[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Analysis / LazyCallGraph.cpp
blob473ae75b5d251ef015911ce8719ee27938be62c3
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
32 #ifdef EXPENSIVE_CHECKS
33 #include "llvm/ADT/ScopeExit.h"
34 #endif
36 using namespace llvm;
38 #define DEBUG_TYPE "lcg"
40 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
41 Edge::Kind EK) {
42 EdgeIndexMap.try_emplace(&TargetN, Edges.size());
43 Edges.emplace_back(TargetN, EK);
46 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
47 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
50 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
51 auto IndexMapI = EdgeIndexMap.find(&TargetN);
52 if (IndexMapI == EdgeIndexMap.end())
53 return false;
55 Edges[IndexMapI->second] = Edge();
56 EdgeIndexMap.erase(IndexMapI);
57 return true;
60 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
61 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
62 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
63 if (!EdgeIndexMap.try_emplace(&N, Edges.size()).second)
64 return;
66 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
67 Edges.emplace_back(LazyCallGraph::Edge(N, EK));
70 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
71 assert(!Edges && "Must not have already populated the edges for this node!");
73 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
74 << "' to the graph.\n");
76 Edges = EdgeSequence();
78 SmallVector<Constant *, 16> Worklist;
79 SmallPtrSet<Function *, 4> Callees;
80 SmallPtrSet<Constant *, 16> Visited;
82 // Find all the potential call graph edges in this function. We track both
83 // actual call edges and indirect references to functions. The direct calls
84 // are trivially added, but to accumulate the latter we walk the instructions
85 // and add every operand which is a constant to the worklist to process
86 // afterward.
88 // Note that we consider *any* function with a definition to be a viable
89 // edge. Even if the function's definition is subject to replacement by
90 // some other module (say, a weak definition) there may still be
91 // optimizations which essentially speculate based on the definition and
92 // a way to check that the specific definition is in fact the one being
93 // used. For example, this could be done by moving the weak definition to
94 // a strong (internal) definition and making the weak definition be an
95 // alias. Then a test of the address of the weak function against the new
96 // strong definition's address would be an effective way to determine the
97 // safety of optimizing a direct call edge.
98 for (BasicBlock &BB : *F)
99 for (Instruction &I : BB) {
100 if (auto *CB = dyn_cast<CallBase>(&I))
101 if (Function *Callee = CB->getCalledFunction())
102 if (!Callee->isDeclaration())
103 if (Callees.insert(Callee).second) {
104 Visited.insert(Callee);
105 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
106 LazyCallGraph::Edge::Call);
109 for (Value *Op : I.operand_values())
110 if (Constant *C = dyn_cast<Constant>(Op))
111 if (Visited.insert(C).second)
112 Worklist.push_back(C);
115 // We've collected all the constant (and thus potentially function or
116 // function containing) operands to all the instructions in the function.
117 // Process them (recursively) collecting every function found.
118 visitReferences(Worklist, Visited, [&](Function &F) {
119 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
120 LazyCallGraph::Edge::Ref);
123 // Add implicit reference edges to any defined libcall functions (if we
124 // haven't found an explicit edge).
125 for (auto *F : G->LibFunctions)
126 if (!Visited.count(F))
127 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
128 LazyCallGraph::Edge::Ref);
130 return *Edges;
133 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
134 assert(F != &NewF && "Must not replace a function with itself!");
135 F = &NewF;
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
140 dbgs() << *this << '\n';
142 #endif
144 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
145 LibFunc LF;
147 // Either this is a normal library function or a "vectorizable"
148 // function. Not using the VFDatabase here because this query
149 // is related only to libraries handled via the TLI.
150 return TLI.getLibFunc(F, LF) ||
151 TLI.isKnownVectorFunctionInLibrary(F.getName());
154 LazyCallGraph::LazyCallGraph(
155 Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
156 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
157 << "\n");
158 for (Function &F : M) {
159 if (F.isDeclaration())
160 continue;
161 // If this function is a known lib function to LLVM then we want to
162 // synthesize reference edges to it to model the fact that LLVM can turn
163 // arbitrary code into a library function call.
164 if (isKnownLibFunction(F, GetTLI(F)))
165 LibFunctions.insert(&F);
167 if (F.hasLocalLinkage())
168 continue;
170 // External linkage defined functions have edges to them from other
171 // modules.
172 LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
173 << "' to entry set of the graph.\n");
174 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
177 // Externally visible aliases of internal functions are also viable entry
178 // edges to the module.
179 for (auto &A : M.aliases()) {
180 if (A.hasLocalLinkage())
181 continue;
182 if (Function* F = dyn_cast<Function>(A.getAliasee())) {
183 LLVM_DEBUG(dbgs() << " Adding '" << F->getName()
184 << "' with alias '" << A.getName()
185 << "' to entry set of the graph.\n");
186 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
190 // Now add entry nodes for functions reachable via initializers to globals.
191 SmallVector<Constant *, 16> Worklist;
192 SmallPtrSet<Constant *, 16> Visited;
193 for (GlobalVariable &GV : M.globals())
194 if (GV.hasInitializer())
195 if (Visited.insert(GV.getInitializer()).second)
196 Worklist.push_back(GV.getInitializer());
198 LLVM_DEBUG(
199 dbgs() << " Adding functions referenced by global initializers to the "
200 "entry set.\n");
201 visitReferences(Worklist, Visited, [&](Function &F) {
202 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
203 LazyCallGraph::Edge::Ref);
207 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
208 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
209 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
210 SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) {
211 updateGraphPtrs();
214 bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA,
215 ModuleAnalysisManager::Invalidator &) {
216 // Check whether the analysis, all analyses on functions, or the function's
217 // CFG have been preserved.
218 auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>();
219 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
222 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
223 BPA = std::move(G.BPA);
224 NodeMap = std::move(G.NodeMap);
225 EntryEdges = std::move(G.EntryEdges);
226 SCCBPA = std::move(G.SCCBPA);
227 SCCMap = std::move(G.SCCMap);
228 LibFunctions = std::move(G.LibFunctions);
229 updateGraphPtrs();
230 return *this;
233 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
234 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
235 dbgs() << *this << '\n';
237 #endif
239 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
240 void LazyCallGraph::SCC::verify() {
241 assert(OuterRefSCC && "Can't have a null RefSCC!");
242 assert(!Nodes.empty() && "Can't have an empty SCC!");
244 for (Node *N : Nodes) {
245 assert(N && "Can't have a null node!");
246 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
247 "Node does not map to this SCC!");
248 assert(N->DFSNumber == -1 &&
249 "Must set DFS numbers to -1 when adding a node to an SCC!");
250 assert(N->LowLink == -1 &&
251 "Must set low link to -1 when adding a node to an SCC!");
252 for (Edge &E : **N)
253 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
255 #ifdef EXPENSIVE_CHECKS
256 // Verify that all nodes in this SCC can reach all other nodes.
257 SmallVector<Node *, 4> Worklist;
258 SmallPtrSet<Node *, 4> Visited;
259 Worklist.push_back(N);
260 while (!Worklist.empty()) {
261 Node *VisitingNode = Worklist.pop_back_val();
262 if (!Visited.insert(VisitingNode).second)
263 continue;
264 for (Edge &E : (*VisitingNode)->calls())
265 Worklist.push_back(&E.getNode());
267 for (Node *NodeToVisit : Nodes) {
268 assert(Visited.contains(NodeToVisit) &&
269 "Cannot reach all nodes within SCC");
271 #endif
274 #endif
276 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
277 if (this == &C)
278 return false;
280 for (Node &N : *this)
281 for (Edge &E : N->calls())
282 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
283 return true;
285 // No edges found.
286 return false;
289 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
290 if (this == &TargetC)
291 return false;
293 LazyCallGraph &G = *OuterRefSCC->G;
295 // Start with this SCC.
296 SmallPtrSet<const SCC *, 16> Visited = {this};
297 SmallVector<const SCC *, 16> Worklist = {this};
299 // Walk down the graph until we run out of edges or find a path to TargetC.
300 do {
301 const SCC &C = *Worklist.pop_back_val();
302 for (Node &N : C)
303 for (Edge &E : N->calls()) {
304 SCC *CalleeC = G.lookupSCC(E.getNode());
305 if (!CalleeC)
306 continue;
308 // If the callee's SCC is the TargetC, we're done.
309 if (CalleeC == &TargetC)
310 return true;
312 // If this is the first time we've reached this SCC, put it on the
313 // worklist to recurse through.
314 if (Visited.insert(CalleeC).second)
315 Worklist.push_back(CalleeC);
317 } while (!Worklist.empty());
319 // No paths found.
320 return false;
323 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
326 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
327 dbgs() << *this << '\n';
329 #endif
331 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
332 void LazyCallGraph::RefSCC::verify() {
333 assert(G && "Can't have a null graph!");
334 assert(!SCCs.empty() && "Can't have an empty SCC!");
336 // Verify basic properties of the SCCs.
337 SmallPtrSet<SCC *, 4> SCCSet;
338 for (SCC *C : SCCs) {
339 assert(C && "Can't have a null SCC!");
340 C->verify();
341 assert(&C->getOuterRefSCC() == this &&
342 "SCC doesn't think it is inside this RefSCC!");
343 bool Inserted = SCCSet.insert(C).second;
344 assert(Inserted && "Found a duplicate SCC!");
345 auto IndexIt = SCCIndices.find(C);
346 assert(IndexIt != SCCIndices.end() &&
347 "Found an SCC that doesn't have an index!");
350 // Check that our indices map correctly.
351 for (auto [C, I] : SCCIndices) {
352 assert(C && "Can't have a null SCC in the indices!");
353 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
354 assert(SCCs[I] == C && "Index doesn't point to SCC!");
357 // Check that the SCCs are in fact in post-order.
358 for (int I = 0, Size = SCCs.size(); I < Size; ++I) {
359 SCC &SourceSCC = *SCCs[I];
360 for (Node &N : SourceSCC)
361 for (Edge &E : *N) {
362 if (!E.isCall())
363 continue;
364 SCC &TargetSCC = *G->lookupSCC(E.getNode());
365 if (&TargetSCC.getOuterRefSCC() == this) {
366 assert(SCCIndices.find(&TargetSCC)->second <= I &&
367 "Edge between SCCs violates post-order relationship.");
368 continue;
373 #ifdef EXPENSIVE_CHECKS
374 // Verify that all nodes in this RefSCC can reach all other nodes.
375 SmallVector<Node *> Nodes;
376 for (SCC *C : SCCs) {
377 for (Node &N : *C)
378 Nodes.push_back(&N);
380 for (Node *N : Nodes) {
381 SmallVector<Node *, 4> Worklist;
382 SmallPtrSet<Node *, 4> Visited;
383 Worklist.push_back(N);
384 while (!Worklist.empty()) {
385 Node *VisitingNode = Worklist.pop_back_val();
386 if (!Visited.insert(VisitingNode).second)
387 continue;
388 for (Edge &E : **VisitingNode)
389 Worklist.push_back(&E.getNode());
391 for (Node *NodeToVisit : Nodes) {
392 assert(Visited.contains(NodeToVisit) &&
393 "Cannot reach all nodes within RefSCC");
396 #endif
398 #endif
400 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
401 if (&RC == this)
402 return false;
404 // Search all edges to see if this is a parent.
405 for (SCC &C : *this)
406 for (Node &N : C)
407 for (Edge &E : *N)
408 if (G->lookupRefSCC(E.getNode()) == &RC)
409 return true;
411 return false;
414 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
415 if (&RC == this)
416 return false;
418 // For each descendant of this RefSCC, see if one of its children is the
419 // argument. If not, add that descendant to the worklist and continue
420 // searching.
421 SmallVector<const RefSCC *, 4> Worklist;
422 SmallPtrSet<const RefSCC *, 4> Visited;
423 Worklist.push_back(this);
424 Visited.insert(this);
425 do {
426 const RefSCC &DescendantRC = *Worklist.pop_back_val();
427 for (SCC &C : DescendantRC)
428 for (Node &N : C)
429 for (Edge &E : *N) {
430 auto *ChildRC = G->lookupRefSCC(E.getNode());
431 if (ChildRC == &RC)
432 return true;
433 if (!ChildRC || !Visited.insert(ChildRC).second)
434 continue;
435 Worklist.push_back(ChildRC);
437 } while (!Worklist.empty());
439 return false;
442 /// Generic helper that updates a postorder sequence of SCCs for a potentially
443 /// cycle-introducing edge insertion.
445 /// A postorder sequence of SCCs of a directed graph has one fundamental
446 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
447 /// all edges in the SCC DAG point to prior SCCs in the sequence.
449 /// This routine both updates a postorder sequence and uses that sequence to
450 /// compute the set of SCCs connected into a cycle. It should only be called to
451 /// insert a "downward" edge which will require changing the sequence to
452 /// restore it to a postorder.
454 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
455 /// sequence, all of the SCCs which may be impacted are in the closed range of
456 /// those two within the postorder sequence. The algorithm used here to restore
457 /// the state is as follows:
459 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
460 /// source SCC consisting of just the source SCC. Then scan toward the
461 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
462 /// in the set, add it to the set. Otherwise, the source SCC is not
463 /// a successor, move it in the postorder sequence to immediately before
464 /// the source SCC, shifting the source SCC and all SCCs in the set one
465 /// position toward the target SCC. Stop scanning after processing the
466 /// target SCC.
467 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
468 /// and thus the new edge will flow toward the start, we are done.
469 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
470 /// SCC between the source and the target, and add them to the set of
471 /// connected SCCs, then recurse through them. Once a complete set of the
472 /// SCCs the target connects to is known, hoist the remaining SCCs between
473 /// the source and the target to be above the target. Note that there is no
474 /// need to process the source SCC, it is already known to connect.
475 /// 4) At this point, all of the SCCs in the closed range between the source
476 /// SCC and the target SCC in the postorder sequence are connected,
477 /// including the target SCC and the source SCC. Inserting the edge from
478 /// the source SCC to the target SCC will form a cycle out of precisely
479 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
480 /// a single SCC.
482 /// This process has various important properties:
483 /// - Only mutates the SCCs when adding the edge actually changes the SCC
484 /// structure.
485 /// - Never mutates SCCs which are unaffected by the change.
486 /// - Updates the postorder sequence to correctly satisfy the postorder
487 /// constraint after the edge is inserted.
488 /// - Only reorders SCCs in the closed postorder sequence from the source to
489 /// the target, so easy to bound how much has changed even in the ordering.
490 /// - Big-O is the number of edges in the closed postorder range of SCCs from
491 /// source to target.
493 /// This helper routine, in addition to updating the postorder sequence itself
494 /// will also update a map from SCCs to indices within that sequence.
496 /// The sequence and the map must operate on pointers to the SCC type.
498 /// Two callbacks must be provided. The first computes the subset of SCCs in
499 /// the postorder closed range from the source to the target which connect to
500 /// the source SCC via some (transitive) set of edges. The second computes the
501 /// subset of the same range which the target SCC connects to via some
502 /// (transitive) set of edges. Both callbacks should populate the set argument
503 /// provided.
504 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
505 typename ComputeSourceConnectedSetCallableT,
506 typename ComputeTargetConnectedSetCallableT>
507 static iterator_range<typename PostorderSequenceT::iterator>
508 updatePostorderSequenceForEdgeInsertion(
509 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
510 SCCIndexMapT &SCCIndices,
511 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
512 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
513 int SourceIdx = SCCIndices[&SourceSCC];
514 int TargetIdx = SCCIndices[&TargetSCC];
515 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
517 SmallPtrSet<SCCT *, 4> ConnectedSet;
519 // Compute the SCCs which (transitively) reach the source.
520 ComputeSourceConnectedSet(ConnectedSet);
522 // Partition the SCCs in this part of the port-order sequence so only SCCs
523 // connecting to the source remain between it and the target. This is
524 // a benign partition as it preserves postorder.
525 auto SourceI = std::stable_partition(
526 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
527 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
528 for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I)
529 SCCIndices.find(SCCs[I])->second = I;
531 // If the target doesn't connect to the source, then we've corrected the
532 // post-order and there are no cycles formed.
533 if (!ConnectedSet.count(&TargetSCC)) {
534 assert(SourceI > (SCCs.begin() + SourceIdx) &&
535 "Must have moved the source to fix the post-order.");
536 assert(*std::prev(SourceI) == &TargetSCC &&
537 "Last SCC to move should have bene the target.");
539 // Return an empty range at the target SCC indicating there is nothing to
540 // merge.
541 return make_range(std::prev(SourceI), std::prev(SourceI));
544 assert(SCCs[TargetIdx] == &TargetSCC &&
545 "Should not have moved target if connected!");
546 SourceIdx = SourceI - SCCs.begin();
547 assert(SCCs[SourceIdx] == &SourceSCC &&
548 "Bad updated index computation for the source SCC!");
550 // See whether there are any remaining intervening SCCs between the source
551 // and target. If so we need to make sure they all are reachable form the
552 // target.
553 if (SourceIdx + 1 < TargetIdx) {
554 ConnectedSet.clear();
555 ComputeTargetConnectedSet(ConnectedSet);
557 // Partition SCCs so that only SCCs reached from the target remain between
558 // the source and the target. This preserves postorder.
559 auto TargetI = std::stable_partition(
560 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
561 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
562 for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I)
563 SCCIndices.find(SCCs[I])->second = I;
564 TargetIdx = std::prev(TargetI) - SCCs.begin();
565 assert(SCCs[TargetIdx] == &TargetSCC &&
566 "Should always end with the target!");
569 // At this point, we know that connecting source to target forms a cycle
570 // because target connects back to source, and we know that all the SCCs
571 // between the source and target in the postorder sequence participate in that
572 // cycle.
573 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
576 bool LazyCallGraph::RefSCC::switchInternalEdgeToCall(
577 Node &SourceN, Node &TargetN,
578 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
579 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
580 SmallVector<SCC *, 1> DeletedSCCs;
582 #ifdef EXPENSIVE_CHECKS
583 verify();
584 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
585 #endif
587 SCC &SourceSCC = *G->lookupSCC(SourceN);
588 SCC &TargetSCC = *G->lookupSCC(TargetN);
590 // If the two nodes are already part of the same SCC, we're also done as
591 // we've just added more connectivity.
592 if (&SourceSCC == &TargetSCC) {
593 SourceN->setEdgeKind(TargetN, Edge::Call);
594 return false; // No new cycle.
597 // At this point we leverage the postorder list of SCCs to detect when the
598 // insertion of an edge changes the SCC structure in any way.
600 // First and foremost, we can eliminate the need for any changes when the
601 // edge is toward the beginning of the postorder sequence because all edges
602 // flow in that direction already. Thus adding a new one cannot form a cycle.
603 int SourceIdx = SCCIndices[&SourceSCC];
604 int TargetIdx = SCCIndices[&TargetSCC];
605 if (TargetIdx < SourceIdx) {
606 SourceN->setEdgeKind(TargetN, Edge::Call);
607 return false; // No new cycle.
610 // Compute the SCCs which (transitively) reach the source.
611 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
612 #ifdef EXPENSIVE_CHECKS
613 // Check that the RefSCC is still valid before computing this as the
614 // results will be nonsensical of we've broken its invariants.
615 verify();
616 #endif
617 ConnectedSet.insert(&SourceSCC);
618 auto IsConnected = [&](SCC &C) {
619 for (Node &N : C)
620 for (Edge &E : N->calls())
621 if (ConnectedSet.count(G->lookupSCC(E.getNode())))
622 return true;
624 return false;
627 for (SCC *C :
628 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
629 if (IsConnected(*C))
630 ConnectedSet.insert(C);
633 // Use a normal worklist to find which SCCs the target connects to. We still
634 // bound the search based on the range in the postorder list we care about,
635 // but because this is forward connectivity we just "recurse" through the
636 // edges.
637 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
638 #ifdef EXPENSIVE_CHECKS
639 // Check that the RefSCC is still valid before computing this as the
640 // results will be nonsensical of we've broken its invariants.
641 verify();
642 #endif
643 ConnectedSet.insert(&TargetSCC);
644 SmallVector<SCC *, 4> Worklist;
645 Worklist.push_back(&TargetSCC);
646 do {
647 SCC &C = *Worklist.pop_back_val();
648 for (Node &N : C)
649 for (Edge &E : *N) {
650 if (!E.isCall())
651 continue;
652 SCC &EdgeC = *G->lookupSCC(E.getNode());
653 if (&EdgeC.getOuterRefSCC() != this)
654 // Not in this RefSCC...
655 continue;
656 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
657 // Not in the postorder sequence between source and target.
658 continue;
660 if (ConnectedSet.insert(&EdgeC).second)
661 Worklist.push_back(&EdgeC);
663 } while (!Worklist.empty());
666 // Use a generic helper to update the postorder sequence of SCCs and return
667 // a range of any SCCs connected into a cycle by inserting this edge. This
668 // routine will also take care of updating the indices into the postorder
669 // sequence.
670 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
671 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
672 ComputeTargetConnectedSet);
674 // Run the user's callback on the merged SCCs before we actually merge them.
675 if (MergeCB)
676 MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end()));
678 // If the merge range is empty, then adding the edge didn't actually form any
679 // new cycles. We're done.
680 if (MergeRange.empty()) {
681 // Now that the SCC structure is finalized, flip the kind to call.
682 SourceN->setEdgeKind(TargetN, Edge::Call);
683 return false; // No new cycle.
686 #ifdef EXPENSIVE_CHECKS
687 // Before merging, check that the RefSCC remains valid after all the
688 // postorder updates.
689 verify();
690 #endif
692 // Otherwise we need to merge all the SCCs in the cycle into a single result
693 // SCC.
695 // NB: We merge into the target because all of these functions were already
696 // reachable from the target, meaning any SCC-wide properties deduced about it
697 // other than the set of functions within it will not have changed.
698 for (SCC *C : MergeRange) {
699 assert(C != &TargetSCC &&
700 "We merge *into* the target and shouldn't process it here!");
701 SCCIndices.erase(C);
702 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
703 for (Node *N : C->Nodes)
704 G->SCCMap[N] = &TargetSCC;
705 C->clear();
706 DeletedSCCs.push_back(C);
709 // Erase the merged SCCs from the list and update the indices of the
710 // remaining SCCs.
711 int IndexOffset = MergeRange.end() - MergeRange.begin();
712 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
713 for (SCC *C : make_range(EraseEnd, SCCs.end()))
714 SCCIndices[C] -= IndexOffset;
716 // Now that the SCC structure is finalized, flip the kind to call.
717 SourceN->setEdgeKind(TargetN, Edge::Call);
719 // And we're done, but we did form a new cycle.
720 return true;
723 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
724 Node &TargetN) {
725 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
727 #ifdef EXPENSIVE_CHECKS
728 verify();
729 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
730 #endif
732 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
733 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
734 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
735 "Source and Target must be in separate SCCs for this to be trivial!");
737 // Set the edge kind.
738 SourceN->setEdgeKind(TargetN, Edge::Ref);
741 iterator_range<LazyCallGraph::RefSCC::iterator>
742 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
743 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
745 #ifdef EXPENSIVE_CHECKS
746 verify();
747 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
748 #endif
750 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
751 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
753 SCC &TargetSCC = *G->lookupSCC(TargetN);
754 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
755 "the same SCC to require the "
756 "full CG update.");
758 // Set the edge kind.
759 SourceN->setEdgeKind(TargetN, Edge::Ref);
761 // Otherwise we are removing a call edge from a single SCC. This may break
762 // the cycle. In order to compute the new set of SCCs, we need to do a small
763 // DFS over the nodes within the SCC to form any sub-cycles that remain as
764 // distinct SCCs and compute a postorder over the resulting SCCs.
766 // However, we specially handle the target node. The target node is known to
767 // reach all other nodes in the original SCC by definition. This means that
768 // we want the old SCC to be replaced with an SCC containing that node as it
769 // will be the root of whatever SCC DAG results from the DFS. Assumptions
770 // about an SCC such as the set of functions called will continue to hold,
771 // etc.
773 SCC &OldSCC = TargetSCC;
774 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
775 SmallVector<Node *, 16> PendingSCCStack;
776 SmallVector<SCC *, 4> NewSCCs;
778 // Prepare the nodes for a fresh DFS.
779 SmallVector<Node *, 16> Worklist;
780 Worklist.swap(OldSCC.Nodes);
781 for (Node *N : Worklist) {
782 N->DFSNumber = N->LowLink = 0;
783 G->SCCMap.erase(N);
786 // Force the target node to be in the old SCC. This also enables us to take
787 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
788 // below: whenever we build an edge that reaches the target node, we know
789 // that the target node eventually connects back to all other nodes in our
790 // walk. As a consequence, we can detect and handle participants in that
791 // cycle without walking all the edges that form this connection, and instead
792 // by relying on the fundamental guarantee coming into this operation (all
793 // nodes are reachable from the target due to previously forming an SCC).
794 TargetN.DFSNumber = TargetN.LowLink = -1;
795 OldSCC.Nodes.push_back(&TargetN);
796 G->SCCMap[&TargetN] = &OldSCC;
798 // Scan down the stack and DFS across the call edges.
799 for (Node *RootN : Worklist) {
800 assert(DFSStack.empty() &&
801 "Cannot begin a new root with a non-empty DFS stack!");
802 assert(PendingSCCStack.empty() &&
803 "Cannot begin a new root with pending nodes for an SCC!");
805 // Skip any nodes we've already reached in the DFS.
806 if (RootN->DFSNumber != 0) {
807 assert(RootN->DFSNumber == -1 &&
808 "Shouldn't have any mid-DFS root nodes!");
809 continue;
812 RootN->DFSNumber = RootN->LowLink = 1;
813 int NextDFSNumber = 2;
815 DFSStack.emplace_back(RootN, (*RootN)->call_begin());
816 do {
817 auto [N, I] = DFSStack.pop_back_val();
818 auto E = (*N)->call_end();
819 while (I != E) {
820 Node &ChildN = I->getNode();
821 if (ChildN.DFSNumber == 0) {
822 // We haven't yet visited this child, so descend, pushing the current
823 // node onto the stack.
824 DFSStack.emplace_back(N, I);
826 assert(!G->SCCMap.count(&ChildN) &&
827 "Found a node with 0 DFS number but already in an SCC!");
828 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
829 N = &ChildN;
830 I = (*N)->call_begin();
831 E = (*N)->call_end();
832 continue;
835 // Check for the child already being part of some component.
836 if (ChildN.DFSNumber == -1) {
837 if (G->lookupSCC(ChildN) == &OldSCC) {
838 // If the child is part of the old SCC, we know that it can reach
839 // every other node, so we have formed a cycle. Pull the entire DFS
840 // and pending stacks into it. See the comment above about setting
841 // up the old SCC for why we do this.
842 int OldSize = OldSCC.size();
843 OldSCC.Nodes.push_back(N);
844 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
845 PendingSCCStack.clear();
846 while (!DFSStack.empty())
847 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
848 for (Node &N : drop_begin(OldSCC, OldSize)) {
849 N.DFSNumber = N.LowLink = -1;
850 G->SCCMap[&N] = &OldSCC;
852 N = nullptr;
853 break;
856 // If the child has already been added to some child component, it
857 // couldn't impact the low-link of this parent because it isn't
858 // connected, and thus its low-link isn't relevant so skip it.
859 ++I;
860 continue;
863 // Track the lowest linked child as the lowest link for this node.
864 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
865 if (ChildN.LowLink < N->LowLink)
866 N->LowLink = ChildN.LowLink;
868 // Move to the next edge.
869 ++I;
871 if (!N)
872 // Cleared the DFS early, start another round.
873 break;
875 // We've finished processing N and its descendants, put it on our pending
876 // SCC stack to eventually get merged into an SCC of nodes.
877 PendingSCCStack.push_back(N);
879 // If this node is linked to some lower entry, continue walking up the
880 // stack.
881 if (N->LowLink != N->DFSNumber)
882 continue;
884 // Otherwise, we've completed an SCC. Append it to our post order list of
885 // SCCs.
886 int RootDFSNumber = N->DFSNumber;
887 // Find the range of the node stack by walking down until we pass the
888 // root DFS number.
889 auto SCCNodes = make_range(
890 PendingSCCStack.rbegin(),
891 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
892 return N->DFSNumber < RootDFSNumber;
893 }));
895 // Form a new SCC out of these nodes and then clear them off our pending
896 // stack.
897 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
898 for (Node &N : *NewSCCs.back()) {
899 N.DFSNumber = N.LowLink = -1;
900 G->SCCMap[&N] = NewSCCs.back();
902 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
903 } while (!DFSStack.empty());
906 // Insert the remaining SCCs before the old one. The old SCC can reach all
907 // other SCCs we form because it contains the target node of the removed edge
908 // of the old SCC. This means that we will have edges into all the new SCCs,
909 // which means the old one must come last for postorder.
910 int OldIdx = SCCIndices[&OldSCC];
911 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
913 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
914 // old SCC from the mapping.
915 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
916 SCCIndices[SCCs[Idx]] = Idx;
918 return make_range(SCCs.begin() + OldIdx,
919 SCCs.begin() + OldIdx + NewSCCs.size());
922 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
923 Node &TargetN) {
924 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
926 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
927 assert(G->lookupRefSCC(TargetN) != this &&
928 "Target must not be in this RefSCC.");
929 #ifdef EXPENSIVE_CHECKS
930 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
931 "Target must be a descendant of the Source.");
932 #endif
934 // Edges between RefSCCs are the same regardless of call or ref, so we can
935 // just flip the edge here.
936 SourceN->setEdgeKind(TargetN, Edge::Call);
938 #ifdef EXPENSIVE_CHECKS
939 verify();
940 #endif
943 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
944 Node &TargetN) {
945 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
947 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
948 assert(G->lookupRefSCC(TargetN) != this &&
949 "Target must not be in this RefSCC.");
950 #ifdef EXPENSIVE_CHECKS
951 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
952 "Target must be a descendant of the Source.");
953 #endif
955 // Edges between RefSCCs are the same regardless of call or ref, so we can
956 // just flip the edge here.
957 SourceN->setEdgeKind(TargetN, Edge::Ref);
959 #ifdef EXPENSIVE_CHECKS
960 verify();
961 #endif
964 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
965 Node &TargetN) {
966 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
967 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
969 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
971 #ifdef EXPENSIVE_CHECKS
972 verify();
973 #endif
976 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
977 Edge::Kind EK) {
978 // First insert it into the caller.
979 SourceN->insertEdgeInternal(TargetN, EK);
981 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
983 assert(G->lookupRefSCC(TargetN) != this &&
984 "Target must not be in this RefSCC.");
985 #ifdef EXPENSIVE_CHECKS
986 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
987 "Target must be a descendant of the Source.");
988 #endif
990 #ifdef EXPENSIVE_CHECKS
991 verify();
992 #endif
995 SmallVector<LazyCallGraph::RefSCC *, 1>
996 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
997 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
998 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
999 assert(&SourceC != this && "Source must not be in this RefSCC.");
1000 #ifdef EXPENSIVE_CHECKS
1001 assert(SourceC.isDescendantOf(*this) &&
1002 "Source must be a descendant of the Target.");
1003 #endif
1005 SmallVector<RefSCC *, 1> DeletedRefSCCs;
1007 #ifdef EXPENSIVE_CHECKS
1008 verify();
1009 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1010 #endif
1012 int SourceIdx = G->RefSCCIndices[&SourceC];
1013 int TargetIdx = G->RefSCCIndices[this];
1014 assert(SourceIdx < TargetIdx &&
1015 "Postorder list doesn't see edge as incoming!");
1017 // Compute the RefSCCs which (transitively) reach the source. We do this by
1018 // working backwards from the source using the parent set in each RefSCC,
1019 // skipping any RefSCCs that don't fall in the postorder range. This has the
1020 // advantage of walking the sparser parent edge (in high fan-out graphs) but
1021 // more importantly this removes examining all forward edges in all RefSCCs
1022 // within the postorder range which aren't in fact connected. Only connected
1023 // RefSCCs (and their edges) are visited here.
1024 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1025 Set.insert(&SourceC);
1026 auto IsConnected = [&](RefSCC &RC) {
1027 for (SCC &C : RC)
1028 for (Node &N : C)
1029 for (Edge &E : *N)
1030 if (Set.count(G->lookupRefSCC(E.getNode())))
1031 return true;
1033 return false;
1036 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1037 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1038 if (IsConnected(*C))
1039 Set.insert(C);
1042 // Use a normal worklist to find which SCCs the target connects to. We still
1043 // bound the search based on the range in the postorder list we care about,
1044 // but because this is forward connectivity we just "recurse" through the
1045 // edges.
1046 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1047 Set.insert(this);
1048 SmallVector<RefSCC *, 4> Worklist;
1049 Worklist.push_back(this);
1050 do {
1051 RefSCC &RC = *Worklist.pop_back_val();
1052 for (SCC &C : RC)
1053 for (Node &N : C)
1054 for (Edge &E : *N) {
1055 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1056 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1057 // Not in the postorder sequence between source and target.
1058 continue;
1060 if (Set.insert(&EdgeRC).second)
1061 Worklist.push_back(&EdgeRC);
1063 } while (!Worklist.empty());
1066 // Use a generic helper to update the postorder sequence of RefSCCs and return
1067 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1068 // routine will also take care of updating the indices into the postorder
1069 // sequence.
1070 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1071 updatePostorderSequenceForEdgeInsertion(
1072 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1073 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1075 // Build a set, so we can do fast tests for whether a RefSCC will end up as
1076 // part of the merged RefSCC.
1077 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1079 // This RefSCC will always be part of that set, so just insert it here.
1080 MergeSet.insert(this);
1082 // Now that we have identified all the SCCs which need to be merged into
1083 // a connected set with the inserted edge, merge all of them into this SCC.
1084 SmallVector<SCC *, 16> MergedSCCs;
1085 int SCCIndex = 0;
1086 for (RefSCC *RC : MergeRange) {
1087 assert(RC != this && "We're merging into the target RefSCC, so it "
1088 "shouldn't be in the range.");
1090 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1091 // update any parent sets.
1092 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1093 // walk by updating the parent sets in some other manner.
1094 for (SCC &InnerC : *RC) {
1095 InnerC.OuterRefSCC = this;
1096 SCCIndices[&InnerC] = SCCIndex++;
1097 for (Node &N : InnerC)
1098 G->SCCMap[&N] = &InnerC;
1101 // Now merge in the SCCs. We can actually move here so try to reuse storage
1102 // the first time through.
1103 if (MergedSCCs.empty())
1104 MergedSCCs = std::move(RC->SCCs);
1105 else
1106 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1107 RC->SCCs.clear();
1108 DeletedRefSCCs.push_back(RC);
1111 // Append our original SCCs to the merged list and move it into place.
1112 for (SCC &InnerC : *this)
1113 SCCIndices[&InnerC] = SCCIndex++;
1114 MergedSCCs.append(SCCs.begin(), SCCs.end());
1115 SCCs = std::move(MergedSCCs);
1117 // Remove the merged away RefSCCs from the post order sequence.
1118 for (RefSCC *RC : MergeRange)
1119 G->RefSCCIndices.erase(RC);
1120 int IndexOffset = MergeRange.end() - MergeRange.begin();
1121 auto EraseEnd =
1122 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1123 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1124 G->RefSCCIndices[RC] -= IndexOffset;
1126 // At this point we have a merged RefSCC with a post-order SCCs list, just
1127 // connect the nodes to form the new edge.
1128 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1130 // We return the list of SCCs which were merged so that callers can
1131 // invalidate any data they have associated with those SCCs. Note that these
1132 // SCCs are no longer in an interesting state (they are totally empty) but
1133 // the pointers will remain stable for the life of the graph itself.
1134 return DeletedRefSCCs;
1137 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1138 assert(G->lookupRefSCC(SourceN) == this &&
1139 "The source must be a member of this RefSCC.");
1140 assert(G->lookupRefSCC(TargetN) != this &&
1141 "The target must not be a member of this RefSCC");
1143 #ifdef EXPENSIVE_CHECKS
1144 verify();
1145 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1146 #endif
1148 // First remove it from the node.
1149 bool Removed = SourceN->removeEdgeInternal(TargetN);
1150 (void)Removed;
1151 assert(Removed && "Target not in the edge set for this caller?");
1154 SmallVector<LazyCallGraph::RefSCC *, 1>
1155 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1156 ArrayRef<Node *> TargetNs) {
1157 // We return a list of the resulting *new* RefSCCs in post-order.
1158 SmallVector<RefSCC *, 1> Result;
1160 #ifdef EXPENSIVE_CHECKS
1161 // Verify the RefSCC is valid to start with and that either we return an empty
1162 // list of result RefSCCs and this RefSCC remains valid, or we return new
1163 // RefSCCs and this RefSCC is dead.
1164 verify();
1165 auto VerifyOnExit = make_scope_exit([&]() {
1166 // If we didn't replace our RefSCC with new ones, check that this one
1167 // remains valid.
1168 if (G)
1169 verify();
1171 #endif
1173 // First remove the actual edges.
1174 for (Node *TargetN : TargetNs) {
1175 assert(!(*SourceN)[*TargetN].isCall() &&
1176 "Cannot remove a call edge, it must first be made a ref edge");
1178 bool Removed = SourceN->removeEdgeInternal(*TargetN);
1179 (void)Removed;
1180 assert(Removed && "Target not in the edge set for this caller?");
1183 // Direct self references don't impact the ref graph at all.
1184 if (llvm::all_of(TargetNs,
1185 [&](Node *TargetN) { return &SourceN == TargetN; }))
1186 return Result;
1188 // If all targets are in the same SCC as the source, because no call edges
1189 // were removed there is no RefSCC structure change.
1190 SCC &SourceC = *G->lookupSCC(SourceN);
1191 if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1192 return G->lookupSCC(*TargetN) == &SourceC;
1194 return Result;
1196 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1197 // for each inner SCC. We store these inside the low-link field of the nodes
1198 // rather than associated with SCCs because this saves a round-trip through
1199 // the node->SCC map and in the common case, SCCs are small. We will verify
1200 // that we always give the same number to every node in the SCC such that
1201 // these are equivalent.
1202 int PostOrderNumber = 0;
1204 // Reset all the other nodes to prepare for a DFS over them, and add them to
1205 // our worklist.
1206 SmallVector<Node *, 8> Worklist;
1207 for (SCC *C : SCCs) {
1208 for (Node &N : *C)
1209 N.DFSNumber = N.LowLink = 0;
1211 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1214 // Track the number of nodes in this RefSCC so that we can quickly recognize
1215 // an important special case of the edge removal not breaking the cycle of
1216 // this RefSCC.
1217 const int NumRefSCCNodes = Worklist.size();
1219 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1220 SmallVector<Node *, 4> PendingRefSCCStack;
1221 do {
1222 assert(DFSStack.empty() &&
1223 "Cannot begin a new root with a non-empty DFS stack!");
1224 assert(PendingRefSCCStack.empty() &&
1225 "Cannot begin a new root with pending nodes for an SCC!");
1227 Node *RootN = Worklist.pop_back_val();
1228 // Skip any nodes we've already reached in the DFS.
1229 if (RootN->DFSNumber != 0) {
1230 assert(RootN->DFSNumber == -1 &&
1231 "Shouldn't have any mid-DFS root nodes!");
1232 continue;
1235 RootN->DFSNumber = RootN->LowLink = 1;
1236 int NextDFSNumber = 2;
1238 DFSStack.emplace_back(RootN, (*RootN)->begin());
1239 do {
1240 auto [N, I] = DFSStack.pop_back_val();
1241 auto E = (*N)->end();
1243 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1244 "before processing a node.");
1246 while (I != E) {
1247 Node &ChildN = I->getNode();
1248 if (ChildN.DFSNumber == 0) {
1249 // Mark that we should start at this child when next this node is the
1250 // top of the stack. We don't start at the next child to ensure this
1251 // child's lowlink is reflected.
1252 DFSStack.emplace_back(N, I);
1254 // Continue, resetting to the child node.
1255 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1256 N = &ChildN;
1257 I = ChildN->begin();
1258 E = ChildN->end();
1259 continue;
1261 if (ChildN.DFSNumber == -1) {
1262 // If this child isn't currently in this RefSCC, no need to process
1263 // it.
1264 ++I;
1265 continue;
1268 // Track the lowest link of the children, if any are still in the stack.
1269 // Any child not on the stack will have a LowLink of -1.
1270 assert(ChildN.LowLink != 0 &&
1271 "Low-link must not be zero with a non-zero DFS number.");
1272 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1273 N->LowLink = ChildN.LowLink;
1274 ++I;
1277 // We've finished processing N and its descendants, put it on our pending
1278 // stack to eventually get merged into a RefSCC.
1279 PendingRefSCCStack.push_back(N);
1281 // If this node is linked to some lower entry, continue walking up the
1282 // stack.
1283 if (N->LowLink != N->DFSNumber) {
1284 assert(!DFSStack.empty() &&
1285 "We never found a viable root for a RefSCC to pop off!");
1286 continue;
1289 // Otherwise, form a new RefSCC from the top of the pending node stack.
1290 int RefSCCNumber = PostOrderNumber++;
1291 int RootDFSNumber = N->DFSNumber;
1293 // Find the range of the node stack by walking down until we pass the
1294 // root DFS number. Update the DFS numbers and low link numbers in the
1295 // process to avoid re-walking this list where possible.
1296 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1297 if (N->DFSNumber < RootDFSNumber)
1298 // We've found the bottom.
1299 return true;
1301 // Update this node and keep scanning.
1302 N->DFSNumber = -1;
1303 // Save the post-order number in the lowlink field so that we can use
1304 // it to map SCCs into new RefSCCs after we finish the DFS.
1305 N->LowLink = RefSCCNumber;
1306 return false;
1308 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1310 // If we find a cycle containing all nodes originally in this RefSCC then
1311 // the removal hasn't changed the structure at all. This is an important
1312 // special case, and we can directly exit the entire routine more
1313 // efficiently as soon as we discover it.
1314 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1315 // Clear out the low link field as we won't need it.
1316 for (Node *N : RefSCCNodes)
1317 N->LowLink = -1;
1318 // Return the empty result immediately.
1319 return Result;
1322 // We've already marked the nodes internally with the RefSCC number so
1323 // just clear them off the stack and continue.
1324 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1325 } while (!DFSStack.empty());
1327 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1328 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1329 } while (!Worklist.empty());
1331 assert(PostOrderNumber > 1 &&
1332 "Should never finish the DFS when the existing RefSCC remains valid!");
1334 // Otherwise we create a collection of new RefSCC nodes and build
1335 // a radix-sort style map from postorder number to these new RefSCCs. We then
1336 // append SCCs to each of these RefSCCs in the order they occurred in the
1337 // original SCCs container.
1338 for (int I = 0; I < PostOrderNumber; ++I)
1339 Result.push_back(G->createRefSCC(*G));
1341 // Insert the resulting postorder sequence into the global graph postorder
1342 // sequence before the current RefSCC in that sequence, and then remove the
1343 // current one.
1345 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1346 // range over the global postorder sequence and generally use that sequence
1347 // rather than building a separate result vector here.
1348 int Idx = G->getRefSCCIndex(*this);
1349 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1350 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1351 Result.end());
1352 for (int I : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1353 G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I;
1355 for (SCC *C : SCCs) {
1356 // We store the SCC number in the node's low-link field above.
1357 int SCCNumber = C->begin()->LowLink;
1358 // Clear out all the SCC's node's low-link fields now that we're done
1359 // using them as side-storage.
1360 for (Node &N : *C) {
1361 assert(N.LowLink == SCCNumber &&
1362 "Cannot have different numbers for nodes in the same SCC!");
1363 N.LowLink = -1;
1366 RefSCC &RC = *Result[SCCNumber];
1367 int SCCIndex = RC.SCCs.size();
1368 RC.SCCs.push_back(C);
1369 RC.SCCIndices[C] = SCCIndex;
1370 C->OuterRefSCC = &RC;
1373 // Now that we've moved things into the new RefSCCs, clear out our current
1374 // one.
1375 G = nullptr;
1376 SCCs.clear();
1377 SCCIndices.clear();
1379 #ifdef EXPENSIVE_CHECKS
1380 // Verify the new RefSCCs we've built.
1381 for (RefSCC *RC : Result)
1382 RC->verify();
1383 #endif
1385 // Return the new list of SCCs.
1386 return Result;
1389 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1390 Node &TargetN) {
1391 #ifdef EXPENSIVE_CHECKS
1392 auto ExitVerifier = make_scope_exit([this] { verify(); });
1394 // Check that we aren't breaking some invariants of the SCC graph. Note that
1395 // this is quadratic in the number of edges in the call graph!
1396 SCC &SourceC = *G->lookupSCC(SourceN);
1397 SCC &TargetC = *G->lookupSCC(TargetN);
1398 if (&SourceC != &TargetC)
1399 assert(SourceC.isAncestorOf(TargetC) &&
1400 "Call edge is not trivial in the SCC graph!");
1401 #endif
1403 // First insert it into the source or find the existing edge.
1404 auto [Iterator, Inserted] =
1405 SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1406 if (!Inserted) {
1407 // Already an edge, just update it.
1408 Edge &E = SourceN->Edges[Iterator->second];
1409 if (E.isCall())
1410 return; // Nothing to do!
1411 E.setKind(Edge::Call);
1412 } else {
1413 // Create the new edge.
1414 SourceN->Edges.emplace_back(TargetN, Edge::Call);
1418 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1419 #ifdef EXPENSIVE_CHECKS
1420 auto ExitVerifier = make_scope_exit([this] { verify(); });
1422 // Check that we aren't breaking some invariants of the RefSCC graph.
1423 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1424 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1425 if (&SourceRC != &TargetRC)
1426 assert(SourceRC.isAncestorOf(TargetRC) &&
1427 "Ref edge is not trivial in the RefSCC graph!");
1428 #endif
1430 // First insert it into the source or find the existing edge.
1431 auto [Iterator, Inserted] =
1432 SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1433 (void)Iterator;
1434 if (!Inserted)
1435 // Already an edge, we're done.
1436 return;
1438 // Create the new edge.
1439 SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1442 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1443 Function &OldF = N.getFunction();
1445 #ifdef EXPENSIVE_CHECKS
1446 auto ExitVerifier = make_scope_exit([this] { verify(); });
1448 assert(G->lookupRefSCC(N) == this &&
1449 "Cannot replace the function of a node outside this RefSCC.");
1451 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1452 "Must not have already walked the new function!'");
1454 // It is important that this replacement not introduce graph changes so we
1455 // insist that the caller has already removed every use of the original
1456 // function and that all uses of the new function correspond to existing
1457 // edges in the graph. The common and expected way to use this is when
1458 // replacing the function itself in the IR without changing the call graph
1459 // shape and just updating the analysis based on that.
1460 assert(&OldF != &NewF && "Cannot replace a function with itself!");
1461 assert(OldF.use_empty() &&
1462 "Must have moved all uses from the old function to the new!");
1463 #endif
1465 N.replaceFunction(NewF);
1467 // Update various call graph maps.
1468 G->NodeMap.erase(&OldF);
1469 G->NodeMap[&NewF] = &N;
1471 // Update lib functions.
1472 if (G->isLibFunction(OldF)) {
1473 G->LibFunctions.remove(&OldF);
1474 G->LibFunctions.insert(&NewF);
1478 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1479 assert(SCCMap.empty() &&
1480 "This method cannot be called after SCCs have been formed!");
1482 return SourceN->insertEdgeInternal(TargetN, EK);
1485 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1486 assert(SCCMap.empty() &&
1487 "This method cannot be called after SCCs have been formed!");
1489 bool Removed = SourceN->removeEdgeInternal(TargetN);
1490 (void)Removed;
1491 assert(Removed && "Target not in the edge set for this caller?");
1494 void LazyCallGraph::removeDeadFunction(Function &F) {
1495 // FIXME: This is unnecessarily restrictive. We should be able to remove
1496 // functions which recursively call themselves.
1497 assert(F.hasZeroLiveUses() &&
1498 "This routine should only be called on trivially dead functions!");
1500 // We shouldn't remove library functions as they are never really dead while
1501 // the call graph is in use -- every function definition refers to them.
1502 assert(!isLibFunction(F) &&
1503 "Must not remove lib functions from the call graph!");
1505 auto NI = NodeMap.find(&F);
1506 if (NI == NodeMap.end())
1507 // Not in the graph at all!
1508 return;
1510 Node &N = *NI->second;
1512 // Cannot remove a function which has yet to be visited in the DFS walk, so
1513 // if we have a node at all then we must have an SCC and RefSCC.
1514 auto CI = SCCMap.find(&N);
1515 assert(CI != SCCMap.end() &&
1516 "Tried to remove a node without an SCC after DFS walk started!");
1517 SCC &C = *CI->second;
1518 RefSCC *RC = &C.getOuterRefSCC();
1520 // In extremely rare cases, we can delete a dead function which is still in a
1521 // non-trivial RefSCC. This can happen due to spurious ref edges sticking
1522 // around after an IR function reference is removed.
1523 if (RC->size() != 1) {
1524 SmallVector<Node *, 0> NodesInRC;
1525 for (SCC &OtherC : *RC) {
1526 for (Node &OtherN : OtherC)
1527 NodesInRC.push_back(&OtherN);
1529 for (Node *OtherN : NodesInRC) {
1530 if ((*OtherN)->lookup(N)) {
1531 auto NewRefSCCs =
1532 RC->removeInternalRefEdge(*OtherN, ArrayRef<Node *>(&N));
1533 // If we've split into multiple RefSCCs, RC is now invalid and the
1534 // RefSCC containing C will be different.
1535 if (!NewRefSCCs.empty())
1536 RC = &C.getOuterRefSCC();
1541 NodeMap.erase(NI);
1542 EntryEdges.removeEdgeInternal(N);
1543 SCCMap.erase(CI);
1545 // This node must be the only member of its SCC as it has no callers, and
1546 // that SCC must be the only member of a RefSCC as it has no references.
1547 // Validate these properties first.
1548 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1549 assert(RC->size() == 1 && "Dead functions must be in a singular RefSCC");
1551 // Finally clear out all the data structures from the node down through the
1552 // components. postorder_ref_scc_iterator will skip empty RefSCCs, so no need
1553 // to adjust LazyCallGraph data structures.
1554 N.clear();
1555 N.G = nullptr;
1556 N.F = nullptr;
1557 C.clear();
1558 RC->clear();
1559 RC->G = nullptr;
1561 // Nothing to delete as all the objects are allocated in stable bump pointer
1562 // allocators.
1565 // Gets the Edge::Kind from one function to another by looking at the function's
1566 // instructions. Asserts if there is no edge.
1567 // Useful for determining what type of edge should exist between functions when
1568 // the edge hasn't been created yet.
1569 static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1570 Function &NewFunction) {
1571 // In release builds, assume that if there are no direct calls to the new
1572 // function, then there is a ref edge. In debug builds, keep track of
1573 // references to assert that there is actually a ref edge if there is no call
1574 // edge.
1575 #ifndef NDEBUG
1576 SmallVector<Constant *, 16> Worklist;
1577 SmallPtrSet<Constant *, 16> Visited;
1578 #endif
1580 for (Instruction &I : instructions(OriginalFunction)) {
1581 if (auto *CB = dyn_cast<CallBase>(&I)) {
1582 if (Function *Callee = CB->getCalledFunction()) {
1583 if (Callee == &NewFunction)
1584 return LazyCallGraph::Edge::Kind::Call;
1587 #ifndef NDEBUG
1588 for (Value *Op : I.operand_values()) {
1589 if (Constant *C = dyn_cast<Constant>(Op)) {
1590 if (Visited.insert(C).second)
1591 Worklist.push_back(C);
1594 #endif
1597 #ifndef NDEBUG
1598 bool FoundNewFunction = false;
1599 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1600 if (&F == &NewFunction)
1601 FoundNewFunction = true;
1603 assert(FoundNewFunction && "No edge from original function to new function");
1604 #endif
1606 return LazyCallGraph::Edge::Kind::Ref;
1609 void LazyCallGraph::addSplitFunction(Function &OriginalFunction,
1610 Function &NewFunction) {
1611 assert(lookup(OriginalFunction) &&
1612 "Original function's node should already exist");
1613 Node &OriginalN = get(OriginalFunction);
1614 SCC *OriginalC = lookupSCC(OriginalN);
1615 RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1617 #ifdef EXPENSIVE_CHECKS
1618 OriginalRC->verify();
1619 auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1620 #endif
1622 assert(!lookup(NewFunction) &&
1623 "New function's node should not already exist");
1624 Node &NewN = initNode(NewFunction);
1626 Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1628 SCC *NewC = nullptr;
1629 for (Edge &E : *NewN) {
1630 Node &EN = E.getNode();
1631 if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1632 // If the edge to the new function is a call edge and there is a call edge
1633 // from the new function to any function in the original function's SCC,
1634 // it is in the same SCC (and RefSCC) as the original function.
1635 NewC = OriginalC;
1636 NewC->Nodes.push_back(&NewN);
1637 break;
1641 if (!NewC) {
1642 for (Edge &E : *NewN) {
1643 Node &EN = E.getNode();
1644 if (lookupRefSCC(EN) == OriginalRC) {
1645 // If there is any edge from the new function to any function in the
1646 // original function's RefSCC, it is in the same RefSCC as the original
1647 // function but a new SCC.
1648 RefSCC *NewRC = OriginalRC;
1649 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1651 // The new function's SCC is not the same as the original function's
1652 // SCC, since that case was handled earlier. If the edge from the
1653 // original function to the new function was a call edge, then we need
1654 // to insert the newly created function's SCC before the original
1655 // function's SCC. Otherwise, either the new SCC comes after the
1656 // original function's SCC, or it doesn't matter, and in both cases we
1657 // can add it to the very end.
1658 int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1659 : NewRC->SCCIndices.size();
1660 NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1661 for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1662 NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1664 break;
1669 if (!NewC) {
1670 // We didn't find any edges back to the original function's RefSCC, so the
1671 // new function belongs in a new RefSCC. The new RefSCC goes before the
1672 // original function's RefSCC.
1673 RefSCC *NewRC = createRefSCC(*this);
1674 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1675 NewRC->SCCIndices[NewC] = 0;
1676 NewRC->SCCs.push_back(NewC);
1677 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1678 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1679 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1680 RefSCCIndices[PostOrderRefSCCs[I]] = I;
1683 SCCMap[&NewN] = NewC;
1685 OriginalN->insertEdgeInternal(NewN, EK);
1688 void LazyCallGraph::addSplitRefRecursiveFunctions(
1689 Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1690 assert(!NewFunctions.empty() && "Can't add zero functions");
1691 assert(lookup(OriginalFunction) &&
1692 "Original function's node should already exist");
1693 Node &OriginalN = get(OriginalFunction);
1694 RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1696 #ifdef EXPENSIVE_CHECKS
1697 OriginalRC->verify();
1698 auto VerifyOnExit = make_scope_exit([&]() {
1699 OriginalRC->verify();
1700 for (Function *NewFunction : NewFunctions)
1701 lookupRefSCC(get(*NewFunction))->verify();
1703 #endif
1705 bool ExistsRefToOriginalRefSCC = false;
1707 for (Function *NewFunction : NewFunctions) {
1708 Node &NewN = initNode(*NewFunction);
1710 OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1712 // Check if there is any edge from any new function back to any function in
1713 // the original function's RefSCC.
1714 for (Edge &E : *NewN) {
1715 if (lookupRefSCC(E.getNode()) == OriginalRC) {
1716 ExistsRefToOriginalRefSCC = true;
1717 break;
1722 RefSCC *NewRC;
1723 if (ExistsRefToOriginalRefSCC) {
1724 // If there is any edge from any new function to any function in the
1725 // original function's RefSCC, all new functions will be in the same RefSCC
1726 // as the original function.
1727 NewRC = OriginalRC;
1728 } else {
1729 // Otherwise the new functions are in their own RefSCC.
1730 NewRC = createRefSCC(*this);
1731 // The new RefSCC goes before the original function's RefSCC in postorder
1732 // since there are only edges from the original function's RefSCC to the new
1733 // RefSCC.
1734 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1735 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1736 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1737 RefSCCIndices[PostOrderRefSCCs[I]] = I;
1740 for (Function *NewFunction : NewFunctions) {
1741 Node &NewN = get(*NewFunction);
1742 // Each new function is in its own new SCC. The original function can only
1743 // have a ref edge to new functions, and no other existing functions can
1744 // have references to new functions. Each new function only has a ref edge
1745 // to the other new functions.
1746 SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1747 // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1748 // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1749 // SCC list.
1750 auto Index = NewRC->SCCIndices.size();
1751 NewRC->SCCIndices[NewC] = Index;
1752 NewRC->SCCs.push_back(NewC);
1753 SCCMap[&NewN] = NewC;
1756 #ifndef NDEBUG
1757 for (Function *F1 : NewFunctions) {
1758 assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1759 "Expected ref edges from original function to every new function");
1760 Node &N1 = get(*F1);
1761 for (Function *F2 : NewFunctions) {
1762 if (F1 == F2)
1763 continue;
1764 Node &N2 = get(*F2);
1765 assert(!N1->lookup(N2)->isCall() &&
1766 "Edges between new functions must be ref edges");
1769 #endif
1772 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1773 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1776 void LazyCallGraph::updateGraphPtrs() {
1777 // Walk the node map to update their graph pointers. While this iterates in
1778 // an unstable order, the order has no effect, so it remains correct.
1779 for (auto &FunctionNodePair : NodeMap)
1780 FunctionNodePair.second->G = this;
1782 for (auto *RC : PostOrderRefSCCs)
1783 RC->G = this;
1786 LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1787 Node &N = get(F);
1788 N.DFSNumber = N.LowLink = -1;
1789 N.populate();
1790 NodeMap[&F] = &N;
1791 return N;
1794 template <typename RootsT, typename GetBeginT, typename GetEndT,
1795 typename GetNodeT, typename FormSCCCallbackT>
1796 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1797 GetEndT &&GetEnd, GetNodeT &&GetNode,
1798 FormSCCCallbackT &&FormSCC) {
1799 using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1801 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1802 SmallVector<Node *, 16> PendingSCCStack;
1804 // Scan down the stack and DFS across the call edges.
1805 for (Node *RootN : Roots) {
1806 assert(DFSStack.empty() &&
1807 "Cannot begin a new root with a non-empty DFS stack!");
1808 assert(PendingSCCStack.empty() &&
1809 "Cannot begin a new root with pending nodes for an SCC!");
1811 // Skip any nodes we've already reached in the DFS.
1812 if (RootN->DFSNumber != 0) {
1813 assert(RootN->DFSNumber == -1 &&
1814 "Shouldn't have any mid-DFS root nodes!");
1815 continue;
1818 RootN->DFSNumber = RootN->LowLink = 1;
1819 int NextDFSNumber = 2;
1821 DFSStack.emplace_back(RootN, GetBegin(*RootN));
1822 do {
1823 auto [N, I] = DFSStack.pop_back_val();
1824 auto E = GetEnd(*N);
1825 while (I != E) {
1826 Node &ChildN = GetNode(I);
1827 if (ChildN.DFSNumber == 0) {
1828 // We haven't yet visited this child, so descend, pushing the current
1829 // node onto the stack.
1830 DFSStack.emplace_back(N, I);
1832 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1833 N = &ChildN;
1834 I = GetBegin(*N);
1835 E = GetEnd(*N);
1836 continue;
1839 // If the child has already been added to some child component, it
1840 // couldn't impact the low-link of this parent because it isn't
1841 // connected, and thus its low-link isn't relevant so skip it.
1842 if (ChildN.DFSNumber == -1) {
1843 ++I;
1844 continue;
1847 // Track the lowest linked child as the lowest link for this node.
1848 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1849 if (ChildN.LowLink < N->LowLink)
1850 N->LowLink = ChildN.LowLink;
1852 // Move to the next edge.
1853 ++I;
1856 // We've finished processing N and its descendants, put it on our pending
1857 // SCC stack to eventually get merged into an SCC of nodes.
1858 PendingSCCStack.push_back(N);
1860 // If this node is linked to some lower entry, continue walking up the
1861 // stack.
1862 if (N->LowLink != N->DFSNumber)
1863 continue;
1865 // Otherwise, we've completed an SCC. Append it to our post order list of
1866 // SCCs.
1867 int RootDFSNumber = N->DFSNumber;
1868 // Find the range of the node stack by walking down until we pass the
1869 // root DFS number.
1870 auto SCCNodes = make_range(
1871 PendingSCCStack.rbegin(),
1872 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1873 return N->DFSNumber < RootDFSNumber;
1874 }));
1875 // Form a new SCC out of these nodes and then clear them off our pending
1876 // stack.
1877 FormSCC(SCCNodes);
1878 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1879 } while (!DFSStack.empty());
1883 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1885 /// Appends the SCCs to the provided vector and updates the map with their
1886 /// indices. Both the vector and map must be empty when passed into this
1887 /// routine.
1888 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1889 assert(RC.SCCs.empty() && "Already built SCCs!");
1890 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1892 for (Node *N : Nodes) {
1893 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1894 "We cannot have a low link in an SCC lower than its root on the "
1895 "stack!");
1897 // This node will go into the next RefSCC, clear out its DFS and low link
1898 // as we scan.
1899 N->DFSNumber = N->LowLink = 0;
1902 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1903 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1904 // internal storage as we won't need it for the outer graph's DFS any longer.
1905 buildGenericSCCs(
1906 Nodes, [](Node &N) { return N->call_begin(); },
1907 [](Node &N) { return N->call_end(); },
1908 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1909 [this, &RC](node_stack_range Nodes) {
1910 RC.SCCs.push_back(createSCC(RC, Nodes));
1911 for (Node &N : *RC.SCCs.back()) {
1912 N.DFSNumber = N.LowLink = -1;
1913 SCCMap[&N] = RC.SCCs.back();
1917 // Wire up the SCC indices.
1918 for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I)
1919 RC.SCCIndices[RC.SCCs[I]] = I;
1922 void LazyCallGraph::buildRefSCCs() {
1923 if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1924 // RefSCCs are either non-existent or already built!
1925 return;
1927 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1929 SmallVector<Node *, 16> Roots;
1930 for (Edge &E : *this)
1931 Roots.push_back(&E.getNode());
1933 // The roots will be iterated in order.
1934 buildGenericSCCs(
1935 Roots,
1936 [](Node &N) {
1937 // We need to populate each node as we begin to walk its edges.
1938 N.populate();
1939 return N->begin();
1941 [](Node &N) { return N->end(); },
1942 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1943 [this](node_stack_range Nodes) {
1944 RefSCC *NewRC = createRefSCC(*this);
1945 buildSCCs(*NewRC, Nodes);
1947 // Push the new node into the postorder list and remember its position
1948 // in the index map.
1949 bool Inserted =
1950 RefSCCIndices.try_emplace(NewRC, PostOrderRefSCCs.size()).second;
1951 (void)Inserted;
1952 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1953 PostOrderRefSCCs.push_back(NewRC);
1954 #ifdef EXPENSIVE_CHECKS
1955 NewRC->verify();
1956 #endif
1960 void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist,
1961 SmallPtrSetImpl<Constant *> &Visited,
1962 function_ref<void(Function &)> Callback) {
1963 while (!Worklist.empty()) {
1964 Constant *C = Worklist.pop_back_val();
1966 if (Function *F = dyn_cast<Function>(C)) {
1967 if (!F->isDeclaration())
1968 Callback(*F);
1969 continue;
1972 // blockaddresses are weird and don't participate in the call graph anyway,
1973 // skip them.
1974 if (isa<BlockAddress>(C))
1975 continue;
1977 for (Value *Op : C->operand_values())
1978 if (Visited.insert(cast<Constant>(Op)).second)
1979 Worklist.push_back(cast<Constant>(Op));
1983 AnalysisKey LazyCallGraphAnalysis::Key;
1985 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1987 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1988 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1989 for (LazyCallGraph::Edge &E : N.populate())
1990 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1991 << E.getFunction().getName() << "\n";
1993 OS << "\n";
1996 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1997 OS << " SCC with " << C.size() << " functions:\n";
1999 for (LazyCallGraph::Node &N : C)
2000 OS << " " << N.getFunction().getName() << "\n";
2003 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
2004 OS << " RefSCC with " << C.size() << " call SCCs:\n";
2006 for (LazyCallGraph::SCC &InnerC : C)
2007 printSCC(OS, InnerC);
2009 OS << "\n";
2012 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
2013 ModuleAnalysisManager &AM) {
2014 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2016 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
2017 << "\n\n";
2019 for (Function &F : M)
2020 printNode(OS, G.get(F));
2022 G.buildRefSCCs();
2023 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2024 printRefSCC(OS, C);
2026 return PreservedAnalyses::all();
2029 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
2030 : OS(OS) {}
2032 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
2033 std::string Name =
2034 "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2036 for (LazyCallGraph::Edge &E : N.populate()) {
2037 OS << " " << Name << " -> \""
2038 << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2039 if (!E.isCall()) // It is a ref edge.
2040 OS << " [style=dashed,label=\"ref\"]";
2041 OS << ";\n";
2044 OS << "\n";
2047 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
2048 ModuleAnalysisManager &AM) {
2049 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
2051 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2053 for (Function &F : M)
2054 printNodeDOT(OS, G.get(F));
2056 OS << "}\n";
2058 return PreservedAnalyses::all();