[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / clang / lib / StaticAnalyzer / Core / SValBuilder.cpp
blobd89d82626f72694231d35dbdd908f36588a86134
1 //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines SValBuilder, the base class for all (complete) SValBuilder
10 // implementations.
12 //===----------------------------------------------------------------------===//
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Analysis/AnalysisDeclContext.h"
23 #include "clang/Basic/LLVM.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
35 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include <cassert>
40 #include <optional>
41 #include <tuple>
43 using namespace clang;
44 using namespace ento;
46 //===----------------------------------------------------------------------===//
47 // Basic SVal creation.
48 //===----------------------------------------------------------------------===//
50 void SValBuilder::anchor() {}
52 SValBuilder::SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
53 ProgramStateManager &stateMgr)
54 : Context(context), BasicVals(context, alloc),
55 SymMgr(context, BasicVals, alloc), MemMgr(context, alloc),
56 StateMgr(stateMgr),
57 AnOpts(
58 stateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions()),
59 ArrayIndexTy(context.LongLongTy),
60 ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}
62 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
63 if (Loc::isLocType(type))
64 return makeNullWithType(type);
66 if (type->isIntegralOrEnumerationType())
67 return makeIntVal(0, type);
69 if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
70 type->isAnyComplexType())
71 return makeCompoundVal(type, BasicVals.getEmptySValList());
73 // FIXME: Handle floats.
74 return UnknownVal();
77 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
78 BinaryOperator::Opcode op,
79 const llvm::APSInt &rhs,
80 QualType type) {
81 // The Environment ensures we always get a persistent APSInt in
82 // BasicValueFactory, so we don't need to get the APSInt from
83 // BasicValueFactory again.
84 assert(lhs);
85 assert(!Loc::isLocType(type));
86 return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
89 nonloc::SymbolVal SValBuilder::makeNonLoc(const llvm::APSInt &lhs,
90 BinaryOperator::Opcode op,
91 const SymExpr *rhs, QualType type) {
92 assert(rhs);
93 assert(!Loc::isLocType(type));
94 return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
97 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
98 BinaryOperator::Opcode op,
99 const SymExpr *rhs, QualType type) {
100 assert(lhs && rhs);
101 assert(!Loc::isLocType(type));
102 return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
105 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op,
106 QualType type) {
107 assert(operand);
108 assert(!Loc::isLocType(type));
109 return nonloc::SymbolVal(SymMgr.getUnarySymExpr(operand, op, type));
112 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *operand,
113 QualType fromTy, QualType toTy) {
114 assert(operand);
115 assert(!Loc::isLocType(toTy));
116 if (fromTy == toTy)
117 return operand;
118 return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
121 SVal SValBuilder::convertToArrayIndex(SVal val) {
122 if (val.isUnknownOrUndef())
123 return val;
125 // Common case: we have an appropriately sized integer.
126 if (std::optional<nonloc::ConcreteInt> CI =
127 val.getAs<nonloc::ConcreteInt>()) {
128 const llvm::APSInt& I = CI->getValue();
129 if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
130 return val;
133 return evalCast(val, ArrayIndexTy, QualType{});
136 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
137 return makeTruthVal(boolean->getValue());
140 DefinedOrUnknownSVal
141 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) {
142 QualType T = region->getValueType();
144 if (T->isNullPtrType())
145 return makeZeroVal(T);
147 if (!SymbolManager::canSymbolicate(T))
148 return UnknownVal();
150 SymbolRef sym = SymMgr.getRegionValueSymbol(region);
152 if (Loc::isLocType(T))
153 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
155 return nonloc::SymbolVal(sym);
158 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
159 const Expr *Ex,
160 const LocationContext *LCtx,
161 unsigned Count) {
162 QualType T = Ex->getType();
164 if (T->isNullPtrType())
165 return makeZeroVal(T);
167 // Compute the type of the result. If the expression is not an R-value, the
168 // result should be a location.
169 QualType ExType = Ex->getType();
170 if (Ex->isGLValue())
171 T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
173 return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
176 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
177 const Expr *expr,
178 const LocationContext *LCtx,
179 QualType type,
180 unsigned count) {
181 if (type->isNullPtrType())
182 return makeZeroVal(type);
184 if (!SymbolManager::canSymbolicate(type))
185 return UnknownVal();
187 SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
189 if (Loc::isLocType(type))
190 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
192 return nonloc::SymbolVal(sym);
195 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
196 const LocationContext *LCtx,
197 QualType type,
198 unsigned visitCount) {
199 if (type->isNullPtrType())
200 return makeZeroVal(type);
202 if (!SymbolManager::canSymbolicate(type))
203 return UnknownVal();
205 SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
207 if (Loc::isLocType(type))
208 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
210 return nonloc::SymbolVal(sym);
213 DefinedOrUnknownSVal
214 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
215 const LocationContext *LCtx,
216 unsigned VisitCount) {
217 QualType T = E->getType();
218 return getConjuredHeapSymbolVal(E, LCtx, T, VisitCount);
221 DefinedOrUnknownSVal
222 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
223 const LocationContext *LCtx,
224 QualType type, unsigned VisitCount) {
225 assert(Loc::isLocType(type));
226 assert(SymbolManager::canSymbolicate(type));
227 if (type->isNullPtrType())
228 return makeZeroVal(type);
230 SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, type, VisitCount);
231 return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
234 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
235 const MemRegion *region,
236 const Expr *expr, QualType type,
237 const LocationContext *LCtx,
238 unsigned count) {
239 assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
241 SymbolRef sym =
242 SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);
244 if (Loc::isLocType(type))
245 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
247 return nonloc::SymbolVal(sym);
250 DefinedOrUnknownSVal
251 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
252 const TypedValueRegion *region) {
253 QualType T = region->getValueType();
255 if (T->isNullPtrType())
256 return makeZeroVal(T);
258 if (!SymbolManager::canSymbolicate(T))
259 return UnknownVal();
261 SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
263 if (Loc::isLocType(T))
264 return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
266 return nonloc::SymbolVal(sym);
269 DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) {
270 assert(!ND || (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(ND)));
272 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(ND)) {
273 // Sema treats pointers to static member functions as have function pointer
274 // type, so return a function pointer for the method.
275 // We don't need to play a similar trick for static member fields
276 // because these are represented as plain VarDecls and not FieldDecls
277 // in the AST.
278 if (!MD->isImplicitObjectMemberFunction())
279 return getFunctionPointer(MD);
282 return nonloc::PointerToMember(ND);
285 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
286 return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
289 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
290 CanQualType locTy,
291 const LocationContext *locContext,
292 unsigned blockCount) {
293 const BlockCodeRegion *BC =
294 MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
295 const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
296 blockCount);
297 return loc::MemRegionVal(BD);
300 std::optional<loc::MemRegionVal>
301 SValBuilder::getCastedMemRegionVal(const MemRegion *R, QualType Ty) {
302 if (auto OptR = StateMgr.getStoreManager().castRegion(R, Ty))
303 return loc::MemRegionVal(*OptR);
304 return std::nullopt;
307 /// Return a memory region for the 'this' object reference.
308 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
309 const StackFrameContext *SFC) {
310 return loc::MemRegionVal(
311 getRegionManager().getCXXThisRegion(D->getThisType(), SFC));
314 /// Return a memory region for the 'this' object reference.
315 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
316 const StackFrameContext *SFC) {
317 const Type *T = D->getTypeForDecl();
318 QualType PT = getContext().getPointerType(QualType(T, 0));
319 return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
322 std::optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
323 E = E->IgnoreParens();
325 switch (E->getStmtClass()) {
326 // Handle expressions that we treat differently from the AST's constant
327 // evaluator.
328 case Stmt::AddrLabelExprClass:
329 return makeLoc(cast<AddrLabelExpr>(E));
331 case Stmt::CXXScalarValueInitExprClass:
332 case Stmt::ImplicitValueInitExprClass:
333 return makeZeroVal(E->getType());
335 case Stmt::ObjCStringLiteralClass: {
336 const auto *SL = cast<ObjCStringLiteral>(E);
337 return makeLoc(getRegionManager().getObjCStringRegion(SL));
340 case Stmt::StringLiteralClass: {
341 const auto *SL = cast<StringLiteral>(E);
342 return makeLoc(getRegionManager().getStringRegion(SL));
345 case Stmt::PredefinedExprClass: {
346 const auto *PE = cast<PredefinedExpr>(E);
347 assert(PE->getFunctionName() &&
348 "Since we analyze only instantiated functions, PredefinedExpr "
349 "should have a function name.");
350 return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName()));
353 // Fast-path some expressions to avoid the overhead of going through the AST's
354 // constant evaluator
355 case Stmt::CharacterLiteralClass: {
356 const auto *C = cast<CharacterLiteral>(E);
357 return makeIntVal(C->getValue(), C->getType());
360 case Stmt::CXXBoolLiteralExprClass:
361 return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
363 case Stmt::TypeTraitExprClass: {
364 const auto *TE = cast<TypeTraitExpr>(E);
365 return makeTruthVal(TE->getValue(), TE->getType());
368 case Stmt::IntegerLiteralClass:
369 return makeIntVal(cast<IntegerLiteral>(E));
371 case Stmt::ObjCBoolLiteralExprClass:
372 return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
374 case Stmt::CXXNullPtrLiteralExprClass:
375 return makeNullWithType(E->getType());
377 case Stmt::CStyleCastExprClass:
378 case Stmt::CXXFunctionalCastExprClass:
379 case Stmt::CXXConstCastExprClass:
380 case Stmt::CXXReinterpretCastExprClass:
381 case Stmt::CXXStaticCastExprClass:
382 case Stmt::ImplicitCastExprClass: {
383 const auto *CE = cast<CastExpr>(E);
384 switch (CE->getCastKind()) {
385 default:
386 break;
387 case CK_ArrayToPointerDecay:
388 case CK_IntegralToPointer:
389 case CK_NoOp:
390 case CK_BitCast: {
391 const Expr *SE = CE->getSubExpr();
392 std::optional<SVal> Val = getConstantVal(SE);
393 if (!Val)
394 return std::nullopt;
395 return evalCast(*Val, CE->getType(), SE->getType());
398 [[fallthrough]];
401 // If we don't have a special case, fall back to the AST's constant evaluator.
402 default: {
403 // Don't try to come up with a value for materialized temporaries.
404 if (E->isGLValue())
405 return std::nullopt;
407 ASTContext &Ctx = getContext();
408 Expr::EvalResult Result;
409 if (E->EvaluateAsInt(Result, Ctx))
410 return makeIntVal(Result.Val.getInt());
412 if (Loc::isLocType(E->getType()))
413 if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
414 return makeNullWithType(E->getType());
416 return std::nullopt;
421 SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op,
422 NonLoc LHS, NonLoc RHS,
423 QualType ResultTy) {
424 SymbolRef symLHS = LHS.getAsSymbol();
425 SymbolRef symRHS = RHS.getAsSymbol();
427 // TODO: When the Max Complexity is reached, we should conjure a symbol
428 // instead of generating an Unknown value and propagate the taint info to it.
429 const unsigned MaxComp = AnOpts.MaxSymbolComplexity;
431 if (symLHS && symRHS &&
432 (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
433 return makeNonLoc(symLHS, Op, symRHS, ResultTy);
435 if (symLHS && symLHS->computeComplexity() < MaxComp)
436 if (std::optional<nonloc::ConcreteInt> rInt =
437 RHS.getAs<nonloc::ConcreteInt>())
438 return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
440 if (symRHS && symRHS->computeComplexity() < MaxComp)
441 if (std::optional<nonloc::ConcreteInt> lInt =
442 LHS.getAs<nonloc::ConcreteInt>())
443 return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
445 return UnknownVal();
448 SVal SValBuilder::evalMinus(NonLoc X) {
449 switch (X.getSubKind()) {
450 case nonloc::ConcreteIntKind:
451 return makeIntVal(-X.castAs<nonloc::ConcreteInt>().getValue());
452 case nonloc::SymbolValKind:
453 return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Minus,
454 X.getType(Context));
455 default:
456 return UnknownVal();
460 SVal SValBuilder::evalComplement(NonLoc X) {
461 switch (X.getSubKind()) {
462 case nonloc::ConcreteIntKind:
463 return makeIntVal(~X.castAs<nonloc::ConcreteInt>().getValue());
464 case nonloc::SymbolValKind:
465 return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Not,
466 X.getType(Context));
467 default:
468 return UnknownVal();
472 SVal SValBuilder::evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc,
473 SVal operand, QualType type) {
474 auto OpN = operand.getAs<NonLoc>();
475 if (!OpN)
476 return UnknownVal();
478 if (opc == UO_Minus)
479 return evalMinus(*OpN);
480 if (opc == UO_Not)
481 return evalComplement(*OpN);
482 llvm_unreachable("Unexpected unary operator");
485 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
486 SVal lhs, SVal rhs, QualType type) {
487 if (lhs.isUndef() || rhs.isUndef())
488 return UndefinedVal();
490 if (lhs.isUnknown() || rhs.isUnknown())
491 return UnknownVal();
493 if (isa<nonloc::LazyCompoundVal>(lhs) || isa<nonloc::LazyCompoundVal>(rhs)) {
494 return UnknownVal();
497 if (op == BinaryOperatorKind::BO_Cmp) {
498 // We can't reason about C++20 spaceship operator yet.
500 // FIXME: Support C++20 spaceship operator.
501 // The main problem here is that the result is not integer.
502 return UnknownVal();
505 if (std::optional<Loc> LV = lhs.getAs<Loc>()) {
506 if (std::optional<Loc> RV = rhs.getAs<Loc>())
507 return evalBinOpLL(state, op, *LV, *RV, type);
509 return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
512 if (const std::optional<Loc> RV = rhs.getAs<Loc>()) {
513 const auto IsCommutative = [](BinaryOperatorKind Op) {
514 return Op == BO_Mul || Op == BO_Add || Op == BO_And || Op == BO_Xor ||
515 Op == BO_Or;
518 if (IsCommutative(op)) {
519 // Swap operands.
520 return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
523 // If the right operand is a concrete int location then we have nothing
524 // better but to treat it as a simple nonloc.
525 if (auto RV = rhs.getAs<loc::ConcreteInt>()) {
526 const nonloc::ConcreteInt RhsAsLoc = makeIntVal(RV->getValue());
527 return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), RhsAsLoc, type);
531 return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
532 type);
535 ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs,
536 SVal rhs) {
537 return state->isNonNull(evalEQ(state, lhs, rhs));
540 SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) {
541 return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType());
544 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
545 DefinedOrUnknownSVal lhs,
546 DefinedOrUnknownSVal rhs) {
547 return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs))
548 .castAs<DefinedOrUnknownSVal>();
551 /// Recursively check if the pointer types are equal modulo const, volatile,
552 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
553 /// Assumes the input types are canonical.
554 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
555 QualType FromTy) {
556 while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
557 Qualifiers Quals1, Quals2;
558 ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
559 FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
561 // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
562 // spaces) are identical.
563 Quals1.removeCVRQualifiers();
564 Quals2.removeCVRQualifiers();
565 if (Quals1 != Quals2)
566 return false;
569 // If we are casting to void, the 'From' value can be used to represent the
570 // 'To' value.
572 // FIXME: Doing this after unwrapping the types doesn't make any sense. A
573 // cast from 'int**' to 'void**' is not special in the way that a cast from
574 // 'int*' to 'void*' is.
575 if (ToTy->isVoidType())
576 return true;
578 if (ToTy != FromTy)
579 return false;
581 return true;
584 // Handles casts of type CK_IntegralCast.
585 // At the moment, this function will redirect to evalCast, except when the range
586 // of the original value is known to be greater than the max of the target type.
587 SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
588 QualType castTy, QualType originalTy) {
589 // No truncations if target type is big enough.
590 if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
591 return evalCast(val, castTy, originalTy);
593 SymbolRef se = val.getAsSymbol();
594 if (!se) // Let evalCast handle non symbolic expressions.
595 return evalCast(val, castTy, originalTy);
597 // Find the maximum value of the target type.
598 APSIntType ToType(getContext().getTypeSize(castTy),
599 castTy->isUnsignedIntegerType());
600 llvm::APSInt ToTypeMax = ToType.getMaxValue();
602 NonLoc ToTypeMaxVal = makeIntVal(ToTypeMax);
604 // Check the range of the symbol being casted against the maximum value of the
605 // target type.
606 NonLoc FromVal = val.castAs<NonLoc>();
607 QualType CmpTy = getConditionType();
608 NonLoc CompVal =
609 evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
610 ProgramStateRef IsNotTruncated, IsTruncated;
611 std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
612 if (!IsNotTruncated && IsTruncated) {
613 // Symbol is truncated so we evaluate it as a cast.
614 return makeNonLoc(se, originalTy, castTy);
616 return evalCast(val, castTy, originalTy);
619 //===----------------------------------------------------------------------===//
620 // Cast method.
621 // `evalCast` and its helper `EvalCastVisitor`
622 //===----------------------------------------------------------------------===//
624 namespace {
625 class EvalCastVisitor : public SValVisitor<EvalCastVisitor, SVal> {
626 private:
627 SValBuilder &VB;
628 ASTContext &Context;
629 QualType CastTy, OriginalTy;
631 public:
632 EvalCastVisitor(SValBuilder &VB, QualType CastTy, QualType OriginalTy)
633 : VB(VB), Context(VB.getContext()), CastTy(CastTy),
634 OriginalTy(OriginalTy) {}
636 SVal Visit(SVal V) {
637 if (CastTy.isNull())
638 return V;
640 CastTy = Context.getCanonicalType(CastTy);
642 const bool IsUnknownOriginalType = OriginalTy.isNull();
643 if (!IsUnknownOriginalType) {
644 OriginalTy = Context.getCanonicalType(OriginalTy);
646 if (CastTy == OriginalTy)
647 return V;
649 // FIXME: Move this check to the most appropriate
650 // evalCastKind/evalCastSubKind function. For const casts, casts to void,
651 // just propagate the value.
652 if (!CastTy->isVariableArrayType() && !OriginalTy->isVariableArrayType())
653 if (shouldBeModeledWithNoOp(Context, Context.getPointerType(CastTy),
654 Context.getPointerType(OriginalTy)))
655 return V;
657 return SValVisitor::Visit(V);
659 SVal VisitUndefinedVal(UndefinedVal V) { return V; }
660 SVal VisitUnknownVal(UnknownVal V) { return V; }
661 SVal VisitLocConcreteInt(loc::ConcreteInt V) {
662 // Pointer to bool.
663 if (CastTy->isBooleanType())
664 return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy);
666 // Pointer to integer.
667 if (CastTy->isIntegralOrEnumerationType()) {
668 llvm::APSInt Value = V.getValue();
669 VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
670 return VB.makeIntVal(Value);
673 // Pointer to any pointer.
674 if (Loc::isLocType(CastTy)) {
675 llvm::APSInt Value = V.getValue();
676 VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
677 return loc::ConcreteInt(VB.getBasicValueFactory().getValue(Value));
680 // Pointer to whatever else.
681 return UnknownVal();
683 SVal VisitLocGotoLabel(loc::GotoLabel V) {
684 // Pointer to bool.
685 if (CastTy->isBooleanType())
686 // Labels are always true.
687 return VB.makeTruthVal(true, CastTy);
689 // Pointer to integer.
690 if (CastTy->isIntegralOrEnumerationType()) {
691 const unsigned BitWidth = Context.getIntWidth(CastTy);
692 return VB.makeLocAsInteger(V, BitWidth);
695 const bool IsUnknownOriginalType = OriginalTy.isNull();
696 if (!IsUnknownOriginalType) {
697 // Array to pointer.
698 if (isa<ArrayType>(OriginalTy))
699 if (CastTy->isPointerType() || CastTy->isReferenceType())
700 return UnknownVal();
703 // Pointer to any pointer.
704 if (Loc::isLocType(CastTy))
705 return V;
707 // Pointer to whatever else.
708 return UnknownVal();
710 SVal VisitLocMemRegionVal(loc::MemRegionVal V) {
711 // Pointer to bool.
712 if (CastTy->isBooleanType()) {
713 const MemRegion *R = V.getRegion();
714 if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
715 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
716 if (FD->isWeak())
717 // FIXME: Currently we are using an extent symbol here,
718 // because there are no generic region address metadata
719 // symbols to use, only content metadata.
720 return nonloc::SymbolVal(
721 VB.getSymbolManager().getExtentSymbol(FTR));
723 if (const SymbolicRegion *SymR = R->getSymbolicBase()) {
724 SymbolRef Sym = SymR->getSymbol();
725 QualType Ty = Sym->getType();
726 // This change is needed for architectures with varying
727 // pointer widths. See the amdgcn opencl reproducer with
728 // this change as an example: solver-sym-simplification-ptr-bool.cl
729 if (!Ty->isReferenceType())
730 return VB.makeNonLoc(
731 Sym, BO_NE, VB.getBasicValueFactory().getZeroWithTypeSize(Ty),
732 CastTy);
734 // Non-symbolic memory regions are always true.
735 return VB.makeTruthVal(true, CastTy);
738 const bool IsUnknownOriginalType = OriginalTy.isNull();
739 // Try to cast to array
740 const auto *ArrayTy =
741 IsUnknownOriginalType
742 ? nullptr
743 : dyn_cast<ArrayType>(OriginalTy.getCanonicalType());
745 // Pointer to integer.
746 if (CastTy->isIntegralOrEnumerationType()) {
747 SVal Val = V;
748 // Array to integer.
749 if (ArrayTy) {
750 // We will always decay to a pointer.
751 QualType ElemTy = ArrayTy->getElementType();
752 Val = VB.getStateManager().ArrayToPointer(V, ElemTy);
753 // FIXME: Keep these here for now in case we decide soon that we
754 // need the original decayed type.
755 // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
756 // QualType pointerTy = C.getPointerType(elemTy);
758 const unsigned BitWidth = Context.getIntWidth(CastTy);
759 return VB.makeLocAsInteger(Val.castAs<Loc>(), BitWidth);
762 // Pointer to pointer.
763 if (Loc::isLocType(CastTy)) {
765 if (IsUnknownOriginalType) {
766 // When retrieving symbolic pointer and expecting a non-void pointer,
767 // wrap them into element regions of the expected type if necessary.
768 // It is necessary to make sure that the retrieved value makes sense,
769 // because there's no other cast in the AST that would tell us to cast
770 // it to the correct pointer type. We might need to do that for non-void
771 // pointers as well.
772 // FIXME: We really need a single good function to perform casts for us
773 // correctly every time we need it.
774 const MemRegion *R = V.getRegion();
775 if (CastTy->isPointerType() && !CastTy->isVoidPointerType()) {
776 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) {
777 QualType SRTy = SR->getSymbol()->getType();
779 auto HasSameUnqualifiedPointeeType = [](QualType ty1,
780 QualType ty2) {
781 return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
782 ty2->getPointeeType().getCanonicalType().getTypePtr();
784 if (!HasSameUnqualifiedPointeeType(SRTy, CastTy)) {
785 if (auto OptMemRegV = VB.getCastedMemRegionVal(SR, CastTy))
786 return *OptMemRegV;
790 // Next fixes pointer dereference using type different from its initial
791 // one. See PR37503 and PR49007 for details.
792 if (const auto *ER = dyn_cast<ElementRegion>(R)) {
793 if (auto OptMemRegV = VB.getCastedMemRegionVal(ER, CastTy))
794 return *OptMemRegV;
797 return V;
800 if (OriginalTy->isIntegralOrEnumerationType() ||
801 OriginalTy->isBlockPointerType() ||
802 OriginalTy->isFunctionPointerType())
803 return V;
805 // Array to pointer.
806 if (ArrayTy) {
807 // Are we casting from an array to a pointer? If so just pass on
808 // the decayed value.
809 if (CastTy->isPointerType() || CastTy->isReferenceType()) {
810 // We will always decay to a pointer.
811 QualType ElemTy = ArrayTy->getElementType();
812 return VB.getStateManager().ArrayToPointer(V, ElemTy);
814 // Are we casting from an array to an integer? If so, cast the decayed
815 // pointer value to an integer.
816 assert(CastTy->isIntegralOrEnumerationType());
819 // Other pointer to pointer.
820 assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
821 CastTy->isReferenceType());
823 // We get a symbolic function pointer for a dereference of a function
824 // pointer, but it is of function type. Example:
826 // struct FPRec {
827 // void (*my_func)(int * x);
828 // };
830 // int bar(int x);
832 // int f1_a(struct FPRec* foo) {
833 // int x;
834 // (*foo->my_func)(&x);
835 // return bar(x)+1; // no-warning
836 // }
838 // Get the result of casting a region to a different type.
839 const MemRegion *R = V.getRegion();
840 if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
841 return *OptMemRegV;
844 // Pointer to whatever else.
845 // FIXME: There can be gross cases where one casts the result of a
846 // function (that returns a pointer) to some other value that happens to
847 // fit within that pointer value. We currently have no good way to model
848 // such operations. When this happens, the underlying operation is that
849 // the caller is reasoning about bits. Conceptually we are layering a
850 // "view" of a location on top of those bits. Perhaps we need to be more
851 // lazy about mutual possible views, even on an SVal? This may be
852 // necessary for bit-level reasoning as well.
853 return UnknownVal();
855 SVal VisitNonLocCompoundVal(nonloc::CompoundVal V) {
856 // Compound to whatever.
857 return UnknownVal();
859 SVal VisitNonLocConcreteInt(nonloc::ConcreteInt V) {
860 auto CastedValue = [V, this]() {
861 llvm::APSInt Value = V.getValue();
862 VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
863 return Value;
866 // Integer to bool.
867 if (CastTy->isBooleanType())
868 return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy);
870 // Integer to pointer.
871 if (CastTy->isIntegralOrEnumerationType())
872 return VB.makeIntVal(CastedValue());
874 // Integer to pointer.
875 if (Loc::isLocType(CastTy))
876 return VB.makeIntLocVal(CastedValue());
878 // Pointer to whatever else.
879 return UnknownVal();
881 SVal VisitNonLocLazyCompoundVal(nonloc::LazyCompoundVal V) {
882 // LazyCompound to whatever.
883 return UnknownVal();
885 SVal VisitNonLocLocAsInteger(nonloc::LocAsInteger V) {
886 Loc L = V.getLoc();
888 // Pointer as integer to bool.
889 if (CastTy->isBooleanType())
890 // Pass to Loc function.
891 return Visit(L);
893 const bool IsUnknownOriginalType = OriginalTy.isNull();
894 // Pointer as integer to pointer.
895 if (!IsUnknownOriginalType && Loc::isLocType(CastTy) &&
896 OriginalTy->isIntegralOrEnumerationType()) {
897 if (const MemRegion *R = L.getAsRegion())
898 if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
899 return *OptMemRegV;
900 return L;
903 // Pointer as integer with region to integer/pointer.
904 const MemRegion *R = L.getAsRegion();
905 if (!IsUnknownOriginalType && R) {
906 if (CastTy->isIntegralOrEnumerationType())
907 return VisitLocMemRegionVal(loc::MemRegionVal(R));
909 if (Loc::isLocType(CastTy)) {
910 assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
911 CastTy->isReferenceType());
912 // Delegate to store manager to get the result of casting a region to a
913 // different type. If the MemRegion* returned is NULL, this expression
914 // Evaluates to UnknownVal.
915 if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
916 return *OptMemRegV;
918 } else {
919 if (Loc::isLocType(CastTy)) {
920 if (IsUnknownOriginalType)
921 return VisitLocMemRegionVal(loc::MemRegionVal(R));
922 return L;
925 SymbolRef SE = nullptr;
926 if (R) {
927 if (const SymbolicRegion *SR =
928 dyn_cast<SymbolicRegion>(R->StripCasts())) {
929 SE = SR->getSymbol();
933 if (!CastTy->isFloatingType() || !SE || SE->getType()->isFloatingType()) {
934 // FIXME: Correctly support promotions/truncations.
935 const unsigned CastSize = Context.getIntWidth(CastTy);
936 if (CastSize == V.getNumBits())
937 return V;
939 return VB.makeLocAsInteger(L, CastSize);
943 // Pointer as integer to whatever else.
944 return UnknownVal();
946 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
947 SymbolRef SE = V.getSymbol();
949 const bool IsUnknownOriginalType = OriginalTy.isNull();
950 // Symbol to bool.
951 if (!IsUnknownOriginalType && CastTy->isBooleanType()) {
952 // Non-float to bool.
953 if (Loc::isLocType(OriginalTy) ||
954 OriginalTy->isIntegralOrEnumerationType() ||
955 OriginalTy->isMemberPointerType()) {
956 BasicValueFactory &BVF = VB.getBasicValueFactory();
957 return VB.makeNonLoc(SE, BO_NE, BVF.getValue(0, SE->getType()), CastTy);
959 } else {
960 // Symbol to integer, float.
961 QualType T = Context.getCanonicalType(SE->getType());
963 // Produce SymbolCast if CastTy and T are different integers.
964 // NOTE: In the end the type of SymbolCast shall be equal to CastTy.
965 if (T->isIntegralOrUnscopedEnumerationType() &&
966 CastTy->isIntegralOrUnscopedEnumerationType()) {
967 AnalyzerOptions &Opts = VB.getStateManager()
968 .getOwningEngine()
969 .getAnalysisManager()
970 .getAnalyzerOptions();
971 // If appropriate option is disabled, ignore the cast.
972 // NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default.
973 if (!Opts.ShouldSupportSymbolicIntegerCasts)
974 return V;
975 return simplifySymbolCast(V, CastTy);
977 if (!Loc::isLocType(CastTy))
978 if (!IsUnknownOriginalType || !CastTy->isFloatingType() ||
979 T->isFloatingType())
980 return VB.makeNonLoc(SE, T, CastTy);
983 // Symbol to pointer and whatever else.
984 return UnknownVal();
986 SVal VisitNonLocPointerToMember(nonloc::PointerToMember V) {
987 // Member pointer to whatever.
988 return V;
991 /// Reduce cast expression by removing redundant intermediate casts.
992 /// E.g.
993 /// - (char)(short)(int x) -> (char)(int x)
994 /// - (int)(int x) -> int x
996 /// \param V -- SymbolVal, which pressumably contains SymbolCast or any symbol
997 /// that is applicable for cast operation.
998 /// \param CastTy -- QualType, which `V` shall be cast to.
999 /// \return SVal with simplified cast expression.
1000 /// \note: Currently only support integral casts.
1001 nonloc::SymbolVal simplifySymbolCast(nonloc::SymbolVal V, QualType CastTy) {
1002 // We use seven conditions to recognize a simplification case.
1003 // For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type -
1004 // `R`, prefix `u` for unsigned, `s` for signed, no prefix - any sign: E.g.
1005 // (char)(short)(uint x)
1006 // ( sC )( sT )( uR x)
1008 // C === R (the same type)
1009 // (char)(char x) -> (char x)
1010 // (long)(long x) -> (long x)
1011 // Note: Comparisons operators below are for bit width.
1012 // C == T
1013 // (short)(short)(int x) -> (short)(int x)
1014 // (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int))
1015 // (long)(ullong)(char x) -> (long)(char x) (sizeof(long) ==
1016 // sizeof(ullong))
1017 // C < T
1018 // (short)(int)(char x) -> (short)(char x)
1019 // (char)(int)(short x) -> (char)(short x)
1020 // (short)(int)(short x) -> (short x)
1021 // C > T > uR
1022 // (int)(short)(uchar x) -> (int)(uchar x)
1023 // (uint)(short)(uchar x) -> (uint)(uchar x)
1024 // (int)(ushort)(uchar x) -> (int)(uchar x)
1025 // C > sT > sR
1026 // (int)(short)(char x) -> (int)(char x)
1027 // (uint)(short)(char x) -> (uint)(char x)
1028 // C > sT == sR
1029 // (int)(char)(char x) -> (int)(char x)
1030 // (uint)(short)(short x) -> (uint)(short x)
1031 // C > uT == uR
1032 // (int)(uchar)(uchar x) -> (int)(uchar x)
1033 // (uint)(ushort)(ushort x) -> (uint)(ushort x)
1034 // (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) ==
1035 // sizeof(uint))
1037 SymbolRef SE = V.getSymbol();
1038 QualType T = Context.getCanonicalType(SE->getType());
1040 if (T == CastTy)
1041 return V;
1043 if (!isa<SymbolCast>(SE))
1044 return VB.makeNonLoc(SE, T, CastTy);
1046 SymbolRef RootSym = cast<SymbolCast>(SE)->getOperand();
1047 QualType RT = RootSym->getType().getCanonicalType();
1049 // FIXME support simplification from non-integers.
1050 if (!RT->isIntegralOrEnumerationType())
1051 return VB.makeNonLoc(SE, T, CastTy);
1053 BasicValueFactory &BVF = VB.getBasicValueFactory();
1054 APSIntType CTy = BVF.getAPSIntType(CastTy);
1055 APSIntType TTy = BVF.getAPSIntType(T);
1057 const auto WC = CTy.getBitWidth();
1058 const auto WT = TTy.getBitWidth();
1060 if (WC <= WT) {
1061 const bool isSameType = (RT == CastTy);
1062 if (isSameType)
1063 return nonloc::SymbolVal(RootSym);
1064 return VB.makeNonLoc(RootSym, RT, CastTy);
1067 APSIntType RTy = BVF.getAPSIntType(RT);
1068 const auto WR = RTy.getBitWidth();
1069 const bool UT = TTy.isUnsigned();
1070 const bool UR = RTy.isUnsigned();
1072 if (((WT > WR) && (UR || !UT)) || ((WT == WR) && (UT == UR)))
1073 return VB.makeNonLoc(RootSym, RT, CastTy);
1075 return VB.makeNonLoc(SE, T, CastTy);
1078 } // end anonymous namespace
1080 /// Cast a given SVal to another SVal using given QualType's.
1081 /// \param V -- SVal that should be casted.
1082 /// \param CastTy -- QualType that V should be casted according to.
1083 /// \param OriginalTy -- QualType which is associated to V. It provides
1084 /// additional information about what type the cast performs from.
1085 /// \returns the most appropriate casted SVal.
1086 /// Note: Many cases don't use an exact OriginalTy. It can be extracted
1087 /// from SVal or the cast can performs unconditionaly. Always pass OriginalTy!
1088 /// It can be crucial in certain cases and generates different results.
1089 /// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy
1090 /// only. This behavior is uncertain and should be improved.
1091 SVal SValBuilder::evalCast(SVal V, QualType CastTy, QualType OriginalTy) {
1092 EvalCastVisitor TRV{*this, CastTy, OriginalTy};
1093 return TRV.Visit(V);