[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / CodeGenPrepare.cpp
blob8ee1f19e083e4e78423b0d3faef43e18a289d0f9
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/CodeGenPrepare.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineValueType.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfo.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/IntrinsicsAArch64.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/MDBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/ProfDataUtils.h"
71 #include "llvm/IR/Statepoint.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/User.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/IR/ValueHandle.h"
77 #include "llvm/IR/ValueMap.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BlockFrequency.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <optional>
103 #include <utility>
104 #include <vector>
106 using namespace llvm;
107 using namespace llvm::PatternMatch;
109 #define DEBUG_TYPE "codegenprepare"
111 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
112 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
113 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
114 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
115 "sunken Cmps");
116 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
117 "of sunken Casts");
118 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
119 "computations were sunk");
120 STATISTIC(NumMemoryInstsPhiCreated,
121 "Number of phis created when address "
122 "computations were sunk to memory instructions");
123 STATISTIC(NumMemoryInstsSelectCreated,
124 "Number of select created when address "
125 "computations were sunk to memory instructions");
126 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
127 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
128 STATISTIC(NumAndsAdded,
129 "Number of and mask instructions added to form ext loads");
130 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
131 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
132 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
133 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
134 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
136 static cl::opt<bool> DisableBranchOpts(
137 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
138 cl::desc("Disable branch optimizations in CodeGenPrepare"));
140 static cl::opt<bool>
141 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
142 cl::desc("Disable GC optimizations in CodeGenPrepare"));
144 static cl::opt<bool>
145 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden,
146 cl::init(false),
147 cl::desc("Disable select to branch conversion."));
149 static cl::opt<bool>
150 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true),
151 cl::desc("Address sinking in CGP using GEPs."));
153 static cl::opt<bool>
154 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true),
155 cl::desc("Enable sinkinig and/cmp into branches."));
157 static cl::opt<bool> DisableStoreExtract(
158 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
159 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
161 static cl::opt<bool> StressStoreExtract(
162 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
163 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
165 static cl::opt<bool> DisableExtLdPromotion(
166 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
168 "CodeGenPrepare"));
170 static cl::opt<bool> StressExtLdPromotion(
171 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
172 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
173 "optimization in CodeGenPrepare"));
175 static cl::opt<bool> DisablePreheaderProtect(
176 "disable-preheader-prot", cl::Hidden, cl::init(false),
177 cl::desc("Disable protection against removing loop preheaders"));
179 static cl::opt<bool> ProfileGuidedSectionPrefix(
180 "profile-guided-section-prefix", cl::Hidden, cl::init(true),
181 cl::desc("Use profile info to add section prefix for hot/cold functions"));
183 static cl::opt<bool> ProfileUnknownInSpecialSection(
184 "profile-unknown-in-special-section", cl::Hidden,
185 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
186 "profile, we cannot tell the function is cold for sure because "
187 "it may be a function newly added without ever being sampled. "
188 "With the flag enabled, compiler can put such profile unknown "
189 "functions into a special section, so runtime system can choose "
190 "to handle it in a different way than .text section, to save "
191 "RAM for example. "));
193 static cl::opt<bool> BBSectionsGuidedSectionPrefix(
194 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
195 cl::desc("Use the basic-block-sections profile to determine the text "
196 "section prefix for hot functions. Functions with "
197 "basic-block-sections profile will be placed in `.text.hot` "
198 "regardless of their FDO profile info. Other functions won't be "
199 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
200 "profiles."));
202 static cl::opt<uint64_t> FreqRatioToSkipMerge(
203 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
204 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
205 "(frequency of destination block) is greater than this ratio"));
207 static cl::opt<bool> ForceSplitStore(
208 "force-split-store", cl::Hidden, cl::init(false),
209 cl::desc("Force store splitting no matter what the target query says."));
211 static cl::opt<bool> EnableTypePromotionMerge(
212 "cgp-type-promotion-merge", cl::Hidden,
213 cl::desc("Enable merging of redundant sexts when one is dominating"
214 " the other."),
215 cl::init(true));
217 static cl::opt<bool> DisableComplexAddrModes(
218 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
219 cl::desc("Disables combining addressing modes with different parts "
220 "in optimizeMemoryInst."));
222 static cl::opt<bool>
223 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
224 cl::desc("Allow creation of Phis in Address sinking."));
226 static cl::opt<bool> AddrSinkNewSelects(
227 "addr-sink-new-select", cl::Hidden, cl::init(true),
228 cl::desc("Allow creation of selects in Address sinking."));
230 static cl::opt<bool> AddrSinkCombineBaseReg(
231 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
232 cl::desc("Allow combining of BaseReg field in Address sinking."));
234 static cl::opt<bool> AddrSinkCombineBaseGV(
235 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
236 cl::desc("Allow combining of BaseGV field in Address sinking."));
238 static cl::opt<bool> AddrSinkCombineBaseOffs(
239 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
240 cl::desc("Allow combining of BaseOffs field in Address sinking."));
242 static cl::opt<bool> AddrSinkCombineScaledReg(
243 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
244 cl::desc("Allow combining of ScaledReg field in Address sinking."));
246 static cl::opt<bool>
247 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
248 cl::init(true),
249 cl::desc("Enable splitting large offset of GEP."));
251 static cl::opt<bool> EnableICMP_EQToICMP_ST(
252 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
253 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
255 static cl::opt<bool>
256 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
257 cl::desc("Enable BFI update verification for "
258 "CodeGenPrepare."));
260 static cl::opt<bool>
261 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true),
262 cl::desc("Enable converting phi types in CodeGenPrepare"));
264 static cl::opt<unsigned>
265 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden,
266 cl::desc("Least BB number of huge function."));
268 static cl::opt<unsigned>
269 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
270 cl::Hidden,
271 cl::desc("Max number of address users to look at"));
273 static cl::opt<bool>
274 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false),
275 cl::desc("Disable elimination of dead PHI nodes."));
277 namespace {
279 enum ExtType {
280 ZeroExtension, // Zero extension has been seen.
281 SignExtension, // Sign extension has been seen.
282 BothExtension // This extension type is used if we saw sext after
283 // ZeroExtension had been set, or if we saw zext after
284 // SignExtension had been set. It makes the type
285 // information of a promoted instruction invalid.
288 enum ModifyDT {
289 NotModifyDT, // Not Modify any DT.
290 ModifyBBDT, // Modify the Basic Block Dominator Tree.
291 ModifyInstDT // Modify the Instruction Dominator in a Basic Block,
292 // This usually means we move/delete/insert instruction
293 // in a Basic Block. So we should re-iterate instructions
294 // in such Basic Block.
297 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
298 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
299 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
300 using SExts = SmallVector<Instruction *, 16>;
301 using ValueToSExts = MapVector<Value *, SExts>;
303 class TypePromotionTransaction;
305 class CodeGenPrepare {
306 friend class CodeGenPrepareLegacyPass;
307 const TargetMachine *TM = nullptr;
308 const TargetSubtargetInfo *SubtargetInfo = nullptr;
309 const TargetLowering *TLI = nullptr;
310 const TargetRegisterInfo *TRI = nullptr;
311 const TargetTransformInfo *TTI = nullptr;
312 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
313 const TargetLibraryInfo *TLInfo = nullptr;
314 LoopInfo *LI = nullptr;
315 std::unique_ptr<BlockFrequencyInfo> BFI;
316 std::unique_ptr<BranchProbabilityInfo> BPI;
317 ProfileSummaryInfo *PSI = nullptr;
319 /// As we scan instructions optimizing them, this is the next instruction
320 /// to optimize. Transforms that can invalidate this should update it.
321 BasicBlock::iterator CurInstIterator;
323 /// Keeps track of non-local addresses that have been sunk into a block.
324 /// This allows us to avoid inserting duplicate code for blocks with
325 /// multiple load/stores of the same address. The usage of WeakTrackingVH
326 /// enables SunkAddrs to be treated as a cache whose entries can be
327 /// invalidated if a sunken address computation has been erased.
328 ValueMap<Value *, WeakTrackingVH> SunkAddrs;
330 /// Keeps track of all instructions inserted for the current function.
331 SetOfInstrs InsertedInsts;
333 /// Keeps track of the type of the related instruction before their
334 /// promotion for the current function.
335 InstrToOrigTy PromotedInsts;
337 /// Keep track of instructions removed during promotion.
338 SetOfInstrs RemovedInsts;
340 /// Keep track of sext chains based on their initial value.
341 DenseMap<Value *, Instruction *> SeenChainsForSExt;
343 /// Keep track of GEPs accessing the same data structures such as structs or
344 /// arrays that are candidates to be split later because of their large
345 /// size.
346 MapVector<AssertingVH<Value>,
347 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
348 LargeOffsetGEPMap;
350 /// Keep track of new GEP base after splitting the GEPs having large offset.
351 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
353 /// Map serial numbers to Large offset GEPs.
354 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
356 /// Keep track of SExt promoted.
357 ValueToSExts ValToSExtendedUses;
359 /// True if the function has the OptSize attribute.
360 bool OptSize;
362 /// DataLayout for the Function being processed.
363 const DataLayout *DL = nullptr;
365 /// Building the dominator tree can be expensive, so we only build it
366 /// lazily and update it when required.
367 std::unique_ptr<DominatorTree> DT;
369 public:
370 CodeGenPrepare(){};
371 CodeGenPrepare(const TargetMachine *TM) : TM(TM){};
372 /// If encounter huge function, we need to limit the build time.
373 bool IsHugeFunc = false;
375 /// FreshBBs is like worklist, it collected the updated BBs which need
376 /// to be optimized again.
377 /// Note: Consider building time in this pass, when a BB updated, we need
378 /// to insert such BB into FreshBBs for huge function.
379 SmallSet<BasicBlock *, 32> FreshBBs;
381 void releaseMemory() {
382 // Clear per function information.
383 InsertedInsts.clear();
384 PromotedInsts.clear();
385 FreshBBs.clear();
386 BPI.reset();
387 BFI.reset();
390 bool run(Function &F, FunctionAnalysisManager &AM);
392 private:
393 template <typename F>
394 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
395 // Substituting can cause recursive simplifications, which can invalidate
396 // our iterator. Use a WeakTrackingVH to hold onto it in case this
397 // happens.
398 Value *CurValue = &*CurInstIterator;
399 WeakTrackingVH IterHandle(CurValue);
401 f();
403 // If the iterator instruction was recursively deleted, start over at the
404 // start of the block.
405 if (IterHandle != CurValue) {
406 CurInstIterator = BB->begin();
407 SunkAddrs.clear();
411 // Get the DominatorTree, building if necessary.
412 DominatorTree &getDT(Function &F) {
413 if (!DT)
414 DT = std::make_unique<DominatorTree>(F);
415 return *DT;
418 void removeAllAssertingVHReferences(Value *V);
419 bool eliminateAssumptions(Function &F);
420 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr);
421 bool eliminateMostlyEmptyBlocks(Function &F);
422 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
423 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
424 void eliminateMostlyEmptyBlock(BasicBlock *BB);
425 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
426 bool isPreheader);
427 bool makeBitReverse(Instruction &I);
428 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT);
429 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT);
430 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy,
431 unsigned AddrSpace);
432 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
433 bool optimizeInlineAsmInst(CallInst *CS);
434 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT);
435 bool optimizeExt(Instruction *&I);
436 bool optimizeExtUses(Instruction *I);
437 bool optimizeLoadExt(LoadInst *Load);
438 bool optimizeShiftInst(BinaryOperator *BO);
439 bool optimizeFunnelShift(IntrinsicInst *Fsh);
440 bool optimizeSelectInst(SelectInst *SI);
441 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
442 bool optimizeSwitchType(SwitchInst *SI);
443 bool optimizeSwitchPhiConstants(SwitchInst *SI);
444 bool optimizeSwitchInst(SwitchInst *SI);
445 bool optimizeExtractElementInst(Instruction *Inst);
446 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT);
447 bool fixupDbgValue(Instruction *I);
448 bool fixupDPValue(DPValue &I);
449 bool fixupDPValuesOnInst(Instruction &I);
450 bool placeDbgValues(Function &F);
451 bool placePseudoProbes(Function &F);
452 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
453 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
454 bool tryToPromoteExts(TypePromotionTransaction &TPT,
455 const SmallVectorImpl<Instruction *> &Exts,
456 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
457 unsigned CreatedInstsCost = 0);
458 bool mergeSExts(Function &F);
459 bool splitLargeGEPOffsets();
460 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
461 SmallPtrSetImpl<Instruction *> &DeletedInstrs);
462 bool optimizePhiTypes(Function &F);
463 bool performAddressTypePromotion(
464 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
465 bool HasPromoted, TypePromotionTransaction &TPT,
466 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
467 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT);
468 bool simplifyOffsetableRelocate(GCStatepointInst &I);
470 bool tryToSinkFreeOperands(Instruction *I);
471 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1,
472 CmpInst *Cmp, Intrinsic::ID IID);
473 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT);
474 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
475 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
476 void verifyBFIUpdates(Function &F);
477 bool _run(Function &F);
480 class CodeGenPrepareLegacyPass : public FunctionPass {
481 public:
482 static char ID; // Pass identification, replacement for typeid
484 CodeGenPrepareLegacyPass() : FunctionPass(ID) {
485 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry());
488 bool runOnFunction(Function &F) override;
490 StringRef getPassName() const override { return "CodeGen Prepare"; }
492 void getAnalysisUsage(AnalysisUsage &AU) const override {
493 // FIXME: When we can selectively preserve passes, preserve the domtree.
494 AU.addRequired<ProfileSummaryInfoWrapperPass>();
495 AU.addRequired<TargetLibraryInfoWrapperPass>();
496 AU.addRequired<TargetPassConfig>();
497 AU.addRequired<TargetTransformInfoWrapperPass>();
498 AU.addRequired<LoopInfoWrapperPass>();
499 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
503 } // end anonymous namespace
505 char CodeGenPrepareLegacyPass::ID = 0;
507 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) {
508 if (skipFunction(F))
509 return false;
510 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
511 CodeGenPrepare CGP(TM);
512 CGP.DL = &F.getParent()->getDataLayout();
513 CGP.SubtargetInfo = TM->getSubtargetImpl(F);
514 CGP.TLI = CGP.SubtargetInfo->getTargetLowering();
515 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo();
516 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
517 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
518 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
519 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI));
520 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI));
521 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
522 auto BBSPRWP =
523 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
524 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr;
526 return CGP._run(F);
529 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE,
530 "Optimize for code generation", false, false)
531 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
532 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
533 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
534 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
535 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
536 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
537 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE,
538 "Optimize for code generation", false, false)
540 FunctionPass *llvm::createCodeGenPrepareLegacyPass() {
541 return new CodeGenPrepareLegacyPass();
544 PreservedAnalyses CodeGenPreparePass::run(Function &F,
545 FunctionAnalysisManager &AM) {
546 CodeGenPrepare CGP(TM);
548 bool Changed = CGP.run(F, AM);
549 if (!Changed)
550 return PreservedAnalyses::all();
552 PreservedAnalyses PA;
553 PA.preserve<TargetLibraryAnalysis>();
554 PA.preserve<TargetIRAnalysis>();
555 PA.preserve<LoopAnalysis>();
556 return PA;
559 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) {
560 DL = &F.getParent()->getDataLayout();
561 SubtargetInfo = TM->getSubtargetImpl(F);
562 TLI = SubtargetInfo->getTargetLowering();
563 TRI = SubtargetInfo->getRegisterInfo();
564 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F);
565 TTI = &AM.getResult<TargetIRAnalysis>(F);
566 LI = &AM.getResult<LoopAnalysis>(F);
567 BPI.reset(new BranchProbabilityInfo(F, *LI));
568 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
569 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
570 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
571 BBSectionsProfileReader =
572 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F);
573 return _run(F);
576 bool CodeGenPrepare::_run(Function &F) {
577 bool EverMadeChange = false;
579 OptSize = F.hasOptSize();
580 // Use the basic-block-sections profile to promote hot functions to .text.hot
581 // if requested.
582 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
583 BBSectionsProfileReader->isFunctionHot(F.getName())) {
584 F.setSectionPrefix("hot");
585 } else if (ProfileGuidedSectionPrefix) {
586 // The hot attribute overwrites profile count based hotness while profile
587 // counts based hotness overwrite the cold attribute.
588 // This is a conservative behabvior.
589 if (F.hasFnAttribute(Attribute::Hot) ||
590 PSI->isFunctionHotInCallGraph(&F, *BFI))
591 F.setSectionPrefix("hot");
592 // If PSI shows this function is not hot, we will placed the function
593 // into unlikely section if (1) PSI shows this is a cold function, or
594 // (2) the function has a attribute of cold.
595 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
596 F.hasFnAttribute(Attribute::Cold))
597 F.setSectionPrefix("unlikely");
598 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
599 PSI->isFunctionHotnessUnknown(F))
600 F.setSectionPrefix("unknown");
603 /// This optimization identifies DIV instructions that can be
604 /// profitably bypassed and carried out with a shorter, faster divide.
605 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
606 const DenseMap<unsigned int, unsigned int> &BypassWidths =
607 TLI->getBypassSlowDivWidths();
608 BasicBlock *BB = &*F.begin();
609 while (BB != nullptr) {
610 // bypassSlowDivision may create new BBs, but we don't want to reapply the
611 // optimization to those blocks.
612 BasicBlock *Next = BB->getNextNode();
613 // F.hasOptSize is already checked in the outer if statement.
614 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
615 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
616 BB = Next;
620 // Get rid of @llvm.assume builtins before attempting to eliminate empty
621 // blocks, since there might be blocks that only contain @llvm.assume calls
622 // (plus arguments that we can get rid of).
623 EverMadeChange |= eliminateAssumptions(F);
625 // Eliminate blocks that contain only PHI nodes and an
626 // unconditional branch.
627 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
629 ModifyDT ModifiedDT = ModifyDT::NotModifyDT;
630 if (!DisableBranchOpts)
631 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
633 // Split some critical edges where one of the sources is an indirect branch,
634 // to help generate sane code for PHIs involving such edges.
635 EverMadeChange |=
636 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
638 // If we are optimzing huge function, we need to consider the build time.
639 // Because the basic algorithm's complex is near O(N!).
640 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP;
642 // Transformations above may invalidate dominator tree and/or loop info.
643 DT.reset();
644 LI->releaseMemory();
645 LI->analyze(getDT(F));
647 bool MadeChange = true;
648 bool FuncIterated = false;
649 while (MadeChange) {
650 MadeChange = false;
652 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
653 if (FuncIterated && !FreshBBs.contains(&BB))
654 continue;
656 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT;
657 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration);
659 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT)
660 DT.reset();
662 MadeChange |= Changed;
663 if (IsHugeFunc) {
664 // If the BB is updated, it may still has chance to be optimized.
665 // This usually happen at sink optimization.
666 // For example:
668 // bb0:
669 // %and = and i32 %a, 4
670 // %cmp = icmp eq i32 %and, 0
672 // If the %cmp sink to other BB, the %and will has chance to sink.
673 if (Changed)
674 FreshBBs.insert(&BB);
675 else if (FuncIterated)
676 FreshBBs.erase(&BB);
677 } else {
678 // For small/normal functions, we restart BB iteration if the dominator
679 // tree of the Function was changed.
680 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT)
681 break;
684 // We have iterated all the BB in the (only work for huge) function.
685 FuncIterated = IsHugeFunc;
687 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
688 MadeChange |= mergeSExts(F);
689 if (!LargeOffsetGEPMap.empty())
690 MadeChange |= splitLargeGEPOffsets();
691 MadeChange |= optimizePhiTypes(F);
693 if (MadeChange)
694 eliminateFallThrough(F, DT.get());
696 #ifndef NDEBUG
697 if (MadeChange && VerifyLoopInfo)
698 LI->verify(getDT(F));
699 #endif
701 // Really free removed instructions during promotion.
702 for (Instruction *I : RemovedInsts)
703 I->deleteValue();
705 EverMadeChange |= MadeChange;
706 SeenChainsForSExt.clear();
707 ValToSExtendedUses.clear();
708 RemovedInsts.clear();
709 LargeOffsetGEPMap.clear();
710 LargeOffsetGEPID.clear();
713 NewGEPBases.clear();
714 SunkAddrs.clear();
716 if (!DisableBranchOpts) {
717 MadeChange = false;
718 // Use a set vector to get deterministic iteration order. The order the
719 // blocks are removed may affect whether or not PHI nodes in successors
720 // are removed.
721 SmallSetVector<BasicBlock *, 8> WorkList;
722 for (BasicBlock &BB : F) {
723 SmallVector<BasicBlock *, 2> Successors(successors(&BB));
724 MadeChange |= ConstantFoldTerminator(&BB, true);
725 if (!MadeChange)
726 continue;
728 for (BasicBlock *Succ : Successors)
729 if (pred_empty(Succ))
730 WorkList.insert(Succ);
733 // Delete the dead blocks and any of their dead successors.
734 MadeChange |= !WorkList.empty();
735 while (!WorkList.empty()) {
736 BasicBlock *BB = WorkList.pop_back_val();
737 SmallVector<BasicBlock *, 2> Successors(successors(BB));
739 DeleteDeadBlock(BB);
741 for (BasicBlock *Succ : Successors)
742 if (pred_empty(Succ))
743 WorkList.insert(Succ);
746 // Merge pairs of basic blocks with unconditional branches, connected by
747 // a single edge.
748 if (EverMadeChange || MadeChange)
749 MadeChange |= eliminateFallThrough(F);
751 EverMadeChange |= MadeChange;
754 if (!DisableGCOpts) {
755 SmallVector<GCStatepointInst *, 2> Statepoints;
756 for (BasicBlock &BB : F)
757 for (Instruction &I : BB)
758 if (auto *SP = dyn_cast<GCStatepointInst>(&I))
759 Statepoints.push_back(SP);
760 for (auto &I : Statepoints)
761 EverMadeChange |= simplifyOffsetableRelocate(*I);
764 // Do this last to clean up use-before-def scenarios introduced by other
765 // preparatory transforms.
766 EverMadeChange |= placeDbgValues(F);
767 EverMadeChange |= placePseudoProbes(F);
769 #ifndef NDEBUG
770 if (VerifyBFIUpdates)
771 verifyBFIUpdates(F);
772 #endif
774 return EverMadeChange;
777 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
778 bool MadeChange = false;
779 for (BasicBlock &BB : F) {
780 CurInstIterator = BB.begin();
781 while (CurInstIterator != BB.end()) {
782 Instruction *I = &*(CurInstIterator++);
783 if (auto *Assume = dyn_cast<AssumeInst>(I)) {
784 MadeChange = true;
785 Value *Operand = Assume->getOperand(0);
786 Assume->eraseFromParent();
788 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
789 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
794 return MadeChange;
797 /// An instruction is about to be deleted, so remove all references to it in our
798 /// GEP-tracking data strcutures.
799 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
800 LargeOffsetGEPMap.erase(V);
801 NewGEPBases.erase(V);
803 auto GEP = dyn_cast<GetElementPtrInst>(V);
804 if (!GEP)
805 return;
807 LargeOffsetGEPID.erase(GEP);
809 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
810 if (VecI == LargeOffsetGEPMap.end())
811 return;
813 auto &GEPVector = VecI->second;
814 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
816 if (GEPVector.empty())
817 LargeOffsetGEPMap.erase(VecI);
820 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
821 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
822 DominatorTree NewDT(F);
823 LoopInfo NewLI(NewDT);
824 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
825 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
826 NewBFI.verifyMatch(*BFI);
829 /// Merge basic blocks which are connected by a single edge, where one of the
830 /// basic blocks has a single successor pointing to the other basic block,
831 /// which has a single predecessor.
832 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) {
833 bool Changed = false;
834 // Scan all of the blocks in the function, except for the entry block.
835 // Use a temporary array to avoid iterator being invalidated when
836 // deleting blocks.
837 SmallVector<WeakTrackingVH, 16> Blocks;
838 for (auto &Block : llvm::drop_begin(F))
839 Blocks.push_back(&Block);
841 SmallSet<WeakTrackingVH, 16> Preds;
842 for (auto &Block : Blocks) {
843 auto *BB = cast_or_null<BasicBlock>(Block);
844 if (!BB)
845 continue;
846 // If the destination block has a single pred, then this is a trivial
847 // edge, just collapse it.
848 BasicBlock *SinglePred = BB->getSinglePredecessor();
850 // Don't merge if BB's address is taken.
851 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken())
852 continue;
854 // Make an effort to skip unreachable blocks.
855 if (DT && !DT->isReachableFromEntry(BB))
856 continue;
858 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
859 if (Term && !Term->isConditional()) {
860 Changed = true;
861 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
863 // Merge BB into SinglePred and delete it.
864 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr,
865 /* MemDep */ nullptr,
866 /* PredecessorWithTwoSuccessors */ false, DT);
867 Preds.insert(SinglePred);
869 if (IsHugeFunc) {
870 // Update FreshBBs to optimize the merged BB.
871 FreshBBs.insert(SinglePred);
872 FreshBBs.erase(BB);
877 // (Repeatedly) merging blocks into their predecessors can create redundant
878 // debug intrinsics.
879 for (const auto &Pred : Preds)
880 if (auto *BB = cast_or_null<BasicBlock>(Pred))
881 RemoveRedundantDbgInstrs(BB);
883 return Changed;
886 /// Find a destination block from BB if BB is mergeable empty block.
887 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
888 // If this block doesn't end with an uncond branch, ignore it.
889 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
890 if (!BI || !BI->isUnconditional())
891 return nullptr;
893 // If the instruction before the branch (skipping debug info) isn't a phi
894 // node, then other stuff is happening here.
895 BasicBlock::iterator BBI = BI->getIterator();
896 if (BBI != BB->begin()) {
897 --BBI;
898 while (isa<DbgInfoIntrinsic>(BBI)) {
899 if (BBI == BB->begin())
900 break;
901 --BBI;
903 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
904 return nullptr;
907 // Do not break infinite loops.
908 BasicBlock *DestBB = BI->getSuccessor(0);
909 if (DestBB == BB)
910 return nullptr;
912 if (!canMergeBlocks(BB, DestBB))
913 DestBB = nullptr;
915 return DestBB;
918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
920 /// edges in ways that are non-optimal for isel. Start by eliminating these
921 /// blocks so we can split them the way we want them.
922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
923 SmallPtrSet<BasicBlock *, 16> Preheaders;
924 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
925 while (!LoopList.empty()) {
926 Loop *L = LoopList.pop_back_val();
927 llvm::append_range(LoopList, *L);
928 if (BasicBlock *Preheader = L->getLoopPreheader())
929 Preheaders.insert(Preheader);
932 bool MadeChange = false;
933 // Copy blocks into a temporary array to avoid iterator invalidation issues
934 // as we remove them.
935 // Note that this intentionally skips the entry block.
936 SmallVector<WeakTrackingVH, 16> Blocks;
937 for (auto &Block : llvm::drop_begin(F)) {
938 // Delete phi nodes that could block deleting other empty blocks.
939 if (!DisableDeletePHIs)
940 MadeChange |= DeleteDeadPHIs(&Block, TLInfo);
941 Blocks.push_back(&Block);
944 for (auto &Block : Blocks) {
945 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
946 if (!BB)
947 continue;
948 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
949 if (!DestBB ||
950 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
951 continue;
953 eliminateMostlyEmptyBlock(BB);
954 MadeChange = true;
956 return MadeChange;
959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
960 BasicBlock *DestBB,
961 bool isPreheader) {
962 // Do not delete loop preheaders if doing so would create a critical edge.
963 // Loop preheaders can be good locations to spill registers. If the
964 // preheader is deleted and we create a critical edge, registers may be
965 // spilled in the loop body instead.
966 if (!DisablePreheaderProtect && isPreheader &&
967 !(BB->getSinglePredecessor() &&
968 BB->getSinglePredecessor()->getSingleSuccessor()))
969 return false;
971 // Skip merging if the block's successor is also a successor to any callbr
972 // that leads to this block.
973 // FIXME: Is this really needed? Is this a correctness issue?
974 for (BasicBlock *Pred : predecessors(BB)) {
975 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator()))
976 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
977 if (DestBB == CBI->getSuccessor(i))
978 return false;
981 // Try to skip merging if the unique predecessor of BB is terminated by a
982 // switch or indirect branch instruction, and BB is used as an incoming block
983 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
984 // add COPY instructions in the predecessor of BB instead of BB (if it is not
985 // merged). Note that the critical edge created by merging such blocks wont be
986 // split in MachineSink because the jump table is not analyzable. By keeping
987 // such empty block (BB), ISel will place COPY instructions in BB, not in the
988 // predecessor of BB.
989 BasicBlock *Pred = BB->getUniquePredecessor();
990 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) ||
991 isa<IndirectBrInst>(Pred->getTerminator())))
992 return true;
994 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
995 return true;
997 // We use a simple cost heuristic which determine skipping merging is
998 // profitable if the cost of skipping merging is less than the cost of
999 // merging : Cost(skipping merging) < Cost(merging BB), where the
1000 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
1001 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
1002 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
1003 // Freq(Pred) / Freq(BB) > 2.
1004 // Note that if there are multiple empty blocks sharing the same incoming
1005 // value for the PHIs in the DestBB, we consider them together. In such
1006 // case, Cost(merging BB) will be the sum of their frequencies.
1008 if (!isa<PHINode>(DestBB->begin()))
1009 return true;
1011 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
1013 // Find all other incoming blocks from which incoming values of all PHIs in
1014 // DestBB are the same as the ones from BB.
1015 for (BasicBlock *DestBBPred : predecessors(DestBB)) {
1016 if (DestBBPred == BB)
1017 continue;
1019 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
1020 return DestPN.getIncomingValueForBlock(BB) ==
1021 DestPN.getIncomingValueForBlock(DestBBPred);
1023 SameIncomingValueBBs.insert(DestBBPred);
1026 // See if all BB's incoming values are same as the value from Pred. In this
1027 // case, no reason to skip merging because COPYs are expected to be place in
1028 // Pred already.
1029 if (SameIncomingValueBBs.count(Pred))
1030 return true;
1032 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
1033 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
1035 for (auto *SameValueBB : SameIncomingValueBBs)
1036 if (SameValueBB->getUniquePredecessor() == Pred &&
1037 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
1038 BBFreq += BFI->getBlockFreq(SameValueBB);
1040 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge);
1041 return !Limit || PredFreq <= *Limit;
1044 /// Return true if we can merge BB into DestBB if there is a single
1045 /// unconditional branch between them, and BB contains no other non-phi
1046 /// instructions.
1047 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
1048 const BasicBlock *DestBB) const {
1049 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1050 // the successor. If there are more complex condition (e.g. preheaders),
1051 // don't mess around with them.
1052 for (const PHINode &PN : BB->phis()) {
1053 for (const User *U : PN.users()) {
1054 const Instruction *UI = cast<Instruction>(U);
1055 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
1056 return false;
1057 // If User is inside DestBB block and it is a PHINode then check
1058 // incoming value. If incoming value is not from BB then this is
1059 // a complex condition (e.g. preheaders) we want to avoid here.
1060 if (UI->getParent() == DestBB) {
1061 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1062 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1063 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1064 if (Insn && Insn->getParent() == BB &&
1065 Insn->getParent() != UPN->getIncomingBlock(I))
1066 return false;
1072 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1073 // and DestBB may have conflicting incoming values for the block. If so, we
1074 // can't merge the block.
1075 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1076 if (!DestBBPN)
1077 return true; // no conflict.
1079 // Collect the preds of BB.
1080 SmallPtrSet<const BasicBlock *, 16> BBPreds;
1081 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1082 // It is faster to get preds from a PHI than with pred_iterator.
1083 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1084 BBPreds.insert(BBPN->getIncomingBlock(i));
1085 } else {
1086 BBPreds.insert(pred_begin(BB), pred_end(BB));
1089 // Walk the preds of DestBB.
1090 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1091 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1092 if (BBPreds.count(Pred)) { // Common predecessor?
1093 for (const PHINode &PN : DestBB->phis()) {
1094 const Value *V1 = PN.getIncomingValueForBlock(Pred);
1095 const Value *V2 = PN.getIncomingValueForBlock(BB);
1097 // If V2 is a phi node in BB, look up what the mapped value will be.
1098 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1099 if (V2PN->getParent() == BB)
1100 V2 = V2PN->getIncomingValueForBlock(Pred);
1102 // If there is a conflict, bail out.
1103 if (V1 != V2)
1104 return false;
1109 return true;
1112 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1113 static void replaceAllUsesWith(Value *Old, Value *New,
1114 SmallSet<BasicBlock *, 32> &FreshBBs,
1115 bool IsHuge) {
1116 auto *OldI = dyn_cast<Instruction>(Old);
1117 if (OldI) {
1118 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end();
1119 UI != E; ++UI) {
1120 Instruction *User = cast<Instruction>(*UI);
1121 if (IsHuge)
1122 FreshBBs.insert(User->getParent());
1125 Old->replaceAllUsesWith(New);
1128 /// Eliminate a basic block that has only phi's and an unconditional branch in
1129 /// it.
1130 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1131 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1132 BasicBlock *DestBB = BI->getSuccessor(0);
1134 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1135 << *BB << *DestBB);
1137 // If the destination block has a single pred, then this is a trivial edge,
1138 // just collapse it.
1139 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1140 if (SinglePred != DestBB) {
1141 assert(SinglePred == BB &&
1142 "Single predecessor not the same as predecessor");
1143 // Merge DestBB into SinglePred/BB and delete it.
1144 MergeBlockIntoPredecessor(DestBB);
1145 // Note: BB(=SinglePred) will not be deleted on this path.
1146 // DestBB(=its single successor) is the one that was deleted.
1147 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
1149 if (IsHugeFunc) {
1150 // Update FreshBBs to optimize the merged BB.
1151 FreshBBs.insert(SinglePred);
1152 FreshBBs.erase(DestBB);
1154 return;
1158 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
1159 // to handle the new incoming edges it is about to have.
1160 for (PHINode &PN : DestBB->phis()) {
1161 // Remove the incoming value for BB, and remember it.
1162 Value *InVal = PN.removeIncomingValue(BB, false);
1164 // Two options: either the InVal is a phi node defined in BB or it is some
1165 // value that dominates BB.
1166 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1167 if (InValPhi && InValPhi->getParent() == BB) {
1168 // Add all of the input values of the input PHI as inputs of this phi.
1169 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1170 PN.addIncoming(InValPhi->getIncomingValue(i),
1171 InValPhi->getIncomingBlock(i));
1172 } else {
1173 // Otherwise, add one instance of the dominating value for each edge that
1174 // we will be adding.
1175 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1176 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1177 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1178 } else {
1179 for (BasicBlock *Pred : predecessors(BB))
1180 PN.addIncoming(InVal, Pred);
1185 // The PHIs are now updated, change everything that refers to BB to use
1186 // DestBB and remove BB.
1187 BB->replaceAllUsesWith(DestBB);
1188 BB->eraseFromParent();
1189 ++NumBlocksElim;
1191 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1194 // Computes a map of base pointer relocation instructions to corresponding
1195 // derived pointer relocation instructions given a vector of all relocate calls
1196 static void computeBaseDerivedRelocateMap(
1197 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1198 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1199 &RelocateInstMap) {
1200 // Collect information in two maps: one primarily for locating the base object
1201 // while filling the second map; the second map is the final structure holding
1202 // a mapping between Base and corresponding Derived relocate calls
1203 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1204 for (auto *ThisRelocate : AllRelocateCalls) {
1205 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1206 ThisRelocate->getDerivedPtrIndex());
1207 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1209 for (auto &Item : RelocateIdxMap) {
1210 std::pair<unsigned, unsigned> Key = Item.first;
1211 if (Key.first == Key.second)
1212 // Base relocation: nothing to insert
1213 continue;
1215 GCRelocateInst *I = Item.second;
1216 auto BaseKey = std::make_pair(Key.first, Key.first);
1218 // We're iterating over RelocateIdxMap so we cannot modify it.
1219 auto MaybeBase = RelocateIdxMap.find(BaseKey);
1220 if (MaybeBase == RelocateIdxMap.end())
1221 // TODO: We might want to insert a new base object relocate and gep off
1222 // that, if there are enough derived object relocates.
1223 continue;
1225 RelocateInstMap[MaybeBase->second].push_back(I);
1229 // Accepts a GEP and extracts the operands into a vector provided they're all
1230 // small integer constants
1231 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1232 SmallVectorImpl<Value *> &OffsetV) {
1233 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1234 // Only accept small constant integer operands
1235 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1236 if (!Op || Op->getZExtValue() > 20)
1237 return false;
1240 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1241 OffsetV.push_back(GEP->getOperand(i));
1242 return true;
1245 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1246 // replace, computes a replacement, and affects it.
1247 static bool
1248 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1249 const SmallVectorImpl<GCRelocateInst *> &Targets) {
1250 bool MadeChange = false;
1251 // We must ensure the relocation of derived pointer is defined after
1252 // relocation of base pointer. If we find a relocation corresponding to base
1253 // defined earlier than relocation of base then we move relocation of base
1254 // right before found relocation. We consider only relocation in the same
1255 // basic block as relocation of base. Relocations from other basic block will
1256 // be skipped by optimization and we do not care about them.
1257 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1258 &*R != RelocatedBase; ++R)
1259 if (auto *RI = dyn_cast<GCRelocateInst>(R))
1260 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1261 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1262 RelocatedBase->moveBefore(RI);
1263 MadeChange = true;
1264 break;
1267 for (GCRelocateInst *ToReplace : Targets) {
1268 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1269 "Not relocating a derived object of the original base object");
1270 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1271 // A duplicate relocate call. TODO: coalesce duplicates.
1272 continue;
1275 if (RelocatedBase->getParent() != ToReplace->getParent()) {
1276 // Base and derived relocates are in different basic blocks.
1277 // In this case transform is only valid when base dominates derived
1278 // relocate. However it would be too expensive to check dominance
1279 // for each such relocate, so we skip the whole transformation.
1280 continue;
1283 Value *Base = ToReplace->getBasePtr();
1284 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1285 if (!Derived || Derived->getPointerOperand() != Base)
1286 continue;
1288 SmallVector<Value *, 2> OffsetV;
1289 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1290 continue;
1292 // Create a Builder and replace the target callsite with a gep
1293 assert(RelocatedBase->getNextNode() &&
1294 "Should always have one since it's not a terminator");
1296 // Insert after RelocatedBase
1297 IRBuilder<> Builder(RelocatedBase->getNextNode());
1298 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1300 // If gc_relocate does not match the actual type, cast it to the right type.
1301 // In theory, there must be a bitcast after gc_relocate if the type does not
1302 // match, and we should reuse it to get the derived pointer. But it could be
1303 // cases like this:
1304 // bb1:
1305 // ...
1306 // %g1 = call coldcc i8 addrspace(1)*
1307 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1309 // bb2:
1310 // ...
1311 // %g2 = call coldcc i8 addrspace(1)*
1312 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1314 // merge:
1315 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1316 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1318 // In this case, we can not find the bitcast any more. So we insert a new
1319 // bitcast no matter there is already one or not. In this way, we can handle
1320 // all cases, and the extra bitcast should be optimized away in later
1321 // passes.
1322 Value *ActualRelocatedBase = RelocatedBase;
1323 if (RelocatedBase->getType() != Base->getType()) {
1324 ActualRelocatedBase =
1325 Builder.CreateBitCast(RelocatedBase, Base->getType());
1327 Value *Replacement =
1328 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase,
1329 ArrayRef(OffsetV));
1330 Replacement->takeName(ToReplace);
1331 // If the newly generated derived pointer's type does not match the original
1332 // derived pointer's type, cast the new derived pointer to match it. Same
1333 // reasoning as above.
1334 Value *ActualReplacement = Replacement;
1335 if (Replacement->getType() != ToReplace->getType()) {
1336 ActualReplacement =
1337 Builder.CreateBitCast(Replacement, ToReplace->getType());
1339 ToReplace->replaceAllUsesWith(ActualReplacement);
1340 ToReplace->eraseFromParent();
1342 MadeChange = true;
1344 return MadeChange;
1347 // Turns this:
1349 // %base = ...
1350 // %ptr = gep %base + 15
1351 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1352 // %base' = relocate(%tok, i32 4, i32 4)
1353 // %ptr' = relocate(%tok, i32 4, i32 5)
1354 // %val = load %ptr'
1356 // into this:
1358 // %base = ...
1359 // %ptr = gep %base + 15
1360 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1361 // %base' = gc.relocate(%tok, i32 4, i32 4)
1362 // %ptr' = gep %base' + 15
1363 // %val = load %ptr'
1364 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1365 bool MadeChange = false;
1366 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1367 for (auto *U : I.users())
1368 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1369 // Collect all the relocate calls associated with a statepoint
1370 AllRelocateCalls.push_back(Relocate);
1372 // We need at least one base pointer relocation + one derived pointer
1373 // relocation to mangle
1374 if (AllRelocateCalls.size() < 2)
1375 return false;
1377 // RelocateInstMap is a mapping from the base relocate instruction to the
1378 // corresponding derived relocate instructions
1379 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1380 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1381 if (RelocateInstMap.empty())
1382 return false;
1384 for (auto &Item : RelocateInstMap)
1385 // Item.first is the RelocatedBase to offset against
1386 // Item.second is the vector of Targets to replace
1387 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1388 return MadeChange;
1391 /// Sink the specified cast instruction into its user blocks.
1392 static bool SinkCast(CastInst *CI) {
1393 BasicBlock *DefBB = CI->getParent();
1395 /// InsertedCasts - Only insert a cast in each block once.
1396 DenseMap<BasicBlock *, CastInst *> InsertedCasts;
1398 bool MadeChange = false;
1399 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1400 UI != E;) {
1401 Use &TheUse = UI.getUse();
1402 Instruction *User = cast<Instruction>(*UI);
1404 // Figure out which BB this cast is used in. For PHI's this is the
1405 // appropriate predecessor block.
1406 BasicBlock *UserBB = User->getParent();
1407 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1408 UserBB = PN->getIncomingBlock(TheUse);
1411 // Preincrement use iterator so we don't invalidate it.
1412 ++UI;
1414 // The first insertion point of a block containing an EH pad is after the
1415 // pad. If the pad is the user, we cannot sink the cast past the pad.
1416 if (User->isEHPad())
1417 continue;
1419 // If the block selected to receive the cast is an EH pad that does not
1420 // allow non-PHI instructions before the terminator, we can't sink the
1421 // cast.
1422 if (UserBB->getTerminator()->isEHPad())
1423 continue;
1425 // If this user is in the same block as the cast, don't change the cast.
1426 if (UserBB == DefBB)
1427 continue;
1429 // If we have already inserted a cast into this block, use it.
1430 CastInst *&InsertedCast = InsertedCasts[UserBB];
1432 if (!InsertedCast) {
1433 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1434 assert(InsertPt != UserBB->end());
1435 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1436 CI->getType(), "");
1437 InsertedCast->insertBefore(*UserBB, InsertPt);
1438 InsertedCast->setDebugLoc(CI->getDebugLoc());
1441 // Replace a use of the cast with a use of the new cast.
1442 TheUse = InsertedCast;
1443 MadeChange = true;
1444 ++NumCastUses;
1447 // If we removed all uses, nuke the cast.
1448 if (CI->use_empty()) {
1449 salvageDebugInfo(*CI);
1450 CI->eraseFromParent();
1451 MadeChange = true;
1454 return MadeChange;
1457 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1458 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1459 /// reduce the number of virtual registers that must be created and coalesced.
1461 /// Return true if any changes are made.
1462 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1463 const DataLayout &DL) {
1464 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1465 // than sinking only nop casts, but is helpful on some platforms.
1466 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1467 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1468 ASC->getDestAddressSpace()))
1469 return false;
1472 // If this is a noop copy,
1473 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1474 EVT DstVT = TLI.getValueType(DL, CI->getType());
1476 // This is an fp<->int conversion?
1477 if (SrcVT.isInteger() != DstVT.isInteger())
1478 return false;
1480 // If this is an extension, it will be a zero or sign extension, which
1481 // isn't a noop.
1482 if (SrcVT.bitsLT(DstVT))
1483 return false;
1485 // If these values will be promoted, find out what they will be promoted
1486 // to. This helps us consider truncates on PPC as noop copies when they
1487 // are.
1488 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1489 TargetLowering::TypePromoteInteger)
1490 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1491 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1492 TargetLowering::TypePromoteInteger)
1493 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1495 // If, after promotion, these are the same types, this is a noop copy.
1496 if (SrcVT != DstVT)
1497 return false;
1499 return SinkCast(CI);
1502 // Match a simple increment by constant operation. Note that if a sub is
1503 // matched, the step is negated (as if the step had been canonicalized to
1504 // an add, even though we leave the instruction alone.)
1505 bool matchIncrement(const Instruction *IVInc, Instruction *&LHS,
1506 Constant *&Step) {
1507 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1508 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1509 m_Instruction(LHS), m_Constant(Step)))))
1510 return true;
1511 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1512 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1513 m_Instruction(LHS), m_Constant(Step))))) {
1514 Step = ConstantExpr::getNeg(Step);
1515 return true;
1517 return false;
1520 /// If given \p PN is an inductive variable with value IVInc coming from the
1521 /// backedge, and on each iteration it gets increased by Step, return pair
1522 /// <IVInc, Step>. Otherwise, return std::nullopt.
1523 static std::optional<std::pair<Instruction *, Constant *>>
1524 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1525 const Loop *L = LI->getLoopFor(PN->getParent());
1526 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1527 return std::nullopt;
1528 auto *IVInc =
1529 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1530 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1531 return std::nullopt;
1532 Instruction *LHS = nullptr;
1533 Constant *Step = nullptr;
1534 if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1535 return std::make_pair(IVInc, Step);
1536 return std::nullopt;
1539 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1540 auto *I = dyn_cast<Instruction>(V);
1541 if (!I)
1542 return false;
1543 Instruction *LHS = nullptr;
1544 Constant *Step = nullptr;
1545 if (!matchIncrement(I, LHS, Step))
1546 return false;
1547 if (auto *PN = dyn_cast<PHINode>(LHS))
1548 if (auto IVInc = getIVIncrement(PN, LI))
1549 return IVInc->first == I;
1550 return false;
1553 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1554 Value *Arg0, Value *Arg1,
1555 CmpInst *Cmp,
1556 Intrinsic::ID IID) {
1557 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1558 if (!isIVIncrement(BO, LI))
1559 return false;
1560 const Loop *L = LI->getLoopFor(BO->getParent());
1561 assert(L && "L should not be null after isIVIncrement()");
1562 // Do not risk on moving increment into a child loop.
1563 if (LI->getLoopFor(Cmp->getParent()) != L)
1564 return false;
1566 // Finally, we need to ensure that the insert point will dominate all
1567 // existing uses of the increment.
1569 auto &DT = getDT(*BO->getParent()->getParent());
1570 if (DT.dominates(Cmp->getParent(), BO->getParent()))
1571 // If we're moving up the dom tree, all uses are trivially dominated.
1572 // (This is the common case for code produced by LSR.)
1573 return true;
1575 // Otherwise, special case the single use in the phi recurrence.
1576 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1578 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1579 // We used to use a dominator tree here to allow multi-block optimization.
1580 // But that was problematic because:
1581 // 1. It could cause a perf regression by hoisting the math op into the
1582 // critical path.
1583 // 2. It could cause a perf regression by creating a value that was live
1584 // across multiple blocks and increasing register pressure.
1585 // 3. Use of a dominator tree could cause large compile-time regression.
1586 // This is because we recompute the DT on every change in the main CGP
1587 // run-loop. The recomputing is probably unnecessary in many cases, so if
1588 // that was fixed, using a DT here would be ok.
1590 // There is one important particular case we still want to handle: if BO is
1591 // the IV increment. Important properties that make it profitable:
1592 // - We can speculate IV increment anywhere in the loop (as long as the
1593 // indvar Phi is its only user);
1594 // - Upon computing Cmp, we effectively compute something equivalent to the
1595 // IV increment (despite it loops differently in the IR). So moving it up
1596 // to the cmp point does not really increase register pressure.
1597 return false;
1600 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1601 if (BO->getOpcode() == Instruction::Add &&
1602 IID == Intrinsic::usub_with_overflow) {
1603 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1604 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1607 // Insert at the first instruction of the pair.
1608 Instruction *InsertPt = nullptr;
1609 for (Instruction &Iter : *Cmp->getParent()) {
1610 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1611 // the overflow intrinsic are defined.
1612 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1613 InsertPt = &Iter;
1614 break;
1617 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1619 IRBuilder<> Builder(InsertPt);
1620 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1621 if (BO->getOpcode() != Instruction::Xor) {
1622 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1623 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc);
1624 } else
1625 assert(BO->hasOneUse() &&
1626 "Patterns with XOr should use the BO only in the compare");
1627 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1628 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc);
1629 Cmp->eraseFromParent();
1630 BO->eraseFromParent();
1631 return true;
1634 /// Match special-case patterns that check for unsigned add overflow.
1635 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1636 BinaryOperator *&Add) {
1637 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1638 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1639 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1641 // We are not expecting non-canonical/degenerate code. Just bail out.
1642 if (isa<Constant>(A))
1643 return false;
1645 ICmpInst::Predicate Pred = Cmp->getPredicate();
1646 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1647 B = ConstantInt::get(B->getType(), 1);
1648 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1649 B = ConstantInt::get(B->getType(), -1);
1650 else
1651 return false;
1653 // Check the users of the variable operand of the compare looking for an add
1654 // with the adjusted constant.
1655 for (User *U : A->users()) {
1656 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1657 Add = cast<BinaryOperator>(U);
1658 return true;
1661 return false;
1664 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1665 /// intrinsic. Return true if any changes were made.
1666 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1667 ModifyDT &ModifiedDT) {
1668 bool EdgeCase = false;
1669 Value *A, *B;
1670 BinaryOperator *Add;
1671 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1672 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1673 return false;
1674 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1675 A = Add->getOperand(0);
1676 B = Add->getOperand(1);
1677 EdgeCase = true;
1680 if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1681 TLI->getValueType(*DL, Add->getType()),
1682 Add->hasNUsesOrMore(EdgeCase ? 1 : 2)))
1683 return false;
1685 // We don't want to move around uses of condition values this late, so we
1686 // check if it is legal to create the call to the intrinsic in the basic
1687 // block containing the icmp.
1688 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1689 return false;
1691 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1692 Intrinsic::uadd_with_overflow))
1693 return false;
1695 // Reset callers - do not crash by iterating over a dead instruction.
1696 ModifiedDT = ModifyDT::ModifyInstDT;
1697 return true;
1700 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1701 ModifyDT &ModifiedDT) {
1702 // We are not expecting non-canonical/degenerate code. Just bail out.
1703 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1704 if (isa<Constant>(A) && isa<Constant>(B))
1705 return false;
1707 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1708 ICmpInst::Predicate Pred = Cmp->getPredicate();
1709 if (Pred == ICmpInst::ICMP_UGT) {
1710 std::swap(A, B);
1711 Pred = ICmpInst::ICMP_ULT;
1713 // Convert special-case: (A == 0) is the same as (A u< 1).
1714 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1715 B = ConstantInt::get(B->getType(), 1);
1716 Pred = ICmpInst::ICMP_ULT;
1718 // Convert special-case: (A != 0) is the same as (0 u< A).
1719 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1720 std::swap(A, B);
1721 Pred = ICmpInst::ICMP_ULT;
1723 if (Pred != ICmpInst::ICMP_ULT)
1724 return false;
1726 // Walk the users of a variable operand of a compare looking for a subtract or
1727 // add with that same operand. Also match the 2nd operand of the compare to
1728 // the add/sub, but that may be a negated constant operand of an add.
1729 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1730 BinaryOperator *Sub = nullptr;
1731 for (User *U : CmpVariableOperand->users()) {
1732 // A - B, A u< B --> usubo(A, B)
1733 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1734 Sub = cast<BinaryOperator>(U);
1735 break;
1738 // A + (-C), A u< C (canonicalized form of (sub A, C))
1739 const APInt *CmpC, *AddC;
1740 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1741 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1742 Sub = cast<BinaryOperator>(U);
1743 break;
1746 if (!Sub)
1747 return false;
1749 if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1750 TLI->getValueType(*DL, Sub->getType()),
1751 Sub->hasNUsesOrMore(1)))
1752 return false;
1754 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1755 Cmp, Intrinsic::usub_with_overflow))
1756 return false;
1758 // Reset callers - do not crash by iterating over a dead instruction.
1759 ModifiedDT = ModifyDT::ModifyInstDT;
1760 return true;
1763 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1764 /// registers that must be created and coalesced. This is a clear win except on
1765 /// targets with multiple condition code registers (PowerPC), where it might
1766 /// lose; some adjustment may be wanted there.
1768 /// Return true if any changes are made.
1769 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1770 if (TLI.hasMultipleConditionRegisters())
1771 return false;
1773 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1774 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1775 return false;
1777 // Only insert a cmp in each block once.
1778 DenseMap<BasicBlock *, CmpInst *> InsertedCmps;
1780 bool MadeChange = false;
1781 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1782 UI != E;) {
1783 Use &TheUse = UI.getUse();
1784 Instruction *User = cast<Instruction>(*UI);
1786 // Preincrement use iterator so we don't invalidate it.
1787 ++UI;
1789 // Don't bother for PHI nodes.
1790 if (isa<PHINode>(User))
1791 continue;
1793 // Figure out which BB this cmp is used in.
1794 BasicBlock *UserBB = User->getParent();
1795 BasicBlock *DefBB = Cmp->getParent();
1797 // If this user is in the same block as the cmp, don't change the cmp.
1798 if (UserBB == DefBB)
1799 continue;
1801 // If we have already inserted a cmp into this block, use it.
1802 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1804 if (!InsertedCmp) {
1805 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1806 assert(InsertPt != UserBB->end());
1807 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1808 Cmp->getOperand(0), Cmp->getOperand(1), "");
1809 InsertedCmp->insertBefore(*UserBB, InsertPt);
1810 // Propagate the debug info.
1811 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1814 // Replace a use of the cmp with a use of the new cmp.
1815 TheUse = InsertedCmp;
1816 MadeChange = true;
1817 ++NumCmpUses;
1820 // If we removed all uses, nuke the cmp.
1821 if (Cmp->use_empty()) {
1822 Cmp->eraseFromParent();
1823 MadeChange = true;
1826 return MadeChange;
1829 /// For pattern like:
1831 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1832 /// ...
1833 /// DomBB:
1834 /// ...
1835 /// br DomCond, TrueBB, CmpBB
1836 /// CmpBB: (with DomBB being the single predecessor)
1837 /// ...
1838 /// Cmp = icmp eq CmpOp0, CmpOp1
1839 /// ...
1841 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1842 /// different from lowering of icmp eq (PowerPC). This function try to convert
1843 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1844 /// After that, DomCond and Cmp can use the same comparison so reduce one
1845 /// comparison.
1847 /// Return true if any changes are made.
1848 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1849 const TargetLowering &TLI) {
1850 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1851 return false;
1853 ICmpInst::Predicate Pred = Cmp->getPredicate();
1854 if (Pred != ICmpInst::ICMP_EQ)
1855 return false;
1857 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1858 // icmp slt/sgt would introduce more redundant LLVM IR.
1859 for (User *U : Cmp->users()) {
1860 if (isa<BranchInst>(U))
1861 continue;
1862 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1863 continue;
1864 return false;
1867 // This is a cheap/incomplete check for dominance - just match a single
1868 // predecessor with a conditional branch.
1869 BasicBlock *CmpBB = Cmp->getParent();
1870 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1871 if (!DomBB)
1872 return false;
1874 // We want to ensure that the only way control gets to the comparison of
1875 // interest is that a less/greater than comparison on the same operands is
1876 // false.
1877 Value *DomCond;
1878 BasicBlock *TrueBB, *FalseBB;
1879 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1880 return false;
1881 if (CmpBB != FalseBB)
1882 return false;
1884 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1885 ICmpInst::Predicate DomPred;
1886 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1887 return false;
1888 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1889 return false;
1891 // Convert the equality comparison to the opposite of the dominating
1892 // comparison and swap the direction for all branch/select users.
1893 // We have conceptually converted:
1894 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1895 // to
1896 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1897 // And similarly for branches.
1898 for (User *U : Cmp->users()) {
1899 if (auto *BI = dyn_cast<BranchInst>(U)) {
1900 assert(BI->isConditional() && "Must be conditional");
1901 BI->swapSuccessors();
1902 continue;
1904 if (auto *SI = dyn_cast<SelectInst>(U)) {
1905 // Swap operands
1906 SI->swapValues();
1907 SI->swapProfMetadata();
1908 continue;
1910 llvm_unreachable("Must be a branch or a select");
1912 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1913 return true;
1916 /// Many architectures use the same instruction for both subtract and cmp. Try
1917 /// to swap cmp operands to match subtract operations to allow for CSE.
1918 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) {
1919 Value *Op0 = Cmp->getOperand(0);
1920 Value *Op1 = Cmp->getOperand(1);
1921 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) ||
1922 isa<Constant>(Op1) || Op0 == Op1)
1923 return false;
1925 // If a subtract already has the same operands as a compare, swapping would be
1926 // bad. If a subtract has the same operands as a compare but in reverse order,
1927 // then swapping is good.
1928 int GoodToSwap = 0;
1929 unsigned NumInspected = 0;
1930 for (const User *U : Op0->users()) {
1931 // Avoid walking many users.
1932 if (++NumInspected > 128)
1933 return false;
1934 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
1935 GoodToSwap++;
1936 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
1937 GoodToSwap--;
1940 if (GoodToSwap > 0) {
1941 Cmp->swapOperands();
1942 return true;
1944 return false;
1947 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) {
1948 if (sinkCmpExpression(Cmp, *TLI))
1949 return true;
1951 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1952 return true;
1954 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1955 return true;
1957 if (foldICmpWithDominatingICmp(Cmp, *TLI))
1958 return true;
1960 if (swapICmpOperandsToExposeCSEOpportunities(Cmp))
1961 return true;
1963 return false;
1966 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1967 /// used in a compare to allow isel to generate better code for targets where
1968 /// this operation can be combined.
1970 /// Return true if any changes are made.
1971 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI,
1972 SetOfInstrs &InsertedInsts) {
1973 // Double-check that we're not trying to optimize an instruction that was
1974 // already optimized by some other part of this pass.
1975 assert(!InsertedInsts.count(AndI) &&
1976 "Attempting to optimize already optimized and instruction");
1977 (void)InsertedInsts;
1979 // Nothing to do for single use in same basic block.
1980 if (AndI->hasOneUse() &&
1981 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1982 return false;
1984 // Try to avoid cases where sinking/duplicating is likely to increase register
1985 // pressure.
1986 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1987 !isa<ConstantInt>(AndI->getOperand(1)) &&
1988 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1989 return false;
1991 for (auto *U : AndI->users()) {
1992 Instruction *User = cast<Instruction>(U);
1994 // Only sink 'and' feeding icmp with 0.
1995 if (!isa<ICmpInst>(User))
1996 return false;
1998 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1999 if (!CmpC || !CmpC->isZero())
2000 return false;
2003 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
2004 return false;
2006 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2007 LLVM_DEBUG(AndI->getParent()->dump());
2009 // Push the 'and' into the same block as the icmp 0. There should only be
2010 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2011 // others, so we don't need to keep track of which BBs we insert into.
2012 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
2013 UI != E;) {
2014 Use &TheUse = UI.getUse();
2015 Instruction *User = cast<Instruction>(*UI);
2017 // Preincrement use iterator so we don't invalidate it.
2018 ++UI;
2020 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
2022 // Keep the 'and' in the same place if the use is already in the same block.
2023 Instruction *InsertPt =
2024 User->getParent() == AndI->getParent() ? AndI : User;
2025 Instruction *InsertedAnd =
2026 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
2027 AndI->getOperand(1), "", InsertPt);
2028 // Propagate the debug info.
2029 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
2031 // Replace a use of the 'and' with a use of the new 'and'.
2032 TheUse = InsertedAnd;
2033 ++NumAndUses;
2034 LLVM_DEBUG(User->getParent()->dump());
2037 // We removed all uses, nuke the and.
2038 AndI->eraseFromParent();
2039 return true;
2042 /// Check if the candidates could be combined with a shift instruction, which
2043 /// includes:
2044 /// 1. Truncate instruction
2045 /// 2. And instruction and the imm is a mask of the low bits:
2046 /// imm & (imm+1) == 0
2047 static bool isExtractBitsCandidateUse(Instruction *User) {
2048 if (!isa<TruncInst>(User)) {
2049 if (User->getOpcode() != Instruction::And ||
2050 !isa<ConstantInt>(User->getOperand(1)))
2051 return false;
2053 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
2055 if ((Cimm & (Cimm + 1)).getBoolValue())
2056 return false;
2058 return true;
2061 /// Sink both shift and truncate instruction to the use of truncate's BB.
2062 static bool
2063 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
2064 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
2065 const TargetLowering &TLI, const DataLayout &DL) {
2066 BasicBlock *UserBB = User->getParent();
2067 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
2068 auto *TruncI = cast<TruncInst>(User);
2069 bool MadeChange = false;
2071 for (Value::user_iterator TruncUI = TruncI->user_begin(),
2072 TruncE = TruncI->user_end();
2073 TruncUI != TruncE;) {
2075 Use &TruncTheUse = TruncUI.getUse();
2076 Instruction *TruncUser = cast<Instruction>(*TruncUI);
2077 // Preincrement use iterator so we don't invalidate it.
2079 ++TruncUI;
2081 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
2082 if (!ISDOpcode)
2083 continue;
2085 // If the use is actually a legal node, there will not be an
2086 // implicit truncate.
2087 // FIXME: always querying the result type is just an
2088 // approximation; some nodes' legality is determined by the
2089 // operand or other means. There's no good way to find out though.
2090 if (TLI.isOperationLegalOrCustom(
2091 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
2092 continue;
2094 // Don't bother for PHI nodes.
2095 if (isa<PHINode>(TruncUser))
2096 continue;
2098 BasicBlock *TruncUserBB = TruncUser->getParent();
2100 if (UserBB == TruncUserBB)
2101 continue;
2103 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
2104 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
2106 if (!InsertedShift && !InsertedTrunc) {
2107 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
2108 assert(InsertPt != TruncUserBB->end());
2109 // Sink the shift
2110 if (ShiftI->getOpcode() == Instruction::AShr)
2111 InsertedShift =
2112 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2113 else
2114 InsertedShift =
2115 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2116 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2117 InsertedShift->insertBefore(*TruncUserBB, InsertPt);
2119 // Sink the trunc
2120 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
2121 TruncInsertPt++;
2122 // It will go ahead of any debug-info.
2123 TruncInsertPt.setHeadBit(true);
2124 assert(TruncInsertPt != TruncUserBB->end());
2126 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
2127 TruncI->getType(), "");
2128 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt);
2129 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
2131 MadeChange = true;
2133 TruncTheUse = InsertedTrunc;
2136 return MadeChange;
2139 /// Sink the shift *right* instruction into user blocks if the uses could
2140 /// potentially be combined with this shift instruction and generate BitExtract
2141 /// instruction. It will only be applied if the architecture supports BitExtract
2142 /// instruction. Here is an example:
2143 /// BB1:
2144 /// %x.extract.shift = lshr i64 %arg1, 32
2145 /// BB2:
2146 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
2147 /// ==>
2149 /// BB2:
2150 /// %x.extract.shift.1 = lshr i64 %arg1, 32
2151 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2153 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2154 /// instruction.
2155 /// Return true if any changes are made.
2156 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
2157 const TargetLowering &TLI,
2158 const DataLayout &DL) {
2159 BasicBlock *DefBB = ShiftI->getParent();
2161 /// Only insert instructions in each block once.
2162 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
2164 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
2166 bool MadeChange = false;
2167 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
2168 UI != E;) {
2169 Use &TheUse = UI.getUse();
2170 Instruction *User = cast<Instruction>(*UI);
2171 // Preincrement use iterator so we don't invalidate it.
2172 ++UI;
2174 // Don't bother for PHI nodes.
2175 if (isa<PHINode>(User))
2176 continue;
2178 if (!isExtractBitsCandidateUse(User))
2179 continue;
2181 BasicBlock *UserBB = User->getParent();
2183 if (UserBB == DefBB) {
2184 // If the shift and truncate instruction are in the same BB. The use of
2185 // the truncate(TruncUse) may still introduce another truncate if not
2186 // legal. In this case, we would like to sink both shift and truncate
2187 // instruction to the BB of TruncUse.
2188 // for example:
2189 // BB1:
2190 // i64 shift.result = lshr i64 opnd, imm
2191 // trunc.result = trunc shift.result to i16
2193 // BB2:
2194 // ----> We will have an implicit truncate here if the architecture does
2195 // not have i16 compare.
2196 // cmp i16 trunc.result, opnd2
2198 if (isa<TruncInst>(User) &&
2199 shiftIsLegal
2200 // If the type of the truncate is legal, no truncate will be
2201 // introduced in other basic blocks.
2202 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
2203 MadeChange =
2204 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
2206 continue;
2208 // If we have already inserted a shift into this block, use it.
2209 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
2211 if (!InsertedShift) {
2212 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2213 assert(InsertPt != UserBB->end());
2215 if (ShiftI->getOpcode() == Instruction::AShr)
2216 InsertedShift =
2217 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2218 else
2219 InsertedShift =
2220 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2221 InsertedShift->insertBefore(*UserBB, InsertPt);
2222 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2224 MadeChange = true;
2227 // Replace a use of the shift with a use of the new shift.
2228 TheUse = InsertedShift;
2231 // If we removed all uses, or there are none, nuke the shift.
2232 if (ShiftI->use_empty()) {
2233 salvageDebugInfo(*ShiftI);
2234 ShiftI->eraseFromParent();
2235 MadeChange = true;
2238 return MadeChange;
2241 /// If counting leading or trailing zeros is an expensive operation and a zero
2242 /// input is defined, add a check for zero to avoid calling the intrinsic.
2244 /// We want to transform:
2245 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2247 /// into:
2248 /// entry:
2249 /// %cmpz = icmp eq i64 %A, 0
2250 /// br i1 %cmpz, label %cond.end, label %cond.false
2251 /// cond.false:
2252 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2253 /// br label %cond.end
2254 /// cond.end:
2255 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2257 /// If the transform is performed, return true and set ModifiedDT to true.
2258 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2259 LoopInfo &LI,
2260 const TargetLowering *TLI,
2261 const DataLayout *DL, ModifyDT &ModifiedDT,
2262 SmallSet<BasicBlock *, 32> &FreshBBs,
2263 bool IsHugeFunc) {
2264 // If a zero input is undefined, it doesn't make sense to despeculate that.
2265 if (match(CountZeros->getOperand(1), m_One()))
2266 return false;
2268 // If it's cheap to speculate, there's nothing to do.
2269 Type *Ty = CountZeros->getType();
2270 auto IntrinsicID = CountZeros->getIntrinsicID();
2271 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) ||
2272 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty)))
2273 return false;
2275 // Only handle legal scalar cases. Anything else requires too much work.
2276 unsigned SizeInBits = Ty->getScalarSizeInBits();
2277 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2278 return false;
2280 // Bail if the value is never zero.
2281 Use &Op = CountZeros->getOperandUse(0);
2282 if (isKnownNonZero(Op, *DL))
2283 return false;
2285 // The intrinsic will be sunk behind a compare against zero and branch.
2286 BasicBlock *StartBlock = CountZeros->getParent();
2287 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2288 if (IsHugeFunc)
2289 FreshBBs.insert(CallBlock);
2291 // Create another block after the count zero intrinsic. A PHI will be added
2292 // in this block to select the result of the intrinsic or the bit-width
2293 // constant if the input to the intrinsic is zero.
2294 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros));
2295 // Any debug-info after CountZeros should not be included.
2296 SplitPt.setHeadBit(true);
2297 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2298 if (IsHugeFunc)
2299 FreshBBs.insert(EndBlock);
2301 // Update the LoopInfo. The new blocks are in the same loop as the start
2302 // block.
2303 if (Loop *L = LI.getLoopFor(StartBlock)) {
2304 L->addBasicBlockToLoop(CallBlock, LI);
2305 L->addBasicBlockToLoop(EndBlock, LI);
2308 // Set up a builder to create a compare, conditional branch, and PHI.
2309 IRBuilder<> Builder(CountZeros->getContext());
2310 Builder.SetInsertPoint(StartBlock->getTerminator());
2311 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2313 // Replace the unconditional branch that was created by the first split with
2314 // a compare against zero and a conditional branch.
2315 Value *Zero = Constant::getNullValue(Ty);
2316 // Avoid introducing branch on poison. This also replaces the ctz operand.
2317 if (!isGuaranteedNotToBeUndefOrPoison(Op))
2318 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2319 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2320 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2321 StartBlock->getTerminator()->eraseFromParent();
2323 // Create a PHI in the end block to select either the output of the intrinsic
2324 // or the bit width of the operand.
2325 Builder.SetInsertPoint(EndBlock, EndBlock->begin());
2326 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2327 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc);
2328 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2329 PN->addIncoming(BitWidth, StartBlock);
2330 PN->addIncoming(CountZeros, CallBlock);
2332 // We are explicitly handling the zero case, so we can set the intrinsic's
2333 // undefined zero argument to 'true'. This will also prevent reprocessing the
2334 // intrinsic; we only despeculate when a zero input is defined.
2335 CountZeros->setArgOperand(1, Builder.getTrue());
2336 ModifiedDT = ModifyDT::ModifyBBDT;
2337 return true;
2340 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) {
2341 BasicBlock *BB = CI->getParent();
2343 // Lower inline assembly if we can.
2344 // If we found an inline asm expession, and if the target knows how to
2345 // lower it to normal LLVM code, do so now.
2346 if (CI->isInlineAsm()) {
2347 if (TLI->ExpandInlineAsm(CI)) {
2348 // Avoid invalidating the iterator.
2349 CurInstIterator = BB->begin();
2350 // Avoid processing instructions out of order, which could cause
2351 // reuse before a value is defined.
2352 SunkAddrs.clear();
2353 return true;
2355 // Sink address computing for memory operands into the block.
2356 if (optimizeInlineAsmInst(CI))
2357 return true;
2360 // Align the pointer arguments to this call if the target thinks it's a good
2361 // idea
2362 unsigned MinSize;
2363 Align PrefAlign;
2364 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2365 for (auto &Arg : CI->args()) {
2366 // We want to align both objects whose address is used directly and
2367 // objects whose address is used in casts and GEPs, though it only makes
2368 // sense for GEPs if the offset is a multiple of the desired alignment and
2369 // if size - offset meets the size threshold.
2370 if (!Arg->getType()->isPointerTy())
2371 continue;
2372 APInt Offset(DL->getIndexSizeInBits(
2373 cast<PointerType>(Arg->getType())->getAddressSpace()),
2375 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2376 uint64_t Offset2 = Offset.getLimitedValue();
2377 if (!isAligned(PrefAlign, Offset2))
2378 continue;
2379 AllocaInst *AI;
2380 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2381 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2382 AI->setAlignment(PrefAlign);
2383 // Global variables can only be aligned if they are defined in this
2384 // object (i.e. they are uniquely initialized in this object), and
2385 // over-aligning global variables that have an explicit section is
2386 // forbidden.
2387 GlobalVariable *GV;
2388 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2389 GV->getPointerAlignment(*DL) < PrefAlign &&
2390 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2)
2391 GV->setAlignment(PrefAlign);
2394 // If this is a memcpy (or similar) then we may be able to improve the
2395 // alignment.
2396 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2397 Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2398 MaybeAlign MIDestAlign = MI->getDestAlign();
2399 if (!MIDestAlign || DestAlign > *MIDestAlign)
2400 MI->setDestAlignment(DestAlign);
2401 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2402 MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2403 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2404 if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2405 MTI->setSourceAlignment(SrcAlign);
2409 // If we have a cold call site, try to sink addressing computation into the
2410 // cold block. This interacts with our handling for loads and stores to
2411 // ensure that we can fold all uses of a potential addressing computation
2412 // into their uses. TODO: generalize this to work over profiling data
2413 if (CI->hasFnAttr(Attribute::Cold) && !OptSize &&
2414 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2415 for (auto &Arg : CI->args()) {
2416 if (!Arg->getType()->isPointerTy())
2417 continue;
2418 unsigned AS = Arg->getType()->getPointerAddressSpace();
2419 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS))
2420 return true;
2423 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2424 if (II) {
2425 switch (II->getIntrinsicID()) {
2426 default:
2427 break;
2428 case Intrinsic::assume:
2429 llvm_unreachable("llvm.assume should have been removed already");
2430 case Intrinsic::experimental_widenable_condition: {
2431 // Give up on future widening oppurtunties so that we can fold away dead
2432 // paths and merge blocks before going into block-local instruction
2433 // selection.
2434 if (II->use_empty()) {
2435 II->eraseFromParent();
2436 return true;
2438 Constant *RetVal = ConstantInt::getTrue(II->getContext());
2439 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2440 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2442 return true;
2444 case Intrinsic::objectsize:
2445 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2446 case Intrinsic::is_constant:
2447 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2448 case Intrinsic::aarch64_stlxr:
2449 case Intrinsic::aarch64_stxr: {
2450 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2451 if (!ExtVal || !ExtVal->hasOneUse() ||
2452 ExtVal->getParent() == CI->getParent())
2453 return false;
2454 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2455 ExtVal->moveBefore(CI);
2456 // Mark this instruction as "inserted by CGP", so that other
2457 // optimizations don't touch it.
2458 InsertedInsts.insert(ExtVal);
2459 return true;
2462 case Intrinsic::launder_invariant_group:
2463 case Intrinsic::strip_invariant_group: {
2464 Value *ArgVal = II->getArgOperand(0);
2465 auto it = LargeOffsetGEPMap.find(II);
2466 if (it != LargeOffsetGEPMap.end()) {
2467 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2468 // Make sure not to have to deal with iterator invalidation
2469 // after possibly adding ArgVal to LargeOffsetGEPMap.
2470 auto GEPs = std::move(it->second);
2471 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2472 LargeOffsetGEPMap.erase(II);
2475 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc);
2476 II->eraseFromParent();
2477 return true;
2479 case Intrinsic::cttz:
2480 case Intrinsic::ctlz:
2481 // If counting zeros is expensive, try to avoid it.
2482 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs,
2483 IsHugeFunc);
2484 case Intrinsic::fshl:
2485 case Intrinsic::fshr:
2486 return optimizeFunnelShift(II);
2487 case Intrinsic::dbg_assign:
2488 case Intrinsic::dbg_value:
2489 return fixupDbgValue(II);
2490 case Intrinsic::masked_gather:
2491 return optimizeGatherScatterInst(II, II->getArgOperand(0));
2492 case Intrinsic::masked_scatter:
2493 return optimizeGatherScatterInst(II, II->getArgOperand(1));
2496 SmallVector<Value *, 2> PtrOps;
2497 Type *AccessTy;
2498 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2499 while (!PtrOps.empty()) {
2500 Value *PtrVal = PtrOps.pop_back_val();
2501 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2502 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2503 return true;
2507 // From here on out we're working with named functions.
2508 if (!CI->getCalledFunction())
2509 return false;
2511 // Lower all default uses of _chk calls. This is very similar
2512 // to what InstCombineCalls does, but here we are only lowering calls
2513 // to fortified library functions (e.g. __memcpy_chk) that have the default
2514 // "don't know" as the objectsize. Anything else should be left alone.
2515 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2516 IRBuilder<> Builder(CI);
2517 if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2518 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc);
2519 CI->eraseFromParent();
2520 return true;
2523 return false;
2526 /// Look for opportunities to duplicate return instructions to the predecessor
2527 /// to enable tail call optimizations. The case it is currently looking for is:
2528 /// @code
2529 /// bb0:
2530 /// %tmp0 = tail call i32 @f0()
2531 /// br label %return
2532 /// bb1:
2533 /// %tmp1 = tail call i32 @f1()
2534 /// br label %return
2535 /// bb2:
2536 /// %tmp2 = tail call i32 @f2()
2537 /// br label %return
2538 /// return:
2539 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2540 /// ret i32 %retval
2541 /// @endcode
2543 /// =>
2545 /// @code
2546 /// bb0:
2547 /// %tmp0 = tail call i32 @f0()
2548 /// ret i32 %tmp0
2549 /// bb1:
2550 /// %tmp1 = tail call i32 @f1()
2551 /// ret i32 %tmp1
2552 /// bb2:
2553 /// %tmp2 = tail call i32 @f2()
2554 /// ret i32 %tmp2
2555 /// @endcode
2556 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB,
2557 ModifyDT &ModifiedDT) {
2558 if (!BB->getTerminator())
2559 return false;
2561 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2562 if (!RetI)
2563 return false;
2565 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop");
2567 PHINode *PN = nullptr;
2568 ExtractValueInst *EVI = nullptr;
2569 BitCastInst *BCI = nullptr;
2570 Value *V = RetI->getReturnValue();
2571 if (V) {
2572 BCI = dyn_cast<BitCastInst>(V);
2573 if (BCI)
2574 V = BCI->getOperand(0);
2576 EVI = dyn_cast<ExtractValueInst>(V);
2577 if (EVI) {
2578 V = EVI->getOperand(0);
2579 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2580 return false;
2583 PN = dyn_cast<PHINode>(V);
2584 if (!PN)
2585 return false;
2588 if (PN && PN->getParent() != BB)
2589 return false;
2591 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2592 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2593 if (BC && BC->hasOneUse())
2594 Inst = BC->user_back();
2596 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2597 return II->getIntrinsicID() == Intrinsic::lifetime_end;
2598 return false;
2601 // Make sure there are no instructions between the first instruction
2602 // and return.
2603 const Instruction *BI = BB->getFirstNonPHI();
2604 // Skip over debug and the bitcast.
2605 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2606 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2607 BI = BI->getNextNode();
2608 if (BI != RetI)
2609 return false;
2611 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2612 /// call.
2613 const Function *F = BB->getParent();
2614 SmallVector<BasicBlock *, 4> TailCallBBs;
2615 if (PN) {
2616 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2617 // Look through bitcasts.
2618 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2619 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2620 BasicBlock *PredBB = PN->getIncomingBlock(I);
2621 // Make sure the phi value is indeed produced by the tail call.
2622 if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2623 TLI->mayBeEmittedAsTailCall(CI) &&
2624 attributesPermitTailCall(F, CI, RetI, *TLI))
2625 TailCallBBs.push_back(PredBB);
2627 } else {
2628 SmallPtrSet<BasicBlock *, 4> VisitedBBs;
2629 for (BasicBlock *Pred : predecessors(BB)) {
2630 if (!VisitedBBs.insert(Pred).second)
2631 continue;
2632 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2633 CallInst *CI = dyn_cast<CallInst>(I);
2634 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2635 attributesPermitTailCall(F, CI, RetI, *TLI))
2636 TailCallBBs.push_back(Pred);
2641 bool Changed = false;
2642 for (auto const &TailCallBB : TailCallBBs) {
2643 // Make sure the call instruction is followed by an unconditional branch to
2644 // the return block.
2645 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2646 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2647 continue;
2649 // Duplicate the return into TailCallBB.
2650 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2651 assert(!VerifyBFIUpdates ||
2652 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2653 BFI->setBlockFreq(BB,
2654 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)));
2655 ModifiedDT = ModifyDT::ModifyBBDT;
2656 Changed = true;
2657 ++NumRetsDup;
2660 // If we eliminated all predecessors of the block, delete the block now.
2661 if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2662 BB->eraseFromParent();
2664 return Changed;
2667 //===----------------------------------------------------------------------===//
2668 // Memory Optimization
2669 //===----------------------------------------------------------------------===//
2671 namespace {
2673 /// This is an extended version of TargetLowering::AddrMode
2674 /// which holds actual Value*'s for register values.
2675 struct ExtAddrMode : public TargetLowering::AddrMode {
2676 Value *BaseReg = nullptr;
2677 Value *ScaledReg = nullptr;
2678 Value *OriginalValue = nullptr;
2679 bool InBounds = true;
2681 enum FieldName {
2682 NoField = 0x00,
2683 BaseRegField = 0x01,
2684 BaseGVField = 0x02,
2685 BaseOffsField = 0x04,
2686 ScaledRegField = 0x08,
2687 ScaleField = 0x10,
2688 MultipleFields = 0xff
2691 ExtAddrMode() = default;
2693 void print(raw_ostream &OS) const;
2694 void dump() const;
2696 FieldName compare(const ExtAddrMode &other) {
2697 // First check that the types are the same on each field, as differing types
2698 // is something we can't cope with later on.
2699 if (BaseReg && other.BaseReg &&
2700 BaseReg->getType() != other.BaseReg->getType())
2701 return MultipleFields;
2702 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType())
2703 return MultipleFields;
2704 if (ScaledReg && other.ScaledReg &&
2705 ScaledReg->getType() != other.ScaledReg->getType())
2706 return MultipleFields;
2708 // Conservatively reject 'inbounds' mismatches.
2709 if (InBounds != other.InBounds)
2710 return MultipleFields;
2712 // Check each field to see if it differs.
2713 unsigned Result = NoField;
2714 if (BaseReg != other.BaseReg)
2715 Result |= BaseRegField;
2716 if (BaseGV != other.BaseGV)
2717 Result |= BaseGVField;
2718 if (BaseOffs != other.BaseOffs)
2719 Result |= BaseOffsField;
2720 if (ScaledReg != other.ScaledReg)
2721 Result |= ScaledRegField;
2722 // Don't count 0 as being a different scale, because that actually means
2723 // unscaled (which will already be counted by having no ScaledReg).
2724 if (Scale && other.Scale && Scale != other.Scale)
2725 Result |= ScaleField;
2727 if (llvm::popcount(Result) > 1)
2728 return MultipleFields;
2729 else
2730 return static_cast<FieldName>(Result);
2733 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2734 // with no offset.
2735 bool isTrivial() {
2736 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2737 // trivial if at most one of these terms is nonzero, except that BaseGV and
2738 // BaseReg both being zero actually means a null pointer value, which we
2739 // consider to be 'non-zero' here.
2740 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2743 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2744 switch (Field) {
2745 default:
2746 return nullptr;
2747 case BaseRegField:
2748 return BaseReg;
2749 case BaseGVField:
2750 return BaseGV;
2751 case ScaledRegField:
2752 return ScaledReg;
2753 case BaseOffsField:
2754 return ConstantInt::get(IntPtrTy, BaseOffs);
2758 void SetCombinedField(FieldName Field, Value *V,
2759 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2760 switch (Field) {
2761 default:
2762 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2763 break;
2764 case ExtAddrMode::BaseRegField:
2765 BaseReg = V;
2766 break;
2767 case ExtAddrMode::BaseGVField:
2768 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2769 // in the BaseReg field.
2770 assert(BaseReg == nullptr);
2771 BaseReg = V;
2772 BaseGV = nullptr;
2773 break;
2774 case ExtAddrMode::ScaledRegField:
2775 ScaledReg = V;
2776 // If we have a mix of scaled and unscaled addrmodes then we want scale
2777 // to be the scale and not zero.
2778 if (!Scale)
2779 for (const ExtAddrMode &AM : AddrModes)
2780 if (AM.Scale) {
2781 Scale = AM.Scale;
2782 break;
2784 break;
2785 case ExtAddrMode::BaseOffsField:
2786 // The offset is no longer a constant, so it goes in ScaledReg with a
2787 // scale of 1.
2788 assert(ScaledReg == nullptr);
2789 ScaledReg = V;
2790 Scale = 1;
2791 BaseOffs = 0;
2792 break;
2797 #ifndef NDEBUG
2798 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2799 AM.print(OS);
2800 return OS;
2802 #endif
2804 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2805 void ExtAddrMode::print(raw_ostream &OS) const {
2806 bool NeedPlus = false;
2807 OS << "[";
2808 if (InBounds)
2809 OS << "inbounds ";
2810 if (BaseGV) {
2811 OS << "GV:";
2812 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2813 NeedPlus = true;
2816 if (BaseOffs) {
2817 OS << (NeedPlus ? " + " : "") << BaseOffs;
2818 NeedPlus = true;
2821 if (BaseReg) {
2822 OS << (NeedPlus ? " + " : "") << "Base:";
2823 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2824 NeedPlus = true;
2826 if (Scale) {
2827 OS << (NeedPlus ? " + " : "") << Scale << "*";
2828 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2831 OS << ']';
2834 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2835 print(dbgs());
2836 dbgs() << '\n';
2838 #endif
2840 } // end anonymous namespace
2842 namespace {
2844 /// This class provides transaction based operation on the IR.
2845 /// Every change made through this class is recorded in the internal state and
2846 /// can be undone (rollback) until commit is called.
2847 /// CGP does not check if instructions could be speculatively executed when
2848 /// moved. Preserving the original location would pessimize the debugging
2849 /// experience, as well as negatively impact the quality of sample PGO.
2850 class TypePromotionTransaction {
2851 /// This represents the common interface of the individual transaction.
2852 /// Each class implements the logic for doing one specific modification on
2853 /// the IR via the TypePromotionTransaction.
2854 class TypePromotionAction {
2855 protected:
2856 /// The Instruction modified.
2857 Instruction *Inst;
2859 public:
2860 /// Constructor of the action.
2861 /// The constructor performs the related action on the IR.
2862 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2864 virtual ~TypePromotionAction() = default;
2866 /// Undo the modification done by this action.
2867 /// When this method is called, the IR must be in the same state as it was
2868 /// before this action was applied.
2869 /// \pre Undoing the action works if and only if the IR is in the exact same
2870 /// state as it was directly after this action was applied.
2871 virtual void undo() = 0;
2873 /// Advocate every change made by this action.
2874 /// When the results on the IR of the action are to be kept, it is important
2875 /// to call this function, otherwise hidden information may be kept forever.
2876 virtual void commit() {
2877 // Nothing to be done, this action is not doing anything.
2881 /// Utility to remember the position of an instruction.
2882 class InsertionHandler {
2883 /// Position of an instruction.
2884 /// Either an instruction:
2885 /// - Is the first in a basic block: BB is used.
2886 /// - Has a previous instruction: PrevInst is used.
2887 union {
2888 Instruction *PrevInst;
2889 BasicBlock *BB;
2890 } Point;
2891 std::optional<DPValue::self_iterator> BeforeDPValue = std::nullopt;
2893 /// Remember whether or not the instruction had a previous instruction.
2894 bool HasPrevInstruction;
2896 public:
2897 /// Record the position of \p Inst.
2898 InsertionHandler(Instruction *Inst) {
2899 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin()));
2900 BasicBlock *BB = Inst->getParent();
2902 // Record where we would have to re-insert the instruction in the sequence
2903 // of DPValues, if we ended up reinserting.
2904 if (BB->IsNewDbgInfoFormat)
2905 BeforeDPValue = Inst->getDbgReinsertionPosition();
2907 if (HasPrevInstruction) {
2908 Point.PrevInst = &*std::prev(Inst->getIterator());
2909 } else {
2910 Point.BB = BB;
2914 /// Insert \p Inst at the recorded position.
2915 void insert(Instruction *Inst) {
2916 if (HasPrevInstruction) {
2917 if (Inst->getParent())
2918 Inst->removeFromParent();
2919 Inst->insertAfter(&*Point.PrevInst);
2920 } else {
2921 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt();
2922 if (Inst->getParent())
2923 Inst->moveBefore(*Point.BB, Position);
2924 else
2925 Inst->insertBefore(*Point.BB, Position);
2928 Inst->getParent()->reinsertInstInDPValues(Inst, BeforeDPValue);
2932 /// Move an instruction before another.
2933 class InstructionMoveBefore : public TypePromotionAction {
2934 /// Original position of the instruction.
2935 InsertionHandler Position;
2937 public:
2938 /// Move \p Inst before \p Before.
2939 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2940 : TypePromotionAction(Inst), Position(Inst) {
2941 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2942 << "\n");
2943 Inst->moveBefore(Before);
2946 /// Move the instruction back to its original position.
2947 void undo() override {
2948 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2949 Position.insert(Inst);
2953 /// Set the operand of an instruction with a new value.
2954 class OperandSetter : public TypePromotionAction {
2955 /// Original operand of the instruction.
2956 Value *Origin;
2958 /// Index of the modified instruction.
2959 unsigned Idx;
2961 public:
2962 /// Set \p Idx operand of \p Inst with \p NewVal.
2963 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2964 : TypePromotionAction(Inst), Idx(Idx) {
2965 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2966 << "for:" << *Inst << "\n"
2967 << "with:" << *NewVal << "\n");
2968 Origin = Inst->getOperand(Idx);
2969 Inst->setOperand(Idx, NewVal);
2972 /// Restore the original value of the instruction.
2973 void undo() override {
2974 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2975 << "for: " << *Inst << "\n"
2976 << "with: " << *Origin << "\n");
2977 Inst->setOperand(Idx, Origin);
2981 /// Hide the operands of an instruction.
2982 /// Do as if this instruction was not using any of its operands.
2983 class OperandsHider : public TypePromotionAction {
2984 /// The list of original operands.
2985 SmallVector<Value *, 4> OriginalValues;
2987 public:
2988 /// Remove \p Inst from the uses of the operands of \p Inst.
2989 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2990 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2991 unsigned NumOpnds = Inst->getNumOperands();
2992 OriginalValues.reserve(NumOpnds);
2993 for (unsigned It = 0; It < NumOpnds; ++It) {
2994 // Save the current operand.
2995 Value *Val = Inst->getOperand(It);
2996 OriginalValues.push_back(Val);
2997 // Set a dummy one.
2998 // We could use OperandSetter here, but that would imply an overhead
2999 // that we are not willing to pay.
3000 Inst->setOperand(It, UndefValue::get(Val->getType()));
3004 /// Restore the original list of uses.
3005 void undo() override {
3006 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
3007 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
3008 Inst->setOperand(It, OriginalValues[It]);
3012 /// Build a truncate instruction.
3013 class TruncBuilder : public TypePromotionAction {
3014 Value *Val;
3016 public:
3017 /// Build a truncate instruction of \p Opnd producing a \p Ty
3018 /// result.
3019 /// trunc Opnd to Ty.
3020 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
3021 IRBuilder<> Builder(Opnd);
3022 Builder.SetCurrentDebugLocation(DebugLoc());
3023 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
3024 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
3027 /// Get the built value.
3028 Value *getBuiltValue() { return Val; }
3030 /// Remove the built instruction.
3031 void undo() override {
3032 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
3033 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3034 IVal->eraseFromParent();
3038 /// Build a sign extension instruction.
3039 class SExtBuilder : public TypePromotionAction {
3040 Value *Val;
3042 public:
3043 /// Build a sign extension instruction of \p Opnd producing a \p Ty
3044 /// result.
3045 /// sext Opnd to Ty.
3046 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3047 : TypePromotionAction(InsertPt) {
3048 IRBuilder<> Builder(InsertPt);
3049 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3050 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3053 /// Get the built value.
3054 Value *getBuiltValue() { return Val; }
3056 /// Remove the built instruction.
3057 void undo() override {
3058 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3059 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3060 IVal->eraseFromParent();
3064 /// Build a zero extension instruction.
3065 class ZExtBuilder : public TypePromotionAction {
3066 Value *Val;
3068 public:
3069 /// Build a zero extension instruction of \p Opnd producing a \p Ty
3070 /// result.
3071 /// zext Opnd to Ty.
3072 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3073 : TypePromotionAction(InsertPt) {
3074 IRBuilder<> Builder(InsertPt);
3075 Builder.SetCurrentDebugLocation(DebugLoc());
3076 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3077 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3080 /// Get the built value.
3081 Value *getBuiltValue() { return Val; }
3083 /// Remove the built instruction.
3084 void undo() override {
3085 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3086 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3087 IVal->eraseFromParent();
3091 /// Mutate an instruction to another type.
3092 class TypeMutator : public TypePromotionAction {
3093 /// Record the original type.
3094 Type *OrigTy;
3096 public:
3097 /// Mutate the type of \p Inst into \p NewTy.
3098 TypeMutator(Instruction *Inst, Type *NewTy)
3099 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3100 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3101 << "\n");
3102 Inst->mutateType(NewTy);
3105 /// Mutate the instruction back to its original type.
3106 void undo() override {
3107 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3108 << "\n");
3109 Inst->mutateType(OrigTy);
3113 /// Replace the uses of an instruction by another instruction.
3114 class UsesReplacer : public TypePromotionAction {
3115 /// Helper structure to keep track of the replaced uses.
3116 struct InstructionAndIdx {
3117 /// The instruction using the instruction.
3118 Instruction *Inst;
3120 /// The index where this instruction is used for Inst.
3121 unsigned Idx;
3123 InstructionAndIdx(Instruction *Inst, unsigned Idx)
3124 : Inst(Inst), Idx(Idx) {}
3127 /// Keep track of the original uses (pair Instruction, Index).
3128 SmallVector<InstructionAndIdx, 4> OriginalUses;
3129 /// Keep track of the debug users.
3130 SmallVector<DbgValueInst *, 1> DbgValues;
3131 /// And non-instruction debug-users too.
3132 SmallVector<DPValue *, 1> DPValues;
3134 /// Keep track of the new value so that we can undo it by replacing
3135 /// instances of the new value with the original value.
3136 Value *New;
3138 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3140 public:
3141 /// Replace all the use of \p Inst by \p New.
3142 UsesReplacer(Instruction *Inst, Value *New)
3143 : TypePromotionAction(Inst), New(New) {
3144 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3145 << "\n");
3146 // Record the original uses.
3147 for (Use &U : Inst->uses()) {
3148 Instruction *UserI = cast<Instruction>(U.getUser());
3149 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3151 // Record the debug uses separately. They are not in the instruction's
3152 // use list, but they are replaced by RAUW.
3153 findDbgValues(DbgValues, Inst, &DPValues);
3155 // Now, we can replace the uses.
3156 Inst->replaceAllUsesWith(New);
3159 /// Reassign the original uses of Inst to Inst.
3160 void undo() override {
3161 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3162 for (InstructionAndIdx &Use : OriginalUses)
3163 Use.Inst->setOperand(Use.Idx, Inst);
3164 // RAUW has replaced all original uses with references to the new value,
3165 // including the debug uses. Since we are undoing the replacements,
3166 // the original debug uses must also be reinstated to maintain the
3167 // correctness and utility of debug value instructions.
3168 for (auto *DVI : DbgValues)
3169 DVI->replaceVariableLocationOp(New, Inst);
3170 // Similar story with DPValues, the non-instruction representation of
3171 // dbg.values.
3172 for (DPValue *DPV : DPValues) // tested by transaction-test I'm adding
3173 DPV->replaceVariableLocationOp(New, Inst);
3177 /// Remove an instruction from the IR.
3178 class InstructionRemover : public TypePromotionAction {
3179 /// Original position of the instruction.
3180 InsertionHandler Inserter;
3182 /// Helper structure to hide all the link to the instruction. In other
3183 /// words, this helps to do as if the instruction was removed.
3184 OperandsHider Hider;
3186 /// Keep track of the uses replaced, if any.
3187 UsesReplacer *Replacer = nullptr;
3189 /// Keep track of instructions removed.
3190 SetOfInstrs &RemovedInsts;
3192 public:
3193 /// Remove all reference of \p Inst and optionally replace all its
3194 /// uses with New.
3195 /// \p RemovedInsts Keep track of the instructions removed by this Action.
3196 /// \pre If !Inst->use_empty(), then New != nullptr
3197 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3198 Value *New = nullptr)
3199 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3200 RemovedInsts(RemovedInsts) {
3201 if (New)
3202 Replacer = new UsesReplacer(Inst, New);
3203 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3204 RemovedInsts.insert(Inst);
3205 /// The instructions removed here will be freed after completing
3206 /// optimizeBlock() for all blocks as we need to keep track of the
3207 /// removed instructions during promotion.
3208 Inst->removeFromParent();
3211 ~InstructionRemover() override { delete Replacer; }
3213 InstructionRemover &operator=(const InstructionRemover &other) = delete;
3214 InstructionRemover(const InstructionRemover &other) = delete;
3216 /// Resurrect the instruction and reassign it to the proper uses if
3217 /// new value was provided when build this action.
3218 void undo() override {
3219 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3220 Inserter.insert(Inst);
3221 if (Replacer)
3222 Replacer->undo();
3223 Hider.undo();
3224 RemovedInsts.erase(Inst);
3228 public:
3229 /// Restoration point.
3230 /// The restoration point is a pointer to an action instead of an iterator
3231 /// because the iterator may be invalidated but not the pointer.
3232 using ConstRestorationPt = const TypePromotionAction *;
3234 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3235 : RemovedInsts(RemovedInsts) {}
3237 /// Advocate every changes made in that transaction. Return true if any change
3238 /// happen.
3239 bool commit();
3241 /// Undo all the changes made after the given point.
3242 void rollback(ConstRestorationPt Point);
3244 /// Get the current restoration point.
3245 ConstRestorationPt getRestorationPoint() const;
3247 /// \name API for IR modification with state keeping to support rollback.
3248 /// @{
3249 /// Same as Instruction::setOperand.
3250 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3252 /// Same as Instruction::eraseFromParent.
3253 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3255 /// Same as Value::replaceAllUsesWith.
3256 void replaceAllUsesWith(Instruction *Inst, Value *New);
3258 /// Same as Value::mutateType.
3259 void mutateType(Instruction *Inst, Type *NewTy);
3261 /// Same as IRBuilder::createTrunc.
3262 Value *createTrunc(Instruction *Opnd, Type *Ty);
3264 /// Same as IRBuilder::createSExt.
3265 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3267 /// Same as IRBuilder::createZExt.
3268 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3270 private:
3271 /// The ordered list of actions made so far.
3272 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3274 using CommitPt =
3275 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3277 SetOfInstrs &RemovedInsts;
3280 } // end anonymous namespace
3282 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3283 Value *NewVal) {
3284 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3285 Inst, Idx, NewVal));
3288 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3289 Value *NewVal) {
3290 Actions.push_back(
3291 std::make_unique<TypePromotionTransaction::InstructionRemover>(
3292 Inst, RemovedInsts, NewVal));
3295 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3296 Value *New) {
3297 Actions.push_back(
3298 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3301 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3302 Actions.push_back(
3303 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3306 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) {
3307 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3308 Value *Val = Ptr->getBuiltValue();
3309 Actions.push_back(std::move(Ptr));
3310 return Val;
3313 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd,
3314 Type *Ty) {
3315 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3316 Value *Val = Ptr->getBuiltValue();
3317 Actions.push_back(std::move(Ptr));
3318 return Val;
3321 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd,
3322 Type *Ty) {
3323 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3324 Value *Val = Ptr->getBuiltValue();
3325 Actions.push_back(std::move(Ptr));
3326 return Val;
3329 TypePromotionTransaction::ConstRestorationPt
3330 TypePromotionTransaction::getRestorationPoint() const {
3331 return !Actions.empty() ? Actions.back().get() : nullptr;
3334 bool TypePromotionTransaction::commit() {
3335 for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3336 Action->commit();
3337 bool Modified = !Actions.empty();
3338 Actions.clear();
3339 return Modified;
3342 void TypePromotionTransaction::rollback(
3343 TypePromotionTransaction::ConstRestorationPt Point) {
3344 while (!Actions.empty() && Point != Actions.back().get()) {
3345 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3346 Curr->undo();
3350 namespace {
3352 /// A helper class for matching addressing modes.
3354 /// This encapsulates the logic for matching the target-legal addressing modes.
3355 class AddressingModeMatcher {
3356 SmallVectorImpl<Instruction *> &AddrModeInsts;
3357 const TargetLowering &TLI;
3358 const TargetRegisterInfo &TRI;
3359 const DataLayout &DL;
3360 const LoopInfo &LI;
3361 const std::function<const DominatorTree &()> getDTFn;
3363 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3364 /// the memory instruction that we're computing this address for.
3365 Type *AccessTy;
3366 unsigned AddrSpace;
3367 Instruction *MemoryInst;
3369 /// This is the addressing mode that we're building up. This is
3370 /// part of the return value of this addressing mode matching stuff.
3371 ExtAddrMode &AddrMode;
3373 /// The instructions inserted by other CodeGenPrepare optimizations.
3374 const SetOfInstrs &InsertedInsts;
3376 /// A map from the instructions to their type before promotion.
3377 InstrToOrigTy &PromotedInsts;
3379 /// The ongoing transaction where every action should be registered.
3380 TypePromotionTransaction &TPT;
3382 // A GEP which has too large offset to be folded into the addressing mode.
3383 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3385 /// This is set to true when we should not do profitability checks.
3386 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3387 bool IgnoreProfitability;
3389 /// True if we are optimizing for size.
3390 bool OptSize = false;
3392 ProfileSummaryInfo *PSI;
3393 BlockFrequencyInfo *BFI;
3395 AddressingModeMatcher(
3396 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3397 const TargetRegisterInfo &TRI, const LoopInfo &LI,
3398 const std::function<const DominatorTree &()> getDTFn, Type *AT,
3399 unsigned AS, Instruction *MI, ExtAddrMode &AM,
3400 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3401 TypePromotionTransaction &TPT,
3402 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3403 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3404 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3405 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn),
3406 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3407 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3408 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3409 IgnoreProfitability = false;
3412 public:
3413 /// Find the maximal addressing mode that a load/store of V can fold,
3414 /// give an access type of AccessTy. This returns a list of involved
3415 /// instructions in AddrModeInsts.
3416 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3417 /// optimizations.
3418 /// \p PromotedInsts maps the instructions to their type before promotion.
3419 /// \p The ongoing transaction where every action should be registered.
3420 static ExtAddrMode
3421 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3422 SmallVectorImpl<Instruction *> &AddrModeInsts,
3423 const TargetLowering &TLI, const LoopInfo &LI,
3424 const std::function<const DominatorTree &()> getDTFn,
3425 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3426 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3427 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3428 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3429 ExtAddrMode Result;
3431 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn,
3432 AccessTy, AS, MemoryInst, Result,
3433 InsertedInsts, PromotedInsts, TPT,
3434 LargeOffsetGEP, OptSize, PSI, BFI)
3435 .matchAddr(V, 0);
3436 (void)Success;
3437 assert(Success && "Couldn't select *anything*?");
3438 return Result;
3441 private:
3442 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3443 bool matchAddr(Value *Addr, unsigned Depth);
3444 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3445 bool *MovedAway = nullptr);
3446 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3447 ExtAddrMode &AMBefore,
3448 ExtAddrMode &AMAfter);
3449 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3450 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3451 Value *PromotedOperand) const;
3454 class PhiNodeSet;
3456 /// An iterator for PhiNodeSet.
3457 class PhiNodeSetIterator {
3458 PhiNodeSet *const Set;
3459 size_t CurrentIndex = 0;
3461 public:
3462 /// The constructor. Start should point to either a valid element, or be equal
3463 /// to the size of the underlying SmallVector of the PhiNodeSet.
3464 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start);
3465 PHINode *operator*() const;
3466 PhiNodeSetIterator &operator++();
3467 bool operator==(const PhiNodeSetIterator &RHS) const;
3468 bool operator!=(const PhiNodeSetIterator &RHS) const;
3471 /// Keeps a set of PHINodes.
3473 /// This is a minimal set implementation for a specific use case:
3474 /// It is very fast when there are very few elements, but also provides good
3475 /// performance when there are many. It is similar to SmallPtrSet, but also
3476 /// provides iteration by insertion order, which is deterministic and stable
3477 /// across runs. It is also similar to SmallSetVector, but provides removing
3478 /// elements in O(1) time. This is achieved by not actually removing the element
3479 /// from the underlying vector, so comes at the cost of using more memory, but
3480 /// that is fine, since PhiNodeSets are used as short lived objects.
3481 class PhiNodeSet {
3482 friend class PhiNodeSetIterator;
3484 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3485 using iterator = PhiNodeSetIterator;
3487 /// Keeps the elements in the order of their insertion in the underlying
3488 /// vector. To achieve constant time removal, it never deletes any element.
3489 SmallVector<PHINode *, 32> NodeList;
3491 /// Keeps the elements in the underlying set implementation. This (and not the
3492 /// NodeList defined above) is the source of truth on whether an element
3493 /// is actually in the collection.
3494 MapType NodeMap;
3496 /// Points to the first valid (not deleted) element when the set is not empty
3497 /// and the value is not zero. Equals to the size of the underlying vector
3498 /// when the set is empty. When the value is 0, as in the beginning, the
3499 /// first element may or may not be valid.
3500 size_t FirstValidElement = 0;
3502 public:
3503 /// Inserts a new element to the collection.
3504 /// \returns true if the element is actually added, i.e. was not in the
3505 /// collection before the operation.
3506 bool insert(PHINode *Ptr) {
3507 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3508 NodeList.push_back(Ptr);
3509 return true;
3511 return false;
3514 /// Removes the element from the collection.
3515 /// \returns whether the element is actually removed, i.e. was in the
3516 /// collection before the operation.
3517 bool erase(PHINode *Ptr) {
3518 if (NodeMap.erase(Ptr)) {
3519 SkipRemovedElements(FirstValidElement);
3520 return true;
3522 return false;
3525 /// Removes all elements and clears the collection.
3526 void clear() {
3527 NodeMap.clear();
3528 NodeList.clear();
3529 FirstValidElement = 0;
3532 /// \returns an iterator that will iterate the elements in the order of
3533 /// insertion.
3534 iterator begin() {
3535 if (FirstValidElement == 0)
3536 SkipRemovedElements(FirstValidElement);
3537 return PhiNodeSetIterator(this, FirstValidElement);
3540 /// \returns an iterator that points to the end of the collection.
3541 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3543 /// Returns the number of elements in the collection.
3544 size_t size() const { return NodeMap.size(); }
3546 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3547 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); }
3549 private:
3550 /// Updates the CurrentIndex so that it will point to a valid element.
3552 /// If the element of NodeList at CurrentIndex is valid, it does not
3553 /// change it. If there are no more valid elements, it updates CurrentIndex
3554 /// to point to the end of the NodeList.
3555 void SkipRemovedElements(size_t &CurrentIndex) {
3556 while (CurrentIndex < NodeList.size()) {
3557 auto it = NodeMap.find(NodeList[CurrentIndex]);
3558 // If the element has been deleted and added again later, NodeMap will
3559 // point to a different index, so CurrentIndex will still be invalid.
3560 if (it != NodeMap.end() && it->second == CurrentIndex)
3561 break;
3562 ++CurrentIndex;
3567 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3568 : Set(Set), CurrentIndex(Start) {}
3570 PHINode *PhiNodeSetIterator::operator*() const {
3571 assert(CurrentIndex < Set->NodeList.size() &&
3572 "PhiNodeSet access out of range");
3573 return Set->NodeList[CurrentIndex];
3576 PhiNodeSetIterator &PhiNodeSetIterator::operator++() {
3577 assert(CurrentIndex < Set->NodeList.size() &&
3578 "PhiNodeSet access out of range");
3579 ++CurrentIndex;
3580 Set->SkipRemovedElements(CurrentIndex);
3581 return *this;
3584 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3585 return CurrentIndex == RHS.CurrentIndex;
3588 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3589 return !((*this) == RHS);
3592 /// Keep track of simplification of Phi nodes.
3593 /// Accept the set of all phi nodes and erase phi node from this set
3594 /// if it is simplified.
3595 class SimplificationTracker {
3596 DenseMap<Value *, Value *> Storage;
3597 const SimplifyQuery &SQ;
3598 // Tracks newly created Phi nodes. The elements are iterated by insertion
3599 // order.
3600 PhiNodeSet AllPhiNodes;
3601 // Tracks newly created Select nodes.
3602 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3604 public:
3605 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {}
3607 Value *Get(Value *V) {
3608 do {
3609 auto SV = Storage.find(V);
3610 if (SV == Storage.end())
3611 return V;
3612 V = SV->second;
3613 } while (true);
3616 Value *Simplify(Value *Val) {
3617 SmallVector<Value *, 32> WorkList;
3618 SmallPtrSet<Value *, 32> Visited;
3619 WorkList.push_back(Val);
3620 while (!WorkList.empty()) {
3621 auto *P = WorkList.pop_back_val();
3622 if (!Visited.insert(P).second)
3623 continue;
3624 if (auto *PI = dyn_cast<Instruction>(P))
3625 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) {
3626 for (auto *U : PI->users())
3627 WorkList.push_back(cast<Value>(U));
3628 Put(PI, V);
3629 PI->replaceAllUsesWith(V);
3630 if (auto *PHI = dyn_cast<PHINode>(PI))
3631 AllPhiNodes.erase(PHI);
3632 if (auto *Select = dyn_cast<SelectInst>(PI))
3633 AllSelectNodes.erase(Select);
3634 PI->eraseFromParent();
3637 return Get(Val);
3640 void Put(Value *From, Value *To) { Storage.insert({From, To}); }
3642 void ReplacePhi(PHINode *From, PHINode *To) {
3643 Value *OldReplacement = Get(From);
3644 while (OldReplacement != From) {
3645 From = To;
3646 To = dyn_cast<PHINode>(OldReplacement);
3647 OldReplacement = Get(From);
3649 assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3650 Put(From, To);
3651 From->replaceAllUsesWith(To);
3652 AllPhiNodes.erase(From);
3653 From->eraseFromParent();
3656 PhiNodeSet &newPhiNodes() { return AllPhiNodes; }
3658 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3660 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3662 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3664 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3666 void destroyNewNodes(Type *CommonType) {
3667 // For safe erasing, replace the uses with dummy value first.
3668 auto *Dummy = PoisonValue::get(CommonType);
3669 for (auto *I : AllPhiNodes) {
3670 I->replaceAllUsesWith(Dummy);
3671 I->eraseFromParent();
3673 AllPhiNodes.clear();
3674 for (auto *I : AllSelectNodes) {
3675 I->replaceAllUsesWith(Dummy);
3676 I->eraseFromParent();
3678 AllSelectNodes.clear();
3682 /// A helper class for combining addressing modes.
3683 class AddressingModeCombiner {
3684 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3685 typedef std::pair<PHINode *, PHINode *> PHIPair;
3687 private:
3688 /// The addressing modes we've collected.
3689 SmallVector<ExtAddrMode, 16> AddrModes;
3691 /// The field in which the AddrModes differ, when we have more than one.
3692 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3694 /// Are the AddrModes that we have all just equal to their original values?
3695 bool AllAddrModesTrivial = true;
3697 /// Common Type for all different fields in addressing modes.
3698 Type *CommonType = nullptr;
3700 /// SimplifyQuery for simplifyInstruction utility.
3701 const SimplifyQuery &SQ;
3703 /// Original Address.
3704 Value *Original;
3706 /// Common value among addresses
3707 Value *CommonValue = nullptr;
3709 public:
3710 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3711 : SQ(_SQ), Original(OriginalValue) {}
3713 ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
3715 /// Get the combined AddrMode
3716 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; }
3718 /// Add a new AddrMode if it's compatible with the AddrModes we already
3719 /// have.
3720 /// \return True iff we succeeded in doing so.
3721 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3722 // Take note of if we have any non-trivial AddrModes, as we need to detect
3723 // when all AddrModes are trivial as then we would introduce a phi or select
3724 // which just duplicates what's already there.
3725 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3727 // If this is the first addrmode then everything is fine.
3728 if (AddrModes.empty()) {
3729 AddrModes.emplace_back(NewAddrMode);
3730 return true;
3733 // Figure out how different this is from the other address modes, which we
3734 // can do just by comparing against the first one given that we only care
3735 // about the cumulative difference.
3736 ExtAddrMode::FieldName ThisDifferentField =
3737 AddrModes[0].compare(NewAddrMode);
3738 if (DifferentField == ExtAddrMode::NoField)
3739 DifferentField = ThisDifferentField;
3740 else if (DifferentField != ThisDifferentField)
3741 DifferentField = ExtAddrMode::MultipleFields;
3743 // If NewAddrMode differs in more than one dimension we cannot handle it.
3744 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3746 // If Scale Field is different then we reject.
3747 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3749 // We also must reject the case when base offset is different and
3750 // scale reg is not null, we cannot handle this case due to merge of
3751 // different offsets will be used as ScaleReg.
3752 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3753 !NewAddrMode.ScaledReg);
3755 // We also must reject the case when GV is different and BaseReg installed
3756 // due to we want to use base reg as a merge of GV values.
3757 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3758 !NewAddrMode.HasBaseReg);
3760 // Even if NewAddMode is the same we still need to collect it due to
3761 // original value is different. And later we will need all original values
3762 // as anchors during finding the common Phi node.
3763 if (CanHandle)
3764 AddrModes.emplace_back(NewAddrMode);
3765 else
3766 AddrModes.clear();
3768 return CanHandle;
3771 /// Combine the addressing modes we've collected into a single
3772 /// addressing mode.
3773 /// \return True iff we successfully combined them or we only had one so
3774 /// didn't need to combine them anyway.
3775 bool combineAddrModes() {
3776 // If we have no AddrModes then they can't be combined.
3777 if (AddrModes.size() == 0)
3778 return false;
3780 // A single AddrMode can trivially be combined.
3781 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3782 return true;
3784 // If the AddrModes we collected are all just equal to the value they are
3785 // derived from then combining them wouldn't do anything useful.
3786 if (AllAddrModesTrivial)
3787 return false;
3789 if (!addrModeCombiningAllowed())
3790 return false;
3792 // Build a map between <original value, basic block where we saw it> to
3793 // value of base register.
3794 // Bail out if there is no common type.
3795 FoldAddrToValueMapping Map;
3796 if (!initializeMap(Map))
3797 return false;
3799 CommonValue = findCommon(Map);
3800 if (CommonValue)
3801 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3802 return CommonValue != nullptr;
3805 private:
3806 /// `CommonValue` may be a placeholder inserted by us.
3807 /// If the placeholder is not used, we should remove this dead instruction.
3808 void eraseCommonValueIfDead() {
3809 if (CommonValue && CommonValue->getNumUses() == 0)
3810 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue))
3811 CommonInst->eraseFromParent();
3814 /// Initialize Map with anchor values. For address seen
3815 /// we set the value of different field saw in this address.
3816 /// At the same time we find a common type for different field we will
3817 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3818 /// Return false if there is no common type found.
3819 bool initializeMap(FoldAddrToValueMapping &Map) {
3820 // Keep track of keys where the value is null. We will need to replace it
3821 // with constant null when we know the common type.
3822 SmallVector<Value *, 2> NullValue;
3823 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3824 for (auto &AM : AddrModes) {
3825 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3826 if (DV) {
3827 auto *Type = DV->getType();
3828 if (CommonType && CommonType != Type)
3829 return false;
3830 CommonType = Type;
3831 Map[AM.OriginalValue] = DV;
3832 } else {
3833 NullValue.push_back(AM.OriginalValue);
3836 assert(CommonType && "At least one non-null value must be!");
3837 for (auto *V : NullValue)
3838 Map[V] = Constant::getNullValue(CommonType);
3839 return true;
3842 /// We have mapping between value A and other value B where B was a field in
3843 /// addressing mode represented by A. Also we have an original value C
3844 /// representing an address we start with. Traversing from C through phi and
3845 /// selects we ended up with A's in a map. This utility function tries to find
3846 /// a value V which is a field in addressing mode C and traversing through phi
3847 /// nodes and selects we will end up in corresponded values B in a map.
3848 /// The utility will create a new Phi/Selects if needed.
3849 // The simple example looks as follows:
3850 // BB1:
3851 // p1 = b1 + 40
3852 // br cond BB2, BB3
3853 // BB2:
3854 // p2 = b2 + 40
3855 // br BB3
3856 // BB3:
3857 // p = phi [p1, BB1], [p2, BB2]
3858 // v = load p
3859 // Map is
3860 // p1 -> b1
3861 // p2 -> b2
3862 // Request is
3863 // p -> ?
3864 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3865 Value *findCommon(FoldAddrToValueMapping &Map) {
3866 // Tracks the simplification of newly created phi nodes. The reason we use
3867 // this mapping is because we will add new created Phi nodes in AddrToBase.
3868 // Simplification of Phi nodes is recursive, so some Phi node may
3869 // be simplified after we added it to AddrToBase. In reality this
3870 // simplification is possible only if original phi/selects were not
3871 // simplified yet.
3872 // Using this mapping we can find the current value in AddrToBase.
3873 SimplificationTracker ST(SQ);
3875 // First step, DFS to create PHI nodes for all intermediate blocks.
3876 // Also fill traverse order for the second step.
3877 SmallVector<Value *, 32> TraverseOrder;
3878 InsertPlaceholders(Map, TraverseOrder, ST);
3880 // Second Step, fill new nodes by merged values and simplify if possible.
3881 FillPlaceholders(Map, TraverseOrder, ST);
3883 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3884 ST.destroyNewNodes(CommonType);
3885 return nullptr;
3888 // Now we'd like to match New Phi nodes to existed ones.
3889 unsigned PhiNotMatchedCount = 0;
3890 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3891 ST.destroyNewNodes(CommonType);
3892 return nullptr;
3895 auto *Result = ST.Get(Map.find(Original)->second);
3896 if (Result) {
3897 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3898 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3900 return Result;
3903 /// Try to match PHI node to Candidate.
3904 /// Matcher tracks the matched Phi nodes.
3905 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3906 SmallSetVector<PHIPair, 8> &Matcher,
3907 PhiNodeSet &PhiNodesToMatch) {
3908 SmallVector<PHIPair, 8> WorkList;
3909 Matcher.insert({PHI, Candidate});
3910 SmallSet<PHINode *, 8> MatchedPHIs;
3911 MatchedPHIs.insert(PHI);
3912 WorkList.push_back({PHI, Candidate});
3913 SmallSet<PHIPair, 8> Visited;
3914 while (!WorkList.empty()) {
3915 auto Item = WorkList.pop_back_val();
3916 if (!Visited.insert(Item).second)
3917 continue;
3918 // We iterate over all incoming values to Phi to compare them.
3919 // If values are different and both of them Phi and the first one is a
3920 // Phi we added (subject to match) and both of them is in the same basic
3921 // block then we can match our pair if values match. So we state that
3922 // these values match and add it to work list to verify that.
3923 for (auto *B : Item.first->blocks()) {
3924 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3925 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3926 if (FirstValue == SecondValue)
3927 continue;
3929 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3930 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3932 // One of them is not Phi or
3933 // The first one is not Phi node from the set we'd like to match or
3934 // Phi nodes from different basic blocks then
3935 // we will not be able to match.
3936 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3937 FirstPhi->getParent() != SecondPhi->getParent())
3938 return false;
3940 // If we already matched them then continue.
3941 if (Matcher.count({FirstPhi, SecondPhi}))
3942 continue;
3943 // So the values are different and does not match. So we need them to
3944 // match. (But we register no more than one match per PHI node, so that
3945 // we won't later try to replace them twice.)
3946 if (MatchedPHIs.insert(FirstPhi).second)
3947 Matcher.insert({FirstPhi, SecondPhi});
3948 // But me must check it.
3949 WorkList.push_back({FirstPhi, SecondPhi});
3952 return true;
3955 /// For the given set of PHI nodes (in the SimplificationTracker) try
3956 /// to find their equivalents.
3957 /// Returns false if this matching fails and creation of new Phi is disabled.
3958 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3959 unsigned &PhiNotMatchedCount) {
3960 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3961 // order, so the replacements (ReplacePhi) are also done in a deterministic
3962 // order.
3963 SmallSetVector<PHIPair, 8> Matched;
3964 SmallPtrSet<PHINode *, 8> WillNotMatch;
3965 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3966 while (PhiNodesToMatch.size()) {
3967 PHINode *PHI = *PhiNodesToMatch.begin();
3969 // Add us, if no Phi nodes in the basic block we do not match.
3970 WillNotMatch.clear();
3971 WillNotMatch.insert(PHI);
3973 // Traverse all Phis until we found equivalent or fail to do that.
3974 bool IsMatched = false;
3975 for (auto &P : PHI->getParent()->phis()) {
3976 // Skip new Phi nodes.
3977 if (PhiNodesToMatch.count(&P))
3978 continue;
3979 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3980 break;
3981 // If it does not match, collect all Phi nodes from matcher.
3982 // if we end up with no match, them all these Phi nodes will not match
3983 // later.
3984 for (auto M : Matched)
3985 WillNotMatch.insert(M.first);
3986 Matched.clear();
3988 if (IsMatched) {
3989 // Replace all matched values and erase them.
3990 for (auto MV : Matched)
3991 ST.ReplacePhi(MV.first, MV.second);
3992 Matched.clear();
3993 continue;
3995 // If we are not allowed to create new nodes then bail out.
3996 if (!AllowNewPhiNodes)
3997 return false;
3998 // Just remove all seen values in matcher. They will not match anything.
3999 PhiNotMatchedCount += WillNotMatch.size();
4000 for (auto *P : WillNotMatch)
4001 PhiNodesToMatch.erase(P);
4003 return true;
4005 /// Fill the placeholders with values from predecessors and simplify them.
4006 void FillPlaceholders(FoldAddrToValueMapping &Map,
4007 SmallVectorImpl<Value *> &TraverseOrder,
4008 SimplificationTracker &ST) {
4009 while (!TraverseOrder.empty()) {
4010 Value *Current = TraverseOrder.pop_back_val();
4011 assert(Map.contains(Current) && "No node to fill!!!");
4012 Value *V = Map[Current];
4014 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
4015 // CurrentValue also must be Select.
4016 auto *CurrentSelect = cast<SelectInst>(Current);
4017 auto *TrueValue = CurrentSelect->getTrueValue();
4018 assert(Map.contains(TrueValue) && "No True Value!");
4019 Select->setTrueValue(ST.Get(Map[TrueValue]));
4020 auto *FalseValue = CurrentSelect->getFalseValue();
4021 assert(Map.contains(FalseValue) && "No False Value!");
4022 Select->setFalseValue(ST.Get(Map[FalseValue]));
4023 } else {
4024 // Must be a Phi node then.
4025 auto *PHI = cast<PHINode>(V);
4026 // Fill the Phi node with values from predecessors.
4027 for (auto *B : predecessors(PHI->getParent())) {
4028 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
4029 assert(Map.contains(PV) && "No predecessor Value!");
4030 PHI->addIncoming(ST.Get(Map[PV]), B);
4033 Map[Current] = ST.Simplify(V);
4037 /// Starting from original value recursively iterates over def-use chain up to
4038 /// known ending values represented in a map. For each traversed phi/select
4039 /// inserts a placeholder Phi or Select.
4040 /// Reports all new created Phi/Select nodes by adding them to set.
4041 /// Also reports and order in what values have been traversed.
4042 void InsertPlaceholders(FoldAddrToValueMapping &Map,
4043 SmallVectorImpl<Value *> &TraverseOrder,
4044 SimplificationTracker &ST) {
4045 SmallVector<Value *, 32> Worklist;
4046 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
4047 "Address must be a Phi or Select node");
4048 auto *Dummy = PoisonValue::get(CommonType);
4049 Worklist.push_back(Original);
4050 while (!Worklist.empty()) {
4051 Value *Current = Worklist.pop_back_val();
4052 // if it is already visited or it is an ending value then skip it.
4053 if (Map.contains(Current))
4054 continue;
4055 TraverseOrder.push_back(Current);
4057 // CurrentValue must be a Phi node or select. All others must be covered
4058 // by anchors.
4059 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
4060 // Is it OK to get metadata from OrigSelect?!
4061 // Create a Select placeholder with dummy value.
4062 SelectInst *Select = SelectInst::Create(
4063 CurrentSelect->getCondition(), Dummy, Dummy,
4064 CurrentSelect->getName(), CurrentSelect, CurrentSelect);
4065 Map[Current] = Select;
4066 ST.insertNewSelect(Select);
4067 // We are interested in True and False values.
4068 Worklist.push_back(CurrentSelect->getTrueValue());
4069 Worklist.push_back(CurrentSelect->getFalseValue());
4070 } else {
4071 // It must be a Phi node then.
4072 PHINode *CurrentPhi = cast<PHINode>(Current);
4073 unsigned PredCount = CurrentPhi->getNumIncomingValues();
4074 PHINode *PHI =
4075 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
4076 Map[Current] = PHI;
4077 ST.insertNewPhi(PHI);
4078 append_range(Worklist, CurrentPhi->incoming_values());
4083 bool addrModeCombiningAllowed() {
4084 if (DisableComplexAddrModes)
4085 return false;
4086 switch (DifferentField) {
4087 default:
4088 return false;
4089 case ExtAddrMode::BaseRegField:
4090 return AddrSinkCombineBaseReg;
4091 case ExtAddrMode::BaseGVField:
4092 return AddrSinkCombineBaseGV;
4093 case ExtAddrMode::BaseOffsField:
4094 return AddrSinkCombineBaseOffs;
4095 case ExtAddrMode::ScaledRegField:
4096 return AddrSinkCombineScaledReg;
4100 } // end anonymous namespace
4102 /// Try adding ScaleReg*Scale to the current addressing mode.
4103 /// Return true and update AddrMode if this addr mode is legal for the target,
4104 /// false if not.
4105 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
4106 unsigned Depth) {
4107 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4108 // mode. Just process that directly.
4109 if (Scale == 1)
4110 return matchAddr(ScaleReg, Depth);
4112 // If the scale is 0, it takes nothing to add this.
4113 if (Scale == 0)
4114 return true;
4116 // If we already have a scale of this value, we can add to it, otherwise, we
4117 // need an available scale field.
4118 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
4119 return false;
4121 ExtAddrMode TestAddrMode = AddrMode;
4123 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
4124 // [A+B + A*7] -> [B+A*8].
4125 TestAddrMode.Scale += Scale;
4126 TestAddrMode.ScaledReg = ScaleReg;
4128 // If the new address isn't legal, bail out.
4129 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
4130 return false;
4132 // It was legal, so commit it.
4133 AddrMode = TestAddrMode;
4135 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
4136 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
4137 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4138 // go any further: we can reuse it and cannot eliminate it.
4139 ConstantInt *CI = nullptr;
4140 Value *AddLHS = nullptr;
4141 if (isa<Instruction>(ScaleReg) && // not a constant expr.
4142 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
4143 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
4144 TestAddrMode.InBounds = false;
4145 TestAddrMode.ScaledReg = AddLHS;
4146 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
4148 // If this addressing mode is legal, commit it and remember that we folded
4149 // this instruction.
4150 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
4151 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
4152 AddrMode = TestAddrMode;
4153 return true;
4155 // Restore status quo.
4156 TestAddrMode = AddrMode;
4159 // If this is an add recurrence with a constant step, return the increment
4160 // instruction and the canonicalized step.
4161 auto GetConstantStep =
4162 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> {
4163 auto *PN = dyn_cast<PHINode>(V);
4164 if (!PN)
4165 return std::nullopt;
4166 auto IVInc = getIVIncrement(PN, &LI);
4167 if (!IVInc)
4168 return std::nullopt;
4169 // TODO: The result of the intrinsics above is two-complement. However when
4170 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4171 // If it has nuw or nsw flags, we need to make sure that these flags are
4172 // inferrable at the point of memory instruction. Otherwise we are replacing
4173 // well-defined two-complement computation with poison. Currently, to avoid
4174 // potentially complex analysis needed to prove this, we reject such cases.
4175 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
4176 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
4177 return std::nullopt;
4178 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
4179 return std::make_pair(IVInc->first, ConstantStep->getValue());
4180 return std::nullopt;
4183 // Try to account for the following special case:
4184 // 1. ScaleReg is an inductive variable;
4185 // 2. We use it with non-zero offset;
4186 // 3. IV's increment is available at the point of memory instruction.
4188 // In this case, we may reuse the IV increment instead of the IV Phi to
4189 // achieve the following advantages:
4190 // 1. If IV step matches the offset, we will have no need in the offset;
4191 // 2. Even if they don't match, we will reduce the overlap of living IV
4192 // and IV increment, that will potentially lead to better register
4193 // assignment.
4194 if (AddrMode.BaseOffs) {
4195 if (auto IVStep = GetConstantStep(ScaleReg)) {
4196 Instruction *IVInc = IVStep->first;
4197 // The following assert is important to ensure a lack of infinite loops.
4198 // This transforms is (intentionally) the inverse of the one just above.
4199 // If they don't agree on the definition of an increment, we'd alternate
4200 // back and forth indefinitely.
4201 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
4202 APInt Step = IVStep->second;
4203 APInt Offset = Step * AddrMode.Scale;
4204 if (Offset.isSignedIntN(64)) {
4205 TestAddrMode.InBounds = false;
4206 TestAddrMode.ScaledReg = IVInc;
4207 TestAddrMode.BaseOffs -= Offset.getLimitedValue();
4208 // If this addressing mode is legal, commit it..
4209 // (Note that we defer the (expensive) domtree base legality check
4210 // to the very last possible point.)
4211 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
4212 getDTFn().dominates(IVInc, MemoryInst)) {
4213 AddrModeInsts.push_back(cast<Instruction>(IVInc));
4214 AddrMode = TestAddrMode;
4215 return true;
4217 // Restore status quo.
4218 TestAddrMode = AddrMode;
4223 // Otherwise, just return what we have.
4224 return true;
4227 /// This is a little filter, which returns true if an addressing computation
4228 /// involving I might be folded into a load/store accessing it.
4229 /// This doesn't need to be perfect, but needs to accept at least
4230 /// the set of instructions that MatchOperationAddr can.
4231 static bool MightBeFoldableInst(Instruction *I) {
4232 switch (I->getOpcode()) {
4233 case Instruction::BitCast:
4234 case Instruction::AddrSpaceCast:
4235 // Don't touch identity bitcasts.
4236 if (I->getType() == I->getOperand(0)->getType())
4237 return false;
4238 return I->getType()->isIntOrPtrTy();
4239 case Instruction::PtrToInt:
4240 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4241 return true;
4242 case Instruction::IntToPtr:
4243 // We know the input is intptr_t, so this is foldable.
4244 return true;
4245 case Instruction::Add:
4246 return true;
4247 case Instruction::Mul:
4248 case Instruction::Shl:
4249 // Can only handle X*C and X << C.
4250 return isa<ConstantInt>(I->getOperand(1));
4251 case Instruction::GetElementPtr:
4252 return true;
4253 default:
4254 return false;
4258 /// Check whether or not \p Val is a legal instruction for \p TLI.
4259 /// \note \p Val is assumed to be the product of some type promotion.
4260 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4261 /// to be legal, as the non-promoted value would have had the same state.
4262 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4263 const DataLayout &DL, Value *Val) {
4264 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4265 if (!PromotedInst)
4266 return false;
4267 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4268 // If the ISDOpcode is undefined, it was undefined before the promotion.
4269 if (!ISDOpcode)
4270 return true;
4271 // Otherwise, check if the promoted instruction is legal or not.
4272 return TLI.isOperationLegalOrCustom(
4273 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4276 namespace {
4278 /// Hepler class to perform type promotion.
4279 class TypePromotionHelper {
4280 /// Utility function to add a promoted instruction \p ExtOpnd to
4281 /// \p PromotedInsts and record the type of extension we have seen.
4282 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4283 Instruction *ExtOpnd, bool IsSExt) {
4284 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4285 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4286 if (It != PromotedInsts.end()) {
4287 // If the new extension is same as original, the information in
4288 // PromotedInsts[ExtOpnd] is still correct.
4289 if (It->second.getInt() == ExtTy)
4290 return;
4292 // Now the new extension is different from old extension, we make
4293 // the type information invalid by setting extension type to
4294 // BothExtension.
4295 ExtTy = BothExtension;
4297 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4300 /// Utility function to query the original type of instruction \p Opnd
4301 /// with a matched extension type. If the extension doesn't match, we
4302 /// cannot use the information we had on the original type.
4303 /// BothExtension doesn't match any extension type.
4304 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4305 Instruction *Opnd, bool IsSExt) {
4306 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4307 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4308 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4309 return It->second.getPointer();
4310 return nullptr;
4313 /// Utility function to check whether or not a sign or zero extension
4314 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4315 /// either using the operands of \p Inst or promoting \p Inst.
4316 /// The type of the extension is defined by \p IsSExt.
4317 /// In other words, check if:
4318 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4319 /// #1 Promotion applies:
4320 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4321 /// #2 Operand reuses:
4322 /// ext opnd1 to ConsideredExtType.
4323 /// \p PromotedInsts maps the instructions to their type before promotion.
4324 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4325 const InstrToOrigTy &PromotedInsts, bool IsSExt);
4327 /// Utility function to determine if \p OpIdx should be promoted when
4328 /// promoting \p Inst.
4329 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4330 return !(isa<SelectInst>(Inst) && OpIdx == 0);
4333 /// Utility function to promote the operand of \p Ext when this
4334 /// operand is a promotable trunc or sext or zext.
4335 /// \p PromotedInsts maps the instructions to their type before promotion.
4336 /// \p CreatedInstsCost[out] contains the cost of all instructions
4337 /// created to promote the operand of Ext.
4338 /// Newly added extensions are inserted in \p Exts.
4339 /// Newly added truncates are inserted in \p Truncs.
4340 /// Should never be called directly.
4341 /// \return The promoted value which is used instead of Ext.
4342 static Value *promoteOperandForTruncAndAnyExt(
4343 Instruction *Ext, TypePromotionTransaction &TPT,
4344 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4345 SmallVectorImpl<Instruction *> *Exts,
4346 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4348 /// Utility function to promote the operand of \p Ext when this
4349 /// operand is promotable and is not a supported trunc or sext.
4350 /// \p PromotedInsts maps the instructions to their type before promotion.
4351 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4352 /// created to promote the operand of Ext.
4353 /// Newly added extensions are inserted in \p Exts.
4354 /// Newly added truncates are inserted in \p Truncs.
4355 /// Should never be called directly.
4356 /// \return The promoted value which is used instead of Ext.
4357 static Value *promoteOperandForOther(Instruction *Ext,
4358 TypePromotionTransaction &TPT,
4359 InstrToOrigTy &PromotedInsts,
4360 unsigned &CreatedInstsCost,
4361 SmallVectorImpl<Instruction *> *Exts,
4362 SmallVectorImpl<Instruction *> *Truncs,
4363 const TargetLowering &TLI, bool IsSExt);
4365 /// \see promoteOperandForOther.
4366 static Value *signExtendOperandForOther(
4367 Instruction *Ext, TypePromotionTransaction &TPT,
4368 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4369 SmallVectorImpl<Instruction *> *Exts,
4370 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4371 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4372 Exts, Truncs, TLI, true);
4375 /// \see promoteOperandForOther.
4376 static Value *zeroExtendOperandForOther(
4377 Instruction *Ext, TypePromotionTransaction &TPT,
4378 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4379 SmallVectorImpl<Instruction *> *Exts,
4380 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4381 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4382 Exts, Truncs, TLI, false);
4385 public:
4386 /// Type for the utility function that promotes the operand of Ext.
4387 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4388 InstrToOrigTy &PromotedInsts,
4389 unsigned &CreatedInstsCost,
4390 SmallVectorImpl<Instruction *> *Exts,
4391 SmallVectorImpl<Instruction *> *Truncs,
4392 const TargetLowering &TLI);
4394 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4395 /// action to promote the operand of \p Ext instead of using Ext.
4396 /// \return NULL if no promotable action is possible with the current
4397 /// sign extension.
4398 /// \p InsertedInsts keeps track of all the instructions inserted by the
4399 /// other CodeGenPrepare optimizations. This information is important
4400 /// because we do not want to promote these instructions as CodeGenPrepare
4401 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4402 /// \p PromotedInsts maps the instructions to their type before promotion.
4403 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4404 const TargetLowering &TLI,
4405 const InstrToOrigTy &PromotedInsts);
4408 } // end anonymous namespace
4410 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4411 Type *ConsideredExtType,
4412 const InstrToOrigTy &PromotedInsts,
4413 bool IsSExt) {
4414 // The promotion helper does not know how to deal with vector types yet.
4415 // To be able to fix that, we would need to fix the places where we
4416 // statically extend, e.g., constants and such.
4417 if (Inst->getType()->isVectorTy())
4418 return false;
4420 // We can always get through zext.
4421 if (isa<ZExtInst>(Inst))
4422 return true;
4424 // sext(sext) is ok too.
4425 if (IsSExt && isa<SExtInst>(Inst))
4426 return true;
4428 // We can get through binary operator, if it is legal. In other words, the
4429 // binary operator must have a nuw or nsw flag.
4430 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4431 if (isa<OverflowingBinaryOperator>(BinOp) &&
4432 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4433 (IsSExt && BinOp->hasNoSignedWrap())))
4434 return true;
4436 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4437 if ((Inst->getOpcode() == Instruction::And ||
4438 Inst->getOpcode() == Instruction::Or))
4439 return true;
4441 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4442 if (Inst->getOpcode() == Instruction::Xor) {
4443 // Make sure it is not a NOT.
4444 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4445 if (!Cst->getValue().isAllOnes())
4446 return true;
4449 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4450 // It may change a poisoned value into a regular value, like
4451 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4452 // poisoned value regular value
4453 // It should be OK since undef covers valid value.
4454 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4455 return true;
4457 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4458 // It may change a poisoned value into a regular value, like
4459 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4460 // poisoned value regular value
4461 // It should be OK since undef covers valid value.
4462 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4463 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4464 if (ExtInst->hasOneUse()) {
4465 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4466 if (AndInst && AndInst->getOpcode() == Instruction::And) {
4467 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4468 if (Cst &&
4469 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4470 return true;
4475 // Check if we can do the following simplification.
4476 // ext(trunc(opnd)) --> ext(opnd)
4477 if (!isa<TruncInst>(Inst))
4478 return false;
4480 Value *OpndVal = Inst->getOperand(0);
4481 // Check if we can use this operand in the extension.
4482 // If the type is larger than the result type of the extension, we cannot.
4483 if (!OpndVal->getType()->isIntegerTy() ||
4484 OpndVal->getType()->getIntegerBitWidth() >
4485 ConsideredExtType->getIntegerBitWidth())
4486 return false;
4488 // If the operand of the truncate is not an instruction, we will not have
4489 // any information on the dropped bits.
4490 // (Actually we could for constant but it is not worth the extra logic).
4491 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4492 if (!Opnd)
4493 return false;
4495 // Check if the source of the type is narrow enough.
4496 // I.e., check that trunc just drops extended bits of the same kind of
4497 // the extension.
4498 // #1 get the type of the operand and check the kind of the extended bits.
4499 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4500 if (OpndType)
4502 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4503 OpndType = Opnd->getOperand(0)->getType();
4504 else
4505 return false;
4507 // #2 check that the truncate just drops extended bits.
4508 return Inst->getType()->getIntegerBitWidth() >=
4509 OpndType->getIntegerBitWidth();
4512 TypePromotionHelper::Action TypePromotionHelper::getAction(
4513 Instruction *Ext, const SetOfInstrs &InsertedInsts,
4514 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4515 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4516 "Unexpected instruction type");
4517 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4518 Type *ExtTy = Ext->getType();
4519 bool IsSExt = isa<SExtInst>(Ext);
4520 // If the operand of the extension is not an instruction, we cannot
4521 // get through.
4522 // If it, check we can get through.
4523 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4524 return nullptr;
4526 // Do not promote if the operand has been added by codegenprepare.
4527 // Otherwise, it means we are undoing an optimization that is likely to be
4528 // redone, thus causing potential infinite loop.
4529 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4530 return nullptr;
4532 // SExt or Trunc instructions.
4533 // Return the related handler.
4534 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4535 isa<ZExtInst>(ExtOpnd))
4536 return promoteOperandForTruncAndAnyExt;
4538 // Regular instruction.
4539 // Abort early if we will have to insert non-free instructions.
4540 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4541 return nullptr;
4542 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4545 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4546 Instruction *SExt, TypePromotionTransaction &TPT,
4547 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4548 SmallVectorImpl<Instruction *> *Exts,
4549 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4550 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4551 // get through it and this method should not be called.
4552 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4553 Value *ExtVal = SExt;
4554 bool HasMergedNonFreeExt = false;
4555 if (isa<ZExtInst>(SExtOpnd)) {
4556 // Replace s|zext(zext(opnd))
4557 // => zext(opnd).
4558 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4559 Value *ZExt =
4560 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4561 TPT.replaceAllUsesWith(SExt, ZExt);
4562 TPT.eraseInstruction(SExt);
4563 ExtVal = ZExt;
4564 } else {
4565 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4566 // => z|sext(opnd).
4567 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4569 CreatedInstsCost = 0;
4571 // Remove dead code.
4572 if (SExtOpnd->use_empty())
4573 TPT.eraseInstruction(SExtOpnd);
4575 // Check if the extension is still needed.
4576 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4577 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4578 if (ExtInst) {
4579 if (Exts)
4580 Exts->push_back(ExtInst);
4581 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4583 return ExtVal;
4586 // At this point we have: ext ty opnd to ty.
4587 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4588 Value *NextVal = ExtInst->getOperand(0);
4589 TPT.eraseInstruction(ExtInst, NextVal);
4590 return NextVal;
4593 Value *TypePromotionHelper::promoteOperandForOther(
4594 Instruction *Ext, TypePromotionTransaction &TPT,
4595 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4596 SmallVectorImpl<Instruction *> *Exts,
4597 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4598 bool IsSExt) {
4599 // By construction, the operand of Ext is an instruction. Otherwise we cannot
4600 // get through it and this method should not be called.
4601 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4602 CreatedInstsCost = 0;
4603 if (!ExtOpnd->hasOneUse()) {
4604 // ExtOpnd will be promoted.
4605 // All its uses, but Ext, will need to use a truncated value of the
4606 // promoted version.
4607 // Create the truncate now.
4608 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4609 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4610 // Insert it just after the definition.
4611 ITrunc->moveAfter(ExtOpnd);
4612 if (Truncs)
4613 Truncs->push_back(ITrunc);
4616 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4617 // Restore the operand of Ext (which has been replaced by the previous call
4618 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4619 TPT.setOperand(Ext, 0, ExtOpnd);
4622 // Get through the Instruction:
4623 // 1. Update its type.
4624 // 2. Replace the uses of Ext by Inst.
4625 // 3. Extend each operand that needs to be extended.
4627 // Remember the original type of the instruction before promotion.
4628 // This is useful to know that the high bits are sign extended bits.
4629 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4630 // Step #1.
4631 TPT.mutateType(ExtOpnd, Ext->getType());
4632 // Step #2.
4633 TPT.replaceAllUsesWith(Ext, ExtOpnd);
4634 // Step #3.
4635 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4636 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4637 ++OpIdx) {
4638 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4639 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4640 !shouldExtOperand(ExtOpnd, OpIdx)) {
4641 LLVM_DEBUG(dbgs() << "No need to propagate\n");
4642 continue;
4644 // Check if we can statically extend the operand.
4645 Value *Opnd = ExtOpnd->getOperand(OpIdx);
4646 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4647 LLVM_DEBUG(dbgs() << "Statically extend\n");
4648 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4649 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4650 : Cst->getValue().zext(BitWidth);
4651 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4652 continue;
4654 // UndefValue are typed, so we have to statically sign extend them.
4655 if (isa<UndefValue>(Opnd)) {
4656 LLVM_DEBUG(dbgs() << "Statically extend\n");
4657 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4658 continue;
4661 // Otherwise we have to explicitly sign extend the operand.
4662 Value *ValForExtOpnd = IsSExt
4663 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType())
4664 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType());
4665 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4666 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd);
4667 if (!InstForExtOpnd)
4668 continue;
4670 if (Exts)
4671 Exts->push_back(InstForExtOpnd);
4673 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd);
4675 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4676 TPT.eraseInstruction(Ext);
4677 return ExtOpnd;
4680 /// Check whether or not promoting an instruction to a wider type is profitable.
4681 /// \p NewCost gives the cost of extension instructions created by the
4682 /// promotion.
4683 /// \p OldCost gives the cost of extension instructions before the promotion
4684 /// plus the number of instructions that have been
4685 /// matched in the addressing mode the promotion.
4686 /// \p PromotedOperand is the value that has been promoted.
4687 /// \return True if the promotion is profitable, false otherwise.
4688 bool AddressingModeMatcher::isPromotionProfitable(
4689 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4690 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4691 << '\n');
4692 // The cost of the new extensions is greater than the cost of the
4693 // old extension plus what we folded.
4694 // This is not profitable.
4695 if (NewCost > OldCost)
4696 return false;
4697 if (NewCost < OldCost)
4698 return true;
4699 // The promotion is neutral but it may help folding the sign extension in
4700 // loads for instance.
4701 // Check that we did not create an illegal instruction.
4702 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4705 /// Given an instruction or constant expr, see if we can fold the operation
4706 /// into the addressing mode. If so, update the addressing mode and return
4707 /// true, otherwise return false without modifying AddrMode.
4708 /// If \p MovedAway is not NULL, it contains the information of whether or
4709 /// not AddrInst has to be folded into the addressing mode on success.
4710 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4711 /// because it has been moved away.
4712 /// Thus AddrInst must not be added in the matched instructions.
4713 /// This state can happen when AddrInst is a sext, since it may be moved away.
4714 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4715 /// not be referenced anymore.
4716 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4717 unsigned Depth,
4718 bool *MovedAway) {
4719 // Avoid exponential behavior on extremely deep expression trees.
4720 if (Depth >= 5)
4721 return false;
4723 // By default, all matched instructions stay in place.
4724 if (MovedAway)
4725 *MovedAway = false;
4727 switch (Opcode) {
4728 case Instruction::PtrToInt:
4729 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4730 return matchAddr(AddrInst->getOperand(0), Depth);
4731 case Instruction::IntToPtr: {
4732 auto AS = AddrInst->getType()->getPointerAddressSpace();
4733 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4734 // This inttoptr is a no-op if the integer type is pointer sized.
4735 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4736 return matchAddr(AddrInst->getOperand(0), Depth);
4737 return false;
4739 case Instruction::BitCast:
4740 // BitCast is always a noop, and we can handle it as long as it is
4741 // int->int or pointer->pointer (we don't want int<->fp or something).
4742 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4743 // Don't touch identity bitcasts. These were probably put here by LSR,
4744 // and we don't want to mess around with them. Assume it knows what it
4745 // is doing.
4746 AddrInst->getOperand(0)->getType() != AddrInst->getType())
4747 return matchAddr(AddrInst->getOperand(0), Depth);
4748 return false;
4749 case Instruction::AddrSpaceCast: {
4750 unsigned SrcAS =
4751 AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4752 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4753 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4754 return matchAddr(AddrInst->getOperand(0), Depth);
4755 return false;
4757 case Instruction::Add: {
4758 // Check to see if we can merge in one operand, then the other. If so, we
4759 // win.
4760 ExtAddrMode BackupAddrMode = AddrMode;
4761 unsigned OldSize = AddrModeInsts.size();
4762 // Start a transaction at this point.
4763 // The LHS may match but not the RHS.
4764 // Therefore, we need a higher level restoration point to undo partially
4765 // matched operation.
4766 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4767 TPT.getRestorationPoint();
4769 // Try to match an integer constant second to increase its chance of ending
4770 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
4771 int First = 0, Second = 1;
4772 if (isa<ConstantInt>(AddrInst->getOperand(First))
4773 && !isa<ConstantInt>(AddrInst->getOperand(Second)))
4774 std::swap(First, Second);
4775 AddrMode.InBounds = false;
4776 if (matchAddr(AddrInst->getOperand(First), Depth + 1) &&
4777 matchAddr(AddrInst->getOperand(Second), Depth + 1))
4778 return true;
4780 // Restore the old addr mode info.
4781 AddrMode = BackupAddrMode;
4782 AddrModeInsts.resize(OldSize);
4783 TPT.rollback(LastKnownGood);
4785 // Otherwise this was over-aggressive. Try merging operands in the opposite
4786 // order.
4787 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) &&
4788 matchAddr(AddrInst->getOperand(First), Depth + 1))
4789 return true;
4791 // Otherwise we definitely can't merge the ADD in.
4792 AddrMode = BackupAddrMode;
4793 AddrModeInsts.resize(OldSize);
4794 TPT.rollback(LastKnownGood);
4795 break;
4797 // case Instruction::Or:
4798 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4799 // break;
4800 case Instruction::Mul:
4801 case Instruction::Shl: {
4802 // Can only handle X*C and X << C.
4803 AddrMode.InBounds = false;
4804 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4805 if (!RHS || RHS->getBitWidth() > 64)
4806 return false;
4807 int64_t Scale = Opcode == Instruction::Shl
4808 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
4809 : RHS->getSExtValue();
4811 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4813 case Instruction::GetElementPtr: {
4814 // Scan the GEP. We check it if it contains constant offsets and at most
4815 // one variable offset.
4816 int VariableOperand = -1;
4817 unsigned VariableScale = 0;
4819 int64_t ConstantOffset = 0;
4820 gep_type_iterator GTI = gep_type_begin(AddrInst);
4821 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4822 if (StructType *STy = GTI.getStructTypeOrNull()) {
4823 const StructLayout *SL = DL.getStructLayout(STy);
4824 unsigned Idx =
4825 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4826 ConstantOffset += SL->getElementOffset(Idx);
4827 } else {
4828 TypeSize TS = GTI.getSequentialElementStride(DL);
4829 if (TS.isNonZero()) {
4830 // The optimisations below currently only work for fixed offsets.
4831 if (TS.isScalable())
4832 return false;
4833 int64_t TypeSize = TS.getFixedValue();
4834 if (ConstantInt *CI =
4835 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4836 const APInt &CVal = CI->getValue();
4837 if (CVal.getSignificantBits() <= 64) {
4838 ConstantOffset += CVal.getSExtValue() * TypeSize;
4839 continue;
4842 // We only allow one variable index at the moment.
4843 if (VariableOperand != -1)
4844 return false;
4846 // Remember the variable index.
4847 VariableOperand = i;
4848 VariableScale = TypeSize;
4853 // A common case is for the GEP to only do a constant offset. In this case,
4854 // just add it to the disp field and check validity.
4855 if (VariableOperand == -1) {
4856 AddrMode.BaseOffs += ConstantOffset;
4857 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4858 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4859 AddrMode.InBounds = false;
4860 return true;
4862 AddrMode.BaseOffs -= ConstantOffset;
4864 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4865 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4866 ConstantOffset > 0) {
4867 // Record GEPs with non-zero offsets as candidates for splitting in
4868 // the event that the offset cannot fit into the r+i addressing mode.
4869 // Simple and common case that only one GEP is used in calculating the
4870 // address for the memory access.
4871 Value *Base = AddrInst->getOperand(0);
4872 auto *BaseI = dyn_cast<Instruction>(Base);
4873 auto *GEP = cast<GetElementPtrInst>(AddrInst);
4874 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4875 (BaseI && !isa<CastInst>(BaseI) &&
4876 !isa<GetElementPtrInst>(BaseI))) {
4877 // Make sure the parent block allows inserting non-PHI instructions
4878 // before the terminator.
4879 BasicBlock *Parent = BaseI ? BaseI->getParent()
4880 : &GEP->getFunction()->getEntryBlock();
4881 if (!Parent->getTerminator()->isEHPad())
4882 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4886 return false;
4889 // Save the valid addressing mode in case we can't match.
4890 ExtAddrMode BackupAddrMode = AddrMode;
4891 unsigned OldSize = AddrModeInsts.size();
4893 // See if the scale and offset amount is valid for this target.
4894 AddrMode.BaseOffs += ConstantOffset;
4895 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4896 AddrMode.InBounds = false;
4898 // Match the base operand of the GEP.
4899 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4900 // If it couldn't be matched, just stuff the value in a register.
4901 if (AddrMode.HasBaseReg) {
4902 AddrMode = BackupAddrMode;
4903 AddrModeInsts.resize(OldSize);
4904 return false;
4906 AddrMode.HasBaseReg = true;
4907 AddrMode.BaseReg = AddrInst->getOperand(0);
4910 // Match the remaining variable portion of the GEP.
4911 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4912 Depth)) {
4913 // If it couldn't be matched, try stuffing the base into a register
4914 // instead of matching it, and retrying the match of the scale.
4915 AddrMode = BackupAddrMode;
4916 AddrModeInsts.resize(OldSize);
4917 if (AddrMode.HasBaseReg)
4918 return false;
4919 AddrMode.HasBaseReg = true;
4920 AddrMode.BaseReg = AddrInst->getOperand(0);
4921 AddrMode.BaseOffs += ConstantOffset;
4922 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4923 VariableScale, Depth)) {
4924 // If even that didn't work, bail.
4925 AddrMode = BackupAddrMode;
4926 AddrModeInsts.resize(OldSize);
4927 return false;
4931 return true;
4933 case Instruction::SExt:
4934 case Instruction::ZExt: {
4935 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4936 if (!Ext)
4937 return false;
4939 // Try to move this ext out of the way of the addressing mode.
4940 // Ask for a method for doing so.
4941 TypePromotionHelper::Action TPH =
4942 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4943 if (!TPH)
4944 return false;
4946 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4947 TPT.getRestorationPoint();
4948 unsigned CreatedInstsCost = 0;
4949 unsigned ExtCost = !TLI.isExtFree(Ext);
4950 Value *PromotedOperand =
4951 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4952 // SExt has been moved away.
4953 // Thus either it will be rematched later in the recursive calls or it is
4954 // gone. Anyway, we must not fold it into the addressing mode at this point.
4955 // E.g.,
4956 // op = add opnd, 1
4957 // idx = ext op
4958 // addr = gep base, idx
4959 // is now:
4960 // promotedOpnd = ext opnd <- no match here
4961 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4962 // addr = gep base, op <- match
4963 if (MovedAway)
4964 *MovedAway = true;
4966 assert(PromotedOperand &&
4967 "TypePromotionHelper should have filtered out those cases");
4969 ExtAddrMode BackupAddrMode = AddrMode;
4970 unsigned OldSize = AddrModeInsts.size();
4972 if (!matchAddr(PromotedOperand, Depth) ||
4973 // The total of the new cost is equal to the cost of the created
4974 // instructions.
4975 // The total of the old cost is equal to the cost of the extension plus
4976 // what we have saved in the addressing mode.
4977 !isPromotionProfitable(CreatedInstsCost,
4978 ExtCost + (AddrModeInsts.size() - OldSize),
4979 PromotedOperand)) {
4980 AddrMode = BackupAddrMode;
4981 AddrModeInsts.resize(OldSize);
4982 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4983 TPT.rollback(LastKnownGood);
4984 return false;
4986 return true;
4989 return false;
4992 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4993 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4994 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4995 /// for the target.
4997 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4998 // Start a transaction at this point that we will rollback if the matching
4999 // fails.
5000 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5001 TPT.getRestorationPoint();
5002 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
5003 if (CI->getValue().isSignedIntN(64)) {
5004 // Fold in immediates if legal for the target.
5005 AddrMode.BaseOffs += CI->getSExtValue();
5006 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5007 return true;
5008 AddrMode.BaseOffs -= CI->getSExtValue();
5010 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
5011 // If this is a global variable, try to fold it into the addressing mode.
5012 if (!AddrMode.BaseGV) {
5013 AddrMode.BaseGV = GV;
5014 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5015 return true;
5016 AddrMode.BaseGV = nullptr;
5018 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
5019 ExtAddrMode BackupAddrMode = AddrMode;
5020 unsigned OldSize = AddrModeInsts.size();
5022 // Check to see if it is possible to fold this operation.
5023 bool MovedAway = false;
5024 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
5025 // This instruction may have been moved away. If so, there is nothing
5026 // to check here.
5027 if (MovedAway)
5028 return true;
5029 // Okay, it's possible to fold this. Check to see if it is actually
5030 // *profitable* to do so. We use a simple cost model to avoid increasing
5031 // register pressure too much.
5032 if (I->hasOneUse() ||
5033 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
5034 AddrModeInsts.push_back(I);
5035 return true;
5038 // It isn't profitable to do this, roll back.
5039 AddrMode = BackupAddrMode;
5040 AddrModeInsts.resize(OldSize);
5041 TPT.rollback(LastKnownGood);
5043 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
5044 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
5045 return true;
5046 TPT.rollback(LastKnownGood);
5047 } else if (isa<ConstantPointerNull>(Addr)) {
5048 // Null pointer gets folded without affecting the addressing mode.
5049 return true;
5052 // Worse case, the target should support [reg] addressing modes. :)
5053 if (!AddrMode.HasBaseReg) {
5054 AddrMode.HasBaseReg = true;
5055 AddrMode.BaseReg = Addr;
5056 // Still check for legality in case the target supports [imm] but not [i+r].
5057 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5058 return true;
5059 AddrMode.HasBaseReg = false;
5060 AddrMode.BaseReg = nullptr;
5063 // If the base register is already taken, see if we can do [r+r].
5064 if (AddrMode.Scale == 0) {
5065 AddrMode.Scale = 1;
5066 AddrMode.ScaledReg = Addr;
5067 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5068 return true;
5069 AddrMode.Scale = 0;
5070 AddrMode.ScaledReg = nullptr;
5072 // Couldn't match.
5073 TPT.rollback(LastKnownGood);
5074 return false;
5077 /// Check to see if all uses of OpVal by the specified inline asm call are due
5078 /// to memory operands. If so, return true, otherwise return false.
5079 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
5080 const TargetLowering &TLI,
5081 const TargetRegisterInfo &TRI) {
5082 const Function *F = CI->getFunction();
5083 TargetLowering::AsmOperandInfoVector TargetConstraints =
5084 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
5086 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5087 // Compute the constraint code and ConstraintType to use.
5088 TLI.ComputeConstraintToUse(OpInfo, SDValue());
5090 // If this asm operand is our Value*, and if it isn't an indirect memory
5091 // operand, we can't fold it! TODO: Also handle C_Address?
5092 if (OpInfo.CallOperandVal == OpVal &&
5093 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
5094 !OpInfo.isIndirect))
5095 return false;
5098 return true;
5101 /// Recursively walk all the uses of I until we find a memory use.
5102 /// If we find an obviously non-foldable instruction, return true.
5103 /// Add accessed addresses and types to MemoryUses.
5104 static bool FindAllMemoryUses(
5105 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5106 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
5107 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
5108 BlockFrequencyInfo *BFI, unsigned &SeenInsts) {
5109 // If we already considered this instruction, we're done.
5110 if (!ConsideredInsts.insert(I).second)
5111 return false;
5113 // If this is an obviously unfoldable instruction, bail out.
5114 if (!MightBeFoldableInst(I))
5115 return true;
5117 // Loop over all the uses, recursively processing them.
5118 for (Use &U : I->uses()) {
5119 // Conservatively return true if we're seeing a large number or a deep chain
5120 // of users. This avoids excessive compilation times in pathological cases.
5121 if (SeenInsts++ >= MaxAddressUsersToScan)
5122 return true;
5124 Instruction *UserI = cast<Instruction>(U.getUser());
5125 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
5126 MemoryUses.push_back({&U, LI->getType()});
5127 continue;
5130 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
5131 if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
5132 return true; // Storing addr, not into addr.
5133 MemoryUses.push_back({&U, SI->getValueOperand()->getType()});
5134 continue;
5137 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
5138 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5139 return true; // Storing addr, not into addr.
5140 MemoryUses.push_back({&U, RMW->getValOperand()->getType()});
5141 continue;
5144 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
5145 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5146 return true; // Storing addr, not into addr.
5147 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()});
5148 continue;
5151 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
5152 if (CI->hasFnAttr(Attribute::Cold)) {
5153 // If this is a cold call, we can sink the addressing calculation into
5154 // the cold path. See optimizeCallInst
5155 bool OptForSize =
5156 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
5157 if (!OptForSize)
5158 continue;
5161 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
5162 if (!IA)
5163 return true;
5165 // If this is a memory operand, we're cool, otherwise bail out.
5166 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
5167 return true;
5168 continue;
5171 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5172 PSI, BFI, SeenInsts))
5173 return true;
5176 return false;
5179 static bool FindAllMemoryUses(
5180 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5181 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize,
5182 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
5183 unsigned SeenInsts = 0;
5184 SmallPtrSet<Instruction *, 16> ConsideredInsts;
5185 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5186 PSI, BFI, SeenInsts);
5190 /// Return true if Val is already known to be live at the use site that we're
5191 /// folding it into. If so, there is no cost to include it in the addressing
5192 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5193 /// instruction already.
5194 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,
5195 Value *KnownLive1,
5196 Value *KnownLive2) {
5197 // If Val is either of the known-live values, we know it is live!
5198 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
5199 return true;
5201 // All values other than instructions and arguments (e.g. constants) are live.
5202 if (!isa<Instruction>(Val) && !isa<Argument>(Val))
5203 return true;
5205 // If Val is a constant sized alloca in the entry block, it is live, this is
5206 // true because it is just a reference to the stack/frame pointer, which is
5207 // live for the whole function.
5208 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
5209 if (AI->isStaticAlloca())
5210 return true;
5212 // Check to see if this value is already used in the memory instruction's
5213 // block. If so, it's already live into the block at the very least, so we
5214 // can reasonably fold it.
5215 return Val->isUsedInBasicBlock(MemoryInst->getParent());
5218 /// It is possible for the addressing mode of the machine to fold the specified
5219 /// instruction into a load or store that ultimately uses it.
5220 /// However, the specified instruction has multiple uses.
5221 /// Given this, it may actually increase register pressure to fold it
5222 /// into the load. For example, consider this code:
5224 /// X = ...
5225 /// Y = X+1
5226 /// use(Y) -> nonload/store
5227 /// Z = Y+1
5228 /// load Z
5230 /// In this case, Y has multiple uses, and can be folded into the load of Z
5231 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
5232 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
5233 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
5234 /// number of computations either.
5236 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
5237 /// X was live across 'load Z' for other reasons, we actually *would* want to
5238 /// fold the addressing mode in the Z case. This would make Y die earlier.
5239 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5240 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) {
5241 if (IgnoreProfitability)
5242 return true;
5244 // AMBefore is the addressing mode before this instruction was folded into it,
5245 // and AMAfter is the addressing mode after the instruction was folded. Get
5246 // the set of registers referenced by AMAfter and subtract out those
5247 // referenced by AMBefore: this is the set of values which folding in this
5248 // address extends the lifetime of.
5250 // Note that there are only two potential values being referenced here,
5251 // BaseReg and ScaleReg (global addresses are always available, as are any
5252 // folded immediates).
5253 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5255 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5256 // lifetime wasn't extended by adding this instruction.
5257 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5258 BaseReg = nullptr;
5259 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5260 ScaledReg = nullptr;
5262 // If folding this instruction (and it's subexprs) didn't extend any live
5263 // ranges, we're ok with it.
5264 if (!BaseReg && !ScaledReg)
5265 return true;
5267 // If all uses of this instruction can have the address mode sunk into them,
5268 // we can remove the addressing mode and effectively trade one live register
5269 // for another (at worst.) In this context, folding an addressing mode into
5270 // the use is just a particularly nice way of sinking it.
5271 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses;
5272 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI))
5273 return false; // Has a non-memory, non-foldable use!
5275 // Now that we know that all uses of this instruction are part of a chain of
5276 // computation involving only operations that could theoretically be folded
5277 // into a memory use, loop over each of these memory operation uses and see
5278 // if they could *actually* fold the instruction. The assumption is that
5279 // addressing modes are cheap and that duplicating the computation involved
5280 // many times is worthwhile, even on a fastpath. For sinking candidates
5281 // (i.e. cold call sites), this serves as a way to prevent excessive code
5282 // growth since most architectures have some reasonable small and fast way to
5283 // compute an effective address. (i.e LEA on x86)
5284 SmallVector<Instruction *, 32> MatchedAddrModeInsts;
5285 for (const std::pair<Use *, Type *> &Pair : MemoryUses) {
5286 Value *Address = Pair.first->get();
5287 Instruction *UserI = cast<Instruction>(Pair.first->getUser());
5288 Type *AddressAccessTy = Pair.second;
5289 unsigned AS = Address->getType()->getPointerAddressSpace();
5291 // Do a match against the root of this address, ignoring profitability. This
5292 // will tell us if the addressing mode for the memory operation will
5293 // *actually* cover the shared instruction.
5294 ExtAddrMode Result;
5295 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5297 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5298 TPT.getRestorationPoint();
5299 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5300 AddressAccessTy, AS, UserI, Result,
5301 InsertedInsts, PromotedInsts, TPT,
5302 LargeOffsetGEP, OptSize, PSI, BFI);
5303 Matcher.IgnoreProfitability = true;
5304 bool Success = Matcher.matchAddr(Address, 0);
5305 (void)Success;
5306 assert(Success && "Couldn't select *anything*?");
5308 // The match was to check the profitability, the changes made are not
5309 // part of the original matcher. Therefore, they should be dropped
5310 // otherwise the original matcher will not present the right state.
5311 TPT.rollback(LastKnownGood);
5313 // If the match didn't cover I, then it won't be shared by it.
5314 if (!is_contained(MatchedAddrModeInsts, I))
5315 return false;
5317 MatchedAddrModeInsts.clear();
5320 return true;
5323 /// Return true if the specified values are defined in a
5324 /// different basic block than BB.
5325 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5326 if (Instruction *I = dyn_cast<Instruction>(V))
5327 return I->getParent() != BB;
5328 return false;
5331 /// Sink addressing mode computation immediate before MemoryInst if doing so
5332 /// can be done without increasing register pressure. The need for the
5333 /// register pressure constraint means this can end up being an all or nothing
5334 /// decision for all uses of the same addressing computation.
5336 /// Load and Store Instructions often have addressing modes that can do
5337 /// significant amounts of computation. As such, instruction selection will try
5338 /// to get the load or store to do as much computation as possible for the
5339 /// program. The problem is that isel can only see within a single block. As
5340 /// such, we sink as much legal addressing mode work into the block as possible.
5342 /// This method is used to optimize both load/store and inline asms with memory
5343 /// operands. It's also used to sink addressing computations feeding into cold
5344 /// call sites into their (cold) basic block.
5346 /// The motivation for handling sinking into cold blocks is that doing so can
5347 /// both enable other address mode sinking (by satisfying the register pressure
5348 /// constraint above), and reduce register pressure globally (by removing the
5349 /// addressing mode computation from the fast path entirely.).
5350 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5351 Type *AccessTy, unsigned AddrSpace) {
5352 Value *Repl = Addr;
5354 // Try to collapse single-value PHI nodes. This is necessary to undo
5355 // unprofitable PRE transformations.
5356 SmallVector<Value *, 8> worklist;
5357 SmallPtrSet<Value *, 16> Visited;
5358 worklist.push_back(Addr);
5360 // Use a worklist to iteratively look through PHI and select nodes, and
5361 // ensure that the addressing mode obtained from the non-PHI/select roots of
5362 // the graph are compatible.
5363 bool PhiOrSelectSeen = false;
5364 SmallVector<Instruction *, 16> AddrModeInsts;
5365 const SimplifyQuery SQ(*DL, TLInfo);
5366 AddressingModeCombiner AddrModes(SQ, Addr);
5367 TypePromotionTransaction TPT(RemovedInsts);
5368 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5369 TPT.getRestorationPoint();
5370 while (!worklist.empty()) {
5371 Value *V = worklist.pop_back_val();
5373 // We allow traversing cyclic Phi nodes.
5374 // In case of success after this loop we ensure that traversing through
5375 // Phi nodes ends up with all cases to compute address of the form
5376 // BaseGV + Base + Scale * Index + Offset
5377 // where Scale and Offset are constans and BaseGV, Base and Index
5378 // are exactly the same Values in all cases.
5379 // It means that BaseGV, Scale and Offset dominate our memory instruction
5380 // and have the same value as they had in address computation represented
5381 // as Phi. So we can safely sink address computation to memory instruction.
5382 if (!Visited.insert(V).second)
5383 continue;
5385 // For a PHI node, push all of its incoming values.
5386 if (PHINode *P = dyn_cast<PHINode>(V)) {
5387 append_range(worklist, P->incoming_values());
5388 PhiOrSelectSeen = true;
5389 continue;
5391 // Similar for select.
5392 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5393 worklist.push_back(SI->getFalseValue());
5394 worklist.push_back(SI->getTrueValue());
5395 PhiOrSelectSeen = true;
5396 continue;
5399 // For non-PHIs, determine the addressing mode being computed. Note that
5400 // the result may differ depending on what other uses our candidate
5401 // addressing instructions might have.
5402 AddrModeInsts.clear();
5403 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5405 // Defer the query (and possible computation of) the dom tree to point of
5406 // actual use. It's expected that most address matches don't actually need
5407 // the domtree.
5408 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5409 Function *F = MemoryInst->getParent()->getParent();
5410 return this->getDT(*F);
5412 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5413 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5414 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5415 BFI.get());
5417 GetElementPtrInst *GEP = LargeOffsetGEP.first;
5418 if (GEP && !NewGEPBases.count(GEP)) {
5419 // If splitting the underlying data structure can reduce the offset of a
5420 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5421 // previously split data structures.
5422 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5423 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5426 NewAddrMode.OriginalValue = V;
5427 if (!AddrModes.addNewAddrMode(NewAddrMode))
5428 break;
5431 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5432 // or we have multiple but either couldn't combine them or combining them
5433 // wouldn't do anything useful, bail out now.
5434 if (!AddrModes.combineAddrModes()) {
5435 TPT.rollback(LastKnownGood);
5436 return false;
5438 bool Modified = TPT.commit();
5440 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5441 ExtAddrMode AddrMode = AddrModes.getAddrMode();
5443 // If all the instructions matched are already in this BB, don't do anything.
5444 // If we saw a Phi node then it is not local definitely, and if we saw a
5445 // select then we want to push the address calculation past it even if it's
5446 // already in this BB.
5447 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5448 return IsNonLocalValue(V, MemoryInst->getParent());
5449 })) {
5450 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5451 << "\n");
5452 return Modified;
5455 // Insert this computation right after this user. Since our caller is
5456 // scanning from the top of the BB to the bottom, reuse of the expr are
5457 // guaranteed to happen later.
5458 IRBuilder<> Builder(MemoryInst);
5460 // Now that we determined the addressing expression we want to use and know
5461 // that we have to sink it into this block. Check to see if we have already
5462 // done this for some other load/store instr in this block. If so, reuse
5463 // the computation. Before attempting reuse, check if the address is valid
5464 // as it may have been erased.
5466 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5468 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5469 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5470 if (SunkAddr) {
5471 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5472 << " for " << *MemoryInst << "\n");
5473 if (SunkAddr->getType() != Addr->getType()) {
5474 if (SunkAddr->getType()->getPointerAddressSpace() !=
5475 Addr->getType()->getPointerAddressSpace() &&
5476 !DL->isNonIntegralPointerType(Addr->getType())) {
5477 // There are two reasons the address spaces might not match: a no-op
5478 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5479 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5480 // TODO: allow bitcast between different address space pointers with the
5481 // same size.
5482 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5483 SunkAddr =
5484 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5485 } else
5486 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5488 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5489 SubtargetInfo->addrSinkUsingGEPs())) {
5490 // By default, we use the GEP-based method when AA is used later. This
5491 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5492 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5493 << " for " << *MemoryInst << "\n");
5494 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5496 // First, find the pointer.
5497 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5498 ResultPtr = AddrMode.BaseReg;
5499 AddrMode.BaseReg = nullptr;
5502 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5503 // We can't add more than one pointer together, nor can we scale a
5504 // pointer (both of which seem meaningless).
5505 if (ResultPtr || AddrMode.Scale != 1)
5506 return Modified;
5508 ResultPtr = AddrMode.ScaledReg;
5509 AddrMode.Scale = 0;
5512 // It is only safe to sign extend the BaseReg if we know that the math
5513 // required to create it did not overflow before we extend it. Since
5514 // the original IR value was tossed in favor of a constant back when
5515 // the AddrMode was created we need to bail out gracefully if widths
5516 // do not match instead of extending it.
5518 // (See below for code to add the scale.)
5519 if (AddrMode.Scale) {
5520 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5521 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5522 cast<IntegerType>(ScaledRegTy)->getBitWidth())
5523 return Modified;
5526 if (AddrMode.BaseGV) {
5527 if (ResultPtr)
5528 return Modified;
5530 ResultPtr = AddrMode.BaseGV;
5533 // If the real base value actually came from an inttoptr, then the matcher
5534 // will look through it and provide only the integer value. In that case,
5535 // use it here.
5536 if (!DL->isNonIntegralPointerType(Addr->getType())) {
5537 if (!ResultPtr && AddrMode.BaseReg) {
5538 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5539 "sunkaddr");
5540 AddrMode.BaseReg = nullptr;
5541 } else if (!ResultPtr && AddrMode.Scale == 1) {
5542 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5543 "sunkaddr");
5544 AddrMode.Scale = 0;
5548 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale &&
5549 !AddrMode.BaseOffs) {
5550 SunkAddr = Constant::getNullValue(Addr->getType());
5551 } else if (!ResultPtr) {
5552 return Modified;
5553 } else {
5554 Type *I8PtrTy =
5555 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace());
5557 // Start with the base register. Do this first so that subsequent address
5558 // matching finds it last, which will prevent it from trying to match it
5559 // as the scaled value in case it happens to be a mul. That would be
5560 // problematic if we've sunk a different mul for the scale, because then
5561 // we'd end up sinking both muls.
5562 if (AddrMode.BaseReg) {
5563 Value *V = AddrMode.BaseReg;
5564 if (V->getType() != IntPtrTy)
5565 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5567 ResultIndex = V;
5570 // Add the scale value.
5571 if (AddrMode.Scale) {
5572 Value *V = AddrMode.ScaledReg;
5573 if (V->getType() == IntPtrTy) {
5574 // done.
5575 } else {
5576 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5577 cast<IntegerType>(V->getType())->getBitWidth() &&
5578 "We can't transform if ScaledReg is too narrow");
5579 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5582 if (AddrMode.Scale != 1)
5583 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5584 "sunkaddr");
5585 if (ResultIndex)
5586 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5587 else
5588 ResultIndex = V;
5591 // Add in the Base Offset if present.
5592 if (AddrMode.BaseOffs) {
5593 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5594 if (ResultIndex) {
5595 // We need to add this separately from the scale above to help with
5596 // SDAG consecutive load/store merging.
5597 if (ResultPtr->getType() != I8PtrTy)
5598 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5599 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5600 AddrMode.InBounds);
5603 ResultIndex = V;
5606 if (!ResultIndex) {
5607 SunkAddr = ResultPtr;
5608 } else {
5609 if (ResultPtr->getType() != I8PtrTy)
5610 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5611 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5612 AddrMode.InBounds);
5615 if (SunkAddr->getType() != Addr->getType()) {
5616 if (SunkAddr->getType()->getPointerAddressSpace() !=
5617 Addr->getType()->getPointerAddressSpace() &&
5618 !DL->isNonIntegralPointerType(Addr->getType())) {
5619 // There are two reasons the address spaces might not match: a no-op
5620 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5621 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5622 // TODO: allow bitcast between different address space pointers with
5623 // the same size.
5624 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5625 SunkAddr =
5626 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5627 } else
5628 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5631 } else {
5632 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5633 // non-integral pointers, so in that case bail out now.
5634 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5635 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5636 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5637 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5638 if (DL->isNonIntegralPointerType(Addr->getType()) ||
5639 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5640 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5641 (AddrMode.BaseGV &&
5642 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5643 return Modified;
5645 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5646 << " for " << *MemoryInst << "\n");
5647 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5648 Value *Result = nullptr;
5650 // Start with the base register. Do this first so that subsequent address
5651 // matching finds it last, which will prevent it from trying to match it
5652 // as the scaled value in case it happens to be a mul. That would be
5653 // problematic if we've sunk a different mul for the scale, because then
5654 // we'd end up sinking both muls.
5655 if (AddrMode.BaseReg) {
5656 Value *V = AddrMode.BaseReg;
5657 if (V->getType()->isPointerTy())
5658 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5659 if (V->getType() != IntPtrTy)
5660 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5661 Result = V;
5664 // Add the scale value.
5665 if (AddrMode.Scale) {
5666 Value *V = AddrMode.ScaledReg;
5667 if (V->getType() == IntPtrTy) {
5668 // done.
5669 } else if (V->getType()->isPointerTy()) {
5670 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5671 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5672 cast<IntegerType>(V->getType())->getBitWidth()) {
5673 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5674 } else {
5675 // It is only safe to sign extend the BaseReg if we know that the math
5676 // required to create it did not overflow before we extend it. Since
5677 // the original IR value was tossed in favor of a constant back when
5678 // the AddrMode was created we need to bail out gracefully if widths
5679 // do not match instead of extending it.
5680 Instruction *I = dyn_cast_or_null<Instruction>(Result);
5681 if (I && (Result != AddrMode.BaseReg))
5682 I->eraseFromParent();
5683 return Modified;
5685 if (AddrMode.Scale != 1)
5686 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5687 "sunkaddr");
5688 if (Result)
5689 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5690 else
5691 Result = V;
5694 // Add in the BaseGV if present.
5695 if (AddrMode.BaseGV) {
5696 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5697 if (Result)
5698 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5699 else
5700 Result = V;
5703 // Add in the Base Offset if present.
5704 if (AddrMode.BaseOffs) {
5705 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5706 if (Result)
5707 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5708 else
5709 Result = V;
5712 if (!Result)
5713 SunkAddr = Constant::getNullValue(Addr->getType());
5714 else
5715 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5718 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5719 // Store the newly computed address into the cache. In the case we reused a
5720 // value, this should be idempotent.
5721 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5723 // If we have no uses, recursively delete the value and all dead instructions
5724 // using it.
5725 if (Repl->use_empty()) {
5726 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5727 RecursivelyDeleteTriviallyDeadInstructions(
5728 Repl, TLInfo, nullptr,
5729 [&](Value *V) { removeAllAssertingVHReferences(V); });
5732 ++NumMemoryInsts;
5733 return true;
5736 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5737 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5738 /// only handle a 2 operand GEP in the same basic block or a splat constant
5739 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5740 /// index.
5742 /// If the existing GEP has a vector base pointer that is splat, we can look
5743 /// through the splat to find the scalar pointer. If we can't find a scalar
5744 /// pointer there's nothing we can do.
5746 /// If we have a GEP with more than 2 indices where the middle indices are all
5747 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5749 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5750 /// followed by a GEP with an all zeroes vector index. This will enable
5751 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5752 /// zero index.
5753 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5754 Value *Ptr) {
5755 Value *NewAddr;
5757 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5758 // Don't optimize GEPs that don't have indices.
5759 if (!GEP->hasIndices())
5760 return false;
5762 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5763 // FIXME: We should support this by sinking the GEP.
5764 if (MemoryInst->getParent() != GEP->getParent())
5765 return false;
5767 SmallVector<Value *, 2> Ops(GEP->operands());
5769 bool RewriteGEP = false;
5771 if (Ops[0]->getType()->isVectorTy()) {
5772 Ops[0] = getSplatValue(Ops[0]);
5773 if (!Ops[0])
5774 return false;
5775 RewriteGEP = true;
5778 unsigned FinalIndex = Ops.size() - 1;
5780 // Ensure all but the last index is 0.
5781 // FIXME: This isn't strictly required. All that's required is that they are
5782 // all scalars or splats.
5783 for (unsigned i = 1; i < FinalIndex; ++i) {
5784 auto *C = dyn_cast<Constant>(Ops[i]);
5785 if (!C)
5786 return false;
5787 if (isa<VectorType>(C->getType()))
5788 C = C->getSplatValue();
5789 auto *CI = dyn_cast_or_null<ConstantInt>(C);
5790 if (!CI || !CI->isZero())
5791 return false;
5792 // Scalarize the index if needed.
5793 Ops[i] = CI;
5796 // Try to scalarize the final index.
5797 if (Ops[FinalIndex]->getType()->isVectorTy()) {
5798 if (Value *V = getSplatValue(Ops[FinalIndex])) {
5799 auto *C = dyn_cast<ConstantInt>(V);
5800 // Don't scalarize all zeros vector.
5801 if (!C || !C->isZero()) {
5802 Ops[FinalIndex] = V;
5803 RewriteGEP = true;
5808 // If we made any changes or the we have extra operands, we need to generate
5809 // new instructions.
5810 if (!RewriteGEP && Ops.size() == 2)
5811 return false;
5813 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5815 IRBuilder<> Builder(MemoryInst);
5817 Type *SourceTy = GEP->getSourceElementType();
5818 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5820 // If the final index isn't a vector, emit a scalar GEP containing all ops
5821 // and a vector GEP with all zeroes final index.
5822 if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5823 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
5824 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5825 auto *SecondTy = GetElementPtrInst::getIndexedType(
5826 SourceTy, ArrayRef(Ops).drop_front());
5827 NewAddr =
5828 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5829 } else {
5830 Value *Base = Ops[0];
5831 Value *Index = Ops[FinalIndex];
5833 // Create a scalar GEP if there are more than 2 operands.
5834 if (Ops.size() != 2) {
5835 // Replace the last index with 0.
5836 Ops[FinalIndex] =
5837 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType());
5838 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front());
5839 SourceTy = GetElementPtrInst::getIndexedType(
5840 SourceTy, ArrayRef(Ops).drop_front());
5843 // Now create the GEP with scalar pointer and vector index.
5844 NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5846 } else if (!isa<Constant>(Ptr)) {
5847 // Not a GEP, maybe its a splat and we can create a GEP to enable
5848 // SelectionDAGBuilder to use it as a uniform base.
5849 Value *V = getSplatValue(Ptr);
5850 if (!V)
5851 return false;
5853 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5855 IRBuilder<> Builder(MemoryInst);
5857 // Emit a vector GEP with a scalar pointer and all 0s vector index.
5858 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5859 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5860 Type *ScalarTy;
5861 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5862 Intrinsic::masked_gather) {
5863 ScalarTy = MemoryInst->getType()->getScalarType();
5864 } else {
5865 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5866 Intrinsic::masked_scatter);
5867 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5869 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5870 } else {
5871 // Constant, SelectionDAGBuilder knows to check if its a splat.
5872 return false;
5875 MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5877 // If we have no uses, recursively delete the value and all dead instructions
5878 // using it.
5879 if (Ptr->use_empty())
5880 RecursivelyDeleteTriviallyDeadInstructions(
5881 Ptr, TLInfo, nullptr,
5882 [&](Value *V) { removeAllAssertingVHReferences(V); });
5884 return true;
5887 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5888 /// address computing into the block when possible / profitable.
5889 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5890 bool MadeChange = false;
5892 const TargetRegisterInfo *TRI =
5893 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5894 TargetLowering::AsmOperandInfoVector TargetConstraints =
5895 TLI->ParseConstraints(*DL, TRI, *CS);
5896 unsigned ArgNo = 0;
5897 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5898 // Compute the constraint code and ConstraintType to use.
5899 TLI->ComputeConstraintToUse(OpInfo, SDValue());
5901 // TODO: Also handle C_Address?
5902 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5903 OpInfo.isIndirect) {
5904 Value *OpVal = CS->getArgOperand(ArgNo++);
5905 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5906 } else if (OpInfo.Type == InlineAsm::isInput)
5907 ArgNo++;
5910 return MadeChange;
5913 /// Check if all the uses of \p Val are equivalent (or free) zero or
5914 /// sign extensions.
5915 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5916 assert(!Val->use_empty() && "Input must have at least one use");
5917 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5918 bool IsSExt = isa<SExtInst>(FirstUser);
5919 Type *ExtTy = FirstUser->getType();
5920 for (const User *U : Val->users()) {
5921 const Instruction *UI = cast<Instruction>(U);
5922 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5923 return false;
5924 Type *CurTy = UI->getType();
5925 // Same input and output types: Same instruction after CSE.
5926 if (CurTy == ExtTy)
5927 continue;
5929 // If IsSExt is true, we are in this situation:
5930 // a = Val
5931 // b = sext ty1 a to ty2
5932 // c = sext ty1 a to ty3
5933 // Assuming ty2 is shorter than ty3, this could be turned into:
5934 // a = Val
5935 // b = sext ty1 a to ty2
5936 // c = sext ty2 b to ty3
5937 // However, the last sext is not free.
5938 if (IsSExt)
5939 return false;
5941 // This is a ZExt, maybe this is free to extend from one type to another.
5942 // In that case, we would not account for a different use.
5943 Type *NarrowTy;
5944 Type *LargeTy;
5945 if (ExtTy->getScalarType()->getIntegerBitWidth() >
5946 CurTy->getScalarType()->getIntegerBitWidth()) {
5947 NarrowTy = CurTy;
5948 LargeTy = ExtTy;
5949 } else {
5950 NarrowTy = ExtTy;
5951 LargeTy = CurTy;
5954 if (!TLI.isZExtFree(NarrowTy, LargeTy))
5955 return false;
5957 // All uses are the same or can be derived from one another for free.
5958 return true;
5961 /// Try to speculatively promote extensions in \p Exts and continue
5962 /// promoting through newly promoted operands recursively as far as doing so is
5963 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5964 /// When some promotion happened, \p TPT contains the proper state to revert
5965 /// them.
5967 /// \return true if some promotion happened, false otherwise.
5968 bool CodeGenPrepare::tryToPromoteExts(
5969 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5970 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5971 unsigned CreatedInstsCost) {
5972 bool Promoted = false;
5974 // Iterate over all the extensions to try to promote them.
5975 for (auto *I : Exts) {
5976 // Early check if we directly have ext(load).
5977 if (isa<LoadInst>(I->getOperand(0))) {
5978 ProfitablyMovedExts.push_back(I);
5979 continue;
5982 // Check whether or not we want to do any promotion. The reason we have
5983 // this check inside the for loop is to catch the case where an extension
5984 // is directly fed by a load because in such case the extension can be moved
5985 // up without any promotion on its operands.
5986 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5987 return false;
5989 // Get the action to perform the promotion.
5990 TypePromotionHelper::Action TPH =
5991 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5992 // Check if we can promote.
5993 if (!TPH) {
5994 // Save the current extension as we cannot move up through its operand.
5995 ProfitablyMovedExts.push_back(I);
5996 continue;
5999 // Save the current state.
6000 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6001 TPT.getRestorationPoint();
6002 SmallVector<Instruction *, 4> NewExts;
6003 unsigned NewCreatedInstsCost = 0;
6004 unsigned ExtCost = !TLI->isExtFree(I);
6005 // Promote.
6006 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
6007 &NewExts, nullptr, *TLI);
6008 assert(PromotedVal &&
6009 "TypePromotionHelper should have filtered out those cases");
6011 // We would be able to merge only one extension in a load.
6012 // Therefore, if we have more than 1 new extension we heuristically
6013 // cut this search path, because it means we degrade the code quality.
6014 // With exactly 2, the transformation is neutral, because we will merge
6015 // one extension but leave one. However, we optimistically keep going,
6016 // because the new extension may be removed too. Also avoid replacing a
6017 // single free extension with multiple extensions, as this increases the
6018 // number of IR instructions while not providing any savings.
6019 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
6020 // FIXME: It would be possible to propagate a negative value instead of
6021 // conservatively ceiling it to 0.
6022 TotalCreatedInstsCost =
6023 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
6024 if (!StressExtLdPromotion &&
6025 (TotalCreatedInstsCost > 1 ||
6026 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) ||
6027 (ExtCost == 0 && NewExts.size() > 1))) {
6028 // This promotion is not profitable, rollback to the previous state, and
6029 // save the current extension in ProfitablyMovedExts as the latest
6030 // speculative promotion turned out to be unprofitable.
6031 TPT.rollback(LastKnownGood);
6032 ProfitablyMovedExts.push_back(I);
6033 continue;
6035 // Continue promoting NewExts as far as doing so is profitable.
6036 SmallVector<Instruction *, 2> NewlyMovedExts;
6037 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
6038 bool NewPromoted = false;
6039 for (auto *ExtInst : NewlyMovedExts) {
6040 Instruction *MovedExt = cast<Instruction>(ExtInst);
6041 Value *ExtOperand = MovedExt->getOperand(0);
6042 // If we have reached to a load, we need this extra profitability check
6043 // as it could potentially be merged into an ext(load).
6044 if (isa<LoadInst>(ExtOperand) &&
6045 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
6046 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
6047 continue;
6049 ProfitablyMovedExts.push_back(MovedExt);
6050 NewPromoted = true;
6053 // If none of speculative promotions for NewExts is profitable, rollback
6054 // and save the current extension (I) as the last profitable extension.
6055 if (!NewPromoted) {
6056 TPT.rollback(LastKnownGood);
6057 ProfitablyMovedExts.push_back(I);
6058 continue;
6060 // The promotion is profitable.
6061 Promoted = true;
6063 return Promoted;
6066 /// Merging redundant sexts when one is dominating the other.
6067 bool CodeGenPrepare::mergeSExts(Function &F) {
6068 bool Changed = false;
6069 for (auto &Entry : ValToSExtendedUses) {
6070 SExts &Insts = Entry.second;
6071 SExts CurPts;
6072 for (Instruction *Inst : Insts) {
6073 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
6074 Inst->getOperand(0) != Entry.first)
6075 continue;
6076 bool inserted = false;
6077 for (auto &Pt : CurPts) {
6078 if (getDT(F).dominates(Inst, Pt)) {
6079 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc);
6080 RemovedInsts.insert(Pt);
6081 Pt->removeFromParent();
6082 Pt = Inst;
6083 inserted = true;
6084 Changed = true;
6085 break;
6087 if (!getDT(F).dominates(Pt, Inst))
6088 // Give up if we need to merge in a common dominator as the
6089 // experiments show it is not profitable.
6090 continue;
6091 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc);
6092 RemovedInsts.insert(Inst);
6093 Inst->removeFromParent();
6094 inserted = true;
6095 Changed = true;
6096 break;
6098 if (!inserted)
6099 CurPts.push_back(Inst);
6102 return Changed;
6105 // Splitting large data structures so that the GEPs accessing them can have
6106 // smaller offsets so that they can be sunk to the same blocks as their users.
6107 // For example, a large struct starting from %base is split into two parts
6108 // where the second part starts from %new_base.
6110 // Before:
6111 // BB0:
6112 // %base =
6114 // BB1:
6115 // %gep0 = gep %base, off0
6116 // %gep1 = gep %base, off1
6117 // %gep2 = gep %base, off2
6119 // BB2:
6120 // %load1 = load %gep0
6121 // %load2 = load %gep1
6122 // %load3 = load %gep2
6124 // After:
6125 // BB0:
6126 // %base =
6127 // %new_base = gep %base, off0
6129 // BB1:
6130 // %new_gep0 = %new_base
6131 // %new_gep1 = gep %new_base, off1 - off0
6132 // %new_gep2 = gep %new_base, off2 - off0
6134 // BB2:
6135 // %load1 = load i32, i32* %new_gep0
6136 // %load2 = load i32, i32* %new_gep1
6137 // %load3 = load i32, i32* %new_gep2
6139 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6140 // their offsets are smaller enough to fit into the addressing mode.
6141 bool CodeGenPrepare::splitLargeGEPOffsets() {
6142 bool Changed = false;
6143 for (auto &Entry : LargeOffsetGEPMap) {
6144 Value *OldBase = Entry.first;
6145 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
6146 &LargeOffsetGEPs = Entry.second;
6147 auto compareGEPOffset =
6148 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
6149 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
6150 if (LHS.first == RHS.first)
6151 return false;
6152 if (LHS.second != RHS.second)
6153 return LHS.second < RHS.second;
6154 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
6156 // Sorting all the GEPs of the same data structures based on the offsets.
6157 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
6158 LargeOffsetGEPs.erase(
6159 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
6160 LargeOffsetGEPs.end());
6161 // Skip if all the GEPs have the same offsets.
6162 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
6163 continue;
6164 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
6165 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
6166 Value *NewBaseGEP = nullptr;
6168 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase,
6169 GetElementPtrInst *GEP) {
6170 LLVMContext &Ctx = GEP->getContext();
6171 Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6172 Type *I8PtrTy =
6173 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace());
6175 BasicBlock::iterator NewBaseInsertPt;
6176 BasicBlock *NewBaseInsertBB;
6177 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
6178 // If the base of the struct is an instruction, the new base will be
6179 // inserted close to it.
6180 NewBaseInsertBB = BaseI->getParent();
6181 if (isa<PHINode>(BaseI))
6182 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6183 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
6184 NewBaseInsertBB =
6185 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI);
6186 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6187 } else
6188 NewBaseInsertPt = std::next(BaseI->getIterator());
6189 } else {
6190 // If the current base is an argument or global value, the new base
6191 // will be inserted to the entry block.
6192 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
6193 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6195 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
6196 // Create a new base.
6197 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset);
6198 NewBaseGEP = OldBase;
6199 if (NewBaseGEP->getType() != I8PtrTy)
6200 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
6201 NewBaseGEP =
6202 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep");
6203 NewGEPBases.insert(NewBaseGEP);
6204 return;
6207 // Check whether all the offsets can be encoded with prefered common base.
6208 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset(
6209 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) {
6210 BaseOffset = PreferBase;
6211 // Create a new base if the offset of the BaseGEP can be decoded with one
6212 // instruction.
6213 createNewBase(BaseOffset, OldBase, BaseGEP);
6216 auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
6217 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
6218 GetElementPtrInst *GEP = LargeOffsetGEP->first;
6219 int64_t Offset = LargeOffsetGEP->second;
6220 if (Offset != BaseOffset) {
6221 TargetLowering::AddrMode AddrMode;
6222 AddrMode.HasBaseReg = true;
6223 AddrMode.BaseOffs = Offset - BaseOffset;
6224 // The result type of the GEP might not be the type of the memory
6225 // access.
6226 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
6227 GEP->getResultElementType(),
6228 GEP->getAddressSpace())) {
6229 // We need to create a new base if the offset to the current base is
6230 // too large to fit into the addressing mode. So, a very large struct
6231 // may be split into several parts.
6232 BaseGEP = GEP;
6233 BaseOffset = Offset;
6234 NewBaseGEP = nullptr;
6238 // Generate a new GEP to replace the current one.
6239 Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6241 if (!NewBaseGEP) {
6242 // Create a new base if we don't have one yet. Find the insertion
6243 // pointer for the new base first.
6244 createNewBase(BaseOffset, OldBase, GEP);
6247 IRBuilder<> Builder(GEP);
6248 Value *NewGEP = NewBaseGEP;
6249 if (Offset != BaseOffset) {
6250 // Calculate the new offset for the new GEP.
6251 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset);
6252 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index);
6254 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc);
6255 LargeOffsetGEPID.erase(GEP);
6256 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6257 GEP->eraseFromParent();
6258 Changed = true;
6261 return Changed;
6264 bool CodeGenPrepare::optimizePhiType(
6265 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6266 SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6267 // We are looking for a collection on interconnected phi nodes that together
6268 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6269 // are of the same type. Convert the whole set of nodes to the type of the
6270 // bitcast.
6271 Type *PhiTy = I->getType();
6272 Type *ConvertTy = nullptr;
6273 if (Visited.count(I) ||
6274 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6275 return false;
6277 SmallVector<Instruction *, 4> Worklist;
6278 Worklist.push_back(cast<Instruction>(I));
6279 SmallPtrSet<PHINode *, 4> PhiNodes;
6280 SmallPtrSet<ConstantData *, 4> Constants;
6281 PhiNodes.insert(I);
6282 Visited.insert(I);
6283 SmallPtrSet<Instruction *, 4> Defs;
6284 SmallPtrSet<Instruction *, 4> Uses;
6285 // This works by adding extra bitcasts between load/stores and removing
6286 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6287 // we can get in the situation where we remove a bitcast in one iteration
6288 // just to add it again in the next. We need to ensure that at least one
6289 // bitcast we remove are anchored to something that will not change back.
6290 bool AnyAnchored = false;
6292 while (!Worklist.empty()) {
6293 Instruction *II = Worklist.pop_back_val();
6295 if (auto *Phi = dyn_cast<PHINode>(II)) {
6296 // Handle Defs, which might also be PHI's
6297 for (Value *V : Phi->incoming_values()) {
6298 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6299 if (!PhiNodes.count(OpPhi)) {
6300 if (!Visited.insert(OpPhi).second)
6301 return false;
6302 PhiNodes.insert(OpPhi);
6303 Worklist.push_back(OpPhi);
6305 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6306 if (!OpLoad->isSimple())
6307 return false;
6308 if (Defs.insert(OpLoad).second)
6309 Worklist.push_back(OpLoad);
6310 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6311 if (Defs.insert(OpEx).second)
6312 Worklist.push_back(OpEx);
6313 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6314 if (!ConvertTy)
6315 ConvertTy = OpBC->getOperand(0)->getType();
6316 if (OpBC->getOperand(0)->getType() != ConvertTy)
6317 return false;
6318 if (Defs.insert(OpBC).second) {
6319 Worklist.push_back(OpBC);
6320 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6321 !isa<ExtractElementInst>(OpBC->getOperand(0));
6323 } else if (auto *OpC = dyn_cast<ConstantData>(V))
6324 Constants.insert(OpC);
6325 else
6326 return false;
6330 // Handle uses which might also be phi's
6331 for (User *V : II->users()) {
6332 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6333 if (!PhiNodes.count(OpPhi)) {
6334 if (Visited.count(OpPhi))
6335 return false;
6336 PhiNodes.insert(OpPhi);
6337 Visited.insert(OpPhi);
6338 Worklist.push_back(OpPhi);
6340 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6341 if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6342 return false;
6343 Uses.insert(OpStore);
6344 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6345 if (!ConvertTy)
6346 ConvertTy = OpBC->getType();
6347 if (OpBC->getType() != ConvertTy)
6348 return false;
6349 Uses.insert(OpBC);
6350 AnyAnchored |=
6351 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6352 } else {
6353 return false;
6358 if (!ConvertTy || !AnyAnchored ||
6359 !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6360 return false;
6362 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to "
6363 << *ConvertTy << "\n");
6365 // Create all the new phi nodes of the new type, and bitcast any loads to the
6366 // correct type.
6367 ValueToValueMap ValMap;
6368 for (ConstantData *C : Constants)
6369 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy);
6370 for (Instruction *D : Defs) {
6371 if (isa<BitCastInst>(D)) {
6372 ValMap[D] = D->getOperand(0);
6373 DeletedInstrs.insert(D);
6374 } else {
6375 ValMap[D] =
6376 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
6379 for (PHINode *Phi : PhiNodes)
6380 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6381 Phi->getName() + ".tc", Phi);
6382 // Pipe together all the PhiNodes.
6383 for (PHINode *Phi : PhiNodes) {
6384 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6385 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6386 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6387 Phi->getIncomingBlock(i));
6388 Visited.insert(NewPhi);
6390 // And finally pipe up the stores and bitcasts
6391 for (Instruction *U : Uses) {
6392 if (isa<BitCastInst>(U)) {
6393 DeletedInstrs.insert(U);
6394 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc);
6395 } else {
6396 U->setOperand(0,
6397 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
6401 // Save the removed phis to be deleted later.
6402 for (PHINode *Phi : PhiNodes)
6403 DeletedInstrs.insert(Phi);
6404 return true;
6407 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6408 if (!OptimizePhiTypes)
6409 return false;
6411 bool Changed = false;
6412 SmallPtrSet<PHINode *, 4> Visited;
6413 SmallPtrSet<Instruction *, 4> DeletedInstrs;
6415 // Attempt to optimize all the phis in the functions to the correct type.
6416 for (auto &BB : F)
6417 for (auto &Phi : BB.phis())
6418 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6420 // Remove any old phi's that have been converted.
6421 for (auto *I : DeletedInstrs) {
6422 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc);
6423 I->eraseFromParent();
6426 return Changed;
6429 /// Return true, if an ext(load) can be formed from an extension in
6430 /// \p MovedExts.
6431 bool CodeGenPrepare::canFormExtLd(
6432 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6433 Instruction *&Inst, bool HasPromoted) {
6434 for (auto *MovedExtInst : MovedExts) {
6435 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6436 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6437 Inst = MovedExtInst;
6438 break;
6441 if (!LI)
6442 return false;
6444 // If they're already in the same block, there's nothing to do.
6445 // Make the cheap checks first if we did not promote.
6446 // If we promoted, we need to check if it is indeed profitable.
6447 if (!HasPromoted && LI->getParent() == Inst->getParent())
6448 return false;
6450 return TLI->isExtLoad(LI, Inst, *DL);
6453 /// Move a zext or sext fed by a load into the same basic block as the load,
6454 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6455 /// extend into the load.
6457 /// E.g.,
6458 /// \code
6459 /// %ld = load i32* %addr
6460 /// %add = add nuw i32 %ld, 4
6461 /// %zext = zext i32 %add to i64
6462 // \endcode
6463 /// =>
6464 /// \code
6465 /// %ld = load i32* %addr
6466 /// %zext = zext i32 %ld to i64
6467 /// %add = add nuw i64 %zext, 4
6468 /// \encode
6469 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6470 /// allow us to match zext(load i32*) to i64.
6472 /// Also, try to promote the computations used to obtain a sign extended
6473 /// value used into memory accesses.
6474 /// E.g.,
6475 /// \code
6476 /// a = add nsw i32 b, 3
6477 /// d = sext i32 a to i64
6478 /// e = getelementptr ..., i64 d
6479 /// \endcode
6480 /// =>
6481 /// \code
6482 /// f = sext i32 b to i64
6483 /// a = add nsw i64 f, 3
6484 /// e = getelementptr ..., i64 a
6485 /// \endcode
6487 /// \p Inst[in/out] the extension may be modified during the process if some
6488 /// promotions apply.
6489 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6490 bool AllowPromotionWithoutCommonHeader = false;
6491 /// See if it is an interesting sext operations for the address type
6492 /// promotion before trying to promote it, e.g., the ones with the right
6493 /// type and used in memory accesses.
6494 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6495 *Inst, AllowPromotionWithoutCommonHeader);
6496 TypePromotionTransaction TPT(RemovedInsts);
6497 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6498 TPT.getRestorationPoint();
6499 SmallVector<Instruction *, 1> Exts;
6500 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6501 Exts.push_back(Inst);
6503 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6505 // Look for a load being extended.
6506 LoadInst *LI = nullptr;
6507 Instruction *ExtFedByLoad;
6509 // Try to promote a chain of computation if it allows to form an extended
6510 // load.
6511 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6512 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6513 TPT.commit();
6514 // Move the extend into the same block as the load.
6515 ExtFedByLoad->moveAfter(LI);
6516 ++NumExtsMoved;
6517 Inst = ExtFedByLoad;
6518 return true;
6521 // Continue promoting SExts if known as considerable depending on targets.
6522 if (ATPConsiderable &&
6523 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6524 HasPromoted, TPT, SpeculativelyMovedExts))
6525 return true;
6527 TPT.rollback(LastKnownGood);
6528 return false;
6531 // Perform address type promotion if doing so is profitable.
6532 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6533 // instructions that sign extended the same initial value. However, if
6534 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6535 // extension is just profitable.
6536 bool CodeGenPrepare::performAddressTypePromotion(
6537 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6538 bool HasPromoted, TypePromotionTransaction &TPT,
6539 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6540 bool Promoted = false;
6541 SmallPtrSet<Instruction *, 1> UnhandledExts;
6542 bool AllSeenFirst = true;
6543 for (auto *I : SpeculativelyMovedExts) {
6544 Value *HeadOfChain = I->getOperand(0);
6545 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6546 SeenChainsForSExt.find(HeadOfChain);
6547 // If there is an unhandled SExt which has the same header, try to promote
6548 // it as well.
6549 if (AlreadySeen != SeenChainsForSExt.end()) {
6550 if (AlreadySeen->second != nullptr)
6551 UnhandledExts.insert(AlreadySeen->second);
6552 AllSeenFirst = false;
6556 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6557 SpeculativelyMovedExts.size() == 1)) {
6558 TPT.commit();
6559 if (HasPromoted)
6560 Promoted = true;
6561 for (auto *I : SpeculativelyMovedExts) {
6562 Value *HeadOfChain = I->getOperand(0);
6563 SeenChainsForSExt[HeadOfChain] = nullptr;
6564 ValToSExtendedUses[HeadOfChain].push_back(I);
6566 // Update Inst as promotion happen.
6567 Inst = SpeculativelyMovedExts.pop_back_val();
6568 } else {
6569 // This is the first chain visited from the header, keep the current chain
6570 // as unhandled. Defer to promote this until we encounter another SExt
6571 // chain derived from the same header.
6572 for (auto *I : SpeculativelyMovedExts) {
6573 Value *HeadOfChain = I->getOperand(0);
6574 SeenChainsForSExt[HeadOfChain] = Inst;
6576 return false;
6579 if (!AllSeenFirst && !UnhandledExts.empty())
6580 for (auto *VisitedSExt : UnhandledExts) {
6581 if (RemovedInsts.count(VisitedSExt))
6582 continue;
6583 TypePromotionTransaction TPT(RemovedInsts);
6584 SmallVector<Instruction *, 1> Exts;
6585 SmallVector<Instruction *, 2> Chains;
6586 Exts.push_back(VisitedSExt);
6587 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6588 TPT.commit();
6589 if (HasPromoted)
6590 Promoted = true;
6591 for (auto *I : Chains) {
6592 Value *HeadOfChain = I->getOperand(0);
6593 // Mark this as handled.
6594 SeenChainsForSExt[HeadOfChain] = nullptr;
6595 ValToSExtendedUses[HeadOfChain].push_back(I);
6598 return Promoted;
6601 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6602 BasicBlock *DefBB = I->getParent();
6604 // If the result of a {s|z}ext and its source are both live out, rewrite all
6605 // other uses of the source with result of extension.
6606 Value *Src = I->getOperand(0);
6607 if (Src->hasOneUse())
6608 return false;
6610 // Only do this xform if truncating is free.
6611 if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6612 return false;
6614 // Only safe to perform the optimization if the source is also defined in
6615 // this block.
6616 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6617 return false;
6619 bool DefIsLiveOut = false;
6620 for (User *U : I->users()) {
6621 Instruction *UI = cast<Instruction>(U);
6623 // Figure out which BB this ext is used in.
6624 BasicBlock *UserBB = UI->getParent();
6625 if (UserBB == DefBB)
6626 continue;
6627 DefIsLiveOut = true;
6628 break;
6630 if (!DefIsLiveOut)
6631 return false;
6633 // Make sure none of the uses are PHI nodes.
6634 for (User *U : Src->users()) {
6635 Instruction *UI = cast<Instruction>(U);
6636 BasicBlock *UserBB = UI->getParent();
6637 if (UserBB == DefBB)
6638 continue;
6639 // Be conservative. We don't want this xform to end up introducing
6640 // reloads just before load / store instructions.
6641 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6642 return false;
6645 // InsertedTruncs - Only insert one trunc in each block once.
6646 DenseMap<BasicBlock *, Instruction *> InsertedTruncs;
6648 bool MadeChange = false;
6649 for (Use &U : Src->uses()) {
6650 Instruction *User = cast<Instruction>(U.getUser());
6652 // Figure out which BB this ext is used in.
6653 BasicBlock *UserBB = User->getParent();
6654 if (UserBB == DefBB)
6655 continue;
6657 // Both src and def are live in this block. Rewrite the use.
6658 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6660 if (!InsertedTrunc) {
6661 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6662 assert(InsertPt != UserBB->end());
6663 InsertedTrunc = new TruncInst(I, Src->getType(), "");
6664 InsertedTrunc->insertBefore(*UserBB, InsertPt);
6665 InsertedInsts.insert(InsertedTrunc);
6668 // Replace a use of the {s|z}ext source with a use of the result.
6669 U = InsertedTrunc;
6670 ++NumExtUses;
6671 MadeChange = true;
6674 return MadeChange;
6677 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
6678 // just after the load if the target can fold this into one extload instruction,
6679 // with the hope of eliminating some of the other later "and" instructions using
6680 // the loaded value. "and"s that are made trivially redundant by the insertion
6681 // of the new "and" are removed by this function, while others (e.g. those whose
6682 // path from the load goes through a phi) are left for isel to potentially
6683 // remove.
6685 // For example:
6687 // b0:
6688 // x = load i32
6689 // ...
6690 // b1:
6691 // y = and x, 0xff
6692 // z = use y
6694 // becomes:
6696 // b0:
6697 // x = load i32
6698 // x' = and x, 0xff
6699 // ...
6700 // b1:
6701 // z = use x'
6703 // whereas:
6705 // b0:
6706 // x1 = load i32
6707 // ...
6708 // b1:
6709 // x2 = load i32
6710 // ...
6711 // b2:
6712 // x = phi x1, x2
6713 // y = and x, 0xff
6715 // becomes (after a call to optimizeLoadExt for each load):
6717 // b0:
6718 // x1 = load i32
6719 // x1' = and x1, 0xff
6720 // ...
6721 // b1:
6722 // x2 = load i32
6723 // x2' = and x2, 0xff
6724 // ...
6725 // b2:
6726 // x = phi x1', x2'
6727 // y = and x, 0xff
6728 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6729 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6730 return false;
6732 // Skip loads we've already transformed.
6733 if (Load->hasOneUse() &&
6734 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6735 return false;
6737 // Look at all uses of Load, looking through phis, to determine how many bits
6738 // of the loaded value are needed.
6739 SmallVector<Instruction *, 8> WorkList;
6740 SmallPtrSet<Instruction *, 16> Visited;
6741 SmallVector<Instruction *, 8> AndsToMaybeRemove;
6742 for (auto *U : Load->users())
6743 WorkList.push_back(cast<Instruction>(U));
6745 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6746 unsigned BitWidth = LoadResultVT.getSizeInBits();
6747 // If the BitWidth is 0, do not try to optimize the type
6748 if (BitWidth == 0)
6749 return false;
6751 APInt DemandBits(BitWidth, 0);
6752 APInt WidestAndBits(BitWidth, 0);
6754 while (!WorkList.empty()) {
6755 Instruction *I = WorkList.pop_back_val();
6757 // Break use-def graph loops.
6758 if (!Visited.insert(I).second)
6759 continue;
6761 // For a PHI node, push all of its users.
6762 if (auto *Phi = dyn_cast<PHINode>(I)) {
6763 for (auto *U : Phi->users())
6764 WorkList.push_back(cast<Instruction>(U));
6765 continue;
6768 switch (I->getOpcode()) {
6769 case Instruction::And: {
6770 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6771 if (!AndC)
6772 return false;
6773 APInt AndBits = AndC->getValue();
6774 DemandBits |= AndBits;
6775 // Keep track of the widest and mask we see.
6776 if (AndBits.ugt(WidestAndBits))
6777 WidestAndBits = AndBits;
6778 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6779 AndsToMaybeRemove.push_back(I);
6780 break;
6783 case Instruction::Shl: {
6784 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6785 if (!ShlC)
6786 return false;
6787 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6788 DemandBits.setLowBits(BitWidth - ShiftAmt);
6789 break;
6792 case Instruction::Trunc: {
6793 EVT TruncVT = TLI->getValueType(*DL, I->getType());
6794 unsigned TruncBitWidth = TruncVT.getSizeInBits();
6795 DemandBits.setLowBits(TruncBitWidth);
6796 break;
6799 default:
6800 return false;
6804 uint32_t ActiveBits = DemandBits.getActiveBits();
6805 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6806 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
6807 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6808 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6809 // followed by an AND.
6810 // TODO: Look into removing this restriction by fixing backends to either
6811 // return false for isLoadExtLegal for i1 or have them select this pattern to
6812 // a single instruction.
6814 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6815 // mask, since these are the only ands that will be removed by isel.
6816 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6817 WidestAndBits != DemandBits)
6818 return false;
6820 LLVMContext &Ctx = Load->getType()->getContext();
6821 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6822 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6824 // Reject cases that won't be matched as extloads.
6825 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6826 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6827 return false;
6829 IRBuilder<> Builder(Load->getNextNonDebugInstruction());
6830 auto *NewAnd = cast<Instruction>(
6831 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6832 // Mark this instruction as "inserted by CGP", so that other
6833 // optimizations don't touch it.
6834 InsertedInsts.insert(NewAnd);
6836 // Replace all uses of load with new and (except for the use of load in the
6837 // new and itself).
6838 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc);
6839 NewAnd->setOperand(0, Load);
6841 // Remove any and instructions that are now redundant.
6842 for (auto *And : AndsToMaybeRemove)
6843 // Check that the and mask is the same as the one we decided to put on the
6844 // new and.
6845 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6846 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc);
6847 if (&*CurInstIterator == And)
6848 CurInstIterator = std::next(And->getIterator());
6849 And->eraseFromParent();
6850 ++NumAndUses;
6853 ++NumAndsAdded;
6854 return true;
6857 /// Check if V (an operand of a select instruction) is an expensive instruction
6858 /// that is only used once.
6859 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6860 auto *I = dyn_cast<Instruction>(V);
6861 // If it's safe to speculatively execute, then it should not have side
6862 // effects; therefore, it's safe to sink and possibly *not* execute.
6863 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6864 TTI->isExpensiveToSpeculativelyExecute(I);
6867 /// Returns true if a SelectInst should be turned into an explicit branch.
6868 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6869 const TargetLowering *TLI,
6870 SelectInst *SI) {
6871 // If even a predictable select is cheap, then a branch can't be cheaper.
6872 if (!TLI->isPredictableSelectExpensive())
6873 return false;
6875 // FIXME: This should use the same heuristics as IfConversion to determine
6876 // whether a select is better represented as a branch.
6878 // If metadata tells us that the select condition is obviously predictable,
6879 // then we want to replace the select with a branch.
6880 uint64_t TrueWeight, FalseWeight;
6881 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
6882 uint64_t Max = std::max(TrueWeight, FalseWeight);
6883 uint64_t Sum = TrueWeight + FalseWeight;
6884 if (Sum != 0) {
6885 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6886 if (Probability > TTI->getPredictableBranchThreshold())
6887 return true;
6891 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6893 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6894 // comparison condition. If the compare has more than one use, there's
6895 // probably another cmov or setcc around, so it's not worth emitting a branch.
6896 if (!Cmp || !Cmp->hasOneUse())
6897 return false;
6899 // If either operand of the select is expensive and only needed on one side
6900 // of the select, we should form a branch.
6901 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6902 sinkSelectOperand(TTI, SI->getFalseValue()))
6903 return true;
6905 return false;
6908 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6909 /// false value of \p SI. If the true/false value of \p SI is defined by any
6910 /// select instructions in \p Selects, look through the defining select
6911 /// instruction until the true/false value is not defined in \p Selects.
6912 static Value *
6913 getTrueOrFalseValue(SelectInst *SI, bool isTrue,
6914 const SmallPtrSet<const Instruction *, 2> &Selects) {
6915 Value *V = nullptr;
6917 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6918 DefSI = dyn_cast<SelectInst>(V)) {
6919 assert(DefSI->getCondition() == SI->getCondition() &&
6920 "The condition of DefSI does not match with SI");
6921 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6924 assert(V && "Failed to get select true/false value");
6925 return V;
6928 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6929 assert(Shift->isShift() && "Expected a shift");
6931 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6932 // general vector shifts, and (3) the shift amount is a select-of-splatted
6933 // values, hoist the shifts before the select:
6934 // shift Op0, (select Cond, TVal, FVal) -->
6935 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
6937 // This is inverting a generic IR transform when we know that the cost of a
6938 // general vector shift is more than the cost of 2 shift-by-scalars.
6939 // We can't do this effectively in SDAG because we may not be able to
6940 // determine if the select operands are splats from within a basic block.
6941 Type *Ty = Shift->getType();
6942 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6943 return false;
6944 Value *Cond, *TVal, *FVal;
6945 if (!match(Shift->getOperand(1),
6946 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6947 return false;
6948 if (!isSplatValue(TVal) || !isSplatValue(FVal))
6949 return false;
6951 IRBuilder<> Builder(Shift);
6952 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6953 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6954 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6955 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6956 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc);
6957 Shift->eraseFromParent();
6958 return true;
6961 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6962 Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6963 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6964 "Expected a funnel shift");
6966 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6967 // than general vector shifts, and (3) the shift amount is select-of-splatted
6968 // values, hoist the funnel shifts before the select:
6969 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
6970 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6972 // This is inverting a generic IR transform when we know that the cost of a
6973 // general vector shift is more than the cost of 2 shift-by-scalars.
6974 // We can't do this effectively in SDAG because we may not be able to
6975 // determine if the select operands are splats from within a basic block.
6976 Type *Ty = Fsh->getType();
6977 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6978 return false;
6979 Value *Cond, *TVal, *FVal;
6980 if (!match(Fsh->getOperand(2),
6981 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6982 return false;
6983 if (!isSplatValue(TVal) || !isSplatValue(FVal))
6984 return false;
6986 IRBuilder<> Builder(Fsh);
6987 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6988 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal});
6989 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal});
6990 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6991 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc);
6992 Fsh->eraseFromParent();
6993 return true;
6996 /// If we have a SelectInst that will likely profit from branch prediction,
6997 /// turn it into a branch.
6998 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6999 if (DisableSelectToBranch)
7000 return false;
7002 // If the SelectOptimize pass is enabled, selects have already been optimized.
7003 if (!getCGPassBuilderOption().DisableSelectOptimize)
7004 return false;
7006 // Find all consecutive select instructions that share the same condition.
7007 SmallVector<SelectInst *, 2> ASI;
7008 ASI.push_back(SI);
7009 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
7010 It != SI->getParent()->end(); ++It) {
7011 SelectInst *I = dyn_cast<SelectInst>(&*It);
7012 if (I && SI->getCondition() == I->getCondition()) {
7013 ASI.push_back(I);
7014 } else {
7015 break;
7019 SelectInst *LastSI = ASI.back();
7020 // Increment the current iterator to skip all the rest of select instructions
7021 // because they will be either "not lowered" or "all lowered" to branch.
7022 CurInstIterator = std::next(LastSI->getIterator());
7023 // Examine debug-info attached to the consecutive select instructions. They
7024 // won't be individually optimised by optimizeInst, so we need to perform
7025 // DPValue maintenence here instead.
7026 for (SelectInst *SI : ArrayRef(ASI).drop_front())
7027 fixupDPValuesOnInst(*SI);
7029 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
7031 // Can we convert the 'select' to CF ?
7032 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
7033 return false;
7035 TargetLowering::SelectSupportKind SelectKind;
7036 if (SI->getType()->isVectorTy())
7037 SelectKind = TargetLowering::ScalarCondVectorVal;
7038 else
7039 SelectKind = TargetLowering::ScalarValSelect;
7041 if (TLI->isSelectSupported(SelectKind) &&
7042 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
7043 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
7044 return false;
7046 // The DominatorTree needs to be rebuilt by any consumers after this
7047 // transformation. We simply reset here rather than setting the ModifiedDT
7048 // flag to avoid restarting the function walk in runOnFunction for each
7049 // select optimized.
7050 DT.reset();
7052 // Transform a sequence like this:
7053 // start:
7054 // %cmp = cmp uge i32 %a, %b
7055 // %sel = select i1 %cmp, i32 %c, i32 %d
7057 // Into:
7058 // start:
7059 // %cmp = cmp uge i32 %a, %b
7060 // %cmp.frozen = freeze %cmp
7061 // br i1 %cmp.frozen, label %select.true, label %select.false
7062 // select.true:
7063 // br label %select.end
7064 // select.false:
7065 // br label %select.end
7066 // select.end:
7067 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7069 // %cmp should be frozen, otherwise it may introduce undefined behavior.
7070 // In addition, we may sink instructions that produce %c or %d from
7071 // the entry block into the destination(s) of the new branch.
7072 // If the true or false blocks do not contain a sunken instruction, that
7073 // block and its branch may be optimized away. In that case, one side of the
7074 // first branch will point directly to select.end, and the corresponding PHI
7075 // predecessor block will be the start block.
7077 // Collect values that go on the true side and the values that go on the false
7078 // side.
7079 SmallVector<Instruction *> TrueInstrs, FalseInstrs;
7080 for (SelectInst *SI : ASI) {
7081 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V))
7082 TrueInstrs.push_back(cast<Instruction>(V));
7083 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V))
7084 FalseInstrs.push_back(cast<Instruction>(V));
7087 // Split the select block, according to how many (if any) values go on each
7088 // side.
7089 BasicBlock *StartBlock = SI->getParent();
7090 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI));
7091 // We should split before any debug-info.
7092 SplitPt.setHeadBit(true);
7094 IRBuilder<> IB(SI);
7095 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
7097 BasicBlock *TrueBlock = nullptr;
7098 BasicBlock *FalseBlock = nullptr;
7099 BasicBlock *EndBlock = nullptr;
7100 BranchInst *TrueBranch = nullptr;
7101 BranchInst *FalseBranch = nullptr;
7102 if (TrueInstrs.size() == 0) {
7103 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse(
7104 CondFr, SplitPt, false, nullptr, nullptr, LI));
7105 FalseBlock = FalseBranch->getParent();
7106 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0));
7107 } else if (FalseInstrs.size() == 0) {
7108 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen(
7109 CondFr, SplitPt, false, nullptr, nullptr, LI));
7110 TrueBlock = TrueBranch->getParent();
7111 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7112 } else {
7113 Instruction *ThenTerm = nullptr;
7114 Instruction *ElseTerm = nullptr;
7115 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm,
7116 nullptr, nullptr, LI);
7117 TrueBranch = cast<BranchInst>(ThenTerm);
7118 FalseBranch = cast<BranchInst>(ElseTerm);
7119 TrueBlock = TrueBranch->getParent();
7120 FalseBlock = FalseBranch->getParent();
7121 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7124 EndBlock->setName("select.end");
7125 if (TrueBlock)
7126 TrueBlock->setName("select.true.sink");
7127 if (FalseBlock)
7128 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false"
7129 : "select.false.sink");
7131 if (IsHugeFunc) {
7132 if (TrueBlock)
7133 FreshBBs.insert(TrueBlock);
7134 if (FalseBlock)
7135 FreshBBs.insert(FalseBlock);
7136 FreshBBs.insert(EndBlock);
7139 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
7141 static const unsigned MD[] = {
7142 LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
7143 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
7144 StartBlock->getTerminator()->copyMetadata(*SI, MD);
7146 // Sink expensive instructions into the conditional blocks to avoid executing
7147 // them speculatively.
7148 for (Instruction *I : TrueInstrs)
7149 I->moveBefore(TrueBranch);
7150 for (Instruction *I : FalseInstrs)
7151 I->moveBefore(FalseBranch);
7153 // If we did not create a new block for one of the 'true' or 'false' paths
7154 // of the condition, it means that side of the branch goes to the end block
7155 // directly and the path originates from the start block from the point of
7156 // view of the new PHI.
7157 if (TrueBlock == nullptr)
7158 TrueBlock = StartBlock;
7159 else if (FalseBlock == nullptr)
7160 FalseBlock = StartBlock;
7162 SmallPtrSet<const Instruction *, 2> INS;
7163 INS.insert(ASI.begin(), ASI.end());
7164 // Use reverse iterator because later select may use the value of the
7165 // earlier select, and we need to propagate value through earlier select
7166 // to get the PHI operand.
7167 for (SelectInst *SI : llvm::reverse(ASI)) {
7168 // The select itself is replaced with a PHI Node.
7169 PHINode *PN = PHINode::Create(SI->getType(), 2, "");
7170 PN->insertBefore(EndBlock->begin());
7171 PN->takeName(SI);
7172 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
7173 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
7174 PN->setDebugLoc(SI->getDebugLoc());
7176 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc);
7177 SI->eraseFromParent();
7178 INS.erase(SI);
7179 ++NumSelectsExpanded;
7182 // Instruct OptimizeBlock to skip to the next block.
7183 CurInstIterator = StartBlock->end();
7184 return true;
7187 /// Some targets only accept certain types for splat inputs. For example a VDUP
7188 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7189 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7190 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
7191 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7192 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7193 m_Undef(), m_ZeroMask())))
7194 return false;
7195 Type *NewType = TLI->shouldConvertSplatType(SVI);
7196 if (!NewType)
7197 return false;
7199 auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
7200 assert(!NewType->isVectorTy() && "Expected a scalar type!");
7201 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
7202 "Expected a type of the same size!");
7203 auto *NewVecType =
7204 FixedVectorType::get(NewType, SVIVecType->getNumElements());
7206 // Create a bitcast (shuffle (insert (bitcast(..))))
7207 IRBuilder<> Builder(SVI->getContext());
7208 Builder.SetInsertPoint(SVI);
7209 Value *BC1 = Builder.CreateBitCast(
7210 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
7211 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
7212 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
7214 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc);
7215 RecursivelyDeleteTriviallyDeadInstructions(
7216 SVI, TLInfo, nullptr,
7217 [&](Value *V) { removeAllAssertingVHReferences(V); });
7219 // Also hoist the bitcast up to its operand if it they are not in the same
7220 // block.
7221 if (auto *BCI = dyn_cast<Instruction>(BC1))
7222 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
7223 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
7224 !Op->isTerminator() && !Op->isEHPad())
7225 BCI->moveAfter(Op);
7227 return true;
7230 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
7231 // If the operands of I can be folded into a target instruction together with
7232 // I, duplicate and sink them.
7233 SmallVector<Use *, 4> OpsToSink;
7234 if (!TLI->shouldSinkOperands(I, OpsToSink))
7235 return false;
7237 // OpsToSink can contain multiple uses in a use chain (e.g.
7238 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7239 // uses must come first, so we process the ops in reverse order so as to not
7240 // create invalid IR.
7241 BasicBlock *TargetBB = I->getParent();
7242 bool Changed = false;
7243 SmallVector<Use *, 4> ToReplace;
7244 Instruction *InsertPoint = I;
7245 DenseMap<const Instruction *, unsigned long> InstOrdering;
7246 unsigned long InstNumber = 0;
7247 for (const auto &I : *TargetBB)
7248 InstOrdering[&I] = InstNumber++;
7250 for (Use *U : reverse(OpsToSink)) {
7251 auto *UI = cast<Instruction>(U->get());
7252 if (isa<PHINode>(UI))
7253 continue;
7254 if (UI->getParent() == TargetBB) {
7255 if (InstOrdering[UI] < InstOrdering[InsertPoint])
7256 InsertPoint = UI;
7257 continue;
7259 ToReplace.push_back(U);
7262 SetVector<Instruction *> MaybeDead;
7263 DenseMap<Instruction *, Instruction *> NewInstructions;
7264 for (Use *U : ToReplace) {
7265 auto *UI = cast<Instruction>(U->get());
7266 Instruction *NI = UI->clone();
7268 if (IsHugeFunc) {
7269 // Now we clone an instruction, its operands' defs may sink to this BB
7270 // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7271 for (unsigned I = 0; I < NI->getNumOperands(); ++I) {
7272 auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I));
7273 if (!OpDef)
7274 continue;
7275 FreshBBs.insert(OpDef->getParent());
7279 NewInstructions[UI] = NI;
7280 MaybeDead.insert(UI);
7281 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
7282 NI->insertBefore(InsertPoint);
7283 InsertPoint = NI;
7284 InsertedInsts.insert(NI);
7286 // Update the use for the new instruction, making sure that we update the
7287 // sunk instruction uses, if it is part of a chain that has already been
7288 // sunk.
7289 Instruction *OldI = cast<Instruction>(U->getUser());
7290 if (NewInstructions.count(OldI))
7291 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
7292 else
7293 U->set(NI);
7294 Changed = true;
7297 // Remove instructions that are dead after sinking.
7298 for (auto *I : MaybeDead) {
7299 if (!I->hasNUsesOrMore(1)) {
7300 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7301 I->eraseFromParent();
7305 return Changed;
7308 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7309 Value *Cond = SI->getCondition();
7310 Type *OldType = Cond->getType();
7311 LLVMContext &Context = Cond->getContext();
7312 EVT OldVT = TLI->getValueType(*DL, OldType);
7313 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
7314 unsigned RegWidth = RegType.getSizeInBits();
7316 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7317 return false;
7319 // If the register width is greater than the type width, expand the condition
7320 // of the switch instruction and each case constant to the width of the
7321 // register. By widening the type of the switch condition, subsequent
7322 // comparisons (for case comparisons) will not need to be extended to the
7323 // preferred register width, so we will potentially eliminate N-1 extends,
7324 // where N is the number of cases in the switch.
7325 auto *NewType = Type::getIntNTy(Context, RegWidth);
7327 // Extend the switch condition and case constants using the target preferred
7328 // extend unless the switch condition is a function argument with an extend
7329 // attribute. In that case, we can avoid an unnecessary mask/extension by
7330 // matching the argument extension instead.
7331 Instruction::CastOps ExtType = Instruction::ZExt;
7332 // Some targets prefer SExt over ZExt.
7333 if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7334 ExtType = Instruction::SExt;
7336 if (auto *Arg = dyn_cast<Argument>(Cond)) {
7337 if (Arg->hasSExtAttr())
7338 ExtType = Instruction::SExt;
7339 if (Arg->hasZExtAttr())
7340 ExtType = Instruction::ZExt;
7343 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7344 ExtInst->insertBefore(SI);
7345 ExtInst->setDebugLoc(SI->getDebugLoc());
7346 SI->setCondition(ExtInst);
7347 for (auto Case : SI->cases()) {
7348 const APInt &NarrowConst = Case.getCaseValue()->getValue();
7349 APInt WideConst = (ExtType == Instruction::ZExt)
7350 ? NarrowConst.zext(RegWidth)
7351 : NarrowConst.sext(RegWidth);
7352 Case.setValue(ConstantInt::get(Context, WideConst));
7355 return true;
7358 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7359 // The SCCP optimization tends to produce code like this:
7360 // switch(x) { case 42: phi(42, ...) }
7361 // Materializing the constant for the phi-argument needs instructions; So we
7362 // change the code to:
7363 // switch(x) { case 42: phi(x, ...) }
7365 Value *Condition = SI->getCondition();
7366 // Avoid endless loop in degenerate case.
7367 if (isa<ConstantInt>(*Condition))
7368 return false;
7370 bool Changed = false;
7371 BasicBlock *SwitchBB = SI->getParent();
7372 Type *ConditionType = Condition->getType();
7374 for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7375 ConstantInt *CaseValue = Case.getCaseValue();
7376 BasicBlock *CaseBB = Case.getCaseSuccessor();
7377 // Set to true if we previously checked that `CaseBB` is only reached by
7378 // a single case from this switch.
7379 bool CheckedForSinglePred = false;
7380 for (PHINode &PHI : CaseBB->phis()) {
7381 Type *PHIType = PHI.getType();
7382 // If ZExt is free then we can also catch patterns like this:
7383 // switch((i32)x) { case 42: phi((i64)42, ...); }
7384 // and replace `(i64)42` with `zext i32 %x to i64`.
7385 bool TryZExt =
7386 PHIType->isIntegerTy() &&
7387 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7388 TLI->isZExtFree(ConditionType, PHIType);
7389 if (PHIType == ConditionType || TryZExt) {
7390 // Set to true to skip this case because of multiple preds.
7391 bool SkipCase = false;
7392 Value *Replacement = nullptr;
7393 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7394 Value *PHIValue = PHI.getIncomingValue(I);
7395 if (PHIValue != CaseValue) {
7396 if (!TryZExt)
7397 continue;
7398 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7399 if (!PHIValueInt ||
7400 PHIValueInt->getValue() !=
7401 CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7402 continue;
7404 if (PHI.getIncomingBlock(I) != SwitchBB)
7405 continue;
7406 // We cannot optimize if there are multiple case labels jumping to
7407 // this block. This check may get expensive when there are many
7408 // case labels so we test for it last.
7409 if (!CheckedForSinglePred) {
7410 CheckedForSinglePred = true;
7411 if (SI->findCaseDest(CaseBB) == nullptr) {
7412 SkipCase = true;
7413 break;
7417 if (Replacement == nullptr) {
7418 if (PHIValue == CaseValue) {
7419 Replacement = Condition;
7420 } else {
7421 IRBuilder<> Builder(SI);
7422 Replacement = Builder.CreateZExt(Condition, PHIType);
7425 PHI.setIncomingValue(I, Replacement);
7426 Changed = true;
7428 if (SkipCase)
7429 break;
7433 return Changed;
7436 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7437 bool Changed = optimizeSwitchType(SI);
7438 Changed |= optimizeSwitchPhiConstants(SI);
7439 return Changed;
7442 namespace {
7444 /// Helper class to promote a scalar operation to a vector one.
7445 /// This class is used to move downward extractelement transition.
7446 /// E.g.,
7447 /// a = vector_op <2 x i32>
7448 /// b = extractelement <2 x i32> a, i32 0
7449 /// c = scalar_op b
7450 /// store c
7452 /// =>
7453 /// a = vector_op <2 x i32>
7454 /// c = vector_op a (equivalent to scalar_op on the related lane)
7455 /// * d = extractelement <2 x i32> c, i32 0
7456 /// * store d
7457 /// Assuming both extractelement and store can be combine, we get rid of the
7458 /// transition.
7459 class VectorPromoteHelper {
7460 /// DataLayout associated with the current module.
7461 const DataLayout &DL;
7463 /// Used to perform some checks on the legality of vector operations.
7464 const TargetLowering &TLI;
7466 /// Used to estimated the cost of the promoted chain.
7467 const TargetTransformInfo &TTI;
7469 /// The transition being moved downwards.
7470 Instruction *Transition;
7472 /// The sequence of instructions to be promoted.
7473 SmallVector<Instruction *, 4> InstsToBePromoted;
7475 /// Cost of combining a store and an extract.
7476 unsigned StoreExtractCombineCost;
7478 /// Instruction that will be combined with the transition.
7479 Instruction *CombineInst = nullptr;
7481 /// The instruction that represents the current end of the transition.
7482 /// Since we are faking the promotion until we reach the end of the chain
7483 /// of computation, we need a way to get the current end of the transition.
7484 Instruction *getEndOfTransition() const {
7485 if (InstsToBePromoted.empty())
7486 return Transition;
7487 return InstsToBePromoted.back();
7490 /// Return the index of the original value in the transition.
7491 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7492 /// c, is at index 0.
7493 unsigned getTransitionOriginalValueIdx() const {
7494 assert(isa<ExtractElementInst>(Transition) &&
7495 "Other kind of transitions are not supported yet");
7496 return 0;
7499 /// Return the index of the index in the transition.
7500 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7501 /// is at index 1.
7502 unsigned getTransitionIdx() const {
7503 assert(isa<ExtractElementInst>(Transition) &&
7504 "Other kind of transitions are not supported yet");
7505 return 1;
7508 /// Get the type of the transition.
7509 /// This is the type of the original value.
7510 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7511 /// transition is <2 x i32>.
7512 Type *getTransitionType() const {
7513 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7516 /// Promote \p ToBePromoted by moving \p Def downward through.
7517 /// I.e., we have the following sequence:
7518 /// Def = Transition <ty1> a to <ty2>
7519 /// b = ToBePromoted <ty2> Def, ...
7520 /// =>
7521 /// b = ToBePromoted <ty1> a, ...
7522 /// Def = Transition <ty1> ToBePromoted to <ty2>
7523 void promoteImpl(Instruction *ToBePromoted);
7525 /// Check whether or not it is profitable to promote all the
7526 /// instructions enqueued to be promoted.
7527 bool isProfitableToPromote() {
7528 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7529 unsigned Index = isa<ConstantInt>(ValIdx)
7530 ? cast<ConstantInt>(ValIdx)->getZExtValue()
7531 : -1;
7532 Type *PromotedType = getTransitionType();
7534 StoreInst *ST = cast<StoreInst>(CombineInst);
7535 unsigned AS = ST->getPointerAddressSpace();
7536 // Check if this store is supported.
7537 if (!TLI.allowsMisalignedMemoryAccesses(
7538 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7539 ST->getAlign())) {
7540 // If this is not supported, there is no way we can combine
7541 // the extract with the store.
7542 return false;
7545 // The scalar chain of computation has to pay for the transition
7546 // scalar to vector.
7547 // The vector chain has to account for the combining cost.
7548 enum TargetTransformInfo::TargetCostKind CostKind =
7549 TargetTransformInfo::TCK_RecipThroughput;
7550 InstructionCost ScalarCost =
7551 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index);
7552 InstructionCost VectorCost = StoreExtractCombineCost;
7553 for (const auto &Inst : InstsToBePromoted) {
7554 // Compute the cost.
7555 // By construction, all instructions being promoted are arithmetic ones.
7556 // Moreover, one argument is a constant that can be viewed as a splat
7557 // constant.
7558 Value *Arg0 = Inst->getOperand(0);
7559 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7560 isa<ConstantFP>(Arg0);
7561 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info;
7562 if (IsArg0Constant)
7563 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7564 else
7565 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7567 ScalarCost += TTI.getArithmeticInstrCost(
7568 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info);
7569 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7570 CostKind, Arg0Info, Arg1Info);
7572 LLVM_DEBUG(
7573 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7574 << ScalarCost << "\nVector: " << VectorCost << '\n');
7575 return ScalarCost > VectorCost;
7578 /// Generate a constant vector with \p Val with the same
7579 /// number of elements as the transition.
7580 /// \p UseSplat defines whether or not \p Val should be replicated
7581 /// across the whole vector.
7582 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7583 /// otherwise we generate a vector with as many undef as possible:
7584 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7585 /// used at the index of the extract.
7586 Value *getConstantVector(Constant *Val, bool UseSplat) const {
7587 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7588 if (!UseSplat) {
7589 // If we cannot determine where the constant must be, we have to
7590 // use a splat constant.
7591 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7592 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7593 ExtractIdx = CstVal->getSExtValue();
7594 else
7595 UseSplat = true;
7598 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7599 if (UseSplat)
7600 return ConstantVector::getSplat(EC, Val);
7602 if (!EC.isScalable()) {
7603 SmallVector<Constant *, 4> ConstVec;
7604 UndefValue *UndefVal = UndefValue::get(Val->getType());
7605 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7606 if (Idx == ExtractIdx)
7607 ConstVec.push_back(Val);
7608 else
7609 ConstVec.push_back(UndefVal);
7611 return ConstantVector::get(ConstVec);
7612 } else
7613 llvm_unreachable(
7614 "Generate scalable vector for non-splat is unimplemented");
7617 /// Check if promoting to a vector type an operand at \p OperandIdx
7618 /// in \p Use can trigger undefined behavior.
7619 static bool canCauseUndefinedBehavior(const Instruction *Use,
7620 unsigned OperandIdx) {
7621 // This is not safe to introduce undef when the operand is on
7622 // the right hand side of a division-like instruction.
7623 if (OperandIdx != 1)
7624 return false;
7625 switch (Use->getOpcode()) {
7626 default:
7627 return false;
7628 case Instruction::SDiv:
7629 case Instruction::UDiv:
7630 case Instruction::SRem:
7631 case Instruction::URem:
7632 return true;
7633 case Instruction::FDiv:
7634 case Instruction::FRem:
7635 return !Use->hasNoNaNs();
7637 llvm_unreachable(nullptr);
7640 public:
7641 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7642 const TargetTransformInfo &TTI, Instruction *Transition,
7643 unsigned CombineCost)
7644 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7645 StoreExtractCombineCost(CombineCost) {
7646 assert(Transition && "Do not know how to promote null");
7649 /// Check if we can promote \p ToBePromoted to \p Type.
7650 bool canPromote(const Instruction *ToBePromoted) const {
7651 // We could support CastInst too.
7652 return isa<BinaryOperator>(ToBePromoted);
7655 /// Check if it is profitable to promote \p ToBePromoted
7656 /// by moving downward the transition through.
7657 bool shouldPromote(const Instruction *ToBePromoted) const {
7658 // Promote only if all the operands can be statically expanded.
7659 // Indeed, we do not want to introduce any new kind of transitions.
7660 for (const Use &U : ToBePromoted->operands()) {
7661 const Value *Val = U.get();
7662 if (Val == getEndOfTransition()) {
7663 // If the use is a division and the transition is on the rhs,
7664 // we cannot promote the operation, otherwise we may create a
7665 // division by zero.
7666 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7667 return false;
7668 continue;
7670 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7671 !isa<ConstantFP>(Val))
7672 return false;
7674 // Check that the resulting operation is legal.
7675 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7676 if (!ISDOpcode)
7677 return false;
7678 return StressStoreExtract ||
7679 TLI.isOperationLegalOrCustom(
7680 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7683 /// Check whether or not \p Use can be combined
7684 /// with the transition.
7685 /// I.e., is it possible to do Use(Transition) => AnotherUse?
7686 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7688 /// Record \p ToBePromoted as part of the chain to be promoted.
7689 void enqueueForPromotion(Instruction *ToBePromoted) {
7690 InstsToBePromoted.push_back(ToBePromoted);
7693 /// Set the instruction that will be combined with the transition.
7694 void recordCombineInstruction(Instruction *ToBeCombined) {
7695 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7696 CombineInst = ToBeCombined;
7699 /// Promote all the instructions enqueued for promotion if it is
7700 /// is profitable.
7701 /// \return True if the promotion happened, false otherwise.
7702 bool promote() {
7703 // Check if there is something to promote.
7704 // Right now, if we do not have anything to combine with,
7705 // we assume the promotion is not profitable.
7706 if (InstsToBePromoted.empty() || !CombineInst)
7707 return false;
7709 // Check cost.
7710 if (!StressStoreExtract && !isProfitableToPromote())
7711 return false;
7713 // Promote.
7714 for (auto &ToBePromoted : InstsToBePromoted)
7715 promoteImpl(ToBePromoted);
7716 InstsToBePromoted.clear();
7717 return true;
7721 } // end anonymous namespace
7723 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7724 // At this point, we know that all the operands of ToBePromoted but Def
7725 // can be statically promoted.
7726 // For Def, we need to use its parameter in ToBePromoted:
7727 // b = ToBePromoted ty1 a
7728 // Def = Transition ty1 b to ty2
7729 // Move the transition down.
7730 // 1. Replace all uses of the promoted operation by the transition.
7731 // = ... b => = ... Def.
7732 assert(ToBePromoted->getType() == Transition->getType() &&
7733 "The type of the result of the transition does not match "
7734 "the final type");
7735 ToBePromoted->replaceAllUsesWith(Transition);
7736 // 2. Update the type of the uses.
7737 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7738 Type *TransitionTy = getTransitionType();
7739 ToBePromoted->mutateType(TransitionTy);
7740 // 3. Update all the operands of the promoted operation with promoted
7741 // operands.
7742 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7743 for (Use &U : ToBePromoted->operands()) {
7744 Value *Val = U.get();
7745 Value *NewVal = nullptr;
7746 if (Val == Transition)
7747 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7748 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7749 isa<ConstantFP>(Val)) {
7750 // Use a splat constant if it is not safe to use undef.
7751 NewVal = getConstantVector(
7752 cast<Constant>(Val),
7753 isa<UndefValue>(Val) ||
7754 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7755 } else
7756 llvm_unreachable("Did you modified shouldPromote and forgot to update "
7757 "this?");
7758 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7760 Transition->moveAfter(ToBePromoted);
7761 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7764 /// Some targets can do store(extractelement) with one instruction.
7765 /// Try to push the extractelement towards the stores when the target
7766 /// has this feature and this is profitable.
7767 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7768 unsigned CombineCost = std::numeric_limits<unsigned>::max();
7769 if (DisableStoreExtract ||
7770 (!StressStoreExtract &&
7771 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7772 Inst->getOperand(1), CombineCost)))
7773 return false;
7775 // At this point we know that Inst is a vector to scalar transition.
7776 // Try to move it down the def-use chain, until:
7777 // - We can combine the transition with its single use
7778 // => we got rid of the transition.
7779 // - We escape the current basic block
7780 // => we would need to check that we are moving it at a cheaper place and
7781 // we do not do that for now.
7782 BasicBlock *Parent = Inst->getParent();
7783 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7784 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7785 // If the transition has more than one use, assume this is not going to be
7786 // beneficial.
7787 while (Inst->hasOneUse()) {
7788 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7789 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7791 if (ToBePromoted->getParent() != Parent) {
7792 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7793 << ToBePromoted->getParent()->getName()
7794 << ") than the transition (" << Parent->getName()
7795 << ").\n");
7796 return false;
7799 if (VPH.canCombine(ToBePromoted)) {
7800 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7801 << "will be combined with: " << *ToBePromoted << '\n');
7802 VPH.recordCombineInstruction(ToBePromoted);
7803 bool Changed = VPH.promote();
7804 NumStoreExtractExposed += Changed;
7805 return Changed;
7808 LLVM_DEBUG(dbgs() << "Try promoting.\n");
7809 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7810 return false;
7812 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7814 VPH.enqueueForPromotion(ToBePromoted);
7815 Inst = ToBePromoted;
7817 return false;
7820 /// For the instruction sequence of store below, F and I values
7821 /// are bundled together as an i64 value before being stored into memory.
7822 /// Sometimes it is more efficient to generate separate stores for F and I,
7823 /// which can remove the bitwise instructions or sink them to colder places.
7825 /// (store (or (zext (bitcast F to i32) to i64),
7826 /// (shl (zext I to i64), 32)), addr) -->
7827 /// (store F, addr) and (store I, addr+4)
7829 /// Similarly, splitting for other merged store can also be beneficial, like:
7830 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7831 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7832 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7833 /// For pair of {i16, i8}, i32 store --> two i16 stores.
7834 /// For pair of {i8, i8}, i16 store --> two i8 stores.
7836 /// We allow each target to determine specifically which kind of splitting is
7837 /// supported.
7839 /// The store patterns are commonly seen from the simple code snippet below
7840 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7841 /// void goo(const std::pair<int, float> &);
7842 /// hoo() {
7843 /// ...
7844 /// goo(std::make_pair(tmp, ftmp));
7845 /// ...
7846 /// }
7848 /// Although we already have similar splitting in DAG Combine, we duplicate
7849 /// it in CodeGenPrepare to catch the case in which pattern is across
7850 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7851 /// during code expansion.
7852 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7853 const TargetLowering &TLI) {
7854 // Handle simple but common cases only.
7855 Type *StoreType = SI.getValueOperand()->getType();
7857 // The code below assumes shifting a value by <number of bits>,
7858 // whereas scalable vectors would have to be shifted by
7859 // <2log(vscale) + number of bits> in order to store the
7860 // low/high parts. Bailing out for now.
7861 if (StoreType->isScalableTy())
7862 return false;
7864 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7865 DL.getTypeSizeInBits(StoreType) == 0)
7866 return false;
7868 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7869 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7870 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7871 return false;
7873 // Don't split the store if it is volatile.
7874 if (SI.isVolatile())
7875 return false;
7877 // Match the following patterns:
7878 // (store (or (zext LValue to i64),
7879 // (shl (zext HValue to i64), 32)), HalfValBitSize)
7880 // or
7881 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7882 // (zext LValue to i64),
7883 // Expect both operands of OR and the first operand of SHL have only
7884 // one use.
7885 Value *LValue, *HValue;
7886 if (!match(SI.getValueOperand(),
7887 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7888 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7889 m_SpecificInt(HalfValBitSize))))))
7890 return false;
7892 // Check LValue and HValue are int with size less or equal than 32.
7893 if (!LValue->getType()->isIntegerTy() ||
7894 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7895 !HValue->getType()->isIntegerTy() ||
7896 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7897 return false;
7899 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7900 // as the input of target query.
7901 auto *LBC = dyn_cast<BitCastInst>(LValue);
7902 auto *HBC = dyn_cast<BitCastInst>(HValue);
7903 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7904 : EVT::getEVT(LValue->getType());
7905 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7906 : EVT::getEVT(HValue->getType());
7907 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7908 return false;
7910 // Start to split store.
7911 IRBuilder<> Builder(SI.getContext());
7912 Builder.SetInsertPoint(&SI);
7914 // If LValue/HValue is a bitcast in another BB, create a new one in current
7915 // BB so it may be merged with the splitted stores by dag combiner.
7916 if (LBC && LBC->getParent() != SI.getParent())
7917 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7918 if (HBC && HBC->getParent() != SI.getParent())
7919 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7921 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7922 auto CreateSplitStore = [&](Value *V, bool Upper) {
7923 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7924 Value *Addr = SI.getPointerOperand();
7925 Align Alignment = SI.getAlign();
7926 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7927 if (IsOffsetStore) {
7928 Addr = Builder.CreateGEP(
7929 SplitStoreType, Addr,
7930 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7932 // When splitting the store in half, naturally one half will retain the
7933 // alignment of the original wider store, regardless of whether it was
7934 // over-aligned or not, while the other will require adjustment.
7935 Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7937 Builder.CreateAlignedStore(V, Addr, Alignment);
7940 CreateSplitStore(LValue, false);
7941 CreateSplitStore(HValue, true);
7943 // Delete the old store.
7944 SI.eraseFromParent();
7945 return true;
7948 // Return true if the GEP has two operands, the first operand is of a sequential
7949 // type, and the second operand is a constant.
7950 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7951 gep_type_iterator I = gep_type_begin(*GEP);
7952 return GEP->getNumOperands() == 2 && I.isSequential() &&
7953 isa<ConstantInt>(GEP->getOperand(1));
7956 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7957 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7958 // reducing liveness interference across those edges benefits global register
7959 // allocation. Currently handles only certain cases.
7961 // For example, unmerge %GEPI and %UGEPI as below.
7963 // ---------- BEFORE ----------
7964 // SrcBlock:
7965 // ...
7966 // %GEPIOp = ...
7967 // ...
7968 // %GEPI = gep %GEPIOp, Idx
7969 // ...
7970 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7971 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7972 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7973 // %UGEPI)
7975 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7976 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7977 // ...
7979 // DstBi:
7980 // ...
7981 // %UGEPI = gep %GEPIOp, UIdx
7982 // ...
7983 // ---------------------------
7985 // ---------- AFTER ----------
7986 // SrcBlock:
7987 // ... (same as above)
7988 // (* %GEPI is still alive on the indirectbr edges)
7989 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7990 // unmerging)
7991 // ...
7993 // DstBi:
7994 // ...
7995 // %UGEPI = gep %GEPI, (UIdx-Idx)
7996 // ...
7997 // ---------------------------
7999 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8000 // no longer alive on them.
8002 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8003 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8004 // not to disable further simplications and optimizations as a result of GEP
8005 // merging.
8007 // Note this unmerging may increase the length of the data flow critical path
8008 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8009 // between the register pressure and the length of data-flow critical
8010 // path. Restricting this to the uncommon IndirectBr case would minimize the
8011 // impact of potentially longer critical path, if any, and the impact on compile
8012 // time.
8013 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
8014 const TargetTransformInfo *TTI) {
8015 BasicBlock *SrcBlock = GEPI->getParent();
8016 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8017 // (non-IndirectBr) cases exit early here.
8018 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
8019 return false;
8020 // Check that GEPI is a simple gep with a single constant index.
8021 if (!GEPSequentialConstIndexed(GEPI))
8022 return false;
8023 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
8024 // Check that GEPI is a cheap one.
8025 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
8026 TargetTransformInfo::TCK_SizeAndLatency) >
8027 TargetTransformInfo::TCC_Basic)
8028 return false;
8029 Value *GEPIOp = GEPI->getOperand(0);
8030 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
8031 if (!isa<Instruction>(GEPIOp))
8032 return false;
8033 auto *GEPIOpI = cast<Instruction>(GEPIOp);
8034 if (GEPIOpI->getParent() != SrcBlock)
8035 return false;
8036 // Check that GEP is used outside the block, meaning it's alive on the
8037 // IndirectBr edge(s).
8038 if (llvm::none_of(GEPI->users(), [&](User *Usr) {
8039 if (auto *I = dyn_cast<Instruction>(Usr)) {
8040 if (I->getParent() != SrcBlock) {
8041 return true;
8044 return false;
8046 return false;
8047 // The second elements of the GEP chains to be unmerged.
8048 std::vector<GetElementPtrInst *> UGEPIs;
8049 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8050 // on IndirectBr edges.
8051 for (User *Usr : GEPIOp->users()) {
8052 if (Usr == GEPI)
8053 continue;
8054 // Check if Usr is an Instruction. If not, give up.
8055 if (!isa<Instruction>(Usr))
8056 return false;
8057 auto *UI = cast<Instruction>(Usr);
8058 // Check if Usr in the same block as GEPIOp, which is fine, skip.
8059 if (UI->getParent() == SrcBlock)
8060 continue;
8061 // Check if Usr is a GEP. If not, give up.
8062 if (!isa<GetElementPtrInst>(Usr))
8063 return false;
8064 auto *UGEPI = cast<GetElementPtrInst>(Usr);
8065 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8066 // the pointer operand to it. If so, record it in the vector. If not, give
8067 // up.
8068 if (!GEPSequentialConstIndexed(UGEPI))
8069 return false;
8070 if (UGEPI->getOperand(0) != GEPIOp)
8071 return false;
8072 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType())
8073 return false;
8074 if (GEPIIdx->getType() !=
8075 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
8076 return false;
8077 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8078 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
8079 TargetTransformInfo::TCK_SizeAndLatency) >
8080 TargetTransformInfo::TCC_Basic)
8081 return false;
8082 UGEPIs.push_back(UGEPI);
8084 if (UGEPIs.size() == 0)
8085 return false;
8086 // Check the materializing cost of (Uidx-Idx).
8087 for (GetElementPtrInst *UGEPI : UGEPIs) {
8088 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8089 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
8090 InstructionCost ImmCost = TTI->getIntImmCost(
8091 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
8092 if (ImmCost > TargetTransformInfo::TCC_Basic)
8093 return false;
8095 // Now unmerge between GEPI and UGEPIs.
8096 for (GetElementPtrInst *UGEPI : UGEPIs) {
8097 UGEPI->setOperand(0, GEPI);
8098 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8099 Constant *NewUGEPIIdx = ConstantInt::get(
8100 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue());
8101 UGEPI->setOperand(1, NewUGEPIIdx);
8102 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8103 // inbounds to avoid UB.
8104 if (!GEPI->isInBounds()) {
8105 UGEPI->setIsInBounds(false);
8108 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8109 // alive on IndirectBr edges).
8110 assert(llvm::none_of(GEPIOp->users(),
8111 [&](User *Usr) {
8112 return cast<Instruction>(Usr)->getParent() != SrcBlock;
8113 }) &&
8114 "GEPIOp is used outside SrcBlock");
8115 return true;
8118 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI,
8119 SmallSet<BasicBlock *, 32> &FreshBBs,
8120 bool IsHugeFunc) {
8121 // Try and convert
8122 // %c = icmp ult %x, 8
8123 // br %c, bla, blb
8124 // %tc = lshr %x, 3
8125 // to
8126 // %tc = lshr %x, 3
8127 // %c = icmp eq %tc, 0
8128 // br %c, bla, blb
8129 // Creating the cmp to zero can be better for the backend, especially if the
8130 // lshr produces flags that can be used automatically.
8131 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
8132 return false;
8134 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
8135 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
8136 return false;
8138 Value *X = Cmp->getOperand(0);
8139 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
8141 for (auto *U : X->users()) {
8142 Instruction *UI = dyn_cast<Instruction>(U);
8143 // A quick dominance check
8144 if (!UI ||
8145 (UI->getParent() != Branch->getParent() &&
8146 UI->getParent() != Branch->getSuccessor(0) &&
8147 UI->getParent() != Branch->getSuccessor(1)) ||
8148 (UI->getParent() != Branch->getParent() &&
8149 !UI->getParent()->getSinglePredecessor()))
8150 continue;
8152 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
8153 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
8154 IRBuilder<> Builder(Branch);
8155 if (UI->getParent() != Branch->getParent())
8156 UI->moveBefore(Branch);
8157 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
8158 ConstantInt::get(UI->getType(), 0));
8159 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8160 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8161 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8162 return true;
8164 if (Cmp->isEquality() &&
8165 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
8166 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
8167 IRBuilder<> Builder(Branch);
8168 if (UI->getParent() != Branch->getParent())
8169 UI->moveBefore(Branch);
8170 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
8171 ConstantInt::get(UI->getType(), 0));
8172 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8173 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8174 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8175 return true;
8178 return false;
8181 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) {
8182 bool AnyChange = false;
8183 AnyChange = fixupDPValuesOnInst(*I);
8185 // Bail out if we inserted the instruction to prevent optimizations from
8186 // stepping on each other's toes.
8187 if (InsertedInsts.count(I))
8188 return AnyChange;
8190 // TODO: Move into the switch on opcode below here.
8191 if (PHINode *P = dyn_cast<PHINode>(I)) {
8192 // It is possible for very late stage optimizations (such as SimplifyCFG)
8193 // to introduce PHI nodes too late to be cleaned up. If we detect such a
8194 // trivial PHI, go ahead and zap it here.
8195 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
8196 LargeOffsetGEPMap.erase(P);
8197 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc);
8198 P->eraseFromParent();
8199 ++NumPHIsElim;
8200 return true;
8202 return AnyChange;
8205 if (CastInst *CI = dyn_cast<CastInst>(I)) {
8206 // If the source of the cast is a constant, then this should have
8207 // already been constant folded. The only reason NOT to constant fold
8208 // it is if something (e.g. LSR) was careful to place the constant
8209 // evaluation in a block other than then one that uses it (e.g. to hoist
8210 // the address of globals out of a loop). If this is the case, we don't
8211 // want to forward-subst the cast.
8212 if (isa<Constant>(CI->getOperand(0)))
8213 return AnyChange;
8215 if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
8216 return true;
8218 if ((isa<UIToFPInst>(I) || isa<FPToUIInst>(I) || isa<TruncInst>(I)) &&
8219 TLI->optimizeExtendOrTruncateConversion(
8220 I, LI->getLoopFor(I->getParent()), *TTI))
8221 return true;
8223 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
8224 /// Sink a zext or sext into its user blocks if the target type doesn't
8225 /// fit in one register
8226 if (TLI->getTypeAction(CI->getContext(),
8227 TLI->getValueType(*DL, CI->getType())) ==
8228 TargetLowering::TypeExpandInteger) {
8229 return SinkCast(CI);
8230 } else {
8231 if (TLI->optimizeExtendOrTruncateConversion(
8232 I, LI->getLoopFor(I->getParent()), *TTI))
8233 return true;
8235 bool MadeChange = optimizeExt(I);
8236 return MadeChange | optimizeExtUses(I);
8239 return AnyChange;
8242 if (auto *Cmp = dyn_cast<CmpInst>(I))
8243 if (optimizeCmp(Cmp, ModifiedDT))
8244 return true;
8246 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8247 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8248 bool Modified = optimizeLoadExt(LI);
8249 unsigned AS = LI->getPointerAddressSpace();
8250 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
8251 return Modified;
8254 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
8255 if (splitMergedValStore(*SI, *DL, *TLI))
8256 return true;
8257 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8258 unsigned AS = SI->getPointerAddressSpace();
8259 return optimizeMemoryInst(I, SI->getOperand(1),
8260 SI->getOperand(0)->getType(), AS);
8263 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
8264 unsigned AS = RMW->getPointerAddressSpace();
8265 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS);
8268 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
8269 unsigned AS = CmpX->getPointerAddressSpace();
8270 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
8271 CmpX->getCompareOperand()->getType(), AS);
8274 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
8276 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
8277 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
8278 return true;
8280 // TODO: Move this into the switch on opcode - it handles shifts already.
8281 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
8282 BinOp->getOpcode() == Instruction::LShr)) {
8283 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
8284 if (CI && TLI->hasExtractBitsInsn())
8285 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
8286 return true;
8289 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
8290 if (GEPI->hasAllZeroIndices()) {
8291 /// The GEP operand must be a pointer, so must its result -> BitCast
8292 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
8293 GEPI->getName(), GEPI);
8294 NC->setDebugLoc(GEPI->getDebugLoc());
8295 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc);
8296 RecursivelyDeleteTriviallyDeadInstructions(
8297 GEPI, TLInfo, nullptr,
8298 [&](Value *V) { removeAllAssertingVHReferences(V); });
8299 ++NumGEPsElim;
8300 optimizeInst(NC, ModifiedDT);
8301 return true;
8303 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
8304 return true;
8308 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
8309 // freeze(icmp a, const)) -> icmp (freeze a), const
8310 // This helps generate efficient conditional jumps.
8311 Instruction *CmpI = nullptr;
8312 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
8313 CmpI = II;
8314 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
8315 CmpI = F->getFastMathFlags().none() ? F : nullptr;
8317 if (CmpI && CmpI->hasOneUse()) {
8318 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
8319 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
8320 isa<ConstantPointerNull>(Op0);
8321 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
8322 isa<ConstantPointerNull>(Op1);
8323 if (Const0 || Const1) {
8324 if (!Const0 || !Const1) {
8325 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
8326 F->takeName(FI);
8327 CmpI->setOperand(Const0 ? 1 : 0, F);
8329 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc);
8330 FI->eraseFromParent();
8331 return true;
8334 return AnyChange;
8337 if (tryToSinkFreeOperands(I))
8338 return true;
8340 switch (I->getOpcode()) {
8341 case Instruction::Shl:
8342 case Instruction::LShr:
8343 case Instruction::AShr:
8344 return optimizeShiftInst(cast<BinaryOperator>(I));
8345 case Instruction::Call:
8346 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8347 case Instruction::Select:
8348 return optimizeSelectInst(cast<SelectInst>(I));
8349 case Instruction::ShuffleVector:
8350 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8351 case Instruction::Switch:
8352 return optimizeSwitchInst(cast<SwitchInst>(I));
8353 case Instruction::ExtractElement:
8354 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8355 case Instruction::Br:
8356 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc);
8359 return AnyChange;
8362 /// Given an OR instruction, check to see if this is a bitreverse
8363 /// idiom. If so, insert the new intrinsic and return true.
8364 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8365 if (!I.getType()->isIntegerTy() ||
8366 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8367 TLI->getValueType(*DL, I.getType(), true)))
8368 return false;
8370 SmallVector<Instruction *, 4> Insts;
8371 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8372 return false;
8373 Instruction *LastInst = Insts.back();
8374 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc);
8375 RecursivelyDeleteTriviallyDeadInstructions(
8376 &I, TLInfo, nullptr,
8377 [&](Value *V) { removeAllAssertingVHReferences(V); });
8378 return true;
8381 // In this pass we look for GEP and cast instructions that are used
8382 // across basic blocks and rewrite them to improve basic-block-at-a-time
8383 // selection.
8384 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) {
8385 SunkAddrs.clear();
8386 bool MadeChange = false;
8388 do {
8389 CurInstIterator = BB.begin();
8390 ModifiedDT = ModifyDT::NotModifyDT;
8391 while (CurInstIterator != BB.end()) {
8392 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8393 if (ModifiedDT != ModifyDT::NotModifyDT) {
8394 // For huge function we tend to quickly go though the inner optmization
8395 // opportunities in the BB. So we go back to the BB head to re-optimize
8396 // each instruction instead of go back to the function head.
8397 if (IsHugeFunc) {
8398 DT.reset();
8399 getDT(*BB.getParent());
8400 break;
8401 } else {
8402 return true;
8406 } while (ModifiedDT == ModifyDT::ModifyInstDT);
8408 bool MadeBitReverse = true;
8409 while (MadeBitReverse) {
8410 MadeBitReverse = false;
8411 for (auto &I : reverse(BB)) {
8412 if (makeBitReverse(I)) {
8413 MadeBitReverse = MadeChange = true;
8414 break;
8418 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8420 return MadeChange;
8423 // Some CGP optimizations may move or alter what's computed in a block. Check
8424 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8425 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8426 assert(isa<DbgValueInst>(I));
8427 DbgValueInst &DVI = *cast<DbgValueInst>(I);
8429 // Does this dbg.value refer to a sunk address calculation?
8430 bool AnyChange = false;
8431 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8432 DVI.location_ops().end());
8433 for (Value *Location : LocationOps) {
8434 WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8435 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8436 if (SunkAddr) {
8437 // Point dbg.value at locally computed address, which should give the best
8438 // opportunity to be accurately lowered. This update may change the type
8439 // of pointer being referred to; however this makes no difference to
8440 // debugging information, and we can't generate bitcasts that may affect
8441 // codegen.
8442 DVI.replaceVariableLocationOp(Location, SunkAddr);
8443 AnyChange = true;
8446 return AnyChange;
8449 bool CodeGenPrepare::fixupDPValuesOnInst(Instruction &I) {
8450 bool AnyChange = false;
8451 for (DPValue &DPV : I.getDbgValueRange())
8452 AnyChange |= fixupDPValue(DPV);
8453 return AnyChange;
8456 // FIXME: should updating debug-info really cause the "changed" flag to fire,
8457 // which can cause a function to be reprocessed?
8458 bool CodeGenPrepare::fixupDPValue(DPValue &DPV) {
8459 if (DPV.Type != DPValue::LocationType::Value)
8460 return false;
8462 // Does this DPValue refer to a sunk address calculation?
8463 bool AnyChange = false;
8464 SmallDenseSet<Value *> LocationOps(DPV.location_ops().begin(),
8465 DPV.location_ops().end());
8466 for (Value *Location : LocationOps) {
8467 WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8468 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8469 if (SunkAddr) {
8470 // Point dbg.value at locally computed address, which should give the best
8471 // opportunity to be accurately lowered. This update may change the type
8472 // of pointer being referred to; however this makes no difference to
8473 // debugging information, and we can't generate bitcasts that may affect
8474 // codegen.
8475 DPV.replaceVariableLocationOp(Location, SunkAddr);
8476 AnyChange = true;
8479 return AnyChange;
8482 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) {
8483 DVI->removeFromParent();
8484 if (isa<PHINode>(VI))
8485 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8486 else
8487 DVI->insertAfter(VI);
8490 static void DbgInserterHelper(DPValue *DPV, Instruction *VI) {
8491 DPV->removeFromParent();
8492 BasicBlock *VIBB = VI->getParent();
8493 if (isa<PHINode>(VI))
8494 VIBB->insertDPValueBefore(DPV, VIBB->getFirstInsertionPt());
8495 else
8496 VIBB->insertDPValueAfter(DPV, VI);
8499 // A llvm.dbg.value may be using a value before its definition, due to
8500 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8501 // them by moving the dbg.value to immediately after the value definition.
8502 // FIXME: Ideally this should never be necessary, and this has the potential
8503 // to re-order dbg.value intrinsics.
8504 bool CodeGenPrepare::placeDbgValues(Function &F) {
8505 bool MadeChange = false;
8506 DominatorTree DT(F);
8508 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) {
8509 SmallVector<Instruction *, 4> VIs;
8510 for (Value *V : DbgItem->location_ops())
8511 if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8512 VIs.push_back(VI);
8514 // This item may depend on multiple instructions, complicating any
8515 // potential sink. This block takes the defensive approach, opting to
8516 // "undef" the item if it has more than one instruction and any of them do
8517 // not dominate iem.
8518 for (Instruction *VI : VIs) {
8519 if (VI->isTerminator())
8520 continue;
8522 // If VI is a phi in a block with an EHPad terminator, we can't insert
8523 // after it.
8524 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8525 continue;
8527 // If the defining instruction dominates the dbg.value, we do not need
8528 // to move the dbg.value.
8529 if (DT.dominates(VI, Position))
8530 continue;
8532 // If we depend on multiple instructions and any of them doesn't
8533 // dominate this DVI, we probably can't salvage it: moving it to
8534 // after any of the instructions could cause us to lose the others.
8535 if (VIs.size() > 1) {
8536 LLVM_DEBUG(
8537 dbgs()
8538 << "Unable to find valid location for Debug Value, undefing:\n"
8539 << *DbgItem);
8540 DbgItem->setKillLocation();
8541 break;
8544 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8545 << *DbgItem << ' ' << *VI);
8546 DbgInserterHelper(DbgItem, VI);
8547 MadeChange = true;
8548 ++NumDbgValueMoved;
8552 for (BasicBlock &BB : F) {
8553 for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8554 // Process dbg.value intrinsics.
8555 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8556 if (DVI) {
8557 DbgProcessor(DVI, DVI);
8558 continue;
8561 // If this isn't a dbg.value, process any attached DPValue records
8562 // attached to this instruction.
8563 for (DPValue &DPV : llvm::make_early_inc_range(Insn.getDbgValueRange())) {
8564 if (DPV.Type != DPValue::LocationType::Value)
8565 continue;
8566 DbgProcessor(&DPV, &Insn);
8571 return MadeChange;
8574 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8575 // probes can be chained dependencies of other regular DAG nodes and block DAG
8576 // combine optimizations.
8577 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8578 bool MadeChange = false;
8579 for (auto &Block : F) {
8580 // Move the rest probes to the beginning of the block.
8581 auto FirstInst = Block.getFirstInsertionPt();
8582 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8583 ++FirstInst;
8584 BasicBlock::iterator I(FirstInst);
8585 I++;
8586 while (I != Block.end()) {
8587 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8588 II->moveBefore(&*FirstInst);
8589 MadeChange = true;
8593 return MadeChange;
8596 /// Scale down both weights to fit into uint32_t.
8597 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8598 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8599 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8600 NewTrue = NewTrue / Scale;
8601 NewFalse = NewFalse / Scale;
8604 /// Some targets prefer to split a conditional branch like:
8605 /// \code
8606 /// %0 = icmp ne i32 %a, 0
8607 /// %1 = icmp ne i32 %b, 0
8608 /// %or.cond = or i1 %0, %1
8609 /// br i1 %or.cond, label %TrueBB, label %FalseBB
8610 /// \endcode
8611 /// into multiple branch instructions like:
8612 /// \code
8613 /// bb1:
8614 /// %0 = icmp ne i32 %a, 0
8615 /// br i1 %0, label %TrueBB, label %bb2
8616 /// bb2:
8617 /// %1 = icmp ne i32 %b, 0
8618 /// br i1 %1, label %TrueBB, label %FalseBB
8619 /// \endcode
8620 /// This usually allows instruction selection to do even further optimizations
8621 /// and combine the compare with the branch instruction. Currently this is
8622 /// applied for targets which have "cheap" jump instructions.
8624 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8626 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) {
8627 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8628 return false;
8630 bool MadeChange = false;
8631 for (auto &BB : F) {
8632 // Does this BB end with the following?
8633 // %cond1 = icmp|fcmp|binary instruction ...
8634 // %cond2 = icmp|fcmp|binary instruction ...
8635 // %cond.or = or|and i1 %cond1, cond2
8636 // br i1 %cond.or label %dest1, label %dest2"
8637 Instruction *LogicOp;
8638 BasicBlock *TBB, *FBB;
8639 if (!match(BB.getTerminator(),
8640 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8641 continue;
8643 auto *Br1 = cast<BranchInst>(BB.getTerminator());
8644 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8645 continue;
8647 // The merging of mostly empty BB can cause a degenerate branch.
8648 if (TBB == FBB)
8649 continue;
8651 unsigned Opc;
8652 Value *Cond1, *Cond2;
8653 if (match(LogicOp,
8654 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8655 Opc = Instruction::And;
8656 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8657 m_OneUse(m_Value(Cond2)))))
8658 Opc = Instruction::Or;
8659 else
8660 continue;
8662 auto IsGoodCond = [](Value *Cond) {
8663 return match(
8664 Cond,
8665 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8666 m_LogicalOr(m_Value(), m_Value()))));
8668 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8669 continue;
8671 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8673 // Create a new BB.
8674 auto *TmpBB =
8675 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8676 BB.getParent(), BB.getNextNode());
8677 if (IsHugeFunc)
8678 FreshBBs.insert(TmpBB);
8680 // Update original basic block by using the first condition directly by the
8681 // branch instruction and removing the no longer needed and/or instruction.
8682 Br1->setCondition(Cond1);
8683 LogicOp->eraseFromParent();
8685 // Depending on the condition we have to either replace the true or the
8686 // false successor of the original branch instruction.
8687 if (Opc == Instruction::And)
8688 Br1->setSuccessor(0, TmpBB);
8689 else
8690 Br1->setSuccessor(1, TmpBB);
8692 // Fill in the new basic block.
8693 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8694 if (auto *I = dyn_cast<Instruction>(Cond2)) {
8695 I->removeFromParent();
8696 I->insertBefore(Br2);
8699 // Update PHI nodes in both successors. The original BB needs to be
8700 // replaced in one successor's PHI nodes, because the branch comes now from
8701 // the newly generated BB (NewBB). In the other successor we need to add one
8702 // incoming edge to the PHI nodes, because both branch instructions target
8703 // now the same successor. Depending on the original branch condition
8704 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8705 // we perform the correct update for the PHI nodes.
8706 // This doesn't change the successor order of the just created branch
8707 // instruction (or any other instruction).
8708 if (Opc == Instruction::Or)
8709 std::swap(TBB, FBB);
8711 // Replace the old BB with the new BB.
8712 TBB->replacePhiUsesWith(&BB, TmpBB);
8714 // Add another incoming edge from the new BB.
8715 for (PHINode &PN : FBB->phis()) {
8716 auto *Val = PN.getIncomingValueForBlock(&BB);
8717 PN.addIncoming(Val, TmpBB);
8720 // Update the branch weights (from SelectionDAGBuilder::
8721 // FindMergedConditions).
8722 if (Opc == Instruction::Or) {
8723 // Codegen X | Y as:
8724 // BB1:
8725 // jmp_if_X TBB
8726 // jmp TmpBB
8727 // TmpBB:
8728 // jmp_if_Y TBB
8729 // jmp FBB
8732 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8733 // The requirement is that
8734 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8735 // = TrueProb for original BB.
8736 // Assuming the original weights are A and B, one choice is to set BB1's
8737 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8738 // assumes that
8739 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8740 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8741 // TmpBB, but the math is more complicated.
8742 uint64_t TrueWeight, FalseWeight;
8743 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8744 uint64_t NewTrueWeight = TrueWeight;
8745 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8746 scaleWeights(NewTrueWeight, NewFalseWeight);
8747 Br1->setMetadata(LLVMContext::MD_prof,
8748 MDBuilder(Br1->getContext())
8749 .createBranchWeights(TrueWeight, FalseWeight));
8751 NewTrueWeight = TrueWeight;
8752 NewFalseWeight = 2 * FalseWeight;
8753 scaleWeights(NewTrueWeight, NewFalseWeight);
8754 Br2->setMetadata(LLVMContext::MD_prof,
8755 MDBuilder(Br2->getContext())
8756 .createBranchWeights(TrueWeight, FalseWeight));
8758 } else {
8759 // Codegen X & Y as:
8760 // BB1:
8761 // jmp_if_X TmpBB
8762 // jmp FBB
8763 // TmpBB:
8764 // jmp_if_Y TBB
8765 // jmp FBB
8767 // This requires creation of TmpBB after CurBB.
8769 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8770 // The requirement is that
8771 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8772 // = FalseProb for original BB.
8773 // Assuming the original weights are A and B, one choice is to set BB1's
8774 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8775 // assumes that
8776 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8777 uint64_t TrueWeight, FalseWeight;
8778 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8779 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8780 uint64_t NewFalseWeight = FalseWeight;
8781 scaleWeights(NewTrueWeight, NewFalseWeight);
8782 Br1->setMetadata(LLVMContext::MD_prof,
8783 MDBuilder(Br1->getContext())
8784 .createBranchWeights(TrueWeight, FalseWeight));
8786 NewTrueWeight = 2 * TrueWeight;
8787 NewFalseWeight = FalseWeight;
8788 scaleWeights(NewTrueWeight, NewFalseWeight);
8789 Br2->setMetadata(LLVMContext::MD_prof,
8790 MDBuilder(Br2->getContext())
8791 .createBranchWeights(TrueWeight, FalseWeight));
8795 ModifiedDT = ModifyDT::ModifyBBDT;
8796 MadeChange = true;
8798 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8799 TmpBB->dump());
8801 return MadeChange;