[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / clang / lib / Lex / LiteralSupport.cpp
blob1a48a68c28b62b699d82f6220a59b2201b1d275f
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NumericLiteralParser, CharLiteralParser, and
10 // StringLiteralParser interfaces.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Lex/LiteralSupport.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/LangOptions.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/Lexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/ConvertUTF.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Unicode.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <cstring>
36 #include <string>
38 using namespace clang;
40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
41 switch (kind) {
42 default: llvm_unreachable("Unknown token type!");
43 case tok::char_constant:
44 case tok::string_literal:
45 case tok::utf8_char_constant:
46 case tok::utf8_string_literal:
47 return Target.getCharWidth();
48 case tok::wide_char_constant:
49 case tok::wide_string_literal:
50 return Target.getWCharWidth();
51 case tok::utf16_char_constant:
52 case tok::utf16_string_literal:
53 return Target.getChar16Width();
54 case tok::utf32_char_constant:
55 case tok::utf32_string_literal:
56 return Target.getChar32Width();
60 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
61 FullSourceLoc TokLoc,
62 const char *TokBegin,
63 const char *TokRangeBegin,
64 const char *TokRangeEnd) {
65 SourceLocation Begin =
66 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
67 TokLoc.getManager(), Features);
68 SourceLocation End =
69 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
70 TokLoc.getManager(), Features);
71 return CharSourceRange::getCharRange(Begin, End);
74 /// Produce a diagnostic highlighting some portion of a literal.
75 ///
76 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
77 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
78 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
79 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
80 const LangOptions &Features, FullSourceLoc TokLoc,
81 const char *TokBegin, const char *TokRangeBegin,
82 const char *TokRangeEnd, unsigned DiagID) {
83 SourceLocation Begin =
84 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
85 TokLoc.getManager(), Features);
86 return Diags->Report(Begin, DiagID) <<
87 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
90 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
91 /// either a character or a string literal.
92 static unsigned ProcessCharEscape(const char *ThisTokBegin,
93 const char *&ThisTokBuf,
94 const char *ThisTokEnd, bool &HadError,
95 FullSourceLoc Loc, unsigned CharWidth,
96 DiagnosticsEngine *Diags,
97 const LangOptions &Features) {
98 const char *EscapeBegin = ThisTokBuf;
99 bool Delimited = false;
100 bool EndDelimiterFound = false;
102 // Skip the '\' char.
103 ++ThisTokBuf;
105 // We know that this character can't be off the end of the buffer, because
106 // that would have been \", which would not have been the end of string.
107 unsigned ResultChar = *ThisTokBuf++;
108 switch (ResultChar) {
109 // These map to themselves.
110 case '\\': case '\'': case '"': case '?': break;
112 // These have fixed mappings.
113 case 'a':
114 // TODO: K&R: the meaning of '\\a' is different in traditional C
115 ResultChar = 7;
116 break;
117 case 'b':
118 ResultChar = 8;
119 break;
120 case 'e':
121 if (Diags)
122 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
123 diag::ext_nonstandard_escape) << "e";
124 ResultChar = 27;
125 break;
126 case 'E':
127 if (Diags)
128 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
129 diag::ext_nonstandard_escape) << "E";
130 ResultChar = 27;
131 break;
132 case 'f':
133 ResultChar = 12;
134 break;
135 case 'n':
136 ResultChar = 10;
137 break;
138 case 'r':
139 ResultChar = 13;
140 break;
141 case 't':
142 ResultChar = 9;
143 break;
144 case 'v':
145 ResultChar = 11;
146 break;
147 case 'x': { // Hex escape.
148 ResultChar = 0;
149 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
150 Delimited = true;
151 ThisTokBuf++;
152 if (*ThisTokBuf == '}') {
153 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
154 diag::err_delimited_escape_empty);
155 return ResultChar;
157 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
158 if (Diags)
159 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
160 diag::err_hex_escape_no_digits) << "x";
161 return ResultChar;
164 // Hex escapes are a maximal series of hex digits.
165 bool Overflow = false;
166 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
167 if (Delimited && *ThisTokBuf == '}') {
168 ThisTokBuf++;
169 EndDelimiterFound = true;
170 break;
172 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
173 if (CharVal == -1) {
174 // Non delimited hex escape sequences stop at the first non-hex digit.
175 if (!Delimited)
176 break;
177 HadError = true;
178 if (Diags)
179 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
180 diag::err_delimited_escape_invalid)
181 << StringRef(ThisTokBuf, 1);
182 continue;
184 // About to shift out a digit?
185 if (ResultChar & 0xF0000000)
186 Overflow = true;
187 ResultChar <<= 4;
188 ResultChar |= CharVal;
190 // See if any bits will be truncated when evaluated as a character.
191 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
192 Overflow = true;
193 ResultChar &= ~0U >> (32-CharWidth);
196 // Check for overflow.
197 if (!HadError && Overflow) { // Too many digits to fit in
198 HadError = true;
199 if (Diags)
200 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
201 diag::err_escape_too_large)
202 << 0;
204 break;
206 case '0': case '1': case '2': case '3':
207 case '4': case '5': case '6': case '7': {
208 // Octal escapes.
209 --ThisTokBuf;
210 ResultChar = 0;
212 // Octal escapes are a series of octal digits with maximum length 3.
213 // "\0123" is a two digit sequence equal to "\012" "3".
214 unsigned NumDigits = 0;
215 do {
216 ResultChar <<= 3;
217 ResultChar |= *ThisTokBuf++ - '0';
218 ++NumDigits;
219 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
220 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
222 // Check for overflow. Reject '\777', but not L'\777'.
223 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
224 if (Diags)
225 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
226 diag::err_escape_too_large) << 1;
227 ResultChar &= ~0U >> (32-CharWidth);
229 break;
231 case 'o': {
232 bool Overflow = false;
233 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
234 HadError = true;
235 if (Diags)
236 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
237 diag::err_delimited_escape_missing_brace)
238 << "o";
240 break;
242 ResultChar = 0;
243 Delimited = true;
244 ++ThisTokBuf;
245 if (*ThisTokBuf == '}') {
246 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
247 diag::err_delimited_escape_empty);
248 return ResultChar;
251 while (ThisTokBuf != ThisTokEnd) {
252 if (*ThisTokBuf == '}') {
253 EndDelimiterFound = true;
254 ThisTokBuf++;
255 break;
257 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
258 HadError = true;
259 if (Diags)
260 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
261 diag::err_delimited_escape_invalid)
262 << StringRef(ThisTokBuf, 1);
263 ThisTokBuf++;
264 continue;
266 if (ResultChar & 0x020000000)
267 Overflow = true;
269 ResultChar <<= 3;
270 ResultChar |= *ThisTokBuf++ - '0';
272 // Check for overflow. Reject '\777', but not L'\777'.
273 if (!HadError &&
274 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
275 HadError = true;
276 if (Diags)
277 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
278 diag::err_escape_too_large)
279 << 1;
280 ResultChar &= ~0U >> (32 - CharWidth);
282 break;
284 // Otherwise, these are not valid escapes.
285 case '(': case '{': case '[': case '%':
286 // GCC accepts these as extensions. We warn about them as such though.
287 if (Diags)
288 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
289 diag::ext_nonstandard_escape)
290 << std::string(1, ResultChar);
291 break;
292 default:
293 if (!Diags)
294 break;
296 if (isPrintable(ResultChar))
297 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
298 diag::ext_unknown_escape)
299 << std::string(1, ResultChar);
300 else
301 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
302 diag::ext_unknown_escape)
303 << "x" + llvm::utohexstr(ResultChar);
304 break;
307 if (Delimited && Diags) {
308 if (!EndDelimiterFound)
309 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
310 diag::err_expected)
311 << tok::r_brace;
312 else if (!HadError) {
313 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
314 Features.CPlusPlus2b ? diag::warn_cxx2b_delimited_escape_sequence
315 : diag::ext_delimited_escape_sequence)
316 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0);
320 return ResultChar;
323 static void appendCodePoint(unsigned Codepoint,
324 llvm::SmallVectorImpl<char> &Str) {
325 char ResultBuf[4];
326 char *ResultPtr = ResultBuf;
327 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr))
328 Str.append(ResultBuf, ResultPtr);
331 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
332 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
333 if (*I != '\\') {
334 Buf.push_back(*I);
335 continue;
338 ++I;
339 char Kind = *I;
340 ++I;
342 assert(Kind == 'u' || Kind == 'U' || Kind == 'N');
343 uint32_t CodePoint = 0;
345 if (Kind == 'u' && *I == '{') {
346 for (++I; *I != '}'; ++I) {
347 unsigned Value = llvm::hexDigitValue(*I);
348 assert(Value != -1U);
349 CodePoint <<= 4;
350 CodePoint += Value;
352 appendCodePoint(CodePoint, Buf);
353 continue;
356 if (Kind == 'N') {
357 assert(*I == '{');
358 ++I;
359 auto Delim = std::find(I, Input.end(), '}');
360 assert(Delim != Input.end());
361 llvm::Optional<llvm::sys::unicode::LooseMatchingResult> Res =
362 llvm::sys::unicode::nameToCodepointLooseMatching(
363 StringRef(I, std::distance(I, Delim)));
364 assert(Res);
365 CodePoint = Res->CodePoint;
366 assert(CodePoint != 0xFFFFFFFF);
367 appendCodePoint(CodePoint, Buf);
368 I = Delim;
369 continue;
372 unsigned NumHexDigits;
373 if (Kind == 'u')
374 NumHexDigits = 4;
375 else
376 NumHexDigits = 8;
378 assert(I + NumHexDigits <= E);
380 for (; NumHexDigits != 0; ++I, --NumHexDigits) {
381 unsigned Value = llvm::hexDigitValue(*I);
382 assert(Value != -1U);
384 CodePoint <<= 4;
385 CodePoint += Value;
388 appendCodePoint(CodePoint, Buf);
389 --I;
393 static bool ProcessNumericUCNEscape(const char *ThisTokBegin,
394 const char *&ThisTokBuf,
395 const char *ThisTokEnd, uint32_t &UcnVal,
396 unsigned short &UcnLen, bool &Delimited,
397 FullSourceLoc Loc, DiagnosticsEngine *Diags,
398 const LangOptions &Features,
399 bool in_char_string_literal = false) {
400 const char *UcnBegin = ThisTokBuf;
401 bool HasError = false;
402 bool EndDelimiterFound = false;
404 // Skip the '\u' char's.
405 ThisTokBuf += 2;
406 Delimited = false;
407 if (UcnBegin[1] == 'u' && in_char_string_literal &&
408 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
409 Delimited = true;
410 ThisTokBuf++;
411 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
412 if (Diags)
413 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
414 diag::err_hex_escape_no_digits)
415 << StringRef(&ThisTokBuf[-1], 1);
416 return false;
418 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
420 bool Overflow = false;
421 unsigned short Count = 0;
422 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
423 ++ThisTokBuf) {
424 if (Delimited && *ThisTokBuf == '}') {
425 ++ThisTokBuf;
426 EndDelimiterFound = true;
427 break;
429 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
430 if (CharVal == -1) {
431 HasError = true;
432 if (!Delimited)
433 break;
434 if (Diags) {
435 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
436 diag::err_delimited_escape_invalid)
437 << StringRef(ThisTokBuf, 1);
439 Count++;
440 continue;
442 if (UcnVal & 0xF0000000) {
443 Overflow = true;
444 continue;
446 UcnVal <<= 4;
447 UcnVal |= CharVal;
448 Count++;
451 if (Overflow) {
452 if (Diags)
453 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
454 diag::err_escape_too_large)
455 << 0;
456 return false;
459 if (Delimited && !EndDelimiterFound) {
460 if (Diags) {
461 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
462 diag::err_expected)
463 << tok::r_brace;
465 return false;
468 // If we didn't consume the proper number of digits, there is a problem.
469 if (Count == 0 || (!Delimited && Count != UcnLen)) {
470 if (Diags)
471 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
472 Delimited ? diag::err_delimited_escape_empty
473 : diag::err_ucn_escape_incomplete);
474 return false;
476 return !HasError;
479 static void DiagnoseInvalidUnicodeCharacterName(
480 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc,
481 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd,
482 llvm::StringRef Name) {
484 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
485 diag::err_invalid_ucn_name)
486 << Name;
488 namespace u = llvm::sys::unicode;
490 llvm::Optional<u::LooseMatchingResult> Res =
491 u::nameToCodepointLooseMatching(Name);
492 if (Res) {
493 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
494 diag::note_invalid_ucn_name_loose_matching)
495 << FixItHint::CreateReplacement(
496 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
497 TokRangeEnd),
498 Res->Name);
499 return;
502 unsigned Distance = 0;
503 SmallVector<u::MatchForCodepointName> Matches =
504 u::nearestMatchesForCodepointName(Name, 5);
505 assert(!Matches.empty() && "No unicode characters found");
507 for (const auto &Match : Matches) {
508 if (Distance == 0)
509 Distance = Match.Distance;
510 if (std::max(Distance, Match.Distance) -
511 std::min(Distance, Match.Distance) >
513 break;
514 Distance = Match.Distance;
516 std::string Str;
517 llvm::UTF32 V = Match.Value;
518 LLVM_ATTRIBUTE_UNUSED bool Converted =
519 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str);
520 assert(Converted && "Found a match wich is not a unicode character");
522 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
523 diag::note_invalid_ucn_name_candidate)
524 << Match.Name << llvm::utohexstr(Match.Value)
525 << Str // FIXME: Fix the rendering of non printable characters
526 << FixItHint::CreateReplacement(
527 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
528 TokRangeEnd),
529 Match.Name);
533 static bool ProcessNamedUCNEscape(const char *ThisTokBegin,
534 const char *&ThisTokBuf,
535 const char *ThisTokEnd, uint32_t &UcnVal,
536 unsigned short &UcnLen, FullSourceLoc Loc,
537 DiagnosticsEngine *Diags,
538 const LangOptions &Features) {
539 const char *UcnBegin = ThisTokBuf;
540 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N');
541 ThisTokBuf += 2;
542 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
543 if (Diags) {
544 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
545 diag::err_delimited_escape_missing_brace)
546 << StringRef(&ThisTokBuf[-1], 1);
548 ThisTokBuf++;
549 return false;
551 ThisTokBuf++;
552 const char *ClosingBrace =
553 std::find_if_not(ThisTokBuf, ThisTokEnd, [](char C) {
554 return llvm::isAlnum(C) || llvm::isSpace(C) || C == '_' || C == '-';
556 bool Incomplete = ClosingBrace == ThisTokEnd || *ClosingBrace != '}';
557 bool Empty = ClosingBrace == ThisTokBuf;
558 if (Incomplete || Empty) {
559 if (Diags) {
560 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
561 Incomplete ? diag::err_ucn_escape_incomplete
562 : diag::err_delimited_escape_empty)
563 << StringRef(&UcnBegin[1], 1);
565 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1;
566 return false;
568 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf);
569 ThisTokBuf = ClosingBrace + 1;
570 llvm::Optional<char32_t> Res =
571 llvm::sys::unicode::nameToCodepointStrict(Name);
572 if (!Res) {
573 if (Diags)
574 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin,
575 &UcnBegin[3], ClosingBrace, Name);
576 return false;
578 UcnVal = *Res;
579 UcnLen = UcnVal > 0xFFFF ? 8 : 4;
580 return true;
583 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
584 /// return the UTF32.
585 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
586 const char *ThisTokEnd, uint32_t &UcnVal,
587 unsigned short &UcnLen, FullSourceLoc Loc,
588 DiagnosticsEngine *Diags,
589 const LangOptions &Features,
590 bool in_char_string_literal = false) {
592 bool HasError;
593 const char *UcnBegin = ThisTokBuf;
594 bool IsDelimitedEscapeSequence = false;
595 bool IsNamedEscapeSequence = false;
596 if (ThisTokBuf[1] == 'N') {
597 IsNamedEscapeSequence = true;
598 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
599 UcnVal, UcnLen, Loc, Diags, Features);
600 } else {
601 HasError =
602 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
603 UcnLen, IsDelimitedEscapeSequence, Loc, Diags,
604 Features, in_char_string_literal);
606 if (HasError)
607 return false;
609 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
610 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
611 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
612 if (Diags)
613 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
614 diag::err_ucn_escape_invalid);
615 return false;
618 // C++11 allows UCNs that refer to control characters and basic source
619 // characters inside character and string literals
620 if (UcnVal < 0xa0 &&
621 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
622 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
623 if (Diags) {
624 char BasicSCSChar = UcnVal;
625 if (UcnVal >= 0x20 && UcnVal < 0x7f)
626 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
627 IsError ? diag::err_ucn_escape_basic_scs :
628 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
629 << StringRef(&BasicSCSChar, 1);
630 else
631 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
632 IsError ? diag::err_ucn_control_character :
633 diag::warn_cxx98_compat_literal_ucn_control_character);
635 if (IsError)
636 return false;
639 if (!Features.CPlusPlus && !Features.C99 && Diags)
640 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
641 diag::warn_ucn_not_valid_in_c89_literal);
643 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags)
644 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
645 Features.CPlusPlus2b ? diag::warn_cxx2b_delimited_escape_sequence
646 : diag::ext_delimited_escape_sequence)
647 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0);
649 return true;
652 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
653 /// which this UCN will occupy.
654 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
655 const char *ThisTokEnd, unsigned CharByteWidth,
656 const LangOptions &Features, bool &HadError) {
657 // UTF-32: 4 bytes per escape.
658 if (CharByteWidth == 4)
659 return 4;
661 uint32_t UcnVal = 0;
662 unsigned short UcnLen = 0;
663 FullSourceLoc Loc;
665 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
666 UcnLen, Loc, nullptr, Features, true)) {
667 HadError = true;
668 return 0;
671 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
672 if (CharByteWidth == 2)
673 return UcnVal <= 0xFFFF ? 2 : 4;
675 // UTF-8.
676 if (UcnVal < 0x80)
677 return 1;
678 if (UcnVal < 0x800)
679 return 2;
680 if (UcnVal < 0x10000)
681 return 3;
682 return 4;
685 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
686 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
687 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
688 /// we will likely rework our support for UCN's.
689 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
690 const char *ThisTokEnd,
691 char *&ResultBuf, bool &HadError,
692 FullSourceLoc Loc, unsigned CharByteWidth,
693 DiagnosticsEngine *Diags,
694 const LangOptions &Features) {
695 typedef uint32_t UTF32;
696 UTF32 UcnVal = 0;
697 unsigned short UcnLen = 0;
698 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
699 Loc, Diags, Features, true)) {
700 HadError = true;
701 return;
704 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
705 "only character widths of 1, 2, or 4 bytes supported");
707 (void)UcnLen;
708 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
710 if (CharByteWidth == 4) {
711 // FIXME: Make the type of the result buffer correct instead of
712 // using reinterpret_cast.
713 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
714 *ResultPtr = UcnVal;
715 ResultBuf += 4;
716 return;
719 if (CharByteWidth == 2) {
720 // FIXME: Make the type of the result buffer correct instead of
721 // using reinterpret_cast.
722 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
724 if (UcnVal <= (UTF32)0xFFFF) {
725 *ResultPtr = UcnVal;
726 ResultBuf += 2;
727 return;
730 // Convert to UTF16.
731 UcnVal -= 0x10000;
732 *ResultPtr = 0xD800 + (UcnVal >> 10);
733 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
734 ResultBuf += 4;
735 return;
738 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
740 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
741 // The conversion below was inspired by:
742 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
743 // First, we determine how many bytes the result will require.
744 typedef uint8_t UTF8;
746 unsigned short bytesToWrite = 0;
747 if (UcnVal < (UTF32)0x80)
748 bytesToWrite = 1;
749 else if (UcnVal < (UTF32)0x800)
750 bytesToWrite = 2;
751 else if (UcnVal < (UTF32)0x10000)
752 bytesToWrite = 3;
753 else
754 bytesToWrite = 4;
756 const unsigned byteMask = 0xBF;
757 const unsigned byteMark = 0x80;
759 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
760 // into the first byte, depending on how many bytes follow.
761 static const UTF8 firstByteMark[5] = {
762 0x00, 0x00, 0xC0, 0xE0, 0xF0
764 // Finally, we write the bytes into ResultBuf.
765 ResultBuf += bytesToWrite;
766 switch (bytesToWrite) { // note: everything falls through.
767 case 4:
768 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
769 [[fallthrough]];
770 case 3:
771 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
772 [[fallthrough]];
773 case 2:
774 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
775 [[fallthrough]];
776 case 1:
777 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
779 // Update the buffer.
780 ResultBuf += bytesToWrite;
783 /// integer-constant: [C99 6.4.4.1]
784 /// decimal-constant integer-suffix
785 /// octal-constant integer-suffix
786 /// hexadecimal-constant integer-suffix
787 /// binary-literal integer-suffix [GNU, C++1y]
788 /// user-defined-integer-literal: [C++11 lex.ext]
789 /// decimal-literal ud-suffix
790 /// octal-literal ud-suffix
791 /// hexadecimal-literal ud-suffix
792 /// binary-literal ud-suffix [GNU, C++1y]
793 /// decimal-constant:
794 /// nonzero-digit
795 /// decimal-constant digit
796 /// octal-constant:
797 /// 0
798 /// octal-constant octal-digit
799 /// hexadecimal-constant:
800 /// hexadecimal-prefix hexadecimal-digit
801 /// hexadecimal-constant hexadecimal-digit
802 /// hexadecimal-prefix: one of
803 /// 0x 0X
804 /// binary-literal:
805 /// 0b binary-digit
806 /// 0B binary-digit
807 /// binary-literal binary-digit
808 /// integer-suffix:
809 /// unsigned-suffix [long-suffix]
810 /// unsigned-suffix [long-long-suffix]
811 /// long-suffix [unsigned-suffix]
812 /// long-long-suffix [unsigned-sufix]
813 /// nonzero-digit:
814 /// 1 2 3 4 5 6 7 8 9
815 /// octal-digit:
816 /// 0 1 2 3 4 5 6 7
817 /// hexadecimal-digit:
818 /// 0 1 2 3 4 5 6 7 8 9
819 /// a b c d e f
820 /// A B C D E F
821 /// binary-digit:
822 /// 0
823 /// 1
824 /// unsigned-suffix: one of
825 /// u U
826 /// long-suffix: one of
827 /// l L
828 /// long-long-suffix: one of
829 /// ll LL
831 /// floating-constant: [C99 6.4.4.2]
832 /// TODO: add rules...
834 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
835 SourceLocation TokLoc,
836 const SourceManager &SM,
837 const LangOptions &LangOpts,
838 const TargetInfo &Target,
839 DiagnosticsEngine &Diags)
840 : SM(SM), LangOpts(LangOpts), Diags(Diags),
841 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
843 s = DigitsBegin = ThisTokBegin;
844 saw_exponent = false;
845 saw_period = false;
846 saw_ud_suffix = false;
847 saw_fixed_point_suffix = false;
848 isLong = false;
849 isUnsigned = false;
850 isLongLong = false;
851 isSizeT = false;
852 isHalf = false;
853 isFloat = false;
854 isImaginary = false;
855 isFloat16 = false;
856 isFloat128 = false;
857 MicrosoftInteger = 0;
858 isFract = false;
859 isAccum = false;
860 hadError = false;
861 isBitInt = false;
863 // This routine assumes that the range begin/end matches the regex for integer
864 // and FP constants (specifically, the 'pp-number' regex), and assumes that
865 // the byte at "*end" is both valid and not part of the regex. Because of
866 // this, it doesn't have to check for 'overscan' in various places.
867 if (isPreprocessingNumberBody(*ThisTokEnd)) {
868 Diags.Report(TokLoc, diag::err_lexing_numeric);
869 hadError = true;
870 return;
873 if (*s == '0') { // parse radix
874 ParseNumberStartingWithZero(TokLoc);
875 if (hadError)
876 return;
877 } else { // the first digit is non-zero
878 radix = 10;
879 s = SkipDigits(s);
880 if (s == ThisTokEnd) {
881 // Done.
882 } else {
883 ParseDecimalOrOctalCommon(TokLoc);
884 if (hadError)
885 return;
889 SuffixBegin = s;
890 checkSeparator(TokLoc, s, CSK_AfterDigits);
892 // Initial scan to lookahead for fixed point suffix.
893 if (LangOpts.FixedPoint) {
894 for (const char *c = s; c != ThisTokEnd; ++c) {
895 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
896 saw_fixed_point_suffix = true;
897 break;
902 // Parse the suffix. At this point we can classify whether we have an FP or
903 // integer constant.
904 bool isFixedPointConstant = isFixedPointLiteral();
905 bool isFPConstant = isFloatingLiteral();
906 bool HasSize = false;
908 // Loop over all of the characters of the suffix. If we see something bad,
909 // we break out of the loop.
910 for (; s != ThisTokEnd; ++s) {
911 switch (*s) {
912 case 'R':
913 case 'r':
914 if (!LangOpts.FixedPoint)
915 break;
916 if (isFract || isAccum) break;
917 if (!(saw_period || saw_exponent)) break;
918 isFract = true;
919 continue;
920 case 'K':
921 case 'k':
922 if (!LangOpts.FixedPoint)
923 break;
924 if (isFract || isAccum) break;
925 if (!(saw_period || saw_exponent)) break;
926 isAccum = true;
927 continue;
928 case 'h': // FP Suffix for "half".
929 case 'H':
930 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
931 if (!(LangOpts.Half || LangOpts.FixedPoint))
932 break;
933 if (isIntegerLiteral()) break; // Error for integer constant.
934 if (HasSize)
935 break;
936 HasSize = true;
937 isHalf = true;
938 continue; // Success.
939 case 'f': // FP Suffix for "float"
940 case 'F':
941 if (!isFPConstant) break; // Error for integer constant.
942 if (HasSize)
943 break;
944 HasSize = true;
946 // CUDA host and device may have different _Float16 support, therefore
947 // allows f16 literals to avoid false alarm.
948 // ToDo: more precise check for CUDA.
949 if ((Target.hasFloat16Type() || LangOpts.CUDA) && s + 2 < ThisTokEnd &&
950 s[1] == '1' && s[2] == '6') {
951 s += 2; // success, eat up 2 characters.
952 isFloat16 = true;
953 continue;
956 isFloat = true;
957 continue; // Success.
958 case 'q': // FP Suffix for "__float128"
959 case 'Q':
960 if (!isFPConstant) break; // Error for integer constant.
961 if (HasSize)
962 break;
963 HasSize = true;
964 isFloat128 = true;
965 continue; // Success.
966 case 'u':
967 case 'U':
968 if (isFPConstant) break; // Error for floating constant.
969 if (isUnsigned) break; // Cannot be repeated.
970 isUnsigned = true;
971 continue; // Success.
972 case 'l':
973 case 'L':
974 if (HasSize)
975 break;
976 HasSize = true;
978 // Check for long long. The L's need to be adjacent and the same case.
979 if (s[1] == s[0]) {
980 assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
981 if (isFPConstant) break; // long long invalid for floats.
982 isLongLong = true;
983 ++s; // Eat both of them.
984 } else {
985 isLong = true;
987 continue; // Success.
988 case 'z':
989 case 'Z':
990 if (isFPConstant)
991 break; // Invalid for floats.
992 if (HasSize)
993 break;
994 HasSize = true;
995 isSizeT = true;
996 continue;
997 case 'i':
998 case 'I':
999 if (LangOpts.MicrosoftExt && !isFPConstant) {
1000 // Allow i8, i16, i32, and i64. First, look ahead and check if
1001 // suffixes are Microsoft integers and not the imaginary unit.
1002 uint8_t Bits = 0;
1003 size_t ToSkip = 0;
1004 switch (s[1]) {
1005 case '8': // i8 suffix
1006 Bits = 8;
1007 ToSkip = 2;
1008 break;
1009 case '1':
1010 if (s[2] == '6') { // i16 suffix
1011 Bits = 16;
1012 ToSkip = 3;
1014 break;
1015 case '3':
1016 if (s[2] == '2') { // i32 suffix
1017 Bits = 32;
1018 ToSkip = 3;
1020 break;
1021 case '6':
1022 if (s[2] == '4') { // i64 suffix
1023 Bits = 64;
1024 ToSkip = 3;
1026 break;
1027 default:
1028 break;
1030 if (Bits) {
1031 if (HasSize)
1032 break;
1033 HasSize = true;
1034 MicrosoftInteger = Bits;
1035 s += ToSkip;
1036 assert(s <= ThisTokEnd && "didn't maximally munch?");
1037 break;
1040 [[fallthrough]];
1041 case 'j':
1042 case 'J':
1043 if (isImaginary) break; // Cannot be repeated.
1044 isImaginary = true;
1045 continue; // Success.
1046 case 'w':
1047 case 'W':
1048 if (isFPConstant)
1049 break; // Invalid for floats.
1050 if (HasSize)
1051 break; // Invalid if we already have a size for the literal.
1053 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1054 // explicitly do not support the suffix in C++ as an extension because a
1055 // library-based UDL that resolves to a library type may be more
1056 // appropriate there.
1057 if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') ||
1058 (s[0] == 'W' && s[1] == 'B'))) {
1059 isBitInt = true;
1060 HasSize = true;
1061 ++s; // Skip both characters (2nd char skipped on continue).
1062 continue; // Success.
1065 // If we reached here, there was an error or a ud-suffix.
1066 break;
1069 // "i", "if", and "il" are user-defined suffixes in C++1y.
1070 if (s != ThisTokEnd || isImaginary) {
1071 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1072 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
1073 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
1074 if (!isImaginary) {
1075 // Any suffix pieces we might have parsed are actually part of the
1076 // ud-suffix.
1077 isLong = false;
1078 isUnsigned = false;
1079 isLongLong = false;
1080 isSizeT = false;
1081 isFloat = false;
1082 isFloat16 = false;
1083 isHalf = false;
1084 isImaginary = false;
1085 isBitInt = false;
1086 MicrosoftInteger = 0;
1087 saw_fixed_point_suffix = false;
1088 isFract = false;
1089 isAccum = false;
1092 saw_ud_suffix = true;
1093 return;
1096 if (s != ThisTokEnd) {
1097 // Report an error if there are any.
1098 Diags.Report(Lexer::AdvanceToTokenCharacter(
1099 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
1100 diag::err_invalid_suffix_constant)
1101 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
1102 << (isFixedPointConstant ? 2 : isFPConstant);
1103 hadError = true;
1107 if (!hadError && saw_fixed_point_suffix) {
1108 assert(isFract || isAccum);
1112 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1113 /// numbers. It issues an error for illegal digits, and handles floating point
1114 /// parsing. If it detects a floating point number, the radix is set to 10.
1115 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
1116 assert((radix == 8 || radix == 10) && "Unexpected radix");
1118 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1119 // the code is using an incorrect base.
1120 if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
1121 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1122 Diags.Report(
1123 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
1124 diag::err_invalid_digit)
1125 << StringRef(s, 1) << (radix == 8 ? 1 : 0);
1126 hadError = true;
1127 return;
1130 if (*s == '.') {
1131 checkSeparator(TokLoc, s, CSK_AfterDigits);
1132 s++;
1133 radix = 10;
1134 saw_period = true;
1135 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1136 s = SkipDigits(s); // Skip suffix.
1138 if (*s == 'e' || *s == 'E') { // exponent
1139 checkSeparator(TokLoc, s, CSK_AfterDigits);
1140 const char *Exponent = s;
1141 s++;
1142 radix = 10;
1143 saw_exponent = true;
1144 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1145 const char *first_non_digit = SkipDigits(s);
1146 if (containsDigits(s, first_non_digit)) {
1147 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1148 s = first_non_digit;
1149 } else {
1150 if (!hadError) {
1151 Diags.Report(Lexer::AdvanceToTokenCharacter(
1152 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1153 diag::err_exponent_has_no_digits);
1154 hadError = true;
1156 return;
1161 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1162 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
1163 /// treat it as an invalid suffix.
1164 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
1165 StringRef Suffix) {
1166 if (!LangOpts.CPlusPlus11 || Suffix.empty())
1167 return false;
1169 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1170 if (Suffix[0] == '_')
1171 return true;
1173 // In C++11, there are no library suffixes.
1174 if (!LangOpts.CPlusPlus14)
1175 return false;
1177 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1178 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1179 // In C++2a "d" and "y" are used in the library.
1180 return llvm::StringSwitch<bool>(Suffix)
1181 .Cases("h", "min", "s", true)
1182 .Cases("ms", "us", "ns", true)
1183 .Cases("il", "i", "if", true)
1184 .Cases("d", "y", LangOpts.CPlusPlus20)
1185 .Default(false);
1188 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1189 const char *Pos,
1190 CheckSeparatorKind IsAfterDigits) {
1191 if (IsAfterDigits == CSK_AfterDigits) {
1192 if (Pos == ThisTokBegin)
1193 return;
1194 --Pos;
1195 } else if (Pos == ThisTokEnd)
1196 return;
1198 if (isDigitSeparator(*Pos)) {
1199 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1200 LangOpts),
1201 diag::err_digit_separator_not_between_digits)
1202 << IsAfterDigits;
1203 hadError = true;
1207 /// ParseNumberStartingWithZero - This method is called when the first character
1208 /// of the number is found to be a zero. This means it is either an octal
1209 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1210 /// a floating point number (01239.123e4). Eat the prefix, determining the
1211 /// radix etc.
1212 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1213 assert(s[0] == '0' && "Invalid method call");
1214 s++;
1216 int c1 = s[0];
1218 // Handle a hex number like 0x1234.
1219 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1220 s++;
1221 assert(s < ThisTokEnd && "didn't maximally munch?");
1222 radix = 16;
1223 DigitsBegin = s;
1224 s = SkipHexDigits(s);
1225 bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1226 if (s == ThisTokEnd) {
1227 // Done.
1228 } else if (*s == '.') {
1229 s++;
1230 saw_period = true;
1231 const char *floatDigitsBegin = s;
1232 s = SkipHexDigits(s);
1233 if (containsDigits(floatDigitsBegin, s))
1234 HasSignificandDigits = true;
1235 if (HasSignificandDigits)
1236 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1239 if (!HasSignificandDigits) {
1240 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1241 LangOpts),
1242 diag::err_hex_constant_requires)
1243 << LangOpts.CPlusPlus << 1;
1244 hadError = true;
1245 return;
1248 // A binary exponent can appear with or with a '.'. If dotted, the
1249 // binary exponent is required.
1250 if (*s == 'p' || *s == 'P') {
1251 checkSeparator(TokLoc, s, CSK_AfterDigits);
1252 const char *Exponent = s;
1253 s++;
1254 saw_exponent = true;
1255 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1256 const char *first_non_digit = SkipDigits(s);
1257 if (!containsDigits(s, first_non_digit)) {
1258 if (!hadError) {
1259 Diags.Report(Lexer::AdvanceToTokenCharacter(
1260 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1261 diag::err_exponent_has_no_digits);
1262 hadError = true;
1264 return;
1266 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1267 s = first_non_digit;
1269 if (!LangOpts.HexFloats)
1270 Diags.Report(TokLoc, LangOpts.CPlusPlus
1271 ? diag::ext_hex_literal_invalid
1272 : diag::ext_hex_constant_invalid);
1273 else if (LangOpts.CPlusPlus17)
1274 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1275 } else if (saw_period) {
1276 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1277 LangOpts),
1278 diag::err_hex_constant_requires)
1279 << LangOpts.CPlusPlus << 0;
1280 hadError = true;
1282 return;
1285 // Handle simple binary numbers 0b01010
1286 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1287 // 0b101010 is a C++1y / GCC extension.
1288 Diags.Report(TokLoc, LangOpts.CPlusPlus14
1289 ? diag::warn_cxx11_compat_binary_literal
1290 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14
1291 : diag::ext_binary_literal);
1292 ++s;
1293 assert(s < ThisTokEnd && "didn't maximally munch?");
1294 radix = 2;
1295 DigitsBegin = s;
1296 s = SkipBinaryDigits(s);
1297 if (s == ThisTokEnd) {
1298 // Done.
1299 } else if (isHexDigit(*s) &&
1300 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1301 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1302 LangOpts),
1303 diag::err_invalid_digit)
1304 << StringRef(s, 1) << 2;
1305 hadError = true;
1307 // Other suffixes will be diagnosed by the caller.
1308 return;
1311 // For now, the radix is set to 8. If we discover that we have a
1312 // floating point constant, the radix will change to 10. Octal floating
1313 // point constants are not permitted (only decimal and hexadecimal).
1314 radix = 8;
1315 const char *PossibleNewDigitStart = s;
1316 s = SkipOctalDigits(s);
1317 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1318 // as the start of the digits. So if skipping octal digits does not skip
1319 // anything, we leave the digit start where it was.
1320 if (s != PossibleNewDigitStart)
1321 DigitsBegin = PossibleNewDigitStart;
1323 if (s == ThisTokEnd)
1324 return; // Done, simple octal number like 01234
1326 // If we have some other non-octal digit that *is* a decimal digit, see if
1327 // this is part of a floating point number like 094.123 or 09e1.
1328 if (isDigit(*s)) {
1329 const char *EndDecimal = SkipDigits(s);
1330 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1331 s = EndDecimal;
1332 radix = 10;
1336 ParseDecimalOrOctalCommon(TokLoc);
1339 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1340 switch (Radix) {
1341 case 2:
1342 return NumDigits <= 64;
1343 case 8:
1344 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1345 case 10:
1346 return NumDigits <= 19; // floor(log10(2^64))
1347 case 16:
1348 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1349 default:
1350 llvm_unreachable("impossible Radix");
1354 /// GetIntegerValue - Convert this numeric literal value to an APInt that
1355 /// matches Val's input width. If there is an overflow, set Val to the low bits
1356 /// of the result and return true. Otherwise, return false.
1357 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1358 // Fast path: Compute a conservative bound on the maximum number of
1359 // bits per digit in this radix. If we can't possibly overflow a
1360 // uint64 based on that bound then do the simple conversion to
1361 // integer. This avoids the expensive overflow checking below, and
1362 // handles the common cases that matter (small decimal integers and
1363 // hex/octal values which don't overflow).
1364 const unsigned NumDigits = SuffixBegin - DigitsBegin;
1365 if (alwaysFitsInto64Bits(radix, NumDigits)) {
1366 uint64_t N = 0;
1367 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1368 if (!isDigitSeparator(*Ptr))
1369 N = N * radix + llvm::hexDigitValue(*Ptr);
1371 // This will truncate the value to Val's input width. Simply check
1372 // for overflow by comparing.
1373 Val = N;
1374 return Val.getZExtValue() != N;
1377 Val = 0;
1378 const char *Ptr = DigitsBegin;
1380 llvm::APInt RadixVal(Val.getBitWidth(), radix);
1381 llvm::APInt CharVal(Val.getBitWidth(), 0);
1382 llvm::APInt OldVal = Val;
1384 bool OverflowOccurred = false;
1385 while (Ptr < SuffixBegin) {
1386 if (isDigitSeparator(*Ptr)) {
1387 ++Ptr;
1388 continue;
1391 unsigned C = llvm::hexDigitValue(*Ptr++);
1393 // If this letter is out of bound for this radix, reject it.
1394 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1396 CharVal = C;
1398 // Add the digit to the value in the appropriate radix. If adding in digits
1399 // made the value smaller, then this overflowed.
1400 OldVal = Val;
1402 // Multiply by radix, did overflow occur on the multiply?
1403 Val *= RadixVal;
1404 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1406 // Add value, did overflow occur on the value?
1407 // (a + b) ult b <=> overflow
1408 Val += CharVal;
1409 OverflowOccurred |= Val.ult(CharVal);
1411 return OverflowOccurred;
1414 llvm::APFloat::opStatus
1415 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
1416 using llvm::APFloat;
1418 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1420 llvm::SmallString<16> Buffer;
1421 StringRef Str(ThisTokBegin, n);
1422 if (Str.contains('\'')) {
1423 Buffer.reserve(n);
1424 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1425 &isDigitSeparator);
1426 Str = Buffer;
1429 auto StatusOrErr =
1430 Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
1431 assert(StatusOrErr && "Invalid floating point representation");
1432 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1433 : APFloat::opInvalidOp;
1436 static inline bool IsExponentPart(char c) {
1437 return c == 'p' || c == 'P' || c == 'e' || c == 'E';
1440 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1441 assert(radix == 16 || radix == 10);
1443 // Find how many digits are needed to store the whole literal.
1444 unsigned NumDigits = SuffixBegin - DigitsBegin;
1445 if (saw_period) --NumDigits;
1447 // Initial scan of the exponent if it exists
1448 bool ExpOverflowOccurred = false;
1449 bool NegativeExponent = false;
1450 const char *ExponentBegin;
1451 uint64_t Exponent = 0;
1452 int64_t BaseShift = 0;
1453 if (saw_exponent) {
1454 const char *Ptr = DigitsBegin;
1456 while (!IsExponentPart(*Ptr)) ++Ptr;
1457 ExponentBegin = Ptr;
1458 ++Ptr;
1459 NegativeExponent = *Ptr == '-';
1460 if (NegativeExponent) ++Ptr;
1462 unsigned NumExpDigits = SuffixBegin - Ptr;
1463 if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1464 llvm::StringRef ExpStr(Ptr, NumExpDigits);
1465 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1466 Exponent = ExpInt.getZExtValue();
1467 } else {
1468 ExpOverflowOccurred = true;
1471 if (NegativeExponent) BaseShift -= Exponent;
1472 else BaseShift += Exponent;
1475 // Number of bits needed for decimal literal is
1476 // ceil(NumDigits * log2(10)) Integral part
1477 // + Scale Fractional part
1478 // + ceil(Exponent * log2(10)) Exponent
1479 // --------------------------------------------------
1480 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1482 // But for simplicity in handling integers, we can round up log2(10) to 4,
1483 // making:
1484 // 4 * (NumDigits + Exponent) + Scale
1486 // Number of digits needed for hexadecimal literal is
1487 // 4 * NumDigits Integral part
1488 // + Scale Fractional part
1489 // + Exponent Exponent
1490 // --------------------------------------------------
1491 // (4 * NumDigits) + Scale + Exponent
1492 uint64_t NumBitsNeeded;
1493 if (radix == 10)
1494 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1495 else
1496 NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1498 if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1499 ExpOverflowOccurred = true;
1500 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1502 bool FoundDecimal = false;
1504 int64_t FractBaseShift = 0;
1505 const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1506 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1507 if (*Ptr == '.') {
1508 FoundDecimal = true;
1509 continue;
1512 // Normal reading of an integer
1513 unsigned C = llvm::hexDigitValue(*Ptr);
1514 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1516 Val *= radix;
1517 Val += C;
1519 if (FoundDecimal)
1520 // Keep track of how much we will need to adjust this value by from the
1521 // number of digits past the radix point.
1522 --FractBaseShift;
1525 // For a radix of 16, we will be multiplying by 2 instead of 16.
1526 if (radix == 16) FractBaseShift *= 4;
1527 BaseShift += FractBaseShift;
1529 Val <<= Scale;
1531 uint64_t Base = (radix == 16) ? 2 : 10;
1532 if (BaseShift > 0) {
1533 for (int64_t i = 0; i < BaseShift; ++i) {
1534 Val *= Base;
1536 } else if (BaseShift < 0) {
1537 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1538 Val = Val.udiv(Base);
1541 bool IntOverflowOccurred = false;
1542 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1543 if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1544 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1545 StoreVal = Val.trunc(StoreVal.getBitWidth());
1546 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1547 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1548 StoreVal = Val.zext(StoreVal.getBitWidth());
1549 } else {
1550 StoreVal = Val;
1553 return IntOverflowOccurred || ExpOverflowOccurred;
1556 /// \verbatim
1557 /// user-defined-character-literal: [C++11 lex.ext]
1558 /// character-literal ud-suffix
1559 /// ud-suffix:
1560 /// identifier
1561 /// character-literal: [C++11 lex.ccon]
1562 /// ' c-char-sequence '
1563 /// u' c-char-sequence '
1564 /// U' c-char-sequence '
1565 /// L' c-char-sequence '
1566 /// u8' c-char-sequence ' [C++1z lex.ccon]
1567 /// c-char-sequence:
1568 /// c-char
1569 /// c-char-sequence c-char
1570 /// c-char:
1571 /// any member of the source character set except the single-quote ',
1572 /// backslash \, or new-line character
1573 /// escape-sequence
1574 /// universal-character-name
1575 /// escape-sequence:
1576 /// simple-escape-sequence
1577 /// octal-escape-sequence
1578 /// hexadecimal-escape-sequence
1579 /// simple-escape-sequence:
1580 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1581 /// octal-escape-sequence:
1582 /// \ octal-digit
1583 /// \ octal-digit octal-digit
1584 /// \ octal-digit octal-digit octal-digit
1585 /// hexadecimal-escape-sequence:
1586 /// \x hexadecimal-digit
1587 /// hexadecimal-escape-sequence hexadecimal-digit
1588 /// universal-character-name: [C++11 lex.charset]
1589 /// \u hex-quad
1590 /// \U hex-quad hex-quad
1591 /// hex-quad:
1592 /// hex-digit hex-digit hex-digit hex-digit
1593 /// \endverbatim
1595 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1596 SourceLocation Loc, Preprocessor &PP,
1597 tok::TokenKind kind) {
1598 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1599 HadError = false;
1601 Kind = kind;
1603 const char *TokBegin = begin;
1605 // Skip over wide character determinant.
1606 if (Kind != tok::char_constant)
1607 ++begin;
1608 if (Kind == tok::utf8_char_constant)
1609 ++begin;
1611 // Skip over the entry quote.
1612 if (begin[0] != '\'') {
1613 PP.Diag(Loc, diag::err_lexing_char);
1614 HadError = true;
1615 return;
1618 ++begin;
1620 // Remove an optional ud-suffix.
1621 if (end[-1] != '\'') {
1622 const char *UDSuffixEnd = end;
1623 do {
1624 --end;
1625 } while (end[-1] != '\'');
1626 // FIXME: Don't bother with this if !tok.hasUCN().
1627 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1628 UDSuffixOffset = end - TokBegin;
1631 // Trim the ending quote.
1632 assert(end != begin && "Invalid token lexed");
1633 --end;
1635 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1636 // up to 64-bits.
1637 // FIXME: This extensively assumes that 'char' is 8-bits.
1638 assert(PP.getTargetInfo().getCharWidth() == 8 &&
1639 "Assumes char is 8 bits");
1640 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1641 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1642 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1643 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1644 "Assumes sizeof(wchar) on target is <= 64");
1646 SmallVector<uint32_t, 4> codepoint_buffer;
1647 codepoint_buffer.resize(end - begin);
1648 uint32_t *buffer_begin = &codepoint_buffer.front();
1649 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1651 // Unicode escapes representing characters that cannot be correctly
1652 // represented in a single code unit are disallowed in character literals
1653 // by this implementation.
1654 uint32_t largest_character_for_kind;
1655 if (tok::wide_char_constant == Kind) {
1656 largest_character_for_kind =
1657 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1658 } else if (tok::utf8_char_constant == Kind) {
1659 largest_character_for_kind = 0x7F;
1660 } else if (tok::utf16_char_constant == Kind) {
1661 largest_character_for_kind = 0xFFFF;
1662 } else if (tok::utf32_char_constant == Kind) {
1663 largest_character_for_kind = 0x10FFFF;
1664 } else {
1665 largest_character_for_kind = 0x7Fu;
1668 while (begin != end) {
1669 // Is this a span of non-escape characters?
1670 if (begin[0] != '\\') {
1671 char const *start = begin;
1672 do {
1673 ++begin;
1674 } while (begin != end && *begin != '\\');
1676 char const *tmp_in_start = start;
1677 uint32_t *tmp_out_start = buffer_begin;
1678 llvm::ConversionResult res =
1679 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1680 reinterpret_cast<llvm::UTF8 const *>(begin),
1681 &buffer_begin, buffer_end, llvm::strictConversion);
1682 if (res != llvm::conversionOK) {
1683 // If we see bad encoding for unprefixed character literals, warn and
1684 // simply copy the byte values, for compatibility with gcc and
1685 // older versions of clang.
1686 bool NoErrorOnBadEncoding = isOrdinary();
1687 unsigned Msg = diag::err_bad_character_encoding;
1688 if (NoErrorOnBadEncoding)
1689 Msg = diag::warn_bad_character_encoding;
1690 PP.Diag(Loc, Msg);
1691 if (NoErrorOnBadEncoding) {
1692 start = tmp_in_start;
1693 buffer_begin = tmp_out_start;
1694 for (; start != begin; ++start, ++buffer_begin)
1695 *buffer_begin = static_cast<uint8_t>(*start);
1696 } else {
1697 HadError = true;
1699 } else {
1700 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1701 if (*tmp_out_start > largest_character_for_kind) {
1702 HadError = true;
1703 PP.Diag(Loc, diag::err_character_too_large);
1708 continue;
1710 // Is this a Universal Character Name escape?
1711 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') {
1712 unsigned short UcnLen = 0;
1713 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1714 FullSourceLoc(Loc, PP.getSourceManager()),
1715 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1716 HadError = true;
1717 } else if (*buffer_begin > largest_character_for_kind) {
1718 HadError = true;
1719 PP.Diag(Loc, diag::err_character_too_large);
1722 ++buffer_begin;
1723 continue;
1725 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1726 uint64_t result =
1727 ProcessCharEscape(TokBegin, begin, end, HadError,
1728 FullSourceLoc(Loc,PP.getSourceManager()),
1729 CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1730 *buffer_begin++ = result;
1733 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1735 if (NumCharsSoFar > 1) {
1736 if (isOrdinary() && NumCharsSoFar == 4)
1737 PP.Diag(Loc, diag::warn_four_char_character_literal);
1738 else if (isOrdinary())
1739 PP.Diag(Loc, diag::warn_multichar_character_literal);
1740 else {
1741 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1742 HadError = true;
1744 IsMultiChar = true;
1745 } else {
1746 IsMultiChar = false;
1749 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1751 // Narrow character literals act as though their value is concatenated
1752 // in this implementation, but warn on overflow.
1753 bool multi_char_too_long = false;
1754 if (isOrdinary() && isMultiChar()) {
1755 LitVal = 0;
1756 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1757 // check for enough leading zeros to shift into
1758 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1759 LitVal <<= 8;
1760 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1762 } else if (NumCharsSoFar > 0) {
1763 // otherwise just take the last character
1764 LitVal = buffer_begin[-1];
1767 if (!HadError && multi_char_too_long) {
1768 PP.Diag(Loc, diag::warn_char_constant_too_large);
1771 // Transfer the value from APInt to uint64_t
1772 Value = LitVal.getZExtValue();
1774 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1775 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1776 // character constants are not sign extended in the this implementation:
1777 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1778 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) &&
1779 PP.getLangOpts().CharIsSigned)
1780 Value = (signed char)Value;
1783 /// \verbatim
1784 /// string-literal: [C++0x lex.string]
1785 /// encoding-prefix " [s-char-sequence] "
1786 /// encoding-prefix R raw-string
1787 /// encoding-prefix:
1788 /// u8
1789 /// u
1790 /// U
1791 /// L
1792 /// s-char-sequence:
1793 /// s-char
1794 /// s-char-sequence s-char
1795 /// s-char:
1796 /// any member of the source character set except the double-quote ",
1797 /// backslash \, or new-line character
1798 /// escape-sequence
1799 /// universal-character-name
1800 /// raw-string:
1801 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1802 /// r-char-sequence:
1803 /// r-char
1804 /// r-char-sequence r-char
1805 /// r-char:
1806 /// any member of the source character set, except a right parenthesis )
1807 /// followed by the initial d-char-sequence (which may be empty)
1808 /// followed by a double quote ".
1809 /// d-char-sequence:
1810 /// d-char
1811 /// d-char-sequence d-char
1812 /// d-char:
1813 /// any member of the basic source character set except:
1814 /// space, the left parenthesis (, the right parenthesis ),
1815 /// the backslash \, and the control characters representing horizontal
1816 /// tab, vertical tab, form feed, and newline.
1817 /// escape-sequence: [C++0x lex.ccon]
1818 /// simple-escape-sequence
1819 /// octal-escape-sequence
1820 /// hexadecimal-escape-sequence
1821 /// simple-escape-sequence:
1822 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1823 /// octal-escape-sequence:
1824 /// \ octal-digit
1825 /// \ octal-digit octal-digit
1826 /// \ octal-digit octal-digit octal-digit
1827 /// hexadecimal-escape-sequence:
1828 /// \x hexadecimal-digit
1829 /// hexadecimal-escape-sequence hexadecimal-digit
1830 /// universal-character-name:
1831 /// \u hex-quad
1832 /// \U hex-quad hex-quad
1833 /// hex-quad:
1834 /// hex-digit hex-digit hex-digit hex-digit
1835 /// \endverbatim
1837 StringLiteralParser::
1838 StringLiteralParser(ArrayRef<Token> StringToks,
1839 Preprocessor &PP)
1840 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1841 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1842 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1843 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1844 init(StringToks);
1847 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1848 // The literal token may have come from an invalid source location (e.g. due
1849 // to a PCH error), in which case the token length will be 0.
1850 if (StringToks.empty() || StringToks[0].getLength() < 2)
1851 return DiagnoseLexingError(SourceLocation());
1853 // Scan all of the string portions, remember the max individual token length,
1854 // computing a bound on the concatenated string length, and see whether any
1855 // piece is a wide-string. If any of the string portions is a wide-string
1856 // literal, the result is a wide-string literal [C99 6.4.5p4].
1857 assert(!StringToks.empty() && "expected at least one token");
1858 MaxTokenLength = StringToks[0].getLength();
1859 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1860 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1861 Kind = StringToks[0].getKind();
1863 hadError = false;
1865 // Implement Translation Phase #6: concatenation of string literals
1866 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1867 for (unsigned i = 1; i != StringToks.size(); ++i) {
1868 if (StringToks[i].getLength() < 2)
1869 return DiagnoseLexingError(StringToks[i].getLocation());
1871 // The string could be shorter than this if it needs cleaning, but this is a
1872 // reasonable bound, which is all we need.
1873 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1874 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1876 // Remember maximum string piece length.
1877 if (StringToks[i].getLength() > MaxTokenLength)
1878 MaxTokenLength = StringToks[i].getLength();
1880 // Remember if we see any wide or utf-8/16/32 strings.
1881 // Also check for illegal concatenations.
1882 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1883 if (isOrdinary()) {
1884 Kind = StringToks[i].getKind();
1885 } else {
1886 if (Diags)
1887 Diags->Report(StringToks[i].getLocation(),
1888 diag::err_unsupported_string_concat);
1889 hadError = true;
1894 // Include space for the null terminator.
1895 ++SizeBound;
1897 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1899 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1900 CharByteWidth = getCharWidth(Kind, Target);
1901 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1902 CharByteWidth /= 8;
1904 // The output buffer size needs to be large enough to hold wide characters.
1905 // This is a worst-case assumption which basically corresponds to L"" "long".
1906 SizeBound *= CharByteWidth;
1908 // Size the temporary buffer to hold the result string data.
1909 ResultBuf.resize(SizeBound);
1911 // Likewise, but for each string piece.
1912 SmallString<512> TokenBuf;
1913 TokenBuf.resize(MaxTokenLength);
1915 // Loop over all the strings, getting their spelling, and expanding them to
1916 // wide strings as appropriate.
1917 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1919 Pascal = false;
1921 SourceLocation UDSuffixTokLoc;
1923 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1924 const char *ThisTokBuf = &TokenBuf[0];
1925 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1926 // that ThisTokBuf points to a buffer that is big enough for the whole token
1927 // and 'spelled' tokens can only shrink.
1928 bool StringInvalid = false;
1929 unsigned ThisTokLen =
1930 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1931 &StringInvalid);
1932 if (StringInvalid)
1933 return DiagnoseLexingError(StringToks[i].getLocation());
1935 const char *ThisTokBegin = ThisTokBuf;
1936 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1938 // Remove an optional ud-suffix.
1939 if (ThisTokEnd[-1] != '"') {
1940 const char *UDSuffixEnd = ThisTokEnd;
1941 do {
1942 --ThisTokEnd;
1943 } while (ThisTokEnd[-1] != '"');
1945 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1947 if (UDSuffixBuf.empty()) {
1948 if (StringToks[i].hasUCN())
1949 expandUCNs(UDSuffixBuf, UDSuffix);
1950 else
1951 UDSuffixBuf.assign(UDSuffix);
1952 UDSuffixToken = i;
1953 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1954 UDSuffixTokLoc = StringToks[i].getLocation();
1955 } else {
1956 SmallString<32> ExpandedUDSuffix;
1957 if (StringToks[i].hasUCN()) {
1958 expandUCNs(ExpandedUDSuffix, UDSuffix);
1959 UDSuffix = ExpandedUDSuffix;
1962 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1963 // result of a concatenation involving at least one user-defined-string-
1964 // literal, all the participating user-defined-string-literals shall
1965 // have the same ud-suffix.
1966 if (UDSuffixBuf != UDSuffix) {
1967 if (Diags) {
1968 SourceLocation TokLoc = StringToks[i].getLocation();
1969 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1970 << UDSuffixBuf << UDSuffix
1971 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1972 << SourceRange(TokLoc, TokLoc);
1974 hadError = true;
1979 // Strip the end quote.
1980 --ThisTokEnd;
1982 // TODO: Input character set mapping support.
1984 // Skip marker for wide or unicode strings.
1985 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1986 ++ThisTokBuf;
1987 // Skip 8 of u8 marker for utf8 strings.
1988 if (ThisTokBuf[0] == '8')
1989 ++ThisTokBuf;
1992 // Check for raw string
1993 if (ThisTokBuf[0] == 'R') {
1994 if (ThisTokBuf[1] != '"') {
1995 // The file may have come from PCH and then changed after loading the
1996 // PCH; Fail gracefully.
1997 return DiagnoseLexingError(StringToks[i].getLocation());
1999 ThisTokBuf += 2; // skip R"
2001 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2002 // characters.
2003 constexpr unsigned MaxRawStrDelimLen = 16;
2005 const char *Prefix = ThisTokBuf;
2006 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
2007 ThisTokBuf[0] != '(')
2008 ++ThisTokBuf;
2009 if (ThisTokBuf[0] != '(')
2010 return DiagnoseLexingError(StringToks[i].getLocation());
2011 ++ThisTokBuf; // skip '('
2013 // Remove same number of characters from the end
2014 ThisTokEnd -= ThisTokBuf - Prefix;
2015 if (ThisTokEnd < ThisTokBuf)
2016 return DiagnoseLexingError(StringToks[i].getLocation());
2018 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2019 // results in a new-line in the resulting execution string-literal.
2020 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
2021 while (!RemainingTokenSpan.empty()) {
2022 // Split the string literal on \r\n boundaries.
2023 size_t CRLFPos = RemainingTokenSpan.find("\r\n");
2024 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
2025 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
2027 // Copy everything before the \r\n sequence into the string literal.
2028 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
2029 hadError = true;
2031 // Point into the \n inside the \r\n sequence and operate on the
2032 // remaining portion of the literal.
2033 RemainingTokenSpan = AfterCRLF.substr(1);
2035 } else {
2036 if (ThisTokBuf[0] != '"') {
2037 // The file may have come from PCH and then changed after loading the
2038 // PCH; Fail gracefully.
2039 return DiagnoseLexingError(StringToks[i].getLocation());
2041 ++ThisTokBuf; // skip "
2043 // Check if this is a pascal string
2044 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
2045 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
2047 // If the \p sequence is found in the first token, we have a pascal string
2048 // Otherwise, if we already have a pascal string, ignore the first \p
2049 if (i == 0) {
2050 ++ThisTokBuf;
2051 Pascal = true;
2052 } else if (Pascal)
2053 ThisTokBuf += 2;
2056 while (ThisTokBuf != ThisTokEnd) {
2057 // Is this a span of non-escape characters?
2058 if (ThisTokBuf[0] != '\\') {
2059 const char *InStart = ThisTokBuf;
2060 do {
2061 ++ThisTokBuf;
2062 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
2064 // Copy the character span over.
2065 if (CopyStringFragment(StringToks[i], ThisTokBegin,
2066 StringRef(InStart, ThisTokBuf - InStart)))
2067 hadError = true;
2068 continue;
2070 // Is this a Universal Character Name escape?
2071 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' ||
2072 ThisTokBuf[1] == 'N') {
2073 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
2074 ResultPtr, hadError,
2075 FullSourceLoc(StringToks[i].getLocation(), SM),
2076 CharByteWidth, Diags, Features);
2077 continue;
2079 // Otherwise, this is a non-UCN escape character. Process it.
2080 unsigned ResultChar =
2081 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
2082 FullSourceLoc(StringToks[i].getLocation(), SM),
2083 CharByteWidth*8, Diags, Features);
2085 if (CharByteWidth == 4) {
2086 // FIXME: Make the type of the result buffer correct instead of
2087 // using reinterpret_cast.
2088 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
2089 *ResultWidePtr = ResultChar;
2090 ResultPtr += 4;
2091 } else if (CharByteWidth == 2) {
2092 // FIXME: Make the type of the result buffer correct instead of
2093 // using reinterpret_cast.
2094 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
2095 *ResultWidePtr = ResultChar & 0xFFFF;
2096 ResultPtr += 2;
2097 } else {
2098 assert(CharByteWidth == 1 && "Unexpected char width");
2099 *ResultPtr++ = ResultChar & 0xFF;
2105 if (Pascal) {
2106 if (CharByteWidth == 4) {
2107 // FIXME: Make the type of the result buffer correct instead of
2108 // using reinterpret_cast.
2109 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
2110 ResultWidePtr[0] = GetNumStringChars() - 1;
2111 } else if (CharByteWidth == 2) {
2112 // FIXME: Make the type of the result buffer correct instead of
2113 // using reinterpret_cast.
2114 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
2115 ResultWidePtr[0] = GetNumStringChars() - 1;
2116 } else {
2117 assert(CharByteWidth == 1 && "Unexpected char width");
2118 ResultBuf[0] = GetNumStringChars() - 1;
2121 // Verify that pascal strings aren't too large.
2122 if (GetStringLength() > 256) {
2123 if (Diags)
2124 Diags->Report(StringToks.front().getLocation(),
2125 diag::err_pascal_string_too_long)
2126 << SourceRange(StringToks.front().getLocation(),
2127 StringToks.back().getLocation());
2128 hadError = true;
2129 return;
2131 } else if (Diags) {
2132 // Complain if this string literal has too many characters.
2133 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
2135 if (GetNumStringChars() > MaxChars)
2136 Diags->Report(StringToks.front().getLocation(),
2137 diag::ext_string_too_long)
2138 << GetNumStringChars() << MaxChars
2139 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
2140 << SourceRange(StringToks.front().getLocation(),
2141 StringToks.back().getLocation());
2145 static const char *resyncUTF8(const char *Err, const char *End) {
2146 if (Err == End)
2147 return End;
2148 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
2149 while (++Err != End && (*Err & 0xC0) == 0x80)
2151 return Err;
2154 /// This function copies from Fragment, which is a sequence of bytes
2155 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
2156 /// Performs widening for multi-byte characters.
2157 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2158 const char *TokBegin,
2159 StringRef Fragment) {
2160 const llvm::UTF8 *ErrorPtrTmp;
2161 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
2162 return false;
2164 // If we see bad encoding for unprefixed string literals, warn and
2165 // simply copy the byte values, for compatibility with gcc and older
2166 // versions of clang.
2167 bool NoErrorOnBadEncoding = isOrdinary();
2168 if (NoErrorOnBadEncoding) {
2169 memcpy(ResultPtr, Fragment.data(), Fragment.size());
2170 ResultPtr += Fragment.size();
2173 if (Diags) {
2174 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2176 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2177 const DiagnosticBuilder &Builder =
2178 Diag(Diags, Features, SourceLoc, TokBegin,
2179 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2180 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2181 : diag::err_bad_string_encoding);
2183 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2184 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2186 // Decode into a dummy buffer.
2187 SmallString<512> Dummy;
2188 Dummy.reserve(Fragment.size() * CharByteWidth);
2189 char *Ptr = Dummy.data();
2191 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2192 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2193 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2194 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2195 ErrorPtr, NextStart);
2196 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2199 return !NoErrorOnBadEncoding;
2202 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2203 hadError = true;
2204 if (Diags)
2205 Diags->Report(Loc, diag::err_lexing_string);
2208 /// getOffsetOfStringByte - This function returns the offset of the
2209 /// specified byte of the string data represented by Token. This handles
2210 /// advancing over escape sequences in the string.
2211 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2212 unsigned ByteNo) const {
2213 // Get the spelling of the token.
2214 SmallString<32> SpellingBuffer;
2215 SpellingBuffer.resize(Tok.getLength());
2217 bool StringInvalid = false;
2218 const char *SpellingPtr = &SpellingBuffer[0];
2219 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2220 &StringInvalid);
2221 if (StringInvalid)
2222 return 0;
2224 const char *SpellingStart = SpellingPtr;
2225 const char *SpellingEnd = SpellingPtr+TokLen;
2227 // Handle UTF-8 strings just like narrow strings.
2228 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2229 SpellingPtr += 2;
2231 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2232 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2234 // For raw string literals, this is easy.
2235 if (SpellingPtr[0] == 'R') {
2236 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2237 // Skip 'R"'.
2238 SpellingPtr += 2;
2239 while (*SpellingPtr != '(') {
2240 ++SpellingPtr;
2241 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2243 // Skip '('.
2244 ++SpellingPtr;
2245 return SpellingPtr - SpellingStart + ByteNo;
2248 // Skip over the leading quote
2249 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2250 ++SpellingPtr;
2252 // Skip over bytes until we find the offset we're looking for.
2253 while (ByteNo) {
2254 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2256 // Step over non-escapes simply.
2257 if (*SpellingPtr != '\\') {
2258 ++SpellingPtr;
2259 --ByteNo;
2260 continue;
2263 // Otherwise, this is an escape character. Advance over it.
2264 bool HadError = false;
2265 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' ||
2266 SpellingPtr[1] == 'N') {
2267 const char *EscapePtr = SpellingPtr;
2268 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2269 1, Features, HadError);
2270 if (Len > ByteNo) {
2271 // ByteNo is somewhere within the escape sequence.
2272 SpellingPtr = EscapePtr;
2273 break;
2275 ByteNo -= Len;
2276 } else {
2277 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2278 FullSourceLoc(Tok.getLocation(), SM),
2279 CharByteWidth*8, Diags, Features);
2280 --ByteNo;
2282 assert(!HadError && "This method isn't valid on erroneous strings");
2285 return SpellingPtr-SpellingStart;
2288 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2289 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
2290 /// treat it as an invalid suffix.
2291 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2292 StringRef Suffix) {
2293 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2294 Suffix == "sv";