1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSlotTracker.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
64 static const MachineFunction
*getMFIfAvailable(const MachineInstr
&MI
) {
65 if (const MachineBasicBlock
*MBB
= MI
.getParent())
66 if (const MachineFunction
*MF
= MBB
->getParent())
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
73 static void tryToGetTargetInfo(const MachineInstr
&MI
,
74 const TargetRegisterInfo
*&TRI
,
75 const MachineRegisterInfo
*&MRI
,
76 const TargetIntrinsicInfo
*&IntrinsicInfo
,
77 const TargetInstrInfo
*&TII
) {
79 if (const MachineFunction
*MF
= getMFIfAvailable(MI
)) {
80 TRI
= MF
->getSubtarget().getRegisterInfo();
81 MRI
= &MF
->getRegInfo();
82 IntrinsicInfo
= MF
->getTarget().getIntrinsicInfo();
83 TII
= MF
->getSubtarget().getInstrInfo();
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction
&MF
) {
88 for (MCPhysReg ImpDef
: MCID
->implicit_defs())
89 addOperand(MF
, MachineOperand::CreateReg(ImpDef
, true, true));
90 for (MCPhysReg ImpUse
: MCID
->implicit_uses())
91 addOperand(MF
, MachineOperand::CreateReg(ImpUse
, false, true));
94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95 /// implicit operands. It reserves space for the number of operands specified by
97 MachineInstr::MachineInstr(MachineFunction
&MF
, const MCInstrDesc
&TID
,
98 DebugLoc DL
, bool NoImp
)
99 : MCID(&TID
), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100 DbgLoc(std::move(DL
)), DebugInstrNum(0) {
101 assert(DbgLoc
.hasTrivialDestructor() && "Expected trivial destructor");
103 // Reserve space for the expected number of operands.
104 if (unsigned NumOps
= MCID
->getNumOperands() + MCID
->implicit_defs().size() +
105 MCID
->implicit_uses().size()) {
106 CapOperands
= OperandCapacity::get(NumOps
);
107 Operands
= MF
.allocateOperandArray(CapOperands
);
111 addImplicitDefUseOperands(MF
);
114 /// MachineInstr ctor - Copies MachineInstr arg exactly.
115 /// Does not copy the number from debug instruction numbering, to preserve
117 MachineInstr::MachineInstr(MachineFunction
&MF
, const MachineInstr
&MI
)
118 : MCID(&MI
.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119 Info(MI
.Info
), DbgLoc(MI
.getDebugLoc()), DebugInstrNum(0) {
120 assert(DbgLoc
.hasTrivialDestructor() && "Expected trivial destructor");
122 CapOperands
= OperandCapacity::get(MI
.getNumOperands());
123 Operands
= MF
.allocateOperandArray(CapOperands
);
126 for (const MachineOperand
&MO
: MI
.operands())
129 // Replicate ties between the operands, which addOperand was not
130 // able to do reliably.
131 for (unsigned i
= 0, e
= getNumOperands(); i
< e
; ++i
) {
132 MachineOperand
&NewMO
= getOperand(i
);
133 const MachineOperand
&OrigMO
= MI
.getOperand(i
);
134 NewMO
.TiedTo
= OrigMO
.TiedTo
;
137 // Copy all the sensible flags.
141 void MachineInstr::setDesc(const MCInstrDesc
&TID
) {
143 getMF()->handleChangeDesc(*this, TID
);
147 void MachineInstr::moveBefore(MachineInstr
*MovePos
) {
148 MovePos
->getParent()->splice(MovePos
, getParent(), getIterator());
151 /// getRegInfo - If this instruction is embedded into a MachineFunction,
152 /// return the MachineRegisterInfo object for the current function, otherwise
154 MachineRegisterInfo
*MachineInstr::getRegInfo() {
155 if (MachineBasicBlock
*MBB
= getParent())
156 return &MBB
->getParent()->getRegInfo();
160 const MachineRegisterInfo
*MachineInstr::getRegInfo() const {
161 if (const MachineBasicBlock
*MBB
= getParent())
162 return &MBB
->getParent()->getRegInfo();
166 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo
&MRI
) {
167 for (MachineOperand
&MO
: operands())
169 MRI
.removeRegOperandFromUseList(&MO
);
172 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo
&MRI
) {
173 for (MachineOperand
&MO
: operands())
175 MRI
.addRegOperandToUseList(&MO
);
178 void MachineInstr::addOperand(const MachineOperand
&Op
) {
179 MachineBasicBlock
*MBB
= getParent();
180 assert(MBB
&& "Use MachineInstrBuilder to add operands to dangling instrs");
181 MachineFunction
*MF
= MBB
->getParent();
182 assert(MF
&& "Use MachineInstrBuilder to add operands to dangling instrs");
186 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
187 /// ranges. If MRI is non-null also update use-def chains.
188 static void moveOperands(MachineOperand
*Dst
, MachineOperand
*Src
,
189 unsigned NumOps
, MachineRegisterInfo
*MRI
) {
191 return MRI
->moveOperands(Dst
, Src
, NumOps
);
192 // MachineOperand is a trivially copyable type so we can just use memmove.
193 assert(Dst
&& Src
&& "Unknown operands");
194 std::memmove(Dst
, Src
, NumOps
* sizeof(MachineOperand
));
197 /// addOperand - Add the specified operand to the instruction. If it is an
198 /// implicit operand, it is added to the end of the operand list. If it is
199 /// an explicit operand it is added at the end of the explicit operand list
200 /// (before the first implicit operand).
201 void MachineInstr::addOperand(MachineFunction
&MF
, const MachineOperand
&Op
) {
202 assert(isUInt
<LLVM_MI_NUMOPERANDS_BITS
>(NumOperands
+ 1) &&
203 "Cannot add more operands.");
204 assert(MCID
&& "Cannot add operands before providing an instr descriptor");
206 // Check if we're adding one of our existing operands.
207 if (&Op
>= Operands
&& &Op
< Operands
+ NumOperands
) {
208 // This is unusual: MI->addOperand(MI->getOperand(i)).
209 // If adding Op requires reallocating or moving existing operands around,
210 // the Op reference could go stale. Support it by copying Op.
211 MachineOperand
CopyOp(Op
);
212 return addOperand(MF
, CopyOp
);
215 // Find the insert location for the new operand. Implicit registers go at
216 // the end, everything else goes before the implicit regs.
218 // FIXME: Allow mixed explicit and implicit operands on inline asm.
219 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
220 // implicit-defs, but they must not be moved around. See the FIXME in
222 unsigned OpNo
= getNumOperands();
223 bool isImpReg
= Op
.isReg() && Op
.isImplicit();
224 if (!isImpReg
&& !isInlineAsm()) {
225 while (OpNo
&& Operands
[OpNo
-1].isReg() && Operands
[OpNo
-1].isImplicit()) {
227 assert(!Operands
[OpNo
].isTied() && "Cannot move tied operands");
231 // OpNo now points as the desired insertion point. Unless this is a variadic
232 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
233 // RegMask operands go between the explicit and implicit operands.
234 MachineRegisterInfo
*MRI
= getRegInfo();
236 // Determine if the Operands array needs to be reallocated.
237 // Save the old capacity and operand array.
238 OperandCapacity OldCap
= CapOperands
;
239 MachineOperand
*OldOperands
= Operands
;
240 if (!OldOperands
|| OldCap
.getSize() == getNumOperands()) {
241 CapOperands
= OldOperands
? OldCap
.getNext() : OldCap
.get(1);
242 Operands
= MF
.allocateOperandArray(CapOperands
);
243 // Move the operands before the insertion point.
245 moveOperands(Operands
, OldOperands
, OpNo
, MRI
);
248 // Move the operands following the insertion point.
249 if (OpNo
!= NumOperands
)
250 moveOperands(Operands
+ OpNo
+ 1, OldOperands
+ OpNo
, NumOperands
- OpNo
,
254 // Deallocate the old operand array.
255 if (OldOperands
!= Operands
&& OldOperands
)
256 MF
.deallocateOperandArray(OldCap
, OldOperands
);
258 // Copy Op into place. It still needs to be inserted into the MRI use lists.
259 MachineOperand
*NewMO
= new (Operands
+ OpNo
) MachineOperand(Op
);
260 NewMO
->ParentMI
= this;
262 // When adding a register operand, tell MRI about it.
263 if (NewMO
->isReg()) {
264 // Ensure isOnRegUseList() returns false, regardless of Op's status.
265 NewMO
->Contents
.Reg
.Prev
= nullptr;
266 // Ignore existing ties. This is not a property that can be copied.
268 // Add the new operand to MRI, but only for instructions in an MBB.
270 MRI
->addRegOperandToUseList(NewMO
);
271 // The MCID operand information isn't accurate until we start adding
272 // explicit operands. The implicit operands are added first, then the
273 // explicits are inserted before them.
275 // Tie uses to defs as indicated in MCInstrDesc.
276 if (NewMO
->isUse()) {
277 int DefIdx
= MCID
->getOperandConstraint(OpNo
, MCOI::TIED_TO
);
279 tieOperands(DefIdx
, OpNo
);
281 // If the register operand is flagged as early, mark the operand as such.
282 if (MCID
->getOperandConstraint(OpNo
, MCOI::EARLY_CLOBBER
) != -1)
283 NewMO
->setIsEarlyClobber(true);
285 // Ensure debug instructions set debug flag on register uses.
286 if (NewMO
->isUse() && isDebugInstr())
291 void MachineInstr::removeOperand(unsigned OpNo
) {
292 assert(OpNo
< getNumOperands() && "Invalid operand number");
293 untieRegOperand(OpNo
);
296 // Moving tied operands would break the ties.
297 for (unsigned i
= OpNo
+ 1, e
= getNumOperands(); i
!= e
; ++i
)
298 if (Operands
[i
].isReg())
299 assert(!Operands
[i
].isTied() && "Cannot move tied operands");
302 MachineRegisterInfo
*MRI
= getRegInfo();
303 if (MRI
&& Operands
[OpNo
].isReg())
304 MRI
->removeRegOperandFromUseList(Operands
+ OpNo
);
306 // Don't call the MachineOperand destructor. A lot of this code depends on
307 // MachineOperand having a trivial destructor anyway, and adding a call here
308 // wouldn't make it 'destructor-correct'.
310 if (unsigned N
= NumOperands
- 1 - OpNo
)
311 moveOperands(Operands
+ OpNo
, Operands
+ OpNo
+ 1, N
, MRI
);
315 void MachineInstr::setExtraInfo(MachineFunction
&MF
,
316 ArrayRef
<MachineMemOperand
*> MMOs
,
317 MCSymbol
*PreInstrSymbol
,
318 MCSymbol
*PostInstrSymbol
,
319 MDNode
*HeapAllocMarker
, MDNode
*PCSections
,
321 bool HasPreInstrSymbol
= PreInstrSymbol
!= nullptr;
322 bool HasPostInstrSymbol
= PostInstrSymbol
!= nullptr;
323 bool HasHeapAllocMarker
= HeapAllocMarker
!= nullptr;
324 bool HasPCSections
= PCSections
!= nullptr;
325 bool HasCFIType
= CFIType
!= 0;
326 int NumPointers
= MMOs
.size() + HasPreInstrSymbol
+ HasPostInstrSymbol
+
327 HasHeapAllocMarker
+ HasPCSections
+ HasCFIType
;
329 // Drop all extra info if there is none.
330 if (NumPointers
<= 0) {
335 // If more than one pointer, then store out of line. Store heap alloc markers
336 // out of line because PointerSumType cannot hold more than 4 tag types with
338 // FIXME: Maybe we should make the symbols in the extra info mutable?
339 else if (NumPointers
> 1 || HasHeapAllocMarker
|| HasPCSections
||
341 Info
.set
<EIIK_OutOfLine
>(
342 MF
.createMIExtraInfo(MMOs
, PreInstrSymbol
, PostInstrSymbol
,
343 HeapAllocMarker
, PCSections
, CFIType
));
347 // Otherwise store the single pointer inline.
348 if (HasPreInstrSymbol
)
349 Info
.set
<EIIK_PreInstrSymbol
>(PreInstrSymbol
);
350 else if (HasPostInstrSymbol
)
351 Info
.set
<EIIK_PostInstrSymbol
>(PostInstrSymbol
);
353 Info
.set
<EIIK_MMO
>(MMOs
[0]);
356 void MachineInstr::dropMemRefs(MachineFunction
&MF
) {
357 if (memoperands_empty())
360 setExtraInfo(MF
, {}, getPreInstrSymbol(), getPostInstrSymbol(),
361 getHeapAllocMarker(), getPCSections(), getCFIType());
364 void MachineInstr::setMemRefs(MachineFunction
&MF
,
365 ArrayRef
<MachineMemOperand
*> MMOs
) {
371 setExtraInfo(MF
, MMOs
, getPreInstrSymbol(), getPostInstrSymbol(),
372 getHeapAllocMarker(), getPCSections(), getCFIType());
375 void MachineInstr::addMemOperand(MachineFunction
&MF
,
376 MachineMemOperand
*MO
) {
377 SmallVector
<MachineMemOperand
*, 2> MMOs
;
378 MMOs
.append(memoperands_begin(), memoperands_end());
380 setMemRefs(MF
, MMOs
);
383 void MachineInstr::cloneMemRefs(MachineFunction
&MF
, const MachineInstr
&MI
) {
385 // Nothing to do for a self-clone!
388 assert(&MF
== MI
.getMF() &&
389 "Invalid machine functions when cloning memory refrences!");
390 // See if we can just steal the extra info already allocated for the
391 // instruction. We can do this whenever the pre- and post-instruction symbols
392 // are the same (including null).
393 if (getPreInstrSymbol() == MI
.getPreInstrSymbol() &&
394 getPostInstrSymbol() == MI
.getPostInstrSymbol() &&
395 getHeapAllocMarker() == MI
.getHeapAllocMarker() &&
396 getPCSections() == MI
.getPCSections()) {
401 // Otherwise, fall back on a copy-based clone.
402 setMemRefs(MF
, MI
.memoperands());
405 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
407 static bool hasIdenticalMMOs(ArrayRef
<MachineMemOperand
*> LHS
,
408 ArrayRef
<MachineMemOperand
*> RHS
) {
409 if (LHS
.size() != RHS
.size())
412 auto LHSPointees
= make_pointee_range(LHS
);
413 auto RHSPointees
= make_pointee_range(RHS
);
414 return std::equal(LHSPointees
.begin(), LHSPointees
.end(),
415 RHSPointees
.begin());
418 void MachineInstr::cloneMergedMemRefs(MachineFunction
&MF
,
419 ArrayRef
<const MachineInstr
*> MIs
) {
420 // Try handling easy numbers of MIs with simpler mechanisms.
425 if (MIs
.size() == 1) {
426 cloneMemRefs(MF
, *MIs
[0]);
429 // Because an empty memoperands list provides *no* information and must be
430 // handled conservatively (assuming the instruction can do anything), the only
431 // way to merge with it is to drop all other memoperands.
432 if (MIs
[0]->memoperands_empty()) {
437 // Handle the general case.
438 SmallVector
<MachineMemOperand
*, 2> MergedMMOs
;
439 // Start with the first instruction.
440 assert(&MF
== MIs
[0]->getMF() &&
441 "Invalid machine functions when cloning memory references!");
442 MergedMMOs
.append(MIs
[0]->memoperands_begin(), MIs
[0]->memoperands_end());
443 // Now walk all the other instructions and accumulate any different MMOs.
444 for (const MachineInstr
&MI
: make_pointee_range(MIs
.slice(1))) {
445 assert(&MF
== MI
.getMF() &&
446 "Invalid machine functions when cloning memory references!");
448 // Skip MIs with identical operands to the first. This is a somewhat
449 // arbitrary hack but will catch common cases without being quadratic.
450 // TODO: We could fully implement merge semantics here if needed.
451 if (hasIdenticalMMOs(MIs
[0]->memoperands(), MI
.memoperands()))
454 // Because an empty memoperands list provides *no* information and must be
455 // handled conservatively (assuming the instruction can do anything), the
456 // only way to merge with it is to drop all other memoperands.
457 if (MI
.memoperands_empty()) {
462 // Otherwise accumulate these into our temporary buffer of the merged state.
463 MergedMMOs
.append(MI
.memoperands_begin(), MI
.memoperands_end());
466 setMemRefs(MF
, MergedMMOs
);
469 void MachineInstr::setPreInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
470 // Do nothing if old and new symbols are the same.
471 if (Symbol
== getPreInstrSymbol())
474 // If there was only one symbol and we're removing it, just clear info.
475 if (!Symbol
&& Info
.is
<EIIK_PreInstrSymbol
>()) {
480 setExtraInfo(MF
, memoperands(), Symbol
, getPostInstrSymbol(),
481 getHeapAllocMarker(), getPCSections(), getCFIType());
484 void MachineInstr::setPostInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
485 // Do nothing if old and new symbols are the same.
486 if (Symbol
== getPostInstrSymbol())
489 // If there was only one symbol and we're removing it, just clear info.
490 if (!Symbol
&& Info
.is
<EIIK_PostInstrSymbol
>()) {
495 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), Symbol
,
496 getHeapAllocMarker(), getPCSections(), getCFIType());
499 void MachineInstr::setHeapAllocMarker(MachineFunction
&MF
, MDNode
*Marker
) {
500 // Do nothing if old and new symbols are the same.
501 if (Marker
== getHeapAllocMarker())
504 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
505 Marker
, getPCSections(), getCFIType());
508 void MachineInstr::setPCSections(MachineFunction
&MF
, MDNode
*PCSections
) {
509 // Do nothing if old and new symbols are the same.
510 if (PCSections
== getPCSections())
513 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
514 getHeapAllocMarker(), PCSections
, getCFIType());
517 void MachineInstr::setCFIType(MachineFunction
&MF
, uint32_t Type
) {
518 // Do nothing if old and new types are the same.
519 if (Type
== getCFIType())
522 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
523 getHeapAllocMarker(), getPCSections(), Type
);
526 void MachineInstr::cloneInstrSymbols(MachineFunction
&MF
,
527 const MachineInstr
&MI
) {
529 // Nothing to do for a self-clone!
532 assert(&MF
== MI
.getMF() &&
533 "Invalid machine functions when cloning instruction symbols!");
535 setPreInstrSymbol(MF
, MI
.getPreInstrSymbol());
536 setPostInstrSymbol(MF
, MI
.getPostInstrSymbol());
537 setHeapAllocMarker(MF
, MI
.getHeapAllocMarker());
538 setPCSections(MF
, MI
.getPCSections());
541 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr
&Other
) const {
542 // For now, the just return the union of the flags. If the flags get more
543 // complicated over time, we might need more logic here.
544 return getFlags() | Other
.getFlags();
547 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction
&I
) {
548 uint32_t MIFlags
= 0;
549 // Copy the wrapping flags.
550 if (const OverflowingBinaryOperator
*OB
=
551 dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
552 if (OB
->hasNoSignedWrap())
553 MIFlags
|= MachineInstr::MIFlag::NoSWrap
;
554 if (OB
->hasNoUnsignedWrap())
555 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
558 // Copy the exact flag.
559 if (const PossiblyExactOperator
*PE
= dyn_cast
<PossiblyExactOperator
>(&I
))
561 MIFlags
|= MachineInstr::MIFlag::IsExact
;
563 // Copy the fast-math flags.
564 if (const FPMathOperator
*FP
= dyn_cast
<FPMathOperator
>(&I
)) {
565 const FastMathFlags Flags
= FP
->getFastMathFlags();
567 MIFlags
|= MachineInstr::MIFlag::FmNoNans
;
569 MIFlags
|= MachineInstr::MIFlag::FmNoInfs
;
570 if (Flags
.noSignedZeros())
571 MIFlags
|= MachineInstr::MIFlag::FmNsz
;
572 if (Flags
.allowReciprocal())
573 MIFlags
|= MachineInstr::MIFlag::FmArcp
;
574 if (Flags
.allowContract())
575 MIFlags
|= MachineInstr::MIFlag::FmContract
;
576 if (Flags
.approxFunc())
577 MIFlags
|= MachineInstr::MIFlag::FmAfn
;
578 if (Flags
.allowReassoc())
579 MIFlags
|= MachineInstr::MIFlag::FmReassoc
;
582 if (I
.getMetadata(LLVMContext::MD_unpredictable
))
583 MIFlags
|= MachineInstr::MIFlag::Unpredictable
;
588 void MachineInstr::copyIRFlags(const Instruction
&I
) {
589 Flags
= copyFlagsFromInstruction(I
);
592 bool MachineInstr::hasPropertyInBundle(uint64_t Mask
, QueryType Type
) const {
593 assert(!isBundledWithPred() && "Must be called on bundle header");
594 for (MachineBasicBlock::const_instr_iterator MII
= getIterator();; ++MII
) {
595 if (MII
->getDesc().getFlags() & Mask
) {
596 if (Type
== AnyInBundle
)
599 if (Type
== AllInBundle
&& !MII
->isBundle())
602 // This was the last instruction in the bundle.
603 if (!MII
->isBundledWithSucc())
604 return Type
== AllInBundle
;
608 bool MachineInstr::isIdenticalTo(const MachineInstr
&Other
,
609 MICheckType Check
) const {
610 // If opcodes or number of operands are not the same then the two
611 // instructions are obviously not identical.
612 if (Other
.getOpcode() != getOpcode() ||
613 Other
.getNumOperands() != getNumOperands())
617 // We have passed the test above that both instructions have the same
618 // opcode, so we know that both instructions are bundles here. Let's compare
619 // MIs inside the bundle.
620 assert(Other
.isBundle() && "Expected that both instructions are bundles.");
621 MachineBasicBlock::const_instr_iterator I1
= getIterator();
622 MachineBasicBlock::const_instr_iterator I2
= Other
.getIterator();
623 // Loop until we analysed the last intruction inside at least one of the
625 while (I1
->isBundledWithSucc() && I2
->isBundledWithSucc()) {
628 if (!I1
->isIdenticalTo(*I2
, Check
))
631 // If we've reached the end of just one of the two bundles, but not both,
632 // the instructions are not identical.
633 if (I1
->isBundledWithSucc() || I2
->isBundledWithSucc())
637 // Check operands to make sure they match.
638 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
639 const MachineOperand
&MO
= getOperand(i
);
640 const MachineOperand
&OMO
= Other
.getOperand(i
);
642 if (!MO
.isIdenticalTo(OMO
))
647 // Clients may or may not want to ignore defs when testing for equality.
648 // For example, machine CSE pass only cares about finding common
649 // subexpressions, so it's safe to ignore virtual register defs.
651 if (Check
== IgnoreDefs
)
653 else if (Check
== IgnoreVRegDefs
) {
654 if (!MO
.getReg().isVirtual() || !OMO
.getReg().isVirtual())
655 if (!MO
.isIdenticalTo(OMO
))
658 if (!MO
.isIdenticalTo(OMO
))
660 if (Check
== CheckKillDead
&& MO
.isDead() != OMO
.isDead())
664 if (!MO
.isIdenticalTo(OMO
))
666 if (Check
== CheckKillDead
&& MO
.isKill() != OMO
.isKill())
670 // If DebugLoc does not match then two debug instructions are not identical.
672 if (getDebugLoc() && Other
.getDebugLoc() &&
673 getDebugLoc() != Other
.getDebugLoc())
675 // If pre- or post-instruction symbols do not match then the two instructions
676 // are not identical.
677 if (getPreInstrSymbol() != Other
.getPreInstrSymbol() ||
678 getPostInstrSymbol() != Other
.getPostInstrSymbol())
680 // Call instructions with different CFI types are not identical.
681 if (isCall() && getCFIType() != Other
.getCFIType())
687 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr
&Other
) const {
688 if (!isDebugValueLike() || !Other
.isDebugValueLike())
690 if (getDebugLoc() != Other
.getDebugLoc())
692 if (getDebugVariable() != Other
.getDebugVariable())
694 if (getNumDebugOperands() != Other
.getNumDebugOperands())
696 for (unsigned OpIdx
= 0; OpIdx
< getNumDebugOperands(); ++OpIdx
)
697 if (!getDebugOperand(OpIdx
).isIdenticalTo(Other
.getDebugOperand(OpIdx
)))
699 if (!DIExpression::isEqualExpression(
700 getDebugExpression(), isIndirectDebugValue(),
701 Other
.getDebugExpression(), Other
.isIndirectDebugValue()))
706 const MachineFunction
*MachineInstr::getMF() const {
707 return getParent()->getParent();
710 MachineInstr
*MachineInstr::removeFromParent() {
711 assert(getParent() && "Not embedded in a basic block!");
712 return getParent()->remove(this);
715 MachineInstr
*MachineInstr::removeFromBundle() {
716 assert(getParent() && "Not embedded in a basic block!");
717 return getParent()->remove_instr(this);
720 void MachineInstr::eraseFromParent() {
721 assert(getParent() && "Not embedded in a basic block!");
722 getParent()->erase(this);
725 void MachineInstr::eraseFromBundle() {
726 assert(getParent() && "Not embedded in a basic block!");
727 getParent()->erase_instr(this);
730 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type
) const {
733 switch (getOpcode()) {
734 case TargetOpcode::PATCHPOINT
:
735 case TargetOpcode::STACKMAP
:
736 case TargetOpcode::STATEPOINT
:
737 case TargetOpcode::FENTRY_CALL
:
743 bool MachineInstr::shouldUpdateCallSiteInfo() const {
745 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle
);
746 return isCandidateForCallSiteEntry();
749 unsigned MachineInstr::getNumExplicitOperands() const {
750 unsigned NumOperands
= MCID
->getNumOperands();
751 if (!MCID
->isVariadic())
754 for (unsigned I
= NumOperands
, E
= getNumOperands(); I
!= E
; ++I
) {
755 const MachineOperand
&MO
= getOperand(I
);
756 // The operands must always be in the following order:
757 // - explicit reg defs,
758 // - other explicit operands (reg uses, immediates, etc.),
759 // - implicit reg defs
760 // - implicit reg uses
761 if (MO
.isReg() && MO
.isImplicit())
768 unsigned MachineInstr::getNumExplicitDefs() const {
769 unsigned NumDefs
= MCID
->getNumDefs();
770 if (!MCID
->isVariadic())
773 for (unsigned I
= NumDefs
, E
= getNumOperands(); I
!= E
; ++I
) {
774 const MachineOperand
&MO
= getOperand(I
);
775 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
782 void MachineInstr::bundleWithPred() {
783 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
784 setFlag(BundledPred
);
785 MachineBasicBlock::instr_iterator Pred
= getIterator();
787 assert(!Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
788 Pred
->setFlag(BundledSucc
);
791 void MachineInstr::bundleWithSucc() {
792 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
793 setFlag(BundledSucc
);
794 MachineBasicBlock::instr_iterator Succ
= getIterator();
796 assert(!Succ
->isBundledWithPred() && "Inconsistent bundle flags");
797 Succ
->setFlag(BundledPred
);
800 void MachineInstr::unbundleFromPred() {
801 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
802 clearFlag(BundledPred
);
803 MachineBasicBlock::instr_iterator Pred
= getIterator();
805 assert(Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
806 Pred
->clearFlag(BundledSucc
);
809 void MachineInstr::unbundleFromSucc() {
810 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
811 clearFlag(BundledSucc
);
812 MachineBasicBlock::instr_iterator Succ
= getIterator();
814 assert(Succ
->isBundledWithPred() && "Inconsistent bundle flags");
815 Succ
->clearFlag(BundledPred
);
818 bool MachineInstr::isStackAligningInlineAsm() const {
820 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
821 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
827 InlineAsm::AsmDialect
MachineInstr::getInlineAsmDialect() const {
828 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
829 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
830 return InlineAsm::AsmDialect((ExtraInfo
& InlineAsm::Extra_AsmDialect
) != 0);
833 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx
,
834 unsigned *GroupNo
) const {
835 assert(isInlineAsm() && "Expected an inline asm instruction");
836 assert(OpIdx
< getNumOperands() && "OpIdx out of range");
838 // Ignore queries about the initial operands.
839 if (OpIdx
< InlineAsm::MIOp_FirstOperand
)
844 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
846 const MachineOperand
&FlagMO
= getOperand(i
);
847 // If we reach the implicit register operands, stop looking.
850 const InlineAsm::Flag
F(FlagMO
.getImm());
851 NumOps
= 1 + F
.getNumOperandRegisters();
852 if (i
+ NumOps
> OpIdx
) {
862 const DILabel
*MachineInstr::getDebugLabel() const {
863 assert(isDebugLabel() && "not a DBG_LABEL");
864 return cast
<DILabel
>(getOperand(0).getMetadata());
867 const MachineOperand
&MachineInstr::getDebugVariableOp() const {
868 assert((isDebugValueLike()) && "not a DBG_VALUE*");
869 unsigned VariableOp
= isNonListDebugValue() ? 2 : 0;
870 return getOperand(VariableOp
);
873 MachineOperand
&MachineInstr::getDebugVariableOp() {
874 assert((isDebugValueLike()) && "not a DBG_VALUE*");
875 unsigned VariableOp
= isNonListDebugValue() ? 2 : 0;
876 return getOperand(VariableOp
);
879 const DILocalVariable
*MachineInstr::getDebugVariable() const {
880 return cast
<DILocalVariable
>(getDebugVariableOp().getMetadata());
883 const MachineOperand
&MachineInstr::getDebugExpressionOp() const {
884 assert((isDebugValueLike()) && "not a DBG_VALUE*");
885 unsigned ExpressionOp
= isNonListDebugValue() ? 3 : 1;
886 return getOperand(ExpressionOp
);
889 MachineOperand
&MachineInstr::getDebugExpressionOp() {
890 assert((isDebugValueLike()) && "not a DBG_VALUE*");
891 unsigned ExpressionOp
= isNonListDebugValue() ? 3 : 1;
892 return getOperand(ExpressionOp
);
895 const DIExpression
*MachineInstr::getDebugExpression() const {
896 return cast
<DIExpression
>(getDebugExpressionOp().getMetadata());
899 bool MachineInstr::isDebugEntryValue() const {
900 return isDebugValue() && getDebugExpression()->isEntryValue();
903 const TargetRegisterClass
*
904 MachineInstr::getRegClassConstraint(unsigned OpIdx
,
905 const TargetInstrInfo
*TII
,
906 const TargetRegisterInfo
*TRI
) const {
907 assert(getParent() && "Can't have an MBB reference here!");
908 assert(getMF() && "Can't have an MF reference here!");
909 const MachineFunction
&MF
= *getMF();
911 // Most opcodes have fixed constraints in their MCInstrDesc.
913 return TII
->getRegClass(getDesc(), OpIdx
, TRI
, MF
);
915 if (!getOperand(OpIdx
).isReg())
918 // For tied uses on inline asm, get the constraint from the def.
920 if (getOperand(OpIdx
).isUse() && isRegTiedToDefOperand(OpIdx
, &DefIdx
))
923 // Inline asm stores register class constraints in the flag word.
924 int FlagIdx
= findInlineAsmFlagIdx(OpIdx
);
928 const InlineAsm::Flag
F(getOperand(FlagIdx
).getImm());
930 if ((F
.isRegUseKind() || F
.isRegDefKind() || F
.isRegDefEarlyClobberKind()) &&
931 F
.hasRegClassConstraint(RCID
))
932 return TRI
->getRegClass(RCID
);
934 // Assume that all registers in a memory operand are pointers.
936 return TRI
->getPointerRegClass(MF
);
941 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVReg(
942 Register Reg
, const TargetRegisterClass
*CurRC
, const TargetInstrInfo
*TII
,
943 const TargetRegisterInfo
*TRI
, bool ExploreBundle
) const {
944 // Check every operands inside the bundle if we have
947 for (ConstMIBundleOperands
OpndIt(*this); OpndIt
.isValid() && CurRC
;
949 CurRC
= OpndIt
->getParent()->getRegClassConstraintEffectForVRegImpl(
950 OpndIt
.getOperandNo(), Reg
, CurRC
, TII
, TRI
);
952 // Otherwise, just check the current operands.
953 for (unsigned i
= 0, e
= NumOperands
; i
< e
&& CurRC
; ++i
)
954 CurRC
= getRegClassConstraintEffectForVRegImpl(i
, Reg
, CurRC
, TII
, TRI
);
958 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVRegImpl(
959 unsigned OpIdx
, Register Reg
, const TargetRegisterClass
*CurRC
,
960 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
961 assert(CurRC
&& "Invalid initial register class");
962 // Check if Reg is constrained by some of its use/def from MI.
963 const MachineOperand
&MO
= getOperand(OpIdx
);
964 if (!MO
.isReg() || MO
.getReg() != Reg
)
966 // If yes, accumulate the constraints through the operand.
967 return getRegClassConstraintEffect(OpIdx
, CurRC
, TII
, TRI
);
970 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffect(
971 unsigned OpIdx
, const TargetRegisterClass
*CurRC
,
972 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
973 const TargetRegisterClass
*OpRC
= getRegClassConstraint(OpIdx
, TII
, TRI
);
974 const MachineOperand
&MO
= getOperand(OpIdx
);
976 "Cannot get register constraints for non-register operand");
977 assert(CurRC
&& "Invalid initial register class");
978 if (unsigned SubIdx
= MO
.getSubReg()) {
980 CurRC
= TRI
->getMatchingSuperRegClass(CurRC
, OpRC
, SubIdx
);
982 CurRC
= TRI
->getSubClassWithSubReg(CurRC
, SubIdx
);
984 CurRC
= TRI
->getCommonSubClass(CurRC
, OpRC
);
988 /// Return the number of instructions inside the MI bundle, not counting the
989 /// header instruction.
990 unsigned MachineInstr::getBundleSize() const {
991 MachineBasicBlock::const_instr_iterator I
= getIterator();
993 while (I
->isBundledWithSucc()) {
1000 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1001 /// the given register (not considering sub/super-registers).
1002 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg
) const {
1003 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1004 const MachineOperand
&MO
= getOperand(i
);
1005 if (MO
.isReg() && MO
.isUse() && MO
.isImplicit() && MO
.getReg() == Reg
)
1011 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1012 /// the specific register or -1 if it is not found. It further tightens
1013 /// the search criteria to a use that kills the register if isKill is true.
1014 int MachineInstr::findRegisterUseOperandIdx(
1015 Register Reg
, bool isKill
, const TargetRegisterInfo
*TRI
) const {
1016 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1017 const MachineOperand
&MO
= getOperand(i
);
1018 if (!MO
.isReg() || !MO
.isUse())
1020 Register MOReg
= MO
.getReg();
1023 if (MOReg
== Reg
|| (TRI
&& Reg
&& MOReg
&& TRI
->regsOverlap(MOReg
, Reg
)))
1024 if (!isKill
|| MO
.isKill())
1030 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1031 /// indicating if this instruction reads or writes Reg. This also considers
1032 /// partial defines.
1033 std::pair
<bool,bool>
1034 MachineInstr::readsWritesVirtualRegister(Register Reg
,
1035 SmallVectorImpl
<unsigned> *Ops
) const {
1036 bool PartDef
= false; // Partial redefine.
1037 bool FullDef
= false; // Full define.
1040 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1041 const MachineOperand
&MO
= getOperand(i
);
1042 if (!MO
.isReg() || MO
.getReg() != Reg
)
1047 Use
|= !MO
.isUndef();
1048 else if (MO
.getSubReg() && !MO
.isUndef())
1049 // A partial def undef doesn't count as reading the register.
1054 // A partial redefine uses Reg unless there is also a full define.
1055 return std::make_pair(Use
|| (PartDef
&& !FullDef
), PartDef
|| FullDef
);
1058 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1059 /// the specified register or -1 if it is not found. If isDead is true, defs
1060 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1061 /// also checks if there is a def of a super-register.
1063 MachineInstr::findRegisterDefOperandIdx(Register Reg
, bool isDead
, bool Overlap
,
1064 const TargetRegisterInfo
*TRI
) const {
1065 bool isPhys
= Reg
.isPhysical();
1066 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1067 const MachineOperand
&MO
= getOperand(i
);
1068 // Accept regmask operands when Overlap is set.
1069 // Ignore them when looking for a specific def operand (Overlap == false).
1070 if (isPhys
&& Overlap
&& MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
1072 if (!MO
.isReg() || !MO
.isDef())
1074 Register MOReg
= MO
.getReg();
1075 bool Found
= (MOReg
== Reg
);
1076 if (!Found
&& TRI
&& isPhys
&& MOReg
.isPhysical()) {
1078 Found
= TRI
->regsOverlap(MOReg
, Reg
);
1080 Found
= TRI
->isSubRegister(MOReg
, Reg
);
1082 if (Found
&& (!isDead
|| MO
.isDead()))
1088 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1089 /// operand list that is used to represent the predicate. It returns -1 if
1091 int MachineInstr::findFirstPredOperandIdx() const {
1092 // Don't call MCID.findFirstPredOperandIdx() because this variant
1093 // is sometimes called on an instruction that's not yet complete, and
1094 // so the number of operands is less than the MCID indicates. In
1095 // particular, the PTX target does this.
1096 const MCInstrDesc
&MCID
= getDesc();
1097 if (MCID
.isPredicable()) {
1098 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1099 if (MCID
.operands()[i
].isPredicate())
1106 // MachineOperand::TiedTo is 4 bits wide.
1107 const unsigned TiedMax
= 15;
1109 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1111 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1112 /// field. TiedTo can have these values:
1114 /// 0: Operand is not tied to anything.
1115 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1116 /// TiedMax: Tied to an operand >= TiedMax-1.
1118 /// The tied def must be one of the first TiedMax operands on a normal
1119 /// instruction. INLINEASM instructions allow more tied defs.
1121 void MachineInstr::tieOperands(unsigned DefIdx
, unsigned UseIdx
) {
1122 MachineOperand
&DefMO
= getOperand(DefIdx
);
1123 MachineOperand
&UseMO
= getOperand(UseIdx
);
1124 assert(DefMO
.isDef() && "DefIdx must be a def operand");
1125 assert(UseMO
.isUse() && "UseIdx must be a use operand");
1126 assert(!DefMO
.isTied() && "Def is already tied to another use");
1127 assert(!UseMO
.isTied() && "Use is already tied to another def");
1129 if (DefIdx
< TiedMax
)
1130 UseMO
.TiedTo
= DefIdx
+ 1;
1132 // Inline asm can use the group descriptors to find tied operands,
1133 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1134 // but on normal instruction, the tied def must be within the first TiedMax
1136 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT
) &&
1137 "DefIdx out of range");
1138 UseMO
.TiedTo
= TiedMax
;
1141 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1142 DefMO
.TiedTo
= std::min(UseIdx
+ 1, TiedMax
);
1145 /// Given the index of a tied register operand, find the operand it is tied to.
1146 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1147 /// which must exist.
1148 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx
) const {
1149 const MachineOperand
&MO
= getOperand(OpIdx
);
1150 assert(MO
.isTied() && "Operand isn't tied");
1152 // Normally TiedTo is in range.
1153 if (MO
.TiedTo
< TiedMax
)
1154 return MO
.TiedTo
- 1;
1156 // Uses on normal instructions can be out of range.
1157 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT
) {
1158 // Normal tied defs must be in the 0..TiedMax-1 range.
1161 // MO is a def. Search for the tied use.
1162 for (unsigned i
= TiedMax
- 1, e
= getNumOperands(); i
!= e
; ++i
) {
1163 const MachineOperand
&UseMO
= getOperand(i
);
1164 if (UseMO
.isReg() && UseMO
.isUse() && UseMO
.TiedTo
== OpIdx
+ 1)
1167 llvm_unreachable("Can't find tied use");
1170 if (getOpcode() == TargetOpcode::STATEPOINT
) {
1171 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1173 StatepointOpers
SO(this);
1174 unsigned CurUseIdx
= SO
.getFirstGCPtrIdx();
1175 assert(CurUseIdx
!= -1U && "only gc pointer statepoint operands can be tied");
1176 unsigned NumDefs
= getNumDefs();
1177 for (unsigned CurDefIdx
= 0; CurDefIdx
< NumDefs
; ++CurDefIdx
) {
1178 while (!getOperand(CurUseIdx
).isReg())
1179 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1180 if (OpIdx
== CurDefIdx
)
1182 if (OpIdx
== CurUseIdx
)
1184 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1186 llvm_unreachable("Can't find tied use");
1189 // Now deal with inline asm by parsing the operand group descriptor flags.
1190 // Find the beginning of each operand group.
1191 SmallVector
<unsigned, 8> GroupIdx
;
1192 unsigned OpIdxGroup
= ~0u;
1194 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
1196 const MachineOperand
&FlagMO
= getOperand(i
);
1197 assert(FlagMO
.isImm() && "Invalid tied operand on inline asm");
1198 unsigned CurGroup
= GroupIdx
.size();
1199 GroupIdx
.push_back(i
);
1200 const InlineAsm::Flag
F(FlagMO
.getImm());
1201 NumOps
= 1 + F
.getNumOperandRegisters();
1202 // OpIdx belongs to this operand group.
1203 if (OpIdx
> i
&& OpIdx
< i
+ NumOps
)
1204 OpIdxGroup
= CurGroup
;
1206 if (!F
.isUseOperandTiedToDef(TiedGroup
))
1208 // Operands in this group are tied to operands in TiedGroup which must be
1209 // earlier. Find the number of operands between the two groups.
1210 unsigned Delta
= i
- GroupIdx
[TiedGroup
];
1212 // OpIdx is a use tied to TiedGroup.
1213 if (OpIdxGroup
== CurGroup
)
1214 return OpIdx
- Delta
;
1216 // OpIdx is a def tied to this use group.
1217 if (OpIdxGroup
== TiedGroup
)
1218 return OpIdx
+ Delta
;
1220 llvm_unreachable("Invalid tied operand on inline asm");
1223 /// clearKillInfo - Clears kill flags on all operands.
1225 void MachineInstr::clearKillInfo() {
1226 for (MachineOperand
&MO
: operands()) {
1227 if (MO
.isReg() && MO
.isUse())
1228 MO
.setIsKill(false);
1232 void MachineInstr::substituteRegister(Register FromReg
, Register ToReg
,
1234 const TargetRegisterInfo
&RegInfo
) {
1235 if (ToReg
.isPhysical()) {
1237 ToReg
= RegInfo
.getSubReg(ToReg
, SubIdx
);
1238 for (MachineOperand
&MO
: operands()) {
1239 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1241 MO
.substPhysReg(ToReg
, RegInfo
);
1244 for (MachineOperand
&MO
: operands()) {
1245 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1247 MO
.substVirtReg(ToReg
, SubIdx
, RegInfo
);
1252 /// isSafeToMove - Return true if it is safe to move this instruction. If
1253 /// SawStore is set to true, it means that there is a store (or call) between
1254 /// the instruction's location and its intended destination.
1255 bool MachineInstr::isSafeToMove(AAResults
*AA
, bool &SawStore
) const {
1256 // Ignore stuff that we obviously can't move.
1258 // Treat volatile loads as stores. This is not strictly necessary for
1259 // volatiles, but it is required for atomic loads. It is not allowed to move
1260 // a load across an atomic load with Ordering > Monotonic.
1261 if (mayStore() || isCall() || isPHI() ||
1262 (mayLoad() && hasOrderedMemoryRef())) {
1267 if (isPosition() || isDebugInstr() || isTerminator() ||
1268 mayRaiseFPException() || hasUnmodeledSideEffects() ||
1269 isJumpTableDebugInfo())
1272 // See if this instruction does a load. If so, we have to guarantee that the
1273 // loaded value doesn't change between the load and the its intended
1274 // destination. The check for isInvariantLoad gives the target the chance to
1275 // classify the load as always returning a constant, e.g. a constant pool
1277 if (mayLoad() && !isDereferenceableInvariantLoad())
1278 // Otherwise, this is a real load. If there is a store between the load and
1279 // end of block, we can't move it.
1285 static bool MemOperandsHaveAlias(const MachineFrameInfo
&MFI
, AAResults
*AA
,
1286 bool UseTBAA
, const MachineMemOperand
*MMOa
,
1287 const MachineMemOperand
*MMOb
) {
1288 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1289 // operates with MachineMemOperand offset with some important assumptions:
1290 // - LLVM fundamentally assumes flat address spaces.
1291 // - MachineOperand offset can *only* result from legalization and cannot
1292 // affect queries other than the trivial case of overlap checking.
1293 // - These offsets never wrap and never step outside of allocated objects.
1294 // - There should never be any negative offsets here.
1296 // FIXME: Modify API to hide this math from "user"
1297 // Even before we go to AA we can reason locally about some memory objects. It
1298 // can save compile time, and possibly catch some corner cases not currently
1301 int64_t OffsetA
= MMOa
->getOffset();
1302 int64_t OffsetB
= MMOb
->getOffset();
1303 int64_t MinOffset
= std::min(OffsetA
, OffsetB
);
1305 uint64_t WidthA
= MMOa
->getSize();
1306 uint64_t WidthB
= MMOb
->getSize();
1307 bool KnownWidthA
= WidthA
!= MemoryLocation::UnknownSize
;
1308 bool KnownWidthB
= WidthB
!= MemoryLocation::UnknownSize
;
1310 const Value
*ValA
= MMOa
->getValue();
1311 const Value
*ValB
= MMOb
->getValue();
1312 bool SameVal
= (ValA
&& ValB
&& (ValA
== ValB
));
1314 const PseudoSourceValue
*PSVa
= MMOa
->getPseudoValue();
1315 const PseudoSourceValue
*PSVb
= MMOb
->getPseudoValue();
1316 if (PSVa
&& ValB
&& !PSVa
->mayAlias(&MFI
))
1318 if (PSVb
&& ValA
&& !PSVb
->mayAlias(&MFI
))
1320 if (PSVa
&& PSVb
&& (PSVa
== PSVb
))
1325 if (!KnownWidthA
|| !KnownWidthB
)
1327 int64_t MaxOffset
= std::max(OffsetA
, OffsetB
);
1328 int64_t LowWidth
= (MinOffset
== OffsetA
) ? WidthA
: WidthB
;
1329 return (MinOffset
+ LowWidth
> MaxOffset
);
1338 assert((OffsetA
>= 0) && "Negative MachineMemOperand offset");
1339 assert((OffsetB
>= 0) && "Negative MachineMemOperand offset");
1342 KnownWidthA
? WidthA
+ OffsetA
- MinOffset
: MemoryLocation::UnknownSize
;
1344 KnownWidthB
? WidthB
+ OffsetB
- MinOffset
: MemoryLocation::UnknownSize
;
1346 return !AA
->isNoAlias(
1347 MemoryLocation(ValA
, OverlapA
, UseTBAA
? MMOa
->getAAInfo() : AAMDNodes()),
1348 MemoryLocation(ValB
, OverlapB
,
1349 UseTBAA
? MMOb
->getAAInfo() : AAMDNodes()));
1352 bool MachineInstr::mayAlias(AAResults
*AA
, const MachineInstr
&Other
,
1353 bool UseTBAA
) const {
1354 const MachineFunction
*MF
= getMF();
1355 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1356 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1358 // Exclude call instruction which may alter the memory but can not be handled
1359 // by this function.
1360 if (isCall() || Other
.isCall())
1363 // If neither instruction stores to memory, they can't alias in any
1364 // meaningful way, even if they read from the same address.
1365 if (!mayStore() && !Other
.mayStore())
1368 // Both instructions must be memory operations to be able to alias.
1369 if (!mayLoadOrStore() || !Other
.mayLoadOrStore())
1372 // Let the target decide if memory accesses cannot possibly overlap.
1373 if (TII
->areMemAccessesTriviallyDisjoint(*this, Other
))
1376 // Memory operations without memory operands may access anything. Be
1377 // conservative and assume `MayAlias`.
1378 if (memoperands_empty() || Other
.memoperands_empty())
1381 // Skip if there are too many memory operands.
1382 auto NumChecks
= getNumMemOperands() * Other
.getNumMemOperands();
1383 if (NumChecks
> TII
->getMemOperandAACheckLimit())
1386 // Check each pair of memory operands from both instructions, which can't
1387 // alias only if all pairs won't alias.
1388 for (auto *MMOa
: memoperands())
1389 for (auto *MMOb
: Other
.memoperands())
1390 if (MemOperandsHaveAlias(MFI
, AA
, UseTBAA
, MMOa
, MMOb
))
1396 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1397 /// or volatile memory reference, or if the information describing the memory
1398 /// reference is not available. Return false if it is known to have no ordered
1399 /// memory references.
1400 bool MachineInstr::hasOrderedMemoryRef() const {
1401 // An instruction known never to access memory won't have a volatile access.
1405 !hasUnmodeledSideEffects())
1408 // Otherwise, if the instruction has no memory reference information,
1409 // conservatively assume it wasn't preserved.
1410 if (memoperands_empty())
1413 // Check if any of our memory operands are ordered.
1414 return llvm::any_of(memoperands(), [](const MachineMemOperand
*MMO
) {
1415 return !MMO
->isUnordered();
1419 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1420 /// trap and is loading from a location whose value is invariant across a run of
1422 bool MachineInstr::isDereferenceableInvariantLoad() const {
1423 // If the instruction doesn't load at all, it isn't an invariant load.
1427 // If the instruction has lost its memoperands, conservatively assume that
1428 // it may not be an invariant load.
1429 if (memoperands_empty())
1432 const MachineFrameInfo
&MFI
= getParent()->getParent()->getFrameInfo();
1434 for (MachineMemOperand
*MMO
: memoperands()) {
1435 if (!MMO
->isUnordered())
1436 // If the memory operand has ordering side effects, we can't move the
1437 // instruction. Such an instruction is technically an invariant load,
1438 // but the caller code would need updated to expect that.
1440 if (MMO
->isStore()) return false;
1441 if (MMO
->isInvariant() && MMO
->isDereferenceable())
1444 // A load from a constant PseudoSourceValue is invariant.
1445 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue()) {
1446 if (PSV
->isConstant(&MFI
))
1450 // Otherwise assume conservatively.
1454 // Everything checks out.
1458 /// isConstantValuePHI - If the specified instruction is a PHI that always
1459 /// merges together the same virtual register, return the register, otherwise
1461 unsigned MachineInstr::isConstantValuePHI() const {
1464 assert(getNumOperands() >= 3 &&
1465 "It's illegal to have a PHI without source operands");
1467 Register Reg
= getOperand(1).getReg();
1468 for (unsigned i
= 3, e
= getNumOperands(); i
< e
; i
+= 2)
1469 if (getOperand(i
).getReg() != Reg
)
1474 bool MachineInstr::hasUnmodeledSideEffects() const {
1475 if (hasProperty(MCID::UnmodeledSideEffects
))
1477 if (isInlineAsm()) {
1478 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1479 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1486 bool MachineInstr::isLoadFoldBarrier() const {
1487 return mayStore() || isCall() ||
1488 (hasUnmodeledSideEffects() && !isPseudoProbe());
1491 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1493 bool MachineInstr::allDefsAreDead() const {
1494 for (const MachineOperand
&MO
: operands()) {
1495 if (!MO
.isReg() || MO
.isUse())
1503 bool MachineInstr::allImplicitDefsAreDead() const {
1504 for (const MachineOperand
&MO
: implicit_operands()) {
1505 if (!MO
.isReg() || MO
.isUse())
1513 /// copyImplicitOps - Copy implicit register operands from specified
1514 /// instruction to this instruction.
1515 void MachineInstr::copyImplicitOps(MachineFunction
&MF
,
1516 const MachineInstr
&MI
) {
1517 for (const MachineOperand
&MO
:
1518 llvm::drop_begin(MI
.operands(), MI
.getDesc().getNumOperands()))
1519 if ((MO
.isReg() && MO
.isImplicit()) || MO
.isRegMask())
1523 bool MachineInstr::hasComplexRegisterTies() const {
1524 const MCInstrDesc
&MCID
= getDesc();
1525 if (MCID
.Opcode
== TargetOpcode::STATEPOINT
)
1527 for (unsigned I
= 0, E
= getNumOperands(); I
< E
; ++I
) {
1528 const auto &Operand
= getOperand(I
);
1529 if (!Operand
.isReg() || Operand
.isDef())
1530 // Ignore the defined registers as MCID marks only the uses as tied.
1532 int ExpectedTiedIdx
= MCID
.getOperandConstraint(I
, MCOI::TIED_TO
);
1533 int TiedIdx
= Operand
.isTied() ? int(findTiedOperandIdx(I
)) : -1;
1534 if (ExpectedTiedIdx
!= TiedIdx
)
1540 LLT
MachineInstr::getTypeToPrint(unsigned OpIdx
, SmallBitVector
&PrintedTypes
,
1541 const MachineRegisterInfo
&MRI
) const {
1542 const MachineOperand
&Op
= getOperand(OpIdx
);
1546 if (isVariadic() || OpIdx
>= getNumExplicitOperands())
1547 return MRI
.getType(Op
.getReg());
1549 auto &OpInfo
= getDesc().operands()[OpIdx
];
1550 if (!OpInfo
.isGenericType())
1551 return MRI
.getType(Op
.getReg());
1553 if (PrintedTypes
[OpInfo
.getGenericTypeIndex()])
1556 LLT TypeToPrint
= MRI
.getType(Op
.getReg());
1557 // Don't mark the type index printed if it wasn't actually printed: maybe
1558 // another operand with the same type index has an actual type attached:
1559 if (TypeToPrint
.isValid())
1560 PrintedTypes
.set(OpInfo
.getGenericTypeIndex());
1564 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1565 LLVM_DUMP_METHOD
void MachineInstr::dump() const {
1570 LLVM_DUMP_METHOD
void MachineInstr::dumprImpl(
1571 const MachineRegisterInfo
&MRI
, unsigned Depth
, unsigned MaxDepth
,
1572 SmallPtrSetImpl
<const MachineInstr
*> &AlreadySeenInstrs
) const {
1573 if (Depth
>= MaxDepth
)
1575 if (!AlreadySeenInstrs
.insert(this).second
)
1577 // PadToColumn always inserts at least one space.
1578 // Don't mess up the alignment if we don't want any space.
1580 fdbgs().PadToColumn(Depth
* 2);
1582 for (const MachineOperand
&MO
: operands()) {
1583 if (!MO
.isReg() || MO
.isDef())
1585 Register Reg
= MO
.getReg();
1586 if (Reg
.isPhysical())
1588 const MachineInstr
*NewMI
= MRI
.getUniqueVRegDef(Reg
);
1589 if (NewMI
== nullptr)
1591 NewMI
->dumprImpl(MRI
, Depth
+ 1, MaxDepth
, AlreadySeenInstrs
);
1595 LLVM_DUMP_METHOD
void MachineInstr::dumpr(const MachineRegisterInfo
&MRI
,
1596 unsigned MaxDepth
) const {
1597 SmallPtrSet
<const MachineInstr
*, 16> AlreadySeenInstrs
;
1598 dumprImpl(MRI
, 0, MaxDepth
, AlreadySeenInstrs
);
1602 void MachineInstr::print(raw_ostream
&OS
, bool IsStandalone
, bool SkipOpers
,
1603 bool SkipDebugLoc
, bool AddNewLine
,
1604 const TargetInstrInfo
*TII
) const {
1605 const Module
*M
= nullptr;
1606 const Function
*F
= nullptr;
1607 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1608 F
= &MF
->getFunction();
1611 TII
= MF
->getSubtarget().getInstrInfo();
1614 ModuleSlotTracker
MST(M
);
1616 MST
.incorporateFunction(*F
);
1617 print(OS
, MST
, IsStandalone
, SkipOpers
, SkipDebugLoc
, AddNewLine
, TII
);
1620 void MachineInstr::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
1621 bool IsStandalone
, bool SkipOpers
, bool SkipDebugLoc
,
1622 bool AddNewLine
, const TargetInstrInfo
*TII
) const {
1623 // We can be a bit tidier if we know the MachineFunction.
1624 const TargetRegisterInfo
*TRI
= nullptr;
1625 const MachineRegisterInfo
*MRI
= nullptr;
1626 const TargetIntrinsicInfo
*IntrinsicInfo
= nullptr;
1627 tryToGetTargetInfo(*this, TRI
, MRI
, IntrinsicInfo
, TII
);
1629 if (isCFIInstruction())
1630 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1632 SmallBitVector
PrintedTypes(8);
1633 bool ShouldPrintRegisterTies
= IsStandalone
|| hasComplexRegisterTies();
1634 auto getTiedOperandIdx
= [&](unsigned OpIdx
) {
1635 if (!ShouldPrintRegisterTies
)
1637 const MachineOperand
&MO
= getOperand(OpIdx
);
1638 if (MO
.isReg() && MO
.isTied() && !MO
.isDef())
1639 return findTiedOperandIdx(OpIdx
);
1642 unsigned StartOp
= 0;
1643 unsigned e
= getNumOperands();
1645 // Print explicitly defined operands on the left of an assignment syntax.
1646 while (StartOp
< e
) {
1647 const MachineOperand
&MO
= getOperand(StartOp
);
1648 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
1654 LLT TypeToPrint
= MRI
? getTypeToPrint(StartOp
, PrintedTypes
, *MRI
) : LLT
{};
1655 unsigned TiedOperandIdx
= getTiedOperandIdx(StartOp
);
1656 MO
.print(OS
, MST
, TypeToPrint
, StartOp
, /*PrintDef=*/false, IsStandalone
,
1657 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1664 if (getFlag(MachineInstr::FrameSetup
))
1665 OS
<< "frame-setup ";
1666 if (getFlag(MachineInstr::FrameDestroy
))
1667 OS
<< "frame-destroy ";
1668 if (getFlag(MachineInstr::FmNoNans
))
1670 if (getFlag(MachineInstr::FmNoInfs
))
1672 if (getFlag(MachineInstr::FmNsz
))
1674 if (getFlag(MachineInstr::FmArcp
))
1676 if (getFlag(MachineInstr::FmContract
))
1678 if (getFlag(MachineInstr::FmAfn
))
1680 if (getFlag(MachineInstr::FmReassoc
))
1682 if (getFlag(MachineInstr::NoUWrap
))
1684 if (getFlag(MachineInstr::NoSWrap
))
1686 if (getFlag(MachineInstr::IsExact
))
1688 if (getFlag(MachineInstr::NoFPExcept
))
1689 OS
<< "nofpexcept ";
1690 if (getFlag(MachineInstr::NoMerge
))
1693 // Print the opcode name.
1695 OS
<< TII
->getName(getOpcode());
1702 // Print the rest of the operands.
1703 bool FirstOp
= true;
1704 unsigned AsmDescOp
= ~0u;
1705 unsigned AsmOpCount
= 0;
1707 if (isInlineAsm() && e
>= InlineAsm::MIOp_FirstOperand
) {
1708 // Print asm string.
1710 const unsigned OpIdx
= InlineAsm::MIOp_AsmString
;
1711 LLT TypeToPrint
= MRI
? getTypeToPrint(OpIdx
, PrintedTypes
, *MRI
) : LLT
{};
1712 unsigned TiedOperandIdx
= getTiedOperandIdx(OpIdx
);
1713 getOperand(OpIdx
).print(OS
, MST
, TypeToPrint
, OpIdx
, /*PrintDef=*/true, IsStandalone
,
1714 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
,
1717 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1718 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1719 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1720 OS
<< " [sideeffect]";
1721 if (ExtraInfo
& InlineAsm::Extra_MayLoad
)
1723 if (ExtraInfo
& InlineAsm::Extra_MayStore
)
1724 OS
<< " [maystore]";
1725 if (ExtraInfo
& InlineAsm::Extra_IsConvergent
)
1726 OS
<< " [isconvergent]";
1727 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
1728 OS
<< " [alignstack]";
1729 if (getInlineAsmDialect() == InlineAsm::AD_ATT
)
1730 OS
<< " [attdialect]";
1731 if (getInlineAsmDialect() == InlineAsm::AD_Intel
)
1732 OS
<< " [inteldialect]";
1734 StartOp
= AsmDescOp
= InlineAsm::MIOp_FirstOperand
;
1738 for (unsigned i
= StartOp
, e
= getNumOperands(); i
!= e
; ++i
) {
1739 const MachineOperand
&MO
= getOperand(i
);
1741 if (FirstOp
) FirstOp
= false; else OS
<< ",";
1744 if (isDebugValueLike() && MO
.isMetadata()) {
1745 // Pretty print DBG_VALUE* instructions.
1746 auto *DIV
= dyn_cast
<DILocalVariable
>(MO
.getMetadata());
1747 if (DIV
&& !DIV
->getName().empty())
1748 OS
<< "!\"" << DIV
->getName() << '\"';
1750 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1751 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1752 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1753 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1755 } else if (isDebugLabel() && MO
.isMetadata()) {
1756 // Pretty print DBG_LABEL instructions.
1757 auto *DIL
= dyn_cast
<DILabel
>(MO
.getMetadata());
1758 if (DIL
&& !DIL
->getName().empty())
1759 OS
<< "\"" << DIL
->getName() << '\"';
1761 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1762 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1763 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1764 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1766 } else if (i
== AsmDescOp
&& MO
.isImm()) {
1767 // Pretty print the inline asm operand descriptor.
1768 OS
<< '$' << AsmOpCount
++;
1769 unsigned Flag
= MO
.getImm();
1770 const InlineAsm::Flag
F(Flag
);
1772 OS
<< F
.getKindName();
1775 if (!F
.isImmKind() && !F
.isMemKind() && F
.hasRegClassConstraint(RCID
)) {
1777 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1779 OS
<< ":RC" << RCID
;
1782 if (F
.isMemKind()) {
1783 const InlineAsm::ConstraintCode MCID
= F
.getMemoryConstraintID();
1784 OS
<< ":" << InlineAsm::getMemConstraintName(MCID
);
1788 if (F
.isUseOperandTiedToDef(TiedTo
))
1789 OS
<< " tiedto:$" << TiedTo
;
1791 if ((F
.isRegDefKind() || F
.isRegDefEarlyClobberKind() ||
1792 F
.isRegUseKind()) &&
1793 F
.getRegMayBeFolded()) {
1799 // Compute the index of the next operand descriptor.
1800 AsmDescOp
+= 1 + F
.getNumOperandRegisters();
1802 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1803 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1804 if (MO
.isImm() && isOperandSubregIdx(i
))
1805 MachineOperand::printSubRegIdx(OS
, MO
.getImm(), TRI
);
1807 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1808 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1812 // Print any optional symbols attached to this instruction as-if they were
1814 if (MCSymbol
*PreInstrSymbol
= getPreInstrSymbol()) {
1819 OS
<< " pre-instr-symbol ";
1820 MachineOperand::printSymbol(OS
, *PreInstrSymbol
);
1822 if (MCSymbol
*PostInstrSymbol
= getPostInstrSymbol()) {
1827 OS
<< " post-instr-symbol ";
1828 MachineOperand::printSymbol(OS
, *PostInstrSymbol
);
1830 if (MDNode
*HeapAllocMarker
= getHeapAllocMarker()) {
1835 OS
<< " heap-alloc-marker ";
1836 HeapAllocMarker
->printAsOperand(OS
, MST
);
1838 if (MDNode
*PCSections
= getPCSections()) {
1843 OS
<< " pcsections ";
1844 PCSections
->printAsOperand(OS
, MST
);
1846 if (uint32_t CFIType
= getCFIType()) {
1849 OS
<< " cfi-type " << CFIType
;
1852 if (DebugInstrNum
) {
1855 OS
<< " debug-instr-number " << DebugInstrNum
;
1858 if (!SkipDebugLoc
) {
1859 if (const DebugLoc
&DL
= getDebugLoc()) {
1862 OS
<< " debug-location ";
1863 DL
->printAsOperand(OS
, MST
);
1867 if (!memoperands_empty()) {
1868 SmallVector
<StringRef
, 0> SSNs
;
1869 const LLVMContext
*Context
= nullptr;
1870 std::unique_ptr
<LLVMContext
> CtxPtr
;
1871 const MachineFrameInfo
*MFI
= nullptr;
1872 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1873 MFI
= &MF
->getFrameInfo();
1874 Context
= &MF
->getFunction().getContext();
1876 CtxPtr
= std::make_unique
<LLVMContext
>();
1877 Context
= CtxPtr
.get();
1881 bool NeedComma
= false;
1882 for (const MachineMemOperand
*Op
: memoperands()) {
1885 Op
->print(OS
, MST
, SSNs
, *Context
, MFI
, TII
);
1893 bool HaveSemi
= false;
1895 // Print debug location information.
1896 if (const DebugLoc
&DL
= getDebugLoc()) {
1905 // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
1906 if ((isNonListDebugValue() && getNumOperands() >= 4) ||
1907 (isDebugValueList() && getNumOperands() >= 2) ||
1908 (isDebugRef() && getNumOperands() >= 3)) {
1909 if (getDebugVariableOp().isMetadata()) {
1914 auto *DV
= getDebugVariable();
1915 OS
<< " line no:" << DV
->getLine();
1916 if (isIndirectDebugValue())
1926 bool MachineInstr::addRegisterKilled(Register IncomingReg
,
1927 const TargetRegisterInfo
*RegInfo
,
1928 bool AddIfNotFound
) {
1929 bool isPhysReg
= IncomingReg
.isPhysical();
1930 bool hasAliases
= isPhysReg
&&
1931 MCRegAliasIterator(IncomingReg
, RegInfo
, false).isValid();
1933 SmallVector
<unsigned,4> DeadOps
;
1934 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1935 MachineOperand
&MO
= getOperand(i
);
1936 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
1939 // DEBUG_VALUE nodes do not contribute to code generation and should
1940 // always be ignored. Failure to do so may result in trying to modify
1941 // KILL flags on DEBUG_VALUE nodes.
1945 Register Reg
= MO
.getReg();
1949 if (Reg
== IncomingReg
) {
1952 // The register is already marked kill.
1954 if (isPhysReg
&& isRegTiedToDefOperand(i
))
1955 // Two-address uses of physregs must not be marked kill.
1960 } else if (hasAliases
&& MO
.isKill() && Reg
.isPhysical()) {
1961 // A super-register kill already exists.
1962 if (RegInfo
->isSuperRegister(IncomingReg
, Reg
))
1964 if (RegInfo
->isSubRegister(IncomingReg
, Reg
))
1965 DeadOps
.push_back(i
);
1969 // Trim unneeded kill operands.
1970 while (!DeadOps
.empty()) {
1971 unsigned OpIdx
= DeadOps
.back();
1972 if (getOperand(OpIdx
).isImplicit() &&
1973 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
1974 removeOperand(OpIdx
);
1976 getOperand(OpIdx
).setIsKill(false);
1980 // If not found, this means an alias of one of the operands is killed. Add a
1981 // new implicit operand if required.
1982 if (!Found
&& AddIfNotFound
) {
1983 addOperand(MachineOperand::CreateReg(IncomingReg
,
1992 void MachineInstr::clearRegisterKills(Register Reg
,
1993 const TargetRegisterInfo
*RegInfo
) {
1994 if (!Reg
.isPhysical())
1996 for (MachineOperand
&MO
: operands()) {
1997 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
1999 Register OpReg
= MO
.getReg();
2000 if ((RegInfo
&& RegInfo
->regsOverlap(Reg
, OpReg
)) || Reg
== OpReg
)
2001 MO
.setIsKill(false);
2005 bool MachineInstr::addRegisterDead(Register Reg
,
2006 const TargetRegisterInfo
*RegInfo
,
2007 bool AddIfNotFound
) {
2008 bool isPhysReg
= Reg
.isPhysical();
2009 bool hasAliases
= isPhysReg
&&
2010 MCRegAliasIterator(Reg
, RegInfo
, false).isValid();
2012 SmallVector
<unsigned,4> DeadOps
;
2013 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2014 MachineOperand
&MO
= getOperand(i
);
2015 if (!MO
.isReg() || !MO
.isDef())
2017 Register MOReg
= MO
.getReg();
2024 } else if (hasAliases
&& MO
.isDead() && MOReg
.isPhysical()) {
2025 // There exists a super-register that's marked dead.
2026 if (RegInfo
->isSuperRegister(Reg
, MOReg
))
2028 if (RegInfo
->isSubRegister(Reg
, MOReg
))
2029 DeadOps
.push_back(i
);
2033 // Trim unneeded dead operands.
2034 while (!DeadOps
.empty()) {
2035 unsigned OpIdx
= DeadOps
.back();
2036 if (getOperand(OpIdx
).isImplicit() &&
2037 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
2038 removeOperand(OpIdx
);
2040 getOperand(OpIdx
).setIsDead(false);
2044 // If not found, this means an alias of one of the operands is dead. Add a
2045 // new implicit operand if required.
2046 if (Found
|| !AddIfNotFound
)
2049 addOperand(MachineOperand::CreateReg(Reg
,
2057 void MachineInstr::clearRegisterDeads(Register Reg
) {
2058 for (MachineOperand
&MO
: operands()) {
2059 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
)
2061 MO
.setIsDead(false);
2065 void MachineInstr::setRegisterDefReadUndef(Register Reg
, bool IsUndef
) {
2066 for (MachineOperand
&MO
: operands()) {
2067 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
|| MO
.getSubReg() == 0)
2069 MO
.setIsUndef(IsUndef
);
2073 void MachineInstr::addRegisterDefined(Register Reg
,
2074 const TargetRegisterInfo
*RegInfo
) {
2075 if (Reg
.isPhysical()) {
2076 MachineOperand
*MO
= findRegisterDefOperand(Reg
, false, false, RegInfo
);
2080 for (const MachineOperand
&MO
: operands()) {
2081 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isDef() &&
2082 MO
.getSubReg() == 0)
2086 addOperand(MachineOperand::CreateReg(Reg
,
2091 void MachineInstr::setPhysRegsDeadExcept(ArrayRef
<Register
> UsedRegs
,
2092 const TargetRegisterInfo
&TRI
) {
2093 bool HasRegMask
= false;
2094 for (MachineOperand
&MO
: operands()) {
2095 if (MO
.isRegMask()) {
2099 if (!MO
.isReg() || !MO
.isDef()) continue;
2100 Register Reg
= MO
.getReg();
2101 if (!Reg
.isPhysical())
2103 // If there are no uses, including partial uses, the def is dead.
2104 if (llvm::none_of(UsedRegs
,
2105 [&](MCRegister Use
) { return TRI
.regsOverlap(Use
, Reg
); }))
2109 // This is a call with a register mask operand.
2110 // Mask clobbers are always dead, so add defs for the non-dead defines.
2112 for (const Register
&UsedReg
: UsedRegs
)
2113 addRegisterDefined(UsedReg
, &TRI
);
2117 MachineInstrExpressionTrait::getHashValue(const MachineInstr
* const &MI
) {
2118 // Build up a buffer of hash code components.
2119 SmallVector
<size_t, 16> HashComponents
;
2120 HashComponents
.reserve(MI
->getNumOperands() + 1);
2121 HashComponents
.push_back(MI
->getOpcode());
2122 for (const MachineOperand
&MO
: MI
->operands()) {
2123 if (MO
.isReg() && MO
.isDef() && MO
.getReg().isVirtual())
2124 continue; // Skip virtual register defs.
2126 HashComponents
.push_back(hash_value(MO
));
2128 return hash_combine_range(HashComponents
.begin(), HashComponents
.end());
2131 void MachineInstr::emitError(StringRef Msg
) const {
2132 // Find the source location cookie.
2133 uint64_t LocCookie
= 0;
2134 const MDNode
*LocMD
= nullptr;
2135 for (unsigned i
= getNumOperands(); i
!= 0; --i
) {
2136 if (getOperand(i
-1).isMetadata() &&
2137 (LocMD
= getOperand(i
-1).getMetadata()) &&
2138 LocMD
->getNumOperands() != 0) {
2139 if (const ConstantInt
*CI
=
2140 mdconst::dyn_extract
<ConstantInt
>(LocMD
->getOperand(0))) {
2141 LocCookie
= CI
->getZExtValue();
2147 if (const MachineBasicBlock
*MBB
= getParent())
2148 if (const MachineFunction
*MF
= MBB
->getParent())
2149 return MF
->getMMI().getModule()->getContext().emitError(LocCookie
, Msg
);
2150 report_fatal_error(Msg
);
2153 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2154 const MCInstrDesc
&MCID
, bool IsIndirect
,
2155 Register Reg
, const MDNode
*Variable
,
2156 const MDNode
*Expr
) {
2157 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2158 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2159 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2160 "Expected inlined-at fields to agree");
2161 auto MIB
= BuildMI(MF
, DL
, MCID
).addReg(Reg
);
2166 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2169 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2170 const MCInstrDesc
&MCID
, bool IsIndirect
,
2171 ArrayRef
<MachineOperand
> DebugOps
,
2172 const MDNode
*Variable
, const MDNode
*Expr
) {
2173 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2174 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2175 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2176 "Expected inlined-at fields to agree");
2177 if (MCID
.Opcode
== TargetOpcode::DBG_VALUE
) {
2178 assert(DebugOps
.size() == 1 &&
2179 "DBG_VALUE must contain exactly one debug operand");
2180 MachineOperand DebugOp
= DebugOps
[0];
2181 if (DebugOp
.isReg())
2182 return BuildMI(MF
, DL
, MCID
, IsIndirect
, DebugOp
.getReg(), Variable
,
2185 auto MIB
= BuildMI(MF
, DL
, MCID
).add(DebugOp
);
2190 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2193 auto MIB
= BuildMI(MF
, DL
, MCID
);
2194 MIB
.addMetadata(Variable
).addMetadata(Expr
);
2195 for (const MachineOperand
&DebugOp
: DebugOps
)
2196 if (DebugOp
.isReg())
2197 MIB
.addReg(DebugOp
.getReg());
2203 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2204 MachineBasicBlock::iterator I
,
2205 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2206 bool IsIndirect
, Register Reg
,
2207 const MDNode
*Variable
, const MDNode
*Expr
) {
2208 MachineFunction
&MF
= *BB
.getParent();
2209 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, Reg
, Variable
, Expr
);
2211 return MachineInstrBuilder(MF
, MI
);
2214 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2215 MachineBasicBlock::iterator I
,
2216 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2218 ArrayRef
<MachineOperand
> DebugOps
,
2219 const MDNode
*Variable
, const MDNode
*Expr
) {
2220 MachineFunction
&MF
= *BB
.getParent();
2222 BuildMI(MF
, DL
, MCID
, IsIndirect
, DebugOps
, Variable
, Expr
);
2224 return MachineInstrBuilder(MF
, *MI
);
2227 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2228 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2229 static const DIExpression
*
2230 computeExprForSpill(const MachineInstr
&MI
,
2231 SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2232 assert(MI
.getDebugVariable()->isValidLocationForIntrinsic(MI
.getDebugLoc()) &&
2233 "Expected inlined-at fields to agree");
2235 const DIExpression
*Expr
= MI
.getDebugExpression();
2236 if (MI
.isIndirectDebugValue()) {
2237 assert(MI
.getDebugOffset().getImm() == 0 &&
2238 "DBG_VALUE with nonzero offset");
2239 Expr
= DIExpression::prepend(Expr
, DIExpression::DerefBefore
);
2240 } else if (MI
.isDebugValueList()) {
2241 // We will replace the spilled register with a frame index, so
2242 // immediately deref all references to the spilled register.
2243 std::array
<uint64_t, 1> Ops
{{dwarf::DW_OP_deref
}};
2244 for (const MachineOperand
*Op
: SpilledOperands
) {
2245 unsigned OpIdx
= MI
.getDebugOperandIndex(Op
);
2246 Expr
= DIExpression::appendOpsToArg(Expr
, Ops
, OpIdx
);
2251 static const DIExpression
*computeExprForSpill(const MachineInstr
&MI
,
2252 Register SpillReg
) {
2253 assert(MI
.hasDebugOperandForReg(SpillReg
) && "Spill Reg is not used in MI.");
2254 SmallVector
<const MachineOperand
*> SpillOperands
;
2255 for (const MachineOperand
&Op
: MI
.getDebugOperandsForReg(SpillReg
))
2256 SpillOperands
.push_back(&Op
);
2257 return computeExprForSpill(MI
, SpillOperands
);
2260 MachineInstr
*llvm::buildDbgValueForSpill(MachineBasicBlock
&BB
,
2261 MachineBasicBlock::iterator I
,
2262 const MachineInstr
&Orig
,
2263 int FrameIndex
, Register SpillReg
) {
2264 assert(!Orig
.isDebugRef() &&
2265 "DBG_INSTR_REF should not reference a virtual register.");
2266 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpillReg
);
2267 MachineInstrBuilder NewMI
=
2268 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2269 // Non-Variadic Operands: Location, Offset, Variable, Expression
2270 // Variadic Operands: Variable, Expression, Locations...
2271 if (Orig
.isNonListDebugValue())
2272 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2273 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2274 if (Orig
.isDebugValueList()) {
2275 for (const MachineOperand
&Op
: Orig
.debug_operands())
2276 if (Op
.isReg() && Op
.getReg() == SpillReg
)
2277 NewMI
.addFrameIndex(FrameIndex
);
2279 NewMI
.add(MachineOperand(Op
));
2283 MachineInstr
*llvm::buildDbgValueForSpill(
2284 MachineBasicBlock
&BB
, MachineBasicBlock::iterator I
,
2285 const MachineInstr
&Orig
, int FrameIndex
,
2286 SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2287 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpilledOperands
);
2288 MachineInstrBuilder NewMI
=
2289 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2290 // Non-Variadic Operands: Location, Offset, Variable, Expression
2291 // Variadic Operands: Variable, Expression, Locations...
2292 if (Orig
.isNonListDebugValue())
2293 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2294 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2295 if (Orig
.isDebugValueList()) {
2296 for (const MachineOperand
&Op
: Orig
.debug_operands())
2297 if (is_contained(SpilledOperands
, &Op
))
2298 NewMI
.addFrameIndex(FrameIndex
);
2300 NewMI
.add(MachineOperand(Op
));
2305 void llvm::updateDbgValueForSpill(MachineInstr
&Orig
, int FrameIndex
,
2307 const DIExpression
*Expr
= computeExprForSpill(Orig
, Reg
);
2308 if (Orig
.isNonListDebugValue())
2309 Orig
.getDebugOffset().ChangeToImmediate(0U);
2310 for (MachineOperand
&Op
: Orig
.getDebugOperandsForReg(Reg
))
2311 Op
.ChangeToFrameIndex(FrameIndex
);
2312 Orig
.getDebugExpressionOp().setMetadata(Expr
);
2315 void MachineInstr::collectDebugValues(
2316 SmallVectorImpl
<MachineInstr
*> &DbgValues
) {
2317 MachineInstr
&MI
= *this;
2318 if (!MI
.getOperand(0).isReg())
2321 MachineBasicBlock::iterator DI
= MI
; ++DI
;
2322 for (MachineBasicBlock::iterator DE
= MI
.getParent()->end();
2324 if (!DI
->isDebugValue())
2326 if (DI
->hasDebugOperandForReg(MI
.getOperand(0).getReg()))
2327 DbgValues
.push_back(&*DI
);
2331 void MachineInstr::changeDebugValuesDefReg(Register Reg
) {
2332 // Collect matching debug values.
2333 SmallVector
<MachineInstr
*, 2> DbgValues
;
2335 if (!getOperand(0).isReg())
2338 Register DefReg
= getOperand(0).getReg();
2339 auto *MRI
= getRegInfo();
2340 for (auto &MO
: MRI
->use_operands(DefReg
)) {
2341 auto *DI
= MO
.getParent();
2342 if (!DI
->isDebugValue())
2344 if (DI
->hasDebugOperandForReg(DefReg
)) {
2345 DbgValues
.push_back(DI
);
2349 // Propagate Reg to debug value instructions.
2350 for (auto *DBI
: DbgValues
)
2351 for (MachineOperand
&Op
: DBI
->getDebugOperandsForReg(DefReg
))
2355 using MMOList
= SmallVector
<const MachineMemOperand
*, 2>;
2357 static unsigned getSpillSlotSize(const MMOList
&Accesses
,
2358 const MachineFrameInfo
&MFI
) {
2360 for (const auto *A
: Accesses
)
2361 if (MFI
.isSpillSlotObjectIndex(
2362 cast
<FixedStackPseudoSourceValue
>(A
->getPseudoValue())
2364 Size
+= A
->getSize();
2368 std::optional
<unsigned>
2369 MachineInstr::getSpillSize(const TargetInstrInfo
*TII
) const {
2371 if (TII
->isStoreToStackSlotPostFE(*this, FI
)) {
2372 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2373 if (MFI
.isSpillSlotObjectIndex(FI
))
2374 return (*memoperands_begin())->getSize();
2376 return std::nullopt
;
2379 std::optional
<unsigned>
2380 MachineInstr::getFoldedSpillSize(const TargetInstrInfo
*TII
) const {
2382 if (TII
->hasStoreToStackSlot(*this, Accesses
))
2383 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2384 return std::nullopt
;
2387 std::optional
<unsigned>
2388 MachineInstr::getRestoreSize(const TargetInstrInfo
*TII
) const {
2390 if (TII
->isLoadFromStackSlotPostFE(*this, FI
)) {
2391 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2392 if (MFI
.isSpillSlotObjectIndex(FI
))
2393 return (*memoperands_begin())->getSize();
2395 return std::nullopt
;
2398 std::optional
<unsigned>
2399 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo
*TII
) const {
2401 if (TII
->hasLoadFromStackSlot(*this, Accesses
))
2402 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2403 return std::nullopt
;
2406 unsigned MachineInstr::getDebugInstrNum() {
2407 if (DebugInstrNum
== 0)
2408 DebugInstrNum
= getParent()->getParent()->getNewDebugInstrNum();
2409 return DebugInstrNum
;
2412 unsigned MachineInstr::getDebugInstrNum(MachineFunction
&MF
) {
2413 if (DebugInstrNum
== 0)
2414 DebugInstrNum
= MF
.getNewDebugInstrNum();
2415 return DebugInstrNum
;
2418 std::tuple
<LLT
, LLT
> MachineInstr::getFirst2LLTs() const {
2419 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2420 getRegInfo()->getType(getOperand(1).getReg()));
2423 std::tuple
<LLT
, LLT
, LLT
> MachineInstr::getFirst3LLTs() const {
2424 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2425 getRegInfo()->getType(getOperand(1).getReg()),
2426 getRegInfo()->getType(getOperand(2).getReg()));
2429 std::tuple
<LLT
, LLT
, LLT
, LLT
> MachineInstr::getFirst4LLTs() const {
2430 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2431 getRegInfo()->getType(getOperand(1).getReg()),
2432 getRegInfo()->getType(getOperand(2).getReg()),
2433 getRegInfo()->getType(getOperand(3).getReg()));
2436 std::tuple
<LLT
, LLT
, LLT
, LLT
, LLT
> MachineInstr::getFirst5LLTs() const {
2437 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2438 getRegInfo()->getType(getOperand(1).getReg()),
2439 getRegInfo()->getType(getOperand(2).getReg()),
2440 getRegInfo()->getType(getOperand(3).getReg()),
2441 getRegInfo()->getType(getOperand(4).getReg()));
2444 std::tuple
<Register
, LLT
, Register
, LLT
>
2445 MachineInstr::getFirst2RegLLTs() const {
2446 Register Reg0
= getOperand(0).getReg();
2447 Register Reg1
= getOperand(1).getReg();
2448 return std::tuple(Reg0
, getRegInfo()->getType(Reg0
), Reg1
,
2449 getRegInfo()->getType(Reg1
));
2452 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
>
2453 MachineInstr::getFirst3RegLLTs() const {
2454 Register Reg0
= getOperand(0).getReg();
2455 Register Reg1
= getOperand(1).getReg();
2456 Register Reg2
= getOperand(2).getReg();
2457 return std::tuple(Reg0
, getRegInfo()->getType(Reg0
), Reg1
,
2458 getRegInfo()->getType(Reg1
), Reg2
,
2459 getRegInfo()->getType(Reg2
));
2462 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
, LLT
>
2463 MachineInstr::getFirst4RegLLTs() const {
2464 Register Reg0
= getOperand(0).getReg();
2465 Register Reg1
= getOperand(1).getReg();
2466 Register Reg2
= getOperand(2).getReg();
2467 Register Reg3
= getOperand(3).getReg();
2469 Reg0
, getRegInfo()->getType(Reg0
), Reg1
, getRegInfo()->getType(Reg1
),
2470 Reg2
, getRegInfo()->getType(Reg2
), Reg3
, getRegInfo()->getType(Reg3
));
2473 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
,
2475 MachineInstr::getFirst5RegLLTs() const {
2476 Register Reg0
= getOperand(0).getReg();
2477 Register Reg1
= getOperand(1).getReg();
2478 Register Reg2
= getOperand(2).getReg();
2479 Register Reg3
= getOperand(3).getReg();
2480 Register Reg4
= getOperand(4).getReg();
2482 Reg0
, getRegInfo()->getType(Reg0
), Reg1
, getRegInfo()->getType(Reg1
),
2483 Reg2
, getRegInfo()->getType(Reg2
), Reg3
, getRegInfo()->getType(Reg3
),
2484 Reg4
, getRegInfo()->getType(Reg4
));
2487 void MachineInstr::insert(mop_iterator InsertBefore
,
2488 ArrayRef
<MachineOperand
> Ops
) {
2489 assert(InsertBefore
!= nullptr && "invalid iterator");
2490 assert(InsertBefore
->getParent() == this &&
2491 "iterator points to operand of other inst");
2495 // Do one pass to untie operands.
2496 SmallDenseMap
<unsigned, unsigned> TiedOpIndices
;
2497 for (const MachineOperand
&MO
: operands()) {
2498 if (MO
.isReg() && MO
.isTied()) {
2499 unsigned OpNo
= getOperandNo(&MO
);
2500 unsigned TiedTo
= findTiedOperandIdx(OpNo
);
2501 TiedOpIndices
[OpNo
] = TiedTo
;
2502 untieRegOperand(OpNo
);
2506 unsigned OpIdx
= getOperandNo(InsertBefore
);
2507 unsigned NumOperands
= getNumOperands();
2508 unsigned OpsToMove
= NumOperands
- OpIdx
;
2510 SmallVector
<MachineOperand
> MovingOps
;
2511 MovingOps
.reserve(OpsToMove
);
2513 for (unsigned I
= 0; I
< OpsToMove
; ++I
) {
2514 MovingOps
.emplace_back(getOperand(OpIdx
));
2515 removeOperand(OpIdx
);
2517 for (const MachineOperand
&MO
: Ops
)
2519 for (const MachineOperand
&OpMoved
: MovingOps
)
2520 addOperand(OpMoved
);
2523 for (auto [Tie1
, Tie2
] : TiedOpIndices
) {
2528 tieOperands(Tie1
, Tie2
);
2532 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId
) const {
2533 assert(OpId
&& "expected non-zero operand id");
2534 assert(isInlineAsm() && "should only be used on inline asm");
2536 if (!getOperand(OpId
).isReg())
2539 const MachineOperand
&MD
= getOperand(OpId
- 1);
2543 InlineAsm::Flag
F(MD
.getImm());
2544 if (F
.isRegUseKind() || F
.isRegDefKind() || F
.isRegDefEarlyClobberKind())
2545 return F
.getRegMayBeFolded();