1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header. This simplifies a
15 // number of analyses and transformations, such as LICM.
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header). This simplifies transformations such as store-sinking
21 // that are built into LICM.
23 // This pass also guarantees that loops will have exactly one backedge.
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BranchProbabilityInfo.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/GlobalsModRef.h"
52 #include "llvm/Analysis/InstructionSimplify.h"
53 #include "llvm/Analysis/LoopInfo.h"
54 #include "llvm/Analysis/MemorySSA.h"
55 #include "llvm/Analysis/MemorySSAUpdater.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
58 #include "llvm/IR/CFG.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/InitializePasses.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/LoopUtils.h"
74 #define DEBUG_TYPE "loop-simplify"
76 STATISTIC(NumNested
, "Number of nested loops split out");
78 // If the block isn't already, move the new block to right after some 'outside
79 // block' block. This prevents the preheader from being placed inside the loop
80 // body, e.g. when the loop hasn't been rotated.
81 static void placeSplitBlockCarefully(BasicBlock
*NewBB
,
82 SmallVectorImpl
<BasicBlock
*> &SplitPreds
,
84 // Check to see if NewBB is already well placed.
85 Function::iterator BBI
= --NewBB
->getIterator();
86 for (unsigned i
= 0, e
= SplitPreds
.size(); i
!= e
; ++i
) {
87 if (&*BBI
== SplitPreds
[i
])
91 // If it isn't already after an outside block, move it after one. This is
92 // always good as it makes the uncond branch from the outside block into a
95 // Figure out *which* outside block to put this after. Prefer an outside
96 // block that neighbors a BB actually in the loop.
97 BasicBlock
*FoundBB
= nullptr;
98 for (unsigned i
= 0, e
= SplitPreds
.size(); i
!= e
; ++i
) {
99 Function::iterator BBI
= SplitPreds
[i
]->getIterator();
100 if (++BBI
!= NewBB
->getParent()->end() && L
->contains(&*BBI
)) {
101 FoundBB
= SplitPreds
[i
];
106 // If our heuristic for a *good* bb to place this after doesn't find
107 // anything, just pick something. It's likely better than leaving it within
110 FoundBB
= SplitPreds
[0];
111 NewBB
->moveAfter(FoundBB
);
114 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
115 /// preheader, this method is called to insert one. This method has two phases:
116 /// preheader insertion and analysis updating.
118 BasicBlock
*llvm::InsertPreheaderForLoop(Loop
*L
, DominatorTree
*DT
,
119 LoopInfo
*LI
, MemorySSAUpdater
*MSSAU
,
120 bool PreserveLCSSA
) {
121 BasicBlock
*Header
= L
->getHeader();
123 // Compute the set of predecessors of the loop that are not in the loop.
124 SmallVector
<BasicBlock
*, 8> OutsideBlocks
;
125 for (BasicBlock
*P
: predecessors(Header
)) {
126 if (!L
->contains(P
)) { // Coming in from outside the loop?
127 // If the loop is branched to from an indirect terminator, we won't
128 // be able to fully transform the loop, because it prohibits
130 if (isa
<IndirectBrInst
>(P
->getTerminator()))
134 OutsideBlocks
.push_back(P
);
138 // Split out the loop pre-header.
139 BasicBlock
*PreheaderBB
;
140 PreheaderBB
= SplitBlockPredecessors(Header
, OutsideBlocks
, ".preheader", DT
,
141 LI
, MSSAU
, PreserveLCSSA
);
145 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
146 << PreheaderBB
->getName() << "\n");
148 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
149 // code layout too horribly.
150 placeSplitBlockCarefully(PreheaderBB
, OutsideBlocks
, L
);
155 /// Add the specified block, and all of its predecessors, to the specified set,
156 /// if it's not already in there. Stop predecessor traversal when we reach
158 static void addBlockAndPredsToSet(BasicBlock
*InputBB
, BasicBlock
*StopBlock
,
159 SmallPtrSetImpl
<BasicBlock
*> &Blocks
) {
160 SmallVector
<BasicBlock
*, 8> Worklist
;
161 Worklist
.push_back(InputBB
);
163 BasicBlock
*BB
= Worklist
.pop_back_val();
164 if (Blocks
.insert(BB
).second
&& BB
!= StopBlock
)
165 // If BB is not already processed and it is not a stop block then
166 // insert its predecessor in the work list
167 append_range(Worklist
, predecessors(BB
));
168 } while (!Worklist
.empty());
171 /// The first part of loop-nestification is to find a PHI node that tells
172 /// us how to partition the loops.
173 static PHINode
*findPHIToPartitionLoops(Loop
*L
, DominatorTree
*DT
,
174 AssumptionCache
*AC
) {
175 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
176 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ) {
177 PHINode
*PN
= cast
<PHINode
>(I
);
179 if (Value
*V
= simplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
180 // This is a degenerate PHI already, don't modify it!
181 PN
->replaceAllUsesWith(V
);
182 PN
->eraseFromParent();
186 // Scan this PHI node looking for a use of the PHI node by itself.
187 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
188 if (PN
->getIncomingValue(i
) == PN
&&
189 L
->contains(PN
->getIncomingBlock(i
)))
190 // We found something tasty to remove.
196 /// If this loop has multiple backedges, try to pull one of them out into
199 /// This is important for code that looks like
204 /// br cond, Loop, Next
206 /// br cond2, Loop, Out
208 /// To identify this common case, we look at the PHI nodes in the header of the
209 /// loop. PHI nodes with unchanging values on one backedge correspond to values
210 /// that change in the "outer" loop, but not in the "inner" loop.
212 /// If we are able to separate out a loop, return the new outer loop that was
215 static Loop
*separateNestedLoop(Loop
*L
, BasicBlock
*Preheader
,
216 DominatorTree
*DT
, LoopInfo
*LI
,
217 ScalarEvolution
*SE
, bool PreserveLCSSA
,
218 AssumptionCache
*AC
, MemorySSAUpdater
*MSSAU
) {
219 // Don't try to separate loops without a preheader.
223 // Treat the presence of convergent functions conservatively. The
224 // transformation is invalid if calls to certain convergent
225 // functions (like an AMDGPU barrier) get included in the resulting
226 // inner loop. But blocks meant for the inner loop will be
227 // identified later at a point where it's too late to abort the
228 // transformation. Also, the convergent attribute is not really
229 // sufficient to express the semantics of functions that are
230 // affected by this transformation. So we choose to back off if such
231 // a function call is present until a better alternative becomes
232 // available. This is similar to the conservative treatment of
233 // convergent function calls in GVNHoist and JumpThreading.
234 for (auto *BB
: L
->blocks()) {
235 for (auto &II
: *BB
) {
236 if (auto CI
= dyn_cast
<CallBase
>(&II
)) {
237 if (CI
->isConvergent()) {
244 // The header is not a landing pad; preheader insertion should ensure this.
245 BasicBlock
*Header
= L
->getHeader();
246 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
248 PHINode
*PN
= findPHIToPartitionLoops(L
, DT
, AC
);
249 if (!PN
) return nullptr; // No known way to partition.
251 // Pull out all predecessors that have varying values in the loop. This
252 // handles the case when a PHI node has multiple instances of itself as
254 SmallVector
<BasicBlock
*, 8> OuterLoopPreds
;
255 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
256 if (PN
->getIncomingValue(i
) != PN
||
257 !L
->contains(PN
->getIncomingBlock(i
))) {
258 // We can't split indirect control flow edges.
259 if (isa
<IndirectBrInst
>(PN
->getIncomingBlock(i
)->getTerminator()))
261 OuterLoopPreds
.push_back(PN
->getIncomingBlock(i
));
264 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
266 // If ScalarEvolution is around and knows anything about values in
267 // this loop, tell it to forget them, because we're about to
268 // substantially change it.
272 BasicBlock
*NewBB
= SplitBlockPredecessors(Header
, OuterLoopPreds
, ".outer",
273 DT
, LI
, MSSAU
, PreserveLCSSA
);
275 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
276 // code layout too horribly.
277 placeSplitBlockCarefully(NewBB
, OuterLoopPreds
, L
);
279 // Create the new outer loop.
280 Loop
*NewOuter
= LI
->AllocateLoop();
282 // Change the parent loop to use the outer loop as its child now.
283 if (Loop
*Parent
= L
->getParentLoop())
284 Parent
->replaceChildLoopWith(L
, NewOuter
);
286 LI
->changeTopLevelLoop(L
, NewOuter
);
288 // L is now a subloop of our outer loop.
289 NewOuter
->addChildLoop(L
);
291 for (BasicBlock
*BB
: L
->blocks())
292 NewOuter
->addBlockEntry(BB
);
294 // Now reset the header in L, which had been moved by
295 // SplitBlockPredecessors for the outer loop.
296 L
->moveToHeader(Header
);
298 // Determine which blocks should stay in L and which should be moved out to
299 // the Outer loop now.
300 SmallPtrSet
<BasicBlock
*, 4> BlocksInL
;
301 for (BasicBlock
*P
: predecessors(Header
)) {
302 if (DT
->dominates(Header
, P
))
303 addBlockAndPredsToSet(P
, Header
, BlocksInL
);
306 // Scan all of the loop children of L, moving them to OuterLoop if they are
307 // not part of the inner loop.
308 const std::vector
<Loop
*> &SubLoops
= L
->getSubLoops();
309 for (size_t I
= 0; I
!= SubLoops
.size(); )
310 if (BlocksInL
.count(SubLoops
[I
]->getHeader()))
311 ++I
; // Loop remains in L
313 NewOuter
->addChildLoop(L
->removeChildLoop(SubLoops
.begin() + I
));
315 SmallVector
<BasicBlock
*, 8> OuterLoopBlocks
;
316 OuterLoopBlocks
.push_back(NewBB
);
317 // Now that we know which blocks are in L and which need to be moved to
318 // OuterLoop, move any blocks that need it.
319 for (unsigned i
= 0; i
!= L
->getBlocks().size(); ++i
) {
320 BasicBlock
*BB
= L
->getBlocks()[i
];
321 if (!BlocksInL
.count(BB
)) {
322 // Move this block to the parent, updating the exit blocks sets
323 L
->removeBlockFromLoop(BB
);
324 if ((*LI
)[BB
] == L
) {
325 LI
->changeLoopFor(BB
, NewOuter
);
326 OuterLoopBlocks
.push_back(BB
);
332 // Split edges to exit blocks from the inner loop, if they emerged in the
333 // process of separating the outer one.
334 formDedicatedExitBlocks(L
, DT
, LI
, MSSAU
, PreserveLCSSA
);
337 // Fix LCSSA form for L. Some values, which previously were only used inside
338 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
339 // in corresponding exit blocks.
340 // We don't need to form LCSSA recursively, because there cannot be uses
341 // inside a newly created loop of defs from inner loops as those would
342 // already be a use of an LCSSA phi node.
343 formLCSSA(*L
, *DT
, LI
, SE
);
345 assert(NewOuter
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
346 "LCSSA is broken after separating nested loops!");
352 /// This method is called when the specified loop has more than one
355 /// If this occurs, revector all of these backedges to target a new basic block
356 /// and have that block branch to the loop header. This ensures that loops
357 /// have exactly one backedge.
358 static BasicBlock
*insertUniqueBackedgeBlock(Loop
*L
, BasicBlock
*Preheader
,
359 DominatorTree
*DT
, LoopInfo
*LI
,
360 MemorySSAUpdater
*MSSAU
) {
361 assert(L
->getNumBackEdges() > 1 && "Must have > 1 backedge!");
363 // Get information about the loop
364 BasicBlock
*Header
= L
->getHeader();
365 Function
*F
= Header
->getParent();
367 // Unique backedge insertion currently depends on having a preheader.
371 // The header is not an EH pad; preheader insertion should ensure this.
372 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
374 // Figure out which basic blocks contain back-edges to the loop header.
375 std::vector
<BasicBlock
*> BackedgeBlocks
;
376 for (BasicBlock
*P
: predecessors(Header
)) {
377 // Indirect edges cannot be split, so we must fail if we find one.
378 if (isa
<IndirectBrInst
>(P
->getTerminator()))
381 if (P
!= Preheader
) BackedgeBlocks
.push_back(P
);
384 // Create and insert the new backedge block...
385 BasicBlock
*BEBlock
= BasicBlock::Create(Header
->getContext(),
386 Header
->getName() + ".backedge", F
);
387 BranchInst
*BETerminator
= BranchInst::Create(Header
, BEBlock
);
388 BETerminator
->setDebugLoc(Header
->getFirstNonPHI()->getDebugLoc());
390 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
391 << BEBlock
->getName() << "\n");
393 // Move the new backedge block to right after the last backedge block.
394 Function::iterator InsertPos
= ++BackedgeBlocks
.back()->getIterator();
395 F
->splice(InsertPos
, F
, BEBlock
->getIterator());
397 // Now that the block has been inserted into the function, create PHI nodes in
398 // the backedge block which correspond to any PHI nodes in the header block.
399 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
400 PHINode
*PN
= cast
<PHINode
>(I
);
401 PHINode
*NewPN
= PHINode::Create(PN
->getType(), BackedgeBlocks
.size(),
402 PN
->getName()+".be", BETerminator
);
404 // Loop over the PHI node, moving all entries except the one for the
405 // preheader over to the new PHI node.
406 unsigned PreheaderIdx
= ~0U;
407 bool HasUniqueIncomingValue
= true;
408 Value
*UniqueValue
= nullptr;
409 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
410 BasicBlock
*IBB
= PN
->getIncomingBlock(i
);
411 Value
*IV
= PN
->getIncomingValue(i
);
412 if (IBB
== Preheader
) {
415 NewPN
->addIncoming(IV
, IBB
);
416 if (HasUniqueIncomingValue
) {
419 else if (UniqueValue
!= IV
)
420 HasUniqueIncomingValue
= false;
425 // Delete all of the incoming values from the old PN except the preheader's
426 assert(PreheaderIdx
!= ~0U && "PHI has no preheader entry??");
427 if (PreheaderIdx
!= 0) {
428 PN
->setIncomingValue(0, PN
->getIncomingValue(PreheaderIdx
));
429 PN
->setIncomingBlock(0, PN
->getIncomingBlock(PreheaderIdx
));
431 // Nuke all entries except the zero'th.
432 PN
->removeIncomingValueIf([](unsigned Idx
) { return Idx
!= 0; },
433 /* DeletePHIIfEmpty */ false);
435 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
436 PN
->addIncoming(NewPN
, BEBlock
);
438 // As an optimization, if all incoming values in the new PhiNode (which is a
439 // subset of the incoming values of the old PHI node) have the same value,
440 // eliminate the PHI Node.
441 if (HasUniqueIncomingValue
) {
442 NewPN
->replaceAllUsesWith(UniqueValue
);
443 NewPN
->eraseFromParent();
447 // Now that all of the PHI nodes have been inserted and adjusted, modify the
448 // backedge blocks to jump to the BEBlock instead of the header.
449 // If one of the backedges has llvm.loop metadata attached, we remove
450 // it from the backedge and add it to BEBlock.
451 MDNode
*LoopMD
= nullptr;
452 for (BasicBlock
*BB
: BackedgeBlocks
) {
453 Instruction
*TI
= BB
->getTerminator();
455 LoopMD
= TI
->getMetadata(LLVMContext::MD_loop
);
456 TI
->setMetadata(LLVMContext::MD_loop
, nullptr);
457 TI
->replaceSuccessorWith(Header
, BEBlock
);
459 BEBlock
->getTerminator()->setMetadata(LLVMContext::MD_loop
, LoopMD
);
461 //===--- Update all analyses which we must preserve now -----------------===//
463 // Update Loop Information - we know that this block is now in the current
464 // loop and all parent loops.
465 L
->addBasicBlockToLoop(BEBlock
, *LI
);
467 // Update dominator information
468 DT
->splitBlock(BEBlock
);
471 MSSAU
->updatePhisWhenInsertingUniqueBackedgeBlock(Header
, Preheader
,
477 /// Simplify one loop and queue further loops for simplification.
478 static bool simplifyOneLoop(Loop
*L
, SmallVectorImpl
<Loop
*> &Worklist
,
479 DominatorTree
*DT
, LoopInfo
*LI
,
480 ScalarEvolution
*SE
, AssumptionCache
*AC
,
481 MemorySSAUpdater
*MSSAU
, bool PreserveLCSSA
) {
482 bool Changed
= false;
483 if (MSSAU
&& VerifyMemorySSA
)
484 MSSAU
->getMemorySSA()->verifyMemorySSA();
488 // Check to see that no blocks (other than the header) in this loop have
489 // predecessors that are not in the loop. This is not valid for natural
490 // loops, but can occur if the blocks are unreachable. Since they are
491 // unreachable we can just shamelessly delete those CFG edges!
492 for (BasicBlock
*BB
: L
->blocks()) {
493 if (BB
== L
->getHeader())
496 SmallPtrSet
<BasicBlock
*, 4> BadPreds
;
497 for (BasicBlock
*P
: predecessors(BB
))
501 // Delete each unique out-of-loop (and thus dead) predecessor.
502 for (BasicBlock
*P
: BadPreds
) {
504 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
505 << P
->getName() << "\n");
507 // Zap the dead pred's terminator and replace it with unreachable.
508 Instruction
*TI
= P
->getTerminator();
509 changeToUnreachable(TI
, PreserveLCSSA
,
510 /*DTU=*/nullptr, MSSAU
);
515 if (MSSAU
&& VerifyMemorySSA
)
516 MSSAU
->getMemorySSA()->verifyMemorySSA();
518 // If there are exiting blocks with branches on undef, resolve the undef in
519 // the direction which will exit the loop. This will help simplify loop
520 // trip count computations.
521 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
522 L
->getExitingBlocks(ExitingBlocks
);
523 for (BasicBlock
*ExitingBlock
: ExitingBlocks
)
524 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator()))
525 if (BI
->isConditional()) {
526 if (UndefValue
*Cond
= dyn_cast
<UndefValue
>(BI
->getCondition())) {
529 << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
530 << ExitingBlock
->getName() << "\n");
532 BI
->setCondition(ConstantInt::get(Cond
->getType(),
533 !L
->contains(BI
->getSuccessor(0))));
539 // Does the loop already have a preheader? If so, don't insert one.
540 BasicBlock
*Preheader
= L
->getLoopPreheader();
542 Preheader
= InsertPreheaderForLoop(L
, DT
, LI
, MSSAU
, PreserveLCSSA
);
547 // Next, check to make sure that all exit nodes of the loop only have
548 // predecessors that are inside of the loop. This check guarantees that the
549 // loop preheader/header will dominate the exit blocks. If the exit block has
550 // predecessors from outside of the loop, split the edge now.
551 if (formDedicatedExitBlocks(L
, DT
, LI
, MSSAU
, PreserveLCSSA
))
554 if (MSSAU
&& VerifyMemorySSA
)
555 MSSAU
->getMemorySSA()->verifyMemorySSA();
557 // If the header has more than two predecessors at this point (from the
558 // preheader and from multiple backedges), we must adjust the loop.
559 BasicBlock
*LoopLatch
= L
->getLoopLatch();
561 // If this is really a nested loop, rip it out into a child loop. Don't do
562 // this for loops with a giant number of backedges, just factor them into a
563 // common backedge instead.
564 if (L
->getNumBackEdges() < 8) {
565 if (Loop
*OuterL
= separateNestedLoop(L
, Preheader
, DT
, LI
, SE
,
566 PreserveLCSSA
, AC
, MSSAU
)) {
568 // Enqueue the outer loop as it should be processed next in our
569 // depth-first nest walk.
570 Worklist
.push_back(OuterL
);
572 // This is a big restructuring change, reprocess the whole loop.
574 // GCC doesn't tail recursion eliminate this.
575 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
580 // If we either couldn't, or didn't want to, identify nesting of the loops,
581 // insert a new block that all backedges target, then make it jump to the
583 LoopLatch
= insertUniqueBackedgeBlock(L
, Preheader
, DT
, LI
, MSSAU
);
588 if (MSSAU
&& VerifyMemorySSA
)
589 MSSAU
->getMemorySSA()->verifyMemorySSA();
591 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
593 // Scan over the PHI nodes in the loop header. Since they now have only two
594 // incoming values (the loop is canonicalized), we may have simplified the PHI
595 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
597 for (BasicBlock::iterator I
= L
->getHeader()->begin();
598 (PN
= dyn_cast
<PHINode
>(I
++)); )
599 if (Value
*V
= simplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
600 if (SE
) SE
->forgetValue(PN
);
601 if (!PreserveLCSSA
|| LI
->replacementPreservesLCSSAForm(PN
, V
)) {
602 PN
->replaceAllUsesWith(V
);
603 PN
->eraseFromParent();
608 // If this loop has multiple exits and the exits all go to the same
609 // block, attempt to merge the exits. This helps several passes, such
610 // as LoopRotation, which do not support loops with multiple exits.
611 // SimplifyCFG also does this (and this code uses the same utility
612 // function), however this code is loop-aware, where SimplifyCFG is
613 // not. That gives it the advantage of being able to hoist
614 // loop-invariant instructions out of the way to open up more
615 // opportunities, and the disadvantage of having the responsibility
616 // to preserve dominator information.
617 auto HasUniqueExitBlock
= [&]() {
618 BasicBlock
*UniqueExit
= nullptr;
619 for (auto *ExitingBB
: ExitingBlocks
)
620 for (auto *SuccBB
: successors(ExitingBB
)) {
621 if (L
->contains(SuccBB
))
626 else if (UniqueExit
!= SuccBB
)
632 if (HasUniqueExitBlock()) {
633 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
634 BasicBlock
*ExitingBlock
= ExitingBlocks
[i
];
635 if (!ExitingBlock
->getSinglePredecessor()) continue;
636 BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
637 if (!BI
|| !BI
->isConditional()) continue;
638 CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition());
639 if (!CI
|| CI
->getParent() != ExitingBlock
) continue;
641 // Attempt to hoist out all instructions except for the
642 // comparison and the branch.
643 bool AllInvariant
= true;
644 bool AnyInvariant
= false;
645 for (auto I
= ExitingBlock
->instructionsWithoutDebug().begin(); &*I
!= BI
; ) {
646 Instruction
*Inst
= &*I
++;
649 if (!L
->makeLoopInvariant(
651 Preheader
? Preheader
->getTerminator() : nullptr, MSSAU
, SE
)) {
652 AllInvariant
= false;
658 if (!AllInvariant
) continue;
660 // The block has now been cleared of all instructions except for
661 // a comparison and a conditional branch. SimplifyCFG may be able
663 if (!FoldBranchToCommonDest(BI
, /*DTU=*/nullptr, MSSAU
))
666 // Success. The block is now dead, so remove it from the loop,
667 // update the dominator tree and delete it.
668 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
669 << ExitingBlock
->getName() << "\n");
671 assert(pred_empty(ExitingBlock
));
673 LI
->removeBlock(ExitingBlock
);
675 DomTreeNode
*Node
= DT
->getNode(ExitingBlock
);
676 while (!Node
->isLeaf()) {
677 DomTreeNode
*Child
= Node
->back();
678 DT
->changeImmediateDominator(Child
, Node
->getIDom());
680 DT
->eraseNode(ExitingBlock
);
682 SmallSetVector
<BasicBlock
*, 8> ExitBlockSet
;
683 ExitBlockSet
.insert(ExitingBlock
);
684 MSSAU
->removeBlocks(ExitBlockSet
);
687 BI
->getSuccessor(0)->removePredecessor(
688 ExitingBlock
, /* KeepOneInputPHIs */ PreserveLCSSA
);
689 BI
->getSuccessor(1)->removePredecessor(
690 ExitingBlock
, /* KeepOneInputPHIs */ PreserveLCSSA
);
691 ExitingBlock
->eraseFromParent();
695 if (MSSAU
&& VerifyMemorySSA
)
696 MSSAU
->getMemorySSA()->verifyMemorySSA();
701 bool llvm::simplifyLoop(Loop
*L
, DominatorTree
*DT
, LoopInfo
*LI
,
702 ScalarEvolution
*SE
, AssumptionCache
*AC
,
703 MemorySSAUpdater
*MSSAU
, bool PreserveLCSSA
) {
704 bool Changed
= false;
707 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
710 assert(DT
&& "DT not available.");
711 assert(LI
&& "LI not available.");
712 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
713 "Requested to preserve LCSSA, but it's already broken.");
717 // Worklist maintains our depth-first queue of loops in this nest to process.
718 SmallVector
<Loop
*, 4> Worklist
;
719 Worklist
.push_back(L
);
721 // Walk the worklist from front to back, pushing newly found sub loops onto
722 // the back. This will let us process loops from back to front in depth-first
723 // order. We can use this simple process because loops form a tree.
724 for (unsigned Idx
= 0; Idx
!= Worklist
.size(); ++Idx
) {
725 Loop
*L2
= Worklist
[Idx
];
726 Worklist
.append(L2
->begin(), L2
->end());
729 while (!Worklist
.empty())
730 Changed
|= simplifyOneLoop(Worklist
.pop_back_val(), Worklist
, DT
, LI
, SE
,
731 AC
, MSSAU
, PreserveLCSSA
);
733 // Changing exit conditions for blocks may affect exit counts of this loop and
734 // any of its parents, so we must invalidate the entire subtree if we've made
735 // any changes. Do this here rather than in simplifyOneLoop() as the top-most
736 // loop is going to be the same for all child loops.
738 SE
->forgetTopmostLoop(L
);
744 struct LoopSimplify
: public FunctionPass
{
745 static char ID
; // Pass identification, replacement for typeid
746 LoopSimplify() : FunctionPass(ID
) {
747 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
750 bool runOnFunction(Function
&F
) override
;
752 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
753 AU
.addRequired
<AssumptionCacheTracker
>();
755 // We need loop information to identify the loops...
756 AU
.addRequired
<DominatorTreeWrapperPass
>();
757 AU
.addPreserved
<DominatorTreeWrapperPass
>();
759 AU
.addRequired
<LoopInfoWrapperPass
>();
760 AU
.addPreserved
<LoopInfoWrapperPass
>();
762 AU
.addPreserved
<BasicAAWrapperPass
>();
763 AU
.addPreserved
<AAResultsWrapperPass
>();
764 AU
.addPreserved
<GlobalsAAWrapperPass
>();
765 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
766 AU
.addPreserved
<SCEVAAWrapperPass
>();
767 AU
.addPreservedID(LCSSAID
);
768 AU
.addPreserved
<DependenceAnalysisWrapperPass
>();
769 AU
.addPreservedID(BreakCriticalEdgesID
); // No critical edges added.
770 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
771 AU
.addPreserved
<MemorySSAWrapperPass
>();
774 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
775 void verifyAnalysis() const override
;
779 char LoopSimplify::ID
= 0;
780 INITIALIZE_PASS_BEGIN(LoopSimplify
, "loop-simplify",
781 "Canonicalize natural loops", false, false)
782 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
783 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
784 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
785 INITIALIZE_PASS_END(LoopSimplify
, "loop-simplify",
786 "Canonicalize natural loops", false, false)
788 // Publicly exposed interface to pass...
789 char &llvm::LoopSimplifyID
= LoopSimplify::ID
;
790 Pass
*llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
792 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
793 /// it in any convenient order) inserting preheaders...
795 bool LoopSimplify::runOnFunction(Function
&F
) {
796 bool Changed
= false;
797 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
798 DominatorTree
*DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
799 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
800 ScalarEvolution
*SE
= SEWP
? &SEWP
->getSE() : nullptr;
801 AssumptionCache
*AC
=
802 &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
803 MemorySSA
*MSSA
= nullptr;
804 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
805 auto *MSSAAnalysis
= getAnalysisIfAvailable
<MemorySSAWrapperPass
>();
807 MSSA
= &MSSAAnalysis
->getMSSA();
808 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
811 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
813 // Simplify each loop nest in the function.
815 Changed
|= simplifyLoop(L
, DT
, LI
, SE
, AC
, MSSAU
.get(), PreserveLCSSA
);
819 bool InLCSSA
= all_of(
820 *LI
, [&](Loop
*L
) { return L
->isRecursivelyLCSSAForm(*DT
, *LI
); });
821 assert(InLCSSA
&& "LCSSA is broken after loop-simplify.");
827 PreservedAnalyses
LoopSimplifyPass::run(Function
&F
,
828 FunctionAnalysisManager
&AM
) {
829 bool Changed
= false;
830 LoopInfo
*LI
= &AM
.getResult
<LoopAnalysis
>(F
);
831 DominatorTree
*DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
832 ScalarEvolution
*SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
833 AssumptionCache
*AC
= &AM
.getResult
<AssumptionAnalysis
>(F
);
834 auto *MSSAAnalysis
= AM
.getCachedResult
<MemorySSAAnalysis
>(F
);
835 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
837 auto *MSSA
= &MSSAAnalysis
->getMSSA();
838 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
842 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
843 // after simplifying the loops. MemorySSA is preserved if it exists.
846 simplifyLoop(L
, DT
, LI
, SE
, AC
, MSSAU
.get(), /*PreserveLCSSA*/ false);
849 return PreservedAnalyses::all();
851 PreservedAnalyses PA
;
852 PA
.preserve
<DominatorTreeAnalysis
>();
853 PA
.preserve
<LoopAnalysis
>();
854 PA
.preserve
<ScalarEvolutionAnalysis
>();
855 PA
.preserve
<DependenceAnalysis
>();
857 PA
.preserve
<MemorySSAAnalysis
>();
858 // BPI maps conditional terminators to probabilities, LoopSimplify can insert
859 // blocks, but it does so only by splitting existing blocks and edges. This
860 // results in the interesting property that all new terminators inserted are
861 // unconditional branches which do not appear in BPI. All deletions are
862 // handled via ValueHandle callbacks w/in BPI.
863 PA
.preserve
<BranchProbabilityAnalysis
>();
867 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
870 static void verifyLoop(Loop
*L
) {
872 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
875 // It used to be possible to just assert L->isLoopSimplifyForm(), however
876 // with the introduction of indirectbr, there are now cases where it's
877 // not possible to transform a loop as necessary. We can at least check
878 // that there is an indirectbr near any time there's trouble.
880 // Indirectbr can interfere with preheader and unique backedge insertion.
881 if (!L
->getLoopPreheader() || !L
->getLoopLatch()) {
882 bool HasIndBrPred
= false;
883 for (BasicBlock
*Pred
: predecessors(L
->getHeader()))
884 if (isa
<IndirectBrInst
>(Pred
->getTerminator())) {
888 assert(HasIndBrPred
&&
889 "LoopSimplify has no excuse for missing loop header info!");
893 // Indirectbr can interfere with exit block canonicalization.
894 if (!L
->hasDedicatedExits()) {
895 bool HasIndBrExiting
= false;
896 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
897 L
->getExitingBlocks(ExitingBlocks
);
898 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
899 if (isa
<IndirectBrInst
>((ExitingBlocks
[i
])->getTerminator())) {
900 HasIndBrExiting
= true;
905 assert(HasIndBrExiting
&&
906 "LoopSimplify has no excuse for missing exit block info!");
907 (void)HasIndBrExiting
;
912 void LoopSimplify::verifyAnalysis() const {
913 // FIXME: This routine is being called mid-way through the loop pass manager
914 // as loop passes destroy this analysis. That's actually fine, but we have no
915 // way of expressing that here. Once all of the passes that destroy this are
916 // hoisted out of the loop pass manager we can add back verification here.
918 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)