current bit number to get the location to backpatch.
1400 VSTOffsetPlaceholder
= Stream
.GetCurrentBitNo() - 32;
1403 enum StringEncoding
{ SE_Char6
, SE_Fixed7
, SE_Fixed8
};
1405 /// Determine the encoding to use for the given string name and length.
1406 static StringEncoding
getStringEncoding(StringRef Str
) {
1407 bool isChar6
= true;
1408 for (char C
: Str
) {
1410 isChar6
= BitCodeAbbrevOp::isChar6(C
);
1411 if ((unsigned char)C
& 128)
1412 // don't bother scanning the rest.
1420 static_assert(sizeof(GlobalValue::SanitizerMetadata
) <= sizeof(unsigned),
1421 "Sanitizer Metadata is too large for naive serialization.");
1423 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata
&Meta
) {
1424 return Meta
.NoAddress
| (Meta
.NoHWAddress
<< 1) |
1425 (Meta
.Memtag
<< 2) | (Meta
.IsDynInit
<< 3);
1428 /// Emit top-level description of module, including target triple, inline asm,
1429 /// descriptors for global variables, and function prototype info.
1430 /// Returns the bit offset to backpatch with the location of the real VST.
1431 void ModuleBitcodeWriter::writeModuleInfo() {
1432 // Emit various pieces of data attached to a module.
1433 if (!M
.getTargetTriple().empty())
1434 writeStringRecord(Stream
, bitc::MODULE_CODE_TRIPLE
, M
.getTargetTriple(),
1436 const std::string
&DL
= M
.getDataLayoutStr();
1438 writeStringRecord(Stream
, bitc::MODULE_CODE_DATALAYOUT
, DL
, 0 /*TODO*/);
1439 if (!M
.getModuleInlineAsm().empty())
1440 writeStringRecord(Stream
, bitc::MODULE_CODE_ASM
, M
.getModuleInlineAsm(),
1443 // Emit information about sections and GC, computing how many there are. Also
1444 // compute the maximum alignment value.
1445 std::map
<std::string
, unsigned> SectionMap
;
1446 std::map
<std::string
, unsigned> GCMap
;
1447 MaybeAlign MaxAlignment
;
1448 unsigned MaxGlobalType
= 0;
1449 const auto UpdateMaxAlignment
= [&MaxAlignment
](const MaybeAlign A
) {
1451 MaxAlignment
= !MaxAlignment
? *A
: std::max(*MaxAlignment
, *A
);
1453 for (const GlobalVariable
&GV
: M
.globals()) {
1454 UpdateMaxAlignment(GV
.getAlign());
1455 MaxGlobalType
= std::max(MaxGlobalType
, VE
.getTypeID(GV
.getValueType()));
1456 if (GV
.hasSection()) {
1457 // Give section names unique ID's.
1458 unsigned &Entry
= SectionMap
[std::string(GV
.getSection())];
1460 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, GV
.getSection(),
1462 Entry
= SectionMap
.size();
1466 for (const Function
&F
: M
) {
1467 UpdateMaxAlignment(F
.getAlign());
1468 if (F
.hasSection()) {
1469 // Give section names unique ID's.
1470 unsigned &Entry
= SectionMap
[std::string(F
.getSection())];
1472 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, F
.getSection(),
1474 Entry
= SectionMap
.size();
1478 // Same for GC names.
1479 unsigned &Entry
= GCMap
[F
.getGC()];
1481 writeStringRecord(Stream
, bitc::MODULE_CODE_GCNAME
, F
.getGC(),
1483 Entry
= GCMap
.size();
1488 // Emit abbrev for globals, now that we know # sections and max alignment.
1489 unsigned SimpleGVarAbbrev
= 0;
1490 if (!M
.global_empty()) {
1491 // Add an abbrev for common globals with no visibility or thread localness.
1492 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1493 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR
));
1494 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1495 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1496 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1497 Log2_32_Ceil(MaxGlobalType
+1)));
1498 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // AddrSpace << 2
1499 //| explicitType << 1
1501 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Initializer.
1502 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 5)); // Linkage.
1503 if (!MaxAlignment
) // Alignment.
1504 Abbv
->Add(BitCodeAbbrevOp(0));
1506 unsigned MaxEncAlignment
= getEncodedAlign(MaxAlignment
);
1507 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1508 Log2_32_Ceil(MaxEncAlignment
+1)));
1510 if (SectionMap
.empty()) // Section.
1511 Abbv
->Add(BitCodeAbbrevOp(0));
1513 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1514 Log2_32_Ceil(SectionMap
.size()+1)));
1515 // Don't bother emitting vis + thread local.
1516 SimpleGVarAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1519 SmallVector
<unsigned, 64> Vals
;
1520 // Emit the module's source file name.
1522 StringEncoding Bits
= getStringEncoding(M
.getSourceFileName());
1523 BitCodeAbbrevOp AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8);
1524 if (Bits
== SE_Char6
)
1525 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
);
1526 else if (Bits
== SE_Fixed7
)
1527 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7);
1529 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1530 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1531 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME
));
1532 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1533 Abbv
->Add(AbbrevOpToUse
);
1534 unsigned FilenameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1536 for (const auto P
: M
.getSourceFileName())
1537 Vals
.push_back((unsigned char)P
);
1539 // Emit the finished record.
1540 Stream
.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME
, Vals
, FilenameAbbrev
);
1544 // Emit the global variable information.
1545 for (const GlobalVariable
&GV
: M
.globals()) {
1546 unsigned AbbrevToUse
= 0;
1548 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1549 // linkage, alignment, section, visibility, threadlocal,
1550 // unnamed_addr, externally_initialized, dllstorageclass,
1551 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1552 Vals
.push_back(addToStrtab(GV
.getName()));
1553 Vals
.push_back(GV
.getName().size());
1554 Vals
.push_back(VE
.getTypeID(GV
.getValueType()));
1555 Vals
.push_back(GV
.getType()->getAddressSpace() << 2 | 2 | GV
.isConstant());
1556 Vals
.push_back(GV
.isDeclaration() ? 0 :
1557 (VE
.getValueID(GV
.getInitializer()) + 1));
1558 Vals
.push_back(getEncodedLinkage(GV
));
1559 Vals
.push_back(getEncodedAlign(GV
.getAlign()));
1560 Vals
.push_back(GV
.hasSection() ? SectionMap
[std::string(GV
.getSection())]
1562 if (GV
.isThreadLocal() ||
1563 GV
.getVisibility() != GlobalValue::DefaultVisibility
||
1564 GV
.getUnnamedAddr() != GlobalValue::UnnamedAddr::None
||
1565 GV
.isExternallyInitialized() ||
1566 GV
.getDLLStorageClass() != GlobalValue::DefaultStorageClass
||
1567 GV
.hasComdat() || GV
.hasAttributes() || GV
.isDSOLocal() ||
1568 GV
.hasPartition() || GV
.hasSanitizerMetadata() || GV
.getCodeModel()) {
1569 Vals
.push_back(getEncodedVisibility(GV
));
1570 Vals
.push_back(getEncodedThreadLocalMode(GV
));
1571 Vals
.push_back(getEncodedUnnamedAddr(GV
));
1572 Vals
.push_back(GV
.isExternallyInitialized());
1573 Vals
.push_back(getEncodedDLLStorageClass(GV
));
1574 Vals
.push_back(GV
.hasComdat() ? VE
.getComdatID(GV
.getComdat()) : 0);
1576 auto AL
= GV
.getAttributesAsList(AttributeList::FunctionIndex
);
1577 Vals
.push_back(VE
.getAttributeListID(AL
));
1579 Vals
.push_back(GV
.isDSOLocal());
1580 Vals
.push_back(addToStrtab(GV
.getPartition()));
1581 Vals
.push_back(GV
.getPartition().size());
1583 Vals
.push_back((GV
.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1584 GV
.getSanitizerMetadata())
1586 Vals
.push_back(GV
.getCodeModelRaw());
1588 AbbrevToUse
= SimpleGVarAbbrev
;
1591 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
, AbbrevToUse
);
1595 // Emit the function proto information.
1596 for (const Function
&F
: M
) {
1597 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1598 // linkage, paramattrs, alignment, section, visibility, gc,
1599 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1600 // prefixdata, personalityfn, DSO_Local, addrspace]
1601 Vals
.push_back(addToStrtab(F
.getName()));
1602 Vals
.push_back(F
.getName().size());
1603 Vals
.push_back(VE
.getTypeID(F
.getFunctionType()));
1604 Vals
.push_back(F
.getCallingConv());
1605 Vals
.push_back(F
.isDeclaration());
1606 Vals
.push_back(getEncodedLinkage(F
));
1607 Vals
.push_back(VE
.getAttributeListID(F
.getAttributes()));
1608 Vals
.push_back(getEncodedAlign(F
.getAlign()));
1609 Vals
.push_back(F
.hasSection() ? SectionMap
[std::string(F
.getSection())]
1611 Vals
.push_back(getEncodedVisibility(F
));
1612 Vals
.push_back(F
.hasGC() ? GCMap
[F
.getGC()] : 0);
1613 Vals
.push_back(getEncodedUnnamedAddr(F
));
1614 Vals
.push_back(F
.hasPrologueData() ? (VE
.getValueID(F
.getPrologueData()) + 1)
1616 Vals
.push_back(getEncodedDLLStorageClass(F
));
1617 Vals
.push_back(F
.hasComdat() ? VE
.getComdatID(F
.getComdat()) : 0);
1618 Vals
.push_back(F
.hasPrefixData() ? (VE
.getValueID(F
.getPrefixData()) + 1)
1621 F
.hasPersonalityFn() ? (VE
.getValueID(F
.getPersonalityFn()) + 1) : 0);
1623 Vals
.push_back(F
.isDSOLocal());
1624 Vals
.push_back(F
.getAddressSpace());
1625 Vals
.push_back(addToStrtab(F
.getPartition()));
1626 Vals
.push_back(F
.getPartition().size());
1628 unsigned AbbrevToUse
= 0;
1629 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
, AbbrevToUse
);
1633 // Emit the alias information.
1634 for (const GlobalAlias
&A
: M
.aliases()) {
1635 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1636 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1638 Vals
.push_back(addToStrtab(A
.getName()));
1639 Vals
.push_back(A
.getName().size());
1640 Vals
.push_back(VE
.getTypeID(A
.getValueType()));
1641 Vals
.push_back(A
.getType()->getAddressSpace());
1642 Vals
.push_back(VE
.getValueID(A
.getAliasee()));
1643 Vals
.push_back(getEncodedLinkage(A
));
1644 Vals
.push_back(getEncodedVisibility(A
));
1645 Vals
.push_back(getEncodedDLLStorageClass(A
));
1646 Vals
.push_back(getEncodedThreadLocalMode(A
));
1647 Vals
.push_back(getEncodedUnnamedAddr(A
));
1648 Vals
.push_back(A
.isDSOLocal());
1649 Vals
.push_back(addToStrtab(A
.getPartition()));
1650 Vals
.push_back(A
.getPartition().size());
1652 unsigned AbbrevToUse
= 0;
1653 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
, AbbrevToUse
);
1657 // Emit the ifunc information.
1658 for (const GlobalIFunc
&I
: M
.ifuncs()) {
1659 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1660 // val#, linkage, visibility, DSO_Local]
1661 Vals
.push_back(addToStrtab(I
.getName()));
1662 Vals
.push_back(I
.getName().size());
1663 Vals
.push_back(VE
.getTypeID(I
.getValueType()));
1664 Vals
.push_back(I
.getType()->getAddressSpace());
1665 Vals
.push_back(VE
.getValueID(I
.getResolver()));
1666 Vals
.push_back(getEncodedLinkage(I
));
1667 Vals
.push_back(getEncodedVisibility(I
));
1668 Vals
.push_back(I
.isDSOLocal());
1669 Vals
.push_back(addToStrtab(I
.getPartition()));
1670 Vals
.push_back(I
.getPartition().size());
1671 Stream
.EmitRecord(bitc::MODULE_CODE_IFUNC
, Vals
);
1675 writeValueSymbolTableForwardDecl();
1678 static uint64_t getOptimizationFlags(const Value
*V
) {
1681 if (const auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(V
)) {
1682 if (OBO
->hasNoSignedWrap())
1683 Flags
|= 1 << bitc::OBO_NO_SIGNED_WRAP
;
1684 if (OBO
->hasNoUnsignedWrap())
1685 Flags
|= 1 << bitc::OBO_NO_UNSIGNED_WRAP
;
1686 } else if (const auto *PEO
= dyn_cast
<PossiblyExactOperator
>(V
)) {
1688 Flags
|= 1 << bitc::PEO_EXACT
;
1689 } else if (const auto *PDI
= dyn_cast
<PossiblyDisjointInst
>(V
)) {
1690 if (PDI
->isDisjoint())
1691 Flags
|= 1 << bitc::PDI_DISJOINT
;
1692 } else if (const auto *FPMO
= dyn_cast
<FPMathOperator
>(V
)) {
1693 if (FPMO
->hasAllowReassoc())
1694 Flags
|= bitc::AllowReassoc
;
1695 if (FPMO
->hasNoNaNs())
1696 Flags
|= bitc::NoNaNs
;
1697 if (FPMO
->hasNoInfs())
1698 Flags
|= bitc::NoInfs
;
1699 if (FPMO
->hasNoSignedZeros())
1700 Flags
|= bitc::NoSignedZeros
;
1701 if (FPMO
->hasAllowReciprocal())
1702 Flags
|= bitc::AllowReciprocal
;
1703 if (FPMO
->hasAllowContract())
1704 Flags
|= bitc::AllowContract
;
1705 if (FPMO
->hasApproxFunc())
1706 Flags
|= bitc::ApproxFunc
;
1707 } else if (const auto *NNI
= dyn_cast
<PossiblyNonNegInst
>(V
)) {
1708 if (NNI
->hasNonNeg())
1709 Flags
|= 1 << bitc::PNNI_NON_NEG
;
1710 } else if (const auto *TI
= dyn_cast
<TruncInst
>(V
)) {
1711 if (TI
->hasNoSignedWrap())
1712 Flags
|= 1 << bitc::TIO_NO_SIGNED_WRAP
;
1713 if (TI
->hasNoUnsignedWrap())
1714 Flags
|= 1 << bitc::TIO_NO_UNSIGNED_WRAP
;
1715 } else if (const auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
1716 if (GEP
->isInBounds())
1717 Flags
|= 1 << bitc::GEP_INBOUNDS
;
1718 if (GEP
->hasNoUnsignedSignedWrap())
1719 Flags
|= 1 << bitc::GEP_NUSW
;
1720 if (GEP
->hasNoUnsignedWrap())
1721 Flags
|= 1 << bitc::GEP_NUW
;
1722 } else if (const auto *ICmp
= dyn_cast
<ICmpInst
>(V
)) {
1723 if (ICmp
->hasSameSign())
1724 Flags
|= 1 << bitc::ICMP_SAME_SIGN
;
1730 void ModuleBitcodeWriter::writeValueAsMetadata(
1731 const ValueAsMetadata
*MD
, SmallVectorImpl
<uint64_t> &Record
) {
1732 // Mimic an MDNode with a value as one operand.
1733 Value
*V
= MD
->getValue();
1734 Record
.push_back(VE
.getTypeID(V
->getType()));
1735 Record
.push_back(VE
.getValueID(V
));
1736 Stream
.EmitRecord(bitc::METADATA_VALUE
, Record
, 0);
1740 void ModuleBitcodeWriter::writeMDTuple(const MDTuple
*N
,
1741 SmallVectorImpl
<uint64_t> &Record
,
1743 for (const MDOperand
&MDO
: N
->operands()) {
1745 assert(!(MD
&& isa
<LocalAsMetadata
>(MD
)) &&
1746 "Unexpected function-local metadata");
1747 Record
.push_back(VE
.getMetadataOrNullID(MD
));
1749 Stream
.EmitRecord(N
->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1750 : bitc::METADATA_NODE
,
1755 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1756 // Assume the column is usually under 128, and always output the inlined-at
1757 // location (it's never more expensive than building an array size 1).
1758 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1759 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION
));
1760 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1761 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1762 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1763 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1764 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1765 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1766 return Stream
.EmitAbbrev(std::move(Abbv
));
1769 void ModuleBitcodeWriter::writeDILocation(const DILocation
*N
,
1770 SmallVectorImpl
<uint64_t> &Record
,
1773 Abbrev
= createDILocationAbbrev();
1775 Record
.push_back(N
->isDistinct());
1776 Record
.push_back(N
->getLine());
1777 Record
.push_back(N
->getColumn());
1778 Record
.push_back(VE
.getMetadataID(N
->getScope()));
1779 Record
.push_back(VE
.getMetadataOrNullID(N
->getInlinedAt()));
1780 Record
.push_back(N
->isImplicitCode());
1782 Stream
.EmitRecord(bitc::METADATA_LOCATION
, Record
, Abbrev
);
1786 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1787 // Assume the column is usually under 128, and always output the inlined-at
1788 // location (it's never more expensive than building an array size 1).
1789 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1790 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG
));
1791 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1792 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1793 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1794 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1795 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1796 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1797 return Stream
.EmitAbbrev(std::move(Abbv
));
1800 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode
*N
,
1801 SmallVectorImpl
<uint64_t> &Record
,
1804 Abbrev
= createGenericDINodeAbbrev();
1806 Record
.push_back(N
->isDistinct());
1807 Record
.push_back(N
->getTag());
1808 Record
.push_back(0); // Per-tag version field; unused for now.
1810 for (auto &I
: N
->operands())
1811 Record
.push_back(VE
.getMetadataOrNullID(I
));
1813 Stream
.EmitRecord(bitc::METADATA_GENERIC_DEBUG
, Record
, Abbrev
);
1817 void ModuleBitcodeWriter::writeDISubrange(const DISubrange
*N
,
1818 SmallVectorImpl
<uint64_t> &Record
,
1820 const uint64_t Version
= 2 << 1;
1821 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
1822 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawCountNode()));
1823 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLowerBound()));
1824 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUpperBound()));
1825 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawStride()));
1827 Stream
.EmitRecord(bitc::METADATA_SUBRANGE
, Record
, Abbrev
);
1831 void ModuleBitcodeWriter::writeDIGenericSubrange(
1832 const DIGenericSubrange
*N
, SmallVectorImpl
<uint64_t> &Record
,
1834 Record
.push_back((uint64_t)N
->isDistinct());
1835 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawCountNode()));
1836 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLowerBound()));
1837 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUpperBound()));
1838 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawStride()));
1840 Stream
.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE
, Record
, Abbrev
);
1844 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator
*N
,
1845 SmallVectorImpl
<uint64_t> &Record
,
1847 const uint64_t IsBigInt
= 1 << 2;
1848 Record
.push_back(IsBigInt
| (N
->isUnsigned() << 1) | N
->isDistinct());
1849 Record
.push_back(N
->getValue().getBitWidth());
1850 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1851 emitWideAPInt(Record
, N
->getValue());
1853 Stream
.EmitRecord(bitc::METADATA_ENUMERATOR
, Record
, Abbrev
);
1857 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType
*N
,
1858 SmallVectorImpl
<uint64_t> &Record
,
1860 Record
.push_back(N
->isDistinct());
1861 Record
.push_back(N
->getTag());
1862 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1863 Record
.push_back(N
->getSizeInBits());
1864 Record
.push_back(N
->getAlignInBits());
1865 Record
.push_back(N
->getEncoding());
1866 Record
.push_back(N
->getFlags());
1867 Record
.push_back(N
->getNumExtraInhabitants());
1869 Stream
.EmitRecord(bitc::METADATA_BASIC_TYPE
, Record
, Abbrev
);
1873 void ModuleBitcodeWriter::writeDIStringType(const DIStringType
*N
,
1874 SmallVectorImpl
<uint64_t> &Record
,
1876 Record
.push_back(N
->isDistinct());
1877 Record
.push_back(N
->getTag());
1878 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1879 Record
.push_back(VE
.getMetadataOrNullID(N
->getStringLength()));
1880 Record
.push_back(VE
.getMetadataOrNullID(N
->getStringLengthExp()));
1881 Record
.push_back(VE
.getMetadataOrNullID(N
->getStringLocationExp()));
1882 Record
.push_back(N
->getSizeInBits());
1883 Record
.push_back(N
->getAlignInBits());
1884 Record
.push_back(N
->getEncoding());
1886 Stream
.EmitRecord(bitc::METADATA_STRING_TYPE
, Record
, Abbrev
);
1890 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType
*N
,
1891 SmallVectorImpl
<uint64_t> &Record
,
1893 Record
.push_back(N
->isDistinct());
1894 Record
.push_back(N
->getTag());
1895 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1896 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1897 Record
.push_back(N
->getLine());
1898 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1899 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1900 Record
.push_back(N
->getSizeInBits());
1901 Record
.push_back(N
->getAlignInBits());
1902 Record
.push_back(N
->getOffsetInBits());
1903 Record
.push_back(N
->getFlags());
1904 Record
.push_back(VE
.getMetadataOrNullID(N
->getExtraData()));
1906 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1907 // that there is no DWARF address space associated with DIDerivedType.
1908 if (const auto &DWARFAddressSpace
= N
->getDWARFAddressSpace())
1909 Record
.push_back(*DWARFAddressSpace
+ 1);
1911 Record
.push_back(0);
1913 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
1915 if (auto PtrAuthData
= N
->getPtrAuthData())
1916 Record
.push_back(PtrAuthData
->RawData
);
1918 Record
.push_back(0);
1920 Stream
.EmitRecord(bitc::METADATA_DERIVED_TYPE
, Record
, Abbrev
);
1924 void ModuleBitcodeWriter::writeDICompositeType(
1925 const DICompositeType
*N
, SmallVectorImpl
<uint64_t> &Record
,
1927 const unsigned IsNotUsedInOldTypeRef
= 0x2;
1928 Record
.push_back(IsNotUsedInOldTypeRef
| (unsigned)N
->isDistinct());
1929 Record
.push_back(N
->getTag());
1930 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1931 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1932 Record
.push_back(N
->getLine());
1933 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1934 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1935 Record
.push_back(N
->getSizeInBits());
1936 Record
.push_back(N
->getAlignInBits());
1937 Record
.push_back(N
->getOffsetInBits());
1938 Record
.push_back(N
->getFlags());
1939 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
1940 Record
.push_back(N
->getRuntimeLang());
1941 Record
.push_back(VE
.getMetadataOrNullID(N
->getVTableHolder()));
1942 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
1943 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawIdentifier()));
1944 Record
.push_back(VE
.getMetadataOrNullID(N
->getDiscriminator()));
1945 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawDataLocation()));
1946 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawAssociated()));
1947 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawAllocated()));
1948 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawRank()));
1949 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
1950 Record
.push_back(N
->getNumExtraInhabitants());
1951 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSpecification()));
1953 Stream
.EmitRecord(bitc::METADATA_COMPOSITE_TYPE
, Record
, Abbrev
);
1957 void ModuleBitcodeWriter::writeDISubroutineType(
1958 const DISubroutineType
*N
, SmallVectorImpl
<uint64_t> &Record
,
1960 const unsigned HasNoOldTypeRefs
= 0x2;
1961 Record
.push_back(HasNoOldTypeRefs
| (unsigned)N
->isDistinct());
1962 Record
.push_back(N
->getFlags());
1963 Record
.push_back(VE
.getMetadataOrNullID(N
->getTypeArray().get()));
1964 Record
.push_back(N
->getCC());
1966 Stream
.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE
, Record
, Abbrev
);
1970 void ModuleBitcodeWriter::writeDIFile(const DIFile
*N
,
1971 SmallVectorImpl
<uint64_t> &Record
,
1973 Record
.push_back(N
->isDistinct());
1974 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFilename()));
1975 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawDirectory()));
1976 if (N
->getRawChecksum()) {
1977 Record
.push_back(N
->getRawChecksum()->Kind
);
1978 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawChecksum()->Value
));
1980 // Maintain backwards compatibility with the old internal representation of
1981 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1982 Record
.push_back(0);
1983 Record
.push_back(VE
.getMetadataOrNullID(nullptr));
1985 auto Source
= N
->getRawSource();
1987 Record
.push_back(VE
.getMetadataOrNullID(Source
));
1989 Stream
.EmitRecord(bitc::METADATA_FILE
, Record
, Abbrev
);
1993 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit
*N
,
1994 SmallVectorImpl
<uint64_t> &Record
,
1996 assert(N
->isDistinct() && "Expected distinct compile units");
1997 Record
.push_back(/* IsDistinct */ true);
1998 Record
.push_back(N
->getSourceLanguage());
1999 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2000 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawProducer()));
2001 Record
.push_back(N
->isOptimized());
2002 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFlags()));
2003 Record
.push_back(N
->getRuntimeVersion());
2004 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSplitDebugFilename()));
2005 Record
.push_back(N
->getEmissionKind());
2006 Record
.push_back(VE
.getMetadataOrNullID(N
->getEnumTypes().get()));
2007 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedTypes().get()));
2008 Record
.push_back(/* subprograms */ 0);
2009 Record
.push_back(VE
.getMetadataOrNullID(N
->getGlobalVariables().get()));
2010 Record
.push_back(VE
.getMetadataOrNullID(N
->getImportedEntities().get()));
2011 Record
.push_back(N
->getDWOId());
2012 Record
.push_back(VE
.getMetadataOrNullID(N
->getMacros().get()));
2013 Record
.push_back(N
->getSplitDebugInlining());
2014 Record
.push_back(N
->getDebugInfoForProfiling());
2015 Record
.push_back((unsigned)N
->getNameTableKind());
2016 Record
.push_back(N
->getRangesBaseAddress());
2017 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSysRoot()));
2018 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSDK()));
2020 Stream
.EmitRecord(bitc::METADATA_COMPILE_UNIT
, Record
, Abbrev
);
2024 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram
*N
,
2025 SmallVectorImpl
<uint64_t> &Record
,
2027 const uint64_t HasUnitFlag
= 1 << 1;
2028 const uint64_t HasSPFlagsFlag
= 1 << 2;
2029 Record
.push_back(uint64_t(N
->isDistinct()) | HasUnitFlag
| HasSPFlagsFlag
);
2030 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2031 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2032 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
2033 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2034 Record
.push_back(N
->getLine());
2035 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2036 Record
.push_back(N
->getScopeLine());
2037 Record
.push_back(VE
.getMetadataOrNullID(N
->getContainingType()));
2038 Record
.push_back(N
->getSPFlags());
2039 Record
.push_back(N
->getVirtualIndex());
2040 Record
.push_back(N
->getFlags());
2041 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUnit()));
2042 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
2043 Record
.push_back(VE
.getMetadataOrNullID(N
->getDeclaration()));
2044 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedNodes().get()));
2045 Record
.push_back(N
->getThisAdjustment());
2046 Record
.push_back(VE
.getMetadataOrNullID(N
->getThrownTypes().get()));
2047 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
2048 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawTargetFuncName()));
2050 Stream
.EmitRecord(bitc::METADATA_SUBPROGRAM
, Record
, Abbrev
);
2054 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock
*N
,
2055 SmallVectorImpl
<uint64_t> &Record
,
2057 Record
.push_back(N
->isDistinct());
2058 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2059 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2060 Record
.push_back(N
->getLine());
2061 Record
.push_back(N
->getColumn());
2063 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK
, Record
, Abbrev
);
2067 void ModuleBitcodeWriter::writeDILexicalBlockFile(
2068 const DILexicalBlockFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
2070 Record
.push_back(N
->isDistinct());
2071 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2072 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2073 Record
.push_back(N
->getDiscriminator());
2075 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE
, Record
, Abbrev
);
2079 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock
*N
,
2080 SmallVectorImpl
<uint64_t> &Record
,
2082 Record
.push_back(N
->isDistinct());
2083 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2084 Record
.push_back(VE
.getMetadataOrNullID(N
->getDecl()));
2085 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2086 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2087 Record
.push_back(N
->getLineNo());
2089 Stream
.EmitRecord(bitc::METADATA_COMMON_BLOCK
, Record
, Abbrev
);
2093 void ModuleBitcodeWriter::writeDINamespace(const DINamespace
*N
,
2094 SmallVectorImpl
<uint64_t> &Record
,
2096 Record
.push_back(N
->isDistinct() | N
->getExportSymbols() << 1);
2097 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2098 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2100 Stream
.EmitRecord(bitc::METADATA_NAMESPACE
, Record
, Abbrev
);
2104 void ModuleBitcodeWriter::writeDIMacro(const DIMacro
*N
,
2105 SmallVectorImpl
<uint64_t> &Record
,
2107 Record
.push_back(N
->isDistinct());
2108 Record
.push_back(N
->getMacinfoType());
2109 Record
.push_back(N
->getLine());
2110 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2111 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawValue()));
2113 Stream
.EmitRecord(bitc::METADATA_MACRO
, Record
, Abbrev
);
2117 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile
*N
,
2118 SmallVectorImpl
<uint64_t> &Record
,
2120 Record
.push_back(N
->isDistinct());
2121 Record
.push_back(N
->getMacinfoType());
2122 Record
.push_back(N
->getLine());
2123 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2124 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
2126 Stream
.EmitRecord(bitc::METADATA_MACRO_FILE
, Record
, Abbrev
);
2130 void ModuleBitcodeWriter::writeDIArgList(const DIArgList
*N
,
2131 SmallVectorImpl
<uint64_t> &Record
) {
2132 Record
.reserve(N
->getArgs().size());
2133 for (ValueAsMetadata
*MD
: N
->getArgs())
2134 Record
.push_back(VE
.getMetadataID(MD
));
2136 Stream
.EmitRecord(bitc::METADATA_ARG_LIST
, Record
);
2140 void ModuleBitcodeWriter::writeDIModule(const DIModule
*N
,
2141 SmallVectorImpl
<uint64_t> &Record
,
2143 Record
.push_back(N
->isDistinct());
2144 for (auto &I
: N
->operands())
2145 Record
.push_back(VE
.getMetadataOrNullID(I
));
2146 Record
.push_back(N
->getLineNo());
2147 Record
.push_back(N
->getIsDecl());
2149 Stream
.EmitRecord(bitc::METADATA_MODULE
, Record
, Abbrev
);
2153 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID
*N
,
2154 SmallVectorImpl
<uint64_t> &Record
,
2156 // There are no arguments for this metadata type.
2157 Record
.push_back(N
->isDistinct());
2158 Stream
.EmitRecord(bitc::METADATA_ASSIGN_ID
, Record
, Abbrev
);
2162 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2163 const DITemplateTypeParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
2165 Record
.push_back(N
->isDistinct());
2166 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2167 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2168 Record
.push_back(N
->isDefault());
2170 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_TYPE
, Record
, Abbrev
);
2174 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2175 const DITemplateValueParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
2177 Record
.push_back(N
->isDistinct());
2178 Record
.push_back(N
->getTag());
2179 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2180 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2181 Record
.push_back(N
->isDefault());
2182 Record
.push_back(VE
.getMetadataOrNullID(N
->getValue()));
2184 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_VALUE
, Record
, Abbrev
);
2188 void ModuleBitcodeWriter::writeDIGlobalVariable(
2189 const DIGlobalVariable
*N
, SmallVectorImpl
<uint64_t> &Record
,
2191 const uint64_t Version
= 2 << 1;
2192 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
2193 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2194 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2195 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
2196 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2197 Record
.push_back(N
->getLine());
2198 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2199 Record
.push_back(N
->isLocalToUnit());
2200 Record
.push_back(N
->isDefinition());
2201 Record
.push_back(VE
.getMetadataOrNullID(N
->getStaticDataMemberDeclaration()));
2202 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams()));
2203 Record
.push_back(N
->getAlignInBits());
2204 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
2206 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR
, Record
, Abbrev
);
2210 void ModuleBitcodeWriter::writeDILocalVariable(
2211 const DILocalVariable
*N
, SmallVectorImpl
<uint64_t> &Record
,
2213 // In order to support all possible bitcode formats in BitcodeReader we need
2214 // to distinguish the following cases:
2215 // 1) Record has no artificial tag (Record[1]),
2216 // has no obsolete inlinedAt field (Record[9]).
2217 // In this case Record size will be 8, HasAlignment flag is false.
2218 // 2) Record has artificial tag (Record[1]),
2219 // has no obsolete inlignedAt field (Record[9]).
2220 // In this case Record size will be 9, HasAlignment flag is false.
2221 // 3) Record has both artificial tag (Record[1]) and
2222 // obsolete inlignedAt field (Record[9]).
2223 // In this case Record size will be 10, HasAlignment flag is false.
2224 // 4) Record has neither artificial tag, nor inlignedAt field, but
2225 // HasAlignment flag is true and Record[8] contains alignment value.
2226 const uint64_t HasAlignmentFlag
= 1 << 1;
2227 Record
.push_back((uint64_t)N
->isDistinct() | HasAlignmentFlag
);
2228 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2229 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2230 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2231 Record
.push_back(N
->getLine());
2232 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2233 Record
.push_back(N
->getArg());
2234 Record
.push_back(N
->getFlags());
2235 Record
.push_back(N
->getAlignInBits());
2236 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
2238 Stream
.EmitRecord(bitc::METADATA_LOCAL_VAR
, Record
, Abbrev
);
2242 void ModuleBitcodeWriter::writeDILabel(
2243 const DILabel
*N
, SmallVectorImpl
<uint64_t> &Record
,
2245 Record
.push_back((uint64_t)N
->isDistinct());
2246 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2247 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2248 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2249 Record
.push_back(N
->getLine());
2251 Stream
.EmitRecord(bitc::METADATA_LABEL
, Record
, Abbrev
);
2255 void ModuleBitcodeWriter::writeDIExpression(const DIExpression
*N
,
2256 SmallVectorImpl
<uint64_t> &Record
,
2258 Record
.reserve(N
->getElements().size() + 1);
2259 const uint64_t Version
= 3 << 1;
2260 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
2261 Record
.append(N
->elements_begin(), N
->elements_end());
2263 Stream
.EmitRecord(bitc::METADATA_EXPRESSION
, Record
, Abbrev
);
2267 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2268 const DIGlobalVariableExpression
*N
, SmallVectorImpl
<uint64_t> &Record
,
2270 Record
.push_back(N
->isDistinct());
2271 Record
.push_back(VE
.getMetadataOrNullID(N
->getVariable()));
2272 Record
.push_back(VE
.getMetadataOrNullID(N
->getExpression()));
2274 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR
, Record
, Abbrev
);
2278 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty
*N
,
2279 SmallVectorImpl
<uint64_t> &Record
,
2281 Record
.push_back(N
->isDistinct());
2282 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2283 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2284 Record
.push_back(N
->getLine());
2285 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSetterName()));
2286 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawGetterName()));
2287 Record
.push_back(N
->getAttributes());
2288 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2290 Stream
.EmitRecord(bitc::METADATA_OBJC_PROPERTY
, Record
, Abbrev
);
2294 void ModuleBitcodeWriter::writeDIImportedEntity(
2295 const DIImportedEntity
*N
, SmallVectorImpl
<uint64_t> &Record
,
2297 Record
.push_back(N
->isDistinct());
2298 Record
.push_back(N
->getTag());
2299 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2300 Record
.push_back(VE
.getMetadataOrNullID(N
->getEntity()));
2301 Record
.push_back(N
->getLine());
2302 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2303 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFile()));
2304 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
2306 Stream
.EmitRecord(bitc::METADATA_IMPORTED_ENTITY
, Record
, Abbrev
);
2310 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2311 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2312 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_NAME
));
2313 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2314 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
2315 return Stream
.EmitAbbrev(std::move(Abbv
));
2318 void ModuleBitcodeWriter::writeNamedMetadata(
2319 SmallVectorImpl
<uint64_t> &Record
) {
2320 if (M
.named_metadata_empty())
2323 unsigned Abbrev
= createNamedMetadataAbbrev();
2324 for (const NamedMDNode
&NMD
: M
.named_metadata()) {
2326 StringRef Str
= NMD
.getName();
2327 Record
.append(Str
.bytes_begin(), Str
.bytes_end());
2328 Stream
.EmitRecord(bitc::METADATA_NAME
, Record
, Abbrev
);
2331 // Write named metadata operands.
2332 for (const MDNode
*N
: NMD
.operands())
2333 Record
.push_back(VE
.getMetadataID(N
));
2334 Stream
.EmitRecord(bitc::METADATA_NAMED_NODE
, Record
, 0);
2339 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2340 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2341 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS
));
2342 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // # of strings
2343 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // offset to chars
2344 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
2345 return Stream
.EmitAbbrev(std::move(Abbv
));
2348 /// Write out a record for MDString.
2350 /// All the metadata strings in a metadata block are emitted in a single
2351 /// record. The sizes and strings themselves are shoved into a blob.
2352 void ModuleBitcodeWriter::writeMetadataStrings(
2353 ArrayRef
<const Metadata
*> Strings
, SmallVectorImpl
<uint64_t> &Record
) {
2354 if (Strings
.empty())
2357 // Start the record with the number of strings.
2358 Record
.push_back(bitc::METADATA_STRINGS
);
2359 Record
.push_back(Strings
.size());
2361 // Emit the sizes of the strings in the blob.
2362 SmallString
<256> Blob
;
2364 BitstreamWriter
W(Blob
);
2365 for (const Metadata
*MD
: Strings
)
2366 W
.EmitVBR(cast
<MDString
>(MD
)->getLength(), 6);
2370 // Add the offset to the strings to the record.
2371 Record
.push_back(Blob
.size());
2373 // Add the strings to the blob.
2374 for (const Metadata
*MD
: Strings
)
2375 Blob
.append(cast
<MDString
>(MD
)->getString());
2377 // Emit the final record.
2378 Stream
.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record
, Blob
);
2382 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2383 enum MetadataAbbrev
: unsigned {
2384 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2385 #include "llvm/IR/Metadata.def"
2389 void ModuleBitcodeWriter::writeMetadataRecords(
2390 ArrayRef
<const Metadata
*> MDs
, SmallVectorImpl
<uint64_t> &Record
,
2391 std::vector
<unsigned> *MDAbbrevs
, std::vector
<uint64_t> *IndexPos
) {
2395 // Initialize MDNode abbreviations.
2396 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2397 #include "llvm/IR/Metadata.def"
2399 for (const Metadata
*MD
: MDs
) {
2401 IndexPos
->push_back(Stream
.GetCurrentBitNo());
2402 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
2403 assert(N
->isResolved() && "Expected forward references to be resolved");
2405 switch (N
->getMetadataID()) {
2407 llvm_unreachable("Invalid MDNode subclass");
2408 #define HANDLE_MDNODE_LEAF(CLASS) \
2409 case Metadata::CLASS##Kind: \
2411 write##CLASS(cast<CLASS>(N), Record, \
2412 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2414 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2416 #include "llvm/IR/Metadata.def"
2419 if (auto *AL
= dyn_cast
<DIArgList
>(MD
)) {
2420 writeDIArgList(AL
, Record
);
2423 writeValueAsMetadata(cast
<ValueAsMetadata
>(MD
), Record
);
2427 void ModuleBitcodeWriter::writeModuleMetadata() {
2428 if (!VE
.hasMDs() && M
.named_metadata_empty())
2431 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 4);
2432 SmallVector
<uint64_t, 64> Record
;
2434 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2435 // block and load any metadata.
2436 std::vector
<unsigned> MDAbbrevs
;
2438 MDAbbrevs
.resize(MetadataAbbrev::LastPlusOne
);
2439 MDAbbrevs
[MetadataAbbrev::DILocationAbbrevID
] = createDILocationAbbrev();
2440 MDAbbrevs
[MetadataAbbrev::GenericDINodeAbbrevID
] =
2441 createGenericDINodeAbbrev();
2443 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2444 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET
));
2445 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
2446 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
2447 unsigned OffsetAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2449 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2450 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX
));
2451 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2452 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
2453 unsigned IndexAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2455 // Emit MDStrings together upfront.
2456 writeMetadataStrings(VE
.getMDStrings(), Record
);
2458 // We only emit an index for the metadata record if we have more than a given
2459 // (naive) threshold of metadatas, otherwise it is not worth it.
2460 if (VE
.getNonMDStrings().size() > IndexThreshold
) {
2461 // Write a placeholder value in for the offset of the metadata index,
2462 // which is written after the records, so that it can include
2463 // the offset of each entry. The placeholder offset will be
2464 // updated after all records are emitted.
2465 uint64_t Vals
[] = {0, 0};
2466 Stream
.EmitRecord(bitc::METADATA_INDEX_OFFSET
, Vals
, OffsetAbbrev
);
2469 // Compute and save the bit offset to the current position, which will be
2470 // patched when we emit the index later. We can simply subtract the 64-bit
2471 // fixed size from the current bit number to get the location to backpatch.
2472 uint64_t IndexOffsetRecordBitPos
= Stream
.GetCurrentBitNo();
2474 // This index will contain the bitpos for each individual record.
2475 std::vector
<uint64_t> IndexPos
;
2476 IndexPos
.reserve(VE
.getNonMDStrings().size());
2478 // Write all the records
2479 writeMetadataRecords(VE
.getNonMDStrings(), Record
, &MDAbbrevs
, &IndexPos
);
2481 if (VE
.getNonMDStrings().size() > IndexThreshold
) {
2482 // Now that we have emitted all the records we will emit the index. But
2484 // backpatch the forward reference so that the reader can skip the records
2486 Stream
.BackpatchWord64(IndexOffsetRecordBitPos
- 64,
2487 Stream
.GetCurrentBitNo() - IndexOffsetRecordBitPos
);
2489 // Delta encode the index.
2490 uint64_t PreviousValue
= IndexOffsetRecordBitPos
;
2491 for (auto &Elt
: IndexPos
) {
2492 auto EltDelta
= Elt
- PreviousValue
;
2493 PreviousValue
= Elt
;
2496 // Emit the index record.
2497 Stream
.EmitRecord(bitc::METADATA_INDEX
, IndexPos
, IndexAbbrev
);
2501 // Write the named metadata now.
2502 writeNamedMetadata(Record
);
2504 auto AddDeclAttachedMetadata
= [&](const GlobalObject
&GO
) {
2505 SmallVector
<uint64_t, 4> Record
;
2506 Record
.push_back(VE
.getValueID(&GO
));
2507 pushGlobalMetadataAttachment(Record
, GO
);
2508 Stream
.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT
, Record
);
2510 for (const Function
&F
: M
)
2511 if (F
.isDeclaration() && F
.hasMetadata())
2512 AddDeclAttachedMetadata(F
);
2513 // FIXME: Only store metadata for declarations here, and move data for global
2514 // variable definitions to a separate block (PR28134).
2515 for (const GlobalVariable
&GV
: M
.globals())
2516 if (GV
.hasMetadata())
2517 AddDeclAttachedMetadata(GV
);
2522 void ModuleBitcodeWriter::writeFunctionMetadata(const Function
&F
) {
2526 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
2527 SmallVector
<uint64_t, 64> Record
;
2528 writeMetadataStrings(VE
.getMDStrings(), Record
);
2529 writeMetadataRecords(VE
.getNonMDStrings(), Record
);
2533 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2534 SmallVectorImpl
<uint64_t> &Record
, const GlobalObject
&GO
) {
2535 // [n x [id, mdnode]]
2536 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2537 GO
.getAllMetadata(MDs
);
2538 for (const auto &I
: MDs
) {
2539 Record
.push_back(I
.first
);
2540 Record
.push_back(VE
.getMetadataID(I
.second
));
2544 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function
&F
) {
2545 Stream
.EnterSubblock(bitc::METADATA_ATTACHMENT_ID
, 3);
2547 SmallVector
<uint64_t, 64> Record
;
2549 if (F
.hasMetadata()) {
2550 pushGlobalMetadataAttachment(Record
, F
);
2551 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
2555 // Write metadata attachments
2556 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2557 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2558 for (const BasicBlock
&BB
: F
)
2559 for (const Instruction
&I
: BB
) {
2561 I
.getAllMetadataOtherThanDebugLoc(MDs
);
2563 // If no metadata, ignore instruction.
2564 if (MDs
.empty()) continue;
2566 Record
.push_back(VE
.getInstructionID(&I
));
2568 for (unsigned i
= 0, e
= MDs
.size(); i
!= e
; ++i
) {
2569 Record
.push_back(MDs
[i
].first
);
2570 Record
.push_back(VE
.getMetadataID(MDs
[i
].second
));
2572 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
2579 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2580 SmallVector
<uint64_t, 64> Record
;
2582 // Write metadata kinds
2583 // METADATA_KIND - [n x [id, name]]
2584 SmallVector
<StringRef
, 8> Names
;
2585 M
.getMDKindNames(Names
);
2587 if (Names
.empty()) return;
2589 Stream
.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID
, 3);
2591 for (unsigned MDKindID
= 0, e
= Names
.size(); MDKindID
!= e
; ++MDKindID
) {
2592 Record
.push_back(MDKindID
);
2593 StringRef KName
= Names
[MDKindID
];
2594 Record
.append(KName
.begin(), KName
.end());
2596 Stream
.EmitRecord(bitc::METADATA_KIND
, Record
, 0);
2603 void ModuleBitcodeWriter::writeOperandBundleTags() {
2604 // Write metadata kinds
2606 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2608 // OPERAND_BUNDLE_TAG - [strchr x N]
2610 SmallVector
<StringRef
, 8> Tags
;
2611 M
.getOperandBundleTags(Tags
);
2616 Stream
.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID
, 3);
2618 SmallVector
<uint64_t, 64> Record
;
2620 for (auto Tag
: Tags
) {
2621 Record
.append(Tag
.begin(), Tag
.end());
2623 Stream
.EmitRecord(bitc::OPERAND_BUNDLE_TAG
, Record
, 0);
2630 void ModuleBitcodeWriter::writeSyncScopeNames() {
2631 SmallVector
<StringRef
, 8> SSNs
;
2632 M
.getContext().getSyncScopeNames(SSNs
);
2636 Stream
.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID
, 2);
2638 SmallVector
<uint64_t, 64> Record
;
2639 for (auto SSN
: SSNs
) {
2640 Record
.append(SSN
.begin(), SSN
.end());
2641 Stream
.EmitRecord(bitc::SYNC_SCOPE_NAME
, Record
, 0);
2648 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal
, unsigned LastVal
,
2650 if (FirstVal
== LastVal
) return;
2652 Stream
.EnterSubblock(bitc::CONSTANTS_BLOCK_ID
, 4);
2654 unsigned AggregateAbbrev
= 0;
2655 unsigned String8Abbrev
= 0;
2656 unsigned CString7Abbrev
= 0;
2657 unsigned CString6Abbrev
= 0;
2658 // If this is a constant pool for the module, emit module-specific abbrevs.
2660 // Abbrev for CST_CODE_AGGREGATE.
2661 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2662 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE
));
2663 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2664 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, Log2_32_Ceil(LastVal
+1)));
2665 AggregateAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2667 // Abbrev for CST_CODE_STRING.
2668 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2669 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING
));
2670 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2671 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
2672 String8Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2673 // Abbrev for CST_CODE_CSTRING.
2674 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2675 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
2676 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2677 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
2678 CString7Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2679 // Abbrev for CST_CODE_CSTRING.
2680 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2681 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
2682 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2683 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
2684 CString6Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2687 SmallVector
<uint64_t, 64> Record
;
2689 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2690 Type
*LastTy
= nullptr;
2691 for (unsigned i
= FirstVal
; i
!= LastVal
; ++i
) {
2692 const Value
*V
= Vals
[i
].first
;
2693 // If we need to switch types, do so now.
2694 if (V
->getType() != LastTy
) {
2695 LastTy
= V
->getType();
2696 Record
.push_back(VE
.getTypeID(LastTy
));
2697 Stream
.EmitRecord(bitc::CST_CODE_SETTYPE
, Record
,
2698 CONSTANTS_SETTYPE_ABBREV
);
2702 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
2703 Record
.push_back(VE
.getTypeID(IA
->getFunctionType()));
2705 unsigned(IA
->hasSideEffects()) | unsigned(IA
->isAlignStack()) << 1 |
2706 unsigned(IA
->getDialect() & 1) << 2 | unsigned(IA
->canThrow()) << 3);
2708 // Add the asm string.
2709 const std::string
&AsmStr
= IA
->getAsmString();
2710 Record
.push_back(AsmStr
.size());
2711 Record
.append(AsmStr
.begin(), AsmStr
.end());
2713 // Add the constraint string.
2714 const std::string
&ConstraintStr
= IA
->getConstraintString();
2715 Record
.push_back(ConstraintStr
.size());
2716 Record
.append(ConstraintStr
.begin(), ConstraintStr
.end());
2717 Stream
.EmitRecord(bitc::CST_CODE_INLINEASM
, Record
);
2721 const Constant
*C
= cast
<Constant
>(V
);
2722 unsigned Code
= -1U;
2723 unsigned AbbrevToUse
= 0;
2724 if (C
->isNullValue()) {
2725 Code
= bitc::CST_CODE_NULL
;
2726 } else if (isa
<PoisonValue
>(C
)) {
2727 Code
= bitc::CST_CODE_POISON
;
2728 } else if (isa
<UndefValue
>(C
)) {
2729 Code
= bitc::CST_CODE_UNDEF
;
2730 } else if (const ConstantInt
*IV
= dyn_cast
<ConstantInt
>(C
)) {
2731 if (IV
->getBitWidth() <= 64) {
2732 uint64_t V
= IV
->getSExtValue();
2733 emitSignedInt64(Record
, V
);
2734 Code
= bitc::CST_CODE_INTEGER
;
2735 AbbrevToUse
= CONSTANTS_INTEGER_ABBREV
;
2736 } else { // Wide integers, > 64 bits in size.
2737 emitWideAPInt(Record
, IV
->getValue());
2738 Code
= bitc::CST_CODE_WIDE_INTEGER
;
2740 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
2741 Code
= bitc::CST_CODE_FLOAT
;
2742 Type
*Ty
= CFP
->getType()->getScalarType();
2743 if (Ty
->isHalfTy() || Ty
->isBFloatTy() || Ty
->isFloatTy() ||
2745 Record
.push_back(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
2746 } else if (Ty
->isX86_FP80Ty()) {
2747 // api needed to prevent premature destruction
2748 // bits are not in the same order as a normal i80 APInt, compensate.
2749 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2750 const uint64_t *p
= api
.getRawData();
2751 Record
.push_back((p
[1] << 48) | (p
[0] >> 16));
2752 Record
.push_back(p
[0] & 0xffffLL
);
2753 } else if (Ty
->isFP128Ty() || Ty
->isPPC_FP128Ty()) {
2754 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2755 const uint64_t *p
= api
.getRawData();
2756 Record
.push_back(p
[0]);
2757 Record
.push_back(p
[1]);
2759 assert(0 && "Unknown FP type!");
2761 } else if (isa
<ConstantDataSequential
>(C
) &&
2762 cast
<ConstantDataSequential
>(C
)->isString()) {
2763 const ConstantDataSequential
*Str
= cast
<ConstantDataSequential
>(C
);
2764 // Emit constant strings specially.
2765 unsigned NumElts
= Str
->getNumElements();
2766 // If this is a null-terminated string, use the denser CSTRING encoding.
2767 if (Str
->isCString()) {
2768 Code
= bitc::CST_CODE_CSTRING
;
2769 --NumElts
; // Don't encode the null, which isn't allowed by char6.
2771 Code
= bitc::CST_CODE_STRING
;
2772 AbbrevToUse
= String8Abbrev
;
2774 bool isCStr7
= Code
== bitc::CST_CODE_CSTRING
;
2775 bool isCStrChar6
= Code
== bitc::CST_CODE_CSTRING
;
2776 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2777 unsigned char V
= Str
->getElementAsInteger(i
);
2778 Record
.push_back(V
);
2779 isCStr7
&= (V
& 128) == 0;
2781 isCStrChar6
= BitCodeAbbrevOp::isChar6(V
);
2785 AbbrevToUse
= CString6Abbrev
;
2787 AbbrevToUse
= CString7Abbrev
;
2788 } else if (const ConstantDataSequential
*CDS
=
2789 dyn_cast
<ConstantDataSequential
>(C
)) {
2790 Code
= bitc::CST_CODE_DATA
;
2791 Type
*EltTy
= CDS
->getElementType();
2792 if (isa
<IntegerType
>(EltTy
)) {
2793 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2794 Record
.push_back(CDS
->getElementAsInteger(i
));
2796 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2798 CDS
->getElementAsAPFloat(i
).bitcastToAPInt().getLimitedValue());
2800 } else if (isa
<ConstantAggregate
>(C
)) {
2801 Code
= bitc::CST_CODE_AGGREGATE
;
2802 for (const Value
*Op
: C
->operands())
2803 Record
.push_back(VE
.getValueID(Op
));
2804 AbbrevToUse
= AggregateAbbrev
;
2805 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2806 switch (CE
->getOpcode()) {
2808 if (Instruction::isCast(CE
->getOpcode())) {
2809 Code
= bitc::CST_CODE_CE_CAST
;
2810 Record
.push_back(getEncodedCastOpcode(CE
->getOpcode()));
2811 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2812 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2813 AbbrevToUse
= CONSTANTS_CE_CAST_Abbrev
;
2815 assert(CE
->getNumOperands() == 2 && "Unknown constant expr!");
2816 Code
= bitc::CST_CODE_CE_BINOP
;
2817 Record
.push_back(getEncodedBinaryOpcode(CE
->getOpcode()));
2818 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2819 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2820 uint64_t Flags
= getOptimizationFlags(CE
);
2822 Record
.push_back(Flags
);
2825 case Instruction::FNeg
: {
2826 assert(CE
->getNumOperands() == 1 && "Unknown constant expr!");
2827 Code
= bitc::CST_CODE_CE_UNOP
;
2828 Record
.push_back(getEncodedUnaryOpcode(CE
->getOpcode()));
2829 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2830 uint64_t Flags
= getOptimizationFlags(CE
);
2832 Record
.push_back(Flags
);
2835 case Instruction::GetElementPtr
: {
2836 Code
= bitc::CST_CODE_CE_GEP
;
2837 const auto *GO
= cast
<GEPOperator
>(C
);
2838 Record
.push_back(VE
.getTypeID(GO
->getSourceElementType()));
2839 Record
.push_back(getOptimizationFlags(GO
));
2840 if (std::optional
<ConstantRange
> Range
= GO
->getInRange()) {
2841 Code
= bitc::CST_CODE_CE_GEP_WITH_INRANGE
;
2842 emitConstantRange(Record
, *Range
, /*EmitBitWidth=*/true);
2844 for (const Value
*Op
: CE
->operands()) {
2845 Record
.push_back(VE
.getTypeID(Op
->getType()));
2846 Record
.push_back(VE
.getValueID(Op
));
2850 case Instruction::ExtractElement
:
2851 Code
= bitc::CST_CODE_CE_EXTRACTELT
;
2852 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2853 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2854 Record
.push_back(VE
.getTypeID(C
->getOperand(1)->getType()));
2855 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2857 case Instruction::InsertElement
:
2858 Code
= bitc::CST_CODE_CE_INSERTELT
;
2859 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2860 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2861 Record
.push_back(VE
.getTypeID(C
->getOperand(2)->getType()));
2862 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2864 case Instruction::ShuffleVector
:
2865 // If the return type and argument types are the same, this is a
2866 // standard shufflevector instruction. If the types are different,
2867 // then the shuffle is widening or truncating the input vectors, and
2868 // the argument type must also be encoded.
2869 if (C
->getType() == C
->getOperand(0)->getType()) {
2870 Code
= bitc::CST_CODE_CE_SHUFFLEVEC
;
2872 Code
= bitc::CST_CODE_CE_SHUFVEC_EX
;
2873 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2875 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2876 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2877 Record
.push_back(VE
.getValueID(CE
->getShuffleMaskForBitcode()));
2880 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
)) {
2881 Code
= bitc::CST_CODE_BLOCKADDRESS
;
2882 Record
.push_back(VE
.getTypeID(BA
->getFunction()->getType()));
2883 Record
.push_back(VE
.getValueID(BA
->getFunction()));
2884 Record
.push_back(VE
.getGlobalBasicBlockID(BA
->getBasicBlock()));
2885 } else if (const auto *Equiv
= dyn_cast
<DSOLocalEquivalent
>(C
)) {
2886 Code
= bitc::CST_CODE_DSO_LOCAL_EQUIVALENT
;
2887 Record
.push_back(VE
.getTypeID(Equiv
->getGlobalValue()->getType()));
2888 Record
.push_back(VE
.getValueID(Equiv
->getGlobalValue()));
2889 } else if (const auto *NC
= dyn_cast
<NoCFIValue
>(C
)) {
2890 Code
= bitc::CST_CODE_NO_CFI_VALUE
;
2891 Record
.push_back(VE
.getTypeID(NC
->getGlobalValue()->getType()));
2892 Record
.push_back(VE
.getValueID(NC
->getGlobalValue()));
2893 } else if (const auto *CPA
= dyn_cast
<ConstantPtrAuth
>(C
)) {
2894 Code
= bitc::CST_CODE_PTRAUTH
;
2895 Record
.push_back(VE
.getValueID(CPA
->getPointer()));
2896 Record
.push_back(VE
.getValueID(CPA
->getKey()));
2897 Record
.push_back(VE
.getValueID(CPA
->getDiscriminator()));
2898 Record
.push_back(VE
.getValueID(CPA
->getAddrDiscriminator()));
2903 llvm_unreachable("Unknown constant!");
2905 Stream
.EmitRecord(Code
, Record
, AbbrevToUse
);
2912 void ModuleBitcodeWriter::writeModuleConstants() {
2913 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2915 // Find the first constant to emit, which is the first non-globalvalue value.
2916 // We know globalvalues have been emitted by WriteModuleInfo.
2917 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
2918 if (!isa
<GlobalValue
>(Vals
[i
].first
)) {
2919 writeConstants(i
, Vals
.size(), true);
2925 /// pushValueAndType - The file has to encode both the value and type id for
2926 /// many values, because we need to know what type to create for forward
2927 /// references. However, most operands are not forward references, so this type
2928 /// field is not needed.
2930 /// This function adds V's value ID to Vals. If the value ID is higher than the
2931 /// instruction ID, then it is a forward reference, and it also includes the
2932 /// type ID. The value ID that is written is encoded relative to the InstID.
2933 bool ModuleBitcodeWriter::pushValueAndType(const Value
*V
, unsigned InstID
,
2934 SmallVectorImpl
<unsigned> &Vals
) {
2935 unsigned ValID
= VE
.getValueID(V
);
2936 // Make encoding relative to the InstID.
2937 Vals
.push_back(InstID
- ValID
);
2938 if (ValID
>= InstID
) {
2939 Vals
.push_back(VE
.getTypeID(V
->getType()));
2945 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value
*V
, unsigned InstID
,
2946 SmallVectorImpl
<unsigned> &Vals
) {
2947 bool IsMetadata
= V
->getType()->isMetadataTy();
2949 Vals
.push_back(bitc::OB_METADATA
);
2950 Metadata
*MD
= cast
<MetadataAsValue
>(V
)->getMetadata();
2951 unsigned ValID
= VE
.getMetadataID(MD
);
2952 Vals
.push_back(InstID
- ValID
);
2955 return pushValueAndType(V
, InstID
, Vals
);
2958 void ModuleBitcodeWriter::writeOperandBundles(const CallBase
&CS
,
2960 SmallVector
<unsigned, 64> Record
;
2961 LLVMContext
&C
= CS
.getContext();
2963 for (unsigned i
= 0, e
= CS
.getNumOperandBundles(); i
!= e
; ++i
) {
2964 const auto &Bundle
= CS
.getOperandBundleAt(i
);
2965 Record
.push_back(C
.getOperandBundleTagID(Bundle
.getTagName()));
2967 for (auto &Input
: Bundle
.Inputs
)
2968 pushValueOrMetadata(Input
, InstID
, Record
);
2970 Stream
.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE
, Record
);
2975 /// pushValue - Like pushValueAndType, but where the type of the value is
2976 /// omitted (perhaps it was already encoded in an earlier operand).
2977 void ModuleBitcodeWriter::pushValue(const Value
*V
, unsigned InstID
,
2978 SmallVectorImpl
<unsigned> &Vals
) {
2979 unsigned ValID
= VE
.getValueID(V
);
2980 Vals
.push_back(InstID
- ValID
);
2983 void ModuleBitcodeWriter::pushValueSigned(const Value
*V
, unsigned InstID
,
2984 SmallVectorImpl
<uint64_t> &Vals
) {
2985 unsigned ValID
= VE
.getValueID(V
);
2986 int64_t diff
= ((int32_t)InstID
- (int32_t)ValID
);
2987 emitSignedInt64(Vals
, diff
);
2990 /// WriteInstruction - Emit an instruction to the specified stream.
2991 void ModuleBitcodeWriter::writeInstruction(const Instruction
&I
,
2993 SmallVectorImpl
<unsigned> &Vals
) {
2995 unsigned AbbrevToUse
= 0;
2996 VE
.setInstructionID(&I
);
2997 switch (I
.getOpcode()) {
2999 if (Instruction::isCast(I
.getOpcode())) {
3000 Code
= bitc::FUNC_CODE_INST_CAST
;
3001 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
3002 AbbrevToUse
= FUNCTION_INST_CAST_ABBREV
;
3003 Vals
.push_back(VE
.getTypeID(I
.getType()));
3004 Vals
.push_back(getEncodedCastOpcode(I
.getOpcode()));
3005 uint64_t Flags
= getOptimizationFlags(&I
);
3007 if (AbbrevToUse
== FUNCTION_INST_CAST_ABBREV
)
3008 AbbrevToUse
= FUNCTION_INST_CAST_FLAGS_ABBREV
;
3009 Vals
.push_back(Flags
);
3012 assert(isa
<BinaryOperator
>(I
) && "Unknown instruction!");
3013 Code
= bitc::FUNC_CODE_INST_BINOP
;
3014 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
3015 AbbrevToUse
= FUNCTION_INST_BINOP_ABBREV
;
3016 pushValue(I
.getOperand(1), InstID
, Vals
);
3017 Vals
.push_back(getEncodedBinaryOpcode(I
.getOpcode()));
3018 uint64_t Flags
= getOptimizationFlags(&I
);
3020 if (AbbrevToUse
== FUNCTION_INST_BINOP_ABBREV
)
3021 AbbrevToUse
= FUNCTION_INST_BINOP_FLAGS_ABBREV
;
3022 Vals
.push_back(Flags
);
3026 case Instruction::FNeg
: {
3027 Code
= bitc::FUNC_CODE_INST_UNOP
;
3028 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
3029 AbbrevToUse
= FUNCTION_INST_UNOP_ABBREV
;
3030 Vals
.push_back(getEncodedUnaryOpcode(I
.getOpcode()));
3031 uint64_t Flags
= getOptimizationFlags(&I
);
3033 if (AbbrevToUse
== FUNCTION_INST_UNOP_ABBREV
)
3034 AbbrevToUse
= FUNCTION_INST_UNOP_FLAGS_ABBREV
;
3035 Vals
.push_back(Flags
);
3039 case Instruction::GetElementPtr
: {
3040 Code
= bitc::FUNC_CODE_INST_GEP
;
3041 AbbrevToUse
= FUNCTION_INST_GEP_ABBREV
;
3042 auto &GEPInst
= cast
<GetElementPtrInst
>(I
);
3043 Vals
.push_back(getOptimizationFlags(&I
));
3044 Vals
.push_back(VE
.getTypeID(GEPInst
.getSourceElementType()));
3045 for (const Value
*Op
: I
.operands())
3046 pushValueAndType(Op
, InstID
, Vals
);
3049 case Instruction::ExtractValue
: {
3050 Code
= bitc::FUNC_CODE_INST_EXTRACTVAL
;
3051 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3052 const ExtractValueInst
*EVI
= cast
<ExtractValueInst
>(&I
);
3053 Vals
.append(EVI
->idx_begin(), EVI
->idx_end());
3056 case Instruction::InsertValue
: {
3057 Code
= bitc::FUNC_CODE_INST_INSERTVAL
;
3058 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3059 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
3060 const InsertValueInst
*IVI
= cast
<InsertValueInst
>(&I
);
3061 Vals
.append(IVI
->idx_begin(), IVI
->idx_end());
3064 case Instruction::Select
: {
3065 Code
= bitc::FUNC_CODE_INST_VSELECT
;
3066 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
3067 pushValue(I
.getOperand(2), InstID
, Vals
);
3068 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3069 uint64_t Flags
= getOptimizationFlags(&I
);
3071 Vals
.push_back(Flags
);
3074 case Instruction::ExtractElement
:
3075 Code
= bitc::FUNC_CODE_INST_EXTRACTELT
;
3076 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3077 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
3079 case Instruction::InsertElement
:
3080 Code
= bitc::FUNC_CODE_INST_INSERTELT
;
3081 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3082 pushValue(I
.getOperand(1), InstID
, Vals
);
3083 pushValueAndType(I
.getOperand(2), InstID
, Vals
);
3085 case Instruction::ShuffleVector
:
3086 Code
= bitc::FUNC_CODE_INST_SHUFFLEVEC
;
3087 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3088 pushValue(I
.getOperand(1), InstID
, Vals
);
3089 pushValue(cast
<ShuffleVectorInst
>(I
).getShuffleMaskForBitcode(), InstID
,
3092 case Instruction::ICmp
:
3093 case Instruction::FCmp
: {
3094 // compare returning Int1Ty or vector of Int1Ty
3095 Code
= bitc::FUNC_CODE_INST_CMP2
;
3096 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3097 pushValue(I
.getOperand(1), InstID
, Vals
);
3098 Vals
.push_back(cast
<CmpInst
>(I
).getPredicate());
3099 uint64_t Flags
= getOptimizationFlags(&I
);
3101 Vals
.push_back(Flags
);
3105 case Instruction::Ret
:
3107 Code
= bitc::FUNC_CODE_INST_RET
;
3108 unsigned NumOperands
= I
.getNumOperands();
3109 if (NumOperands
== 0)
3110 AbbrevToUse
= FUNCTION_INST_RET_VOID_ABBREV
;
3111 else if (NumOperands
== 1) {
3112 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
3113 AbbrevToUse
= FUNCTION_INST_RET_VAL_ABBREV
;
3115 for (const Value
*Op
: I
.operands())
3116 pushValueAndType(Op
, InstID
, Vals
);
3120 case Instruction::Br
:
3122 Code
= bitc::FUNC_CODE_INST_BR
;
3123 const BranchInst
&II
= cast
<BranchInst
>(I
);
3124 Vals
.push_back(VE
.getValueID(II
.getSuccessor(0)));
3125 if (II
.isConditional()) {
3126 Vals
.push_back(VE
.getValueID(II
.getSuccessor(1)));
3127 pushValue(II
.getCondition(), InstID
, Vals
);
3131 case Instruction::Switch
:
3133 Code
= bitc::FUNC_CODE_INST_SWITCH
;
3134 const SwitchInst
&SI
= cast
<SwitchInst
>(I
);
3135 Vals
.push_back(VE
.getTypeID(SI
.getCondition()->getType()));
3136 pushValue(SI
.getCondition(), InstID
, Vals
);
3137 Vals
.push_back(VE
.getValueID(SI
.getDefaultDest()));
3138 for (auto Case
: SI
.cases()) {
3139 Vals
.push_back(VE
.getValueID(Case
.getCaseValue()));
3140 Vals
.push_back(VE
.getValueID(Case
.getCaseSuccessor()));
3144 case Instruction::IndirectBr
:
3145 Code
= bitc::FUNC_CODE_INST_INDIRECTBR
;
3146 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
3147 // Encode the address operand as relative, but not the basic blocks.
3148 pushValue(I
.getOperand(0), InstID
, Vals
);
3149 for (const Value
*Op
: drop_begin(I
.operands()))
3150 Vals
.push_back(VE
.getValueID(Op
));
3153 case Instruction::Invoke
: {
3154 const InvokeInst
*II
= cast
<InvokeInst
>(&I
);
3155 const Value
*Callee
= II
->getCalledOperand();
3156 FunctionType
*FTy
= II
->getFunctionType();
3158 if (II
->hasOperandBundles())
3159 writeOperandBundles(*II
, InstID
);
3161 Code
= bitc::FUNC_CODE_INST_INVOKE
;
3163 Vals
.push_back(VE
.getAttributeListID(II
->getAttributes()));
3164 Vals
.push_back(II
->getCallingConv() | 1 << 13);
3165 Vals
.push_back(VE
.getValueID(II
->getNormalDest()));
3166 Vals
.push_back(VE
.getValueID(II
->getUnwindDest()));
3167 Vals
.push_back(VE
.getTypeID(FTy
));
3168 pushValueAndType(Callee
, InstID
, Vals
);
3170 // Emit value #'s for the fixed parameters.
3171 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
3172 pushValue(I
.getOperand(i
), InstID
, Vals
); // fixed param.
3174 // Emit type/value pairs for varargs params.
3175 if (FTy
->isVarArg()) {
3176 for (unsigned i
= FTy
->getNumParams(), e
= II
->arg_size(); i
!= e
; ++i
)
3177 pushValueAndType(I
.getOperand(i
), InstID
, Vals
); // vararg
3181 case Instruction::Resume
:
3182 Code
= bitc::FUNC_CODE_INST_RESUME
;
3183 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3185 case Instruction::CleanupRet
: {
3186 Code
= bitc::FUNC_CODE_INST_CLEANUPRET
;
3187 const auto &CRI
= cast
<CleanupReturnInst
>(I
);
3188 pushValue(CRI
.getCleanupPad(), InstID
, Vals
);
3189 if (CRI
.hasUnwindDest())
3190 Vals
.push_back(VE
.getValueID(CRI
.getUnwindDest()));
3193 case Instruction::CatchRet
: {
3194 Code
= bitc::FUNC_CODE_INST_CATCHRET
;
3195 const auto &CRI
= cast
<CatchReturnInst
>(I
);
3196 pushValue(CRI
.getCatchPad(), InstID
, Vals
);
3197 Vals
.push_back(VE
.getValueID(CRI
.getSuccessor()));
3200 case Instruction::CleanupPad
:
3201 case Instruction::CatchPad
: {
3202 const auto &FuncletPad
= cast
<FuncletPadInst
>(I
);
3203 Code
= isa
<CatchPadInst
>(FuncletPad
) ? bitc::FUNC_CODE_INST_CATCHPAD
3204 : bitc::FUNC_CODE_INST_CLEANUPPAD
;
3205 pushValue(FuncletPad
.getParentPad(), InstID
, Vals
);
3207 unsigned NumArgOperands
= FuncletPad
.arg_size();
3208 Vals
.push_back(NumArgOperands
);
3209 for (unsigned Op
= 0; Op
!= NumArgOperands
; ++Op
)
3210 pushValueAndType(FuncletPad
.getArgOperand(Op
), InstID
, Vals
);
3213 case Instruction::CatchSwitch
: {
3214 Code
= bitc::FUNC_CODE_INST_CATCHSWITCH
;
3215 const auto &CatchSwitch
= cast
<CatchSwitchInst
>(I
);
3217 pushValue(CatchSwitch
.getParentPad(), InstID
, Vals
);
3219 unsigned NumHandlers
= CatchSwitch
.getNumHandlers();
3220 Vals
.push_back(NumHandlers
);
3221 for (const BasicBlock
*CatchPadBB
: CatchSwitch
.handlers())
3222 Vals
.push_back(VE
.getValueID(CatchPadBB
));
3224 if (CatchSwitch
.hasUnwindDest())
3225 Vals
.push_back(VE
.getValueID(CatchSwitch
.getUnwindDest()));
3228 case Instruction::CallBr
: {
3229 const CallBrInst
*CBI
= cast
<CallBrInst
>(&I
);
3230 const Value
*Callee
= CBI
->getCalledOperand();
3231 FunctionType
*FTy
= CBI
->getFunctionType();
3233 if (CBI
->hasOperandBundles())
3234 writeOperandBundles(*CBI
, InstID
);
3236 Code
= bitc::FUNC_CODE_INST_CALLBR
;
3238 Vals
.push_back(VE
.getAttributeListID(CBI
->getAttributes()));
3240 Vals
.push_back(CBI
->getCallingConv() << bitc::CALL_CCONV
|
3241 1 << bitc::CALL_EXPLICIT_TYPE
);
3243 Vals
.push_back(VE
.getValueID(CBI
->getDefaultDest()));
3244 Vals
.push_back(CBI
->getNumIndirectDests());
3245 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
)
3246 Vals
.push_back(VE
.getValueID(CBI
->getIndirectDest(i
)));
3248 Vals
.push_back(VE
.getTypeID(FTy
));
3249 pushValueAndType(Callee
, InstID
, Vals
);
3251 // Emit value #'s for the fixed parameters.
3252 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
3253 pushValue(I
.getOperand(i
), InstID
, Vals
); // fixed param.
3255 // Emit type/value pairs for varargs params.
3256 if (FTy
->isVarArg()) {
3257 for (unsigned i
= FTy
->getNumParams(), e
= CBI
->arg_size(); i
!= e
; ++i
)
3258 pushValueAndType(I
.getOperand(i
), InstID
, Vals
); // vararg
3262 case Instruction::Unreachable
:
3263 Code
= bitc::FUNC_CODE_INST_UNREACHABLE
;
3264 AbbrevToUse
= FUNCTION_INST_UNREACHABLE_ABBREV
;
3267 case Instruction::PHI
: {
3268 const PHINode
&PN
= cast
<PHINode
>(I
);
3269 Code
= bitc::FUNC_CODE_INST_PHI
;
3270 // With the newer instruction encoding, forward references could give
3271 // negative valued IDs. This is most common for PHIs, so we use
3273 SmallVector
<uint64_t, 128> Vals64
;
3274 Vals64
.push_back(VE
.getTypeID(PN
.getType()));
3275 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
3276 pushValueSigned(PN
.getIncomingValue(i
), InstID
, Vals64
);
3277 Vals64
.push_back(VE
.getValueID(PN
.getIncomingBlock(i
)));
3280 uint64_t Flags
= getOptimizationFlags(&I
);
3282 Vals64
.push_back(Flags
);
3284 // Emit a Vals64 vector and exit.
3285 Stream
.EmitRecord(Code
, Vals64
, AbbrevToUse
);
3290 case Instruction::LandingPad
: {
3291 const LandingPadInst
&LP
= cast
<LandingPadInst
>(I
);
3292 Code
= bitc::FUNC_CODE_INST_LANDINGPAD
;
3293 Vals
.push_back(VE
.getTypeID(LP
.getType()));
3294 Vals
.push_back(LP
.isCleanup());
3295 Vals
.push_back(LP
.getNumClauses());
3296 for (unsigned I
= 0, E
= LP
.getNumClauses(); I
!= E
; ++I
) {
3298 Vals
.push_back(LandingPadInst::Catch
);
3300 Vals
.push_back(LandingPadInst::Filter
);
3301 pushValueAndType(LP
.getClause(I
), InstID
, Vals
);
3306 case Instruction::Alloca
: {
3307 Code
= bitc::FUNC_CODE_INST_ALLOCA
;
3308 const AllocaInst
&AI
= cast
<AllocaInst
>(I
);
3309 Vals
.push_back(VE
.getTypeID(AI
.getAllocatedType()));
3310 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
3311 Vals
.push_back(VE
.getValueID(I
.getOperand(0))); // size.
3312 using APV
= AllocaPackedValues
;
3313 unsigned Record
= 0;
3314 unsigned EncodedAlign
= getEncodedAlign(AI
.getAlign());
3315 Bitfield::set
<APV::AlignLower
>(
3316 Record
, EncodedAlign
& ((1 << APV::AlignLower::Bits
) - 1));
3317 Bitfield::set
<APV::AlignUpper
>(Record
,
3318 EncodedAlign
>> APV::AlignLower::Bits
);
3319 Bitfield::set
<APV::UsedWithInAlloca
>(Record
, AI
.isUsedWithInAlloca());
3320 Bitfield::set
<APV::ExplicitType
>(Record
, true);
3321 Bitfield::set
<APV::SwiftError
>(Record
, AI
.isSwiftError());
3322 Vals
.push_back(Record
);
3324 unsigned AS
= AI
.getAddressSpace();
3325 if (AS
!= M
.getDataLayout().getAllocaAddrSpace())
3330 case Instruction::Load
:
3331 if (cast
<LoadInst
>(I
).isAtomic()) {
3332 Code
= bitc::FUNC_CODE_INST_LOADATOMIC
;
3333 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3335 Code
= bitc::FUNC_CODE_INST_LOAD
;
3336 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
)) // ptr
3337 AbbrevToUse
= FUNCTION_INST_LOAD_ABBREV
;
3339 Vals
.push_back(VE
.getTypeID(I
.getType()));
3340 Vals
.push_back(getEncodedAlign(cast
<LoadInst
>(I
).getAlign()));
3341 Vals
.push_back(cast
<LoadInst
>(I
).isVolatile());
3342 if (cast
<LoadInst
>(I
).isAtomic()) {
3343 Vals
.push_back(getEncodedOrdering(cast
<LoadInst
>(I
).getOrdering()));
3344 Vals
.push_back(getEncodedSyncScopeID(cast
<LoadInst
>(I
).getSyncScopeID()));
3347 case Instruction::Store
:
3348 if (cast
<StoreInst
>(I
).isAtomic())
3349 Code
= bitc::FUNC_CODE_INST_STOREATOMIC
;
3351 Code
= bitc::FUNC_CODE_INST_STORE
;
3352 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // ptrty + ptr
3353 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // valty + val
3354 Vals
.push_back(getEncodedAlign(cast
<StoreInst
>(I
).getAlign()));
3355 Vals
.push_back(cast
<StoreInst
>(I
).isVolatile());
3356 if (cast
<StoreInst
>(I
).isAtomic()) {
3357 Vals
.push_back(getEncodedOrdering(cast
<StoreInst
>(I
).getOrdering()));
3359 getEncodedSyncScopeID(cast
<StoreInst
>(I
).getSyncScopeID()));
3362 case Instruction::AtomicCmpXchg
:
3363 Code
= bitc::FUNC_CODE_INST_CMPXCHG
;
3364 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
3365 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // cmp.
3366 pushValue(I
.getOperand(2), InstID
, Vals
); // newval.
3367 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isVolatile());
3369 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getSuccessOrdering()));
3371 getEncodedSyncScopeID(cast
<AtomicCmpXchgInst
>(I
).getSyncScopeID()));
3373 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getFailureOrdering()));
3374 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isWeak());
3375 Vals
.push_back(getEncodedAlign(cast
<AtomicCmpXchgInst
>(I
).getAlign()));
3377 case Instruction::AtomicRMW
:
3378 Code
= bitc::FUNC_CODE_INST_ATOMICRMW
;
3379 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
3380 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // valty + val
3382 getEncodedRMWOperation(cast
<AtomicRMWInst
>(I
).getOperation()));
3383 Vals
.push_back(cast
<AtomicRMWInst
>(I
).isVolatile());
3384 Vals
.push_back(getEncodedOrdering(cast
<AtomicRMWInst
>(I
).getOrdering()));
3386 getEncodedSyncScopeID(cast
<AtomicRMWInst
>(I
).getSyncScopeID()));
3387 Vals
.push_back(getEncodedAlign(cast
<AtomicRMWInst
>(I
).getAlign()));
3389 case Instruction::Fence
:
3390 Code
= bitc::FUNC_CODE_INST_FENCE
;
3391 Vals
.push_back(getEncodedOrdering(cast
<FenceInst
>(I
).getOrdering()));
3392 Vals
.push_back(getEncodedSyncScopeID(cast
<FenceInst
>(I
).getSyncScopeID()));
3394 case Instruction::Call
: {
3395 const CallInst
&CI
= cast
<CallInst
>(I
);
3396 FunctionType
*FTy
= CI
.getFunctionType();
3398 if (CI
.hasOperandBundles())
3399 writeOperandBundles(CI
, InstID
);
3401 Code
= bitc::FUNC_CODE_INST_CALL
;
3403 Vals
.push_back(VE
.getAttributeListID(CI
.getAttributes()));
3405 unsigned Flags
= getOptimizationFlags(&I
);
3406 Vals
.push_back(CI
.getCallingConv() << bitc::CALL_CCONV
|
3407 unsigned(CI
.isTailCall()) << bitc::CALL_TAIL
|
3408 unsigned(CI
.isMustTailCall()) << bitc::CALL_MUSTTAIL
|
3409 1 << bitc::CALL_EXPLICIT_TYPE
|
3410 unsigned(CI
.isNoTailCall()) << bitc::CALL_NOTAIL
|
3411 unsigned(Flags
!= 0) << bitc::CALL_FMF
);
3413 Vals
.push_back(Flags
);
3415 Vals
.push_back(VE
.getTypeID(FTy
));
3416 pushValueAndType(CI
.getCalledOperand(), InstID
, Vals
); // Callee
3418 // Emit value #'s for the fixed parameters.
3419 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
3420 // Check for labels (can happen with asm labels).
3421 if (FTy
->getParamType(i
)->isLabelTy())
3422 Vals
.push_back(VE
.getValueID(CI
.getArgOperand(i
)));
3424 pushValue(CI
.getArgOperand(i
), InstID
, Vals
); // fixed param.
3427 // Emit type/value pairs for varargs params.
3428 if (FTy
->isVarArg()) {
3429 for (unsigned i
= FTy
->getNumParams(), e
= CI
.arg_size(); i
!= e
; ++i
)
3430 pushValueAndType(CI
.getArgOperand(i
), InstID
, Vals
); // varargs
3434 case Instruction::VAArg
:
3435 Code
= bitc::FUNC_CODE_INST_VAARG
;
3436 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType())); // valistty
3437 pushValue(I
.getOperand(0), InstID
, Vals
); // valist.
3438 Vals
.push_back(VE
.getTypeID(I
.getType())); // restype.
3440 case Instruction::Freeze
:
3441 Code
= bitc::FUNC_CODE_INST_FREEZE
;
3442 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3446 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
3450 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3451 /// to allow clients to efficiently find the function body.
3452 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3453 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
) {
3454 // Get the offset of the VST we are writing, and backpatch it into
3455 // the VST forward declaration record.
3456 uint64_t VSTOffset
= Stream
.GetCurrentBitNo();
3457 // The BitcodeStartBit was the stream offset of the identification block.
3458 VSTOffset
-= bitcodeStartBit();
3459 assert((VSTOffset
& 31) == 0 && "VST block not 32-bit aligned");
3460 // Note that we add 1 here because the offset is relative to one word
3461 // before the start of the identification block, which was historically
3462 // always the start of the regular bitcode header.
3463 Stream
.BackpatchWord(VSTOffsetPlaceholder
, VSTOffset
/ 32 + 1);
3465 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
3467 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3468 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY
));
3469 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
3470 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // funcoffset
3471 unsigned FnEntryAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3473 for (const Function
&F
: M
) {
3476 if (F
.isDeclaration())
3479 Record
[0] = VE
.getValueID(&F
);
3481 // Save the word offset of the function (from the start of the
3482 // actual bitcode written to the stream).
3483 uint64_t BitcodeIndex
= FunctionToBitcodeIndex
[&F
] - bitcodeStartBit();
3484 assert((BitcodeIndex
& 31) == 0 && "function block not 32-bit aligned");
3485 // Note that we add 1 here because the offset is relative to one word
3486 // before the start of the identification block, which was historically
3487 // always the start of the regular bitcode header.
3488 Record
[1] = BitcodeIndex
/ 32 + 1;
3490 Stream
.EmitRecord(bitc::VST_CODE_FNENTRY
, Record
, FnEntryAbbrev
);
3496 /// Emit names for arguments, instructions and basic blocks in a function.
3497 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3498 const ValueSymbolTable
&VST
) {
3502 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
3504 // FIXME: Set up the abbrev, we know how many values there are!
3505 // FIXME: We know if the type names can use 7-bit ascii.
3506 SmallVector
<uint64_t, 64> NameVals
;
3508 for (const ValueName
&Name
: VST
) {
3509 // Figure out the encoding to use for the name.
3510 StringEncoding Bits
= getStringEncoding(Name
.getKey());
3512 unsigned AbbrevToUse
= VST_ENTRY_8_ABBREV
;
3513 NameVals
.push_back(VE
.getValueID(Name
.getValue()));
3515 // VST_CODE_ENTRY: [valueid, namechar x N]
3516 // VST_CODE_BBENTRY: [bbid, namechar x N]
3518 if (isa
<BasicBlock
>(Name
.getValue())) {
3519 Code
= bitc::VST_CODE_BBENTRY
;
3520 if (Bits
== SE_Char6
)
3521 AbbrevToUse
= VST_BBENTRY_6_ABBREV
;
3523 Code
= bitc::VST_CODE_ENTRY
;
3524 if (Bits
== SE_Char6
)
3525 AbbrevToUse
= VST_ENTRY_6_ABBREV
;
3526 else if (Bits
== SE_Fixed7
)
3527 AbbrevToUse
= VST_ENTRY_7_ABBREV
;
3530 for (const auto P
: Name
.getKey())
3531 NameVals
.push_back((unsigned char)P
);
3533 // Emit the finished record.
3534 Stream
.EmitRecord(Code
, NameVals
, AbbrevToUse
);
3541 void ModuleBitcodeWriter::writeUseList(UseListOrder
&&Order
) {
3542 assert(Order
.Shuffle
.size() >= 2 && "Shuffle too small");
3544 if (isa
<BasicBlock
>(Order
.V
))
3545 Code
= bitc::USELIST_CODE_BB
;
3547 Code
= bitc::USELIST_CODE_DEFAULT
;
3549 SmallVector
<uint64_t, 64> Record(Order
.Shuffle
.begin(), Order
.Shuffle
.end());
3550 Record
.push_back(VE
.getValueID(Order
.V
));
3551 Stream
.EmitRecord(Code
, Record
);
3554 void ModuleBitcodeWriter::writeUseListBlock(const Function
*F
) {
3555 assert(VE
.shouldPreserveUseListOrder() &&
3556 "Expected to be preserving use-list order");
3558 auto hasMore
= [&]() {
3559 return !VE
.UseListOrders
.empty() && VE
.UseListOrders
.back().F
== F
;
3565 Stream
.EnterSubblock(bitc::USELIST_BLOCK_ID
, 3);
3567 writeUseList(std::move(VE
.UseListOrders
.back()));
3568 VE
.UseListOrders
.pop_back();
3573 /// Emit a function body to the module stream.
3574 void ModuleBitcodeWriter::writeFunction(
3576 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
) {
3577 // Save the bitcode index of the start of this function block for recording
3579 FunctionToBitcodeIndex
[&F
] = Stream
.GetCurrentBitNo();
3581 Stream
.EnterSubblock(bitc::FUNCTION_BLOCK_ID
, 4);
3582 VE
.incorporateFunction(F
);
3584 SmallVector
<unsigned, 64> Vals
;
3586 // Emit the number of basic blocks, so the reader can create them ahead of
3588 Vals
.push_back(VE
.getBasicBlocks().size());
3589 Stream
.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS
, Vals
);
3592 // If there are function-local constants, emit them now.
3593 unsigned CstStart
, CstEnd
;
3594 VE
.getFunctionConstantRange(CstStart
, CstEnd
);
3595 writeConstants(CstStart
, CstEnd
, false);
3597 // If there is function-local metadata, emit it now.
3598 writeFunctionMetadata(F
);
3600 // Keep a running idea of what the instruction ID is.
3601 unsigned InstID
= CstEnd
;
3603 bool NeedsMetadataAttachment
= F
.hasMetadata();
3605 DILocation
*LastDL
= nullptr;
3606 SmallSetVector
<Function
*, 4> BlockAddressUsers
;
3608 // Finally, emit all the instructions, in order.
3609 for (const BasicBlock
&BB
: F
) {
3610 for (const Instruction
&I
: BB
) {
3611 writeInstruction(I
, InstID
, Vals
);
3613 if (!I
.getType()->isVoidTy())
3616 // If the instruction has metadata, write a metadata attachment later.
3617 NeedsMetadataAttachment
|= I
.hasMetadataOtherThanDebugLoc();
3619 // If the instruction has a debug location, emit it.
3620 if (DILocation
*DL
= I
.getDebugLoc()) {
3622 // Just repeat the same debug loc as last time.
3623 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN
, Vals
);
3625 Vals
.push_back(DL
->getLine());
3626 Vals
.push_back(DL
->getColumn());
3627 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getScope()));
3628 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getInlinedAt()));
3629 Vals
.push_back(DL
->isImplicitCode());
3630 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC
, Vals
);
3636 // If the instruction has DbgRecords attached to it, emit them. Note that
3637 // they come after the instruction so that it's easy to attach them again
3638 // when reading the bitcode, even though conceptually the debug locations
3639 // start "before" the instruction.
3640 if (I
.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode
) {
3641 /// Try to push the value only (unwrapped), otherwise push the
3642 /// metadata wrapped value. Returns true if the value was pushed
3643 /// without the ValueAsMetadata wrapper.
3644 auto PushValueOrMetadata
= [&Vals
, InstID
,
3645 this](Metadata
*RawLocation
) {
3646 assert(RawLocation
&&
3647 "RawLocation unexpectedly null in DbgVariableRecord");
3648 if (ValueAsMetadata
*VAM
= dyn_cast
<ValueAsMetadata
>(RawLocation
)) {
3649 SmallVector
<unsigned, 2> ValAndType
;
3650 // If the value is a fwd-ref the type is also pushed. We don't
3651 // want the type, so fwd-refs are kept wrapped (pushValueAndType
3652 // returns false if the value is pushed without type).
3653 if (!pushValueAndType(VAM
->getValue(), InstID
, ValAndType
)) {
3654 Vals
.push_back(ValAndType
[0]);
3658 // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3659 // fwd-ref. Push the metadata ID.
3660 Vals
.push_back(VE
.getMetadataID(RawLocation
));
3664 // Write out non-instruction debug information attached to this
3665 // instruction. Write it after the instruction so that it's easy to
3666 // re-attach to the instruction reading the records in.
3667 for (DbgRecord
&DR
: I
.DebugMarker
->getDbgRecordRange()) {
3668 if (DbgLabelRecord
*DLR
= dyn_cast
<DbgLabelRecord
>(&DR
)) {
3669 Vals
.push_back(VE
.getMetadataID(&*DLR
->getDebugLoc()));
3670 Vals
.push_back(VE
.getMetadataID(DLR
->getLabel()));
3671 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL
, Vals
);
3676 // First 3 fields are common to all kinds:
3677 // DILocation, DILocalVariable, DIExpression
3678 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3679 // ..., LocationMetadata
3680 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3682 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3683 // ..., LocationMetadata
3684 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3685 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3686 DbgVariableRecord
&DVR
= cast
<DbgVariableRecord
>(DR
);
3687 Vals
.push_back(VE
.getMetadataID(&*DVR
.getDebugLoc()));
3688 Vals
.push_back(VE
.getMetadataID(DVR
.getVariable()));
3689 Vals
.push_back(VE
.getMetadataID(DVR
.getExpression()));
3690 if (DVR
.isDbgValue()) {
3691 if (PushValueOrMetadata(DVR
.getRawLocation()))
3692 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE
, Vals
,
3693 FUNCTION_DEBUG_RECORD_VALUE_ABBREV
);
3695 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE
, Vals
);
3696 } else if (DVR
.isDbgDeclare()) {
3697 Vals
.push_back(VE
.getMetadataID(DVR
.getRawLocation()));
3698 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE
, Vals
);
3700 assert(DVR
.isDbgAssign() && "Unexpected DbgRecord kind");
3701 Vals
.push_back(VE
.getMetadataID(DVR
.getRawLocation()));
3702 Vals
.push_back(VE
.getMetadataID(DVR
.getAssignID()));
3703 Vals
.push_back(VE
.getMetadataID(DVR
.getAddressExpression()));
3704 Vals
.push_back(VE
.getMetadataID(DVR
.getRawAddress()));
3705 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN
, Vals
);
3712 if (BlockAddress
*BA
= BlockAddress::lookup(&BB
)) {
3713 SmallVector
<Value
*> Worklist
{BA
};
3714 SmallPtrSet
<Value
*, 8> Visited
{BA
};
3715 while (!Worklist
.empty()) {
3716 Value
*V
= Worklist
.pop_back_val();
3717 for (User
*U
: V
->users()) {
3718 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
3719 Function
*P
= I
->getFunction();
3721 BlockAddressUsers
.insert(P
);
3722 } else if (isa
<Constant
>(U
) && !isa
<GlobalValue
>(U
) &&
3723 Visited
.insert(U
).second
)
3724 Worklist
.push_back(U
);
3730 if (!BlockAddressUsers
.empty()) {
3731 Vals
.resize(BlockAddressUsers
.size());
3732 for (auto I
: llvm::enumerate(BlockAddressUsers
))
3733 Vals
[I
.index()] = VE
.getValueID(I
.value());
3734 Stream
.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS
, Vals
);
3738 // Emit names for all the instructions etc.
3739 if (auto *Symtab
= F
.getValueSymbolTable())
3740 writeFunctionLevelValueSymbolTable(*Symtab
);
3742 if (NeedsMetadataAttachment
)
3743 writeFunctionMetadataAttachment(F
);
3744 if (VE
.shouldPreserveUseListOrder())
3745 writeUseListBlock(&F
);
3750 // Emit blockinfo, which defines the standard abbreviations etc.
3751 void ModuleBitcodeWriter::writeBlockInfo() {
3752 // We only want to emit block info records for blocks that have multiple
3753 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3754 // Other blocks can define their abbrevs inline.
3755 Stream
.EnterBlockInfoBlock();
3757 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3758 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3759 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 3));
3760 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3761 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3762 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
3763 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3765 llvm_unreachable("Unexpected abbrev ordering!");
3768 { // 7-bit fixed width VST_CODE_ENTRY strings.
3769 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3770 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
3771 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3772 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3773 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
3774 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3776 llvm_unreachable("Unexpected abbrev ordering!");
3778 { // 6-bit char6 VST_CODE_ENTRY strings.
3779 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3780 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
3781 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3782 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3783 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3784 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3786 llvm_unreachable("Unexpected abbrev ordering!");
3788 { // 6-bit char6 VST_CODE_BBENTRY strings.
3789 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3790 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY
));
3791 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3792 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3793 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3794 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3795 VST_BBENTRY_6_ABBREV
)
3796 llvm_unreachable("Unexpected abbrev ordering!");
3799 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3800 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3801 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE
));
3802 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
3803 VE
.computeBitsRequiredForTypeIndices()));
3804 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3805 CONSTANTS_SETTYPE_ABBREV
)
3806 llvm_unreachable("Unexpected abbrev ordering!");
3809 { // INTEGER abbrev for CONSTANTS_BLOCK.
3810 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3811 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER
));
3812 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3813 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3814 CONSTANTS_INTEGER_ABBREV
)
3815 llvm_unreachable("Unexpected abbrev ordering!");
3818 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3819 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3820 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST
));
3821 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // cast opc
3822 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // typeid
3823 VE
.computeBitsRequiredForTypeIndices()));
3824 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
3826 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3827 CONSTANTS_CE_CAST_Abbrev
)
3828 llvm_unreachable("Unexpected abbrev ordering!");
3830 { // NULL abbrev for CONSTANTS_BLOCK.
3831 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3832 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL
));
3833 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3834 CONSTANTS_NULL_Abbrev
)
3835 llvm_unreachable("Unexpected abbrev ordering!");
3838 // FIXME: This should only use space for first class types!
3840 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3841 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3842 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD
));
3843 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Ptr
3844 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3845 VE
.computeBitsRequiredForTypeIndices()));
3846 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // Align
3847 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // volatile
3848 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3849 FUNCTION_INST_LOAD_ABBREV
)
3850 llvm_unreachable("Unexpected abbrev ordering!");
3852 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3853 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3854 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP
));
3855 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3856 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3857 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3858 FUNCTION_INST_UNOP_ABBREV
)
3859 llvm_unreachable("Unexpected abbrev ordering!");
3861 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3862 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3863 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP
));
3864 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3865 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3866 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3867 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3868 FUNCTION_INST_UNOP_FLAGS_ABBREV
)
3869 llvm_unreachable("Unexpected abbrev ordering!");
3871 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3872 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3873 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
3874 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3875 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
3876 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3877 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3878 FUNCTION_INST_BINOP_ABBREV
)
3879 llvm_unreachable("Unexpected abbrev ordering!");
3881 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3882 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3883 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
3884 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3885 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
3886 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3887 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3888 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3889 FUNCTION_INST_BINOP_FLAGS_ABBREV
)
3890 llvm_unreachable("Unexpected abbrev ordering!");
3892 { // INST_CAST abbrev for FUNCTION_BLOCK.
3893 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3894 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST
));
3895 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // OpVal
3896 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3897 VE
.computeBitsRequiredForTypeIndices()));
3898 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3899 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3900 FUNCTION_INST_CAST_ABBREV
)
3901 llvm_unreachable("Unexpected abbrev ordering!");
3903 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3904 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3905 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST
));
3906 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // OpVal
3907 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3908 VE
.computeBitsRequiredForTypeIndices()));
3909 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3910 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3911 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3912 FUNCTION_INST_CAST_FLAGS_ABBREV
)
3913 llvm_unreachable("Unexpected abbrev ordering!");
3916 { // INST_RET abbrev for FUNCTION_BLOCK.
3917 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3918 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
3919 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3920 FUNCTION_INST_RET_VOID_ABBREV
)
3921 llvm_unreachable("Unexpected abbrev ordering!");
3923 { // INST_RET abbrev for FUNCTION_BLOCK.
3924 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3925 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
3926 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // ValID
3927 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3928 FUNCTION_INST_RET_VAL_ABBREV
)
3929 llvm_unreachable("Unexpected abbrev ordering!");
3931 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3932 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3933 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE
));
3934 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3935 FUNCTION_INST_UNREACHABLE_ABBREV
)
3936 llvm_unreachable("Unexpected abbrev ordering!");
3939 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3940 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP
));
3941 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 3));
3942 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3943 Log2_32_Ceil(VE
.getTypes().size() + 1)));
3944 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3945 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
3946 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3947 FUNCTION_INST_GEP_ABBREV
)
3948 llvm_unreachable("Unexpected abbrev ordering!");
3951 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3952 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE
));
3953 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 7)); // dbgloc
3954 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 7)); // var
3955 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 7)); // expr
3956 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // val
3957 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3958 FUNCTION_DEBUG_RECORD_VALUE_ABBREV
)
3959 llvm_unreachable("Unexpected abbrev ordering! 1");
3964 /// Write the module path strings, currently only used when generating
3965 /// a combined index file.
3966 void IndexBitcodeWriter::writeModStrings() {
3967 Stream
.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID
, 3);
3969 // TODO: See which abbrev sizes we actually need to emit
3971 // 8-bit fixed-width MST_ENTRY strings.
3972 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3973 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3974 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3975 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3976 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
3977 unsigned Abbrev8Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3979 // 7-bit fixed width MST_ENTRY strings.
3980 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3981 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3982 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3983 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3984 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
3985 unsigned Abbrev7Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3987 // 6-bit char6 MST_ENTRY strings.
3988 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3989 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3990 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3991 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3992 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3993 unsigned Abbrev6Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3995 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3996 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3997 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH
));
3998 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3999 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4000 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4001 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4002 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4003 unsigned AbbrevHash
= Stream
.EmitAbbrev(std::move(Abbv
));
4005 SmallVector
<unsigned, 64> Vals
;
4006 forEachModule([&](const StringMapEntry
<ModuleHash
> &MPSE
) {
4007 StringRef Key
= MPSE
.getKey();
4008 const auto &Hash
= MPSE
.getValue();
4009 StringEncoding Bits
= getStringEncoding(Key
);
4010 unsigned AbbrevToUse
= Abbrev8Bit
;
4011 if (Bits
== SE_Char6
)
4012 AbbrevToUse
= Abbrev6Bit
;
4013 else if (Bits
== SE_Fixed7
)
4014 AbbrevToUse
= Abbrev7Bit
;
4016 auto ModuleId
= ModuleIdMap
.size();
4017 ModuleIdMap
[Key
] = ModuleId
;
4018 Vals
.push_back(ModuleId
);
4019 Vals
.append(Key
.begin(), Key
.end());
4021 // Emit the finished record.
4022 Stream
.EmitRecord(bitc::MST_CODE_ENTRY
, Vals
, AbbrevToUse
);
4024 // Emit an optional hash for the module now
4025 if (llvm::any_of(Hash
, [](uint32_t H
) { return H
; })) {
4026 Vals
.assign(Hash
.begin(), Hash
.end());
4027 // Emit the hash record.
4028 Stream
.EmitRecord(bitc::MST_CODE_HASH
, Vals
, AbbrevHash
);
4036 /// Write the function type metadata related records that need to appear before
4037 /// a function summary entry (whether per-module or combined).
4038 template <typename Fn
>
4039 static void writeFunctionTypeMetadataRecords(BitstreamWriter
&Stream
,
4040 FunctionSummary
*FS
,
4042 if (!FS
->type_tests().empty())
4043 Stream
.EmitRecord(bitc::FS_TYPE_TESTS
, FS
->type_tests());
4045 SmallVector
<uint64_t, 64> Record
;
4047 auto WriteVFuncIdVec
= [&](uint64_t Ty
,
4048 ArrayRef
<FunctionSummary::VFuncId
> VFs
) {
4052 for (auto &VF
: VFs
) {
4053 Record
.push_back(VF
.GUID
);
4054 Record
.push_back(VF
.Offset
);
4056 Stream
.EmitRecord(Ty
, Record
);
4059 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS
,
4060 FS
->type_test_assume_vcalls());
4061 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS
,
4062 FS
->type_checked_load_vcalls());
4064 auto WriteConstVCallVec
= [&](uint64_t Ty
,
4065 ArrayRef
<FunctionSummary::ConstVCall
> VCs
) {
4066 for (auto &VC
: VCs
) {
4068 Record
.push_back(VC
.VFunc
.GUID
);
4069 Record
.push_back(VC
.VFunc
.Offset
);
4070 llvm::append_range(Record
, VC
.Args
);
4071 Stream
.EmitRecord(Ty
, Record
);
4075 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL
,
4076 FS
->type_test_assume_const_vcalls());
4077 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL
,
4078 FS
->type_checked_load_const_vcalls());
4080 auto WriteRange
= [&](ConstantRange Range
) {
4081 Range
= Range
.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth
);
4082 assert(Range
.getLower().getNumWords() == 1);
4083 assert(Range
.getUpper().getNumWords() == 1);
4084 emitSignedInt64(Record
, *Range
.getLower().getRawData());
4085 emitSignedInt64(Record
, *Range
.getUpper().getRawData());
4088 if (!FS
->paramAccesses().empty()) {
4090 for (auto &Arg
: FS
->paramAccesses()) {
4091 size_t UndoSize
= Record
.size();
4092 Record
.push_back(Arg
.ParamNo
);
4093 WriteRange(Arg
.Use
);
4094 Record
.push_back(Arg
.Calls
.size());
4095 for (auto &Call
: Arg
.Calls
) {
4096 Record
.push_back(Call
.ParamNo
);
4097 std::optional
<unsigned> ValueID
= GetValueID(Call
.Callee
);
4099 // If ValueID is unknown we can't drop just this call, we must drop
4100 // entire parameter.
4101 Record
.resize(UndoSize
);
4104 Record
.push_back(*ValueID
);
4105 WriteRange(Call
.Offsets
);
4108 if (!Record
.empty())
4109 Stream
.EmitRecord(bitc::FS_PARAM_ACCESS
, Record
);
4113 /// Collect type IDs from type tests used by function.
4115 getReferencedTypeIds(FunctionSummary
*FS
,
4116 std::set
<GlobalValue::GUID
> &ReferencedTypeIds
) {
4117 if (!FS
->type_tests().empty())
4118 for (auto &TT
: FS
->type_tests())
4119 ReferencedTypeIds
.insert(TT
);
4121 auto GetReferencedTypesFromVFuncIdVec
=
4122 [&](ArrayRef
<FunctionSummary::VFuncId
> VFs
) {
4123 for (auto &VF
: VFs
)
4124 ReferencedTypeIds
.insert(VF
.GUID
);
4127 GetReferencedTypesFromVFuncIdVec(FS
->type_test_assume_vcalls());
4128 GetReferencedTypesFromVFuncIdVec(FS
->type_checked_load_vcalls());
4130 auto GetReferencedTypesFromConstVCallVec
=
4131 [&](ArrayRef
<FunctionSummary::ConstVCall
> VCs
) {
4132 for (auto &VC
: VCs
)
4133 ReferencedTypeIds
.insert(VC
.VFunc
.GUID
);
4136 GetReferencedTypesFromConstVCallVec(FS
->type_test_assume_const_vcalls());
4137 GetReferencedTypesFromConstVCallVec(FS
->type_checked_load_const_vcalls());
4140 static void writeWholeProgramDevirtResolutionByArg(
4141 SmallVector
<uint64_t, 64> &NameVals
, const std::vector
<uint64_t> &args
,
4142 const WholeProgramDevirtResolution::ByArg
&ByArg
) {
4143 NameVals
.push_back(args
.size());
4144 llvm::append_range(NameVals
, args
);
4146 NameVals
.push_back(ByArg
.TheKind
);
4147 NameVals
.push_back(ByArg
.Info
);
4148 NameVals
.push_back(ByArg
.Byte
);
4149 NameVals
.push_back(ByArg
.Bit
);
4152 static void writeWholeProgramDevirtResolution(
4153 SmallVector
<uint64_t, 64> &NameVals
, StringTableBuilder
&StrtabBuilder
,
4154 uint64_t Id
, const WholeProgramDevirtResolution
&Wpd
) {
4155 NameVals
.push_back(Id
);
4157 NameVals
.push_back(Wpd
.TheKind
);
4158 NameVals
.push_back(StrtabBuilder
.add(Wpd
.SingleImplName
));
4159 NameVals
.push_back(Wpd
.SingleImplName
.size());
4161 NameVals
.push_back(Wpd
.ResByArg
.size());
4162 for (auto &A
: Wpd
.ResByArg
)
4163 writeWholeProgramDevirtResolutionByArg(NameVals
, A
.first
, A
.second
);
4166 static void writeTypeIdSummaryRecord(SmallVector
<uint64_t, 64> &NameVals
,
4167 StringTableBuilder
&StrtabBuilder
,
4169 const TypeIdSummary
&Summary
) {
4170 NameVals
.push_back(StrtabBuilder
.add(Id
));
4171 NameVals
.push_back(Id
.size());
4173 NameVals
.push_back(Summary
.TTRes
.TheKind
);
4174 NameVals
.push_back(Summary
.TTRes
.SizeM1BitWidth
);
4175 NameVals
.push_back(Summary
.TTRes
.AlignLog2
);
4176 NameVals
.push_back(Summary
.TTRes
.SizeM1
);
4177 NameVals
.push_back(Summary
.TTRes
.BitMask
);
4178 NameVals
.push_back(Summary
.TTRes
.InlineBits
);
4180 for (auto &W
: Summary
.WPDRes
)
4181 writeWholeProgramDevirtResolution(NameVals
, StrtabBuilder
, W
.first
,
4185 static void writeTypeIdCompatibleVtableSummaryRecord(
4186 SmallVector
<uint64_t, 64> &NameVals
, StringTableBuilder
&StrtabBuilder
,
4187 StringRef Id
, const TypeIdCompatibleVtableInfo
&Summary
,
4188 ValueEnumerator
&VE
) {
4189 NameVals
.push_back(StrtabBuilder
.add(Id
));
4190 NameVals
.push_back(Id
.size());
4192 for (auto &P
: Summary
) {
4193 NameVals
.push_back(P
.AddressPointOffset
);
4194 NameVals
.push_back(VE
.getValueID(P
.VTableVI
.getValue()));
4198 static void writeFunctionHeapProfileRecords(
4199 BitstreamWriter
&Stream
, FunctionSummary
*FS
, unsigned CallsiteAbbrev
,
4200 unsigned AllocAbbrev
, unsigned ContextIdAbbvId
, bool PerModule
,
4201 std::function
<unsigned(const ValueInfo
&VI
)> GetValueID
,
4202 std::function
<unsigned(unsigned)> GetStackIndex
,
4203 bool WriteContextSizeInfoIndex
) {
4204 SmallVector
<uint64_t> Record
;
4206 for (auto &CI
: FS
->callsites()) {
4208 // Per module callsite clones should always have a single entry of
4210 assert(!PerModule
|| (CI
.Clones
.size() == 1 && CI
.Clones
[0] == 0));
4211 Record
.push_back(GetValueID(CI
.Callee
));
4213 Record
.push_back(CI
.StackIdIndices
.size());
4214 Record
.push_back(CI
.Clones
.size());
4216 for (auto Id
: CI
.StackIdIndices
)
4217 Record
.push_back(GetStackIndex(Id
));
4219 for (auto V
: CI
.Clones
)
4220 Record
.push_back(V
);
4222 Stream
.EmitRecord(PerModule
? bitc::FS_PERMODULE_CALLSITE_INFO
4223 : bitc::FS_COMBINED_CALLSITE_INFO
,
4224 Record
, CallsiteAbbrev
);
4227 for (auto &AI
: FS
->allocs()) {
4229 // Per module alloc versions should always have a single entry of
4231 assert(!PerModule
|| (AI
.Versions
.size() == 1 && AI
.Versions
[0] == 0));
4232 Record
.push_back(AI
.MIBs
.size());
4234 Record
.push_back(AI
.Versions
.size());
4235 for (auto &MIB
: AI
.MIBs
) {
4236 Record
.push_back((uint8_t)MIB
.AllocType
);
4237 Record
.push_back(MIB
.StackIdIndices
.size());
4238 for (auto Id
: MIB
.StackIdIndices
)
4239 Record
.push_back(GetStackIndex(Id
));
4242 for (auto V
: AI
.Versions
)
4243 Record
.push_back(V
);
4245 assert(AI
.ContextSizeInfos
.empty() ||
4246 AI
.ContextSizeInfos
.size() == AI
.MIBs
.size());
4247 // Optionally emit the context size information if it exists.
4248 if (WriteContextSizeInfoIndex
&& !AI
.ContextSizeInfos
.empty()) {
4249 // The abbreviation id for the context ids record should have been created
4250 // if we are emitting the per-module index, which is where we write this
4252 assert(ContextIdAbbvId
);
4253 SmallVector
<uint32_t> ContextIds
;
4254 // At least one context id per ContextSizeInfos entry (MIB), broken into 2
4256 ContextIds
.reserve(AI
.ContextSizeInfos
.size() * 2);
4257 for (auto &Infos
: AI
.ContextSizeInfos
) {
4258 Record
.push_back(Infos
.size());
4259 for (auto [FullStackId
, TotalSize
] : Infos
) {
4260 // The context ids are emitted separately as a fixed width array,
4261 // which is more efficient than a VBR given that these hashes are
4262 // typically close to 64-bits. The max fixed width entry is 32 bits so
4263 // it is split into 2.
4264 ContextIds
.push_back(static_cast<uint32_t>(FullStackId
>> 32));
4265 ContextIds
.push_back(static_cast<uint32_t>(FullStackId
));
4266 Record
.push_back(TotalSize
);
4269 // The context ids are expected by the reader to immediately precede the
4270 // associated alloc info record.
4271 Stream
.EmitRecord(bitc::FS_ALLOC_CONTEXT_IDS
, ContextIds
,
4274 Stream
.EmitRecord(PerModule
? bitc::FS_PERMODULE_ALLOC_INFO
4275 : bitc::FS_COMBINED_ALLOC_INFO
,
4276 Record
, AllocAbbrev
);
4280 // Helper to emit a single function summary record.
4281 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4282 SmallVector
<uint64_t, 64> &NameVals
, GlobalValueSummary
*Summary
,
4283 unsigned ValueID
, unsigned FSCallsRelBFAbbrev
,
4284 unsigned FSCallsProfileAbbrev
, unsigned CallsiteAbbrev
,
4285 unsigned AllocAbbrev
, unsigned ContextIdAbbvId
, const Function
&F
) {
4286 NameVals
.push_back(ValueID
);
4288 FunctionSummary
*FS
= cast
<FunctionSummary
>(Summary
);
4290 writeFunctionTypeMetadataRecords(
4291 Stream
, FS
, [&](const ValueInfo
&VI
) -> std::optional
<unsigned> {
4292 return {VE
.getValueID(VI
.getValue())};
4295 writeFunctionHeapProfileRecords(
4296 Stream
, FS
, CallsiteAbbrev
, AllocAbbrev
, ContextIdAbbvId
,
4298 /*GetValueId*/ [&](const ValueInfo
&VI
) { return getValueId(VI
); },
4299 /*GetStackIndex*/ [&](unsigned I
) { return I
; },
4300 /*WriteContextSizeInfoIndex*/ true);
4302 auto SpecialRefCnts
= FS
->specialRefCounts();
4303 NameVals
.push_back(getEncodedGVSummaryFlags(FS
->flags()));
4304 NameVals
.push_back(FS
->instCount());
4305 NameVals
.push_back(getEncodedFFlags(FS
->fflags()));
4306 NameVals
.push_back(FS
->refs().size());
4307 NameVals
.push_back(SpecialRefCnts
.first
); // rorefcnt
4308 NameVals
.push_back(SpecialRefCnts
.second
); // worefcnt
4310 for (auto &RI
: FS
->refs())
4311 NameVals
.push_back(getValueId(RI
));
4313 const bool UseRelBFRecord
=
4314 WriteRelBFToSummary
&& !F
.hasProfileData() &&
4315 ForceSummaryEdgesCold
== FunctionSummary::FSHT_None
;
4316 for (auto &ECI
: FS
->calls()) {
4317 NameVals
.push_back(getValueId(ECI
.first
));
4319 NameVals
.push_back(getEncodedRelBFCallEdgeInfo(ECI
.second
));
4321 NameVals
.push_back(getEncodedHotnessCallEdgeInfo(ECI
.second
));
4325 (UseRelBFRecord
? FSCallsRelBFAbbrev
: FSCallsProfileAbbrev
);
4327 (UseRelBFRecord
? bitc::FS_PERMODULE_RELBF
: bitc::FS_PERMODULE_PROFILE
);
4329 // Emit the finished record.
4330 Stream
.EmitRecord(Code
, NameVals
, FSAbbrev
);
4334 // Collect the global value references in the given variable's initializer,
4335 // and emit them in a summary record.
4336 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4337 const GlobalVariable
&V
, SmallVector
<uint64_t, 64> &NameVals
,
4338 unsigned FSModRefsAbbrev
, unsigned FSModVTableRefsAbbrev
) {
4339 auto VI
= Index
->getValueInfo(V
.getGUID());
4340 if (!VI
|| VI
.getSummaryList().empty()) {
4341 // Only declarations should not have a summary (a declaration might however
4342 // have a summary if the def was in module level asm).
4343 assert(V
.isDeclaration());
4346 auto *Summary
= VI
.getSummaryList()[0].get();
4347 NameVals
.push_back(VE
.getValueID(&V
));
4348 GlobalVarSummary
*VS
= cast
<GlobalVarSummary
>(Summary
);
4349 NameVals
.push_back(getEncodedGVSummaryFlags(VS
->flags()));
4350 NameVals
.push_back(getEncodedGVarFlags(VS
->varflags()));
4352 auto VTableFuncs
= VS
->vTableFuncs();
4353 if (!VTableFuncs
.empty())
4354 NameVals
.push_back(VS
->refs().size());
4356 unsigned SizeBeforeRefs
= NameVals
.size();
4357 for (auto &RI
: VS
->refs())
4358 NameVals
.push_back(VE
.getValueID(RI
.getValue()));
4359 // Sort the refs for determinism output, the vector returned by FS->refs() has
4360 // been initialized from a DenseSet.
4361 llvm::sort(drop_begin(NameVals
, SizeBeforeRefs
));
4363 if (VTableFuncs
.empty())
4364 Stream
.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS
, NameVals
,
4367 // VTableFuncs pairs should already be sorted by offset.
4368 for (auto &P
: VTableFuncs
) {
4369 NameVals
.push_back(VE
.getValueID(P
.FuncVI
.getValue()));
4370 NameVals
.push_back(P
.VTableOffset
);
4373 Stream
.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS
, NameVals
,
4374 FSModVTableRefsAbbrev
);
4379 /// Emit the per-module summary section alongside the rest of
4380 /// the module's bitcode.
4381 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4382 // By default we compile with ThinLTO if the module has a summary, but the
4383 // client can request full LTO with a module flag.
4384 bool IsThinLTO
= true;
4386 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
4387 IsThinLTO
= MD
->getZExtValue();
4388 Stream
.EnterSubblock(IsThinLTO
? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4389 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID
,
4394 ArrayRef
<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion
});
4396 // Write the index flags.
4398 // Bits 1-3 are set only in the combined index, skip them.
4399 if (Index
->enableSplitLTOUnit())
4401 if (Index
->hasUnifiedLTO())
4404 Stream
.EmitRecord(bitc::FS_FLAGS
, ArrayRef
<uint64_t>{Flags
});
4406 if (Index
->begin() == Index
->end()) {
4411 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4412 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID
));
4413 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
4414 // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4415 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4416 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4417 unsigned ValueGuidAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4419 for (const auto &GVI
: valueIds()) {
4420 Stream
.EmitRecord(bitc::FS_VALUE_GUID
,
4421 ArrayRef
<uint32_t>{GVI
.second
,
4422 static_cast<uint32_t>(GVI
.first
>> 32),
4423 static_cast<uint32_t>(GVI
.first
)},
4427 if (!Index
->stackIds().empty()) {
4428 auto StackIdAbbv
= std::make_shared
<BitCodeAbbrev
>();
4429 StackIdAbbv
->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS
));
4431 StackIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4432 // The stack ids are hashes that are close to 64 bits in size, so emitting
4433 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4434 StackIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4435 unsigned StackIdAbbvId
= Stream
.EmitAbbrev(std::move(StackIdAbbv
));
4436 SmallVector
<uint32_t> Vals
;
4437 Vals
.reserve(Index
->stackIds().size() * 2);
4438 for (auto Id
: Index
->stackIds()) {
4439 Vals
.push_back(static_cast<uint32_t>(Id
>> 32));
4440 Vals
.push_back(static_cast<uint32_t>(Id
));
4442 Stream
.EmitRecord(bitc::FS_STACK_IDS
, Vals
, StackIdAbbvId
);
4446 auto ContextIdAbbv
= std::make_shared
<BitCodeAbbrev
>();
4447 ContextIdAbbv
->Add(BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS
));
4448 ContextIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4449 // The context ids are hashes that are close to 64 bits in size, so emitting
4450 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4451 ContextIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4452 unsigned ContextIdAbbvId
= Stream
.EmitAbbrev(std::move(ContextIdAbbv
));
4454 // Abbrev for FS_PERMODULE_PROFILE.
4455 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4456 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE
));
4457 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4458 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // flags
4459 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
4460 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
4461 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
4462 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
4463 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
4464 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4465 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4466 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4467 unsigned FSCallsProfileAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4469 // Abbrev for FS_PERMODULE_RELBF.
4470 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4471 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF
));
4472 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4473 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4474 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
4475 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
4476 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
4477 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
4478 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
4479 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4480 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4481 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4482 unsigned FSCallsRelBFAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4484 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4485 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4486 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS
));
4487 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4488 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4489 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
)); // valueids
4490 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4491 unsigned FSModRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4493 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4494 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4495 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS
));
4496 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4497 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4498 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
4499 // numrefs x valueid, n x (valueid , offset)
4500 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4501 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4502 unsigned FSModVTableRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4504 // Abbrev for FS_ALIAS.
4505 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4506 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_ALIAS
));
4507 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4508 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4509 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4510 unsigned FSAliasAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4512 // Abbrev for FS_TYPE_ID_METADATA
4513 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4514 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA
));
4515 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // typeid strtab index
4516 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // typeid length
4517 // n x (valueid , offset)
4518 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4519 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4520 unsigned TypeIdCompatibleVtableAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4522 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4523 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO
));
4524 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4526 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4527 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4528 unsigned CallsiteAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4530 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4531 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO
));
4532 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // nummib
4533 // n x (alloc type, numstackids, numstackids x stackidindex)
4534 // optional: nummib x (numcontext x total size)
4535 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4536 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4537 unsigned AllocAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4539 SmallVector
<uint64_t, 64> NameVals
;
4540 // Iterate over the list of functions instead of the Index to
4541 // ensure the ordering is stable.
4542 for (const Function
&F
: M
) {
4543 // Summary emission does not support anonymous functions, they have to
4544 // renamed using the anonymous function renaming pass.
4546 report_fatal_error("Unexpected anonymous function when writing summary");
4548 ValueInfo VI
= Index
->getValueInfo(F
.getGUID());
4549 if (!VI
|| VI
.getSummaryList().empty()) {
4550 // Only declarations should not have a summary (a declaration might
4551 // however have a summary if the def was in module level asm).
4552 assert(F
.isDeclaration());
4555 auto *Summary
= VI
.getSummaryList()[0].get();
4556 writePerModuleFunctionSummaryRecord(
4557 NameVals
, Summary
, VE
.getValueID(&F
), FSCallsRelBFAbbrev
,
4558 FSCallsProfileAbbrev
, CallsiteAbbrev
, AllocAbbrev
, ContextIdAbbvId
, F
);
4561 // Capture references from GlobalVariable initializers, which are outside
4562 // of a function scope.
4563 for (const GlobalVariable
&G
: M
.globals())
4564 writeModuleLevelReferences(G
, NameVals
, FSModRefsAbbrev
,
4565 FSModVTableRefsAbbrev
);
4567 for (const GlobalAlias
&A
: M
.aliases()) {
4568 auto *Aliasee
= A
.getAliaseeObject();
4569 // Skip ifunc and nameless functions which don't have an entry in the
4571 if (!Aliasee
->hasName() || isa
<GlobalIFunc
>(Aliasee
))
4573 auto AliasId
= VE
.getValueID(&A
);
4574 auto AliaseeId
= VE
.getValueID(Aliasee
);
4575 NameVals
.push_back(AliasId
);
4576 auto *Summary
= Index
->getGlobalValueSummary(A
);
4577 AliasSummary
*AS
= cast
<AliasSummary
>(Summary
);
4578 NameVals
.push_back(getEncodedGVSummaryFlags(AS
->flags()));
4579 NameVals
.push_back(AliaseeId
);
4580 Stream
.EmitRecord(bitc::FS_ALIAS
, NameVals
, FSAliasAbbrev
);
4584 for (auto &S
: Index
->typeIdCompatibleVtableMap()) {
4585 writeTypeIdCompatibleVtableSummaryRecord(NameVals
, StrtabBuilder
, S
.first
,
4587 Stream
.EmitRecord(bitc::FS_TYPE_ID_METADATA
, NameVals
,
4588 TypeIdCompatibleVtableAbbrev
);
4592 if (Index
->getBlockCount())
4593 Stream
.EmitRecord(bitc::FS_BLOCK_COUNT
,
4594 ArrayRef
<uint64_t>{Index
->getBlockCount()});
4599 /// Emit the combined summary section into the combined index file.
4600 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4601 Stream
.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID
, 4);
4604 ArrayRef
<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion
});
4606 // Write the index flags.
4607 Stream
.EmitRecord(bitc::FS_FLAGS
, ArrayRef
<uint64_t>{Index
.getFlags()});
4609 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4610 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID
));
4611 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
4612 // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4613 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4614 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4615 unsigned ValueGuidAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4617 for (const auto &GVI
: valueIds()) {
4618 Stream
.EmitRecord(bitc::FS_VALUE_GUID
,
4619 ArrayRef
<uint32_t>{GVI
.second
,
4620 static_cast<uint32_t>(GVI
.first
>> 32),
4621 static_cast<uint32_t>(GVI
.first
)},
4625 // Write the stack ids used by this index, which will be a subset of those in
4626 // the full index in the case of distributed indexes.
4627 if (!StackIds
.empty()) {
4628 auto StackIdAbbv
= std::make_shared
<BitCodeAbbrev
>();
4629 StackIdAbbv
->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS
));
4631 StackIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4632 // The stack ids are hashes that are close to 64 bits in size, so emitting
4633 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4634 StackIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4635 unsigned StackIdAbbvId
= Stream
.EmitAbbrev(std::move(StackIdAbbv
));
4636 SmallVector
<uint32_t> Vals
;
4637 Vals
.reserve(StackIds
.size() * 2);
4638 for (auto Id
: StackIds
) {
4639 Vals
.push_back(static_cast<uint32_t>(Id
>> 32));
4640 Vals
.push_back(static_cast<uint32_t>(Id
));
4642 Stream
.EmitRecord(bitc::FS_STACK_IDS
, Vals
, StackIdAbbvId
);
4645 // Abbrev for FS_COMBINED_PROFILE.
4646 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4647 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE
));
4648 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4649 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
4650 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4651 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
4652 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
4653 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // entrycount
4654 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
4655 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
4656 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
4657 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4658 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4659 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4660 unsigned FSCallsProfileAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4662 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4663 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4664 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS
));
4665 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4666 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
4667 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4668 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
)); // valueids
4669 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4670 unsigned FSModRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4672 // Abbrev for FS_COMBINED_ALIAS.
4673 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4674 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS
));
4675 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4676 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
4677 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4678 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4679 unsigned FSAliasAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4681 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4682 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO
));
4683 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4684 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numstackindices
4685 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numver
4686 // numstackindices x stackidindex, numver x version
4687 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4688 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4689 unsigned CallsiteAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4691 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4692 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO
));
4693 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // nummib
4694 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numver
4695 // nummib x (alloc type, numstackids, numstackids x stackidindex),
4697 // optional: nummib x total size
4698 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4699 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4700 unsigned AllocAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4702 auto shouldImportValueAsDecl
= [&](GlobalValueSummary
*GVS
) -> bool {
4703 if (DecSummaries
== nullptr)
4705 return DecSummaries
->count(GVS
);
4708 // The aliases are emitted as a post-pass, and will point to the value
4709 // id of the aliasee. Save them in a vector for post-processing.
4710 SmallVector
<AliasSummary
*, 64> Aliases
;
4712 // Save the value id for each summary for alias emission.
4713 DenseMap
<const GlobalValueSummary
*, unsigned> SummaryToValueIdMap
;
4715 SmallVector
<uint64_t, 64> NameVals
;
4717 // Set that will be populated during call to writeFunctionTypeMetadataRecords
4718 // with the type ids referenced by this index file.
4719 std::set
<GlobalValue::GUID
> ReferencedTypeIds
;
4721 // For local linkage, we also emit the original name separately
4722 // immediately after the record.
4723 auto MaybeEmitOriginalName
= [&](GlobalValueSummary
&S
) {
4724 // We don't need to emit the original name if we are writing the index for
4725 // distributed backends (in which case ModuleToSummariesForIndex is
4726 // non-null). The original name is only needed during the thin link, since
4727 // for SamplePGO the indirect call targets for local functions have
4728 // have the original name annotated in profile.
4729 // Continue to emit it when writing out the entire combined index, which is
4730 // used in testing the thin link via llvm-lto.
4731 if (ModuleToSummariesForIndex
|| !GlobalValue::isLocalLinkage(S
.linkage()))
4733 NameVals
.push_back(S
.getOriginalName());
4734 Stream
.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME
, NameVals
);
4738 DenseSet
<GlobalValue::GUID
> DefOrUseGUIDs
;
4739 forEachSummary([&](GVInfo I
, bool IsAliasee
) {
4740 GlobalValueSummary
*S
= I
.second
;
4742 DefOrUseGUIDs
.insert(I
.first
);
4743 for (const ValueInfo
&VI
: S
->refs())
4744 DefOrUseGUIDs
.insert(VI
.getGUID());
4746 auto ValueId
= getValueId(I
.first
);
4748 SummaryToValueIdMap
[S
] = *ValueId
;
4750 // If this is invoked for an aliasee, we want to record the above
4751 // mapping, but then not emit a summary entry (if the aliasee is
4752 // to be imported, we will invoke this separately with IsAliasee=false).
4756 if (auto *AS
= dyn_cast
<AliasSummary
>(S
)) {
4757 // Will process aliases as a post-pass because the reader wants all
4758 // global to be loaded first.
4759 Aliases
.push_back(AS
);
4763 if (auto *VS
= dyn_cast
<GlobalVarSummary
>(S
)) {
4764 NameVals
.push_back(*ValueId
);
4765 assert(ModuleIdMap
.count(VS
->modulePath()));
4766 NameVals
.push_back(ModuleIdMap
[VS
->modulePath()]);
4767 NameVals
.push_back(getEncodedGVSummaryFlags(VS
->flags()));
4768 NameVals
.push_back(getEncodedGVarFlags(VS
->varflags()));
4769 for (auto &RI
: VS
->refs()) {
4770 auto RefValueId
= getValueId(RI
.getGUID());
4773 NameVals
.push_back(*RefValueId
);
4776 // Emit the finished record.
4777 Stream
.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS
, NameVals
,
4780 MaybeEmitOriginalName(*S
);
4784 auto GetValueId
= [&](const ValueInfo
&VI
) -> std::optional
<unsigned> {
4786 return std::nullopt
;
4787 return getValueId(VI
.getGUID());
4790 auto *FS
= cast
<FunctionSummary
>(S
);
4791 writeFunctionTypeMetadataRecords(Stream
, FS
, GetValueId
);
4792 getReferencedTypeIds(FS
, ReferencedTypeIds
);
4794 writeFunctionHeapProfileRecords(
4795 Stream
, FS
, CallsiteAbbrev
, AllocAbbrev
, /*ContextIdAbbvId*/ 0,
4796 /*PerModule*/ false,
4798 [&](const ValueInfo
&VI
) -> unsigned {
4799 std::optional
<unsigned> ValueID
= GetValueId(VI
);
4800 // This can happen in shared index files for distributed ThinLTO if
4801 // the callee function summary is not included. Record 0 which we
4802 // will have to deal with conservatively when doing any kind of
4803 // validation in the ThinLTO backends.
4810 // Get the corresponding index into the list of StackIds actually
4811 // being written for this combined index (which may be a subset in
4812 // the case of distributed indexes).
4813 assert(StackIdIndicesToIndex
.contains(I
));
4814 return StackIdIndicesToIndex
[I
];
4816 /*WriteContextSizeInfoIndex*/ false);
4818 NameVals
.push_back(*ValueId
);
4819 assert(ModuleIdMap
.count(FS
->modulePath()));
4820 NameVals
.push_back(ModuleIdMap
[FS
->modulePath()]);
4822 getEncodedGVSummaryFlags(FS
->flags(), shouldImportValueAsDecl(FS
)));
4823 NameVals
.push_back(FS
->instCount());
4824 NameVals
.push_back(getEncodedFFlags(FS
->fflags()));
4825 // TODO: Stop writing entry count and bump bitcode version.
4826 NameVals
.push_back(0 /* EntryCount */);
4829 NameVals
.push_back(0); // numrefs
4830 NameVals
.push_back(0); // rorefcnt
4831 NameVals
.push_back(0); // worefcnt
4833 unsigned Count
= 0, RORefCnt
= 0, WORefCnt
= 0;
4834 for (auto &RI
: FS
->refs()) {
4835 auto RefValueId
= getValueId(RI
.getGUID());
4838 NameVals
.push_back(*RefValueId
);
4839 if (RI
.isReadOnly())
4841 else if (RI
.isWriteOnly())
4845 NameVals
[6] = Count
;
4846 NameVals
[7] = RORefCnt
;
4847 NameVals
[8] = WORefCnt
;
4849 for (auto &EI
: FS
->calls()) {
4850 // If this GUID doesn't have a value id, it doesn't have a function
4851 // summary and we don't need to record any calls to it.
4852 std::optional
<unsigned> CallValueId
= GetValueId(EI
.first
);
4855 NameVals
.push_back(*CallValueId
);
4856 NameVals
.push_back(getEncodedHotnessCallEdgeInfo(EI
.second
));
4859 // Emit the finished record.
4860 Stream
.EmitRecord(bitc::FS_COMBINED_PROFILE
, NameVals
,
4861 FSCallsProfileAbbrev
);
4863 MaybeEmitOriginalName(*S
);
4866 for (auto *AS
: Aliases
) {
4867 auto AliasValueId
= SummaryToValueIdMap
[AS
];
4868 assert(AliasValueId
);
4869 NameVals
.push_back(AliasValueId
);
4870 assert(ModuleIdMap
.count(AS
->modulePath()));
4871 NameVals
.push_back(ModuleIdMap
[AS
->modulePath()]);
4873 getEncodedGVSummaryFlags(AS
->flags(), shouldImportValueAsDecl(AS
)));
4874 auto AliaseeValueId
= SummaryToValueIdMap
[&AS
->getAliasee()];
4875 assert(AliaseeValueId
);
4876 NameVals
.push_back(AliaseeValueId
);
4878 // Emit the finished record.
4879 Stream
.EmitRecord(bitc::FS_COMBINED_ALIAS
, NameVals
, FSAliasAbbrev
);
4881 MaybeEmitOriginalName(*AS
);
4883 if (auto *FS
= dyn_cast
<FunctionSummary
>(&AS
->getAliasee()))
4884 getReferencedTypeIds(FS
, ReferencedTypeIds
);
4887 if (!Index
.cfiFunctionDefs().empty()) {
4888 for (auto &S
: Index
.cfiFunctionDefs()) {
4889 if (DefOrUseGUIDs
.contains(
4890 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S
)))) {
4891 NameVals
.push_back(StrtabBuilder
.add(S
));
4892 NameVals
.push_back(S
.size());
4895 if (!NameVals
.empty()) {
4896 Stream
.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS
, NameVals
);
4901 if (!Index
.cfiFunctionDecls().empty()) {
4902 for (auto &S
: Index
.cfiFunctionDecls()) {
4903 if (DefOrUseGUIDs
.contains(
4904 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S
)))) {
4905 NameVals
.push_back(StrtabBuilder
.add(S
));
4906 NameVals
.push_back(S
.size());
4909 if (!NameVals
.empty()) {
4910 Stream
.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS
, NameVals
);
4915 // Walk the GUIDs that were referenced, and write the
4916 // corresponding type id records.
4917 for (auto &T
: ReferencedTypeIds
) {
4918 auto TidIter
= Index
.typeIds().equal_range(T
);
4919 for (const auto &[GUID
, TypeIdPair
] : make_range(TidIter
)) {
4920 writeTypeIdSummaryRecord(NameVals
, StrtabBuilder
, TypeIdPair
.first
,
4922 Stream
.EmitRecord(bitc::FS_TYPE_ID
, NameVals
);
4927 if (Index
.getBlockCount())
4928 Stream
.EmitRecord(bitc::FS_BLOCK_COUNT
,
4929 ArrayRef
<uint64_t>{Index
.getBlockCount()});
4934 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4935 /// current llvm version, and a record for the epoch number.
4936 static void writeIdentificationBlock(BitstreamWriter
&Stream
) {
4937 Stream
.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID
, 5);
4939 // Write the "user readable" string identifying the bitcode producer
4940 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4941 Abbv
->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING
));
4942 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4943 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
4944 auto StringAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4945 writeStringRecord(Stream
, bitc::IDENTIFICATION_CODE_STRING
,
4946 "LLVM" LLVM_VERSION_STRING
, StringAbbrev
);
4948 // Write the epoch version
4949 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4950 Abbv
->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH
));
4951 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
4952 auto EpochAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4953 constexpr std::array
<unsigned, 1> Vals
= {{bitc::BITCODE_CURRENT_EPOCH
}};
4954 Stream
.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH
, Vals
, EpochAbbrev
);
4958 void ModuleBitcodeWriter::writeModuleHash(StringRef View
) {
4959 // Emit the module's hash.
4960 // MODULE_CODE_HASH: [5*i32]
4963 Hasher
.update(ArrayRef
<uint8_t>(
4964 reinterpret_cast<const uint8_t *>(View
.data()), View
.size()));
4965 std::array
<uint8_t, 20> Hash
= Hasher
.result();
4966 for (int Pos
= 0; Pos
< 20; Pos
+= 4) {
4967 Vals
[Pos
/ 4] = support::endian::read32be(Hash
.data() + Pos
);
4970 // Emit the finished record.
4971 Stream
.EmitRecord(bitc::MODULE_CODE_HASH
, Vals
);
4974 // Save the written hash value.
4975 llvm::copy(Vals
, std::begin(*ModHash
));
4979 void ModuleBitcodeWriter::write() {
4980 writeIdentificationBlock(Stream
);
4982 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
4983 // We will want to write the module hash at this point. Block any flushing so
4984 // we can have access to the whole underlying data later.
4985 Stream
.markAndBlockFlushing();
4987 writeModuleVersion();
4989 // Emit blockinfo, which defines the standard abbreviations etc.
4992 // Emit information describing all of the types in the module.
4995 // Emit information about attribute groups.
4996 writeAttributeGroupTable();
4998 // Emit information about parameter attributes.
4999 writeAttributeTable();
5003 // Emit top-level description of module, including target triple, inline asm,
5004 // descriptors for global variables, and function prototype info.
5008 writeModuleConstants();
5010 // Emit metadata kind names.
5011 writeModuleMetadataKinds();
5014 writeModuleMetadata();
5016 // Emit module-level use-lists.
5017 if (VE
.shouldPreserveUseListOrder())
5018 writeUseListBlock(nullptr);
5020 writeOperandBundleTags();
5021 writeSyncScopeNames();
5023 // Emit function bodies.
5024 DenseMap
<const Function
*, uint64_t> FunctionToBitcodeIndex
;
5025 for (const Function
&F
: M
)
5026 if (!F
.isDeclaration())
5027 writeFunction(F
, FunctionToBitcodeIndex
);
5029 // Need to write after the above call to WriteFunction which populates
5030 // the summary information in the index.
5032 writePerModuleGlobalValueSummary();
5034 writeGlobalValueSymbolTable(FunctionToBitcodeIndex
);
5036 writeModuleHash(Stream
.getMarkedBufferAndResumeFlushing());
5041 static void writeInt32ToBuffer(uint32_t Value
, SmallVectorImpl
<char> &Buffer
,
5042 uint32_t &Position
) {
5043 support::endian::write32le(&Buffer
[Position
], Value
);
5047 /// If generating a bc file on darwin, we have to emit a
5048 /// header and trailer to make it compatible with the system archiver. To do
5049 /// this we emit the following header, and then emit a trailer that pads the
5050 /// file out to be a multiple of 16 bytes.
5052 /// struct bc_header {
5053 /// uint32_t Magic; // 0x0B17C0DE
5054 /// uint32_t Version; // Version, currently always 0.
5055 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
5056 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
5057 /// uint32_t CPUType; // CPU specifier.
5058 /// ... potentially more later ...
5060 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl
<char> &Buffer
,
5062 unsigned CPUType
= ~0U;
5064 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
5065 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
5066 // number from /usr/include/mach/machine.h. It is ok to reproduce the
5067 // specific constants here because they are implicitly part of the Darwin ABI.
5069 DARWIN_CPU_ARCH_ABI64
= 0x01000000,
5070 DARWIN_CPU_TYPE_X86
= 7,
5071 DARWIN_CPU_TYPE_ARM
= 12,
5072 DARWIN_CPU_TYPE_POWERPC
= 18
5075 Triple::ArchType Arch
= TT
.getArch();
5076 if (Arch
== Triple::x86_64
)
5077 CPUType
= DARWIN_CPU_TYPE_X86
| DARWIN_CPU_ARCH_ABI64
;
5078 else if (Arch
== Triple::x86
)
5079 CPUType
= DARWIN_CPU_TYPE_X86
;
5080 else if (Arch
== Triple::ppc
)
5081 CPUType
= DARWIN_CPU_TYPE_POWERPC
;
5082 else if (Arch
== Triple::ppc64
)
5083 CPUType
= DARWIN_CPU_TYPE_POWERPC
| DARWIN_CPU_ARCH_ABI64
;
5084 else if (Arch
== Triple::arm
|| Arch
== Triple::thumb
)
5085 CPUType
= DARWIN_CPU_TYPE_ARM
;
5087 // Traditional Bitcode starts after header.
5088 assert(Buffer
.size() >= BWH_HeaderSize
&&
5089 "Expected header size to be reserved");
5090 unsigned BCOffset
= BWH_HeaderSize
;
5091 unsigned BCSize
= Buffer
.size() - BWH_HeaderSize
;
5093 // Write the magic and version.
5094 unsigned Position
= 0;
5095 writeInt32ToBuffer(0x0B17C0DE, Buffer
, Position
);
5096 writeInt32ToBuffer(0, Buffer
, Position
); // Version.
5097 writeInt32ToBuffer(BCOffset
, Buffer
, Position
);
5098 writeInt32ToBuffer(BCSize
, Buffer
, Position
);
5099 writeInt32ToBuffer(CPUType
, Buffer
, Position
);
5101 // If the file is not a multiple of 16 bytes, insert dummy padding.
5102 while (Buffer
.size() & 15)
5103 Buffer
.push_back(0);
5106 /// Helper to write the header common to all bitcode files.
5107 static void writeBitcodeHeader(BitstreamWriter
&Stream
) {
5108 // Emit the file header.
5109 Stream
.Emit((unsigned)'B', 8);
5110 Stream
.Emit((unsigned)'C', 8);
5111 Stream
.Emit(0x0, 4);
5112 Stream
.Emit(0xC, 4);
5113 Stream
.Emit(0xE, 4);
5114 Stream
.Emit(0xD, 4);
5117 BitcodeWriter::BitcodeWriter(SmallVectorImpl
<char> &Buffer
)
5118 : Stream(new BitstreamWriter(Buffer
)) {
5119 writeBitcodeHeader(*Stream
);
5122 BitcodeWriter::BitcodeWriter(raw_ostream
&FS
)
5123 : Stream(new BitstreamWriter(FS
, FlushThreshold
)) {
5124 writeBitcodeHeader(*Stream
);
5127 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab
); }
5129 void BitcodeWriter::writeBlob(unsigned Block
, unsigned Record
, StringRef Blob
) {
5130 Stream
->EnterSubblock(Block
, 3);
5132 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
5133 Abbv
->Add(BitCodeAbbrevOp(Record
));
5134 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
5135 auto AbbrevNo
= Stream
->EmitAbbrev(std::move(Abbv
));
5137 Stream
->EmitRecordWithBlob(AbbrevNo
, ArrayRef
<uint64_t>{Record
}, Blob
);
5139 Stream
->ExitBlock();
5142 void BitcodeWriter::writeSymtab() {
5143 assert(!WroteStrtab
&& !WroteSymtab
);
5145 // If any module has module-level inline asm, we will require a registered asm
5146 // parser for the target so that we can create an accurate symbol table for
5148 for (Module
*M
: Mods
) {
5149 if (M
->getModuleInlineAsm().empty())
5153 const Triple
TT(M
->getTargetTriple());
5154 const Target
*T
= TargetRegistry::lookupTarget(TT
.str(), Err
);
5155 if (!T
|| !T
->hasMCAsmParser())
5160 SmallVector
<char, 0> Symtab
;
5161 // The irsymtab::build function may be unable to create a symbol table if the
5162 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
5163 // table is not required for correctness, but we still want to be able to
5164 // write malformed modules to bitcode files, so swallow the error.
5165 if (Error E
= irsymtab::build(Mods
, Symtab
, StrtabBuilder
, Alloc
)) {
5166 consumeError(std::move(E
));
5170 writeBlob(bitc::SYMTAB_BLOCK_ID
, bitc::SYMTAB_BLOB
,
5171 {Symtab
.data(), Symtab
.size()});
5174 void BitcodeWriter::writeStrtab() {
5175 assert(!WroteStrtab
);
5177 std::vector
<char> Strtab
;
5178 StrtabBuilder
.finalizeInOrder();
5179 Strtab
.resize(StrtabBuilder
.getSize());
5180 StrtabBuilder
.write((uint8_t *)Strtab
.data());
5182 writeBlob(bitc::STRTAB_BLOCK_ID
, bitc::STRTAB_BLOB
,
5183 {Strtab
.data(), Strtab
.size()});
5188 void BitcodeWriter::copyStrtab(StringRef Strtab
) {
5189 writeBlob(bitc::STRTAB_BLOCK_ID
, bitc::STRTAB_BLOB
, Strtab
);
5193 void BitcodeWriter::writeModule(const Module
&M
,
5194 bool ShouldPreserveUseListOrder
,
5195 const ModuleSummaryIndex
*Index
,
5196 bool GenerateHash
, ModuleHash
*ModHash
) {
5197 assert(!WroteStrtab
);
5199 // The Mods vector is used by irsymtab::build, which requires non-const
5200 // Modules in case it needs to materialize metadata. But the bitcode writer
5201 // requires that the module is materialized, so we can cast to non-const here,
5202 // after checking that it is in fact materialized.
5203 assert(M
.isMaterialized());
5204 Mods
.push_back(const_cast<Module
*>(&M
));
5206 ModuleBitcodeWriter
ModuleWriter(M
, StrtabBuilder
, *Stream
,
5207 ShouldPreserveUseListOrder
, Index
,
5208 GenerateHash
, ModHash
);
5209 ModuleWriter
.write();
5212 void BitcodeWriter::writeIndex(
5213 const ModuleSummaryIndex
*Index
,
5214 const ModuleToSummariesForIndexTy
*ModuleToSummariesForIndex
,
5215 const GVSummaryPtrSet
*DecSummaries
) {
5216 IndexBitcodeWriter
IndexWriter(*Stream
, StrtabBuilder
, *Index
, DecSummaries
,
5217 ModuleToSummariesForIndex
);
5218 IndexWriter
.write();
5221 /// Write the specified module to the specified output stream.
5222 void llvm::WriteBitcodeToFile(const Module
&M
, raw_ostream
&Out
,
5223 bool ShouldPreserveUseListOrder
,
5224 const ModuleSummaryIndex
*Index
,
5225 bool GenerateHash
, ModuleHash
*ModHash
) {
5226 auto Write
= [&](BitcodeWriter
&Writer
) {
5227 Writer
.writeModule(M
, ShouldPreserveUseListOrder
, Index
, GenerateHash
,
5229 Writer
.writeSymtab();
5230 Writer
.writeStrtab();
5232 Triple
TT(M
.getTargetTriple());
5233 if (TT
.isOSDarwin() || TT
.isOSBinFormatMachO()) {
5234 // If this is darwin or another generic macho target, reserve space for the
5235 // header. Note that the header is computed *after* the output is known, so
5236 // we currently explicitly use a buffer, write to it, and then subsequently
5238 SmallVector
<char, 0> Buffer
;
5239 Buffer
.reserve(256 * 1024);
5240 Buffer
.insert(Buffer
.begin(), BWH_HeaderSize
, 0);
5241 BitcodeWriter
Writer(Buffer
);
5243 emitDarwinBCHeaderAndTrailer(Buffer
, TT
);
5244 Out
.write(Buffer
.data(), Buffer
.size());
5246 BitcodeWriter
Writer(Out
);
5251 void IndexBitcodeWriter::write() {
5252 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
5254 writeModuleVersion();
5256 // Write the module paths in the combined index.
5259 // Write the summary combined index records.
5260 writeCombinedGlobalValueSummary();
5265 // Write the specified module summary index to the given raw output stream,
5266 // where it will be written in a new bitcode block. This is used when
5267 // writing the combined index file for ThinLTO. When writing a subset of the
5268 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
5269 void llvm::writeIndexToFile(
5270 const ModuleSummaryIndex
&Index
, raw_ostream
&Out
,
5271 const ModuleToSummariesForIndexTy
*ModuleToSummariesForIndex
,
5272 const GVSummaryPtrSet
*DecSummaries
) {
5273 SmallVector
<char, 0> Buffer
;
5274 Buffer
.reserve(256 * 1024);
5276 BitcodeWriter
Writer(Buffer
);
5277 Writer
.writeIndex(&Index
, ModuleToSummariesForIndex
, DecSummaries
);
5278 Writer
.writeStrtab();
5280 Out
.write((char *)&Buffer
.front(), Buffer
.size());
5285 /// Class to manage the bitcode writing for a thin link bitcode file.
5286 class ThinLinkBitcodeWriter
: public ModuleBitcodeWriterBase
{
5287 /// ModHash is for use in ThinLTO incremental build, generated while writing
5288 /// the module bitcode file.
5289 const ModuleHash
*ModHash
;
5292 ThinLinkBitcodeWriter(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
5293 BitstreamWriter
&Stream
,
5294 const ModuleSummaryIndex
&Index
,
5295 const ModuleHash
&ModHash
)
5296 : ModuleBitcodeWriterBase(M
, StrtabBuilder
, Stream
,
5297 /*ShouldPreserveUseListOrder=*/false, &Index
),
5298 ModHash(&ModHash
) {}
5303 void writeSimplifiedModuleInfo();
5306 } // end anonymous namespace
5308 // This function writes a simpilified module info for thin link bitcode file.
5309 // It only contains the source file name along with the name(the offset and
5310 // size in strtab) and linkage for global values. For the global value info
5311 // entry, in order to keep linkage at offset 5, there are three zeros used
5313 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5314 SmallVector
<unsigned, 64> Vals
;
5315 // Emit the module's source file name.
5317 StringEncoding Bits
= getStringEncoding(M
.getSourceFileName());
5318 BitCodeAbbrevOp AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8);
5319 if (Bits
== SE_Char6
)
5320 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
);
5321 else if (Bits
== SE_Fixed7
)
5322 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7);
5324 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5325 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
5326 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME
));
5327 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
5328 Abbv
->Add(AbbrevOpToUse
);
5329 unsigned FilenameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
5331 for (const auto P
: M
.getSourceFileName())
5332 Vals
.push_back((unsigned char)P
);
5334 Stream
.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME
, Vals
, FilenameAbbrev
);
5338 // Emit the global variable information.
5339 for (const GlobalVariable
&GV
: M
.globals()) {
5340 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5341 Vals
.push_back(StrtabBuilder
.add(GV
.getName()));
5342 Vals
.push_back(GV
.getName().size());
5346 Vals
.push_back(getEncodedLinkage(GV
));
5348 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
);
5352 // Emit the function proto information.
5353 for (const Function
&F
: M
) {
5354 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
5355 Vals
.push_back(StrtabBuilder
.add(F
.getName()));
5356 Vals
.push_back(F
.getName().size());
5360 Vals
.push_back(getEncodedLinkage(F
));
5362 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
);
5366 // Emit the alias information.
5367 for (const GlobalAlias
&A
: M
.aliases()) {
5368 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5369 Vals
.push_back(StrtabBuilder
.add(A
.getName()));
5370 Vals
.push_back(A
.getName().size());
5374 Vals
.push_back(getEncodedLinkage(A
));
5376 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
);
5380 // Emit the ifunc information.
5381 for (const GlobalIFunc
&I
: M
.ifuncs()) {
5382 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5383 Vals
.push_back(StrtabBuilder
.add(I
.getName()));
5384 Vals
.push_back(I
.getName().size());
5388 Vals
.push_back(getEncodedLinkage(I
));
5390 Stream
.EmitRecord(bitc::MODULE_CODE_IFUNC
, Vals
);
5395 void ThinLinkBitcodeWriter::write() {
5396 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
5398 writeModuleVersion();
5400 writeSimplifiedModuleInfo();
5402 writePerModuleGlobalValueSummary();
5404 // Write module hash.
5405 Stream
.EmitRecord(bitc::MODULE_CODE_HASH
, ArrayRef
<uint32_t>(*ModHash
));
5410 void BitcodeWriter::writeThinLinkBitcode(const Module
&M
,
5411 const ModuleSummaryIndex
&Index
,
5412 const ModuleHash
&ModHash
) {
5413 assert(!WroteStrtab
);
5415 // The Mods vector is used by irsymtab::build, which requires non-const
5416 // Modules in case it needs to materialize metadata. But the bitcode writer
5417 // requires that the module is materialized, so we can cast to non-const here,
5418 // after checking that it is in fact materialized.
5419 assert(M
.isMaterialized());
5420 Mods
.push_back(const_cast<Module
*>(&M
));
5422 ThinLinkBitcodeWriter
ThinLinkWriter(M
, StrtabBuilder
, *Stream
, Index
,
5424 ThinLinkWriter
.write();
5427 // Write the specified thin link bitcode file to the given raw output stream,
5428 // where it will be written in a new bitcode block. This is used when
5429 // writing the per-module index file for ThinLTO.
5430 void llvm::writeThinLinkBitcodeToFile(const Module
&M
, raw_ostream
&Out
,
5431 const ModuleSummaryIndex
&Index
,
5432 const ModuleHash
&ModHash
) {
5433 SmallVector
<char, 0> Buffer
;
5434 Buffer
.reserve(256 * 1024);
5436 BitcodeWriter
Writer(Buffer
);
5437 Writer
.writeThinLinkBitcode(M
, Index
, ModHash
);
5438 Writer
.writeSymtab();
5439 Writer
.writeStrtab();
5441 Out
.write((char *)&Buffer
.front(), Buffer
.size());
5444 static const char *getSectionNameForBitcode(const Triple
&T
) {
5445 switch (T
.getObjectFormat()) {
5447 return "__LLVM,__bitcode";
5451 case Triple::UnknownObjectFormat
:
5454 llvm_unreachable("GOFF is not yet implemented");
5457 if (T
.getVendor() == Triple::AMD
)
5459 llvm_unreachable("SPIRV is not yet implemented");
5462 llvm_unreachable("XCOFF is not yet implemented");
5464 case Triple::DXContainer
:
5465 llvm_unreachable("DXContainer is not yet implemented");
5468 llvm_unreachable("Unimplemented ObjectFormatType");
5471 static const char *getSectionNameForCommandline(const Triple
&T
) {
5472 switch (T
.getObjectFormat()) {
5474 return "__LLVM,__cmdline";
5478 case Triple::UnknownObjectFormat
:
5481 llvm_unreachable("GOFF is not yet implemented");
5484 if (T
.getVendor() == Triple::AMD
)
5486 llvm_unreachable("SPIRV is not yet implemented");
5489 llvm_unreachable("XCOFF is not yet implemented");
5491 case Triple::DXContainer
:
5492 llvm_unreachable("DXC is not yet implemented");
5495 llvm_unreachable("Unimplemented ObjectFormatType");
5498 void llvm::embedBitcodeInModule(llvm::Module
&M
, llvm::MemoryBufferRef Buf
,
5499 bool EmbedBitcode
, bool EmbedCmdline
,
5500 const std::vector
<uint8_t> &CmdArgs
) {
5501 // Save llvm.compiler.used and remove it.
5502 SmallVector
<Constant
*, 2> UsedArray
;
5503 SmallVector
<GlobalValue
*, 4> UsedGlobals
;
5504 GlobalVariable
*Used
= collectUsedGlobalVariables(M
, UsedGlobals
, true);
5505 Type
*UsedElementType
= Used
? Used
->getValueType()->getArrayElementType()
5506 : PointerType::getUnqual(M
.getContext());
5507 for (auto *GV
: UsedGlobals
) {
5508 if (GV
->getName() != "llvm.embedded.module" &&
5509 GV
->getName() != "llvm.cmdline")
5510 UsedArray
.push_back(
5511 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, UsedElementType
));
5514 Used
->eraseFromParent();
5516 // Embed the bitcode for the llvm module.
5518 ArrayRef
<uint8_t> ModuleData
;
5519 Triple
T(M
.getTargetTriple());
5522 if (Buf
.getBufferSize() == 0 ||
5523 !isBitcode((const unsigned char *)Buf
.getBufferStart(),
5524 (const unsigned char *)Buf
.getBufferEnd())) {
5525 // If the input is LLVM Assembly, bitcode is produced by serializing
5526 // the module. Use-lists order need to be preserved in this case.
5527 llvm::raw_string_ostream
OS(Data
);
5528 llvm::WriteBitcodeToFile(M
, OS
, /* ShouldPreserveUseListOrder */ true);
5530 ArrayRef
<uint8_t>((const uint8_t *)OS
.str().data(), OS
.str().size());
5532 // If the input is LLVM bitcode, write the input byte stream directly.
5533 ModuleData
= ArrayRef
<uint8_t>((const uint8_t *)Buf
.getBufferStart(),
5534 Buf
.getBufferSize());
5536 llvm::Constant
*ModuleConstant
=
5537 llvm::ConstantDataArray::get(M
.getContext(), ModuleData
);
5538 llvm::GlobalVariable
*GV
= new llvm::GlobalVariable(
5539 M
, ModuleConstant
->getType(), true, llvm::GlobalValue::PrivateLinkage
,
5541 GV
->setSection(getSectionNameForBitcode(T
));
5542 // Set alignment to 1 to prevent padding between two contributions from input
5543 // sections after linking.
5544 GV
->setAlignment(Align(1));
5545 UsedArray
.push_back(
5546 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, UsedElementType
));
5547 if (llvm::GlobalVariable
*Old
=
5548 M
.getGlobalVariable("llvm.embedded.module", true)) {
5549 assert(Old
->hasZeroLiveUses() &&
5550 "llvm.embedded.module can only be used once in llvm.compiler.used");
5552 Old
->eraseFromParent();
5554 GV
->setName("llvm.embedded.module");
5557 // Skip if only bitcode needs to be embedded.
5559 // Embed command-line options.
5560 ArrayRef
<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs
.data()),
5562 llvm::Constant
*CmdConstant
=
5563 llvm::ConstantDataArray::get(M
.getContext(), CmdData
);
5564 GV
= new llvm::GlobalVariable(M
, CmdConstant
->getType(), true,
5565 llvm::GlobalValue::PrivateLinkage
,
5567 GV
->setSection(getSectionNameForCommandline(T
));
5568 GV
->setAlignment(Align(1));
5569 UsedArray
.push_back(
5570 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, UsedElementType
));
5571 if (llvm::GlobalVariable
*Old
= M
.getGlobalVariable("llvm.cmdline", true)) {
5572 assert(Old
->hasZeroLiveUses() &&
5573 "llvm.cmdline can only be used once in llvm.compiler.used");
5575 Old
->eraseFromParent();
5577 GV
->setName("llvm.cmdline");
5581 if (UsedArray
.empty())
5584 // Recreate llvm.compiler.used.
5585 ArrayType
*ATy
= ArrayType::get(UsedElementType
, UsedArray
.size());
5586 auto *NewUsed
= new GlobalVariable(
5587 M
, ATy
, false, llvm::GlobalValue::AppendingLinkage
,
5588 llvm::ConstantArray::get(ATy
, UsedArray
), "llvm.compiler.used");
5589 NewUsed
->setSection("llvm.metadata");