[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineShifts.cpp
blob54490c46dfaefcd03d25c8f2cb2a1097a0dcd8f2
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/PatternMatch.h"
17 #include "llvm/Transforms/InstCombine/InstCombiner.h"
18 using namespace llvm;
19 using namespace PatternMatch;
21 #define DEBUG_TYPE "instcombine"
23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
24 Value *ShAmt1) {
25 // We have two shift amounts from two different shifts. The types of those
26 // shift amounts may not match. If that's the case let's bailout now..
27 if (ShAmt0->getType() != ShAmt1->getType())
28 return false;
30 // As input, we have the following pattern:
31 // Sh0 (Sh1 X, Q), K
32 // We want to rewrite that as:
33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
34 // While we know that originally (Q+K) would not overflow
35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
36 // shift amounts. so it may now overflow in smaller bitwidth.
37 // To ensure that does not happen, we need to ensure that the total maximal
38 // shift amount is still representable in that smaller bit width.
39 unsigned MaximalPossibleTotalShiftAmount =
40 (Sh0->getType()->getScalarSizeInBits() - 1) +
41 (Sh1->getType()->getScalarSizeInBits() - 1);
42 APInt MaximalRepresentableShiftAmount =
43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
47 // Given pattern:
48 // (x shiftopcode Q) shiftopcode K
49 // we should rewrite it as
50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
52 // This is valid for any shift, but they must be identical, and we must be
53 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
57 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
59 BinaryOperator *Sh0, const SimplifyQuery &SQ,
60 bool AnalyzeForSignBitExtraction) {
61 // Look for a shift of some instruction, ignore zext of shift amount if any.
62 Instruction *Sh0Op0;
63 Value *ShAmt0;
64 if (!match(Sh0,
65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
66 return nullptr;
68 // If there is a truncation between the two shifts, we must make note of it
69 // and look through it. The truncation imposes additional constraints on the
70 // transform.
71 Instruction *Sh1;
72 Value *Trunc = nullptr;
73 match(Sh0Op0,
74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
75 m_Instruction(Sh1)));
77 // Inner shift: (x shiftopcode ShAmt1)
78 // Like with other shift, ignore zext of shift amount if any.
79 Value *X, *ShAmt1;
80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
81 return nullptr;
83 // Verify that it would be safe to try to add those two shift amounts.
84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
85 return nullptr;
87 // We are only looking for signbit extraction if we have two right shifts.
88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
89 match(Sh1, m_Shr(m_Value(), m_Value()));
90 // ... and if it's not two right-shifts, we know the answer already.
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
92 return nullptr;
94 // The shift opcodes must be identical, unless we are just checking whether
95 // this pattern can be interpreted as a sign-bit-extraction.
96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
99 return nullptr;
101 // If we saw truncation, we'll need to produce extra instruction,
102 // and for that one of the operands of the shift must be one-use,
103 // unless of course we don't actually plan to produce any instructions here.
104 if (Trunc && !AnalyzeForSignBitExtraction &&
105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
106 return nullptr;
108 // Can we fold (ShAmt0+ShAmt1) ?
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
111 SQ.getWithInstruction(Sh0)));
112 if (!NewShAmt)
113 return nullptr; // Did not simplify.
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
116 // Is the new shift amount smaller than the bit width of inner/new shift?
117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
118 APInt(NewShAmtBitWidth, XBitWidth))))
119 return nullptr; // FIXME: could perform constant-folding.
121 // If there was a truncation, and we have a right-shift, we can only fold if
122 // we are left with the original sign bit. Likewise, if we were just checking
123 // that this is a sighbit extraction, this is the place to check it.
124 // FIXME: zero shift amount is also legal here, but we can't *easily* check
125 // more than one predicate so it's not really worth it.
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
127 // If it's not a sign bit extraction, then we're done.
128 if (!match(NewShAmt,
129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
131 return nullptr;
132 // If it is, and that was the question, return the base value.
133 if (AnalyzeForSignBitExtraction)
134 return X;
137 assert(IdenticalShOpcodes && "Should not get here with different shifts.");
139 if (NewShAmt->getType() != X->getType()) {
140 NewShAmt = ConstantFoldCastOperand(Instruction::ZExt, NewShAmt,
141 X->getType(), SQ.DL);
142 if (!NewShAmt)
143 return nullptr;
146 // All good, we can do this fold.
147 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
149 // The flags can only be propagated if there wasn't a trunc.
150 if (!Trunc) {
151 // If the pattern did not involve trunc, and both of the original shifts
152 // had the same flag set, preserve the flag.
153 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
154 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
155 Sh1->hasNoUnsignedWrap());
156 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
157 Sh1->hasNoSignedWrap());
158 } else {
159 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
163 Instruction *Ret = NewShift;
164 if (Trunc) {
165 Builder.Insert(NewShift);
166 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
169 return Ret;
172 // If we have some pattern that leaves only some low bits set, and then performs
173 // left-shift of those bits, if none of the bits that are left after the final
174 // shift are modified by the mask, we can omit the mask.
176 // There are many variants to this pattern:
177 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
178 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
179 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
180 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
181 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
182 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
183 // All these patterns can be simplified to just:
184 // x << ShiftShAmt
185 // iff:
186 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
187 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
188 static Instruction *
189 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
190 const SimplifyQuery &Q,
191 InstCombiner::BuilderTy &Builder) {
192 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
193 "The input must be 'shl'!");
195 Value *Masked, *ShiftShAmt;
196 match(OuterShift,
197 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
199 // *If* there is a truncation between an outer shift and a possibly-mask,
200 // then said truncation *must* be one-use, else we can't perform the fold.
201 Value *Trunc;
202 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
203 !Trunc->hasOneUse())
204 return nullptr;
206 Type *NarrowestTy = OuterShift->getType();
207 Type *WidestTy = Masked->getType();
208 bool HadTrunc = WidestTy != NarrowestTy;
210 // The mask must be computed in a type twice as wide to ensure
211 // that no bits are lost if the sum-of-shifts is wider than the base type.
212 Type *ExtendedTy = WidestTy->getExtendedType();
214 Value *MaskShAmt;
216 // ((1 << MaskShAmt) - 1)
217 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
218 // (~(-1 << maskNbits))
219 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
220 // (-1 l>> MaskShAmt)
221 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
222 // ((-1 << MaskShAmt) l>> MaskShAmt)
223 auto MaskD =
224 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
226 Value *X;
227 Constant *NewMask;
229 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
230 // Peek through an optional zext of the shift amount.
231 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
233 // Verify that it would be safe to try to add those two shift amounts.
234 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
235 MaskShAmt))
236 return nullptr;
238 // Can we simplify (MaskShAmt+ShiftShAmt) ?
239 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst(
240 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
241 if (!SumOfShAmts)
242 return nullptr; // Did not simplify.
243 // In this pattern SumOfShAmts correlates with the number of low bits
244 // that shall remain in the root value (OuterShift).
246 // An extend of an undef value becomes zero because the high bits are never
247 // completely unknown. Replace the `undef` shift amounts with final
248 // shift bitwidth to ensure that the value remains undef when creating the
249 // subsequent shift op.
250 SumOfShAmts = Constant::replaceUndefsWith(
251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
252 ExtendedTy->getScalarSizeInBits()));
253 auto *ExtendedSumOfShAmts = ConstantFoldCastOperand(
254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.DL);
255 if (!ExtendedSumOfShAmts)
256 return nullptr;
258 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
259 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
260 auto *ExtendedInvertedMask =
261 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
262 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
263 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
264 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
265 m_Deferred(MaskShAmt)))) {
266 // Peek through an optional zext of the shift amount.
267 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
269 // Verify that it would be safe to try to add those two shift amounts.
270 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
271 MaskShAmt))
272 return nullptr;
274 // Can we simplify (ShiftShAmt-MaskShAmt) ?
275 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst(
276 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
277 if (!ShAmtsDiff)
278 return nullptr; // Did not simplify.
279 // In this pattern ShAmtsDiff correlates with the number of high bits that
280 // shall be unset in the root value (OuterShift).
282 // An extend of an undef value becomes zero because the high bits are never
283 // completely unknown. Replace the `undef` shift amounts with negated
284 // bitwidth of innermost shift to ensure that the value remains undef when
285 // creating the subsequent shift op.
286 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
287 ShAmtsDiff = Constant::replaceUndefsWith(
288 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
289 -WidestTyBitWidth));
290 auto *ExtendedNumHighBitsToClear = ConstantFoldCastOperand(
291 Instruction::ZExt,
292 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
293 WidestTyBitWidth,
294 /*isSigned=*/false),
295 ShAmtsDiff),
296 ExtendedTy, Q.DL);
297 if (!ExtendedNumHighBitsToClear)
298 return nullptr;
300 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
301 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
302 NewMask = ConstantFoldBinaryOpOperands(Instruction::LShr, ExtendedAllOnes,
303 ExtendedNumHighBitsToClear, Q.DL);
304 if (!NewMask)
305 return nullptr;
306 } else
307 return nullptr; // Don't know anything about this pattern.
309 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
311 // Does this mask has any unset bits? If not then we can just not apply it.
312 bool NeedMask = !match(NewMask, m_AllOnes());
314 // If we need to apply a mask, there are several more restrictions we have.
315 if (NeedMask) {
316 // The old masking instruction must go away.
317 if (!Masked->hasOneUse())
318 return nullptr;
319 // The original "masking" instruction must not have been`ashr`.
320 if (match(Masked, m_AShr(m_Value(), m_Value())))
321 return nullptr;
324 // If we need to apply truncation, let's do it first, since we can.
325 // We have already ensured that the old truncation will go away.
326 if (HadTrunc)
327 X = Builder.CreateTrunc(X, NarrowestTy);
329 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
330 // We didn't change the Type of this outermost shift, so we can just do it.
331 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
332 OuterShift->getOperand(1));
333 if (!NeedMask)
334 return NewShift;
336 Builder.Insert(NewShift);
337 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
340 /// If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/
341 /// shl) that itself has a shift-by-constant operand with identical opcode, we
342 /// may be able to convert that into 2 independent shifts followed by the logic
343 /// op. This eliminates a use of an intermediate value (reduces dependency
344 /// chain).
345 static Instruction *foldShiftOfShiftedBinOp(BinaryOperator &I,
346 InstCombiner::BuilderTy &Builder) {
347 assert(I.isShift() && "Expected a shift as input");
348 auto *BinInst = dyn_cast<BinaryOperator>(I.getOperand(0));
349 if (!BinInst ||
350 (!BinInst->isBitwiseLogicOp() &&
351 BinInst->getOpcode() != Instruction::Add &&
352 BinInst->getOpcode() != Instruction::Sub) ||
353 !BinInst->hasOneUse())
354 return nullptr;
356 Constant *C0, *C1;
357 if (!match(I.getOperand(1), m_Constant(C1)))
358 return nullptr;
360 Instruction::BinaryOps ShiftOpcode = I.getOpcode();
361 // Transform for add/sub only works with shl.
362 if ((BinInst->getOpcode() == Instruction::Add ||
363 BinInst->getOpcode() == Instruction::Sub) &&
364 ShiftOpcode != Instruction::Shl)
365 return nullptr;
367 Type *Ty = I.getType();
369 // Find a matching shift by constant. The fold is not valid if the sum
370 // of the shift values equals or exceeds bitwidth.
371 Value *X, *Y;
372 auto matchFirstShift = [&](Value *V, Value *W) {
373 unsigned Size = Ty->getScalarSizeInBits();
374 APInt Threshold(Size, Size);
375 return match(V, m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0))) &&
376 (V->hasOneUse() || match(W, m_ImmConstant())) &&
377 match(ConstantExpr::getAdd(C0, C1),
378 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
381 // Logic ops and Add are commutative, so check each operand for a match. Sub
382 // is not so we cannot reoder if we match operand(1) and need to keep the
383 // operands in their original positions.
384 bool FirstShiftIsOp1 = false;
385 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1)))
386 Y = BinInst->getOperand(1);
387 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) {
388 Y = BinInst->getOperand(0);
389 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub;
390 } else
391 return nullptr;
393 // shift (binop (shift X, C0), Y), C1 -> binop (shift X, C0+C1), (shift Y, C1)
394 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
395 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
396 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1);
397 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1;
398 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2;
399 return BinaryOperator::Create(BinInst->getOpcode(), Op1, Op2);
402 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
403 if (Instruction *Phi = foldBinopWithPhiOperands(I))
404 return Phi;
406 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
407 assert(Op0->getType() == Op1->getType());
408 Type *Ty = I.getType();
410 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
411 Value *Y;
412 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
413 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName());
414 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
417 // See if we can fold away this shift.
418 if (SimplifyDemandedInstructionBits(I))
419 return &I;
421 // Try to fold constant and into select arguments.
422 if (isa<Constant>(Op0))
423 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
424 if (Instruction *R = FoldOpIntoSelect(I, SI))
425 return R;
427 if (Constant *CUI = dyn_cast<Constant>(Op1))
428 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
429 return Res;
431 if (auto *NewShift = cast_or_null<Instruction>(
432 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
433 return NewShift;
435 // Pre-shift a constant shifted by a variable amount with constant offset:
436 // C shift (A add nuw C1) --> (C shift C1) shift A
437 Value *A;
438 Constant *C, *C1;
439 if (match(Op0, m_Constant(C)) &&
440 match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) {
441 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1);
442 return BinaryOperator::Create(I.getOpcode(), NewC, A);
445 unsigned BitWidth = Ty->getScalarSizeInBits();
447 const APInt *AC, *AddC;
448 // Try to pre-shift a constant shifted by a variable amount added with a
449 // negative number:
450 // C << (X - AddC) --> (C >> AddC) << X
451 // and
452 // C >> (X - AddC) --> (C << AddC) >> X
453 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) &&
454 AddC->isNegative() && (-*AddC).ult(BitWidth)) {
455 assert(!AC->isZero() && "Expected simplify of shifted zero");
456 unsigned PosOffset = (-*AddC).getZExtValue();
458 auto isSuitableForPreShift = [PosOffset, &I, AC]() {
459 switch (I.getOpcode()) {
460 default:
461 return false;
462 case Instruction::Shl:
463 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) &&
464 AC->eq(AC->lshr(PosOffset).shl(PosOffset));
465 case Instruction::LShr:
466 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset));
467 case Instruction::AShr:
468 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset));
471 if (isSuitableForPreShift()) {
472 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl
473 ? AC->lshr(PosOffset)
474 : AC->shl(PosOffset));
475 BinaryOperator *NewShiftOp =
476 BinaryOperator::Create(I.getOpcode(), NewC, A);
477 if (I.getOpcode() == Instruction::Shl) {
478 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
479 } else {
480 NewShiftOp->setIsExact();
482 return NewShiftOp;
486 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
487 // Because shifts by negative values (which could occur if A were negative)
488 // are undefined.
489 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
490 match(C, m_Power2())) {
491 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
492 // demand the sign bit (and many others) here??
493 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1));
494 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
495 return replaceOperand(I, 1, Rem);
498 if (Instruction *Logic = foldShiftOfShiftedBinOp(I, Builder))
499 return Logic;
501 if (match(Op1, m_Or(m_Value(), m_SpecificInt(BitWidth - 1))))
502 return replaceOperand(I, 1, ConstantInt::get(Ty, BitWidth - 1));
504 return nullptr;
507 /// Return true if we can simplify two logical (either left or right) shifts
508 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
509 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
510 Instruction *InnerShift,
511 InstCombinerImpl &IC, Instruction *CxtI) {
512 assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
514 // We need constant scalar or constant splat shifts.
515 const APInt *InnerShiftConst;
516 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
517 return false;
519 // Two logical shifts in the same direction:
520 // shl (shl X, C1), C2 --> shl X, C1 + C2
521 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
522 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
523 if (IsInnerShl == IsOuterShl)
524 return true;
526 // Equal shift amounts in opposite directions become bitwise 'and':
527 // lshr (shl X, C), C --> and X, C'
528 // shl (lshr X, C), C --> and X, C'
529 if (*InnerShiftConst == OuterShAmt)
530 return true;
532 // If the 2nd shift is bigger than the 1st, we can fold:
533 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
534 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
535 // but it isn't profitable unless we know the and'd out bits are already zero.
536 // Also, check that the inner shift is valid (less than the type width) or
537 // we'll crash trying to produce the bit mask for the 'and'.
538 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
539 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
540 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
541 unsigned MaskShift =
542 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
543 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
544 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
545 return true;
548 return false;
551 /// See if we can compute the specified value, but shifted logically to the left
552 /// or right by some number of bits. This should return true if the expression
553 /// can be computed for the same cost as the current expression tree. This is
554 /// used to eliminate extraneous shifting from things like:
555 /// %C = shl i128 %A, 64
556 /// %D = shl i128 %B, 96
557 /// %E = or i128 %C, %D
558 /// %F = lshr i128 %E, 64
559 /// where the client will ask if E can be computed shifted right by 64-bits. If
560 /// this succeeds, getShiftedValue() will be called to produce the value.
561 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
562 InstCombinerImpl &IC, Instruction *CxtI) {
563 // We can always evaluate immediate constants.
564 if (match(V, m_ImmConstant()))
565 return true;
567 Instruction *I = dyn_cast<Instruction>(V);
568 if (!I) return false;
570 // We can't mutate something that has multiple uses: doing so would
571 // require duplicating the instruction in general, which isn't profitable.
572 if (!I->hasOneUse()) return false;
574 switch (I->getOpcode()) {
575 default: return false;
576 case Instruction::And:
577 case Instruction::Or:
578 case Instruction::Xor:
579 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
580 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
581 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
583 case Instruction::Shl:
584 case Instruction::LShr:
585 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
587 case Instruction::Select: {
588 SelectInst *SI = cast<SelectInst>(I);
589 Value *TrueVal = SI->getTrueValue();
590 Value *FalseVal = SI->getFalseValue();
591 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
592 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
594 case Instruction::PHI: {
595 // We can change a phi if we can change all operands. Note that we never
596 // get into trouble with cyclic PHIs here because we only consider
597 // instructions with a single use.
598 PHINode *PN = cast<PHINode>(I);
599 for (Value *IncValue : PN->incoming_values())
600 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
601 return false;
602 return true;
604 case Instruction::Mul: {
605 const APInt *MulConst;
606 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`)
607 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) &&
608 MulConst->isNegatedPowerOf2() && MulConst->countr_zero() == NumBits;
613 /// Fold OuterShift (InnerShift X, C1), C2.
614 /// See canEvaluateShiftedShift() for the constraints on these instructions.
615 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
616 bool IsOuterShl,
617 InstCombiner::BuilderTy &Builder) {
618 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
619 Type *ShType = InnerShift->getType();
620 unsigned TypeWidth = ShType->getScalarSizeInBits();
622 // We only accept shifts-by-a-constant in canEvaluateShifted().
623 const APInt *C1;
624 match(InnerShift->getOperand(1), m_APInt(C1));
625 unsigned InnerShAmt = C1->getZExtValue();
627 // Change the shift amount and clear the appropriate IR flags.
628 auto NewInnerShift = [&](unsigned ShAmt) {
629 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
630 if (IsInnerShl) {
631 InnerShift->setHasNoUnsignedWrap(false);
632 InnerShift->setHasNoSignedWrap(false);
633 } else {
634 InnerShift->setIsExact(false);
636 return InnerShift;
639 // Two logical shifts in the same direction:
640 // shl (shl X, C1), C2 --> shl X, C1 + C2
641 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
642 if (IsInnerShl == IsOuterShl) {
643 // If this is an oversized composite shift, then unsigned shifts get 0.
644 if (InnerShAmt + OuterShAmt >= TypeWidth)
645 return Constant::getNullValue(ShType);
647 return NewInnerShift(InnerShAmt + OuterShAmt);
650 // Equal shift amounts in opposite directions become bitwise 'and':
651 // lshr (shl X, C), C --> and X, C'
652 // shl (lshr X, C), C --> and X, C'
653 if (InnerShAmt == OuterShAmt) {
654 APInt Mask = IsInnerShl
655 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
656 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
657 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
658 ConstantInt::get(ShType, Mask));
659 if (auto *AndI = dyn_cast<Instruction>(And)) {
660 AndI->moveBefore(InnerShift);
661 AndI->takeName(InnerShift);
663 return And;
666 assert(InnerShAmt > OuterShAmt &&
667 "Unexpected opposite direction logical shift pair");
669 // In general, we would need an 'and' for this transform, but
670 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
671 // lshr (shl X, C1), C2 --> shl X, C1 - C2
672 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
673 return NewInnerShift(InnerShAmt - OuterShAmt);
676 /// When canEvaluateShifted() returns true for an expression, this function
677 /// inserts the new computation that produces the shifted value.
678 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
679 InstCombinerImpl &IC, const DataLayout &DL) {
680 // We can always evaluate constants shifted.
681 if (Constant *C = dyn_cast<Constant>(V)) {
682 if (isLeftShift)
683 return IC.Builder.CreateShl(C, NumBits);
684 else
685 return IC.Builder.CreateLShr(C, NumBits);
688 Instruction *I = cast<Instruction>(V);
689 IC.addToWorklist(I);
691 switch (I->getOpcode()) {
692 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
693 case Instruction::And:
694 case Instruction::Or:
695 case Instruction::Xor:
696 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
697 I->setOperand(
698 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
699 I->setOperand(
700 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
701 return I;
703 case Instruction::Shl:
704 case Instruction::LShr:
705 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
706 IC.Builder);
708 case Instruction::Select:
709 I->setOperand(
710 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
711 I->setOperand(
712 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
713 return I;
714 case Instruction::PHI: {
715 // We can change a phi if we can change all operands. Note that we never
716 // get into trouble with cyclic PHIs here because we only consider
717 // instructions with a single use.
718 PHINode *PN = cast<PHINode>(I);
719 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
720 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
721 isLeftShift, IC, DL));
722 return PN;
724 case Instruction::Mul: {
725 assert(!isLeftShift && "Unexpected shift direction!");
726 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0));
727 IC.InsertNewInstWith(Neg, I->getIterator());
728 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
729 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits);
730 auto *And = BinaryOperator::CreateAnd(Neg,
731 ConstantInt::get(I->getType(), Mask));
732 And->takeName(I);
733 return IC.InsertNewInstWith(And, I->getIterator());
738 // If this is a bitwise operator or add with a constant RHS we might be able
739 // to pull it through a shift.
740 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
741 BinaryOperator *BO) {
742 switch (BO->getOpcode()) {
743 default:
744 return false; // Do not perform transform!
745 case Instruction::Add:
746 return Shift.getOpcode() == Instruction::Shl;
747 case Instruction::Or:
748 case Instruction::And:
749 return true;
750 case Instruction::Xor:
751 // Do not change a 'not' of logical shift because that would create a normal
752 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
753 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
757 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1,
758 BinaryOperator &I) {
759 // (C2 << X) << C1 --> (C2 << C1) << X
760 // (C2 >> X) >> C1 --> (C2 >> C1) >> X
761 Constant *C2;
762 Value *X;
763 if (match(Op0, m_BinOp(I.getOpcode(), m_ImmConstant(C2), m_Value(X))))
764 return BinaryOperator::Create(
765 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X);
767 bool IsLeftShift = I.getOpcode() == Instruction::Shl;
768 Type *Ty = I.getType();
769 unsigned TypeBits = Ty->getScalarSizeInBits();
771 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC)
772 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC)
773 const APInt *DivC;
774 if (!IsLeftShift && match(C1, m_SpecificIntAllowUndef(TypeBits - 1)) &&
775 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() &&
776 !DivC->isMinSignedValue()) {
777 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
778 ICmpInst::Predicate Pred =
779 DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE;
780 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC);
781 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt
782 : Instruction::ZExt;
783 return CastInst::Create(ExtOpcode, Cmp, Ty);
786 const APInt *Op1C;
787 if (!match(C1, m_APInt(Op1C)))
788 return nullptr;
790 assert(!Op1C->uge(TypeBits) &&
791 "Shift over the type width should have been removed already");
793 // See if we can propagate this shift into the input, this covers the trivial
794 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
795 if (I.getOpcode() != Instruction::AShr &&
796 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
797 LLVM_DEBUG(
798 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
799 " to eliminate shift:\n IN: "
800 << *Op0 << "\n SH: " << I << "\n");
802 return replaceInstUsesWith(
803 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
806 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
807 return FoldedShift;
809 if (!Op0->hasOneUse())
810 return nullptr;
812 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
813 // If the operand is a bitwise operator with a constant RHS, and the
814 // shift is the only use, we can pull it out of the shift.
815 const APInt *Op0C;
816 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
817 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
818 Value *NewRHS =
819 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1);
821 Value *NewShift =
822 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1);
823 NewShift->takeName(Op0BO);
825 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
830 // If we have a select that conditionally executes some binary operator,
831 // see if we can pull it the select and operator through the shift.
833 // For example, turning:
834 // shl (select C, (add X, C1), X), C2
835 // Into:
836 // Y = shl X, C2
837 // select C, (add Y, C1 << C2), Y
838 Value *Cond;
839 BinaryOperator *TBO;
840 Value *FalseVal;
841 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
842 m_Value(FalseVal)))) {
843 const APInt *C;
844 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
845 match(TBO->getOperand(1), m_APInt(C)) &&
846 canShiftBinOpWithConstantRHS(I, TBO)) {
847 Value *NewRHS =
848 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1);
850 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1);
851 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
852 return SelectInst::Create(Cond, NewOp, NewShift);
856 BinaryOperator *FBO;
857 Value *TrueVal;
858 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
859 m_OneUse(m_BinOp(FBO))))) {
860 const APInt *C;
861 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
862 match(FBO->getOperand(1), m_APInt(C)) &&
863 canShiftBinOpWithConstantRHS(I, FBO)) {
864 Value *NewRHS =
865 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1);
867 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1);
868 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
869 return SelectInst::Create(Cond, NewShift, NewOp);
873 return nullptr;
876 // Tries to perform
877 // (lshr (add (zext X), (zext Y)), K)
878 // -> (icmp ult (add X, Y), X)
879 // where
880 // - The add's operands are zexts from a K-bits integer to a bigger type.
881 // - The add is only used by the shr, or by iK (or narrower) truncates.
882 // - The lshr type has more than 2 bits (other types are boolean math).
883 // - K > 1
884 // note that
885 // - The resulting add cannot have nuw/nsw, else on overflow we get a
886 // poison value and the transform isn't legal anymore.
887 Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) {
888 assert(I.getOpcode() == Instruction::LShr);
890 Value *Add = I.getOperand(0);
891 Value *ShiftAmt = I.getOperand(1);
892 Type *Ty = I.getType();
894 if (Ty->getScalarSizeInBits() < 3)
895 return nullptr;
897 const APInt *ShAmtAPInt = nullptr;
898 Value *X = nullptr, *Y = nullptr;
899 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) ||
900 !match(Add,
901 m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y))))))
902 return nullptr;
904 const unsigned ShAmt = ShAmtAPInt->getZExtValue();
905 if (ShAmt == 1)
906 return nullptr;
908 // X/Y are zexts from `ShAmt`-sized ints.
909 if (X->getType()->getScalarSizeInBits() != ShAmt ||
910 Y->getType()->getScalarSizeInBits() != ShAmt)
911 return nullptr;
913 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates.
914 if (!Add->hasOneUse()) {
915 for (User *U : Add->users()) {
916 if (U == &I)
917 continue;
919 TruncInst *Trunc = dyn_cast<TruncInst>(U);
920 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt)
921 return nullptr;
925 // Insert at Add so that the newly created `NarrowAdd` will dominate it's
926 // users (i.e. `Add`'s users).
927 Instruction *AddInst = cast<Instruction>(Add);
928 Builder.SetInsertPoint(AddInst);
930 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed");
931 Value *Overflow =
932 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow");
934 // Replace the uses of the original add with a zext of the
935 // NarrowAdd's result. Note that all users at this stage are known to
936 // be ShAmt-sized truncs, or the lshr itself.
937 if (!Add->hasOneUse()) {
938 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty));
939 eraseInstFromFunction(*AddInst);
942 // Replace the LShr with a zext of the overflow check.
943 return new ZExtInst(Overflow, Ty);
946 // Try to set nuw/nsw flags on shl or exact flag on lshr/ashr using knownbits.
947 static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q) {
948 assert(I.isShift() && "Expected a shift as input");
949 // We already have all the flags.
950 if (I.getOpcode() == Instruction::Shl) {
951 if (I.hasNoUnsignedWrap() && I.hasNoSignedWrap())
952 return false;
953 } else {
954 if (I.isExact())
955 return false;
957 // shr (shl X, Y), Y
958 if (match(I.getOperand(0), m_Shl(m_Value(), m_Specific(I.getOperand(1))))) {
959 I.setIsExact();
960 return true;
964 // Compute what we know about shift count.
965 KnownBits KnownCnt = computeKnownBits(I.getOperand(1), /* Depth */ 0, Q);
966 unsigned BitWidth = KnownCnt.getBitWidth();
967 // Since shift produces a poison value if RHS is equal to or larger than the
968 // bit width, we can safely assume that RHS is less than the bit width.
969 uint64_t MaxCnt = KnownCnt.getMaxValue().getLimitedValue(BitWidth - 1);
971 KnownBits KnownAmt = computeKnownBits(I.getOperand(0), /* Depth */ 0, Q);
972 bool Changed = false;
974 if (I.getOpcode() == Instruction::Shl) {
975 // If we have as many leading zeros than maximum shift cnt we have nuw.
976 if (!I.hasNoUnsignedWrap() && MaxCnt <= KnownAmt.countMinLeadingZeros()) {
977 I.setHasNoUnsignedWrap();
978 Changed = true;
980 // If we have more sign bits than maximum shift cnt we have nsw.
981 if (!I.hasNoSignedWrap()) {
982 if (MaxCnt < KnownAmt.countMinSignBits() ||
983 MaxCnt < ComputeNumSignBits(I.getOperand(0), Q.DL, /*Depth*/ 0, Q.AC,
984 Q.CxtI, Q.DT)) {
985 I.setHasNoSignedWrap();
986 Changed = true;
989 return Changed;
992 // If we have at least as many trailing zeros as maximum count then we have
993 // exact.
994 Changed = MaxCnt <= KnownAmt.countMinTrailingZeros();
995 I.setIsExact(Changed);
997 return Changed;
1000 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
1001 const SimplifyQuery Q = SQ.getWithInstruction(&I);
1003 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1),
1004 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
1005 return replaceInstUsesWith(I, V);
1007 if (Instruction *X = foldVectorBinop(I))
1008 return X;
1010 if (Instruction *V = commonShiftTransforms(I))
1011 return V;
1013 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
1014 return V;
1016 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1017 Type *Ty = I.getType();
1018 unsigned BitWidth = Ty->getScalarSizeInBits();
1020 const APInt *C;
1021 if (match(Op1, m_APInt(C))) {
1022 unsigned ShAmtC = C->getZExtValue();
1024 // shl (zext X), C --> zext (shl X, C)
1025 // This is only valid if X would have zeros shifted out.
1026 Value *X;
1027 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
1028 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1029 if (ShAmtC < SrcWidth &&
1030 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
1031 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
1034 // (X >> C) << C --> X & (-1 << C)
1035 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
1036 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1037 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1040 const APInt *C1;
1041 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
1042 C1->ult(BitWidth)) {
1043 unsigned ShrAmt = C1->getZExtValue();
1044 if (ShrAmt < ShAmtC) {
1045 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
1046 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1047 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1048 NewShl->setHasNoUnsignedWrap(
1049 I.hasNoUnsignedWrap() ||
1050 (ShrAmt &&
1051 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1052 I.hasNoSignedWrap()));
1053 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
1054 return NewShl;
1056 if (ShrAmt > ShAmtC) {
1057 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
1058 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1059 auto *NewShr = BinaryOperator::Create(
1060 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
1061 NewShr->setIsExact(true);
1062 return NewShr;
1066 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
1067 C1->ult(BitWidth)) {
1068 unsigned ShrAmt = C1->getZExtValue();
1069 if (ShrAmt < ShAmtC) {
1070 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
1071 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1072 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1073 NewShl->setHasNoUnsignedWrap(
1074 I.hasNoUnsignedWrap() ||
1075 (ShrAmt &&
1076 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1077 I.hasNoSignedWrap()));
1078 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
1079 Builder.Insert(NewShl);
1080 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1081 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1083 if (ShrAmt > ShAmtC) {
1084 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
1085 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1086 auto *OldShr = cast<BinaryOperator>(Op0);
1087 auto *NewShr =
1088 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
1089 NewShr->setIsExact(OldShr->isExact());
1090 Builder.Insert(NewShr);
1091 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1092 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
1096 // Similar to above, but look through an intermediate trunc instruction.
1097 BinaryOperator *Shr;
1098 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
1099 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
1100 // The larger shift direction survives through the transform.
1101 unsigned ShrAmtC = C1->getZExtValue();
1102 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
1103 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
1104 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
1106 // If C1 > C:
1107 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
1108 // If C > C1:
1109 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
1110 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
1111 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
1112 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1113 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
1116 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1117 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1118 // Oversized shifts are simplified to zero in InstSimplify.
1119 if (AmtSum < BitWidth)
1120 // (X << C1) << C2 --> X << (C1 + C2)
1121 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
1124 // If we have an opposite shift by the same amount, we may be able to
1125 // reorder binops and shifts to eliminate math/logic.
1126 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
1127 switch (BinOpcode) {
1128 default:
1129 return false;
1130 case Instruction::Add:
1131 case Instruction::And:
1132 case Instruction::Or:
1133 case Instruction::Xor:
1134 case Instruction::Sub:
1135 // NOTE: Sub is not commutable and the tranforms below may not be valid
1136 // when the shift-right is operand 1 (RHS) of the sub.
1137 return true;
1140 BinaryOperator *Op0BO;
1141 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
1142 isSuitableBinOpcode(Op0BO->getOpcode())) {
1143 // Commute so shift-right is on LHS of the binop.
1144 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
1145 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
1146 Value *Shr = Op0BO->getOperand(0);
1147 Value *Y = Op0BO->getOperand(1);
1148 Value *X;
1149 const APInt *CC;
1150 if (Op0BO->isCommutative() && Y->hasOneUse() &&
1151 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
1152 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
1153 m_APInt(CC)))))
1154 std::swap(Shr, Y);
1156 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
1157 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1158 // Y << C
1159 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
1160 // (X bop (Y << C))
1161 Value *B =
1162 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
1163 unsigned Op1Val = C->getLimitedValue(BitWidth);
1164 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
1165 Constant *Mask = ConstantInt::get(Ty, Bits);
1166 return BinaryOperator::CreateAnd(B, Mask);
1169 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
1170 if (match(Shr,
1171 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
1172 m_APInt(CC))))) {
1173 // Y << C
1174 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
1175 // X & (CC << C)
1176 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
1177 X->getName() + ".mask");
1178 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
1182 // (C1 - X) << C --> (C1 << C) - (X << C)
1183 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
1184 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
1185 Value *NewShift = Builder.CreateShl(X, Op1);
1186 return BinaryOperator::CreateSub(NewLHS, NewShift);
1190 if (setShiftFlags(I, Q))
1191 return &I;
1193 // Transform (x >> y) << y to x & (-1 << y)
1194 // Valid for any type of right-shift.
1195 Value *X;
1196 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1197 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1198 Value *Mask = Builder.CreateShl(AllOnes, Op1);
1199 return BinaryOperator::CreateAnd(Mask, X);
1202 Constant *C1;
1203 if (match(Op1, m_Constant(C1))) {
1204 Constant *C2;
1205 Value *X;
1206 // (X * C2) << C1 --> X * (C2 << C1)
1207 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1208 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
1210 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1211 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1212 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1213 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1217 if (match(Op0, m_One())) {
1218 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1219 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1220 return BinaryOperator::CreateLShr(
1221 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1223 // Canonicalize "extract lowest set bit" using cttz to and-with-negate:
1224 // 1 << (cttz X) --> -X & X
1225 if (match(Op1,
1226 m_OneUse(m_Intrinsic<Intrinsic::cttz>(m_Value(X), m_Value())))) {
1227 Value *NegX = Builder.CreateNeg(X, "neg");
1228 return BinaryOperator::CreateAnd(NegX, X);
1232 return nullptr;
1235 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
1236 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1237 SQ.getWithInstruction(&I)))
1238 return replaceInstUsesWith(I, V);
1240 if (Instruction *X = foldVectorBinop(I))
1241 return X;
1243 if (Instruction *R = commonShiftTransforms(I))
1244 return R;
1246 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1247 Type *Ty = I.getType();
1248 Value *X;
1249 const APInt *C;
1250 unsigned BitWidth = Ty->getScalarSizeInBits();
1252 // (iN (~X) u>> (N - 1)) --> zext (X > -1)
1253 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) &&
1254 match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)))
1255 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
1257 if (match(Op1, m_APInt(C))) {
1258 unsigned ShAmtC = C->getZExtValue();
1259 auto *II = dyn_cast<IntrinsicInst>(Op0);
1260 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1261 (II->getIntrinsicID() == Intrinsic::ctlz ||
1262 II->getIntrinsicID() == Intrinsic::cttz ||
1263 II->getIntrinsicID() == Intrinsic::ctpop)) {
1264 // ctlz.i32(x)>>5 --> zext(x == 0)
1265 // cttz.i32(x)>>5 --> zext(x == 0)
1266 // ctpop.i32(x)>>5 --> zext(x == -1)
1267 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1268 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1269 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1270 return new ZExtInst(Cmp, Ty);
1273 Value *X;
1274 const APInt *C1;
1275 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1276 if (C1->ult(ShAmtC)) {
1277 unsigned ShlAmtC = C1->getZExtValue();
1278 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1279 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1280 // (X <<nuw C1) >>u C --> X >>u (C - C1)
1281 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1282 NewLShr->setIsExact(I.isExact());
1283 return NewLShr;
1285 if (Op0->hasOneUse()) {
1286 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
1287 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1288 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1289 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1291 } else if (C1->ugt(ShAmtC)) {
1292 unsigned ShlAmtC = C1->getZExtValue();
1293 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1294 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1295 // (X <<nuw C1) >>u C --> X <<nuw/nsw (C1 - C)
1296 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1297 NewShl->setHasNoUnsignedWrap(true);
1298 NewShl->setHasNoSignedWrap(ShAmtC > 0);
1299 return NewShl;
1301 if (Op0->hasOneUse()) {
1302 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
1303 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1304 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1305 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1307 } else {
1308 assert(*C1 == ShAmtC);
1309 // (X << C) >>u C --> X & (-1 >>u C)
1310 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1311 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1315 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1316 // TODO: Consolidate with the more general transform that starts from shl
1317 // (the shifts are in the opposite order).
1318 Value *Y;
1319 if (match(Op0,
1320 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
1321 m_Value(Y))))) {
1322 Value *NewLshr = Builder.CreateLShr(Y, Op1);
1323 Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1324 unsigned Op1Val = C->getLimitedValue(BitWidth);
1325 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1326 Constant *Mask = ConstantInt::get(Ty, Bits);
1327 return BinaryOperator::CreateAnd(NewAdd, Mask);
1330 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1331 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1332 assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1333 "Big shift not simplified to zero?");
1334 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1335 Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1336 return new ZExtInst(NewLShr, Ty);
1339 if (match(Op0, m_SExt(m_Value(X)))) {
1340 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1341 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1342 if (SrcTyBitWidth == 1) {
1343 auto *NewC = ConstantInt::get(
1344 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1345 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1348 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1349 Op0->hasOneUse()) {
1350 // Are we moving the sign bit to the low bit and widening with high
1351 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1352 if (ShAmtC == BitWidth - 1) {
1353 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1354 return new ZExtInst(NewLShr, Ty);
1357 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1358 if (ShAmtC == BitWidth - SrcTyBitWidth) {
1359 // The new shift amount can't be more than the narrow source type.
1360 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1361 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1362 return new ZExtInst(AShr, Ty);
1367 if (ShAmtC == BitWidth - 1) {
1368 // lshr i32 or(X,-X), 31 --> zext (X != 0)
1369 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1370 return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1372 // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1373 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1374 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1376 // Check if a number is negative and odd:
1377 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1378 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1379 Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1380 return BinaryOperator::CreateAnd(Signbit, X);
1384 // (X >>u C1) >>u C --> X >>u (C1 + C)
1385 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1386 // Oversized shifts are simplified to zero in InstSimplify.
1387 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1388 if (AmtSum < BitWidth)
1389 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1392 Instruction *TruncSrc;
1393 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1394 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1395 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1396 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1398 // If the combined shift fits in the source width:
1399 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1401 // If the first shift covers the number of bits truncated, then the
1402 // mask instruction is eliminated (and so the use check is relaxed).
1403 if (AmtSum < SrcWidth &&
1404 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1405 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1406 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1408 // If the first shift does not cover the number of bits truncated, then
1409 // we require a mask to get rid of high bits in the result.
1410 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1411 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1415 const APInt *MulC;
1416 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
1417 // Look for a "splat" mul pattern - it replicates bits across each half of
1418 // a value, so a right shift is just a mask of the low bits:
1419 // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
1420 // TODO: Generalize to allow more than just half-width shifts?
1421 if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1422 MulC->logBase2() == ShAmtC)
1423 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1425 // The one-use check is not strictly necessary, but codegen may not be
1426 // able to invert the transform and perf may suffer with an extra mul
1427 // instruction.
1428 if (Op0->hasOneUse()) {
1429 APInt NewMulC = MulC->lshr(ShAmtC);
1430 // if c is divisible by (1 << ShAmtC):
1431 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC)
1432 if (MulC->eq(NewMulC.shl(ShAmtC))) {
1433 auto *NewMul =
1434 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
1435 assert(ShAmtC != 0 &&
1436 "lshr X, 0 should be handled by simplifyLShrInst.");
1437 NewMul->setHasNoSignedWrap(true);
1438 return NewMul;
1443 // Try to narrow bswap.
1444 // In the case where the shift amount equals the bitwidth difference, the
1445 // shift is eliminated.
1446 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
1447 m_OneUse(m_ZExt(m_Value(X))))))) {
1448 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1449 unsigned WidthDiff = BitWidth - SrcWidth;
1450 if (SrcWidth % 16 == 0) {
1451 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1452 if (ShAmtC >= WidthDiff) {
1453 // (bswap (zext X)) >> C --> zext (bswap X >> C')
1454 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
1455 return new ZExtInst(NewShift, Ty);
1456 } else {
1457 // (bswap (zext X)) >> C --> (zext (bswap X)) << C'
1458 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty);
1459 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1460 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1465 // Reduce add-carry of bools to logic:
1466 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY)
1467 Value *BoolX, *BoolY;
1468 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) &&
1469 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) &&
1470 BoolX->getType()->isIntOrIntVectorTy(1) &&
1471 BoolY->getType()->isIntOrIntVectorTy(1) &&
1472 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) {
1473 Value *And = Builder.CreateAnd(BoolX, BoolY);
1474 return new ZExtInst(And, Ty);
1478 const SimplifyQuery Q = SQ.getWithInstruction(&I);
1479 if (setShiftFlags(I, Q))
1480 return &I;
1482 // Transform (x << y) >> y to x & (-1 >> y)
1483 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1484 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1485 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1486 return BinaryOperator::CreateAnd(Mask, X);
1489 if (Instruction *Overflow = foldLShrOverflowBit(I))
1490 return Overflow;
1492 return nullptr;
1495 Instruction *
1496 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1497 BinaryOperator &OldAShr) {
1498 assert(OldAShr.getOpcode() == Instruction::AShr &&
1499 "Must be called with arithmetic right-shift instruction only.");
1501 // Check that constant C is a splat of the element-wise bitwidth of V.
1502 auto BitWidthSplat = [](Constant *C, Value *V) {
1503 return match(
1504 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1505 APInt(C->getType()->getScalarSizeInBits(),
1506 V->getType()->getScalarSizeInBits())));
1509 // It should look like variable-length sign-extension on the outside:
1510 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1511 Value *NBits;
1512 Instruction *MaybeTrunc;
1513 Constant *C1, *C2;
1514 if (!match(&OldAShr,
1515 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1516 m_ZExtOrSelf(m_Sub(m_Constant(C1),
1517 m_ZExtOrSelf(m_Value(NBits))))),
1518 m_ZExtOrSelf(m_Sub(m_Constant(C2),
1519 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1520 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1521 return nullptr;
1523 // There may or may not be a truncation after outer two shifts.
1524 Instruction *HighBitExtract;
1525 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1526 bool HadTrunc = MaybeTrunc != HighBitExtract;
1528 // And finally, the innermost part of the pattern must be a right-shift.
1529 Value *X, *NumLowBitsToSkip;
1530 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1531 return nullptr;
1533 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1534 Constant *C0;
1535 if (!match(NumLowBitsToSkip,
1536 m_ZExtOrSelf(
1537 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1538 !BitWidthSplat(C0, HighBitExtract))
1539 return nullptr;
1541 // Since the NBits is identical for all shifts, if the outermost and
1542 // innermost shifts are identical, then outermost shifts are redundant.
1543 // If we had truncation, do keep it though.
1544 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1545 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1547 // Else, if there was a truncation, then we need to ensure that one
1548 // instruction will go away.
1549 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1550 return nullptr;
1552 // Finally, bypass two innermost shifts, and perform the outermost shift on
1553 // the operands of the innermost shift.
1554 Instruction *NewAShr =
1555 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1556 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1557 if (!HadTrunc)
1558 return NewAShr;
1560 Builder.Insert(NewAShr);
1561 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1564 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1565 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1566 SQ.getWithInstruction(&I)))
1567 return replaceInstUsesWith(I, V);
1569 if (Instruction *X = foldVectorBinop(I))
1570 return X;
1572 if (Instruction *R = commonShiftTransforms(I))
1573 return R;
1575 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1576 Type *Ty = I.getType();
1577 unsigned BitWidth = Ty->getScalarSizeInBits();
1578 const APInt *ShAmtAPInt;
1579 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1580 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1582 // If the shift amount equals the difference in width of the destination
1583 // and source scalar types:
1584 // ashr (shl (zext X), C), C --> sext X
1585 Value *X;
1586 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1587 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1588 return new SExtInst(X, Ty);
1590 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1591 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1592 const APInt *ShOp1;
1593 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1594 ShOp1->ult(BitWidth)) {
1595 unsigned ShlAmt = ShOp1->getZExtValue();
1596 if (ShlAmt < ShAmt) {
1597 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1598 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1599 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1600 NewAShr->setIsExact(I.isExact());
1601 return NewAShr;
1603 if (ShlAmt > ShAmt) {
1604 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1605 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1606 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1607 NewShl->setHasNoSignedWrap(true);
1608 return NewShl;
1612 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1613 ShOp1->ult(BitWidth)) {
1614 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1615 // Oversized arithmetic shifts replicate the sign bit.
1616 AmtSum = std::min(AmtSum, BitWidth - 1);
1617 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1618 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1621 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1622 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1623 // ashr (sext X), C --> sext (ashr X, C')
1624 Type *SrcTy = X->getType();
1625 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1626 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1627 return new SExtInst(NewSh, Ty);
1630 if (ShAmt == BitWidth - 1) {
1631 // ashr i32 or(X,-X), 31 --> sext (X != 0)
1632 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1633 return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1635 // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1636 Value *Y;
1637 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1638 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1642 const SimplifyQuery Q = SQ.getWithInstruction(&I);
1643 if (setShiftFlags(I, Q))
1644 return &I;
1646 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1647 // as the pattern to splat the lowest bit.
1648 // FIXME: iff X is already masked, we don't need the one-use check.
1649 Value *X;
1650 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1651 match(Op0, m_OneUse(m_Shl(m_Value(X),
1652 m_SpecificIntAllowUndef(BitWidth - 1))))) {
1653 Constant *Mask = ConstantInt::get(Ty, 1);
1654 // Retain the knowledge about the ignored lanes.
1655 Mask = Constant::mergeUndefsWith(
1656 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1657 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1658 X = Builder.CreateAnd(X, Mask);
1659 return BinaryOperator::CreateNeg(X);
1662 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1663 return R;
1665 // See if we can turn a signed shr into an unsigned shr.
1666 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) {
1667 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
1668 Lshr->setIsExact(I.isExact());
1669 return Lshr;
1672 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
1673 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1674 // Note that we must drop 'exact'-ness of the shift!
1675 // Note that we can't keep undef's in -1 vector constant!
1676 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1677 return BinaryOperator::CreateNot(NewAShr);
1680 return nullptr;