[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / IRTranslator.cpp
blob1a71c1232c7063ffbff3680c39b2fb7d2b3c7ab4
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
29 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
30 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
31 #include "llvm/CodeGen/LowLevelType.h"
32 #include "llvm/CodeGen/LowLevelTypeUtils.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/SwitchLoweringUtils.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetPassConfig.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/DiagnosticInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GetElementPtrTypeIterator.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/IntrinsicsAMDGPU.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Metadata.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CodeGen.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Target/TargetIntrinsicInfo.h"
83 #include "llvm/Target/TargetMachine.h"
84 #include "llvm/Transforms/Utils/Local.h"
85 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
86 #include <algorithm>
87 #include <cassert>
88 #include <cstdint>
89 #include <iterator>
90 #include <optional>
91 #include <string>
92 #include <utility>
93 #include <vector>
95 #define DEBUG_TYPE "irtranslator"
97 using namespace llvm;
99 static cl::opt<bool>
100 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
101 cl::desc("Should enable CSE in irtranslator"),
102 cl::Optional, cl::init(false));
103 char IRTranslator::ID = 0;
105 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
106 false, false)
107 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
108 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
109 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
110 INITIALIZE_PASS_DEPENDENCY(StackProtector)
111 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
112 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
113 false, false)
115 static void reportTranslationError(MachineFunction &MF,
116 const TargetPassConfig &TPC,
117 OptimizationRemarkEmitter &ORE,
118 OptimizationRemarkMissed &R) {
119 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
121 // Print the function name explicitly if we don't have a debug location (which
122 // makes the diagnostic less useful) or if we're going to emit a raw error.
123 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
124 R << (" (in function: " + MF.getName() + ")").str();
126 if (TPC.isGlobalISelAbortEnabled())
127 report_fatal_error(Twine(R.getMsg()));
128 else
129 ORE.emit(R);
132 IRTranslator::IRTranslator(CodeGenOptLevel optlevel)
133 : MachineFunctionPass(ID), OptLevel(optlevel) {}
135 #ifndef NDEBUG
136 namespace {
137 /// Verify that every instruction created has the same DILocation as the
138 /// instruction being translated.
139 class DILocationVerifier : public GISelChangeObserver {
140 const Instruction *CurrInst = nullptr;
142 public:
143 DILocationVerifier() = default;
144 ~DILocationVerifier() = default;
146 const Instruction *getCurrentInst() const { return CurrInst; }
147 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
149 void erasingInstr(MachineInstr &MI) override {}
150 void changingInstr(MachineInstr &MI) override {}
151 void changedInstr(MachineInstr &MI) override {}
153 void createdInstr(MachineInstr &MI) override {
154 assert(getCurrentInst() && "Inserted instruction without a current MI");
156 // Only print the check message if we're actually checking it.
157 #ifndef NDEBUG
158 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
159 << " was copied to " << MI);
160 #endif
161 // We allow insts in the entry block to have no debug loc because
162 // they could have originated from constants, and we don't want a jumpy
163 // debug experience.
164 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
165 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc()) ||
166 (MI.isDebugInstr())) &&
167 "Line info was not transferred to all instructions");
170 } // namespace
171 #endif // ifndef NDEBUG
174 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
175 AU.addRequired<StackProtector>();
176 AU.addRequired<TargetPassConfig>();
177 AU.addRequired<GISelCSEAnalysisWrapperPass>();
178 AU.addRequired<AssumptionCacheTracker>();
179 if (OptLevel != CodeGenOptLevel::None) {
180 AU.addRequired<BranchProbabilityInfoWrapperPass>();
181 AU.addRequired<AAResultsWrapperPass>();
183 AU.addRequired<TargetLibraryInfoWrapperPass>();
184 AU.addPreserved<TargetLibraryInfoWrapperPass>();
185 getSelectionDAGFallbackAnalysisUsage(AU);
186 MachineFunctionPass::getAnalysisUsage(AU);
189 IRTranslator::ValueToVRegInfo::VRegListT &
190 IRTranslator::allocateVRegs(const Value &Val) {
191 auto VRegsIt = VMap.findVRegs(Val);
192 if (VRegsIt != VMap.vregs_end())
193 return *VRegsIt->second;
194 auto *Regs = VMap.getVRegs(Val);
195 auto *Offsets = VMap.getOffsets(Val);
196 SmallVector<LLT, 4> SplitTys;
197 computeValueLLTs(*DL, *Val.getType(), SplitTys,
198 Offsets->empty() ? Offsets : nullptr);
199 for (unsigned i = 0; i < SplitTys.size(); ++i)
200 Regs->push_back(0);
201 return *Regs;
204 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
205 auto VRegsIt = VMap.findVRegs(Val);
206 if (VRegsIt != VMap.vregs_end())
207 return *VRegsIt->second;
209 if (Val.getType()->isVoidTy())
210 return *VMap.getVRegs(Val);
212 // Create entry for this type.
213 auto *VRegs = VMap.getVRegs(Val);
214 auto *Offsets = VMap.getOffsets(Val);
216 assert(Val.getType()->isSized() &&
217 "Don't know how to create an empty vreg");
219 SmallVector<LLT, 4> SplitTys;
220 computeValueLLTs(*DL, *Val.getType(), SplitTys,
221 Offsets->empty() ? Offsets : nullptr);
223 if (!isa<Constant>(Val)) {
224 for (auto Ty : SplitTys)
225 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
226 return *VRegs;
229 if (Val.getType()->isAggregateType()) {
230 // UndefValue, ConstantAggregateZero
231 auto &C = cast<Constant>(Val);
232 unsigned Idx = 0;
233 while (auto Elt = C.getAggregateElement(Idx++)) {
234 auto EltRegs = getOrCreateVRegs(*Elt);
235 llvm::copy(EltRegs, std::back_inserter(*VRegs));
237 } else {
238 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
239 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
240 bool Success = translate(cast<Constant>(Val), VRegs->front());
241 if (!Success) {
242 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
243 MF->getFunction().getSubprogram(),
244 &MF->getFunction().getEntryBlock());
245 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
246 reportTranslationError(*MF, *TPC, *ORE, R);
247 return *VRegs;
251 return *VRegs;
254 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
255 auto MapEntry = FrameIndices.find(&AI);
256 if (MapEntry != FrameIndices.end())
257 return MapEntry->second;
259 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
260 uint64_t Size =
261 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
263 // Always allocate at least one byte.
264 Size = std::max<uint64_t>(Size, 1u);
266 int &FI = FrameIndices[&AI];
267 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
268 return FI;
271 Align IRTranslator::getMemOpAlign(const Instruction &I) {
272 if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
273 return SI->getAlign();
274 if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
275 return LI->getAlign();
276 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
277 return AI->getAlign();
278 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
279 return AI->getAlign();
281 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
282 R << "unable to translate memop: " << ore::NV("Opcode", &I);
283 reportTranslationError(*MF, *TPC, *ORE, R);
284 return Align(1);
287 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
288 MachineBasicBlock *&MBB = BBToMBB[&BB];
289 assert(MBB && "BasicBlock was not encountered before");
290 return *MBB;
293 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
294 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
295 MachinePreds[Edge].push_back(NewPred);
298 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
299 MachineIRBuilder &MIRBuilder) {
300 // Get or create a virtual register for each value.
301 // Unless the value is a Constant => loadimm cst?
302 // or inline constant each time?
303 // Creation of a virtual register needs to have a size.
304 Register Op0 = getOrCreateVReg(*U.getOperand(0));
305 Register Op1 = getOrCreateVReg(*U.getOperand(1));
306 Register Res = getOrCreateVReg(U);
307 uint32_t Flags = 0;
308 if (isa<Instruction>(U)) {
309 const Instruction &I = cast<Instruction>(U);
310 Flags = MachineInstr::copyFlagsFromInstruction(I);
313 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
314 return true;
317 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
318 MachineIRBuilder &MIRBuilder) {
319 Register Op0 = getOrCreateVReg(*U.getOperand(0));
320 Register Res = getOrCreateVReg(U);
321 uint32_t Flags = 0;
322 if (isa<Instruction>(U)) {
323 const Instruction &I = cast<Instruction>(U);
324 Flags = MachineInstr::copyFlagsFromInstruction(I);
326 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
327 return true;
330 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
331 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
334 bool IRTranslator::translateCompare(const User &U,
335 MachineIRBuilder &MIRBuilder) {
336 auto *CI = dyn_cast<CmpInst>(&U);
337 Register Op0 = getOrCreateVReg(*U.getOperand(0));
338 Register Op1 = getOrCreateVReg(*U.getOperand(1));
339 Register Res = getOrCreateVReg(U);
340 CmpInst::Predicate Pred =
341 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
342 cast<ConstantExpr>(U).getPredicate());
343 if (CmpInst::isIntPredicate(Pred))
344 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
345 else if (Pred == CmpInst::FCMP_FALSE)
346 MIRBuilder.buildCopy(
347 Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
348 else if (Pred == CmpInst::FCMP_TRUE)
349 MIRBuilder.buildCopy(
350 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
351 else {
352 uint32_t Flags = 0;
353 if (CI)
354 Flags = MachineInstr::copyFlagsFromInstruction(*CI);
355 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
358 return true;
361 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
362 const ReturnInst &RI = cast<ReturnInst>(U);
363 const Value *Ret = RI.getReturnValue();
364 if (Ret && DL->getTypeStoreSize(Ret->getType()).isZero())
365 Ret = nullptr;
367 ArrayRef<Register> VRegs;
368 if (Ret)
369 VRegs = getOrCreateVRegs(*Ret);
371 Register SwiftErrorVReg = 0;
372 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
373 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
374 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
377 // The target may mess up with the insertion point, but
378 // this is not important as a return is the last instruction
379 // of the block anyway.
380 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
383 void IRTranslator::emitBranchForMergedCondition(
384 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
385 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
386 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
387 // If the leaf of the tree is a comparison, merge the condition into
388 // the caseblock.
389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
390 CmpInst::Predicate Condition;
391 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
392 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
393 } else {
394 const FCmpInst *FC = cast<FCmpInst>(Cond);
395 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
398 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
399 BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
400 CurBuilder->getDebugLoc(), TProb, FProb);
401 SL->SwitchCases.push_back(CB);
402 return;
405 // Create a CaseBlock record representing this branch.
406 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
407 SwitchCG::CaseBlock CB(
408 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
409 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
410 SL->SwitchCases.push_back(CB);
413 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
414 if (const Instruction *I = dyn_cast<Instruction>(V))
415 return I->getParent() == BB;
416 return true;
419 void IRTranslator::findMergedConditions(
420 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
421 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
422 Instruction::BinaryOps Opc, BranchProbability TProb,
423 BranchProbability FProb, bool InvertCond) {
424 using namespace PatternMatch;
425 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
426 "Expected Opc to be AND/OR");
427 // Skip over not part of the tree and remember to invert op and operands at
428 // next level.
429 Value *NotCond;
430 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
431 isValInBlock(NotCond, CurBB->getBasicBlock())) {
432 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
433 !InvertCond);
434 return;
437 const Instruction *BOp = dyn_cast<Instruction>(Cond);
438 const Value *BOpOp0, *BOpOp1;
439 // Compute the effective opcode for Cond, taking into account whether it needs
440 // to be inverted, e.g.
441 // and (not (or A, B)), C
442 // gets lowered as
443 // and (and (not A, not B), C)
444 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
445 if (BOp) {
446 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
447 ? Instruction::And
448 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
449 ? Instruction::Or
450 : (Instruction::BinaryOps)0);
451 if (InvertCond) {
452 if (BOpc == Instruction::And)
453 BOpc = Instruction::Or;
454 else if (BOpc == Instruction::Or)
455 BOpc = Instruction::And;
459 // If this node is not part of the or/and tree, emit it as a branch.
460 // Note that all nodes in the tree should have same opcode.
461 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
462 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
463 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
464 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
465 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
466 InvertCond);
467 return;
470 // Create TmpBB after CurBB.
471 MachineFunction::iterator BBI(CurBB);
472 MachineBasicBlock *TmpBB =
473 MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
474 CurBB->getParent()->insert(++BBI, TmpBB);
476 if (Opc == Instruction::Or) {
477 // Codegen X | Y as:
478 // BB1:
479 // jmp_if_X TBB
480 // jmp TmpBB
481 // TmpBB:
482 // jmp_if_Y TBB
483 // jmp FBB
486 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
487 // The requirement is that
488 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
489 // = TrueProb for original BB.
490 // Assuming the original probabilities are A and B, one choice is to set
491 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
492 // A/(1+B) and 2B/(1+B). This choice assumes that
493 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
494 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
495 // TmpBB, but the math is more complicated.
497 auto NewTrueProb = TProb / 2;
498 auto NewFalseProb = TProb / 2 + FProb;
499 // Emit the LHS condition.
500 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
501 NewFalseProb, InvertCond);
503 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
504 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
505 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
506 // Emit the RHS condition into TmpBB.
507 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
508 Probs[1], InvertCond);
509 } else {
510 assert(Opc == Instruction::And && "Unknown merge op!");
511 // Codegen X & Y as:
512 // BB1:
513 // jmp_if_X TmpBB
514 // jmp FBB
515 // TmpBB:
516 // jmp_if_Y TBB
517 // jmp FBB
519 // This requires creation of TmpBB after CurBB.
521 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
522 // The requirement is that
523 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
524 // = FalseProb for original BB.
525 // Assuming the original probabilities are A and B, one choice is to set
526 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
527 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
528 // TrueProb for BB1 * FalseProb for TmpBB.
530 auto NewTrueProb = TProb + FProb / 2;
531 auto NewFalseProb = FProb / 2;
532 // Emit the LHS condition.
533 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
534 NewFalseProb, InvertCond);
536 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
537 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
538 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
539 // Emit the RHS condition into TmpBB.
540 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
541 Probs[1], InvertCond);
545 bool IRTranslator::shouldEmitAsBranches(
546 const std::vector<SwitchCG::CaseBlock> &Cases) {
547 // For multiple cases, it's better to emit as branches.
548 if (Cases.size() != 2)
549 return true;
551 // If this is two comparisons of the same values or'd or and'd together, they
552 // will get folded into a single comparison, so don't emit two blocks.
553 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
554 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
555 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
556 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
557 return false;
560 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
561 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
562 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
563 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
564 isa<Constant>(Cases[0].CmpRHS) &&
565 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
566 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
567 Cases[0].TrueBB == Cases[1].ThisBB)
568 return false;
569 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
570 Cases[0].FalseBB == Cases[1].ThisBB)
571 return false;
574 return true;
577 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
578 const BranchInst &BrInst = cast<BranchInst>(U);
579 auto &CurMBB = MIRBuilder.getMBB();
580 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
582 if (BrInst.isUnconditional()) {
583 // If the unconditional target is the layout successor, fallthrough.
584 if (OptLevel == CodeGenOptLevel::None ||
585 !CurMBB.isLayoutSuccessor(Succ0MBB))
586 MIRBuilder.buildBr(*Succ0MBB);
588 // Link successors.
589 for (const BasicBlock *Succ : successors(&BrInst))
590 CurMBB.addSuccessor(&getMBB(*Succ));
591 return true;
594 // If this condition is one of the special cases we handle, do special stuff
595 // now.
596 const Value *CondVal = BrInst.getCondition();
597 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
599 const auto &TLI = *MF->getSubtarget().getTargetLowering();
601 // If this is a series of conditions that are or'd or and'd together, emit
602 // this as a sequence of branches instead of setcc's with and/or operations.
603 // As long as jumps are not expensive (exceptions for multi-use logic ops,
604 // unpredictable branches, and vector extracts because those jumps are likely
605 // expensive for any target), this should improve performance.
606 // For example, instead of something like:
607 // cmp A, B
608 // C = seteq
609 // cmp D, E
610 // F = setle
611 // or C, F
612 // jnz foo
613 // Emit:
614 // cmp A, B
615 // je foo
616 // cmp D, E
617 // jle foo
618 using namespace PatternMatch;
619 const Instruction *CondI = dyn_cast<Instruction>(CondVal);
620 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
621 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
622 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
623 Value *Vec;
624 const Value *BOp0, *BOp1;
625 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
626 Opcode = Instruction::And;
627 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
628 Opcode = Instruction::Or;
630 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
631 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
632 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
633 getEdgeProbability(&CurMBB, Succ0MBB),
634 getEdgeProbability(&CurMBB, Succ1MBB),
635 /*InvertCond=*/false);
636 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
638 // Allow some cases to be rejected.
639 if (shouldEmitAsBranches(SL->SwitchCases)) {
640 // Emit the branch for this block.
641 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
642 SL->SwitchCases.erase(SL->SwitchCases.begin());
643 return true;
646 // Okay, we decided not to do this, remove any inserted MBB's and clear
647 // SwitchCases.
648 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
649 MF->erase(SL->SwitchCases[I].ThisBB);
651 SL->SwitchCases.clear();
655 // Create a CaseBlock record representing this branch.
656 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
657 ConstantInt::getTrue(MF->getFunction().getContext()),
658 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
659 CurBuilder->getDebugLoc());
661 // Use emitSwitchCase to actually insert the fast branch sequence for this
662 // cond branch.
663 emitSwitchCase(CB, &CurMBB, *CurBuilder);
664 return true;
667 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
668 MachineBasicBlock *Dst,
669 BranchProbability Prob) {
670 if (!FuncInfo.BPI) {
671 Src->addSuccessorWithoutProb(Dst);
672 return;
674 if (Prob.isUnknown())
675 Prob = getEdgeProbability(Src, Dst);
676 Src->addSuccessor(Dst, Prob);
679 BranchProbability
680 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
681 const MachineBasicBlock *Dst) const {
682 const BasicBlock *SrcBB = Src->getBasicBlock();
683 const BasicBlock *DstBB = Dst->getBasicBlock();
684 if (!FuncInfo.BPI) {
685 // If BPI is not available, set the default probability as 1 / N, where N is
686 // the number of successors.
687 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
688 return BranchProbability(1, SuccSize);
690 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
693 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
694 using namespace SwitchCG;
695 // Extract cases from the switch.
696 const SwitchInst &SI = cast<SwitchInst>(U);
697 BranchProbabilityInfo *BPI = FuncInfo.BPI;
698 CaseClusterVector Clusters;
699 Clusters.reserve(SI.getNumCases());
700 for (const auto &I : SI.cases()) {
701 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
702 assert(Succ && "Could not find successor mbb in mapping");
703 const ConstantInt *CaseVal = I.getCaseValue();
704 BranchProbability Prob =
705 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
706 : BranchProbability(1, SI.getNumCases() + 1);
707 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
710 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
712 // Cluster adjacent cases with the same destination. We do this at all
713 // optimization levels because it's cheap to do and will make codegen faster
714 // if there are many clusters.
715 sortAndRangeify(Clusters);
717 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
719 // If there is only the default destination, jump there directly.
720 if (Clusters.empty()) {
721 SwitchMBB->addSuccessor(DefaultMBB);
722 if (DefaultMBB != SwitchMBB->getNextNode())
723 MIB.buildBr(*DefaultMBB);
724 return true;
727 SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB, nullptr, nullptr);
728 SL->findBitTestClusters(Clusters, &SI);
730 LLVM_DEBUG({
731 dbgs() << "Case clusters: ";
732 for (const CaseCluster &C : Clusters) {
733 if (C.Kind == CC_JumpTable)
734 dbgs() << "JT:";
735 if (C.Kind == CC_BitTests)
736 dbgs() << "BT:";
738 C.Low->getValue().print(dbgs(), true);
739 if (C.Low != C.High) {
740 dbgs() << '-';
741 C.High->getValue().print(dbgs(), true);
743 dbgs() << ' ';
745 dbgs() << '\n';
748 assert(!Clusters.empty());
749 SwitchWorkList WorkList;
750 CaseClusterIt First = Clusters.begin();
751 CaseClusterIt Last = Clusters.end() - 1;
752 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
753 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
755 while (!WorkList.empty()) {
756 SwitchWorkListItem W = WorkList.pop_back_val();
758 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
759 // For optimized builds, lower large range as a balanced binary tree.
760 if (NumClusters > 3 &&
761 MF->getTarget().getOptLevel() != CodeGenOptLevel::None &&
762 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
763 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB, MIB);
764 continue;
767 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
768 return false;
770 return true;
773 void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
774 const SwitchCG::SwitchWorkListItem &W,
775 Value *Cond, MachineBasicBlock *SwitchMBB,
776 MachineIRBuilder &MIB) {
777 using namespace SwitchCG;
778 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
779 "Clusters not sorted?");
780 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
782 auto [LastLeft, FirstRight, LeftProb, RightProb] =
783 SL->computeSplitWorkItemInfo(W);
785 // Use the first element on the right as pivot since we will make less-than
786 // comparisons against it.
787 CaseClusterIt PivotCluster = FirstRight;
788 assert(PivotCluster > W.FirstCluster);
789 assert(PivotCluster <= W.LastCluster);
791 CaseClusterIt FirstLeft = W.FirstCluster;
792 CaseClusterIt LastRight = W.LastCluster;
794 const ConstantInt *Pivot = PivotCluster->Low;
796 // New blocks will be inserted immediately after the current one.
797 MachineFunction::iterator BBI(W.MBB);
798 ++BBI;
800 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
801 // we can branch to its destination directly if it's squeezed exactly in
802 // between the known lower bound and Pivot - 1.
803 MachineBasicBlock *LeftMBB;
804 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
805 FirstLeft->Low == W.GE &&
806 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
807 LeftMBB = FirstLeft->MBB;
808 } else {
809 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
810 FuncInfo.MF->insert(BBI, LeftMBB);
811 WorkList.push_back(
812 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
815 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
816 // single cluster, RHS.Low == Pivot, and we can branch to its destination
817 // directly if RHS.High equals the current upper bound.
818 MachineBasicBlock *RightMBB;
819 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT &&
820 (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
821 RightMBB = FirstRight->MBB;
822 } else {
823 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
824 FuncInfo.MF->insert(BBI, RightMBB);
825 WorkList.push_back(
826 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
829 // Create the CaseBlock record that will be used to lower the branch.
830 CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr,
831 LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb,
832 RightProb);
834 if (W.MBB == SwitchMBB)
835 emitSwitchCase(CB, SwitchMBB, MIB);
836 else
837 SL->SwitchCases.push_back(CB);
840 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
841 MachineBasicBlock *MBB) {
842 // Emit the code for the jump table
843 assert(JT.Reg != -1U && "Should lower JT Header first!");
844 MachineIRBuilder MIB(*MBB->getParent());
845 MIB.setMBB(*MBB);
846 MIB.setDebugLoc(CurBuilder->getDebugLoc());
848 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
849 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
851 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
852 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
855 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
856 SwitchCG::JumpTableHeader &JTH,
857 MachineBasicBlock *HeaderBB) {
858 MachineIRBuilder MIB(*HeaderBB->getParent());
859 MIB.setMBB(*HeaderBB);
860 MIB.setDebugLoc(CurBuilder->getDebugLoc());
862 const Value &SValue = *JTH.SValue;
863 // Subtract the lowest switch case value from the value being switched on.
864 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
865 Register SwitchOpReg = getOrCreateVReg(SValue);
866 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
867 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
869 // This value may be smaller or larger than the target's pointer type, and
870 // therefore require extension or truncating.
871 auto *PtrIRTy = PointerType::getUnqual(SValue.getContext());
872 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
873 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
875 JT.Reg = Sub.getReg(0);
877 if (JTH.FallthroughUnreachable) {
878 if (JT.MBB != HeaderBB->getNextNode())
879 MIB.buildBr(*JT.MBB);
880 return true;
883 // Emit the range check for the jump table, and branch to the default block
884 // for the switch statement if the value being switched on exceeds the
885 // largest case in the switch.
886 auto Cst = getOrCreateVReg(
887 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
888 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
889 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
891 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
893 // Avoid emitting unnecessary branches to the next block.
894 if (JT.MBB != HeaderBB->getNextNode())
895 BrCond = MIB.buildBr(*JT.MBB);
896 return true;
899 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
900 MachineBasicBlock *SwitchBB,
901 MachineIRBuilder &MIB) {
902 Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
903 Register Cond;
904 DebugLoc OldDbgLoc = MIB.getDebugLoc();
905 MIB.setDebugLoc(CB.DbgLoc);
906 MIB.setMBB(*CB.ThisBB);
908 if (CB.PredInfo.NoCmp) {
909 // Branch or fall through to TrueBB.
910 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
911 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
912 CB.ThisBB);
913 CB.ThisBB->normalizeSuccProbs();
914 if (CB.TrueBB != CB.ThisBB->getNextNode())
915 MIB.buildBr(*CB.TrueBB);
916 MIB.setDebugLoc(OldDbgLoc);
917 return;
920 const LLT i1Ty = LLT::scalar(1);
921 // Build the compare.
922 if (!CB.CmpMHS) {
923 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
924 // For conditional branch lowering, we might try to do something silly like
925 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
926 // just re-use the existing condition vreg.
927 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() &&
928 CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
929 Cond = CondLHS;
930 } else {
931 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
932 if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
933 Cond =
934 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
935 else
936 Cond =
937 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
939 } else {
940 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
941 "Can only handle SLE ranges");
943 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
944 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
946 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
947 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
948 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
949 Cond =
950 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
951 } else {
952 const LLT CmpTy = MRI->getType(CmpOpReg);
953 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
954 auto Diff = MIB.buildConstant(CmpTy, High - Low);
955 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
959 // Update successor info
960 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
962 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
963 CB.ThisBB);
965 // TrueBB and FalseBB are always different unless the incoming IR is
966 // degenerate. This only happens when running llc on weird IR.
967 if (CB.TrueBB != CB.FalseBB)
968 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
969 CB.ThisBB->normalizeSuccProbs();
971 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
972 CB.ThisBB);
974 MIB.buildBrCond(Cond, *CB.TrueBB);
975 MIB.buildBr(*CB.FalseBB);
976 MIB.setDebugLoc(OldDbgLoc);
979 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
980 MachineBasicBlock *SwitchMBB,
981 MachineBasicBlock *CurMBB,
982 MachineBasicBlock *DefaultMBB,
983 MachineIRBuilder &MIB,
984 MachineFunction::iterator BBI,
985 BranchProbability UnhandledProbs,
986 SwitchCG::CaseClusterIt I,
987 MachineBasicBlock *Fallthrough,
988 bool FallthroughUnreachable) {
989 using namespace SwitchCG;
990 MachineFunction *CurMF = SwitchMBB->getParent();
991 // FIXME: Optimize away range check based on pivot comparisons.
992 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
993 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
994 BranchProbability DefaultProb = W.DefaultProb;
996 // The jump block hasn't been inserted yet; insert it here.
997 MachineBasicBlock *JumpMBB = JT->MBB;
998 CurMF->insert(BBI, JumpMBB);
1000 // Since the jump table block is separate from the switch block, we need
1001 // to keep track of it as a machine predecessor to the default block,
1002 // otherwise we lose the phi edges.
1003 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1004 CurMBB);
1005 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1006 JumpMBB);
1008 auto JumpProb = I->Prob;
1009 auto FallthroughProb = UnhandledProbs;
1011 // If the default statement is a target of the jump table, we evenly
1012 // distribute the default probability to successors of CurMBB. Also
1013 // update the probability on the edge from JumpMBB to Fallthrough.
1014 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
1015 SE = JumpMBB->succ_end();
1016 SI != SE; ++SI) {
1017 if (*SI == DefaultMBB) {
1018 JumpProb += DefaultProb / 2;
1019 FallthroughProb -= DefaultProb / 2;
1020 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
1021 JumpMBB->normalizeSuccProbs();
1022 } else {
1023 // Also record edges from the jump table block to it's successors.
1024 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
1025 JumpMBB);
1029 if (FallthroughUnreachable)
1030 JTH->FallthroughUnreachable = true;
1032 if (!JTH->FallthroughUnreachable)
1033 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
1034 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
1035 CurMBB->normalizeSuccProbs();
1037 // The jump table header will be inserted in our current block, do the
1038 // range check, and fall through to our fallthrough block.
1039 JTH->HeaderBB = CurMBB;
1040 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
1042 // If we're in the right place, emit the jump table header right now.
1043 if (CurMBB == SwitchMBB) {
1044 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
1045 return false;
1046 JTH->Emitted = true;
1048 return true;
1050 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
1051 Value *Cond,
1052 MachineBasicBlock *Fallthrough,
1053 bool FallthroughUnreachable,
1054 BranchProbability UnhandledProbs,
1055 MachineBasicBlock *CurMBB,
1056 MachineIRBuilder &MIB,
1057 MachineBasicBlock *SwitchMBB) {
1058 using namespace SwitchCG;
1059 const Value *RHS, *LHS, *MHS;
1060 CmpInst::Predicate Pred;
1061 if (I->Low == I->High) {
1062 // Check Cond == I->Low.
1063 Pred = CmpInst::ICMP_EQ;
1064 LHS = Cond;
1065 RHS = I->Low;
1066 MHS = nullptr;
1067 } else {
1068 // Check I->Low <= Cond <= I->High.
1069 Pred = CmpInst::ICMP_SLE;
1070 LHS = I->Low;
1071 MHS = Cond;
1072 RHS = I->High;
1075 // If Fallthrough is unreachable, fold away the comparison.
1076 // The false probability is the sum of all unhandled cases.
1077 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
1078 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
1080 emitSwitchCase(CB, SwitchMBB, MIB);
1081 return true;
1084 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1085 MachineBasicBlock *SwitchBB) {
1086 MachineIRBuilder &MIB = *CurBuilder;
1087 MIB.setMBB(*SwitchBB);
1089 // Subtract the minimum value.
1090 Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1092 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1093 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1094 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1096 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
1097 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1099 LLT MaskTy = SwitchOpTy;
1100 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1101 !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits()))
1102 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1103 else {
1104 // Ensure that the type will fit the mask value.
1105 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1106 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1107 // Switch table case range are encoded into series of masks.
1108 // Just use pointer type, it's guaranteed to fit.
1109 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1110 break;
1114 Register SubReg = RangeSub.getReg(0);
1115 if (SwitchOpTy != MaskTy)
1116 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1118 B.RegVT = getMVTForLLT(MaskTy);
1119 B.Reg = SubReg;
1121 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1123 if (!B.FallthroughUnreachable)
1124 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1125 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1127 SwitchBB->normalizeSuccProbs();
1129 if (!B.FallthroughUnreachable) {
1130 // Conditional branch to the default block.
1131 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1132 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1133 RangeSub, RangeCst);
1134 MIB.buildBrCond(RangeCmp, *B.Default);
1137 // Avoid emitting unnecessary branches to the next block.
1138 if (MBB != SwitchBB->getNextNode())
1139 MIB.buildBr(*MBB);
1142 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1143 MachineBasicBlock *NextMBB,
1144 BranchProbability BranchProbToNext,
1145 Register Reg, SwitchCG::BitTestCase &B,
1146 MachineBasicBlock *SwitchBB) {
1147 MachineIRBuilder &MIB = *CurBuilder;
1148 MIB.setMBB(*SwitchBB);
1150 LLT SwitchTy = getLLTForMVT(BB.RegVT);
1151 Register Cmp;
1152 unsigned PopCount = llvm::popcount(B.Mask);
1153 if (PopCount == 1) {
1154 // Testing for a single bit; just compare the shift count with what it
1155 // would need to be to shift a 1 bit in that position.
1156 auto MaskTrailingZeros =
1157 MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask));
1158 Cmp =
1159 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1160 .getReg(0);
1161 } else if (PopCount == BB.Range) {
1162 // There is only one zero bit in the range, test for it directly.
1163 auto MaskTrailingOnes =
1164 MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask));
1165 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1166 .getReg(0);
1167 } else {
1168 // Make desired shift.
1169 auto CstOne = MIB.buildConstant(SwitchTy, 1);
1170 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1172 // Emit bit tests and jumps.
1173 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1174 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1175 auto CstZero = MIB.buildConstant(SwitchTy, 0);
1176 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1177 .getReg(0);
1180 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1181 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1182 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1183 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1184 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1185 // one as they are relative probabilities (and thus work more like weights),
1186 // and hence we need to normalize them to let the sum of them become one.
1187 SwitchBB->normalizeSuccProbs();
1189 // Record the fact that the IR edge from the header to the bit test target
1190 // will go through our new block. Neeeded for PHIs to have nodes added.
1191 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1192 SwitchBB);
1194 MIB.buildBrCond(Cmp, *B.TargetBB);
1196 // Avoid emitting unnecessary branches to the next block.
1197 if (NextMBB != SwitchBB->getNextNode())
1198 MIB.buildBr(*NextMBB);
1201 bool IRTranslator::lowerBitTestWorkItem(
1202 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1203 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1204 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1205 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1206 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1207 bool FallthroughUnreachable) {
1208 using namespace SwitchCG;
1209 MachineFunction *CurMF = SwitchMBB->getParent();
1210 // FIXME: Optimize away range check based on pivot comparisons.
1211 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1212 // The bit test blocks haven't been inserted yet; insert them here.
1213 for (BitTestCase &BTC : BTB->Cases)
1214 CurMF->insert(BBI, BTC.ThisBB);
1216 // Fill in fields of the BitTestBlock.
1217 BTB->Parent = CurMBB;
1218 BTB->Default = Fallthrough;
1220 BTB->DefaultProb = UnhandledProbs;
1221 // If the cases in bit test don't form a contiguous range, we evenly
1222 // distribute the probability on the edge to Fallthrough to two
1223 // successors of CurMBB.
1224 if (!BTB->ContiguousRange) {
1225 BTB->Prob += DefaultProb / 2;
1226 BTB->DefaultProb -= DefaultProb / 2;
1229 if (FallthroughUnreachable)
1230 BTB->FallthroughUnreachable = true;
1232 // If we're in the right place, emit the bit test header right now.
1233 if (CurMBB == SwitchMBB) {
1234 emitBitTestHeader(*BTB, SwitchMBB);
1235 BTB->Emitted = true;
1237 return true;
1240 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1241 Value *Cond,
1242 MachineBasicBlock *SwitchMBB,
1243 MachineBasicBlock *DefaultMBB,
1244 MachineIRBuilder &MIB) {
1245 using namespace SwitchCG;
1246 MachineFunction *CurMF = FuncInfo.MF;
1247 MachineBasicBlock *NextMBB = nullptr;
1248 MachineFunction::iterator BBI(W.MBB);
1249 if (++BBI != FuncInfo.MF->end())
1250 NextMBB = &*BBI;
1252 if (EnableOpts) {
1253 // Here, we order cases by probability so the most likely case will be
1254 // checked first. However, two clusters can have the same probability in
1255 // which case their relative ordering is non-deterministic. So we use Low
1256 // as a tie-breaker as clusters are guaranteed to never overlap.
1257 llvm::sort(W.FirstCluster, W.LastCluster + 1,
1258 [](const CaseCluster &a, const CaseCluster &b) {
1259 return a.Prob != b.Prob
1260 ? a.Prob > b.Prob
1261 : a.Low->getValue().slt(b.Low->getValue());
1264 // Rearrange the case blocks so that the last one falls through if possible
1265 // without changing the order of probabilities.
1266 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1267 --I;
1268 if (I->Prob > W.LastCluster->Prob)
1269 break;
1270 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1271 std::swap(*I, *W.LastCluster);
1272 break;
1277 // Compute total probability.
1278 BranchProbability DefaultProb = W.DefaultProb;
1279 BranchProbability UnhandledProbs = DefaultProb;
1280 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1281 UnhandledProbs += I->Prob;
1283 MachineBasicBlock *CurMBB = W.MBB;
1284 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1285 bool FallthroughUnreachable = false;
1286 MachineBasicBlock *Fallthrough;
1287 if (I == W.LastCluster) {
1288 // For the last cluster, fall through to the default destination.
1289 Fallthrough = DefaultMBB;
1290 FallthroughUnreachable = isa<UnreachableInst>(
1291 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1292 } else {
1293 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1294 CurMF->insert(BBI, Fallthrough);
1296 UnhandledProbs -= I->Prob;
1298 switch (I->Kind) {
1299 case CC_BitTests: {
1300 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1301 DefaultProb, UnhandledProbs, I, Fallthrough,
1302 FallthroughUnreachable)) {
1303 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1304 return false;
1306 break;
1309 case CC_JumpTable: {
1310 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1311 UnhandledProbs, I, Fallthrough,
1312 FallthroughUnreachable)) {
1313 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1314 return false;
1316 break;
1318 case CC_Range: {
1319 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1320 FallthroughUnreachable, UnhandledProbs,
1321 CurMBB, MIB, SwitchMBB)) {
1322 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1323 return false;
1325 break;
1328 CurMBB = Fallthrough;
1331 return true;
1334 bool IRTranslator::translateIndirectBr(const User &U,
1335 MachineIRBuilder &MIRBuilder) {
1336 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1338 const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1339 MIRBuilder.buildBrIndirect(Tgt);
1341 // Link successors.
1342 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1343 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1344 for (const BasicBlock *Succ : successors(&BrInst)) {
1345 // It's legal for indirectbr instructions to have duplicate blocks in the
1346 // destination list. We don't allow this in MIR. Skip anything that's
1347 // already a successor.
1348 if (!AddedSuccessors.insert(Succ).second)
1349 continue;
1350 CurBB.addSuccessor(&getMBB(*Succ));
1353 return true;
1356 static bool isSwiftError(const Value *V) {
1357 if (auto Arg = dyn_cast<Argument>(V))
1358 return Arg->hasSwiftErrorAttr();
1359 if (auto AI = dyn_cast<AllocaInst>(V))
1360 return AI->isSwiftError();
1361 return false;
1364 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1365 const LoadInst &LI = cast<LoadInst>(U);
1367 unsigned StoreSize = DL->getTypeStoreSize(LI.getType());
1368 if (StoreSize == 0)
1369 return true;
1371 ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1372 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1373 Register Base = getOrCreateVReg(*LI.getPointerOperand());
1374 AAMDNodes AAInfo = LI.getAAMetadata();
1376 const Value *Ptr = LI.getPointerOperand();
1377 Type *OffsetIRTy = DL->getIndexType(Ptr->getType());
1378 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1380 if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
1381 assert(Regs.size() == 1 && "swifterror should be single pointer");
1382 Register VReg =
1383 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1384 MIRBuilder.buildCopy(Regs[0], VReg);
1385 return true;
1388 auto &TLI = *MF->getSubtarget().getTargetLowering();
1389 MachineMemOperand::Flags Flags =
1390 TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1391 if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1392 if (AA->pointsToConstantMemory(
1393 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
1394 Flags |= MachineMemOperand::MOInvariant;
1398 const MDNode *Ranges =
1399 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1400 for (unsigned i = 0; i < Regs.size(); ++i) {
1401 Register Addr;
1402 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1404 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1405 Align BaseAlign = getMemOpAlign(LI);
1406 auto MMO = MF->getMachineMemOperand(
1407 Ptr, Flags, MRI->getType(Regs[i]),
1408 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
1409 LI.getSyncScopeID(), LI.getOrdering());
1410 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1413 return true;
1416 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1417 const StoreInst &SI = cast<StoreInst>(U);
1418 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1419 return true;
1421 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1422 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1423 Register Base = getOrCreateVReg(*SI.getPointerOperand());
1425 Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType());
1426 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1428 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1429 assert(Vals.size() == 1 && "swifterror should be single pointer");
1431 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1432 SI.getPointerOperand());
1433 MIRBuilder.buildCopy(VReg, Vals[0]);
1434 return true;
1437 auto &TLI = *MF->getSubtarget().getTargetLowering();
1438 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1440 for (unsigned i = 0; i < Vals.size(); ++i) {
1441 Register Addr;
1442 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1444 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1445 Align BaseAlign = getMemOpAlign(SI);
1446 auto MMO = MF->getMachineMemOperand(
1447 Ptr, Flags, MRI->getType(Vals[i]),
1448 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1449 SI.getSyncScopeID(), SI.getOrdering());
1450 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1452 return true;
1455 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1456 const Value *Src = U.getOperand(0);
1457 Type *Int32Ty = Type::getInt32Ty(U.getContext());
1459 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1460 // usual array element rather than looking into the actual aggregate.
1461 SmallVector<Value *, 1> Indices;
1462 Indices.push_back(ConstantInt::get(Int32Ty, 0));
1464 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1465 for (auto Idx : EVI->indices())
1466 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1467 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1468 for (auto Idx : IVI->indices())
1469 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1470 } else {
1471 for (unsigned i = 1; i < U.getNumOperands(); ++i)
1472 Indices.push_back(U.getOperand(i));
1475 return 8 * static_cast<uint64_t>(
1476 DL.getIndexedOffsetInType(Src->getType(), Indices));
1479 bool IRTranslator::translateExtractValue(const User &U,
1480 MachineIRBuilder &MIRBuilder) {
1481 const Value *Src = U.getOperand(0);
1482 uint64_t Offset = getOffsetFromIndices(U, *DL);
1483 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1484 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1485 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1486 auto &DstRegs = allocateVRegs(U);
1488 for (unsigned i = 0; i < DstRegs.size(); ++i)
1489 DstRegs[i] = SrcRegs[Idx++];
1491 return true;
1494 bool IRTranslator::translateInsertValue(const User &U,
1495 MachineIRBuilder &MIRBuilder) {
1496 const Value *Src = U.getOperand(0);
1497 uint64_t Offset = getOffsetFromIndices(U, *DL);
1498 auto &DstRegs = allocateVRegs(U);
1499 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1500 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1501 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1502 auto *InsertedIt = InsertedRegs.begin();
1504 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1505 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1506 DstRegs[i] = *InsertedIt++;
1507 else
1508 DstRegs[i] = SrcRegs[i];
1511 return true;
1514 bool IRTranslator::translateSelect(const User &U,
1515 MachineIRBuilder &MIRBuilder) {
1516 Register Tst = getOrCreateVReg(*U.getOperand(0));
1517 ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1518 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1519 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1521 uint32_t Flags = 0;
1522 if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1523 Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1525 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1526 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1529 return true;
1532 bool IRTranslator::translateCopy(const User &U, const Value &V,
1533 MachineIRBuilder &MIRBuilder) {
1534 Register Src = getOrCreateVReg(V);
1535 auto &Regs = *VMap.getVRegs(U);
1536 if (Regs.empty()) {
1537 Regs.push_back(Src);
1538 VMap.getOffsets(U)->push_back(0);
1539 } else {
1540 // If we already assigned a vreg for this instruction, we can't change that.
1541 // Emit a copy to satisfy the users we already emitted.
1542 MIRBuilder.buildCopy(Regs[0], Src);
1544 return true;
1547 bool IRTranslator::translateBitCast(const User &U,
1548 MachineIRBuilder &MIRBuilder) {
1549 // If we're bitcasting to the source type, we can reuse the source vreg.
1550 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1551 getLLTForType(*U.getType(), *DL)) {
1552 // If the source is a ConstantInt then it was probably created by
1553 // ConstantHoisting and we should leave it alone.
1554 if (isa<ConstantInt>(U.getOperand(0)))
1555 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U,
1556 MIRBuilder);
1557 return translateCopy(U, *U.getOperand(0), MIRBuilder);
1560 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1563 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1564 MachineIRBuilder &MIRBuilder) {
1565 if (U.getType()->getScalarType()->isBFloatTy() ||
1566 U.getOperand(0)->getType()->getScalarType()->isBFloatTy())
1567 return false;
1568 Register Op = getOrCreateVReg(*U.getOperand(0));
1569 Register Res = getOrCreateVReg(U);
1570 MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1571 return true;
1574 bool IRTranslator::translateGetElementPtr(const User &U,
1575 MachineIRBuilder &MIRBuilder) {
1576 Value &Op0 = *U.getOperand(0);
1577 Register BaseReg = getOrCreateVReg(Op0);
1578 Type *PtrIRTy = Op0.getType();
1579 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1580 Type *OffsetIRTy = DL->getIndexType(PtrIRTy);
1581 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1583 uint32_t Flags = 0;
1584 if (isa<Instruction>(U)) {
1585 const Instruction &I = cast<Instruction>(U);
1586 Flags = MachineInstr::copyFlagsFromInstruction(I);
1589 // Normalize Vector GEP - all scalar operands should be converted to the
1590 // splat vector.
1591 unsigned VectorWidth = 0;
1593 // True if we should use a splat vector; using VectorWidth alone is not
1594 // sufficient.
1595 bool WantSplatVector = false;
1596 if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1597 VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1598 // We don't produce 1 x N vectors; those are treated as scalars.
1599 WantSplatVector = VectorWidth > 1;
1602 // We might need to splat the base pointer into a vector if the offsets
1603 // are vectors.
1604 if (WantSplatVector && !PtrTy.isVector()) {
1605 BaseReg =
1606 MIRBuilder
1607 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1608 .getReg(0);
1609 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1610 PtrTy = getLLTForType(*PtrIRTy, *DL);
1611 OffsetIRTy = DL->getIndexType(PtrIRTy);
1612 OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1615 int64_t Offset = 0;
1616 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1617 GTI != E; ++GTI) {
1618 const Value *Idx = GTI.getOperand();
1619 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1620 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1621 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1622 continue;
1623 } else {
1624 uint64_t ElementSize = GTI.getSequentialElementStride(*DL);
1626 // If this is a scalar constant or a splat vector of constants,
1627 // handle it quickly.
1628 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1629 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) {
1630 Offset += ElementSize * *Val;
1631 continue;
1635 if (Offset != 0) {
1636 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1637 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1638 .getReg(0);
1639 Offset = 0;
1642 Register IdxReg = getOrCreateVReg(*Idx);
1643 LLT IdxTy = MRI->getType(IdxReg);
1644 if (IdxTy != OffsetTy) {
1645 if (!IdxTy.isVector() && WantSplatVector) {
1646 IdxReg = MIRBuilder.buildSplatVector(
1647 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1650 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1653 // N = N + Idx * ElementSize;
1654 // Avoid doing it for ElementSize of 1.
1655 Register GepOffsetReg;
1656 if (ElementSize != 1) {
1657 auto ElementSizeMIB = MIRBuilder.buildConstant(
1658 getLLTForType(*OffsetIRTy, *DL), ElementSize);
1659 GepOffsetReg =
1660 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1661 } else
1662 GepOffsetReg = IdxReg;
1664 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1668 if (Offset != 0) {
1669 auto OffsetMIB =
1670 MIRBuilder.buildConstant(OffsetTy, Offset);
1672 if (int64_t(Offset) >= 0 && cast<GEPOperator>(U).isInBounds())
1673 Flags |= MachineInstr::MIFlag::NoUWrap;
1675 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0),
1676 Flags);
1677 return true;
1680 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1681 return true;
1684 bool IRTranslator::translateMemFunc(const CallInst &CI,
1685 MachineIRBuilder &MIRBuilder,
1686 unsigned Opcode) {
1687 const Value *SrcPtr = CI.getArgOperand(1);
1688 // If the source is undef, then just emit a nop.
1689 if (isa<UndefValue>(SrcPtr))
1690 return true;
1692 SmallVector<Register, 3> SrcRegs;
1694 unsigned MinPtrSize = UINT_MAX;
1695 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1696 Register SrcReg = getOrCreateVReg(**AI);
1697 LLT SrcTy = MRI->getType(SrcReg);
1698 if (SrcTy.isPointer())
1699 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1700 SrcRegs.push_back(SrcReg);
1703 LLT SizeTy = LLT::scalar(MinPtrSize);
1705 // The size operand should be the minimum of the pointer sizes.
1706 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1707 if (MRI->getType(SizeOpReg) != SizeTy)
1708 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1710 auto ICall = MIRBuilder.buildInstr(Opcode);
1711 for (Register SrcReg : SrcRegs)
1712 ICall.addUse(SrcReg);
1714 Align DstAlign;
1715 Align SrcAlign;
1716 unsigned IsVol =
1717 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1719 ConstantInt *CopySize = nullptr;
1721 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1722 DstAlign = MCI->getDestAlign().valueOrOne();
1723 SrcAlign = MCI->getSourceAlign().valueOrOne();
1724 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1725 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1726 DstAlign = MCI->getDestAlign().valueOrOne();
1727 SrcAlign = MCI->getSourceAlign().valueOrOne();
1728 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1729 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1730 DstAlign = MMI->getDestAlign().valueOrOne();
1731 SrcAlign = MMI->getSourceAlign().valueOrOne();
1732 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
1733 } else {
1734 auto *MSI = cast<MemSetInst>(&CI);
1735 DstAlign = MSI->getDestAlign().valueOrOne();
1738 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1739 // We need to propagate the tail call flag from the IR inst as an argument.
1740 // Otherwise, we have to pessimize and assume later that we cannot tail call
1741 // any memory intrinsics.
1742 ICall.addImm(CI.isTailCall() ? 1 : 0);
1745 // Create mem operands to store the alignment and volatile info.
1746 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1747 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1748 if (IsVol) {
1749 LoadFlags |= MachineMemOperand::MOVolatile;
1750 StoreFlags |= MachineMemOperand::MOVolatile;
1753 AAMDNodes AAInfo = CI.getAAMetadata();
1754 if (AA && CopySize &&
1755 AA->pointsToConstantMemory(MemoryLocation(
1756 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
1757 LoadFlags |= MachineMemOperand::MOInvariant;
1759 // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1760 // but the previous usage implied it did. Probably should check
1761 // isDereferenceableAndAlignedPointer.
1762 LoadFlags |= MachineMemOperand::MODereferenceable;
1765 ICall.addMemOperand(
1766 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
1767 StoreFlags, 1, DstAlign, AAInfo));
1768 if (Opcode != TargetOpcode::G_MEMSET)
1769 ICall.addMemOperand(MF->getMachineMemOperand(
1770 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1772 return true;
1775 void IRTranslator::getStackGuard(Register DstReg,
1776 MachineIRBuilder &MIRBuilder) {
1777 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1778 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1779 auto MIB =
1780 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1782 auto &TLI = *MF->getSubtarget().getTargetLowering();
1783 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1784 if (!Global)
1785 return;
1787 unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1788 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1790 MachinePointerInfo MPInfo(Global);
1791 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1792 MachineMemOperand::MODereferenceable;
1793 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1794 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1795 MIB.setMemRefs({MemRef});
1798 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1799 MachineIRBuilder &MIRBuilder) {
1800 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1801 MIRBuilder.buildInstr(
1802 Op, {ResRegs[0], ResRegs[1]},
1803 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1805 return true;
1808 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1809 MachineIRBuilder &MIRBuilder) {
1810 Register Dst = getOrCreateVReg(CI);
1811 Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1812 Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1813 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1814 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1815 return true;
1818 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1819 switch (ID) {
1820 default:
1821 break;
1822 case Intrinsic::bswap:
1823 return TargetOpcode::G_BSWAP;
1824 case Intrinsic::bitreverse:
1825 return TargetOpcode::G_BITREVERSE;
1826 case Intrinsic::fshl:
1827 return TargetOpcode::G_FSHL;
1828 case Intrinsic::fshr:
1829 return TargetOpcode::G_FSHR;
1830 case Intrinsic::ceil:
1831 return TargetOpcode::G_FCEIL;
1832 case Intrinsic::cos:
1833 return TargetOpcode::G_FCOS;
1834 case Intrinsic::ctpop:
1835 return TargetOpcode::G_CTPOP;
1836 case Intrinsic::exp:
1837 return TargetOpcode::G_FEXP;
1838 case Intrinsic::exp2:
1839 return TargetOpcode::G_FEXP2;
1840 case Intrinsic::exp10:
1841 return TargetOpcode::G_FEXP10;
1842 case Intrinsic::fabs:
1843 return TargetOpcode::G_FABS;
1844 case Intrinsic::copysign:
1845 return TargetOpcode::G_FCOPYSIGN;
1846 case Intrinsic::minnum:
1847 return TargetOpcode::G_FMINNUM;
1848 case Intrinsic::maxnum:
1849 return TargetOpcode::G_FMAXNUM;
1850 case Intrinsic::minimum:
1851 return TargetOpcode::G_FMINIMUM;
1852 case Intrinsic::maximum:
1853 return TargetOpcode::G_FMAXIMUM;
1854 case Intrinsic::canonicalize:
1855 return TargetOpcode::G_FCANONICALIZE;
1856 case Intrinsic::floor:
1857 return TargetOpcode::G_FFLOOR;
1858 case Intrinsic::fma:
1859 return TargetOpcode::G_FMA;
1860 case Intrinsic::log:
1861 return TargetOpcode::G_FLOG;
1862 case Intrinsic::log2:
1863 return TargetOpcode::G_FLOG2;
1864 case Intrinsic::log10:
1865 return TargetOpcode::G_FLOG10;
1866 case Intrinsic::ldexp:
1867 return TargetOpcode::G_FLDEXP;
1868 case Intrinsic::nearbyint:
1869 return TargetOpcode::G_FNEARBYINT;
1870 case Intrinsic::pow:
1871 return TargetOpcode::G_FPOW;
1872 case Intrinsic::powi:
1873 return TargetOpcode::G_FPOWI;
1874 case Intrinsic::rint:
1875 return TargetOpcode::G_FRINT;
1876 case Intrinsic::round:
1877 return TargetOpcode::G_INTRINSIC_ROUND;
1878 case Intrinsic::roundeven:
1879 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1880 case Intrinsic::sin:
1881 return TargetOpcode::G_FSIN;
1882 case Intrinsic::sqrt:
1883 return TargetOpcode::G_FSQRT;
1884 case Intrinsic::trunc:
1885 return TargetOpcode::G_INTRINSIC_TRUNC;
1886 case Intrinsic::readcyclecounter:
1887 return TargetOpcode::G_READCYCLECOUNTER;
1888 case Intrinsic::ptrmask:
1889 return TargetOpcode::G_PTRMASK;
1890 case Intrinsic::lrint:
1891 return TargetOpcode::G_INTRINSIC_LRINT;
1892 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1893 case Intrinsic::vector_reduce_fmin:
1894 return TargetOpcode::G_VECREDUCE_FMIN;
1895 case Intrinsic::vector_reduce_fmax:
1896 return TargetOpcode::G_VECREDUCE_FMAX;
1897 case Intrinsic::vector_reduce_fminimum:
1898 return TargetOpcode::G_VECREDUCE_FMINIMUM;
1899 case Intrinsic::vector_reduce_fmaximum:
1900 return TargetOpcode::G_VECREDUCE_FMAXIMUM;
1901 case Intrinsic::vector_reduce_add:
1902 return TargetOpcode::G_VECREDUCE_ADD;
1903 case Intrinsic::vector_reduce_mul:
1904 return TargetOpcode::G_VECREDUCE_MUL;
1905 case Intrinsic::vector_reduce_and:
1906 return TargetOpcode::G_VECREDUCE_AND;
1907 case Intrinsic::vector_reduce_or:
1908 return TargetOpcode::G_VECREDUCE_OR;
1909 case Intrinsic::vector_reduce_xor:
1910 return TargetOpcode::G_VECREDUCE_XOR;
1911 case Intrinsic::vector_reduce_smax:
1912 return TargetOpcode::G_VECREDUCE_SMAX;
1913 case Intrinsic::vector_reduce_smin:
1914 return TargetOpcode::G_VECREDUCE_SMIN;
1915 case Intrinsic::vector_reduce_umax:
1916 return TargetOpcode::G_VECREDUCE_UMAX;
1917 case Intrinsic::vector_reduce_umin:
1918 return TargetOpcode::G_VECREDUCE_UMIN;
1919 case Intrinsic::lround:
1920 return TargetOpcode::G_LROUND;
1921 case Intrinsic::llround:
1922 return TargetOpcode::G_LLROUND;
1923 case Intrinsic::get_fpenv:
1924 return TargetOpcode::G_GET_FPENV;
1925 case Intrinsic::get_fpmode:
1926 return TargetOpcode::G_GET_FPMODE;
1928 return Intrinsic::not_intrinsic;
1931 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1932 Intrinsic::ID ID,
1933 MachineIRBuilder &MIRBuilder) {
1935 unsigned Op = getSimpleIntrinsicOpcode(ID);
1937 // Is this a simple intrinsic?
1938 if (Op == Intrinsic::not_intrinsic)
1939 return false;
1941 // Yes. Let's translate it.
1942 SmallVector<llvm::SrcOp, 4> VRegs;
1943 for (const auto &Arg : CI.args())
1944 VRegs.push_back(getOrCreateVReg(*Arg));
1946 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1947 MachineInstr::copyFlagsFromInstruction(CI));
1948 return true;
1951 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1952 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1953 switch (ID) {
1954 case Intrinsic::experimental_constrained_fadd:
1955 return TargetOpcode::G_STRICT_FADD;
1956 case Intrinsic::experimental_constrained_fsub:
1957 return TargetOpcode::G_STRICT_FSUB;
1958 case Intrinsic::experimental_constrained_fmul:
1959 return TargetOpcode::G_STRICT_FMUL;
1960 case Intrinsic::experimental_constrained_fdiv:
1961 return TargetOpcode::G_STRICT_FDIV;
1962 case Intrinsic::experimental_constrained_frem:
1963 return TargetOpcode::G_STRICT_FREM;
1964 case Intrinsic::experimental_constrained_fma:
1965 return TargetOpcode::G_STRICT_FMA;
1966 case Intrinsic::experimental_constrained_sqrt:
1967 return TargetOpcode::G_STRICT_FSQRT;
1968 case Intrinsic::experimental_constrained_ldexp:
1969 return TargetOpcode::G_STRICT_FLDEXP;
1970 default:
1971 return 0;
1975 bool IRTranslator::translateConstrainedFPIntrinsic(
1976 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1977 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
1979 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1980 if (!Opcode)
1981 return false;
1983 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1984 if (EB == fp::ExceptionBehavior::ebIgnore)
1985 Flags |= MachineInstr::NoFPExcept;
1987 SmallVector<llvm::SrcOp, 4> VRegs;
1988 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1989 if (!FPI.isUnaryOp())
1990 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1991 if (FPI.isTernaryOp())
1992 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1994 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1995 return true;
1998 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) {
1999 auto VRegs = getOrCreateVRegs(Arg);
2000 if (VRegs.size() != 1)
2001 return std::nullopt;
2003 // Arguments are lowered as a copy of a livein physical register.
2004 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]);
2005 if (!VRegDef || !VRegDef->isCopy())
2006 return std::nullopt;
2007 return VRegDef->getOperand(1).getReg().asMCReg();
2010 bool IRTranslator::translateIfEntryValueArgument(bool isDeclare, Value *Val,
2011 const DILocalVariable *Var,
2012 const DIExpression *Expr,
2013 const DebugLoc &DL,
2014 MachineIRBuilder &MIRBuilder) {
2015 auto *Arg = dyn_cast<Argument>(Val);
2016 if (!Arg)
2017 return false;
2019 if (!Expr->isEntryValue())
2020 return false;
2022 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
2023 if (!PhysReg) {
2024 LLVM_DEBUG(dbgs() << "Dropping dbg." << (isDeclare ? "declare" : "value")
2025 << ": expression is entry_value but "
2026 << "couldn't find a physical register\n");
2027 LLVM_DEBUG(dbgs() << *Var << "\n");
2028 return true;
2031 if (isDeclare) {
2032 // Append an op deref to account for the fact that this is a dbg_declare.
2033 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
2034 MF->setVariableDbgInfo(Var, Expr, *PhysReg, DL);
2035 } else {
2036 MIRBuilder.buildDirectDbgValue(*PhysReg, Var, Expr);
2039 return true;
2042 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
2043 MachineIRBuilder &MIRBuilder) {
2044 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
2045 if (ORE->enabled()) {
2046 if (MemoryOpRemark::canHandle(MI, *LibInfo)) {
2047 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2048 R.visit(MI);
2053 // If this is a simple intrinsic (that is, we just need to add a def of
2054 // a vreg, and uses for each arg operand, then translate it.
2055 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
2056 return true;
2058 switch (ID) {
2059 default:
2060 break;
2061 case Intrinsic::lifetime_start:
2062 case Intrinsic::lifetime_end: {
2063 // No stack colouring in O0, discard region information.
2064 if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None)
2065 return true;
2067 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
2068 : TargetOpcode::LIFETIME_END;
2070 // Get the underlying objects for the location passed on the lifetime
2071 // marker.
2072 SmallVector<const Value *, 4> Allocas;
2073 getUnderlyingObjects(CI.getArgOperand(1), Allocas);
2075 // Iterate over each underlying object, creating lifetime markers for each
2076 // static alloca. Quit if we find a non-static alloca.
2077 for (const Value *V : Allocas) {
2078 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
2079 if (!AI)
2080 continue;
2082 if (!AI->isStaticAlloca())
2083 return true;
2085 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
2087 return true;
2089 case Intrinsic::dbg_declare: {
2090 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
2091 assert(DI.getVariable() && "Missing variable");
2092 translateDbgDeclareRecord(DI.getAddress(), DI.hasArgList(), DI.getVariable(),
2093 DI.getExpression(), DI.getDebugLoc(), MIRBuilder);
2094 return true;
2096 case Intrinsic::dbg_label: {
2097 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
2098 assert(DI.getLabel() && "Missing label");
2100 assert(DI.getLabel()->isValidLocationForIntrinsic(
2101 MIRBuilder.getDebugLoc()) &&
2102 "Expected inlined-at fields to agree");
2104 MIRBuilder.buildDbgLabel(DI.getLabel());
2105 return true;
2107 case Intrinsic::vaend:
2108 // No target I know of cares about va_end. Certainly no in-tree target
2109 // does. Simplest intrinsic ever!
2110 return true;
2111 case Intrinsic::vastart: {
2112 auto &TLI = *MF->getSubtarget().getTargetLowering();
2113 Value *Ptr = CI.getArgOperand(0);
2114 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
2115 Align Alignment = getKnownAlignment(Ptr, *DL);
2117 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
2118 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
2119 MachineMemOperand::MOStore,
2120 ListSize, Alignment));
2121 return true;
2123 case Intrinsic::dbg_value: {
2124 // This form of DBG_VALUE is target-independent.
2125 const DbgValueInst &DI = cast<DbgValueInst>(CI);
2126 translateDbgValueRecord(DI.getValue(), DI.hasArgList(), DI.getVariable(),
2127 DI.getExpression(), DI.getDebugLoc(), MIRBuilder);
2128 return true;
2130 case Intrinsic::uadd_with_overflow:
2131 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2132 case Intrinsic::sadd_with_overflow:
2133 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2134 case Intrinsic::usub_with_overflow:
2135 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2136 case Intrinsic::ssub_with_overflow:
2137 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2138 case Intrinsic::umul_with_overflow:
2139 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2140 case Intrinsic::smul_with_overflow:
2141 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2142 case Intrinsic::uadd_sat:
2143 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2144 case Intrinsic::sadd_sat:
2145 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2146 case Intrinsic::usub_sat:
2147 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2148 case Intrinsic::ssub_sat:
2149 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2150 case Intrinsic::ushl_sat:
2151 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2152 case Intrinsic::sshl_sat:
2153 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2154 case Intrinsic::umin:
2155 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2156 case Intrinsic::umax:
2157 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2158 case Intrinsic::smin:
2159 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2160 case Intrinsic::smax:
2161 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2162 case Intrinsic::abs:
2163 // TODO: Preserve "int min is poison" arg in GMIR?
2164 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2165 case Intrinsic::smul_fix:
2166 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2167 case Intrinsic::umul_fix:
2168 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2169 case Intrinsic::smul_fix_sat:
2170 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2171 case Intrinsic::umul_fix_sat:
2172 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2173 case Intrinsic::sdiv_fix:
2174 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2175 case Intrinsic::udiv_fix:
2176 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2177 case Intrinsic::sdiv_fix_sat:
2178 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2179 case Intrinsic::udiv_fix_sat:
2180 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2181 case Intrinsic::fmuladd: {
2182 const TargetMachine &TM = MF->getTarget();
2183 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2184 Register Dst = getOrCreateVReg(CI);
2185 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2186 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2187 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2188 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2189 TLI.isFMAFasterThanFMulAndFAdd(*MF,
2190 TLI.getValueType(*DL, CI.getType()))) {
2191 // TODO: Revisit this to see if we should move this part of the
2192 // lowering to the combiner.
2193 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2194 MachineInstr::copyFlagsFromInstruction(CI));
2195 } else {
2196 LLT Ty = getLLTForType(*CI.getType(), *DL);
2197 auto FMul = MIRBuilder.buildFMul(
2198 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2199 MIRBuilder.buildFAdd(Dst, FMul, Op2,
2200 MachineInstr::copyFlagsFromInstruction(CI));
2202 return true;
2204 case Intrinsic::convert_from_fp16:
2205 // FIXME: This intrinsic should probably be removed from the IR.
2206 MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2207 getOrCreateVReg(*CI.getArgOperand(0)),
2208 MachineInstr::copyFlagsFromInstruction(CI));
2209 return true;
2210 case Intrinsic::convert_to_fp16:
2211 // FIXME: This intrinsic should probably be removed from the IR.
2212 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2213 getOrCreateVReg(*CI.getArgOperand(0)),
2214 MachineInstr::copyFlagsFromInstruction(CI));
2215 return true;
2216 case Intrinsic::frexp: {
2217 ArrayRef<Register> VRegs = getOrCreateVRegs(CI);
2218 MIRBuilder.buildFFrexp(VRegs[0], VRegs[1],
2219 getOrCreateVReg(*CI.getArgOperand(0)),
2220 MachineInstr::copyFlagsFromInstruction(CI));
2221 return true;
2223 case Intrinsic::memcpy_inline:
2224 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2225 case Intrinsic::memcpy:
2226 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2227 case Intrinsic::memmove:
2228 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2229 case Intrinsic::memset:
2230 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2231 case Intrinsic::eh_typeid_for: {
2232 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2233 Register Reg = getOrCreateVReg(CI);
2234 unsigned TypeID = MF->getTypeIDFor(GV);
2235 MIRBuilder.buildConstant(Reg, TypeID);
2236 return true;
2238 case Intrinsic::objectsize:
2239 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2241 case Intrinsic::is_constant:
2242 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2244 case Intrinsic::stackguard:
2245 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2246 return true;
2247 case Intrinsic::stackprotector: {
2248 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2249 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2250 Register GuardVal;
2251 if (TLI.useLoadStackGuardNode()) {
2252 GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2253 getStackGuard(GuardVal, MIRBuilder);
2254 } else
2255 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value.
2257 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2258 int FI = getOrCreateFrameIndex(*Slot);
2259 MF->getFrameInfo().setStackProtectorIndex(FI);
2261 MIRBuilder.buildStore(
2262 GuardVal, getOrCreateVReg(*Slot),
2263 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2264 MachineMemOperand::MOStore |
2265 MachineMemOperand::MOVolatile,
2266 PtrTy, Align(8)));
2267 return true;
2269 case Intrinsic::stacksave: {
2270 MIRBuilder.buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {});
2271 return true;
2273 case Intrinsic::stackrestore: {
2274 MIRBuilder.buildInstr(TargetOpcode::G_STACKRESTORE, {},
2275 {getOrCreateVReg(*CI.getArgOperand(0))});
2276 return true;
2278 case Intrinsic::cttz:
2279 case Intrinsic::ctlz: {
2280 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2281 bool isTrailing = ID == Intrinsic::cttz;
2282 unsigned Opcode = isTrailing
2283 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2284 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2285 : Cst->isZero() ? TargetOpcode::G_CTLZ
2286 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2287 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2288 {getOrCreateVReg(*CI.getArgOperand(0))});
2289 return true;
2291 case Intrinsic::invariant_start: {
2292 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2293 Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2294 MIRBuilder.buildUndef(Undef);
2295 return true;
2297 case Intrinsic::invariant_end:
2298 return true;
2299 case Intrinsic::expect:
2300 case Intrinsic::annotation:
2301 case Intrinsic::ptr_annotation:
2302 case Intrinsic::launder_invariant_group:
2303 case Intrinsic::strip_invariant_group: {
2304 // Drop the intrinsic, but forward the value.
2305 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2306 getOrCreateVReg(*CI.getArgOperand(0)));
2307 return true;
2309 case Intrinsic::assume:
2310 case Intrinsic::experimental_noalias_scope_decl:
2311 case Intrinsic::var_annotation:
2312 case Intrinsic::sideeffect:
2313 // Discard annotate attributes, assumptions, and artificial side-effects.
2314 return true;
2315 case Intrinsic::read_volatile_register:
2316 case Intrinsic::read_register: {
2317 Value *Arg = CI.getArgOperand(0);
2318 MIRBuilder
2319 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2320 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2321 return true;
2323 case Intrinsic::write_register: {
2324 Value *Arg = CI.getArgOperand(0);
2325 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2326 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2327 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2328 return true;
2330 case Intrinsic::localescape: {
2331 MachineBasicBlock &EntryMBB = MF->front();
2332 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2334 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2335 // is the same on all targets.
2336 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2337 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2338 if (isa<ConstantPointerNull>(Arg))
2339 continue; // Skip null pointers. They represent a hole in index space.
2341 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2342 MCSymbol *FrameAllocSym =
2343 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2344 Idx);
2346 // This should be inserted at the start of the entry block.
2347 auto LocalEscape =
2348 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2349 .addSym(FrameAllocSym)
2350 .addFrameIndex(FI);
2352 EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2355 return true;
2357 case Intrinsic::vector_reduce_fadd:
2358 case Intrinsic::vector_reduce_fmul: {
2359 // Need to check for the reassoc flag to decide whether we want a
2360 // sequential reduction opcode or not.
2361 Register Dst = getOrCreateVReg(CI);
2362 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2363 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2364 unsigned Opc = 0;
2365 if (!CI.hasAllowReassoc()) {
2366 // The sequential ordering case.
2367 Opc = ID == Intrinsic::vector_reduce_fadd
2368 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2369 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2370 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2371 MachineInstr::copyFlagsFromInstruction(CI));
2372 return true;
2374 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2375 // since the associativity doesn't matter.
2376 unsigned ScalarOpc;
2377 if (ID == Intrinsic::vector_reduce_fadd) {
2378 Opc = TargetOpcode::G_VECREDUCE_FADD;
2379 ScalarOpc = TargetOpcode::G_FADD;
2380 } else {
2381 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2382 ScalarOpc = TargetOpcode::G_FMUL;
2384 LLT DstTy = MRI->getType(Dst);
2385 auto Rdx = MIRBuilder.buildInstr(
2386 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2387 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2388 MachineInstr::copyFlagsFromInstruction(CI));
2390 return true;
2392 case Intrinsic::trap:
2393 case Intrinsic::debugtrap:
2394 case Intrinsic::ubsantrap: {
2395 StringRef TrapFuncName =
2396 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
2397 if (TrapFuncName.empty())
2398 break; // Use the default handling.
2399 CallLowering::CallLoweringInfo Info;
2400 if (ID == Intrinsic::ubsantrap) {
2401 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
2402 CI.getArgOperand(0)->getType(), 0});
2404 Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
2405 Info.CB = &CI;
2406 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
2407 return CLI->lowerCall(MIRBuilder, Info);
2409 case Intrinsic::amdgcn_cs_chain:
2410 return translateCallBase(CI, MIRBuilder);
2411 case Intrinsic::fptrunc_round: {
2412 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI);
2414 // Convert the metadata argument to a constant integer
2415 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
2416 std::optional<RoundingMode> RoundMode =
2417 convertStrToRoundingMode(cast<MDString>(MD)->getString());
2419 // Add the Rounding mode as an integer
2420 MIRBuilder
2421 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2422 {getOrCreateVReg(CI)},
2423 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
2424 .addImm((int)*RoundMode);
2426 return true;
2428 case Intrinsic::is_fpclass: {
2429 Value *FpValue = CI.getOperand(0);
2430 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1));
2432 MIRBuilder
2433 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2434 {getOrCreateVReg(*FpValue)})
2435 .addImm(TestMaskValue->getZExtValue());
2437 return true;
2439 case Intrinsic::set_fpenv: {
2440 Value *FPEnv = CI.getOperand(0);
2441 MIRBuilder.buildInstr(TargetOpcode::G_SET_FPENV, {},
2442 {getOrCreateVReg(*FPEnv)});
2443 return true;
2445 case Intrinsic::reset_fpenv: {
2446 MIRBuilder.buildInstr(TargetOpcode::G_RESET_FPENV, {}, {});
2447 return true;
2449 case Intrinsic::set_fpmode: {
2450 Value *FPState = CI.getOperand(0);
2451 MIRBuilder.buildInstr(TargetOpcode::G_SET_FPMODE, {},
2452 { getOrCreateVReg(*FPState) });
2453 return true;
2455 case Intrinsic::reset_fpmode: {
2456 MIRBuilder.buildInstr(TargetOpcode::G_RESET_FPMODE, {}, {});
2457 return true;
2459 case Intrinsic::prefetch: {
2460 Value *Addr = CI.getOperand(0);
2461 unsigned RW = cast<ConstantInt>(CI.getOperand(1))->getZExtValue();
2462 unsigned Locality = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
2463 unsigned CacheType = cast<ConstantInt>(CI.getOperand(3))->getZExtValue();
2465 auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
2466 auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags,
2467 LLT(), Align());
2469 MIRBuilder.buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType,
2470 MMO);
2472 return true;
2474 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2475 case Intrinsic::INTRINSIC:
2476 #include "llvm/IR/ConstrainedOps.def"
2477 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2478 MIRBuilder);
2481 return false;
2484 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2485 MachineIRBuilder &MIRBuilder) {
2487 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2489 if (!ALI) {
2490 LLVM_DEBUG(
2491 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2492 return false;
2495 return ALI->lowerInlineAsm(
2496 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2499 bool IRTranslator::translateCallBase(const CallBase &CB,
2500 MachineIRBuilder &MIRBuilder) {
2501 ArrayRef<Register> Res = getOrCreateVRegs(CB);
2503 SmallVector<ArrayRef<Register>, 8> Args;
2504 Register SwiftInVReg = 0;
2505 Register SwiftErrorVReg = 0;
2506 for (const auto &Arg : CB.args()) {
2507 if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2508 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2509 LLT Ty = getLLTForType(*Arg->getType(), *DL);
2510 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2511 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2512 &CB, &MIRBuilder.getMBB(), Arg));
2513 Args.emplace_back(ArrayRef(SwiftInVReg));
2514 SwiftErrorVReg =
2515 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2516 continue;
2518 Args.push_back(getOrCreateVRegs(*Arg));
2521 if (auto *CI = dyn_cast<CallInst>(&CB)) {
2522 if (ORE->enabled()) {
2523 if (MemoryOpRemark::canHandle(CI, *LibInfo)) {
2524 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2525 R.visit(CI);
2530 // We don't set HasCalls on MFI here yet because call lowering may decide to
2531 // optimize into tail calls. Instead, we defer that to selection where a final
2532 // scan is done to check if any instructions are calls.
2533 bool Success =
2534 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2535 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2537 // Check if we just inserted a tail call.
2538 if (Success) {
2539 assert(!HasTailCall && "Can't tail call return twice from block?");
2540 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2541 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2544 return Success;
2547 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2548 const CallInst &CI = cast<CallInst>(U);
2549 auto TII = MF->getTarget().getIntrinsicInfo();
2550 const Function *F = CI.getCalledFunction();
2552 // FIXME: support Windows dllimport function calls and calls through
2553 // weak symbols.
2554 if (F && (F->hasDLLImportStorageClass() ||
2555 (MF->getTarget().getTargetTriple().isOSWindows() &&
2556 F->hasExternalWeakLinkage())))
2557 return false;
2559 // FIXME: support control flow guard targets.
2560 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2561 return false;
2563 // FIXME: support statepoints and related.
2564 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U))
2565 return false;
2567 if (CI.isInlineAsm())
2568 return translateInlineAsm(CI, MIRBuilder);
2570 diagnoseDontCall(CI);
2572 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2573 if (F && F->isIntrinsic()) {
2574 ID = F->getIntrinsicID();
2575 if (TII && ID == Intrinsic::not_intrinsic)
2576 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2579 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2580 return translateCallBase(CI, MIRBuilder);
2582 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2584 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2585 return true;
2587 ArrayRef<Register> ResultRegs;
2588 if (!CI.getType()->isVoidTy())
2589 ResultRegs = getOrCreateVRegs(CI);
2591 // Ignore the callsite attributes. Backend code is most likely not expecting
2592 // an intrinsic to sometimes have side effects and sometimes not.
2593 MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, ResultRegs);
2594 if (isa<FPMathOperator>(CI))
2595 MIB->copyIRFlags(CI);
2597 for (const auto &Arg : enumerate(CI.args())) {
2598 // If this is required to be an immediate, don't materialize it in a
2599 // register.
2600 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2601 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2602 // imm arguments are more convenient than cimm (and realistically
2603 // probably sufficient), so use them.
2604 assert(CI->getBitWidth() <= 64 &&
2605 "large intrinsic immediates not handled");
2606 MIB.addImm(CI->getSExtValue());
2607 } else {
2608 MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2610 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2611 auto *MD = MDVal->getMetadata();
2612 auto *MDN = dyn_cast<MDNode>(MD);
2613 if (!MDN) {
2614 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2615 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2616 else // This was probably an MDString.
2617 return false;
2619 MIB.addMetadata(MDN);
2620 } else {
2621 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2622 if (VRegs.size() > 1)
2623 return false;
2624 MIB.addUse(VRegs[0]);
2628 // Add a MachineMemOperand if it is a target mem intrinsic.
2629 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2630 TargetLowering::IntrinsicInfo Info;
2631 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2632 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2633 Align Alignment = Info.align.value_or(
2634 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2635 LLT MemTy = Info.memVT.isSimple()
2636 ? getLLTForMVT(Info.memVT.getSimpleVT())
2637 : LLT::scalar(Info.memVT.getStoreSizeInBits());
2639 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2640 // didn't yield anything useful.
2641 MachinePointerInfo MPI;
2642 if (Info.ptrVal)
2643 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2644 else if (Info.fallbackAddressSpace)
2645 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2646 MIB.addMemOperand(
2647 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata()));
2650 return true;
2653 bool IRTranslator::findUnwindDestinations(
2654 const BasicBlock *EHPadBB,
2655 BranchProbability Prob,
2656 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2657 &UnwindDests) {
2658 EHPersonality Personality = classifyEHPersonality(
2659 EHPadBB->getParent()->getFunction().getPersonalityFn());
2660 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2661 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2662 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2663 bool IsSEH = isAsynchronousEHPersonality(Personality);
2665 if (IsWasmCXX) {
2666 // Ignore this for now.
2667 return false;
2670 while (EHPadBB) {
2671 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2672 BasicBlock *NewEHPadBB = nullptr;
2673 if (isa<LandingPadInst>(Pad)) {
2674 // Stop on landingpads. They are not funclets.
2675 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2676 break;
2678 if (isa<CleanupPadInst>(Pad)) {
2679 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2680 // personalities.
2681 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2682 UnwindDests.back().first->setIsEHScopeEntry();
2683 UnwindDests.back().first->setIsEHFuncletEntry();
2684 break;
2686 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2687 // Add the catchpad handlers to the possible destinations.
2688 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2689 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2690 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2691 if (IsMSVCCXX || IsCoreCLR)
2692 UnwindDests.back().first->setIsEHFuncletEntry();
2693 if (!IsSEH)
2694 UnwindDests.back().first->setIsEHScopeEntry();
2696 NewEHPadBB = CatchSwitch->getUnwindDest();
2697 } else {
2698 continue;
2701 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2702 if (BPI && NewEHPadBB)
2703 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2704 EHPadBB = NewEHPadBB;
2706 return true;
2709 bool IRTranslator::translateInvoke(const User &U,
2710 MachineIRBuilder &MIRBuilder) {
2711 const InvokeInst &I = cast<InvokeInst>(U);
2712 MCContext &Context = MF->getContext();
2714 const BasicBlock *ReturnBB = I.getSuccessor(0);
2715 const BasicBlock *EHPadBB = I.getSuccessor(1);
2717 const Function *Fn = I.getCalledFunction();
2719 // FIXME: support invoking patchpoint and statepoint intrinsics.
2720 if (Fn && Fn->isIntrinsic())
2721 return false;
2723 // FIXME: support whatever these are.
2724 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2725 return false;
2727 // FIXME: support control flow guard targets.
2728 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2729 return false;
2731 // FIXME: support Windows exception handling.
2732 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2733 return false;
2735 // FIXME: support Windows dllimport function calls and calls through
2736 // weak symbols.
2737 if (Fn && (Fn->hasDLLImportStorageClass() ||
2738 (MF->getTarget().getTargetTriple().isOSWindows() &&
2739 Fn->hasExternalWeakLinkage())))
2740 return false;
2742 bool LowerInlineAsm = I.isInlineAsm();
2743 bool NeedEHLabel = true;
2745 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2746 // the region covered by the try.
2747 MCSymbol *BeginSymbol = nullptr;
2748 if (NeedEHLabel) {
2749 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2750 BeginSymbol = Context.createTempSymbol();
2751 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2754 if (LowerInlineAsm) {
2755 if (!translateInlineAsm(I, MIRBuilder))
2756 return false;
2757 } else if (!translateCallBase(I, MIRBuilder))
2758 return false;
2760 MCSymbol *EndSymbol = nullptr;
2761 if (NeedEHLabel) {
2762 EndSymbol = Context.createTempSymbol();
2763 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2766 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2767 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2768 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2769 BranchProbability EHPadBBProb =
2770 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2771 : BranchProbability::getZero();
2773 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2774 return false;
2776 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2777 &ReturnMBB = getMBB(*ReturnBB);
2778 // Update successor info.
2779 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2780 for (auto &UnwindDest : UnwindDests) {
2781 UnwindDest.first->setIsEHPad();
2782 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2784 InvokeMBB->normalizeSuccProbs();
2786 if (NeedEHLabel) {
2787 assert(BeginSymbol && "Expected a begin symbol!");
2788 assert(EndSymbol && "Expected an end symbol!");
2789 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2792 MIRBuilder.buildBr(ReturnMBB);
2793 return true;
2796 bool IRTranslator::translateCallBr(const User &U,
2797 MachineIRBuilder &MIRBuilder) {
2798 // FIXME: Implement this.
2799 return false;
2802 bool IRTranslator::translateLandingPad(const User &U,
2803 MachineIRBuilder &MIRBuilder) {
2804 const LandingPadInst &LP = cast<LandingPadInst>(U);
2806 MachineBasicBlock &MBB = MIRBuilder.getMBB();
2808 MBB.setIsEHPad();
2810 // If there aren't registers to copy the values into (e.g., during SjLj
2811 // exceptions), then don't bother.
2812 auto &TLI = *MF->getSubtarget().getTargetLowering();
2813 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2814 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2815 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2816 return true;
2818 // If landingpad's return type is token type, we don't create DAG nodes
2819 // for its exception pointer and selector value. The extraction of exception
2820 // pointer or selector value from token type landingpads is not currently
2821 // supported.
2822 if (LP.getType()->isTokenTy())
2823 return true;
2825 // Add a label to mark the beginning of the landing pad. Deletion of the
2826 // landing pad can thus be detected via the MachineModuleInfo.
2827 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2828 .addSym(MF->addLandingPad(&MBB));
2830 // If the unwinder does not preserve all registers, ensure that the
2831 // function marks the clobbered registers as used.
2832 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2833 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2834 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2836 LLT Ty = getLLTForType(*LP.getType(), *DL);
2837 Register Undef = MRI->createGenericVirtualRegister(Ty);
2838 MIRBuilder.buildUndef(Undef);
2840 SmallVector<LLT, 2> Tys;
2841 for (Type *Ty : cast<StructType>(LP.getType())->elements())
2842 Tys.push_back(getLLTForType(*Ty, *DL));
2843 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2845 // Mark exception register as live in.
2846 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2847 if (!ExceptionReg)
2848 return false;
2850 MBB.addLiveIn(ExceptionReg);
2851 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2852 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2854 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2855 if (!SelectorReg)
2856 return false;
2858 MBB.addLiveIn(SelectorReg);
2859 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2860 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2861 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2863 return true;
2866 bool IRTranslator::translateAlloca(const User &U,
2867 MachineIRBuilder &MIRBuilder) {
2868 auto &AI = cast<AllocaInst>(U);
2870 if (AI.isSwiftError())
2871 return true;
2873 if (AI.isStaticAlloca()) {
2874 Register Res = getOrCreateVReg(AI);
2875 int FI = getOrCreateFrameIndex(AI);
2876 MIRBuilder.buildFrameIndex(Res, FI);
2877 return true;
2880 // FIXME: support stack probing for Windows.
2881 if (MF->getTarget().getTargetTriple().isOSWindows())
2882 return false;
2884 // Now we're in the harder dynamic case.
2885 Register NumElts = getOrCreateVReg(*AI.getArraySize());
2886 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2887 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2888 if (MRI->getType(NumElts) != IntPtrTy) {
2889 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2890 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2891 NumElts = ExtElts;
2894 Type *Ty = AI.getAllocatedType();
2896 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2897 Register TySize =
2898 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2899 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2901 // Round the size of the allocation up to the stack alignment size
2902 // by add SA-1 to the size. This doesn't overflow because we're computing
2903 // an address inside an alloca.
2904 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2905 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2906 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2907 MachineInstr::NoUWrap);
2908 auto AlignCst =
2909 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2910 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2912 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2913 if (Alignment <= StackAlign)
2914 Alignment = Align(1);
2915 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2917 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2918 assert(MF->getFrameInfo().hasVarSizedObjects());
2919 return true;
2922 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2923 // FIXME: We may need more info about the type. Because of how LLT works,
2924 // we're completely discarding the i64/double distinction here (amongst
2925 // others). Fortunately the ABIs I know of where that matters don't use va_arg
2926 // anyway but that's not guaranteed.
2927 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2928 {getOrCreateVReg(*U.getOperand(0)),
2929 DL->getABITypeAlign(U.getType()).value()});
2930 return true;
2933 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
2934 if (!MF->getTarget().Options.TrapUnreachable)
2935 return true;
2937 auto &UI = cast<UnreachableInst>(U);
2938 // We may be able to ignore unreachable behind a noreturn call.
2939 if (MF->getTarget().Options.NoTrapAfterNoreturn) {
2940 const BasicBlock &BB = *UI.getParent();
2941 if (&UI != &BB.front()) {
2942 BasicBlock::const_iterator PredI =
2943 std::prev(BasicBlock::const_iterator(UI));
2944 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2945 if (Call->doesNotReturn())
2946 return true;
2951 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>());
2952 return true;
2955 bool IRTranslator::translateInsertElement(const User &U,
2956 MachineIRBuilder &MIRBuilder) {
2957 // If it is a <1 x Ty> vector, use the scalar as it is
2958 // not a legal vector type in LLT.
2959 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2960 return translateCopy(U, *U.getOperand(1), MIRBuilder);
2962 Register Res = getOrCreateVReg(U);
2963 Register Val = getOrCreateVReg(*U.getOperand(0));
2964 Register Elt = getOrCreateVReg(*U.getOperand(1));
2965 Register Idx = getOrCreateVReg(*U.getOperand(2));
2966 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2967 return true;
2970 bool IRTranslator::translateExtractElement(const User &U,
2971 MachineIRBuilder &MIRBuilder) {
2972 // If it is a <1 x Ty> vector, use the scalar as it is
2973 // not a legal vector type in LLT.
2974 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2975 return translateCopy(U, *U.getOperand(0), MIRBuilder);
2977 Register Res = getOrCreateVReg(U);
2978 Register Val = getOrCreateVReg(*U.getOperand(0));
2979 const auto &TLI = *MF->getSubtarget().getTargetLowering();
2980 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2981 Register Idx;
2982 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2983 if (CI->getBitWidth() != PreferredVecIdxWidth) {
2984 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
2985 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2986 Idx = getOrCreateVReg(*NewIdxCI);
2989 if (!Idx)
2990 Idx = getOrCreateVReg(*U.getOperand(1));
2991 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2992 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2993 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
2995 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2996 return true;
2999 bool IRTranslator::translateShuffleVector(const User &U,
3000 MachineIRBuilder &MIRBuilder) {
3001 ArrayRef<int> Mask;
3002 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
3003 Mask = SVI->getShuffleMask();
3004 else
3005 Mask = cast<ConstantExpr>(U).getShuffleMask();
3006 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
3007 MIRBuilder
3008 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
3009 {getOrCreateVReg(*U.getOperand(0)),
3010 getOrCreateVReg(*U.getOperand(1))})
3011 .addShuffleMask(MaskAlloc);
3012 return true;
3015 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
3016 const PHINode &PI = cast<PHINode>(U);
3018 SmallVector<MachineInstr *, 4> Insts;
3019 for (auto Reg : getOrCreateVRegs(PI)) {
3020 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
3021 Insts.push_back(MIB.getInstr());
3024 PendingPHIs.emplace_back(&PI, std::move(Insts));
3025 return true;
3028 bool IRTranslator::translateAtomicCmpXchg(const User &U,
3029 MachineIRBuilder &MIRBuilder) {
3030 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
3032 auto &TLI = *MF->getSubtarget().getTargetLowering();
3033 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
3035 auto Res = getOrCreateVRegs(I);
3036 Register OldValRes = Res[0];
3037 Register SuccessRes = Res[1];
3038 Register Addr = getOrCreateVReg(*I.getPointerOperand());
3039 Register Cmp = getOrCreateVReg(*I.getCompareOperand());
3040 Register NewVal = getOrCreateVReg(*I.getNewValOperand());
3042 MIRBuilder.buildAtomicCmpXchgWithSuccess(
3043 OldValRes, SuccessRes, Addr, Cmp, NewVal,
3044 *MF->getMachineMemOperand(
3045 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
3046 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3047 I.getSuccessOrdering(), I.getFailureOrdering()));
3048 return true;
3051 bool IRTranslator::translateAtomicRMW(const User &U,
3052 MachineIRBuilder &MIRBuilder) {
3053 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
3054 auto &TLI = *MF->getSubtarget().getTargetLowering();
3055 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
3057 Register Res = getOrCreateVReg(I);
3058 Register Addr = getOrCreateVReg(*I.getPointerOperand());
3059 Register Val = getOrCreateVReg(*I.getValOperand());
3061 unsigned Opcode = 0;
3062 switch (I.getOperation()) {
3063 default:
3064 return false;
3065 case AtomicRMWInst::Xchg:
3066 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
3067 break;
3068 case AtomicRMWInst::Add:
3069 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
3070 break;
3071 case AtomicRMWInst::Sub:
3072 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
3073 break;
3074 case AtomicRMWInst::And:
3075 Opcode = TargetOpcode::G_ATOMICRMW_AND;
3076 break;
3077 case AtomicRMWInst::Nand:
3078 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
3079 break;
3080 case AtomicRMWInst::Or:
3081 Opcode = TargetOpcode::G_ATOMICRMW_OR;
3082 break;
3083 case AtomicRMWInst::Xor:
3084 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
3085 break;
3086 case AtomicRMWInst::Max:
3087 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
3088 break;
3089 case AtomicRMWInst::Min:
3090 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
3091 break;
3092 case AtomicRMWInst::UMax:
3093 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
3094 break;
3095 case AtomicRMWInst::UMin:
3096 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
3097 break;
3098 case AtomicRMWInst::FAdd:
3099 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
3100 break;
3101 case AtomicRMWInst::FSub:
3102 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
3103 break;
3104 case AtomicRMWInst::FMax:
3105 Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
3106 break;
3107 case AtomicRMWInst::FMin:
3108 Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
3109 break;
3110 case AtomicRMWInst::UIncWrap:
3111 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
3112 break;
3113 case AtomicRMWInst::UDecWrap:
3114 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
3115 break;
3118 MIRBuilder.buildAtomicRMW(
3119 Opcode, Res, Addr, Val,
3120 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3121 Flags, MRI->getType(Val), getMemOpAlign(I),
3122 I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3123 I.getOrdering()));
3124 return true;
3127 bool IRTranslator::translateFence(const User &U,
3128 MachineIRBuilder &MIRBuilder) {
3129 const FenceInst &Fence = cast<FenceInst>(U);
3130 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
3131 Fence.getSyncScopeID());
3132 return true;
3135 bool IRTranslator::translateFreeze(const User &U,
3136 MachineIRBuilder &MIRBuilder) {
3137 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
3138 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
3140 assert(DstRegs.size() == SrcRegs.size() &&
3141 "Freeze with different source and destination type?");
3143 for (unsigned I = 0; I < DstRegs.size(); ++I) {
3144 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
3147 return true;
3150 void IRTranslator::finishPendingPhis() {
3151 #ifndef NDEBUG
3152 DILocationVerifier Verifier;
3153 GISelObserverWrapper WrapperObserver(&Verifier);
3154 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3155 #endif // ifndef NDEBUG
3156 for (auto &Phi : PendingPHIs) {
3157 const PHINode *PI = Phi.first;
3158 if (PI->getType()->isEmptyTy())
3159 continue;
3160 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3161 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3162 EntryBuilder->setDebugLoc(PI->getDebugLoc());
3163 #ifndef NDEBUG
3164 Verifier.setCurrentInst(PI);
3165 #endif // ifndef NDEBUG
3167 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3168 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3169 auto IRPred = PI->getIncomingBlock(i);
3170 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
3171 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
3172 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
3173 continue;
3174 SeenPreds.insert(Pred);
3175 for (unsigned j = 0; j < ValRegs.size(); ++j) {
3176 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3177 MIB.addUse(ValRegs[j]);
3178 MIB.addMBB(Pred);
3185 void IRTranslator::translateDbgValueRecord(Value *V, bool HasArgList,
3186 const DILocalVariable *Variable,
3187 const DIExpression *Expression,
3188 const DebugLoc &DL,
3189 MachineIRBuilder &MIRBuilder) {
3190 assert(Variable->isValidLocationForIntrinsic(DL) &&
3191 "Expected inlined-at fields to agree");
3192 // Act as if we're handling a debug intrinsic.
3193 MIRBuilder.setDebugLoc(DL);
3195 if (!V || HasArgList) {
3196 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
3197 // terminate any prior location.
3198 MIRBuilder.buildIndirectDbgValue(0, Variable, Expression);
3199 return;
3202 if (const auto *CI = dyn_cast<Constant>(V)) {
3203 MIRBuilder.buildConstDbgValue(*CI, Variable, Expression);
3204 return;
3207 if (auto *AI = dyn_cast<AllocaInst>(V);
3208 AI && AI->isStaticAlloca() && Expression->startsWithDeref()) {
3209 // If the value is an alloca and the expression starts with a
3210 // dereference, track a stack slot instead of a register, as registers
3211 // may be clobbered.
3212 auto ExprOperands = Expression->getElements();
3213 auto *ExprDerefRemoved =
3214 DIExpression::get(AI->getContext(), ExprOperands.drop_front());
3215 MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), Variable,
3216 ExprDerefRemoved);
3217 return;
3219 if (translateIfEntryValueArgument(false, V, Variable, Expression, DL,
3220 MIRBuilder))
3221 return;
3222 for (Register Reg : getOrCreateVRegs(*V)) {
3223 // FIXME: This does not handle register-indirect values at offset 0. The
3224 // direct/indirect thing shouldn't really be handled by something as
3225 // implicit as reg+noreg vs reg+imm in the first place, but it seems
3226 // pretty baked in right now.
3227 MIRBuilder.buildDirectDbgValue(Reg, Variable, Expression);
3229 return;
3232 void IRTranslator::translateDbgDeclareRecord(Value *Address, bool HasArgList,
3233 const DILocalVariable *Variable,
3234 const DIExpression *Expression,
3235 const DebugLoc &DL,
3236 MachineIRBuilder &MIRBuilder) {
3237 if (!Address || isa<UndefValue>(Address)) {
3238 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *Variable << "\n");
3239 return;
3242 assert(Variable->isValidLocationForIntrinsic(DL) &&
3243 "Expected inlined-at fields to agree");
3244 auto AI = dyn_cast<AllocaInst>(Address);
3245 if (AI && AI->isStaticAlloca()) {
3246 // Static allocas are tracked at the MF level, no need for DBG_VALUE
3247 // instructions (in fact, they get ignored if they *do* exist).
3248 MF->setVariableDbgInfo(Variable, Expression,
3249 getOrCreateFrameIndex(*AI), DL);
3250 return;
3253 if (translateIfEntryValueArgument(true, Address, Variable,
3254 Expression, DL,
3255 MIRBuilder))
3256 return;
3258 // A dbg.declare describes the address of a source variable, so lower it
3259 // into an indirect DBG_VALUE.
3260 MIRBuilder.setDebugLoc(DL);
3261 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
3262 Variable, Expression);
3263 return;
3266 void IRTranslator::translateDbgInfo(const Instruction &Inst,
3267 MachineIRBuilder &MIRBuilder) {
3268 for (DPValue &DPV : Inst.getDbgValueRange()) {
3269 const DILocalVariable *Variable = DPV.getVariable();
3270 const DIExpression *Expression = DPV.getExpression();
3271 Value *V = DPV.getVariableLocationOp(0);
3272 if (DPV.isDbgDeclare())
3273 translateDbgDeclareRecord(V, DPV.hasArgList(), Variable,
3274 Expression, DPV.getDebugLoc(), MIRBuilder);
3275 else
3276 translateDbgValueRecord(V, DPV.hasArgList(), Variable,
3277 Expression, DPV.getDebugLoc(), MIRBuilder);
3281 bool IRTranslator::translate(const Instruction &Inst) {
3282 CurBuilder->setDebugLoc(Inst.getDebugLoc());
3283 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections));
3285 auto &TLI = *MF->getSubtarget().getTargetLowering();
3286 if (TLI.fallBackToDAGISel(Inst))
3287 return false;
3289 switch (Inst.getOpcode()) {
3290 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3291 case Instruction::OPCODE: \
3292 return translate##OPCODE(Inst, *CurBuilder.get());
3293 #include "llvm/IR/Instruction.def"
3294 default:
3295 return false;
3299 bool IRTranslator::translate(const Constant &C, Register Reg) {
3300 // We only emit constants into the entry block from here. To prevent jumpy
3301 // debug behaviour remove debug line.
3302 if (auto CurrInstDL = CurBuilder->getDL())
3303 EntryBuilder->setDebugLoc(DebugLoc());
3305 if (auto CI = dyn_cast<ConstantInt>(&C))
3306 EntryBuilder->buildConstant(Reg, *CI);
3307 else if (auto CF = dyn_cast<ConstantFP>(&C))
3308 EntryBuilder->buildFConstant(Reg, *CF);
3309 else if (isa<UndefValue>(C))
3310 EntryBuilder->buildUndef(Reg);
3311 else if (isa<ConstantPointerNull>(C))
3312 EntryBuilder->buildConstant(Reg, 0);
3313 else if (auto GV = dyn_cast<GlobalValue>(&C))
3314 EntryBuilder->buildGlobalValue(Reg, GV);
3315 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
3316 if (!isa<FixedVectorType>(CAZ->getType()))
3317 return false;
3318 // Return the scalar if it is a <1 x Ty> vector.
3319 unsigned NumElts = CAZ->getElementCount().getFixedValue();
3320 if (NumElts == 1)
3321 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder);
3322 SmallVector<Register, 4> Ops;
3323 for (unsigned I = 0; I < NumElts; ++I) {
3324 Constant &Elt = *CAZ->getElementValue(I);
3325 Ops.push_back(getOrCreateVReg(Elt));
3327 EntryBuilder->buildBuildVector(Reg, Ops);
3328 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
3329 // Return the scalar if it is a <1 x Ty> vector.
3330 if (CV->getNumElements() == 1)
3331 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
3332 SmallVector<Register, 4> Ops;
3333 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3334 Constant &Elt = *CV->getElementAsConstant(i);
3335 Ops.push_back(getOrCreateVReg(Elt));
3337 EntryBuilder->buildBuildVector(Reg, Ops);
3338 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3339 switch(CE->getOpcode()) {
3340 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3341 case Instruction::OPCODE: \
3342 return translate##OPCODE(*CE, *EntryBuilder.get());
3343 #include "llvm/IR/Instruction.def"
3344 default:
3345 return false;
3347 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3348 if (CV->getNumOperands() == 1)
3349 return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
3350 SmallVector<Register, 4> Ops;
3351 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3352 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3354 EntryBuilder->buildBuildVector(Reg, Ops);
3355 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3356 EntryBuilder->buildBlockAddress(Reg, BA);
3357 } else
3358 return false;
3360 return true;
3363 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3364 MachineBasicBlock &MBB) {
3365 for (auto &BTB : SL->BitTestCases) {
3366 // Emit header first, if it wasn't already emitted.
3367 if (!BTB.Emitted)
3368 emitBitTestHeader(BTB, BTB.Parent);
3370 BranchProbability UnhandledProb = BTB.Prob;
3371 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3372 UnhandledProb -= BTB.Cases[j].ExtraProb;
3373 // Set the current basic block to the mbb we wish to insert the code into
3374 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3375 // If all cases cover a contiguous range, it is not necessary to jump to
3376 // the default block after the last bit test fails. This is because the
3377 // range check during bit test header creation has guaranteed that every
3378 // case here doesn't go outside the range. In this case, there is no need
3379 // to perform the last bit test, as it will always be true. Instead, make
3380 // the second-to-last bit-test fall through to the target of the last bit
3381 // test, and delete the last bit test.
3383 MachineBasicBlock *NextMBB;
3384 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3385 // Second-to-last bit-test with contiguous range: fall through to the
3386 // target of the final bit test.
3387 NextMBB = BTB.Cases[j + 1].TargetBB;
3388 } else if (j + 1 == ej) {
3389 // For the last bit test, fall through to Default.
3390 NextMBB = BTB.Default;
3391 } else {
3392 // Otherwise, fall through to the next bit test.
3393 NextMBB = BTB.Cases[j + 1].ThisBB;
3396 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3398 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3399 // We need to record the replacement phi edge here that normally
3400 // happens in emitBitTestCase before we delete the case, otherwise the
3401 // phi edge will be lost.
3402 addMachineCFGPred({BTB.Parent->getBasicBlock(),
3403 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3404 MBB);
3405 // Since we're not going to use the final bit test, remove it.
3406 BTB.Cases.pop_back();
3407 break;
3410 // This is "default" BB. We have two jumps to it. From "header" BB and from
3411 // last "case" BB, unless the latter was skipped.
3412 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3413 BTB.Default->getBasicBlock()};
3414 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3415 if (!BTB.ContiguousRange) {
3416 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3419 SL->BitTestCases.clear();
3421 for (auto &JTCase : SL->JTCases) {
3422 // Emit header first, if it wasn't already emitted.
3423 if (!JTCase.first.Emitted)
3424 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3426 emitJumpTable(JTCase.second, JTCase.second.MBB);
3428 SL->JTCases.clear();
3430 for (auto &SwCase : SL->SwitchCases)
3431 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3432 SL->SwitchCases.clear();
3434 // Check if we need to generate stack-protector guard checks.
3435 StackProtector &SP = getAnalysis<StackProtector>();
3436 if (SP.shouldEmitSDCheck(BB)) {
3437 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3438 bool FunctionBasedInstrumentation =
3439 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent());
3440 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3442 // Handle stack protector.
3443 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3444 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3445 return false;
3446 } else if (SPDescriptor.shouldEmitStackProtector()) {
3447 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3448 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3450 // Find the split point to split the parent mbb. At the same time copy all
3451 // physical registers used in the tail of parent mbb into virtual registers
3452 // before the split point and back into physical registers after the split
3453 // point. This prevents us needing to deal with Live-ins and many other
3454 // register allocation issues caused by us splitting the parent mbb. The
3455 // register allocator will clean up said virtual copies later on.
3456 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3457 ParentMBB, *MF->getSubtarget().getInstrInfo());
3459 // Splice the terminator of ParentMBB into SuccessMBB.
3460 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3461 ParentMBB->end());
3463 // Add compare/jump on neq/jump to the parent BB.
3464 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3465 return false;
3467 // CodeGen Failure MBB if we have not codegened it yet.
3468 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3469 if (FailureMBB->empty()) {
3470 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3471 return false;
3474 // Clear the Per-BB State.
3475 SPDescriptor.resetPerBBState();
3477 return true;
3480 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3481 MachineBasicBlock *ParentBB) {
3482 CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3483 // First create the loads to the guard/stack slot for the comparison.
3484 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3485 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
3486 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3487 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL));
3489 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3490 int FI = MFI.getStackProtectorIndex();
3492 Register Guard;
3493 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3494 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3495 Align Align = DL->getPrefTypeAlign(PointerType::getUnqual(M.getContext()));
3497 // Generate code to load the content of the guard slot.
3498 Register GuardVal =
3499 CurBuilder
3500 ->buildLoad(PtrMemTy, StackSlotPtr,
3501 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3502 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3503 .getReg(0);
3505 if (TLI.useStackGuardXorFP()) {
3506 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3507 return false;
3510 // Retrieve guard check function, nullptr if instrumentation is inlined.
3511 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3512 // This path is currently untestable on GlobalISel, since the only platform
3513 // that needs this seems to be Windows, and we fall back on that currently.
3514 // The code still lives here in case that changes.
3515 // Silence warning about unused variable until the code below that uses
3516 // 'GuardCheckFn' is enabled.
3517 (void)GuardCheckFn;
3518 return false;
3519 #if 0
3520 // The target provides a guard check function to validate the guard value.
3521 // Generate a call to that function with the content of the guard slot as
3522 // argument.
3523 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3524 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3525 ISD::ArgFlagsTy Flags;
3526 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3527 Flags.setInReg();
3528 CallLowering::ArgInfo GuardArgInfo(
3529 {GuardVal, FnTy->getParamType(0), {Flags}});
3531 CallLowering::CallLoweringInfo Info;
3532 Info.OrigArgs.push_back(GuardArgInfo);
3533 Info.CallConv = GuardCheckFn->getCallingConv();
3534 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3535 Info.OrigRet = {Register(), FnTy->getReturnType()};
3536 if (!CLI->lowerCall(MIRBuilder, Info)) {
3537 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3538 return false;
3540 return true;
3541 #endif
3544 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3545 // Otherwise, emit a volatile load to retrieve the stack guard value.
3546 if (TLI.useLoadStackGuardNode()) {
3547 Guard =
3548 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3549 getStackGuard(Guard, *CurBuilder);
3550 } else {
3551 // TODO: test using android subtarget when we support @llvm.thread.pointer.
3552 const Value *IRGuard = TLI.getSDagStackGuard(M);
3553 Register GuardPtr = getOrCreateVReg(*IRGuard);
3555 Guard = CurBuilder
3556 ->buildLoad(PtrMemTy, GuardPtr,
3557 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3558 MachineMemOperand::MOLoad |
3559 MachineMemOperand::MOVolatile)
3560 .getReg(0);
3563 // Perform the comparison.
3564 auto Cmp =
3565 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3566 // If the guard/stackslot do not equal, branch to failure MBB.
3567 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3568 // Otherwise branch to success MBB.
3569 CurBuilder->buildBr(*SPD.getSuccessMBB());
3570 return true;
3573 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3574 MachineBasicBlock *FailureBB) {
3575 CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3576 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3578 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3579 const char *Name = TLI.getLibcallName(Libcall);
3581 CallLowering::CallLoweringInfo Info;
3582 Info.CallConv = TLI.getLibcallCallingConv(Libcall);
3583 Info.Callee = MachineOperand::CreateES(Name);
3584 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3586 if (!CLI->lowerCall(*CurBuilder, Info)) {
3587 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3588 return false;
3591 // On PS4/PS5, the "return address" must still be within the calling
3592 // function, even if it's at the very end, so emit an explicit TRAP here.
3593 // WebAssembly needs an unreachable instruction after a non-returning call,
3594 // because the function return type can be different from __stack_chk_fail's
3595 // return type (void).
3596 const TargetMachine &TM = MF->getTarget();
3597 if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
3598 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3599 return false;
3601 return true;
3604 void IRTranslator::finalizeFunction() {
3605 // Release the memory used by the different maps we
3606 // needed during the translation.
3607 PendingPHIs.clear();
3608 VMap.reset();
3609 FrameIndices.clear();
3610 MachinePreds.clear();
3611 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3612 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3613 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3614 EntryBuilder.reset();
3615 CurBuilder.reset();
3616 FuncInfo.clear();
3617 SPDescriptor.resetPerFunctionState();
3620 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3621 /// variadic musttail call.
3622 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3623 if (!IsVarArg)
3624 return false;
3626 // Walk the block backwards, because tail calls usually only appear at the end
3627 // of a block.
3628 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3629 const auto *CI = dyn_cast<CallInst>(&I);
3630 return CI && CI->isMustTailCall();
3634 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3635 MF = &CurMF;
3636 const Function &F = MF->getFunction();
3637 GISelCSEAnalysisWrapper &Wrapper =
3638 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3639 // Set the CSEConfig and run the analysis.
3640 GISelCSEInfo *CSEInfo = nullptr;
3641 TPC = &getAnalysis<TargetPassConfig>();
3642 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3643 ? EnableCSEInIRTranslator
3644 : TPC->isGISelCSEEnabled();
3646 if (EnableCSE) {
3647 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3648 CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3649 EntryBuilder->setCSEInfo(CSEInfo);
3650 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3651 CurBuilder->setCSEInfo(CSEInfo);
3652 } else {
3653 EntryBuilder = std::make_unique<MachineIRBuilder>();
3654 CurBuilder = std::make_unique<MachineIRBuilder>();
3656 CLI = MF->getSubtarget().getCallLowering();
3657 CurBuilder->setMF(*MF);
3658 EntryBuilder->setMF(*MF);
3659 MRI = &MF->getRegInfo();
3660 DL = &F.getParent()->getDataLayout();
3661 ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3662 const TargetMachine &TM = MF->getTarget();
3663 TM.resetTargetOptions(F);
3664 EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F);
3665 FuncInfo.MF = MF;
3666 if (EnableOpts) {
3667 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3668 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3669 } else {
3670 AA = nullptr;
3671 FuncInfo.BPI = nullptr;
3674 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
3675 MF->getFunction());
3676 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3677 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3679 const auto &TLI = *MF->getSubtarget().getTargetLowering();
3681 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3682 SL->init(TLI, TM, *DL);
3686 assert(PendingPHIs.empty() && "stale PHIs");
3688 // Targets which want to use big endian can enable it using
3689 // enableBigEndian()
3690 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3691 // Currently we don't properly handle big endian code.
3692 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3693 F.getSubprogram(), &F.getEntryBlock());
3694 R << "unable to translate in big endian mode";
3695 reportTranslationError(*MF, *TPC, *ORE, R);
3698 // Release the per-function state when we return, whether we succeeded or not.
3699 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3701 // Setup a separate basic-block for the arguments and constants
3702 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3703 MF->push_back(EntryBB);
3704 EntryBuilder->setMBB(*EntryBB);
3706 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3707 SwiftError.setFunction(CurMF);
3708 SwiftError.createEntriesInEntryBlock(DbgLoc);
3710 bool IsVarArg = F.isVarArg();
3711 bool HasMustTailInVarArgFn = false;
3713 // Create all blocks, in IR order, to preserve the layout.
3714 for (const BasicBlock &BB: F) {
3715 auto *&MBB = BBToMBB[&BB];
3717 MBB = MF->CreateMachineBasicBlock(&BB);
3718 MF->push_back(MBB);
3720 if (BB.hasAddressTaken())
3721 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
3723 if (!HasMustTailInVarArgFn)
3724 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3727 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3729 // Make our arguments/constants entry block fallthrough to the IR entry block.
3730 EntryBB->addSuccessor(&getMBB(F.front()));
3732 if (CLI->fallBackToDAGISel(*MF)) {
3733 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3734 F.getSubprogram(), &F.getEntryBlock());
3735 R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3736 reportTranslationError(*MF, *TPC, *ORE, R);
3737 return false;
3740 // Lower the actual args into this basic block.
3741 SmallVector<ArrayRef<Register>, 8> VRegArgs;
3742 for (const Argument &Arg: F.args()) {
3743 if (DL->getTypeStoreSize(Arg.getType()).isZero())
3744 continue; // Don't handle zero sized types.
3745 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3746 VRegArgs.push_back(VRegs);
3748 if (Arg.hasSwiftErrorAttr()) {
3749 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3750 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3754 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
3755 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3756 F.getSubprogram(), &F.getEntryBlock());
3757 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3758 reportTranslationError(*MF, *TPC, *ORE, R);
3759 return false;
3762 // Need to visit defs before uses when translating instructions.
3763 GISelObserverWrapper WrapperObserver;
3764 if (EnableCSE && CSEInfo)
3765 WrapperObserver.addObserver(CSEInfo);
3767 ReversePostOrderTraversal<const Function *> RPOT(&F);
3768 #ifndef NDEBUG
3769 DILocationVerifier Verifier;
3770 WrapperObserver.addObserver(&Verifier);
3771 #endif // ifndef NDEBUG
3772 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3773 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3774 for (const BasicBlock *BB : RPOT) {
3775 MachineBasicBlock &MBB = getMBB(*BB);
3776 // Set the insertion point of all the following translations to
3777 // the end of this basic block.
3778 CurBuilder->setMBB(MBB);
3779 HasTailCall = false;
3780 for (const Instruction &Inst : *BB) {
3781 // If we translated a tail call in the last step, then we know
3782 // everything after the call is either a return, or something that is
3783 // handled by the call itself. (E.g. a lifetime marker or assume
3784 // intrinsic.) In this case, we should stop translating the block and
3785 // move on.
3786 if (HasTailCall)
3787 break;
3788 #ifndef NDEBUG
3789 Verifier.setCurrentInst(&Inst);
3790 #endif // ifndef NDEBUG
3792 // Translate any debug-info attached to the instruction.
3793 translateDbgInfo(Inst, *CurBuilder.get());
3795 if (translate(Inst))
3796 continue;
3798 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3799 Inst.getDebugLoc(), BB);
3800 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3802 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3803 std::string InstStrStorage;
3804 raw_string_ostream InstStr(InstStrStorage);
3805 InstStr << Inst;
3807 R << ": '" << InstStr.str() << "'";
3810 reportTranslationError(*MF, *TPC, *ORE, R);
3811 return false;
3814 if (!finalizeBasicBlock(*BB, MBB)) {
3815 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3816 BB->getTerminator()->getDebugLoc(), BB);
3817 R << "unable to translate basic block";
3818 reportTranslationError(*MF, *TPC, *ORE, R);
3819 return false;
3822 #ifndef NDEBUG
3823 WrapperObserver.removeObserver(&Verifier);
3824 #endif
3827 finishPendingPhis();
3829 SwiftError.propagateVRegs();
3831 // Merge the argument lowering and constants block with its single
3832 // successor, the LLVM-IR entry block. We want the basic block to
3833 // be maximal.
3834 assert(EntryBB->succ_size() == 1 &&
3835 "Custom BB used for lowering should have only one successor");
3836 // Get the successor of the current entry block.
3837 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3838 assert(NewEntryBB.pred_size() == 1 &&
3839 "LLVM-IR entry block has a predecessor!?");
3840 // Move all the instruction from the current entry block to the
3841 // new entry block.
3842 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3843 EntryBB->end());
3845 // Update the live-in information for the new entry block.
3846 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3847 NewEntryBB.addLiveIn(LiveIn);
3848 NewEntryBB.sortUniqueLiveIns();
3850 // Get rid of the now empty basic block.
3851 EntryBB->removeSuccessor(&NewEntryBB);
3852 MF->remove(EntryBB);
3853 MF->deleteMachineBasicBlock(EntryBB);
3855 assert(&MF->front() == &NewEntryBB &&
3856 "New entry wasn't next in the list of basic block!");
3858 // Initialize stack protector information.
3859 StackProtector &SP = getAnalysis<StackProtector>();
3860 SP.copyToMachineFrameInfo(MF->getFrameInfo());
3862 return false;