1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file promotes memory references to be register references. It promotes
10 // alloca instructions which only have loads and stores as uses. An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/IteratedDominanceFrontier.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugProgramInstruction.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
57 #define DEBUG_TYPE "mem2reg"
59 STATISTIC(NumLocalPromoted
, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore
, "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca
, "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert
, "Number of PHI nodes inserted");
64 bool llvm::isAllocaPromotable(const AllocaInst
*AI
) {
65 // Only allow direct and non-volatile loads and stores...
66 for (const User
*U
: AI
->users()) {
67 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
68 // Note that atomic loads can be transformed; atomic semantics do
69 // not have any meaning for a local alloca.
70 if (LI
->isVolatile() || LI
->getType() != AI
->getAllocatedType())
72 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
73 if (SI
->getValueOperand() == AI
||
74 SI
->getValueOperand()->getType() != AI
->getAllocatedType())
75 return false; // Don't allow a store OF the AI, only INTO the AI.
76 // Note that atomic stores can be transformed; atomic semantics do
77 // not have any meaning for a local alloca.
80 } else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
)) {
81 if (!II
->isLifetimeStartOrEnd() && !II
->isDroppable())
83 } else if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
84 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI
))
86 } else if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
87 if (!GEPI
->hasAllZeroIndices())
89 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI
))
91 } else if (const AddrSpaceCastInst
*ASCI
= dyn_cast
<AddrSpaceCastInst
>(U
)) {
92 if (!onlyUsedByLifetimeMarkers(ASCI
))
104 static DPValue
*createDebugValue(DIBuilder
&DIB
, Value
*NewValue
,
105 DILocalVariable
*Variable
,
106 DIExpression
*Expression
, const DILocation
*DI
,
107 DPValue
*InsertBefore
) {
109 return DPValue::createDPValue(NewValue
, Variable
, Expression
, DI
,
112 static DbgValueInst
*createDebugValue(DIBuilder
&DIB
, Value
*NewValue
,
113 DILocalVariable
*Variable
,
114 DIExpression
*Expression
,
115 const DILocation
*DI
,
116 Instruction
*InsertBefore
) {
117 return static_cast<DbgValueInst
*>(DIB
.insertDbgValueIntrinsic(
118 NewValue
, Variable
, Expression
, DI
, InsertBefore
));
121 /// Helper for updating assignment tracking debug info when promoting allocas.
122 class AssignmentTrackingInfo
{
123 /// DbgAssignIntrinsics linked to the alloca with at most one per variable
124 /// fragment. (i.e. not be a comprehensive set if there are multiple
125 /// dbg.assigns for one variable fragment).
126 SmallVector
<DbgVariableIntrinsic
*> DbgAssigns
;
127 SmallVector
<DPValue
*> DPVAssigns
;
130 void init(AllocaInst
*AI
) {
131 SmallSet
<DebugVariable
, 2> Vars
;
132 for (DbgAssignIntrinsic
*DAI
: at::getAssignmentMarkers(AI
)) {
133 if (Vars
.insert(DebugVariable(DAI
)).second
)
134 DbgAssigns
.push_back(DAI
);
136 for (DPValue
*DPV
: at::getDPVAssignmentMarkers(AI
)) {
137 if (Vars
.insert(DebugVariable(DPV
)).second
)
138 DPVAssigns
.push_back(DPV
);
142 /// Update assignment tracking debug info given for the to-be-deleted store
143 /// \p ToDelete that stores to this alloca.
145 updateForDeletedStore(StoreInst
*ToDelete
, DIBuilder
&DIB
,
146 SmallSet
<DbgAssignIntrinsic
*, 8> *DbgAssignsToDelete
,
147 SmallSet
<DPValue
*, 8> *DPVAssignsToDelete
) const {
148 // There's nothing to do if the alloca doesn't have any variables using
149 // assignment tracking.
150 if (DbgAssigns
.empty() && DPVAssigns
.empty())
153 // Insert a dbg.value where the linked dbg.assign is and remember to delete
154 // the dbg.assign later. Demoting to dbg.value isn't necessary for
155 // correctness but does reduce compile time and memory usage by reducing
156 // unnecessary function-local metadata. Remember that we've seen a
157 // dbg.assign for each variable fragment for the untracked store handling
158 // (after this loop).
159 SmallSet
<DebugVariableAggregate
, 2> VarHasDbgAssignForStore
;
160 auto InsertValueForAssign
= [&](auto *DbgAssign
, auto *&AssignList
) {
161 VarHasDbgAssignForStore
.insert(DebugVariableAggregate(DbgAssign
));
162 AssignList
->insert(DbgAssign
);
163 createDebugValue(DIB
, DbgAssign
->getValue(), DbgAssign
->getVariable(),
164 DbgAssign
->getExpression(), DbgAssign
->getDebugLoc(),
167 for (auto *Assign
: at::getAssignmentMarkers(ToDelete
))
168 InsertValueForAssign(Assign
, DbgAssignsToDelete
);
169 for (auto *Assign
: at::getDPVAssignmentMarkers(ToDelete
))
170 InsertValueForAssign(Assign
, DPVAssignsToDelete
);
172 // It's possible for variables using assignment tracking to have no
173 // dbg.assign linked to this store. These are variables in DbgAssigns that
174 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign
175 // to mark the assignment - and the store is going to be deleted - insert a
176 // dbg.value to do that now. An untracked store may be either one that
177 // cannot be represented using assignment tracking (non-const offset or
178 // size) or one that is trackable but has had its DIAssignID attachment
179 // dropped accidentally.
180 auto ConvertUnlinkedAssignToValue
= [&](auto *Assign
) {
181 if (VarHasDbgAssignForStore
.contains(DebugVariableAggregate(Assign
)))
183 ConvertDebugDeclareToDebugValue(Assign
, ToDelete
, DIB
);
185 for_each(DbgAssigns
, ConvertUnlinkedAssignToValue
);
186 for_each(DPVAssigns
, ConvertUnlinkedAssignToValue
);
189 /// Update assignment tracking debug info given for the newly inserted PHI \p
191 void updateForNewPhi(PHINode
*NewPhi
, DIBuilder
&DIB
) const {
192 // Regardless of the position of dbg.assigns relative to stores, the
193 // incoming values into a new PHI should be the same for the (imaginary)
195 for (auto *DAI
: DbgAssigns
)
196 ConvertDebugDeclareToDebugValue(DAI
, NewPhi
, DIB
);
197 for (auto *DPV
: DPVAssigns
)
198 ConvertDebugDeclareToDebugValue(DPV
, NewPhi
, DIB
);
205 bool empty() { return DbgAssigns
.empty() && DPVAssigns
.empty(); }
209 using DbgUserVec
= SmallVector
<DbgVariableIntrinsic
*, 1>;
210 using DPUserVec
= SmallVector
<DPValue
*, 1>;
212 SmallVector
<BasicBlock
*, 32> DefiningBlocks
;
213 SmallVector
<BasicBlock
*, 32> UsingBlocks
;
215 StoreInst
*OnlyStore
;
216 BasicBlock
*OnlyBlock
;
217 bool OnlyUsedInOneBlock
;
219 /// Debug users of the alloca - does not include dbg.assign intrinsics.
222 /// Helper to update assignment tracking debug info.
223 AssignmentTrackingInfo AssignmentTracking
;
226 DefiningBlocks
.clear();
230 OnlyUsedInOneBlock
= true;
233 AssignmentTracking
.clear();
236 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
237 /// by the rest of the pass to reason about the uses of this alloca.
238 void AnalyzeAlloca(AllocaInst
*AI
) {
241 // As we scan the uses of the alloca instruction, keep track of stores,
242 // and decide whether all of the loads and stores to the alloca are within
243 // the same basic block.
244 for (User
*U
: AI
->users()) {
245 Instruction
*User
= cast
<Instruction
>(U
);
247 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
248 // Remember the basic blocks which define new values for the alloca
249 DefiningBlocks
.push_back(SI
->getParent());
252 LoadInst
*LI
= cast
<LoadInst
>(User
);
253 // Otherwise it must be a load instruction, keep track of variable
255 UsingBlocks
.push_back(LI
->getParent());
258 if (OnlyUsedInOneBlock
) {
260 OnlyBlock
= User
->getParent();
261 else if (OnlyBlock
!= User
->getParent())
262 OnlyUsedInOneBlock
= false;
265 DbgUserVec AllDbgUsers
;
266 SmallVector
<DPValue
*> AllDPUsers
;
267 findDbgUsers(AllDbgUsers
, AI
, &AllDPUsers
);
268 std::copy_if(AllDbgUsers
.begin(), AllDbgUsers
.end(),
269 std::back_inserter(DbgUsers
), [](DbgVariableIntrinsic
*DII
) {
270 return !isa
<DbgAssignIntrinsic
>(DII
);
272 std::copy_if(AllDPUsers
.begin(), AllDPUsers
.end(),
273 std::back_inserter(DPUsers
),
274 [](DPValue
*DPV
) { return !DPV
->isDbgAssign(); });
275 AssignmentTracking
.init(AI
);
279 /// Data package used by RenamePass().
280 struct RenamePassData
{
281 using ValVector
= std::vector
<Value
*>;
282 using LocationVector
= std::vector
<DebugLoc
>;
284 RenamePassData(BasicBlock
*B
, BasicBlock
*P
, ValVector V
, LocationVector L
)
285 : BB(B
), Pred(P
), Values(std::move(V
)), Locations(std::move(L
)) {}
290 LocationVector Locations
;
293 /// This assigns and keeps a per-bb relative ordering of load/store
294 /// instructions in the block that directly load or store an alloca.
296 /// This functionality is important because it avoids scanning large basic
297 /// blocks multiple times when promoting many allocas in the same block.
298 class LargeBlockInfo
{
299 /// For each instruction that we track, keep the index of the
302 /// The index starts out as the number of the instruction from the start of
304 DenseMap
<const Instruction
*, unsigned> InstNumbers
;
308 /// This code only looks at accesses to allocas.
309 static bool isInterestingInstruction(const Instruction
*I
) {
310 return (isa
<LoadInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(0))) ||
311 (isa
<StoreInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(1)));
314 /// Get or calculate the index of the specified instruction.
315 unsigned getInstructionIndex(const Instruction
*I
) {
316 assert(isInterestingInstruction(I
) &&
317 "Not a load/store to/from an alloca?");
319 // If we already have this instruction number, return it.
320 DenseMap
<const Instruction
*, unsigned>::iterator It
= InstNumbers
.find(I
);
321 if (It
!= InstNumbers
.end())
324 // Scan the whole block to get the instruction. This accumulates
325 // information for every interesting instruction in the block, in order to
326 // avoid gratuitus rescans.
327 const BasicBlock
*BB
= I
->getParent();
329 for (const Instruction
&BBI
: *BB
)
330 if (isInterestingInstruction(&BBI
))
331 InstNumbers
[&BBI
] = InstNo
++;
332 It
= InstNumbers
.find(I
);
334 assert(It
!= InstNumbers
.end() && "Didn't insert instruction?");
338 void deleteValue(const Instruction
*I
) { InstNumbers
.erase(I
); }
340 void clear() { InstNumbers
.clear(); }
343 struct PromoteMem2Reg
{
344 /// The alloca instructions being promoted.
345 std::vector
<AllocaInst
*> Allocas
;
350 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
353 const SimplifyQuery SQ
;
355 /// Reverse mapping of Allocas.
356 DenseMap
<AllocaInst
*, unsigned> AllocaLookup
;
358 /// The PhiNodes we're adding.
360 /// That map is used to simplify some Phi nodes as we iterate over it, so
361 /// it should have deterministic iterators. We could use a MapVector, but
362 /// since we already maintain a map from BasicBlock* to a stable numbering
363 /// (BBNumbers), the DenseMap is more efficient (also supports removal).
364 DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*> NewPhiNodes
;
366 /// For each PHI node, keep track of which entry in Allocas it corresponds
368 DenseMap
<PHINode
*, unsigned> PhiToAllocaMap
;
370 /// For each alloca, we keep track of the dbg.declare intrinsic that
371 /// describes it, if any, so that we can convert it to a dbg.value
372 /// intrinsic if the alloca gets promoted.
373 SmallVector
<AllocaInfo::DbgUserVec
, 8> AllocaDbgUsers
;
374 SmallVector
<AllocaInfo::DPUserVec
, 8> AllocaDPUsers
;
376 /// For each alloca, keep an instance of a helper class that gives us an easy
377 /// way to update assignment tracking debug info if the alloca is promoted.
378 SmallVector
<AssignmentTrackingInfo
, 8> AllocaATInfo
;
379 /// A set of dbg.assigns to delete because they've been demoted to
380 /// dbg.values. Call cleanUpDbgAssigns to delete them.
381 SmallSet
<DbgAssignIntrinsic
*, 8> DbgAssignsToDelete
;
382 SmallSet
<DPValue
*, 8> DPVAssignsToDelete
;
384 /// The set of basic blocks the renamer has already visited.
385 SmallPtrSet
<BasicBlock
*, 16> Visited
;
387 /// Contains a stable numbering of basic blocks to avoid non-determinstic
389 DenseMap
<BasicBlock
*, unsigned> BBNumbers
;
391 /// Lazily compute the number of predecessors a block has.
392 DenseMap
<const BasicBlock
*, unsigned> BBNumPreds
;
395 PromoteMem2Reg(ArrayRef
<AllocaInst
*> Allocas
, DominatorTree
&DT
,
397 : Allocas(Allocas
.begin(), Allocas
.end()), DT(DT
),
398 DIB(*DT
.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
399 AC(AC
), SQ(DT
.getRoot()->getParent()->getParent()->getDataLayout(),
405 void RemoveFromAllocasList(unsigned &AllocaIdx
) {
406 Allocas
[AllocaIdx
] = Allocas
.back();
411 unsigned getNumPreds(const BasicBlock
*BB
) {
412 unsigned &NP
= BBNumPreds
[BB
];
414 NP
= pred_size(BB
) + 1;
418 void ComputeLiveInBlocks(AllocaInst
*AI
, AllocaInfo
&Info
,
419 const SmallPtrSetImpl
<BasicBlock
*> &DefBlocks
,
420 SmallPtrSetImpl
<BasicBlock
*> &LiveInBlocks
);
421 void RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
422 RenamePassData::ValVector
&IncVals
,
423 RenamePassData::LocationVector
&IncLocs
,
424 std::vector
<RenamePassData
> &Worklist
);
425 bool QueuePhiNode(BasicBlock
*BB
, unsigned AllocaIdx
, unsigned &Version
);
427 /// Delete dbg.assigns that have been demoted to dbg.values.
428 void cleanUpDbgAssigns() {
429 for (auto *DAI
: DbgAssignsToDelete
)
430 DAI
->eraseFromParent();
431 DbgAssignsToDelete
.clear();
432 for (auto *DPV
: DPVAssignsToDelete
)
433 DPV
->eraseFromParent();
434 DPVAssignsToDelete
.clear();
438 } // end anonymous namespace
440 /// Given a LoadInst LI this adds assume(LI != null) after it.
441 static void addAssumeNonNull(AssumptionCache
*AC
, LoadInst
*LI
) {
442 Function
*AssumeIntrinsic
=
443 Intrinsic::getDeclaration(LI
->getModule(), Intrinsic::assume
);
444 ICmpInst
*LoadNotNull
= new ICmpInst(ICmpInst::ICMP_NE
, LI
,
445 Constant::getNullValue(LI
->getType()));
446 LoadNotNull
->insertAfter(LI
);
447 CallInst
*CI
= CallInst::Create(AssumeIntrinsic
, {LoadNotNull
});
448 CI
->insertAfter(LoadNotNull
);
449 AC
->registerAssumption(cast
<AssumeInst
>(CI
));
452 static void convertMetadataToAssumes(LoadInst
*LI
, Value
*Val
,
453 const DataLayout
&DL
, AssumptionCache
*AC
,
454 const DominatorTree
*DT
) {
455 // If the load was marked as nonnull we don't want to lose that information
456 // when we erase this Load. So we preserve it with an assume. As !nonnull
457 // returns poison while assume violations are immediate undefined behavior,
458 // we can only do this if the value is known non-poison.
459 if (AC
&& LI
->getMetadata(LLVMContext::MD_nonnull
) &&
460 LI
->getMetadata(LLVMContext::MD_noundef
) &&
461 !isKnownNonZero(Val
, DL
, 0, AC
, LI
, DT
))
462 addAssumeNonNull(AC
, LI
);
465 static void removeIntrinsicUsers(AllocaInst
*AI
) {
466 // Knowing that this alloca is promotable, we know that it's safe to kill all
467 // instructions except for load and store.
469 for (Use
&U
: llvm::make_early_inc_range(AI
->uses())) {
470 Instruction
*I
= cast
<Instruction
>(U
.getUser());
471 if (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
))
474 // Drop the use of AI in droppable instructions.
475 if (I
->isDroppable()) {
476 I
->dropDroppableUse(U
);
480 if (!I
->getType()->isVoidTy()) {
481 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
482 // Follow the use/def chain to erase them now instead of leaving it for
483 // dead code elimination later.
484 for (Use
&UU
: llvm::make_early_inc_range(I
->uses())) {
485 Instruction
*Inst
= cast
<Instruction
>(UU
.getUser());
487 // Drop the use of I in droppable instructions.
488 if (Inst
->isDroppable()) {
489 Inst
->dropDroppableUse(UU
);
492 Inst
->eraseFromParent();
495 I
->eraseFromParent();
499 /// Rewrite as many loads as possible given a single store.
501 /// When there is only a single store, we can use the domtree to trivially
502 /// replace all of the dominated loads with the stored value. Do so, and return
503 /// true if this has successfully promoted the alloca entirely. If this returns
504 /// false there were some loads which were not dominated by the single store
505 /// and thus must be phi-ed with undef. We fall back to the standard alloca
506 /// promotion algorithm in that case.
508 rewriteSingleStoreAlloca(AllocaInst
*AI
, AllocaInfo
&Info
, LargeBlockInfo
&LBI
,
509 const DataLayout
&DL
, DominatorTree
&DT
,
511 SmallSet
<DbgAssignIntrinsic
*, 8> *DbgAssignsToDelete
,
512 SmallSet
<DPValue
*, 8> *DPVAssignsToDelete
) {
513 StoreInst
*OnlyStore
= Info
.OnlyStore
;
514 bool StoringGlobalVal
= !isa
<Instruction
>(OnlyStore
->getOperand(0));
515 BasicBlock
*StoreBB
= OnlyStore
->getParent();
518 // Clear out UsingBlocks. We will reconstruct it here if needed.
519 Info
.UsingBlocks
.clear();
521 for (User
*U
: make_early_inc_range(AI
->users())) {
522 Instruction
*UserInst
= cast
<Instruction
>(U
);
523 if (UserInst
== OnlyStore
)
525 LoadInst
*LI
= cast
<LoadInst
>(UserInst
);
527 // Okay, if we have a load from the alloca, we want to replace it with the
528 // only value stored to the alloca. We can do this if the value is
529 // dominated by the store. If not, we use the rest of the mem2reg machinery
530 // to insert the phi nodes as needed.
531 if (!StoringGlobalVal
) { // Non-instructions are always dominated.
532 if (LI
->getParent() == StoreBB
) {
533 // If we have a use that is in the same block as the store, compare the
534 // indices of the two instructions to see which one came first. If the
535 // load came before the store, we can't handle it.
536 if (StoreIndex
== -1)
537 StoreIndex
= LBI
.getInstructionIndex(OnlyStore
);
539 if (unsigned(StoreIndex
) > LBI
.getInstructionIndex(LI
)) {
540 // Can't handle this load, bail out.
541 Info
.UsingBlocks
.push_back(StoreBB
);
544 } else if (!DT
.dominates(StoreBB
, LI
->getParent())) {
545 // If the load and store are in different blocks, use BB dominance to
546 // check their relationships. If the store doesn't dom the use, bail
548 Info
.UsingBlocks
.push_back(LI
->getParent());
553 // Otherwise, we *can* safely rewrite this load.
554 Value
*ReplVal
= OnlyStore
->getOperand(0);
555 // If the replacement value is the load, this must occur in unreachable
558 ReplVal
= PoisonValue::get(LI
->getType());
560 convertMetadataToAssumes(LI
, ReplVal
, DL
, AC
, &DT
);
561 LI
->replaceAllUsesWith(ReplVal
);
562 LI
->eraseFromParent();
566 // Finally, after the scan, check to see if the store is all that is left.
567 if (!Info
.UsingBlocks
.empty())
568 return false; // If not, we'll have to fall back for the remainder.
570 DIBuilder
DIB(*AI
->getModule(), /*AllowUnresolved*/ false);
571 // Update assignment tracking info for the store we're going to delete.
572 Info
.AssignmentTracking
.updateForDeletedStore(
573 Info
.OnlyStore
, DIB
, DbgAssignsToDelete
, DPVAssignsToDelete
);
575 // Record debuginfo for the store and remove the declaration's
577 auto ConvertDebugInfoForStore
= [&](auto &Container
) {
578 for (auto *DbgItem
: Container
) {
579 if (DbgItem
->isAddressOfVariable()) {
580 ConvertDebugDeclareToDebugValue(DbgItem
, Info
.OnlyStore
, DIB
);
581 DbgItem
->eraseFromParent();
582 } else if (DbgItem
->getExpression()->startsWithDeref()) {
583 DbgItem
->eraseFromParent();
587 ConvertDebugInfoForStore(Info
.DbgUsers
);
588 ConvertDebugInfoForStore(Info
.DPUsers
);
590 // Remove dbg.assigns linked to the alloca as these are now redundant.
591 at::deleteAssignmentMarkers(AI
);
593 // Remove the (now dead) store and alloca.
594 Info
.OnlyStore
->eraseFromParent();
595 LBI
.deleteValue(Info
.OnlyStore
);
597 AI
->eraseFromParent();
601 /// Many allocas are only used within a single basic block. If this is the
602 /// case, avoid traversing the CFG and inserting a lot of potentially useless
603 /// PHI nodes by just performing a single linear pass over the basic block
604 /// using the Alloca.
606 /// If we cannot promote this alloca (because it is read before it is written),
607 /// return false. This is necessary in cases where, due to control flow, the
608 /// alloca is undefined only on some control flow paths. e.g. code like
609 /// this is correct in LLVM IR:
610 /// // A is an alloca with no stores so far
613 /// if (!first_iteration)
618 promoteSingleBlockAlloca(AllocaInst
*AI
, const AllocaInfo
&Info
,
619 LargeBlockInfo
&LBI
, const DataLayout
&DL
,
620 DominatorTree
&DT
, AssumptionCache
*AC
,
621 SmallSet
<DbgAssignIntrinsic
*, 8> *DbgAssignsToDelete
,
622 SmallSet
<DPValue
*, 8> *DPVAssignsToDelete
) {
623 // The trickiest case to handle is when we have large blocks. Because of this,
624 // this code is optimized assuming that large blocks happen. This does not
625 // significantly pessimize the small block case. This uses LargeBlockInfo to
626 // make it efficient to get the index of various operations in the block.
628 // Walk the use-def list of the alloca, getting the locations of all stores.
629 using StoresByIndexTy
= SmallVector
<std::pair
<unsigned, StoreInst
*>, 64>;
630 StoresByIndexTy StoresByIndex
;
632 for (User
*U
: AI
->users())
633 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
634 StoresByIndex
.push_back(std::make_pair(LBI
.getInstructionIndex(SI
), SI
));
636 // Sort the stores by their index, making it efficient to do a lookup with a
638 llvm::sort(StoresByIndex
, less_first());
640 // Walk all of the loads from this alloca, replacing them with the nearest
641 // store above them, if any.
642 for (User
*U
: make_early_inc_range(AI
->users())) {
643 LoadInst
*LI
= dyn_cast
<LoadInst
>(U
);
647 unsigned LoadIdx
= LBI
.getInstructionIndex(LI
);
649 // Find the nearest store that has a lower index than this load.
650 StoresByIndexTy::iterator I
= llvm::lower_bound(
652 std::make_pair(LoadIdx
, static_cast<StoreInst
*>(nullptr)),
655 if (I
== StoresByIndex
.begin()) {
656 if (StoresByIndex
.empty())
657 // If there are no stores, the load takes the undef value.
658 ReplVal
= UndefValue::get(LI
->getType());
660 // There is no store before this load, bail out (load may be affected
661 // by the following stores - see main comment).
664 // Otherwise, there was a store before this load, the load takes its
666 ReplVal
= std::prev(I
)->second
->getOperand(0);
669 convertMetadataToAssumes(LI
, ReplVal
, DL
, AC
, &DT
);
671 // If the replacement value is the load, this must occur in unreachable
674 ReplVal
= PoisonValue::get(LI
->getType());
676 LI
->replaceAllUsesWith(ReplVal
);
677 LI
->eraseFromParent();
681 // Remove the (now dead) stores and alloca.
682 DIBuilder
DIB(*AI
->getModule(), /*AllowUnresolved*/ false);
683 while (!AI
->use_empty()) {
684 StoreInst
*SI
= cast
<StoreInst
>(AI
->user_back());
685 // Update assignment tracking info for the store we're going to delete.
686 Info
.AssignmentTracking
.updateForDeletedStore(SI
, DIB
, DbgAssignsToDelete
,
688 // Record debuginfo for the store before removing it.
689 auto DbgUpdateForStore
= [&](auto &Container
) {
690 for (auto *DbgItem
: Container
) {
691 if (DbgItem
->isAddressOfVariable()) {
692 ConvertDebugDeclareToDebugValue(DbgItem
, SI
, DIB
);
696 DbgUpdateForStore(Info
.DbgUsers
);
697 DbgUpdateForStore(Info
.DPUsers
);
699 SI
->eraseFromParent();
703 // Remove dbg.assigns linked to the alloca as these are now redundant.
704 at::deleteAssignmentMarkers(AI
);
705 AI
->eraseFromParent();
707 // The alloca's debuginfo can be removed as well.
708 auto DbgUpdateForAlloca
= [&](auto &Container
) {
709 for (auto *DbgItem
: Container
)
710 if (DbgItem
->isAddressOfVariable() ||
711 DbgItem
->getExpression()->startsWithDeref())
712 DbgItem
->eraseFromParent();
714 DbgUpdateForAlloca(Info
.DbgUsers
);
715 DbgUpdateForAlloca(Info
.DPUsers
);
721 void PromoteMem2Reg::run() {
722 Function
&F
= *DT
.getRoot()->getParent();
724 AllocaDbgUsers
.resize(Allocas
.size());
725 AllocaATInfo
.resize(Allocas
.size());
726 AllocaDPUsers
.resize(Allocas
.size());
730 ForwardIDFCalculator
IDF(DT
);
732 for (unsigned AllocaNum
= 0; AllocaNum
!= Allocas
.size(); ++AllocaNum
) {
733 AllocaInst
*AI
= Allocas
[AllocaNum
];
735 assert(isAllocaPromotable(AI
) && "Cannot promote non-promotable alloca!");
736 assert(AI
->getParent()->getParent() == &F
&&
737 "All allocas should be in the same function, which is same as DF!");
739 removeIntrinsicUsers(AI
);
741 if (AI
->use_empty()) {
742 // If there are no uses of the alloca, just delete it now.
743 AI
->eraseFromParent();
745 // Remove the alloca from the Allocas list, since it has been processed
746 RemoveFromAllocasList(AllocaNum
);
751 // Calculate the set of read and write-locations for each alloca. This is
752 // analogous to finding the 'uses' and 'definitions' of each variable.
753 Info
.AnalyzeAlloca(AI
);
755 // If there is only a single store to this value, replace any loads of
756 // it that are directly dominated by the definition with the value stored.
757 if (Info
.DefiningBlocks
.size() == 1) {
758 if (rewriteSingleStoreAlloca(AI
, Info
, LBI
, SQ
.DL
, DT
, AC
,
759 &DbgAssignsToDelete
, &DPVAssignsToDelete
)) {
760 // The alloca has been processed, move on.
761 RemoveFromAllocasList(AllocaNum
);
767 // If the alloca is only read and written in one basic block, just perform a
768 // linear sweep over the block to eliminate it.
769 if (Info
.OnlyUsedInOneBlock
&&
770 promoteSingleBlockAlloca(AI
, Info
, LBI
, SQ
.DL
, DT
, AC
,
771 &DbgAssignsToDelete
, &DPVAssignsToDelete
)) {
772 // The alloca has been processed, move on.
773 RemoveFromAllocasList(AllocaNum
);
777 // If we haven't computed a numbering for the BB's in the function, do so
779 if (BBNumbers
.empty()) {
782 BBNumbers
[&BB
] = ID
++;
785 // Remember the dbg.declare intrinsic describing this alloca, if any.
786 if (!Info
.DbgUsers
.empty())
787 AllocaDbgUsers
[AllocaNum
] = Info
.DbgUsers
;
788 if (!Info
.AssignmentTracking
.empty())
789 AllocaATInfo
[AllocaNum
] = Info
.AssignmentTracking
;
790 if (!Info
.DPUsers
.empty())
791 AllocaDPUsers
[AllocaNum
] = Info
.DPUsers
;
793 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
794 AllocaLookup
[Allocas
[AllocaNum
]] = AllocaNum
;
796 // Unique the set of defining blocks for efficient lookup.
797 SmallPtrSet
<BasicBlock
*, 32> DefBlocks(Info
.DefiningBlocks
.begin(),
798 Info
.DefiningBlocks
.end());
800 // Determine which blocks the value is live in. These are blocks which lead
802 SmallPtrSet
<BasicBlock
*, 32> LiveInBlocks
;
803 ComputeLiveInBlocks(AI
, Info
, DefBlocks
, LiveInBlocks
);
805 // At this point, we're committed to promoting the alloca using IDF's, and
806 // the standard SSA construction algorithm. Determine which blocks need phi
807 // nodes and see if we can optimize out some work by avoiding insertion of
809 IDF
.setLiveInBlocks(LiveInBlocks
);
810 IDF
.setDefiningBlocks(DefBlocks
);
811 SmallVector
<BasicBlock
*, 32> PHIBlocks
;
812 IDF
.calculate(PHIBlocks
);
813 llvm::sort(PHIBlocks
, [this](BasicBlock
*A
, BasicBlock
*B
) {
814 return BBNumbers
.find(A
)->second
< BBNumbers
.find(B
)->second
;
817 unsigned CurrentVersion
= 0;
818 for (BasicBlock
*BB
: PHIBlocks
)
819 QueuePhiNode(BB
, AllocaNum
, CurrentVersion
);
822 if (Allocas
.empty()) {
824 return; // All of the allocas must have been trivial!
828 // Set the incoming values for the basic block to be null values for all of
829 // the alloca's. We do this in case there is a load of a value that has not
830 // been stored yet. In this case, it will get this null value.
831 RenamePassData::ValVector
Values(Allocas
.size());
832 for (unsigned i
= 0, e
= Allocas
.size(); i
!= e
; ++i
)
833 Values
[i
] = UndefValue::get(Allocas
[i
]->getAllocatedType());
835 // When handling debug info, treat all incoming values as if they have unknown
836 // locations until proven otherwise.
837 RenamePassData::LocationVector
Locations(Allocas
.size());
839 // Walks all basic blocks in the function performing the SSA rename algorithm
840 // and inserting the phi nodes we marked as necessary
841 std::vector
<RenamePassData
> RenamePassWorkList
;
842 RenamePassWorkList
.emplace_back(&F
.front(), nullptr, std::move(Values
),
843 std::move(Locations
));
845 RenamePassData RPD
= std::move(RenamePassWorkList
.back());
846 RenamePassWorkList
.pop_back();
847 // RenamePass may add new worklist entries.
848 RenamePass(RPD
.BB
, RPD
.Pred
, RPD
.Values
, RPD
.Locations
, RenamePassWorkList
);
849 } while (!RenamePassWorkList
.empty());
851 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
854 // Remove the allocas themselves from the function.
855 for (Instruction
*A
: Allocas
) {
856 // Remove dbg.assigns linked to the alloca as these are now redundant.
857 at::deleteAssignmentMarkers(A
);
858 // If there are any uses of the alloca instructions left, they must be in
859 // unreachable basic blocks that were not processed by walking the dominator
860 // tree. Just delete the users now.
862 A
->replaceAllUsesWith(PoisonValue::get(A
->getType()));
863 A
->eraseFromParent();
866 // Remove alloca's dbg.declare intrinsics from the function.
867 auto RemoveDbgDeclares
= [&](auto &Container
) {
868 for (auto &DbgUsers
: Container
) {
869 for (auto *DbgItem
: DbgUsers
)
870 if (DbgItem
->isAddressOfVariable() ||
871 DbgItem
->getExpression()->startsWithDeref())
872 DbgItem
->eraseFromParent();
875 RemoveDbgDeclares(AllocaDbgUsers
);
876 RemoveDbgDeclares(AllocaDPUsers
);
878 // Loop over all of the PHI nodes and see if there are any that we can get
879 // rid of because they merge all of the same incoming values. This can
880 // happen due to undef values coming into the PHI nodes. This process is
881 // iterative, because eliminating one PHI node can cause others to be removed.
882 bool EliminatedAPHI
= true;
883 while (EliminatedAPHI
) {
884 EliminatedAPHI
= false;
886 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
887 // simplify and RAUW them as we go. If it was not, we could add uses to
888 // the values we replace with in a non-deterministic order, thus creating
889 // non-deterministic def->use chains.
890 for (DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*>::iterator
891 I
= NewPhiNodes
.begin(),
892 E
= NewPhiNodes
.end();
894 PHINode
*PN
= I
->second
;
896 // If this PHI node merges one value and/or undefs, get the value.
897 if (Value
*V
= simplifyInstruction(PN
, SQ
)) {
898 PN
->replaceAllUsesWith(V
);
899 PN
->eraseFromParent();
900 NewPhiNodes
.erase(I
++);
901 EliminatedAPHI
= true;
908 // At this point, the renamer has added entries to PHI nodes for all reachable
909 // code. Unfortunately, there may be unreachable blocks which the renamer
910 // hasn't traversed. If this is the case, the PHI nodes may not
911 // have incoming values for all predecessors. Loop over all PHI nodes we have
912 // created, inserting poison values if they are missing any incoming values.
913 for (DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*>::iterator
914 I
= NewPhiNodes
.begin(),
915 E
= NewPhiNodes
.end();
917 // We want to do this once per basic block. As such, only process a block
918 // when we find the PHI that is the first entry in the block.
919 PHINode
*SomePHI
= I
->second
;
920 BasicBlock
*BB
= SomePHI
->getParent();
921 if (&BB
->front() != SomePHI
)
924 // Only do work here if there the PHI nodes are missing incoming values. We
925 // know that all PHI nodes that were inserted in a block will have the same
926 // number of incoming values, so we can just check any of them.
927 if (SomePHI
->getNumIncomingValues() == getNumPreds(BB
))
930 // Get the preds for BB.
931 SmallVector
<BasicBlock
*, 16> Preds(predecessors(BB
));
933 // Ok, now we know that all of the PHI nodes are missing entries for some
934 // basic blocks. Start by sorting the incoming predecessors for efficient
936 auto CompareBBNumbers
= [this](BasicBlock
*A
, BasicBlock
*B
) {
937 return BBNumbers
.find(A
)->second
< BBNumbers
.find(B
)->second
;
939 llvm::sort(Preds
, CompareBBNumbers
);
941 // Now we loop through all BB's which have entries in SomePHI and remove
942 // them from the Preds list.
943 for (unsigned i
= 0, e
= SomePHI
->getNumIncomingValues(); i
!= e
; ++i
) {
944 // Do a log(n) search of the Preds list for the entry we want.
945 SmallVectorImpl
<BasicBlock
*>::iterator EntIt
= llvm::lower_bound(
946 Preds
, SomePHI
->getIncomingBlock(i
), CompareBBNumbers
);
947 assert(EntIt
!= Preds
.end() && *EntIt
== SomePHI
->getIncomingBlock(i
) &&
948 "PHI node has entry for a block which is not a predecessor!");
954 // At this point, the blocks left in the preds list must have dummy
955 // entries inserted into every PHI nodes for the block. Update all the phi
956 // nodes in this block that we are inserting (there could be phis before
958 unsigned NumBadPreds
= SomePHI
->getNumIncomingValues();
959 BasicBlock::iterator BBI
= BB
->begin();
960 while ((SomePHI
= dyn_cast
<PHINode
>(BBI
++)) &&
961 SomePHI
->getNumIncomingValues() == NumBadPreds
) {
962 Value
*PoisonVal
= PoisonValue::get(SomePHI
->getType());
963 for (BasicBlock
*Pred
: Preds
)
964 SomePHI
->addIncoming(PoisonVal
, Pred
);
972 /// Determine which blocks the value is live in.
974 /// These are blocks which lead to uses. Knowing this allows us to avoid
975 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
976 /// inserted phi nodes would be dead).
977 void PromoteMem2Reg::ComputeLiveInBlocks(
978 AllocaInst
*AI
, AllocaInfo
&Info
,
979 const SmallPtrSetImpl
<BasicBlock
*> &DefBlocks
,
980 SmallPtrSetImpl
<BasicBlock
*> &LiveInBlocks
) {
981 // To determine liveness, we must iterate through the predecessors of blocks
982 // where the def is live. Blocks are added to the worklist if we need to
983 // check their predecessors. Start with all the using blocks.
984 SmallVector
<BasicBlock
*, 64> LiveInBlockWorklist(Info
.UsingBlocks
.begin(),
985 Info
.UsingBlocks
.end());
987 // If any of the using blocks is also a definition block, check to see if the
988 // definition occurs before or after the use. If it happens before the use,
989 // the value isn't really live-in.
990 for (unsigned i
= 0, e
= LiveInBlockWorklist
.size(); i
!= e
; ++i
) {
991 BasicBlock
*BB
= LiveInBlockWorklist
[i
];
992 if (!DefBlocks
.count(BB
))
995 // Okay, this is a block that both uses and defines the value. If the first
996 // reference to the alloca is a def (store), then we know it isn't live-in.
997 for (BasicBlock::iterator I
= BB
->begin();; ++I
) {
998 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
999 if (SI
->getOperand(1) != AI
)
1002 // We found a store to the alloca before a load. The alloca is not
1003 // actually live-in here.
1004 LiveInBlockWorklist
[i
] = LiveInBlockWorklist
.back();
1005 LiveInBlockWorklist
.pop_back();
1011 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
1012 // Okay, we found a load before a store to the alloca. It is actually
1013 // live into this block.
1014 if (LI
->getOperand(0) == AI
)
1019 // Now that we have a set of blocks where the phi is live-in, recursively add
1020 // their predecessors until we find the full region the value is live.
1021 while (!LiveInBlockWorklist
.empty()) {
1022 BasicBlock
*BB
= LiveInBlockWorklist
.pop_back_val();
1024 // The block really is live in here, insert it into the set. If already in
1025 // the set, then it has already been processed.
1026 if (!LiveInBlocks
.insert(BB
).second
)
1029 // Since the value is live into BB, it is either defined in a predecessor or
1030 // live into it to. Add the preds to the worklist unless they are a
1032 for (BasicBlock
*P
: predecessors(BB
)) {
1033 // The value is not live into a predecessor if it defines the value.
1034 if (DefBlocks
.count(P
))
1037 // Otherwise it is, add to the worklist.
1038 LiveInBlockWorklist
.push_back(P
);
1043 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
1045 /// Returns true if there wasn't already a phi-node for that variable
1046 bool PromoteMem2Reg::QueuePhiNode(BasicBlock
*BB
, unsigned AllocaNo
,
1047 unsigned &Version
) {
1048 // Look up the basic-block in question.
1049 PHINode
*&PN
= NewPhiNodes
[std::make_pair(BBNumbers
[BB
], AllocaNo
)];
1051 // If the BB already has a phi node added for the i'th alloca then we're done!
1055 // Create a PhiNode using the dereferenced type... and add the phi-node to the
1057 PN
= PHINode::Create(Allocas
[AllocaNo
]->getAllocatedType(), getNumPreds(BB
),
1058 Allocas
[AllocaNo
]->getName() + "." + Twine(Version
++));
1059 PN
->insertBefore(BB
->begin());
1061 PhiToAllocaMap
[PN
] = AllocaNo
;
1065 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
1066 /// create a merged location incorporating \p DL, or to set \p DL directly.
1067 static void updateForIncomingValueLocation(PHINode
*PN
, DebugLoc DL
,
1068 bool ApplyMergedLoc
) {
1070 PN
->applyMergedLocation(PN
->getDebugLoc(), DL
);
1072 PN
->setDebugLoc(DL
);
1075 /// Recursively traverse the CFG of the function, renaming loads and
1076 /// stores to the allocas which we are promoting.
1078 /// IncomingVals indicates what value each Alloca contains on exit from the
1079 /// predecessor block Pred.
1080 void PromoteMem2Reg::RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
1081 RenamePassData::ValVector
&IncomingVals
,
1082 RenamePassData::LocationVector
&IncomingLocs
,
1083 std::vector
<RenamePassData
> &Worklist
) {
1085 // If we are inserting any phi nodes into this BB, they will already be in the
1087 if (PHINode
*APN
= dyn_cast
<PHINode
>(BB
->begin())) {
1088 // If we have PHI nodes to update, compute the number of edges from Pred to
1090 if (PhiToAllocaMap
.count(APN
)) {
1091 // We want to be able to distinguish between PHI nodes being inserted by
1092 // this invocation of mem2reg from those phi nodes that already existed in
1093 // the IR before mem2reg was run. We determine that APN is being inserted
1094 // because it is missing incoming edges. All other PHI nodes being
1095 // inserted by this pass of mem2reg will have the same number of incoming
1096 // operands so far. Remember this count.
1097 unsigned NewPHINumOperands
= APN
->getNumOperands();
1099 unsigned NumEdges
= llvm::count(successors(Pred
), BB
);
1100 assert(NumEdges
&& "Must be at least one edge from Pred to BB!");
1102 // Add entries for all the phis.
1103 BasicBlock::iterator PNI
= BB
->begin();
1105 unsigned AllocaNo
= PhiToAllocaMap
[APN
];
1107 // Update the location of the phi node.
1108 updateForIncomingValueLocation(APN
, IncomingLocs
[AllocaNo
],
1109 APN
->getNumIncomingValues() > 0);
1111 // Add N incoming values to the PHI node.
1112 for (unsigned i
= 0; i
!= NumEdges
; ++i
)
1113 APN
->addIncoming(IncomingVals
[AllocaNo
], Pred
);
1115 // The currently active variable for this block is now the PHI.
1116 IncomingVals
[AllocaNo
] = APN
;
1117 AllocaATInfo
[AllocaNo
].updateForNewPhi(APN
, DIB
);
1118 auto ConvertDbgDeclares
= [&](auto &Container
) {
1119 for (auto *DbgItem
: Container
)
1120 if (DbgItem
->isAddressOfVariable())
1121 ConvertDebugDeclareToDebugValue(DbgItem
, APN
, DIB
);
1123 ConvertDbgDeclares(AllocaDbgUsers
[AllocaNo
]);
1124 ConvertDbgDeclares(AllocaDPUsers
[AllocaNo
]);
1126 // Get the next phi node.
1128 APN
= dyn_cast
<PHINode
>(PNI
);
1132 // Verify that it is missing entries. If not, it is not being inserted
1133 // by this mem2reg invocation so we want to ignore it.
1134 } while (APN
->getNumOperands() == NewPHINumOperands
);
1138 // Don't revisit blocks.
1139 if (!Visited
.insert(BB
).second
)
1142 for (BasicBlock::iterator II
= BB
->begin(); !II
->isTerminator();) {
1143 Instruction
*I
= &*II
++; // get the instruction, increment iterator
1145 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
1146 AllocaInst
*Src
= dyn_cast
<AllocaInst
>(LI
->getPointerOperand());
1150 DenseMap
<AllocaInst
*, unsigned>::iterator AI
= AllocaLookup
.find(Src
);
1151 if (AI
== AllocaLookup
.end())
1154 Value
*V
= IncomingVals
[AI
->second
];
1155 convertMetadataToAssumes(LI
, V
, SQ
.DL
, AC
, &DT
);
1157 // Anything using the load now uses the current value.
1158 LI
->replaceAllUsesWith(V
);
1159 LI
->eraseFromParent();
1160 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1161 // Delete this instruction and mark the name as the current holder of the
1163 AllocaInst
*Dest
= dyn_cast
<AllocaInst
>(SI
->getPointerOperand());
1167 DenseMap
<AllocaInst
*, unsigned>::iterator ai
= AllocaLookup
.find(Dest
);
1168 if (ai
== AllocaLookup
.end())
1171 // what value were we writing?
1172 unsigned AllocaNo
= ai
->second
;
1173 IncomingVals
[AllocaNo
] = SI
->getOperand(0);
1175 // Record debuginfo for the store before removing it.
1176 IncomingLocs
[AllocaNo
] = SI
->getDebugLoc();
1177 AllocaATInfo
[AllocaNo
].updateForDeletedStore(SI
, DIB
, &DbgAssignsToDelete
,
1178 &DPVAssignsToDelete
);
1179 auto ConvertDbgDeclares
= [&](auto &Container
) {
1180 for (auto *DbgItem
: Container
)
1181 if (DbgItem
->isAddressOfVariable())
1182 ConvertDebugDeclareToDebugValue(DbgItem
, SI
, DIB
);
1184 ConvertDbgDeclares(AllocaDbgUsers
[ai
->second
]);
1185 ConvertDbgDeclares(AllocaDPUsers
[ai
->second
]);
1186 SI
->eraseFromParent();
1190 // 'Recurse' to our successors.
1191 succ_iterator I
= succ_begin(BB
), E
= succ_end(BB
);
1195 // Keep track of the successors so we don't visit the same successor twice
1196 SmallPtrSet
<BasicBlock
*, 8> VisitedSuccs
;
1198 // Handle the first successor without using the worklist.
1199 VisitedSuccs
.insert(*I
);
1205 if (VisitedSuccs
.insert(*I
).second
)
1206 Worklist
.emplace_back(*I
, Pred
, IncomingVals
, IncomingLocs
);
1211 void llvm::PromoteMemToReg(ArrayRef
<AllocaInst
*> Allocas
, DominatorTree
&DT
,
1212 AssumptionCache
*AC
) {
1213 // If there is nothing to do, bail out...
1214 if (Allocas
.empty())
1217 PromoteMem2Reg(Allocas
, DT
, AC
).run();