[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / tools / llvm-profdata / llvm-profdata.cpp
blobe3921281b4afd7c16a98da6e62c05cd20a4d64eb
1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/ProfileData/InstrProfCorrelator.h"
20 #include "llvm/ProfileData/InstrProfReader.h"
21 #include "llvm/ProfileData/InstrProfWriter.h"
22 #include "llvm/ProfileData/MemProf.h"
23 #include "llvm/ProfileData/ProfileCommon.h"
24 #include "llvm/ProfileData/RawMemProfReader.h"
25 #include "llvm/ProfileData/SampleProfReader.h"
26 #include "llvm/ProfileData/SampleProfWriter.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Discriminator.h"
29 #include "llvm/Support/Errc.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Support/Format.h"
32 #include "llvm/Support/FormattedStream.h"
33 #include "llvm/Support/InitLLVM.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/Path.h"
36 #include "llvm/Support/ThreadPool.h"
37 #include "llvm/Support/Threading.h"
38 #include "llvm/Support/WithColor.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <queue>
43 using namespace llvm;
45 enum ProfileFormat {
46 PF_None = 0,
47 PF_Text,
48 PF_Compact_Binary,
49 PF_Ext_Binary,
50 PF_GCC,
51 PF_Binary
54 static void warn(Twine Message, std::string Whence = "",
55 std::string Hint = "") {
56 WithColor::warning();
57 if (!Whence.empty())
58 errs() << Whence << ": ";
59 errs() << Message << "\n";
60 if (!Hint.empty())
61 WithColor::note() << Hint << "\n";
64 static void warn(Error E, StringRef Whence = "") {
65 if (E.isA<InstrProfError>()) {
66 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
67 warn(IPE.message(), std::string(Whence), std::string(""));
68 });
72 static void exitWithError(Twine Message, std::string Whence = "",
73 std::string Hint = "") {
74 WithColor::error();
75 if (!Whence.empty())
76 errs() << Whence << ": ";
77 errs() << Message << "\n";
78 if (!Hint.empty())
79 WithColor::note() << Hint << "\n";
80 ::exit(1);
83 static void exitWithError(Error E, StringRef Whence = "") {
84 if (E.isA<InstrProfError>()) {
85 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
86 instrprof_error instrError = IPE.get();
87 StringRef Hint = "";
88 if (instrError == instrprof_error::unrecognized_format) {
89 // Hint in case user missed specifying the profile type.
90 Hint = "Perhaps you forgot to use the --sample or --memory option?";
92 exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
93 });
94 return;
97 exitWithError(toString(std::move(E)), std::string(Whence));
100 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
101 exitWithError(EC.message(), std::string(Whence));
104 namespace {
105 enum ProfileKinds { instr, sample, memory };
106 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
109 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
110 StringRef Whence = "") {
111 if (FailMode == failIfAnyAreInvalid)
112 exitWithErrorCode(EC, Whence);
113 else
114 warn(EC.message(), std::string(Whence));
117 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
118 StringRef WhenceFunction = "",
119 bool ShowHint = true) {
120 if (!WhenceFile.empty())
121 errs() << WhenceFile << ": ";
122 if (!WhenceFunction.empty())
123 errs() << WhenceFunction << ": ";
125 auto IPE = instrprof_error::success;
126 E = handleErrors(std::move(E),
127 [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
128 IPE = E->get();
129 return Error(std::move(E));
131 errs() << toString(std::move(E)) << "\n";
133 if (ShowHint) {
134 StringRef Hint = "";
135 if (IPE != instrprof_error::success) {
136 switch (IPE) {
137 case instrprof_error::hash_mismatch:
138 case instrprof_error::count_mismatch:
139 case instrprof_error::value_site_count_mismatch:
140 Hint = "Make sure that all profile data to be merged is generated "
141 "from the same binary.";
142 break;
143 default:
144 break;
148 if (!Hint.empty())
149 errs() << Hint << "\n";
153 namespace {
154 /// A remapper from original symbol names to new symbol names based on a file
155 /// containing a list of mappings from old name to new name.
156 class SymbolRemapper {
157 std::unique_ptr<MemoryBuffer> File;
158 DenseMap<StringRef, StringRef> RemappingTable;
160 public:
161 /// Build a SymbolRemapper from a file containing a list of old/new symbols.
162 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
163 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
164 if (!BufOrError)
165 exitWithErrorCode(BufOrError.getError(), InputFile);
167 auto Remapper = std::make_unique<SymbolRemapper>();
168 Remapper->File = std::move(BufOrError.get());
170 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
171 !LineIt.is_at_eof(); ++LineIt) {
172 std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
173 if (Parts.first.empty() || Parts.second.empty() ||
174 Parts.second.count(' ')) {
175 exitWithError("unexpected line in remapping file",
176 (InputFile + ":" + Twine(LineIt.line_number())).str(),
177 "expected 'old_symbol new_symbol'");
179 Remapper->RemappingTable.insert(Parts);
181 return Remapper;
184 /// Attempt to map the given old symbol into a new symbol.
186 /// \return The new symbol, or \p Name if no such symbol was found.
187 StringRef operator()(StringRef Name) {
188 StringRef New = RemappingTable.lookup(Name);
189 return New.empty() ? Name : New;
194 struct WeightedFile {
195 std::string Filename;
196 uint64_t Weight;
198 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
200 /// Keep track of merged data and reported errors.
201 struct WriterContext {
202 std::mutex Lock;
203 InstrProfWriter Writer;
204 std::vector<std::pair<Error, std::string>> Errors;
205 std::mutex &ErrLock;
206 SmallSet<instrprof_error, 4> &WriterErrorCodes;
208 WriterContext(bool IsSparse, std::mutex &ErrLock,
209 SmallSet<instrprof_error, 4> &WriterErrorCodes)
210 : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {
214 /// Computer the overlap b/w profile BaseFilename and TestFileName,
215 /// and store the program level result to Overlap.
216 static void overlapInput(const std::string &BaseFilename,
217 const std::string &TestFilename, WriterContext *WC,
218 OverlapStats &Overlap,
219 const OverlapFuncFilters &FuncFilter,
220 raw_fd_ostream &OS, bool IsCS) {
221 auto ReaderOrErr = InstrProfReader::create(TestFilename);
222 if (Error E = ReaderOrErr.takeError()) {
223 // Skip the empty profiles by returning sliently.
224 instrprof_error IPE = InstrProfError::take(std::move(E));
225 if (IPE != instrprof_error::empty_raw_profile)
226 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
227 return;
230 auto Reader = std::move(ReaderOrErr.get());
231 for (auto &I : *Reader) {
232 OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
233 FuncOverlap.setFuncInfo(I.Name, I.Hash);
235 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
236 FuncOverlap.dump(OS);
240 /// Load an input into a writer context.
241 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
242 const InstrProfCorrelator *Correlator,
243 const StringRef ProfiledBinary, WriterContext *WC) {
244 std::unique_lock<std::mutex> CtxGuard{WC->Lock};
246 // Copy the filename, because llvm::ThreadPool copied the input "const
247 // WeightedFile &" by value, making a reference to the filename within it
248 // invalid outside of this packaged task.
249 std::string Filename = Input.Filename;
251 using ::llvm::memprof::RawMemProfReader;
252 if (RawMemProfReader::hasFormat(Input.Filename)) {
253 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary);
254 if (!ReaderOrErr) {
255 exitWithError(ReaderOrErr.takeError(), Input.Filename);
257 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get());
258 // Check if the profile types can be merged, e.g. clang frontend profiles
259 // should not be merged with memprof profiles.
260 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
261 consumeError(std::move(E));
262 WC->Errors.emplace_back(
263 make_error<StringError>(
264 "Cannot merge MemProf profile with Clang generated profile.",
265 std::error_code()),
266 Filename);
267 return;
270 auto MemProfError = [&](Error E) {
271 instrprof_error IPE = InstrProfError::take(std::move(E));
272 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
275 // Add the frame mappings into the writer context.
276 const auto &IdToFrame = Reader->getFrameMapping();
277 for (const auto &I : IdToFrame) {
278 bool Succeeded = WC->Writer.addMemProfFrame(
279 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError);
280 // If we weren't able to add the frame mappings then it doesn't make sense
281 // to try to add the records from this profile.
282 if (!Succeeded)
283 return;
285 const auto &FunctionProfileData = Reader->getProfileData();
286 // Add the memprof records into the writer context.
287 for (const auto &I : FunctionProfileData) {
288 WC->Writer.addMemProfRecord(/*Id=*/I.first, /*Record=*/I.second);
290 return;
293 auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator);
294 if (Error E = ReaderOrErr.takeError()) {
295 // Skip the empty profiles by returning sliently.
296 instrprof_error IPE = InstrProfError::take(std::move(E));
297 if (IPE != instrprof_error::empty_raw_profile)
298 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
299 return;
302 auto Reader = std::move(ReaderOrErr.get());
303 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
304 consumeError(std::move(E));
305 WC->Errors.emplace_back(
306 make_error<StringError>(
307 "Merge IR generated profile with Clang generated profile.",
308 std::error_code()),
309 Filename);
310 return;
313 for (auto &I : *Reader) {
314 if (Remapper)
315 I.Name = (*Remapper)(I.Name);
316 const StringRef FuncName = I.Name;
317 bool Reported = false;
318 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
319 if (Reported) {
320 consumeError(std::move(E));
321 return;
323 Reported = true;
324 // Only show hint the first time an error occurs.
325 instrprof_error IPE = InstrProfError::take(std::move(E));
326 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
327 bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
328 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
329 FuncName, firstTime);
332 if (Reader->hasError())
333 if (Error E = Reader->getError())
334 WC->Errors.emplace_back(std::move(E), Filename);
337 /// Merge the \p Src writer context into \p Dst.
338 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
339 for (auto &ErrorPair : Src->Errors)
340 Dst->Errors.push_back(std::move(ErrorPair));
341 Src->Errors.clear();
343 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
344 instrprof_error IPE = InstrProfError::take(std::move(E));
345 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
346 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
347 if (firstTime)
348 warn(toString(make_error<InstrProfError>(IPE)));
352 static void writeInstrProfile(StringRef OutputFilename,
353 ProfileFormat OutputFormat,
354 InstrProfWriter &Writer) {
355 std::error_code EC;
356 raw_fd_ostream Output(OutputFilename.data(), EC,
357 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
358 : sys::fs::OF_None);
359 if (EC)
360 exitWithErrorCode(EC, OutputFilename);
362 if (OutputFormat == PF_Text) {
363 if (Error E = Writer.writeText(Output))
364 warn(std::move(E));
365 } else {
366 if (Output.is_displayed())
367 exitWithError("cannot write a non-text format profile to the terminal");
368 if (Error E = Writer.write(Output))
369 warn(std::move(E));
373 static void mergeInstrProfile(const WeightedFileVector &Inputs,
374 StringRef DebugInfoFilename,
375 SymbolRemapper *Remapper,
376 StringRef OutputFilename,
377 ProfileFormat OutputFormat, bool OutputSparse,
378 unsigned NumThreads, FailureMode FailMode,
379 const StringRef ProfiledBinary) {
380 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
381 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
382 exitWithError("unknown format is specified");
384 std::unique_ptr<InstrProfCorrelator> Correlator;
385 if (!DebugInfoFilename.empty()) {
386 if (auto Err =
387 InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator))
388 exitWithError(std::move(Err), DebugInfoFilename);
389 if (auto Err = Correlator->correlateProfileData())
390 exitWithError(std::move(Err), DebugInfoFilename);
393 std::mutex ErrorLock;
394 SmallSet<instrprof_error, 4> WriterErrorCodes;
396 // If NumThreads is not specified, auto-detect a good default.
397 if (NumThreads == 0)
398 NumThreads = std::min(hardware_concurrency().compute_thread_count(),
399 unsigned((Inputs.size() + 1) / 2));
400 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
401 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
402 // merged, thus the emitted file ends up with a PF_Unknown kind.
404 // Initialize the writer contexts.
405 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
406 for (unsigned I = 0; I < NumThreads; ++I)
407 Contexts.emplace_back(std::make_unique<WriterContext>(
408 OutputSparse, ErrorLock, WriterErrorCodes));
410 if (NumThreads == 1) {
411 for (const auto &Input : Inputs)
412 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary,
413 Contexts[0].get());
414 } else {
415 ThreadPool Pool(hardware_concurrency(NumThreads));
417 // Load the inputs in parallel (N/NumThreads serial steps).
418 unsigned Ctx = 0;
419 for (const auto &Input : Inputs) {
420 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary,
421 Contexts[Ctx].get());
422 Ctx = (Ctx + 1) % NumThreads;
424 Pool.wait();
426 // Merge the writer contexts together (~ lg(NumThreads) serial steps).
427 unsigned Mid = Contexts.size() / 2;
428 unsigned End = Contexts.size();
429 assert(Mid > 0 && "Expected more than one context");
430 do {
431 for (unsigned I = 0; I < Mid; ++I)
432 Pool.async(mergeWriterContexts, Contexts[I].get(),
433 Contexts[I + Mid].get());
434 Pool.wait();
435 if (End & 1) {
436 Pool.async(mergeWriterContexts, Contexts[0].get(),
437 Contexts[End - 1].get());
438 Pool.wait();
440 End = Mid;
441 Mid /= 2;
442 } while (Mid > 0);
445 // Handle deferred errors encountered during merging. If the number of errors
446 // is equal to the number of inputs the merge failed.
447 unsigned NumErrors = 0;
448 for (std::unique_ptr<WriterContext> &WC : Contexts) {
449 for (auto &ErrorPair : WC->Errors) {
450 ++NumErrors;
451 warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
454 if (NumErrors == Inputs.size() ||
455 (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
456 exitWithError("no profile can be merged");
458 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
461 /// The profile entry for a function in instrumentation profile.
462 struct InstrProfileEntry {
463 uint64_t MaxCount = 0;
464 float ZeroCounterRatio = 0.0;
465 InstrProfRecord *ProfRecord;
466 InstrProfileEntry(InstrProfRecord *Record);
467 InstrProfileEntry() = default;
470 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
471 ProfRecord = Record;
472 uint64_t CntNum = Record->Counts.size();
473 uint64_t ZeroCntNum = 0;
474 for (size_t I = 0; I < CntNum; ++I) {
475 MaxCount = std::max(MaxCount, Record->Counts[I]);
476 ZeroCntNum += !Record->Counts[I];
478 ZeroCounterRatio = (float)ZeroCntNum / CntNum;
481 /// Either set all the counters in the instr profile entry \p IFE to -1
482 /// in order to drop the profile or scale up the counters in \p IFP to
483 /// be above hot threshold. We use the ratio of zero counters in the
484 /// profile of a function to decide the profile is helpful or harmful
485 /// for performance, and to choose whether to scale up or drop it.
486 static void updateInstrProfileEntry(InstrProfileEntry &IFE,
487 uint64_t HotInstrThreshold,
488 float ZeroCounterThreshold) {
489 InstrProfRecord *ProfRecord = IFE.ProfRecord;
490 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
491 // If all or most of the counters of the function are zero, the
492 // profile is unaccountable and shuld be dropped. Reset all the
493 // counters to be -1 and PGO profile-use will drop the profile.
494 // All counters being -1 also implies that the function is hot so
495 // PGO profile-use will also set the entry count metadata to be
496 // above hot threshold.
497 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
498 ProfRecord->Counts[I] = -1;
499 return;
502 // Scale up the MaxCount to be multiple times above hot threshold.
503 const unsigned MultiplyFactor = 3;
504 uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
505 uint64_t Denominator = IFE.MaxCount;
506 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
507 warn(toString(make_error<InstrProfError>(E)));
511 const uint64_t ColdPercentileIdx = 15;
512 const uint64_t HotPercentileIdx = 11;
514 using sampleprof::FSDiscriminatorPass;
516 // Internal options to set FSDiscriminatorPass. Used in merge and show
517 // commands.
518 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
519 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
520 cl::desc("Zero out the discriminator bits for the FS discrimiantor "
521 "pass beyond this value. The enum values are defined in "
522 "Support/Discriminator.h"),
523 cl::values(clEnumVal(Base, "Use base discriminators only"),
524 clEnumVal(Pass1, "Use base and pass 1 discriminators"),
525 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
526 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
527 clEnumVal(PassLast, "Use all discriminator bits (default)")));
529 static unsigned getDiscriminatorMask() {
530 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
533 /// Adjust the instr profile in \p WC based on the sample profile in
534 /// \p Reader.
535 static void
536 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
537 std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
538 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
539 unsigned InstrProfColdThreshold) {
540 // Function to its entry in instr profile.
541 StringMap<InstrProfileEntry> InstrProfileMap;
542 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
543 for (auto &PD : WC->Writer.getProfileData()) {
544 // Populate IPBuilder.
545 for (const auto &PDV : PD.getValue()) {
546 InstrProfRecord Record = PDV.second;
547 IPBuilder.addRecord(Record);
550 // If a function has multiple entries in instr profile, skip it.
551 if (PD.getValue().size() != 1)
552 continue;
554 // Initialize InstrProfileMap.
555 InstrProfRecord *R = &PD.getValue().begin()->second;
556 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
559 ProfileSummary InstrPS = *IPBuilder.getSummary();
560 ProfileSummary SamplePS = Reader->getSummary();
562 // Compute cold thresholds for instr profile and sample profile.
563 uint64_t ColdSampleThreshold =
564 ProfileSummaryBuilder::getEntryForPercentile(
565 SamplePS.getDetailedSummary(),
566 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
567 .MinCount;
568 uint64_t HotInstrThreshold =
569 ProfileSummaryBuilder::getEntryForPercentile(
570 InstrPS.getDetailedSummary(),
571 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
572 .MinCount;
573 uint64_t ColdInstrThreshold =
574 InstrProfColdThreshold
575 ? InstrProfColdThreshold
576 : ProfileSummaryBuilder::getEntryForPercentile(
577 InstrPS.getDetailedSummary(),
578 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
579 .MinCount;
581 // Find hot/warm functions in sample profile which is cold in instr profile
582 // and adjust the profiles of those functions in the instr profile.
583 for (const auto &PD : Reader->getProfiles()) {
584 auto &FContext = PD.first;
585 const sampleprof::FunctionSamples &FS = PD.second;
586 auto It = InstrProfileMap.find(FContext.toString());
587 if (FS.getHeadSamples() > ColdSampleThreshold &&
588 It != InstrProfileMap.end() &&
589 It->second.MaxCount <= ColdInstrThreshold &&
590 FS.getBodySamples().size() >= SupplMinSizeThreshold) {
591 updateInstrProfileEntry(It->second, HotInstrThreshold,
592 ZeroCounterThreshold);
597 /// The main function to supplement instr profile with sample profile.
598 /// \Inputs contains the instr profile. \p SampleFilename specifies the
599 /// sample profile. \p OutputFilename specifies the output profile name.
600 /// \p OutputFormat specifies the output profile format. \p OutputSparse
601 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
602 /// specifies the minimal size for the functions whose profile will be
603 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
604 /// a function contains too many zero counters and whether its profile
605 /// should be dropped. \p InstrProfColdThreshold is the user specified
606 /// cold threshold which will override the cold threshold got from the
607 /// instr profile summary.
608 static void supplementInstrProfile(
609 const WeightedFileVector &Inputs, StringRef SampleFilename,
610 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
611 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
612 unsigned InstrProfColdThreshold) {
613 if (OutputFilename.compare("-") == 0)
614 exitWithError("cannot write indexed profdata format to stdout");
615 if (Inputs.size() != 1)
616 exitWithError("expect one input to be an instr profile");
617 if (Inputs[0].Weight != 1)
618 exitWithError("expect instr profile doesn't have weight");
620 StringRef InstrFilename = Inputs[0].Filename;
622 // Read sample profile.
623 LLVMContext Context;
624 auto ReaderOrErr = sampleprof::SampleProfileReader::create(
625 SampleFilename.str(), Context, FSDiscriminatorPassOption);
626 if (std::error_code EC = ReaderOrErr.getError())
627 exitWithErrorCode(EC, SampleFilename);
628 auto Reader = std::move(ReaderOrErr.get());
629 if (std::error_code EC = Reader->read())
630 exitWithErrorCode(EC, SampleFilename);
632 // Read instr profile.
633 std::mutex ErrorLock;
634 SmallSet<instrprof_error, 4> WriterErrorCodes;
635 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
636 WriterErrorCodes);
637 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get());
638 if (WC->Errors.size() > 0)
639 exitWithError(std::move(WC->Errors[0].first), InstrFilename);
641 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
642 InstrProfColdThreshold);
643 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
646 /// Make a copy of the given function samples with all symbol names remapped
647 /// by the provided symbol remapper.
648 static sampleprof::FunctionSamples
649 remapSamples(const sampleprof::FunctionSamples &Samples,
650 SymbolRemapper &Remapper, sampleprof_error &Error) {
651 sampleprof::FunctionSamples Result;
652 Result.setName(Remapper(Samples.getName()));
653 Result.addTotalSamples(Samples.getTotalSamples());
654 Result.addHeadSamples(Samples.getHeadSamples());
655 for (const auto &BodySample : Samples.getBodySamples()) {
656 uint32_t MaskedDiscriminator =
657 BodySample.first.Discriminator & getDiscriminatorMask();
658 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
659 BodySample.second.getSamples());
660 for (const auto &Target : BodySample.second.getCallTargets()) {
661 Result.addCalledTargetSamples(BodySample.first.LineOffset,
662 MaskedDiscriminator,
663 Remapper(Target.first()), Target.second);
666 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
667 sampleprof::FunctionSamplesMap &Target =
668 Result.functionSamplesAt(CallsiteSamples.first);
669 for (const auto &Callsite : CallsiteSamples.second) {
670 sampleprof::FunctionSamples Remapped =
671 remapSamples(Callsite.second, Remapper, Error);
672 MergeResult(Error,
673 Target[std::string(Remapped.getName())].merge(Remapped));
676 return Result;
679 static sampleprof::SampleProfileFormat FormatMap[] = {
680 sampleprof::SPF_None,
681 sampleprof::SPF_Text,
682 sampleprof::SPF_Compact_Binary,
683 sampleprof::SPF_Ext_Binary,
684 sampleprof::SPF_GCC,
685 sampleprof::SPF_Binary};
687 static std::unique_ptr<MemoryBuffer>
688 getInputFileBuf(const StringRef &InputFile) {
689 if (InputFile == "")
690 return {};
692 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
693 if (!BufOrError)
694 exitWithErrorCode(BufOrError.getError(), InputFile);
696 return std::move(*BufOrError);
699 static void populateProfileSymbolList(MemoryBuffer *Buffer,
700 sampleprof::ProfileSymbolList &PSL) {
701 if (!Buffer)
702 return;
704 SmallVector<StringRef, 32> SymbolVec;
705 StringRef Data = Buffer->getBuffer();
706 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
708 for (StringRef SymbolStr : SymbolVec)
709 PSL.add(SymbolStr.trim());
712 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
713 ProfileFormat OutputFormat,
714 MemoryBuffer *Buffer,
715 sampleprof::ProfileSymbolList &WriterList,
716 bool CompressAllSections, bool UseMD5,
717 bool GenPartialProfile) {
718 populateProfileSymbolList(Buffer, WriterList);
719 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
720 warn("Profile Symbol list is not empty but the output format is not "
721 "ExtBinary format. The list will be lost in the output. ");
723 Writer.setProfileSymbolList(&WriterList);
725 if (CompressAllSections) {
726 if (OutputFormat != PF_Ext_Binary)
727 warn("-compress-all-section is ignored. Specify -extbinary to enable it");
728 else
729 Writer.setToCompressAllSections();
731 if (UseMD5) {
732 if (OutputFormat != PF_Ext_Binary)
733 warn("-use-md5 is ignored. Specify -extbinary to enable it");
734 else
735 Writer.setUseMD5();
737 if (GenPartialProfile) {
738 if (OutputFormat != PF_Ext_Binary)
739 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
740 else
741 Writer.setPartialProfile();
745 static void
746 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
747 StringRef OutputFilename, ProfileFormat OutputFormat,
748 StringRef ProfileSymbolListFile, bool CompressAllSections,
749 bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile,
750 bool SampleMergeColdContext, bool SampleTrimColdContext,
751 bool SampleColdContextFrameDepth, FailureMode FailMode) {
752 using namespace sampleprof;
753 SampleProfileMap ProfileMap;
754 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
755 LLVMContext Context;
756 sampleprof::ProfileSymbolList WriterList;
757 Optional<bool> ProfileIsProbeBased;
758 Optional<bool> ProfileIsCS;
759 for (const auto &Input : Inputs) {
760 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
761 FSDiscriminatorPassOption);
762 if (std::error_code EC = ReaderOrErr.getError()) {
763 warnOrExitGivenError(FailMode, EC, Input.Filename);
764 continue;
767 // We need to keep the readers around until after all the files are
768 // read so that we do not lose the function names stored in each
769 // reader's memory. The function names are needed to write out the
770 // merged profile map.
771 Readers.push_back(std::move(ReaderOrErr.get()));
772 const auto Reader = Readers.back().get();
773 if (std::error_code EC = Reader->read()) {
774 warnOrExitGivenError(FailMode, EC, Input.Filename);
775 Readers.pop_back();
776 continue;
779 SampleProfileMap &Profiles = Reader->getProfiles();
780 if (ProfileIsProbeBased &&
781 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
782 exitWithError(
783 "cannot merge probe-based profile with non-probe-based profile");
784 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
785 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS)
786 exitWithError("cannot merge CS profile with non-CS profile");
787 ProfileIsCS = FunctionSamples::ProfileIsCS;
788 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
789 I != E; ++I) {
790 sampleprof_error Result = sampleprof_error::success;
791 FunctionSamples Remapped =
792 Remapper ? remapSamples(I->second, *Remapper, Result)
793 : FunctionSamples();
794 FunctionSamples &Samples = Remapper ? Remapped : I->second;
795 SampleContext FContext = Samples.getContext();
796 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight));
797 if (Result != sampleprof_error::success) {
798 std::error_code EC = make_error_code(Result);
799 handleMergeWriterError(errorCodeToError(EC), Input.Filename,
800 FContext.toString());
804 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
805 Reader->getProfileSymbolList();
806 if (ReaderList)
807 WriterList.merge(*ReaderList);
810 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
811 // Use threshold calculated from profile summary unless specified.
812 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
813 auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
814 uint64_t SampleProfColdThreshold =
815 ProfileSummaryBuilder::getColdCountThreshold(
816 (Summary->getDetailedSummary()));
818 // Trim and merge cold context profile using cold threshold above;
819 SampleContextTrimmer(ProfileMap)
820 .trimAndMergeColdContextProfiles(
821 SampleProfColdThreshold, SampleTrimColdContext,
822 SampleMergeColdContext, SampleColdContextFrameDepth, false);
825 if (ProfileIsCS && GenCSNestedProfile) {
826 CSProfileConverter CSConverter(ProfileMap);
827 CSConverter.convertProfiles();
828 ProfileIsCS = FunctionSamples::ProfileIsCS = false;
831 auto WriterOrErr =
832 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
833 if (std::error_code EC = WriterOrErr.getError())
834 exitWithErrorCode(EC, OutputFilename);
836 auto Writer = std::move(WriterOrErr.get());
837 // WriterList will have StringRef refering to string in Buffer.
838 // Make sure Buffer lives as long as WriterList.
839 auto Buffer = getInputFileBuf(ProfileSymbolListFile);
840 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
841 CompressAllSections, UseMD5, GenPartialProfile);
842 if (std::error_code EC = Writer->write(ProfileMap))
843 exitWithErrorCode(std::move(EC));
846 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
847 StringRef WeightStr, FileName;
848 std::tie(WeightStr, FileName) = WeightedFilename.split(',');
850 uint64_t Weight;
851 if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
852 exitWithError("input weight must be a positive integer");
854 return {std::string(FileName), Weight};
857 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
858 StringRef Filename = WF.Filename;
859 uint64_t Weight = WF.Weight;
861 // If it's STDIN just pass it on.
862 if (Filename == "-") {
863 WNI.push_back({std::string(Filename), Weight});
864 return;
867 llvm::sys::fs::file_status Status;
868 llvm::sys::fs::status(Filename, Status);
869 if (!llvm::sys::fs::exists(Status))
870 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
871 Filename);
872 // If it's a source file, collect it.
873 if (llvm::sys::fs::is_regular_file(Status)) {
874 WNI.push_back({std::string(Filename), Weight});
875 return;
878 if (llvm::sys::fs::is_directory(Status)) {
879 std::error_code EC;
880 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
881 F != E && !EC; F.increment(EC)) {
882 if (llvm::sys::fs::is_regular_file(F->path())) {
883 addWeightedInput(WNI, {F->path(), Weight});
886 if (EC)
887 exitWithErrorCode(EC, Filename);
891 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
892 WeightedFileVector &WFV) {
893 if (!Buffer)
894 return;
896 SmallVector<StringRef, 8> Entries;
897 StringRef Data = Buffer->getBuffer();
898 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
899 for (const StringRef &FileWeightEntry : Entries) {
900 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
901 // Skip comments.
902 if (SanitizedEntry.startswith("#"))
903 continue;
904 // If there's no comma, it's an unweighted profile.
905 else if (!SanitizedEntry.contains(','))
906 addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
907 else
908 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
912 static int merge_main(int argc, const char *argv[]) {
913 cl::list<std::string> InputFilenames(cl::Positional,
914 cl::desc("<filename...>"));
915 cl::list<std::string> WeightedInputFilenames("weighted-input",
916 cl::desc("<weight>,<filename>"));
917 cl::opt<std::string> InputFilenamesFile(
918 "input-files", cl::init(""),
919 cl::desc("Path to file containing newline-separated "
920 "[<weight>,]<filename> entries"));
921 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
922 cl::aliasopt(InputFilenamesFile));
923 cl::opt<bool> DumpInputFileList(
924 "dump-input-file-list", cl::init(false), cl::Hidden,
925 cl::desc("Dump the list of input files and their weights, then exit"));
926 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
927 cl::desc("Symbol remapping file"));
928 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
929 cl::aliasopt(RemappingFile));
930 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
931 cl::init("-"), cl::desc("Output file"));
932 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
933 cl::aliasopt(OutputFilename));
934 cl::opt<ProfileKinds> ProfileKind(
935 cl::desc("Profile kind:"), cl::init(instr),
936 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
937 clEnumVal(sample, "Sample profile")));
938 cl::opt<ProfileFormat> OutputFormat(
939 cl::desc("Format of output profile"), cl::init(PF_Binary),
940 cl::values(
941 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
942 clEnumValN(PF_Compact_Binary, "compbinary",
943 "Compact binary encoding"),
944 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
945 clEnumValN(PF_Text, "text", "Text encoding"),
946 clEnumValN(PF_GCC, "gcc",
947 "GCC encoding (only meaningful for -sample)")));
948 cl::opt<FailureMode> FailureMode(
949 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
950 cl::values(clEnumValN(failIfAnyAreInvalid, "any",
951 "Fail if any profile is invalid."),
952 clEnumValN(failIfAllAreInvalid, "all",
953 "Fail only if all profiles are invalid.")));
954 cl::opt<bool> OutputSparse("sparse", cl::init(false),
955 cl::desc("Generate a sparse profile (only meaningful for -instr)"));
956 cl::opt<unsigned> NumThreads(
957 "num-threads", cl::init(0),
958 cl::desc("Number of merge threads to use (default: autodetect)"));
959 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
960 cl::aliasopt(NumThreads));
961 cl::opt<std::string> ProfileSymbolListFile(
962 "prof-sym-list", cl::init(""),
963 cl::desc("Path to file containing the list of function symbols "
964 "used to populate profile symbol list"));
965 cl::opt<bool> CompressAllSections(
966 "compress-all-sections", cl::init(false), cl::Hidden,
967 cl::desc("Compress all sections when writing the profile (only "
968 "meaningful for -extbinary)"));
969 cl::opt<bool> UseMD5(
970 "use-md5", cl::init(false), cl::Hidden,
971 cl::desc("Choose to use MD5 to represent string in name table (only "
972 "meaningful for -extbinary)"));
973 cl::opt<bool> SampleMergeColdContext(
974 "sample-merge-cold-context", cl::init(false), cl::Hidden,
975 cl::desc(
976 "Merge context sample profiles whose count is below cold threshold"));
977 cl::opt<bool> SampleTrimColdContext(
978 "sample-trim-cold-context", cl::init(false), cl::Hidden,
979 cl::desc(
980 "Trim context sample profiles whose count is below cold threshold"));
981 cl::opt<uint32_t> SampleColdContextFrameDepth(
982 "sample-frame-depth-for-cold-context", cl::init(1),
983 cl::desc("Keep the last K frames while merging cold profile. 1 means the "
984 "context-less base profile"));
985 cl::opt<bool> GenPartialProfile(
986 "gen-partial-profile", cl::init(false), cl::Hidden,
987 cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
988 cl::opt<std::string> SupplInstrWithSample(
989 "supplement-instr-with-sample", cl::init(""), cl::Hidden,
990 cl::desc("Supplement an instr profile with sample profile, to correct "
991 "the profile unrepresentativeness issue. The sample "
992 "profile is the input of the flag. Output will be in instr "
993 "format (The flag only works with -instr)"));
994 cl::opt<float> ZeroCounterThreshold(
995 "zero-counter-threshold", cl::init(0.7), cl::Hidden,
996 cl::desc("For the function which is cold in instr profile but hot in "
997 "sample profile, if the ratio of the number of zero counters "
998 "divided by the total number of counters is above the "
999 "threshold, the profile of the function will be regarded as "
1000 "being harmful for performance and will be dropped."));
1001 cl::opt<unsigned> SupplMinSizeThreshold(
1002 "suppl-min-size-threshold", cl::init(10), cl::Hidden,
1003 cl::desc("If the size of a function is smaller than the threshold, "
1004 "assume it can be inlined by PGO early inliner and it won't "
1005 "be adjusted based on sample profile."));
1006 cl::opt<unsigned> InstrProfColdThreshold(
1007 "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
1008 cl::desc("User specified cold threshold for instr profile which will "
1009 "override the cold threshold got from profile summary. "));
1010 cl::opt<bool> GenCSNestedProfile(
1011 "gen-cs-nested-profile", cl::Hidden, cl::init(false),
1012 cl::desc("Generate nested function profiles for CSSPGO"));
1013 cl::opt<std::string> DebugInfoFilename(
1014 "debug-info", cl::init(""),
1015 cl::desc("Use the provided debug info to correlate the raw profile."));
1016 cl::opt<std::string> ProfiledBinary(
1017 "profiled-binary", cl::init(""),
1018 cl::desc("Path to binary from which the profile was collected."));
1020 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
1022 WeightedFileVector WeightedInputs;
1023 for (StringRef Filename : InputFilenames)
1024 addWeightedInput(WeightedInputs, {std::string(Filename), 1});
1025 for (StringRef WeightedFilename : WeightedInputFilenames)
1026 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
1028 // Make sure that the file buffer stays alive for the duration of the
1029 // weighted input vector's lifetime.
1030 auto Buffer = getInputFileBuf(InputFilenamesFile);
1031 parseInputFilenamesFile(Buffer.get(), WeightedInputs);
1033 if (WeightedInputs.empty())
1034 exitWithError("no input files specified. See " +
1035 sys::path::filename(argv[0]) + " -help");
1037 if (DumpInputFileList) {
1038 for (auto &WF : WeightedInputs)
1039 outs() << WF.Weight << "," << WF.Filename << "\n";
1040 return 0;
1043 std::unique_ptr<SymbolRemapper> Remapper;
1044 if (!RemappingFile.empty())
1045 Remapper = SymbolRemapper::create(RemappingFile);
1047 if (!SupplInstrWithSample.empty()) {
1048 if (ProfileKind != instr)
1049 exitWithError(
1050 "-supplement-instr-with-sample can only work with -instr. ");
1052 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
1053 OutputFormat, OutputSparse, SupplMinSizeThreshold,
1054 ZeroCounterThreshold, InstrProfColdThreshold);
1055 return 0;
1058 if (ProfileKind == instr)
1059 mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(),
1060 OutputFilename, OutputFormat, OutputSparse, NumThreads,
1061 FailureMode, ProfiledBinary);
1062 else
1063 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
1064 OutputFormat, ProfileSymbolListFile, CompressAllSections,
1065 UseMD5, GenPartialProfile, GenCSNestedProfile,
1066 SampleMergeColdContext, SampleTrimColdContext,
1067 SampleColdContextFrameDepth, FailureMode);
1068 return 0;
1071 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
1072 static void overlapInstrProfile(const std::string &BaseFilename,
1073 const std::string &TestFilename,
1074 const OverlapFuncFilters &FuncFilter,
1075 raw_fd_ostream &OS, bool IsCS) {
1076 std::mutex ErrorLock;
1077 SmallSet<instrprof_error, 4> WriterErrorCodes;
1078 WriterContext Context(false, ErrorLock, WriterErrorCodes);
1079 WeightedFile WeightedInput{BaseFilename, 1};
1080 OverlapStats Overlap;
1081 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1082 if (E)
1083 exitWithError(std::move(E), "error in getting profile count sums");
1084 if (Overlap.Base.CountSum < 1.0f) {
1085 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1086 exit(0);
1088 if (Overlap.Test.CountSum < 1.0f) {
1089 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1090 exit(0);
1092 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context);
1093 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1094 IsCS);
1095 Overlap.dump(OS);
1098 namespace {
1099 struct SampleOverlapStats {
1100 SampleContext BaseName;
1101 SampleContext TestName;
1102 // Number of overlap units
1103 uint64_t OverlapCount;
1104 // Total samples of overlap units
1105 uint64_t OverlapSample;
1106 // Number of and total samples of units that only present in base or test
1107 // profile
1108 uint64_t BaseUniqueCount;
1109 uint64_t BaseUniqueSample;
1110 uint64_t TestUniqueCount;
1111 uint64_t TestUniqueSample;
1112 // Number of units and total samples in base or test profile
1113 uint64_t BaseCount;
1114 uint64_t BaseSample;
1115 uint64_t TestCount;
1116 uint64_t TestSample;
1117 // Number of and total samples of units that present in at least one profile
1118 uint64_t UnionCount;
1119 uint64_t UnionSample;
1120 // Weighted similarity
1121 double Similarity;
1122 // For SampleOverlapStats instances representing functions, weights of the
1123 // function in base and test profiles
1124 double BaseWeight;
1125 double TestWeight;
1127 SampleOverlapStats()
1128 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
1129 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
1130 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
1131 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
1133 } // end anonymous namespace
1135 namespace {
1136 struct FuncSampleStats {
1137 uint64_t SampleSum;
1138 uint64_t MaxSample;
1139 uint64_t HotBlockCount;
1140 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
1141 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1142 uint64_t HotBlockCount)
1143 : SampleSum(SampleSum), MaxSample(MaxSample),
1144 HotBlockCount(HotBlockCount) {}
1146 } // end anonymous namespace
1148 namespace {
1149 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1151 // Class for updating merging steps for two sorted maps. The class should be
1152 // instantiated with a map iterator type.
1153 template <class T> class MatchStep {
1154 public:
1155 MatchStep() = delete;
1157 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1158 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1159 SecondEnd(SecondEnd), Status(MS_None) {}
1161 bool areBothFinished() const {
1162 return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1165 bool isFirstFinished() const { return FirstIter == FirstEnd; }
1167 bool isSecondFinished() const { return SecondIter == SecondEnd; }
1169 /// Advance one step based on the previous match status unless the previous
1170 /// status is MS_None. Then update Status based on the comparison between two
1171 /// container iterators at the current step. If the previous status is
1172 /// MS_None, it means two iterators are at the beginning and no comparison has
1173 /// been made, so we simply update Status without advancing the iterators.
1174 void updateOneStep();
1176 T getFirstIter() const { return FirstIter; }
1178 T getSecondIter() const { return SecondIter; }
1180 MatchStatus getMatchStatus() const { return Status; }
1182 private:
1183 // Current iterator and end iterator of the first container.
1184 T FirstIter;
1185 T FirstEnd;
1186 // Current iterator and end iterator of the second container.
1187 T SecondIter;
1188 T SecondEnd;
1189 // Match status of the current step.
1190 MatchStatus Status;
1192 } // end anonymous namespace
1194 template <class T> void MatchStep<T>::updateOneStep() {
1195 switch (Status) {
1196 case MS_Match:
1197 ++FirstIter;
1198 ++SecondIter;
1199 break;
1200 case MS_FirstUnique:
1201 ++FirstIter;
1202 break;
1203 case MS_SecondUnique:
1204 ++SecondIter;
1205 break;
1206 case MS_None:
1207 break;
1210 // Update Status according to iterators at the current step.
1211 if (areBothFinished())
1212 return;
1213 if (FirstIter != FirstEnd &&
1214 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1215 Status = MS_FirstUnique;
1216 else if (SecondIter != SecondEnd &&
1217 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1218 Status = MS_SecondUnique;
1219 else
1220 Status = MS_Match;
1223 // Return the sum of line/block samples, the max line/block sample, and the
1224 // number of line/block samples above the given threshold in a function
1225 // including its inlinees.
1226 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1227 FuncSampleStats &FuncStats,
1228 uint64_t HotThreshold) {
1229 for (const auto &L : Func.getBodySamples()) {
1230 uint64_t Sample = L.second.getSamples();
1231 FuncStats.SampleSum += Sample;
1232 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1233 if (Sample >= HotThreshold)
1234 ++FuncStats.HotBlockCount;
1237 for (const auto &C : Func.getCallsiteSamples()) {
1238 for (const auto &F : C.second)
1239 getFuncSampleStats(F.second, FuncStats, HotThreshold);
1243 /// Predicate that determines if a function is hot with a given threshold. We
1244 /// keep it separate from its callsites for possible extension in the future.
1245 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1246 uint64_t HotThreshold) {
1247 // We intentionally compare the maximum sample count in a function with the
1248 // HotThreshold to get an approximate determination on hot functions.
1249 return (FuncStats.MaxSample >= HotThreshold);
1252 namespace {
1253 class SampleOverlapAggregator {
1254 public:
1255 SampleOverlapAggregator(const std::string &BaseFilename,
1256 const std::string &TestFilename,
1257 double LowSimilarityThreshold, double Epsilon,
1258 const OverlapFuncFilters &FuncFilter)
1259 : BaseFilename(BaseFilename), TestFilename(TestFilename),
1260 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1261 FuncFilter(FuncFilter) {}
1263 /// Detect 0-sample input profile and report to output stream. This interface
1264 /// should be called after loadProfiles().
1265 bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1267 /// Write out function-level similarity statistics for functions specified by
1268 /// options --function, --value-cutoff, and --similarity-cutoff.
1269 void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1271 /// Write out program-level similarity and overlap statistics.
1272 void dumpProgramSummary(raw_fd_ostream &OS) const;
1274 /// Write out hot-function and hot-block statistics for base_profile,
1275 /// test_profile, and their overlap. For both cases, the overlap HO is
1276 /// calculated as follows:
1277 /// Given the number of functions (or blocks) that are hot in both profiles
1278 /// HCommon and the number of functions (or blocks) that are hot in at
1279 /// least one profile HUnion, HO = HCommon / HUnion.
1280 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1282 /// This function tries matching functions in base and test profiles. For each
1283 /// pair of matched functions, it aggregates the function-level
1284 /// similarity into a profile-level similarity. It also dump function-level
1285 /// similarity information of functions specified by --function,
1286 /// --value-cutoff, and --similarity-cutoff options. The program-level
1287 /// similarity PS is computed as follows:
1288 /// Given function-level similarity FS(A) for all function A, the
1289 /// weight of function A in base profile WB(A), and the weight of function
1290 /// A in test profile WT(A), compute PS(base_profile, test_profile) =
1291 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1292 /// meaning no-overlap.
1293 void computeSampleProfileOverlap(raw_fd_ostream &OS);
1295 /// Initialize ProfOverlap with the sum of samples in base and test
1296 /// profiles. This function also computes and keeps the sum of samples and
1297 /// max sample counts of each function in BaseStats and TestStats for later
1298 /// use to avoid re-computations.
1299 void initializeSampleProfileOverlap();
1301 /// Load profiles specified by BaseFilename and TestFilename.
1302 std::error_code loadProfiles();
1304 using FuncSampleStatsMap =
1305 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1307 private:
1308 SampleOverlapStats ProfOverlap;
1309 SampleOverlapStats HotFuncOverlap;
1310 SampleOverlapStats HotBlockOverlap;
1311 std::string BaseFilename;
1312 std::string TestFilename;
1313 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1314 std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1315 // BaseStats and TestStats hold FuncSampleStats for each function, with
1316 // function name as the key.
1317 FuncSampleStatsMap BaseStats;
1318 FuncSampleStatsMap TestStats;
1319 // Low similarity threshold in floating point number
1320 double LowSimilarityThreshold;
1321 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1322 // for tracking hot blocks.
1323 uint64_t BaseHotThreshold;
1324 uint64_t TestHotThreshold;
1325 // A small threshold used to round the results of floating point accumulations
1326 // to resolve imprecision.
1327 const double Epsilon;
1328 std::multimap<double, SampleOverlapStats, std::greater<double>>
1329 FuncSimilarityDump;
1330 // FuncFilter carries specifications in options --value-cutoff and
1331 // --function.
1332 OverlapFuncFilters FuncFilter;
1333 // Column offsets for printing the function-level details table.
1334 static const unsigned int TestWeightCol = 15;
1335 static const unsigned int SimilarityCol = 30;
1336 static const unsigned int OverlapCol = 43;
1337 static const unsigned int BaseUniqueCol = 53;
1338 static const unsigned int TestUniqueCol = 67;
1339 static const unsigned int BaseSampleCol = 81;
1340 static const unsigned int TestSampleCol = 96;
1341 static const unsigned int FuncNameCol = 111;
1343 /// Return a similarity of two line/block sample counters in the same
1344 /// function in base and test profiles. The line/block-similarity BS(i) is
1345 /// computed as follows:
1346 /// For an offsets i, given the sample count at i in base profile BB(i),
1347 /// the sample count at i in test profile BT(i), the sum of sample counts
1348 /// in this function in base profile SB, and the sum of sample counts in
1349 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1350 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1351 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1352 const SampleOverlapStats &FuncOverlap) const;
1354 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1355 uint64_t HotBlockCount);
1357 void getHotFunctions(const FuncSampleStatsMap &ProfStats,
1358 FuncSampleStatsMap &HotFunc,
1359 uint64_t HotThreshold) const;
1361 void computeHotFuncOverlap();
1363 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1364 /// Difference for two sample units in a matched function according to the
1365 /// given match status.
1366 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
1367 uint64_t HotBlockCount,
1368 SampleOverlapStats &FuncOverlap,
1369 double &Difference, MatchStatus Status);
1371 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1372 /// Difference for unmatched callees that only present in one profile in a
1373 /// matched caller function.
1374 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
1375 SampleOverlapStats &FuncOverlap,
1376 double &Difference, MatchStatus Status);
1378 /// This function updates sample overlap statistics of an overlap function in
1379 /// base and test profile. It also calculates a function-internal similarity
1380 /// FIS as follows:
1381 /// For offsets i that have samples in at least one profile in this
1382 /// function A, given BS(i) returned by computeBlockSimilarity(), compute
1383 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
1384 /// 0.0 meaning no overlap.
1385 double computeSampleFunctionInternalOverlap(
1386 const sampleprof::FunctionSamples &BaseFunc,
1387 const sampleprof::FunctionSamples &TestFunc,
1388 SampleOverlapStats &FuncOverlap);
1390 /// Function-level similarity (FS) is a weighted value over function internal
1391 /// similarity (FIS). This function computes a function's FS from its FIS by
1392 /// applying the weight.
1393 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
1394 uint64_t TestFuncSample) const;
1396 /// The function-level similarity FS(A) for a function A is computed as
1397 /// follows:
1398 /// Compute a function-internal similarity FIS(A) by
1399 /// computeSampleFunctionInternalOverlap(). Then, with the weight of
1400 /// function A in base profile WB(A), and the weight of function A in test
1401 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
1402 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
1403 double
1404 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
1405 const sampleprof::FunctionSamples *TestFunc,
1406 SampleOverlapStats *FuncOverlap,
1407 uint64_t BaseFuncSample,
1408 uint64_t TestFuncSample);
1410 /// Profile-level similarity (PS) is a weighted aggregate over function-level
1411 /// similarities (FS). This method weights the FS value by the function
1412 /// weights in the base and test profiles for the aggregation.
1413 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
1414 uint64_t TestFuncSample) const;
1416 } // end anonymous namespace
1418 bool SampleOverlapAggregator::detectZeroSampleProfile(
1419 raw_fd_ostream &OS) const {
1420 bool HaveZeroSample = false;
1421 if (ProfOverlap.BaseSample == 0) {
1422 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
1423 HaveZeroSample = true;
1425 if (ProfOverlap.TestSample == 0) {
1426 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
1427 HaveZeroSample = true;
1429 return HaveZeroSample;
1432 double SampleOverlapAggregator::computeBlockSimilarity(
1433 uint64_t BaseSample, uint64_t TestSample,
1434 const SampleOverlapStats &FuncOverlap) const {
1435 double BaseFrac = 0.0;
1436 double TestFrac = 0.0;
1437 if (FuncOverlap.BaseSample > 0)
1438 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
1439 if (FuncOverlap.TestSample > 0)
1440 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
1441 return 1.0 - std::fabs(BaseFrac - TestFrac);
1444 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
1445 uint64_t TestSample,
1446 uint64_t HotBlockCount) {
1447 bool IsBaseHot = (BaseSample >= BaseHotThreshold);
1448 bool IsTestHot = (TestSample >= TestHotThreshold);
1449 if (!IsBaseHot && !IsTestHot)
1450 return;
1452 HotBlockOverlap.UnionCount += HotBlockCount;
1453 if (IsBaseHot)
1454 HotBlockOverlap.BaseCount += HotBlockCount;
1455 if (IsTestHot)
1456 HotBlockOverlap.TestCount += HotBlockCount;
1457 if (IsBaseHot && IsTestHot)
1458 HotBlockOverlap.OverlapCount += HotBlockCount;
1461 void SampleOverlapAggregator::getHotFunctions(
1462 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
1463 uint64_t HotThreshold) const {
1464 for (const auto &F : ProfStats) {
1465 if (isFunctionHot(F.second, HotThreshold))
1466 HotFunc.emplace(F.first, F.second);
1470 void SampleOverlapAggregator::computeHotFuncOverlap() {
1471 FuncSampleStatsMap BaseHotFunc;
1472 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
1473 HotFuncOverlap.BaseCount = BaseHotFunc.size();
1475 FuncSampleStatsMap TestHotFunc;
1476 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
1477 HotFuncOverlap.TestCount = TestHotFunc.size();
1478 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
1480 for (const auto &F : BaseHotFunc) {
1481 if (TestHotFunc.count(F.first))
1482 ++HotFuncOverlap.OverlapCount;
1483 else
1484 ++HotFuncOverlap.UnionCount;
1488 void SampleOverlapAggregator::updateOverlapStatsForFunction(
1489 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
1490 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
1491 assert(Status != MS_None &&
1492 "Match status should be updated before updating overlap statistics");
1493 if (Status == MS_FirstUnique) {
1494 TestSample = 0;
1495 FuncOverlap.BaseUniqueSample += BaseSample;
1496 } else if (Status == MS_SecondUnique) {
1497 BaseSample = 0;
1498 FuncOverlap.TestUniqueSample += TestSample;
1499 } else {
1500 ++FuncOverlap.OverlapCount;
1503 FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
1504 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
1505 Difference +=
1506 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
1507 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
1510 void SampleOverlapAggregator::updateForUnmatchedCallee(
1511 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
1512 double &Difference, MatchStatus Status) {
1513 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
1514 "Status must be either of the two unmatched cases");
1515 FuncSampleStats FuncStats;
1516 if (Status == MS_FirstUnique) {
1517 getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
1518 updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
1519 FuncStats.HotBlockCount, FuncOverlap,
1520 Difference, Status);
1521 } else {
1522 getFuncSampleStats(Func, FuncStats, TestHotThreshold);
1523 updateOverlapStatsForFunction(0, FuncStats.SampleSum,
1524 FuncStats.HotBlockCount, FuncOverlap,
1525 Difference, Status);
1529 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
1530 const sampleprof::FunctionSamples &BaseFunc,
1531 const sampleprof::FunctionSamples &TestFunc,
1532 SampleOverlapStats &FuncOverlap) {
1534 using namespace sampleprof;
1536 double Difference = 0;
1538 // Accumulate Difference for regular line/block samples in the function.
1539 // We match them through sort-merge join algorithm because
1540 // FunctionSamples::getBodySamples() returns a map of sample counters ordered
1541 // by their offsets.
1542 MatchStep<BodySampleMap::const_iterator> BlockIterStep(
1543 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
1544 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
1545 BlockIterStep.updateOneStep();
1546 while (!BlockIterStep.areBothFinished()) {
1547 uint64_t BaseSample =
1548 BlockIterStep.isFirstFinished()
1550 : BlockIterStep.getFirstIter()->second.getSamples();
1551 uint64_t TestSample =
1552 BlockIterStep.isSecondFinished()
1554 : BlockIterStep.getSecondIter()->second.getSamples();
1555 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
1556 Difference, BlockIterStep.getMatchStatus());
1558 BlockIterStep.updateOneStep();
1561 // Accumulate Difference for callsite lines in the function. We match
1562 // them through sort-merge algorithm because
1563 // FunctionSamples::getCallsiteSamples() returns a map of callsite records
1564 // ordered by their offsets.
1565 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
1566 BaseFunc.getCallsiteSamples().cbegin(),
1567 BaseFunc.getCallsiteSamples().cend(),
1568 TestFunc.getCallsiteSamples().cbegin(),
1569 TestFunc.getCallsiteSamples().cend());
1570 CallsiteIterStep.updateOneStep();
1571 while (!CallsiteIterStep.areBothFinished()) {
1572 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
1573 assert(CallsiteStepStatus != MS_None &&
1574 "Match status should be updated before entering loop body");
1576 if (CallsiteStepStatus != MS_Match) {
1577 auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
1578 ? CallsiteIterStep.getFirstIter()
1579 : CallsiteIterStep.getSecondIter();
1580 for (const auto &F : Callsite->second)
1581 updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
1582 CallsiteStepStatus);
1583 } else {
1584 // There may be multiple inlinees at the same offset, so we need to try
1585 // matching all of them. This match is implemented through sort-merge
1586 // algorithm because callsite records at the same offset are ordered by
1587 // function names.
1588 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
1589 CallsiteIterStep.getFirstIter()->second.cbegin(),
1590 CallsiteIterStep.getFirstIter()->second.cend(),
1591 CallsiteIterStep.getSecondIter()->second.cbegin(),
1592 CallsiteIterStep.getSecondIter()->second.cend());
1593 CalleeIterStep.updateOneStep();
1594 while (!CalleeIterStep.areBothFinished()) {
1595 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
1596 if (CalleeStepStatus != MS_Match) {
1597 auto Callee = (CalleeStepStatus == MS_FirstUnique)
1598 ? CalleeIterStep.getFirstIter()
1599 : CalleeIterStep.getSecondIter();
1600 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
1601 CalleeStepStatus);
1602 } else {
1603 // An inlined function can contain other inlinees inside, so compute
1604 // the Difference recursively.
1605 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
1606 CalleeIterStep.getFirstIter()->second,
1607 CalleeIterStep.getSecondIter()->second,
1608 FuncOverlap);
1610 CalleeIterStep.updateOneStep();
1613 CallsiteIterStep.updateOneStep();
1616 // Difference reflects the total differences of line/block samples in this
1617 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
1618 // reflect the similarity between function profiles in [0.0f to 1.0f].
1619 return (2.0 - Difference) / 2;
1622 double SampleOverlapAggregator::weightForFuncSimilarity(
1623 double FuncInternalSimilarity, uint64_t BaseFuncSample,
1624 uint64_t TestFuncSample) const {
1625 // Compute the weight as the distance between the function weights in two
1626 // profiles.
1627 double BaseFrac = 0.0;
1628 double TestFrac = 0.0;
1629 assert(ProfOverlap.BaseSample > 0 &&
1630 "Total samples in base profile should be greater than 0");
1631 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
1632 assert(ProfOverlap.TestSample > 0 &&
1633 "Total samples in test profile should be greater than 0");
1634 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
1635 double WeightDistance = std::fabs(BaseFrac - TestFrac);
1637 // Take WeightDistance into the similarity.
1638 return FuncInternalSimilarity * (1 - WeightDistance);
1641 double
1642 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
1643 uint64_t BaseFuncSample,
1644 uint64_t TestFuncSample) const {
1646 double BaseFrac = 0.0;
1647 double TestFrac = 0.0;
1648 assert(ProfOverlap.BaseSample > 0 &&
1649 "Total samples in base profile should be greater than 0");
1650 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
1651 assert(ProfOverlap.TestSample > 0 &&
1652 "Total samples in test profile should be greater than 0");
1653 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
1654 return FuncSimilarity * (BaseFrac + TestFrac);
1657 double SampleOverlapAggregator::computeSampleFunctionOverlap(
1658 const sampleprof::FunctionSamples *BaseFunc,
1659 const sampleprof::FunctionSamples *TestFunc,
1660 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
1661 uint64_t TestFuncSample) {
1662 // Default function internal similarity before weighted, meaning two functions
1663 // has no overlap.
1664 const double DefaultFuncInternalSimilarity = 0;
1665 double FuncSimilarity;
1666 double FuncInternalSimilarity;
1668 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
1669 // In this case, we use DefaultFuncInternalSimilarity as the function internal
1670 // similarity.
1671 if (!BaseFunc || !TestFunc) {
1672 FuncInternalSimilarity = DefaultFuncInternalSimilarity;
1673 } else {
1674 assert(FuncOverlap != nullptr &&
1675 "FuncOverlap should be provided in this case");
1676 FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
1677 *BaseFunc, *TestFunc, *FuncOverlap);
1678 // Now, FuncInternalSimilarity may be a little less than 0 due to
1679 // imprecision of floating point accumulations. Make it zero if the
1680 // difference is below Epsilon.
1681 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
1683 : FuncInternalSimilarity;
1685 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
1686 BaseFuncSample, TestFuncSample);
1687 return FuncSimilarity;
1690 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
1691 using namespace sampleprof;
1693 std::unordered_map<SampleContext, const FunctionSamples *,
1694 SampleContext::Hash>
1695 BaseFuncProf;
1696 const auto &BaseProfiles = BaseReader->getProfiles();
1697 for (const auto &BaseFunc : BaseProfiles) {
1698 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
1700 ProfOverlap.UnionCount = BaseFuncProf.size();
1702 const auto &TestProfiles = TestReader->getProfiles();
1703 for (const auto &TestFunc : TestProfiles) {
1704 SampleOverlapStats FuncOverlap;
1705 FuncOverlap.TestName = TestFunc.second.getContext();
1706 assert(TestStats.count(FuncOverlap.TestName) &&
1707 "TestStats should have records for all functions in test profile "
1708 "except inlinees");
1709 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
1711 bool Matched = false;
1712 const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
1713 if (Match == BaseFuncProf.end()) {
1714 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
1715 ++ProfOverlap.TestUniqueCount;
1716 ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
1717 FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
1719 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
1721 double FuncSimilarity = computeSampleFunctionOverlap(
1722 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
1723 ProfOverlap.Similarity +=
1724 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
1726 ++ProfOverlap.UnionCount;
1727 ProfOverlap.UnionSample += FuncStats.SampleSum;
1728 } else {
1729 ++ProfOverlap.OverlapCount;
1731 // Two functions match with each other. Compute function-level overlap and
1732 // aggregate them into profile-level overlap.
1733 FuncOverlap.BaseName = Match->second->getContext();
1734 assert(BaseStats.count(FuncOverlap.BaseName) &&
1735 "BaseStats should have records for all functions in base profile "
1736 "except inlinees");
1737 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
1739 FuncOverlap.Similarity = computeSampleFunctionOverlap(
1740 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
1741 FuncOverlap.TestSample);
1742 ProfOverlap.Similarity +=
1743 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
1744 FuncOverlap.TestSample);
1745 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
1746 ProfOverlap.UnionSample += FuncOverlap.UnionSample;
1748 // Accumulate the percentage of base unique and test unique samples into
1749 // ProfOverlap.
1750 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
1751 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
1753 // Remove matched base functions for later reporting functions not found
1754 // in test profile.
1755 BaseFuncProf.erase(Match);
1756 Matched = true;
1759 // Print function-level similarity information if specified by options.
1760 assert(TestStats.count(FuncOverlap.TestName) &&
1761 "TestStats should have records for all functions in test profile "
1762 "except inlinees");
1763 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
1764 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
1765 (Matched && !FuncFilter.NameFilter.empty() &&
1766 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
1767 std::string::npos)) {
1768 assert(ProfOverlap.BaseSample > 0 &&
1769 "Total samples in base profile should be greater than 0");
1770 FuncOverlap.BaseWeight =
1771 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
1772 assert(ProfOverlap.TestSample > 0 &&
1773 "Total samples in test profile should be greater than 0");
1774 FuncOverlap.TestWeight =
1775 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
1776 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
1780 // Traverse through functions in base profile but not in test profile.
1781 for (const auto &F : BaseFuncProf) {
1782 assert(BaseStats.count(F.second->getContext()) &&
1783 "BaseStats should have records for all functions in base profile "
1784 "except inlinees");
1785 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
1786 ++ProfOverlap.BaseUniqueCount;
1787 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
1789 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
1791 double FuncSimilarity = computeSampleFunctionOverlap(
1792 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
1793 ProfOverlap.Similarity +=
1794 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
1796 ProfOverlap.UnionSample += FuncStats.SampleSum;
1799 // Now, ProfSimilarity may be a little greater than 1 due to imprecision
1800 // of floating point accumulations. Make it 1.0 if the difference is below
1801 // Epsilon.
1802 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
1804 : ProfOverlap.Similarity;
1806 computeHotFuncOverlap();
1809 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
1810 const auto &BaseProf = BaseReader->getProfiles();
1811 for (const auto &I : BaseProf) {
1812 ++ProfOverlap.BaseCount;
1813 FuncSampleStats FuncStats;
1814 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
1815 ProfOverlap.BaseSample += FuncStats.SampleSum;
1816 BaseStats.emplace(I.second.getContext(), FuncStats);
1819 const auto &TestProf = TestReader->getProfiles();
1820 for (const auto &I : TestProf) {
1821 ++ProfOverlap.TestCount;
1822 FuncSampleStats FuncStats;
1823 getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
1824 ProfOverlap.TestSample += FuncStats.SampleSum;
1825 TestStats.emplace(I.second.getContext(), FuncStats);
1828 ProfOverlap.BaseName = StringRef(BaseFilename);
1829 ProfOverlap.TestName = StringRef(TestFilename);
1832 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
1833 using namespace sampleprof;
1835 if (FuncSimilarityDump.empty())
1836 return;
1838 formatted_raw_ostream FOS(OS);
1839 FOS << "Function-level details:\n";
1840 FOS << "Base weight";
1841 FOS.PadToColumn(TestWeightCol);
1842 FOS << "Test weight";
1843 FOS.PadToColumn(SimilarityCol);
1844 FOS << "Similarity";
1845 FOS.PadToColumn(OverlapCol);
1846 FOS << "Overlap";
1847 FOS.PadToColumn(BaseUniqueCol);
1848 FOS << "Base unique";
1849 FOS.PadToColumn(TestUniqueCol);
1850 FOS << "Test unique";
1851 FOS.PadToColumn(BaseSampleCol);
1852 FOS << "Base samples";
1853 FOS.PadToColumn(TestSampleCol);
1854 FOS << "Test samples";
1855 FOS.PadToColumn(FuncNameCol);
1856 FOS << "Function name\n";
1857 for (const auto &F : FuncSimilarityDump) {
1858 double OverlapPercent =
1859 F.second.UnionSample > 0
1860 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
1861 : 0;
1862 double BaseUniquePercent =
1863 F.second.BaseSample > 0
1864 ? static_cast<double>(F.second.BaseUniqueSample) /
1865 F.second.BaseSample
1866 : 0;
1867 double TestUniquePercent =
1868 F.second.TestSample > 0
1869 ? static_cast<double>(F.second.TestUniqueSample) /
1870 F.second.TestSample
1871 : 0;
1873 FOS << format("%.2f%%", F.second.BaseWeight * 100);
1874 FOS.PadToColumn(TestWeightCol);
1875 FOS << format("%.2f%%", F.second.TestWeight * 100);
1876 FOS.PadToColumn(SimilarityCol);
1877 FOS << format("%.2f%%", F.second.Similarity * 100);
1878 FOS.PadToColumn(OverlapCol);
1879 FOS << format("%.2f%%", OverlapPercent * 100);
1880 FOS.PadToColumn(BaseUniqueCol);
1881 FOS << format("%.2f%%", BaseUniquePercent * 100);
1882 FOS.PadToColumn(TestUniqueCol);
1883 FOS << format("%.2f%%", TestUniquePercent * 100);
1884 FOS.PadToColumn(BaseSampleCol);
1885 FOS << F.second.BaseSample;
1886 FOS.PadToColumn(TestSampleCol);
1887 FOS << F.second.TestSample;
1888 FOS.PadToColumn(FuncNameCol);
1889 FOS << F.second.TestName.toString() << "\n";
1893 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
1894 OS << "Profile overlap infomation for base_profile: "
1895 << ProfOverlap.BaseName.toString()
1896 << " and test_profile: " << ProfOverlap.TestName.toString()
1897 << "\nProgram level:\n";
1899 OS << " Whole program profile similarity: "
1900 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
1902 assert(ProfOverlap.UnionSample > 0 &&
1903 "Total samples in two profile should be greater than 0");
1904 double OverlapPercent =
1905 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
1906 assert(ProfOverlap.BaseSample > 0 &&
1907 "Total samples in base profile should be greater than 0");
1908 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
1909 ProfOverlap.BaseSample;
1910 assert(ProfOverlap.TestSample > 0 &&
1911 "Total samples in test profile should be greater than 0");
1912 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
1913 ProfOverlap.TestSample;
1915 OS << " Whole program sample overlap: "
1916 << format("%.3f%%", OverlapPercent * 100) << "\n";
1917 OS << " percentage of samples unique in base profile: "
1918 << format("%.3f%%", BaseUniquePercent * 100) << "\n";
1919 OS << " percentage of samples unique in test profile: "
1920 << format("%.3f%%", TestUniquePercent * 100) << "\n";
1921 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
1922 << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
1924 assert(ProfOverlap.UnionCount > 0 &&
1925 "There should be at least one function in two input profiles");
1926 double FuncOverlapPercent =
1927 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
1928 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
1929 << "\n";
1930 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
1931 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
1932 << "\n";
1933 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
1934 << "\n";
1937 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
1938 raw_fd_ostream &OS) const {
1939 assert(HotFuncOverlap.UnionCount > 0 &&
1940 "There should be at least one hot function in two input profiles");
1941 OS << " Hot-function overlap: "
1942 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
1943 HotFuncOverlap.UnionCount * 100)
1944 << "\n";
1945 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
1946 OS << " hot functions unique in base profile: "
1947 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
1948 OS << " hot functions unique in test profile: "
1949 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
1951 assert(HotBlockOverlap.UnionCount > 0 &&
1952 "There should be at least one hot block in two input profiles");
1953 OS << " Hot-block overlap: "
1954 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
1955 HotBlockOverlap.UnionCount * 100)
1956 << "\n";
1957 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
1958 OS << " hot blocks unique in base profile: "
1959 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
1960 OS << " hot blocks unique in test profile: "
1961 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
1964 std::error_code SampleOverlapAggregator::loadProfiles() {
1965 using namespace sampleprof;
1967 LLVMContext Context;
1968 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
1969 FSDiscriminatorPassOption);
1970 if (std::error_code EC = BaseReaderOrErr.getError())
1971 exitWithErrorCode(EC, BaseFilename);
1973 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
1974 FSDiscriminatorPassOption);
1975 if (std::error_code EC = TestReaderOrErr.getError())
1976 exitWithErrorCode(EC, TestFilename);
1978 BaseReader = std::move(BaseReaderOrErr.get());
1979 TestReader = std::move(TestReaderOrErr.get());
1981 if (std::error_code EC = BaseReader->read())
1982 exitWithErrorCode(EC, BaseFilename);
1983 if (std::error_code EC = TestReader->read())
1984 exitWithErrorCode(EC, TestFilename);
1985 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
1986 exitWithError(
1987 "cannot compare probe-based profile with non-probe-based profile");
1988 if (BaseReader->profileIsCS() != TestReader->profileIsCS())
1989 exitWithError("cannot compare CS profile with non-CS profile");
1991 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
1992 // profile summary.
1993 ProfileSummary &BasePS = BaseReader->getSummary();
1994 ProfileSummary &TestPS = TestReader->getSummary();
1995 BaseHotThreshold =
1996 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
1997 TestHotThreshold =
1998 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
2000 return std::error_code();
2003 void overlapSampleProfile(const std::string &BaseFilename,
2004 const std::string &TestFilename,
2005 const OverlapFuncFilters &FuncFilter,
2006 uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
2007 using namespace sampleprof;
2009 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
2010 // report 2--3 places after decimal point in percentage numbers.
2011 SampleOverlapAggregator OverlapAggr(
2012 BaseFilename, TestFilename,
2013 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
2014 if (std::error_code EC = OverlapAggr.loadProfiles())
2015 exitWithErrorCode(EC);
2017 OverlapAggr.initializeSampleProfileOverlap();
2018 if (OverlapAggr.detectZeroSampleProfile(OS))
2019 return;
2021 OverlapAggr.computeSampleProfileOverlap(OS);
2023 OverlapAggr.dumpProgramSummary(OS);
2024 OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
2025 OverlapAggr.dumpFuncSimilarity(OS);
2028 static int overlap_main(int argc, const char *argv[]) {
2029 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
2030 cl::desc("<base profile file>"));
2031 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
2032 cl::desc("<test profile file>"));
2033 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
2034 cl::desc("Output file"));
2035 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
2036 cl::opt<bool> IsCS(
2037 "cs", cl::init(false),
2038 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
2039 cl::opt<unsigned long long> ValueCutoff(
2040 "value-cutoff", cl::init(-1),
2041 cl::desc(
2042 "Function level overlap information for every function (with calling "
2043 "context for csspgo) in test "
2044 "profile with max count value greater then the parameter value"));
2045 cl::opt<std::string> FuncNameFilter(
2046 "function",
2047 cl::desc("Function level overlap information for matching functions. For "
2048 "CSSPGO this takes a a function name with calling context"));
2049 cl::opt<unsigned long long> SimilarityCutoff(
2050 "similarity-cutoff", cl::init(0),
2051 cl::desc("For sample profiles, list function names (with calling context "
2052 "for csspgo) for overlapped functions "
2053 "with similarities below the cutoff (percentage times 10000)."));
2054 cl::opt<ProfileKinds> ProfileKind(
2055 cl::desc("Profile kind:"), cl::init(instr),
2056 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2057 clEnumVal(sample, "Sample profile")));
2058 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
2060 std::error_code EC;
2061 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
2062 if (EC)
2063 exitWithErrorCode(EC, Output);
2065 if (ProfileKind == instr)
2066 overlapInstrProfile(BaseFilename, TestFilename,
2067 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
2068 IsCS);
2069 else
2070 overlapSampleProfile(BaseFilename, TestFilename,
2071 OverlapFuncFilters{ValueCutoff, FuncNameFilter},
2072 SimilarityCutoff, OS);
2074 return 0;
2077 namespace {
2078 struct ValueSitesStats {
2079 ValueSitesStats()
2080 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
2081 TotalNumValues(0) {}
2082 uint64_t TotalNumValueSites;
2083 uint64_t TotalNumValueSitesWithValueProfile;
2084 uint64_t TotalNumValues;
2085 std::vector<unsigned> ValueSitesHistogram;
2087 } // namespace
2089 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2090 ValueSitesStats &Stats, raw_fd_ostream &OS,
2091 InstrProfSymtab *Symtab) {
2092 uint32_t NS = Func.getNumValueSites(VK);
2093 Stats.TotalNumValueSites += NS;
2094 for (size_t I = 0; I < NS; ++I) {
2095 uint32_t NV = Func.getNumValueDataForSite(VK, I);
2096 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
2097 Stats.TotalNumValues += NV;
2098 if (NV) {
2099 Stats.TotalNumValueSitesWithValueProfile++;
2100 if (NV > Stats.ValueSitesHistogram.size())
2101 Stats.ValueSitesHistogram.resize(NV, 0);
2102 Stats.ValueSitesHistogram[NV - 1]++;
2105 uint64_t SiteSum = 0;
2106 for (uint32_t V = 0; V < NV; V++)
2107 SiteSum += VD[V].Count;
2108 if (SiteSum == 0)
2109 SiteSum = 1;
2111 for (uint32_t V = 0; V < NV; V++) {
2112 OS << "\t[ " << format("%2u", I) << ", ";
2113 if (Symtab == nullptr)
2114 OS << format("%4" PRIu64, VD[V].Value);
2115 else
2116 OS << Symtab->getFuncName(VD[V].Value);
2117 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
2118 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
2123 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2124 ValueSitesStats &Stats) {
2125 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
2126 OS << " Total number of sites with values: "
2127 << Stats.TotalNumValueSitesWithValueProfile << "\n";
2128 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
2130 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
2131 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2132 if (Stats.ValueSitesHistogram[I] > 0)
2133 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2137 static int showInstrProfile(const std::string &Filename, bool ShowCounts,
2138 uint32_t TopN, bool ShowIndirectCallTargets,
2139 bool ShowMemOPSizes, bool ShowDetailedSummary,
2140 std::vector<uint32_t> DetailedSummaryCutoffs,
2141 bool ShowAllFunctions, bool ShowCS,
2142 uint64_t ValueCutoff, bool OnlyListBelow,
2143 const std::string &ShowFunction, bool TextFormat,
2144 bool ShowBinaryIds, bool ShowCovered,
2145 raw_fd_ostream &OS) {
2146 auto ReaderOrErr = InstrProfReader::create(Filename);
2147 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2148 if (ShowDetailedSummary && Cutoffs.empty()) {
2149 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs;
2151 InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2152 if (Error E = ReaderOrErr.takeError())
2153 exitWithError(std::move(E), Filename);
2155 auto Reader = std::move(ReaderOrErr.get());
2156 bool IsIRInstr = Reader->isIRLevelProfile();
2157 size_t ShownFunctions = 0;
2158 size_t BelowCutoffFunctions = 0;
2159 int NumVPKind = IPVK_Last - IPVK_First + 1;
2160 std::vector<ValueSitesStats> VPStats(NumVPKind);
2162 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2163 const std::pair<std::string, uint64_t> &v2) {
2164 return v1.second > v2.second;
2167 std::priority_queue<std::pair<std::string, uint64_t>,
2168 std::vector<std::pair<std::string, uint64_t>>,
2169 decltype(MinCmp)>
2170 HottestFuncs(MinCmp);
2172 if (!TextFormat && OnlyListBelow) {
2173 OS << "The list of functions with the maximum counter less than "
2174 << ValueCutoff << ":\n";
2177 // Add marker so that IR-level instrumentation round-trips properly.
2178 if (TextFormat && IsIRInstr)
2179 OS << ":ir\n";
2181 for (const auto &Func : *Reader) {
2182 if (Reader->isIRLevelProfile()) {
2183 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2184 if (FuncIsCS != ShowCS)
2185 continue;
2187 bool Show = ShowAllFunctions ||
2188 (!ShowFunction.empty() && Func.Name.contains(ShowFunction));
2190 bool doTextFormatDump = (Show && TextFormat);
2192 if (doTextFormatDump) {
2193 InstrProfSymtab &Symtab = Reader->getSymtab();
2194 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2195 OS);
2196 continue;
2199 assert(Func.Counts.size() > 0 && "function missing entry counter");
2200 Builder.addRecord(Func);
2202 if (ShowCovered) {
2203 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; }))
2204 OS << Func.Name << "\n";
2205 continue;
2208 uint64_t FuncMax = 0;
2209 uint64_t FuncSum = 0;
2210 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2211 if (Func.Counts[I] == (uint64_t)-1)
2212 continue;
2213 FuncMax = std::max(FuncMax, Func.Counts[I]);
2214 FuncSum += Func.Counts[I];
2217 if (FuncMax < ValueCutoff) {
2218 ++BelowCutoffFunctions;
2219 if (OnlyListBelow) {
2220 OS << " " << Func.Name << ": (Max = " << FuncMax
2221 << " Sum = " << FuncSum << ")\n";
2223 continue;
2224 } else if (OnlyListBelow)
2225 continue;
2227 if (TopN) {
2228 if (HottestFuncs.size() == TopN) {
2229 if (HottestFuncs.top().second < FuncMax) {
2230 HottestFuncs.pop();
2231 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2233 } else
2234 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2237 if (Show) {
2238 if (!ShownFunctions)
2239 OS << "Counters:\n";
2241 ++ShownFunctions;
2243 OS << " " << Func.Name << ":\n"
2244 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2245 << " Counters: " << Func.Counts.size() << "\n";
2246 if (!IsIRInstr)
2247 OS << " Function count: " << Func.Counts[0] << "\n";
2249 if (ShowIndirectCallTargets)
2250 OS << " Indirect Call Site Count: "
2251 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2253 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2254 if (ShowMemOPSizes && NumMemOPCalls > 0)
2255 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
2256 << "\n";
2258 if (ShowCounts) {
2259 OS << " Block counts: [";
2260 size_t Start = (IsIRInstr ? 0 : 1);
2261 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2262 OS << (I == Start ? "" : ", ") << Func.Counts[I];
2264 OS << "]\n";
2267 if (ShowIndirectCallTargets) {
2268 OS << " Indirect Target Results:\n";
2269 traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2270 VPStats[IPVK_IndirectCallTarget], OS,
2271 &(Reader->getSymtab()));
2274 if (ShowMemOPSizes && NumMemOPCalls > 0) {
2275 OS << " Memory Intrinsic Size Results:\n";
2276 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2277 nullptr);
2281 if (Reader->hasError())
2282 exitWithError(Reader->getError(), Filename);
2284 if (TextFormat || ShowCovered)
2285 return 0;
2286 std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2287 bool IsIR = Reader->isIRLevelProfile();
2288 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2289 if (IsIR)
2290 OS << " entry_first = " << Reader->instrEntryBBEnabled();
2291 OS << "\n";
2292 if (ShowAllFunctions || !ShowFunction.empty())
2293 OS << "Functions shown: " << ShownFunctions << "\n";
2294 OS << "Total functions: " << PS->getNumFunctions() << "\n";
2295 if (ValueCutoff > 0) {
2296 OS << "Number of functions with maximum count (< " << ValueCutoff
2297 << "): " << BelowCutoffFunctions << "\n";
2298 OS << "Number of functions with maximum count (>= " << ValueCutoff
2299 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2301 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2302 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2304 if (TopN) {
2305 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2306 while (!HottestFuncs.empty()) {
2307 SortedHottestFuncs.emplace_back(HottestFuncs.top());
2308 HottestFuncs.pop();
2310 OS << "Top " << TopN
2311 << " functions with the largest internal block counts: \n";
2312 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2313 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2316 if (ShownFunctions && ShowIndirectCallTargets) {
2317 OS << "Statistics for indirect call sites profile:\n";
2318 showValueSitesStats(OS, IPVK_IndirectCallTarget,
2319 VPStats[IPVK_IndirectCallTarget]);
2322 if (ShownFunctions && ShowMemOPSizes) {
2323 OS << "Statistics for memory intrinsic calls sizes profile:\n";
2324 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2327 if (ShowDetailedSummary) {
2328 OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2329 OS << "Total count: " << PS->getTotalCount() << "\n";
2330 PS->printDetailedSummary(OS);
2333 if (ShowBinaryIds)
2334 if (Error E = Reader->printBinaryIds(OS))
2335 exitWithError(std::move(E), Filename);
2337 return 0;
2340 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2341 raw_fd_ostream &OS) {
2342 if (!Reader->dumpSectionInfo(OS)) {
2343 WithColor::warning() << "-show-sec-info-only is only supported for "
2344 << "sample profile in extbinary format and is "
2345 << "ignored for other formats.\n";
2346 return;
2350 namespace {
2351 struct HotFuncInfo {
2352 std::string FuncName;
2353 uint64_t TotalCount;
2354 double TotalCountPercent;
2355 uint64_t MaxCount;
2356 uint64_t EntryCount;
2358 HotFuncInfo()
2359 : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {}
2361 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
2362 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
2363 MaxCount(MS), EntryCount(ES) {}
2365 } // namespace
2367 // Print out detailed information about hot functions in PrintValues vector.
2368 // Users specify titles and offset of every columns through ColumnTitle and
2369 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
2370 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
2371 // print out or let it be an empty string.
2372 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
2373 const std::vector<int> &ColumnOffset,
2374 const std::vector<HotFuncInfo> &PrintValues,
2375 uint64_t HotFuncCount, uint64_t TotalFuncCount,
2376 uint64_t HotProfCount, uint64_t TotalProfCount,
2377 const std::string &HotFuncMetric,
2378 uint32_t TopNFunctions, raw_fd_ostream &OS) {
2379 assert(ColumnOffset.size() == ColumnTitle.size() &&
2380 "ColumnOffset and ColumnTitle should have the same size");
2381 assert(ColumnTitle.size() >= 4 &&
2382 "ColumnTitle should have at least 4 elements");
2383 assert(TotalFuncCount > 0 &&
2384 "There should be at least one function in the profile");
2385 double TotalProfPercent = 0;
2386 if (TotalProfCount > 0)
2387 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
2389 formatted_raw_ostream FOS(OS);
2390 FOS << HotFuncCount << " out of " << TotalFuncCount
2391 << " functions with profile ("
2392 << format("%.2f%%",
2393 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
2394 << ") are considered hot functions";
2395 if (!HotFuncMetric.empty())
2396 FOS << " (" << HotFuncMetric << ")";
2397 FOS << ".\n";
2398 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
2399 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
2401 for (size_t I = 0; I < ColumnTitle.size(); ++I) {
2402 FOS.PadToColumn(ColumnOffset[I]);
2403 FOS << ColumnTitle[I];
2405 FOS << "\n";
2407 uint32_t Count = 0;
2408 for (const auto &R : PrintValues) {
2409 if (TopNFunctions && (Count++ == TopNFunctions))
2410 break;
2411 FOS.PadToColumn(ColumnOffset[0]);
2412 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
2413 FOS.PadToColumn(ColumnOffset[1]);
2414 FOS << R.MaxCount;
2415 FOS.PadToColumn(ColumnOffset[2]);
2416 FOS << R.EntryCount;
2417 FOS.PadToColumn(ColumnOffset[3]);
2418 FOS << R.FuncName << "\n";
2422 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
2423 ProfileSummary &PS, uint32_t TopN,
2424 raw_fd_ostream &OS) {
2425 using namespace sampleprof;
2427 const uint32_t HotFuncCutoff = 990000;
2428 auto &SummaryVector = PS.getDetailedSummary();
2429 uint64_t MinCountThreshold = 0;
2430 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
2431 if (SummaryEntry.Cutoff == HotFuncCutoff) {
2432 MinCountThreshold = SummaryEntry.MinCount;
2433 break;
2437 // Traverse all functions in the profile and keep only hot functions.
2438 // The following loop also calculates the sum of total samples of all
2439 // functions.
2440 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
2441 std::greater<uint64_t>>
2442 HotFunc;
2443 uint64_t ProfileTotalSample = 0;
2444 uint64_t HotFuncSample = 0;
2445 uint64_t HotFuncCount = 0;
2447 for (const auto &I : Profiles) {
2448 FuncSampleStats FuncStats;
2449 const FunctionSamples &FuncProf = I.second;
2450 ProfileTotalSample += FuncProf.getTotalSamples();
2451 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
2453 if (isFunctionHot(FuncStats, MinCountThreshold)) {
2454 HotFunc.emplace(FuncProf.getTotalSamples(),
2455 std::make_pair(&(I.second), FuncStats.MaxSample));
2456 HotFuncSample += FuncProf.getTotalSamples();
2457 ++HotFuncCount;
2461 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
2462 "Entry sample", "Function name"};
2463 std::vector<int> ColumnOffset{0, 24, 42, 58};
2464 std::string Metric =
2465 std::string("max sample >= ") + std::to_string(MinCountThreshold);
2466 std::vector<HotFuncInfo> PrintValues;
2467 for (const auto &FuncPair : HotFunc) {
2468 const FunctionSamples &Func = *FuncPair.second.first;
2469 double TotalSamplePercent =
2470 (ProfileTotalSample > 0)
2471 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
2472 : 0;
2473 PrintValues.emplace_back(
2474 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(),
2475 TotalSamplePercent, FuncPair.second.second,
2476 Func.getHeadSamplesEstimate()));
2478 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
2479 Profiles.size(), HotFuncSample, ProfileTotalSample,
2480 Metric, TopN, OS);
2482 return 0;
2485 static int showSampleProfile(const std::string &Filename, bool ShowCounts,
2486 uint32_t TopN, bool ShowAllFunctions,
2487 bool ShowDetailedSummary,
2488 const std::string &ShowFunction,
2489 bool ShowProfileSymbolList,
2490 bool ShowSectionInfoOnly, bool ShowHotFuncList,
2491 bool JsonFormat, raw_fd_ostream &OS) {
2492 using namespace sampleprof;
2493 LLVMContext Context;
2494 auto ReaderOrErr =
2495 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
2496 if (std::error_code EC = ReaderOrErr.getError())
2497 exitWithErrorCode(EC, Filename);
2499 auto Reader = std::move(ReaderOrErr.get());
2500 if (ShowSectionInfoOnly) {
2501 showSectionInfo(Reader.get(), OS);
2502 return 0;
2505 if (std::error_code EC = Reader->read())
2506 exitWithErrorCode(EC, Filename);
2508 if (ShowAllFunctions || ShowFunction.empty()) {
2509 if (JsonFormat)
2510 Reader->dumpJson(OS);
2511 else
2512 Reader->dump(OS);
2513 } else {
2514 if (JsonFormat)
2515 exitWithError(
2516 "the JSON format is supported only when all functions are to "
2517 "be printed");
2519 // TODO: parse context string to support filtering by contexts.
2520 Reader->dumpFunctionProfile(StringRef(ShowFunction), OS);
2523 if (ShowProfileSymbolList) {
2524 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
2525 Reader->getProfileSymbolList();
2526 ReaderList->dump(OS);
2529 if (ShowDetailedSummary) {
2530 auto &PS = Reader->getSummary();
2531 PS.printSummary(OS);
2532 PS.printDetailedSummary(OS);
2535 if (ShowHotFuncList || TopN)
2536 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS);
2538 return 0;
2541 static int showMemProfProfile(const std::string &Filename,
2542 const std::string &ProfiledBinary,
2543 raw_fd_ostream &OS) {
2544 auto ReaderOr = llvm::memprof::RawMemProfReader::create(
2545 Filename, ProfiledBinary, /*KeepNames=*/true);
2546 if (Error E = ReaderOr.takeError())
2547 // Since the error can be related to the profile or the binary we do not
2548 // pass whence. Instead additional context is provided where necessary in
2549 // the error message.
2550 exitWithError(std::move(E), /*Whence*/ "");
2552 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
2553 ReaderOr.get().release());
2555 Reader->printYAML(OS);
2556 return 0;
2559 static int showDebugInfoCorrelation(const std::string &Filename,
2560 bool ShowDetailedSummary,
2561 bool ShowProfileSymbolList,
2562 raw_fd_ostream &OS) {
2563 std::unique_ptr<InstrProfCorrelator> Correlator;
2564 if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator))
2565 exitWithError(std::move(Err), Filename);
2566 if (auto Err = Correlator->correlateProfileData())
2567 exitWithError(std::move(Err), Filename);
2569 InstrProfSymtab Symtab;
2570 if (auto Err = Symtab.create(
2571 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
2572 exitWithError(std::move(Err), Filename);
2574 if (ShowProfileSymbolList)
2575 Symtab.dumpNames(OS);
2576 // TODO: Read "Profile Data Type" from debug info to compute and show how many
2577 // counters the section holds.
2578 if (ShowDetailedSummary)
2579 OS << "Counters section size: 0x"
2580 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
2581 OS << "Found " << Correlator->getDataSize() << " functions\n";
2583 return 0;
2586 static int show_main(int argc, const char *argv[]) {
2587 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"));
2589 cl::opt<bool> ShowCounts("counts", cl::init(false),
2590 cl::desc("Show counter values for shown functions"));
2591 cl::opt<bool> TextFormat(
2592 "text", cl::init(false),
2593 cl::desc("Show instr profile data in text dump format"));
2594 cl::opt<bool> JsonFormat(
2595 "json", cl::init(false),
2596 cl::desc("Show sample profile data in the JSON format"));
2597 cl::opt<bool> ShowIndirectCallTargets(
2598 "ic-targets", cl::init(false),
2599 cl::desc("Show indirect call site target values for shown functions"));
2600 cl::opt<bool> ShowMemOPSizes(
2601 "memop-sizes", cl::init(false),
2602 cl::desc("Show the profiled sizes of the memory intrinsic calls "
2603 "for shown functions"));
2604 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
2605 cl::desc("Show detailed profile summary"));
2606 cl::list<uint32_t> DetailedSummaryCutoffs(
2607 cl::CommaSeparated, "detailed-summary-cutoffs",
2608 cl::desc(
2609 "Cutoff percentages (times 10000) for generating detailed summary"),
2610 cl::value_desc("800000,901000,999999"));
2611 cl::opt<bool> ShowHotFuncList(
2612 "hot-func-list", cl::init(false),
2613 cl::desc("Show profile summary of a list of hot functions"));
2614 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
2615 cl::desc("Details for every function"));
2616 cl::opt<bool> ShowCS("showcs", cl::init(false),
2617 cl::desc("Show context sensitive counts"));
2618 cl::opt<std::string> ShowFunction("function",
2619 cl::desc("Details for matching functions"));
2621 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
2622 cl::init("-"), cl::desc("Output file"));
2623 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
2624 cl::aliasopt(OutputFilename));
2625 cl::opt<ProfileKinds> ProfileKind(
2626 cl::desc("Profile kind:"), cl::init(instr),
2627 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2628 clEnumVal(sample, "Sample profile"),
2629 clEnumVal(memory, "MemProf memory access profile")));
2630 cl::opt<uint32_t> TopNFunctions(
2631 "topn", cl::init(0),
2632 cl::desc("Show the list of functions with the largest internal counts"));
2633 cl::opt<uint32_t> ValueCutoff(
2634 "value-cutoff", cl::init(0),
2635 cl::desc("Set the count value cutoff. Functions with the maximum count "
2636 "less than this value will not be printed out. (Default is 0)"));
2637 cl::opt<bool> OnlyListBelow(
2638 "list-below-cutoff", cl::init(false),
2639 cl::desc("Only output names of functions whose max count values are "
2640 "below the cutoff value"));
2641 cl::opt<bool> ShowProfileSymbolList(
2642 "show-prof-sym-list", cl::init(false),
2643 cl::desc("Show profile symbol list if it exists in the profile. "));
2644 cl::opt<bool> ShowSectionInfoOnly(
2645 "show-sec-info-only", cl::init(false),
2646 cl::desc("Show the information of each section in the sample profile. "
2647 "The flag is only usable when the sample profile is in "
2648 "extbinary format"));
2649 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
2650 cl::desc("Show binary ids in the profile. "));
2651 cl::opt<std::string> DebugInfoFilename(
2652 "debug-info", cl::init(""),
2653 cl::desc("Read and extract profile metadata from debug info and show "
2654 "the functions it found."));
2655 cl::opt<bool> ShowCovered(
2656 "covered", cl::init(false),
2657 cl::desc("Show only the functions that have been executed."));
2658 cl::opt<std::string> ProfiledBinary(
2659 "profiled-binary", cl::init(""),
2660 cl::desc("Path to binary from which the profile was collected."));
2662 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
2664 if (Filename.empty() && DebugInfoFilename.empty())
2665 exitWithError(
2666 "the positional argument '<profdata-file>' is required unless '--" +
2667 DebugInfoFilename.ArgStr + "' is provided");
2669 if (Filename == OutputFilename) {
2670 errs() << sys::path::filename(argv[0])
2671 << ": Input file name cannot be the same as the output file name!\n";
2672 return 1;
2675 std::error_code EC;
2676 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2677 if (EC)
2678 exitWithErrorCode(EC, OutputFilename);
2680 if (ShowAllFunctions && !ShowFunction.empty())
2681 WithColor::warning() << "-function argument ignored: showing all functions\n";
2683 if (!DebugInfoFilename.empty())
2684 return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary,
2685 ShowProfileSymbolList, OS);
2687 if (ProfileKind == instr)
2688 return showInstrProfile(
2689 Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
2690 ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
2691 ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
2692 TextFormat, ShowBinaryIds, ShowCovered, OS);
2693 if (ProfileKind == sample)
2694 return showSampleProfile(
2695 Filename, ShowCounts, TopNFunctions, ShowAllFunctions,
2696 ShowDetailedSummary, ShowFunction, ShowProfileSymbolList,
2697 ShowSectionInfoOnly, ShowHotFuncList, JsonFormat, OS);
2698 return showMemProfProfile(Filename, ProfiledBinary, OS);
2701 int main(int argc, const char *argv[]) {
2702 InitLLVM X(argc, argv);
2704 StringRef ProgName(sys::path::filename(argv[0]));
2705 if (argc > 1) {
2706 int (*func)(int, const char *[]) = nullptr;
2708 if (strcmp(argv[1], "merge") == 0)
2709 func = merge_main;
2710 else if (strcmp(argv[1], "show") == 0)
2711 func = show_main;
2712 else if (strcmp(argv[1], "overlap") == 0)
2713 func = overlap_main;
2715 if (func) {
2716 std::string Invocation(ProgName.str() + " " + argv[1]);
2717 argv[1] = Invocation.c_str();
2718 return func(argc - 1, argv + 1);
2721 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
2722 strcmp(argv[1], "--help") == 0) {
2724 errs() << "OVERVIEW: LLVM profile data tools\n\n"
2725 << "USAGE: " << ProgName << " <command> [args...]\n"
2726 << "USAGE: " << ProgName << " <command> -help\n\n"
2727 << "See each individual command --help for more details.\n"
2728 << "Available commands: merge, show, overlap\n";
2729 return 0;
2733 if (argc < 2)
2734 errs() << ProgName << ": No command specified!\n";
2735 else
2736 errs() << ProgName << ": Unknown command!\n";
2738 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
2739 return 1;