1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines common loop utility functions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/PriorityWorklist.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/InstSimplifyFolder.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ProfDataUtils.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50 using namespace llvm::PatternMatch
;
52 #define DEBUG_TYPE "loop-utils"
54 static const char *LLVMLoopDisableNonforced
= "llvm.loop.disable_nonforced";
55 static const char *LLVMLoopDisableLICM
= "llvm.licm.disable";
57 bool llvm::formDedicatedExitBlocks(Loop
*L
, DominatorTree
*DT
, LoopInfo
*LI
,
58 MemorySSAUpdater
*MSSAU
,
62 // We re-use a vector for the in-loop predecesosrs.
63 SmallVector
<BasicBlock
*, 4> InLoopPredecessors
;
65 auto RewriteExit
= [&](BasicBlock
*BB
) {
66 assert(InLoopPredecessors
.empty() &&
67 "Must start with an empty predecessors list!");
68 auto Cleanup
= make_scope_exit([&] { InLoopPredecessors
.clear(); });
70 // See if there are any non-loop predecessors of this exit block and
71 // keep track of the in-loop predecessors.
72 bool IsDedicatedExit
= true;
73 for (auto *PredBB
: predecessors(BB
))
74 if (L
->contains(PredBB
)) {
75 if (isa
<IndirectBrInst
>(PredBB
->getTerminator()))
76 // We cannot rewrite exiting edges from an indirectbr.
79 InLoopPredecessors
.push_back(PredBB
);
81 IsDedicatedExit
= false;
84 assert(!InLoopPredecessors
.empty() && "Must have *some* loop predecessor!");
86 // Nothing to do if this is already a dedicated exit.
90 auto *NewExitBB
= SplitBlockPredecessors(
91 BB
, InLoopPredecessors
, ".loopexit", DT
, LI
, MSSAU
, PreserveLCSSA
);
95 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
98 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
99 << NewExitBB
->getName() << "\n");
103 // Walk the exit blocks directly rather than building up a data structure for
104 // them, but only visit each one once.
105 SmallPtrSet
<BasicBlock
*, 4> Visited
;
106 for (auto *BB
: L
->blocks())
107 for (auto *SuccBB
: successors(BB
)) {
108 // We're looking for exit blocks so skip in-loop successors.
109 if (L
->contains(SuccBB
))
112 // Visit each exit block exactly once.
113 if (!Visited
.insert(SuccBB
).second
)
116 Changed
|= RewriteExit(SuccBB
);
122 /// Returns the instructions that use values defined in the loop.
123 SmallVector
<Instruction
*, 8> llvm::findDefsUsedOutsideOfLoop(Loop
*L
) {
124 SmallVector
<Instruction
*, 8> UsedOutside
;
126 for (auto *Block
: L
->getBlocks())
127 // FIXME: I believe that this could use copy_if if the Inst reference could
128 // be adapted into a pointer.
129 for (auto &Inst
: *Block
) {
130 auto Users
= Inst
.users();
131 if (any_of(Users
, [&](User
*U
) {
132 auto *Use
= cast
<Instruction
>(U
);
133 return !L
->contains(Use
->getParent());
135 UsedOutside
.push_back(&Inst
);
141 void llvm::getLoopAnalysisUsage(AnalysisUsage
&AU
) {
142 // By definition, all loop passes need the LoopInfo analysis and the
143 // Dominator tree it depends on. Because they all participate in the loop
144 // pass manager, they must also preserve these.
145 AU
.addRequired
<DominatorTreeWrapperPass
>();
146 AU
.addPreserved
<DominatorTreeWrapperPass
>();
147 AU
.addRequired
<LoopInfoWrapperPass
>();
148 AU
.addPreserved
<LoopInfoWrapperPass
>();
150 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
151 // here because users shouldn't directly get them from this header.
152 extern char &LoopSimplifyID
;
153 extern char &LCSSAID
;
154 AU
.addRequiredID(LoopSimplifyID
);
155 AU
.addPreservedID(LoopSimplifyID
);
156 AU
.addRequiredID(LCSSAID
);
157 AU
.addPreservedID(LCSSAID
);
158 // This is used in the LPPassManager to perform LCSSA verification on passes
159 // which preserve lcssa form
160 AU
.addRequired
<LCSSAVerificationPass
>();
161 AU
.addPreserved
<LCSSAVerificationPass
>();
163 // Loop passes are designed to run inside of a loop pass manager which means
164 // that any function analyses they require must be required by the first loop
165 // pass in the manager (so that it is computed before the loop pass manager
166 // runs) and preserved by all loop pasess in the manager. To make this
167 // reasonably robust, the set needed for most loop passes is maintained here.
168 // If your loop pass requires an analysis not listed here, you will need to
169 // carefully audit the loop pass manager nesting structure that results.
170 AU
.addRequired
<AAResultsWrapperPass
>();
171 AU
.addPreserved
<AAResultsWrapperPass
>();
172 AU
.addPreserved
<BasicAAWrapperPass
>();
173 AU
.addPreserved
<GlobalsAAWrapperPass
>();
174 AU
.addPreserved
<SCEVAAWrapperPass
>();
175 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
176 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
177 // FIXME: When all loop passes preserve MemorySSA, it can be required and
178 // preserved here instead of the individual handling in each pass.
181 /// Manually defined generic "LoopPass" dependency initialization. This is used
182 /// to initialize the exact set of passes from above in \c
183 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
186 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
188 /// As-if "LoopPass" were a pass.
189 void llvm::initializeLoopPassPass(PassRegistry
&Registry
) {
190 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
191 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
192 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
193 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass
)
194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
195 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass
)
196 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
197 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass
)
198 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
202 /// Create MDNode for input string.
203 static MDNode
*createStringMetadata(Loop
*TheLoop
, StringRef Name
, unsigned V
) {
204 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
206 MDString::get(Context
, Name
),
207 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context
), V
))};
208 return MDNode::get(Context
, MDs
);
211 /// Set input string into loop metadata by keeping other values intact.
212 /// If the string is already in loop metadata update value if it is
214 void llvm::addStringMetadataToLoop(Loop
*TheLoop
, const char *StringMD
,
216 SmallVector
<Metadata
*, 4> MDs(1);
217 // If the loop already has metadata, retain it.
218 MDNode
*LoopID
= TheLoop
->getLoopID();
220 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
221 MDNode
*Node
= cast
<MDNode
>(LoopID
->getOperand(i
));
222 // If it is of form key = value, try to parse it.
223 if (Node
->getNumOperands() == 2) {
224 MDString
*S
= dyn_cast
<MDString
>(Node
->getOperand(0));
225 if (S
&& S
->getString().equals(StringMD
)) {
227 mdconst::extract_or_null
<ConstantInt
>(Node
->getOperand(1));
228 if (IntMD
&& IntMD
->getSExtValue() == V
)
229 // It is already in place. Do nothing.
231 // We need to update the value, so just skip it here and it will
232 // be added after copying other existed nodes.
240 MDs
.push_back(createStringMetadata(TheLoop
, StringMD
, V
));
241 // Replace current metadata node with new one.
242 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
243 MDNode
*NewLoopID
= MDNode::get(Context
, MDs
);
244 // Set operand 0 to refer to the loop id itself.
245 NewLoopID
->replaceOperandWith(0, NewLoopID
);
246 TheLoop
->setLoopID(NewLoopID
);
249 std::optional
<ElementCount
>
250 llvm::getOptionalElementCountLoopAttribute(const Loop
*TheLoop
) {
251 std::optional
<int> Width
=
252 getOptionalIntLoopAttribute(TheLoop
, "llvm.loop.vectorize.width");
255 std::optional
<int> IsScalable
= getOptionalIntLoopAttribute(
256 TheLoop
, "llvm.loop.vectorize.scalable.enable");
257 return ElementCount::get(*Width
, IsScalable
.value_or(false));
263 std::optional
<MDNode
*> llvm::makeFollowupLoopID(
264 MDNode
*OrigLoopID
, ArrayRef
<StringRef
> FollowupOptions
,
265 const char *InheritOptionsExceptPrefix
, bool AlwaysNew
) {
272 assert(OrigLoopID
->getOperand(0) == OrigLoopID
);
274 bool InheritAllAttrs
= !InheritOptionsExceptPrefix
;
275 bool InheritSomeAttrs
=
276 InheritOptionsExceptPrefix
&& InheritOptionsExceptPrefix
[0] != '\0';
277 SmallVector
<Metadata
*, 8> MDs
;
278 MDs
.push_back(nullptr);
280 bool Changed
= false;
281 if (InheritAllAttrs
|| InheritSomeAttrs
) {
282 for (const MDOperand
&Existing
: drop_begin(OrigLoopID
->operands())) {
283 MDNode
*Op
= cast
<MDNode
>(Existing
.get());
285 auto InheritThisAttribute
= [InheritSomeAttrs
,
286 InheritOptionsExceptPrefix
](MDNode
*Op
) {
287 if (!InheritSomeAttrs
)
290 // Skip malformatted attribute metadata nodes.
291 if (Op
->getNumOperands() == 0)
293 Metadata
*NameMD
= Op
->getOperand(0).get();
294 if (!isa
<MDString
>(NameMD
))
296 StringRef AttrName
= cast
<MDString
>(NameMD
)->getString();
298 // Do not inherit excluded attributes.
299 return !AttrName
.starts_with(InheritOptionsExceptPrefix
);
302 if (InheritThisAttribute(Op
))
308 // Modified if we dropped at least one attribute.
309 Changed
= OrigLoopID
->getNumOperands() > 1;
312 bool HasAnyFollowup
= false;
313 for (StringRef OptionName
: FollowupOptions
) {
314 MDNode
*FollowupNode
= findOptionMDForLoopID(OrigLoopID
, OptionName
);
318 HasAnyFollowup
= true;
319 for (const MDOperand
&Option
: drop_begin(FollowupNode
->operands())) {
320 MDs
.push_back(Option
.get());
325 // Attributes of the followup loop not specified explicity, so signal to the
326 // transformation pass to add suitable attributes.
327 if (!AlwaysNew
&& !HasAnyFollowup
)
330 // If no attributes were added or remove, the previous loop Id can be reused.
331 if (!AlwaysNew
&& !Changed
)
334 // No attributes is equivalent to having no !llvm.loop metadata at all.
338 // Build the new loop ID.
339 MDTuple
*FollowupLoopID
= MDNode::get(OrigLoopID
->getContext(), MDs
);
340 FollowupLoopID
->replaceOperandWith(0, FollowupLoopID
);
341 return FollowupLoopID
;
344 bool llvm::hasDisableAllTransformsHint(const Loop
*L
) {
345 return getBooleanLoopAttribute(L
, LLVMLoopDisableNonforced
);
348 bool llvm::hasDisableLICMTransformsHint(const Loop
*L
) {
349 return getBooleanLoopAttribute(L
, LLVMLoopDisableLICM
);
352 TransformationMode
llvm::hasUnrollTransformation(const Loop
*L
) {
353 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.disable"))
354 return TM_SuppressedByUser
;
356 std::optional
<int> Count
=
357 getOptionalIntLoopAttribute(L
, "llvm.loop.unroll.count");
359 return *Count
== 1 ? TM_SuppressedByUser
: TM_ForcedByUser
;
361 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.enable"))
362 return TM_ForcedByUser
;
364 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.full"))
365 return TM_ForcedByUser
;
367 if (hasDisableAllTransformsHint(L
))
370 return TM_Unspecified
;
373 TransformationMode
llvm::hasUnrollAndJamTransformation(const Loop
*L
) {
374 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll_and_jam.disable"))
375 return TM_SuppressedByUser
;
377 std::optional
<int> Count
=
378 getOptionalIntLoopAttribute(L
, "llvm.loop.unroll_and_jam.count");
380 return *Count
== 1 ? TM_SuppressedByUser
: TM_ForcedByUser
;
382 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll_and_jam.enable"))
383 return TM_ForcedByUser
;
385 if (hasDisableAllTransformsHint(L
))
388 return TM_Unspecified
;
391 TransformationMode
llvm::hasVectorizeTransformation(const Loop
*L
) {
392 std::optional
<bool> Enable
=
393 getOptionalBoolLoopAttribute(L
, "llvm.loop.vectorize.enable");
396 return TM_SuppressedByUser
;
398 std::optional
<ElementCount
> VectorizeWidth
=
399 getOptionalElementCountLoopAttribute(L
);
400 std::optional
<int> InterleaveCount
=
401 getOptionalIntLoopAttribute(L
, "llvm.loop.interleave.count");
403 // 'Forcing' vector width and interleave count to one effectively disables
404 // this tranformation.
405 if (Enable
== true && VectorizeWidth
&& VectorizeWidth
->isScalar() &&
406 InterleaveCount
== 1)
407 return TM_SuppressedByUser
;
409 if (getBooleanLoopAttribute(L
, "llvm.loop.isvectorized"))
413 return TM_ForcedByUser
;
415 if ((VectorizeWidth
&& VectorizeWidth
->isScalar()) && InterleaveCount
== 1)
418 if ((VectorizeWidth
&& VectorizeWidth
->isVector()) || InterleaveCount
> 1)
421 if (hasDisableAllTransformsHint(L
))
424 return TM_Unspecified
;
427 TransformationMode
llvm::hasDistributeTransformation(const Loop
*L
) {
428 if (getBooleanLoopAttribute(L
, "llvm.loop.distribute.enable"))
429 return TM_ForcedByUser
;
431 if (hasDisableAllTransformsHint(L
))
434 return TM_Unspecified
;
437 TransformationMode
llvm::hasLICMVersioningTransformation(const Loop
*L
) {
438 if (getBooleanLoopAttribute(L
, "llvm.loop.licm_versioning.disable"))
439 return TM_SuppressedByUser
;
441 if (hasDisableAllTransformsHint(L
))
444 return TM_Unspecified
;
447 /// Does a BFS from a given node to all of its children inside a given loop.
448 /// The returned vector of nodes includes the starting point.
449 SmallVector
<DomTreeNode
*, 16>
450 llvm::collectChildrenInLoop(DomTreeNode
*N
, const Loop
*CurLoop
) {
451 SmallVector
<DomTreeNode
*, 16> Worklist
;
452 auto AddRegionToWorklist
= [&](DomTreeNode
*DTN
) {
453 // Only include subregions in the top level loop.
454 BasicBlock
*BB
= DTN
->getBlock();
455 if (CurLoop
->contains(BB
))
456 Worklist
.push_back(DTN
);
459 AddRegionToWorklist(N
);
461 for (size_t I
= 0; I
< Worklist
.size(); I
++) {
462 for (DomTreeNode
*Child
: Worklist
[I
]->children())
463 AddRegionToWorklist(Child
);
469 bool llvm::isAlmostDeadIV(PHINode
*PN
, BasicBlock
*LatchBlock
, Value
*Cond
) {
470 int LatchIdx
= PN
->getBasicBlockIndex(LatchBlock
);
471 Value
*IncV
= PN
->getIncomingValue(LatchIdx
);
473 for (User
*U
: PN
->users())
474 if (U
!= Cond
&& U
!= IncV
) return false;
476 for (User
*U
: IncV
->users())
477 if (U
!= Cond
&& U
!= PN
) return false;
482 void llvm::deleteDeadLoop(Loop
*L
, DominatorTree
*DT
, ScalarEvolution
*SE
,
483 LoopInfo
*LI
, MemorySSA
*MSSA
) {
484 assert((!DT
|| L
->isLCSSAForm(*DT
)) && "Expected LCSSA!");
485 auto *Preheader
= L
->getLoopPreheader();
486 assert(Preheader
&& "Preheader should exist!");
488 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
490 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
492 // Now that we know the removal is safe, remove the loop by changing the
493 // branch from the preheader to go to the single exit block.
495 // Because we're deleting a large chunk of code at once, the sequence in which
496 // we remove things is very important to avoid invalidation issues.
498 // Tell ScalarEvolution that the loop is deleted. Do this before
499 // deleting the loop so that ScalarEvolution can look at the loop
500 // to determine what it needs to clean up.
503 SE
->forgetBlockAndLoopDispositions();
506 Instruction
*OldTerm
= Preheader
->getTerminator();
507 assert(!OldTerm
->mayHaveSideEffects() &&
508 "Preheader must end with a side-effect-free terminator");
509 assert(OldTerm
->getNumSuccessors() == 1 &&
510 "Preheader must have a single successor");
511 // Connect the preheader to the exit block. Keep the old edge to the header
512 // around to perform the dominator tree update in two separate steps
513 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
514 // preheader -> header.
517 // 0. Preheader 1. Preheader 2. Preheader
520 // Header <--\ | Header <--\ | Header <--\
521 // | | | | | | | | | | |
522 // | V | | | V | | | V |
523 // | Body --/ | | Body --/ | | Body --/
527 // By doing this is two separate steps we can perform the dominator tree
528 // update without using the batch update API.
530 // Even when the loop is never executed, we cannot remove the edge from the
531 // source block to the exit block. Consider the case where the unexecuted loop
532 // branches back to an outer loop. If we deleted the loop and removed the edge
533 // coming to this inner loop, this will break the outer loop structure (by
534 // deleting the backedge of the outer loop). If the outer loop is indeed a
535 // non-loop, it will be deleted in a future iteration of loop deletion pass.
536 IRBuilder
<> Builder(OldTerm
);
538 auto *ExitBlock
= L
->getUniqueExitBlock();
539 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
541 assert(ExitBlock
&& "Should have a unique exit block!");
542 assert(L
->hasDedicatedExits() && "Loop should have dedicated exits!");
544 Builder
.CreateCondBr(Builder
.getFalse(), L
->getHeader(), ExitBlock
);
545 // Remove the old branch. The conditional branch becomes a new terminator.
546 OldTerm
->eraseFromParent();
548 // Rewrite phis in the exit block to get their inputs from the Preheader
549 // instead of the exiting block.
550 for (PHINode
&P
: ExitBlock
->phis()) {
551 // Set the zero'th element of Phi to be from the preheader and remove all
552 // other incoming values. Given the loop has dedicated exits, all other
553 // incoming values must be from the exiting blocks.
555 P
.setIncomingBlock(PredIndex
, Preheader
);
556 // Removes all incoming values from all other exiting blocks (including
557 // duplicate values from an exiting block).
558 // Nuke all entries except the zero'th entry which is the preheader entry.
559 P
.removeIncomingValueIf([](unsigned Idx
) { return Idx
!= 0; },
560 /* DeletePHIIfEmpty */ false);
562 assert((P
.getNumIncomingValues() == 1 &&
563 P
.getIncomingBlock(PredIndex
) == Preheader
) &&
564 "Should have exactly one value and that's from the preheader!");
568 DTU
.applyUpdates({{DominatorTree::Insert
, Preheader
, ExitBlock
}});
570 MSSAU
->applyUpdates({{DominatorTree::Insert
, Preheader
, ExitBlock
}},
573 MSSA
->verifyMemorySSA();
577 // Disconnect the loop body by branching directly to its exit.
578 Builder
.SetInsertPoint(Preheader
->getTerminator());
579 Builder
.CreateBr(ExitBlock
);
580 // Remove the old branch.
581 Preheader
->getTerminator()->eraseFromParent();
583 assert(L
->hasNoExitBlocks() &&
584 "Loop should have either zero or one exit blocks.");
586 Builder
.SetInsertPoint(OldTerm
);
587 Builder
.CreateUnreachable();
588 Preheader
->getTerminator()->eraseFromParent();
592 DTU
.applyUpdates({{DominatorTree::Delete
, Preheader
, L
->getHeader()}});
594 MSSAU
->applyUpdates({{DominatorTree::Delete
, Preheader
, L
->getHeader()}},
596 SmallSetVector
<BasicBlock
*, 8> DeadBlockSet(L
->block_begin(),
598 MSSAU
->removeBlocks(DeadBlockSet
);
600 MSSA
->verifyMemorySSA();
604 // Use a map to unique and a vector to guarantee deterministic ordering.
605 llvm::SmallDenseSet
<DebugVariable
, 4> DeadDebugSet
;
606 llvm::SmallVector
<DbgVariableIntrinsic
*, 4> DeadDebugInst
;
607 llvm::SmallVector
<DPValue
*, 4> DeadDPValues
;
610 // Given LCSSA form is satisfied, we should not have users of instructions
611 // within the dead loop outside of the loop. However, LCSSA doesn't take
612 // unreachable uses into account. We handle them here.
613 // We could do it after drop all references (in this case all users in the
614 // loop will be already eliminated and we have less work to do but according
615 // to API doc of User::dropAllReferences only valid operation after dropping
616 // references, is deletion. So let's substitute all usages of
617 // instruction from the loop with poison value of corresponding type first.
618 for (auto *Block
: L
->blocks())
619 for (Instruction
&I
: *Block
) {
620 auto *Poison
= PoisonValue::get(I
.getType());
621 for (Use
&U
: llvm::make_early_inc_range(I
.uses())) {
622 if (auto *Usr
= dyn_cast
<Instruction
>(U
.getUser()))
623 if (L
->contains(Usr
->getParent()))
625 // If we have a DT then we can check that uses outside a loop only in
626 // unreachable block.
628 assert(!DT
->isReachableFromEntry(U
) &&
629 "Unexpected user in reachable block");
633 // RemoveDIs: do the same as below for DPValues.
634 if (Block
->IsNewDbgInfoFormat
) {
636 llvm::make_early_inc_range(I
.getDbgValueRange())) {
637 DebugVariable
Key(DPV
.getVariable(), DPV
.getExpression(),
638 DPV
.getDebugLoc().get());
639 if (!DeadDebugSet
.insert(Key
).second
)
641 // Unlinks the DPV from it's container, for later insertion.
642 DPV
.removeFromParent();
643 DeadDPValues
.push_back(&DPV
);
647 // For one of each variable encountered, preserve a debug intrinsic (set
648 // to Poison) and transfer it to the loop exit. This terminates any
649 // variable locations that were set during the loop.
650 auto *DVI
= dyn_cast
<DbgVariableIntrinsic
>(&I
);
653 if (!DeadDebugSet
.insert(DebugVariable(DVI
)).second
)
655 DeadDebugInst
.push_back(DVI
);
658 // After the loop has been deleted all the values defined and modified
659 // inside the loop are going to be unavailable. Values computed in the
660 // loop will have been deleted, automatically causing their debug uses
661 // be be replaced with undef. Loop invariant values will still be available.
662 // Move dbg.values out the loop so that earlier location ranges are still
663 // terminated and loop invariant assignments are preserved.
664 DIBuilder
DIB(*ExitBlock
->getModule());
665 BasicBlock::iterator InsertDbgValueBefore
=
666 ExitBlock
->getFirstInsertionPt();
667 assert(InsertDbgValueBefore
!= ExitBlock
->end() &&
668 "There should be a non-PHI instruction in exit block, else these "
669 "instructions will have no parent.");
671 for (auto *DVI
: DeadDebugInst
)
672 DVI
->moveBefore(*ExitBlock
, InsertDbgValueBefore
);
674 // Due to the "head" bit in BasicBlock::iterator, we're going to insert
675 // each DPValue right at the start of the block, wheras dbg.values would be
676 // repeatedly inserted before the first instruction. To replicate this
677 // behaviour, do it backwards.
678 for (DPValue
*DPV
: llvm::reverse(DeadDPValues
))
679 ExitBlock
->insertDPValueBefore(DPV
, InsertDbgValueBefore
);
682 // Remove the block from the reference counting scheme, so that we can
683 // delete it freely later.
684 for (auto *Block
: L
->blocks())
685 Block
->dropAllReferences();
687 if (MSSA
&& VerifyMemorySSA
)
688 MSSA
->verifyMemorySSA();
691 // Erase the instructions and the blocks without having to worry
692 // about ordering because we already dropped the references.
693 // NOTE: This iteration is safe because erasing the block does not remove
694 // its entry from the loop's block list. We do that in the next section.
695 for (BasicBlock
*BB
: L
->blocks())
696 BB
->eraseFromParent();
698 // Finally, the blocks from loopinfo. This has to happen late because
699 // otherwise our loop iterators won't work.
701 SmallPtrSet
<BasicBlock
*, 8> blocks
;
702 blocks
.insert(L
->block_begin(), L
->block_end());
703 for (BasicBlock
*BB
: blocks
)
706 // The last step is to update LoopInfo now that we've eliminated this loop.
707 // Note: LoopInfo::erase remove the given loop and relink its subloops with
708 // its parent. While removeLoop/removeChildLoop remove the given loop but
709 // not relink its subloops, which is what we want.
710 if (Loop
*ParentLoop
= L
->getParentLoop()) {
711 Loop::iterator I
= find(*ParentLoop
, L
);
712 assert(I
!= ParentLoop
->end() && "Couldn't find loop");
713 ParentLoop
->removeChildLoop(I
);
715 Loop::iterator I
= find(*LI
, L
);
716 assert(I
!= LI
->end() && "Couldn't find loop");
723 void llvm::breakLoopBackedge(Loop
*L
, DominatorTree
&DT
, ScalarEvolution
&SE
,
724 LoopInfo
&LI
, MemorySSA
*MSSA
) {
725 auto *Latch
= L
->getLoopLatch();
726 assert(Latch
&& "multiple latches not yet supported");
727 auto *Header
= L
->getHeader();
728 Loop
*OutermostLoop
= L
->getOutermostLoop();
731 SE
.forgetBlockAndLoopDispositions();
733 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
735 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
737 // Update the CFG and domtree. We chose to special case a couple of
738 // of common cases for code quality and test readability reasons.
740 if (auto *BI
= dyn_cast
<BranchInst
>(Latch
->getTerminator())) {
741 if (!BI
->isConditional()) {
742 DomTreeUpdater
DTU(&DT
, DomTreeUpdater::UpdateStrategy::Eager
);
743 (void)changeToUnreachable(BI
, /*PreserveLCSSA*/ true, &DTU
,
748 // Conditional latch/exit - note that latch can be shared by inner
749 // and outer loop so the other target doesn't need to an exit
750 if (L
->isLoopExiting(Latch
)) {
751 // TODO: Generalize ConstantFoldTerminator so that it can be used
752 // here without invalidating LCSSA or MemorySSA. (Tricky case for
753 // LCSSA: header is an exit block of a preceeding sibling loop w/o
755 const unsigned ExitIdx
= L
->contains(BI
->getSuccessor(0)) ? 1 : 0;
756 BasicBlock
*ExitBB
= BI
->getSuccessor(ExitIdx
);
758 DomTreeUpdater
DTU(&DT
, DomTreeUpdater::UpdateStrategy::Eager
);
759 Header
->removePredecessor(Latch
, true);
761 IRBuilder
<> Builder(BI
);
762 auto *NewBI
= Builder
.CreateBr(ExitBB
);
763 // Transfer the metadata to the new branch instruction (minus the
764 // loop info since this is no longer a loop)
765 NewBI
->copyMetadata(*BI
, {LLVMContext::MD_dbg
,
766 LLVMContext::MD_annotation
});
768 BI
->eraseFromParent();
769 DTU
.applyUpdates({{DominatorTree::Delete
, Latch
, Header
}});
771 MSSAU
->applyUpdates({{DominatorTree::Delete
, Latch
, Header
}}, DT
);
776 // General case. By splitting the backedge, and then explicitly making it
777 // unreachable we gracefully handle corner cases such as switch and invoke
779 auto *BackedgeBB
= SplitEdge(Latch
, Header
, &DT
, &LI
, MSSAU
.get());
781 DomTreeUpdater
DTU(&DT
, DomTreeUpdater::UpdateStrategy::Eager
);
782 (void)changeToUnreachable(BackedgeBB
->getTerminator(),
783 /*PreserveLCSSA*/ true, &DTU
, MSSAU
.get());
786 // Erase (and destroy) this loop instance. Handles relinking sub-loops
787 // and blocks within the loop as needed.
790 // If the loop we broke had a parent, then changeToUnreachable might have
791 // caused a block to be removed from the parent loop (see loop_nest_lcssa
792 // test case in zero-btc.ll for an example), thus changing the parent's
793 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
794 // loop which might have a had a block removed.
795 if (OutermostLoop
!= L
)
796 formLCSSARecursively(*OutermostLoop
, DT
, &LI
, &SE
);
800 /// Checks if \p L has an exiting latch branch. There may also be other
801 /// exiting blocks. Returns branch instruction terminating the loop
802 /// latch if above check is successful, nullptr otherwise.
803 static BranchInst
*getExpectedExitLoopLatchBranch(Loop
*L
) {
804 BasicBlock
*Latch
= L
->getLoopLatch();
808 BranchInst
*LatchBR
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
809 if (!LatchBR
|| LatchBR
->getNumSuccessors() != 2 || !L
->isLoopExiting(Latch
))
812 assert((LatchBR
->getSuccessor(0) == L
->getHeader() ||
813 LatchBR
->getSuccessor(1) == L
->getHeader()) &&
814 "At least one edge out of the latch must go to the header");
819 /// Return the estimated trip count for any exiting branch which dominates
821 static std::optional
<uint64_t> getEstimatedTripCount(BranchInst
*ExitingBranch
,
823 uint64_t &OrigExitWeight
) {
824 // To estimate the number of times the loop body was executed, we want to
825 // know the number of times the backedge was taken, vs. the number of times
826 // we exited the loop.
827 uint64_t LoopWeight
, ExitWeight
;
828 if (!extractBranchWeights(*ExitingBranch
, LoopWeight
, ExitWeight
))
831 if (L
->contains(ExitingBranch
->getSuccessor(1)))
832 std::swap(LoopWeight
, ExitWeight
);
835 // Don't have a way to return predicated infinite
838 OrigExitWeight
= ExitWeight
;
840 // Estimated exit count is a ratio of the loop weight by the weight of the
841 // edge exiting the loop, rounded to nearest.
842 uint64_t ExitCount
= llvm::divideNearest(LoopWeight
, ExitWeight
);
843 // Estimated trip count is one plus estimated exit count.
844 return ExitCount
+ 1;
847 std::optional
<unsigned>
848 llvm::getLoopEstimatedTripCount(Loop
*L
,
849 unsigned *EstimatedLoopInvocationWeight
) {
850 // Currently we take the estimate exit count only from the loop latch,
851 // ignoring other exiting blocks. This can overestimate the trip count
852 // if we exit through another exit, but can never underestimate it.
853 // TODO: incorporate information from other exits
854 if (BranchInst
*LatchBranch
= getExpectedExitLoopLatchBranch(L
)) {
856 if (std::optional
<uint64_t> EstTripCount
=
857 getEstimatedTripCount(LatchBranch
, L
, ExitWeight
)) {
858 if (EstimatedLoopInvocationWeight
)
859 *EstimatedLoopInvocationWeight
= ExitWeight
;
860 return *EstTripCount
;
866 bool llvm::setLoopEstimatedTripCount(Loop
*L
, unsigned EstimatedTripCount
,
867 unsigned EstimatedloopInvocationWeight
) {
868 // At the moment, we currently support changing the estimate trip count of
869 // the latch branch only. We could extend this API to manipulate estimated
870 // trip counts for any exit.
871 BranchInst
*LatchBranch
= getExpectedExitLoopLatchBranch(L
);
875 // Calculate taken and exit weights.
876 unsigned LatchExitWeight
= 0;
877 unsigned BackedgeTakenWeight
= 0;
879 if (EstimatedTripCount
> 0) {
880 LatchExitWeight
= EstimatedloopInvocationWeight
;
881 BackedgeTakenWeight
= (EstimatedTripCount
- 1) * LatchExitWeight
;
884 // Make a swap if back edge is taken when condition is "false".
885 if (LatchBranch
->getSuccessor(0) != L
->getHeader())
886 std::swap(BackedgeTakenWeight
, LatchExitWeight
);
888 MDBuilder
MDB(LatchBranch
->getContext());
890 // Set/Update profile metadata.
891 LatchBranch
->setMetadata(
892 LLVMContext::MD_prof
,
893 MDB
.createBranchWeights(BackedgeTakenWeight
, LatchExitWeight
));
898 bool llvm::hasIterationCountInvariantInParent(Loop
*InnerLoop
,
899 ScalarEvolution
&SE
) {
900 Loop
*OuterL
= InnerLoop
->getParentLoop();
904 // Get the backedge taken count for the inner loop
905 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
906 const SCEV
*InnerLoopBECountSC
= SE
.getExitCount(InnerLoop
, InnerLoopLatch
);
907 if (isa
<SCEVCouldNotCompute
>(InnerLoopBECountSC
) ||
908 !InnerLoopBECountSC
->getType()->isIntegerTy())
911 // Get whether count is invariant to the outer loop
912 ScalarEvolution::LoopDisposition LD
=
913 SE
.getLoopDisposition(InnerLoopBECountSC
, OuterL
);
914 if (LD
!= ScalarEvolution::LoopInvariant
)
920 Intrinsic::ID
llvm::getMinMaxReductionIntrinsicOp(RecurKind RK
) {
923 llvm_unreachable("Unknown min/max recurrence kind");
924 case RecurKind::UMin
:
925 return Intrinsic::umin
;
926 case RecurKind::UMax
:
927 return Intrinsic::umax
;
928 case RecurKind::SMin
:
929 return Intrinsic::smin
;
930 case RecurKind::SMax
:
931 return Intrinsic::smax
;
932 case RecurKind::FMin
:
933 return Intrinsic::minnum
;
934 case RecurKind::FMax
:
935 return Intrinsic::maxnum
;
936 case RecurKind::FMinimum
:
937 return Intrinsic::minimum
;
938 case RecurKind::FMaximum
:
939 return Intrinsic::maximum
;
943 CmpInst::Predicate
llvm::getMinMaxReductionPredicate(RecurKind RK
) {
946 llvm_unreachable("Unknown min/max recurrence kind");
947 case RecurKind::UMin
:
948 return CmpInst::ICMP_ULT
;
949 case RecurKind::UMax
:
950 return CmpInst::ICMP_UGT
;
951 case RecurKind::SMin
:
952 return CmpInst::ICMP_SLT
;
953 case RecurKind::SMax
:
954 return CmpInst::ICMP_SGT
;
955 case RecurKind::FMin
:
956 return CmpInst::FCMP_OLT
;
957 case RecurKind::FMax
:
958 return CmpInst::FCMP_OGT
;
959 // We do not add FMinimum/FMaximum recurrence kind here since there is no
960 // equivalent predicate which compares signed zeroes according to the
961 // semantics of the intrinsics (llvm.minimum/maximum).
965 Value
*llvm::createAnyOfOp(IRBuilderBase
&Builder
, Value
*StartVal
,
966 RecurKind RK
, Value
*Left
, Value
*Right
) {
967 if (auto VTy
= dyn_cast
<VectorType
>(Left
->getType()))
968 StartVal
= Builder
.CreateVectorSplat(VTy
->getElementCount(), StartVal
);
970 Builder
.CreateCmp(CmpInst::ICMP_NE
, Left
, StartVal
, "rdx.select.cmp");
971 return Builder
.CreateSelect(Cmp
, Left
, Right
, "rdx.select");
974 Value
*llvm::createMinMaxOp(IRBuilderBase
&Builder
, RecurKind RK
, Value
*Left
,
976 Type
*Ty
= Left
->getType();
977 if (Ty
->isIntOrIntVectorTy() ||
978 (RK
== RecurKind::FMinimum
|| RK
== RecurKind::FMaximum
)) {
979 // TODO: Add float minnum/maxnum support when FMF nnan is set.
980 Intrinsic::ID Id
= getMinMaxReductionIntrinsicOp(RK
);
981 return Builder
.CreateIntrinsic(Ty
, Id
, {Left
, Right
}, nullptr,
984 CmpInst::Predicate Pred
= getMinMaxReductionPredicate(RK
);
985 Value
*Cmp
= Builder
.CreateCmp(Pred
, Left
, Right
, "rdx.minmax.cmp");
986 Value
*Select
= Builder
.CreateSelect(Cmp
, Left
, Right
, "rdx.minmax.select");
990 // Helper to generate an ordered reduction.
991 Value
*llvm::getOrderedReduction(IRBuilderBase
&Builder
, Value
*Acc
, Value
*Src
,
992 unsigned Op
, RecurKind RdxKind
) {
993 unsigned VF
= cast
<FixedVectorType
>(Src
->getType())->getNumElements();
995 // Extract and apply reduction ops in ascending order:
996 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
998 for (unsigned ExtractIdx
= 0; ExtractIdx
!= VF
; ++ExtractIdx
) {
1000 Builder
.CreateExtractElement(Src
, Builder
.getInt32(ExtractIdx
));
1002 if (Op
!= Instruction::ICmp
&& Op
!= Instruction::FCmp
) {
1003 Result
= Builder
.CreateBinOp((Instruction::BinaryOps
)Op
, Result
, Ext
,
1006 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind
) &&
1008 Result
= createMinMaxOp(Builder
, RdxKind
, Result
, Ext
);
1015 // Helper to generate a log2 shuffle reduction.
1016 Value
*llvm::getShuffleReduction(IRBuilderBase
&Builder
, Value
*Src
,
1017 unsigned Op
, RecurKind RdxKind
) {
1018 unsigned VF
= cast
<FixedVectorType
>(Src
->getType())->getNumElements();
1019 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1020 // and vector ops, reducing the set of values being computed by half each
1022 assert(isPowerOf2_32(VF
) &&
1023 "Reduction emission only supported for pow2 vectors!");
1024 // Note: fast-math-flags flags are controlled by the builder configuration
1025 // and are assumed to apply to all generated arithmetic instructions. Other
1026 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1027 // of the builder configuration, and since they're not passed explicitly,
1028 // will never be relevant here. Note that it would be generally unsound to
1029 // propagate these from an intrinsic call to the expansion anyways as we/
1030 // change the order of operations.
1031 Value
*TmpVec
= Src
;
1032 SmallVector
<int, 32> ShuffleMask(VF
);
1033 for (unsigned i
= VF
; i
!= 1; i
>>= 1) {
1034 // Move the upper half of the vector to the lower half.
1035 for (unsigned j
= 0; j
!= i
/ 2; ++j
)
1036 ShuffleMask
[j
] = i
/ 2 + j
;
1038 // Fill the rest of the mask with undef.
1039 std::fill(&ShuffleMask
[i
/ 2], ShuffleMask
.end(), -1);
1041 Value
*Shuf
= Builder
.CreateShuffleVector(TmpVec
, ShuffleMask
, "rdx.shuf");
1043 if (Op
!= Instruction::ICmp
&& Op
!= Instruction::FCmp
) {
1044 TmpVec
= Builder
.CreateBinOp((Instruction::BinaryOps
)Op
, TmpVec
, Shuf
,
1047 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind
) &&
1049 TmpVec
= createMinMaxOp(Builder
, RdxKind
, TmpVec
, Shuf
);
1052 // The result is in the first element of the vector.
1053 return Builder
.CreateExtractElement(TmpVec
, Builder
.getInt32(0));
1056 Value
*llvm::createAnyOfTargetReduction(IRBuilderBase
&Builder
, Value
*Src
,
1057 const RecurrenceDescriptor
&Desc
,
1060 RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc
.getRecurrenceKind()) &&
1061 "Unexpected reduction kind");
1062 Value
*InitVal
= Desc
.getRecurrenceStartValue();
1063 Value
*NewVal
= nullptr;
1065 // First use the original phi to determine the new value we're trying to
1066 // select from in the loop.
1067 SelectInst
*SI
= nullptr;
1068 for (auto *U
: OrigPhi
->users()) {
1069 if ((SI
= dyn_cast
<SelectInst
>(U
)))
1072 assert(SI
&& "One user of the original phi should be a select");
1074 if (SI
->getTrueValue() == OrigPhi
)
1075 NewVal
= SI
->getFalseValue();
1077 assert(SI
->getFalseValue() == OrigPhi
&&
1078 "At least one input to the select should be the original Phi");
1079 NewVal
= SI
->getTrueValue();
1082 // Create a splat vector with the new value and compare this to the vector
1083 // we want to reduce.
1084 ElementCount EC
= cast
<VectorType
>(Src
->getType())->getElementCount();
1085 Value
*Right
= Builder
.CreateVectorSplat(EC
, InitVal
);
1087 Builder
.CreateCmp(CmpInst::ICMP_NE
, Src
, Right
, "rdx.select.cmp");
1089 // If any predicate is true it means that we want to select the new value.
1090 Cmp
= Builder
.CreateOrReduce(Cmp
);
1091 return Builder
.CreateSelect(Cmp
, NewVal
, InitVal
, "rdx.select");
1094 Value
*llvm::createSimpleTargetReduction(IRBuilderBase
&Builder
, Value
*Src
,
1095 RecurKind RdxKind
) {
1096 auto *SrcVecEltTy
= cast
<VectorType
>(Src
->getType())->getElementType();
1098 case RecurKind::Add
:
1099 return Builder
.CreateAddReduce(Src
);
1100 case RecurKind::Mul
:
1101 return Builder
.CreateMulReduce(Src
);
1102 case RecurKind::And
:
1103 return Builder
.CreateAndReduce(Src
);
1105 return Builder
.CreateOrReduce(Src
);
1106 case RecurKind::Xor
:
1107 return Builder
.CreateXorReduce(Src
);
1108 case RecurKind::FMulAdd
:
1109 case RecurKind::FAdd
:
1110 return Builder
.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy
),
1112 case RecurKind::FMul
:
1113 return Builder
.CreateFMulReduce(ConstantFP::get(SrcVecEltTy
, 1.0), Src
);
1114 case RecurKind::SMax
:
1115 return Builder
.CreateIntMaxReduce(Src
, true);
1116 case RecurKind::SMin
:
1117 return Builder
.CreateIntMinReduce(Src
, true);
1118 case RecurKind::UMax
:
1119 return Builder
.CreateIntMaxReduce(Src
, false);
1120 case RecurKind::UMin
:
1121 return Builder
.CreateIntMinReduce(Src
, false);
1122 case RecurKind::FMax
:
1123 return Builder
.CreateFPMaxReduce(Src
);
1124 case RecurKind::FMin
:
1125 return Builder
.CreateFPMinReduce(Src
);
1126 case RecurKind::FMinimum
:
1127 return Builder
.CreateFPMinimumReduce(Src
);
1128 case RecurKind::FMaximum
:
1129 return Builder
.CreateFPMaximumReduce(Src
);
1131 llvm_unreachable("Unhandled opcode");
1135 Value
*llvm::createTargetReduction(IRBuilderBase
&B
,
1136 const RecurrenceDescriptor
&Desc
, Value
*Src
,
1138 // TODO: Support in-order reductions based on the recurrence descriptor.
1139 // All ops in the reduction inherit fast-math-flags from the recurrence
1141 IRBuilderBase::FastMathFlagGuard
FMFGuard(B
);
1142 B
.setFastMathFlags(Desc
.getFastMathFlags());
1144 RecurKind RK
= Desc
.getRecurrenceKind();
1145 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK
))
1146 return createAnyOfTargetReduction(B
, Src
, Desc
, OrigPhi
);
1148 return createSimpleTargetReduction(B
, Src
, RK
);
1151 Value
*llvm::createOrderedReduction(IRBuilderBase
&B
,
1152 const RecurrenceDescriptor
&Desc
,
1153 Value
*Src
, Value
*Start
) {
1154 assert((Desc
.getRecurrenceKind() == RecurKind::FAdd
||
1155 Desc
.getRecurrenceKind() == RecurKind::FMulAdd
) &&
1156 "Unexpected reduction kind");
1157 assert(Src
->getType()->isVectorTy() && "Expected a vector type");
1158 assert(!Start
->getType()->isVectorTy() && "Expected a scalar type");
1160 return B
.CreateFAddReduce(Start
, Src
);
1163 void llvm::propagateIRFlags(Value
*I
, ArrayRef
<Value
*> VL
, Value
*OpValue
,
1164 bool IncludeWrapFlags
) {
1165 auto *VecOp
= dyn_cast
<Instruction
>(I
);
1168 auto *Intersection
= (OpValue
== nullptr) ? dyn_cast
<Instruction
>(VL
[0])
1169 : dyn_cast
<Instruction
>(OpValue
);
1172 const unsigned Opcode
= Intersection
->getOpcode();
1173 VecOp
->copyIRFlags(Intersection
, IncludeWrapFlags
);
1174 for (auto *V
: VL
) {
1175 auto *Instr
= dyn_cast
<Instruction
>(V
);
1178 if (OpValue
== nullptr || Opcode
== Instr
->getOpcode())
1179 VecOp
->andIRFlags(V
);
1183 bool llvm::isKnownNegativeInLoop(const SCEV
*S
, const Loop
*L
,
1184 ScalarEvolution
&SE
) {
1185 const SCEV
*Zero
= SE
.getZero(S
->getType());
1186 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1187 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SLT
, S
, Zero
);
1190 bool llvm::isKnownNonNegativeInLoop(const SCEV
*S
, const Loop
*L
,
1191 ScalarEvolution
&SE
) {
1192 const SCEV
*Zero
= SE
.getZero(S
->getType());
1193 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1194 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SGE
, S
, Zero
);
1197 bool llvm::isKnownPositiveInLoop(const SCEV
*S
, const Loop
*L
,
1198 ScalarEvolution
&SE
) {
1199 const SCEV
*Zero
= SE
.getZero(S
->getType());
1200 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1201 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SGT
, S
, Zero
);
1204 bool llvm::isKnownNonPositiveInLoop(const SCEV
*S
, const Loop
*L
,
1205 ScalarEvolution
&SE
) {
1206 const SCEV
*Zero
= SE
.getZero(S
->getType());
1207 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1208 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SLE
, S
, Zero
);
1211 bool llvm::cannotBeMinInLoop(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
1213 unsigned BitWidth
= cast
<IntegerType
>(S
->getType())->getBitWidth();
1214 APInt Min
= Signed
? APInt::getSignedMinValue(BitWidth
) :
1215 APInt::getMinValue(BitWidth
);
1216 auto Predicate
= Signed
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1217 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1218 SE
.isLoopEntryGuardedByCond(L
, Predicate
, S
,
1219 SE
.getConstant(Min
));
1222 bool llvm::cannotBeMaxInLoop(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
1224 unsigned BitWidth
= cast
<IntegerType
>(S
->getType())->getBitWidth();
1225 APInt Max
= Signed
? APInt::getSignedMaxValue(BitWidth
) :
1226 APInt::getMaxValue(BitWidth
);
1227 auto Predicate
= Signed
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1228 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1229 SE
.isLoopEntryGuardedByCond(L
, Predicate
, S
,
1230 SE
.getConstant(Max
));
1233 //===----------------------------------------------------------------------===//
1234 // rewriteLoopExitValues - Optimize IV users outside the loop.
1235 // As a side effect, reduces the amount of IV processing within the loop.
1236 //===----------------------------------------------------------------------===//
1238 static bool hasHardUserWithinLoop(const Loop
*L
, const Instruction
*I
) {
1239 SmallPtrSet
<const Instruction
*, 8> Visited
;
1240 SmallVector
<const Instruction
*, 8> WorkList
;
1242 WorkList
.push_back(I
);
1243 while (!WorkList
.empty()) {
1244 const Instruction
*Curr
= WorkList
.pop_back_val();
1245 // This use is outside the loop, nothing to do.
1246 if (!L
->contains(Curr
))
1248 // Do we assume it is a "hard" use which will not be eliminated easily?
1249 if (Curr
->mayHaveSideEffects())
1251 // Otherwise, add all its users to worklist.
1252 for (const auto *U
: Curr
->users()) {
1253 auto *UI
= cast
<Instruction
>(U
);
1254 if (Visited
.insert(UI
).second
)
1255 WorkList
.push_back(UI
);
1261 // Collect information about PHI nodes which can be transformed in
1262 // rewriteLoopExitValues.
1264 PHINode
*PN
; // For which PHI node is this replacement?
1265 unsigned Ith
; // For which incoming value?
1266 const SCEV
*ExpansionSCEV
; // The SCEV of the incoming value we are rewriting.
1267 Instruction
*ExpansionPoint
; // Where we'd like to expand that SCEV?
1268 bool HighCost
; // Is this expansion a high-cost?
1270 RewritePhi(PHINode
*P
, unsigned I
, const SCEV
*Val
, Instruction
*ExpansionPt
,
1272 : PN(P
), Ith(I
), ExpansionSCEV(Val
), ExpansionPoint(ExpansionPt
),
1276 // Check whether it is possible to delete the loop after rewriting exit
1277 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1279 static bool canLoopBeDeleted(Loop
*L
, SmallVector
<RewritePhi
, 8> &RewritePhiSet
) {
1280 BasicBlock
*Preheader
= L
->getLoopPreheader();
1281 // If there is no preheader, the loop will not be deleted.
1285 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1286 // We obviate multiple ExitingBlocks case for simplicity.
1287 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1288 // after exit value rewriting, we can enhance the logic here.
1289 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
1290 L
->getExitingBlocks(ExitingBlocks
);
1291 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
1292 L
->getUniqueExitBlocks(ExitBlocks
);
1293 if (ExitBlocks
.size() != 1 || ExitingBlocks
.size() != 1)
1296 BasicBlock
*ExitBlock
= ExitBlocks
[0];
1297 BasicBlock::iterator BI
= ExitBlock
->begin();
1298 while (PHINode
*P
= dyn_cast
<PHINode
>(BI
)) {
1299 Value
*Incoming
= P
->getIncomingValueForBlock(ExitingBlocks
[0]);
1301 // If the Incoming value of P is found in RewritePhiSet, we know it
1302 // could be rewritten to use a loop invariant value in transformation
1303 // phase later. Skip it in the loop invariant check below.
1305 for (const RewritePhi
&Phi
: RewritePhiSet
) {
1306 unsigned i
= Phi
.Ith
;
1307 if (Phi
.PN
== P
&& (Phi
.PN
)->getIncomingValue(i
) == Incoming
) {
1314 if (!found
&& (I
= dyn_cast
<Instruction
>(Incoming
)))
1315 if (!L
->hasLoopInvariantOperands(I
))
1321 for (auto *BB
: L
->blocks())
1322 if (llvm::any_of(*BB
, [](Instruction
&I
) {
1323 return I
.mayHaveSideEffects();
1330 /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1331 /// and returns true if this Phi is an induction phi in the loop. When
1332 /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1333 static bool checkIsIndPhi(PHINode
*Phi
, Loop
*L
, ScalarEvolution
*SE
,
1334 InductionDescriptor
&ID
) {
1337 if (!L
->getLoopPreheader())
1339 if (Phi
->getParent() != L
->getHeader())
1341 return InductionDescriptor::isInductionPHI(Phi
, L
, SE
, ID
);
1344 int llvm::rewriteLoopExitValues(Loop
*L
, LoopInfo
*LI
, TargetLibraryInfo
*TLI
,
1345 ScalarEvolution
*SE
,
1346 const TargetTransformInfo
*TTI
,
1347 SCEVExpander
&Rewriter
, DominatorTree
*DT
,
1348 ReplaceExitVal ReplaceExitValue
,
1349 SmallVector
<WeakTrackingVH
, 16> &DeadInsts
) {
1350 // Check a pre-condition.
1351 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
1352 "Indvars did not preserve LCSSA!");
1354 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
1355 L
->getUniqueExitBlocks(ExitBlocks
);
1357 SmallVector
<RewritePhi
, 8> RewritePhiSet
;
1358 // Find all values that are computed inside the loop, but used outside of it.
1359 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1360 // the exit blocks of the loop to find them.
1361 for (BasicBlock
*ExitBB
: ExitBlocks
) {
1362 // If there are no PHI nodes in this exit block, then no values defined
1363 // inside the loop are used on this path, skip it.
1364 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
1367 unsigned NumPreds
= PN
->getNumIncomingValues();
1369 // Iterate over all of the PHI nodes.
1370 BasicBlock::iterator BBI
= ExitBB
->begin();
1371 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
1372 if (PN
->use_empty())
1373 continue; // dead use, don't replace it
1375 if (!SE
->isSCEVable(PN
->getType()))
1378 // Iterate over all of the values in all the PHI nodes.
1379 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
1380 // If the value being merged in is not integer or is not defined
1381 // in the loop, skip it.
1382 Value
*InVal
= PN
->getIncomingValue(i
);
1383 if (!isa
<Instruction
>(InVal
))
1386 // If this pred is for a subloop, not L itself, skip it.
1387 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
1388 continue; // The Block is in a subloop, skip it.
1390 // Check that InVal is defined in the loop.
1391 Instruction
*Inst
= cast
<Instruction
>(InVal
);
1392 if (!L
->contains(Inst
))
1395 // Find exit values which are induction variables in the loop, and are
1396 // unused in the loop, with the only use being the exit block PhiNode,
1397 // and the induction variable update binary operator.
1398 // The exit value can be replaced with the final value when it is cheap
1400 if (ReplaceExitValue
== UnusedIndVarInLoop
) {
1401 InductionDescriptor ID
;
1402 PHINode
*IndPhi
= dyn_cast
<PHINode
>(Inst
);
1404 if (!checkIsIndPhi(IndPhi
, L
, SE
, ID
))
1406 // This is an induction PHI. Check that the only users are PHI
1407 // nodes, and induction variable update binary operators.
1408 if (llvm::any_of(Inst
->users(), [&](User
*U
) {
1409 if (!isa
<PHINode
>(U
) && !isa
<BinaryOperator
>(U
))
1411 BinaryOperator
*B
= dyn_cast
<BinaryOperator
>(U
);
1412 if (B
&& B
!= ID
.getInductionBinOp())
1418 // If it is not an induction phi, it must be an induction update
1419 // binary operator with an induction phi user.
1420 BinaryOperator
*B
= dyn_cast
<BinaryOperator
>(Inst
);
1423 if (llvm::any_of(Inst
->users(), [&](User
*U
) {
1424 PHINode
*Phi
= dyn_cast
<PHINode
>(U
);
1425 if (Phi
!= PN
&& !checkIsIndPhi(Phi
, L
, SE
, ID
))
1430 if (B
!= ID
.getInductionBinOp())
1435 // Okay, this instruction has a user outside of the current loop
1436 // and varies predictably *inside* the loop. Evaluate the value it
1437 // contains when the loop exits, if possible. We prefer to start with
1438 // expressions which are true for all exits (so as to maximize
1439 // expression reuse by the SCEVExpander), but resort to per-exit
1440 // evaluation if that fails.
1441 const SCEV
*ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
1442 if (isa
<SCEVCouldNotCompute
>(ExitValue
) ||
1443 !SE
->isLoopInvariant(ExitValue
, L
) ||
1444 !Rewriter
.isSafeToExpand(ExitValue
)) {
1445 // TODO: This should probably be sunk into SCEV in some way; maybe a
1446 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1447 // most SCEV expressions and other recurrence types (e.g. shift
1448 // recurrences). Is there existing code we can reuse?
1449 const SCEV
*ExitCount
= SE
->getExitCount(L
, PN
->getIncomingBlock(i
));
1450 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
1452 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(Inst
)))
1453 if (AddRec
->getLoop() == L
)
1454 ExitValue
= AddRec
->evaluateAtIteration(ExitCount
, *SE
);
1455 if (isa
<SCEVCouldNotCompute
>(ExitValue
) ||
1456 !SE
->isLoopInvariant(ExitValue
, L
) ||
1457 !Rewriter
.isSafeToExpand(ExitValue
))
1461 // Computing the value outside of the loop brings no benefit if it is
1462 // definitely used inside the loop in a way which can not be optimized
1463 // away. Avoid doing so unless we know we have a value which computes
1464 // the ExitValue already. TODO: This should be merged into SCEV
1465 // expander to leverage its knowledge of existing expressions.
1466 if (ReplaceExitValue
!= AlwaysRepl
&& !isa
<SCEVConstant
>(ExitValue
) &&
1467 !isa
<SCEVUnknown
>(ExitValue
) && hasHardUserWithinLoop(L
, Inst
))
1470 // Check if expansions of this SCEV would count as being high cost.
1471 bool HighCost
= Rewriter
.isHighCostExpansion(
1472 ExitValue
, L
, SCEVCheapExpansionBudget
, TTI
, Inst
);
1474 // Note that we must not perform expansions until after
1475 // we query *all* the costs, because if we perform temporary expansion
1476 // inbetween, one that we might not intend to keep, said expansion
1477 // *may* affect cost calculation of the next SCEV's we'll query,
1478 // and next SCEV may errneously get smaller cost.
1480 // Collect all the candidate PHINodes to be rewritten.
1481 Instruction
*InsertPt
=
1482 (isa
<PHINode
>(Inst
) || isa
<LandingPadInst
>(Inst
)) ?
1483 &*Inst
->getParent()->getFirstInsertionPt() : Inst
;
1484 RewritePhiSet
.emplace_back(PN
, i
, ExitValue
, InsertPt
, HighCost
);
1489 // TODO: evaluate whether it is beneficial to change how we calculate
1490 // high-cost: if we have SCEV 'A' which we know we will expand, should we
1491 // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1492 // potentially giving cost bonus to those other SCEV's?
1494 bool LoopCanBeDel
= canLoopBeDeleted(L
, RewritePhiSet
);
1495 int NumReplaced
= 0;
1498 for (const RewritePhi
&Phi
: RewritePhiSet
) {
1499 PHINode
*PN
= Phi
.PN
;
1501 // Only do the rewrite when the ExitValue can be expanded cheaply.
1502 // If LoopCanBeDel is true, rewrite exit value aggressively.
1503 if ((ReplaceExitValue
== OnlyCheapRepl
||
1504 ReplaceExitValue
== UnusedIndVarInLoop
) &&
1505 !LoopCanBeDel
&& Phi
.HighCost
)
1508 Value
*ExitVal
= Rewriter
.expandCodeFor(
1509 Phi
.ExpansionSCEV
, Phi
.PN
->getType(), Phi
.ExpansionPoint
);
1511 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1513 << " LoopVal = " << *(Phi
.ExpansionPoint
) << "\n");
1516 // If we reuse an instruction from a loop which is neither L nor one of
1517 // its containing loops, we end up breaking LCSSA form for this loop by
1518 // creating a new use of its instruction.
1519 if (auto *ExitInsn
= dyn_cast
<Instruction
>(ExitVal
))
1520 if (auto *EVL
= LI
->getLoopFor(ExitInsn
->getParent()))
1522 assert(EVL
->contains(L
) && "LCSSA breach detected!");
1526 Instruction
*Inst
= cast
<Instruction
>(PN
->getIncomingValue(Phi
.Ith
));
1527 PN
->setIncomingValue(Phi
.Ith
, ExitVal
);
1528 // It's necessary to tell ScalarEvolution about this explicitly so that
1529 // it can walk the def-use list and forget all SCEVs, as it may not be
1530 // watching the PHI itself. Once the new exit value is in place, there
1531 // may not be a def-use connection between the loop and every instruction
1532 // which got a SCEVAddRecExpr for that loop.
1533 SE
->forgetValue(PN
);
1535 // If this instruction is dead now, delete it. Don't do it now to avoid
1536 // invalidating iterators.
1537 if (isInstructionTriviallyDead(Inst
, TLI
))
1538 DeadInsts
.push_back(Inst
);
1540 // Replace PN with ExitVal if that is legal and does not break LCSSA.
1541 if (PN
->getNumIncomingValues() == 1 &&
1542 LI
->replacementPreservesLCSSAForm(PN
, ExitVal
)) {
1543 PN
->replaceAllUsesWith(ExitVal
);
1544 PN
->eraseFromParent();
1548 // The insertion point instruction may have been deleted; clear it out
1549 // so that the rewriter doesn't trip over it later.
1550 Rewriter
.clearInsertPoint();
1554 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1556 void llvm::setProfileInfoAfterUnrolling(Loop
*OrigLoop
, Loop
*UnrolledLoop
,
1557 Loop
*RemainderLoop
, uint64_t UF
) {
1558 assert(UF
> 0 && "Zero unrolled factor is not supported");
1559 assert(UnrolledLoop
!= RemainderLoop
&&
1560 "Unrolled and Remainder loops are expected to distinct");
1562 // Get number of iterations in the original scalar loop.
1563 unsigned OrigLoopInvocationWeight
= 0;
1564 std::optional
<unsigned> OrigAverageTripCount
=
1565 getLoopEstimatedTripCount(OrigLoop
, &OrigLoopInvocationWeight
);
1566 if (!OrigAverageTripCount
)
1569 // Calculate number of iterations in unrolled loop.
1570 unsigned UnrolledAverageTripCount
= *OrigAverageTripCount
/ UF
;
1571 // Calculate number of iterations for remainder loop.
1572 unsigned RemainderAverageTripCount
= *OrigAverageTripCount
% UF
;
1574 setLoopEstimatedTripCount(UnrolledLoop
, UnrolledAverageTripCount
,
1575 OrigLoopInvocationWeight
);
1576 setLoopEstimatedTripCount(RemainderLoop
, RemainderAverageTripCount
,
1577 OrigLoopInvocationWeight
);
1580 /// Utility that implements appending of loops onto a worklist.
1581 /// Loops are added in preorder (analogous for reverse postorder for trees),
1582 /// and the worklist is processed LIFO.
1583 template <typename RangeT
>
1584 void llvm::appendReversedLoopsToWorklist(
1585 RangeT
&&Loops
, SmallPriorityWorklist
<Loop
*, 4> &Worklist
) {
1586 // We use an internal worklist to build up the preorder traversal without
1588 SmallVector
<Loop
*, 4> PreOrderLoops
, PreOrderWorklist
;
1590 // We walk the initial sequence of loops in reverse because we generally want
1591 // to visit defs before uses and the worklist is LIFO.
1592 for (Loop
*RootL
: Loops
) {
1593 assert(PreOrderLoops
.empty() && "Must start with an empty preorder walk.");
1594 assert(PreOrderWorklist
.empty() &&
1595 "Must start with an empty preorder walk worklist.");
1596 PreOrderWorklist
.push_back(RootL
);
1598 Loop
*L
= PreOrderWorklist
.pop_back_val();
1599 PreOrderWorklist
.append(L
->begin(), L
->end());
1600 PreOrderLoops
.push_back(L
);
1601 } while (!PreOrderWorklist
.empty());
1603 Worklist
.insert(std::move(PreOrderLoops
));
1604 PreOrderLoops
.clear();
1608 template <typename RangeT
>
1609 void llvm::appendLoopsToWorklist(RangeT
&&Loops
,
1610 SmallPriorityWorklist
<Loop
*, 4> &Worklist
) {
1611 appendReversedLoopsToWorklist(reverse(Loops
), Worklist
);
1614 template void llvm::appendLoopsToWorklist
<ArrayRef
<Loop
*> &>(
1615 ArrayRef
<Loop
*> &Loops
, SmallPriorityWorklist
<Loop
*, 4> &Worklist
);
1618 llvm::appendLoopsToWorklist
<Loop
&>(Loop
&L
,
1619 SmallPriorityWorklist
<Loop
*, 4> &Worklist
);
1621 void llvm::appendLoopsToWorklist(LoopInfo
&LI
,
1622 SmallPriorityWorklist
<Loop
*, 4> &Worklist
) {
1623 appendReversedLoopsToWorklist(LI
, Worklist
);
1626 Loop
*llvm::cloneLoop(Loop
*L
, Loop
*PL
, ValueToValueMapTy
&VM
,
1627 LoopInfo
*LI
, LPPassManager
*LPM
) {
1628 Loop
&New
= *LI
->AllocateLoop();
1630 PL
->addChildLoop(&New
);
1632 LI
->addTopLevelLoop(&New
);
1637 // Add all of the blocks in L to the new loop.
1638 for (BasicBlock
*BB
: L
->blocks())
1639 if (LI
->getLoopFor(BB
) == L
)
1640 New
.addBasicBlockToLoop(cast
<BasicBlock
>(VM
[BB
]), *LI
);
1642 // Add all of the subloops to the new loop.
1644 cloneLoop(I
, &New
, VM
, LI
, LPM
);
1649 /// IR Values for the lower and upper bounds of a pointer evolution. We
1650 /// need to use value-handles because SCEV expansion can invalidate previously
1651 /// expanded values. Thus expansion of a pointer can invalidate the bounds for
1653 struct PointerBounds
{
1654 TrackingVH
<Value
> Start
;
1655 TrackingVH
<Value
> End
;
1656 Value
*StrideToCheck
;
1659 /// Expand code for the lower and upper bound of the pointer group \p CG
1660 /// in \p TheLoop. \return the values for the bounds.
1661 static PointerBounds
expandBounds(const RuntimeCheckingPtrGroup
*CG
,
1662 Loop
*TheLoop
, Instruction
*Loc
,
1663 SCEVExpander
&Exp
, bool HoistRuntimeChecks
) {
1664 LLVMContext
&Ctx
= Loc
->getContext();
1665 Type
*PtrArithTy
= PointerType::get(Ctx
, CG
->AddressSpace
);
1667 Value
*Start
= nullptr, *End
= nullptr;
1668 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1669 const SCEV
*Low
= CG
->Low
, *High
= CG
->High
, *Stride
= nullptr;
1671 // If the Low and High values are themselves loop-variant, then we may want
1672 // to expand the range to include those covered by the outer loop as well.
1673 // There is a trade-off here with the advantage being that creating checks
1674 // using the expanded range permits the runtime memory checks to be hoisted
1675 // out of the outer loop. This reduces the cost of entering the inner loop,
1676 // which can be significant for low trip counts. The disadvantage is that
1677 // there is a chance we may now never enter the vectorized inner loop,
1678 // whereas using a restricted range check could have allowed us to enter at
1679 // least once. This is why the behaviour is not currently the default and is
1680 // controlled by the parameter 'HoistRuntimeChecks'.
1681 if (HoistRuntimeChecks
&& TheLoop
->getParentLoop() &&
1682 isa
<SCEVAddRecExpr
>(High
) && isa
<SCEVAddRecExpr
>(Low
)) {
1683 auto *HighAR
= cast
<SCEVAddRecExpr
>(High
);
1684 auto *LowAR
= cast
<SCEVAddRecExpr
>(Low
);
1685 const Loop
*OuterLoop
= TheLoop
->getParentLoop();
1686 const SCEV
*Recur
= LowAR
->getStepRecurrence(*Exp
.getSE());
1687 if (Recur
== HighAR
->getStepRecurrence(*Exp
.getSE()) &&
1688 HighAR
->getLoop() == OuterLoop
&& LowAR
->getLoop() == OuterLoop
) {
1689 BasicBlock
*OuterLoopLatch
= OuterLoop
->getLoopLatch();
1690 const SCEV
*OuterExitCount
=
1691 Exp
.getSE()->getExitCount(OuterLoop
, OuterLoopLatch
);
1692 if (!isa
<SCEVCouldNotCompute
>(OuterExitCount
) &&
1693 OuterExitCount
->getType()->isIntegerTy()) {
1694 const SCEV
*NewHigh
= cast
<SCEVAddRecExpr
>(High
)->evaluateAtIteration(
1695 OuterExitCount
, *Exp
.getSE());
1696 if (!isa
<SCEVCouldNotCompute
>(NewHigh
)) {
1697 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
1698 "outer loop in order to permit hoisting\n");
1700 Low
= cast
<SCEVAddRecExpr
>(Low
)->getStart();
1701 // If there is a possibility that the stride is negative then we have
1702 // to generate extra checks to ensure the stride is positive.
1703 if (!Exp
.getSE()->isKnownNonNegative(Recur
)) {
1705 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
1707 << *Stride
<< '\n');
1714 Start
= Exp
.expandCodeFor(Low
, PtrArithTy
, Loc
);
1715 End
= Exp
.expandCodeFor(High
, PtrArithTy
, Loc
);
1716 if (CG
->NeedsFreeze
) {
1717 IRBuilder
<> Builder(Loc
);
1718 Start
= Builder
.CreateFreeze(Start
, Start
->getName() + ".fr");
1719 End
= Builder
.CreateFreeze(End
, End
->getName() + ".fr");
1722 Stride
? Exp
.expandCodeFor(Stride
, Stride
->getType(), Loc
) : nullptr;
1723 LLVM_DEBUG(dbgs() << "Start: " << *Low
<< " End: " << *High
<< "\n");
1724 return {Start
, End
, StrideVal
};
1727 /// Turns a collection of checks into a collection of expanded upper and
1728 /// lower bounds for both pointers in the check.
1729 static SmallVector
<std::pair
<PointerBounds
, PointerBounds
>, 4>
1730 expandBounds(const SmallVectorImpl
<RuntimePointerCheck
> &PointerChecks
, Loop
*L
,
1731 Instruction
*Loc
, SCEVExpander
&Exp
, bool HoistRuntimeChecks
) {
1732 SmallVector
<std::pair
<PointerBounds
, PointerBounds
>, 4> ChecksWithBounds
;
1734 // Here we're relying on the SCEV Expander's cache to only emit code for the
1735 // same bounds once.
1736 transform(PointerChecks
, std::back_inserter(ChecksWithBounds
),
1737 [&](const RuntimePointerCheck
&Check
) {
1738 PointerBounds First
= expandBounds(Check
.first
, L
, Loc
, Exp
,
1739 HoistRuntimeChecks
),
1740 Second
= expandBounds(Check
.second
, L
, Loc
, Exp
,
1741 HoistRuntimeChecks
);
1742 return std::make_pair(First
, Second
);
1745 return ChecksWithBounds
;
1748 Value
*llvm::addRuntimeChecks(
1749 Instruction
*Loc
, Loop
*TheLoop
,
1750 const SmallVectorImpl
<RuntimePointerCheck
> &PointerChecks
,
1751 SCEVExpander
&Exp
, bool HoistRuntimeChecks
) {
1752 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1753 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
1754 auto ExpandedChecks
=
1755 expandBounds(PointerChecks
, TheLoop
, Loc
, Exp
, HoistRuntimeChecks
);
1757 LLVMContext
&Ctx
= Loc
->getContext();
1758 IRBuilder
<InstSimplifyFolder
> ChkBuilder(Ctx
,
1759 Loc
->getModule()->getDataLayout());
1760 ChkBuilder
.SetInsertPoint(Loc
);
1761 // Our instructions might fold to a constant.
1762 Value
*MemoryRuntimeCheck
= nullptr;
1764 for (const auto &Check
: ExpandedChecks
) {
1765 const PointerBounds
&A
= Check
.first
, &B
= Check
.second
;
1766 // Check if two pointers (A and B) conflict where conflict is computed as:
1767 // start(A) <= end(B) && start(B) <= end(A)
1769 assert((A
.Start
->getType()->getPointerAddressSpace() ==
1770 B
.End
->getType()->getPointerAddressSpace()) &&
1771 (B
.Start
->getType()->getPointerAddressSpace() ==
1772 A
.End
->getType()->getPointerAddressSpace()) &&
1773 "Trying to bounds check pointers with different address spaces");
1775 // [A|B].Start points to the first accessed byte under base [A|B].
1776 // [A|B].End points to the last accessed byte, plus one.
1777 // There is no conflict when the intervals are disjoint:
1778 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1780 // bound0 = (B.Start < A.End)
1781 // bound1 = (A.Start < B.End)
1782 // IsConflict = bound0 & bound1
1783 Value
*Cmp0
= ChkBuilder
.CreateICmpULT(A
.Start
, B
.End
, "bound0");
1784 Value
*Cmp1
= ChkBuilder
.CreateICmpULT(B
.Start
, A
.End
, "bound1");
1785 Value
*IsConflict
= ChkBuilder
.CreateAnd(Cmp0
, Cmp1
, "found.conflict");
1786 if (A
.StrideToCheck
) {
1787 Value
*IsNegativeStride
= ChkBuilder
.CreateICmpSLT(
1788 A
.StrideToCheck
, ConstantInt::get(A
.StrideToCheck
->getType(), 0),
1790 IsConflict
= ChkBuilder
.CreateOr(IsConflict
, IsNegativeStride
);
1792 if (B
.StrideToCheck
) {
1793 Value
*IsNegativeStride
= ChkBuilder
.CreateICmpSLT(
1794 B
.StrideToCheck
, ConstantInt::get(B
.StrideToCheck
->getType(), 0),
1796 IsConflict
= ChkBuilder
.CreateOr(IsConflict
, IsNegativeStride
);
1798 if (MemoryRuntimeCheck
) {
1800 ChkBuilder
.CreateOr(MemoryRuntimeCheck
, IsConflict
, "conflict.rdx");
1802 MemoryRuntimeCheck
= IsConflict
;
1805 return MemoryRuntimeCheck
;
1808 Value
*llvm::addDiffRuntimeChecks(
1809 Instruction
*Loc
, ArrayRef
<PointerDiffInfo
> Checks
, SCEVExpander
&Expander
,
1810 function_ref
<Value
*(IRBuilderBase
&, unsigned)> GetVF
, unsigned IC
) {
1812 LLVMContext
&Ctx
= Loc
->getContext();
1813 IRBuilder
<InstSimplifyFolder
> ChkBuilder(Ctx
,
1814 Loc
->getModule()->getDataLayout());
1815 ChkBuilder
.SetInsertPoint(Loc
);
1816 // Our instructions might fold to a constant.
1817 Value
*MemoryRuntimeCheck
= nullptr;
1819 auto &SE
= *Expander
.getSE();
1820 // Map to keep track of created compares, The key is the pair of operands for
1821 // the compare, to allow detecting and re-using redundant compares.
1822 DenseMap
<std::pair
<Value
*, Value
*>, Value
*> SeenCompares
;
1823 for (const auto &C
: Checks
) {
1824 Type
*Ty
= C
.SinkStart
->getType();
1825 // Compute VF * IC * AccessSize.
1826 auto *VFTimesUFTimesSize
=
1827 ChkBuilder
.CreateMul(GetVF(ChkBuilder
, Ty
->getScalarSizeInBits()),
1828 ConstantInt::get(Ty
, IC
* C
.AccessSize
));
1829 Value
*Diff
= Expander
.expandCodeFor(
1830 SE
.getMinusSCEV(C
.SinkStart
, C
.SrcStart
), Ty
, Loc
);
1832 // Check if the same compare has already been created earlier. In that case,
1833 // there is no need to check it again.
1834 Value
*IsConflict
= SeenCompares
.lookup({Diff
, VFTimesUFTimesSize
});
1839 ChkBuilder
.CreateICmpULT(Diff
, VFTimesUFTimesSize
, "diff.check");
1840 SeenCompares
.insert({{Diff
, VFTimesUFTimesSize
}, IsConflict
});
1843 ChkBuilder
.CreateFreeze(IsConflict
, IsConflict
->getName() + ".fr");
1844 if (MemoryRuntimeCheck
) {
1846 ChkBuilder
.CreateOr(MemoryRuntimeCheck
, IsConflict
, "conflict.rdx");
1848 MemoryRuntimeCheck
= IsConflict
;
1851 return MemoryRuntimeCheck
;
1854 std::optional
<IVConditionInfo
>
1855 llvm::hasPartialIVCondition(const Loop
&L
, unsigned MSSAThreshold
,
1856 const MemorySSA
&MSSA
, AAResults
&AA
) {
1857 auto *TI
= dyn_cast
<BranchInst
>(L
.getHeader()->getTerminator());
1858 if (!TI
|| !TI
->isConditional())
1861 auto *CondI
= dyn_cast
<CmpInst
>(TI
->getCondition());
1862 // The case with the condition outside the loop should already be handled
1864 if (!CondI
|| !L
.contains(CondI
))
1867 SmallVector
<Instruction
*> InstToDuplicate
;
1868 InstToDuplicate
.push_back(CondI
);
1870 SmallVector
<Value
*, 4> WorkList
;
1871 WorkList
.append(CondI
->op_begin(), CondI
->op_end());
1873 SmallVector
<MemoryAccess
*, 4> AccessesToCheck
;
1874 SmallVector
<MemoryLocation
, 4> AccessedLocs
;
1875 while (!WorkList
.empty()) {
1876 Instruction
*I
= dyn_cast
<Instruction
>(WorkList
.pop_back_val());
1877 if (!I
|| !L
.contains(I
))
1880 // TODO: support additional instructions.
1881 if (!isa
<LoadInst
>(I
) && !isa
<GetElementPtrInst
>(I
))
1884 // Do not duplicate volatile and atomic loads.
1885 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
1886 if (LI
->isVolatile() || LI
->isAtomic())
1889 InstToDuplicate
.push_back(I
);
1890 if (MemoryAccess
*MA
= MSSA
.getMemoryAccess(I
)) {
1891 if (auto *MemUse
= dyn_cast_or_null
<MemoryUse
>(MA
)) {
1892 // Queue the defining access to check for alias checks.
1893 AccessesToCheck
.push_back(MemUse
->getDefiningAccess());
1894 AccessedLocs
.push_back(MemoryLocation::get(I
));
1896 // MemoryDefs may clobber the location or may be atomic memory
1897 // operations. Bail out.
1901 WorkList
.append(I
->op_begin(), I
->op_end());
1904 if (InstToDuplicate
.empty())
1907 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
1908 L
.getExitingBlocks(ExitingBlocks
);
1909 auto HasNoClobbersOnPath
=
1910 [&L
, &AA
, &AccessedLocs
, &ExitingBlocks
, &InstToDuplicate
,
1911 MSSAThreshold
](BasicBlock
*Succ
, BasicBlock
*Header
,
1912 SmallVector
<MemoryAccess
*, 4> AccessesToCheck
)
1913 -> std::optional
<IVConditionInfo
> {
1914 IVConditionInfo Info
;
1915 // First, collect all blocks in the loop that are on a patch from Succ
1917 SmallVector
<BasicBlock
*, 4> WorkList
;
1918 WorkList
.push_back(Succ
);
1919 WorkList
.push_back(Header
);
1920 SmallPtrSet
<BasicBlock
*, 4> Seen
;
1921 Seen
.insert(Header
);
1923 all_of(*Header
, [](Instruction
&I
) { return !I
.mayHaveSideEffects(); });
1925 while (!WorkList
.empty()) {
1926 BasicBlock
*Current
= WorkList
.pop_back_val();
1927 if (!L
.contains(Current
))
1929 const auto &SeenIns
= Seen
.insert(Current
);
1930 if (!SeenIns
.second
)
1933 Info
.PathIsNoop
&= all_of(
1934 *Current
, [](Instruction
&I
) { return !I
.mayHaveSideEffects(); });
1935 WorkList
.append(succ_begin(Current
), succ_end(Current
));
1938 // Require at least 2 blocks on a path through the loop. This skips
1939 // paths that directly exit the loop.
1940 if (Seen
.size() < 2)
1943 // Next, check if there are any MemoryDefs that are on the path through
1944 // the loop (in the Seen set) and they may-alias any of the locations in
1945 // AccessedLocs. If that is the case, they may modify the condition and
1946 // partial unswitching is not possible.
1947 SmallPtrSet
<MemoryAccess
*, 4> SeenAccesses
;
1948 while (!AccessesToCheck
.empty()) {
1949 MemoryAccess
*Current
= AccessesToCheck
.pop_back_val();
1950 auto SeenI
= SeenAccesses
.insert(Current
);
1951 if (!SeenI
.second
|| !Seen
.contains(Current
->getBlock()))
1954 // Bail out if exceeded the threshold.
1955 if (SeenAccesses
.size() >= MSSAThreshold
)
1958 // MemoryUse are read-only accesses.
1959 if (isa
<MemoryUse
>(Current
))
1962 // For a MemoryDef, check if is aliases any of the location feeding
1963 // the original condition.
1964 if (auto *CurrentDef
= dyn_cast
<MemoryDef
>(Current
)) {
1965 if (any_of(AccessedLocs
, [&AA
, CurrentDef
](MemoryLocation
&Loc
) {
1967 AA
.getModRefInfo(CurrentDef
->getMemoryInst(), Loc
));
1972 for (Use
&U
: Current
->uses())
1973 AccessesToCheck
.push_back(cast
<MemoryAccess
>(U
.getUser()));
1976 // We could also allow loops with known trip counts without mustprogress,
1977 // but ScalarEvolution may not be available.
1978 Info
.PathIsNoop
&= isMustProgress(&L
);
1980 // If the path is considered a no-op so far, check if it reaches a
1981 // single exit block without any phis. This ensures no values from the
1982 // loop are used outside of the loop.
1983 if (Info
.PathIsNoop
) {
1984 for (auto *Exiting
: ExitingBlocks
) {
1985 if (!Seen
.contains(Exiting
))
1987 for (auto *Succ
: successors(Exiting
)) {
1988 if (L
.contains(Succ
))
1991 Info
.PathIsNoop
&= Succ
->phis().empty() &&
1992 (!Info
.ExitForPath
|| Info
.ExitForPath
== Succ
);
1993 if (!Info
.PathIsNoop
)
1995 assert((!Info
.ExitForPath
|| Info
.ExitForPath
== Succ
) &&
1996 "cannot have multiple exit blocks");
1997 Info
.ExitForPath
= Succ
;
2001 if (!Info
.ExitForPath
)
2002 Info
.PathIsNoop
= false;
2004 Info
.InstToDuplicate
= InstToDuplicate
;
2008 // If we branch to the same successor, partial unswitching will not be
2010 if (TI
->getSuccessor(0) == TI
->getSuccessor(1))
2013 if (auto Info
= HasNoClobbersOnPath(TI
->getSuccessor(0), L
.getHeader(),
2015 Info
->KnownValue
= ConstantInt::getTrue(TI
->getContext());
2018 if (auto Info
= HasNoClobbersOnPath(TI
->getSuccessor(1), L
.getHeader(),
2020 Info
->KnownValue
= ConstantInt::getFalse(TI
->getContext());