[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / TailRecursionElimination.cpp
blobc6e8505d5ab4b4576e7221f509b1f07a1c2859d9
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop. This pass also implements the following extensions to the basic
12 // algorithm:
14 // 1. Trivial instructions between the call and return do not prevent the
15 // transformation from taking place, though currently the analysis cannot
16 // support moving any really useful instructions (only dead ones).
17 // 2. This pass transforms functions that are prevented from being tail
18 // recursive by an associative and commutative expression to use an
19 // accumulator variable, thus compiling the typical naive factorial or
20 // 'fib' implementation into efficient code.
21 // 3. TRE is performed if the function returns void, if the return
22 // returns the result returned by the call, or if the function returns a
23 // run-time constant on all exits from the function. It is possible, though
24 // unlikely, that the return returns something else (like constant 0), and
25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
26 // the function return the exact same value.
27 // 4. If it can prove that callees do not access their caller stack frame,
28 // they are marked as eligible for tail call elimination (by the code
29 // generator).
31 // There are several improvements that could be made:
33 // 1. If the function has any alloca instructions, these instructions will be
34 // moved out of the entry block of the function, causing them to be
35 // evaluated each time through the tail recursion. Safely keeping allocas
36 // in the entry block requires analysis to proves that the tail-called
37 // function does not read or write the stack object.
38 // 2. Tail recursion is only performed if the call immediately precedes the
39 // return instruction. It's possible that there could be a jump between
40 // the call and the return.
41 // 3. There can be intervening operations between the call and the return that
42 // prevent the TRE from occurring. For example, there could be GEP's and
43 // stores to memory that will not be read or written by the call. This
44 // requires some substantial analysis (such as with DSA) to prove safe to
45 // move ahead of the call, but doing so could allow many more TREs to be
46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 // 4. The algorithm we use to detect if callees access their caller stack
48 // frames is very primitive.
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/DomTreeUpdater.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/InstructionSimplify.h"
59 #include "llvm/Analysis/Loads.h"
60 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
61 #include "llvm/Analysis/PostDominators.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 using namespace llvm;
84 #define DEBUG_TYPE "tailcallelim"
86 STATISTIC(NumEliminated, "Number of tail calls removed");
87 STATISTIC(NumRetDuped, "Number of return duplicated");
88 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
90 /// Scan the specified function for alloca instructions.
91 /// If it contains any dynamic allocas, returns false.
92 static bool canTRE(Function &F) {
93 // TODO: We don't do TRE if dynamic allocas are used.
94 // Dynamic allocas allocate stack space which should be
95 // deallocated before new iteration started. That is
96 // currently not implemented.
97 return llvm::all_of(instructions(F), [](Instruction &I) {
98 auto *AI = dyn_cast<AllocaInst>(&I);
99 return !AI || AI->isStaticAlloca();
103 namespace {
104 struct AllocaDerivedValueTracker {
105 // Start at a root value and walk its use-def chain to mark calls that use the
106 // value or a derived value in AllocaUsers, and places where it may escape in
107 // EscapePoints.
108 void walk(Value *Root) {
109 SmallVector<Use *, 32> Worklist;
110 SmallPtrSet<Use *, 32> Visited;
112 auto AddUsesToWorklist = [&](Value *V) {
113 for (auto &U : V->uses()) {
114 if (!Visited.insert(&U).second)
115 continue;
116 Worklist.push_back(&U);
120 AddUsesToWorklist(Root);
122 while (!Worklist.empty()) {
123 Use *U = Worklist.pop_back_val();
124 Instruction *I = cast<Instruction>(U->getUser());
126 switch (I->getOpcode()) {
127 case Instruction::Call:
128 case Instruction::Invoke: {
129 auto &CB = cast<CallBase>(*I);
130 // If the alloca-derived argument is passed byval it is not an escape
131 // point, or a use of an alloca. Calling with byval copies the contents
132 // of the alloca into argument registers or stack slots, which exist
133 // beyond the lifetime of the current frame.
134 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
135 continue;
136 bool IsNocapture =
137 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
138 callUsesLocalStack(CB, IsNocapture);
139 if (IsNocapture) {
140 // If the alloca-derived argument is passed in as nocapture, then it
141 // can't propagate to the call's return. That would be capturing.
142 continue;
144 break;
146 case Instruction::Load: {
147 // The result of a load is not alloca-derived (unless an alloca has
148 // otherwise escaped, but this is a local analysis).
149 continue;
151 case Instruction::Store: {
152 if (U->getOperandNo() == 0)
153 EscapePoints.insert(I);
154 continue; // Stores have no users to analyze.
156 case Instruction::BitCast:
157 case Instruction::GetElementPtr:
158 case Instruction::PHI:
159 case Instruction::Select:
160 case Instruction::AddrSpaceCast:
161 break;
162 default:
163 EscapePoints.insert(I);
164 break;
167 AddUsesToWorklist(I);
171 void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
172 // Add it to the list of alloca users.
173 AllocaUsers.insert(&CB);
175 // If it's nocapture then it can't capture this alloca.
176 if (IsNocapture)
177 return;
179 // If it can write to memory, it can leak the alloca value.
180 if (!CB.onlyReadsMemory())
181 EscapePoints.insert(&CB);
184 SmallPtrSet<Instruction *, 32> AllocaUsers;
185 SmallPtrSet<Instruction *, 32> EscapePoints;
189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
190 if (F.callsFunctionThatReturnsTwice())
191 return false;
193 // The local stack holds all alloca instructions and all byval arguments.
194 AllocaDerivedValueTracker Tracker;
195 for (Argument &Arg : F.args()) {
196 if (Arg.hasByValAttr())
197 Tracker.walk(&Arg);
199 for (auto &BB : F) {
200 for (auto &I : BB)
201 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
202 Tracker.walk(AI);
205 bool Modified = false;
207 // Track whether a block is reachable after an alloca has escaped. Blocks that
208 // contain the escaping instruction will be marked as being visited without an
209 // escaped alloca, since that is how the block began.
210 enum VisitType {
211 UNVISITED,
212 UNESCAPED,
213 ESCAPED
215 DenseMap<BasicBlock *, VisitType> Visited;
217 // We propagate the fact that an alloca has escaped from block to successor.
218 // Visit the blocks that are propagating the escapedness first. To do this, we
219 // maintain two worklists.
220 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
222 // We may enter a block and visit it thinking that no alloca has escaped yet,
223 // then see an escape point and go back around a loop edge and come back to
224 // the same block twice. Because of this, we defer setting tail on calls when
225 // we first encounter them in a block. Every entry in this list does not
226 // statically use an alloca via use-def chain analysis, but may find an alloca
227 // through other means if the block turns out to be reachable after an escape
228 // point.
229 SmallVector<CallInst *, 32> DeferredTails;
231 BasicBlock *BB = &F.getEntryBlock();
232 VisitType Escaped = UNESCAPED;
233 do {
234 for (auto &I : *BB) {
235 if (Tracker.EscapePoints.count(&I))
236 Escaped = ESCAPED;
238 CallInst *CI = dyn_cast<CallInst>(&I);
239 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
240 // considered accessing memory and will be marked as a tail call if we
241 // don't bail out here.
242 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
243 isa<PseudoProbeInst>(&I))
244 continue;
246 // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and
247 // "kcfi".
248 bool IsNoTail = CI->isNoTailCall() ||
249 CI->hasOperandBundlesOtherThan(
250 {LLVMContext::OB_clang_arc_attachedcall,
251 LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi});
253 if (!IsNoTail && CI->doesNotAccessMemory()) {
254 // A call to a readnone function whose arguments are all things computed
255 // outside this function can be marked tail. Even if you stored the
256 // alloca address into a global, a readnone function can't load the
257 // global anyhow.
259 // Note that this runs whether we know an alloca has escaped or not. If
260 // it has, then we can't trust Tracker.AllocaUsers to be accurate.
261 bool SafeToTail = true;
262 for (auto &Arg : CI->args()) {
263 if (isa<Constant>(Arg.getUser()))
264 continue;
265 if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
266 if (!A->hasByValAttr())
267 continue;
268 SafeToTail = false;
269 break;
271 if (SafeToTail) {
272 using namespace ore;
273 ORE->emit([&]() {
274 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
275 << "marked as tail call candidate (readnone)";
277 CI->setTailCall();
278 Modified = true;
279 continue;
283 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
284 DeferredTails.push_back(CI);
287 for (auto *SuccBB : successors(BB)) {
288 auto &State = Visited[SuccBB];
289 if (State < Escaped) {
290 State = Escaped;
291 if (State == ESCAPED)
292 WorklistEscaped.push_back(SuccBB);
293 else
294 WorklistUnescaped.push_back(SuccBB);
298 if (!WorklistEscaped.empty()) {
299 BB = WorklistEscaped.pop_back_val();
300 Escaped = ESCAPED;
301 } else {
302 BB = nullptr;
303 while (!WorklistUnescaped.empty()) {
304 auto *NextBB = WorklistUnescaped.pop_back_val();
305 if (Visited[NextBB] == UNESCAPED) {
306 BB = NextBB;
307 Escaped = UNESCAPED;
308 break;
312 } while (BB);
314 for (CallInst *CI : DeferredTails) {
315 if (Visited[CI->getParent()] != ESCAPED) {
316 // If the escape point was part way through the block, calls after the
317 // escape point wouldn't have been put into DeferredTails.
318 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
319 CI->setTailCall();
320 Modified = true;
324 return Modified;
327 /// Return true if it is safe to move the specified
328 /// instruction from after the call to before the call, assuming that all
329 /// instructions between the call and this instruction are movable.
331 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
332 if (isa<DbgInfoIntrinsic>(I))
333 return true;
335 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
336 if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
337 llvm::findAllocaForValue(II->getArgOperand(1)))
338 return true;
340 // FIXME: We can move load/store/call/free instructions above the call if the
341 // call does not mod/ref the memory location being processed.
342 if (I->mayHaveSideEffects()) // This also handles volatile loads.
343 return false;
345 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
346 // Loads may always be moved above calls without side effects.
347 if (CI->mayHaveSideEffects()) {
348 // Non-volatile loads may be moved above a call with side effects if it
349 // does not write to memory and the load provably won't trap.
350 // Writes to memory only matter if they may alias the pointer
351 // being loaded from.
352 const DataLayout &DL = L->getModule()->getDataLayout();
353 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
354 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
355 L->getAlign(), DL, L))
356 return false;
360 // Otherwise, if this is a side-effect free instruction, check to make sure
361 // that it does not use the return value of the call. If it doesn't use the
362 // return value of the call, it must only use things that are defined before
363 // the call, or movable instructions between the call and the instruction
364 // itself.
365 return !is_contained(I->operands(), CI);
368 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
369 if (!I->isAssociative() || !I->isCommutative())
370 return false;
372 assert(I->getNumOperands() >= 2 &&
373 "Associative/commutative operations should have at least 2 args!");
375 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
376 // Accumulators must have an identity.
377 if (!ConstantExpr::getIntrinsicIdentity(II->getIntrinsicID(), I->getType()))
378 return false;
381 // Exactly one operand should be the result of the call instruction.
382 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
383 (I->getOperand(0) != CI && I->getOperand(1) != CI))
384 return false;
386 // The only user of this instruction we allow is a single return instruction.
387 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
388 return false;
390 return true;
393 static Instruction *firstNonDbg(BasicBlock::iterator I) {
394 while (isa<DbgInfoIntrinsic>(I))
395 ++I;
396 return &*I;
399 namespace {
400 class TailRecursionEliminator {
401 Function &F;
402 const TargetTransformInfo *TTI;
403 AliasAnalysis *AA;
404 OptimizationRemarkEmitter *ORE;
405 DomTreeUpdater &DTU;
407 // The below are shared state we want to have available when eliminating any
408 // calls in the function. There values should be populated by
409 // createTailRecurseLoopHeader the first time we find a call we can eliminate.
410 BasicBlock *HeaderBB = nullptr;
411 SmallVector<PHINode *, 8> ArgumentPHIs;
413 // PHI node to store our return value.
414 PHINode *RetPN = nullptr;
416 // i1 PHI node to track if we have a valid return value stored in RetPN.
417 PHINode *RetKnownPN = nullptr;
419 // Vector of select instructions we insereted. These selects use RetKnownPN
420 // to either propagate RetPN or select a new return value.
421 SmallVector<SelectInst *, 8> RetSelects;
423 // The below are shared state needed when performing accumulator recursion.
424 // There values should be populated by insertAccumulator the first time we
425 // find an elimination that requires an accumulator.
427 // PHI node to store our current accumulated value.
428 PHINode *AccPN = nullptr;
430 // The instruction doing the accumulating.
431 Instruction *AccumulatorRecursionInstr = nullptr;
433 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
434 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
435 DomTreeUpdater &DTU)
436 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
438 CallInst *findTRECandidate(BasicBlock *BB);
440 void createTailRecurseLoopHeader(CallInst *CI);
442 void insertAccumulator(Instruction *AccRecInstr);
444 bool eliminateCall(CallInst *CI);
446 void cleanupAndFinalize();
448 bool processBlock(BasicBlock &BB);
450 void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
452 void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
454 public:
455 static bool eliminate(Function &F, const TargetTransformInfo *TTI,
456 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
457 DomTreeUpdater &DTU);
459 } // namespace
461 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
462 Instruction *TI = BB->getTerminator();
464 if (&BB->front() == TI) // Make sure there is something before the terminator.
465 return nullptr;
467 // Scan backwards from the return, checking to see if there is a tail call in
468 // this block. If so, set CI to it.
469 CallInst *CI = nullptr;
470 BasicBlock::iterator BBI(TI);
471 while (true) {
472 CI = dyn_cast<CallInst>(BBI);
473 if (CI && CI->getCalledFunction() == &F)
474 break;
476 if (BBI == BB->begin())
477 return nullptr; // Didn't find a potential tail call.
478 --BBI;
481 assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
482 "Incompatible call site attributes(Tail,NoTail)");
483 if (!CI->isTailCall())
484 return nullptr;
486 // As a special case, detect code like this:
487 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
488 // and disable this xform in this case, because the code generator will
489 // lower the call to fabs into inline code.
490 if (BB == &F.getEntryBlock() &&
491 firstNonDbg(BB->front().getIterator()) == CI &&
492 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
493 !TTI->isLoweredToCall(CI->getCalledFunction())) {
494 // A single-block function with just a call and a return. Check that
495 // the arguments match.
496 auto I = CI->arg_begin(), E = CI->arg_end();
497 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
498 for (; I != E && FI != FE; ++I, ++FI)
499 if (*I != &*FI) break;
500 if (I == E && FI == FE)
501 return nullptr;
504 return CI;
507 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
508 HeaderBB = &F.getEntryBlock();
509 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
510 NewEntry->takeName(HeaderBB);
511 HeaderBB->setName("tailrecurse");
512 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
513 BI->setDebugLoc(CI->getDebugLoc());
515 // Move all fixed sized allocas from HeaderBB to NewEntry.
516 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
517 NEBI = NewEntry->begin();
518 OEBI != E;)
519 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
520 if (isa<ConstantInt>(AI->getArraySize()))
521 AI->moveBefore(&*NEBI);
523 // Now that we have created a new block, which jumps to the entry
524 // block, insert a PHI node for each argument of the function.
525 // For now, we initialize each PHI to only have the real arguments
526 // which are passed in.
527 BasicBlock::iterator InsertPos = HeaderBB->begin();
528 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
529 PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr");
530 PN->insertBefore(InsertPos);
531 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
532 PN->addIncoming(&*I, NewEntry);
533 ArgumentPHIs.push_back(PN);
536 // If the function doen't return void, create the RetPN and RetKnownPN PHI
537 // nodes to track our return value. We initialize RetPN with poison and
538 // RetKnownPN with false since we can't know our return value at function
539 // entry.
540 Type *RetType = F.getReturnType();
541 if (!RetType->isVoidTy()) {
542 Type *BoolType = Type::getInt1Ty(F.getContext());
543 RetPN = PHINode::Create(RetType, 2, "ret.tr");
544 RetPN->insertBefore(InsertPos);
545 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr");
546 RetKnownPN->insertBefore(InsertPos);
548 RetPN->addIncoming(PoisonValue::get(RetType), NewEntry);
549 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
552 // The entry block was changed from HeaderBB to NewEntry.
553 // The forward DominatorTree needs to be recalculated when the EntryBB is
554 // changed. In this corner-case we recalculate the entire tree.
555 DTU.recalculate(*NewEntry->getParent());
558 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
559 assert(!AccPN && "Trying to insert multiple accumulators");
561 AccumulatorRecursionInstr = AccRecInstr;
563 // Start by inserting a new PHI node for the accumulator.
564 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
565 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
566 "accumulator.tr");
567 AccPN->insertBefore(HeaderBB->begin());
569 // Loop over all of the predecessors of the tail recursion block. For the
570 // real entry into the function we seed the PHI with the identity constant for
571 // the accumulation operation. For any other existing branches to this block
572 // (due to other tail recursions eliminated) the accumulator is not modified.
573 // Because we haven't added the branch in the current block to HeaderBB yet,
574 // it will not show up as a predecessor.
575 for (pred_iterator PI = PB; PI != PE; ++PI) {
576 BasicBlock *P = *PI;
577 if (P == &F.getEntryBlock()) {
578 Constant *Identity =
579 ConstantExpr::getIdentity(AccRecInstr, AccRecInstr->getType());
580 AccPN->addIncoming(Identity, P);
581 } else {
582 AccPN->addIncoming(AccPN, P);
586 ++NumAccumAdded;
589 // Creates a copy of contents of ByValue operand of the specified
590 // call instruction into the newly created temporarily variable.
591 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
592 int OpndIdx) {
593 Type *AggTy = CI->getParamByValType(OpndIdx);
594 assert(AggTy);
595 const DataLayout &DL = F.getParent()->getDataLayout();
597 // Get alignment of byVal operand.
598 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
600 // Create alloca for temporarily byval operands.
601 // Put alloca into the entry block.
602 Value *NewAlloca = new AllocaInst(
603 AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
604 CI->getArgOperand(OpndIdx)->getName(), &*F.getEntryBlock().begin());
606 IRBuilder<> Builder(CI);
607 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
609 // Copy data from byvalue operand into the temporarily variable.
610 Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
611 CI->getArgOperand(OpndIdx),
612 /*SrcAlign*/ Alignment, Size);
613 CI->setArgOperand(OpndIdx, NewAlloca);
616 // Creates a copy from temporarily variable(keeping value of ByVal argument)
617 // into the corresponding function argument location.
618 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
619 CallInst *CI, int OpndIdx) {
620 Type *AggTy = CI->getParamByValType(OpndIdx);
621 assert(AggTy);
622 const DataLayout &DL = F.getParent()->getDataLayout();
624 // Get alignment of byVal operand.
625 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
627 IRBuilder<> Builder(CI);
628 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
630 // Copy data from the temporarily variable into corresponding
631 // function argument location.
632 Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
633 CI->getArgOperand(OpndIdx),
634 /*SrcAlign*/ Alignment, Size);
637 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
638 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
640 // Ok, we found a potential tail call. We can currently only transform the
641 // tail call if all of the instructions between the call and the return are
642 // movable to above the call itself, leaving the call next to the return.
643 // Check that this is the case now.
644 Instruction *AccRecInstr = nullptr;
645 BasicBlock::iterator BBI(CI);
646 for (++BBI; &*BBI != Ret; ++BBI) {
647 if (canMoveAboveCall(&*BBI, CI, AA))
648 continue;
650 // If we can't move the instruction above the call, it might be because it
651 // is an associative and commutative operation that could be transformed
652 // using accumulator recursion elimination. Check to see if this is the
653 // case, and if so, remember which instruction accumulates for later.
654 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
655 return false; // We cannot eliminate the tail recursion!
657 // Yes, this is accumulator recursion. Remember which instruction
658 // accumulates.
659 AccRecInstr = &*BBI;
662 BasicBlock *BB = Ret->getParent();
664 using namespace ore;
665 ORE->emit([&]() {
666 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
667 << "transforming tail recursion into loop";
670 // OK! We can transform this tail call. If this is the first one found,
671 // create the new entry block, allowing us to branch back to the old entry.
672 if (!HeaderBB)
673 createTailRecurseLoopHeader(CI);
675 // Copy values of ByVal operands into local temporarily variables.
676 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
677 if (CI->isByValArgument(I))
678 copyByValueOperandIntoLocalTemp(CI, I);
681 // Ok, now that we know we have a pseudo-entry block WITH all of the
682 // required PHI nodes, add entries into the PHI node for the actual
683 // parameters passed into the tail-recursive call.
684 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
685 if (CI->isByValArgument(I)) {
686 copyLocalTempOfByValueOperandIntoArguments(CI, I);
687 // When eliminating a tail call, we modify the values of the arguments.
688 // Therefore, if the byval parameter has a readonly attribute, we have to
689 // remove it. It is safe because, from the perspective of a caller, the
690 // byval parameter is always treated as "readonly," even if the readonly
691 // attribute is removed.
692 F.removeParamAttr(I, Attribute::ReadOnly);
693 ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
694 } else
695 ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
698 if (AccRecInstr) {
699 insertAccumulator(AccRecInstr);
701 // Rewrite the accumulator recursion instruction so that it does not use
702 // the result of the call anymore, instead, use the PHI node we just
703 // inserted.
704 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
707 // Update our return value tracking
708 if (RetPN) {
709 if (Ret->getReturnValue() == CI || AccRecInstr) {
710 // Defer selecting a return value
711 RetPN->addIncoming(RetPN, BB);
712 RetKnownPN->addIncoming(RetKnownPN, BB);
713 } else {
714 // We found a return value we want to use, insert a select instruction to
715 // select it if we don't already know what our return value will be and
716 // store the result in our return value PHI node.
717 SelectInst *SI = SelectInst::Create(
718 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
719 RetSelects.push_back(SI);
721 RetPN->addIncoming(SI, BB);
722 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
725 if (AccPN)
726 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
729 // Now that all of the PHI nodes are in place, remove the call and
730 // ret instructions, replacing them with an unconditional branch.
731 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
732 NewBI->setDebugLoc(CI->getDebugLoc());
734 Ret->eraseFromParent(); // Remove return.
735 CI->eraseFromParent(); // Remove call.
736 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
737 ++NumEliminated;
738 return true;
741 void TailRecursionEliminator::cleanupAndFinalize() {
742 // If we eliminated any tail recursions, it's possible that we inserted some
743 // silly PHI nodes which just merge an initial value (the incoming operand)
744 // with themselves. Check to see if we did and clean up our mess if so. This
745 // occurs when a function passes an argument straight through to its tail
746 // call.
747 for (PHINode *PN : ArgumentPHIs) {
748 // If the PHI Node is a dynamic constant, replace it with the value it is.
749 if (Value *PNV = simplifyInstruction(PN, F.getParent()->getDataLayout())) {
750 PN->replaceAllUsesWith(PNV);
751 PN->eraseFromParent();
755 if (RetPN) {
756 if (RetSelects.empty()) {
757 // If we didn't insert any select instructions, then we know we didn't
758 // store a return value and we can remove the PHI nodes we inserted.
759 RetPN->dropAllReferences();
760 RetPN->eraseFromParent();
762 RetKnownPN->dropAllReferences();
763 RetKnownPN->eraseFromParent();
765 if (AccPN) {
766 // We need to insert a copy of our accumulator instruction before any
767 // return in the function, and return its result instead.
768 Instruction *AccRecInstr = AccumulatorRecursionInstr;
769 for (BasicBlock &BB : F) {
770 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
771 if (!RI)
772 continue;
774 Instruction *AccRecInstrNew = AccRecInstr->clone();
775 AccRecInstrNew->setName("accumulator.ret.tr");
776 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
777 RI->getOperand(0));
778 AccRecInstrNew->insertBefore(RI);
779 RI->setOperand(0, AccRecInstrNew);
782 } else {
783 // We need to insert a select instruction before any return left in the
784 // function to select our stored return value if we have one.
785 for (BasicBlock &BB : F) {
786 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
787 if (!RI)
788 continue;
790 SelectInst *SI = SelectInst::Create(
791 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
792 RetSelects.push_back(SI);
793 RI->setOperand(0, SI);
796 if (AccPN) {
797 // We need to insert a copy of our accumulator instruction before any
798 // of the selects we inserted, and select its result instead.
799 Instruction *AccRecInstr = AccumulatorRecursionInstr;
800 for (SelectInst *SI : RetSelects) {
801 Instruction *AccRecInstrNew = AccRecInstr->clone();
802 AccRecInstrNew->setName("accumulator.ret.tr");
803 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
804 SI->getFalseValue());
805 AccRecInstrNew->insertBefore(SI);
806 SI->setFalseValue(AccRecInstrNew);
813 bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
814 Instruction *TI = BB.getTerminator();
816 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
817 if (BI->isConditional())
818 return false;
820 BasicBlock *Succ = BI->getSuccessor(0);
821 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
823 if (!Ret)
824 return false;
826 CallInst *CI = findTRECandidate(&BB);
828 if (!CI)
829 return false;
831 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
832 << "INTO UNCOND BRANCH PRED: " << BB);
833 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
834 ++NumRetDuped;
836 // If all predecessors of Succ have been eliminated by
837 // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
838 // because the ret instruction in there is still using a value which
839 // eliminateCall will attempt to remove. This block can only contain
840 // instructions that can't have uses, therefore it is safe to remove.
841 if (pred_empty(Succ))
842 DTU.deleteBB(Succ);
844 eliminateCall(CI);
845 return true;
846 } else if (isa<ReturnInst>(TI)) {
847 CallInst *CI = findTRECandidate(&BB);
849 if (CI)
850 return eliminateCall(CI);
853 return false;
856 bool TailRecursionEliminator::eliminate(Function &F,
857 const TargetTransformInfo *TTI,
858 AliasAnalysis *AA,
859 OptimizationRemarkEmitter *ORE,
860 DomTreeUpdater &DTU) {
861 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
862 return false;
864 bool MadeChange = false;
865 MadeChange |= markTails(F, ORE);
867 // If this function is a varargs function, we won't be able to PHI the args
868 // right, so don't even try to convert it...
869 if (F.getFunctionType()->isVarArg())
870 return MadeChange;
872 if (!canTRE(F))
873 return MadeChange;
875 // Change any tail recursive calls to loops.
876 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
878 for (BasicBlock &BB : F)
879 MadeChange |= TRE.processBlock(BB);
881 TRE.cleanupAndFinalize();
883 return MadeChange;
886 namespace {
887 struct TailCallElim : public FunctionPass {
888 static char ID; // Pass identification, replacement for typeid
889 TailCallElim() : FunctionPass(ID) {
890 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
893 void getAnalysisUsage(AnalysisUsage &AU) const override {
894 AU.addRequired<TargetTransformInfoWrapperPass>();
895 AU.addRequired<AAResultsWrapperPass>();
896 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
897 AU.addPreserved<GlobalsAAWrapperPass>();
898 AU.addPreserved<DominatorTreeWrapperPass>();
899 AU.addPreserved<PostDominatorTreeWrapperPass>();
902 bool runOnFunction(Function &F) override {
903 if (skipFunction(F))
904 return false;
906 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
907 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
908 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
909 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
910 // There is no noticable performance difference here between Lazy and Eager
911 // UpdateStrategy based on some test results. It is feasible to switch the
912 // UpdateStrategy to Lazy if we find it profitable later.
913 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
915 return TailRecursionEliminator::eliminate(
916 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
917 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
918 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
923 char TailCallElim::ID = 0;
924 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
925 false, false)
926 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
927 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
928 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
929 false, false)
931 // Public interface to the TailCallElimination pass
932 FunctionPass *llvm::createTailCallEliminationPass() {
933 return new TailCallElim();
936 PreservedAnalyses TailCallElimPass::run(Function &F,
937 FunctionAnalysisManager &AM) {
939 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
940 AliasAnalysis &AA = AM.getResult<AAManager>(F);
941 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
942 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
943 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
944 // There is no noticable performance difference here between Lazy and Eager
945 // UpdateStrategy based on some test results. It is feasible to switch the
946 // UpdateStrategy to Lazy if we find it profitable later.
947 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
948 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
950 if (!Changed)
951 return PreservedAnalyses::all();
952 PreservedAnalyses PA;
953 PA.preserve<DominatorTreeAnalysis>();
954 PA.preserve<PostDominatorTreeAnalysis>();
955 return PA;