[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / IR / Metadata.cpp
blob37017a222d4853daf0b876a931062016604890de
1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Metadata classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/DebugProgramInstruction.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ProfDataUtils.h"
44 #include "llvm/IR/TrackingMDRef.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <type_traits>
55 #include <utility>
56 #include <vector>
58 using namespace llvm;
60 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
61 : Value(Ty, MetadataAsValueVal), MD(MD) {
62 track();
65 MetadataAsValue::~MetadataAsValue() {
66 getType()->getContext().pImpl->MetadataAsValues.erase(MD);
67 untrack();
70 /// Canonicalize metadata arguments to intrinsics.
71 ///
72 /// To support bitcode upgrades (and assembly semantic sugar) for \a
73 /// MetadataAsValue, we need to canonicalize certain metadata.
74 ///
75 /// - nullptr is replaced by an empty MDNode.
76 /// - An MDNode with a single null operand is replaced by an empty MDNode.
77 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
78 ///
79 /// This maintains readability of bitcode from when metadata was a type of
80 /// value, and these bridges were unnecessary.
81 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
82 Metadata *MD) {
83 if (!MD)
84 // !{}
85 return MDNode::get(Context, std::nullopt);
87 // Return early if this isn't a single-operand MDNode.
88 auto *N = dyn_cast<MDNode>(MD);
89 if (!N || N->getNumOperands() != 1)
90 return MD;
92 if (!N->getOperand(0))
93 // !{}
94 return MDNode::get(Context, std::nullopt);
96 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
97 // Look through the MDNode.
98 return C;
100 return MD;
103 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
104 MD = canonicalizeMetadataForValue(Context, MD);
105 auto *&Entry = Context.pImpl->MetadataAsValues[MD];
106 if (!Entry)
107 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
108 return Entry;
111 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
112 Metadata *MD) {
113 MD = canonicalizeMetadataForValue(Context, MD);
114 auto &Store = Context.pImpl->MetadataAsValues;
115 return Store.lookup(MD);
118 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
119 LLVMContext &Context = getContext();
120 MD = canonicalizeMetadataForValue(Context, MD);
121 auto &Store = Context.pImpl->MetadataAsValues;
123 // Stop tracking the old metadata.
124 Store.erase(this->MD);
125 untrack();
126 this->MD = nullptr;
128 // Start tracking MD, or RAUW if necessary.
129 auto *&Entry = Store[MD];
130 if (Entry) {
131 replaceAllUsesWith(Entry);
132 delete this;
133 return;
136 this->MD = MD;
137 track();
138 Entry = this;
141 void MetadataAsValue::track() {
142 if (MD)
143 MetadataTracking::track(&MD, *MD, *this);
146 void MetadataAsValue::untrack() {
147 if (MD)
148 MetadataTracking::untrack(MD);
151 DPValue *DebugValueUser::getUser() { return static_cast<DPValue *>(this); }
152 const DPValue *DebugValueUser::getUser() const {
153 return static_cast<const DPValue *>(this);
156 void DebugValueUser::handleChangedValue(void *Old, Metadata *New) {
157 // NOTE: We could inform the "owner" that a value has changed through
158 // getOwner, if needed.
159 auto OldMD = static_cast<Metadata **>(Old);
160 ptrdiff_t Idx = std::distance(&*DebugValues.begin(), OldMD);
161 resetDebugValue(Idx, New);
164 void DebugValueUser::trackDebugValue(size_t Idx) {
165 assert(Idx < 3 && "Invalid debug value index.");
166 Metadata *&MD = DebugValues[Idx];
167 if (MD)
168 MetadataTracking::track(&MD, *MD, *this);
171 void DebugValueUser::trackDebugValues() {
172 for (Metadata *&MD : DebugValues)
173 if (MD)
174 MetadataTracking::track(&MD, *MD, *this);
177 void DebugValueUser::untrackDebugValue(size_t Idx) {
178 assert(Idx < 3 && "Invalid debug value index.");
179 Metadata *&MD = DebugValues[Idx];
180 if (MD)
181 MetadataTracking::untrack(MD);
184 void DebugValueUser::untrackDebugValues() {
185 for (Metadata *&MD : DebugValues)
186 if (MD)
187 MetadataTracking::untrack(MD);
190 void DebugValueUser::retrackDebugValues(DebugValueUser &X) {
191 assert(DebugValueUser::operator==(X) && "Expected values to match");
192 for (const auto &[MD, XMD] : zip(DebugValues, X.DebugValues))
193 if (XMD)
194 MetadataTracking::retrack(XMD, MD);
195 X.DebugValues.fill(nullptr);
198 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
199 assert(Ref && "Expected live reference");
200 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
201 "Reference without owner must be direct");
202 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
203 R->addRef(Ref, Owner);
204 return true;
206 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
207 assert(!PH->Use && "Placeholders can only be used once");
208 assert(!Owner && "Unexpected callback to owner");
209 PH->Use = static_cast<Metadata **>(Ref);
210 return true;
212 return false;
215 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
216 assert(Ref && "Expected live reference");
217 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
218 R->dropRef(Ref);
219 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
220 PH->Use = nullptr;
223 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
224 assert(Ref && "Expected live reference");
225 assert(New && "Expected live reference");
226 assert(Ref != New && "Expected change");
227 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
228 R->moveRef(Ref, New, MD);
229 return true;
231 assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
232 "Unexpected move of an MDOperand");
233 assert(!isReplaceable(MD) &&
234 "Expected un-replaceable metadata, since we didn't move a reference");
235 return false;
238 bool MetadataTracking::isReplaceable(const Metadata &MD) {
239 return ReplaceableMetadataImpl::isReplaceable(MD);
242 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() {
243 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID;
244 for (auto Pair : UseMap) {
245 OwnerTy Owner = Pair.second.first;
246 if (Owner.isNull())
247 continue;
248 if (!isa<Metadata *>(Owner))
249 continue;
250 Metadata *OwnerMD = cast<Metadata *>(Owner);
251 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind)
252 MDUsersWithID.push_back(&UseMap[Pair.first]);
254 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) {
255 return UserA->second < UserB->second;
257 SmallVector<Metadata *> MDUsers;
258 for (auto *UserWithID : MDUsersWithID)
259 MDUsers.push_back(cast<Metadata *>(UserWithID->first));
260 return MDUsers;
263 SmallVector<DPValue *> ReplaceableMetadataImpl::getAllDPValueUsers() {
264 SmallVector<std::pair<OwnerTy, uint64_t> *> DPVUsersWithID;
265 for (auto Pair : UseMap) {
266 OwnerTy Owner = Pair.second.first;
267 if (Owner.isNull())
268 continue;
269 if (!Owner.is<DebugValueUser *>())
270 continue;
271 DPVUsersWithID.push_back(&UseMap[Pair.first]);
273 // Order DPValue users in reverse-creation order. Normal dbg.value users
274 // of MetadataAsValues are ordered by their UseList, i.e. reverse order of
275 // when they were added: we need to replicate that here. The structure of
276 // debug-info output depends on the ordering of intrinsics, thus we need
277 // to keep them consistent for comparisons sake.
278 llvm::sort(DPVUsersWithID, [](auto UserA, auto UserB) {
279 return UserA->second > UserB->second;
281 SmallVector<DPValue *> DPVUsers;
282 for (auto UserWithID : DPVUsersWithID)
283 DPVUsers.push_back(UserWithID->first.get<DebugValueUser *>()->getUser());
284 return DPVUsers;
287 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
288 bool WasInserted =
289 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
290 .second;
291 (void)WasInserted;
292 assert(WasInserted && "Expected to add a reference");
294 ++NextIndex;
295 assert(NextIndex != 0 && "Unexpected overflow");
298 void ReplaceableMetadataImpl::dropRef(void *Ref) {
299 bool WasErased = UseMap.erase(Ref);
300 (void)WasErased;
301 assert(WasErased && "Expected to drop a reference");
304 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
305 const Metadata &MD) {
306 auto I = UseMap.find(Ref);
307 assert(I != UseMap.end() && "Expected to move a reference");
308 auto OwnerAndIndex = I->second;
309 UseMap.erase(I);
310 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
311 (void)WasInserted;
312 assert(WasInserted && "Expected to add a reference");
314 // Check that the references are direct if there's no owner.
315 (void)MD;
316 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
317 "Reference without owner must be direct");
318 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
319 "Reference without owner must be direct");
322 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) {
323 if (!C.isUsedByMetadata()) {
324 return;
327 LLVMContext &Context = C.getType()->getContext();
328 auto &Store = Context.pImpl->ValuesAsMetadata;
329 auto I = Store.find(&C);
330 ValueAsMetadata *MD = I->second;
331 using UseTy =
332 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>;
333 // Copy out uses and update value of Constant used by debug info metadata with undef below
334 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end());
336 for (const auto &Pair : Uses) {
337 MetadataTracking::OwnerTy Owner = Pair.second.first;
338 if (!Owner)
339 continue;
340 if (!isa<Metadata *>(Owner))
341 continue;
342 auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner));
343 if (!OwnerMD)
344 continue;
345 if (isa<DINode>(OwnerMD)) {
346 OwnerMD->handleChangedOperand(
347 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType())));
352 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
353 if (UseMap.empty())
354 return;
356 // Copy out uses since UseMap will get touched below.
357 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
358 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
359 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
360 return L.second.second < R.second.second;
362 for (const auto &Pair : Uses) {
363 // Check that this Ref hasn't disappeared after RAUW (when updating a
364 // previous Ref).
365 if (!UseMap.count(Pair.first))
366 continue;
368 OwnerTy Owner = Pair.second.first;
369 if (!Owner) {
370 // Update unowned tracking references directly.
371 Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
372 Ref = MD;
373 if (MD)
374 MetadataTracking::track(Ref);
375 UseMap.erase(Pair.first);
376 continue;
379 // Check for MetadataAsValue.
380 if (isa<MetadataAsValue *>(Owner)) {
381 cast<MetadataAsValue *>(Owner)->handleChangedMetadata(MD);
382 continue;
385 if (Owner.is<DebugValueUser *>()) {
386 Owner.get<DebugValueUser *>()->handleChangedValue(Pair.first, MD);
387 continue;
390 // There's a Metadata owner -- dispatch.
391 Metadata *OwnerMD = cast<Metadata *>(Owner);
392 switch (OwnerMD->getMetadataID()) {
393 #define HANDLE_METADATA_LEAF(CLASS) \
394 case Metadata::CLASS##Kind: \
395 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
396 continue;
397 #include "llvm/IR/Metadata.def"
398 default:
399 llvm_unreachable("Invalid metadata subclass");
402 assert(UseMap.empty() && "Expected all uses to be replaced");
405 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
406 if (UseMap.empty())
407 return;
409 if (!ResolveUsers) {
410 UseMap.clear();
411 return;
414 // Copy out uses since UseMap could get touched below.
415 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
416 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
417 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
418 return L.second.second < R.second.second;
420 UseMap.clear();
421 for (const auto &Pair : Uses) {
422 auto Owner = Pair.second.first;
423 if (!Owner)
424 continue;
425 if (!Owner.is<Metadata *>())
426 continue;
428 // Resolve MDNodes that point at this.
429 auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner));
430 if (!OwnerMD)
431 continue;
432 if (OwnerMD->isResolved())
433 continue;
434 OwnerMD->decrementUnresolvedOperandCount();
438 // Special handing of DIArgList is required in the RemoveDIs project, see
439 // commentry in DIArgList::handleChangedOperand for details. Hidden behind
440 // conditional compilation to avoid a compile time regression.
441 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
442 if (auto *N = dyn_cast<MDNode>(&MD)) {
443 return !N->isResolved() || N->isAlwaysReplaceable()
444 ? N->Context.getOrCreateReplaceableUses()
445 : nullptr;
447 if (auto ArgList = dyn_cast<DIArgList>(&MD))
448 return ArgList;
449 return dyn_cast<ValueAsMetadata>(&MD);
452 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
453 if (auto *N = dyn_cast<MDNode>(&MD)) {
454 return !N->isResolved() || N->isAlwaysReplaceable()
455 ? N->Context.getReplaceableUses()
456 : nullptr;
458 if (auto ArgList = dyn_cast<DIArgList>(&MD))
459 return ArgList;
460 return dyn_cast<ValueAsMetadata>(&MD);
463 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
464 if (auto *N = dyn_cast<MDNode>(&MD))
465 return !N->isResolved() || N->isAlwaysReplaceable();
466 return isa<ValueAsMetadata>(&MD) || isa<DIArgList>(&MD);
469 static DISubprogram *getLocalFunctionMetadata(Value *V) {
470 assert(V && "Expected value");
471 if (auto *A = dyn_cast<Argument>(V)) {
472 if (auto *Fn = A->getParent())
473 return Fn->getSubprogram();
474 return nullptr;
477 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
478 if (auto *Fn = BB->getParent())
479 return Fn->getSubprogram();
480 return nullptr;
483 return nullptr;
486 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
487 assert(V && "Unexpected null Value");
489 auto &Context = V->getContext();
490 auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
491 if (!Entry) {
492 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
493 "Expected constant or function-local value");
494 assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
495 V->IsUsedByMD = true;
496 if (auto *C = dyn_cast<Constant>(V))
497 Entry = new ConstantAsMetadata(C);
498 else
499 Entry = new LocalAsMetadata(V);
502 return Entry;
505 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
506 assert(V && "Unexpected null Value");
507 return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
510 void ValueAsMetadata::handleDeletion(Value *V) {
511 assert(V && "Expected valid value");
513 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
514 auto I = Store.find(V);
515 if (I == Store.end())
516 return;
518 // Remove old entry from the map.
519 ValueAsMetadata *MD = I->second;
520 assert(MD && "Expected valid metadata");
521 assert(MD->getValue() == V && "Expected valid mapping");
522 Store.erase(I);
524 // Delete the metadata.
525 MD->replaceAllUsesWith(nullptr);
526 delete MD;
529 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
530 assert(From && "Expected valid value");
531 assert(To && "Expected valid value");
532 assert(From != To && "Expected changed value");
533 assert(&From->getContext() == &To->getContext() && "Expected same context");
535 LLVMContext &Context = From->getType()->getContext();
536 auto &Store = Context.pImpl->ValuesAsMetadata;
537 auto I = Store.find(From);
538 if (I == Store.end()) {
539 assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
540 return;
543 // Remove old entry from the map.
544 assert(From->IsUsedByMD && "Expected From to be used by metadata");
545 From->IsUsedByMD = false;
546 ValueAsMetadata *MD = I->second;
547 assert(MD && "Expected valid metadata");
548 assert(MD->getValue() == From && "Expected valid mapping");
549 Store.erase(I);
551 if (isa<LocalAsMetadata>(MD)) {
552 if (auto *C = dyn_cast<Constant>(To)) {
553 // Local became a constant.
554 MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
555 delete MD;
556 return;
558 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
559 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
560 // DISubprogram changed.
561 MD->replaceAllUsesWith(nullptr);
562 delete MD;
563 return;
565 } else if (!isa<Constant>(To)) {
566 // Changed to function-local value.
567 MD->replaceAllUsesWith(nullptr);
568 delete MD;
569 return;
572 auto *&Entry = Store[To];
573 if (Entry) {
574 // The target already exists.
575 MD->replaceAllUsesWith(Entry);
576 delete MD;
577 return;
580 // Update MD in place (and update the map entry).
581 assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
582 To->IsUsedByMD = true;
583 MD->V = To;
584 Entry = MD;
587 //===----------------------------------------------------------------------===//
588 // MDString implementation.
591 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
592 auto &Store = Context.pImpl->MDStringCache;
593 auto I = Store.try_emplace(Str);
594 auto &MapEntry = I.first->getValue();
595 if (!I.second)
596 return &MapEntry;
597 MapEntry.Entry = &*I.first;
598 return &MapEntry;
601 StringRef MDString::getString() const {
602 assert(Entry && "Expected to find string map entry");
603 return Entry->first();
606 //===----------------------------------------------------------------------===//
607 // MDNode implementation.
610 // Assert that the MDNode types will not be unaligned by the objects
611 // prepended to them.
612 #define HANDLE_MDNODE_LEAF(CLASS) \
613 static_assert( \
614 alignof(uint64_t) >= alignof(CLASS), \
615 "Alignment is insufficient after objects prepended to " #CLASS);
616 #include "llvm/IR/Metadata.def"
618 void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) {
619 // uint64_t is the most aligned type we need support (ensured by static_assert
620 // above)
621 size_t AllocSize =
622 alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t));
623 char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size));
624 Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage);
625 return reinterpret_cast<void *>(H + 1);
628 void MDNode::operator delete(void *N) {
629 Header *H = reinterpret_cast<Header *>(N) - 1;
630 void *Mem = H->getAllocation();
631 H->~Header();
632 ::operator delete(Mem);
635 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
636 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
637 : Metadata(ID, Storage), Context(Context) {
638 unsigned Op = 0;
639 for (Metadata *MD : Ops1)
640 setOperand(Op++, MD);
641 for (Metadata *MD : Ops2)
642 setOperand(Op++, MD);
644 if (!isUniqued())
645 return;
647 // Count the unresolved operands. If there are any, RAUW support will be
648 // added lazily on first reference.
649 countUnresolvedOperands();
652 TempMDNode MDNode::clone() const {
653 switch (getMetadataID()) {
654 default:
655 llvm_unreachable("Invalid MDNode subclass");
656 #define HANDLE_MDNODE_LEAF(CLASS) \
657 case CLASS##Kind: \
658 return cast<CLASS>(this)->cloneImpl();
659 #include "llvm/IR/Metadata.def"
663 MDNode::Header::Header(size_t NumOps, StorageType Storage) {
664 IsLarge = isLarge(NumOps);
665 IsResizable = isResizable(Storage);
666 SmallSize = getSmallSize(NumOps, IsResizable, IsLarge);
667 if (IsLarge) {
668 SmallNumOps = 0;
669 new (getLargePtr()) LargeStorageVector();
670 getLarge().resize(NumOps);
671 return;
673 SmallNumOps = NumOps;
674 MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize;
675 for (MDOperand *E = O + SmallSize; O != E;)
676 (void)new (O++) MDOperand();
679 MDNode::Header::~Header() {
680 if (IsLarge) {
681 getLarge().~LargeStorageVector();
682 return;
684 MDOperand *O = reinterpret_cast<MDOperand *>(this);
685 for (MDOperand *E = O - SmallSize; O != E; --O)
686 (void)(O - 1)->~MDOperand();
689 void *MDNode::Header::getSmallPtr() {
690 static_assert(alignof(MDOperand) <= alignof(Header),
691 "MDOperand too strongly aligned");
692 return reinterpret_cast<char *>(const_cast<Header *>(this)) -
693 sizeof(MDOperand) * SmallSize;
696 void MDNode::Header::resize(size_t NumOps) {
697 assert(IsResizable && "Node is not resizable");
698 if (operands().size() == NumOps)
699 return;
701 if (IsLarge)
702 getLarge().resize(NumOps);
703 else if (NumOps <= SmallSize)
704 resizeSmall(NumOps);
705 else
706 resizeSmallToLarge(NumOps);
709 void MDNode::Header::resizeSmall(size_t NumOps) {
710 assert(!IsLarge && "Expected a small MDNode");
711 assert(NumOps <= SmallSize && "NumOps too large for small resize");
713 MutableArrayRef<MDOperand> ExistingOps = operands();
714 assert(NumOps != ExistingOps.size() && "Expected a different size");
716 int NumNew = (int)NumOps - (int)ExistingOps.size();
717 MDOperand *O = ExistingOps.end();
718 for (int I = 0, E = NumNew; I < E; ++I)
719 (O++)->reset();
720 for (int I = 0, E = NumNew; I > E; --I)
721 (--O)->reset();
722 SmallNumOps = NumOps;
723 assert(O == operands().end() && "Operands not (un)initialized until the end");
726 void MDNode::Header::resizeSmallToLarge(size_t NumOps) {
727 assert(!IsLarge && "Expected a small MDNode");
728 assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation");
729 LargeStorageVector NewOps;
730 NewOps.resize(NumOps);
731 llvm::move(operands(), NewOps.begin());
732 resizeSmall(0);
733 new (getLargePtr()) LargeStorageVector(std::move(NewOps));
734 IsLarge = true;
737 static bool isOperandUnresolved(Metadata *Op) {
738 if (auto *N = dyn_cast_or_null<MDNode>(Op))
739 return !N->isResolved();
740 return false;
743 void MDNode::countUnresolvedOperands() {
744 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted");
745 assert(isUniqued() && "Expected this to be uniqued");
746 setNumUnresolved(count_if(operands(), isOperandUnresolved));
749 void MDNode::makeUniqued() {
750 assert(isTemporary() && "Expected this to be temporary");
751 assert(!isResolved() && "Expected this to be unresolved");
753 // Enable uniquing callbacks.
754 for (auto &Op : mutable_operands())
755 Op.reset(Op.get(), this);
757 // Make this 'uniqued'.
758 Storage = Uniqued;
759 countUnresolvedOperands();
760 if (!getNumUnresolved()) {
761 dropReplaceableUses();
762 assert(isResolved() && "Expected this to be resolved");
765 assert(isUniqued() && "Expected this to be uniqued");
768 void MDNode::makeDistinct() {
769 assert(isTemporary() && "Expected this to be temporary");
770 assert(!isResolved() && "Expected this to be unresolved");
772 // Drop RAUW support and store as a distinct node.
773 dropReplaceableUses();
774 storeDistinctInContext();
776 assert(isDistinct() && "Expected this to be distinct");
777 assert(isResolved() && "Expected this to be resolved");
780 void MDNode::resolve() {
781 assert(isUniqued() && "Expected this to be uniqued");
782 assert(!isResolved() && "Expected this to be unresolved");
784 setNumUnresolved(0);
785 dropReplaceableUses();
787 assert(isResolved() && "Expected this to be resolved");
790 void MDNode::dropReplaceableUses() {
791 assert(!getNumUnresolved() && "Unexpected unresolved operand");
793 // Drop any RAUW support.
794 if (Context.hasReplaceableUses())
795 Context.takeReplaceableUses()->resolveAllUses();
798 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
799 assert(isUniqued() && "Expected this to be uniqued");
800 assert(getNumUnresolved() != 0 && "Expected unresolved operands");
802 // Check if an operand was resolved.
803 if (!isOperandUnresolved(Old)) {
804 if (isOperandUnresolved(New))
805 // An operand was un-resolved!
806 setNumUnresolved(getNumUnresolved() + 1);
807 } else if (!isOperandUnresolved(New))
808 decrementUnresolvedOperandCount();
811 void MDNode::decrementUnresolvedOperandCount() {
812 assert(!isResolved() && "Expected this to be unresolved");
813 if (isTemporary())
814 return;
816 assert(isUniqued() && "Expected this to be uniqued");
817 setNumUnresolved(getNumUnresolved() - 1);
818 if (getNumUnresolved())
819 return;
821 // Last unresolved operand has just been resolved.
822 dropReplaceableUses();
823 assert(isResolved() && "Expected this to become resolved");
826 void MDNode::resolveCycles() {
827 if (isResolved())
828 return;
830 // Resolve this node immediately.
831 resolve();
833 // Resolve all operands.
834 for (const auto &Op : operands()) {
835 auto *N = dyn_cast_or_null<MDNode>(Op);
836 if (!N)
837 continue;
839 assert(!N->isTemporary() &&
840 "Expected all forward declarations to be resolved");
841 if (!N->isResolved())
842 N->resolveCycles();
846 static bool hasSelfReference(MDNode *N) {
847 return llvm::is_contained(N->operands(), N);
850 MDNode *MDNode::replaceWithPermanentImpl() {
851 switch (getMetadataID()) {
852 default:
853 // If this type isn't uniquable, replace with a distinct node.
854 return replaceWithDistinctImpl();
856 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
857 case CLASS##Kind: \
858 break;
859 #include "llvm/IR/Metadata.def"
862 // Even if this type is uniquable, self-references have to be distinct.
863 if (hasSelfReference(this))
864 return replaceWithDistinctImpl();
865 return replaceWithUniquedImpl();
868 MDNode *MDNode::replaceWithUniquedImpl() {
869 // Try to uniquify in place.
870 MDNode *UniquedNode = uniquify();
872 if (UniquedNode == this) {
873 makeUniqued();
874 return this;
877 // Collision, so RAUW instead.
878 replaceAllUsesWith(UniquedNode);
879 deleteAsSubclass();
880 return UniquedNode;
883 MDNode *MDNode::replaceWithDistinctImpl() {
884 makeDistinct();
885 return this;
888 void MDTuple::recalculateHash() {
889 setHash(MDTupleInfo::KeyTy::calculateHash(this));
892 void MDNode::dropAllReferences() {
893 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
894 setOperand(I, nullptr);
895 if (Context.hasReplaceableUses()) {
896 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
897 (void)Context.takeReplaceableUses();
901 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
902 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
903 assert(Op < getNumOperands() && "Expected valid operand");
905 if (!isUniqued()) {
906 // This node is not uniqued. Just set the operand and be done with it.
907 setOperand(Op, New);
908 return;
911 // This node is uniqued.
912 eraseFromStore();
914 Metadata *Old = getOperand(Op);
915 setOperand(Op, New);
917 // Drop uniquing for self-reference cycles and deleted constants.
918 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
919 if (!isResolved())
920 resolve();
921 storeDistinctInContext();
922 return;
925 // Re-unique the node.
926 auto *Uniqued = uniquify();
927 if (Uniqued == this) {
928 if (!isResolved())
929 resolveAfterOperandChange(Old, New);
930 return;
933 // Collision.
934 if (!isResolved()) {
935 // Still unresolved, so RAUW.
937 // First, clear out all operands to prevent any recursion (similar to
938 // dropAllReferences(), but we still need the use-list).
939 for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
940 setOperand(O, nullptr);
941 if (Context.hasReplaceableUses())
942 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
943 deleteAsSubclass();
944 return;
947 // Store in non-uniqued form if RAUW isn't possible.
948 storeDistinctInContext();
951 void MDNode::deleteAsSubclass() {
952 switch (getMetadataID()) {
953 default:
954 llvm_unreachable("Invalid subclass of MDNode");
955 #define HANDLE_MDNODE_LEAF(CLASS) \
956 case CLASS##Kind: \
957 delete cast<CLASS>(this); \
958 break;
959 #include "llvm/IR/Metadata.def"
963 template <class T, class InfoT>
964 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
965 if (T *U = getUniqued(Store, N))
966 return U;
968 Store.insert(N);
969 return N;
972 template <class NodeTy> struct MDNode::HasCachedHash {
973 using Yes = char[1];
974 using No = char[2];
975 template <class U, U Val> struct SFINAE {};
977 template <class U>
978 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
979 template <class U> static No &check(...);
981 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
984 MDNode *MDNode::uniquify() {
985 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
987 // Try to insert into uniquing store.
988 switch (getMetadataID()) {
989 default:
990 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
991 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
992 case CLASS##Kind: { \
993 CLASS *SubclassThis = cast<CLASS>(this); \
994 std::integral_constant<bool, HasCachedHash<CLASS>::value> \
995 ShouldRecalculateHash; \
996 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
997 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
999 #include "llvm/IR/Metadata.def"
1003 void MDNode::eraseFromStore() {
1004 switch (getMetadataID()) {
1005 default:
1006 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
1007 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
1008 case CLASS##Kind: \
1009 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
1010 break;
1011 #include "llvm/IR/Metadata.def"
1015 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1016 StorageType Storage, bool ShouldCreate) {
1017 unsigned Hash = 0;
1018 if (Storage == Uniqued) {
1019 MDTupleInfo::KeyTy Key(MDs);
1020 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
1021 return N;
1022 if (!ShouldCreate)
1023 return nullptr;
1024 Hash = Key.getHash();
1025 } else {
1026 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
1029 return storeImpl(new (MDs.size(), Storage)
1030 MDTuple(Context, Storage, Hash, MDs),
1031 Storage, Context.pImpl->MDTuples);
1034 void MDNode::deleteTemporary(MDNode *N) {
1035 assert(N->isTemporary() && "Expected temporary node");
1036 N->replaceAllUsesWith(nullptr);
1037 N->deleteAsSubclass();
1040 void MDNode::storeDistinctInContext() {
1041 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
1042 assert(!getNumUnresolved() && "Unexpected unresolved nodes");
1043 Storage = Distinct;
1044 assert(isResolved() && "Expected this to be resolved");
1046 // Reset the hash.
1047 switch (getMetadataID()) {
1048 default:
1049 llvm_unreachable("Invalid subclass of MDNode");
1050 #define HANDLE_MDNODE_LEAF(CLASS) \
1051 case CLASS##Kind: { \
1052 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
1053 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
1054 break; \
1056 #include "llvm/IR/Metadata.def"
1059 getContext().pImpl->DistinctMDNodes.push_back(this);
1062 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
1063 if (getOperand(I) == New)
1064 return;
1066 if (!isUniqued()) {
1067 setOperand(I, New);
1068 return;
1071 handleChangedOperand(mutable_begin() + I, New);
1074 void MDNode::setOperand(unsigned I, Metadata *New) {
1075 assert(I < getNumOperands());
1076 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
1079 /// Get a node or a self-reference that looks like it.
1081 /// Special handling for finding self-references, for use by \a
1082 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
1083 /// when self-referencing nodes were still uniqued. If the first operand has
1084 /// the same operands as \c Ops, return the first operand instead.
1085 static MDNode *getOrSelfReference(LLVMContext &Context,
1086 ArrayRef<Metadata *> Ops) {
1087 if (!Ops.empty())
1088 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
1089 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
1090 for (unsigned I = 1, E = Ops.size(); I != E; ++I)
1091 if (Ops[I] != N->getOperand(I))
1092 return MDNode::get(Context, Ops);
1093 return N;
1096 return MDNode::get(Context, Ops);
1099 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
1100 if (!A)
1101 return B;
1102 if (!B)
1103 return A;
1105 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1106 MDs.insert(B->op_begin(), B->op_end());
1108 // FIXME: This preserves long-standing behaviour, but is it really the right
1109 // behaviour? Or was that an unintended side-effect of node uniquing?
1110 return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1113 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
1114 if (!A || !B)
1115 return nullptr;
1117 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1118 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
1119 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); });
1121 // FIXME: This preserves long-standing behaviour, but is it really the right
1122 // behaviour? Or was that an unintended side-effect of node uniquing?
1123 return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1126 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
1127 if (!A || !B)
1128 return nullptr;
1130 // Take the intersection of domains then union the scopes
1131 // within those domains
1132 SmallPtrSet<const MDNode *, 16> ADomains;
1133 SmallPtrSet<const MDNode *, 16> IntersectDomains;
1134 SmallSetVector<Metadata *, 4> MDs;
1135 for (const MDOperand &MDOp : A->operands())
1136 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1137 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1138 ADomains.insert(Domain);
1140 for (const MDOperand &MDOp : B->operands())
1141 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1142 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1143 if (ADomains.contains(Domain)) {
1144 IntersectDomains.insert(Domain);
1145 MDs.insert(MDOp);
1148 for (const MDOperand &MDOp : A->operands())
1149 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1150 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1151 if (IntersectDomains.contains(Domain))
1152 MDs.insert(MDOp);
1154 return MDs.empty() ? nullptr
1155 : getOrSelfReference(A->getContext(), MDs.getArrayRef());
1158 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
1159 if (!A || !B)
1160 return nullptr;
1162 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
1163 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
1164 if (AVal < BVal)
1165 return A;
1166 return B;
1169 // Call instructions with branch weights are only used in SamplePGO as
1170 // documented in
1171 /// https://llvm.org/docs/BranchWeightMetadata.html#callinst).
1172 MDNode *MDNode::mergeDirectCallProfMetadata(MDNode *A, MDNode *B,
1173 const Instruction *AInstr,
1174 const Instruction *BInstr) {
1175 assert(A && B && AInstr && BInstr && "Caller should guarantee");
1176 auto &Ctx = AInstr->getContext();
1177 MDBuilder MDHelper(Ctx);
1179 // LLVM IR verifier verifies !prof metadata has at least 2 operands.
1180 assert(A->getNumOperands() >= 2 && B->getNumOperands() >= 2 &&
1181 "!prof annotations should have no less than 2 operands");
1182 MDString *AMDS = dyn_cast<MDString>(A->getOperand(0));
1183 MDString *BMDS = dyn_cast<MDString>(B->getOperand(0));
1184 // LLVM IR verfier verifies first operand is MDString.
1185 assert(AMDS != nullptr && BMDS != nullptr &&
1186 "first operand should be a non-null MDString");
1187 StringRef AProfName = AMDS->getString();
1188 StringRef BProfName = BMDS->getString();
1189 if (AProfName.equals("branch_weights") &&
1190 BProfName.equals("branch_weights")) {
1191 ConstantInt *AInstrWeight =
1192 mdconst::dyn_extract<ConstantInt>(A->getOperand(1));
1193 ConstantInt *BInstrWeight =
1194 mdconst::dyn_extract<ConstantInt>(B->getOperand(1));
1195 assert(AInstrWeight && BInstrWeight && "verified by LLVM verifier");
1196 return MDNode::get(Ctx,
1197 {MDHelper.createString("branch_weights"),
1198 MDHelper.createConstant(ConstantInt::get(
1199 Type::getInt64Ty(Ctx),
1200 SaturatingAdd(AInstrWeight->getZExtValue(),
1201 BInstrWeight->getZExtValue())))});
1203 return nullptr;
1206 // Pass in both instructions and nodes. Instruction information (e.g.,
1207 // instruction type) helps interpret profiles and make implementation clearer.
1208 MDNode *MDNode::getMergedProfMetadata(MDNode *A, MDNode *B,
1209 const Instruction *AInstr,
1210 const Instruction *BInstr) {
1211 if (!(A && B)) {
1212 return A ? A : B;
1215 assert(AInstr->getMetadata(LLVMContext::MD_prof) == A &&
1216 "Caller should guarantee");
1217 assert(BInstr->getMetadata(LLVMContext::MD_prof) == B &&
1218 "Caller should guarantee");
1220 const CallInst *ACall = dyn_cast<CallInst>(AInstr);
1221 const CallInst *BCall = dyn_cast<CallInst>(BInstr);
1223 // Both ACall and BCall are direct callsites.
1224 if (ACall && BCall && ACall->getCalledFunction() &&
1225 BCall->getCalledFunction())
1226 return mergeDirectCallProfMetadata(A, B, AInstr, BInstr);
1228 // The rest of the cases are not implemented but could be added
1229 // when there are use cases.
1230 return nullptr;
1233 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1234 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1237 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
1238 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
1241 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1242 ConstantInt *Low, ConstantInt *High) {
1243 ConstantRange NewRange(Low->getValue(), High->getValue());
1244 unsigned Size = EndPoints.size();
1245 APInt LB = EndPoints[Size - 2]->getValue();
1246 APInt LE = EndPoints[Size - 1]->getValue();
1247 ConstantRange LastRange(LB, LE);
1248 if (canBeMerged(NewRange, LastRange)) {
1249 ConstantRange Union = LastRange.unionWith(NewRange);
1250 Type *Ty = High->getType();
1251 EndPoints[Size - 2] =
1252 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
1253 EndPoints[Size - 1] =
1254 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
1255 return true;
1257 return false;
1260 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1261 ConstantInt *Low, ConstantInt *High) {
1262 if (!EndPoints.empty())
1263 if (tryMergeRange(EndPoints, Low, High))
1264 return;
1266 EndPoints.push_back(Low);
1267 EndPoints.push_back(High);
1270 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
1271 // Given two ranges, we want to compute the union of the ranges. This
1272 // is slightly complicated by having to combine the intervals and merge
1273 // the ones that overlap.
1275 if (!A || !B)
1276 return nullptr;
1278 if (A == B)
1279 return A;
1281 // First, walk both lists in order of the lower boundary of each interval.
1282 // At each step, try to merge the new interval to the last one we adedd.
1283 SmallVector<ConstantInt *, 4> EndPoints;
1284 int AI = 0;
1285 int BI = 0;
1286 int AN = A->getNumOperands() / 2;
1287 int BN = B->getNumOperands() / 2;
1288 while (AI < AN && BI < BN) {
1289 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
1290 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
1292 if (ALow->getValue().slt(BLow->getValue())) {
1293 addRange(EndPoints, ALow,
1294 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1295 ++AI;
1296 } else {
1297 addRange(EndPoints, BLow,
1298 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1299 ++BI;
1302 while (AI < AN) {
1303 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
1304 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1305 ++AI;
1307 while (BI < BN) {
1308 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
1309 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1310 ++BI;
1313 // If we have more than 2 ranges (4 endpoints) we have to try to merge
1314 // the last and first ones.
1315 unsigned Size = EndPoints.size();
1316 if (Size > 4) {
1317 ConstantInt *FB = EndPoints[0];
1318 ConstantInt *FE = EndPoints[1];
1319 if (tryMergeRange(EndPoints, FB, FE)) {
1320 for (unsigned i = 0; i < Size - 2; ++i) {
1321 EndPoints[i] = EndPoints[i + 2];
1323 EndPoints.resize(Size - 2);
1327 // If in the end we have a single range, it is possible that it is now the
1328 // full range. Just drop the metadata in that case.
1329 if (EndPoints.size() == 2) {
1330 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1331 if (Range.isFullSet())
1332 return nullptr;
1335 SmallVector<Metadata *, 4> MDs;
1336 MDs.reserve(EndPoints.size());
1337 for (auto *I : EndPoints)
1338 MDs.push_back(ConstantAsMetadata::get(I));
1339 return MDNode::get(A->getContext(), MDs);
1342 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1343 if (!A || !B)
1344 return nullptr;
1346 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1347 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1348 if (AVal->getZExtValue() < BVal->getZExtValue())
1349 return A;
1350 return B;
1353 //===----------------------------------------------------------------------===//
1354 // NamedMDNode implementation.
1357 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1358 return *(SmallVector<TrackingMDRef, 4> *)Operands;
1361 NamedMDNode::NamedMDNode(const Twine &N)
1362 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
1364 NamedMDNode::~NamedMDNode() {
1365 dropAllReferences();
1366 delete &getNMDOps(Operands);
1369 unsigned NamedMDNode::getNumOperands() const {
1370 return (unsigned)getNMDOps(Operands).size();
1373 MDNode *NamedMDNode::getOperand(unsigned i) const {
1374 assert(i < getNumOperands() && "Invalid Operand number!");
1375 auto *N = getNMDOps(Operands)[i].get();
1376 return cast_or_null<MDNode>(N);
1379 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1381 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1382 assert(I < getNumOperands() && "Invalid operand number");
1383 getNMDOps(Operands)[I].reset(New);
1386 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1388 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
1390 StringRef NamedMDNode::getName() const { return StringRef(Name); }
1392 //===----------------------------------------------------------------------===//
1393 // Instruction Metadata method implementations.
1396 MDNode *MDAttachments::lookup(unsigned ID) const {
1397 for (const auto &A : Attachments)
1398 if (A.MDKind == ID)
1399 return A.Node;
1400 return nullptr;
1403 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const {
1404 for (const auto &A : Attachments)
1405 if (A.MDKind == ID)
1406 Result.push_back(A.Node);
1409 void MDAttachments::getAll(
1410 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1411 for (const auto &A : Attachments)
1412 Result.emplace_back(A.MDKind, A.Node);
1414 // Sort the resulting array so it is stable with respect to metadata IDs. We
1415 // need to preserve the original insertion order though.
1416 if (Result.size() > 1)
1417 llvm::stable_sort(Result, less_first());
1420 void MDAttachments::set(unsigned ID, MDNode *MD) {
1421 erase(ID);
1422 if (MD)
1423 insert(ID, *MD);
1426 void MDAttachments::insert(unsigned ID, MDNode &MD) {
1427 Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1430 bool MDAttachments::erase(unsigned ID) {
1431 if (empty())
1432 return false;
1434 // Common case is one value.
1435 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) {
1436 Attachments.pop_back();
1437 return true;
1440 auto OldSize = Attachments.size();
1441 llvm::erase_if(Attachments,
1442 [ID](const Attachment &A) { return A.MDKind == ID; });
1443 return OldSize != Attachments.size();
1446 MDNode *Value::getMetadata(StringRef Kind) const {
1447 if (!hasMetadata())
1448 return nullptr;
1449 unsigned KindID = getContext().getMDKindID(Kind);
1450 return getMetadataImpl(KindID);
1453 MDNode *Value::getMetadataImpl(unsigned KindID) const {
1454 const LLVMContext &Ctx = getContext();
1455 const MDAttachments &Attachements = Ctx.pImpl->ValueMetadata.at(this);
1456 return Attachements.lookup(KindID);
1459 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const {
1460 if (hasMetadata())
1461 getContext().pImpl->ValueMetadata.at(this).get(KindID, MDs);
1464 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const {
1465 if (hasMetadata())
1466 getMetadata(getContext().getMDKindID(Kind), MDs);
1469 void Value::getAllMetadata(
1470 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1471 if (hasMetadata()) {
1472 assert(getContext().pImpl->ValueMetadata.count(this) &&
1473 "bit out of sync with hash table");
1474 const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this);
1475 Info.getAll(MDs);
1479 void Value::setMetadata(unsigned KindID, MDNode *Node) {
1480 assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1482 // Handle the case when we're adding/updating metadata on a value.
1483 if (Node) {
1484 MDAttachments &Info = getContext().pImpl->ValueMetadata[this];
1485 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table");
1486 if (Info.empty())
1487 HasMetadata = true;
1488 Info.set(KindID, Node);
1489 return;
1492 // Otherwise, we're removing metadata from an instruction.
1493 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) &&
1494 "bit out of sync with hash table");
1495 if (!HasMetadata)
1496 return; // Nothing to remove!
1497 MDAttachments &Info = getContext().pImpl->ValueMetadata.find(this)->second;
1499 // Handle removal of an existing value.
1500 Info.erase(KindID);
1501 if (!Info.empty())
1502 return;
1503 getContext().pImpl->ValueMetadata.erase(this);
1504 HasMetadata = false;
1507 void Value::setMetadata(StringRef Kind, MDNode *Node) {
1508 if (!Node && !HasMetadata)
1509 return;
1510 setMetadata(getContext().getMDKindID(Kind), Node);
1513 void Value::addMetadata(unsigned KindID, MDNode &MD) {
1514 assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1515 if (!HasMetadata)
1516 HasMetadata = true;
1517 getContext().pImpl->ValueMetadata[this].insert(KindID, MD);
1520 void Value::addMetadata(StringRef Kind, MDNode &MD) {
1521 addMetadata(getContext().getMDKindID(Kind), MD);
1524 bool Value::eraseMetadata(unsigned KindID) {
1525 // Nothing to unset.
1526 if (!HasMetadata)
1527 return false;
1529 MDAttachments &Store = getContext().pImpl->ValueMetadata.find(this)->second;
1530 bool Changed = Store.erase(KindID);
1531 if (Store.empty())
1532 clearMetadata();
1533 return Changed;
1536 void Value::eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred) {
1537 if (!HasMetadata)
1538 return;
1540 auto &MetadataStore = getContext().pImpl->ValueMetadata;
1541 MDAttachments &Info = MetadataStore.find(this)->second;
1542 assert(!Info.empty() && "bit out of sync with hash table");
1543 Info.remove_if([Pred](const MDAttachments::Attachment &I) {
1544 return Pred(I.MDKind, I.Node);
1547 if (Info.empty())
1548 clearMetadata();
1551 void Value::clearMetadata() {
1552 if (!HasMetadata)
1553 return;
1554 assert(getContext().pImpl->ValueMetadata.count(this) &&
1555 "bit out of sync with hash table");
1556 getContext().pImpl->ValueMetadata.erase(this);
1557 HasMetadata = false;
1560 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1561 if (!Node && !hasMetadata())
1562 return;
1563 setMetadata(getContext().getMDKindID(Kind), Node);
1566 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1567 const LLVMContext &Ctx = getContext();
1568 unsigned KindID = Ctx.getMDKindID(Kind);
1569 if (KindID == LLVMContext::MD_dbg)
1570 return DbgLoc.getAsMDNode();
1571 return Value::getMetadata(KindID);
1574 void Instruction::eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred) {
1575 if (DbgLoc && Pred(LLVMContext::MD_dbg, DbgLoc.getAsMDNode()))
1576 DbgLoc = {};
1578 Value::eraseMetadataIf(Pred);
1581 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1582 if (!Value::hasMetadata())
1583 return; // Nothing to remove!
1585 SmallSet<unsigned, 4> KnownSet;
1586 KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1588 // A DIAssignID attachment is debug metadata, don't drop it.
1589 KnownSet.insert(LLVMContext::MD_DIAssignID);
1591 Value::eraseMetadataIf([&KnownSet](unsigned MDKind, MDNode *Node) {
1592 return !KnownSet.count(MDKind);
1596 void Instruction::updateDIAssignIDMapping(DIAssignID *ID) {
1597 auto &IDToInstrs = getContext().pImpl->AssignmentIDToInstrs;
1598 if (const DIAssignID *CurrentID =
1599 cast_or_null<DIAssignID>(getMetadata(LLVMContext::MD_DIAssignID))) {
1600 // Nothing to do if the ID isn't changing.
1601 if (ID == CurrentID)
1602 return;
1604 // Unmap this instruction from its current ID.
1605 auto InstrsIt = IDToInstrs.find(CurrentID);
1606 assert(InstrsIt != IDToInstrs.end() &&
1607 "Expect existing attachment to be mapped");
1609 auto &InstVec = InstrsIt->second;
1610 auto *InstIt = llvm::find(InstVec, this);
1611 assert(InstIt != InstVec.end() &&
1612 "Expect instruction to be mapped to attachment");
1613 // The vector contains a ptr to this. If this is the only element in the
1614 // vector, remove the ID:vector entry, otherwise just remove the
1615 // instruction from the vector.
1616 if (InstVec.size() == 1)
1617 IDToInstrs.erase(InstrsIt);
1618 else
1619 InstVec.erase(InstIt);
1622 // Map this instruction to the new ID.
1623 if (ID)
1624 IDToInstrs[ID].push_back(this);
1627 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1628 if (!Node && !hasMetadata())
1629 return;
1631 // Handle 'dbg' as a special case since it is not stored in the hash table.
1632 if (KindID == LLVMContext::MD_dbg) {
1633 DbgLoc = DebugLoc(Node);
1634 return;
1637 // Update DIAssignID to Instruction(s) mapping.
1638 if (KindID == LLVMContext::MD_DIAssignID) {
1639 // The DIAssignID tracking infrastructure doesn't support RAUWing temporary
1640 // nodes with DIAssignIDs. The cast_or_null below would also catch this, but
1641 // having a dedicated assert helps make this obvious.
1642 assert((!Node || !Node->isTemporary()) &&
1643 "Temporary DIAssignIDs are invalid");
1644 updateDIAssignIDMapping(cast_or_null<DIAssignID>(Node));
1647 Value::setMetadata(KindID, Node);
1650 void Instruction::addAnnotationMetadata(SmallVector<StringRef> Annotations) {
1651 SmallVector<Metadata *, 4> Names;
1652 if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) {
1653 SmallSetVector<StringRef, 2> AnnotationsSet(Annotations.begin(),
1654 Annotations.end());
1655 auto *Tuple = cast<MDTuple>(Existing);
1656 for (auto &N : Tuple->operands()) {
1657 if (isa<MDString>(N.get())) {
1658 Names.push_back(N);
1659 continue;
1661 auto *MDAnnotationTuple = cast<MDTuple>(N);
1662 if (any_of(MDAnnotationTuple->operands(), [&AnnotationsSet](auto &Op) {
1663 return AnnotationsSet.contains(cast<MDString>(Op)->getString());
1665 return;
1666 Names.push_back(N);
1670 MDBuilder MDB(getContext());
1671 SmallVector<Metadata *> MDAnnotationStrings;
1672 for (StringRef Annotation : Annotations)
1673 MDAnnotationStrings.push_back(MDB.createString(Annotation));
1674 MDNode *InfoTuple = MDTuple::get(getContext(), MDAnnotationStrings);
1675 Names.push_back(InfoTuple);
1676 MDNode *MD = MDTuple::get(getContext(), Names);
1677 setMetadata(LLVMContext::MD_annotation, MD);
1680 void Instruction::addAnnotationMetadata(StringRef Name) {
1681 SmallVector<Metadata *, 4> Names;
1682 if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) {
1683 auto *Tuple = cast<MDTuple>(Existing);
1684 for (auto &N : Tuple->operands()) {
1685 if (isa<MDString>(N.get()) &&
1686 cast<MDString>(N.get())->getString() == Name)
1687 return;
1688 Names.push_back(N.get());
1692 MDBuilder MDB(getContext());
1693 Names.push_back(MDB.createString(Name));
1694 MDNode *MD = MDTuple::get(getContext(), Names);
1695 setMetadata(LLVMContext::MD_annotation, MD);
1698 AAMDNodes Instruction::getAAMetadata() const {
1699 AAMDNodes Result;
1700 // Not using Instruction::hasMetadata() because we're not interested in
1701 // DebugInfoMetadata.
1702 if (Value::hasMetadata()) {
1703 const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this);
1704 Result.TBAA = Info.lookup(LLVMContext::MD_tbaa);
1705 Result.TBAAStruct = Info.lookup(LLVMContext::MD_tbaa_struct);
1706 Result.Scope = Info.lookup(LLVMContext::MD_alias_scope);
1707 Result.NoAlias = Info.lookup(LLVMContext::MD_noalias);
1709 return Result;
1712 void Instruction::setAAMetadata(const AAMDNodes &N) {
1713 setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1714 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
1715 setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1716 setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1719 void Instruction::setNoSanitizeMetadata() {
1720 setMetadata(llvm::LLVMContext::MD_nosanitize,
1721 llvm::MDNode::get(getContext(), std::nullopt));
1724 void Instruction::getAllMetadataImpl(
1725 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1726 Result.clear();
1728 // Handle 'dbg' as a special case since it is not stored in the hash table.
1729 if (DbgLoc) {
1730 Result.push_back(
1731 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1733 Value::getAllMetadata(Result);
1736 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
1737 assert(
1738 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select ||
1739 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke ||
1740 getOpcode() == Instruction::IndirectBr ||
1741 getOpcode() == Instruction::Switch) &&
1742 "Looking for branch weights on something besides branch");
1744 return ::extractProfTotalWeight(*this, TotalVal);
1747 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1748 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1749 Other->getAllMetadata(MDs);
1750 for (auto &MD : MDs) {
1751 // We need to adjust the type metadata offset.
1752 if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1753 auto *OffsetConst = cast<ConstantInt>(
1754 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1755 Metadata *TypeId = MD.second->getOperand(1);
1756 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1757 OffsetConst->getType(), OffsetConst->getValue() + Offset));
1758 addMetadata(LLVMContext::MD_type,
1759 *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1760 continue;
1762 // If an offset adjustment was specified we need to modify the DIExpression
1763 // to prepend the adjustment:
1764 // !DIExpression(DW_OP_plus, Offset, [original expr])
1765 auto *Attachment = MD.second;
1766 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
1767 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
1768 DIExpression *E = nullptr;
1769 if (!GV) {
1770 auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
1771 GV = GVE->getVariable();
1772 E = GVE->getExpression();
1774 ArrayRef<uint64_t> OrigElements;
1775 if (E)
1776 OrigElements = E->getElements();
1777 std::vector<uint64_t> Elements(OrigElements.size() + 2);
1778 Elements[0] = dwarf::DW_OP_plus_uconst;
1779 Elements[1] = Offset;
1780 llvm::copy(OrigElements, Elements.begin() + 2);
1781 E = DIExpression::get(getContext(), Elements);
1782 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
1784 addMetadata(MD.first, *Attachment);
1788 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1789 addMetadata(
1790 LLVMContext::MD_type,
1791 *MDTuple::get(getContext(),
1792 {ConstantAsMetadata::get(ConstantInt::get(
1793 Type::getInt64Ty(getContext()), Offset)),
1794 TypeID}));
1797 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) {
1798 // Remove any existing vcall visibility metadata first in case we are
1799 // updating.
1800 eraseMetadata(LLVMContext::MD_vcall_visibility);
1801 addMetadata(LLVMContext::MD_vcall_visibility,
1802 *MDNode::get(getContext(),
1803 {ConstantAsMetadata::get(ConstantInt::get(
1804 Type::getInt64Ty(getContext()), Visibility))}));
1807 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
1808 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
1809 uint64_t Val = cast<ConstantInt>(
1810 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
1811 ->getZExtValue();
1812 assert(Val <= 2 && "unknown vcall visibility!");
1813 return (VCallVisibility)Val;
1815 return VCallVisibility::VCallVisibilityPublic;
1818 void Function::setSubprogram(DISubprogram *SP) {
1819 setMetadata(LLVMContext::MD_dbg, SP);
1822 DISubprogram *Function::getSubprogram() const {
1823 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1826 bool Function::shouldEmitDebugInfoForProfiling() const {
1827 if (DISubprogram *SP = getSubprogram()) {
1828 if (DICompileUnit *CU = SP->getUnit()) {
1829 return CU->getDebugInfoForProfiling();
1832 return false;
1835 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
1836 addMetadata(LLVMContext::MD_dbg, *GV);
1839 void GlobalVariable::getDebugInfo(
1840 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
1841 SmallVector<MDNode *, 1> MDs;
1842 getMetadata(LLVMContext::MD_dbg, MDs);
1843 for (MDNode *MD : MDs)
1844 GVs.push_back(cast<DIGlobalVariableExpression>(MD));