[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Utils / PromoteMemoryToRegister.cpp
blob88b05aab8db4dfb71cd434df782a128aef2002d5
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references. It promotes
10 // alloca instructions which only have loads and stores as uses. An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/IteratedDominanceFrontier.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugProgramInstruction.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
55 using namespace llvm;
57 #define DEBUG_TYPE "mem2reg"
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65 // Only allow direct and non-volatile loads and stores...
66 for (const User *U : AI->users()) {
67 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68 // Note that atomic loads can be transformed; atomic semantics do
69 // not have any meaning for a local alloca.
70 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType())
71 return false;
72 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73 if (SI->getValueOperand() == AI ||
74 SI->getValueOperand()->getType() != AI->getAllocatedType())
75 return false; // Don't allow a store OF the AI, only INTO the AI.
76 // Note that atomic stores can be transformed; atomic semantics do
77 // not have any meaning for a local alloca.
78 if (SI->isVolatile())
79 return false;
80 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
81 if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
82 return false;
83 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
84 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
85 return false;
86 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
87 if (!GEPI->hasAllZeroIndices())
88 return false;
89 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
90 return false;
91 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
92 if (!onlyUsedByLifetimeMarkers(ASCI))
93 return false;
94 } else {
95 return false;
99 return true;
102 namespace {
104 static DPValue *createDebugValue(DIBuilder &DIB, Value *NewValue,
105 DILocalVariable *Variable,
106 DIExpression *Expression, const DILocation *DI,
107 DPValue *InsertBefore) {
108 (void)DIB;
109 return DPValue::createDPValue(NewValue, Variable, Expression, DI,
110 *InsertBefore);
112 static DbgValueInst *createDebugValue(DIBuilder &DIB, Value *NewValue,
113 DILocalVariable *Variable,
114 DIExpression *Expression,
115 const DILocation *DI,
116 Instruction *InsertBefore) {
117 return static_cast<DbgValueInst *>(DIB.insertDbgValueIntrinsic(
118 NewValue, Variable, Expression, DI, InsertBefore));
121 /// Helper for updating assignment tracking debug info when promoting allocas.
122 class AssignmentTrackingInfo {
123 /// DbgAssignIntrinsics linked to the alloca with at most one per variable
124 /// fragment. (i.e. not be a comprehensive set if there are multiple
125 /// dbg.assigns for one variable fragment).
126 SmallVector<DbgVariableIntrinsic *> DbgAssigns;
127 SmallVector<DPValue *> DPVAssigns;
129 public:
130 void init(AllocaInst *AI) {
131 SmallSet<DebugVariable, 2> Vars;
132 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) {
133 if (Vars.insert(DebugVariable(DAI)).second)
134 DbgAssigns.push_back(DAI);
136 for (DPValue *DPV : at::getDPVAssignmentMarkers(AI)) {
137 if (Vars.insert(DebugVariable(DPV)).second)
138 DPVAssigns.push_back(DPV);
142 /// Update assignment tracking debug info given for the to-be-deleted store
143 /// \p ToDelete that stores to this alloca.
144 void
145 updateForDeletedStore(StoreInst *ToDelete, DIBuilder &DIB,
146 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete,
147 SmallSet<DPValue *, 8> *DPVAssignsToDelete) const {
148 // There's nothing to do if the alloca doesn't have any variables using
149 // assignment tracking.
150 if (DbgAssigns.empty() && DPVAssigns.empty())
151 return;
153 // Insert a dbg.value where the linked dbg.assign is and remember to delete
154 // the dbg.assign later. Demoting to dbg.value isn't necessary for
155 // correctness but does reduce compile time and memory usage by reducing
156 // unnecessary function-local metadata. Remember that we've seen a
157 // dbg.assign for each variable fragment for the untracked store handling
158 // (after this loop).
159 SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore;
160 auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) {
161 VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign));
162 AssignList->insert(DbgAssign);
163 createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(),
164 DbgAssign->getExpression(), DbgAssign->getDebugLoc(),
165 DbgAssign);
167 for (auto *Assign : at::getAssignmentMarkers(ToDelete))
168 InsertValueForAssign(Assign, DbgAssignsToDelete);
169 for (auto *Assign : at::getDPVAssignmentMarkers(ToDelete))
170 InsertValueForAssign(Assign, DPVAssignsToDelete);
172 // It's possible for variables using assignment tracking to have no
173 // dbg.assign linked to this store. These are variables in DbgAssigns that
174 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign
175 // to mark the assignment - and the store is going to be deleted - insert a
176 // dbg.value to do that now. An untracked store may be either one that
177 // cannot be represented using assignment tracking (non-const offset or
178 // size) or one that is trackable but has had its DIAssignID attachment
179 // dropped accidentally.
180 auto ConvertUnlinkedAssignToValue = [&](auto *Assign) {
181 if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign)))
182 return;
183 ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB);
185 for_each(DbgAssigns, ConvertUnlinkedAssignToValue);
186 for_each(DPVAssigns, ConvertUnlinkedAssignToValue);
189 /// Update assignment tracking debug info given for the newly inserted PHI \p
190 /// NewPhi.
191 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const {
192 // Regardless of the position of dbg.assigns relative to stores, the
193 // incoming values into a new PHI should be the same for the (imaginary)
194 // debug-phi.
195 for (auto *DAI : DbgAssigns)
196 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB);
197 for (auto *DPV : DPVAssigns)
198 ConvertDebugDeclareToDebugValue(DPV, NewPhi, DIB);
201 void clear() {
202 DbgAssigns.clear();
203 DPVAssigns.clear();
205 bool empty() { return DbgAssigns.empty() && DPVAssigns.empty(); }
208 struct AllocaInfo {
209 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
210 using DPUserVec = SmallVector<DPValue *, 1>;
212 SmallVector<BasicBlock *, 32> DefiningBlocks;
213 SmallVector<BasicBlock *, 32> UsingBlocks;
215 StoreInst *OnlyStore;
216 BasicBlock *OnlyBlock;
217 bool OnlyUsedInOneBlock;
219 /// Debug users of the alloca - does not include dbg.assign intrinsics.
220 DbgUserVec DbgUsers;
221 DPUserVec DPUsers;
222 /// Helper to update assignment tracking debug info.
223 AssignmentTrackingInfo AssignmentTracking;
225 void clear() {
226 DefiningBlocks.clear();
227 UsingBlocks.clear();
228 OnlyStore = nullptr;
229 OnlyBlock = nullptr;
230 OnlyUsedInOneBlock = true;
231 DbgUsers.clear();
232 DPUsers.clear();
233 AssignmentTracking.clear();
236 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
237 /// by the rest of the pass to reason about the uses of this alloca.
238 void AnalyzeAlloca(AllocaInst *AI) {
239 clear();
241 // As we scan the uses of the alloca instruction, keep track of stores,
242 // and decide whether all of the loads and stores to the alloca are within
243 // the same basic block.
244 for (User *U : AI->users()) {
245 Instruction *User = cast<Instruction>(U);
247 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
248 // Remember the basic blocks which define new values for the alloca
249 DefiningBlocks.push_back(SI->getParent());
250 OnlyStore = SI;
251 } else {
252 LoadInst *LI = cast<LoadInst>(User);
253 // Otherwise it must be a load instruction, keep track of variable
254 // reads.
255 UsingBlocks.push_back(LI->getParent());
258 if (OnlyUsedInOneBlock) {
259 if (!OnlyBlock)
260 OnlyBlock = User->getParent();
261 else if (OnlyBlock != User->getParent())
262 OnlyUsedInOneBlock = false;
265 DbgUserVec AllDbgUsers;
266 SmallVector<DPValue *> AllDPUsers;
267 findDbgUsers(AllDbgUsers, AI, &AllDPUsers);
268 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(),
269 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) {
270 return !isa<DbgAssignIntrinsic>(DII);
272 std::copy_if(AllDPUsers.begin(), AllDPUsers.end(),
273 std::back_inserter(DPUsers),
274 [](DPValue *DPV) { return !DPV->isDbgAssign(); });
275 AssignmentTracking.init(AI);
279 /// Data package used by RenamePass().
280 struct RenamePassData {
281 using ValVector = std::vector<Value *>;
282 using LocationVector = std::vector<DebugLoc>;
284 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
285 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
287 BasicBlock *BB;
288 BasicBlock *Pred;
289 ValVector Values;
290 LocationVector Locations;
293 /// This assigns and keeps a per-bb relative ordering of load/store
294 /// instructions in the block that directly load or store an alloca.
296 /// This functionality is important because it avoids scanning large basic
297 /// blocks multiple times when promoting many allocas in the same block.
298 class LargeBlockInfo {
299 /// For each instruction that we track, keep the index of the
300 /// instruction.
302 /// The index starts out as the number of the instruction from the start of
303 /// the block.
304 DenseMap<const Instruction *, unsigned> InstNumbers;
306 public:
308 /// This code only looks at accesses to allocas.
309 static bool isInterestingInstruction(const Instruction *I) {
310 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
311 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
314 /// Get or calculate the index of the specified instruction.
315 unsigned getInstructionIndex(const Instruction *I) {
316 assert(isInterestingInstruction(I) &&
317 "Not a load/store to/from an alloca?");
319 // If we already have this instruction number, return it.
320 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
321 if (It != InstNumbers.end())
322 return It->second;
324 // Scan the whole block to get the instruction. This accumulates
325 // information for every interesting instruction in the block, in order to
326 // avoid gratuitus rescans.
327 const BasicBlock *BB = I->getParent();
328 unsigned InstNo = 0;
329 for (const Instruction &BBI : *BB)
330 if (isInterestingInstruction(&BBI))
331 InstNumbers[&BBI] = InstNo++;
332 It = InstNumbers.find(I);
334 assert(It != InstNumbers.end() && "Didn't insert instruction?");
335 return It->second;
338 void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
340 void clear() { InstNumbers.clear(); }
343 struct PromoteMem2Reg {
344 /// The alloca instructions being promoted.
345 std::vector<AllocaInst *> Allocas;
347 DominatorTree &DT;
348 DIBuilder DIB;
350 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
351 AssumptionCache *AC;
353 const SimplifyQuery SQ;
355 /// Reverse mapping of Allocas.
356 DenseMap<AllocaInst *, unsigned> AllocaLookup;
358 /// The PhiNodes we're adding.
360 /// That map is used to simplify some Phi nodes as we iterate over it, so
361 /// it should have deterministic iterators. We could use a MapVector, but
362 /// since we already maintain a map from BasicBlock* to a stable numbering
363 /// (BBNumbers), the DenseMap is more efficient (also supports removal).
364 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
366 /// For each PHI node, keep track of which entry in Allocas it corresponds
367 /// to.
368 DenseMap<PHINode *, unsigned> PhiToAllocaMap;
370 /// For each alloca, we keep track of the dbg.declare intrinsic that
371 /// describes it, if any, so that we can convert it to a dbg.value
372 /// intrinsic if the alloca gets promoted.
373 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
374 SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers;
376 /// For each alloca, keep an instance of a helper class that gives us an easy
377 /// way to update assignment tracking debug info if the alloca is promoted.
378 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo;
379 /// A set of dbg.assigns to delete because they've been demoted to
380 /// dbg.values. Call cleanUpDbgAssigns to delete them.
381 SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete;
382 SmallSet<DPValue *, 8> DPVAssignsToDelete;
384 /// The set of basic blocks the renamer has already visited.
385 SmallPtrSet<BasicBlock *, 16> Visited;
387 /// Contains a stable numbering of basic blocks to avoid non-determinstic
388 /// behavior.
389 DenseMap<BasicBlock *, unsigned> BBNumbers;
391 /// Lazily compute the number of predecessors a block has.
392 DenseMap<const BasicBlock *, unsigned> BBNumPreds;
394 public:
395 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
396 AssumptionCache *AC)
397 : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
398 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
399 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
400 nullptr, &DT, AC) {}
402 void run();
404 private:
405 void RemoveFromAllocasList(unsigned &AllocaIdx) {
406 Allocas[AllocaIdx] = Allocas.back();
407 Allocas.pop_back();
408 --AllocaIdx;
411 unsigned getNumPreds(const BasicBlock *BB) {
412 unsigned &NP = BBNumPreds[BB];
413 if (NP == 0)
414 NP = pred_size(BB) + 1;
415 return NP - 1;
418 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
419 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
420 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
421 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
422 RenamePassData::ValVector &IncVals,
423 RenamePassData::LocationVector &IncLocs,
424 std::vector<RenamePassData> &Worklist);
425 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
427 /// Delete dbg.assigns that have been demoted to dbg.values.
428 void cleanUpDbgAssigns() {
429 for (auto *DAI : DbgAssignsToDelete)
430 DAI->eraseFromParent();
431 DbgAssignsToDelete.clear();
432 for (auto *DPV : DPVAssignsToDelete)
433 DPV->eraseFromParent();
434 DPVAssignsToDelete.clear();
438 } // end anonymous namespace
440 /// Given a LoadInst LI this adds assume(LI != null) after it.
441 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
442 Function *AssumeIntrinsic =
443 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
444 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
445 Constant::getNullValue(LI->getType()));
446 LoadNotNull->insertAfter(LI);
447 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
448 CI->insertAfter(LoadNotNull);
449 AC->registerAssumption(cast<AssumeInst>(CI));
452 static void convertMetadataToAssumes(LoadInst *LI, Value *Val,
453 const DataLayout &DL, AssumptionCache *AC,
454 const DominatorTree *DT) {
455 // If the load was marked as nonnull we don't want to lose that information
456 // when we erase this Load. So we preserve it with an assume. As !nonnull
457 // returns poison while assume violations are immediate undefined behavior,
458 // we can only do this if the value is known non-poison.
459 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
460 LI->getMetadata(LLVMContext::MD_noundef) &&
461 !isKnownNonZero(Val, DL, 0, AC, LI, DT))
462 addAssumeNonNull(AC, LI);
465 static void removeIntrinsicUsers(AllocaInst *AI) {
466 // Knowing that this alloca is promotable, we know that it's safe to kill all
467 // instructions except for load and store.
469 for (Use &U : llvm::make_early_inc_range(AI->uses())) {
470 Instruction *I = cast<Instruction>(U.getUser());
471 if (isa<LoadInst>(I) || isa<StoreInst>(I))
472 continue;
474 // Drop the use of AI in droppable instructions.
475 if (I->isDroppable()) {
476 I->dropDroppableUse(U);
477 continue;
480 if (!I->getType()->isVoidTy()) {
481 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
482 // Follow the use/def chain to erase them now instead of leaving it for
483 // dead code elimination later.
484 for (Use &UU : llvm::make_early_inc_range(I->uses())) {
485 Instruction *Inst = cast<Instruction>(UU.getUser());
487 // Drop the use of I in droppable instructions.
488 if (Inst->isDroppable()) {
489 Inst->dropDroppableUse(UU);
490 continue;
492 Inst->eraseFromParent();
495 I->eraseFromParent();
499 /// Rewrite as many loads as possible given a single store.
501 /// When there is only a single store, we can use the domtree to trivially
502 /// replace all of the dominated loads with the stored value. Do so, and return
503 /// true if this has successfully promoted the alloca entirely. If this returns
504 /// false there were some loads which were not dominated by the single store
505 /// and thus must be phi-ed with undef. We fall back to the standard alloca
506 /// promotion algorithm in that case.
507 static bool
508 rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI,
509 const DataLayout &DL, DominatorTree &DT,
510 AssumptionCache *AC,
511 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete,
512 SmallSet<DPValue *, 8> *DPVAssignsToDelete) {
513 StoreInst *OnlyStore = Info.OnlyStore;
514 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
515 BasicBlock *StoreBB = OnlyStore->getParent();
516 int StoreIndex = -1;
518 // Clear out UsingBlocks. We will reconstruct it here if needed.
519 Info.UsingBlocks.clear();
521 for (User *U : make_early_inc_range(AI->users())) {
522 Instruction *UserInst = cast<Instruction>(U);
523 if (UserInst == OnlyStore)
524 continue;
525 LoadInst *LI = cast<LoadInst>(UserInst);
527 // Okay, if we have a load from the alloca, we want to replace it with the
528 // only value stored to the alloca. We can do this if the value is
529 // dominated by the store. If not, we use the rest of the mem2reg machinery
530 // to insert the phi nodes as needed.
531 if (!StoringGlobalVal) { // Non-instructions are always dominated.
532 if (LI->getParent() == StoreBB) {
533 // If we have a use that is in the same block as the store, compare the
534 // indices of the two instructions to see which one came first. If the
535 // load came before the store, we can't handle it.
536 if (StoreIndex == -1)
537 StoreIndex = LBI.getInstructionIndex(OnlyStore);
539 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
540 // Can't handle this load, bail out.
541 Info.UsingBlocks.push_back(StoreBB);
542 continue;
544 } else if (!DT.dominates(StoreBB, LI->getParent())) {
545 // If the load and store are in different blocks, use BB dominance to
546 // check their relationships. If the store doesn't dom the use, bail
547 // out.
548 Info.UsingBlocks.push_back(LI->getParent());
549 continue;
553 // Otherwise, we *can* safely rewrite this load.
554 Value *ReplVal = OnlyStore->getOperand(0);
555 // If the replacement value is the load, this must occur in unreachable
556 // code.
557 if (ReplVal == LI)
558 ReplVal = PoisonValue::get(LI->getType());
560 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
561 LI->replaceAllUsesWith(ReplVal);
562 LI->eraseFromParent();
563 LBI.deleteValue(LI);
566 // Finally, after the scan, check to see if the store is all that is left.
567 if (!Info.UsingBlocks.empty())
568 return false; // If not, we'll have to fall back for the remainder.
570 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
571 // Update assignment tracking info for the store we're going to delete.
572 Info.AssignmentTracking.updateForDeletedStore(
573 Info.OnlyStore, DIB, DbgAssignsToDelete, DPVAssignsToDelete);
575 // Record debuginfo for the store and remove the declaration's
576 // debuginfo.
577 auto ConvertDebugInfoForStore = [&](auto &Container) {
578 for (auto *DbgItem : Container) {
579 if (DbgItem->isAddressOfVariable()) {
580 ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB);
581 DbgItem->eraseFromParent();
582 } else if (DbgItem->getExpression()->startsWithDeref()) {
583 DbgItem->eraseFromParent();
587 ConvertDebugInfoForStore(Info.DbgUsers);
588 ConvertDebugInfoForStore(Info.DPUsers);
590 // Remove dbg.assigns linked to the alloca as these are now redundant.
591 at::deleteAssignmentMarkers(AI);
593 // Remove the (now dead) store and alloca.
594 Info.OnlyStore->eraseFromParent();
595 LBI.deleteValue(Info.OnlyStore);
597 AI->eraseFromParent();
598 return true;
601 /// Many allocas are only used within a single basic block. If this is the
602 /// case, avoid traversing the CFG and inserting a lot of potentially useless
603 /// PHI nodes by just performing a single linear pass over the basic block
604 /// using the Alloca.
606 /// If we cannot promote this alloca (because it is read before it is written),
607 /// return false. This is necessary in cases where, due to control flow, the
608 /// alloca is undefined only on some control flow paths. e.g. code like
609 /// this is correct in LLVM IR:
610 /// // A is an alloca with no stores so far
611 /// for (...) {
612 /// int t = *A;
613 /// if (!first_iteration)
614 /// use(t);
615 /// *A = 42;
616 /// }
617 static bool
618 promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
619 LargeBlockInfo &LBI, const DataLayout &DL,
620 DominatorTree &DT, AssumptionCache *AC,
621 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete,
622 SmallSet<DPValue *, 8> *DPVAssignsToDelete) {
623 // The trickiest case to handle is when we have large blocks. Because of this,
624 // this code is optimized assuming that large blocks happen. This does not
625 // significantly pessimize the small block case. This uses LargeBlockInfo to
626 // make it efficient to get the index of various operations in the block.
628 // Walk the use-def list of the alloca, getting the locations of all stores.
629 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
630 StoresByIndexTy StoresByIndex;
632 for (User *U : AI->users())
633 if (StoreInst *SI = dyn_cast<StoreInst>(U))
634 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
636 // Sort the stores by their index, making it efficient to do a lookup with a
637 // binary search.
638 llvm::sort(StoresByIndex, less_first());
640 // Walk all of the loads from this alloca, replacing them with the nearest
641 // store above them, if any.
642 for (User *U : make_early_inc_range(AI->users())) {
643 LoadInst *LI = dyn_cast<LoadInst>(U);
644 if (!LI)
645 continue;
647 unsigned LoadIdx = LBI.getInstructionIndex(LI);
649 // Find the nearest store that has a lower index than this load.
650 StoresByIndexTy::iterator I = llvm::lower_bound(
651 StoresByIndex,
652 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
653 less_first());
654 Value *ReplVal;
655 if (I == StoresByIndex.begin()) {
656 if (StoresByIndex.empty())
657 // If there are no stores, the load takes the undef value.
658 ReplVal = UndefValue::get(LI->getType());
659 else
660 // There is no store before this load, bail out (load may be affected
661 // by the following stores - see main comment).
662 return false;
663 } else {
664 // Otherwise, there was a store before this load, the load takes its
665 // value.
666 ReplVal = std::prev(I)->second->getOperand(0);
669 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
671 // If the replacement value is the load, this must occur in unreachable
672 // code.
673 if (ReplVal == LI)
674 ReplVal = PoisonValue::get(LI->getType());
676 LI->replaceAllUsesWith(ReplVal);
677 LI->eraseFromParent();
678 LBI.deleteValue(LI);
681 // Remove the (now dead) stores and alloca.
682 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
683 while (!AI->use_empty()) {
684 StoreInst *SI = cast<StoreInst>(AI->user_back());
685 // Update assignment tracking info for the store we're going to delete.
686 Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete,
687 DPVAssignsToDelete);
688 // Record debuginfo for the store before removing it.
689 auto DbgUpdateForStore = [&](auto &Container) {
690 for (auto *DbgItem : Container) {
691 if (DbgItem->isAddressOfVariable()) {
692 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB);
696 DbgUpdateForStore(Info.DbgUsers);
697 DbgUpdateForStore(Info.DPUsers);
699 SI->eraseFromParent();
700 LBI.deleteValue(SI);
703 // Remove dbg.assigns linked to the alloca as these are now redundant.
704 at::deleteAssignmentMarkers(AI);
705 AI->eraseFromParent();
707 // The alloca's debuginfo can be removed as well.
708 auto DbgUpdateForAlloca = [&](auto &Container) {
709 for (auto *DbgItem : Container)
710 if (DbgItem->isAddressOfVariable() ||
711 DbgItem->getExpression()->startsWithDeref())
712 DbgItem->eraseFromParent();
714 DbgUpdateForAlloca(Info.DbgUsers);
715 DbgUpdateForAlloca(Info.DPUsers);
717 ++NumLocalPromoted;
718 return true;
721 void PromoteMem2Reg::run() {
722 Function &F = *DT.getRoot()->getParent();
724 AllocaDbgUsers.resize(Allocas.size());
725 AllocaATInfo.resize(Allocas.size());
726 AllocaDPUsers.resize(Allocas.size());
728 AllocaInfo Info;
729 LargeBlockInfo LBI;
730 ForwardIDFCalculator IDF(DT);
732 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
733 AllocaInst *AI = Allocas[AllocaNum];
735 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
736 assert(AI->getParent()->getParent() == &F &&
737 "All allocas should be in the same function, which is same as DF!");
739 removeIntrinsicUsers(AI);
741 if (AI->use_empty()) {
742 // If there are no uses of the alloca, just delete it now.
743 AI->eraseFromParent();
745 // Remove the alloca from the Allocas list, since it has been processed
746 RemoveFromAllocasList(AllocaNum);
747 ++NumDeadAlloca;
748 continue;
751 // Calculate the set of read and write-locations for each alloca. This is
752 // analogous to finding the 'uses' and 'definitions' of each variable.
753 Info.AnalyzeAlloca(AI);
755 // If there is only a single store to this value, replace any loads of
756 // it that are directly dominated by the definition with the value stored.
757 if (Info.DefiningBlocks.size() == 1) {
758 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC,
759 &DbgAssignsToDelete, &DPVAssignsToDelete)) {
760 // The alloca has been processed, move on.
761 RemoveFromAllocasList(AllocaNum);
762 ++NumSingleStore;
763 continue;
767 // If the alloca is only read and written in one basic block, just perform a
768 // linear sweep over the block to eliminate it.
769 if (Info.OnlyUsedInOneBlock &&
770 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC,
771 &DbgAssignsToDelete, &DPVAssignsToDelete)) {
772 // The alloca has been processed, move on.
773 RemoveFromAllocasList(AllocaNum);
774 continue;
777 // If we haven't computed a numbering for the BB's in the function, do so
778 // now.
779 if (BBNumbers.empty()) {
780 unsigned ID = 0;
781 for (auto &BB : F)
782 BBNumbers[&BB] = ID++;
785 // Remember the dbg.declare intrinsic describing this alloca, if any.
786 if (!Info.DbgUsers.empty())
787 AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
788 if (!Info.AssignmentTracking.empty())
789 AllocaATInfo[AllocaNum] = Info.AssignmentTracking;
790 if (!Info.DPUsers.empty())
791 AllocaDPUsers[AllocaNum] = Info.DPUsers;
793 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
794 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
796 // Unique the set of defining blocks for efficient lookup.
797 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
798 Info.DefiningBlocks.end());
800 // Determine which blocks the value is live in. These are blocks which lead
801 // to uses.
802 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
803 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
805 // At this point, we're committed to promoting the alloca using IDF's, and
806 // the standard SSA construction algorithm. Determine which blocks need phi
807 // nodes and see if we can optimize out some work by avoiding insertion of
808 // dead phi nodes.
809 IDF.setLiveInBlocks(LiveInBlocks);
810 IDF.setDefiningBlocks(DefBlocks);
811 SmallVector<BasicBlock *, 32> PHIBlocks;
812 IDF.calculate(PHIBlocks);
813 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
814 return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
817 unsigned CurrentVersion = 0;
818 for (BasicBlock *BB : PHIBlocks)
819 QueuePhiNode(BB, AllocaNum, CurrentVersion);
822 if (Allocas.empty()) {
823 cleanUpDbgAssigns();
824 return; // All of the allocas must have been trivial!
826 LBI.clear();
828 // Set the incoming values for the basic block to be null values for all of
829 // the alloca's. We do this in case there is a load of a value that has not
830 // been stored yet. In this case, it will get this null value.
831 RenamePassData::ValVector Values(Allocas.size());
832 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
833 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
835 // When handling debug info, treat all incoming values as if they have unknown
836 // locations until proven otherwise.
837 RenamePassData::LocationVector Locations(Allocas.size());
839 // Walks all basic blocks in the function performing the SSA rename algorithm
840 // and inserting the phi nodes we marked as necessary
841 std::vector<RenamePassData> RenamePassWorkList;
842 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
843 std::move(Locations));
844 do {
845 RenamePassData RPD = std::move(RenamePassWorkList.back());
846 RenamePassWorkList.pop_back();
847 // RenamePass may add new worklist entries.
848 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
849 } while (!RenamePassWorkList.empty());
851 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
852 Visited.clear();
854 // Remove the allocas themselves from the function.
855 for (Instruction *A : Allocas) {
856 // Remove dbg.assigns linked to the alloca as these are now redundant.
857 at::deleteAssignmentMarkers(A);
858 // If there are any uses of the alloca instructions left, they must be in
859 // unreachable basic blocks that were not processed by walking the dominator
860 // tree. Just delete the users now.
861 if (!A->use_empty())
862 A->replaceAllUsesWith(PoisonValue::get(A->getType()));
863 A->eraseFromParent();
866 // Remove alloca's dbg.declare intrinsics from the function.
867 auto RemoveDbgDeclares = [&](auto &Container) {
868 for (auto &DbgUsers : Container) {
869 for (auto *DbgItem : DbgUsers)
870 if (DbgItem->isAddressOfVariable() ||
871 DbgItem->getExpression()->startsWithDeref())
872 DbgItem->eraseFromParent();
875 RemoveDbgDeclares(AllocaDbgUsers);
876 RemoveDbgDeclares(AllocaDPUsers);
878 // Loop over all of the PHI nodes and see if there are any that we can get
879 // rid of because they merge all of the same incoming values. This can
880 // happen due to undef values coming into the PHI nodes. This process is
881 // iterative, because eliminating one PHI node can cause others to be removed.
882 bool EliminatedAPHI = true;
883 while (EliminatedAPHI) {
884 EliminatedAPHI = false;
886 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
887 // simplify and RAUW them as we go. If it was not, we could add uses to
888 // the values we replace with in a non-deterministic order, thus creating
889 // non-deterministic def->use chains.
890 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
891 I = NewPhiNodes.begin(),
892 E = NewPhiNodes.end();
893 I != E;) {
894 PHINode *PN = I->second;
896 // If this PHI node merges one value and/or undefs, get the value.
897 if (Value *V = simplifyInstruction(PN, SQ)) {
898 PN->replaceAllUsesWith(V);
899 PN->eraseFromParent();
900 NewPhiNodes.erase(I++);
901 EliminatedAPHI = true;
902 continue;
904 ++I;
908 // At this point, the renamer has added entries to PHI nodes for all reachable
909 // code. Unfortunately, there may be unreachable blocks which the renamer
910 // hasn't traversed. If this is the case, the PHI nodes may not
911 // have incoming values for all predecessors. Loop over all PHI nodes we have
912 // created, inserting poison values if they are missing any incoming values.
913 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
914 I = NewPhiNodes.begin(),
915 E = NewPhiNodes.end();
916 I != E; ++I) {
917 // We want to do this once per basic block. As such, only process a block
918 // when we find the PHI that is the first entry in the block.
919 PHINode *SomePHI = I->second;
920 BasicBlock *BB = SomePHI->getParent();
921 if (&BB->front() != SomePHI)
922 continue;
924 // Only do work here if there the PHI nodes are missing incoming values. We
925 // know that all PHI nodes that were inserted in a block will have the same
926 // number of incoming values, so we can just check any of them.
927 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
928 continue;
930 // Get the preds for BB.
931 SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
933 // Ok, now we know that all of the PHI nodes are missing entries for some
934 // basic blocks. Start by sorting the incoming predecessors for efficient
935 // access.
936 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
937 return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
939 llvm::sort(Preds, CompareBBNumbers);
941 // Now we loop through all BB's which have entries in SomePHI and remove
942 // them from the Preds list.
943 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
944 // Do a log(n) search of the Preds list for the entry we want.
945 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
946 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
947 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
948 "PHI node has entry for a block which is not a predecessor!");
950 // Remove the entry
951 Preds.erase(EntIt);
954 // At this point, the blocks left in the preds list must have dummy
955 // entries inserted into every PHI nodes for the block. Update all the phi
956 // nodes in this block that we are inserting (there could be phis before
957 // mem2reg runs).
958 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
959 BasicBlock::iterator BBI = BB->begin();
960 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
961 SomePHI->getNumIncomingValues() == NumBadPreds) {
962 Value *PoisonVal = PoisonValue::get(SomePHI->getType());
963 for (BasicBlock *Pred : Preds)
964 SomePHI->addIncoming(PoisonVal, Pred);
968 NewPhiNodes.clear();
969 cleanUpDbgAssigns();
972 /// Determine which blocks the value is live in.
974 /// These are blocks which lead to uses. Knowing this allows us to avoid
975 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
976 /// inserted phi nodes would be dead).
977 void PromoteMem2Reg::ComputeLiveInBlocks(
978 AllocaInst *AI, AllocaInfo &Info,
979 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
980 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
981 // To determine liveness, we must iterate through the predecessors of blocks
982 // where the def is live. Blocks are added to the worklist if we need to
983 // check their predecessors. Start with all the using blocks.
984 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
985 Info.UsingBlocks.end());
987 // If any of the using blocks is also a definition block, check to see if the
988 // definition occurs before or after the use. If it happens before the use,
989 // the value isn't really live-in.
990 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
991 BasicBlock *BB = LiveInBlockWorklist[i];
992 if (!DefBlocks.count(BB))
993 continue;
995 // Okay, this is a block that both uses and defines the value. If the first
996 // reference to the alloca is a def (store), then we know it isn't live-in.
997 for (BasicBlock::iterator I = BB->begin();; ++I) {
998 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
999 if (SI->getOperand(1) != AI)
1000 continue;
1002 // We found a store to the alloca before a load. The alloca is not
1003 // actually live-in here.
1004 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
1005 LiveInBlockWorklist.pop_back();
1006 --i;
1007 --e;
1008 break;
1011 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1012 // Okay, we found a load before a store to the alloca. It is actually
1013 // live into this block.
1014 if (LI->getOperand(0) == AI)
1015 break;
1019 // Now that we have a set of blocks where the phi is live-in, recursively add
1020 // their predecessors until we find the full region the value is live.
1021 while (!LiveInBlockWorklist.empty()) {
1022 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
1024 // The block really is live in here, insert it into the set. If already in
1025 // the set, then it has already been processed.
1026 if (!LiveInBlocks.insert(BB).second)
1027 continue;
1029 // Since the value is live into BB, it is either defined in a predecessor or
1030 // live into it to. Add the preds to the worklist unless they are a
1031 // defining block.
1032 for (BasicBlock *P : predecessors(BB)) {
1033 // The value is not live into a predecessor if it defines the value.
1034 if (DefBlocks.count(P))
1035 continue;
1037 // Otherwise it is, add to the worklist.
1038 LiveInBlockWorklist.push_back(P);
1043 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
1045 /// Returns true if there wasn't already a phi-node for that variable
1046 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
1047 unsigned &Version) {
1048 // Look up the basic-block in question.
1049 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
1051 // If the BB already has a phi node added for the i'th alloca then we're done!
1052 if (PN)
1053 return false;
1055 // Create a PhiNode using the dereferenced type... and add the phi-node to the
1056 // BasicBlock.
1057 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
1058 Allocas[AllocaNo]->getName() + "." + Twine(Version++));
1059 PN->insertBefore(BB->begin());
1060 ++NumPHIInsert;
1061 PhiToAllocaMap[PN] = AllocaNo;
1062 return true;
1065 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
1066 /// create a merged location incorporating \p DL, or to set \p DL directly.
1067 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
1068 bool ApplyMergedLoc) {
1069 if (ApplyMergedLoc)
1070 PN->applyMergedLocation(PN->getDebugLoc(), DL);
1071 else
1072 PN->setDebugLoc(DL);
1075 /// Recursively traverse the CFG of the function, renaming loads and
1076 /// stores to the allocas which we are promoting.
1078 /// IncomingVals indicates what value each Alloca contains on exit from the
1079 /// predecessor block Pred.
1080 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1081 RenamePassData::ValVector &IncomingVals,
1082 RenamePassData::LocationVector &IncomingLocs,
1083 std::vector<RenamePassData> &Worklist) {
1084 NextIteration:
1085 // If we are inserting any phi nodes into this BB, they will already be in the
1086 // block.
1087 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1088 // If we have PHI nodes to update, compute the number of edges from Pred to
1089 // BB.
1090 if (PhiToAllocaMap.count(APN)) {
1091 // We want to be able to distinguish between PHI nodes being inserted by
1092 // this invocation of mem2reg from those phi nodes that already existed in
1093 // the IR before mem2reg was run. We determine that APN is being inserted
1094 // because it is missing incoming edges. All other PHI nodes being
1095 // inserted by this pass of mem2reg will have the same number of incoming
1096 // operands so far. Remember this count.
1097 unsigned NewPHINumOperands = APN->getNumOperands();
1099 unsigned NumEdges = llvm::count(successors(Pred), BB);
1100 assert(NumEdges && "Must be at least one edge from Pred to BB!");
1102 // Add entries for all the phis.
1103 BasicBlock::iterator PNI = BB->begin();
1104 do {
1105 unsigned AllocaNo = PhiToAllocaMap[APN];
1107 // Update the location of the phi node.
1108 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
1109 APN->getNumIncomingValues() > 0);
1111 // Add N incoming values to the PHI node.
1112 for (unsigned i = 0; i != NumEdges; ++i)
1113 APN->addIncoming(IncomingVals[AllocaNo], Pred);
1115 // The currently active variable for this block is now the PHI.
1116 IncomingVals[AllocaNo] = APN;
1117 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB);
1118 auto ConvertDbgDeclares = [&](auto &Container) {
1119 for (auto *DbgItem : Container)
1120 if (DbgItem->isAddressOfVariable())
1121 ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB);
1123 ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]);
1124 ConvertDbgDeclares(AllocaDPUsers[AllocaNo]);
1126 // Get the next phi node.
1127 ++PNI;
1128 APN = dyn_cast<PHINode>(PNI);
1129 if (!APN)
1130 break;
1132 // Verify that it is missing entries. If not, it is not being inserted
1133 // by this mem2reg invocation so we want to ignore it.
1134 } while (APN->getNumOperands() == NewPHINumOperands);
1138 // Don't revisit blocks.
1139 if (!Visited.insert(BB).second)
1140 return;
1142 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
1143 Instruction *I = &*II++; // get the instruction, increment iterator
1145 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1146 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1147 if (!Src)
1148 continue;
1150 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1151 if (AI == AllocaLookup.end())
1152 continue;
1154 Value *V = IncomingVals[AI->second];
1155 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT);
1157 // Anything using the load now uses the current value.
1158 LI->replaceAllUsesWith(V);
1159 LI->eraseFromParent();
1160 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1161 // Delete this instruction and mark the name as the current holder of the
1162 // value
1163 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1164 if (!Dest)
1165 continue;
1167 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1168 if (ai == AllocaLookup.end())
1169 continue;
1171 // what value were we writing?
1172 unsigned AllocaNo = ai->second;
1173 IncomingVals[AllocaNo] = SI->getOperand(0);
1175 // Record debuginfo for the store before removing it.
1176 IncomingLocs[AllocaNo] = SI->getDebugLoc();
1177 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete,
1178 &DPVAssignsToDelete);
1179 auto ConvertDbgDeclares = [&](auto &Container) {
1180 for (auto *DbgItem : Container)
1181 if (DbgItem->isAddressOfVariable())
1182 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB);
1184 ConvertDbgDeclares(AllocaDbgUsers[ai->second]);
1185 ConvertDbgDeclares(AllocaDPUsers[ai->second]);
1186 SI->eraseFromParent();
1190 // 'Recurse' to our successors.
1191 succ_iterator I = succ_begin(BB), E = succ_end(BB);
1192 if (I == E)
1193 return;
1195 // Keep track of the successors so we don't visit the same successor twice
1196 SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1198 // Handle the first successor without using the worklist.
1199 VisitedSuccs.insert(*I);
1200 Pred = BB;
1201 BB = *I;
1202 ++I;
1204 for (; I != E; ++I)
1205 if (VisitedSuccs.insert(*I).second)
1206 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1208 goto NextIteration;
1211 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1212 AssumptionCache *AC) {
1213 // If there is nothing to do, bail out...
1214 if (Allocas.empty())
1215 return;
1217 PromoteMem2Reg(Allocas, DT, AC).run();