[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Utils / LoopUtils.cpp
blob59485126b280abf457379644c6a0e63748c32a87
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/PriorityWorklist.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/InstSimplifyFolder.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ProfDataUtils.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
52 #define DEBUG_TYPE "loop-utils"
54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
58 MemorySSAUpdater *MSSAU,
59 bool PreserveLCSSA) {
60 bool Changed = false;
62 // We re-use a vector for the in-loop predecesosrs.
63 SmallVector<BasicBlock *, 4> InLoopPredecessors;
65 auto RewriteExit = [&](BasicBlock *BB) {
66 assert(InLoopPredecessors.empty() &&
67 "Must start with an empty predecessors list!");
68 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
70 // See if there are any non-loop predecessors of this exit block and
71 // keep track of the in-loop predecessors.
72 bool IsDedicatedExit = true;
73 for (auto *PredBB : predecessors(BB))
74 if (L->contains(PredBB)) {
75 if (isa<IndirectBrInst>(PredBB->getTerminator()))
76 // We cannot rewrite exiting edges from an indirectbr.
77 return false;
79 InLoopPredecessors.push_back(PredBB);
80 } else {
81 IsDedicatedExit = false;
84 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
86 // Nothing to do if this is already a dedicated exit.
87 if (IsDedicatedExit)
88 return false;
90 auto *NewExitBB = SplitBlockPredecessors(
91 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
93 if (!NewExitBB)
94 LLVM_DEBUG(
95 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
96 << *L << "\n");
97 else
98 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
99 << NewExitBB->getName() << "\n");
100 return true;
103 // Walk the exit blocks directly rather than building up a data structure for
104 // them, but only visit each one once.
105 SmallPtrSet<BasicBlock *, 4> Visited;
106 for (auto *BB : L->blocks())
107 for (auto *SuccBB : successors(BB)) {
108 // We're looking for exit blocks so skip in-loop successors.
109 if (L->contains(SuccBB))
110 continue;
112 // Visit each exit block exactly once.
113 if (!Visited.insert(SuccBB).second)
114 continue;
116 Changed |= RewriteExit(SuccBB);
119 return Changed;
122 /// Returns the instructions that use values defined in the loop.
123 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
124 SmallVector<Instruction *, 8> UsedOutside;
126 for (auto *Block : L->getBlocks())
127 // FIXME: I believe that this could use copy_if if the Inst reference could
128 // be adapted into a pointer.
129 for (auto &Inst : *Block) {
130 auto Users = Inst.users();
131 if (any_of(Users, [&](User *U) {
132 auto *Use = cast<Instruction>(U);
133 return !L->contains(Use->getParent());
135 UsedOutside.push_back(&Inst);
138 return UsedOutside;
141 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
142 // By definition, all loop passes need the LoopInfo analysis and the
143 // Dominator tree it depends on. Because they all participate in the loop
144 // pass manager, they must also preserve these.
145 AU.addRequired<DominatorTreeWrapperPass>();
146 AU.addPreserved<DominatorTreeWrapperPass>();
147 AU.addRequired<LoopInfoWrapperPass>();
148 AU.addPreserved<LoopInfoWrapperPass>();
150 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
151 // here because users shouldn't directly get them from this header.
152 extern char &LoopSimplifyID;
153 extern char &LCSSAID;
154 AU.addRequiredID(LoopSimplifyID);
155 AU.addPreservedID(LoopSimplifyID);
156 AU.addRequiredID(LCSSAID);
157 AU.addPreservedID(LCSSAID);
158 // This is used in the LPPassManager to perform LCSSA verification on passes
159 // which preserve lcssa form
160 AU.addRequired<LCSSAVerificationPass>();
161 AU.addPreserved<LCSSAVerificationPass>();
163 // Loop passes are designed to run inside of a loop pass manager which means
164 // that any function analyses they require must be required by the first loop
165 // pass in the manager (so that it is computed before the loop pass manager
166 // runs) and preserved by all loop pasess in the manager. To make this
167 // reasonably robust, the set needed for most loop passes is maintained here.
168 // If your loop pass requires an analysis not listed here, you will need to
169 // carefully audit the loop pass manager nesting structure that results.
170 AU.addRequired<AAResultsWrapperPass>();
171 AU.addPreserved<AAResultsWrapperPass>();
172 AU.addPreserved<BasicAAWrapperPass>();
173 AU.addPreserved<GlobalsAAWrapperPass>();
174 AU.addPreserved<SCEVAAWrapperPass>();
175 AU.addRequired<ScalarEvolutionWrapperPass>();
176 AU.addPreserved<ScalarEvolutionWrapperPass>();
177 // FIXME: When all loop passes preserve MemorySSA, it can be required and
178 // preserved here instead of the individual handling in each pass.
181 /// Manually defined generic "LoopPass" dependency initialization. This is used
182 /// to initialize the exact set of passes from above in \c
183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
184 /// with:
186 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
188 /// As-if "LoopPass" were a pass.
189 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
191 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
192 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
193 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
195 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
196 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
197 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
198 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
202 /// Create MDNode for input string.
203 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
204 LLVMContext &Context = TheLoop->getHeader()->getContext();
205 Metadata *MDs[] = {
206 MDString::get(Context, Name),
207 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
208 return MDNode::get(Context, MDs);
211 /// Set input string into loop metadata by keeping other values intact.
212 /// If the string is already in loop metadata update value if it is
213 /// different.
214 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
215 unsigned V) {
216 SmallVector<Metadata *, 4> MDs(1);
217 // If the loop already has metadata, retain it.
218 MDNode *LoopID = TheLoop->getLoopID();
219 if (LoopID) {
220 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
221 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
222 // If it is of form key = value, try to parse it.
223 if (Node->getNumOperands() == 2) {
224 MDString *S = dyn_cast<MDString>(Node->getOperand(0));
225 if (S && S->getString().equals(StringMD)) {
226 ConstantInt *IntMD =
227 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
228 if (IntMD && IntMD->getSExtValue() == V)
229 // It is already in place. Do nothing.
230 return;
231 // We need to update the value, so just skip it here and it will
232 // be added after copying other existed nodes.
233 continue;
236 MDs.push_back(Node);
239 // Add new metadata.
240 MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
241 // Replace current metadata node with new one.
242 LLVMContext &Context = TheLoop->getHeader()->getContext();
243 MDNode *NewLoopID = MDNode::get(Context, MDs);
244 // Set operand 0 to refer to the loop id itself.
245 NewLoopID->replaceOperandWith(0, NewLoopID);
246 TheLoop->setLoopID(NewLoopID);
249 std::optional<ElementCount>
250 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
251 std::optional<int> Width =
252 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
254 if (Width) {
255 std::optional<int> IsScalable = getOptionalIntLoopAttribute(
256 TheLoop, "llvm.loop.vectorize.scalable.enable");
257 return ElementCount::get(*Width, IsScalable.value_or(false));
260 return std::nullopt;
263 std::optional<MDNode *> llvm::makeFollowupLoopID(
264 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
265 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
266 if (!OrigLoopID) {
267 if (AlwaysNew)
268 return nullptr;
269 return std::nullopt;
272 assert(OrigLoopID->getOperand(0) == OrigLoopID);
274 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
275 bool InheritSomeAttrs =
276 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
277 SmallVector<Metadata *, 8> MDs;
278 MDs.push_back(nullptr);
280 bool Changed = false;
281 if (InheritAllAttrs || InheritSomeAttrs) {
282 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
283 MDNode *Op = cast<MDNode>(Existing.get());
285 auto InheritThisAttribute = [InheritSomeAttrs,
286 InheritOptionsExceptPrefix](MDNode *Op) {
287 if (!InheritSomeAttrs)
288 return false;
290 // Skip malformatted attribute metadata nodes.
291 if (Op->getNumOperands() == 0)
292 return true;
293 Metadata *NameMD = Op->getOperand(0).get();
294 if (!isa<MDString>(NameMD))
295 return true;
296 StringRef AttrName = cast<MDString>(NameMD)->getString();
298 // Do not inherit excluded attributes.
299 return !AttrName.starts_with(InheritOptionsExceptPrefix);
302 if (InheritThisAttribute(Op))
303 MDs.push_back(Op);
304 else
305 Changed = true;
307 } else {
308 // Modified if we dropped at least one attribute.
309 Changed = OrigLoopID->getNumOperands() > 1;
312 bool HasAnyFollowup = false;
313 for (StringRef OptionName : FollowupOptions) {
314 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
315 if (!FollowupNode)
316 continue;
318 HasAnyFollowup = true;
319 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
320 MDs.push_back(Option.get());
321 Changed = true;
325 // Attributes of the followup loop not specified explicity, so signal to the
326 // transformation pass to add suitable attributes.
327 if (!AlwaysNew && !HasAnyFollowup)
328 return std::nullopt;
330 // If no attributes were added or remove, the previous loop Id can be reused.
331 if (!AlwaysNew && !Changed)
332 return OrigLoopID;
334 // No attributes is equivalent to having no !llvm.loop metadata at all.
335 if (MDs.size() == 1)
336 return nullptr;
338 // Build the new loop ID.
339 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
340 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
341 return FollowupLoopID;
344 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
345 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
348 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
349 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
352 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
353 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
354 return TM_SuppressedByUser;
356 std::optional<int> Count =
357 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
358 if (Count)
359 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
362 return TM_ForcedByUser;
364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
365 return TM_ForcedByUser;
367 if (hasDisableAllTransformsHint(L))
368 return TM_Disable;
370 return TM_Unspecified;
373 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
374 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
375 return TM_SuppressedByUser;
377 std::optional<int> Count =
378 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
379 if (Count)
380 return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
383 return TM_ForcedByUser;
385 if (hasDisableAllTransformsHint(L))
386 return TM_Disable;
388 return TM_Unspecified;
391 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
392 std::optional<bool> Enable =
393 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
395 if (Enable == false)
396 return TM_SuppressedByUser;
398 std::optional<ElementCount> VectorizeWidth =
399 getOptionalElementCountLoopAttribute(L);
400 std::optional<int> InterleaveCount =
401 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
403 // 'Forcing' vector width and interleave count to one effectively disables
404 // this tranformation.
405 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
406 InterleaveCount == 1)
407 return TM_SuppressedByUser;
409 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
410 return TM_Disable;
412 if (Enable == true)
413 return TM_ForcedByUser;
415 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
416 return TM_Disable;
418 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
419 return TM_Enable;
421 if (hasDisableAllTransformsHint(L))
422 return TM_Disable;
424 return TM_Unspecified;
427 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
428 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
429 return TM_ForcedByUser;
431 if (hasDisableAllTransformsHint(L))
432 return TM_Disable;
434 return TM_Unspecified;
437 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
438 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
439 return TM_SuppressedByUser;
441 if (hasDisableAllTransformsHint(L))
442 return TM_Disable;
444 return TM_Unspecified;
447 /// Does a BFS from a given node to all of its children inside a given loop.
448 /// The returned vector of nodes includes the starting point.
449 SmallVector<DomTreeNode *, 16>
450 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
451 SmallVector<DomTreeNode *, 16> Worklist;
452 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
453 // Only include subregions in the top level loop.
454 BasicBlock *BB = DTN->getBlock();
455 if (CurLoop->contains(BB))
456 Worklist.push_back(DTN);
459 AddRegionToWorklist(N);
461 for (size_t I = 0; I < Worklist.size(); I++) {
462 for (DomTreeNode *Child : Worklist[I]->children())
463 AddRegionToWorklist(Child);
466 return Worklist;
469 bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
470 int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
471 Value *IncV = PN->getIncomingValue(LatchIdx);
473 for (User *U : PN->users())
474 if (U != Cond && U != IncV) return false;
476 for (User *U : IncV->users())
477 if (U != Cond && U != PN) return false;
478 return true;
482 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
483 LoopInfo *LI, MemorySSA *MSSA) {
484 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
485 auto *Preheader = L->getLoopPreheader();
486 assert(Preheader && "Preheader should exist!");
488 std::unique_ptr<MemorySSAUpdater> MSSAU;
489 if (MSSA)
490 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
492 // Now that we know the removal is safe, remove the loop by changing the
493 // branch from the preheader to go to the single exit block.
495 // Because we're deleting a large chunk of code at once, the sequence in which
496 // we remove things is very important to avoid invalidation issues.
498 // Tell ScalarEvolution that the loop is deleted. Do this before
499 // deleting the loop so that ScalarEvolution can look at the loop
500 // to determine what it needs to clean up.
501 if (SE) {
502 SE->forgetLoop(L);
503 SE->forgetBlockAndLoopDispositions();
506 Instruction *OldTerm = Preheader->getTerminator();
507 assert(!OldTerm->mayHaveSideEffects() &&
508 "Preheader must end with a side-effect-free terminator");
509 assert(OldTerm->getNumSuccessors() == 1 &&
510 "Preheader must have a single successor");
511 // Connect the preheader to the exit block. Keep the old edge to the header
512 // around to perform the dominator tree update in two separate steps
513 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
514 // preheader -> header.
517 // 0. Preheader 1. Preheader 2. Preheader
518 // | | | |
519 // V | V |
520 // Header <--\ | Header <--\ | Header <--\
521 // | | | | | | | | | | |
522 // | V | | | V | | | V |
523 // | Body --/ | | Body --/ | | Body --/
524 // V V V V V
525 // Exit Exit Exit
527 // By doing this is two separate steps we can perform the dominator tree
528 // update without using the batch update API.
530 // Even when the loop is never executed, we cannot remove the edge from the
531 // source block to the exit block. Consider the case where the unexecuted loop
532 // branches back to an outer loop. If we deleted the loop and removed the edge
533 // coming to this inner loop, this will break the outer loop structure (by
534 // deleting the backedge of the outer loop). If the outer loop is indeed a
535 // non-loop, it will be deleted in a future iteration of loop deletion pass.
536 IRBuilder<> Builder(OldTerm);
538 auto *ExitBlock = L->getUniqueExitBlock();
539 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
540 if (ExitBlock) {
541 assert(ExitBlock && "Should have a unique exit block!");
542 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
544 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
545 // Remove the old branch. The conditional branch becomes a new terminator.
546 OldTerm->eraseFromParent();
548 // Rewrite phis in the exit block to get their inputs from the Preheader
549 // instead of the exiting block.
550 for (PHINode &P : ExitBlock->phis()) {
551 // Set the zero'th element of Phi to be from the preheader and remove all
552 // other incoming values. Given the loop has dedicated exits, all other
553 // incoming values must be from the exiting blocks.
554 int PredIndex = 0;
555 P.setIncomingBlock(PredIndex, Preheader);
556 // Removes all incoming values from all other exiting blocks (including
557 // duplicate values from an exiting block).
558 // Nuke all entries except the zero'th entry which is the preheader entry.
559 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
560 /* DeletePHIIfEmpty */ false);
562 assert((P.getNumIncomingValues() == 1 &&
563 P.getIncomingBlock(PredIndex) == Preheader) &&
564 "Should have exactly one value and that's from the preheader!");
567 if (DT) {
568 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
569 if (MSSA) {
570 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
571 *DT);
572 if (VerifyMemorySSA)
573 MSSA->verifyMemorySSA();
577 // Disconnect the loop body by branching directly to its exit.
578 Builder.SetInsertPoint(Preheader->getTerminator());
579 Builder.CreateBr(ExitBlock);
580 // Remove the old branch.
581 Preheader->getTerminator()->eraseFromParent();
582 } else {
583 assert(L->hasNoExitBlocks() &&
584 "Loop should have either zero or one exit blocks.");
586 Builder.SetInsertPoint(OldTerm);
587 Builder.CreateUnreachable();
588 Preheader->getTerminator()->eraseFromParent();
591 if (DT) {
592 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
593 if (MSSA) {
594 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
595 *DT);
596 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
597 L->block_end());
598 MSSAU->removeBlocks(DeadBlockSet);
599 if (VerifyMemorySSA)
600 MSSA->verifyMemorySSA();
604 // Use a map to unique and a vector to guarantee deterministic ordering.
605 llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
606 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
607 llvm::SmallVector<DPValue *, 4> DeadDPValues;
609 if (ExitBlock) {
610 // Given LCSSA form is satisfied, we should not have users of instructions
611 // within the dead loop outside of the loop. However, LCSSA doesn't take
612 // unreachable uses into account. We handle them here.
613 // We could do it after drop all references (in this case all users in the
614 // loop will be already eliminated and we have less work to do but according
615 // to API doc of User::dropAllReferences only valid operation after dropping
616 // references, is deletion. So let's substitute all usages of
617 // instruction from the loop with poison value of corresponding type first.
618 for (auto *Block : L->blocks())
619 for (Instruction &I : *Block) {
620 auto *Poison = PoisonValue::get(I.getType());
621 for (Use &U : llvm::make_early_inc_range(I.uses())) {
622 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
623 if (L->contains(Usr->getParent()))
624 continue;
625 // If we have a DT then we can check that uses outside a loop only in
626 // unreachable block.
627 if (DT)
628 assert(!DT->isReachableFromEntry(U) &&
629 "Unexpected user in reachable block");
630 U.set(Poison);
633 // RemoveDIs: do the same as below for DPValues.
634 if (Block->IsNewDbgInfoFormat) {
635 for (DPValue &DPV :
636 llvm::make_early_inc_range(I.getDbgValueRange())) {
637 DebugVariable Key(DPV.getVariable(), DPV.getExpression(),
638 DPV.getDebugLoc().get());
639 if (!DeadDebugSet.insert(Key).second)
640 continue;
641 // Unlinks the DPV from it's container, for later insertion.
642 DPV.removeFromParent();
643 DeadDPValues.push_back(&DPV);
647 // For one of each variable encountered, preserve a debug intrinsic (set
648 // to Poison) and transfer it to the loop exit. This terminates any
649 // variable locations that were set during the loop.
650 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
651 if (!DVI)
652 continue;
653 if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
654 continue;
655 DeadDebugInst.push_back(DVI);
658 // After the loop has been deleted all the values defined and modified
659 // inside the loop are going to be unavailable. Values computed in the
660 // loop will have been deleted, automatically causing their debug uses
661 // be be replaced with undef. Loop invariant values will still be available.
662 // Move dbg.values out the loop so that earlier location ranges are still
663 // terminated and loop invariant assignments are preserved.
664 DIBuilder DIB(*ExitBlock->getModule());
665 BasicBlock::iterator InsertDbgValueBefore =
666 ExitBlock->getFirstInsertionPt();
667 assert(InsertDbgValueBefore != ExitBlock->end() &&
668 "There should be a non-PHI instruction in exit block, else these "
669 "instructions will have no parent.");
671 for (auto *DVI : DeadDebugInst)
672 DVI->moveBefore(*ExitBlock, InsertDbgValueBefore);
674 // Due to the "head" bit in BasicBlock::iterator, we're going to insert
675 // each DPValue right at the start of the block, wheras dbg.values would be
676 // repeatedly inserted before the first instruction. To replicate this
677 // behaviour, do it backwards.
678 for (DPValue *DPV : llvm::reverse(DeadDPValues))
679 ExitBlock->insertDPValueBefore(DPV, InsertDbgValueBefore);
682 // Remove the block from the reference counting scheme, so that we can
683 // delete it freely later.
684 for (auto *Block : L->blocks())
685 Block->dropAllReferences();
687 if (MSSA && VerifyMemorySSA)
688 MSSA->verifyMemorySSA();
690 if (LI) {
691 // Erase the instructions and the blocks without having to worry
692 // about ordering because we already dropped the references.
693 // NOTE: This iteration is safe because erasing the block does not remove
694 // its entry from the loop's block list. We do that in the next section.
695 for (BasicBlock *BB : L->blocks())
696 BB->eraseFromParent();
698 // Finally, the blocks from loopinfo. This has to happen late because
699 // otherwise our loop iterators won't work.
701 SmallPtrSet<BasicBlock *, 8> blocks;
702 blocks.insert(L->block_begin(), L->block_end());
703 for (BasicBlock *BB : blocks)
704 LI->removeBlock(BB);
706 // The last step is to update LoopInfo now that we've eliminated this loop.
707 // Note: LoopInfo::erase remove the given loop and relink its subloops with
708 // its parent. While removeLoop/removeChildLoop remove the given loop but
709 // not relink its subloops, which is what we want.
710 if (Loop *ParentLoop = L->getParentLoop()) {
711 Loop::iterator I = find(*ParentLoop, L);
712 assert(I != ParentLoop->end() && "Couldn't find loop");
713 ParentLoop->removeChildLoop(I);
714 } else {
715 Loop::iterator I = find(*LI, L);
716 assert(I != LI->end() && "Couldn't find loop");
717 LI->removeLoop(I);
719 LI->destroy(L);
723 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
724 LoopInfo &LI, MemorySSA *MSSA) {
725 auto *Latch = L->getLoopLatch();
726 assert(Latch && "multiple latches not yet supported");
727 auto *Header = L->getHeader();
728 Loop *OutermostLoop = L->getOutermostLoop();
730 SE.forgetLoop(L);
731 SE.forgetBlockAndLoopDispositions();
733 std::unique_ptr<MemorySSAUpdater> MSSAU;
734 if (MSSA)
735 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
737 // Update the CFG and domtree. We chose to special case a couple of
738 // of common cases for code quality and test readability reasons.
739 [&]() -> void {
740 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
741 if (!BI->isConditional()) {
742 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
743 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
744 MSSAU.get());
745 return;
748 // Conditional latch/exit - note that latch can be shared by inner
749 // and outer loop so the other target doesn't need to an exit
750 if (L->isLoopExiting(Latch)) {
751 // TODO: Generalize ConstantFoldTerminator so that it can be used
752 // here without invalidating LCSSA or MemorySSA. (Tricky case for
753 // LCSSA: header is an exit block of a preceeding sibling loop w/o
754 // dedicated exits.)
755 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
756 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
758 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
759 Header->removePredecessor(Latch, true);
761 IRBuilder<> Builder(BI);
762 auto *NewBI = Builder.CreateBr(ExitBB);
763 // Transfer the metadata to the new branch instruction (minus the
764 // loop info since this is no longer a loop)
765 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
766 LLVMContext::MD_annotation});
768 BI->eraseFromParent();
769 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
770 if (MSSA)
771 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
772 return;
776 // General case. By splitting the backedge, and then explicitly making it
777 // unreachable we gracefully handle corner cases such as switch and invoke
778 // termiantors.
779 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
781 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
782 (void)changeToUnreachable(BackedgeBB->getTerminator(),
783 /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
784 }();
786 // Erase (and destroy) this loop instance. Handles relinking sub-loops
787 // and blocks within the loop as needed.
788 LI.erase(L);
790 // If the loop we broke had a parent, then changeToUnreachable might have
791 // caused a block to be removed from the parent loop (see loop_nest_lcssa
792 // test case in zero-btc.ll for an example), thus changing the parent's
793 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
794 // loop which might have a had a block removed.
795 if (OutermostLoop != L)
796 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
800 /// Checks if \p L has an exiting latch branch. There may also be other
801 /// exiting blocks. Returns branch instruction terminating the loop
802 /// latch if above check is successful, nullptr otherwise.
803 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
804 BasicBlock *Latch = L->getLoopLatch();
805 if (!Latch)
806 return nullptr;
808 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
809 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
810 return nullptr;
812 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
813 LatchBR->getSuccessor(1) == L->getHeader()) &&
814 "At least one edge out of the latch must go to the header");
816 return LatchBR;
819 /// Return the estimated trip count for any exiting branch which dominates
820 /// the loop latch.
821 static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
822 Loop *L,
823 uint64_t &OrigExitWeight) {
824 // To estimate the number of times the loop body was executed, we want to
825 // know the number of times the backedge was taken, vs. the number of times
826 // we exited the loop.
827 uint64_t LoopWeight, ExitWeight;
828 if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
829 return std::nullopt;
831 if (L->contains(ExitingBranch->getSuccessor(1)))
832 std::swap(LoopWeight, ExitWeight);
834 if (!ExitWeight)
835 // Don't have a way to return predicated infinite
836 return std::nullopt;
838 OrigExitWeight = ExitWeight;
840 // Estimated exit count is a ratio of the loop weight by the weight of the
841 // edge exiting the loop, rounded to nearest.
842 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
843 // Estimated trip count is one plus estimated exit count.
844 return ExitCount + 1;
847 std::optional<unsigned>
848 llvm::getLoopEstimatedTripCount(Loop *L,
849 unsigned *EstimatedLoopInvocationWeight) {
850 // Currently we take the estimate exit count only from the loop latch,
851 // ignoring other exiting blocks. This can overestimate the trip count
852 // if we exit through another exit, but can never underestimate it.
853 // TODO: incorporate information from other exits
854 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
855 uint64_t ExitWeight;
856 if (std::optional<uint64_t> EstTripCount =
857 getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
858 if (EstimatedLoopInvocationWeight)
859 *EstimatedLoopInvocationWeight = ExitWeight;
860 return *EstTripCount;
863 return std::nullopt;
866 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
867 unsigned EstimatedloopInvocationWeight) {
868 // At the moment, we currently support changing the estimate trip count of
869 // the latch branch only. We could extend this API to manipulate estimated
870 // trip counts for any exit.
871 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
872 if (!LatchBranch)
873 return false;
875 // Calculate taken and exit weights.
876 unsigned LatchExitWeight = 0;
877 unsigned BackedgeTakenWeight = 0;
879 if (EstimatedTripCount > 0) {
880 LatchExitWeight = EstimatedloopInvocationWeight;
881 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
884 // Make a swap if back edge is taken when condition is "false".
885 if (LatchBranch->getSuccessor(0) != L->getHeader())
886 std::swap(BackedgeTakenWeight, LatchExitWeight);
888 MDBuilder MDB(LatchBranch->getContext());
890 // Set/Update profile metadata.
891 LatchBranch->setMetadata(
892 LLVMContext::MD_prof,
893 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
895 return true;
898 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
899 ScalarEvolution &SE) {
900 Loop *OuterL = InnerLoop->getParentLoop();
901 if (!OuterL)
902 return true;
904 // Get the backedge taken count for the inner loop
905 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
906 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
907 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
908 !InnerLoopBECountSC->getType()->isIntegerTy())
909 return false;
911 // Get whether count is invariant to the outer loop
912 ScalarEvolution::LoopDisposition LD =
913 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
914 if (LD != ScalarEvolution::LoopInvariant)
915 return false;
917 return true;
920 Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
921 switch (RK) {
922 default:
923 llvm_unreachable("Unknown min/max recurrence kind");
924 case RecurKind::UMin:
925 return Intrinsic::umin;
926 case RecurKind::UMax:
927 return Intrinsic::umax;
928 case RecurKind::SMin:
929 return Intrinsic::smin;
930 case RecurKind::SMax:
931 return Intrinsic::smax;
932 case RecurKind::FMin:
933 return Intrinsic::minnum;
934 case RecurKind::FMax:
935 return Intrinsic::maxnum;
936 case RecurKind::FMinimum:
937 return Intrinsic::minimum;
938 case RecurKind::FMaximum:
939 return Intrinsic::maximum;
943 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
944 switch (RK) {
945 default:
946 llvm_unreachable("Unknown min/max recurrence kind");
947 case RecurKind::UMin:
948 return CmpInst::ICMP_ULT;
949 case RecurKind::UMax:
950 return CmpInst::ICMP_UGT;
951 case RecurKind::SMin:
952 return CmpInst::ICMP_SLT;
953 case RecurKind::SMax:
954 return CmpInst::ICMP_SGT;
955 case RecurKind::FMin:
956 return CmpInst::FCMP_OLT;
957 case RecurKind::FMax:
958 return CmpInst::FCMP_OGT;
959 // We do not add FMinimum/FMaximum recurrence kind here since there is no
960 // equivalent predicate which compares signed zeroes according to the
961 // semantics of the intrinsics (llvm.minimum/maximum).
965 Value *llvm::createAnyOfOp(IRBuilderBase &Builder, Value *StartVal,
966 RecurKind RK, Value *Left, Value *Right) {
967 if (auto VTy = dyn_cast<VectorType>(Left->getType()))
968 StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
969 Value *Cmp =
970 Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
971 return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
974 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
975 Value *Right) {
976 Type *Ty = Left->getType();
977 if (Ty->isIntOrIntVectorTy() ||
978 (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
979 // TODO: Add float minnum/maxnum support when FMF nnan is set.
980 Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
981 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
982 "rdx.minmax");
984 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
985 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
986 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
987 return Select;
990 // Helper to generate an ordered reduction.
991 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
992 unsigned Op, RecurKind RdxKind) {
993 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
995 // Extract and apply reduction ops in ascending order:
996 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
997 Value *Result = Acc;
998 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
999 Value *Ext =
1000 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1002 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1003 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1004 "bin.rdx");
1005 } else {
1006 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1007 "Invalid min/max");
1008 Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1012 return Result;
1015 // Helper to generate a log2 shuffle reduction.
1016 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
1017 unsigned Op, RecurKind RdxKind) {
1018 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1019 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1020 // and vector ops, reducing the set of values being computed by half each
1021 // round.
1022 assert(isPowerOf2_32(VF) &&
1023 "Reduction emission only supported for pow2 vectors!");
1024 // Note: fast-math-flags flags are controlled by the builder configuration
1025 // and are assumed to apply to all generated arithmetic instructions. Other
1026 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1027 // of the builder configuration, and since they're not passed explicitly,
1028 // will never be relevant here. Note that it would be generally unsound to
1029 // propagate these from an intrinsic call to the expansion anyways as we/
1030 // change the order of operations.
1031 Value *TmpVec = Src;
1032 SmallVector<int, 32> ShuffleMask(VF);
1033 for (unsigned i = VF; i != 1; i >>= 1) {
1034 // Move the upper half of the vector to the lower half.
1035 for (unsigned j = 0; j != i / 2; ++j)
1036 ShuffleMask[j] = i / 2 + j;
1038 // Fill the rest of the mask with undef.
1039 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1041 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1043 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1044 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1045 "bin.rdx");
1046 } else {
1047 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1048 "Invalid min/max");
1049 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1052 // The result is in the first element of the vector.
1053 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1056 Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src,
1057 const RecurrenceDescriptor &Desc,
1058 PHINode *OrigPhi) {
1059 assert(
1060 RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) &&
1061 "Unexpected reduction kind");
1062 Value *InitVal = Desc.getRecurrenceStartValue();
1063 Value *NewVal = nullptr;
1065 // First use the original phi to determine the new value we're trying to
1066 // select from in the loop.
1067 SelectInst *SI = nullptr;
1068 for (auto *U : OrigPhi->users()) {
1069 if ((SI = dyn_cast<SelectInst>(U)))
1070 break;
1072 assert(SI && "One user of the original phi should be a select");
1074 if (SI->getTrueValue() == OrigPhi)
1075 NewVal = SI->getFalseValue();
1076 else {
1077 assert(SI->getFalseValue() == OrigPhi &&
1078 "At least one input to the select should be the original Phi");
1079 NewVal = SI->getTrueValue();
1082 // Create a splat vector with the new value and compare this to the vector
1083 // we want to reduce.
1084 ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
1085 Value *Right = Builder.CreateVectorSplat(EC, InitVal);
1086 Value *Cmp =
1087 Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
1089 // If any predicate is true it means that we want to select the new value.
1090 Cmp = Builder.CreateOrReduce(Cmp);
1091 return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
1094 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src,
1095 RecurKind RdxKind) {
1096 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1097 switch (RdxKind) {
1098 case RecurKind::Add:
1099 return Builder.CreateAddReduce(Src);
1100 case RecurKind::Mul:
1101 return Builder.CreateMulReduce(Src);
1102 case RecurKind::And:
1103 return Builder.CreateAndReduce(Src);
1104 case RecurKind::Or:
1105 return Builder.CreateOrReduce(Src);
1106 case RecurKind::Xor:
1107 return Builder.CreateXorReduce(Src);
1108 case RecurKind::FMulAdd:
1109 case RecurKind::FAdd:
1110 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1111 Src);
1112 case RecurKind::FMul:
1113 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1114 case RecurKind::SMax:
1115 return Builder.CreateIntMaxReduce(Src, true);
1116 case RecurKind::SMin:
1117 return Builder.CreateIntMinReduce(Src, true);
1118 case RecurKind::UMax:
1119 return Builder.CreateIntMaxReduce(Src, false);
1120 case RecurKind::UMin:
1121 return Builder.CreateIntMinReduce(Src, false);
1122 case RecurKind::FMax:
1123 return Builder.CreateFPMaxReduce(Src);
1124 case RecurKind::FMin:
1125 return Builder.CreateFPMinReduce(Src);
1126 case RecurKind::FMinimum:
1127 return Builder.CreateFPMinimumReduce(Src);
1128 case RecurKind::FMaximum:
1129 return Builder.CreateFPMaximumReduce(Src);
1130 default:
1131 llvm_unreachable("Unhandled opcode");
1135 Value *llvm::createTargetReduction(IRBuilderBase &B,
1136 const RecurrenceDescriptor &Desc, Value *Src,
1137 PHINode *OrigPhi) {
1138 // TODO: Support in-order reductions based on the recurrence descriptor.
1139 // All ops in the reduction inherit fast-math-flags from the recurrence
1140 // descriptor.
1141 IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1142 B.setFastMathFlags(Desc.getFastMathFlags());
1144 RecurKind RK = Desc.getRecurrenceKind();
1145 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
1146 return createAnyOfTargetReduction(B, Src, Desc, OrigPhi);
1148 return createSimpleTargetReduction(B, Src, RK);
1151 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1152 const RecurrenceDescriptor &Desc,
1153 Value *Src, Value *Start) {
1154 assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1155 Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1156 "Unexpected reduction kind");
1157 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1158 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1160 return B.CreateFAddReduce(Start, Src);
1163 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
1164 bool IncludeWrapFlags) {
1165 auto *VecOp = dyn_cast<Instruction>(I);
1166 if (!VecOp)
1167 return;
1168 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1169 : dyn_cast<Instruction>(OpValue);
1170 if (!Intersection)
1171 return;
1172 const unsigned Opcode = Intersection->getOpcode();
1173 VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1174 for (auto *V : VL) {
1175 auto *Instr = dyn_cast<Instruction>(V);
1176 if (!Instr)
1177 continue;
1178 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1179 VecOp->andIRFlags(V);
1183 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1184 ScalarEvolution &SE) {
1185 const SCEV *Zero = SE.getZero(S->getType());
1186 return SE.isAvailableAtLoopEntry(S, L) &&
1187 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1190 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1191 ScalarEvolution &SE) {
1192 const SCEV *Zero = SE.getZero(S->getType());
1193 return SE.isAvailableAtLoopEntry(S, L) &&
1194 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1197 bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1198 ScalarEvolution &SE) {
1199 const SCEV *Zero = SE.getZero(S->getType());
1200 return SE.isAvailableAtLoopEntry(S, L) &&
1201 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
1204 bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
1205 ScalarEvolution &SE) {
1206 const SCEV *Zero = SE.getZero(S->getType());
1207 return SE.isAvailableAtLoopEntry(S, L) &&
1208 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
1211 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1212 bool Signed) {
1213 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1214 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1215 APInt::getMinValue(BitWidth);
1216 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1217 return SE.isAvailableAtLoopEntry(S, L) &&
1218 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1219 SE.getConstant(Min));
1222 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1223 bool Signed) {
1224 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1225 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1226 APInt::getMaxValue(BitWidth);
1227 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1228 return SE.isAvailableAtLoopEntry(S, L) &&
1229 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1230 SE.getConstant(Max));
1233 //===----------------------------------------------------------------------===//
1234 // rewriteLoopExitValues - Optimize IV users outside the loop.
1235 // As a side effect, reduces the amount of IV processing within the loop.
1236 //===----------------------------------------------------------------------===//
1238 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1239 SmallPtrSet<const Instruction *, 8> Visited;
1240 SmallVector<const Instruction *, 8> WorkList;
1241 Visited.insert(I);
1242 WorkList.push_back(I);
1243 while (!WorkList.empty()) {
1244 const Instruction *Curr = WorkList.pop_back_val();
1245 // This use is outside the loop, nothing to do.
1246 if (!L->contains(Curr))
1247 continue;
1248 // Do we assume it is a "hard" use which will not be eliminated easily?
1249 if (Curr->mayHaveSideEffects())
1250 return true;
1251 // Otherwise, add all its users to worklist.
1252 for (const auto *U : Curr->users()) {
1253 auto *UI = cast<Instruction>(U);
1254 if (Visited.insert(UI).second)
1255 WorkList.push_back(UI);
1258 return false;
1261 // Collect information about PHI nodes which can be transformed in
1262 // rewriteLoopExitValues.
1263 struct RewritePhi {
1264 PHINode *PN; // For which PHI node is this replacement?
1265 unsigned Ith; // For which incoming value?
1266 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1267 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1268 bool HighCost; // Is this expansion a high-cost?
1270 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1271 bool H)
1272 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1273 HighCost(H) {}
1276 // Check whether it is possible to delete the loop after rewriting exit
1277 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1278 // aggressively.
1279 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1280 BasicBlock *Preheader = L->getLoopPreheader();
1281 // If there is no preheader, the loop will not be deleted.
1282 if (!Preheader)
1283 return false;
1285 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1286 // We obviate multiple ExitingBlocks case for simplicity.
1287 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1288 // after exit value rewriting, we can enhance the logic here.
1289 SmallVector<BasicBlock *, 4> ExitingBlocks;
1290 L->getExitingBlocks(ExitingBlocks);
1291 SmallVector<BasicBlock *, 8> ExitBlocks;
1292 L->getUniqueExitBlocks(ExitBlocks);
1293 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1294 return false;
1296 BasicBlock *ExitBlock = ExitBlocks[0];
1297 BasicBlock::iterator BI = ExitBlock->begin();
1298 while (PHINode *P = dyn_cast<PHINode>(BI)) {
1299 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1301 // If the Incoming value of P is found in RewritePhiSet, we know it
1302 // could be rewritten to use a loop invariant value in transformation
1303 // phase later. Skip it in the loop invariant check below.
1304 bool found = false;
1305 for (const RewritePhi &Phi : RewritePhiSet) {
1306 unsigned i = Phi.Ith;
1307 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1308 found = true;
1309 break;
1313 Instruction *I;
1314 if (!found && (I = dyn_cast<Instruction>(Incoming)))
1315 if (!L->hasLoopInvariantOperands(I))
1316 return false;
1318 ++BI;
1321 for (auto *BB : L->blocks())
1322 if (llvm::any_of(*BB, [](Instruction &I) {
1323 return I.mayHaveSideEffects();
1325 return false;
1327 return true;
1330 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1331 /// and returns true if this Phi is an induction phi in the loop. When
1332 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1333 static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1334 InductionDescriptor &ID) {
1335 if (!Phi)
1336 return false;
1337 if (!L->getLoopPreheader())
1338 return false;
1339 if (Phi->getParent() != L->getHeader())
1340 return false;
1341 return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1344 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1345 ScalarEvolution *SE,
1346 const TargetTransformInfo *TTI,
1347 SCEVExpander &Rewriter, DominatorTree *DT,
1348 ReplaceExitVal ReplaceExitValue,
1349 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1350 // Check a pre-condition.
1351 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1352 "Indvars did not preserve LCSSA!");
1354 SmallVector<BasicBlock*, 8> ExitBlocks;
1355 L->getUniqueExitBlocks(ExitBlocks);
1357 SmallVector<RewritePhi, 8> RewritePhiSet;
1358 // Find all values that are computed inside the loop, but used outside of it.
1359 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1360 // the exit blocks of the loop to find them.
1361 for (BasicBlock *ExitBB : ExitBlocks) {
1362 // If there are no PHI nodes in this exit block, then no values defined
1363 // inside the loop are used on this path, skip it.
1364 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1365 if (!PN) continue;
1367 unsigned NumPreds = PN->getNumIncomingValues();
1369 // Iterate over all of the PHI nodes.
1370 BasicBlock::iterator BBI = ExitBB->begin();
1371 while ((PN = dyn_cast<PHINode>(BBI++))) {
1372 if (PN->use_empty())
1373 continue; // dead use, don't replace it
1375 if (!SE->isSCEVable(PN->getType()))
1376 continue;
1378 // Iterate over all of the values in all the PHI nodes.
1379 for (unsigned i = 0; i != NumPreds; ++i) {
1380 // If the value being merged in is not integer or is not defined
1381 // in the loop, skip it.
1382 Value *InVal = PN->getIncomingValue(i);
1383 if (!isa<Instruction>(InVal))
1384 continue;
1386 // If this pred is for a subloop, not L itself, skip it.
1387 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1388 continue; // The Block is in a subloop, skip it.
1390 // Check that InVal is defined in the loop.
1391 Instruction *Inst = cast<Instruction>(InVal);
1392 if (!L->contains(Inst))
1393 continue;
1395 // Find exit values which are induction variables in the loop, and are
1396 // unused in the loop, with the only use being the exit block PhiNode,
1397 // and the induction variable update binary operator.
1398 // The exit value can be replaced with the final value when it is cheap
1399 // to do so.
1400 if (ReplaceExitValue == UnusedIndVarInLoop) {
1401 InductionDescriptor ID;
1402 PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1403 if (IndPhi) {
1404 if (!checkIsIndPhi(IndPhi, L, SE, ID))
1405 continue;
1406 // This is an induction PHI. Check that the only users are PHI
1407 // nodes, and induction variable update binary operators.
1408 if (llvm::any_of(Inst->users(), [&](User *U) {
1409 if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1410 return true;
1411 BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1412 if (B && B != ID.getInductionBinOp())
1413 return true;
1414 return false;
1416 continue;
1417 } else {
1418 // If it is not an induction phi, it must be an induction update
1419 // binary operator with an induction phi user.
1420 BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
1421 if (!B)
1422 continue;
1423 if (llvm::any_of(Inst->users(), [&](User *U) {
1424 PHINode *Phi = dyn_cast<PHINode>(U);
1425 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1426 return true;
1427 return false;
1429 continue;
1430 if (B != ID.getInductionBinOp())
1431 continue;
1435 // Okay, this instruction has a user outside of the current loop
1436 // and varies predictably *inside* the loop. Evaluate the value it
1437 // contains when the loop exits, if possible. We prefer to start with
1438 // expressions which are true for all exits (so as to maximize
1439 // expression reuse by the SCEVExpander), but resort to per-exit
1440 // evaluation if that fails.
1441 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1442 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1443 !SE->isLoopInvariant(ExitValue, L) ||
1444 !Rewriter.isSafeToExpand(ExitValue)) {
1445 // TODO: This should probably be sunk into SCEV in some way; maybe a
1446 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1447 // most SCEV expressions and other recurrence types (e.g. shift
1448 // recurrences). Is there existing code we can reuse?
1449 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1450 if (isa<SCEVCouldNotCompute>(ExitCount))
1451 continue;
1452 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1453 if (AddRec->getLoop() == L)
1454 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1455 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1456 !SE->isLoopInvariant(ExitValue, L) ||
1457 !Rewriter.isSafeToExpand(ExitValue))
1458 continue;
1461 // Computing the value outside of the loop brings no benefit if it is
1462 // definitely used inside the loop in a way which can not be optimized
1463 // away. Avoid doing so unless we know we have a value which computes
1464 // the ExitValue already. TODO: This should be merged into SCEV
1465 // expander to leverage its knowledge of existing expressions.
1466 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1467 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1468 continue;
1470 // Check if expansions of this SCEV would count as being high cost.
1471 bool HighCost = Rewriter.isHighCostExpansion(
1472 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1474 // Note that we must not perform expansions until after
1475 // we query *all* the costs, because if we perform temporary expansion
1476 // inbetween, one that we might not intend to keep, said expansion
1477 // *may* affect cost calculation of the next SCEV's we'll query,
1478 // and next SCEV may errneously get smaller cost.
1480 // Collect all the candidate PHINodes to be rewritten.
1481 Instruction *InsertPt =
1482 (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1483 &*Inst->getParent()->getFirstInsertionPt() : Inst;
1484 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1489 // TODO: evaluate whether it is beneficial to change how we calculate
1490 // high-cost: if we have SCEV 'A' which we know we will expand, should we
1491 // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1492 // potentially giving cost bonus to those other SCEV's?
1494 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1495 int NumReplaced = 0;
1497 // Transformation.
1498 for (const RewritePhi &Phi : RewritePhiSet) {
1499 PHINode *PN = Phi.PN;
1501 // Only do the rewrite when the ExitValue can be expanded cheaply.
1502 // If LoopCanBeDel is true, rewrite exit value aggressively.
1503 if ((ReplaceExitValue == OnlyCheapRepl ||
1504 ReplaceExitValue == UnusedIndVarInLoop) &&
1505 !LoopCanBeDel && Phi.HighCost)
1506 continue;
1508 Value *ExitVal = Rewriter.expandCodeFor(
1509 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1511 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1512 << '\n'
1513 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1515 #ifndef NDEBUG
1516 // If we reuse an instruction from a loop which is neither L nor one of
1517 // its containing loops, we end up breaking LCSSA form for this loop by
1518 // creating a new use of its instruction.
1519 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1520 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1521 if (EVL != L)
1522 assert(EVL->contains(L) && "LCSSA breach detected!");
1523 #endif
1525 NumReplaced++;
1526 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1527 PN->setIncomingValue(Phi.Ith, ExitVal);
1528 // It's necessary to tell ScalarEvolution about this explicitly so that
1529 // it can walk the def-use list and forget all SCEVs, as it may not be
1530 // watching the PHI itself. Once the new exit value is in place, there
1531 // may not be a def-use connection between the loop and every instruction
1532 // which got a SCEVAddRecExpr for that loop.
1533 SE->forgetValue(PN);
1535 // If this instruction is dead now, delete it. Don't do it now to avoid
1536 // invalidating iterators.
1537 if (isInstructionTriviallyDead(Inst, TLI))
1538 DeadInsts.push_back(Inst);
1540 // Replace PN with ExitVal if that is legal and does not break LCSSA.
1541 if (PN->getNumIncomingValues() == 1 &&
1542 LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1543 PN->replaceAllUsesWith(ExitVal);
1544 PN->eraseFromParent();
1548 // The insertion point instruction may have been deleted; clear it out
1549 // so that the rewriter doesn't trip over it later.
1550 Rewriter.clearInsertPoint();
1551 return NumReplaced;
1554 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1555 /// \p OrigLoop.
1556 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1557 Loop *RemainderLoop, uint64_t UF) {
1558 assert(UF > 0 && "Zero unrolled factor is not supported");
1559 assert(UnrolledLoop != RemainderLoop &&
1560 "Unrolled and Remainder loops are expected to distinct");
1562 // Get number of iterations in the original scalar loop.
1563 unsigned OrigLoopInvocationWeight = 0;
1564 std::optional<unsigned> OrigAverageTripCount =
1565 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1566 if (!OrigAverageTripCount)
1567 return;
1569 // Calculate number of iterations in unrolled loop.
1570 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1571 // Calculate number of iterations for remainder loop.
1572 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1574 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1575 OrigLoopInvocationWeight);
1576 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1577 OrigLoopInvocationWeight);
1580 /// Utility that implements appending of loops onto a worklist.
1581 /// Loops are added in preorder (analogous for reverse postorder for trees),
1582 /// and the worklist is processed LIFO.
1583 template <typename RangeT>
1584 void llvm::appendReversedLoopsToWorklist(
1585 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1586 // We use an internal worklist to build up the preorder traversal without
1587 // recursion.
1588 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1590 // We walk the initial sequence of loops in reverse because we generally want
1591 // to visit defs before uses and the worklist is LIFO.
1592 for (Loop *RootL : Loops) {
1593 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1594 assert(PreOrderWorklist.empty() &&
1595 "Must start with an empty preorder walk worklist.");
1596 PreOrderWorklist.push_back(RootL);
1597 do {
1598 Loop *L = PreOrderWorklist.pop_back_val();
1599 PreOrderWorklist.append(L->begin(), L->end());
1600 PreOrderLoops.push_back(L);
1601 } while (!PreOrderWorklist.empty());
1603 Worklist.insert(std::move(PreOrderLoops));
1604 PreOrderLoops.clear();
1608 template <typename RangeT>
1609 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1610 SmallPriorityWorklist<Loop *, 4> &Worklist) {
1611 appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1614 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1615 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1617 template void
1618 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1619 SmallPriorityWorklist<Loop *, 4> &Worklist);
1621 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1622 SmallPriorityWorklist<Loop *, 4> &Worklist) {
1623 appendReversedLoopsToWorklist(LI, Worklist);
1626 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1627 LoopInfo *LI, LPPassManager *LPM) {
1628 Loop &New = *LI->AllocateLoop();
1629 if (PL)
1630 PL->addChildLoop(&New);
1631 else
1632 LI->addTopLevelLoop(&New);
1634 if (LPM)
1635 LPM->addLoop(New);
1637 // Add all of the blocks in L to the new loop.
1638 for (BasicBlock *BB : L->blocks())
1639 if (LI->getLoopFor(BB) == L)
1640 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1642 // Add all of the subloops to the new loop.
1643 for (Loop *I : *L)
1644 cloneLoop(I, &New, VM, LI, LPM);
1646 return &New;
1649 /// IR Values for the lower and upper bounds of a pointer evolution. We
1650 /// need to use value-handles because SCEV expansion can invalidate previously
1651 /// expanded values. Thus expansion of a pointer can invalidate the bounds for
1652 /// a previous one.
1653 struct PointerBounds {
1654 TrackingVH<Value> Start;
1655 TrackingVH<Value> End;
1656 Value *StrideToCheck;
1659 /// Expand code for the lower and upper bound of the pointer group \p CG
1660 /// in \p TheLoop. \return the values for the bounds.
1661 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1662 Loop *TheLoop, Instruction *Loc,
1663 SCEVExpander &Exp, bool HoistRuntimeChecks) {
1664 LLVMContext &Ctx = Loc->getContext();
1665 Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
1667 Value *Start = nullptr, *End = nullptr;
1668 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1669 const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
1671 // If the Low and High values are themselves loop-variant, then we may want
1672 // to expand the range to include those covered by the outer loop as well.
1673 // There is a trade-off here with the advantage being that creating checks
1674 // using the expanded range permits the runtime memory checks to be hoisted
1675 // out of the outer loop. This reduces the cost of entering the inner loop,
1676 // which can be significant for low trip counts. The disadvantage is that
1677 // there is a chance we may now never enter the vectorized inner loop,
1678 // whereas using a restricted range check could have allowed us to enter at
1679 // least once. This is why the behaviour is not currently the default and is
1680 // controlled by the parameter 'HoistRuntimeChecks'.
1681 if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
1682 isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) {
1683 auto *HighAR = cast<SCEVAddRecExpr>(High);
1684 auto *LowAR = cast<SCEVAddRecExpr>(Low);
1685 const Loop *OuterLoop = TheLoop->getParentLoop();
1686 const SCEV *Recur = LowAR->getStepRecurrence(*Exp.getSE());
1687 if (Recur == HighAR->getStepRecurrence(*Exp.getSE()) &&
1688 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
1689 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1690 const SCEV *OuterExitCount =
1691 Exp.getSE()->getExitCount(OuterLoop, OuterLoopLatch);
1692 if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
1693 OuterExitCount->getType()->isIntegerTy()) {
1694 const SCEV *NewHigh = cast<SCEVAddRecExpr>(High)->evaluateAtIteration(
1695 OuterExitCount, *Exp.getSE());
1696 if (!isa<SCEVCouldNotCompute>(NewHigh)) {
1697 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
1698 "outer loop in order to permit hoisting\n");
1699 High = NewHigh;
1700 Low = cast<SCEVAddRecExpr>(Low)->getStart();
1701 // If there is a possibility that the stride is negative then we have
1702 // to generate extra checks to ensure the stride is positive.
1703 if (!Exp.getSE()->isKnownNonNegative(Recur)) {
1704 Stride = Recur;
1705 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
1706 "positive: "
1707 << *Stride << '\n');
1714 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
1715 End = Exp.expandCodeFor(High, PtrArithTy, Loc);
1716 if (CG->NeedsFreeze) {
1717 IRBuilder<> Builder(Loc);
1718 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
1719 End = Builder.CreateFreeze(End, End->getName() + ".fr");
1721 Value *StrideVal =
1722 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
1723 LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
1724 return {Start, End, StrideVal};
1727 /// Turns a collection of checks into a collection of expanded upper and
1728 /// lower bounds for both pointers in the check.
1729 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1730 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1731 Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) {
1732 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1734 // Here we're relying on the SCEV Expander's cache to only emit code for the
1735 // same bounds once.
1736 transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1737 [&](const RuntimePointerCheck &Check) {
1738 PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
1739 HoistRuntimeChecks),
1740 Second = expandBounds(Check.second, L, Loc, Exp,
1741 HoistRuntimeChecks);
1742 return std::make_pair(First, Second);
1745 return ChecksWithBounds;
1748 Value *llvm::addRuntimeChecks(
1749 Instruction *Loc, Loop *TheLoop,
1750 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1751 SCEVExpander &Exp, bool HoistRuntimeChecks) {
1752 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1753 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
1754 auto ExpandedChecks =
1755 expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
1757 LLVMContext &Ctx = Loc->getContext();
1758 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1759 Loc->getModule()->getDataLayout());
1760 ChkBuilder.SetInsertPoint(Loc);
1761 // Our instructions might fold to a constant.
1762 Value *MemoryRuntimeCheck = nullptr;
1764 for (const auto &Check : ExpandedChecks) {
1765 const PointerBounds &A = Check.first, &B = Check.second;
1766 // Check if two pointers (A and B) conflict where conflict is computed as:
1767 // start(A) <= end(B) && start(B) <= end(A)
1769 assert((A.Start->getType()->getPointerAddressSpace() ==
1770 B.End->getType()->getPointerAddressSpace()) &&
1771 (B.Start->getType()->getPointerAddressSpace() ==
1772 A.End->getType()->getPointerAddressSpace()) &&
1773 "Trying to bounds check pointers with different address spaces");
1775 // [A|B].Start points to the first accessed byte under base [A|B].
1776 // [A|B].End points to the last accessed byte, plus one.
1777 // There is no conflict when the intervals are disjoint:
1778 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1780 // bound0 = (B.Start < A.End)
1781 // bound1 = (A.Start < B.End)
1782 // IsConflict = bound0 & bound1
1783 Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
1784 Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
1785 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1786 if (A.StrideToCheck) {
1787 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1788 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
1789 "stride.check");
1790 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1792 if (B.StrideToCheck) {
1793 Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1794 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
1795 "stride.check");
1796 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1798 if (MemoryRuntimeCheck) {
1799 IsConflict =
1800 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1802 MemoryRuntimeCheck = IsConflict;
1805 return MemoryRuntimeCheck;
1808 Value *llvm::addDiffRuntimeChecks(
1809 Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
1810 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
1812 LLVMContext &Ctx = Loc->getContext();
1813 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1814 Loc->getModule()->getDataLayout());
1815 ChkBuilder.SetInsertPoint(Loc);
1816 // Our instructions might fold to a constant.
1817 Value *MemoryRuntimeCheck = nullptr;
1819 auto &SE = *Expander.getSE();
1820 // Map to keep track of created compares, The key is the pair of operands for
1821 // the compare, to allow detecting and re-using redundant compares.
1822 DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares;
1823 for (const auto &C : Checks) {
1824 Type *Ty = C.SinkStart->getType();
1825 // Compute VF * IC * AccessSize.
1826 auto *VFTimesUFTimesSize =
1827 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
1828 ConstantInt::get(Ty, IC * C.AccessSize));
1829 Value *Diff = Expander.expandCodeFor(
1830 SE.getMinusSCEV(C.SinkStart, C.SrcStart), Ty, Loc);
1832 // Check if the same compare has already been created earlier. In that case,
1833 // there is no need to check it again.
1834 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize});
1835 if (IsConflict)
1836 continue;
1838 IsConflict =
1839 ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
1840 SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict});
1841 if (C.NeedsFreeze)
1842 IsConflict =
1843 ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
1844 if (MemoryRuntimeCheck) {
1845 IsConflict =
1846 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1848 MemoryRuntimeCheck = IsConflict;
1851 return MemoryRuntimeCheck;
1854 std::optional<IVConditionInfo>
1855 llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
1856 const MemorySSA &MSSA, AAResults &AA) {
1857 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1858 if (!TI || !TI->isConditional())
1859 return {};
1861 auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1862 // The case with the condition outside the loop should already be handled
1863 // earlier.
1864 if (!CondI || !L.contains(CondI))
1865 return {};
1867 SmallVector<Instruction *> InstToDuplicate;
1868 InstToDuplicate.push_back(CondI);
1870 SmallVector<Value *, 4> WorkList;
1871 WorkList.append(CondI->op_begin(), CondI->op_end());
1873 SmallVector<MemoryAccess *, 4> AccessesToCheck;
1874 SmallVector<MemoryLocation, 4> AccessedLocs;
1875 while (!WorkList.empty()) {
1876 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1877 if (!I || !L.contains(I))
1878 continue;
1880 // TODO: support additional instructions.
1881 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1882 return {};
1884 // Do not duplicate volatile and atomic loads.
1885 if (auto *LI = dyn_cast<LoadInst>(I))
1886 if (LI->isVolatile() || LI->isAtomic())
1887 return {};
1889 InstToDuplicate.push_back(I);
1890 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1891 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1892 // Queue the defining access to check for alias checks.
1893 AccessesToCheck.push_back(MemUse->getDefiningAccess());
1894 AccessedLocs.push_back(MemoryLocation::get(I));
1895 } else {
1896 // MemoryDefs may clobber the location or may be atomic memory
1897 // operations. Bail out.
1898 return {};
1901 WorkList.append(I->op_begin(), I->op_end());
1904 if (InstToDuplicate.empty())
1905 return {};
1907 SmallVector<BasicBlock *, 4> ExitingBlocks;
1908 L.getExitingBlocks(ExitingBlocks);
1909 auto HasNoClobbersOnPath =
1910 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1911 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1912 SmallVector<MemoryAccess *, 4> AccessesToCheck)
1913 -> std::optional<IVConditionInfo> {
1914 IVConditionInfo Info;
1915 // First, collect all blocks in the loop that are on a patch from Succ
1916 // to the header.
1917 SmallVector<BasicBlock *, 4> WorkList;
1918 WorkList.push_back(Succ);
1919 WorkList.push_back(Header);
1920 SmallPtrSet<BasicBlock *, 4> Seen;
1921 Seen.insert(Header);
1922 Info.PathIsNoop &=
1923 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1925 while (!WorkList.empty()) {
1926 BasicBlock *Current = WorkList.pop_back_val();
1927 if (!L.contains(Current))
1928 continue;
1929 const auto &SeenIns = Seen.insert(Current);
1930 if (!SeenIns.second)
1931 continue;
1933 Info.PathIsNoop &= all_of(
1934 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1935 WorkList.append(succ_begin(Current), succ_end(Current));
1938 // Require at least 2 blocks on a path through the loop. This skips
1939 // paths that directly exit the loop.
1940 if (Seen.size() < 2)
1941 return {};
1943 // Next, check if there are any MemoryDefs that are on the path through
1944 // the loop (in the Seen set) and they may-alias any of the locations in
1945 // AccessedLocs. If that is the case, they may modify the condition and
1946 // partial unswitching is not possible.
1947 SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1948 while (!AccessesToCheck.empty()) {
1949 MemoryAccess *Current = AccessesToCheck.pop_back_val();
1950 auto SeenI = SeenAccesses.insert(Current);
1951 if (!SeenI.second || !Seen.contains(Current->getBlock()))
1952 continue;
1954 // Bail out if exceeded the threshold.
1955 if (SeenAccesses.size() >= MSSAThreshold)
1956 return {};
1958 // MemoryUse are read-only accesses.
1959 if (isa<MemoryUse>(Current))
1960 continue;
1962 // For a MemoryDef, check if is aliases any of the location feeding
1963 // the original condition.
1964 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1965 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1966 return isModSet(
1967 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1969 return {};
1972 for (Use &U : Current->uses())
1973 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1976 // We could also allow loops with known trip counts without mustprogress,
1977 // but ScalarEvolution may not be available.
1978 Info.PathIsNoop &= isMustProgress(&L);
1980 // If the path is considered a no-op so far, check if it reaches a
1981 // single exit block without any phis. This ensures no values from the
1982 // loop are used outside of the loop.
1983 if (Info.PathIsNoop) {
1984 for (auto *Exiting : ExitingBlocks) {
1985 if (!Seen.contains(Exiting))
1986 continue;
1987 for (auto *Succ : successors(Exiting)) {
1988 if (L.contains(Succ))
1989 continue;
1991 Info.PathIsNoop &= Succ->phis().empty() &&
1992 (!Info.ExitForPath || Info.ExitForPath == Succ);
1993 if (!Info.PathIsNoop)
1994 break;
1995 assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1996 "cannot have multiple exit blocks");
1997 Info.ExitForPath = Succ;
2001 if (!Info.ExitForPath)
2002 Info.PathIsNoop = false;
2004 Info.InstToDuplicate = InstToDuplicate;
2005 return Info;
2008 // If we branch to the same successor, partial unswitching will not be
2009 // beneficial.
2010 if (TI->getSuccessor(0) == TI->getSuccessor(1))
2011 return {};
2013 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2014 AccessesToCheck)) {
2015 Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2016 return Info;
2018 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2019 AccessesToCheck)) {
2020 Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2021 return Info;
2024 return {};