1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines routines for folding instructions into constants.
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
71 static Constant
*foldConstVectorToAPInt(APInt
&Result
, Type
*DestTy
,
72 Constant
*C
, Type
*SrcEltTy
,
74 const DataLayout
&DL
) {
75 // Now that we know that the input value is a vector of integers, just shift
76 // and insert them into our result.
77 unsigned BitShift
= DL
.getTypeSizeInBits(SrcEltTy
);
78 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
80 if (DL
.isLittleEndian())
81 Element
= C
->getAggregateElement(NumSrcElts
- i
- 1);
83 Element
= C
->getAggregateElement(i
);
85 if (Element
&& isa
<UndefValue
>(Element
)) {
90 auto *ElementCI
= dyn_cast_or_null
<ConstantInt
>(Element
);
92 return ConstantExpr::getBitCast(C
, DestTy
);
95 Result
|= ElementCI
->getValue().zext(Result
.getBitWidth());
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant
*FoldBitCast(Constant
*C
, Type
*DestTy
, const DataLayout
&DL
) {
105 assert(CastInst::castIsValid(Instruction::BitCast
, C
, DestTy
) &&
106 "Invalid constantexpr bitcast!");
108 // Catch the obvious splat cases.
109 if (Constant
*Res
= ConstantFoldLoadFromUniformValue(C
, DestTy
))
112 if (auto *VTy
= dyn_cast
<VectorType
>(C
->getType())) {
113 // Handle a vector->scalar integer/fp cast.
114 if (isa
<IntegerType
>(DestTy
) || DestTy
->isFloatingPointTy()) {
115 unsigned NumSrcElts
= cast
<FixedVectorType
>(VTy
)->getNumElements();
116 Type
*SrcEltTy
= VTy
->getElementType();
118 // If the vector is a vector of floating point, convert it to vector of int
119 // to simplify things.
120 if (SrcEltTy
->isFloatingPointTy()) {
121 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
122 auto *SrcIVTy
= FixedVectorType::get(
123 IntegerType::get(C
->getContext(), FPWidth
), NumSrcElts
);
124 // Ask IR to do the conversion now that #elts line up.
125 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
128 APInt
Result(DL
.getTypeSizeInBits(DestTy
), 0);
129 if (Constant
*CE
= foldConstVectorToAPInt(Result
, DestTy
, C
,
130 SrcEltTy
, NumSrcElts
, DL
))
133 if (isa
<IntegerType
>(DestTy
))
134 return ConstantInt::get(DestTy
, Result
);
136 APFloat
FP(DestTy
->getFltSemantics(), Result
);
137 return ConstantFP::get(DestTy
->getContext(), FP
);
141 // The code below only handles casts to vectors currently.
142 auto *DestVTy
= dyn_cast
<VectorType
>(DestTy
);
144 return ConstantExpr::getBitCast(C
, DestTy
);
146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147 // vector so the code below can handle it uniformly.
148 if (isa
<ConstantFP
>(C
) || isa
<ConstantInt
>(C
)) {
149 Constant
*Ops
= C
; // don't take the address of C!
150 return FoldBitCast(ConstantVector::get(Ops
), DestTy
, DL
);
153 // If this is a bitcast from constant vector -> vector, fold it.
154 if (!isa
<ConstantDataVector
>(C
) && !isa
<ConstantVector
>(C
))
155 return ConstantExpr::getBitCast(C
, DestTy
);
157 // If the element types match, IR can fold it.
158 unsigned NumDstElt
= cast
<FixedVectorType
>(DestVTy
)->getNumElements();
159 unsigned NumSrcElt
= cast
<FixedVectorType
>(C
->getType())->getNumElements();
160 if (NumDstElt
== NumSrcElt
)
161 return ConstantExpr::getBitCast(C
, DestTy
);
163 Type
*SrcEltTy
= cast
<VectorType
>(C
->getType())->getElementType();
164 Type
*DstEltTy
= DestVTy
->getElementType();
166 // Otherwise, we're changing the number of elements in a vector, which
167 // requires endianness information to do the right thing. For example,
168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169 // folds to (little endian):
170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171 // and to (big endian):
172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
174 // First thing is first. We only want to think about integer here, so if
175 // we have something in FP form, recast it as integer.
176 if (DstEltTy
->isFloatingPointTy()) {
177 // Fold to an vector of integers with same size as our FP type.
178 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
179 auto *DestIVTy
= FixedVectorType::get(
180 IntegerType::get(C
->getContext(), FPWidth
), NumDstElt
);
181 // Recursively handle this integer conversion, if possible.
182 C
= FoldBitCast(C
, DestIVTy
, DL
);
184 // Finally, IR can handle this now that #elts line up.
185 return ConstantExpr::getBitCast(C
, DestTy
);
188 // Okay, we know the destination is integer, if the input is FP, convert
189 // it to integer first.
190 if (SrcEltTy
->isFloatingPointTy()) {
191 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
192 auto *SrcIVTy
= FixedVectorType::get(
193 IntegerType::get(C
->getContext(), FPWidth
), NumSrcElt
);
194 // Ask IR to do the conversion now that #elts line up.
195 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
196 // If IR wasn't able to fold it, bail out.
197 if (!isa
<ConstantVector
>(C
) && // FIXME: Remove ConstantVector.
198 !isa
<ConstantDataVector
>(C
))
202 // Now we know that the input and output vectors are both integer vectors
203 // of the same size, and that their #elements is not the same. Do the
204 // conversion here, which depends on whether the input or output has
206 bool isLittleEndian
= DL
.isLittleEndian();
208 SmallVector
<Constant
*, 32> Result
;
209 if (NumDstElt
< NumSrcElt
) {
210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
212 unsigned Ratio
= NumSrcElt
/NumDstElt
;
213 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
215 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
216 // Build each element of the result.
217 Constant
*Elt
= Zero
;
218 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
219 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
220 Constant
*Src
= C
->getAggregateElement(SrcElt
++);
221 if (Src
&& isa
<UndefValue
>(Src
))
222 Src
= Constant::getNullValue(
223 cast
<VectorType
>(C
->getType())->getElementType());
225 Src
= dyn_cast_or_null
<ConstantInt
>(Src
);
226 if (!Src
) // Reject constantexpr elements.
227 return ConstantExpr::getBitCast(C
, DestTy
);
229 // Zero extend the element to the right size.
230 Src
= ConstantFoldCastOperand(Instruction::ZExt
, Src
, Elt
->getType(),
232 assert(Src
&& "Constant folding cannot fail on plain integers");
234 // Shift it to the right place, depending on endianness.
235 Src
= ConstantFoldBinaryOpOperands(
236 Instruction::Shl
, Src
, ConstantInt::get(Src
->getType(), ShiftAmt
),
238 assert(Src
&& "Constant folding cannot fail on plain integers");
240 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
243 Elt
= ConstantFoldBinaryOpOperands(Instruction::Or
, Elt
, Src
, DL
);
244 assert(Elt
&& "Constant folding cannot fail on plain integers");
246 Result
.push_back(Elt
);
248 return ConstantVector::get(Result
);
251 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
252 unsigned Ratio
= NumDstElt
/NumSrcElt
;
253 unsigned DstBitSize
= DL
.getTypeSizeInBits(DstEltTy
);
255 // Loop over each source value, expanding into multiple results.
256 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
257 auto *Element
= C
->getAggregateElement(i
);
259 if (!Element
) // Reject constantexpr elements.
260 return ConstantExpr::getBitCast(C
, DestTy
);
262 if (isa
<UndefValue
>(Element
)) {
263 // Correctly Propagate undef values.
264 Result
.append(Ratio
, UndefValue::get(DstEltTy
));
268 auto *Src
= dyn_cast
<ConstantInt
>(Element
);
270 return ConstantExpr::getBitCast(C
, DestTy
);
272 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
273 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
274 // Shift the piece of the value into the right place, depending on
276 APInt Elt
= Src
->getValue().lshr(ShiftAmt
);
277 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
279 // Truncate and remember this piece.
280 Result
.push_back(ConstantInt::get(DstEltTy
, Elt
.trunc(DstBitSize
)));
284 return ConstantVector::get(Result
);
287 } // end anonymous namespace
289 /// If this constant is a constant offset from a global, return the global and
290 /// the constant. Because of constantexprs, this function is recursive.
291 bool llvm::IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
292 APInt
&Offset
, const DataLayout
&DL
,
293 DSOLocalEquivalent
**DSOEquiv
) {
297 // Trivial case, constant is the global.
298 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
299 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
300 Offset
= APInt(BitWidth
, 0);
304 if (auto *FoundDSOEquiv
= dyn_cast
<DSOLocalEquivalent
>(C
)) {
306 *DSOEquiv
= FoundDSOEquiv
;
307 GV
= FoundDSOEquiv
->getGlobalValue();
308 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
309 Offset
= APInt(BitWidth
, 0);
313 // Otherwise, if this isn't a constant expr, bail out.
314 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
315 if (!CE
) return false;
317 // Look through ptr->int and ptr->ptr casts.
318 if (CE
->getOpcode() == Instruction::PtrToInt
||
319 CE
->getOpcode() == Instruction::BitCast
)
320 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, DL
,
323 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
324 auto *GEP
= dyn_cast
<GEPOperator
>(CE
);
328 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
329 APInt
TmpOffset(BitWidth
, 0);
331 // If the base isn't a global+constant, we aren't either.
332 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, TmpOffset
, DL
,
336 // Otherwise, add any offset that our operands provide.
337 if (!GEP
->accumulateConstantOffset(DL
, TmpOffset
))
344 Constant
*llvm::ConstantFoldLoadThroughBitcast(Constant
*C
, Type
*DestTy
,
345 const DataLayout
&DL
) {
347 Type
*SrcTy
= C
->getType();
351 TypeSize DestSize
= DL
.getTypeSizeInBits(DestTy
);
352 TypeSize SrcSize
= DL
.getTypeSizeInBits(SrcTy
);
353 if (!TypeSize::isKnownGE(SrcSize
, DestSize
))
356 // Catch the obvious splat cases (since all-zeros can coerce non-integral
357 // pointers legally).
358 if (Constant
*Res
= ConstantFoldLoadFromUniformValue(C
, DestTy
))
361 // If the type sizes are the same and a cast is legal, just directly
362 // cast the constant.
363 // But be careful not to coerce non-integral pointers illegally.
364 if (SrcSize
== DestSize
&&
365 DL
.isNonIntegralPointerType(SrcTy
->getScalarType()) ==
366 DL
.isNonIntegralPointerType(DestTy
->getScalarType())) {
367 Instruction::CastOps Cast
= Instruction::BitCast
;
368 // If we are going from a pointer to int or vice versa, we spell the cast
370 if (SrcTy
->isIntegerTy() && DestTy
->isPointerTy())
371 Cast
= Instruction::IntToPtr
;
372 else if (SrcTy
->isPointerTy() && DestTy
->isIntegerTy())
373 Cast
= Instruction::PtrToInt
;
375 if (CastInst::castIsValid(Cast
, C
, DestTy
))
376 return ConstantFoldCastOperand(Cast
, C
, DestTy
, DL
);
379 // If this isn't an aggregate type, there is nothing we can do to drill down
380 // and find a bitcastable constant.
381 if (!SrcTy
->isAggregateType() && !SrcTy
->isVectorTy())
384 // We're simulating a load through a pointer that was bitcast to point to
385 // a different type, so we can try to walk down through the initial
386 // elements of an aggregate to see if some part of the aggregate is
387 // castable to implement the "load" semantic model.
388 if (SrcTy
->isStructTy()) {
389 // Struct types might have leading zero-length elements like [0 x i32],
390 // which are certainly not what we are looking for, so skip them.
394 ElemC
= C
->getAggregateElement(Elem
++);
395 } while (ElemC
&& DL
.getTypeSizeInBits(ElemC
->getType()).isZero());
398 // For non-byte-sized vector elements, the first element is not
399 // necessarily located at the vector base address.
400 if (auto *VT
= dyn_cast
<VectorType
>(SrcTy
))
401 if (!DL
.typeSizeEqualsStoreSize(VT
->getElementType()))
404 C
= C
->getAggregateElement(0u);
413 /// Recursive helper to read bits out of global. C is the constant being copied
414 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
415 /// results into and BytesLeft is the number of bytes left in
416 /// the CurPtr buffer. DL is the DataLayout.
417 bool ReadDataFromGlobal(Constant
*C
, uint64_t ByteOffset
, unsigned char *CurPtr
,
418 unsigned BytesLeft
, const DataLayout
&DL
) {
419 assert(ByteOffset
<= DL
.getTypeAllocSize(C
->getType()) &&
420 "Out of range access");
422 // If this element is zero or undefined, we can just return since *CurPtr is
424 if (isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
))
427 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
428 if ((CI
->getBitWidth() & 7) != 0)
430 const APInt
&Val
= CI
->getValue();
431 unsigned IntBytes
= unsigned(CI
->getBitWidth()/8);
433 for (unsigned i
= 0; i
!= BytesLeft
&& ByteOffset
!= IntBytes
; ++i
) {
434 unsigned n
= ByteOffset
;
435 if (!DL
.isLittleEndian())
436 n
= IntBytes
- n
- 1;
437 CurPtr
[i
] = Val
.extractBits(8, n
* 8).getZExtValue();
443 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
)) {
444 if (CFP
->getType()->isDoubleTy()) {
445 C
= FoldBitCast(C
, Type::getInt64Ty(C
->getContext()), DL
);
446 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
448 if (CFP
->getType()->isFloatTy()){
449 C
= FoldBitCast(C
, Type::getInt32Ty(C
->getContext()), DL
);
450 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
452 if (CFP
->getType()->isHalfTy()){
453 C
= FoldBitCast(C
, Type::getInt16Ty(C
->getContext()), DL
);
454 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
459 if (auto *CS
= dyn_cast
<ConstantStruct
>(C
)) {
460 const StructLayout
*SL
= DL
.getStructLayout(CS
->getType());
461 unsigned Index
= SL
->getElementContainingOffset(ByteOffset
);
462 uint64_t CurEltOffset
= SL
->getElementOffset(Index
);
463 ByteOffset
-= CurEltOffset
;
466 // If the element access is to the element itself and not to tail padding,
467 // read the bytes from the element.
468 uint64_t EltSize
= DL
.getTypeAllocSize(CS
->getOperand(Index
)->getType());
470 if (ByteOffset
< EltSize
&&
471 !ReadDataFromGlobal(CS
->getOperand(Index
), ByteOffset
, CurPtr
,
477 // Check to see if we read from the last struct element, if so we're done.
478 if (Index
== CS
->getType()->getNumElements())
481 // If we read all of the bytes we needed from this element we're done.
482 uint64_t NextEltOffset
= SL
->getElementOffset(Index
);
484 if (BytesLeft
<= NextEltOffset
- CurEltOffset
- ByteOffset
)
487 // Move to the next element of the struct.
488 CurPtr
+= NextEltOffset
- CurEltOffset
- ByteOffset
;
489 BytesLeft
-= NextEltOffset
- CurEltOffset
- ByteOffset
;
491 CurEltOffset
= NextEltOffset
;
496 if (isa
<ConstantArray
>(C
) || isa
<ConstantVector
>(C
) ||
497 isa
<ConstantDataSequential
>(C
)) {
498 uint64_t NumElts
, EltSize
;
500 if (auto *AT
= dyn_cast
<ArrayType
>(C
->getType())) {
501 NumElts
= AT
->getNumElements();
502 EltTy
= AT
->getElementType();
503 EltSize
= DL
.getTypeAllocSize(EltTy
);
505 NumElts
= cast
<FixedVectorType
>(C
->getType())->getNumElements();
506 EltTy
= cast
<FixedVectorType
>(C
->getType())->getElementType();
507 // TODO: For non-byte-sized vectors, current implementation assumes there is
508 // padding to the next byte boundary between elements.
509 if (!DL
.typeSizeEqualsStoreSize(EltTy
))
512 EltSize
= DL
.getTypeStoreSize(EltTy
);
514 uint64_t Index
= ByteOffset
/ EltSize
;
515 uint64_t Offset
= ByteOffset
- Index
* EltSize
;
517 for (; Index
!= NumElts
; ++Index
) {
518 if (!ReadDataFromGlobal(C
->getAggregateElement(Index
), Offset
, CurPtr
,
522 uint64_t BytesWritten
= EltSize
- Offset
;
523 assert(BytesWritten
<= EltSize
&& "Not indexing into this element?");
524 if (BytesWritten
>= BytesLeft
)
528 BytesLeft
-= BytesWritten
;
529 CurPtr
+= BytesWritten
;
534 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
535 if (CE
->getOpcode() == Instruction::IntToPtr
&&
536 CE
->getOperand(0)->getType() == DL
.getIntPtrType(CE
->getType())) {
537 return ReadDataFromGlobal(CE
->getOperand(0), ByteOffset
, CurPtr
,
542 // Otherwise, unknown initializer type.
546 Constant
*FoldReinterpretLoadFromConst(Constant
*C
, Type
*LoadTy
,
547 int64_t Offset
, const DataLayout
&DL
) {
548 // Bail out early. Not expect to load from scalable global variable.
549 if (isa
<ScalableVectorType
>(LoadTy
))
552 auto *IntType
= dyn_cast
<IntegerType
>(LoadTy
);
554 // If this isn't an integer load we can't fold it directly.
556 // If this is a non-integer load, we can try folding it as an int load and
557 // then bitcast the result. This can be useful for union cases. Note
558 // that address spaces don't matter here since we're not going to result in
559 // an actual new load.
560 if (!LoadTy
->isFloatingPointTy() && !LoadTy
->isPointerTy() &&
561 !LoadTy
->isVectorTy())
564 Type
*MapTy
= Type::getIntNTy(C
->getContext(),
565 DL
.getTypeSizeInBits(LoadTy
).getFixedValue());
566 if (Constant
*Res
= FoldReinterpretLoadFromConst(C
, MapTy
, Offset
, DL
)) {
567 if (Res
->isNullValue() && !LoadTy
->isX86_MMXTy() &&
568 !LoadTy
->isX86_AMXTy())
569 // Materializing a zero can be done trivially without a bitcast
570 return Constant::getNullValue(LoadTy
);
571 Type
*CastTy
= LoadTy
->isPtrOrPtrVectorTy() ? DL
.getIntPtrType(LoadTy
) : LoadTy
;
572 Res
= FoldBitCast(Res
, CastTy
, DL
);
573 if (LoadTy
->isPtrOrPtrVectorTy()) {
574 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575 if (Res
->isNullValue() && !LoadTy
->isX86_MMXTy() &&
576 !LoadTy
->isX86_AMXTy())
577 return Constant::getNullValue(LoadTy
);
578 if (DL
.isNonIntegralPointerType(LoadTy
->getScalarType()))
579 // Be careful not to replace a load of an addrspace value with an inttoptr here
581 Res
= ConstantExpr::getIntToPtr(Res
, LoadTy
);
588 unsigned BytesLoaded
= (IntType
->getBitWidth() + 7) / 8;
589 if (BytesLoaded
> 32 || BytesLoaded
== 0)
592 // If we're not accessing anything in this constant, the result is undefined.
593 if (Offset
<= -1 * static_cast<int64_t>(BytesLoaded
))
594 return PoisonValue::get(IntType
);
596 // TODO: We should be able to support scalable types.
597 TypeSize InitializerSize
= DL
.getTypeAllocSize(C
->getType());
598 if (InitializerSize
.isScalable())
601 // If we're not accessing anything in this constant, the result is undefined.
602 if (Offset
>= (int64_t)InitializerSize
.getFixedValue())
603 return PoisonValue::get(IntType
);
605 unsigned char RawBytes
[32] = {0};
606 unsigned char *CurPtr
= RawBytes
;
607 unsigned BytesLeft
= BytesLoaded
;
609 // If we're loading off the beginning of the global, some bytes may be valid.
616 if (!ReadDataFromGlobal(C
, Offset
, CurPtr
, BytesLeft
, DL
))
619 APInt ResultVal
= APInt(IntType
->getBitWidth(), 0);
620 if (DL
.isLittleEndian()) {
621 ResultVal
= RawBytes
[BytesLoaded
- 1];
622 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
624 ResultVal
|= RawBytes
[BytesLoaded
- 1 - i
];
627 ResultVal
= RawBytes
[0];
628 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
630 ResultVal
|= RawBytes
[i
];
634 return ConstantInt::get(IntType
->getContext(), ResultVal
);
637 } // anonymous namespace
639 // If GV is a constant with an initializer read its representation starting
640 // at Offset and return it as a constant array of unsigned char. Otherwise
642 Constant
*llvm::ReadByteArrayFromGlobal(const GlobalVariable
*GV
,
644 if (!GV
->isConstant() || !GV
->hasDefinitiveInitializer())
647 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
648 Constant
*Init
= const_cast<Constant
*>(GV
->getInitializer());
649 TypeSize InitSize
= DL
.getTypeAllocSize(Init
->getType());
650 if (InitSize
< Offset
)
653 uint64_t NBytes
= InitSize
- Offset
;
654 if (NBytes
> UINT16_MAX
)
655 // Bail for large initializers in excess of 64K to avoid allocating
657 // Offset is assumed to be less than or equal than InitSize (this
658 // is enforced in ReadDataFromGlobal).
661 SmallVector
<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes
));
662 unsigned char *CurPtr
= RawBytes
.data();
664 if (!ReadDataFromGlobal(Init
, Offset
, CurPtr
, NBytes
, DL
))
667 return ConstantDataArray::get(GV
->getContext(), RawBytes
);
670 /// If this Offset points exactly to the start of an aggregate element, return
671 /// that element, otherwise return nullptr.
672 Constant
*getConstantAtOffset(Constant
*Base
, APInt Offset
,
673 const DataLayout
&DL
) {
677 if (!isa
<ConstantAggregate
>(Base
) && !isa
<ConstantDataSequential
>(Base
))
680 Type
*ElemTy
= Base
->getType();
681 SmallVector
<APInt
> Indices
= DL
.getGEPIndicesForOffset(ElemTy
, Offset
);
682 if (!Offset
.isZero() || !Indices
[0].isZero())
686 for (const APInt
&Index
: drop_begin(Indices
)) {
687 if (Index
.isNegative() || Index
.getActiveBits() >= 32)
690 C
= C
->getAggregateElement(Index
.getZExtValue());
698 Constant
*llvm::ConstantFoldLoadFromConst(Constant
*C
, Type
*Ty
,
700 const DataLayout
&DL
) {
701 if (Constant
*AtOffset
= getConstantAtOffset(C
, Offset
, DL
))
702 if (Constant
*Result
= ConstantFoldLoadThroughBitcast(AtOffset
, Ty
, DL
))
705 // Explicitly check for out-of-bounds access, so we return poison even if the
706 // constant is a uniform value.
707 TypeSize Size
= DL
.getTypeAllocSize(C
->getType());
708 if (!Size
.isScalable() && Offset
.sge(Size
.getFixedValue()))
709 return PoisonValue::get(Ty
);
711 // Try an offset-independent fold of a uniform value.
712 if (Constant
*Result
= ConstantFoldLoadFromUniformValue(C
, Ty
))
715 // Try hard to fold loads from bitcasted strange and non-type-safe things.
716 if (Offset
.getSignificantBits() <= 64)
717 if (Constant
*Result
=
718 FoldReinterpretLoadFromConst(C
, Ty
, Offset
.getSExtValue(), DL
))
724 Constant
*llvm::ConstantFoldLoadFromConst(Constant
*C
, Type
*Ty
,
725 const DataLayout
&DL
) {
726 return ConstantFoldLoadFromConst(C
, Ty
, APInt(64, 0), DL
);
729 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
731 const DataLayout
&DL
) {
732 // We can only fold loads from constant globals with a definitive initializer.
733 // Check this upfront, to skip expensive offset calculations.
734 auto *GV
= dyn_cast
<GlobalVariable
>(getUnderlyingObject(C
));
735 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
738 C
= cast
<Constant
>(C
->stripAndAccumulateConstantOffsets(
739 DL
, Offset
, /* AllowNonInbounds */ true));
742 if (Constant
*Result
= ConstantFoldLoadFromConst(GV
->getInitializer(), Ty
,
746 // If this load comes from anywhere in a uniform constant global, the value
747 // is always the same, regardless of the loaded offset.
748 return ConstantFoldLoadFromUniformValue(GV
->getInitializer(), Ty
);
751 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
752 const DataLayout
&DL
) {
753 APInt
Offset(DL
.getIndexTypeSizeInBits(C
->getType()), 0);
754 return ConstantFoldLoadFromConstPtr(C
, Ty
, Offset
, DL
);
757 Constant
*llvm::ConstantFoldLoadFromUniformValue(Constant
*C
, Type
*Ty
) {
758 if (isa
<PoisonValue
>(C
))
759 return PoisonValue::get(Ty
);
760 if (isa
<UndefValue
>(C
))
761 return UndefValue::get(Ty
);
762 if (C
->isNullValue() && !Ty
->isX86_MMXTy() && !Ty
->isX86_AMXTy())
763 return Constant::getNullValue(Ty
);
764 if (C
->isAllOnesValue() &&
765 (Ty
->isIntOrIntVectorTy() || Ty
->isFPOrFPVectorTy()))
766 return Constant::getAllOnesValue(Ty
);
772 /// One of Op0/Op1 is a constant expression.
773 /// Attempt to symbolically evaluate the result of a binary operator merging
774 /// these together. If target data info is available, it is provided as DL,
775 /// otherwise DL is null.
776 Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
, Constant
*Op1
,
777 const DataLayout
&DL
) {
780 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
781 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
784 if (Opc
== Instruction::And
) {
785 KnownBits Known0
= computeKnownBits(Op0
, DL
);
786 KnownBits Known1
= computeKnownBits(Op1
, DL
);
787 if ((Known1
.One
| Known0
.Zero
).isAllOnes()) {
788 // All the bits of Op0 that the 'and' could be masking are already zero.
791 if ((Known0
.One
| Known1
.Zero
).isAllOnes()) {
792 // All the bits of Op1 that the 'and' could be masking are already zero.
797 if (Known0
.isConstant())
798 return ConstantInt::get(Op0
->getType(), Known0
.getConstant());
801 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
802 // constant. This happens frequently when iterating over a global array.
803 if (Opc
== Instruction::Sub
) {
804 GlobalValue
*GV1
, *GV2
;
807 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, DL
))
808 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, DL
) && GV1
== GV2
) {
809 unsigned OpSize
= DL
.getTypeSizeInBits(Op0
->getType());
811 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
812 // PtrToInt may change the bitwidth so we have convert to the right size
814 return ConstantInt::get(Op0
->getType(), Offs1
.zextOrTrunc(OpSize
) -
815 Offs2
.zextOrTrunc(OpSize
));
822 /// If array indices are not pointer-sized integers, explicitly cast them so
823 /// that they aren't implicitly casted by the getelementptr.
824 Constant
*CastGEPIndices(Type
*SrcElemTy
, ArrayRef
<Constant
*> Ops
,
825 Type
*ResultTy
, bool InBounds
,
826 std::optional
<unsigned> InRangeIndex
,
827 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
) {
828 Type
*IntIdxTy
= DL
.getIndexType(ResultTy
);
829 Type
*IntIdxScalarTy
= IntIdxTy
->getScalarType();
832 SmallVector
<Constant
*, 32> NewIdxs
;
833 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
835 !isa
<StructType
>(GetElementPtrInst::getIndexedType(
836 SrcElemTy
, Ops
.slice(1, i
- 1)))) &&
837 Ops
[i
]->getType()->getScalarType() != IntIdxScalarTy
) {
840 Ops
[i
]->getType()->isVectorTy() ? IntIdxTy
: IntIdxScalarTy
;
841 Constant
*NewIdx
= ConstantFoldCastOperand(
842 CastInst::getCastOpcode(Ops
[i
], true, NewType
, true), Ops
[i
], NewType
,
846 NewIdxs
.push_back(NewIdx
);
848 NewIdxs
.push_back(Ops
[i
]);
854 Constant
*C
= ConstantExpr::getGetElementPtr(
855 SrcElemTy
, Ops
[0], NewIdxs
, InBounds
, InRangeIndex
);
856 return ConstantFoldConstant(C
, DL
, TLI
);
859 /// If we can symbolically evaluate the GEP constant expression, do so.
860 Constant
*SymbolicallyEvaluateGEP(const GEPOperator
*GEP
,
861 ArrayRef
<Constant
*> Ops
,
862 const DataLayout
&DL
,
863 const TargetLibraryInfo
*TLI
) {
864 const GEPOperator
*InnermostGEP
= GEP
;
865 bool InBounds
= GEP
->isInBounds();
867 Type
*SrcElemTy
= GEP
->getSourceElementType();
868 Type
*ResElemTy
= GEP
->getResultElementType();
869 Type
*ResTy
= GEP
->getType();
870 if (!SrcElemTy
->isSized() || isa
<ScalableVectorType
>(SrcElemTy
))
873 if (Constant
*C
= CastGEPIndices(SrcElemTy
, Ops
, ResTy
,
874 GEP
->isInBounds(), GEP
->getInRangeIndex(),
878 Constant
*Ptr
= Ops
[0];
879 if (!Ptr
->getType()->isPointerTy())
882 Type
*IntIdxTy
= DL
.getIndexType(Ptr
->getType());
884 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
885 if (!isa
<ConstantInt
>(Ops
[i
]))
888 unsigned BitWidth
= DL
.getTypeSizeInBits(IntIdxTy
);
889 APInt Offset
= APInt(
891 DL
.getIndexedOffsetInType(
892 SrcElemTy
, ArrayRef((Value
*const *)Ops
.data() + 1, Ops
.size() - 1)));
894 // If this is a GEP of a GEP, fold it all into a single GEP.
895 while (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
897 InBounds
&= GEP
->isInBounds();
899 SmallVector
<Value
*, 4> NestedOps(llvm::drop_begin(GEP
->operands()));
901 // Do not try the incorporate the sub-GEP if some index is not a number.
902 bool AllConstantInt
= true;
903 for (Value
*NestedOp
: NestedOps
)
904 if (!isa
<ConstantInt
>(NestedOp
)) {
905 AllConstantInt
= false;
911 Ptr
= cast
<Constant
>(GEP
->getOperand(0));
912 SrcElemTy
= GEP
->getSourceElementType();
913 Offset
+= APInt(BitWidth
, DL
.getIndexedOffsetInType(SrcElemTy
, NestedOps
));
916 // If the base value for this address is a literal integer value, fold the
917 // getelementptr to the resulting integer value casted to the pointer type.
918 APInt
BasePtr(BitWidth
, 0);
919 if (auto *CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
920 if (CE
->getOpcode() == Instruction::IntToPtr
) {
921 if (auto *Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
922 BasePtr
= Base
->getValue().zextOrTrunc(BitWidth
);
926 auto *PTy
= cast
<PointerType
>(Ptr
->getType());
927 if ((Ptr
->isNullValue() || BasePtr
!= 0) &&
928 !DL
.isNonIntegralPointerType(PTy
)) {
929 Constant
*C
= ConstantInt::get(Ptr
->getContext(), Offset
+ BasePtr
);
930 return ConstantExpr::getIntToPtr(C
, ResTy
);
933 // Otherwise form a regular getelementptr. Recompute the indices so that
934 // we eliminate over-indexing of the notional static type array bounds.
935 // This makes it easy to determine if the getelementptr is "inbounds".
937 // For GEPs of GlobalValues, use the value type, otherwise use an i8 GEP.
938 if (auto *GV
= dyn_cast
<GlobalValue
>(Ptr
))
939 SrcElemTy
= GV
->getValueType();
941 SrcElemTy
= Type::getInt8Ty(Ptr
->getContext());
943 if (!SrcElemTy
->isSized())
946 Type
*ElemTy
= SrcElemTy
;
947 SmallVector
<APInt
> Indices
= DL
.getGEPIndicesForOffset(ElemTy
, Offset
);
951 // Try to add additional zero indices to reach the desired result element
953 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
954 // we'll have to insert a bitcast anyway?
955 while (ElemTy
!= ResElemTy
) {
956 Type
*NextTy
= GetElementPtrInst::getTypeAtIndex(ElemTy
, (uint64_t)0);
960 Indices
.push_back(APInt::getZero(isa
<StructType
>(ElemTy
) ? 32 : BitWidth
));
964 SmallVector
<Constant
*, 32> NewIdxs
;
965 for (const APInt
&Index
: Indices
)
966 NewIdxs
.push_back(ConstantInt::get(
967 Type::getIntNTy(Ptr
->getContext(), Index
.getBitWidth()), Index
));
969 // Preserve the inrange index from the innermost GEP if possible. We must
970 // have calculated the same indices up to and including the inrange index.
971 std::optional
<unsigned> InRangeIndex
;
972 if (std::optional
<unsigned> LastIRIndex
= InnermostGEP
->getInRangeIndex())
973 if (SrcElemTy
== InnermostGEP
->getSourceElementType() &&
974 NewIdxs
.size() > *LastIRIndex
) {
975 InRangeIndex
= LastIRIndex
;
976 for (unsigned I
= 0; I
<= *LastIRIndex
; ++I
)
977 if (NewIdxs
[I
] != InnermostGEP
->getOperand(I
+ 1))
982 return ConstantExpr::getGetElementPtr(SrcElemTy
, Ptr
, NewIdxs
, InBounds
,
986 /// Attempt to constant fold an instruction with the
987 /// specified opcode and operands. If successful, the constant result is
988 /// returned, if not, null is returned. Note that this function can fail when
989 /// attempting to fold instructions like loads and stores, which have no
990 /// constant expression form.
991 Constant
*ConstantFoldInstOperandsImpl(const Value
*InstOrCE
, unsigned Opcode
,
992 ArrayRef
<Constant
*> Ops
,
993 const DataLayout
&DL
,
994 const TargetLibraryInfo
*TLI
) {
995 Type
*DestTy
= InstOrCE
->getType();
997 if (Instruction::isUnaryOp(Opcode
))
998 return ConstantFoldUnaryOpOperand(Opcode
, Ops
[0], DL
);
1000 if (Instruction::isBinaryOp(Opcode
)) {
1004 case Instruction::FAdd
:
1005 case Instruction::FSub
:
1006 case Instruction::FMul
:
1007 case Instruction::FDiv
:
1008 case Instruction::FRem
:
1009 // Handle floating point instructions separately to account for denormals
1010 // TODO: If a constant expression is being folded rather than an
1011 // instruction, denormals will not be flushed/treated as zero
1012 if (const auto *I
= dyn_cast
<Instruction
>(InstOrCE
)) {
1013 return ConstantFoldFPInstOperands(Opcode
, Ops
[0], Ops
[1], DL
, I
);
1016 return ConstantFoldBinaryOpOperands(Opcode
, Ops
[0], Ops
[1], DL
);
1019 if (Instruction::isCast(Opcode
))
1020 return ConstantFoldCastOperand(Opcode
, Ops
[0], DestTy
, DL
);
1022 if (auto *GEP
= dyn_cast
<GEPOperator
>(InstOrCE
)) {
1023 Type
*SrcElemTy
= GEP
->getSourceElementType();
1024 if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy
))
1027 if (Constant
*C
= SymbolicallyEvaluateGEP(GEP
, Ops
, DL
, TLI
))
1030 return ConstantExpr::getGetElementPtr(SrcElemTy
, Ops
[0], Ops
.slice(1),
1032 GEP
->getInRangeIndex());
1035 if (auto *CE
= dyn_cast
<ConstantExpr
>(InstOrCE
)) {
1036 if (CE
->isCompare())
1037 return ConstantFoldCompareInstOperands(CE
->getPredicate(), Ops
[0], Ops
[1],
1039 return CE
->getWithOperands(Ops
);
1043 default: return nullptr;
1044 case Instruction::ICmp
:
1045 case Instruction::FCmp
: {
1046 auto *C
= cast
<CmpInst
>(InstOrCE
);
1047 return ConstantFoldCompareInstOperands(C
->getPredicate(), Ops
[0], Ops
[1],
1050 case Instruction::Freeze
:
1051 return isGuaranteedNotToBeUndefOrPoison(Ops
[0]) ? Ops
[0] : nullptr;
1052 case Instruction::Call
:
1053 if (auto *F
= dyn_cast
<Function
>(Ops
.back())) {
1054 const auto *Call
= cast
<CallBase
>(InstOrCE
);
1055 if (canConstantFoldCallTo(Call
, F
))
1056 return ConstantFoldCall(Call
, F
, Ops
.slice(0, Ops
.size() - 1), TLI
);
1059 case Instruction::Select
:
1060 return ConstantFoldSelectInstruction(Ops
[0], Ops
[1], Ops
[2]);
1061 case Instruction::ExtractElement
:
1062 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
1063 case Instruction::ExtractValue
:
1064 return ConstantFoldExtractValueInstruction(
1065 Ops
[0], cast
<ExtractValueInst
>(InstOrCE
)->getIndices());
1066 case Instruction::InsertElement
:
1067 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
1068 case Instruction::InsertValue
:
1069 return ConstantFoldInsertValueInstruction(
1070 Ops
[0], Ops
[1], cast
<InsertValueInst
>(InstOrCE
)->getIndices());
1071 case Instruction::ShuffleVector
:
1072 return ConstantExpr::getShuffleVector(
1073 Ops
[0], Ops
[1], cast
<ShuffleVectorInst
>(InstOrCE
)->getShuffleMask());
1074 case Instruction::Load
: {
1075 const auto *LI
= dyn_cast
<LoadInst
>(InstOrCE
);
1076 if (LI
->isVolatile())
1078 return ConstantFoldLoadFromConstPtr(Ops
[0], LI
->getType(), DL
);
1083 } // end anonymous namespace
1085 //===----------------------------------------------------------------------===//
1086 // Constant Folding public APIs
1087 //===----------------------------------------------------------------------===//
1092 ConstantFoldConstantImpl(const Constant
*C
, const DataLayout
&DL
,
1093 const TargetLibraryInfo
*TLI
,
1094 SmallDenseMap
<Constant
*, Constant
*> &FoldedOps
) {
1095 if (!isa
<ConstantVector
>(C
) && !isa
<ConstantExpr
>(C
))
1096 return const_cast<Constant
*>(C
);
1098 SmallVector
<Constant
*, 8> Ops
;
1099 for (const Use
&OldU
: C
->operands()) {
1100 Constant
*OldC
= cast
<Constant
>(&OldU
);
1101 Constant
*NewC
= OldC
;
1102 // Recursively fold the ConstantExpr's operands. If we have already folded
1103 // a ConstantExpr, we don't have to process it again.
1104 if (isa
<ConstantVector
>(OldC
) || isa
<ConstantExpr
>(OldC
)) {
1105 auto It
= FoldedOps
.find(OldC
);
1106 if (It
== FoldedOps
.end()) {
1107 NewC
= ConstantFoldConstantImpl(OldC
, DL
, TLI
, FoldedOps
);
1108 FoldedOps
.insert({OldC
, NewC
});
1113 Ops
.push_back(NewC
);
1116 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1118 ConstantFoldInstOperandsImpl(CE
, CE
->getOpcode(), Ops
, DL
, TLI
))
1120 return const_cast<Constant
*>(C
);
1123 assert(isa
<ConstantVector
>(C
));
1124 return ConstantVector::get(Ops
);
1127 } // end anonymous namespace
1129 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, const DataLayout
&DL
,
1130 const TargetLibraryInfo
*TLI
) {
1131 // Handle PHI nodes quickly here...
1132 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
1133 Constant
*CommonValue
= nullptr;
1135 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1136 for (Value
*Incoming
: PN
->incoming_values()) {
1137 // If the incoming value is undef then skip it. Note that while we could
1138 // skip the value if it is equal to the phi node itself we choose not to
1139 // because that would break the rule that constant folding only applies if
1140 // all operands are constants.
1141 if (isa
<UndefValue
>(Incoming
))
1143 // If the incoming value is not a constant, then give up.
1144 auto *C
= dyn_cast
<Constant
>(Incoming
);
1147 // Fold the PHI's operands.
1148 C
= ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1149 // If the incoming value is a different constant to
1150 // the one we saw previously, then give up.
1151 if (CommonValue
&& C
!= CommonValue
)
1156 // If we reach here, all incoming values are the same constant or undef.
1157 return CommonValue
? CommonValue
: UndefValue::get(PN
->getType());
1160 // Scan the operand list, checking to see if they are all constants, if so,
1161 // hand off to ConstantFoldInstOperandsImpl.
1162 if (!all_of(I
->operands(), [](Use
&U
) { return isa
<Constant
>(U
); }))
1165 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1166 SmallVector
<Constant
*, 8> Ops
;
1167 for (const Use
&OpU
: I
->operands()) {
1168 auto *Op
= cast
<Constant
>(&OpU
);
1169 // Fold the Instruction's operands.
1170 Op
= ConstantFoldConstantImpl(Op
, DL
, TLI
, FoldedOps
);
1174 return ConstantFoldInstOperands(I
, Ops
, DL
, TLI
);
1177 Constant
*llvm::ConstantFoldConstant(const Constant
*C
, const DataLayout
&DL
,
1178 const TargetLibraryInfo
*TLI
) {
1179 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1180 return ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1183 Constant
*llvm::ConstantFoldInstOperands(Instruction
*I
,
1184 ArrayRef
<Constant
*> Ops
,
1185 const DataLayout
&DL
,
1186 const TargetLibraryInfo
*TLI
) {
1187 return ConstantFoldInstOperandsImpl(I
, I
->getOpcode(), Ops
, DL
, TLI
);
1190 Constant
*llvm::ConstantFoldCompareInstOperands(
1191 unsigned IntPredicate
, Constant
*Ops0
, Constant
*Ops1
, const DataLayout
&DL
,
1192 const TargetLibraryInfo
*TLI
, const Instruction
*I
) {
1193 CmpInst::Predicate Predicate
= (CmpInst::Predicate
)IntPredicate
;
1194 // fold: icmp (inttoptr x), null -> icmp x, 0
1195 // fold: icmp null, (inttoptr x) -> icmp 0, x
1196 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1197 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1198 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1199 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1201 // FIXME: The following comment is out of data and the DataLayout is here now.
1202 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1203 // around to know if bit truncation is happening.
1204 if (auto *CE0
= dyn_cast
<ConstantExpr
>(Ops0
)) {
1205 if (Ops1
->isNullValue()) {
1206 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1207 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1208 // Convert the integer value to the right size to ensure we get the
1209 // proper extension or truncation.
1210 if (Constant
*C
= ConstantFoldIntegerCast(CE0
->getOperand(0), IntPtrTy
,
1211 /*IsSigned*/ false, DL
)) {
1212 Constant
*Null
= Constant::getNullValue(C
->getType());
1213 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1217 // Only do this transformation if the int is intptrty in size, otherwise
1218 // there is a truncation or extension that we aren't modeling.
1219 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1220 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1221 if (CE0
->getType() == IntPtrTy
) {
1222 Constant
*C
= CE0
->getOperand(0);
1223 Constant
*Null
= Constant::getNullValue(C
->getType());
1224 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1229 if (auto *CE1
= dyn_cast
<ConstantExpr
>(Ops1
)) {
1230 if (CE0
->getOpcode() == CE1
->getOpcode()) {
1231 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1232 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1234 // Convert the integer value to the right size to ensure we get the
1235 // proper extension or truncation.
1236 Constant
*C0
= ConstantFoldIntegerCast(CE0
->getOperand(0), IntPtrTy
,
1237 /*IsSigned*/ false, DL
);
1238 Constant
*C1
= ConstantFoldIntegerCast(CE1
->getOperand(0), IntPtrTy
,
1239 /*IsSigned*/ false, DL
);
1241 return ConstantFoldCompareInstOperands(Predicate
, C0
, C1
, DL
, TLI
);
1244 // Only do this transformation if the int is intptrty in size, otherwise
1245 // there is a truncation or extension that we aren't modeling.
1246 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1247 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1248 if (CE0
->getType() == IntPtrTy
&&
1249 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType()) {
1250 return ConstantFoldCompareInstOperands(
1251 Predicate
, CE0
->getOperand(0), CE1
->getOperand(0), DL
, TLI
);
1257 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1258 // offset1 pred offset2, for the case where the offset is inbounds. This
1259 // only works for equality and unsigned comparison, as inbounds permits
1260 // crossing the sign boundary. However, the offset comparison itself is
1262 if (Ops0
->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate
)) {
1263 unsigned IndexWidth
= DL
.getIndexTypeSizeInBits(Ops0
->getType());
1264 APInt
Offset0(IndexWidth
, 0);
1266 Ops0
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset0
);
1267 APInt
Offset1(IndexWidth
, 0);
1269 Ops1
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset1
);
1270 if (Stripped0
== Stripped1
)
1271 return ConstantExpr::getCompare(
1272 ICmpInst::getSignedPredicate(Predicate
),
1273 ConstantInt::get(CE0
->getContext(), Offset0
),
1274 ConstantInt::get(CE0
->getContext(), Offset1
));
1276 } else if (isa
<ConstantExpr
>(Ops1
)) {
1277 // If RHS is a constant expression, but the left side isn't, swap the
1278 // operands and try again.
1279 Predicate
= ICmpInst::getSwappedPredicate(Predicate
);
1280 return ConstantFoldCompareInstOperands(Predicate
, Ops1
, Ops0
, DL
, TLI
);
1283 // Flush any denormal constant float input according to denormal handling
1285 Ops0
= FlushFPConstant(Ops0
, I
, /* IsOutput */ false);
1288 Ops1
= FlushFPConstant(Ops1
, I
, /* IsOutput */ false);
1292 return ConstantExpr::getCompare(Predicate
, Ops0
, Ops1
);
1295 Constant
*llvm::ConstantFoldUnaryOpOperand(unsigned Opcode
, Constant
*Op
,
1296 const DataLayout
&DL
) {
1297 assert(Instruction::isUnaryOp(Opcode
));
1299 return ConstantFoldUnaryInstruction(Opcode
, Op
);
1302 Constant
*llvm::ConstantFoldBinaryOpOperands(unsigned Opcode
, Constant
*LHS
,
1304 const DataLayout
&DL
) {
1305 assert(Instruction::isBinaryOp(Opcode
));
1306 if (isa
<ConstantExpr
>(LHS
) || isa
<ConstantExpr
>(RHS
))
1307 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, LHS
, RHS
, DL
))
1310 if (ConstantExpr::isDesirableBinOp(Opcode
))
1311 return ConstantExpr::get(Opcode
, LHS
, RHS
);
1312 return ConstantFoldBinaryInstruction(Opcode
, LHS
, RHS
);
1315 Constant
*llvm::FlushFPConstant(Constant
*Operand
, const Instruction
*I
,
1317 if (!I
|| !I
->getParent() || !I
->getFunction())
1320 ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(Operand
);
1324 const APFloat
&APF
= CFP
->getValueAPF();
1325 // TODO: Should this canonicalize nans?
1326 if (!APF
.isDenormal())
1329 Type
*Ty
= CFP
->getType();
1330 DenormalMode DenormMode
=
1331 I
->getFunction()->getDenormalMode(Ty
->getFltSemantics());
1332 DenormalMode::DenormalModeKind Mode
=
1333 IsOutput
? DenormMode
.Output
: DenormMode
.Input
;
1336 llvm_unreachable("unknown denormal mode");
1337 case DenormalMode::Dynamic
:
1339 case DenormalMode::IEEE
:
1341 case DenormalMode::PreserveSign
:
1342 if (APF
.isDenormal()) {
1343 return ConstantFP::get(
1345 APFloat::getZero(Ty
->getFltSemantics(), APF
.isNegative()));
1348 case DenormalMode::PositiveZero
:
1349 if (APF
.isDenormal()) {
1350 return ConstantFP::get(Ty
->getContext(),
1351 APFloat::getZero(Ty
->getFltSemantics(), false));
1358 Constant
*llvm::ConstantFoldFPInstOperands(unsigned Opcode
, Constant
*LHS
,
1359 Constant
*RHS
, const DataLayout
&DL
,
1360 const Instruction
*I
) {
1361 if (Instruction::isBinaryOp(Opcode
)) {
1362 // Flush denormal inputs if needed.
1363 Constant
*Op0
= FlushFPConstant(LHS
, I
, /* IsOutput */ false);
1366 Constant
*Op1
= FlushFPConstant(RHS
, I
, /* IsOutput */ false);
1370 // Calculate constant result.
1371 Constant
*C
= ConstantFoldBinaryOpOperands(Opcode
, Op0
, Op1
, DL
);
1375 // Flush denormal output if needed.
1376 return FlushFPConstant(C
, I
, /* IsOutput */ true);
1378 // If instruction lacks a parent/function and the denormal mode cannot be
1379 // determined, use the default (IEEE).
1380 return ConstantFoldBinaryOpOperands(Opcode
, LHS
, RHS
, DL
);
1383 Constant
*llvm::ConstantFoldCastOperand(unsigned Opcode
, Constant
*C
,
1384 Type
*DestTy
, const DataLayout
&DL
) {
1385 assert(Instruction::isCast(Opcode
));
1388 llvm_unreachable("Missing case");
1389 case Instruction::PtrToInt
:
1390 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1391 Constant
*FoldedValue
= nullptr;
1392 // If the input is a inttoptr, eliminate the pair. This requires knowing
1393 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1394 if (CE
->getOpcode() == Instruction::IntToPtr
) {
1395 // zext/trunc the inttoptr to pointer size.
1396 FoldedValue
= ConstantFoldIntegerCast(CE
->getOperand(0),
1397 DL
.getIntPtrType(CE
->getType()),
1398 /*IsSigned=*/false, DL
);
1399 } else if (auto *GEP
= dyn_cast
<GEPOperator
>(CE
)) {
1400 // If we have GEP, we can perform the following folds:
1401 // (ptrtoint (gep null, x)) -> x
1402 // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1403 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
1404 APInt
BaseOffset(BitWidth
, 0);
1405 auto *Base
= cast
<Constant
>(GEP
->stripAndAccumulateConstantOffsets(
1406 DL
, BaseOffset
, /*AllowNonInbounds=*/true));
1407 if (Base
->isNullValue()) {
1408 FoldedValue
= ConstantInt::get(CE
->getContext(), BaseOffset
);
1410 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1411 if (GEP
->getNumIndices() == 1 &&
1412 GEP
->getSourceElementType()->isIntegerTy(8)) {
1413 auto *Ptr
= cast
<Constant
>(GEP
->getPointerOperand());
1414 auto *Sub
= dyn_cast
<ConstantExpr
>(GEP
->getOperand(1));
1415 Type
*IntIdxTy
= DL
.getIndexType(Ptr
->getType());
1416 if (Sub
&& Sub
->getType() == IntIdxTy
&&
1417 Sub
->getOpcode() == Instruction::Sub
&&
1418 Sub
->getOperand(0)->isNullValue())
1419 FoldedValue
= ConstantExpr::getSub(
1420 ConstantExpr::getPtrToInt(Ptr
, IntIdxTy
), Sub
->getOperand(1));
1425 // Do a zext or trunc to get to the ptrtoint dest size.
1426 return ConstantFoldIntegerCast(FoldedValue
, DestTy
, /*IsSigned=*/false,
1431 case Instruction::IntToPtr
:
1432 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1433 // the int size is >= the ptr size and the address spaces are the same.
1434 // This requires knowing the width of a pointer, so it can't be done in
1435 // ConstantExpr::getCast.
1436 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1437 if (CE
->getOpcode() == Instruction::PtrToInt
) {
1438 Constant
*SrcPtr
= CE
->getOperand(0);
1439 unsigned SrcPtrSize
= DL
.getPointerTypeSizeInBits(SrcPtr
->getType());
1440 unsigned MidIntSize
= CE
->getType()->getScalarSizeInBits();
1442 if (MidIntSize
>= SrcPtrSize
) {
1443 unsigned SrcAS
= SrcPtr
->getType()->getPointerAddressSpace();
1444 if (SrcAS
== DestTy
->getPointerAddressSpace())
1445 return FoldBitCast(CE
->getOperand(0), DestTy
, DL
);
1450 case Instruction::Trunc
:
1451 case Instruction::ZExt
:
1452 case Instruction::SExt
:
1453 case Instruction::FPTrunc
:
1454 case Instruction::FPExt
:
1455 case Instruction::UIToFP
:
1456 case Instruction::SIToFP
:
1457 case Instruction::FPToUI
:
1458 case Instruction::FPToSI
:
1459 case Instruction::AddrSpaceCast
:
1461 case Instruction::BitCast
:
1462 return FoldBitCast(C
, DestTy
, DL
);
1465 if (ConstantExpr::isDesirableCastOp(Opcode
))
1466 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1467 return ConstantFoldCastInstruction(Opcode
, C
, DestTy
);
1470 Constant
*llvm::ConstantFoldIntegerCast(Constant
*C
, Type
*DestTy
,
1471 bool IsSigned
, const DataLayout
&DL
) {
1472 Type
*SrcTy
= C
->getType();
1473 if (SrcTy
== DestTy
)
1475 if (SrcTy
->getScalarSizeInBits() > DestTy
->getScalarSizeInBits())
1476 return ConstantFoldCastOperand(Instruction::Trunc
, C
, DestTy
, DL
);
1478 return ConstantFoldCastOperand(Instruction::SExt
, C
, DestTy
, DL
);
1479 return ConstantFoldCastOperand(Instruction::ZExt
, C
, DestTy
, DL
);
1482 //===----------------------------------------------------------------------===//
1483 // Constant Folding for Calls
1486 bool llvm::canConstantFoldCallTo(const CallBase
*Call
, const Function
*F
) {
1487 if (Call
->isNoBuiltin())
1489 if (Call
->getFunctionType() != F
->getFunctionType())
1491 switch (F
->getIntrinsicID()) {
1492 // Operations that do not operate floating-point numbers and do not depend on
1493 // FP environment can be folded even in strictfp functions.
1494 case Intrinsic::bswap
:
1495 case Intrinsic::ctpop
:
1496 case Intrinsic::ctlz
:
1497 case Intrinsic::cttz
:
1498 case Intrinsic::fshl
:
1499 case Intrinsic::fshr
:
1500 case Intrinsic::launder_invariant_group
:
1501 case Intrinsic::strip_invariant_group
:
1502 case Intrinsic::masked_load
:
1503 case Intrinsic::get_active_lane_mask
:
1504 case Intrinsic::abs
:
1505 case Intrinsic::smax
:
1506 case Intrinsic::smin
:
1507 case Intrinsic::umax
:
1508 case Intrinsic::umin
:
1509 case Intrinsic::sadd_with_overflow
:
1510 case Intrinsic::uadd_with_overflow
:
1511 case Intrinsic::ssub_with_overflow
:
1512 case Intrinsic::usub_with_overflow
:
1513 case Intrinsic::smul_with_overflow
:
1514 case Intrinsic::umul_with_overflow
:
1515 case Intrinsic::sadd_sat
:
1516 case Intrinsic::uadd_sat
:
1517 case Intrinsic::ssub_sat
:
1518 case Intrinsic::usub_sat
:
1519 case Intrinsic::smul_fix
:
1520 case Intrinsic::smul_fix_sat
:
1521 case Intrinsic::bitreverse
:
1522 case Intrinsic::is_constant
:
1523 case Intrinsic::vector_reduce_add
:
1524 case Intrinsic::vector_reduce_mul
:
1525 case Intrinsic::vector_reduce_and
:
1526 case Intrinsic::vector_reduce_or
:
1527 case Intrinsic::vector_reduce_xor
:
1528 case Intrinsic::vector_reduce_smin
:
1529 case Intrinsic::vector_reduce_smax
:
1530 case Intrinsic::vector_reduce_umin
:
1531 case Intrinsic::vector_reduce_umax
:
1532 // Target intrinsics
1533 case Intrinsic::amdgcn_perm
:
1534 case Intrinsic::amdgcn_wave_reduce_umin
:
1535 case Intrinsic::amdgcn_wave_reduce_umax
:
1536 case Intrinsic::amdgcn_s_wqm
:
1537 case Intrinsic::amdgcn_s_quadmask
:
1538 case Intrinsic::amdgcn_s_bitreplicate
:
1539 case Intrinsic::arm_mve_vctp8
:
1540 case Intrinsic::arm_mve_vctp16
:
1541 case Intrinsic::arm_mve_vctp32
:
1542 case Intrinsic::arm_mve_vctp64
:
1543 case Intrinsic::aarch64_sve_convert_from_svbool
:
1544 // WebAssembly float semantics are always known
1545 case Intrinsic::wasm_trunc_signed
:
1546 case Intrinsic::wasm_trunc_unsigned
:
1549 // Floating point operations cannot be folded in strictfp functions in
1550 // general case. They can be folded if FP environment is known to compiler.
1551 case Intrinsic::minnum
:
1552 case Intrinsic::maxnum
:
1553 case Intrinsic::minimum
:
1554 case Intrinsic::maximum
:
1555 case Intrinsic::log
:
1556 case Intrinsic::log2
:
1557 case Intrinsic::log10
:
1558 case Intrinsic::exp
:
1559 case Intrinsic::exp2
:
1560 case Intrinsic::exp10
:
1561 case Intrinsic::sqrt
:
1562 case Intrinsic::sin
:
1563 case Intrinsic::cos
:
1564 case Intrinsic::pow
:
1565 case Intrinsic::powi
:
1566 case Intrinsic::ldexp
:
1567 case Intrinsic::fma
:
1568 case Intrinsic::fmuladd
:
1569 case Intrinsic::frexp
:
1570 case Intrinsic::fptoui_sat
:
1571 case Intrinsic::fptosi_sat
:
1572 case Intrinsic::convert_from_fp16
:
1573 case Intrinsic::convert_to_fp16
:
1574 case Intrinsic::amdgcn_cos
:
1575 case Intrinsic::amdgcn_cubeid
:
1576 case Intrinsic::amdgcn_cubema
:
1577 case Intrinsic::amdgcn_cubesc
:
1578 case Intrinsic::amdgcn_cubetc
:
1579 case Intrinsic::amdgcn_fmul_legacy
:
1580 case Intrinsic::amdgcn_fma_legacy
:
1581 case Intrinsic::amdgcn_fract
:
1582 case Intrinsic::amdgcn_sin
:
1583 // The intrinsics below depend on rounding mode in MXCSR.
1584 case Intrinsic::x86_sse_cvtss2si
:
1585 case Intrinsic::x86_sse_cvtss2si64
:
1586 case Intrinsic::x86_sse_cvttss2si
:
1587 case Intrinsic::x86_sse_cvttss2si64
:
1588 case Intrinsic::x86_sse2_cvtsd2si
:
1589 case Intrinsic::x86_sse2_cvtsd2si64
:
1590 case Intrinsic::x86_sse2_cvttsd2si
:
1591 case Intrinsic::x86_sse2_cvttsd2si64
:
1592 case Intrinsic::x86_avx512_vcvtss2si32
:
1593 case Intrinsic::x86_avx512_vcvtss2si64
:
1594 case Intrinsic::x86_avx512_cvttss2si
:
1595 case Intrinsic::x86_avx512_cvttss2si64
:
1596 case Intrinsic::x86_avx512_vcvtsd2si32
:
1597 case Intrinsic::x86_avx512_vcvtsd2si64
:
1598 case Intrinsic::x86_avx512_cvttsd2si
:
1599 case Intrinsic::x86_avx512_cvttsd2si64
:
1600 case Intrinsic::x86_avx512_vcvtss2usi32
:
1601 case Intrinsic::x86_avx512_vcvtss2usi64
:
1602 case Intrinsic::x86_avx512_cvttss2usi
:
1603 case Intrinsic::x86_avx512_cvttss2usi64
:
1604 case Intrinsic::x86_avx512_vcvtsd2usi32
:
1605 case Intrinsic::x86_avx512_vcvtsd2usi64
:
1606 case Intrinsic::x86_avx512_cvttsd2usi
:
1607 case Intrinsic::x86_avx512_cvttsd2usi64
:
1608 return !Call
->isStrictFP();
1610 // Sign operations are actually bitwise operations, they do not raise
1611 // exceptions even for SNANs.
1612 case Intrinsic::fabs
:
1613 case Intrinsic::copysign
:
1614 case Intrinsic::is_fpclass
:
1615 // Non-constrained variants of rounding operations means default FP
1616 // environment, they can be folded in any case.
1617 case Intrinsic::ceil
:
1618 case Intrinsic::floor
:
1619 case Intrinsic::round
:
1620 case Intrinsic::roundeven
:
1621 case Intrinsic::trunc
:
1622 case Intrinsic::nearbyint
:
1623 case Intrinsic::rint
:
1624 case Intrinsic::canonicalize
:
1625 // Constrained intrinsics can be folded if FP environment is known
1627 case Intrinsic::experimental_constrained_fma
:
1628 case Intrinsic::experimental_constrained_fmuladd
:
1629 case Intrinsic::experimental_constrained_fadd
:
1630 case Intrinsic::experimental_constrained_fsub
:
1631 case Intrinsic::experimental_constrained_fmul
:
1632 case Intrinsic::experimental_constrained_fdiv
:
1633 case Intrinsic::experimental_constrained_frem
:
1634 case Intrinsic::experimental_constrained_ceil
:
1635 case Intrinsic::experimental_constrained_floor
:
1636 case Intrinsic::experimental_constrained_round
:
1637 case Intrinsic::experimental_constrained_roundeven
:
1638 case Intrinsic::experimental_constrained_trunc
:
1639 case Intrinsic::experimental_constrained_nearbyint
:
1640 case Intrinsic::experimental_constrained_rint
:
1641 case Intrinsic::experimental_constrained_fcmp
:
1642 case Intrinsic::experimental_constrained_fcmps
:
1646 case Intrinsic::not_intrinsic
: break;
1649 if (!F
->hasName() || Call
->isStrictFP())
1652 // In these cases, the check of the length is required. We don't want to
1653 // return true for a name like "cos\0blah" which strcmp would return equal to
1654 // "cos", but has length 8.
1655 StringRef Name
= F
->getName();
1660 return Name
== "acos" || Name
== "acosf" ||
1661 Name
== "asin" || Name
== "asinf" ||
1662 Name
== "atan" || Name
== "atanf" ||
1663 Name
== "atan2" || Name
== "atan2f";
1665 return Name
== "ceil" || Name
== "ceilf" ||
1666 Name
== "cos" || Name
== "cosf" ||
1667 Name
== "cosh" || Name
== "coshf";
1669 return Name
== "exp" || Name
== "expf" ||
1670 Name
== "exp2" || Name
== "exp2f";
1672 return Name
== "fabs" || Name
== "fabsf" ||
1673 Name
== "floor" || Name
== "floorf" ||
1674 Name
== "fmod" || Name
== "fmodf";
1676 return Name
== "log" || Name
== "logf" ||
1677 Name
== "log2" || Name
== "log2f" ||
1678 Name
== "log10" || Name
== "log10f";
1680 return Name
== "nearbyint" || Name
== "nearbyintf";
1682 return Name
== "pow" || Name
== "powf";
1684 return Name
== "remainder" || Name
== "remainderf" ||
1685 Name
== "rint" || Name
== "rintf" ||
1686 Name
== "round" || Name
== "roundf";
1688 return Name
== "sin" || Name
== "sinf" ||
1689 Name
== "sinh" || Name
== "sinhf" ||
1690 Name
== "sqrt" || Name
== "sqrtf";
1692 return Name
== "tan" || Name
== "tanf" ||
1693 Name
== "tanh" || Name
== "tanhf" ||
1694 Name
== "trunc" || Name
== "truncf";
1696 // Check for various function names that get used for the math functions
1697 // when the header files are preprocessed with the macro
1698 // __FINITE_MATH_ONLY__ enabled.
1699 // The '12' here is the length of the shortest name that can match.
1700 // We need to check the size before looking at Name[1] and Name[2]
1701 // so we may as well check a limit that will eliminate mismatches.
1702 if (Name
.size() < 12 || Name
[1] != '_')
1708 return Name
== "__acos_finite" || Name
== "__acosf_finite" ||
1709 Name
== "__asin_finite" || Name
== "__asinf_finite" ||
1710 Name
== "__atan2_finite" || Name
== "__atan2f_finite";
1712 return Name
== "__cosh_finite" || Name
== "__coshf_finite";
1714 return Name
== "__exp_finite" || Name
== "__expf_finite" ||
1715 Name
== "__exp2_finite" || Name
== "__exp2f_finite";
1717 return Name
== "__log_finite" || Name
== "__logf_finite" ||
1718 Name
== "__log10_finite" || Name
== "__log10f_finite";
1720 return Name
== "__pow_finite" || Name
== "__powf_finite";
1722 return Name
== "__sinh_finite" || Name
== "__sinhf_finite";
1729 Constant
*GetConstantFoldFPValue(double V
, Type
*Ty
) {
1730 if (Ty
->isHalfTy() || Ty
->isFloatTy()) {
1733 APF
.convert(Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &unused
);
1734 return ConstantFP::get(Ty
->getContext(), APF
);
1736 if (Ty
->isDoubleTy())
1737 return ConstantFP::get(Ty
->getContext(), APFloat(V
));
1738 llvm_unreachable("Can only constant fold half/float/double");
1741 /// Clear the floating-point exception state.
1742 inline void llvm_fenv_clearexcept() {
1743 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1744 feclearexcept(FE_ALL_EXCEPT
);
1749 /// Test if a floating-point exception was raised.
1750 inline bool llvm_fenv_testexcept() {
1751 int errno_val
= errno
;
1752 if (errno_val
== ERANGE
|| errno_val
== EDOM
)
1754 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1755 if (fetestexcept(FE_ALL_EXCEPT
& ~FE_INEXACT
))
1761 Constant
*ConstantFoldFP(double (*NativeFP
)(double), const APFloat
&V
,
1763 llvm_fenv_clearexcept();
1764 double Result
= NativeFP(V
.convertToDouble());
1765 if (llvm_fenv_testexcept()) {
1766 llvm_fenv_clearexcept();
1770 return GetConstantFoldFPValue(Result
, Ty
);
1773 Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double),
1774 const APFloat
&V
, const APFloat
&W
, Type
*Ty
) {
1775 llvm_fenv_clearexcept();
1776 double Result
= NativeFP(V
.convertToDouble(), W
.convertToDouble());
1777 if (llvm_fenv_testexcept()) {
1778 llvm_fenv_clearexcept();
1782 return GetConstantFoldFPValue(Result
, Ty
);
1785 Constant
*constantFoldVectorReduce(Intrinsic::ID IID
, Constant
*Op
) {
1786 FixedVectorType
*VT
= dyn_cast
<FixedVectorType
>(Op
->getType());
1790 // This isn't strictly necessary, but handle the special/common case of zero:
1791 // all integer reductions of a zero input produce zero.
1792 if (isa
<ConstantAggregateZero
>(Op
))
1793 return ConstantInt::get(VT
->getElementType(), 0);
1795 // This is the same as the underlying binops - poison propagates.
1796 if (isa
<PoisonValue
>(Op
) || Op
->containsPoisonElement())
1797 return PoisonValue::get(VT
->getElementType());
1799 // TODO: Handle undef.
1800 if (!isa
<ConstantVector
>(Op
) && !isa
<ConstantDataVector
>(Op
))
1803 auto *EltC
= dyn_cast
<ConstantInt
>(Op
->getAggregateElement(0U));
1807 APInt Acc
= EltC
->getValue();
1808 for (unsigned I
= 1, E
= VT
->getNumElements(); I
!= E
; I
++) {
1809 if (!(EltC
= dyn_cast
<ConstantInt
>(Op
->getAggregateElement(I
))))
1811 const APInt
&X
= EltC
->getValue();
1813 case Intrinsic::vector_reduce_add
:
1816 case Intrinsic::vector_reduce_mul
:
1819 case Intrinsic::vector_reduce_and
:
1822 case Intrinsic::vector_reduce_or
:
1825 case Intrinsic::vector_reduce_xor
:
1828 case Intrinsic::vector_reduce_smin
:
1829 Acc
= APIntOps::smin(Acc
, X
);
1831 case Intrinsic::vector_reduce_smax
:
1832 Acc
= APIntOps::smax(Acc
, X
);
1834 case Intrinsic::vector_reduce_umin
:
1835 Acc
= APIntOps::umin(Acc
, X
);
1837 case Intrinsic::vector_reduce_umax
:
1838 Acc
= APIntOps::umax(Acc
, X
);
1843 return ConstantInt::get(Op
->getContext(), Acc
);
1846 /// Attempt to fold an SSE floating point to integer conversion of a constant
1847 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1848 /// used (toward nearest, ties to even). This matches the behavior of the
1849 /// non-truncating SSE instructions in the default rounding mode. The desired
1850 /// integer type Ty is used to select how many bits are available for the
1851 /// result. Returns null if the conversion cannot be performed, otherwise
1852 /// returns the Constant value resulting from the conversion.
1853 Constant
*ConstantFoldSSEConvertToInt(const APFloat
&Val
, bool roundTowardZero
,
1854 Type
*Ty
, bool IsSigned
) {
1855 // All of these conversion intrinsics form an integer of at most 64bits.
1856 unsigned ResultWidth
= Ty
->getIntegerBitWidth();
1857 assert(ResultWidth
<= 64 &&
1858 "Can only constant fold conversions to 64 and 32 bit ints");
1861 bool isExact
= false;
1862 APFloat::roundingMode mode
= roundTowardZero
? APFloat::rmTowardZero
1863 : APFloat::rmNearestTiesToEven
;
1864 APFloat::opStatus status
=
1865 Val
.convertToInteger(MutableArrayRef(UIntVal
), ResultWidth
,
1866 IsSigned
, mode
, &isExact
);
1867 if (status
!= APFloat::opOK
&&
1868 (!roundTowardZero
|| status
!= APFloat::opInexact
))
1870 return ConstantInt::get(Ty
, UIntVal
, IsSigned
);
1873 double getValueAsDouble(ConstantFP
*Op
) {
1874 Type
*Ty
= Op
->getType();
1876 if (Ty
->isBFloatTy() || Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy())
1877 return Op
->getValueAPF().convertToDouble();
1880 APFloat APF
= Op
->getValueAPF();
1881 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &unused
);
1882 return APF
.convertToDouble();
1885 static bool getConstIntOrUndef(Value
*Op
, const APInt
*&C
) {
1886 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
1887 C
= &CI
->getValue();
1890 if (isa
<UndefValue
>(Op
)) {
1897 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1900 /// \param CI Constrained intrinsic call.
1901 /// \param St Exception flags raised during constant evaluation.
1902 static bool mayFoldConstrained(ConstrainedFPIntrinsic
*CI
,
1903 APFloat::opStatus St
) {
1904 std::optional
<RoundingMode
> ORM
= CI
->getRoundingMode();
1905 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
1907 // If the operation does not change exception status flags, it is safe
1909 if (St
== APFloat::opStatus::opOK
)
1912 // If evaluation raised FP exception, the result can depend on rounding
1913 // mode. If the latter is unknown, folding is not possible.
1914 if (ORM
&& *ORM
== RoundingMode::Dynamic
)
1917 // If FP exceptions are ignored, fold the call, even if such exception is
1919 if (EB
&& *EB
!= fp::ExceptionBehavior::ebStrict
)
1922 // Leave the calculation for runtime so that exception flags be correctly set
1927 /// Returns the rounding mode that should be used for constant evaluation.
1929 getEvaluationRoundingMode(const ConstrainedFPIntrinsic
*CI
) {
1930 std::optional
<RoundingMode
> ORM
= CI
->getRoundingMode();
1931 if (!ORM
|| *ORM
== RoundingMode::Dynamic
)
1932 // Even if the rounding mode is unknown, try evaluating the operation.
1933 // If it does not raise inexact exception, rounding was not applied,
1934 // so the result is exact and does not depend on rounding mode. Whether
1935 // other FP exceptions are raised, it does not depend on rounding mode.
1936 return RoundingMode::NearestTiesToEven
;
1940 /// Try to constant fold llvm.canonicalize for the given caller and value.
1941 static Constant
*constantFoldCanonicalize(const Type
*Ty
, const CallBase
*CI
,
1942 const APFloat
&Src
) {
1943 // Zero, positive and negative, is always OK to fold.
1945 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1946 return ConstantFP::get(
1948 APFloat::getZero(Src
.getSemantics(), Src
.isNegative()));
1951 if (!Ty
->isIEEELikeFPTy())
1954 // Zero is always canonical and the sign must be preserved.
1956 // Denorms and nans may have special encodings, but it should be OK to fold a
1957 // totally average number.
1958 if (Src
.isNormal() || Src
.isInfinity())
1959 return ConstantFP::get(CI
->getContext(), Src
);
1961 if (Src
.isDenormal() && CI
->getParent() && CI
->getFunction()) {
1962 DenormalMode DenormMode
=
1963 CI
->getFunction()->getDenormalMode(Src
.getSemantics());
1965 if (DenormMode
== DenormalMode::getIEEE())
1966 return ConstantFP::get(CI
->getContext(), Src
);
1968 if (DenormMode
.Input
== DenormalMode::Dynamic
)
1971 // If we know if either input or output is flushed, we can fold.
1972 if ((DenormMode
.Input
== DenormalMode::Dynamic
&&
1973 DenormMode
.Output
== DenormalMode::IEEE
) ||
1974 (DenormMode
.Input
== DenormalMode::IEEE
&&
1975 DenormMode
.Output
== DenormalMode::Dynamic
))
1979 (!Src
.isNegative() || DenormMode
.Input
== DenormalMode::PositiveZero
||
1980 (DenormMode
.Output
== DenormalMode::PositiveZero
&&
1981 DenormMode
.Input
== DenormalMode::IEEE
));
1983 return ConstantFP::get(CI
->getContext(),
1984 APFloat::getZero(Src
.getSemantics(), !IsPositive
));
1990 static Constant
*ConstantFoldScalarCall1(StringRef Name
,
1991 Intrinsic::ID IntrinsicID
,
1993 ArrayRef
<Constant
*> Operands
,
1994 const TargetLibraryInfo
*TLI
,
1995 const CallBase
*Call
) {
1996 assert(Operands
.size() == 1 && "Wrong number of operands.");
1998 if (IntrinsicID
== Intrinsic::is_constant
) {
1999 // We know we have a "Constant" argument. But we want to only
2000 // return true for manifest constants, not those that depend on
2001 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2002 if (Operands
[0]->isManifestConstant())
2003 return ConstantInt::getTrue(Ty
->getContext());
2007 if (isa
<PoisonValue
>(Operands
[0])) {
2008 // TODO: All of these operations should probably propagate poison.
2009 if (IntrinsicID
== Intrinsic::canonicalize
)
2010 return PoisonValue::get(Ty
);
2013 if (isa
<UndefValue
>(Operands
[0])) {
2014 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2015 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2016 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2017 if (IntrinsicID
== Intrinsic::cos
||
2018 IntrinsicID
== Intrinsic::ctpop
||
2019 IntrinsicID
== Intrinsic::fptoui_sat
||
2020 IntrinsicID
== Intrinsic::fptosi_sat
||
2021 IntrinsicID
== Intrinsic::canonicalize
)
2022 return Constant::getNullValue(Ty
);
2023 if (IntrinsicID
== Intrinsic::bswap
||
2024 IntrinsicID
== Intrinsic::bitreverse
||
2025 IntrinsicID
== Intrinsic::launder_invariant_group
||
2026 IntrinsicID
== Intrinsic::strip_invariant_group
)
2030 if (isa
<ConstantPointerNull
>(Operands
[0])) {
2031 // launder(null) == null == strip(null) iff in addrspace 0
2032 if (IntrinsicID
== Intrinsic::launder_invariant_group
||
2033 IntrinsicID
== Intrinsic::strip_invariant_group
) {
2034 // If instruction is not yet put in a basic block (e.g. when cloning
2035 // a function during inlining), Call's caller may not be available.
2036 // So check Call's BB first before querying Call->getCaller.
2037 const Function
*Caller
=
2038 Call
->getParent() ? Call
->getCaller() : nullptr;
2040 !NullPointerIsDefined(
2041 Caller
, Operands
[0]->getType()->getPointerAddressSpace())) {
2048 if (auto *Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2049 if (IntrinsicID
== Intrinsic::convert_to_fp16
) {
2050 APFloat
Val(Op
->getValueAPF());
2053 Val
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &lost
);
2055 return ConstantInt::get(Ty
->getContext(), Val
.bitcastToAPInt());
2058 APFloat U
= Op
->getValueAPF();
2060 if (IntrinsicID
== Intrinsic::wasm_trunc_signed
||
2061 IntrinsicID
== Intrinsic::wasm_trunc_unsigned
) {
2062 bool Signed
= IntrinsicID
== Intrinsic::wasm_trunc_signed
;
2067 unsigned Width
= Ty
->getIntegerBitWidth();
2068 APSInt
Int(Width
, !Signed
);
2069 bool IsExact
= false;
2070 APFloat::opStatus Status
=
2071 U
.convertToInteger(Int
, APFloat::rmTowardZero
, &IsExact
);
2073 if (Status
== APFloat::opOK
|| Status
== APFloat::opInexact
)
2074 return ConstantInt::get(Ty
, Int
);
2079 if (IntrinsicID
== Intrinsic::fptoui_sat
||
2080 IntrinsicID
== Intrinsic::fptosi_sat
) {
2081 // convertToInteger() already has the desired saturation semantics.
2082 APSInt
Int(Ty
->getIntegerBitWidth(),
2083 IntrinsicID
== Intrinsic::fptoui_sat
);
2085 U
.convertToInteger(Int
, APFloat::rmTowardZero
, &IsExact
);
2086 return ConstantInt::get(Ty
, Int
);
2089 if (IntrinsicID
== Intrinsic::canonicalize
)
2090 return constantFoldCanonicalize(Ty
, Call
, U
);
2092 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
2095 // Use internal versions of these intrinsics.
2097 if (IntrinsicID
== Intrinsic::nearbyint
|| IntrinsicID
== Intrinsic::rint
) {
2098 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2099 return ConstantFP::get(Ty
->getContext(), U
);
2102 if (IntrinsicID
== Intrinsic::round
) {
2103 U
.roundToIntegral(APFloat::rmNearestTiesToAway
);
2104 return ConstantFP::get(Ty
->getContext(), U
);
2107 if (IntrinsicID
== Intrinsic::roundeven
) {
2108 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2109 return ConstantFP::get(Ty
->getContext(), U
);
2112 if (IntrinsicID
== Intrinsic::ceil
) {
2113 U
.roundToIntegral(APFloat::rmTowardPositive
);
2114 return ConstantFP::get(Ty
->getContext(), U
);
2117 if (IntrinsicID
== Intrinsic::floor
) {
2118 U
.roundToIntegral(APFloat::rmTowardNegative
);
2119 return ConstantFP::get(Ty
->getContext(), U
);
2122 if (IntrinsicID
== Intrinsic::trunc
) {
2123 U
.roundToIntegral(APFloat::rmTowardZero
);
2124 return ConstantFP::get(Ty
->getContext(), U
);
2127 if (IntrinsicID
== Intrinsic::fabs
) {
2129 return ConstantFP::get(Ty
->getContext(), U
);
2132 if (IntrinsicID
== Intrinsic::amdgcn_fract
) {
2133 // The v_fract instruction behaves like the OpenCL spec, which defines
2134 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2135 // there to prevent fract(-small) from returning 1.0. It returns the
2136 // largest positive floating-point number less than 1.0."
2138 FloorU
.roundToIntegral(APFloat::rmTowardNegative
);
2139 APFloat
FractU(U
- FloorU
);
2140 APFloat
AlmostOne(U
.getSemantics(), 1);
2141 AlmostOne
.next(/*nextDown*/ true);
2142 return ConstantFP::get(Ty
->getContext(), minimum(FractU
, AlmostOne
));
2145 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2146 // raise FP exceptions, unless the argument is signaling NaN.
2148 std::optional
<APFloat::roundingMode
> RM
;
2149 switch (IntrinsicID
) {
2152 case Intrinsic::experimental_constrained_nearbyint
:
2153 case Intrinsic::experimental_constrained_rint
: {
2154 auto CI
= cast
<ConstrainedFPIntrinsic
>(Call
);
2155 RM
= CI
->getRoundingMode();
2156 if (!RM
|| *RM
== RoundingMode::Dynamic
)
2160 case Intrinsic::experimental_constrained_round
:
2161 RM
= APFloat::rmNearestTiesToAway
;
2163 case Intrinsic::experimental_constrained_ceil
:
2164 RM
= APFloat::rmTowardPositive
;
2166 case Intrinsic::experimental_constrained_floor
:
2167 RM
= APFloat::rmTowardNegative
;
2169 case Intrinsic::experimental_constrained_trunc
:
2170 RM
= APFloat::rmTowardZero
;
2174 auto CI
= cast
<ConstrainedFPIntrinsic
>(Call
);
2176 APFloat::opStatus St
= U
.roundToIntegral(*RM
);
2177 if (IntrinsicID
== Intrinsic::experimental_constrained_rint
&&
2178 St
== APFloat::opInexact
) {
2179 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
2180 if (EB
&& *EB
== fp::ebStrict
)
2183 } else if (U
.isSignaling()) {
2184 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
2185 if (EB
&& *EB
!= fp::ebIgnore
)
2187 U
= APFloat::getQNaN(U
.getSemantics());
2189 return ConstantFP::get(Ty
->getContext(), U
);
2192 /// We only fold functions with finite arguments. Folding NaN and inf is
2193 /// likely to be aborted with an exception anyway, and some host libms
2194 /// have known errors raising exceptions.
2198 /// Currently APFloat versions of these functions do not exist, so we use
2199 /// the host native double versions. Float versions are not called
2200 /// directly but for all these it is true (float)(f((double)arg)) ==
2201 /// f(arg). Long double not supported yet.
2202 const APFloat
&APF
= Op
->getValueAPF();
2204 switch (IntrinsicID
) {
2206 case Intrinsic::log
:
2207 return ConstantFoldFP(log
, APF
, Ty
);
2208 case Intrinsic::log2
:
2209 // TODO: What about hosts that lack a C99 library?
2210 return ConstantFoldFP(log2
, APF
, Ty
);
2211 case Intrinsic::log10
:
2212 // TODO: What about hosts that lack a C99 library?
2213 return ConstantFoldFP(log10
, APF
, Ty
);
2214 case Intrinsic::exp
:
2215 return ConstantFoldFP(exp
, APF
, Ty
);
2216 case Intrinsic::exp2
:
2217 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2218 return ConstantFoldBinaryFP(pow
, APFloat(2.0), APF
, Ty
);
2219 case Intrinsic::exp10
:
2220 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2221 return ConstantFoldBinaryFP(pow
, APFloat(10.0), APF
, Ty
);
2222 case Intrinsic::sin
:
2223 return ConstantFoldFP(sin
, APF
, Ty
);
2224 case Intrinsic::cos
:
2225 return ConstantFoldFP(cos
, APF
, Ty
);
2226 case Intrinsic::sqrt
:
2227 return ConstantFoldFP(sqrt
, APF
, Ty
);
2228 case Intrinsic::amdgcn_cos
:
2229 case Intrinsic::amdgcn_sin
: {
2230 double V
= getValueAsDouble(Op
);
2231 if (V
< -256.0 || V
> 256.0)
2232 // The gfx8 and gfx9 architectures handle arguments outside the range
2233 // [-256, 256] differently. This should be a rare case so bail out
2234 // rather than trying to handle the difference.
2236 bool IsCos
= IntrinsicID
== Intrinsic::amdgcn_cos
;
2237 double V4
= V
* 4.0;
2238 if (V4
== floor(V4
)) {
2239 // Force exact results for quarter-integer inputs.
2240 const double SinVals
[4] = { 0.0, 1.0, 0.0, -1.0 };
2241 V
= SinVals
[((int)V4
+ (IsCos
? 1 : 0)) & 3];
2244 V
= cos(V
* 2.0 * numbers::pi
);
2246 V
= sin(V
* 2.0 * numbers::pi
);
2248 return GetConstantFoldFPValue(V
, Ty
);
2255 LibFunc Func
= NotLibFunc
;
2256 if (!TLI
->getLibFunc(Name
, Func
))
2264 case LibFunc_acos_finite
:
2265 case LibFunc_acosf_finite
:
2267 return ConstantFoldFP(acos
, APF
, Ty
);
2271 case LibFunc_asin_finite
:
2272 case LibFunc_asinf_finite
:
2274 return ConstantFoldFP(asin
, APF
, Ty
);
2279 return ConstantFoldFP(atan
, APF
, Ty
);
2283 if (TLI
->has(Func
)) {
2284 U
.roundToIntegral(APFloat::rmTowardPositive
);
2285 return ConstantFP::get(Ty
->getContext(), U
);
2291 return ConstantFoldFP(cos
, APF
, Ty
);
2295 case LibFunc_cosh_finite
:
2296 case LibFunc_coshf_finite
:
2298 return ConstantFoldFP(cosh
, APF
, Ty
);
2302 case LibFunc_exp_finite
:
2303 case LibFunc_expf_finite
:
2305 return ConstantFoldFP(exp
, APF
, Ty
);
2309 case LibFunc_exp2_finite
:
2310 case LibFunc_exp2f_finite
:
2312 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2313 return ConstantFoldBinaryFP(pow
, APFloat(2.0), APF
, Ty
);
2317 if (TLI
->has(Func
)) {
2319 return ConstantFP::get(Ty
->getContext(), U
);
2323 case LibFunc_floorf
:
2324 if (TLI
->has(Func
)) {
2325 U
.roundToIntegral(APFloat::rmTowardNegative
);
2326 return ConstantFP::get(Ty
->getContext(), U
);
2331 case LibFunc_log_finite
:
2332 case LibFunc_logf_finite
:
2333 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2334 return ConstantFoldFP(log
, APF
, Ty
);
2338 case LibFunc_log2_finite
:
2339 case LibFunc_log2f_finite
:
2340 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2341 // TODO: What about hosts that lack a C99 library?
2342 return ConstantFoldFP(log2
, APF
, Ty
);
2345 case LibFunc_log10f
:
2346 case LibFunc_log10_finite
:
2347 case LibFunc_log10f_finite
:
2348 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2349 // TODO: What about hosts that lack a C99 library?
2350 return ConstantFoldFP(log10
, APF
, Ty
);
2352 case LibFunc_nearbyint
:
2353 case LibFunc_nearbyintf
:
2356 if (TLI
->has(Func
)) {
2357 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2358 return ConstantFP::get(Ty
->getContext(), U
);
2362 case LibFunc_roundf
:
2363 if (TLI
->has(Func
)) {
2364 U
.roundToIntegral(APFloat::rmNearestTiesToAway
);
2365 return ConstantFP::get(Ty
->getContext(), U
);
2371 return ConstantFoldFP(sin
, APF
, Ty
);
2375 case LibFunc_sinh_finite
:
2376 case LibFunc_sinhf_finite
:
2378 return ConstantFoldFP(sinh
, APF
, Ty
);
2382 if (!APF
.isNegative() && TLI
->has(Func
))
2383 return ConstantFoldFP(sqrt
, APF
, Ty
);
2388 return ConstantFoldFP(tan
, APF
, Ty
);
2393 return ConstantFoldFP(tanh
, APF
, Ty
);
2396 case LibFunc_truncf
:
2397 if (TLI
->has(Func
)) {
2398 U
.roundToIntegral(APFloat::rmTowardZero
);
2399 return ConstantFP::get(Ty
->getContext(), U
);
2406 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
2407 switch (IntrinsicID
) {
2408 case Intrinsic::bswap
:
2409 return ConstantInt::get(Ty
->getContext(), Op
->getValue().byteSwap());
2410 case Intrinsic::ctpop
:
2411 return ConstantInt::get(Ty
, Op
->getValue().popcount());
2412 case Intrinsic::bitreverse
:
2413 return ConstantInt::get(Ty
->getContext(), Op
->getValue().reverseBits());
2414 case Intrinsic::convert_from_fp16
: {
2415 APFloat
Val(APFloat::IEEEhalf(), Op
->getValue());
2418 APFloat::opStatus status
= Val
.convert(
2419 Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &lost
);
2421 // Conversion is always precise.
2423 assert(status
!= APFloat::opInexact
&& !lost
&&
2424 "Precision lost during fp16 constfolding");
2426 return ConstantFP::get(Ty
->getContext(), Val
);
2429 case Intrinsic::amdgcn_s_wqm
: {
2430 uint64_t Val
= Op
->getZExtValue();
2431 Val
|= (Val
& 0x5555555555555555ULL
) << 1 |
2432 ((Val
>> 1) & 0x5555555555555555ULL
);
2433 Val
|= (Val
& 0x3333333333333333ULL
) << 2 |
2434 ((Val
>> 2) & 0x3333333333333333ULL
);
2435 return ConstantInt::get(Ty
, Val
);
2438 case Intrinsic::amdgcn_s_quadmask
: {
2439 uint64_t Val
= Op
->getZExtValue();
2440 uint64_t QuadMask
= 0;
2441 for (unsigned I
= 0; I
< Op
->getBitWidth() / 4; ++I
, Val
>>= 4) {
2445 QuadMask
|= (1ULL << I
);
2447 return ConstantInt::get(Ty
, QuadMask
);
2450 case Intrinsic::amdgcn_s_bitreplicate
: {
2451 uint64_t Val
= Op
->getZExtValue();
2452 Val
= (Val
& 0x000000000000FFFFULL
) | (Val
& 0x00000000FFFF0000ULL
) << 16;
2453 Val
= (Val
& 0x000000FF000000FFULL
) | (Val
& 0x0000FF000000FF00ULL
) << 8;
2454 Val
= (Val
& 0x000F000F000F000FULL
) | (Val
& 0x00F000F000F000F0ULL
) << 4;
2455 Val
= (Val
& 0x0303030303030303ULL
) | (Val
& 0x0C0C0C0C0C0C0C0CULL
) << 2;
2456 Val
= (Val
& 0x1111111111111111ULL
) | (Val
& 0x2222222222222222ULL
) << 1;
2457 Val
= Val
| Val
<< 1;
2458 return ConstantInt::get(Ty
, Val
);
2466 switch (IntrinsicID
) {
2468 case Intrinsic::vector_reduce_add
:
2469 case Intrinsic::vector_reduce_mul
:
2470 case Intrinsic::vector_reduce_and
:
2471 case Intrinsic::vector_reduce_or
:
2472 case Intrinsic::vector_reduce_xor
:
2473 case Intrinsic::vector_reduce_smin
:
2474 case Intrinsic::vector_reduce_smax
:
2475 case Intrinsic::vector_reduce_umin
:
2476 case Intrinsic::vector_reduce_umax
:
2477 if (Constant
*C
= constantFoldVectorReduce(IntrinsicID
, Operands
[0]))
2482 // Support ConstantVector in case we have an Undef in the top.
2483 if (isa
<ConstantVector
>(Operands
[0]) ||
2484 isa
<ConstantDataVector
>(Operands
[0])) {
2485 auto *Op
= cast
<Constant
>(Operands
[0]);
2486 switch (IntrinsicID
) {
2488 case Intrinsic::x86_sse_cvtss2si
:
2489 case Intrinsic::x86_sse_cvtss2si64
:
2490 case Intrinsic::x86_sse2_cvtsd2si
:
2491 case Intrinsic::x86_sse2_cvtsd2si64
:
2492 if (ConstantFP
*FPOp
=
2493 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2494 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2495 /*roundTowardZero=*/false, Ty
,
2498 case Intrinsic::x86_sse_cvttss2si
:
2499 case Intrinsic::x86_sse_cvttss2si64
:
2500 case Intrinsic::x86_sse2_cvttsd2si
:
2501 case Intrinsic::x86_sse2_cvttsd2si64
:
2502 if (ConstantFP
*FPOp
=
2503 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2504 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2505 /*roundTowardZero=*/true, Ty
,
2514 static Constant
*evaluateCompare(const APFloat
&Op1
, const APFloat
&Op2
,
2515 const ConstrainedFPIntrinsic
*Call
) {
2516 APFloat::opStatus St
= APFloat::opOK
;
2517 auto *FCmp
= cast
<ConstrainedFPCmpIntrinsic
>(Call
);
2518 FCmpInst::Predicate Cond
= FCmp
->getPredicate();
2519 if (FCmp
->isSignaling()) {
2520 if (Op1
.isNaN() || Op2
.isNaN())
2521 St
= APFloat::opInvalidOp
;
2523 if (Op1
.isSignaling() || Op2
.isSignaling())
2524 St
= APFloat::opInvalidOp
;
2526 bool Result
= FCmpInst::compare(Op1
, Op2
, Cond
);
2527 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic
*>(FCmp
), St
))
2528 return ConstantInt::get(Call
->getType()->getScalarType(), Result
);
2532 static Constant
*ConstantFoldScalarCall2(StringRef Name
,
2533 Intrinsic::ID IntrinsicID
,
2535 ArrayRef
<Constant
*> Operands
,
2536 const TargetLibraryInfo
*TLI
,
2537 const CallBase
*Call
) {
2538 assert(Operands
.size() == 2 && "Wrong number of operands.");
2540 if (Ty
->isFloatingPointTy()) {
2541 // TODO: We should have undef handling for all of the FP intrinsics that
2542 // are attempted to be folded in this function.
2543 bool IsOp0Undef
= isa
<UndefValue
>(Operands
[0]);
2544 bool IsOp1Undef
= isa
<UndefValue
>(Operands
[1]);
2545 switch (IntrinsicID
) {
2546 case Intrinsic::maxnum
:
2547 case Intrinsic::minnum
:
2548 case Intrinsic::maximum
:
2549 case Intrinsic::minimum
:
2550 // If one argument is undef, return the other argument.
2559 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2560 const APFloat
&Op1V
= Op1
->getValueAPF();
2562 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
2563 if (Op2
->getType() != Op1
->getType())
2565 const APFloat
&Op2V
= Op2
->getValueAPF();
2567 if (const auto *ConstrIntr
= dyn_cast
<ConstrainedFPIntrinsic
>(Call
)) {
2568 RoundingMode RM
= getEvaluationRoundingMode(ConstrIntr
);
2570 APFloat::opStatus St
;
2571 switch (IntrinsicID
) {
2574 case Intrinsic::experimental_constrained_fadd
:
2575 St
= Res
.add(Op2V
, RM
);
2577 case Intrinsic::experimental_constrained_fsub
:
2578 St
= Res
.subtract(Op2V
, RM
);
2580 case Intrinsic::experimental_constrained_fmul
:
2581 St
= Res
.multiply(Op2V
, RM
);
2583 case Intrinsic::experimental_constrained_fdiv
:
2584 St
= Res
.divide(Op2V
, RM
);
2586 case Intrinsic::experimental_constrained_frem
:
2589 case Intrinsic::experimental_constrained_fcmp
:
2590 case Intrinsic::experimental_constrained_fcmps
:
2591 return evaluateCompare(Op1V
, Op2V
, ConstrIntr
);
2593 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic
*>(ConstrIntr
),
2595 return ConstantFP::get(Ty
->getContext(), Res
);
2599 switch (IntrinsicID
) {
2602 case Intrinsic::copysign
:
2603 return ConstantFP::get(Ty
->getContext(), APFloat::copySign(Op1V
, Op2V
));
2604 case Intrinsic::minnum
:
2605 return ConstantFP::get(Ty
->getContext(), minnum(Op1V
, Op2V
));
2606 case Intrinsic::maxnum
:
2607 return ConstantFP::get(Ty
->getContext(), maxnum(Op1V
, Op2V
));
2608 case Intrinsic::minimum
:
2609 return ConstantFP::get(Ty
->getContext(), minimum(Op1V
, Op2V
));
2610 case Intrinsic::maximum
:
2611 return ConstantFP::get(Ty
->getContext(), maximum(Op1V
, Op2V
));
2614 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
2617 switch (IntrinsicID
) {
2620 case Intrinsic::pow
:
2621 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
2622 case Intrinsic::amdgcn_fmul_legacy
:
2623 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2624 // NaN or infinity, gives +0.0.
2625 if (Op1V
.isZero() || Op2V
.isZero())
2626 return ConstantFP::getZero(Ty
);
2627 return ConstantFP::get(Ty
->getContext(), Op1V
* Op2V
);
2633 LibFunc Func
= NotLibFunc
;
2634 if (!TLI
->getLibFunc(Name
, Func
))
2642 case LibFunc_pow_finite
:
2643 case LibFunc_powf_finite
:
2645 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
2649 if (TLI
->has(Func
)) {
2650 APFloat V
= Op1
->getValueAPF();
2651 if (APFloat::opStatus::opOK
== V
.mod(Op2
->getValueAPF()))
2652 return ConstantFP::get(Ty
->getContext(), V
);
2655 case LibFunc_remainder
:
2656 case LibFunc_remainderf
:
2657 if (TLI
->has(Func
)) {
2658 APFloat V
= Op1
->getValueAPF();
2659 if (APFloat::opStatus::opOK
== V
.remainder(Op2
->getValueAPF()))
2660 return ConstantFP::get(Ty
->getContext(), V
);
2664 case LibFunc_atan2f
:
2665 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2666 // (Solaris), so we do not assume a known result for that.
2667 if (Op1V
.isZero() && Op2V
.isZero())
2670 case LibFunc_atan2_finite
:
2671 case LibFunc_atan2f_finite
:
2673 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
);
2676 } else if (auto *Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
2677 switch (IntrinsicID
) {
2678 case Intrinsic::ldexp
: {
2679 return ConstantFP::get(
2681 scalbn(Op1V
, Op2C
->getSExtValue(), APFloat::rmNearestTiesToEven
));
2683 case Intrinsic::is_fpclass
: {
2684 FPClassTest Mask
= static_cast<FPClassTest
>(Op2C
->getZExtValue());
2686 ((Mask
& fcSNan
) && Op1V
.isNaN() && Op1V
.isSignaling()) ||
2687 ((Mask
& fcQNan
) && Op1V
.isNaN() && !Op1V
.isSignaling()) ||
2688 ((Mask
& fcNegInf
) && Op1V
.isNegInfinity()) ||
2689 ((Mask
& fcNegNormal
) && Op1V
.isNormal() && Op1V
.isNegative()) ||
2690 ((Mask
& fcNegSubnormal
) && Op1V
.isDenormal() && Op1V
.isNegative()) ||
2691 ((Mask
& fcNegZero
) && Op1V
.isZero() && Op1V
.isNegative()) ||
2692 ((Mask
& fcPosZero
) && Op1V
.isZero() && !Op1V
.isNegative()) ||
2693 ((Mask
& fcPosSubnormal
) && Op1V
.isDenormal() && !Op1V
.isNegative()) ||
2694 ((Mask
& fcPosNormal
) && Op1V
.isNormal() && !Op1V
.isNegative()) ||
2695 ((Mask
& fcPosInf
) && Op1V
.isPosInfinity());
2696 return ConstantInt::get(Ty
, Result
);
2702 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
2704 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isHalfTy())
2705 return ConstantFP::get(
2707 APFloat((float)std::pow((float)Op1V
.convertToDouble(),
2708 (int)Op2C
->getZExtValue())));
2709 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isFloatTy())
2710 return ConstantFP::get(
2712 APFloat((float)std::pow((float)Op1V
.convertToDouble(),
2713 (int)Op2C
->getZExtValue())));
2714 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isDoubleTy())
2715 return ConstantFP::get(
2717 APFloat((double)std::pow(Op1V
.convertToDouble(),
2718 (int)Op2C
->getZExtValue())));
2723 if (Operands
[0]->getType()->isIntegerTy() &&
2724 Operands
[1]->getType()->isIntegerTy()) {
2725 const APInt
*C0
, *C1
;
2726 if (!getConstIntOrUndef(Operands
[0], C0
) ||
2727 !getConstIntOrUndef(Operands
[1], C1
))
2730 switch (IntrinsicID
) {
2732 case Intrinsic::smax
:
2733 case Intrinsic::smin
:
2734 case Intrinsic::umax
:
2735 case Intrinsic::umin
:
2736 // This is the same as for binary ops - poison propagates.
2737 // TODO: Poison handling should be consolidated.
2738 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
2739 return PoisonValue::get(Ty
);
2742 return UndefValue::get(Ty
);
2744 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID
, Ty
);
2745 return ConstantInt::get(
2746 Ty
, ICmpInst::compare(*C0
, *C1
,
2747 MinMaxIntrinsic::getPredicate(IntrinsicID
))
2751 case Intrinsic::usub_with_overflow
:
2752 case Intrinsic::ssub_with_overflow
:
2753 // X - undef -> { 0, false }
2754 // undef - X -> { 0, false }
2756 return Constant::getNullValue(Ty
);
2758 case Intrinsic::uadd_with_overflow
:
2759 case Intrinsic::sadd_with_overflow
:
2760 // X + undef -> { -1, false }
2761 // undef + x -> { -1, false }
2763 return ConstantStruct::get(
2764 cast
<StructType
>(Ty
),
2765 {Constant::getAllOnesValue(Ty
->getStructElementType(0)),
2766 Constant::getNullValue(Ty
->getStructElementType(1))});
2769 case Intrinsic::smul_with_overflow
:
2770 case Intrinsic::umul_with_overflow
: {
2771 // undef * X -> { 0, false }
2772 // X * undef -> { 0, false }
2774 return Constant::getNullValue(Ty
);
2778 switch (IntrinsicID
) {
2779 default: llvm_unreachable("Invalid case");
2780 case Intrinsic::sadd_with_overflow
:
2781 Res
= C0
->sadd_ov(*C1
, Overflow
);
2783 case Intrinsic::uadd_with_overflow
:
2784 Res
= C0
->uadd_ov(*C1
, Overflow
);
2786 case Intrinsic::ssub_with_overflow
:
2787 Res
= C0
->ssub_ov(*C1
, Overflow
);
2789 case Intrinsic::usub_with_overflow
:
2790 Res
= C0
->usub_ov(*C1
, Overflow
);
2792 case Intrinsic::smul_with_overflow
:
2793 Res
= C0
->smul_ov(*C1
, Overflow
);
2795 case Intrinsic::umul_with_overflow
:
2796 Res
= C0
->umul_ov(*C1
, Overflow
);
2800 ConstantInt::get(Ty
->getContext(), Res
),
2801 ConstantInt::get(Type::getInt1Ty(Ty
->getContext()), Overflow
)
2803 return ConstantStruct::get(cast
<StructType
>(Ty
), Ops
);
2805 case Intrinsic::uadd_sat
:
2806 case Intrinsic::sadd_sat
:
2807 // This is the same as for binary ops - poison propagates.
2808 // TODO: Poison handling should be consolidated.
2809 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
2810 return PoisonValue::get(Ty
);
2813 return UndefValue::get(Ty
);
2815 return Constant::getAllOnesValue(Ty
);
2816 if (IntrinsicID
== Intrinsic::uadd_sat
)
2817 return ConstantInt::get(Ty
, C0
->uadd_sat(*C1
));
2819 return ConstantInt::get(Ty
, C0
->sadd_sat(*C1
));
2820 case Intrinsic::usub_sat
:
2821 case Intrinsic::ssub_sat
:
2822 // This is the same as for binary ops - poison propagates.
2823 // TODO: Poison handling should be consolidated.
2824 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
2825 return PoisonValue::get(Ty
);
2828 return UndefValue::get(Ty
);
2830 return Constant::getNullValue(Ty
);
2831 if (IntrinsicID
== Intrinsic::usub_sat
)
2832 return ConstantInt::get(Ty
, C0
->usub_sat(*C1
));
2834 return ConstantInt::get(Ty
, C0
->ssub_sat(*C1
));
2835 case Intrinsic::cttz
:
2836 case Intrinsic::ctlz
:
2837 assert(C1
&& "Must be constant int");
2839 // cttz(0, 1) and ctlz(0, 1) are poison.
2840 if (C1
->isOne() && (!C0
|| C0
->isZero()))
2841 return PoisonValue::get(Ty
);
2843 return Constant::getNullValue(Ty
);
2844 if (IntrinsicID
== Intrinsic::cttz
)
2845 return ConstantInt::get(Ty
, C0
->countr_zero());
2847 return ConstantInt::get(Ty
, C0
->countl_zero());
2849 case Intrinsic::abs
:
2850 assert(C1
&& "Must be constant int");
2851 assert((C1
->isOne() || C1
->isZero()) && "Must be 0 or 1");
2853 // Undef or minimum val operand with poison min --> undef
2854 if (C1
->isOne() && (!C0
|| C0
->isMinSignedValue()))
2855 return UndefValue::get(Ty
);
2857 // Undef operand with no poison min --> 0 (sign bit must be clear)
2859 return Constant::getNullValue(Ty
);
2861 return ConstantInt::get(Ty
, C0
->abs());
2862 case Intrinsic::amdgcn_wave_reduce_umin
:
2863 case Intrinsic::amdgcn_wave_reduce_umax
:
2864 return dyn_cast
<Constant
>(Operands
[0]);
2870 // Support ConstantVector in case we have an Undef in the top.
2871 if ((isa
<ConstantVector
>(Operands
[0]) ||
2872 isa
<ConstantDataVector
>(Operands
[0])) &&
2873 // Check for default rounding mode.
2874 // FIXME: Support other rounding modes?
2875 isa
<ConstantInt
>(Operands
[1]) &&
2876 cast
<ConstantInt
>(Operands
[1])->getValue() == 4) {
2877 auto *Op
= cast
<Constant
>(Operands
[0]);
2878 switch (IntrinsicID
) {
2880 case Intrinsic::x86_avx512_vcvtss2si32
:
2881 case Intrinsic::x86_avx512_vcvtss2si64
:
2882 case Intrinsic::x86_avx512_vcvtsd2si32
:
2883 case Intrinsic::x86_avx512_vcvtsd2si64
:
2884 if (ConstantFP
*FPOp
=
2885 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2886 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2887 /*roundTowardZero=*/false, Ty
,
2890 case Intrinsic::x86_avx512_vcvtss2usi32
:
2891 case Intrinsic::x86_avx512_vcvtss2usi64
:
2892 case Intrinsic::x86_avx512_vcvtsd2usi32
:
2893 case Intrinsic::x86_avx512_vcvtsd2usi64
:
2894 if (ConstantFP
*FPOp
=
2895 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2896 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2897 /*roundTowardZero=*/false, Ty
,
2900 case Intrinsic::x86_avx512_cvttss2si
:
2901 case Intrinsic::x86_avx512_cvttss2si64
:
2902 case Intrinsic::x86_avx512_cvttsd2si
:
2903 case Intrinsic::x86_avx512_cvttsd2si64
:
2904 if (ConstantFP
*FPOp
=
2905 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2906 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2907 /*roundTowardZero=*/true, Ty
,
2910 case Intrinsic::x86_avx512_cvttss2usi
:
2911 case Intrinsic::x86_avx512_cvttss2usi64
:
2912 case Intrinsic::x86_avx512_cvttsd2usi
:
2913 case Intrinsic::x86_avx512_cvttsd2usi64
:
2914 if (ConstantFP
*FPOp
=
2915 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2916 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2917 /*roundTowardZero=*/true, Ty
,
2925 static APFloat
ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID
,
2928 const APFloat
&S2
) {
2930 const fltSemantics
&Sem
= S0
.getSemantics();
2931 APFloat
MA(Sem
), SC(Sem
), TC(Sem
);
2932 if (abs(S2
) >= abs(S0
) && abs(S2
) >= abs(S1
)) {
2933 if (S2
.isNegative() && S2
.isNonZero() && !S2
.isNaN()) {
2943 } else if (abs(S1
) >= abs(S0
)) {
2944 if (S1
.isNegative() && S1
.isNonZero() && !S1
.isNaN()) {
2955 if (S0
.isNegative() && S0
.isNonZero() && !S0
.isNaN()) {
2966 switch (IntrinsicID
) {
2968 llvm_unreachable("unhandled amdgcn cube intrinsic");
2969 case Intrinsic::amdgcn_cubeid
:
2970 return APFloat(Sem
, ID
);
2971 case Intrinsic::amdgcn_cubema
:
2973 case Intrinsic::amdgcn_cubesc
:
2975 case Intrinsic::amdgcn_cubetc
:
2980 static Constant
*ConstantFoldAMDGCNPermIntrinsic(ArrayRef
<Constant
*> Operands
,
2982 const APInt
*C0
, *C1
, *C2
;
2983 if (!getConstIntOrUndef(Operands
[0], C0
) ||
2984 !getConstIntOrUndef(Operands
[1], C1
) ||
2985 !getConstIntOrUndef(Operands
[2], C2
))
2989 return UndefValue::get(Ty
);
2992 unsigned NumUndefBytes
= 0;
2993 for (unsigned I
= 0; I
< 32; I
+= 8) {
2994 unsigned Sel
= C2
->extractBitsAsZExtValue(8, I
);
3002 const APInt
*Src
= ((Sel
& 10) == 10 || (Sel
& 12) == 4) ? C0
: C1
;
3006 B
= Src
->extractBitsAsZExtValue(8, (Sel
& 3) * 8);
3008 B
= Src
->extractBitsAsZExtValue(1, (Sel
& 1) ? 31 : 15) * 0xff;
3011 Val
.insertBits(B
, I
, 8);
3014 if (NumUndefBytes
== 4)
3015 return UndefValue::get(Ty
);
3017 return ConstantInt::get(Ty
, Val
);
3020 static Constant
*ConstantFoldScalarCall3(StringRef Name
,
3021 Intrinsic::ID IntrinsicID
,
3023 ArrayRef
<Constant
*> Operands
,
3024 const TargetLibraryInfo
*TLI
,
3025 const CallBase
*Call
) {
3026 assert(Operands
.size() == 3 && "Wrong number of operands.");
3028 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
3029 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
3030 if (const auto *Op3
= dyn_cast
<ConstantFP
>(Operands
[2])) {
3031 const APFloat
&C1
= Op1
->getValueAPF();
3032 const APFloat
&C2
= Op2
->getValueAPF();
3033 const APFloat
&C3
= Op3
->getValueAPF();
3035 if (const auto *ConstrIntr
= dyn_cast
<ConstrainedFPIntrinsic
>(Call
)) {
3036 RoundingMode RM
= getEvaluationRoundingMode(ConstrIntr
);
3038 APFloat::opStatus St
;
3039 switch (IntrinsicID
) {
3042 case Intrinsic::experimental_constrained_fma
:
3043 case Intrinsic::experimental_constrained_fmuladd
:
3044 St
= Res
.fusedMultiplyAdd(C2
, C3
, RM
);
3047 if (mayFoldConstrained(
3048 const_cast<ConstrainedFPIntrinsic
*>(ConstrIntr
), St
))
3049 return ConstantFP::get(Ty
->getContext(), Res
);
3053 switch (IntrinsicID
) {
3055 case Intrinsic::amdgcn_fma_legacy
: {
3056 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3057 // NaN or infinity, gives +0.0.
3058 if (C1
.isZero() || C2
.isZero()) {
3059 // It's tempting to just return C3 here, but that would give the
3060 // wrong result if C3 was -0.0.
3061 return ConstantFP::get(Ty
->getContext(), APFloat(0.0f
) + C3
);
3065 case Intrinsic::fma
:
3066 case Intrinsic::fmuladd
: {
3068 V
.fusedMultiplyAdd(C2
, C3
, APFloat::rmNearestTiesToEven
);
3069 return ConstantFP::get(Ty
->getContext(), V
);
3071 case Intrinsic::amdgcn_cubeid
:
3072 case Intrinsic::amdgcn_cubema
:
3073 case Intrinsic::amdgcn_cubesc
:
3074 case Intrinsic::amdgcn_cubetc
: {
3075 APFloat V
= ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID
, C1
, C2
, C3
);
3076 return ConstantFP::get(Ty
->getContext(), V
);
3083 if (IntrinsicID
== Intrinsic::smul_fix
||
3084 IntrinsicID
== Intrinsic::smul_fix_sat
) {
3085 // poison * C -> poison
3086 // C * poison -> poison
3087 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
3088 return PoisonValue::get(Ty
);
3090 const APInt
*C0
, *C1
;
3091 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3092 !getConstIntOrUndef(Operands
[1], C1
))
3098 return Constant::getNullValue(Ty
);
3100 // This code performs rounding towards negative infinity in case the result
3101 // cannot be represented exactly for the given scale. Targets that do care
3102 // about rounding should use a target hook for specifying how rounding
3103 // should be done, and provide their own folding to be consistent with
3104 // rounding. This is the same approach as used by
3105 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3106 unsigned Scale
= cast
<ConstantInt
>(Operands
[2])->getZExtValue();
3107 unsigned Width
= C0
->getBitWidth();
3108 assert(Scale
< Width
&& "Illegal scale.");
3109 unsigned ExtendedWidth
= Width
* 2;
3111 (C0
->sext(ExtendedWidth
) * C1
->sext(ExtendedWidth
)).ashr(Scale
);
3112 if (IntrinsicID
== Intrinsic::smul_fix_sat
) {
3113 APInt Max
= APInt::getSignedMaxValue(Width
).sext(ExtendedWidth
);
3114 APInt Min
= APInt::getSignedMinValue(Width
).sext(ExtendedWidth
);
3115 Product
= APIntOps::smin(Product
, Max
);
3116 Product
= APIntOps::smax(Product
, Min
);
3118 return ConstantInt::get(Ty
->getContext(), Product
.sextOrTrunc(Width
));
3121 if (IntrinsicID
== Intrinsic::fshl
|| IntrinsicID
== Intrinsic::fshr
) {
3122 const APInt
*C0
, *C1
, *C2
;
3123 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3124 !getConstIntOrUndef(Operands
[1], C1
) ||
3125 !getConstIntOrUndef(Operands
[2], C2
))
3128 bool IsRight
= IntrinsicID
== Intrinsic::fshr
;
3130 return Operands
[IsRight
? 1 : 0];
3132 return UndefValue::get(Ty
);
3134 // The shift amount is interpreted as modulo the bitwidth. If the shift
3135 // amount is effectively 0, avoid UB due to oversized inverse shift below.
3136 unsigned BitWidth
= C2
->getBitWidth();
3137 unsigned ShAmt
= C2
->urem(BitWidth
);
3139 return Operands
[IsRight
? 1 : 0];
3141 // (C0 << ShlAmt) | (C1 >> LshrAmt)
3142 unsigned LshrAmt
= IsRight
? ShAmt
: BitWidth
- ShAmt
;
3143 unsigned ShlAmt
= !IsRight
? ShAmt
: BitWidth
- ShAmt
;
3145 return ConstantInt::get(Ty
, C1
->lshr(LshrAmt
));
3147 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
));
3148 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
) | C1
->lshr(LshrAmt
));
3151 if (IntrinsicID
== Intrinsic::amdgcn_perm
)
3152 return ConstantFoldAMDGCNPermIntrinsic(Operands
, Ty
);
3157 static Constant
*ConstantFoldScalarCall(StringRef Name
,
3158 Intrinsic::ID IntrinsicID
,
3160 ArrayRef
<Constant
*> Operands
,
3161 const TargetLibraryInfo
*TLI
,
3162 const CallBase
*Call
) {
3163 if (Operands
.size() == 1)
3164 return ConstantFoldScalarCall1(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
3166 if (Operands
.size() == 2)
3167 return ConstantFoldScalarCall2(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
3169 if (Operands
.size() == 3)
3170 return ConstantFoldScalarCall3(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
3175 static Constant
*ConstantFoldFixedVectorCall(
3176 StringRef Name
, Intrinsic::ID IntrinsicID
, FixedVectorType
*FVTy
,
3177 ArrayRef
<Constant
*> Operands
, const DataLayout
&DL
,
3178 const TargetLibraryInfo
*TLI
, const CallBase
*Call
) {
3179 SmallVector
<Constant
*, 4> Result(FVTy
->getNumElements());
3180 SmallVector
<Constant
*, 4> Lane(Operands
.size());
3181 Type
*Ty
= FVTy
->getElementType();
3183 switch (IntrinsicID
) {
3184 case Intrinsic::masked_load
: {
3185 auto *SrcPtr
= Operands
[0];
3186 auto *Mask
= Operands
[2];
3187 auto *Passthru
= Operands
[3];
3189 Constant
*VecData
= ConstantFoldLoadFromConstPtr(SrcPtr
, FVTy
, DL
);
3191 SmallVector
<Constant
*, 32> NewElements
;
3192 for (unsigned I
= 0, E
= FVTy
->getNumElements(); I
!= E
; ++I
) {
3193 auto *MaskElt
= Mask
->getAggregateElement(I
);
3196 auto *PassthruElt
= Passthru
->getAggregateElement(I
);
3197 auto *VecElt
= VecData
? VecData
->getAggregateElement(I
) : nullptr;
3198 if (isa
<UndefValue
>(MaskElt
)) {
3200 NewElements
.push_back(PassthruElt
);
3202 NewElements
.push_back(VecElt
);
3206 if (MaskElt
->isNullValue()) {
3209 NewElements
.push_back(PassthruElt
);
3210 } else if (MaskElt
->isOneValue()) {
3213 NewElements
.push_back(VecElt
);
3218 if (NewElements
.size() != FVTy
->getNumElements())
3220 return ConstantVector::get(NewElements
);
3222 case Intrinsic::arm_mve_vctp8
:
3223 case Intrinsic::arm_mve_vctp16
:
3224 case Intrinsic::arm_mve_vctp32
:
3225 case Intrinsic::arm_mve_vctp64
: {
3226 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
3227 unsigned Lanes
= FVTy
->getNumElements();
3228 uint64_t Limit
= Op
->getZExtValue();
3230 SmallVector
<Constant
*, 16> NCs
;
3231 for (unsigned i
= 0; i
< Lanes
; i
++) {
3233 NCs
.push_back(ConstantInt::getTrue(Ty
));
3235 NCs
.push_back(ConstantInt::getFalse(Ty
));
3237 return ConstantVector::get(NCs
);
3241 case Intrinsic::get_active_lane_mask
: {
3242 auto *Op0
= dyn_cast
<ConstantInt
>(Operands
[0]);
3243 auto *Op1
= dyn_cast
<ConstantInt
>(Operands
[1]);
3245 unsigned Lanes
= FVTy
->getNumElements();
3246 uint64_t Base
= Op0
->getZExtValue();
3247 uint64_t Limit
= Op1
->getZExtValue();
3249 SmallVector
<Constant
*, 16> NCs
;
3250 for (unsigned i
= 0; i
< Lanes
; i
++) {
3251 if (Base
+ i
< Limit
)
3252 NCs
.push_back(ConstantInt::getTrue(Ty
));
3254 NCs
.push_back(ConstantInt::getFalse(Ty
));
3256 return ConstantVector::get(NCs
);
3264 for (unsigned I
= 0, E
= FVTy
->getNumElements(); I
!= E
; ++I
) {
3265 // Gather a column of constants.
3266 for (unsigned J
= 0, JE
= Operands
.size(); J
!= JE
; ++J
) {
3267 // Some intrinsics use a scalar type for certain arguments.
3268 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID
, J
)) {
3269 Lane
[J
] = Operands
[J
];
3273 Constant
*Agg
= Operands
[J
]->getAggregateElement(I
);
3280 // Use the regular scalar folding to simplify this column.
3282 ConstantFoldScalarCall(Name
, IntrinsicID
, Ty
, Lane
, TLI
, Call
);
3288 return ConstantVector::get(Result
);
3291 static Constant
*ConstantFoldScalableVectorCall(
3292 StringRef Name
, Intrinsic::ID IntrinsicID
, ScalableVectorType
*SVTy
,
3293 ArrayRef
<Constant
*> Operands
, const DataLayout
&DL
,
3294 const TargetLibraryInfo
*TLI
, const CallBase
*Call
) {
3295 switch (IntrinsicID
) {
3296 case Intrinsic::aarch64_sve_convert_from_svbool
: {
3297 auto *Src
= dyn_cast
<Constant
>(Operands
[0]);
3298 if (!Src
|| !Src
->isNullValue())
3301 return ConstantInt::getFalse(SVTy
);
3309 static std::pair
<Constant
*, Constant
*>
3310 ConstantFoldScalarFrexpCall(Constant
*Op
, Type
*IntTy
) {
3311 if (isa
<PoisonValue
>(Op
))
3312 return {Op
, PoisonValue::get(IntTy
)};
3314 auto *ConstFP
= dyn_cast
<ConstantFP
>(Op
);
3318 const APFloat
&U
= ConstFP
->getValueAPF();
3320 APFloat FrexpMant
= frexp(U
, FrexpExp
, APFloat::rmNearestTiesToEven
);
3321 Constant
*Result0
= ConstantFP::get(ConstFP
->getType(), FrexpMant
);
3323 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3325 Constant
*Result1
= FrexpMant
.isFinite() ? ConstantInt::get(IntTy
, FrexpExp
)
3326 : ConstantInt::getNullValue(IntTy
);
3327 return {Result0
, Result1
};
3330 /// Handle intrinsics that return tuples, which may be tuples of vectors.
3332 ConstantFoldStructCall(StringRef Name
, Intrinsic::ID IntrinsicID
,
3333 StructType
*StTy
, ArrayRef
<Constant
*> Operands
,
3334 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
,
3335 const CallBase
*Call
) {
3337 switch (IntrinsicID
) {
3338 case Intrinsic::frexp
: {
3339 Type
*Ty0
= StTy
->getContainedType(0);
3340 Type
*Ty1
= StTy
->getContainedType(1)->getScalarType();
3342 if (auto *FVTy0
= dyn_cast
<FixedVectorType
>(Ty0
)) {
3343 SmallVector
<Constant
*, 4> Results0(FVTy0
->getNumElements());
3344 SmallVector
<Constant
*, 4> Results1(FVTy0
->getNumElements());
3346 for (unsigned I
= 0, E
= FVTy0
->getNumElements(); I
!= E
; ++I
) {
3347 Constant
*Lane
= Operands
[0]->getAggregateElement(I
);
3348 std::tie(Results0
[I
], Results1
[I
]) =
3349 ConstantFoldScalarFrexpCall(Lane
, Ty1
);
3354 return ConstantStruct::get(StTy
, ConstantVector::get(Results0
),
3355 ConstantVector::get(Results1
));
3358 auto [Result0
, Result1
] = ConstantFoldScalarFrexpCall(Operands
[0], Ty1
);
3361 return ConstantStruct::get(StTy
, Result0
, Result1
);
3364 // TODO: Constant folding of vector intrinsics that fall through here does
3365 // not work (e.g. overflow intrinsics)
3366 return ConstantFoldScalarCall(Name
, IntrinsicID
, StTy
, Operands
, TLI
, Call
);
3372 } // end anonymous namespace
3374 Constant
*llvm::ConstantFoldCall(const CallBase
*Call
, Function
*F
,
3375 ArrayRef
<Constant
*> Operands
,
3376 const TargetLibraryInfo
*TLI
) {
3377 if (Call
->isNoBuiltin())
3382 // If this is not an intrinsic and not recognized as a library call, bail out.
3383 Intrinsic::ID IID
= F
->getIntrinsicID();
3384 if (IID
== Intrinsic::not_intrinsic
) {
3388 if (!TLI
->getLibFunc(*F
, LibF
))
3392 StringRef Name
= F
->getName();
3393 Type
*Ty
= F
->getReturnType();
3394 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Ty
))
3395 return ConstantFoldFixedVectorCall(
3396 Name
, IID
, FVTy
, Operands
, F
->getParent()->getDataLayout(), TLI
, Call
);
3398 if (auto *SVTy
= dyn_cast
<ScalableVectorType
>(Ty
))
3399 return ConstantFoldScalableVectorCall(
3400 Name
, IID
, SVTy
, Operands
, F
->getParent()->getDataLayout(), TLI
, Call
);
3402 if (auto *StTy
= dyn_cast
<StructType
>(Ty
))
3403 return ConstantFoldStructCall(Name
, IID
, StTy
, Operands
,
3404 F
->getParent()->getDataLayout(), TLI
, Call
);
3406 // TODO: If this is a library function, we already discovered that above,
3407 // so we should pass the LibFunc, not the name (and it might be better
3408 // still to separate intrinsic handling from libcalls).
3409 return ConstantFoldScalarCall(Name
, IID
, Ty
, Operands
, TLI
, Call
);
3412 bool llvm::isMathLibCallNoop(const CallBase
*Call
,
3413 const TargetLibraryInfo
*TLI
) {
3414 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3415 // (and to some extent ConstantFoldScalarCall).
3416 if (Call
->isNoBuiltin() || Call
->isStrictFP())
3418 Function
*F
= Call
->getCalledFunction();
3423 if (!TLI
|| !TLI
->getLibFunc(*F
, Func
))
3426 if (Call
->arg_size() == 1) {
3427 if (ConstantFP
*OpC
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0))) {
3428 const APFloat
&Op
= OpC
->getValueAPF();
3436 case LibFunc_log10l
:
3438 case LibFunc_log10f
:
3439 return Op
.isNaN() || (!Op
.isZero() && !Op
.isNegative());
3444 // FIXME: These boundaries are slightly conservative.
3445 if (OpC
->getType()->isDoubleTy())
3446 return !(Op
< APFloat(-745.0) || Op
> APFloat(709.0));
3447 if (OpC
->getType()->isFloatTy())
3448 return !(Op
< APFloat(-103.0f
) || Op
> APFloat(88.0f
));
3454 // FIXME: These boundaries are slightly conservative.
3455 if (OpC
->getType()->isDoubleTy())
3456 return !(Op
< APFloat(-1074.0) || Op
> APFloat(1023.0));
3457 if (OpC
->getType()->isFloatTy())
3458 return !(Op
< APFloat(-149.0f
) || Op
> APFloat(127.0f
));
3467 return !Op
.isInfinity();
3471 case LibFunc_tanf
: {
3472 // FIXME: Stop using the host math library.
3473 // FIXME: The computation isn't done in the right precision.
3474 Type
*Ty
= OpC
->getType();
3475 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy())
3476 return ConstantFoldFP(tan
, OpC
->getValueAPF(), Ty
) != nullptr;
3483 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3493 return !(Op
< APFloat(Op
.getSemantics(), "-1") ||
3494 Op
> APFloat(Op
.getSemantics(), "1"));
3502 // FIXME: These boundaries are slightly conservative.
3503 if (OpC
->getType()->isDoubleTy())
3504 return !(Op
< APFloat(-710.0) || Op
> APFloat(710.0));
3505 if (OpC
->getType()->isFloatTy())
3506 return !(Op
< APFloat(-89.0f
) || Op
> APFloat(89.0f
));
3512 return Op
.isNaN() || Op
.isZero() || !Op
.isNegative();
3514 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3522 if (Call
->arg_size() == 2) {
3523 ConstantFP
*Op0C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0));
3524 ConstantFP
*Op1C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(1));
3526 const APFloat
&Op0
= Op0C
->getValueAPF();
3527 const APFloat
&Op1
= Op1C
->getValueAPF();
3532 case LibFunc_powf
: {
3533 // FIXME: Stop using the host math library.
3534 // FIXME: The computation isn't done in the right precision.
3535 Type
*Ty
= Op0C
->getType();
3536 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
3537 if (Ty
== Op1C
->getType())
3538 return ConstantFoldBinaryFP(pow
, Op0
, Op1
, Ty
) != nullptr;
3546 case LibFunc_remainderl
:
3547 case LibFunc_remainder
:
3548 case LibFunc_remainderf
:
3549 return Op0
.isNaN() || Op1
.isNaN() ||
3550 (!Op0
.isInfinity() && !Op1
.isZero());
3553 case LibFunc_atan2f
:
3554 case LibFunc_atan2l
:
3555 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3556 // GLIBC and MSVC do not appear to raise an error on those, we
3557 // cannot rely on that behavior. POSIX and C11 say that a domain error
3558 // may occur, so allow for that possibility.
3559 return !Op0
.isZero() || !Op1
.isZero();
3570 void TargetFolder::anchor() {}