1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements semantic analysis for CUDA constructs.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Sema.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/SmallVector.h"
27 using namespace clang
;
29 template <typename AttrT
> static bool hasExplicitAttr(const VarDecl
*D
) {
32 if (auto *A
= D
->getAttr
<AttrT
>())
33 return !A
->isImplicit();
37 void Sema::PushForceCUDAHostDevice() {
38 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
39 ForceCUDAHostDeviceDepth
++;
42 bool Sema::PopForceCUDAHostDevice() {
43 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
44 if (ForceCUDAHostDeviceDepth
== 0)
46 ForceCUDAHostDeviceDepth
--;
50 ExprResult
Sema::ActOnCUDAExecConfigExpr(Scope
*S
, SourceLocation LLLLoc
,
51 MultiExprArg ExecConfig
,
52 SourceLocation GGGLoc
) {
53 FunctionDecl
*ConfigDecl
= Context
.getcudaConfigureCallDecl();
55 return ExprError(Diag(LLLLoc
, diag::err_undeclared_var_use
)
56 << getCudaConfigureFuncName());
57 QualType ConfigQTy
= ConfigDecl
->getType();
59 DeclRefExpr
*ConfigDR
= new (Context
)
60 DeclRefExpr(Context
, ConfigDecl
, false, ConfigQTy
, VK_LValue
, LLLLoc
);
61 MarkFunctionReferenced(LLLLoc
, ConfigDecl
);
63 return BuildCallExpr(S
, ConfigDR
, LLLLoc
, ExecConfig
, GGGLoc
, nullptr,
64 /*IsExecConfig=*/true);
67 Sema::CUDAFunctionTarget
68 Sema::IdentifyCUDATarget(const ParsedAttributesView
&Attrs
) {
69 bool HasHostAttr
= false;
70 bool HasDeviceAttr
= false;
71 bool HasGlobalAttr
= false;
72 bool HasInvalidTargetAttr
= false;
73 for (const ParsedAttr
&AL
: Attrs
) {
74 switch (AL
.getKind()) {
75 case ParsedAttr::AT_CUDAGlobal
:
78 case ParsedAttr::AT_CUDAHost
:
81 case ParsedAttr::AT_CUDADevice
:
84 case ParsedAttr::AT_CUDAInvalidTarget
:
85 HasInvalidTargetAttr
= true;
92 if (HasInvalidTargetAttr
)
93 return CFT_InvalidTarget
;
98 if (HasHostAttr
&& HasDeviceAttr
)
99 return CFT_HostDevice
;
107 template <typename A
>
108 static bool hasAttr(const Decl
*D
, bool IgnoreImplicitAttr
) {
109 return D
->hasAttrs() && llvm::any_of(D
->getAttrs(), [&](Attr
*Attribute
) {
110 return isa
<A
>(Attribute
) &&
111 !(IgnoreImplicitAttr
&& Attribute
->isImplicit());
115 Sema::CUDATargetContextRAII::CUDATargetContextRAII(Sema
&S_
,
116 CUDATargetContextKind K
,
119 SavedCtx
= S
.CurCUDATargetCtx
;
120 assert(K
== CTCK_InitGlobalVar
);
121 auto *VD
= dyn_cast_or_null
<VarDecl
>(D
);
122 if (VD
&& VD
->hasGlobalStorage() && !VD
->isStaticLocal()) {
123 auto Target
= CFT_Host
;
124 if ((hasAttr
<CUDADeviceAttr
>(VD
, /*IgnoreImplicit=*/true) &&
125 !hasAttr
<CUDAHostAttr
>(VD
, /*IgnoreImplicit=*/true)) ||
126 hasAttr
<CUDASharedAttr
>(VD
, /*IgnoreImplicit=*/true) ||
127 hasAttr
<CUDAConstantAttr
>(VD
, /*IgnoreImplicit=*/true))
129 S
.CurCUDATargetCtx
= {Target
, K
, VD
};
133 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
134 Sema::CUDAFunctionTarget
Sema::IdentifyCUDATarget(const FunctionDecl
*D
,
135 bool IgnoreImplicitHDAttr
) {
136 // Code that lives outside a function gets the target from CurCUDATargetCtx.
138 return CurCUDATargetCtx
.Target
;
140 if (D
->hasAttr
<CUDAInvalidTargetAttr
>())
141 return CFT_InvalidTarget
;
143 if (D
->hasAttr
<CUDAGlobalAttr
>())
146 if (hasAttr
<CUDADeviceAttr
>(D
, IgnoreImplicitHDAttr
)) {
147 if (hasAttr
<CUDAHostAttr
>(D
, IgnoreImplicitHDAttr
))
148 return CFT_HostDevice
;
150 } else if (hasAttr
<CUDAHostAttr
>(D
, IgnoreImplicitHDAttr
)) {
152 } else if ((D
->isImplicit() || !D
->isUserProvided()) &&
153 !IgnoreImplicitHDAttr
) {
154 // Some implicit declarations (like intrinsic functions) are not marked.
155 // Set the most lenient target on them for maximal flexibility.
156 return CFT_HostDevice
;
162 /// IdentifyTarget - Determine the CUDA compilation target for this variable.
163 Sema::CUDAVariableTarget
Sema::IdentifyCUDATarget(const VarDecl
*Var
) {
164 if (Var
->hasAttr
<HIPManagedAttr
>())
166 // Only constexpr and const variabless with implicit constant attribute
167 // are emitted on both sides. Such variables are promoted to device side
168 // only if they have static constant intializers on device side.
169 if ((Var
->isConstexpr() || Var
->getType().isConstQualified()) &&
170 Var
->hasAttr
<CUDAConstantAttr
>() &&
171 !hasExplicitAttr
<CUDAConstantAttr
>(Var
))
173 if (Var
->hasAttr
<CUDADeviceAttr
>() || Var
->hasAttr
<CUDAConstantAttr
>() ||
174 Var
->hasAttr
<CUDASharedAttr
>() ||
175 Var
->getType()->isCUDADeviceBuiltinSurfaceType() ||
176 Var
->getType()->isCUDADeviceBuiltinTextureType())
178 // Function-scope static variable without explicit device or constant
179 // attribute are emitted
180 // - on both sides in host device functions
181 // - on device side in device or global functions
182 if (auto *FD
= dyn_cast
<FunctionDecl
>(Var
->getDeclContext())) {
183 switch (IdentifyCUDATarget(FD
)) {
196 // * CUDA Call preference table
200 // Ph - preference in host mode
201 // Pd - preference in device mode
202 // H - handled in (x)
203 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
205 // | F | T | Ph | Pd | H |
206 // |----+----+-----+-----+-----+
207 // | d | d | N | N | (c) |
208 // | d | g | -- | -- | (a) |
209 // | d | h | -- | -- | (e) |
210 // | d | hd | HD | HD | (b) |
211 // | g | d | N | N | (c) |
212 // | g | g | -- | -- | (a) |
213 // | g | h | -- | -- | (e) |
214 // | g | hd | HD | HD | (b) |
215 // | h | d | -- | -- | (e) |
216 // | h | g | N | N | (c) |
217 // | h | h | N | N | (c) |
218 // | h | hd | HD | HD | (b) |
219 // | hd | d | WS | SS | (d) |
220 // | hd | g | SS | -- |(d/a)|
221 // | hd | h | SS | WS | (d) |
222 // | hd | hd | HD | HD | (b) |
224 Sema::CUDAFunctionPreference
225 Sema::IdentifyCUDAPreference(const FunctionDecl
*Caller
,
226 const FunctionDecl
*Callee
) {
227 assert(Callee
&& "Callee must be valid.");
228 CUDAFunctionTarget CallerTarget
= IdentifyCUDATarget(Caller
);
229 CUDAFunctionTarget CalleeTarget
= IdentifyCUDATarget(Callee
);
231 // If one of the targets is invalid, the check always fails, no matter what
232 // the other target is.
233 if (CallerTarget
== CFT_InvalidTarget
|| CalleeTarget
== CFT_InvalidTarget
)
236 // (a) Can't call global from some contexts until we support CUDA's
237 // dynamic parallelism.
238 if (CalleeTarget
== CFT_Global
&&
239 (CallerTarget
== CFT_Global
|| CallerTarget
== CFT_Device
))
242 // (b) Calling HostDevice is OK for everyone.
243 if (CalleeTarget
== CFT_HostDevice
)
244 return CFP_HostDevice
;
246 // (c) Best case scenarios
247 if (CalleeTarget
== CallerTarget
||
248 (CallerTarget
== CFT_Host
&& CalleeTarget
== CFT_Global
) ||
249 (CallerTarget
== CFT_Global
&& CalleeTarget
== CFT_Device
))
252 // HipStdPar mode is special, in that assessing whether a device side call to
253 // a host target is deferred to a subsequent pass, and cannot unambiguously be
254 // adjudicated in the AST, hence we optimistically allow them to pass here.
255 if (getLangOpts().HIPStdPar
&&
256 (CallerTarget
== CFT_Global
|| CallerTarget
== CFT_Device
||
257 CallerTarget
== CFT_HostDevice
) &&
258 CalleeTarget
== CFT_Host
)
259 return CFP_HostDevice
;
261 // (d) HostDevice behavior depends on compilation mode.
262 if (CallerTarget
== CFT_HostDevice
) {
263 // It's OK to call a compilation-mode matching function from an HD one.
264 if ((getLangOpts().CUDAIsDevice
&& CalleeTarget
== CFT_Device
) ||
265 (!getLangOpts().CUDAIsDevice
&&
266 (CalleeTarget
== CFT_Host
|| CalleeTarget
== CFT_Global
)))
269 // Calls from HD to non-mode-matching functions (i.e., to host functions
270 // when compiling in device mode or to device functions when compiling in
271 // host mode) are allowed at the sema level, but eventually rejected if
272 // they're ever codegened. TODO: Reject said calls earlier.
273 return CFP_WrongSide
;
276 // (e) Calling across device/host boundary is not something you should do.
277 if ((CallerTarget
== CFT_Host
&& CalleeTarget
== CFT_Device
) ||
278 (CallerTarget
== CFT_Device
&& CalleeTarget
== CFT_Host
) ||
279 (CallerTarget
== CFT_Global
&& CalleeTarget
== CFT_Host
))
282 llvm_unreachable("All cases should've been handled by now.");
285 template <typename AttrT
> static bool hasImplicitAttr(const FunctionDecl
*D
) {
288 if (auto *A
= D
->getAttr
<AttrT
>())
289 return A
->isImplicit();
290 return D
->isImplicit();
293 bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl
*D
) {
294 bool IsImplicitDevAttr
= hasImplicitAttr
<CUDADeviceAttr
>(D
);
295 bool IsImplicitHostAttr
= hasImplicitAttr
<CUDAHostAttr
>(D
);
296 return IsImplicitDevAttr
&& IsImplicitHostAttr
;
299 void Sema::EraseUnwantedCUDAMatches(
300 const FunctionDecl
*Caller
,
301 SmallVectorImpl
<std::pair
<DeclAccessPair
, FunctionDecl
*>> &Matches
) {
302 if (Matches
.size() <= 1)
305 using Pair
= std::pair
<DeclAccessPair
, FunctionDecl
*>;
307 // Gets the CUDA function preference for a call from Caller to Match.
308 auto GetCFP
= [&](const Pair
&Match
) {
309 return IdentifyCUDAPreference(Caller
, Match
.second
);
312 // Find the best call preference among the functions in Matches.
313 CUDAFunctionPreference BestCFP
= GetCFP(*std::max_element(
314 Matches
.begin(), Matches
.end(),
315 [&](const Pair
&M1
, const Pair
&M2
) { return GetCFP(M1
) < GetCFP(M2
); }));
317 // Erase all functions with lower priority.
318 llvm::erase_if(Matches
,
319 [&](const Pair
&Match
) { return GetCFP(Match
) < BestCFP
; });
322 /// When an implicitly-declared special member has to invoke more than one
323 /// base/field special member, conflicts may occur in the targets of these
324 /// members. For example, if one base's member __host__ and another's is
325 /// __device__, it's a conflict.
326 /// This function figures out if the given targets \param Target1 and
327 /// \param Target2 conflict, and if they do not it fills in
328 /// \param ResolvedTarget with a target that resolves for both calls.
329 /// \return true if there's a conflict, false otherwise.
331 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1
,
332 Sema::CUDAFunctionTarget Target2
,
333 Sema::CUDAFunctionTarget
*ResolvedTarget
) {
334 // Only free functions and static member functions may be global.
335 assert(Target1
!= Sema::CFT_Global
);
336 assert(Target2
!= Sema::CFT_Global
);
338 if (Target1
== Sema::CFT_HostDevice
) {
339 *ResolvedTarget
= Target2
;
340 } else if (Target2
== Sema::CFT_HostDevice
) {
341 *ResolvedTarget
= Target1
;
342 } else if (Target1
!= Target2
) {
345 *ResolvedTarget
= Target1
;
351 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl
*ClassDecl
,
352 CXXSpecialMember CSM
,
353 CXXMethodDecl
*MemberDecl
,
356 // If the defaulted special member is defined lexically outside of its
357 // owning class, or the special member already has explicit device or host
358 // attributes, do not infer.
359 bool InClass
= MemberDecl
->getLexicalParent() == MemberDecl
->getParent();
360 bool HasH
= MemberDecl
->hasAttr
<CUDAHostAttr
>();
361 bool HasD
= MemberDecl
->hasAttr
<CUDADeviceAttr
>();
362 bool HasExplicitAttr
=
363 (HasD
&& !MemberDecl
->getAttr
<CUDADeviceAttr
>()->isImplicit()) ||
364 (HasH
&& !MemberDecl
->getAttr
<CUDAHostAttr
>()->isImplicit());
365 if (!InClass
|| HasExplicitAttr
)
368 std::optional
<CUDAFunctionTarget
> InferredTarget
;
370 // We're going to invoke special member lookup; mark that these special
371 // members are called from this one, and not from its caller.
372 ContextRAII
MethodContext(*this, MemberDecl
);
374 // Look for special members in base classes that should be invoked from here.
375 // Infer the target of this member base on the ones it should call.
376 // Skip direct and indirect virtual bases for abstract classes.
377 llvm::SmallVector
<const CXXBaseSpecifier
*, 16> Bases
;
378 for (const auto &B
: ClassDecl
->bases()) {
379 if (!B
.isVirtual()) {
384 if (!ClassDecl
->isAbstract()) {
385 llvm::append_range(Bases
, llvm::make_pointer_range(ClassDecl
->vbases()));
388 for (const auto *B
: Bases
) {
389 const RecordType
*BaseType
= B
->getType()->getAs
<RecordType
>();
394 CXXRecordDecl
*BaseClassDecl
= cast
<CXXRecordDecl
>(BaseType
->getDecl());
395 Sema::SpecialMemberOverloadResult SMOR
=
396 LookupSpecialMember(BaseClassDecl
, CSM
,
397 /* ConstArg */ ConstRHS
,
398 /* VolatileArg */ false,
399 /* RValueThis */ false,
400 /* ConstThis */ false,
401 /* VolatileThis */ false);
403 if (!SMOR
.getMethod())
406 CUDAFunctionTarget BaseMethodTarget
= IdentifyCUDATarget(SMOR
.getMethod());
407 if (!InferredTarget
) {
408 InferredTarget
= BaseMethodTarget
;
410 bool ResolutionError
= resolveCalleeCUDATargetConflict(
411 *InferredTarget
, BaseMethodTarget
, &*InferredTarget
);
412 if (ResolutionError
) {
414 Diag(ClassDecl
->getLocation(),
415 diag::note_implicit_member_target_infer_collision
)
416 << (unsigned)CSM
<< *InferredTarget
<< BaseMethodTarget
;
418 MemberDecl
->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context
));
424 // Same as for bases, but now for special members of fields.
425 for (const auto *F
: ClassDecl
->fields()) {
426 if (F
->isInvalidDecl()) {
430 const RecordType
*FieldType
=
431 Context
.getBaseElementType(F
->getType())->getAs
<RecordType
>();
436 CXXRecordDecl
*FieldRecDecl
= cast
<CXXRecordDecl
>(FieldType
->getDecl());
437 Sema::SpecialMemberOverloadResult SMOR
=
438 LookupSpecialMember(FieldRecDecl
, CSM
,
439 /* ConstArg */ ConstRHS
&& !F
->isMutable(),
440 /* VolatileArg */ false,
441 /* RValueThis */ false,
442 /* ConstThis */ false,
443 /* VolatileThis */ false);
445 if (!SMOR
.getMethod())
448 CUDAFunctionTarget FieldMethodTarget
=
449 IdentifyCUDATarget(SMOR
.getMethod());
450 if (!InferredTarget
) {
451 InferredTarget
= FieldMethodTarget
;
453 bool ResolutionError
= resolveCalleeCUDATargetConflict(
454 *InferredTarget
, FieldMethodTarget
, &*InferredTarget
);
455 if (ResolutionError
) {
457 Diag(ClassDecl
->getLocation(),
458 diag::note_implicit_member_target_infer_collision
)
459 << (unsigned)CSM
<< *InferredTarget
<< FieldMethodTarget
;
461 MemberDecl
->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context
));
468 // If no target was inferred, mark this member as __host__ __device__;
469 // it's the least restrictive option that can be invoked from any target.
470 bool NeedsH
= true, NeedsD
= true;
471 if (InferredTarget
) {
472 if (*InferredTarget
== CFT_Device
)
474 else if (*InferredTarget
== CFT_Host
)
478 // We either setting attributes first time, or the inferred ones must match
479 // previously set ones.
481 MemberDecl
->addAttr(CUDADeviceAttr::CreateImplicit(Context
));
483 MemberDecl
->addAttr(CUDAHostAttr::CreateImplicit(Context
));
488 bool Sema::isEmptyCudaConstructor(SourceLocation Loc
, CXXConstructorDecl
*CD
) {
489 if (!CD
->isDefined() && CD
->isTemplateInstantiation())
490 InstantiateFunctionDefinition(Loc
, CD
->getFirstDecl());
492 // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
493 // empty at a point in the translation unit, if it is either a
494 // trivial constructor
498 // ... or it satisfies all of the following conditions:
499 // The constructor function has been defined.
500 // The constructor function has no parameters,
501 // and the function body is an empty compound statement.
502 if (!(CD
->hasTrivialBody() && CD
->getNumParams() == 0))
505 // Its class has no virtual functions and no virtual base classes.
506 if (CD
->getParent()->isDynamicClass())
509 // Union ctor does not call ctors of its data members.
510 if (CD
->getParent()->isUnion())
513 // The only form of initializer allowed is an empty constructor.
514 // This will recursively check all base classes and member initializers
515 if (!llvm::all_of(CD
->inits(), [&](const CXXCtorInitializer
*CI
) {
516 if (const CXXConstructExpr
*CE
=
517 dyn_cast
<CXXConstructExpr
>(CI
->getInit()))
518 return isEmptyCudaConstructor(Loc
, CE
->getConstructor());
526 bool Sema::isEmptyCudaDestructor(SourceLocation Loc
, CXXDestructorDecl
*DD
) {
527 // No destructor -> no problem.
531 if (!DD
->isDefined() && DD
->isTemplateInstantiation())
532 InstantiateFunctionDefinition(Loc
, DD
->getFirstDecl());
534 // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
535 // empty at a point in the translation unit, if it is either a
536 // trivial constructor
540 // ... or it satisfies all of the following conditions:
541 // The destructor function has been defined.
542 // and the function body is an empty compound statement.
543 if (!DD
->hasTrivialBody())
546 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
548 // Its class has no virtual functions and no virtual base classes.
549 if (ClassDecl
->isDynamicClass())
552 // Union does not have base class and union dtor does not call dtors of its
554 if (DD
->getParent()->isUnion())
557 // Only empty destructors are allowed. This will recursively check
558 // destructors for all base classes...
559 if (!llvm::all_of(ClassDecl
->bases(), [&](const CXXBaseSpecifier
&BS
) {
560 if (CXXRecordDecl
*RD
= BS
.getType()->getAsCXXRecordDecl())
561 return isEmptyCudaDestructor(Loc
, RD
->getDestructor());
566 // ... and member fields.
567 if (!llvm::all_of(ClassDecl
->fields(), [&](const FieldDecl
*Field
) {
568 if (CXXRecordDecl
*RD
= Field
->getType()
569 ->getBaseElementTypeUnsafe()
570 ->getAsCXXRecordDecl())
571 return isEmptyCudaDestructor(Loc
, RD
->getDestructor());
580 enum CUDAInitializerCheckKind
{
581 CICK_DeviceOrConstant
, // Check initializer for device/constant variable
582 CICK_Shared
, // Check initializer for shared variable
585 bool IsDependentVar(VarDecl
*VD
) {
586 if (VD
->getType()->isDependentType())
588 if (const auto *Init
= VD
->getInit())
589 return Init
->isValueDependent();
593 // Check whether a variable has an allowed initializer for a CUDA device side
594 // variable with global storage. \p VD may be a host variable to be checked for
595 // potential promotion to device side variable.
597 // CUDA/HIP allows only empty constructors as initializers for global
598 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
599 // __shared__ variables whether they are local or not (they all are implicitly
600 // static in CUDA). One exception is that CUDA allows constant initializers
601 // for __constant__ and __device__ variables.
602 bool HasAllowedCUDADeviceStaticInitializer(Sema
&S
, VarDecl
*VD
,
603 CUDAInitializerCheckKind CheckKind
) {
604 assert(!VD
->isInvalidDecl() && VD
->hasGlobalStorage());
605 assert(!IsDependentVar(VD
) && "do not check dependent var");
606 const Expr
*Init
= VD
->getInit();
607 auto IsEmptyInit
= [&](const Expr
*Init
) {
610 if (const auto *CE
= dyn_cast
<CXXConstructExpr
>(Init
)) {
611 return S
.isEmptyCudaConstructor(VD
->getLocation(), CE
->getConstructor());
615 auto IsConstantInit
= [&](const Expr
*Init
) {
617 ASTContext::CUDAConstantEvalContextRAII
EvalCtx(S
.Context
,
618 /*NoWronSidedVars=*/true);
619 return Init
->isConstantInitializer(S
.Context
,
620 VD
->getType()->isReferenceType());
622 auto HasEmptyDtor
= [&](VarDecl
*VD
) {
623 if (const auto *RD
= VD
->getType()->getAsCXXRecordDecl())
624 return S
.isEmptyCudaDestructor(VD
->getLocation(), RD
->getDestructor());
627 if (CheckKind
== CICK_Shared
)
628 return IsEmptyInit(Init
) && HasEmptyDtor(VD
);
629 return S
.LangOpts
.GPUAllowDeviceInit
||
630 ((IsEmptyInit(Init
) || IsConstantInit(Init
)) && HasEmptyDtor(VD
));
634 void Sema::checkAllowedCUDAInitializer(VarDecl
*VD
) {
635 // Return early if VD is inside a non-instantiated template function since
636 // the implicit constructor is not defined yet.
637 if (const FunctionDecl
*FD
=
638 dyn_cast_or_null
<FunctionDecl
>(VD
->getDeclContext()))
639 if (FD
->isDependentContext())
642 // Do not check dependent variables since the ctor/dtor/initializer are not
643 // determined. Do it after instantiation.
644 if (VD
->isInvalidDecl() || !VD
->hasInit() || !VD
->hasGlobalStorage() ||
647 const Expr
*Init
= VD
->getInit();
648 bool IsSharedVar
= VD
->hasAttr
<CUDASharedAttr
>();
649 bool IsDeviceOrConstantVar
=
651 (VD
->hasAttr
<CUDADeviceAttr
>() || VD
->hasAttr
<CUDAConstantAttr
>());
652 if (IsDeviceOrConstantVar
|| IsSharedVar
) {
653 if (HasAllowedCUDADeviceStaticInitializer(
654 *this, VD
, IsSharedVar
? CICK_Shared
: CICK_DeviceOrConstant
))
656 Diag(VD
->getLocation(),
657 IsSharedVar
? diag::err_shared_var_init
: diag::err_dynamic_var_init
)
658 << Init
->getSourceRange();
659 VD
->setInvalidDecl();
661 // This is a host-side global variable. Check that the initializer is
662 // callable from the host side.
663 const FunctionDecl
*InitFn
= nullptr;
664 if (const CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(Init
)) {
665 InitFn
= CE
->getConstructor();
666 } else if (const CallExpr
*CE
= dyn_cast
<CallExpr
>(Init
)) {
667 InitFn
= CE
->getDirectCallee();
670 CUDAFunctionTarget InitFnTarget
= IdentifyCUDATarget(InitFn
);
671 if (InitFnTarget
!= CFT_Host
&& InitFnTarget
!= CFT_HostDevice
) {
672 Diag(VD
->getLocation(), diag::err_ref_bad_target_global_initializer
)
673 << InitFnTarget
<< InitFn
;
674 Diag(InitFn
->getLocation(), diag::note_previous_decl
) << InitFn
;
675 VD
->setInvalidDecl();
681 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
682 // treated as implicitly __host__ __device__, unless:
683 // * it is a variadic function (device-side variadic functions are not
685 // * a __device__ function with this signature was already declared, in which
686 // case in which case we output an error, unless the __device__ decl is in a
687 // system header, in which case we leave the constexpr function unattributed.
689 // In addition, all function decls are treated as __host__ __device__ when
690 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
691 // #pragma clang force_cuda_host_device_begin/end
693 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl
*NewD
,
694 const LookupResult
&Previous
) {
695 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
697 if (ForceCUDAHostDeviceDepth
> 0) {
698 if (!NewD
->hasAttr
<CUDAHostAttr
>())
699 NewD
->addAttr(CUDAHostAttr::CreateImplicit(Context
));
700 if (!NewD
->hasAttr
<CUDADeviceAttr
>())
701 NewD
->addAttr(CUDADeviceAttr::CreateImplicit(Context
));
705 if (!getLangOpts().CUDAHostDeviceConstexpr
|| !NewD
->isConstexpr() ||
706 NewD
->isVariadic() || NewD
->hasAttr
<CUDAHostAttr
>() ||
707 NewD
->hasAttr
<CUDADeviceAttr
>() || NewD
->hasAttr
<CUDAGlobalAttr
>())
710 // Is D a __device__ function with the same signature as NewD, ignoring CUDA
712 auto IsMatchingDeviceFn
= [&](NamedDecl
*D
) {
713 if (UsingShadowDecl
*Using
= dyn_cast
<UsingShadowDecl
>(D
))
714 D
= Using
->getTargetDecl();
715 FunctionDecl
*OldD
= D
->getAsFunction();
716 return OldD
&& OldD
->hasAttr
<CUDADeviceAttr
>() &&
717 !OldD
->hasAttr
<CUDAHostAttr
>() &&
718 !IsOverload(NewD
, OldD
, /* UseMemberUsingDeclRules = */ false,
719 /* ConsiderCudaAttrs = */ false);
721 auto It
= llvm::find_if(Previous
, IsMatchingDeviceFn
);
722 if (It
!= Previous
.end()) {
723 // We found a __device__ function with the same name and signature as NewD
724 // (ignoring CUDA attrs). This is an error unless that function is defined
725 // in a system header, in which case we simply return without making NewD
727 NamedDecl
*Match
= *It
;
728 if (!getSourceManager().isInSystemHeader(Match
->getLocation())) {
729 Diag(NewD
->getLocation(),
730 diag::err_cuda_unattributed_constexpr_cannot_overload_device
)
732 Diag(Match
->getLocation(),
733 diag::note_cuda_conflicting_device_function_declared_here
);
738 NewD
->addAttr(CUDAHostAttr::CreateImplicit(Context
));
739 NewD
->addAttr(CUDADeviceAttr::CreateImplicit(Context
));
742 // TODO: `__constant__` memory may be a limited resource for certain targets.
743 // A safeguard may be needed at the end of compilation pipeline if
744 // `__constant__` memory usage goes beyond limit.
745 void Sema::MaybeAddCUDAConstantAttr(VarDecl
*VD
) {
746 // Do not promote dependent variables since the cotr/dtor/initializer are
747 // not determined. Do it after instantiation.
748 if (getLangOpts().CUDAIsDevice
&& !VD
->hasAttr
<CUDAConstantAttr
>() &&
749 !VD
->hasAttr
<CUDASharedAttr
>() &&
750 (VD
->isFileVarDecl() || VD
->isStaticDataMember()) &&
751 !IsDependentVar(VD
) &&
752 ((VD
->isConstexpr() || VD
->getType().isConstQualified()) &&
753 HasAllowedCUDADeviceStaticInitializer(*this, VD
,
754 CICK_DeviceOrConstant
))) {
755 VD
->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
759 Sema::SemaDiagnosticBuilder
Sema::CUDADiagIfDeviceCode(SourceLocation Loc
,
761 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
762 FunctionDecl
*CurFunContext
= getCurFunctionDecl(/*AllowLambda=*/true);
763 SemaDiagnosticBuilder::Kind DiagKind
= [&] {
765 return SemaDiagnosticBuilder::K_Nop
;
766 switch (CurrentCUDATarget()) {
769 return SemaDiagnosticBuilder::K_Immediate
;
771 // An HD function counts as host code if we're compiling for host, and
772 // device code if we're compiling for device. Defer any errors in device
773 // mode until the function is known-emitted.
774 if (!getLangOpts().CUDAIsDevice
)
775 return SemaDiagnosticBuilder::K_Nop
;
776 if (IsLastErrorImmediate
&& Diags
.getDiagnosticIDs()->isBuiltinNote(DiagID
))
777 return SemaDiagnosticBuilder::K_Immediate
;
778 return (getEmissionStatus(CurFunContext
) ==
779 FunctionEmissionStatus::Emitted
)
780 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
781 : SemaDiagnosticBuilder::K_Deferred
;
783 return SemaDiagnosticBuilder::K_Nop
;
786 return SemaDiagnosticBuilder(DiagKind
, Loc
, DiagID
, CurFunContext
, *this);
789 Sema::SemaDiagnosticBuilder
Sema::CUDADiagIfHostCode(SourceLocation Loc
,
791 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
792 FunctionDecl
*CurFunContext
= getCurFunctionDecl(/*AllowLambda=*/true);
793 SemaDiagnosticBuilder::Kind DiagKind
= [&] {
795 return SemaDiagnosticBuilder::K_Nop
;
796 switch (CurrentCUDATarget()) {
798 return SemaDiagnosticBuilder::K_Immediate
;
800 // An HD function counts as host code if we're compiling for host, and
801 // device code if we're compiling for device. Defer any errors in device
802 // mode until the function is known-emitted.
803 if (getLangOpts().CUDAIsDevice
)
804 return SemaDiagnosticBuilder::K_Nop
;
805 if (IsLastErrorImmediate
&& Diags
.getDiagnosticIDs()->isBuiltinNote(DiagID
))
806 return SemaDiagnosticBuilder::K_Immediate
;
807 return (getEmissionStatus(CurFunContext
) ==
808 FunctionEmissionStatus::Emitted
)
809 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
810 : SemaDiagnosticBuilder::K_Deferred
;
812 return SemaDiagnosticBuilder::K_Nop
;
815 return SemaDiagnosticBuilder(DiagKind
, Loc
, DiagID
, CurFunContext
, *this);
818 bool Sema::CheckCUDACall(SourceLocation Loc
, FunctionDecl
*Callee
) {
819 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
820 assert(Callee
&& "Callee may not be null.");
822 const auto &ExprEvalCtx
= currentEvaluationContext();
823 if (ExprEvalCtx
.isUnevaluated() || ExprEvalCtx
.isConstantEvaluated())
826 // FIXME: Is bailing out early correct here? Should we instead assume that
827 // the caller is a global initializer?
828 FunctionDecl
*Caller
= getCurFunctionDecl(/*AllowLambda=*/true);
832 // If the caller is known-emitted, mark the callee as known-emitted.
833 // Otherwise, mark the call in our call graph so we can traverse it later.
834 bool CallerKnownEmitted
=
835 getEmissionStatus(Caller
) == FunctionEmissionStatus::Emitted
;
836 SemaDiagnosticBuilder::Kind DiagKind
= [this, Caller
, Callee
,
837 CallerKnownEmitted
] {
838 switch (IdentifyCUDAPreference(Caller
, Callee
)) {
841 assert(Caller
&& "Never/wrongSide calls require a non-null caller");
842 // If we know the caller will be emitted, we know this wrong-side call
843 // will be emitted, so it's an immediate error. Otherwise, defer the
844 // error until we know the caller is emitted.
845 return CallerKnownEmitted
846 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
847 : SemaDiagnosticBuilder::K_Deferred
;
849 return SemaDiagnosticBuilder::K_Nop
;
853 if (DiagKind
== SemaDiagnosticBuilder::K_Nop
) {
854 // For -fgpu-rdc, keep track of external kernels used by host functions.
855 if (LangOpts
.CUDAIsDevice
&& LangOpts
.GPURelocatableDeviceCode
&&
856 Callee
->hasAttr
<CUDAGlobalAttr
>() && !Callee
->isDefined())
857 getASTContext().CUDAExternalDeviceDeclODRUsedByHost
.insert(Callee
);
861 // Avoid emitting this error twice for the same location. Using a hashtable
862 // like this is unfortunate, but because we must continue parsing as normal
863 // after encountering a deferred error, it's otherwise very tricky for us to
864 // ensure that we only emit this deferred error once.
865 if (!LocsWithCUDACallDiags
.insert({Caller
, Loc
}).second
)
868 SemaDiagnosticBuilder(DiagKind
, Loc
, diag::err_ref_bad_target
, Caller
, *this)
869 << IdentifyCUDATarget(Callee
) << /*function*/ 0 << Callee
870 << IdentifyCUDATarget(Caller
);
871 if (!Callee
->getBuiltinID())
872 SemaDiagnosticBuilder(DiagKind
, Callee
->getLocation(),
873 diag::note_previous_decl
, Caller
, *this)
875 return DiagKind
!= SemaDiagnosticBuilder::K_Immediate
&&
876 DiagKind
!= SemaDiagnosticBuilder::K_ImmediateWithCallStack
;
879 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
880 // A lambda function may capture a stack variable by reference when it is
881 // defined and uses the capture by reference when the lambda is called. When
882 // the capture and use happen on different sides, the capture is invalid and
883 // should be diagnosed.
884 void Sema::CUDACheckLambdaCapture(CXXMethodDecl
*Callee
,
885 const sema::Capture
&Capture
) {
886 // In host compilation we only need to check lambda functions emitted on host
887 // side. In such lambda functions, a reference capture is invalid only
888 // if the lambda structure is populated by a device function or kernel then
889 // is passed to and called by a host function. However that is impossible,
890 // since a device function or kernel can only call a device function, also a
891 // kernel cannot pass a lambda back to a host function since we cannot
892 // define a kernel argument type which can hold the lambda before the lambda
893 // itself is defined.
894 if (!LangOpts
.CUDAIsDevice
)
897 // File-scope lambda can only do init captures for global variables, which
898 // results in passing by value for these global variables.
899 FunctionDecl
*Caller
= getCurFunctionDecl(/*AllowLambda=*/true);
903 // In device compilation, we only need to check lambda functions which are
904 // emitted on device side. For such lambdas, a reference capture is invalid
905 // only if the lambda structure is populated by a host function then passed
906 // to and called in a device function or kernel.
907 bool CalleeIsDevice
= Callee
->hasAttr
<CUDADeviceAttr
>();
909 !Caller
->hasAttr
<CUDAGlobalAttr
>() && !Caller
->hasAttr
<CUDADeviceAttr
>();
910 bool ShouldCheck
= CalleeIsDevice
&& CallerIsHost
;
911 if (!ShouldCheck
|| !Capture
.isReferenceCapture())
913 auto DiagKind
= SemaDiagnosticBuilder::K_Deferred
;
914 if (Capture
.isVariableCapture() && !getLangOpts().HIPStdPar
) {
915 SemaDiagnosticBuilder(DiagKind
, Capture
.getLocation(),
916 diag::err_capture_bad_target
, Callee
, *this)
917 << Capture
.getVariable();
918 } else if (Capture
.isThisCapture()) {
919 // Capture of this pointer is allowed since this pointer may be pointing to
920 // managed memory which is accessible on both device and host sides. It only
921 // results in invalid memory access if this pointer points to memory not
922 // accessible on device side.
923 SemaDiagnosticBuilder(DiagKind
, Capture
.getLocation(),
924 diag::warn_maybe_capture_bad_target_this_ptr
, Callee
,
929 void Sema::CUDASetLambdaAttrs(CXXMethodDecl
*Method
) {
930 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
931 if (Method
->hasAttr
<CUDAHostAttr
>() || Method
->hasAttr
<CUDADeviceAttr
>())
933 Method
->addAttr(CUDADeviceAttr::CreateImplicit(Context
));
934 Method
->addAttr(CUDAHostAttr::CreateImplicit(Context
));
937 void Sema::checkCUDATargetOverload(FunctionDecl
*NewFD
,
938 const LookupResult
&Previous
) {
939 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
940 CUDAFunctionTarget NewTarget
= IdentifyCUDATarget(NewFD
);
941 for (NamedDecl
*OldND
: Previous
) {
942 FunctionDecl
*OldFD
= OldND
->getAsFunction();
946 CUDAFunctionTarget OldTarget
= IdentifyCUDATarget(OldFD
);
947 // Don't allow HD and global functions to overload other functions with the
948 // same signature. We allow overloading based on CUDA attributes so that
949 // functions can have different implementations on the host and device, but
950 // HD/global functions "exist" in some sense on both the host and device, so
951 // should have the same implementation on both sides.
952 if (NewTarget
!= OldTarget
&&
953 ((NewTarget
== CFT_HostDevice
) || (OldTarget
== CFT_HostDevice
) ||
954 (NewTarget
== CFT_Global
) || (OldTarget
== CFT_Global
)) &&
955 !IsOverload(NewFD
, OldFD
, /* UseMemberUsingDeclRules = */ false,
956 /* ConsiderCudaAttrs = */ false)) {
957 Diag(NewFD
->getLocation(), diag::err_cuda_ovl_target
)
958 << NewTarget
<< NewFD
->getDeclName() << OldTarget
<< OldFD
;
959 Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
960 NewFD
->setInvalidDecl();
966 template <typename AttrTy
>
967 static void copyAttrIfPresent(Sema
&S
, FunctionDecl
*FD
,
968 const FunctionDecl
&TemplateFD
) {
969 if (AttrTy
*Attribute
= TemplateFD
.getAttr
<AttrTy
>()) {
970 AttrTy
*Clone
= Attribute
->clone(S
.Context
);
971 Clone
->setInherited(true);
976 void Sema::inheritCUDATargetAttrs(FunctionDecl
*FD
,
977 const FunctionTemplateDecl
&TD
) {
978 const FunctionDecl
&TemplateFD
= *TD
.getTemplatedDecl();
979 copyAttrIfPresent
<CUDAGlobalAttr
>(*this, FD
, TemplateFD
);
980 copyAttrIfPresent
<CUDAHostAttr
>(*this, FD
, TemplateFD
);
981 copyAttrIfPresent
<CUDADeviceAttr
>(*this, FD
, TemplateFD
);
984 std::string
Sema::getCudaConfigureFuncName() const {
985 if (getLangOpts().HIP
)
986 return getLangOpts().HIPUseNewLaunchAPI
? "__hipPushCallConfiguration"
987 : "hipConfigureCall";
989 // New CUDA kernel launch sequence.
990 if (CudaFeatureEnabled(Context
.getTargetInfo().getSDKVersion(),
991 CudaFeature::CUDA_USES_NEW_LAUNCH
))
992 return "__cudaPushCallConfiguration";
994 // Legacy CUDA kernel configuration call
995 return "cudaConfigureCall";