1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/AttributeMask.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/TargetParser/Triple.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/SizeOpts.h"
41 using namespace PatternMatch
;
44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden
,
46 cl::desc("Enable unsafe double to float "
47 "shrinking for math lib calls"));
49 // Enable conversion of operator new calls with a MemProf hot or cold hint
50 // to an operator new call that takes a hot/cold hint. Off by default since
51 // not all allocators currently support this extension.
53 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden
, cl::init(false),
54 cl::desc("Enable hot/cold operator new library calls"));
58 // Specialized parser to ensure the hint is an 8 bit value (we can't specify
59 // uint8_t to opt<> as that is interpreted to mean that we are passing a char
60 // option with a specific set of values.
61 struct HotColdHintParser
: public cl::parser
<unsigned> {
62 HotColdHintParser(cl::Option
&O
) : cl::parser
<unsigned>(O
) {}
64 bool parse(cl::Option
&O
, StringRef ArgName
, StringRef Arg
, unsigned &Value
) {
65 if (Arg
.getAsInteger(0, Value
))
66 return O
.error("'" + Arg
+ "' value invalid for uint argument!");
69 return O
.error("'" + Arg
+ "' value must be in the range [0, 255]!");
75 } // end anonymous namespace
77 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest
78 // and 255 is the hottest. Default to 1 value away from the coldest and hottest
79 // hints, so that the compiler hinted allocations are slightly less strong than
80 // manually inserted hints at the two extremes.
81 static cl::opt
<unsigned, false, HotColdHintParser
> ColdNewHintValue(
82 "cold-new-hint-value", cl::Hidden
, cl::init(1),
83 cl::desc("Value to pass to hot/cold operator new for cold allocation"));
84 static cl::opt
<unsigned, false, HotColdHintParser
> HotNewHintValue(
85 "hot-new-hint-value", cl::Hidden
, cl::init(254),
86 cl::desc("Value to pass to hot/cold operator new for hot allocation"));
88 //===----------------------------------------------------------------------===//
90 //===----------------------------------------------------------------------===//
92 static bool ignoreCallingConv(LibFunc Func
) {
93 return Func
== LibFunc_abs
|| Func
== LibFunc_labs
||
94 Func
== LibFunc_llabs
|| Func
== LibFunc_strlen
;
97 /// Return true if it is only used in equality comparisons with With.
98 static bool isOnlyUsedInEqualityComparison(Value
*V
, Value
*With
) {
99 for (User
*U
: V
->users()) {
100 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(U
))
101 if (IC
->isEquality() && IC
->getOperand(1) == With
)
103 // Unknown instruction.
109 static bool callHasFloatingPointArgument(const CallInst
*CI
) {
110 return any_of(CI
->operands(), [](const Use
&OI
) {
111 return OI
->getType()->isFloatingPointTy();
115 static bool callHasFP128Argument(const CallInst
*CI
) {
116 return any_of(CI
->operands(), [](const Use
&OI
) {
117 return OI
->getType()->isFP128Ty();
121 // Convert the entire string Str representing an integer in Base, up to
122 // the terminating nul if present, to a constant according to the rules
123 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success
124 // return the result, otherwise null.
125 // The function assumes the string is encoded in ASCII and carefully
126 // avoids converting sequences (including "") that the corresponding
127 // library call might fail and set errno for.
128 static Value
*convertStrToInt(CallInst
*CI
, StringRef
&Str
, Value
*EndPtr
,
129 uint64_t Base
, bool AsSigned
, IRBuilderBase
&B
) {
130 if (Base
< 2 || Base
> 36)
132 // Fail for an invalid base (required by POSIX).
135 // Current offset into the original string to reflect in EndPtr.
137 // Strip leading whitespace.
138 for ( ; Offset
!= Str
.size(); ++Offset
)
139 if (!isSpace((unsigned char)Str
[Offset
])) {
140 Str
= Str
.substr(Offset
);
145 // Fail for empty subject sequences (POSIX allows but doesn't require
146 // strtol[l]/strtoul[l] to fail with EINVAL).
149 // Strip but remember the sign.
150 bool Negate
= Str
[0] == '-';
151 if (Str
[0] == '-' || Str
[0] == '+') {
152 Str
= Str
.drop_front();
154 // Fail for a sign with nothing after it.
159 // Set Max to the absolute value of the minimum (for signed), or
160 // to the maximum (for unsigned) value representable in the type.
161 Type
*RetTy
= CI
->getType();
162 unsigned NBits
= RetTy
->getPrimitiveSizeInBits();
163 uint64_t Max
= AsSigned
&& Negate
? 1 : 0;
164 Max
+= AsSigned
? maxIntN(NBits
) : maxUIntN(NBits
);
166 // Autodetect Base if it's zero and consume the "0x" prefix.
167 if (Str
.size() > 1) {
169 if (toUpper((unsigned char)Str
[1]) == 'X') {
170 if (Str
.size() == 2 || (Base
&& Base
!= 16))
171 // Fail if Base doesn't allow the "0x" prefix or for the prefix
172 // alone that implementations like BSD set errno to EINVAL for.
175 Str
= Str
.drop_front(2);
181 } else if (Base
== 0)
187 // Convert the rest of the subject sequence, not including the sign,
188 // to its uint64_t representation (this assumes the source character
191 for (unsigned i
= 0; i
!= Str
.size(); ++i
) {
192 unsigned char DigVal
= Str
[i
];
194 DigVal
= DigVal
- '0';
196 DigVal
= toUpper(DigVal
);
198 DigVal
= DigVal
- 'A' + 10;
204 // Fail if the digit is not valid in the Base.
207 // Add the digit and fail if the result is not representable in
208 // the (unsigned form of the) destination type.
210 Result
= SaturatingMultiplyAdd(Result
, Base
, (uint64_t)DigVal
, &VFlow
);
211 if (VFlow
|| Result
> Max
)
216 // Store the pointer to the end.
217 Value
*Off
= B
.getInt64(Offset
+ Str
.size());
218 Value
*StrBeg
= CI
->getArgOperand(0);
219 Value
*StrEnd
= B
.CreateInBoundsGEP(B
.getInt8Ty(), StrBeg
, Off
, "endptr");
220 B
.CreateStore(StrEnd
, EndPtr
);
224 // Unsigned negation doesn't overflow.
227 return ConstantInt::get(RetTy
, Result
);
230 static bool isOnlyUsedInComparisonWithZero(Value
*V
) {
231 for (User
*U
: V
->users()) {
232 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(U
))
233 if (Constant
*C
= dyn_cast
<Constant
>(IC
->getOperand(1)))
234 if (C
->isNullValue())
236 // Unknown instruction.
242 static bool canTransformToMemCmp(CallInst
*CI
, Value
*Str
, uint64_t Len
,
243 const DataLayout
&DL
) {
244 if (!isOnlyUsedInComparisonWithZero(CI
))
247 if (!isDereferenceableAndAlignedPointer(Str
, Align(1), APInt(64, Len
), DL
))
250 if (CI
->getFunction()->hasFnAttribute(Attribute::SanitizeMemory
))
256 static void annotateDereferenceableBytes(CallInst
*CI
,
257 ArrayRef
<unsigned> ArgNos
,
258 uint64_t DereferenceableBytes
) {
259 const Function
*F
= CI
->getCaller();
262 for (unsigned ArgNo
: ArgNos
) {
263 uint64_t DerefBytes
= DereferenceableBytes
;
264 unsigned AS
= CI
->getArgOperand(ArgNo
)->getType()->getPointerAddressSpace();
265 if (!llvm::NullPointerIsDefined(F
, AS
) ||
266 CI
->paramHasAttr(ArgNo
, Attribute::NonNull
))
267 DerefBytes
= std::max(CI
->getParamDereferenceableOrNullBytes(ArgNo
),
268 DereferenceableBytes
);
270 if (CI
->getParamDereferenceableBytes(ArgNo
) < DerefBytes
) {
271 CI
->removeParamAttr(ArgNo
, Attribute::Dereferenceable
);
272 if (!llvm::NullPointerIsDefined(F
, AS
) ||
273 CI
->paramHasAttr(ArgNo
, Attribute::NonNull
))
274 CI
->removeParamAttr(ArgNo
, Attribute::DereferenceableOrNull
);
275 CI
->addParamAttr(ArgNo
, Attribute::getWithDereferenceableBytes(
276 CI
->getContext(), DerefBytes
));
281 static void annotateNonNullNoUndefBasedOnAccess(CallInst
*CI
,
282 ArrayRef
<unsigned> ArgNos
) {
283 Function
*F
= CI
->getCaller();
287 for (unsigned ArgNo
: ArgNos
) {
288 if (!CI
->paramHasAttr(ArgNo
, Attribute::NoUndef
))
289 CI
->addParamAttr(ArgNo
, Attribute::NoUndef
);
291 if (!CI
->paramHasAttr(ArgNo
, Attribute::NonNull
)) {
293 CI
->getArgOperand(ArgNo
)->getType()->getPointerAddressSpace();
294 if (llvm::NullPointerIsDefined(F
, AS
))
296 CI
->addParamAttr(ArgNo
, Attribute::NonNull
);
299 annotateDereferenceableBytes(CI
, ArgNo
, 1);
303 static void annotateNonNullAndDereferenceable(CallInst
*CI
, ArrayRef
<unsigned> ArgNos
,
304 Value
*Size
, const DataLayout
&DL
) {
305 if (ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
)) {
306 annotateNonNullNoUndefBasedOnAccess(CI
, ArgNos
);
307 annotateDereferenceableBytes(CI
, ArgNos
, LenC
->getZExtValue());
308 } else if (isKnownNonZero(Size
, DL
)) {
309 annotateNonNullNoUndefBasedOnAccess(CI
, ArgNos
);
311 uint64_t DerefMin
= 1;
312 if (match(Size
, m_Select(m_Value(), m_APInt(X
), m_APInt(Y
)))) {
313 DerefMin
= std::min(X
->getZExtValue(), Y
->getZExtValue());
314 annotateDereferenceableBytes(CI
, ArgNos
, DerefMin
);
319 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
320 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
321 // in this function when New is created to replace Old. Callers should take
322 // care to check Old.isMustTailCall() if they aren't replacing Old directly
324 static Value
*copyFlags(const CallInst
&Old
, Value
*New
) {
325 assert(!Old
.isMustTailCall() && "do not copy musttail call flags");
326 assert(!Old
.isNoTailCall() && "do not copy notail call flags");
327 if (auto *NewCI
= dyn_cast_or_null
<CallInst
>(New
))
328 NewCI
->setTailCallKind(Old
.getTailCallKind());
332 static Value
*mergeAttributesAndFlags(CallInst
*NewCI
, const CallInst
&Old
) {
333 NewCI
->setAttributes(AttributeList::get(
334 NewCI
->getContext(), {NewCI
->getAttributes(), Old
.getAttributes()}));
335 NewCI
->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI
->getType()));
336 return copyFlags(Old
, NewCI
);
339 // Helper to avoid truncating the length if size_t is 32-bits.
340 static StringRef
substr(StringRef Str
, uint64_t Len
) {
341 return Len
>= Str
.size() ? Str
: Str
.substr(0, Len
);
344 //===----------------------------------------------------------------------===//
345 // String and Memory Library Call Optimizations
346 //===----------------------------------------------------------------------===//
348 Value
*LibCallSimplifier::optimizeStrCat(CallInst
*CI
, IRBuilderBase
&B
) {
349 // Extract some information from the instruction
350 Value
*Dst
= CI
->getArgOperand(0);
351 Value
*Src
= CI
->getArgOperand(1);
352 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
354 // See if we can get the length of the input string.
355 uint64_t Len
= GetStringLength(Src
);
357 annotateDereferenceableBytes(CI
, 1, Len
);
360 --Len
; // Unbias length.
362 // Handle the simple, do-nothing case: strcat(x, "") -> x
366 return copyFlags(*CI
, emitStrLenMemCpy(Src
, Dst
, Len
, B
));
369 Value
*LibCallSimplifier::emitStrLenMemCpy(Value
*Src
, Value
*Dst
, uint64_t Len
,
371 // We need to find the end of the destination string. That's where the
372 // memory is to be moved to. We just generate a call to strlen.
373 Value
*DstLen
= emitStrLen(Dst
, B
, DL
, TLI
);
377 // Now that we have the destination's length, we must index into the
378 // destination's pointer to get the actual memcpy destination (end of
379 // the string .. we're concatenating).
380 Value
*CpyDst
= B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, DstLen
, "endptr");
382 // We have enough information to now generate the memcpy call to do the
383 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
385 CpyDst
, Align(1), Src
, Align(1),
386 ConstantInt::get(DL
.getIntPtrType(Src
->getContext()), Len
+ 1));
390 Value
*LibCallSimplifier::optimizeStrNCat(CallInst
*CI
, IRBuilderBase
&B
) {
391 // Extract some information from the instruction.
392 Value
*Dst
= CI
->getArgOperand(0);
393 Value
*Src
= CI
->getArgOperand(1);
394 Value
*Size
= CI
->getArgOperand(2);
396 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
397 if (isKnownNonZero(Size
, DL
))
398 annotateNonNullNoUndefBasedOnAccess(CI
, 1);
400 // We don't do anything if length is not constant.
401 ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(Size
);
403 Len
= LengthArg
->getZExtValue();
404 // strncat(x, c, 0) -> x
411 // See if we can get the length of the input string.
412 uint64_t SrcLen
= GetStringLength(Src
);
414 annotateDereferenceableBytes(CI
, 1, SrcLen
);
415 --SrcLen
; // Unbias length.
420 // strncat(x, "", c) -> x
424 // We don't optimize this case.
428 // strncat(x, s, c) -> strcat(x, s)
429 // s is constant so the strcat can be optimized further.
430 return copyFlags(*CI
, emitStrLenMemCpy(Src
, Dst
, SrcLen
, B
));
433 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
434 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function
435 // is that either S is dereferenceable or the value of N is nonzero.
436 static Value
* memChrToCharCompare(CallInst
*CI
, Value
*NBytes
,
437 IRBuilderBase
&B
, const DataLayout
&DL
)
439 Value
*Src
= CI
->getArgOperand(0);
440 Value
*CharVal
= CI
->getArgOperand(1);
442 // Fold memchr(A, C, N) == A to N && *A == C.
443 Type
*CharTy
= B
.getInt8Ty();
444 Value
*Char0
= B
.CreateLoad(CharTy
, Src
);
445 CharVal
= B
.CreateTrunc(CharVal
, CharTy
);
446 Value
*Cmp
= B
.CreateICmpEQ(Char0
, CharVal
, "char0cmp");
449 Value
*Zero
= ConstantInt::get(NBytes
->getType(), 0);
450 Value
*And
= B
.CreateICmpNE(NBytes
, Zero
);
451 Cmp
= B
.CreateLogicalAnd(And
, Cmp
);
454 Value
*NullPtr
= Constant::getNullValue(CI
->getType());
455 return B
.CreateSelect(Cmp
, Src
, NullPtr
);
458 Value
*LibCallSimplifier::optimizeStrChr(CallInst
*CI
, IRBuilderBase
&B
) {
459 Value
*SrcStr
= CI
->getArgOperand(0);
460 Value
*CharVal
= CI
->getArgOperand(1);
461 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
463 if (isOnlyUsedInEqualityComparison(CI
, SrcStr
))
464 return memChrToCharCompare(CI
, nullptr, B
, DL
);
466 // If the second operand is non-constant, see if we can compute the length
467 // of the input string and turn this into memchr.
468 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CharVal
);
470 uint64_t Len
= GetStringLength(SrcStr
);
472 annotateDereferenceableBytes(CI
, 0, Len
);
476 Function
*Callee
= CI
->getCalledFunction();
477 FunctionType
*FT
= Callee
->getFunctionType();
478 unsigned IntBits
= TLI
->getIntSize();
479 if (!FT
->getParamType(1)->isIntegerTy(IntBits
)) // memchr needs 'int'.
482 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
483 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
484 return copyFlags(*CI
,
485 emitMemChr(SrcStr
, CharVal
, // include nul.
486 ConstantInt::get(SizeTTy
, Len
), B
,
490 if (CharC
->isZero()) {
491 Value
*NullPtr
= Constant::getNullValue(CI
->getType());
492 if (isOnlyUsedInEqualityComparison(CI
, NullPtr
))
493 // Pre-empt the transformation to strlen below and fold
494 // strchr(A, '\0') == null to false.
495 return B
.CreateIntToPtr(B
.getTrue(), CI
->getType());
498 // Otherwise, the character is a constant, see if the first argument is
499 // a string literal. If so, we can constant fold.
501 if (!getConstantStringInfo(SrcStr
, Str
)) {
502 if (CharC
->isZero()) // strchr(p, 0) -> p + strlen(p)
503 if (Value
*StrLen
= emitStrLen(SrcStr
, B
, DL
, TLI
))
504 return B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, StrLen
, "strchr");
508 // Compute the offset, make sure to handle the case when we're searching for
509 // zero (a weird way to spell strlen).
510 size_t I
= (0xFF & CharC
->getSExtValue()) == 0
512 : Str
.find(CharC
->getSExtValue());
513 if (I
== StringRef::npos
) // Didn't find the char. strchr returns null.
514 return Constant::getNullValue(CI
->getType());
516 // strchr(s+n,c) -> gep(s+n+i,c)
517 return B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(I
), "strchr");
520 Value
*LibCallSimplifier::optimizeStrRChr(CallInst
*CI
, IRBuilderBase
&B
) {
521 Value
*SrcStr
= CI
->getArgOperand(0);
522 Value
*CharVal
= CI
->getArgOperand(1);
523 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CharVal
);
524 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
527 if (!getConstantStringInfo(SrcStr
, Str
)) {
528 // strrchr(s, 0) -> strchr(s, 0)
529 if (CharC
&& CharC
->isZero())
530 return copyFlags(*CI
, emitStrChr(SrcStr
, '\0', B
, TLI
));
534 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
535 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
537 // Try to expand strrchr to the memrchr nonstandard extension if it's
538 // available, or simply fail otherwise.
539 uint64_t NBytes
= Str
.size() + 1; // Include the terminating nul.
540 Value
*Size
= ConstantInt::get(SizeTTy
, NBytes
);
541 return copyFlags(*CI
, emitMemRChr(SrcStr
, CharVal
, Size
, B
, DL
, TLI
));
544 Value
*LibCallSimplifier::optimizeStrCmp(CallInst
*CI
, IRBuilderBase
&B
) {
545 Value
*Str1P
= CI
->getArgOperand(0), *Str2P
= CI
->getArgOperand(1);
546 if (Str1P
== Str2P
) // strcmp(x,x) -> 0
547 return ConstantInt::get(CI
->getType(), 0);
549 StringRef Str1
, Str2
;
550 bool HasStr1
= getConstantStringInfo(Str1P
, Str1
);
551 bool HasStr2
= getConstantStringInfo(Str2P
, Str2
);
553 // strcmp(x, y) -> cnst (if both x and y are constant strings)
554 if (HasStr1
&& HasStr2
)
555 return ConstantInt::get(CI
->getType(),
556 std::clamp(Str1
.compare(Str2
), -1, 1));
558 if (HasStr1
&& Str1
.empty()) // strcmp("", x) -> -*x
559 return B
.CreateNeg(B
.CreateZExt(
560 B
.CreateLoad(B
.getInt8Ty(), Str2P
, "strcmpload"), CI
->getType()));
562 if (HasStr2
&& Str2
.empty()) // strcmp(x,"") -> *x
563 return B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), Str1P
, "strcmpload"),
566 // strcmp(P, "x") -> memcmp(P, "x", 2)
567 uint64_t Len1
= GetStringLength(Str1P
);
569 annotateDereferenceableBytes(CI
, 0, Len1
);
570 uint64_t Len2
= GetStringLength(Str2P
);
572 annotateDereferenceableBytes(CI
, 1, Len2
);
576 *CI
, emitMemCmp(Str1P
, Str2P
,
577 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()),
578 std::min(Len1
, Len2
)),
583 if (!HasStr1
&& HasStr2
) {
584 if (canTransformToMemCmp(CI
, Str1P
, Len2
, DL
))
587 emitMemCmp(Str1P
, Str2P
,
588 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len2
),
590 } else if (HasStr1
&& !HasStr2
) {
591 if (canTransformToMemCmp(CI
, Str2P
, Len1
, DL
))
594 emitMemCmp(Str1P
, Str2P
,
595 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len1
),
599 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
603 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
604 // arrays LHS and RHS and nonconstant Size.
605 static Value
*optimizeMemCmpVarSize(CallInst
*CI
, Value
*LHS
, Value
*RHS
,
606 Value
*Size
, bool StrNCmp
,
607 IRBuilderBase
&B
, const DataLayout
&DL
);
609 Value
*LibCallSimplifier::optimizeStrNCmp(CallInst
*CI
, IRBuilderBase
&B
) {
610 Value
*Str1P
= CI
->getArgOperand(0);
611 Value
*Str2P
= CI
->getArgOperand(1);
612 Value
*Size
= CI
->getArgOperand(2);
613 if (Str1P
== Str2P
) // strncmp(x,x,n) -> 0
614 return ConstantInt::get(CI
->getType(), 0);
616 if (isKnownNonZero(Size
, DL
))
617 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
618 // Get the length argument if it is constant.
620 if (ConstantInt
*LengthArg
= dyn_cast
<ConstantInt
>(Size
))
621 Length
= LengthArg
->getZExtValue();
623 return optimizeMemCmpVarSize(CI
, Str1P
, Str2P
, Size
, true, B
, DL
);
625 if (Length
== 0) // strncmp(x,y,0) -> 0
626 return ConstantInt::get(CI
->getType(), 0);
628 if (Length
== 1) // strncmp(x,y,1) -> memcmp(x,y,1)
629 return copyFlags(*CI
, emitMemCmp(Str1P
, Str2P
, Size
, B
, DL
, TLI
));
631 StringRef Str1
, Str2
;
632 bool HasStr1
= getConstantStringInfo(Str1P
, Str1
);
633 bool HasStr2
= getConstantStringInfo(Str2P
, Str2
);
635 // strncmp(x, y) -> cnst (if both x and y are constant strings)
636 if (HasStr1
&& HasStr2
) {
637 // Avoid truncating the 64-bit Length to 32 bits in ILP32.
638 StringRef SubStr1
= substr(Str1
, Length
);
639 StringRef SubStr2
= substr(Str2
, Length
);
640 return ConstantInt::get(CI
->getType(),
641 std::clamp(SubStr1
.compare(SubStr2
), -1, 1));
644 if (HasStr1
&& Str1
.empty()) // strncmp("", x, n) -> -*x
645 return B
.CreateNeg(B
.CreateZExt(
646 B
.CreateLoad(B
.getInt8Ty(), Str2P
, "strcmpload"), CI
->getType()));
648 if (HasStr2
&& Str2
.empty()) // strncmp(x, "", n) -> *x
649 return B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), Str1P
, "strcmpload"),
652 uint64_t Len1
= GetStringLength(Str1P
);
654 annotateDereferenceableBytes(CI
, 0, Len1
);
655 uint64_t Len2
= GetStringLength(Str2P
);
657 annotateDereferenceableBytes(CI
, 1, Len2
);
660 if (!HasStr1
&& HasStr2
) {
661 Len2
= std::min(Len2
, Length
);
662 if (canTransformToMemCmp(CI
, Str1P
, Len2
, DL
))
665 emitMemCmp(Str1P
, Str2P
,
666 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len2
),
668 } else if (HasStr1
&& !HasStr2
) {
669 Len1
= std::min(Len1
, Length
);
670 if (canTransformToMemCmp(CI
, Str2P
, Len1
, DL
))
673 emitMemCmp(Str1P
, Str2P
,
674 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len1
),
681 Value
*LibCallSimplifier::optimizeStrNDup(CallInst
*CI
, IRBuilderBase
&B
) {
682 Value
*Src
= CI
->getArgOperand(0);
683 ConstantInt
*Size
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
684 uint64_t SrcLen
= GetStringLength(Src
);
685 if (SrcLen
&& Size
) {
686 annotateDereferenceableBytes(CI
, 0, SrcLen
);
687 if (SrcLen
<= Size
->getZExtValue() + 1)
688 return copyFlags(*CI
, emitStrDup(Src
, B
, TLI
));
694 Value
*LibCallSimplifier::optimizeStrCpy(CallInst
*CI
, IRBuilderBase
&B
) {
695 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1);
696 if (Dst
== Src
) // strcpy(x,x) -> x
699 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
700 // See if we can get the length of the input string.
701 uint64_t Len
= GetStringLength(Src
);
703 annotateDereferenceableBytes(CI
, 1, Len
);
707 // We have enough information to now generate the memcpy call to do the
708 // copy for us. Make a memcpy to copy the nul byte with align = 1.
710 B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1),
711 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), Len
));
712 mergeAttributesAndFlags(NewCI
, *CI
);
716 Value
*LibCallSimplifier::optimizeStpCpy(CallInst
*CI
, IRBuilderBase
&B
) {
717 Function
*Callee
= CI
->getCalledFunction();
718 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1);
720 // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
722 return copyFlags(*CI
, emitStrCpy(Dst
, Src
, B
, TLI
));
724 if (Dst
== Src
) { // stpcpy(x,x) -> x+strlen(x)
725 Value
*StrLen
= emitStrLen(Src
, B
, DL
, TLI
);
726 return StrLen
? B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, StrLen
) : nullptr;
729 // See if we can get the length of the input string.
730 uint64_t Len
= GetStringLength(Src
);
732 annotateDereferenceableBytes(CI
, 1, Len
);
736 Type
*PT
= Callee
->getFunctionType()->getParamType(0);
737 Value
*LenV
= ConstantInt::get(DL
.getIntPtrType(PT
), Len
);
738 Value
*DstEnd
= B
.CreateInBoundsGEP(
739 B
.getInt8Ty(), Dst
, ConstantInt::get(DL
.getIntPtrType(PT
), Len
- 1));
741 // We have enough information to now generate the memcpy call to do the
742 // copy for us. Make a memcpy to copy the nul byte with align = 1.
743 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1), LenV
);
744 mergeAttributesAndFlags(NewCI
, *CI
);
748 // Optimize a call to size_t strlcpy(char*, const char*, size_t).
750 Value
*LibCallSimplifier::optimizeStrLCpy(CallInst
*CI
, IRBuilderBase
&B
) {
751 Value
*Size
= CI
->getArgOperand(2);
752 if (isKnownNonZero(Size
, DL
))
753 // Like snprintf, the function stores into the destination only when
754 // the size argument is nonzero.
755 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
756 // The function reads the source argument regardless of Size (it returns
758 annotateNonNullNoUndefBasedOnAccess(CI
, 1);
761 if (ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(Size
))
762 NBytes
= SizeC
->getZExtValue();
766 Value
*Dst
= CI
->getArgOperand(0);
767 Value
*Src
= CI
->getArgOperand(1);
770 // For a call to strlcpy(D, S, 1) first store a nul in *D.
771 B
.CreateStore(B
.getInt8(0), Dst
);
773 // Transform strlcpy(D, S, 0) to a call to strlen(S).
774 return copyFlags(*CI
, emitStrLen(Src
, B
, DL
, TLI
));
777 // Try to determine the length of the source, substituting its size
778 // when it's not nul-terminated (as it's required to be) to avoid
779 // reading past its end.
781 if (!getConstantStringInfo(Src
, Str
, /*TrimAtNul=*/false))
784 uint64_t SrcLen
= Str
.find('\0');
785 // Set if the terminating nul should be copied by the call to memcpy
787 bool NulTerm
= SrcLen
< NBytes
;
790 // Overwrite NBytes with the number of bytes to copy, including
791 // the terminating nul.
794 // Set the length of the source for the function to return to its
795 // size, and cap NBytes at the same.
796 SrcLen
= std::min(SrcLen
, uint64_t(Str
.size()));
797 NBytes
= std::min(NBytes
- 1, SrcLen
);
801 // Transform strlcpy(D, "", N) to (*D = '\0, 0).
802 B
.CreateStore(B
.getInt8(0), Dst
);
803 return ConstantInt::get(CI
->getType(), 0);
806 Function
*Callee
= CI
->getCalledFunction();
807 Type
*PT
= Callee
->getFunctionType()->getParamType(0);
808 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
809 // bound on strlen(S) + 1 and N, optionally followed by a nul store to
810 // D[N' - 1] if necessary.
811 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1),
812 ConstantInt::get(DL
.getIntPtrType(PT
), NBytes
));
813 mergeAttributesAndFlags(NewCI
, *CI
);
816 Value
*EndOff
= ConstantInt::get(CI
->getType(), NBytes
);
817 Value
*EndPtr
= B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, EndOff
);
818 B
.CreateStore(B
.getInt8(0), EndPtr
);
821 // Like snprintf, strlcpy returns the number of nonzero bytes that would
822 // have been copied if the bound had been sufficiently big (which in this
823 // case is strlen(Src)).
824 return ConstantInt::get(CI
->getType(), SrcLen
);
827 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
829 Value
*LibCallSimplifier::optimizeStringNCpy(CallInst
*CI
, bool RetEnd
,
831 Function
*Callee
= CI
->getCalledFunction();
832 Value
*Dst
= CI
->getArgOperand(0);
833 Value
*Src
= CI
->getArgOperand(1);
834 Value
*Size
= CI
->getArgOperand(2);
836 if (isKnownNonZero(Size
, DL
)) {
837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
838 // only when N is nonzero.
839 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
840 annotateNonNullNoUndefBasedOnAccess(CI
, 1);
843 // If the "bound" argument is known set N to it. Otherwise set it to
844 // UINT64_MAX and handle it later.
845 uint64_t N
= UINT64_MAX
;
846 if (ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(Size
))
847 N
= SizeC
->getZExtValue();
850 // Fold st{p,r}ncpy(D, S, 0) to D.
854 Type
*CharTy
= B
.getInt8Ty();
855 Value
*CharVal
= B
.CreateLoad(CharTy
, Src
, "stxncpy.char0");
856 B
.CreateStore(CharVal
, Dst
);
858 // Transform strncpy(D, S, 1) to return (*D = *S), D.
861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
862 Value
*ZeroChar
= ConstantInt::get(CharTy
, 0);
863 Value
*Cmp
= B
.CreateICmpEQ(CharVal
, ZeroChar
, "stpncpy.char0cmp");
865 Value
*Off1
= B
.getInt32(1);
866 Value
*EndPtr
= B
.CreateInBoundsGEP(CharTy
, Dst
, Off1
, "stpncpy.end");
867 return B
.CreateSelect(Cmp
, Dst
, EndPtr
, "stpncpy.sel");
870 // If the length of the input string is known set SrcLen to it.
871 uint64_t SrcLen
= GetStringLength(Src
);
873 annotateDereferenceableBytes(CI
, 1, SrcLen
);
877 --SrcLen
; // Unbias length.
880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
882 CI
->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
883 CallInst
*NewCI
= B
.CreateMemSet(Dst
, B
.getInt8('\0'), Size
, MemSetAlign
);
884 AttrBuilder
ArgAttrs(CI
->getContext(), CI
->getAttributes().getParamAttrs(0));
885 NewCI
->setAttributes(NewCI
->getAttributes().addParamAttributes(
886 CI
->getContext(), 0, ArgAttrs
));
887 copyFlags(*CI
, NewCI
);
891 if (N
> SrcLen
+ 1) {
893 // Bail if N is large or unknown.
896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
898 if (!getConstantStringInfo(Src
, Str
))
900 std::string SrcStr
= Str
.str();
901 // Create a bigger, nul-padded array with the same length, SrcLen,
902 // as the original string.
903 SrcStr
.resize(N
, '\0');
904 Src
= B
.CreateGlobalString(SrcStr
, "str");
907 Type
*PT
= Callee
->getFunctionType()->getParamType(0);
908 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
909 // S and N are constant.
910 CallInst
*NewCI
= B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1),
911 ConstantInt::get(DL
.getIntPtrType(PT
), N
));
912 mergeAttributesAndFlags(NewCI
, *CI
);
916 // stpncpy(D, S, N) returns the address of the first null in D if it writes
917 // one, otherwise D + N.
918 Value
*Off
= B
.getInt64(std::min(SrcLen
, N
));
919 return B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, Off
, "endptr");
922 Value
*LibCallSimplifier::optimizeStringLength(CallInst
*CI
, IRBuilderBase
&B
,
925 Value
*Src
= CI
->getArgOperand(0);
926 Type
*CharTy
= B
.getIntNTy(CharSize
);
928 if (isOnlyUsedInZeroEqualityComparison(CI
) &&
929 (!Bound
|| isKnownNonZero(Bound
, DL
))) {
931 // strlen(x) != 0 --> *x != 0
932 // strlen(x) == 0 --> *x == 0
933 // and likewise strnlen with constant N > 0:
934 // strnlen(x, N) != 0 --> *x != 0
935 // strnlen(x, N) == 0 --> *x == 0
936 return B
.CreateZExt(B
.CreateLoad(CharTy
, Src
, "char0"),
941 if (ConstantInt
*BoundCst
= dyn_cast
<ConstantInt
>(Bound
)) {
942 if (BoundCst
->isZero())
943 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
944 return ConstantInt::get(CI
->getType(), 0);
946 if (BoundCst
->isOne()) {
947 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
948 Value
*CharVal
= B
.CreateLoad(CharTy
, Src
, "strnlen.char0");
949 Value
*ZeroChar
= ConstantInt::get(CharTy
, 0);
950 Value
*Cmp
= B
.CreateICmpNE(CharVal
, ZeroChar
, "strnlen.char0cmp");
951 return B
.CreateZExt(Cmp
, CI
->getType());
956 if (uint64_t Len
= GetStringLength(Src
, CharSize
)) {
957 Value
*LenC
= ConstantInt::get(CI
->getType(), Len
- 1);
958 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
959 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
961 return B
.CreateBinaryIntrinsic(Intrinsic::umin
, LenC
, Bound
);
966 // Punt for strnlen for now.
969 // If s is a constant pointer pointing to a string literal, we can fold
970 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
971 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
972 // We only try to simplify strlen when the pointer s points to an array
973 // of CharSize elements. Otherwise, we would need to scale the offset x before
974 // doing the subtraction. This will make the optimization more complex, and
975 // it's not very useful because calling strlen for a pointer of other types is
977 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Src
)) {
978 // TODO: Handle subobjects.
979 if (!isGEPBasedOnPointerToString(GEP
, CharSize
))
982 ConstantDataArraySlice Slice
;
983 if (getConstantDataArrayInfo(GEP
->getOperand(0), Slice
, CharSize
)) {
984 uint64_t NullTermIdx
;
985 if (Slice
.Array
== nullptr) {
988 NullTermIdx
= ~((uint64_t)0);
989 for (uint64_t I
= 0, E
= Slice
.Length
; I
< E
; ++I
) {
990 if (Slice
.Array
->getElementAsInteger(I
+ Slice
.Offset
) == 0) {
995 // If the string does not have '\0', leave it to strlen to compute
997 if (NullTermIdx
== ~((uint64_t)0))
1001 Value
*Offset
= GEP
->getOperand(2);
1002 KnownBits Known
= computeKnownBits(Offset
, DL
, 0, nullptr, CI
, nullptr);
1004 cast
<ArrayType
>(GEP
->getSourceElementType())->getNumElements();
1006 // If Offset is not provably in the range [0, NullTermIdx], we can still
1007 // optimize if we can prove that the program has undefined behavior when
1008 // Offset is outside that range. That is the case when GEP->getOperand(0)
1009 // is a pointer to an object whose memory extent is NullTermIdx+1.
1010 if ((Known
.isNonNegative() && Known
.getMaxValue().ule(NullTermIdx
)) ||
1011 (isa
<GlobalVariable
>(GEP
->getOperand(0)) &&
1012 NullTermIdx
== ArrSize
- 1)) {
1013 Offset
= B
.CreateSExtOrTrunc(Offset
, CI
->getType());
1014 return B
.CreateSub(ConstantInt::get(CI
->getType(), NullTermIdx
),
1020 // strlen(x?"foo":"bars") --> x ? 3 : 4
1021 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Src
)) {
1022 uint64_t LenTrue
= GetStringLength(SI
->getTrueValue(), CharSize
);
1023 uint64_t LenFalse
= GetStringLength(SI
->getFalseValue(), CharSize
);
1024 if (LenTrue
&& LenFalse
) {
1026 return OptimizationRemark("instcombine", "simplify-libcalls", CI
)
1027 << "folded strlen(select) to select of constants";
1029 return B
.CreateSelect(SI
->getCondition(),
1030 ConstantInt::get(CI
->getType(), LenTrue
- 1),
1031 ConstantInt::get(CI
->getType(), LenFalse
- 1));
1038 Value
*LibCallSimplifier::optimizeStrLen(CallInst
*CI
, IRBuilderBase
&B
) {
1039 if (Value
*V
= optimizeStringLength(CI
, B
, 8))
1041 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
1045 Value
*LibCallSimplifier::optimizeStrNLen(CallInst
*CI
, IRBuilderBase
&B
) {
1046 Value
*Bound
= CI
->getArgOperand(1);
1047 if (Value
*V
= optimizeStringLength(CI
, B
, 8, Bound
))
1050 if (isKnownNonZero(Bound
, DL
))
1051 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
1055 Value
*LibCallSimplifier::optimizeWcslen(CallInst
*CI
, IRBuilderBase
&B
) {
1056 Module
&M
= *CI
->getModule();
1057 unsigned WCharSize
= TLI
->getWCharSize(M
) * 8;
1058 // We cannot perform this optimization without wchar_size metadata.
1062 return optimizeStringLength(CI
, B
, WCharSize
);
1065 Value
*LibCallSimplifier::optimizeStrPBrk(CallInst
*CI
, IRBuilderBase
&B
) {
1067 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
1068 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
1070 // strpbrk(s, "") -> nullptr
1071 // strpbrk("", s) -> nullptr
1072 if ((HasS1
&& S1
.empty()) || (HasS2
&& S2
.empty()))
1073 return Constant::getNullValue(CI
->getType());
1075 // Constant folding.
1076 if (HasS1
&& HasS2
) {
1077 size_t I
= S1
.find_first_of(S2
);
1078 if (I
== StringRef::npos
) // No match.
1079 return Constant::getNullValue(CI
->getType());
1081 return B
.CreateInBoundsGEP(B
.getInt8Ty(), CI
->getArgOperand(0),
1082 B
.getInt64(I
), "strpbrk");
1085 // strpbrk(s, "a") -> strchr(s, 'a')
1086 if (HasS2
&& S2
.size() == 1)
1087 return copyFlags(*CI
, emitStrChr(CI
->getArgOperand(0), S2
[0], B
, TLI
));
1092 Value
*LibCallSimplifier::optimizeStrTo(CallInst
*CI
, IRBuilderBase
&B
) {
1093 Value
*EndPtr
= CI
->getArgOperand(1);
1094 if (isa
<ConstantPointerNull
>(EndPtr
)) {
1095 // With a null EndPtr, this function won't capture the main argument.
1096 // It would be readonly too, except that it still may write to errno.
1097 CI
->addParamAttr(0, Attribute::NoCapture
);
1103 Value
*LibCallSimplifier::optimizeStrSpn(CallInst
*CI
, IRBuilderBase
&B
) {
1105 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
1106 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
1108 // strspn(s, "") -> 0
1109 // strspn("", s) -> 0
1110 if ((HasS1
&& S1
.empty()) || (HasS2
&& S2
.empty()))
1111 return Constant::getNullValue(CI
->getType());
1113 // Constant folding.
1114 if (HasS1
&& HasS2
) {
1115 size_t Pos
= S1
.find_first_not_of(S2
);
1116 if (Pos
== StringRef::npos
)
1118 return ConstantInt::get(CI
->getType(), Pos
);
1124 Value
*LibCallSimplifier::optimizeStrCSpn(CallInst
*CI
, IRBuilderBase
&B
) {
1126 bool HasS1
= getConstantStringInfo(CI
->getArgOperand(0), S1
);
1127 bool HasS2
= getConstantStringInfo(CI
->getArgOperand(1), S2
);
1129 // strcspn("", s) -> 0
1130 if (HasS1
&& S1
.empty())
1131 return Constant::getNullValue(CI
->getType());
1133 // Constant folding.
1134 if (HasS1
&& HasS2
) {
1135 size_t Pos
= S1
.find_first_of(S2
);
1136 if (Pos
== StringRef::npos
)
1138 return ConstantInt::get(CI
->getType(), Pos
);
1141 // strcspn(s, "") -> strlen(s)
1142 if (HasS2
&& S2
.empty())
1143 return copyFlags(*CI
, emitStrLen(CI
->getArgOperand(0), B
, DL
, TLI
));
1148 Value
*LibCallSimplifier::optimizeStrStr(CallInst
*CI
, IRBuilderBase
&B
) {
1149 // fold strstr(x, x) -> x.
1150 if (CI
->getArgOperand(0) == CI
->getArgOperand(1))
1151 return CI
->getArgOperand(0);
1153 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1154 if (isOnlyUsedInEqualityComparison(CI
, CI
->getArgOperand(0))) {
1155 Value
*StrLen
= emitStrLen(CI
->getArgOperand(1), B
, DL
, TLI
);
1158 Value
*StrNCmp
= emitStrNCmp(CI
->getArgOperand(0), CI
->getArgOperand(1),
1159 StrLen
, B
, DL
, TLI
);
1162 for (User
*U
: llvm::make_early_inc_range(CI
->users())) {
1163 ICmpInst
*Old
= cast
<ICmpInst
>(U
);
1165 B
.CreateICmp(Old
->getPredicate(), StrNCmp
,
1166 ConstantInt::getNullValue(StrNCmp
->getType()), "cmp");
1167 replaceAllUsesWith(Old
, Cmp
);
1172 // See if either input string is a constant string.
1173 StringRef SearchStr
, ToFindStr
;
1174 bool HasStr1
= getConstantStringInfo(CI
->getArgOperand(0), SearchStr
);
1175 bool HasStr2
= getConstantStringInfo(CI
->getArgOperand(1), ToFindStr
);
1177 // fold strstr(x, "") -> x.
1178 if (HasStr2
&& ToFindStr
.empty())
1179 return CI
->getArgOperand(0);
1181 // If both strings are known, constant fold it.
1182 if (HasStr1
&& HasStr2
) {
1183 size_t Offset
= SearchStr
.find(ToFindStr
);
1185 if (Offset
== StringRef::npos
) // strstr("foo", "bar") -> null
1186 return Constant::getNullValue(CI
->getType());
1188 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1189 return B
.CreateConstInBoundsGEP1_64(B
.getInt8Ty(), CI
->getArgOperand(0),
1193 // fold strstr(x, "y") -> strchr(x, 'y').
1194 if (HasStr2
&& ToFindStr
.size() == 1) {
1195 return emitStrChr(CI
->getArgOperand(0), ToFindStr
[0], B
, TLI
);
1198 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
1202 Value
*LibCallSimplifier::optimizeMemRChr(CallInst
*CI
, IRBuilderBase
&B
) {
1203 Value
*SrcStr
= CI
->getArgOperand(0);
1204 Value
*Size
= CI
->getArgOperand(2);
1205 annotateNonNullAndDereferenceable(CI
, 0, Size
, DL
);
1206 Value
*CharVal
= CI
->getArgOperand(1);
1207 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
);
1208 Value
*NullPtr
= Constant::getNullValue(CI
->getType());
1212 // Fold memrchr(x, y, 0) --> null.
1215 if (LenC
->isOne()) {
1216 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1217 // constant or otherwise.
1218 Value
*Val
= B
.CreateLoad(B
.getInt8Ty(), SrcStr
, "memrchr.char0");
1219 // Slice off the character's high end bits.
1220 CharVal
= B
.CreateTrunc(CharVal
, B
.getInt8Ty());
1221 Value
*Cmp
= B
.CreateICmpEQ(Val
, CharVal
, "memrchr.char0cmp");
1222 return B
.CreateSelect(Cmp
, SrcStr
, NullPtr
, "memrchr.sel");
1227 if (!getConstantStringInfo(SrcStr
, Str
, /*TrimAtNul=*/false))
1230 if (Str
.size() == 0)
1231 // If the array is empty fold memrchr(A, C, N) to null for any value
1232 // of C and N on the basis that the only valid value of N is zero
1233 // (otherwise the call is undefined).
1236 uint64_t EndOff
= UINT64_MAX
;
1238 EndOff
= LenC
->getZExtValue();
1239 if (Str
.size() < EndOff
)
1240 // Punt out-of-bounds accesses to sanitizers and/or libc.
1244 if (ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CharVal
)) {
1245 // Fold memrchr(S, C, N) for a constant C.
1246 size_t Pos
= Str
.rfind(CharC
->getZExtValue(), EndOff
);
1247 if (Pos
== StringRef::npos
)
1248 // When the character is not in the source array fold the result
1249 // to null regardless of Size.
1253 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1254 return B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(Pos
));
1256 if (Str
.find(Str
[Pos
]) == Pos
) {
1257 // When there is just a single occurrence of C in S, i.e., the one
1258 // in Str[Pos], fold
1259 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1260 // for nonconstant N.
1261 Value
*Cmp
= B
.CreateICmpULE(Size
, ConstantInt::get(Size
->getType(), Pos
),
1263 Value
*SrcPlus
= B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
,
1264 B
.getInt64(Pos
), "memrchr.ptr_plus");
1265 return B
.CreateSelect(Cmp
, NullPtr
, SrcPlus
, "memrchr.sel");
1269 // Truncate the string to search at most EndOff characters.
1270 Str
= Str
.substr(0, EndOff
);
1271 if (Str
.find_first_not_of(Str
[0]) != StringRef::npos
)
1274 // If the source array consists of all equal characters, then for any
1275 // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1276 // N != 0 && *S == C ? S + N - 1 : null
1277 Type
*SizeTy
= Size
->getType();
1278 Type
*Int8Ty
= B
.getInt8Ty();
1279 Value
*NNeZ
= B
.CreateICmpNE(Size
, ConstantInt::get(SizeTy
, 0));
1280 // Slice off the sought character's high end bits.
1281 CharVal
= B
.CreateTrunc(CharVal
, Int8Ty
);
1282 Value
*CEqS0
= B
.CreateICmpEQ(ConstantInt::get(Int8Ty
, Str
[0]), CharVal
);
1283 Value
*And
= B
.CreateLogicalAnd(NNeZ
, CEqS0
);
1284 Value
*SizeM1
= B
.CreateSub(Size
, ConstantInt::get(SizeTy
, 1));
1286 B
.CreateInBoundsGEP(Int8Ty
, SrcStr
, SizeM1
, "memrchr.ptr_plus");
1287 return B
.CreateSelect(And
, SrcPlus
, NullPtr
, "memrchr.sel");
1290 Value
*LibCallSimplifier::optimizeMemChr(CallInst
*CI
, IRBuilderBase
&B
) {
1291 Value
*SrcStr
= CI
->getArgOperand(0);
1292 Value
*Size
= CI
->getArgOperand(2);
1294 if (isKnownNonZero(Size
, DL
)) {
1295 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
1296 if (isOnlyUsedInEqualityComparison(CI
, SrcStr
))
1297 return memChrToCharCompare(CI
, Size
, B
, DL
);
1300 Value
*CharVal
= CI
->getArgOperand(1);
1301 ConstantInt
*CharC
= dyn_cast
<ConstantInt
>(CharVal
);
1302 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
);
1303 Value
*NullPtr
= Constant::getNullValue(CI
->getType());
1305 // memchr(x, y, 0) -> null
1310 if (LenC
->isOne()) {
1311 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1312 // constant or otherwise.
1313 Value
*Val
= B
.CreateLoad(B
.getInt8Ty(), SrcStr
, "memchr.char0");
1314 // Slice off the character's high end bits.
1315 CharVal
= B
.CreateTrunc(CharVal
, B
.getInt8Ty());
1316 Value
*Cmp
= B
.CreateICmpEQ(Val
, CharVal
, "memchr.char0cmp");
1317 return B
.CreateSelect(Cmp
, SrcStr
, NullPtr
, "memchr.sel");
1322 if (!getConstantStringInfo(SrcStr
, Str
, /*TrimAtNul=*/false))
1326 size_t Pos
= Str
.find(CharC
->getZExtValue());
1327 if (Pos
== StringRef::npos
)
1328 // When the character is not in the source array fold the result
1329 // to null regardless of Size.
1332 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1333 // When the constant Size is less than or equal to the character
1334 // position also fold the result to null.
1335 Value
*Cmp
= B
.CreateICmpULE(Size
, ConstantInt::get(Size
->getType(), Pos
),
1337 Value
*SrcPlus
= B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, B
.getInt64(Pos
),
1339 return B
.CreateSelect(Cmp
, NullPtr
, SrcPlus
);
1342 if (Str
.size() == 0)
1343 // If the array is empty fold memchr(A, C, N) to null for any value
1344 // of C and N on the basis that the only valid value of N is zero
1345 // (otherwise the call is undefined).
1349 Str
= substr(Str
, LenC
->getZExtValue());
1351 size_t Pos
= Str
.find_first_not_of(Str
[0]);
1352 if (Pos
== StringRef::npos
1353 || Str
.find_first_not_of(Str
[Pos
], Pos
) == StringRef::npos
) {
1354 // If the source array consists of at most two consecutive sequences
1355 // of the same characters, then for any C and N (whether in bounds or
1356 // not), fold memchr(S, C, N) to
1357 // N != 0 && *S == C ? S : null
1358 // or for the two sequences to:
1359 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1360 // ^Sel2 ^Sel1 are denoted above.
1361 // The latter makes it also possible to fold strchr() calls with strings
1362 // of the same characters.
1363 Type
*SizeTy
= Size
->getType();
1364 Type
*Int8Ty
= B
.getInt8Ty();
1366 // Slice off the sought character's high end bits.
1367 CharVal
= B
.CreateTrunc(CharVal
, Int8Ty
);
1369 Value
*Sel1
= NullPtr
;
1370 if (Pos
!= StringRef::npos
) {
1371 // Handle two consecutive sequences of the same characters.
1372 Value
*PosVal
= ConstantInt::get(SizeTy
, Pos
);
1373 Value
*StrPos
= ConstantInt::get(Int8Ty
, Str
[Pos
]);
1374 Value
*CEqSPos
= B
.CreateICmpEQ(CharVal
, StrPos
);
1375 Value
*NGtPos
= B
.CreateICmp(ICmpInst::ICMP_UGT
, Size
, PosVal
);
1376 Value
*And
= B
.CreateAnd(CEqSPos
, NGtPos
);
1377 Value
*SrcPlus
= B
.CreateInBoundsGEP(B
.getInt8Ty(), SrcStr
, PosVal
);
1378 Sel1
= B
.CreateSelect(And
, SrcPlus
, NullPtr
, "memchr.sel1");
1381 Value
*Str0
= ConstantInt::get(Int8Ty
, Str
[0]);
1382 Value
*CEqS0
= B
.CreateICmpEQ(Str0
, CharVal
);
1383 Value
*NNeZ
= B
.CreateICmpNE(Size
, ConstantInt::get(SizeTy
, 0));
1384 Value
*And
= B
.CreateAnd(NNeZ
, CEqS0
);
1385 return B
.CreateSelect(And
, SrcStr
, Sel1
, "memchr.sel2");
1389 if (isOnlyUsedInEqualityComparison(CI
, SrcStr
))
1390 // S is dereferenceable so it's safe to load from it and fold
1391 // memchr(S, C, N) == S to N && *S == C for any C and N.
1392 // TODO: This is safe even for nonconstant S.
1393 return memChrToCharCompare(CI
, Size
, B
, DL
);
1395 // From now on we need a constant length and constant array.
1399 bool OptForSize
= CI
->getFunction()->hasOptSize() ||
1400 llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
,
1401 PGSOQueryType::IRPass
);
1403 // If the char is variable but the input str and length are not we can turn
1404 // this memchr call into a simple bit field test. Of course this only works
1405 // when the return value is only checked against null.
1407 // It would be really nice to reuse switch lowering here but we can't change
1408 // the CFG at this point.
1410 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1412 // after bounds check.
1413 if (OptForSize
|| Str
.empty() || !isOnlyUsedInZeroEqualityComparison(CI
))
1417 *std::max_element(reinterpret_cast<const unsigned char *>(Str
.begin()),
1418 reinterpret_cast<const unsigned char *>(Str
.end()));
1420 // Make sure the bit field we're about to create fits in a register on the
1422 // FIXME: On a 64 bit architecture this prevents us from using the
1423 // interesting range of alpha ascii chars. We could do better by emitting
1424 // two bitfields or shifting the range by 64 if no lower chars are used.
1425 if (!DL
.fitsInLegalInteger(Max
+ 1)) {
1426 // Build chain of ORs
1428 // memchr("abcd", C, 4) != nullptr
1430 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0
1431 std::string SortedStr
= Str
.str();
1432 llvm::sort(SortedStr
);
1433 // Compute the number of of non-contiguous ranges.
1434 unsigned NonContRanges
= 1;
1435 for (size_t i
= 1; i
< SortedStr
.size(); ++i
) {
1436 if (SortedStr
[i
] > SortedStr
[i
- 1] + 1) {
1441 // Restrict this optimization to profitable cases with one or two range
1443 if (NonContRanges
> 2)
1446 SmallVector
<Value
*> CharCompares
;
1447 for (unsigned char C
: SortedStr
)
1448 CharCompares
.push_back(
1449 B
.CreateICmpEQ(CharVal
, ConstantInt::get(CharVal
->getType(), C
)));
1451 return B
.CreateIntToPtr(B
.CreateOr(CharCompares
), CI
->getType());
1454 // For the bit field use a power-of-2 type with at least 8 bits to avoid
1455 // creating unnecessary illegal types.
1456 unsigned char Width
= NextPowerOf2(std::max((unsigned char)7, Max
));
1458 // Now build the bit field.
1459 APInt
Bitfield(Width
, 0);
1461 Bitfield
.setBit((unsigned char)C
);
1462 Value
*BitfieldC
= B
.getInt(Bitfield
);
1464 // Adjust width of "C" to the bitfield width, then mask off the high bits.
1465 Value
*C
= B
.CreateZExtOrTrunc(CharVal
, BitfieldC
->getType());
1466 C
= B
.CreateAnd(C
, B
.getIntN(Width
, 0xFF));
1468 // First check that the bit field access is within bounds.
1469 Value
*Bounds
= B
.CreateICmp(ICmpInst::ICMP_ULT
, C
, B
.getIntN(Width
, Width
),
1472 // Create code that checks if the given bit is set in the field.
1473 Value
*Shl
= B
.CreateShl(B
.getIntN(Width
, 1ULL), C
);
1474 Value
*Bits
= B
.CreateIsNotNull(B
.CreateAnd(Shl
, BitfieldC
), "memchr.bits");
1476 // Finally merge both checks and cast to pointer type. The inttoptr
1477 // implicitly zexts the i1 to intptr type.
1478 return B
.CreateIntToPtr(B
.CreateLogicalAnd(Bounds
, Bits
, "memchr"),
1482 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1483 // arrays LHS and RHS and nonconstant Size.
1484 static Value
*optimizeMemCmpVarSize(CallInst
*CI
, Value
*LHS
, Value
*RHS
,
1485 Value
*Size
, bool StrNCmp
,
1486 IRBuilderBase
&B
, const DataLayout
&DL
) {
1487 if (LHS
== RHS
) // memcmp(s,s,x) -> 0
1488 return Constant::getNullValue(CI
->getType());
1490 StringRef LStr
, RStr
;
1491 if (!getConstantStringInfo(LHS
, LStr
, /*TrimAtNul=*/false) ||
1492 !getConstantStringInfo(RHS
, RStr
, /*TrimAtNul=*/false))
1495 // If the contents of both constant arrays are known, fold a call to
1496 // memcmp(A, B, N) to
1497 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1498 // where Pos is the first mismatch between A and B, determined below.
1501 Value
*Zero
= ConstantInt::get(CI
->getType(), 0);
1502 for (uint64_t MinSize
= std::min(LStr
.size(), RStr
.size()); ; ++Pos
) {
1503 if (Pos
== MinSize
||
1504 (StrNCmp
&& (LStr
[Pos
] == '\0' && RStr
[Pos
] == '\0'))) {
1505 // One array is a leading part of the other of equal or greater
1506 // size, or for strncmp, the arrays are equal strings.
1507 // Fold the result to zero. Size is assumed to be in bounds, since
1508 // otherwise the call would be undefined.
1512 if (LStr
[Pos
] != RStr
[Pos
])
1516 // Normalize the result.
1517 typedef unsigned char UChar
;
1518 int IRes
= UChar(LStr
[Pos
]) < UChar(RStr
[Pos
]) ? -1 : 1;
1519 Value
*MaxSize
= ConstantInt::get(Size
->getType(), Pos
);
1520 Value
*Cmp
= B
.CreateICmp(ICmpInst::ICMP_ULE
, Size
, MaxSize
);
1521 Value
*Res
= ConstantInt::get(CI
->getType(), IRes
);
1522 return B
.CreateSelect(Cmp
, Zero
, Res
);
1525 // Optimize a memcmp call CI with constant size Len.
1526 static Value
*optimizeMemCmpConstantSize(CallInst
*CI
, Value
*LHS
, Value
*RHS
,
1527 uint64_t Len
, IRBuilderBase
&B
,
1528 const DataLayout
&DL
) {
1529 if (Len
== 0) // memcmp(s1,s2,0) -> 0
1530 return Constant::getNullValue(CI
->getType());
1532 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1534 Value
*LHSV
= B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), LHS
, "lhsc"),
1535 CI
->getType(), "lhsv");
1536 Value
*RHSV
= B
.CreateZExt(B
.CreateLoad(B
.getInt8Ty(), RHS
, "rhsc"),
1537 CI
->getType(), "rhsv");
1538 return B
.CreateSub(LHSV
, RHSV
, "chardiff");
1541 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1542 // TODO: The case where both inputs are constants does not need to be limited
1543 // to legal integers or equality comparison. See block below this.
1544 if (DL
.isLegalInteger(Len
* 8) && isOnlyUsedInZeroEqualityComparison(CI
)) {
1545 IntegerType
*IntType
= IntegerType::get(CI
->getContext(), Len
* 8);
1546 Align PrefAlignment
= DL
.getPrefTypeAlign(IntType
);
1548 // First, see if we can fold either argument to a constant.
1549 Value
*LHSV
= nullptr;
1550 if (auto *LHSC
= dyn_cast
<Constant
>(LHS
))
1551 LHSV
= ConstantFoldLoadFromConstPtr(LHSC
, IntType
, DL
);
1553 Value
*RHSV
= nullptr;
1554 if (auto *RHSC
= dyn_cast
<Constant
>(RHS
))
1555 RHSV
= ConstantFoldLoadFromConstPtr(RHSC
, IntType
, DL
);
1557 // Don't generate unaligned loads. If either source is constant data,
1558 // alignment doesn't matter for that source because there is no load.
1559 if ((LHSV
|| getKnownAlignment(LHS
, DL
, CI
) >= PrefAlignment
) &&
1560 (RHSV
|| getKnownAlignment(RHS
, DL
, CI
) >= PrefAlignment
)) {
1562 LHSV
= B
.CreateLoad(IntType
, LHS
, "lhsv");
1564 RHSV
= B
.CreateLoad(IntType
, RHS
, "rhsv");
1565 return B
.CreateZExt(B
.CreateICmpNE(LHSV
, RHSV
), CI
->getType(), "memcmp");
1572 // Most simplifications for memcmp also apply to bcmp.
1573 Value
*LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst
*CI
,
1575 Value
*LHS
= CI
->getArgOperand(0), *RHS
= CI
->getArgOperand(1);
1576 Value
*Size
= CI
->getArgOperand(2);
1578 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1580 if (Value
*Res
= optimizeMemCmpVarSize(CI
, LHS
, RHS
, Size
, false, B
, DL
))
1583 // Handle constant Size.
1584 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(Size
);
1588 return optimizeMemCmpConstantSize(CI
, LHS
, RHS
, LenC
->getZExtValue(), B
, DL
);
1591 Value
*LibCallSimplifier::optimizeMemCmp(CallInst
*CI
, IRBuilderBase
&B
) {
1592 Module
*M
= CI
->getModule();
1593 if (Value
*V
= optimizeMemCmpBCmpCommon(CI
, B
))
1596 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1597 // bcmp can be more efficient than memcmp because it only has to know that
1598 // there is a difference, not how different one is to the other.
1599 if (isLibFuncEmittable(M
, TLI
, LibFunc_bcmp
) &&
1600 isOnlyUsedInZeroEqualityComparison(CI
)) {
1601 Value
*LHS
= CI
->getArgOperand(0);
1602 Value
*RHS
= CI
->getArgOperand(1);
1603 Value
*Size
= CI
->getArgOperand(2);
1604 return copyFlags(*CI
, emitBCmp(LHS
, RHS
, Size
, B
, DL
, TLI
));
1610 Value
*LibCallSimplifier::optimizeBCmp(CallInst
*CI
, IRBuilderBase
&B
) {
1611 return optimizeMemCmpBCmpCommon(CI
, B
);
1614 Value
*LibCallSimplifier::optimizeMemCpy(CallInst
*CI
, IRBuilderBase
&B
) {
1615 Value
*Size
= CI
->getArgOperand(2);
1616 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1617 if (isa
<IntrinsicInst
>(CI
))
1620 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1621 CallInst
*NewCI
= B
.CreateMemCpy(CI
->getArgOperand(0), Align(1),
1622 CI
->getArgOperand(1), Align(1), Size
);
1623 mergeAttributesAndFlags(NewCI
, *CI
);
1624 return CI
->getArgOperand(0);
1627 Value
*LibCallSimplifier::optimizeMemCCpy(CallInst
*CI
, IRBuilderBase
&B
) {
1628 Value
*Dst
= CI
->getArgOperand(0);
1629 Value
*Src
= CI
->getArgOperand(1);
1630 ConstantInt
*StopChar
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2));
1631 ConstantInt
*N
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(3));
1633 if (CI
->use_empty() && Dst
== Src
)
1635 // memccpy(d, s, c, 0) -> nullptr
1637 if (N
->isNullValue())
1638 return Constant::getNullValue(CI
->getType());
1639 if (!getConstantStringInfo(Src
, SrcStr
, /*TrimAtNul=*/false) ||
1640 // TODO: Handle zeroinitializer.
1647 // Wrap arg 'c' of type int to char
1648 size_t Pos
= SrcStr
.find(StopChar
->getSExtValue() & 0xFF);
1649 if (Pos
== StringRef::npos
) {
1650 if (N
->getZExtValue() <= SrcStr
.size()) {
1651 copyFlags(*CI
, B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1),
1652 CI
->getArgOperand(3)));
1653 return Constant::getNullValue(CI
->getType());
1659 ConstantInt::get(N
->getType(), std::min(uint64_t(Pos
+ 1), N
->getZExtValue()));
1660 // memccpy -> llvm.memcpy
1661 copyFlags(*CI
, B
.CreateMemCpy(Dst
, Align(1), Src
, Align(1), NewN
));
1662 return Pos
+ 1 <= N
->getZExtValue()
1663 ? B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, NewN
)
1664 : Constant::getNullValue(CI
->getType());
1667 Value
*LibCallSimplifier::optimizeMemPCpy(CallInst
*CI
, IRBuilderBase
&B
) {
1668 Value
*Dst
= CI
->getArgOperand(0);
1669 Value
*N
= CI
->getArgOperand(2);
1670 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1672 B
.CreateMemCpy(Dst
, Align(1), CI
->getArgOperand(1), Align(1), N
);
1673 // Propagate attributes, but memcpy has no return value, so make sure that
1674 // any return attributes are compliant.
1675 // TODO: Attach return value attributes to the 1st operand to preserve them?
1676 mergeAttributesAndFlags(NewCI
, *CI
);
1677 return B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, N
);
1680 Value
*LibCallSimplifier::optimizeMemMove(CallInst
*CI
, IRBuilderBase
&B
) {
1681 Value
*Size
= CI
->getArgOperand(2);
1682 annotateNonNullAndDereferenceable(CI
, {0, 1}, Size
, DL
);
1683 if (isa
<IntrinsicInst
>(CI
))
1686 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1687 CallInst
*NewCI
= B
.CreateMemMove(CI
->getArgOperand(0), Align(1),
1688 CI
->getArgOperand(1), Align(1), Size
);
1689 mergeAttributesAndFlags(NewCI
, *CI
);
1690 return CI
->getArgOperand(0);
1693 Value
*LibCallSimplifier::optimizeMemSet(CallInst
*CI
, IRBuilderBase
&B
) {
1694 Value
*Size
= CI
->getArgOperand(2);
1695 annotateNonNullAndDereferenceable(CI
, 0, Size
, DL
);
1696 if (isa
<IntrinsicInst
>(CI
))
1699 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1700 Value
*Val
= B
.CreateIntCast(CI
->getArgOperand(1), B
.getInt8Ty(), false);
1701 CallInst
*NewCI
= B
.CreateMemSet(CI
->getArgOperand(0), Val
, Size
, Align(1));
1702 mergeAttributesAndFlags(NewCI
, *CI
);
1703 return CI
->getArgOperand(0);
1706 Value
*LibCallSimplifier::optimizeRealloc(CallInst
*CI
, IRBuilderBase
&B
) {
1707 if (isa
<ConstantPointerNull
>(CI
->getArgOperand(0)))
1708 return copyFlags(*CI
, emitMalloc(CI
->getArgOperand(1), B
, DL
, TLI
));
1713 // When enabled, replace operator new() calls marked with a hot or cold memprof
1714 // attribute with an operator new() call that takes a __hot_cold_t parameter.
1715 // Currently this is supported by the open source version of tcmalloc, see:
1716 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
1717 Value
*LibCallSimplifier::optimizeNew(CallInst
*CI
, IRBuilderBase
&B
,
1719 if (!OptimizeHotColdNew
)
1723 if (CI
->getAttributes().getFnAttr("memprof").getValueAsString() == "cold")
1724 HotCold
= ColdNewHintValue
;
1725 else if (CI
->getAttributes().getFnAttr("memprof").getValueAsString() == "hot")
1726 HotCold
= HotNewHintValue
;
1732 return emitHotColdNew(CI
->getArgOperand(0), B
, TLI
,
1733 LibFunc_Znwm12__hot_cold_t
, HotCold
);
1735 return emitHotColdNew(CI
->getArgOperand(0), B
, TLI
,
1736 LibFunc_Znam12__hot_cold_t
, HotCold
);
1737 case LibFunc_ZnwmRKSt9nothrow_t
:
1738 return emitHotColdNewNoThrow(CI
->getArgOperand(0), CI
->getArgOperand(1), B
,
1739 TLI
, LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t
,
1741 case LibFunc_ZnamRKSt9nothrow_t
:
1742 return emitHotColdNewNoThrow(CI
->getArgOperand(0), CI
->getArgOperand(1), B
,
1743 TLI
, LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t
,
1745 case LibFunc_ZnwmSt11align_val_t
:
1746 return emitHotColdNewAligned(CI
->getArgOperand(0), CI
->getArgOperand(1), B
,
1747 TLI
, LibFunc_ZnwmSt11align_val_t12__hot_cold_t
,
1749 case LibFunc_ZnamSt11align_val_t
:
1750 return emitHotColdNewAligned(CI
->getArgOperand(0), CI
->getArgOperand(1), B
,
1751 TLI
, LibFunc_ZnamSt11align_val_t12__hot_cold_t
,
1753 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t
:
1754 return emitHotColdNewAlignedNoThrow(
1755 CI
->getArgOperand(0), CI
->getArgOperand(1), CI
->getArgOperand(2), B
,
1756 TLI
, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1757 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t
:
1758 return emitHotColdNewAlignedNoThrow(
1759 CI
->getArgOperand(0), CI
->getArgOperand(1), CI
->getArgOperand(2), B
,
1760 TLI
, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t
, HotCold
);
1766 //===----------------------------------------------------------------------===//
1767 // Math Library Optimizations
1768 //===----------------------------------------------------------------------===//
1770 // Replace a libcall \p CI with a call to intrinsic \p IID
1771 static Value
*replaceUnaryCall(CallInst
*CI
, IRBuilderBase
&B
,
1772 Intrinsic::ID IID
) {
1773 // Propagate fast-math flags from the existing call to the new call.
1774 IRBuilderBase::FastMathFlagGuard
Guard(B
);
1775 B
.setFastMathFlags(CI
->getFastMathFlags());
1777 Module
*M
= CI
->getModule();
1778 Value
*V
= CI
->getArgOperand(0);
1779 Function
*F
= Intrinsic::getDeclaration(M
, IID
, CI
->getType());
1780 CallInst
*NewCall
= B
.CreateCall(F
, V
);
1781 NewCall
->takeName(CI
);
1782 return copyFlags(*CI
, NewCall
);
1785 /// Return a variant of Val with float type.
1786 /// Currently this works in two cases: If Val is an FPExtension of a float
1787 /// value to something bigger, simply return the operand.
1788 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1789 /// loss of precision do so.
1790 static Value
*valueHasFloatPrecision(Value
*Val
) {
1791 if (FPExtInst
*Cast
= dyn_cast
<FPExtInst
>(Val
)) {
1792 Value
*Op
= Cast
->getOperand(0);
1793 if (Op
->getType()->isFloatTy())
1796 if (ConstantFP
*Const
= dyn_cast
<ConstantFP
>(Val
)) {
1797 APFloat F
= Const
->getValueAPF();
1799 (void)F
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
,
1802 return ConstantFP::get(Const
->getContext(), F
);
1807 /// Shrink double -> float functions.
1808 static Value
*optimizeDoubleFP(CallInst
*CI
, IRBuilderBase
&B
,
1809 bool isBinary
, const TargetLibraryInfo
*TLI
,
1810 bool isPrecise
= false) {
1811 Function
*CalleeFn
= CI
->getCalledFunction();
1812 if (!CI
->getType()->isDoubleTy() || !CalleeFn
)
1815 // If not all the uses of the function are converted to float, then bail out.
1816 // This matters if the precision of the result is more important than the
1817 // precision of the arguments.
1819 for (User
*U
: CI
->users()) {
1820 FPTruncInst
*Cast
= dyn_cast
<FPTruncInst
>(U
);
1821 if (!Cast
|| !Cast
->getType()->isFloatTy())
1825 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1827 V
[0] = valueHasFloatPrecision(CI
->getArgOperand(0));
1828 V
[1] = isBinary
? valueHasFloatPrecision(CI
->getArgOperand(1)) : nullptr;
1829 if (!V
[0] || (isBinary
&& !V
[1]))
1832 // If call isn't an intrinsic, check that it isn't within a function with the
1833 // same name as the float version of this call, otherwise the result is an
1834 // infinite loop. For example, from MinGW-w64:
1836 // float expf(float val) { return (float) exp((double) val); }
1837 StringRef CalleeName
= CalleeFn
->getName();
1838 bool IsIntrinsic
= CalleeFn
->isIntrinsic();
1840 StringRef CallerName
= CI
->getFunction()->getName();
1841 if (!CallerName
.empty() && CallerName
.back() == 'f' &&
1842 CallerName
.size() == (CalleeName
.size() + 1) &&
1843 CallerName
.starts_with(CalleeName
))
1847 // Propagate the math semantics from the current function to the new function.
1848 IRBuilderBase::FastMathFlagGuard
Guard(B
);
1849 B
.setFastMathFlags(CI
->getFastMathFlags());
1851 // g((double) float) -> (double) gf(float)
1854 Module
*M
= CI
->getModule();
1855 Intrinsic::ID IID
= CalleeFn
->getIntrinsicID();
1856 Function
*Fn
= Intrinsic::getDeclaration(M
, IID
, B
.getFloatTy());
1857 R
= isBinary
? B
.CreateCall(Fn
, V
) : B
.CreateCall(Fn
, V
[0]);
1859 AttributeList CalleeAttrs
= CalleeFn
->getAttributes();
1860 R
= isBinary
? emitBinaryFloatFnCall(V
[0], V
[1], TLI
, CalleeName
, B
,
1862 : emitUnaryFloatFnCall(V
[0], TLI
, CalleeName
, B
, CalleeAttrs
);
1864 return B
.CreateFPExt(R
, B
.getDoubleTy());
1867 /// Shrink double -> float for unary functions.
1868 static Value
*optimizeUnaryDoubleFP(CallInst
*CI
, IRBuilderBase
&B
,
1869 const TargetLibraryInfo
*TLI
,
1870 bool isPrecise
= false) {
1871 return optimizeDoubleFP(CI
, B
, false, TLI
, isPrecise
);
1874 /// Shrink double -> float for binary functions.
1875 static Value
*optimizeBinaryDoubleFP(CallInst
*CI
, IRBuilderBase
&B
,
1876 const TargetLibraryInfo
*TLI
,
1877 bool isPrecise
= false) {
1878 return optimizeDoubleFP(CI
, B
, true, TLI
, isPrecise
);
1881 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1882 Value
*LibCallSimplifier::optimizeCAbs(CallInst
*CI
, IRBuilderBase
&B
) {
1886 // Propagate fast-math flags from the existing call to new instructions.
1887 IRBuilderBase::FastMathFlagGuard
Guard(B
);
1888 B
.setFastMathFlags(CI
->getFastMathFlags());
1891 if (CI
->arg_size() == 1) {
1892 Value
*Op
= CI
->getArgOperand(0);
1893 assert(Op
->getType()->isArrayTy() && "Unexpected signature for cabs!");
1894 Real
= B
.CreateExtractValue(Op
, 0, "real");
1895 Imag
= B
.CreateExtractValue(Op
, 1, "imag");
1897 assert(CI
->arg_size() == 2 && "Unexpected signature for cabs!");
1898 Real
= CI
->getArgOperand(0);
1899 Imag
= CI
->getArgOperand(1);
1902 Value
*RealReal
= B
.CreateFMul(Real
, Real
);
1903 Value
*ImagImag
= B
.CreateFMul(Imag
, Imag
);
1905 Function
*FSqrt
= Intrinsic::getDeclaration(CI
->getModule(), Intrinsic::sqrt
,
1908 *CI
, B
.CreateCall(FSqrt
, B
.CreateFAdd(RealReal
, ImagImag
), "cabs"));
1911 static Value
*optimizeTrigReflections(CallInst
*Call
, LibFunc Func
,
1913 if (!isa
<FPMathOperator
>(Call
))
1916 IRBuilderBase::FastMathFlagGuard
Guard(B
);
1917 B
.setFastMathFlags(Call
->getFastMathFlags());
1919 // TODO: Can this be shared to also handle LLVM intrinsics?
1928 // sin(-X) --> -sin(X)
1929 // tan(-X) --> -tan(X)
1930 if (match(Call
->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X
)))))
1931 return B
.CreateFNeg(
1932 copyFlags(*Call
, B
.CreateCall(Call
->getCalledFunction(), X
)));
1937 // cos(-X) --> cos(X)
1938 if (match(Call
->getArgOperand(0), m_FNeg(m_Value(X
))))
1939 return copyFlags(*Call
,
1940 B
.CreateCall(Call
->getCalledFunction(), X
, "cos"));
1948 // Return a properly extended integer (DstWidth bits wide) if the operation is
1950 static Value
*getIntToFPVal(Value
*I2F
, IRBuilderBase
&B
, unsigned DstWidth
) {
1951 if (isa
<SIToFPInst
>(I2F
) || isa
<UIToFPInst
>(I2F
)) {
1952 Value
*Op
= cast
<Instruction
>(I2F
)->getOperand(0);
1953 // Make sure that the exponent fits inside an "int" of size DstWidth,
1954 // thus avoiding any range issues that FP has not.
1955 unsigned BitWidth
= Op
->getType()->getPrimitiveSizeInBits();
1956 if (BitWidth
< DstWidth
||
1957 (BitWidth
== DstWidth
&& isa
<SIToFPInst
>(I2F
)))
1958 return isa
<SIToFPInst
>(I2F
) ? B
.CreateSExt(Op
, B
.getIntNTy(DstWidth
))
1959 : B
.CreateZExt(Op
, B
.getIntNTy(DstWidth
));
1965 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1966 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1967 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1968 Value
*LibCallSimplifier::replacePowWithExp(CallInst
*Pow
, IRBuilderBase
&B
) {
1969 Module
*M
= Pow
->getModule();
1970 Value
*Base
= Pow
->getArgOperand(0), *Expo
= Pow
->getArgOperand(1);
1971 Module
*Mod
= Pow
->getModule();
1972 Type
*Ty
= Pow
->getType();
1975 // Evaluate special cases related to a nested function as the base.
1977 // pow(exp(x), y) -> exp(x * y)
1978 // pow(exp2(x), y) -> exp2(x * y)
1979 // If exp{,2}() is used only once, it is better to fold two transcendental
1980 // math functions into one. If used again, exp{,2}() would still have to be
1981 // called with the original argument, then keep both original transcendental
1982 // functions. However, this transformation is only safe with fully relaxed
1983 // math semantics, since, besides rounding differences, it changes overflow
1984 // and underflow behavior quite dramatically. For example:
1985 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1987 // exp(1000 * 0.001) = exp(1)
1988 // TODO: Loosen the requirement for fully relaxed math semantics.
1989 // TODO: Handle exp10() when more targets have it available.
1990 CallInst
*BaseFn
= dyn_cast
<CallInst
>(Base
);
1991 if (BaseFn
&& BaseFn
->hasOneUse() && BaseFn
->isFast() && Pow
->isFast()) {
1994 Function
*CalleeFn
= BaseFn
->getCalledFunction();
1995 if (CalleeFn
&& TLI
->getLibFunc(CalleeFn
->getName(), LibFn
) &&
1996 isLibFuncEmittable(M
, TLI
, LibFn
)) {
2000 LibFunc LibFnFloat
, LibFnDouble
, LibFnLongDouble
;
2008 ExpName
= TLI
->getName(LibFunc_exp
);
2009 ID
= Intrinsic::exp
;
2010 LibFnFloat
= LibFunc_expf
;
2011 LibFnDouble
= LibFunc_exp
;
2012 LibFnLongDouble
= LibFunc_expl
;
2017 ExpName
= TLI
->getName(LibFunc_exp2
);
2018 ID
= Intrinsic::exp2
;
2019 LibFnFloat
= LibFunc_exp2f
;
2020 LibFnDouble
= LibFunc_exp2
;
2021 LibFnLongDouble
= LibFunc_exp2l
;
2025 // Create new exp{,2}() with the product as its argument.
2026 Value
*FMul
= B
.CreateFMul(BaseFn
->getArgOperand(0), Expo
, "mul");
2027 ExpFn
= BaseFn
->doesNotAccessMemory()
2028 ? B
.CreateCall(Intrinsic::getDeclaration(Mod
, ID
, Ty
),
2030 : emitUnaryFloatFnCall(FMul
, TLI
, LibFnDouble
, LibFnFloat
,
2032 BaseFn
->getAttributes());
2034 // Since the new exp{,2}() is different from the original one, dead code
2035 // elimination cannot be trusted to remove it, since it may have side
2036 // effects (e.g., errno). When the only consumer for the original
2037 // exp{,2}() is pow(), then it has to be explicitly erased.
2038 substituteInParent(BaseFn
, ExpFn
);
2043 // Evaluate special cases related to a constant base.
2045 const APFloat
*BaseF
;
2046 if (!match(Pow
->getArgOperand(0), m_APFloat(BaseF
)))
2049 AttributeList NoAttrs
; // Attributes are only meaningful on the original call
2051 // pow(2.0, itofp(x)) -> ldexp(1.0, x)
2052 // TODO: This does not work for vectors because there is no ldexp intrinsic.
2053 if (!Ty
->isVectorTy() && match(Base
, m_SpecificFP(2.0)) &&
2054 (isa
<SIToFPInst
>(Expo
) || isa
<UIToFPInst
>(Expo
)) &&
2055 hasFloatFn(M
, TLI
, Ty
, LibFunc_ldexp
, LibFunc_ldexpf
, LibFunc_ldexpl
)) {
2056 if (Value
*ExpoI
= getIntToFPVal(Expo
, B
, TLI
->getIntSize()))
2057 return copyFlags(*Pow
,
2058 emitBinaryFloatFnCall(ConstantFP::get(Ty
, 1.0), ExpoI
,
2059 TLI
, LibFunc_ldexp
, LibFunc_ldexpf
,
2060 LibFunc_ldexpl
, B
, NoAttrs
));
2063 // pow(2.0 ** n, x) -> exp2(n * x)
2064 if (hasFloatFn(M
, TLI
, Ty
, LibFunc_exp2
, LibFunc_exp2f
, LibFunc_exp2l
)) {
2065 APFloat BaseR
= APFloat(1.0);
2066 BaseR
.convert(BaseF
->getSemantics(), APFloat::rmTowardZero
, &Ignored
);
2067 BaseR
= BaseR
/ *BaseF
;
2068 bool IsInteger
= BaseF
->isInteger(), IsReciprocal
= BaseR
.isInteger();
2069 const APFloat
*NF
= IsReciprocal
? &BaseR
: BaseF
;
2070 APSInt
NI(64, false);
2071 if ((IsInteger
|| IsReciprocal
) &&
2072 NF
->convertToInteger(NI
, APFloat::rmTowardZero
, &Ignored
) ==
2074 NI
> 1 && NI
.isPowerOf2()) {
2075 double N
= NI
.logBase2() * (IsReciprocal
? -1.0 : 1.0);
2076 Value
*FMul
= B
.CreateFMul(Expo
, ConstantFP::get(Ty
, N
), "mul");
2077 if (Pow
->doesNotAccessMemory())
2078 return copyFlags(*Pow
, B
.CreateCall(Intrinsic::getDeclaration(
2079 Mod
, Intrinsic::exp2
, Ty
),
2082 return copyFlags(*Pow
, emitUnaryFloatFnCall(FMul
, TLI
, LibFunc_exp2
,
2084 LibFunc_exp2l
, B
, NoAttrs
));
2088 // pow(10.0, x) -> exp10(x)
2089 // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
2090 if (match(Base
, m_SpecificFP(10.0)) &&
2091 hasFloatFn(M
, TLI
, Ty
, LibFunc_exp10
, LibFunc_exp10f
, LibFunc_exp10l
))
2092 return copyFlags(*Pow
, emitUnaryFloatFnCall(Expo
, TLI
, LibFunc_exp10
,
2093 LibFunc_exp10f
, LibFunc_exp10l
,
2096 // pow(x, y) -> exp2(log2(x) * y)
2097 if (Pow
->hasApproxFunc() && Pow
->hasNoNaNs() && BaseF
->isFiniteNonZero() &&
2098 !BaseF
->isNegative()) {
2099 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
2100 // Luckily optimizePow has already handled the x == 1 case.
2101 assert(!match(Base
, m_FPOne()) &&
2102 "pow(1.0, y) should have been simplified earlier!");
2104 Value
*Log
= nullptr;
2105 if (Ty
->isFloatTy())
2106 Log
= ConstantFP::get(Ty
, std::log2(BaseF
->convertToFloat()));
2107 else if (Ty
->isDoubleTy())
2108 Log
= ConstantFP::get(Ty
, std::log2(BaseF
->convertToDouble()));
2111 Value
*FMul
= B
.CreateFMul(Log
, Expo
, "mul");
2112 if (Pow
->doesNotAccessMemory())
2113 return copyFlags(*Pow
, B
.CreateCall(Intrinsic::getDeclaration(
2114 Mod
, Intrinsic::exp2
, Ty
),
2116 else if (hasFloatFn(M
, TLI
, Ty
, LibFunc_exp2
, LibFunc_exp2f
,
2118 return copyFlags(*Pow
, emitUnaryFloatFnCall(FMul
, TLI
, LibFunc_exp2
,
2120 LibFunc_exp2l
, B
, NoAttrs
));
2127 static Value
*getSqrtCall(Value
*V
, AttributeList Attrs
, bool NoErrno
,
2128 Module
*M
, IRBuilderBase
&B
,
2129 const TargetLibraryInfo
*TLI
) {
2130 // If errno is never set, then use the intrinsic for sqrt().
2133 Intrinsic::getDeclaration(M
, Intrinsic::sqrt
, V
->getType());
2134 return B
.CreateCall(SqrtFn
, V
, "sqrt");
2137 // Otherwise, use the libcall for sqrt().
2138 if (hasFloatFn(M
, TLI
, V
->getType(), LibFunc_sqrt
, LibFunc_sqrtf
,
2140 // TODO: We also should check that the target can in fact lower the sqrt()
2141 // libcall. We currently have no way to ask this question, so we ask if
2142 // the target has a sqrt() libcall, which is not exactly the same.
2143 return emitUnaryFloatFnCall(V
, TLI
, LibFunc_sqrt
, LibFunc_sqrtf
,
2144 LibFunc_sqrtl
, B
, Attrs
);
2149 /// Use square root in place of pow(x, +/-0.5).
2150 Value
*LibCallSimplifier::replacePowWithSqrt(CallInst
*Pow
, IRBuilderBase
&B
) {
2151 Value
*Sqrt
, *Base
= Pow
->getArgOperand(0), *Expo
= Pow
->getArgOperand(1);
2152 Module
*Mod
= Pow
->getModule();
2153 Type
*Ty
= Pow
->getType();
2155 const APFloat
*ExpoF
;
2156 if (!match(Expo
, m_APFloat(ExpoF
)) ||
2157 (!ExpoF
->isExactlyValue(0.5) && !ExpoF
->isExactlyValue(-0.5)))
2160 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2161 // so that requires fast-math-flags (afn or reassoc).
2162 if (ExpoF
->isNegative() && (!Pow
->hasApproxFunc() && !Pow
->hasAllowReassoc()))
2165 // If we have a pow() library call (accesses memory) and we can't guarantee
2166 // that the base is not an infinity, give up:
2167 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2168 // errno), but sqrt(-Inf) is required by various standards to set errno.
2169 if (!Pow
->doesNotAccessMemory() && !Pow
->hasNoInfs() &&
2170 !isKnownNeverInfinity(Base
, DL
, TLI
, 0, AC
, Pow
))
2173 Sqrt
= getSqrtCall(Base
, AttributeList(), Pow
->doesNotAccessMemory(), Mod
, B
,
2178 // Handle signed zero base by expanding to fabs(sqrt(x)).
2179 if (!Pow
->hasNoSignedZeros()) {
2180 Function
*FAbsFn
= Intrinsic::getDeclaration(Mod
, Intrinsic::fabs
, Ty
);
2181 Sqrt
= B
.CreateCall(FAbsFn
, Sqrt
, "abs");
2184 Sqrt
= copyFlags(*Pow
, Sqrt
);
2186 // Handle non finite base by expanding to
2187 // (x == -infinity ? +infinity : sqrt(x)).
2188 if (!Pow
->hasNoInfs()) {
2189 Value
*PosInf
= ConstantFP::getInfinity(Ty
),
2190 *NegInf
= ConstantFP::getInfinity(Ty
, true);
2191 Value
*FCmp
= B
.CreateFCmpOEQ(Base
, NegInf
, "isinf");
2192 Sqrt
= B
.CreateSelect(FCmp
, PosInf
, Sqrt
);
2195 // If the exponent is negative, then get the reciprocal.
2196 if (ExpoF
->isNegative())
2197 Sqrt
= B
.CreateFDiv(ConstantFP::get(Ty
, 1.0), Sqrt
, "reciprocal");
2202 static Value
*createPowWithIntegerExponent(Value
*Base
, Value
*Expo
, Module
*M
,
2204 Value
*Args
[] = {Base
, Expo
};
2205 Type
*Types
[] = {Base
->getType(), Expo
->getType()};
2206 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::powi
, Types
);
2207 return B
.CreateCall(F
, Args
);
2210 Value
*LibCallSimplifier::optimizePow(CallInst
*Pow
, IRBuilderBase
&B
) {
2211 Value
*Base
= Pow
->getArgOperand(0);
2212 Value
*Expo
= Pow
->getArgOperand(1);
2213 Function
*Callee
= Pow
->getCalledFunction();
2214 StringRef Name
= Callee
->getName();
2215 Type
*Ty
= Pow
->getType();
2216 Module
*M
= Pow
->getModule();
2217 bool AllowApprox
= Pow
->hasApproxFunc();
2220 // Propagate the math semantics from the call to any created instructions.
2221 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2222 B
.setFastMathFlags(Pow
->getFastMathFlags());
2223 // Evaluate special cases related to the base.
2225 // pow(1.0, x) -> 1.0
2226 if (match(Base
, m_FPOne()))
2229 if (Value
*Exp
= replacePowWithExp(Pow
, B
))
2232 // Evaluate special cases related to the exponent.
2234 // pow(x, -1.0) -> 1.0 / x
2235 if (match(Expo
, m_SpecificFP(-1.0)))
2236 return B
.CreateFDiv(ConstantFP::get(Ty
, 1.0), Base
, "reciprocal");
2238 // pow(x, +/-0.0) -> 1.0
2239 if (match(Expo
, m_AnyZeroFP()))
2240 return ConstantFP::get(Ty
, 1.0);
2243 if (match(Expo
, m_FPOne()))
2246 // pow(x, 2.0) -> x * x
2247 if (match(Expo
, m_SpecificFP(2.0)))
2248 return B
.CreateFMul(Base
, Base
, "square");
2250 if (Value
*Sqrt
= replacePowWithSqrt(Pow
, B
))
2253 // If we can approximate pow:
2254 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2255 // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2256 const APFloat
*ExpoF
;
2257 if (AllowApprox
&& match(Expo
, m_APFloat(ExpoF
)) &&
2258 !ExpoF
->isExactlyValue(0.5) && !ExpoF
->isExactlyValue(-0.5)) {
2259 APFloat
ExpoA(abs(*ExpoF
));
2260 APFloat
ExpoI(*ExpoF
);
2261 Value
*Sqrt
= nullptr;
2262 if (!ExpoA
.isInteger()) {
2263 APFloat Expo2
= ExpoA
;
2264 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2265 // is no floating point exception and the result is an integer, then
2266 // ExpoA == integer + 0.5
2267 if (Expo2
.add(ExpoA
, APFloat::rmNearestTiesToEven
) != APFloat::opOK
)
2270 if (!Expo2
.isInteger())
2273 if (ExpoI
.roundToIntegral(APFloat::rmTowardNegative
) !=
2276 if (!ExpoI
.isInteger())
2280 Sqrt
= getSqrtCall(Base
, AttributeList(), Pow
->doesNotAccessMemory(), M
,
2286 // 0.5 fraction is now optionally handled.
2287 // Do pow -> powi for remaining integer exponent
2288 APSInt
IntExpo(TLI
->getIntSize(), /*isUnsigned=*/false);
2289 if (ExpoF
->isInteger() &&
2290 ExpoF
->convertToInteger(IntExpo
, APFloat::rmTowardZero
, &Ignored
) ==
2292 Value
*PowI
= copyFlags(
2294 createPowWithIntegerExponent(
2295 Base
, ConstantInt::get(B
.getIntNTy(TLI
->getIntSize()), IntExpo
),
2299 return B
.CreateFMul(PowI
, Sqrt
);
2305 // powf(x, itofp(y)) -> powi(x, y)
2306 if (AllowApprox
&& (isa
<SIToFPInst
>(Expo
) || isa
<UIToFPInst
>(Expo
))) {
2307 if (Value
*ExpoI
= getIntToFPVal(Expo
, B
, TLI
->getIntSize()))
2308 return copyFlags(*Pow
, createPowWithIntegerExponent(Base
, ExpoI
, M
, B
));
2311 // Shrink pow() to powf() if the arguments are single precision,
2312 // unless the result is expected to be double precision.
2313 if (UnsafeFPShrink
&& Name
== TLI
->getName(LibFunc_pow
) &&
2314 hasFloatVersion(M
, Name
)) {
2315 if (Value
*Shrunk
= optimizeBinaryDoubleFP(Pow
, B
, TLI
, true))
2322 Value
*LibCallSimplifier::optimizeExp2(CallInst
*CI
, IRBuilderBase
&B
) {
2323 Module
*M
= CI
->getModule();
2324 Function
*Callee
= CI
->getCalledFunction();
2325 StringRef Name
= Callee
->getName();
2326 Value
*Ret
= nullptr;
2327 if (UnsafeFPShrink
&& Name
== TLI
->getName(LibFunc_exp2
) &&
2328 hasFloatVersion(M
, Name
))
2329 Ret
= optimizeUnaryDoubleFP(CI
, B
, TLI
, true);
2331 // Bail out for vectors because the code below only expects scalars.
2332 // TODO: This could be allowed if we had a ldexp intrinsic (D14327).
2333 Type
*Ty
= CI
->getType();
2334 if (Ty
->isVectorTy())
2337 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize
2338 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize
2339 Value
*Op
= CI
->getArgOperand(0);
2340 if ((isa
<SIToFPInst
>(Op
) || isa
<UIToFPInst
>(Op
)) &&
2341 hasFloatFn(M
, TLI
, Ty
, LibFunc_ldexp
, LibFunc_ldexpf
, LibFunc_ldexpl
)) {
2342 if (Value
*Exp
= getIntToFPVal(Op
, B
, TLI
->getIntSize())) {
2343 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2344 B
.setFastMathFlags(CI
->getFastMathFlags());
2346 *CI
, emitBinaryFloatFnCall(ConstantFP::get(Ty
, 1.0), Exp
, TLI
,
2347 LibFunc_ldexp
, LibFunc_ldexpf
,
2348 LibFunc_ldexpl
, B
, AttributeList()));
2355 Value
*LibCallSimplifier::optimizeFMinFMax(CallInst
*CI
, IRBuilderBase
&B
) {
2356 Module
*M
= CI
->getModule();
2358 // If we can shrink the call to a float function rather than a double
2359 // function, do that first.
2360 Function
*Callee
= CI
->getCalledFunction();
2361 StringRef Name
= Callee
->getName();
2362 if ((Name
== "fmin" || Name
== "fmax") && hasFloatVersion(M
, Name
))
2363 if (Value
*Ret
= optimizeBinaryDoubleFP(CI
, B
, TLI
))
2366 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2367 // the intrinsics for improved optimization (for example, vectorization).
2368 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2369 // From the C standard draft WG14/N1256:
2370 // "Ideally, fmax would be sensitive to the sign of zero, for example
2371 // fmax(-0.0, +0.0) would return +0; however, implementation in software
2372 // might be impractical."
2373 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2374 FastMathFlags FMF
= CI
->getFastMathFlags();
2375 FMF
.setNoSignedZeros();
2376 B
.setFastMathFlags(FMF
);
2378 Intrinsic::ID IID
= Callee
->getName().starts_with("fmin") ? Intrinsic::minnum
2379 : Intrinsic::maxnum
;
2380 Function
*F
= Intrinsic::getDeclaration(CI
->getModule(), IID
, CI
->getType());
2382 *CI
, B
.CreateCall(F
, {CI
->getArgOperand(0), CI
->getArgOperand(1)}));
2385 Value
*LibCallSimplifier::optimizeLog(CallInst
*Log
, IRBuilderBase
&B
) {
2386 Function
*LogFn
= Log
->getCalledFunction();
2387 StringRef LogNm
= LogFn
->getName();
2388 Intrinsic::ID LogID
= LogFn
->getIntrinsicID();
2389 Module
*Mod
= Log
->getModule();
2390 Type
*Ty
= Log
->getType();
2391 Value
*Ret
= nullptr;
2393 if (UnsafeFPShrink
&& hasFloatVersion(Mod
, LogNm
))
2394 Ret
= optimizeUnaryDoubleFP(Log
, B
, TLI
, true);
2396 // The earlier call must also be 'fast' in order to do these transforms.
2397 CallInst
*Arg
= dyn_cast
<CallInst
>(Log
->getArgOperand(0));
2398 if (!Log
->isFast() || !Arg
|| !Arg
->isFast() || !Arg
->hasOneUse())
2401 LibFunc LogLb
, ExpLb
, Exp2Lb
, Exp10Lb
, PowLb
;
2403 // This is only applicable to log(), log2(), log10().
2404 if (TLI
->getLibFunc(LogNm
, LogLb
))
2407 LogID
= Intrinsic::log
;
2408 ExpLb
= LibFunc_expf
;
2409 Exp2Lb
= LibFunc_exp2f
;
2410 Exp10Lb
= LibFunc_exp10f
;
2411 PowLb
= LibFunc_powf
;
2414 LogID
= Intrinsic::log
;
2415 ExpLb
= LibFunc_exp
;
2416 Exp2Lb
= LibFunc_exp2
;
2417 Exp10Lb
= LibFunc_exp10
;
2418 PowLb
= LibFunc_pow
;
2421 LogID
= Intrinsic::log
;
2422 ExpLb
= LibFunc_expl
;
2423 Exp2Lb
= LibFunc_exp2l
;
2424 Exp10Lb
= LibFunc_exp10l
;
2425 PowLb
= LibFunc_powl
;
2428 LogID
= Intrinsic::log2
;
2429 ExpLb
= LibFunc_expf
;
2430 Exp2Lb
= LibFunc_exp2f
;
2431 Exp10Lb
= LibFunc_exp10f
;
2432 PowLb
= LibFunc_powf
;
2435 LogID
= Intrinsic::log2
;
2436 ExpLb
= LibFunc_exp
;
2437 Exp2Lb
= LibFunc_exp2
;
2438 Exp10Lb
= LibFunc_exp10
;
2439 PowLb
= LibFunc_pow
;
2442 LogID
= Intrinsic::log2
;
2443 ExpLb
= LibFunc_expl
;
2444 Exp2Lb
= LibFunc_exp2l
;
2445 Exp10Lb
= LibFunc_exp10l
;
2446 PowLb
= LibFunc_powl
;
2448 case LibFunc_log10f
:
2449 LogID
= Intrinsic::log10
;
2450 ExpLb
= LibFunc_expf
;
2451 Exp2Lb
= LibFunc_exp2f
;
2452 Exp10Lb
= LibFunc_exp10f
;
2453 PowLb
= LibFunc_powf
;
2456 LogID
= Intrinsic::log10
;
2457 ExpLb
= LibFunc_exp
;
2458 Exp2Lb
= LibFunc_exp2
;
2459 Exp10Lb
= LibFunc_exp10
;
2460 PowLb
= LibFunc_pow
;
2462 case LibFunc_log10l
:
2463 LogID
= Intrinsic::log10
;
2464 ExpLb
= LibFunc_expl
;
2465 Exp2Lb
= LibFunc_exp2l
;
2466 Exp10Lb
= LibFunc_exp10l
;
2467 PowLb
= LibFunc_powl
;
2472 else if (LogID
== Intrinsic::log
|| LogID
== Intrinsic::log2
||
2473 LogID
== Intrinsic::log10
) {
2474 if (Ty
->getScalarType()->isFloatTy()) {
2475 ExpLb
= LibFunc_expf
;
2476 Exp2Lb
= LibFunc_exp2f
;
2477 Exp10Lb
= LibFunc_exp10f
;
2478 PowLb
= LibFunc_powf
;
2479 } else if (Ty
->getScalarType()->isDoubleTy()) {
2480 ExpLb
= LibFunc_exp
;
2481 Exp2Lb
= LibFunc_exp2
;
2482 Exp10Lb
= LibFunc_exp10
;
2483 PowLb
= LibFunc_pow
;
2489 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2490 B
.setFastMathFlags(FastMathFlags::getFast());
2492 Intrinsic::ID ArgID
= Arg
->getIntrinsicID();
2493 LibFunc ArgLb
= NotLibFunc
;
2494 TLI
->getLibFunc(*Arg
, ArgLb
);
2496 // log(pow(x,y)) -> y*log(x)
2497 AttributeList NoAttrs
;
2498 if (ArgLb
== PowLb
|| ArgID
== Intrinsic::pow
|| ArgID
== Intrinsic::powi
) {
2500 Log
->doesNotAccessMemory()
2501 ? B
.CreateCall(Intrinsic::getDeclaration(Mod
, LogID
, Ty
),
2502 Arg
->getOperand(0), "log")
2503 : emitUnaryFloatFnCall(Arg
->getOperand(0), TLI
, LogNm
, B
, NoAttrs
);
2504 Value
*Y
= Arg
->getArgOperand(1);
2505 // Cast exponent to FP if integer.
2506 if (ArgID
== Intrinsic::powi
)
2507 Y
= B
.CreateSIToFP(Y
, Ty
, "cast");
2508 Value
*MulY
= B
.CreateFMul(Y
, LogX
, "mul");
2509 // Since pow() may have side effects, e.g. errno,
2510 // dead code elimination may not be trusted to remove it.
2511 substituteInParent(Arg
, MulY
);
2515 // log(exp{,2,10}(y)) -> y*log({e,2,10})
2516 // TODO: There is no exp10() intrinsic yet.
2517 if (ArgLb
== ExpLb
|| ArgLb
== Exp2Lb
|| ArgLb
== Exp10Lb
||
2518 ArgID
== Intrinsic::exp
|| ArgID
== Intrinsic::exp2
) {
2520 if (ArgLb
== ExpLb
|| ArgID
== Intrinsic::exp
)
2521 // FIXME: Add more precise value of e for long double.
2522 Eul
= ConstantFP::get(Log
->getType(), numbers::e
);
2523 else if (ArgLb
== Exp2Lb
|| ArgID
== Intrinsic::exp2
)
2524 Eul
= ConstantFP::get(Log
->getType(), 2.0);
2526 Eul
= ConstantFP::get(Log
->getType(), 10.0);
2527 Value
*LogE
= Log
->doesNotAccessMemory()
2528 ? B
.CreateCall(Intrinsic::getDeclaration(Mod
, LogID
, Ty
),
2530 : emitUnaryFloatFnCall(Eul
, TLI
, LogNm
, B
, NoAttrs
);
2531 Value
*MulY
= B
.CreateFMul(Arg
->getArgOperand(0), LogE
, "mul");
2532 // Since exp() may have side effects, e.g. errno,
2533 // dead code elimination may not be trusted to remove it.
2534 substituteInParent(Arg
, MulY
);
2541 Value
*LibCallSimplifier::optimizeSqrt(CallInst
*CI
, IRBuilderBase
&B
) {
2542 Module
*M
= CI
->getModule();
2543 Function
*Callee
= CI
->getCalledFunction();
2544 Value
*Ret
= nullptr;
2545 // TODO: Once we have a way (other than checking for the existince of the
2546 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2548 if (isLibFuncEmittable(M
, TLI
, LibFunc_sqrtf
) &&
2549 (Callee
->getName() == "sqrt" ||
2550 Callee
->getIntrinsicID() == Intrinsic::sqrt
))
2551 Ret
= optimizeUnaryDoubleFP(CI
, B
, TLI
, true);
2556 Instruction
*I
= dyn_cast
<Instruction
>(CI
->getArgOperand(0));
2557 if (!I
|| I
->getOpcode() != Instruction::FMul
|| !I
->isFast())
2560 // We're looking for a repeated factor in a multiplication tree,
2561 // so we can do this fold: sqrt(x * x) -> fabs(x);
2562 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2563 Value
*Op0
= I
->getOperand(0);
2564 Value
*Op1
= I
->getOperand(1);
2565 Value
*RepeatOp
= nullptr;
2566 Value
*OtherOp
= nullptr;
2568 // Simple match: the operands of the multiply are identical.
2571 // Look for a more complicated pattern: one of the operands is itself
2572 // a multiply, so search for a common factor in that multiply.
2573 // Note: We don't bother looking any deeper than this first level or for
2574 // variations of this pattern because instcombine's visitFMUL and/or the
2575 // reassociation pass should give us this form.
2576 Value
*OtherMul0
, *OtherMul1
;
2577 if (match(Op0
, m_FMul(m_Value(OtherMul0
), m_Value(OtherMul1
)))) {
2578 // Pattern: sqrt((x * y) * z)
2579 if (OtherMul0
== OtherMul1
&& cast
<Instruction
>(Op0
)->isFast()) {
2580 // Matched: sqrt((x * x) * z)
2581 RepeatOp
= OtherMul0
;
2589 // Fast math flags for any created instructions should match the sqrt
2591 IRBuilderBase::FastMathFlagGuard
Guard(B
);
2592 B
.setFastMathFlags(I
->getFastMathFlags());
2594 // If we found a repeated factor, hoist it out of the square root and
2595 // replace it with the fabs of that factor.
2596 Type
*ArgType
= I
->getType();
2597 Function
*Fabs
= Intrinsic::getDeclaration(M
, Intrinsic::fabs
, ArgType
);
2598 Value
*FabsCall
= B
.CreateCall(Fabs
, RepeatOp
, "fabs");
2600 // If we found a non-repeated factor, we still need to get its square
2601 // root. We then multiply that by the value that was simplified out
2602 // of the square root calculation.
2603 Function
*Sqrt
= Intrinsic::getDeclaration(M
, Intrinsic::sqrt
, ArgType
);
2604 Value
*SqrtCall
= B
.CreateCall(Sqrt
, OtherOp
, "sqrt");
2605 return copyFlags(*CI
, B
.CreateFMul(FabsCall
, SqrtCall
));
2607 return copyFlags(*CI
, FabsCall
);
2610 // TODO: Generalize to handle any trig function and its inverse.
2611 Value
*LibCallSimplifier::optimizeTan(CallInst
*CI
, IRBuilderBase
&B
) {
2612 Module
*M
= CI
->getModule();
2613 Function
*Callee
= CI
->getCalledFunction();
2614 Value
*Ret
= nullptr;
2615 StringRef Name
= Callee
->getName();
2616 if (UnsafeFPShrink
&& Name
== "tan" && hasFloatVersion(M
, Name
))
2617 Ret
= optimizeUnaryDoubleFP(CI
, B
, TLI
, true);
2619 Value
*Op1
= CI
->getArgOperand(0);
2620 auto *OpC
= dyn_cast
<CallInst
>(Op1
);
2624 // Both calls must be 'fast' in order to remove them.
2625 if (!CI
->isFast() || !OpC
->isFast())
2628 // tan(atan(x)) -> x
2629 // tanf(atanf(x)) -> x
2630 // tanl(atanl(x)) -> x
2632 Function
*F
= OpC
->getCalledFunction();
2633 if (F
&& TLI
->getLibFunc(F
->getName(), Func
) &&
2634 isLibFuncEmittable(M
, TLI
, Func
) &&
2635 ((Func
== LibFunc_atan
&& Callee
->getName() == "tan") ||
2636 (Func
== LibFunc_atanf
&& Callee
->getName() == "tanf") ||
2637 (Func
== LibFunc_atanl
&& Callee
->getName() == "tanl")))
2638 Ret
= OpC
->getArgOperand(0);
2642 static bool isTrigLibCall(CallInst
*CI
) {
2643 // We can only hope to do anything useful if we can ignore things like errno
2644 // and floating-point exceptions.
2645 // We already checked the prototype.
2646 return CI
->doesNotThrow() && CI
->doesNotAccessMemory();
2649 static bool insertSinCosCall(IRBuilderBase
&B
, Function
*OrigCallee
, Value
*Arg
,
2650 bool UseFloat
, Value
*&Sin
, Value
*&Cos
,
2651 Value
*&SinCos
, const TargetLibraryInfo
*TLI
) {
2652 Module
*M
= OrigCallee
->getParent();
2653 Type
*ArgTy
= Arg
->getType();
2657 Triple
T(OrigCallee
->getParent()->getTargetTriple());
2659 Name
= "__sincospif_stret";
2661 assert(T
.getArch() != Triple::x86
&& "x86 messy and unsupported for now");
2662 // x86_64 can't use {float, float} since that would be returned in both
2663 // xmm0 and xmm1, which isn't what a real struct would do.
2664 ResTy
= T
.getArch() == Triple::x86_64
2665 ? static_cast<Type
*>(FixedVectorType::get(ArgTy
, 2))
2666 : static_cast<Type
*>(StructType::get(ArgTy
, ArgTy
));
2668 Name
= "__sincospi_stret";
2669 ResTy
= StructType::get(ArgTy
, ArgTy
);
2672 if (!isLibFuncEmittable(M
, TLI
, Name
))
2675 TLI
->getLibFunc(Name
, TheLibFunc
);
2676 FunctionCallee Callee
= getOrInsertLibFunc(
2677 M
, *TLI
, TheLibFunc
, OrigCallee
->getAttributes(), ResTy
, ArgTy
);
2679 if (Instruction
*ArgInst
= dyn_cast
<Instruction
>(Arg
)) {
2680 // If the argument is an instruction, it must dominate all uses so put our
2681 // sincos call there.
2682 B
.SetInsertPoint(ArgInst
->getParent(), ++ArgInst
->getIterator());
2684 // Otherwise (e.g. for a constant) the beginning of the function is as
2685 // good a place as any.
2686 BasicBlock
&EntryBB
= B
.GetInsertBlock()->getParent()->getEntryBlock();
2687 B
.SetInsertPoint(&EntryBB
, EntryBB
.begin());
2690 SinCos
= B
.CreateCall(Callee
, Arg
, "sincospi");
2692 if (SinCos
->getType()->isStructTy()) {
2693 Sin
= B
.CreateExtractValue(SinCos
, 0, "sinpi");
2694 Cos
= B
.CreateExtractValue(SinCos
, 1, "cospi");
2696 Sin
= B
.CreateExtractElement(SinCos
, ConstantInt::get(B
.getInt32Ty(), 0),
2698 Cos
= B
.CreateExtractElement(SinCos
, ConstantInt::get(B
.getInt32Ty(), 1),
2705 Value
*LibCallSimplifier::optimizeSinCosPi(CallInst
*CI
, bool IsSin
, IRBuilderBase
&B
) {
2706 // Make sure the prototype is as expected, otherwise the rest of the
2707 // function is probably invalid and likely to abort.
2708 if (!isTrigLibCall(CI
))
2711 Value
*Arg
= CI
->getArgOperand(0);
2712 SmallVector
<CallInst
*, 1> SinCalls
;
2713 SmallVector
<CallInst
*, 1> CosCalls
;
2714 SmallVector
<CallInst
*, 1> SinCosCalls
;
2716 bool IsFloat
= Arg
->getType()->isFloatTy();
2718 // Look for all compatible sinpi, cospi and sincospi calls with the same
2719 // argument. If there are enough (in some sense) we can make the
2721 Function
*F
= CI
->getFunction();
2722 for (User
*U
: Arg
->users())
2723 classifyArgUse(U
, F
, IsFloat
, SinCalls
, CosCalls
, SinCosCalls
);
2725 // It's only worthwhile if both sinpi and cospi are actually used.
2726 if (SinCalls
.empty() || CosCalls
.empty())
2729 Value
*Sin
, *Cos
, *SinCos
;
2730 if (!insertSinCosCall(B
, CI
->getCalledFunction(), Arg
, IsFloat
, Sin
, Cos
,
2734 auto replaceTrigInsts
= [this](SmallVectorImpl
<CallInst
*> &Calls
,
2736 for (CallInst
*C
: Calls
)
2737 replaceAllUsesWith(C
, Res
);
2740 replaceTrigInsts(SinCalls
, Sin
);
2741 replaceTrigInsts(CosCalls
, Cos
);
2742 replaceTrigInsts(SinCosCalls
, SinCos
);
2744 return IsSin
? Sin
: Cos
;
2747 void LibCallSimplifier::classifyArgUse(
2748 Value
*Val
, Function
*F
, bool IsFloat
,
2749 SmallVectorImpl
<CallInst
*> &SinCalls
,
2750 SmallVectorImpl
<CallInst
*> &CosCalls
,
2751 SmallVectorImpl
<CallInst
*> &SinCosCalls
) {
2752 auto *CI
= dyn_cast
<CallInst
>(Val
);
2753 if (!CI
|| CI
->use_empty())
2756 // Don't consider calls in other functions.
2757 if (CI
->getFunction() != F
)
2760 Module
*M
= CI
->getModule();
2761 Function
*Callee
= CI
->getCalledFunction();
2763 if (!Callee
|| !TLI
->getLibFunc(*Callee
, Func
) ||
2764 !isLibFuncEmittable(M
, TLI
, Func
) ||
2769 if (Func
== LibFunc_sinpif
)
2770 SinCalls
.push_back(CI
);
2771 else if (Func
== LibFunc_cospif
)
2772 CosCalls
.push_back(CI
);
2773 else if (Func
== LibFunc_sincospif_stret
)
2774 SinCosCalls
.push_back(CI
);
2776 if (Func
== LibFunc_sinpi
)
2777 SinCalls
.push_back(CI
);
2778 else if (Func
== LibFunc_cospi
)
2779 CosCalls
.push_back(CI
);
2780 else if (Func
== LibFunc_sincospi_stret
)
2781 SinCosCalls
.push_back(CI
);
2785 //===----------------------------------------------------------------------===//
2786 // Integer Library Call Optimizations
2787 //===----------------------------------------------------------------------===//
2789 Value
*LibCallSimplifier::optimizeFFS(CallInst
*CI
, IRBuilderBase
&B
) {
2790 // All variants of ffs return int which need not be 32 bits wide.
2791 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
2792 Type
*RetType
= CI
->getType();
2793 Value
*Op
= CI
->getArgOperand(0);
2794 Type
*ArgType
= Op
->getType();
2795 Function
*F
= Intrinsic::getDeclaration(CI
->getCalledFunction()->getParent(),
2796 Intrinsic::cttz
, ArgType
);
2797 Value
*V
= B
.CreateCall(F
, {Op
, B
.getTrue()}, "cttz");
2798 V
= B
.CreateAdd(V
, ConstantInt::get(V
->getType(), 1));
2799 V
= B
.CreateIntCast(V
, RetType
, false);
2801 Value
*Cond
= B
.CreateICmpNE(Op
, Constant::getNullValue(ArgType
));
2802 return B
.CreateSelect(Cond
, V
, ConstantInt::get(RetType
, 0));
2805 Value
*LibCallSimplifier::optimizeFls(CallInst
*CI
, IRBuilderBase
&B
) {
2806 // All variants of fls return int which need not be 32 bits wide.
2807 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
2808 Value
*Op
= CI
->getArgOperand(0);
2809 Type
*ArgType
= Op
->getType();
2810 Function
*F
= Intrinsic::getDeclaration(CI
->getCalledFunction()->getParent(),
2811 Intrinsic::ctlz
, ArgType
);
2812 Value
*V
= B
.CreateCall(F
, {Op
, B
.getFalse()}, "ctlz");
2813 V
= B
.CreateSub(ConstantInt::get(V
->getType(), ArgType
->getIntegerBitWidth()),
2815 return B
.CreateIntCast(V
, CI
->getType(), false);
2818 Value
*LibCallSimplifier::optimizeAbs(CallInst
*CI
, IRBuilderBase
&B
) {
2819 // abs(x) -> x <s 0 ? -x : x
2820 // The negation has 'nsw' because abs of INT_MIN is undefined.
2821 Value
*X
= CI
->getArgOperand(0);
2822 Value
*IsNeg
= B
.CreateIsNeg(X
);
2823 Value
*NegX
= B
.CreateNSWNeg(X
, "neg");
2824 return B
.CreateSelect(IsNeg
, NegX
, X
);
2827 Value
*LibCallSimplifier::optimizeIsDigit(CallInst
*CI
, IRBuilderBase
&B
) {
2828 // isdigit(c) -> (c-'0') <u 10
2829 Value
*Op
= CI
->getArgOperand(0);
2830 Type
*ArgType
= Op
->getType();
2831 Op
= B
.CreateSub(Op
, ConstantInt::get(ArgType
, '0'), "isdigittmp");
2832 Op
= B
.CreateICmpULT(Op
, ConstantInt::get(ArgType
, 10), "isdigit");
2833 return B
.CreateZExt(Op
, CI
->getType());
2836 Value
*LibCallSimplifier::optimizeIsAscii(CallInst
*CI
, IRBuilderBase
&B
) {
2837 // isascii(c) -> c <u 128
2838 Value
*Op
= CI
->getArgOperand(0);
2839 Type
*ArgType
= Op
->getType();
2840 Op
= B
.CreateICmpULT(Op
, ConstantInt::get(ArgType
, 128), "isascii");
2841 return B
.CreateZExt(Op
, CI
->getType());
2844 Value
*LibCallSimplifier::optimizeToAscii(CallInst
*CI
, IRBuilderBase
&B
) {
2845 // toascii(c) -> c & 0x7f
2846 return B
.CreateAnd(CI
->getArgOperand(0),
2847 ConstantInt::get(CI
->getType(), 0x7F));
2850 // Fold calls to atoi, atol, and atoll.
2851 Value
*LibCallSimplifier::optimizeAtoi(CallInst
*CI
, IRBuilderBase
&B
) {
2852 CI
->addParamAttr(0, Attribute::NoCapture
);
2855 if (!getConstantStringInfo(CI
->getArgOperand(0), Str
))
2858 return convertStrToInt(CI
, Str
, nullptr, 10, /*AsSigned=*/true, B
);
2861 // Fold calls to strtol, strtoll, strtoul, and strtoull.
2862 Value
*LibCallSimplifier::optimizeStrToInt(CallInst
*CI
, IRBuilderBase
&B
,
2864 Value
*EndPtr
= CI
->getArgOperand(1);
2865 if (isa
<ConstantPointerNull
>(EndPtr
)) {
2866 // With a null EndPtr, this function won't capture the main argument.
2867 // It would be readonly too, except that it still may write to errno.
2868 CI
->addParamAttr(0, Attribute::NoCapture
);
2870 } else if (!isKnownNonZero(EndPtr
, DL
))
2874 if (!getConstantStringInfo(CI
->getArgOperand(0), Str
))
2877 if (ConstantInt
*CInt
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2))) {
2878 return convertStrToInt(CI
, Str
, EndPtr
, CInt
->getSExtValue(), AsSigned
, B
);
2884 //===----------------------------------------------------------------------===//
2885 // Formatting and IO Library Call Optimizations
2886 //===----------------------------------------------------------------------===//
2888 static bool isReportingError(Function
*Callee
, CallInst
*CI
, int StreamArg
);
2890 Value
*LibCallSimplifier::optimizeErrorReporting(CallInst
*CI
, IRBuilderBase
&B
,
2892 Function
*Callee
= CI
->getCalledFunction();
2893 // Error reporting calls should be cold, mark them as such.
2894 // This applies even to non-builtin calls: it is only a hint and applies to
2895 // functions that the frontend might not understand as builtins.
2897 // This heuristic was suggested in:
2898 // Improving Static Branch Prediction in a Compiler
2899 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2900 // Proceedings of PACT'98, Oct. 1998, IEEE
2901 if (!CI
->hasFnAttr(Attribute::Cold
) &&
2902 isReportingError(Callee
, CI
, StreamArg
)) {
2903 CI
->addFnAttr(Attribute::Cold
);
2909 static bool isReportingError(Function
*Callee
, CallInst
*CI
, int StreamArg
) {
2910 if (!Callee
|| !Callee
->isDeclaration())
2916 // These functions might be considered cold, but only if their stream
2917 // argument is stderr.
2919 if (StreamArg
>= (int)CI
->arg_size())
2921 LoadInst
*LI
= dyn_cast
<LoadInst
>(CI
->getArgOperand(StreamArg
));
2924 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getPointerOperand());
2925 if (!GV
|| !GV
->isDeclaration())
2927 return GV
->getName() == "stderr";
2930 Value
*LibCallSimplifier::optimizePrintFString(CallInst
*CI
, IRBuilderBase
&B
) {
2931 // Check for a fixed format string.
2932 StringRef FormatStr
;
2933 if (!getConstantStringInfo(CI
->getArgOperand(0), FormatStr
))
2936 // Empty format string -> noop.
2937 if (FormatStr
.empty()) // Tolerate printf's declared void.
2938 return CI
->use_empty() ? (Value
*)CI
: ConstantInt::get(CI
->getType(), 0);
2940 // Do not do any of the following transformations if the printf return value
2941 // is used, in general the printf return value is not compatible with either
2942 // putchar() or puts().
2943 if (!CI
->use_empty())
2946 Type
*IntTy
= CI
->getType();
2947 // printf("x") -> putchar('x'), even for "%" and "%%".
2948 if (FormatStr
.size() == 1 || FormatStr
== "%%") {
2949 // Convert the character to unsigned char before passing it to putchar
2950 // to avoid host-specific sign extension in the IR. Putchar converts
2951 // it to unsigned char regardless.
2952 Value
*IntChar
= ConstantInt::get(IntTy
, (unsigned char)FormatStr
[0]);
2953 return copyFlags(*CI
, emitPutChar(IntChar
, B
, TLI
));
2956 // Try to remove call or emit putchar/puts.
2957 if (FormatStr
== "%s" && CI
->arg_size() > 1) {
2958 StringRef OperandStr
;
2959 if (!getConstantStringInfo(CI
->getOperand(1), OperandStr
))
2961 // printf("%s", "") --> NOP
2962 if (OperandStr
.empty())
2964 // printf("%s", "a") --> putchar('a')
2965 if (OperandStr
.size() == 1) {
2966 // Convert the character to unsigned char before passing it to putchar
2967 // to avoid host-specific sign extension in the IR. Putchar converts
2968 // it to unsigned char regardless.
2969 Value
*IntChar
= ConstantInt::get(IntTy
, (unsigned char)OperandStr
[0]);
2970 return copyFlags(*CI
, emitPutChar(IntChar
, B
, TLI
));
2972 // printf("%s", str"\n") --> puts(str)
2973 if (OperandStr
.back() == '\n') {
2974 OperandStr
= OperandStr
.drop_back();
2975 Value
*GV
= B
.CreateGlobalString(OperandStr
, "str");
2976 return copyFlags(*CI
, emitPutS(GV
, B
, TLI
));
2981 // printf("foo\n") --> puts("foo")
2982 if (FormatStr
.back() == '\n' &&
2983 !FormatStr
.contains('%')) { // No format characters.
2984 // Create a string literal with no \n on it. We expect the constant merge
2985 // pass to be run after this pass, to merge duplicate strings.
2986 FormatStr
= FormatStr
.drop_back();
2987 Value
*GV
= B
.CreateGlobalString(FormatStr
, "str");
2988 return copyFlags(*CI
, emitPutS(GV
, B
, TLI
));
2991 // Optimize specific format strings.
2992 // printf("%c", chr) --> putchar(chr)
2993 if (FormatStr
== "%c" && CI
->arg_size() > 1 &&
2994 CI
->getArgOperand(1)->getType()->isIntegerTy()) {
2995 // Convert the argument to the type expected by putchar, i.e., int, which
2996 // need not be 32 bits wide but which is the same as printf's return type.
2997 Value
*IntChar
= B
.CreateIntCast(CI
->getArgOperand(1), IntTy
, false);
2998 return copyFlags(*CI
, emitPutChar(IntChar
, B
, TLI
));
3001 // printf("%s\n", str) --> puts(str)
3002 if (FormatStr
== "%s\n" && CI
->arg_size() > 1 &&
3003 CI
->getArgOperand(1)->getType()->isPointerTy())
3004 return copyFlags(*CI
, emitPutS(CI
->getArgOperand(1), B
, TLI
));
3008 Value
*LibCallSimplifier::optimizePrintF(CallInst
*CI
, IRBuilderBase
&B
) {
3010 Module
*M
= CI
->getModule();
3011 Function
*Callee
= CI
->getCalledFunction();
3012 FunctionType
*FT
= Callee
->getFunctionType();
3013 if (Value
*V
= optimizePrintFString(CI
, B
)) {
3017 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
3019 // printf(format, ...) -> iprintf(format, ...) if no floating point
3021 if (isLibFuncEmittable(M
, TLI
, LibFunc_iprintf
) &&
3022 !callHasFloatingPointArgument(CI
)) {
3023 FunctionCallee IPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_iprintf
, FT
,
3024 Callee
->getAttributes());
3025 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3026 New
->setCalledFunction(IPrintFFn
);
3031 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
3033 if (isLibFuncEmittable(M
, TLI
, LibFunc_small_printf
) &&
3034 !callHasFP128Argument(CI
)) {
3035 auto SmallPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_small_printf
, FT
,
3036 Callee
->getAttributes());
3037 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3038 New
->setCalledFunction(SmallPrintFFn
);
3046 Value
*LibCallSimplifier::optimizeSPrintFString(CallInst
*CI
,
3048 // Check for a fixed format string.
3049 StringRef FormatStr
;
3050 if (!getConstantStringInfo(CI
->getArgOperand(1), FormatStr
))
3053 // If we just have a format string (nothing else crazy) transform it.
3054 Value
*Dest
= CI
->getArgOperand(0);
3055 if (CI
->arg_size() == 2) {
3056 // Make sure there's no % in the constant array. We could try to handle
3057 // %% -> % in the future if we cared.
3058 if (FormatStr
.contains('%'))
3059 return nullptr; // we found a format specifier, bail out.
3061 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
3063 Dest
, Align(1), CI
->getArgOperand(1), Align(1),
3064 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()),
3065 FormatStr
.size() + 1)); // Copy the null byte.
3066 return ConstantInt::get(CI
->getType(), FormatStr
.size());
3069 // The remaining optimizations require the format string to be "%s" or "%c"
3070 // and have an extra operand.
3071 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' || CI
->arg_size() < 3)
3074 // Decode the second character of the format string.
3075 if (FormatStr
[1] == 'c') {
3076 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3077 if (!CI
->getArgOperand(2)->getType()->isIntegerTy())
3079 Value
*V
= B
.CreateTrunc(CI
->getArgOperand(2), B
.getInt8Ty(), "char");
3081 B
.CreateStore(V
, Ptr
);
3082 Ptr
= B
.CreateInBoundsGEP(B
.getInt8Ty(), Ptr
, B
.getInt32(1), "nul");
3083 B
.CreateStore(B
.getInt8(0), Ptr
);
3085 return ConstantInt::get(CI
->getType(), 1);
3088 if (FormatStr
[1] == 's') {
3089 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
3091 if (!CI
->getArgOperand(2)->getType()->isPointerTy())
3094 if (CI
->use_empty())
3095 // sprintf(dest, "%s", str) -> strcpy(dest, str)
3096 return copyFlags(*CI
, emitStrCpy(Dest
, CI
->getArgOperand(2), B
, TLI
));
3098 uint64_t SrcLen
= GetStringLength(CI
->getArgOperand(2));
3101 Dest
, Align(1), CI
->getArgOperand(2), Align(1),
3102 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), SrcLen
));
3103 // Returns total number of characters written without null-character.
3104 return ConstantInt::get(CI
->getType(), SrcLen
- 1);
3105 } else if (Value
*V
= emitStpCpy(Dest
, CI
->getArgOperand(2), B
, TLI
)) {
3106 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
3107 Value
*PtrDiff
= B
.CreatePtrDiff(B
.getInt8Ty(), V
, Dest
);
3108 return B
.CreateIntCast(PtrDiff
, CI
->getType(), false);
3111 bool OptForSize
= CI
->getFunction()->hasOptSize() ||
3112 llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
,
3113 PGSOQueryType::IRPass
);
3117 Value
*Len
= emitStrLen(CI
->getArgOperand(2), B
, DL
, TLI
);
3121 B
.CreateAdd(Len
, ConstantInt::get(Len
->getType(), 1), "leninc");
3122 B
.CreateMemCpy(Dest
, Align(1), CI
->getArgOperand(2), Align(1), IncLen
);
3124 // The sprintf result is the unincremented number of bytes in the string.
3125 return B
.CreateIntCast(Len
, CI
->getType(), false);
3130 Value
*LibCallSimplifier::optimizeSPrintF(CallInst
*CI
, IRBuilderBase
&B
) {
3131 Module
*M
= CI
->getModule();
3132 Function
*Callee
= CI
->getCalledFunction();
3133 FunctionType
*FT
= Callee
->getFunctionType();
3134 if (Value
*V
= optimizeSPrintFString(CI
, B
)) {
3138 annotateNonNullNoUndefBasedOnAccess(CI
, {0, 1});
3140 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3142 if (isLibFuncEmittable(M
, TLI
, LibFunc_siprintf
) &&
3143 !callHasFloatingPointArgument(CI
)) {
3144 FunctionCallee SIPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_siprintf
,
3145 FT
, Callee
->getAttributes());
3146 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3147 New
->setCalledFunction(SIPrintFFn
);
3152 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3153 // floating point arguments.
3154 if (isLibFuncEmittable(M
, TLI
, LibFunc_small_sprintf
) &&
3155 !callHasFP128Argument(CI
)) {
3156 auto SmallSPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_small_sprintf
, FT
,
3157 Callee
->getAttributes());
3158 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3159 New
->setCalledFunction(SmallSPrintFFn
);
3167 // Transform an snprintf call CI with the bound N to format the string Str
3168 // either to a call to memcpy, or to single character a store, or to nothing,
3169 // and fold the result to a constant. A nonnull StrArg refers to the string
3170 // argument being formatted. Otherwise the call is one with N < 2 and
3171 // the "%c" directive to format a single character.
3172 Value
*LibCallSimplifier::emitSnPrintfMemCpy(CallInst
*CI
, Value
*StrArg
,
3173 StringRef Str
, uint64_t N
,
3175 assert(StrArg
|| (N
< 2 && Str
.size() == 1));
3177 unsigned IntBits
= TLI
->getIntSize();
3178 uint64_t IntMax
= maxIntN(IntBits
);
3179 if (Str
.size() > IntMax
)
3180 // Bail if the string is longer than INT_MAX. POSIX requires
3181 // implementations to set errno to EOVERFLOW in this case, in
3182 // addition to when N is larger than that (checked by the caller).
3185 Value
*StrLen
= ConstantInt::get(CI
->getType(), Str
.size());
3189 // Set to the number of bytes to copy fron StrArg which is also
3190 // the offset of the terinating nul.
3193 // Copy the full string, including the terminating nul (which must
3194 // be present regardless of the bound).
3195 NCopy
= Str
.size() + 1;
3199 Value
*DstArg
= CI
->getArgOperand(0);
3200 if (NCopy
&& StrArg
)
3201 // Transform the call to lvm.memcpy(dst, fmt, N).
3205 DstArg
, Align(1), StrArg
, Align(1),
3206 ConstantInt::get(DL
.getIntPtrType(CI
->getContext()), NCopy
)));
3209 // Return early when the whole format string, including the final nul,
3213 // Otherwise, when truncating the string append a terminating nul.
3214 Type
*Int8Ty
= B
.getInt8Ty();
3215 Value
*NulOff
= B
.getIntN(IntBits
, NCopy
);
3216 Value
*DstEnd
= B
.CreateInBoundsGEP(Int8Ty
, DstArg
, NulOff
, "endptr");
3217 B
.CreateStore(ConstantInt::get(Int8Ty
, 0), DstEnd
);
3221 Value
*LibCallSimplifier::optimizeSnPrintFString(CallInst
*CI
,
3224 ConstantInt
*Size
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
3228 uint64_t N
= Size
->getZExtValue();
3229 uint64_t IntMax
= maxIntN(TLI
->getIntSize());
3231 // Bail if the bound exceeds INT_MAX. POSIX requires implementations
3232 // to set errno to EOVERFLOW in this case.
3235 Value
*DstArg
= CI
->getArgOperand(0);
3236 Value
*FmtArg
= CI
->getArgOperand(2);
3238 // Check for a fixed format string.
3239 StringRef FormatStr
;
3240 if (!getConstantStringInfo(FmtArg
, FormatStr
))
3243 // If we just have a format string (nothing else crazy) transform it.
3244 if (CI
->arg_size() == 3) {
3245 if (FormatStr
.contains('%'))
3246 // Bail if the format string contains a directive and there are
3247 // no arguments. We could handle "%%" in the future.
3250 return emitSnPrintfMemCpy(CI
, FmtArg
, FormatStr
, N
, B
);
3253 // The remaining optimizations require the format string to be "%s" or "%c"
3254 // and have an extra operand.
3255 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' || CI
->arg_size() != 4)
3258 // Decode the second character of the format string.
3259 if (FormatStr
[1] == 'c') {
3261 // Use an arbitary string of length 1 to transform the call into
3262 // either a nul store (N == 1) or a no-op (N == 0) and fold it
3264 StringRef
CharStr("*");
3265 return emitSnPrintfMemCpy(CI
, nullptr, CharStr
, N
, B
);
3268 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3269 if (!CI
->getArgOperand(3)->getType()->isIntegerTy())
3271 Value
*V
= B
.CreateTrunc(CI
->getArgOperand(3), B
.getInt8Ty(), "char");
3272 Value
*Ptr
= DstArg
;
3273 B
.CreateStore(V
, Ptr
);
3274 Ptr
= B
.CreateInBoundsGEP(B
.getInt8Ty(), Ptr
, B
.getInt32(1), "nul");
3275 B
.CreateStore(B
.getInt8(0), Ptr
);
3276 return ConstantInt::get(CI
->getType(), 1);
3279 if (FormatStr
[1] != 's')
3282 Value
*StrArg
= CI
->getArgOperand(3);
3283 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3285 if (!getConstantStringInfo(StrArg
, Str
))
3288 return emitSnPrintfMemCpy(CI
, StrArg
, Str
, N
, B
);
3291 Value
*LibCallSimplifier::optimizeSnPrintF(CallInst
*CI
, IRBuilderBase
&B
) {
3292 if (Value
*V
= optimizeSnPrintFString(CI
, B
)) {
3296 if (isKnownNonZero(CI
->getOperand(1), DL
))
3297 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
3301 Value
*LibCallSimplifier::optimizeFPrintFString(CallInst
*CI
,
3303 optimizeErrorReporting(CI
, B
, 0);
3305 // All the optimizations depend on the format string.
3306 StringRef FormatStr
;
3307 if (!getConstantStringInfo(CI
->getArgOperand(1), FormatStr
))
3310 // Do not do any of the following transformations if the fprintf return
3311 // value is used, in general the fprintf return value is not compatible
3312 // with fwrite(), fputc() or fputs().
3313 if (!CI
->use_empty())
3316 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3317 if (CI
->arg_size() == 2) {
3318 // Could handle %% -> % if we cared.
3319 if (FormatStr
.contains('%'))
3320 return nullptr; // We found a format specifier.
3322 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
3323 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
3325 *CI
, emitFWrite(CI
->getArgOperand(1),
3326 ConstantInt::get(SizeTTy
, FormatStr
.size()),
3327 CI
->getArgOperand(0), B
, DL
, TLI
));
3330 // The remaining optimizations require the format string to be "%s" or "%c"
3331 // and have an extra operand.
3332 if (FormatStr
.size() != 2 || FormatStr
[0] != '%' || CI
->arg_size() < 3)
3335 // Decode the second character of the format string.
3336 if (FormatStr
[1] == 'c') {
3337 // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3338 if (!CI
->getArgOperand(2)->getType()->isIntegerTy())
3340 Type
*IntTy
= B
.getIntNTy(TLI
->getIntSize());
3341 Value
*V
= B
.CreateIntCast(CI
->getArgOperand(2), IntTy
, /*isSigned*/ true,
3343 return copyFlags(*CI
, emitFPutC(V
, CI
->getArgOperand(0), B
, TLI
));
3346 if (FormatStr
[1] == 's') {
3347 // fprintf(F, "%s", str) --> fputs(str, F)
3348 if (!CI
->getArgOperand(2)->getType()->isPointerTy())
3351 *CI
, emitFPutS(CI
->getArgOperand(2), CI
->getArgOperand(0), B
, TLI
));
3356 Value
*LibCallSimplifier::optimizeFPrintF(CallInst
*CI
, IRBuilderBase
&B
) {
3357 Module
*M
= CI
->getModule();
3358 Function
*Callee
= CI
->getCalledFunction();
3359 FunctionType
*FT
= Callee
->getFunctionType();
3360 if (Value
*V
= optimizeFPrintFString(CI
, B
)) {
3364 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3365 // floating point arguments.
3366 if (isLibFuncEmittable(M
, TLI
, LibFunc_fiprintf
) &&
3367 !callHasFloatingPointArgument(CI
)) {
3368 FunctionCallee FIPrintFFn
= getOrInsertLibFunc(M
, *TLI
, LibFunc_fiprintf
,
3369 FT
, Callee
->getAttributes());
3370 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3371 New
->setCalledFunction(FIPrintFFn
);
3376 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3377 // 128-bit floating point arguments.
3378 if (isLibFuncEmittable(M
, TLI
, LibFunc_small_fprintf
) &&
3379 !callHasFP128Argument(CI
)) {
3380 auto SmallFPrintFFn
=
3381 getOrInsertLibFunc(M
, *TLI
, LibFunc_small_fprintf
, FT
,
3382 Callee
->getAttributes());
3383 CallInst
*New
= cast
<CallInst
>(CI
->clone());
3384 New
->setCalledFunction(SmallFPrintFFn
);
3392 Value
*LibCallSimplifier::optimizeFWrite(CallInst
*CI
, IRBuilderBase
&B
) {
3393 optimizeErrorReporting(CI
, B
, 3);
3395 // Get the element size and count.
3396 ConstantInt
*SizeC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(1));
3397 ConstantInt
*CountC
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2));
3398 if (SizeC
&& CountC
) {
3399 uint64_t Bytes
= SizeC
->getZExtValue() * CountC
->getZExtValue();
3401 // If this is writing zero records, remove the call (it's a noop).
3403 return ConstantInt::get(CI
->getType(), 0);
3405 // If this is writing one byte, turn it into fputc.
3406 // This optimisation is only valid, if the return value is unused.
3407 if (Bytes
== 1 && CI
->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3408 Value
*Char
= B
.CreateLoad(B
.getInt8Ty(), CI
->getArgOperand(0), "char");
3409 Type
*IntTy
= B
.getIntNTy(TLI
->getIntSize());
3410 Value
*Cast
= B
.CreateIntCast(Char
, IntTy
, /*isSigned*/ true, "chari");
3411 Value
*NewCI
= emitFPutC(Cast
, CI
->getArgOperand(3), B
, TLI
);
3412 return NewCI
? ConstantInt::get(CI
->getType(), 1) : nullptr;
3419 Value
*LibCallSimplifier::optimizeFPuts(CallInst
*CI
, IRBuilderBase
&B
) {
3420 optimizeErrorReporting(CI
, B
, 1);
3422 // Don't rewrite fputs to fwrite when optimising for size because fwrite
3423 // requires more arguments and thus extra MOVs are required.
3424 bool OptForSize
= CI
->getFunction()->hasOptSize() ||
3425 llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
,
3426 PGSOQueryType::IRPass
);
3430 // We can't optimize if return value is used.
3431 if (!CI
->use_empty())
3434 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3435 uint64_t Len
= GetStringLength(CI
->getArgOperand(0));
3439 // Known to have no uses (see above).
3440 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
3441 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
3444 emitFWrite(CI
->getArgOperand(0),
3445 ConstantInt::get(SizeTTy
, Len
- 1),
3446 CI
->getArgOperand(1), B
, DL
, TLI
));
3449 Value
*LibCallSimplifier::optimizePuts(CallInst
*CI
, IRBuilderBase
&B
) {
3450 annotateNonNullNoUndefBasedOnAccess(CI
, 0);
3451 if (!CI
->use_empty())
3454 // Check for a constant string.
3455 // puts("") -> putchar('\n')
3457 if (getConstantStringInfo(CI
->getArgOperand(0), Str
) && Str
.empty()) {
3458 // putchar takes an argument of the same type as puts returns, i.e.,
3459 // int, which need not be 32 bits wide.
3460 Type
*IntTy
= CI
->getType();
3461 return copyFlags(*CI
, emitPutChar(ConstantInt::get(IntTy
, '\n'), B
, TLI
));
3467 Value
*LibCallSimplifier::optimizeBCopy(CallInst
*CI
, IRBuilderBase
&B
) {
3468 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3469 return copyFlags(*CI
, B
.CreateMemMove(CI
->getArgOperand(1), Align(1),
3470 CI
->getArgOperand(0), Align(1),
3471 CI
->getArgOperand(2)));
3474 bool LibCallSimplifier::hasFloatVersion(const Module
*M
, StringRef FuncName
) {
3475 SmallString
<20> FloatFuncName
= FuncName
;
3476 FloatFuncName
+= 'f';
3477 return isLibFuncEmittable(M
, TLI
, FloatFuncName
);
3480 Value
*LibCallSimplifier::optimizeStringMemoryLibCall(CallInst
*CI
,
3481 IRBuilderBase
&Builder
) {
3482 Module
*M
= CI
->getModule();
3484 Function
*Callee
= CI
->getCalledFunction();
3485 // Check for string/memory library functions.
3486 if (TLI
->getLibFunc(*Callee
, Func
) && isLibFuncEmittable(M
, TLI
, Func
)) {
3487 // Make sure we never change the calling convention.
3489 (ignoreCallingConv(Func
) ||
3490 TargetLibraryInfoImpl::isCallingConvCCompatible(CI
)) &&
3491 "Optimizing string/memory libcall would change the calling convention");
3493 case LibFunc_strcat
:
3494 return optimizeStrCat(CI
, Builder
);
3495 case LibFunc_strncat
:
3496 return optimizeStrNCat(CI
, Builder
);
3497 case LibFunc_strchr
:
3498 return optimizeStrChr(CI
, Builder
);
3499 case LibFunc_strrchr
:
3500 return optimizeStrRChr(CI
, Builder
);
3501 case LibFunc_strcmp
:
3502 return optimizeStrCmp(CI
, Builder
);
3503 case LibFunc_strncmp
:
3504 return optimizeStrNCmp(CI
, Builder
);
3505 case LibFunc_strcpy
:
3506 return optimizeStrCpy(CI
, Builder
);
3507 case LibFunc_stpcpy
:
3508 return optimizeStpCpy(CI
, Builder
);
3509 case LibFunc_strlcpy
:
3510 return optimizeStrLCpy(CI
, Builder
);
3511 case LibFunc_stpncpy
:
3512 return optimizeStringNCpy(CI
, /*RetEnd=*/true, Builder
);
3513 case LibFunc_strncpy
:
3514 return optimizeStringNCpy(CI
, /*RetEnd=*/false, Builder
);
3515 case LibFunc_strlen
:
3516 return optimizeStrLen(CI
, Builder
);
3517 case LibFunc_strnlen
:
3518 return optimizeStrNLen(CI
, Builder
);
3519 case LibFunc_strpbrk
:
3520 return optimizeStrPBrk(CI
, Builder
);
3521 case LibFunc_strndup
:
3522 return optimizeStrNDup(CI
, Builder
);
3523 case LibFunc_strtol
:
3524 case LibFunc_strtod
:
3525 case LibFunc_strtof
:
3526 case LibFunc_strtoul
:
3527 case LibFunc_strtoll
:
3528 case LibFunc_strtold
:
3529 case LibFunc_strtoull
:
3530 return optimizeStrTo(CI
, Builder
);
3531 case LibFunc_strspn
:
3532 return optimizeStrSpn(CI
, Builder
);
3533 case LibFunc_strcspn
:
3534 return optimizeStrCSpn(CI
, Builder
);
3535 case LibFunc_strstr
:
3536 return optimizeStrStr(CI
, Builder
);
3537 case LibFunc_memchr
:
3538 return optimizeMemChr(CI
, Builder
);
3539 case LibFunc_memrchr
:
3540 return optimizeMemRChr(CI
, Builder
);
3542 return optimizeBCmp(CI
, Builder
);
3543 case LibFunc_memcmp
:
3544 return optimizeMemCmp(CI
, Builder
);
3545 case LibFunc_memcpy
:
3546 return optimizeMemCpy(CI
, Builder
);
3547 case LibFunc_memccpy
:
3548 return optimizeMemCCpy(CI
, Builder
);
3549 case LibFunc_mempcpy
:
3550 return optimizeMemPCpy(CI
, Builder
);
3551 case LibFunc_memmove
:
3552 return optimizeMemMove(CI
, Builder
);
3553 case LibFunc_memset
:
3554 return optimizeMemSet(CI
, Builder
);
3555 case LibFunc_realloc
:
3556 return optimizeRealloc(CI
, Builder
);
3557 case LibFunc_wcslen
:
3558 return optimizeWcslen(CI
, Builder
);
3560 return optimizeBCopy(CI
, Builder
);
3562 case LibFunc_ZnwmRKSt9nothrow_t
:
3563 case LibFunc_ZnwmSt11align_val_t
:
3564 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t
:
3566 case LibFunc_ZnamRKSt9nothrow_t
:
3567 case LibFunc_ZnamSt11align_val_t
:
3568 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t
:
3569 return optimizeNew(CI
, Builder
, Func
);
3577 Value
*LibCallSimplifier::optimizeFloatingPointLibCall(CallInst
*CI
,
3579 IRBuilderBase
&Builder
) {
3580 const Module
*M
= CI
->getModule();
3582 // Don't optimize calls that require strict floating point semantics.
3583 if (CI
->isStrictFP())
3586 if (Value
*V
= optimizeTrigReflections(CI
, Func
, Builder
))
3590 case LibFunc_sinpif
:
3592 return optimizeSinCosPi(CI
, /*IsSin*/true, Builder
);
3593 case LibFunc_cospif
:
3595 return optimizeSinCosPi(CI
, /*IsSin*/false, Builder
);
3599 return optimizePow(CI
, Builder
);
3603 return optimizeExp2(CI
, Builder
);
3607 return replaceUnaryCall(CI
, Builder
, Intrinsic::fabs
);
3611 return optimizeSqrt(CI
, Builder
);
3615 case LibFunc_log10f
:
3617 case LibFunc_log10l
:
3618 case LibFunc_log1pf
:
3620 case LibFunc_log1pl
:
3627 return optimizeLog(CI
, Builder
);
3631 return optimizeTan(CI
, Builder
);
3633 return replaceUnaryCall(CI
, Builder
, Intrinsic::ceil
);
3635 return replaceUnaryCall(CI
, Builder
, Intrinsic::floor
);
3637 return replaceUnaryCall(CI
, Builder
, Intrinsic::round
);
3638 case LibFunc_roundeven
:
3639 return replaceUnaryCall(CI
, Builder
, Intrinsic::roundeven
);
3640 case LibFunc_nearbyint
:
3641 return replaceUnaryCall(CI
, Builder
, Intrinsic::nearbyint
);
3643 return replaceUnaryCall(CI
, Builder
, Intrinsic::rint
);
3645 return replaceUnaryCall(CI
, Builder
, Intrinsic::trunc
);
3661 if (UnsafeFPShrink
&& hasFloatVersion(M
, CI
->getCalledFunction()->getName()))
3662 return optimizeUnaryDoubleFP(CI
, Builder
, TLI
, true);
3664 case LibFunc_copysign
:
3665 if (hasFloatVersion(M
, CI
->getCalledFunction()->getName()))
3666 return optimizeBinaryDoubleFP(CI
, Builder
, TLI
);
3674 return optimizeFMinFMax(CI
, Builder
);
3678 return optimizeCAbs(CI
, Builder
);
3684 Value
*LibCallSimplifier::optimizeCall(CallInst
*CI
, IRBuilderBase
&Builder
) {
3685 Module
*M
= CI
->getModule();
3686 assert(!CI
->isMustTailCall() && "These transforms aren't musttail safe.");
3688 // TODO: Split out the code below that operates on FP calls so that
3689 // we can all non-FP calls with the StrictFP attribute to be
3691 if (CI
->isNoBuiltin())
3695 Function
*Callee
= CI
->getCalledFunction();
3696 bool IsCallingConvC
= TargetLibraryInfoImpl::isCallingConvCCompatible(CI
);
3698 SmallVector
<OperandBundleDef
, 2> OpBundles
;
3699 CI
->getOperandBundlesAsDefs(OpBundles
);
3701 IRBuilderBase::OperandBundlesGuard
Guard(Builder
);
3702 Builder
.setDefaultOperandBundles(OpBundles
);
3704 // Command-line parameter overrides instruction attribute.
3705 // This can't be moved to optimizeFloatingPointLibCall() because it may be
3706 // used by the intrinsic optimizations.
3707 if (EnableUnsafeFPShrink
.getNumOccurrences() > 0)
3708 UnsafeFPShrink
= EnableUnsafeFPShrink
;
3709 else if (isa
<FPMathOperator
>(CI
) && CI
->isFast())
3710 UnsafeFPShrink
= true;
3712 // First, check for intrinsics.
3713 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
)) {
3714 if (!IsCallingConvC
)
3716 // The FP intrinsics have corresponding constrained versions so we don't
3717 // need to check for the StrictFP attribute here.
3718 switch (II
->getIntrinsicID()) {
3719 case Intrinsic::pow
:
3720 return optimizePow(CI
, Builder
);
3721 case Intrinsic::exp2
:
3722 return optimizeExp2(CI
, Builder
);
3723 case Intrinsic::log
:
3724 case Intrinsic::log2
:
3725 case Intrinsic::log10
:
3726 return optimizeLog(CI
, Builder
);
3727 case Intrinsic::sqrt
:
3728 return optimizeSqrt(CI
, Builder
);
3729 case Intrinsic::memset
:
3730 return optimizeMemSet(CI
, Builder
);
3731 case Intrinsic::memcpy
:
3732 return optimizeMemCpy(CI
, Builder
);
3733 case Intrinsic::memmove
:
3734 return optimizeMemMove(CI
, Builder
);
3740 // Also try to simplify calls to fortified library functions.
3741 if (Value
*SimplifiedFortifiedCI
=
3742 FortifiedSimplifier
.optimizeCall(CI
, Builder
))
3743 return SimplifiedFortifiedCI
;
3745 // Then check for known library functions.
3746 if (TLI
->getLibFunc(*Callee
, Func
) && isLibFuncEmittable(M
, TLI
, Func
)) {
3747 // We never change the calling convention.
3748 if (!ignoreCallingConv(Func
) && !IsCallingConvC
)
3750 if (Value
*V
= optimizeStringMemoryLibCall(CI
, Builder
))
3752 if (Value
*V
= optimizeFloatingPointLibCall(CI
, Func
, Builder
))
3758 return optimizeFFS(CI
, Builder
);
3762 return optimizeFls(CI
, Builder
);
3766 return optimizeAbs(CI
, Builder
);
3767 case LibFunc_isdigit
:
3768 return optimizeIsDigit(CI
, Builder
);
3769 case LibFunc_isascii
:
3770 return optimizeIsAscii(CI
, Builder
);
3771 case LibFunc_toascii
:
3772 return optimizeToAscii(CI
, Builder
);
3776 return optimizeAtoi(CI
, Builder
);
3777 case LibFunc_strtol
:
3778 case LibFunc_strtoll
:
3779 return optimizeStrToInt(CI
, Builder
, /*AsSigned=*/true);
3780 case LibFunc_strtoul
:
3781 case LibFunc_strtoull
:
3782 return optimizeStrToInt(CI
, Builder
, /*AsSigned=*/false);
3783 case LibFunc_printf
:
3784 return optimizePrintF(CI
, Builder
);
3785 case LibFunc_sprintf
:
3786 return optimizeSPrintF(CI
, Builder
);
3787 case LibFunc_snprintf
:
3788 return optimizeSnPrintF(CI
, Builder
);
3789 case LibFunc_fprintf
:
3790 return optimizeFPrintF(CI
, Builder
);
3791 case LibFunc_fwrite
:
3792 return optimizeFWrite(CI
, Builder
);
3794 return optimizeFPuts(CI
, Builder
);
3796 return optimizePuts(CI
, Builder
);
3797 case LibFunc_perror
:
3798 return optimizeErrorReporting(CI
, Builder
);
3799 case LibFunc_vfprintf
:
3800 case LibFunc_fiprintf
:
3801 return optimizeErrorReporting(CI
, Builder
, 0);
3809 LibCallSimplifier::LibCallSimplifier(
3810 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
, AssumptionCache
*AC
,
3811 OptimizationRemarkEmitter
&ORE
, BlockFrequencyInfo
*BFI
,
3812 ProfileSummaryInfo
*PSI
,
3813 function_ref
<void(Instruction
*, Value
*)> Replacer
,
3814 function_ref
<void(Instruction
*)> Eraser
)
3815 : FortifiedSimplifier(TLI
), DL(DL
), TLI(TLI
), AC(AC
), ORE(ORE
), BFI(BFI
),
3816 PSI(PSI
), Replacer(Replacer
), Eraser(Eraser
) {}
3818 void LibCallSimplifier::replaceAllUsesWith(Instruction
*I
, Value
*With
) {
3819 // Indirect through the replacer used in this instance.
3823 void LibCallSimplifier::eraseFromParent(Instruction
*I
) {
3828 // Additional cases that we need to add to this file:
3831 // * cbrt(expN(X)) -> expN(x/3)
3832 // * cbrt(sqrt(x)) -> pow(x,1/6)
3833 // * cbrt(cbrt(x)) -> pow(x,1/9)
3836 // * exp(log(x)) -> x
3839 // * log(exp(x)) -> x
3840 // * log(exp(y)) -> y*log(e)
3841 // * log(exp10(y)) -> y*log(10)
3842 // * log(sqrt(x)) -> 0.5*log(x)
3845 // * pow(sqrt(x),y) -> pow(x,y*0.5)
3846 // * pow(pow(x,y),z)-> pow(x,y*z)
3849 // * signbit(cnst) -> cnst'
3850 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3852 // sqrt, sqrtf, sqrtl:
3853 // * sqrt(expN(x)) -> expN(x*0.5)
3854 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3855 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3858 //===----------------------------------------------------------------------===//
3859 // Fortified Library Call Optimizations
3860 //===----------------------------------------------------------------------===//
3862 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
3863 CallInst
*CI
, unsigned ObjSizeOp
, std::optional
<unsigned> SizeOp
,
3864 std::optional
<unsigned> StrOp
, std::optional
<unsigned> FlagOp
) {
3865 // If this function takes a flag argument, the implementation may use it to
3866 // perform extra checks. Don't fold into the non-checking variant.
3868 ConstantInt
*Flag
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(*FlagOp
));
3869 if (!Flag
|| !Flag
->isZero())
3873 if (SizeOp
&& CI
->getArgOperand(ObjSizeOp
) == CI
->getArgOperand(*SizeOp
))
3876 if (ConstantInt
*ObjSizeCI
=
3877 dyn_cast
<ConstantInt
>(CI
->getArgOperand(ObjSizeOp
))) {
3878 if (ObjSizeCI
->isMinusOne())
3880 // If the object size wasn't -1 (unknown), bail out if we were asked to.
3881 if (OnlyLowerUnknownSize
)
3884 uint64_t Len
= GetStringLength(CI
->getArgOperand(*StrOp
));
3885 // If the length is 0 we don't know how long it is and so we can't
3886 // remove the check.
3888 annotateDereferenceableBytes(CI
, *StrOp
, Len
);
3891 return ObjSizeCI
->getZExtValue() >= Len
;
3895 if (ConstantInt
*SizeCI
=
3896 dyn_cast
<ConstantInt
>(CI
->getArgOperand(*SizeOp
)))
3897 return ObjSizeCI
->getZExtValue() >= SizeCI
->getZExtValue();
3903 Value
*FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst
*CI
,
3905 if (isFortifiedCallFoldable(CI
, 3, 2)) {
3907 B
.CreateMemCpy(CI
->getArgOperand(0), Align(1), CI
->getArgOperand(1),
3908 Align(1), CI
->getArgOperand(2));
3909 mergeAttributesAndFlags(NewCI
, *CI
);
3910 return CI
->getArgOperand(0);
3915 Value
*FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst
*CI
,
3917 if (isFortifiedCallFoldable(CI
, 3, 2)) {
3919 B
.CreateMemMove(CI
->getArgOperand(0), Align(1), CI
->getArgOperand(1),
3920 Align(1), CI
->getArgOperand(2));
3921 mergeAttributesAndFlags(NewCI
, *CI
);
3922 return CI
->getArgOperand(0);
3927 Value
*FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst
*CI
,
3929 if (isFortifiedCallFoldable(CI
, 3, 2)) {
3930 Value
*Val
= B
.CreateIntCast(CI
->getArgOperand(1), B
.getInt8Ty(), false);
3931 CallInst
*NewCI
= B
.CreateMemSet(CI
->getArgOperand(0), Val
,
3932 CI
->getArgOperand(2), Align(1));
3933 mergeAttributesAndFlags(NewCI
, *CI
);
3934 return CI
->getArgOperand(0);
3939 Value
*FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst
*CI
,
3941 const DataLayout
&DL
= CI
->getModule()->getDataLayout();
3942 if (isFortifiedCallFoldable(CI
, 3, 2))
3943 if (Value
*Call
= emitMemPCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
3944 CI
->getArgOperand(2), B
, DL
, TLI
)) {
3945 return mergeAttributesAndFlags(cast
<CallInst
>(Call
), *CI
);
3950 Value
*FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst
*CI
,
3953 const DataLayout
&DL
= CI
->getModule()->getDataLayout();
3954 Value
*Dst
= CI
->getArgOperand(0), *Src
= CI
->getArgOperand(1),
3955 *ObjSize
= CI
->getArgOperand(2);
3957 // __stpcpy_chk(x,x,...) -> x+strlen(x)
3958 if (Func
== LibFunc_stpcpy_chk
&& !OnlyLowerUnknownSize
&& Dst
== Src
) {
3959 Value
*StrLen
= emitStrLen(Src
, B
, DL
, TLI
);
3960 return StrLen
? B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
, StrLen
) : nullptr;
3963 // If a) we don't have any length information, or b) we know this will
3964 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3965 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3966 // TODO: It might be nice to get a maximum length out of the possible
3967 // string lengths for varying.
3968 if (isFortifiedCallFoldable(CI
, 2, std::nullopt
, 1)) {
3969 if (Func
== LibFunc_strcpy_chk
)
3970 return copyFlags(*CI
, emitStrCpy(Dst
, Src
, B
, TLI
));
3972 return copyFlags(*CI
, emitStpCpy(Dst
, Src
, B
, TLI
));
3975 if (OnlyLowerUnknownSize
)
3978 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3979 uint64_t Len
= GetStringLength(Src
);
3981 annotateDereferenceableBytes(CI
, 1, Len
);
3985 unsigned SizeTBits
= TLI
->getSizeTSize(*CI
->getModule());
3986 Type
*SizeTTy
= IntegerType::get(CI
->getContext(), SizeTBits
);
3987 Value
*LenV
= ConstantInt::get(SizeTTy
, Len
);
3988 Value
*Ret
= emitMemCpyChk(Dst
, Src
, LenV
, ObjSize
, B
, DL
, TLI
);
3989 // If the function was an __stpcpy_chk, and we were able to fold it into
3990 // a __memcpy_chk, we still need to return the correct end pointer.
3991 if (Ret
&& Func
== LibFunc_stpcpy_chk
)
3992 return B
.CreateInBoundsGEP(B
.getInt8Ty(), Dst
,
3993 ConstantInt::get(SizeTTy
, Len
- 1));
3994 return copyFlags(*CI
, cast
<CallInst
>(Ret
));
3997 Value
*FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst
*CI
,
3999 if (isFortifiedCallFoldable(CI
, 1, std::nullopt
, 0))
4000 return copyFlags(*CI
, emitStrLen(CI
->getArgOperand(0), B
,
4001 CI
->getModule()->getDataLayout(), TLI
));
4005 Value
*FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst
*CI
,
4008 if (isFortifiedCallFoldable(CI
, 3, 2)) {
4009 if (Func
== LibFunc_strncpy_chk
)
4010 return copyFlags(*CI
,
4011 emitStrNCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4012 CI
->getArgOperand(2), B
, TLI
));
4014 return copyFlags(*CI
,
4015 emitStpNCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4016 CI
->getArgOperand(2), B
, TLI
));
4022 Value
*FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst
*CI
,
4024 if (isFortifiedCallFoldable(CI
, 4, 3))
4026 *CI
, emitMemCCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4027 CI
->getArgOperand(2), CI
->getArgOperand(3), B
, TLI
));
4032 Value
*FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst
*CI
,
4034 if (isFortifiedCallFoldable(CI
, 3, 1, std::nullopt
, 2)) {
4035 SmallVector
<Value
*, 8> VariadicArgs(drop_begin(CI
->args(), 5));
4036 return copyFlags(*CI
,
4037 emitSNPrintf(CI
->getArgOperand(0), CI
->getArgOperand(1),
4038 CI
->getArgOperand(4), VariadicArgs
, B
, TLI
));
4044 Value
*FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst
*CI
,
4046 if (isFortifiedCallFoldable(CI
, 2, std::nullopt
, std::nullopt
, 1)) {
4047 SmallVector
<Value
*, 8> VariadicArgs(drop_begin(CI
->args(), 4));
4048 return copyFlags(*CI
,
4049 emitSPrintf(CI
->getArgOperand(0), CI
->getArgOperand(3),
4050 VariadicArgs
, B
, TLI
));
4056 Value
*FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst
*CI
,
4058 if (isFortifiedCallFoldable(CI
, 2))
4060 *CI
, emitStrCat(CI
->getArgOperand(0), CI
->getArgOperand(1), B
, TLI
));
4065 Value
*FortifiedLibCallSimplifier::optimizeStrLCat(CallInst
*CI
,
4067 if (isFortifiedCallFoldable(CI
, 3))
4068 return copyFlags(*CI
,
4069 emitStrLCat(CI
->getArgOperand(0), CI
->getArgOperand(1),
4070 CI
->getArgOperand(2), B
, TLI
));
4075 Value
*FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst
*CI
,
4077 if (isFortifiedCallFoldable(CI
, 3))
4078 return copyFlags(*CI
,
4079 emitStrNCat(CI
->getArgOperand(0), CI
->getArgOperand(1),
4080 CI
->getArgOperand(2), B
, TLI
));
4085 Value
*FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst
*CI
,
4087 if (isFortifiedCallFoldable(CI
, 3))
4088 return copyFlags(*CI
,
4089 emitStrLCpy(CI
->getArgOperand(0), CI
->getArgOperand(1),
4090 CI
->getArgOperand(2), B
, TLI
));
4095 Value
*FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst
*CI
,
4097 if (isFortifiedCallFoldable(CI
, 3, 1, std::nullopt
, 2))
4099 *CI
, emitVSNPrintf(CI
->getArgOperand(0), CI
->getArgOperand(1),
4100 CI
->getArgOperand(4), CI
->getArgOperand(5), B
, TLI
));
4105 Value
*FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst
*CI
,
4107 if (isFortifiedCallFoldable(CI
, 2, std::nullopt
, std::nullopt
, 1))
4108 return copyFlags(*CI
,
4109 emitVSPrintf(CI
->getArgOperand(0), CI
->getArgOperand(3),
4110 CI
->getArgOperand(4), B
, TLI
));
4115 Value
*FortifiedLibCallSimplifier::optimizeCall(CallInst
*CI
,
4116 IRBuilderBase
&Builder
) {
4117 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4118 // Some clang users checked for _chk libcall availability using:
4119 // __has_builtin(__builtin___memcpy_chk)
4120 // When compiling with -fno-builtin, this is always true.
4121 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4122 // end up with fortified libcalls, which isn't acceptable in a freestanding
4123 // environment which only provides their non-fortified counterparts.
4125 // Until we change clang and/or teach external users to check for availability
4126 // differently, disregard the "nobuiltin" attribute and TLI::has.
4131 Function
*Callee
= CI
->getCalledFunction();
4132 bool IsCallingConvC
= TargetLibraryInfoImpl::isCallingConvCCompatible(CI
);
4134 SmallVector
<OperandBundleDef
, 2> OpBundles
;
4135 CI
->getOperandBundlesAsDefs(OpBundles
);
4137 IRBuilderBase::OperandBundlesGuard
Guard(Builder
);
4138 Builder
.setDefaultOperandBundles(OpBundles
);
4140 // First, check that this is a known library functions and that the prototype
4142 if (!TLI
->getLibFunc(*Callee
, Func
))
4145 // We never change the calling convention.
4146 if (!ignoreCallingConv(Func
) && !IsCallingConvC
)
4150 case LibFunc_memcpy_chk
:
4151 return optimizeMemCpyChk(CI
, Builder
);
4152 case LibFunc_mempcpy_chk
:
4153 return optimizeMemPCpyChk(CI
, Builder
);
4154 case LibFunc_memmove_chk
:
4155 return optimizeMemMoveChk(CI
, Builder
);
4156 case LibFunc_memset_chk
:
4157 return optimizeMemSetChk(CI
, Builder
);
4158 case LibFunc_stpcpy_chk
:
4159 case LibFunc_strcpy_chk
:
4160 return optimizeStrpCpyChk(CI
, Builder
, Func
);
4161 case LibFunc_strlen_chk
:
4162 return optimizeStrLenChk(CI
, Builder
);
4163 case LibFunc_stpncpy_chk
:
4164 case LibFunc_strncpy_chk
:
4165 return optimizeStrpNCpyChk(CI
, Builder
, Func
);
4166 case LibFunc_memccpy_chk
:
4167 return optimizeMemCCpyChk(CI
, Builder
);
4168 case LibFunc_snprintf_chk
:
4169 return optimizeSNPrintfChk(CI
, Builder
);
4170 case LibFunc_sprintf_chk
:
4171 return optimizeSPrintfChk(CI
, Builder
);
4172 case LibFunc_strcat_chk
:
4173 return optimizeStrCatChk(CI
, Builder
);
4174 case LibFunc_strlcat_chk
:
4175 return optimizeStrLCat(CI
, Builder
);
4176 case LibFunc_strncat_chk
:
4177 return optimizeStrNCatChk(CI
, Builder
);
4178 case LibFunc_strlcpy_chk
:
4179 return optimizeStrLCpyChk(CI
, Builder
);
4180 case LibFunc_vsnprintf_chk
:
4181 return optimizeVSNPrintfChk(CI
, Builder
);
4182 case LibFunc_vsprintf_chk
:
4183 return optimizeVSPrintfChk(CI
, Builder
);
4190 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4191 const TargetLibraryInfo
*TLI
, bool OnlyLowerUnknownSize
)
4192 : TLI(TLI
), OnlyLowerUnknownSize(OnlyLowerUnknownSize
) {}