[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Utils / PredicateInfo.cpp
blob902977b08d15379cf5c3743eacb8266ad69e0b6c
1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
11 //===----------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/IR/AssemblyAnnotationWriter.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/DebugCounter.h"
29 #include "llvm/Support/FormattedStream.h"
30 #include <algorithm>
31 #define DEBUG_TYPE "predicateinfo"
32 using namespace llvm;
33 using namespace PatternMatch;
35 static cl::opt<bool> VerifyPredicateInfo(
36 "verify-predicateinfo", cl::init(false), cl::Hidden,
37 cl::desc("Verify PredicateInfo in legacy printer pass."));
38 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
39 "Controls which variables are renamed with predicateinfo");
41 // Maximum number of conditions considered for renaming for each branch/assume.
42 // This limits renaming of deep and/or chains.
43 static const unsigned MaxCondsPerBranch = 8;
45 namespace {
46 // Given a predicate info that is a type of branching terminator, get the
47 // branching block.
48 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
49 assert(isa<PredicateWithEdge>(PB) &&
50 "Only branches and switches should have PHIOnly defs that "
51 "require branch blocks.");
52 return cast<PredicateWithEdge>(PB)->From;
55 // Given a predicate info that is a type of branching terminator, get the
56 // branching terminator.
57 static Instruction *getBranchTerminator(const PredicateBase *PB) {
58 assert(isa<PredicateWithEdge>(PB) &&
59 "Not a predicate info type we know how to get a terminator from.");
60 return cast<PredicateWithEdge>(PB)->From->getTerminator();
63 // Given a predicate info that is a type of branching terminator, get the
64 // edge this predicate info represents
65 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
66 assert(isa<PredicateWithEdge>(PB) &&
67 "Not a predicate info type we know how to get an edge from.");
68 const auto *PEdge = cast<PredicateWithEdge>(PB);
69 return std::make_pair(PEdge->From, PEdge->To);
73 namespace llvm {
74 enum LocalNum {
75 // Operations that must appear first in the block.
76 LN_First,
77 // Operations that are somewhere in the middle of the block, and are sorted on
78 // demand.
79 LN_Middle,
80 // Operations that must appear last in a block, like successor phi node uses.
81 LN_Last
84 // Associate global and local DFS info with defs and uses, so we can sort them
85 // into a global domination ordering.
86 struct ValueDFS {
87 int DFSIn = 0;
88 int DFSOut = 0;
89 unsigned int LocalNum = LN_Middle;
90 // Only one of Def or Use will be set.
91 Value *Def = nullptr;
92 Use *U = nullptr;
93 // Neither PInfo nor EdgeOnly participate in the ordering
94 PredicateBase *PInfo = nullptr;
95 bool EdgeOnly = false;
98 // Perform a strict weak ordering on instructions and arguments.
99 static bool valueComesBefore(const Value *A, const Value *B) {
100 auto *ArgA = dyn_cast_or_null<Argument>(A);
101 auto *ArgB = dyn_cast_or_null<Argument>(B);
102 if (ArgA && !ArgB)
103 return true;
104 if (ArgB && !ArgA)
105 return false;
106 if (ArgA && ArgB)
107 return ArgA->getArgNo() < ArgB->getArgNo();
108 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
111 // This compares ValueDFS structures. Doing so allows us to walk the minimum
112 // number of instructions necessary to compute our def/use ordering.
113 struct ValueDFS_Compare {
114 DominatorTree &DT;
115 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
117 bool operator()(const ValueDFS &A, const ValueDFS &B) const {
118 if (&A == &B)
119 return false;
120 // The only case we can't directly compare them is when they in the same
121 // block, and both have localnum == middle. In that case, we have to use
122 // comesbefore to see what the real ordering is, because they are in the
123 // same basic block.
125 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
126 "Equal DFS-in numbers imply equal out numbers");
127 bool SameBlock = A.DFSIn == B.DFSIn;
129 // We want to put the def that will get used for a given set of phi uses,
130 // before those phi uses.
131 // So we sort by edge, then by def.
132 // Note that only phi nodes uses and defs can come last.
133 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
134 return comparePHIRelated(A, B);
136 bool isADef = A.Def;
137 bool isBDef = B.Def;
138 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
139 return std::tie(A.DFSIn, A.LocalNum, isADef) <
140 std::tie(B.DFSIn, B.LocalNum, isBDef);
141 return localComesBefore(A, B);
144 // For a phi use, or a non-materialized def, return the edge it represents.
145 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
146 if (!VD.Def && VD.U) {
147 auto *PHI = cast<PHINode>(VD.U->getUser());
148 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
150 // This is really a non-materialized def.
151 return ::getBlockEdge(VD.PInfo);
154 // For two phi related values, return the ordering.
155 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
156 BasicBlock *ASrc, *ADest, *BSrc, *BDest;
157 std::tie(ASrc, ADest) = getBlockEdge(A);
158 std::tie(BSrc, BDest) = getBlockEdge(B);
160 #ifndef NDEBUG
161 // This function should only be used for values in the same BB, check that.
162 DomTreeNode *DomASrc = DT.getNode(ASrc);
163 DomTreeNode *DomBSrc = DT.getNode(BSrc);
164 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
165 "DFS numbers for A should match the ones of the source block");
166 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
167 "DFS numbers for B should match the ones of the source block");
168 assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
169 #endif
170 (void)ASrc;
171 (void)BSrc;
173 // Use DFS numbers to compare destination blocks, to guarantee a
174 // deterministic order.
175 DomTreeNode *DomADest = DT.getNode(ADest);
176 DomTreeNode *DomBDest = DT.getNode(BDest);
177 unsigned AIn = DomADest->getDFSNumIn();
178 unsigned BIn = DomBDest->getDFSNumIn();
179 bool isADef = A.Def;
180 bool isBDef = B.Def;
181 assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
182 "Def and U cannot be set at the same time");
183 // Now sort by edge destination and then defs before uses.
184 return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
187 // Get the definition of an instruction that occurs in the middle of a block.
188 Value *getMiddleDef(const ValueDFS &VD) const {
189 if (VD.Def)
190 return VD.Def;
191 // It's possible for the defs and uses to be null. For branches, the local
192 // numbering will say the placed predicaeinfos should go first (IE
193 // LN_beginning), so we won't be in this function. For assumes, we will end
194 // up here, beause we need to order the def we will place relative to the
195 // assume. So for the purpose of ordering, we pretend the def is right
196 // after the assume, because that is where we will insert the info.
197 if (!VD.U) {
198 assert(VD.PInfo &&
199 "No def, no use, and no predicateinfo should not occur");
200 assert(isa<PredicateAssume>(VD.PInfo) &&
201 "Middle of block should only occur for assumes");
202 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
204 return nullptr;
207 // Return either the Def, if it's not null, or the user of the Use, if the def
208 // is null.
209 const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
210 if (Def)
211 return cast<Instruction>(Def);
212 return cast<Instruction>(U->getUser());
215 // This performs the necessary local basic block ordering checks to tell
216 // whether A comes before B, where both are in the same basic block.
217 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
218 auto *ADef = getMiddleDef(A);
219 auto *BDef = getMiddleDef(B);
221 // See if we have real values or uses. If we have real values, we are
222 // guaranteed they are instructions or arguments. No matter what, we are
223 // guaranteed they are in the same block if they are instructions.
224 auto *ArgA = dyn_cast_or_null<Argument>(ADef);
225 auto *ArgB = dyn_cast_or_null<Argument>(BDef);
227 if (ArgA || ArgB)
228 return valueComesBefore(ArgA, ArgB);
230 auto *AInst = getDefOrUser(ADef, A.U);
231 auto *BInst = getDefOrUser(BDef, B.U);
232 return valueComesBefore(AInst, BInst);
236 class PredicateInfoBuilder {
237 // Used to store information about each value we might rename.
238 struct ValueInfo {
239 SmallVector<PredicateBase *, 4> Infos;
242 PredicateInfo &PI;
243 Function &F;
244 DominatorTree &DT;
245 AssumptionCache &AC;
247 // This stores info about each operand or comparison result we make copies
248 // of. The real ValueInfos start at index 1, index 0 is unused so that we
249 // can more easily detect invalid indexing.
250 SmallVector<ValueInfo, 32> ValueInfos;
252 // This gives the index into the ValueInfos array for a given Value. Because
253 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
254 // whether it returned a valid result.
255 DenseMap<Value *, unsigned int> ValueInfoNums;
257 // The set of edges along which we can only handle phi uses, due to critical
258 // edges.
259 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
261 ValueInfo &getOrCreateValueInfo(Value *);
262 const ValueInfo &getValueInfo(Value *) const;
264 void processAssume(IntrinsicInst *, BasicBlock *,
265 SmallVectorImpl<Value *> &OpsToRename);
266 void processBranch(BranchInst *, BasicBlock *,
267 SmallVectorImpl<Value *> &OpsToRename);
268 void processSwitch(SwitchInst *, BasicBlock *,
269 SmallVectorImpl<Value *> &OpsToRename);
270 void renameUses(SmallVectorImpl<Value *> &OpsToRename);
271 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
272 PredicateBase *PB);
274 typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
275 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
276 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
277 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
278 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
280 public:
281 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
282 AssumptionCache &AC)
283 : PI(PI), F(F), DT(DT), AC(AC) {
284 // Push an empty operand info so that we can detect 0 as not finding one
285 ValueInfos.resize(1);
288 void buildPredicateInfo();
291 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
292 const ValueDFS &VDUse) const {
293 if (Stack.empty())
294 return false;
295 // If it's a phi only use, make sure it's for this phi node edge, and that the
296 // use is in a phi node. If it's anything else, and the top of the stack is
297 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
298 // the defs they must go with so that we can know it's time to pop the stack
299 // when we hit the end of the phi uses for a given def.
300 if (Stack.back().EdgeOnly) {
301 if (!VDUse.U)
302 return false;
303 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
304 if (!PHI)
305 return false;
306 // Check edge
307 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
308 if (EdgePred != getBranchBlock(Stack.back().PInfo))
309 return false;
311 // Use dominates, which knows how to handle edge dominance.
312 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
315 return (VDUse.DFSIn >= Stack.back().DFSIn &&
316 VDUse.DFSOut <= Stack.back().DFSOut);
319 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
320 const ValueDFS &VD) {
321 while (!Stack.empty() && !stackIsInScope(Stack, VD))
322 Stack.pop_back();
325 // Convert the uses of Op into a vector of uses, associating global and local
326 // DFS info with each one.
327 void PredicateInfoBuilder::convertUsesToDFSOrdered(
328 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
329 for (auto &U : Op->uses()) {
330 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
331 ValueDFS VD;
332 // Put the phi node uses in the incoming block.
333 BasicBlock *IBlock;
334 if (auto *PN = dyn_cast<PHINode>(I)) {
335 IBlock = PN->getIncomingBlock(U);
336 // Make phi node users appear last in the incoming block
337 // they are from.
338 VD.LocalNum = LN_Last;
339 } else {
340 // If it's not a phi node use, it is somewhere in the middle of the
341 // block.
342 IBlock = I->getParent();
343 VD.LocalNum = LN_Middle;
345 DomTreeNode *DomNode = DT.getNode(IBlock);
346 // It's possible our use is in an unreachable block. Skip it if so.
347 if (!DomNode)
348 continue;
349 VD.DFSIn = DomNode->getDFSNumIn();
350 VD.DFSOut = DomNode->getDFSNumOut();
351 VD.U = &U;
352 DFSOrderedSet.push_back(VD);
357 bool shouldRename(Value *V) {
358 // Only want real values, not constants. Additionally, operands with one use
359 // are only being used in the comparison, which means they will not be useful
360 // for us to consider for predicateinfo.
361 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
364 // Collect relevant operations from Comparison that we may want to insert copies
365 // for.
366 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
367 auto *Op0 = Comparison->getOperand(0);
368 auto *Op1 = Comparison->getOperand(1);
369 if (Op0 == Op1)
370 return;
372 CmpOperands.push_back(Op0);
373 CmpOperands.push_back(Op1);
376 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
377 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
378 Value *Op, PredicateBase *PB) {
379 auto &OperandInfo = getOrCreateValueInfo(Op);
380 if (OperandInfo.Infos.empty())
381 OpsToRename.push_back(Op);
382 PI.AllInfos.push_back(PB);
383 OperandInfo.Infos.push_back(PB);
386 // Process an assume instruction and place relevant operations we want to rename
387 // into OpsToRename.
388 void PredicateInfoBuilder::processAssume(
389 IntrinsicInst *II, BasicBlock *AssumeBB,
390 SmallVectorImpl<Value *> &OpsToRename) {
391 SmallVector<Value *, 4> Worklist;
392 SmallPtrSet<Value *, 4> Visited;
393 Worklist.push_back(II->getOperand(0));
394 while (!Worklist.empty()) {
395 Value *Cond = Worklist.pop_back_val();
396 if (!Visited.insert(Cond).second)
397 continue;
398 if (Visited.size() > MaxCondsPerBranch)
399 break;
401 Value *Op0, *Op1;
402 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
403 Worklist.push_back(Op1);
404 Worklist.push_back(Op0);
407 SmallVector<Value *, 4> Values;
408 Values.push_back(Cond);
409 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
410 collectCmpOps(Cmp, Values);
412 for (Value *V : Values) {
413 if (shouldRename(V)) {
414 auto *PA = new PredicateAssume(V, II, Cond);
415 addInfoFor(OpsToRename, V, PA);
421 // Process a block terminating branch, and place relevant operations to be
422 // renamed into OpsToRename.
423 void PredicateInfoBuilder::processBranch(
424 BranchInst *BI, BasicBlock *BranchBB,
425 SmallVectorImpl<Value *> &OpsToRename) {
426 BasicBlock *FirstBB = BI->getSuccessor(0);
427 BasicBlock *SecondBB = BI->getSuccessor(1);
429 for (BasicBlock *Succ : {FirstBB, SecondBB}) {
430 bool TakenEdge = Succ == FirstBB;
431 // Don't try to insert on a self-edge. This is mainly because we will
432 // eliminate during renaming anyway.
433 if (Succ == BranchBB)
434 continue;
436 SmallVector<Value *, 4> Worklist;
437 SmallPtrSet<Value *, 4> Visited;
438 Worklist.push_back(BI->getCondition());
439 while (!Worklist.empty()) {
440 Value *Cond = Worklist.pop_back_val();
441 if (!Visited.insert(Cond).second)
442 continue;
443 if (Visited.size() > MaxCondsPerBranch)
444 break;
446 Value *Op0, *Op1;
447 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
448 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
449 Worklist.push_back(Op1);
450 Worklist.push_back(Op0);
453 SmallVector<Value *, 4> Values;
454 Values.push_back(Cond);
455 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
456 collectCmpOps(Cmp, Values);
458 for (Value *V : Values) {
459 if (shouldRename(V)) {
460 PredicateBase *PB =
461 new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
462 addInfoFor(OpsToRename, V, PB);
463 if (!Succ->getSinglePredecessor())
464 EdgeUsesOnly.insert({BranchBB, Succ});
470 // Process a block terminating switch, and place relevant operations to be
471 // renamed into OpsToRename.
472 void PredicateInfoBuilder::processSwitch(
473 SwitchInst *SI, BasicBlock *BranchBB,
474 SmallVectorImpl<Value *> &OpsToRename) {
475 Value *Op = SI->getCondition();
476 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
477 return;
479 // Remember how many outgoing edges there are to every successor.
480 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
481 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
482 BasicBlock *TargetBlock = SI->getSuccessor(i);
483 ++SwitchEdges[TargetBlock];
486 // Now propagate info for each case value
487 for (auto C : SI->cases()) {
488 BasicBlock *TargetBlock = C.getCaseSuccessor();
489 if (SwitchEdges.lookup(TargetBlock) == 1) {
490 PredicateSwitch *PS = new PredicateSwitch(
491 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
492 addInfoFor(OpsToRename, Op, PS);
493 if (!TargetBlock->getSinglePredecessor())
494 EdgeUsesOnly.insert({BranchBB, TargetBlock});
499 // Build predicate info for our function
500 void PredicateInfoBuilder::buildPredicateInfo() {
501 DT.updateDFSNumbers();
502 // Collect operands to rename from all conditional branch terminators, as well
503 // as assume statements.
504 SmallVector<Value *, 8> OpsToRename;
505 for (auto *DTN : depth_first(DT.getRootNode())) {
506 BasicBlock *BranchBB = DTN->getBlock();
507 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
508 if (!BI->isConditional())
509 continue;
510 // Can't insert conditional information if they all go to the same place.
511 if (BI->getSuccessor(0) == BI->getSuccessor(1))
512 continue;
513 processBranch(BI, BranchBB, OpsToRename);
514 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
515 processSwitch(SI, BranchBB, OpsToRename);
518 for (auto &Assume : AC.assumptions()) {
519 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
520 if (DT.isReachableFromEntry(II->getParent()))
521 processAssume(II, II->getParent(), OpsToRename);
523 // Now rename all our operations.
524 renameUses(OpsToRename);
527 // Given the renaming stack, make all the operands currently on the stack real
528 // by inserting them into the IR. Return the last operation's value.
529 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
530 ValueDFSStack &RenameStack,
531 Value *OrigOp) {
532 // Find the first thing we have to materialize
533 auto RevIter = RenameStack.rbegin();
534 for (; RevIter != RenameStack.rend(); ++RevIter)
535 if (RevIter->Def)
536 break;
538 size_t Start = RevIter - RenameStack.rbegin();
539 // The maximum number of things we should be trying to materialize at once
540 // right now is 4, depending on if we had an assume, a branch, and both used
541 // and of conditions.
542 for (auto RenameIter = RenameStack.end() - Start;
543 RenameIter != RenameStack.end(); ++RenameIter) {
544 auto *Op =
545 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
546 ValueDFS &Result = *RenameIter;
547 auto *ValInfo = Result.PInfo;
548 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
549 ? OrigOp
550 : (RenameStack.end() - Start - 1)->Def;
551 // For edge predicates, we can just place the operand in the block before
552 // the terminator. For assume, we have to place it right before the assume
553 // to ensure we dominate all of our uses. Always insert right before the
554 // relevant instruction (terminator, assume), so that we insert in proper
555 // order in the case of multiple predicateinfo in the same block.
556 // The number of named values is used to detect if a new declaration was
557 // added. If so, that declaration is tracked so that it can be removed when
558 // the analysis is done. The corner case were a new declaration results in
559 // a name clash and the old name being renamed is not considered as that
560 // represents an invalid module.
561 if (isa<PredicateWithEdge>(ValInfo)) {
562 IRBuilder<> B(getBranchTerminator(ValInfo));
563 auto NumDecls = F.getParent()->getNumNamedValues();
564 Function *IF = Intrinsic::getDeclaration(
565 F.getParent(), Intrinsic::ssa_copy, Op->getType());
566 if (NumDecls != F.getParent()->getNumNamedValues())
567 PI.CreatedDeclarations.insert(IF);
568 CallInst *PIC =
569 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
570 PI.PredicateMap.insert({PIC, ValInfo});
571 Result.Def = PIC;
572 } else {
573 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
574 assert(PAssume &&
575 "Should not have gotten here without it being an assume");
576 // Insert the predicate directly after the assume. While it also holds
577 // directly before it, assume(i1 true) is not a useful fact.
578 IRBuilder<> B(PAssume->AssumeInst->getNextNode());
579 auto NumDecls = F.getParent()->getNumNamedValues();
580 Function *IF = Intrinsic::getDeclaration(
581 F.getParent(), Intrinsic::ssa_copy, Op->getType());
582 if (NumDecls != F.getParent()->getNumNamedValues())
583 PI.CreatedDeclarations.insert(IF);
584 CallInst *PIC = B.CreateCall(IF, Op);
585 PI.PredicateMap.insert({PIC, ValInfo});
586 Result.Def = PIC;
589 return RenameStack.back().Def;
592 // Instead of the standard SSA renaming algorithm, which is O(Number of
593 // instructions), and walks the entire dominator tree, we walk only the defs +
594 // uses. The standard SSA renaming algorithm does not really rely on the
595 // dominator tree except to order the stack push/pops of the renaming stacks, so
596 // that defs end up getting pushed before hitting the correct uses. This does
597 // not require the dominator tree, only the *order* of the dominator tree. The
598 // complete and correct ordering of the defs and uses, in dominator tree is
599 // contained in the DFS numbering of the dominator tree. So we sort the defs and
600 // uses into the DFS ordering, and then just use the renaming stack as per
601 // normal, pushing when we hit a def (which is a predicateinfo instruction),
602 // popping when we are out of the dfs scope for that def, and replacing any uses
603 // with top of stack if it exists. In order to handle liveness without
604 // propagating liveness info, we don't actually insert the predicateinfo
605 // instruction def until we see a use that it would dominate. Once we see such
606 // a use, we materialize the predicateinfo instruction in the right place and
607 // use it.
609 // TODO: Use this algorithm to perform fast single-variable renaming in
610 // promotememtoreg and memoryssa.
611 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
612 ValueDFS_Compare Compare(DT);
613 // Compute liveness, and rename in O(uses) per Op.
614 for (auto *Op : OpsToRename) {
615 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
616 unsigned Counter = 0;
617 SmallVector<ValueDFS, 16> OrderedUses;
618 const auto &ValueInfo = getValueInfo(Op);
619 // Insert the possible copies into the def/use list.
620 // They will become real copies if we find a real use for them, and never
621 // created otherwise.
622 for (const auto &PossibleCopy : ValueInfo.Infos) {
623 ValueDFS VD;
624 // Determine where we are going to place the copy by the copy type.
625 // The predicate info for branches always come first, they will get
626 // materialized in the split block at the top of the block.
627 // The predicate info for assumes will be somewhere in the middle,
628 // it will get materialized in front of the assume.
629 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
630 VD.LocalNum = LN_Middle;
631 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
632 if (!DomNode)
633 continue;
634 VD.DFSIn = DomNode->getDFSNumIn();
635 VD.DFSOut = DomNode->getDFSNumOut();
636 VD.PInfo = PossibleCopy;
637 OrderedUses.push_back(VD);
638 } else if (isa<PredicateWithEdge>(PossibleCopy)) {
639 // If we can only do phi uses, we treat it like it's in the branch
640 // block, and handle it specially. We know that it goes last, and only
641 // dominate phi uses.
642 auto BlockEdge = getBlockEdge(PossibleCopy);
643 if (EdgeUsesOnly.count(BlockEdge)) {
644 VD.LocalNum = LN_Last;
645 auto *DomNode = DT.getNode(BlockEdge.first);
646 if (DomNode) {
647 VD.DFSIn = DomNode->getDFSNumIn();
648 VD.DFSOut = DomNode->getDFSNumOut();
649 VD.PInfo = PossibleCopy;
650 VD.EdgeOnly = true;
651 OrderedUses.push_back(VD);
653 } else {
654 // Otherwise, we are in the split block (even though we perform
655 // insertion in the branch block).
656 // Insert a possible copy at the split block and before the branch.
657 VD.LocalNum = LN_First;
658 auto *DomNode = DT.getNode(BlockEdge.second);
659 if (DomNode) {
660 VD.DFSIn = DomNode->getDFSNumIn();
661 VD.DFSOut = DomNode->getDFSNumOut();
662 VD.PInfo = PossibleCopy;
663 OrderedUses.push_back(VD);
669 convertUsesToDFSOrdered(Op, OrderedUses);
670 // Here we require a stable sort because we do not bother to try to
671 // assign an order to the operands the uses represent. Thus, two
672 // uses in the same instruction do not have a strict sort order
673 // currently and will be considered equal. We could get rid of the
674 // stable sort by creating one if we wanted.
675 llvm::stable_sort(OrderedUses, Compare);
676 SmallVector<ValueDFS, 8> RenameStack;
677 // For each use, sorted into dfs order, push values and replaces uses with
678 // top of stack, which will represent the reaching def.
679 for (auto &VD : OrderedUses) {
680 // We currently do not materialize copy over copy, but we should decide if
681 // we want to.
682 bool PossibleCopy = VD.PInfo != nullptr;
683 if (RenameStack.empty()) {
684 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
685 } else {
686 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
687 << RenameStack.back().DFSIn << ","
688 << RenameStack.back().DFSOut << ")\n");
691 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
692 << VD.DFSOut << ")\n");
694 bool ShouldPush = (VD.Def || PossibleCopy);
695 bool OutOfScope = !stackIsInScope(RenameStack, VD);
696 if (OutOfScope || ShouldPush) {
697 // Sync to our current scope.
698 popStackUntilDFSScope(RenameStack, VD);
699 if (ShouldPush) {
700 RenameStack.push_back(VD);
703 // If we get to this point, and the stack is empty we must have a use
704 // with no renaming needed, just skip it.
705 if (RenameStack.empty())
706 continue;
707 // Skip values, only want to rename the uses
708 if (VD.Def || PossibleCopy)
709 continue;
710 if (!DebugCounter::shouldExecute(RenameCounter)) {
711 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
712 continue;
714 ValueDFS &Result = RenameStack.back();
716 // If the possible copy dominates something, materialize our stack up to
717 // this point. This ensures every comparison that affects our operation
718 // ends up with predicateinfo.
719 if (!Result.Def)
720 Result.Def = materializeStack(Counter, RenameStack, Op);
722 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
723 << *VD.U->get() << " in " << *(VD.U->getUser())
724 << "\n");
725 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
726 "Predicateinfo def should have dominated this use");
727 VD.U->set(Result.Def);
732 PredicateInfoBuilder::ValueInfo &
733 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
734 auto OIN = ValueInfoNums.find(Operand);
735 if (OIN == ValueInfoNums.end()) {
736 // This will grow it
737 ValueInfos.resize(ValueInfos.size() + 1);
738 // This will use the new size and give us a 0 based number of the info
739 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
740 assert(InsertResult.second && "Value info number already existed?");
741 return ValueInfos[InsertResult.first->second];
743 return ValueInfos[OIN->second];
746 const PredicateInfoBuilder::ValueInfo &
747 PredicateInfoBuilder::getValueInfo(Value *Operand) const {
748 auto OINI = ValueInfoNums.lookup(Operand);
749 assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
750 assert(OINI < ValueInfos.size() &&
751 "Value Info Number greater than size of Value Info Table");
752 return ValueInfos[OINI];
755 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
756 AssumptionCache &AC)
757 : F(F) {
758 PredicateInfoBuilder Builder(*this, F, DT, AC);
759 Builder.buildPredicateInfo();
762 // Remove all declarations we created . The PredicateInfo consumers are
763 // responsible for remove the ssa_copy calls created.
764 PredicateInfo::~PredicateInfo() {
765 // Collect function pointers in set first, as SmallSet uses a SmallVector
766 // internally and we have to remove the asserting value handles first.
767 SmallPtrSet<Function *, 20> FunctionPtrs;
768 for (const auto &F : CreatedDeclarations)
769 FunctionPtrs.insert(&*F);
770 CreatedDeclarations.clear();
772 for (Function *F : FunctionPtrs) {
773 assert(F->user_begin() == F->user_end() &&
774 "PredicateInfo consumer did not remove all SSA copies.");
775 F->eraseFromParent();
779 std::optional<PredicateConstraint> PredicateBase::getConstraint() const {
780 switch (Type) {
781 case PT_Assume:
782 case PT_Branch: {
783 bool TrueEdge = true;
784 if (auto *PBranch = dyn_cast<PredicateBranch>(this))
785 TrueEdge = PBranch->TrueEdge;
787 if (Condition == RenamedOp) {
788 return {{CmpInst::ICMP_EQ,
789 TrueEdge ? ConstantInt::getTrue(Condition->getType())
790 : ConstantInt::getFalse(Condition->getType())}};
793 CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
794 if (!Cmp) {
795 // TODO: Make this an assertion once RenamedOp is fully accurate.
796 return std::nullopt;
799 CmpInst::Predicate Pred;
800 Value *OtherOp;
801 if (Cmp->getOperand(0) == RenamedOp) {
802 Pred = Cmp->getPredicate();
803 OtherOp = Cmp->getOperand(1);
804 } else if (Cmp->getOperand(1) == RenamedOp) {
805 Pred = Cmp->getSwappedPredicate();
806 OtherOp = Cmp->getOperand(0);
807 } else {
808 // TODO: Make this an assertion once RenamedOp is fully accurate.
809 return std::nullopt;
812 // Invert predicate along false edge.
813 if (!TrueEdge)
814 Pred = CmpInst::getInversePredicate(Pred);
816 return {{Pred, OtherOp}};
818 case PT_Switch:
819 if (Condition != RenamedOp) {
820 // TODO: Make this an assertion once RenamedOp is fully accurate.
821 return std::nullopt;
824 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
826 llvm_unreachable("Unknown predicate type");
829 void PredicateInfo::verifyPredicateInfo() const {}
831 // Replace ssa_copy calls created by PredicateInfo with their operand.
832 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
833 for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) {
834 const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
835 auto *II = dyn_cast<IntrinsicInst>(&Inst);
836 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
837 continue;
839 Inst.replaceAllUsesWith(II->getOperand(0));
840 Inst.eraseFromParent();
844 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
845 FunctionAnalysisManager &AM) {
846 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
847 auto &AC = AM.getResult<AssumptionAnalysis>(F);
848 OS << "PredicateInfo for function: " << F.getName() << "\n";
849 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
850 PredInfo->print(OS);
852 replaceCreatedSSACopys(*PredInfo, F);
853 return PreservedAnalyses::all();
856 /// An assembly annotator class to print PredicateInfo information in
857 /// comments.
858 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
859 friend class PredicateInfo;
860 const PredicateInfo *PredInfo;
862 public:
863 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
865 void emitBasicBlockStartAnnot(const BasicBlock *BB,
866 formatted_raw_ostream &OS) override {}
868 void emitInstructionAnnot(const Instruction *I,
869 formatted_raw_ostream &OS) override {
870 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
871 OS << "; Has predicate info\n";
872 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
873 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
874 << " Comparison:" << *PB->Condition << " Edge: [";
875 PB->From->printAsOperand(OS);
876 OS << ",";
877 PB->To->printAsOperand(OS);
878 OS << "]";
879 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
880 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
881 << " Switch:" << *PS->Switch << " Edge: [";
882 PS->From->printAsOperand(OS);
883 OS << ",";
884 PS->To->printAsOperand(OS);
885 OS << "]";
886 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
887 OS << "; assume predicate info {"
888 << " Comparison:" << *PA->Condition;
890 OS << ", RenamedOp: ";
891 PI->RenamedOp->printAsOperand(OS, false);
892 OS << " }\n";
897 void PredicateInfo::print(raw_ostream &OS) const {
898 PredicateInfoAnnotatedWriter Writer(this);
899 F.print(OS, &Writer);
902 void PredicateInfo::dump() const {
903 PredicateInfoAnnotatedWriter Writer(this);
904 F.print(dbgs(), &Writer);
907 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
908 FunctionAnalysisManager &AM) {
909 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
910 auto &AC = AM.getResult<AssumptionAnalysis>(F);
911 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
913 return PreservedAnalyses::all();