1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for writing Microsoft CodeView debug info.
11 //===----------------------------------------------------------------------===//
13 #include "CodeViewDebug.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallBitVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/COFF.h"
22 #include "llvm/BinaryFormat/Dwarf.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/LexicalScopes.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
35 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
36 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
37 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
38 #include "llvm/DebugInfo/CodeView/EnumTables.h"
39 #include "llvm/DebugInfo/CodeView/Line.h"
40 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
41 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
42 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
43 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/MC/MCAsmInfo.h"
53 #include "llvm/MC/MCContext.h"
54 #include "llvm/MC/MCSectionCOFF.h"
55 #include "llvm/MC/MCStreamer.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/BinaryStreamWriter.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Error.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/FormatVariadic.h"
62 #include "llvm/Support/Path.h"
63 #include "llvm/Support/Program.h"
64 #include "llvm/Support/SMLoc.h"
65 #include "llvm/Support/ScopedPrinter.h"
66 #include "llvm/Target/TargetLoweringObjectFile.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/TargetParser/Triple.h"
77 using namespace llvm::codeview
;
80 class CVMCAdapter
: public CodeViewRecordStreamer
{
82 CVMCAdapter(MCStreamer
&OS
, TypeCollection
&TypeTable
)
83 : OS(&OS
), TypeTable(TypeTable
) {}
85 void emitBytes(StringRef Data
) override
{ OS
->emitBytes(Data
); }
87 void emitIntValue(uint64_t Value
, unsigned Size
) override
{
88 OS
->emitIntValueInHex(Value
, Size
);
91 void emitBinaryData(StringRef Data
) override
{ OS
->emitBinaryData(Data
); }
93 void AddComment(const Twine
&T
) override
{ OS
->AddComment(T
); }
95 void AddRawComment(const Twine
&T
) override
{ OS
->emitRawComment(T
); }
97 bool isVerboseAsm() override
{ return OS
->isVerboseAsm(); }
99 std::string
getTypeName(TypeIndex TI
) override
{
100 std::string TypeName
;
101 if (!TI
.isNoneType()) {
103 TypeName
= std::string(TypeIndex::simpleTypeName(TI
));
105 TypeName
= std::string(TypeTable
.getTypeName(TI
));
111 MCStreamer
*OS
= nullptr;
112 TypeCollection
&TypeTable
;
116 static CPUType
mapArchToCVCPUType(Triple::ArchType Type
) {
118 case Triple::ArchType::x86
:
119 return CPUType::Pentium3
;
120 case Triple::ArchType::x86_64
:
122 case Triple::ArchType::thumb
:
123 // LLVM currently doesn't support Windows CE and so thumb
124 // here is indiscriminately mapped to ARMNT specifically.
125 return CPUType::ARMNT
;
126 case Triple::ArchType::aarch64
:
127 return CPUType::ARM64
;
129 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
133 CodeViewDebug::CodeViewDebug(AsmPrinter
*AP
)
134 : DebugHandlerBase(AP
), OS(*Asm
->OutStreamer
), TypeTable(Allocator
) {}
136 StringRef
CodeViewDebug::getFullFilepath(const DIFile
*File
) {
137 std::string
&Filepath
= FileToFilepathMap
[File
];
138 if (!Filepath
.empty())
141 StringRef Dir
= File
->getDirectory(), Filename
= File
->getFilename();
143 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
144 // it textually because one of the path components could be a symlink.
145 if (Dir
.starts_with("/") || Filename
.starts_with("/")) {
146 if (llvm::sys::path::is_absolute(Filename
, llvm::sys::path::Style::posix
))
148 Filepath
= std::string(Dir
);
149 if (Dir
.back() != '/')
151 Filepath
+= Filename
;
155 // Clang emits directory and relative filename info into the IR, but CodeView
156 // operates on full paths. We could change Clang to emit full paths too, but
157 // that would increase the IR size and probably not needed for other users.
158 // For now, just concatenate and canonicalize the path here.
159 if (Filename
.find(':') == 1)
160 Filepath
= std::string(Filename
);
162 Filepath
= (Dir
+ "\\" + Filename
).str();
164 // Canonicalize the path. We have to do it textually because we may no longer
165 // have access the file in the filesystem.
166 // First, replace all slashes with backslashes.
167 std::replace(Filepath
.begin(), Filepath
.end(), '/', '\\');
169 // Remove all "\.\" with "\".
171 while ((Cursor
= Filepath
.find("\\.\\", Cursor
)) != std::string::npos
)
172 Filepath
.erase(Cursor
, 2);
174 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
175 // path should be well-formatted, e.g. start with a drive letter, etc.
177 while ((Cursor
= Filepath
.find("\\..\\", Cursor
)) != std::string::npos
) {
178 // Something's wrong if the path starts with "\..\", abort.
182 size_t PrevSlash
= Filepath
.rfind('\\', Cursor
- 1);
183 if (PrevSlash
== std::string::npos
)
184 // Something's wrong, abort.
187 Filepath
.erase(PrevSlash
, Cursor
+ 3 - PrevSlash
);
188 // The next ".." might be following the one we've just erased.
192 // Remove all duplicate backslashes.
194 while ((Cursor
= Filepath
.find("\\\\", Cursor
)) != std::string::npos
)
195 Filepath
.erase(Cursor
, 1);
200 unsigned CodeViewDebug::maybeRecordFile(const DIFile
*F
) {
201 StringRef FullPath
= getFullFilepath(F
);
202 unsigned NextId
= FileIdMap
.size() + 1;
203 auto Insertion
= FileIdMap
.insert(std::make_pair(FullPath
, NextId
));
204 if (Insertion
.second
) {
205 // We have to compute the full filepath and emit a .cv_file directive.
206 ArrayRef
<uint8_t> ChecksumAsBytes
;
207 FileChecksumKind CSKind
= FileChecksumKind::None
;
208 if (F
->getChecksum()) {
209 std::string Checksum
= fromHex(F
->getChecksum()->Value
);
210 void *CKMem
= OS
.getContext().allocate(Checksum
.size(), 1);
211 memcpy(CKMem
, Checksum
.data(), Checksum
.size());
212 ChecksumAsBytes
= ArrayRef
<uint8_t>(
213 reinterpret_cast<const uint8_t *>(CKMem
), Checksum
.size());
214 switch (F
->getChecksum()->Kind
) {
215 case DIFile::CSK_MD5
:
216 CSKind
= FileChecksumKind::MD5
;
218 case DIFile::CSK_SHA1
:
219 CSKind
= FileChecksumKind::SHA1
;
221 case DIFile::CSK_SHA256
:
222 CSKind
= FileChecksumKind::SHA256
;
226 bool Success
= OS
.emitCVFileDirective(NextId
, FullPath
, ChecksumAsBytes
,
227 static_cast<unsigned>(CSKind
));
229 assert(Success
&& ".cv_file directive failed");
231 return Insertion
.first
->second
;
234 CodeViewDebug::InlineSite
&
235 CodeViewDebug::getInlineSite(const DILocation
*InlinedAt
,
236 const DISubprogram
*Inlinee
) {
237 auto SiteInsertion
= CurFn
->InlineSites
.insert({InlinedAt
, InlineSite()});
238 InlineSite
*Site
= &SiteInsertion
.first
->second
;
239 if (SiteInsertion
.second
) {
240 unsigned ParentFuncId
= CurFn
->FuncId
;
241 if (const DILocation
*OuterIA
= InlinedAt
->getInlinedAt())
243 getInlineSite(OuterIA
, InlinedAt
->getScope()->getSubprogram())
246 Site
->SiteFuncId
= NextFuncId
++;
247 OS
.emitCVInlineSiteIdDirective(
248 Site
->SiteFuncId
, ParentFuncId
, maybeRecordFile(InlinedAt
->getFile()),
249 InlinedAt
->getLine(), InlinedAt
->getColumn(), SMLoc());
250 Site
->Inlinee
= Inlinee
;
251 InlinedSubprograms
.insert(Inlinee
);
252 auto InlineeIdx
= getFuncIdForSubprogram(Inlinee
);
254 if (InlinedAt
->getInlinedAt() == nullptr)
255 CurFn
->Inlinees
.insert(InlineeIdx
);
260 static StringRef
getPrettyScopeName(const DIScope
*Scope
) {
261 StringRef ScopeName
= Scope
->getName();
262 if (!ScopeName
.empty())
265 switch (Scope
->getTag()) {
266 case dwarf::DW_TAG_enumeration_type
:
267 case dwarf::DW_TAG_class_type
:
268 case dwarf::DW_TAG_structure_type
:
269 case dwarf::DW_TAG_union_type
:
270 return "<unnamed-tag>";
271 case dwarf::DW_TAG_namespace
:
272 return "`anonymous namespace'";
278 const DISubprogram
*CodeViewDebug::collectParentScopeNames(
279 const DIScope
*Scope
, SmallVectorImpl
<StringRef
> &QualifiedNameComponents
) {
280 const DISubprogram
*ClosestSubprogram
= nullptr;
281 while (Scope
!= nullptr) {
282 if (ClosestSubprogram
== nullptr)
283 ClosestSubprogram
= dyn_cast
<DISubprogram
>(Scope
);
285 // If a type appears in a scope chain, make sure it gets emitted. The
286 // frontend will be responsible for deciding if this should be a forward
287 // declaration or a complete type.
288 if (const auto *Ty
= dyn_cast
<DICompositeType
>(Scope
))
289 DeferredCompleteTypes
.push_back(Ty
);
291 StringRef ScopeName
= getPrettyScopeName(Scope
);
292 if (!ScopeName
.empty())
293 QualifiedNameComponents
.push_back(ScopeName
);
294 Scope
= Scope
->getScope();
296 return ClosestSubprogram
;
299 static std::string
formatNestedName(ArrayRef
<StringRef
> QualifiedNameComponents
,
300 StringRef TypeName
) {
301 std::string FullyQualifiedName
;
302 for (StringRef QualifiedNameComponent
:
303 llvm::reverse(QualifiedNameComponents
)) {
304 FullyQualifiedName
.append(std::string(QualifiedNameComponent
));
305 FullyQualifiedName
.append("::");
307 FullyQualifiedName
.append(std::string(TypeName
));
308 return FullyQualifiedName
;
311 struct CodeViewDebug::TypeLoweringScope
{
312 TypeLoweringScope(CodeViewDebug
&CVD
) : CVD(CVD
) { ++CVD
.TypeEmissionLevel
; }
313 ~TypeLoweringScope() {
314 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
315 // inner TypeLoweringScopes don't attempt to emit deferred types.
316 if (CVD
.TypeEmissionLevel
== 1)
317 CVD
.emitDeferredCompleteTypes();
318 --CVD
.TypeEmissionLevel
;
323 std::string
CodeViewDebug::getFullyQualifiedName(const DIScope
*Scope
,
325 // Ensure types in the scope chain are emitted as soon as possible.
326 // This can create otherwise a situation where S_UDTs are emitted while
327 // looping in emitDebugInfoForUDTs.
328 TypeLoweringScope
S(*this);
329 SmallVector
<StringRef
, 5> QualifiedNameComponents
;
330 collectParentScopeNames(Scope
, QualifiedNameComponents
);
331 return formatNestedName(QualifiedNameComponents
, Name
);
334 std::string
CodeViewDebug::getFullyQualifiedName(const DIScope
*Ty
) {
335 const DIScope
*Scope
= Ty
->getScope();
336 return getFullyQualifiedName(Scope
, getPrettyScopeName(Ty
));
339 TypeIndex
CodeViewDebug::getScopeIndex(const DIScope
*Scope
) {
340 // No scope means global scope and that uses the zero index.
342 // We also use zero index when the scope is a DISubprogram
343 // to suppress the emission of LF_STRING_ID for the function,
344 // which can trigger a link-time error with the linker in
345 // VS2019 version 16.11.2 or newer.
346 // Note, however, skipping the debug info emission for the DISubprogram
347 // is a temporary fix. The root issue here is that we need to figure out
348 // the proper way to encode a function nested in another function
349 // (as introduced by the Fortran 'contains' keyword) in CodeView.
350 if (!Scope
|| isa
<DIFile
>(Scope
) || isa
<DISubprogram
>(Scope
))
353 assert(!isa
<DIType
>(Scope
) && "shouldn't make a namespace scope for a type");
355 // Check if we've already translated this scope.
356 auto I
= TypeIndices
.find({Scope
, nullptr});
357 if (I
!= TypeIndices
.end())
360 // Build the fully qualified name of the scope.
361 std::string ScopeName
= getFullyQualifiedName(Scope
);
362 StringIdRecord
SID(TypeIndex(), ScopeName
);
363 auto TI
= TypeTable
.writeLeafType(SID
);
364 return recordTypeIndexForDINode(Scope
, TI
);
367 static StringRef
removeTemplateArgs(StringRef Name
) {
368 // Remove template args from the display name. Assume that the template args
369 // are the last thing in the name.
370 if (Name
.empty() || Name
.back() != '>')
373 int OpenBrackets
= 0;
374 for (int i
= Name
.size() - 1; i
>= 0; --i
) {
377 else if (Name
[i
] == '<') {
379 if (OpenBrackets
== 0)
380 return Name
.substr(0, i
);
386 TypeIndex
CodeViewDebug::getFuncIdForSubprogram(const DISubprogram
*SP
) {
389 // Check if we've already translated this subprogram.
390 auto I
= TypeIndices
.find({SP
, nullptr});
391 if (I
!= TypeIndices
.end())
394 // The display name includes function template arguments. Drop them to match
395 // MSVC. We need to have the template arguments in the DISubprogram name
396 // because they are used in other symbol records, such as S_GPROC32_IDs.
397 StringRef DisplayName
= removeTemplateArgs(SP
->getName());
399 const DIScope
*Scope
= SP
->getScope();
401 if (const auto *Class
= dyn_cast_or_null
<DICompositeType
>(Scope
)) {
402 // If the scope is a DICompositeType, then this must be a method. Member
403 // function types take some special handling, and require access to the
405 TypeIndex ClassType
= getTypeIndex(Class
);
406 MemberFuncIdRecord
MFuncId(ClassType
, getMemberFunctionType(SP
, Class
),
408 TI
= TypeTable
.writeLeafType(MFuncId
);
410 // Otherwise, this must be a free function.
411 TypeIndex ParentScope
= getScopeIndex(Scope
);
412 FuncIdRecord
FuncId(ParentScope
, getTypeIndex(SP
->getType()), DisplayName
);
413 TI
= TypeTable
.writeLeafType(FuncId
);
416 return recordTypeIndexForDINode(SP
, TI
);
419 static bool isNonTrivial(const DICompositeType
*DCTy
) {
420 return ((DCTy
->getFlags() & DINode::FlagNonTrivial
) == DINode::FlagNonTrivial
);
423 static FunctionOptions
424 getFunctionOptions(const DISubroutineType
*Ty
,
425 const DICompositeType
*ClassTy
= nullptr,
426 StringRef SPName
= StringRef("")) {
427 FunctionOptions FO
= FunctionOptions::None
;
428 const DIType
*ReturnTy
= nullptr;
429 if (auto TypeArray
= Ty
->getTypeArray()) {
430 if (TypeArray
.size())
431 ReturnTy
= TypeArray
[0];
434 // Add CxxReturnUdt option to functions that return nontrivial record types
435 // or methods that return record types.
436 if (auto *ReturnDCTy
= dyn_cast_or_null
<DICompositeType
>(ReturnTy
))
437 if (isNonTrivial(ReturnDCTy
) || ClassTy
)
438 FO
|= FunctionOptions::CxxReturnUdt
;
440 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
441 if (ClassTy
&& isNonTrivial(ClassTy
) && SPName
== ClassTy
->getName()) {
442 FO
|= FunctionOptions::Constructor
;
444 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
450 TypeIndex
CodeViewDebug::getMemberFunctionType(const DISubprogram
*SP
,
451 const DICompositeType
*Class
) {
452 // Always use the method declaration as the key for the function type. The
453 // method declaration contains the this adjustment.
454 if (SP
->getDeclaration())
455 SP
= SP
->getDeclaration();
456 assert(!SP
->getDeclaration() && "should use declaration as key");
458 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
459 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
460 auto I
= TypeIndices
.find({SP
, Class
});
461 if (I
!= TypeIndices
.end())
464 // Make sure complete type info for the class is emitted *after* the member
465 // function type, as the complete class type is likely to reference this
466 // member function type.
467 TypeLoweringScope
S(*this);
468 const bool IsStaticMethod
= (SP
->getFlags() & DINode::FlagStaticMember
) != 0;
470 FunctionOptions FO
= getFunctionOptions(SP
->getType(), Class
, SP
->getName());
471 TypeIndex TI
= lowerTypeMemberFunction(
472 SP
->getType(), Class
, SP
->getThisAdjustment(), IsStaticMethod
, FO
);
473 return recordTypeIndexForDINode(SP
, TI
, Class
);
476 TypeIndex
CodeViewDebug::recordTypeIndexForDINode(const DINode
*Node
,
478 const DIType
*ClassTy
) {
479 auto InsertResult
= TypeIndices
.insert({{Node
, ClassTy
}, TI
});
481 assert(InsertResult
.second
&& "DINode was already assigned a type index");
485 unsigned CodeViewDebug::getPointerSizeInBytes() {
486 return MMI
->getModule()->getDataLayout().getPointerSizeInBits() / 8;
489 void CodeViewDebug::recordLocalVariable(LocalVariable
&&Var
,
490 const LexicalScope
*LS
) {
491 if (const DILocation
*InlinedAt
= LS
->getInlinedAt()) {
492 // This variable was inlined. Associate it with the InlineSite.
493 const DISubprogram
*Inlinee
= Var
.DIVar
->getScope()->getSubprogram();
494 InlineSite
&Site
= getInlineSite(InlinedAt
, Inlinee
);
495 Site
.InlinedLocals
.emplace_back(std::move(Var
));
497 // This variable goes into the corresponding lexical scope.
498 ScopeVariables
[LS
].emplace_back(std::move(Var
));
502 static void addLocIfNotPresent(SmallVectorImpl
<const DILocation
*> &Locs
,
503 const DILocation
*Loc
) {
504 if (!llvm::is_contained(Locs
, Loc
))
508 void CodeViewDebug::maybeRecordLocation(const DebugLoc
&DL
,
509 const MachineFunction
*MF
) {
510 // Skip this instruction if it has the same location as the previous one.
511 if (!DL
|| DL
== PrevInstLoc
)
514 const DIScope
*Scope
= DL
->getScope();
518 // Skip this line if it is longer than the maximum we can record.
519 LineInfo
LI(DL
.getLine(), DL
.getLine(), /*IsStatement=*/true);
520 if (LI
.getStartLine() != DL
.getLine() || LI
.isAlwaysStepInto() ||
521 LI
.isNeverStepInto())
524 ColumnInfo
CI(DL
.getCol(), /*EndColumn=*/0);
525 if (CI
.getStartColumn() != DL
.getCol())
528 if (!CurFn
->HaveLineInfo
)
529 CurFn
->HaveLineInfo
= true;
531 if (PrevInstLoc
.get() && PrevInstLoc
->getFile() == DL
->getFile())
532 FileId
= CurFn
->LastFileId
;
534 FileId
= CurFn
->LastFileId
= maybeRecordFile(DL
->getFile());
537 unsigned FuncId
= CurFn
->FuncId
;
538 if (const DILocation
*SiteLoc
= DL
->getInlinedAt()) {
539 const DILocation
*Loc
= DL
.get();
541 // If this location was actually inlined from somewhere else, give it the ID
542 // of the inline call site.
544 getInlineSite(SiteLoc
, Loc
->getScope()->getSubprogram()).SiteFuncId
;
546 // Ensure we have links in the tree of inline call sites.
547 bool FirstLoc
= true;
548 while ((SiteLoc
= Loc
->getInlinedAt())) {
550 getInlineSite(SiteLoc
, Loc
->getScope()->getSubprogram());
552 addLocIfNotPresent(Site
.ChildSites
, Loc
);
556 addLocIfNotPresent(CurFn
->ChildSites
, Loc
);
559 OS
.emitCVLocDirective(FuncId
, FileId
, DL
.getLine(), DL
.getCol(),
560 /*PrologueEnd=*/false, /*IsStmt=*/false,
561 DL
->getFilename(), SMLoc());
564 void CodeViewDebug::emitCodeViewMagicVersion() {
565 OS
.emitValueToAlignment(Align(4));
566 OS
.AddComment("Debug section magic");
567 OS
.emitInt32(COFF::DEBUG_SECTION_MAGIC
);
570 static SourceLanguage
MapDWLangToCVLang(unsigned DWLang
) {
572 case dwarf::DW_LANG_C
:
573 case dwarf::DW_LANG_C89
:
574 case dwarf::DW_LANG_C99
:
575 case dwarf::DW_LANG_C11
:
576 return SourceLanguage::C
;
577 case dwarf::DW_LANG_C_plus_plus
:
578 case dwarf::DW_LANG_C_plus_plus_03
:
579 case dwarf::DW_LANG_C_plus_plus_11
:
580 case dwarf::DW_LANG_C_plus_plus_14
:
581 return SourceLanguage::Cpp
;
582 case dwarf::DW_LANG_Fortran77
:
583 case dwarf::DW_LANG_Fortran90
:
584 case dwarf::DW_LANG_Fortran95
:
585 case dwarf::DW_LANG_Fortran03
:
586 case dwarf::DW_LANG_Fortran08
:
587 return SourceLanguage::Fortran
;
588 case dwarf::DW_LANG_Pascal83
:
589 return SourceLanguage::Pascal
;
590 case dwarf::DW_LANG_Cobol74
:
591 case dwarf::DW_LANG_Cobol85
:
592 return SourceLanguage::Cobol
;
593 case dwarf::DW_LANG_Java
:
594 return SourceLanguage::Java
;
595 case dwarf::DW_LANG_D
:
596 return SourceLanguage::D
;
597 case dwarf::DW_LANG_Swift
:
598 return SourceLanguage::Swift
;
599 case dwarf::DW_LANG_Rust
:
600 return SourceLanguage::Rust
;
601 case dwarf::DW_LANG_ObjC
:
602 return SourceLanguage::ObjC
;
603 case dwarf::DW_LANG_ObjC_plus_plus
:
604 return SourceLanguage::ObjCpp
;
606 // There's no CodeView representation for this language, and CV doesn't
607 // have an "unknown" option for the language field, so we'll use MASM,
608 // as it's very low level.
609 return SourceLanguage::Masm
;
613 void CodeViewDebug::beginModule(Module
*M
) {
614 // If module doesn't have named metadata anchors or COFF debug section
615 // is not available, skip any debug info related stuff.
616 if (!MMI
->hasDebugInfo() ||
617 !Asm
->getObjFileLowering().getCOFFDebugSymbolsSection()) {
622 TheCPU
= mapArchToCVCPUType(Triple(M
->getTargetTriple()).getArch());
624 // Get the current source language.
625 const MDNode
*Node
= *M
->debug_compile_units_begin();
626 const auto *CU
= cast
<DICompileUnit
>(Node
);
628 CurrentSourceLanguage
= MapDWLangToCVLang(CU
->getSourceLanguage());
630 collectGlobalVariableInfo();
632 // Check if we should emit type record hashes.
634 mdconst::extract_or_null
<ConstantInt
>(M
->getModuleFlag("CodeViewGHash"));
635 EmitDebugGlobalHashes
= GH
&& !GH
->isZero();
638 void CodeViewDebug::endModule() {
639 if (!Asm
|| !MMI
->hasDebugInfo())
642 // The COFF .debug$S section consists of several subsections, each starting
643 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
644 // of the payload followed by the payload itself. The subsections are 4-byte
647 // Use the generic .debug$S section, and make a subsection for all the inlined
649 switchToDebugSectionForSymbol(nullptr);
651 MCSymbol
*CompilerInfo
= beginCVSubsection(DebugSubsectionKind::Symbols
);
653 emitCompilerInformation();
654 endCVSubsection(CompilerInfo
);
656 emitInlineeLinesSubsection();
658 // Emit per-function debug information.
659 for (auto &P
: FnDebugInfo
)
660 if (!P
.first
->isDeclarationForLinker())
661 emitDebugInfoForFunction(P
.first
, *P
.second
);
663 // Get types used by globals without emitting anything.
664 // This is meant to collect all static const data members so they can be
665 // emitted as globals.
666 collectDebugInfoForGlobals();
668 // Emit retained types.
669 emitDebugInfoForRetainedTypes();
671 // Emit global variable debug information.
672 setCurrentSubprogram(nullptr);
673 emitDebugInfoForGlobals();
675 // Switch back to the generic .debug$S section after potentially processing
676 // comdat symbol sections.
677 switchToDebugSectionForSymbol(nullptr);
679 // Emit UDT records for any types used by global variables.
680 if (!GlobalUDTs
.empty()) {
681 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
682 emitDebugInfoForUDTs(GlobalUDTs
);
683 endCVSubsection(SymbolsEnd
);
686 // This subsection holds a file index to offset in string table table.
687 OS
.AddComment("File index to string table offset subsection");
688 OS
.emitCVFileChecksumsDirective();
690 // This subsection holds the string table.
691 OS
.AddComment("String table");
692 OS
.emitCVStringTableDirective();
694 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
695 // subsection in the generic .debug$S section at the end. There is no
696 // particular reason for this ordering other than to match MSVC.
699 // Emit type information and hashes last, so that any types we translate while
700 // emitting function info are included.
701 emitTypeInformation();
703 if (EmitDebugGlobalHashes
)
704 emitTypeGlobalHashes();
710 emitNullTerminatedSymbolName(MCStreamer
&OS
, StringRef S
,
711 unsigned MaxFixedRecordLength
= 0xF00) {
712 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
713 // after a fixed length portion of the record. The fixed length portion should
714 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
715 // overall record size is less than the maximum allowed.
716 SmallString
<32> NullTerminatedString(
717 S
.take_front(MaxRecordLength
- MaxFixedRecordLength
- 1));
718 NullTerminatedString
.push_back('\0');
719 OS
.emitBytes(NullTerminatedString
);
722 void CodeViewDebug::emitTypeInformation() {
723 if (TypeTable
.empty())
726 // Start the .debug$T or .debug$P section with 0x4.
727 OS
.switchSection(Asm
->getObjFileLowering().getCOFFDebugTypesSection());
728 emitCodeViewMagicVersion();
730 TypeTableCollection
Table(TypeTable
.records());
731 TypeVisitorCallbackPipeline Pipeline
;
733 // To emit type record using Codeview MCStreamer adapter
734 CVMCAdapter
CVMCOS(OS
, Table
);
735 TypeRecordMapping
typeMapping(CVMCOS
);
736 Pipeline
.addCallbackToPipeline(typeMapping
);
738 std::optional
<TypeIndex
> B
= Table
.getFirst();
740 // This will fail if the record data is invalid.
741 CVType Record
= Table
.getType(*B
);
743 Error E
= codeview::visitTypeRecord(Record
, *B
, Pipeline
);
746 logAllUnhandledErrors(std::move(E
), errs(), "error: ");
747 llvm_unreachable("produced malformed type record");
750 B
= Table
.getNext(*B
);
754 void CodeViewDebug::emitTypeGlobalHashes() {
755 if (TypeTable
.empty())
758 // Start the .debug$H section with the version and hash algorithm, currently
759 // hardcoded to version 0, SHA1.
760 OS
.switchSection(Asm
->getObjFileLowering().getCOFFGlobalTypeHashesSection());
762 OS
.emitValueToAlignment(Align(4));
763 OS
.AddComment("Magic");
764 OS
.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC
);
765 OS
.AddComment("Section Version");
767 OS
.AddComment("Hash Algorithm");
768 OS
.emitInt16(uint16_t(GlobalTypeHashAlg::BLAKE3
));
770 TypeIndex
TI(TypeIndex::FirstNonSimpleIndex
);
771 for (const auto &GHR
: TypeTable
.hashes()) {
772 if (OS
.isVerboseAsm()) {
773 // Emit an EOL-comment describing which TypeIndex this hash corresponds
774 // to, as well as the stringified SHA1 hash.
775 SmallString
<32> Comment
;
776 raw_svector_ostream
CommentOS(Comment
);
777 CommentOS
<< formatv("{0:X+} [{1}]", TI
.getIndex(), GHR
);
778 OS
.AddComment(Comment
);
781 assert(GHR
.Hash
.size() == 8);
782 StringRef
S(reinterpret_cast<const char *>(GHR
.Hash
.data()),
784 OS
.emitBinaryData(S
);
788 void CodeViewDebug::emitObjName() {
789 MCSymbol
*CompilerEnd
= beginSymbolRecord(SymbolKind::S_OBJNAME
);
791 StringRef
PathRef(Asm
->TM
.Options
.ObjectFilenameForDebug
);
792 llvm::SmallString
<256> PathStore(PathRef
);
794 if (PathRef
.empty() || PathRef
== "-") {
795 // Don't emit the filename if we're writing to stdout or to /dev/null.
801 OS
.AddComment("Signature");
802 OS
.emitIntValue(0, 4);
804 OS
.AddComment("Object name");
805 emitNullTerminatedSymbolName(OS
, PathRef
);
807 endSymbolRecord(CompilerEnd
);
814 } // end anonymous namespace
816 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
817 // the version number.
818 static Version
parseVersion(StringRef Name
) {
821 for (const char C
: Name
) {
824 V
.Part
[N
] += C
- '0';
826 std::min
<int>(V
.Part
[N
], std::numeric_limits
<uint16_t>::max());
827 } else if (C
== '.') {
837 void CodeViewDebug::emitCompilerInformation() {
838 MCSymbol
*CompilerEnd
= beginSymbolRecord(SymbolKind::S_COMPILE3
);
841 // The low byte of the flags indicates the source language.
842 Flags
= CurrentSourceLanguage
;
843 // TODO: Figure out which other flags need to be set.
844 if (MMI
->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
845 Flags
|= static_cast<uint32_t>(CompileSym3Flags::PGO
);
847 using ArchType
= llvm::Triple::ArchType
;
848 ArchType Arch
= Triple(MMI
->getModule()->getTargetTriple()).getArch();
849 if (Asm
->TM
.Options
.Hotpatch
|| Arch
== ArchType::thumb
||
850 Arch
== ArchType::aarch64
) {
851 Flags
|= static_cast<uint32_t>(CompileSym3Flags::HotPatch
);
854 OS
.AddComment("Flags and language");
857 OS
.AddComment("CPUType");
858 OS
.emitInt16(static_cast<uint64_t>(TheCPU
));
860 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
861 const MDNode
*Node
= *CUs
->operands().begin();
862 const auto *CU
= cast
<DICompileUnit
>(Node
);
864 StringRef CompilerVersion
= CU
->getProducer();
865 Version FrontVer
= parseVersion(CompilerVersion
);
866 OS
.AddComment("Frontend version");
867 for (int N
: FrontVer
.Part
) {
871 // Some Microsoft tools, like Binscope, expect a backend version number of at
872 // least 8.something, so we'll coerce the LLVM version into a form that
873 // guarantees it'll be big enough without really lying about the version.
874 int Major
= 1000 * LLVM_VERSION_MAJOR
+
875 10 * LLVM_VERSION_MINOR
+
877 // Clamp it for builds that use unusually large version numbers.
878 Major
= std::min
<int>(Major
, std::numeric_limits
<uint16_t>::max());
879 Version BackVer
= {{ Major
, 0, 0, 0 }};
880 OS
.AddComment("Backend version");
881 for (int N
: BackVer
.Part
)
884 OS
.AddComment("Null-terminated compiler version string");
885 emitNullTerminatedSymbolName(OS
, CompilerVersion
);
887 endSymbolRecord(CompilerEnd
);
890 static TypeIndex
getStringIdTypeIdx(GlobalTypeTableBuilder
&TypeTable
,
892 StringIdRecord
SIR(TypeIndex(0x0), S
);
893 return TypeTable
.writeLeafType(SIR
);
896 static std::string
flattenCommandLine(ArrayRef
<std::string
> Args
,
897 StringRef MainFilename
) {
898 std::string FlatCmdLine
;
899 raw_string_ostream
OS(FlatCmdLine
);
900 bool PrintedOneArg
= false;
901 if (!StringRef(Args
[0]).contains("-cc1")) {
902 llvm::sys::printArg(OS
, "-cc1", /*Quote=*/true);
903 PrintedOneArg
= true;
905 for (unsigned i
= 0; i
< Args
.size(); i
++) {
906 StringRef Arg
= Args
[i
];
909 if (Arg
== "-main-file-name" || Arg
== "-o") {
910 i
++; // Skip this argument and next one.
913 if (Arg
.starts_with("-object-file-name") || Arg
== MainFilename
)
915 // Skip fmessage-length for reproduciability.
916 if (Arg
.starts_with("-fmessage-length"))
920 llvm::sys::printArg(OS
, Arg
, /*Quote=*/true);
921 PrintedOneArg
= true;
927 void CodeViewDebug::emitBuildInfo() {
928 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
929 // build info. The known prefix is:
930 // - Absolute path of current directory
932 // - Main source file path, relative to CWD or absolute
933 // - Type server PDB file
934 // - Canonical compiler command line
935 // If frontend and backend compilation are separated (think llc or LTO), it's
936 // not clear if the compiler path should refer to the executable for the
937 // frontend or the backend. Leave it blank for now.
938 TypeIndex BuildInfoArgs
[BuildInfoRecord::MaxArgs
] = {};
939 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
940 const MDNode
*Node
= *CUs
->operands().begin(); // FIXME: Multiple CUs.
941 const auto *CU
= cast
<DICompileUnit
>(Node
);
942 const DIFile
*MainSourceFile
= CU
->getFile();
943 BuildInfoArgs
[BuildInfoRecord::CurrentDirectory
] =
944 getStringIdTypeIdx(TypeTable
, MainSourceFile
->getDirectory());
945 BuildInfoArgs
[BuildInfoRecord::SourceFile
] =
946 getStringIdTypeIdx(TypeTable
, MainSourceFile
->getFilename());
947 // FIXME: PDB is intentionally blank unless we implement /Zi type servers.
948 BuildInfoArgs
[BuildInfoRecord::TypeServerPDB
] =
949 getStringIdTypeIdx(TypeTable
, "");
950 if (Asm
->TM
.Options
.MCOptions
.Argv0
!= nullptr) {
951 BuildInfoArgs
[BuildInfoRecord::BuildTool
] =
952 getStringIdTypeIdx(TypeTable
, Asm
->TM
.Options
.MCOptions
.Argv0
);
953 BuildInfoArgs
[BuildInfoRecord::CommandLine
] = getStringIdTypeIdx(
954 TypeTable
, flattenCommandLine(Asm
->TM
.Options
.MCOptions
.CommandLineArgs
,
955 MainSourceFile
->getFilename()));
957 BuildInfoRecord
BIR(BuildInfoArgs
);
958 TypeIndex BuildInfoIndex
= TypeTable
.writeLeafType(BIR
);
960 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
961 // from the module symbols into the type stream.
962 MCSymbol
*BISubsecEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
963 MCSymbol
*BIEnd
= beginSymbolRecord(SymbolKind::S_BUILDINFO
);
964 OS
.AddComment("LF_BUILDINFO index");
965 OS
.emitInt32(BuildInfoIndex
.getIndex());
966 endSymbolRecord(BIEnd
);
967 endCVSubsection(BISubsecEnd
);
970 void CodeViewDebug::emitInlineeLinesSubsection() {
971 if (InlinedSubprograms
.empty())
974 OS
.AddComment("Inlinee lines subsection");
975 MCSymbol
*InlineEnd
= beginCVSubsection(DebugSubsectionKind::InlineeLines
);
977 // We emit the checksum info for files. This is used by debuggers to
978 // determine if a pdb matches the source before loading it. Visual Studio,
979 // for instance, will display a warning that the breakpoints are not valid if
980 // the pdb does not match the source.
981 OS
.AddComment("Inlinee lines signature");
982 OS
.emitInt32(unsigned(InlineeLinesSignature::Normal
));
984 for (const DISubprogram
*SP
: InlinedSubprograms
) {
985 assert(TypeIndices
.count({SP
, nullptr}));
986 TypeIndex InlineeIdx
= TypeIndices
[{SP
, nullptr}];
989 unsigned FileId
= maybeRecordFile(SP
->getFile());
990 OS
.AddComment("Inlined function " + SP
->getName() + " starts at " +
991 SP
->getFilename() + Twine(':') + Twine(SP
->getLine()));
993 OS
.AddComment("Type index of inlined function");
994 OS
.emitInt32(InlineeIdx
.getIndex());
995 OS
.AddComment("Offset into filechecksum table");
996 OS
.emitCVFileChecksumOffsetDirective(FileId
);
997 OS
.AddComment("Starting line number");
998 OS
.emitInt32(SP
->getLine());
1001 endCVSubsection(InlineEnd
);
1004 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo
&FI
,
1005 const DILocation
*InlinedAt
,
1006 const InlineSite
&Site
) {
1007 assert(TypeIndices
.count({Site
.Inlinee
, nullptr}));
1008 TypeIndex InlineeIdx
= TypeIndices
[{Site
.Inlinee
, nullptr}];
1011 MCSymbol
*InlineEnd
= beginSymbolRecord(SymbolKind::S_INLINESITE
);
1013 OS
.AddComment("PtrParent");
1015 OS
.AddComment("PtrEnd");
1017 OS
.AddComment("Inlinee type index");
1018 OS
.emitInt32(InlineeIdx
.getIndex());
1020 unsigned FileId
= maybeRecordFile(Site
.Inlinee
->getFile());
1021 unsigned StartLineNum
= Site
.Inlinee
->getLine();
1023 OS
.emitCVInlineLinetableDirective(Site
.SiteFuncId
, FileId
, StartLineNum
,
1026 endSymbolRecord(InlineEnd
);
1028 emitLocalVariableList(FI
, Site
.InlinedLocals
);
1030 // Recurse on child inlined call sites before closing the scope.
1031 for (const DILocation
*ChildSite
: Site
.ChildSites
) {
1032 auto I
= FI
.InlineSites
.find(ChildSite
);
1033 assert(I
!= FI
.InlineSites
.end() &&
1034 "child site not in function inline site map");
1035 emitInlinedCallSite(FI
, ChildSite
, I
->second
);
1039 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END
);
1042 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol
*GVSym
) {
1043 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
1044 // comdat key. A section may be comdat because of -ffunction-sections or
1045 // because it is comdat in the IR.
1046 MCSectionCOFF
*GVSec
=
1047 GVSym
? dyn_cast
<MCSectionCOFF
>(&GVSym
->getSection()) : nullptr;
1048 const MCSymbol
*KeySym
= GVSec
? GVSec
->getCOMDATSymbol() : nullptr;
1050 MCSectionCOFF
*DebugSec
= cast
<MCSectionCOFF
>(
1051 Asm
->getObjFileLowering().getCOFFDebugSymbolsSection());
1052 DebugSec
= OS
.getContext().getAssociativeCOFFSection(DebugSec
, KeySym
);
1054 OS
.switchSection(DebugSec
);
1056 // Emit the magic version number if this is the first time we've switched to
1058 if (ComdatDebugSections
.insert(DebugSec
).second
)
1059 emitCodeViewMagicVersion();
1062 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
1063 // The only supported thunk ordinal is currently the standard type.
1064 void CodeViewDebug::emitDebugInfoForThunk(const Function
*GV
,
1066 const MCSymbol
*Fn
) {
1067 std::string FuncName
=
1068 std::string(GlobalValue::dropLLVMManglingEscape(GV
->getName()));
1069 const ThunkOrdinal ordinal
= ThunkOrdinal::Standard
; // Only supported kind.
1071 OS
.AddComment("Symbol subsection for " + Twine(FuncName
));
1072 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
1075 MCSymbol
*ThunkRecordEnd
= beginSymbolRecord(SymbolKind::S_THUNK32
);
1076 OS
.AddComment("PtrParent");
1078 OS
.AddComment("PtrEnd");
1080 OS
.AddComment("PtrNext");
1082 OS
.AddComment("Thunk section relative address");
1083 OS
.emitCOFFSecRel32(Fn
, /*Offset=*/0);
1084 OS
.AddComment("Thunk section index");
1085 OS
.emitCOFFSectionIndex(Fn
);
1086 OS
.AddComment("Code size");
1087 OS
.emitAbsoluteSymbolDiff(FI
.End
, Fn
, 2);
1088 OS
.AddComment("Ordinal");
1089 OS
.emitInt8(unsigned(ordinal
));
1090 OS
.AddComment("Function name");
1091 emitNullTerminatedSymbolName(OS
, FuncName
);
1092 // Additional fields specific to the thunk ordinal would go here.
1093 endSymbolRecord(ThunkRecordEnd
);
1095 // Local variables/inlined routines are purposely omitted here. The point of
1096 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1098 // Emit S_PROC_ID_END
1099 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END
);
1101 endCVSubsection(SymbolsEnd
);
1104 void CodeViewDebug::emitDebugInfoForFunction(const Function
*GV
,
1106 // For each function there is a separate subsection which holds the PC to
1108 const MCSymbol
*Fn
= Asm
->getSymbol(GV
);
1111 // Switch to the to a comdat section, if appropriate.
1112 switchToDebugSectionForSymbol(Fn
);
1114 std::string FuncName
;
1115 auto *SP
= GV
->getSubprogram();
1117 setCurrentSubprogram(SP
);
1119 if (SP
->isThunk()) {
1120 emitDebugInfoForThunk(GV
, FI
, Fn
);
1124 // If we have a display name, build the fully qualified name by walking the
1126 if (!SP
->getName().empty())
1127 FuncName
= getFullyQualifiedName(SP
->getScope(), SP
->getName());
1129 // If our DISubprogram name is empty, use the mangled name.
1130 if (FuncName
.empty())
1131 FuncName
= std::string(GlobalValue::dropLLVMManglingEscape(GV
->getName()));
1133 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1134 if (Triple(MMI
->getModule()->getTargetTriple()).getArch() == Triple::x86
)
1135 OS
.emitCVFPOData(Fn
);
1137 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1138 OS
.AddComment("Symbol subsection for " + Twine(FuncName
));
1139 MCSymbol
*SymbolsEnd
= beginCVSubsection(DebugSubsectionKind::Symbols
);
1141 SymbolKind ProcKind
= GV
->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1142 : SymbolKind::S_GPROC32_ID
;
1143 MCSymbol
*ProcRecordEnd
= beginSymbolRecord(ProcKind
);
1145 // These fields are filled in by tools like CVPACK which run after the fact.
1146 OS
.AddComment("PtrParent");
1148 OS
.AddComment("PtrEnd");
1150 OS
.AddComment("PtrNext");
1152 // This is the important bit that tells the debugger where the function
1153 // code is located and what's its size:
1154 OS
.AddComment("Code size");
1155 OS
.emitAbsoluteSymbolDiff(FI
.End
, Fn
, 4);
1156 OS
.AddComment("Offset after prologue");
1158 OS
.AddComment("Offset before epilogue");
1160 OS
.AddComment("Function type index");
1161 OS
.emitInt32(getFuncIdForSubprogram(GV
->getSubprogram()).getIndex());
1162 OS
.AddComment("Function section relative address");
1163 OS
.emitCOFFSecRel32(Fn
, /*Offset=*/0);
1164 OS
.AddComment("Function section index");
1165 OS
.emitCOFFSectionIndex(Fn
);
1166 OS
.AddComment("Flags");
1167 ProcSymFlags ProcFlags
= ProcSymFlags::HasOptimizedDebugInfo
;
1168 if (FI
.HasFramePointer
)
1169 ProcFlags
|= ProcSymFlags::HasFP
;
1170 if (GV
->hasFnAttribute(Attribute::NoReturn
))
1171 ProcFlags
|= ProcSymFlags::IsNoReturn
;
1172 if (GV
->hasFnAttribute(Attribute::NoInline
))
1173 ProcFlags
|= ProcSymFlags::IsNoInline
;
1174 OS
.emitInt8(static_cast<uint8_t>(ProcFlags
));
1175 // Emit the function display name as a null-terminated string.
1176 OS
.AddComment("Function name");
1177 // Truncate the name so we won't overflow the record length field.
1178 emitNullTerminatedSymbolName(OS
, FuncName
);
1179 endSymbolRecord(ProcRecordEnd
);
1181 MCSymbol
*FrameProcEnd
= beginSymbolRecord(SymbolKind::S_FRAMEPROC
);
1182 // Subtract out the CSR size since MSVC excludes that and we include it.
1183 OS
.AddComment("FrameSize");
1184 OS
.emitInt32(FI
.FrameSize
- FI
.CSRSize
);
1185 OS
.AddComment("Padding");
1187 OS
.AddComment("Offset of padding");
1189 OS
.AddComment("Bytes of callee saved registers");
1190 OS
.emitInt32(FI
.CSRSize
);
1191 OS
.AddComment("Exception handler offset");
1193 OS
.AddComment("Exception handler section");
1195 OS
.AddComment("Flags (defines frame register)");
1196 OS
.emitInt32(uint32_t(FI
.FrameProcOpts
));
1197 endSymbolRecord(FrameProcEnd
);
1199 emitInlinees(FI
.Inlinees
);
1200 emitLocalVariableList(FI
, FI
.Locals
);
1201 emitGlobalVariableList(FI
.Globals
);
1202 emitLexicalBlockList(FI
.ChildBlocks
, FI
);
1204 // Emit inlined call site information. Only emit functions inlined directly
1205 // into the parent function. We'll emit the other sites recursively as part
1206 // of their parent inline site.
1207 for (const DILocation
*InlinedAt
: FI
.ChildSites
) {
1208 auto I
= FI
.InlineSites
.find(InlinedAt
);
1209 assert(I
!= FI
.InlineSites
.end() &&
1210 "child site not in function inline site map");
1211 emitInlinedCallSite(FI
, InlinedAt
, I
->second
);
1214 for (auto Annot
: FI
.Annotations
) {
1215 MCSymbol
*Label
= Annot
.first
;
1216 MDTuple
*Strs
= cast
<MDTuple
>(Annot
.second
);
1217 MCSymbol
*AnnotEnd
= beginSymbolRecord(SymbolKind::S_ANNOTATION
);
1218 OS
.emitCOFFSecRel32(Label
, /*Offset=*/0);
1219 // FIXME: Make sure we don't overflow the max record size.
1220 OS
.emitCOFFSectionIndex(Label
);
1221 OS
.emitInt16(Strs
->getNumOperands());
1222 for (Metadata
*MD
: Strs
->operands()) {
1223 // MDStrings are null terminated, so we can do EmitBytes and get the
1224 // nice .asciz directive.
1225 StringRef Str
= cast
<MDString
>(MD
)->getString();
1226 assert(Str
.data()[Str
.size()] == '\0' && "non-nullterminated MDString");
1227 OS
.emitBytes(StringRef(Str
.data(), Str
.size() + 1));
1229 endSymbolRecord(AnnotEnd
);
1232 for (auto HeapAllocSite
: FI
.HeapAllocSites
) {
1233 const MCSymbol
*BeginLabel
= std::get
<0>(HeapAllocSite
);
1234 const MCSymbol
*EndLabel
= std::get
<1>(HeapAllocSite
);
1235 const DIType
*DITy
= std::get
<2>(HeapAllocSite
);
1236 MCSymbol
*HeapAllocEnd
= beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE
);
1237 OS
.AddComment("Call site offset");
1238 OS
.emitCOFFSecRel32(BeginLabel
, /*Offset=*/0);
1239 OS
.AddComment("Call site section index");
1240 OS
.emitCOFFSectionIndex(BeginLabel
);
1241 OS
.AddComment("Call instruction length");
1242 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 2);
1243 OS
.AddComment("Type index");
1244 OS
.emitInt32(getCompleteTypeIndex(DITy
).getIndex());
1245 endSymbolRecord(HeapAllocEnd
);
1249 emitDebugInfoForUDTs(LocalUDTs
);
1251 emitDebugInfoForJumpTables(FI
);
1253 // We're done with this function.
1254 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END
);
1256 endCVSubsection(SymbolsEnd
);
1258 // We have an assembler directive that takes care of the whole line table.
1259 OS
.emitCVLinetableDirective(FI
.FuncId
, Fn
, FI
.End
);
1262 CodeViewDebug::LocalVarDef
1263 CodeViewDebug::createDefRangeMem(uint16_t CVRegister
, int Offset
) {
1266 DR
.DataOffset
= Offset
;
1267 assert(DR
.DataOffset
== Offset
&& "truncation");
1269 DR
.StructOffset
= 0;
1270 DR
.CVRegister
= CVRegister
;
1274 void CodeViewDebug::collectVariableInfoFromMFTable(
1275 DenseSet
<InlinedEntity
> &Processed
) {
1276 const MachineFunction
&MF
= *Asm
->MF
;
1277 const TargetSubtargetInfo
&TSI
= MF
.getSubtarget();
1278 const TargetFrameLowering
*TFI
= TSI
.getFrameLowering();
1279 const TargetRegisterInfo
*TRI
= TSI
.getRegisterInfo();
1281 for (const MachineFunction::VariableDbgInfo
&VI
:
1282 MF
.getInStackSlotVariableDbgInfo()) {
1285 assert(VI
.Var
->isValidLocationForIntrinsic(VI
.Loc
) &&
1286 "Expected inlined-at fields to agree");
1288 Processed
.insert(InlinedEntity(VI
.Var
, VI
.Loc
->getInlinedAt()));
1289 LexicalScope
*Scope
= LScopes
.findLexicalScope(VI
.Loc
);
1291 // If variable scope is not found then skip this variable.
1295 // If the variable has an attached offset expression, extract it.
1296 // FIXME: Try to handle DW_OP_deref as well.
1297 int64_t ExprOffset
= 0;
1300 // If there is one DW_OP_deref element, use offset of 0 and keep going.
1301 if (VI
.Expr
->getNumElements() == 1 &&
1302 VI
.Expr
->getElement(0) == llvm::dwarf::DW_OP_deref
)
1304 else if (!VI
.Expr
->extractIfOffset(ExprOffset
))
1308 // Get the frame register used and the offset.
1310 StackOffset FrameOffset
=
1311 TFI
->getFrameIndexReference(*Asm
->MF
, VI
.getStackSlot(), FrameReg
);
1312 uint16_t CVReg
= TRI
->getCodeViewRegNum(FrameReg
);
1314 assert(!FrameOffset
.getScalable() &&
1315 "Frame offsets with a scalable component are not supported");
1317 // Calculate the label ranges.
1318 LocalVarDef DefRange
=
1319 createDefRangeMem(CVReg
, FrameOffset
.getFixed() + ExprOffset
);
1324 for (const InsnRange
&Range
: Scope
->getRanges()) {
1325 const MCSymbol
*Begin
= getLabelBeforeInsn(Range
.first
);
1326 const MCSymbol
*End
= getLabelAfterInsn(Range
.second
);
1327 End
= End
? End
: Asm
->getFunctionEnd();
1328 Var
.DefRanges
[DefRange
].emplace_back(Begin
, End
);
1332 Var
.UseReferenceType
= true;
1334 recordLocalVariable(std::move(Var
), Scope
);
1338 static bool canUseReferenceType(const DbgVariableLocation
&Loc
) {
1339 return !Loc
.LoadChain
.empty() && Loc
.LoadChain
.back() == 0;
1342 static bool needsReferenceType(const DbgVariableLocation
&Loc
) {
1343 return Loc
.LoadChain
.size() == 2 && Loc
.LoadChain
.back() == 0;
1346 void CodeViewDebug::calculateRanges(
1347 LocalVariable
&Var
, const DbgValueHistoryMap::Entries
&Entries
) {
1348 const TargetRegisterInfo
*TRI
= Asm
->MF
->getSubtarget().getRegisterInfo();
1350 // Calculate the definition ranges.
1351 for (auto I
= Entries
.begin(), E
= Entries
.end(); I
!= E
; ++I
) {
1352 const auto &Entry
= *I
;
1353 if (!Entry
.isDbgValue())
1355 const MachineInstr
*DVInst
= Entry
.getInstr();
1356 assert(DVInst
->isDebugValue() && "Invalid History entry");
1357 // FIXME: Find a way to represent constant variables, since they are
1358 // relatively common.
1359 std::optional
<DbgVariableLocation
> Location
=
1360 DbgVariableLocation::extractFromMachineInstruction(*DVInst
);
1363 // When we don't have a location this is usually because LLVM has
1364 // transformed it into a constant and we only have an llvm.dbg.value. We
1365 // can't represent these well in CodeView since S_LOCAL only works on
1366 // registers and memory locations. Instead, we will pretend this to be a
1367 // constant value to at least have it show up in the debugger.
1368 auto Op
= DVInst
->getDebugOperand(0);
1370 Var
.ConstantValue
= APSInt(APInt(64, Op
.getImm()), false);
1374 // CodeView can only express variables in register and variables in memory
1375 // at a constant offset from a register. However, for variables passed
1376 // indirectly by pointer, it is common for that pointer to be spilled to a
1377 // stack location. For the special case of one offseted load followed by a
1378 // zero offset load (a pointer spilled to the stack), we change the type of
1379 // the local variable from a value type to a reference type. This tricks the
1380 // debugger into doing the load for us.
1381 if (Var
.UseReferenceType
) {
1382 // We're using a reference type. Drop the last zero offset load.
1383 if (canUseReferenceType(*Location
))
1384 Location
->LoadChain
.pop_back();
1387 } else if (needsReferenceType(*Location
)) {
1388 // This location can't be expressed without switching to a reference type.
1389 // Start over using that.
1390 Var
.UseReferenceType
= true;
1391 Var
.DefRanges
.clear();
1392 calculateRanges(Var
, Entries
);
1396 // We can only handle a register or an offseted load of a register.
1397 if (Location
->Register
== 0 || Location
->LoadChain
.size() > 1)
1400 // Codeview can only express byte-aligned offsets, ensure that we have a
1401 // byte-boundaried location.
1402 if (Location
->FragmentInfo
)
1403 if (Location
->FragmentInfo
->OffsetInBits
% 8)
1407 DR
.CVRegister
= TRI
->getCodeViewRegNum(Location
->Register
);
1408 DR
.InMemory
= !Location
->LoadChain
.empty();
1410 !Location
->LoadChain
.empty() ? Location
->LoadChain
.back() : 0;
1411 if (Location
->FragmentInfo
) {
1412 DR
.IsSubfield
= true;
1413 DR
.StructOffset
= Location
->FragmentInfo
->OffsetInBits
/ 8;
1415 DR
.IsSubfield
= false;
1416 DR
.StructOffset
= 0;
1419 // Compute the label range.
1420 const MCSymbol
*Begin
= getLabelBeforeInsn(Entry
.getInstr());
1421 const MCSymbol
*End
;
1422 if (Entry
.getEndIndex() != DbgValueHistoryMap::NoEntry
) {
1423 auto &EndingEntry
= Entries
[Entry
.getEndIndex()];
1424 End
= EndingEntry
.isDbgValue()
1425 ? getLabelBeforeInsn(EndingEntry
.getInstr())
1426 : getLabelAfterInsn(EndingEntry
.getInstr());
1428 End
= Asm
->getFunctionEnd();
1430 // If the last range end is our begin, just extend the last range.
1431 // Otherwise make a new range.
1432 SmallVectorImpl
<std::pair
<const MCSymbol
*, const MCSymbol
*>> &R
=
1434 if (!R
.empty() && R
.back().second
== Begin
)
1435 R
.back().second
= End
;
1437 R
.emplace_back(Begin
, End
);
1439 // FIXME: Do more range combining.
1443 void CodeViewDebug::collectVariableInfo(const DISubprogram
*SP
) {
1444 DenseSet
<InlinedEntity
> Processed
;
1445 // Grab the variable info that was squirreled away in the MMI side-table.
1446 collectVariableInfoFromMFTable(Processed
);
1448 for (const auto &I
: DbgValues
) {
1449 InlinedEntity IV
= I
.first
;
1450 if (Processed
.count(IV
))
1452 const DILocalVariable
*DIVar
= cast
<DILocalVariable
>(IV
.first
);
1453 const DILocation
*InlinedAt
= IV
.second
;
1455 // Instruction ranges, specifying where IV is accessible.
1456 const auto &Entries
= I
.second
;
1458 LexicalScope
*Scope
= nullptr;
1460 Scope
= LScopes
.findInlinedScope(DIVar
->getScope(), InlinedAt
);
1462 Scope
= LScopes
.findLexicalScope(DIVar
->getScope());
1463 // If variable scope is not found then skip this variable.
1470 calculateRanges(Var
, Entries
);
1471 recordLocalVariable(std::move(Var
), Scope
);
1475 void CodeViewDebug::beginFunctionImpl(const MachineFunction
*MF
) {
1476 const TargetSubtargetInfo
&TSI
= MF
->getSubtarget();
1477 const TargetRegisterInfo
*TRI
= TSI
.getRegisterInfo();
1478 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1479 const Function
&GV
= MF
->getFunction();
1480 auto Insertion
= FnDebugInfo
.insert({&GV
, std::make_unique
<FunctionInfo
>()});
1481 assert(Insertion
.second
&& "function already has info");
1482 CurFn
= Insertion
.first
->second
.get();
1483 CurFn
->FuncId
= NextFuncId
++;
1484 CurFn
->Begin
= Asm
->getFunctionBegin();
1486 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1487 // callee-saved registers were used. For targets that don't use a PUSH
1488 // instruction (AArch64), this will be zero.
1489 CurFn
->CSRSize
= MFI
.getCVBytesOfCalleeSavedRegisters();
1490 CurFn
->FrameSize
= MFI
.getStackSize();
1491 CurFn
->OffsetAdjustment
= MFI
.getOffsetAdjustment();
1492 CurFn
->HasStackRealignment
= TRI
->hasStackRealignment(*MF
);
1494 // For this function S_FRAMEPROC record, figure out which codeview register
1495 // will be the frame pointer.
1496 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::None
; // None.
1497 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::None
; // None.
1498 if (CurFn
->FrameSize
> 0) {
1499 if (!TSI
.getFrameLowering()->hasFP(*MF
)) {
1500 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1501 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1503 CurFn
->HasFramePointer
= true;
1504 // If there is an FP, parameters are always relative to it.
1505 CurFn
->EncodedParamFramePtrReg
= EncodedFramePtrReg::FramePtr
;
1506 if (CurFn
->HasStackRealignment
) {
1507 // If the stack needs realignment, locals are relative to SP or VFRAME.
1508 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::StackPtr
;
1510 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1511 // other stack adjustments.
1512 CurFn
->EncodedLocalFramePtrReg
= EncodedFramePtrReg::FramePtr
;
1517 // Compute other frame procedure options.
1518 FrameProcedureOptions FPO
= FrameProcedureOptions::None
;
1519 if (MFI
.hasVarSizedObjects())
1520 FPO
|= FrameProcedureOptions::HasAlloca
;
1521 if (MF
->exposesReturnsTwice())
1522 FPO
|= FrameProcedureOptions::HasSetJmp
;
1523 // FIXME: Set HasLongJmp if we ever track that info.
1524 if (MF
->hasInlineAsm())
1525 FPO
|= FrameProcedureOptions::HasInlineAssembly
;
1526 if (GV
.hasPersonalityFn()) {
1527 if (isAsynchronousEHPersonality(
1528 classifyEHPersonality(GV
.getPersonalityFn())))
1529 FPO
|= FrameProcedureOptions::HasStructuredExceptionHandling
;
1531 FPO
|= FrameProcedureOptions::HasExceptionHandling
;
1533 if (GV
.hasFnAttribute(Attribute::InlineHint
))
1534 FPO
|= FrameProcedureOptions::MarkedInline
;
1535 if (GV
.hasFnAttribute(Attribute::Naked
))
1536 FPO
|= FrameProcedureOptions::Naked
;
1537 if (MFI
.hasStackProtectorIndex()) {
1538 FPO
|= FrameProcedureOptions::SecurityChecks
;
1539 if (GV
.hasFnAttribute(Attribute::StackProtectStrong
) ||
1540 GV
.hasFnAttribute(Attribute::StackProtectReq
)) {
1541 FPO
|= FrameProcedureOptions::StrictSecurityChecks
;
1543 } else if (!GV
.hasStackProtectorFnAttr()) {
1544 // __declspec(safebuffers) disables stack guards.
1545 FPO
|= FrameProcedureOptions::SafeBuffers
;
1547 FPO
|= FrameProcedureOptions(uint32_t(CurFn
->EncodedLocalFramePtrReg
) << 14U);
1548 FPO
|= FrameProcedureOptions(uint32_t(CurFn
->EncodedParamFramePtrReg
) << 16U);
1549 if (Asm
->TM
.getOptLevel() != CodeGenOptLevel::None
&& !GV
.hasOptSize() &&
1551 FPO
|= FrameProcedureOptions::OptimizedForSpeed
;
1552 if (GV
.hasProfileData()) {
1553 FPO
|= FrameProcedureOptions::ValidProfileCounts
;
1554 FPO
|= FrameProcedureOptions::ProfileGuidedOptimization
;
1556 // FIXME: Set GuardCfg when it is implemented.
1557 CurFn
->FrameProcOpts
= FPO
;
1559 OS
.emitCVFuncIdDirective(CurFn
->FuncId
);
1561 // Find the end of the function prolog. First known non-DBG_VALUE and
1562 // non-frame setup location marks the beginning of the function body.
1563 // FIXME: is there a simpler a way to do this? Can we just search
1564 // for the first instruction of the function, not the last of the prolog?
1565 DebugLoc PrologEndLoc
;
1566 bool EmptyPrologue
= true;
1567 for (const auto &MBB
: *MF
) {
1568 for (const auto &MI
: MBB
) {
1569 if (!MI
.isMetaInstruction() && !MI
.getFlag(MachineInstr::FrameSetup
) &&
1571 PrologEndLoc
= MI
.getDebugLoc();
1573 } else if (!MI
.isMetaInstruction()) {
1574 EmptyPrologue
= false;
1579 // Record beginning of function if we have a non-empty prologue.
1580 if (PrologEndLoc
&& !EmptyPrologue
) {
1581 DebugLoc FnStartDL
= PrologEndLoc
.getFnDebugLoc();
1582 maybeRecordLocation(FnStartDL
, MF
);
1585 // Find heap alloc sites and emit labels around them.
1586 for (const auto &MBB
: *MF
) {
1587 for (const auto &MI
: MBB
) {
1588 if (MI
.getHeapAllocMarker()) {
1589 requestLabelBeforeInsn(&MI
);
1590 requestLabelAfterInsn(&MI
);
1595 // Mark branches that may potentially be using jump tables with labels.
1596 bool isThumb
= Triple(MMI
->getModule()->getTargetTriple()).getArch() ==
1597 llvm::Triple::ArchType::thumb
;
1598 discoverJumpTableBranches(MF
, isThumb
);
1601 static bool shouldEmitUdt(const DIType
*T
) {
1605 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1606 if (T
->getTag() == dwarf::DW_TAG_typedef
) {
1607 if (DIScope
*Scope
= T
->getScope()) {
1608 switch (Scope
->getTag()) {
1609 case dwarf::DW_TAG_structure_type
:
1610 case dwarf::DW_TAG_class_type
:
1611 case dwarf::DW_TAG_union_type
:
1621 if (!T
|| T
->isForwardDecl())
1624 const DIDerivedType
*DT
= dyn_cast
<DIDerivedType
>(T
);
1627 T
= DT
->getBaseType();
1632 void CodeViewDebug::addToUDTs(const DIType
*Ty
) {
1633 // Don't record empty UDTs.
1634 if (Ty
->getName().empty())
1636 if (!shouldEmitUdt(Ty
))
1639 SmallVector
<StringRef
, 5> ParentScopeNames
;
1640 const DISubprogram
*ClosestSubprogram
=
1641 collectParentScopeNames(Ty
->getScope(), ParentScopeNames
);
1643 std::string FullyQualifiedName
=
1644 formatNestedName(ParentScopeNames
, getPrettyScopeName(Ty
));
1646 if (ClosestSubprogram
== nullptr) {
1647 GlobalUDTs
.emplace_back(std::move(FullyQualifiedName
), Ty
);
1648 } else if (ClosestSubprogram
== CurrentSubprogram
) {
1649 LocalUDTs
.emplace_back(std::move(FullyQualifiedName
), Ty
);
1652 // TODO: What if the ClosestSubprogram is neither null or the current
1653 // subprogram? Currently, the UDT just gets dropped on the floor.
1655 // The current behavior is not desirable. To get maximal fidelity, we would
1656 // need to perform all type translation before beginning emission of .debug$S
1657 // and then make LocalUDTs a member of FunctionInfo
1660 TypeIndex
CodeViewDebug::lowerType(const DIType
*Ty
, const DIType
*ClassTy
) {
1661 // Generic dispatch for lowering an unknown type.
1662 switch (Ty
->getTag()) {
1663 case dwarf::DW_TAG_array_type
:
1664 return lowerTypeArray(cast
<DICompositeType
>(Ty
));
1665 case dwarf::DW_TAG_typedef
:
1666 return lowerTypeAlias(cast
<DIDerivedType
>(Ty
));
1667 case dwarf::DW_TAG_base_type
:
1668 return lowerTypeBasic(cast
<DIBasicType
>(Ty
));
1669 case dwarf::DW_TAG_pointer_type
:
1670 if (cast
<DIDerivedType
>(Ty
)->getName() == "__vtbl_ptr_type")
1671 return lowerTypeVFTableShape(cast
<DIDerivedType
>(Ty
));
1673 case dwarf::DW_TAG_reference_type
:
1674 case dwarf::DW_TAG_rvalue_reference_type
:
1675 return lowerTypePointer(cast
<DIDerivedType
>(Ty
));
1676 case dwarf::DW_TAG_ptr_to_member_type
:
1677 return lowerTypeMemberPointer(cast
<DIDerivedType
>(Ty
));
1678 case dwarf::DW_TAG_restrict_type
:
1679 case dwarf::DW_TAG_const_type
:
1680 case dwarf::DW_TAG_volatile_type
:
1681 // TODO: add support for DW_TAG_atomic_type here
1682 return lowerTypeModifier(cast
<DIDerivedType
>(Ty
));
1683 case dwarf::DW_TAG_subroutine_type
:
1685 // The member function type of a member function pointer has no
1687 return lowerTypeMemberFunction(cast
<DISubroutineType
>(Ty
), ClassTy
,
1688 /*ThisAdjustment=*/0,
1689 /*IsStaticMethod=*/false);
1691 return lowerTypeFunction(cast
<DISubroutineType
>(Ty
));
1692 case dwarf::DW_TAG_enumeration_type
:
1693 return lowerTypeEnum(cast
<DICompositeType
>(Ty
));
1694 case dwarf::DW_TAG_class_type
:
1695 case dwarf::DW_TAG_structure_type
:
1696 return lowerTypeClass(cast
<DICompositeType
>(Ty
));
1697 case dwarf::DW_TAG_union_type
:
1698 return lowerTypeUnion(cast
<DICompositeType
>(Ty
));
1699 case dwarf::DW_TAG_string_type
:
1700 return lowerTypeString(cast
<DIStringType
>(Ty
));
1701 case dwarf::DW_TAG_unspecified_type
:
1702 if (Ty
->getName() == "decltype(nullptr)")
1703 return TypeIndex::NullptrT();
1704 return TypeIndex::None();
1706 // Use the null type index.
1711 TypeIndex
CodeViewDebug::lowerTypeAlias(const DIDerivedType
*Ty
) {
1712 TypeIndex UnderlyingTypeIndex
= getTypeIndex(Ty
->getBaseType());
1713 StringRef TypeName
= Ty
->getName();
1717 if (UnderlyingTypeIndex
== TypeIndex(SimpleTypeKind::Int32Long
) &&
1718 TypeName
== "HRESULT")
1719 return TypeIndex(SimpleTypeKind::HResult
);
1720 if (UnderlyingTypeIndex
== TypeIndex(SimpleTypeKind::UInt16Short
) &&
1721 TypeName
== "wchar_t")
1722 return TypeIndex(SimpleTypeKind::WideCharacter
);
1724 return UnderlyingTypeIndex
;
1727 TypeIndex
CodeViewDebug::lowerTypeArray(const DICompositeType
*Ty
) {
1728 const DIType
*ElementType
= Ty
->getBaseType();
1729 TypeIndex ElementTypeIndex
= getTypeIndex(ElementType
);
1730 // IndexType is size_t, which depends on the bitness of the target.
1731 TypeIndex IndexType
= getPointerSizeInBytes() == 8
1732 ? TypeIndex(SimpleTypeKind::UInt64Quad
)
1733 : TypeIndex(SimpleTypeKind::UInt32Long
);
1735 uint64_t ElementSize
= getBaseTypeSize(ElementType
) / 8;
1737 // Add subranges to array type.
1738 DINodeArray Elements
= Ty
->getElements();
1739 for (int i
= Elements
.size() - 1; i
>= 0; --i
) {
1740 const DINode
*Element
= Elements
[i
];
1741 assert(Element
->getTag() == dwarf::DW_TAG_subrange_type
);
1743 const DISubrange
*Subrange
= cast
<DISubrange
>(Element
);
1746 // If Subrange has a Count field, use it.
1747 // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1),
1748 // where lowerbound is from the LowerBound field of the Subrange,
1749 // or the language default lowerbound if that field is unspecified.
1750 if (auto *CI
= dyn_cast_if_present
<ConstantInt
*>(Subrange
->getCount()))
1751 Count
= CI
->getSExtValue();
1752 else if (auto *UI
= dyn_cast_if_present
<ConstantInt
*>(
1753 Subrange
->getUpperBound())) {
1754 // Fortran uses 1 as the default lowerbound; other languages use 0.
1755 int64_t Lowerbound
= (moduleIsInFortran()) ? 1 : 0;
1756 auto *LI
= dyn_cast_if_present
<ConstantInt
*>(Subrange
->getLowerBound());
1757 Lowerbound
= (LI
) ? LI
->getSExtValue() : Lowerbound
;
1758 Count
= UI
->getSExtValue() - Lowerbound
+ 1;
1761 // Forward declarations of arrays without a size and VLAs use a count of -1.
1762 // Emit a count of zero in these cases to match what MSVC does for arrays
1763 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1764 // should do for them even if we could distinguish them.
1768 // Update the element size and element type index for subsequent subranges.
1769 ElementSize
*= Count
;
1771 // If this is the outermost array, use the size from the array. It will be
1772 // more accurate if we had a VLA or an incomplete element type size.
1773 uint64_t ArraySize
=
1774 (i
== 0 && ElementSize
== 0) ? Ty
->getSizeInBits() / 8 : ElementSize
;
1776 StringRef Name
= (i
== 0) ? Ty
->getName() : "";
1777 ArrayRecord
AR(ElementTypeIndex
, IndexType
, ArraySize
, Name
);
1778 ElementTypeIndex
= TypeTable
.writeLeafType(AR
);
1781 return ElementTypeIndex
;
1784 // This function lowers a Fortran character type (DIStringType).
1785 // Note that it handles only the character*n variant (using SizeInBits
1786 // field in DIString to describe the type size) at the moment.
1787 // Other variants (leveraging the StringLength and StringLengthExp
1788 // fields in DIStringType) remain TBD.
1789 TypeIndex
CodeViewDebug::lowerTypeString(const DIStringType
*Ty
) {
1790 TypeIndex CharType
= TypeIndex(SimpleTypeKind::NarrowCharacter
);
1791 uint64_t ArraySize
= Ty
->getSizeInBits() >> 3;
1792 StringRef Name
= Ty
->getName();
1793 // IndexType is size_t, which depends on the bitness of the target.
1794 TypeIndex IndexType
= getPointerSizeInBytes() == 8
1795 ? TypeIndex(SimpleTypeKind::UInt64Quad
)
1796 : TypeIndex(SimpleTypeKind::UInt32Long
);
1798 // Create a type of character array of ArraySize.
1799 ArrayRecord
AR(CharType
, IndexType
, ArraySize
, Name
);
1801 return TypeTable
.writeLeafType(AR
);
1804 TypeIndex
CodeViewDebug::lowerTypeBasic(const DIBasicType
*Ty
) {
1806 dwarf::TypeKind Kind
;
1809 Kind
= static_cast<dwarf::TypeKind
>(Ty
->getEncoding());
1810 ByteSize
= Ty
->getSizeInBits() / 8;
1812 SimpleTypeKind STK
= SimpleTypeKind::None
;
1814 case dwarf::DW_ATE_address
:
1817 case dwarf::DW_ATE_boolean
:
1819 case 1: STK
= SimpleTypeKind::Boolean8
; break;
1820 case 2: STK
= SimpleTypeKind::Boolean16
; break;
1821 case 4: STK
= SimpleTypeKind::Boolean32
; break;
1822 case 8: STK
= SimpleTypeKind::Boolean64
; break;
1823 case 16: STK
= SimpleTypeKind::Boolean128
; break;
1826 case dwarf::DW_ATE_complex_float
:
1827 // The CodeView size for a complex represents the size of
1828 // an individual component.
1830 case 4: STK
= SimpleTypeKind::Complex16
; break;
1831 case 8: STK
= SimpleTypeKind::Complex32
; break;
1832 case 16: STK
= SimpleTypeKind::Complex64
; break;
1833 case 20: STK
= SimpleTypeKind::Complex80
; break;
1834 case 32: STK
= SimpleTypeKind::Complex128
; break;
1837 case dwarf::DW_ATE_float
:
1839 case 2: STK
= SimpleTypeKind::Float16
; break;
1840 case 4: STK
= SimpleTypeKind::Float32
; break;
1841 case 6: STK
= SimpleTypeKind::Float48
; break;
1842 case 8: STK
= SimpleTypeKind::Float64
; break;
1843 case 10: STK
= SimpleTypeKind::Float80
; break;
1844 case 16: STK
= SimpleTypeKind::Float128
; break;
1847 case dwarf::DW_ATE_signed
:
1849 case 1: STK
= SimpleTypeKind::SignedCharacter
; break;
1850 case 2: STK
= SimpleTypeKind::Int16Short
; break;
1851 case 4: STK
= SimpleTypeKind::Int32
; break;
1852 case 8: STK
= SimpleTypeKind::Int64Quad
; break;
1853 case 16: STK
= SimpleTypeKind::Int128Oct
; break;
1856 case dwarf::DW_ATE_unsigned
:
1858 case 1: STK
= SimpleTypeKind::UnsignedCharacter
; break;
1859 case 2: STK
= SimpleTypeKind::UInt16Short
; break;
1860 case 4: STK
= SimpleTypeKind::UInt32
; break;
1861 case 8: STK
= SimpleTypeKind::UInt64Quad
; break;
1862 case 16: STK
= SimpleTypeKind::UInt128Oct
; break;
1865 case dwarf::DW_ATE_UTF
:
1867 case 1: STK
= SimpleTypeKind::Character8
; break;
1868 case 2: STK
= SimpleTypeKind::Character16
; break;
1869 case 4: STK
= SimpleTypeKind::Character32
; break;
1872 case dwarf::DW_ATE_signed_char
:
1874 STK
= SimpleTypeKind::SignedCharacter
;
1876 case dwarf::DW_ATE_unsigned_char
:
1878 STK
= SimpleTypeKind::UnsignedCharacter
;
1884 // Apply some fixups based on the source-level type name.
1885 // Include some amount of canonicalization from an old naming scheme Clang
1886 // used to use for integer types (in an outdated effort to be compatible with
1887 // GCC's debug info/GDB's behavior, which has since been addressed).
1888 if (STK
== SimpleTypeKind::Int32
&&
1889 (Ty
->getName() == "long int" || Ty
->getName() == "long"))
1890 STK
= SimpleTypeKind::Int32Long
;
1891 if (STK
== SimpleTypeKind::UInt32
&& (Ty
->getName() == "long unsigned int" ||
1892 Ty
->getName() == "unsigned long"))
1893 STK
= SimpleTypeKind::UInt32Long
;
1894 if (STK
== SimpleTypeKind::UInt16Short
&&
1895 (Ty
->getName() == "wchar_t" || Ty
->getName() == "__wchar_t"))
1896 STK
= SimpleTypeKind::WideCharacter
;
1897 if ((STK
== SimpleTypeKind::SignedCharacter
||
1898 STK
== SimpleTypeKind::UnsignedCharacter
) &&
1899 Ty
->getName() == "char")
1900 STK
= SimpleTypeKind::NarrowCharacter
;
1902 return TypeIndex(STK
);
1905 TypeIndex
CodeViewDebug::lowerTypePointer(const DIDerivedType
*Ty
,
1906 PointerOptions PO
) {
1907 TypeIndex PointeeTI
= getTypeIndex(Ty
->getBaseType());
1909 // Pointers to simple types without any options can use SimpleTypeMode, rather
1910 // than having a dedicated pointer type record.
1911 if (PointeeTI
.isSimple() && PO
== PointerOptions::None
&&
1912 PointeeTI
.getSimpleMode() == SimpleTypeMode::Direct
&&
1913 Ty
->getTag() == dwarf::DW_TAG_pointer_type
) {
1914 SimpleTypeMode Mode
= Ty
->getSizeInBits() == 64
1915 ? SimpleTypeMode::NearPointer64
1916 : SimpleTypeMode::NearPointer32
;
1917 return TypeIndex(PointeeTI
.getSimpleKind(), Mode
);
1921 Ty
->getSizeInBits() == 64 ? PointerKind::Near64
: PointerKind::Near32
;
1922 PointerMode PM
= PointerMode::Pointer
;
1923 switch (Ty
->getTag()) {
1924 default: llvm_unreachable("not a pointer tag type");
1925 case dwarf::DW_TAG_pointer_type
:
1926 PM
= PointerMode::Pointer
;
1928 case dwarf::DW_TAG_reference_type
:
1929 PM
= PointerMode::LValueReference
;
1931 case dwarf::DW_TAG_rvalue_reference_type
:
1932 PM
= PointerMode::RValueReference
;
1936 if (Ty
->isObjectPointer())
1937 PO
|= PointerOptions::Const
;
1939 PointerRecord
PR(PointeeTI
, PK
, PM
, PO
, Ty
->getSizeInBits() / 8);
1940 return TypeTable
.writeLeafType(PR
);
1943 static PointerToMemberRepresentation
1944 translatePtrToMemberRep(unsigned SizeInBytes
, bool IsPMF
, unsigned Flags
) {
1945 // SizeInBytes being zero generally implies that the member pointer type was
1946 // incomplete, which can happen if it is part of a function prototype. In this
1947 // case, use the unknown model instead of the general model.
1949 switch (Flags
& DINode::FlagPtrToMemberRep
) {
1951 return SizeInBytes
== 0 ? PointerToMemberRepresentation::Unknown
1952 : PointerToMemberRepresentation::GeneralFunction
;
1953 case DINode::FlagSingleInheritance
:
1954 return PointerToMemberRepresentation::SingleInheritanceFunction
;
1955 case DINode::FlagMultipleInheritance
:
1956 return PointerToMemberRepresentation::MultipleInheritanceFunction
;
1957 case DINode::FlagVirtualInheritance
:
1958 return PointerToMemberRepresentation::VirtualInheritanceFunction
;
1961 switch (Flags
& DINode::FlagPtrToMemberRep
) {
1963 return SizeInBytes
== 0 ? PointerToMemberRepresentation::Unknown
1964 : PointerToMemberRepresentation::GeneralData
;
1965 case DINode::FlagSingleInheritance
:
1966 return PointerToMemberRepresentation::SingleInheritanceData
;
1967 case DINode::FlagMultipleInheritance
:
1968 return PointerToMemberRepresentation::MultipleInheritanceData
;
1969 case DINode::FlagVirtualInheritance
:
1970 return PointerToMemberRepresentation::VirtualInheritanceData
;
1973 llvm_unreachable("invalid ptr to member representation");
1976 TypeIndex
CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType
*Ty
,
1977 PointerOptions PO
) {
1978 assert(Ty
->getTag() == dwarf::DW_TAG_ptr_to_member_type
);
1979 bool IsPMF
= isa
<DISubroutineType
>(Ty
->getBaseType());
1980 TypeIndex ClassTI
= getTypeIndex(Ty
->getClassType());
1981 TypeIndex PointeeTI
=
1982 getTypeIndex(Ty
->getBaseType(), IsPMF
? Ty
->getClassType() : nullptr);
1983 PointerKind PK
= getPointerSizeInBytes() == 8 ? PointerKind::Near64
1984 : PointerKind::Near32
;
1985 PointerMode PM
= IsPMF
? PointerMode::PointerToMemberFunction
1986 : PointerMode::PointerToDataMember
;
1988 assert(Ty
->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1989 uint8_t SizeInBytes
= Ty
->getSizeInBits() / 8;
1990 MemberPointerInfo
MPI(
1991 ClassTI
, translatePtrToMemberRep(SizeInBytes
, IsPMF
, Ty
->getFlags()));
1992 PointerRecord
PR(PointeeTI
, PK
, PM
, PO
, SizeInBytes
, MPI
);
1993 return TypeTable
.writeLeafType(PR
);
1996 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1997 /// have a translation, use the NearC convention.
1998 static CallingConvention
dwarfCCToCodeView(unsigned DwarfCC
) {
2000 case dwarf::DW_CC_normal
: return CallingConvention::NearC
;
2001 case dwarf::DW_CC_BORLAND_msfastcall
: return CallingConvention::NearFast
;
2002 case dwarf::DW_CC_BORLAND_thiscall
: return CallingConvention::ThisCall
;
2003 case dwarf::DW_CC_BORLAND_stdcall
: return CallingConvention::NearStdCall
;
2004 case dwarf::DW_CC_BORLAND_pascal
: return CallingConvention::NearPascal
;
2005 case dwarf::DW_CC_LLVM_vectorcall
: return CallingConvention::NearVector
;
2007 return CallingConvention::NearC
;
2010 TypeIndex
CodeViewDebug::lowerTypeModifier(const DIDerivedType
*Ty
) {
2011 ModifierOptions Mods
= ModifierOptions::None
;
2012 PointerOptions PO
= PointerOptions::None
;
2013 bool IsModifier
= true;
2014 const DIType
*BaseTy
= Ty
;
2015 while (IsModifier
&& BaseTy
) {
2016 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
2017 switch (BaseTy
->getTag()) {
2018 case dwarf::DW_TAG_const_type
:
2019 Mods
|= ModifierOptions::Const
;
2020 PO
|= PointerOptions::Const
;
2022 case dwarf::DW_TAG_volatile_type
:
2023 Mods
|= ModifierOptions::Volatile
;
2024 PO
|= PointerOptions::Volatile
;
2026 case dwarf::DW_TAG_restrict_type
:
2027 // Only pointer types be marked with __restrict. There is no known flag
2028 // for __restrict in LF_MODIFIER records.
2029 PO
|= PointerOptions::Restrict
;
2036 BaseTy
= cast
<DIDerivedType
>(BaseTy
)->getBaseType();
2039 // Check if the inner type will use an LF_POINTER record. If so, the
2040 // qualifiers will go in the LF_POINTER record. This comes up for types like
2041 // 'int *const' and 'int *__restrict', not the more common cases like 'const
2044 switch (BaseTy
->getTag()) {
2045 case dwarf::DW_TAG_pointer_type
:
2046 case dwarf::DW_TAG_reference_type
:
2047 case dwarf::DW_TAG_rvalue_reference_type
:
2048 return lowerTypePointer(cast
<DIDerivedType
>(BaseTy
), PO
);
2049 case dwarf::DW_TAG_ptr_to_member_type
:
2050 return lowerTypeMemberPointer(cast
<DIDerivedType
>(BaseTy
), PO
);
2056 TypeIndex ModifiedTI
= getTypeIndex(BaseTy
);
2058 // Return the base type index if there aren't any modifiers. For example, the
2059 // metadata could contain restrict wrappers around non-pointer types.
2060 if (Mods
== ModifierOptions::None
)
2063 ModifierRecord
MR(ModifiedTI
, Mods
);
2064 return TypeTable
.writeLeafType(MR
);
2067 TypeIndex
CodeViewDebug::lowerTypeFunction(const DISubroutineType
*Ty
) {
2068 SmallVector
<TypeIndex
, 8> ReturnAndArgTypeIndices
;
2069 for (const DIType
*ArgType
: Ty
->getTypeArray())
2070 ReturnAndArgTypeIndices
.push_back(getTypeIndex(ArgType
));
2072 // MSVC uses type none for variadic argument.
2073 if (ReturnAndArgTypeIndices
.size() > 1 &&
2074 ReturnAndArgTypeIndices
.back() == TypeIndex::Void()) {
2075 ReturnAndArgTypeIndices
.back() = TypeIndex::None();
2077 TypeIndex ReturnTypeIndex
= TypeIndex::Void();
2078 ArrayRef
<TypeIndex
> ArgTypeIndices
= std::nullopt
;
2079 if (!ReturnAndArgTypeIndices
.empty()) {
2080 auto ReturnAndArgTypesRef
= ArrayRef(ReturnAndArgTypeIndices
);
2081 ReturnTypeIndex
= ReturnAndArgTypesRef
.front();
2082 ArgTypeIndices
= ReturnAndArgTypesRef
.drop_front();
2085 ArgListRecord
ArgListRec(TypeRecordKind::ArgList
, ArgTypeIndices
);
2086 TypeIndex ArgListIndex
= TypeTable
.writeLeafType(ArgListRec
);
2088 CallingConvention CC
= dwarfCCToCodeView(Ty
->getCC());
2090 FunctionOptions FO
= getFunctionOptions(Ty
);
2091 ProcedureRecord
Procedure(ReturnTypeIndex
, CC
, FO
, ArgTypeIndices
.size(),
2093 return TypeTable
.writeLeafType(Procedure
);
2096 TypeIndex
CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType
*Ty
,
2097 const DIType
*ClassTy
,
2099 bool IsStaticMethod
,
2100 FunctionOptions FO
) {
2101 // Lower the containing class type.
2102 TypeIndex ClassType
= getTypeIndex(ClassTy
);
2104 DITypeRefArray ReturnAndArgs
= Ty
->getTypeArray();
2107 SmallVector
<TypeIndex
, 8> ArgTypeIndices
;
2108 TypeIndex ReturnTypeIndex
= TypeIndex::Void();
2109 if (ReturnAndArgs
.size() > Index
) {
2110 ReturnTypeIndex
= getTypeIndex(ReturnAndArgs
[Index
++]);
2113 // If the first argument is a pointer type and this isn't a static method,
2114 // treat it as the special 'this' parameter, which is encoded separately from
2116 TypeIndex ThisTypeIndex
;
2117 if (!IsStaticMethod
&& ReturnAndArgs
.size() > Index
) {
2118 if (const DIDerivedType
*PtrTy
=
2119 dyn_cast_or_null
<DIDerivedType
>(ReturnAndArgs
[Index
])) {
2120 if (PtrTy
->getTag() == dwarf::DW_TAG_pointer_type
) {
2121 ThisTypeIndex
= getTypeIndexForThisPtr(PtrTy
, Ty
);
2127 while (Index
< ReturnAndArgs
.size())
2128 ArgTypeIndices
.push_back(getTypeIndex(ReturnAndArgs
[Index
++]));
2130 // MSVC uses type none for variadic argument.
2131 if (!ArgTypeIndices
.empty() && ArgTypeIndices
.back() == TypeIndex::Void())
2132 ArgTypeIndices
.back() = TypeIndex::None();
2134 ArgListRecord
ArgListRec(TypeRecordKind::ArgList
, ArgTypeIndices
);
2135 TypeIndex ArgListIndex
= TypeTable
.writeLeafType(ArgListRec
);
2137 CallingConvention CC
= dwarfCCToCodeView(Ty
->getCC());
2139 MemberFunctionRecord
MFR(ReturnTypeIndex
, ClassType
, ThisTypeIndex
, CC
, FO
,
2140 ArgTypeIndices
.size(), ArgListIndex
, ThisAdjustment
);
2141 return TypeTable
.writeLeafType(MFR
);
2144 TypeIndex
CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType
*Ty
) {
2145 unsigned VSlotCount
=
2146 Ty
->getSizeInBits() / (8 * Asm
->MAI
->getCodePointerSize());
2147 SmallVector
<VFTableSlotKind
, 4> Slots(VSlotCount
, VFTableSlotKind::Near
);
2149 VFTableShapeRecord
VFTSR(Slots
);
2150 return TypeTable
.writeLeafType(VFTSR
);
2153 static MemberAccess
translateAccessFlags(unsigned RecordTag
, unsigned Flags
) {
2154 switch (Flags
& DINode::FlagAccessibility
) {
2155 case DINode::FlagPrivate
: return MemberAccess::Private
;
2156 case DINode::FlagPublic
: return MemberAccess::Public
;
2157 case DINode::FlagProtected
: return MemberAccess::Protected
;
2159 // If there was no explicit access control, provide the default for the tag.
2160 return RecordTag
== dwarf::DW_TAG_class_type
? MemberAccess::Private
2161 : MemberAccess::Public
;
2163 llvm_unreachable("access flags are exclusive");
2166 static MethodOptions
translateMethodOptionFlags(const DISubprogram
*SP
) {
2167 if (SP
->isArtificial())
2168 return MethodOptions::CompilerGenerated
;
2170 // FIXME: Handle other MethodOptions.
2172 return MethodOptions::None
;
2175 static MethodKind
translateMethodKindFlags(const DISubprogram
*SP
,
2177 if (SP
->getFlags() & DINode::FlagStaticMember
)
2178 return MethodKind::Static
;
2180 switch (SP
->getVirtuality()) {
2181 case dwarf::DW_VIRTUALITY_none
:
2183 case dwarf::DW_VIRTUALITY_virtual
:
2184 return Introduced
? MethodKind::IntroducingVirtual
: MethodKind::Virtual
;
2185 case dwarf::DW_VIRTUALITY_pure_virtual
:
2186 return Introduced
? MethodKind::PureIntroducingVirtual
2187 : MethodKind::PureVirtual
;
2189 llvm_unreachable("unhandled virtuality case");
2192 return MethodKind::Vanilla
;
2195 static TypeRecordKind
getRecordKind(const DICompositeType
*Ty
) {
2196 switch (Ty
->getTag()) {
2197 case dwarf::DW_TAG_class_type
:
2198 return TypeRecordKind::Class
;
2199 case dwarf::DW_TAG_structure_type
:
2200 return TypeRecordKind::Struct
;
2202 llvm_unreachable("unexpected tag");
2206 /// Return ClassOptions that should be present on both the forward declaration
2207 /// and the defintion of a tag type.
2208 static ClassOptions
getCommonClassOptions(const DICompositeType
*Ty
) {
2209 ClassOptions CO
= ClassOptions::None
;
2211 // MSVC always sets this flag, even for local types. Clang doesn't always
2212 // appear to give every type a linkage name, which may be problematic for us.
2213 // FIXME: Investigate the consequences of not following them here.
2214 if (!Ty
->getIdentifier().empty())
2215 CO
|= ClassOptions::HasUniqueName
;
2217 // Put the Nested flag on a type if it appears immediately inside a tag type.
2218 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2219 // here. That flag is only set on definitions, and not forward declarations.
2220 const DIScope
*ImmediateScope
= Ty
->getScope();
2221 if (ImmediateScope
&& isa
<DICompositeType
>(ImmediateScope
))
2222 CO
|= ClassOptions::Nested
;
2224 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2225 // type only when it has an immediate function scope. Clang never puts enums
2226 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2227 // always in function, class, or file scopes.
2228 if (Ty
->getTag() == dwarf::DW_TAG_enumeration_type
) {
2229 if (ImmediateScope
&& isa
<DISubprogram
>(ImmediateScope
))
2230 CO
|= ClassOptions::Scoped
;
2232 for (const DIScope
*Scope
= ImmediateScope
; Scope
!= nullptr;
2233 Scope
= Scope
->getScope()) {
2234 if (isa
<DISubprogram
>(Scope
)) {
2235 CO
|= ClassOptions::Scoped
;
2244 void CodeViewDebug::addUDTSrcLine(const DIType
*Ty
, TypeIndex TI
) {
2245 switch (Ty
->getTag()) {
2246 case dwarf::DW_TAG_class_type
:
2247 case dwarf::DW_TAG_structure_type
:
2248 case dwarf::DW_TAG_union_type
:
2249 case dwarf::DW_TAG_enumeration_type
:
2255 if (const auto *File
= Ty
->getFile()) {
2256 StringIdRecord
SIDR(TypeIndex(0x0), getFullFilepath(File
));
2257 TypeIndex SIDI
= TypeTable
.writeLeafType(SIDR
);
2259 UdtSourceLineRecord
USLR(TI
, SIDI
, Ty
->getLine());
2260 TypeTable
.writeLeafType(USLR
);
2264 TypeIndex
CodeViewDebug::lowerTypeEnum(const DICompositeType
*Ty
) {
2265 ClassOptions CO
= getCommonClassOptions(Ty
);
2267 unsigned EnumeratorCount
= 0;
2269 if (Ty
->isForwardDecl()) {
2270 CO
|= ClassOptions::ForwardReference
;
2272 ContinuationRecordBuilder ContinuationBuilder
;
2273 ContinuationBuilder
.begin(ContinuationRecordKind::FieldList
);
2274 for (const DINode
*Element
: Ty
->getElements()) {
2275 // We assume that the frontend provides all members in source declaration
2276 // order, which is what MSVC does.
2277 if (auto *Enumerator
= dyn_cast_or_null
<DIEnumerator
>(Element
)) {
2278 // FIXME: Is it correct to always emit these as unsigned here?
2279 EnumeratorRecord
ER(MemberAccess::Public
,
2280 APSInt(Enumerator
->getValue(), true),
2281 Enumerator
->getName());
2282 ContinuationBuilder
.writeMemberType(ER
);
2286 FTI
= TypeTable
.insertRecord(ContinuationBuilder
);
2289 std::string FullName
= getFullyQualifiedName(Ty
);
2291 EnumRecord
ER(EnumeratorCount
, CO
, FTI
, FullName
, Ty
->getIdentifier(),
2292 getTypeIndex(Ty
->getBaseType()));
2293 TypeIndex EnumTI
= TypeTable
.writeLeafType(ER
);
2295 addUDTSrcLine(Ty
, EnumTI
);
2300 //===----------------------------------------------------------------------===//
2302 //===----------------------------------------------------------------------===//
2304 struct llvm::ClassInfo
{
2306 const DIDerivedType
*MemberTypeNode
;
2307 uint64_t BaseOffset
;
2310 using MemberList
= std::vector
<MemberInfo
>;
2312 using MethodsList
= TinyPtrVector
<const DISubprogram
*>;
2313 // MethodName -> MethodsList
2314 using MethodsMap
= MapVector
<MDString
*, MethodsList
>;
2317 std::vector
<const DIDerivedType
*> Inheritance
;
2321 // Direct overloaded methods gathered by name.
2326 std::vector
<const DIType
*> NestedTypes
;
2329 void CodeViewDebug::clear() {
2330 assert(CurFn
== nullptr);
2332 FnDebugInfo
.clear();
2333 FileToFilepathMap
.clear();
2336 TypeIndices
.clear();
2337 CompleteTypeIndices
.clear();
2338 ScopeGlobals
.clear();
2339 CVGlobalVariableOffsets
.clear();
2342 void CodeViewDebug::collectMemberInfo(ClassInfo
&Info
,
2343 const DIDerivedType
*DDTy
) {
2344 if (!DDTy
->getName().empty()) {
2345 Info
.Members
.push_back({DDTy
, 0});
2347 // Collect static const data members with values.
2348 if ((DDTy
->getFlags() & DINode::FlagStaticMember
) ==
2349 DINode::FlagStaticMember
) {
2350 if (DDTy
->getConstant() && (isa
<ConstantInt
>(DDTy
->getConstant()) ||
2351 isa
<ConstantFP
>(DDTy
->getConstant())))
2352 StaticConstMembers
.push_back(DDTy
);
2358 // An unnamed member may represent a nested struct or union. Attempt to
2359 // interpret the unnamed member as a DICompositeType possibly wrapped in
2360 // qualifier types. Add all the indirect fields to the current record if that
2361 // succeeds, and drop the member if that fails.
2362 assert((DDTy
->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2363 uint64_t Offset
= DDTy
->getOffsetInBits();
2364 const DIType
*Ty
= DDTy
->getBaseType();
2365 bool FullyResolved
= false;
2366 while (!FullyResolved
) {
2367 switch (Ty
->getTag()) {
2368 case dwarf::DW_TAG_const_type
:
2369 case dwarf::DW_TAG_volatile_type
:
2370 // FIXME: we should apply the qualifier types to the indirect fields
2371 // rather than dropping them.
2372 Ty
= cast
<DIDerivedType
>(Ty
)->getBaseType();
2375 FullyResolved
= true;
2380 const DICompositeType
*DCTy
= dyn_cast
<DICompositeType
>(Ty
);
2384 ClassInfo NestedInfo
= collectClassInfo(DCTy
);
2385 for (const ClassInfo::MemberInfo
&IndirectField
: NestedInfo
.Members
)
2386 Info
.Members
.push_back(
2387 {IndirectField
.MemberTypeNode
, IndirectField
.BaseOffset
+ Offset
});
2390 ClassInfo
CodeViewDebug::collectClassInfo(const DICompositeType
*Ty
) {
2392 // Add elements to structure type.
2393 DINodeArray Elements
= Ty
->getElements();
2394 for (auto *Element
: Elements
) {
2395 // We assume that the frontend provides all members in source declaration
2396 // order, which is what MSVC does.
2399 if (auto *SP
= dyn_cast
<DISubprogram
>(Element
)) {
2400 Info
.Methods
[SP
->getRawName()].push_back(SP
);
2401 } else if (auto *DDTy
= dyn_cast
<DIDerivedType
>(Element
)) {
2402 if (DDTy
->getTag() == dwarf::DW_TAG_member
) {
2403 collectMemberInfo(Info
, DDTy
);
2404 } else if (DDTy
->getTag() == dwarf::DW_TAG_inheritance
) {
2405 Info
.Inheritance
.push_back(DDTy
);
2406 } else if (DDTy
->getTag() == dwarf::DW_TAG_pointer_type
&&
2407 DDTy
->getName() == "__vtbl_ptr_type") {
2408 Info
.VShapeTI
= getTypeIndex(DDTy
);
2409 } else if (DDTy
->getTag() == dwarf::DW_TAG_typedef
) {
2410 Info
.NestedTypes
.push_back(DDTy
);
2411 } else if (DDTy
->getTag() == dwarf::DW_TAG_friend
) {
2412 // Ignore friend members. It appears that MSVC emitted info about
2413 // friends in the past, but modern versions do not.
2415 } else if (auto *Composite
= dyn_cast
<DICompositeType
>(Element
)) {
2416 Info
.NestedTypes
.push_back(Composite
);
2418 // Skip other unrecognized kinds of elements.
2423 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType
*Ty
) {
2424 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2425 // if a complete type should be emitted instead of a forward reference.
2426 return Ty
->getName().empty() && Ty
->getIdentifier().empty() &&
2427 !Ty
->isForwardDecl();
2430 TypeIndex
CodeViewDebug::lowerTypeClass(const DICompositeType
*Ty
) {
2431 // Emit the complete type for unnamed structs. C++ classes with methods
2432 // which have a circular reference back to the class type are expected to
2433 // be named by the front-end and should not be "unnamed". C unnamed
2434 // structs should not have circular references.
2435 if (shouldAlwaysEmitCompleteClassType(Ty
)) {
2436 // If this unnamed complete type is already in the process of being defined
2437 // then the description of the type is malformed and cannot be emitted
2438 // into CodeView correctly so report a fatal error.
2439 auto I
= CompleteTypeIndices
.find(Ty
);
2440 if (I
!= CompleteTypeIndices
.end() && I
->second
== TypeIndex())
2441 report_fatal_error("cannot debug circular reference to unnamed type");
2442 return getCompleteTypeIndex(Ty
);
2445 // First, construct the forward decl. Don't look into Ty to compute the
2446 // forward decl options, since it might not be available in all TUs.
2447 TypeRecordKind Kind
= getRecordKind(Ty
);
2449 ClassOptions::ForwardReference
| getCommonClassOptions(Ty
);
2450 std::string FullName
= getFullyQualifiedName(Ty
);
2451 ClassRecord
CR(Kind
, 0, CO
, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2452 FullName
, Ty
->getIdentifier());
2453 TypeIndex FwdDeclTI
= TypeTable
.writeLeafType(CR
);
2454 if (!Ty
->isForwardDecl())
2455 DeferredCompleteTypes
.push_back(Ty
);
2459 TypeIndex
CodeViewDebug::lowerCompleteTypeClass(const DICompositeType
*Ty
) {
2460 // Construct the field list and complete type record.
2461 TypeRecordKind Kind
= getRecordKind(Ty
);
2462 ClassOptions CO
= getCommonClassOptions(Ty
);
2465 unsigned FieldCount
;
2466 bool ContainsNestedClass
;
2467 std::tie(FieldTI
, VShapeTI
, FieldCount
, ContainsNestedClass
) =
2468 lowerRecordFieldList(Ty
);
2470 if (ContainsNestedClass
)
2471 CO
|= ClassOptions::ContainsNestedClass
;
2473 // MSVC appears to set this flag by searching any destructor or method with
2474 // FunctionOptions::Constructor among the emitted members. Clang AST has all
2475 // the members, however special member functions are not yet emitted into
2476 // debug information. For now checking a class's non-triviality seems enough.
2477 // FIXME: not true for a nested unnamed struct.
2478 if (isNonTrivial(Ty
))
2479 CO
|= ClassOptions::HasConstructorOrDestructor
;
2481 std::string FullName
= getFullyQualifiedName(Ty
);
2483 uint64_t SizeInBytes
= Ty
->getSizeInBits() / 8;
2485 ClassRecord
CR(Kind
, FieldCount
, CO
, FieldTI
, TypeIndex(), VShapeTI
,
2486 SizeInBytes
, FullName
, Ty
->getIdentifier());
2487 TypeIndex ClassTI
= TypeTable
.writeLeafType(CR
);
2489 addUDTSrcLine(Ty
, ClassTI
);
2496 TypeIndex
CodeViewDebug::lowerTypeUnion(const DICompositeType
*Ty
) {
2497 // Emit the complete type for unnamed unions.
2498 if (shouldAlwaysEmitCompleteClassType(Ty
))
2499 return getCompleteTypeIndex(Ty
);
2502 ClassOptions::ForwardReference
| getCommonClassOptions(Ty
);
2503 std::string FullName
= getFullyQualifiedName(Ty
);
2504 UnionRecord
UR(0, CO
, TypeIndex(), 0, FullName
, Ty
->getIdentifier());
2505 TypeIndex FwdDeclTI
= TypeTable
.writeLeafType(UR
);
2506 if (!Ty
->isForwardDecl())
2507 DeferredCompleteTypes
.push_back(Ty
);
2511 TypeIndex
CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType
*Ty
) {
2512 ClassOptions CO
= ClassOptions::Sealed
| getCommonClassOptions(Ty
);
2514 unsigned FieldCount
;
2515 bool ContainsNestedClass
;
2516 std::tie(FieldTI
, std::ignore
, FieldCount
, ContainsNestedClass
) =
2517 lowerRecordFieldList(Ty
);
2519 if (ContainsNestedClass
)
2520 CO
|= ClassOptions::ContainsNestedClass
;
2522 uint64_t SizeInBytes
= Ty
->getSizeInBits() / 8;
2523 std::string FullName
= getFullyQualifiedName(Ty
);
2525 UnionRecord
UR(FieldCount
, CO
, FieldTI
, SizeInBytes
, FullName
,
2526 Ty
->getIdentifier());
2527 TypeIndex UnionTI
= TypeTable
.writeLeafType(UR
);
2529 addUDTSrcLine(Ty
, UnionTI
);
2536 std::tuple
<TypeIndex
, TypeIndex
, unsigned, bool>
2537 CodeViewDebug::lowerRecordFieldList(const DICompositeType
*Ty
) {
2538 // Manually count members. MSVC appears to count everything that generates a
2539 // field list record. Each individual overload in a method overload group
2540 // contributes to this count, even though the overload group is a single field
2542 unsigned MemberCount
= 0;
2543 ClassInfo Info
= collectClassInfo(Ty
);
2544 ContinuationRecordBuilder ContinuationBuilder
;
2545 ContinuationBuilder
.begin(ContinuationRecordKind::FieldList
);
2547 // Create base classes.
2548 for (const DIDerivedType
*I
: Info
.Inheritance
) {
2549 if (I
->getFlags() & DINode::FlagVirtual
) {
2551 unsigned VBPtrOffset
= I
->getVBPtrOffset();
2552 // FIXME: Despite the accessor name, the offset is really in bytes.
2553 unsigned VBTableIndex
= I
->getOffsetInBits() / 4;
2554 auto RecordKind
= (I
->getFlags() & DINode::FlagIndirectVirtualBase
) == DINode::FlagIndirectVirtualBase
2555 ? TypeRecordKind::IndirectVirtualBaseClass
2556 : TypeRecordKind::VirtualBaseClass
;
2557 VirtualBaseClassRecord
VBCR(
2558 RecordKind
, translateAccessFlags(Ty
->getTag(), I
->getFlags()),
2559 getTypeIndex(I
->getBaseType()), getVBPTypeIndex(), VBPtrOffset
,
2562 ContinuationBuilder
.writeMemberType(VBCR
);
2565 assert(I
->getOffsetInBits() % 8 == 0 &&
2566 "bases must be on byte boundaries");
2567 BaseClassRecord
BCR(translateAccessFlags(Ty
->getTag(), I
->getFlags()),
2568 getTypeIndex(I
->getBaseType()),
2569 I
->getOffsetInBits() / 8);
2570 ContinuationBuilder
.writeMemberType(BCR
);
2576 for (ClassInfo::MemberInfo
&MemberInfo
: Info
.Members
) {
2577 const DIDerivedType
*Member
= MemberInfo
.MemberTypeNode
;
2578 TypeIndex MemberBaseType
= getTypeIndex(Member
->getBaseType());
2579 StringRef MemberName
= Member
->getName();
2580 MemberAccess Access
=
2581 translateAccessFlags(Ty
->getTag(), Member
->getFlags());
2583 if (Member
->isStaticMember()) {
2584 StaticDataMemberRecord
SDMR(Access
, MemberBaseType
, MemberName
);
2585 ContinuationBuilder
.writeMemberType(SDMR
);
2590 // Virtual function pointer member.
2591 if ((Member
->getFlags() & DINode::FlagArtificial
) &&
2592 Member
->getName().starts_with("_vptr$")) {
2593 VFPtrRecord
VFPR(getTypeIndex(Member
->getBaseType()));
2594 ContinuationBuilder
.writeMemberType(VFPR
);
2600 uint64_t MemberOffsetInBits
=
2601 Member
->getOffsetInBits() + MemberInfo
.BaseOffset
;
2602 if (Member
->isBitField()) {
2603 uint64_t StartBitOffset
= MemberOffsetInBits
;
2604 if (const auto *CI
=
2605 dyn_cast_or_null
<ConstantInt
>(Member
->getStorageOffsetInBits())) {
2606 MemberOffsetInBits
= CI
->getZExtValue() + MemberInfo
.BaseOffset
;
2608 StartBitOffset
-= MemberOffsetInBits
;
2609 BitFieldRecord
BFR(MemberBaseType
, Member
->getSizeInBits(),
2611 MemberBaseType
= TypeTable
.writeLeafType(BFR
);
2613 uint64_t MemberOffsetInBytes
= MemberOffsetInBits
/ 8;
2614 DataMemberRecord
DMR(Access
, MemberBaseType
, MemberOffsetInBytes
,
2616 ContinuationBuilder
.writeMemberType(DMR
);
2621 for (auto &MethodItr
: Info
.Methods
) {
2622 StringRef Name
= MethodItr
.first
->getString();
2624 std::vector
<OneMethodRecord
> Methods
;
2625 for (const DISubprogram
*SP
: MethodItr
.second
) {
2626 TypeIndex MethodType
= getMemberFunctionType(SP
, Ty
);
2627 bool Introduced
= SP
->getFlags() & DINode::FlagIntroducedVirtual
;
2629 unsigned VFTableOffset
= -1;
2631 VFTableOffset
= SP
->getVirtualIndex() * getPointerSizeInBytes();
2633 Methods
.push_back(OneMethodRecord(
2634 MethodType
, translateAccessFlags(Ty
->getTag(), SP
->getFlags()),
2635 translateMethodKindFlags(SP
, Introduced
),
2636 translateMethodOptionFlags(SP
), VFTableOffset
, Name
));
2639 assert(!Methods
.empty() && "Empty methods map entry");
2640 if (Methods
.size() == 1)
2641 ContinuationBuilder
.writeMemberType(Methods
[0]);
2643 // FIXME: Make this use its own ContinuationBuilder so that
2644 // MethodOverloadList can be split correctly.
2645 MethodOverloadListRecord
MOLR(Methods
);
2646 TypeIndex MethodList
= TypeTable
.writeLeafType(MOLR
);
2648 OverloadedMethodRecord
OMR(Methods
.size(), MethodList
, Name
);
2649 ContinuationBuilder
.writeMemberType(OMR
);
2653 // Create nested classes.
2654 for (const DIType
*Nested
: Info
.NestedTypes
) {
2655 NestedTypeRecord
R(getTypeIndex(Nested
), Nested
->getName());
2656 ContinuationBuilder
.writeMemberType(R
);
2660 TypeIndex FieldTI
= TypeTable
.insertRecord(ContinuationBuilder
);
2661 return std::make_tuple(FieldTI
, Info
.VShapeTI
, MemberCount
,
2662 !Info
.NestedTypes
.empty());
2665 TypeIndex
CodeViewDebug::getVBPTypeIndex() {
2666 if (!VBPType
.getIndex()) {
2667 // Make a 'const int *' type.
2668 ModifierRecord
MR(TypeIndex::Int32(), ModifierOptions::Const
);
2669 TypeIndex ModifiedTI
= TypeTable
.writeLeafType(MR
);
2671 PointerKind PK
= getPointerSizeInBytes() == 8 ? PointerKind::Near64
2672 : PointerKind::Near32
;
2673 PointerMode PM
= PointerMode::Pointer
;
2674 PointerOptions PO
= PointerOptions::None
;
2675 PointerRecord
PR(ModifiedTI
, PK
, PM
, PO
, getPointerSizeInBytes());
2676 VBPType
= TypeTable
.writeLeafType(PR
);
2682 TypeIndex
CodeViewDebug::getTypeIndex(const DIType
*Ty
, const DIType
*ClassTy
) {
2683 // The null DIType is the void type. Don't try to hash it.
2685 return TypeIndex::Void();
2687 // Check if we've already translated this type. Don't try to do a
2688 // get-or-create style insertion that caches the hash lookup across the
2689 // lowerType call. It will update the TypeIndices map.
2690 auto I
= TypeIndices
.find({Ty
, ClassTy
});
2691 if (I
!= TypeIndices
.end())
2694 TypeLoweringScope
S(*this);
2695 TypeIndex TI
= lowerType(Ty
, ClassTy
);
2696 return recordTypeIndexForDINode(Ty
, TI
, ClassTy
);
2700 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType
*PtrTy
,
2701 const DISubroutineType
*SubroutineTy
) {
2702 assert(PtrTy
->getTag() == dwarf::DW_TAG_pointer_type
&&
2703 "this type must be a pointer type");
2705 PointerOptions Options
= PointerOptions::None
;
2706 if (SubroutineTy
->getFlags() & DINode::DIFlags::FlagLValueReference
)
2707 Options
= PointerOptions::LValueRefThisPointer
;
2708 else if (SubroutineTy
->getFlags() & DINode::DIFlags::FlagRValueReference
)
2709 Options
= PointerOptions::RValueRefThisPointer
;
2711 // Check if we've already translated this type. If there is no ref qualifier
2712 // on the function then we look up this pointer type with no associated class
2713 // so that the TypeIndex for the this pointer can be shared with the type
2714 // index for other pointers to this class type. If there is a ref qualifier
2715 // then we lookup the pointer using the subroutine as the parent type.
2716 auto I
= TypeIndices
.find({PtrTy
, SubroutineTy
});
2717 if (I
!= TypeIndices
.end())
2720 TypeLoweringScope
S(*this);
2721 TypeIndex TI
= lowerTypePointer(PtrTy
, Options
);
2722 return recordTypeIndexForDINode(PtrTy
, TI
, SubroutineTy
);
2725 TypeIndex
CodeViewDebug::getTypeIndexForReferenceTo(const DIType
*Ty
) {
2726 PointerRecord
PR(getTypeIndex(Ty
),
2727 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2728 : PointerKind::Near32
,
2729 PointerMode::LValueReference
, PointerOptions::None
,
2730 Ty
->getSizeInBits() / 8);
2731 return TypeTable
.writeLeafType(PR
);
2734 TypeIndex
CodeViewDebug::getCompleteTypeIndex(const DIType
*Ty
) {
2735 // The null DIType is the void type. Don't try to hash it.
2737 return TypeIndex::Void();
2739 // Look through typedefs when getting the complete type index. Call
2740 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2741 // emitted only once.
2742 if (Ty
->getTag() == dwarf::DW_TAG_typedef
)
2743 (void)getTypeIndex(Ty
);
2744 while (Ty
->getTag() == dwarf::DW_TAG_typedef
)
2745 Ty
= cast
<DIDerivedType
>(Ty
)->getBaseType();
2747 // If this is a non-record type, the complete type index is the same as the
2748 // normal type index. Just call getTypeIndex.
2749 switch (Ty
->getTag()) {
2750 case dwarf::DW_TAG_class_type
:
2751 case dwarf::DW_TAG_structure_type
:
2752 case dwarf::DW_TAG_union_type
:
2755 return getTypeIndex(Ty
);
2758 const auto *CTy
= cast
<DICompositeType
>(Ty
);
2760 TypeLoweringScope
S(*this);
2762 // Make sure the forward declaration is emitted first. It's unclear if this
2763 // is necessary, but MSVC does it, and we should follow suit until we can show
2765 // We only emit a forward declaration for named types.
2766 if (!CTy
->getName().empty() || !CTy
->getIdentifier().empty()) {
2767 TypeIndex FwdDeclTI
= getTypeIndex(CTy
);
2769 // Just use the forward decl if we don't have complete type info. This
2770 // might happen if the frontend is using modules and expects the complete
2771 // definition to be emitted elsewhere.
2772 if (CTy
->isForwardDecl())
2776 // Check if we've already translated the complete record type.
2777 // Insert the type with a null TypeIndex to signify that the type is currently
2779 auto InsertResult
= CompleteTypeIndices
.insert({CTy
, TypeIndex()});
2780 if (!InsertResult
.second
)
2781 return InsertResult
.first
->second
;
2784 switch (CTy
->getTag()) {
2785 case dwarf::DW_TAG_class_type
:
2786 case dwarf::DW_TAG_structure_type
:
2787 TI
= lowerCompleteTypeClass(CTy
);
2789 case dwarf::DW_TAG_union_type
:
2790 TI
= lowerCompleteTypeUnion(CTy
);
2793 llvm_unreachable("not a record");
2796 // Update the type index associated with this CompositeType. This cannot
2797 // use the 'InsertResult' iterator above because it is potentially
2798 // invalidated by map insertions which can occur while lowering the class
2800 CompleteTypeIndices
[CTy
] = TI
;
2804 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2805 /// and do this until fixpoint, as each complete record type typically
2807 /// many other record types.
2808 void CodeViewDebug::emitDeferredCompleteTypes() {
2809 SmallVector
<const DICompositeType
*, 4> TypesToEmit
;
2810 while (!DeferredCompleteTypes
.empty()) {
2811 std::swap(DeferredCompleteTypes
, TypesToEmit
);
2812 for (const DICompositeType
*RecordTy
: TypesToEmit
)
2813 getCompleteTypeIndex(RecordTy
);
2814 TypesToEmit
.clear();
2818 void CodeViewDebug::emitLocalVariableList(const FunctionInfo
&FI
,
2819 ArrayRef
<LocalVariable
> Locals
) {
2820 // Get the sorted list of parameters and emit them first.
2821 SmallVector
<const LocalVariable
*, 6> Params
;
2822 for (const LocalVariable
&L
: Locals
)
2823 if (L
.DIVar
->isParameter())
2824 Params
.push_back(&L
);
2825 llvm::sort(Params
, [](const LocalVariable
*L
, const LocalVariable
*R
) {
2826 return L
->DIVar
->getArg() < R
->DIVar
->getArg();
2828 for (const LocalVariable
*L
: Params
)
2829 emitLocalVariable(FI
, *L
);
2831 // Next emit all non-parameters in the order that we found them.
2832 for (const LocalVariable
&L
: Locals
) {
2833 if (!L
.DIVar
->isParameter()) {
2834 if (L
.ConstantValue
) {
2835 // If ConstantValue is set we will emit it as a S_CONSTANT instead of a
2836 // S_LOCAL in order to be able to represent it at all.
2837 const DIType
*Ty
= L
.DIVar
->getType();
2838 APSInt
Val(*L
.ConstantValue
);
2839 emitConstantSymbolRecord(Ty
, Val
, std::string(L
.DIVar
->getName()));
2841 emitLocalVariable(FI
, L
);
2847 void CodeViewDebug::emitLocalVariable(const FunctionInfo
&FI
,
2848 const LocalVariable
&Var
) {
2849 // LocalSym record, see SymbolRecord.h for more info.
2850 MCSymbol
*LocalEnd
= beginSymbolRecord(SymbolKind::S_LOCAL
);
2852 LocalSymFlags Flags
= LocalSymFlags::None
;
2853 if (Var
.DIVar
->isParameter())
2854 Flags
|= LocalSymFlags::IsParameter
;
2855 if (Var
.DefRanges
.empty())
2856 Flags
|= LocalSymFlags::IsOptimizedOut
;
2858 OS
.AddComment("TypeIndex");
2859 TypeIndex TI
= Var
.UseReferenceType
2860 ? getTypeIndexForReferenceTo(Var
.DIVar
->getType())
2861 : getCompleteTypeIndex(Var
.DIVar
->getType());
2862 OS
.emitInt32(TI
.getIndex());
2863 OS
.AddComment("Flags");
2864 OS
.emitInt16(static_cast<uint16_t>(Flags
));
2865 // Truncate the name so we won't overflow the record length field.
2866 emitNullTerminatedSymbolName(OS
, Var
.DIVar
->getName());
2867 endSymbolRecord(LocalEnd
);
2869 // Calculate the on disk prefix of the appropriate def range record. The
2870 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2871 // should be big enough to hold all forms without memory allocation.
2872 SmallString
<20> BytePrefix
;
2873 for (const auto &Pair
: Var
.DefRanges
) {
2874 LocalVarDef DefRange
= Pair
.first
;
2875 const auto &Ranges
= Pair
.second
;
2877 if (DefRange
.InMemory
) {
2878 int Offset
= DefRange
.DataOffset
;
2879 unsigned Reg
= DefRange
.CVRegister
;
2881 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2882 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2883 // instead. In frames without stack realignment, $T0 will be the CFA.
2884 if (RegisterId(Reg
) == RegisterId::ESP
) {
2885 Reg
= unsigned(RegisterId::VFRAME
);
2886 Offset
+= FI
.OffsetAdjustment
;
2889 // If we can use the chosen frame pointer for the frame and this isn't a
2890 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2891 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2892 EncodedFramePtrReg EncFP
= encodeFramePtrReg(RegisterId(Reg
), TheCPU
);
2893 if (!DefRange
.IsSubfield
&& EncFP
!= EncodedFramePtrReg::None
&&
2894 (bool(Flags
& LocalSymFlags::IsParameter
)
2895 ? (EncFP
== FI
.EncodedParamFramePtrReg
)
2896 : (EncFP
== FI
.EncodedLocalFramePtrReg
))) {
2897 DefRangeFramePointerRelHeader DRHdr
;
2898 DRHdr
.Offset
= Offset
;
2899 OS
.emitCVDefRangeDirective(Ranges
, DRHdr
);
2901 uint16_t RegRelFlags
= 0;
2902 if (DefRange
.IsSubfield
) {
2903 RegRelFlags
= DefRangeRegisterRelSym::IsSubfieldFlag
|
2904 (DefRange
.StructOffset
2905 << DefRangeRegisterRelSym::OffsetInParentShift
);
2907 DefRangeRegisterRelHeader DRHdr
;
2908 DRHdr
.Register
= Reg
;
2909 DRHdr
.Flags
= RegRelFlags
;
2910 DRHdr
.BasePointerOffset
= Offset
;
2911 OS
.emitCVDefRangeDirective(Ranges
, DRHdr
);
2914 assert(DefRange
.DataOffset
== 0 && "unexpected offset into register");
2915 if (DefRange
.IsSubfield
) {
2916 DefRangeSubfieldRegisterHeader DRHdr
;
2917 DRHdr
.Register
= DefRange
.CVRegister
;
2918 DRHdr
.MayHaveNoName
= 0;
2919 DRHdr
.OffsetInParent
= DefRange
.StructOffset
;
2920 OS
.emitCVDefRangeDirective(Ranges
, DRHdr
);
2922 DefRangeRegisterHeader DRHdr
;
2923 DRHdr
.Register
= DefRange
.CVRegister
;
2924 DRHdr
.MayHaveNoName
= 0;
2925 OS
.emitCVDefRangeDirective(Ranges
, DRHdr
);
2931 void CodeViewDebug::emitLexicalBlockList(ArrayRef
<LexicalBlock
*> Blocks
,
2932 const FunctionInfo
& FI
) {
2933 for (LexicalBlock
*Block
: Blocks
)
2934 emitLexicalBlock(*Block
, FI
);
2937 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2938 /// lexical block scope.
2939 void CodeViewDebug::emitLexicalBlock(const LexicalBlock
&Block
,
2940 const FunctionInfo
& FI
) {
2941 MCSymbol
*RecordEnd
= beginSymbolRecord(SymbolKind::S_BLOCK32
);
2942 OS
.AddComment("PtrParent");
2943 OS
.emitInt32(0); // PtrParent
2944 OS
.AddComment("PtrEnd");
2945 OS
.emitInt32(0); // PtrEnd
2946 OS
.AddComment("Code size");
2947 OS
.emitAbsoluteSymbolDiff(Block
.End
, Block
.Begin
, 4); // Code Size
2948 OS
.AddComment("Function section relative address");
2949 OS
.emitCOFFSecRel32(Block
.Begin
, /*Offset=*/0); // Func Offset
2950 OS
.AddComment("Function section index");
2951 OS
.emitCOFFSectionIndex(FI
.Begin
); // Func Symbol
2952 OS
.AddComment("Lexical block name");
2953 emitNullTerminatedSymbolName(OS
, Block
.Name
); // Name
2954 endSymbolRecord(RecordEnd
);
2956 // Emit variables local to this lexical block.
2957 emitLocalVariableList(FI
, Block
.Locals
);
2958 emitGlobalVariableList(Block
.Globals
);
2960 // Emit lexical blocks contained within this block.
2961 emitLexicalBlockList(Block
.Children
, FI
);
2963 // Close the lexical block scope.
2964 emitEndSymbolRecord(SymbolKind::S_END
);
2967 /// Convenience routine for collecting lexical block information for a list
2968 /// of lexical scopes.
2969 void CodeViewDebug::collectLexicalBlockInfo(
2970 SmallVectorImpl
<LexicalScope
*> &Scopes
,
2971 SmallVectorImpl
<LexicalBlock
*> &Blocks
,
2972 SmallVectorImpl
<LocalVariable
> &Locals
,
2973 SmallVectorImpl
<CVGlobalVariable
> &Globals
) {
2974 for (LexicalScope
*Scope
: Scopes
)
2975 collectLexicalBlockInfo(*Scope
, Blocks
, Locals
, Globals
);
2978 /// Populate the lexical blocks and local variable lists of the parent with
2979 /// information about the specified lexical scope.
2980 void CodeViewDebug::collectLexicalBlockInfo(
2981 LexicalScope
&Scope
,
2982 SmallVectorImpl
<LexicalBlock
*> &ParentBlocks
,
2983 SmallVectorImpl
<LocalVariable
> &ParentLocals
,
2984 SmallVectorImpl
<CVGlobalVariable
> &ParentGlobals
) {
2985 if (Scope
.isAbstractScope())
2988 // Gather information about the lexical scope including local variables,
2989 // global variables, and address ranges.
2990 bool IgnoreScope
= false;
2991 auto LI
= ScopeVariables
.find(&Scope
);
2992 SmallVectorImpl
<LocalVariable
> *Locals
=
2993 LI
!= ScopeVariables
.end() ? &LI
->second
: nullptr;
2994 auto GI
= ScopeGlobals
.find(Scope
.getScopeNode());
2995 SmallVectorImpl
<CVGlobalVariable
> *Globals
=
2996 GI
!= ScopeGlobals
.end() ? GI
->second
.get() : nullptr;
2997 const DILexicalBlock
*DILB
= dyn_cast
<DILexicalBlock
>(Scope
.getScopeNode());
2998 const SmallVectorImpl
<InsnRange
> &Ranges
= Scope
.getRanges();
3000 // Ignore lexical scopes which do not contain variables.
3001 if (!Locals
&& !Globals
)
3004 // Ignore lexical scopes which are not lexical blocks.
3008 // Ignore scopes which have too many address ranges to represent in the
3009 // current CodeView format or do not have a valid address range.
3011 // For lexical scopes with multiple address ranges you may be tempted to
3012 // construct a single range covering every instruction where the block is
3013 // live and everything in between. Unfortunately, Visual Studio only
3014 // displays variables from the first matching lexical block scope. If the
3015 // first lexical block contains exception handling code or cold code which
3016 // is moved to the bottom of the routine creating a single range covering
3017 // nearly the entire routine, then it will hide all other lexical blocks
3018 // and the variables they contain.
3019 if (Ranges
.size() != 1 || !getLabelAfterInsn(Ranges
.front().second
))
3023 // This scope can be safely ignored and eliminating it will reduce the
3024 // size of the debug information. Be sure to collect any variable and scope
3025 // information from the this scope or any of its children and collapse them
3026 // into the parent scope.
3028 ParentLocals
.append(Locals
->begin(), Locals
->end());
3030 ParentGlobals
.append(Globals
->begin(), Globals
->end());
3031 collectLexicalBlockInfo(Scope
.getChildren(),
3038 // Create a new CodeView lexical block for this lexical scope. If we've
3039 // seen this DILexicalBlock before then the scope tree is malformed and
3040 // we can handle this gracefully by not processing it a second time.
3041 auto BlockInsertion
= CurFn
->LexicalBlocks
.insert({DILB
, LexicalBlock()});
3042 if (!BlockInsertion
.second
)
3045 // Create a lexical block containing the variables and collect the
3046 // lexical block information for the children.
3047 const InsnRange
&Range
= Ranges
.front();
3048 assert(Range
.first
&& Range
.second
);
3049 LexicalBlock
&Block
= BlockInsertion
.first
->second
;
3050 Block
.Begin
= getLabelBeforeInsn(Range
.first
);
3051 Block
.End
= getLabelAfterInsn(Range
.second
);
3052 assert(Block
.Begin
&& "missing label for scope begin");
3053 assert(Block
.End
&& "missing label for scope end");
3054 Block
.Name
= DILB
->getName();
3056 Block
.Locals
= std::move(*Locals
);
3058 Block
.Globals
= std::move(*Globals
);
3059 ParentBlocks
.push_back(&Block
);
3060 collectLexicalBlockInfo(Scope
.getChildren(),
3066 void CodeViewDebug::endFunctionImpl(const MachineFunction
*MF
) {
3067 const Function
&GV
= MF
->getFunction();
3068 assert(FnDebugInfo
.count(&GV
));
3069 assert(CurFn
== FnDebugInfo
[&GV
].get());
3071 collectVariableInfo(GV
.getSubprogram());
3073 // Build the lexical block structure to emit for this routine.
3074 if (LexicalScope
*CFS
= LScopes
.getCurrentFunctionScope())
3075 collectLexicalBlockInfo(*CFS
,
3080 // Clear the scope and variable information from the map which will not be
3081 // valid after we have finished processing this routine. This also prepares
3082 // the map for the subsequent routine.
3083 ScopeVariables
.clear();
3085 // Don't emit anything if we don't have any line tables.
3086 // Thunks are compiler-generated and probably won't have source correlation.
3087 if (!CurFn
->HaveLineInfo
&& !GV
.getSubprogram()->isThunk()) {
3088 FnDebugInfo
.erase(&GV
);
3093 // Find heap alloc sites and add to list.
3094 for (const auto &MBB
: *MF
) {
3095 for (const auto &MI
: MBB
) {
3096 if (MDNode
*MD
= MI
.getHeapAllocMarker()) {
3097 CurFn
->HeapAllocSites
.push_back(std::make_tuple(getLabelBeforeInsn(&MI
),
3098 getLabelAfterInsn(&MI
),
3099 dyn_cast
<DIType
>(MD
)));
3104 bool isThumb
= Triple(MMI
->getModule()->getTargetTriple()).getArch() ==
3105 llvm::Triple::ArchType::thumb
;
3106 collectDebugInfoForJumpTables(MF
, isThumb
);
3108 CurFn
->Annotations
= MF
->getCodeViewAnnotations();
3110 CurFn
->End
= Asm
->getFunctionEnd();
3115 // Usable locations are valid with non-zero line numbers. A line number of zero
3116 // corresponds to optimized code that doesn't have a distinct source location.
3117 // In this case, we try to use the previous or next source location depending on
3119 static bool isUsableDebugLoc(DebugLoc DL
) {
3120 return DL
&& DL
.getLine() != 0;
3123 void CodeViewDebug::beginInstruction(const MachineInstr
*MI
) {
3124 DebugHandlerBase::beginInstruction(MI
);
3126 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
3127 if (!Asm
|| !CurFn
|| MI
->isDebugInstr() ||
3128 MI
->getFlag(MachineInstr::FrameSetup
))
3131 // If the first instruction of a new MBB has no location, find the first
3132 // instruction with a location and use that.
3133 DebugLoc DL
= MI
->getDebugLoc();
3134 if (!isUsableDebugLoc(DL
) && MI
->getParent() != PrevInstBB
) {
3135 for (const auto &NextMI
: *MI
->getParent()) {
3136 if (NextMI
.isDebugInstr())
3138 DL
= NextMI
.getDebugLoc();
3139 if (isUsableDebugLoc(DL
))
3142 // FIXME: Handle the case where the BB has no valid locations. This would
3143 // probably require doing a real dataflow analysis.
3145 PrevInstBB
= MI
->getParent();
3147 // If we still don't have a debug location, don't record a location.
3148 if (!isUsableDebugLoc(DL
))
3151 maybeRecordLocation(DL
, Asm
->MF
);
3154 MCSymbol
*CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind
) {
3155 MCSymbol
*BeginLabel
= MMI
->getContext().createTempSymbol(),
3156 *EndLabel
= MMI
->getContext().createTempSymbol();
3157 OS
.emitInt32(unsigned(Kind
));
3158 OS
.AddComment("Subsection size");
3159 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 4);
3160 OS
.emitLabel(BeginLabel
);
3164 void CodeViewDebug::endCVSubsection(MCSymbol
*EndLabel
) {
3165 OS
.emitLabel(EndLabel
);
3166 // Every subsection must be aligned to a 4-byte boundary.
3167 OS
.emitValueToAlignment(Align(4));
3170 static StringRef
getSymbolName(SymbolKind SymKind
) {
3171 for (const EnumEntry
<SymbolKind
> &EE
: getSymbolTypeNames())
3172 if (EE
.Value
== SymKind
)
3177 MCSymbol
*CodeViewDebug::beginSymbolRecord(SymbolKind SymKind
) {
3178 MCSymbol
*BeginLabel
= MMI
->getContext().createTempSymbol(),
3179 *EndLabel
= MMI
->getContext().createTempSymbol();
3180 OS
.AddComment("Record length");
3181 OS
.emitAbsoluteSymbolDiff(EndLabel
, BeginLabel
, 2);
3182 OS
.emitLabel(BeginLabel
);
3183 if (OS
.isVerboseAsm())
3184 OS
.AddComment("Record kind: " + getSymbolName(SymKind
));
3185 OS
.emitInt16(unsigned(SymKind
));
3189 void CodeViewDebug::endSymbolRecord(MCSymbol
*SymEnd
) {
3190 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3191 // an extra copy of every symbol record in LLD. This increases object file
3192 // size by less than 1% in the clang build, and is compatible with the Visual
3194 OS
.emitValueToAlignment(Align(4));
3195 OS
.emitLabel(SymEnd
);
3198 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind
) {
3199 OS
.AddComment("Record length");
3201 if (OS
.isVerboseAsm())
3202 OS
.AddComment("Record kind: " + getSymbolName(EndKind
));
3203 OS
.emitInt16(uint16_t(EndKind
)); // Record Kind
3206 void CodeViewDebug::emitDebugInfoForUDTs(
3207 const std::vector
<std::pair
<std::string
, const DIType
*>> &UDTs
) {
3209 size_t OriginalSize
= UDTs
.size();
3211 for (const auto &UDT
: UDTs
) {
3212 const DIType
*T
= UDT
.second
;
3213 assert(shouldEmitUdt(T
));
3214 MCSymbol
*UDTRecordEnd
= beginSymbolRecord(SymbolKind::S_UDT
);
3215 OS
.AddComment("Type");
3216 OS
.emitInt32(getCompleteTypeIndex(T
).getIndex());
3217 assert(OriginalSize
== UDTs
.size() &&
3218 "getCompleteTypeIndex found new UDTs!");
3219 emitNullTerminatedSymbolName(OS
, UDT
.first
);
3220 endSymbolRecord(UDTRecordEnd
);
3224 void CodeViewDebug::collectGlobalVariableInfo() {
3225 DenseMap
<const DIGlobalVariableExpression
*, const GlobalVariable
*>
3227 for (const GlobalVariable
&GV
: MMI
->getModule()->globals()) {
3228 SmallVector
<DIGlobalVariableExpression
*, 1> GVEs
;
3229 GV
.getDebugInfo(GVEs
);
3230 for (const auto *GVE
: GVEs
)
3231 GlobalMap
[GVE
] = &GV
;
3234 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
3235 for (const MDNode
*Node
: CUs
->operands()) {
3236 const auto *CU
= cast
<DICompileUnit
>(Node
);
3237 for (const auto *GVE
: CU
->getGlobalVariables()) {
3238 const DIGlobalVariable
*DIGV
= GVE
->getVariable();
3239 const DIExpression
*DIE
= GVE
->getExpression();
3240 // Don't emit string literals in CodeView, as the only useful parts are
3241 // generally the filename and line number, which isn't possible to output
3242 // in CodeView. String literals should be the only unnamed GlobalVariable
3244 if (DIGV
->getName().empty()) continue;
3246 if ((DIE
->getNumElements() == 2) &&
3247 (DIE
->getElement(0) == dwarf::DW_OP_plus_uconst
))
3248 // Record the constant offset for the variable.
3250 // A Fortran common block uses this idiom to encode the offset
3251 // of a variable from the common block's starting address.
3252 CVGlobalVariableOffsets
.insert(
3253 std::make_pair(DIGV
, DIE
->getElement(1)));
3255 // Emit constant global variables in a global symbol section.
3256 if (GlobalMap
.count(GVE
) == 0 && DIE
->isConstant()) {
3257 CVGlobalVariable CVGV
= {DIGV
, DIE
};
3258 GlobalVariables
.emplace_back(std::move(CVGV
));
3261 const auto *GV
= GlobalMap
.lookup(GVE
);
3262 if (!GV
|| GV
->isDeclarationForLinker())
3265 DIScope
*Scope
= DIGV
->getScope();
3266 SmallVector
<CVGlobalVariable
, 1> *VariableList
;
3267 if (Scope
&& isa
<DILocalScope
>(Scope
)) {
3268 // Locate a global variable list for this scope, creating one if
3270 auto Insertion
= ScopeGlobals
.insert(
3271 {Scope
, std::unique_ptr
<GlobalVariableList
>()});
3272 if (Insertion
.second
)
3273 Insertion
.first
->second
= std::make_unique
<GlobalVariableList
>();
3274 VariableList
= Insertion
.first
->second
.get();
3275 } else if (GV
->hasComdat())
3276 // Emit this global variable into a COMDAT section.
3277 VariableList
= &ComdatVariables
;
3279 // Emit this global variable in a single global symbol section.
3280 VariableList
= &GlobalVariables
;
3281 CVGlobalVariable CVGV
= {DIGV
, GV
};
3282 VariableList
->emplace_back(std::move(CVGV
));
3287 void CodeViewDebug::collectDebugInfoForGlobals() {
3288 for (const CVGlobalVariable
&CVGV
: GlobalVariables
) {
3289 const DIGlobalVariable
*DIGV
= CVGV
.DIGV
;
3290 const DIScope
*Scope
= DIGV
->getScope();
3291 getCompleteTypeIndex(DIGV
->getType());
3292 getFullyQualifiedName(Scope
, DIGV
->getName());
3295 for (const CVGlobalVariable
&CVGV
: ComdatVariables
) {
3296 const DIGlobalVariable
*DIGV
= CVGV
.DIGV
;
3297 const DIScope
*Scope
= DIGV
->getScope();
3298 getCompleteTypeIndex(DIGV
->getType());
3299 getFullyQualifiedName(Scope
, DIGV
->getName());
3303 void CodeViewDebug::emitDebugInfoForGlobals() {
3304 // First, emit all globals that are not in a comdat in a single symbol
3305 // substream. MSVC doesn't like it if the substream is empty, so only open
3306 // it if we have at least one global to emit.
3307 switchToDebugSectionForSymbol(nullptr);
3308 if (!GlobalVariables
.empty() || !StaticConstMembers
.empty()) {
3309 OS
.AddComment("Symbol subsection for globals");
3310 MCSymbol
*EndLabel
= beginCVSubsection(DebugSubsectionKind::Symbols
);
3311 emitGlobalVariableList(GlobalVariables
);
3312 emitStaticConstMemberList();
3313 endCVSubsection(EndLabel
);
3316 // Second, emit each global that is in a comdat into its own .debug$S
3317 // section along with its own symbol substream.
3318 for (const CVGlobalVariable
&CVGV
: ComdatVariables
) {
3319 const GlobalVariable
*GV
= cast
<const GlobalVariable
*>(CVGV
.GVInfo
);
3320 MCSymbol
*GVSym
= Asm
->getSymbol(GV
);
3321 OS
.AddComment("Symbol subsection for " +
3322 Twine(GlobalValue::dropLLVMManglingEscape(GV
->getName())));
3323 switchToDebugSectionForSymbol(GVSym
);
3324 MCSymbol
*EndLabel
= beginCVSubsection(DebugSubsectionKind::Symbols
);
3325 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3326 emitDebugInfoForGlobal(CVGV
);
3327 endCVSubsection(EndLabel
);
3331 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3332 NamedMDNode
*CUs
= MMI
->getModule()->getNamedMetadata("llvm.dbg.cu");
3333 for (const MDNode
*Node
: CUs
->operands()) {
3334 for (auto *Ty
: cast
<DICompileUnit
>(Node
)->getRetainedTypes()) {
3335 if (DIType
*RT
= dyn_cast
<DIType
>(Ty
)) {
3337 // FIXME: Add to global/local DTU list.
3343 // Emit each global variable in the specified array.
3344 void CodeViewDebug::emitGlobalVariableList(ArrayRef
<CVGlobalVariable
> Globals
) {
3345 for (const CVGlobalVariable
&CVGV
: Globals
) {
3346 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3347 emitDebugInfoForGlobal(CVGV
);
3351 void CodeViewDebug::emitConstantSymbolRecord(const DIType
*DTy
, APSInt
&Value
,
3352 const std::string
&QualifiedName
) {
3353 MCSymbol
*SConstantEnd
= beginSymbolRecord(SymbolKind::S_CONSTANT
);
3354 OS
.AddComment("Type");
3355 OS
.emitInt32(getTypeIndex(DTy
).getIndex());
3357 OS
.AddComment("Value");
3359 // Encoded integers shouldn't need more than 10 bytes.
3361 BinaryStreamWriter
Writer(Data
, llvm::endianness::little
);
3362 CodeViewRecordIO
IO(Writer
);
3363 cantFail(IO
.mapEncodedInteger(Value
));
3364 StringRef
SRef((char *)Data
, Writer
.getOffset());
3365 OS
.emitBinaryData(SRef
);
3367 OS
.AddComment("Name");
3368 emitNullTerminatedSymbolName(OS
, QualifiedName
);
3369 endSymbolRecord(SConstantEnd
);
3372 void CodeViewDebug::emitStaticConstMemberList() {
3373 for (const DIDerivedType
*DTy
: StaticConstMembers
) {
3374 const DIScope
*Scope
= DTy
->getScope();
3377 if (const ConstantInt
*CI
=
3378 dyn_cast_or_null
<ConstantInt
>(DTy
->getConstant()))
3379 Value
= APSInt(CI
->getValue(),
3380 DebugHandlerBase::isUnsignedDIType(DTy
->getBaseType()));
3381 else if (const ConstantFP
*CFP
=
3382 dyn_cast_or_null
<ConstantFP
>(DTy
->getConstant()))
3383 Value
= APSInt(CFP
->getValueAPF().bitcastToAPInt(), true);
3385 llvm_unreachable("cannot emit a constant without a value");
3387 emitConstantSymbolRecord(DTy
->getBaseType(), Value
,
3388 getFullyQualifiedName(Scope
, DTy
->getName()));
3392 static bool isFloatDIType(const DIType
*Ty
) {
3393 if (isa
<DICompositeType
>(Ty
))
3396 if (auto *DTy
= dyn_cast
<DIDerivedType
>(Ty
)) {
3397 dwarf::Tag T
= (dwarf::Tag
)Ty
->getTag();
3398 if (T
== dwarf::DW_TAG_pointer_type
||
3399 T
== dwarf::DW_TAG_ptr_to_member_type
||
3400 T
== dwarf::DW_TAG_reference_type
||
3401 T
== dwarf::DW_TAG_rvalue_reference_type
)
3403 assert(DTy
->getBaseType() && "Expected valid base type");
3404 return isFloatDIType(DTy
->getBaseType());
3407 auto *BTy
= cast
<DIBasicType
>(Ty
);
3408 return (BTy
->getEncoding() == dwarf::DW_ATE_float
);
3411 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable
&CVGV
) {
3412 const DIGlobalVariable
*DIGV
= CVGV
.DIGV
;
3414 const DIScope
*Scope
= DIGV
->getScope();
3415 // For static data members, get the scope from the declaration.
3416 if (const auto *MemberDecl
= dyn_cast_or_null
<DIDerivedType
>(
3417 DIGV
->getRawStaticDataMemberDeclaration()))
3418 Scope
= MemberDecl
->getScope();
3419 // For static local variables and Fortran, the scoping portion is elided
3420 // in its name so that we can reference the variable in the command line
3421 // of the VS debugger.
3422 std::string QualifiedName
=
3423 (moduleIsInFortran() || (Scope
&& isa
<DILocalScope
>(Scope
)))
3424 ? std::string(DIGV
->getName())
3425 : getFullyQualifiedName(Scope
, DIGV
->getName());
3427 if (const GlobalVariable
*GV
=
3428 dyn_cast_if_present
<const GlobalVariable
*>(CVGV
.GVInfo
)) {
3429 // DataSym record, see SymbolRecord.h for more info. Thread local data
3430 // happens to have the same format as global data.
3431 MCSymbol
*GVSym
= Asm
->getSymbol(GV
);
3432 SymbolKind DataSym
= GV
->isThreadLocal()
3433 ? (DIGV
->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3434 : SymbolKind::S_GTHREAD32
)
3435 : (DIGV
->isLocalToUnit() ? SymbolKind::S_LDATA32
3436 : SymbolKind::S_GDATA32
);
3437 MCSymbol
*DataEnd
= beginSymbolRecord(DataSym
);
3438 OS
.AddComment("Type");
3439 OS
.emitInt32(getCompleteTypeIndex(DIGV
->getType()).getIndex());
3440 OS
.AddComment("DataOffset");
3442 uint64_t Offset
= 0;
3443 if (CVGlobalVariableOffsets
.contains(DIGV
))
3444 // Use the offset seen while collecting info on globals.
3445 Offset
= CVGlobalVariableOffsets
[DIGV
];
3446 OS
.emitCOFFSecRel32(GVSym
, Offset
);
3448 OS
.AddComment("Segment");
3449 OS
.emitCOFFSectionIndex(GVSym
);
3450 OS
.AddComment("Name");
3451 const unsigned LengthOfDataRecord
= 12;
3452 emitNullTerminatedSymbolName(OS
, QualifiedName
, LengthOfDataRecord
);
3453 endSymbolRecord(DataEnd
);
3455 const DIExpression
*DIE
= cast
<const DIExpression
*>(CVGV
.GVInfo
);
3456 assert(DIE
->isConstant() &&
3457 "Global constant variables must contain a constant expression.");
3459 // Use unsigned for floats.
3460 bool isUnsigned
= isFloatDIType(DIGV
->getType())
3462 : DebugHandlerBase::isUnsignedDIType(DIGV
->getType());
3463 APSInt
Value(APInt(/*BitWidth=*/64, DIE
->getElement(1)), isUnsigned
);
3464 emitConstantSymbolRecord(DIGV
->getType(), Value
, QualifiedName
);
3468 void forEachJumpTableBranch(
3469 const MachineFunction
*MF
, bool isThumb
,
3470 const std::function
<void(const MachineJumpTableInfo
&, const MachineInstr
&,
3471 int64_t)> &Callback
) {
3472 auto JTI
= MF
->getJumpTableInfo();
3473 if (JTI
&& !JTI
->isEmpty()) {
3475 auto UsedJTs
= llvm::SmallBitVector(JTI
->getJumpTables().size());
3477 for (const auto &MBB
: *MF
) {
3478 // Search for indirect branches...
3479 const auto LastMI
= MBB
.getFirstTerminator();
3480 if (LastMI
!= MBB
.end() && LastMI
->isIndirectBranch()) {
3482 // ... that directly use jump table operands.
3483 // NOTE: ARM uses pattern matching to lower its BR_JT SDNode to
3484 // machine instructions, hence inserting a JUMP_TABLE_DEBUG_INFO node
3485 // interferes with this process *but* the resulting pseudo-instruction
3486 // uses a Jump Table operand, so extract the jump table index directly
3488 for (const auto &MO
: LastMI
->operands()) {
3490 unsigned Index
= MO
.getIndex();
3494 Callback(*JTI
, *LastMI
, Index
);
3499 // ... that have jump table debug info.
3500 // NOTE: The debug info is inserted as a JUMP_TABLE_DEBUG_INFO node
3501 // when lowering the BR_JT SDNode to an indirect branch.
3502 for (auto I
= MBB
.instr_rbegin(), E
= MBB
.instr_rend(); I
!= E
; ++I
) {
3503 if (I
->isJumpTableDebugInfo()) {
3504 unsigned Index
= I
->getOperand(0).getImm();
3508 Callback(*JTI
, *LastMI
, Index
);
3516 assert(UsedJTs
.all() &&
3517 "Some of jump tables were not used in a debug info instruction");
3522 void CodeViewDebug::discoverJumpTableBranches(const MachineFunction
*MF
,
3524 forEachJumpTableBranch(
3526 [this](const MachineJumpTableInfo
&, const MachineInstr
&BranchMI
,
3527 int64_t) { requestLabelBeforeInsn(&BranchMI
); });
3530 void CodeViewDebug::collectDebugInfoForJumpTables(const MachineFunction
*MF
,
3532 forEachJumpTableBranch(
3534 [this, MF
](const MachineJumpTableInfo
&JTI
, const MachineInstr
&BranchMI
,
3535 int64_t JumpTableIndex
) {
3536 // For label-difference jump tables, find the base expression.
3537 // Otherwise the jump table uses an absolute address (so no base
3539 const MCSymbol
*Base
;
3540 uint64_t BaseOffset
= 0;
3541 const MCSymbol
*Branch
= getLabelBeforeInsn(&BranchMI
);
3542 JumpTableEntrySize EntrySize
;
3543 switch (JTI
.getEntryKind()) {
3544 case MachineJumpTableInfo::EK_Custom32
:
3545 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
3546 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
3548 "EK_Custom32, EK_GPRel32BlockAddress, and "
3549 "EK_GPRel64BlockAddress should never be emitted for COFF");
3550 case MachineJumpTableInfo::EK_BlockAddress
:
3551 // Each entry is an absolute address.
3552 EntrySize
= JumpTableEntrySize::Pointer
;
3555 case MachineJumpTableInfo::EK_Inline
:
3556 case MachineJumpTableInfo::EK_LabelDifference32
:
3557 case MachineJumpTableInfo::EK_LabelDifference64
:
3558 // Ask the AsmPrinter.
3559 std::tie(Base
, BaseOffset
, Branch
, EntrySize
) =
3560 Asm
->getCodeViewJumpTableInfo(JumpTableIndex
, &BranchMI
, Branch
);
3564 CurFn
->JumpTables
.push_back(
3565 {EntrySize
, Base
, BaseOffset
, Branch
,
3566 MF
->getJTISymbol(JumpTableIndex
, MMI
->getContext()),
3567 JTI
.getJumpTables()[JumpTableIndex
].MBBs
.size()});
3571 void CodeViewDebug::emitDebugInfoForJumpTables(const FunctionInfo
&FI
) {
3572 for (auto JumpTable
: FI
.JumpTables
) {
3573 MCSymbol
*JumpTableEnd
= beginSymbolRecord(SymbolKind::S_ARMSWITCHTABLE
);
3574 if (JumpTable
.Base
) {
3575 OS
.AddComment("Base offset");
3576 OS
.emitCOFFSecRel32(JumpTable
.Base
, JumpTable
.BaseOffset
);
3577 OS
.AddComment("Base section index");
3578 OS
.emitCOFFSectionIndex(JumpTable
.Base
);
3580 OS
.AddComment("Base offset");
3582 OS
.AddComment("Base section index");
3585 OS
.AddComment("Switch type");
3586 OS
.emitInt16(static_cast<uint16_t>(JumpTable
.EntrySize
));
3587 OS
.AddComment("Branch offset");
3588 OS
.emitCOFFSecRel32(JumpTable
.Branch
, /*Offset=*/0);
3589 OS
.AddComment("Table offset");
3590 OS
.emitCOFFSecRel32(JumpTable
.Table
, /*Offset=*/0);
3591 OS
.AddComment("Branch section index");
3592 OS
.emitCOFFSectionIndex(JumpTable
.Branch
);
3593 OS
.AddComment("Table section index");
3594 OS
.emitCOFFSectionIndex(JumpTable
.Table
);
3595 OS
.AddComment("Entries count");
3596 OS
.emitInt32(JumpTable
.TableSize
);
3597 endSymbolRecord(JumpTableEnd
);
3601 void CodeViewDebug::emitInlinees(
3602 const SmallSet
<codeview::TypeIndex
, 1> &Inlinees
) {
3603 // Divide the list of inlinees into chunks such that each chunk fits within
3605 constexpr size_t ChunkSize
=
3606 (MaxRecordLength
- sizeof(SymbolKind
) - sizeof(uint32_t)) /
3609 SmallVector
<TypeIndex
> SortedInlinees
{Inlinees
.begin(), Inlinees
.end()};
3610 llvm::sort(SortedInlinees
);
3612 size_t CurrentIndex
= 0;
3613 while (CurrentIndex
< SortedInlinees
.size()) {
3614 auto Symbol
= beginSymbolRecord(SymbolKind::S_INLINEES
);
3615 auto CurrentChunkSize
=
3616 std::min(ChunkSize
, SortedInlinees
.size() - CurrentIndex
);
3617 OS
.AddComment("Count");
3618 OS
.emitInt32(CurrentChunkSize
);
3620 const size_t CurrentChunkEnd
= CurrentIndex
+ CurrentChunkSize
;
3621 for (; CurrentIndex
< CurrentChunkEnd
; ++CurrentIndex
) {
3622 OS
.AddComment("Inlinee");
3623 OS
.emitInt32(SortedInlinees
[CurrentIndex
].getIndex());
3625 endSymbolRecord(Symbol
);