1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
49 #define DEBUG_TYPE "regbankselect"
53 static cl::opt
<RegBankSelect::Mode
> RegBankSelectMode(
54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden
, cl::Optional
,
55 cl::values(clEnumValN(RegBankSelect::Mode::Fast
, "regbankselect-fast",
56 "Run the Fast mode (default mapping)"),
57 clEnumValN(RegBankSelect::Mode::Greedy
, "regbankselect-greedy",
58 "Use the Greedy mode (best local mapping)")));
60 char RegBankSelect::ID
= 0;
62 INITIALIZE_PASS_BEGIN(RegBankSelect
, DEBUG_TYPE
,
63 "Assign register bank of generic virtual registers",
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
68 INITIALIZE_PASS_END(RegBankSelect
, DEBUG_TYPE
,
69 "Assign register bank of generic virtual registers", false,
72 RegBankSelect::RegBankSelect(Mode RunningMode
)
73 : MachineFunctionPass(ID
), OptMode(RunningMode
) {
74 if (RegBankSelectMode
.getNumOccurrences() != 0) {
75 OptMode
= RegBankSelectMode
;
76 if (RegBankSelectMode
!= RunningMode
)
77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
81 void RegBankSelect::init(MachineFunction
&MF
) {
82 RBI
= MF
.getSubtarget().getRegBankInfo();
83 assert(RBI
&& "Cannot work without RegisterBankInfo");
84 MRI
= &MF
.getRegInfo();
85 TRI
= MF
.getSubtarget().getRegisterInfo();
86 TPC
= &getAnalysis
<TargetPassConfig
>();
87 if (OptMode
!= Mode::Fast
) {
88 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
89 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
95 MORE
= std::make_unique
<MachineOptimizationRemarkEmitter
>(MF
, MBFI
);
98 void RegBankSelect::getAnalysisUsage(AnalysisUsage
&AU
) const {
99 if (OptMode
!= Mode::Fast
) {
100 // We could preserve the information from these two analysis but
101 // the APIs do not allow to do so yet.
102 AU
.addRequired
<MachineBlockFrequencyInfo
>();
103 AU
.addRequired
<MachineBranchProbabilityInfo
>();
105 AU
.addRequired
<TargetPassConfig
>();
106 getSelectionDAGFallbackAnalysisUsage(AU
);
107 MachineFunctionPass::getAnalysisUsage(AU
);
110 bool RegBankSelect::assignmentMatch(
111 Register Reg
, const RegisterBankInfo::ValueMapping
&ValMapping
,
112 bool &OnlyAssign
) const {
113 // By default we assume we will have to repair something.
115 // Each part of a break down needs to end up in a different register.
116 // In other word, Reg assignment does not match.
117 if (ValMapping
.NumBreakDowns
!= 1)
120 const RegisterBank
*CurRegBank
= RBI
->getRegBank(Reg
, *MRI
, *TRI
);
121 const RegisterBank
*DesiredRegBank
= ValMapping
.BreakDown
[0].RegBank
;
122 // Reg is free of assignment, a simple assignment will make the
123 // register bank to match.
124 OnlyAssign
= CurRegBank
== nullptr;
125 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126 if (CurRegBank
) dbgs() << *CurRegBank
; else dbgs() << "none";
127 dbgs() << " against ";
128 assert(DesiredRegBank
&& "The mapping must be valid");
129 dbgs() << *DesiredRegBank
<< '\n';);
130 return CurRegBank
== DesiredRegBank
;
133 bool RegBankSelect::repairReg(
134 MachineOperand
&MO
, const RegisterBankInfo::ValueMapping
&ValMapping
,
135 RegBankSelect::RepairingPlacement
&RepairPt
,
136 const iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> &NewVRegs
) {
138 assert(ValMapping
.NumBreakDowns
== (unsigned)size(NewVRegs
) &&
139 "need new vreg for each breakdown");
141 // An empty range of new register means no repairing.
142 assert(!NewVRegs
.empty() && "We should not have to repair");
145 if (ValMapping
.NumBreakDowns
== 1) {
146 // Assume we are repairing a use and thus, the original reg will be
147 // the source of the repairing.
148 Register Src
= MO
.getReg();
149 Register Dst
= *NewVRegs
.begin();
151 // If we repair a definition, swap the source and destination for
156 assert((RepairPt
.getNumInsertPoints() == 1 ||
157 Register::isPhysicalRegister(Dst
)) &&
158 "We are about to create several defs for Dst");
160 // Build the instruction used to repair, then clone it at the right
161 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
162 // same types because the type is a placeholder when this function is called.
163 MI
= MIRBuilder
.buildInstrNoInsert(TargetOpcode::COPY
)
166 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src
) << " to: " << printReg(Dst
)
169 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
171 assert(ValMapping
.partsAllUniform() && "irregular breakdowns not supported");
173 LLT RegTy
= MRI
->getType(MO
.getReg());
176 if (RegTy
.isVector()) {
177 if (ValMapping
.NumBreakDowns
== RegTy
.getNumElements())
178 MergeOp
= TargetOpcode::G_BUILD_VECTOR
;
181 (ValMapping
.BreakDown
[0].Length
* ValMapping
.NumBreakDowns
==
182 RegTy
.getSizeInBits()) &&
183 (ValMapping
.BreakDown
[0].Length
% RegTy
.getScalarSizeInBits() ==
185 "don't understand this value breakdown");
187 MergeOp
= TargetOpcode::G_CONCAT_VECTORS
;
190 MergeOp
= TargetOpcode::G_MERGE_VALUES
;
193 MIRBuilder
.buildInstrNoInsert(MergeOp
)
194 .addDef(MO
.getReg());
196 for (Register SrcReg
: NewVRegs
)
197 MergeBuilder
.addUse(SrcReg
);
201 MachineInstrBuilder UnMergeBuilder
=
202 MIRBuilder
.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES
);
203 for (Register DefReg
: NewVRegs
)
204 UnMergeBuilder
.addDef(DefReg
);
206 UnMergeBuilder
.addUse(MO
.getReg());
211 if (RepairPt
.getNumInsertPoints() != 1)
212 report_fatal_error("need testcase to support multiple insertion points");
215 // Check if MI is legal. if not, we need to legalize all the
216 // instructions we are going to insert.
217 std::unique_ptr
<MachineInstr
*[]> NewInstrs(
218 new MachineInstr
*[RepairPt
.getNumInsertPoints()]);
221 for (const std::unique_ptr
<InsertPoint
> &InsertPt
: RepairPt
) {
226 CurMI
= MIRBuilder
.getMF().CloneMachineInstr(MI
);
227 InsertPt
->insert(*CurMI
);
228 NewInstrs
[Idx
++] = CurMI
;
232 // Legalize NewInstrs if need be.
236 uint64_t RegBankSelect::getRepairCost(
237 const MachineOperand
&MO
,
238 const RegisterBankInfo::ValueMapping
&ValMapping
) const {
239 assert(MO
.isReg() && "We should only repair register operand");
240 assert(ValMapping
.NumBreakDowns
&& "Nothing to map??");
242 bool IsSameNumOfValues
= ValMapping
.NumBreakDowns
== 1;
243 const RegisterBank
*CurRegBank
= RBI
->getRegBank(MO
.getReg(), *MRI
, *TRI
);
244 // If MO does not have a register bank, we should have just been
245 // able to set one unless we have to break the value down.
246 assert(CurRegBank
|| MO
.isDef());
248 // Def: Val <- NewDefs
249 // Same number of values: copy
250 // Different number: Val = build_sequence Defs1, Defs2, ...
251 // Use: NewSources <- Val.
252 // Same number of values: copy.
253 // Different number: Src1, Src2, ... =
254 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
255 // We should remember that this value is available somewhere else to
256 // coalesce the value.
258 if (ValMapping
.NumBreakDowns
!= 1)
259 return RBI
->getBreakDownCost(ValMapping
, CurRegBank
);
261 if (IsSameNumOfValues
) {
262 const RegisterBank
*DesiredRegBank
= ValMapping
.BreakDown
[0].RegBank
;
263 // If we repair a definition, swap the source and destination for
266 std::swap(CurRegBank
, DesiredRegBank
);
267 // TODO: It may be possible to actually avoid the copy.
268 // If we repair something where the source is defined by a copy
269 // and the source of that copy is on the right bank, we can reuse
272 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
273 // = op RegToRepair<BankA>
274 // We can simply propagate AlternativeSrc instead of copying RegToRepair
275 // into a new virtual register.
276 // We would also need to propagate this information in the
277 // repairing placement.
278 unsigned Cost
= RBI
->copyCost(*DesiredRegBank
, *CurRegBank
,
279 RBI
->getSizeInBits(MO
.getReg(), *MRI
, *TRI
));
280 // TODO: use a dedicated constant for ImpossibleCost.
281 if (Cost
!= std::numeric_limits
<unsigned>::max())
283 // Return the legalization cost of that repairing.
285 return std::numeric_limits
<unsigned>::max();
288 const RegisterBankInfo::InstructionMapping
&RegBankSelect::findBestMapping(
289 MachineInstr
&MI
, RegisterBankInfo::InstructionMappings
&PossibleMappings
,
290 SmallVectorImpl
<RepairingPlacement
> &RepairPts
) {
291 assert(!PossibleMappings
.empty() &&
292 "Do not know how to map this instruction");
294 const RegisterBankInfo::InstructionMapping
*BestMapping
= nullptr;
295 MappingCost Cost
= MappingCost::ImpossibleCost();
296 SmallVector
<RepairingPlacement
, 4> LocalRepairPts
;
297 for (const RegisterBankInfo::InstructionMapping
*CurMapping
:
299 MappingCost CurCost
=
300 computeMapping(MI
, *CurMapping
, LocalRepairPts
, &Cost
);
301 if (CurCost
< Cost
) {
302 LLVM_DEBUG(dbgs() << "New best: " << CurCost
<< '\n');
304 BestMapping
= CurMapping
;
306 for (RepairingPlacement
&RepairPt
: LocalRepairPts
)
307 RepairPts
.emplace_back(std::move(RepairPt
));
310 if (!BestMapping
&& !TPC
->isGlobalISelAbortEnabled()) {
311 // If none of the mapping worked that means they are all impossible.
312 // Thus, pick the first one and set an impossible repairing point.
313 // It will trigger the failed isel mode.
314 BestMapping
= *PossibleMappings
.begin();
315 RepairPts
.emplace_back(
316 RepairingPlacement(MI
, 0, *TRI
, *this, RepairingPlacement::Impossible
));
318 assert(BestMapping
&& "No suitable mapping for instruction");
322 void RegBankSelect::tryAvoidingSplit(
323 RegBankSelect::RepairingPlacement
&RepairPt
, const MachineOperand
&MO
,
324 const RegisterBankInfo::ValueMapping
&ValMapping
) const {
325 const MachineInstr
&MI
= *MO
.getParent();
326 assert(RepairPt
.hasSplit() && "We should not have to adjust for split");
327 // Splitting should only occur for PHIs or between terminators,
328 // because we only do local repairing.
329 assert((MI
.isPHI() || MI
.isTerminator()) && "Why do we split?");
331 assert(&MI
.getOperand(RepairPt
.getOpIdx()) == &MO
&&
332 "Repairing placement does not match operand");
334 // If we need splitting for phis, that means it is because we
335 // could not find an insertion point before the terminators of
336 // the predecessor block for this argument. In other words,
337 // the input value is defined by one of the terminators.
338 assert((!MI
.isPHI() || !MO
.isDef()) && "Need split for phi def?");
340 // We split to repair the use of a phi or a terminator.
342 if (MI
.isTerminator()) {
343 assert(&MI
!= &(*MI
.getParent()->getFirstTerminator()) &&
344 "Need to split for the first terminator?!");
346 // For the PHI case, the split may not be actually required.
347 // In the copy case, a phi is already a copy on the incoming edge,
348 // therefore there is no need to split.
349 if (ValMapping
.NumBreakDowns
== 1)
350 // This is a already a copy, there is nothing to do.
351 RepairPt
.switchTo(RepairingPlacement::RepairingKind::Reassign
);
356 // At this point, we need to repair a defintion of a terminator.
358 // Technically we need to fix the def of MI on all outgoing
359 // edges of MI to keep the repairing local. In other words, we
360 // will create several definitions of the same register. This
361 // does not work for SSA unless that definition is a physical
363 // However, there are other cases where we can get away with
364 // that while still keeping the repairing local.
365 assert(MI
.isTerminator() && MO
.isDef() &&
366 "This code is for the def of a terminator");
368 // Since we use RPO traversal, if we need to repair a definition
369 // this means this definition could be:
370 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
371 // uses of a phi.), or
372 // 2. Part of a target specific instruction (i.e., the target applied
373 // some register class constraints when creating the instruction.)
374 // If the constraints come for #2, the target said that another mapping
375 // is supported so we may just drop them. Indeed, if we do not change
376 // the number of registers holding that value, the uses will get fixed
377 // when we get to them.
378 // Uses in PHIs may have already been proceeded though.
379 // If the constraints come for #1, then, those are weak constraints and
380 // no actual uses may rely on them. However, the problem remains mainly
381 // the same as for #2. If the value stays in one register, we could
382 // just switch the register bank of the definition, but we would need to
383 // account for a repairing cost for each phi we silently change.
385 // In any case, if the value needs to be broken down into several
386 // registers, the repairing is not local anymore as we need to patch
387 // every uses to rebuild the value in just one register.
390 // - If the value is in a physical register, we can do the split and
392 // Otherwise if the value is in a virtual register:
393 // - If the value remains in one register, we do not have to split
394 // just switching the register bank would do, but we need to account
395 // in the repairing cost all the phi we changed.
396 // - If the value spans several registers, then we cannot do a local
399 // Check if this is a physical or virtual register.
400 Register Reg
= MO
.getReg();
401 if (Register::isPhysicalRegister(Reg
)) {
402 // We are going to split every outgoing edges.
403 // Check that this is possible.
404 // FIXME: The machine representation is currently broken
405 // since it also several terminators in one basic block.
406 // Because of that we would technically need a way to get
407 // the targets of just one terminator to know which edges
409 // Assert that we do not hit the ill-formed representation.
411 // If there are other terminators before that one, some of
412 // the outgoing edges may not be dominated by this definition.
413 assert(&MI
== &(*MI
.getParent()->getFirstTerminator()) &&
414 "Do not know which outgoing edges are relevant");
415 const MachineInstr
*Next
= MI
.getNextNode();
416 assert((!Next
|| Next
->isUnconditionalBranch()) &&
417 "Do not know where each terminator ends up");
419 // If the next terminator uses Reg, this means we have
420 // to split right after MI and thus we need a way to ask
421 // which outgoing edges are affected.
422 assert(!Next
->readsRegister(Reg
) && "Need to split between terminators");
423 // We will split all the edges and repair there.
425 // This is a virtual register defined by a terminator.
426 if (ValMapping
.NumBreakDowns
== 1) {
427 // There is nothing to repair, but we may actually lie on
428 // the repairing cost because of the PHIs already proceeded
429 // as already stated.
430 // Though the code will be correct.
431 assert(false && "Repairing cost may not be accurate");
433 // We need to do non-local repairing. Basically, patch all
434 // the uses (i.e., phis) that we already proceeded.
435 // For now, just say this mapping is not possible.
436 RepairPt
.switchTo(RepairingPlacement::RepairingKind::Impossible
);
441 RegBankSelect::MappingCost
RegBankSelect::computeMapping(
442 MachineInstr
&MI
, const RegisterBankInfo::InstructionMapping
&InstrMapping
,
443 SmallVectorImpl
<RepairingPlacement
> &RepairPts
,
444 const RegBankSelect::MappingCost
*BestCost
) {
445 assert((MBFI
|| !BestCost
) && "Costs comparison require MBFI");
447 if (!InstrMapping
.isValid())
448 return MappingCost::ImpossibleCost();
450 // If mapped with InstrMapping, MI will have the recorded cost.
451 MappingCost
Cost(MBFI
? MBFI
->getBlockFreq(MI
.getParent()) : 1);
452 bool Saturated
= Cost
.addLocalCost(InstrMapping
.getCost());
453 assert(!Saturated
&& "Possible mapping saturated the cost");
454 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI
);
455 LLVM_DEBUG(dbgs() << "With: " << InstrMapping
<< '\n');
457 if (BestCost
&& Cost
> *BestCost
) {
458 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
461 const MachineRegisterInfo
&MRI
= MI
.getMF()->getRegInfo();
463 // Moreover, to realize this mapping, the register bank of each operand must
464 // match this mapping. In other words, we may need to locally reassign the
465 // register banks. Account for that repairing cost as well.
466 // In this context, local means in the surrounding of MI.
467 for (unsigned OpIdx
= 0, EndOpIdx
= InstrMapping
.getNumOperands();
468 OpIdx
!= EndOpIdx
; ++OpIdx
) {
469 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
472 Register Reg
= MO
.getReg();
475 LLT Ty
= MRI
.getType(Reg
);
479 LLVM_DEBUG(dbgs() << "Opd" << OpIdx
<< '\n');
480 const RegisterBankInfo::ValueMapping
&ValMapping
=
481 InstrMapping
.getOperandMapping(OpIdx
);
482 // If Reg is already properly mapped, this is free.
484 if (assignmentMatch(Reg
, ValMapping
, Assign
)) {
485 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
489 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
490 RepairPts
.emplace_back(RepairingPlacement(MI
, OpIdx
, *TRI
, *this,
491 RepairingPlacement::Reassign
));
495 // Find the insertion point for the repairing code.
496 RepairPts
.emplace_back(
497 RepairingPlacement(MI
, OpIdx
, *TRI
, *this, RepairingPlacement::Insert
));
498 RepairingPlacement
&RepairPt
= RepairPts
.back();
500 // If we need to split a basic block to materialize this insertion point,
501 // we may give a higher cost to this mapping.
502 // Nevertheless, we may get away with the split, so try that first.
503 if (RepairPt
.hasSplit())
504 tryAvoidingSplit(RepairPt
, MO
, ValMapping
);
506 // Check that the materialization of the repairing is possible.
507 if (!RepairPt
.canMaterialize()) {
508 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
509 return MappingCost::ImpossibleCost();
512 // Account for the split cost and repair cost.
513 // Unless the cost is already saturated or we do not care about the cost.
514 if (!BestCost
|| Saturated
)
517 // To get accurate information we need MBFI and MBPI.
518 // Thus, if we end up here this information should be here.
519 assert(MBFI
&& MBPI
&& "Cost computation requires MBFI and MBPI");
521 // FIXME: We will have to rework the repairing cost model.
522 // The repairing cost depends on the register bank that MO has.
523 // However, when we break down the value into different values,
524 // MO may not have a register bank while still needing repairing.
525 // For the fast mode, we don't compute the cost so that is fine,
526 // but still for the repairing code, we will have to make a choice.
527 // For the greedy mode, we should choose greedily what is the best
528 // choice based on the next use of MO.
530 // Sums up the repairing cost of MO at each insertion point.
531 uint64_t RepairCost
= getRepairCost(MO
, ValMapping
);
533 // This is an impossible to repair cost.
534 if (RepairCost
== std::numeric_limits
<unsigned>::max())
535 return MappingCost::ImpossibleCost();
537 // Bias used for splitting: 5%.
538 const uint64_t PercentageForBias
= 5;
539 uint64_t Bias
= (RepairCost
* PercentageForBias
+ 99) / 100;
540 // We should not need more than a couple of instructions to repair
541 // an assignment. In other words, the computation should not
542 // overflow because the repairing cost is free of basic block
544 assert(((RepairCost
< RepairCost
* PercentageForBias
) &&
545 (RepairCost
* PercentageForBias
<
546 RepairCost
* PercentageForBias
+ 99)) &&
547 "Repairing involves more than a billion of instructions?!");
548 for (const std::unique_ptr
<InsertPoint
> &InsertPt
: RepairPt
) {
549 assert(InsertPt
->canMaterialize() && "We should not have made it here");
550 // We will applied some basic block frequency and those uses uint64_t.
551 if (!InsertPt
->isSplit())
552 Saturated
= Cost
.addLocalCost(RepairCost
);
554 uint64_t CostForInsertPt
= RepairCost
;
555 // Again we shouldn't overflow here givent that
556 // CostForInsertPt is frequency free at this point.
557 assert(CostForInsertPt
+ Bias
> CostForInsertPt
&&
558 "Repairing + split bias overflows");
559 CostForInsertPt
+= Bias
;
560 uint64_t PtCost
= InsertPt
->frequency(*this) * CostForInsertPt
;
561 // Check if we just overflowed.
562 if ((Saturated
= PtCost
< CostForInsertPt
))
565 Saturated
= Cost
.addNonLocalCost(PtCost
);
568 // Stop looking into what it takes to repair, this is already
570 if (BestCost
&& Cost
> *BestCost
) {
571 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
575 // No need to accumulate more cost information.
576 // We need to still gather the repairing information though.
581 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost
<< "\n");
585 bool RegBankSelect::applyMapping(
586 MachineInstr
&MI
, const RegisterBankInfo::InstructionMapping
&InstrMapping
,
587 SmallVectorImpl
<RegBankSelect::RepairingPlacement
> &RepairPts
) {
588 // OpdMapper will hold all the information needed for the rewriting.
589 RegisterBankInfo::OperandsMapper
OpdMapper(MI
, InstrMapping
, *MRI
);
591 // First, place the repairing code.
592 for (RepairingPlacement
&RepairPt
: RepairPts
) {
593 if (!RepairPt
.canMaterialize() ||
594 RepairPt
.getKind() == RepairingPlacement::Impossible
)
596 assert(RepairPt
.getKind() != RepairingPlacement::None
&&
597 "This should not make its way in the list");
598 unsigned OpIdx
= RepairPt
.getOpIdx();
599 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
600 const RegisterBankInfo::ValueMapping
&ValMapping
=
601 InstrMapping
.getOperandMapping(OpIdx
);
602 Register Reg
= MO
.getReg();
604 switch (RepairPt
.getKind()) {
605 case RepairingPlacement::Reassign
:
606 assert(ValMapping
.NumBreakDowns
== 1 &&
607 "Reassignment should only be for simple mapping");
608 MRI
->setRegBank(Reg
, *ValMapping
.BreakDown
[0].RegBank
);
610 case RepairingPlacement::Insert
:
611 // Don't insert additional instruction for debug instruction.
612 if (MI
.isDebugInstr())
614 OpdMapper
.createVRegs(OpIdx
);
615 if (!repairReg(MO
, ValMapping
, RepairPt
, OpdMapper
.getVRegs(OpIdx
)))
619 llvm_unreachable("Other kind should not happen");
623 // Second, rewrite the instruction.
624 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper
<< '\n');
625 RBI
->applyMapping(OpdMapper
);
630 bool RegBankSelect::assignInstr(MachineInstr
&MI
) {
631 LLVM_DEBUG(dbgs() << "Assign: " << MI
);
633 unsigned Opc
= MI
.getOpcode();
634 if (isPreISelGenericOptimizationHint(Opc
)) {
635 assert((Opc
== TargetOpcode::G_ASSERT_ZEXT
||
636 Opc
== TargetOpcode::G_ASSERT_SEXT
||
637 Opc
== TargetOpcode::G_ASSERT_ALIGN
) &&
638 "Unexpected hint opcode!");
639 // The only correct mapping for these is to always use the source register
641 const RegisterBank
*RB
=
642 RBI
->getRegBank(MI
.getOperand(1).getReg(), *MRI
, *TRI
);
643 // We can assume every instruction above this one has a selected register
645 assert(RB
&& "Expected source register to have a register bank?");
646 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
647 MRI
->setRegBank(MI
.getOperand(0).getReg(), *RB
);
651 // Remember the repairing placement for all the operands.
652 SmallVector
<RepairingPlacement
, 4> RepairPts
;
654 const RegisterBankInfo::InstructionMapping
*BestMapping
;
655 if (OptMode
== RegBankSelect::Mode::Fast
) {
656 BestMapping
= &RBI
->getInstrMapping(MI
);
657 MappingCost DefaultCost
= computeMapping(MI
, *BestMapping
, RepairPts
);
659 if (DefaultCost
== MappingCost::ImpossibleCost())
662 RegisterBankInfo::InstructionMappings PossibleMappings
=
663 RBI
->getInstrPossibleMappings(MI
);
664 if (PossibleMappings
.empty())
666 BestMapping
= &findBestMapping(MI
, PossibleMappings
, RepairPts
);
668 // Make sure the mapping is valid for MI.
669 assert(BestMapping
->verify(MI
) && "Invalid instruction mapping");
671 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping
<< '\n');
673 // After this call, MI may not be valid anymore.
675 return applyMapping(MI
, *BestMapping
, RepairPts
);
678 bool RegBankSelect::runOnMachineFunction(MachineFunction
&MF
) {
679 // If the ISel pipeline failed, do not bother running that pass.
680 if (MF
.getProperties().hasProperty(
681 MachineFunctionProperties::Property::FailedISel
))
684 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF
.getName() << '\n');
685 const Function
&F
= MF
.getFunction();
686 Mode SaveOptMode
= OptMode
;
688 OptMode
= Mode::Fast
;
692 // Check that our input is fully legal: we require the function to have the
693 // Legalized property, so it should be.
694 // FIXME: This should be in the MachineVerifier.
695 if (!DisableGISelLegalityCheck
)
696 if (const MachineInstr
*MI
= machineFunctionIsIllegal(MF
)) {
697 reportGISelFailure(MF
, *TPC
, *MORE
, "gisel-regbankselect",
698 "instruction is not legal", *MI
);
703 // Walk the function and assign register banks to all operands.
704 // Use a RPOT to make sure all registers are assigned before we choose
705 // the best mapping of the current instruction.
706 ReversePostOrderTraversal
<MachineFunction
*> RPOT(&MF
);
707 for (MachineBasicBlock
*MBB
: RPOT
) {
708 // Set a sensible insertion point so that subsequent calls to
710 MIRBuilder
.setMBB(*MBB
);
711 SmallVector
<MachineInstr
*> WorkList(
712 make_pointer_range(reverse(MBB
->instrs())));
714 while (!WorkList
.empty()) {
715 MachineInstr
&MI
= *WorkList
.pop_back_val();
717 // Ignore target-specific post-isel instructions: they should use proper
719 if (isTargetSpecificOpcode(MI
.getOpcode()) && !MI
.isPreISelOpcode())
722 // Ignore inline asm instructions: they should use physical
723 // registers/regclasses
724 if (MI
.isInlineAsm())
727 // Ignore IMPLICIT_DEF which must have a regclass.
728 if (MI
.isImplicitDef())
731 if (!assignInstr(MI
)) {
732 reportGISelFailure(MF
, *TPC
, *MORE
, "gisel-regbankselect",
733 "unable to map instruction", MI
);
739 OptMode
= SaveOptMode
;
743 //------------------------------------------------------------------------------
744 // Helper Classes Implementation
745 //------------------------------------------------------------------------------
746 RegBankSelect::RepairingPlacement::RepairingPlacement(
747 MachineInstr
&MI
, unsigned OpIdx
, const TargetRegisterInfo
&TRI
, Pass
&P
,
748 RepairingPlacement::RepairingKind Kind
)
749 // Default is, we are going to insert code to repair OpIdx.
750 : Kind(Kind
), OpIdx(OpIdx
),
751 CanMaterialize(Kind
!= RepairingKind::Impossible
), P(P
) {
752 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
753 assert(MO
.isReg() && "Trying to repair a non-reg operand");
755 if (Kind
!= RepairingKind::Insert
)
758 // Repairings for definitions happen after MI, uses happen before.
759 bool Before
= !MO
.isDef();
761 // Check if we are done with MI.
762 if (!MI
.isPHI() && !MI
.isTerminator()) {
763 addInsertPoint(MI
, Before
);
764 // We are done with the initialization.
768 // Now, look for the special cases.
770 // - PHI must be the first instructions:
771 // * Before, we have to split the related incoming edge.
772 // * After, move the insertion point past the last phi.
774 MachineBasicBlock::iterator It
= MI
.getParent()->getFirstNonPHI();
775 if (It
!= MI
.getParent()->end())
776 addInsertPoint(*It
, /*Before*/ true);
778 addInsertPoint(*(--It
), /*Before*/ false);
781 // We repair a use of a phi, we may need to split the related edge.
782 MachineBasicBlock
&Pred
= *MI
.getOperand(OpIdx
+ 1).getMBB();
783 // Check if we can move the insertion point prior to the
784 // terminators of the predecessor.
785 Register Reg
= MO
.getReg();
786 MachineBasicBlock::iterator It
= Pred
.getLastNonDebugInstr();
787 for (auto Begin
= Pred
.begin(); It
!= Begin
&& It
->isTerminator(); --It
)
788 if (It
->modifiesRegister(Reg
, &TRI
)) {
789 // We cannot hoist the repairing code in the predecessor.
791 addInsertPoint(Pred
, *MI
.getParent());
794 // At this point, we can insert in Pred.
796 // - If It is invalid, Pred is empty and we can insert in Pred
798 // - If It is valid, It is the first non-terminator, insert after It.
799 if (It
== Pred
.end())
800 addInsertPoint(Pred
, /*Beginning*/ false);
802 addInsertPoint(*It
, /*Before*/ false);
804 // - Terminators must be the last instructions:
805 // * Before, move the insert point before the first terminator.
806 // * After, we have to split the outcoming edges.
808 // Check whether Reg is defined by any terminator.
809 MachineBasicBlock::reverse_iterator It
= MI
;
810 auto REnd
= MI
.getParent()->rend();
812 for (; It
!= REnd
&& It
->isTerminator(); ++It
) {
813 assert(!It
->modifiesRegister(MO
.getReg(), &TRI
) &&
814 "copy insertion in middle of terminators not handled");
818 addInsertPoint(*MI
.getParent()->begin(), true);
822 // We are sure to be right before the first terminator.
823 addInsertPoint(*It
, /*Before*/ false);
826 // Make sure Reg is not redefined by other terminators, otherwise
827 // we do not know how to split.
828 for (MachineBasicBlock::iterator It
= MI
, End
= MI
.getParent()->end();
830 // The machine verifier should reject this kind of code.
831 assert(It
->modifiesRegister(MO
.getReg(), &TRI
) &&
832 "Do not know where to split");
833 // Split each outcoming edges.
834 MachineBasicBlock
&Src
= *MI
.getParent();
835 for (auto &Succ
: Src
.successors())
836 addInsertPoint(Src
, Succ
);
840 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr
&MI
,
842 addInsertPoint(*new InstrInsertPoint(MI
, Before
));
845 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock
&MBB
,
847 addInsertPoint(*new MBBInsertPoint(MBB
, Beginning
));
850 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock
&Src
,
851 MachineBasicBlock
&Dst
) {
852 addInsertPoint(*new EdgeInsertPoint(Src
, Dst
, P
));
855 void RegBankSelect::RepairingPlacement::addInsertPoint(
856 RegBankSelect::InsertPoint
&Point
) {
857 CanMaterialize
&= Point
.canMaterialize();
858 HasSplit
|= Point
.isSplit();
859 InsertPoints
.emplace_back(&Point
);
862 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr
&Instr
,
864 : Instr(Instr
), Before(Before
) {
865 // Since we do not support splitting, we do not need to update
866 // liveness and such, so do not do anything with P.
867 assert((!Before
|| !Instr
.isPHI()) &&
868 "Splitting before phis requires more points");
869 assert((!Before
|| !Instr
.getNextNode() || !Instr
.getNextNode()->isPHI()) &&
870 "Splitting between phis does not make sense");
873 void RegBankSelect::InstrInsertPoint::materialize() {
875 // Slice and return the beginning of the new block.
876 // If we need to split between the terminators, we theoritically
877 // need to know where the first and second set of terminators end
878 // to update the successors properly.
879 // Now, in pratice, we should have a maximum of 2 branch
880 // instructions; one conditional and one unconditional. Therefore
881 // we know how to update the successor by looking at the target of
882 // the unconditional branch.
883 // If we end up splitting at some point, then, we should update
884 // the liveness information and such. I.e., we would need to
886 // The machine verifier should actually make sure such cases
888 llvm_unreachable("Not yet implemented");
890 // Otherwise the insertion point is just the current or next
891 // instruction depending on Before. I.e., there is nothing to do
895 bool RegBankSelect::InstrInsertPoint::isSplit() const {
896 // If the insertion point is after a terminator, we need to split.
898 return Instr
.isTerminator();
899 // If we insert before an instruction that is after a terminator,
900 // we are still after a terminator.
901 return Instr
.getPrevNode() && Instr
.getPrevNode()->isTerminator();
904 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass
&P
) const {
905 // Even if we need to split, because we insert between terminators,
906 // this split has actually the same frequency as the instruction.
907 const MachineBlockFrequencyInfo
*MBFI
=
908 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
911 return MBFI
->getBlockFreq(Instr
.getParent()).getFrequency();
914 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass
&P
) const {
915 const MachineBlockFrequencyInfo
*MBFI
=
916 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
919 return MBFI
->getBlockFreq(&MBB
).getFrequency();
922 void RegBankSelect::EdgeInsertPoint::materialize() {
923 // If we end up repairing twice at the same place before materializing the
924 // insertion point, we may think we have to split an edge twice.
925 // We should have a factory for the insert point such that identical points
926 // are the same instance.
927 assert(Src
.isSuccessor(DstOrSplit
) && DstOrSplit
->isPredecessor(&Src
) &&
928 "This point has already been split");
929 MachineBasicBlock
*NewBB
= Src
.SplitCriticalEdge(DstOrSplit
, P
);
930 assert(NewBB
&& "Invalid call to materialize");
931 // We reuse the destination block to hold the information of the new block.
935 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass
&P
) const {
936 const MachineBlockFrequencyInfo
*MBFI
=
937 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
941 return MBFI
->getBlockFreq(DstOrSplit
).getFrequency();
943 const MachineBranchProbabilityInfo
*MBPI
=
944 P
.getAnalysisIfAvailable
<MachineBranchProbabilityInfo
>();
947 // The basic block will be on the edge.
948 return (MBFI
->getBlockFreq(&Src
) * MBPI
->getEdgeProbability(&Src
, DstOrSplit
))
952 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
953 // If this is not a critical edge, we should not have used this insert
954 // point. Indeed, either the successor or the predecessor should
956 assert(Src
.succ_size() > 1 && DstOrSplit
->pred_size() > 1 &&
957 "Edge is not critical");
958 return Src
.canSplitCriticalEdge(DstOrSplit
);
961 RegBankSelect::MappingCost::MappingCost(const BlockFrequency
&LocalFreq
)
962 : LocalFreq(LocalFreq
.getFrequency()) {}
964 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost
) {
965 // Check if this overflows.
966 if (LocalCost
+ Cost
< LocalCost
) {
971 return isSaturated();
974 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost
) {
975 // Check if this overflows.
976 if (NonLocalCost
+ Cost
< NonLocalCost
) {
980 NonLocalCost
+= Cost
;
981 return isSaturated();
984 bool RegBankSelect::MappingCost::isSaturated() const {
985 return LocalCost
== UINT64_MAX
- 1 && NonLocalCost
== UINT64_MAX
&&
986 LocalFreq
== UINT64_MAX
;
989 void RegBankSelect::MappingCost::saturate() {
990 *this = ImpossibleCost();
994 RegBankSelect::MappingCost
RegBankSelect::MappingCost::ImpossibleCost() {
995 return MappingCost(UINT64_MAX
, UINT64_MAX
, UINT64_MAX
);
998 bool RegBankSelect::MappingCost::operator<(const MappingCost
&Cost
) const {
999 // Sort out the easy cases.
1002 // If one is impossible to realize the other is cheaper unless it is
1003 // impossible as well.
1004 if ((*this == ImpossibleCost()) || (Cost
== ImpossibleCost()))
1005 return (*this == ImpossibleCost()) < (Cost
== ImpossibleCost());
1006 // If one is saturated the other is cheaper, unless it is saturated
1008 if (isSaturated() || Cost
.isSaturated())
1009 return isSaturated() < Cost
.isSaturated();
1010 // At this point we know both costs hold sensible values.
1012 // If both values have a different base frequency, there is no much
1013 // we can do but to scale everything.
1014 // However, if they have the same base frequency we can avoid making
1015 // complicated computation.
1016 uint64_t ThisLocalAdjust
;
1017 uint64_t OtherLocalAdjust
;
1018 if (LLVM_LIKELY(LocalFreq
== Cost
.LocalFreq
)) {
1020 // At this point, we know the local costs are comparable.
1021 // Do the case that do not involve potential overflow first.
1022 if (NonLocalCost
== Cost
.NonLocalCost
)
1023 // Since the non-local costs do not discriminate on the result,
1024 // just compare the local costs.
1025 return LocalCost
< Cost
.LocalCost
;
1027 // The base costs are comparable so we may only keep the relative
1028 // value to increase our chances of avoiding overflows.
1029 ThisLocalAdjust
= 0;
1030 OtherLocalAdjust
= 0;
1031 if (LocalCost
< Cost
.LocalCost
)
1032 OtherLocalAdjust
= Cost
.LocalCost
- LocalCost
;
1034 ThisLocalAdjust
= LocalCost
- Cost
.LocalCost
;
1036 ThisLocalAdjust
= LocalCost
;
1037 OtherLocalAdjust
= Cost
.LocalCost
;
1040 // The non-local costs are comparable, just keep the relative value.
1041 uint64_t ThisNonLocalAdjust
= 0;
1042 uint64_t OtherNonLocalAdjust
= 0;
1043 if (NonLocalCost
< Cost
.NonLocalCost
)
1044 OtherNonLocalAdjust
= Cost
.NonLocalCost
- NonLocalCost
;
1046 ThisNonLocalAdjust
= NonLocalCost
- Cost
.NonLocalCost
;
1047 // Scale everything to make them comparable.
1048 uint64_t ThisScaledCost
= ThisLocalAdjust
* LocalFreq
;
1049 // Check for overflow on that operation.
1050 bool ThisOverflows
= ThisLocalAdjust
&& (ThisScaledCost
< ThisLocalAdjust
||
1051 ThisScaledCost
< LocalFreq
);
1052 uint64_t OtherScaledCost
= OtherLocalAdjust
* Cost
.LocalFreq
;
1053 // Check for overflow on the last operation.
1054 bool OtherOverflows
=
1056 (OtherScaledCost
< OtherLocalAdjust
|| OtherScaledCost
< Cost
.LocalFreq
);
1057 // Add the non-local costs.
1058 ThisOverflows
|= ThisNonLocalAdjust
&&
1059 ThisScaledCost
+ ThisNonLocalAdjust
< ThisNonLocalAdjust
;
1060 ThisScaledCost
+= ThisNonLocalAdjust
;
1061 OtherOverflows
|= OtherNonLocalAdjust
&&
1062 OtherScaledCost
+ OtherNonLocalAdjust
< OtherNonLocalAdjust
;
1063 OtherScaledCost
+= OtherNonLocalAdjust
;
1064 // If both overflows, we cannot compare without additional
1065 // precision, e.g., APInt. Just give up on that case.
1066 if (ThisOverflows
&& OtherOverflows
)
1068 // If one overflows but not the other, we can still compare.
1069 if (ThisOverflows
|| OtherOverflows
)
1070 return ThisOverflows
< OtherOverflows
;
1071 // Otherwise, just compare the values.
1072 return ThisScaledCost
< OtherScaledCost
;
1075 bool RegBankSelect::MappingCost::operator==(const MappingCost
&Cost
) const {
1076 return LocalCost
== Cost
.LocalCost
&& NonLocalCost
== Cost
.NonLocalCost
&&
1077 LocalFreq
== Cost
.LocalFreq
;
1080 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1081 LLVM_DUMP_METHOD
void RegBankSelect::MappingCost::dump() const {
1087 void RegBankSelect::MappingCost::print(raw_ostream
&OS
) const {
1088 if (*this == ImpossibleCost()) {
1092 if (isSaturated()) {
1096 OS
<< LocalFreq
<< " * " << LocalCost
<< " + " << NonLocalCost
;