1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This coordinates the per-module state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
75 using namespace clang
;
76 using namespace CodeGen
;
78 static llvm::cl::opt
<bool> LimitedCoverage(
79 "limited-coverage-experimental", llvm::cl::Hidden
,
80 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
82 static const char AnnotationSection
[] = "llvm.metadata";
84 static CGCXXABI
*createCXXABI(CodeGenModule
&CGM
) {
85 switch (CGM
.getContext().getCXXABIKind()) {
86 case TargetCXXABI::AppleARM64
:
87 case TargetCXXABI::Fuchsia
:
88 case TargetCXXABI::GenericAArch64
:
89 case TargetCXXABI::GenericARM
:
90 case TargetCXXABI::iOS
:
91 case TargetCXXABI::WatchOS
:
92 case TargetCXXABI::GenericMIPS
:
93 case TargetCXXABI::GenericItanium
:
94 case TargetCXXABI::WebAssembly
:
95 case TargetCXXABI::XL
:
96 return CreateItaniumCXXABI(CGM
);
97 case TargetCXXABI::Microsoft
:
98 return CreateMicrosoftCXXABI(CGM
);
101 llvm_unreachable("invalid C++ ABI kind");
104 static std::unique_ptr
<TargetCodeGenInfo
>
105 createTargetCodeGenInfo(CodeGenModule
&CGM
) {
106 const TargetInfo
&Target
= CGM
.getTarget();
107 const llvm::Triple
&Triple
= Target
.getTriple();
108 const CodeGenOptions
&CodeGenOpts
= CGM
.getCodeGenOpts();
110 switch (Triple
.getArch()) {
112 return createDefaultTargetCodeGenInfo(CGM
);
114 case llvm::Triple::le32
:
115 return createPNaClTargetCodeGenInfo(CGM
);
116 case llvm::Triple::m68k
:
117 return createM68kTargetCodeGenInfo(CGM
);
118 case llvm::Triple::mips
:
119 case llvm::Triple::mipsel
:
120 if (Triple
.getOS() == llvm::Triple::NaCl
)
121 return createPNaClTargetCodeGenInfo(CGM
);
122 return createMIPSTargetCodeGenInfo(CGM
, /*IsOS32=*/true);
124 case llvm::Triple::mips64
:
125 case llvm::Triple::mips64el
:
126 return createMIPSTargetCodeGenInfo(CGM
, /*IsOS32=*/false);
128 case llvm::Triple::avr
: {
129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130 // on avrtiny. For passing return value, R18~R25 are used on avr, and
131 // R22~R25 are used on avrtiny.
132 unsigned NPR
= Target
.getABI() == "avrtiny" ? 6 : 18;
133 unsigned NRR
= Target
.getABI() == "avrtiny" ? 4 : 8;
134 return createAVRTargetCodeGenInfo(CGM
, NPR
, NRR
);
137 case llvm::Triple::aarch64
:
138 case llvm::Triple::aarch64_32
:
139 case llvm::Triple::aarch64_be
: {
140 AArch64ABIKind Kind
= AArch64ABIKind::AAPCS
;
141 if (Target
.getABI() == "darwinpcs")
142 Kind
= AArch64ABIKind::DarwinPCS
;
143 else if (Triple
.isOSWindows())
144 return createWindowsAArch64TargetCodeGenInfo(CGM
, AArch64ABIKind::Win64
);
146 return createAArch64TargetCodeGenInfo(CGM
, Kind
);
149 case llvm::Triple::wasm32
:
150 case llvm::Triple::wasm64
: {
151 WebAssemblyABIKind Kind
= WebAssemblyABIKind::MVP
;
152 if (Target
.getABI() == "experimental-mv")
153 Kind
= WebAssemblyABIKind::ExperimentalMV
;
154 return createWebAssemblyTargetCodeGenInfo(CGM
, Kind
);
157 case llvm::Triple::arm
:
158 case llvm::Triple::armeb
:
159 case llvm::Triple::thumb
:
160 case llvm::Triple::thumbeb
: {
161 if (Triple
.getOS() == llvm::Triple::Win32
)
162 return createWindowsARMTargetCodeGenInfo(CGM
, ARMABIKind::AAPCS_VFP
);
164 ARMABIKind Kind
= ARMABIKind::AAPCS
;
165 StringRef ABIStr
= Target
.getABI();
166 if (ABIStr
== "apcs-gnu")
167 Kind
= ARMABIKind::APCS
;
168 else if (ABIStr
== "aapcs16")
169 Kind
= ARMABIKind::AAPCS16_VFP
;
170 else if (CodeGenOpts
.FloatABI
== "hard" ||
171 (CodeGenOpts
.FloatABI
!= "soft" &&
172 (Triple
.getEnvironment() == llvm::Triple::GNUEABIHF
||
173 Triple
.getEnvironment() == llvm::Triple::MuslEABIHF
||
174 Triple
.getEnvironment() == llvm::Triple::EABIHF
)))
175 Kind
= ARMABIKind::AAPCS_VFP
;
177 return createARMTargetCodeGenInfo(CGM
, Kind
);
180 case llvm::Triple::ppc
: {
181 if (Triple
.isOSAIX())
182 return createAIXTargetCodeGenInfo(CGM
, /*Is64Bit=*/false);
185 CodeGenOpts
.FloatABI
== "soft" || Target
.hasFeature("spe");
186 return createPPC32TargetCodeGenInfo(CGM
, IsSoftFloat
);
188 case llvm::Triple::ppcle
: {
189 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
190 return createPPC32TargetCodeGenInfo(CGM
, IsSoftFloat
);
192 case llvm::Triple::ppc64
:
193 if (Triple
.isOSAIX())
194 return createAIXTargetCodeGenInfo(CGM
, /*Is64Bit=*/true);
196 if (Triple
.isOSBinFormatELF()) {
197 PPC64_SVR4_ABIKind Kind
= PPC64_SVR4_ABIKind::ELFv1
;
198 if (Target
.getABI() == "elfv2")
199 Kind
= PPC64_SVR4_ABIKind::ELFv2
;
200 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
202 return createPPC64_SVR4_TargetCodeGenInfo(CGM
, Kind
, IsSoftFloat
);
204 return createPPC64TargetCodeGenInfo(CGM
);
205 case llvm::Triple::ppc64le
: {
206 assert(Triple
.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207 PPC64_SVR4_ABIKind Kind
= PPC64_SVR4_ABIKind::ELFv2
;
208 if (Target
.getABI() == "elfv1")
209 Kind
= PPC64_SVR4_ABIKind::ELFv1
;
210 bool IsSoftFloat
= CodeGenOpts
.FloatABI
== "soft";
212 return createPPC64_SVR4_TargetCodeGenInfo(CGM
, Kind
, IsSoftFloat
);
215 case llvm::Triple::nvptx
:
216 case llvm::Triple::nvptx64
:
217 return createNVPTXTargetCodeGenInfo(CGM
);
219 case llvm::Triple::msp430
:
220 return createMSP430TargetCodeGenInfo(CGM
);
222 case llvm::Triple::riscv32
:
223 case llvm::Triple::riscv64
: {
224 StringRef ABIStr
= Target
.getABI();
225 unsigned XLen
= Target
.getPointerWidth(LangAS::Default
);
226 unsigned ABIFLen
= 0;
227 if (ABIStr
.endswith("f"))
229 else if (ABIStr
.endswith("d"))
231 return createRISCVTargetCodeGenInfo(CGM
, XLen
, ABIFLen
);
234 case llvm::Triple::systemz
: {
235 bool SoftFloat
= CodeGenOpts
.FloatABI
== "soft";
236 bool HasVector
= !SoftFloat
&& Target
.getABI() == "vector";
237 return createSystemZTargetCodeGenInfo(CGM
, HasVector
, SoftFloat
);
240 case llvm::Triple::tce
:
241 case llvm::Triple::tcele
:
242 return createTCETargetCodeGenInfo(CGM
);
244 case llvm::Triple::x86
: {
245 bool IsDarwinVectorABI
= Triple
.isOSDarwin();
246 bool IsWin32FloatStructABI
= Triple
.isOSWindows() && !Triple
.isOSCygMing();
248 if (Triple
.getOS() == llvm::Triple::Win32
) {
249 return createWinX86_32TargetCodeGenInfo(
250 CGM
, IsDarwinVectorABI
, IsWin32FloatStructABI
,
251 CodeGenOpts
.NumRegisterParameters
);
253 return createX86_32TargetCodeGenInfo(
254 CGM
, IsDarwinVectorABI
, IsWin32FloatStructABI
,
255 CodeGenOpts
.NumRegisterParameters
, CodeGenOpts
.FloatABI
== "soft");
258 case llvm::Triple::x86_64
: {
259 StringRef ABI
= Target
.getABI();
260 X86AVXABILevel AVXLevel
= (ABI
== "avx512" ? X86AVXABILevel::AVX512
261 : ABI
== "avx" ? X86AVXABILevel::AVX
262 : X86AVXABILevel::None
);
264 switch (Triple
.getOS()) {
265 case llvm::Triple::Win32
:
266 return createWinX86_64TargetCodeGenInfo(CGM
, AVXLevel
);
268 return createX86_64TargetCodeGenInfo(CGM
, AVXLevel
);
271 case llvm::Triple::hexagon
:
272 return createHexagonTargetCodeGenInfo(CGM
);
273 case llvm::Triple::lanai
:
274 return createLanaiTargetCodeGenInfo(CGM
);
275 case llvm::Triple::r600
:
276 return createAMDGPUTargetCodeGenInfo(CGM
);
277 case llvm::Triple::amdgcn
:
278 return createAMDGPUTargetCodeGenInfo(CGM
);
279 case llvm::Triple::sparc
:
280 return createSparcV8TargetCodeGenInfo(CGM
);
281 case llvm::Triple::sparcv9
:
282 return createSparcV9TargetCodeGenInfo(CGM
);
283 case llvm::Triple::xcore
:
284 return createXCoreTargetCodeGenInfo(CGM
);
285 case llvm::Triple::arc
:
286 return createARCTargetCodeGenInfo(CGM
);
287 case llvm::Triple::spir
:
288 case llvm::Triple::spir64
:
289 return createCommonSPIRTargetCodeGenInfo(CGM
);
290 case llvm::Triple::spirv32
:
291 case llvm::Triple::spirv64
:
292 return createSPIRVTargetCodeGenInfo(CGM
);
293 case llvm::Triple::ve
:
294 return createVETargetCodeGenInfo(CGM
);
295 case llvm::Triple::csky
: {
296 bool IsSoftFloat
= !Target
.hasFeature("hard-float-abi");
298 Target
.hasFeature("fpuv2_df") || Target
.hasFeature("fpuv3_df");
299 return createCSKYTargetCodeGenInfo(CGM
, IsSoftFloat
? 0
303 case llvm::Triple::bpfeb
:
304 case llvm::Triple::bpfel
:
305 return createBPFTargetCodeGenInfo(CGM
);
306 case llvm::Triple::loongarch32
:
307 case llvm::Triple::loongarch64
: {
308 StringRef ABIStr
= Target
.getABI();
309 unsigned ABIFRLen
= 0;
310 if (ABIStr
.endswith("f"))
312 else if (ABIStr
.endswith("d"))
314 return createLoongArchTargetCodeGenInfo(
315 CGM
, Target
.getPointerWidth(LangAS::Default
), ABIFRLen
);
320 const TargetCodeGenInfo
&CodeGenModule::getTargetCodeGenInfo() {
321 if (!TheTargetCodeGenInfo
)
322 TheTargetCodeGenInfo
= createTargetCodeGenInfo(*this);
323 return *TheTargetCodeGenInfo
;
326 CodeGenModule::CodeGenModule(ASTContext
&C
,
327 IntrusiveRefCntPtr
<llvm::vfs::FileSystem
> FS
,
328 const HeaderSearchOptions
&HSO
,
329 const PreprocessorOptions
&PPO
,
330 const CodeGenOptions
&CGO
, llvm::Module
&M
,
331 DiagnosticsEngine
&diags
,
332 CoverageSourceInfo
*CoverageInfo
)
333 : Context(C
), LangOpts(C
.getLangOpts()), FS(FS
), HeaderSearchOpts(HSO
),
334 PreprocessorOpts(PPO
), CodeGenOpts(CGO
), TheModule(M
), Diags(diags
),
335 Target(C
.getTargetInfo()), ABI(createCXXABI(*this)),
336 VMContext(M
.getContext()), Types(*this), VTables(*this),
337 SanitizerMD(new SanitizerMetadata(*this)) {
339 // Initialize the type cache.
340 llvm::LLVMContext
&LLVMContext
= M
.getContext();
341 VoidTy
= llvm::Type::getVoidTy(LLVMContext
);
342 Int8Ty
= llvm::Type::getInt8Ty(LLVMContext
);
343 Int16Ty
= llvm::Type::getInt16Ty(LLVMContext
);
344 Int32Ty
= llvm::Type::getInt32Ty(LLVMContext
);
345 Int64Ty
= llvm::Type::getInt64Ty(LLVMContext
);
346 HalfTy
= llvm::Type::getHalfTy(LLVMContext
);
347 BFloatTy
= llvm::Type::getBFloatTy(LLVMContext
);
348 FloatTy
= llvm::Type::getFloatTy(LLVMContext
);
349 DoubleTy
= llvm::Type::getDoubleTy(LLVMContext
);
350 PointerWidthInBits
= C
.getTargetInfo().getPointerWidth(LangAS::Default
);
351 PointerAlignInBytes
=
352 C
.toCharUnitsFromBits(C
.getTargetInfo().getPointerAlign(LangAS::Default
))
355 C
.toCharUnitsFromBits(C
.getTargetInfo().getMaxPointerWidth()).getQuantity();
357 C
.toCharUnitsFromBits(C
.getTargetInfo().getIntAlign()).getQuantity();
359 llvm::IntegerType::get(LLVMContext
, C
.getTargetInfo().getCharWidth());
360 IntTy
= llvm::IntegerType::get(LLVMContext
, C
.getTargetInfo().getIntWidth());
361 IntPtrTy
= llvm::IntegerType::get(LLVMContext
,
362 C
.getTargetInfo().getMaxPointerWidth());
363 Int8PtrTy
= llvm::PointerType::get(LLVMContext
, 0);
364 const llvm::DataLayout
&DL
= M
.getDataLayout();
366 llvm::PointerType::get(LLVMContext
, DL
.getAllocaAddrSpace());
368 llvm::PointerType::get(LLVMContext
, DL
.getDefaultGlobalsAddressSpace());
369 ConstGlobalsPtrTy
= llvm::PointerType::get(
370 LLVMContext
, C
.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
371 ASTAllocaAddressSpace
= getTargetCodeGenInfo().getASTAllocaAddressSpace();
373 // Build C++20 Module initializers.
374 // TODO: Add Microsoft here once we know the mangling required for the
377 LangOpts
.CPlusPlusModules
&& getCXXABI().getMangleContext().getKind() ==
378 ItaniumMangleContext::MK_Itanium
;
380 RuntimeCC
= getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
385 createOpenCLRuntime();
387 createOpenMPRuntime();
393 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
394 if (LangOpts
.Sanitize
.has(SanitizerKind::Thread
) ||
395 (!CodeGenOpts
.RelaxedAliasing
&& CodeGenOpts
.OptimizationLevel
> 0))
396 TBAA
.reset(new CodeGenTBAA(Context
, TheModule
, CodeGenOpts
, getLangOpts(),
397 getCXXABI().getMangleContext()));
399 // If debug info or coverage generation is enabled, create the CGDebugInfo
401 if (CodeGenOpts
.getDebugInfo() != llvm::codegenoptions::NoDebugInfo
||
402 CodeGenOpts
.CoverageNotesFile
.size() ||
403 CodeGenOpts
.CoverageDataFile
.size())
404 DebugInfo
.reset(new CGDebugInfo(*this));
406 Block
.GlobalUniqueCount
= 0;
408 if (C
.getLangOpts().ObjC
)
409 ObjCData
.reset(new ObjCEntrypoints());
411 if (CodeGenOpts
.hasProfileClangUse()) {
412 auto ReaderOrErr
= llvm::IndexedInstrProfReader::create(
413 CodeGenOpts
.ProfileInstrumentUsePath
, *FS
,
414 CodeGenOpts
.ProfileRemappingFile
);
415 // We're checking for profile read errors in CompilerInvocation, so if
416 // there was an error it should've already been caught. If it hasn't been
417 // somehow, trip an assertion.
419 PGOReader
= std::move(ReaderOrErr
.get());
422 // If coverage mapping generation is enabled, create the
423 // CoverageMappingModuleGen object.
424 if (CodeGenOpts
.CoverageMapping
)
425 CoverageMapping
.reset(new CoverageMappingModuleGen(*this, *CoverageInfo
));
427 // Generate the module name hash here if needed.
428 if (CodeGenOpts
.UniqueInternalLinkageNames
&&
429 !getModule().getSourceFileName().empty()) {
430 std::string Path
= getModule().getSourceFileName();
431 // Check if a path substitution is needed from the MacroPrefixMap.
432 for (const auto &Entry
: LangOpts
.MacroPrefixMap
)
433 if (Path
.rfind(Entry
.first
, 0) != std::string::npos
) {
434 Path
= Entry
.second
+ Path
.substr(Entry
.first
.size());
437 ModuleNameHash
= llvm::getUniqueInternalLinkagePostfix(Path
);
441 CodeGenModule::~CodeGenModule() {}
443 void CodeGenModule::createObjCRuntime() {
444 // This is just isGNUFamily(), but we want to force implementors of
445 // new ABIs to decide how best to do this.
446 switch (LangOpts
.ObjCRuntime
.getKind()) {
447 case ObjCRuntime::GNUstep
:
448 case ObjCRuntime::GCC
:
449 case ObjCRuntime::ObjFW
:
450 ObjCRuntime
.reset(CreateGNUObjCRuntime(*this));
453 case ObjCRuntime::FragileMacOSX
:
454 case ObjCRuntime::MacOSX
:
455 case ObjCRuntime::iOS
:
456 case ObjCRuntime::WatchOS
:
457 ObjCRuntime
.reset(CreateMacObjCRuntime(*this));
460 llvm_unreachable("bad runtime kind");
463 void CodeGenModule::createOpenCLRuntime() {
464 OpenCLRuntime
.reset(new CGOpenCLRuntime(*this));
467 void CodeGenModule::createOpenMPRuntime() {
468 // Select a specialized code generation class based on the target, if any.
469 // If it does not exist use the default implementation.
470 switch (getTriple().getArch()) {
471 case llvm::Triple::nvptx
:
472 case llvm::Triple::nvptx64
:
473 case llvm::Triple::amdgcn
:
474 assert(getLangOpts().OpenMPIsTargetDevice
&&
475 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
476 OpenMPRuntime
.reset(new CGOpenMPRuntimeGPU(*this));
479 if (LangOpts
.OpenMPSimd
)
480 OpenMPRuntime
.reset(new CGOpenMPSIMDRuntime(*this));
482 OpenMPRuntime
.reset(new CGOpenMPRuntime(*this));
487 void CodeGenModule::createCUDARuntime() {
488 CUDARuntime
.reset(CreateNVCUDARuntime(*this));
491 void CodeGenModule::createHLSLRuntime() {
492 HLSLRuntime
.reset(new CGHLSLRuntime(*this));
495 void CodeGenModule::addReplacement(StringRef Name
, llvm::Constant
*C
) {
496 Replacements
[Name
] = C
;
499 void CodeGenModule::applyReplacements() {
500 for (auto &I
: Replacements
) {
501 StringRef MangledName
= I
.first
;
502 llvm::Constant
*Replacement
= I
.second
;
503 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
506 auto *OldF
= cast
<llvm::Function
>(Entry
);
507 auto *NewF
= dyn_cast
<llvm::Function
>(Replacement
);
509 if (auto *Alias
= dyn_cast
<llvm::GlobalAlias
>(Replacement
)) {
510 NewF
= dyn_cast
<llvm::Function
>(Alias
->getAliasee());
512 auto *CE
= cast
<llvm::ConstantExpr
>(Replacement
);
513 assert(CE
->getOpcode() == llvm::Instruction::BitCast
||
514 CE
->getOpcode() == llvm::Instruction::GetElementPtr
);
515 NewF
= dyn_cast
<llvm::Function
>(CE
->getOperand(0));
519 // Replace old with new, but keep the old order.
520 OldF
->replaceAllUsesWith(Replacement
);
522 NewF
->removeFromParent();
523 OldF
->getParent()->getFunctionList().insertAfter(OldF
->getIterator(),
526 OldF
->eraseFromParent();
530 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue
*GV
, llvm::Constant
*C
) {
531 GlobalValReplacements
.push_back(std::make_pair(GV
, C
));
534 void CodeGenModule::applyGlobalValReplacements() {
535 for (auto &I
: GlobalValReplacements
) {
536 llvm::GlobalValue
*GV
= I
.first
;
537 llvm::Constant
*C
= I
.second
;
539 GV
->replaceAllUsesWith(C
);
540 GV
->eraseFromParent();
544 // This is only used in aliases that we created and we know they have a
546 static const llvm::GlobalValue
*getAliasedGlobal(const llvm::GlobalValue
*GV
) {
547 const llvm::Constant
*C
;
548 if (auto *GA
= dyn_cast
<llvm::GlobalAlias
>(GV
))
549 C
= GA
->getAliasee();
550 else if (auto *GI
= dyn_cast
<llvm::GlobalIFunc
>(GV
))
551 C
= GI
->getResolver();
555 const auto *AliaseeGV
= dyn_cast
<llvm::GlobalValue
>(C
->stripPointerCasts());
559 const llvm::GlobalValue
*FinalGV
= AliaseeGV
->getAliaseeObject();
566 static bool checkAliasedGlobal(
567 const ASTContext
&Context
, DiagnosticsEngine
&Diags
, SourceLocation Location
,
568 bool IsIFunc
, const llvm::GlobalValue
*Alias
, const llvm::GlobalValue
*&GV
,
569 const llvm::MapVector
<GlobalDecl
, StringRef
> &MangledDeclNames
,
570 SourceRange AliasRange
) {
571 GV
= getAliasedGlobal(Alias
);
573 Diags
.Report(Location
, diag::err_cyclic_alias
) << IsIFunc
;
577 if (GV
->hasCommonLinkage()) {
578 const llvm::Triple
&Triple
= Context
.getTargetInfo().getTriple();
579 if (Triple
.getObjectFormat() == llvm::Triple::XCOFF
) {
580 Diags
.Report(Location
, diag::err_alias_to_common
);
585 if (GV
->isDeclaration()) {
586 Diags
.Report(Location
, diag::err_alias_to_undefined
) << IsIFunc
<< IsIFunc
;
587 Diags
.Report(Location
, diag::note_alias_requires_mangled_name
)
588 << IsIFunc
<< IsIFunc
;
589 // Provide a note if the given function is not found and exists as a
591 for (const auto &[Decl
, Name
] : MangledDeclNames
) {
592 if (const auto *ND
= dyn_cast
<NamedDecl
>(Decl
.getDecl())) {
593 if (ND
->getName() == GV
->getName()) {
594 Diags
.Report(Location
, diag::note_alias_mangled_name_alternative
)
596 << FixItHint::CreateReplacement(
598 (Twine(IsIFunc
? "ifunc" : "alias") + "(\"" + Name
+ "\")")
607 // Check resolver function type.
608 const auto *F
= dyn_cast
<llvm::Function
>(GV
);
610 Diags
.Report(Location
, diag::err_alias_to_undefined
)
611 << IsIFunc
<< IsIFunc
;
615 llvm::FunctionType
*FTy
= F
->getFunctionType();
616 if (!FTy
->getReturnType()->isPointerTy()) {
617 Diags
.Report(Location
, diag::err_ifunc_resolver_return
);
625 void CodeGenModule::checkAliases() {
626 // Check if the constructed aliases are well formed. It is really unfortunate
627 // that we have to do this in CodeGen, but we only construct mangled names
628 // and aliases during codegen.
630 DiagnosticsEngine
&Diags
= getDiags();
631 for (const GlobalDecl
&GD
: Aliases
) {
632 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
633 SourceLocation Location
;
635 bool IsIFunc
= D
->hasAttr
<IFuncAttr
>();
636 if (const Attr
*A
= D
->getDefiningAttr()) {
637 Location
= A
->getLocation();
638 Range
= A
->getRange();
640 llvm_unreachable("Not an alias or ifunc?");
642 StringRef MangledName
= getMangledName(GD
);
643 llvm::GlobalValue
*Alias
= GetGlobalValue(MangledName
);
644 const llvm::GlobalValue
*GV
= nullptr;
645 if (!checkAliasedGlobal(getContext(), Diags
, Location
, IsIFunc
, Alias
, GV
,
646 MangledDeclNames
, Range
)) {
651 llvm::Constant
*Aliasee
=
652 IsIFunc
? cast
<llvm::GlobalIFunc
>(Alias
)->getResolver()
653 : cast
<llvm::GlobalAlias
>(Alias
)->getAliasee();
655 llvm::GlobalValue
*AliaseeGV
;
656 if (auto CE
= dyn_cast
<llvm::ConstantExpr
>(Aliasee
))
657 AliaseeGV
= cast
<llvm::GlobalValue
>(CE
->getOperand(0));
659 AliaseeGV
= cast
<llvm::GlobalValue
>(Aliasee
);
661 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>()) {
662 StringRef AliasSection
= SA
->getName();
663 if (AliasSection
!= AliaseeGV
->getSection())
664 Diags
.Report(SA
->getLocation(), diag::warn_alias_with_section
)
665 << AliasSection
<< IsIFunc
<< IsIFunc
;
668 // We have to handle alias to weak aliases in here. LLVM itself disallows
669 // this since the object semantics would not match the IL one. For
670 // compatibility with gcc we implement it by just pointing the alias
671 // to its aliasee's aliasee. We also warn, since the user is probably
672 // expecting the link to be weak.
673 if (auto *GA
= dyn_cast
<llvm::GlobalAlias
>(AliaseeGV
)) {
674 if (GA
->isInterposable()) {
675 Diags
.Report(Location
, diag::warn_alias_to_weak_alias
)
676 << GV
->getName() << GA
->getName() << IsIFunc
;
677 Aliasee
= llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
678 GA
->getAliasee(), Alias
->getType());
681 cast
<llvm::GlobalIFunc
>(Alias
)->setResolver(Aliasee
);
683 cast
<llvm::GlobalAlias
>(Alias
)->setAliasee(Aliasee
);
690 for (const GlobalDecl
&GD
: Aliases
) {
691 StringRef MangledName
= getMangledName(GD
);
692 llvm::GlobalValue
*Alias
= GetGlobalValue(MangledName
);
693 Alias
->replaceAllUsesWith(llvm::UndefValue::get(Alias
->getType()));
694 Alias
->eraseFromParent();
698 void CodeGenModule::clear() {
699 DeferredDeclsToEmit
.clear();
700 EmittedDeferredDecls
.clear();
702 OpenMPRuntime
->clear();
705 void InstrProfStats::reportDiagnostics(DiagnosticsEngine
&Diags
,
706 StringRef MainFile
) {
707 if (!hasDiagnostics())
709 if (VisitedInMainFile
> 0 && VisitedInMainFile
== MissingInMainFile
) {
710 if (MainFile
.empty())
711 MainFile
= "<stdin>";
712 Diags
.Report(diag::warn_profile_data_unprofiled
) << MainFile
;
715 Diags
.Report(diag::warn_profile_data_out_of_date
) << Visited
<< Mismatched
;
718 Diags
.Report(diag::warn_profile_data_missing
) << Visited
<< Missing
;
722 static void setVisibilityFromDLLStorageClass(const clang::LangOptions
&LO
,
724 if (!LO
.VisibilityFromDLLStorageClass
)
727 llvm::GlobalValue::VisibilityTypes DLLExportVisibility
=
728 CodeGenModule::GetLLVMVisibility(LO
.getDLLExportVisibility());
729 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility
=
730 CodeGenModule::GetLLVMVisibility(LO
.getNoDLLStorageClassVisibility());
731 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility
=
732 CodeGenModule::GetLLVMVisibility(LO
.getExternDeclDLLImportVisibility());
733 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility
=
734 CodeGenModule::GetLLVMVisibility(
735 LO
.getExternDeclNoDLLStorageClassVisibility());
737 for (llvm::GlobalValue
&GV
: M
.global_values()) {
738 if (GV
.hasAppendingLinkage() || GV
.hasLocalLinkage())
741 // Reset DSO locality before setting the visibility. This removes
742 // any effects that visibility options and annotations may have
743 // had on the DSO locality. Setting the visibility will implicitly set
744 // appropriate globals to DSO Local; however, this will be pessimistic
745 // w.r.t. to the normal compiler IRGen.
746 GV
.setDSOLocal(false);
748 if (GV
.isDeclarationForLinker()) {
749 GV
.setVisibility(GV
.getDLLStorageClass() ==
750 llvm::GlobalValue::DLLImportStorageClass
751 ? ExternDeclDLLImportVisibility
752 : ExternDeclNoDLLStorageClassVisibility
);
754 GV
.setVisibility(GV
.getDLLStorageClass() ==
755 llvm::GlobalValue::DLLExportStorageClass
756 ? DLLExportVisibility
757 : NoDLLStorageClassVisibility
);
760 GV
.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
764 static bool isStackProtectorOn(const LangOptions
&LangOpts
,
765 const llvm::Triple
&Triple
,
766 clang::LangOptions::StackProtectorMode Mode
) {
767 if (Triple
.isAMDGPU() || Triple
.isNVPTX())
769 return LangOpts
.getStackProtector() == Mode
;
772 void CodeGenModule::Release() {
773 Module
*Primary
= getContext().getCurrentNamedModule();
774 if (CXX20ModuleInits
&& Primary
&& !Primary
->isHeaderLikeModule())
775 EmitModuleInitializers(Primary
);
777 DeferredDecls
.insert(EmittedDeferredDecls
.begin(),
778 EmittedDeferredDecls
.end());
779 EmittedDeferredDecls
.clear();
780 EmitVTablesOpportunistically();
781 applyGlobalValReplacements();
783 emitMultiVersionFunctions();
785 if (Context
.getLangOpts().IncrementalExtensions
&&
786 GlobalTopLevelStmtBlockInFlight
.first
) {
787 const TopLevelStmtDecl
*TLSD
= GlobalTopLevelStmtBlockInFlight
.second
;
788 GlobalTopLevelStmtBlockInFlight
.first
->FinishFunction(TLSD
->getEndLoc());
789 GlobalTopLevelStmtBlockInFlight
= {nullptr, nullptr};
792 // Module implementations are initialized the same way as a regular TU that
793 // imports one or more modules.
794 if (CXX20ModuleInits
&& Primary
&& Primary
->isInterfaceOrPartition())
795 EmitCXXModuleInitFunc(Primary
);
797 EmitCXXGlobalInitFunc();
798 EmitCXXGlobalCleanUpFunc();
799 registerGlobalDtorsWithAtExit();
800 EmitCXXThreadLocalInitFunc();
802 if (llvm::Function
*ObjCInitFunction
= ObjCRuntime
->ModuleInitFunction())
803 AddGlobalCtor(ObjCInitFunction
);
804 if (Context
.getLangOpts().CUDA
&& CUDARuntime
) {
805 if (llvm::Function
*CudaCtorFunction
= CUDARuntime
->finalizeModule())
806 AddGlobalCtor(CudaCtorFunction
);
809 if (llvm::Function
*OpenMPRequiresDirectiveRegFun
=
810 OpenMPRuntime
->emitRequiresDirectiveRegFun()) {
811 AddGlobalCtor(OpenMPRequiresDirectiveRegFun
, 0);
813 OpenMPRuntime
->createOffloadEntriesAndInfoMetadata();
814 OpenMPRuntime
->clear();
817 getModule().setProfileSummary(
818 PGOReader
->getSummary(/* UseCS */ false).getMD(VMContext
),
819 llvm::ProfileSummary::PSK_Instr
);
820 if (PGOStats
.hasDiagnostics())
821 PGOStats
.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName
);
823 llvm::stable_sort(GlobalCtors
, [](const Structor
&L
, const Structor
&R
) {
824 return L
.LexOrder
< R
.LexOrder
;
826 EmitCtorList(GlobalCtors
, "llvm.global_ctors");
827 EmitCtorList(GlobalDtors
, "llvm.global_dtors");
828 EmitGlobalAnnotations();
829 EmitStaticExternCAliases();
831 EmitDeferredUnusedCoverageMappings();
832 CodeGenPGO(*this).setValueProfilingFlag(getModule());
834 CoverageMapping
->emit();
835 if (CodeGenOpts
.SanitizeCfiCrossDso
) {
836 CodeGenFunction(*this).EmitCfiCheckFail();
837 CodeGenFunction(*this).EmitCfiCheckStub();
839 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
))
841 emitAtAvailableLinkGuard();
842 if (Context
.getTargetInfo().getTriple().isWasm())
845 if (getTriple().isAMDGPU()) {
846 // Emit amdgpu_code_object_version module flag, which is code object version
848 if (getTarget().getTargetOpts().CodeObjectVersion
!=
849 TargetOptions::COV_None
) {
850 getModule().addModuleFlag(llvm::Module::Error
,
851 "amdgpu_code_object_version",
852 getTarget().getTargetOpts().CodeObjectVersion
);
855 // Currently, "-mprintf-kind" option is only supported for HIP
857 auto *MDStr
= llvm::MDString::get(
858 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal
==
859 TargetOptions::AMDGPUPrintfKind::Hostcall
)
862 getModule().addModuleFlag(llvm::Module::Error
, "amdgpu_printf_kind",
867 // Emit a global array containing all external kernels or device variables
868 // used by host functions and mark it as used for CUDA/HIP. This is necessary
869 // to get kernels or device variables in archives linked in even if these
870 // kernels or device variables are only used in host functions.
871 if (!Context
.CUDAExternalDeviceDeclODRUsedByHost
.empty()) {
872 SmallVector
<llvm::Constant
*, 8> UsedArray
;
873 for (auto D
: Context
.CUDAExternalDeviceDeclODRUsedByHost
) {
875 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
))
876 GD
= GlobalDecl(FD
, KernelReferenceKind::Kernel
);
879 UsedArray
.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
880 GetAddrOfGlobal(GD
), Int8PtrTy
));
883 llvm::ArrayType
*ATy
= llvm::ArrayType::get(Int8PtrTy
, UsedArray
.size());
885 auto *GV
= new llvm::GlobalVariable(
886 getModule(), ATy
, false, llvm::GlobalValue::InternalLinkage
,
887 llvm::ConstantArray::get(ATy
, UsedArray
), "__clang_gpu_used_external");
888 addCompilerUsedGlobal(GV
);
895 if (CodeGenOpts
.Autolink
&&
896 (Context
.getLangOpts().Modules
|| !LinkerOptionsMetadata
.empty())) {
897 EmitModuleLinkOptions();
900 // On ELF we pass the dependent library specifiers directly to the linker
901 // without manipulating them. This is in contrast to other platforms where
902 // they are mapped to a specific linker option by the compiler. This
903 // difference is a result of the greater variety of ELF linkers and the fact
904 // that ELF linkers tend to handle libraries in a more complicated fashion
905 // than on other platforms. This forces us to defer handling the dependent
906 // libs to the linker.
908 // CUDA/HIP device and host libraries are different. Currently there is no
909 // way to differentiate dependent libraries for host or device. Existing
910 // usage of #pragma comment(lib, *) is intended for host libraries on
911 // Windows. Therefore emit llvm.dependent-libraries only for host.
912 if (!ELFDependentLibraries
.empty() && !Context
.getLangOpts().CUDAIsDevice
) {
913 auto *NMD
= getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
914 for (auto *MD
: ELFDependentLibraries
)
918 // Record mregparm value now so it is visible through rest of codegen.
919 if (Context
.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
)
920 getModule().addModuleFlag(llvm::Module::Error
, "NumRegisterParameters",
921 CodeGenOpts
.NumRegisterParameters
);
923 if (CodeGenOpts
.DwarfVersion
) {
924 getModule().addModuleFlag(llvm::Module::Max
, "Dwarf Version",
925 CodeGenOpts
.DwarfVersion
);
928 if (CodeGenOpts
.Dwarf64
)
929 getModule().addModuleFlag(llvm::Module::Max
, "DWARF64", 1);
931 if (Context
.getLangOpts().SemanticInterposition
)
932 // Require various optimization to respect semantic interposition.
933 getModule().setSemanticInterposition(true);
935 if (CodeGenOpts
.EmitCodeView
) {
936 // Indicate that we want CodeView in the metadata.
937 getModule().addModuleFlag(llvm::Module::Warning
, "CodeView", 1);
939 if (CodeGenOpts
.CodeViewGHash
) {
940 getModule().addModuleFlag(llvm::Module::Warning
, "CodeViewGHash", 1);
942 if (CodeGenOpts
.ControlFlowGuard
) {
943 // Function ID tables and checks for Control Flow Guard (cfguard=2).
944 getModule().addModuleFlag(llvm::Module::Warning
, "cfguard", 2);
945 } else if (CodeGenOpts
.ControlFlowGuardNoChecks
) {
946 // Function ID tables for Control Flow Guard (cfguard=1).
947 getModule().addModuleFlag(llvm::Module::Warning
, "cfguard", 1);
949 if (CodeGenOpts
.EHContGuard
) {
950 // Function ID tables for EH Continuation Guard.
951 getModule().addModuleFlag(llvm::Module::Warning
, "ehcontguard", 1);
953 if (Context
.getLangOpts().Kernel
) {
954 // Note if we are compiling with /kernel.
955 getModule().addModuleFlag(llvm::Module::Warning
, "ms-kernel", 1);
957 if (CodeGenOpts
.OptimizationLevel
> 0 && CodeGenOpts
.StrictVTablePointers
) {
958 // We don't support LTO with 2 with different StrictVTablePointers
959 // FIXME: we could support it by stripping all the information introduced
960 // by StrictVTablePointers.
962 getModule().addModuleFlag(llvm::Module::Error
, "StrictVTablePointers",1);
964 llvm::Metadata
*Ops
[2] = {
965 llvm::MDString::get(VMContext
, "StrictVTablePointers"),
966 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
967 llvm::Type::getInt32Ty(VMContext
), 1))};
969 getModule().addModuleFlag(llvm::Module::Require
,
970 "StrictVTablePointersRequirement",
971 llvm::MDNode::get(VMContext
, Ops
));
973 if (getModuleDebugInfo())
974 // We support a single version in the linked module. The LLVM
975 // parser will drop debug info with a different version number
976 // (and warn about it, too).
977 getModule().addModuleFlag(llvm::Module::Warning
, "Debug Info Version",
978 llvm::DEBUG_METADATA_VERSION
);
980 // We need to record the widths of enums and wchar_t, so that we can generate
981 // the correct build attributes in the ARM backend. wchar_size is also used by
982 // TargetLibraryInfo.
983 uint64_t WCharWidth
=
984 Context
.getTypeSizeInChars(Context
.getWideCharType()).getQuantity();
985 getModule().addModuleFlag(llvm::Module::Error
, "wchar_size", WCharWidth
);
987 llvm::Triple::ArchType Arch
= Context
.getTargetInfo().getTriple().getArch();
988 if ( Arch
== llvm::Triple::arm
989 || Arch
== llvm::Triple::armeb
990 || Arch
== llvm::Triple::thumb
991 || Arch
== llvm::Triple::thumbeb
) {
992 // The minimum width of an enum in bytes
993 uint64_t EnumWidth
= Context
.getLangOpts().ShortEnums
? 1 : 4;
994 getModule().addModuleFlag(llvm::Module::Error
, "min_enum_size", EnumWidth
);
997 if (Arch
== llvm::Triple::riscv32
|| Arch
== llvm::Triple::riscv64
) {
998 StringRef ABIStr
= Target
.getABI();
999 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1000 getModule().addModuleFlag(llvm::Module::Error
, "target-abi",
1001 llvm::MDString::get(Ctx
, ABIStr
));
1004 if (CodeGenOpts
.SanitizeCfiCrossDso
) {
1005 // Indicate that we want cross-DSO control flow integrity checks.
1006 getModule().addModuleFlag(llvm::Module::Override
, "Cross-DSO CFI", 1);
1009 if (CodeGenOpts
.WholeProgramVTables
) {
1010 // Indicate whether VFE was enabled for this module, so that the
1011 // vcall_visibility metadata added under whole program vtables is handled
1012 // appropriately in the optimizer.
1013 getModule().addModuleFlag(llvm::Module::Error
, "Virtual Function Elim",
1014 CodeGenOpts
.VirtualFunctionElimination
);
1017 if (LangOpts
.Sanitize
.has(SanitizerKind::CFIICall
)) {
1018 getModule().addModuleFlag(llvm::Module::Override
,
1019 "CFI Canonical Jump Tables",
1020 CodeGenOpts
.SanitizeCfiCanonicalJumpTables
);
1023 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
)) {
1024 getModule().addModuleFlag(llvm::Module::Override
, "kcfi", 1);
1025 // KCFI assumes patchable-function-prefix is the same for all indirectly
1026 // called functions. Store the expected offset for code generation.
1027 if (CodeGenOpts
.PatchableFunctionEntryOffset
)
1028 getModule().addModuleFlag(llvm::Module::Override
, "kcfi-offset",
1029 CodeGenOpts
.PatchableFunctionEntryOffset
);
1032 if (CodeGenOpts
.CFProtectionReturn
&&
1033 Target
.checkCFProtectionReturnSupported(getDiags())) {
1034 // Indicate that we want to instrument return control flow protection.
1035 getModule().addModuleFlag(llvm::Module::Min
, "cf-protection-return",
1039 if (CodeGenOpts
.CFProtectionBranch
&&
1040 Target
.checkCFProtectionBranchSupported(getDiags())) {
1041 // Indicate that we want to instrument branch control flow protection.
1042 getModule().addModuleFlag(llvm::Module::Min
, "cf-protection-branch",
1046 if (CodeGenOpts
.FunctionReturnThunks
)
1047 getModule().addModuleFlag(llvm::Module::Override
, "function_return_thunk_extern", 1);
1049 if (CodeGenOpts
.IndirectBranchCSPrefix
)
1050 getModule().addModuleFlag(llvm::Module::Override
, "indirect_branch_cs_prefix", 1);
1052 // Add module metadata for return address signing (ignoring
1053 // non-leaf/all) and stack tagging. These are actually turned on by function
1054 // attributes, but we use module metadata to emit build attributes. This is
1055 // needed for LTO, where the function attributes are inside bitcode
1056 // serialised into a global variable by the time build attributes are
1057 // emitted, so we can't access them. LTO objects could be compiled with
1058 // different flags therefore module flags are set to "Min" behavior to achieve
1059 // the same end result of the normal build where e.g BTI is off if any object
1060 // doesn't support it.
1061 if (Context
.getTargetInfo().hasFeature("ptrauth") &&
1062 LangOpts
.getSignReturnAddressScope() !=
1063 LangOptions::SignReturnAddressScopeKind::None
)
1064 getModule().addModuleFlag(llvm::Module::Override
,
1065 "sign-return-address-buildattr", 1);
1066 if (LangOpts
.Sanitize
.has(SanitizerKind::MemtagStack
))
1067 getModule().addModuleFlag(llvm::Module::Override
,
1068 "tag-stack-memory-buildattr", 1);
1070 if (Arch
== llvm::Triple::thumb
|| Arch
== llvm::Triple::thumbeb
||
1071 Arch
== llvm::Triple::arm
|| Arch
== llvm::Triple::armeb
||
1072 Arch
== llvm::Triple::aarch64
|| Arch
== llvm::Triple::aarch64_32
||
1073 Arch
== llvm::Triple::aarch64_be
) {
1074 if (LangOpts
.BranchTargetEnforcement
)
1075 getModule().addModuleFlag(llvm::Module::Min
, "branch-target-enforcement",
1077 if (LangOpts
.hasSignReturnAddress())
1078 getModule().addModuleFlag(llvm::Module::Min
, "sign-return-address", 1);
1079 if (LangOpts
.isSignReturnAddressScopeAll())
1080 getModule().addModuleFlag(llvm::Module::Min
, "sign-return-address-all",
1082 if (!LangOpts
.isSignReturnAddressWithAKey())
1083 getModule().addModuleFlag(llvm::Module::Min
,
1084 "sign-return-address-with-bkey", 1);
1087 if (!CodeGenOpts
.MemoryProfileOutput
.empty()) {
1088 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1089 getModule().addModuleFlag(
1090 llvm::Module::Error
, "MemProfProfileFilename",
1091 llvm::MDString::get(Ctx
, CodeGenOpts
.MemoryProfileOutput
));
1094 if (LangOpts
.CUDAIsDevice
&& getTriple().isNVPTX()) {
1095 // Indicate whether __nvvm_reflect should be configured to flush denormal
1096 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
1098 getModule().addModuleFlag(llvm::Module::Override
, "nvvm-reflect-ftz",
1099 CodeGenOpts
.FP32DenormalMode
.Output
!=
1100 llvm::DenormalMode::IEEE
);
1103 if (LangOpts
.EHAsynch
)
1104 getModule().addModuleFlag(llvm::Module::Warning
, "eh-asynch", 1);
1106 // Indicate whether this Module was compiled with -fopenmp
1107 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
)
1108 getModule().addModuleFlag(llvm::Module::Max
, "openmp", LangOpts
.OpenMP
);
1109 if (getLangOpts().OpenMPIsTargetDevice
)
1110 getModule().addModuleFlag(llvm::Module::Max
, "openmp-device",
1113 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1114 if (LangOpts
.OpenCL
|| (LangOpts
.CUDAIsDevice
&& getTriple().isSPIRV())) {
1115 EmitOpenCLMetadata();
1116 // Emit SPIR version.
1117 if (getTriple().isSPIR()) {
1118 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1119 // opencl.spir.version named metadata.
1120 // C++ for OpenCL has a distinct mapping for version compatibility with
1122 auto Version
= LangOpts
.getOpenCLCompatibleVersion();
1123 llvm::Metadata
*SPIRVerElts
[] = {
1124 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1125 Int32Ty
, Version
/ 100)),
1126 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1127 Int32Ty
, (Version
/ 100 > 1) ? 0 : 2))};
1128 llvm::NamedMDNode
*SPIRVerMD
=
1129 TheModule
.getOrInsertNamedMetadata("opencl.spir.version");
1130 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1131 SPIRVerMD
->addOperand(llvm::MDNode::get(Ctx
, SPIRVerElts
));
1135 // HLSL related end of code gen work items.
1137 getHLSLRuntime().finishCodeGen();
1139 if (uint32_t PLevel
= Context
.getLangOpts().PICLevel
) {
1140 assert(PLevel
< 3 && "Invalid PIC Level");
1141 getModule().setPICLevel(static_cast<llvm::PICLevel::Level
>(PLevel
));
1142 if (Context
.getLangOpts().PIE
)
1143 getModule().setPIELevel(static_cast<llvm::PIELevel::Level
>(PLevel
));
1146 if (getCodeGenOpts().CodeModel
.size() > 0) {
1147 unsigned CM
= llvm::StringSwitch
<unsigned>(getCodeGenOpts().CodeModel
)
1148 .Case("tiny", llvm::CodeModel::Tiny
)
1149 .Case("small", llvm::CodeModel::Small
)
1150 .Case("kernel", llvm::CodeModel::Kernel
)
1151 .Case("medium", llvm::CodeModel::Medium
)
1152 .Case("large", llvm::CodeModel::Large
)
1155 llvm::CodeModel::Model codeModel
= static_cast<llvm::CodeModel::Model
>(CM
);
1156 getModule().setCodeModel(codeModel
);
1158 if (CM
== llvm::CodeModel::Medium
&&
1159 Context
.getTargetInfo().getTriple().getArch() ==
1160 llvm::Triple::x86_64
) {
1161 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold
);
1166 if (CodeGenOpts
.NoPLT
)
1167 getModule().setRtLibUseGOT();
1168 if (getTriple().isOSBinFormatELF() &&
1169 CodeGenOpts
.DirectAccessExternalData
!=
1170 getModule().getDirectAccessExternalData()) {
1171 getModule().setDirectAccessExternalData(
1172 CodeGenOpts
.DirectAccessExternalData
);
1174 if (CodeGenOpts
.UnwindTables
)
1175 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts
.UnwindTables
));
1177 switch (CodeGenOpts
.getFramePointer()) {
1178 case CodeGenOptions::FramePointerKind::None
:
1179 // 0 ("none") is the default.
1181 case CodeGenOptions::FramePointerKind::NonLeaf
:
1182 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf
);
1184 case CodeGenOptions::FramePointerKind::All
:
1185 getModule().setFramePointer(llvm::FramePointerKind::All
);
1189 SimplifyPersonality();
1191 if (getCodeGenOpts().EmitDeclMetadata
)
1194 if (getCodeGenOpts().CoverageNotesFile
.size() ||
1195 getCodeGenOpts().CoverageDataFile
.size())
1198 if (CGDebugInfo
*DI
= getModuleDebugInfo())
1201 if (getCodeGenOpts().EmitVersionIdentMetadata
)
1202 EmitVersionIdentMetadata();
1204 if (!getCodeGenOpts().RecordCommandLine
.empty())
1205 EmitCommandLineMetadata();
1207 if (!getCodeGenOpts().StackProtectorGuard
.empty())
1208 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard
);
1209 if (!getCodeGenOpts().StackProtectorGuardReg
.empty())
1210 getModule().setStackProtectorGuardReg(
1211 getCodeGenOpts().StackProtectorGuardReg
);
1212 if (!getCodeGenOpts().StackProtectorGuardSymbol
.empty())
1213 getModule().setStackProtectorGuardSymbol(
1214 getCodeGenOpts().StackProtectorGuardSymbol
);
1215 if (getCodeGenOpts().StackProtectorGuardOffset
!= INT_MAX
)
1216 getModule().setStackProtectorGuardOffset(
1217 getCodeGenOpts().StackProtectorGuardOffset
);
1218 if (getCodeGenOpts().StackAlignment
)
1219 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment
);
1220 if (getCodeGenOpts().SkipRaxSetup
)
1221 getModule().addModuleFlag(llvm::Module::Override
, "SkipRaxSetup", 1);
1222 if (getLangOpts().RegCall4
)
1223 getModule().addModuleFlag(llvm::Module::Override
, "RegCallv4", 1);
1225 if (getContext().getTargetInfo().getMaxTLSAlign())
1226 getModule().addModuleFlag(llvm::Module::Error
, "MaxTLSAlign",
1227 getContext().getTargetInfo().getMaxTLSAlign());
1229 getTargetCodeGenInfo().emitTargetGlobals(*this);
1231 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames
);
1233 EmitBackendOptionsMetadata(getCodeGenOpts());
1235 // If there is device offloading code embed it in the host now.
1236 EmbedObject(&getModule(), CodeGenOpts
, getDiags());
1238 // Set visibility from DLL storage class
1239 // We do this at the end of LLVM IR generation; after any operation
1240 // that might affect the DLL storage class or the visibility, and
1241 // before anything that might act on these.
1242 setVisibilityFromDLLStorageClass(LangOpts
, getModule());
1245 void CodeGenModule::EmitOpenCLMetadata() {
1246 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1247 // opencl.ocl.version named metadata node.
1248 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1249 auto Version
= LangOpts
.getOpenCLCompatibleVersion();
1250 llvm::Metadata
*OCLVerElts
[] = {
1251 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1252 Int32Ty
, Version
/ 100)),
1253 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1254 Int32Ty
, (Version
% 100) / 10))};
1255 llvm::NamedMDNode
*OCLVerMD
=
1256 TheModule
.getOrInsertNamedMetadata("opencl.ocl.version");
1257 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
1258 OCLVerMD
->addOperand(llvm::MDNode::get(Ctx
, OCLVerElts
));
1261 void CodeGenModule::EmitBackendOptionsMetadata(
1262 const CodeGenOptions
&CodeGenOpts
) {
1263 if (getTriple().isRISCV()) {
1264 getModule().addModuleFlag(llvm::Module::Min
, "SmallDataLimit",
1265 CodeGenOpts
.SmallDataLimit
);
1269 void CodeGenModule::UpdateCompletedType(const TagDecl
*TD
) {
1270 // Make sure that this type is translated.
1271 Types
.UpdateCompletedType(TD
);
1274 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl
*RD
) {
1275 // Make sure that this type is translated.
1276 Types
.RefreshTypeCacheForClass(RD
);
1279 llvm::MDNode
*CodeGenModule::getTBAATypeInfo(QualType QTy
) {
1282 return TBAA
->getTypeInfo(QTy
);
1285 TBAAAccessInfo
CodeGenModule::getTBAAAccessInfo(QualType AccessType
) {
1287 return TBAAAccessInfo();
1288 if (getLangOpts().CUDAIsDevice
) {
1289 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1291 if (AccessType
->isCUDADeviceBuiltinSurfaceType()) {
1292 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1294 return TBAAAccessInfo();
1295 } else if (AccessType
->isCUDADeviceBuiltinTextureType()) {
1296 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1298 return TBAAAccessInfo();
1301 return TBAA
->getAccessInfo(AccessType
);
1305 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type
*VTablePtrType
) {
1307 return TBAAAccessInfo();
1308 return TBAA
->getVTablePtrAccessInfo(VTablePtrType
);
1311 llvm::MDNode
*CodeGenModule::getTBAAStructInfo(QualType QTy
) {
1314 return TBAA
->getTBAAStructInfo(QTy
);
1317 llvm::MDNode
*CodeGenModule::getTBAABaseTypeInfo(QualType QTy
) {
1320 return TBAA
->getBaseTypeInfo(QTy
);
1323 llvm::MDNode
*CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info
) {
1326 return TBAA
->getAccessTagInfo(Info
);
1329 TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo
,
1330 TBAAAccessInfo TargetInfo
) {
1332 return TBAAAccessInfo();
1333 return TBAA
->mergeTBAAInfoForCast(SourceInfo
, TargetInfo
);
1337 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA
,
1338 TBAAAccessInfo InfoB
) {
1340 return TBAAAccessInfo();
1341 return TBAA
->mergeTBAAInfoForConditionalOperator(InfoA
, InfoB
);
1345 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo
,
1346 TBAAAccessInfo SrcInfo
) {
1348 return TBAAAccessInfo();
1349 return TBAA
->mergeTBAAInfoForConditionalOperator(DestInfo
, SrcInfo
);
1352 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction
*Inst
,
1353 TBAAAccessInfo TBAAInfo
) {
1354 if (llvm::MDNode
*Tag
= getTBAAAccessTagInfo(TBAAInfo
))
1355 Inst
->setMetadata(llvm::LLVMContext::MD_tbaa
, Tag
);
1358 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1359 llvm::Instruction
*I
, const CXXRecordDecl
*RD
) {
1360 I
->setMetadata(llvm::LLVMContext::MD_invariant_group
,
1361 llvm::MDNode::get(getLLVMContext(), {}));
1364 void CodeGenModule::Error(SourceLocation loc
, StringRef message
) {
1365 unsigned diagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
, "%0");
1366 getDiags().Report(Context
.getFullLoc(loc
), diagID
) << message
;
1369 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1370 /// specified stmt yet.
1371 void CodeGenModule::ErrorUnsupported(const Stmt
*S
, const char *Type
) {
1372 unsigned DiagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
,
1373 "cannot compile this %0 yet");
1374 std::string Msg
= Type
;
1375 getDiags().Report(Context
.getFullLoc(S
->getBeginLoc()), DiagID
)
1376 << Msg
<< S
->getSourceRange();
1379 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1380 /// specified decl yet.
1381 void CodeGenModule::ErrorUnsupported(const Decl
*D
, const char *Type
) {
1382 unsigned DiagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
,
1383 "cannot compile this %0 yet");
1384 std::string Msg
= Type
;
1385 getDiags().Report(Context
.getFullLoc(D
->getLocation()), DiagID
) << Msg
;
1388 llvm::ConstantInt
*CodeGenModule::getSize(CharUnits size
) {
1389 return llvm::ConstantInt::get(SizeTy
, size
.getQuantity());
1392 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue
*GV
,
1393 const NamedDecl
*D
) const {
1394 // Internal definitions always have default visibility.
1395 if (GV
->hasLocalLinkage()) {
1396 GV
->setVisibility(llvm::GlobalValue::DefaultVisibility
);
1402 // Set visibility for definitions, and for declarations if requested globally
1403 // or set explicitly.
1404 LinkageInfo LV
= D
->getLinkageAndVisibility();
1406 // OpenMP declare target variables must be visible to the host so they can
1407 // be registered. We require protected visibility unless the variable has
1408 // the DT_nohost modifier and does not need to be registered.
1409 if (Context
.getLangOpts().OpenMP
&&
1410 Context
.getLangOpts().OpenMPIsTargetDevice
&& isa
<VarDecl
>(D
) &&
1411 D
->hasAttr
<OMPDeclareTargetDeclAttr
>() &&
1412 D
->getAttr
<OMPDeclareTargetDeclAttr
>()->getDevType() !=
1413 OMPDeclareTargetDeclAttr::DT_NoHost
&&
1414 LV
.getVisibility() == HiddenVisibility
) {
1415 GV
->setVisibility(llvm::GlobalValue::ProtectedVisibility
);
1419 if (GV
->hasDLLExportStorageClass() || GV
->hasDLLImportStorageClass()) {
1420 // Reject incompatible dlllstorage and visibility annotations.
1421 if (!LV
.isVisibilityExplicit())
1423 if (GV
->hasDLLExportStorageClass()) {
1424 if (LV
.getVisibility() == HiddenVisibility
)
1425 getDiags().Report(D
->getLocation(),
1426 diag::err_hidden_visibility_dllexport
);
1427 } else if (LV
.getVisibility() != DefaultVisibility
) {
1428 getDiags().Report(D
->getLocation(),
1429 diag::err_non_default_visibility_dllimport
);
1434 if (LV
.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls
||
1435 !GV
->isDeclarationForLinker())
1436 GV
->setVisibility(GetLLVMVisibility(LV
.getVisibility()));
1439 static bool shouldAssumeDSOLocal(const CodeGenModule
&CGM
,
1440 llvm::GlobalValue
*GV
) {
1441 if (GV
->hasLocalLinkage())
1444 if (!GV
->hasDefaultVisibility() && !GV
->hasExternalWeakLinkage())
1447 // DLLImport explicitly marks the GV as external.
1448 if (GV
->hasDLLImportStorageClass())
1451 const llvm::Triple
&TT
= CGM
.getTriple();
1452 const auto &CGOpts
= CGM
.getCodeGenOpts();
1453 if (TT
.isWindowsGNUEnvironment()) {
1454 // In MinGW, variables without DLLImport can still be automatically
1455 // imported from a DLL by the linker; don't mark variables that
1456 // potentially could come from another DLL as DSO local.
1458 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1459 // (and this actually happens in the public interface of libstdc++), so
1460 // such variables can't be marked as DSO local. (Native TLS variables
1461 // can't be dllimported at all, though.)
1462 if (GV
->isDeclarationForLinker() && isa
<llvm::GlobalVariable
>(GV
) &&
1463 (!GV
->isThreadLocal() || CGM
.getCodeGenOpts().EmulatedTLS
) &&
1468 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1469 // remain unresolved in the link, they can be resolved to zero, which is
1470 // outside the current DSO.
1471 if (TT
.isOSBinFormatCOFF() && GV
->hasExternalWeakLinkage())
1474 // Every other GV is local on COFF.
1475 // Make an exception for windows OS in the triple: Some firmware builds use
1476 // *-win32-macho triples. This (accidentally?) produced windows relocations
1477 // without GOT tables in older clang versions; Keep this behaviour.
1478 // FIXME: even thread local variables?
1479 if (TT
.isOSBinFormatCOFF() || (TT
.isOSWindows() && TT
.isOSBinFormatMachO()))
1482 // Only handle COFF and ELF for now.
1483 if (!TT
.isOSBinFormatELF())
1486 // If this is not an executable, don't assume anything is local.
1487 llvm::Reloc::Model RM
= CGOpts
.RelocationModel
;
1488 const auto &LOpts
= CGM
.getLangOpts();
1489 if (RM
!= llvm::Reloc::Static
&& !LOpts
.PIE
) {
1490 // On ELF, if -fno-semantic-interposition is specified and the target
1491 // supports local aliases, there will be neither CC1
1492 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1493 // dso_local on the function if using a local alias is preferable (can avoid
1494 // PLT indirection).
1495 if (!(isa
<llvm::Function
>(GV
) && GV
->canBenefitFromLocalAlias()))
1497 return !(CGM
.getLangOpts().SemanticInterposition
||
1498 CGM
.getLangOpts().HalfNoSemanticInterposition
);
1501 // A definition cannot be preempted from an executable.
1502 if (!GV
->isDeclarationForLinker())
1505 // Most PIC code sequences that assume that a symbol is local cannot produce a
1506 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1507 // depended, it seems worth it to handle it here.
1508 if (RM
== llvm::Reloc::PIC_
&& GV
->hasExternalWeakLinkage())
1511 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1515 if (CGOpts
.DirectAccessExternalData
) {
1516 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1517 // for non-thread-local variables. If the symbol is not defined in the
1518 // executable, a copy relocation will be needed at link time. dso_local is
1519 // excluded for thread-local variables because they generally don't support
1520 // copy relocations.
1521 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(GV
))
1522 if (!Var
->isThreadLocal())
1525 // -fno-pic sets dso_local on a function declaration to allow direct
1526 // accesses when taking its address (similar to a data symbol). If the
1527 // function is not defined in the executable, a canonical PLT entry will be
1528 // needed at link time. -fno-direct-access-external-data can avoid the
1529 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1530 // it could just cause trouble without providing perceptible benefits.
1531 if (isa
<llvm::Function
>(GV
) && !CGOpts
.NoPLT
&& RM
== llvm::Reloc::Static
)
1535 // If we can use copy relocations we can assume it is local.
1537 // Otherwise don't assume it is local.
1541 void CodeGenModule::setDSOLocal(llvm::GlobalValue
*GV
) const {
1542 GV
->setDSOLocal(shouldAssumeDSOLocal(*this, GV
));
1545 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue
*GV
,
1546 GlobalDecl GD
) const {
1547 const auto *D
= dyn_cast
<NamedDecl
>(GD
.getDecl());
1548 // C++ destructors have a few C++ ABI specific special cases.
1549 if (const auto *Dtor
= dyn_cast_or_null
<CXXDestructorDecl
>(D
)) {
1550 getCXXABI().setCXXDestructorDLLStorage(GV
, Dtor
, GD
.getDtorType());
1553 setDLLImportDLLExport(GV
, D
);
1556 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue
*GV
,
1557 const NamedDecl
*D
) const {
1558 if (D
&& D
->isExternallyVisible()) {
1559 if (D
->hasAttr
<DLLImportAttr
>())
1560 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
1561 else if ((D
->hasAttr
<DLLExportAttr
>() ||
1562 shouldMapVisibilityToDLLExport(D
)) &&
1563 !GV
->isDeclarationForLinker())
1564 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass
);
1568 void CodeGenModule::setGVProperties(llvm::GlobalValue
*GV
,
1569 GlobalDecl GD
) const {
1570 setDLLImportDLLExport(GV
, GD
);
1571 setGVPropertiesAux(GV
, dyn_cast
<NamedDecl
>(GD
.getDecl()));
1574 void CodeGenModule::setGVProperties(llvm::GlobalValue
*GV
,
1575 const NamedDecl
*D
) const {
1576 setDLLImportDLLExport(GV
, D
);
1577 setGVPropertiesAux(GV
, D
);
1580 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue
*GV
,
1581 const NamedDecl
*D
) const {
1582 setGlobalVisibility(GV
, D
);
1584 GV
->setPartition(CodeGenOpts
.SymbolPartition
);
1587 static llvm::GlobalVariable::ThreadLocalMode
GetLLVMTLSModel(StringRef S
) {
1588 return llvm::StringSwitch
<llvm::GlobalVariable::ThreadLocalMode
>(S
)
1589 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel
)
1590 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel
)
1591 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel
)
1592 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel
);
1595 llvm::GlobalVariable::ThreadLocalMode
1596 CodeGenModule::GetDefaultLLVMTLSModel() const {
1597 switch (CodeGenOpts
.getDefaultTLSModel()) {
1598 case CodeGenOptions::GeneralDynamicTLSModel
:
1599 return llvm::GlobalVariable::GeneralDynamicTLSModel
;
1600 case CodeGenOptions::LocalDynamicTLSModel
:
1601 return llvm::GlobalVariable::LocalDynamicTLSModel
;
1602 case CodeGenOptions::InitialExecTLSModel
:
1603 return llvm::GlobalVariable::InitialExecTLSModel
;
1604 case CodeGenOptions::LocalExecTLSModel
:
1605 return llvm::GlobalVariable::LocalExecTLSModel
;
1607 llvm_unreachable("Invalid TLS model!");
1610 void CodeGenModule::setTLSMode(llvm::GlobalValue
*GV
, const VarDecl
&D
) const {
1611 assert(D
.getTLSKind() && "setting TLS mode on non-TLS var!");
1613 llvm::GlobalValue::ThreadLocalMode TLM
;
1614 TLM
= GetDefaultLLVMTLSModel();
1616 // Override the TLS model if it is explicitly specified.
1617 if (const TLSModelAttr
*Attr
= D
.getAttr
<TLSModelAttr
>()) {
1618 TLM
= GetLLVMTLSModel(Attr
->getModel());
1621 GV
->setThreadLocalMode(TLM
);
1624 static std::string
getCPUSpecificMangling(const CodeGenModule
&CGM
,
1626 const TargetInfo
&Target
= CGM
.getTarget();
1627 return (Twine('.') + Twine(Target
.CPUSpecificManglingCharacter(Name
))).str();
1630 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule
&CGM
,
1631 const CPUSpecificAttr
*Attr
,
1634 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1637 Out
<< getCPUSpecificMangling(CGM
, Attr
->getCPUName(CPUIndex
)->getName());
1638 else if (CGM
.getTarget().supportsIFunc())
1642 static void AppendTargetVersionMangling(const CodeGenModule
&CGM
,
1643 const TargetVersionAttr
*Attr
,
1645 if (Attr
->isDefaultVersion())
1648 const TargetInfo
&TI
= CGM
.getTarget();
1649 llvm::SmallVector
<StringRef
, 8> Feats
;
1650 Attr
->getFeatures(Feats
);
1651 llvm::stable_sort(Feats
, [&TI
](const StringRef FeatL
, const StringRef FeatR
) {
1652 return TI
.multiVersionSortPriority(FeatL
) <
1653 TI
.multiVersionSortPriority(FeatR
);
1655 for (const auto &Feat
: Feats
) {
1661 static void AppendTargetMangling(const CodeGenModule
&CGM
,
1662 const TargetAttr
*Attr
, raw_ostream
&Out
) {
1663 if (Attr
->isDefaultVersion())
1667 const TargetInfo
&Target
= CGM
.getTarget();
1668 ParsedTargetAttr Info
= Target
.parseTargetAttr(Attr
->getFeaturesStr());
1669 llvm::sort(Info
.Features
, [&Target
](StringRef LHS
, StringRef RHS
) {
1670 // Multiversioning doesn't allow "no-${feature}", so we can
1671 // only have "+" prefixes here.
1672 assert(LHS
.startswith("+") && RHS
.startswith("+") &&
1673 "Features should always have a prefix.");
1674 return Target
.multiVersionSortPriority(LHS
.substr(1)) >
1675 Target
.multiVersionSortPriority(RHS
.substr(1));
1678 bool IsFirst
= true;
1680 if (!Info
.CPU
.empty()) {
1682 Out
<< "arch_" << Info
.CPU
;
1685 for (StringRef Feat
: Info
.Features
) {
1689 Out
<< Feat
.substr(1);
1693 // Returns true if GD is a function decl with internal linkage and
1694 // needs a unique suffix after the mangled name.
1695 static bool isUniqueInternalLinkageDecl(GlobalDecl GD
,
1696 CodeGenModule
&CGM
) {
1697 const Decl
*D
= GD
.getDecl();
1698 return !CGM
.getModuleNameHash().empty() && isa
<FunctionDecl
>(D
) &&
1699 (CGM
.getFunctionLinkage(GD
) == llvm::GlobalValue::InternalLinkage
);
1702 static void AppendTargetClonesMangling(const CodeGenModule
&CGM
,
1703 const TargetClonesAttr
*Attr
,
1704 unsigned VersionIndex
,
1706 const TargetInfo
&TI
= CGM
.getTarget();
1707 if (TI
.getTriple().isAArch64()) {
1708 StringRef FeatureStr
= Attr
->getFeatureStr(VersionIndex
);
1709 if (FeatureStr
== "default")
1712 SmallVector
<StringRef
, 8> Features
;
1713 FeatureStr
.split(Features
, "+");
1714 llvm::stable_sort(Features
,
1715 [&TI
](const StringRef FeatL
, const StringRef FeatR
) {
1716 return TI
.multiVersionSortPriority(FeatL
) <
1717 TI
.multiVersionSortPriority(FeatR
);
1719 for (auto &Feat
: Features
) {
1725 StringRef FeatureStr
= Attr
->getFeatureStr(VersionIndex
);
1726 if (FeatureStr
.startswith("arch="))
1727 Out
<< "arch_" << FeatureStr
.substr(sizeof("arch=") - 1);
1731 Out
<< '.' << Attr
->getMangledIndex(VersionIndex
);
1735 static std::string
getMangledNameImpl(CodeGenModule
&CGM
, GlobalDecl GD
,
1736 const NamedDecl
*ND
,
1737 bool OmitMultiVersionMangling
= false) {
1738 SmallString
<256> Buffer
;
1739 llvm::raw_svector_ostream
Out(Buffer
);
1740 MangleContext
&MC
= CGM
.getCXXABI().getMangleContext();
1741 if (!CGM
.getModuleNameHash().empty())
1742 MC
.needsUniqueInternalLinkageNames();
1743 bool ShouldMangle
= MC
.shouldMangleDeclName(ND
);
1745 MC
.mangleName(GD
.getWithDecl(ND
), Out
);
1747 IdentifierInfo
*II
= ND
->getIdentifier();
1748 assert(II
&& "Attempt to mangle unnamed decl.");
1749 const auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
1752 FD
->getType()->castAs
<FunctionType
>()->getCallConv() == CC_X86RegCall
) {
1753 if (CGM
.getLangOpts().RegCall4
)
1754 Out
<< "__regcall4__" << II
->getName();
1756 Out
<< "__regcall3__" << II
->getName();
1757 } else if (FD
&& FD
->hasAttr
<CUDAGlobalAttr
>() &&
1758 GD
.getKernelReferenceKind() == KernelReferenceKind::Stub
) {
1759 Out
<< "__device_stub__" << II
->getName();
1761 Out
<< II
->getName();
1765 // Check if the module name hash should be appended for internal linkage
1766 // symbols. This should come before multi-version target suffixes are
1767 // appended. This is to keep the name and module hash suffix of the
1768 // internal linkage function together. The unique suffix should only be
1769 // added when name mangling is done to make sure that the final name can
1770 // be properly demangled. For example, for C functions without prototypes,
1771 // name mangling is not done and the unique suffix should not be appeneded
1773 if (ShouldMangle
&& isUniqueInternalLinkageDecl(GD
, CGM
)) {
1774 assert(CGM
.getCodeGenOpts().UniqueInternalLinkageNames
&&
1775 "Hash computed when not explicitly requested");
1776 Out
<< CGM
.getModuleNameHash();
1779 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
1780 if (FD
->isMultiVersion() && !OmitMultiVersionMangling
) {
1781 switch (FD
->getMultiVersionKind()) {
1782 case MultiVersionKind::CPUDispatch
:
1783 case MultiVersionKind::CPUSpecific
:
1784 AppendCPUSpecificCPUDispatchMangling(CGM
,
1785 FD
->getAttr
<CPUSpecificAttr
>(),
1786 GD
.getMultiVersionIndex(), Out
);
1788 case MultiVersionKind::Target
:
1789 AppendTargetMangling(CGM
, FD
->getAttr
<TargetAttr
>(), Out
);
1791 case MultiVersionKind::TargetVersion
:
1792 AppendTargetVersionMangling(CGM
, FD
->getAttr
<TargetVersionAttr
>(), Out
);
1794 case MultiVersionKind::TargetClones
:
1795 AppendTargetClonesMangling(CGM
, FD
->getAttr
<TargetClonesAttr
>(),
1796 GD
.getMultiVersionIndex(), Out
);
1798 case MultiVersionKind::None
:
1799 llvm_unreachable("None multiversion type isn't valid here");
1803 // Make unique name for device side static file-scope variable for HIP.
1804 if (CGM
.getContext().shouldExternalize(ND
) &&
1805 CGM
.getLangOpts().GPURelocatableDeviceCode
&&
1806 CGM
.getLangOpts().CUDAIsDevice
)
1807 CGM
.printPostfixForExternalizedDecl(Out
, ND
);
1809 return std::string(Out
.str());
1812 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD
,
1813 const FunctionDecl
*FD
,
1814 StringRef
&CurName
) {
1815 if (!FD
->isMultiVersion())
1818 // Get the name of what this would be without the 'target' attribute. This
1819 // allows us to lookup the version that was emitted when this wasn't a
1820 // multiversion function.
1821 std::string NonTargetName
=
1822 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
1824 if (lookupRepresentativeDecl(NonTargetName
, OtherGD
)) {
1825 assert(OtherGD
.getCanonicalDecl()
1828 ->isMultiVersion() &&
1829 "Other GD should now be a multiversioned function");
1830 // OtherFD is the version of this function that was mangled BEFORE
1831 // becoming a MultiVersion function. It potentially needs to be updated.
1832 const FunctionDecl
*OtherFD
= OtherGD
.getCanonicalDecl()
1835 ->getMostRecentDecl();
1836 std::string OtherName
= getMangledNameImpl(*this, OtherGD
, OtherFD
);
1837 // This is so that if the initial version was already the 'default'
1838 // version, we don't try to update it.
1839 if (OtherName
!= NonTargetName
) {
1840 // Remove instead of erase, since others may have stored the StringRef
1842 const auto ExistingRecord
= Manglings
.find(NonTargetName
);
1843 if (ExistingRecord
!= std::end(Manglings
))
1844 Manglings
.remove(&(*ExistingRecord
));
1845 auto Result
= Manglings
.insert(std::make_pair(OtherName
, OtherGD
));
1846 StringRef OtherNameRef
= MangledDeclNames
[OtherGD
.getCanonicalDecl()] =
1847 Result
.first
->first();
1848 // If this is the current decl is being created, make sure we update the name.
1849 if (GD
.getCanonicalDecl() == OtherGD
.getCanonicalDecl())
1850 CurName
= OtherNameRef
;
1851 if (llvm::GlobalValue
*Entry
= GetGlobalValue(NonTargetName
))
1852 Entry
->setName(OtherName
);
1857 StringRef
CodeGenModule::getMangledName(GlobalDecl GD
) {
1858 GlobalDecl CanonicalGD
= GD
.getCanonicalDecl();
1860 // Some ABIs don't have constructor variants. Make sure that base and
1861 // complete constructors get mangled the same.
1862 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(CanonicalGD
.getDecl())) {
1863 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1864 CXXCtorType OrigCtorType
= GD
.getCtorType();
1865 assert(OrigCtorType
== Ctor_Base
|| OrigCtorType
== Ctor_Complete
);
1866 if (OrigCtorType
== Ctor_Base
)
1867 CanonicalGD
= GlobalDecl(CD
, Ctor_Complete
);
1871 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1872 // static device variable depends on whether the variable is referenced by
1873 // a host or device host function. Therefore the mangled name cannot be
1875 if (!LangOpts
.CUDAIsDevice
|| !getContext().mayExternalize(GD
.getDecl())) {
1876 auto FoundName
= MangledDeclNames
.find(CanonicalGD
);
1877 if (FoundName
!= MangledDeclNames
.end())
1878 return FoundName
->second
;
1881 // Keep the first result in the case of a mangling collision.
1882 const auto *ND
= cast
<NamedDecl
>(GD
.getDecl());
1883 std::string MangledName
= getMangledNameImpl(*this, GD
, ND
);
1885 // Ensure either we have different ABIs between host and device compilations,
1886 // says host compilation following MSVC ABI but device compilation follows
1887 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1888 // mangling should be the same after name stubbing. The later checking is
1889 // very important as the device kernel name being mangled in host-compilation
1890 // is used to resolve the device binaries to be executed. Inconsistent naming
1891 // result in undefined behavior. Even though we cannot check that naming
1892 // directly between host- and device-compilations, the host- and
1893 // device-mangling in host compilation could help catching certain ones.
1894 assert(!isa
<FunctionDecl
>(ND
) || !ND
->hasAttr
<CUDAGlobalAttr
>() ||
1895 getContext().shouldExternalize(ND
) || getLangOpts().CUDAIsDevice
||
1896 (getContext().getAuxTargetInfo() &&
1897 (getContext().getAuxTargetInfo()->getCXXABI() !=
1898 getContext().getTargetInfo().getCXXABI())) ||
1899 getCUDARuntime().getDeviceSideName(ND
) ==
1902 GD
.getWithKernelReferenceKind(KernelReferenceKind::Kernel
),
1905 auto Result
= Manglings
.insert(std::make_pair(MangledName
, GD
));
1906 return MangledDeclNames
[CanonicalGD
] = Result
.first
->first();
1909 StringRef
CodeGenModule::getBlockMangledName(GlobalDecl GD
,
1910 const BlockDecl
*BD
) {
1911 MangleContext
&MangleCtx
= getCXXABI().getMangleContext();
1912 const Decl
*D
= GD
.getDecl();
1914 SmallString
<256> Buffer
;
1915 llvm::raw_svector_ostream
Out(Buffer
);
1917 MangleCtx
.mangleGlobalBlock(BD
,
1918 dyn_cast_or_null
<VarDecl
>(initializedGlobalDecl
.getDecl()), Out
);
1919 else if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(D
))
1920 MangleCtx
.mangleCtorBlock(CD
, GD
.getCtorType(), BD
, Out
);
1921 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(D
))
1922 MangleCtx
.mangleDtorBlock(DD
, GD
.getDtorType(), BD
, Out
);
1924 MangleCtx
.mangleBlock(cast
<DeclContext
>(D
), BD
, Out
);
1926 auto Result
= Manglings
.insert(std::make_pair(Out
.str(), BD
));
1927 return Result
.first
->first();
1930 const GlobalDecl
CodeGenModule::getMangledNameDecl(StringRef Name
) {
1931 auto it
= MangledDeclNames
.begin();
1932 while (it
!= MangledDeclNames
.end()) {
1933 if (it
->second
== Name
)
1937 return GlobalDecl();
1940 llvm::GlobalValue
*CodeGenModule::GetGlobalValue(StringRef Name
) {
1941 return getModule().getNamedValue(Name
);
1944 /// AddGlobalCtor - Add a function to the list that will be called before
1946 void CodeGenModule::AddGlobalCtor(llvm::Function
*Ctor
, int Priority
,
1948 llvm::Constant
*AssociatedData
) {
1949 // FIXME: Type coercion of void()* types.
1950 GlobalCtors
.push_back(Structor(Priority
, LexOrder
, Ctor
, AssociatedData
));
1953 /// AddGlobalDtor - Add a function to the list that will be called
1954 /// when the module is unloaded.
1955 void CodeGenModule::AddGlobalDtor(llvm::Function
*Dtor
, int Priority
,
1956 bool IsDtorAttrFunc
) {
1957 if (CodeGenOpts
.RegisterGlobalDtorsWithAtExit
&&
1958 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc
)) {
1959 DtorsUsingAtExit
[Priority
].push_back(Dtor
);
1963 // FIXME: Type coercion of void()* types.
1964 GlobalDtors
.push_back(Structor(Priority
, ~0U, Dtor
, nullptr));
1967 void CodeGenModule::EmitCtorList(CtorList
&Fns
, const char *GlobalName
) {
1968 if (Fns
.empty()) return;
1970 // Ctor function type is void()*.
1971 llvm::FunctionType
* CtorFTy
= llvm::FunctionType::get(VoidTy
, false);
1972 llvm::Type
*CtorPFTy
= llvm::PointerType::get(CtorFTy
,
1973 TheModule
.getDataLayout().getProgramAddressSpace());
1975 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1976 llvm::StructType
*CtorStructTy
= llvm::StructType::get(
1977 Int32Ty
, CtorPFTy
, VoidPtrTy
);
1979 // Construct the constructor and destructor arrays.
1980 ConstantInitBuilder
builder(*this);
1981 auto ctors
= builder
.beginArray(CtorStructTy
);
1982 for (const auto &I
: Fns
) {
1983 auto ctor
= ctors
.beginStruct(CtorStructTy
);
1984 ctor
.addInt(Int32Ty
, I
.Priority
);
1985 ctor
.add(llvm::ConstantExpr::getBitCast(I
.Initializer
, CtorPFTy
));
1986 if (I
.AssociatedData
)
1987 ctor
.add(llvm::ConstantExpr::getBitCast(I
.AssociatedData
, VoidPtrTy
));
1989 ctor
.addNullPointer(VoidPtrTy
);
1990 ctor
.finishAndAddTo(ctors
);
1994 ctors
.finishAndCreateGlobal(GlobalName
, getPointerAlign(),
1996 llvm::GlobalValue::AppendingLinkage
);
1998 // The LTO linker doesn't seem to like it when we set an alignment
1999 // on appending variables. Take it off as a workaround.
2000 list
->setAlignment(std::nullopt
);
2005 llvm::GlobalValue::LinkageTypes
2006 CodeGenModule::getFunctionLinkage(GlobalDecl GD
) {
2007 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
2009 GVALinkage Linkage
= getContext().GetGVALinkageForFunction(D
);
2011 if (const auto *Dtor
= dyn_cast
<CXXDestructorDecl
>(D
))
2012 return getCXXABI().getCXXDestructorLinkage(Linkage
, Dtor
, GD
.getDtorType());
2014 return getLLVMLinkageForDeclarator(D
, Linkage
);
2017 llvm::ConstantInt
*CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata
*MD
) {
2018 llvm::MDString
*MDS
= dyn_cast
<llvm::MDString
>(MD
);
2019 if (!MDS
) return nullptr;
2021 return llvm::ConstantInt::get(Int64Ty
, llvm::MD5Hash(MDS
->getString()));
2024 llvm::ConstantInt
*CodeGenModule::CreateKCFITypeId(QualType T
) {
2025 if (auto *FnType
= T
->getAs
<FunctionProtoType
>())
2026 T
= getContext().getFunctionType(
2027 FnType
->getReturnType(), FnType
->getParamTypes(),
2028 FnType
->getExtProtoInfo().withExceptionSpec(EST_None
));
2030 std::string OutName
;
2031 llvm::raw_string_ostream
Out(OutName
);
2032 getCXXABI().getMangleContext().mangleCanonicalTypeName(
2033 T
, Out
, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
);
2035 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
)
2036 Out
<< ".normalized";
2038 return llvm::ConstantInt::get(Int32Ty
,
2039 static_cast<uint32_t>(llvm::xxHash64(OutName
)));
2042 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD
,
2043 const CGFunctionInfo
&Info
,
2044 llvm::Function
*F
, bool IsThunk
) {
2045 unsigned CallingConv
;
2046 llvm::AttributeList PAL
;
2047 ConstructAttributeList(F
->getName(), Info
, GD
, PAL
, CallingConv
,
2048 /*AttrOnCallSite=*/false, IsThunk
);
2049 F
->setAttributes(PAL
);
2050 F
->setCallingConv(static_cast<llvm::CallingConv::ID
>(CallingConv
));
2053 static void removeImageAccessQualifier(std::string
& TyName
) {
2054 std::string
ReadOnlyQual("__read_only");
2055 std::string::size_type ReadOnlyPos
= TyName
.find(ReadOnlyQual
);
2056 if (ReadOnlyPos
!= std::string::npos
)
2057 // "+ 1" for the space after access qualifier.
2058 TyName
.erase(ReadOnlyPos
, ReadOnlyQual
.size() + 1);
2060 std::string
WriteOnlyQual("__write_only");
2061 std::string::size_type WriteOnlyPos
= TyName
.find(WriteOnlyQual
);
2062 if (WriteOnlyPos
!= std::string::npos
)
2063 TyName
.erase(WriteOnlyPos
, WriteOnlyQual
.size() + 1);
2065 std::string
ReadWriteQual("__read_write");
2066 std::string::size_type ReadWritePos
= TyName
.find(ReadWriteQual
);
2067 if (ReadWritePos
!= std::string::npos
)
2068 TyName
.erase(ReadWritePos
, ReadWriteQual
.size() + 1);
2073 // Returns the address space id that should be produced to the
2074 // kernel_arg_addr_space metadata. This is always fixed to the ids
2075 // as specified in the SPIR 2.0 specification in order to differentiate
2076 // for example in clGetKernelArgInfo() implementation between the address
2077 // spaces with targets without unique mapping to the OpenCL address spaces
2078 // (basically all single AS CPUs).
2079 static unsigned ArgInfoAddressSpace(LangAS AS
) {
2081 case LangAS::opencl_global
:
2083 case LangAS::opencl_constant
:
2085 case LangAS::opencl_local
:
2087 case LangAS::opencl_generic
:
2088 return 4; // Not in SPIR 2.0 specs.
2089 case LangAS::opencl_global_device
:
2091 case LangAS::opencl_global_host
:
2094 return 0; // Assume private.
2098 void CodeGenModule::GenKernelArgMetadata(llvm::Function
*Fn
,
2099 const FunctionDecl
*FD
,
2100 CodeGenFunction
*CGF
) {
2101 assert(((FD
&& CGF
) || (!FD
&& !CGF
)) &&
2102 "Incorrect use - FD and CGF should either be both null or not!");
2103 // Create MDNodes that represent the kernel arg metadata.
2104 // Each MDNode is a list in the form of "key", N number of values which is
2105 // the same number of values as their are kernel arguments.
2107 const PrintingPolicy
&Policy
= Context
.getPrintingPolicy();
2109 // MDNode for the kernel argument address space qualifiers.
2110 SmallVector
<llvm::Metadata
*, 8> addressQuals
;
2112 // MDNode for the kernel argument access qualifiers (images only).
2113 SmallVector
<llvm::Metadata
*, 8> accessQuals
;
2115 // MDNode for the kernel argument type names.
2116 SmallVector
<llvm::Metadata
*, 8> argTypeNames
;
2118 // MDNode for the kernel argument base type names.
2119 SmallVector
<llvm::Metadata
*, 8> argBaseTypeNames
;
2121 // MDNode for the kernel argument type qualifiers.
2122 SmallVector
<llvm::Metadata
*, 8> argTypeQuals
;
2124 // MDNode for the kernel argument names.
2125 SmallVector
<llvm::Metadata
*, 8> argNames
;
2128 for (unsigned i
= 0, e
= FD
->getNumParams(); i
!= e
; ++i
) {
2129 const ParmVarDecl
*parm
= FD
->getParamDecl(i
);
2130 // Get argument name.
2131 argNames
.push_back(llvm::MDString::get(VMContext
, parm
->getName()));
2133 if (!getLangOpts().OpenCL
)
2135 QualType ty
= parm
->getType();
2136 std::string typeQuals
;
2138 // Get image and pipe access qualifier:
2139 if (ty
->isImageType() || ty
->isPipeType()) {
2140 const Decl
*PDecl
= parm
;
2141 if (const auto *TD
= ty
->getAs
<TypedefType
>())
2142 PDecl
= TD
->getDecl();
2143 const OpenCLAccessAttr
*A
= PDecl
->getAttr
<OpenCLAccessAttr
>();
2144 if (A
&& A
->isWriteOnly())
2145 accessQuals
.push_back(llvm::MDString::get(VMContext
, "write_only"));
2146 else if (A
&& A
->isReadWrite())
2147 accessQuals
.push_back(llvm::MDString::get(VMContext
, "read_write"));
2149 accessQuals
.push_back(llvm::MDString::get(VMContext
, "read_only"));
2151 accessQuals
.push_back(llvm::MDString::get(VMContext
, "none"));
2153 auto getTypeSpelling
= [&](QualType Ty
) {
2154 auto typeName
= Ty
.getUnqualifiedType().getAsString(Policy
);
2156 if (Ty
.isCanonical()) {
2157 StringRef typeNameRef
= typeName
;
2158 // Turn "unsigned type" to "utype"
2159 if (typeNameRef
.consume_front("unsigned "))
2160 return std::string("u") + typeNameRef
.str();
2161 if (typeNameRef
.consume_front("signed "))
2162 return typeNameRef
.str();
2168 if (ty
->isPointerType()) {
2169 QualType pointeeTy
= ty
->getPointeeType();
2171 // Get address qualifier.
2172 addressQuals
.push_back(
2173 llvm::ConstantAsMetadata::get(CGF
->Builder
.getInt32(
2174 ArgInfoAddressSpace(pointeeTy
.getAddressSpace()))));
2176 // Get argument type name.
2177 std::string typeName
= getTypeSpelling(pointeeTy
) + "*";
2178 std::string baseTypeName
=
2179 getTypeSpelling(pointeeTy
.getCanonicalType()) + "*";
2180 argTypeNames
.push_back(llvm::MDString::get(VMContext
, typeName
));
2181 argBaseTypeNames
.push_back(
2182 llvm::MDString::get(VMContext
, baseTypeName
));
2184 // Get argument type qualifiers:
2185 if (ty
.isRestrictQualified())
2186 typeQuals
= "restrict";
2187 if (pointeeTy
.isConstQualified() ||
2188 (pointeeTy
.getAddressSpace() == LangAS::opencl_constant
))
2189 typeQuals
+= typeQuals
.empty() ? "const" : " const";
2190 if (pointeeTy
.isVolatileQualified())
2191 typeQuals
+= typeQuals
.empty() ? "volatile" : " volatile";
2193 uint32_t AddrSpc
= 0;
2194 bool isPipe
= ty
->isPipeType();
2195 if (ty
->isImageType() || isPipe
)
2196 AddrSpc
= ArgInfoAddressSpace(LangAS::opencl_global
);
2198 addressQuals
.push_back(
2199 llvm::ConstantAsMetadata::get(CGF
->Builder
.getInt32(AddrSpc
)));
2201 // Get argument type name.
2202 ty
= isPipe
? ty
->castAs
<PipeType
>()->getElementType() : ty
;
2203 std::string typeName
= getTypeSpelling(ty
);
2204 std::string baseTypeName
= getTypeSpelling(ty
.getCanonicalType());
2206 // Remove access qualifiers on images
2207 // (as they are inseparable from type in clang implementation,
2208 // but OpenCL spec provides a special query to get access qualifier
2209 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2210 if (ty
->isImageType()) {
2211 removeImageAccessQualifier(typeName
);
2212 removeImageAccessQualifier(baseTypeName
);
2215 argTypeNames
.push_back(llvm::MDString::get(VMContext
, typeName
));
2216 argBaseTypeNames
.push_back(
2217 llvm::MDString::get(VMContext
, baseTypeName
));
2222 argTypeQuals
.push_back(llvm::MDString::get(VMContext
, typeQuals
));
2225 if (getLangOpts().OpenCL
) {
2226 Fn
->setMetadata("kernel_arg_addr_space",
2227 llvm::MDNode::get(VMContext
, addressQuals
));
2228 Fn
->setMetadata("kernel_arg_access_qual",
2229 llvm::MDNode::get(VMContext
, accessQuals
));
2230 Fn
->setMetadata("kernel_arg_type",
2231 llvm::MDNode::get(VMContext
, argTypeNames
));
2232 Fn
->setMetadata("kernel_arg_base_type",
2233 llvm::MDNode::get(VMContext
, argBaseTypeNames
));
2234 Fn
->setMetadata("kernel_arg_type_qual",
2235 llvm::MDNode::get(VMContext
, argTypeQuals
));
2237 if (getCodeGenOpts().EmitOpenCLArgMetadata
||
2238 getCodeGenOpts().HIPSaveKernelArgName
)
2239 Fn
->setMetadata("kernel_arg_name",
2240 llvm::MDNode::get(VMContext
, argNames
));
2243 /// Determines whether the language options require us to model
2244 /// unwind exceptions. We treat -fexceptions as mandating this
2245 /// except under the fragile ObjC ABI with only ObjC exceptions
2246 /// enabled. This means, for example, that C with -fexceptions
2248 static bool hasUnwindExceptions(const LangOptions
&LangOpts
) {
2249 // If exceptions are completely disabled, obviously this is false.
2250 if (!LangOpts
.Exceptions
) return false;
2252 // If C++ exceptions are enabled, this is true.
2253 if (LangOpts
.CXXExceptions
) return true;
2255 // If ObjC exceptions are enabled, this depends on the ABI.
2256 if (LangOpts
.ObjCExceptions
) {
2257 return LangOpts
.ObjCRuntime
.hasUnwindExceptions();
2263 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule
&CGM
,
2264 const CXXMethodDecl
*MD
) {
2265 // Check that the type metadata can ever actually be used by a call.
2266 if (!CGM
.getCodeGenOpts().LTOUnit
||
2267 !CGM
.HasHiddenLTOVisibility(MD
->getParent()))
2270 // Only functions whose address can be taken with a member function pointer
2271 // need this sort of type metadata.
2272 return MD
->isImplicitObjectMemberFunction() && !MD
->isVirtual() &&
2273 !isa
<CXXConstructorDecl
, CXXDestructorDecl
>(MD
);
2276 SmallVector
<const CXXRecordDecl
*, 0>
2277 CodeGenModule::getMostBaseClasses(const CXXRecordDecl
*RD
) {
2278 llvm::SetVector
<const CXXRecordDecl
*> MostBases
;
2280 std::function
<void (const CXXRecordDecl
*)> CollectMostBases
;
2281 CollectMostBases
= [&](const CXXRecordDecl
*RD
) {
2282 if (RD
->getNumBases() == 0)
2283 MostBases
.insert(RD
);
2284 for (const CXXBaseSpecifier
&B
: RD
->bases())
2285 CollectMostBases(B
.getType()->getAsCXXRecordDecl());
2287 CollectMostBases(RD
);
2288 return MostBases
.takeVector();
2291 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl
*D
,
2292 llvm::Function
*F
) {
2293 llvm::AttrBuilder
B(F
->getContext());
2295 if ((!D
|| !D
->hasAttr
<NoUwtableAttr
>()) && CodeGenOpts
.UnwindTables
)
2296 B
.addUWTableAttr(llvm::UWTableKind(CodeGenOpts
.UnwindTables
));
2298 if (CodeGenOpts
.StackClashProtector
)
2299 B
.addAttribute("probe-stack", "inline-asm");
2301 if (!hasUnwindExceptions(LangOpts
))
2302 B
.addAttribute(llvm::Attribute::NoUnwind
);
2304 if (D
&& D
->hasAttr
<NoStackProtectorAttr
>())
2306 else if (D
&& D
->hasAttr
<StrictGuardStackCheckAttr
>() &&
2307 isStackProtectorOn(LangOpts
, getTriple(), LangOptions::SSPOn
))
2308 B
.addAttribute(llvm::Attribute::StackProtectStrong
);
2309 else if (isStackProtectorOn(LangOpts
, getTriple(), LangOptions::SSPOn
))
2310 B
.addAttribute(llvm::Attribute::StackProtect
);
2311 else if (isStackProtectorOn(LangOpts
, getTriple(), LangOptions::SSPStrong
))
2312 B
.addAttribute(llvm::Attribute::StackProtectStrong
);
2313 else if (isStackProtectorOn(LangOpts
, getTriple(), LangOptions::SSPReq
))
2314 B
.addAttribute(llvm::Attribute::StackProtectReq
);
2317 // If we don't have a declaration to control inlining, the function isn't
2318 // explicitly marked as alwaysinline for semantic reasons, and inlining is
2319 // disabled, mark the function as noinline.
2320 if (!F
->hasFnAttribute(llvm::Attribute::AlwaysInline
) &&
2321 CodeGenOpts
.getInlining() == CodeGenOptions::OnlyAlwaysInlining
)
2322 B
.addAttribute(llvm::Attribute::NoInline
);
2328 // Handle SME attributes that apply to function definitions,
2329 // rather than to function prototypes.
2330 if (D
->hasAttr
<ArmLocallyStreamingAttr
>())
2331 B
.addAttribute("aarch64_pstate_sm_body");
2333 if (D
->hasAttr
<ArmNewZAAttr
>())
2334 B
.addAttribute("aarch64_pstate_za_new");
2336 // Track whether we need to add the optnone LLVM attribute,
2337 // starting with the default for this optimization level.
2338 bool ShouldAddOptNone
=
2339 !CodeGenOpts
.DisableO0ImplyOptNone
&& CodeGenOpts
.OptimizationLevel
== 0;
2340 // We can't add optnone in the following cases, it won't pass the verifier.
2341 ShouldAddOptNone
&= !D
->hasAttr
<MinSizeAttr
>();
2342 ShouldAddOptNone
&= !D
->hasAttr
<AlwaysInlineAttr
>();
2344 // Add optnone, but do so only if the function isn't always_inline.
2345 if ((ShouldAddOptNone
|| D
->hasAttr
<OptimizeNoneAttr
>()) &&
2346 !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2347 B
.addAttribute(llvm::Attribute::OptimizeNone
);
2349 // OptimizeNone implies noinline; we should not be inlining such functions.
2350 B
.addAttribute(llvm::Attribute::NoInline
);
2352 // We still need to handle naked functions even though optnone subsumes
2353 // much of their semantics.
2354 if (D
->hasAttr
<NakedAttr
>())
2355 B
.addAttribute(llvm::Attribute::Naked
);
2357 // OptimizeNone wins over OptimizeForSize and MinSize.
2358 F
->removeFnAttr(llvm::Attribute::OptimizeForSize
);
2359 F
->removeFnAttr(llvm::Attribute::MinSize
);
2360 } else if (D
->hasAttr
<NakedAttr
>()) {
2361 // Naked implies noinline: we should not be inlining such functions.
2362 B
.addAttribute(llvm::Attribute::Naked
);
2363 B
.addAttribute(llvm::Attribute::NoInline
);
2364 } else if (D
->hasAttr
<NoDuplicateAttr
>()) {
2365 B
.addAttribute(llvm::Attribute::NoDuplicate
);
2366 } else if (D
->hasAttr
<NoInlineAttr
>() && !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2367 // Add noinline if the function isn't always_inline.
2368 B
.addAttribute(llvm::Attribute::NoInline
);
2369 } else if (D
->hasAttr
<AlwaysInlineAttr
>() &&
2370 !F
->hasFnAttribute(llvm::Attribute::NoInline
)) {
2371 // (noinline wins over always_inline, and we can't specify both in IR)
2372 B
.addAttribute(llvm::Attribute::AlwaysInline
);
2373 } else if (CodeGenOpts
.getInlining() == CodeGenOptions::OnlyAlwaysInlining
) {
2374 // If we're not inlining, then force everything that isn't always_inline to
2375 // carry an explicit noinline attribute.
2376 if (!F
->hasFnAttribute(llvm::Attribute::AlwaysInline
))
2377 B
.addAttribute(llvm::Attribute::NoInline
);
2379 // Otherwise, propagate the inline hint attribute and potentially use its
2380 // absence to mark things as noinline.
2381 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2382 // Search function and template pattern redeclarations for inline.
2383 auto CheckForInline
= [](const FunctionDecl
*FD
) {
2384 auto CheckRedeclForInline
= [](const FunctionDecl
*Redecl
) {
2385 return Redecl
->isInlineSpecified();
2387 if (any_of(FD
->redecls(), CheckRedeclForInline
))
2389 const FunctionDecl
*Pattern
= FD
->getTemplateInstantiationPattern();
2392 return any_of(Pattern
->redecls(), CheckRedeclForInline
);
2394 if (CheckForInline(FD
)) {
2395 B
.addAttribute(llvm::Attribute::InlineHint
);
2396 } else if (CodeGenOpts
.getInlining() ==
2397 CodeGenOptions::OnlyHintInlining
&&
2399 !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2400 B
.addAttribute(llvm::Attribute::NoInline
);
2405 // Add other optimization related attributes if we are optimizing this
2407 if (!D
->hasAttr
<OptimizeNoneAttr
>()) {
2408 if (D
->hasAttr
<ColdAttr
>()) {
2409 if (!ShouldAddOptNone
)
2410 B
.addAttribute(llvm::Attribute::OptimizeForSize
);
2411 B
.addAttribute(llvm::Attribute::Cold
);
2413 if (D
->hasAttr
<HotAttr
>())
2414 B
.addAttribute(llvm::Attribute::Hot
);
2415 if (D
->hasAttr
<MinSizeAttr
>())
2416 B
.addAttribute(llvm::Attribute::MinSize
);
2421 unsigned alignment
= D
->getMaxAlignment() / Context
.getCharWidth();
2423 F
->setAlignment(llvm::Align(alignment
));
2425 if (!D
->hasAttr
<AlignedAttr
>())
2426 if (LangOpts
.FunctionAlignment
)
2427 F
->setAlignment(llvm::Align(1ull << LangOpts
.FunctionAlignment
));
2429 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2430 // reserve a bit for differentiating between virtual and non-virtual member
2431 // functions. If the current target's C++ ABI requires this and this is a
2432 // member function, set its alignment accordingly.
2433 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2434 if (isa
<CXXMethodDecl
>(D
) && F
->getPointerAlignment(getDataLayout()) < 2)
2435 F
->setAlignment(std::max(llvm::Align(2), F
->getAlign().valueOrOne()));
2438 // In the cross-dso CFI mode with canonical jump tables, we want !type
2439 // attributes on definitions only.
2440 if (CodeGenOpts
.SanitizeCfiCrossDso
&&
2441 CodeGenOpts
.SanitizeCfiCanonicalJumpTables
) {
2442 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2443 // Skip available_externally functions. They won't be codegen'ed in the
2444 // current module anyway.
2445 if (getContext().GetGVALinkageForFunction(FD
) != GVA_AvailableExternally
)
2446 CreateFunctionTypeMetadataForIcall(FD
, F
);
2450 // Emit type metadata on member functions for member function pointer checks.
2451 // These are only ever necessary on definitions; we're guaranteed that the
2452 // definition will be present in the LTO unit as a result of LTO visibility.
2453 auto *MD
= dyn_cast
<CXXMethodDecl
>(D
);
2454 if (MD
&& requiresMemberFunctionPointerTypeMetadata(*this, MD
)) {
2455 for (const CXXRecordDecl
*Base
: getMostBaseClasses(MD
->getParent())) {
2456 llvm::Metadata
*Id
=
2457 CreateMetadataIdentifierForType(Context
.getMemberPointerType(
2458 MD
->getType(), Context
.getRecordType(Base
).getTypePtr()));
2459 F
->addTypeMetadata(0, Id
);
2464 void CodeGenModule::SetCommonAttributes(GlobalDecl GD
, llvm::GlobalValue
*GV
) {
2465 const Decl
*D
= GD
.getDecl();
2466 if (isa_and_nonnull
<NamedDecl
>(D
))
2467 setGVProperties(GV
, GD
);
2469 GV
->setVisibility(llvm::GlobalValue::DefaultVisibility
);
2471 if (D
&& D
->hasAttr
<UsedAttr
>())
2472 addUsedOrCompilerUsedGlobal(GV
);
2474 if (const auto *VD
= dyn_cast_if_present
<VarDecl
>(D
);
2476 ((CodeGenOpts
.KeepPersistentStorageVariables
&&
2477 (VD
->getStorageDuration() == SD_Static
||
2478 VD
->getStorageDuration() == SD_Thread
)) ||
2479 (CodeGenOpts
.KeepStaticConsts
&& VD
->getStorageDuration() == SD_Static
&&
2480 VD
->getType().isConstQualified())))
2481 addUsedOrCompilerUsedGlobal(GV
);
2484 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD
,
2485 llvm::AttrBuilder
&Attrs
,
2486 bool SetTargetFeatures
) {
2487 // Add target-cpu and target-features attributes to functions. If
2488 // we have a decl for the function and it has a target attribute then
2489 // parse that and add it to the feature set.
2490 StringRef TargetCPU
= getTarget().getTargetOpts().CPU
;
2491 StringRef TuneCPU
= getTarget().getTargetOpts().TuneCPU
;
2492 std::vector
<std::string
> Features
;
2493 const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(GD
.getDecl());
2494 FD
= FD
? FD
->getMostRecentDecl() : FD
;
2495 const auto *TD
= FD
? FD
->getAttr
<TargetAttr
>() : nullptr;
2496 const auto *TV
= FD
? FD
->getAttr
<TargetVersionAttr
>() : nullptr;
2497 assert((!TD
|| !TV
) && "both target_version and target specified");
2498 const auto *SD
= FD
? FD
->getAttr
<CPUSpecificAttr
>() : nullptr;
2499 const auto *TC
= FD
? FD
->getAttr
<TargetClonesAttr
>() : nullptr;
2500 bool AddedAttr
= false;
2501 if (TD
|| TV
|| SD
|| TC
) {
2502 llvm::StringMap
<bool> FeatureMap
;
2503 getContext().getFunctionFeatureMap(FeatureMap
, GD
);
2505 // Produce the canonical string for this set of features.
2506 for (const llvm::StringMap
<bool>::value_type
&Entry
: FeatureMap
)
2507 Features
.push_back((Entry
.getValue() ? "+" : "-") + Entry
.getKey().str());
2509 // Now add the target-cpu and target-features to the function.
2510 // While we populated the feature map above, we still need to
2511 // get and parse the target attribute so we can get the cpu for
2514 ParsedTargetAttr ParsedAttr
=
2515 Target
.parseTargetAttr(TD
->getFeaturesStr());
2516 if (!ParsedAttr
.CPU
.empty() &&
2517 getTarget().isValidCPUName(ParsedAttr
.CPU
)) {
2518 TargetCPU
= ParsedAttr
.CPU
;
2519 TuneCPU
= ""; // Clear the tune CPU.
2521 if (!ParsedAttr
.Tune
.empty() &&
2522 getTarget().isValidCPUName(ParsedAttr
.Tune
))
2523 TuneCPU
= ParsedAttr
.Tune
;
2527 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2528 // favor this processor.
2529 TuneCPU
= SD
->getCPUName(GD
.getMultiVersionIndex())->getName();
2532 // Otherwise just add the existing target cpu and target features to the
2534 Features
= getTarget().getTargetOpts().Features
;
2537 if (!TargetCPU
.empty()) {
2538 Attrs
.addAttribute("target-cpu", TargetCPU
);
2541 if (!TuneCPU
.empty()) {
2542 Attrs
.addAttribute("tune-cpu", TuneCPU
);
2545 if (!Features
.empty() && SetTargetFeatures
) {
2546 llvm::erase_if(Features
, [&](const std::string
& F
) {
2547 return getTarget().isReadOnlyFeature(F
.substr(1));
2549 llvm::sort(Features
);
2550 Attrs
.addAttribute("target-features", llvm::join(Features
, ","));
2557 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD
,
2558 llvm::GlobalObject
*GO
) {
2559 const Decl
*D
= GD
.getDecl();
2560 SetCommonAttributes(GD
, GO
);
2563 if (auto *GV
= dyn_cast
<llvm::GlobalVariable
>(GO
)) {
2564 if (D
->hasAttr
<RetainAttr
>())
2566 if (auto *SA
= D
->getAttr
<PragmaClangBSSSectionAttr
>())
2567 GV
->addAttribute("bss-section", SA
->getName());
2568 if (auto *SA
= D
->getAttr
<PragmaClangDataSectionAttr
>())
2569 GV
->addAttribute("data-section", SA
->getName());
2570 if (auto *SA
= D
->getAttr
<PragmaClangRodataSectionAttr
>())
2571 GV
->addAttribute("rodata-section", SA
->getName());
2572 if (auto *SA
= D
->getAttr
<PragmaClangRelroSectionAttr
>())
2573 GV
->addAttribute("relro-section", SA
->getName());
2576 if (auto *F
= dyn_cast
<llvm::Function
>(GO
)) {
2577 if (D
->hasAttr
<RetainAttr
>())
2579 if (auto *SA
= D
->getAttr
<PragmaClangTextSectionAttr
>())
2580 if (!D
->getAttr
<SectionAttr
>())
2581 F
->addFnAttr("implicit-section-name", SA
->getName());
2583 llvm::AttrBuilder
Attrs(F
->getContext());
2584 if (GetCPUAndFeaturesAttributes(GD
, Attrs
)) {
2585 // We know that GetCPUAndFeaturesAttributes will always have the
2586 // newest set, since it has the newest possible FunctionDecl, so the
2587 // new ones should replace the old.
2588 llvm::AttributeMask RemoveAttrs
;
2589 RemoveAttrs
.addAttribute("target-cpu");
2590 RemoveAttrs
.addAttribute("target-features");
2591 RemoveAttrs
.addAttribute("tune-cpu");
2592 F
->removeFnAttrs(RemoveAttrs
);
2593 F
->addFnAttrs(Attrs
);
2597 if (const auto *CSA
= D
->getAttr
<CodeSegAttr
>())
2598 GO
->setSection(CSA
->getName());
2599 else if (const auto *SA
= D
->getAttr
<SectionAttr
>())
2600 GO
->setSection(SA
->getName());
2603 getTargetCodeGenInfo().setTargetAttributes(D
, GO
, *this);
2606 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD
,
2608 const CGFunctionInfo
&FI
) {
2609 const Decl
*D
= GD
.getDecl();
2610 SetLLVMFunctionAttributes(GD
, FI
, F
, /*IsThunk=*/false);
2611 SetLLVMFunctionAttributesForDefinition(D
, F
);
2613 F
->setLinkage(llvm::Function::InternalLinkage
);
2615 setNonAliasAttributes(GD
, F
);
2618 static void setLinkageForGV(llvm::GlobalValue
*GV
, const NamedDecl
*ND
) {
2619 // Set linkage and visibility in case we never see a definition.
2620 LinkageInfo LV
= ND
->getLinkageAndVisibility();
2621 // Don't set internal linkage on declarations.
2622 // "extern_weak" is overloaded in LLVM; we probably should have
2623 // separate linkage types for this.
2624 if (isExternallyVisible(LV
.getLinkage()) &&
2625 (ND
->hasAttr
<WeakAttr
>() || ND
->isWeakImported()))
2626 GV
->setLinkage(llvm::GlobalValue::ExternalWeakLinkage
);
2629 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl
*FD
,
2630 llvm::Function
*F
) {
2631 // Only if we are checking indirect calls.
2632 if (!LangOpts
.Sanitize
.has(SanitizerKind::CFIICall
))
2635 // Non-static class methods are handled via vtable or member function pointer
2636 // checks elsewhere.
2637 if (isa
<CXXMethodDecl
>(FD
) && !cast
<CXXMethodDecl
>(FD
)->isStatic())
2640 llvm::Metadata
*MD
= CreateMetadataIdentifierForType(FD
->getType());
2641 F
->addTypeMetadata(0, MD
);
2642 F
->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD
->getType()));
2644 // Emit a hash-based bit set entry for cross-DSO calls.
2645 if (CodeGenOpts
.SanitizeCfiCrossDso
)
2646 if (auto CrossDsoTypeId
= CreateCrossDsoCfiTypeId(MD
))
2647 F
->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId
));
2650 void CodeGenModule::setKCFIType(const FunctionDecl
*FD
, llvm::Function
*F
) {
2651 llvm::LLVMContext
&Ctx
= F
->getContext();
2652 llvm::MDBuilder
MDB(Ctx
);
2653 F
->setMetadata(llvm::LLVMContext::MD_kcfi_type
,
2655 Ctx
, MDB
.createConstant(CreateKCFITypeId(FD
->getType()))));
2658 static bool allowKCFIIdentifier(StringRef Name
) {
2659 // KCFI type identifier constants are only necessary for external assembly
2660 // functions, which means it's safe to skip unusual names. Subset of
2661 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2662 return llvm::all_of(Name
, [](const char &C
) {
2663 return llvm::isAlnum(C
) || C
== '_' || C
== '.';
2667 void CodeGenModule::finalizeKCFITypes() {
2668 llvm::Module
&M
= getModule();
2669 for (auto &F
: M
.functions()) {
2670 // Remove KCFI type metadata from non-address-taken local functions.
2671 bool AddressTaken
= F
.hasAddressTaken();
2672 if (!AddressTaken
&& F
.hasLocalLinkage())
2673 F
.eraseMetadata(llvm::LLVMContext::MD_kcfi_type
);
2675 // Generate a constant with the expected KCFI type identifier for all
2676 // address-taken function declarations to support annotating indirectly
2677 // called assembly functions.
2678 if (!AddressTaken
|| !F
.isDeclaration())
2681 const llvm::ConstantInt
*Type
;
2682 if (const llvm::MDNode
*MD
= F
.getMetadata(llvm::LLVMContext::MD_kcfi_type
))
2683 Type
= llvm::mdconst::extract
<llvm::ConstantInt
>(MD
->getOperand(0));
2687 StringRef Name
= F
.getName();
2688 if (!allowKCFIIdentifier(Name
))
2691 std::string Asm
= (".weak __kcfi_typeid_" + Name
+ "\n.set __kcfi_typeid_" +
2692 Name
+ ", " + Twine(Type
->getZExtValue()) + "\n")
2694 M
.appendModuleInlineAsm(Asm
);
2698 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD
, llvm::Function
*F
,
2699 bool IsIncompleteFunction
,
2702 if (llvm::Intrinsic::ID IID
= F
->getIntrinsicID()) {
2703 // If this is an intrinsic function, set the function's attributes
2704 // to the intrinsic's attributes.
2705 F
->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID
));
2709 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
2711 if (!IsIncompleteFunction
)
2712 SetLLVMFunctionAttributes(GD
, getTypes().arrangeGlobalDeclaration(GD
), F
,
2715 // Add the Returned attribute for "this", except for iOS 5 and earlier
2716 // where substantial code, including the libstdc++ dylib, was compiled with
2717 // GCC and does not actually return "this".
2718 if (!IsThunk
&& getCXXABI().HasThisReturn(GD
) &&
2719 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2720 assert(!F
->arg_empty() &&
2721 F
->arg_begin()->getType()
2722 ->canLosslesslyBitCastTo(F
->getReturnType()) &&
2723 "unexpected this return");
2724 F
->addParamAttr(0, llvm::Attribute::Returned
);
2727 // Only a few attributes are set on declarations; these may later be
2728 // overridden by a definition.
2730 setLinkageForGV(F
, FD
);
2731 setGVProperties(F
, FD
);
2733 // Setup target-specific attributes.
2734 if (!IsIncompleteFunction
&& F
->isDeclaration())
2735 getTargetCodeGenInfo().setTargetAttributes(FD
, F
, *this);
2737 if (const auto *CSA
= FD
->getAttr
<CodeSegAttr
>())
2738 F
->setSection(CSA
->getName());
2739 else if (const auto *SA
= FD
->getAttr
<SectionAttr
>())
2740 F
->setSection(SA
->getName());
2742 if (const auto *EA
= FD
->getAttr
<ErrorAttr
>()) {
2744 F
->addFnAttr("dontcall-error", EA
->getUserDiagnostic());
2745 else if (EA
->isWarning())
2746 F
->addFnAttr("dontcall-warn", EA
->getUserDiagnostic());
2749 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2750 if (FD
->isInlineBuiltinDeclaration()) {
2751 const FunctionDecl
*FDBody
;
2752 bool HasBody
= FD
->hasBody(FDBody
);
2754 assert(HasBody
&& "Inline builtin declarations should always have an "
2756 if (shouldEmitFunction(FDBody
))
2757 F
->addFnAttr(llvm::Attribute::NoBuiltin
);
2760 if (FD
->isReplaceableGlobalAllocationFunction()) {
2761 // A replaceable global allocation function does not act like a builtin by
2762 // default, only if it is invoked by a new-expression or delete-expression.
2763 F
->addFnAttr(llvm::Attribute::NoBuiltin
);
2766 if (isa
<CXXConstructorDecl
>(FD
) || isa
<CXXDestructorDecl
>(FD
))
2767 F
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2768 else if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
))
2769 if (MD
->isVirtual())
2770 F
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2772 // Don't emit entries for function declarations in the cross-DSO mode. This
2773 // is handled with better precision by the receiving DSO. But if jump tables
2774 // are non-canonical then we need type metadata in order to produce the local
2776 if (!CodeGenOpts
.SanitizeCfiCrossDso
||
2777 !CodeGenOpts
.SanitizeCfiCanonicalJumpTables
)
2778 CreateFunctionTypeMetadataForIcall(FD
, F
);
2780 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
))
2783 if (getLangOpts().OpenMP
&& FD
->hasAttr
<OMPDeclareSimdDeclAttr
>())
2784 getOpenMPRuntime().emitDeclareSimdFunction(FD
, F
);
2786 if (CodeGenOpts
.InlineMaxStackSize
!= UINT_MAX
)
2787 F
->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts
.InlineMaxStackSize
));
2789 if (const auto *CB
= FD
->getAttr
<CallbackAttr
>()) {
2790 // Annotate the callback behavior as metadata:
2791 // - The callback callee (as argument number).
2792 // - The callback payloads (as argument numbers).
2793 llvm::LLVMContext
&Ctx
= F
->getContext();
2794 llvm::MDBuilder
MDB(Ctx
);
2796 // The payload indices are all but the first one in the encoding. The first
2797 // identifies the callback callee.
2798 int CalleeIdx
= *CB
->encoding_begin();
2799 ArrayRef
<int> PayloadIndices(CB
->encoding_begin() + 1, CB
->encoding_end());
2800 F
->addMetadata(llvm::LLVMContext::MD_callback
,
2801 *llvm::MDNode::get(Ctx
, {MDB
.createCallbackEncoding(
2802 CalleeIdx
, PayloadIndices
,
2803 /* VarArgsArePassed */ false)}));
2807 void CodeGenModule::addUsedGlobal(llvm::GlobalValue
*GV
) {
2808 assert((isa
<llvm::Function
>(GV
) || !GV
->isDeclaration()) &&
2809 "Only globals with definition can force usage.");
2810 LLVMUsed
.emplace_back(GV
);
2813 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue
*GV
) {
2814 assert(!GV
->isDeclaration() &&
2815 "Only globals with definition can force usage.");
2816 LLVMCompilerUsed
.emplace_back(GV
);
2819 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue
*GV
) {
2820 assert((isa
<llvm::Function
>(GV
) || !GV
->isDeclaration()) &&
2821 "Only globals with definition can force usage.");
2822 if (getTriple().isOSBinFormatELF())
2823 LLVMCompilerUsed
.emplace_back(GV
);
2825 LLVMUsed
.emplace_back(GV
);
2828 static void emitUsed(CodeGenModule
&CGM
, StringRef Name
,
2829 std::vector
<llvm::WeakTrackingVH
> &List
) {
2830 // Don't create llvm.used if there is no need.
2834 // Convert List to what ConstantArray needs.
2835 SmallVector
<llvm::Constant
*, 8> UsedArray
;
2836 UsedArray
.resize(List
.size());
2837 for (unsigned i
= 0, e
= List
.size(); i
!= e
; ++i
) {
2839 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2840 cast
<llvm::Constant
>(&*List
[i
]), CGM
.Int8PtrTy
);
2843 if (UsedArray
.empty())
2845 llvm::ArrayType
*ATy
= llvm::ArrayType::get(CGM
.Int8PtrTy
, UsedArray
.size());
2847 auto *GV
= new llvm::GlobalVariable(
2848 CGM
.getModule(), ATy
, false, llvm::GlobalValue::AppendingLinkage
,
2849 llvm::ConstantArray::get(ATy
, UsedArray
), Name
);
2851 GV
->setSection("llvm.metadata");
2854 void CodeGenModule::emitLLVMUsed() {
2855 emitUsed(*this, "llvm.used", LLVMUsed
);
2856 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed
);
2859 void CodeGenModule::AppendLinkerOptions(StringRef Opts
) {
2860 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opts
);
2861 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts
));
2864 void CodeGenModule::AddDetectMismatch(StringRef Name
, StringRef Value
) {
2865 llvm::SmallString
<32> Opt
;
2866 getTargetCodeGenInfo().getDetectMismatchOption(Name
, Value
, Opt
);
2869 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opt
);
2870 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts
));
2873 void CodeGenModule::AddDependentLib(StringRef Lib
) {
2874 auto &C
= getLLVMContext();
2875 if (getTarget().getTriple().isOSBinFormatELF()) {
2876 ELFDependentLibraries
.push_back(
2877 llvm::MDNode::get(C
, llvm::MDString::get(C
, Lib
)));
2881 llvm::SmallString
<24> Opt
;
2882 getTargetCodeGenInfo().getDependentLibraryOption(Lib
, Opt
);
2883 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opt
);
2884 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(C
, MDOpts
));
2887 /// Add link options implied by the given module, including modules
2888 /// it depends on, using a postorder walk.
2889 static void addLinkOptionsPostorder(CodeGenModule
&CGM
, Module
*Mod
,
2890 SmallVectorImpl
<llvm::MDNode
*> &Metadata
,
2891 llvm::SmallPtrSet
<Module
*, 16> &Visited
) {
2892 // Import this module's parent.
2893 if (Mod
->Parent
&& Visited
.insert(Mod
->Parent
).second
) {
2894 addLinkOptionsPostorder(CGM
, Mod
->Parent
, Metadata
, Visited
);
2897 // Import this module's dependencies.
2898 for (Module
*Import
: llvm::reverse(Mod
->Imports
)) {
2899 if (Visited
.insert(Import
).second
)
2900 addLinkOptionsPostorder(CGM
, Import
, Metadata
, Visited
);
2903 // Add linker options to link against the libraries/frameworks
2904 // described by this module.
2905 llvm::LLVMContext
&Context
= CGM
.getLLVMContext();
2906 bool IsELF
= CGM
.getTarget().getTriple().isOSBinFormatELF();
2908 // For modules that use export_as for linking, use that module
2910 if (Mod
->UseExportAsModuleLinkName
)
2913 for (const Module::LinkLibrary
&LL
: llvm::reverse(Mod
->LinkLibraries
)) {
2914 // Link against a framework. Frameworks are currently Darwin only, so we
2915 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2916 if (LL
.IsFramework
) {
2917 llvm::Metadata
*Args
[2] = {llvm::MDString::get(Context
, "-framework"),
2918 llvm::MDString::get(Context
, LL
.Library
)};
2920 Metadata
.push_back(llvm::MDNode::get(Context
, Args
));
2924 // Link against a library.
2926 llvm::Metadata
*Args
[2] = {
2927 llvm::MDString::get(Context
, "lib"),
2928 llvm::MDString::get(Context
, LL
.Library
),
2930 Metadata
.push_back(llvm::MDNode::get(Context
, Args
));
2932 llvm::SmallString
<24> Opt
;
2933 CGM
.getTargetCodeGenInfo().getDependentLibraryOption(LL
.Library
, Opt
);
2934 auto *OptString
= llvm::MDString::get(Context
, Opt
);
2935 Metadata
.push_back(llvm::MDNode::get(Context
, OptString
));
2940 void CodeGenModule::EmitModuleInitializers(clang::Module
*Primary
) {
2941 assert(Primary
->isNamedModuleUnit() &&
2942 "We should only emit module initializers for named modules.");
2944 // Emit the initializers in the order that sub-modules appear in the
2945 // source, first Global Module Fragments, if present.
2946 if (auto GMF
= Primary
->getGlobalModuleFragment()) {
2947 for (Decl
*D
: getContext().getModuleInitializers(GMF
)) {
2948 if (isa
<ImportDecl
>(D
))
2950 assert(isa
<VarDecl
>(D
) && "GMF initializer decl is not a var?");
2951 EmitTopLevelDecl(D
);
2954 // Second any associated with the module, itself.
2955 for (Decl
*D
: getContext().getModuleInitializers(Primary
)) {
2956 // Skip import decls, the inits for those are called explicitly.
2957 if (isa
<ImportDecl
>(D
))
2959 EmitTopLevelDecl(D
);
2961 // Third any associated with the Privat eMOdule Fragment, if present.
2962 if (auto PMF
= Primary
->getPrivateModuleFragment()) {
2963 for (Decl
*D
: getContext().getModuleInitializers(PMF
)) {
2964 // Skip import decls, the inits for those are called explicitly.
2965 if (isa
<ImportDecl
>(D
))
2967 assert(isa
<VarDecl
>(D
) && "PMF initializer decl is not a var?");
2968 EmitTopLevelDecl(D
);
2973 void CodeGenModule::EmitModuleLinkOptions() {
2974 // Collect the set of all of the modules we want to visit to emit link
2975 // options, which is essentially the imported modules and all of their
2976 // non-explicit child modules.
2977 llvm::SetVector
<clang::Module
*> LinkModules
;
2978 llvm::SmallPtrSet
<clang::Module
*, 16> Visited
;
2979 SmallVector
<clang::Module
*, 16> Stack
;
2981 // Seed the stack with imported modules.
2982 for (Module
*M
: ImportedModules
) {
2983 // Do not add any link flags when an implementation TU of a module imports
2984 // a header of that same module.
2985 if (M
->getTopLevelModuleName() == getLangOpts().CurrentModule
&&
2986 !getLangOpts().isCompilingModule())
2988 if (Visited
.insert(M
).second
)
2992 // Find all of the modules to import, making a little effort to prune
2993 // non-leaf modules.
2994 while (!Stack
.empty()) {
2995 clang::Module
*Mod
= Stack
.pop_back_val();
2997 bool AnyChildren
= false;
2999 // Visit the submodules of this module.
3000 for (const auto &SM
: Mod
->submodules()) {
3001 // Skip explicit children; they need to be explicitly imported to be
3006 if (Visited
.insert(SM
).second
) {
3007 Stack
.push_back(SM
);
3012 // We didn't find any children, so add this module to the list of
3013 // modules to link against.
3015 LinkModules
.insert(Mod
);
3019 // Add link options for all of the imported modules in reverse topological
3020 // order. We don't do anything to try to order import link flags with respect
3021 // to linker options inserted by things like #pragma comment().
3022 SmallVector
<llvm::MDNode
*, 16> MetadataArgs
;
3024 for (Module
*M
: LinkModules
)
3025 if (Visited
.insert(M
).second
)
3026 addLinkOptionsPostorder(*this, M
, MetadataArgs
, Visited
);
3027 std::reverse(MetadataArgs
.begin(), MetadataArgs
.end());
3028 LinkerOptionsMetadata
.append(MetadataArgs
.begin(), MetadataArgs
.end());
3030 // Add the linker options metadata flag.
3031 auto *NMD
= getModule().getOrInsertNamedMetadata("llvm.linker.options");
3032 for (auto *MD
: LinkerOptionsMetadata
)
3033 NMD
->addOperand(MD
);
3036 void CodeGenModule::EmitDeferred() {
3037 // Emit deferred declare target declarations.
3038 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
)
3039 getOpenMPRuntime().emitDeferredTargetDecls();
3041 // Emit code for any potentially referenced deferred decls. Since a
3042 // previously unused static decl may become used during the generation of code
3043 // for a static function, iterate until no changes are made.
3045 if (!DeferredVTables
.empty()) {
3046 EmitDeferredVTables();
3048 // Emitting a vtable doesn't directly cause more vtables to
3049 // become deferred, although it can cause functions to be
3050 // emitted that then need those vtables.
3051 assert(DeferredVTables
.empty());
3054 // Emit CUDA/HIP static device variables referenced by host code only.
3055 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3056 // needed for further handling.
3057 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
)
3058 llvm::append_range(DeferredDeclsToEmit
,
3059 getContext().CUDADeviceVarODRUsedByHost
);
3061 // Stop if we're out of both deferred vtables and deferred declarations.
3062 if (DeferredDeclsToEmit
.empty())
3065 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3066 // work, it will not interfere with this.
3067 std::vector
<GlobalDecl
> CurDeclsToEmit
;
3068 CurDeclsToEmit
.swap(DeferredDeclsToEmit
);
3070 for (GlobalDecl
&D
: CurDeclsToEmit
) {
3071 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3072 // to get GlobalValue with exactly the type we need, not something that
3073 // might had been created for another decl with the same mangled name but
3075 llvm::GlobalValue
*GV
= dyn_cast
<llvm::GlobalValue
>(
3076 GetAddrOfGlobal(D
, ForDefinition
));
3078 // In case of different address spaces, we may still get a cast, even with
3079 // IsForDefinition equal to true. Query mangled names table to get
3082 GV
= GetGlobalValue(getMangledName(D
));
3084 // Make sure GetGlobalValue returned non-null.
3087 // Check to see if we've already emitted this. This is necessary
3088 // for a couple of reasons: first, decls can end up in the
3089 // deferred-decls queue multiple times, and second, decls can end
3090 // up with definitions in unusual ways (e.g. by an extern inline
3091 // function acquiring a strong function redefinition). Just
3092 // ignore these cases.
3093 if (!GV
->isDeclaration())
3096 // If this is OpenMP, check if it is legal to emit this global normally.
3097 if (LangOpts
.OpenMP
&& OpenMPRuntime
&& OpenMPRuntime
->emitTargetGlobal(D
))
3100 // Otherwise, emit the definition and move on to the next one.
3101 EmitGlobalDefinition(D
, GV
);
3103 // If we found out that we need to emit more decls, do that recursively.
3104 // This has the advantage that the decls are emitted in a DFS and related
3105 // ones are close together, which is convenient for testing.
3106 if (!DeferredVTables
.empty() || !DeferredDeclsToEmit
.empty()) {
3108 assert(DeferredVTables
.empty() && DeferredDeclsToEmit
.empty());
3113 void CodeGenModule::EmitVTablesOpportunistically() {
3114 // Try to emit external vtables as available_externally if they have emitted
3115 // all inlined virtual functions. It runs after EmitDeferred() and therefore
3116 // is not allowed to create new references to things that need to be emitted
3117 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3119 assert((OpportunisticVTables
.empty() || shouldOpportunisticallyEmitVTables())
3120 && "Only emit opportunistic vtables with optimizations");
3122 for (const CXXRecordDecl
*RD
: OpportunisticVTables
) {
3123 assert(getVTables().isVTableExternal(RD
) &&
3124 "This queue should only contain external vtables");
3125 if (getCXXABI().canSpeculativelyEmitVTable(RD
))
3126 VTables
.GenerateClassData(RD
);
3128 OpportunisticVTables
.clear();
3131 void CodeGenModule::EmitGlobalAnnotations() {
3132 if (Annotations
.empty())
3135 // Create a new global variable for the ConstantStruct in the Module.
3136 llvm::Constant
*Array
= llvm::ConstantArray::get(llvm::ArrayType::get(
3137 Annotations
[0]->getType(), Annotations
.size()), Annotations
);
3138 auto *gv
= new llvm::GlobalVariable(getModule(), Array
->getType(), false,
3139 llvm::GlobalValue::AppendingLinkage
,
3140 Array
, "llvm.global.annotations");
3141 gv
->setSection(AnnotationSection
);
3144 llvm::Constant
*CodeGenModule::EmitAnnotationString(StringRef Str
) {
3145 llvm::Constant
*&AStr
= AnnotationStrings
[Str
];
3149 // Not found yet, create a new global.
3150 llvm::Constant
*s
= llvm::ConstantDataArray::getString(getLLVMContext(), Str
);
3151 auto *gv
= new llvm::GlobalVariable(
3152 getModule(), s
->getType(), true, llvm::GlobalValue::PrivateLinkage
, s
,
3153 ".str", nullptr, llvm::GlobalValue::NotThreadLocal
,
3154 ConstGlobalsPtrTy
->getAddressSpace());
3155 gv
->setSection(AnnotationSection
);
3156 gv
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3161 llvm::Constant
*CodeGenModule::EmitAnnotationUnit(SourceLocation Loc
) {
3162 SourceManager
&SM
= getContext().getSourceManager();
3163 PresumedLoc PLoc
= SM
.getPresumedLoc(Loc
);
3165 return EmitAnnotationString(PLoc
.getFilename());
3166 return EmitAnnotationString(SM
.getBufferName(Loc
));
3169 llvm::Constant
*CodeGenModule::EmitAnnotationLineNo(SourceLocation L
) {
3170 SourceManager
&SM
= getContext().getSourceManager();
3171 PresumedLoc PLoc
= SM
.getPresumedLoc(L
);
3172 unsigned LineNo
= PLoc
.isValid() ? PLoc
.getLine() :
3173 SM
.getExpansionLineNumber(L
);
3174 return llvm::ConstantInt::get(Int32Ty
, LineNo
);
3177 llvm::Constant
*CodeGenModule::EmitAnnotationArgs(const AnnotateAttr
*Attr
) {
3178 ArrayRef
<Expr
*> Exprs
= {Attr
->args_begin(), Attr
->args_size()};
3180 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy
);
3182 llvm::FoldingSetNodeID ID
;
3183 for (Expr
*E
: Exprs
) {
3184 ID
.Add(cast
<clang::ConstantExpr
>(E
)->getAPValueResult());
3186 llvm::Constant
*&Lookup
= AnnotationArgs
[ID
.ComputeHash()];
3190 llvm::SmallVector
<llvm::Constant
*, 4> LLVMArgs
;
3191 LLVMArgs
.reserve(Exprs
.size());
3192 ConstantEmitter
ConstEmiter(*this);
3193 llvm::transform(Exprs
, std::back_inserter(LLVMArgs
), [&](const Expr
*E
) {
3194 const auto *CE
= cast
<clang::ConstantExpr
>(E
);
3195 return ConstEmiter
.emitAbstract(CE
->getBeginLoc(), CE
->getAPValueResult(),
3198 auto *Struct
= llvm::ConstantStruct::getAnon(LLVMArgs
);
3199 auto *GV
= new llvm::GlobalVariable(getModule(), Struct
->getType(), true,
3200 llvm::GlobalValue::PrivateLinkage
, Struct
,
3202 GV
->setSection(AnnotationSection
);
3203 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3204 auto *Bitcasted
= llvm::ConstantExpr::getBitCast(GV
, GlobalsInt8PtrTy
);
3210 llvm::Constant
*CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue
*GV
,
3211 const AnnotateAttr
*AA
,
3213 // Get the globals for file name, annotation, and the line number.
3214 llvm::Constant
*AnnoGV
= EmitAnnotationString(AA
->getAnnotation()),
3215 *UnitGV
= EmitAnnotationUnit(L
),
3216 *LineNoCst
= EmitAnnotationLineNo(L
),
3217 *Args
= EmitAnnotationArgs(AA
);
3219 llvm::Constant
*GVInGlobalsAS
= GV
;
3220 if (GV
->getAddressSpace() !=
3221 getDataLayout().getDefaultGlobalsAddressSpace()) {
3222 GVInGlobalsAS
= llvm::ConstantExpr::getAddrSpaceCast(
3224 llvm::PointerType::get(
3225 GV
->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3228 // Create the ConstantStruct for the global annotation.
3229 llvm::Constant
*Fields
[] = {
3230 llvm::ConstantExpr::getBitCast(GVInGlobalsAS
, GlobalsInt8PtrTy
),
3231 llvm::ConstantExpr::getBitCast(AnnoGV
, ConstGlobalsPtrTy
),
3232 llvm::ConstantExpr::getBitCast(UnitGV
, ConstGlobalsPtrTy
),
3236 return llvm::ConstantStruct::getAnon(Fields
);
3239 void CodeGenModule::AddGlobalAnnotations(const ValueDecl
*D
,
3240 llvm::GlobalValue
*GV
) {
3241 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
3242 // Get the struct elements for these annotations.
3243 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>())
3244 Annotations
.push_back(EmitAnnotateAttr(GV
, I
, D
->getLocation()));
3247 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind
, llvm::Function
*Fn
,
3248 SourceLocation Loc
) const {
3249 const auto &NoSanitizeL
= getContext().getNoSanitizeList();
3250 // NoSanitize by function name.
3251 if (NoSanitizeL
.containsFunction(Kind
, Fn
->getName()))
3253 // NoSanitize by location. Check "mainfile" prefix.
3254 auto &SM
= Context
.getSourceManager();
3255 FileEntryRef MainFile
= *SM
.getFileEntryRefForID(SM
.getMainFileID());
3256 if (NoSanitizeL
.containsMainFile(Kind
, MainFile
.getName()))
3259 // Check "src" prefix.
3261 return NoSanitizeL
.containsLocation(Kind
, Loc
);
3262 // If location is unknown, this may be a compiler-generated function. Assume
3263 // it's located in the main file.
3264 return NoSanitizeL
.containsFile(Kind
, MainFile
.getName());
3267 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind
,
3268 llvm::GlobalVariable
*GV
,
3269 SourceLocation Loc
, QualType Ty
,
3270 StringRef Category
) const {
3271 const auto &NoSanitizeL
= getContext().getNoSanitizeList();
3272 if (NoSanitizeL
.containsGlobal(Kind
, GV
->getName(), Category
))
3274 auto &SM
= Context
.getSourceManager();
3275 if (NoSanitizeL
.containsMainFile(
3276 Kind
, SM
.getFileEntryRefForID(SM
.getMainFileID())->getName(),
3279 if (NoSanitizeL
.containsLocation(Kind
, Loc
, Category
))
3282 // Check global type.
3284 // Drill down the array types: if global variable of a fixed type is
3285 // not sanitized, we also don't instrument arrays of them.
3286 while (auto AT
= dyn_cast
<ArrayType
>(Ty
.getTypePtr()))
3287 Ty
= AT
->getElementType();
3288 Ty
= Ty
.getCanonicalType().getUnqualifiedType();
3289 // Only record types (classes, structs etc.) are ignored.
3290 if (Ty
->isRecordType()) {
3291 std::string TypeStr
= Ty
.getAsString(getContext().getPrintingPolicy());
3292 if (NoSanitizeL
.containsType(Kind
, TypeStr
, Category
))
3299 bool CodeGenModule::imbueXRayAttrs(llvm::Function
*Fn
, SourceLocation Loc
,
3300 StringRef Category
) const {
3301 const auto &XRayFilter
= getContext().getXRayFilter();
3302 using ImbueAttr
= XRayFunctionFilter::ImbueAttribute
;
3303 auto Attr
= ImbueAttr::NONE
;
3305 Attr
= XRayFilter
.shouldImbueLocation(Loc
, Category
);
3306 if (Attr
== ImbueAttr::NONE
)
3307 Attr
= XRayFilter
.shouldImbueFunction(Fn
->getName());
3309 case ImbueAttr::NONE
:
3311 case ImbueAttr::ALWAYS
:
3312 Fn
->addFnAttr("function-instrument", "xray-always");
3314 case ImbueAttr::ALWAYS_ARG1
:
3315 Fn
->addFnAttr("function-instrument", "xray-always");
3316 Fn
->addFnAttr("xray-log-args", "1");
3318 case ImbueAttr::NEVER
:
3319 Fn
->addFnAttr("function-instrument", "xray-never");
3325 ProfileList::ExclusionType
3326 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function
*Fn
,
3327 SourceLocation Loc
) const {
3328 const auto &ProfileList
= getContext().getProfileList();
3329 // If the profile list is empty, then instrument everything.
3330 if (ProfileList
.isEmpty())
3331 return ProfileList::Allow
;
3332 CodeGenOptions::ProfileInstrKind Kind
= getCodeGenOpts().getProfileInstr();
3333 // First, check the function name.
3334 if (auto V
= ProfileList
.isFunctionExcluded(Fn
->getName(), Kind
))
3336 // Next, check the source location.
3338 if (auto V
= ProfileList
.isLocationExcluded(Loc
, Kind
))
3340 // If location is unknown, this may be a compiler-generated function. Assume
3341 // it's located in the main file.
3342 auto &SM
= Context
.getSourceManager();
3343 if (auto MainFile
= SM
.getFileEntryRefForID(SM
.getMainFileID()))
3344 if (auto V
= ProfileList
.isFileExcluded(MainFile
->getName(), Kind
))
3346 return ProfileList
.getDefault(Kind
);
3349 ProfileList::ExclusionType
3350 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function
*Fn
,
3351 SourceLocation Loc
) const {
3352 auto V
= isFunctionBlockedByProfileList(Fn
, Loc
);
3353 if (V
!= ProfileList::Allow
)
3356 auto NumGroups
= getCodeGenOpts().ProfileTotalFunctionGroups
;
3357 if (NumGroups
> 1) {
3358 auto Group
= llvm::crc32(arrayRefFromStringRef(Fn
->getName())) % NumGroups
;
3359 if (Group
!= getCodeGenOpts().ProfileSelectedFunctionGroup
)
3360 return ProfileList::Skip
;
3362 return ProfileList::Allow
;
3365 bool CodeGenModule::MustBeEmitted(const ValueDecl
*Global
) {
3366 // Never defer when EmitAllDecls is specified.
3367 if (LangOpts
.EmitAllDecls
)
3370 const auto *VD
= dyn_cast
<VarDecl
>(Global
);
3372 ((CodeGenOpts
.KeepPersistentStorageVariables
&&
3373 (VD
->getStorageDuration() == SD_Static
||
3374 VD
->getStorageDuration() == SD_Thread
)) ||
3375 (CodeGenOpts
.KeepStaticConsts
&& VD
->getStorageDuration() == SD_Static
&&
3376 VD
->getType().isConstQualified())))
3379 return getContext().DeclMustBeEmitted(Global
);
3382 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl
*Global
) {
3383 // In OpenMP 5.0 variables and function may be marked as
3384 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3385 // that they must be emitted on the host/device. To be sure we need to have
3386 // seen a declare target with an explicit mentioning of the function, we know
3387 // we have if the level of the declare target attribute is -1. Note that we
3388 // check somewhere else if we should emit this at all.
3389 if (LangOpts
.OpenMP
>= 50 && !LangOpts
.OpenMPSimd
) {
3390 std::optional
<OMPDeclareTargetDeclAttr
*> ActiveAttr
=
3391 OMPDeclareTargetDeclAttr::getActiveAttr(Global
);
3392 if (!ActiveAttr
|| (*ActiveAttr
)->getLevel() != (unsigned)-1)
3396 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Global
)) {
3397 if (FD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
3398 // Implicit template instantiations may change linkage if they are later
3399 // explicitly instantiated, so they should not be emitted eagerly.
3402 if (const auto *VD
= dyn_cast
<VarDecl
>(Global
)) {
3403 if (Context
.getInlineVariableDefinitionKind(VD
) ==
3404 ASTContext::InlineVariableDefinitionKind::WeakUnknown
)
3405 // A definition of an inline constexpr static data member may change
3406 // linkage later if it's redeclared outside the class.
3408 if (CXX20ModuleInits
&& VD
->getOwningModule() &&
3409 !VD
->getOwningModule()->isModuleMapModule()) {
3410 // For CXX20, module-owned initializers need to be deferred, since it is
3411 // not known at this point if they will be run for the current module or
3412 // as part of the initializer for an imported one.
3416 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3417 // codegen for global variables, because they may be marked as threadprivate.
3418 if (LangOpts
.OpenMP
&& LangOpts
.OpenMPUseTLS
&&
3419 getContext().getTargetInfo().isTLSSupported() && isa
<VarDecl
>(Global
) &&
3420 !Global
->getType().isConstantStorage(getContext(), false, false) &&
3421 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global
))
3427 ConstantAddress
CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl
*GD
) {
3428 StringRef Name
= getMangledName(GD
);
3430 // The UUID descriptor should be pointer aligned.
3431 CharUnits Alignment
= CharUnits::fromQuantity(PointerAlignInBytes
);
3433 // Look for an existing global.
3434 if (llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
))
3435 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3437 ConstantEmitter
Emitter(*this);
3438 llvm::Constant
*Init
;
3440 APValue
&V
= GD
->getAsAPValue();
3441 if (!V
.isAbsent()) {
3442 // If possible, emit the APValue version of the initializer. In particular,
3443 // this gets the type of the constant right.
3444 Init
= Emitter
.emitForInitializer(
3445 GD
->getAsAPValue(), GD
->getType().getAddressSpace(), GD
->getType());
3447 // As a fallback, directly construct the constant.
3448 // FIXME: This may get padding wrong under esoteric struct layout rules.
3449 // MSVC appears to create a complete type 'struct __s_GUID' that it
3450 // presumably uses to represent these constants.
3451 MSGuidDecl::Parts Parts
= GD
->getParts();
3452 llvm::Constant
*Fields
[4] = {
3453 llvm::ConstantInt::get(Int32Ty
, Parts
.Part1
),
3454 llvm::ConstantInt::get(Int16Ty
, Parts
.Part2
),
3455 llvm::ConstantInt::get(Int16Ty
, Parts
.Part3
),
3456 llvm::ConstantDataArray::getRaw(
3457 StringRef(reinterpret_cast<char *>(Parts
.Part4And5
), 8), 8,
3459 Init
= llvm::ConstantStruct::getAnon(Fields
);
3462 auto *GV
= new llvm::GlobalVariable(
3463 getModule(), Init
->getType(),
3464 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage
, Init
, Name
);
3465 if (supportsCOMDAT())
3466 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
3469 if (!V
.isAbsent()) {
3470 Emitter
.finalize(GV
);
3471 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3474 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(GD
->getType());
3475 return ConstantAddress(GV
, Ty
, Alignment
);
3478 ConstantAddress
CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3479 const UnnamedGlobalConstantDecl
*GCD
) {
3480 CharUnits Alignment
= getContext().getTypeAlignInChars(GCD
->getType());
3482 llvm::GlobalVariable
**Entry
= nullptr;
3483 Entry
= &UnnamedGlobalConstantDeclMap
[GCD
];
3485 return ConstantAddress(*Entry
, (*Entry
)->getValueType(), Alignment
);
3487 ConstantEmitter
Emitter(*this);
3488 llvm::Constant
*Init
;
3490 const APValue
&V
= GCD
->getValue();
3492 assert(!V
.isAbsent());
3493 Init
= Emitter
.emitForInitializer(V
, GCD
->getType().getAddressSpace(),
3496 auto *GV
= new llvm::GlobalVariable(getModule(), Init
->getType(),
3497 /*isConstant=*/true,
3498 llvm::GlobalValue::PrivateLinkage
, Init
,
3500 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3501 GV
->setAlignment(Alignment
.getAsAlign());
3503 Emitter
.finalize(GV
);
3506 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3509 ConstantAddress
CodeGenModule::GetAddrOfTemplateParamObject(
3510 const TemplateParamObjectDecl
*TPO
) {
3511 StringRef Name
= getMangledName(TPO
);
3512 CharUnits Alignment
= getNaturalTypeAlignment(TPO
->getType());
3514 if (llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
))
3515 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3517 ConstantEmitter
Emitter(*this);
3518 llvm::Constant
*Init
= Emitter
.emitForInitializer(
3519 TPO
->getValue(), TPO
->getType().getAddressSpace(), TPO
->getType());
3522 ErrorUnsupported(TPO
, "template parameter object");
3523 return ConstantAddress::invalid();
3526 llvm::GlobalValue::LinkageTypes Linkage
=
3527 isExternallyVisible(TPO
->getLinkageAndVisibility().getLinkage())
3528 ? llvm::GlobalValue::LinkOnceODRLinkage
3529 : llvm::GlobalValue::InternalLinkage
;
3530 auto *GV
= new llvm::GlobalVariable(getModule(), Init
->getType(),
3531 /*isConstant=*/true, Linkage
, Init
, Name
);
3532 setGVProperties(GV
, TPO
);
3533 if (supportsCOMDAT())
3534 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
3535 Emitter
.finalize(GV
);
3537 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3540 ConstantAddress
CodeGenModule::GetWeakRefReference(const ValueDecl
*VD
) {
3541 const AliasAttr
*AA
= VD
->getAttr
<AliasAttr
>();
3542 assert(AA
&& "No alias?");
3544 CharUnits Alignment
= getContext().getDeclAlign(VD
);
3545 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(VD
->getType());
3547 // See if there is already something with the target's name in the module.
3548 llvm::GlobalValue
*Entry
= GetGlobalValue(AA
->getAliasee());
3550 return ConstantAddress(Entry
, DeclTy
, Alignment
);
3552 llvm::Constant
*Aliasee
;
3553 if (isa
<llvm::FunctionType
>(DeclTy
))
3554 Aliasee
= GetOrCreateLLVMFunction(AA
->getAliasee(), DeclTy
,
3555 GlobalDecl(cast
<FunctionDecl
>(VD
)),
3556 /*ForVTable=*/false);
3558 Aliasee
= GetOrCreateLLVMGlobal(AA
->getAliasee(), DeclTy
, LangAS::Default
,
3561 auto *F
= cast
<llvm::GlobalValue
>(Aliasee
);
3562 F
->setLinkage(llvm::Function::ExternalWeakLinkage
);
3563 WeakRefReferences
.insert(F
);
3565 return ConstantAddress(Aliasee
, DeclTy
, Alignment
);
3568 void CodeGenModule::EmitGlobal(GlobalDecl GD
) {
3569 const auto *Global
= cast
<ValueDecl
>(GD
.getDecl());
3571 // Weak references don't produce any output by themselves.
3572 if (Global
->hasAttr
<WeakRefAttr
>())
3575 // If this is an alias definition (which otherwise looks like a declaration)
3577 if (Global
->hasAttr
<AliasAttr
>())
3578 return EmitAliasDefinition(GD
);
3580 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3581 if (Global
->hasAttr
<IFuncAttr
>())
3582 return emitIFuncDefinition(GD
);
3584 // If this is a cpu_dispatch multiversion function, emit the resolver.
3585 if (Global
->hasAttr
<CPUDispatchAttr
>())
3586 return emitCPUDispatchDefinition(GD
);
3588 // If this is CUDA, be selective about which declarations we emit.
3589 if (LangOpts
.CUDA
) {
3590 if (LangOpts
.CUDAIsDevice
) {
3591 if (!Global
->hasAttr
<CUDADeviceAttr
>() &&
3592 !Global
->hasAttr
<CUDAGlobalAttr
>() &&
3593 !Global
->hasAttr
<CUDAConstantAttr
>() &&
3594 !Global
->hasAttr
<CUDASharedAttr
>() &&
3595 !Global
->getType()->isCUDADeviceBuiltinSurfaceType() &&
3596 !Global
->getType()->isCUDADeviceBuiltinTextureType() &&
3597 !(LangOpts
.HIPStdPar
&&
3598 isa
<FunctionDecl
>(Global
) &&
3599 !Global
->hasAttr
<CUDAHostAttr
>()))
3602 // We need to emit host-side 'shadows' for all global
3603 // device-side variables because the CUDA runtime needs their
3604 // size and host-side address in order to provide access to
3605 // their device-side incarnations.
3607 // So device-only functions are the only things we skip.
3608 if (isa
<FunctionDecl
>(Global
) && !Global
->hasAttr
<CUDAHostAttr
>() &&
3609 Global
->hasAttr
<CUDADeviceAttr
>())
3612 assert((isa
<FunctionDecl
>(Global
) || isa
<VarDecl
>(Global
)) &&
3613 "Expected Variable or Function");
3617 if (LangOpts
.OpenMP
) {
3618 // If this is OpenMP, check if it is legal to emit this global normally.
3619 if (OpenMPRuntime
&& OpenMPRuntime
->emitTargetGlobal(GD
))
3621 if (auto *DRD
= dyn_cast
<OMPDeclareReductionDecl
>(Global
)) {
3622 if (MustBeEmitted(Global
))
3623 EmitOMPDeclareReduction(DRD
);
3626 if (auto *DMD
= dyn_cast
<OMPDeclareMapperDecl
>(Global
)) {
3627 if (MustBeEmitted(Global
))
3628 EmitOMPDeclareMapper(DMD
);
3633 // Ignore declarations, they will be emitted on their first use.
3634 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Global
)) {
3635 // Forward declarations are emitted lazily on first use.
3636 if (!FD
->doesThisDeclarationHaveABody()) {
3637 if (!FD
->doesDeclarationForceExternallyVisibleDefinition())
3640 StringRef MangledName
= getMangledName(GD
);
3642 // Compute the function info and LLVM type.
3643 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
3644 llvm::Type
*Ty
= getTypes().GetFunctionType(FI
);
3646 GetOrCreateLLVMFunction(MangledName
, Ty
, GD
, /*ForVTable=*/false,
3647 /*DontDefer=*/false);
3651 const auto *VD
= cast
<VarDecl
>(Global
);
3652 assert(VD
->isFileVarDecl() && "Cannot emit local var decl as global.");
3653 if (VD
->isThisDeclarationADefinition() != VarDecl::Definition
&&
3654 !Context
.isMSStaticDataMemberInlineDefinition(VD
)) {
3655 if (LangOpts
.OpenMP
) {
3656 // Emit declaration of the must-be-emitted declare target variable.
3657 if (std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
3658 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
)) {
3660 // If this variable has external storage and doesn't require special
3661 // link handling we defer to its canonical definition.
3662 if (VD
->hasExternalStorage() &&
3663 Res
!= OMPDeclareTargetDeclAttr::MT_Link
)
3666 bool UnifiedMemoryEnabled
=
3667 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3668 if ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
3669 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
3670 !UnifiedMemoryEnabled
) {
3671 (void)GetAddrOfGlobalVar(VD
);
3673 assert(((*Res
== OMPDeclareTargetDeclAttr::MT_Link
) ||
3674 ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
3675 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
3676 UnifiedMemoryEnabled
)) &&
3677 "Link clause or to clause with unified memory expected.");
3678 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD
);
3684 // If this declaration may have caused an inline variable definition to
3685 // change linkage, make sure that it's emitted.
3686 if (Context
.getInlineVariableDefinitionKind(VD
) ==
3687 ASTContext::InlineVariableDefinitionKind::Strong
)
3688 GetAddrOfGlobalVar(VD
);
3693 // Defer code generation to first use when possible, e.g. if this is an inline
3694 // function. If the global must always be emitted, do it eagerly if possible
3695 // to benefit from cache locality.
3696 if (MustBeEmitted(Global
) && MayBeEmittedEagerly(Global
)) {
3697 // Emit the definition if it can't be deferred.
3698 EmitGlobalDefinition(GD
);
3699 addEmittedDeferredDecl(GD
);
3703 // If we're deferring emission of a C++ variable with an
3704 // initializer, remember the order in which it appeared in the file.
3705 if (getLangOpts().CPlusPlus
&& isa
<VarDecl
>(Global
) &&
3706 cast
<VarDecl
>(Global
)->hasInit()) {
3707 DelayedCXXInitPosition
[Global
] = CXXGlobalInits
.size();
3708 CXXGlobalInits
.push_back(nullptr);
3711 StringRef MangledName
= getMangledName(GD
);
3712 if (GetGlobalValue(MangledName
) != nullptr) {
3713 // The value has already been used and should therefore be emitted.
3714 addDeferredDeclToEmit(GD
);
3715 } else if (MustBeEmitted(Global
)) {
3716 // The value must be emitted, but cannot be emitted eagerly.
3717 assert(!MayBeEmittedEagerly(Global
));
3718 addDeferredDeclToEmit(GD
);
3720 // Otherwise, remember that we saw a deferred decl with this name. The
3721 // first use of the mangled name will cause it to move into
3722 // DeferredDeclsToEmit.
3723 DeferredDecls
[MangledName
] = GD
;
3727 // Check if T is a class type with a destructor that's not dllimport.
3728 static bool HasNonDllImportDtor(QualType T
) {
3729 if (const auto *RT
= T
->getBaseElementTypeUnsafe()->getAs
<RecordType
>())
3730 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
3731 if (RD
->getDestructor() && !RD
->getDestructor()->hasAttr
<DLLImportAttr
>())
3738 struct FunctionIsDirectlyRecursive
3739 : public ConstStmtVisitor
<FunctionIsDirectlyRecursive
, bool> {
3740 const StringRef Name
;
3741 const Builtin::Context
&BI
;
3742 FunctionIsDirectlyRecursive(StringRef N
, const Builtin::Context
&C
)
3745 bool VisitCallExpr(const CallExpr
*E
) {
3746 const FunctionDecl
*FD
= E
->getDirectCallee();
3749 AsmLabelAttr
*Attr
= FD
->getAttr
<AsmLabelAttr
>();
3750 if (Attr
&& Name
== Attr
->getLabel())
3752 unsigned BuiltinID
= FD
->getBuiltinID();
3753 if (!BuiltinID
|| !BI
.isLibFunction(BuiltinID
))
3755 StringRef BuiltinName
= BI
.getName(BuiltinID
);
3756 if (BuiltinName
.startswith("__builtin_") &&
3757 Name
== BuiltinName
.slice(strlen("__builtin_"), StringRef::npos
)) {
3763 bool VisitStmt(const Stmt
*S
) {
3764 for (const Stmt
*Child
: S
->children())
3765 if (Child
&& this->Visit(Child
))
3771 // Make sure we're not referencing non-imported vars or functions.
3772 struct DLLImportFunctionVisitor
3773 : public RecursiveASTVisitor
<DLLImportFunctionVisitor
> {
3774 bool SafeToInline
= true;
3776 bool shouldVisitImplicitCode() const { return true; }
3778 bool VisitVarDecl(VarDecl
*VD
) {
3779 if (VD
->getTLSKind()) {
3780 // A thread-local variable cannot be imported.
3781 SafeToInline
= false;
3782 return SafeToInline
;
3785 // A variable definition might imply a destructor call.
3786 if (VD
->isThisDeclarationADefinition())
3787 SafeToInline
= !HasNonDllImportDtor(VD
->getType());
3789 return SafeToInline
;
3792 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
) {
3793 if (const auto *D
= E
->getTemporary()->getDestructor())
3794 SafeToInline
= D
->hasAttr
<DLLImportAttr
>();
3795 return SafeToInline
;
3798 bool VisitDeclRefExpr(DeclRefExpr
*E
) {
3799 ValueDecl
*VD
= E
->getDecl();
3800 if (isa
<FunctionDecl
>(VD
))
3801 SafeToInline
= VD
->hasAttr
<DLLImportAttr
>();
3802 else if (VarDecl
*V
= dyn_cast
<VarDecl
>(VD
))
3803 SafeToInline
= !V
->hasGlobalStorage() || V
->hasAttr
<DLLImportAttr
>();
3804 return SafeToInline
;
3807 bool VisitCXXConstructExpr(CXXConstructExpr
*E
) {
3808 SafeToInline
= E
->getConstructor()->hasAttr
<DLLImportAttr
>();
3809 return SafeToInline
;
3812 bool VisitCXXMemberCallExpr(CXXMemberCallExpr
*E
) {
3813 CXXMethodDecl
*M
= E
->getMethodDecl();
3815 // Call through a pointer to member function. This is safe to inline.
3816 SafeToInline
= true;
3818 SafeToInline
= M
->hasAttr
<DLLImportAttr
>();
3820 return SafeToInline
;
3823 bool VisitCXXDeleteExpr(CXXDeleteExpr
*E
) {
3824 SafeToInline
= E
->getOperatorDelete()->hasAttr
<DLLImportAttr
>();
3825 return SafeToInline
;
3828 bool VisitCXXNewExpr(CXXNewExpr
*E
) {
3829 SafeToInline
= E
->getOperatorNew()->hasAttr
<DLLImportAttr
>();
3830 return SafeToInline
;
3835 // isTriviallyRecursive - Check if this function calls another
3836 // decl that, because of the asm attribute or the other decl being a builtin,
3837 // ends up pointing to itself.
3839 CodeGenModule::isTriviallyRecursive(const FunctionDecl
*FD
) {
3841 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD
)) {
3842 // asm labels are a special kind of mangling we have to support.
3843 AsmLabelAttr
*Attr
= FD
->getAttr
<AsmLabelAttr
>();
3846 Name
= Attr
->getLabel();
3848 Name
= FD
->getName();
3851 FunctionIsDirectlyRecursive
Walker(Name
, Context
.BuiltinInfo
);
3852 const Stmt
*Body
= FD
->getBody();
3853 return Body
? Walker
.Visit(Body
) : false;
3856 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD
) {
3857 if (getFunctionLinkage(GD
) != llvm::Function::AvailableExternallyLinkage
)
3859 const auto *F
= cast
<FunctionDecl
>(GD
.getDecl());
3860 if (CodeGenOpts
.OptimizationLevel
== 0 && !F
->hasAttr
<AlwaysInlineAttr
>())
3863 if (F
->hasAttr
<NoInlineAttr
>())
3866 if (F
->hasAttr
<DLLImportAttr
>() && !F
->hasAttr
<AlwaysInlineAttr
>()) {
3867 // Check whether it would be safe to inline this dllimport function.
3868 DLLImportFunctionVisitor Visitor
;
3869 Visitor
.TraverseFunctionDecl(const_cast<FunctionDecl
*>(F
));
3870 if (!Visitor
.SafeToInline
)
3873 if (const CXXDestructorDecl
*Dtor
= dyn_cast
<CXXDestructorDecl
>(F
)) {
3874 // Implicit destructor invocations aren't captured in the AST, so the
3875 // check above can't see them. Check for them manually here.
3876 for (const Decl
*Member
: Dtor
->getParent()->decls())
3877 if (isa
<FieldDecl
>(Member
))
3878 if (HasNonDllImportDtor(cast
<FieldDecl
>(Member
)->getType()))
3880 for (const CXXBaseSpecifier
&B
: Dtor
->getParent()->bases())
3881 if (HasNonDllImportDtor(B
.getType()))
3886 // Inline builtins declaration must be emitted. They often are fortified
3888 if (F
->isInlineBuiltinDeclaration())
3891 // PR9614. Avoid cases where the source code is lying to us. An available
3892 // externally function should have an equivalent function somewhere else,
3893 // but a function that calls itself through asm label/`__builtin_` trickery is
3894 // clearly not equivalent to the real implementation.
3895 // This happens in glibc's btowc and in some configure checks.
3896 return !isTriviallyRecursive(F
);
3899 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3900 return CodeGenOpts
.OptimizationLevel
> 0;
3903 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD
,
3904 llvm::GlobalValue
*GV
) {
3905 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
3907 if (FD
->isCPUSpecificMultiVersion()) {
3908 auto *Spec
= FD
->getAttr
<CPUSpecificAttr
>();
3909 for (unsigned I
= 0; I
< Spec
->cpus_size(); ++I
)
3910 EmitGlobalFunctionDefinition(GD
.getWithMultiVersionIndex(I
), nullptr);
3911 } else if (FD
->isTargetClonesMultiVersion()) {
3912 auto *Clone
= FD
->getAttr
<TargetClonesAttr
>();
3913 for (unsigned I
= 0; I
< Clone
->featuresStrs_size(); ++I
)
3914 if (Clone
->isFirstOfVersion(I
))
3915 EmitGlobalFunctionDefinition(GD
.getWithMultiVersionIndex(I
), nullptr);
3916 // Ensure that the resolver function is also emitted.
3917 GetOrCreateMultiVersionResolver(GD
);
3919 EmitGlobalFunctionDefinition(GD
, GV
);
3922 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD
, llvm::GlobalValue
*GV
) {
3923 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
3925 PrettyStackTraceDecl
CrashInfo(const_cast<ValueDecl
*>(D
), D
->getLocation(),
3926 Context
.getSourceManager(),
3927 "Generating code for declaration");
3929 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
3930 // At -O0, don't generate IR for functions with available_externally
3932 if (!shouldEmitFunction(GD
))
3935 llvm::TimeTraceScope
TimeScope("CodeGen Function", [&]() {
3937 llvm::raw_string_ostream
OS(Name
);
3938 FD
->getNameForDiagnostic(OS
, getContext().getPrintingPolicy(),
3939 /*Qualified=*/true);
3943 if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
3944 // Make sure to emit the definition(s) before we emit the thunks.
3945 // This is necessary for the generation of certain thunks.
3946 if (isa
<CXXConstructorDecl
>(Method
) || isa
<CXXDestructorDecl
>(Method
))
3947 ABI
->emitCXXStructor(GD
);
3948 else if (FD
->isMultiVersion())
3949 EmitMultiVersionFunctionDefinition(GD
, GV
);
3951 EmitGlobalFunctionDefinition(GD
, GV
);
3953 if (Method
->isVirtual())
3954 getVTables().EmitThunks(GD
);
3959 if (FD
->isMultiVersion())
3960 return EmitMultiVersionFunctionDefinition(GD
, GV
);
3961 return EmitGlobalFunctionDefinition(GD
, GV
);
3964 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
3965 return EmitGlobalVarDefinition(VD
, !VD
->hasDefinition());
3967 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3970 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue
*Old
,
3971 llvm::Function
*NewFn
);
3974 TargetMVPriority(const TargetInfo
&TI
,
3975 const CodeGenFunction::MultiVersionResolverOption
&RO
) {
3976 unsigned Priority
= 0;
3977 unsigned NumFeatures
= 0;
3978 for (StringRef Feat
: RO
.Conditions
.Features
) {
3979 Priority
= std::max(Priority
, TI
.multiVersionSortPriority(Feat
));
3983 if (!RO
.Conditions
.Architecture
.empty())
3984 Priority
= std::max(
3985 Priority
, TI
.multiVersionSortPriority(RO
.Conditions
.Architecture
));
3987 Priority
+= TI
.multiVersionFeatureCost() * NumFeatures
;
3992 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3993 // TU can forward declare the function without causing problems. Particularly
3994 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3995 // work with internal linkage functions, so that the same function name can be
3996 // used with internal linkage in multiple TUs.
3997 llvm::GlobalValue::LinkageTypes
getMultiversionLinkage(CodeGenModule
&CGM
,
3999 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
4000 if (FD
->getFormalLinkage() == InternalLinkage
)
4001 return llvm::GlobalValue::InternalLinkage
;
4002 return llvm::GlobalValue::WeakODRLinkage
;
4005 void CodeGenModule::emitMultiVersionFunctions() {
4006 std::vector
<GlobalDecl
> MVFuncsToEmit
;
4007 MultiVersionFuncs
.swap(MVFuncsToEmit
);
4008 for (GlobalDecl GD
: MVFuncsToEmit
) {
4009 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4010 assert(FD
&& "Expected a FunctionDecl");
4012 SmallVector
<CodeGenFunction::MultiVersionResolverOption
, 10> Options
;
4013 if (FD
->isTargetMultiVersion()) {
4014 getContext().forEachMultiversionedFunctionVersion(
4015 FD
, [this, &GD
, &Options
](const FunctionDecl
*CurFD
) {
4017 (CurFD
->isDefined() ? CurFD
->getDefinition() : CurFD
)};
4018 StringRef MangledName
= getMangledName(CurGD
);
4019 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
4021 if (CurFD
->isDefined()) {
4022 EmitGlobalFunctionDefinition(CurGD
, nullptr);
4023 Func
= GetGlobalValue(MangledName
);
4025 const CGFunctionInfo
&FI
=
4026 getTypes().arrangeGlobalDeclaration(GD
);
4027 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
4028 Func
= GetAddrOfFunction(CurGD
, Ty
, /*ForVTable=*/false,
4029 /*DontDefer=*/false, ForDefinition
);
4031 assert(Func
&& "This should have just been created");
4033 if (CurFD
->getMultiVersionKind() == MultiVersionKind::Target
) {
4034 const auto *TA
= CurFD
->getAttr
<TargetAttr
>();
4035 llvm::SmallVector
<StringRef
, 8> Feats
;
4036 TA
->getAddedFeatures(Feats
);
4037 Options
.emplace_back(cast
<llvm::Function
>(Func
),
4038 TA
->getArchitecture(), Feats
);
4040 const auto *TVA
= CurFD
->getAttr
<TargetVersionAttr
>();
4041 llvm::SmallVector
<StringRef
, 8> Feats
;
4042 TVA
->getFeatures(Feats
);
4043 Options
.emplace_back(cast
<llvm::Function
>(Func
),
4044 /*Architecture*/ "", Feats
);
4047 } else if (FD
->isTargetClonesMultiVersion()) {
4048 const auto *TC
= FD
->getAttr
<TargetClonesAttr
>();
4049 for (unsigned VersionIndex
= 0; VersionIndex
< TC
->featuresStrs_size();
4051 if (!TC
->isFirstOfVersion(VersionIndex
))
4053 GlobalDecl CurGD
{(FD
->isDefined() ? FD
->getDefinition() : FD
),
4055 StringRef Version
= TC
->getFeatureStr(VersionIndex
);
4056 StringRef MangledName
= getMangledName(CurGD
);
4057 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
4059 if (FD
->isDefined()) {
4060 EmitGlobalFunctionDefinition(CurGD
, nullptr);
4061 Func
= GetGlobalValue(MangledName
);
4063 const CGFunctionInfo
&FI
=
4064 getTypes().arrangeGlobalDeclaration(CurGD
);
4065 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
4066 Func
= GetAddrOfFunction(CurGD
, Ty
, /*ForVTable=*/false,
4067 /*DontDefer=*/false, ForDefinition
);
4069 assert(Func
&& "This should have just been created");
4072 StringRef Architecture
;
4073 llvm::SmallVector
<StringRef
, 1> Feature
;
4075 if (getTarget().getTriple().isAArch64()) {
4076 if (Version
!= "default") {
4077 llvm::SmallVector
<StringRef
, 8> VerFeats
;
4078 Version
.split(VerFeats
, "+");
4079 for (auto &CurFeat
: VerFeats
)
4080 Feature
.push_back(CurFeat
.trim());
4083 if (Version
.startswith("arch="))
4084 Architecture
= Version
.drop_front(sizeof("arch=") - 1);
4085 else if (Version
!= "default")
4086 Feature
.push_back(Version
);
4089 Options
.emplace_back(cast
<llvm::Function
>(Func
), Architecture
, Feature
);
4092 assert(0 && "Expected a target or target_clones multiversion function");
4096 llvm::Constant
*ResolverConstant
= GetOrCreateMultiVersionResolver(GD
);
4097 if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(ResolverConstant
))
4098 ResolverConstant
= IFunc
->getResolver();
4099 llvm::Function
*ResolverFunc
= cast
<llvm::Function
>(ResolverConstant
);
4101 ResolverFunc
->setLinkage(getMultiversionLinkage(*this, GD
));
4103 if (!ResolverFunc
->hasLocalLinkage() && supportsCOMDAT())
4104 ResolverFunc
->setComdat(
4105 getModule().getOrInsertComdat(ResolverFunc
->getName()));
4107 const TargetInfo
&TI
= getTarget();
4109 Options
, [&TI
](const CodeGenFunction::MultiVersionResolverOption
&LHS
,
4110 const CodeGenFunction::MultiVersionResolverOption
&RHS
) {
4111 return TargetMVPriority(TI
, LHS
) > TargetMVPriority(TI
, RHS
);
4113 CodeGenFunction
CGF(*this);
4114 CGF
.EmitMultiVersionResolver(ResolverFunc
, Options
);
4117 // Ensure that any additions to the deferred decls list caused by emitting a
4118 // variant are emitted. This can happen when the variant itself is inline and
4119 // calls a function without linkage.
4120 if (!MVFuncsToEmit
.empty())
4123 // Ensure that any additions to the multiversion funcs list from either the
4124 // deferred decls or the multiversion functions themselves are emitted.
4125 if (!MultiVersionFuncs
.empty())
4126 emitMultiVersionFunctions();
4129 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD
) {
4130 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4131 assert(FD
&& "Not a FunctionDecl?");
4132 assert(FD
->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4133 const auto *DD
= FD
->getAttr
<CPUDispatchAttr
>();
4134 assert(DD
&& "Not a cpu_dispatch Function?");
4136 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4137 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
4139 StringRef ResolverName
= getMangledName(GD
);
4140 UpdateMultiVersionNames(GD
, FD
, ResolverName
);
4142 llvm::Type
*ResolverType
;
4143 GlobalDecl ResolverGD
;
4144 if (getTarget().supportsIFunc()) {
4145 ResolverType
= llvm::FunctionType::get(
4146 llvm::PointerType::get(DeclTy
,
4147 getTypes().getTargetAddressSpace(FD
->getType())),
4151 ResolverType
= DeclTy
;
4155 auto *ResolverFunc
= cast
<llvm::Function
>(GetOrCreateLLVMFunction(
4156 ResolverName
, ResolverType
, ResolverGD
, /*ForVTable=*/false));
4157 ResolverFunc
->setLinkage(getMultiversionLinkage(*this, GD
));
4158 if (supportsCOMDAT())
4159 ResolverFunc
->setComdat(
4160 getModule().getOrInsertComdat(ResolverFunc
->getName()));
4162 SmallVector
<CodeGenFunction::MultiVersionResolverOption
, 10> Options
;
4163 const TargetInfo
&Target
= getTarget();
4165 for (const IdentifierInfo
*II
: DD
->cpus()) {
4166 // Get the name of the target function so we can look it up/create it.
4167 std::string MangledName
= getMangledNameImpl(*this, GD
, FD
, true) +
4168 getCPUSpecificMangling(*this, II
->getName());
4170 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
4173 GlobalDecl ExistingDecl
= Manglings
.lookup(MangledName
);
4174 if (ExistingDecl
.getDecl() &&
4175 ExistingDecl
.getDecl()->getAsFunction()->isDefined()) {
4176 EmitGlobalFunctionDefinition(ExistingDecl
, nullptr);
4177 Func
= GetGlobalValue(MangledName
);
4179 if (!ExistingDecl
.getDecl())
4180 ExistingDecl
= GD
.getWithMultiVersionIndex(Index
);
4182 Func
= GetOrCreateLLVMFunction(
4183 MangledName
, DeclTy
, ExistingDecl
,
4184 /*ForVTable=*/false, /*DontDefer=*/true,
4185 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition
);
4189 llvm::SmallVector
<StringRef
, 32> Features
;
4190 Target
.getCPUSpecificCPUDispatchFeatures(II
->getName(), Features
);
4191 llvm::transform(Features
, Features
.begin(),
4192 [](StringRef Str
) { return Str
.substr(1); });
4193 llvm::erase_if(Features
, [&Target
](StringRef Feat
) {
4194 return !Target
.validateCpuSupports(Feat
);
4196 Options
.emplace_back(cast
<llvm::Function
>(Func
), StringRef
{}, Features
);
4201 Options
, [](const CodeGenFunction::MultiVersionResolverOption
&LHS
,
4202 const CodeGenFunction::MultiVersionResolverOption
&RHS
) {
4203 return llvm::X86::getCpuSupportsMask(LHS
.Conditions
.Features
) >
4204 llvm::X86::getCpuSupportsMask(RHS
.Conditions
.Features
);
4207 // If the list contains multiple 'default' versions, such as when it contains
4208 // 'pentium' and 'generic', don't emit the call to the generic one (since we
4209 // always run on at least a 'pentium'). We do this by deleting the 'least
4210 // advanced' (read, lowest mangling letter).
4211 while (Options
.size() > 1 &&
4212 llvm::all_of(llvm::X86::getCpuSupportsMask(
4213 (Options
.end() - 2)->Conditions
.Features
),
4214 [](auto X
) { return X
== 0; })) {
4215 StringRef LHSName
= (Options
.end() - 2)->Function
->getName();
4216 StringRef RHSName
= (Options
.end() - 1)->Function
->getName();
4217 if (LHSName
.compare(RHSName
) < 0)
4218 Options
.erase(Options
.end() - 2);
4220 Options
.erase(Options
.end() - 1);
4223 CodeGenFunction
CGF(*this);
4224 CGF
.EmitMultiVersionResolver(ResolverFunc
, Options
);
4226 if (getTarget().supportsIFunc()) {
4227 llvm::GlobalValue::LinkageTypes Linkage
= getMultiversionLinkage(*this, GD
);
4228 auto *IFunc
= cast
<llvm::GlobalValue
>(GetOrCreateMultiVersionResolver(GD
));
4230 // Fix up function declarations that were created for cpu_specific before
4231 // cpu_dispatch was known
4232 if (!isa
<llvm::GlobalIFunc
>(IFunc
)) {
4233 assert(cast
<llvm::Function
>(IFunc
)->isDeclaration());
4234 auto *GI
= llvm::GlobalIFunc::create(DeclTy
, 0, Linkage
, "", ResolverFunc
,
4236 GI
->takeName(IFunc
);
4237 IFunc
->replaceAllUsesWith(GI
);
4238 IFunc
->eraseFromParent();
4242 std::string AliasName
= getMangledNameImpl(
4243 *this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4244 llvm::Constant
*AliasFunc
= GetGlobalValue(AliasName
);
4246 auto *GA
= llvm::GlobalAlias::create(DeclTy
, 0, Linkage
, AliasName
, IFunc
,
4248 SetCommonAttributes(GD
, GA
);
4253 /// If a dispatcher for the specified mangled name is not in the module, create
4254 /// and return an llvm Function with the specified type.
4255 llvm::Constant
*CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD
) {
4256 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4257 assert(FD
&& "Not a FunctionDecl?");
4259 std::string MangledName
=
4260 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
4262 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4263 // a separate resolver).
4264 std::string ResolverName
= MangledName
;
4265 if (getTarget().supportsIFunc())
4266 ResolverName
+= ".ifunc";
4267 else if (FD
->isTargetMultiVersion())
4268 ResolverName
+= ".resolver";
4270 // If the resolver has already been created, just return it.
4271 if (llvm::GlobalValue
*ResolverGV
= GetGlobalValue(ResolverName
))
4274 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4275 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
4277 // The resolver needs to be created. For target and target_clones, defer
4278 // creation until the end of the TU.
4279 if (FD
->isTargetMultiVersion() || FD
->isTargetClonesMultiVersion())
4280 MultiVersionFuncs
.push_back(GD
);
4282 // For cpu_specific, don't create an ifunc yet because we don't know if the
4283 // cpu_dispatch will be emitted in this translation unit.
4284 if (getTarget().supportsIFunc() && !FD
->isCPUSpecificMultiVersion()) {
4285 llvm::Type
*ResolverType
= llvm::FunctionType::get(
4286 llvm::PointerType::get(DeclTy
,
4287 getTypes().getTargetAddressSpace(FD
->getType())),
4289 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
4290 MangledName
+ ".resolver", ResolverType
, GlobalDecl
{},
4291 /*ForVTable=*/false);
4292 llvm::GlobalIFunc
*GIF
=
4293 llvm::GlobalIFunc::create(DeclTy
, 0, getMultiversionLinkage(*this, GD
),
4294 "", Resolver
, &getModule());
4295 GIF
->setName(ResolverName
);
4296 SetCommonAttributes(FD
, GIF
);
4301 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
4302 ResolverName
, DeclTy
, GlobalDecl
{}, /*ForVTable=*/false);
4303 assert(isa
<llvm::GlobalValue
>(Resolver
) &&
4304 "Resolver should be created for the first time");
4305 SetCommonAttributes(FD
, cast
<llvm::GlobalValue
>(Resolver
));
4309 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4310 /// module, create and return an llvm Function with the specified type. If there
4311 /// is something in the module with the specified name, return it potentially
4312 /// bitcasted to the right type.
4314 /// If D is non-null, it specifies a decl that correspond to this. This is used
4315 /// to set the attributes on the function when it is first created.
4316 llvm::Constant
*CodeGenModule::GetOrCreateLLVMFunction(
4317 StringRef MangledName
, llvm::Type
*Ty
, GlobalDecl GD
, bool ForVTable
,
4318 bool DontDefer
, bool IsThunk
, llvm::AttributeList ExtraAttrs
,
4319 ForDefinition_t IsForDefinition
) {
4320 const Decl
*D
= GD
.getDecl();
4322 // Any attempts to use a MultiVersion function should result in retrieving
4323 // the iFunc instead. Name Mangling will handle the rest of the changes.
4324 if (const FunctionDecl
*FD
= cast_or_null
<FunctionDecl
>(D
)) {
4325 // For the device mark the function as one that should be emitted.
4326 if (getLangOpts().OpenMPIsTargetDevice
&& OpenMPRuntime
&&
4327 !OpenMPRuntime
->markAsGlobalTarget(GD
) && FD
->isDefined() &&
4328 !DontDefer
&& !IsForDefinition
) {
4329 if (const FunctionDecl
*FDDef
= FD
->getDefinition()) {
4331 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(FDDef
))
4332 GDDef
= GlobalDecl(CD
, GD
.getCtorType());
4333 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(FDDef
))
4334 GDDef
= GlobalDecl(DD
, GD
.getDtorType());
4336 GDDef
= GlobalDecl(FDDef
);
4341 if (FD
->isMultiVersion()) {
4342 UpdateMultiVersionNames(GD
, FD
, MangledName
);
4343 if (!IsForDefinition
)
4344 return GetOrCreateMultiVersionResolver(GD
);
4348 // Lookup the entry, lazily creating it if necessary.
4349 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
4351 if (WeakRefReferences
.erase(Entry
)) {
4352 const FunctionDecl
*FD
= cast_or_null
<FunctionDecl
>(D
);
4353 if (FD
&& !FD
->hasAttr
<WeakAttr
>())
4354 Entry
->setLinkage(llvm::Function::ExternalLinkage
);
4357 // Handle dropped DLL attributes.
4358 if (D
&& !D
->hasAttr
<DLLImportAttr
>() && !D
->hasAttr
<DLLExportAttr
>() &&
4359 !shouldMapVisibilityToDLLExport(cast_or_null
<NamedDecl
>(D
))) {
4360 Entry
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
4364 // If there are two attempts to define the same mangled name, issue an
4366 if (IsForDefinition
&& !Entry
->isDeclaration()) {
4368 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4369 // to make sure that we issue an error only once.
4370 if (lookupRepresentativeDecl(MangledName
, OtherGD
) &&
4371 (GD
.getCanonicalDecl().getDecl() !=
4372 OtherGD
.getCanonicalDecl().getDecl()) &&
4373 DiagnosedConflictingDefinitions
.insert(GD
).second
) {
4374 getDiags().Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
4376 getDiags().Report(OtherGD
.getDecl()->getLocation(),
4377 diag::note_previous_definition
);
4381 if ((isa
<llvm::Function
>(Entry
) || isa
<llvm::GlobalAlias
>(Entry
)) &&
4382 (Entry
->getValueType() == Ty
)) {
4386 // Make sure the result is of the correct type.
4387 // (If function is requested for a definition, we always need to create a new
4388 // function, not just return a bitcast.)
4389 if (!IsForDefinition
)
4393 // This function doesn't have a complete type (for example, the return
4394 // type is an incomplete struct). Use a fake type instead, and make
4395 // sure not to try to set attributes.
4396 bool IsIncompleteFunction
= false;
4398 llvm::FunctionType
*FTy
;
4399 if (isa
<llvm::FunctionType
>(Ty
)) {
4400 FTy
= cast
<llvm::FunctionType
>(Ty
);
4402 FTy
= llvm::FunctionType::get(VoidTy
, false);
4403 IsIncompleteFunction
= true;
4407 llvm::Function::Create(FTy
, llvm::Function::ExternalLinkage
,
4408 Entry
? StringRef() : MangledName
, &getModule());
4410 // If we already created a function with the same mangled name (but different
4411 // type) before, take its name and add it to the list of functions to be
4412 // replaced with F at the end of CodeGen.
4414 // This happens if there is a prototype for a function (e.g. "int f()") and
4415 // then a definition of a different type (e.g. "int f(int x)").
4419 // This might be an implementation of a function without a prototype, in
4420 // which case, try to do special replacement of calls which match the new
4421 // prototype. The really key thing here is that we also potentially drop
4422 // arguments from the call site so as to make a direct call, which makes the
4423 // inliner happier and suppresses a number of optimizer warnings (!) about
4424 // dropping arguments.
4425 if (!Entry
->use_empty()) {
4426 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry
, F
);
4427 Entry
->removeDeadConstantUsers();
4430 addGlobalValReplacement(Entry
, F
);
4433 assert(F
->getName() == MangledName
&& "name was uniqued!");
4435 SetFunctionAttributes(GD
, F
, IsIncompleteFunction
, IsThunk
);
4436 if (ExtraAttrs
.hasFnAttrs()) {
4437 llvm::AttrBuilder
B(F
->getContext(), ExtraAttrs
.getFnAttrs());
4442 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4443 // each other bottoming out with the base dtor. Therefore we emit non-base
4444 // dtors on usage, even if there is no dtor definition in the TU.
4445 if (isa_and_nonnull
<CXXDestructorDecl
>(D
) &&
4446 getCXXABI().useThunkForDtorVariant(cast
<CXXDestructorDecl
>(D
),
4448 addDeferredDeclToEmit(GD
);
4450 // This is the first use or definition of a mangled name. If there is a
4451 // deferred decl with this name, remember that we need to emit it at the end
4453 auto DDI
= DeferredDecls
.find(MangledName
);
4454 if (DDI
!= DeferredDecls
.end()) {
4455 // Move the potentially referenced deferred decl to the
4456 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4457 // don't need it anymore).
4458 addDeferredDeclToEmit(DDI
->second
);
4459 DeferredDecls
.erase(DDI
);
4461 // Otherwise, there are cases we have to worry about where we're
4462 // using a declaration for which we must emit a definition but where
4463 // we might not find a top-level definition:
4464 // - member functions defined inline in their classes
4465 // - friend functions defined inline in some class
4466 // - special member functions with implicit definitions
4467 // If we ever change our AST traversal to walk into class methods,
4468 // this will be unnecessary.
4470 // We also don't emit a definition for a function if it's going to be an
4471 // entry in a vtable, unless it's already marked as used.
4472 } else if (getLangOpts().CPlusPlus
&& D
) {
4473 // Look for a declaration that's lexically in a record.
4474 for (const auto *FD
= cast
<FunctionDecl
>(D
)->getMostRecentDecl(); FD
;
4475 FD
= FD
->getPreviousDecl()) {
4476 if (isa
<CXXRecordDecl
>(FD
->getLexicalDeclContext())) {
4477 if (FD
->doesThisDeclarationHaveABody()) {
4478 addDeferredDeclToEmit(GD
.getWithDecl(FD
));
4486 // Make sure the result is of the requested type.
4487 if (!IsIncompleteFunction
) {
4488 assert(F
->getFunctionType() == Ty
);
4495 /// GetAddrOfFunction - Return the address of the given function. If Ty is
4496 /// non-null, then this function will use the specified type if it has to
4497 /// create it (this occurs when we see a definition of the function).
4499 CodeGenModule::GetAddrOfFunction(GlobalDecl GD
, llvm::Type
*Ty
, bool ForVTable
,
4501 ForDefinition_t IsForDefinition
) {
4502 // If there was no specific requested type, just convert it now.
4504 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4505 Ty
= getTypes().ConvertType(FD
->getType());
4508 // Devirtualized destructor calls may come through here instead of via
4509 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4510 // of the complete destructor when necessary.
4511 if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(GD
.getDecl())) {
4512 if (getTarget().getCXXABI().isMicrosoft() &&
4513 GD
.getDtorType() == Dtor_Complete
&&
4514 DD
->getParent()->getNumVBases() == 0)
4515 GD
= GlobalDecl(DD
, Dtor_Base
);
4518 StringRef MangledName
= getMangledName(GD
);
4519 auto *F
= GetOrCreateLLVMFunction(MangledName
, Ty
, GD
, ForVTable
, DontDefer
,
4520 /*IsThunk=*/false, llvm::AttributeList(),
4522 // Returns kernel handle for HIP kernel stub function.
4523 if (LangOpts
.CUDA
&& !LangOpts
.CUDAIsDevice
&&
4524 cast
<FunctionDecl
>(GD
.getDecl())->hasAttr
<CUDAGlobalAttr
>()) {
4525 auto *Handle
= getCUDARuntime().getKernelHandle(
4526 cast
<llvm::Function
>(F
->stripPointerCasts()), GD
);
4527 if (IsForDefinition
)
4534 llvm::Constant
*CodeGenModule::GetFunctionStart(const ValueDecl
*Decl
) {
4535 llvm::GlobalValue
*F
=
4536 cast
<llvm::GlobalValue
>(GetAddrOfFunction(Decl
)->stripPointerCasts());
4538 return llvm::ConstantExpr::getBitCast(
4539 llvm::NoCFIValue::get(F
),
4540 llvm::PointerType::get(VMContext
, F
->getAddressSpace()));
4543 static const FunctionDecl
*
4544 GetRuntimeFunctionDecl(ASTContext
&C
, StringRef Name
) {
4545 TranslationUnitDecl
*TUDecl
= C
.getTranslationUnitDecl();
4546 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
4548 IdentifierInfo
&CII
= C
.Idents
.get(Name
);
4549 for (const auto *Result
: DC
->lookup(&CII
))
4550 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Result
))
4553 if (!C
.getLangOpts().CPlusPlus
)
4556 // Demangle the premangled name from getTerminateFn()
4557 IdentifierInfo
&CXXII
=
4558 (Name
== "_ZSt9terminatev" || Name
== "?terminate@@YAXXZ")
4559 ? C
.Idents
.get("terminate")
4560 : C
.Idents
.get(Name
);
4562 for (const auto &N
: {"__cxxabiv1", "std"}) {
4563 IdentifierInfo
&NS
= C
.Idents
.get(N
);
4564 for (const auto *Result
: DC
->lookup(&NS
)) {
4565 const NamespaceDecl
*ND
= dyn_cast
<NamespaceDecl
>(Result
);
4566 if (auto *LSD
= dyn_cast
<LinkageSpecDecl
>(Result
))
4567 for (const auto *Result
: LSD
->lookup(&NS
))
4568 if ((ND
= dyn_cast
<NamespaceDecl
>(Result
)))
4572 for (const auto *Result
: ND
->lookup(&CXXII
))
4573 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Result
))
4581 /// CreateRuntimeFunction - Create a new runtime function with the specified
4583 llvm::FunctionCallee
4584 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType
*FTy
, StringRef Name
,
4585 llvm::AttributeList ExtraAttrs
, bool Local
,
4586 bool AssumeConvergent
) {
4587 if (AssumeConvergent
) {
4589 ExtraAttrs
.addFnAttribute(VMContext
, llvm::Attribute::Convergent
);
4593 GetOrCreateLLVMFunction(Name
, FTy
, GlobalDecl(), /*ForVTable=*/false,
4594 /*DontDefer=*/false, /*IsThunk=*/false,
4597 if (auto *F
= dyn_cast
<llvm::Function
>(C
)) {
4599 F
->setCallingConv(getRuntimeCC());
4601 // In Windows Itanium environments, try to mark runtime functions
4602 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4603 // will link their standard library statically or dynamically. Marking
4604 // functions imported when they are not imported can cause linker errors
4606 if (!Local
&& getTriple().isWindowsItaniumEnvironment() &&
4607 !getCodeGenOpts().LTOVisibilityPublicStd
) {
4608 const FunctionDecl
*FD
= GetRuntimeFunctionDecl(Context
, Name
);
4609 if (!FD
|| FD
->hasAttr
<DLLImportAttr
>()) {
4610 F
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
4611 F
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
4621 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4622 /// create and return an llvm GlobalVariable with the specified type and address
4623 /// space. If there is something in the module with the specified name, return
4624 /// it potentially bitcasted to the right type.
4626 /// If D is non-null, it specifies a decl that correspond to this. This is used
4627 /// to set the attributes on the global when it is first created.
4629 /// If IsForDefinition is true, it is guaranteed that an actual global with
4630 /// type Ty will be returned, not conversion of a variable with the same
4631 /// mangled name but some other type.
4633 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName
, llvm::Type
*Ty
,
4634 LangAS AddrSpace
, const VarDecl
*D
,
4635 ForDefinition_t IsForDefinition
) {
4636 // Lookup the entry, lazily creating it if necessary.
4637 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
4638 unsigned TargetAS
= getContext().getTargetAddressSpace(AddrSpace
);
4640 if (WeakRefReferences
.erase(Entry
)) {
4641 if (D
&& !D
->hasAttr
<WeakAttr
>())
4642 Entry
->setLinkage(llvm::Function::ExternalLinkage
);
4645 // Handle dropped DLL attributes.
4646 if (D
&& !D
->hasAttr
<DLLImportAttr
>() && !D
->hasAttr
<DLLExportAttr
>() &&
4647 !shouldMapVisibilityToDLLExport(D
))
4648 Entry
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
4650 if (LangOpts
.OpenMP
&& !LangOpts
.OpenMPSimd
&& D
)
4651 getOpenMPRuntime().registerTargetGlobalVariable(D
, Entry
);
4653 if (Entry
->getValueType() == Ty
&& Entry
->getAddressSpace() == TargetAS
)
4656 // If there are two attempts to define the same mangled name, issue an
4658 if (IsForDefinition
&& !Entry
->isDeclaration()) {
4660 const VarDecl
*OtherD
;
4662 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4663 // to make sure that we issue an error only once.
4664 if (D
&& lookupRepresentativeDecl(MangledName
, OtherGD
) &&
4665 (D
->getCanonicalDecl() != OtherGD
.getCanonicalDecl().getDecl()) &&
4666 (OtherD
= dyn_cast
<VarDecl
>(OtherGD
.getDecl())) &&
4667 OtherD
->hasInit() &&
4668 DiagnosedConflictingDefinitions
.insert(D
).second
) {
4669 getDiags().Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
4671 getDiags().Report(OtherGD
.getDecl()->getLocation(),
4672 diag::note_previous_definition
);
4676 // Make sure the result is of the correct type.
4677 if (Entry
->getType()->getAddressSpace() != TargetAS
)
4678 return llvm::ConstantExpr::getAddrSpaceCast(
4679 Entry
, llvm::PointerType::get(Ty
->getContext(), TargetAS
));
4681 // (If global is requested for a definition, we always need to create a new
4682 // global, not just return a bitcast.)
4683 if (!IsForDefinition
)
4687 auto DAddrSpace
= GetGlobalVarAddressSpace(D
);
4689 auto *GV
= new llvm::GlobalVariable(
4690 getModule(), Ty
, false, llvm::GlobalValue::ExternalLinkage
, nullptr,
4691 MangledName
, nullptr, llvm::GlobalVariable::NotThreadLocal
,
4692 getContext().getTargetAddressSpace(DAddrSpace
));
4694 // If we already created a global with the same mangled name (but different
4695 // type) before, take its name and remove it from its parent.
4697 GV
->takeName(Entry
);
4699 if (!Entry
->use_empty()) {
4700 llvm::Constant
*NewPtrForOldDecl
=
4701 llvm::ConstantExpr::getBitCast(GV
, Entry
->getType());
4702 Entry
->replaceAllUsesWith(NewPtrForOldDecl
);
4705 Entry
->eraseFromParent();
4708 // This is the first use or definition of a mangled name. If there is a
4709 // deferred decl with this name, remember that we need to emit it at the end
4711 auto DDI
= DeferredDecls
.find(MangledName
);
4712 if (DDI
!= DeferredDecls
.end()) {
4713 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4714 // list, and remove it from DeferredDecls (since we don't need it anymore).
4715 addDeferredDeclToEmit(DDI
->second
);
4716 DeferredDecls
.erase(DDI
);
4719 // Handle things which are present even on external declarations.
4721 if (LangOpts
.OpenMP
&& !LangOpts
.OpenMPSimd
)
4722 getOpenMPRuntime().registerTargetGlobalVariable(D
, GV
);
4724 // FIXME: This code is overly simple and should be merged with other global
4726 GV
->setConstant(D
->getType().isConstantStorage(getContext(), false, false));
4728 GV
->setAlignment(getContext().getDeclAlign(D
).getAsAlign());
4730 setLinkageForGV(GV
, D
);
4732 if (D
->getTLSKind()) {
4733 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
)
4734 CXXThreadLocals
.push_back(D
);
4738 setGVProperties(GV
, D
);
4740 // If required by the ABI, treat declarations of static data members with
4741 // inline initializers as definitions.
4742 if (getContext().isMSStaticDataMemberInlineDefinition(D
)) {
4743 EmitGlobalVarDefinition(D
);
4746 // Emit section information for extern variables.
4747 if (D
->hasExternalStorage()) {
4748 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>())
4749 GV
->setSection(SA
->getName());
4752 // Handle XCore specific ABI requirements.
4753 if (getTriple().getArch() == llvm::Triple::xcore
&&
4754 D
->getLanguageLinkage() == CLanguageLinkage
&&
4755 D
->getType().isConstant(Context
) &&
4756 isExternallyVisible(D
->getLinkageAndVisibility().getLinkage()))
4757 GV
->setSection(".cp.rodata");
4759 // Check if we a have a const declaration with an initializer, we may be
4760 // able to emit it as available_externally to expose it's value to the
4762 if (Context
.getLangOpts().CPlusPlus
&& GV
->hasExternalLinkage() &&
4763 D
->getType().isConstQualified() && !GV
->hasInitializer() &&
4764 !D
->hasDefinition() && D
->hasInit() && !D
->hasAttr
<DLLImportAttr
>()) {
4765 const auto *Record
=
4766 Context
.getBaseElementType(D
->getType())->getAsCXXRecordDecl();
4767 bool HasMutableFields
= Record
&& Record
->hasMutableFields();
4768 if (!HasMutableFields
) {
4769 const VarDecl
*InitDecl
;
4770 const Expr
*InitExpr
= D
->getAnyInitializer(InitDecl
);
4772 ConstantEmitter
emitter(*this);
4773 llvm::Constant
*Init
= emitter
.tryEmitForInitializer(*InitDecl
);
4775 auto *InitType
= Init
->getType();
4776 if (GV
->getValueType() != InitType
) {
4777 // The type of the initializer does not match the definition.
4778 // This happens when an initializer has a different type from
4779 // the type of the global (because of padding at the end of a
4780 // structure for instance).
4781 GV
->setName(StringRef());
4782 // Make a new global with the correct type, this is now guaranteed
4784 auto *NewGV
= cast
<llvm::GlobalVariable
>(
4785 GetAddrOfGlobalVar(D
, InitType
, IsForDefinition
)
4786 ->stripPointerCasts());
4788 // Erase the old global, since it is no longer used.
4789 GV
->eraseFromParent();
4792 GV
->setInitializer(Init
);
4793 GV
->setConstant(true);
4794 GV
->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage
);
4796 emitter
.finalize(GV
);
4804 D
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
) {
4805 getTargetCodeGenInfo().setTargetAttributes(D
, GV
, *this);
4806 // External HIP managed variables needed to be recorded for transformation
4807 // in both device and host compilations.
4808 if (getLangOpts().CUDA
&& D
&& D
->hasAttr
<HIPManagedAttr
>() &&
4809 D
->hasExternalStorage())
4810 getCUDARuntime().handleVarRegistration(D
, *GV
);
4814 SanitizerMD
->reportGlobal(GV
, *D
);
4817 D
? D
->getType().getAddressSpace()
4818 : (LangOpts
.OpenCL
? LangAS::opencl_global
: LangAS::Default
);
4819 assert(getContext().getTargetAddressSpace(ExpectedAS
) == TargetAS
);
4820 if (DAddrSpace
!= ExpectedAS
) {
4821 return getTargetCodeGenInfo().performAddrSpaceCast(
4822 *this, GV
, DAddrSpace
, ExpectedAS
,
4823 llvm::PointerType::get(getLLVMContext(), TargetAS
));
4830 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD
, ForDefinition_t IsForDefinition
) {
4831 const Decl
*D
= GD
.getDecl();
4833 if (isa
<CXXConstructorDecl
>(D
) || isa
<CXXDestructorDecl
>(D
))
4834 return getAddrOfCXXStructor(GD
, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4835 /*DontDefer=*/false, IsForDefinition
);
4837 if (isa
<CXXMethodDecl
>(D
)) {
4839 &getTypes().arrangeCXXMethodDeclaration(cast
<CXXMethodDecl
>(D
));
4840 auto Ty
= getTypes().GetFunctionType(*FInfo
);
4841 return GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false, /*DontDefer=*/false,
4845 if (isa
<FunctionDecl
>(D
)) {
4846 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4847 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
4848 return GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false, /*DontDefer=*/false,
4852 return GetAddrOfGlobalVar(cast
<VarDecl
>(D
), /*Ty=*/nullptr, IsForDefinition
);
4855 llvm::GlobalVariable
*CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4856 StringRef Name
, llvm::Type
*Ty
, llvm::GlobalValue::LinkageTypes Linkage
,
4857 llvm::Align Alignment
) {
4858 llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
);
4859 llvm::GlobalVariable
*OldGV
= nullptr;
4862 // Check if the variable has the right type.
4863 if (GV
->getValueType() == Ty
)
4866 // Because C++ name mangling, the only way we can end up with an already
4867 // existing global with the same name is if it has been declared extern "C".
4868 assert(GV
->isDeclaration() && "Declaration has wrong type!");
4872 // Create a new variable.
4873 GV
= new llvm::GlobalVariable(getModule(), Ty
, /*isConstant=*/true,
4874 Linkage
, nullptr, Name
);
4877 // Replace occurrences of the old variable if needed.
4878 GV
->takeName(OldGV
);
4880 if (!OldGV
->use_empty()) {
4881 llvm::Constant
*NewPtrForOldDecl
=
4882 llvm::ConstantExpr::getBitCast(GV
, OldGV
->getType());
4883 OldGV
->replaceAllUsesWith(NewPtrForOldDecl
);
4886 OldGV
->eraseFromParent();
4889 if (supportsCOMDAT() && GV
->isWeakForLinker() &&
4890 !GV
->hasAvailableExternallyLinkage())
4891 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
4893 GV
->setAlignment(Alignment
);
4898 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4899 /// given global variable. If Ty is non-null and if the global doesn't exist,
4900 /// then it will be created with the specified type instead of whatever the
4901 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4902 /// that an actual global with type Ty will be returned, not conversion of a
4903 /// variable with the same mangled name but some other type.
4904 llvm::Constant
*CodeGenModule::GetAddrOfGlobalVar(const VarDecl
*D
,
4906 ForDefinition_t IsForDefinition
) {
4907 assert(D
->hasGlobalStorage() && "Not a global variable");
4908 QualType ASTTy
= D
->getType();
4910 Ty
= getTypes().ConvertTypeForMem(ASTTy
);
4912 StringRef MangledName
= getMangledName(D
);
4913 return GetOrCreateLLVMGlobal(MangledName
, Ty
, ASTTy
.getAddressSpace(), D
,
4917 /// CreateRuntimeVariable - Create a new runtime global variable with the
4918 /// specified type and name.
4920 CodeGenModule::CreateRuntimeVariable(llvm::Type
*Ty
,
4922 LangAS AddrSpace
= getContext().getLangOpts().OpenCL
? LangAS::opencl_global
4924 auto *Ret
= GetOrCreateLLVMGlobal(Name
, Ty
, AddrSpace
, nullptr);
4925 setDSOLocal(cast
<llvm::GlobalValue
>(Ret
->stripPointerCasts()));
4929 void CodeGenModule::EmitTentativeDefinition(const VarDecl
*D
) {
4930 assert(!D
->getInit() && "Cannot emit definite definitions here!");
4932 StringRef MangledName
= getMangledName(D
);
4933 llvm::GlobalValue
*GV
= GetGlobalValue(MangledName
);
4935 // We already have a definition, not declaration, with the same mangled name.
4936 // Emitting of declaration is not required (and actually overwrites emitted
4938 if (GV
&& !GV
->isDeclaration())
4941 // If we have not seen a reference to this variable yet, place it into the
4942 // deferred declarations table to be emitted if needed later.
4943 if (!MustBeEmitted(D
) && !GV
) {
4944 DeferredDecls
[MangledName
] = D
;
4948 // The tentative definition is the only definition.
4949 EmitGlobalVarDefinition(D
);
4952 void CodeGenModule::EmitExternalDeclaration(const VarDecl
*D
) {
4953 EmitExternalVarDeclaration(D
);
4956 CharUnits
CodeGenModule::GetTargetTypeStoreSize(llvm::Type
*Ty
) const {
4957 return Context
.toCharUnitsFromBits(
4958 getDataLayout().getTypeStoreSizeInBits(Ty
));
4961 LangAS
CodeGenModule::GetGlobalVarAddressSpace(const VarDecl
*D
) {
4962 if (LangOpts
.OpenCL
) {
4963 LangAS AS
= D
? D
->getType().getAddressSpace() : LangAS::opencl_global
;
4964 assert(AS
== LangAS::opencl_global
||
4965 AS
== LangAS::opencl_global_device
||
4966 AS
== LangAS::opencl_global_host
||
4967 AS
== LangAS::opencl_constant
||
4968 AS
== LangAS::opencl_local
||
4969 AS
>= LangAS::FirstTargetAddressSpace
);
4973 if (LangOpts
.SYCLIsDevice
&&
4974 (!D
|| D
->getType().getAddressSpace() == LangAS::Default
))
4975 return LangAS::sycl_global
;
4977 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
) {
4979 if (D
->hasAttr
<CUDAConstantAttr
>())
4980 return LangAS::cuda_constant
;
4981 if (D
->hasAttr
<CUDASharedAttr
>())
4982 return LangAS::cuda_shared
;
4983 if (D
->hasAttr
<CUDADeviceAttr
>())
4984 return LangAS::cuda_device
;
4985 if (D
->getType().isConstQualified())
4986 return LangAS::cuda_constant
;
4988 return LangAS::cuda_device
;
4991 if (LangOpts
.OpenMP
) {
4993 if (OpenMPRuntime
->hasAllocateAttributeForGlobalVar(D
, AS
))
4996 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D
);
4999 LangAS
CodeGenModule::GetGlobalConstantAddressSpace() const {
5000 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5001 if (LangOpts
.OpenCL
)
5002 return LangAS::opencl_constant
;
5003 if (LangOpts
.SYCLIsDevice
)
5004 return LangAS::sycl_global
;
5005 if (LangOpts
.HIP
&& LangOpts
.CUDAIsDevice
&& getTriple().isSPIRV())
5006 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5007 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5008 // with OpVariable instructions with Generic storage class which is not
5009 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5010 // UniformConstant storage class is not viable as pointers to it may not be
5011 // casted to Generic pointers which are used to model HIP's "flat" pointers.
5012 return LangAS::cuda_device
;
5013 if (auto AS
= getTarget().getConstantAddressSpace())
5015 return LangAS::Default
;
5018 // In address space agnostic languages, string literals are in default address
5019 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5020 // emitted in constant address space in LLVM IR. To be consistent with other
5021 // parts of AST, string literal global variables in constant address space
5022 // need to be casted to default address space before being put into address
5023 // map and referenced by other part of CodeGen.
5024 // In OpenCL, string literals are in constant address space in AST, therefore
5025 // they should not be casted to default address space.
5026 static llvm::Constant
*
5027 castStringLiteralToDefaultAddressSpace(CodeGenModule
&CGM
,
5028 llvm::GlobalVariable
*GV
) {
5029 llvm::Constant
*Cast
= GV
;
5030 if (!CGM
.getLangOpts().OpenCL
) {
5031 auto AS
= CGM
.GetGlobalConstantAddressSpace();
5032 if (AS
!= LangAS::Default
)
5033 Cast
= CGM
.getTargetCodeGenInfo().performAddrSpaceCast(
5034 CGM
, GV
, AS
, LangAS::Default
,
5035 llvm::PointerType::get(
5036 CGM
.getLLVMContext(),
5037 CGM
.getContext().getTargetAddressSpace(LangAS::Default
)));
5042 template<typename SomeDecl
>
5043 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl
*D
,
5044 llvm::GlobalValue
*GV
) {
5045 if (!getLangOpts().CPlusPlus
)
5048 // Must have 'used' attribute, or else inline assembly can't rely on
5049 // the name existing.
5050 if (!D
->template hasAttr
<UsedAttr
>())
5053 // Must have internal linkage and an ordinary name.
5054 if (!D
->getIdentifier() || D
->getFormalLinkage() != InternalLinkage
)
5057 // Must be in an extern "C" context. Entities declared directly within
5058 // a record are not extern "C" even if the record is in such a context.
5059 const SomeDecl
*First
= D
->getFirstDecl();
5060 if (First
->getDeclContext()->isRecord() || !First
->isInExternCContext())
5063 // OK, this is an internal linkage entity inside an extern "C" linkage
5064 // specification. Make a note of that so we can give it the "expected"
5065 // mangled name if nothing else is using that name.
5066 std::pair
<StaticExternCMap::iterator
, bool> R
=
5067 StaticExternCValues
.insert(std::make_pair(D
->getIdentifier(), GV
));
5069 // If we have multiple internal linkage entities with the same name
5070 // in extern "C" regions, none of them gets that name.
5072 R
.first
->second
= nullptr;
5075 static bool shouldBeInCOMDAT(CodeGenModule
&CGM
, const Decl
&D
) {
5076 if (!CGM
.supportsCOMDAT())
5079 if (D
.hasAttr
<SelectAnyAttr
>())
5083 if (auto *VD
= dyn_cast
<VarDecl
>(&D
))
5084 Linkage
= CGM
.getContext().GetGVALinkageForVariable(VD
);
5086 Linkage
= CGM
.getContext().GetGVALinkageForFunction(cast
<FunctionDecl
>(&D
));
5090 case GVA_AvailableExternally
:
5091 case GVA_StrongExternal
:
5093 case GVA_DiscardableODR
:
5097 llvm_unreachable("No such linkage");
5100 bool CodeGenModule::supportsCOMDAT() const {
5101 return getTriple().supportsCOMDAT();
5104 void CodeGenModule::maybeSetTrivialComdat(const Decl
&D
,
5105 llvm::GlobalObject
&GO
) {
5106 if (!shouldBeInCOMDAT(*this, D
))
5108 GO
.setComdat(TheModule
.getOrInsertComdat(GO
.getName()));
5111 /// Pass IsTentative as true if you want to create a tentative definition.
5112 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl
*D
,
5114 // OpenCL global variables of sampler type are translated to function calls,
5115 // therefore no need to be translated.
5116 QualType ASTTy
= D
->getType();
5117 if (getLangOpts().OpenCL
&& ASTTy
->isSamplerT())
5120 // If this is OpenMP device, check if it is legal to emit this global
5122 if (LangOpts
.OpenMPIsTargetDevice
&& OpenMPRuntime
&&
5123 OpenMPRuntime
->emitTargetGlobalVariable(D
))
5126 llvm::TrackingVH
<llvm::Constant
> Init
;
5127 bool NeedsGlobalCtor
= false;
5128 // Whether the definition of the variable is available externally.
5129 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5130 // since this is the job for its original source.
5131 bool IsDefinitionAvailableExternally
=
5132 getContext().GetGVALinkageForVariable(D
) == GVA_AvailableExternally
;
5133 bool NeedsGlobalDtor
=
5134 !IsDefinitionAvailableExternally
&&
5135 D
->needsDestruction(getContext()) == QualType::DK_cxx_destructor
;
5137 const VarDecl
*InitDecl
;
5138 const Expr
*InitExpr
= D
->getAnyInitializer(InitDecl
);
5140 std::optional
<ConstantEmitter
> emitter
;
5142 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5143 // as part of their declaration." Sema has already checked for
5144 // error cases, so we just need to set Init to UndefValue.
5145 bool IsCUDASharedVar
=
5146 getLangOpts().CUDAIsDevice
&& D
->hasAttr
<CUDASharedAttr
>();
5147 // Shadows of initialized device-side global variables are also left
5149 // Managed Variables should be initialized on both host side and device side.
5150 bool IsCUDAShadowVar
=
5151 !getLangOpts().CUDAIsDevice
&& !D
->hasAttr
<HIPManagedAttr
>() &&
5152 (D
->hasAttr
<CUDAConstantAttr
>() || D
->hasAttr
<CUDADeviceAttr
>() ||
5153 D
->hasAttr
<CUDASharedAttr
>());
5154 bool IsCUDADeviceShadowVar
=
5155 getLangOpts().CUDAIsDevice
&& !D
->hasAttr
<HIPManagedAttr
>() &&
5156 (D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
5157 D
->getType()->isCUDADeviceBuiltinTextureType());
5158 if (getLangOpts().CUDA
&&
5159 (IsCUDASharedVar
|| IsCUDAShadowVar
|| IsCUDADeviceShadowVar
))
5160 Init
= llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy
));
5161 else if (D
->hasAttr
<LoaderUninitializedAttr
>())
5162 Init
= llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy
));
5163 else if (!InitExpr
) {
5164 // This is a tentative definition; tentative definitions are
5165 // implicitly initialized with { 0 }.
5167 // Note that tentative definitions are only emitted at the end of
5168 // a translation unit, so they should never have incomplete
5169 // type. In addition, EmitTentativeDefinition makes sure that we
5170 // never attempt to emit a tentative definition if a real one
5171 // exists. A use may still exists, however, so we still may need
5173 assert(!ASTTy
->isIncompleteType() && "Unexpected incomplete type");
5174 Init
= EmitNullConstant(D
->getType());
5176 initializedGlobalDecl
= GlobalDecl(D
);
5177 emitter
.emplace(*this);
5178 llvm::Constant
*Initializer
= emitter
->tryEmitForInitializer(*InitDecl
);
5180 QualType T
= InitExpr
->getType();
5181 if (D
->getType()->isReferenceType())
5184 if (getLangOpts().CPlusPlus
) {
5185 if (InitDecl
->hasFlexibleArrayInit(getContext()))
5186 ErrorUnsupported(D
, "flexible array initializer");
5187 Init
= EmitNullConstant(T
);
5189 if (!IsDefinitionAvailableExternally
)
5190 NeedsGlobalCtor
= true;
5192 ErrorUnsupported(D
, "static initializer");
5193 Init
= llvm::UndefValue::get(getTypes().ConvertType(T
));
5197 // We don't need an initializer, so remove the entry for the delayed
5198 // initializer position (just in case this entry was delayed) if we
5199 // also don't need to register a destructor.
5200 if (getLangOpts().CPlusPlus
&& !NeedsGlobalDtor
)
5201 DelayedCXXInitPosition
.erase(D
);
5204 CharUnits VarSize
= getContext().getTypeSizeInChars(ASTTy
) +
5205 InitDecl
->getFlexibleArrayInitChars(getContext());
5206 CharUnits CstSize
= CharUnits::fromQuantity(
5207 getDataLayout().getTypeAllocSize(Init
->getType()));
5208 assert(VarSize
== CstSize
&& "Emitted constant has unexpected size");
5213 llvm::Type
* InitType
= Init
->getType();
5214 llvm::Constant
*Entry
=
5215 GetAddrOfGlobalVar(D
, InitType
, ForDefinition_t(!IsTentative
));
5217 // Strip off pointer casts if we got them.
5218 Entry
= Entry
->stripPointerCasts();
5220 // Entry is now either a Function or GlobalVariable.
5221 auto *GV
= dyn_cast
<llvm::GlobalVariable
>(Entry
);
5223 // We have a definition after a declaration with the wrong type.
5224 // We must make a new GlobalVariable* and update everything that used OldGV
5225 // (a declaration or tentative definition) with the new GlobalVariable*
5226 // (which will be a definition).
5228 // This happens if there is a prototype for a global (e.g.
5229 // "extern int x[];") and then a definition of a different type (e.g.
5230 // "int x[10];"). This also happens when an initializer has a different type
5231 // from the type of the global (this happens with unions).
5232 if (!GV
|| GV
->getValueType() != InitType
||
5233 GV
->getType()->getAddressSpace() !=
5234 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D
))) {
5236 // Move the old entry aside so that we'll create a new one.
5237 Entry
->setName(StringRef());
5239 // Make a new global with the correct type, this is now guaranteed to work.
5240 GV
= cast
<llvm::GlobalVariable
>(
5241 GetAddrOfGlobalVar(D
, InitType
, ForDefinition_t(!IsTentative
))
5242 ->stripPointerCasts());
5244 // Replace all uses of the old global with the new global
5245 llvm::Constant
*NewPtrForOldDecl
=
5246 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
,
5248 Entry
->replaceAllUsesWith(NewPtrForOldDecl
);
5250 // Erase the old global, since it is no longer used.
5251 cast
<llvm::GlobalValue
>(Entry
)->eraseFromParent();
5254 MaybeHandleStaticInExternC(D
, GV
);
5256 if (D
->hasAttr
<AnnotateAttr
>())
5257 AddGlobalAnnotations(D
, GV
);
5259 // Set the llvm linkage type as appropriate.
5260 llvm::GlobalValue::LinkageTypes Linkage
= getLLVMLinkageVarDefinition(D
);
5262 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5263 // the device. [...]"
5264 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5265 // __device__, declares a variable that: [...]
5266 // Is accessible from all the threads within the grid and from the host
5267 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5268 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5269 if (LangOpts
.CUDA
) {
5270 if (LangOpts
.CUDAIsDevice
) {
5271 if (Linkage
!= llvm::GlobalValue::InternalLinkage
&&
5272 (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>() ||
5273 D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
5274 D
->getType()->isCUDADeviceBuiltinTextureType()))
5275 GV
->setExternallyInitialized(true);
5277 getCUDARuntime().internalizeDeviceSideVar(D
, Linkage
);
5279 getCUDARuntime().handleVarRegistration(D
, *GV
);
5282 GV
->setInitializer(Init
);
5284 emitter
->finalize(GV
);
5286 // If it is safe to mark the global 'constant', do so now.
5287 GV
->setConstant(!NeedsGlobalCtor
&& !NeedsGlobalDtor
&&
5288 D
->getType().isConstantStorage(getContext(), true, true));
5290 // If it is in a read-only section, mark it 'constant'.
5291 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>()) {
5292 const ASTContext::SectionInfo
&SI
= Context
.SectionInfos
[SA
->getName()];
5293 if ((SI
.SectionFlags
& ASTContext::PSF_Write
) == 0)
5294 GV
->setConstant(true);
5297 CharUnits AlignVal
= getContext().getDeclAlign(D
);
5298 // Check for alignment specifed in an 'omp allocate' directive.
5299 if (std::optional
<CharUnits
> AlignValFromAllocate
=
5300 getOMPAllocateAlignment(D
))
5301 AlignVal
= *AlignValFromAllocate
;
5302 GV
->setAlignment(AlignVal
.getAsAlign());
5304 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5305 // function is only defined alongside the variable, not also alongside
5306 // callers. Normally, all accesses to a thread_local go through the
5307 // thread-wrapper in order to ensure initialization has occurred, underlying
5308 // variable will never be used other than the thread-wrapper, so it can be
5309 // converted to internal linkage.
5311 // However, if the variable has the 'constinit' attribute, it _can_ be
5312 // referenced directly, without calling the thread-wrapper, so the linkage
5313 // must not be changed.
5315 // Additionally, if the variable isn't plain external linkage, e.g. if it's
5316 // weak or linkonce, the de-duplication semantics are important to preserve,
5317 // so we don't change the linkage.
5318 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
&&
5319 Linkage
== llvm::GlobalValue::ExternalLinkage
&&
5320 Context
.getTargetInfo().getTriple().isOSDarwin() &&
5321 !D
->hasAttr
<ConstInitAttr
>())
5322 Linkage
= llvm::GlobalValue::InternalLinkage
;
5324 GV
->setLinkage(Linkage
);
5325 if (D
->hasAttr
<DLLImportAttr
>())
5326 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
5327 else if (D
->hasAttr
<DLLExportAttr
>())
5328 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass
);
5330 GV
->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass
);
5332 if (Linkage
== llvm::GlobalVariable::CommonLinkage
) {
5333 // common vars aren't constant even if declared const.
5334 GV
->setConstant(false);
5335 // Tentative definition of global variables may be initialized with
5336 // non-zero null pointers. In this case they should have weak linkage
5337 // since common linkage must have zero initializer and must not have
5338 // explicit section therefore cannot have non-zero initial value.
5339 if (!GV
->getInitializer()->isNullValue())
5340 GV
->setLinkage(llvm::GlobalVariable::WeakAnyLinkage
);
5343 setNonAliasAttributes(D
, GV
);
5345 if (D
->getTLSKind() && !GV
->isThreadLocal()) {
5346 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
)
5347 CXXThreadLocals
.push_back(D
);
5351 maybeSetTrivialComdat(*D
, *GV
);
5353 // Emit the initializer function if necessary.
5354 if (NeedsGlobalCtor
|| NeedsGlobalDtor
)
5355 EmitCXXGlobalVarDeclInitFunc(D
, GV
, NeedsGlobalCtor
);
5357 SanitizerMD
->reportGlobal(GV
, *D
, NeedsGlobalCtor
);
5359 // Emit global variable debug information.
5360 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5361 if (getCodeGenOpts().hasReducedDebugInfo())
5362 DI
->EmitGlobalVariable(GV
, D
);
5365 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl
*D
) {
5366 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5367 if (getCodeGenOpts().hasReducedDebugInfo()) {
5368 QualType ASTTy
= D
->getType();
5369 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(D
->getType());
5370 llvm::Constant
*GV
=
5371 GetOrCreateLLVMGlobal(D
->getName(), Ty
, ASTTy
.getAddressSpace(), D
);
5372 DI
->EmitExternalVariable(
5373 cast
<llvm::GlobalVariable
>(GV
->stripPointerCasts()), D
);
5377 static bool isVarDeclStrongDefinition(const ASTContext
&Context
,
5378 CodeGenModule
&CGM
, const VarDecl
*D
,
5380 // Don't give variables common linkage if -fno-common was specified unless it
5381 // was overridden by a NoCommon attribute.
5382 if ((NoCommon
|| D
->hasAttr
<NoCommonAttr
>()) && !D
->hasAttr
<CommonAttr
>())
5386 // A declaration of an identifier for an object that has file scope without
5387 // an initializer, and without a storage-class specifier or with the
5388 // storage-class specifier static, constitutes a tentative definition.
5389 if (D
->getInit() || D
->hasExternalStorage())
5392 // A variable cannot be both common and exist in a section.
5393 if (D
->hasAttr
<SectionAttr
>())
5396 // A variable cannot be both common and exist in a section.
5397 // We don't try to determine which is the right section in the front-end.
5398 // If no specialized section name is applicable, it will resort to default.
5399 if (D
->hasAttr
<PragmaClangBSSSectionAttr
>() ||
5400 D
->hasAttr
<PragmaClangDataSectionAttr
>() ||
5401 D
->hasAttr
<PragmaClangRelroSectionAttr
>() ||
5402 D
->hasAttr
<PragmaClangRodataSectionAttr
>())
5405 // Thread local vars aren't considered common linkage.
5406 if (D
->getTLSKind())
5409 // Tentative definitions marked with WeakImportAttr are true definitions.
5410 if (D
->hasAttr
<WeakImportAttr
>())
5413 // A variable cannot be both common and exist in a comdat.
5414 if (shouldBeInCOMDAT(CGM
, *D
))
5417 // Declarations with a required alignment do not have common linkage in MSVC
5419 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
5420 if (D
->hasAttr
<AlignedAttr
>())
5422 QualType VarType
= D
->getType();
5423 if (Context
.isAlignmentRequired(VarType
))
5426 if (const auto *RT
= VarType
->getAs
<RecordType
>()) {
5427 const RecordDecl
*RD
= RT
->getDecl();
5428 for (const FieldDecl
*FD
: RD
->fields()) {
5429 if (FD
->isBitField())
5431 if (FD
->hasAttr
<AlignedAttr
>())
5433 if (Context
.isAlignmentRequired(FD
->getType()))
5439 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5440 // common symbols, so symbols with greater alignment requirements cannot be
5442 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5443 // alignments for common symbols via the aligncomm directive, so this
5444 // restriction only applies to MSVC environments.
5445 if (Context
.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5446 Context
.getTypeAlignIfKnown(D
->getType()) >
5447 Context
.toBits(CharUnits::fromQuantity(32)))
5453 llvm::GlobalValue::LinkageTypes
5454 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl
*D
,
5455 GVALinkage Linkage
) {
5456 if (Linkage
== GVA_Internal
)
5457 return llvm::Function::InternalLinkage
;
5459 if (D
->hasAttr
<WeakAttr
>())
5460 return llvm::GlobalVariable::WeakAnyLinkage
;
5462 if (const auto *FD
= D
->getAsFunction())
5463 if (FD
->isMultiVersion() && Linkage
== GVA_AvailableExternally
)
5464 return llvm::GlobalVariable::LinkOnceAnyLinkage
;
5466 // We are guaranteed to have a strong definition somewhere else,
5467 // so we can use available_externally linkage.
5468 if (Linkage
== GVA_AvailableExternally
)
5469 return llvm::GlobalValue::AvailableExternallyLinkage
;
5471 // Note that Apple's kernel linker doesn't support symbol
5472 // coalescing, so we need to avoid linkonce and weak linkages there.
5473 // Normally, this means we just map to internal, but for explicit
5474 // instantiations we'll map to external.
5476 // In C++, the compiler has to emit a definition in every translation unit
5477 // that references the function. We should use linkonce_odr because
5478 // a) if all references in this translation unit are optimized away, we
5479 // don't need to codegen it. b) if the function persists, it needs to be
5480 // merged with other definitions. c) C++ has the ODR, so we know the
5481 // definition is dependable.
5482 if (Linkage
== GVA_DiscardableODR
)
5483 return !Context
.getLangOpts().AppleKext
? llvm::Function::LinkOnceODRLinkage
5484 : llvm::Function::InternalLinkage
;
5486 // An explicit instantiation of a template has weak linkage, since
5487 // explicit instantiations can occur in multiple translation units
5488 // and must all be equivalent. However, we are not allowed to
5489 // throw away these explicit instantiations.
5491 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5492 // so say that CUDA templates are either external (for kernels) or internal.
5493 // This lets llvm perform aggressive inter-procedural optimizations. For
5494 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5495 // therefore we need to follow the normal linkage paradigm.
5496 if (Linkage
== GVA_StrongODR
) {
5497 if (getLangOpts().AppleKext
)
5498 return llvm::Function::ExternalLinkage
;
5499 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
&&
5500 !getLangOpts().GPURelocatableDeviceCode
)
5501 return D
->hasAttr
<CUDAGlobalAttr
>() ? llvm::Function::ExternalLinkage
5502 : llvm::Function::InternalLinkage
;
5503 return llvm::Function::WeakODRLinkage
;
5506 // C++ doesn't have tentative definitions and thus cannot have common
5508 if (!getLangOpts().CPlusPlus
&& isa
<VarDecl
>(D
) &&
5509 !isVarDeclStrongDefinition(Context
, *this, cast
<VarDecl
>(D
),
5510 CodeGenOpts
.NoCommon
))
5511 return llvm::GlobalVariable::CommonLinkage
;
5513 // selectany symbols are externally visible, so use weak instead of
5514 // linkonce. MSVC optimizes away references to const selectany globals, so
5515 // all definitions should be the same and ODR linkage should be used.
5516 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5517 if (D
->hasAttr
<SelectAnyAttr
>())
5518 return llvm::GlobalVariable::WeakODRLinkage
;
5520 // Otherwise, we have strong external linkage.
5521 assert(Linkage
== GVA_StrongExternal
);
5522 return llvm::GlobalVariable::ExternalLinkage
;
5525 llvm::GlobalValue::LinkageTypes
5526 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl
*VD
) {
5527 GVALinkage Linkage
= getContext().GetGVALinkageForVariable(VD
);
5528 return getLLVMLinkageForDeclarator(VD
, Linkage
);
5531 /// Replace the uses of a function that was declared with a non-proto type.
5532 /// We want to silently drop extra arguments from call sites
5533 static void replaceUsesOfNonProtoConstant(llvm::Constant
*old
,
5534 llvm::Function
*newFn
) {
5536 if (old
->use_empty()) return;
5538 llvm::Type
*newRetTy
= newFn
->getReturnType();
5539 SmallVector
<llvm::Value
*, 4> newArgs
;
5541 for (llvm::Value::use_iterator ui
= old
->use_begin(), ue
= old
->use_end();
5543 llvm::Value::use_iterator use
= ui
++; // Increment before the use is erased.
5544 llvm::User
*user
= use
->getUser();
5546 // Recognize and replace uses of bitcasts. Most calls to
5547 // unprototyped functions will use bitcasts.
5548 if (auto *bitcast
= dyn_cast
<llvm::ConstantExpr
>(user
)) {
5549 if (bitcast
->getOpcode() == llvm::Instruction::BitCast
)
5550 replaceUsesOfNonProtoConstant(bitcast
, newFn
);
5554 // Recognize calls to the function.
5555 llvm::CallBase
*callSite
= dyn_cast
<llvm::CallBase
>(user
);
5556 if (!callSite
) continue;
5557 if (!callSite
->isCallee(&*use
))
5560 // If the return types don't match exactly, then we can't
5561 // transform this call unless it's dead.
5562 if (callSite
->getType() != newRetTy
&& !callSite
->use_empty())
5565 // Get the call site's attribute list.
5566 SmallVector
<llvm::AttributeSet
, 8> newArgAttrs
;
5567 llvm::AttributeList oldAttrs
= callSite
->getAttributes();
5569 // If the function was passed too few arguments, don't transform.
5570 unsigned newNumArgs
= newFn
->arg_size();
5571 if (callSite
->arg_size() < newNumArgs
)
5574 // If extra arguments were passed, we silently drop them.
5575 // If any of the types mismatch, we don't transform.
5577 bool dontTransform
= false;
5578 for (llvm::Argument
&A
: newFn
->args()) {
5579 if (callSite
->getArgOperand(argNo
)->getType() != A
.getType()) {
5580 dontTransform
= true;
5584 // Add any parameter attributes.
5585 newArgAttrs
.push_back(oldAttrs
.getParamAttrs(argNo
));
5591 // Okay, we can transform this. Create the new call instruction and copy
5592 // over the required information.
5593 newArgs
.append(callSite
->arg_begin(), callSite
->arg_begin() + argNo
);
5595 // Copy over any operand bundles.
5596 SmallVector
<llvm::OperandBundleDef
, 1> newBundles
;
5597 callSite
->getOperandBundlesAsDefs(newBundles
);
5599 llvm::CallBase
*newCall
;
5600 if (isa
<llvm::CallInst
>(callSite
)) {
5602 llvm::CallInst::Create(newFn
, newArgs
, newBundles
, "", callSite
);
5604 auto *oldInvoke
= cast
<llvm::InvokeInst
>(callSite
);
5605 newCall
= llvm::InvokeInst::Create(newFn
, oldInvoke
->getNormalDest(),
5606 oldInvoke
->getUnwindDest(), newArgs
,
5607 newBundles
, "", callSite
);
5609 newArgs
.clear(); // for the next iteration
5611 if (!newCall
->getType()->isVoidTy())
5612 newCall
->takeName(callSite
);
5613 newCall
->setAttributes(
5614 llvm::AttributeList::get(newFn
->getContext(), oldAttrs
.getFnAttrs(),
5615 oldAttrs
.getRetAttrs(), newArgAttrs
));
5616 newCall
->setCallingConv(callSite
->getCallingConv());
5618 // Finally, remove the old call, replacing any uses with the new one.
5619 if (!callSite
->use_empty())
5620 callSite
->replaceAllUsesWith(newCall
);
5622 // Copy debug location attached to CI.
5623 if (callSite
->getDebugLoc())
5624 newCall
->setDebugLoc(callSite
->getDebugLoc());
5626 callSite
->eraseFromParent();
5630 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5631 /// implement a function with no prototype, e.g. "int foo() {}". If there are
5632 /// existing call uses of the old function in the module, this adjusts them to
5633 /// call the new function directly.
5635 /// This is not just a cleanup: the always_inline pass requires direct calls to
5636 /// functions to be able to inline them. If there is a bitcast in the way, it
5637 /// won't inline them. Instcombine normally deletes these calls, but it isn't
5639 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue
*Old
,
5640 llvm::Function
*NewFn
) {
5641 // If we're redefining a global as a function, don't transform it.
5642 if (!isa
<llvm::Function
>(Old
)) return;
5644 replaceUsesOfNonProtoConstant(Old
, NewFn
);
5647 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl
*VD
) {
5648 auto DK
= VD
->isThisDeclarationADefinition();
5649 if (DK
== VarDecl::Definition
&& VD
->hasAttr
<DLLImportAttr
>())
5652 TemplateSpecializationKind TSK
= VD
->getTemplateSpecializationKind();
5653 // If we have a definition, this might be a deferred decl. If the
5654 // instantiation is explicit, make sure we emit it at the end.
5655 if (VD
->getDefinition() && TSK
== TSK_ExplicitInstantiationDefinition
)
5656 GetAddrOfGlobalVar(VD
);
5658 EmitTopLevelDecl(VD
);
5661 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD
,
5662 llvm::GlobalValue
*GV
) {
5663 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
5665 // Compute the function info and LLVM type.
5666 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
5667 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
5669 // Get or create the prototype for the function.
5670 if (!GV
|| (GV
->getValueType() != Ty
))
5671 GV
= cast
<llvm::GlobalValue
>(GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false,
5676 if (!GV
->isDeclaration())
5679 // We need to set linkage and visibility on the function before
5680 // generating code for it because various parts of IR generation
5681 // want to propagate this information down (e.g. to local static
5683 auto *Fn
= cast
<llvm::Function
>(GV
);
5684 setFunctionLinkage(GD
, Fn
);
5686 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5687 setGVProperties(Fn
, GD
);
5689 MaybeHandleStaticInExternC(D
, Fn
);
5691 maybeSetTrivialComdat(*D
, *Fn
);
5693 CodeGenFunction(*this).GenerateCode(GD
, Fn
, FI
);
5695 setNonAliasAttributes(GD
, Fn
);
5696 SetLLVMFunctionAttributesForDefinition(D
, Fn
);
5698 if (const ConstructorAttr
*CA
= D
->getAttr
<ConstructorAttr
>())
5699 AddGlobalCtor(Fn
, CA
->getPriority());
5700 if (const DestructorAttr
*DA
= D
->getAttr
<DestructorAttr
>())
5701 AddGlobalDtor(Fn
, DA
->getPriority(), true);
5702 if (D
->hasAttr
<AnnotateAttr
>())
5703 AddGlobalAnnotations(D
, Fn
);
5704 if (getLangOpts().OpenMP
&& D
->hasAttr
<OMPDeclareTargetDeclAttr
>())
5705 getOpenMPRuntime().emitDeclareTargetFunction(D
, GV
);
5708 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD
) {
5709 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
5710 const AliasAttr
*AA
= D
->getAttr
<AliasAttr
>();
5711 assert(AA
&& "Not an alias?");
5713 StringRef MangledName
= getMangledName(GD
);
5715 if (AA
->getAliasee() == MangledName
) {
5716 Diags
.Report(AA
->getLocation(), diag::err_cyclic_alias
) << 0;
5720 // If there is a definition in the module, then it wins over the alias.
5721 // This is dubious, but allow it to be safe. Just ignore the alias.
5722 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
5723 if (Entry
&& !Entry
->isDeclaration())
5726 Aliases
.push_back(GD
);
5728 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(D
->getType());
5730 // Create a reference to the named value. This ensures that it is emitted
5731 // if a deferred decl.
5732 llvm::Constant
*Aliasee
;
5733 llvm::GlobalValue::LinkageTypes LT
;
5734 if (isa
<llvm::FunctionType
>(DeclTy
)) {
5735 Aliasee
= GetOrCreateLLVMFunction(AA
->getAliasee(), DeclTy
, GD
,
5736 /*ForVTable=*/false);
5737 LT
= getFunctionLinkage(GD
);
5739 Aliasee
= GetOrCreateLLVMGlobal(AA
->getAliasee(), DeclTy
, LangAS::Default
,
5741 if (const auto *VD
= dyn_cast
<VarDecl
>(GD
.getDecl()))
5742 LT
= getLLVMLinkageVarDefinition(VD
);
5744 LT
= getFunctionLinkage(GD
);
5747 // Create the new alias itself, but don't set a name yet.
5748 unsigned AS
= Aliasee
->getType()->getPointerAddressSpace();
5750 llvm::GlobalAlias::create(DeclTy
, AS
, LT
, "", Aliasee
, &getModule());
5753 if (GA
->getAliasee() == Entry
) {
5754 Diags
.Report(AA
->getLocation(), diag::err_cyclic_alias
) << 0;
5758 assert(Entry
->isDeclaration());
5760 // If there is a declaration in the module, then we had an extern followed
5761 // by the alias, as in:
5762 // extern int test6();
5764 // int test6() __attribute__((alias("test7")));
5766 // Remove it and replace uses of it with the alias.
5767 GA
->takeName(Entry
);
5769 Entry
->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA
,
5771 Entry
->eraseFromParent();
5773 GA
->setName(MangledName
);
5776 // Set attributes which are particular to an alias; this is a
5777 // specialization of the attributes which may be set on a global
5778 // variable/function.
5779 if (D
->hasAttr
<WeakAttr
>() || D
->hasAttr
<WeakRefAttr
>() ||
5780 D
->isWeakImported()) {
5781 GA
->setLinkage(llvm::Function::WeakAnyLinkage
);
5784 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
5785 if (VD
->getTLSKind())
5786 setTLSMode(GA
, *VD
);
5788 SetCommonAttributes(GD
, GA
);
5790 // Emit global alias debug information.
5791 if (isa
<VarDecl
>(D
))
5792 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5793 DI
->EmitGlobalAlias(cast
<llvm::GlobalValue
>(GA
->getAliasee()->stripPointerCasts()), GD
);
5796 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD
) {
5797 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
5798 const IFuncAttr
*IFA
= D
->getAttr
<IFuncAttr
>();
5799 assert(IFA
&& "Not an ifunc?");
5801 StringRef MangledName
= getMangledName(GD
);
5803 if (IFA
->getResolver() == MangledName
) {
5804 Diags
.Report(IFA
->getLocation(), diag::err_cyclic_alias
) << 1;
5808 // Report an error if some definition overrides ifunc.
5809 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
5810 if (Entry
&& !Entry
->isDeclaration()) {
5812 if (lookupRepresentativeDecl(MangledName
, OtherGD
) &&
5813 DiagnosedConflictingDefinitions
.insert(GD
).second
) {
5814 Diags
.Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
5816 Diags
.Report(OtherGD
.getDecl()->getLocation(),
5817 diag::note_previous_definition
);
5822 Aliases
.push_back(GD
);
5824 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(D
->getType());
5825 llvm::Type
*ResolverTy
= llvm::GlobalIFunc::getResolverFunctionType(DeclTy
);
5826 llvm::Constant
*Resolver
=
5827 GetOrCreateLLVMFunction(IFA
->getResolver(), ResolverTy
, {},
5828 /*ForVTable=*/false);
5829 llvm::GlobalIFunc
*GIF
=
5830 llvm::GlobalIFunc::create(DeclTy
, 0, llvm::Function::ExternalLinkage
,
5831 "", Resolver
, &getModule());
5833 if (GIF
->getResolver() == Entry
) {
5834 Diags
.Report(IFA
->getLocation(), diag::err_cyclic_alias
) << 1;
5837 assert(Entry
->isDeclaration());
5839 // If there is a declaration in the module, then we had an extern followed
5840 // by the ifunc, as in:
5841 // extern int test();
5843 // int test() __attribute__((ifunc("resolver")));
5845 // Remove it and replace uses of it with the ifunc.
5846 GIF
->takeName(Entry
);
5848 Entry
->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF
,
5850 Entry
->eraseFromParent();
5852 GIF
->setName(MangledName
);
5853 if (auto *F
= dyn_cast
<llvm::Function
>(Resolver
)) {
5854 F
->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation
);
5856 SetCommonAttributes(GD
, GIF
);
5859 llvm::Function
*CodeGenModule::getIntrinsic(unsigned IID
,
5860 ArrayRef
<llvm::Type
*> Tys
) {
5861 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID
)IID
,
5865 static llvm::StringMapEntry
<llvm::GlobalVariable
*> &
5866 GetConstantCFStringEntry(llvm::StringMap
<llvm::GlobalVariable
*> &Map
,
5867 const StringLiteral
*Literal
, bool TargetIsLSB
,
5868 bool &IsUTF16
, unsigned &StringLength
) {
5869 StringRef String
= Literal
->getString();
5870 unsigned NumBytes
= String
.size();
5872 // Check for simple case.
5873 if (!Literal
->containsNonAsciiOrNull()) {
5874 StringLength
= NumBytes
;
5875 return *Map
.insert(std::make_pair(String
, nullptr)).first
;
5878 // Otherwise, convert the UTF8 literals into a string of shorts.
5881 SmallVector
<llvm::UTF16
, 128> ToBuf(NumBytes
+ 1); // +1 for ending nulls.
5882 const llvm::UTF8
*FromPtr
= (const llvm::UTF8
*)String
.data();
5883 llvm::UTF16
*ToPtr
= &ToBuf
[0];
5885 (void)llvm::ConvertUTF8toUTF16(&FromPtr
, FromPtr
+ NumBytes
, &ToPtr
,
5886 ToPtr
+ NumBytes
, llvm::strictConversion
);
5888 // ConvertUTF8toUTF16 returns the length in ToPtr.
5889 StringLength
= ToPtr
- &ToBuf
[0];
5891 // Add an explicit null.
5893 return *Map
.insert(std::make_pair(
5894 StringRef(reinterpret_cast<const char *>(ToBuf
.data()),
5895 (StringLength
+ 1) * 2),
5900 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral
*Literal
) {
5901 unsigned StringLength
= 0;
5902 bool isUTF16
= false;
5903 llvm::StringMapEntry
<llvm::GlobalVariable
*> &Entry
=
5904 GetConstantCFStringEntry(CFConstantStringMap
, Literal
,
5905 getDataLayout().isLittleEndian(), isUTF16
,
5908 if (auto *C
= Entry
.second
)
5909 return ConstantAddress(
5910 C
, C
->getValueType(), CharUnits::fromQuantity(C
->getAlignment()));
5912 llvm::Constant
*Zero
= llvm::Constant::getNullValue(Int32Ty
);
5913 llvm::Constant
*Zeros
[] = { Zero
, Zero
};
5915 const ASTContext
&Context
= getContext();
5916 const llvm::Triple
&Triple
= getTriple();
5918 const auto CFRuntime
= getLangOpts().CFRuntime
;
5919 const bool IsSwiftABI
=
5920 static_cast<unsigned>(CFRuntime
) >=
5921 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift
);
5922 const bool IsSwift4_1
= CFRuntime
== LangOptions::CoreFoundationABI::Swift4_1
;
5924 // If we don't already have it, get __CFConstantStringClassReference.
5925 if (!CFConstantStringClassRef
) {
5926 const char *CFConstantStringClassName
= "__CFConstantStringClassReference";
5927 llvm::Type
*Ty
= getTypes().ConvertType(getContext().IntTy
);
5928 Ty
= llvm::ArrayType::get(Ty
, 0);
5930 switch (CFRuntime
) {
5932 case LangOptions::CoreFoundationABI::Swift
: [[fallthrough
]];
5933 case LangOptions::CoreFoundationABI::Swift5_0
:
5934 CFConstantStringClassName
=
5935 Triple
.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5936 : "$s10Foundation19_NSCFConstantStringCN";
5939 case LangOptions::CoreFoundationABI::Swift4_2
:
5940 CFConstantStringClassName
=
5941 Triple
.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5942 : "$S10Foundation19_NSCFConstantStringCN";
5945 case LangOptions::CoreFoundationABI::Swift4_1
:
5946 CFConstantStringClassName
=
5947 Triple
.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5948 : "__T010Foundation19_NSCFConstantStringCN";
5953 llvm::Constant
*C
= CreateRuntimeVariable(Ty
, CFConstantStringClassName
);
5955 if (Triple
.isOSBinFormatELF() || Triple
.isOSBinFormatCOFF()) {
5956 llvm::GlobalValue
*GV
= nullptr;
5958 if ((GV
= dyn_cast
<llvm::GlobalValue
>(C
))) {
5959 IdentifierInfo
&II
= Context
.Idents
.get(GV
->getName());
5960 TranslationUnitDecl
*TUDecl
= Context
.getTranslationUnitDecl();
5961 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
5963 const VarDecl
*VD
= nullptr;
5964 for (const auto *Result
: DC
->lookup(&II
))
5965 if ((VD
= dyn_cast
<VarDecl
>(Result
)))
5968 if (Triple
.isOSBinFormatELF()) {
5970 GV
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
5972 GV
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
5973 if (!VD
|| !VD
->hasAttr
<DLLExportAttr
>())
5974 GV
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
5976 GV
->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass
);
5983 // Decay array -> ptr
5984 CFConstantStringClassRef
=
5985 IsSwiftABI
? llvm::ConstantExpr::getPtrToInt(C
, Ty
)
5986 : llvm::ConstantExpr::getGetElementPtr(Ty
, C
, Zeros
);
5989 QualType CFTy
= Context
.getCFConstantStringType();
5991 auto *STy
= cast
<llvm::StructType
>(getTypes().ConvertType(CFTy
));
5993 ConstantInitBuilder
Builder(*this);
5994 auto Fields
= Builder
.beginStruct(STy
);
5997 Fields
.add(cast
<llvm::Constant
>(CFConstantStringClassRef
));
6001 Fields
.addInt(IntPtrTy
, IsSwift4_1
? 0x05 : 0x01);
6002 Fields
.addInt(Int64Ty
, isUTF16
? 0x07d0 : 0x07c8);
6004 Fields
.addInt(IntTy
, isUTF16
? 0x07d0 : 0x07C8);
6008 llvm::Constant
*C
= nullptr;
6010 auto Arr
= llvm::ArrayRef(
6011 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry
.first().data())),
6012 Entry
.first().size() / 2);
6013 C
= llvm::ConstantDataArray::get(VMContext
, Arr
);
6015 C
= llvm::ConstantDataArray::getString(VMContext
, Entry
.first());
6018 // Note: -fwritable-strings doesn't make the backing store strings of
6019 // CFStrings writable.
6021 new llvm::GlobalVariable(getModule(), C
->getType(), /*isConstant=*/true,
6022 llvm::GlobalValue::PrivateLinkage
, C
, ".str");
6023 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
6024 // Don't enforce the target's minimum global alignment, since the only use
6025 // of the string is via this class initializer.
6026 CharUnits Align
= isUTF16
? Context
.getTypeAlignInChars(Context
.ShortTy
)
6027 : Context
.getTypeAlignInChars(Context
.CharTy
);
6028 GV
->setAlignment(Align
.getAsAlign());
6030 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6031 // Without it LLVM can merge the string with a non unnamed_addr one during
6032 // LTO. Doing that changes the section it ends in, which surprises ld64.
6033 if (Triple
.isOSBinFormatMachO())
6034 GV
->setSection(isUTF16
? "__TEXT,__ustring"
6035 : "__TEXT,__cstring,cstring_literals");
6036 // Make sure the literal ends up in .rodata to allow for safe ICF and for
6037 // the static linker to adjust permissions to read-only later on.
6038 else if (Triple
.isOSBinFormatELF())
6039 GV
->setSection(".rodata");
6042 llvm::Constant
*Str
=
6043 llvm::ConstantExpr::getGetElementPtr(GV
->getValueType(), GV
, Zeros
);
6046 // Cast the UTF16 string to the correct type.
6047 Str
= llvm::ConstantExpr::getBitCast(Str
, Int8PtrTy
);
6051 llvm::IntegerType
*LengthTy
=
6052 llvm::IntegerType::get(getModule().getContext(),
6053 Context
.getTargetInfo().getLongWidth());
6055 if (CFRuntime
== LangOptions::CoreFoundationABI::Swift4_1
||
6056 CFRuntime
== LangOptions::CoreFoundationABI::Swift4_2
)
6059 LengthTy
= IntPtrTy
;
6061 Fields
.addInt(LengthTy
, StringLength
);
6063 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6064 // properly aligned on 32-bit platforms.
6065 CharUnits Alignment
=
6066 IsSwiftABI
? Context
.toCharUnitsFromBits(64) : getPointerAlign();
6069 GV
= Fields
.finishAndCreateGlobal("_unnamed_cfstring_", Alignment
,
6070 /*isConstant=*/false,
6071 llvm::GlobalVariable::PrivateLinkage
);
6072 GV
->addAttribute("objc_arc_inert");
6073 switch (Triple
.getObjectFormat()) {
6074 case llvm::Triple::UnknownObjectFormat
:
6075 llvm_unreachable("unknown file format");
6076 case llvm::Triple::DXContainer
:
6077 case llvm::Triple::GOFF
:
6078 case llvm::Triple::SPIRV
:
6079 case llvm::Triple::XCOFF
:
6080 llvm_unreachable("unimplemented");
6081 case llvm::Triple::COFF
:
6082 case llvm::Triple::ELF
:
6083 case llvm::Triple::Wasm
:
6084 GV
->setSection("cfstring");
6086 case llvm::Triple::MachO
:
6087 GV
->setSection("__DATA,__cfstring");
6092 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
6095 bool CodeGenModule::getExpressionLocationsEnabled() const {
6096 return !CodeGenOpts
.EmitCodeView
|| CodeGenOpts
.DebugColumnInfo
;
6099 QualType
CodeGenModule::getObjCFastEnumerationStateType() {
6100 if (ObjCFastEnumerationStateType
.isNull()) {
6101 RecordDecl
*D
= Context
.buildImplicitRecord("__objcFastEnumerationState");
6102 D
->startDefinition();
6104 QualType FieldTypes
[] = {
6105 Context
.UnsignedLongTy
, Context
.getPointerType(Context
.getObjCIdType()),
6106 Context
.getPointerType(Context
.UnsignedLongTy
),
6107 Context
.getConstantArrayType(Context
.UnsignedLongTy
, llvm::APInt(32, 5),
6108 nullptr, ArraySizeModifier::Normal
, 0)};
6110 for (size_t i
= 0; i
< 4; ++i
) {
6111 FieldDecl
*Field
= FieldDecl::Create(Context
,
6114 SourceLocation(), nullptr,
6115 FieldTypes
[i
], /*TInfo=*/nullptr,
6116 /*BitWidth=*/nullptr,
6119 Field
->setAccess(AS_public
);
6123 D
->completeDefinition();
6124 ObjCFastEnumerationStateType
= Context
.getTagDeclType(D
);
6127 return ObjCFastEnumerationStateType
;
6131 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral
*E
) {
6132 assert(!E
->getType()->isPointerType() && "Strings are always arrays");
6134 // Don't emit it as the address of the string, emit the string data itself
6135 // as an inline array.
6136 if (E
->getCharByteWidth() == 1) {
6137 SmallString
<64> Str(E
->getString());
6139 // Resize the string to the right size, which is indicated by its type.
6140 const ConstantArrayType
*CAT
= Context
.getAsConstantArrayType(E
->getType());
6141 assert(CAT
&& "String literal not of constant array type!");
6142 Str
.resize(CAT
->getSize().getZExtValue());
6143 return llvm::ConstantDataArray::getString(VMContext
, Str
, false);
6146 auto *AType
= cast
<llvm::ArrayType
>(getTypes().ConvertType(E
->getType()));
6147 llvm::Type
*ElemTy
= AType
->getElementType();
6148 unsigned NumElements
= AType
->getNumElements();
6150 // Wide strings have either 2-byte or 4-byte elements.
6151 if (ElemTy
->getPrimitiveSizeInBits() == 16) {
6152 SmallVector
<uint16_t, 32> Elements
;
6153 Elements
.reserve(NumElements
);
6155 for(unsigned i
= 0, e
= E
->getLength(); i
!= e
; ++i
)
6156 Elements
.push_back(E
->getCodeUnit(i
));
6157 Elements
.resize(NumElements
);
6158 return llvm::ConstantDataArray::get(VMContext
, Elements
);
6161 assert(ElemTy
->getPrimitiveSizeInBits() == 32);
6162 SmallVector
<uint32_t, 32> Elements
;
6163 Elements
.reserve(NumElements
);
6165 for(unsigned i
= 0, e
= E
->getLength(); i
!= e
; ++i
)
6166 Elements
.push_back(E
->getCodeUnit(i
));
6167 Elements
.resize(NumElements
);
6168 return llvm::ConstantDataArray::get(VMContext
, Elements
);
6171 static llvm::GlobalVariable
*
6172 GenerateStringLiteral(llvm::Constant
*C
, llvm::GlobalValue::LinkageTypes LT
,
6173 CodeGenModule
&CGM
, StringRef GlobalName
,
6174 CharUnits Alignment
) {
6175 unsigned AddrSpace
= CGM
.getContext().getTargetAddressSpace(
6176 CGM
.GetGlobalConstantAddressSpace());
6178 llvm::Module
&M
= CGM
.getModule();
6179 // Create a global variable for this string
6180 auto *GV
= new llvm::GlobalVariable(
6181 M
, C
->getType(), !CGM
.getLangOpts().WritableStrings
, LT
, C
, GlobalName
,
6182 nullptr, llvm::GlobalVariable::NotThreadLocal
, AddrSpace
);
6183 GV
->setAlignment(Alignment
.getAsAlign());
6184 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
6185 if (GV
->isWeakForLinker()) {
6186 assert(CGM
.supportsCOMDAT() && "Only COFF uses weak string literals");
6187 GV
->setComdat(M
.getOrInsertComdat(GV
->getName()));
6189 CGM
.setDSOLocal(GV
);
6194 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6195 /// constant array for the given string literal.
6197 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral
*S
,
6199 CharUnits Alignment
= getContext().getAlignOfGlobalVarInChars(S
->getType());
6201 llvm::Constant
*C
= GetConstantArrayFromStringLiteral(S
);
6202 llvm::GlobalVariable
**Entry
= nullptr;
6203 if (!LangOpts
.WritableStrings
) {
6204 Entry
= &ConstantStringMap
[C
];
6205 if (auto GV
= *Entry
) {
6206 if (uint64_t(Alignment
.getQuantity()) > GV
->getAlignment())
6207 GV
->setAlignment(Alignment
.getAsAlign());
6208 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6209 GV
->getValueType(), Alignment
);
6213 SmallString
<256> MangledNameBuffer
;
6214 StringRef GlobalVariableName
;
6215 llvm::GlobalValue::LinkageTypes LT
;
6217 // Mangle the string literal if that's how the ABI merges duplicate strings.
6218 // Don't do it if they are writable, since we don't want writes in one TU to
6219 // affect strings in another.
6220 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S
) &&
6221 !LangOpts
.WritableStrings
) {
6222 llvm::raw_svector_ostream
Out(MangledNameBuffer
);
6223 getCXXABI().getMangleContext().mangleStringLiteral(S
, Out
);
6224 LT
= llvm::GlobalValue::LinkOnceODRLinkage
;
6225 GlobalVariableName
= MangledNameBuffer
;
6227 LT
= llvm::GlobalValue::PrivateLinkage
;
6228 GlobalVariableName
= Name
;
6231 auto GV
= GenerateStringLiteral(C
, LT
, *this, GlobalVariableName
, Alignment
);
6233 CGDebugInfo
*DI
= getModuleDebugInfo();
6234 if (DI
&& getCodeGenOpts().hasReducedDebugInfo())
6235 DI
->AddStringLiteralDebugInfo(GV
, S
);
6240 SanitizerMD
->reportGlobal(GV
, S
->getStrTokenLoc(0), "<string literal>");
6242 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6243 GV
->getValueType(), Alignment
);
6246 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6247 /// array for the given ObjCEncodeExpr node.
6249 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr
*E
) {
6251 getContext().getObjCEncodingForType(E
->getEncodedType(), Str
);
6253 return GetAddrOfConstantCString(Str
);
6256 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6257 /// the literal and a terminating '\0' character.
6258 /// The result has pointer to array type.
6259 ConstantAddress
CodeGenModule::GetAddrOfConstantCString(
6260 const std::string
&Str
, const char *GlobalName
) {
6261 StringRef
StrWithNull(Str
.c_str(), Str
.size() + 1);
6262 CharUnits Alignment
=
6263 getContext().getAlignOfGlobalVarInChars(getContext().CharTy
);
6266 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull
, false);
6268 // Don't share any string literals if strings aren't constant.
6269 llvm::GlobalVariable
**Entry
= nullptr;
6270 if (!LangOpts
.WritableStrings
) {
6271 Entry
= &ConstantStringMap
[C
];
6272 if (auto GV
= *Entry
) {
6273 if (uint64_t(Alignment
.getQuantity()) > GV
->getAlignment())
6274 GV
->setAlignment(Alignment
.getAsAlign());
6275 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6276 GV
->getValueType(), Alignment
);
6280 // Get the default prefix if a name wasn't specified.
6282 GlobalName
= ".str";
6283 // Create a global variable for this.
6284 auto GV
= GenerateStringLiteral(C
, llvm::GlobalValue::PrivateLinkage
, *this,
6285 GlobalName
, Alignment
);
6289 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6290 GV
->getValueType(), Alignment
);
6293 ConstantAddress
CodeGenModule::GetAddrOfGlobalTemporary(
6294 const MaterializeTemporaryExpr
*E
, const Expr
*Init
) {
6295 assert((E
->getStorageDuration() == SD_Static
||
6296 E
->getStorageDuration() == SD_Thread
) && "not a global temporary");
6297 const auto *VD
= cast
<VarDecl
>(E
->getExtendingDecl());
6299 // If we're not materializing a subobject of the temporary, keep the
6300 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6301 QualType MaterializedType
= Init
->getType();
6302 if (Init
== E
->getSubExpr())
6303 MaterializedType
= E
->getType();
6305 CharUnits Align
= getContext().getTypeAlignInChars(MaterializedType
);
6307 auto InsertResult
= MaterializedGlobalTemporaryMap
.insert({E
, nullptr});
6308 if (!InsertResult
.second
) {
6309 // We've seen this before: either we already created it or we're in the
6310 // process of doing so.
6311 if (!InsertResult
.first
->second
) {
6312 // We recursively re-entered this function, probably during emission of
6313 // the initializer. Create a placeholder. We'll clean this up in the
6314 // outer call, at the end of this function.
6315 llvm::Type
*Type
= getTypes().ConvertTypeForMem(MaterializedType
);
6316 InsertResult
.first
->second
= new llvm::GlobalVariable(
6317 getModule(), Type
, false, llvm::GlobalVariable::InternalLinkage
,
6320 return ConstantAddress(InsertResult
.first
->second
,
6321 llvm::cast
<llvm::GlobalVariable
>(
6322 InsertResult
.first
->second
->stripPointerCasts())
6327 // FIXME: If an externally-visible declaration extends multiple temporaries,
6328 // we need to give each temporary the same name in every translation unit (and
6329 // we also need to make the temporaries externally-visible).
6330 SmallString
<256> Name
;
6331 llvm::raw_svector_ostream
Out(Name
);
6332 getCXXABI().getMangleContext().mangleReferenceTemporary(
6333 VD
, E
->getManglingNumber(), Out
);
6335 APValue
*Value
= nullptr;
6336 if (E
->getStorageDuration() == SD_Static
&& VD
&& VD
->evaluateValue()) {
6337 // If the initializer of the extending declaration is a constant
6338 // initializer, we should have a cached constant initializer for this
6339 // temporary. Note that this might have a different value from the value
6340 // computed by evaluating the initializer if the surrounding constant
6341 // expression modifies the temporary.
6342 Value
= E
->getOrCreateValue(false);
6345 // Try evaluating it now, it might have a constant initializer.
6346 Expr::EvalResult EvalResult
;
6347 if (!Value
&& Init
->EvaluateAsRValue(EvalResult
, getContext()) &&
6348 !EvalResult
.hasSideEffects())
6349 Value
= &EvalResult
.Val
;
6352 VD
? GetGlobalVarAddressSpace(VD
) : MaterializedType
.getAddressSpace();
6354 std::optional
<ConstantEmitter
> emitter
;
6355 llvm::Constant
*InitialValue
= nullptr;
6356 bool Constant
= false;
6359 // The temporary has a constant initializer, use it.
6360 emitter
.emplace(*this);
6361 InitialValue
= emitter
->emitForInitializer(*Value
, AddrSpace
,
6364 MaterializedType
.isConstantStorage(getContext(), /*ExcludeCtor*/ Value
,
6365 /*ExcludeDtor*/ false);
6366 Type
= InitialValue
->getType();
6368 // No initializer, the initialization will be provided when we
6369 // initialize the declaration which performed lifetime extension.
6370 Type
= getTypes().ConvertTypeForMem(MaterializedType
);
6373 // Create a global variable for this lifetime-extended temporary.
6374 llvm::GlobalValue::LinkageTypes Linkage
= getLLVMLinkageVarDefinition(VD
);
6375 if (Linkage
== llvm::GlobalVariable::ExternalLinkage
) {
6376 const VarDecl
*InitVD
;
6377 if (VD
->isStaticDataMember() && VD
->getAnyInitializer(InitVD
) &&
6378 isa
<CXXRecordDecl
>(InitVD
->getLexicalDeclContext())) {
6379 // Temporaries defined inside a class get linkonce_odr linkage because the
6380 // class can be defined in multiple translation units.
6381 Linkage
= llvm::GlobalVariable::LinkOnceODRLinkage
;
6383 // There is no need for this temporary to have external linkage if the
6384 // VarDecl has external linkage.
6385 Linkage
= llvm::GlobalVariable::InternalLinkage
;
6388 auto TargetAS
= getContext().getTargetAddressSpace(AddrSpace
);
6389 auto *GV
= new llvm::GlobalVariable(
6390 getModule(), Type
, Constant
, Linkage
, InitialValue
, Name
.c_str(),
6391 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal
, TargetAS
);
6392 if (emitter
) emitter
->finalize(GV
);
6393 // Don't assign dllimport or dllexport to local linkage globals.
6394 if (!llvm::GlobalValue::isLocalLinkage(Linkage
)) {
6395 setGVProperties(GV
, VD
);
6396 if (GV
->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass
)
6397 // The reference temporary should never be dllexport.
6398 GV
->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass
);
6400 GV
->setAlignment(Align
.getAsAlign());
6401 if (supportsCOMDAT() && GV
->isWeakForLinker())
6402 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
6403 if (VD
->getTLSKind())
6404 setTLSMode(GV
, *VD
);
6405 llvm::Constant
*CV
= GV
;
6406 if (AddrSpace
!= LangAS::Default
)
6407 CV
= getTargetCodeGenInfo().performAddrSpaceCast(
6408 *this, GV
, AddrSpace
, LangAS::Default
,
6409 llvm::PointerType::get(
6411 getContext().getTargetAddressSpace(LangAS::Default
)));
6413 // Update the map with the new temporary. If we created a placeholder above,
6414 // replace it with the new global now.
6415 llvm::Constant
*&Entry
= MaterializedGlobalTemporaryMap
[E
];
6417 Entry
->replaceAllUsesWith(
6418 llvm::ConstantExpr::getBitCast(CV
, Entry
->getType()));
6419 llvm::cast
<llvm::GlobalVariable
>(Entry
)->eraseFromParent();
6423 return ConstantAddress(CV
, Type
, Align
);
6426 /// EmitObjCPropertyImplementations - Emit information for synthesized
6427 /// properties for an implementation.
6428 void CodeGenModule::EmitObjCPropertyImplementations(const
6429 ObjCImplementationDecl
*D
) {
6430 for (const auto *PID
: D
->property_impls()) {
6431 // Dynamic is just for type-checking.
6432 if (PID
->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize
) {
6433 ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
6435 // Determine which methods need to be implemented, some may have
6436 // been overridden. Note that ::isPropertyAccessor is not the method
6437 // we want, that just indicates if the decl came from a
6438 // property. What we want to know is if the method is defined in
6439 // this implementation.
6440 auto *Getter
= PID
->getGetterMethodDecl();
6441 if (!Getter
|| Getter
->isSynthesizedAccessorStub())
6442 CodeGenFunction(*this).GenerateObjCGetter(
6443 const_cast<ObjCImplementationDecl
*>(D
), PID
);
6444 auto *Setter
= PID
->getSetterMethodDecl();
6445 if (!PD
->isReadOnly() && (!Setter
|| Setter
->isSynthesizedAccessorStub()))
6446 CodeGenFunction(*this).GenerateObjCSetter(
6447 const_cast<ObjCImplementationDecl
*>(D
), PID
);
6452 static bool needsDestructMethod(ObjCImplementationDecl
*impl
) {
6453 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
6454 for (const ObjCIvarDecl
*ivar
= iface
->all_declared_ivar_begin();
6455 ivar
; ivar
= ivar
->getNextIvar())
6456 if (ivar
->getType().isDestructedType())
6462 static bool AllTrivialInitializers(CodeGenModule
&CGM
,
6463 ObjCImplementationDecl
*D
) {
6464 CodeGenFunction
CGF(CGM
);
6465 for (ObjCImplementationDecl::init_iterator B
= D
->init_begin(),
6466 E
= D
->init_end(); B
!= E
; ++B
) {
6467 CXXCtorInitializer
*CtorInitExp
= *B
;
6468 Expr
*Init
= CtorInitExp
->getInit();
6469 if (!CGF
.isTrivialInitializer(Init
))
6475 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6476 /// for an implementation.
6477 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl
*D
) {
6478 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6479 if (needsDestructMethod(D
)) {
6480 IdentifierInfo
*II
= &getContext().Idents
.get(".cxx_destruct");
6481 Selector cxxSelector
= getContext().Selectors
.getSelector(0, &II
);
6482 ObjCMethodDecl
*DTORMethod
= ObjCMethodDecl::Create(
6483 getContext(), D
->getLocation(), D
->getLocation(), cxxSelector
,
6484 getContext().VoidTy
, nullptr, D
,
6485 /*isInstance=*/true, /*isVariadic=*/false,
6486 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6487 /*isImplicitlyDeclared=*/true,
6488 /*isDefined=*/false, ObjCImplementationControl::Required
);
6489 D
->addInstanceMethod(DTORMethod
);
6490 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D
, DTORMethod
, false);
6491 D
->setHasDestructors(true);
6494 // If the implementation doesn't have any ivar initializers, we don't need
6495 // a .cxx_construct.
6496 if (D
->getNumIvarInitializers() == 0 ||
6497 AllTrivialInitializers(*this, D
))
6500 IdentifierInfo
*II
= &getContext().Idents
.get(".cxx_construct");
6501 Selector cxxSelector
= getContext().Selectors
.getSelector(0, &II
);
6502 // The constructor returns 'self'.
6503 ObjCMethodDecl
*CTORMethod
= ObjCMethodDecl::Create(
6504 getContext(), D
->getLocation(), D
->getLocation(), cxxSelector
,
6505 getContext().getObjCIdType(), nullptr, D
, /*isInstance=*/true,
6506 /*isVariadic=*/false,
6507 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6508 /*isImplicitlyDeclared=*/true,
6509 /*isDefined=*/false, ObjCImplementationControl::Required
);
6510 D
->addInstanceMethod(CTORMethod
);
6511 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D
, CTORMethod
, true);
6512 D
->setHasNonZeroConstructors(true);
6515 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6516 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl
*LSD
) {
6517 if (LSD
->getLanguage() != LinkageSpecLanguageIDs::C
&&
6518 LSD
->getLanguage() != LinkageSpecLanguageIDs::CXX
) {
6519 ErrorUnsupported(LSD
, "linkage spec");
6523 EmitDeclContext(LSD
);
6526 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl
*D
) {
6527 // Device code should not be at top level.
6528 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
)
6531 std::unique_ptr
<CodeGenFunction
> &CurCGF
=
6532 GlobalTopLevelStmtBlockInFlight
.first
;
6534 // We emitted a top-level stmt but after it there is initialization.
6535 // Stop squashing the top-level stmts into a single function.
6536 if (CurCGF
&& CXXGlobalInits
.back() != CurCGF
->CurFn
) {
6537 CurCGF
->FinishFunction(D
->getEndLoc());
6542 // void __stmts__N(void)
6543 // FIXME: Ask the ABI name mangler to pick a name.
6544 std::string Name
= "__stmts__" + llvm::utostr(CXXGlobalInits
.size());
6545 FunctionArgList Args
;
6546 QualType RetTy
= getContext().VoidTy
;
6547 const CGFunctionInfo
&FnInfo
=
6548 getTypes().arrangeBuiltinFunctionDeclaration(RetTy
, Args
);
6549 llvm::FunctionType
*FnTy
= getTypes().GetFunctionType(FnInfo
);
6550 llvm::Function
*Fn
= llvm::Function::Create(
6551 FnTy
, llvm::GlobalValue::InternalLinkage
, Name
, &getModule());
6553 CurCGF
.reset(new CodeGenFunction(*this));
6554 GlobalTopLevelStmtBlockInFlight
.second
= D
;
6555 CurCGF
->StartFunction(GlobalDecl(), RetTy
, Fn
, FnInfo
, Args
,
6556 D
->getBeginLoc(), D
->getBeginLoc());
6557 CXXGlobalInits
.push_back(Fn
);
6560 CurCGF
->EmitStmt(D
->getStmt());
6563 void CodeGenModule::EmitDeclContext(const DeclContext
*DC
) {
6564 for (auto *I
: DC
->decls()) {
6565 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6566 // are themselves considered "top-level", so EmitTopLevelDecl on an
6567 // ObjCImplDecl does not recursively visit them. We need to do that in
6568 // case they're nested inside another construct (LinkageSpecDecl /
6569 // ExportDecl) that does stop them from being considered "top-level".
6570 if (auto *OID
= dyn_cast
<ObjCImplDecl
>(I
)) {
6571 for (auto *M
: OID
->methods())
6572 EmitTopLevelDecl(M
);
6575 EmitTopLevelDecl(I
);
6579 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6580 void CodeGenModule::EmitTopLevelDecl(Decl
*D
) {
6581 // Ignore dependent declarations.
6582 if (D
->isTemplated())
6585 // Consteval function shouldn't be emitted.
6586 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
); FD
&& FD
->isImmediateFunction())
6589 switch (D
->getKind()) {
6590 case Decl::CXXConversion
:
6591 case Decl::CXXMethod
:
6592 case Decl::Function
:
6593 EmitGlobal(cast
<FunctionDecl
>(D
));
6594 // Always provide some coverage mapping
6595 // even for the functions that aren't emitted.
6596 AddDeferredUnusedCoverageMapping(D
);
6599 case Decl::CXXDeductionGuide
:
6600 // Function-like, but does not result in code emission.
6604 case Decl::Decomposition
:
6605 case Decl::VarTemplateSpecialization
:
6606 EmitGlobal(cast
<VarDecl
>(D
));
6607 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
))
6608 for (auto *B
: DD
->bindings())
6609 if (auto *HD
= B
->getHoldingVar())
6613 // Indirect fields from global anonymous structs and unions can be
6614 // ignored; only the actual variable requires IR gen support.
6615 case Decl::IndirectField
:
6619 case Decl::Namespace
:
6620 EmitDeclContext(cast
<NamespaceDecl
>(D
));
6622 case Decl::ClassTemplateSpecialization
: {
6623 const auto *Spec
= cast
<ClassTemplateSpecializationDecl
>(D
);
6624 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6625 if (Spec
->getSpecializationKind() ==
6626 TSK_ExplicitInstantiationDefinition
&&
6627 Spec
->hasDefinition())
6628 DI
->completeTemplateDefinition(*Spec
);
6630 case Decl::CXXRecord
: {
6631 CXXRecordDecl
*CRD
= cast
<CXXRecordDecl
>(D
);
6632 if (CGDebugInfo
*DI
= getModuleDebugInfo()) {
6633 if (CRD
->hasDefinition())
6634 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(D
)));
6635 if (auto *ES
= D
->getASTContext().getExternalSource())
6636 if (ES
->hasExternalDefinitions(D
) == ExternalASTSource::EK_Never
)
6637 DI
->completeUnusedClass(*CRD
);
6639 // Emit any static data members, they may be definitions.
6640 for (auto *I
: CRD
->decls())
6641 if (isa
<VarDecl
>(I
) || isa
<CXXRecordDecl
>(I
))
6642 EmitTopLevelDecl(I
);
6645 // No code generation needed.
6646 case Decl::UsingShadow
:
6647 case Decl::ClassTemplate
:
6648 case Decl::VarTemplate
:
6650 case Decl::VarTemplatePartialSpecialization
:
6651 case Decl::FunctionTemplate
:
6652 case Decl::TypeAliasTemplate
:
6657 case Decl::Using
: // using X; [C++]
6658 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6659 DI
->EmitUsingDecl(cast
<UsingDecl
>(*D
));
6661 case Decl::UsingEnum
: // using enum X; [C++]
6662 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6663 DI
->EmitUsingEnumDecl(cast
<UsingEnumDecl
>(*D
));
6665 case Decl::NamespaceAlias
:
6666 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6667 DI
->EmitNamespaceAlias(cast
<NamespaceAliasDecl
>(*D
));
6669 case Decl::UsingDirective
: // using namespace X; [C++]
6670 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6671 DI
->EmitUsingDirective(cast
<UsingDirectiveDecl
>(*D
));
6673 case Decl::CXXConstructor
:
6674 getCXXABI().EmitCXXConstructors(cast
<CXXConstructorDecl
>(D
));
6676 case Decl::CXXDestructor
:
6677 getCXXABI().EmitCXXDestructors(cast
<CXXDestructorDecl
>(D
));
6680 case Decl::StaticAssert
:
6684 // Objective-C Decls
6686 // Forward declarations, no (immediate) code generation.
6687 case Decl::ObjCInterface
:
6688 case Decl::ObjCCategory
:
6691 case Decl::ObjCProtocol
: {
6692 auto *Proto
= cast
<ObjCProtocolDecl
>(D
);
6693 if (Proto
->isThisDeclarationADefinition())
6694 ObjCRuntime
->GenerateProtocol(Proto
);
6698 case Decl::ObjCCategoryImpl
:
6699 // Categories have properties but don't support synthesize so we
6700 // can ignore them here.
6701 ObjCRuntime
->GenerateCategory(cast
<ObjCCategoryImplDecl
>(D
));
6704 case Decl::ObjCImplementation
: {
6705 auto *OMD
= cast
<ObjCImplementationDecl
>(D
);
6706 EmitObjCPropertyImplementations(OMD
);
6707 EmitObjCIvarInitializations(OMD
);
6708 ObjCRuntime
->GenerateClass(OMD
);
6709 // Emit global variable debug information.
6710 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6711 if (getCodeGenOpts().hasReducedDebugInfo())
6712 DI
->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6713 OMD
->getClassInterface()), OMD
->getLocation());
6716 case Decl::ObjCMethod
: {
6717 auto *OMD
= cast
<ObjCMethodDecl
>(D
);
6718 // If this is not a prototype, emit the body.
6720 CodeGenFunction(*this).GenerateObjCMethod(OMD
);
6723 case Decl::ObjCCompatibleAlias
:
6724 ObjCRuntime
->RegisterAlias(cast
<ObjCCompatibleAliasDecl
>(D
));
6727 case Decl::PragmaComment
: {
6728 const auto *PCD
= cast
<PragmaCommentDecl
>(D
);
6729 switch (PCD
->getCommentKind()) {
6731 llvm_unreachable("unexpected pragma comment kind");
6733 AppendLinkerOptions(PCD
->getArg());
6736 AddDependentLib(PCD
->getArg());
6741 break; // We ignore all of these.
6746 case Decl::PragmaDetectMismatch
: {
6747 const auto *PDMD
= cast
<PragmaDetectMismatchDecl
>(D
);
6748 AddDetectMismatch(PDMD
->getName(), PDMD
->getValue());
6752 case Decl::LinkageSpec
:
6753 EmitLinkageSpec(cast
<LinkageSpecDecl
>(D
));
6756 case Decl::FileScopeAsm
: {
6757 // File-scope asm is ignored during device-side CUDA compilation.
6758 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
)
6760 // File-scope asm is ignored during device-side OpenMP compilation.
6761 if (LangOpts
.OpenMPIsTargetDevice
)
6763 // File-scope asm is ignored during device-side SYCL compilation.
6764 if (LangOpts
.SYCLIsDevice
)
6766 auto *AD
= cast
<FileScopeAsmDecl
>(D
);
6767 getModule().appendModuleInlineAsm(AD
->getAsmString()->getString());
6771 case Decl::TopLevelStmt
:
6772 EmitTopLevelStmt(cast
<TopLevelStmtDecl
>(D
));
6775 case Decl::Import
: {
6776 auto *Import
= cast
<ImportDecl
>(D
);
6778 // If we've already imported this module, we're done.
6779 if (!ImportedModules
.insert(Import
->getImportedModule()))
6782 // Emit debug information for direct imports.
6783 if (!Import
->getImportedOwningModule()) {
6784 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6785 DI
->EmitImportDecl(*Import
);
6788 // For C++ standard modules we are done - we will call the module
6789 // initializer for imported modules, and that will likewise call those for
6790 // any imports it has.
6791 if (CXX20ModuleInits
&& Import
->getImportedOwningModule() &&
6792 !Import
->getImportedOwningModule()->isModuleMapModule())
6795 // For clang C++ module map modules the initializers for sub-modules are
6798 // Find all of the submodules and emit the module initializers.
6799 llvm::SmallPtrSet
<clang::Module
*, 16> Visited
;
6800 SmallVector
<clang::Module
*, 16> Stack
;
6801 Visited
.insert(Import
->getImportedModule());
6802 Stack
.push_back(Import
->getImportedModule());
6804 while (!Stack
.empty()) {
6805 clang::Module
*Mod
= Stack
.pop_back_val();
6806 if (!EmittedModuleInitializers
.insert(Mod
).second
)
6809 for (auto *D
: Context
.getModuleInitializers(Mod
))
6810 EmitTopLevelDecl(D
);
6812 // Visit the submodules of this module.
6813 for (auto *Submodule
: Mod
->submodules()) {
6814 // Skip explicit children; they need to be explicitly imported to emit
6815 // the initializers.
6816 if (Submodule
->IsExplicit
)
6819 if (Visited
.insert(Submodule
).second
)
6820 Stack
.push_back(Submodule
);
6827 EmitDeclContext(cast
<ExportDecl
>(D
));
6830 case Decl::OMPThreadPrivate
:
6831 EmitOMPThreadPrivateDecl(cast
<OMPThreadPrivateDecl
>(D
));
6834 case Decl::OMPAllocate
:
6835 EmitOMPAllocateDecl(cast
<OMPAllocateDecl
>(D
));
6838 case Decl::OMPDeclareReduction
:
6839 EmitOMPDeclareReduction(cast
<OMPDeclareReductionDecl
>(D
));
6842 case Decl::OMPDeclareMapper
:
6843 EmitOMPDeclareMapper(cast
<OMPDeclareMapperDecl
>(D
));
6846 case Decl::OMPRequires
:
6847 EmitOMPRequiresDecl(cast
<OMPRequiresDecl
>(D
));
6851 case Decl::TypeAlias
: // using foo = bar; [C++11]
6852 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6853 DI
->EmitAndRetainType(
6854 getContext().getTypedefType(cast
<TypedefNameDecl
>(D
)));
6858 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6859 if (cast
<RecordDecl
>(D
)->getDefinition())
6860 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(D
)));
6864 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6865 if (cast
<EnumDecl
>(D
)->getDefinition())
6866 DI
->EmitAndRetainType(getContext().getEnumType(cast
<EnumDecl
>(D
)));
6869 case Decl::HLSLBuffer
:
6870 getHLSLRuntime().addBuffer(cast
<HLSLBufferDecl
>(D
));
6874 // Make sure we handled everything we should, every other kind is a
6875 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
6876 // function. Need to recode Decl::Kind to do that easily.
6877 assert(isa
<TypeDecl
>(D
) && "Unsupported decl kind");
6882 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl
*D
) {
6883 // Do we need to generate coverage mapping?
6884 if (!CodeGenOpts
.CoverageMapping
)
6886 switch (D
->getKind()) {
6887 case Decl::CXXConversion
:
6888 case Decl::CXXMethod
:
6889 case Decl::Function
:
6890 case Decl::ObjCMethod
:
6891 case Decl::CXXConstructor
:
6892 case Decl::CXXDestructor
: {
6893 if (!cast
<FunctionDecl
>(D
)->doesThisDeclarationHaveABody())
6895 SourceManager
&SM
= getContext().getSourceManager();
6896 if (LimitedCoverage
&& SM
.getMainFileID() != SM
.getFileID(D
->getBeginLoc()))
6898 auto I
= DeferredEmptyCoverageMappingDecls
.find(D
);
6899 if (I
== DeferredEmptyCoverageMappingDecls
.end())
6900 DeferredEmptyCoverageMappingDecls
[D
] = true;
6908 void CodeGenModule::ClearUnusedCoverageMapping(const Decl
*D
) {
6909 // Do we need to generate coverage mapping?
6910 if (!CodeGenOpts
.CoverageMapping
)
6912 if (const auto *Fn
= dyn_cast
<FunctionDecl
>(D
)) {
6913 if (Fn
->isTemplateInstantiation())
6914 ClearUnusedCoverageMapping(Fn
->getTemplateInstantiationPattern());
6916 auto I
= DeferredEmptyCoverageMappingDecls
.find(D
);
6917 if (I
== DeferredEmptyCoverageMappingDecls
.end())
6918 DeferredEmptyCoverageMappingDecls
[D
] = false;
6923 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6924 // We call takeVector() here to avoid use-after-free.
6925 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6926 // we deserialize function bodies to emit coverage info for them, and that
6927 // deserializes more declarations. How should we handle that case?
6928 for (const auto &Entry
: DeferredEmptyCoverageMappingDecls
.takeVector()) {
6931 const Decl
*D
= Entry
.first
;
6932 switch (D
->getKind()) {
6933 case Decl::CXXConversion
:
6934 case Decl::CXXMethod
:
6935 case Decl::Function
:
6936 case Decl::ObjCMethod
: {
6937 CodeGenPGO
PGO(*this);
6938 GlobalDecl
GD(cast
<FunctionDecl
>(D
));
6939 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6940 getFunctionLinkage(GD
));
6943 case Decl::CXXConstructor
: {
6944 CodeGenPGO
PGO(*this);
6945 GlobalDecl
GD(cast
<CXXConstructorDecl
>(D
), Ctor_Base
);
6946 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6947 getFunctionLinkage(GD
));
6950 case Decl::CXXDestructor
: {
6951 CodeGenPGO
PGO(*this);
6952 GlobalDecl
GD(cast
<CXXDestructorDecl
>(D
), Dtor_Base
);
6953 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6954 getFunctionLinkage(GD
));
6963 void CodeGenModule::EmitMainVoidAlias() {
6964 // In order to transition away from "__original_main" gracefully, emit an
6965 // alias for "main" in the no-argument case so that libc can detect when
6966 // new-style no-argument main is in used.
6967 if (llvm::Function
*F
= getModule().getFunction("main")) {
6968 if (!F
->isDeclaration() && F
->arg_size() == 0 && !F
->isVarArg() &&
6969 F
->getReturnType()->isIntegerTy(Context
.getTargetInfo().getIntWidth())) {
6970 auto *GA
= llvm::GlobalAlias::create("__main_void", F
);
6971 GA
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
6976 /// Turns the given pointer into a constant.
6977 static llvm::Constant
*GetPointerConstant(llvm::LLVMContext
&Context
,
6979 uintptr_t PtrInt
= reinterpret_cast<uintptr_t>(Ptr
);
6980 llvm::Type
*i64
= llvm::Type::getInt64Ty(Context
);
6981 return llvm::ConstantInt::get(i64
, PtrInt
);
6984 static void EmitGlobalDeclMetadata(CodeGenModule
&CGM
,
6985 llvm::NamedMDNode
*&GlobalMetadata
,
6987 llvm::GlobalValue
*Addr
) {
6988 if (!GlobalMetadata
)
6990 CGM
.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6992 // TODO: should we report variant information for ctors/dtors?
6993 llvm::Metadata
*Ops
[] = {llvm::ConstantAsMetadata::get(Addr
),
6994 llvm::ConstantAsMetadata::get(GetPointerConstant(
6995 CGM
.getLLVMContext(), D
.getDecl()))};
6996 GlobalMetadata
->addOperand(llvm::MDNode::get(CGM
.getLLVMContext(), Ops
));
6999 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue
*Elem
,
7000 llvm::GlobalValue
*CppFunc
) {
7001 // Store the list of ifuncs we need to replace uses in.
7002 llvm::SmallVector
<llvm::GlobalIFunc
*> IFuncs
;
7003 // List of ConstantExprs that we should be able to delete when we're done
7005 llvm::SmallVector
<llvm::ConstantExpr
*> CEs
;
7007 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7008 if (Elem
== CppFunc
)
7011 // First make sure that all users of this are ifuncs (or ifuncs via a
7012 // bitcast), and collect the list of ifuncs and CEs so we can work on them
7014 for (llvm::User
*User
: Elem
->users()) {
7015 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7016 // ifunc directly. In any other case, just give up, as we don't know what we
7017 // could break by changing those.
7018 if (auto *ConstExpr
= dyn_cast
<llvm::ConstantExpr
>(User
)) {
7019 if (ConstExpr
->getOpcode() != llvm::Instruction::BitCast
)
7022 for (llvm::User
*CEUser
: ConstExpr
->users()) {
7023 if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(CEUser
)) {
7024 IFuncs
.push_back(IFunc
);
7029 CEs
.push_back(ConstExpr
);
7030 } else if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(User
)) {
7031 IFuncs
.push_back(IFunc
);
7033 // This user is one we don't know how to handle, so fail redirection. This
7034 // will result in an ifunc retaining a resolver name that will ultimately
7035 // fail to be resolved to a defined function.
7040 // Now we know this is a valid case where we can do this alias replacement, we
7041 // need to remove all of the references to Elem (and the bitcasts!) so we can
7043 for (llvm::GlobalIFunc
*IFunc
: IFuncs
)
7044 IFunc
->setResolver(nullptr);
7045 for (llvm::ConstantExpr
*ConstExpr
: CEs
)
7046 ConstExpr
->destroyConstant();
7048 // We should now be out of uses for the 'old' version of this function, so we
7049 // can erase it as well.
7050 Elem
->eraseFromParent();
7052 for (llvm::GlobalIFunc
*IFunc
: IFuncs
) {
7053 // The type of the resolver is always just a function-type that returns the
7054 // type of the IFunc, so create that here. If the type of the actual
7055 // resolver doesn't match, it just gets bitcast to the right thing.
7057 llvm::FunctionType::get(IFunc
->getType(), /*isVarArg*/ false);
7058 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
7059 CppFunc
->getName(), ResolverTy
, {}, /*ForVTable*/ false);
7060 IFunc
->setResolver(Resolver
);
7065 /// For each function which is declared within an extern "C" region and marked
7066 /// as 'used', but has internal linkage, create an alias from the unmangled
7067 /// name to the mangled name if possible. People expect to be able to refer
7068 /// to such functions with an unmangled name from inline assembly within the
7069 /// same translation unit.
7070 void CodeGenModule::EmitStaticExternCAliases() {
7071 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7073 for (auto &I
: StaticExternCValues
) {
7074 IdentifierInfo
*Name
= I
.first
;
7075 llvm::GlobalValue
*Val
= I
.second
;
7077 // If Val is null, that implies there were multiple declarations that each
7078 // had a claim to the unmangled name. In this case, generation of the alias
7079 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7083 llvm::GlobalValue
*ExistingElem
=
7084 getModule().getNamedValue(Name
->getName());
7086 // If there is either not something already by this name, or we were able to
7087 // replace all uses from IFuncs, create the alias.
7088 if (!ExistingElem
|| CheckAndReplaceExternCIFuncs(ExistingElem
, Val
))
7089 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name
->getName(), Val
));
7093 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName
,
7094 GlobalDecl
&Result
) const {
7095 auto Res
= Manglings
.find(MangledName
);
7096 if (Res
== Manglings
.end())
7098 Result
= Res
->getValue();
7102 /// Emits metadata nodes associating all the global values in the
7103 /// current module with the Decls they came from. This is useful for
7104 /// projects using IR gen as a subroutine.
7106 /// Since there's currently no way to associate an MDNode directly
7107 /// with an llvm::GlobalValue, we create a global named metadata
7108 /// with the name 'clang.global.decl.ptrs'.
7109 void CodeGenModule::EmitDeclMetadata() {
7110 llvm::NamedMDNode
*GlobalMetadata
= nullptr;
7112 for (auto &I
: MangledDeclNames
) {
7113 llvm::GlobalValue
*Addr
= getModule().getNamedValue(I
.second
);
7114 // Some mangled names don't necessarily have an associated GlobalValue
7115 // in this module, e.g. if we mangled it for DebugInfo.
7117 EmitGlobalDeclMetadata(*this, GlobalMetadata
, I
.first
, Addr
);
7121 /// Emits metadata nodes for all the local variables in the current
7123 void CodeGenFunction::EmitDeclMetadata() {
7124 if (LocalDeclMap
.empty()) return;
7126 llvm::LLVMContext
&Context
= getLLVMContext();
7128 // Find the unique metadata ID for this name.
7129 unsigned DeclPtrKind
= Context
.getMDKindID("clang.decl.ptr");
7131 llvm::NamedMDNode
*GlobalMetadata
= nullptr;
7133 for (auto &I
: LocalDeclMap
) {
7134 const Decl
*D
= I
.first
;
7135 llvm::Value
*Addr
= I
.second
.getPointer();
7136 if (auto *Alloca
= dyn_cast
<llvm::AllocaInst
>(Addr
)) {
7137 llvm::Value
*DAddr
= GetPointerConstant(getLLVMContext(), D
);
7138 Alloca
->setMetadata(
7139 DeclPtrKind
, llvm::MDNode::get(
7140 Context
, llvm::ValueAsMetadata::getConstant(DAddr
)));
7141 } else if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
)) {
7142 GlobalDecl GD
= GlobalDecl(cast
<VarDecl
>(D
));
7143 EmitGlobalDeclMetadata(CGM
, GlobalMetadata
, GD
, GV
);
7148 void CodeGenModule::EmitVersionIdentMetadata() {
7149 llvm::NamedMDNode
*IdentMetadata
=
7150 TheModule
.getOrInsertNamedMetadata("llvm.ident");
7151 std::string Version
= getClangFullVersion();
7152 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7154 llvm::Metadata
*IdentNode
[] = {llvm::MDString::get(Ctx
, Version
)};
7155 IdentMetadata
->addOperand(llvm::MDNode::get(Ctx
, IdentNode
));
7158 void CodeGenModule::EmitCommandLineMetadata() {
7159 llvm::NamedMDNode
*CommandLineMetadata
=
7160 TheModule
.getOrInsertNamedMetadata("llvm.commandline");
7161 std::string CommandLine
= getCodeGenOpts().RecordCommandLine
;
7162 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7164 llvm::Metadata
*CommandLineNode
[] = {llvm::MDString::get(Ctx
, CommandLine
)};
7165 CommandLineMetadata
->addOperand(llvm::MDNode::get(Ctx
, CommandLineNode
));
7168 void CodeGenModule::EmitCoverageFile() {
7169 llvm::NamedMDNode
*CUNode
= TheModule
.getNamedMetadata("llvm.dbg.cu");
7173 llvm::NamedMDNode
*GCov
= TheModule
.getOrInsertNamedMetadata("llvm.gcov");
7174 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
7175 auto *CoverageDataFile
=
7176 llvm::MDString::get(Ctx
, getCodeGenOpts().CoverageDataFile
);
7177 auto *CoverageNotesFile
=
7178 llvm::MDString::get(Ctx
, getCodeGenOpts().CoverageNotesFile
);
7179 for (int i
= 0, e
= CUNode
->getNumOperands(); i
!= e
; ++i
) {
7180 llvm::MDNode
*CU
= CUNode
->getOperand(i
);
7181 llvm::Metadata
*Elts
[] = {CoverageNotesFile
, CoverageDataFile
, CU
};
7182 GCov
->addOperand(llvm::MDNode::get(Ctx
, Elts
));
7186 llvm::Constant
*CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty
,
7188 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7189 // FIXME: should we even be calling this method if RTTI is disabled
7190 // and it's not for EH?
7191 if (!shouldEmitRTTI(ForEH
))
7192 return llvm::Constant::getNullValue(GlobalsInt8PtrTy
);
7194 if (ForEH
&& Ty
->isObjCObjectPointerType() &&
7195 LangOpts
.ObjCRuntime
.isGNUFamily())
7196 return ObjCRuntime
->GetEHType(Ty
);
7198 return getCXXABI().getAddrOfRTTIDescriptor(Ty
);
7201 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl
*D
) {
7202 // Do not emit threadprivates in simd-only mode.
7203 if (LangOpts
.OpenMP
&& LangOpts
.OpenMPSimd
)
7205 for (auto RefExpr
: D
->varlists()) {
7206 auto *VD
= cast
<VarDecl
>(cast
<DeclRefExpr
>(RefExpr
)->getDecl());
7208 VD
->getAnyInitializer() &&
7209 !VD
->getAnyInitializer()->isConstantInitializer(getContext(),
7212 Address
Addr(GetAddrOfGlobalVar(VD
),
7213 getTypes().ConvertTypeForMem(VD
->getType()),
7214 getContext().getDeclAlign(VD
));
7215 if (auto InitFunction
= getOpenMPRuntime().emitThreadPrivateVarDefinition(
7216 VD
, Addr
, RefExpr
->getBeginLoc(), PerformInit
))
7217 CXXGlobalInits
.push_back(InitFunction
);
7222 CodeGenModule::CreateMetadataIdentifierImpl(QualType T
, MetadataTypeMap
&Map
,
7224 if (auto *FnType
= T
->getAs
<FunctionProtoType
>())
7225 T
= getContext().getFunctionType(
7226 FnType
->getReturnType(), FnType
->getParamTypes(),
7227 FnType
->getExtProtoInfo().withExceptionSpec(EST_None
));
7229 llvm::Metadata
*&InternalId
= Map
[T
.getCanonicalType()];
7233 if (isExternallyVisible(T
->getLinkage())) {
7234 std::string OutName
;
7235 llvm::raw_string_ostream
Out(OutName
);
7236 getCXXABI().getMangleContext().mangleCanonicalTypeName(
7237 T
, Out
, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
);
7239 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
)
7240 Out
<< ".normalized";
7244 InternalId
= llvm::MDString::get(getLLVMContext(), Out
.str());
7246 InternalId
= llvm::MDNode::getDistinct(getLLVMContext(),
7247 llvm::ArrayRef
<llvm::Metadata
*>());
7253 llvm::Metadata
*CodeGenModule::CreateMetadataIdentifierForType(QualType T
) {
7254 return CreateMetadataIdentifierImpl(T
, MetadataIdMap
, "");
7258 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T
) {
7259 return CreateMetadataIdentifierImpl(T
, VirtualMetadataIdMap
, ".virtual");
7262 // Generalize pointer types to a void pointer with the qualifiers of the
7263 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7264 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7266 static QualType
GeneralizeType(ASTContext
&Ctx
, QualType Ty
) {
7267 if (!Ty
->isPointerType())
7270 return Ctx
.getPointerType(
7271 QualType(Ctx
.VoidTy
).withCVRQualifiers(
7272 Ty
->getPointeeType().getCVRQualifiers()));
7275 // Apply type generalization to a FunctionType's return and argument types
7276 static QualType
GeneralizeFunctionType(ASTContext
&Ctx
, QualType Ty
) {
7277 if (auto *FnType
= Ty
->getAs
<FunctionProtoType
>()) {
7278 SmallVector
<QualType
, 8> GeneralizedParams
;
7279 for (auto &Param
: FnType
->param_types())
7280 GeneralizedParams
.push_back(GeneralizeType(Ctx
, Param
));
7282 return Ctx
.getFunctionType(
7283 GeneralizeType(Ctx
, FnType
->getReturnType()),
7284 GeneralizedParams
, FnType
->getExtProtoInfo());
7287 if (auto *FnType
= Ty
->getAs
<FunctionNoProtoType
>())
7288 return Ctx
.getFunctionNoProtoType(
7289 GeneralizeType(Ctx
, FnType
->getReturnType()));
7291 llvm_unreachable("Encountered unknown FunctionType");
7294 llvm::Metadata
*CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T
) {
7295 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T
),
7296 GeneralizedMetadataIdMap
, ".generalized");
7299 /// Returns whether this module needs the "all-vtables" type identifier.
7300 bool CodeGenModule::NeedAllVtablesTypeId() const {
7301 // Returns true if at least one of vtable-based CFI checkers is enabled and
7302 // is not in the trapping mode.
7303 return ((LangOpts
.Sanitize
.has(SanitizerKind::CFIVCall
) &&
7304 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIVCall
)) ||
7305 (LangOpts
.Sanitize
.has(SanitizerKind::CFINVCall
) &&
7306 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFINVCall
)) ||
7307 (LangOpts
.Sanitize
.has(SanitizerKind::CFIDerivedCast
) &&
7308 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIDerivedCast
)) ||
7309 (LangOpts
.Sanitize
.has(SanitizerKind::CFIUnrelatedCast
) &&
7310 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIUnrelatedCast
)));
7313 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable
*VTable
,
7315 const CXXRecordDecl
*RD
) {
7316 llvm::Metadata
*MD
=
7317 CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
7318 VTable
->addTypeMetadata(Offset
.getQuantity(), MD
);
7320 if (CodeGenOpts
.SanitizeCfiCrossDso
)
7321 if (auto CrossDsoTypeId
= CreateCrossDsoCfiTypeId(MD
))
7322 VTable
->addTypeMetadata(Offset
.getQuantity(),
7323 llvm::ConstantAsMetadata::get(CrossDsoTypeId
));
7325 if (NeedAllVtablesTypeId()) {
7326 llvm::Metadata
*MD
= llvm::MDString::get(getLLVMContext(), "all-vtables");
7327 VTable
->addTypeMetadata(Offset
.getQuantity(), MD
);
7331 llvm::SanitizerStatReport
&CodeGenModule::getSanStats() {
7333 SanStats
= std::make_unique
<llvm::SanitizerStatReport
>(&getModule());
7339 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr
*E
,
7340 CodeGenFunction
&CGF
) {
7341 llvm::Constant
*C
= ConstantEmitter(CGF
).emitAbstract(E
, E
->getType());
7342 auto *SamplerT
= getOpenCLRuntime().getSamplerType(E
->getType().getTypePtr());
7343 auto *FTy
= llvm::FunctionType::get(SamplerT
, {C
->getType()}, false);
7344 auto *Call
= CGF
.EmitRuntimeCall(
7345 CreateRuntimeFunction(FTy
, "__translate_sampler_initializer"), {C
});
7349 CharUnits
CodeGenModule::getNaturalPointeeTypeAlignment(
7350 QualType T
, LValueBaseInfo
*BaseInfo
, TBAAAccessInfo
*TBAAInfo
) {
7351 return getNaturalTypeAlignment(T
->getPointeeType(), BaseInfo
, TBAAInfo
,
7352 /* forPointeeType= */ true);
7355 CharUnits
CodeGenModule::getNaturalTypeAlignment(QualType T
,
7356 LValueBaseInfo
*BaseInfo
,
7357 TBAAAccessInfo
*TBAAInfo
,
7358 bool forPointeeType
) {
7360 *TBAAInfo
= getTBAAAccessInfo(T
);
7362 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7363 // that doesn't return the information we need to compute BaseInfo.
7365 // Honor alignment typedef attributes even on incomplete types.
7366 // We also honor them straight for C++ class types, even as pointees;
7367 // there's an expressivity gap here.
7368 if (auto TT
= T
->getAs
<TypedefType
>()) {
7369 if (auto Align
= TT
->getDecl()->getMaxAlignment()) {
7371 *BaseInfo
= LValueBaseInfo(AlignmentSource::AttributedType
);
7372 return getContext().toCharUnitsFromBits(Align
);
7376 bool AlignForArray
= T
->isArrayType();
7378 // Analyze the base element type, so we don't get confused by incomplete
7380 T
= getContext().getBaseElementType(T
);
7382 if (T
->isIncompleteType()) {
7383 // We could try to replicate the logic from
7384 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7385 // type is incomplete, so it's impossible to test. We could try to reuse
7386 // getTypeAlignIfKnown, but that doesn't return the information we need
7387 // to set BaseInfo. So just ignore the possibility that the alignment is
7388 // greater than one.
7390 *BaseInfo
= LValueBaseInfo(AlignmentSource::Type
);
7391 return CharUnits::One();
7395 *BaseInfo
= LValueBaseInfo(AlignmentSource::Type
);
7397 CharUnits Alignment
;
7398 const CXXRecordDecl
*RD
;
7399 if (T
.getQualifiers().hasUnaligned()) {
7400 Alignment
= CharUnits::One();
7401 } else if (forPointeeType
&& !AlignForArray
&&
7402 (RD
= T
->getAsCXXRecordDecl())) {
7403 // For C++ class pointees, we don't know whether we're pointing at a
7404 // base or a complete object, so we generally need to use the
7405 // non-virtual alignment.
7406 Alignment
= getClassPointerAlignment(RD
);
7408 Alignment
= getContext().getTypeAlignInChars(T
);
7411 // Cap to the global maximum type alignment unless the alignment
7412 // was somehow explicit on the type.
7413 if (unsigned MaxAlign
= getLangOpts().MaxTypeAlign
) {
7414 if (Alignment
.getQuantity() > MaxAlign
&&
7415 !getContext().isAlignmentRequired(T
))
7416 Alignment
= CharUnits::fromQuantity(MaxAlign
);
7421 bool CodeGenModule::stopAutoInit() {
7422 unsigned StopAfter
= getContext().getLangOpts().TrivialAutoVarInitStopAfter
;
7424 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7426 if (NumAutoVarInit
>= StopAfter
) {
7429 if (!NumAutoVarInit
) {
7430 unsigned DiagID
= getDiags().getCustomDiagID(
7431 DiagnosticsEngine::Warning
,
7432 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7433 "number of times ftrivial-auto-var-init=%1 gets applied.");
7434 getDiags().Report(DiagID
)
7436 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7437 LangOptions::TrivialAutoVarInitKind::Zero
7446 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream
&OS
,
7447 const Decl
*D
) const {
7448 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7449 // postfix beginning with '.' since the symbol name can be demangled.
7451 OS
<< (isa
<VarDecl
>(D
) ? ".static." : ".intern.");
7453 OS
<< (isa
<VarDecl
>(D
) ? "__static__" : "__intern__");
7455 // If the CUID is not specified we try to generate a unique postfix.
7456 if (getLangOpts().CUID
.empty()) {
7457 SourceManager
&SM
= getContext().getSourceManager();
7458 PresumedLoc PLoc
= SM
.getPresumedLoc(D
->getLocation());
7459 assert(PLoc
.isValid() && "Source location is expected to be valid.");
7461 // Get the hash of the user defined macros.
7463 llvm::MD5::MD5Result Result
;
7464 for (const auto &Arg
: PreprocessorOpts
.Macros
)
7465 Hash
.update(Arg
.first
);
7468 // Get the UniqueID for the file containing the decl.
7469 llvm::sys::fs::UniqueID ID
;
7470 if (llvm::sys::fs::getUniqueID(PLoc
.getFilename(), ID
)) {
7471 PLoc
= SM
.getPresumedLoc(D
->getLocation(), /*UseLineDirectives=*/false);
7472 assert(PLoc
.isValid() && "Source location is expected to be valid.");
7473 if (auto EC
= llvm::sys::fs::getUniqueID(PLoc
.getFilename(), ID
))
7474 SM
.getDiagnostics().Report(diag::err_cannot_open_file
)
7475 << PLoc
.getFilename() << EC
.message();
7477 OS
<< llvm::format("%x", ID
.getFile()) << llvm::format("%x", ID
.getDevice())
7478 << "_" << llvm::utohexstr(Result
.low(), /*LowerCase=*/true, /*Width=*/8);
7480 OS
<< getContext().getCUIDHash();
7484 void CodeGenModule::moveLazyEmissionStates(CodeGenModule
*NewBuilder
) {
7485 assert(DeferredDeclsToEmit
.empty() &&
7486 "Should have emitted all decls deferred to emit.");
7487 assert(NewBuilder
->DeferredDecls
.empty() &&
7488 "Newly created module should not have deferred decls");
7489 NewBuilder
->DeferredDecls
= std::move(DeferredDecls
);
7490 assert(EmittedDeferredDecls
.empty() &&
7491 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7493 assert(NewBuilder
->DeferredVTables
.empty() &&
7494 "Newly created module should not have deferred vtables");
7495 NewBuilder
->DeferredVTables
= std::move(DeferredVTables
);
7497 assert(NewBuilder
->MangledDeclNames
.empty() &&
7498 "Newly created module should not have mangled decl names");
7499 assert(NewBuilder
->Manglings
.empty() &&
7500 "Newly created module should not have manglings");
7501 NewBuilder
->Manglings
= std::move(Manglings
);
7503 NewBuilder
->WeakRefReferences
= std::move(WeakRefReferences
);
7505 NewBuilder
->TBAA
= std::move(TBAA
);
7507 NewBuilder
->ABI
->MangleCtx
= std::move(ABI
->MangleCtx
);