[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Bitcode / Reader / BitcodeReader.cpp
bloba027d0c21ba0bb9df57319e1f131f9fde03a71d1
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
91 using namespace llvm;
93 static cl::opt<bool> PrintSummaryGUIDs(
94 "print-summary-global-ids", cl::init(false), cl::Hidden,
95 cl::desc(
96 "Print the global id for each value when reading the module summary"));
98 static cl::opt<bool> ExpandConstantExprs(
99 "expand-constant-exprs", cl::Hidden,
100 cl::desc(
101 "Expand constant expressions to instructions for testing purposes"));
103 namespace {
105 enum {
106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
109 } // end anonymous namespace
111 static Error error(const Twine &Message) {
112 return make_error<StringError>(
113 Message, make_error_code(BitcodeError::CorruptedBitcode));
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117 if (!Stream.canSkipToPos(4))
118 return createStringError(std::errc::illegal_byte_sequence,
119 "file too small to contain bitcode header");
120 for (unsigned C : {'B', 'C'})
121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122 if (Res.get() != C)
123 return createStringError(std::errc::illegal_byte_sequence,
124 "file doesn't start with bitcode header");
125 } else
126 return Res.takeError();
127 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129 if (Res.get() != C)
130 return createStringError(std::errc::illegal_byte_sequence,
131 "file doesn't start with bitcode header");
132 } else
133 return Res.takeError();
134 return Error::success();
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
141 if (Buffer.getBufferSize() & 3)
142 return error("Invalid bitcode signature");
144 // If we have a wrapper header, parse it and ignore the non-bc file contents.
145 // The magic number is 0x0B17C0DE stored in little endian.
146 if (isBitcodeWrapper(BufPtr, BufEnd))
147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148 return error("Invalid bitcode wrapper header");
150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151 if (Error Err = hasInvalidBitcodeHeader(Stream))
152 return std::move(Err);
154 return std::move(Stream);
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160 StrTy &Result) {
161 if (Idx > Record.size())
162 return true;
164 Result.append(Record.begin() + Idx, Record.end());
165 return false;
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170 for (auto &F : *M) {
171 if (F.isMaterializable())
172 continue;
173 for (auto &I : instructions(F))
174 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182 return std::move(Err);
184 // Read all the records.
185 SmallVector<uint64_t, 64> Record;
187 std::string ProducerIdentification;
189 while (true) {
190 BitstreamEntry Entry;
191 if (Error E = Stream.advance().moveInto(Entry))
192 return std::move(E);
194 switch (Entry.Kind) {
195 default:
196 case BitstreamEntry::Error:
197 return error("Malformed block");
198 case BitstreamEntry::EndBlock:
199 return ProducerIdentification;
200 case BitstreamEntry::Record:
201 // The interesting case.
202 break;
205 // Read a record.
206 Record.clear();
207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208 if (!MaybeBitCode)
209 return MaybeBitCode.takeError();
210 switch (MaybeBitCode.get()) {
211 default: // Default behavior: reject
212 return error("Invalid value");
213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214 convertToString(Record, 0, ProducerIdentification);
215 break;
216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217 unsigned epoch = (unsigned)Record[0];
218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219 return error(
220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229 // We expect a number of well-defined blocks, though we don't necessarily
230 // need to understand them all.
231 while (true) {
232 if (Stream.AtEndOfStream())
233 return "";
235 BitstreamEntry Entry;
236 if (Error E = Stream.advance().moveInto(Entry))
237 return std::move(E);
239 switch (Entry.Kind) {
240 case BitstreamEntry::EndBlock:
241 case BitstreamEntry::Error:
242 return error("Malformed block");
244 case BitstreamEntry::SubBlock:
245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246 return readIdentificationBlock(Stream);
248 // Ignore other sub-blocks.
249 if (Error Err = Stream.SkipBlock())
250 return std::move(Err);
251 continue;
252 case BitstreamEntry::Record:
253 if (Error E = Stream.skipRecord(Entry.ID).takeError())
254 return std::move(E);
255 continue;
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262 return std::move(Err);
264 SmallVector<uint64_t, 64> Record;
265 // Read all the records for this module.
267 while (true) {
268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269 if (!MaybeEntry)
270 return MaybeEntry.takeError();
271 BitstreamEntry Entry = MaybeEntry.get();
273 switch (Entry.Kind) {
274 case BitstreamEntry::SubBlock: // Handled for us already.
275 case BitstreamEntry::Error:
276 return error("Malformed block");
277 case BitstreamEntry::EndBlock:
278 return false;
279 case BitstreamEntry::Record:
280 // The interesting case.
281 break;
284 // Read a record.
285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286 if (!MaybeRecord)
287 return MaybeRecord.takeError();
288 switch (MaybeRecord.get()) {
289 default:
290 break; // Default behavior, ignore unknown content.
291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292 std::string S;
293 if (convertToString(Record, 0, S))
294 return error("Invalid section name record");
295 // Check for the i386 and other (x86_64, ARM) conventions
296 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297 S.find("__OBJC,__category") != std::string::npos)
298 return true;
299 break;
302 Record.clear();
304 llvm_unreachable("Exit infinite loop");
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308 // We expect a number of well-defined blocks, though we don't necessarily
309 // need to understand them all.
310 while (true) {
311 BitstreamEntry Entry;
312 if (Error E = Stream.advance().moveInto(Entry))
313 return std::move(E);
315 switch (Entry.Kind) {
316 case BitstreamEntry::Error:
317 return error("Malformed block");
318 case BitstreamEntry::EndBlock:
319 return false;
321 case BitstreamEntry::SubBlock:
322 if (Entry.ID == bitc::MODULE_BLOCK_ID)
323 return hasObjCCategoryInModule(Stream);
325 // Ignore other sub-blocks.
326 if (Error Err = Stream.SkipBlock())
327 return std::move(Err);
328 continue;
330 case BitstreamEntry::Record:
331 if (Error E = Stream.skipRecord(Entry.ID).takeError())
332 return std::move(E);
333 continue;
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340 return std::move(Err);
342 SmallVector<uint64_t, 64> Record;
344 std::string Triple;
346 // Read all the records for this module.
347 while (true) {
348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349 if (!MaybeEntry)
350 return MaybeEntry.takeError();
351 BitstreamEntry Entry = MaybeEntry.get();
353 switch (Entry.Kind) {
354 case BitstreamEntry::SubBlock: // Handled for us already.
355 case BitstreamEntry::Error:
356 return error("Malformed block");
357 case BitstreamEntry::EndBlock:
358 return Triple;
359 case BitstreamEntry::Record:
360 // The interesting case.
361 break;
364 // Read a record.
365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366 if (!MaybeRecord)
367 return MaybeRecord.takeError();
368 switch (MaybeRecord.get()) {
369 default: break; // Default behavior, ignore unknown content.
370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
371 std::string S;
372 if (convertToString(Record, 0, S))
373 return error("Invalid triple record");
374 Triple = S;
375 break;
378 Record.clear();
380 llvm_unreachable("Exit infinite loop");
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384 // We expect a number of well-defined blocks, though we don't necessarily
385 // need to understand them all.
386 while (true) {
387 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388 if (!MaybeEntry)
389 return MaybeEntry.takeError();
390 BitstreamEntry Entry = MaybeEntry.get();
392 switch (Entry.Kind) {
393 case BitstreamEntry::Error:
394 return error("Malformed block");
395 case BitstreamEntry::EndBlock:
396 return "";
398 case BitstreamEntry::SubBlock:
399 if (Entry.ID == bitc::MODULE_BLOCK_ID)
400 return readModuleTriple(Stream);
402 // Ignore other sub-blocks.
403 if (Error Err = Stream.SkipBlock())
404 return std::move(Err);
405 continue;
407 case BitstreamEntry::Record:
408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409 continue;
410 else
411 return Skipped.takeError();
416 namespace {
418 class BitcodeReaderBase {
419 protected:
420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421 : Stream(std::move(Stream)), Strtab(Strtab) {
422 this->Stream.setBlockInfo(&BlockInfo);
425 BitstreamBlockInfo BlockInfo;
426 BitstreamCursor Stream;
427 StringRef Strtab;
429 /// In version 2 of the bitcode we store names of global values and comdats in
430 /// a string table rather than in the VST.
431 bool UseStrtab = false;
433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 /// If this module uses a string table, pop the reference to the string table
436 /// and return the referenced string and the rest of the record. Otherwise
437 /// just return the record itself.
438 std::pair<StringRef, ArrayRef<uint64_t>>
439 readNameFromStrtab(ArrayRef<uint64_t> Record);
441 Error readBlockInfo();
443 // Contains an arbitrary and optional string identifying the bitcode producer
444 std::string ProducerIdentification;
446 Error error(const Twine &Message);
449 } // end anonymous namespace
451 Error BitcodeReaderBase::error(const Twine &Message) {
452 std::string FullMsg = Message.str();
453 if (!ProducerIdentification.empty())
454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455 LLVM_VERSION_STRING "')";
456 return ::error(FullMsg);
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461 if (Record.empty())
462 return error("Invalid version record");
463 unsigned ModuleVersion = Record[0];
464 if (ModuleVersion > 2)
465 return error("Invalid value");
466 UseStrtab = ModuleVersion >= 2;
467 return ModuleVersion;
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472 if (!UseStrtab)
473 return {"", Record};
474 // Invalid reference. Let the caller complain about the record being empty.
475 if (Record[0] + Record[1] > Strtab.size())
476 return {"", {}};
477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
480 namespace {
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489 TrailingObjects<BitcodeConstant, unsigned> {
490 friend TrailingObjects;
492 // Value subclass ID: Pick largest possible value to avoid any clashes.
493 static constexpr uint8_t SubclassID = 255;
495 public:
496 // Opcodes used for non-expressions. This includes constant aggregates
497 // (struct, array, vector) that might need expansion, as well as non-leaf
498 // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499 // but still go through BitcodeConstant to avoid different uselist orders
500 // between the two cases.
501 static constexpr uint8_t ConstantStructOpcode = 255;
502 static constexpr uint8_t ConstantArrayOpcode = 254;
503 static constexpr uint8_t ConstantVectorOpcode = 253;
504 static constexpr uint8_t NoCFIOpcode = 252;
505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506 static constexpr uint8_t BlockAddressOpcode = 250;
507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
509 // Separate struct to make passing different number of parameters to
510 // BitcodeConstant::create() more convenient.
511 struct ExtraInfo {
512 uint8_t Opcode;
513 uint8_t Flags;
514 unsigned Extra;
515 Type *SrcElemTy;
517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518 Type *SrcElemTy = nullptr)
519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
522 uint8_t Opcode;
523 uint8_t Flags;
524 unsigned NumOperands;
525 unsigned Extra; // GEP inrange index or blockaddress BB id.
526 Type *SrcElemTy; // GEP source element type.
528 private:
529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531 NumOperands(OpIDs.size()), Extra(Info.Extra),
532 SrcElemTy(Info.SrcElemTy) {
533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534 getTrailingObjects<unsigned>());
537 BitcodeConstant &operator=(const BitcodeConstant &) = delete;
539 public:
540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541 const ExtraInfo &Info,
542 ArrayRef<unsigned> OpIDs) {
543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544 alignof(BitcodeConstant));
545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
550 ArrayRef<unsigned> getOperandIDs() const {
551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
554 std::optional<unsigned> getInRangeIndex() const {
555 assert(Opcode == Instruction::GetElementPtr);
556 if (Extra == (unsigned)-1)
557 return std::nullopt;
558 return Extra;
561 const char *getOpcodeName() const {
562 return Instruction::getOpcodeName(Opcode);
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567 LLVMContext &Context;
568 Module *TheModule = nullptr;
569 // Next offset to start scanning for lazy parsing of function bodies.
570 uint64_t NextUnreadBit = 0;
571 // Last function offset found in the VST.
572 uint64_t LastFunctionBlockBit = 0;
573 bool SeenValueSymbolTable = false;
574 uint64_t VSTOffset = 0;
576 std::vector<std::string> SectionTable;
577 std::vector<std::string> GCTable;
579 std::vector<Type *> TypeList;
580 /// Track type IDs of contained types. Order is the same as the contained
581 /// types of a Type*. This is used during upgrades of typed pointer IR in
582 /// opaque pointer mode.
583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584 /// In some cases, we need to create a type ID for a type that was not
585 /// explicitly encoded in the bitcode, or we don't know about at the current
586 /// point. For example, a global may explicitly encode the value type ID, but
587 /// not have a type ID for the pointer to value type, for which we create a
588 /// virtual type ID instead. This map stores the new type ID that was created
589 /// for the given pair of Type and contained type ID.
590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591 DenseMap<Function *, unsigned> FunctionTypeIDs;
592 /// Allocator for BitcodeConstants. This should come before ValueList,
593 /// because the ValueList might hold ValueHandles to these constants, so
594 /// ValueList must be destroyed before Alloc.
595 BumpPtrAllocator Alloc;
596 BitcodeReaderValueList ValueList;
597 std::optional<MetadataLoader> MDLoader;
598 std::vector<Comdat *> ComdatList;
599 DenseSet<GlobalObject *> ImplicitComdatObjects;
600 SmallVector<Instruction *, 64> InstructionList;
602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
605 struct FunctionOperandInfo {
606 Function *F;
607 unsigned PersonalityFn;
608 unsigned Prefix;
609 unsigned Prologue;
611 std::vector<FunctionOperandInfo> FunctionOperands;
613 /// The set of attributes by index. Index zero in the file is for null, and
614 /// is thus not represented here. As such all indices are off by one.
615 std::vector<AttributeList> MAttributes;
617 /// The set of attribute groups.
618 std::map<unsigned, AttributeList> MAttributeGroups;
620 /// While parsing a function body, this is a list of the basic blocks for the
621 /// function.
622 std::vector<BasicBlock*> FunctionBBs;
624 // When reading the module header, this list is populated with functions that
625 // have bodies later in the file.
626 std::vector<Function*> FunctionsWithBodies;
628 // When intrinsic functions are encountered which require upgrading they are
629 // stored here with their replacement function.
630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631 UpdatedIntrinsicMap UpgradedIntrinsics;
633 // Several operations happen after the module header has been read, but
634 // before function bodies are processed. This keeps track of whether
635 // we've done this yet.
636 bool SeenFirstFunctionBody = false;
638 /// When function bodies are initially scanned, this map contains info about
639 /// where to find deferred function body in the stream.
640 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
642 /// When Metadata block is initially scanned when parsing the module, we may
643 /// choose to defer parsing of the metadata. This vector contains info about
644 /// which Metadata blocks are deferred.
645 std::vector<uint64_t> DeferredMetadataInfo;
647 /// These are basic blocks forward-referenced by block addresses. They are
648 /// inserted lazily into functions when they're loaded. The basic block ID is
649 /// its index into the vector.
650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651 std::deque<Function *> BasicBlockFwdRefQueue;
653 /// These are Functions that contain BlockAddresses which refer a different
654 /// Function. When parsing the different Function, queue Functions that refer
655 /// to the different Function. Those Functions must be materialized in order
656 /// to resolve their BlockAddress constants before the different Function
657 /// gets moved into another Module.
658 std::vector<Function *> BackwardRefFunctions;
660 /// Indicates that we are using a new encoding for instruction operands where
661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662 /// instruction number, for a more compact encoding. Some instruction
663 /// operands are not relative to the instruction ID: basic block numbers, and
664 /// types. Once the old style function blocks have been phased out, we would
665 /// not need this flag.
666 bool UseRelativeIDs = false;
668 /// True if all functions will be materialized, negating the need to process
669 /// (e.g.) blockaddress forward references.
670 bool WillMaterializeAllForwardRefs = false;
672 bool StripDebugInfo = false;
673 TBAAVerifier TBAAVerifyHelper;
675 std::vector<std::string> BundleTags;
676 SmallVector<SyncScope::ID, 8> SSIDs;
678 std::optional<ValueTypeCallbackTy> ValueTypeCallback;
680 public:
681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682 StringRef ProducerIdentification, LLVMContext &Context);
684 Error materializeForwardReferencedFunctions();
686 Error materialize(GlobalValue *GV) override;
687 Error materializeModule() override;
688 std::vector<StructType *> getIdentifiedStructTypes() const override;
690 /// Main interface to parsing a bitcode buffer.
691 /// \returns true if an error occurred.
692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693 bool IsImporting, ParserCallbacks Callbacks = {});
695 static uint64_t decodeSignRotatedValue(uint64_t V);
697 /// Materialize any deferred Metadata block.
698 Error materializeMetadata() override;
700 void setStripDebugInfo() override;
702 private:
703 std::vector<StructType *> IdentifiedStructTypes;
704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705 StructType *createIdentifiedStructType(LLVMContext &Context);
707 static constexpr unsigned InvalidTypeID = ~0u;
709 Type *getTypeByID(unsigned ID);
710 Type *getPtrElementTypeByID(unsigned ID);
711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
714 void callValueTypeCallback(Value *F, unsigned TypeID);
715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716 Expected<Constant *> getValueForInitializer(unsigned ID);
718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719 BasicBlock *ConstExprInsertBB) {
720 if (Ty && Ty->isMetadataTy())
721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
725 Metadata *getFnMetadataByID(unsigned ID) {
726 return MDLoader->getMetadataFwdRefOrLoad(ID);
729 BasicBlock *getBasicBlock(unsigned ID) const {
730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731 return FunctionBBs[ID];
734 AttributeList getAttributes(unsigned i) const {
735 if (i-1 < MAttributes.size())
736 return MAttributes[i-1];
737 return AttributeList();
740 /// Read a value/type pair out of the specified record from slot 'Slot'.
741 /// Increment Slot past the number of slots used in the record. Return true on
742 /// failure.
743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744 unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745 BasicBlock *ConstExprInsertBB) {
746 if (Slot == Record.size()) return true;
747 unsigned ValNo = (unsigned)Record[Slot++];
748 // Adjust the ValNo, if it was encoded relative to the InstNum.
749 if (UseRelativeIDs)
750 ValNo = InstNum - ValNo;
751 if (ValNo < InstNum) {
752 // If this is not a forward reference, just return the value we already
753 // have.
754 TypeID = ValueList.getTypeID(ValNo);
755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757 "Incorrect type ID stored for value");
758 return ResVal == nullptr;
760 if (Slot == Record.size())
761 return true;
763 TypeID = (unsigned)Record[Slot++];
764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765 ConstExprInsertBB);
766 return ResVal == nullptr;
769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770 /// past the number of slots used by the value in the record. Return true if
771 /// there is an error.
772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774 BasicBlock *ConstExprInsertBB) {
775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776 return true;
777 // All values currently take a single record slot.
778 ++Slot;
779 return false;
782 /// Like popValue, but does not increment the Slot number.
783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785 BasicBlock *ConstExprInsertBB) {
786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787 return ResVal == nullptr;
790 /// Version of getValue that returns ResVal directly, or 0 if there is an
791 /// error.
792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793 unsigned InstNum, Type *Ty, unsigned TyID,
794 BasicBlock *ConstExprInsertBB) {
795 if (Slot == Record.size()) return nullptr;
796 unsigned ValNo = (unsigned)Record[Slot];
797 // Adjust the ValNo, if it was encoded relative to the InstNum.
798 if (UseRelativeIDs)
799 ValNo = InstNum - ValNo;
800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
803 /// Like getValue, but decodes signed VBRs.
804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805 unsigned InstNum, Type *Ty, unsigned TyID,
806 BasicBlock *ConstExprInsertBB) {
807 if (Slot == Record.size()) return nullptr;
808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809 // Adjust the ValNo, if it was encoded relative to the InstNum.
810 if (UseRelativeIDs)
811 ValNo = InstNum - ValNo;
812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
816 /// corresponding argument's pointee type. Also upgrades intrinsics that now
817 /// require an elementtype attribute.
818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
820 /// Converts alignment exponent (i.e. power of two (or zero)) to the
821 /// corresponding alignment to use. If alignment is too large, returns
822 /// a corresponding error code.
823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826 ParserCallbacks Callbacks = {});
828 Error parseComdatRecord(ArrayRef<uint64_t> Record);
829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832 ArrayRef<uint64_t> Record);
834 Error parseAttributeBlock();
835 Error parseAttributeGroupBlock();
836 Error parseTypeTable();
837 Error parseTypeTableBody();
838 Error parseOperandBundleTags();
839 Error parseSyncScopeNames();
841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842 unsigned NameIndex, Triple &TT);
843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844 ArrayRef<uint64_t> Record);
845 Error parseValueSymbolTable(uint64_t Offset = 0);
846 Error parseGlobalValueSymbolTable();
847 Error parseConstants();
848 Error rememberAndSkipFunctionBodies();
849 Error rememberAndSkipFunctionBody();
850 /// Save the positions of the Metadata blocks and skip parsing the blocks.
851 Error rememberAndSkipMetadata();
852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853 Error parseFunctionBody(Function *F);
854 Error globalCleanup();
855 Error resolveGlobalAndIndirectSymbolInits();
856 Error parseUseLists();
857 Error findFunctionInStream(
858 Function *F,
859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
861 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867 /// The module index built during parsing.
868 ModuleSummaryIndex &TheIndex;
870 /// Indicates whether we have encountered a global value summary section
871 /// yet during parsing.
872 bool SeenGlobalValSummary = false;
874 /// Indicates whether we have already parsed the VST, used for error checking.
875 bool SeenValueSymbolTable = false;
877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878 /// Used to enable on-demand parsing of the VST.
879 uint64_t VSTOffset = 0;
881 // Map to save ValueId to ValueInfo association that was recorded in the
882 // ValueSymbolTable. It is used after the VST is parsed to convert
883 // call graph edges read from the function summary from referencing
884 // callees by their ValueId to using the ValueInfo instead, which is how
885 // they are recorded in the summary index being built.
886 // We save a GUID which refers to the same global as the ValueInfo, but
887 // ignoring the linkage, i.e. for values other than local linkage they are
888 // identical (this is the second tuple member).
889 // The third tuple member is the real GUID of the ValueInfo.
890 DenseMap<unsigned,
891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
892 ValueIdToValueInfoMap;
894 /// Map populated during module path string table parsing, from the
895 /// module ID to a string reference owned by the index's module
896 /// path string table, used to correlate with combined index
897 /// summary records.
898 DenseMap<uint64_t, StringRef> ModuleIdMap;
900 /// Original source file name recorded in a bitcode record.
901 std::string SourceFileName;
903 /// The string identifier given to this module by the client, normally the
904 /// path to the bitcode file.
905 StringRef ModulePath;
907 /// Callback to ask whether a symbol is the prevailing copy when invoked
908 /// during combined index building.
909 std::function<bool(GlobalValue::GUID)> IsPrevailing;
911 /// Saves the stack ids from the STACK_IDS record to consult when adding stack
912 /// ids from the lists in the callsite and alloc entries to the index.
913 std::vector<uint64_t> StackIds;
915 public:
916 ModuleSummaryIndexBitcodeReader(
917 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
918 StringRef ModulePath,
919 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
921 Error parseModule();
923 private:
924 void setValueGUID(uint64_t ValueID, StringRef ValueName,
925 GlobalValue::LinkageTypes Linkage,
926 StringRef SourceFileName);
927 Error parseValueSymbolTable(
928 uint64_t Offset,
929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
930 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
931 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
932 bool IsOldProfileFormat,
933 bool HasProfile,
934 bool HasRelBF);
935 Error parseEntireSummary(unsigned ID);
936 Error parseModuleStringTable();
937 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
938 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
939 TypeIdCompatibleVtableInfo &TypeId);
940 std::vector<FunctionSummary::ParamAccess>
941 parseParamAccesses(ArrayRef<uint64_t> Record);
943 template <bool AllowNullValueInfo = false>
944 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
945 getValueInfoFromValueId(unsigned ValueId);
947 void addThisModule();
948 ModuleSummaryIndex::ModuleInfo *getThisModule();
951 } // end anonymous namespace
953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
954 Error Err) {
955 if (Err) {
956 std::error_code EC;
957 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
958 EC = EIB.convertToErrorCode();
959 Ctx.emitError(EIB.message());
961 return EC;
963 return std::error_code();
966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
967 StringRef ProducerIdentification,
968 LLVMContext &Context)
969 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
970 ValueList(this->Stream.SizeInBytes(),
971 [this](unsigned ValID, BasicBlock *InsertBB) {
972 return materializeValue(ValID, InsertBB);
973 }) {
974 this->ProducerIdentification = std::string(ProducerIdentification);
977 Error BitcodeReader::materializeForwardReferencedFunctions() {
978 if (WillMaterializeAllForwardRefs)
979 return Error::success();
981 // Prevent recursion.
982 WillMaterializeAllForwardRefs = true;
984 while (!BasicBlockFwdRefQueue.empty()) {
985 Function *F = BasicBlockFwdRefQueue.front();
986 BasicBlockFwdRefQueue.pop_front();
987 assert(F && "Expected valid function");
988 if (!BasicBlockFwdRefs.count(F))
989 // Already materialized.
990 continue;
992 // Check for a function that isn't materializable to prevent an infinite
993 // loop. When parsing a blockaddress stored in a global variable, there
994 // isn't a trivial way to check if a function will have a body without a
995 // linear search through FunctionsWithBodies, so just check it here.
996 if (!F->isMaterializable())
997 return error("Never resolved function from blockaddress");
999 // Try to materialize F.
1000 if (Error Err = materialize(F))
1001 return Err;
1003 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1005 for (Function *F : BackwardRefFunctions)
1006 if (Error Err = materialize(F))
1007 return Err;
1008 BackwardRefFunctions.clear();
1010 // Reset state.
1011 WillMaterializeAllForwardRefs = false;
1012 return Error::success();
1015 //===----------------------------------------------------------------------===//
1016 // Helper functions to implement forward reference resolution, etc.
1017 //===----------------------------------------------------------------------===//
1019 static bool hasImplicitComdat(size_t Val) {
1020 switch (Val) {
1021 default:
1022 return false;
1023 case 1: // Old WeakAnyLinkage
1024 case 4: // Old LinkOnceAnyLinkage
1025 case 10: // Old WeakODRLinkage
1026 case 11: // Old LinkOnceODRLinkage
1027 return true;
1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1032 switch (Val) {
1033 default: // Map unknown/new linkages to external
1034 case 0:
1035 return GlobalValue::ExternalLinkage;
1036 case 2:
1037 return GlobalValue::AppendingLinkage;
1038 case 3:
1039 return GlobalValue::InternalLinkage;
1040 case 5:
1041 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1042 case 6:
1043 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1044 case 7:
1045 return GlobalValue::ExternalWeakLinkage;
1046 case 8:
1047 return GlobalValue::CommonLinkage;
1048 case 9:
1049 return GlobalValue::PrivateLinkage;
1050 case 12:
1051 return GlobalValue::AvailableExternallyLinkage;
1052 case 13:
1053 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1054 case 14:
1055 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1056 case 15:
1057 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1058 case 1: // Old value with implicit comdat.
1059 case 16:
1060 return GlobalValue::WeakAnyLinkage;
1061 case 10: // Old value with implicit comdat.
1062 case 17:
1063 return GlobalValue::WeakODRLinkage;
1064 case 4: // Old value with implicit comdat.
1065 case 18:
1066 return GlobalValue::LinkOnceAnyLinkage;
1067 case 11: // Old value with implicit comdat.
1068 case 19:
1069 return GlobalValue::LinkOnceODRLinkage;
1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1074 FunctionSummary::FFlags Flags;
1075 Flags.ReadNone = RawFlags & 0x1;
1076 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1077 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1078 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1079 Flags.NoInline = (RawFlags >> 4) & 0x1;
1080 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1081 Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1082 Flags.MayThrow = (RawFlags >> 7) & 0x1;
1083 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1084 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1085 return Flags;
1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1091 // visibility: [8, 10).
1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1093 uint64_t Version) {
1094 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1095 // like getDecodedLinkage() above. Any future change to the linkage enum and
1096 // to getDecodedLinkage() will need to be taken into account here as above.
1097 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1098 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1099 RawFlags = RawFlags >> 4;
1100 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1101 // The Live flag wasn't introduced until version 3. For dead stripping
1102 // to work correctly on earlier versions, we must conservatively treat all
1103 // values as live.
1104 bool Live = (RawFlags & 0x2) || Version < 3;
1105 bool Local = (RawFlags & 0x4);
1106 bool AutoHide = (RawFlags & 0x8);
1108 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1109 Live, Local, AutoHide);
1112 // Decode the flags for GlobalVariable in the summary
1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1114 return GlobalVarSummary::GVarFlags(
1115 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1116 (RawFlags & 0x4) ? true : false,
1117 (GlobalObject::VCallVisibility)(RawFlags >> 3));
1120 static std::pair<CalleeInfo::HotnessType, bool>
1121 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1122 CalleeInfo::HotnessType Hotness =
1123 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1124 bool HasTailCall = (RawFlags & 0x8); // 1 bit
1125 return {Hotness, HasTailCall};
1128 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1129 bool &HasTailCall) {
1130 static constexpr uint64_t RelBlockFreqMask =
1131 (1 << CalleeInfo::RelBlockFreqBits) - 1;
1132 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1133 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1136 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1137 switch (Val) {
1138 default: // Map unknown visibilities to default.
1139 case 0: return GlobalValue::DefaultVisibility;
1140 case 1: return GlobalValue::HiddenVisibility;
1141 case 2: return GlobalValue::ProtectedVisibility;
1145 static GlobalValue::DLLStorageClassTypes
1146 getDecodedDLLStorageClass(unsigned Val) {
1147 switch (Val) {
1148 default: // Map unknown values to default.
1149 case 0: return GlobalValue::DefaultStorageClass;
1150 case 1: return GlobalValue::DLLImportStorageClass;
1151 case 2: return GlobalValue::DLLExportStorageClass;
1155 static bool getDecodedDSOLocal(unsigned Val) {
1156 switch(Val) {
1157 default: // Map unknown values to preemptable.
1158 case 0: return false;
1159 case 1: return true;
1163 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1164 switch (Val) {
1165 case 1:
1166 return CodeModel::Tiny;
1167 case 2:
1168 return CodeModel::Small;
1169 case 3:
1170 return CodeModel::Kernel;
1171 case 4:
1172 return CodeModel::Medium;
1173 case 5:
1174 return CodeModel::Large;
1177 return {};
1180 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1181 switch (Val) {
1182 case 0: return GlobalVariable::NotThreadLocal;
1183 default: // Map unknown non-zero value to general dynamic.
1184 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1185 case 2: return GlobalVariable::LocalDynamicTLSModel;
1186 case 3: return GlobalVariable::InitialExecTLSModel;
1187 case 4: return GlobalVariable::LocalExecTLSModel;
1191 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1192 switch (Val) {
1193 default: // Map unknown to UnnamedAddr::None.
1194 case 0: return GlobalVariable::UnnamedAddr::None;
1195 case 1: return GlobalVariable::UnnamedAddr::Global;
1196 case 2: return GlobalVariable::UnnamedAddr::Local;
1200 static int getDecodedCastOpcode(unsigned Val) {
1201 switch (Val) {
1202 default: return -1;
1203 case bitc::CAST_TRUNC : return Instruction::Trunc;
1204 case bitc::CAST_ZEXT : return Instruction::ZExt;
1205 case bitc::CAST_SEXT : return Instruction::SExt;
1206 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1207 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1208 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1209 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1210 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1211 case bitc::CAST_FPEXT : return Instruction::FPExt;
1212 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1213 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1214 case bitc::CAST_BITCAST : return Instruction::BitCast;
1215 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1219 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1220 bool IsFP = Ty->isFPOrFPVectorTy();
1221 // UnOps are only valid for int/fp or vector of int/fp types
1222 if (!IsFP && !Ty->isIntOrIntVectorTy())
1223 return -1;
1225 switch (Val) {
1226 default:
1227 return -1;
1228 case bitc::UNOP_FNEG:
1229 return IsFP ? Instruction::FNeg : -1;
1233 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1234 bool IsFP = Ty->isFPOrFPVectorTy();
1235 // BinOps are only valid for int/fp or vector of int/fp types
1236 if (!IsFP && !Ty->isIntOrIntVectorTy())
1237 return -1;
1239 switch (Val) {
1240 default:
1241 return -1;
1242 case bitc::BINOP_ADD:
1243 return IsFP ? Instruction::FAdd : Instruction::Add;
1244 case bitc::BINOP_SUB:
1245 return IsFP ? Instruction::FSub : Instruction::Sub;
1246 case bitc::BINOP_MUL:
1247 return IsFP ? Instruction::FMul : Instruction::Mul;
1248 case bitc::BINOP_UDIV:
1249 return IsFP ? -1 : Instruction::UDiv;
1250 case bitc::BINOP_SDIV:
1251 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1252 case bitc::BINOP_UREM:
1253 return IsFP ? -1 : Instruction::URem;
1254 case bitc::BINOP_SREM:
1255 return IsFP ? Instruction::FRem : Instruction::SRem;
1256 case bitc::BINOP_SHL:
1257 return IsFP ? -1 : Instruction::Shl;
1258 case bitc::BINOP_LSHR:
1259 return IsFP ? -1 : Instruction::LShr;
1260 case bitc::BINOP_ASHR:
1261 return IsFP ? -1 : Instruction::AShr;
1262 case bitc::BINOP_AND:
1263 return IsFP ? -1 : Instruction::And;
1264 case bitc::BINOP_OR:
1265 return IsFP ? -1 : Instruction::Or;
1266 case bitc::BINOP_XOR:
1267 return IsFP ? -1 : Instruction::Xor;
1271 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1272 switch (Val) {
1273 default: return AtomicRMWInst::BAD_BINOP;
1274 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1275 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1276 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1277 case bitc::RMW_AND: return AtomicRMWInst::And;
1278 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1279 case bitc::RMW_OR: return AtomicRMWInst::Or;
1280 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1281 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1282 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1283 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1284 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1285 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1286 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1287 case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1288 case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1289 case bitc::RMW_UINC_WRAP:
1290 return AtomicRMWInst::UIncWrap;
1291 case bitc::RMW_UDEC_WRAP:
1292 return AtomicRMWInst::UDecWrap;
1296 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1297 switch (Val) {
1298 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1299 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1300 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1301 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1302 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1303 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1304 default: // Map unknown orderings to sequentially-consistent.
1305 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1309 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1310 switch (Val) {
1311 default: // Map unknown selection kinds to any.
1312 case bitc::COMDAT_SELECTION_KIND_ANY:
1313 return Comdat::Any;
1314 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1315 return Comdat::ExactMatch;
1316 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1317 return Comdat::Largest;
1318 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1319 return Comdat::NoDeduplicate;
1320 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1321 return Comdat::SameSize;
1325 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1326 FastMathFlags FMF;
1327 if (0 != (Val & bitc::UnsafeAlgebra))
1328 FMF.setFast();
1329 if (0 != (Val & bitc::AllowReassoc))
1330 FMF.setAllowReassoc();
1331 if (0 != (Val & bitc::NoNaNs))
1332 FMF.setNoNaNs();
1333 if (0 != (Val & bitc::NoInfs))
1334 FMF.setNoInfs();
1335 if (0 != (Val & bitc::NoSignedZeros))
1336 FMF.setNoSignedZeros();
1337 if (0 != (Val & bitc::AllowReciprocal))
1338 FMF.setAllowReciprocal();
1339 if (0 != (Val & bitc::AllowContract))
1340 FMF.setAllowContract(true);
1341 if (0 != (Val & bitc::ApproxFunc))
1342 FMF.setApproxFunc();
1343 return FMF;
1346 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1347 // A GlobalValue with local linkage cannot have a DLL storage class.
1348 if (GV->hasLocalLinkage())
1349 return;
1350 switch (Val) {
1351 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1352 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1356 Type *BitcodeReader::getTypeByID(unsigned ID) {
1357 // The type table size is always specified correctly.
1358 if (ID >= TypeList.size())
1359 return nullptr;
1361 if (Type *Ty = TypeList[ID])
1362 return Ty;
1364 // If we have a forward reference, the only possible case is when it is to a
1365 // named struct. Just create a placeholder for now.
1366 return TypeList[ID] = createIdentifiedStructType(Context);
1369 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1370 auto It = ContainedTypeIDs.find(ID);
1371 if (It == ContainedTypeIDs.end())
1372 return InvalidTypeID;
1374 if (Idx >= It->second.size())
1375 return InvalidTypeID;
1377 return It->second[Idx];
1380 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1381 if (ID >= TypeList.size())
1382 return nullptr;
1384 Type *Ty = TypeList[ID];
1385 if (!Ty->isPointerTy())
1386 return nullptr;
1388 return getTypeByID(getContainedTypeID(ID, 0));
1391 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1392 ArrayRef<unsigned> ChildTypeIDs) {
1393 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1394 auto CacheKey = std::make_pair(Ty, ChildTypeID);
1395 auto It = VirtualTypeIDs.find(CacheKey);
1396 if (It != VirtualTypeIDs.end()) {
1397 // The cmpxchg return value is the only place we need more than one
1398 // contained type ID, however the second one will always be the same (i1),
1399 // so we don't need to include it in the cache key. This asserts that the
1400 // contained types are indeed as expected and there are no collisions.
1401 assert((ChildTypeIDs.empty() ||
1402 ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1403 "Incorrect cached contained type IDs");
1404 return It->second;
1407 unsigned TypeID = TypeList.size();
1408 TypeList.push_back(Ty);
1409 if (!ChildTypeIDs.empty())
1410 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1411 VirtualTypeIDs.insert({CacheKey, TypeID});
1412 return TypeID;
1415 static bool isConstExprSupported(const BitcodeConstant *BC) {
1416 uint8_t Opcode = BC->Opcode;
1418 // These are not real constant expressions, always consider them supported.
1419 if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1420 return true;
1422 // If -expand-constant-exprs is set, we want to consider all expressions
1423 // as unsupported.
1424 if (ExpandConstantExprs)
1425 return false;
1427 if (Instruction::isBinaryOp(Opcode))
1428 return ConstantExpr::isSupportedBinOp(Opcode);
1430 if (Instruction::isCast(Opcode))
1431 return ConstantExpr::isSupportedCastOp(Opcode);
1433 if (Opcode == Instruction::GetElementPtr)
1434 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1436 switch (Opcode) {
1437 case Instruction::FNeg:
1438 case Instruction::Select:
1439 return false;
1440 default:
1441 return true;
1445 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1446 BasicBlock *InsertBB) {
1447 // Quickly handle the case where there is no BitcodeConstant to resolve.
1448 if (StartValID < ValueList.size() && ValueList[StartValID] &&
1449 !isa<BitcodeConstant>(ValueList[StartValID]))
1450 return ValueList[StartValID];
1452 SmallDenseMap<unsigned, Value *> MaterializedValues;
1453 SmallVector<unsigned> Worklist;
1454 Worklist.push_back(StartValID);
1455 while (!Worklist.empty()) {
1456 unsigned ValID = Worklist.back();
1457 if (MaterializedValues.count(ValID)) {
1458 // Duplicate expression that was already handled.
1459 Worklist.pop_back();
1460 continue;
1463 if (ValID >= ValueList.size() || !ValueList[ValID])
1464 return error("Invalid value ID");
1466 Value *V = ValueList[ValID];
1467 auto *BC = dyn_cast<BitcodeConstant>(V);
1468 if (!BC) {
1469 MaterializedValues.insert({ValID, V});
1470 Worklist.pop_back();
1471 continue;
1474 // Iterate in reverse, so values will get popped from the worklist in
1475 // expected order.
1476 SmallVector<Value *> Ops;
1477 for (unsigned OpID : reverse(BC->getOperandIDs())) {
1478 auto It = MaterializedValues.find(OpID);
1479 if (It != MaterializedValues.end())
1480 Ops.push_back(It->second);
1481 else
1482 Worklist.push_back(OpID);
1485 // Some expressions have not been resolved yet, handle them first and then
1486 // revisit this one.
1487 if (Ops.size() != BC->getOperandIDs().size())
1488 continue;
1489 std::reverse(Ops.begin(), Ops.end());
1491 SmallVector<Constant *> ConstOps;
1492 for (Value *Op : Ops)
1493 if (auto *C = dyn_cast<Constant>(Op))
1494 ConstOps.push_back(C);
1496 // Materialize as constant expression if possible.
1497 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1498 Constant *C;
1499 if (Instruction::isCast(BC->Opcode)) {
1500 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1501 if (!C)
1502 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1503 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1504 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1505 } else {
1506 switch (BC->Opcode) {
1507 case BitcodeConstant::NoCFIOpcode: {
1508 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1509 if (!GV)
1510 return error("no_cfi operand must be GlobalValue");
1511 C = NoCFIValue::get(GV);
1512 break;
1514 case BitcodeConstant::DSOLocalEquivalentOpcode: {
1515 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1516 if (!GV)
1517 return error("dso_local operand must be GlobalValue");
1518 C = DSOLocalEquivalent::get(GV);
1519 break;
1521 case BitcodeConstant::BlockAddressOpcode: {
1522 Function *Fn = dyn_cast<Function>(ConstOps[0]);
1523 if (!Fn)
1524 return error("blockaddress operand must be a function");
1526 // If the function is already parsed we can insert the block address
1527 // right away.
1528 BasicBlock *BB;
1529 unsigned BBID = BC->Extra;
1530 if (!BBID)
1531 // Invalid reference to entry block.
1532 return error("Invalid ID");
1533 if (!Fn->empty()) {
1534 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1535 for (size_t I = 0, E = BBID; I != E; ++I) {
1536 if (BBI == BBE)
1537 return error("Invalid ID");
1538 ++BBI;
1540 BB = &*BBI;
1541 } else {
1542 // Otherwise insert a placeholder and remember it so it can be
1543 // inserted when the function is parsed.
1544 auto &FwdBBs = BasicBlockFwdRefs[Fn];
1545 if (FwdBBs.empty())
1546 BasicBlockFwdRefQueue.push_back(Fn);
1547 if (FwdBBs.size() < BBID + 1)
1548 FwdBBs.resize(BBID + 1);
1549 if (!FwdBBs[BBID])
1550 FwdBBs[BBID] = BasicBlock::Create(Context);
1551 BB = FwdBBs[BBID];
1553 C = BlockAddress::get(Fn, BB);
1554 break;
1556 case BitcodeConstant::ConstantStructOpcode:
1557 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1558 break;
1559 case BitcodeConstant::ConstantArrayOpcode:
1560 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1561 break;
1562 case BitcodeConstant::ConstantVectorOpcode:
1563 C = ConstantVector::get(ConstOps);
1564 break;
1565 case Instruction::ICmp:
1566 case Instruction::FCmp:
1567 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1568 break;
1569 case Instruction::GetElementPtr:
1570 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1571 ArrayRef(ConstOps).drop_front(),
1572 BC->Flags, BC->getInRangeIndex());
1573 break;
1574 case Instruction::ExtractElement:
1575 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1576 break;
1577 case Instruction::InsertElement:
1578 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1579 ConstOps[2]);
1580 break;
1581 case Instruction::ShuffleVector: {
1582 SmallVector<int, 16> Mask;
1583 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1584 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1585 break;
1587 default:
1588 llvm_unreachable("Unhandled bitcode constant");
1592 // Cache resolved constant.
1593 ValueList.replaceValueWithoutRAUW(ValID, C);
1594 MaterializedValues.insert({ValID, C});
1595 Worklist.pop_back();
1596 continue;
1599 if (!InsertBB)
1600 return error(Twine("Value referenced by initializer is an unsupported "
1601 "constant expression of type ") +
1602 BC->getOpcodeName());
1604 // Materialize as instructions if necessary.
1605 Instruction *I;
1606 if (Instruction::isCast(BC->Opcode)) {
1607 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1608 BC->getType(), "constexpr", InsertBB);
1609 } else if (Instruction::isUnaryOp(BC->Opcode)) {
1610 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1611 "constexpr", InsertBB);
1612 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1613 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1614 Ops[1], "constexpr", InsertBB);
1615 if (isa<OverflowingBinaryOperator>(I)) {
1616 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1617 I->setHasNoSignedWrap();
1618 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1619 I->setHasNoUnsignedWrap();
1621 if (isa<PossiblyExactOperator>(I) &&
1622 (BC->Flags & PossiblyExactOperator::IsExact))
1623 I->setIsExact();
1624 } else {
1625 switch (BC->Opcode) {
1626 case BitcodeConstant::ConstantVectorOpcode: {
1627 Type *IdxTy = Type::getInt32Ty(BC->getContext());
1628 Value *V = PoisonValue::get(BC->getType());
1629 for (auto Pair : enumerate(Ops)) {
1630 Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1631 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1632 InsertBB);
1634 I = cast<Instruction>(V);
1635 break;
1637 case BitcodeConstant::ConstantStructOpcode:
1638 case BitcodeConstant::ConstantArrayOpcode: {
1639 Value *V = PoisonValue::get(BC->getType());
1640 for (auto Pair : enumerate(Ops))
1641 V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1642 "constexpr.ins", InsertBB);
1643 I = cast<Instruction>(V);
1644 break;
1646 case Instruction::ICmp:
1647 case Instruction::FCmp:
1648 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1649 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1650 "constexpr", InsertBB);
1651 break;
1652 case Instruction::GetElementPtr:
1653 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1654 ArrayRef(Ops).drop_front(), "constexpr",
1655 InsertBB);
1656 if (BC->Flags)
1657 cast<GetElementPtrInst>(I)->setIsInBounds();
1658 break;
1659 case Instruction::Select:
1660 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1661 break;
1662 case Instruction::ExtractElement:
1663 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1664 break;
1665 case Instruction::InsertElement:
1666 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1667 InsertBB);
1668 break;
1669 case Instruction::ShuffleVector:
1670 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1671 InsertBB);
1672 break;
1673 default:
1674 llvm_unreachable("Unhandled bitcode constant");
1678 MaterializedValues.insert({ValID, I});
1679 Worklist.pop_back();
1682 return MaterializedValues[StartValID];
1685 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1686 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1687 if (!MaybeV)
1688 return MaybeV.takeError();
1690 // Result must be Constant if InsertBB is nullptr.
1691 return cast<Constant>(MaybeV.get());
1694 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1695 StringRef Name) {
1696 auto *Ret = StructType::create(Context, Name);
1697 IdentifiedStructTypes.push_back(Ret);
1698 return Ret;
1701 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1702 auto *Ret = StructType::create(Context);
1703 IdentifiedStructTypes.push_back(Ret);
1704 return Ret;
1707 //===----------------------------------------------------------------------===//
1708 // Functions for parsing blocks from the bitcode file
1709 //===----------------------------------------------------------------------===//
1711 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1712 switch (Val) {
1713 case Attribute::EndAttrKinds:
1714 case Attribute::EmptyKey:
1715 case Attribute::TombstoneKey:
1716 llvm_unreachable("Synthetic enumerators which should never get here");
1718 case Attribute::None: return 0;
1719 case Attribute::ZExt: return 1 << 0;
1720 case Attribute::SExt: return 1 << 1;
1721 case Attribute::NoReturn: return 1 << 2;
1722 case Attribute::InReg: return 1 << 3;
1723 case Attribute::StructRet: return 1 << 4;
1724 case Attribute::NoUnwind: return 1 << 5;
1725 case Attribute::NoAlias: return 1 << 6;
1726 case Attribute::ByVal: return 1 << 7;
1727 case Attribute::Nest: return 1 << 8;
1728 case Attribute::ReadNone: return 1 << 9;
1729 case Attribute::ReadOnly: return 1 << 10;
1730 case Attribute::NoInline: return 1 << 11;
1731 case Attribute::AlwaysInline: return 1 << 12;
1732 case Attribute::OptimizeForSize: return 1 << 13;
1733 case Attribute::StackProtect: return 1 << 14;
1734 case Attribute::StackProtectReq: return 1 << 15;
1735 case Attribute::Alignment: return 31 << 16;
1736 case Attribute::NoCapture: return 1 << 21;
1737 case Attribute::NoRedZone: return 1 << 22;
1738 case Attribute::NoImplicitFloat: return 1 << 23;
1739 case Attribute::Naked: return 1 << 24;
1740 case Attribute::InlineHint: return 1 << 25;
1741 case Attribute::StackAlignment: return 7 << 26;
1742 case Attribute::ReturnsTwice: return 1 << 29;
1743 case Attribute::UWTable: return 1 << 30;
1744 case Attribute::NonLazyBind: return 1U << 31;
1745 case Attribute::SanitizeAddress: return 1ULL << 32;
1746 case Attribute::MinSize: return 1ULL << 33;
1747 case Attribute::NoDuplicate: return 1ULL << 34;
1748 case Attribute::StackProtectStrong: return 1ULL << 35;
1749 case Attribute::SanitizeThread: return 1ULL << 36;
1750 case Attribute::SanitizeMemory: return 1ULL << 37;
1751 case Attribute::NoBuiltin: return 1ULL << 38;
1752 case Attribute::Returned: return 1ULL << 39;
1753 case Attribute::Cold: return 1ULL << 40;
1754 case Attribute::Builtin: return 1ULL << 41;
1755 case Attribute::OptimizeNone: return 1ULL << 42;
1756 case Attribute::InAlloca: return 1ULL << 43;
1757 case Attribute::NonNull: return 1ULL << 44;
1758 case Attribute::JumpTable: return 1ULL << 45;
1759 case Attribute::Convergent: return 1ULL << 46;
1760 case Attribute::SafeStack: return 1ULL << 47;
1761 case Attribute::NoRecurse: return 1ULL << 48;
1762 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1763 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1764 case Attribute::SwiftSelf: return 1ULL << 51;
1765 case Attribute::SwiftError: return 1ULL << 52;
1766 case Attribute::WriteOnly: return 1ULL << 53;
1767 case Attribute::Speculatable: return 1ULL << 54;
1768 case Attribute::StrictFP: return 1ULL << 55;
1769 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1770 case Attribute::NoCfCheck: return 1ULL << 57;
1771 case Attribute::OptForFuzzing: return 1ULL << 58;
1772 case Attribute::ShadowCallStack: return 1ULL << 59;
1773 case Attribute::SpeculativeLoadHardening:
1774 return 1ULL << 60;
1775 case Attribute::ImmArg:
1776 return 1ULL << 61;
1777 case Attribute::WillReturn:
1778 return 1ULL << 62;
1779 case Attribute::NoFree:
1780 return 1ULL << 63;
1781 default:
1782 // Other attributes are not supported in the raw format,
1783 // as we ran out of space.
1784 return 0;
1786 llvm_unreachable("Unsupported attribute type");
1789 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1790 if (!Val) return;
1792 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1793 I = Attribute::AttrKind(I + 1)) {
1794 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1795 if (I == Attribute::Alignment)
1796 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1797 else if (I == Attribute::StackAlignment)
1798 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1799 else if (Attribute::isTypeAttrKind(I))
1800 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1801 else
1802 B.addAttribute(I);
1807 /// This fills an AttrBuilder object with the LLVM attributes that have
1808 /// been decoded from the given integer. This function must stay in sync with
1809 /// 'encodeLLVMAttributesForBitcode'.
1810 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1811 uint64_t EncodedAttrs,
1812 uint64_t AttrIdx) {
1813 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1814 // the bits above 31 down by 11 bits.
1815 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1816 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1817 "Alignment must be a power of two.");
1819 if (Alignment)
1820 B.addAlignmentAttr(Alignment);
1822 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1823 (EncodedAttrs & 0xffff);
1825 if (AttrIdx == AttributeList::FunctionIndex) {
1826 // Upgrade old memory attributes.
1827 MemoryEffects ME = MemoryEffects::unknown();
1828 if (Attrs & (1ULL << 9)) {
1829 // ReadNone
1830 Attrs &= ~(1ULL << 9);
1831 ME &= MemoryEffects::none();
1833 if (Attrs & (1ULL << 10)) {
1834 // ReadOnly
1835 Attrs &= ~(1ULL << 10);
1836 ME &= MemoryEffects::readOnly();
1838 if (Attrs & (1ULL << 49)) {
1839 // InaccessibleMemOnly
1840 Attrs &= ~(1ULL << 49);
1841 ME &= MemoryEffects::inaccessibleMemOnly();
1843 if (Attrs & (1ULL << 50)) {
1844 // InaccessibleMemOrArgMemOnly
1845 Attrs &= ~(1ULL << 50);
1846 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1848 if (Attrs & (1ULL << 53)) {
1849 // WriteOnly
1850 Attrs &= ~(1ULL << 53);
1851 ME &= MemoryEffects::writeOnly();
1853 if (ME != MemoryEffects::unknown())
1854 B.addMemoryAttr(ME);
1857 addRawAttributeValue(B, Attrs);
1860 Error BitcodeReader::parseAttributeBlock() {
1861 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1862 return Err;
1864 if (!MAttributes.empty())
1865 return error("Invalid multiple blocks");
1867 SmallVector<uint64_t, 64> Record;
1869 SmallVector<AttributeList, 8> Attrs;
1871 // Read all the records.
1872 while (true) {
1873 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1874 if (!MaybeEntry)
1875 return MaybeEntry.takeError();
1876 BitstreamEntry Entry = MaybeEntry.get();
1878 switch (Entry.Kind) {
1879 case BitstreamEntry::SubBlock: // Handled for us already.
1880 case BitstreamEntry::Error:
1881 return error("Malformed block");
1882 case BitstreamEntry::EndBlock:
1883 return Error::success();
1884 case BitstreamEntry::Record:
1885 // The interesting case.
1886 break;
1889 // Read a record.
1890 Record.clear();
1891 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1892 if (!MaybeRecord)
1893 return MaybeRecord.takeError();
1894 switch (MaybeRecord.get()) {
1895 default: // Default behavior: ignore.
1896 break;
1897 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1898 // Deprecated, but still needed to read old bitcode files.
1899 if (Record.size() & 1)
1900 return error("Invalid parameter attribute record");
1902 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1903 AttrBuilder B(Context);
1904 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1905 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1908 MAttributes.push_back(AttributeList::get(Context, Attrs));
1909 Attrs.clear();
1910 break;
1911 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1912 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1913 Attrs.push_back(MAttributeGroups[Record[i]]);
1915 MAttributes.push_back(AttributeList::get(Context, Attrs));
1916 Attrs.clear();
1917 break;
1922 // Returns Attribute::None on unrecognized codes.
1923 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1924 switch (Code) {
1925 default:
1926 return Attribute::None;
1927 case bitc::ATTR_KIND_ALIGNMENT:
1928 return Attribute::Alignment;
1929 case bitc::ATTR_KIND_ALWAYS_INLINE:
1930 return Attribute::AlwaysInline;
1931 case bitc::ATTR_KIND_BUILTIN:
1932 return Attribute::Builtin;
1933 case bitc::ATTR_KIND_BY_VAL:
1934 return Attribute::ByVal;
1935 case bitc::ATTR_KIND_IN_ALLOCA:
1936 return Attribute::InAlloca;
1937 case bitc::ATTR_KIND_COLD:
1938 return Attribute::Cold;
1939 case bitc::ATTR_KIND_CONVERGENT:
1940 return Attribute::Convergent;
1941 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1942 return Attribute::DisableSanitizerInstrumentation;
1943 case bitc::ATTR_KIND_ELEMENTTYPE:
1944 return Attribute::ElementType;
1945 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1946 return Attribute::FnRetThunkExtern;
1947 case bitc::ATTR_KIND_INLINE_HINT:
1948 return Attribute::InlineHint;
1949 case bitc::ATTR_KIND_IN_REG:
1950 return Attribute::InReg;
1951 case bitc::ATTR_KIND_JUMP_TABLE:
1952 return Attribute::JumpTable;
1953 case bitc::ATTR_KIND_MEMORY:
1954 return Attribute::Memory;
1955 case bitc::ATTR_KIND_NOFPCLASS:
1956 return Attribute::NoFPClass;
1957 case bitc::ATTR_KIND_MIN_SIZE:
1958 return Attribute::MinSize;
1959 case bitc::ATTR_KIND_NAKED:
1960 return Attribute::Naked;
1961 case bitc::ATTR_KIND_NEST:
1962 return Attribute::Nest;
1963 case bitc::ATTR_KIND_NO_ALIAS:
1964 return Attribute::NoAlias;
1965 case bitc::ATTR_KIND_NO_BUILTIN:
1966 return Attribute::NoBuiltin;
1967 case bitc::ATTR_KIND_NO_CALLBACK:
1968 return Attribute::NoCallback;
1969 case bitc::ATTR_KIND_NO_CAPTURE:
1970 return Attribute::NoCapture;
1971 case bitc::ATTR_KIND_NO_DUPLICATE:
1972 return Attribute::NoDuplicate;
1973 case bitc::ATTR_KIND_NOFREE:
1974 return Attribute::NoFree;
1975 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1976 return Attribute::NoImplicitFloat;
1977 case bitc::ATTR_KIND_NO_INLINE:
1978 return Attribute::NoInline;
1979 case bitc::ATTR_KIND_NO_RECURSE:
1980 return Attribute::NoRecurse;
1981 case bitc::ATTR_KIND_NO_MERGE:
1982 return Attribute::NoMerge;
1983 case bitc::ATTR_KIND_NON_LAZY_BIND:
1984 return Attribute::NonLazyBind;
1985 case bitc::ATTR_KIND_NON_NULL:
1986 return Attribute::NonNull;
1987 case bitc::ATTR_KIND_DEREFERENCEABLE:
1988 return Attribute::Dereferenceable;
1989 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1990 return Attribute::DereferenceableOrNull;
1991 case bitc::ATTR_KIND_ALLOC_ALIGN:
1992 return Attribute::AllocAlign;
1993 case bitc::ATTR_KIND_ALLOC_KIND:
1994 return Attribute::AllocKind;
1995 case bitc::ATTR_KIND_ALLOC_SIZE:
1996 return Attribute::AllocSize;
1997 case bitc::ATTR_KIND_ALLOCATED_POINTER:
1998 return Attribute::AllocatedPointer;
1999 case bitc::ATTR_KIND_NO_RED_ZONE:
2000 return Attribute::NoRedZone;
2001 case bitc::ATTR_KIND_NO_RETURN:
2002 return Attribute::NoReturn;
2003 case bitc::ATTR_KIND_NOSYNC:
2004 return Attribute::NoSync;
2005 case bitc::ATTR_KIND_NOCF_CHECK:
2006 return Attribute::NoCfCheck;
2007 case bitc::ATTR_KIND_NO_PROFILE:
2008 return Attribute::NoProfile;
2009 case bitc::ATTR_KIND_SKIP_PROFILE:
2010 return Attribute::SkipProfile;
2011 case bitc::ATTR_KIND_NO_UNWIND:
2012 return Attribute::NoUnwind;
2013 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2014 return Attribute::NoSanitizeBounds;
2015 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2016 return Attribute::NoSanitizeCoverage;
2017 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2018 return Attribute::NullPointerIsValid;
2019 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2020 return Attribute::OptimizeForDebugging;
2021 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2022 return Attribute::OptForFuzzing;
2023 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2024 return Attribute::OptimizeForSize;
2025 case bitc::ATTR_KIND_OPTIMIZE_NONE:
2026 return Attribute::OptimizeNone;
2027 case bitc::ATTR_KIND_READ_NONE:
2028 return Attribute::ReadNone;
2029 case bitc::ATTR_KIND_READ_ONLY:
2030 return Attribute::ReadOnly;
2031 case bitc::ATTR_KIND_RETURNED:
2032 return Attribute::Returned;
2033 case bitc::ATTR_KIND_RETURNS_TWICE:
2034 return Attribute::ReturnsTwice;
2035 case bitc::ATTR_KIND_S_EXT:
2036 return Attribute::SExt;
2037 case bitc::ATTR_KIND_SPECULATABLE:
2038 return Attribute::Speculatable;
2039 case bitc::ATTR_KIND_STACK_ALIGNMENT:
2040 return Attribute::StackAlignment;
2041 case bitc::ATTR_KIND_STACK_PROTECT:
2042 return Attribute::StackProtect;
2043 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2044 return Attribute::StackProtectReq;
2045 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2046 return Attribute::StackProtectStrong;
2047 case bitc::ATTR_KIND_SAFESTACK:
2048 return Attribute::SafeStack;
2049 case bitc::ATTR_KIND_SHADOWCALLSTACK:
2050 return Attribute::ShadowCallStack;
2051 case bitc::ATTR_KIND_STRICT_FP:
2052 return Attribute::StrictFP;
2053 case bitc::ATTR_KIND_STRUCT_RET:
2054 return Attribute::StructRet;
2055 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2056 return Attribute::SanitizeAddress;
2057 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2058 return Attribute::SanitizeHWAddress;
2059 case bitc::ATTR_KIND_SANITIZE_THREAD:
2060 return Attribute::SanitizeThread;
2061 case bitc::ATTR_KIND_SANITIZE_MEMORY:
2062 return Attribute::SanitizeMemory;
2063 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2064 return Attribute::SpeculativeLoadHardening;
2065 case bitc::ATTR_KIND_SWIFT_ERROR:
2066 return Attribute::SwiftError;
2067 case bitc::ATTR_KIND_SWIFT_SELF:
2068 return Attribute::SwiftSelf;
2069 case bitc::ATTR_KIND_SWIFT_ASYNC:
2070 return Attribute::SwiftAsync;
2071 case bitc::ATTR_KIND_UW_TABLE:
2072 return Attribute::UWTable;
2073 case bitc::ATTR_KIND_VSCALE_RANGE:
2074 return Attribute::VScaleRange;
2075 case bitc::ATTR_KIND_WILLRETURN:
2076 return Attribute::WillReturn;
2077 case bitc::ATTR_KIND_WRITEONLY:
2078 return Attribute::WriteOnly;
2079 case bitc::ATTR_KIND_Z_EXT:
2080 return Attribute::ZExt;
2081 case bitc::ATTR_KIND_IMMARG:
2082 return Attribute::ImmArg;
2083 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2084 return Attribute::SanitizeMemTag;
2085 case bitc::ATTR_KIND_PREALLOCATED:
2086 return Attribute::Preallocated;
2087 case bitc::ATTR_KIND_NOUNDEF:
2088 return Attribute::NoUndef;
2089 case bitc::ATTR_KIND_BYREF:
2090 return Attribute::ByRef;
2091 case bitc::ATTR_KIND_MUSTPROGRESS:
2092 return Attribute::MustProgress;
2093 case bitc::ATTR_KIND_HOT:
2094 return Attribute::Hot;
2095 case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2096 return Attribute::PresplitCoroutine;
2097 case bitc::ATTR_KIND_WRITABLE:
2098 return Attribute::Writable;
2099 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2100 return Attribute::CoroDestroyOnlyWhenComplete;
2101 case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2102 return Attribute::DeadOnUnwind;
2106 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2107 MaybeAlign &Alignment) {
2108 // Note: Alignment in bitcode files is incremented by 1, so that zero
2109 // can be used for default alignment.
2110 if (Exponent > Value::MaxAlignmentExponent + 1)
2111 return error("Invalid alignment value");
2112 Alignment = decodeMaybeAlign(Exponent);
2113 return Error::success();
2116 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2117 *Kind = getAttrFromCode(Code);
2118 if (*Kind == Attribute::None)
2119 return error("Unknown attribute kind (" + Twine(Code) + ")");
2120 return Error::success();
2123 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2124 switch (EncodedKind) {
2125 case bitc::ATTR_KIND_READ_NONE:
2126 ME &= MemoryEffects::none();
2127 return true;
2128 case bitc::ATTR_KIND_READ_ONLY:
2129 ME &= MemoryEffects::readOnly();
2130 return true;
2131 case bitc::ATTR_KIND_WRITEONLY:
2132 ME &= MemoryEffects::writeOnly();
2133 return true;
2134 case bitc::ATTR_KIND_ARGMEMONLY:
2135 ME &= MemoryEffects::argMemOnly();
2136 return true;
2137 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2138 ME &= MemoryEffects::inaccessibleMemOnly();
2139 return true;
2140 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2141 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2142 return true;
2143 default:
2144 return false;
2148 Error BitcodeReader::parseAttributeGroupBlock() {
2149 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2150 return Err;
2152 if (!MAttributeGroups.empty())
2153 return error("Invalid multiple blocks");
2155 SmallVector<uint64_t, 64> Record;
2157 // Read all the records.
2158 while (true) {
2159 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2160 if (!MaybeEntry)
2161 return MaybeEntry.takeError();
2162 BitstreamEntry Entry = MaybeEntry.get();
2164 switch (Entry.Kind) {
2165 case BitstreamEntry::SubBlock: // Handled for us already.
2166 case BitstreamEntry::Error:
2167 return error("Malformed block");
2168 case BitstreamEntry::EndBlock:
2169 return Error::success();
2170 case BitstreamEntry::Record:
2171 // The interesting case.
2172 break;
2175 // Read a record.
2176 Record.clear();
2177 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2178 if (!MaybeRecord)
2179 return MaybeRecord.takeError();
2180 switch (MaybeRecord.get()) {
2181 default: // Default behavior: ignore.
2182 break;
2183 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2184 if (Record.size() < 3)
2185 return error("Invalid grp record");
2187 uint64_t GrpID = Record[0];
2188 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2190 AttrBuilder B(Context);
2191 MemoryEffects ME = MemoryEffects::unknown();
2192 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2193 if (Record[i] == 0) { // Enum attribute
2194 Attribute::AttrKind Kind;
2195 uint64_t EncodedKind = Record[++i];
2196 if (Idx == AttributeList::FunctionIndex &&
2197 upgradeOldMemoryAttribute(ME, EncodedKind))
2198 continue;
2200 if (Error Err = parseAttrKind(EncodedKind, &Kind))
2201 return Err;
2203 // Upgrade old-style byval attribute to one with a type, even if it's
2204 // nullptr. We will have to insert the real type when we associate
2205 // this AttributeList with a function.
2206 if (Kind == Attribute::ByVal)
2207 B.addByValAttr(nullptr);
2208 else if (Kind == Attribute::StructRet)
2209 B.addStructRetAttr(nullptr);
2210 else if (Kind == Attribute::InAlloca)
2211 B.addInAllocaAttr(nullptr);
2212 else if (Kind == Attribute::UWTable)
2213 B.addUWTableAttr(UWTableKind::Default);
2214 else if (Attribute::isEnumAttrKind(Kind))
2215 B.addAttribute(Kind);
2216 else
2217 return error("Not an enum attribute");
2218 } else if (Record[i] == 1) { // Integer attribute
2219 Attribute::AttrKind Kind;
2220 if (Error Err = parseAttrKind(Record[++i], &Kind))
2221 return Err;
2222 if (!Attribute::isIntAttrKind(Kind))
2223 return error("Not an int attribute");
2224 if (Kind == Attribute::Alignment)
2225 B.addAlignmentAttr(Record[++i]);
2226 else if (Kind == Attribute::StackAlignment)
2227 B.addStackAlignmentAttr(Record[++i]);
2228 else if (Kind == Attribute::Dereferenceable)
2229 B.addDereferenceableAttr(Record[++i]);
2230 else if (Kind == Attribute::DereferenceableOrNull)
2231 B.addDereferenceableOrNullAttr(Record[++i]);
2232 else if (Kind == Attribute::AllocSize)
2233 B.addAllocSizeAttrFromRawRepr(Record[++i]);
2234 else if (Kind == Attribute::VScaleRange)
2235 B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2236 else if (Kind == Attribute::UWTable)
2237 B.addUWTableAttr(UWTableKind(Record[++i]));
2238 else if (Kind == Attribute::AllocKind)
2239 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2240 else if (Kind == Attribute::Memory)
2241 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2242 else if (Kind == Attribute::NoFPClass)
2243 B.addNoFPClassAttr(
2244 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2245 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2246 bool HasValue = (Record[i++] == 4);
2247 SmallString<64> KindStr;
2248 SmallString<64> ValStr;
2250 while (Record[i] != 0 && i != e)
2251 KindStr += Record[i++];
2252 assert(Record[i] == 0 && "Kind string not null terminated");
2254 if (HasValue) {
2255 // Has a value associated with it.
2256 ++i; // Skip the '0' that terminates the "kind" string.
2257 while (Record[i] != 0 && i != e)
2258 ValStr += Record[i++];
2259 assert(Record[i] == 0 && "Value string not null terminated");
2262 B.addAttribute(KindStr.str(), ValStr.str());
2263 } else if (Record[i] == 5 || Record[i] == 6) {
2264 bool HasType = Record[i] == 6;
2265 Attribute::AttrKind Kind;
2266 if (Error Err = parseAttrKind(Record[++i], &Kind))
2267 return Err;
2268 if (!Attribute::isTypeAttrKind(Kind))
2269 return error("Not a type attribute");
2271 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2272 } else {
2273 return error("Invalid attribute group entry");
2277 if (ME != MemoryEffects::unknown())
2278 B.addMemoryAttr(ME);
2280 UpgradeAttributes(B);
2281 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2282 break;
2288 Error BitcodeReader::parseTypeTable() {
2289 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2290 return Err;
2292 return parseTypeTableBody();
2295 Error BitcodeReader::parseTypeTableBody() {
2296 if (!TypeList.empty())
2297 return error("Invalid multiple blocks");
2299 SmallVector<uint64_t, 64> Record;
2300 unsigned NumRecords = 0;
2302 SmallString<64> TypeName;
2304 // Read all the records for this type table.
2305 while (true) {
2306 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2307 if (!MaybeEntry)
2308 return MaybeEntry.takeError();
2309 BitstreamEntry Entry = MaybeEntry.get();
2311 switch (Entry.Kind) {
2312 case BitstreamEntry::SubBlock: // Handled for us already.
2313 case BitstreamEntry::Error:
2314 return error("Malformed block");
2315 case BitstreamEntry::EndBlock:
2316 if (NumRecords != TypeList.size())
2317 return error("Malformed block");
2318 return Error::success();
2319 case BitstreamEntry::Record:
2320 // The interesting case.
2321 break;
2324 // Read a record.
2325 Record.clear();
2326 Type *ResultTy = nullptr;
2327 SmallVector<unsigned> ContainedIDs;
2328 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2329 if (!MaybeRecord)
2330 return MaybeRecord.takeError();
2331 switch (MaybeRecord.get()) {
2332 default:
2333 return error("Invalid value");
2334 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2335 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2336 // type list. This allows us to reserve space.
2337 if (Record.empty())
2338 return error("Invalid numentry record");
2339 TypeList.resize(Record[0]);
2340 continue;
2341 case bitc::TYPE_CODE_VOID: // VOID
2342 ResultTy = Type::getVoidTy(Context);
2343 break;
2344 case bitc::TYPE_CODE_HALF: // HALF
2345 ResultTy = Type::getHalfTy(Context);
2346 break;
2347 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
2348 ResultTy = Type::getBFloatTy(Context);
2349 break;
2350 case bitc::TYPE_CODE_FLOAT: // FLOAT
2351 ResultTy = Type::getFloatTy(Context);
2352 break;
2353 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
2354 ResultTy = Type::getDoubleTy(Context);
2355 break;
2356 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
2357 ResultTy = Type::getX86_FP80Ty(Context);
2358 break;
2359 case bitc::TYPE_CODE_FP128: // FP128
2360 ResultTy = Type::getFP128Ty(Context);
2361 break;
2362 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2363 ResultTy = Type::getPPC_FP128Ty(Context);
2364 break;
2365 case bitc::TYPE_CODE_LABEL: // LABEL
2366 ResultTy = Type::getLabelTy(Context);
2367 break;
2368 case bitc::TYPE_CODE_METADATA: // METADATA
2369 ResultTy = Type::getMetadataTy(Context);
2370 break;
2371 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
2372 ResultTy = Type::getX86_MMXTy(Context);
2373 break;
2374 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
2375 ResultTy = Type::getX86_AMXTy(Context);
2376 break;
2377 case bitc::TYPE_CODE_TOKEN: // TOKEN
2378 ResultTy = Type::getTokenTy(Context);
2379 break;
2380 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2381 if (Record.empty())
2382 return error("Invalid integer record");
2384 uint64_t NumBits = Record[0];
2385 if (NumBits < IntegerType::MIN_INT_BITS ||
2386 NumBits > IntegerType::MAX_INT_BITS)
2387 return error("Bitwidth for integer type out of range");
2388 ResultTy = IntegerType::get(Context, NumBits);
2389 break;
2391 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2392 // [pointee type, address space]
2393 if (Record.empty())
2394 return error("Invalid pointer record");
2395 unsigned AddressSpace = 0;
2396 if (Record.size() == 2)
2397 AddressSpace = Record[1];
2398 ResultTy = getTypeByID(Record[0]);
2399 if (!ResultTy ||
2400 !PointerType::isValidElementType(ResultTy))
2401 return error("Invalid type");
2402 ContainedIDs.push_back(Record[0]);
2403 ResultTy = PointerType::get(ResultTy, AddressSpace);
2404 break;
2406 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2407 if (Record.size() != 1)
2408 return error("Invalid opaque pointer record");
2409 unsigned AddressSpace = Record[0];
2410 ResultTy = PointerType::get(Context, AddressSpace);
2411 break;
2413 case bitc::TYPE_CODE_FUNCTION_OLD: {
2414 // Deprecated, but still needed to read old bitcode files.
2415 // FUNCTION: [vararg, attrid, retty, paramty x N]
2416 if (Record.size() < 3)
2417 return error("Invalid function record");
2418 SmallVector<Type*, 8> ArgTys;
2419 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2420 if (Type *T = getTypeByID(Record[i]))
2421 ArgTys.push_back(T);
2422 else
2423 break;
2426 ResultTy = getTypeByID(Record[2]);
2427 if (!ResultTy || ArgTys.size() < Record.size()-3)
2428 return error("Invalid type");
2430 ContainedIDs.append(Record.begin() + 2, Record.end());
2431 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2432 break;
2434 case bitc::TYPE_CODE_FUNCTION: {
2435 // FUNCTION: [vararg, retty, paramty x N]
2436 if (Record.size() < 2)
2437 return error("Invalid function record");
2438 SmallVector<Type*, 8> ArgTys;
2439 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2440 if (Type *T = getTypeByID(Record[i])) {
2441 if (!FunctionType::isValidArgumentType(T))
2442 return error("Invalid function argument type");
2443 ArgTys.push_back(T);
2445 else
2446 break;
2449 ResultTy = getTypeByID(Record[1]);
2450 if (!ResultTy || ArgTys.size() < Record.size()-2)
2451 return error("Invalid type");
2453 ContainedIDs.append(Record.begin() + 1, Record.end());
2454 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2455 break;
2457 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
2458 if (Record.empty())
2459 return error("Invalid anon struct record");
2460 SmallVector<Type*, 8> EltTys;
2461 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2462 if (Type *T = getTypeByID(Record[i]))
2463 EltTys.push_back(T);
2464 else
2465 break;
2467 if (EltTys.size() != Record.size()-1)
2468 return error("Invalid type");
2469 ContainedIDs.append(Record.begin() + 1, Record.end());
2470 ResultTy = StructType::get(Context, EltTys, Record[0]);
2471 break;
2473 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
2474 if (convertToString(Record, 0, TypeName))
2475 return error("Invalid struct name record");
2476 continue;
2478 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2479 if (Record.empty())
2480 return error("Invalid named struct record");
2482 if (NumRecords >= TypeList.size())
2483 return error("Invalid TYPE table");
2485 // Check to see if this was forward referenced, if so fill in the temp.
2486 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2487 if (Res) {
2488 Res->setName(TypeName);
2489 TypeList[NumRecords] = nullptr;
2490 } else // Otherwise, create a new struct.
2491 Res = createIdentifiedStructType(Context, TypeName);
2492 TypeName.clear();
2494 SmallVector<Type*, 8> EltTys;
2495 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2496 if (Type *T = getTypeByID(Record[i]))
2497 EltTys.push_back(T);
2498 else
2499 break;
2501 if (EltTys.size() != Record.size()-1)
2502 return error("Invalid named struct record");
2503 Res->setBody(EltTys, Record[0]);
2504 ContainedIDs.append(Record.begin() + 1, Record.end());
2505 ResultTy = Res;
2506 break;
2508 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
2509 if (Record.size() != 1)
2510 return error("Invalid opaque type record");
2512 if (NumRecords >= TypeList.size())
2513 return error("Invalid TYPE table");
2515 // Check to see if this was forward referenced, if so fill in the temp.
2516 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2517 if (Res) {
2518 Res->setName(TypeName);
2519 TypeList[NumRecords] = nullptr;
2520 } else // Otherwise, create a new struct with no body.
2521 Res = createIdentifiedStructType(Context, TypeName);
2522 TypeName.clear();
2523 ResultTy = Res;
2524 break;
2526 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2527 if (Record.size() < 1)
2528 return error("Invalid target extension type record");
2530 if (NumRecords >= TypeList.size())
2531 return error("Invalid TYPE table");
2533 if (Record[0] >= Record.size())
2534 return error("Too many type parameters");
2536 unsigned NumTys = Record[0];
2537 SmallVector<Type *, 4> TypeParams;
2538 SmallVector<unsigned, 8> IntParams;
2539 for (unsigned i = 0; i < NumTys; i++) {
2540 if (Type *T = getTypeByID(Record[i + 1]))
2541 TypeParams.push_back(T);
2542 else
2543 return error("Invalid type");
2546 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2547 if (Record[i] > UINT_MAX)
2548 return error("Integer parameter too large");
2549 IntParams.push_back(Record[i]);
2551 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2552 TypeName.clear();
2553 break;
2555 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
2556 if (Record.size() < 2)
2557 return error("Invalid array type record");
2558 ResultTy = getTypeByID(Record[1]);
2559 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2560 return error("Invalid type");
2561 ContainedIDs.push_back(Record[1]);
2562 ResultTy = ArrayType::get(ResultTy, Record[0]);
2563 break;
2564 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
2565 // [numelts, eltty, scalable]
2566 if (Record.size() < 2)
2567 return error("Invalid vector type record");
2568 if (Record[0] == 0)
2569 return error("Invalid vector length");
2570 ResultTy = getTypeByID(Record[1]);
2571 if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2572 return error("Invalid type");
2573 bool Scalable = Record.size() > 2 ? Record[2] : false;
2574 ContainedIDs.push_back(Record[1]);
2575 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2576 break;
2579 if (NumRecords >= TypeList.size())
2580 return error("Invalid TYPE table");
2581 if (TypeList[NumRecords])
2582 return error(
2583 "Invalid TYPE table: Only named structs can be forward referenced");
2584 assert(ResultTy && "Didn't read a type?");
2585 TypeList[NumRecords] = ResultTy;
2586 if (!ContainedIDs.empty())
2587 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2588 ++NumRecords;
2592 Error BitcodeReader::parseOperandBundleTags() {
2593 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2594 return Err;
2596 if (!BundleTags.empty())
2597 return error("Invalid multiple blocks");
2599 SmallVector<uint64_t, 64> Record;
2601 while (true) {
2602 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2603 if (!MaybeEntry)
2604 return MaybeEntry.takeError();
2605 BitstreamEntry Entry = MaybeEntry.get();
2607 switch (Entry.Kind) {
2608 case BitstreamEntry::SubBlock: // Handled for us already.
2609 case BitstreamEntry::Error:
2610 return error("Malformed block");
2611 case BitstreamEntry::EndBlock:
2612 return Error::success();
2613 case BitstreamEntry::Record:
2614 // The interesting case.
2615 break;
2618 // Tags are implicitly mapped to integers by their order.
2620 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2621 if (!MaybeRecord)
2622 return MaybeRecord.takeError();
2623 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2624 return error("Invalid operand bundle record");
2626 // OPERAND_BUNDLE_TAG: [strchr x N]
2627 BundleTags.emplace_back();
2628 if (convertToString(Record, 0, BundleTags.back()))
2629 return error("Invalid operand bundle record");
2630 Record.clear();
2634 Error BitcodeReader::parseSyncScopeNames() {
2635 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2636 return Err;
2638 if (!SSIDs.empty())
2639 return error("Invalid multiple synchronization scope names blocks");
2641 SmallVector<uint64_t, 64> Record;
2642 while (true) {
2643 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2644 if (!MaybeEntry)
2645 return MaybeEntry.takeError();
2646 BitstreamEntry Entry = MaybeEntry.get();
2648 switch (Entry.Kind) {
2649 case BitstreamEntry::SubBlock: // Handled for us already.
2650 case BitstreamEntry::Error:
2651 return error("Malformed block");
2652 case BitstreamEntry::EndBlock:
2653 if (SSIDs.empty())
2654 return error("Invalid empty synchronization scope names block");
2655 return Error::success();
2656 case BitstreamEntry::Record:
2657 // The interesting case.
2658 break;
2661 // Synchronization scope names are implicitly mapped to synchronization
2662 // scope IDs by their order.
2664 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2665 if (!MaybeRecord)
2666 return MaybeRecord.takeError();
2667 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2668 return error("Invalid sync scope record");
2670 SmallString<16> SSN;
2671 if (convertToString(Record, 0, SSN))
2672 return error("Invalid sync scope record");
2674 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2675 Record.clear();
2679 /// Associate a value with its name from the given index in the provided record.
2680 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2681 unsigned NameIndex, Triple &TT) {
2682 SmallString<128> ValueName;
2683 if (convertToString(Record, NameIndex, ValueName))
2684 return error("Invalid record");
2685 unsigned ValueID = Record[0];
2686 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2687 return error("Invalid record");
2688 Value *V = ValueList[ValueID];
2690 StringRef NameStr(ValueName.data(), ValueName.size());
2691 if (NameStr.contains(0))
2692 return error("Invalid value name");
2693 V->setName(NameStr);
2694 auto *GO = dyn_cast<GlobalObject>(V);
2695 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2696 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2697 return V;
2700 /// Helper to note and return the current location, and jump to the given
2701 /// offset.
2702 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2703 BitstreamCursor &Stream) {
2704 // Save the current parsing location so we can jump back at the end
2705 // of the VST read.
2706 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2707 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2708 return std::move(JumpFailed);
2709 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2710 if (!MaybeEntry)
2711 return MaybeEntry.takeError();
2712 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2713 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2714 return error("Expected value symbol table subblock");
2715 return CurrentBit;
2718 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2719 Function *F,
2720 ArrayRef<uint64_t> Record) {
2721 // Note that we subtract 1 here because the offset is relative to one word
2722 // before the start of the identification or module block, which was
2723 // historically always the start of the regular bitcode header.
2724 uint64_t FuncWordOffset = Record[1] - 1;
2725 uint64_t FuncBitOffset = FuncWordOffset * 32;
2726 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2727 // Set the LastFunctionBlockBit to point to the last function block.
2728 // Later when parsing is resumed after function materialization,
2729 // we can simply skip that last function block.
2730 if (FuncBitOffset > LastFunctionBlockBit)
2731 LastFunctionBlockBit = FuncBitOffset;
2734 /// Read a new-style GlobalValue symbol table.
2735 Error BitcodeReader::parseGlobalValueSymbolTable() {
2736 unsigned FuncBitcodeOffsetDelta =
2737 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2739 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2740 return Err;
2742 SmallVector<uint64_t, 64> Record;
2743 while (true) {
2744 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2745 if (!MaybeEntry)
2746 return MaybeEntry.takeError();
2747 BitstreamEntry Entry = MaybeEntry.get();
2749 switch (Entry.Kind) {
2750 case BitstreamEntry::SubBlock:
2751 case BitstreamEntry::Error:
2752 return error("Malformed block");
2753 case BitstreamEntry::EndBlock:
2754 return Error::success();
2755 case BitstreamEntry::Record:
2756 break;
2759 Record.clear();
2760 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2761 if (!MaybeRecord)
2762 return MaybeRecord.takeError();
2763 switch (MaybeRecord.get()) {
2764 case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2765 unsigned ValueID = Record[0];
2766 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2767 return error("Invalid value reference in symbol table");
2768 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2769 cast<Function>(ValueList[ValueID]), Record);
2770 break;
2776 /// Parse the value symbol table at either the current parsing location or
2777 /// at the given bit offset if provided.
2778 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2779 uint64_t CurrentBit;
2780 // Pass in the Offset to distinguish between calling for the module-level
2781 // VST (where we want to jump to the VST offset) and the function-level
2782 // VST (where we don't).
2783 if (Offset > 0) {
2784 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2785 if (!MaybeCurrentBit)
2786 return MaybeCurrentBit.takeError();
2787 CurrentBit = MaybeCurrentBit.get();
2788 // If this module uses a string table, read this as a module-level VST.
2789 if (UseStrtab) {
2790 if (Error Err = parseGlobalValueSymbolTable())
2791 return Err;
2792 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2793 return JumpFailed;
2794 return Error::success();
2796 // Otherwise, the VST will be in a similar format to a function-level VST,
2797 // and will contain symbol names.
2800 // Compute the delta between the bitcode indices in the VST (the word offset
2801 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2802 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2803 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2804 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2805 // just before entering the VST subblock because: 1) the EnterSubBlock
2806 // changes the AbbrevID width; 2) the VST block is nested within the same
2807 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2808 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2809 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2810 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2811 unsigned FuncBitcodeOffsetDelta =
2812 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2814 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2815 return Err;
2817 SmallVector<uint64_t, 64> Record;
2819 Triple TT(TheModule->getTargetTriple());
2821 // Read all the records for this value table.
2822 SmallString<128> ValueName;
2824 while (true) {
2825 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2826 if (!MaybeEntry)
2827 return MaybeEntry.takeError();
2828 BitstreamEntry Entry = MaybeEntry.get();
2830 switch (Entry.Kind) {
2831 case BitstreamEntry::SubBlock: // Handled for us already.
2832 case BitstreamEntry::Error:
2833 return error("Malformed block");
2834 case BitstreamEntry::EndBlock:
2835 if (Offset > 0)
2836 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2837 return JumpFailed;
2838 return Error::success();
2839 case BitstreamEntry::Record:
2840 // The interesting case.
2841 break;
2844 // Read a record.
2845 Record.clear();
2846 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2847 if (!MaybeRecord)
2848 return MaybeRecord.takeError();
2849 switch (MaybeRecord.get()) {
2850 default: // Default behavior: unknown type.
2851 break;
2852 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2853 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2854 if (Error Err = ValOrErr.takeError())
2855 return Err;
2856 ValOrErr.get();
2857 break;
2859 case bitc::VST_CODE_FNENTRY: {
2860 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2861 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2862 if (Error Err = ValOrErr.takeError())
2863 return Err;
2864 Value *V = ValOrErr.get();
2866 // Ignore function offsets emitted for aliases of functions in older
2867 // versions of LLVM.
2868 if (auto *F = dyn_cast<Function>(V))
2869 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2870 break;
2872 case bitc::VST_CODE_BBENTRY: {
2873 if (convertToString(Record, 1, ValueName))
2874 return error("Invalid bbentry record");
2875 BasicBlock *BB = getBasicBlock(Record[0]);
2876 if (!BB)
2877 return error("Invalid bbentry record");
2879 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2880 ValueName.clear();
2881 break;
2887 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2888 /// encoding.
2889 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2890 if ((V & 1) == 0)
2891 return V >> 1;
2892 if (V != 1)
2893 return -(V >> 1);
2894 // There is no such thing as -0 with integers. "-0" really means MININT.
2895 return 1ULL << 63;
2898 /// Resolve all of the initializers for global values and aliases that we can.
2899 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2900 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2901 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2902 std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2904 GlobalInitWorklist.swap(GlobalInits);
2905 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2906 FunctionOperandWorklist.swap(FunctionOperands);
2908 while (!GlobalInitWorklist.empty()) {
2909 unsigned ValID = GlobalInitWorklist.back().second;
2910 if (ValID >= ValueList.size()) {
2911 // Not ready to resolve this yet, it requires something later in the file.
2912 GlobalInits.push_back(GlobalInitWorklist.back());
2913 } else {
2914 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2915 if (!MaybeC)
2916 return MaybeC.takeError();
2917 GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2919 GlobalInitWorklist.pop_back();
2922 while (!IndirectSymbolInitWorklist.empty()) {
2923 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2924 if (ValID >= ValueList.size()) {
2925 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2926 } else {
2927 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2928 if (!MaybeC)
2929 return MaybeC.takeError();
2930 Constant *C = MaybeC.get();
2931 GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2932 if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2933 if (C->getType() != GV->getType())
2934 return error("Alias and aliasee types don't match");
2935 GA->setAliasee(C);
2936 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2937 GI->setResolver(C);
2938 } else {
2939 return error("Expected an alias or an ifunc");
2942 IndirectSymbolInitWorklist.pop_back();
2945 while (!FunctionOperandWorklist.empty()) {
2946 FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2947 if (Info.PersonalityFn) {
2948 unsigned ValID = Info.PersonalityFn - 1;
2949 if (ValID < ValueList.size()) {
2950 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2951 if (!MaybeC)
2952 return MaybeC.takeError();
2953 Info.F->setPersonalityFn(MaybeC.get());
2954 Info.PersonalityFn = 0;
2957 if (Info.Prefix) {
2958 unsigned ValID = Info.Prefix - 1;
2959 if (ValID < ValueList.size()) {
2960 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2961 if (!MaybeC)
2962 return MaybeC.takeError();
2963 Info.F->setPrefixData(MaybeC.get());
2964 Info.Prefix = 0;
2967 if (Info.Prologue) {
2968 unsigned ValID = Info.Prologue - 1;
2969 if (ValID < ValueList.size()) {
2970 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2971 if (!MaybeC)
2972 return MaybeC.takeError();
2973 Info.F->setPrologueData(MaybeC.get());
2974 Info.Prologue = 0;
2977 if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2978 FunctionOperands.push_back(Info);
2979 FunctionOperandWorklist.pop_back();
2982 return Error::success();
2985 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2986 SmallVector<uint64_t, 8> Words(Vals.size());
2987 transform(Vals, Words.begin(),
2988 BitcodeReader::decodeSignRotatedValue);
2990 return APInt(TypeBits, Words);
2993 Error BitcodeReader::parseConstants() {
2994 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2995 return Err;
2997 SmallVector<uint64_t, 64> Record;
2999 // Read all the records for this value table.
3000 Type *CurTy = Type::getInt32Ty(Context);
3001 unsigned Int32TyID = getVirtualTypeID(CurTy);
3002 unsigned CurTyID = Int32TyID;
3003 Type *CurElemTy = nullptr;
3004 unsigned NextCstNo = ValueList.size();
3006 while (true) {
3007 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3008 if (!MaybeEntry)
3009 return MaybeEntry.takeError();
3010 BitstreamEntry Entry = MaybeEntry.get();
3012 switch (Entry.Kind) {
3013 case BitstreamEntry::SubBlock: // Handled for us already.
3014 case BitstreamEntry::Error:
3015 return error("Malformed block");
3016 case BitstreamEntry::EndBlock:
3017 if (NextCstNo != ValueList.size())
3018 return error("Invalid constant reference");
3019 return Error::success();
3020 case BitstreamEntry::Record:
3021 // The interesting case.
3022 break;
3025 // Read a record.
3026 Record.clear();
3027 Type *VoidType = Type::getVoidTy(Context);
3028 Value *V = nullptr;
3029 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3030 if (!MaybeBitCode)
3031 return MaybeBitCode.takeError();
3032 switch (unsigned BitCode = MaybeBitCode.get()) {
3033 default: // Default behavior: unknown constant
3034 case bitc::CST_CODE_UNDEF: // UNDEF
3035 V = UndefValue::get(CurTy);
3036 break;
3037 case bitc::CST_CODE_POISON: // POISON
3038 V = PoisonValue::get(CurTy);
3039 break;
3040 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
3041 if (Record.empty())
3042 return error("Invalid settype record");
3043 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3044 return error("Invalid settype record");
3045 if (TypeList[Record[0]] == VoidType)
3046 return error("Invalid constant type");
3047 CurTyID = Record[0];
3048 CurTy = TypeList[CurTyID];
3049 CurElemTy = getPtrElementTypeByID(CurTyID);
3050 continue; // Skip the ValueList manipulation.
3051 case bitc::CST_CODE_NULL: // NULL
3052 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3053 return error("Invalid type for a constant null value");
3054 if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3055 if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3056 return error("Invalid type for a constant null value");
3057 V = Constant::getNullValue(CurTy);
3058 break;
3059 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
3060 if (!CurTy->isIntegerTy() || Record.empty())
3061 return error("Invalid integer const record");
3062 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3063 break;
3064 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3065 if (!CurTy->isIntegerTy() || Record.empty())
3066 return error("Invalid wide integer const record");
3068 APInt VInt =
3069 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3070 V = ConstantInt::get(Context, VInt);
3072 break;
3074 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
3075 if (Record.empty())
3076 return error("Invalid float const record");
3077 if (CurTy->isHalfTy())
3078 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3079 APInt(16, (uint16_t)Record[0])));
3080 else if (CurTy->isBFloatTy())
3081 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3082 APInt(16, (uint32_t)Record[0])));
3083 else if (CurTy->isFloatTy())
3084 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3085 APInt(32, (uint32_t)Record[0])));
3086 else if (CurTy->isDoubleTy())
3087 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3088 APInt(64, Record[0])));
3089 else if (CurTy->isX86_FP80Ty()) {
3090 // Bits are not stored the same way as a normal i80 APInt, compensate.
3091 uint64_t Rearrange[2];
3092 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3093 Rearrange[1] = Record[0] >> 48;
3094 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3095 APInt(80, Rearrange)));
3096 } else if (CurTy->isFP128Ty())
3097 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3098 APInt(128, Record)));
3099 else if (CurTy->isPPC_FP128Ty())
3100 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3101 APInt(128, Record)));
3102 else
3103 V = UndefValue::get(CurTy);
3104 break;
3107 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3108 if (Record.empty())
3109 return error("Invalid aggregate record");
3111 unsigned Size = Record.size();
3112 SmallVector<unsigned, 16> Elts;
3113 for (unsigned i = 0; i != Size; ++i)
3114 Elts.push_back(Record[i]);
3116 if (isa<StructType>(CurTy)) {
3117 V = BitcodeConstant::create(
3118 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3119 } else if (isa<ArrayType>(CurTy)) {
3120 V = BitcodeConstant::create(Alloc, CurTy,
3121 BitcodeConstant::ConstantArrayOpcode, Elts);
3122 } else if (isa<VectorType>(CurTy)) {
3123 V = BitcodeConstant::create(
3124 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3125 } else {
3126 V = UndefValue::get(CurTy);
3128 break;
3130 case bitc::CST_CODE_STRING: // STRING: [values]
3131 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3132 if (Record.empty())
3133 return error("Invalid string record");
3135 SmallString<16> Elts(Record.begin(), Record.end());
3136 V = ConstantDataArray::getString(Context, Elts,
3137 BitCode == bitc::CST_CODE_CSTRING);
3138 break;
3140 case bitc::CST_CODE_DATA: {// DATA: [n x value]
3141 if (Record.empty())
3142 return error("Invalid data record");
3144 Type *EltTy;
3145 if (auto *Array = dyn_cast<ArrayType>(CurTy))
3146 EltTy = Array->getElementType();
3147 else
3148 EltTy = cast<VectorType>(CurTy)->getElementType();
3149 if (EltTy->isIntegerTy(8)) {
3150 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3151 if (isa<VectorType>(CurTy))
3152 V = ConstantDataVector::get(Context, Elts);
3153 else
3154 V = ConstantDataArray::get(Context, Elts);
3155 } else if (EltTy->isIntegerTy(16)) {
3156 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3157 if (isa<VectorType>(CurTy))
3158 V = ConstantDataVector::get(Context, Elts);
3159 else
3160 V = ConstantDataArray::get(Context, Elts);
3161 } else if (EltTy->isIntegerTy(32)) {
3162 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3163 if (isa<VectorType>(CurTy))
3164 V = ConstantDataVector::get(Context, Elts);
3165 else
3166 V = ConstantDataArray::get(Context, Elts);
3167 } else if (EltTy->isIntegerTy(64)) {
3168 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3169 if (isa<VectorType>(CurTy))
3170 V = ConstantDataVector::get(Context, Elts);
3171 else
3172 V = ConstantDataArray::get(Context, Elts);
3173 } else if (EltTy->isHalfTy()) {
3174 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3175 if (isa<VectorType>(CurTy))
3176 V = ConstantDataVector::getFP(EltTy, Elts);
3177 else
3178 V = ConstantDataArray::getFP(EltTy, Elts);
3179 } else if (EltTy->isBFloatTy()) {
3180 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3181 if (isa<VectorType>(CurTy))
3182 V = ConstantDataVector::getFP(EltTy, Elts);
3183 else
3184 V = ConstantDataArray::getFP(EltTy, Elts);
3185 } else if (EltTy->isFloatTy()) {
3186 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3187 if (isa<VectorType>(CurTy))
3188 V = ConstantDataVector::getFP(EltTy, Elts);
3189 else
3190 V = ConstantDataArray::getFP(EltTy, Elts);
3191 } else if (EltTy->isDoubleTy()) {
3192 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3193 if (isa<VectorType>(CurTy))
3194 V = ConstantDataVector::getFP(EltTy, Elts);
3195 else
3196 V = ConstantDataArray::getFP(EltTy, Elts);
3197 } else {
3198 return error("Invalid type for value");
3200 break;
3202 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
3203 if (Record.size() < 2)
3204 return error("Invalid unary op constexpr record");
3205 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3206 if (Opc < 0) {
3207 V = UndefValue::get(CurTy); // Unknown unop.
3208 } else {
3209 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3211 break;
3213 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
3214 if (Record.size() < 3)
3215 return error("Invalid binary op constexpr record");
3216 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3217 if (Opc < 0) {
3218 V = UndefValue::get(CurTy); // Unknown binop.
3219 } else {
3220 uint8_t Flags = 0;
3221 if (Record.size() >= 4) {
3222 if (Opc == Instruction::Add ||
3223 Opc == Instruction::Sub ||
3224 Opc == Instruction::Mul ||
3225 Opc == Instruction::Shl) {
3226 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3227 Flags |= OverflowingBinaryOperator::NoSignedWrap;
3228 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3229 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3230 } else if (Opc == Instruction::SDiv ||
3231 Opc == Instruction::UDiv ||
3232 Opc == Instruction::LShr ||
3233 Opc == Instruction::AShr) {
3234 if (Record[3] & (1 << bitc::PEO_EXACT))
3235 Flags |= PossiblyExactOperator::IsExact;
3238 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3239 {(unsigned)Record[1], (unsigned)Record[2]});
3241 break;
3243 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
3244 if (Record.size() < 3)
3245 return error("Invalid cast constexpr record");
3246 int Opc = getDecodedCastOpcode(Record[0]);
3247 if (Opc < 0) {
3248 V = UndefValue::get(CurTy); // Unknown cast.
3249 } else {
3250 unsigned OpTyID = Record[1];
3251 Type *OpTy = getTypeByID(OpTyID);
3252 if (!OpTy)
3253 return error("Invalid cast constexpr record");
3254 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3256 break;
3258 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3259 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3260 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3261 // operands]
3262 if (Record.size() < 2)
3263 return error("Constant GEP record must have at least two elements");
3264 unsigned OpNum = 0;
3265 Type *PointeeType = nullptr;
3266 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3267 Record.size() % 2)
3268 PointeeType = getTypeByID(Record[OpNum++]);
3270 bool InBounds = false;
3271 std::optional<unsigned> InRangeIndex;
3272 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3273 uint64_t Op = Record[OpNum++];
3274 InBounds = Op & 1;
3275 InRangeIndex = Op >> 1;
3276 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3277 InBounds = true;
3279 SmallVector<unsigned, 16> Elts;
3280 unsigned BaseTypeID = Record[OpNum];
3281 while (OpNum != Record.size()) {
3282 unsigned ElTyID = Record[OpNum++];
3283 Type *ElTy = getTypeByID(ElTyID);
3284 if (!ElTy)
3285 return error("Invalid getelementptr constexpr record");
3286 Elts.push_back(Record[OpNum++]);
3289 if (Elts.size() < 1)
3290 return error("Invalid gep with no operands");
3292 Type *BaseType = getTypeByID(BaseTypeID);
3293 if (isa<VectorType>(BaseType)) {
3294 BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3295 BaseType = getTypeByID(BaseTypeID);
3298 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3299 if (!OrigPtrTy)
3300 return error("GEP base operand must be pointer or vector of pointer");
3302 if (!PointeeType) {
3303 PointeeType = getPtrElementTypeByID(BaseTypeID);
3304 if (!PointeeType)
3305 return error("Missing element type for old-style constant GEP");
3308 V = BitcodeConstant::create(Alloc, CurTy,
3309 {Instruction::GetElementPtr, InBounds,
3310 InRangeIndex.value_or(-1), PointeeType},
3311 Elts);
3312 break;
3314 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
3315 if (Record.size() < 3)
3316 return error("Invalid select constexpr record");
3318 V = BitcodeConstant::create(
3319 Alloc, CurTy, Instruction::Select,
3320 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3321 break;
3323 case bitc::CST_CODE_CE_EXTRACTELT
3324 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3325 if (Record.size() < 3)
3326 return error("Invalid extractelement constexpr record");
3327 unsigned OpTyID = Record[0];
3328 VectorType *OpTy =
3329 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3330 if (!OpTy)
3331 return error("Invalid extractelement constexpr record");
3332 unsigned IdxRecord;
3333 if (Record.size() == 4) {
3334 unsigned IdxTyID = Record[2];
3335 Type *IdxTy = getTypeByID(IdxTyID);
3336 if (!IdxTy)
3337 return error("Invalid extractelement constexpr record");
3338 IdxRecord = Record[3];
3339 } else {
3340 // Deprecated, but still needed to read old bitcode files.
3341 IdxRecord = Record[2];
3343 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3344 {(unsigned)Record[1], IdxRecord});
3345 break;
3347 case bitc::CST_CODE_CE_INSERTELT
3348 : { // CE_INSERTELT: [opval, opval, opty, opval]
3349 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3350 if (Record.size() < 3 || !OpTy)
3351 return error("Invalid insertelement constexpr record");
3352 unsigned IdxRecord;
3353 if (Record.size() == 4) {
3354 unsigned IdxTyID = Record[2];
3355 Type *IdxTy = getTypeByID(IdxTyID);
3356 if (!IdxTy)
3357 return error("Invalid insertelement constexpr record");
3358 IdxRecord = Record[3];
3359 } else {
3360 // Deprecated, but still needed to read old bitcode files.
3361 IdxRecord = Record[2];
3363 V = BitcodeConstant::create(
3364 Alloc, CurTy, Instruction::InsertElement,
3365 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3366 break;
3368 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3369 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3370 if (Record.size() < 3 || !OpTy)
3371 return error("Invalid shufflevector constexpr record");
3372 V = BitcodeConstant::create(
3373 Alloc, CurTy, Instruction::ShuffleVector,
3374 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3375 break;
3377 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3378 VectorType *RTy = dyn_cast<VectorType>(CurTy);
3379 VectorType *OpTy =
3380 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3381 if (Record.size() < 4 || !RTy || !OpTy)
3382 return error("Invalid shufflevector constexpr record");
3383 V = BitcodeConstant::create(
3384 Alloc, CurTy, Instruction::ShuffleVector,
3385 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3386 break;
3388 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
3389 if (Record.size() < 4)
3390 return error("Invalid cmp constexpt record");
3391 unsigned OpTyID = Record[0];
3392 Type *OpTy = getTypeByID(OpTyID);
3393 if (!OpTy)
3394 return error("Invalid cmp constexpr record");
3395 V = BitcodeConstant::create(
3396 Alloc, CurTy,
3397 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3398 : Instruction::ICmp),
3399 (uint8_t)Record[3]},
3400 {(unsigned)Record[1], (unsigned)Record[2]});
3401 break;
3403 // This maintains backward compatibility, pre-asm dialect keywords.
3404 // Deprecated, but still needed to read old bitcode files.
3405 case bitc::CST_CODE_INLINEASM_OLD: {
3406 if (Record.size() < 2)
3407 return error("Invalid inlineasm record");
3408 std::string AsmStr, ConstrStr;
3409 bool HasSideEffects = Record[0] & 1;
3410 bool IsAlignStack = Record[0] >> 1;
3411 unsigned AsmStrSize = Record[1];
3412 if (2+AsmStrSize >= Record.size())
3413 return error("Invalid inlineasm record");
3414 unsigned ConstStrSize = Record[2+AsmStrSize];
3415 if (3+AsmStrSize+ConstStrSize > Record.size())
3416 return error("Invalid inlineasm record");
3418 for (unsigned i = 0; i != AsmStrSize; ++i)
3419 AsmStr += (char)Record[2+i];
3420 for (unsigned i = 0; i != ConstStrSize; ++i)
3421 ConstrStr += (char)Record[3+AsmStrSize+i];
3422 UpgradeInlineAsmString(&AsmStr);
3423 if (!CurElemTy)
3424 return error("Missing element type for old-style inlineasm");
3425 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3426 HasSideEffects, IsAlignStack);
3427 break;
3429 // This version adds support for the asm dialect keywords (e.g.,
3430 // inteldialect).
3431 case bitc::CST_CODE_INLINEASM_OLD2: {
3432 if (Record.size() < 2)
3433 return error("Invalid inlineasm record");
3434 std::string AsmStr, ConstrStr;
3435 bool HasSideEffects = Record[0] & 1;
3436 bool IsAlignStack = (Record[0] >> 1) & 1;
3437 unsigned AsmDialect = Record[0] >> 2;
3438 unsigned AsmStrSize = Record[1];
3439 if (2+AsmStrSize >= Record.size())
3440 return error("Invalid inlineasm record");
3441 unsigned ConstStrSize = Record[2+AsmStrSize];
3442 if (3+AsmStrSize+ConstStrSize > Record.size())
3443 return error("Invalid inlineasm record");
3445 for (unsigned i = 0; i != AsmStrSize; ++i)
3446 AsmStr += (char)Record[2+i];
3447 for (unsigned i = 0; i != ConstStrSize; ++i)
3448 ConstrStr += (char)Record[3+AsmStrSize+i];
3449 UpgradeInlineAsmString(&AsmStr);
3450 if (!CurElemTy)
3451 return error("Missing element type for old-style inlineasm");
3452 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3453 HasSideEffects, IsAlignStack,
3454 InlineAsm::AsmDialect(AsmDialect));
3455 break;
3457 // This version adds support for the unwind keyword.
3458 case bitc::CST_CODE_INLINEASM_OLD3: {
3459 if (Record.size() < 2)
3460 return error("Invalid inlineasm record");
3461 unsigned OpNum = 0;
3462 std::string AsmStr, ConstrStr;
3463 bool HasSideEffects = Record[OpNum] & 1;
3464 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3465 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3466 bool CanThrow = (Record[OpNum] >> 3) & 1;
3467 ++OpNum;
3468 unsigned AsmStrSize = Record[OpNum];
3469 ++OpNum;
3470 if (OpNum + AsmStrSize >= Record.size())
3471 return error("Invalid inlineasm record");
3472 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3473 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3474 return error("Invalid inlineasm record");
3476 for (unsigned i = 0; i != AsmStrSize; ++i)
3477 AsmStr += (char)Record[OpNum + i];
3478 ++OpNum;
3479 for (unsigned i = 0; i != ConstStrSize; ++i)
3480 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3481 UpgradeInlineAsmString(&AsmStr);
3482 if (!CurElemTy)
3483 return error("Missing element type for old-style inlineasm");
3484 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3485 HasSideEffects, IsAlignStack,
3486 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3487 break;
3489 // This version adds explicit function type.
3490 case bitc::CST_CODE_INLINEASM: {
3491 if (Record.size() < 3)
3492 return error("Invalid inlineasm record");
3493 unsigned OpNum = 0;
3494 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3495 ++OpNum;
3496 if (!FnTy)
3497 return error("Invalid inlineasm record");
3498 std::string AsmStr, ConstrStr;
3499 bool HasSideEffects = Record[OpNum] & 1;
3500 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3501 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3502 bool CanThrow = (Record[OpNum] >> 3) & 1;
3503 ++OpNum;
3504 unsigned AsmStrSize = Record[OpNum];
3505 ++OpNum;
3506 if (OpNum + AsmStrSize >= Record.size())
3507 return error("Invalid inlineasm record");
3508 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3509 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3510 return error("Invalid inlineasm record");
3512 for (unsigned i = 0; i != AsmStrSize; ++i)
3513 AsmStr += (char)Record[OpNum + i];
3514 ++OpNum;
3515 for (unsigned i = 0; i != ConstStrSize; ++i)
3516 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3517 UpgradeInlineAsmString(&AsmStr);
3518 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3519 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3520 break;
3522 case bitc::CST_CODE_BLOCKADDRESS:{
3523 if (Record.size() < 3)
3524 return error("Invalid blockaddress record");
3525 unsigned FnTyID = Record[0];
3526 Type *FnTy = getTypeByID(FnTyID);
3527 if (!FnTy)
3528 return error("Invalid blockaddress record");
3529 V = BitcodeConstant::create(
3530 Alloc, CurTy,
3531 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3532 Record[1]);
3533 break;
3535 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3536 if (Record.size() < 2)
3537 return error("Invalid dso_local record");
3538 unsigned GVTyID = Record[0];
3539 Type *GVTy = getTypeByID(GVTyID);
3540 if (!GVTy)
3541 return error("Invalid dso_local record");
3542 V = BitcodeConstant::create(
3543 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3544 break;
3546 case bitc::CST_CODE_NO_CFI_VALUE: {
3547 if (Record.size() < 2)
3548 return error("Invalid no_cfi record");
3549 unsigned GVTyID = Record[0];
3550 Type *GVTy = getTypeByID(GVTyID);
3551 if (!GVTy)
3552 return error("Invalid no_cfi record");
3553 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3554 Record[1]);
3555 break;
3559 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3560 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3561 return Err;
3562 ++NextCstNo;
3566 Error BitcodeReader::parseUseLists() {
3567 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3568 return Err;
3570 // Read all the records.
3571 SmallVector<uint64_t, 64> Record;
3573 while (true) {
3574 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3575 if (!MaybeEntry)
3576 return MaybeEntry.takeError();
3577 BitstreamEntry Entry = MaybeEntry.get();
3579 switch (Entry.Kind) {
3580 case BitstreamEntry::SubBlock: // Handled for us already.
3581 case BitstreamEntry::Error:
3582 return error("Malformed block");
3583 case BitstreamEntry::EndBlock:
3584 return Error::success();
3585 case BitstreamEntry::Record:
3586 // The interesting case.
3587 break;
3590 // Read a use list record.
3591 Record.clear();
3592 bool IsBB = false;
3593 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3594 if (!MaybeRecord)
3595 return MaybeRecord.takeError();
3596 switch (MaybeRecord.get()) {
3597 default: // Default behavior: unknown type.
3598 break;
3599 case bitc::USELIST_CODE_BB:
3600 IsBB = true;
3601 [[fallthrough]];
3602 case bitc::USELIST_CODE_DEFAULT: {
3603 unsigned RecordLength = Record.size();
3604 if (RecordLength < 3)
3605 // Records should have at least an ID and two indexes.
3606 return error("Invalid record");
3607 unsigned ID = Record.pop_back_val();
3609 Value *V;
3610 if (IsBB) {
3611 assert(ID < FunctionBBs.size() && "Basic block not found");
3612 V = FunctionBBs[ID];
3613 } else
3614 V = ValueList[ID];
3615 unsigned NumUses = 0;
3616 SmallDenseMap<const Use *, unsigned, 16> Order;
3617 for (const Use &U : V->materialized_uses()) {
3618 if (++NumUses > Record.size())
3619 break;
3620 Order[&U] = Record[NumUses - 1];
3622 if (Order.size() != Record.size() || NumUses > Record.size())
3623 // Mismatches can happen if the functions are being materialized lazily
3624 // (out-of-order), or a value has been upgraded.
3625 break;
3627 V->sortUseList([&](const Use &L, const Use &R) {
3628 return Order.lookup(&L) < Order.lookup(&R);
3630 break;
3636 /// When we see the block for metadata, remember where it is and then skip it.
3637 /// This lets us lazily deserialize the metadata.
3638 Error BitcodeReader::rememberAndSkipMetadata() {
3639 // Save the current stream state.
3640 uint64_t CurBit = Stream.GetCurrentBitNo();
3641 DeferredMetadataInfo.push_back(CurBit);
3643 // Skip over the block for now.
3644 if (Error Err = Stream.SkipBlock())
3645 return Err;
3646 return Error::success();
3649 Error BitcodeReader::materializeMetadata() {
3650 for (uint64_t BitPos : DeferredMetadataInfo) {
3651 // Move the bit stream to the saved position.
3652 if (Error JumpFailed = Stream.JumpToBit(BitPos))
3653 return JumpFailed;
3654 if (Error Err = MDLoader->parseModuleMetadata())
3655 return Err;
3658 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3659 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3660 // multiple times.
3661 if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3662 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3663 NamedMDNode *LinkerOpts =
3664 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3665 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3666 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3670 DeferredMetadataInfo.clear();
3671 return Error::success();
3674 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3676 /// When we see the block for a function body, remember where it is and then
3677 /// skip it. This lets us lazily deserialize the functions.
3678 Error BitcodeReader::rememberAndSkipFunctionBody() {
3679 // Get the function we are talking about.
3680 if (FunctionsWithBodies.empty())
3681 return error("Insufficient function protos");
3683 Function *Fn = FunctionsWithBodies.back();
3684 FunctionsWithBodies.pop_back();
3686 // Save the current stream state.
3687 uint64_t CurBit = Stream.GetCurrentBitNo();
3688 assert(
3689 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3690 "Mismatch between VST and scanned function offsets");
3691 DeferredFunctionInfo[Fn] = CurBit;
3693 // Skip over the function block for now.
3694 if (Error Err = Stream.SkipBlock())
3695 return Err;
3696 return Error::success();
3699 Error BitcodeReader::globalCleanup() {
3700 // Patch the initializers for globals and aliases up.
3701 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3702 return Err;
3703 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3704 return error("Malformed global initializer set");
3706 // Look for intrinsic functions which need to be upgraded at some point
3707 // and functions that need to have their function attributes upgraded.
3708 for (Function &F : *TheModule) {
3709 MDLoader->upgradeDebugIntrinsics(F);
3710 Function *NewFn;
3711 if (UpgradeIntrinsicFunction(&F, NewFn))
3712 UpgradedIntrinsics[&F] = NewFn;
3713 // Look for functions that rely on old function attribute behavior.
3714 UpgradeFunctionAttributes(F);
3717 // Look for global variables which need to be renamed.
3718 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3719 for (GlobalVariable &GV : TheModule->globals())
3720 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3721 UpgradedVariables.emplace_back(&GV, Upgraded);
3722 for (auto &Pair : UpgradedVariables) {
3723 Pair.first->eraseFromParent();
3724 TheModule->insertGlobalVariable(Pair.second);
3727 // Force deallocation of memory for these vectors to favor the client that
3728 // want lazy deserialization.
3729 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3730 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3731 return Error::success();
3734 /// Support for lazy parsing of function bodies. This is required if we
3735 /// either have an old bitcode file without a VST forward declaration record,
3736 /// or if we have an anonymous function being materialized, since anonymous
3737 /// functions do not have a name and are therefore not in the VST.
3738 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3739 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3740 return JumpFailed;
3742 if (Stream.AtEndOfStream())
3743 return error("Could not find function in stream");
3745 if (!SeenFirstFunctionBody)
3746 return error("Trying to materialize functions before seeing function blocks");
3748 // An old bitcode file with the symbol table at the end would have
3749 // finished the parse greedily.
3750 assert(SeenValueSymbolTable);
3752 SmallVector<uint64_t, 64> Record;
3754 while (true) {
3755 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3756 if (!MaybeEntry)
3757 return MaybeEntry.takeError();
3758 llvm::BitstreamEntry Entry = MaybeEntry.get();
3760 switch (Entry.Kind) {
3761 default:
3762 return error("Expect SubBlock");
3763 case BitstreamEntry::SubBlock:
3764 switch (Entry.ID) {
3765 default:
3766 return error("Expect function block");
3767 case bitc::FUNCTION_BLOCK_ID:
3768 if (Error Err = rememberAndSkipFunctionBody())
3769 return Err;
3770 NextUnreadBit = Stream.GetCurrentBitNo();
3771 return Error::success();
3777 Error BitcodeReaderBase::readBlockInfo() {
3778 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3779 Stream.ReadBlockInfoBlock();
3780 if (!MaybeNewBlockInfo)
3781 return MaybeNewBlockInfo.takeError();
3782 std::optional<BitstreamBlockInfo> NewBlockInfo =
3783 std::move(MaybeNewBlockInfo.get());
3784 if (!NewBlockInfo)
3785 return error("Malformed block");
3786 BlockInfo = std::move(*NewBlockInfo);
3787 return Error::success();
3790 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3791 // v1: [selection_kind, name]
3792 // v2: [strtab_offset, strtab_size, selection_kind]
3793 StringRef Name;
3794 std::tie(Name, Record) = readNameFromStrtab(Record);
3796 if (Record.empty())
3797 return error("Invalid record");
3798 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3799 std::string OldFormatName;
3800 if (!UseStrtab) {
3801 if (Record.size() < 2)
3802 return error("Invalid record");
3803 unsigned ComdatNameSize = Record[1];
3804 if (ComdatNameSize > Record.size() - 2)
3805 return error("Comdat name size too large");
3806 OldFormatName.reserve(ComdatNameSize);
3807 for (unsigned i = 0; i != ComdatNameSize; ++i)
3808 OldFormatName += (char)Record[2 + i];
3809 Name = OldFormatName;
3811 Comdat *C = TheModule->getOrInsertComdat(Name);
3812 C->setSelectionKind(SK);
3813 ComdatList.push_back(C);
3814 return Error::success();
3817 static void inferDSOLocal(GlobalValue *GV) {
3818 // infer dso_local from linkage and visibility if it is not encoded.
3819 if (GV->hasLocalLinkage() ||
3820 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3821 GV->setDSOLocal(true);
3824 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3825 GlobalValue::SanitizerMetadata Meta;
3826 if (V & (1 << 0))
3827 Meta.NoAddress = true;
3828 if (V & (1 << 1))
3829 Meta.NoHWAddress = true;
3830 if (V & (1 << 2))
3831 Meta.Memtag = true;
3832 if (V & (1 << 3))
3833 Meta.IsDynInit = true;
3834 return Meta;
3837 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3838 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3839 // visibility, threadlocal, unnamed_addr, externally_initialized,
3840 // dllstorageclass, comdat, attributes, preemption specifier,
3841 // partition strtab offset, partition strtab size] (name in VST)
3842 // v2: [strtab_offset, strtab_size, v1]
3843 // v3: [v2, code_model]
3844 StringRef Name;
3845 std::tie(Name, Record) = readNameFromStrtab(Record);
3847 if (Record.size() < 6)
3848 return error("Invalid record");
3849 unsigned TyID = Record[0];
3850 Type *Ty = getTypeByID(TyID);
3851 if (!Ty)
3852 return error("Invalid record");
3853 bool isConstant = Record[1] & 1;
3854 bool explicitType = Record[1] & 2;
3855 unsigned AddressSpace;
3856 if (explicitType) {
3857 AddressSpace = Record[1] >> 2;
3858 } else {
3859 if (!Ty->isPointerTy())
3860 return error("Invalid type for value");
3861 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3862 TyID = getContainedTypeID(TyID);
3863 Ty = getTypeByID(TyID);
3864 if (!Ty)
3865 return error("Missing element type for old-style global");
3868 uint64_t RawLinkage = Record[3];
3869 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3870 MaybeAlign Alignment;
3871 if (Error Err = parseAlignmentValue(Record[4], Alignment))
3872 return Err;
3873 std::string Section;
3874 if (Record[5]) {
3875 if (Record[5] - 1 >= SectionTable.size())
3876 return error("Invalid ID");
3877 Section = SectionTable[Record[5] - 1];
3879 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3880 // Local linkage must have default visibility.
3881 // auto-upgrade `hidden` and `protected` for old bitcode.
3882 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3883 Visibility = getDecodedVisibility(Record[6]);
3885 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3886 if (Record.size() > 7)
3887 TLM = getDecodedThreadLocalMode(Record[7]);
3889 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3890 if (Record.size() > 8)
3891 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3893 bool ExternallyInitialized = false;
3894 if (Record.size() > 9)
3895 ExternallyInitialized = Record[9];
3897 GlobalVariable *NewGV =
3898 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3899 nullptr, TLM, AddressSpace, ExternallyInitialized);
3900 if (Alignment)
3901 NewGV->setAlignment(*Alignment);
3902 if (!Section.empty())
3903 NewGV->setSection(Section);
3904 NewGV->setVisibility(Visibility);
3905 NewGV->setUnnamedAddr(UnnamedAddr);
3907 if (Record.size() > 10) {
3908 // A GlobalValue with local linkage cannot have a DLL storage class.
3909 if (!NewGV->hasLocalLinkage()) {
3910 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3912 } else {
3913 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3916 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3918 // Remember which value to use for the global initializer.
3919 if (unsigned InitID = Record[2])
3920 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3922 if (Record.size() > 11) {
3923 if (unsigned ComdatID = Record[11]) {
3924 if (ComdatID > ComdatList.size())
3925 return error("Invalid global variable comdat ID");
3926 NewGV->setComdat(ComdatList[ComdatID - 1]);
3928 } else if (hasImplicitComdat(RawLinkage)) {
3929 ImplicitComdatObjects.insert(NewGV);
3932 if (Record.size() > 12) {
3933 auto AS = getAttributes(Record[12]).getFnAttrs();
3934 NewGV->setAttributes(AS);
3937 if (Record.size() > 13) {
3938 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3940 inferDSOLocal(NewGV);
3942 // Check whether we have enough values to read a partition name.
3943 if (Record.size() > 15)
3944 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3946 if (Record.size() > 16 && Record[16]) {
3947 llvm::GlobalValue::SanitizerMetadata Meta =
3948 deserializeSanitizerMetadata(Record[16]);
3949 NewGV->setSanitizerMetadata(Meta);
3952 if (Record.size() > 17 && Record[17]) {
3953 if (auto CM = getDecodedCodeModel(Record[17]))
3954 NewGV->setCodeModel(*CM);
3955 else
3956 return error("Invalid global variable code model");
3959 return Error::success();
3962 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3963 if (ValueTypeCallback) {
3964 (*ValueTypeCallback)(
3965 F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3966 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3970 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3971 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3972 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3973 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3974 // v2: [strtab_offset, strtab_size, v1]
3975 StringRef Name;
3976 std::tie(Name, Record) = readNameFromStrtab(Record);
3978 if (Record.size() < 8)
3979 return error("Invalid record");
3980 unsigned FTyID = Record[0];
3981 Type *FTy = getTypeByID(FTyID);
3982 if (!FTy)
3983 return error("Invalid record");
3984 if (isa<PointerType>(FTy)) {
3985 FTyID = getContainedTypeID(FTyID, 0);
3986 FTy = getTypeByID(FTyID);
3987 if (!FTy)
3988 return error("Missing element type for old-style function");
3991 if (!isa<FunctionType>(FTy))
3992 return error("Invalid type for value");
3993 auto CC = static_cast<CallingConv::ID>(Record[1]);
3994 if (CC & ~CallingConv::MaxID)
3995 return error("Invalid calling convention ID");
3997 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3998 if (Record.size() > 16)
3999 AddrSpace = Record[16];
4001 Function *Func =
4002 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4003 AddrSpace, Name, TheModule);
4005 assert(Func->getFunctionType() == FTy &&
4006 "Incorrect fully specified type provided for function");
4007 FunctionTypeIDs[Func] = FTyID;
4009 Func->setCallingConv(CC);
4010 bool isProto = Record[2];
4011 uint64_t RawLinkage = Record[3];
4012 Func->setLinkage(getDecodedLinkage(RawLinkage));
4013 Func->setAttributes(getAttributes(Record[4]));
4014 callValueTypeCallback(Func, FTyID);
4016 // Upgrade any old-style byval or sret without a type by propagating the
4017 // argument's pointee type. There should be no opaque pointers where the byval
4018 // type is implicit.
4019 for (unsigned i = 0; i != Func->arg_size(); ++i) {
4020 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4021 Attribute::InAlloca}) {
4022 if (!Func->hasParamAttribute(i, Kind))
4023 continue;
4025 if (Func->getParamAttribute(i, Kind).getValueAsType())
4026 continue;
4028 Func->removeParamAttr(i, Kind);
4030 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4031 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4032 if (!PtrEltTy)
4033 return error("Missing param element type for attribute upgrade");
4035 Attribute NewAttr;
4036 switch (Kind) {
4037 case Attribute::ByVal:
4038 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4039 break;
4040 case Attribute::StructRet:
4041 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4042 break;
4043 case Attribute::InAlloca:
4044 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4045 break;
4046 default:
4047 llvm_unreachable("not an upgraded type attribute");
4050 Func->addParamAttr(i, NewAttr);
4054 if (Func->getCallingConv() == CallingConv::X86_INTR &&
4055 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4056 unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4057 Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4058 if (!ByValTy)
4059 return error("Missing param element type for x86_intrcc upgrade");
4060 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4061 Func->addParamAttr(0, NewAttr);
4064 MaybeAlign Alignment;
4065 if (Error Err = parseAlignmentValue(Record[5], Alignment))
4066 return Err;
4067 if (Alignment)
4068 Func->setAlignment(*Alignment);
4069 if (Record[6]) {
4070 if (Record[6] - 1 >= SectionTable.size())
4071 return error("Invalid ID");
4072 Func->setSection(SectionTable[Record[6] - 1]);
4074 // Local linkage must have default visibility.
4075 // auto-upgrade `hidden` and `protected` for old bitcode.
4076 if (!Func->hasLocalLinkage())
4077 Func->setVisibility(getDecodedVisibility(Record[7]));
4078 if (Record.size() > 8 && Record[8]) {
4079 if (Record[8] - 1 >= GCTable.size())
4080 return error("Invalid ID");
4081 Func->setGC(GCTable[Record[8] - 1]);
4083 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4084 if (Record.size() > 9)
4085 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4086 Func->setUnnamedAddr(UnnamedAddr);
4088 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4089 if (Record.size() > 10)
4090 OperandInfo.Prologue = Record[10];
4092 if (Record.size() > 11) {
4093 // A GlobalValue with local linkage cannot have a DLL storage class.
4094 if (!Func->hasLocalLinkage()) {
4095 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4097 } else {
4098 upgradeDLLImportExportLinkage(Func, RawLinkage);
4101 if (Record.size() > 12) {
4102 if (unsigned ComdatID = Record[12]) {
4103 if (ComdatID > ComdatList.size())
4104 return error("Invalid function comdat ID");
4105 Func->setComdat(ComdatList[ComdatID - 1]);
4107 } else if (hasImplicitComdat(RawLinkage)) {
4108 ImplicitComdatObjects.insert(Func);
4111 if (Record.size() > 13)
4112 OperandInfo.Prefix = Record[13];
4114 if (Record.size() > 14)
4115 OperandInfo.PersonalityFn = Record[14];
4117 if (Record.size() > 15) {
4118 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4120 inferDSOLocal(Func);
4122 // Record[16] is the address space number.
4124 // Check whether we have enough values to read a partition name. Also make
4125 // sure Strtab has enough values.
4126 if (Record.size() > 18 && Strtab.data() &&
4127 Record[17] + Record[18] <= Strtab.size()) {
4128 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4131 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4133 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4134 FunctionOperands.push_back(OperandInfo);
4136 // If this is a function with a body, remember the prototype we are
4137 // creating now, so that we can match up the body with them later.
4138 if (!isProto) {
4139 Func->setIsMaterializable(true);
4140 FunctionsWithBodies.push_back(Func);
4141 DeferredFunctionInfo[Func] = 0;
4143 return Error::success();
4146 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4147 unsigned BitCode, ArrayRef<uint64_t> Record) {
4148 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4149 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4150 // dllstorageclass, threadlocal, unnamed_addr,
4151 // preemption specifier] (name in VST)
4152 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4153 // visibility, dllstorageclass, threadlocal, unnamed_addr,
4154 // preemption specifier] (name in VST)
4155 // v2: [strtab_offset, strtab_size, v1]
4156 StringRef Name;
4157 std::tie(Name, Record) = readNameFromStrtab(Record);
4159 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4160 if (Record.size() < (3 + (unsigned)NewRecord))
4161 return error("Invalid record");
4162 unsigned OpNum = 0;
4163 unsigned TypeID = Record[OpNum++];
4164 Type *Ty = getTypeByID(TypeID);
4165 if (!Ty)
4166 return error("Invalid record");
4168 unsigned AddrSpace;
4169 if (!NewRecord) {
4170 auto *PTy = dyn_cast<PointerType>(Ty);
4171 if (!PTy)
4172 return error("Invalid type for value");
4173 AddrSpace = PTy->getAddressSpace();
4174 TypeID = getContainedTypeID(TypeID);
4175 Ty = getTypeByID(TypeID);
4176 if (!Ty)
4177 return error("Missing element type for old-style indirect symbol");
4178 } else {
4179 AddrSpace = Record[OpNum++];
4182 auto Val = Record[OpNum++];
4183 auto Linkage = Record[OpNum++];
4184 GlobalValue *NewGA;
4185 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4186 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4187 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4188 TheModule);
4189 else
4190 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4191 nullptr, TheModule);
4193 // Local linkage must have default visibility.
4194 // auto-upgrade `hidden` and `protected` for old bitcode.
4195 if (OpNum != Record.size()) {
4196 auto VisInd = OpNum++;
4197 if (!NewGA->hasLocalLinkage())
4198 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4200 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4201 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4202 if (OpNum != Record.size()) {
4203 auto S = Record[OpNum++];
4204 // A GlobalValue with local linkage cannot have a DLL storage class.
4205 if (!NewGA->hasLocalLinkage())
4206 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4208 else
4209 upgradeDLLImportExportLinkage(NewGA, Linkage);
4210 if (OpNum != Record.size())
4211 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4212 if (OpNum != Record.size())
4213 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4215 if (OpNum != Record.size())
4216 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4217 inferDSOLocal(NewGA);
4219 // Check whether we have enough values to read a partition name.
4220 if (OpNum + 1 < Record.size()) {
4221 // Check Strtab has enough values for the partition.
4222 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4223 return error("Malformed partition, too large.");
4224 NewGA->setPartition(
4225 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4226 OpNum += 2;
4229 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4230 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4231 return Error::success();
4234 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4235 bool ShouldLazyLoadMetadata,
4236 ParserCallbacks Callbacks) {
4237 this->ValueTypeCallback = std::move(Callbacks.ValueType);
4238 if (ResumeBit) {
4239 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4240 return JumpFailed;
4241 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4242 return Err;
4244 SmallVector<uint64_t, 64> Record;
4246 // Parts of bitcode parsing depend on the datalayout. Make sure we
4247 // finalize the datalayout before we run any of that code.
4248 bool ResolvedDataLayout = false;
4249 // In order to support importing modules with illegal data layout strings,
4250 // delay parsing the data layout string until after upgrades and overrides
4251 // have been applied, allowing to fix illegal data layout strings.
4252 // Initialize to the current module's layout string in case none is specified.
4253 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4255 auto ResolveDataLayout = [&]() -> Error {
4256 if (ResolvedDataLayout)
4257 return Error::success();
4259 // Datalayout and triple can't be parsed after this point.
4260 ResolvedDataLayout = true;
4262 // Auto-upgrade the layout string
4263 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4264 TentativeDataLayoutStr, TheModule->getTargetTriple());
4266 // Apply override
4267 if (Callbacks.DataLayout) {
4268 if (auto LayoutOverride = (*Callbacks.DataLayout)(
4269 TheModule->getTargetTriple(), TentativeDataLayoutStr))
4270 TentativeDataLayoutStr = *LayoutOverride;
4273 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4274 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4275 if (!MaybeDL)
4276 return MaybeDL.takeError();
4278 TheModule->setDataLayout(MaybeDL.get());
4279 return Error::success();
4282 // Read all the records for this module.
4283 while (true) {
4284 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4285 if (!MaybeEntry)
4286 return MaybeEntry.takeError();
4287 llvm::BitstreamEntry Entry = MaybeEntry.get();
4289 switch (Entry.Kind) {
4290 case BitstreamEntry::Error:
4291 return error("Malformed block");
4292 case BitstreamEntry::EndBlock:
4293 if (Error Err = ResolveDataLayout())
4294 return Err;
4295 return globalCleanup();
4297 case BitstreamEntry::SubBlock:
4298 switch (Entry.ID) {
4299 default: // Skip unknown content.
4300 if (Error Err = Stream.SkipBlock())
4301 return Err;
4302 break;
4303 case bitc::BLOCKINFO_BLOCK_ID:
4304 if (Error Err = readBlockInfo())
4305 return Err;
4306 break;
4307 case bitc::PARAMATTR_BLOCK_ID:
4308 if (Error Err = parseAttributeBlock())
4309 return Err;
4310 break;
4311 case bitc::PARAMATTR_GROUP_BLOCK_ID:
4312 if (Error Err = parseAttributeGroupBlock())
4313 return Err;
4314 break;
4315 case bitc::TYPE_BLOCK_ID_NEW:
4316 if (Error Err = parseTypeTable())
4317 return Err;
4318 break;
4319 case bitc::VALUE_SYMTAB_BLOCK_ID:
4320 if (!SeenValueSymbolTable) {
4321 // Either this is an old form VST without function index and an
4322 // associated VST forward declaration record (which would have caused
4323 // the VST to be jumped to and parsed before it was encountered
4324 // normally in the stream), or there were no function blocks to
4325 // trigger an earlier parsing of the VST.
4326 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4327 if (Error Err = parseValueSymbolTable())
4328 return Err;
4329 SeenValueSymbolTable = true;
4330 } else {
4331 // We must have had a VST forward declaration record, which caused
4332 // the parser to jump to and parse the VST earlier.
4333 assert(VSTOffset > 0);
4334 if (Error Err = Stream.SkipBlock())
4335 return Err;
4337 break;
4338 case bitc::CONSTANTS_BLOCK_ID:
4339 if (Error Err = parseConstants())
4340 return Err;
4341 if (Error Err = resolveGlobalAndIndirectSymbolInits())
4342 return Err;
4343 break;
4344 case bitc::METADATA_BLOCK_ID:
4345 if (ShouldLazyLoadMetadata) {
4346 if (Error Err = rememberAndSkipMetadata())
4347 return Err;
4348 break;
4350 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4351 if (Error Err = MDLoader->parseModuleMetadata())
4352 return Err;
4353 break;
4354 case bitc::METADATA_KIND_BLOCK_ID:
4355 if (Error Err = MDLoader->parseMetadataKinds())
4356 return Err;
4357 break;
4358 case bitc::FUNCTION_BLOCK_ID:
4359 if (Error Err = ResolveDataLayout())
4360 return Err;
4362 // If this is the first function body we've seen, reverse the
4363 // FunctionsWithBodies list.
4364 if (!SeenFirstFunctionBody) {
4365 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4366 if (Error Err = globalCleanup())
4367 return Err;
4368 SeenFirstFunctionBody = true;
4371 if (VSTOffset > 0) {
4372 // If we have a VST forward declaration record, make sure we
4373 // parse the VST now if we haven't already. It is needed to
4374 // set up the DeferredFunctionInfo vector for lazy reading.
4375 if (!SeenValueSymbolTable) {
4376 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4377 return Err;
4378 SeenValueSymbolTable = true;
4379 // Fall through so that we record the NextUnreadBit below.
4380 // This is necessary in case we have an anonymous function that
4381 // is later materialized. Since it will not have a VST entry we
4382 // need to fall back to the lazy parse to find its offset.
4383 } else {
4384 // If we have a VST forward declaration record, but have already
4385 // parsed the VST (just above, when the first function body was
4386 // encountered here), then we are resuming the parse after
4387 // materializing functions. The ResumeBit points to the
4388 // start of the last function block recorded in the
4389 // DeferredFunctionInfo map. Skip it.
4390 if (Error Err = Stream.SkipBlock())
4391 return Err;
4392 continue;
4396 // Support older bitcode files that did not have the function
4397 // index in the VST, nor a VST forward declaration record, as
4398 // well as anonymous functions that do not have VST entries.
4399 // Build the DeferredFunctionInfo vector on the fly.
4400 if (Error Err = rememberAndSkipFunctionBody())
4401 return Err;
4403 // Suspend parsing when we reach the function bodies. Subsequent
4404 // materialization calls will resume it when necessary. If the bitcode
4405 // file is old, the symbol table will be at the end instead and will not
4406 // have been seen yet. In this case, just finish the parse now.
4407 if (SeenValueSymbolTable) {
4408 NextUnreadBit = Stream.GetCurrentBitNo();
4409 // After the VST has been parsed, we need to make sure intrinsic name
4410 // are auto-upgraded.
4411 return globalCleanup();
4413 break;
4414 case bitc::USELIST_BLOCK_ID:
4415 if (Error Err = parseUseLists())
4416 return Err;
4417 break;
4418 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4419 if (Error Err = parseOperandBundleTags())
4420 return Err;
4421 break;
4422 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4423 if (Error Err = parseSyncScopeNames())
4424 return Err;
4425 break;
4427 continue;
4429 case BitstreamEntry::Record:
4430 // The interesting case.
4431 break;
4434 // Read a record.
4435 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4436 if (!MaybeBitCode)
4437 return MaybeBitCode.takeError();
4438 switch (unsigned BitCode = MaybeBitCode.get()) {
4439 default: break; // Default behavior, ignore unknown content.
4440 case bitc::MODULE_CODE_VERSION: {
4441 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4442 if (!VersionOrErr)
4443 return VersionOrErr.takeError();
4444 UseRelativeIDs = *VersionOrErr >= 1;
4445 break;
4447 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
4448 if (ResolvedDataLayout)
4449 return error("target triple too late in module");
4450 std::string S;
4451 if (convertToString(Record, 0, S))
4452 return error("Invalid record");
4453 TheModule->setTargetTriple(S);
4454 break;
4456 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
4457 if (ResolvedDataLayout)
4458 return error("datalayout too late in module");
4459 if (convertToString(Record, 0, TentativeDataLayoutStr))
4460 return error("Invalid record");
4461 break;
4463 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
4464 std::string S;
4465 if (convertToString(Record, 0, S))
4466 return error("Invalid record");
4467 TheModule->setModuleInlineAsm(S);
4468 break;
4470 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
4471 // Deprecated, but still needed to read old bitcode files.
4472 std::string S;
4473 if (convertToString(Record, 0, S))
4474 return error("Invalid record");
4475 // Ignore value.
4476 break;
4478 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4479 std::string S;
4480 if (convertToString(Record, 0, S))
4481 return error("Invalid record");
4482 SectionTable.push_back(S);
4483 break;
4485 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
4486 std::string S;
4487 if (convertToString(Record, 0, S))
4488 return error("Invalid record");
4489 GCTable.push_back(S);
4490 break;
4492 case bitc::MODULE_CODE_COMDAT:
4493 if (Error Err = parseComdatRecord(Record))
4494 return Err;
4495 break;
4496 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4497 // written by ThinLinkBitcodeWriter. See
4498 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4499 // record
4500 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4501 case bitc::MODULE_CODE_GLOBALVAR:
4502 if (Error Err = parseGlobalVarRecord(Record))
4503 return Err;
4504 break;
4505 case bitc::MODULE_CODE_FUNCTION:
4506 if (Error Err = ResolveDataLayout())
4507 return Err;
4508 if (Error Err = parseFunctionRecord(Record))
4509 return Err;
4510 break;
4511 case bitc::MODULE_CODE_IFUNC:
4512 case bitc::MODULE_CODE_ALIAS:
4513 case bitc::MODULE_CODE_ALIAS_OLD:
4514 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4515 return Err;
4516 break;
4517 /// MODULE_CODE_VSTOFFSET: [offset]
4518 case bitc::MODULE_CODE_VSTOFFSET:
4519 if (Record.empty())
4520 return error("Invalid record");
4521 // Note that we subtract 1 here because the offset is relative to one word
4522 // before the start of the identification or module block, which was
4523 // historically always the start of the regular bitcode header.
4524 VSTOffset = Record[0] - 1;
4525 break;
4526 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4527 case bitc::MODULE_CODE_SOURCE_FILENAME:
4528 SmallString<128> ValueName;
4529 if (convertToString(Record, 0, ValueName))
4530 return error("Invalid record");
4531 TheModule->setSourceFileName(ValueName);
4532 break;
4534 Record.clear();
4536 this->ValueTypeCallback = std::nullopt;
4537 return Error::success();
4540 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4541 bool IsImporting,
4542 ParserCallbacks Callbacks) {
4543 TheModule = M;
4544 MetadataLoaderCallbacks MDCallbacks;
4545 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4546 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4547 return getContainedTypeID(I, J);
4549 MDCallbacks.MDType = Callbacks.MDType;
4550 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4551 return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4554 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4555 if (!isa<PointerType>(PtrType))
4556 return error("Load/Store operand is not a pointer type");
4557 if (!PointerType::isLoadableOrStorableType(ValType))
4558 return error("Cannot load/store from pointer");
4559 return Error::success();
4562 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4563 ArrayRef<unsigned> ArgTyIDs) {
4564 AttributeList Attrs = CB->getAttributes();
4565 for (unsigned i = 0; i != CB->arg_size(); ++i) {
4566 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4567 Attribute::InAlloca}) {
4568 if (!Attrs.hasParamAttr(i, Kind) ||
4569 Attrs.getParamAttr(i, Kind).getValueAsType())
4570 continue;
4572 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4573 if (!PtrEltTy)
4574 return error("Missing element type for typed attribute upgrade");
4576 Attribute NewAttr;
4577 switch (Kind) {
4578 case Attribute::ByVal:
4579 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4580 break;
4581 case Attribute::StructRet:
4582 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4583 break;
4584 case Attribute::InAlloca:
4585 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4586 break;
4587 default:
4588 llvm_unreachable("not an upgraded type attribute");
4591 Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4595 if (CB->isInlineAsm()) {
4596 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4597 unsigned ArgNo = 0;
4598 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4599 if (!CI.hasArg())
4600 continue;
4602 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4603 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4604 if (!ElemTy)
4605 return error("Missing element type for inline asm upgrade");
4606 Attrs = Attrs.addParamAttribute(
4607 Context, ArgNo,
4608 Attribute::get(Context, Attribute::ElementType, ElemTy));
4611 ArgNo++;
4615 switch (CB->getIntrinsicID()) {
4616 case Intrinsic::preserve_array_access_index:
4617 case Intrinsic::preserve_struct_access_index:
4618 case Intrinsic::aarch64_ldaxr:
4619 case Intrinsic::aarch64_ldxr:
4620 case Intrinsic::aarch64_stlxr:
4621 case Intrinsic::aarch64_stxr:
4622 case Intrinsic::arm_ldaex:
4623 case Intrinsic::arm_ldrex:
4624 case Intrinsic::arm_stlex:
4625 case Intrinsic::arm_strex: {
4626 unsigned ArgNo;
4627 switch (CB->getIntrinsicID()) {
4628 case Intrinsic::aarch64_stlxr:
4629 case Intrinsic::aarch64_stxr:
4630 case Intrinsic::arm_stlex:
4631 case Intrinsic::arm_strex:
4632 ArgNo = 1;
4633 break;
4634 default:
4635 ArgNo = 0;
4636 break;
4638 if (!Attrs.getParamElementType(ArgNo)) {
4639 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4640 if (!ElTy)
4641 return error("Missing element type for elementtype upgrade");
4642 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4643 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4645 break;
4647 default:
4648 break;
4651 CB->setAttributes(Attrs);
4652 return Error::success();
4655 /// Lazily parse the specified function body block.
4656 Error BitcodeReader::parseFunctionBody(Function *F) {
4657 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4658 return Err;
4660 // Unexpected unresolved metadata when parsing function.
4661 if (MDLoader->hasFwdRefs())
4662 return error("Invalid function metadata: incoming forward references");
4664 InstructionList.clear();
4665 unsigned ModuleValueListSize = ValueList.size();
4666 unsigned ModuleMDLoaderSize = MDLoader->size();
4668 // Add all the function arguments to the value table.
4669 unsigned ArgNo = 0;
4670 unsigned FTyID = FunctionTypeIDs[F];
4671 for (Argument &I : F->args()) {
4672 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4673 assert(I.getType() == getTypeByID(ArgTyID) &&
4674 "Incorrect fully specified type for Function Argument");
4675 ValueList.push_back(&I, ArgTyID);
4676 ++ArgNo;
4678 unsigned NextValueNo = ValueList.size();
4679 BasicBlock *CurBB = nullptr;
4680 unsigned CurBBNo = 0;
4681 // Block into which constant expressions from phi nodes are materialized.
4682 BasicBlock *PhiConstExprBB = nullptr;
4683 // Edge blocks for phi nodes into which constant expressions have been
4684 // expanded.
4685 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4686 ConstExprEdgeBBs;
4688 DebugLoc LastLoc;
4689 auto getLastInstruction = [&]() -> Instruction * {
4690 if (CurBB && !CurBB->empty())
4691 return &CurBB->back();
4692 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4693 !FunctionBBs[CurBBNo - 1]->empty())
4694 return &FunctionBBs[CurBBNo - 1]->back();
4695 return nullptr;
4698 std::vector<OperandBundleDef> OperandBundles;
4700 // Read all the records.
4701 SmallVector<uint64_t, 64> Record;
4703 while (true) {
4704 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4705 if (!MaybeEntry)
4706 return MaybeEntry.takeError();
4707 llvm::BitstreamEntry Entry = MaybeEntry.get();
4709 switch (Entry.Kind) {
4710 case BitstreamEntry::Error:
4711 return error("Malformed block");
4712 case BitstreamEntry::EndBlock:
4713 goto OutOfRecordLoop;
4715 case BitstreamEntry::SubBlock:
4716 switch (Entry.ID) {
4717 default: // Skip unknown content.
4718 if (Error Err = Stream.SkipBlock())
4719 return Err;
4720 break;
4721 case bitc::CONSTANTS_BLOCK_ID:
4722 if (Error Err = parseConstants())
4723 return Err;
4724 NextValueNo = ValueList.size();
4725 break;
4726 case bitc::VALUE_SYMTAB_BLOCK_ID:
4727 if (Error Err = parseValueSymbolTable())
4728 return Err;
4729 break;
4730 case bitc::METADATA_ATTACHMENT_ID:
4731 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4732 return Err;
4733 break;
4734 case bitc::METADATA_BLOCK_ID:
4735 assert(DeferredMetadataInfo.empty() &&
4736 "Must read all module-level metadata before function-level");
4737 if (Error Err = MDLoader->parseFunctionMetadata())
4738 return Err;
4739 break;
4740 case bitc::USELIST_BLOCK_ID:
4741 if (Error Err = parseUseLists())
4742 return Err;
4743 break;
4745 continue;
4747 case BitstreamEntry::Record:
4748 // The interesting case.
4749 break;
4752 // Read a record.
4753 Record.clear();
4754 Instruction *I = nullptr;
4755 unsigned ResTypeID = InvalidTypeID;
4756 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4757 if (!MaybeBitCode)
4758 return MaybeBitCode.takeError();
4759 switch (unsigned BitCode = MaybeBitCode.get()) {
4760 default: // Default behavior: reject
4761 return error("Invalid value");
4762 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
4763 if (Record.empty() || Record[0] == 0)
4764 return error("Invalid record");
4765 // Create all the basic blocks for the function.
4766 FunctionBBs.resize(Record[0]);
4768 // See if anything took the address of blocks in this function.
4769 auto BBFRI = BasicBlockFwdRefs.find(F);
4770 if (BBFRI == BasicBlockFwdRefs.end()) {
4771 for (BasicBlock *&BB : FunctionBBs)
4772 BB = BasicBlock::Create(Context, "", F);
4773 } else {
4774 auto &BBRefs = BBFRI->second;
4775 // Check for invalid basic block references.
4776 if (BBRefs.size() > FunctionBBs.size())
4777 return error("Invalid ID");
4778 assert(!BBRefs.empty() && "Unexpected empty array");
4779 assert(!BBRefs.front() && "Invalid reference to entry block");
4780 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4781 ++I)
4782 if (I < RE && BBRefs[I]) {
4783 BBRefs[I]->insertInto(F);
4784 FunctionBBs[I] = BBRefs[I];
4785 } else {
4786 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4789 // Erase from the table.
4790 BasicBlockFwdRefs.erase(BBFRI);
4793 CurBB = FunctionBBs[0];
4794 continue;
4797 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4798 // The record should not be emitted if it's an empty list.
4799 if (Record.empty())
4800 return error("Invalid record");
4801 // When we have the RARE case of a BlockAddress Constant that is not
4802 // scoped to the Function it refers to, we need to conservatively
4803 // materialize the referred to Function, regardless of whether or not
4804 // that Function will ultimately be linked, otherwise users of
4805 // BitcodeReader might start splicing out Function bodies such that we
4806 // might no longer be able to materialize the BlockAddress since the
4807 // BasicBlock (and entire body of the Function) the BlockAddress refers
4808 // to may have been moved. In the case that the user of BitcodeReader
4809 // decides ultimately not to link the Function body, materializing here
4810 // could be considered wasteful, but it's better than a deserialization
4811 // failure as described. This keeps BitcodeReader unaware of complex
4812 // linkage policy decisions such as those use by LTO, leaving those
4813 // decisions "one layer up."
4814 for (uint64_t ValID : Record)
4815 if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4816 BackwardRefFunctions.push_back(F);
4817 else
4818 return error("Invalid record");
4820 continue;
4822 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4823 // This record indicates that the last instruction is at the same
4824 // location as the previous instruction with a location.
4825 I = getLastInstruction();
4827 if (!I)
4828 return error("Invalid record");
4829 I->setDebugLoc(LastLoc);
4830 I = nullptr;
4831 continue;
4833 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4834 I = getLastInstruction();
4835 if (!I || Record.size() < 4)
4836 return error("Invalid record");
4838 unsigned Line = Record[0], Col = Record[1];
4839 unsigned ScopeID = Record[2], IAID = Record[3];
4840 bool isImplicitCode = Record.size() == 5 && Record[4];
4842 MDNode *Scope = nullptr, *IA = nullptr;
4843 if (ScopeID) {
4844 Scope = dyn_cast_or_null<MDNode>(
4845 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4846 if (!Scope)
4847 return error("Invalid record");
4849 if (IAID) {
4850 IA = dyn_cast_or_null<MDNode>(
4851 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4852 if (!IA)
4853 return error("Invalid record");
4855 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4856 isImplicitCode);
4857 I->setDebugLoc(LastLoc);
4858 I = nullptr;
4859 continue;
4861 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4862 unsigned OpNum = 0;
4863 Value *LHS;
4864 unsigned TypeID;
4865 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4866 OpNum+1 > Record.size())
4867 return error("Invalid record");
4869 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4870 if (Opc == -1)
4871 return error("Invalid record");
4872 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4873 ResTypeID = TypeID;
4874 InstructionList.push_back(I);
4875 if (OpNum < Record.size()) {
4876 if (isa<FPMathOperator>(I)) {
4877 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4878 if (FMF.any())
4879 I->setFastMathFlags(FMF);
4882 break;
4884 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4885 unsigned OpNum = 0;
4886 Value *LHS, *RHS;
4887 unsigned TypeID;
4888 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4889 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4890 CurBB) ||
4891 OpNum+1 > Record.size())
4892 return error("Invalid record");
4894 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4895 if (Opc == -1)
4896 return error("Invalid record");
4897 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4898 ResTypeID = TypeID;
4899 InstructionList.push_back(I);
4900 if (OpNum < Record.size()) {
4901 if (Opc == Instruction::Add ||
4902 Opc == Instruction::Sub ||
4903 Opc == Instruction::Mul ||
4904 Opc == Instruction::Shl) {
4905 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4906 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4907 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4908 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4909 } else if (Opc == Instruction::SDiv ||
4910 Opc == Instruction::UDiv ||
4911 Opc == Instruction::LShr ||
4912 Opc == Instruction::AShr) {
4913 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4914 cast<BinaryOperator>(I)->setIsExact(true);
4915 } else if (Opc == Instruction::Or) {
4916 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
4917 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
4918 } else if (isa<FPMathOperator>(I)) {
4919 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4920 if (FMF.any())
4921 I->setFastMathFlags(FMF);
4924 break;
4926 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4927 unsigned OpNum = 0;
4928 Value *Op;
4929 unsigned OpTypeID;
4930 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4931 OpNum + 1 > Record.size())
4932 return error("Invalid record");
4934 ResTypeID = Record[OpNum++];
4935 Type *ResTy = getTypeByID(ResTypeID);
4936 int Opc = getDecodedCastOpcode(Record[OpNum++]);
4938 if (Opc == -1 || !ResTy)
4939 return error("Invalid record");
4940 Instruction *Temp = nullptr;
4941 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4942 if (Temp) {
4943 InstructionList.push_back(Temp);
4944 assert(CurBB && "No current BB?");
4945 Temp->insertInto(CurBB, CurBB->end());
4947 } else {
4948 auto CastOp = (Instruction::CastOps)Opc;
4949 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4950 return error("Invalid cast");
4951 I = CastInst::Create(CastOp, Op, ResTy);
4953 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) &&
4954 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)))
4955 I->setNonNeg(true);
4956 InstructionList.push_back(I);
4957 break;
4959 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4960 case bitc::FUNC_CODE_INST_GEP_OLD:
4961 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4962 unsigned OpNum = 0;
4964 unsigned TyID;
4965 Type *Ty;
4966 bool InBounds;
4968 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4969 InBounds = Record[OpNum++];
4970 TyID = Record[OpNum++];
4971 Ty = getTypeByID(TyID);
4972 } else {
4973 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4974 TyID = InvalidTypeID;
4975 Ty = nullptr;
4978 Value *BasePtr;
4979 unsigned BasePtrTypeID;
4980 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4981 CurBB))
4982 return error("Invalid record");
4984 if (!Ty) {
4985 TyID = getContainedTypeID(BasePtrTypeID);
4986 if (BasePtr->getType()->isVectorTy())
4987 TyID = getContainedTypeID(TyID);
4988 Ty = getTypeByID(TyID);
4991 SmallVector<Value*, 16> GEPIdx;
4992 while (OpNum != Record.size()) {
4993 Value *Op;
4994 unsigned OpTypeID;
4995 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4996 return error("Invalid record");
4997 GEPIdx.push_back(Op);
5000 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5002 ResTypeID = TyID;
5003 if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5004 auto GTI = std::next(gep_type_begin(I));
5005 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5006 unsigned SubType = 0;
5007 if (GTI.isStruct()) {
5008 ConstantInt *IdxC =
5009 Idx->getType()->isVectorTy()
5010 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5011 : cast<ConstantInt>(Idx);
5012 SubType = IdxC->getZExtValue();
5014 ResTypeID = getContainedTypeID(ResTypeID, SubType);
5015 ++GTI;
5019 // At this point ResTypeID is the result element type. We need a pointer
5020 // or vector of pointer to it.
5021 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5022 if (I->getType()->isVectorTy())
5023 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5025 InstructionList.push_back(I);
5026 if (InBounds)
5027 cast<GetElementPtrInst>(I)->setIsInBounds(true);
5028 break;
5031 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5032 // EXTRACTVAL: [opty, opval, n x indices]
5033 unsigned OpNum = 0;
5034 Value *Agg;
5035 unsigned AggTypeID;
5036 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5037 return error("Invalid record");
5038 Type *Ty = Agg->getType();
5040 unsigned RecSize = Record.size();
5041 if (OpNum == RecSize)
5042 return error("EXTRACTVAL: Invalid instruction with 0 indices");
5044 SmallVector<unsigned, 4> EXTRACTVALIdx;
5045 ResTypeID = AggTypeID;
5046 for (; OpNum != RecSize; ++OpNum) {
5047 bool IsArray = Ty->isArrayTy();
5048 bool IsStruct = Ty->isStructTy();
5049 uint64_t Index = Record[OpNum];
5051 if (!IsStruct && !IsArray)
5052 return error("EXTRACTVAL: Invalid type");
5053 if ((unsigned)Index != Index)
5054 return error("Invalid value");
5055 if (IsStruct && Index >= Ty->getStructNumElements())
5056 return error("EXTRACTVAL: Invalid struct index");
5057 if (IsArray && Index >= Ty->getArrayNumElements())
5058 return error("EXTRACTVAL: Invalid array index");
5059 EXTRACTVALIdx.push_back((unsigned)Index);
5061 if (IsStruct) {
5062 Ty = Ty->getStructElementType(Index);
5063 ResTypeID = getContainedTypeID(ResTypeID, Index);
5064 } else {
5065 Ty = Ty->getArrayElementType();
5066 ResTypeID = getContainedTypeID(ResTypeID);
5070 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5071 InstructionList.push_back(I);
5072 break;
5075 case bitc::FUNC_CODE_INST_INSERTVAL: {
5076 // INSERTVAL: [opty, opval, opty, opval, n x indices]
5077 unsigned OpNum = 0;
5078 Value *Agg;
5079 unsigned AggTypeID;
5080 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5081 return error("Invalid record");
5082 Value *Val;
5083 unsigned ValTypeID;
5084 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5085 return error("Invalid record");
5087 unsigned RecSize = Record.size();
5088 if (OpNum == RecSize)
5089 return error("INSERTVAL: Invalid instruction with 0 indices");
5091 SmallVector<unsigned, 4> INSERTVALIdx;
5092 Type *CurTy = Agg->getType();
5093 for (; OpNum != RecSize; ++OpNum) {
5094 bool IsArray = CurTy->isArrayTy();
5095 bool IsStruct = CurTy->isStructTy();
5096 uint64_t Index = Record[OpNum];
5098 if (!IsStruct && !IsArray)
5099 return error("INSERTVAL: Invalid type");
5100 if ((unsigned)Index != Index)
5101 return error("Invalid value");
5102 if (IsStruct && Index >= CurTy->getStructNumElements())
5103 return error("INSERTVAL: Invalid struct index");
5104 if (IsArray && Index >= CurTy->getArrayNumElements())
5105 return error("INSERTVAL: Invalid array index");
5107 INSERTVALIdx.push_back((unsigned)Index);
5108 if (IsStruct)
5109 CurTy = CurTy->getStructElementType(Index);
5110 else
5111 CurTy = CurTy->getArrayElementType();
5114 if (CurTy != Val->getType())
5115 return error("Inserted value type doesn't match aggregate type");
5117 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5118 ResTypeID = AggTypeID;
5119 InstructionList.push_back(I);
5120 break;
5123 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5124 // obsolete form of select
5125 // handles select i1 ... in old bitcode
5126 unsigned OpNum = 0;
5127 Value *TrueVal, *FalseVal, *Cond;
5128 unsigned TypeID;
5129 Type *CondType = Type::getInt1Ty(Context);
5130 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5131 CurBB) ||
5132 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5133 FalseVal, CurBB) ||
5134 popValue(Record, OpNum, NextValueNo, CondType,
5135 getVirtualTypeID(CondType), Cond, CurBB))
5136 return error("Invalid record");
5138 I = SelectInst::Create(Cond, TrueVal, FalseVal);
5139 ResTypeID = TypeID;
5140 InstructionList.push_back(I);
5141 break;
5144 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5145 // new form of select
5146 // handles select i1 or select [N x i1]
5147 unsigned OpNum = 0;
5148 Value *TrueVal, *FalseVal, *Cond;
5149 unsigned ValTypeID, CondTypeID;
5150 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5151 CurBB) ||
5152 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5153 FalseVal, CurBB) ||
5154 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5155 return error("Invalid record");
5157 // select condition can be either i1 or [N x i1]
5158 if (VectorType* vector_type =
5159 dyn_cast<VectorType>(Cond->getType())) {
5160 // expect <n x i1>
5161 if (vector_type->getElementType() != Type::getInt1Ty(Context))
5162 return error("Invalid type for value");
5163 } else {
5164 // expect i1
5165 if (Cond->getType() != Type::getInt1Ty(Context))
5166 return error("Invalid type for value");
5169 I = SelectInst::Create(Cond, TrueVal, FalseVal);
5170 ResTypeID = ValTypeID;
5171 InstructionList.push_back(I);
5172 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5173 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5174 if (FMF.any())
5175 I->setFastMathFlags(FMF);
5177 break;
5180 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5181 unsigned OpNum = 0;
5182 Value *Vec, *Idx;
5183 unsigned VecTypeID, IdxTypeID;
5184 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5185 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5186 return error("Invalid record");
5187 if (!Vec->getType()->isVectorTy())
5188 return error("Invalid type for value");
5189 I = ExtractElementInst::Create(Vec, Idx);
5190 ResTypeID = getContainedTypeID(VecTypeID);
5191 InstructionList.push_back(I);
5192 break;
5195 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5196 unsigned OpNum = 0;
5197 Value *Vec, *Elt, *Idx;
5198 unsigned VecTypeID, IdxTypeID;
5199 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5200 return error("Invalid record");
5201 if (!Vec->getType()->isVectorTy())
5202 return error("Invalid type for value");
5203 if (popValue(Record, OpNum, NextValueNo,
5204 cast<VectorType>(Vec->getType())->getElementType(),
5205 getContainedTypeID(VecTypeID), Elt, CurBB) ||
5206 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5207 return error("Invalid record");
5208 I = InsertElementInst::Create(Vec, Elt, Idx);
5209 ResTypeID = VecTypeID;
5210 InstructionList.push_back(I);
5211 break;
5214 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5215 unsigned OpNum = 0;
5216 Value *Vec1, *Vec2, *Mask;
5217 unsigned Vec1TypeID;
5218 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5219 CurBB) ||
5220 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5221 Vec2, CurBB))
5222 return error("Invalid record");
5224 unsigned MaskTypeID;
5225 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5226 return error("Invalid record");
5227 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5228 return error("Invalid type for value");
5230 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5231 ResTypeID =
5232 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5233 InstructionList.push_back(I);
5234 break;
5237 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
5238 // Old form of ICmp/FCmp returning bool
5239 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5240 // both legal on vectors but had different behaviour.
5241 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5242 // FCmp/ICmp returning bool or vector of bool
5244 unsigned OpNum = 0;
5245 Value *LHS, *RHS;
5246 unsigned LHSTypeID;
5247 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5248 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5249 CurBB))
5250 return error("Invalid record");
5252 if (OpNum >= Record.size())
5253 return error(
5254 "Invalid record: operand number exceeded available operands");
5256 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5257 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5258 FastMathFlags FMF;
5259 if (IsFP && Record.size() > OpNum+1)
5260 FMF = getDecodedFastMathFlags(Record[++OpNum]);
5262 if (OpNum+1 != Record.size())
5263 return error("Invalid record");
5265 if (IsFP) {
5266 if (!CmpInst::isFPPredicate(PredVal))
5267 return error("Invalid fcmp predicate");
5268 I = new FCmpInst(PredVal, LHS, RHS);
5269 } else {
5270 if (!CmpInst::isIntPredicate(PredVal))
5271 return error("Invalid icmp predicate");
5272 I = new ICmpInst(PredVal, LHS, RHS);
5275 ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5276 if (LHS->getType()->isVectorTy())
5277 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5279 if (FMF.any())
5280 I->setFastMathFlags(FMF);
5281 InstructionList.push_back(I);
5282 break;
5285 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5287 unsigned Size = Record.size();
5288 if (Size == 0) {
5289 I = ReturnInst::Create(Context);
5290 InstructionList.push_back(I);
5291 break;
5294 unsigned OpNum = 0;
5295 Value *Op = nullptr;
5296 unsigned OpTypeID;
5297 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5298 return error("Invalid record");
5299 if (OpNum != Record.size())
5300 return error("Invalid record");
5302 I = ReturnInst::Create(Context, Op);
5303 InstructionList.push_back(I);
5304 break;
5306 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5307 if (Record.size() != 1 && Record.size() != 3)
5308 return error("Invalid record");
5309 BasicBlock *TrueDest = getBasicBlock(Record[0]);
5310 if (!TrueDest)
5311 return error("Invalid record");
5313 if (Record.size() == 1) {
5314 I = BranchInst::Create(TrueDest);
5315 InstructionList.push_back(I);
5317 else {
5318 BasicBlock *FalseDest = getBasicBlock(Record[1]);
5319 Type *CondType = Type::getInt1Ty(Context);
5320 Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5321 getVirtualTypeID(CondType), CurBB);
5322 if (!FalseDest || !Cond)
5323 return error("Invalid record");
5324 I = BranchInst::Create(TrueDest, FalseDest, Cond);
5325 InstructionList.push_back(I);
5327 break;
5329 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5330 if (Record.size() != 1 && Record.size() != 2)
5331 return error("Invalid record");
5332 unsigned Idx = 0;
5333 Type *TokenTy = Type::getTokenTy(Context);
5334 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5335 getVirtualTypeID(TokenTy), CurBB);
5336 if (!CleanupPad)
5337 return error("Invalid record");
5338 BasicBlock *UnwindDest = nullptr;
5339 if (Record.size() == 2) {
5340 UnwindDest = getBasicBlock(Record[Idx++]);
5341 if (!UnwindDest)
5342 return error("Invalid record");
5345 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5346 InstructionList.push_back(I);
5347 break;
5349 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5350 if (Record.size() != 2)
5351 return error("Invalid record");
5352 unsigned Idx = 0;
5353 Type *TokenTy = Type::getTokenTy(Context);
5354 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5355 getVirtualTypeID(TokenTy), CurBB);
5356 if (!CatchPad)
5357 return error("Invalid record");
5358 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5359 if (!BB)
5360 return error("Invalid record");
5362 I = CatchReturnInst::Create(CatchPad, BB);
5363 InstructionList.push_back(I);
5364 break;
5366 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5367 // We must have, at minimum, the outer scope and the number of arguments.
5368 if (Record.size() < 2)
5369 return error("Invalid record");
5371 unsigned Idx = 0;
5373 Type *TokenTy = Type::getTokenTy(Context);
5374 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5375 getVirtualTypeID(TokenTy), CurBB);
5376 if (!ParentPad)
5377 return error("Invalid record");
5379 unsigned NumHandlers = Record[Idx++];
5381 SmallVector<BasicBlock *, 2> Handlers;
5382 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5383 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5384 if (!BB)
5385 return error("Invalid record");
5386 Handlers.push_back(BB);
5389 BasicBlock *UnwindDest = nullptr;
5390 if (Idx + 1 == Record.size()) {
5391 UnwindDest = getBasicBlock(Record[Idx++]);
5392 if (!UnwindDest)
5393 return error("Invalid record");
5396 if (Record.size() != Idx)
5397 return error("Invalid record");
5399 auto *CatchSwitch =
5400 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5401 for (BasicBlock *Handler : Handlers)
5402 CatchSwitch->addHandler(Handler);
5403 I = CatchSwitch;
5404 ResTypeID = getVirtualTypeID(I->getType());
5405 InstructionList.push_back(I);
5406 break;
5408 case bitc::FUNC_CODE_INST_CATCHPAD:
5409 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5410 // We must have, at minimum, the outer scope and the number of arguments.
5411 if (Record.size() < 2)
5412 return error("Invalid record");
5414 unsigned Idx = 0;
5416 Type *TokenTy = Type::getTokenTy(Context);
5417 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5418 getVirtualTypeID(TokenTy), CurBB);
5419 if (!ParentPad)
5420 return error("Invald record");
5422 unsigned NumArgOperands = Record[Idx++];
5424 SmallVector<Value *, 2> Args;
5425 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5426 Value *Val;
5427 unsigned ValTypeID;
5428 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5429 return error("Invalid record");
5430 Args.push_back(Val);
5433 if (Record.size() != Idx)
5434 return error("Invalid record");
5436 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5437 I = CleanupPadInst::Create(ParentPad, Args);
5438 else
5439 I = CatchPadInst::Create(ParentPad, Args);
5440 ResTypeID = getVirtualTypeID(I->getType());
5441 InstructionList.push_back(I);
5442 break;
5444 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5445 // Check magic
5446 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5447 // "New" SwitchInst format with case ranges. The changes to write this
5448 // format were reverted but we still recognize bitcode that uses it.
5449 // Hopefully someday we will have support for case ranges and can use
5450 // this format again.
5452 unsigned OpTyID = Record[1];
5453 Type *OpTy = getTypeByID(OpTyID);
5454 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5456 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5457 BasicBlock *Default = getBasicBlock(Record[3]);
5458 if (!OpTy || !Cond || !Default)
5459 return error("Invalid record");
5461 unsigned NumCases = Record[4];
5463 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5464 InstructionList.push_back(SI);
5466 unsigned CurIdx = 5;
5467 for (unsigned i = 0; i != NumCases; ++i) {
5468 SmallVector<ConstantInt*, 1> CaseVals;
5469 unsigned NumItems = Record[CurIdx++];
5470 for (unsigned ci = 0; ci != NumItems; ++ci) {
5471 bool isSingleNumber = Record[CurIdx++];
5473 APInt Low;
5474 unsigned ActiveWords = 1;
5475 if (ValueBitWidth > 64)
5476 ActiveWords = Record[CurIdx++];
5477 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5478 ValueBitWidth);
5479 CurIdx += ActiveWords;
5481 if (!isSingleNumber) {
5482 ActiveWords = 1;
5483 if (ValueBitWidth > 64)
5484 ActiveWords = Record[CurIdx++];
5485 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5486 ValueBitWidth);
5487 CurIdx += ActiveWords;
5489 // FIXME: It is not clear whether values in the range should be
5490 // compared as signed or unsigned values. The partially
5491 // implemented changes that used this format in the past used
5492 // unsigned comparisons.
5493 for ( ; Low.ule(High); ++Low)
5494 CaseVals.push_back(ConstantInt::get(Context, Low));
5495 } else
5496 CaseVals.push_back(ConstantInt::get(Context, Low));
5498 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5499 for (ConstantInt *Cst : CaseVals)
5500 SI->addCase(Cst, DestBB);
5502 I = SI;
5503 break;
5506 // Old SwitchInst format without case ranges.
5508 if (Record.size() < 3 || (Record.size() & 1) == 0)
5509 return error("Invalid record");
5510 unsigned OpTyID = Record[0];
5511 Type *OpTy = getTypeByID(OpTyID);
5512 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5513 BasicBlock *Default = getBasicBlock(Record[2]);
5514 if (!OpTy || !Cond || !Default)
5515 return error("Invalid record");
5516 unsigned NumCases = (Record.size()-3)/2;
5517 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5518 InstructionList.push_back(SI);
5519 for (unsigned i = 0, e = NumCases; i != e; ++i) {
5520 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5521 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5522 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5523 if (!CaseVal || !DestBB) {
5524 delete SI;
5525 return error("Invalid record");
5527 SI->addCase(CaseVal, DestBB);
5529 I = SI;
5530 break;
5532 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5533 if (Record.size() < 2)
5534 return error("Invalid record");
5535 unsigned OpTyID = Record[0];
5536 Type *OpTy = getTypeByID(OpTyID);
5537 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5538 if (!OpTy || !Address)
5539 return error("Invalid record");
5540 unsigned NumDests = Record.size()-2;
5541 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5542 InstructionList.push_back(IBI);
5543 for (unsigned i = 0, e = NumDests; i != e; ++i) {
5544 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5545 IBI->addDestination(DestBB);
5546 } else {
5547 delete IBI;
5548 return error("Invalid record");
5551 I = IBI;
5552 break;
5555 case bitc::FUNC_CODE_INST_INVOKE: {
5556 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5557 if (Record.size() < 4)
5558 return error("Invalid record");
5559 unsigned OpNum = 0;
5560 AttributeList PAL = getAttributes(Record[OpNum++]);
5561 unsigned CCInfo = Record[OpNum++];
5562 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5563 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5565 unsigned FTyID = InvalidTypeID;
5566 FunctionType *FTy = nullptr;
5567 if ((CCInfo >> 13) & 1) {
5568 FTyID = Record[OpNum++];
5569 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5570 if (!FTy)
5571 return error("Explicit invoke type is not a function type");
5574 Value *Callee;
5575 unsigned CalleeTypeID;
5576 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5577 CurBB))
5578 return error("Invalid record");
5580 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5581 if (!CalleeTy)
5582 return error("Callee is not a pointer");
5583 if (!FTy) {
5584 FTyID = getContainedTypeID(CalleeTypeID);
5585 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5586 if (!FTy)
5587 return error("Callee is not of pointer to function type");
5589 if (Record.size() < FTy->getNumParams() + OpNum)
5590 return error("Insufficient operands to call");
5592 SmallVector<Value*, 16> Ops;
5593 SmallVector<unsigned, 16> ArgTyIDs;
5594 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5595 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5596 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5597 ArgTyID, CurBB));
5598 ArgTyIDs.push_back(ArgTyID);
5599 if (!Ops.back())
5600 return error("Invalid record");
5603 if (!FTy->isVarArg()) {
5604 if (Record.size() != OpNum)
5605 return error("Invalid record");
5606 } else {
5607 // Read type/value pairs for varargs params.
5608 while (OpNum != Record.size()) {
5609 Value *Op;
5610 unsigned OpTypeID;
5611 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5612 return error("Invalid record");
5613 Ops.push_back(Op);
5614 ArgTyIDs.push_back(OpTypeID);
5618 // Upgrade the bundles if needed.
5619 if (!OperandBundles.empty())
5620 UpgradeOperandBundles(OperandBundles);
5622 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5623 OperandBundles);
5624 ResTypeID = getContainedTypeID(FTyID);
5625 OperandBundles.clear();
5626 InstructionList.push_back(I);
5627 cast<InvokeInst>(I)->setCallingConv(
5628 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5629 cast<InvokeInst>(I)->setAttributes(PAL);
5630 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5631 I->deleteValue();
5632 return Err;
5635 break;
5637 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5638 unsigned Idx = 0;
5639 Value *Val = nullptr;
5640 unsigned ValTypeID;
5641 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5642 return error("Invalid record");
5643 I = ResumeInst::Create(Val);
5644 InstructionList.push_back(I);
5645 break;
5647 case bitc::FUNC_CODE_INST_CALLBR: {
5648 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5649 unsigned OpNum = 0;
5650 AttributeList PAL = getAttributes(Record[OpNum++]);
5651 unsigned CCInfo = Record[OpNum++];
5653 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5654 unsigned NumIndirectDests = Record[OpNum++];
5655 SmallVector<BasicBlock *, 16> IndirectDests;
5656 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5657 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5659 unsigned FTyID = InvalidTypeID;
5660 FunctionType *FTy = nullptr;
5661 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5662 FTyID = Record[OpNum++];
5663 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5664 if (!FTy)
5665 return error("Explicit call type is not a function type");
5668 Value *Callee;
5669 unsigned CalleeTypeID;
5670 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5671 CurBB))
5672 return error("Invalid record");
5674 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5675 if (!OpTy)
5676 return error("Callee is not a pointer type");
5677 if (!FTy) {
5678 FTyID = getContainedTypeID(CalleeTypeID);
5679 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5680 if (!FTy)
5681 return error("Callee is not of pointer to function type");
5683 if (Record.size() < FTy->getNumParams() + OpNum)
5684 return error("Insufficient operands to call");
5686 SmallVector<Value*, 16> Args;
5687 SmallVector<unsigned, 16> ArgTyIDs;
5688 // Read the fixed params.
5689 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5690 Value *Arg;
5691 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5692 if (FTy->getParamType(i)->isLabelTy())
5693 Arg = getBasicBlock(Record[OpNum]);
5694 else
5695 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5696 ArgTyID, CurBB);
5697 if (!Arg)
5698 return error("Invalid record");
5699 Args.push_back(Arg);
5700 ArgTyIDs.push_back(ArgTyID);
5703 // Read type/value pairs for varargs params.
5704 if (!FTy->isVarArg()) {
5705 if (OpNum != Record.size())
5706 return error("Invalid record");
5707 } else {
5708 while (OpNum != Record.size()) {
5709 Value *Op;
5710 unsigned OpTypeID;
5711 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5712 return error("Invalid record");
5713 Args.push_back(Op);
5714 ArgTyIDs.push_back(OpTypeID);
5718 // Upgrade the bundles if needed.
5719 if (!OperandBundles.empty())
5720 UpgradeOperandBundles(OperandBundles);
5722 if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5723 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5724 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5725 return CI.Type == InlineAsm::isLabel;
5727 if (none_of(ConstraintInfo, IsLabelConstraint)) {
5728 // Upgrade explicit blockaddress arguments to label constraints.
5729 // Verify that the last arguments are blockaddress arguments that
5730 // match the indirect destinations. Clang always generates callbr
5731 // in this form. We could support reordering with more effort.
5732 unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5733 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5734 unsigned LabelNo = ArgNo - FirstBlockArg;
5735 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5736 if (!BA || BA->getFunction() != F ||
5737 LabelNo > IndirectDests.size() ||
5738 BA->getBasicBlock() != IndirectDests[LabelNo])
5739 return error("callbr argument does not match indirect dest");
5742 // Remove blockaddress arguments.
5743 Args.erase(Args.begin() + FirstBlockArg, Args.end());
5744 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5746 // Recreate the function type with less arguments.
5747 SmallVector<Type *> ArgTys;
5748 for (Value *Arg : Args)
5749 ArgTys.push_back(Arg->getType());
5750 FTy =
5751 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5753 // Update constraint string to use label constraints.
5754 std::string Constraints = IA->getConstraintString();
5755 unsigned ArgNo = 0;
5756 size_t Pos = 0;
5757 for (const auto &CI : ConstraintInfo) {
5758 if (CI.hasArg()) {
5759 if (ArgNo >= FirstBlockArg)
5760 Constraints.insert(Pos, "!");
5761 ++ArgNo;
5764 // Go to next constraint in string.
5765 Pos = Constraints.find(',', Pos);
5766 if (Pos == std::string::npos)
5767 break;
5768 ++Pos;
5771 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5772 IA->hasSideEffects(), IA->isAlignStack(),
5773 IA->getDialect(), IA->canThrow());
5777 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5778 OperandBundles);
5779 ResTypeID = getContainedTypeID(FTyID);
5780 OperandBundles.clear();
5781 InstructionList.push_back(I);
5782 cast<CallBrInst>(I)->setCallingConv(
5783 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5784 cast<CallBrInst>(I)->setAttributes(PAL);
5785 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5786 I->deleteValue();
5787 return Err;
5789 break;
5791 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5792 I = new UnreachableInst(Context);
5793 InstructionList.push_back(I);
5794 break;
5795 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5796 if (Record.empty())
5797 return error("Invalid phi record");
5798 // The first record specifies the type.
5799 unsigned TyID = Record[0];
5800 Type *Ty = getTypeByID(TyID);
5801 if (!Ty)
5802 return error("Invalid phi record");
5804 // Phi arguments are pairs of records of [value, basic block].
5805 // There is an optional final record for fast-math-flags if this phi has a
5806 // floating-point type.
5807 size_t NumArgs = (Record.size() - 1) / 2;
5808 PHINode *PN = PHINode::Create(Ty, NumArgs);
5809 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5810 PN->deleteValue();
5811 return error("Invalid phi record");
5813 InstructionList.push_back(PN);
5815 SmallDenseMap<BasicBlock *, Value *> Args;
5816 for (unsigned i = 0; i != NumArgs; i++) {
5817 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5818 if (!BB) {
5819 PN->deleteValue();
5820 return error("Invalid phi BB");
5823 // Phi nodes may contain the same predecessor multiple times, in which
5824 // case the incoming value must be identical. Directly reuse the already
5825 // seen value here, to avoid expanding a constant expression multiple
5826 // times.
5827 auto It = Args.find(BB);
5828 if (It != Args.end()) {
5829 PN->addIncoming(It->second, BB);
5830 continue;
5833 // If there already is a block for this edge (from a different phi),
5834 // use it.
5835 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5836 if (!EdgeBB) {
5837 // Otherwise, use a temporary block (that we will discard if it
5838 // turns out to be unnecessary).
5839 if (!PhiConstExprBB)
5840 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5841 EdgeBB = PhiConstExprBB;
5844 // With the new function encoding, it is possible that operands have
5845 // negative IDs (for forward references). Use a signed VBR
5846 // representation to keep the encoding small.
5847 Value *V;
5848 if (UseRelativeIDs)
5849 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5850 else
5851 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5852 if (!V) {
5853 PN->deleteValue();
5854 PhiConstExprBB->eraseFromParent();
5855 return error("Invalid phi record");
5858 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5859 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5860 PhiConstExprBB = nullptr;
5862 PN->addIncoming(V, BB);
5863 Args.insert({BB, V});
5865 I = PN;
5866 ResTypeID = TyID;
5868 // If there are an even number of records, the final record must be FMF.
5869 if (Record.size() % 2 == 0) {
5870 assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5871 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5872 if (FMF.any())
5873 I->setFastMathFlags(FMF);
5876 break;
5879 case bitc::FUNC_CODE_INST_LANDINGPAD:
5880 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5881 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5882 unsigned Idx = 0;
5883 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5884 if (Record.size() < 3)
5885 return error("Invalid record");
5886 } else {
5887 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5888 if (Record.size() < 4)
5889 return error("Invalid record");
5891 ResTypeID = Record[Idx++];
5892 Type *Ty = getTypeByID(ResTypeID);
5893 if (!Ty)
5894 return error("Invalid record");
5895 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5896 Value *PersFn = nullptr;
5897 unsigned PersFnTypeID;
5898 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5899 nullptr))
5900 return error("Invalid record");
5902 if (!F->hasPersonalityFn())
5903 F->setPersonalityFn(cast<Constant>(PersFn));
5904 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5905 return error("Personality function mismatch");
5908 bool IsCleanup = !!Record[Idx++];
5909 unsigned NumClauses = Record[Idx++];
5910 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5911 LP->setCleanup(IsCleanup);
5912 for (unsigned J = 0; J != NumClauses; ++J) {
5913 LandingPadInst::ClauseType CT =
5914 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5915 Value *Val;
5916 unsigned ValTypeID;
5918 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5919 nullptr)) {
5920 delete LP;
5921 return error("Invalid record");
5924 assert((CT != LandingPadInst::Catch ||
5925 !isa<ArrayType>(Val->getType())) &&
5926 "Catch clause has a invalid type!");
5927 assert((CT != LandingPadInst::Filter ||
5928 isa<ArrayType>(Val->getType())) &&
5929 "Filter clause has invalid type!");
5930 LP->addClause(cast<Constant>(Val));
5933 I = LP;
5934 InstructionList.push_back(I);
5935 break;
5938 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5939 if (Record.size() != 4 && Record.size() != 5)
5940 return error("Invalid record");
5941 using APV = AllocaPackedValues;
5942 const uint64_t Rec = Record[3];
5943 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5944 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5945 unsigned TyID = Record[0];
5946 Type *Ty = getTypeByID(TyID);
5947 if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5948 TyID = getContainedTypeID(TyID);
5949 Ty = getTypeByID(TyID);
5950 if (!Ty)
5951 return error("Missing element type for old-style alloca");
5953 unsigned OpTyID = Record[1];
5954 Type *OpTy = getTypeByID(OpTyID);
5955 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5956 MaybeAlign Align;
5957 uint64_t AlignExp =
5958 Bitfield::get<APV::AlignLower>(Rec) |
5959 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5960 if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5961 return Err;
5963 if (!Ty || !Size)
5964 return error("Invalid record");
5966 const DataLayout &DL = TheModule->getDataLayout();
5967 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5969 SmallPtrSet<Type *, 4> Visited;
5970 if (!Align && !Ty->isSized(&Visited))
5971 return error("alloca of unsized type");
5972 if (!Align)
5973 Align = DL.getPrefTypeAlign(Ty);
5975 if (!Size->getType()->isIntegerTy())
5976 return error("alloca element count must have integer type");
5978 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5979 AI->setUsedWithInAlloca(InAlloca);
5980 AI->setSwiftError(SwiftError);
5981 I = AI;
5982 ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5983 InstructionList.push_back(I);
5984 break;
5986 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5987 unsigned OpNum = 0;
5988 Value *Op;
5989 unsigned OpTypeID;
5990 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5991 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5992 return error("Invalid record");
5994 if (!isa<PointerType>(Op->getType()))
5995 return error("Load operand is not a pointer type");
5997 Type *Ty = nullptr;
5998 if (OpNum + 3 == Record.size()) {
5999 ResTypeID = Record[OpNum++];
6000 Ty = getTypeByID(ResTypeID);
6001 } else {
6002 ResTypeID = getContainedTypeID(OpTypeID);
6003 Ty = getTypeByID(ResTypeID);
6006 if (!Ty)
6007 return error("Missing load type");
6009 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6010 return Err;
6012 MaybeAlign Align;
6013 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6014 return Err;
6015 SmallPtrSet<Type *, 4> Visited;
6016 if (!Align && !Ty->isSized(&Visited))
6017 return error("load of unsized type");
6018 if (!Align)
6019 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6020 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6021 InstructionList.push_back(I);
6022 break;
6024 case bitc::FUNC_CODE_INST_LOADATOMIC: {
6025 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6026 unsigned OpNum = 0;
6027 Value *Op;
6028 unsigned OpTypeID;
6029 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6030 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6031 return error("Invalid record");
6033 if (!isa<PointerType>(Op->getType()))
6034 return error("Load operand is not a pointer type");
6036 Type *Ty = nullptr;
6037 if (OpNum + 5 == Record.size()) {
6038 ResTypeID = Record[OpNum++];
6039 Ty = getTypeByID(ResTypeID);
6040 } else {
6041 ResTypeID = getContainedTypeID(OpTypeID);
6042 Ty = getTypeByID(ResTypeID);
6045 if (!Ty)
6046 return error("Missing atomic load type");
6048 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6049 return Err;
6051 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6052 if (Ordering == AtomicOrdering::NotAtomic ||
6053 Ordering == AtomicOrdering::Release ||
6054 Ordering == AtomicOrdering::AcquireRelease)
6055 return error("Invalid record");
6056 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6057 return error("Invalid record");
6058 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6060 MaybeAlign Align;
6061 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6062 return Err;
6063 if (!Align)
6064 return error("Alignment missing from atomic load");
6065 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6066 InstructionList.push_back(I);
6067 break;
6069 case bitc::FUNC_CODE_INST_STORE:
6070 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6071 unsigned OpNum = 0;
6072 Value *Val, *Ptr;
6073 unsigned PtrTypeID, ValTypeID;
6074 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6075 return error("Invalid record");
6077 if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6078 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6079 return error("Invalid record");
6080 } else {
6081 ValTypeID = getContainedTypeID(PtrTypeID);
6082 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6083 ValTypeID, Val, CurBB))
6084 return error("Invalid record");
6087 if (OpNum + 2 != Record.size())
6088 return error("Invalid record");
6090 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6091 return Err;
6092 MaybeAlign Align;
6093 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6094 return Err;
6095 SmallPtrSet<Type *, 4> Visited;
6096 if (!Align && !Val->getType()->isSized(&Visited))
6097 return error("store of unsized type");
6098 if (!Align)
6099 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6100 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6101 InstructionList.push_back(I);
6102 break;
6104 case bitc::FUNC_CODE_INST_STOREATOMIC:
6105 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6106 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6107 unsigned OpNum = 0;
6108 Value *Val, *Ptr;
6109 unsigned PtrTypeID, ValTypeID;
6110 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6111 !isa<PointerType>(Ptr->getType()))
6112 return error("Invalid record");
6113 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6114 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6115 return error("Invalid record");
6116 } else {
6117 ValTypeID = getContainedTypeID(PtrTypeID);
6118 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6119 ValTypeID, Val, CurBB))
6120 return error("Invalid record");
6123 if (OpNum + 4 != Record.size())
6124 return error("Invalid record");
6126 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6127 return Err;
6128 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6129 if (Ordering == AtomicOrdering::NotAtomic ||
6130 Ordering == AtomicOrdering::Acquire ||
6131 Ordering == AtomicOrdering::AcquireRelease)
6132 return error("Invalid record");
6133 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6134 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6135 return error("Invalid record");
6137 MaybeAlign Align;
6138 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6139 return Err;
6140 if (!Align)
6141 return error("Alignment missing from atomic store");
6142 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6143 InstructionList.push_back(I);
6144 break;
6146 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6147 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6148 // failure_ordering?, weak?]
6149 const size_t NumRecords = Record.size();
6150 unsigned OpNum = 0;
6151 Value *Ptr = nullptr;
6152 unsigned PtrTypeID;
6153 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6154 return error("Invalid record");
6156 if (!isa<PointerType>(Ptr->getType()))
6157 return error("Cmpxchg operand is not a pointer type");
6159 Value *Cmp = nullptr;
6160 unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6161 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6162 CmpTypeID, Cmp, CurBB))
6163 return error("Invalid record");
6165 Value *New = nullptr;
6166 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6167 New, CurBB) ||
6168 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6169 return error("Invalid record");
6171 const AtomicOrdering SuccessOrdering =
6172 getDecodedOrdering(Record[OpNum + 1]);
6173 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6174 SuccessOrdering == AtomicOrdering::Unordered)
6175 return error("Invalid record");
6177 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6179 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6180 return Err;
6182 const AtomicOrdering FailureOrdering =
6183 NumRecords < 7
6184 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6185 : getDecodedOrdering(Record[OpNum + 3]);
6187 if (FailureOrdering == AtomicOrdering::NotAtomic ||
6188 FailureOrdering == AtomicOrdering::Unordered)
6189 return error("Invalid record");
6191 const Align Alignment(
6192 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6194 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6195 FailureOrdering, SSID);
6196 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6198 if (NumRecords < 8) {
6199 // Before weak cmpxchgs existed, the instruction simply returned the
6200 // value loaded from memory, so bitcode files from that era will be
6201 // expecting the first component of a modern cmpxchg.
6202 I->insertInto(CurBB, CurBB->end());
6203 I = ExtractValueInst::Create(I, 0);
6204 ResTypeID = CmpTypeID;
6205 } else {
6206 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6207 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6208 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6211 InstructionList.push_back(I);
6212 break;
6214 case bitc::FUNC_CODE_INST_CMPXCHG: {
6215 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6216 // failure_ordering, weak, align?]
6217 const size_t NumRecords = Record.size();
6218 unsigned OpNum = 0;
6219 Value *Ptr = nullptr;
6220 unsigned PtrTypeID;
6221 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6222 return error("Invalid record");
6224 if (!isa<PointerType>(Ptr->getType()))
6225 return error("Cmpxchg operand is not a pointer type");
6227 Value *Cmp = nullptr;
6228 unsigned CmpTypeID;
6229 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6230 return error("Invalid record");
6232 Value *Val = nullptr;
6233 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6234 CurBB))
6235 return error("Invalid record");
6237 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6238 return error("Invalid record");
6240 const bool IsVol = Record[OpNum];
6242 const AtomicOrdering SuccessOrdering =
6243 getDecodedOrdering(Record[OpNum + 1]);
6244 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6245 return error("Invalid cmpxchg success ordering");
6247 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6249 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6250 return Err;
6252 const AtomicOrdering FailureOrdering =
6253 getDecodedOrdering(Record[OpNum + 3]);
6254 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6255 return error("Invalid cmpxchg failure ordering");
6257 const bool IsWeak = Record[OpNum + 4];
6259 MaybeAlign Alignment;
6261 if (NumRecords == (OpNum + 6)) {
6262 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6263 return Err;
6265 if (!Alignment)
6266 Alignment =
6267 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6269 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6270 FailureOrdering, SSID);
6271 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6272 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6274 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6275 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6277 InstructionList.push_back(I);
6278 break;
6280 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6281 case bitc::FUNC_CODE_INST_ATOMICRMW: {
6282 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6283 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6284 const size_t NumRecords = Record.size();
6285 unsigned OpNum = 0;
6287 Value *Ptr = nullptr;
6288 unsigned PtrTypeID;
6289 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6290 return error("Invalid record");
6292 if (!isa<PointerType>(Ptr->getType()))
6293 return error("Invalid record");
6295 Value *Val = nullptr;
6296 unsigned ValTypeID = InvalidTypeID;
6297 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6298 ValTypeID = getContainedTypeID(PtrTypeID);
6299 if (popValue(Record, OpNum, NextValueNo,
6300 getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6301 return error("Invalid record");
6302 } else {
6303 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6304 return error("Invalid record");
6307 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6308 return error("Invalid record");
6310 const AtomicRMWInst::BinOp Operation =
6311 getDecodedRMWOperation(Record[OpNum]);
6312 if (Operation < AtomicRMWInst::FIRST_BINOP ||
6313 Operation > AtomicRMWInst::LAST_BINOP)
6314 return error("Invalid record");
6316 const bool IsVol = Record[OpNum + 1];
6318 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6319 if (Ordering == AtomicOrdering::NotAtomic ||
6320 Ordering == AtomicOrdering::Unordered)
6321 return error("Invalid record");
6323 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6325 MaybeAlign Alignment;
6327 if (NumRecords == (OpNum + 5)) {
6328 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6329 return Err;
6332 if (!Alignment)
6333 Alignment =
6334 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6336 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6337 ResTypeID = ValTypeID;
6338 cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6340 InstructionList.push_back(I);
6341 break;
6343 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6344 if (2 != Record.size())
6345 return error("Invalid record");
6346 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6347 if (Ordering == AtomicOrdering::NotAtomic ||
6348 Ordering == AtomicOrdering::Unordered ||
6349 Ordering == AtomicOrdering::Monotonic)
6350 return error("Invalid record");
6351 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6352 I = new FenceInst(Context, Ordering, SSID);
6353 InstructionList.push_back(I);
6354 break;
6356 case bitc::FUNC_CODE_INST_CALL: {
6357 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6358 if (Record.size() < 3)
6359 return error("Invalid record");
6361 unsigned OpNum = 0;
6362 AttributeList PAL = getAttributes(Record[OpNum++]);
6363 unsigned CCInfo = Record[OpNum++];
6365 FastMathFlags FMF;
6366 if ((CCInfo >> bitc::CALL_FMF) & 1) {
6367 FMF = getDecodedFastMathFlags(Record[OpNum++]);
6368 if (!FMF.any())
6369 return error("Fast math flags indicator set for call with no FMF");
6372 unsigned FTyID = InvalidTypeID;
6373 FunctionType *FTy = nullptr;
6374 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6375 FTyID = Record[OpNum++];
6376 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6377 if (!FTy)
6378 return error("Explicit call type is not a function type");
6381 Value *Callee;
6382 unsigned CalleeTypeID;
6383 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6384 CurBB))
6385 return error("Invalid record");
6387 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6388 if (!OpTy)
6389 return error("Callee is not a pointer type");
6390 if (!FTy) {
6391 FTyID = getContainedTypeID(CalleeTypeID);
6392 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6393 if (!FTy)
6394 return error("Callee is not of pointer to function type");
6396 if (Record.size() < FTy->getNumParams() + OpNum)
6397 return error("Insufficient operands to call");
6399 SmallVector<Value*, 16> Args;
6400 SmallVector<unsigned, 16> ArgTyIDs;
6401 // Read the fixed params.
6402 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6403 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6404 if (FTy->getParamType(i)->isLabelTy())
6405 Args.push_back(getBasicBlock(Record[OpNum]));
6406 else
6407 Args.push_back(getValue(Record, OpNum, NextValueNo,
6408 FTy->getParamType(i), ArgTyID, CurBB));
6409 ArgTyIDs.push_back(ArgTyID);
6410 if (!Args.back())
6411 return error("Invalid record");
6414 // Read type/value pairs for varargs params.
6415 if (!FTy->isVarArg()) {
6416 if (OpNum != Record.size())
6417 return error("Invalid record");
6418 } else {
6419 while (OpNum != Record.size()) {
6420 Value *Op;
6421 unsigned OpTypeID;
6422 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6423 return error("Invalid record");
6424 Args.push_back(Op);
6425 ArgTyIDs.push_back(OpTypeID);
6429 // Upgrade the bundles if needed.
6430 if (!OperandBundles.empty())
6431 UpgradeOperandBundles(OperandBundles);
6433 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6434 ResTypeID = getContainedTypeID(FTyID);
6435 OperandBundles.clear();
6436 InstructionList.push_back(I);
6437 cast<CallInst>(I)->setCallingConv(
6438 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6439 CallInst::TailCallKind TCK = CallInst::TCK_None;
6440 if (CCInfo & (1 << bitc::CALL_TAIL))
6441 TCK = CallInst::TCK_Tail;
6442 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6443 TCK = CallInst::TCK_MustTail;
6444 if (CCInfo & (1 << bitc::CALL_NOTAIL))
6445 TCK = CallInst::TCK_NoTail;
6446 cast<CallInst>(I)->setTailCallKind(TCK);
6447 cast<CallInst>(I)->setAttributes(PAL);
6448 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6449 I->deleteValue();
6450 return Err;
6452 if (FMF.any()) {
6453 if (!isa<FPMathOperator>(I))
6454 return error("Fast-math-flags specified for call without "
6455 "floating-point scalar or vector return type");
6456 I->setFastMathFlags(FMF);
6458 break;
6460 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6461 if (Record.size() < 3)
6462 return error("Invalid record");
6463 unsigned OpTyID = Record[0];
6464 Type *OpTy = getTypeByID(OpTyID);
6465 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6466 ResTypeID = Record[2];
6467 Type *ResTy = getTypeByID(ResTypeID);
6468 if (!OpTy || !Op || !ResTy)
6469 return error("Invalid record");
6470 I = new VAArgInst(Op, ResTy);
6471 InstructionList.push_back(I);
6472 break;
6475 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6476 // A call or an invoke can be optionally prefixed with some variable
6477 // number of operand bundle blocks. These blocks are read into
6478 // OperandBundles and consumed at the next call or invoke instruction.
6480 if (Record.empty() || Record[0] >= BundleTags.size())
6481 return error("Invalid record");
6483 std::vector<Value *> Inputs;
6485 unsigned OpNum = 1;
6486 while (OpNum != Record.size()) {
6487 Value *Op;
6488 unsigned OpTypeID;
6489 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6490 return error("Invalid record");
6491 Inputs.push_back(Op);
6494 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6495 continue;
6498 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6499 unsigned OpNum = 0;
6500 Value *Op = nullptr;
6501 unsigned OpTypeID;
6502 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6503 return error("Invalid record");
6504 if (OpNum != Record.size())
6505 return error("Invalid record");
6507 I = new FreezeInst(Op);
6508 ResTypeID = OpTypeID;
6509 InstructionList.push_back(I);
6510 break;
6514 // Add instruction to end of current BB. If there is no current BB, reject
6515 // this file.
6516 if (!CurBB) {
6517 I->deleteValue();
6518 return error("Invalid instruction with no BB");
6520 if (!OperandBundles.empty()) {
6521 I->deleteValue();
6522 return error("Operand bundles found with no consumer");
6524 I->insertInto(CurBB, CurBB->end());
6526 // If this was a terminator instruction, move to the next block.
6527 if (I->isTerminator()) {
6528 ++CurBBNo;
6529 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6532 // Non-void values get registered in the value table for future use.
6533 if (!I->getType()->isVoidTy()) {
6534 assert(I->getType() == getTypeByID(ResTypeID) &&
6535 "Incorrect result type ID");
6536 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6537 return Err;
6541 OutOfRecordLoop:
6543 if (!OperandBundles.empty())
6544 return error("Operand bundles found with no consumer");
6546 // Check the function list for unresolved values.
6547 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6548 if (!A->getParent()) {
6549 // We found at least one unresolved value. Nuke them all to avoid leaks.
6550 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6551 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6552 A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6553 delete A;
6556 return error("Never resolved value found in function");
6560 // Unexpected unresolved metadata about to be dropped.
6561 if (MDLoader->hasFwdRefs())
6562 return error("Invalid function metadata: outgoing forward refs");
6564 if (PhiConstExprBB)
6565 PhiConstExprBB->eraseFromParent();
6567 for (const auto &Pair : ConstExprEdgeBBs) {
6568 BasicBlock *From = Pair.first.first;
6569 BasicBlock *To = Pair.first.second;
6570 BasicBlock *EdgeBB = Pair.second;
6571 BranchInst::Create(To, EdgeBB);
6572 From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6573 To->replacePhiUsesWith(From, EdgeBB);
6574 EdgeBB->moveBefore(To);
6577 // Trim the value list down to the size it was before we parsed this function.
6578 ValueList.shrinkTo(ModuleValueListSize);
6579 MDLoader->shrinkTo(ModuleMDLoaderSize);
6580 std::vector<BasicBlock*>().swap(FunctionBBs);
6581 return Error::success();
6584 /// Find the function body in the bitcode stream
6585 Error BitcodeReader::findFunctionInStream(
6586 Function *F,
6587 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6588 while (DeferredFunctionInfoIterator->second == 0) {
6589 // This is the fallback handling for the old format bitcode that
6590 // didn't contain the function index in the VST, or when we have
6591 // an anonymous function which would not have a VST entry.
6592 // Assert that we have one of those two cases.
6593 assert(VSTOffset == 0 || !F->hasName());
6594 // Parse the next body in the stream and set its position in the
6595 // DeferredFunctionInfo map.
6596 if (Error Err = rememberAndSkipFunctionBodies())
6597 return Err;
6599 return Error::success();
6602 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6603 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6604 return SyncScope::ID(Val);
6605 if (Val >= SSIDs.size())
6606 return SyncScope::System; // Map unknown synchronization scopes to system.
6607 return SSIDs[Val];
6610 //===----------------------------------------------------------------------===//
6611 // GVMaterializer implementation
6612 //===----------------------------------------------------------------------===//
6614 Error BitcodeReader::materialize(GlobalValue *GV) {
6615 Function *F = dyn_cast<Function>(GV);
6616 // If it's not a function or is already material, ignore the request.
6617 if (!F || !F->isMaterializable())
6618 return Error::success();
6620 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6621 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6622 // If its position is recorded as 0, its body is somewhere in the stream
6623 // but we haven't seen it yet.
6624 if (DFII->second == 0)
6625 if (Error Err = findFunctionInStream(F, DFII))
6626 return Err;
6628 // Materialize metadata before parsing any function bodies.
6629 if (Error Err = materializeMetadata())
6630 return Err;
6632 // Move the bit stream to the saved position of the deferred function body.
6633 if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6634 return JumpFailed;
6635 if (Error Err = parseFunctionBody(F))
6636 return Err;
6637 F->setIsMaterializable(false);
6639 if (StripDebugInfo)
6640 stripDebugInfo(*F);
6642 // Upgrade any old intrinsic calls in the function.
6643 for (auto &I : UpgradedIntrinsics) {
6644 for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6645 if (CallInst *CI = dyn_cast<CallInst>(U))
6646 UpgradeIntrinsicCall(CI, I.second);
6649 // Finish fn->subprogram upgrade for materialized functions.
6650 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6651 F->setSubprogram(SP);
6653 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6654 if (!MDLoader->isStrippingTBAA()) {
6655 for (auto &I : instructions(F)) {
6656 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6657 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6658 continue;
6659 MDLoader->setStripTBAA(true);
6660 stripTBAA(F->getParent());
6664 for (auto &I : instructions(F)) {
6665 // "Upgrade" older incorrect branch weights by dropping them.
6666 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6667 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6668 MDString *MDS = cast<MDString>(MD->getOperand(0));
6669 StringRef ProfName = MDS->getString();
6670 // Check consistency of !prof branch_weights metadata.
6671 if (!ProfName.equals("branch_weights"))
6672 continue;
6673 unsigned ExpectedNumOperands = 0;
6674 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6675 ExpectedNumOperands = BI->getNumSuccessors();
6676 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6677 ExpectedNumOperands = SI->getNumSuccessors();
6678 else if (isa<CallInst>(&I))
6679 ExpectedNumOperands = 1;
6680 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6681 ExpectedNumOperands = IBI->getNumDestinations();
6682 else if (isa<SelectInst>(&I))
6683 ExpectedNumOperands = 2;
6684 else
6685 continue; // ignore and continue.
6687 // If branch weight doesn't match, just strip branch weight.
6688 if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6689 I.setMetadata(LLVMContext::MD_prof, nullptr);
6693 // Remove incompatible attributes on function calls.
6694 if (auto *CI = dyn_cast<CallBase>(&I)) {
6695 CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6696 CI->getFunctionType()->getReturnType()));
6698 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6699 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6700 CI->getArgOperand(ArgNo)->getType()));
6704 // Look for functions that rely on old function attribute behavior.
6705 UpgradeFunctionAttributes(*F);
6707 // Bring in any functions that this function forward-referenced via
6708 // blockaddresses.
6709 return materializeForwardReferencedFunctions();
6712 Error BitcodeReader::materializeModule() {
6713 if (Error Err = materializeMetadata())
6714 return Err;
6716 // Promise to materialize all forward references.
6717 WillMaterializeAllForwardRefs = true;
6719 // Iterate over the module, deserializing any functions that are still on
6720 // disk.
6721 for (Function &F : *TheModule) {
6722 if (Error Err = materialize(&F))
6723 return Err;
6725 // At this point, if there are any function bodies, parse the rest of
6726 // the bits in the module past the last function block we have recorded
6727 // through either lazy scanning or the VST.
6728 if (LastFunctionBlockBit || NextUnreadBit)
6729 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6730 ? LastFunctionBlockBit
6731 : NextUnreadBit))
6732 return Err;
6734 // Check that all block address forward references got resolved (as we
6735 // promised above).
6736 if (!BasicBlockFwdRefs.empty())
6737 return error("Never resolved function from blockaddress");
6739 // Upgrade any intrinsic calls that slipped through (should not happen!) and
6740 // delete the old functions to clean up. We can't do this unless the entire
6741 // module is materialized because there could always be another function body
6742 // with calls to the old function.
6743 for (auto &I : UpgradedIntrinsics) {
6744 for (auto *U : I.first->users()) {
6745 if (CallInst *CI = dyn_cast<CallInst>(U))
6746 UpgradeIntrinsicCall(CI, I.second);
6748 if (!I.first->use_empty())
6749 I.first->replaceAllUsesWith(I.second);
6750 I.first->eraseFromParent();
6752 UpgradedIntrinsics.clear();
6754 UpgradeDebugInfo(*TheModule);
6756 UpgradeModuleFlags(*TheModule);
6758 UpgradeARCRuntime(*TheModule);
6760 return Error::success();
6763 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6764 return IdentifiedStructTypes;
6767 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6768 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6769 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6770 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6771 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6773 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6774 TheIndex.addModule(ModulePath);
6777 ModuleSummaryIndex::ModuleInfo *
6778 ModuleSummaryIndexBitcodeReader::getThisModule() {
6779 return TheIndex.getModule(ModulePath);
6782 template <bool AllowNullValueInfo>
6783 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6784 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6785 auto VGI = ValueIdToValueInfoMap[ValueId];
6786 // We can have a null value info for memprof callsite info records in
6787 // distributed ThinLTO index files when the callee function summary is not
6788 // included in the index. The bitcode writer records 0 in that case,
6789 // and the caller of this helper will set AllowNullValueInfo to true.
6790 assert(AllowNullValueInfo || std::get<0>(VGI));
6791 return VGI;
6794 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6795 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6796 StringRef SourceFileName) {
6797 std::string GlobalId =
6798 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6799 auto ValueGUID = GlobalValue::getGUID(GlobalId);
6800 auto OriginalNameID = ValueGUID;
6801 if (GlobalValue::isLocalLinkage(Linkage))
6802 OriginalNameID = GlobalValue::getGUID(ValueName);
6803 if (PrintSummaryGUIDs)
6804 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6805 << ValueName << "\n";
6807 // UseStrtab is false for legacy summary formats and value names are
6808 // created on stack. In that case we save the name in a string saver in
6809 // the index so that the value name can be recorded.
6810 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6811 TheIndex.getOrInsertValueInfo(
6812 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6813 OriginalNameID, ValueGUID);
6816 // Specialized value symbol table parser used when reading module index
6817 // blocks where we don't actually create global values. The parsed information
6818 // is saved in the bitcode reader for use when later parsing summaries.
6819 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6820 uint64_t Offset,
6821 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6822 // With a strtab the VST is not required to parse the summary.
6823 if (UseStrtab)
6824 return Error::success();
6826 assert(Offset > 0 && "Expected non-zero VST offset");
6827 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6828 if (!MaybeCurrentBit)
6829 return MaybeCurrentBit.takeError();
6830 uint64_t CurrentBit = MaybeCurrentBit.get();
6832 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6833 return Err;
6835 SmallVector<uint64_t, 64> Record;
6837 // Read all the records for this value table.
6838 SmallString<128> ValueName;
6840 while (true) {
6841 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6842 if (!MaybeEntry)
6843 return MaybeEntry.takeError();
6844 BitstreamEntry Entry = MaybeEntry.get();
6846 switch (Entry.Kind) {
6847 case BitstreamEntry::SubBlock: // Handled for us already.
6848 case BitstreamEntry::Error:
6849 return error("Malformed block");
6850 case BitstreamEntry::EndBlock:
6851 // Done parsing VST, jump back to wherever we came from.
6852 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6853 return JumpFailed;
6854 return Error::success();
6855 case BitstreamEntry::Record:
6856 // The interesting case.
6857 break;
6860 // Read a record.
6861 Record.clear();
6862 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6863 if (!MaybeRecord)
6864 return MaybeRecord.takeError();
6865 switch (MaybeRecord.get()) {
6866 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6867 break;
6868 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6869 if (convertToString(Record, 1, ValueName))
6870 return error("Invalid record");
6871 unsigned ValueID = Record[0];
6872 assert(!SourceFileName.empty());
6873 auto VLI = ValueIdToLinkageMap.find(ValueID);
6874 assert(VLI != ValueIdToLinkageMap.end() &&
6875 "No linkage found for VST entry?");
6876 auto Linkage = VLI->second;
6877 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6878 ValueName.clear();
6879 break;
6881 case bitc::VST_CODE_FNENTRY: {
6882 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6883 if (convertToString(Record, 2, ValueName))
6884 return error("Invalid record");
6885 unsigned ValueID = Record[0];
6886 assert(!SourceFileName.empty());
6887 auto VLI = ValueIdToLinkageMap.find(ValueID);
6888 assert(VLI != ValueIdToLinkageMap.end() &&
6889 "No linkage found for VST entry?");
6890 auto Linkage = VLI->second;
6891 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6892 ValueName.clear();
6893 break;
6895 case bitc::VST_CODE_COMBINED_ENTRY: {
6896 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6897 unsigned ValueID = Record[0];
6898 GlobalValue::GUID RefGUID = Record[1];
6899 // The "original name", which is the second value of the pair will be
6900 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6901 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6902 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6903 break;
6909 // Parse just the blocks needed for building the index out of the module.
6910 // At the end of this routine the module Index is populated with a map
6911 // from global value id to GlobalValueSummary objects.
6912 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6913 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6914 return Err;
6916 SmallVector<uint64_t, 64> Record;
6917 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6918 unsigned ValueId = 0;
6920 // Read the index for this module.
6921 while (true) {
6922 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6923 if (!MaybeEntry)
6924 return MaybeEntry.takeError();
6925 llvm::BitstreamEntry Entry = MaybeEntry.get();
6927 switch (Entry.Kind) {
6928 case BitstreamEntry::Error:
6929 return error("Malformed block");
6930 case BitstreamEntry::EndBlock:
6931 return Error::success();
6933 case BitstreamEntry::SubBlock:
6934 switch (Entry.ID) {
6935 default: // Skip unknown content.
6936 if (Error Err = Stream.SkipBlock())
6937 return Err;
6938 break;
6939 case bitc::BLOCKINFO_BLOCK_ID:
6940 // Need to parse these to get abbrev ids (e.g. for VST)
6941 if (Error Err = readBlockInfo())
6942 return Err;
6943 break;
6944 case bitc::VALUE_SYMTAB_BLOCK_ID:
6945 // Should have been parsed earlier via VSTOffset, unless there
6946 // is no summary section.
6947 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6948 !SeenGlobalValSummary) &&
6949 "Expected early VST parse via VSTOffset record");
6950 if (Error Err = Stream.SkipBlock())
6951 return Err;
6952 break;
6953 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6954 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6955 // Add the module if it is a per-module index (has a source file name).
6956 if (!SourceFileName.empty())
6957 addThisModule();
6958 assert(!SeenValueSymbolTable &&
6959 "Already read VST when parsing summary block?");
6960 // We might not have a VST if there were no values in the
6961 // summary. An empty summary block generated when we are
6962 // performing ThinLTO compiles so we don't later invoke
6963 // the regular LTO process on them.
6964 if (VSTOffset > 0) {
6965 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6966 return Err;
6967 SeenValueSymbolTable = true;
6969 SeenGlobalValSummary = true;
6970 if (Error Err = parseEntireSummary(Entry.ID))
6971 return Err;
6972 break;
6973 case bitc::MODULE_STRTAB_BLOCK_ID:
6974 if (Error Err = parseModuleStringTable())
6975 return Err;
6976 break;
6978 continue;
6980 case BitstreamEntry::Record: {
6981 Record.clear();
6982 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6983 if (!MaybeBitCode)
6984 return MaybeBitCode.takeError();
6985 switch (MaybeBitCode.get()) {
6986 default:
6987 break; // Default behavior, ignore unknown content.
6988 case bitc::MODULE_CODE_VERSION: {
6989 if (Error Err = parseVersionRecord(Record).takeError())
6990 return Err;
6991 break;
6993 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6994 case bitc::MODULE_CODE_SOURCE_FILENAME: {
6995 SmallString<128> ValueName;
6996 if (convertToString(Record, 0, ValueName))
6997 return error("Invalid record");
6998 SourceFileName = ValueName.c_str();
6999 break;
7001 /// MODULE_CODE_HASH: [5*i32]
7002 case bitc::MODULE_CODE_HASH: {
7003 if (Record.size() != 5)
7004 return error("Invalid hash length " + Twine(Record.size()).str());
7005 auto &Hash = getThisModule()->second;
7006 int Pos = 0;
7007 for (auto &Val : Record) {
7008 assert(!(Val >> 32) && "Unexpected high bits set");
7009 Hash[Pos++] = Val;
7011 break;
7013 /// MODULE_CODE_VSTOFFSET: [offset]
7014 case bitc::MODULE_CODE_VSTOFFSET:
7015 if (Record.empty())
7016 return error("Invalid record");
7017 // Note that we subtract 1 here because the offset is relative to one
7018 // word before the start of the identification or module block, which
7019 // was historically always the start of the regular bitcode header.
7020 VSTOffset = Record[0] - 1;
7021 break;
7022 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
7023 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
7024 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
7025 // v2: [strtab offset, strtab size, v1]
7026 case bitc::MODULE_CODE_GLOBALVAR:
7027 case bitc::MODULE_CODE_FUNCTION:
7028 case bitc::MODULE_CODE_ALIAS: {
7029 StringRef Name;
7030 ArrayRef<uint64_t> GVRecord;
7031 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7032 if (GVRecord.size() <= 3)
7033 return error("Invalid record");
7034 uint64_t RawLinkage = GVRecord[3];
7035 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7036 if (!UseStrtab) {
7037 ValueIdToLinkageMap[ValueId++] = Linkage;
7038 break;
7041 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7042 break;
7046 continue;
7051 std::vector<ValueInfo>
7052 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7053 std::vector<ValueInfo> Ret;
7054 Ret.reserve(Record.size());
7055 for (uint64_t RefValueId : Record)
7056 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7057 return Ret;
7060 std::vector<FunctionSummary::EdgeTy>
7061 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7062 bool IsOldProfileFormat,
7063 bool HasProfile, bool HasRelBF) {
7064 std::vector<FunctionSummary::EdgeTy> Ret;
7065 Ret.reserve(Record.size());
7066 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7067 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7068 bool HasTailCall = false;
7069 uint64_t RelBF = 0;
7070 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7071 if (IsOldProfileFormat) {
7072 I += 1; // Skip old callsitecount field
7073 if (HasProfile)
7074 I += 1; // Skip old profilecount field
7075 } else if (HasProfile)
7076 std::tie(Hotness, HasTailCall) =
7077 getDecodedHotnessCallEdgeInfo(Record[++I]);
7078 else if (HasRelBF)
7079 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7080 Ret.push_back(FunctionSummary::EdgeTy{
7081 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7083 return Ret;
7086 static void
7087 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7088 WholeProgramDevirtResolution &Wpd) {
7089 uint64_t ArgNum = Record[Slot++];
7090 WholeProgramDevirtResolution::ByArg &B =
7091 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7092 Slot += ArgNum;
7094 B.TheKind =
7095 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7096 B.Info = Record[Slot++];
7097 B.Byte = Record[Slot++];
7098 B.Bit = Record[Slot++];
7101 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7102 StringRef Strtab, size_t &Slot,
7103 TypeIdSummary &TypeId) {
7104 uint64_t Id = Record[Slot++];
7105 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7107 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7108 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7109 static_cast<size_t>(Record[Slot + 1])};
7110 Slot += 2;
7112 uint64_t ResByArgNum = Record[Slot++];
7113 for (uint64_t I = 0; I != ResByArgNum; ++I)
7114 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7117 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7118 StringRef Strtab,
7119 ModuleSummaryIndex &TheIndex) {
7120 size_t Slot = 0;
7121 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7122 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7123 Slot += 2;
7125 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7126 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7127 TypeId.TTRes.AlignLog2 = Record[Slot++];
7128 TypeId.TTRes.SizeM1 = Record[Slot++];
7129 TypeId.TTRes.BitMask = Record[Slot++];
7130 TypeId.TTRes.InlineBits = Record[Slot++];
7132 while (Slot < Record.size())
7133 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7136 std::vector<FunctionSummary::ParamAccess>
7137 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7138 auto ReadRange = [&]() {
7139 APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7140 BitcodeReader::decodeSignRotatedValue(Record.front()));
7141 Record = Record.drop_front();
7142 APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7143 BitcodeReader::decodeSignRotatedValue(Record.front()));
7144 Record = Record.drop_front();
7145 ConstantRange Range{Lower, Upper};
7146 assert(!Range.isFullSet());
7147 assert(!Range.isUpperSignWrapped());
7148 return Range;
7151 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7152 while (!Record.empty()) {
7153 PendingParamAccesses.emplace_back();
7154 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7155 ParamAccess.ParamNo = Record.front();
7156 Record = Record.drop_front();
7157 ParamAccess.Use = ReadRange();
7158 ParamAccess.Calls.resize(Record.front());
7159 Record = Record.drop_front();
7160 for (auto &Call : ParamAccess.Calls) {
7161 Call.ParamNo = Record.front();
7162 Record = Record.drop_front();
7163 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7164 Record = Record.drop_front();
7165 Call.Offsets = ReadRange();
7168 return PendingParamAccesses;
7171 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7172 ArrayRef<uint64_t> Record, size_t &Slot,
7173 TypeIdCompatibleVtableInfo &TypeId) {
7174 uint64_t Offset = Record[Slot++];
7175 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7176 TypeId.push_back({Offset, Callee});
7179 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7180 ArrayRef<uint64_t> Record) {
7181 size_t Slot = 0;
7182 TypeIdCompatibleVtableInfo &TypeId =
7183 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7184 {Strtab.data() + Record[Slot],
7185 static_cast<size_t>(Record[Slot + 1])});
7186 Slot += 2;
7188 while (Slot < Record.size())
7189 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7192 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7193 unsigned WOCnt) {
7194 // Readonly and writeonly refs are in the end of the refs list.
7195 assert(ROCnt + WOCnt <= Refs.size());
7196 unsigned FirstWORef = Refs.size() - WOCnt;
7197 unsigned RefNo = FirstWORef - ROCnt;
7198 for (; RefNo < FirstWORef; ++RefNo)
7199 Refs[RefNo].setReadOnly();
7200 for (; RefNo < Refs.size(); ++RefNo)
7201 Refs[RefNo].setWriteOnly();
7204 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7205 // objects in the index.
7206 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7207 if (Error Err = Stream.EnterSubBlock(ID))
7208 return Err;
7209 SmallVector<uint64_t, 64> Record;
7211 // Parse version
7213 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7214 if (!MaybeEntry)
7215 return MaybeEntry.takeError();
7216 BitstreamEntry Entry = MaybeEntry.get();
7218 if (Entry.Kind != BitstreamEntry::Record)
7219 return error("Invalid Summary Block: record for version expected");
7220 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7221 if (!MaybeRecord)
7222 return MaybeRecord.takeError();
7223 if (MaybeRecord.get() != bitc::FS_VERSION)
7224 return error("Invalid Summary Block: version expected");
7226 const uint64_t Version = Record[0];
7227 const bool IsOldProfileFormat = Version == 1;
7228 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7229 return error("Invalid summary version " + Twine(Version) +
7230 ". Version should be in the range [1-" +
7231 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7232 "].");
7233 Record.clear();
7235 // Keep around the last seen summary to be used when we see an optional
7236 // "OriginalName" attachement.
7237 GlobalValueSummary *LastSeenSummary = nullptr;
7238 GlobalValue::GUID LastSeenGUID = 0;
7240 // We can expect to see any number of type ID information records before
7241 // each function summary records; these variables store the information
7242 // collected so far so that it can be used to create the summary object.
7243 std::vector<GlobalValue::GUID> PendingTypeTests;
7244 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7245 PendingTypeCheckedLoadVCalls;
7246 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7247 PendingTypeCheckedLoadConstVCalls;
7248 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7250 std::vector<CallsiteInfo> PendingCallsites;
7251 std::vector<AllocInfo> PendingAllocs;
7253 while (true) {
7254 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7255 if (!MaybeEntry)
7256 return MaybeEntry.takeError();
7257 BitstreamEntry Entry = MaybeEntry.get();
7259 switch (Entry.Kind) {
7260 case BitstreamEntry::SubBlock: // Handled for us already.
7261 case BitstreamEntry::Error:
7262 return error("Malformed block");
7263 case BitstreamEntry::EndBlock:
7264 return Error::success();
7265 case BitstreamEntry::Record:
7266 // The interesting case.
7267 break;
7270 // Read a record. The record format depends on whether this
7271 // is a per-module index or a combined index file. In the per-module
7272 // case the records contain the associated value's ID for correlation
7273 // with VST entries. In the combined index the correlation is done
7274 // via the bitcode offset of the summary records (which were saved
7275 // in the combined index VST entries). The records also contain
7276 // information used for ThinLTO renaming and importing.
7277 Record.clear();
7278 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7279 if (!MaybeBitCode)
7280 return MaybeBitCode.takeError();
7281 switch (unsigned BitCode = MaybeBitCode.get()) {
7282 default: // Default behavior: ignore.
7283 break;
7284 case bitc::FS_FLAGS: { // [flags]
7285 TheIndex.setFlags(Record[0]);
7286 break;
7288 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7289 uint64_t ValueID = Record[0];
7290 GlobalValue::GUID RefGUID = Record[1];
7291 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7292 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7293 break;
7295 // FS_PERMODULE is legacy and does not have support for the tail call flag.
7296 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7297 // numrefs x valueid, n x (valueid)]
7298 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7299 // numrefs x valueid,
7300 // n x (valueid, hotness+tailcall flags)]
7301 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7302 // numrefs x valueid,
7303 // n x (valueid, relblockfreq+tailcall)]
7304 case bitc::FS_PERMODULE:
7305 case bitc::FS_PERMODULE_RELBF:
7306 case bitc::FS_PERMODULE_PROFILE: {
7307 unsigned ValueID = Record[0];
7308 uint64_t RawFlags = Record[1];
7309 unsigned InstCount = Record[2];
7310 uint64_t RawFunFlags = 0;
7311 unsigned NumRefs = Record[3];
7312 unsigned NumRORefs = 0, NumWORefs = 0;
7313 int RefListStartIndex = 4;
7314 if (Version >= 4) {
7315 RawFunFlags = Record[3];
7316 NumRefs = Record[4];
7317 RefListStartIndex = 5;
7318 if (Version >= 5) {
7319 NumRORefs = Record[5];
7320 RefListStartIndex = 6;
7321 if (Version >= 7) {
7322 NumWORefs = Record[6];
7323 RefListStartIndex = 7;
7328 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7329 // The module path string ref set in the summary must be owned by the
7330 // index's module string table. Since we don't have a module path
7331 // string table section in the per-module index, we create a single
7332 // module path string table entry with an empty (0) ID to take
7333 // ownership.
7334 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7335 assert(Record.size() >= RefListStartIndex + NumRefs &&
7336 "Record size inconsistent with number of references");
7337 std::vector<ValueInfo> Refs = makeRefList(
7338 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7339 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7340 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7341 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7342 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7343 IsOldProfileFormat, HasProfile, HasRelBF);
7344 setSpecialRefs(Refs, NumRORefs, NumWORefs);
7345 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7346 // In order to save memory, only record the memprof summaries if this is
7347 // the prevailing copy of a symbol. The linker doesn't resolve local
7348 // linkage values so don't check whether those are prevailing.
7349 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7350 if (IsPrevailing &&
7351 !GlobalValue::isLocalLinkage(LT) &&
7352 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7353 PendingCallsites.clear();
7354 PendingAllocs.clear();
7356 auto FS = std::make_unique<FunctionSummary>(
7357 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7358 std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7359 std::move(PendingTypeTestAssumeVCalls),
7360 std::move(PendingTypeCheckedLoadVCalls),
7361 std::move(PendingTypeTestAssumeConstVCalls),
7362 std::move(PendingTypeCheckedLoadConstVCalls),
7363 std::move(PendingParamAccesses), std::move(PendingCallsites),
7364 std::move(PendingAllocs));
7365 FS->setModulePath(getThisModule()->first());
7366 FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7367 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7368 std::move(FS));
7369 break;
7371 // FS_ALIAS: [valueid, flags, valueid]
7372 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7373 // they expect all aliasee summaries to be available.
7374 case bitc::FS_ALIAS: {
7375 unsigned ValueID = Record[0];
7376 uint64_t RawFlags = Record[1];
7377 unsigned AliaseeID = Record[2];
7378 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7379 auto AS = std::make_unique<AliasSummary>(Flags);
7380 // The module path string ref set in the summary must be owned by the
7381 // index's module string table. Since we don't have a module path
7382 // string table section in the per-module index, we create a single
7383 // module path string table entry with an empty (0) ID to take
7384 // ownership.
7385 AS->setModulePath(getThisModule()->first());
7387 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7388 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7389 if (!AliaseeInModule)
7390 return error("Alias expects aliasee summary to be parsed");
7391 AS->setAliasee(AliaseeVI, AliaseeInModule);
7393 auto GUID = getValueInfoFromValueId(ValueID);
7394 AS->setOriginalName(std::get<1>(GUID));
7395 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7396 break;
7398 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7399 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7400 unsigned ValueID = Record[0];
7401 uint64_t RawFlags = Record[1];
7402 unsigned RefArrayStart = 2;
7403 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7404 /* WriteOnly */ false,
7405 /* Constant */ false,
7406 GlobalObject::VCallVisibilityPublic);
7407 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7408 if (Version >= 5) {
7409 GVF = getDecodedGVarFlags(Record[2]);
7410 RefArrayStart = 3;
7412 std::vector<ValueInfo> Refs =
7413 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7414 auto FS =
7415 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7416 FS->setModulePath(getThisModule()->first());
7417 auto GUID = getValueInfoFromValueId(ValueID);
7418 FS->setOriginalName(std::get<1>(GUID));
7419 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7420 break;
7422 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7423 // numrefs, numrefs x valueid,
7424 // n x (valueid, offset)]
7425 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7426 unsigned ValueID = Record[0];
7427 uint64_t RawFlags = Record[1];
7428 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7429 unsigned NumRefs = Record[3];
7430 unsigned RefListStartIndex = 4;
7431 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7432 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7433 std::vector<ValueInfo> Refs = makeRefList(
7434 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7435 VTableFuncList VTableFuncs;
7436 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7437 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7438 uint64_t Offset = Record[++I];
7439 VTableFuncs.push_back({Callee, Offset});
7441 auto VS =
7442 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7443 VS->setModulePath(getThisModule()->first());
7444 VS->setVTableFuncs(VTableFuncs);
7445 auto GUID = getValueInfoFromValueId(ValueID);
7446 VS->setOriginalName(std::get<1>(GUID));
7447 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7448 break;
7450 // FS_COMBINED is legacy and does not have support for the tail call flag.
7451 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7452 // numrefs x valueid, n x (valueid)]
7453 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7454 // numrefs x valueid,
7455 // n x (valueid, hotness+tailcall flags)]
7456 case bitc::FS_COMBINED:
7457 case bitc::FS_COMBINED_PROFILE: {
7458 unsigned ValueID = Record[0];
7459 uint64_t ModuleId = Record[1];
7460 uint64_t RawFlags = Record[2];
7461 unsigned InstCount = Record[3];
7462 uint64_t RawFunFlags = 0;
7463 uint64_t EntryCount = 0;
7464 unsigned NumRefs = Record[4];
7465 unsigned NumRORefs = 0, NumWORefs = 0;
7466 int RefListStartIndex = 5;
7468 if (Version >= 4) {
7469 RawFunFlags = Record[4];
7470 RefListStartIndex = 6;
7471 size_t NumRefsIndex = 5;
7472 if (Version >= 5) {
7473 unsigned NumRORefsOffset = 1;
7474 RefListStartIndex = 7;
7475 if (Version >= 6) {
7476 NumRefsIndex = 6;
7477 EntryCount = Record[5];
7478 RefListStartIndex = 8;
7479 if (Version >= 7) {
7480 RefListStartIndex = 9;
7481 NumWORefs = Record[8];
7482 NumRORefsOffset = 2;
7485 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7487 NumRefs = Record[NumRefsIndex];
7490 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7491 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7492 assert(Record.size() >= RefListStartIndex + NumRefs &&
7493 "Record size inconsistent with number of references");
7494 std::vector<ValueInfo> Refs = makeRefList(
7495 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7496 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7497 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7498 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7499 IsOldProfileFormat, HasProfile, false);
7500 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7501 setSpecialRefs(Refs, NumRORefs, NumWORefs);
7502 auto FS = std::make_unique<FunctionSummary>(
7503 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7504 std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7505 std::move(PendingTypeTestAssumeVCalls),
7506 std::move(PendingTypeCheckedLoadVCalls),
7507 std::move(PendingTypeTestAssumeConstVCalls),
7508 std::move(PendingTypeCheckedLoadConstVCalls),
7509 std::move(PendingParamAccesses), std::move(PendingCallsites),
7510 std::move(PendingAllocs));
7511 LastSeenSummary = FS.get();
7512 LastSeenGUID = VI.getGUID();
7513 FS->setModulePath(ModuleIdMap[ModuleId]);
7514 TheIndex.addGlobalValueSummary(VI, std::move(FS));
7515 break;
7517 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7518 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7519 // they expect all aliasee summaries to be available.
7520 case bitc::FS_COMBINED_ALIAS: {
7521 unsigned ValueID = Record[0];
7522 uint64_t ModuleId = Record[1];
7523 uint64_t RawFlags = Record[2];
7524 unsigned AliaseeValueId = Record[3];
7525 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7526 auto AS = std::make_unique<AliasSummary>(Flags);
7527 LastSeenSummary = AS.get();
7528 AS->setModulePath(ModuleIdMap[ModuleId]);
7530 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7531 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7532 AS->setAliasee(AliaseeVI, AliaseeInModule);
7534 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7535 LastSeenGUID = VI.getGUID();
7536 TheIndex.addGlobalValueSummary(VI, std::move(AS));
7537 break;
7539 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7540 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7541 unsigned ValueID = Record[0];
7542 uint64_t ModuleId = Record[1];
7543 uint64_t RawFlags = Record[2];
7544 unsigned RefArrayStart = 3;
7545 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7546 /* WriteOnly */ false,
7547 /* Constant */ false,
7548 GlobalObject::VCallVisibilityPublic);
7549 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7550 if (Version >= 5) {
7551 GVF = getDecodedGVarFlags(Record[3]);
7552 RefArrayStart = 4;
7554 std::vector<ValueInfo> Refs =
7555 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7556 auto FS =
7557 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7558 LastSeenSummary = FS.get();
7559 FS->setModulePath(ModuleIdMap[ModuleId]);
7560 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7561 LastSeenGUID = VI.getGUID();
7562 TheIndex.addGlobalValueSummary(VI, std::move(FS));
7563 break;
7565 // FS_COMBINED_ORIGINAL_NAME: [original_name]
7566 case bitc::FS_COMBINED_ORIGINAL_NAME: {
7567 uint64_t OriginalName = Record[0];
7568 if (!LastSeenSummary)
7569 return error("Name attachment that does not follow a combined record");
7570 LastSeenSummary->setOriginalName(OriginalName);
7571 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7572 // Reset the LastSeenSummary
7573 LastSeenSummary = nullptr;
7574 LastSeenGUID = 0;
7575 break;
7577 case bitc::FS_TYPE_TESTS:
7578 assert(PendingTypeTests.empty());
7579 llvm::append_range(PendingTypeTests, Record);
7580 break;
7582 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7583 assert(PendingTypeTestAssumeVCalls.empty());
7584 for (unsigned I = 0; I != Record.size(); I += 2)
7585 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7586 break;
7588 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7589 assert(PendingTypeCheckedLoadVCalls.empty());
7590 for (unsigned I = 0; I != Record.size(); I += 2)
7591 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7592 break;
7594 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7595 PendingTypeTestAssumeConstVCalls.push_back(
7596 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7597 break;
7599 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7600 PendingTypeCheckedLoadConstVCalls.push_back(
7601 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7602 break;
7604 case bitc::FS_CFI_FUNCTION_DEFS: {
7605 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7606 for (unsigned I = 0; I != Record.size(); I += 2)
7607 CfiFunctionDefs.insert(
7608 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7609 break;
7612 case bitc::FS_CFI_FUNCTION_DECLS: {
7613 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7614 for (unsigned I = 0; I != Record.size(); I += 2)
7615 CfiFunctionDecls.insert(
7616 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7617 break;
7620 case bitc::FS_TYPE_ID:
7621 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7622 break;
7624 case bitc::FS_TYPE_ID_METADATA:
7625 parseTypeIdCompatibleVtableSummaryRecord(Record);
7626 break;
7628 case bitc::FS_BLOCK_COUNT:
7629 TheIndex.addBlockCount(Record[0]);
7630 break;
7632 case bitc::FS_PARAM_ACCESS: {
7633 PendingParamAccesses = parseParamAccesses(Record);
7634 break;
7637 case bitc::FS_STACK_IDS: { // [n x stackid]
7638 // Save stack ids in the reader to consult when adding stack ids from the
7639 // lists in the stack node and alloc node entries.
7640 StackIds = ArrayRef<uint64_t>(Record);
7641 break;
7644 case bitc::FS_PERMODULE_CALLSITE_INFO: {
7645 unsigned ValueID = Record[0];
7646 SmallVector<unsigned> StackIdList;
7647 for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7648 assert(*R < StackIds.size());
7649 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7651 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7652 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7653 break;
7656 case bitc::FS_COMBINED_CALLSITE_INFO: {
7657 auto RecordIter = Record.begin();
7658 unsigned ValueID = *RecordIter++;
7659 unsigned NumStackIds = *RecordIter++;
7660 unsigned NumVersions = *RecordIter++;
7661 assert(Record.size() == 3 + NumStackIds + NumVersions);
7662 SmallVector<unsigned> StackIdList;
7663 for (unsigned J = 0; J < NumStackIds; J++) {
7664 assert(*RecordIter < StackIds.size());
7665 StackIdList.push_back(
7666 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7668 SmallVector<unsigned> Versions;
7669 for (unsigned J = 0; J < NumVersions; J++)
7670 Versions.push_back(*RecordIter++);
7671 ValueInfo VI = std::get<0>(
7672 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7673 PendingCallsites.push_back(
7674 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7675 break;
7678 case bitc::FS_PERMODULE_ALLOC_INFO: {
7679 unsigned I = 0;
7680 std::vector<MIBInfo> MIBs;
7681 while (I < Record.size()) {
7682 assert(Record.size() - I >= 2);
7683 AllocationType AllocType = (AllocationType)Record[I++];
7684 unsigned NumStackEntries = Record[I++];
7685 assert(Record.size() - I >= NumStackEntries);
7686 SmallVector<unsigned> StackIdList;
7687 for (unsigned J = 0; J < NumStackEntries; J++) {
7688 assert(Record[I] < StackIds.size());
7689 StackIdList.push_back(
7690 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7692 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7694 PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7695 break;
7698 case bitc::FS_COMBINED_ALLOC_INFO: {
7699 unsigned I = 0;
7700 std::vector<MIBInfo> MIBs;
7701 unsigned NumMIBs = Record[I++];
7702 unsigned NumVersions = Record[I++];
7703 unsigned MIBsRead = 0;
7704 while (MIBsRead++ < NumMIBs) {
7705 assert(Record.size() - I >= 2);
7706 AllocationType AllocType = (AllocationType)Record[I++];
7707 unsigned NumStackEntries = Record[I++];
7708 assert(Record.size() - I >= NumStackEntries);
7709 SmallVector<unsigned> StackIdList;
7710 for (unsigned J = 0; J < NumStackEntries; J++) {
7711 assert(Record[I] < StackIds.size());
7712 StackIdList.push_back(
7713 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7715 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7717 assert(Record.size() - I >= NumVersions);
7718 SmallVector<uint8_t> Versions;
7719 for (unsigned J = 0; J < NumVersions; J++)
7720 Versions.push_back(Record[I++]);
7721 PendingAllocs.push_back(
7722 AllocInfo(std::move(Versions), std::move(MIBs)));
7723 break;
7727 llvm_unreachable("Exit infinite loop");
7730 // Parse the module string table block into the Index.
7731 // This populates the ModulePathStringTable map in the index.
7732 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7733 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7734 return Err;
7736 SmallVector<uint64_t, 64> Record;
7738 SmallString<128> ModulePath;
7739 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7741 while (true) {
7742 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7743 if (!MaybeEntry)
7744 return MaybeEntry.takeError();
7745 BitstreamEntry Entry = MaybeEntry.get();
7747 switch (Entry.Kind) {
7748 case BitstreamEntry::SubBlock: // Handled for us already.
7749 case BitstreamEntry::Error:
7750 return error("Malformed block");
7751 case BitstreamEntry::EndBlock:
7752 return Error::success();
7753 case BitstreamEntry::Record:
7754 // The interesting case.
7755 break;
7758 Record.clear();
7759 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7760 if (!MaybeRecord)
7761 return MaybeRecord.takeError();
7762 switch (MaybeRecord.get()) {
7763 default: // Default behavior: ignore.
7764 break;
7765 case bitc::MST_CODE_ENTRY: {
7766 // MST_ENTRY: [modid, namechar x N]
7767 uint64_t ModuleId = Record[0];
7769 if (convertToString(Record, 1, ModulePath))
7770 return error("Invalid record");
7772 LastSeenModule = TheIndex.addModule(ModulePath);
7773 ModuleIdMap[ModuleId] = LastSeenModule->first();
7775 ModulePath.clear();
7776 break;
7778 /// MST_CODE_HASH: [5*i32]
7779 case bitc::MST_CODE_HASH: {
7780 if (Record.size() != 5)
7781 return error("Invalid hash length " + Twine(Record.size()).str());
7782 if (!LastSeenModule)
7783 return error("Invalid hash that does not follow a module path");
7784 int Pos = 0;
7785 for (auto &Val : Record) {
7786 assert(!(Val >> 32) && "Unexpected high bits set");
7787 LastSeenModule->second[Pos++] = Val;
7789 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7790 LastSeenModule = nullptr;
7791 break;
7795 llvm_unreachable("Exit infinite loop");
7798 namespace {
7800 // FIXME: This class is only here to support the transition to llvm::Error. It
7801 // will be removed once this transition is complete. Clients should prefer to
7802 // deal with the Error value directly, rather than converting to error_code.
7803 class BitcodeErrorCategoryType : public std::error_category {
7804 const char *name() const noexcept override {
7805 return "llvm.bitcode";
7808 std::string message(int IE) const override {
7809 BitcodeError E = static_cast<BitcodeError>(IE);
7810 switch (E) {
7811 case BitcodeError::CorruptedBitcode:
7812 return "Corrupted bitcode";
7814 llvm_unreachable("Unknown error type!");
7818 } // end anonymous namespace
7820 const std::error_category &llvm::BitcodeErrorCategory() {
7821 static BitcodeErrorCategoryType ErrorCategory;
7822 return ErrorCategory;
7825 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7826 unsigned Block, unsigned RecordID) {
7827 if (Error Err = Stream.EnterSubBlock(Block))
7828 return std::move(Err);
7830 StringRef Strtab;
7831 while (true) {
7832 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7833 if (!MaybeEntry)
7834 return MaybeEntry.takeError();
7835 llvm::BitstreamEntry Entry = MaybeEntry.get();
7837 switch (Entry.Kind) {
7838 case BitstreamEntry::EndBlock:
7839 return Strtab;
7841 case BitstreamEntry::Error:
7842 return error("Malformed block");
7844 case BitstreamEntry::SubBlock:
7845 if (Error Err = Stream.SkipBlock())
7846 return std::move(Err);
7847 break;
7849 case BitstreamEntry::Record:
7850 StringRef Blob;
7851 SmallVector<uint64_t, 1> Record;
7852 Expected<unsigned> MaybeRecord =
7853 Stream.readRecord(Entry.ID, Record, &Blob);
7854 if (!MaybeRecord)
7855 return MaybeRecord.takeError();
7856 if (MaybeRecord.get() == RecordID)
7857 Strtab = Blob;
7858 break;
7863 //===----------------------------------------------------------------------===//
7864 // External interface
7865 //===----------------------------------------------------------------------===//
7867 Expected<std::vector<BitcodeModule>>
7868 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7869 auto FOrErr = getBitcodeFileContents(Buffer);
7870 if (!FOrErr)
7871 return FOrErr.takeError();
7872 return std::move(FOrErr->Mods);
7875 Expected<BitcodeFileContents>
7876 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7877 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7878 if (!StreamOrErr)
7879 return StreamOrErr.takeError();
7880 BitstreamCursor &Stream = *StreamOrErr;
7882 BitcodeFileContents F;
7883 while (true) {
7884 uint64_t BCBegin = Stream.getCurrentByteNo();
7886 // We may be consuming bitcode from a client that leaves garbage at the end
7887 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7888 // the end that there cannot possibly be another module, stop looking.
7889 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7890 return F;
7892 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7893 if (!MaybeEntry)
7894 return MaybeEntry.takeError();
7895 llvm::BitstreamEntry Entry = MaybeEntry.get();
7897 switch (Entry.Kind) {
7898 case BitstreamEntry::EndBlock:
7899 case BitstreamEntry::Error:
7900 return error("Malformed block");
7902 case BitstreamEntry::SubBlock: {
7903 uint64_t IdentificationBit = -1ull;
7904 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7905 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7906 if (Error Err = Stream.SkipBlock())
7907 return std::move(Err);
7910 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7911 if (!MaybeEntry)
7912 return MaybeEntry.takeError();
7913 Entry = MaybeEntry.get();
7916 if (Entry.Kind != BitstreamEntry::SubBlock ||
7917 Entry.ID != bitc::MODULE_BLOCK_ID)
7918 return error("Malformed block");
7921 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7922 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7923 if (Error Err = Stream.SkipBlock())
7924 return std::move(Err);
7926 F.Mods.push_back({Stream.getBitcodeBytes().slice(
7927 BCBegin, Stream.getCurrentByteNo() - BCBegin),
7928 Buffer.getBufferIdentifier(), IdentificationBit,
7929 ModuleBit});
7930 continue;
7933 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7934 Expected<StringRef> Strtab =
7935 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7936 if (!Strtab)
7937 return Strtab.takeError();
7938 // This string table is used by every preceding bitcode module that does
7939 // not have its own string table. A bitcode file may have multiple
7940 // string tables if it was created by binary concatenation, for example
7941 // with "llvm-cat -b".
7942 for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7943 if (!I.Strtab.empty())
7944 break;
7945 I.Strtab = *Strtab;
7947 // Similarly, the string table is used by every preceding symbol table;
7948 // normally there will be just one unless the bitcode file was created
7949 // by binary concatenation.
7950 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7951 F.StrtabForSymtab = *Strtab;
7952 continue;
7955 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7956 Expected<StringRef> SymtabOrErr =
7957 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7958 if (!SymtabOrErr)
7959 return SymtabOrErr.takeError();
7961 // We can expect the bitcode file to have multiple symbol tables if it
7962 // was created by binary concatenation. In that case we silently
7963 // ignore any subsequent symbol tables, which is fine because this is a
7964 // low level function. The client is expected to notice that the number
7965 // of modules in the symbol table does not match the number of modules
7966 // in the input file and regenerate the symbol table.
7967 if (F.Symtab.empty())
7968 F.Symtab = *SymtabOrErr;
7969 continue;
7972 if (Error Err = Stream.SkipBlock())
7973 return std::move(Err);
7974 continue;
7976 case BitstreamEntry::Record:
7977 if (Error E = Stream.skipRecord(Entry.ID).takeError())
7978 return std::move(E);
7979 continue;
7984 /// Get a lazy one-at-time loading module from bitcode.
7986 /// This isn't always used in a lazy context. In particular, it's also used by
7987 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull
7988 /// in forward-referenced functions from block address references.
7990 /// \param[in] MaterializeAll Set to \c true if we should materialize
7991 /// everything.
7992 Expected<std::unique_ptr<Module>>
7993 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7994 bool ShouldLazyLoadMetadata, bool IsImporting,
7995 ParserCallbacks Callbacks) {
7996 BitstreamCursor Stream(Buffer);
7998 std::string ProducerIdentification;
7999 if (IdentificationBit != -1ull) {
8000 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8001 return std::move(JumpFailed);
8002 if (Error E =
8003 readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8004 return std::move(E);
8007 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8008 return std::move(JumpFailed);
8009 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8010 Context);
8012 std::unique_ptr<Module> M =
8013 std::make_unique<Module>(ModuleIdentifier, Context);
8014 M->setMaterializer(R);
8016 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8017 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8018 IsImporting, Callbacks))
8019 return std::move(Err);
8021 if (MaterializeAll) {
8022 // Read in the entire module, and destroy the BitcodeReader.
8023 if (Error Err = M->materializeAll())
8024 return std::move(Err);
8025 } else {
8026 // Resolve forward references from blockaddresses.
8027 if (Error Err = R->materializeForwardReferencedFunctions())
8028 return std::move(Err);
8030 return std::move(M);
8033 Expected<std::unique_ptr<Module>>
8034 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8035 bool IsImporting, ParserCallbacks Callbacks) {
8036 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8037 Callbacks);
8040 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8041 // We don't use ModuleIdentifier here because the client may need to control the
8042 // module path used in the combined summary (e.g. when reading summaries for
8043 // regular LTO modules).
8044 Error BitcodeModule::readSummary(
8045 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8046 std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8047 BitstreamCursor Stream(Buffer);
8048 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8049 return JumpFailed;
8051 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8052 ModulePath, IsPrevailing);
8053 return R.parseModule();
8056 // Parse the specified bitcode buffer, returning the function info index.
8057 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8058 BitstreamCursor Stream(Buffer);
8059 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8060 return std::move(JumpFailed);
8062 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8063 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8064 ModuleIdentifier, 0);
8066 if (Error Err = R.parseModule())
8067 return std::move(Err);
8069 return std::move(Index);
8072 static Expected<std::pair<bool, bool>>
8073 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8074 unsigned ID,
8075 BitcodeLTOInfo &LTOInfo) {
8076 if (Error Err = Stream.EnterSubBlock(ID))
8077 return std::move(Err);
8078 SmallVector<uint64_t, 64> Record;
8080 while (true) {
8081 BitstreamEntry Entry;
8082 std::pair<bool, bool> Result = {false,false};
8083 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8084 return std::move(E);
8086 switch (Entry.Kind) {
8087 case BitstreamEntry::SubBlock: // Handled for us already.
8088 case BitstreamEntry::Error:
8089 return error("Malformed block");
8090 case BitstreamEntry::EndBlock: {
8091 // If no flags record found, set both flags to false.
8092 return Result;
8094 case BitstreamEntry::Record:
8095 // The interesting case.
8096 break;
8099 // Look for the FS_FLAGS record.
8100 Record.clear();
8101 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8102 if (!MaybeBitCode)
8103 return MaybeBitCode.takeError();
8104 switch (MaybeBitCode.get()) {
8105 default: // Default behavior: ignore.
8106 break;
8107 case bitc::FS_FLAGS: { // [flags]
8108 uint64_t Flags = Record[0];
8109 // Scan flags.
8110 assert(Flags <= 0x2ff && "Unexpected bits in flag");
8112 bool EnableSplitLTOUnit = Flags & 0x8;
8113 bool UnifiedLTO = Flags & 0x200;
8114 Result = {EnableSplitLTOUnit, UnifiedLTO};
8116 return Result;
8120 llvm_unreachable("Exit infinite loop");
8123 // Check if the given bitcode buffer contains a global value summary block.
8124 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8125 BitstreamCursor Stream(Buffer);
8126 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8127 return std::move(JumpFailed);
8129 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8130 return std::move(Err);
8132 while (true) {
8133 llvm::BitstreamEntry Entry;
8134 if (Error E = Stream.advance().moveInto(Entry))
8135 return std::move(E);
8137 switch (Entry.Kind) {
8138 case BitstreamEntry::Error:
8139 return error("Malformed block");
8140 case BitstreamEntry::EndBlock:
8141 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8142 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8144 case BitstreamEntry::SubBlock:
8145 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8146 BitcodeLTOInfo LTOInfo;
8147 Expected<std::pair<bool, bool>> Flags =
8148 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8149 if (!Flags)
8150 return Flags.takeError();
8151 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8152 LTOInfo.IsThinLTO = true;
8153 LTOInfo.HasSummary = true;
8154 return LTOInfo;
8157 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8158 BitcodeLTOInfo LTOInfo;
8159 Expected<std::pair<bool, bool>> Flags =
8160 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8161 if (!Flags)
8162 return Flags.takeError();
8163 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8164 LTOInfo.IsThinLTO = false;
8165 LTOInfo.HasSummary = true;
8166 return LTOInfo;
8169 // Ignore other sub-blocks.
8170 if (Error Err = Stream.SkipBlock())
8171 return std::move(Err);
8172 continue;
8174 case BitstreamEntry::Record:
8175 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8176 continue;
8177 else
8178 return StreamFailed.takeError();
8183 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8184 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8185 if (!MsOrErr)
8186 return MsOrErr.takeError();
8188 if (MsOrErr->size() != 1)
8189 return error("Expected a single module");
8191 return (*MsOrErr)[0];
8194 Expected<std::unique_ptr<Module>>
8195 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8196 bool ShouldLazyLoadMetadata, bool IsImporting,
8197 ParserCallbacks Callbacks) {
8198 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8199 if (!BM)
8200 return BM.takeError();
8202 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8203 Callbacks);
8206 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8207 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8208 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8209 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8210 IsImporting, Callbacks);
8211 if (MOrErr)
8212 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8213 return MOrErr;
8216 Expected<std::unique_ptr<Module>>
8217 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8218 return getModuleImpl(Context, true, false, false, Callbacks);
8219 // TODO: Restore the use-lists to the in-memory state when the bitcode was
8220 // written. We must defer until the Module has been fully materialized.
8223 Expected<std::unique_ptr<Module>>
8224 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8225 ParserCallbacks Callbacks) {
8226 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8227 if (!BM)
8228 return BM.takeError();
8230 return BM->parseModule(Context, Callbacks);
8233 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8234 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8235 if (!StreamOrErr)
8236 return StreamOrErr.takeError();
8238 return readTriple(*StreamOrErr);
8241 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8242 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8243 if (!StreamOrErr)
8244 return StreamOrErr.takeError();
8246 return hasObjCCategory(*StreamOrErr);
8249 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8250 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8251 if (!StreamOrErr)
8252 return StreamOrErr.takeError();
8254 return readIdentificationCode(*StreamOrErr);
8257 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8258 ModuleSummaryIndex &CombinedIndex) {
8259 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8260 if (!BM)
8261 return BM.takeError();
8263 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8266 Expected<std::unique_ptr<ModuleSummaryIndex>>
8267 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8268 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8269 if (!BM)
8270 return BM.takeError();
8272 return BM->getSummary();
8275 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8276 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8277 if (!BM)
8278 return BM.takeError();
8280 return BM->getLTOInfo();
8283 Expected<std::unique_ptr<ModuleSummaryIndex>>
8284 llvm::getModuleSummaryIndexForFile(StringRef Path,
8285 bool IgnoreEmptyThinLTOIndexFile) {
8286 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8287 MemoryBuffer::getFileOrSTDIN(Path);
8288 if (!FileOrErr)
8289 return errorCodeToError(FileOrErr.getError());
8290 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8291 return nullptr;
8292 return getModuleSummaryIndex(**FileOrErr);