1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/CodeGenPrepare.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineValueType.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfo.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/IntrinsicsAArch64.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/MDBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/ProfDataUtils.h"
71 #include "llvm/IR/Statepoint.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/User.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/IR/ValueHandle.h"
77 #include "llvm/IR/ValueMap.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BlockFrequency.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
106 using namespace llvm
;
107 using namespace llvm::PatternMatch
;
109 #define DEBUG_TYPE "codegenprepare"
111 STATISTIC(NumBlocksElim
, "Number of blocks eliminated");
112 STATISTIC(NumPHIsElim
, "Number of trivial PHIs eliminated");
113 STATISTIC(NumGEPsElim
, "Number of GEPs converted to casts");
114 STATISTIC(NumCmpUses
, "Number of uses of Cmp expressions replaced with uses of "
116 STATISTIC(NumCastUses
, "Number of uses of Cast expressions replaced with uses "
118 STATISTIC(NumMemoryInsts
, "Number of memory instructions whose address "
119 "computations were sunk");
120 STATISTIC(NumMemoryInstsPhiCreated
,
121 "Number of phis created when address "
122 "computations were sunk to memory instructions");
123 STATISTIC(NumMemoryInstsSelectCreated
,
124 "Number of select created when address "
125 "computations were sunk to memory instructions");
126 STATISTIC(NumExtsMoved
, "Number of [s|z]ext instructions combined with loads");
127 STATISTIC(NumExtUses
, "Number of uses of [s|z]ext instructions optimized");
128 STATISTIC(NumAndsAdded
,
129 "Number of and mask instructions added to form ext loads");
130 STATISTIC(NumAndUses
, "Number of uses of and mask instructions optimized");
131 STATISTIC(NumRetsDup
, "Number of return instructions duplicated");
132 STATISTIC(NumDbgValueMoved
, "Number of debug value instructions moved");
133 STATISTIC(NumSelectsExpanded
, "Number of selects turned into branches");
134 STATISTIC(NumStoreExtractExposed
, "Number of store(extractelement) exposed");
136 static cl::opt
<bool> DisableBranchOpts(
137 "disable-cgp-branch-opts", cl::Hidden
, cl::init(false),
138 cl::desc("Disable branch optimizations in CodeGenPrepare"));
141 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden
, cl::init(false),
142 cl::desc("Disable GC optimizations in CodeGenPrepare"));
145 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden
,
147 cl::desc("Disable select to branch conversion."));
150 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden
, cl::init(true),
151 cl::desc("Address sinking in CGP using GEPs."));
154 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden
, cl::init(true),
155 cl::desc("Enable sinkinig and/cmp into branches."));
157 static cl::opt
<bool> DisableStoreExtract(
158 "disable-cgp-store-extract", cl::Hidden
, cl::init(false),
159 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
161 static cl::opt
<bool> StressStoreExtract(
162 "stress-cgp-store-extract", cl::Hidden
, cl::init(false),
163 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
165 static cl::opt
<bool> DisableExtLdPromotion(
166 "disable-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
167 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
170 static cl::opt
<bool> StressExtLdPromotion(
171 "stress-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
172 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
173 "optimization in CodeGenPrepare"));
175 static cl::opt
<bool> DisablePreheaderProtect(
176 "disable-preheader-prot", cl::Hidden
, cl::init(false),
177 cl::desc("Disable protection against removing loop preheaders"));
179 static cl::opt
<bool> ProfileGuidedSectionPrefix(
180 "profile-guided-section-prefix", cl::Hidden
, cl::init(true),
181 cl::desc("Use profile info to add section prefix for hot/cold functions"));
183 static cl::opt
<bool> ProfileUnknownInSpecialSection(
184 "profile-unknown-in-special-section", cl::Hidden
,
185 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
186 "profile, we cannot tell the function is cold for sure because "
187 "it may be a function newly added without ever being sampled. "
188 "With the flag enabled, compiler can put such profile unknown "
189 "functions into a special section, so runtime system can choose "
190 "to handle it in a different way than .text section, to save "
191 "RAM for example. "));
193 static cl::opt
<bool> BBSectionsGuidedSectionPrefix(
194 "bbsections-guided-section-prefix", cl::Hidden
, cl::init(true),
195 cl::desc("Use the basic-block-sections profile to determine the text "
196 "section prefix for hot functions. Functions with "
197 "basic-block-sections profile will be placed in `.text.hot` "
198 "regardless of their FDO profile info. Other functions won't be "
199 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
202 static cl::opt
<uint64_t> FreqRatioToSkipMerge(
203 "cgp-freq-ratio-to-skip-merge", cl::Hidden
, cl::init(2),
204 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
205 "(frequency of destination block) is greater than this ratio"));
207 static cl::opt
<bool> ForceSplitStore(
208 "force-split-store", cl::Hidden
, cl::init(false),
209 cl::desc("Force store splitting no matter what the target query says."));
211 static cl::opt
<bool> EnableTypePromotionMerge(
212 "cgp-type-promotion-merge", cl::Hidden
,
213 cl::desc("Enable merging of redundant sexts when one is dominating"
217 static cl::opt
<bool> DisableComplexAddrModes(
218 "disable-complex-addr-modes", cl::Hidden
, cl::init(false),
219 cl::desc("Disables combining addressing modes with different parts "
220 "in optimizeMemoryInst."));
223 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden
, cl::init(false),
224 cl::desc("Allow creation of Phis in Address sinking."));
226 static cl::opt
<bool> AddrSinkNewSelects(
227 "addr-sink-new-select", cl::Hidden
, cl::init(true),
228 cl::desc("Allow creation of selects in Address sinking."));
230 static cl::opt
<bool> AddrSinkCombineBaseReg(
231 "addr-sink-combine-base-reg", cl::Hidden
, cl::init(true),
232 cl::desc("Allow combining of BaseReg field in Address sinking."));
234 static cl::opt
<bool> AddrSinkCombineBaseGV(
235 "addr-sink-combine-base-gv", cl::Hidden
, cl::init(true),
236 cl::desc("Allow combining of BaseGV field in Address sinking."));
238 static cl::opt
<bool> AddrSinkCombineBaseOffs(
239 "addr-sink-combine-base-offs", cl::Hidden
, cl::init(true),
240 cl::desc("Allow combining of BaseOffs field in Address sinking."));
242 static cl::opt
<bool> AddrSinkCombineScaledReg(
243 "addr-sink-combine-scaled-reg", cl::Hidden
, cl::init(true),
244 cl::desc("Allow combining of ScaledReg field in Address sinking."));
247 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden
,
249 cl::desc("Enable splitting large offset of GEP."));
251 static cl::opt
<bool> EnableICMP_EQToICMP_ST(
252 "cgp-icmp-eq2icmp-st", cl::Hidden
, cl::init(false),
253 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
256 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden
, cl::init(false),
257 cl::desc("Enable BFI update verification for "
261 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden
, cl::init(true),
262 cl::desc("Enable converting phi types in CodeGenPrepare"));
264 static cl::opt
<unsigned>
265 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden
,
266 cl::desc("Least BB number of huge function."));
268 static cl::opt
<unsigned>
269 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
271 cl::desc("Max number of address users to look at"));
274 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden
, cl::init(false),
275 cl::desc("Disable elimination of dead PHI nodes."));
280 ZeroExtension
, // Zero extension has been seen.
281 SignExtension
, // Sign extension has been seen.
282 BothExtension
// This extension type is used if we saw sext after
283 // ZeroExtension had been set, or if we saw zext after
284 // SignExtension had been set. It makes the type
285 // information of a promoted instruction invalid.
289 NotModifyDT
, // Not Modify any DT.
290 ModifyBBDT
, // Modify the Basic Block Dominator Tree.
291 ModifyInstDT
// Modify the Instruction Dominator in a Basic Block,
292 // This usually means we move/delete/insert instruction
293 // in a Basic Block. So we should re-iterate instructions
294 // in such Basic Block.
297 using SetOfInstrs
= SmallPtrSet
<Instruction
*, 16>;
298 using TypeIsSExt
= PointerIntPair
<Type
*, 2, ExtType
>;
299 using InstrToOrigTy
= DenseMap
<Instruction
*, TypeIsSExt
>;
300 using SExts
= SmallVector
<Instruction
*, 16>;
301 using ValueToSExts
= MapVector
<Value
*, SExts
>;
303 class TypePromotionTransaction
;
305 class CodeGenPrepare
{
306 friend class CodeGenPrepareLegacyPass
;
307 const TargetMachine
*TM
= nullptr;
308 const TargetSubtargetInfo
*SubtargetInfo
= nullptr;
309 const TargetLowering
*TLI
= nullptr;
310 const TargetRegisterInfo
*TRI
= nullptr;
311 const TargetTransformInfo
*TTI
= nullptr;
312 const BasicBlockSectionsProfileReader
*BBSectionsProfileReader
= nullptr;
313 const TargetLibraryInfo
*TLInfo
= nullptr;
314 LoopInfo
*LI
= nullptr;
315 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
316 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
317 ProfileSummaryInfo
*PSI
= nullptr;
319 /// As we scan instructions optimizing them, this is the next instruction
320 /// to optimize. Transforms that can invalidate this should update it.
321 BasicBlock::iterator CurInstIterator
;
323 /// Keeps track of non-local addresses that have been sunk into a block.
324 /// This allows us to avoid inserting duplicate code for blocks with
325 /// multiple load/stores of the same address. The usage of WeakTrackingVH
326 /// enables SunkAddrs to be treated as a cache whose entries can be
327 /// invalidated if a sunken address computation has been erased.
328 ValueMap
<Value
*, WeakTrackingVH
> SunkAddrs
;
330 /// Keeps track of all instructions inserted for the current function.
331 SetOfInstrs InsertedInsts
;
333 /// Keeps track of the type of the related instruction before their
334 /// promotion for the current function.
335 InstrToOrigTy PromotedInsts
;
337 /// Keep track of instructions removed during promotion.
338 SetOfInstrs RemovedInsts
;
340 /// Keep track of sext chains based on their initial value.
341 DenseMap
<Value
*, Instruction
*> SeenChainsForSExt
;
343 /// Keep track of GEPs accessing the same data structures such as structs or
344 /// arrays that are candidates to be split later because of their large
346 MapVector
<AssertingVH
<Value
>,
347 SmallVector
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>, 32>>
350 /// Keep track of new GEP base after splitting the GEPs having large offset.
351 SmallSet
<AssertingVH
<Value
>, 2> NewGEPBases
;
353 /// Map serial numbers to Large offset GEPs.
354 DenseMap
<AssertingVH
<GetElementPtrInst
>, int> LargeOffsetGEPID
;
356 /// Keep track of SExt promoted.
357 ValueToSExts ValToSExtendedUses
;
359 /// True if the function has the OptSize attribute.
362 /// DataLayout for the Function being processed.
363 const DataLayout
*DL
= nullptr;
365 /// Building the dominator tree can be expensive, so we only build it
366 /// lazily and update it when required.
367 std::unique_ptr
<DominatorTree
> DT
;
371 CodeGenPrepare(const TargetMachine
*TM
) : TM(TM
){};
372 /// If encounter huge function, we need to limit the build time.
373 bool IsHugeFunc
= false;
375 /// FreshBBs is like worklist, it collected the updated BBs which need
376 /// to be optimized again.
377 /// Note: Consider building time in this pass, when a BB updated, we need
378 /// to insert such BB into FreshBBs for huge function.
379 SmallSet
<BasicBlock
*, 32> FreshBBs
;
381 void releaseMemory() {
382 // Clear per function information.
383 InsertedInsts
.clear();
384 PromotedInsts
.clear();
390 bool run(Function
&F
, FunctionAnalysisManager
&AM
);
393 template <typename F
>
394 void resetIteratorIfInvalidatedWhileCalling(BasicBlock
*BB
, F f
) {
395 // Substituting can cause recursive simplifications, which can invalidate
396 // our iterator. Use a WeakTrackingVH to hold onto it in case this
398 Value
*CurValue
= &*CurInstIterator
;
399 WeakTrackingVH
IterHandle(CurValue
);
403 // If the iterator instruction was recursively deleted, start over at the
404 // start of the block.
405 if (IterHandle
!= CurValue
) {
406 CurInstIterator
= BB
->begin();
411 // Get the DominatorTree, building if necessary.
412 DominatorTree
&getDT(Function
&F
) {
414 DT
= std::make_unique
<DominatorTree
>(F
);
418 void removeAllAssertingVHReferences(Value
*V
);
419 bool eliminateAssumptions(Function
&F
);
420 bool eliminateFallThrough(Function
&F
, DominatorTree
*DT
= nullptr);
421 bool eliminateMostlyEmptyBlocks(Function
&F
);
422 BasicBlock
*findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
);
423 bool canMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
424 void eliminateMostlyEmptyBlock(BasicBlock
*BB
);
425 bool isMergingEmptyBlockProfitable(BasicBlock
*BB
, BasicBlock
*DestBB
,
427 bool makeBitReverse(Instruction
&I
);
428 bool optimizeBlock(BasicBlock
&BB
, ModifyDT
&ModifiedDT
);
429 bool optimizeInst(Instruction
*I
, ModifyDT
&ModifiedDT
);
430 bool optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
, Type
*AccessTy
,
432 bool optimizeGatherScatterInst(Instruction
*MemoryInst
, Value
*Ptr
);
433 bool optimizeInlineAsmInst(CallInst
*CS
);
434 bool optimizeCallInst(CallInst
*CI
, ModifyDT
&ModifiedDT
);
435 bool optimizeExt(Instruction
*&I
);
436 bool optimizeExtUses(Instruction
*I
);
437 bool optimizeLoadExt(LoadInst
*Load
);
438 bool optimizeShiftInst(BinaryOperator
*BO
);
439 bool optimizeFunnelShift(IntrinsicInst
*Fsh
);
440 bool optimizeSelectInst(SelectInst
*SI
);
441 bool optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
);
442 bool optimizeSwitchType(SwitchInst
*SI
);
443 bool optimizeSwitchPhiConstants(SwitchInst
*SI
);
444 bool optimizeSwitchInst(SwitchInst
*SI
);
445 bool optimizeExtractElementInst(Instruction
*Inst
);
446 bool dupRetToEnableTailCallOpts(BasicBlock
*BB
, ModifyDT
&ModifiedDT
);
447 bool fixupDbgValue(Instruction
*I
);
448 bool fixupDPValue(DPValue
&I
);
449 bool fixupDPValuesOnInst(Instruction
&I
);
450 bool placeDbgValues(Function
&F
);
451 bool placePseudoProbes(Function
&F
);
452 bool canFormExtLd(const SmallVectorImpl
<Instruction
*> &MovedExts
,
453 LoadInst
*&LI
, Instruction
*&Inst
, bool HasPromoted
);
454 bool tryToPromoteExts(TypePromotionTransaction
&TPT
,
455 const SmallVectorImpl
<Instruction
*> &Exts
,
456 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
457 unsigned CreatedInstsCost
= 0);
458 bool mergeSExts(Function
&F
);
459 bool splitLargeGEPOffsets();
460 bool optimizePhiType(PHINode
*Inst
, SmallPtrSetImpl
<PHINode
*> &Visited
,
461 SmallPtrSetImpl
<Instruction
*> &DeletedInstrs
);
462 bool optimizePhiTypes(Function
&F
);
463 bool performAddressTypePromotion(
464 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
465 bool HasPromoted
, TypePromotionTransaction
&TPT
,
466 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
);
467 bool splitBranchCondition(Function
&F
, ModifyDT
&ModifiedDT
);
468 bool simplifyOffsetableRelocate(GCStatepointInst
&I
);
470 bool tryToSinkFreeOperands(Instruction
*I
);
471 bool replaceMathCmpWithIntrinsic(BinaryOperator
*BO
, Value
*Arg0
, Value
*Arg1
,
472 CmpInst
*Cmp
, Intrinsic::ID IID
);
473 bool optimizeCmp(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
474 bool combineToUSubWithOverflow(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
475 bool combineToUAddWithOverflow(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
476 void verifyBFIUpdates(Function
&F
);
477 bool _run(Function
&F
);
480 class CodeGenPrepareLegacyPass
: public FunctionPass
{
482 static char ID
; // Pass identification, replacement for typeid
484 CodeGenPrepareLegacyPass() : FunctionPass(ID
) {
485 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry());
488 bool runOnFunction(Function
&F
) override
;
490 StringRef
getPassName() const override
{ return "CodeGen Prepare"; }
492 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
493 // FIXME: When we can selectively preserve passes, preserve the domtree.
494 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
495 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
496 AU
.addRequired
<TargetPassConfig
>();
497 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
498 AU
.addRequired
<LoopInfoWrapperPass
>();
499 AU
.addUsedIfAvailable
<BasicBlockSectionsProfileReaderWrapperPass
>();
503 } // end anonymous namespace
505 char CodeGenPrepareLegacyPass::ID
= 0;
507 bool CodeGenPrepareLegacyPass::runOnFunction(Function
&F
) {
510 auto TM
= &getAnalysis
<TargetPassConfig
>().getTM
<TargetMachine
>();
511 CodeGenPrepare
CGP(TM
);
512 CGP
.DL
= &F
.getParent()->getDataLayout();
513 CGP
.SubtargetInfo
= TM
->getSubtargetImpl(F
);
514 CGP
.TLI
= CGP
.SubtargetInfo
->getTargetLowering();
515 CGP
.TRI
= CGP
.SubtargetInfo
->getRegisterInfo();
516 CGP
.TLInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
517 CGP
.TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
518 CGP
.LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
519 CGP
.BPI
.reset(new BranchProbabilityInfo(F
, *CGP
.LI
));
520 CGP
.BFI
.reset(new BlockFrequencyInfo(F
, *CGP
.BPI
, *CGP
.LI
));
521 CGP
.PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
523 getAnalysisIfAvailable
<BasicBlockSectionsProfileReaderWrapperPass
>();
524 CGP
.BBSectionsProfileReader
= BBSPRWP
? &BBSPRWP
->getBBSPR() : nullptr;
529 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass
, DEBUG_TYPE
,
530 "Optimize for code generation", false, false)
531 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass
)
532 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
533 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
534 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
535 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
536 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
537 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass
, DEBUG_TYPE
,
538 "Optimize for code generation", false, false)
540 FunctionPass
*llvm::createCodeGenPrepareLegacyPass() {
541 return new CodeGenPrepareLegacyPass();
544 PreservedAnalyses
CodeGenPreparePass::run(Function
&F
,
545 FunctionAnalysisManager
&AM
) {
546 CodeGenPrepare
CGP(TM
);
548 bool Changed
= CGP
.run(F
, AM
);
550 return PreservedAnalyses::all();
552 PreservedAnalyses PA
;
553 PA
.preserve
<TargetLibraryAnalysis
>();
554 PA
.preserve
<TargetIRAnalysis
>();
555 PA
.preserve
<LoopAnalysis
>();
559 bool CodeGenPrepare::run(Function
&F
, FunctionAnalysisManager
&AM
) {
560 DL
= &F
.getParent()->getDataLayout();
561 SubtargetInfo
= TM
->getSubtargetImpl(F
);
562 TLI
= SubtargetInfo
->getTargetLowering();
563 TRI
= SubtargetInfo
->getRegisterInfo();
564 TLInfo
= &AM
.getResult
<TargetLibraryAnalysis
>(F
);
565 TTI
= &AM
.getResult
<TargetIRAnalysis
>(F
);
566 LI
= &AM
.getResult
<LoopAnalysis
>(F
);
567 BPI
.reset(new BranchProbabilityInfo(F
, *LI
));
568 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, *LI
));
569 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
570 PSI
= MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
571 BBSectionsProfileReader
=
572 AM
.getCachedResult
<BasicBlockSectionsProfileReaderAnalysis
>(F
);
576 bool CodeGenPrepare::_run(Function
&F
) {
577 bool EverMadeChange
= false;
579 OptSize
= F
.hasOptSize();
580 // Use the basic-block-sections profile to promote hot functions to .text.hot
582 if (BBSectionsGuidedSectionPrefix
&& BBSectionsProfileReader
&&
583 BBSectionsProfileReader
->isFunctionHot(F
.getName())) {
584 F
.setSectionPrefix("hot");
585 } else if (ProfileGuidedSectionPrefix
) {
586 // The hot attribute overwrites profile count based hotness while profile
587 // counts based hotness overwrite the cold attribute.
588 // This is a conservative behabvior.
589 if (F
.hasFnAttribute(Attribute::Hot
) ||
590 PSI
->isFunctionHotInCallGraph(&F
, *BFI
))
591 F
.setSectionPrefix("hot");
592 // If PSI shows this function is not hot, we will placed the function
593 // into unlikely section if (1) PSI shows this is a cold function, or
594 // (2) the function has a attribute of cold.
595 else if (PSI
->isFunctionColdInCallGraph(&F
, *BFI
) ||
596 F
.hasFnAttribute(Attribute::Cold
))
597 F
.setSectionPrefix("unlikely");
598 else if (ProfileUnknownInSpecialSection
&& PSI
->hasPartialSampleProfile() &&
599 PSI
->isFunctionHotnessUnknown(F
))
600 F
.setSectionPrefix("unknown");
603 /// This optimization identifies DIV instructions that can be
604 /// profitably bypassed and carried out with a shorter, faster divide.
605 if (!OptSize
&& !PSI
->hasHugeWorkingSetSize() && TLI
->isSlowDivBypassed()) {
606 const DenseMap
<unsigned int, unsigned int> &BypassWidths
=
607 TLI
->getBypassSlowDivWidths();
608 BasicBlock
*BB
= &*F
.begin();
609 while (BB
!= nullptr) {
610 // bypassSlowDivision may create new BBs, but we don't want to reapply the
611 // optimization to those blocks.
612 BasicBlock
*Next
= BB
->getNextNode();
613 // F.hasOptSize is already checked in the outer if statement.
614 if (!llvm::shouldOptimizeForSize(BB
, PSI
, BFI
.get()))
615 EverMadeChange
|= bypassSlowDivision(BB
, BypassWidths
);
620 // Get rid of @llvm.assume builtins before attempting to eliminate empty
621 // blocks, since there might be blocks that only contain @llvm.assume calls
622 // (plus arguments that we can get rid of).
623 EverMadeChange
|= eliminateAssumptions(F
);
625 // Eliminate blocks that contain only PHI nodes and an
626 // unconditional branch.
627 EverMadeChange
|= eliminateMostlyEmptyBlocks(F
);
629 ModifyDT ModifiedDT
= ModifyDT::NotModifyDT
;
630 if (!DisableBranchOpts
)
631 EverMadeChange
|= splitBranchCondition(F
, ModifiedDT
);
633 // Split some critical edges where one of the sources is an indirect branch,
634 // to help generate sane code for PHIs involving such edges.
636 SplitIndirectBrCriticalEdges(F
, /*IgnoreBlocksWithoutPHI=*/true);
638 // If we are optimzing huge function, we need to consider the build time.
639 // Because the basic algorithm's complex is near O(N!).
640 IsHugeFunc
= F
.size() > HugeFuncThresholdInCGPP
;
642 // Transformations above may invalidate dominator tree and/or loop info.
645 LI
->analyze(getDT(F
));
647 bool MadeChange
= true;
648 bool FuncIterated
= false;
652 for (BasicBlock
&BB
: llvm::make_early_inc_range(F
)) {
653 if (FuncIterated
&& !FreshBBs
.contains(&BB
))
656 ModifyDT ModifiedDTOnIteration
= ModifyDT::NotModifyDT
;
657 bool Changed
= optimizeBlock(BB
, ModifiedDTOnIteration
);
659 if (ModifiedDTOnIteration
== ModifyDT::ModifyBBDT
)
662 MadeChange
|= Changed
;
664 // If the BB is updated, it may still has chance to be optimized.
665 // This usually happen at sink optimization.
669 // %and = and i32 %a, 4
670 // %cmp = icmp eq i32 %and, 0
672 // If the %cmp sink to other BB, the %and will has chance to sink.
674 FreshBBs
.insert(&BB
);
675 else if (FuncIterated
)
678 // For small/normal functions, we restart BB iteration if the dominator
679 // tree of the Function was changed.
680 if (ModifiedDTOnIteration
!= ModifyDT::NotModifyDT
)
684 // We have iterated all the BB in the (only work for huge) function.
685 FuncIterated
= IsHugeFunc
;
687 if (EnableTypePromotionMerge
&& !ValToSExtendedUses
.empty())
688 MadeChange
|= mergeSExts(F
);
689 if (!LargeOffsetGEPMap
.empty())
690 MadeChange
|= splitLargeGEPOffsets();
691 MadeChange
|= optimizePhiTypes(F
);
694 eliminateFallThrough(F
, DT
.get());
697 if (MadeChange
&& VerifyLoopInfo
)
698 LI
->verify(getDT(F
));
701 // Really free removed instructions during promotion.
702 for (Instruction
*I
: RemovedInsts
)
705 EverMadeChange
|= MadeChange
;
706 SeenChainsForSExt
.clear();
707 ValToSExtendedUses
.clear();
708 RemovedInsts
.clear();
709 LargeOffsetGEPMap
.clear();
710 LargeOffsetGEPID
.clear();
716 if (!DisableBranchOpts
) {
718 // Use a set vector to get deterministic iteration order. The order the
719 // blocks are removed may affect whether or not PHI nodes in successors
721 SmallSetVector
<BasicBlock
*, 8> WorkList
;
722 for (BasicBlock
&BB
: F
) {
723 SmallVector
<BasicBlock
*, 2> Successors(successors(&BB
));
724 MadeChange
|= ConstantFoldTerminator(&BB
, true);
728 for (BasicBlock
*Succ
: Successors
)
729 if (pred_empty(Succ
))
730 WorkList
.insert(Succ
);
733 // Delete the dead blocks and any of their dead successors.
734 MadeChange
|= !WorkList
.empty();
735 while (!WorkList
.empty()) {
736 BasicBlock
*BB
= WorkList
.pop_back_val();
737 SmallVector
<BasicBlock
*, 2> Successors(successors(BB
));
741 for (BasicBlock
*Succ
: Successors
)
742 if (pred_empty(Succ
))
743 WorkList
.insert(Succ
);
746 // Merge pairs of basic blocks with unconditional branches, connected by
748 if (EverMadeChange
|| MadeChange
)
749 MadeChange
|= eliminateFallThrough(F
);
751 EverMadeChange
|= MadeChange
;
754 if (!DisableGCOpts
) {
755 SmallVector
<GCStatepointInst
*, 2> Statepoints
;
756 for (BasicBlock
&BB
: F
)
757 for (Instruction
&I
: BB
)
758 if (auto *SP
= dyn_cast
<GCStatepointInst
>(&I
))
759 Statepoints
.push_back(SP
);
760 for (auto &I
: Statepoints
)
761 EverMadeChange
|= simplifyOffsetableRelocate(*I
);
764 // Do this last to clean up use-before-def scenarios introduced by other
765 // preparatory transforms.
766 EverMadeChange
|= placeDbgValues(F
);
767 EverMadeChange
|= placePseudoProbes(F
);
770 if (VerifyBFIUpdates
)
774 return EverMadeChange
;
777 bool CodeGenPrepare::eliminateAssumptions(Function
&F
) {
778 bool MadeChange
= false;
779 for (BasicBlock
&BB
: F
) {
780 CurInstIterator
= BB
.begin();
781 while (CurInstIterator
!= BB
.end()) {
782 Instruction
*I
= &*(CurInstIterator
++);
783 if (auto *Assume
= dyn_cast
<AssumeInst
>(I
)) {
785 Value
*Operand
= Assume
->getOperand(0);
786 Assume
->eraseFromParent();
788 resetIteratorIfInvalidatedWhileCalling(&BB
, [&]() {
789 RecursivelyDeleteTriviallyDeadInstructions(Operand
, TLInfo
, nullptr);
797 /// An instruction is about to be deleted, so remove all references to it in our
798 /// GEP-tracking data strcutures.
799 void CodeGenPrepare::removeAllAssertingVHReferences(Value
*V
) {
800 LargeOffsetGEPMap
.erase(V
);
801 NewGEPBases
.erase(V
);
803 auto GEP
= dyn_cast
<GetElementPtrInst
>(V
);
807 LargeOffsetGEPID
.erase(GEP
);
809 auto VecI
= LargeOffsetGEPMap
.find(GEP
->getPointerOperand());
810 if (VecI
== LargeOffsetGEPMap
.end())
813 auto &GEPVector
= VecI
->second
;
814 llvm::erase_if(GEPVector
, [=](auto &Elt
) { return Elt
.first
== GEP
; });
816 if (GEPVector
.empty())
817 LargeOffsetGEPMap
.erase(VecI
);
820 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
821 void LLVM_ATTRIBUTE_UNUSED
CodeGenPrepare::verifyBFIUpdates(Function
&F
) {
822 DominatorTree
NewDT(F
);
823 LoopInfo
NewLI(NewDT
);
824 BranchProbabilityInfo
NewBPI(F
, NewLI
, TLInfo
);
825 BlockFrequencyInfo
NewBFI(F
, NewBPI
, NewLI
);
826 NewBFI
.verifyMatch(*BFI
);
829 /// Merge basic blocks which are connected by a single edge, where one of the
830 /// basic blocks has a single successor pointing to the other basic block,
831 /// which has a single predecessor.
832 bool CodeGenPrepare::eliminateFallThrough(Function
&F
, DominatorTree
*DT
) {
833 bool Changed
= false;
834 // Scan all of the blocks in the function, except for the entry block.
835 // Use a temporary array to avoid iterator being invalidated when
837 SmallVector
<WeakTrackingVH
, 16> Blocks
;
838 for (auto &Block
: llvm::drop_begin(F
))
839 Blocks
.push_back(&Block
);
841 SmallSet
<WeakTrackingVH
, 16> Preds
;
842 for (auto &Block
: Blocks
) {
843 auto *BB
= cast_or_null
<BasicBlock
>(Block
);
846 // If the destination block has a single pred, then this is a trivial
847 // edge, just collapse it.
848 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
850 // Don't merge if BB's address is taken.
851 if (!SinglePred
|| SinglePred
== BB
|| BB
->hasAddressTaken())
854 // Make an effort to skip unreachable blocks.
855 if (DT
&& !DT
->isReachableFromEntry(BB
))
858 BranchInst
*Term
= dyn_cast
<BranchInst
>(SinglePred
->getTerminator());
859 if (Term
&& !Term
->isConditional()) {
861 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB
<< "\n\n\n");
863 // Merge BB into SinglePred and delete it.
864 MergeBlockIntoPredecessor(BB
, /* DTU */ nullptr, LI
, /* MSSAU */ nullptr,
865 /* MemDep */ nullptr,
866 /* PredecessorWithTwoSuccessors */ false, DT
);
867 Preds
.insert(SinglePred
);
870 // Update FreshBBs to optimize the merged BB.
871 FreshBBs
.insert(SinglePred
);
877 // (Repeatedly) merging blocks into their predecessors can create redundant
879 for (const auto &Pred
: Preds
)
880 if (auto *BB
= cast_or_null
<BasicBlock
>(Pred
))
881 RemoveRedundantDbgInstrs(BB
);
886 /// Find a destination block from BB if BB is mergeable empty block.
887 BasicBlock
*CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
) {
888 // If this block doesn't end with an uncond branch, ignore it.
889 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
890 if (!BI
|| !BI
->isUnconditional())
893 // If the instruction before the branch (skipping debug info) isn't a phi
894 // node, then other stuff is happening here.
895 BasicBlock::iterator BBI
= BI
->getIterator();
896 if (BBI
!= BB
->begin()) {
898 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
899 if (BBI
== BB
->begin())
903 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
907 // Do not break infinite loops.
908 BasicBlock
*DestBB
= BI
->getSuccessor(0);
912 if (!canMergeBlocks(BB
, DestBB
))
918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
920 /// edges in ways that are non-optimal for isel. Start by eliminating these
921 /// blocks so we can split them the way we want them.
922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function
&F
) {
923 SmallPtrSet
<BasicBlock
*, 16> Preheaders
;
924 SmallVector
<Loop
*, 16> LoopList(LI
->begin(), LI
->end());
925 while (!LoopList
.empty()) {
926 Loop
*L
= LoopList
.pop_back_val();
927 llvm::append_range(LoopList
, *L
);
928 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
929 Preheaders
.insert(Preheader
);
932 bool MadeChange
= false;
933 // Copy blocks into a temporary array to avoid iterator invalidation issues
934 // as we remove them.
935 // Note that this intentionally skips the entry block.
936 SmallVector
<WeakTrackingVH
, 16> Blocks
;
937 for (auto &Block
: llvm::drop_begin(F
)) {
938 // Delete phi nodes that could block deleting other empty blocks.
939 if (!DisableDeletePHIs
)
940 MadeChange
|= DeleteDeadPHIs(&Block
, TLInfo
);
941 Blocks
.push_back(&Block
);
944 for (auto &Block
: Blocks
) {
945 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(Block
);
948 BasicBlock
*DestBB
= findDestBlockOfMergeableEmptyBlock(BB
);
950 !isMergingEmptyBlockProfitable(BB
, DestBB
, Preheaders
.count(BB
)))
953 eliminateMostlyEmptyBlock(BB
);
959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock
*BB
,
962 // Do not delete loop preheaders if doing so would create a critical edge.
963 // Loop preheaders can be good locations to spill registers. If the
964 // preheader is deleted and we create a critical edge, registers may be
965 // spilled in the loop body instead.
966 if (!DisablePreheaderProtect
&& isPreheader
&&
967 !(BB
->getSinglePredecessor() &&
968 BB
->getSinglePredecessor()->getSingleSuccessor()))
971 // Skip merging if the block's successor is also a successor to any callbr
972 // that leads to this block.
973 // FIXME: Is this really needed? Is this a correctness issue?
974 for (BasicBlock
*Pred
: predecessors(BB
)) {
975 if (auto *CBI
= dyn_cast
<CallBrInst
>((Pred
)->getTerminator()))
976 for (unsigned i
= 0, e
= CBI
->getNumSuccessors(); i
!= e
; ++i
)
977 if (DestBB
== CBI
->getSuccessor(i
))
981 // Try to skip merging if the unique predecessor of BB is terminated by a
982 // switch or indirect branch instruction, and BB is used as an incoming block
983 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
984 // add COPY instructions in the predecessor of BB instead of BB (if it is not
985 // merged). Note that the critical edge created by merging such blocks wont be
986 // split in MachineSink because the jump table is not analyzable. By keeping
987 // such empty block (BB), ISel will place COPY instructions in BB, not in the
988 // predecessor of BB.
989 BasicBlock
*Pred
= BB
->getUniquePredecessor();
990 if (!Pred
|| !(isa
<SwitchInst
>(Pred
->getTerminator()) ||
991 isa
<IndirectBrInst
>(Pred
->getTerminator())))
994 if (BB
->getTerminator() != BB
->getFirstNonPHIOrDbg())
997 // We use a simple cost heuristic which determine skipping merging is
998 // profitable if the cost of skipping merging is less than the cost of
999 // merging : Cost(skipping merging) < Cost(merging BB), where the
1000 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
1001 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
1002 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
1003 // Freq(Pred) / Freq(BB) > 2.
1004 // Note that if there are multiple empty blocks sharing the same incoming
1005 // value for the PHIs in the DestBB, we consider them together. In such
1006 // case, Cost(merging BB) will be the sum of their frequencies.
1008 if (!isa
<PHINode
>(DestBB
->begin()))
1011 SmallPtrSet
<BasicBlock
*, 16> SameIncomingValueBBs
;
1013 // Find all other incoming blocks from which incoming values of all PHIs in
1014 // DestBB are the same as the ones from BB.
1015 for (BasicBlock
*DestBBPred
: predecessors(DestBB
)) {
1016 if (DestBBPred
== BB
)
1019 if (llvm::all_of(DestBB
->phis(), [&](const PHINode
&DestPN
) {
1020 return DestPN
.getIncomingValueForBlock(BB
) ==
1021 DestPN
.getIncomingValueForBlock(DestBBPred
);
1023 SameIncomingValueBBs
.insert(DestBBPred
);
1026 // See if all BB's incoming values are same as the value from Pred. In this
1027 // case, no reason to skip merging because COPYs are expected to be place in
1029 if (SameIncomingValueBBs
.count(Pred
))
1032 BlockFrequency PredFreq
= BFI
->getBlockFreq(Pred
);
1033 BlockFrequency BBFreq
= BFI
->getBlockFreq(BB
);
1035 for (auto *SameValueBB
: SameIncomingValueBBs
)
1036 if (SameValueBB
->getUniquePredecessor() == Pred
&&
1037 DestBB
== findDestBlockOfMergeableEmptyBlock(SameValueBB
))
1038 BBFreq
+= BFI
->getBlockFreq(SameValueBB
);
1040 std::optional
<BlockFrequency
> Limit
= BBFreq
.mul(FreqRatioToSkipMerge
);
1041 return !Limit
|| PredFreq
<= *Limit
;
1044 /// Return true if we can merge BB into DestBB if there is a single
1045 /// unconditional branch between them, and BB contains no other non-phi
1047 bool CodeGenPrepare::canMergeBlocks(const BasicBlock
*BB
,
1048 const BasicBlock
*DestBB
) const {
1049 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1050 // the successor. If there are more complex condition (e.g. preheaders),
1051 // don't mess around with them.
1052 for (const PHINode
&PN
: BB
->phis()) {
1053 for (const User
*U
: PN
.users()) {
1054 const Instruction
*UI
= cast
<Instruction
>(U
);
1055 if (UI
->getParent() != DestBB
|| !isa
<PHINode
>(UI
))
1057 // If User is inside DestBB block and it is a PHINode then check
1058 // incoming value. If incoming value is not from BB then this is
1059 // a complex condition (e.g. preheaders) we want to avoid here.
1060 if (UI
->getParent() == DestBB
) {
1061 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(UI
))
1062 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
1063 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
1064 if (Insn
&& Insn
->getParent() == BB
&&
1065 Insn
->getParent() != UPN
->getIncomingBlock(I
))
1072 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1073 // and DestBB may have conflicting incoming values for the block. If so, we
1074 // can't merge the block.
1075 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
1077 return true; // no conflict.
1079 // Collect the preds of BB.
1080 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
1081 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
1082 // It is faster to get preds from a PHI than with pred_iterator.
1083 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
1084 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
1086 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
1089 // Walk the preds of DestBB.
1090 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
1091 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
1092 if (BBPreds
.count(Pred
)) { // Common predecessor?
1093 for (const PHINode
&PN
: DestBB
->phis()) {
1094 const Value
*V1
= PN
.getIncomingValueForBlock(Pred
);
1095 const Value
*V2
= PN
.getIncomingValueForBlock(BB
);
1097 // If V2 is a phi node in BB, look up what the mapped value will be.
1098 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
1099 if (V2PN
->getParent() == BB
)
1100 V2
= V2PN
->getIncomingValueForBlock(Pred
);
1102 // If there is a conflict, bail out.
1112 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1113 static void replaceAllUsesWith(Value
*Old
, Value
*New
,
1114 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
1116 auto *OldI
= dyn_cast
<Instruction
>(Old
);
1118 for (Value::user_iterator UI
= OldI
->user_begin(), E
= OldI
->user_end();
1120 Instruction
*User
= cast
<Instruction
>(*UI
);
1122 FreshBBs
.insert(User
->getParent());
1125 Old
->replaceAllUsesWith(New
);
1128 /// Eliminate a basic block that has only phi's and an unconditional branch in
1130 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock
*BB
) {
1131 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1132 BasicBlock
*DestBB
= BI
->getSuccessor(0);
1134 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1137 // If the destination block has a single pred, then this is a trivial edge,
1138 // just collapse it.
1139 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
1140 if (SinglePred
!= DestBB
) {
1141 assert(SinglePred
== BB
&&
1142 "Single predecessor not the same as predecessor");
1143 // Merge DestBB into SinglePred/BB and delete it.
1144 MergeBlockIntoPredecessor(DestBB
);
1145 // Note: BB(=SinglePred) will not be deleted on this path.
1146 // DestBB(=its single successor) is the one that was deleted.
1147 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred
<< "\n\n\n");
1150 // Update FreshBBs to optimize the merged BB.
1151 FreshBBs
.insert(SinglePred
);
1152 FreshBBs
.erase(DestBB
);
1158 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
1159 // to handle the new incoming edges it is about to have.
1160 for (PHINode
&PN
: DestBB
->phis()) {
1161 // Remove the incoming value for BB, and remember it.
1162 Value
*InVal
= PN
.removeIncomingValue(BB
, false);
1164 // Two options: either the InVal is a phi node defined in BB or it is some
1165 // value that dominates BB.
1166 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
1167 if (InValPhi
&& InValPhi
->getParent() == BB
) {
1168 // Add all of the input values of the input PHI as inputs of this phi.
1169 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
1170 PN
.addIncoming(InValPhi
->getIncomingValue(i
),
1171 InValPhi
->getIncomingBlock(i
));
1173 // Otherwise, add one instance of the dominating value for each edge that
1174 // we will be adding.
1175 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
1176 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
1177 PN
.addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
1179 for (BasicBlock
*Pred
: predecessors(BB
))
1180 PN
.addIncoming(InVal
, Pred
);
1185 // The PHIs are now updated, change everything that refers to BB to use
1186 // DestBB and remove BB.
1187 BB
->replaceAllUsesWith(DestBB
);
1188 BB
->eraseFromParent();
1191 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
1194 // Computes a map of base pointer relocation instructions to corresponding
1195 // derived pointer relocation instructions given a vector of all relocate calls
1196 static void computeBaseDerivedRelocateMap(
1197 const SmallVectorImpl
<GCRelocateInst
*> &AllRelocateCalls
,
1198 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>>
1200 // Collect information in two maps: one primarily for locating the base object
1201 // while filling the second map; the second map is the final structure holding
1202 // a mapping between Base and corresponding Derived relocate calls
1203 DenseMap
<std::pair
<unsigned, unsigned>, GCRelocateInst
*> RelocateIdxMap
;
1204 for (auto *ThisRelocate
: AllRelocateCalls
) {
1205 auto K
= std::make_pair(ThisRelocate
->getBasePtrIndex(),
1206 ThisRelocate
->getDerivedPtrIndex());
1207 RelocateIdxMap
.insert(std::make_pair(K
, ThisRelocate
));
1209 for (auto &Item
: RelocateIdxMap
) {
1210 std::pair
<unsigned, unsigned> Key
= Item
.first
;
1211 if (Key
.first
== Key
.second
)
1212 // Base relocation: nothing to insert
1215 GCRelocateInst
*I
= Item
.second
;
1216 auto BaseKey
= std::make_pair(Key
.first
, Key
.first
);
1218 // We're iterating over RelocateIdxMap so we cannot modify it.
1219 auto MaybeBase
= RelocateIdxMap
.find(BaseKey
);
1220 if (MaybeBase
== RelocateIdxMap
.end())
1221 // TODO: We might want to insert a new base object relocate and gep off
1222 // that, if there are enough derived object relocates.
1225 RelocateInstMap
[MaybeBase
->second
].push_back(I
);
1229 // Accepts a GEP and extracts the operands into a vector provided they're all
1230 // small integer constants
1231 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst
*GEP
,
1232 SmallVectorImpl
<Value
*> &OffsetV
) {
1233 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++) {
1234 // Only accept small constant integer operands
1235 auto *Op
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
1236 if (!Op
|| Op
->getZExtValue() > 20)
1240 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++)
1241 OffsetV
.push_back(GEP
->getOperand(i
));
1245 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1246 // replace, computes a replacement, and affects it.
1248 simplifyRelocatesOffABase(GCRelocateInst
*RelocatedBase
,
1249 const SmallVectorImpl
<GCRelocateInst
*> &Targets
) {
1250 bool MadeChange
= false;
1251 // We must ensure the relocation of derived pointer is defined after
1252 // relocation of base pointer. If we find a relocation corresponding to base
1253 // defined earlier than relocation of base then we move relocation of base
1254 // right before found relocation. We consider only relocation in the same
1255 // basic block as relocation of base. Relocations from other basic block will
1256 // be skipped by optimization and we do not care about them.
1257 for (auto R
= RelocatedBase
->getParent()->getFirstInsertionPt();
1258 &*R
!= RelocatedBase
; ++R
)
1259 if (auto *RI
= dyn_cast
<GCRelocateInst
>(R
))
1260 if (RI
->getStatepoint() == RelocatedBase
->getStatepoint())
1261 if (RI
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex()) {
1262 RelocatedBase
->moveBefore(RI
);
1267 for (GCRelocateInst
*ToReplace
: Targets
) {
1268 assert(ToReplace
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex() &&
1269 "Not relocating a derived object of the original base object");
1270 if (ToReplace
->getBasePtrIndex() == ToReplace
->getDerivedPtrIndex()) {
1271 // A duplicate relocate call. TODO: coalesce duplicates.
1275 if (RelocatedBase
->getParent() != ToReplace
->getParent()) {
1276 // Base and derived relocates are in different basic blocks.
1277 // In this case transform is only valid when base dominates derived
1278 // relocate. However it would be too expensive to check dominance
1279 // for each such relocate, so we skip the whole transformation.
1283 Value
*Base
= ToReplace
->getBasePtr();
1284 auto *Derived
= dyn_cast
<GetElementPtrInst
>(ToReplace
->getDerivedPtr());
1285 if (!Derived
|| Derived
->getPointerOperand() != Base
)
1288 SmallVector
<Value
*, 2> OffsetV
;
1289 if (!getGEPSmallConstantIntOffsetV(Derived
, OffsetV
))
1292 // Create a Builder and replace the target callsite with a gep
1293 assert(RelocatedBase
->getNextNode() &&
1294 "Should always have one since it's not a terminator");
1296 // Insert after RelocatedBase
1297 IRBuilder
<> Builder(RelocatedBase
->getNextNode());
1298 Builder
.SetCurrentDebugLocation(ToReplace
->getDebugLoc());
1300 // If gc_relocate does not match the actual type, cast it to the right type.
1301 // In theory, there must be a bitcast after gc_relocate if the type does not
1302 // match, and we should reuse it to get the derived pointer. But it could be
1306 // %g1 = call coldcc i8 addrspace(1)*
1307 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1311 // %g2 = call coldcc i8 addrspace(1)*
1312 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1315 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1316 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1318 // In this case, we can not find the bitcast any more. So we insert a new
1319 // bitcast no matter there is already one or not. In this way, we can handle
1320 // all cases, and the extra bitcast should be optimized away in later
1322 Value
*ActualRelocatedBase
= RelocatedBase
;
1323 if (RelocatedBase
->getType() != Base
->getType()) {
1324 ActualRelocatedBase
=
1325 Builder
.CreateBitCast(RelocatedBase
, Base
->getType());
1327 Value
*Replacement
=
1328 Builder
.CreateGEP(Derived
->getSourceElementType(), ActualRelocatedBase
,
1330 Replacement
->takeName(ToReplace
);
1331 // If the newly generated derived pointer's type does not match the original
1332 // derived pointer's type, cast the new derived pointer to match it. Same
1333 // reasoning as above.
1334 Value
*ActualReplacement
= Replacement
;
1335 if (Replacement
->getType() != ToReplace
->getType()) {
1337 Builder
.CreateBitCast(Replacement
, ToReplace
->getType());
1339 ToReplace
->replaceAllUsesWith(ActualReplacement
);
1340 ToReplace
->eraseFromParent();
1350 // %ptr = gep %base + 15
1351 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1352 // %base' = relocate(%tok, i32 4, i32 4)
1353 // %ptr' = relocate(%tok, i32 4, i32 5)
1354 // %val = load %ptr'
1359 // %ptr = gep %base + 15
1360 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1361 // %base' = gc.relocate(%tok, i32 4, i32 4)
1362 // %ptr' = gep %base' + 15
1363 // %val = load %ptr'
1364 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst
&I
) {
1365 bool MadeChange
= false;
1366 SmallVector
<GCRelocateInst
*, 2> AllRelocateCalls
;
1367 for (auto *U
: I
.users())
1368 if (GCRelocateInst
*Relocate
= dyn_cast
<GCRelocateInst
>(U
))
1369 // Collect all the relocate calls associated with a statepoint
1370 AllRelocateCalls
.push_back(Relocate
);
1372 // We need at least one base pointer relocation + one derived pointer
1373 // relocation to mangle
1374 if (AllRelocateCalls
.size() < 2)
1377 // RelocateInstMap is a mapping from the base relocate instruction to the
1378 // corresponding derived relocate instructions
1379 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>> RelocateInstMap
;
1380 computeBaseDerivedRelocateMap(AllRelocateCalls
, RelocateInstMap
);
1381 if (RelocateInstMap
.empty())
1384 for (auto &Item
: RelocateInstMap
)
1385 // Item.first is the RelocatedBase to offset against
1386 // Item.second is the vector of Targets to replace
1387 MadeChange
= simplifyRelocatesOffABase(Item
.first
, Item
.second
);
1391 /// Sink the specified cast instruction into its user blocks.
1392 static bool SinkCast(CastInst
*CI
) {
1393 BasicBlock
*DefBB
= CI
->getParent();
1395 /// InsertedCasts - Only insert a cast in each block once.
1396 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
1398 bool MadeChange
= false;
1399 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1401 Use
&TheUse
= UI
.getUse();
1402 Instruction
*User
= cast
<Instruction
>(*UI
);
1404 // Figure out which BB this cast is used in. For PHI's this is the
1405 // appropriate predecessor block.
1406 BasicBlock
*UserBB
= User
->getParent();
1407 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
1408 UserBB
= PN
->getIncomingBlock(TheUse
);
1411 // Preincrement use iterator so we don't invalidate it.
1414 // The first insertion point of a block containing an EH pad is after the
1415 // pad. If the pad is the user, we cannot sink the cast past the pad.
1416 if (User
->isEHPad())
1419 // If the block selected to receive the cast is an EH pad that does not
1420 // allow non-PHI instructions before the terminator, we can't sink the
1422 if (UserBB
->getTerminator()->isEHPad())
1425 // If this user is in the same block as the cast, don't change the cast.
1426 if (UserBB
== DefBB
)
1429 // If we have already inserted a cast into this block, use it.
1430 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
1432 if (!InsertedCast
) {
1433 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1434 assert(InsertPt
!= UserBB
->end());
1435 InsertedCast
= CastInst::Create(CI
->getOpcode(), CI
->getOperand(0),
1437 InsertedCast
->insertBefore(*UserBB
, InsertPt
);
1438 InsertedCast
->setDebugLoc(CI
->getDebugLoc());
1441 // Replace a use of the cast with a use of the new cast.
1442 TheUse
= InsertedCast
;
1447 // If we removed all uses, nuke the cast.
1448 if (CI
->use_empty()) {
1449 salvageDebugInfo(*CI
);
1450 CI
->eraseFromParent();
1457 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1458 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1459 /// reduce the number of virtual registers that must be created and coalesced.
1461 /// Return true if any changes are made.
1462 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
,
1463 const DataLayout
&DL
) {
1464 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1465 // than sinking only nop casts, but is helpful on some platforms.
1466 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(CI
)) {
1467 if (!TLI
.isFreeAddrSpaceCast(ASC
->getSrcAddressSpace(),
1468 ASC
->getDestAddressSpace()))
1472 // If this is a noop copy,
1473 EVT SrcVT
= TLI
.getValueType(DL
, CI
->getOperand(0)->getType());
1474 EVT DstVT
= TLI
.getValueType(DL
, CI
->getType());
1476 // This is an fp<->int conversion?
1477 if (SrcVT
.isInteger() != DstVT
.isInteger())
1480 // If this is an extension, it will be a zero or sign extension, which
1482 if (SrcVT
.bitsLT(DstVT
))
1485 // If these values will be promoted, find out what they will be promoted
1486 // to. This helps us consider truncates on PPC as noop copies when they
1488 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) ==
1489 TargetLowering::TypePromoteInteger
)
1490 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
1491 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) ==
1492 TargetLowering::TypePromoteInteger
)
1493 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
1495 // If, after promotion, these are the same types, this is a noop copy.
1499 return SinkCast(CI
);
1502 // Match a simple increment by constant operation. Note that if a sub is
1503 // matched, the step is negated (as if the step had been canonicalized to
1504 // an add, even though we leave the instruction alone.)
1505 bool matchIncrement(const Instruction
*IVInc
, Instruction
*&LHS
,
1507 if (match(IVInc
, m_Add(m_Instruction(LHS
), m_Constant(Step
))) ||
1508 match(IVInc
, m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::uadd_with_overflow
>(
1509 m_Instruction(LHS
), m_Constant(Step
)))))
1511 if (match(IVInc
, m_Sub(m_Instruction(LHS
), m_Constant(Step
))) ||
1512 match(IVInc
, m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::usub_with_overflow
>(
1513 m_Instruction(LHS
), m_Constant(Step
))))) {
1514 Step
= ConstantExpr::getNeg(Step
);
1520 /// If given \p PN is an inductive variable with value IVInc coming from the
1521 /// backedge, and on each iteration it gets increased by Step, return pair
1522 /// <IVInc, Step>. Otherwise, return std::nullopt.
1523 static std::optional
<std::pair
<Instruction
*, Constant
*>>
1524 getIVIncrement(const PHINode
*PN
, const LoopInfo
*LI
) {
1525 const Loop
*L
= LI
->getLoopFor(PN
->getParent());
1526 if (!L
|| L
->getHeader() != PN
->getParent() || !L
->getLoopLatch())
1527 return std::nullopt
;
1529 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(L
->getLoopLatch()));
1530 if (!IVInc
|| LI
->getLoopFor(IVInc
->getParent()) != L
)
1531 return std::nullopt
;
1532 Instruction
*LHS
= nullptr;
1533 Constant
*Step
= nullptr;
1534 if (matchIncrement(IVInc
, LHS
, Step
) && LHS
== PN
)
1535 return std::make_pair(IVInc
, Step
);
1536 return std::nullopt
;
1539 static bool isIVIncrement(const Value
*V
, const LoopInfo
*LI
) {
1540 auto *I
= dyn_cast
<Instruction
>(V
);
1543 Instruction
*LHS
= nullptr;
1544 Constant
*Step
= nullptr;
1545 if (!matchIncrement(I
, LHS
, Step
))
1547 if (auto *PN
= dyn_cast
<PHINode
>(LHS
))
1548 if (auto IVInc
= getIVIncrement(PN
, LI
))
1549 return IVInc
->first
== I
;
1553 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator
*BO
,
1554 Value
*Arg0
, Value
*Arg1
,
1556 Intrinsic::ID IID
) {
1557 auto IsReplacableIVIncrement
= [this, &Cmp
](BinaryOperator
*BO
) {
1558 if (!isIVIncrement(BO
, LI
))
1560 const Loop
*L
= LI
->getLoopFor(BO
->getParent());
1561 assert(L
&& "L should not be null after isIVIncrement()");
1562 // Do not risk on moving increment into a child loop.
1563 if (LI
->getLoopFor(Cmp
->getParent()) != L
)
1566 // Finally, we need to ensure that the insert point will dominate all
1567 // existing uses of the increment.
1569 auto &DT
= getDT(*BO
->getParent()->getParent());
1570 if (DT
.dominates(Cmp
->getParent(), BO
->getParent()))
1571 // If we're moving up the dom tree, all uses are trivially dominated.
1572 // (This is the common case for code produced by LSR.)
1575 // Otherwise, special case the single use in the phi recurrence.
1576 return BO
->hasOneUse() && DT
.dominates(Cmp
->getParent(), L
->getLoopLatch());
1578 if (BO
->getParent() != Cmp
->getParent() && !IsReplacableIVIncrement(BO
)) {
1579 // We used to use a dominator tree here to allow multi-block optimization.
1580 // But that was problematic because:
1581 // 1. It could cause a perf regression by hoisting the math op into the
1583 // 2. It could cause a perf regression by creating a value that was live
1584 // across multiple blocks and increasing register pressure.
1585 // 3. Use of a dominator tree could cause large compile-time regression.
1586 // This is because we recompute the DT on every change in the main CGP
1587 // run-loop. The recomputing is probably unnecessary in many cases, so if
1588 // that was fixed, using a DT here would be ok.
1590 // There is one important particular case we still want to handle: if BO is
1591 // the IV increment. Important properties that make it profitable:
1592 // - We can speculate IV increment anywhere in the loop (as long as the
1593 // indvar Phi is its only user);
1594 // - Upon computing Cmp, we effectively compute something equivalent to the
1595 // IV increment (despite it loops differently in the IR). So moving it up
1596 // to the cmp point does not really increase register pressure.
1600 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1601 if (BO
->getOpcode() == Instruction::Add
&&
1602 IID
== Intrinsic::usub_with_overflow
) {
1603 assert(isa
<Constant
>(Arg1
) && "Unexpected input for usubo");
1604 Arg1
= ConstantExpr::getNeg(cast
<Constant
>(Arg1
));
1607 // Insert at the first instruction of the pair.
1608 Instruction
*InsertPt
= nullptr;
1609 for (Instruction
&Iter
: *Cmp
->getParent()) {
1610 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1611 // the overflow intrinsic are defined.
1612 if ((BO
->getOpcode() != Instruction::Xor
&& &Iter
== BO
) || &Iter
== Cmp
) {
1617 assert(InsertPt
!= nullptr && "Parent block did not contain cmp or binop");
1619 IRBuilder
<> Builder(InsertPt
);
1620 Value
*MathOV
= Builder
.CreateBinaryIntrinsic(IID
, Arg0
, Arg1
);
1621 if (BO
->getOpcode() != Instruction::Xor
) {
1622 Value
*Math
= Builder
.CreateExtractValue(MathOV
, 0, "math");
1623 replaceAllUsesWith(BO
, Math
, FreshBBs
, IsHugeFunc
);
1625 assert(BO
->hasOneUse() &&
1626 "Patterns with XOr should use the BO only in the compare");
1627 Value
*OV
= Builder
.CreateExtractValue(MathOV
, 1, "ov");
1628 replaceAllUsesWith(Cmp
, OV
, FreshBBs
, IsHugeFunc
);
1629 Cmp
->eraseFromParent();
1630 BO
->eraseFromParent();
1634 /// Match special-case patterns that check for unsigned add overflow.
1635 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst
*Cmp
,
1636 BinaryOperator
*&Add
) {
1637 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1638 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1639 Value
*A
= Cmp
->getOperand(0), *B
= Cmp
->getOperand(1);
1641 // We are not expecting non-canonical/degenerate code. Just bail out.
1642 if (isa
<Constant
>(A
))
1645 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1646 if (Pred
== ICmpInst::ICMP_EQ
&& match(B
, m_AllOnes()))
1647 B
= ConstantInt::get(B
->getType(), 1);
1648 else if (Pred
== ICmpInst::ICMP_NE
&& match(B
, m_ZeroInt()))
1649 B
= ConstantInt::get(B
->getType(), -1);
1653 // Check the users of the variable operand of the compare looking for an add
1654 // with the adjusted constant.
1655 for (User
*U
: A
->users()) {
1656 if (match(U
, m_Add(m_Specific(A
), m_Specific(B
)))) {
1657 Add
= cast
<BinaryOperator
>(U
);
1664 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1665 /// intrinsic. Return true if any changes were made.
1666 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst
*Cmp
,
1667 ModifyDT
&ModifiedDT
) {
1668 bool EdgeCase
= false;
1670 BinaryOperator
*Add
;
1671 if (!match(Cmp
, m_UAddWithOverflow(m_Value(A
), m_Value(B
), m_BinOp(Add
)))) {
1672 if (!matchUAddWithOverflowConstantEdgeCases(Cmp
, Add
))
1674 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1675 A
= Add
->getOperand(0);
1676 B
= Add
->getOperand(1);
1680 if (!TLI
->shouldFormOverflowOp(ISD::UADDO
,
1681 TLI
->getValueType(*DL
, Add
->getType()),
1682 Add
->hasNUsesOrMore(EdgeCase
? 1 : 2)))
1685 // We don't want to move around uses of condition values this late, so we
1686 // check if it is legal to create the call to the intrinsic in the basic
1687 // block containing the icmp.
1688 if (Add
->getParent() != Cmp
->getParent() && !Add
->hasOneUse())
1691 if (!replaceMathCmpWithIntrinsic(Add
, A
, B
, Cmp
,
1692 Intrinsic::uadd_with_overflow
))
1695 // Reset callers - do not crash by iterating over a dead instruction.
1696 ModifiedDT
= ModifyDT::ModifyInstDT
;
1700 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst
*Cmp
,
1701 ModifyDT
&ModifiedDT
) {
1702 // We are not expecting non-canonical/degenerate code. Just bail out.
1703 Value
*A
= Cmp
->getOperand(0), *B
= Cmp
->getOperand(1);
1704 if (isa
<Constant
>(A
) && isa
<Constant
>(B
))
1707 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1708 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1709 if (Pred
== ICmpInst::ICMP_UGT
) {
1711 Pred
= ICmpInst::ICMP_ULT
;
1713 // Convert special-case: (A == 0) is the same as (A u< 1).
1714 if (Pred
== ICmpInst::ICMP_EQ
&& match(B
, m_ZeroInt())) {
1715 B
= ConstantInt::get(B
->getType(), 1);
1716 Pred
= ICmpInst::ICMP_ULT
;
1718 // Convert special-case: (A != 0) is the same as (0 u< A).
1719 if (Pred
== ICmpInst::ICMP_NE
&& match(B
, m_ZeroInt())) {
1721 Pred
= ICmpInst::ICMP_ULT
;
1723 if (Pred
!= ICmpInst::ICMP_ULT
)
1726 // Walk the users of a variable operand of a compare looking for a subtract or
1727 // add with that same operand. Also match the 2nd operand of the compare to
1728 // the add/sub, but that may be a negated constant operand of an add.
1729 Value
*CmpVariableOperand
= isa
<Constant
>(A
) ? B
: A
;
1730 BinaryOperator
*Sub
= nullptr;
1731 for (User
*U
: CmpVariableOperand
->users()) {
1732 // A - B, A u< B --> usubo(A, B)
1733 if (match(U
, m_Sub(m_Specific(A
), m_Specific(B
)))) {
1734 Sub
= cast
<BinaryOperator
>(U
);
1738 // A + (-C), A u< C (canonicalized form of (sub A, C))
1739 const APInt
*CmpC
, *AddC
;
1740 if (match(U
, m_Add(m_Specific(A
), m_APInt(AddC
))) &&
1741 match(B
, m_APInt(CmpC
)) && *AddC
== -(*CmpC
)) {
1742 Sub
= cast
<BinaryOperator
>(U
);
1749 if (!TLI
->shouldFormOverflowOp(ISD::USUBO
,
1750 TLI
->getValueType(*DL
, Sub
->getType()),
1751 Sub
->hasNUsesOrMore(1)))
1754 if (!replaceMathCmpWithIntrinsic(Sub
, Sub
->getOperand(0), Sub
->getOperand(1),
1755 Cmp
, Intrinsic::usub_with_overflow
))
1758 // Reset callers - do not crash by iterating over a dead instruction.
1759 ModifiedDT
= ModifyDT::ModifyInstDT
;
1763 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1764 /// registers that must be created and coalesced. This is a clear win except on
1765 /// targets with multiple condition code registers (PowerPC), where it might
1766 /// lose; some adjustment may be wanted there.
1768 /// Return true if any changes are made.
1769 static bool sinkCmpExpression(CmpInst
*Cmp
, const TargetLowering
&TLI
) {
1770 if (TLI
.hasMultipleConditionRegisters())
1773 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1774 if (TLI
.useSoftFloat() && isa
<FCmpInst
>(Cmp
))
1777 // Only insert a cmp in each block once.
1778 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
1780 bool MadeChange
= false;
1781 for (Value::user_iterator UI
= Cmp
->user_begin(), E
= Cmp
->user_end();
1783 Use
&TheUse
= UI
.getUse();
1784 Instruction
*User
= cast
<Instruction
>(*UI
);
1786 // Preincrement use iterator so we don't invalidate it.
1789 // Don't bother for PHI nodes.
1790 if (isa
<PHINode
>(User
))
1793 // Figure out which BB this cmp is used in.
1794 BasicBlock
*UserBB
= User
->getParent();
1795 BasicBlock
*DefBB
= Cmp
->getParent();
1797 // If this user is in the same block as the cmp, don't change the cmp.
1798 if (UserBB
== DefBB
)
1801 // If we have already inserted a cmp into this block, use it.
1802 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
1805 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1806 assert(InsertPt
!= UserBB
->end());
1807 InsertedCmp
= CmpInst::Create(Cmp
->getOpcode(), Cmp
->getPredicate(),
1808 Cmp
->getOperand(0), Cmp
->getOperand(1), "");
1809 InsertedCmp
->insertBefore(*UserBB
, InsertPt
);
1810 // Propagate the debug info.
1811 InsertedCmp
->setDebugLoc(Cmp
->getDebugLoc());
1814 // Replace a use of the cmp with a use of the new cmp.
1815 TheUse
= InsertedCmp
;
1820 // If we removed all uses, nuke the cmp.
1821 if (Cmp
->use_empty()) {
1822 Cmp
->eraseFromParent();
1829 /// For pattern like:
1831 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1835 /// br DomCond, TrueBB, CmpBB
1836 /// CmpBB: (with DomBB being the single predecessor)
1838 /// Cmp = icmp eq CmpOp0, CmpOp1
1841 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1842 /// different from lowering of icmp eq (PowerPC). This function try to convert
1843 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1844 /// After that, DomCond and Cmp can use the same comparison so reduce one
1847 /// Return true if any changes are made.
1848 static bool foldICmpWithDominatingICmp(CmpInst
*Cmp
,
1849 const TargetLowering
&TLI
) {
1850 if (!EnableICMP_EQToICMP_ST
&& TLI
.isEqualityCmpFoldedWithSignedCmp())
1853 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1854 if (Pred
!= ICmpInst::ICMP_EQ
)
1857 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1858 // icmp slt/sgt would introduce more redundant LLVM IR.
1859 for (User
*U
: Cmp
->users()) {
1860 if (isa
<BranchInst
>(U
))
1862 if (isa
<SelectInst
>(U
) && cast
<SelectInst
>(U
)->getCondition() == Cmp
)
1867 // This is a cheap/incomplete check for dominance - just match a single
1868 // predecessor with a conditional branch.
1869 BasicBlock
*CmpBB
= Cmp
->getParent();
1870 BasicBlock
*DomBB
= CmpBB
->getSinglePredecessor();
1874 // We want to ensure that the only way control gets to the comparison of
1875 // interest is that a less/greater than comparison on the same operands is
1878 BasicBlock
*TrueBB
, *FalseBB
;
1879 if (!match(DomBB
->getTerminator(), m_Br(m_Value(DomCond
), TrueBB
, FalseBB
)))
1881 if (CmpBB
!= FalseBB
)
1884 Value
*CmpOp0
= Cmp
->getOperand(0), *CmpOp1
= Cmp
->getOperand(1);
1885 ICmpInst::Predicate DomPred
;
1886 if (!match(DomCond
, m_ICmp(DomPred
, m_Specific(CmpOp0
), m_Specific(CmpOp1
))))
1888 if (DomPred
!= ICmpInst::ICMP_SGT
&& DomPred
!= ICmpInst::ICMP_SLT
)
1891 // Convert the equality comparison to the opposite of the dominating
1892 // comparison and swap the direction for all branch/select users.
1893 // We have conceptually converted:
1894 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1896 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1897 // And similarly for branches.
1898 for (User
*U
: Cmp
->users()) {
1899 if (auto *BI
= dyn_cast
<BranchInst
>(U
)) {
1900 assert(BI
->isConditional() && "Must be conditional");
1901 BI
->swapSuccessors();
1904 if (auto *SI
= dyn_cast
<SelectInst
>(U
)) {
1907 SI
->swapProfMetadata();
1910 llvm_unreachable("Must be a branch or a select");
1912 Cmp
->setPredicate(CmpInst::getSwappedPredicate(DomPred
));
1916 /// Many architectures use the same instruction for both subtract and cmp. Try
1917 /// to swap cmp operands to match subtract operations to allow for CSE.
1918 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst
*Cmp
) {
1919 Value
*Op0
= Cmp
->getOperand(0);
1920 Value
*Op1
= Cmp
->getOperand(1);
1921 if (!Op0
->getType()->isIntegerTy() || isa
<Constant
>(Op0
) ||
1922 isa
<Constant
>(Op1
) || Op0
== Op1
)
1925 // If a subtract already has the same operands as a compare, swapping would be
1926 // bad. If a subtract has the same operands as a compare but in reverse order,
1927 // then swapping is good.
1929 unsigned NumInspected
= 0;
1930 for (const User
*U
: Op0
->users()) {
1931 // Avoid walking many users.
1932 if (++NumInspected
> 128)
1934 if (match(U
, m_Sub(m_Specific(Op1
), m_Specific(Op0
))))
1936 else if (match(U
, m_Sub(m_Specific(Op0
), m_Specific(Op1
))))
1940 if (GoodToSwap
> 0) {
1941 Cmp
->swapOperands();
1947 bool CodeGenPrepare::optimizeCmp(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
) {
1948 if (sinkCmpExpression(Cmp
, *TLI
))
1951 if (combineToUAddWithOverflow(Cmp
, ModifiedDT
))
1954 if (combineToUSubWithOverflow(Cmp
, ModifiedDT
))
1957 if (foldICmpWithDominatingICmp(Cmp
, *TLI
))
1960 if (swapICmpOperandsToExposeCSEOpportunities(Cmp
))
1966 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1967 /// used in a compare to allow isel to generate better code for targets where
1968 /// this operation can be combined.
1970 /// Return true if any changes are made.
1971 static bool sinkAndCmp0Expression(Instruction
*AndI
, const TargetLowering
&TLI
,
1972 SetOfInstrs
&InsertedInsts
) {
1973 // Double-check that we're not trying to optimize an instruction that was
1974 // already optimized by some other part of this pass.
1975 assert(!InsertedInsts
.count(AndI
) &&
1976 "Attempting to optimize already optimized and instruction");
1977 (void)InsertedInsts
;
1979 // Nothing to do for single use in same basic block.
1980 if (AndI
->hasOneUse() &&
1981 AndI
->getParent() == cast
<Instruction
>(*AndI
->user_begin())->getParent())
1984 // Try to avoid cases where sinking/duplicating is likely to increase register
1986 if (!isa
<ConstantInt
>(AndI
->getOperand(0)) &&
1987 !isa
<ConstantInt
>(AndI
->getOperand(1)) &&
1988 AndI
->getOperand(0)->hasOneUse() && AndI
->getOperand(1)->hasOneUse())
1991 for (auto *U
: AndI
->users()) {
1992 Instruction
*User
= cast
<Instruction
>(U
);
1994 // Only sink 'and' feeding icmp with 0.
1995 if (!isa
<ICmpInst
>(User
))
1998 auto *CmpC
= dyn_cast
<ConstantInt
>(User
->getOperand(1));
1999 if (!CmpC
|| !CmpC
->isZero())
2003 if (!TLI
.isMaskAndCmp0FoldingBeneficial(*AndI
))
2006 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2007 LLVM_DEBUG(AndI
->getParent()->dump());
2009 // Push the 'and' into the same block as the icmp 0. There should only be
2010 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2011 // others, so we don't need to keep track of which BBs we insert into.
2012 for (Value::user_iterator UI
= AndI
->user_begin(), E
= AndI
->user_end();
2014 Use
&TheUse
= UI
.getUse();
2015 Instruction
*User
= cast
<Instruction
>(*UI
);
2017 // Preincrement use iterator so we don't invalidate it.
2020 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User
<< "\n");
2022 // Keep the 'and' in the same place if the use is already in the same block.
2023 Instruction
*InsertPt
=
2024 User
->getParent() == AndI
->getParent() ? AndI
: User
;
2025 Instruction
*InsertedAnd
=
2026 BinaryOperator::Create(Instruction::And
, AndI
->getOperand(0),
2027 AndI
->getOperand(1), "", InsertPt
);
2028 // Propagate the debug info.
2029 InsertedAnd
->setDebugLoc(AndI
->getDebugLoc());
2031 // Replace a use of the 'and' with a use of the new 'and'.
2032 TheUse
= InsertedAnd
;
2034 LLVM_DEBUG(User
->getParent()->dump());
2037 // We removed all uses, nuke the and.
2038 AndI
->eraseFromParent();
2042 /// Check if the candidates could be combined with a shift instruction, which
2044 /// 1. Truncate instruction
2045 /// 2. And instruction and the imm is a mask of the low bits:
2046 /// imm & (imm+1) == 0
2047 static bool isExtractBitsCandidateUse(Instruction
*User
) {
2048 if (!isa
<TruncInst
>(User
)) {
2049 if (User
->getOpcode() != Instruction::And
||
2050 !isa
<ConstantInt
>(User
->getOperand(1)))
2053 const APInt
&Cimm
= cast
<ConstantInt
>(User
->getOperand(1))->getValue();
2055 if ((Cimm
& (Cimm
+ 1)).getBoolValue())
2061 /// Sink both shift and truncate instruction to the use of truncate's BB.
2063 SinkShiftAndTruncate(BinaryOperator
*ShiftI
, Instruction
*User
, ConstantInt
*CI
,
2064 DenseMap
<BasicBlock
*, BinaryOperator
*> &InsertedShifts
,
2065 const TargetLowering
&TLI
, const DataLayout
&DL
) {
2066 BasicBlock
*UserBB
= User
->getParent();
2067 DenseMap
<BasicBlock
*, CastInst
*> InsertedTruncs
;
2068 auto *TruncI
= cast
<TruncInst
>(User
);
2069 bool MadeChange
= false;
2071 for (Value::user_iterator TruncUI
= TruncI
->user_begin(),
2072 TruncE
= TruncI
->user_end();
2073 TruncUI
!= TruncE
;) {
2075 Use
&TruncTheUse
= TruncUI
.getUse();
2076 Instruction
*TruncUser
= cast
<Instruction
>(*TruncUI
);
2077 // Preincrement use iterator so we don't invalidate it.
2081 int ISDOpcode
= TLI
.InstructionOpcodeToISD(TruncUser
->getOpcode());
2085 // If the use is actually a legal node, there will not be an
2086 // implicit truncate.
2087 // FIXME: always querying the result type is just an
2088 // approximation; some nodes' legality is determined by the
2089 // operand or other means. There's no good way to find out though.
2090 if (TLI
.isOperationLegalOrCustom(
2091 ISDOpcode
, TLI
.getValueType(DL
, TruncUser
->getType(), true)))
2094 // Don't bother for PHI nodes.
2095 if (isa
<PHINode
>(TruncUser
))
2098 BasicBlock
*TruncUserBB
= TruncUser
->getParent();
2100 if (UserBB
== TruncUserBB
)
2103 BinaryOperator
*&InsertedShift
= InsertedShifts
[TruncUserBB
];
2104 CastInst
*&InsertedTrunc
= InsertedTruncs
[TruncUserBB
];
2106 if (!InsertedShift
&& !InsertedTrunc
) {
2107 BasicBlock::iterator InsertPt
= TruncUserBB
->getFirstInsertionPt();
2108 assert(InsertPt
!= TruncUserBB
->end());
2110 if (ShiftI
->getOpcode() == Instruction::AShr
)
2112 BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
, "");
2115 BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
, "");
2116 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
2117 InsertedShift
->insertBefore(*TruncUserBB
, InsertPt
);
2120 BasicBlock::iterator TruncInsertPt
= TruncUserBB
->getFirstInsertionPt();
2122 // It will go ahead of any debug-info.
2123 TruncInsertPt
.setHeadBit(true);
2124 assert(TruncInsertPt
!= TruncUserBB
->end());
2126 InsertedTrunc
= CastInst::Create(TruncI
->getOpcode(), InsertedShift
,
2127 TruncI
->getType(), "");
2128 InsertedTrunc
->insertBefore(*TruncUserBB
, TruncInsertPt
);
2129 InsertedTrunc
->setDebugLoc(TruncI
->getDebugLoc());
2133 TruncTheUse
= InsertedTrunc
;
2139 /// Sink the shift *right* instruction into user blocks if the uses could
2140 /// potentially be combined with this shift instruction and generate BitExtract
2141 /// instruction. It will only be applied if the architecture supports BitExtract
2142 /// instruction. Here is an example:
2144 /// %x.extract.shift = lshr i64 %arg1, 32
2146 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
2150 /// %x.extract.shift.1 = lshr i64 %arg1, 32
2151 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2153 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2155 /// Return true if any changes are made.
2156 static bool OptimizeExtractBits(BinaryOperator
*ShiftI
, ConstantInt
*CI
,
2157 const TargetLowering
&TLI
,
2158 const DataLayout
&DL
) {
2159 BasicBlock
*DefBB
= ShiftI
->getParent();
2161 /// Only insert instructions in each block once.
2162 DenseMap
<BasicBlock
*, BinaryOperator
*> InsertedShifts
;
2164 bool shiftIsLegal
= TLI
.isTypeLegal(TLI
.getValueType(DL
, ShiftI
->getType()));
2166 bool MadeChange
= false;
2167 for (Value::user_iterator UI
= ShiftI
->user_begin(), E
= ShiftI
->user_end();
2169 Use
&TheUse
= UI
.getUse();
2170 Instruction
*User
= cast
<Instruction
>(*UI
);
2171 // Preincrement use iterator so we don't invalidate it.
2174 // Don't bother for PHI nodes.
2175 if (isa
<PHINode
>(User
))
2178 if (!isExtractBitsCandidateUse(User
))
2181 BasicBlock
*UserBB
= User
->getParent();
2183 if (UserBB
== DefBB
) {
2184 // If the shift and truncate instruction are in the same BB. The use of
2185 // the truncate(TruncUse) may still introduce another truncate if not
2186 // legal. In this case, we would like to sink both shift and truncate
2187 // instruction to the BB of TruncUse.
2190 // i64 shift.result = lshr i64 opnd, imm
2191 // trunc.result = trunc shift.result to i16
2194 // ----> We will have an implicit truncate here if the architecture does
2195 // not have i16 compare.
2196 // cmp i16 trunc.result, opnd2
2198 if (isa
<TruncInst
>(User
) &&
2200 // If the type of the truncate is legal, no truncate will be
2201 // introduced in other basic blocks.
2202 && (!TLI
.isTypeLegal(TLI
.getValueType(DL
, User
->getType()))))
2204 SinkShiftAndTruncate(ShiftI
, User
, CI
, InsertedShifts
, TLI
, DL
);
2208 // If we have already inserted a shift into this block, use it.
2209 BinaryOperator
*&InsertedShift
= InsertedShifts
[UserBB
];
2211 if (!InsertedShift
) {
2212 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
2213 assert(InsertPt
!= UserBB
->end());
2215 if (ShiftI
->getOpcode() == Instruction::AShr
)
2217 BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
, "");
2220 BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
, "");
2221 InsertedShift
->insertBefore(*UserBB
, InsertPt
);
2222 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
2227 // Replace a use of the shift with a use of the new shift.
2228 TheUse
= InsertedShift
;
2231 // If we removed all uses, or there are none, nuke the shift.
2232 if (ShiftI
->use_empty()) {
2233 salvageDebugInfo(*ShiftI
);
2234 ShiftI
->eraseFromParent();
2241 /// If counting leading or trailing zeros is an expensive operation and a zero
2242 /// input is defined, add a check for zero to avoid calling the intrinsic.
2244 /// We want to transform:
2245 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2249 /// %cmpz = icmp eq i64 %A, 0
2250 /// br i1 %cmpz, label %cond.end, label %cond.false
2252 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2253 /// br label %cond.end
2255 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2257 /// If the transform is performed, return true and set ModifiedDT to true.
2258 static bool despeculateCountZeros(IntrinsicInst
*CountZeros
,
2260 const TargetLowering
*TLI
,
2261 const DataLayout
*DL
, ModifyDT
&ModifiedDT
,
2262 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
2264 // If a zero input is undefined, it doesn't make sense to despeculate that.
2265 if (match(CountZeros
->getOperand(1), m_One()))
2268 // If it's cheap to speculate, there's nothing to do.
2269 Type
*Ty
= CountZeros
->getType();
2270 auto IntrinsicID
= CountZeros
->getIntrinsicID();
2271 if ((IntrinsicID
== Intrinsic::cttz
&& TLI
->isCheapToSpeculateCttz(Ty
)) ||
2272 (IntrinsicID
== Intrinsic::ctlz
&& TLI
->isCheapToSpeculateCtlz(Ty
)))
2275 // Only handle legal scalar cases. Anything else requires too much work.
2276 unsigned SizeInBits
= Ty
->getScalarSizeInBits();
2277 if (Ty
->isVectorTy() || SizeInBits
> DL
->getLargestLegalIntTypeSizeInBits())
2280 // Bail if the value is never zero.
2281 Use
&Op
= CountZeros
->getOperandUse(0);
2282 if (isKnownNonZero(Op
, *DL
))
2285 // The intrinsic will be sunk behind a compare against zero and branch.
2286 BasicBlock
*StartBlock
= CountZeros
->getParent();
2287 BasicBlock
*CallBlock
= StartBlock
->splitBasicBlock(CountZeros
, "cond.false");
2289 FreshBBs
.insert(CallBlock
);
2291 // Create another block after the count zero intrinsic. A PHI will be added
2292 // in this block to select the result of the intrinsic or the bit-width
2293 // constant if the input to the intrinsic is zero.
2294 BasicBlock::iterator SplitPt
= std::next(BasicBlock::iterator(CountZeros
));
2295 // Any debug-info after CountZeros should not be included.
2296 SplitPt
.setHeadBit(true);
2297 BasicBlock
*EndBlock
= CallBlock
->splitBasicBlock(SplitPt
, "cond.end");
2299 FreshBBs
.insert(EndBlock
);
2301 // Update the LoopInfo. The new blocks are in the same loop as the start
2303 if (Loop
*L
= LI
.getLoopFor(StartBlock
)) {
2304 L
->addBasicBlockToLoop(CallBlock
, LI
);
2305 L
->addBasicBlockToLoop(EndBlock
, LI
);
2308 // Set up a builder to create a compare, conditional branch, and PHI.
2309 IRBuilder
<> Builder(CountZeros
->getContext());
2310 Builder
.SetInsertPoint(StartBlock
->getTerminator());
2311 Builder
.SetCurrentDebugLocation(CountZeros
->getDebugLoc());
2313 // Replace the unconditional branch that was created by the first split with
2314 // a compare against zero and a conditional branch.
2315 Value
*Zero
= Constant::getNullValue(Ty
);
2316 // Avoid introducing branch on poison. This also replaces the ctz operand.
2317 if (!isGuaranteedNotToBeUndefOrPoison(Op
))
2318 Op
= Builder
.CreateFreeze(Op
, Op
->getName() + ".fr");
2319 Value
*Cmp
= Builder
.CreateICmpEQ(Op
, Zero
, "cmpz");
2320 Builder
.CreateCondBr(Cmp
, EndBlock
, CallBlock
);
2321 StartBlock
->getTerminator()->eraseFromParent();
2323 // Create a PHI in the end block to select either the output of the intrinsic
2324 // or the bit width of the operand.
2325 Builder
.SetInsertPoint(EndBlock
, EndBlock
->begin());
2326 PHINode
*PN
= Builder
.CreatePHI(Ty
, 2, "ctz");
2327 replaceAllUsesWith(CountZeros
, PN
, FreshBBs
, IsHugeFunc
);
2328 Value
*BitWidth
= Builder
.getInt(APInt(SizeInBits
, SizeInBits
));
2329 PN
->addIncoming(BitWidth
, StartBlock
);
2330 PN
->addIncoming(CountZeros
, CallBlock
);
2332 // We are explicitly handling the zero case, so we can set the intrinsic's
2333 // undefined zero argument to 'true'. This will also prevent reprocessing the
2334 // intrinsic; we only despeculate when a zero input is defined.
2335 CountZeros
->setArgOperand(1, Builder
.getTrue());
2336 ModifiedDT
= ModifyDT::ModifyBBDT
;
2340 bool CodeGenPrepare::optimizeCallInst(CallInst
*CI
, ModifyDT
&ModifiedDT
) {
2341 BasicBlock
*BB
= CI
->getParent();
2343 // Lower inline assembly if we can.
2344 // If we found an inline asm expession, and if the target knows how to
2345 // lower it to normal LLVM code, do so now.
2346 if (CI
->isInlineAsm()) {
2347 if (TLI
->ExpandInlineAsm(CI
)) {
2348 // Avoid invalidating the iterator.
2349 CurInstIterator
= BB
->begin();
2350 // Avoid processing instructions out of order, which could cause
2351 // reuse before a value is defined.
2355 // Sink address computing for memory operands into the block.
2356 if (optimizeInlineAsmInst(CI
))
2360 // Align the pointer arguments to this call if the target thinks it's a good
2364 if (TLI
->shouldAlignPointerArgs(CI
, MinSize
, PrefAlign
)) {
2365 for (auto &Arg
: CI
->args()) {
2366 // We want to align both objects whose address is used directly and
2367 // objects whose address is used in casts and GEPs, though it only makes
2368 // sense for GEPs if the offset is a multiple of the desired alignment and
2369 // if size - offset meets the size threshold.
2370 if (!Arg
->getType()->isPointerTy())
2372 APInt
Offset(DL
->getIndexSizeInBits(
2373 cast
<PointerType
>(Arg
->getType())->getAddressSpace()),
2375 Value
*Val
= Arg
->stripAndAccumulateInBoundsConstantOffsets(*DL
, Offset
);
2376 uint64_t Offset2
= Offset
.getLimitedValue();
2377 if (!isAligned(PrefAlign
, Offset2
))
2380 if ((AI
= dyn_cast
<AllocaInst
>(Val
)) && AI
->getAlign() < PrefAlign
&&
2381 DL
->getTypeAllocSize(AI
->getAllocatedType()) >= MinSize
+ Offset2
)
2382 AI
->setAlignment(PrefAlign
);
2383 // Global variables can only be aligned if they are defined in this
2384 // object (i.e. they are uniquely initialized in this object), and
2385 // over-aligning global variables that have an explicit section is
2388 if ((GV
= dyn_cast
<GlobalVariable
>(Val
)) && GV
->canIncreaseAlignment() &&
2389 GV
->getPointerAlignment(*DL
) < PrefAlign
&&
2390 DL
->getTypeAllocSize(GV
->getValueType()) >= MinSize
+ Offset2
)
2391 GV
->setAlignment(PrefAlign
);
2394 // If this is a memcpy (or similar) then we may be able to improve the
2396 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(CI
)) {
2397 Align DestAlign
= getKnownAlignment(MI
->getDest(), *DL
);
2398 MaybeAlign MIDestAlign
= MI
->getDestAlign();
2399 if (!MIDestAlign
|| DestAlign
> *MIDestAlign
)
2400 MI
->setDestAlignment(DestAlign
);
2401 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
2402 MaybeAlign MTISrcAlign
= MTI
->getSourceAlign();
2403 Align SrcAlign
= getKnownAlignment(MTI
->getSource(), *DL
);
2404 if (!MTISrcAlign
|| SrcAlign
> *MTISrcAlign
)
2405 MTI
->setSourceAlignment(SrcAlign
);
2409 // If we have a cold call site, try to sink addressing computation into the
2410 // cold block. This interacts with our handling for loads and stores to
2411 // ensure that we can fold all uses of a potential addressing computation
2412 // into their uses. TODO: generalize this to work over profiling data
2413 if (CI
->hasFnAttr(Attribute::Cold
) && !OptSize
&&
2414 !llvm::shouldOptimizeForSize(BB
, PSI
, BFI
.get()))
2415 for (auto &Arg
: CI
->args()) {
2416 if (!Arg
->getType()->isPointerTy())
2418 unsigned AS
= Arg
->getType()->getPointerAddressSpace();
2419 if (optimizeMemoryInst(CI
, Arg
, Arg
->getType(), AS
))
2423 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
);
2425 switch (II
->getIntrinsicID()) {
2428 case Intrinsic::assume
:
2429 llvm_unreachable("llvm.assume should have been removed already");
2430 case Intrinsic::experimental_widenable_condition
: {
2431 // Give up on future widening oppurtunties so that we can fold away dead
2432 // paths and merge blocks before going into block-local instruction
2434 if (II
->use_empty()) {
2435 II
->eraseFromParent();
2438 Constant
*RetVal
= ConstantInt::getTrue(II
->getContext());
2439 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
2440 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
2444 case Intrinsic::objectsize
:
2445 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2446 case Intrinsic::is_constant
:
2447 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2448 case Intrinsic::aarch64_stlxr
:
2449 case Intrinsic::aarch64_stxr
: {
2450 ZExtInst
*ExtVal
= dyn_cast
<ZExtInst
>(CI
->getArgOperand(0));
2451 if (!ExtVal
|| !ExtVal
->hasOneUse() ||
2452 ExtVal
->getParent() == CI
->getParent())
2454 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2455 ExtVal
->moveBefore(CI
);
2456 // Mark this instruction as "inserted by CGP", so that other
2457 // optimizations don't touch it.
2458 InsertedInsts
.insert(ExtVal
);
2462 case Intrinsic::launder_invariant_group
:
2463 case Intrinsic::strip_invariant_group
: {
2464 Value
*ArgVal
= II
->getArgOperand(0);
2465 auto it
= LargeOffsetGEPMap
.find(II
);
2466 if (it
!= LargeOffsetGEPMap
.end()) {
2467 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2468 // Make sure not to have to deal with iterator invalidation
2469 // after possibly adding ArgVal to LargeOffsetGEPMap.
2470 auto GEPs
= std::move(it
->second
);
2471 LargeOffsetGEPMap
[ArgVal
].append(GEPs
.begin(), GEPs
.end());
2472 LargeOffsetGEPMap
.erase(II
);
2475 replaceAllUsesWith(II
, ArgVal
, FreshBBs
, IsHugeFunc
);
2476 II
->eraseFromParent();
2479 case Intrinsic::cttz
:
2480 case Intrinsic::ctlz
:
2481 // If counting zeros is expensive, try to avoid it.
2482 return despeculateCountZeros(II
, *LI
, TLI
, DL
, ModifiedDT
, FreshBBs
,
2484 case Intrinsic::fshl
:
2485 case Intrinsic::fshr
:
2486 return optimizeFunnelShift(II
);
2487 case Intrinsic::dbg_assign
:
2488 case Intrinsic::dbg_value
:
2489 return fixupDbgValue(II
);
2490 case Intrinsic::masked_gather
:
2491 return optimizeGatherScatterInst(II
, II
->getArgOperand(0));
2492 case Intrinsic::masked_scatter
:
2493 return optimizeGatherScatterInst(II
, II
->getArgOperand(1));
2496 SmallVector
<Value
*, 2> PtrOps
;
2498 if (TLI
->getAddrModeArguments(II
, PtrOps
, AccessTy
))
2499 while (!PtrOps
.empty()) {
2500 Value
*PtrVal
= PtrOps
.pop_back_val();
2501 unsigned AS
= PtrVal
->getType()->getPointerAddressSpace();
2502 if (optimizeMemoryInst(II
, PtrVal
, AccessTy
, AS
))
2507 // From here on out we're working with named functions.
2508 if (!CI
->getCalledFunction())
2511 // Lower all default uses of _chk calls. This is very similar
2512 // to what InstCombineCalls does, but here we are only lowering calls
2513 // to fortified library functions (e.g. __memcpy_chk) that have the default
2514 // "don't know" as the objectsize. Anything else should be left alone.
2515 FortifiedLibCallSimplifier
Simplifier(TLInfo
, true);
2516 IRBuilder
<> Builder(CI
);
2517 if (Value
*V
= Simplifier
.optimizeCall(CI
, Builder
)) {
2518 replaceAllUsesWith(CI
, V
, FreshBBs
, IsHugeFunc
);
2519 CI
->eraseFromParent();
2526 /// Look for opportunities to duplicate return instructions to the predecessor
2527 /// to enable tail call optimizations. The case it is currently looking for is:
2530 /// %tmp0 = tail call i32 @f0()
2531 /// br label %return
2533 /// %tmp1 = tail call i32 @f1()
2534 /// br label %return
2536 /// %tmp2 = tail call i32 @f2()
2537 /// br label %return
2539 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2547 /// %tmp0 = tail call i32 @f0()
2550 /// %tmp1 = tail call i32 @f1()
2553 /// %tmp2 = tail call i32 @f2()
2556 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock
*BB
,
2557 ModifyDT
&ModifiedDT
) {
2558 if (!BB
->getTerminator())
2561 ReturnInst
*RetI
= dyn_cast
<ReturnInst
>(BB
->getTerminator());
2565 assert(LI
->getLoopFor(BB
) == nullptr && "A return block cannot be in a loop");
2567 PHINode
*PN
= nullptr;
2568 ExtractValueInst
*EVI
= nullptr;
2569 BitCastInst
*BCI
= nullptr;
2570 Value
*V
= RetI
->getReturnValue();
2572 BCI
= dyn_cast
<BitCastInst
>(V
);
2574 V
= BCI
->getOperand(0);
2576 EVI
= dyn_cast
<ExtractValueInst
>(V
);
2578 V
= EVI
->getOperand(0);
2579 if (!llvm::all_of(EVI
->indices(), [](unsigned idx
) { return idx
== 0; }))
2583 PN
= dyn_cast
<PHINode
>(V
);
2588 if (PN
&& PN
->getParent() != BB
)
2591 auto isLifetimeEndOrBitCastFor
= [](const Instruction
*Inst
) {
2592 const BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Inst
);
2593 if (BC
&& BC
->hasOneUse())
2594 Inst
= BC
->user_back();
2596 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
))
2597 return II
->getIntrinsicID() == Intrinsic::lifetime_end
;
2601 // Make sure there are no instructions between the first instruction
2603 const Instruction
*BI
= BB
->getFirstNonPHI();
2604 // Skip over debug and the bitcast.
2605 while (isa
<DbgInfoIntrinsic
>(BI
) || BI
== BCI
|| BI
== EVI
||
2606 isa
<PseudoProbeInst
>(BI
) || isLifetimeEndOrBitCastFor(BI
))
2607 BI
= BI
->getNextNode();
2611 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2613 const Function
*F
= BB
->getParent();
2614 SmallVector
<BasicBlock
*, 4> TailCallBBs
;
2616 for (unsigned I
= 0, E
= PN
->getNumIncomingValues(); I
!= E
; ++I
) {
2617 // Look through bitcasts.
2618 Value
*IncomingVal
= PN
->getIncomingValue(I
)->stripPointerCasts();
2619 CallInst
*CI
= dyn_cast
<CallInst
>(IncomingVal
);
2620 BasicBlock
*PredBB
= PN
->getIncomingBlock(I
);
2621 // Make sure the phi value is indeed produced by the tail call.
2622 if (CI
&& CI
->hasOneUse() && CI
->getParent() == PredBB
&&
2623 TLI
->mayBeEmittedAsTailCall(CI
) &&
2624 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
2625 TailCallBBs
.push_back(PredBB
);
2628 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
2629 for (BasicBlock
*Pred
: predecessors(BB
)) {
2630 if (!VisitedBBs
.insert(Pred
).second
)
2632 if (Instruction
*I
= Pred
->rbegin()->getPrevNonDebugInstruction(true)) {
2633 CallInst
*CI
= dyn_cast
<CallInst
>(I
);
2634 if (CI
&& CI
->use_empty() && TLI
->mayBeEmittedAsTailCall(CI
) &&
2635 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
2636 TailCallBBs
.push_back(Pred
);
2641 bool Changed
= false;
2642 for (auto const &TailCallBB
: TailCallBBs
) {
2643 // Make sure the call instruction is followed by an unconditional branch to
2644 // the return block.
2645 BranchInst
*BI
= dyn_cast
<BranchInst
>(TailCallBB
->getTerminator());
2646 if (!BI
|| !BI
->isUnconditional() || BI
->getSuccessor(0) != BB
)
2649 // Duplicate the return into TailCallBB.
2650 (void)FoldReturnIntoUncondBranch(RetI
, BB
, TailCallBB
);
2651 assert(!VerifyBFIUpdates
||
2652 BFI
->getBlockFreq(BB
) >= BFI
->getBlockFreq(TailCallBB
));
2653 BFI
->setBlockFreq(BB
,
2654 (BFI
->getBlockFreq(BB
) - BFI
->getBlockFreq(TailCallBB
)));
2655 ModifiedDT
= ModifyDT::ModifyBBDT
;
2660 // If we eliminated all predecessors of the block, delete the block now.
2661 if (Changed
&& !BB
->hasAddressTaken() && pred_empty(BB
))
2662 BB
->eraseFromParent();
2667 //===----------------------------------------------------------------------===//
2668 // Memory Optimization
2669 //===----------------------------------------------------------------------===//
2673 /// This is an extended version of TargetLowering::AddrMode
2674 /// which holds actual Value*'s for register values.
2675 struct ExtAddrMode
: public TargetLowering::AddrMode
{
2676 Value
*BaseReg
= nullptr;
2677 Value
*ScaledReg
= nullptr;
2678 Value
*OriginalValue
= nullptr;
2679 bool InBounds
= true;
2683 BaseRegField
= 0x01,
2685 BaseOffsField
= 0x04,
2686 ScaledRegField
= 0x08,
2688 MultipleFields
= 0xff
2691 ExtAddrMode() = default;
2693 void print(raw_ostream
&OS
) const;
2696 FieldName
compare(const ExtAddrMode
&other
) {
2697 // First check that the types are the same on each field, as differing types
2698 // is something we can't cope with later on.
2699 if (BaseReg
&& other
.BaseReg
&&
2700 BaseReg
->getType() != other
.BaseReg
->getType())
2701 return MultipleFields
;
2702 if (BaseGV
&& other
.BaseGV
&& BaseGV
->getType() != other
.BaseGV
->getType())
2703 return MultipleFields
;
2704 if (ScaledReg
&& other
.ScaledReg
&&
2705 ScaledReg
->getType() != other
.ScaledReg
->getType())
2706 return MultipleFields
;
2708 // Conservatively reject 'inbounds' mismatches.
2709 if (InBounds
!= other
.InBounds
)
2710 return MultipleFields
;
2712 // Check each field to see if it differs.
2713 unsigned Result
= NoField
;
2714 if (BaseReg
!= other
.BaseReg
)
2715 Result
|= BaseRegField
;
2716 if (BaseGV
!= other
.BaseGV
)
2717 Result
|= BaseGVField
;
2718 if (BaseOffs
!= other
.BaseOffs
)
2719 Result
|= BaseOffsField
;
2720 if (ScaledReg
!= other
.ScaledReg
)
2721 Result
|= ScaledRegField
;
2722 // Don't count 0 as being a different scale, because that actually means
2723 // unscaled (which will already be counted by having no ScaledReg).
2724 if (Scale
&& other
.Scale
&& Scale
!= other
.Scale
)
2725 Result
|= ScaleField
;
2727 if (llvm::popcount(Result
) > 1)
2728 return MultipleFields
;
2730 return static_cast<FieldName
>(Result
);
2733 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2736 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2737 // trivial if at most one of these terms is nonzero, except that BaseGV and
2738 // BaseReg both being zero actually means a null pointer value, which we
2739 // consider to be 'non-zero' here.
2740 return !BaseOffs
&& !Scale
&& !(BaseGV
&& BaseReg
);
2743 Value
*GetFieldAsValue(FieldName Field
, Type
*IntPtrTy
) {
2751 case ScaledRegField
:
2754 return ConstantInt::get(IntPtrTy
, BaseOffs
);
2758 void SetCombinedField(FieldName Field
, Value
*V
,
2759 const SmallVectorImpl
<ExtAddrMode
> &AddrModes
) {
2762 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2764 case ExtAddrMode::BaseRegField
:
2767 case ExtAddrMode::BaseGVField
:
2768 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2769 // in the BaseReg field.
2770 assert(BaseReg
== nullptr);
2774 case ExtAddrMode::ScaledRegField
:
2776 // If we have a mix of scaled and unscaled addrmodes then we want scale
2777 // to be the scale and not zero.
2779 for (const ExtAddrMode
&AM
: AddrModes
)
2785 case ExtAddrMode::BaseOffsField
:
2786 // The offset is no longer a constant, so it goes in ScaledReg with a
2788 assert(ScaledReg
== nullptr);
2798 static inline raw_ostream
&operator<<(raw_ostream
&OS
, const ExtAddrMode
&AM
) {
2804 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2805 void ExtAddrMode::print(raw_ostream
&OS
) const {
2806 bool NeedPlus
= false;
2812 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
2817 OS
<< (NeedPlus
? " + " : "") << BaseOffs
;
2822 OS
<< (NeedPlus
? " + " : "") << "Base:";
2823 BaseReg
->printAsOperand(OS
, /*PrintType=*/false);
2827 OS
<< (NeedPlus
? " + " : "") << Scale
<< "*";
2828 ScaledReg
->printAsOperand(OS
, /*PrintType=*/false);
2834 LLVM_DUMP_METHOD
void ExtAddrMode::dump() const {
2840 } // end anonymous namespace
2844 /// This class provides transaction based operation on the IR.
2845 /// Every change made through this class is recorded in the internal state and
2846 /// can be undone (rollback) until commit is called.
2847 /// CGP does not check if instructions could be speculatively executed when
2848 /// moved. Preserving the original location would pessimize the debugging
2849 /// experience, as well as negatively impact the quality of sample PGO.
2850 class TypePromotionTransaction
{
2851 /// This represents the common interface of the individual transaction.
2852 /// Each class implements the logic for doing one specific modification on
2853 /// the IR via the TypePromotionTransaction.
2854 class TypePromotionAction
{
2856 /// The Instruction modified.
2860 /// Constructor of the action.
2861 /// The constructor performs the related action on the IR.
2862 TypePromotionAction(Instruction
*Inst
) : Inst(Inst
) {}
2864 virtual ~TypePromotionAction() = default;
2866 /// Undo the modification done by this action.
2867 /// When this method is called, the IR must be in the same state as it was
2868 /// before this action was applied.
2869 /// \pre Undoing the action works if and only if the IR is in the exact same
2870 /// state as it was directly after this action was applied.
2871 virtual void undo() = 0;
2873 /// Advocate every change made by this action.
2874 /// When the results on the IR of the action are to be kept, it is important
2875 /// to call this function, otherwise hidden information may be kept forever.
2876 virtual void commit() {
2877 // Nothing to be done, this action is not doing anything.
2881 /// Utility to remember the position of an instruction.
2882 class InsertionHandler
{
2883 /// Position of an instruction.
2884 /// Either an instruction:
2885 /// - Is the first in a basic block: BB is used.
2886 /// - Has a previous instruction: PrevInst is used.
2888 Instruction
*PrevInst
;
2891 std::optional
<DPValue::self_iterator
> BeforeDPValue
= std::nullopt
;
2893 /// Remember whether or not the instruction had a previous instruction.
2894 bool HasPrevInstruction
;
2897 /// Record the position of \p Inst.
2898 InsertionHandler(Instruction
*Inst
) {
2899 HasPrevInstruction
= (Inst
!= &*(Inst
->getParent()->begin()));
2900 BasicBlock
*BB
= Inst
->getParent();
2902 // Record where we would have to re-insert the instruction in the sequence
2903 // of DPValues, if we ended up reinserting.
2904 if (BB
->IsNewDbgInfoFormat
)
2905 BeforeDPValue
= Inst
->getDbgReinsertionPosition();
2907 if (HasPrevInstruction
) {
2908 Point
.PrevInst
= &*std::prev(Inst
->getIterator());
2914 /// Insert \p Inst at the recorded position.
2915 void insert(Instruction
*Inst
) {
2916 if (HasPrevInstruction
) {
2917 if (Inst
->getParent())
2918 Inst
->removeFromParent();
2919 Inst
->insertAfter(&*Point
.PrevInst
);
2921 BasicBlock::iterator Position
= Point
.BB
->getFirstInsertionPt();
2922 if (Inst
->getParent())
2923 Inst
->moveBefore(*Point
.BB
, Position
);
2925 Inst
->insertBefore(*Point
.BB
, Position
);
2928 Inst
->getParent()->reinsertInstInDPValues(Inst
, BeforeDPValue
);
2932 /// Move an instruction before another.
2933 class InstructionMoveBefore
: public TypePromotionAction
{
2934 /// Original position of the instruction.
2935 InsertionHandler Position
;
2938 /// Move \p Inst before \p Before.
2939 InstructionMoveBefore(Instruction
*Inst
, Instruction
*Before
)
2940 : TypePromotionAction(Inst
), Position(Inst
) {
2941 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst
<< "\nbefore: " << *Before
2943 Inst
->moveBefore(Before
);
2946 /// Move the instruction back to its original position.
2947 void undo() override
{
2948 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst
<< "\n");
2949 Position
.insert(Inst
);
2953 /// Set the operand of an instruction with a new value.
2954 class OperandSetter
: public TypePromotionAction
{
2955 /// Original operand of the instruction.
2958 /// Index of the modified instruction.
2962 /// Set \p Idx operand of \p Inst with \p NewVal.
2963 OperandSetter(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
)
2964 : TypePromotionAction(Inst
), Idx(Idx
) {
2965 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx
<< "\n"
2966 << "for:" << *Inst
<< "\n"
2967 << "with:" << *NewVal
<< "\n");
2968 Origin
= Inst
->getOperand(Idx
);
2969 Inst
->setOperand(Idx
, NewVal
);
2972 /// Restore the original value of the instruction.
2973 void undo() override
{
2974 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx
<< "\n"
2975 << "for: " << *Inst
<< "\n"
2976 << "with: " << *Origin
<< "\n");
2977 Inst
->setOperand(Idx
, Origin
);
2981 /// Hide the operands of an instruction.
2982 /// Do as if this instruction was not using any of its operands.
2983 class OperandsHider
: public TypePromotionAction
{
2984 /// The list of original operands.
2985 SmallVector
<Value
*, 4> OriginalValues
;
2988 /// Remove \p Inst from the uses of the operands of \p Inst.
2989 OperandsHider(Instruction
*Inst
) : TypePromotionAction(Inst
) {
2990 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst
<< "\n");
2991 unsigned NumOpnds
= Inst
->getNumOperands();
2992 OriginalValues
.reserve(NumOpnds
);
2993 for (unsigned It
= 0; It
< NumOpnds
; ++It
) {
2994 // Save the current operand.
2995 Value
*Val
= Inst
->getOperand(It
);
2996 OriginalValues
.push_back(Val
);
2998 // We could use OperandSetter here, but that would imply an overhead
2999 // that we are not willing to pay.
3000 Inst
->setOperand(It
, UndefValue::get(Val
->getType()));
3004 /// Restore the original list of uses.
3005 void undo() override
{
3006 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst
<< "\n");
3007 for (unsigned It
= 0, EndIt
= OriginalValues
.size(); It
!= EndIt
; ++It
)
3008 Inst
->setOperand(It
, OriginalValues
[It
]);
3012 /// Build a truncate instruction.
3013 class TruncBuilder
: public TypePromotionAction
{
3017 /// Build a truncate instruction of \p Opnd producing a \p Ty
3019 /// trunc Opnd to Ty.
3020 TruncBuilder(Instruction
*Opnd
, Type
*Ty
) : TypePromotionAction(Opnd
) {
3021 IRBuilder
<> Builder(Opnd
);
3022 Builder
.SetCurrentDebugLocation(DebugLoc());
3023 Val
= Builder
.CreateTrunc(Opnd
, Ty
, "promoted");
3024 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val
<< "\n");
3027 /// Get the built value.
3028 Value
*getBuiltValue() { return Val
; }
3030 /// Remove the built instruction.
3031 void undo() override
{
3032 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val
<< "\n");
3033 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
3034 IVal
->eraseFromParent();
3038 /// Build a sign extension instruction.
3039 class SExtBuilder
: public TypePromotionAction
{
3043 /// Build a sign extension instruction of \p Opnd producing a \p Ty
3045 /// sext Opnd to Ty.
3046 SExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
3047 : TypePromotionAction(InsertPt
) {
3048 IRBuilder
<> Builder(InsertPt
);
3049 Val
= Builder
.CreateSExt(Opnd
, Ty
, "promoted");
3050 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val
<< "\n");
3053 /// Get the built value.
3054 Value
*getBuiltValue() { return Val
; }
3056 /// Remove the built instruction.
3057 void undo() override
{
3058 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val
<< "\n");
3059 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
3060 IVal
->eraseFromParent();
3064 /// Build a zero extension instruction.
3065 class ZExtBuilder
: public TypePromotionAction
{
3069 /// Build a zero extension instruction of \p Opnd producing a \p Ty
3071 /// zext Opnd to Ty.
3072 ZExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
3073 : TypePromotionAction(InsertPt
) {
3074 IRBuilder
<> Builder(InsertPt
);
3075 Builder
.SetCurrentDebugLocation(DebugLoc());
3076 Val
= Builder
.CreateZExt(Opnd
, Ty
, "promoted");
3077 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val
<< "\n");
3080 /// Get the built value.
3081 Value
*getBuiltValue() { return Val
; }
3083 /// Remove the built instruction.
3084 void undo() override
{
3085 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val
<< "\n");
3086 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
3087 IVal
->eraseFromParent();
3091 /// Mutate an instruction to another type.
3092 class TypeMutator
: public TypePromotionAction
{
3093 /// Record the original type.
3097 /// Mutate the type of \p Inst into \p NewTy.
3098 TypeMutator(Instruction
*Inst
, Type
*NewTy
)
3099 : TypePromotionAction(Inst
), OrigTy(Inst
->getType()) {
3100 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst
<< " with " << *NewTy
3102 Inst
->mutateType(NewTy
);
3105 /// Mutate the instruction back to its original type.
3106 void undo() override
{
3107 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst
<< " with " << *OrigTy
3109 Inst
->mutateType(OrigTy
);
3113 /// Replace the uses of an instruction by another instruction.
3114 class UsesReplacer
: public TypePromotionAction
{
3115 /// Helper structure to keep track of the replaced uses.
3116 struct InstructionAndIdx
{
3117 /// The instruction using the instruction.
3120 /// The index where this instruction is used for Inst.
3123 InstructionAndIdx(Instruction
*Inst
, unsigned Idx
)
3124 : Inst(Inst
), Idx(Idx
) {}
3127 /// Keep track of the original uses (pair Instruction, Index).
3128 SmallVector
<InstructionAndIdx
, 4> OriginalUses
;
3129 /// Keep track of the debug users.
3130 SmallVector
<DbgValueInst
*, 1> DbgValues
;
3131 /// And non-instruction debug-users too.
3132 SmallVector
<DPValue
*, 1> DPValues
;
3134 /// Keep track of the new value so that we can undo it by replacing
3135 /// instances of the new value with the original value.
3138 using use_iterator
= SmallVectorImpl
<InstructionAndIdx
>::iterator
;
3141 /// Replace all the use of \p Inst by \p New.
3142 UsesReplacer(Instruction
*Inst
, Value
*New
)
3143 : TypePromotionAction(Inst
), New(New
) {
3144 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst
<< " with " << *New
3146 // Record the original uses.
3147 for (Use
&U
: Inst
->uses()) {
3148 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
3149 OriginalUses
.push_back(InstructionAndIdx(UserI
, U
.getOperandNo()));
3151 // Record the debug uses separately. They are not in the instruction's
3152 // use list, but they are replaced by RAUW.
3153 findDbgValues(DbgValues
, Inst
, &DPValues
);
3155 // Now, we can replace the uses.
3156 Inst
->replaceAllUsesWith(New
);
3159 /// Reassign the original uses of Inst to Inst.
3160 void undo() override
{
3161 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst
<< "\n");
3162 for (InstructionAndIdx
&Use
: OriginalUses
)
3163 Use
.Inst
->setOperand(Use
.Idx
, Inst
);
3164 // RAUW has replaced all original uses with references to the new value,
3165 // including the debug uses. Since we are undoing the replacements,
3166 // the original debug uses must also be reinstated to maintain the
3167 // correctness and utility of debug value instructions.
3168 for (auto *DVI
: DbgValues
)
3169 DVI
->replaceVariableLocationOp(New
, Inst
);
3170 // Similar story with DPValues, the non-instruction representation of
3172 for (DPValue
*DPV
: DPValues
) // tested by transaction-test I'm adding
3173 DPV
->replaceVariableLocationOp(New
, Inst
);
3177 /// Remove an instruction from the IR.
3178 class InstructionRemover
: public TypePromotionAction
{
3179 /// Original position of the instruction.
3180 InsertionHandler Inserter
;
3182 /// Helper structure to hide all the link to the instruction. In other
3183 /// words, this helps to do as if the instruction was removed.
3184 OperandsHider Hider
;
3186 /// Keep track of the uses replaced, if any.
3187 UsesReplacer
*Replacer
= nullptr;
3189 /// Keep track of instructions removed.
3190 SetOfInstrs
&RemovedInsts
;
3193 /// Remove all reference of \p Inst and optionally replace all its
3195 /// \p RemovedInsts Keep track of the instructions removed by this Action.
3196 /// \pre If !Inst->use_empty(), then New != nullptr
3197 InstructionRemover(Instruction
*Inst
, SetOfInstrs
&RemovedInsts
,
3198 Value
*New
= nullptr)
3199 : TypePromotionAction(Inst
), Inserter(Inst
), Hider(Inst
),
3200 RemovedInsts(RemovedInsts
) {
3202 Replacer
= new UsesReplacer(Inst
, New
);
3203 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst
<< "\n");
3204 RemovedInsts
.insert(Inst
);
3205 /// The instructions removed here will be freed after completing
3206 /// optimizeBlock() for all blocks as we need to keep track of the
3207 /// removed instructions during promotion.
3208 Inst
->removeFromParent();
3211 ~InstructionRemover() override
{ delete Replacer
; }
3213 InstructionRemover
&operator=(const InstructionRemover
&other
) = delete;
3214 InstructionRemover(const InstructionRemover
&other
) = delete;
3216 /// Resurrect the instruction and reassign it to the proper uses if
3217 /// new value was provided when build this action.
3218 void undo() override
{
3219 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst
<< "\n");
3220 Inserter
.insert(Inst
);
3224 RemovedInsts
.erase(Inst
);
3229 /// Restoration point.
3230 /// The restoration point is a pointer to an action instead of an iterator
3231 /// because the iterator may be invalidated but not the pointer.
3232 using ConstRestorationPt
= const TypePromotionAction
*;
3234 TypePromotionTransaction(SetOfInstrs
&RemovedInsts
)
3235 : RemovedInsts(RemovedInsts
) {}
3237 /// Advocate every changes made in that transaction. Return true if any change
3241 /// Undo all the changes made after the given point.
3242 void rollback(ConstRestorationPt Point
);
3244 /// Get the current restoration point.
3245 ConstRestorationPt
getRestorationPoint() const;
3247 /// \name API for IR modification with state keeping to support rollback.
3249 /// Same as Instruction::setOperand.
3250 void setOperand(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
);
3252 /// Same as Instruction::eraseFromParent.
3253 void eraseInstruction(Instruction
*Inst
, Value
*NewVal
= nullptr);
3255 /// Same as Value::replaceAllUsesWith.
3256 void replaceAllUsesWith(Instruction
*Inst
, Value
*New
);
3258 /// Same as Value::mutateType.
3259 void mutateType(Instruction
*Inst
, Type
*NewTy
);
3261 /// Same as IRBuilder::createTrunc.
3262 Value
*createTrunc(Instruction
*Opnd
, Type
*Ty
);
3264 /// Same as IRBuilder::createSExt.
3265 Value
*createSExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
3267 /// Same as IRBuilder::createZExt.
3268 Value
*createZExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
3271 /// The ordered list of actions made so far.
3272 SmallVector
<std::unique_ptr
<TypePromotionAction
>, 16> Actions
;
3275 SmallVectorImpl
<std::unique_ptr
<TypePromotionAction
>>::iterator
;
3277 SetOfInstrs
&RemovedInsts
;
3280 } // end anonymous namespace
3282 void TypePromotionTransaction::setOperand(Instruction
*Inst
, unsigned Idx
,
3284 Actions
.push_back(std::make_unique
<TypePromotionTransaction::OperandSetter
>(
3285 Inst
, Idx
, NewVal
));
3288 void TypePromotionTransaction::eraseInstruction(Instruction
*Inst
,
3291 std::make_unique
<TypePromotionTransaction::InstructionRemover
>(
3292 Inst
, RemovedInsts
, NewVal
));
3295 void TypePromotionTransaction::replaceAllUsesWith(Instruction
*Inst
,
3298 std::make_unique
<TypePromotionTransaction::UsesReplacer
>(Inst
, New
));
3301 void TypePromotionTransaction::mutateType(Instruction
*Inst
, Type
*NewTy
) {
3303 std::make_unique
<TypePromotionTransaction::TypeMutator
>(Inst
, NewTy
));
3306 Value
*TypePromotionTransaction::createTrunc(Instruction
*Opnd
, Type
*Ty
) {
3307 std::unique_ptr
<TruncBuilder
> Ptr(new TruncBuilder(Opnd
, Ty
));
3308 Value
*Val
= Ptr
->getBuiltValue();
3309 Actions
.push_back(std::move(Ptr
));
3313 Value
*TypePromotionTransaction::createSExt(Instruction
*Inst
, Value
*Opnd
,
3315 std::unique_ptr
<SExtBuilder
> Ptr(new SExtBuilder(Inst
, Opnd
, Ty
));
3316 Value
*Val
= Ptr
->getBuiltValue();
3317 Actions
.push_back(std::move(Ptr
));
3321 Value
*TypePromotionTransaction::createZExt(Instruction
*Inst
, Value
*Opnd
,
3323 std::unique_ptr
<ZExtBuilder
> Ptr(new ZExtBuilder(Inst
, Opnd
, Ty
));
3324 Value
*Val
= Ptr
->getBuiltValue();
3325 Actions
.push_back(std::move(Ptr
));
3329 TypePromotionTransaction::ConstRestorationPt
3330 TypePromotionTransaction::getRestorationPoint() const {
3331 return !Actions
.empty() ? Actions
.back().get() : nullptr;
3334 bool TypePromotionTransaction::commit() {
3335 for (std::unique_ptr
<TypePromotionAction
> &Action
: Actions
)
3337 bool Modified
= !Actions
.empty();
3342 void TypePromotionTransaction::rollback(
3343 TypePromotionTransaction::ConstRestorationPt Point
) {
3344 while (!Actions
.empty() && Point
!= Actions
.back().get()) {
3345 std::unique_ptr
<TypePromotionAction
> Curr
= Actions
.pop_back_val();
3352 /// A helper class for matching addressing modes.
3354 /// This encapsulates the logic for matching the target-legal addressing modes.
3355 class AddressingModeMatcher
{
3356 SmallVectorImpl
<Instruction
*> &AddrModeInsts
;
3357 const TargetLowering
&TLI
;
3358 const TargetRegisterInfo
&TRI
;
3359 const DataLayout
&DL
;
3361 const std::function
<const DominatorTree
&()> getDTFn
;
3363 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3364 /// the memory instruction that we're computing this address for.
3367 Instruction
*MemoryInst
;
3369 /// This is the addressing mode that we're building up. This is
3370 /// part of the return value of this addressing mode matching stuff.
3371 ExtAddrMode
&AddrMode
;
3373 /// The instructions inserted by other CodeGenPrepare optimizations.
3374 const SetOfInstrs
&InsertedInsts
;
3376 /// A map from the instructions to their type before promotion.
3377 InstrToOrigTy
&PromotedInsts
;
3379 /// The ongoing transaction where every action should be registered.
3380 TypePromotionTransaction
&TPT
;
3382 // A GEP which has too large offset to be folded into the addressing mode.
3383 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
;
3385 /// This is set to true when we should not do profitability checks.
3386 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3387 bool IgnoreProfitability
;
3389 /// True if we are optimizing for size.
3390 bool OptSize
= false;
3392 ProfileSummaryInfo
*PSI
;
3393 BlockFrequencyInfo
*BFI
;
3395 AddressingModeMatcher(
3396 SmallVectorImpl
<Instruction
*> &AMI
, const TargetLowering
&TLI
,
3397 const TargetRegisterInfo
&TRI
, const LoopInfo
&LI
,
3398 const std::function
<const DominatorTree
&()> getDTFn
, Type
*AT
,
3399 unsigned AS
, Instruction
*MI
, ExtAddrMode
&AM
,
3400 const SetOfInstrs
&InsertedInsts
, InstrToOrigTy
&PromotedInsts
,
3401 TypePromotionTransaction
&TPT
,
3402 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
,
3403 bool OptSize
, ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
)
3404 : AddrModeInsts(AMI
), TLI(TLI
), TRI(TRI
),
3405 DL(MI
->getModule()->getDataLayout()), LI(LI
), getDTFn(getDTFn
),
3406 AccessTy(AT
), AddrSpace(AS
), MemoryInst(MI
), AddrMode(AM
),
3407 InsertedInsts(InsertedInsts
), PromotedInsts(PromotedInsts
), TPT(TPT
),
3408 LargeOffsetGEP(LargeOffsetGEP
), OptSize(OptSize
), PSI(PSI
), BFI(BFI
) {
3409 IgnoreProfitability
= false;
3413 /// Find the maximal addressing mode that a load/store of V can fold,
3414 /// give an access type of AccessTy. This returns a list of involved
3415 /// instructions in AddrModeInsts.
3416 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3418 /// \p PromotedInsts maps the instructions to their type before promotion.
3419 /// \p The ongoing transaction where every action should be registered.
3421 Match(Value
*V
, Type
*AccessTy
, unsigned AS
, Instruction
*MemoryInst
,
3422 SmallVectorImpl
<Instruction
*> &AddrModeInsts
,
3423 const TargetLowering
&TLI
, const LoopInfo
&LI
,
3424 const std::function
<const DominatorTree
&()> getDTFn
,
3425 const TargetRegisterInfo
&TRI
, const SetOfInstrs
&InsertedInsts
,
3426 InstrToOrigTy
&PromotedInsts
, TypePromotionTransaction
&TPT
,
3427 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
,
3428 bool OptSize
, ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
) {
3431 bool Success
= AddressingModeMatcher(AddrModeInsts
, TLI
, TRI
, LI
, getDTFn
,
3432 AccessTy
, AS
, MemoryInst
, Result
,
3433 InsertedInsts
, PromotedInsts
, TPT
,
3434 LargeOffsetGEP
, OptSize
, PSI
, BFI
)
3437 assert(Success
&& "Couldn't select *anything*?");
3442 bool matchScaledValue(Value
*ScaleReg
, int64_t Scale
, unsigned Depth
);
3443 bool matchAddr(Value
*Addr
, unsigned Depth
);
3444 bool matchOperationAddr(User
*AddrInst
, unsigned Opcode
, unsigned Depth
,
3445 bool *MovedAway
= nullptr);
3446 bool isProfitableToFoldIntoAddressingMode(Instruction
*I
,
3447 ExtAddrMode
&AMBefore
,
3448 ExtAddrMode
&AMAfter
);
3449 bool valueAlreadyLiveAtInst(Value
*Val
, Value
*KnownLive1
, Value
*KnownLive2
);
3450 bool isPromotionProfitable(unsigned NewCost
, unsigned OldCost
,
3451 Value
*PromotedOperand
) const;
3456 /// An iterator for PhiNodeSet.
3457 class PhiNodeSetIterator
{
3458 PhiNodeSet
*const Set
;
3459 size_t CurrentIndex
= 0;
3462 /// The constructor. Start should point to either a valid element, or be equal
3463 /// to the size of the underlying SmallVector of the PhiNodeSet.
3464 PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
);
3465 PHINode
*operator*() const;
3466 PhiNodeSetIterator
&operator++();
3467 bool operator==(const PhiNodeSetIterator
&RHS
) const;
3468 bool operator!=(const PhiNodeSetIterator
&RHS
) const;
3471 /// Keeps a set of PHINodes.
3473 /// This is a minimal set implementation for a specific use case:
3474 /// It is very fast when there are very few elements, but also provides good
3475 /// performance when there are many. It is similar to SmallPtrSet, but also
3476 /// provides iteration by insertion order, which is deterministic and stable
3477 /// across runs. It is also similar to SmallSetVector, but provides removing
3478 /// elements in O(1) time. This is achieved by not actually removing the element
3479 /// from the underlying vector, so comes at the cost of using more memory, but
3480 /// that is fine, since PhiNodeSets are used as short lived objects.
3482 friend class PhiNodeSetIterator
;
3484 using MapType
= SmallDenseMap
<PHINode
*, size_t, 32>;
3485 using iterator
= PhiNodeSetIterator
;
3487 /// Keeps the elements in the order of their insertion in the underlying
3488 /// vector. To achieve constant time removal, it never deletes any element.
3489 SmallVector
<PHINode
*, 32> NodeList
;
3491 /// Keeps the elements in the underlying set implementation. This (and not the
3492 /// NodeList defined above) is the source of truth on whether an element
3493 /// is actually in the collection.
3496 /// Points to the first valid (not deleted) element when the set is not empty
3497 /// and the value is not zero. Equals to the size of the underlying vector
3498 /// when the set is empty. When the value is 0, as in the beginning, the
3499 /// first element may or may not be valid.
3500 size_t FirstValidElement
= 0;
3503 /// Inserts a new element to the collection.
3504 /// \returns true if the element is actually added, i.e. was not in the
3505 /// collection before the operation.
3506 bool insert(PHINode
*Ptr
) {
3507 if (NodeMap
.insert(std::make_pair(Ptr
, NodeList
.size())).second
) {
3508 NodeList
.push_back(Ptr
);
3514 /// Removes the element from the collection.
3515 /// \returns whether the element is actually removed, i.e. was in the
3516 /// collection before the operation.
3517 bool erase(PHINode
*Ptr
) {
3518 if (NodeMap
.erase(Ptr
)) {
3519 SkipRemovedElements(FirstValidElement
);
3525 /// Removes all elements and clears the collection.
3529 FirstValidElement
= 0;
3532 /// \returns an iterator that will iterate the elements in the order of
3535 if (FirstValidElement
== 0)
3536 SkipRemovedElements(FirstValidElement
);
3537 return PhiNodeSetIterator(this, FirstValidElement
);
3540 /// \returns an iterator that points to the end of the collection.
3541 iterator
end() { return PhiNodeSetIterator(this, NodeList
.size()); }
3543 /// Returns the number of elements in the collection.
3544 size_t size() const { return NodeMap
.size(); }
3546 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3547 size_t count(PHINode
*Ptr
) const { return NodeMap
.count(Ptr
); }
3550 /// Updates the CurrentIndex so that it will point to a valid element.
3552 /// If the element of NodeList at CurrentIndex is valid, it does not
3553 /// change it. If there are no more valid elements, it updates CurrentIndex
3554 /// to point to the end of the NodeList.
3555 void SkipRemovedElements(size_t &CurrentIndex
) {
3556 while (CurrentIndex
< NodeList
.size()) {
3557 auto it
= NodeMap
.find(NodeList
[CurrentIndex
]);
3558 // If the element has been deleted and added again later, NodeMap will
3559 // point to a different index, so CurrentIndex will still be invalid.
3560 if (it
!= NodeMap
.end() && it
->second
== CurrentIndex
)
3567 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
)
3568 : Set(Set
), CurrentIndex(Start
) {}
3570 PHINode
*PhiNodeSetIterator::operator*() const {
3571 assert(CurrentIndex
< Set
->NodeList
.size() &&
3572 "PhiNodeSet access out of range");
3573 return Set
->NodeList
[CurrentIndex
];
3576 PhiNodeSetIterator
&PhiNodeSetIterator::operator++() {
3577 assert(CurrentIndex
< Set
->NodeList
.size() &&
3578 "PhiNodeSet access out of range");
3580 Set
->SkipRemovedElements(CurrentIndex
);
3584 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator
&RHS
) const {
3585 return CurrentIndex
== RHS
.CurrentIndex
;
3588 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator
&RHS
) const {
3589 return !((*this) == RHS
);
3592 /// Keep track of simplification of Phi nodes.
3593 /// Accept the set of all phi nodes and erase phi node from this set
3594 /// if it is simplified.
3595 class SimplificationTracker
{
3596 DenseMap
<Value
*, Value
*> Storage
;
3597 const SimplifyQuery
&SQ
;
3598 // Tracks newly created Phi nodes. The elements are iterated by insertion
3600 PhiNodeSet AllPhiNodes
;
3601 // Tracks newly created Select nodes.
3602 SmallPtrSet
<SelectInst
*, 32> AllSelectNodes
;
3605 SimplificationTracker(const SimplifyQuery
&sq
) : SQ(sq
) {}
3607 Value
*Get(Value
*V
) {
3609 auto SV
= Storage
.find(V
);
3610 if (SV
== Storage
.end())
3616 Value
*Simplify(Value
*Val
) {
3617 SmallVector
<Value
*, 32> WorkList
;
3618 SmallPtrSet
<Value
*, 32> Visited
;
3619 WorkList
.push_back(Val
);
3620 while (!WorkList
.empty()) {
3621 auto *P
= WorkList
.pop_back_val();
3622 if (!Visited
.insert(P
).second
)
3624 if (auto *PI
= dyn_cast
<Instruction
>(P
))
3625 if (Value
*V
= simplifyInstruction(cast
<Instruction
>(PI
), SQ
)) {
3626 for (auto *U
: PI
->users())
3627 WorkList
.push_back(cast
<Value
>(U
));
3629 PI
->replaceAllUsesWith(V
);
3630 if (auto *PHI
= dyn_cast
<PHINode
>(PI
))
3631 AllPhiNodes
.erase(PHI
);
3632 if (auto *Select
= dyn_cast
<SelectInst
>(PI
))
3633 AllSelectNodes
.erase(Select
);
3634 PI
->eraseFromParent();
3640 void Put(Value
*From
, Value
*To
) { Storage
.insert({From
, To
}); }
3642 void ReplacePhi(PHINode
*From
, PHINode
*To
) {
3643 Value
*OldReplacement
= Get(From
);
3644 while (OldReplacement
!= From
) {
3646 To
= dyn_cast
<PHINode
>(OldReplacement
);
3647 OldReplacement
= Get(From
);
3649 assert(To
&& Get(To
) == To
&& "Replacement PHI node is already replaced.");
3651 From
->replaceAllUsesWith(To
);
3652 AllPhiNodes
.erase(From
);
3653 From
->eraseFromParent();
3656 PhiNodeSet
&newPhiNodes() { return AllPhiNodes
; }
3658 void insertNewPhi(PHINode
*PN
) { AllPhiNodes
.insert(PN
); }
3660 void insertNewSelect(SelectInst
*SI
) { AllSelectNodes
.insert(SI
); }
3662 unsigned countNewPhiNodes() const { return AllPhiNodes
.size(); }
3664 unsigned countNewSelectNodes() const { return AllSelectNodes
.size(); }
3666 void destroyNewNodes(Type
*CommonType
) {
3667 // For safe erasing, replace the uses with dummy value first.
3668 auto *Dummy
= PoisonValue::get(CommonType
);
3669 for (auto *I
: AllPhiNodes
) {
3670 I
->replaceAllUsesWith(Dummy
);
3671 I
->eraseFromParent();
3673 AllPhiNodes
.clear();
3674 for (auto *I
: AllSelectNodes
) {
3675 I
->replaceAllUsesWith(Dummy
);
3676 I
->eraseFromParent();
3678 AllSelectNodes
.clear();
3682 /// A helper class for combining addressing modes.
3683 class AddressingModeCombiner
{
3684 typedef DenseMap
<Value
*, Value
*> FoldAddrToValueMapping
;
3685 typedef std::pair
<PHINode
*, PHINode
*> PHIPair
;
3688 /// The addressing modes we've collected.
3689 SmallVector
<ExtAddrMode
, 16> AddrModes
;
3691 /// The field in which the AddrModes differ, when we have more than one.
3692 ExtAddrMode::FieldName DifferentField
= ExtAddrMode::NoField
;
3694 /// Are the AddrModes that we have all just equal to their original values?
3695 bool AllAddrModesTrivial
= true;
3697 /// Common Type for all different fields in addressing modes.
3698 Type
*CommonType
= nullptr;
3700 /// SimplifyQuery for simplifyInstruction utility.
3701 const SimplifyQuery
&SQ
;
3703 /// Original Address.
3706 /// Common value among addresses
3707 Value
*CommonValue
= nullptr;
3710 AddressingModeCombiner(const SimplifyQuery
&_SQ
, Value
*OriginalValue
)
3711 : SQ(_SQ
), Original(OriginalValue
) {}
3713 ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
3715 /// Get the combined AddrMode
3716 const ExtAddrMode
&getAddrMode() const { return AddrModes
[0]; }
3718 /// Add a new AddrMode if it's compatible with the AddrModes we already
3720 /// \return True iff we succeeded in doing so.
3721 bool addNewAddrMode(ExtAddrMode
&NewAddrMode
) {
3722 // Take note of if we have any non-trivial AddrModes, as we need to detect
3723 // when all AddrModes are trivial as then we would introduce a phi or select
3724 // which just duplicates what's already there.
3725 AllAddrModesTrivial
= AllAddrModesTrivial
&& NewAddrMode
.isTrivial();
3727 // If this is the first addrmode then everything is fine.
3728 if (AddrModes
.empty()) {
3729 AddrModes
.emplace_back(NewAddrMode
);
3733 // Figure out how different this is from the other address modes, which we
3734 // can do just by comparing against the first one given that we only care
3735 // about the cumulative difference.
3736 ExtAddrMode::FieldName ThisDifferentField
=
3737 AddrModes
[0].compare(NewAddrMode
);
3738 if (DifferentField
== ExtAddrMode::NoField
)
3739 DifferentField
= ThisDifferentField
;
3740 else if (DifferentField
!= ThisDifferentField
)
3741 DifferentField
= ExtAddrMode::MultipleFields
;
3743 // If NewAddrMode differs in more than one dimension we cannot handle it.
3744 bool CanHandle
= DifferentField
!= ExtAddrMode::MultipleFields
;
3746 // If Scale Field is different then we reject.
3747 CanHandle
= CanHandle
&& DifferentField
!= ExtAddrMode::ScaleField
;
3749 // We also must reject the case when base offset is different and
3750 // scale reg is not null, we cannot handle this case due to merge of
3751 // different offsets will be used as ScaleReg.
3752 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseOffsField
||
3753 !NewAddrMode
.ScaledReg
);
3755 // We also must reject the case when GV is different and BaseReg installed
3756 // due to we want to use base reg as a merge of GV values.
3757 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseGVField
||
3758 !NewAddrMode
.HasBaseReg
);
3760 // Even if NewAddMode is the same we still need to collect it due to
3761 // original value is different. And later we will need all original values
3762 // as anchors during finding the common Phi node.
3764 AddrModes
.emplace_back(NewAddrMode
);
3771 /// Combine the addressing modes we've collected into a single
3772 /// addressing mode.
3773 /// \return True iff we successfully combined them or we only had one so
3774 /// didn't need to combine them anyway.
3775 bool combineAddrModes() {
3776 // If we have no AddrModes then they can't be combined.
3777 if (AddrModes
.size() == 0)
3780 // A single AddrMode can trivially be combined.
3781 if (AddrModes
.size() == 1 || DifferentField
== ExtAddrMode::NoField
)
3784 // If the AddrModes we collected are all just equal to the value they are
3785 // derived from then combining them wouldn't do anything useful.
3786 if (AllAddrModesTrivial
)
3789 if (!addrModeCombiningAllowed())
3792 // Build a map between <original value, basic block where we saw it> to
3793 // value of base register.
3794 // Bail out if there is no common type.
3795 FoldAddrToValueMapping Map
;
3796 if (!initializeMap(Map
))
3799 CommonValue
= findCommon(Map
);
3801 AddrModes
[0].SetCombinedField(DifferentField
, CommonValue
, AddrModes
);
3802 return CommonValue
!= nullptr;
3806 /// `CommonValue` may be a placeholder inserted by us.
3807 /// If the placeholder is not used, we should remove this dead instruction.
3808 void eraseCommonValueIfDead() {
3809 if (CommonValue
&& CommonValue
->getNumUses() == 0)
3810 if (Instruction
*CommonInst
= dyn_cast
<Instruction
>(CommonValue
))
3811 CommonInst
->eraseFromParent();
3814 /// Initialize Map with anchor values. For address seen
3815 /// we set the value of different field saw in this address.
3816 /// At the same time we find a common type for different field we will
3817 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3818 /// Return false if there is no common type found.
3819 bool initializeMap(FoldAddrToValueMapping
&Map
) {
3820 // Keep track of keys where the value is null. We will need to replace it
3821 // with constant null when we know the common type.
3822 SmallVector
<Value
*, 2> NullValue
;
3823 Type
*IntPtrTy
= SQ
.DL
.getIntPtrType(AddrModes
[0].OriginalValue
->getType());
3824 for (auto &AM
: AddrModes
) {
3825 Value
*DV
= AM
.GetFieldAsValue(DifferentField
, IntPtrTy
);
3827 auto *Type
= DV
->getType();
3828 if (CommonType
&& CommonType
!= Type
)
3831 Map
[AM
.OriginalValue
] = DV
;
3833 NullValue
.push_back(AM
.OriginalValue
);
3836 assert(CommonType
&& "At least one non-null value must be!");
3837 for (auto *V
: NullValue
)
3838 Map
[V
] = Constant::getNullValue(CommonType
);
3842 /// We have mapping between value A and other value B where B was a field in
3843 /// addressing mode represented by A. Also we have an original value C
3844 /// representing an address we start with. Traversing from C through phi and
3845 /// selects we ended up with A's in a map. This utility function tries to find
3846 /// a value V which is a field in addressing mode C and traversing through phi
3847 /// nodes and selects we will end up in corresponded values B in a map.
3848 /// The utility will create a new Phi/Selects if needed.
3849 // The simple example looks as follows:
3857 // p = phi [p1, BB1], [p2, BB2]
3864 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3865 Value
*findCommon(FoldAddrToValueMapping
&Map
) {
3866 // Tracks the simplification of newly created phi nodes. The reason we use
3867 // this mapping is because we will add new created Phi nodes in AddrToBase.
3868 // Simplification of Phi nodes is recursive, so some Phi node may
3869 // be simplified after we added it to AddrToBase. In reality this
3870 // simplification is possible only if original phi/selects were not
3872 // Using this mapping we can find the current value in AddrToBase.
3873 SimplificationTracker
ST(SQ
);
3875 // First step, DFS to create PHI nodes for all intermediate blocks.
3876 // Also fill traverse order for the second step.
3877 SmallVector
<Value
*, 32> TraverseOrder
;
3878 InsertPlaceholders(Map
, TraverseOrder
, ST
);
3880 // Second Step, fill new nodes by merged values and simplify if possible.
3881 FillPlaceholders(Map
, TraverseOrder
, ST
);
3883 if (!AddrSinkNewSelects
&& ST
.countNewSelectNodes() > 0) {
3884 ST
.destroyNewNodes(CommonType
);
3888 // Now we'd like to match New Phi nodes to existed ones.
3889 unsigned PhiNotMatchedCount
= 0;
3890 if (!MatchPhiSet(ST
, AddrSinkNewPhis
, PhiNotMatchedCount
)) {
3891 ST
.destroyNewNodes(CommonType
);
3895 auto *Result
= ST
.Get(Map
.find(Original
)->second
);
3897 NumMemoryInstsPhiCreated
+= ST
.countNewPhiNodes() + PhiNotMatchedCount
;
3898 NumMemoryInstsSelectCreated
+= ST
.countNewSelectNodes();
3903 /// Try to match PHI node to Candidate.
3904 /// Matcher tracks the matched Phi nodes.
3905 bool MatchPhiNode(PHINode
*PHI
, PHINode
*Candidate
,
3906 SmallSetVector
<PHIPair
, 8> &Matcher
,
3907 PhiNodeSet
&PhiNodesToMatch
) {
3908 SmallVector
<PHIPair
, 8> WorkList
;
3909 Matcher
.insert({PHI
, Candidate
});
3910 SmallSet
<PHINode
*, 8> MatchedPHIs
;
3911 MatchedPHIs
.insert(PHI
);
3912 WorkList
.push_back({PHI
, Candidate
});
3913 SmallSet
<PHIPair
, 8> Visited
;
3914 while (!WorkList
.empty()) {
3915 auto Item
= WorkList
.pop_back_val();
3916 if (!Visited
.insert(Item
).second
)
3918 // We iterate over all incoming values to Phi to compare them.
3919 // If values are different and both of them Phi and the first one is a
3920 // Phi we added (subject to match) and both of them is in the same basic
3921 // block then we can match our pair if values match. So we state that
3922 // these values match and add it to work list to verify that.
3923 for (auto *B
: Item
.first
->blocks()) {
3924 Value
*FirstValue
= Item
.first
->getIncomingValueForBlock(B
);
3925 Value
*SecondValue
= Item
.second
->getIncomingValueForBlock(B
);
3926 if (FirstValue
== SecondValue
)
3929 PHINode
*FirstPhi
= dyn_cast
<PHINode
>(FirstValue
);
3930 PHINode
*SecondPhi
= dyn_cast
<PHINode
>(SecondValue
);
3932 // One of them is not Phi or
3933 // The first one is not Phi node from the set we'd like to match or
3934 // Phi nodes from different basic blocks then
3935 // we will not be able to match.
3936 if (!FirstPhi
|| !SecondPhi
|| !PhiNodesToMatch
.count(FirstPhi
) ||
3937 FirstPhi
->getParent() != SecondPhi
->getParent())
3940 // If we already matched them then continue.
3941 if (Matcher
.count({FirstPhi
, SecondPhi
}))
3943 // So the values are different and does not match. So we need them to
3944 // match. (But we register no more than one match per PHI node, so that
3945 // we won't later try to replace them twice.)
3946 if (MatchedPHIs
.insert(FirstPhi
).second
)
3947 Matcher
.insert({FirstPhi
, SecondPhi
});
3948 // But me must check it.
3949 WorkList
.push_back({FirstPhi
, SecondPhi
});
3955 /// For the given set of PHI nodes (in the SimplificationTracker) try
3956 /// to find their equivalents.
3957 /// Returns false if this matching fails and creation of new Phi is disabled.
3958 bool MatchPhiSet(SimplificationTracker
&ST
, bool AllowNewPhiNodes
,
3959 unsigned &PhiNotMatchedCount
) {
3960 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3961 // order, so the replacements (ReplacePhi) are also done in a deterministic
3963 SmallSetVector
<PHIPair
, 8> Matched
;
3964 SmallPtrSet
<PHINode
*, 8> WillNotMatch
;
3965 PhiNodeSet
&PhiNodesToMatch
= ST
.newPhiNodes();
3966 while (PhiNodesToMatch
.size()) {
3967 PHINode
*PHI
= *PhiNodesToMatch
.begin();
3969 // Add us, if no Phi nodes in the basic block we do not match.
3970 WillNotMatch
.clear();
3971 WillNotMatch
.insert(PHI
);
3973 // Traverse all Phis until we found equivalent or fail to do that.
3974 bool IsMatched
= false;
3975 for (auto &P
: PHI
->getParent()->phis()) {
3976 // Skip new Phi nodes.
3977 if (PhiNodesToMatch
.count(&P
))
3979 if ((IsMatched
= MatchPhiNode(PHI
, &P
, Matched
, PhiNodesToMatch
)))
3981 // If it does not match, collect all Phi nodes from matcher.
3982 // if we end up with no match, them all these Phi nodes will not match
3984 for (auto M
: Matched
)
3985 WillNotMatch
.insert(M
.first
);
3989 // Replace all matched values and erase them.
3990 for (auto MV
: Matched
)
3991 ST
.ReplacePhi(MV
.first
, MV
.second
);
3995 // If we are not allowed to create new nodes then bail out.
3996 if (!AllowNewPhiNodes
)
3998 // Just remove all seen values in matcher. They will not match anything.
3999 PhiNotMatchedCount
+= WillNotMatch
.size();
4000 for (auto *P
: WillNotMatch
)
4001 PhiNodesToMatch
.erase(P
);
4005 /// Fill the placeholders with values from predecessors and simplify them.
4006 void FillPlaceholders(FoldAddrToValueMapping
&Map
,
4007 SmallVectorImpl
<Value
*> &TraverseOrder
,
4008 SimplificationTracker
&ST
) {
4009 while (!TraverseOrder
.empty()) {
4010 Value
*Current
= TraverseOrder
.pop_back_val();
4011 assert(Map
.contains(Current
) && "No node to fill!!!");
4012 Value
*V
= Map
[Current
];
4014 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(V
)) {
4015 // CurrentValue also must be Select.
4016 auto *CurrentSelect
= cast
<SelectInst
>(Current
);
4017 auto *TrueValue
= CurrentSelect
->getTrueValue();
4018 assert(Map
.contains(TrueValue
) && "No True Value!");
4019 Select
->setTrueValue(ST
.Get(Map
[TrueValue
]));
4020 auto *FalseValue
= CurrentSelect
->getFalseValue();
4021 assert(Map
.contains(FalseValue
) && "No False Value!");
4022 Select
->setFalseValue(ST
.Get(Map
[FalseValue
]));
4024 // Must be a Phi node then.
4025 auto *PHI
= cast
<PHINode
>(V
);
4026 // Fill the Phi node with values from predecessors.
4027 for (auto *B
: predecessors(PHI
->getParent())) {
4028 Value
*PV
= cast
<PHINode
>(Current
)->getIncomingValueForBlock(B
);
4029 assert(Map
.contains(PV
) && "No predecessor Value!");
4030 PHI
->addIncoming(ST
.Get(Map
[PV
]), B
);
4033 Map
[Current
] = ST
.Simplify(V
);
4037 /// Starting from original value recursively iterates over def-use chain up to
4038 /// known ending values represented in a map. For each traversed phi/select
4039 /// inserts a placeholder Phi or Select.
4040 /// Reports all new created Phi/Select nodes by adding them to set.
4041 /// Also reports and order in what values have been traversed.
4042 void InsertPlaceholders(FoldAddrToValueMapping
&Map
,
4043 SmallVectorImpl
<Value
*> &TraverseOrder
,
4044 SimplificationTracker
&ST
) {
4045 SmallVector
<Value
*, 32> Worklist
;
4046 assert((isa
<PHINode
>(Original
) || isa
<SelectInst
>(Original
)) &&
4047 "Address must be a Phi or Select node");
4048 auto *Dummy
= PoisonValue::get(CommonType
);
4049 Worklist
.push_back(Original
);
4050 while (!Worklist
.empty()) {
4051 Value
*Current
= Worklist
.pop_back_val();
4052 // if it is already visited or it is an ending value then skip it.
4053 if (Map
.contains(Current
))
4055 TraverseOrder
.push_back(Current
);
4057 // CurrentValue must be a Phi node or select. All others must be covered
4059 if (SelectInst
*CurrentSelect
= dyn_cast
<SelectInst
>(Current
)) {
4060 // Is it OK to get metadata from OrigSelect?!
4061 // Create a Select placeholder with dummy value.
4062 SelectInst
*Select
= SelectInst::Create(
4063 CurrentSelect
->getCondition(), Dummy
, Dummy
,
4064 CurrentSelect
->getName(), CurrentSelect
, CurrentSelect
);
4065 Map
[Current
] = Select
;
4066 ST
.insertNewSelect(Select
);
4067 // We are interested in True and False values.
4068 Worklist
.push_back(CurrentSelect
->getTrueValue());
4069 Worklist
.push_back(CurrentSelect
->getFalseValue());
4071 // It must be a Phi node then.
4072 PHINode
*CurrentPhi
= cast
<PHINode
>(Current
);
4073 unsigned PredCount
= CurrentPhi
->getNumIncomingValues();
4075 PHINode::Create(CommonType
, PredCount
, "sunk_phi", CurrentPhi
);
4077 ST
.insertNewPhi(PHI
);
4078 append_range(Worklist
, CurrentPhi
->incoming_values());
4083 bool addrModeCombiningAllowed() {
4084 if (DisableComplexAddrModes
)
4086 switch (DifferentField
) {
4089 case ExtAddrMode::BaseRegField
:
4090 return AddrSinkCombineBaseReg
;
4091 case ExtAddrMode::BaseGVField
:
4092 return AddrSinkCombineBaseGV
;
4093 case ExtAddrMode::BaseOffsField
:
4094 return AddrSinkCombineBaseOffs
;
4095 case ExtAddrMode::ScaledRegField
:
4096 return AddrSinkCombineScaledReg
;
4100 } // end anonymous namespace
4102 /// Try adding ScaleReg*Scale to the current addressing mode.
4103 /// Return true and update AddrMode if this addr mode is legal for the target,
4105 bool AddressingModeMatcher::matchScaledValue(Value
*ScaleReg
, int64_t Scale
,
4107 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4108 // mode. Just process that directly.
4110 return matchAddr(ScaleReg
, Depth
);
4112 // If the scale is 0, it takes nothing to add this.
4116 // If we already have a scale of this value, we can add to it, otherwise, we
4117 // need an available scale field.
4118 if (AddrMode
.Scale
!= 0 && AddrMode
.ScaledReg
!= ScaleReg
)
4121 ExtAddrMode TestAddrMode
= AddrMode
;
4123 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
4124 // [A+B + A*7] -> [B+A*8].
4125 TestAddrMode
.Scale
+= Scale
;
4126 TestAddrMode
.ScaledReg
= ScaleReg
;
4128 // If the new address isn't legal, bail out.
4129 if (!TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
))
4132 // It was legal, so commit it.
4133 AddrMode
= TestAddrMode
;
4135 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
4136 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
4137 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4138 // go any further: we can reuse it and cannot eliminate it.
4139 ConstantInt
*CI
= nullptr;
4140 Value
*AddLHS
= nullptr;
4141 if (isa
<Instruction
>(ScaleReg
) && // not a constant expr.
4142 match(ScaleReg
, m_Add(m_Value(AddLHS
), m_ConstantInt(CI
))) &&
4143 !isIVIncrement(ScaleReg
, &LI
) && CI
->getValue().isSignedIntN(64)) {
4144 TestAddrMode
.InBounds
= false;
4145 TestAddrMode
.ScaledReg
= AddLHS
;
4146 TestAddrMode
.BaseOffs
+= CI
->getSExtValue() * TestAddrMode
.Scale
;
4148 // If this addressing mode is legal, commit it and remember that we folded
4149 // this instruction.
4150 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
)) {
4151 AddrModeInsts
.push_back(cast
<Instruction
>(ScaleReg
));
4152 AddrMode
= TestAddrMode
;
4155 // Restore status quo.
4156 TestAddrMode
= AddrMode
;
4159 // If this is an add recurrence with a constant step, return the increment
4160 // instruction and the canonicalized step.
4161 auto GetConstantStep
=
4162 [this](const Value
*V
) -> std::optional
<std::pair
<Instruction
*, APInt
>> {
4163 auto *PN
= dyn_cast
<PHINode
>(V
);
4165 return std::nullopt
;
4166 auto IVInc
= getIVIncrement(PN
, &LI
);
4168 return std::nullopt
;
4169 // TODO: The result of the intrinsics above is two-complement. However when
4170 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4171 // If it has nuw or nsw flags, we need to make sure that these flags are
4172 // inferrable at the point of memory instruction. Otherwise we are replacing
4173 // well-defined two-complement computation with poison. Currently, to avoid
4174 // potentially complex analysis needed to prove this, we reject such cases.
4175 if (auto *OIVInc
= dyn_cast
<OverflowingBinaryOperator
>(IVInc
->first
))
4176 if (OIVInc
->hasNoSignedWrap() || OIVInc
->hasNoUnsignedWrap())
4177 return std::nullopt
;
4178 if (auto *ConstantStep
= dyn_cast
<ConstantInt
>(IVInc
->second
))
4179 return std::make_pair(IVInc
->first
, ConstantStep
->getValue());
4180 return std::nullopt
;
4183 // Try to account for the following special case:
4184 // 1. ScaleReg is an inductive variable;
4185 // 2. We use it with non-zero offset;
4186 // 3. IV's increment is available at the point of memory instruction.
4188 // In this case, we may reuse the IV increment instead of the IV Phi to
4189 // achieve the following advantages:
4190 // 1. If IV step matches the offset, we will have no need in the offset;
4191 // 2. Even if they don't match, we will reduce the overlap of living IV
4192 // and IV increment, that will potentially lead to better register
4194 if (AddrMode
.BaseOffs
) {
4195 if (auto IVStep
= GetConstantStep(ScaleReg
)) {
4196 Instruction
*IVInc
= IVStep
->first
;
4197 // The following assert is important to ensure a lack of infinite loops.
4198 // This transforms is (intentionally) the inverse of the one just above.
4199 // If they don't agree on the definition of an increment, we'd alternate
4200 // back and forth indefinitely.
4201 assert(isIVIncrement(IVInc
, &LI
) && "implied by GetConstantStep");
4202 APInt Step
= IVStep
->second
;
4203 APInt Offset
= Step
* AddrMode
.Scale
;
4204 if (Offset
.isSignedIntN(64)) {
4205 TestAddrMode
.InBounds
= false;
4206 TestAddrMode
.ScaledReg
= IVInc
;
4207 TestAddrMode
.BaseOffs
-= Offset
.getLimitedValue();
4208 // If this addressing mode is legal, commit it..
4209 // (Note that we defer the (expensive) domtree base legality check
4210 // to the very last possible point.)
4211 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
) &&
4212 getDTFn().dominates(IVInc
, MemoryInst
)) {
4213 AddrModeInsts
.push_back(cast
<Instruction
>(IVInc
));
4214 AddrMode
= TestAddrMode
;
4217 // Restore status quo.
4218 TestAddrMode
= AddrMode
;
4223 // Otherwise, just return what we have.
4227 /// This is a little filter, which returns true if an addressing computation
4228 /// involving I might be folded into a load/store accessing it.
4229 /// This doesn't need to be perfect, but needs to accept at least
4230 /// the set of instructions that MatchOperationAddr can.
4231 static bool MightBeFoldableInst(Instruction
*I
) {
4232 switch (I
->getOpcode()) {
4233 case Instruction::BitCast
:
4234 case Instruction::AddrSpaceCast
:
4235 // Don't touch identity bitcasts.
4236 if (I
->getType() == I
->getOperand(0)->getType())
4238 return I
->getType()->isIntOrPtrTy();
4239 case Instruction::PtrToInt
:
4240 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4242 case Instruction::IntToPtr
:
4243 // We know the input is intptr_t, so this is foldable.
4245 case Instruction::Add
:
4247 case Instruction::Mul
:
4248 case Instruction::Shl
:
4249 // Can only handle X*C and X << C.
4250 return isa
<ConstantInt
>(I
->getOperand(1));
4251 case Instruction::GetElementPtr
:
4258 /// Check whether or not \p Val is a legal instruction for \p TLI.
4259 /// \note \p Val is assumed to be the product of some type promotion.
4260 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4261 /// to be legal, as the non-promoted value would have had the same state.
4262 static bool isPromotedInstructionLegal(const TargetLowering
&TLI
,
4263 const DataLayout
&DL
, Value
*Val
) {
4264 Instruction
*PromotedInst
= dyn_cast
<Instruction
>(Val
);
4267 int ISDOpcode
= TLI
.InstructionOpcodeToISD(PromotedInst
->getOpcode());
4268 // If the ISDOpcode is undefined, it was undefined before the promotion.
4271 // Otherwise, check if the promoted instruction is legal or not.
4272 return TLI
.isOperationLegalOrCustom(
4273 ISDOpcode
, TLI
.getValueType(DL
, PromotedInst
->getType()));
4278 /// Hepler class to perform type promotion.
4279 class TypePromotionHelper
{
4280 /// Utility function to add a promoted instruction \p ExtOpnd to
4281 /// \p PromotedInsts and record the type of extension we have seen.
4282 static void addPromotedInst(InstrToOrigTy
&PromotedInsts
,
4283 Instruction
*ExtOpnd
, bool IsSExt
) {
4284 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
4285 InstrToOrigTy::iterator It
= PromotedInsts
.find(ExtOpnd
);
4286 if (It
!= PromotedInsts
.end()) {
4287 // If the new extension is same as original, the information in
4288 // PromotedInsts[ExtOpnd] is still correct.
4289 if (It
->second
.getInt() == ExtTy
)
4292 // Now the new extension is different from old extension, we make
4293 // the type information invalid by setting extension type to
4295 ExtTy
= BothExtension
;
4297 PromotedInsts
[ExtOpnd
] = TypeIsSExt(ExtOpnd
->getType(), ExtTy
);
4300 /// Utility function to query the original type of instruction \p Opnd
4301 /// with a matched extension type. If the extension doesn't match, we
4302 /// cannot use the information we had on the original type.
4303 /// BothExtension doesn't match any extension type.
4304 static const Type
*getOrigType(const InstrToOrigTy
&PromotedInsts
,
4305 Instruction
*Opnd
, bool IsSExt
) {
4306 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
4307 InstrToOrigTy::const_iterator It
= PromotedInsts
.find(Opnd
);
4308 if (It
!= PromotedInsts
.end() && It
->second
.getInt() == ExtTy
)
4309 return It
->second
.getPointer();
4313 /// Utility function to check whether or not a sign or zero extension
4314 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4315 /// either using the operands of \p Inst or promoting \p Inst.
4316 /// The type of the extension is defined by \p IsSExt.
4317 /// In other words, check if:
4318 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4319 /// #1 Promotion applies:
4320 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4321 /// #2 Operand reuses:
4322 /// ext opnd1 to ConsideredExtType.
4323 /// \p PromotedInsts maps the instructions to their type before promotion.
4324 static bool canGetThrough(const Instruction
*Inst
, Type
*ConsideredExtType
,
4325 const InstrToOrigTy
&PromotedInsts
, bool IsSExt
);
4327 /// Utility function to determine if \p OpIdx should be promoted when
4328 /// promoting \p Inst.
4329 static bool shouldExtOperand(const Instruction
*Inst
, int OpIdx
) {
4330 return !(isa
<SelectInst
>(Inst
) && OpIdx
== 0);
4333 /// Utility function to promote the operand of \p Ext when this
4334 /// operand is a promotable trunc or sext or zext.
4335 /// \p PromotedInsts maps the instructions to their type before promotion.
4336 /// \p CreatedInstsCost[out] contains the cost of all instructions
4337 /// created to promote the operand of Ext.
4338 /// Newly added extensions are inserted in \p Exts.
4339 /// Newly added truncates are inserted in \p Truncs.
4340 /// Should never be called directly.
4341 /// \return The promoted value which is used instead of Ext.
4342 static Value
*promoteOperandForTruncAndAnyExt(
4343 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4344 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4345 SmallVectorImpl
<Instruction
*> *Exts
,
4346 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
);
4348 /// Utility function to promote the operand of \p Ext when this
4349 /// operand is promotable and is not a supported trunc or sext.
4350 /// \p PromotedInsts maps the instructions to their type before promotion.
4351 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4352 /// created to promote the operand of Ext.
4353 /// Newly added extensions are inserted in \p Exts.
4354 /// Newly added truncates are inserted in \p Truncs.
4355 /// Should never be called directly.
4356 /// \return The promoted value which is used instead of Ext.
4357 static Value
*promoteOperandForOther(Instruction
*Ext
,
4358 TypePromotionTransaction
&TPT
,
4359 InstrToOrigTy
&PromotedInsts
,
4360 unsigned &CreatedInstsCost
,
4361 SmallVectorImpl
<Instruction
*> *Exts
,
4362 SmallVectorImpl
<Instruction
*> *Truncs
,
4363 const TargetLowering
&TLI
, bool IsSExt
);
4365 /// \see promoteOperandForOther.
4366 static Value
*signExtendOperandForOther(
4367 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4368 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4369 SmallVectorImpl
<Instruction
*> *Exts
,
4370 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4371 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
4372 Exts
, Truncs
, TLI
, true);
4375 /// \see promoteOperandForOther.
4376 static Value
*zeroExtendOperandForOther(
4377 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4378 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4379 SmallVectorImpl
<Instruction
*> *Exts
,
4380 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4381 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
4382 Exts
, Truncs
, TLI
, false);
4386 /// Type for the utility function that promotes the operand of Ext.
4387 using Action
= Value
*(*)(Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4388 InstrToOrigTy
&PromotedInsts
,
4389 unsigned &CreatedInstsCost
,
4390 SmallVectorImpl
<Instruction
*> *Exts
,
4391 SmallVectorImpl
<Instruction
*> *Truncs
,
4392 const TargetLowering
&TLI
);
4394 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4395 /// action to promote the operand of \p Ext instead of using Ext.
4396 /// \return NULL if no promotable action is possible with the current
4398 /// \p InsertedInsts keeps track of all the instructions inserted by the
4399 /// other CodeGenPrepare optimizations. This information is important
4400 /// because we do not want to promote these instructions as CodeGenPrepare
4401 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4402 /// \p PromotedInsts maps the instructions to their type before promotion.
4403 static Action
getAction(Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
4404 const TargetLowering
&TLI
,
4405 const InstrToOrigTy
&PromotedInsts
);
4408 } // end anonymous namespace
4410 bool TypePromotionHelper::canGetThrough(const Instruction
*Inst
,
4411 Type
*ConsideredExtType
,
4412 const InstrToOrigTy
&PromotedInsts
,
4414 // The promotion helper does not know how to deal with vector types yet.
4415 // To be able to fix that, we would need to fix the places where we
4416 // statically extend, e.g., constants and such.
4417 if (Inst
->getType()->isVectorTy())
4420 // We can always get through zext.
4421 if (isa
<ZExtInst
>(Inst
))
4424 // sext(sext) is ok too.
4425 if (IsSExt
&& isa
<SExtInst
>(Inst
))
4428 // We can get through binary operator, if it is legal. In other words, the
4429 // binary operator must have a nuw or nsw flag.
4430 if (const auto *BinOp
= dyn_cast
<BinaryOperator
>(Inst
))
4431 if (isa
<OverflowingBinaryOperator
>(BinOp
) &&
4432 ((!IsSExt
&& BinOp
->hasNoUnsignedWrap()) ||
4433 (IsSExt
&& BinOp
->hasNoSignedWrap())))
4436 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4437 if ((Inst
->getOpcode() == Instruction::And
||
4438 Inst
->getOpcode() == Instruction::Or
))
4441 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4442 if (Inst
->getOpcode() == Instruction::Xor
) {
4443 // Make sure it is not a NOT.
4444 if (const auto *Cst
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1)))
4445 if (!Cst
->getValue().isAllOnes())
4449 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4450 // It may change a poisoned value into a regular value, like
4451 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4452 // poisoned value regular value
4453 // It should be OK since undef covers valid value.
4454 if (Inst
->getOpcode() == Instruction::LShr
&& !IsSExt
)
4457 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4458 // It may change a poisoned value into a regular value, like
4459 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4460 // poisoned value regular value
4461 // It should be OK since undef covers valid value.
4462 if (Inst
->getOpcode() == Instruction::Shl
&& Inst
->hasOneUse()) {
4463 const auto *ExtInst
= cast
<const Instruction
>(*Inst
->user_begin());
4464 if (ExtInst
->hasOneUse()) {
4465 const auto *AndInst
= dyn_cast
<const Instruction
>(*ExtInst
->user_begin());
4466 if (AndInst
&& AndInst
->getOpcode() == Instruction::And
) {
4467 const auto *Cst
= dyn_cast
<ConstantInt
>(AndInst
->getOperand(1));
4469 Cst
->getValue().isIntN(Inst
->getType()->getIntegerBitWidth()))
4475 // Check if we can do the following simplification.
4476 // ext(trunc(opnd)) --> ext(opnd)
4477 if (!isa
<TruncInst
>(Inst
))
4480 Value
*OpndVal
= Inst
->getOperand(0);
4481 // Check if we can use this operand in the extension.
4482 // If the type is larger than the result type of the extension, we cannot.
4483 if (!OpndVal
->getType()->isIntegerTy() ||
4484 OpndVal
->getType()->getIntegerBitWidth() >
4485 ConsideredExtType
->getIntegerBitWidth())
4488 // If the operand of the truncate is not an instruction, we will not have
4489 // any information on the dropped bits.
4490 // (Actually we could for constant but it is not worth the extra logic).
4491 Instruction
*Opnd
= dyn_cast
<Instruction
>(OpndVal
);
4495 // Check if the source of the type is narrow enough.
4496 // I.e., check that trunc just drops extended bits of the same kind of
4498 // #1 get the type of the operand and check the kind of the extended bits.
4499 const Type
*OpndType
= getOrigType(PromotedInsts
, Opnd
, IsSExt
);
4502 else if ((IsSExt
&& isa
<SExtInst
>(Opnd
)) || (!IsSExt
&& isa
<ZExtInst
>(Opnd
)))
4503 OpndType
= Opnd
->getOperand(0)->getType();
4507 // #2 check that the truncate just drops extended bits.
4508 return Inst
->getType()->getIntegerBitWidth() >=
4509 OpndType
->getIntegerBitWidth();
4512 TypePromotionHelper::Action
TypePromotionHelper::getAction(
4513 Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
4514 const TargetLowering
&TLI
, const InstrToOrigTy
&PromotedInsts
) {
4515 assert((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
4516 "Unexpected instruction type");
4517 Instruction
*ExtOpnd
= dyn_cast
<Instruction
>(Ext
->getOperand(0));
4518 Type
*ExtTy
= Ext
->getType();
4519 bool IsSExt
= isa
<SExtInst
>(Ext
);
4520 // If the operand of the extension is not an instruction, we cannot
4522 // If it, check we can get through.
4523 if (!ExtOpnd
|| !canGetThrough(ExtOpnd
, ExtTy
, PromotedInsts
, IsSExt
))
4526 // Do not promote if the operand has been added by codegenprepare.
4527 // Otherwise, it means we are undoing an optimization that is likely to be
4528 // redone, thus causing potential infinite loop.
4529 if (isa
<TruncInst
>(ExtOpnd
) && InsertedInsts
.count(ExtOpnd
))
4532 // SExt or Trunc instructions.
4533 // Return the related handler.
4534 if (isa
<SExtInst
>(ExtOpnd
) || isa
<TruncInst
>(ExtOpnd
) ||
4535 isa
<ZExtInst
>(ExtOpnd
))
4536 return promoteOperandForTruncAndAnyExt
;
4538 // Regular instruction.
4539 // Abort early if we will have to insert non-free instructions.
4540 if (!ExtOpnd
->hasOneUse() && !TLI
.isTruncateFree(ExtTy
, ExtOpnd
->getType()))
4542 return IsSExt
? signExtendOperandForOther
: zeroExtendOperandForOther
;
4545 Value
*TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4546 Instruction
*SExt
, TypePromotionTransaction
&TPT
,
4547 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4548 SmallVectorImpl
<Instruction
*> *Exts
,
4549 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4550 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4551 // get through it and this method should not be called.
4552 Instruction
*SExtOpnd
= cast
<Instruction
>(SExt
->getOperand(0));
4553 Value
*ExtVal
= SExt
;
4554 bool HasMergedNonFreeExt
= false;
4555 if (isa
<ZExtInst
>(SExtOpnd
)) {
4556 // Replace s|zext(zext(opnd))
4558 HasMergedNonFreeExt
= !TLI
.isExtFree(SExtOpnd
);
4560 TPT
.createZExt(SExt
, SExtOpnd
->getOperand(0), SExt
->getType());
4561 TPT
.replaceAllUsesWith(SExt
, ZExt
);
4562 TPT
.eraseInstruction(SExt
);
4565 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4567 TPT
.setOperand(SExt
, 0, SExtOpnd
->getOperand(0));
4569 CreatedInstsCost
= 0;
4571 // Remove dead code.
4572 if (SExtOpnd
->use_empty())
4573 TPT
.eraseInstruction(SExtOpnd
);
4575 // Check if the extension is still needed.
4576 Instruction
*ExtInst
= dyn_cast
<Instruction
>(ExtVal
);
4577 if (!ExtInst
|| ExtInst
->getType() != ExtInst
->getOperand(0)->getType()) {
4580 Exts
->push_back(ExtInst
);
4581 CreatedInstsCost
= !TLI
.isExtFree(ExtInst
) && !HasMergedNonFreeExt
;
4586 // At this point we have: ext ty opnd to ty.
4587 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4588 Value
*NextVal
= ExtInst
->getOperand(0);
4589 TPT
.eraseInstruction(ExtInst
, NextVal
);
4593 Value
*TypePromotionHelper::promoteOperandForOther(
4594 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4595 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4596 SmallVectorImpl
<Instruction
*> *Exts
,
4597 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
,
4599 // By construction, the operand of Ext is an instruction. Otherwise we cannot
4600 // get through it and this method should not be called.
4601 Instruction
*ExtOpnd
= cast
<Instruction
>(Ext
->getOperand(0));
4602 CreatedInstsCost
= 0;
4603 if (!ExtOpnd
->hasOneUse()) {
4604 // ExtOpnd will be promoted.
4605 // All its uses, but Ext, will need to use a truncated value of the
4606 // promoted version.
4607 // Create the truncate now.
4608 Value
*Trunc
= TPT
.createTrunc(Ext
, ExtOpnd
->getType());
4609 if (Instruction
*ITrunc
= dyn_cast
<Instruction
>(Trunc
)) {
4610 // Insert it just after the definition.
4611 ITrunc
->moveAfter(ExtOpnd
);
4613 Truncs
->push_back(ITrunc
);
4616 TPT
.replaceAllUsesWith(ExtOpnd
, Trunc
);
4617 // Restore the operand of Ext (which has been replaced by the previous call
4618 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4619 TPT
.setOperand(Ext
, 0, ExtOpnd
);
4622 // Get through the Instruction:
4623 // 1. Update its type.
4624 // 2. Replace the uses of Ext by Inst.
4625 // 3. Extend each operand that needs to be extended.
4627 // Remember the original type of the instruction before promotion.
4628 // This is useful to know that the high bits are sign extended bits.
4629 addPromotedInst(PromotedInsts
, ExtOpnd
, IsSExt
);
4631 TPT
.mutateType(ExtOpnd
, Ext
->getType());
4633 TPT
.replaceAllUsesWith(Ext
, ExtOpnd
);
4635 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4636 for (int OpIdx
= 0, EndOpIdx
= ExtOpnd
->getNumOperands(); OpIdx
!= EndOpIdx
;
4638 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd
->getOperand(OpIdx
)) << '\n');
4639 if (ExtOpnd
->getOperand(OpIdx
)->getType() == Ext
->getType() ||
4640 !shouldExtOperand(ExtOpnd
, OpIdx
)) {
4641 LLVM_DEBUG(dbgs() << "No need to propagate\n");
4644 // Check if we can statically extend the operand.
4645 Value
*Opnd
= ExtOpnd
->getOperand(OpIdx
);
4646 if (const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Opnd
)) {
4647 LLVM_DEBUG(dbgs() << "Statically extend\n");
4648 unsigned BitWidth
= Ext
->getType()->getIntegerBitWidth();
4649 APInt CstVal
= IsSExt
? Cst
->getValue().sext(BitWidth
)
4650 : Cst
->getValue().zext(BitWidth
);
4651 TPT
.setOperand(ExtOpnd
, OpIdx
, ConstantInt::get(Ext
->getType(), CstVal
));
4654 // UndefValue are typed, so we have to statically sign extend them.
4655 if (isa
<UndefValue
>(Opnd
)) {
4656 LLVM_DEBUG(dbgs() << "Statically extend\n");
4657 TPT
.setOperand(ExtOpnd
, OpIdx
, UndefValue::get(Ext
->getType()));
4661 // Otherwise we have to explicitly sign extend the operand.
4662 Value
*ValForExtOpnd
= IsSExt
4663 ? TPT
.createSExt(ExtOpnd
, Opnd
, Ext
->getType())
4664 : TPT
.createZExt(ExtOpnd
, Opnd
, Ext
->getType());
4665 TPT
.setOperand(ExtOpnd
, OpIdx
, ValForExtOpnd
);
4666 Instruction
*InstForExtOpnd
= dyn_cast
<Instruction
>(ValForExtOpnd
);
4667 if (!InstForExtOpnd
)
4671 Exts
->push_back(InstForExtOpnd
);
4673 CreatedInstsCost
+= !TLI
.isExtFree(InstForExtOpnd
);
4675 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4676 TPT
.eraseInstruction(Ext
);
4680 /// Check whether or not promoting an instruction to a wider type is profitable.
4681 /// \p NewCost gives the cost of extension instructions created by the
4683 /// \p OldCost gives the cost of extension instructions before the promotion
4684 /// plus the number of instructions that have been
4685 /// matched in the addressing mode the promotion.
4686 /// \p PromotedOperand is the value that has been promoted.
4687 /// \return True if the promotion is profitable, false otherwise.
4688 bool AddressingModeMatcher::isPromotionProfitable(
4689 unsigned NewCost
, unsigned OldCost
, Value
*PromotedOperand
) const {
4690 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost
<< "\tNewCost: " << NewCost
4692 // The cost of the new extensions is greater than the cost of the
4693 // old extension plus what we folded.
4694 // This is not profitable.
4695 if (NewCost
> OldCost
)
4697 if (NewCost
< OldCost
)
4699 // The promotion is neutral but it may help folding the sign extension in
4700 // loads for instance.
4701 // Check that we did not create an illegal instruction.
4702 return isPromotedInstructionLegal(TLI
, DL
, PromotedOperand
);
4705 /// Given an instruction or constant expr, see if we can fold the operation
4706 /// into the addressing mode. If so, update the addressing mode and return
4707 /// true, otherwise return false without modifying AddrMode.
4708 /// If \p MovedAway is not NULL, it contains the information of whether or
4709 /// not AddrInst has to be folded into the addressing mode on success.
4710 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4711 /// because it has been moved away.
4712 /// Thus AddrInst must not be added in the matched instructions.
4713 /// This state can happen when AddrInst is a sext, since it may be moved away.
4714 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4715 /// not be referenced anymore.
4716 bool AddressingModeMatcher::matchOperationAddr(User
*AddrInst
, unsigned Opcode
,
4719 // Avoid exponential behavior on extremely deep expression trees.
4723 // By default, all matched instructions stay in place.
4728 case Instruction::PtrToInt
:
4729 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4730 return matchAddr(AddrInst
->getOperand(0), Depth
);
4731 case Instruction::IntToPtr
: {
4732 auto AS
= AddrInst
->getType()->getPointerAddressSpace();
4733 auto PtrTy
= MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
4734 // This inttoptr is a no-op if the integer type is pointer sized.
4735 if (TLI
.getValueType(DL
, AddrInst
->getOperand(0)->getType()) == PtrTy
)
4736 return matchAddr(AddrInst
->getOperand(0), Depth
);
4739 case Instruction::BitCast
:
4740 // BitCast is always a noop, and we can handle it as long as it is
4741 // int->int or pointer->pointer (we don't want int<->fp or something).
4742 if (AddrInst
->getOperand(0)->getType()->isIntOrPtrTy() &&
4743 // Don't touch identity bitcasts. These were probably put here by LSR,
4744 // and we don't want to mess around with them. Assume it knows what it
4746 AddrInst
->getOperand(0)->getType() != AddrInst
->getType())
4747 return matchAddr(AddrInst
->getOperand(0), Depth
);
4749 case Instruction::AddrSpaceCast
: {
4751 AddrInst
->getOperand(0)->getType()->getPointerAddressSpace();
4752 unsigned DestAS
= AddrInst
->getType()->getPointerAddressSpace();
4753 if (TLI
.getTargetMachine().isNoopAddrSpaceCast(SrcAS
, DestAS
))
4754 return matchAddr(AddrInst
->getOperand(0), Depth
);
4757 case Instruction::Add
: {
4758 // Check to see if we can merge in one operand, then the other. If so, we
4760 ExtAddrMode BackupAddrMode
= AddrMode
;
4761 unsigned OldSize
= AddrModeInsts
.size();
4762 // Start a transaction at this point.
4763 // The LHS may match but not the RHS.
4764 // Therefore, we need a higher level restoration point to undo partially
4765 // matched operation.
4766 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4767 TPT
.getRestorationPoint();
4769 // Try to match an integer constant second to increase its chance of ending
4770 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
4771 int First
= 0, Second
= 1;
4772 if (isa
<ConstantInt
>(AddrInst
->getOperand(First
))
4773 && !isa
<ConstantInt
>(AddrInst
->getOperand(Second
)))
4774 std::swap(First
, Second
);
4775 AddrMode
.InBounds
= false;
4776 if (matchAddr(AddrInst
->getOperand(First
), Depth
+ 1) &&
4777 matchAddr(AddrInst
->getOperand(Second
), Depth
+ 1))
4780 // Restore the old addr mode info.
4781 AddrMode
= BackupAddrMode
;
4782 AddrModeInsts
.resize(OldSize
);
4783 TPT
.rollback(LastKnownGood
);
4785 // Otherwise this was over-aggressive. Try merging operands in the opposite
4787 if (matchAddr(AddrInst
->getOperand(Second
), Depth
+ 1) &&
4788 matchAddr(AddrInst
->getOperand(First
), Depth
+ 1))
4791 // Otherwise we definitely can't merge the ADD in.
4792 AddrMode
= BackupAddrMode
;
4793 AddrModeInsts
.resize(OldSize
);
4794 TPT
.rollback(LastKnownGood
);
4797 // case Instruction::Or:
4798 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4800 case Instruction::Mul
:
4801 case Instruction::Shl
: {
4802 // Can only handle X*C and X << C.
4803 AddrMode
.InBounds
= false;
4804 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(1));
4805 if (!RHS
|| RHS
->getBitWidth() > 64)
4807 int64_t Scale
= Opcode
== Instruction::Shl
4808 ? 1LL << RHS
->getLimitedValue(RHS
->getBitWidth() - 1)
4809 : RHS
->getSExtValue();
4811 return matchScaledValue(AddrInst
->getOperand(0), Scale
, Depth
);
4813 case Instruction::GetElementPtr
: {
4814 // Scan the GEP. We check it if it contains constant offsets and at most
4815 // one variable offset.
4816 int VariableOperand
= -1;
4817 unsigned VariableScale
= 0;
4819 int64_t ConstantOffset
= 0;
4820 gep_type_iterator GTI
= gep_type_begin(AddrInst
);
4821 for (unsigned i
= 1, e
= AddrInst
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
4822 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
4823 const StructLayout
*SL
= DL
.getStructLayout(STy
);
4825 cast
<ConstantInt
>(AddrInst
->getOperand(i
))->getZExtValue();
4826 ConstantOffset
+= SL
->getElementOffset(Idx
);
4828 TypeSize TS
= GTI
.getSequentialElementStride(DL
);
4829 if (TS
.isNonZero()) {
4830 // The optimisations below currently only work for fixed offsets.
4831 if (TS
.isScalable())
4833 int64_t TypeSize
= TS
.getFixedValue();
4834 if (ConstantInt
*CI
=
4835 dyn_cast
<ConstantInt
>(AddrInst
->getOperand(i
))) {
4836 const APInt
&CVal
= CI
->getValue();
4837 if (CVal
.getSignificantBits() <= 64) {
4838 ConstantOffset
+= CVal
.getSExtValue() * TypeSize
;
4842 // We only allow one variable index at the moment.
4843 if (VariableOperand
!= -1)
4846 // Remember the variable index.
4847 VariableOperand
= i
;
4848 VariableScale
= TypeSize
;
4853 // A common case is for the GEP to only do a constant offset. In this case,
4854 // just add it to the disp field and check validity.
4855 if (VariableOperand
== -1) {
4856 AddrMode
.BaseOffs
+= ConstantOffset
;
4857 if (matchAddr(AddrInst
->getOperand(0), Depth
+ 1)) {
4858 if (!cast
<GEPOperator
>(AddrInst
)->isInBounds())
4859 AddrMode
.InBounds
= false;
4862 AddrMode
.BaseOffs
-= ConstantOffset
;
4864 if (EnableGEPOffsetSplit
&& isa
<GetElementPtrInst
>(AddrInst
) &&
4865 TLI
.shouldConsiderGEPOffsetSplit() && Depth
== 0 &&
4866 ConstantOffset
> 0) {
4867 // Record GEPs with non-zero offsets as candidates for splitting in
4868 // the event that the offset cannot fit into the r+i addressing mode.
4869 // Simple and common case that only one GEP is used in calculating the
4870 // address for the memory access.
4871 Value
*Base
= AddrInst
->getOperand(0);
4872 auto *BaseI
= dyn_cast
<Instruction
>(Base
);
4873 auto *GEP
= cast
<GetElementPtrInst
>(AddrInst
);
4874 if (isa
<Argument
>(Base
) || isa
<GlobalValue
>(Base
) ||
4875 (BaseI
&& !isa
<CastInst
>(BaseI
) &&
4876 !isa
<GetElementPtrInst
>(BaseI
))) {
4877 // Make sure the parent block allows inserting non-PHI instructions
4878 // before the terminator.
4879 BasicBlock
*Parent
= BaseI
? BaseI
->getParent()
4880 : &GEP
->getFunction()->getEntryBlock();
4881 if (!Parent
->getTerminator()->isEHPad())
4882 LargeOffsetGEP
= std::make_pair(GEP
, ConstantOffset
);
4889 // Save the valid addressing mode in case we can't match.
4890 ExtAddrMode BackupAddrMode
= AddrMode
;
4891 unsigned OldSize
= AddrModeInsts
.size();
4893 // See if the scale and offset amount is valid for this target.
4894 AddrMode
.BaseOffs
+= ConstantOffset
;
4895 if (!cast
<GEPOperator
>(AddrInst
)->isInBounds())
4896 AddrMode
.InBounds
= false;
4898 // Match the base operand of the GEP.
4899 if (!matchAddr(AddrInst
->getOperand(0), Depth
+ 1)) {
4900 // If it couldn't be matched, just stuff the value in a register.
4901 if (AddrMode
.HasBaseReg
) {
4902 AddrMode
= BackupAddrMode
;
4903 AddrModeInsts
.resize(OldSize
);
4906 AddrMode
.HasBaseReg
= true;
4907 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4910 // Match the remaining variable portion of the GEP.
4911 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
), VariableScale
,
4913 // If it couldn't be matched, try stuffing the base into a register
4914 // instead of matching it, and retrying the match of the scale.
4915 AddrMode
= BackupAddrMode
;
4916 AddrModeInsts
.resize(OldSize
);
4917 if (AddrMode
.HasBaseReg
)
4919 AddrMode
.HasBaseReg
= true;
4920 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4921 AddrMode
.BaseOffs
+= ConstantOffset
;
4922 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
),
4923 VariableScale
, Depth
)) {
4924 // If even that didn't work, bail.
4925 AddrMode
= BackupAddrMode
;
4926 AddrModeInsts
.resize(OldSize
);
4933 case Instruction::SExt
:
4934 case Instruction::ZExt
: {
4935 Instruction
*Ext
= dyn_cast
<Instruction
>(AddrInst
);
4939 // Try to move this ext out of the way of the addressing mode.
4940 // Ask for a method for doing so.
4941 TypePromotionHelper::Action TPH
=
4942 TypePromotionHelper::getAction(Ext
, InsertedInsts
, TLI
, PromotedInsts
);
4946 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4947 TPT
.getRestorationPoint();
4948 unsigned CreatedInstsCost
= 0;
4949 unsigned ExtCost
= !TLI
.isExtFree(Ext
);
4950 Value
*PromotedOperand
=
4951 TPH(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
, nullptr, nullptr, TLI
);
4952 // SExt has been moved away.
4953 // Thus either it will be rematched later in the recursive calls or it is
4954 // gone. Anyway, we must not fold it into the addressing mode at this point.
4958 // addr = gep base, idx
4960 // promotedOpnd = ext opnd <- no match here
4961 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4962 // addr = gep base, op <- match
4966 assert(PromotedOperand
&&
4967 "TypePromotionHelper should have filtered out those cases");
4969 ExtAddrMode BackupAddrMode
= AddrMode
;
4970 unsigned OldSize
= AddrModeInsts
.size();
4972 if (!matchAddr(PromotedOperand
, Depth
) ||
4973 // The total of the new cost is equal to the cost of the created
4975 // The total of the old cost is equal to the cost of the extension plus
4976 // what we have saved in the addressing mode.
4977 !isPromotionProfitable(CreatedInstsCost
,
4978 ExtCost
+ (AddrModeInsts
.size() - OldSize
),
4980 AddrMode
= BackupAddrMode
;
4981 AddrModeInsts
.resize(OldSize
);
4982 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4983 TPT
.rollback(LastKnownGood
);
4992 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4993 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4994 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4997 bool AddressingModeMatcher::matchAddr(Value
*Addr
, unsigned Depth
) {
4998 // Start a transaction at this point that we will rollback if the matching
5000 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5001 TPT
.getRestorationPoint();
5002 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Addr
)) {
5003 if (CI
->getValue().isSignedIntN(64)) {
5004 // Fold in immediates if legal for the target.
5005 AddrMode
.BaseOffs
+= CI
->getSExtValue();
5006 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5008 AddrMode
.BaseOffs
-= CI
->getSExtValue();
5010 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Addr
)) {
5011 // If this is a global variable, try to fold it into the addressing mode.
5012 if (!AddrMode
.BaseGV
) {
5013 AddrMode
.BaseGV
= GV
;
5014 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5016 AddrMode
.BaseGV
= nullptr;
5018 } else if (Instruction
*I
= dyn_cast
<Instruction
>(Addr
)) {
5019 ExtAddrMode BackupAddrMode
= AddrMode
;
5020 unsigned OldSize
= AddrModeInsts
.size();
5022 // Check to see if it is possible to fold this operation.
5023 bool MovedAway
= false;
5024 if (matchOperationAddr(I
, I
->getOpcode(), Depth
, &MovedAway
)) {
5025 // This instruction may have been moved away. If so, there is nothing
5029 // Okay, it's possible to fold this. Check to see if it is actually
5030 // *profitable* to do so. We use a simple cost model to avoid increasing
5031 // register pressure too much.
5032 if (I
->hasOneUse() ||
5033 isProfitableToFoldIntoAddressingMode(I
, BackupAddrMode
, AddrMode
)) {
5034 AddrModeInsts
.push_back(I
);
5038 // It isn't profitable to do this, roll back.
5039 AddrMode
= BackupAddrMode
;
5040 AddrModeInsts
.resize(OldSize
);
5041 TPT
.rollback(LastKnownGood
);
5043 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Addr
)) {
5044 if (matchOperationAddr(CE
, CE
->getOpcode(), Depth
))
5046 TPT
.rollback(LastKnownGood
);
5047 } else if (isa
<ConstantPointerNull
>(Addr
)) {
5048 // Null pointer gets folded without affecting the addressing mode.
5052 // Worse case, the target should support [reg] addressing modes. :)
5053 if (!AddrMode
.HasBaseReg
) {
5054 AddrMode
.HasBaseReg
= true;
5055 AddrMode
.BaseReg
= Addr
;
5056 // Still check for legality in case the target supports [imm] but not [i+r].
5057 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5059 AddrMode
.HasBaseReg
= false;
5060 AddrMode
.BaseReg
= nullptr;
5063 // If the base register is already taken, see if we can do [r+r].
5064 if (AddrMode
.Scale
== 0) {
5066 AddrMode
.ScaledReg
= Addr
;
5067 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5070 AddrMode
.ScaledReg
= nullptr;
5073 TPT
.rollback(LastKnownGood
);
5077 /// Check to see if all uses of OpVal by the specified inline asm call are due
5078 /// to memory operands. If so, return true, otherwise return false.
5079 static bool IsOperandAMemoryOperand(CallInst
*CI
, InlineAsm
*IA
, Value
*OpVal
,
5080 const TargetLowering
&TLI
,
5081 const TargetRegisterInfo
&TRI
) {
5082 const Function
*F
= CI
->getFunction();
5083 TargetLowering::AsmOperandInfoVector TargetConstraints
=
5084 TLI
.ParseConstraints(F
->getParent()->getDataLayout(), &TRI
, *CI
);
5086 for (TargetLowering::AsmOperandInfo
&OpInfo
: TargetConstraints
) {
5087 // Compute the constraint code and ConstraintType to use.
5088 TLI
.ComputeConstraintToUse(OpInfo
, SDValue());
5090 // If this asm operand is our Value*, and if it isn't an indirect memory
5091 // operand, we can't fold it! TODO: Also handle C_Address?
5092 if (OpInfo
.CallOperandVal
== OpVal
&&
5093 (OpInfo
.ConstraintType
!= TargetLowering::C_Memory
||
5094 !OpInfo
.isIndirect
))
5101 /// Recursively walk all the uses of I until we find a memory use.
5102 /// If we find an obviously non-foldable instruction, return true.
5103 /// Add accessed addresses and types to MemoryUses.
5104 static bool FindAllMemoryUses(
5105 Instruction
*I
, SmallVectorImpl
<std::pair
<Use
*, Type
*>> &MemoryUses
,
5106 SmallPtrSetImpl
<Instruction
*> &ConsideredInsts
, const TargetLowering
&TLI
,
5107 const TargetRegisterInfo
&TRI
, bool OptSize
, ProfileSummaryInfo
*PSI
,
5108 BlockFrequencyInfo
*BFI
, unsigned &SeenInsts
) {
5109 // If we already considered this instruction, we're done.
5110 if (!ConsideredInsts
.insert(I
).second
)
5113 // If this is an obviously unfoldable instruction, bail out.
5114 if (!MightBeFoldableInst(I
))
5117 // Loop over all the uses, recursively processing them.
5118 for (Use
&U
: I
->uses()) {
5119 // Conservatively return true if we're seeing a large number or a deep chain
5120 // of users. This avoids excessive compilation times in pathological cases.
5121 if (SeenInsts
++ >= MaxAddressUsersToScan
)
5124 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
5125 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UserI
)) {
5126 MemoryUses
.push_back({&U
, LI
->getType()});
5130 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UserI
)) {
5131 if (U
.getOperandNo() != StoreInst::getPointerOperandIndex())
5132 return true; // Storing addr, not into addr.
5133 MemoryUses
.push_back({&U
, SI
->getValueOperand()->getType()});
5137 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(UserI
)) {
5138 if (U
.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5139 return true; // Storing addr, not into addr.
5140 MemoryUses
.push_back({&U
, RMW
->getValOperand()->getType()});
5144 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(UserI
)) {
5145 if (U
.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5146 return true; // Storing addr, not into addr.
5147 MemoryUses
.push_back({&U
, CmpX
->getCompareOperand()->getType()});
5151 if (CallInst
*CI
= dyn_cast
<CallInst
>(UserI
)) {
5152 if (CI
->hasFnAttr(Attribute::Cold
)) {
5153 // If this is a cold call, we can sink the addressing calculation into
5154 // the cold path. See optimizeCallInst
5156 OptSize
|| llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
);
5161 InlineAsm
*IA
= dyn_cast
<InlineAsm
>(CI
->getCalledOperand());
5165 // If this is a memory operand, we're cool, otherwise bail out.
5166 if (!IsOperandAMemoryOperand(CI
, IA
, I
, TLI
, TRI
))
5171 if (FindAllMemoryUses(UserI
, MemoryUses
, ConsideredInsts
, TLI
, TRI
, OptSize
,
5172 PSI
, BFI
, SeenInsts
))
5179 static bool FindAllMemoryUses(
5180 Instruction
*I
, SmallVectorImpl
<std::pair
<Use
*, Type
*>> &MemoryUses
,
5181 const TargetLowering
&TLI
, const TargetRegisterInfo
&TRI
, bool OptSize
,
5182 ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
) {
5183 unsigned SeenInsts
= 0;
5184 SmallPtrSet
<Instruction
*, 16> ConsideredInsts
;
5185 return FindAllMemoryUses(I
, MemoryUses
, ConsideredInsts
, TLI
, TRI
, OptSize
,
5186 PSI
, BFI
, SeenInsts
);
5190 /// Return true if Val is already known to be live at the use site that we're
5191 /// folding it into. If so, there is no cost to include it in the addressing
5192 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5193 /// instruction already.
5194 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value
*Val
,
5196 Value
*KnownLive2
) {
5197 // If Val is either of the known-live values, we know it is live!
5198 if (Val
== nullptr || Val
== KnownLive1
|| Val
== KnownLive2
)
5201 // All values other than instructions and arguments (e.g. constants) are live.
5202 if (!isa
<Instruction
>(Val
) && !isa
<Argument
>(Val
))
5205 // If Val is a constant sized alloca in the entry block, it is live, this is
5206 // true because it is just a reference to the stack/frame pointer, which is
5207 // live for the whole function.
5208 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Val
))
5209 if (AI
->isStaticAlloca())
5212 // Check to see if this value is already used in the memory instruction's
5213 // block. If so, it's already live into the block at the very least, so we
5214 // can reasonably fold it.
5215 return Val
->isUsedInBasicBlock(MemoryInst
->getParent());
5218 /// It is possible for the addressing mode of the machine to fold the specified
5219 /// instruction into a load or store that ultimately uses it.
5220 /// However, the specified instruction has multiple uses.
5221 /// Given this, it may actually increase register pressure to fold it
5222 /// into the load. For example, consider this code:
5226 /// use(Y) -> nonload/store
5230 /// In this case, Y has multiple uses, and can be folded into the load of Z
5231 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
5232 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
5233 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
5234 /// number of computations either.
5236 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
5237 /// X was live across 'load Z' for other reasons, we actually *would* want to
5238 /// fold the addressing mode in the Z case. This would make Y die earlier.
5239 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5240 Instruction
*I
, ExtAddrMode
&AMBefore
, ExtAddrMode
&AMAfter
) {
5241 if (IgnoreProfitability
)
5244 // AMBefore is the addressing mode before this instruction was folded into it,
5245 // and AMAfter is the addressing mode after the instruction was folded. Get
5246 // the set of registers referenced by AMAfter and subtract out those
5247 // referenced by AMBefore: this is the set of values which folding in this
5248 // address extends the lifetime of.
5250 // Note that there are only two potential values being referenced here,
5251 // BaseReg and ScaleReg (global addresses are always available, as are any
5252 // folded immediates).
5253 Value
*BaseReg
= AMAfter
.BaseReg
, *ScaledReg
= AMAfter
.ScaledReg
;
5255 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5256 // lifetime wasn't extended by adding this instruction.
5257 if (valueAlreadyLiveAtInst(BaseReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
5259 if (valueAlreadyLiveAtInst(ScaledReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
5260 ScaledReg
= nullptr;
5262 // If folding this instruction (and it's subexprs) didn't extend any live
5263 // ranges, we're ok with it.
5264 if (!BaseReg
&& !ScaledReg
)
5267 // If all uses of this instruction can have the address mode sunk into them,
5268 // we can remove the addressing mode and effectively trade one live register
5269 // for another (at worst.) In this context, folding an addressing mode into
5270 // the use is just a particularly nice way of sinking it.
5271 SmallVector
<std::pair
<Use
*, Type
*>, 16> MemoryUses
;
5272 if (FindAllMemoryUses(I
, MemoryUses
, TLI
, TRI
, OptSize
, PSI
, BFI
))
5273 return false; // Has a non-memory, non-foldable use!
5275 // Now that we know that all uses of this instruction are part of a chain of
5276 // computation involving only operations that could theoretically be folded
5277 // into a memory use, loop over each of these memory operation uses and see
5278 // if they could *actually* fold the instruction. The assumption is that
5279 // addressing modes are cheap and that duplicating the computation involved
5280 // many times is worthwhile, even on a fastpath. For sinking candidates
5281 // (i.e. cold call sites), this serves as a way to prevent excessive code
5282 // growth since most architectures have some reasonable small and fast way to
5283 // compute an effective address. (i.e LEA on x86)
5284 SmallVector
<Instruction
*, 32> MatchedAddrModeInsts
;
5285 for (const std::pair
<Use
*, Type
*> &Pair
: MemoryUses
) {
5286 Value
*Address
= Pair
.first
->get();
5287 Instruction
*UserI
= cast
<Instruction
>(Pair
.first
->getUser());
5288 Type
*AddressAccessTy
= Pair
.second
;
5289 unsigned AS
= Address
->getType()->getPointerAddressSpace();
5291 // Do a match against the root of this address, ignoring profitability. This
5292 // will tell us if the addressing mode for the memory operation will
5293 // *actually* cover the shared instruction.
5295 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
5297 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5298 TPT
.getRestorationPoint();
5299 AddressingModeMatcher
Matcher(MatchedAddrModeInsts
, TLI
, TRI
, LI
, getDTFn
,
5300 AddressAccessTy
, AS
, UserI
, Result
,
5301 InsertedInsts
, PromotedInsts
, TPT
,
5302 LargeOffsetGEP
, OptSize
, PSI
, BFI
);
5303 Matcher
.IgnoreProfitability
= true;
5304 bool Success
= Matcher
.matchAddr(Address
, 0);
5306 assert(Success
&& "Couldn't select *anything*?");
5308 // The match was to check the profitability, the changes made are not
5309 // part of the original matcher. Therefore, they should be dropped
5310 // otherwise the original matcher will not present the right state.
5311 TPT
.rollback(LastKnownGood
);
5313 // If the match didn't cover I, then it won't be shared by it.
5314 if (!is_contained(MatchedAddrModeInsts
, I
))
5317 MatchedAddrModeInsts
.clear();
5323 /// Return true if the specified values are defined in a
5324 /// different basic block than BB.
5325 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
5326 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
5327 return I
->getParent() != BB
;
5331 /// Sink addressing mode computation immediate before MemoryInst if doing so
5332 /// can be done without increasing register pressure. The need for the
5333 /// register pressure constraint means this can end up being an all or nothing
5334 /// decision for all uses of the same addressing computation.
5336 /// Load and Store Instructions often have addressing modes that can do
5337 /// significant amounts of computation. As such, instruction selection will try
5338 /// to get the load or store to do as much computation as possible for the
5339 /// program. The problem is that isel can only see within a single block. As
5340 /// such, we sink as much legal addressing mode work into the block as possible.
5342 /// This method is used to optimize both load/store and inline asms with memory
5343 /// operands. It's also used to sink addressing computations feeding into cold
5344 /// call sites into their (cold) basic block.
5346 /// The motivation for handling sinking into cold blocks is that doing so can
5347 /// both enable other address mode sinking (by satisfying the register pressure
5348 /// constraint above), and reduce register pressure globally (by removing the
5349 /// addressing mode computation from the fast path entirely.).
5350 bool CodeGenPrepare::optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
5351 Type
*AccessTy
, unsigned AddrSpace
) {
5354 // Try to collapse single-value PHI nodes. This is necessary to undo
5355 // unprofitable PRE transformations.
5356 SmallVector
<Value
*, 8> worklist
;
5357 SmallPtrSet
<Value
*, 16> Visited
;
5358 worklist
.push_back(Addr
);
5360 // Use a worklist to iteratively look through PHI and select nodes, and
5361 // ensure that the addressing mode obtained from the non-PHI/select roots of
5362 // the graph are compatible.
5363 bool PhiOrSelectSeen
= false;
5364 SmallVector
<Instruction
*, 16> AddrModeInsts
;
5365 const SimplifyQuery
SQ(*DL
, TLInfo
);
5366 AddressingModeCombiner
AddrModes(SQ
, Addr
);
5367 TypePromotionTransaction
TPT(RemovedInsts
);
5368 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5369 TPT
.getRestorationPoint();
5370 while (!worklist
.empty()) {
5371 Value
*V
= worklist
.pop_back_val();
5373 // We allow traversing cyclic Phi nodes.
5374 // In case of success after this loop we ensure that traversing through
5375 // Phi nodes ends up with all cases to compute address of the form
5376 // BaseGV + Base + Scale * Index + Offset
5377 // where Scale and Offset are constans and BaseGV, Base and Index
5378 // are exactly the same Values in all cases.
5379 // It means that BaseGV, Scale and Offset dominate our memory instruction
5380 // and have the same value as they had in address computation represented
5381 // as Phi. So we can safely sink address computation to memory instruction.
5382 if (!Visited
.insert(V
).second
)
5385 // For a PHI node, push all of its incoming values.
5386 if (PHINode
*P
= dyn_cast
<PHINode
>(V
)) {
5387 append_range(worklist
, P
->incoming_values());
5388 PhiOrSelectSeen
= true;
5391 // Similar for select.
5392 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
5393 worklist
.push_back(SI
->getFalseValue());
5394 worklist
.push_back(SI
->getTrueValue());
5395 PhiOrSelectSeen
= true;
5399 // For non-PHIs, determine the addressing mode being computed. Note that
5400 // the result may differ depending on what other uses our candidate
5401 // addressing instructions might have.
5402 AddrModeInsts
.clear();
5403 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
5405 // Defer the query (and possible computation of) the dom tree to point of
5406 // actual use. It's expected that most address matches don't actually need
5408 auto getDTFn
= [MemoryInst
, this]() -> const DominatorTree
& {
5409 Function
*F
= MemoryInst
->getParent()->getParent();
5410 return this->getDT(*F
);
5412 ExtAddrMode NewAddrMode
= AddressingModeMatcher::Match(
5413 V
, AccessTy
, AddrSpace
, MemoryInst
, AddrModeInsts
, *TLI
, *LI
, getDTFn
,
5414 *TRI
, InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
, OptSize
, PSI
,
5417 GetElementPtrInst
*GEP
= LargeOffsetGEP
.first
;
5418 if (GEP
&& !NewGEPBases
.count(GEP
)) {
5419 // If splitting the underlying data structure can reduce the offset of a
5420 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5421 // previously split data structures.
5422 LargeOffsetGEPMap
[GEP
->getPointerOperand()].push_back(LargeOffsetGEP
);
5423 LargeOffsetGEPID
.insert(std::make_pair(GEP
, LargeOffsetGEPID
.size()));
5426 NewAddrMode
.OriginalValue
= V
;
5427 if (!AddrModes
.addNewAddrMode(NewAddrMode
))
5431 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5432 // or we have multiple but either couldn't combine them or combining them
5433 // wouldn't do anything useful, bail out now.
5434 if (!AddrModes
.combineAddrModes()) {
5435 TPT
.rollback(LastKnownGood
);
5438 bool Modified
= TPT
.commit();
5440 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5441 ExtAddrMode AddrMode
= AddrModes
.getAddrMode();
5443 // If all the instructions matched are already in this BB, don't do anything.
5444 // If we saw a Phi node then it is not local definitely, and if we saw a
5445 // select then we want to push the address calculation past it even if it's
5446 // already in this BB.
5447 if (!PhiOrSelectSeen
&& none_of(AddrModeInsts
, [&](Value
*V
) {
5448 return IsNonLocalValue(V
, MemoryInst
->getParent());
5450 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5455 // Insert this computation right after this user. Since our caller is
5456 // scanning from the top of the BB to the bottom, reuse of the expr are
5457 // guaranteed to happen later.
5458 IRBuilder
<> Builder(MemoryInst
);
5460 // Now that we determined the addressing expression we want to use and know
5461 // that we have to sink it into this block. Check to see if we have already
5462 // done this for some other load/store instr in this block. If so, reuse
5463 // the computation. Before attempting reuse, check if the address is valid
5464 // as it may have been erased.
5466 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Addr
];
5468 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
5469 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
5471 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5472 << " for " << *MemoryInst
<< "\n");
5473 if (SunkAddr
->getType() != Addr
->getType()) {
5474 if (SunkAddr
->getType()->getPointerAddressSpace() !=
5475 Addr
->getType()->getPointerAddressSpace() &&
5476 !DL
->isNonIntegralPointerType(Addr
->getType())) {
5477 // There are two reasons the address spaces might not match: a no-op
5478 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5479 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5480 // TODO: allow bitcast between different address space pointers with the
5482 SunkAddr
= Builder
.CreatePtrToInt(SunkAddr
, IntPtrTy
, "sunkaddr");
5484 Builder
.CreateIntToPtr(SunkAddr
, Addr
->getType(), "sunkaddr");
5486 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
5488 } else if (AddrSinkUsingGEPs
|| (!AddrSinkUsingGEPs
.getNumOccurrences() &&
5489 SubtargetInfo
->addrSinkUsingGEPs())) {
5490 // By default, we use the GEP-based method when AA is used later. This
5491 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5492 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5493 << " for " << *MemoryInst
<< "\n");
5494 Value
*ResultPtr
= nullptr, *ResultIndex
= nullptr;
5496 // First, find the pointer.
5497 if (AddrMode
.BaseReg
&& AddrMode
.BaseReg
->getType()->isPointerTy()) {
5498 ResultPtr
= AddrMode
.BaseReg
;
5499 AddrMode
.BaseReg
= nullptr;
5502 if (AddrMode
.Scale
&& AddrMode
.ScaledReg
->getType()->isPointerTy()) {
5503 // We can't add more than one pointer together, nor can we scale a
5504 // pointer (both of which seem meaningless).
5505 if (ResultPtr
|| AddrMode
.Scale
!= 1)
5508 ResultPtr
= AddrMode
.ScaledReg
;
5512 // It is only safe to sign extend the BaseReg if we know that the math
5513 // required to create it did not overflow before we extend it. Since
5514 // the original IR value was tossed in favor of a constant back when
5515 // the AddrMode was created we need to bail out gracefully if widths
5516 // do not match instead of extending it.
5518 // (See below for code to add the scale.)
5519 if (AddrMode
.Scale
) {
5520 Type
*ScaledRegTy
= AddrMode
.ScaledReg
->getType();
5521 if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() >
5522 cast
<IntegerType
>(ScaledRegTy
)->getBitWidth())
5526 if (AddrMode
.BaseGV
) {
5530 ResultPtr
= AddrMode
.BaseGV
;
5533 // If the real base value actually came from an inttoptr, then the matcher
5534 // will look through it and provide only the integer value. In that case,
5536 if (!DL
->isNonIntegralPointerType(Addr
->getType())) {
5537 if (!ResultPtr
&& AddrMode
.BaseReg
) {
5538 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.BaseReg
, Addr
->getType(),
5540 AddrMode
.BaseReg
= nullptr;
5541 } else if (!ResultPtr
&& AddrMode
.Scale
== 1) {
5542 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.ScaledReg
, Addr
->getType(),
5548 if (!ResultPtr
&& !AddrMode
.BaseReg
&& !AddrMode
.Scale
&&
5549 !AddrMode
.BaseOffs
) {
5550 SunkAddr
= Constant::getNullValue(Addr
->getType());
5551 } else if (!ResultPtr
) {
5555 Builder
.getPtrTy(Addr
->getType()->getPointerAddressSpace());
5557 // Start with the base register. Do this first so that subsequent address
5558 // matching finds it last, which will prevent it from trying to match it
5559 // as the scaled value in case it happens to be a mul. That would be
5560 // problematic if we've sunk a different mul for the scale, because then
5561 // we'd end up sinking both muls.
5562 if (AddrMode
.BaseReg
) {
5563 Value
*V
= AddrMode
.BaseReg
;
5564 if (V
->getType() != IntPtrTy
)
5565 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
5570 // Add the scale value.
5571 if (AddrMode
.Scale
) {
5572 Value
*V
= AddrMode
.ScaledReg
;
5573 if (V
->getType() == IntPtrTy
) {
5576 assert(cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
5577 cast
<IntegerType
>(V
->getType())->getBitWidth() &&
5578 "We can't transform if ScaledReg is too narrow");
5579 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
5582 if (AddrMode
.Scale
!= 1)
5583 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
5586 ResultIndex
= Builder
.CreateAdd(ResultIndex
, V
, "sunkaddr");
5591 // Add in the Base Offset if present.
5592 if (AddrMode
.BaseOffs
) {
5593 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
5595 // We need to add this separately from the scale above to help with
5596 // SDAG consecutive load/store merging.
5597 if (ResultPtr
->getType() != I8PtrTy
)
5598 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
5599 ResultPtr
= Builder
.CreatePtrAdd(ResultPtr
, ResultIndex
, "sunkaddr",
5607 SunkAddr
= ResultPtr
;
5609 if (ResultPtr
->getType() != I8PtrTy
)
5610 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
5611 SunkAddr
= Builder
.CreatePtrAdd(ResultPtr
, ResultIndex
, "sunkaddr",
5615 if (SunkAddr
->getType() != Addr
->getType()) {
5616 if (SunkAddr
->getType()->getPointerAddressSpace() !=
5617 Addr
->getType()->getPointerAddressSpace() &&
5618 !DL
->isNonIntegralPointerType(Addr
->getType())) {
5619 // There are two reasons the address spaces might not match: a no-op
5620 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5621 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5622 // TODO: allow bitcast between different address space pointers with
5624 SunkAddr
= Builder
.CreatePtrToInt(SunkAddr
, IntPtrTy
, "sunkaddr");
5626 Builder
.CreateIntToPtr(SunkAddr
, Addr
->getType(), "sunkaddr");
5628 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
5632 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5633 // non-integral pointers, so in that case bail out now.
5634 Type
*BaseTy
= AddrMode
.BaseReg
? AddrMode
.BaseReg
->getType() : nullptr;
5635 Type
*ScaleTy
= AddrMode
.Scale
? AddrMode
.ScaledReg
->getType() : nullptr;
5636 PointerType
*BasePtrTy
= dyn_cast_or_null
<PointerType
>(BaseTy
);
5637 PointerType
*ScalePtrTy
= dyn_cast_or_null
<PointerType
>(ScaleTy
);
5638 if (DL
->isNonIntegralPointerType(Addr
->getType()) ||
5639 (BasePtrTy
&& DL
->isNonIntegralPointerType(BasePtrTy
)) ||
5640 (ScalePtrTy
&& DL
->isNonIntegralPointerType(ScalePtrTy
)) ||
5642 DL
->isNonIntegralPointerType(AddrMode
.BaseGV
->getType())))
5645 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5646 << " for " << *MemoryInst
<< "\n");
5647 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
5648 Value
*Result
= nullptr;
5650 // Start with the base register. Do this first so that subsequent address
5651 // matching finds it last, which will prevent it from trying to match it
5652 // as the scaled value in case it happens to be a mul. That would be
5653 // problematic if we've sunk a different mul for the scale, because then
5654 // we'd end up sinking both muls.
5655 if (AddrMode
.BaseReg
) {
5656 Value
*V
= AddrMode
.BaseReg
;
5657 if (V
->getType()->isPointerTy())
5658 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
5659 if (V
->getType() != IntPtrTy
)
5660 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
5664 // Add the scale value.
5665 if (AddrMode
.Scale
) {
5666 Value
*V
= AddrMode
.ScaledReg
;
5667 if (V
->getType() == IntPtrTy
) {
5669 } else if (V
->getType()->isPointerTy()) {
5670 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
5671 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
5672 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
5673 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
5675 // It is only safe to sign extend the BaseReg if we know that the math
5676 // required to create it did not overflow before we extend it. Since
5677 // the original IR value was tossed in favor of a constant back when
5678 // the AddrMode was created we need to bail out gracefully if widths
5679 // do not match instead of extending it.
5680 Instruction
*I
= dyn_cast_or_null
<Instruction
>(Result
);
5681 if (I
&& (Result
!= AddrMode
.BaseReg
))
5682 I
->eraseFromParent();
5685 if (AddrMode
.Scale
!= 1)
5686 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
5689 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5694 // Add in the BaseGV if present.
5695 if (AddrMode
.BaseGV
) {
5696 Value
*V
= Builder
.CreatePtrToInt(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr");
5698 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5703 // Add in the Base Offset if present.
5704 if (AddrMode
.BaseOffs
) {
5705 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
5707 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
5713 SunkAddr
= Constant::getNullValue(Addr
->getType());
5715 SunkAddr
= Builder
.CreateIntToPtr(Result
, Addr
->getType(), "sunkaddr");
5718 MemoryInst
->replaceUsesOfWith(Repl
, SunkAddr
);
5719 // Store the newly computed address into the cache. In the case we reused a
5720 // value, this should be idempotent.
5721 SunkAddrs
[Addr
] = WeakTrackingVH(SunkAddr
);
5723 // If we have no uses, recursively delete the value and all dead instructions
5725 if (Repl
->use_empty()) {
5726 resetIteratorIfInvalidatedWhileCalling(CurInstIterator
->getParent(), [&]() {
5727 RecursivelyDeleteTriviallyDeadInstructions(
5728 Repl
, TLInfo
, nullptr,
5729 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
5736 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5737 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5738 /// only handle a 2 operand GEP in the same basic block or a splat constant
5739 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5742 /// If the existing GEP has a vector base pointer that is splat, we can look
5743 /// through the splat to find the scalar pointer. If we can't find a scalar
5744 /// pointer there's nothing we can do.
5746 /// If we have a GEP with more than 2 indices where the middle indices are all
5747 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5749 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5750 /// followed by a GEP with an all zeroes vector index. This will enable
5751 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5753 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction
*MemoryInst
,
5757 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
5758 // Don't optimize GEPs that don't have indices.
5759 if (!GEP
->hasIndices())
5762 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5763 // FIXME: We should support this by sinking the GEP.
5764 if (MemoryInst
->getParent() != GEP
->getParent())
5767 SmallVector
<Value
*, 2> Ops(GEP
->operands());
5769 bool RewriteGEP
= false;
5771 if (Ops
[0]->getType()->isVectorTy()) {
5772 Ops
[0] = getSplatValue(Ops
[0]);
5778 unsigned FinalIndex
= Ops
.size() - 1;
5780 // Ensure all but the last index is 0.
5781 // FIXME: This isn't strictly required. All that's required is that they are
5782 // all scalars or splats.
5783 for (unsigned i
= 1; i
< FinalIndex
; ++i
) {
5784 auto *C
= dyn_cast
<Constant
>(Ops
[i
]);
5787 if (isa
<VectorType
>(C
->getType()))
5788 C
= C
->getSplatValue();
5789 auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
5790 if (!CI
|| !CI
->isZero())
5792 // Scalarize the index if needed.
5796 // Try to scalarize the final index.
5797 if (Ops
[FinalIndex
]->getType()->isVectorTy()) {
5798 if (Value
*V
= getSplatValue(Ops
[FinalIndex
])) {
5799 auto *C
= dyn_cast
<ConstantInt
>(V
);
5800 // Don't scalarize all zeros vector.
5801 if (!C
|| !C
->isZero()) {
5802 Ops
[FinalIndex
] = V
;
5808 // If we made any changes or the we have extra operands, we need to generate
5809 // new instructions.
5810 if (!RewriteGEP
&& Ops
.size() == 2)
5813 auto NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
5815 IRBuilder
<> Builder(MemoryInst
);
5817 Type
*SourceTy
= GEP
->getSourceElementType();
5818 Type
*ScalarIndexTy
= DL
->getIndexType(Ops
[0]->getType()->getScalarType());
5820 // If the final index isn't a vector, emit a scalar GEP containing all ops
5821 // and a vector GEP with all zeroes final index.
5822 if (!Ops
[FinalIndex
]->getType()->isVectorTy()) {
5823 NewAddr
= Builder
.CreateGEP(SourceTy
, Ops
[0], ArrayRef(Ops
).drop_front());
5824 auto *IndexTy
= VectorType::get(ScalarIndexTy
, NumElts
);
5825 auto *SecondTy
= GetElementPtrInst::getIndexedType(
5826 SourceTy
, ArrayRef(Ops
).drop_front());
5828 Builder
.CreateGEP(SecondTy
, NewAddr
, Constant::getNullValue(IndexTy
));
5830 Value
*Base
= Ops
[0];
5831 Value
*Index
= Ops
[FinalIndex
];
5833 // Create a scalar GEP if there are more than 2 operands.
5834 if (Ops
.size() != 2) {
5835 // Replace the last index with 0.
5837 Constant::getNullValue(Ops
[FinalIndex
]->getType()->getScalarType());
5838 Base
= Builder
.CreateGEP(SourceTy
, Base
, ArrayRef(Ops
).drop_front());
5839 SourceTy
= GetElementPtrInst::getIndexedType(
5840 SourceTy
, ArrayRef(Ops
).drop_front());
5843 // Now create the GEP with scalar pointer and vector index.
5844 NewAddr
= Builder
.CreateGEP(SourceTy
, Base
, Index
);
5846 } else if (!isa
<Constant
>(Ptr
)) {
5847 // Not a GEP, maybe its a splat and we can create a GEP to enable
5848 // SelectionDAGBuilder to use it as a uniform base.
5849 Value
*V
= getSplatValue(Ptr
);
5853 auto NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
5855 IRBuilder
<> Builder(MemoryInst
);
5857 // Emit a vector GEP with a scalar pointer and all 0s vector index.
5858 Type
*ScalarIndexTy
= DL
->getIndexType(V
->getType()->getScalarType());
5859 auto *IndexTy
= VectorType::get(ScalarIndexTy
, NumElts
);
5861 if (cast
<IntrinsicInst
>(MemoryInst
)->getIntrinsicID() ==
5862 Intrinsic::masked_gather
) {
5863 ScalarTy
= MemoryInst
->getType()->getScalarType();
5865 assert(cast
<IntrinsicInst
>(MemoryInst
)->getIntrinsicID() ==
5866 Intrinsic::masked_scatter
);
5867 ScalarTy
= MemoryInst
->getOperand(0)->getType()->getScalarType();
5869 NewAddr
= Builder
.CreateGEP(ScalarTy
, V
, Constant::getNullValue(IndexTy
));
5871 // Constant, SelectionDAGBuilder knows to check if its a splat.
5875 MemoryInst
->replaceUsesOfWith(Ptr
, NewAddr
);
5877 // If we have no uses, recursively delete the value and all dead instructions
5879 if (Ptr
->use_empty())
5880 RecursivelyDeleteTriviallyDeadInstructions(
5881 Ptr
, TLInfo
, nullptr,
5882 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
5887 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5888 /// address computing into the block when possible / profitable.
5889 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst
*CS
) {
5890 bool MadeChange
= false;
5892 const TargetRegisterInfo
*TRI
=
5893 TM
->getSubtargetImpl(*CS
->getFunction())->getRegisterInfo();
5894 TargetLowering::AsmOperandInfoVector TargetConstraints
=
5895 TLI
->ParseConstraints(*DL
, TRI
, *CS
);
5897 for (TargetLowering::AsmOperandInfo
&OpInfo
: TargetConstraints
) {
5898 // Compute the constraint code and ConstraintType to use.
5899 TLI
->ComputeConstraintToUse(OpInfo
, SDValue());
5901 // TODO: Also handle C_Address?
5902 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
5903 OpInfo
.isIndirect
) {
5904 Value
*OpVal
= CS
->getArgOperand(ArgNo
++);
5905 MadeChange
|= optimizeMemoryInst(CS
, OpVal
, OpVal
->getType(), ~0u);
5906 } else if (OpInfo
.Type
== InlineAsm::isInput
)
5913 /// Check if all the uses of \p Val are equivalent (or free) zero or
5914 /// sign extensions.
5915 static bool hasSameExtUse(Value
*Val
, const TargetLowering
&TLI
) {
5916 assert(!Val
->use_empty() && "Input must have at least one use");
5917 const Instruction
*FirstUser
= cast
<Instruction
>(*Val
->user_begin());
5918 bool IsSExt
= isa
<SExtInst
>(FirstUser
);
5919 Type
*ExtTy
= FirstUser
->getType();
5920 for (const User
*U
: Val
->users()) {
5921 const Instruction
*UI
= cast
<Instruction
>(U
);
5922 if ((IsSExt
&& !isa
<SExtInst
>(UI
)) || (!IsSExt
&& !isa
<ZExtInst
>(UI
)))
5924 Type
*CurTy
= UI
->getType();
5925 // Same input and output types: Same instruction after CSE.
5929 // If IsSExt is true, we are in this situation:
5931 // b = sext ty1 a to ty2
5932 // c = sext ty1 a to ty3
5933 // Assuming ty2 is shorter than ty3, this could be turned into:
5935 // b = sext ty1 a to ty2
5936 // c = sext ty2 b to ty3
5937 // However, the last sext is not free.
5941 // This is a ZExt, maybe this is free to extend from one type to another.
5942 // In that case, we would not account for a different use.
5945 if (ExtTy
->getScalarType()->getIntegerBitWidth() >
5946 CurTy
->getScalarType()->getIntegerBitWidth()) {
5954 if (!TLI
.isZExtFree(NarrowTy
, LargeTy
))
5957 // All uses are the same or can be derived from one another for free.
5961 /// Try to speculatively promote extensions in \p Exts and continue
5962 /// promoting through newly promoted operands recursively as far as doing so is
5963 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5964 /// When some promotion happened, \p TPT contains the proper state to revert
5967 /// \return true if some promotion happened, false otherwise.
5968 bool CodeGenPrepare::tryToPromoteExts(
5969 TypePromotionTransaction
&TPT
, const SmallVectorImpl
<Instruction
*> &Exts
,
5970 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
5971 unsigned CreatedInstsCost
) {
5972 bool Promoted
= false;
5974 // Iterate over all the extensions to try to promote them.
5975 for (auto *I
: Exts
) {
5976 // Early check if we directly have ext(load).
5977 if (isa
<LoadInst
>(I
->getOperand(0))) {
5978 ProfitablyMovedExts
.push_back(I
);
5982 // Check whether or not we want to do any promotion. The reason we have
5983 // this check inside the for loop is to catch the case where an extension
5984 // is directly fed by a load because in such case the extension can be moved
5985 // up without any promotion on its operands.
5986 if (!TLI
->enableExtLdPromotion() || DisableExtLdPromotion
)
5989 // Get the action to perform the promotion.
5990 TypePromotionHelper::Action TPH
=
5991 TypePromotionHelper::getAction(I
, InsertedInsts
, *TLI
, PromotedInsts
);
5992 // Check if we can promote.
5994 // Save the current extension as we cannot move up through its operand.
5995 ProfitablyMovedExts
.push_back(I
);
5999 // Save the current state.
6000 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
6001 TPT
.getRestorationPoint();
6002 SmallVector
<Instruction
*, 4> NewExts
;
6003 unsigned NewCreatedInstsCost
= 0;
6004 unsigned ExtCost
= !TLI
->isExtFree(I
);
6006 Value
*PromotedVal
= TPH(I
, TPT
, PromotedInsts
, NewCreatedInstsCost
,
6007 &NewExts
, nullptr, *TLI
);
6008 assert(PromotedVal
&&
6009 "TypePromotionHelper should have filtered out those cases");
6011 // We would be able to merge only one extension in a load.
6012 // Therefore, if we have more than 1 new extension we heuristically
6013 // cut this search path, because it means we degrade the code quality.
6014 // With exactly 2, the transformation is neutral, because we will merge
6015 // one extension but leave one. However, we optimistically keep going,
6016 // because the new extension may be removed too. Also avoid replacing a
6017 // single free extension with multiple extensions, as this increases the
6018 // number of IR instructions while not providing any savings.
6019 long long TotalCreatedInstsCost
= CreatedInstsCost
+ NewCreatedInstsCost
;
6020 // FIXME: It would be possible to propagate a negative value instead of
6021 // conservatively ceiling it to 0.
6022 TotalCreatedInstsCost
=
6023 std::max((long long)0, (TotalCreatedInstsCost
- ExtCost
));
6024 if (!StressExtLdPromotion
&&
6025 (TotalCreatedInstsCost
> 1 ||
6026 !isPromotedInstructionLegal(*TLI
, *DL
, PromotedVal
) ||
6027 (ExtCost
== 0 && NewExts
.size() > 1))) {
6028 // This promotion is not profitable, rollback to the previous state, and
6029 // save the current extension in ProfitablyMovedExts as the latest
6030 // speculative promotion turned out to be unprofitable.
6031 TPT
.rollback(LastKnownGood
);
6032 ProfitablyMovedExts
.push_back(I
);
6035 // Continue promoting NewExts as far as doing so is profitable.
6036 SmallVector
<Instruction
*, 2> NewlyMovedExts
;
6037 (void)tryToPromoteExts(TPT
, NewExts
, NewlyMovedExts
, TotalCreatedInstsCost
);
6038 bool NewPromoted
= false;
6039 for (auto *ExtInst
: NewlyMovedExts
) {
6040 Instruction
*MovedExt
= cast
<Instruction
>(ExtInst
);
6041 Value
*ExtOperand
= MovedExt
->getOperand(0);
6042 // If we have reached to a load, we need this extra profitability check
6043 // as it could potentially be merged into an ext(load).
6044 if (isa
<LoadInst
>(ExtOperand
) &&
6045 !(StressExtLdPromotion
|| NewCreatedInstsCost
<= ExtCost
||
6046 (ExtOperand
->hasOneUse() || hasSameExtUse(ExtOperand
, *TLI
))))
6049 ProfitablyMovedExts
.push_back(MovedExt
);
6053 // If none of speculative promotions for NewExts is profitable, rollback
6054 // and save the current extension (I) as the last profitable extension.
6056 TPT
.rollback(LastKnownGood
);
6057 ProfitablyMovedExts
.push_back(I
);
6060 // The promotion is profitable.
6066 /// Merging redundant sexts when one is dominating the other.
6067 bool CodeGenPrepare::mergeSExts(Function
&F
) {
6068 bool Changed
= false;
6069 for (auto &Entry
: ValToSExtendedUses
) {
6070 SExts
&Insts
= Entry
.second
;
6072 for (Instruction
*Inst
: Insts
) {
6073 if (RemovedInsts
.count(Inst
) || !isa
<SExtInst
>(Inst
) ||
6074 Inst
->getOperand(0) != Entry
.first
)
6076 bool inserted
= false;
6077 for (auto &Pt
: CurPts
) {
6078 if (getDT(F
).dominates(Inst
, Pt
)) {
6079 replaceAllUsesWith(Pt
, Inst
, FreshBBs
, IsHugeFunc
);
6080 RemovedInsts
.insert(Pt
);
6081 Pt
->removeFromParent();
6087 if (!getDT(F
).dominates(Pt
, Inst
))
6088 // Give up if we need to merge in a common dominator as the
6089 // experiments show it is not profitable.
6091 replaceAllUsesWith(Inst
, Pt
, FreshBBs
, IsHugeFunc
);
6092 RemovedInsts
.insert(Inst
);
6093 Inst
->removeFromParent();
6099 CurPts
.push_back(Inst
);
6105 // Splitting large data structures so that the GEPs accessing them can have
6106 // smaller offsets so that they can be sunk to the same blocks as their users.
6107 // For example, a large struct starting from %base is split into two parts
6108 // where the second part starts from %new_base.
6115 // %gep0 = gep %base, off0
6116 // %gep1 = gep %base, off1
6117 // %gep2 = gep %base, off2
6120 // %load1 = load %gep0
6121 // %load2 = load %gep1
6122 // %load3 = load %gep2
6127 // %new_base = gep %base, off0
6130 // %new_gep0 = %new_base
6131 // %new_gep1 = gep %new_base, off1 - off0
6132 // %new_gep2 = gep %new_base, off2 - off0
6135 // %load1 = load i32, i32* %new_gep0
6136 // %load2 = load i32, i32* %new_gep1
6137 // %load3 = load i32, i32* %new_gep2
6139 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6140 // their offsets are smaller enough to fit into the addressing mode.
6141 bool CodeGenPrepare::splitLargeGEPOffsets() {
6142 bool Changed
= false;
6143 for (auto &Entry
: LargeOffsetGEPMap
) {
6144 Value
*OldBase
= Entry
.first
;
6145 SmallVectorImpl
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>>
6146 &LargeOffsetGEPs
= Entry
.second
;
6147 auto compareGEPOffset
=
6148 [&](const std::pair
<GetElementPtrInst
*, int64_t> &LHS
,
6149 const std::pair
<GetElementPtrInst
*, int64_t> &RHS
) {
6150 if (LHS
.first
== RHS
.first
)
6152 if (LHS
.second
!= RHS
.second
)
6153 return LHS
.second
< RHS
.second
;
6154 return LargeOffsetGEPID
[LHS
.first
] < LargeOffsetGEPID
[RHS
.first
];
6156 // Sorting all the GEPs of the same data structures based on the offsets.
6157 llvm::sort(LargeOffsetGEPs
, compareGEPOffset
);
6158 LargeOffsetGEPs
.erase(
6159 std::unique(LargeOffsetGEPs
.begin(), LargeOffsetGEPs
.end()),
6160 LargeOffsetGEPs
.end());
6161 // Skip if all the GEPs have the same offsets.
6162 if (LargeOffsetGEPs
.front().second
== LargeOffsetGEPs
.back().second
)
6164 GetElementPtrInst
*BaseGEP
= LargeOffsetGEPs
.begin()->first
;
6165 int64_t BaseOffset
= LargeOffsetGEPs
.begin()->second
;
6166 Value
*NewBaseGEP
= nullptr;
6168 auto createNewBase
= [&](int64_t BaseOffset
, Value
*OldBase
,
6169 GetElementPtrInst
*GEP
) {
6170 LLVMContext
&Ctx
= GEP
->getContext();
6171 Type
*PtrIdxTy
= DL
->getIndexType(GEP
->getType());
6173 PointerType::get(Ctx
, GEP
->getType()->getPointerAddressSpace());
6175 BasicBlock::iterator NewBaseInsertPt
;
6176 BasicBlock
*NewBaseInsertBB
;
6177 if (auto *BaseI
= dyn_cast
<Instruction
>(OldBase
)) {
6178 // If the base of the struct is an instruction, the new base will be
6179 // inserted close to it.
6180 NewBaseInsertBB
= BaseI
->getParent();
6181 if (isa
<PHINode
>(BaseI
))
6182 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6183 else if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(BaseI
)) {
6185 SplitEdge(NewBaseInsertBB
, Invoke
->getNormalDest(), DT
.get(), LI
);
6186 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6188 NewBaseInsertPt
= std::next(BaseI
->getIterator());
6190 // If the current base is an argument or global value, the new base
6191 // will be inserted to the entry block.
6192 NewBaseInsertBB
= &BaseGEP
->getFunction()->getEntryBlock();
6193 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6195 IRBuilder
<> NewBaseBuilder(NewBaseInsertBB
, NewBaseInsertPt
);
6196 // Create a new base.
6197 Value
*BaseIndex
= ConstantInt::get(PtrIdxTy
, BaseOffset
);
6198 NewBaseGEP
= OldBase
;
6199 if (NewBaseGEP
->getType() != I8PtrTy
)
6200 NewBaseGEP
= NewBaseBuilder
.CreatePointerCast(NewBaseGEP
, I8PtrTy
);
6202 NewBaseBuilder
.CreatePtrAdd(NewBaseGEP
, BaseIndex
, "splitgep");
6203 NewGEPBases
.insert(NewBaseGEP
);
6207 // Check whether all the offsets can be encoded with prefered common base.
6208 if (int64_t PreferBase
= TLI
->getPreferredLargeGEPBaseOffset(
6209 LargeOffsetGEPs
.front().second
, LargeOffsetGEPs
.back().second
)) {
6210 BaseOffset
= PreferBase
;
6211 // Create a new base if the offset of the BaseGEP can be decoded with one
6213 createNewBase(BaseOffset
, OldBase
, BaseGEP
);
6216 auto *LargeOffsetGEP
= LargeOffsetGEPs
.begin();
6217 while (LargeOffsetGEP
!= LargeOffsetGEPs
.end()) {
6218 GetElementPtrInst
*GEP
= LargeOffsetGEP
->first
;
6219 int64_t Offset
= LargeOffsetGEP
->second
;
6220 if (Offset
!= BaseOffset
) {
6221 TargetLowering::AddrMode AddrMode
;
6222 AddrMode
.HasBaseReg
= true;
6223 AddrMode
.BaseOffs
= Offset
- BaseOffset
;
6224 // The result type of the GEP might not be the type of the memory
6226 if (!TLI
->isLegalAddressingMode(*DL
, AddrMode
,
6227 GEP
->getResultElementType(),
6228 GEP
->getAddressSpace())) {
6229 // We need to create a new base if the offset to the current base is
6230 // too large to fit into the addressing mode. So, a very large struct
6231 // may be split into several parts.
6233 BaseOffset
= Offset
;
6234 NewBaseGEP
= nullptr;
6238 // Generate a new GEP to replace the current one.
6239 Type
*PtrIdxTy
= DL
->getIndexType(GEP
->getType());
6242 // Create a new base if we don't have one yet. Find the insertion
6243 // pointer for the new base first.
6244 createNewBase(BaseOffset
, OldBase
, GEP
);
6247 IRBuilder
<> Builder(GEP
);
6248 Value
*NewGEP
= NewBaseGEP
;
6249 if (Offset
!= BaseOffset
) {
6250 // Calculate the new offset for the new GEP.
6251 Value
*Index
= ConstantInt::get(PtrIdxTy
, Offset
- BaseOffset
);
6252 NewGEP
= Builder
.CreatePtrAdd(NewBaseGEP
, Index
);
6254 replaceAllUsesWith(GEP
, NewGEP
, FreshBBs
, IsHugeFunc
);
6255 LargeOffsetGEPID
.erase(GEP
);
6256 LargeOffsetGEP
= LargeOffsetGEPs
.erase(LargeOffsetGEP
);
6257 GEP
->eraseFromParent();
6264 bool CodeGenPrepare::optimizePhiType(
6265 PHINode
*I
, SmallPtrSetImpl
<PHINode
*> &Visited
,
6266 SmallPtrSetImpl
<Instruction
*> &DeletedInstrs
) {
6267 // We are looking for a collection on interconnected phi nodes that together
6268 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6269 // are of the same type. Convert the whole set of nodes to the type of the
6271 Type
*PhiTy
= I
->getType();
6272 Type
*ConvertTy
= nullptr;
6273 if (Visited
.count(I
) ||
6274 (!I
->getType()->isIntegerTy() && !I
->getType()->isFloatingPointTy()))
6277 SmallVector
<Instruction
*, 4> Worklist
;
6278 Worklist
.push_back(cast
<Instruction
>(I
));
6279 SmallPtrSet
<PHINode
*, 4> PhiNodes
;
6280 SmallPtrSet
<ConstantData
*, 4> Constants
;
6283 SmallPtrSet
<Instruction
*, 4> Defs
;
6284 SmallPtrSet
<Instruction
*, 4> Uses
;
6285 // This works by adding extra bitcasts between load/stores and removing
6286 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6287 // we can get in the situation where we remove a bitcast in one iteration
6288 // just to add it again in the next. We need to ensure that at least one
6289 // bitcast we remove are anchored to something that will not change back.
6290 bool AnyAnchored
= false;
6292 while (!Worklist
.empty()) {
6293 Instruction
*II
= Worklist
.pop_back_val();
6295 if (auto *Phi
= dyn_cast
<PHINode
>(II
)) {
6296 // Handle Defs, which might also be PHI's
6297 for (Value
*V
: Phi
->incoming_values()) {
6298 if (auto *OpPhi
= dyn_cast
<PHINode
>(V
)) {
6299 if (!PhiNodes
.count(OpPhi
)) {
6300 if (!Visited
.insert(OpPhi
).second
)
6302 PhiNodes
.insert(OpPhi
);
6303 Worklist
.push_back(OpPhi
);
6305 } else if (auto *OpLoad
= dyn_cast
<LoadInst
>(V
)) {
6306 if (!OpLoad
->isSimple())
6308 if (Defs
.insert(OpLoad
).second
)
6309 Worklist
.push_back(OpLoad
);
6310 } else if (auto *OpEx
= dyn_cast
<ExtractElementInst
>(V
)) {
6311 if (Defs
.insert(OpEx
).second
)
6312 Worklist
.push_back(OpEx
);
6313 } else if (auto *OpBC
= dyn_cast
<BitCastInst
>(V
)) {
6315 ConvertTy
= OpBC
->getOperand(0)->getType();
6316 if (OpBC
->getOperand(0)->getType() != ConvertTy
)
6318 if (Defs
.insert(OpBC
).second
) {
6319 Worklist
.push_back(OpBC
);
6320 AnyAnchored
|= !isa
<LoadInst
>(OpBC
->getOperand(0)) &&
6321 !isa
<ExtractElementInst
>(OpBC
->getOperand(0));
6323 } else if (auto *OpC
= dyn_cast
<ConstantData
>(V
))
6324 Constants
.insert(OpC
);
6330 // Handle uses which might also be phi's
6331 for (User
*V
: II
->users()) {
6332 if (auto *OpPhi
= dyn_cast
<PHINode
>(V
)) {
6333 if (!PhiNodes
.count(OpPhi
)) {
6334 if (Visited
.count(OpPhi
))
6336 PhiNodes
.insert(OpPhi
);
6337 Visited
.insert(OpPhi
);
6338 Worklist
.push_back(OpPhi
);
6340 } else if (auto *OpStore
= dyn_cast
<StoreInst
>(V
)) {
6341 if (!OpStore
->isSimple() || OpStore
->getOperand(0) != II
)
6343 Uses
.insert(OpStore
);
6344 } else if (auto *OpBC
= dyn_cast
<BitCastInst
>(V
)) {
6346 ConvertTy
= OpBC
->getType();
6347 if (OpBC
->getType() != ConvertTy
)
6351 any_of(OpBC
->users(), [](User
*U
) { return !isa
<StoreInst
>(U
); });
6358 if (!ConvertTy
|| !AnyAnchored
||
6359 !TLI
->shouldConvertPhiType(PhiTy
, ConvertTy
))
6362 LLVM_DEBUG(dbgs() << "Converting " << *I
<< "\n and connected nodes to "
6363 << *ConvertTy
<< "\n");
6365 // Create all the new phi nodes of the new type, and bitcast any loads to the
6367 ValueToValueMap ValMap
;
6368 for (ConstantData
*C
: Constants
)
6369 ValMap
[C
] = ConstantExpr::getBitCast(C
, ConvertTy
);
6370 for (Instruction
*D
: Defs
) {
6371 if (isa
<BitCastInst
>(D
)) {
6372 ValMap
[D
] = D
->getOperand(0);
6373 DeletedInstrs
.insert(D
);
6376 new BitCastInst(D
, ConvertTy
, D
->getName() + ".bc", D
->getNextNode());
6379 for (PHINode
*Phi
: PhiNodes
)
6380 ValMap
[Phi
] = PHINode::Create(ConvertTy
, Phi
->getNumIncomingValues(),
6381 Phi
->getName() + ".tc", Phi
);
6382 // Pipe together all the PhiNodes.
6383 for (PHINode
*Phi
: PhiNodes
) {
6384 PHINode
*NewPhi
= cast
<PHINode
>(ValMap
[Phi
]);
6385 for (int i
= 0, e
= Phi
->getNumIncomingValues(); i
< e
; i
++)
6386 NewPhi
->addIncoming(ValMap
[Phi
->getIncomingValue(i
)],
6387 Phi
->getIncomingBlock(i
));
6388 Visited
.insert(NewPhi
);
6390 // And finally pipe up the stores and bitcasts
6391 for (Instruction
*U
: Uses
) {
6392 if (isa
<BitCastInst
>(U
)) {
6393 DeletedInstrs
.insert(U
);
6394 replaceAllUsesWith(U
, ValMap
[U
->getOperand(0)], FreshBBs
, IsHugeFunc
);
6397 new BitCastInst(ValMap
[U
->getOperand(0)], PhiTy
, "bc", U
));
6401 // Save the removed phis to be deleted later.
6402 for (PHINode
*Phi
: PhiNodes
)
6403 DeletedInstrs
.insert(Phi
);
6407 bool CodeGenPrepare::optimizePhiTypes(Function
&F
) {
6408 if (!OptimizePhiTypes
)
6411 bool Changed
= false;
6412 SmallPtrSet
<PHINode
*, 4> Visited
;
6413 SmallPtrSet
<Instruction
*, 4> DeletedInstrs
;
6415 // Attempt to optimize all the phis in the functions to the correct type.
6417 for (auto &Phi
: BB
.phis())
6418 Changed
|= optimizePhiType(&Phi
, Visited
, DeletedInstrs
);
6420 // Remove any old phi's that have been converted.
6421 for (auto *I
: DeletedInstrs
) {
6422 replaceAllUsesWith(I
, PoisonValue::get(I
->getType()), FreshBBs
, IsHugeFunc
);
6423 I
->eraseFromParent();
6429 /// Return true, if an ext(load) can be formed from an extension in
6431 bool CodeGenPrepare::canFormExtLd(
6432 const SmallVectorImpl
<Instruction
*> &MovedExts
, LoadInst
*&LI
,
6433 Instruction
*&Inst
, bool HasPromoted
) {
6434 for (auto *MovedExtInst
: MovedExts
) {
6435 if (isa
<LoadInst
>(MovedExtInst
->getOperand(0))) {
6436 LI
= cast
<LoadInst
>(MovedExtInst
->getOperand(0));
6437 Inst
= MovedExtInst
;
6444 // If they're already in the same block, there's nothing to do.
6445 // Make the cheap checks first if we did not promote.
6446 // If we promoted, we need to check if it is indeed profitable.
6447 if (!HasPromoted
&& LI
->getParent() == Inst
->getParent())
6450 return TLI
->isExtLoad(LI
, Inst
, *DL
);
6453 /// Move a zext or sext fed by a load into the same basic block as the load,
6454 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6455 /// extend into the load.
6459 /// %ld = load i32* %addr
6460 /// %add = add nuw i32 %ld, 4
6461 /// %zext = zext i32 %add to i64
6465 /// %ld = load i32* %addr
6466 /// %zext = zext i32 %ld to i64
6467 /// %add = add nuw i64 %zext, 4
6469 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6470 /// allow us to match zext(load i32*) to i64.
6472 /// Also, try to promote the computations used to obtain a sign extended
6473 /// value used into memory accesses.
6476 /// a = add nsw i32 b, 3
6477 /// d = sext i32 a to i64
6478 /// e = getelementptr ..., i64 d
6482 /// f = sext i32 b to i64
6483 /// a = add nsw i64 f, 3
6484 /// e = getelementptr ..., i64 a
6487 /// \p Inst[in/out] the extension may be modified during the process if some
6488 /// promotions apply.
6489 bool CodeGenPrepare::optimizeExt(Instruction
*&Inst
) {
6490 bool AllowPromotionWithoutCommonHeader
= false;
6491 /// See if it is an interesting sext operations for the address type
6492 /// promotion before trying to promote it, e.g., the ones with the right
6493 /// type and used in memory accesses.
6494 bool ATPConsiderable
= TTI
->shouldConsiderAddressTypePromotion(
6495 *Inst
, AllowPromotionWithoutCommonHeader
);
6496 TypePromotionTransaction
TPT(RemovedInsts
);
6497 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
6498 TPT
.getRestorationPoint();
6499 SmallVector
<Instruction
*, 1> Exts
;
6500 SmallVector
<Instruction
*, 2> SpeculativelyMovedExts
;
6501 Exts
.push_back(Inst
);
6503 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, SpeculativelyMovedExts
);
6505 // Look for a load being extended.
6506 LoadInst
*LI
= nullptr;
6507 Instruction
*ExtFedByLoad
;
6509 // Try to promote a chain of computation if it allows to form an extended
6511 if (canFormExtLd(SpeculativelyMovedExts
, LI
, ExtFedByLoad
, HasPromoted
)) {
6512 assert(LI
&& ExtFedByLoad
&& "Expect a valid load and extension");
6514 // Move the extend into the same block as the load.
6515 ExtFedByLoad
->moveAfter(LI
);
6517 Inst
= ExtFedByLoad
;
6521 // Continue promoting SExts if known as considerable depending on targets.
6522 if (ATPConsiderable
&&
6523 performAddressTypePromotion(Inst
, AllowPromotionWithoutCommonHeader
,
6524 HasPromoted
, TPT
, SpeculativelyMovedExts
))
6527 TPT
.rollback(LastKnownGood
);
6531 // Perform address type promotion if doing so is profitable.
6532 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6533 // instructions that sign extended the same initial value. However, if
6534 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6535 // extension is just profitable.
6536 bool CodeGenPrepare::performAddressTypePromotion(
6537 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
6538 bool HasPromoted
, TypePromotionTransaction
&TPT
,
6539 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
) {
6540 bool Promoted
= false;
6541 SmallPtrSet
<Instruction
*, 1> UnhandledExts
;
6542 bool AllSeenFirst
= true;
6543 for (auto *I
: SpeculativelyMovedExts
) {
6544 Value
*HeadOfChain
= I
->getOperand(0);
6545 DenseMap
<Value
*, Instruction
*>::iterator AlreadySeen
=
6546 SeenChainsForSExt
.find(HeadOfChain
);
6547 // If there is an unhandled SExt which has the same header, try to promote
6549 if (AlreadySeen
!= SeenChainsForSExt
.end()) {
6550 if (AlreadySeen
->second
!= nullptr)
6551 UnhandledExts
.insert(AlreadySeen
->second
);
6552 AllSeenFirst
= false;
6556 if (!AllSeenFirst
|| (AllowPromotionWithoutCommonHeader
&&
6557 SpeculativelyMovedExts
.size() == 1)) {
6561 for (auto *I
: SpeculativelyMovedExts
) {
6562 Value
*HeadOfChain
= I
->getOperand(0);
6563 SeenChainsForSExt
[HeadOfChain
] = nullptr;
6564 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
6566 // Update Inst as promotion happen.
6567 Inst
= SpeculativelyMovedExts
.pop_back_val();
6569 // This is the first chain visited from the header, keep the current chain
6570 // as unhandled. Defer to promote this until we encounter another SExt
6571 // chain derived from the same header.
6572 for (auto *I
: SpeculativelyMovedExts
) {
6573 Value
*HeadOfChain
= I
->getOperand(0);
6574 SeenChainsForSExt
[HeadOfChain
] = Inst
;
6579 if (!AllSeenFirst
&& !UnhandledExts
.empty())
6580 for (auto *VisitedSExt
: UnhandledExts
) {
6581 if (RemovedInsts
.count(VisitedSExt
))
6583 TypePromotionTransaction
TPT(RemovedInsts
);
6584 SmallVector
<Instruction
*, 1> Exts
;
6585 SmallVector
<Instruction
*, 2> Chains
;
6586 Exts
.push_back(VisitedSExt
);
6587 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, Chains
);
6591 for (auto *I
: Chains
) {
6592 Value
*HeadOfChain
= I
->getOperand(0);
6593 // Mark this as handled.
6594 SeenChainsForSExt
[HeadOfChain
] = nullptr;
6595 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
6601 bool CodeGenPrepare::optimizeExtUses(Instruction
*I
) {
6602 BasicBlock
*DefBB
= I
->getParent();
6604 // If the result of a {s|z}ext and its source are both live out, rewrite all
6605 // other uses of the source with result of extension.
6606 Value
*Src
= I
->getOperand(0);
6607 if (Src
->hasOneUse())
6610 // Only do this xform if truncating is free.
6611 if (!TLI
->isTruncateFree(I
->getType(), Src
->getType()))
6614 // Only safe to perform the optimization if the source is also defined in
6616 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
6619 bool DefIsLiveOut
= false;
6620 for (User
*U
: I
->users()) {
6621 Instruction
*UI
= cast
<Instruction
>(U
);
6623 // Figure out which BB this ext is used in.
6624 BasicBlock
*UserBB
= UI
->getParent();
6625 if (UserBB
== DefBB
)
6627 DefIsLiveOut
= true;
6633 // Make sure none of the uses are PHI nodes.
6634 for (User
*U
: Src
->users()) {
6635 Instruction
*UI
= cast
<Instruction
>(U
);
6636 BasicBlock
*UserBB
= UI
->getParent();
6637 if (UserBB
== DefBB
)
6639 // Be conservative. We don't want this xform to end up introducing
6640 // reloads just before load / store instructions.
6641 if (isa
<PHINode
>(UI
) || isa
<LoadInst
>(UI
) || isa
<StoreInst
>(UI
))
6645 // InsertedTruncs - Only insert one trunc in each block once.
6646 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
6648 bool MadeChange
= false;
6649 for (Use
&U
: Src
->uses()) {
6650 Instruction
*User
= cast
<Instruction
>(U
.getUser());
6652 // Figure out which BB this ext is used in.
6653 BasicBlock
*UserBB
= User
->getParent();
6654 if (UserBB
== DefBB
)
6657 // Both src and def are live in this block. Rewrite the use.
6658 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
6660 if (!InsertedTrunc
) {
6661 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
6662 assert(InsertPt
!= UserBB
->end());
6663 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "");
6664 InsertedTrunc
->insertBefore(*UserBB
, InsertPt
);
6665 InsertedInsts
.insert(InsertedTrunc
);
6668 // Replace a use of the {s|z}ext source with a use of the result.
6677 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
6678 // just after the load if the target can fold this into one extload instruction,
6679 // with the hope of eliminating some of the other later "and" instructions using
6680 // the loaded value. "and"s that are made trivially redundant by the insertion
6681 // of the new "and" are removed by this function, while others (e.g. those whose
6682 // path from the load goes through a phi) are left for isel to potentially
6715 // becomes (after a call to optimizeLoadExt for each load):
6719 // x1' = and x1, 0xff
6723 // x2' = and x2, 0xff
6728 bool CodeGenPrepare::optimizeLoadExt(LoadInst
*Load
) {
6729 if (!Load
->isSimple() || !Load
->getType()->isIntOrPtrTy())
6732 // Skip loads we've already transformed.
6733 if (Load
->hasOneUse() &&
6734 InsertedInsts
.count(cast
<Instruction
>(*Load
->user_begin())))
6737 // Look at all uses of Load, looking through phis, to determine how many bits
6738 // of the loaded value are needed.
6739 SmallVector
<Instruction
*, 8> WorkList
;
6740 SmallPtrSet
<Instruction
*, 16> Visited
;
6741 SmallVector
<Instruction
*, 8> AndsToMaybeRemove
;
6742 for (auto *U
: Load
->users())
6743 WorkList
.push_back(cast
<Instruction
>(U
));
6745 EVT LoadResultVT
= TLI
->getValueType(*DL
, Load
->getType());
6746 unsigned BitWidth
= LoadResultVT
.getSizeInBits();
6747 // If the BitWidth is 0, do not try to optimize the type
6751 APInt
DemandBits(BitWidth
, 0);
6752 APInt
WidestAndBits(BitWidth
, 0);
6754 while (!WorkList
.empty()) {
6755 Instruction
*I
= WorkList
.pop_back_val();
6757 // Break use-def graph loops.
6758 if (!Visited
.insert(I
).second
)
6761 // For a PHI node, push all of its users.
6762 if (auto *Phi
= dyn_cast
<PHINode
>(I
)) {
6763 for (auto *U
: Phi
->users())
6764 WorkList
.push_back(cast
<Instruction
>(U
));
6768 switch (I
->getOpcode()) {
6769 case Instruction::And
: {
6770 auto *AndC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
6773 APInt AndBits
= AndC
->getValue();
6774 DemandBits
|= AndBits
;
6775 // Keep track of the widest and mask we see.
6776 if (AndBits
.ugt(WidestAndBits
))
6777 WidestAndBits
= AndBits
;
6778 if (AndBits
== WidestAndBits
&& I
->getOperand(0) == Load
)
6779 AndsToMaybeRemove
.push_back(I
);
6783 case Instruction::Shl
: {
6784 auto *ShlC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
6787 uint64_t ShiftAmt
= ShlC
->getLimitedValue(BitWidth
- 1);
6788 DemandBits
.setLowBits(BitWidth
- ShiftAmt
);
6792 case Instruction::Trunc
: {
6793 EVT TruncVT
= TLI
->getValueType(*DL
, I
->getType());
6794 unsigned TruncBitWidth
= TruncVT
.getSizeInBits();
6795 DemandBits
.setLowBits(TruncBitWidth
);
6804 uint32_t ActiveBits
= DemandBits
.getActiveBits();
6805 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6806 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
6807 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6808 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6809 // followed by an AND.
6810 // TODO: Look into removing this restriction by fixing backends to either
6811 // return false for isLoadExtLegal for i1 or have them select this pattern to
6812 // a single instruction.
6814 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6815 // mask, since these are the only ands that will be removed by isel.
6816 if (ActiveBits
<= 1 || !DemandBits
.isMask(ActiveBits
) ||
6817 WidestAndBits
!= DemandBits
)
6820 LLVMContext
&Ctx
= Load
->getType()->getContext();
6821 Type
*TruncTy
= Type::getIntNTy(Ctx
, ActiveBits
);
6822 EVT TruncVT
= TLI
->getValueType(*DL
, TruncTy
);
6824 // Reject cases that won't be matched as extloads.
6825 if (!LoadResultVT
.bitsGT(TruncVT
) || !TruncVT
.isRound() ||
6826 !TLI
->isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultVT
, TruncVT
))
6829 IRBuilder
<> Builder(Load
->getNextNonDebugInstruction());
6830 auto *NewAnd
= cast
<Instruction
>(
6831 Builder
.CreateAnd(Load
, ConstantInt::get(Ctx
, DemandBits
)));
6832 // Mark this instruction as "inserted by CGP", so that other
6833 // optimizations don't touch it.
6834 InsertedInsts
.insert(NewAnd
);
6836 // Replace all uses of load with new and (except for the use of load in the
6838 replaceAllUsesWith(Load
, NewAnd
, FreshBBs
, IsHugeFunc
);
6839 NewAnd
->setOperand(0, Load
);
6841 // Remove any and instructions that are now redundant.
6842 for (auto *And
: AndsToMaybeRemove
)
6843 // Check that the and mask is the same as the one we decided to put on the
6845 if (cast
<ConstantInt
>(And
->getOperand(1))->getValue() == DemandBits
) {
6846 replaceAllUsesWith(And
, NewAnd
, FreshBBs
, IsHugeFunc
);
6847 if (&*CurInstIterator
== And
)
6848 CurInstIterator
= std::next(And
->getIterator());
6849 And
->eraseFromParent();
6857 /// Check if V (an operand of a select instruction) is an expensive instruction
6858 /// that is only used once.
6859 static bool sinkSelectOperand(const TargetTransformInfo
*TTI
, Value
*V
) {
6860 auto *I
= dyn_cast
<Instruction
>(V
);
6861 // If it's safe to speculatively execute, then it should not have side
6862 // effects; therefore, it's safe to sink and possibly *not* execute.
6863 return I
&& I
->hasOneUse() && isSafeToSpeculativelyExecute(I
) &&
6864 TTI
->isExpensiveToSpeculativelyExecute(I
);
6867 /// Returns true if a SelectInst should be turned into an explicit branch.
6868 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo
*TTI
,
6869 const TargetLowering
*TLI
,
6871 // If even a predictable select is cheap, then a branch can't be cheaper.
6872 if (!TLI
->isPredictableSelectExpensive())
6875 // FIXME: This should use the same heuristics as IfConversion to determine
6876 // whether a select is better represented as a branch.
6878 // If metadata tells us that the select condition is obviously predictable,
6879 // then we want to replace the select with a branch.
6880 uint64_t TrueWeight
, FalseWeight
;
6881 if (extractBranchWeights(*SI
, TrueWeight
, FalseWeight
)) {
6882 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
6883 uint64_t Sum
= TrueWeight
+ FalseWeight
;
6885 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
6886 if (Probability
> TTI
->getPredictableBranchThreshold())
6891 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
6893 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6894 // comparison condition. If the compare has more than one use, there's
6895 // probably another cmov or setcc around, so it's not worth emitting a branch.
6896 if (!Cmp
|| !Cmp
->hasOneUse())
6899 // If either operand of the select is expensive and only needed on one side
6900 // of the select, we should form a branch.
6901 if (sinkSelectOperand(TTI
, SI
->getTrueValue()) ||
6902 sinkSelectOperand(TTI
, SI
->getFalseValue()))
6908 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6909 /// false value of \p SI. If the true/false value of \p SI is defined by any
6910 /// select instructions in \p Selects, look through the defining select
6911 /// instruction until the true/false value is not defined in \p Selects.
6913 getTrueOrFalseValue(SelectInst
*SI
, bool isTrue
,
6914 const SmallPtrSet
<const Instruction
*, 2> &Selects
) {
6917 for (SelectInst
*DefSI
= SI
; DefSI
!= nullptr && Selects
.count(DefSI
);
6918 DefSI
= dyn_cast
<SelectInst
>(V
)) {
6919 assert(DefSI
->getCondition() == SI
->getCondition() &&
6920 "The condition of DefSI does not match with SI");
6921 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
6924 assert(V
&& "Failed to get select true/false value");
6928 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator
*Shift
) {
6929 assert(Shift
->isShift() && "Expected a shift");
6931 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6932 // general vector shifts, and (3) the shift amount is a select-of-splatted
6933 // values, hoist the shifts before the select:
6934 // shift Op0, (select Cond, TVal, FVal) -->
6935 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
6937 // This is inverting a generic IR transform when we know that the cost of a
6938 // general vector shift is more than the cost of 2 shift-by-scalars.
6939 // We can't do this effectively in SDAG because we may not be able to
6940 // determine if the select operands are splats from within a basic block.
6941 Type
*Ty
= Shift
->getType();
6942 if (!Ty
->isVectorTy() || !TLI
->isVectorShiftByScalarCheap(Ty
))
6944 Value
*Cond
, *TVal
, *FVal
;
6945 if (!match(Shift
->getOperand(1),
6946 m_OneUse(m_Select(m_Value(Cond
), m_Value(TVal
), m_Value(FVal
)))))
6948 if (!isSplatValue(TVal
) || !isSplatValue(FVal
))
6951 IRBuilder
<> Builder(Shift
);
6952 BinaryOperator::BinaryOps Opcode
= Shift
->getOpcode();
6953 Value
*NewTVal
= Builder
.CreateBinOp(Opcode
, Shift
->getOperand(0), TVal
);
6954 Value
*NewFVal
= Builder
.CreateBinOp(Opcode
, Shift
->getOperand(0), FVal
);
6955 Value
*NewSel
= Builder
.CreateSelect(Cond
, NewTVal
, NewFVal
);
6956 replaceAllUsesWith(Shift
, NewSel
, FreshBBs
, IsHugeFunc
);
6957 Shift
->eraseFromParent();
6961 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst
*Fsh
) {
6962 Intrinsic::ID Opcode
= Fsh
->getIntrinsicID();
6963 assert((Opcode
== Intrinsic::fshl
|| Opcode
== Intrinsic::fshr
) &&
6964 "Expected a funnel shift");
6966 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6967 // than general vector shifts, and (3) the shift amount is select-of-splatted
6968 // values, hoist the funnel shifts before the select:
6969 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
6970 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6972 // This is inverting a generic IR transform when we know that the cost of a
6973 // general vector shift is more than the cost of 2 shift-by-scalars.
6974 // We can't do this effectively in SDAG because we may not be able to
6975 // determine if the select operands are splats from within a basic block.
6976 Type
*Ty
= Fsh
->getType();
6977 if (!Ty
->isVectorTy() || !TLI
->isVectorShiftByScalarCheap(Ty
))
6979 Value
*Cond
, *TVal
, *FVal
;
6980 if (!match(Fsh
->getOperand(2),
6981 m_OneUse(m_Select(m_Value(Cond
), m_Value(TVal
), m_Value(FVal
)))))
6983 if (!isSplatValue(TVal
) || !isSplatValue(FVal
))
6986 IRBuilder
<> Builder(Fsh
);
6987 Value
*X
= Fsh
->getOperand(0), *Y
= Fsh
->getOperand(1);
6988 Value
*NewTVal
= Builder
.CreateIntrinsic(Opcode
, Ty
, {X
, Y
, TVal
});
6989 Value
*NewFVal
= Builder
.CreateIntrinsic(Opcode
, Ty
, {X
, Y
, FVal
});
6990 Value
*NewSel
= Builder
.CreateSelect(Cond
, NewTVal
, NewFVal
);
6991 replaceAllUsesWith(Fsh
, NewSel
, FreshBBs
, IsHugeFunc
);
6992 Fsh
->eraseFromParent();
6996 /// If we have a SelectInst that will likely profit from branch prediction,
6997 /// turn it into a branch.
6998 bool CodeGenPrepare::optimizeSelectInst(SelectInst
*SI
) {
6999 if (DisableSelectToBranch
)
7002 // If the SelectOptimize pass is enabled, selects have already been optimized.
7003 if (!getCGPassBuilderOption().DisableSelectOptimize
)
7006 // Find all consecutive select instructions that share the same condition.
7007 SmallVector
<SelectInst
*, 2> ASI
;
7009 for (BasicBlock::iterator It
= ++BasicBlock::iterator(SI
);
7010 It
!= SI
->getParent()->end(); ++It
) {
7011 SelectInst
*I
= dyn_cast
<SelectInst
>(&*It
);
7012 if (I
&& SI
->getCondition() == I
->getCondition()) {
7019 SelectInst
*LastSI
= ASI
.back();
7020 // Increment the current iterator to skip all the rest of select instructions
7021 // because they will be either "not lowered" or "all lowered" to branch.
7022 CurInstIterator
= std::next(LastSI
->getIterator());
7023 // Examine debug-info attached to the consecutive select instructions. They
7024 // won't be individually optimised by optimizeInst, so we need to perform
7025 // DPValue maintenence here instead.
7026 for (SelectInst
*SI
: ArrayRef(ASI
).drop_front())
7027 fixupDPValuesOnInst(*SI
);
7029 bool VectorCond
= !SI
->getCondition()->getType()->isIntegerTy(1);
7031 // Can we convert the 'select' to CF ?
7032 if (VectorCond
|| SI
->getMetadata(LLVMContext::MD_unpredictable
))
7035 TargetLowering::SelectSupportKind SelectKind
;
7036 if (SI
->getType()->isVectorTy())
7037 SelectKind
= TargetLowering::ScalarCondVectorVal
;
7039 SelectKind
= TargetLowering::ScalarValSelect
;
7041 if (TLI
->isSelectSupported(SelectKind
) &&
7042 (!isFormingBranchFromSelectProfitable(TTI
, TLI
, SI
) || OptSize
||
7043 llvm::shouldOptimizeForSize(SI
->getParent(), PSI
, BFI
.get())))
7046 // The DominatorTree needs to be rebuilt by any consumers after this
7047 // transformation. We simply reset here rather than setting the ModifiedDT
7048 // flag to avoid restarting the function walk in runOnFunction for each
7049 // select optimized.
7052 // Transform a sequence like this:
7054 // %cmp = cmp uge i32 %a, %b
7055 // %sel = select i1 %cmp, i32 %c, i32 %d
7059 // %cmp = cmp uge i32 %a, %b
7060 // %cmp.frozen = freeze %cmp
7061 // br i1 %cmp.frozen, label %select.true, label %select.false
7063 // br label %select.end
7065 // br label %select.end
7067 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7069 // %cmp should be frozen, otherwise it may introduce undefined behavior.
7070 // In addition, we may sink instructions that produce %c or %d from
7071 // the entry block into the destination(s) of the new branch.
7072 // If the true or false blocks do not contain a sunken instruction, that
7073 // block and its branch may be optimized away. In that case, one side of the
7074 // first branch will point directly to select.end, and the corresponding PHI
7075 // predecessor block will be the start block.
7077 // Collect values that go on the true side and the values that go on the false
7079 SmallVector
<Instruction
*> TrueInstrs
, FalseInstrs
;
7080 for (SelectInst
*SI
: ASI
) {
7081 if (Value
*V
= SI
->getTrueValue(); sinkSelectOperand(TTI
, V
))
7082 TrueInstrs
.push_back(cast
<Instruction
>(V
));
7083 if (Value
*V
= SI
->getFalseValue(); sinkSelectOperand(TTI
, V
))
7084 FalseInstrs
.push_back(cast
<Instruction
>(V
));
7087 // Split the select block, according to how many (if any) values go on each
7089 BasicBlock
*StartBlock
= SI
->getParent();
7090 BasicBlock::iterator SplitPt
= std::next(BasicBlock::iterator(LastSI
));
7091 // We should split before any debug-info.
7092 SplitPt
.setHeadBit(true);
7095 auto *CondFr
= IB
.CreateFreeze(SI
->getCondition(), SI
->getName() + ".frozen");
7097 BasicBlock
*TrueBlock
= nullptr;
7098 BasicBlock
*FalseBlock
= nullptr;
7099 BasicBlock
*EndBlock
= nullptr;
7100 BranchInst
*TrueBranch
= nullptr;
7101 BranchInst
*FalseBranch
= nullptr;
7102 if (TrueInstrs
.size() == 0) {
7103 FalseBranch
= cast
<BranchInst
>(SplitBlockAndInsertIfElse(
7104 CondFr
, SplitPt
, false, nullptr, nullptr, LI
));
7105 FalseBlock
= FalseBranch
->getParent();
7106 EndBlock
= cast
<BasicBlock
>(FalseBranch
->getOperand(0));
7107 } else if (FalseInstrs
.size() == 0) {
7108 TrueBranch
= cast
<BranchInst
>(SplitBlockAndInsertIfThen(
7109 CondFr
, SplitPt
, false, nullptr, nullptr, LI
));
7110 TrueBlock
= TrueBranch
->getParent();
7111 EndBlock
= cast
<BasicBlock
>(TrueBranch
->getOperand(0));
7113 Instruction
*ThenTerm
= nullptr;
7114 Instruction
*ElseTerm
= nullptr;
7115 SplitBlockAndInsertIfThenElse(CondFr
, SplitPt
, &ThenTerm
, &ElseTerm
,
7116 nullptr, nullptr, LI
);
7117 TrueBranch
= cast
<BranchInst
>(ThenTerm
);
7118 FalseBranch
= cast
<BranchInst
>(ElseTerm
);
7119 TrueBlock
= TrueBranch
->getParent();
7120 FalseBlock
= FalseBranch
->getParent();
7121 EndBlock
= cast
<BasicBlock
>(TrueBranch
->getOperand(0));
7124 EndBlock
->setName("select.end");
7126 TrueBlock
->setName("select.true.sink");
7128 FalseBlock
->setName(FalseInstrs
.size() == 0 ? "select.false"
7129 : "select.false.sink");
7133 FreshBBs
.insert(TrueBlock
);
7135 FreshBBs
.insert(FalseBlock
);
7136 FreshBBs
.insert(EndBlock
);
7139 BFI
->setBlockFreq(EndBlock
, BFI
->getBlockFreq(StartBlock
));
7141 static const unsigned MD
[] = {
7142 LLVMContext::MD_prof
, LLVMContext::MD_unpredictable
,
7143 LLVMContext::MD_make_implicit
, LLVMContext::MD_dbg
};
7144 StartBlock
->getTerminator()->copyMetadata(*SI
, MD
);
7146 // Sink expensive instructions into the conditional blocks to avoid executing
7147 // them speculatively.
7148 for (Instruction
*I
: TrueInstrs
)
7149 I
->moveBefore(TrueBranch
);
7150 for (Instruction
*I
: FalseInstrs
)
7151 I
->moveBefore(FalseBranch
);
7153 // If we did not create a new block for one of the 'true' or 'false' paths
7154 // of the condition, it means that side of the branch goes to the end block
7155 // directly and the path originates from the start block from the point of
7156 // view of the new PHI.
7157 if (TrueBlock
== nullptr)
7158 TrueBlock
= StartBlock
;
7159 else if (FalseBlock
== nullptr)
7160 FalseBlock
= StartBlock
;
7162 SmallPtrSet
<const Instruction
*, 2> INS
;
7163 INS
.insert(ASI
.begin(), ASI
.end());
7164 // Use reverse iterator because later select may use the value of the
7165 // earlier select, and we need to propagate value through earlier select
7166 // to get the PHI operand.
7167 for (SelectInst
*SI
: llvm::reverse(ASI
)) {
7168 // The select itself is replaced with a PHI Node.
7169 PHINode
*PN
= PHINode::Create(SI
->getType(), 2, "");
7170 PN
->insertBefore(EndBlock
->begin());
7172 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
), TrueBlock
);
7173 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
), FalseBlock
);
7174 PN
->setDebugLoc(SI
->getDebugLoc());
7176 replaceAllUsesWith(SI
, PN
, FreshBBs
, IsHugeFunc
);
7177 SI
->eraseFromParent();
7179 ++NumSelectsExpanded
;
7182 // Instruct OptimizeBlock to skip to the next block.
7183 CurInstIterator
= StartBlock
->end();
7187 /// Some targets only accept certain types for splat inputs. For example a VDUP
7188 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7189 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7190 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
) {
7191 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7192 if (!match(SVI
, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7193 m_Undef(), m_ZeroMask())))
7195 Type
*NewType
= TLI
->shouldConvertSplatType(SVI
);
7199 auto *SVIVecType
= cast
<FixedVectorType
>(SVI
->getType());
7200 assert(!NewType
->isVectorTy() && "Expected a scalar type!");
7201 assert(NewType
->getScalarSizeInBits() == SVIVecType
->getScalarSizeInBits() &&
7202 "Expected a type of the same size!");
7204 FixedVectorType::get(NewType
, SVIVecType
->getNumElements());
7206 // Create a bitcast (shuffle (insert (bitcast(..))))
7207 IRBuilder
<> Builder(SVI
->getContext());
7208 Builder
.SetInsertPoint(SVI
);
7209 Value
*BC1
= Builder
.CreateBitCast(
7210 cast
<Instruction
>(SVI
->getOperand(0))->getOperand(1), NewType
);
7211 Value
*Shuffle
= Builder
.CreateVectorSplat(NewVecType
->getNumElements(), BC1
);
7212 Value
*BC2
= Builder
.CreateBitCast(Shuffle
, SVIVecType
);
7214 replaceAllUsesWith(SVI
, BC2
, FreshBBs
, IsHugeFunc
);
7215 RecursivelyDeleteTriviallyDeadInstructions(
7216 SVI
, TLInfo
, nullptr,
7217 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
7219 // Also hoist the bitcast up to its operand if it they are not in the same
7221 if (auto *BCI
= dyn_cast
<Instruction
>(BC1
))
7222 if (auto *Op
= dyn_cast
<Instruction
>(BCI
->getOperand(0)))
7223 if (BCI
->getParent() != Op
->getParent() && !isa
<PHINode
>(Op
) &&
7224 !Op
->isTerminator() && !Op
->isEHPad())
7230 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction
*I
) {
7231 // If the operands of I can be folded into a target instruction together with
7232 // I, duplicate and sink them.
7233 SmallVector
<Use
*, 4> OpsToSink
;
7234 if (!TLI
->shouldSinkOperands(I
, OpsToSink
))
7237 // OpsToSink can contain multiple uses in a use chain (e.g.
7238 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7239 // uses must come first, so we process the ops in reverse order so as to not
7240 // create invalid IR.
7241 BasicBlock
*TargetBB
= I
->getParent();
7242 bool Changed
= false;
7243 SmallVector
<Use
*, 4> ToReplace
;
7244 Instruction
*InsertPoint
= I
;
7245 DenseMap
<const Instruction
*, unsigned long> InstOrdering
;
7246 unsigned long InstNumber
= 0;
7247 for (const auto &I
: *TargetBB
)
7248 InstOrdering
[&I
] = InstNumber
++;
7250 for (Use
*U
: reverse(OpsToSink
)) {
7251 auto *UI
= cast
<Instruction
>(U
->get());
7252 if (isa
<PHINode
>(UI
))
7254 if (UI
->getParent() == TargetBB
) {
7255 if (InstOrdering
[UI
] < InstOrdering
[InsertPoint
])
7259 ToReplace
.push_back(U
);
7262 SetVector
<Instruction
*> MaybeDead
;
7263 DenseMap
<Instruction
*, Instruction
*> NewInstructions
;
7264 for (Use
*U
: ToReplace
) {
7265 auto *UI
= cast
<Instruction
>(U
->get());
7266 Instruction
*NI
= UI
->clone();
7269 // Now we clone an instruction, its operands' defs may sink to this BB
7270 // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7271 for (unsigned I
= 0; I
< NI
->getNumOperands(); ++I
) {
7272 auto *OpDef
= dyn_cast
<Instruction
>(NI
->getOperand(I
));
7275 FreshBBs
.insert(OpDef
->getParent());
7279 NewInstructions
[UI
] = NI
;
7280 MaybeDead
.insert(UI
);
7281 LLVM_DEBUG(dbgs() << "Sinking " << *UI
<< " to user " << *I
<< "\n");
7282 NI
->insertBefore(InsertPoint
);
7284 InsertedInsts
.insert(NI
);
7286 // Update the use for the new instruction, making sure that we update the
7287 // sunk instruction uses, if it is part of a chain that has already been
7289 Instruction
*OldI
= cast
<Instruction
>(U
->getUser());
7290 if (NewInstructions
.count(OldI
))
7291 NewInstructions
[OldI
]->setOperand(U
->getOperandNo(), NI
);
7297 // Remove instructions that are dead after sinking.
7298 for (auto *I
: MaybeDead
) {
7299 if (!I
->hasNUsesOrMore(1)) {
7300 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I
<< "\n");
7301 I
->eraseFromParent();
7308 bool CodeGenPrepare::optimizeSwitchType(SwitchInst
*SI
) {
7309 Value
*Cond
= SI
->getCondition();
7310 Type
*OldType
= Cond
->getType();
7311 LLVMContext
&Context
= Cond
->getContext();
7312 EVT OldVT
= TLI
->getValueType(*DL
, OldType
);
7313 MVT RegType
= TLI
->getPreferredSwitchConditionType(Context
, OldVT
);
7314 unsigned RegWidth
= RegType
.getSizeInBits();
7316 if (RegWidth
<= cast
<IntegerType
>(OldType
)->getBitWidth())
7319 // If the register width is greater than the type width, expand the condition
7320 // of the switch instruction and each case constant to the width of the
7321 // register. By widening the type of the switch condition, subsequent
7322 // comparisons (for case comparisons) will not need to be extended to the
7323 // preferred register width, so we will potentially eliminate N-1 extends,
7324 // where N is the number of cases in the switch.
7325 auto *NewType
= Type::getIntNTy(Context
, RegWidth
);
7327 // Extend the switch condition and case constants using the target preferred
7328 // extend unless the switch condition is a function argument with an extend
7329 // attribute. In that case, we can avoid an unnecessary mask/extension by
7330 // matching the argument extension instead.
7331 Instruction::CastOps ExtType
= Instruction::ZExt
;
7332 // Some targets prefer SExt over ZExt.
7333 if (TLI
->isSExtCheaperThanZExt(OldVT
, RegType
))
7334 ExtType
= Instruction::SExt
;
7336 if (auto *Arg
= dyn_cast
<Argument
>(Cond
)) {
7337 if (Arg
->hasSExtAttr())
7338 ExtType
= Instruction::SExt
;
7339 if (Arg
->hasZExtAttr())
7340 ExtType
= Instruction::ZExt
;
7343 auto *ExtInst
= CastInst::Create(ExtType
, Cond
, NewType
);
7344 ExtInst
->insertBefore(SI
);
7345 ExtInst
->setDebugLoc(SI
->getDebugLoc());
7346 SI
->setCondition(ExtInst
);
7347 for (auto Case
: SI
->cases()) {
7348 const APInt
&NarrowConst
= Case
.getCaseValue()->getValue();
7349 APInt WideConst
= (ExtType
== Instruction::ZExt
)
7350 ? NarrowConst
.zext(RegWidth
)
7351 : NarrowConst
.sext(RegWidth
);
7352 Case
.setValue(ConstantInt::get(Context
, WideConst
));
7358 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst
*SI
) {
7359 // The SCCP optimization tends to produce code like this:
7360 // switch(x) { case 42: phi(42, ...) }
7361 // Materializing the constant for the phi-argument needs instructions; So we
7362 // change the code to:
7363 // switch(x) { case 42: phi(x, ...) }
7365 Value
*Condition
= SI
->getCondition();
7366 // Avoid endless loop in degenerate case.
7367 if (isa
<ConstantInt
>(*Condition
))
7370 bool Changed
= false;
7371 BasicBlock
*SwitchBB
= SI
->getParent();
7372 Type
*ConditionType
= Condition
->getType();
7374 for (const SwitchInst::CaseHandle
&Case
: SI
->cases()) {
7375 ConstantInt
*CaseValue
= Case
.getCaseValue();
7376 BasicBlock
*CaseBB
= Case
.getCaseSuccessor();
7377 // Set to true if we previously checked that `CaseBB` is only reached by
7378 // a single case from this switch.
7379 bool CheckedForSinglePred
= false;
7380 for (PHINode
&PHI
: CaseBB
->phis()) {
7381 Type
*PHIType
= PHI
.getType();
7382 // If ZExt is free then we can also catch patterns like this:
7383 // switch((i32)x) { case 42: phi((i64)42, ...); }
7384 // and replace `(i64)42` with `zext i32 %x to i64`.
7386 PHIType
->isIntegerTy() &&
7387 PHIType
->getIntegerBitWidth() > ConditionType
->getIntegerBitWidth() &&
7388 TLI
->isZExtFree(ConditionType
, PHIType
);
7389 if (PHIType
== ConditionType
|| TryZExt
) {
7390 // Set to true to skip this case because of multiple preds.
7391 bool SkipCase
= false;
7392 Value
*Replacement
= nullptr;
7393 for (unsigned I
= 0, E
= PHI
.getNumIncomingValues(); I
!= E
; I
++) {
7394 Value
*PHIValue
= PHI
.getIncomingValue(I
);
7395 if (PHIValue
!= CaseValue
) {
7398 ConstantInt
*PHIValueInt
= dyn_cast
<ConstantInt
>(PHIValue
);
7400 PHIValueInt
->getValue() !=
7401 CaseValue
->getValue().zext(PHIType
->getIntegerBitWidth()))
7404 if (PHI
.getIncomingBlock(I
) != SwitchBB
)
7406 // We cannot optimize if there are multiple case labels jumping to
7407 // this block. This check may get expensive when there are many
7408 // case labels so we test for it last.
7409 if (!CheckedForSinglePred
) {
7410 CheckedForSinglePred
= true;
7411 if (SI
->findCaseDest(CaseBB
) == nullptr) {
7417 if (Replacement
== nullptr) {
7418 if (PHIValue
== CaseValue
) {
7419 Replacement
= Condition
;
7421 IRBuilder
<> Builder(SI
);
7422 Replacement
= Builder
.CreateZExt(Condition
, PHIType
);
7425 PHI
.setIncomingValue(I
, Replacement
);
7436 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst
*SI
) {
7437 bool Changed
= optimizeSwitchType(SI
);
7438 Changed
|= optimizeSwitchPhiConstants(SI
);
7444 /// Helper class to promote a scalar operation to a vector one.
7445 /// This class is used to move downward extractelement transition.
7447 /// a = vector_op <2 x i32>
7448 /// b = extractelement <2 x i32> a, i32 0
7453 /// a = vector_op <2 x i32>
7454 /// c = vector_op a (equivalent to scalar_op on the related lane)
7455 /// * d = extractelement <2 x i32> c, i32 0
7457 /// Assuming both extractelement and store can be combine, we get rid of the
7459 class VectorPromoteHelper
{
7460 /// DataLayout associated with the current module.
7461 const DataLayout
&DL
;
7463 /// Used to perform some checks on the legality of vector operations.
7464 const TargetLowering
&TLI
;
7466 /// Used to estimated the cost of the promoted chain.
7467 const TargetTransformInfo
&TTI
;
7469 /// The transition being moved downwards.
7470 Instruction
*Transition
;
7472 /// The sequence of instructions to be promoted.
7473 SmallVector
<Instruction
*, 4> InstsToBePromoted
;
7475 /// Cost of combining a store and an extract.
7476 unsigned StoreExtractCombineCost
;
7478 /// Instruction that will be combined with the transition.
7479 Instruction
*CombineInst
= nullptr;
7481 /// The instruction that represents the current end of the transition.
7482 /// Since we are faking the promotion until we reach the end of the chain
7483 /// of computation, we need a way to get the current end of the transition.
7484 Instruction
*getEndOfTransition() const {
7485 if (InstsToBePromoted
.empty())
7487 return InstsToBePromoted
.back();
7490 /// Return the index of the original value in the transition.
7491 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7492 /// c, is at index 0.
7493 unsigned getTransitionOriginalValueIdx() const {
7494 assert(isa
<ExtractElementInst
>(Transition
) &&
7495 "Other kind of transitions are not supported yet");
7499 /// Return the index of the index in the transition.
7500 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7502 unsigned getTransitionIdx() const {
7503 assert(isa
<ExtractElementInst
>(Transition
) &&
7504 "Other kind of transitions are not supported yet");
7508 /// Get the type of the transition.
7509 /// This is the type of the original value.
7510 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7511 /// transition is <2 x i32>.
7512 Type
*getTransitionType() const {
7513 return Transition
->getOperand(getTransitionOriginalValueIdx())->getType();
7516 /// Promote \p ToBePromoted by moving \p Def downward through.
7517 /// I.e., we have the following sequence:
7518 /// Def = Transition <ty1> a to <ty2>
7519 /// b = ToBePromoted <ty2> Def, ...
7521 /// b = ToBePromoted <ty1> a, ...
7522 /// Def = Transition <ty1> ToBePromoted to <ty2>
7523 void promoteImpl(Instruction
*ToBePromoted
);
7525 /// Check whether or not it is profitable to promote all the
7526 /// instructions enqueued to be promoted.
7527 bool isProfitableToPromote() {
7528 Value
*ValIdx
= Transition
->getOperand(getTransitionOriginalValueIdx());
7529 unsigned Index
= isa
<ConstantInt
>(ValIdx
)
7530 ? cast
<ConstantInt
>(ValIdx
)->getZExtValue()
7532 Type
*PromotedType
= getTransitionType();
7534 StoreInst
*ST
= cast
<StoreInst
>(CombineInst
);
7535 unsigned AS
= ST
->getPointerAddressSpace();
7536 // Check if this store is supported.
7537 if (!TLI
.allowsMisalignedMemoryAccesses(
7538 TLI
.getValueType(DL
, ST
->getValueOperand()->getType()), AS
,
7540 // If this is not supported, there is no way we can combine
7541 // the extract with the store.
7545 // The scalar chain of computation has to pay for the transition
7546 // scalar to vector.
7547 // The vector chain has to account for the combining cost.
7548 enum TargetTransformInfo::TargetCostKind CostKind
=
7549 TargetTransformInfo::TCK_RecipThroughput
;
7550 InstructionCost ScalarCost
=
7551 TTI
.getVectorInstrCost(*Transition
, PromotedType
, CostKind
, Index
);
7552 InstructionCost VectorCost
= StoreExtractCombineCost
;
7553 for (const auto &Inst
: InstsToBePromoted
) {
7554 // Compute the cost.
7555 // By construction, all instructions being promoted are arithmetic ones.
7556 // Moreover, one argument is a constant that can be viewed as a splat
7558 Value
*Arg0
= Inst
->getOperand(0);
7559 bool IsArg0Constant
= isa
<UndefValue
>(Arg0
) || isa
<ConstantInt
>(Arg0
) ||
7560 isa
<ConstantFP
>(Arg0
);
7561 TargetTransformInfo::OperandValueInfo Arg0Info
, Arg1Info
;
7563 Arg0Info
.Kind
= TargetTransformInfo::OK_UniformConstantValue
;
7565 Arg1Info
.Kind
= TargetTransformInfo::OK_UniformConstantValue
;
7567 ScalarCost
+= TTI
.getArithmeticInstrCost(
7568 Inst
->getOpcode(), Inst
->getType(), CostKind
, Arg0Info
, Arg1Info
);
7569 VectorCost
+= TTI
.getArithmeticInstrCost(Inst
->getOpcode(), PromotedType
,
7570 CostKind
, Arg0Info
, Arg1Info
);
7573 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7574 << ScalarCost
<< "\nVector: " << VectorCost
<< '\n');
7575 return ScalarCost
> VectorCost
;
7578 /// Generate a constant vector with \p Val with the same
7579 /// number of elements as the transition.
7580 /// \p UseSplat defines whether or not \p Val should be replicated
7581 /// across the whole vector.
7582 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7583 /// otherwise we generate a vector with as many undef as possible:
7584 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7585 /// used at the index of the extract.
7586 Value
*getConstantVector(Constant
*Val
, bool UseSplat
) const {
7587 unsigned ExtractIdx
= std::numeric_limits
<unsigned>::max();
7589 // If we cannot determine where the constant must be, we have to
7590 // use a splat constant.
7591 Value
*ValExtractIdx
= Transition
->getOperand(getTransitionIdx());
7592 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(ValExtractIdx
))
7593 ExtractIdx
= CstVal
->getSExtValue();
7598 ElementCount EC
= cast
<VectorType
>(getTransitionType())->getElementCount();
7600 return ConstantVector::getSplat(EC
, Val
);
7602 if (!EC
.isScalable()) {
7603 SmallVector
<Constant
*, 4> ConstVec
;
7604 UndefValue
*UndefVal
= UndefValue::get(Val
->getType());
7605 for (unsigned Idx
= 0; Idx
!= EC
.getKnownMinValue(); ++Idx
) {
7606 if (Idx
== ExtractIdx
)
7607 ConstVec
.push_back(Val
);
7609 ConstVec
.push_back(UndefVal
);
7611 return ConstantVector::get(ConstVec
);
7614 "Generate scalable vector for non-splat is unimplemented");
7617 /// Check if promoting to a vector type an operand at \p OperandIdx
7618 /// in \p Use can trigger undefined behavior.
7619 static bool canCauseUndefinedBehavior(const Instruction
*Use
,
7620 unsigned OperandIdx
) {
7621 // This is not safe to introduce undef when the operand is on
7622 // the right hand side of a division-like instruction.
7623 if (OperandIdx
!= 1)
7625 switch (Use
->getOpcode()) {
7628 case Instruction::SDiv
:
7629 case Instruction::UDiv
:
7630 case Instruction::SRem
:
7631 case Instruction::URem
:
7633 case Instruction::FDiv
:
7634 case Instruction::FRem
:
7635 return !Use
->hasNoNaNs();
7637 llvm_unreachable(nullptr);
7641 VectorPromoteHelper(const DataLayout
&DL
, const TargetLowering
&TLI
,
7642 const TargetTransformInfo
&TTI
, Instruction
*Transition
,
7643 unsigned CombineCost
)
7644 : DL(DL
), TLI(TLI
), TTI(TTI
), Transition(Transition
),
7645 StoreExtractCombineCost(CombineCost
) {
7646 assert(Transition
&& "Do not know how to promote null");
7649 /// Check if we can promote \p ToBePromoted to \p Type.
7650 bool canPromote(const Instruction
*ToBePromoted
) const {
7651 // We could support CastInst too.
7652 return isa
<BinaryOperator
>(ToBePromoted
);
7655 /// Check if it is profitable to promote \p ToBePromoted
7656 /// by moving downward the transition through.
7657 bool shouldPromote(const Instruction
*ToBePromoted
) const {
7658 // Promote only if all the operands can be statically expanded.
7659 // Indeed, we do not want to introduce any new kind of transitions.
7660 for (const Use
&U
: ToBePromoted
->operands()) {
7661 const Value
*Val
= U
.get();
7662 if (Val
== getEndOfTransition()) {
7663 // If the use is a division and the transition is on the rhs,
7664 // we cannot promote the operation, otherwise we may create a
7665 // division by zero.
7666 if (canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()))
7670 if (!isa
<ConstantInt
>(Val
) && !isa
<UndefValue
>(Val
) &&
7671 !isa
<ConstantFP
>(Val
))
7674 // Check that the resulting operation is legal.
7675 int ISDOpcode
= TLI
.InstructionOpcodeToISD(ToBePromoted
->getOpcode());
7678 return StressStoreExtract
||
7679 TLI
.isOperationLegalOrCustom(
7680 ISDOpcode
, TLI
.getValueType(DL
, getTransitionType(), true));
7683 /// Check whether or not \p Use can be combined
7684 /// with the transition.
7685 /// I.e., is it possible to do Use(Transition) => AnotherUse?
7686 bool canCombine(const Instruction
*Use
) { return isa
<StoreInst
>(Use
); }
7688 /// Record \p ToBePromoted as part of the chain to be promoted.
7689 void enqueueForPromotion(Instruction
*ToBePromoted
) {
7690 InstsToBePromoted
.push_back(ToBePromoted
);
7693 /// Set the instruction that will be combined with the transition.
7694 void recordCombineInstruction(Instruction
*ToBeCombined
) {
7695 assert(canCombine(ToBeCombined
) && "Unsupported instruction to combine");
7696 CombineInst
= ToBeCombined
;
7699 /// Promote all the instructions enqueued for promotion if it is
7701 /// \return True if the promotion happened, false otherwise.
7703 // Check if there is something to promote.
7704 // Right now, if we do not have anything to combine with,
7705 // we assume the promotion is not profitable.
7706 if (InstsToBePromoted
.empty() || !CombineInst
)
7710 if (!StressStoreExtract
&& !isProfitableToPromote())
7714 for (auto &ToBePromoted
: InstsToBePromoted
)
7715 promoteImpl(ToBePromoted
);
7716 InstsToBePromoted
.clear();
7721 } // end anonymous namespace
7723 void VectorPromoteHelper::promoteImpl(Instruction
*ToBePromoted
) {
7724 // At this point, we know that all the operands of ToBePromoted but Def
7725 // can be statically promoted.
7726 // For Def, we need to use its parameter in ToBePromoted:
7727 // b = ToBePromoted ty1 a
7728 // Def = Transition ty1 b to ty2
7729 // Move the transition down.
7730 // 1. Replace all uses of the promoted operation by the transition.
7731 // = ... b => = ... Def.
7732 assert(ToBePromoted
->getType() == Transition
->getType() &&
7733 "The type of the result of the transition does not match "
7735 ToBePromoted
->replaceAllUsesWith(Transition
);
7736 // 2. Update the type of the uses.
7737 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7738 Type
*TransitionTy
= getTransitionType();
7739 ToBePromoted
->mutateType(TransitionTy
);
7740 // 3. Update all the operands of the promoted operation with promoted
7742 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7743 for (Use
&U
: ToBePromoted
->operands()) {
7744 Value
*Val
= U
.get();
7745 Value
*NewVal
= nullptr;
7746 if (Val
== Transition
)
7747 NewVal
= Transition
->getOperand(getTransitionOriginalValueIdx());
7748 else if (isa
<UndefValue
>(Val
) || isa
<ConstantInt
>(Val
) ||
7749 isa
<ConstantFP
>(Val
)) {
7750 // Use a splat constant if it is not safe to use undef.
7751 NewVal
= getConstantVector(
7752 cast
<Constant
>(Val
),
7753 isa
<UndefValue
>(Val
) ||
7754 canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()));
7756 llvm_unreachable("Did you modified shouldPromote and forgot to update "
7758 ToBePromoted
->setOperand(U
.getOperandNo(), NewVal
);
7760 Transition
->moveAfter(ToBePromoted
);
7761 Transition
->setOperand(getTransitionOriginalValueIdx(), ToBePromoted
);
7764 /// Some targets can do store(extractelement) with one instruction.
7765 /// Try to push the extractelement towards the stores when the target
7766 /// has this feature and this is profitable.
7767 bool CodeGenPrepare::optimizeExtractElementInst(Instruction
*Inst
) {
7768 unsigned CombineCost
= std::numeric_limits
<unsigned>::max();
7769 if (DisableStoreExtract
||
7770 (!StressStoreExtract
&&
7771 !TLI
->canCombineStoreAndExtract(Inst
->getOperand(0)->getType(),
7772 Inst
->getOperand(1), CombineCost
)))
7775 // At this point we know that Inst is a vector to scalar transition.
7776 // Try to move it down the def-use chain, until:
7777 // - We can combine the transition with its single use
7778 // => we got rid of the transition.
7779 // - We escape the current basic block
7780 // => we would need to check that we are moving it at a cheaper place and
7781 // we do not do that for now.
7782 BasicBlock
*Parent
= Inst
->getParent();
7783 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst
<< '\n');
7784 VectorPromoteHelper
VPH(*DL
, *TLI
, *TTI
, Inst
, CombineCost
);
7785 // If the transition has more than one use, assume this is not going to be
7787 while (Inst
->hasOneUse()) {
7788 Instruction
*ToBePromoted
= cast
<Instruction
>(*Inst
->user_begin());
7789 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted
<< '\n');
7791 if (ToBePromoted
->getParent() != Parent
) {
7792 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7793 << ToBePromoted
->getParent()->getName()
7794 << ") than the transition (" << Parent
->getName()
7799 if (VPH
.canCombine(ToBePromoted
)) {
7800 LLVM_DEBUG(dbgs() << "Assume " << *Inst
<< '\n'
7801 << "will be combined with: " << *ToBePromoted
<< '\n');
7802 VPH
.recordCombineInstruction(ToBePromoted
);
7803 bool Changed
= VPH
.promote();
7804 NumStoreExtractExposed
+= Changed
;
7808 LLVM_DEBUG(dbgs() << "Try promoting.\n");
7809 if (!VPH
.canPromote(ToBePromoted
) || !VPH
.shouldPromote(ToBePromoted
))
7812 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7814 VPH
.enqueueForPromotion(ToBePromoted
);
7815 Inst
= ToBePromoted
;
7820 /// For the instruction sequence of store below, F and I values
7821 /// are bundled together as an i64 value before being stored into memory.
7822 /// Sometimes it is more efficient to generate separate stores for F and I,
7823 /// which can remove the bitwise instructions or sink them to colder places.
7825 /// (store (or (zext (bitcast F to i32) to i64),
7826 /// (shl (zext I to i64), 32)), addr) -->
7827 /// (store F, addr) and (store I, addr+4)
7829 /// Similarly, splitting for other merged store can also be beneficial, like:
7830 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7831 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7832 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7833 /// For pair of {i16, i8}, i32 store --> two i16 stores.
7834 /// For pair of {i8, i8}, i16 store --> two i8 stores.
7836 /// We allow each target to determine specifically which kind of splitting is
7839 /// The store patterns are commonly seen from the simple code snippet below
7840 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7841 /// void goo(const std::pair<int, float> &);
7844 /// goo(std::make_pair(tmp, ftmp));
7848 /// Although we already have similar splitting in DAG Combine, we duplicate
7849 /// it in CodeGenPrepare to catch the case in which pattern is across
7850 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7851 /// during code expansion.
7852 static bool splitMergedValStore(StoreInst
&SI
, const DataLayout
&DL
,
7853 const TargetLowering
&TLI
) {
7854 // Handle simple but common cases only.
7855 Type
*StoreType
= SI
.getValueOperand()->getType();
7857 // The code below assumes shifting a value by <number of bits>,
7858 // whereas scalable vectors would have to be shifted by
7859 // <2log(vscale) + number of bits> in order to store the
7860 // low/high parts. Bailing out for now.
7861 if (StoreType
->isScalableTy())
7864 if (!DL
.typeSizeEqualsStoreSize(StoreType
) ||
7865 DL
.getTypeSizeInBits(StoreType
) == 0)
7868 unsigned HalfValBitSize
= DL
.getTypeSizeInBits(StoreType
) / 2;
7869 Type
*SplitStoreType
= Type::getIntNTy(SI
.getContext(), HalfValBitSize
);
7870 if (!DL
.typeSizeEqualsStoreSize(SplitStoreType
))
7873 // Don't split the store if it is volatile.
7874 if (SI
.isVolatile())
7877 // Match the following patterns:
7878 // (store (or (zext LValue to i64),
7879 // (shl (zext HValue to i64), 32)), HalfValBitSize)
7881 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7882 // (zext LValue to i64),
7883 // Expect both operands of OR and the first operand of SHL have only
7885 Value
*LValue
, *HValue
;
7886 if (!match(SI
.getValueOperand(),
7887 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue
))),
7888 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue
))),
7889 m_SpecificInt(HalfValBitSize
))))))
7892 // Check LValue and HValue are int with size less or equal than 32.
7893 if (!LValue
->getType()->isIntegerTy() ||
7894 DL
.getTypeSizeInBits(LValue
->getType()) > HalfValBitSize
||
7895 !HValue
->getType()->isIntegerTy() ||
7896 DL
.getTypeSizeInBits(HValue
->getType()) > HalfValBitSize
)
7899 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7900 // as the input of target query.
7901 auto *LBC
= dyn_cast
<BitCastInst
>(LValue
);
7902 auto *HBC
= dyn_cast
<BitCastInst
>(HValue
);
7903 EVT LowTy
= LBC
? EVT::getEVT(LBC
->getOperand(0)->getType())
7904 : EVT::getEVT(LValue
->getType());
7905 EVT HighTy
= HBC
? EVT::getEVT(HBC
->getOperand(0)->getType())
7906 : EVT::getEVT(HValue
->getType());
7907 if (!ForceSplitStore
&& !TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
7910 // Start to split store.
7911 IRBuilder
<> Builder(SI
.getContext());
7912 Builder
.SetInsertPoint(&SI
);
7914 // If LValue/HValue is a bitcast in another BB, create a new one in current
7915 // BB so it may be merged with the splitted stores by dag combiner.
7916 if (LBC
&& LBC
->getParent() != SI
.getParent())
7917 LValue
= Builder
.CreateBitCast(LBC
->getOperand(0), LBC
->getType());
7918 if (HBC
&& HBC
->getParent() != SI
.getParent())
7919 HValue
= Builder
.CreateBitCast(HBC
->getOperand(0), HBC
->getType());
7921 bool IsLE
= SI
.getModule()->getDataLayout().isLittleEndian();
7922 auto CreateSplitStore
= [&](Value
*V
, bool Upper
) {
7923 V
= Builder
.CreateZExtOrBitCast(V
, SplitStoreType
);
7924 Value
*Addr
= SI
.getPointerOperand();
7925 Align Alignment
= SI
.getAlign();
7926 const bool IsOffsetStore
= (IsLE
&& Upper
) || (!IsLE
&& !Upper
);
7927 if (IsOffsetStore
) {
7928 Addr
= Builder
.CreateGEP(
7929 SplitStoreType
, Addr
,
7930 ConstantInt::get(Type::getInt32Ty(SI
.getContext()), 1));
7932 // When splitting the store in half, naturally one half will retain the
7933 // alignment of the original wider store, regardless of whether it was
7934 // over-aligned or not, while the other will require adjustment.
7935 Alignment
= commonAlignment(Alignment
, HalfValBitSize
/ 8);
7937 Builder
.CreateAlignedStore(V
, Addr
, Alignment
);
7940 CreateSplitStore(LValue
, false);
7941 CreateSplitStore(HValue
, true);
7943 // Delete the old store.
7944 SI
.eraseFromParent();
7948 // Return true if the GEP has two operands, the first operand is of a sequential
7949 // type, and the second operand is a constant.
7950 static bool GEPSequentialConstIndexed(GetElementPtrInst
*GEP
) {
7951 gep_type_iterator I
= gep_type_begin(*GEP
);
7952 return GEP
->getNumOperands() == 2 && I
.isSequential() &&
7953 isa
<ConstantInt
>(GEP
->getOperand(1));
7956 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7957 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7958 // reducing liveness interference across those edges benefits global register
7959 // allocation. Currently handles only certain cases.
7961 // For example, unmerge %GEPI and %UGEPI as below.
7963 // ---------- BEFORE ----------
7968 // %GEPI = gep %GEPIOp, Idx
7970 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7971 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7972 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7975 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7976 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7981 // %UGEPI = gep %GEPIOp, UIdx
7983 // ---------------------------
7985 // ---------- AFTER ----------
7987 // ... (same as above)
7988 // (* %GEPI is still alive on the indirectbr edges)
7989 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7995 // %UGEPI = gep %GEPI, (UIdx-Idx)
7997 // ---------------------------
7999 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8000 // no longer alive on them.
8002 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8003 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8004 // not to disable further simplications and optimizations as a result of GEP
8007 // Note this unmerging may increase the length of the data flow critical path
8008 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8009 // between the register pressure and the length of data-flow critical
8010 // path. Restricting this to the uncommon IndirectBr case would minimize the
8011 // impact of potentially longer critical path, if any, and the impact on compile
8013 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst
*GEPI
,
8014 const TargetTransformInfo
*TTI
) {
8015 BasicBlock
*SrcBlock
= GEPI
->getParent();
8016 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8017 // (non-IndirectBr) cases exit early here.
8018 if (!isa
<IndirectBrInst
>(SrcBlock
->getTerminator()))
8020 // Check that GEPI is a simple gep with a single constant index.
8021 if (!GEPSequentialConstIndexed(GEPI
))
8023 ConstantInt
*GEPIIdx
= cast
<ConstantInt
>(GEPI
->getOperand(1));
8024 // Check that GEPI is a cheap one.
8025 if (TTI
->getIntImmCost(GEPIIdx
->getValue(), GEPIIdx
->getType(),
8026 TargetTransformInfo::TCK_SizeAndLatency
) >
8027 TargetTransformInfo::TCC_Basic
)
8029 Value
*GEPIOp
= GEPI
->getOperand(0);
8030 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
8031 if (!isa
<Instruction
>(GEPIOp
))
8033 auto *GEPIOpI
= cast
<Instruction
>(GEPIOp
);
8034 if (GEPIOpI
->getParent() != SrcBlock
)
8036 // Check that GEP is used outside the block, meaning it's alive on the
8037 // IndirectBr edge(s).
8038 if (llvm::none_of(GEPI
->users(), [&](User
*Usr
) {
8039 if (auto *I
= dyn_cast
<Instruction
>(Usr
)) {
8040 if (I
->getParent() != SrcBlock
) {
8047 // The second elements of the GEP chains to be unmerged.
8048 std::vector
<GetElementPtrInst
*> UGEPIs
;
8049 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8050 // on IndirectBr edges.
8051 for (User
*Usr
: GEPIOp
->users()) {
8054 // Check if Usr is an Instruction. If not, give up.
8055 if (!isa
<Instruction
>(Usr
))
8057 auto *UI
= cast
<Instruction
>(Usr
);
8058 // Check if Usr in the same block as GEPIOp, which is fine, skip.
8059 if (UI
->getParent() == SrcBlock
)
8061 // Check if Usr is a GEP. If not, give up.
8062 if (!isa
<GetElementPtrInst
>(Usr
))
8064 auto *UGEPI
= cast
<GetElementPtrInst
>(Usr
);
8065 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8066 // the pointer operand to it. If so, record it in the vector. If not, give
8068 if (!GEPSequentialConstIndexed(UGEPI
))
8070 if (UGEPI
->getOperand(0) != GEPIOp
)
8072 if (UGEPI
->getSourceElementType() != GEPI
->getSourceElementType())
8074 if (GEPIIdx
->getType() !=
8075 cast
<ConstantInt
>(UGEPI
->getOperand(1))->getType())
8077 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8078 if (TTI
->getIntImmCost(UGEPIIdx
->getValue(), UGEPIIdx
->getType(),
8079 TargetTransformInfo::TCK_SizeAndLatency
) >
8080 TargetTransformInfo::TCC_Basic
)
8082 UGEPIs
.push_back(UGEPI
);
8084 if (UGEPIs
.size() == 0)
8086 // Check the materializing cost of (Uidx-Idx).
8087 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
8088 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8089 APInt NewIdx
= UGEPIIdx
->getValue() - GEPIIdx
->getValue();
8090 InstructionCost ImmCost
= TTI
->getIntImmCost(
8091 NewIdx
, GEPIIdx
->getType(), TargetTransformInfo::TCK_SizeAndLatency
);
8092 if (ImmCost
> TargetTransformInfo::TCC_Basic
)
8095 // Now unmerge between GEPI and UGEPIs.
8096 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
8097 UGEPI
->setOperand(0, GEPI
);
8098 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8099 Constant
*NewUGEPIIdx
= ConstantInt::get(
8100 GEPIIdx
->getType(), UGEPIIdx
->getValue() - GEPIIdx
->getValue());
8101 UGEPI
->setOperand(1, NewUGEPIIdx
);
8102 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8103 // inbounds to avoid UB.
8104 if (!GEPI
->isInBounds()) {
8105 UGEPI
->setIsInBounds(false);
8108 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8109 // alive on IndirectBr edges).
8110 assert(llvm::none_of(GEPIOp
->users(),
8112 return cast
<Instruction
>(Usr
)->getParent() != SrcBlock
;
8114 "GEPIOp is used outside SrcBlock");
8118 static bool optimizeBranch(BranchInst
*Branch
, const TargetLowering
&TLI
,
8119 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
8122 // %c = icmp ult %x, 8
8127 // %c = icmp eq %tc, 0
8129 // Creating the cmp to zero can be better for the backend, especially if the
8130 // lshr produces flags that can be used automatically.
8131 if (!TLI
.preferZeroCompareBranch() || !Branch
->isConditional())
8134 ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(Branch
->getCondition());
8135 if (!Cmp
|| !isa
<ConstantInt
>(Cmp
->getOperand(1)) || !Cmp
->hasOneUse())
8138 Value
*X
= Cmp
->getOperand(0);
8139 APInt CmpC
= cast
<ConstantInt
>(Cmp
->getOperand(1))->getValue();
8141 for (auto *U
: X
->users()) {
8142 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
8143 // A quick dominance check
8145 (UI
->getParent() != Branch
->getParent() &&
8146 UI
->getParent() != Branch
->getSuccessor(0) &&
8147 UI
->getParent() != Branch
->getSuccessor(1)) ||
8148 (UI
->getParent() != Branch
->getParent() &&
8149 !UI
->getParent()->getSinglePredecessor()))
8152 if (CmpC
.isPowerOf2() && Cmp
->getPredicate() == ICmpInst::ICMP_ULT
&&
8153 match(UI
, m_Shr(m_Specific(X
), m_SpecificInt(CmpC
.logBase2())))) {
8154 IRBuilder
<> Builder(Branch
);
8155 if (UI
->getParent() != Branch
->getParent())
8156 UI
->moveBefore(Branch
);
8157 Value
*NewCmp
= Builder
.CreateCmp(ICmpInst::ICMP_EQ
, UI
,
8158 ConstantInt::get(UI
->getType(), 0));
8159 LLVM_DEBUG(dbgs() << "Converting " << *Cmp
<< "\n");
8160 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp
<< "\n");
8161 replaceAllUsesWith(Cmp
, NewCmp
, FreshBBs
, IsHugeFunc
);
8164 if (Cmp
->isEquality() &&
8165 (match(UI
, m_Add(m_Specific(X
), m_SpecificInt(-CmpC
))) ||
8166 match(UI
, m_Sub(m_Specific(X
), m_SpecificInt(CmpC
))))) {
8167 IRBuilder
<> Builder(Branch
);
8168 if (UI
->getParent() != Branch
->getParent())
8169 UI
->moveBefore(Branch
);
8170 Value
*NewCmp
= Builder
.CreateCmp(Cmp
->getPredicate(), UI
,
8171 ConstantInt::get(UI
->getType(), 0));
8172 LLVM_DEBUG(dbgs() << "Converting " << *Cmp
<< "\n");
8173 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp
<< "\n");
8174 replaceAllUsesWith(Cmp
, NewCmp
, FreshBBs
, IsHugeFunc
);
8181 bool CodeGenPrepare::optimizeInst(Instruction
*I
, ModifyDT
&ModifiedDT
) {
8182 bool AnyChange
= false;
8183 AnyChange
= fixupDPValuesOnInst(*I
);
8185 // Bail out if we inserted the instruction to prevent optimizations from
8186 // stepping on each other's toes.
8187 if (InsertedInsts
.count(I
))
8190 // TODO: Move into the switch on opcode below here.
8191 if (PHINode
*P
= dyn_cast
<PHINode
>(I
)) {
8192 // It is possible for very late stage optimizations (such as SimplifyCFG)
8193 // to introduce PHI nodes too late to be cleaned up. If we detect such a
8194 // trivial PHI, go ahead and zap it here.
8195 if (Value
*V
= simplifyInstruction(P
, {*DL
, TLInfo
})) {
8196 LargeOffsetGEPMap
.erase(P
);
8197 replaceAllUsesWith(P
, V
, FreshBBs
, IsHugeFunc
);
8198 P
->eraseFromParent();
8205 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
8206 // If the source of the cast is a constant, then this should have
8207 // already been constant folded. The only reason NOT to constant fold
8208 // it is if something (e.g. LSR) was careful to place the constant
8209 // evaluation in a block other than then one that uses it (e.g. to hoist
8210 // the address of globals out of a loop). If this is the case, we don't
8211 // want to forward-subst the cast.
8212 if (isa
<Constant
>(CI
->getOperand(0)))
8215 if (OptimizeNoopCopyExpression(CI
, *TLI
, *DL
))
8218 if ((isa
<UIToFPInst
>(I
) || isa
<FPToUIInst
>(I
) || isa
<TruncInst
>(I
)) &&
8219 TLI
->optimizeExtendOrTruncateConversion(
8220 I
, LI
->getLoopFor(I
->getParent()), *TTI
))
8223 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
8224 /// Sink a zext or sext into its user blocks if the target type doesn't
8225 /// fit in one register
8226 if (TLI
->getTypeAction(CI
->getContext(),
8227 TLI
->getValueType(*DL
, CI
->getType())) ==
8228 TargetLowering::TypeExpandInteger
) {
8229 return SinkCast(CI
);
8231 if (TLI
->optimizeExtendOrTruncateConversion(
8232 I
, LI
->getLoopFor(I
->getParent()), *TTI
))
8235 bool MadeChange
= optimizeExt(I
);
8236 return MadeChange
| optimizeExtUses(I
);
8242 if (auto *Cmp
= dyn_cast
<CmpInst
>(I
))
8243 if (optimizeCmp(Cmp
, ModifiedDT
))
8246 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
8247 LI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
8248 bool Modified
= optimizeLoadExt(LI
);
8249 unsigned AS
= LI
->getPointerAddressSpace();
8250 Modified
|= optimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(), AS
);
8254 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
8255 if (splitMergedValStore(*SI
, *DL
, *TLI
))
8257 SI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
8258 unsigned AS
= SI
->getPointerAddressSpace();
8259 return optimizeMemoryInst(I
, SI
->getOperand(1),
8260 SI
->getOperand(0)->getType(), AS
);
8263 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
8264 unsigned AS
= RMW
->getPointerAddressSpace();
8265 return optimizeMemoryInst(I
, RMW
->getPointerOperand(), RMW
->getType(), AS
);
8268 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
8269 unsigned AS
= CmpX
->getPointerAddressSpace();
8270 return optimizeMemoryInst(I
, CmpX
->getPointerOperand(),
8271 CmpX
->getCompareOperand()->getType(), AS
);
8274 BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(I
);
8276 if (BinOp
&& BinOp
->getOpcode() == Instruction::And
&& EnableAndCmpSinking
&&
8277 sinkAndCmp0Expression(BinOp
, *TLI
, InsertedInsts
))
8280 // TODO: Move this into the switch on opcode - it handles shifts already.
8281 if (BinOp
&& (BinOp
->getOpcode() == Instruction::AShr
||
8282 BinOp
->getOpcode() == Instruction::LShr
)) {
8283 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BinOp
->getOperand(1));
8284 if (CI
&& TLI
->hasExtractBitsInsn())
8285 if (OptimizeExtractBits(BinOp
, CI
, *TLI
, *DL
))
8289 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
8290 if (GEPI
->hasAllZeroIndices()) {
8291 /// The GEP operand must be a pointer, so must its result -> BitCast
8292 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
8293 GEPI
->getName(), GEPI
);
8294 NC
->setDebugLoc(GEPI
->getDebugLoc());
8295 replaceAllUsesWith(GEPI
, NC
, FreshBBs
, IsHugeFunc
);
8296 RecursivelyDeleteTriviallyDeadInstructions(
8297 GEPI
, TLInfo
, nullptr,
8298 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
8300 optimizeInst(NC
, ModifiedDT
);
8303 if (tryUnmergingGEPsAcrossIndirectBr(GEPI
, TTI
)) {
8308 if (FreezeInst
*FI
= dyn_cast
<FreezeInst
>(I
)) {
8309 // freeze(icmp a, const)) -> icmp (freeze a), const
8310 // This helps generate efficient conditional jumps.
8311 Instruction
*CmpI
= nullptr;
8312 if (ICmpInst
*II
= dyn_cast
<ICmpInst
>(FI
->getOperand(0)))
8314 else if (FCmpInst
*F
= dyn_cast
<FCmpInst
>(FI
->getOperand(0)))
8315 CmpI
= F
->getFastMathFlags().none() ? F
: nullptr;
8317 if (CmpI
&& CmpI
->hasOneUse()) {
8318 auto Op0
= CmpI
->getOperand(0), Op1
= CmpI
->getOperand(1);
8319 bool Const0
= isa
<ConstantInt
>(Op0
) || isa
<ConstantFP
>(Op0
) ||
8320 isa
<ConstantPointerNull
>(Op0
);
8321 bool Const1
= isa
<ConstantInt
>(Op1
) || isa
<ConstantFP
>(Op1
) ||
8322 isa
<ConstantPointerNull
>(Op1
);
8323 if (Const0
|| Const1
) {
8324 if (!Const0
|| !Const1
) {
8325 auto *F
= new FreezeInst(Const0
? Op1
: Op0
, "", CmpI
);
8327 CmpI
->setOperand(Const0
? 1 : 0, F
);
8329 replaceAllUsesWith(FI
, CmpI
, FreshBBs
, IsHugeFunc
);
8330 FI
->eraseFromParent();
8337 if (tryToSinkFreeOperands(I
))
8340 switch (I
->getOpcode()) {
8341 case Instruction::Shl
:
8342 case Instruction::LShr
:
8343 case Instruction::AShr
:
8344 return optimizeShiftInst(cast
<BinaryOperator
>(I
));
8345 case Instruction::Call
:
8346 return optimizeCallInst(cast
<CallInst
>(I
), ModifiedDT
);
8347 case Instruction::Select
:
8348 return optimizeSelectInst(cast
<SelectInst
>(I
));
8349 case Instruction::ShuffleVector
:
8350 return optimizeShuffleVectorInst(cast
<ShuffleVectorInst
>(I
));
8351 case Instruction::Switch
:
8352 return optimizeSwitchInst(cast
<SwitchInst
>(I
));
8353 case Instruction::ExtractElement
:
8354 return optimizeExtractElementInst(cast
<ExtractElementInst
>(I
));
8355 case Instruction::Br
:
8356 return optimizeBranch(cast
<BranchInst
>(I
), *TLI
, FreshBBs
, IsHugeFunc
);
8362 /// Given an OR instruction, check to see if this is a bitreverse
8363 /// idiom. If so, insert the new intrinsic and return true.
8364 bool CodeGenPrepare::makeBitReverse(Instruction
&I
) {
8365 if (!I
.getType()->isIntegerTy() ||
8366 !TLI
->isOperationLegalOrCustom(ISD::BITREVERSE
,
8367 TLI
->getValueType(*DL
, I
.getType(), true)))
8370 SmallVector
<Instruction
*, 4> Insts
;
8371 if (!recognizeBSwapOrBitReverseIdiom(&I
, false, true, Insts
))
8373 Instruction
*LastInst
= Insts
.back();
8374 replaceAllUsesWith(&I
, LastInst
, FreshBBs
, IsHugeFunc
);
8375 RecursivelyDeleteTriviallyDeadInstructions(
8376 &I
, TLInfo
, nullptr,
8377 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
8381 // In this pass we look for GEP and cast instructions that are used
8382 // across basic blocks and rewrite them to improve basic-block-at-a-time
8384 bool CodeGenPrepare::optimizeBlock(BasicBlock
&BB
, ModifyDT
&ModifiedDT
) {
8386 bool MadeChange
= false;
8389 CurInstIterator
= BB
.begin();
8390 ModifiedDT
= ModifyDT::NotModifyDT
;
8391 while (CurInstIterator
!= BB
.end()) {
8392 MadeChange
|= optimizeInst(&*CurInstIterator
++, ModifiedDT
);
8393 if (ModifiedDT
!= ModifyDT::NotModifyDT
) {
8394 // For huge function we tend to quickly go though the inner optmization
8395 // opportunities in the BB. So we go back to the BB head to re-optimize
8396 // each instruction instead of go back to the function head.
8399 getDT(*BB
.getParent());
8406 } while (ModifiedDT
== ModifyDT::ModifyInstDT
);
8408 bool MadeBitReverse
= true;
8409 while (MadeBitReverse
) {
8410 MadeBitReverse
= false;
8411 for (auto &I
: reverse(BB
)) {
8412 if (makeBitReverse(I
)) {
8413 MadeBitReverse
= MadeChange
= true;
8418 MadeChange
|= dupRetToEnableTailCallOpts(&BB
, ModifiedDT
);
8423 // Some CGP optimizations may move or alter what's computed in a block. Check
8424 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8425 bool CodeGenPrepare::fixupDbgValue(Instruction
*I
) {
8426 assert(isa
<DbgValueInst
>(I
));
8427 DbgValueInst
&DVI
= *cast
<DbgValueInst
>(I
);
8429 // Does this dbg.value refer to a sunk address calculation?
8430 bool AnyChange
= false;
8431 SmallDenseSet
<Value
*> LocationOps(DVI
.location_ops().begin(),
8432 DVI
.location_ops().end());
8433 for (Value
*Location
: LocationOps
) {
8434 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Location
];
8435 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
8437 // Point dbg.value at locally computed address, which should give the best
8438 // opportunity to be accurately lowered. This update may change the type
8439 // of pointer being referred to; however this makes no difference to
8440 // debugging information, and we can't generate bitcasts that may affect
8442 DVI
.replaceVariableLocationOp(Location
, SunkAddr
);
8449 bool CodeGenPrepare::fixupDPValuesOnInst(Instruction
&I
) {
8450 bool AnyChange
= false;
8451 for (DPValue
&DPV
: I
.getDbgValueRange())
8452 AnyChange
|= fixupDPValue(DPV
);
8456 // FIXME: should updating debug-info really cause the "changed" flag to fire,
8457 // which can cause a function to be reprocessed?
8458 bool CodeGenPrepare::fixupDPValue(DPValue
&DPV
) {
8459 if (DPV
.Type
!= DPValue::LocationType::Value
)
8462 // Does this DPValue refer to a sunk address calculation?
8463 bool AnyChange
= false;
8464 SmallDenseSet
<Value
*> LocationOps(DPV
.location_ops().begin(),
8465 DPV
.location_ops().end());
8466 for (Value
*Location
: LocationOps
) {
8467 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Location
];
8468 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
8470 // Point dbg.value at locally computed address, which should give the best
8471 // opportunity to be accurately lowered. This update may change the type
8472 // of pointer being referred to; however this makes no difference to
8473 // debugging information, and we can't generate bitcasts that may affect
8475 DPV
.replaceVariableLocationOp(Location
, SunkAddr
);
8482 static void DbgInserterHelper(DbgValueInst
*DVI
, Instruction
*VI
) {
8483 DVI
->removeFromParent();
8484 if (isa
<PHINode
>(VI
))
8485 DVI
->insertBefore(&*VI
->getParent()->getFirstInsertionPt());
8487 DVI
->insertAfter(VI
);
8490 static void DbgInserterHelper(DPValue
*DPV
, Instruction
*VI
) {
8491 DPV
->removeFromParent();
8492 BasicBlock
*VIBB
= VI
->getParent();
8493 if (isa
<PHINode
>(VI
))
8494 VIBB
->insertDPValueBefore(DPV
, VIBB
->getFirstInsertionPt());
8496 VIBB
->insertDPValueAfter(DPV
, VI
);
8499 // A llvm.dbg.value may be using a value before its definition, due to
8500 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8501 // them by moving the dbg.value to immediately after the value definition.
8502 // FIXME: Ideally this should never be necessary, and this has the potential
8503 // to re-order dbg.value intrinsics.
8504 bool CodeGenPrepare::placeDbgValues(Function
&F
) {
8505 bool MadeChange
= false;
8506 DominatorTree
DT(F
);
8508 auto DbgProcessor
= [&](auto *DbgItem
, Instruction
*Position
) {
8509 SmallVector
<Instruction
*, 4> VIs
;
8510 for (Value
*V
: DbgItem
->location_ops())
8511 if (Instruction
*VI
= dyn_cast_or_null
<Instruction
>(V
))
8514 // This item may depend on multiple instructions, complicating any
8515 // potential sink. This block takes the defensive approach, opting to
8516 // "undef" the item if it has more than one instruction and any of them do
8517 // not dominate iem.
8518 for (Instruction
*VI
: VIs
) {
8519 if (VI
->isTerminator())
8522 // If VI is a phi in a block with an EHPad terminator, we can't insert
8524 if (isa
<PHINode
>(VI
) && VI
->getParent()->getTerminator()->isEHPad())
8527 // If the defining instruction dominates the dbg.value, we do not need
8528 // to move the dbg.value.
8529 if (DT
.dominates(VI
, Position
))
8532 // If we depend on multiple instructions and any of them doesn't
8533 // dominate this DVI, we probably can't salvage it: moving it to
8534 // after any of the instructions could cause us to lose the others.
8535 if (VIs
.size() > 1) {
8538 << "Unable to find valid location for Debug Value, undefing:\n"
8540 DbgItem
->setKillLocation();
8544 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8545 << *DbgItem
<< ' ' << *VI
);
8546 DbgInserterHelper(DbgItem
, VI
);
8552 for (BasicBlock
&BB
: F
) {
8553 for (Instruction
&Insn
: llvm::make_early_inc_range(BB
)) {
8554 // Process dbg.value intrinsics.
8555 DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(&Insn
);
8557 DbgProcessor(DVI
, DVI
);
8561 // If this isn't a dbg.value, process any attached DPValue records
8562 // attached to this instruction.
8563 for (DPValue
&DPV
: llvm::make_early_inc_range(Insn
.getDbgValueRange())) {
8564 if (DPV
.Type
!= DPValue::LocationType::Value
)
8566 DbgProcessor(&DPV
, &Insn
);
8574 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8575 // probes can be chained dependencies of other regular DAG nodes and block DAG
8576 // combine optimizations.
8577 bool CodeGenPrepare::placePseudoProbes(Function
&F
) {
8578 bool MadeChange
= false;
8579 for (auto &Block
: F
) {
8580 // Move the rest probes to the beginning of the block.
8581 auto FirstInst
= Block
.getFirstInsertionPt();
8582 while (FirstInst
!= Block
.end() && FirstInst
->isDebugOrPseudoInst())
8584 BasicBlock::iterator
I(FirstInst
);
8586 while (I
!= Block
.end()) {
8587 if (auto *II
= dyn_cast
<PseudoProbeInst
>(I
++)) {
8588 II
->moveBefore(&*FirstInst
);
8596 /// Scale down both weights to fit into uint32_t.
8597 static void scaleWeights(uint64_t &NewTrue
, uint64_t &NewFalse
) {
8598 uint64_t NewMax
= (NewTrue
> NewFalse
) ? NewTrue
: NewFalse
;
8599 uint32_t Scale
= (NewMax
/ std::numeric_limits
<uint32_t>::max()) + 1;
8600 NewTrue
= NewTrue
/ Scale
;
8601 NewFalse
= NewFalse
/ Scale
;
8604 /// Some targets prefer to split a conditional branch like:
8606 /// %0 = icmp ne i32 %a, 0
8607 /// %1 = icmp ne i32 %b, 0
8608 /// %or.cond = or i1 %0, %1
8609 /// br i1 %or.cond, label %TrueBB, label %FalseBB
8611 /// into multiple branch instructions like:
8614 /// %0 = icmp ne i32 %a, 0
8615 /// br i1 %0, label %TrueBB, label %bb2
8617 /// %1 = icmp ne i32 %b, 0
8618 /// br i1 %1, label %TrueBB, label %FalseBB
8620 /// This usually allows instruction selection to do even further optimizations
8621 /// and combine the compare with the branch instruction. Currently this is
8622 /// applied for targets which have "cheap" jump instructions.
8624 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8626 bool CodeGenPrepare::splitBranchCondition(Function
&F
, ModifyDT
&ModifiedDT
) {
8627 if (!TM
->Options
.EnableFastISel
|| TLI
->isJumpExpensive())
8630 bool MadeChange
= false;
8631 for (auto &BB
: F
) {
8632 // Does this BB end with the following?
8633 // %cond1 = icmp|fcmp|binary instruction ...
8634 // %cond2 = icmp|fcmp|binary instruction ...
8635 // %cond.or = or|and i1 %cond1, cond2
8636 // br i1 %cond.or label %dest1, label %dest2"
8637 Instruction
*LogicOp
;
8638 BasicBlock
*TBB
, *FBB
;
8639 if (!match(BB
.getTerminator(),
8640 m_Br(m_OneUse(m_Instruction(LogicOp
)), TBB
, FBB
)))
8643 auto *Br1
= cast
<BranchInst
>(BB
.getTerminator());
8644 if (Br1
->getMetadata(LLVMContext::MD_unpredictable
))
8647 // The merging of mostly empty BB can cause a degenerate branch.
8652 Value
*Cond1
, *Cond2
;
8654 m_LogicalAnd(m_OneUse(m_Value(Cond1
)), m_OneUse(m_Value(Cond2
)))))
8655 Opc
= Instruction::And
;
8656 else if (match(LogicOp
, m_LogicalOr(m_OneUse(m_Value(Cond1
)),
8657 m_OneUse(m_Value(Cond2
)))))
8658 Opc
= Instruction::Or
;
8662 auto IsGoodCond
= [](Value
*Cond
) {
8665 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8666 m_LogicalOr(m_Value(), m_Value()))));
8668 if (!IsGoodCond(Cond1
) || !IsGoodCond(Cond2
))
8671 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB
.dump());
8675 BasicBlock::Create(BB
.getContext(), BB
.getName() + ".cond.split",
8676 BB
.getParent(), BB
.getNextNode());
8678 FreshBBs
.insert(TmpBB
);
8680 // Update original basic block by using the first condition directly by the
8681 // branch instruction and removing the no longer needed and/or instruction.
8682 Br1
->setCondition(Cond1
);
8683 LogicOp
->eraseFromParent();
8685 // Depending on the condition we have to either replace the true or the
8686 // false successor of the original branch instruction.
8687 if (Opc
== Instruction::And
)
8688 Br1
->setSuccessor(0, TmpBB
);
8690 Br1
->setSuccessor(1, TmpBB
);
8692 // Fill in the new basic block.
8693 auto *Br2
= IRBuilder
<>(TmpBB
).CreateCondBr(Cond2
, TBB
, FBB
);
8694 if (auto *I
= dyn_cast
<Instruction
>(Cond2
)) {
8695 I
->removeFromParent();
8696 I
->insertBefore(Br2
);
8699 // Update PHI nodes in both successors. The original BB needs to be
8700 // replaced in one successor's PHI nodes, because the branch comes now from
8701 // the newly generated BB (NewBB). In the other successor we need to add one
8702 // incoming edge to the PHI nodes, because both branch instructions target
8703 // now the same successor. Depending on the original branch condition
8704 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8705 // we perform the correct update for the PHI nodes.
8706 // This doesn't change the successor order of the just created branch
8707 // instruction (or any other instruction).
8708 if (Opc
== Instruction::Or
)
8709 std::swap(TBB
, FBB
);
8711 // Replace the old BB with the new BB.
8712 TBB
->replacePhiUsesWith(&BB
, TmpBB
);
8714 // Add another incoming edge from the new BB.
8715 for (PHINode
&PN
: FBB
->phis()) {
8716 auto *Val
= PN
.getIncomingValueForBlock(&BB
);
8717 PN
.addIncoming(Val
, TmpBB
);
8720 // Update the branch weights (from SelectionDAGBuilder::
8721 // FindMergedConditions).
8722 if (Opc
== Instruction::Or
) {
8723 // Codegen X | Y as:
8732 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8733 // The requirement is that
8734 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8735 // = TrueProb for original BB.
8736 // Assuming the original weights are A and B, one choice is to set BB1's
8737 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8739 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8740 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8741 // TmpBB, but the math is more complicated.
8742 uint64_t TrueWeight
, FalseWeight
;
8743 if (extractBranchWeights(*Br1
, TrueWeight
, FalseWeight
)) {
8744 uint64_t NewTrueWeight
= TrueWeight
;
8745 uint64_t NewFalseWeight
= TrueWeight
+ 2 * FalseWeight
;
8746 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8747 Br1
->setMetadata(LLVMContext::MD_prof
,
8748 MDBuilder(Br1
->getContext())
8749 .createBranchWeights(TrueWeight
, FalseWeight
));
8751 NewTrueWeight
= TrueWeight
;
8752 NewFalseWeight
= 2 * FalseWeight
;
8753 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8754 Br2
->setMetadata(LLVMContext::MD_prof
,
8755 MDBuilder(Br2
->getContext())
8756 .createBranchWeights(TrueWeight
, FalseWeight
));
8759 // Codegen X & Y as:
8767 // This requires creation of TmpBB after CurBB.
8769 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8770 // The requirement is that
8771 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8772 // = FalseProb for original BB.
8773 // Assuming the original weights are A and B, one choice is to set BB1's
8774 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8776 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8777 uint64_t TrueWeight
, FalseWeight
;
8778 if (extractBranchWeights(*Br1
, TrueWeight
, FalseWeight
)) {
8779 uint64_t NewTrueWeight
= 2 * TrueWeight
+ FalseWeight
;
8780 uint64_t NewFalseWeight
= FalseWeight
;
8781 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8782 Br1
->setMetadata(LLVMContext::MD_prof
,
8783 MDBuilder(Br1
->getContext())
8784 .createBranchWeights(TrueWeight
, FalseWeight
));
8786 NewTrueWeight
= 2 * TrueWeight
;
8787 NewFalseWeight
= FalseWeight
;
8788 scaleWeights(NewTrueWeight
, NewFalseWeight
);
8789 Br2
->setMetadata(LLVMContext::MD_prof
,
8790 MDBuilder(Br2
->getContext())
8791 .createBranchWeights(TrueWeight
, FalseWeight
));
8795 ModifiedDT
= ModifyDT::ModifyBBDT
;
8798 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB
.dump();