[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / RegBankSelect.cpp
blob07eece77143fed6d6a5fa535fdb8d03da9605115
1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
49 #define DEBUG_TYPE "regbankselect"
51 using namespace llvm;
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56 "Run the Fast mode (default mapping)"),
57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58 "Use the Greedy mode (best local mapping)")));
60 char RegBankSelect::ID = 0;
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63 "Assign register bank of generic virtual registers",
64 false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69 "Assign register bank of generic virtual registers", false,
70 false)
72 RegBankSelect::RegBankSelect(Mode RunningMode)
73 : MachineFunctionPass(ID), OptMode(RunningMode) {
74 if (RegBankSelectMode.getNumOccurrences() != 0) {
75 OptMode = RegBankSelectMode;
76 if (RegBankSelectMode != RunningMode)
77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
81 void RegBankSelect::init(MachineFunction &MF) {
82 RBI = MF.getSubtarget().getRegBankInfo();
83 assert(RBI && "Cannot work without RegisterBankInfo");
84 MRI = &MF.getRegInfo();
85 TRI = MF.getSubtarget().getRegisterInfo();
86 TPC = &getAnalysis<TargetPassConfig>();
87 if (OptMode != Mode::Fast) {
88 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
89 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
90 } else {
91 MBFI = nullptr;
92 MBPI = nullptr;
94 MIRBuilder.setMF(MF);
95 MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
99 if (OptMode != Mode::Fast) {
100 // We could preserve the information from these two analysis but
101 // the APIs do not allow to do so yet.
102 AU.addRequired<MachineBlockFrequencyInfo>();
103 AU.addRequired<MachineBranchProbabilityInfo>();
105 AU.addRequired<TargetPassConfig>();
106 getSelectionDAGFallbackAnalysisUsage(AU);
107 MachineFunctionPass::getAnalysisUsage(AU);
110 bool RegBankSelect::assignmentMatch(
111 Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112 bool &OnlyAssign) const {
113 // By default we assume we will have to repair something.
114 OnlyAssign = false;
115 // Each part of a break down needs to end up in a different register.
116 // In other word, Reg assignment does not match.
117 if (ValMapping.NumBreakDowns != 1)
118 return false;
120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
122 // Reg is free of assignment, a simple assignment will make the
123 // register bank to match.
124 OnlyAssign = CurRegBank == nullptr;
125 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127 dbgs() << " against ";
128 assert(DesiredRegBank && "The mapping must be valid");
129 dbgs() << *DesiredRegBank << '\n';);
130 return CurRegBank == DesiredRegBank;
133 bool RegBankSelect::repairReg(
134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
135 RegBankSelect::RepairingPlacement &RepairPt,
136 const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
138 assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
139 "need new vreg for each breakdown");
141 // An empty range of new register means no repairing.
142 assert(!NewVRegs.empty() && "We should not have to repair");
144 MachineInstr *MI;
145 if (ValMapping.NumBreakDowns == 1) {
146 // Assume we are repairing a use and thus, the original reg will be
147 // the source of the repairing.
148 Register Src = MO.getReg();
149 Register Dst = *NewVRegs.begin();
151 // If we repair a definition, swap the source and destination for
152 // the repairing.
153 if (MO.isDef())
154 std::swap(Src, Dst);
156 assert((RepairPt.getNumInsertPoints() == 1 ||
157 Register::isPhysicalRegister(Dst)) &&
158 "We are about to create several defs for Dst");
160 // Build the instruction used to repair, then clone it at the right
161 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
162 // same types because the type is a placeholder when this function is called.
163 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
164 .addDef(Dst)
165 .addUse(Src);
166 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
167 << '\n');
168 } else {
169 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
170 // sequence.
171 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
173 LLT RegTy = MRI->getType(MO.getReg());
174 if (MO.isDef()) {
175 unsigned MergeOp;
176 if (RegTy.isVector()) {
177 if (ValMapping.NumBreakDowns == RegTy.getNumElements())
178 MergeOp = TargetOpcode::G_BUILD_VECTOR;
179 else {
180 assert(
181 (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
182 RegTy.getSizeInBits()) &&
183 (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
184 0) &&
185 "don't understand this value breakdown");
187 MergeOp = TargetOpcode::G_CONCAT_VECTORS;
189 } else
190 MergeOp = TargetOpcode::G_MERGE_VALUES;
192 auto MergeBuilder =
193 MIRBuilder.buildInstrNoInsert(MergeOp)
194 .addDef(MO.getReg());
196 for (Register SrcReg : NewVRegs)
197 MergeBuilder.addUse(SrcReg);
199 MI = MergeBuilder;
200 } else {
201 MachineInstrBuilder UnMergeBuilder =
202 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
203 for (Register DefReg : NewVRegs)
204 UnMergeBuilder.addDef(DefReg);
206 UnMergeBuilder.addUse(MO.getReg());
207 MI = UnMergeBuilder;
211 if (RepairPt.getNumInsertPoints() != 1)
212 report_fatal_error("need testcase to support multiple insertion points");
214 // TODO:
215 // Check if MI is legal. if not, we need to legalize all the
216 // instructions we are going to insert.
217 std::unique_ptr<MachineInstr *[]> NewInstrs(
218 new MachineInstr *[RepairPt.getNumInsertPoints()]);
219 bool IsFirst = true;
220 unsigned Idx = 0;
221 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
222 MachineInstr *CurMI;
223 if (IsFirst)
224 CurMI = MI;
225 else
226 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
227 InsertPt->insert(*CurMI);
228 NewInstrs[Idx++] = CurMI;
229 IsFirst = false;
231 // TODO:
232 // Legalize NewInstrs if need be.
233 return true;
236 uint64_t RegBankSelect::getRepairCost(
237 const MachineOperand &MO,
238 const RegisterBankInfo::ValueMapping &ValMapping) const {
239 assert(MO.isReg() && "We should only repair register operand");
240 assert(ValMapping.NumBreakDowns && "Nothing to map??");
242 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
243 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
244 // If MO does not have a register bank, we should have just been
245 // able to set one unless we have to break the value down.
246 assert(CurRegBank || MO.isDef());
248 // Def: Val <- NewDefs
249 // Same number of values: copy
250 // Different number: Val = build_sequence Defs1, Defs2, ...
251 // Use: NewSources <- Val.
252 // Same number of values: copy.
253 // Different number: Src1, Src2, ... =
254 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
255 // We should remember that this value is available somewhere else to
256 // coalesce the value.
258 if (ValMapping.NumBreakDowns != 1)
259 return RBI->getBreakDownCost(ValMapping, CurRegBank);
261 if (IsSameNumOfValues) {
262 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
263 // If we repair a definition, swap the source and destination for
264 // the repairing.
265 if (MO.isDef())
266 std::swap(CurRegBank, DesiredRegBank);
267 // TODO: It may be possible to actually avoid the copy.
268 // If we repair something where the source is defined by a copy
269 // and the source of that copy is on the right bank, we can reuse
270 // it for free.
271 // E.g.,
272 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
273 // = op RegToRepair<BankA>
274 // We can simply propagate AlternativeSrc instead of copying RegToRepair
275 // into a new virtual register.
276 // We would also need to propagate this information in the
277 // repairing placement.
278 unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
279 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
280 // TODO: use a dedicated constant for ImpossibleCost.
281 if (Cost != std::numeric_limits<unsigned>::max())
282 return Cost;
283 // Return the legalization cost of that repairing.
285 return std::numeric_limits<unsigned>::max();
288 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
289 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
290 SmallVectorImpl<RepairingPlacement> &RepairPts) {
291 assert(!PossibleMappings.empty() &&
292 "Do not know how to map this instruction");
294 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
295 MappingCost Cost = MappingCost::ImpossibleCost();
296 SmallVector<RepairingPlacement, 4> LocalRepairPts;
297 for (const RegisterBankInfo::InstructionMapping *CurMapping :
298 PossibleMappings) {
299 MappingCost CurCost =
300 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
301 if (CurCost < Cost) {
302 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
303 Cost = CurCost;
304 BestMapping = CurMapping;
305 RepairPts.clear();
306 for (RepairingPlacement &RepairPt : LocalRepairPts)
307 RepairPts.emplace_back(std::move(RepairPt));
310 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
311 // If none of the mapping worked that means they are all impossible.
312 // Thus, pick the first one and set an impossible repairing point.
313 // It will trigger the failed isel mode.
314 BestMapping = *PossibleMappings.begin();
315 RepairPts.emplace_back(
316 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
317 } else
318 assert(BestMapping && "No suitable mapping for instruction");
319 return *BestMapping;
322 void RegBankSelect::tryAvoidingSplit(
323 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
324 const RegisterBankInfo::ValueMapping &ValMapping) const {
325 const MachineInstr &MI = *MO.getParent();
326 assert(RepairPt.hasSplit() && "We should not have to adjust for split");
327 // Splitting should only occur for PHIs or between terminators,
328 // because we only do local repairing.
329 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
331 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
332 "Repairing placement does not match operand");
334 // If we need splitting for phis, that means it is because we
335 // could not find an insertion point before the terminators of
336 // the predecessor block for this argument. In other words,
337 // the input value is defined by one of the terminators.
338 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
340 // We split to repair the use of a phi or a terminator.
341 if (!MO.isDef()) {
342 if (MI.isTerminator()) {
343 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
344 "Need to split for the first terminator?!");
345 } else {
346 // For the PHI case, the split may not be actually required.
347 // In the copy case, a phi is already a copy on the incoming edge,
348 // therefore there is no need to split.
349 if (ValMapping.NumBreakDowns == 1)
350 // This is a already a copy, there is nothing to do.
351 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
353 return;
356 // At this point, we need to repair a defintion of a terminator.
358 // Technically we need to fix the def of MI on all outgoing
359 // edges of MI to keep the repairing local. In other words, we
360 // will create several definitions of the same register. This
361 // does not work for SSA unless that definition is a physical
362 // register.
363 // However, there are other cases where we can get away with
364 // that while still keeping the repairing local.
365 assert(MI.isTerminator() && MO.isDef() &&
366 "This code is for the def of a terminator");
368 // Since we use RPO traversal, if we need to repair a definition
369 // this means this definition could be:
370 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
371 // uses of a phi.), or
372 // 2. Part of a target specific instruction (i.e., the target applied
373 // some register class constraints when creating the instruction.)
374 // If the constraints come for #2, the target said that another mapping
375 // is supported so we may just drop them. Indeed, if we do not change
376 // the number of registers holding that value, the uses will get fixed
377 // when we get to them.
378 // Uses in PHIs may have already been proceeded though.
379 // If the constraints come for #1, then, those are weak constraints and
380 // no actual uses may rely on them. However, the problem remains mainly
381 // the same as for #2. If the value stays in one register, we could
382 // just switch the register bank of the definition, but we would need to
383 // account for a repairing cost for each phi we silently change.
385 // In any case, if the value needs to be broken down into several
386 // registers, the repairing is not local anymore as we need to patch
387 // every uses to rebuild the value in just one register.
389 // To summarize:
390 // - If the value is in a physical register, we can do the split and
391 // fix locally.
392 // Otherwise if the value is in a virtual register:
393 // - If the value remains in one register, we do not have to split
394 // just switching the register bank would do, but we need to account
395 // in the repairing cost all the phi we changed.
396 // - If the value spans several registers, then we cannot do a local
397 // repairing.
399 // Check if this is a physical or virtual register.
400 Register Reg = MO.getReg();
401 if (Register::isPhysicalRegister(Reg)) {
402 // We are going to split every outgoing edges.
403 // Check that this is possible.
404 // FIXME: The machine representation is currently broken
405 // since it also several terminators in one basic block.
406 // Because of that we would technically need a way to get
407 // the targets of just one terminator to know which edges
408 // we have to split.
409 // Assert that we do not hit the ill-formed representation.
411 // If there are other terminators before that one, some of
412 // the outgoing edges may not be dominated by this definition.
413 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
414 "Do not know which outgoing edges are relevant");
415 const MachineInstr *Next = MI.getNextNode();
416 assert((!Next || Next->isUnconditionalBranch()) &&
417 "Do not know where each terminator ends up");
418 if (Next)
419 // If the next terminator uses Reg, this means we have
420 // to split right after MI and thus we need a way to ask
421 // which outgoing edges are affected.
422 assert(!Next->readsRegister(Reg) && "Need to split between terminators");
423 // We will split all the edges and repair there.
424 } else {
425 // This is a virtual register defined by a terminator.
426 if (ValMapping.NumBreakDowns == 1) {
427 // There is nothing to repair, but we may actually lie on
428 // the repairing cost because of the PHIs already proceeded
429 // as already stated.
430 // Though the code will be correct.
431 assert(false && "Repairing cost may not be accurate");
432 } else {
433 // We need to do non-local repairing. Basically, patch all
434 // the uses (i.e., phis) that we already proceeded.
435 // For now, just say this mapping is not possible.
436 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
441 RegBankSelect::MappingCost RegBankSelect::computeMapping(
442 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
443 SmallVectorImpl<RepairingPlacement> &RepairPts,
444 const RegBankSelect::MappingCost *BestCost) {
445 assert((MBFI || !BestCost) && "Costs comparison require MBFI");
447 if (!InstrMapping.isValid())
448 return MappingCost::ImpossibleCost();
450 // If mapped with InstrMapping, MI will have the recorded cost.
451 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
452 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
453 assert(!Saturated && "Possible mapping saturated the cost");
454 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
455 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
456 RepairPts.clear();
457 if (BestCost && Cost > *BestCost) {
458 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
459 return Cost;
461 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
463 // Moreover, to realize this mapping, the register bank of each operand must
464 // match this mapping. In other words, we may need to locally reassign the
465 // register banks. Account for that repairing cost as well.
466 // In this context, local means in the surrounding of MI.
467 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
468 OpIdx != EndOpIdx; ++OpIdx) {
469 const MachineOperand &MO = MI.getOperand(OpIdx);
470 if (!MO.isReg())
471 continue;
472 Register Reg = MO.getReg();
473 if (!Reg)
474 continue;
475 LLT Ty = MRI.getType(Reg);
476 if (!Ty.isValid())
477 continue;
479 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
480 const RegisterBankInfo::ValueMapping &ValMapping =
481 InstrMapping.getOperandMapping(OpIdx);
482 // If Reg is already properly mapped, this is free.
483 bool Assign;
484 if (assignmentMatch(Reg, ValMapping, Assign)) {
485 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
486 continue;
488 if (Assign) {
489 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
490 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
491 RepairingPlacement::Reassign));
492 continue;
495 // Find the insertion point for the repairing code.
496 RepairPts.emplace_back(
497 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
498 RepairingPlacement &RepairPt = RepairPts.back();
500 // If we need to split a basic block to materialize this insertion point,
501 // we may give a higher cost to this mapping.
502 // Nevertheless, we may get away with the split, so try that first.
503 if (RepairPt.hasSplit())
504 tryAvoidingSplit(RepairPt, MO, ValMapping);
506 // Check that the materialization of the repairing is possible.
507 if (!RepairPt.canMaterialize()) {
508 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
509 return MappingCost::ImpossibleCost();
512 // Account for the split cost and repair cost.
513 // Unless the cost is already saturated or we do not care about the cost.
514 if (!BestCost || Saturated)
515 continue;
517 // To get accurate information we need MBFI and MBPI.
518 // Thus, if we end up here this information should be here.
519 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
521 // FIXME: We will have to rework the repairing cost model.
522 // The repairing cost depends on the register bank that MO has.
523 // However, when we break down the value into different values,
524 // MO may not have a register bank while still needing repairing.
525 // For the fast mode, we don't compute the cost so that is fine,
526 // but still for the repairing code, we will have to make a choice.
527 // For the greedy mode, we should choose greedily what is the best
528 // choice based on the next use of MO.
530 // Sums up the repairing cost of MO at each insertion point.
531 uint64_t RepairCost = getRepairCost(MO, ValMapping);
533 // This is an impossible to repair cost.
534 if (RepairCost == std::numeric_limits<unsigned>::max())
535 return MappingCost::ImpossibleCost();
537 // Bias used for splitting: 5%.
538 const uint64_t PercentageForBias = 5;
539 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
540 // We should not need more than a couple of instructions to repair
541 // an assignment. In other words, the computation should not
542 // overflow because the repairing cost is free of basic block
543 // frequency.
544 assert(((RepairCost < RepairCost * PercentageForBias) &&
545 (RepairCost * PercentageForBias <
546 RepairCost * PercentageForBias + 99)) &&
547 "Repairing involves more than a billion of instructions?!");
548 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
549 assert(InsertPt->canMaterialize() && "We should not have made it here");
550 // We will applied some basic block frequency and those uses uint64_t.
551 if (!InsertPt->isSplit())
552 Saturated = Cost.addLocalCost(RepairCost);
553 else {
554 uint64_t CostForInsertPt = RepairCost;
555 // Again we shouldn't overflow here givent that
556 // CostForInsertPt is frequency free at this point.
557 assert(CostForInsertPt + Bias > CostForInsertPt &&
558 "Repairing + split bias overflows");
559 CostForInsertPt += Bias;
560 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
561 // Check if we just overflowed.
562 if ((Saturated = PtCost < CostForInsertPt))
563 Cost.saturate();
564 else
565 Saturated = Cost.addNonLocalCost(PtCost);
568 // Stop looking into what it takes to repair, this is already
569 // too expensive.
570 if (BestCost && Cost > *BestCost) {
571 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
572 return Cost;
575 // No need to accumulate more cost information.
576 // We need to still gather the repairing information though.
577 if (Saturated)
578 break;
581 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
582 return Cost;
585 bool RegBankSelect::applyMapping(
586 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
587 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
588 // OpdMapper will hold all the information needed for the rewriting.
589 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
591 // First, place the repairing code.
592 for (RepairingPlacement &RepairPt : RepairPts) {
593 if (!RepairPt.canMaterialize() ||
594 RepairPt.getKind() == RepairingPlacement::Impossible)
595 return false;
596 assert(RepairPt.getKind() != RepairingPlacement::None &&
597 "This should not make its way in the list");
598 unsigned OpIdx = RepairPt.getOpIdx();
599 MachineOperand &MO = MI.getOperand(OpIdx);
600 const RegisterBankInfo::ValueMapping &ValMapping =
601 InstrMapping.getOperandMapping(OpIdx);
602 Register Reg = MO.getReg();
604 switch (RepairPt.getKind()) {
605 case RepairingPlacement::Reassign:
606 assert(ValMapping.NumBreakDowns == 1 &&
607 "Reassignment should only be for simple mapping");
608 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
609 break;
610 case RepairingPlacement::Insert:
611 // Don't insert additional instruction for debug instruction.
612 if (MI.isDebugInstr())
613 break;
614 OpdMapper.createVRegs(OpIdx);
615 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
616 return false;
617 break;
618 default:
619 llvm_unreachable("Other kind should not happen");
623 // Second, rewrite the instruction.
624 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
625 RBI->applyMapping(OpdMapper);
627 return true;
630 bool RegBankSelect::assignInstr(MachineInstr &MI) {
631 LLVM_DEBUG(dbgs() << "Assign: " << MI);
633 unsigned Opc = MI.getOpcode();
634 if (isPreISelGenericOptimizationHint(Opc)) {
635 assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||
636 Opc == TargetOpcode::G_ASSERT_SEXT ||
637 Opc == TargetOpcode::G_ASSERT_ALIGN) &&
638 "Unexpected hint opcode!");
639 // The only correct mapping for these is to always use the source register
640 // bank.
641 const RegisterBank *RB =
642 RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI);
643 // We can assume every instruction above this one has a selected register
644 // bank.
645 assert(RB && "Expected source register to have a register bank?");
646 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
647 MRI->setRegBank(MI.getOperand(0).getReg(), *RB);
648 return true;
651 // Remember the repairing placement for all the operands.
652 SmallVector<RepairingPlacement, 4> RepairPts;
654 const RegisterBankInfo::InstructionMapping *BestMapping;
655 if (OptMode == RegBankSelect::Mode::Fast) {
656 BestMapping = &RBI->getInstrMapping(MI);
657 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
658 (void)DefaultCost;
659 if (DefaultCost == MappingCost::ImpossibleCost())
660 return false;
661 } else {
662 RegisterBankInfo::InstructionMappings PossibleMappings =
663 RBI->getInstrPossibleMappings(MI);
664 if (PossibleMappings.empty())
665 return false;
666 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
668 // Make sure the mapping is valid for MI.
669 assert(BestMapping->verify(MI) && "Invalid instruction mapping");
671 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
673 // After this call, MI may not be valid anymore.
674 // Do not use it.
675 return applyMapping(MI, *BestMapping, RepairPts);
678 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
679 // If the ISel pipeline failed, do not bother running that pass.
680 if (MF.getProperties().hasProperty(
681 MachineFunctionProperties::Property::FailedISel))
682 return false;
684 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
685 const Function &F = MF.getFunction();
686 Mode SaveOptMode = OptMode;
687 if (F.hasOptNone())
688 OptMode = Mode::Fast;
689 init(MF);
691 #ifndef NDEBUG
692 // Check that our input is fully legal: we require the function to have the
693 // Legalized property, so it should be.
694 // FIXME: This should be in the MachineVerifier.
695 if (!DisableGISelLegalityCheck)
696 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
697 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
698 "instruction is not legal", *MI);
699 return false;
701 #endif
703 // Walk the function and assign register banks to all operands.
704 // Use a RPOT to make sure all registers are assigned before we choose
705 // the best mapping of the current instruction.
706 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
707 for (MachineBasicBlock *MBB : RPOT) {
708 // Set a sensible insertion point so that subsequent calls to
709 // MIRBuilder.
710 MIRBuilder.setMBB(*MBB);
711 SmallVector<MachineInstr *> WorkList(
712 make_pointer_range(reverse(MBB->instrs())));
714 while (!WorkList.empty()) {
715 MachineInstr &MI = *WorkList.pop_back_val();
717 // Ignore target-specific post-isel instructions: they should use proper
718 // regclasses.
719 if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
720 continue;
722 // Ignore inline asm instructions: they should use physical
723 // registers/regclasses
724 if (MI.isInlineAsm())
725 continue;
727 // Ignore IMPLICIT_DEF which must have a regclass.
728 if (MI.isImplicitDef())
729 continue;
731 if (!assignInstr(MI)) {
732 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
733 "unable to map instruction", MI);
734 return false;
739 OptMode = SaveOptMode;
740 return false;
743 //------------------------------------------------------------------------------
744 // Helper Classes Implementation
745 //------------------------------------------------------------------------------
746 RegBankSelect::RepairingPlacement::RepairingPlacement(
747 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
748 RepairingPlacement::RepairingKind Kind)
749 // Default is, we are going to insert code to repair OpIdx.
750 : Kind(Kind), OpIdx(OpIdx),
751 CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
752 const MachineOperand &MO = MI.getOperand(OpIdx);
753 assert(MO.isReg() && "Trying to repair a non-reg operand");
755 if (Kind != RepairingKind::Insert)
756 return;
758 // Repairings for definitions happen after MI, uses happen before.
759 bool Before = !MO.isDef();
761 // Check if we are done with MI.
762 if (!MI.isPHI() && !MI.isTerminator()) {
763 addInsertPoint(MI, Before);
764 // We are done with the initialization.
765 return;
768 // Now, look for the special cases.
769 if (MI.isPHI()) {
770 // - PHI must be the first instructions:
771 // * Before, we have to split the related incoming edge.
772 // * After, move the insertion point past the last phi.
773 if (!Before) {
774 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
775 if (It != MI.getParent()->end())
776 addInsertPoint(*It, /*Before*/ true);
777 else
778 addInsertPoint(*(--It), /*Before*/ false);
779 return;
781 // We repair a use of a phi, we may need to split the related edge.
782 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
783 // Check if we can move the insertion point prior to the
784 // terminators of the predecessor.
785 Register Reg = MO.getReg();
786 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
787 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
788 if (It->modifiesRegister(Reg, &TRI)) {
789 // We cannot hoist the repairing code in the predecessor.
790 // Split the edge.
791 addInsertPoint(Pred, *MI.getParent());
792 return;
794 // At this point, we can insert in Pred.
796 // - If It is invalid, Pred is empty and we can insert in Pred
797 // wherever we want.
798 // - If It is valid, It is the first non-terminator, insert after It.
799 if (It == Pred.end())
800 addInsertPoint(Pred, /*Beginning*/ false);
801 else
802 addInsertPoint(*It, /*Before*/ false);
803 } else {
804 // - Terminators must be the last instructions:
805 // * Before, move the insert point before the first terminator.
806 // * After, we have to split the outcoming edges.
807 if (Before) {
808 // Check whether Reg is defined by any terminator.
809 MachineBasicBlock::reverse_iterator It = MI;
810 auto REnd = MI.getParent()->rend();
812 for (; It != REnd && It->isTerminator(); ++It) {
813 assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
814 "copy insertion in middle of terminators not handled");
817 if (It == REnd) {
818 addInsertPoint(*MI.getParent()->begin(), true);
819 return;
822 // We are sure to be right before the first terminator.
823 addInsertPoint(*It, /*Before*/ false);
824 return;
826 // Make sure Reg is not redefined by other terminators, otherwise
827 // we do not know how to split.
828 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
829 ++It != End;)
830 // The machine verifier should reject this kind of code.
831 assert(It->modifiesRegister(MO.getReg(), &TRI) &&
832 "Do not know where to split");
833 // Split each outcoming edges.
834 MachineBasicBlock &Src = *MI.getParent();
835 for (auto &Succ : Src.successors())
836 addInsertPoint(Src, Succ);
840 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
841 bool Before) {
842 addInsertPoint(*new InstrInsertPoint(MI, Before));
845 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
846 bool Beginning) {
847 addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
850 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
851 MachineBasicBlock &Dst) {
852 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
855 void RegBankSelect::RepairingPlacement::addInsertPoint(
856 RegBankSelect::InsertPoint &Point) {
857 CanMaterialize &= Point.canMaterialize();
858 HasSplit |= Point.isSplit();
859 InsertPoints.emplace_back(&Point);
862 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
863 bool Before)
864 : Instr(Instr), Before(Before) {
865 // Since we do not support splitting, we do not need to update
866 // liveness and such, so do not do anything with P.
867 assert((!Before || !Instr.isPHI()) &&
868 "Splitting before phis requires more points");
869 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
870 "Splitting between phis does not make sense");
873 void RegBankSelect::InstrInsertPoint::materialize() {
874 if (isSplit()) {
875 // Slice and return the beginning of the new block.
876 // If we need to split between the terminators, we theoritically
877 // need to know where the first and second set of terminators end
878 // to update the successors properly.
879 // Now, in pratice, we should have a maximum of 2 branch
880 // instructions; one conditional and one unconditional. Therefore
881 // we know how to update the successor by looking at the target of
882 // the unconditional branch.
883 // If we end up splitting at some point, then, we should update
884 // the liveness information and such. I.e., we would need to
885 // access P here.
886 // The machine verifier should actually make sure such cases
887 // cannot happen.
888 llvm_unreachable("Not yet implemented");
890 // Otherwise the insertion point is just the current or next
891 // instruction depending on Before. I.e., there is nothing to do
892 // here.
895 bool RegBankSelect::InstrInsertPoint::isSplit() const {
896 // If the insertion point is after a terminator, we need to split.
897 if (!Before)
898 return Instr.isTerminator();
899 // If we insert before an instruction that is after a terminator,
900 // we are still after a terminator.
901 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
904 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
905 // Even if we need to split, because we insert between terminators,
906 // this split has actually the same frequency as the instruction.
907 const MachineBlockFrequencyInfo *MBFI =
908 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
909 if (!MBFI)
910 return 1;
911 return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
914 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
915 const MachineBlockFrequencyInfo *MBFI =
916 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
917 if (!MBFI)
918 return 1;
919 return MBFI->getBlockFreq(&MBB).getFrequency();
922 void RegBankSelect::EdgeInsertPoint::materialize() {
923 // If we end up repairing twice at the same place before materializing the
924 // insertion point, we may think we have to split an edge twice.
925 // We should have a factory for the insert point such that identical points
926 // are the same instance.
927 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
928 "This point has already been split");
929 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
930 assert(NewBB && "Invalid call to materialize");
931 // We reuse the destination block to hold the information of the new block.
932 DstOrSplit = NewBB;
935 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
936 const MachineBlockFrequencyInfo *MBFI =
937 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
938 if (!MBFI)
939 return 1;
940 if (WasMaterialized)
941 return MBFI->getBlockFreq(DstOrSplit).getFrequency();
943 const MachineBranchProbabilityInfo *MBPI =
944 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
945 if (!MBPI)
946 return 1;
947 // The basic block will be on the edge.
948 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
949 .getFrequency();
952 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
953 // If this is not a critical edge, we should not have used this insert
954 // point. Indeed, either the successor or the predecessor should
955 // have do.
956 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
957 "Edge is not critical");
958 return Src.canSplitCriticalEdge(DstOrSplit);
961 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
962 : LocalFreq(LocalFreq.getFrequency()) {}
964 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
965 // Check if this overflows.
966 if (LocalCost + Cost < LocalCost) {
967 saturate();
968 return true;
970 LocalCost += Cost;
971 return isSaturated();
974 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
975 // Check if this overflows.
976 if (NonLocalCost + Cost < NonLocalCost) {
977 saturate();
978 return true;
980 NonLocalCost += Cost;
981 return isSaturated();
984 bool RegBankSelect::MappingCost::isSaturated() const {
985 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
986 LocalFreq == UINT64_MAX;
989 void RegBankSelect::MappingCost::saturate() {
990 *this = ImpossibleCost();
991 --LocalCost;
994 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
995 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
998 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
999 // Sort out the easy cases.
1000 if (*this == Cost)
1001 return false;
1002 // If one is impossible to realize the other is cheaper unless it is
1003 // impossible as well.
1004 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
1005 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
1006 // If one is saturated the other is cheaper, unless it is saturated
1007 // as well.
1008 if (isSaturated() || Cost.isSaturated())
1009 return isSaturated() < Cost.isSaturated();
1010 // At this point we know both costs hold sensible values.
1012 // If both values have a different base frequency, there is no much
1013 // we can do but to scale everything.
1014 // However, if they have the same base frequency we can avoid making
1015 // complicated computation.
1016 uint64_t ThisLocalAdjust;
1017 uint64_t OtherLocalAdjust;
1018 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
1020 // At this point, we know the local costs are comparable.
1021 // Do the case that do not involve potential overflow first.
1022 if (NonLocalCost == Cost.NonLocalCost)
1023 // Since the non-local costs do not discriminate on the result,
1024 // just compare the local costs.
1025 return LocalCost < Cost.LocalCost;
1027 // The base costs are comparable so we may only keep the relative
1028 // value to increase our chances of avoiding overflows.
1029 ThisLocalAdjust = 0;
1030 OtherLocalAdjust = 0;
1031 if (LocalCost < Cost.LocalCost)
1032 OtherLocalAdjust = Cost.LocalCost - LocalCost;
1033 else
1034 ThisLocalAdjust = LocalCost - Cost.LocalCost;
1035 } else {
1036 ThisLocalAdjust = LocalCost;
1037 OtherLocalAdjust = Cost.LocalCost;
1040 // The non-local costs are comparable, just keep the relative value.
1041 uint64_t ThisNonLocalAdjust = 0;
1042 uint64_t OtherNonLocalAdjust = 0;
1043 if (NonLocalCost < Cost.NonLocalCost)
1044 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1045 else
1046 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1047 // Scale everything to make them comparable.
1048 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1049 // Check for overflow on that operation.
1050 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1051 ThisScaledCost < LocalFreq);
1052 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1053 // Check for overflow on the last operation.
1054 bool OtherOverflows =
1055 OtherLocalAdjust &&
1056 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1057 // Add the non-local costs.
1058 ThisOverflows |= ThisNonLocalAdjust &&
1059 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1060 ThisScaledCost += ThisNonLocalAdjust;
1061 OtherOverflows |= OtherNonLocalAdjust &&
1062 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1063 OtherScaledCost += OtherNonLocalAdjust;
1064 // If both overflows, we cannot compare without additional
1065 // precision, e.g., APInt. Just give up on that case.
1066 if (ThisOverflows && OtherOverflows)
1067 return false;
1068 // If one overflows but not the other, we can still compare.
1069 if (ThisOverflows || OtherOverflows)
1070 return ThisOverflows < OtherOverflows;
1071 // Otherwise, just compare the values.
1072 return ThisScaledCost < OtherScaledCost;
1075 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1076 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1077 LocalFreq == Cost.LocalFreq;
1080 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1081 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1082 print(dbgs());
1083 dbgs() << '\n';
1085 #endif
1087 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1088 if (*this == ImpossibleCost()) {
1089 OS << "impossible";
1090 return;
1092 if (isSaturated()) {
1093 OS << "saturated";
1094 return;
1096 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;