1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/Analysis/StackSafetyAnalysis.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Bitcode/BitcodeReader.h"
23 #include "llvm/Bitcode/BitcodeWriter.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/DiagnosticPrinter.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMRemarkStreamer.h"
30 #include "llvm/IR/LegacyPassManager.h"
31 #include "llvm/IR/Mangler.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/LTO/LTOBackend.h"
34 #include "llvm/LTO/SummaryBasedOptimizations.h"
35 #include "llvm/Linker/IRMover.h"
36 #include "llvm/MC/TargetRegistry.h"
37 #include "llvm/Object/IRObjectFile.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/FileSystem.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/Path.h"
44 #include "llvm/Support/SHA1.h"
45 #include "llvm/Support/SourceMgr.h"
46 #include "llvm/Support/ThreadPool.h"
47 #include "llvm/Support/Threading.h"
48 #include "llvm/Support/TimeProfiler.h"
49 #include "llvm/Support/ToolOutputFile.h"
50 #include "llvm/Support/VCSRevision.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Transforms/IPO.h"
54 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
55 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
56 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
57 #include "llvm/Transforms/Utils/SplitModule.h"
64 using namespace object
;
66 #define DEBUG_TYPE "lto"
69 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden
,
70 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
73 /// Enable global value internalization in LTO.
74 cl::opt
<bool> EnableLTOInternalization(
75 "enable-lto-internalization", cl::init(true), cl::Hidden
,
76 cl::desc("Enable global value internalization in LTO"));
78 /// Indicate we are linking with an allocator that supports hot/cold operator
80 extern cl::opt
<bool> SupportsHotColdNew
;
82 /// Enable MemProf context disambiguation for thin link.
83 extern cl::opt
<bool> EnableMemProfContextDisambiguation
;
86 // Computes a unique hash for the Module considering the current list of
87 // export/import and other global analysis results.
88 // The hash is produced in \p Key.
89 void llvm::computeLTOCacheKey(
90 SmallString
<40> &Key
, const Config
&Conf
, const ModuleSummaryIndex
&Index
,
91 StringRef ModuleID
, const FunctionImporter::ImportMapTy
&ImportList
,
92 const FunctionImporter::ExportSetTy
&ExportList
,
93 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
94 const GVSummaryMapTy
&DefinedGlobals
,
95 const std::set
<GlobalValue::GUID
> &CfiFunctionDefs
,
96 const std::set
<GlobalValue::GUID
> &CfiFunctionDecls
) {
97 // Compute the unique hash for this entry.
98 // This is based on the current compiler version, the module itself, the
99 // export list, the hash for every single module in the import list, the
100 // list of ResolvedODR for the module, and the list of preserved symbols.
103 // Start with the compiler revision
104 Hasher
.update(LLVM_VERSION_STRING
);
106 Hasher
.update(LLVM_REVISION
);
109 // Include the parts of the LTO configuration that affect code generation.
110 auto AddString
= [&](StringRef Str
) {
112 Hasher
.update(ArrayRef
<uint8_t>{0});
114 auto AddUnsigned
= [&](unsigned I
) {
116 support::endian::write32le(Data
, I
);
117 Hasher
.update(ArrayRef
<uint8_t>{Data
, 4});
119 auto AddUint64
= [&](uint64_t I
) {
121 support::endian::write64le(Data
, I
);
122 Hasher
.update(ArrayRef
<uint8_t>{Data
, 8});
125 // FIXME: Hash more of Options. For now all clients initialize Options from
126 // command-line flags (which is unsupported in production), but may set
127 // RelaxELFRelocations. The clang driver can also pass FunctionSections,
128 // DataSections and DebuggerTuning via command line flags.
129 AddUnsigned(Conf
.Options
.RelaxELFRelocations
);
130 AddUnsigned(Conf
.Options
.FunctionSections
);
131 AddUnsigned(Conf
.Options
.DataSections
);
132 AddUnsigned((unsigned)Conf
.Options
.DebuggerTuning
);
133 for (auto &A
: Conf
.MAttrs
)
136 AddUnsigned(*Conf
.RelocModel
);
140 AddUnsigned(*Conf
.CodeModel
);
143 for (const auto &S
: Conf
.MllvmArgs
)
145 AddUnsigned(static_cast<int>(Conf
.CGOptLevel
));
146 AddUnsigned(static_cast<int>(Conf
.CGFileType
));
147 AddUnsigned(Conf
.OptLevel
);
148 AddUnsigned(Conf
.Freestanding
);
149 AddString(Conf
.OptPipeline
);
150 AddString(Conf
.AAPipeline
);
151 AddString(Conf
.OverrideTriple
);
152 AddString(Conf
.DefaultTriple
);
153 AddString(Conf
.DwoDir
);
155 // Include the hash for the current module
156 auto ModHash
= Index
.getModuleHash(ModuleID
);
157 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
159 std::vector
<uint64_t> ExportsGUID
;
160 ExportsGUID
.reserve(ExportList
.size());
161 for (const auto &VI
: ExportList
) {
162 auto GUID
= VI
.getGUID();
163 ExportsGUID
.push_back(GUID
);
166 // Sort the export list elements GUIDs.
167 llvm::sort(ExportsGUID
);
168 for (uint64_t GUID
: ExportsGUID
) {
169 // The export list can impact the internalization, be conservative here
170 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&GUID
, sizeof(GUID
)));
173 // Include the hash for every module we import functions from. The set of
174 // imported symbols for each module may affect code generation and is
175 // sensitive to link order, so include that as well.
176 using ImportMapIteratorTy
= FunctionImporter::ImportMapTy::const_iterator
;
177 struct ImportModule
{
178 ImportMapIteratorTy ModIt
;
179 const ModuleSummaryIndex::ModuleInfo
*ModInfo
;
181 StringRef
getIdentifier() const { return ModIt
->getFirst(); }
182 const FunctionImporter::FunctionsToImportTy
&getFunctions() const {
183 return ModIt
->second
;
186 const ModuleHash
&getHash() const { return ModInfo
->second
; }
189 std::vector
<ImportModule
> ImportModulesVector
;
190 ImportModulesVector
.reserve(ImportList
.size());
192 for (ImportMapIteratorTy It
= ImportList
.begin(); It
!= ImportList
.end();
194 ImportModulesVector
.push_back({It
, Index
.getModule(It
->getFirst())});
196 // Order using module hash, to be both independent of module name and
198 llvm::sort(ImportModulesVector
,
199 [](const ImportModule
&Lhs
, const ImportModule
&Rhs
) -> bool {
200 return Lhs
.getHash() < Rhs
.getHash();
202 for (const ImportModule
&Entry
: ImportModulesVector
) {
203 auto ModHash
= Entry
.getHash();
204 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
206 AddUint64(Entry
.getFunctions().size());
207 for (auto &Fn
: Entry
.getFunctions())
211 // Include the hash for the resolved ODR.
212 for (auto &Entry
: ResolvedODR
) {
213 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.first
,
214 sizeof(GlobalValue::GUID
)));
215 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.second
,
216 sizeof(GlobalValue::LinkageTypes
)));
219 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
220 // defined in this module.
221 std::set
<GlobalValue::GUID
> UsedCfiDefs
;
222 std::set
<GlobalValue::GUID
> UsedCfiDecls
;
224 // Typeids used in this module.
225 std::set
<GlobalValue::GUID
> UsedTypeIds
;
227 auto AddUsedCfiGlobal
= [&](GlobalValue::GUID ValueGUID
) {
228 if (CfiFunctionDefs
.count(ValueGUID
))
229 UsedCfiDefs
.insert(ValueGUID
);
230 if (CfiFunctionDecls
.count(ValueGUID
))
231 UsedCfiDecls
.insert(ValueGUID
);
234 auto AddUsedThings
= [&](GlobalValueSummary
*GS
) {
236 AddUnsigned(GS
->getVisibility());
237 AddUnsigned(GS
->isLive());
238 AddUnsigned(GS
->canAutoHide());
239 for (const ValueInfo
&VI
: GS
->refs()) {
240 AddUnsigned(VI
.isDSOLocal(Index
.withDSOLocalPropagation()));
241 AddUsedCfiGlobal(VI
.getGUID());
243 if (auto *GVS
= dyn_cast
<GlobalVarSummary
>(GS
)) {
244 AddUnsigned(GVS
->maybeReadOnly());
245 AddUnsigned(GVS
->maybeWriteOnly());
247 if (auto *FS
= dyn_cast
<FunctionSummary
>(GS
)) {
248 for (auto &TT
: FS
->type_tests())
249 UsedTypeIds
.insert(TT
);
250 for (auto &TT
: FS
->type_test_assume_vcalls())
251 UsedTypeIds
.insert(TT
.GUID
);
252 for (auto &TT
: FS
->type_checked_load_vcalls())
253 UsedTypeIds
.insert(TT
.GUID
);
254 for (auto &TT
: FS
->type_test_assume_const_vcalls())
255 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
256 for (auto &TT
: FS
->type_checked_load_const_vcalls())
257 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
258 for (auto &ET
: FS
->calls()) {
259 AddUnsigned(ET
.first
.isDSOLocal(Index
.withDSOLocalPropagation()));
260 AddUsedCfiGlobal(ET
.first
.getGUID());
265 // Include the hash for the linkage type to reflect internalization and weak
266 // resolution, and collect any used type identifier resolutions.
267 for (auto &GS
: DefinedGlobals
) {
268 GlobalValue::LinkageTypes Linkage
= GS
.second
->linkage();
270 ArrayRef
<uint8_t>((const uint8_t *)&Linkage
, sizeof(Linkage
)));
271 AddUsedCfiGlobal(GS
.first
);
272 AddUsedThings(GS
.second
);
275 // Imported functions may introduce new uses of type identifier resolutions,
276 // so we need to collect their used resolutions as well.
277 for (const ImportModule
&ImpM
: ImportModulesVector
)
278 for (auto &ImpF
: ImpM
.getFunctions()) {
279 GlobalValueSummary
*S
=
280 Index
.findSummaryInModule(ImpF
, ImpM
.getIdentifier());
282 // If this is an alias, we also care about any types/etc. that the aliasee
284 if (auto *AS
= dyn_cast_or_null
<AliasSummary
>(S
))
285 AddUsedThings(AS
->getBaseObject());
288 auto AddTypeIdSummary
= [&](StringRef TId
, const TypeIdSummary
&S
) {
291 AddUnsigned(S
.TTRes
.TheKind
);
292 AddUnsigned(S
.TTRes
.SizeM1BitWidth
);
294 AddUint64(S
.TTRes
.AlignLog2
);
295 AddUint64(S
.TTRes
.SizeM1
);
296 AddUint64(S
.TTRes
.BitMask
);
297 AddUint64(S
.TTRes
.InlineBits
);
299 AddUint64(S
.WPDRes
.size());
300 for (auto &WPD
: S
.WPDRes
) {
301 AddUnsigned(WPD
.first
);
302 AddUnsigned(WPD
.second
.TheKind
);
303 AddString(WPD
.second
.SingleImplName
);
305 AddUint64(WPD
.second
.ResByArg
.size());
306 for (auto &ByArg
: WPD
.second
.ResByArg
) {
307 AddUint64(ByArg
.first
.size());
308 for (uint64_t Arg
: ByArg
.first
)
310 AddUnsigned(ByArg
.second
.TheKind
);
311 AddUint64(ByArg
.second
.Info
);
312 AddUnsigned(ByArg
.second
.Byte
);
313 AddUnsigned(ByArg
.second
.Bit
);
318 // Include the hash for all type identifiers used by this module.
319 for (GlobalValue::GUID TId
: UsedTypeIds
) {
320 auto TidIter
= Index
.typeIds().equal_range(TId
);
321 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
)
322 AddTypeIdSummary(It
->second
.first
, It
->second
.second
);
325 AddUnsigned(UsedCfiDefs
.size());
326 for (auto &V
: UsedCfiDefs
)
329 AddUnsigned(UsedCfiDecls
.size());
330 for (auto &V
: UsedCfiDecls
)
333 if (!Conf
.SampleProfile
.empty()) {
334 auto FileOrErr
= MemoryBuffer::getFile(Conf
.SampleProfile
);
336 Hasher
.update(FileOrErr
.get()->getBuffer());
338 if (!Conf
.ProfileRemapping
.empty()) {
339 FileOrErr
= MemoryBuffer::getFile(Conf
.ProfileRemapping
);
341 Hasher
.update(FileOrErr
.get()->getBuffer());
346 Key
= toHex(Hasher
.result());
349 static void thinLTOResolvePrevailingGUID(
350 const Config
&C
, ValueInfo VI
,
351 DenseSet
<GlobalValueSummary
*> &GlobalInvolvedWithAlias
,
352 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
354 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
356 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
357 GlobalValue::VisibilityTypes Visibility
=
358 C
.VisibilityScheme
== Config::ELF
? VI
.getELFVisibility()
359 : GlobalValue::DefaultVisibility
;
360 for (auto &S
: VI
.getSummaryList()) {
361 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
362 // Ignore local and appending linkage values since the linker
363 // doesn't resolve them.
364 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
365 GlobalValue::isAppendingLinkage(S
->linkage()))
367 // We need to emit only one of these. The prevailing module will keep it,
368 // but turned into a weak, while the others will drop it when possible.
369 // This is both a compile-time optimization and a correctness
370 // transformation. This is necessary for correctness when we have exported
371 // a reference - we need to convert the linkonce to weak to
372 // ensure a copy is kept to satisfy the exported reference.
373 // FIXME: We may want to split the compile time and correctness
374 // aspects into separate routines.
375 if (isPrevailing(VI
.getGUID(), S
.get())) {
376 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
)) {
377 S
->setLinkage(GlobalValue::getWeakLinkage(
378 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
379 // The kept copy is eligible for auto-hiding (hidden visibility) if all
380 // copies were (i.e. they were all linkonce_odr global unnamed addr).
381 // If any copy is not (e.g. it was originally weak_odr), then the symbol
382 // must remain externally available (e.g. a weak_odr from an explicitly
383 // instantiated template). Additionally, if it is in the
384 // GUIDPreservedSymbols set, that means that it is visibile outside
385 // the summary (e.g. in a native object or a bitcode file without
386 // summary), and in that case we cannot hide it as it isn't possible to
388 S
->setCanAutoHide(VI
.canAutoHide() &&
389 !GUIDPreservedSymbols
.count(VI
.getGUID()));
391 if (C
.VisibilityScheme
== Config::FromPrevailing
)
392 Visibility
= S
->getVisibility();
394 // Alias and aliasee can't be turned into available_externally.
395 else if (!isa
<AliasSummary
>(S
.get()) &&
396 !GlobalInvolvedWithAlias
.count(S
.get()))
397 S
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
399 // For ELF, set visibility to the computed visibility from summaries. We
400 // don't track visibility from declarations so this may be more relaxed than
401 // the most constraining one.
402 if (C
.VisibilityScheme
== Config::ELF
)
403 S
->setVisibility(Visibility
);
405 if (S
->linkage() != OriginalLinkage
)
406 recordNewLinkage(S
->modulePath(), VI
.getGUID(), S
->linkage());
409 if (C
.VisibilityScheme
== Config::FromPrevailing
) {
410 for (auto &S
: VI
.getSummaryList()) {
411 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
412 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
413 GlobalValue::isAppendingLinkage(S
->linkage()))
415 S
->setVisibility(Visibility
);
420 /// Resolve linkage for prevailing symbols in the \p Index.
422 // We'd like to drop these functions if they are no longer referenced in the
423 // current module. However there is a chance that another module is still
424 // referencing them because of the import. We make sure we always emit at least
426 void llvm::thinLTOResolvePrevailingInIndex(
427 const Config
&C
, ModuleSummaryIndex
&Index
,
428 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
430 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
432 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
433 // We won't optimize the globals that are referenced by an alias for now
434 // Ideally we should turn the alias into a global and duplicate the definition
436 DenseSet
<GlobalValueSummary
*> GlobalInvolvedWithAlias
;
437 for (auto &I
: Index
)
438 for (auto &S
: I
.second
.SummaryList
)
439 if (auto AS
= dyn_cast
<AliasSummary
>(S
.get()))
440 GlobalInvolvedWithAlias
.insert(&AS
->getAliasee());
442 for (auto &I
: Index
)
443 thinLTOResolvePrevailingGUID(C
, Index
.getValueInfo(I
),
444 GlobalInvolvedWithAlias
, isPrevailing
,
445 recordNewLinkage
, GUIDPreservedSymbols
);
448 static void thinLTOInternalizeAndPromoteGUID(
449 ValueInfo VI
, function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
450 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
452 auto ExternallyVisibleCopies
=
453 llvm::count_if(VI
.getSummaryList(),
454 [](const std::unique_ptr
<GlobalValueSummary
> &Summary
) {
455 return !GlobalValue::isLocalLinkage(Summary
->linkage());
458 for (auto &S
: VI
.getSummaryList()) {
459 // First see if we need to promote an internal value because it is not
461 if (isExported(S
->modulePath(), VI
)) {
462 if (GlobalValue::isLocalLinkage(S
->linkage()))
463 S
->setLinkage(GlobalValue::ExternalLinkage
);
467 // Otherwise, see if we can internalize.
468 if (!EnableLTOInternalization
)
471 // Non-exported values with external linkage can be internalized.
472 if (GlobalValue::isExternalLinkage(S
->linkage())) {
473 S
->setLinkage(GlobalValue::InternalLinkage
);
477 // Non-exported function and variable definitions with a weak-for-linker
478 // linkage can be internalized in certain cases. The minimum legality
479 // requirements would be that they are not address taken to ensure that we
480 // don't break pointer equality checks, and that variables are either read-
481 // or write-only. For functions, this is the case if either all copies are
482 // [local_]unnamed_addr, or we can propagate reference edge attributes
483 // (which is how this is guaranteed for variables, when analyzing whether
484 // they are read or write-only).
486 // However, we only get to this code for weak-for-linkage values in one of
488 // 1) The prevailing copy is not in IR (it is in native code).
489 // 2) The prevailing copy in IR is not exported from its module.
490 // Additionally, at least for the new LTO API, case 2 will only happen if
491 // there is exactly one definition of the value (i.e. in exactly one
492 // module), as duplicate defs are result in the value being marked exported.
493 // Likely, users of the legacy LTO API are similar, however, currently there
494 // are llvm-lto based tests of the legacy LTO API that do not mark
495 // duplicate linkonce_odr copies as exported via the tool, so we need
496 // to handle that case below by checking the number of copies.
498 // Generally, we only want to internalize a weak-for-linker value in case
499 // 2, because in case 1 we cannot see how the value is used to know if it
500 // is read or write-only. We also don't want to bloat the binary with
501 // multiple internalized copies of non-prevailing linkonce/weak functions.
502 // Note if we don't internalize, we will convert non-prevailing copies to
503 // available_externally anyway, so that we drop them after inlining. The
504 // only reason to internalize such a function is if we indeed have a single
505 // copy, because internalizing it won't increase binary size, and enables
506 // use of inliner heuristics that are more aggressive in the face of a
507 // single call to a static (local). For variables, internalizing a read or
508 // write only variable can enable more aggressive optimization. However, we
509 // already perform this elsewhere in the ThinLTO backend handling for
510 // read or write-only variables (processGlobalForThinLTO).
512 // Therefore, only internalize linkonce/weak if there is a single copy, that
513 // is prevailing in this IR module. We can do so aggressively, without
514 // requiring the address to be insignificant, or that a variable be read or
516 if (!GlobalValue::isWeakForLinker(S
->linkage()) ||
517 GlobalValue::isExternalWeakLinkage(S
->linkage()))
520 if (isPrevailing(VI
.getGUID(), S
.get()) && ExternallyVisibleCopies
== 1)
521 S
->setLinkage(GlobalValue::InternalLinkage
);
525 // Update the linkages in the given \p Index to mark exported values
526 // as external and non-exported values as internal.
527 void llvm::thinLTOInternalizeAndPromoteInIndex(
528 ModuleSummaryIndex
&Index
,
529 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
530 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
532 for (auto &I
: Index
)
533 thinLTOInternalizeAndPromoteGUID(Index
.getValueInfo(I
), isExported
,
537 // Requires a destructor for std::vector<InputModule>.
538 InputFile::~InputFile() = default;
540 Expected
<std::unique_ptr
<InputFile
>> InputFile::create(MemoryBufferRef Object
) {
541 std::unique_ptr
<InputFile
> File(new InputFile
);
543 Expected
<IRSymtabFile
> FOrErr
= readIRSymtab(Object
);
545 return FOrErr
.takeError();
547 File
->TargetTriple
= FOrErr
->TheReader
.getTargetTriple();
548 File
->SourceFileName
= FOrErr
->TheReader
.getSourceFileName();
549 File
->COFFLinkerOpts
= FOrErr
->TheReader
.getCOFFLinkerOpts();
550 File
->DependentLibraries
= FOrErr
->TheReader
.getDependentLibraries();
551 File
->ComdatTable
= FOrErr
->TheReader
.getComdatTable();
553 for (unsigned I
= 0; I
!= FOrErr
->Mods
.size(); ++I
) {
554 size_t Begin
= File
->Symbols
.size();
555 for (const irsymtab::Reader::SymbolRef
&Sym
:
556 FOrErr
->TheReader
.module_symbols(I
))
557 // Skip symbols that are irrelevant to LTO. Note that this condition needs
558 // to match the one in Skip() in LTO::addRegularLTO().
559 if (Sym
.isGlobal() && !Sym
.isFormatSpecific())
560 File
->Symbols
.push_back(Sym
);
561 File
->ModuleSymIndices
.push_back({Begin
, File
->Symbols
.size()});
564 File
->Mods
= FOrErr
->Mods
;
565 File
->Strtab
= std::move(FOrErr
->Strtab
);
566 return std::move(File
);
569 StringRef
InputFile::getName() const {
570 return Mods
[0].getModuleIdentifier();
573 BitcodeModule
&InputFile::getSingleBitcodeModule() {
574 assert(Mods
.size() == 1 && "Expect only one bitcode module");
578 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel
,
580 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel
),
581 Ctx(Conf
), CombinedModule(std::make_unique
<Module
>("ld-temp.o", Ctx
)),
582 Mover(std::make_unique
<IRMover
>(*CombinedModule
)) {}
584 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend
)
585 : Backend(Backend
), CombinedIndex(/*HaveGVs*/ false) {
588 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
591 LTO::LTO(Config Conf
, ThinBackend Backend
,
592 unsigned ParallelCodeGenParallelismLevel
, LTOKind LTOMode
)
593 : Conf(std::move(Conf
)),
594 RegularLTO(ParallelCodeGenParallelismLevel
, this->Conf
),
595 ThinLTO(std::move(Backend
)),
596 GlobalResolutions(std::make_optional
<StringMap
<GlobalResolution
>>()),
599 // Requires a destructor for MapVector<BitcodeModule>.
600 LTO::~LTO() = default;
602 // Add the symbols in the given module to the GlobalResolutions map, and resolve
604 void LTO::addModuleToGlobalRes(ArrayRef
<InputFile::Symbol
> Syms
,
605 ArrayRef
<SymbolResolution
> Res
,
606 unsigned Partition
, bool InSummary
) {
607 auto *ResI
= Res
.begin();
608 auto *ResE
= Res
.end();
610 const Triple
TT(RegularLTO
.CombinedModule
->getTargetTriple());
611 for (const InputFile::Symbol
&Sym
: Syms
) {
612 assert(ResI
!= ResE
);
613 SymbolResolution Res
= *ResI
++;
615 auto &GlobalRes
= (*GlobalResolutions
)[Sym
.getName()];
616 GlobalRes
.UnnamedAddr
&= Sym
.isUnnamedAddr();
617 if (Res
.Prevailing
) {
618 assert(!GlobalRes
.Prevailing
&&
619 "Multiple prevailing defs are not allowed");
620 GlobalRes
.Prevailing
= true;
621 GlobalRes
.IRName
= std::string(Sym
.getIRName());
622 } else if (!GlobalRes
.Prevailing
&& GlobalRes
.IRName
.empty()) {
623 // Sometimes it can be two copies of symbol in a module and prevailing
624 // symbol can have no IR name. That might happen if symbol is defined in
625 // module level inline asm block. In case we have multiple modules with
626 // the same symbol we want to use IR name of the prevailing symbol.
627 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
628 // we can later use it to check if there is any prevailing copy in IR.
629 GlobalRes
.IRName
= std::string(Sym
.getIRName());
632 // In rare occasion, the symbol used to initialize GlobalRes has a different
633 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a
634 // symbol is referenced through its mangled name, say @"\01_symbol" while
635 // the IRName is @symbol (the prefix underscore comes from MachO mangling).
636 // In that case, we have the same actual Symbol that can get two different
637 // GUID, leading to some invalid internalization. Workaround this by marking
638 // the GlobalRes external.
640 // FIXME: instead of this check, it would be desirable to compute GUIDs
641 // based on mangled name, but this requires an access to the Target Triple
642 // and would be relatively invasive on the codebase.
643 if (GlobalRes
.IRName
!= Sym
.getIRName()) {
644 GlobalRes
.Partition
= GlobalResolution::External
;
645 GlobalRes
.VisibleOutsideSummary
= true;
648 // Set the partition to external if we know it is re-defined by the linker
649 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
650 // regular object, is referenced from llvm.compiler.used/llvm.used, or was
651 // already recorded as being referenced from a different partition.
652 if (Res
.LinkerRedefined
|| Res
.VisibleToRegularObj
|| Sym
.isUsed() ||
653 (GlobalRes
.Partition
!= GlobalResolution::Unknown
&&
654 GlobalRes
.Partition
!= Partition
)) {
655 GlobalRes
.Partition
= GlobalResolution::External
;
657 // First recorded reference, save the current partition.
658 GlobalRes
.Partition
= Partition
;
660 // Flag as visible outside of summary if visible from a regular object or
661 // from a module that does not have a summary.
662 GlobalRes
.VisibleOutsideSummary
|=
663 (Res
.VisibleToRegularObj
|| Sym
.isUsed() || !InSummary
);
665 GlobalRes
.ExportDynamic
|= Res
.ExportDynamic
;
669 static void writeToResolutionFile(raw_ostream
&OS
, InputFile
*Input
,
670 ArrayRef
<SymbolResolution
> Res
) {
671 StringRef Path
= Input
->getName();
673 auto ResI
= Res
.begin();
674 for (const InputFile::Symbol
&Sym
: Input
->symbols()) {
675 assert(ResI
!= Res
.end());
676 SymbolResolution Res
= *ResI
++;
678 OS
<< "-r=" << Path
<< ',' << Sym
.getName() << ',';
681 if (Res
.FinalDefinitionInLinkageUnit
)
683 if (Res
.VisibleToRegularObj
)
685 if (Res
.LinkerRedefined
)
690 assert(ResI
== Res
.end());
693 Error
LTO::add(std::unique_ptr
<InputFile
> Input
,
694 ArrayRef
<SymbolResolution
> Res
) {
695 assert(!CalledGetMaxTasks
);
697 if (Conf
.ResolutionFile
)
698 writeToResolutionFile(*Conf
.ResolutionFile
, Input
.get(), Res
);
700 if (RegularLTO
.CombinedModule
->getTargetTriple().empty()) {
701 RegularLTO
.CombinedModule
->setTargetTriple(Input
->getTargetTriple());
702 if (Triple(Input
->getTargetTriple()).isOSBinFormatELF())
703 Conf
.VisibilityScheme
= Config::ELF
;
706 const SymbolResolution
*ResI
= Res
.begin();
707 for (unsigned I
= 0; I
!= Input
->Mods
.size(); ++I
)
708 if (Error Err
= addModule(*Input
, I
, ResI
, Res
.end()))
711 assert(ResI
== Res
.end());
712 return Error::success();
715 Error
LTO::addModule(InputFile
&Input
, unsigned ModI
,
716 const SymbolResolution
*&ResI
,
717 const SymbolResolution
*ResE
) {
718 Expected
<BitcodeLTOInfo
> LTOInfo
= Input
.Mods
[ModI
].getLTOInfo();
720 return LTOInfo
.takeError();
722 if (EnableSplitLTOUnit
) {
723 // If only some modules were split, flag this in the index so that
724 // we can skip or error on optimizations that need consistently split
725 // modules (whole program devirt and lower type tests).
726 if (*EnableSplitLTOUnit
!= LTOInfo
->EnableSplitLTOUnit
)
727 ThinLTO
.CombinedIndex
.setPartiallySplitLTOUnits();
729 EnableSplitLTOUnit
= LTOInfo
->EnableSplitLTOUnit
;
731 BitcodeModule BM
= Input
.Mods
[ModI
];
733 if ((LTOMode
== LTOK_UnifiedRegular
|| LTOMode
== LTOK_UnifiedThin
) &&
734 !LTOInfo
->UnifiedLTO
)
735 return make_error
<StringError
>(
736 "unified LTO compilation must use "
737 "compatible bitcode modules (use -funified-lto)",
738 inconvertibleErrorCode());
740 if (LTOInfo
->UnifiedLTO
&& LTOMode
== LTOK_Default
)
741 LTOMode
= LTOK_UnifiedThin
;
743 bool IsThinLTO
= LTOInfo
->IsThinLTO
&& (LTOMode
!= LTOK_UnifiedRegular
);
745 auto ModSyms
= Input
.module_symbols(ModI
);
746 addModuleToGlobalRes(ModSyms
, {ResI
, ResE
},
747 IsThinLTO
? ThinLTO
.ModuleMap
.size() + 1 : 0,
748 LTOInfo
->HasSummary
);
751 return addThinLTO(BM
, ModSyms
, ResI
, ResE
);
753 RegularLTO
.EmptyCombinedModule
= false;
754 Expected
<RegularLTOState::AddedModule
> ModOrErr
=
755 addRegularLTO(BM
, ModSyms
, ResI
, ResE
);
757 return ModOrErr
.takeError();
759 if (!LTOInfo
->HasSummary
)
760 return linkRegularLTO(std::move(*ModOrErr
), /*LivenessFromIndex=*/false);
762 // Regular LTO module summaries are added to a dummy module that represents
763 // the combined regular LTO module.
764 if (Error Err
= BM
.readSummary(ThinLTO
.CombinedIndex
, ""))
766 RegularLTO
.ModsWithSummaries
.push_back(std::move(*ModOrErr
));
767 return Error::success();
770 // Checks whether the given global value is in a non-prevailing comdat
771 // (comdat containing values the linker indicated were not prevailing,
772 // which we then dropped to available_externally), and if so, removes
773 // it from the comdat. This is called for all global values to ensure the
774 // comdat is empty rather than leaving an incomplete comdat. It is needed for
775 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
776 // and thin LTO modules) compilation. Since the regular LTO module will be
777 // linked first in the final native link, we want to make sure the linker
778 // doesn't select any of these incomplete comdats that would be left
779 // in the regular LTO module without this cleanup.
781 handleNonPrevailingComdat(GlobalValue
&GV
,
782 std::set
<const Comdat
*> &NonPrevailingComdats
) {
783 Comdat
*C
= GV
.getComdat();
787 if (!NonPrevailingComdats
.count(C
))
790 // Additionally need to drop all global values from the comdat to
791 // available_externally, to satisfy the COMDAT requirement that all members
792 // are discarded as a unit. The non-local linkage global values avoid
793 // duplicate definition linker errors.
794 GV
.setLinkage(GlobalValue::AvailableExternallyLinkage
);
796 if (auto GO
= dyn_cast
<GlobalObject
>(&GV
))
797 GO
->setComdat(nullptr);
800 // Add a regular LTO object to the link.
801 // The resulting module needs to be linked into the combined LTO module with
803 Expected
<LTO::RegularLTOState::AddedModule
>
804 LTO::addRegularLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
805 const SymbolResolution
*&ResI
,
806 const SymbolResolution
*ResE
) {
807 RegularLTOState::AddedModule Mod
;
808 Expected
<std::unique_ptr
<Module
>> MOrErr
=
809 BM
.getLazyModule(RegularLTO
.Ctx
, /*ShouldLazyLoadMetadata*/ true,
810 /*IsImporting*/ false);
812 return MOrErr
.takeError();
813 Module
&M
= **MOrErr
;
814 Mod
.M
= std::move(*MOrErr
);
816 if (Error Err
= M
.materializeMetadata())
817 return std::move(Err
);
819 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests
820 // will rename local functions in the merged module as "<function name>.1".
821 // This causes linking errors, since other parts of the module expect the
822 // original function name.
823 if (LTOMode
== LTOK_UnifiedRegular
)
824 if (NamedMDNode
*CfiFunctionsMD
= M
.getNamedMetadata("cfi.functions"))
825 M
.eraseNamedMetadata(CfiFunctionsMD
);
829 ModuleSymbolTable SymTab
;
830 SymTab
.addModule(&M
);
832 for (GlobalVariable
&GV
: M
.globals())
833 if (GV
.hasAppendingLinkage())
834 Mod
.Keep
.push_back(&GV
);
836 DenseSet
<GlobalObject
*> AliasedGlobals
;
837 for (auto &GA
: M
.aliases())
838 if (GlobalObject
*GO
= GA
.getAliaseeObject())
839 AliasedGlobals
.insert(GO
);
841 // In this function we need IR GlobalValues matching the symbols in Syms
842 // (which is not backed by a module), so we need to enumerate them in the same
843 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
844 // matches the order of an irsymtab, but when we read the irsymtab in
845 // InputFile::create we omit some symbols that are irrelevant to LTO. The
846 // Skip() function skips the same symbols from the module as InputFile does
847 // from the symbol table.
848 auto MsymI
= SymTab
.symbols().begin(), MsymE
= SymTab
.symbols().end();
850 while (MsymI
!= MsymE
) {
851 auto Flags
= SymTab
.getSymbolFlags(*MsymI
);
852 if ((Flags
& object::BasicSymbolRef::SF_Global
) &&
853 !(Flags
& object::BasicSymbolRef::SF_FormatSpecific
))
860 std::set
<const Comdat
*> NonPrevailingComdats
;
861 SmallSet
<StringRef
, 2> NonPrevailingAsmSymbols
;
862 for (const InputFile::Symbol
&Sym
: Syms
) {
863 assert(ResI
!= ResE
);
864 SymbolResolution Res
= *ResI
++;
866 assert(MsymI
!= MsymE
);
867 ModuleSymbolTable::Symbol Msym
= *MsymI
++;
870 if (GlobalValue
*GV
= dyn_cast_if_present
<GlobalValue
*>(Msym
)) {
871 if (Res
.Prevailing
) {
872 if (Sym
.isUndefined())
874 Mod
.Keep
.push_back(GV
);
875 // For symbols re-defined with linker -wrap and -defsym options,
876 // set the linkage to weak to inhibit IPO. The linkage will be
877 // restored by the linker.
878 if (Res
.LinkerRedefined
)
879 GV
->setLinkage(GlobalValue::WeakAnyLinkage
);
881 GlobalValue::LinkageTypes OriginalLinkage
= GV
->getLinkage();
882 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
))
883 GV
->setLinkage(GlobalValue::getWeakLinkage(
884 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
885 } else if (isa
<GlobalObject
>(GV
) &&
886 (GV
->hasLinkOnceODRLinkage() || GV
->hasWeakODRLinkage() ||
887 GV
->hasAvailableExternallyLinkage()) &&
888 !AliasedGlobals
.count(cast
<GlobalObject
>(GV
))) {
889 // Any of the above three types of linkage indicates that the
890 // chosen prevailing symbol will have the same semantics as this copy of
891 // the symbol, so we may be able to link it with available_externally
892 // linkage. We will decide later whether to do that when we link this
893 // module (in linkRegularLTO), based on whether it is undefined.
894 Mod
.Keep
.push_back(GV
);
895 GV
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
897 NonPrevailingComdats
.insert(GV
->getComdat());
898 cast
<GlobalObject
>(GV
)->setComdat(nullptr);
901 // Set the 'local' flag based on the linker resolution for this symbol.
902 if (Res
.FinalDefinitionInLinkageUnit
) {
903 GV
->setDSOLocal(true);
904 if (GV
->hasDLLImportStorageClass())
905 GV
->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
906 DefaultStorageClass
);
908 } else if (auto *AS
=
909 dyn_cast_if_present
<ModuleSymbolTable::AsmSymbol
*>(Msym
)) {
910 // Collect non-prevailing symbols.
912 NonPrevailingAsmSymbols
.insert(AS
->first
);
914 llvm_unreachable("unknown symbol type");
917 // Common resolution: collect the maximum size/alignment over all commons.
918 // We also record if we see an instance of a common as prevailing, so that
919 // if none is prevailing we can ignore it later.
920 if (Sym
.isCommon()) {
921 // FIXME: We should figure out what to do about commons defined by asm.
922 // For now they aren't reported correctly by ModuleSymbolTable.
923 auto &CommonRes
= RegularLTO
.Commons
[std::string(Sym
.getIRName())];
924 CommonRes
.Size
= std::max(CommonRes
.Size
, Sym
.getCommonSize());
925 if (uint32_t SymAlignValue
= Sym
.getCommonAlignment()) {
926 CommonRes
.Alignment
=
927 std::max(Align(SymAlignValue
), CommonRes
.Alignment
);
929 CommonRes
.Prevailing
|= Res
.Prevailing
;
933 if (!M
.getComdatSymbolTable().empty())
934 for (GlobalValue
&GV
: M
.global_values())
935 handleNonPrevailingComdat(GV
, NonPrevailingComdats
);
937 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
939 if (!M
.getModuleInlineAsm().empty()) {
940 std::string NewIA
= ".lto_discard";
941 if (!NonPrevailingAsmSymbols
.empty()) {
942 // Don't dicard a symbol if there is a live .symver for it.
943 ModuleSymbolTable::CollectAsmSymvers(
944 M
, [&](StringRef Name
, StringRef Alias
) {
945 if (!NonPrevailingAsmSymbols
.count(Alias
))
946 NonPrevailingAsmSymbols
.erase(Name
);
948 NewIA
+= " " + llvm::join(NonPrevailingAsmSymbols
, ", ");
951 M
.setModuleInlineAsm(NewIA
+ M
.getModuleInlineAsm());
954 assert(MsymI
== MsymE
);
955 return std::move(Mod
);
958 Error
LTO::linkRegularLTO(RegularLTOState::AddedModule Mod
,
959 bool LivenessFromIndex
) {
960 std::vector
<GlobalValue
*> Keep
;
961 for (GlobalValue
*GV
: Mod
.Keep
) {
962 if (LivenessFromIndex
&& !ThinLTO
.CombinedIndex
.isGUIDLive(GV
->getGUID())) {
963 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
964 if (DiagnosticOutputFile
) {
965 if (Error Err
= F
->materialize())
967 OptimizationRemarkEmitter
ORE(F
, nullptr);
968 ORE
.emit(OptimizationRemark(DEBUG_TYPE
, "deadfunction", F
)
969 << ore::NV("Function", F
)
970 << " not added to the combined module ");
976 if (!GV
->hasAvailableExternallyLinkage()) {
981 // Only link available_externally definitions if we don't already have a
983 GlobalValue
*CombinedGV
=
984 RegularLTO
.CombinedModule
->getNamedValue(GV
->getName());
985 if (CombinedGV
&& !CombinedGV
->isDeclaration())
991 return RegularLTO
.Mover
->move(std::move(Mod
.M
), Keep
, nullptr,
992 /* IsPerformingImport */ false);
995 // Add a ThinLTO module to the link.
996 Error
LTO::addThinLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
997 const SymbolResolution
*&ResI
,
998 const SymbolResolution
*ResE
) {
999 const SymbolResolution
*ResITmp
= ResI
;
1000 for (const InputFile::Symbol
&Sym
: Syms
) {
1001 assert(ResITmp
!= ResE
);
1002 SymbolResolution Res
= *ResITmp
++;
1004 if (!Sym
.getIRName().empty()) {
1005 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1006 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
1008 ThinLTO
.PrevailingModuleForGUID
[GUID
] = BM
.getModuleIdentifier();
1013 BM
.readSummary(ThinLTO
.CombinedIndex
, BM
.getModuleIdentifier(),
1014 [&](GlobalValue::GUID GUID
) {
1015 return ThinLTO
.PrevailingModuleForGUID
[GUID
] ==
1016 BM
.getModuleIdentifier();
1019 LLVM_DEBUG(dbgs() << "Module " << BM
.getModuleIdentifier() << "\n");
1021 for (const InputFile::Symbol
&Sym
: Syms
) {
1022 assert(ResI
!= ResE
);
1023 SymbolResolution Res
= *ResI
++;
1025 if (!Sym
.getIRName().empty()) {
1026 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1027 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
1028 if (Res
.Prevailing
) {
1029 assert(ThinLTO
.PrevailingModuleForGUID
[GUID
] ==
1030 BM
.getModuleIdentifier());
1032 // For linker redefined symbols (via --wrap or --defsym) we want to
1033 // switch the linkage to `weak` to prevent IPOs from happening.
1034 // Find the summary in the module for this very GV and record the new
1035 // linkage so that we can switch it when we import the GV.
1036 if (Res
.LinkerRedefined
)
1037 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
1038 GUID
, BM
.getModuleIdentifier()))
1039 S
->setLinkage(GlobalValue::WeakAnyLinkage
);
1042 // If the linker resolved the symbol to a local definition then mark it
1043 // as local in the summary for the module we are adding.
1044 if (Res
.FinalDefinitionInLinkageUnit
) {
1045 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
1046 GUID
, BM
.getModuleIdentifier())) {
1047 S
->setDSOLocal(true);
1053 if (!ThinLTO
.ModuleMap
.insert({BM
.getModuleIdentifier(), BM
}).second
)
1054 return make_error
<StringError
>(
1055 "Expected at most one ThinLTO module per bitcode file",
1056 inconvertibleErrorCode());
1058 if (!Conf
.ThinLTOModulesToCompile
.empty()) {
1059 if (!ThinLTO
.ModulesToCompile
)
1060 ThinLTO
.ModulesToCompile
= ModuleMapType();
1061 // This is a fuzzy name matching where only modules with name containing the
1062 // specified switch values are going to be compiled.
1063 for (const std::string
&Name
: Conf
.ThinLTOModulesToCompile
) {
1064 if (BM
.getModuleIdentifier().contains(Name
)) {
1065 ThinLTO
.ModulesToCompile
->insert({BM
.getModuleIdentifier(), BM
});
1066 llvm::errs() << "[ThinLTO] Selecting " << BM
.getModuleIdentifier()
1072 return Error::success();
1075 unsigned LTO::getMaxTasks() const {
1076 CalledGetMaxTasks
= true;
1077 auto ModuleCount
= ThinLTO
.ModulesToCompile
? ThinLTO
.ModulesToCompile
->size()
1078 : ThinLTO
.ModuleMap
.size();
1079 return RegularLTO
.ParallelCodeGenParallelismLevel
+ ModuleCount
;
1082 // If only some of the modules were split, we cannot correctly handle
1083 // code that contains type tests or type checked loads.
1084 Error
LTO::checkPartiallySplit() {
1085 if (!ThinLTO
.CombinedIndex
.partiallySplitLTOUnits())
1086 return Error::success();
1088 Function
*TypeTestFunc
= RegularLTO
.CombinedModule
->getFunction(
1089 Intrinsic::getName(Intrinsic::type_test
));
1090 Function
*TypeCheckedLoadFunc
= RegularLTO
.CombinedModule
->getFunction(
1091 Intrinsic::getName(Intrinsic::type_checked_load
));
1092 Function
*TypeCheckedLoadRelativeFunc
=
1093 RegularLTO
.CombinedModule
->getFunction(
1094 Intrinsic::getName(Intrinsic::type_checked_load_relative
));
1096 // First check if there are type tests / type checked loads in the
1097 // merged regular LTO module IR.
1098 if ((TypeTestFunc
&& !TypeTestFunc
->use_empty()) ||
1099 (TypeCheckedLoadFunc
&& !TypeCheckedLoadFunc
->use_empty()) ||
1100 (TypeCheckedLoadRelativeFunc
&&
1101 !TypeCheckedLoadRelativeFunc
->use_empty()))
1102 return make_error
<StringError
>(
1103 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1104 inconvertibleErrorCode());
1106 // Otherwise check if there are any recorded in the combined summary from the
1108 for (auto &P
: ThinLTO
.CombinedIndex
) {
1109 for (auto &S
: P
.second
.SummaryList
) {
1110 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
1113 if (!FS
->type_test_assume_vcalls().empty() ||
1114 !FS
->type_checked_load_vcalls().empty() ||
1115 !FS
->type_test_assume_const_vcalls().empty() ||
1116 !FS
->type_checked_load_const_vcalls().empty() ||
1117 !FS
->type_tests().empty())
1118 return make_error
<StringError
>(
1119 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1120 inconvertibleErrorCode());
1123 return Error::success();
1126 Error
LTO::run(AddStreamFn AddStream
, FileCache Cache
) {
1127 // Compute "dead" symbols, we don't want to import/export these!
1128 DenseSet
<GlobalValue::GUID
> GUIDPreservedSymbols
;
1129 DenseMap
<GlobalValue::GUID
, PrevailingType
> GUIDPrevailingResolutions
;
1130 for (auto &Res
: *GlobalResolutions
) {
1131 // Normally resolution have IR name of symbol. We can do nothing here
1132 // otherwise. See comments in GlobalResolution struct for more details.
1133 if (Res
.second
.IRName
.empty())
1136 GlobalValue::GUID GUID
= GlobalValue::getGUID(
1137 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1139 if (Res
.second
.VisibleOutsideSummary
&& Res
.second
.Prevailing
)
1140 GUIDPreservedSymbols
.insert(GUID
);
1142 if (Res
.second
.ExportDynamic
)
1143 DynamicExportSymbols
.insert(GUID
);
1145 GUIDPrevailingResolutions
[GUID
] =
1146 Res
.second
.Prevailing
? PrevailingType::Yes
: PrevailingType::No
;
1149 auto isPrevailing
= [&](GlobalValue::GUID G
) {
1150 auto It
= GUIDPrevailingResolutions
.find(G
);
1151 if (It
== GUIDPrevailingResolutions
.end())
1152 return PrevailingType::Unknown
;
1155 computeDeadSymbolsWithConstProp(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
,
1156 isPrevailing
, Conf
.OptLevel
> 0);
1158 // Setup output file to emit statistics.
1159 auto StatsFileOrErr
= setupStatsFile(Conf
.StatsFile
);
1160 if (!StatsFileOrErr
)
1161 return StatsFileOrErr
.takeError();
1162 std::unique_ptr
<ToolOutputFile
> StatsFile
= std::move(StatsFileOrErr
.get());
1164 // TODO: Ideally this would be controlled automatically by detecting that we
1165 // are linking with an allocator that supports these interfaces, rather than
1166 // an internal option (which would still be needed for tests, however). For
1167 // example, if the library exported a symbol like __malloc_hot_cold the linker
1168 // could recognize that and set a flag in the lto::Config.
1169 if (SupportsHotColdNew
)
1170 ThinLTO
.CombinedIndex
.setWithSupportsHotColdNew();
1172 Error Result
= runRegularLTO(AddStream
);
1174 // This will reset the GlobalResolutions optional once done with it to
1175 // reduce peak memory before importing.
1176 Result
= runThinLTO(AddStream
, Cache
, GUIDPreservedSymbols
);
1179 PrintStatisticsJSON(StatsFile
->os());
1184 void lto::updateMemProfAttributes(Module
&Mod
,
1185 const ModuleSummaryIndex
&Index
) {
1186 if (Index
.withSupportsHotColdNew())
1189 // The profile matcher applies hotness attributes directly for allocations,
1190 // and those will cause us to generate calls to the hot/cold interfaces
1191 // unconditionally. If supports-hot-cold-new was not enabled in the LTO
1192 // link then assume we don't want these calls (e.g. not linking with
1193 // the appropriate library, or otherwise trying to disable this behavior).
1194 for (auto &F
: Mod
) {
1195 for (auto &BB
: F
) {
1196 for (auto &I
: BB
) {
1197 auto *CI
= dyn_cast
<CallBase
>(&I
);
1200 if (CI
->hasFnAttr("memprof"))
1201 CI
->removeFnAttr("memprof");
1202 // Strip off all memprof metadata as it is no longer needed.
1203 // Importantly, this avoids the addition of new memprof attributes
1204 // after inlining propagation.
1205 // TODO: If we support additional types of MemProf metadata beyond hot
1206 // and cold, we will need to update the metadata based on the allocator
1207 // APIs supported instead of completely stripping all.
1208 CI
->setMetadata(LLVMContext::MD_memprof
, nullptr);
1209 CI
->setMetadata(LLVMContext::MD_callsite
, nullptr);
1215 Error
LTO::runRegularLTO(AddStreamFn AddStream
) {
1216 // Setup optimization remarks.
1217 auto DiagFileOrErr
= lto::setupLLVMOptimizationRemarks(
1218 RegularLTO
.CombinedModule
->getContext(), Conf
.RemarksFilename
,
1219 Conf
.RemarksPasses
, Conf
.RemarksFormat
, Conf
.RemarksWithHotness
,
1220 Conf
.RemarksHotnessThreshold
);
1221 LLVM_DEBUG(dbgs() << "Running regular LTO\n");
1223 return DiagFileOrErr
.takeError();
1224 DiagnosticOutputFile
= std::move(*DiagFileOrErr
);
1226 // Finalize linking of regular LTO modules containing summaries now that
1227 // we have computed liveness information.
1228 for (auto &M
: RegularLTO
.ModsWithSummaries
)
1229 if (Error Err
= linkRegularLTO(std::move(M
),
1230 /*LivenessFromIndex=*/true))
1233 // Ensure we don't have inconsistently split LTO units with type tests.
1234 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take
1235 // this path both cases but eventually this should be split into two and
1236 // do the ThinLTO checks in `runThinLTO`.
1237 if (Error Err
= checkPartiallySplit())
1240 // Make sure commons have the right size/alignment: we kept the largest from
1241 // all the prevailing when adding the inputs, and we apply it here.
1242 const DataLayout
&DL
= RegularLTO
.CombinedModule
->getDataLayout();
1243 for (auto &I
: RegularLTO
.Commons
) {
1244 if (!I
.second
.Prevailing
)
1245 // Don't do anything if no instance of this common was prevailing.
1247 GlobalVariable
*OldGV
= RegularLTO
.CombinedModule
->getNamedGlobal(I
.first
);
1248 if (OldGV
&& DL
.getTypeAllocSize(OldGV
->getValueType()) == I
.second
.Size
) {
1249 // Don't create a new global if the type is already correct, just make
1250 // sure the alignment is correct.
1251 OldGV
->setAlignment(I
.second
.Alignment
);
1255 ArrayType::get(Type::getInt8Ty(RegularLTO
.Ctx
), I
.second
.Size
);
1256 auto *GV
= new GlobalVariable(*RegularLTO
.CombinedModule
, Ty
, false,
1257 GlobalValue::CommonLinkage
,
1258 ConstantAggregateZero::get(Ty
), "");
1259 GV
->setAlignment(I
.second
.Alignment
);
1261 OldGV
->replaceAllUsesWith(GV
);
1262 GV
->takeName(OldGV
);
1263 OldGV
->eraseFromParent();
1265 GV
->setName(I
.first
);
1269 updateMemProfAttributes(*RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
);
1271 bool WholeProgramVisibilityEnabledInLTO
=
1272 Conf
.HasWholeProgramVisibility
&&
1273 // If validation is enabled, upgrade visibility only when all vtables
1275 (!Conf
.ValidateAllVtablesHaveTypeInfos
|| Conf
.AllVtablesHaveTypeInfos
);
1277 // This returns true when the name is local or not defined. Locals are
1278 // expected to be handled separately.
1279 auto IsVisibleToRegularObj
= [&](StringRef name
) {
1280 auto It
= GlobalResolutions
->find(name
);
1281 return (It
== GlobalResolutions
->end() || It
->second
.VisibleOutsideSummary
);
1284 // If allowed, upgrade public vcall visibility metadata to linkage unit
1285 // visibility before whole program devirtualization in the optimizer.
1286 updateVCallVisibilityInModule(
1287 *RegularLTO
.CombinedModule
, WholeProgramVisibilityEnabledInLTO
,
1288 DynamicExportSymbols
, Conf
.ValidateAllVtablesHaveTypeInfos
,
1289 IsVisibleToRegularObj
);
1290 updatePublicTypeTestCalls(*RegularLTO
.CombinedModule
,
1291 WholeProgramVisibilityEnabledInLTO
);
1293 if (Conf
.PreOptModuleHook
&&
1294 !Conf
.PreOptModuleHook(0, *RegularLTO
.CombinedModule
))
1295 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1297 if (!Conf
.CodeGenOnly
) {
1298 for (const auto &R
: *GlobalResolutions
) {
1300 RegularLTO
.CombinedModule
->getNamedValue(R
.second
.IRName
);
1301 if (!R
.second
.isPrevailingIRSymbol())
1303 if (R
.second
.Partition
!= 0 &&
1304 R
.second
.Partition
!= GlobalResolution::External
)
1307 // Ignore symbols defined in other partitions.
1308 // Also skip declarations, which are not allowed to have internal linkage.
1309 if (!GV
|| GV
->hasLocalLinkage() || GV
->isDeclaration())
1312 // Symbols that are marked DLLImport or DLLExport should not be
1313 // internalized, as they are either externally visible or referencing
1314 // external symbols. Symbols that have AvailableExternally or Appending
1315 // linkage might be used by future passes and should be kept as is.
1316 // These linkages are seen in Unified regular LTO, because the process
1317 // of creating split LTO units introduces symbols with that linkage into
1318 // one of the created modules. Normally, only the ThinLTO backend would
1319 // compile this module, but Unified Regular LTO processes both
1320 // modules created by the splitting process as regular LTO modules.
1321 if ((LTOMode
== LTOKind::LTOK_UnifiedRegular
) &&
1322 ((GV
->getDLLStorageClass() != GlobalValue::DefaultStorageClass
) ||
1323 GV
->hasAvailableExternallyLinkage() || GV
->hasAppendingLinkage()))
1326 GV
->setUnnamedAddr(R
.second
.UnnamedAddr
? GlobalValue::UnnamedAddr::Global
1327 : GlobalValue::UnnamedAddr::None
);
1328 if (EnableLTOInternalization
&& R
.second
.Partition
== 0)
1329 GV
->setLinkage(GlobalValue::InternalLinkage
);
1332 if (Conf
.PostInternalizeModuleHook
&&
1333 !Conf
.PostInternalizeModuleHook(0, *RegularLTO
.CombinedModule
))
1334 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1337 if (!RegularLTO
.EmptyCombinedModule
|| Conf
.AlwaysEmitRegularLTOObj
) {
1339 backend(Conf
, AddStream
, RegularLTO
.ParallelCodeGenParallelismLevel
,
1340 *RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
))
1344 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1347 static const char *libcallRoutineNames
[] = {
1348 #define HANDLE_LIBCALL(code, name) name,
1349 #include "llvm/IR/RuntimeLibcalls.def"
1350 #undef HANDLE_LIBCALL
1353 ArrayRef
<const char*> LTO::getRuntimeLibcallSymbols() {
1354 return ArrayRef(libcallRoutineNames
);
1357 /// This class defines the interface to the ThinLTO backend.
1358 class lto::ThinBackendProc
{
1361 ModuleSummaryIndex
&CombinedIndex
;
1362 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
;
1363 lto::IndexWriteCallback OnWrite
;
1364 bool ShouldEmitImportsFiles
;
1368 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1369 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1370 lto::IndexWriteCallback OnWrite
, bool ShouldEmitImportsFiles
)
1371 : Conf(Conf
), CombinedIndex(CombinedIndex
),
1372 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries
),
1373 OnWrite(OnWrite
), ShouldEmitImportsFiles(ShouldEmitImportsFiles
) {}
1375 virtual ~ThinBackendProc() = default;
1376 virtual Error
start(
1377 unsigned Task
, BitcodeModule BM
,
1378 const FunctionImporter::ImportMapTy
&ImportList
,
1379 const FunctionImporter::ExportSetTy
&ExportList
,
1380 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1381 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) = 0;
1382 virtual Error
wait() = 0;
1383 virtual unsigned getThreadCount() = 0;
1385 // Write sharded indices and (optionally) imports to disk
1386 Error
emitFiles(const FunctionImporter::ImportMapTy
&ImportList
,
1387 llvm::StringRef ModulePath
,
1388 const std::string
&NewModulePath
) {
1389 std::map
<std::string
, GVSummaryMapTy
> ModuleToSummariesForIndex
;
1391 gatherImportedSummariesForModule(ModulePath
, ModuleToDefinedGVSummaries
,
1392 ImportList
, ModuleToSummariesForIndex
);
1394 raw_fd_ostream
OS(NewModulePath
+ ".thinlto.bc", EC
,
1395 sys::fs::OpenFlags::OF_None
);
1397 return errorCodeToError(EC
);
1398 writeIndexToFile(CombinedIndex
, OS
, &ModuleToSummariesForIndex
);
1400 if (ShouldEmitImportsFiles
) {
1401 EC
= EmitImportsFiles(ModulePath
, NewModulePath
+ ".imports",
1402 ModuleToSummariesForIndex
);
1404 return errorCodeToError(EC
);
1406 return Error::success();
1411 class InProcessThinBackend
: public ThinBackendProc
{
1412 ThreadPool BackendThreadPool
;
1413 AddStreamFn AddStream
;
1415 std::set
<GlobalValue::GUID
> CfiFunctionDefs
;
1416 std::set
<GlobalValue::GUID
> CfiFunctionDecls
;
1418 std::optional
<Error
> Err
;
1421 bool ShouldEmitIndexFiles
;
1424 InProcessThinBackend(
1425 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1426 ThreadPoolStrategy ThinLTOParallelism
,
1427 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1428 AddStreamFn AddStream
, FileCache Cache
, lto::IndexWriteCallback OnWrite
,
1429 bool ShouldEmitIndexFiles
, bool ShouldEmitImportsFiles
)
1430 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
,
1431 OnWrite
, ShouldEmitImportsFiles
),
1432 BackendThreadPool(ThinLTOParallelism
), AddStream(std::move(AddStream
)),
1433 Cache(std::move(Cache
)), ShouldEmitIndexFiles(ShouldEmitIndexFiles
) {
1434 for (auto &Name
: CombinedIndex
.cfiFunctionDefs())
1435 CfiFunctionDefs
.insert(
1436 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1437 for (auto &Name
: CombinedIndex
.cfiFunctionDecls())
1438 CfiFunctionDecls
.insert(
1439 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1442 Error
runThinLTOBackendThread(
1443 AddStreamFn AddStream
, FileCache Cache
, unsigned Task
, BitcodeModule BM
,
1444 ModuleSummaryIndex
&CombinedIndex
,
1445 const FunctionImporter::ImportMapTy
&ImportList
,
1446 const FunctionImporter::ExportSetTy
&ExportList
,
1447 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1448 const GVSummaryMapTy
&DefinedGlobals
,
1449 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1450 auto RunThinBackend
= [&](AddStreamFn AddStream
) {
1451 LTOLLVMContext
BackendContext(Conf
);
1452 Expected
<std::unique_ptr
<Module
>> MOrErr
= BM
.parseModule(BackendContext
);
1454 return MOrErr
.takeError();
1456 return thinBackend(Conf
, Task
, AddStream
, **MOrErr
, CombinedIndex
,
1457 ImportList
, DefinedGlobals
, &ModuleMap
);
1460 auto ModuleID
= BM
.getModuleIdentifier();
1462 if (ShouldEmitIndexFiles
) {
1463 if (auto E
= emitFiles(ImportList
, ModuleID
, ModuleID
.str()))
1467 if (!Cache
|| !CombinedIndex
.modulePaths().count(ModuleID
) ||
1468 all_of(CombinedIndex
.getModuleHash(ModuleID
),
1469 [](uint32_t V
) { return V
== 0; }))
1470 // Cache disabled or no entry for this module in the combined index or
1472 return RunThinBackend(AddStream
);
1474 SmallString
<40> Key
;
1475 // The module may be cached, this helps handling it.
1476 computeLTOCacheKey(Key
, Conf
, CombinedIndex
, ModuleID
, ImportList
,
1477 ExportList
, ResolvedODR
, DefinedGlobals
, CfiFunctionDefs
,
1479 Expected
<AddStreamFn
> CacheAddStreamOrErr
= Cache(Task
, Key
, ModuleID
);
1480 if (Error Err
= CacheAddStreamOrErr
.takeError())
1482 AddStreamFn
&CacheAddStream
= *CacheAddStreamOrErr
;
1484 return RunThinBackend(CacheAddStream
);
1486 return Error::success();
1490 unsigned Task
, BitcodeModule BM
,
1491 const FunctionImporter::ImportMapTy
&ImportList
,
1492 const FunctionImporter::ExportSetTy
&ExportList
,
1493 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1494 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1495 StringRef ModulePath
= BM
.getModuleIdentifier();
1496 assert(ModuleToDefinedGVSummaries
.count(ModulePath
));
1497 const GVSummaryMapTy
&DefinedGlobals
=
1498 ModuleToDefinedGVSummaries
.find(ModulePath
)->second
;
1499 BackendThreadPool
.async(
1500 [=](BitcodeModule BM
, ModuleSummaryIndex
&CombinedIndex
,
1501 const FunctionImporter::ImportMapTy
&ImportList
,
1502 const FunctionImporter::ExportSetTy
&ExportList
,
1503 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>
1505 const GVSummaryMapTy
&DefinedGlobals
,
1506 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1507 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1508 timeTraceProfilerInitialize(Conf
.TimeTraceGranularity
,
1510 Error E
= runThinLTOBackendThread(
1511 AddStream
, Cache
, Task
, BM
, CombinedIndex
, ImportList
, ExportList
,
1512 ResolvedODR
, DefinedGlobals
, ModuleMap
);
1514 std::unique_lock
<std::mutex
> L(ErrMu
);
1516 Err
= joinErrors(std::move(*Err
), std::move(E
));
1520 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1521 timeTraceProfilerFinishThread();
1523 BM
, std::ref(CombinedIndex
), std::ref(ImportList
), std::ref(ExportList
),
1524 std::ref(ResolvedODR
), std::ref(DefinedGlobals
), std::ref(ModuleMap
));
1527 OnWrite(std::string(ModulePath
));
1528 return Error::success();
1531 Error
wait() override
{
1532 BackendThreadPool
.wait();
1534 return std::move(*Err
);
1536 return Error::success();
1539 unsigned getThreadCount() override
{
1540 return BackendThreadPool
.getThreadCount();
1543 } // end anonymous namespace
1545 ThinBackend
lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism
,
1546 lto::IndexWriteCallback OnWrite
,
1547 bool ShouldEmitIndexFiles
,
1548 bool ShouldEmitImportsFiles
) {
1550 [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1551 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1552 AddStreamFn AddStream
, FileCache Cache
) {
1553 return std::make_unique
<InProcessThinBackend
>(
1554 Conf
, CombinedIndex
, Parallelism
, ModuleToDefinedGVSummaries
,
1555 AddStream
, Cache
, OnWrite
, ShouldEmitIndexFiles
,
1556 ShouldEmitImportsFiles
);
1560 // Given the original \p Path to an output file, replace any path
1561 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1562 // resulting directory if it does not yet exist.
1563 std::string
lto::getThinLTOOutputFile(StringRef Path
, StringRef OldPrefix
,
1564 StringRef NewPrefix
) {
1565 if (OldPrefix
.empty() && NewPrefix
.empty())
1566 return std::string(Path
);
1567 SmallString
<128> NewPath(Path
);
1568 llvm::sys::path::replace_path_prefix(NewPath
, OldPrefix
, NewPrefix
);
1569 StringRef ParentPath
= llvm::sys::path::parent_path(NewPath
.str());
1570 if (!ParentPath
.empty()) {
1571 // Make sure the new directory exists, creating it if necessary.
1572 if (std::error_code EC
= llvm::sys::fs::create_directories(ParentPath
))
1573 llvm::errs() << "warning: could not create directory '" << ParentPath
1574 << "': " << EC
.message() << '\n';
1576 return std::string(NewPath
);
1580 class WriteIndexesThinBackend
: public ThinBackendProc
{
1581 std::string OldPrefix
, NewPrefix
, NativeObjectPrefix
;
1582 raw_fd_ostream
*LinkedObjectsFile
;
1585 WriteIndexesThinBackend(
1586 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1587 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1588 std::string OldPrefix
, std::string NewPrefix
,
1589 std::string NativeObjectPrefix
, bool ShouldEmitImportsFiles
,
1590 raw_fd_ostream
*LinkedObjectsFile
, lto::IndexWriteCallback OnWrite
)
1591 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
,
1592 OnWrite
, ShouldEmitImportsFiles
),
1593 OldPrefix(OldPrefix
), NewPrefix(NewPrefix
),
1594 NativeObjectPrefix(NativeObjectPrefix
),
1595 LinkedObjectsFile(LinkedObjectsFile
) {}
1598 unsigned Task
, BitcodeModule BM
,
1599 const FunctionImporter::ImportMapTy
&ImportList
,
1600 const FunctionImporter::ExportSetTy
&ExportList
,
1601 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1602 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1603 StringRef ModulePath
= BM
.getModuleIdentifier();
1604 std::string NewModulePath
=
1605 getThinLTOOutputFile(ModulePath
, OldPrefix
, NewPrefix
);
1607 if (LinkedObjectsFile
) {
1608 std::string ObjectPrefix
=
1609 NativeObjectPrefix
.empty() ? NewPrefix
: NativeObjectPrefix
;
1610 std::string LinkedObjectsFilePath
=
1611 getThinLTOOutputFile(ModulePath
, OldPrefix
, ObjectPrefix
);
1612 *LinkedObjectsFile
<< LinkedObjectsFilePath
<< '\n';
1615 if (auto E
= emitFiles(ImportList
, ModulePath
, NewModulePath
))
1619 OnWrite(std::string(ModulePath
));
1620 return Error::success();
1623 Error
wait() override
{ return Error::success(); }
1625 // WriteIndexesThinBackend should always return 1 to prevent module
1626 // re-ordering and avoid non-determinism in the final link.
1627 unsigned getThreadCount() override
{ return 1; }
1629 } // end anonymous namespace
1631 ThinBackend
lto::createWriteIndexesThinBackend(
1632 std::string OldPrefix
, std::string NewPrefix
,
1633 std::string NativeObjectPrefix
, bool ShouldEmitImportsFiles
,
1634 raw_fd_ostream
*LinkedObjectsFile
, IndexWriteCallback OnWrite
) {
1636 [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1637 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1638 AddStreamFn AddStream
, FileCache Cache
) {
1639 return std::make_unique
<WriteIndexesThinBackend
>(
1640 Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
, OldPrefix
,
1641 NewPrefix
, NativeObjectPrefix
, ShouldEmitImportsFiles
,
1642 LinkedObjectsFile
, OnWrite
);
1646 Error
LTO::runThinLTO(AddStreamFn AddStream
, FileCache Cache
,
1647 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
1648 LLVM_DEBUG(dbgs() << "Running ThinLTO\n");
1649 ThinLTO
.CombinedIndex
.releaseTemporaryMemory();
1650 timeTraceProfilerBegin("ThinLink", StringRef(""));
1651 auto TimeTraceScopeExit
= llvm::make_scope_exit([]() {
1652 if (llvm::timeTraceProfilerEnabled())
1653 llvm::timeTraceProfilerEnd();
1655 if (ThinLTO
.ModuleMap
.empty())
1656 return Error::success();
1658 if (ThinLTO
.ModulesToCompile
&& ThinLTO
.ModulesToCompile
->empty()) {
1659 llvm::errs() << "warning: [ThinLTO] No module compiled\n";
1660 return Error::success();
1663 if (Conf
.CombinedIndexHook
&&
1664 !Conf
.CombinedIndexHook(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
))
1665 return Error::success();
1667 // Collect for each module the list of function it defines (GUID ->
1669 DenseMap
<StringRef
, GVSummaryMapTy
> ModuleToDefinedGVSummaries(
1670 ThinLTO
.ModuleMap
.size());
1671 ThinLTO
.CombinedIndex
.collectDefinedGVSummariesPerModule(
1672 ModuleToDefinedGVSummaries
);
1673 // Create entries for any modules that didn't have any GV summaries
1674 // (either they didn't have any GVs to start with, or we suppressed
1675 // generation of the summaries because they e.g. had inline assembly
1676 // uses that couldn't be promoted/renamed on export). This is so
1677 // InProcessThinBackend::start can still launch a backend thread, which
1678 // is passed the map of summaries for the module, without any special
1679 // handling for this case.
1680 for (auto &Mod
: ThinLTO
.ModuleMap
)
1681 if (!ModuleToDefinedGVSummaries
.count(Mod
.first
))
1682 ModuleToDefinedGVSummaries
.try_emplace(Mod
.first
);
1684 // Synthesize entry counts for functions in the CombinedIndex.
1685 computeSyntheticCounts(ThinLTO
.CombinedIndex
);
1687 DenseMap
<StringRef
, FunctionImporter::ImportMapTy
> ImportLists(
1688 ThinLTO
.ModuleMap
.size());
1689 DenseMap
<StringRef
, FunctionImporter::ExportSetTy
> ExportLists(
1690 ThinLTO
.ModuleMap
.size());
1691 StringMap
<std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>> ResolvedODR
;
1694 ThinLTO
.CombinedIndex
.dumpSCCs(outs());
1696 std::set
<GlobalValue::GUID
> ExportedGUIDs
;
1698 bool WholeProgramVisibilityEnabledInLTO
=
1699 Conf
.HasWholeProgramVisibility
&&
1700 // If validation is enabled, upgrade visibility only when all vtables
1702 (!Conf
.ValidateAllVtablesHaveTypeInfos
|| Conf
.AllVtablesHaveTypeInfos
);
1703 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
1704 ThinLTO
.CombinedIndex
.setWithWholeProgramVisibility();
1706 // If we're validating, get the vtable symbols that should not be
1707 // upgraded because they correspond to typeIDs outside of index-based
1709 DenseSet
<GlobalValue::GUID
> VisibleToRegularObjSymbols
;
1710 if (WholeProgramVisibilityEnabledInLTO
&&
1711 Conf
.ValidateAllVtablesHaveTypeInfos
) {
1712 // This returns true when the name is local or not defined. Locals are
1713 // expected to be handled separately.
1714 auto IsVisibleToRegularObj
= [&](StringRef name
) {
1715 auto It
= GlobalResolutions
->find(name
);
1716 return (It
== GlobalResolutions
->end() ||
1717 It
->second
.VisibleOutsideSummary
);
1720 getVisibleToRegularObjVtableGUIDs(ThinLTO
.CombinedIndex
,
1721 VisibleToRegularObjSymbols
,
1722 IsVisibleToRegularObj
);
1725 // If allowed, upgrade public vcall visibility to linkage unit visibility in
1726 // the summaries before whole program devirtualization below.
1727 updateVCallVisibilityInIndex(
1728 ThinLTO
.CombinedIndex
, WholeProgramVisibilityEnabledInLTO
,
1729 DynamicExportSymbols
, VisibleToRegularObjSymbols
);
1731 // Perform index-based WPD. This will return immediately if there are
1732 // no index entries in the typeIdMetadata map (e.g. if we are instead
1733 // performing IR-based WPD in hybrid regular/thin LTO mode).
1734 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> LocalWPDTargetsMap
;
1735 runWholeProgramDevirtOnIndex(ThinLTO
.CombinedIndex
, ExportedGUIDs
,
1736 LocalWPDTargetsMap
);
1738 auto isPrevailing
= [&](GlobalValue::GUID GUID
, const GlobalValueSummary
*S
) {
1739 return ThinLTO
.PrevailingModuleForGUID
[GUID
] == S
->modulePath();
1741 if (EnableMemProfContextDisambiguation
) {
1742 MemProfContextDisambiguation ContextDisambiguation
;
1743 ContextDisambiguation
.run(ThinLTO
.CombinedIndex
, isPrevailing
);
1746 // Figure out which symbols need to be internalized. This also needs to happen
1747 // at -O0 because summary-based DCE is implemented using internalization, and
1748 // we must apply DCE consistently with the full LTO module in order to avoid
1749 // undefined references during the final link.
1750 for (auto &Res
: *GlobalResolutions
) {
1751 // If the symbol does not have external references or it is not prevailing,
1752 // then not need to mark it as exported from a ThinLTO partition.
1753 if (Res
.second
.Partition
!= GlobalResolution::External
||
1754 !Res
.second
.isPrevailingIRSymbol())
1756 auto GUID
= GlobalValue::getGUID(
1757 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1758 // Mark exported unless index-based analysis determined it to be dead.
1759 if (ThinLTO
.CombinedIndex
.isGUIDLive(GUID
))
1760 ExportedGUIDs
.insert(GUID
);
1763 // Reset the GlobalResolutions to deallocate the associated memory, as there
1764 // are no further accesses. We specifically want to do this before computing
1765 // cross module importing, which adds to peak memory via the computed import
1766 // and export lists.
1767 GlobalResolutions
.reset();
1769 if (Conf
.OptLevel
> 0)
1770 ComputeCrossModuleImport(ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1771 isPrevailing
, ImportLists
, ExportLists
);
1773 // Any functions referenced by the jump table in the regular LTO object must
1775 for (auto &Def
: ThinLTO
.CombinedIndex
.cfiFunctionDefs())
1776 ExportedGUIDs
.insert(
1777 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def
)));
1778 for (auto &Decl
: ThinLTO
.CombinedIndex
.cfiFunctionDecls())
1779 ExportedGUIDs
.insert(
1780 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl
)));
1782 auto isExported
= [&](StringRef ModuleIdentifier
, ValueInfo VI
) {
1783 const auto &ExportList
= ExportLists
.find(ModuleIdentifier
);
1784 return (ExportList
!= ExportLists
.end() && ExportList
->second
.count(VI
)) ||
1785 ExportedGUIDs
.count(VI
.getGUID());
1788 // Update local devirtualized targets that were exported by cross-module
1789 // importing or by other devirtualizations marked in the ExportedGUIDs set.
1790 updateIndexWPDForExports(ThinLTO
.CombinedIndex
, isExported
,
1791 LocalWPDTargetsMap
);
1793 thinLTOInternalizeAndPromoteInIndex(ThinLTO
.CombinedIndex
, isExported
,
1796 auto recordNewLinkage
= [&](StringRef ModuleIdentifier
,
1797 GlobalValue::GUID GUID
,
1798 GlobalValue::LinkageTypes NewLinkage
) {
1799 ResolvedODR
[ModuleIdentifier
][GUID
] = NewLinkage
;
1801 thinLTOResolvePrevailingInIndex(Conf
, ThinLTO
.CombinedIndex
, isPrevailing
,
1802 recordNewLinkage
, GUIDPreservedSymbols
);
1804 thinLTOPropagateFunctionAttrs(ThinLTO
.CombinedIndex
, isPrevailing
);
1806 generateParamAccessSummary(ThinLTO
.CombinedIndex
);
1808 if (llvm::timeTraceProfilerEnabled())
1809 llvm::timeTraceProfilerEnd();
1811 TimeTraceScopeExit
.release();
1813 std::unique_ptr
<ThinBackendProc
> BackendProc
=
1814 ThinLTO
.Backend(Conf
, ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1818 ThinLTO
.ModulesToCompile
? *ThinLTO
.ModulesToCompile
: ThinLTO
.ModuleMap
;
1820 auto ProcessOneModule
= [&](int I
) -> Error
{
1821 auto &Mod
= *(ModuleMap
.begin() + I
);
1822 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
1823 // combined module and parallel code generation partitions.
1824 return BackendProc
->start(RegularLTO
.ParallelCodeGenParallelismLevel
+ I
,
1825 Mod
.second
, ImportLists
[Mod
.first
],
1826 ExportLists
[Mod
.first
], ResolvedODR
[Mod
.first
],
1830 if (BackendProc
->getThreadCount() == 1) {
1831 // Process the modules in the order they were provided on the command-line.
1832 // It is important for this codepath to be used for WriteIndexesThinBackend,
1833 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same
1834 // order as the inputs, which otherwise would affect the final link order.
1835 for (int I
= 0, E
= ModuleMap
.size(); I
!= E
; ++I
)
1836 if (Error E
= ProcessOneModule(I
))
1839 // When executing in parallel, process largest bitsize modules first to
1840 // improve parallelism, and avoid starving the thread pool near the end.
1841 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out
1843 std::vector
<BitcodeModule
*> ModulesVec
;
1844 ModulesVec
.reserve(ModuleMap
.size());
1845 for (auto &Mod
: ModuleMap
)
1846 ModulesVec
.push_back(&Mod
.second
);
1847 for (int I
: generateModulesOrdering(ModulesVec
))
1848 if (Error E
= ProcessOneModule(I
))
1851 return BackendProc
->wait();
1854 Expected
<std::unique_ptr
<ToolOutputFile
>> lto::setupLLVMOptimizationRemarks(
1855 LLVMContext
&Context
, StringRef RemarksFilename
, StringRef RemarksPasses
,
1856 StringRef RemarksFormat
, bool RemarksWithHotness
,
1857 std::optional
<uint64_t> RemarksHotnessThreshold
, int Count
) {
1858 std::string Filename
= std::string(RemarksFilename
);
1859 // For ThinLTO, file.opt.<format> becomes
1860 // file.opt.<format>.thin.<num>.<format>.
1861 if (!Filename
.empty() && Count
!= -1)
1863 (Twine(Filename
) + ".thin." + llvm::utostr(Count
) + "." + RemarksFormat
)
1866 auto ResultOrErr
= llvm::setupLLVMOptimizationRemarks(
1867 Context
, Filename
, RemarksPasses
, RemarksFormat
, RemarksWithHotness
,
1868 RemarksHotnessThreshold
);
1869 if (Error E
= ResultOrErr
.takeError())
1870 return std::move(E
);
1873 (*ResultOrErr
)->keep();
1878 Expected
<std::unique_ptr
<ToolOutputFile
>>
1879 lto::setupStatsFile(StringRef StatsFilename
) {
1880 // Setup output file to emit statistics.
1881 if (StatsFilename
.empty())
1884 llvm::EnableStatistics(false);
1887 std::make_unique
<ToolOutputFile
>(StatsFilename
, EC
, sys::fs::OF_None
);
1889 return errorCodeToError(EC
);
1892 return std::move(StatsFile
);
1895 // Compute the ordering we will process the inputs: the rough heuristic here
1896 // is to sort them per size so that the largest module get schedule as soon as
1897 // possible. This is purely a compile-time optimization.
1898 std::vector
<int> lto::generateModulesOrdering(ArrayRef
<BitcodeModule
*> R
) {
1899 auto Seq
= llvm::seq
<int>(0, R
.size());
1900 std::vector
<int> ModulesOrdering(Seq
.begin(), Seq
.end());
1901 llvm::sort(ModulesOrdering
, [&](int LeftIndex
, int RightIndex
) {
1902 auto LSize
= R
[LeftIndex
]->getBuffer().size();
1903 auto RSize
= R
[RightIndex
]->getBuffer().size();
1904 return LSize
> RSize
;
1906 return ModulesOrdering
;