1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GetElementPtrTypeIterator.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/ValueHandle.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
67 using namespace llvm::PatternMatch
;
69 #define DEBUG_TYPE "loop-accesses"
71 static cl::opt
<unsigned, true>
72 VectorizationFactor("force-vector-width", cl::Hidden
,
73 cl::desc("Sets the SIMD width. Zero is autoselect."),
74 cl::location(VectorizerParams::VectorizationFactor
));
75 unsigned VectorizerParams::VectorizationFactor
;
77 static cl::opt
<unsigned, true>
78 VectorizationInterleave("force-vector-interleave", cl::Hidden
,
79 cl::desc("Sets the vectorization interleave count. "
80 "Zero is autoselect."),
82 VectorizerParams::VectorizationInterleave
));
83 unsigned VectorizerParams::VectorizationInterleave
;
85 static cl::opt
<unsigned, true> RuntimeMemoryCheckThreshold(
86 "runtime-memory-check-threshold", cl::Hidden
,
87 cl::desc("When performing memory disambiguation checks at runtime do not "
88 "generate more than this number of comparisons (default = 8)."),
89 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold
), cl::init(8));
90 unsigned VectorizerParams::RuntimeMemoryCheckThreshold
;
92 /// The maximum iterations used to merge memory checks
93 static cl::opt
<unsigned> MemoryCheckMergeThreshold(
94 "memory-check-merge-threshold", cl::Hidden
,
95 cl::desc("Maximum number of comparisons done when trying to merge "
96 "runtime memory checks. (default = 100)"),
99 /// Maximum SIMD width.
100 const unsigned VectorizerParams::MaxVectorWidth
= 64;
102 /// We collect dependences up to this threshold.
103 static cl::opt
<unsigned>
104 MaxDependences("max-dependences", cl::Hidden
,
105 cl::desc("Maximum number of dependences collected by "
106 "loop-access analysis (default = 100)"),
109 /// This enables versioning on the strides of symbolically striding memory
110 /// accesses in code like the following.
111 /// for (i = 0; i < N; ++i)
112 /// A[i * Stride1] += B[i * Stride2] ...
114 /// Will be roughly translated to
115 /// if (Stride1 == 1 && Stride2 == 1) {
116 /// for (i = 0; i < N; i+=4)
120 static cl::opt
<bool> EnableMemAccessVersioning(
121 "enable-mem-access-versioning", cl::init(true), cl::Hidden
,
122 cl::desc("Enable symbolic stride memory access versioning"));
124 /// Enable store-to-load forwarding conflict detection. This option can
125 /// be disabled for correctness testing.
126 static cl::opt
<bool> EnableForwardingConflictDetection(
127 "store-to-load-forwarding-conflict-detection", cl::Hidden
,
128 cl::desc("Enable conflict detection in loop-access analysis"),
131 static cl::opt
<unsigned> MaxForkedSCEVDepth(
132 "max-forked-scev-depth", cl::Hidden
,
133 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136 static cl::opt
<bool> SpeculateUnitStride(
137 "laa-speculate-unit-stride", cl::Hidden
,
138 cl::desc("Speculate that non-constant strides are unit in LAA"),
141 static cl::opt
<bool, true> HoistRuntimeChecks(
142 "hoist-runtime-checks", cl::Hidden
,
144 "Hoist inner loop runtime memory checks to outer loop if possible"),
145 cl::location(VectorizerParams::HoistRuntimeChecks
), cl::init(false));
146 bool VectorizerParams::HoistRuntimeChecks
;
148 bool VectorizerParams::isInterleaveForced() {
149 return ::VectorizationInterleave
.getNumOccurrences() > 0;
152 const SCEV
*llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution
&PSE
,
153 const DenseMap
<Value
*, const SCEV
*> &PtrToStride
,
155 const SCEV
*OrigSCEV
= PSE
.getSCEV(Ptr
);
157 // If there is an entry in the map return the SCEV of the pointer with the
158 // symbolic stride replaced by one.
159 DenseMap
<Value
*, const SCEV
*>::const_iterator SI
= PtrToStride
.find(Ptr
);
160 if (SI
== PtrToStride
.end())
161 // For a non-symbolic stride, just return the original expression.
164 const SCEV
*StrideSCEV
= SI
->second
;
165 // Note: This assert is both overly strong and overly weak. The actual
166 // invariant here is that StrideSCEV should be loop invariant. The only
167 // such invariant strides we happen to speculate right now are unknowns
168 // and thus this is a reasonable proxy of the actual invariant.
169 assert(isa
<SCEVUnknown
>(StrideSCEV
) && "shouldn't be in map");
171 ScalarEvolution
*SE
= PSE
.getSE();
172 const auto *CT
= SE
->getOne(StrideSCEV
->getType());
173 PSE
.addPredicate(*SE
->getEqualPredicate(StrideSCEV
, CT
));
174 auto *Expr
= PSE
.getSCEV(Ptr
);
176 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
177 << " by: " << *Expr
<< "\n");
181 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
182 unsigned Index
, RuntimePointerChecking
&RtCheck
)
183 : High(RtCheck
.Pointers
[Index
].End
), Low(RtCheck
.Pointers
[Index
].Start
),
184 AddressSpace(RtCheck
.Pointers
[Index
]
185 .PointerValue
->getType()
186 ->getPointerAddressSpace()),
187 NeedsFreeze(RtCheck
.Pointers
[Index
].NeedsFreeze
) {
188 Members
.push_back(Index
);
191 /// Calculate Start and End points of memory access.
192 /// Let's assume A is the first access and B is a memory access on N-th loop
193 /// iteration. Then B is calculated as:
195 /// Step value may be positive or negative.
196 /// N is a calculated back-edge taken count:
197 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
198 /// Start and End points are calculated in the following way:
199 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
200 /// where SizeOfElt is the size of single memory access in bytes.
202 /// There is no conflict when the intervals are disjoint:
203 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
204 void RuntimePointerChecking::insert(Loop
*Lp
, Value
*Ptr
, const SCEV
*PtrExpr
,
205 Type
*AccessTy
, bool WritePtr
,
206 unsigned DepSetId
, unsigned ASId
,
207 PredicatedScalarEvolution
&PSE
,
209 ScalarEvolution
*SE
= PSE
.getSE();
214 if (SE
->isLoopInvariant(PtrExpr
, Lp
)) {
215 ScStart
= ScEnd
= PtrExpr
;
217 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrExpr
);
218 assert(AR
&& "Invalid addrec expression");
219 const SCEV
*Ex
= PSE
.getBackedgeTakenCount();
221 ScStart
= AR
->getStart();
222 ScEnd
= AR
->evaluateAtIteration(Ex
, *SE
);
223 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
225 // For expressions with negative step, the upper bound is ScStart and the
226 // lower bound is ScEnd.
227 if (const auto *CStep
= dyn_cast
<SCEVConstant
>(Step
)) {
228 if (CStep
->getValue()->isNegative())
229 std::swap(ScStart
, ScEnd
);
231 // Fallback case: the step is not constant, but we can still
232 // get the upper and lower bounds of the interval by using min/max
234 ScStart
= SE
->getUMinExpr(ScStart
, ScEnd
);
235 ScEnd
= SE
->getUMaxExpr(AR
->getStart(), ScEnd
);
238 assert(SE
->isLoopInvariant(ScStart
, Lp
) && "ScStart needs to be invariant");
239 assert(SE
->isLoopInvariant(ScEnd
, Lp
)&& "ScEnd needs to be invariant");
241 // Add the size of the pointed element to ScEnd.
242 auto &DL
= Lp
->getHeader()->getModule()->getDataLayout();
243 Type
*IdxTy
= DL
.getIndexType(Ptr
->getType());
244 const SCEV
*EltSizeSCEV
= SE
->getStoreSizeOfExpr(IdxTy
, AccessTy
);
245 ScEnd
= SE
->getAddExpr(ScEnd
, EltSizeSCEV
);
247 Pointers
.emplace_back(Ptr
, ScStart
, ScEnd
, WritePtr
, DepSetId
, ASId
, PtrExpr
,
251 void RuntimePointerChecking::tryToCreateDiffCheck(
252 const RuntimeCheckingPtrGroup
&CGI
, const RuntimeCheckingPtrGroup
&CGJ
) {
253 if (!CanUseDiffCheck
)
256 // If either group contains multiple different pointers, bail out.
257 // TODO: Support multiple pointers by using the minimum or maximum pointer,
258 // depending on src & sink.
259 if (CGI
.Members
.size() != 1 || CGJ
.Members
.size() != 1) {
260 CanUseDiffCheck
= false;
264 PointerInfo
*Src
= &Pointers
[CGI
.Members
[0]];
265 PointerInfo
*Sink
= &Pointers
[CGJ
.Members
[0]];
267 // If either pointer is read and written, multiple checks may be needed. Bail
269 if (!DC
.getOrderForAccess(Src
->PointerValue
, !Src
->IsWritePtr
).empty() ||
270 !DC
.getOrderForAccess(Sink
->PointerValue
, !Sink
->IsWritePtr
).empty()) {
271 CanUseDiffCheck
= false;
275 ArrayRef
<unsigned> AccSrc
=
276 DC
.getOrderForAccess(Src
->PointerValue
, Src
->IsWritePtr
);
277 ArrayRef
<unsigned> AccSink
=
278 DC
.getOrderForAccess(Sink
->PointerValue
, Sink
->IsWritePtr
);
279 // If either pointer is accessed multiple times, there may not be a clear
280 // src/sink relation. Bail out for now.
281 if (AccSrc
.size() != 1 || AccSink
.size() != 1) {
282 CanUseDiffCheck
= false;
285 // If the sink is accessed before src, swap src/sink.
286 if (AccSink
[0] < AccSrc
[0])
287 std::swap(Src
, Sink
);
289 auto *SrcAR
= dyn_cast
<SCEVAddRecExpr
>(Src
->Expr
);
290 auto *SinkAR
= dyn_cast
<SCEVAddRecExpr
>(Sink
->Expr
);
291 if (!SrcAR
|| !SinkAR
|| SrcAR
->getLoop() != DC
.getInnermostLoop() ||
292 SinkAR
->getLoop() != DC
.getInnermostLoop()) {
293 CanUseDiffCheck
= false;
297 SmallVector
<Instruction
*, 4> SrcInsts
=
298 DC
.getInstructionsForAccess(Src
->PointerValue
, Src
->IsWritePtr
);
299 SmallVector
<Instruction
*, 4> SinkInsts
=
300 DC
.getInstructionsForAccess(Sink
->PointerValue
, Sink
->IsWritePtr
);
301 Type
*SrcTy
= getLoadStoreType(SrcInsts
[0]);
302 Type
*DstTy
= getLoadStoreType(SinkInsts
[0]);
303 if (isa
<ScalableVectorType
>(SrcTy
) || isa
<ScalableVectorType
>(DstTy
)) {
304 CanUseDiffCheck
= false;
307 const DataLayout
&DL
=
308 SinkAR
->getLoop()->getHeader()->getModule()->getDataLayout();
310 std::max(DL
.getTypeAllocSize(SrcTy
), DL
.getTypeAllocSize(DstTy
));
312 // Only matching constant steps matching the AllocSize are supported at the
313 // moment. This simplifies the difference computation. Can be extended in the
315 auto *Step
= dyn_cast
<SCEVConstant
>(SinkAR
->getStepRecurrence(*SE
));
316 if (!Step
|| Step
!= SrcAR
->getStepRecurrence(*SE
) ||
317 Step
->getAPInt().abs() != AllocSize
) {
318 CanUseDiffCheck
= false;
323 IntegerType::get(Src
->PointerValue
->getContext(),
324 DL
.getPointerSizeInBits(CGI
.AddressSpace
));
326 // When counting down, the dependence distance needs to be swapped.
327 if (Step
->getValue()->isNegative())
328 std::swap(SinkAR
, SrcAR
);
330 const SCEV
*SinkStartInt
= SE
->getPtrToIntExpr(SinkAR
->getStart(), IntTy
);
331 const SCEV
*SrcStartInt
= SE
->getPtrToIntExpr(SrcAR
->getStart(), IntTy
);
332 if (isa
<SCEVCouldNotCompute
>(SinkStartInt
) ||
333 isa
<SCEVCouldNotCompute
>(SrcStartInt
)) {
334 CanUseDiffCheck
= false;
338 const Loop
*InnerLoop
= SrcAR
->getLoop();
339 // If the start values for both Src and Sink also vary according to an outer
340 // loop, then it's probably better to avoid creating diff checks because
341 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
342 // do the expanded full range overlap checks, which can be hoisted.
343 if (HoistRuntimeChecks
&& InnerLoop
->getParentLoop() &&
344 isa
<SCEVAddRecExpr
>(SinkStartInt
) && isa
<SCEVAddRecExpr
>(SrcStartInt
)) {
345 auto *SrcStartAR
= cast
<SCEVAddRecExpr
>(SrcStartInt
);
346 auto *SinkStartAR
= cast
<SCEVAddRecExpr
>(SinkStartInt
);
347 const Loop
*StartARLoop
= SrcStartAR
->getLoop();
348 if (StartARLoop
== SinkStartAR
->getLoop() &&
349 StartARLoop
== InnerLoop
->getParentLoop()) {
350 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
351 "cannot be hoisted out of the outer loop\n");
352 CanUseDiffCheck
= false;
357 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
358 << "SrcStart: " << *SrcStartInt
<< '\n'
359 << "SinkStartInt: " << *SinkStartInt
<< '\n');
360 DiffChecks
.emplace_back(SrcStartInt
, SinkStartInt
, AllocSize
,
361 Src
->NeedsFreeze
|| Sink
->NeedsFreeze
);
364 SmallVector
<RuntimePointerCheck
, 4> RuntimePointerChecking::generateChecks() {
365 SmallVector
<RuntimePointerCheck
, 4> Checks
;
367 for (unsigned I
= 0; I
< CheckingGroups
.size(); ++I
) {
368 for (unsigned J
= I
+ 1; J
< CheckingGroups
.size(); ++J
) {
369 const RuntimeCheckingPtrGroup
&CGI
= CheckingGroups
[I
];
370 const RuntimeCheckingPtrGroup
&CGJ
= CheckingGroups
[J
];
372 if (needsChecking(CGI
, CGJ
)) {
373 tryToCreateDiffCheck(CGI
, CGJ
);
374 Checks
.push_back(std::make_pair(&CGI
, &CGJ
));
381 void RuntimePointerChecking::generateChecks(
382 MemoryDepChecker::DepCandidates
&DepCands
, bool UseDependencies
) {
383 assert(Checks
.empty() && "Checks is not empty");
384 groupChecks(DepCands
, UseDependencies
);
385 Checks
= generateChecks();
388 bool RuntimePointerChecking::needsChecking(
389 const RuntimeCheckingPtrGroup
&M
, const RuntimeCheckingPtrGroup
&N
) const {
390 for (unsigned I
= 0, EI
= M
.Members
.size(); EI
!= I
; ++I
)
391 for (unsigned J
= 0, EJ
= N
.Members
.size(); EJ
!= J
; ++J
)
392 if (needsChecking(M
.Members
[I
], N
.Members
[J
]))
397 /// Compare \p I and \p J and return the minimum.
398 /// Return nullptr in case we couldn't find an answer.
399 static const SCEV
*getMinFromExprs(const SCEV
*I
, const SCEV
*J
,
400 ScalarEvolution
*SE
) {
401 const SCEV
*Diff
= SE
->getMinusSCEV(J
, I
);
402 const SCEVConstant
*C
= dyn_cast
<const SCEVConstant
>(Diff
);
406 if (C
->getValue()->isNegative())
411 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index
,
412 RuntimePointerChecking
&RtCheck
) {
414 Index
, RtCheck
.Pointers
[Index
].Start
, RtCheck
.Pointers
[Index
].End
,
415 RtCheck
.Pointers
[Index
].PointerValue
->getType()->getPointerAddressSpace(),
416 RtCheck
.Pointers
[Index
].NeedsFreeze
, *RtCheck
.SE
);
419 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index
, const SCEV
*Start
,
420 const SCEV
*End
, unsigned AS
,
422 ScalarEvolution
&SE
) {
423 assert(AddressSpace
== AS
&&
424 "all pointers in a checking group must be in the same address space");
426 // Compare the starts and ends with the known minimum and maximum
427 // of this set. We need to know how we compare against the min/max
428 // of the set in order to be able to emit memchecks.
429 const SCEV
*Min0
= getMinFromExprs(Start
, Low
, &SE
);
433 const SCEV
*Min1
= getMinFromExprs(End
, High
, &SE
);
437 // Update the low bound expression if we've found a new min value.
441 // Update the high bound expression if we've found a new max value.
445 Members
.push_back(Index
);
446 this->NeedsFreeze
|= NeedsFreeze
;
450 void RuntimePointerChecking::groupChecks(
451 MemoryDepChecker::DepCandidates
&DepCands
, bool UseDependencies
) {
452 // We build the groups from dependency candidates equivalence classes
454 // - We know that pointers in the same equivalence class share
455 // the same underlying object and therefore there is a chance
456 // that we can compare pointers
457 // - We wouldn't be able to merge two pointers for which we need
458 // to emit a memcheck. The classes in DepCands are already
459 // conveniently built such that no two pointers in the same
460 // class need checking against each other.
462 // We use the following (greedy) algorithm to construct the groups
463 // For every pointer in the equivalence class:
464 // For each existing group:
465 // - if the difference between this pointer and the min/max bounds
466 // of the group is a constant, then make the pointer part of the
467 // group and update the min/max bounds of that group as required.
469 CheckingGroups
.clear();
471 // If we need to check two pointers to the same underlying object
472 // with a non-constant difference, we shouldn't perform any pointer
473 // grouping with those pointers. This is because we can easily get
474 // into cases where the resulting check would return false, even when
475 // the accesses are safe.
477 // The following example shows this:
478 // for (i = 0; i < 1000; ++i)
479 // a[5000 + i * m] = a[i] + a[i + 9000]
481 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
482 // (0, 10000) which is always false. However, if m is 1, there is no
483 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
484 // us to perform an accurate check in this case.
486 // The above case requires that we have an UnknownDependence between
487 // accesses to the same underlying object. This cannot happen unless
488 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
489 // is also false. In this case we will use the fallback path and create
490 // separate checking groups for all pointers.
492 // If we don't have the dependency partitions, construct a new
493 // checking pointer group for each pointer. This is also required
494 // for correctness, because in this case we can have checking between
495 // pointers to the same underlying object.
496 if (!UseDependencies
) {
497 for (unsigned I
= 0; I
< Pointers
.size(); ++I
)
498 CheckingGroups
.push_back(RuntimeCheckingPtrGroup(I
, *this));
502 unsigned TotalComparisons
= 0;
504 DenseMap
<Value
*, SmallVector
<unsigned>> PositionMap
;
505 for (unsigned Index
= 0; Index
< Pointers
.size(); ++Index
) {
506 auto Iter
= PositionMap
.insert({Pointers
[Index
].PointerValue
, {}});
507 Iter
.first
->second
.push_back(Index
);
510 // We need to keep track of what pointers we've already seen so we
511 // don't process them twice.
512 SmallSet
<unsigned, 2> Seen
;
514 // Go through all equivalence classes, get the "pointer check groups"
515 // and add them to the overall solution. We use the order in which accesses
516 // appear in 'Pointers' to enforce determinism.
517 for (unsigned I
= 0; I
< Pointers
.size(); ++I
) {
518 // We've seen this pointer before, and therefore already processed
519 // its equivalence class.
523 MemoryDepChecker::MemAccessInfo
Access(Pointers
[I
].PointerValue
,
524 Pointers
[I
].IsWritePtr
);
526 SmallVector
<RuntimeCheckingPtrGroup
, 2> Groups
;
527 auto LeaderI
= DepCands
.findValue(DepCands
.getLeaderValue(Access
));
529 // Because DepCands is constructed by visiting accesses in the order in
530 // which they appear in alias sets (which is deterministic) and the
531 // iteration order within an equivalence class member is only dependent on
532 // the order in which unions and insertions are performed on the
533 // equivalence class, the iteration order is deterministic.
534 for (auto MI
= DepCands
.member_begin(LeaderI
), ME
= DepCands
.member_end();
536 auto PointerI
= PositionMap
.find(MI
->getPointer());
537 assert(PointerI
!= PositionMap
.end() &&
538 "pointer in equivalence class not found in PositionMap");
539 for (unsigned Pointer
: PointerI
->second
) {
541 // Mark this pointer as seen.
542 Seen
.insert(Pointer
);
544 // Go through all the existing sets and see if we can find one
545 // which can include this pointer.
546 for (RuntimeCheckingPtrGroup
&Group
: Groups
) {
547 // Don't perform more than a certain amount of comparisons.
548 // This should limit the cost of grouping the pointers to something
549 // reasonable. If we do end up hitting this threshold, the algorithm
550 // will create separate groups for all remaining pointers.
551 if (TotalComparisons
> MemoryCheckMergeThreshold
)
556 if (Group
.addPointer(Pointer
, *this)) {
563 // We couldn't add this pointer to any existing set or the threshold
564 // for the number of comparisons has been reached. Create a new group
565 // to hold the current pointer.
566 Groups
.push_back(RuntimeCheckingPtrGroup(Pointer
, *this));
570 // We've computed the grouped checks for this partition.
571 // Save the results and continue with the next one.
572 llvm::copy(Groups
, std::back_inserter(CheckingGroups
));
576 bool RuntimePointerChecking::arePointersInSamePartition(
577 const SmallVectorImpl
<int> &PtrToPartition
, unsigned PtrIdx1
,
579 return (PtrToPartition
[PtrIdx1
] != -1 &&
580 PtrToPartition
[PtrIdx1
] == PtrToPartition
[PtrIdx2
]);
583 bool RuntimePointerChecking::needsChecking(unsigned I
, unsigned J
) const {
584 const PointerInfo
&PointerI
= Pointers
[I
];
585 const PointerInfo
&PointerJ
= Pointers
[J
];
587 // No need to check if two readonly pointers intersect.
588 if (!PointerI
.IsWritePtr
&& !PointerJ
.IsWritePtr
)
591 // Only need to check pointers between two different dependency sets.
592 if (PointerI
.DependencySetId
== PointerJ
.DependencySetId
)
595 // Only need to check pointers in the same alias set.
596 if (PointerI
.AliasSetId
!= PointerJ
.AliasSetId
)
602 void RuntimePointerChecking::printChecks(
603 raw_ostream
&OS
, const SmallVectorImpl
<RuntimePointerCheck
> &Checks
,
604 unsigned Depth
) const {
606 for (const auto &Check
: Checks
) {
607 const auto &First
= Check
.first
->Members
, &Second
= Check
.second
->Members
;
609 OS
.indent(Depth
) << "Check " << N
++ << ":\n";
611 OS
.indent(Depth
+ 2) << "Comparing group (" << Check
.first
<< "):\n";
612 for (unsigned K
= 0; K
< First
.size(); ++K
)
613 OS
.indent(Depth
+ 2) << *Pointers
[First
[K
]].PointerValue
<< "\n";
615 OS
.indent(Depth
+ 2) << "Against group (" << Check
.second
<< "):\n";
616 for (unsigned K
= 0; K
< Second
.size(); ++K
)
617 OS
.indent(Depth
+ 2) << *Pointers
[Second
[K
]].PointerValue
<< "\n";
621 void RuntimePointerChecking::print(raw_ostream
&OS
, unsigned Depth
) const {
623 OS
.indent(Depth
) << "Run-time memory checks:\n";
624 printChecks(OS
, Checks
, Depth
);
626 OS
.indent(Depth
) << "Grouped accesses:\n";
627 for (unsigned I
= 0; I
< CheckingGroups
.size(); ++I
) {
628 const auto &CG
= CheckingGroups
[I
];
630 OS
.indent(Depth
+ 2) << "Group " << &CG
<< ":\n";
631 OS
.indent(Depth
+ 4) << "(Low: " << *CG
.Low
<< " High: " << *CG
.High
633 for (unsigned J
= 0; J
< CG
.Members
.size(); ++J
) {
634 OS
.indent(Depth
+ 6) << "Member: " << *Pointers
[CG
.Members
[J
]].Expr
642 /// Analyses memory accesses in a loop.
644 /// Checks whether run time pointer checks are needed and builds sets for data
645 /// dependence checking.
646 class AccessAnalysis
{
648 /// Read or write access location.
649 typedef PointerIntPair
<Value
*, 1, bool> MemAccessInfo
;
650 typedef SmallVector
<MemAccessInfo
, 8> MemAccessInfoList
;
652 AccessAnalysis(Loop
*TheLoop
, AAResults
*AA
, LoopInfo
*LI
,
653 MemoryDepChecker::DepCandidates
&DA
,
654 PredicatedScalarEvolution
&PSE
)
655 : TheLoop(TheLoop
), BAA(*AA
), AST(BAA
), LI(LI
), DepCands(DA
), PSE(PSE
) {
656 // We're analyzing dependences across loop iterations.
657 BAA
.enableCrossIterationMode();
660 /// Register a load and whether it is only read from.
661 void addLoad(MemoryLocation
&Loc
, Type
*AccessTy
, bool IsReadOnly
) {
662 Value
*Ptr
= const_cast<Value
*>(Loc
.Ptr
);
663 AST
.add(Ptr
, LocationSize::beforeOrAfterPointer(), Loc
.AATags
);
664 Accesses
[MemAccessInfo(Ptr
, false)].insert(AccessTy
);
666 ReadOnlyPtr
.insert(Ptr
);
669 /// Register a store.
670 void addStore(MemoryLocation
&Loc
, Type
*AccessTy
) {
671 Value
*Ptr
= const_cast<Value
*>(Loc
.Ptr
);
672 AST
.add(Ptr
, LocationSize::beforeOrAfterPointer(), Loc
.AATags
);
673 Accesses
[MemAccessInfo(Ptr
, true)].insert(AccessTy
);
676 /// Check if we can emit a run-time no-alias check for \p Access.
678 /// Returns true if we can emit a run-time no alias check for \p Access.
679 /// If we can check this access, this also adds it to a dependence set and
680 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
681 /// we will attempt to use additional run-time checks in order to get
682 /// the bounds of the pointer.
683 bool createCheckForAccess(RuntimePointerChecking
&RtCheck
,
684 MemAccessInfo Access
, Type
*AccessTy
,
685 const DenseMap
<Value
*, const SCEV
*> &Strides
,
686 DenseMap
<Value
*, unsigned> &DepSetId
,
687 Loop
*TheLoop
, unsigned &RunningDepId
,
688 unsigned ASId
, bool ShouldCheckStride
, bool Assume
);
690 /// Check whether we can check the pointers at runtime for
691 /// non-intersection.
693 /// Returns true if we need no check or if we do and we can generate them
694 /// (i.e. the pointers have computable bounds).
695 bool canCheckPtrAtRT(RuntimePointerChecking
&RtCheck
, ScalarEvolution
*SE
,
696 Loop
*TheLoop
, const DenseMap
<Value
*, const SCEV
*> &Strides
,
697 Value
*&UncomputablePtr
, bool ShouldCheckWrap
= false);
699 /// Goes over all memory accesses, checks whether a RT check is needed
700 /// and builds sets of dependent accesses.
701 void buildDependenceSets() {
702 processMemAccesses();
705 /// Initial processing of memory accesses determined that we need to
706 /// perform dependency checking.
708 /// Note that this can later be cleared if we retry memcheck analysis without
709 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
710 bool isDependencyCheckNeeded() { return !CheckDeps
.empty(); }
712 /// We decided that no dependence analysis would be used. Reset the state.
713 void resetDepChecks(MemoryDepChecker
&DepChecker
) {
715 DepChecker
.clearDependences();
718 MemAccessInfoList
&getDependenciesToCheck() { return CheckDeps
; }
721 typedef MapVector
<MemAccessInfo
, SmallSetVector
<Type
*, 1>> PtrAccessMap
;
723 /// Go over all memory access and check whether runtime pointer checks
724 /// are needed and build sets of dependency check candidates.
725 void processMemAccesses();
727 /// Map of all accesses. Values are the types used to access memory pointed to
729 PtrAccessMap Accesses
;
731 /// The loop being checked.
734 /// List of accesses that need a further dependence check.
735 MemAccessInfoList CheckDeps
;
737 /// Set of pointers that are read only.
738 SmallPtrSet
<Value
*, 16> ReadOnlyPtr
;
740 /// Batched alias analysis results.
743 /// An alias set tracker to partition the access set by underlying object and
744 //intrinsic property (such as TBAA metadata).
749 /// Sets of potentially dependent accesses - members of one set share an
750 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
751 /// dependence check.
752 MemoryDepChecker::DepCandidates
&DepCands
;
754 /// Initial processing of memory accesses determined that we may need
755 /// to add memchecks. Perform the analysis to determine the necessary checks.
757 /// Note that, this is different from isDependencyCheckNeeded. When we retry
758 /// memcheck analysis without dependency checking
759 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
760 /// cleared while this remains set if we have potentially dependent accesses.
761 bool IsRTCheckAnalysisNeeded
= false;
763 /// The SCEV predicate containing all the SCEV-related assumptions.
764 PredicatedScalarEvolution
&PSE
;
767 } // end anonymous namespace
769 /// Check whether a pointer can participate in a runtime bounds check.
770 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
771 /// by adding run-time checks (overflow checks) if necessary.
772 static bool hasComputableBounds(PredicatedScalarEvolution
&PSE
, Value
*Ptr
,
773 const SCEV
*PtrScev
, Loop
*L
, bool Assume
) {
774 // The bounds for loop-invariant pointer is trivial.
775 if (PSE
.getSE()->isLoopInvariant(PtrScev
, L
))
778 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
);
781 AR
= PSE
.getAsAddRec(Ptr
);
786 return AR
->isAffine();
789 /// Check whether a pointer address cannot wrap.
790 static bool isNoWrap(PredicatedScalarEvolution
&PSE
,
791 const DenseMap
<Value
*, const SCEV
*> &Strides
, Value
*Ptr
, Type
*AccessTy
,
793 const SCEV
*PtrScev
= PSE
.getSCEV(Ptr
);
794 if (PSE
.getSE()->isLoopInvariant(PtrScev
, L
))
797 int64_t Stride
= getPtrStride(PSE
, AccessTy
, Ptr
, L
, Strides
).value_or(0);
798 if (Stride
== 1 || PSE
.hasNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
))
804 static void visitPointers(Value
*StartPtr
, const Loop
&InnermostLoop
,
805 function_ref
<void(Value
*)> AddPointer
) {
806 SmallPtrSet
<Value
*, 8> Visited
;
807 SmallVector
<Value
*> WorkList
;
808 WorkList
.push_back(StartPtr
);
810 while (!WorkList
.empty()) {
811 Value
*Ptr
= WorkList
.pop_back_val();
812 if (!Visited
.insert(Ptr
).second
)
814 auto *PN
= dyn_cast
<PHINode
>(Ptr
);
815 // SCEV does not look through non-header PHIs inside the loop. Such phis
816 // can be analyzed by adding separate accesses for each incoming pointer
818 if (PN
&& InnermostLoop
.contains(PN
->getParent()) &&
819 PN
->getParent() != InnermostLoop
.getHeader()) {
820 for (const Use
&Inc
: PN
->incoming_values())
821 WorkList
.push_back(Inc
);
827 // Walk back through the IR for a pointer, looking for a select like the
830 // %offset = select i1 %cmp, i64 %a, i64 %b
831 // %addr = getelementptr double, double* %base, i64 %offset
832 // %ld = load double, double* %addr, align 8
834 // We won't be able to form a single SCEVAddRecExpr from this since the
835 // address for each loop iteration depends on %cmp. We could potentially
836 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
837 // memory safety/aliasing if needed.
839 // If we encounter some IR we don't yet handle, or something obviously fine
840 // like a constant, then we just add the SCEV for that term to the list passed
841 // in by the caller. If we have a node that may potentially yield a valid
842 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
843 // ourselves before adding to the list.
844 static void findForkedSCEVs(
845 ScalarEvolution
*SE
, const Loop
*L
, Value
*Ptr
,
846 SmallVectorImpl
<PointerIntPair
<const SCEV
*, 1, bool>> &ScevList
,
848 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
849 // we've exceeded our limit on recursion, just return whatever we have
850 // regardless of whether it can be used for a forked pointer or not, along
851 // with an indication of whether it might be a poison or undef value.
852 const SCEV
*Scev
= SE
->getSCEV(Ptr
);
853 if (isa
<SCEVAddRecExpr
>(Scev
) || L
->isLoopInvariant(Ptr
) ||
854 !isa
<Instruction
>(Ptr
) || Depth
== 0) {
855 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
861 auto UndefPoisonCheck
= [](PointerIntPair
<const SCEV
*, 1, bool> S
) {
865 auto GetBinOpExpr
= [&SE
](unsigned Opcode
, const SCEV
*L
, const SCEV
*R
) {
867 case Instruction::Add
:
868 return SE
->getAddExpr(L
, R
);
869 case Instruction::Sub
:
870 return SE
->getMinusSCEV(L
, R
);
872 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
876 Instruction
*I
= cast
<Instruction
>(Ptr
);
877 unsigned Opcode
= I
->getOpcode();
879 case Instruction::GetElementPtr
: {
880 GetElementPtrInst
*GEP
= cast
<GetElementPtrInst
>(I
);
881 Type
*SourceTy
= GEP
->getSourceElementType();
882 // We only handle base + single offset GEPs here for now.
883 // Not dealing with preexisting gathers yet, so no vectors.
884 if (I
->getNumOperands() != 2 || SourceTy
->isVectorTy()) {
885 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(GEP
));
888 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> BaseScevs
;
889 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> OffsetScevs
;
890 findForkedSCEVs(SE
, L
, I
->getOperand(0), BaseScevs
, Depth
);
891 findForkedSCEVs(SE
, L
, I
->getOperand(1), OffsetScevs
, Depth
);
893 // See if we need to freeze our fork...
894 bool NeedsFreeze
= any_of(BaseScevs
, UndefPoisonCheck
) ||
895 any_of(OffsetScevs
, UndefPoisonCheck
);
897 // Check that we only have a single fork, on either the base or the offset.
898 // Copy the SCEV across for the one without a fork in order to generate
899 // the full SCEV for both sides of the GEP.
900 if (OffsetScevs
.size() == 2 && BaseScevs
.size() == 1)
901 BaseScevs
.push_back(BaseScevs
[0]);
902 else if (BaseScevs
.size() == 2 && OffsetScevs
.size() == 1)
903 OffsetScevs
.push_back(OffsetScevs
[0]);
905 ScevList
.emplace_back(Scev
, NeedsFreeze
);
909 // Find the pointer type we need to extend to.
910 Type
*IntPtrTy
= SE
->getEffectiveSCEVType(
911 SE
->getSCEV(GEP
->getPointerOperand())->getType());
913 // Find the size of the type being pointed to. We only have a single
914 // index term (guarded above) so we don't need to index into arrays or
915 // structures, just get the size of the scalar value.
916 const SCEV
*Size
= SE
->getSizeOfExpr(IntPtrTy
, SourceTy
);
918 // Scale up the offsets by the size of the type, then add to the bases.
919 const SCEV
*Scaled1
= SE
->getMulExpr(
920 Size
, SE
->getTruncateOrSignExtend(get
<0>(OffsetScevs
[0]), IntPtrTy
));
921 const SCEV
*Scaled2
= SE
->getMulExpr(
922 Size
, SE
->getTruncateOrSignExtend(get
<0>(OffsetScevs
[1]), IntPtrTy
));
923 ScevList
.emplace_back(SE
->getAddExpr(get
<0>(BaseScevs
[0]), Scaled1
),
925 ScevList
.emplace_back(SE
->getAddExpr(get
<0>(BaseScevs
[1]), Scaled2
),
929 case Instruction::Select
: {
930 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> ChildScevs
;
931 // A select means we've found a forked pointer, but we currently only
932 // support a single select per pointer so if there's another behind this
933 // then we just bail out and return the generic SCEV.
934 findForkedSCEVs(SE
, L
, I
->getOperand(1), ChildScevs
, Depth
);
935 findForkedSCEVs(SE
, L
, I
->getOperand(2), ChildScevs
, Depth
);
936 if (ChildScevs
.size() == 2) {
937 ScevList
.push_back(ChildScevs
[0]);
938 ScevList
.push_back(ChildScevs
[1]);
940 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
943 case Instruction::PHI
: {
944 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>, 2> ChildScevs
;
945 // A phi means we've found a forked pointer, but we currently only
946 // support a single phi per pointer so if there's another behind this
947 // then we just bail out and return the generic SCEV.
948 if (I
->getNumOperands() == 2) {
949 findForkedSCEVs(SE
, L
, I
->getOperand(0), ChildScevs
, Depth
);
950 findForkedSCEVs(SE
, L
, I
->getOperand(1), ChildScevs
, Depth
);
952 if (ChildScevs
.size() == 2) {
953 ScevList
.push_back(ChildScevs
[0]);
954 ScevList
.push_back(ChildScevs
[1]);
956 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
959 case Instruction::Add
:
960 case Instruction::Sub
: {
961 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> LScevs
;
962 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> RScevs
;
963 findForkedSCEVs(SE
, L
, I
->getOperand(0), LScevs
, Depth
);
964 findForkedSCEVs(SE
, L
, I
->getOperand(1), RScevs
, Depth
);
966 // See if we need to freeze our fork...
968 any_of(LScevs
, UndefPoisonCheck
) || any_of(RScevs
, UndefPoisonCheck
);
970 // Check that we only have a single fork, on either the left or right side.
971 // Copy the SCEV across for the one without a fork in order to generate
972 // the full SCEV for both sides of the BinOp.
973 if (LScevs
.size() == 2 && RScevs
.size() == 1)
974 RScevs
.push_back(RScevs
[0]);
975 else if (RScevs
.size() == 2 && LScevs
.size() == 1)
976 LScevs
.push_back(LScevs
[0]);
978 ScevList
.emplace_back(Scev
, NeedsFreeze
);
982 ScevList
.emplace_back(
983 GetBinOpExpr(Opcode
, get
<0>(LScevs
[0]), get
<0>(RScevs
[0])),
985 ScevList
.emplace_back(
986 GetBinOpExpr(Opcode
, get
<0>(LScevs
[1]), get
<0>(RScevs
[1])),
991 // Just return the current SCEV if we haven't handled the instruction yet.
992 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I
<< "\n");
993 ScevList
.emplace_back(Scev
, !isGuaranteedNotToBeUndefOrPoison(Ptr
));
998 static SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>>
999 findForkedPointer(PredicatedScalarEvolution
&PSE
,
1000 const DenseMap
<Value
*, const SCEV
*> &StridesMap
, Value
*Ptr
,
1002 ScalarEvolution
*SE
= PSE
.getSE();
1003 assert(SE
->isSCEVable(Ptr
->getType()) && "Value is not SCEVable!");
1004 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> Scevs
;
1005 findForkedSCEVs(SE
, L
, Ptr
, Scevs
, MaxForkedSCEVDepth
);
1007 // For now, we will only accept a forked pointer with two possible SCEVs
1008 // that are either SCEVAddRecExprs or loop invariant.
1009 if (Scevs
.size() == 2 &&
1010 (isa
<SCEVAddRecExpr
>(get
<0>(Scevs
[0])) ||
1011 SE
->isLoopInvariant(get
<0>(Scevs
[0]), L
)) &&
1012 (isa
<SCEVAddRecExpr
>(get
<0>(Scevs
[1])) ||
1013 SE
->isLoopInvariant(get
<0>(Scevs
[1]), L
))) {
1014 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr
<< "\n");
1015 LLVM_DEBUG(dbgs() << "\t(1) " << *get
<0>(Scevs
[0]) << "\n");
1016 LLVM_DEBUG(dbgs() << "\t(2) " << *get
<0>(Scevs
[1]) << "\n");
1020 return {{replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
), false}};
1023 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking
&RtCheck
,
1024 MemAccessInfo Access
, Type
*AccessTy
,
1025 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1026 DenseMap
<Value
*, unsigned> &DepSetId
,
1027 Loop
*TheLoop
, unsigned &RunningDepId
,
1028 unsigned ASId
, bool ShouldCheckWrap
,
1030 Value
*Ptr
= Access
.getPointer();
1032 SmallVector
<PointerIntPair
<const SCEV
*, 1, bool>> TranslatedPtrs
=
1033 findForkedPointer(PSE
, StridesMap
, Ptr
, TheLoop
);
1035 for (auto &P
: TranslatedPtrs
) {
1036 const SCEV
*PtrExpr
= get
<0>(P
);
1037 if (!hasComputableBounds(PSE
, Ptr
, PtrExpr
, TheLoop
, Assume
))
1040 // When we run after a failing dependency check we have to make sure
1041 // we don't have wrapping pointers.
1042 if (ShouldCheckWrap
) {
1043 // Skip wrap checking when translating pointers.
1044 if (TranslatedPtrs
.size() > 1)
1047 if (!isNoWrap(PSE
, StridesMap
, Ptr
, AccessTy
, TheLoop
)) {
1048 auto *Expr
= PSE
.getSCEV(Ptr
);
1049 if (!Assume
|| !isa
<SCEVAddRecExpr
>(Expr
))
1051 PSE
.setNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
1054 // If there's only one option for Ptr, look it up after bounds and wrap
1055 // checking, because assumptions might have been added to PSE.
1056 if (TranslatedPtrs
.size() == 1)
1057 TranslatedPtrs
[0] = {replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
),
1061 for (auto [PtrExpr
, NeedsFreeze
] : TranslatedPtrs
) {
1062 // The id of the dependence set.
1065 if (isDependencyCheckNeeded()) {
1066 Value
*Leader
= DepCands
.getLeaderValue(Access
).getPointer();
1067 unsigned &LeaderId
= DepSetId
[Leader
];
1069 LeaderId
= RunningDepId
++;
1072 // Each access has its own dependence set.
1073 DepId
= RunningDepId
++;
1075 bool IsWrite
= Access
.getInt();
1076 RtCheck
.insert(TheLoop
, Ptr
, PtrExpr
, AccessTy
, IsWrite
, DepId
, ASId
, PSE
,
1078 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr
<< '\n');
1084 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking
&RtCheck
,
1085 ScalarEvolution
*SE
, Loop
*TheLoop
,
1086 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1087 Value
*&UncomputablePtr
, bool ShouldCheckWrap
) {
1088 // Find pointers with computable bounds. We are going to use this information
1089 // to place a runtime bound check.
1090 bool CanDoRT
= true;
1092 bool MayNeedRTCheck
= false;
1093 if (!IsRTCheckAnalysisNeeded
) return true;
1095 bool IsDepCheckNeeded
= isDependencyCheckNeeded();
1097 // We assign a consecutive id to access from different alias sets.
1098 // Accesses between different groups doesn't need to be checked.
1100 for (auto &AS
: AST
) {
1101 int NumReadPtrChecks
= 0;
1102 int NumWritePtrChecks
= 0;
1103 bool CanDoAliasSetRT
= true;
1106 // We assign consecutive id to access from different dependence sets.
1107 // Accesses within the same set don't need a runtime check.
1108 unsigned RunningDepId
= 1;
1109 DenseMap
<Value
*, unsigned> DepSetId
;
1111 SmallVector
<std::pair
<MemAccessInfo
, Type
*>, 4> Retries
;
1113 // First, count how many write and read accesses are in the alias set. Also
1114 // collect MemAccessInfos for later.
1115 SmallVector
<MemAccessInfo
, 4> AccessInfos
;
1116 for (const auto &A
: AS
) {
1117 Value
*Ptr
= A
.getValue();
1118 bool IsWrite
= Accesses
.count(MemAccessInfo(Ptr
, true));
1121 ++NumWritePtrChecks
;
1124 AccessInfos
.emplace_back(Ptr
, IsWrite
);
1127 // We do not need runtime checks for this alias set, if there are no writes
1128 // or a single write and no reads.
1129 if (NumWritePtrChecks
== 0 ||
1130 (NumWritePtrChecks
== 1 && NumReadPtrChecks
== 0)) {
1131 assert((AS
.size() <= 1 ||
1134 MemAccessInfo
AccessWrite(AC
.getValue(), true);
1135 return DepCands
.findValue(AccessWrite
) == DepCands
.end();
1137 "Can only skip updating CanDoRT below, if all entries in AS "
1138 "are reads or there is at most 1 entry");
1142 for (auto &Access
: AccessInfos
) {
1143 for (const auto &AccessTy
: Accesses
[Access
]) {
1144 if (!createCheckForAccess(RtCheck
, Access
, AccessTy
, StridesMap
,
1145 DepSetId
, TheLoop
, RunningDepId
, ASId
,
1146 ShouldCheckWrap
, false)) {
1147 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1148 << *Access
.getPointer() << '\n');
1149 Retries
.push_back({Access
, AccessTy
});
1150 CanDoAliasSetRT
= false;
1155 // Note that this function computes CanDoRT and MayNeedRTCheck
1156 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1157 // we have a pointer for which we couldn't find the bounds but we don't
1158 // actually need to emit any checks so it does not matter.
1160 // We need runtime checks for this alias set, if there are at least 2
1161 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1162 // any bound checks (because in that case the number of dependence sets is
1164 bool NeedsAliasSetRTCheck
= RunningDepId
> 2 || !Retries
.empty();
1166 // We need to perform run-time alias checks, but some pointers had bounds
1167 // that couldn't be checked.
1168 if (NeedsAliasSetRTCheck
&& !CanDoAliasSetRT
) {
1169 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1170 // We know that we need these checks, so we can now be more aggressive
1171 // and add further checks if required (overflow checks).
1172 CanDoAliasSetRT
= true;
1173 for (auto Retry
: Retries
) {
1174 MemAccessInfo Access
= Retry
.first
;
1175 Type
*AccessTy
= Retry
.second
;
1176 if (!createCheckForAccess(RtCheck
, Access
, AccessTy
, StridesMap
,
1177 DepSetId
, TheLoop
, RunningDepId
, ASId
,
1178 ShouldCheckWrap
, /*Assume=*/true)) {
1179 CanDoAliasSetRT
= false;
1180 UncomputablePtr
= Access
.getPointer();
1186 CanDoRT
&= CanDoAliasSetRT
;
1187 MayNeedRTCheck
|= NeedsAliasSetRTCheck
;
1191 // If the pointers that we would use for the bounds comparison have different
1192 // address spaces, assume the values aren't directly comparable, so we can't
1193 // use them for the runtime check. We also have to assume they could
1194 // overlap. In the future there should be metadata for whether address spaces
1196 unsigned NumPointers
= RtCheck
.Pointers
.size();
1197 for (unsigned i
= 0; i
< NumPointers
; ++i
) {
1198 for (unsigned j
= i
+ 1; j
< NumPointers
; ++j
) {
1199 // Only need to check pointers between two different dependency sets.
1200 if (RtCheck
.Pointers
[i
].DependencySetId
==
1201 RtCheck
.Pointers
[j
].DependencySetId
)
1203 // Only need to check pointers in the same alias set.
1204 if (RtCheck
.Pointers
[i
].AliasSetId
!= RtCheck
.Pointers
[j
].AliasSetId
)
1207 Value
*PtrI
= RtCheck
.Pointers
[i
].PointerValue
;
1208 Value
*PtrJ
= RtCheck
.Pointers
[j
].PointerValue
;
1210 unsigned ASi
= PtrI
->getType()->getPointerAddressSpace();
1211 unsigned ASj
= PtrJ
->getType()->getPointerAddressSpace();
1214 dbgs() << "LAA: Runtime check would require comparison between"
1215 " different address spaces\n");
1221 if (MayNeedRTCheck
&& CanDoRT
)
1222 RtCheck
.generateChecks(DepCands
, IsDepCheckNeeded
);
1224 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck
.getNumberOfChecks()
1225 << " pointer comparisons.\n");
1227 // If we can do run-time checks, but there are no checks, no runtime checks
1228 // are needed. This can happen when all pointers point to the same underlying
1229 // object for example.
1230 RtCheck
.Need
= CanDoRT
? RtCheck
.getNumberOfChecks() != 0 : MayNeedRTCheck
;
1232 bool CanDoRTIfNeeded
= !RtCheck
.Need
|| CanDoRT
;
1233 if (!CanDoRTIfNeeded
)
1235 return CanDoRTIfNeeded
;
1238 void AccessAnalysis::processMemAccesses() {
1239 // We process the set twice: first we process read-write pointers, last we
1240 // process read-only pointers. This allows us to skip dependence tests for
1241 // read-only pointers.
1243 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1244 LLVM_DEBUG(dbgs() << " AST: "; AST
.dump());
1245 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses
.size() << "):\n");
1247 for (auto A
: Accesses
)
1248 dbgs() << "\t" << *A
.first
.getPointer() << " ("
1249 << (A
.first
.getInt()
1251 : (ReadOnlyPtr
.count(A
.first
.getPointer()) ? "read-only"
1256 // The AliasSetTracker has nicely partitioned our pointers by metadata
1257 // compatibility and potential for underlying-object overlap. As a result, we
1258 // only need to check for potential pointer dependencies within each alias
1260 for (const auto &AS
: AST
) {
1261 // Note that both the alias-set tracker and the alias sets themselves used
1262 // linked lists internally and so the iteration order here is deterministic
1263 // (matching the original instruction order within each set).
1265 bool SetHasWrite
= false;
1267 // Map of pointers to last access encountered.
1268 typedef DenseMap
<const Value
*, MemAccessInfo
> UnderlyingObjToAccessMap
;
1269 UnderlyingObjToAccessMap ObjToLastAccess
;
1271 // Set of access to check after all writes have been processed.
1272 PtrAccessMap DeferredAccesses
;
1274 // Iterate over each alias set twice, once to process read/write pointers,
1275 // and then to process read-only pointers.
1276 for (int SetIteration
= 0; SetIteration
< 2; ++SetIteration
) {
1277 bool UseDeferred
= SetIteration
> 0;
1278 PtrAccessMap
&S
= UseDeferred
? DeferredAccesses
: Accesses
;
1280 for (const auto &AV
: AS
) {
1281 Value
*Ptr
= AV
.getValue();
1283 // For a single memory access in AliasSetTracker, Accesses may contain
1284 // both read and write, and they both need to be handled for CheckDeps.
1285 for (const auto &AC
: S
) {
1286 if (AC
.first
.getPointer() != Ptr
)
1289 bool IsWrite
= AC
.first
.getInt();
1291 // If we're using the deferred access set, then it contains only
1293 bool IsReadOnlyPtr
= ReadOnlyPtr
.count(Ptr
) && !IsWrite
;
1294 if (UseDeferred
&& !IsReadOnlyPtr
)
1296 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1298 assert(((IsReadOnlyPtr
&& UseDeferred
) || IsWrite
||
1299 S
.count(MemAccessInfo(Ptr
, false))) &&
1300 "Alias-set pointer not in the access set?");
1302 MemAccessInfo
Access(Ptr
, IsWrite
);
1303 DepCands
.insert(Access
);
1305 // Memorize read-only pointers for later processing and skip them in
1306 // the first round (they need to be checked after we have seen all
1307 // write pointers). Note: we also mark pointer that are not
1308 // consecutive as "read-only" pointers (so that we check
1309 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1310 if (!UseDeferred
&& IsReadOnlyPtr
) {
1311 // We only use the pointer keys, the types vector values don't
1313 DeferredAccesses
.insert({Access
, {}});
1317 // If this is a write - check other reads and writes for conflicts. If
1318 // this is a read only check other writes for conflicts (but only if
1319 // there is no other write to the ptr - this is an optimization to
1320 // catch "a[i] = a[i] + " without having to do a dependence check).
1321 if ((IsWrite
|| IsReadOnlyPtr
) && SetHasWrite
) {
1322 CheckDeps
.push_back(Access
);
1323 IsRTCheckAnalysisNeeded
= true;
1329 // Create sets of pointers connected by a shared alias set and
1330 // underlying object.
1331 typedef SmallVector
<const Value
*, 16> ValueVector
;
1332 ValueVector TempObjects
;
1334 getUnderlyingObjects(Ptr
, TempObjects
, LI
);
1336 << "Underlying objects for pointer " << *Ptr
<< "\n");
1337 for (const Value
*UnderlyingObj
: TempObjects
) {
1338 // nullptr never alias, don't join sets for pointer that have "null"
1339 // in their UnderlyingObjects list.
1340 if (isa
<ConstantPointerNull
>(UnderlyingObj
) &&
1341 !NullPointerIsDefined(
1342 TheLoop
->getHeader()->getParent(),
1343 UnderlyingObj
->getType()->getPointerAddressSpace()))
1346 UnderlyingObjToAccessMap::iterator Prev
=
1347 ObjToLastAccess
.find(UnderlyingObj
);
1348 if (Prev
!= ObjToLastAccess
.end())
1349 DepCands
.unionSets(Access
, Prev
->second
);
1351 ObjToLastAccess
[UnderlyingObj
] = Access
;
1352 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj
<< "\n");
1360 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1361 /// i.e. monotonically increasing/decreasing.
1362 static bool isNoWrapAddRec(Value
*Ptr
, const SCEVAddRecExpr
*AR
,
1363 PredicatedScalarEvolution
&PSE
, const Loop
*L
) {
1365 // FIXME: This should probably only return true for NUW.
1366 if (AR
->getNoWrapFlags(SCEV::NoWrapMask
))
1369 if (PSE
.hasNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
))
1372 // Scalar evolution does not propagate the non-wrapping flags to values that
1373 // are derived from a non-wrapping induction variable because non-wrapping
1374 // could be flow-sensitive.
1376 // Look through the potentially overflowing instruction to try to prove
1377 // non-wrapping for the *specific* value of Ptr.
1379 // The arithmetic implied by an inbounds GEP can't overflow.
1380 auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
1381 if (!GEP
|| !GEP
->isInBounds())
1384 // Make sure there is only one non-const index and analyze that.
1385 Value
*NonConstIndex
= nullptr;
1386 for (Value
*Index
: GEP
->indices())
1387 if (!isa
<ConstantInt
>(Index
)) {
1390 NonConstIndex
= Index
;
1393 // The recurrence is on the pointer, ignore for now.
1396 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1397 // AddRec using a NSW operation.
1398 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(NonConstIndex
))
1399 if (OBO
->hasNoSignedWrap() &&
1400 // Assume constant for other the operand so that the AddRec can be
1402 isa
<ConstantInt
>(OBO
->getOperand(1))) {
1403 auto *OpScev
= PSE
.getSCEV(OBO
->getOperand(0));
1405 if (auto *OpAR
= dyn_cast
<SCEVAddRecExpr
>(OpScev
))
1406 return OpAR
->getLoop() == L
&& OpAR
->getNoWrapFlags(SCEV::FlagNSW
);
1412 /// Check whether the access through \p Ptr has a constant stride.
1413 std::optional
<int64_t> llvm::getPtrStride(PredicatedScalarEvolution
&PSE
,
1414 Type
*AccessTy
, Value
*Ptr
,
1416 const DenseMap
<Value
*, const SCEV
*> &StridesMap
,
1417 bool Assume
, bool ShouldCheckWrap
) {
1418 Type
*Ty
= Ptr
->getType();
1419 assert(Ty
->isPointerTy() && "Unexpected non-ptr");
1421 if (isa
<ScalableVectorType
>(AccessTy
)) {
1422 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1424 return std::nullopt
;
1427 const SCEV
*PtrScev
= replaceSymbolicStrideSCEV(PSE
, StridesMap
, Ptr
);
1429 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PtrScev
);
1431 AR
= PSE
.getAsAddRec(Ptr
);
1434 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1435 << " SCEV: " << *PtrScev
<< "\n");
1436 return std::nullopt
;
1439 // The access function must stride over the innermost loop.
1440 if (Lp
!= AR
->getLoop()) {
1441 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1442 << *Ptr
<< " SCEV: " << *AR
<< "\n");
1443 return std::nullopt
;
1446 // Check the step is constant.
1447 const SCEV
*Step
= AR
->getStepRecurrence(*PSE
.getSE());
1449 // Calculate the pointer stride and check if it is constant.
1450 const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Step
);
1452 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1453 << " SCEV: " << *AR
<< "\n");
1454 return std::nullopt
;
1457 auto &DL
= Lp
->getHeader()->getModule()->getDataLayout();
1458 TypeSize AllocSize
= DL
.getTypeAllocSize(AccessTy
);
1459 int64_t Size
= AllocSize
.getFixedValue();
1460 const APInt
&APStepVal
= C
->getAPInt();
1462 // Huge step value - give up.
1463 if (APStepVal
.getBitWidth() > 64)
1464 return std::nullopt
;
1466 int64_t StepVal
= APStepVal
.getSExtValue();
1469 int64_t Stride
= StepVal
/ Size
;
1470 int64_t Rem
= StepVal
% Size
;
1472 return std::nullopt
;
1474 if (!ShouldCheckWrap
)
1477 // The address calculation must not wrap. Otherwise, a dependence could be
1479 if (isNoWrapAddRec(Ptr
, AR
, PSE
, Lp
))
1482 // An inbounds getelementptr that is a AddRec with a unit stride
1483 // cannot wrap per definition. If it did, the result would be poison
1484 // and any memory access dependent on it would be immediate UB
1486 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
1487 GEP
&& GEP
->isInBounds() && (Stride
== 1 || Stride
== -1))
1490 // If the null pointer is undefined, then a access sequence which would
1491 // otherwise access it can be assumed not to unsigned wrap. Note that this
1492 // assumes the object in memory is aligned to the natural alignment.
1493 unsigned AddrSpace
= Ty
->getPointerAddressSpace();
1494 if (!NullPointerIsDefined(Lp
->getHeader()->getParent(), AddrSpace
) &&
1495 (Stride
== 1 || Stride
== -1))
1499 PSE
.setNoOverflow(Ptr
, SCEVWrapPredicate::IncrementNUSW
);
1500 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1501 << "LAA: Pointer: " << *Ptr
<< "\n"
1502 << "LAA: SCEV: " << *AR
<< "\n"
1503 << "LAA: Added an overflow assumption\n");
1507 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1508 << *Ptr
<< " SCEV: " << *AR
<< "\n");
1509 return std::nullopt
;
1512 std::optional
<int> llvm::getPointersDiff(Type
*ElemTyA
, Value
*PtrA
,
1513 Type
*ElemTyB
, Value
*PtrB
,
1514 const DataLayout
&DL
,
1515 ScalarEvolution
&SE
, bool StrictCheck
,
1517 assert(PtrA
&& PtrB
&& "Expected non-nullptr pointers.");
1519 // Make sure that A and B are different pointers.
1523 // Make sure that the element types are the same if required.
1524 if (CheckType
&& ElemTyA
!= ElemTyB
)
1525 return std::nullopt
;
1527 unsigned ASA
= PtrA
->getType()->getPointerAddressSpace();
1528 unsigned ASB
= PtrB
->getType()->getPointerAddressSpace();
1530 // Check that the address spaces match.
1532 return std::nullopt
;
1533 unsigned IdxWidth
= DL
.getIndexSizeInBits(ASA
);
1535 APInt
OffsetA(IdxWidth
, 0), OffsetB(IdxWidth
, 0);
1536 Value
*PtrA1
= PtrA
->stripAndAccumulateInBoundsConstantOffsets(DL
, OffsetA
);
1537 Value
*PtrB1
= PtrB
->stripAndAccumulateInBoundsConstantOffsets(DL
, OffsetB
);
1540 if (PtrA1
== PtrB1
) {
1541 // Retrieve the address space again as pointer stripping now tracks through
1543 ASA
= cast
<PointerType
>(PtrA1
->getType())->getAddressSpace();
1544 ASB
= cast
<PointerType
>(PtrB1
->getType())->getAddressSpace();
1545 // Check that the address spaces match and that the pointers are valid.
1547 return std::nullopt
;
1549 IdxWidth
= DL
.getIndexSizeInBits(ASA
);
1550 OffsetA
= OffsetA
.sextOrTrunc(IdxWidth
);
1551 OffsetB
= OffsetB
.sextOrTrunc(IdxWidth
);
1554 Val
= OffsetB
.getSExtValue();
1556 // Otherwise compute the distance with SCEV between the base pointers.
1557 const SCEV
*PtrSCEVA
= SE
.getSCEV(PtrA
);
1558 const SCEV
*PtrSCEVB
= SE
.getSCEV(PtrB
);
1560 dyn_cast
<SCEVConstant
>(SE
.getMinusSCEV(PtrSCEVB
, PtrSCEVA
));
1562 return std::nullopt
;
1563 Val
= Diff
->getAPInt().getSExtValue();
1565 int Size
= DL
.getTypeStoreSize(ElemTyA
);
1566 int Dist
= Val
/ Size
;
1568 // Ensure that the calculated distance matches the type-based one after all
1569 // the bitcasts removal in the provided pointers.
1570 if (!StrictCheck
|| Dist
* Size
== Val
)
1572 return std::nullopt
;
1575 bool llvm::sortPtrAccesses(ArrayRef
<Value
*> VL
, Type
*ElemTy
,
1576 const DataLayout
&DL
, ScalarEvolution
&SE
,
1577 SmallVectorImpl
<unsigned> &SortedIndices
) {
1578 assert(llvm::all_of(
1579 VL
, [](const Value
*V
) { return V
->getType()->isPointerTy(); }) &&
1580 "Expected list of pointer operands.");
1581 // Walk over the pointers, and map each of them to an offset relative to
1582 // first pointer in the array.
1583 Value
*Ptr0
= VL
[0];
1585 using DistOrdPair
= std::pair
<int64_t, int>;
1586 auto Compare
= llvm::less_first();
1587 std::set
<DistOrdPair
, decltype(Compare
)> Offsets(Compare
);
1588 Offsets
.emplace(0, 0);
1590 bool IsConsecutive
= true;
1591 for (auto *Ptr
: VL
.drop_front()) {
1592 std::optional
<int> Diff
= getPointersDiff(ElemTy
, Ptr0
, ElemTy
, Ptr
, DL
, SE
,
1593 /*StrictCheck=*/true);
1597 // Check if the pointer with the same offset is found.
1598 int64_t Offset
= *Diff
;
1599 auto Res
= Offsets
.emplace(Offset
, Cnt
);
1602 // Consecutive order if the inserted element is the last one.
1603 IsConsecutive
= IsConsecutive
&& std::next(Res
.first
) == Offsets
.end();
1606 SortedIndices
.clear();
1607 if (!IsConsecutive
) {
1608 // Fill SortedIndices array only if it is non-consecutive.
1609 SortedIndices
.resize(VL
.size());
1611 for (const std::pair
<int64_t, int> &Pair
: Offsets
) {
1612 SortedIndices
[Cnt
] = Pair
.second
;
1619 /// Returns true if the memory operations \p A and \p B are consecutive.
1620 bool llvm::isConsecutiveAccess(Value
*A
, Value
*B
, const DataLayout
&DL
,
1621 ScalarEvolution
&SE
, bool CheckType
) {
1622 Value
*PtrA
= getLoadStorePointerOperand(A
);
1623 Value
*PtrB
= getLoadStorePointerOperand(B
);
1626 Type
*ElemTyA
= getLoadStoreType(A
);
1627 Type
*ElemTyB
= getLoadStoreType(B
);
1628 std::optional
<int> Diff
=
1629 getPointersDiff(ElemTyA
, PtrA
, ElemTyB
, PtrB
, DL
, SE
,
1630 /*StrictCheck=*/true, CheckType
);
1631 return Diff
&& *Diff
== 1;
1634 void MemoryDepChecker::addAccess(StoreInst
*SI
) {
1635 visitPointers(SI
->getPointerOperand(), *InnermostLoop
,
1636 [this, SI
](Value
*Ptr
) {
1637 Accesses
[MemAccessInfo(Ptr
, true)].push_back(AccessIdx
);
1638 InstMap
.push_back(SI
);
1643 void MemoryDepChecker::addAccess(LoadInst
*LI
) {
1644 visitPointers(LI
->getPointerOperand(), *InnermostLoop
,
1645 [this, LI
](Value
*Ptr
) {
1646 Accesses
[MemAccessInfo(Ptr
, false)].push_back(AccessIdx
);
1647 InstMap
.push_back(LI
);
1652 MemoryDepChecker::VectorizationSafetyStatus
1653 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type
) {
1657 case BackwardVectorizable
:
1658 return VectorizationSafetyStatus::Safe
;
1661 return VectorizationSafetyStatus::PossiblySafeWithRtChecks
;
1662 case ForwardButPreventsForwarding
:
1664 case BackwardVectorizableButPreventsForwarding
:
1665 return VectorizationSafetyStatus::Unsafe
;
1667 llvm_unreachable("unexpected DepType!");
1670 bool MemoryDepChecker::Dependence::isBackward() const {
1674 case ForwardButPreventsForwarding
:
1678 case BackwardVectorizable
:
1680 case BackwardVectorizableButPreventsForwarding
:
1683 llvm_unreachable("unexpected DepType!");
1686 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1687 return isBackward() || Type
== Unknown
;
1690 bool MemoryDepChecker::Dependence::isForward() const {
1693 case ForwardButPreventsForwarding
:
1698 case BackwardVectorizable
:
1700 case BackwardVectorizableButPreventsForwarding
:
1703 llvm_unreachable("unexpected DepType!");
1706 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance
,
1707 uint64_t TypeByteSize
) {
1708 // If loads occur at a distance that is not a multiple of a feasible vector
1709 // factor store-load forwarding does not take place.
1710 // Positive dependences might cause troubles because vectorizing them might
1711 // prevent store-load forwarding making vectorized code run a lot slower.
1712 // a[i] = a[i-3] ^ a[i-8];
1713 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1714 // hence on your typical architecture store-load forwarding does not take
1715 // place. Vectorizing in such cases does not make sense.
1716 // Store-load forwarding distance.
1718 // After this many iterations store-to-load forwarding conflicts should not
1719 // cause any slowdowns.
1720 const uint64_t NumItersForStoreLoadThroughMemory
= 8 * TypeByteSize
;
1721 // Maximum vector factor.
1722 uint64_t MaxVFWithoutSLForwardIssues
= std::min(
1723 VectorizerParams::MaxVectorWidth
* TypeByteSize
, MinDepDistBytes
);
1725 // Compute the smallest VF at which the store and load would be misaligned.
1726 for (uint64_t VF
= 2 * TypeByteSize
; VF
<= MaxVFWithoutSLForwardIssues
;
1728 // If the number of vector iteration between the store and the load are
1729 // small we could incur conflicts.
1730 if (Distance
% VF
&& Distance
/ VF
< NumItersForStoreLoadThroughMemory
) {
1731 MaxVFWithoutSLForwardIssues
= (VF
>> 1);
1736 if (MaxVFWithoutSLForwardIssues
< 2 * TypeByteSize
) {
1738 dbgs() << "LAA: Distance " << Distance
1739 << " that could cause a store-load forwarding conflict\n");
1743 if (MaxVFWithoutSLForwardIssues
< MinDepDistBytes
&&
1744 MaxVFWithoutSLForwardIssues
!=
1745 VectorizerParams::MaxVectorWidth
* TypeByteSize
)
1746 MinDepDistBytes
= MaxVFWithoutSLForwardIssues
;
1750 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S
) {
1755 /// Given a dependence-distance \p Dist between two
1756 /// memory accesses, that have the same stride whose absolute value is given
1757 /// in \p Stride, and that have the same type size \p TypeByteSize,
1758 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1759 /// possible to prove statically that the dependence distance is larger
1760 /// than the range that the accesses will travel through the execution of
1761 /// the loop. If so, return true; false otherwise. This is useful for
1762 /// example in loops such as the following (PR31098):
1763 /// for (i = 0; i < D; ++i) {
1767 static bool isSafeDependenceDistance(const DataLayout
&DL
, ScalarEvolution
&SE
,
1768 const SCEV
&BackedgeTakenCount
,
1769 const SCEV
&Dist
, uint64_t Stride
,
1770 uint64_t TypeByteSize
) {
1772 // If we can prove that
1773 // (**) |Dist| > BackedgeTakenCount * Step
1774 // where Step is the absolute stride of the memory accesses in bytes,
1775 // then there is no dependence.
1778 // We basically want to check if the absolute distance (|Dist/Step|)
1779 // is >= the loop iteration count (or > BackedgeTakenCount).
1780 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1781 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1782 // that the dependence distance is >= VF; This is checked elsewhere.
1783 // But in some cases we can prune dependence distances early, and
1784 // even before selecting the VF, and without a runtime test, by comparing
1785 // the distance against the loop iteration count. Since the vectorized code
1786 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1787 // also guarantees that distance >= VF.
1789 const uint64_t ByteStride
= Stride
* TypeByteSize
;
1790 const SCEV
*Step
= SE
.getConstant(BackedgeTakenCount
.getType(), ByteStride
);
1791 const SCEV
*Product
= SE
.getMulExpr(&BackedgeTakenCount
, Step
);
1793 const SCEV
*CastedDist
= &Dist
;
1794 const SCEV
*CastedProduct
= Product
;
1795 uint64_t DistTypeSizeBits
= DL
.getTypeSizeInBits(Dist
.getType());
1796 uint64_t ProductTypeSizeBits
= DL
.getTypeSizeInBits(Product
->getType());
1798 // The dependence distance can be positive/negative, so we sign extend Dist;
1799 // The multiplication of the absolute stride in bytes and the
1800 // backedgeTakenCount is non-negative, so we zero extend Product.
1801 if (DistTypeSizeBits
> ProductTypeSizeBits
)
1802 CastedProduct
= SE
.getZeroExtendExpr(Product
, Dist
.getType());
1804 CastedDist
= SE
.getNoopOrSignExtend(&Dist
, Product
->getType());
1806 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1807 // (If so, then we have proven (**) because |Dist| >= Dist)
1808 const SCEV
*Minus
= SE
.getMinusSCEV(CastedDist
, CastedProduct
);
1809 if (SE
.isKnownPositive(Minus
))
1812 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1813 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1814 const SCEV
*NegDist
= SE
.getNegativeSCEV(CastedDist
);
1815 Minus
= SE
.getMinusSCEV(NegDist
, CastedProduct
);
1816 if (SE
.isKnownPositive(Minus
))
1822 /// Check the dependence for two accesses with the same stride \p Stride.
1823 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1826 /// \returns true if they are independent.
1827 static bool areStridedAccessesIndependent(uint64_t Distance
, uint64_t Stride
,
1828 uint64_t TypeByteSize
) {
1829 assert(Stride
> 1 && "The stride must be greater than 1");
1830 assert(TypeByteSize
> 0 && "The type size in byte must be non-zero");
1831 assert(Distance
> 0 && "The distance must be non-zero");
1833 // Skip if the distance is not multiple of type byte size.
1834 if (Distance
% TypeByteSize
)
1837 uint64_t ScaledDist
= Distance
/ TypeByteSize
;
1839 // No dependence if the scaled distance is not multiple of the stride.
1841 // for (i = 0; i < 1024 ; i += 4)
1842 // A[i+2] = A[i] + 1;
1844 // Two accesses in memory (scaled distance is 2, stride is 4):
1845 // | A[0] | | | | A[4] | | | |
1846 // | | | A[2] | | | | A[6] | |
1849 // for (i = 0; i < 1024 ; i += 3)
1850 // A[i+4] = A[i] + 1;
1852 // Two accesses in memory (scaled distance is 4, stride is 3):
1853 // | A[0] | | | A[3] | | | A[6] | | |
1854 // | | | | | A[4] | | | A[7] | |
1855 return ScaledDist
% Stride
;
1858 MemoryDepChecker::Dependence::DepType
1859 MemoryDepChecker::isDependent(const MemAccessInfo
&A
, unsigned AIdx
,
1860 const MemAccessInfo
&B
, unsigned BIdx
,
1861 const DenseMap
<Value
*, const SCEV
*> &Strides
) {
1862 assert (AIdx
< BIdx
&& "Must pass arguments in program order");
1864 auto [APtr
, AIsWrite
] = A
;
1865 auto [BPtr
, BIsWrite
] = B
;
1866 Type
*ATy
= getLoadStoreType(InstMap
[AIdx
]);
1867 Type
*BTy
= getLoadStoreType(InstMap
[BIdx
]);
1869 // Two reads are independent.
1870 if (!AIsWrite
&& !BIsWrite
)
1871 return Dependence::NoDep
;
1873 // We cannot check pointers in different address spaces.
1874 if (APtr
->getType()->getPointerAddressSpace() !=
1875 BPtr
->getType()->getPointerAddressSpace())
1876 return Dependence::Unknown
;
1878 int64_t StrideAPtr
=
1879 getPtrStride(PSE
, ATy
, APtr
, InnermostLoop
, Strides
, true).value_or(0);
1880 int64_t StrideBPtr
=
1881 getPtrStride(PSE
, BTy
, BPtr
, InnermostLoop
, Strides
, true).value_or(0);
1883 const SCEV
*Src
= PSE
.getSCEV(APtr
);
1884 const SCEV
*Sink
= PSE
.getSCEV(BPtr
);
1886 // If the induction step is negative we have to invert source and sink of the
1888 if (StrideAPtr
< 0) {
1889 std::swap(APtr
, BPtr
);
1890 std::swap(ATy
, BTy
);
1891 std::swap(Src
, Sink
);
1892 std::swap(AIsWrite
, BIsWrite
);
1893 std::swap(AIdx
, BIdx
);
1894 std::swap(StrideAPtr
, StrideBPtr
);
1897 ScalarEvolution
&SE
= *PSE
.getSE();
1898 const SCEV
*Dist
= SE
.getMinusSCEV(Sink
, Src
);
1900 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src
<< "Sink Scev: " << *Sink
1901 << "(Induction step: " << StrideAPtr
<< ")\n");
1902 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap
[AIdx
] << " to "
1903 << *InstMap
[BIdx
] << ": " << *Dist
<< "\n");
1905 // Need accesses with constant stride. We don't want to vectorize
1906 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1907 // the address space.
1908 if (!StrideAPtr
|| !StrideBPtr
|| StrideAPtr
!= StrideBPtr
){
1909 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1910 return Dependence::Unknown
;
1913 auto &DL
= InnermostLoop
->getHeader()->getModule()->getDataLayout();
1914 uint64_t TypeByteSize
= DL
.getTypeAllocSize(ATy
);
1916 DL
.getTypeStoreSizeInBits(ATy
) == DL
.getTypeStoreSizeInBits(BTy
);
1917 uint64_t Stride
= std::abs(StrideAPtr
);
1919 if (!isa
<SCEVCouldNotCompute
>(Dist
) && HasSameSize
&&
1920 isSafeDependenceDistance(DL
, SE
, *(PSE
.getBackedgeTakenCount()), *Dist
,
1921 Stride
, TypeByteSize
))
1922 return Dependence::NoDep
;
1924 const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Dist
);
1926 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1927 FoundNonConstantDistanceDependence
= true;
1928 return Dependence::Unknown
;
1931 const APInt
&Val
= C
->getAPInt();
1932 int64_t Distance
= Val
.getSExtValue();
1934 // Attempt to prove strided accesses independent.
1935 if (std::abs(Distance
) > 0 && Stride
> 1 && HasSameSize
&&
1936 areStridedAccessesIndependent(std::abs(Distance
), Stride
, TypeByteSize
)) {
1937 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1938 return Dependence::NoDep
;
1941 // Negative distances are not plausible dependencies.
1942 if (Val
.isNegative()) {
1943 bool IsTrueDataDependence
= (AIsWrite
&& !BIsWrite
);
1944 // There is no need to update MaxSafeVectorWidthInBits after call to
1945 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes,
1946 // since a forward dependency will allow vectorization using any width.
1947 if (IsTrueDataDependence
&& EnableForwardingConflictDetection
&&
1948 (couldPreventStoreLoadForward(Val
.abs().getZExtValue(), TypeByteSize
) ||
1950 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1951 return Dependence::ForwardButPreventsForwarding
;
1954 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1955 return Dependence::Forward
;
1958 // Write to the same location with the same size.
1961 return Dependence::Forward
;
1963 dbgs() << "LAA: Zero dependence difference but different type sizes\n");
1964 return Dependence::Unknown
;
1967 assert(Val
.isStrictlyPositive() && "Expect a positive value");
1970 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
1971 "different type sizes\n");
1972 return Dependence::Unknown
;
1975 // Bail out early if passed-in parameters make vectorization not feasible.
1976 unsigned ForcedFactor
= (VectorizerParams::VectorizationFactor
?
1977 VectorizerParams::VectorizationFactor
: 1);
1978 unsigned ForcedUnroll
= (VectorizerParams::VectorizationInterleave
?
1979 VectorizerParams::VectorizationInterleave
: 1);
1980 // The minimum number of iterations for a vectorized/unrolled version.
1981 unsigned MinNumIter
= std::max(ForcedFactor
* ForcedUnroll
, 2U);
1983 // It's not vectorizable if the distance is smaller than the minimum distance
1984 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1985 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1986 // TypeByteSize (No need to plus the last gap distance).
1988 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1990 // int *B = (int *)((char *)A + 14);
1991 // for (i = 0 ; i < 1024 ; i += 2)
1995 // Two accesses in memory (stride is 2):
1996 // | A[0] | | A[2] | | A[4] | | A[6] | |
1997 // | B[0] | | B[2] | | B[4] |
1999 // Distance needs for vectorizing iterations except the last iteration:
2000 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
2001 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2003 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2004 // 12, which is less than distance.
2006 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2007 // the minimum distance needed is 28, which is greater than distance. It is
2008 // not safe to do vectorization.
2009 uint64_t MinDistanceNeeded
=
2010 TypeByteSize
* Stride
* (MinNumIter
- 1) + TypeByteSize
;
2011 if (MinDistanceNeeded
> static_cast<uint64_t>(Distance
)) {
2012 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
2013 << Distance
<< '\n');
2014 return Dependence::Backward
;
2017 // Unsafe if the minimum distance needed is greater than smallest dependence
2018 // distance distance.
2019 if (MinDistanceNeeded
> MinDepDistBytes
) {
2020 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2021 << MinDistanceNeeded
<< " size in bytes\n");
2022 return Dependence::Backward
;
2025 // Positive distance bigger than max vectorization factor.
2026 // FIXME: Should use max factor instead of max distance in bytes, which could
2027 // not handle different types.
2028 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2029 // void foo (int *A, char *B) {
2030 // for (unsigned i = 0; i < 1024; i++) {
2031 // A[i+2] = A[i] + 1;
2032 // B[i+2] = B[i] + 1;
2036 // This case is currently unsafe according to the max safe distance. If we
2037 // analyze the two accesses on array B, the max safe dependence distance
2038 // is 2. Then we analyze the accesses on array A, the minimum distance needed
2039 // is 8, which is less than 2 and forbidden vectorization, But actually
2040 // both A and B could be vectorized by 2 iterations.
2042 std::min(static_cast<uint64_t>(Distance
), MinDepDistBytes
);
2044 bool IsTrueDataDependence
= (!AIsWrite
&& BIsWrite
);
2045 uint64_t MinDepDistBytesOld
= MinDepDistBytes
;
2046 if (IsTrueDataDependence
&& EnableForwardingConflictDetection
&&
2047 couldPreventStoreLoadForward(Distance
, TypeByteSize
)) {
2048 // Sanity check that we didn't update MinDepDistBytes when calling
2049 // couldPreventStoreLoadForward
2050 assert(MinDepDistBytes
== MinDepDistBytesOld
&&
2051 "An update to MinDepDistBytes requires an update to "
2052 "MaxSafeVectorWidthInBits");
2053 (void)MinDepDistBytesOld
;
2054 return Dependence::BackwardVectorizableButPreventsForwarding
;
2057 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2058 // since there is a backwards dependency.
2059 uint64_t MaxVF
= MinDepDistBytes
/ (TypeByteSize
* Stride
);
2060 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val
.getSExtValue()
2061 << " with max VF = " << MaxVF
<< '\n');
2062 uint64_t MaxVFInBits
= MaxVF
* TypeByteSize
* 8;
2063 MaxSafeVectorWidthInBits
= std::min(MaxSafeVectorWidthInBits
, MaxVFInBits
);
2064 return Dependence::BackwardVectorizable
;
2067 bool MemoryDepChecker::areDepsSafe(DepCandidates
&AccessSets
,
2068 MemAccessInfoList
&CheckDeps
,
2069 const DenseMap
<Value
*, const SCEV
*> &Strides
) {
2071 MinDepDistBytes
= -1;
2072 SmallPtrSet
<MemAccessInfo
, 8> Visited
;
2073 for (MemAccessInfo CurAccess
: CheckDeps
) {
2074 if (Visited
.count(CurAccess
))
2077 // Get the relevant memory access set.
2078 EquivalenceClasses
<MemAccessInfo
>::iterator I
=
2079 AccessSets
.findValue(AccessSets
.getLeaderValue(CurAccess
));
2081 // Check accesses within this set.
2082 EquivalenceClasses
<MemAccessInfo
>::member_iterator AI
=
2083 AccessSets
.member_begin(I
);
2084 EquivalenceClasses
<MemAccessInfo
>::member_iterator AE
=
2085 AccessSets
.member_end();
2087 // Check every access pair.
2089 Visited
.insert(*AI
);
2090 bool AIIsWrite
= AI
->getInt();
2091 // Check loads only against next equivalent class, but stores also against
2092 // other stores in the same equivalence class - to the same address.
2093 EquivalenceClasses
<MemAccessInfo
>::member_iterator OI
=
2094 (AIIsWrite
? AI
: std::next(AI
));
2096 // Check every accessing instruction pair in program order.
2097 for (std::vector
<unsigned>::iterator I1
= Accesses
[*AI
].begin(),
2098 I1E
= Accesses
[*AI
].end(); I1
!= I1E
; ++I1
)
2099 // Scan all accesses of another equivalence class, but only the next
2100 // accesses of the same equivalent class.
2101 for (std::vector
<unsigned>::iterator
2102 I2
= (OI
== AI
? std::next(I1
) : Accesses
[*OI
].begin()),
2103 I2E
= (OI
== AI
? I1E
: Accesses
[*OI
].end());
2105 auto A
= std::make_pair(&*AI
, *I1
);
2106 auto B
= std::make_pair(&*OI
, *I2
);
2112 Dependence::DepType Type
=
2113 isDependent(*A
.first
, A
.second
, *B
.first
, B
.second
, Strides
);
2114 mergeInStatus(Dependence::isSafeForVectorization(Type
));
2116 // Gather dependences unless we accumulated MaxDependences
2117 // dependences. In that case return as soon as we find the first
2118 // unsafe dependence. This puts a limit on this quadratic
2120 if (RecordDependences
) {
2121 if (Type
!= Dependence::NoDep
)
2122 Dependences
.push_back(Dependence(A
.second
, B
.second
, Type
));
2124 if (Dependences
.size() >= MaxDependences
) {
2125 RecordDependences
= false;
2126 Dependences
.clear();
2128 << "Too many dependences, stopped recording\n");
2131 if (!RecordDependences
&& !isSafeForVectorization())
2140 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences
.size() << "\n");
2141 return isSafeForVectorization();
2144 SmallVector
<Instruction
*, 4>
2145 MemoryDepChecker::getInstructionsForAccess(Value
*Ptr
, bool isWrite
) const {
2146 MemAccessInfo
Access(Ptr
, isWrite
);
2147 auto &IndexVector
= Accesses
.find(Access
)->second
;
2149 SmallVector
<Instruction
*, 4> Insts
;
2150 transform(IndexVector
,
2151 std::back_inserter(Insts
),
2152 [&](unsigned Idx
) { return this->InstMap
[Idx
]; });
2156 const char *MemoryDepChecker::Dependence::DepName
[] = {
2157 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
2158 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
2160 void MemoryDepChecker::Dependence::print(
2161 raw_ostream
&OS
, unsigned Depth
,
2162 const SmallVectorImpl
<Instruction
*> &Instrs
) const {
2163 OS
.indent(Depth
) << DepName
[Type
] << ":\n";
2164 OS
.indent(Depth
+ 2) << *Instrs
[Source
] << " -> \n";
2165 OS
.indent(Depth
+ 2) << *Instrs
[Destination
] << "\n";
2168 bool LoopAccessInfo::canAnalyzeLoop() {
2169 // We need to have a loop header.
2170 LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
2171 << TheLoop
->getHeader()->getParent()->getName() << ": "
2172 << TheLoop
->getHeader()->getName() << '\n');
2174 // We can only analyze innermost loops.
2175 if (!TheLoop
->isInnermost()) {
2176 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2177 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2181 // We must have a single backedge.
2182 if (TheLoop
->getNumBackEdges() != 1) {
2184 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2185 recordAnalysis("CFGNotUnderstood")
2186 << "loop control flow is not understood by analyzer";
2190 // ScalarEvolution needs to be able to find the exit count.
2191 const SCEV
*ExitCount
= PSE
->getBackedgeTakenCount();
2192 if (isa
<SCEVCouldNotCompute
>(ExitCount
)) {
2193 recordAnalysis("CantComputeNumberOfIterations")
2194 << "could not determine number of loop iterations";
2195 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2202 void LoopAccessInfo::analyzeLoop(AAResults
*AA
, LoopInfo
*LI
,
2203 const TargetLibraryInfo
*TLI
,
2204 DominatorTree
*DT
) {
2205 // Holds the Load and Store instructions.
2206 SmallVector
<LoadInst
*, 16> Loads
;
2207 SmallVector
<StoreInst
*, 16> Stores
;
2209 // Holds all the different accesses in the loop.
2210 unsigned NumReads
= 0;
2211 unsigned NumReadWrites
= 0;
2213 bool HasComplexMemInst
= false;
2215 // A runtime check is only legal to insert if there are no convergent calls.
2216 HasConvergentOp
= false;
2218 PtrRtChecking
->Pointers
.clear();
2219 PtrRtChecking
->Need
= false;
2221 const bool IsAnnotatedParallel
= TheLoop
->isAnnotatedParallel();
2223 const bool EnableMemAccessVersioningOfLoop
=
2224 EnableMemAccessVersioning
&&
2225 !TheLoop
->getHeader()->getParent()->hasOptSize();
2227 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2228 // loop info, as it may be arbitrary.
2229 LoopBlocksRPO
RPOT(TheLoop
);
2231 for (BasicBlock
*BB
: RPOT
) {
2232 // Scan the BB and collect legal loads and stores. Also detect any
2233 // convergent instructions.
2234 for (Instruction
&I
: *BB
) {
2235 if (auto *Call
= dyn_cast
<CallBase
>(&I
)) {
2236 if (Call
->isConvergent())
2237 HasConvergentOp
= true;
2240 // With both a non-vectorizable memory instruction and a convergent
2241 // operation, found in this loop, no reason to continue the search.
2242 if (HasComplexMemInst
&& HasConvergentOp
) {
2247 // Avoid hitting recordAnalysis multiple times.
2248 if (HasComplexMemInst
)
2251 // Many math library functions read the rounding mode. We will only
2252 // vectorize a loop if it contains known function calls that don't set
2253 // the flag. Therefore, it is safe to ignore this read from memory.
2254 auto *Call
= dyn_cast
<CallInst
>(&I
);
2255 if (Call
&& getVectorIntrinsicIDForCall(Call
, TLI
))
2258 // If this is a load, save it. If this instruction can read from memory
2259 // but is not a load, then we quit. Notice that we don't handle function
2260 // calls that read or write.
2261 if (I
.mayReadFromMemory()) {
2262 // If the function has an explicit vectorized counterpart, we can safely
2263 // assume that it can be vectorized.
2264 if (Call
&& !Call
->isNoBuiltin() && Call
->getCalledFunction() &&
2265 !VFDatabase::getMappings(*Call
).empty())
2268 auto *Ld
= dyn_cast
<LoadInst
>(&I
);
2270 recordAnalysis("CantVectorizeInstruction", Ld
)
2271 << "instruction cannot be vectorized";
2272 HasComplexMemInst
= true;
2275 if (!Ld
->isSimple() && !IsAnnotatedParallel
) {
2276 recordAnalysis("NonSimpleLoad", Ld
)
2277 << "read with atomic ordering or volatile read";
2278 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2279 HasComplexMemInst
= true;
2283 Loads
.push_back(Ld
);
2284 DepChecker
->addAccess(Ld
);
2285 if (EnableMemAccessVersioningOfLoop
)
2286 collectStridedAccess(Ld
);
2290 // Save 'store' instructions. Abort if other instructions write to memory.
2291 if (I
.mayWriteToMemory()) {
2292 auto *St
= dyn_cast
<StoreInst
>(&I
);
2294 recordAnalysis("CantVectorizeInstruction", St
)
2295 << "instruction cannot be vectorized";
2296 HasComplexMemInst
= true;
2299 if (!St
->isSimple() && !IsAnnotatedParallel
) {
2300 recordAnalysis("NonSimpleStore", St
)
2301 << "write with atomic ordering or volatile write";
2302 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2303 HasComplexMemInst
= true;
2307 Stores
.push_back(St
);
2308 DepChecker
->addAccess(St
);
2309 if (EnableMemAccessVersioningOfLoop
)
2310 collectStridedAccess(St
);
2315 if (HasComplexMemInst
) {
2320 // Now we have two lists that hold the loads and the stores.
2321 // Next, we find the pointers that they use.
2323 // Check if we see any stores. If there are no stores, then we don't
2324 // care if the pointers are *restrict*.
2325 if (!Stores
.size()) {
2326 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2331 MemoryDepChecker::DepCandidates DependentAccesses
;
2332 AccessAnalysis
Accesses(TheLoop
, AA
, LI
, DependentAccesses
, *PSE
);
2334 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2335 // multiple times on the same object. If the ptr is accessed twice, once
2336 // for read and once for write, it will only appear once (on the write
2337 // list). This is okay, since we are going to check for conflicts between
2338 // writes and between reads and writes, but not between reads and reads.
2339 SmallSet
<std::pair
<Value
*, Type
*>, 16> Seen
;
2341 // Record uniform store addresses to identify if we have multiple stores
2342 // to the same address.
2343 SmallPtrSet
<Value
*, 16> UniformStores
;
2345 for (StoreInst
*ST
: Stores
) {
2346 Value
*Ptr
= ST
->getPointerOperand();
2348 if (isInvariant(Ptr
)) {
2349 // Record store instructions to loop invariant addresses
2350 StoresToInvariantAddresses
.push_back(ST
);
2351 HasDependenceInvolvingLoopInvariantAddress
|=
2352 !UniformStores
.insert(Ptr
).second
;
2355 // If we did *not* see this pointer before, insert it to the read-write
2356 // list. At this phase it is only a 'write' list.
2357 Type
*AccessTy
= getLoadStoreType(ST
);
2358 if (Seen
.insert({Ptr
, AccessTy
}).second
) {
2361 MemoryLocation Loc
= MemoryLocation::get(ST
);
2362 // The TBAA metadata could have a control dependency on the predication
2363 // condition, so we cannot rely on it when determining whether or not we
2364 // need runtime pointer checks.
2365 if (blockNeedsPredication(ST
->getParent(), TheLoop
, DT
))
2366 Loc
.AATags
.TBAA
= nullptr;
2368 visitPointers(const_cast<Value
*>(Loc
.Ptr
), *TheLoop
,
2369 [&Accesses
, AccessTy
, Loc
](Value
*Ptr
) {
2370 MemoryLocation NewLoc
= Loc
.getWithNewPtr(Ptr
);
2371 Accesses
.addStore(NewLoc
, AccessTy
);
2376 if (IsAnnotatedParallel
) {
2378 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2384 for (LoadInst
*LD
: Loads
) {
2385 Value
*Ptr
= LD
->getPointerOperand();
2386 // If we did *not* see this pointer before, insert it to the
2387 // read list. If we *did* see it before, then it is already in
2388 // the read-write list. This allows us to vectorize expressions
2389 // such as A[i] += x; Because the address of A[i] is a read-write
2390 // pointer. This only works if the index of A[i] is consecutive.
2391 // If the address of i is unknown (for example A[B[i]]) then we may
2392 // read a few words, modify, and write a few words, and some of the
2393 // words may be written to the same address.
2394 bool IsReadOnlyPtr
= false;
2395 Type
*AccessTy
= getLoadStoreType(LD
);
2396 if (Seen
.insert({Ptr
, AccessTy
}).second
||
2397 !getPtrStride(*PSE
, LD
->getType(), Ptr
, TheLoop
, SymbolicStrides
).value_or(0)) {
2399 IsReadOnlyPtr
= true;
2402 // See if there is an unsafe dependency between a load to a uniform address and
2403 // store to the same uniform address.
2404 if (UniformStores
.count(Ptr
)) {
2405 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2406 "load and uniform store to the same address!\n");
2407 HasDependenceInvolvingLoopInvariantAddress
= true;
2410 MemoryLocation Loc
= MemoryLocation::get(LD
);
2411 // The TBAA metadata could have a control dependency on the predication
2412 // condition, so we cannot rely on it when determining whether or not we
2413 // need runtime pointer checks.
2414 if (blockNeedsPredication(LD
->getParent(), TheLoop
, DT
))
2415 Loc
.AATags
.TBAA
= nullptr;
2417 visitPointers(const_cast<Value
*>(Loc
.Ptr
), *TheLoop
,
2418 [&Accesses
, AccessTy
, Loc
, IsReadOnlyPtr
](Value
*Ptr
) {
2419 MemoryLocation NewLoc
= Loc
.getWithNewPtr(Ptr
);
2420 Accesses
.addLoad(NewLoc
, AccessTy
, IsReadOnlyPtr
);
2424 // If we write (or read-write) to a single destination and there are no
2425 // other reads in this loop then is it safe to vectorize.
2426 if (NumReadWrites
== 1 && NumReads
== 0) {
2427 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2432 // Build dependence sets and check whether we need a runtime pointer bounds
2434 Accesses
.buildDependenceSets();
2436 // Find pointers with computable bounds. We are going to use this information
2437 // to place a runtime bound check.
2438 Value
*UncomputablePtr
= nullptr;
2439 bool CanDoRTIfNeeded
=
2440 Accesses
.canCheckPtrAtRT(*PtrRtChecking
, PSE
->getSE(), TheLoop
,
2441 SymbolicStrides
, UncomputablePtr
, false);
2442 if (!CanDoRTIfNeeded
) {
2443 auto *I
= dyn_cast_or_null
<Instruction
>(UncomputablePtr
);
2444 recordAnalysis("CantIdentifyArrayBounds", I
)
2445 << "cannot identify array bounds";
2446 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2447 << "the array bounds.\n");
2453 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2456 if (Accesses
.isDependencyCheckNeeded()) {
2457 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2458 CanVecMem
= DepChecker
->areDepsSafe(
2459 DependentAccesses
, Accesses
.getDependenciesToCheck(), SymbolicStrides
);
2461 if (!CanVecMem
&& DepChecker
->shouldRetryWithRuntimeCheck()) {
2462 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2464 // Clear the dependency checks. We assume they are not needed.
2465 Accesses
.resetDepChecks(*DepChecker
);
2467 PtrRtChecking
->reset();
2468 PtrRtChecking
->Need
= true;
2470 auto *SE
= PSE
->getSE();
2471 UncomputablePtr
= nullptr;
2472 CanDoRTIfNeeded
= Accesses
.canCheckPtrAtRT(
2473 *PtrRtChecking
, SE
, TheLoop
, SymbolicStrides
, UncomputablePtr
, true);
2475 // Check that we found the bounds for the pointer.
2476 if (!CanDoRTIfNeeded
) {
2477 auto *I
= dyn_cast_or_null
<Instruction
>(UncomputablePtr
);
2478 recordAnalysis("CantCheckMemDepsAtRunTime", I
)
2479 << "cannot check memory dependencies at runtime";
2480 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2489 if (HasConvergentOp
) {
2490 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2491 << "cannot add control dependency to convergent operation";
2492 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2493 "would be needed with a convergent operation\n");
2500 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2501 << (PtrRtChecking
->Need
? "" : " don't")
2502 << " need runtime memory checks.\n");
2504 emitUnsafeDependenceRemark();
2507 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2508 auto Deps
= getDepChecker().getDependences();
2511 auto Found
= llvm::find_if(*Deps
, [](const MemoryDepChecker::Dependence
&D
) {
2512 return MemoryDepChecker::Dependence::isSafeForVectorization(D
.Type
) !=
2513 MemoryDepChecker::VectorizationSafetyStatus::Safe
;
2515 if (Found
== Deps
->end())
2517 MemoryDepChecker::Dependence Dep
= *Found
;
2519 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2521 // Emit remark for first unsafe dependence
2522 bool HasForcedDistribution
= false;
2523 std::optional
<const MDOperand
*> Value
=
2524 findStringMetadataForLoop(TheLoop
, "llvm.loop.distribute.enable");
2526 const MDOperand
*Op
= *Value
;
2527 assert(Op
&& mdconst::hasa
<ConstantInt
>(*Op
) && "invalid metadata");
2528 HasForcedDistribution
= mdconst::extract
<ConstantInt
>(*Op
)->getZExtValue();
2531 const std::string Info
=
2532 HasForcedDistribution
2533 ? "unsafe dependent memory operations in loop."
2534 : "unsafe dependent memory operations in loop. Use "
2535 "#pragma clang loop distribute(enable) to allow loop distribution "
2536 "to attempt to isolate the offending operations into a separate "
2538 OptimizationRemarkAnalysis
&R
=
2539 recordAnalysis("UnsafeDep", Dep
.getDestination(*this)) << Info
;
2542 case MemoryDepChecker::Dependence::NoDep
:
2543 case MemoryDepChecker::Dependence::Forward
:
2544 case MemoryDepChecker::Dependence::BackwardVectorizable
:
2545 llvm_unreachable("Unexpected dependence");
2546 case MemoryDepChecker::Dependence::Backward
:
2547 R
<< "\nBackward loop carried data dependence.";
2549 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding
:
2550 R
<< "\nForward loop carried data dependence that prevents "
2551 "store-to-load forwarding.";
2553 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding
:
2554 R
<< "\nBackward loop carried data dependence that prevents "
2555 "store-to-load forwarding.";
2557 case MemoryDepChecker::Dependence::Unknown
:
2558 R
<< "\nUnknown data dependence.";
2562 if (Instruction
*I
= Dep
.getSource(*this)) {
2563 DebugLoc SourceLoc
= I
->getDebugLoc();
2564 if (auto *DD
= dyn_cast_or_null
<Instruction
>(getPointerOperand(I
)))
2565 SourceLoc
= DD
->getDebugLoc();
2567 R
<< " Memory location is the same as accessed at "
2568 << ore::NV("Location", SourceLoc
);
2572 bool LoopAccessInfo::blockNeedsPredication(BasicBlock
*BB
, Loop
*TheLoop
,
2573 DominatorTree
*DT
) {
2574 assert(TheLoop
->contains(BB
) && "Unknown block used");
2576 // Blocks that do not dominate the latch need predication.
2577 BasicBlock
* Latch
= TheLoop
->getLoopLatch();
2578 return !DT
->dominates(BB
, Latch
);
2581 OptimizationRemarkAnalysis
&LoopAccessInfo::recordAnalysis(StringRef RemarkName
,
2583 assert(!Report
&& "Multiple reports generated");
2585 Value
*CodeRegion
= TheLoop
->getHeader();
2586 DebugLoc DL
= TheLoop
->getStartLoc();
2589 CodeRegion
= I
->getParent();
2590 // If there is no debug location attached to the instruction, revert back to
2591 // using the loop's.
2592 if (I
->getDebugLoc())
2593 DL
= I
->getDebugLoc();
2596 Report
= std::make_unique
<OptimizationRemarkAnalysis
>(DEBUG_TYPE
, RemarkName
, DL
,
2601 bool LoopAccessInfo::isInvariant(Value
*V
) const {
2602 auto *SE
= PSE
->getSE();
2603 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2604 // trivially loop-invariant FP values to be considered invariant.
2605 if (!SE
->isSCEVable(V
->getType()))
2607 const SCEV
*S
= SE
->getSCEV(V
);
2608 return SE
->isLoopInvariant(S
, TheLoop
);
2611 /// Find the operand of the GEP that should be checked for consecutive
2612 /// stores. This ignores trailing indices that have no effect on the final
2614 static unsigned getGEPInductionOperand(const GetElementPtrInst
*Gep
) {
2615 const DataLayout
&DL
= Gep
->getModule()->getDataLayout();
2616 unsigned LastOperand
= Gep
->getNumOperands() - 1;
2617 TypeSize GEPAllocSize
= DL
.getTypeAllocSize(Gep
->getResultElementType());
2619 // Walk backwards and try to peel off zeros.
2620 while (LastOperand
> 1 && match(Gep
->getOperand(LastOperand
), m_Zero())) {
2621 // Find the type we're currently indexing into.
2622 gep_type_iterator GEPTI
= gep_type_begin(Gep
);
2623 std::advance(GEPTI
, LastOperand
- 2);
2625 // If it's a type with the same allocation size as the result of the GEP we
2626 // can peel off the zero index.
2627 if (DL
.getTypeAllocSize(GEPTI
.getIndexedType()) != GEPAllocSize
)
2635 /// If the argument is a GEP, then returns the operand identified by
2636 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2637 /// operand, it returns that instead.
2638 static Value
*stripGetElementPtr(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
2639 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
2643 unsigned InductionOperand
= getGEPInductionOperand(GEP
);
2645 // Check that all of the gep indices are uniform except for our induction
2647 for (unsigned i
= 0, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
2648 if (i
!= InductionOperand
&&
2649 !SE
->isLoopInvariant(SE
->getSCEV(GEP
->getOperand(i
)), Lp
))
2651 return GEP
->getOperand(InductionOperand
);
2654 /// If a value has only one user that is a CastInst, return it.
2655 static Value
*getUniqueCastUse(Value
*Ptr
, Loop
*Lp
, Type
*Ty
) {
2656 Value
*UniqueCast
= nullptr;
2657 for (User
*U
: Ptr
->users()) {
2658 CastInst
*CI
= dyn_cast
<CastInst
>(U
);
2659 if (CI
&& CI
->getType() == Ty
) {
2669 /// Get the stride of a pointer access in a loop. Looks for symbolic
2670 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2671 static const SCEV
*getStrideFromPointer(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
2672 auto *PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType());
2673 if (!PtrTy
|| PtrTy
->isAggregateType())
2676 // Try to remove a gep instruction to make the pointer (actually index at this
2677 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2678 // pointer, otherwise, we are analyzing the index.
2679 Value
*OrigPtr
= Ptr
;
2681 // The size of the pointer access.
2682 int64_t PtrAccessSize
= 1;
2684 Ptr
= stripGetElementPtr(Ptr
, SE
, Lp
);
2685 const SCEV
*V
= SE
->getSCEV(Ptr
);
2689 while (const SCEVIntegralCastExpr
*C
= dyn_cast
<SCEVIntegralCastExpr
>(V
))
2690 V
= C
->getOperand();
2692 const SCEVAddRecExpr
*S
= dyn_cast
<SCEVAddRecExpr
>(V
);
2696 // If the pointer is invariant then there is no stride and it makes no
2697 // sense to add it here.
2698 if (Lp
!= S
->getLoop())
2701 V
= S
->getStepRecurrence(*SE
);
2705 // Strip off the size of access multiplication if we are still analyzing the
2707 if (OrigPtr
== Ptr
) {
2708 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(V
)) {
2709 if (M
->getOperand(0)->getSCEVType() != scConstant
)
2712 const APInt
&APStepVal
= cast
<SCEVConstant
>(M
->getOperand(0))->getAPInt();
2714 // Huge step value - give up.
2715 if (APStepVal
.getBitWidth() > 64)
2718 int64_t StepVal
= APStepVal
.getSExtValue();
2719 if (PtrAccessSize
!= StepVal
)
2721 V
= M
->getOperand(1);
2725 // Note that the restriction after this loop invariant check are only
2726 // profitability restrictions.
2727 if (!SE
->isLoopInvariant(V
, Lp
))
2730 // Look for the loop invariant symbolic value.
2731 const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(V
);
2733 const auto *C
= dyn_cast
<SCEVIntegralCastExpr
>(V
);
2736 U
= dyn_cast
<SCEVUnknown
>(C
->getOperand());
2740 // Match legacy behavior - this is not needed for correctness
2741 if (!getUniqueCastUse(U
->getValue(), Lp
, V
->getType()))
2748 void LoopAccessInfo::collectStridedAccess(Value
*MemAccess
) {
2749 Value
*Ptr
= getLoadStorePointerOperand(MemAccess
);
2753 // Note: getStrideFromPointer is a *profitability* heuristic. We
2754 // could broaden the scope of values returned here - to anything
2755 // which happens to be loop invariant and contributes to the
2756 // computation of an interesting IV - but we chose not to as we
2757 // don't have a cost model here, and broadening the scope exposes
2758 // far too many unprofitable cases.
2759 const SCEV
*StrideExpr
= getStrideFromPointer(Ptr
, PSE
->getSE(), TheLoop
);
2763 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2765 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr
<< " Stride: " << *StrideExpr
<< "\n");
2767 if (!SpeculateUnitStride
) {
2768 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
2772 // Avoid adding the "Stride == 1" predicate when we know that
2773 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2774 // or zero iteration loop, as Trip-Count <= Stride == 1.
2776 // TODO: We are currently not making a very informed decision on when it is
2777 // beneficial to apply stride versioning. It might make more sense that the
2778 // users of this analysis (such as the vectorizer) will trigger it, based on
2779 // their specific cost considerations; For example, in cases where stride
2780 // versioning does not help resolving memory accesses/dependences, the
2781 // vectorizer should evaluate the cost of the runtime test, and the benefit
2782 // of various possible stride specializations, considering the alternatives
2783 // of using gather/scatters (if available).
2785 const SCEV
*BETakenCount
= PSE
->getBackedgeTakenCount();
2787 // Match the types so we can compare the stride and the BETakenCount.
2788 // The Stride can be positive/negative, so we sign extend Stride;
2789 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2790 const DataLayout
&DL
= TheLoop
->getHeader()->getModule()->getDataLayout();
2791 uint64_t StrideTypeSizeBits
= DL
.getTypeSizeInBits(StrideExpr
->getType());
2792 uint64_t BETypeSizeBits
= DL
.getTypeSizeInBits(BETakenCount
->getType());
2793 const SCEV
*CastedStride
= StrideExpr
;
2794 const SCEV
*CastedBECount
= BETakenCount
;
2795 ScalarEvolution
*SE
= PSE
->getSE();
2796 if (BETypeSizeBits
>= StrideTypeSizeBits
)
2797 CastedStride
= SE
->getNoopOrSignExtend(StrideExpr
, BETakenCount
->getType());
2799 CastedBECount
= SE
->getZeroExtendExpr(BETakenCount
, StrideExpr
->getType());
2800 const SCEV
*StrideMinusBETaken
= SE
->getMinusSCEV(CastedStride
, CastedBECount
);
2801 // Since TripCount == BackEdgeTakenCount + 1, checking:
2802 // "Stride >= TripCount" is equivalent to checking:
2803 // Stride - BETakenCount > 0
2804 if (SE
->isKnownPositive(StrideMinusBETaken
)) {
2806 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2807 "Stride==1 predicate will imply that the loop executes "
2811 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2813 // Strip back off the integer cast, and check that our result is a
2814 // SCEVUnknown as we expect.
2815 const SCEV
*StrideBase
= StrideExpr
;
2816 if (const auto *C
= dyn_cast
<SCEVIntegralCastExpr
>(StrideBase
))
2817 StrideBase
= C
->getOperand();
2818 SymbolicStrides
[Ptr
] = cast
<SCEVUnknown
>(StrideBase
);
2821 LoopAccessInfo::LoopAccessInfo(Loop
*L
, ScalarEvolution
*SE
,
2822 const TargetLibraryInfo
*TLI
, AAResults
*AA
,
2823 DominatorTree
*DT
, LoopInfo
*LI
)
2824 : PSE(std::make_unique
<PredicatedScalarEvolution
>(*SE
, *L
)),
2825 PtrRtChecking(nullptr),
2826 DepChecker(std::make_unique
<MemoryDepChecker
>(*PSE
, L
)), TheLoop(L
) {
2827 PtrRtChecking
= std::make_unique
<RuntimePointerChecking
>(*DepChecker
, SE
);
2828 if (canAnalyzeLoop()) {
2829 analyzeLoop(AA
, LI
, TLI
, DT
);
2833 void LoopAccessInfo::print(raw_ostream
&OS
, unsigned Depth
) const {
2835 OS
.indent(Depth
) << "Memory dependences are safe";
2836 const MemoryDepChecker
&DC
= getDepChecker();
2837 if (!DC
.isSafeForAnyVectorWidth())
2838 OS
<< " with a maximum safe vector width of "
2839 << DC
.getMaxSafeVectorWidthInBits() << " bits";
2840 if (PtrRtChecking
->Need
)
2841 OS
<< " with run-time checks";
2845 if (HasConvergentOp
)
2846 OS
.indent(Depth
) << "Has convergent operation in loop\n";
2849 OS
.indent(Depth
) << "Report: " << Report
->getMsg() << "\n";
2851 if (auto *Dependences
= DepChecker
->getDependences()) {
2852 OS
.indent(Depth
) << "Dependences:\n";
2853 for (const auto &Dep
: *Dependences
) {
2854 Dep
.print(OS
, Depth
+ 2, DepChecker
->getMemoryInstructions());
2858 OS
.indent(Depth
) << "Too many dependences, not recorded\n";
2860 // List the pair of accesses need run-time checks to prove independence.
2861 PtrRtChecking
->print(OS
, Depth
);
2864 OS
.indent(Depth
) << "Non vectorizable stores to invariant address were "
2865 << (HasDependenceInvolvingLoopInvariantAddress
? "" : "not ")
2866 << "found in loop.\n";
2868 OS
.indent(Depth
) << "SCEV assumptions:\n";
2869 PSE
->getPredicate().print(OS
, Depth
);
2873 OS
.indent(Depth
) << "Expressions re-written:\n";
2874 PSE
->print(OS
, Depth
);
2877 const LoopAccessInfo
&LoopAccessInfoManager::getInfo(Loop
&L
) {
2878 auto I
= LoopAccessInfoMap
.insert({&L
, nullptr});
2882 std::make_unique
<LoopAccessInfo
>(&L
, &SE
, TLI
, &AA
, &DT
, &LI
);
2884 return *I
.first
->second
;
2887 bool LoopAccessInfoManager::invalidate(
2888 Function
&F
, const PreservedAnalyses
&PA
,
2889 FunctionAnalysisManager::Invalidator
&Inv
) {
2890 // Check whether our analysis is preserved.
2891 auto PAC
= PA
.getChecker
<LoopAccessAnalysis
>();
2892 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
2893 // If not, give up now.
2896 // Check whether the analyses we depend on became invalid for any reason.
2897 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
2899 return Inv
.invalidate
<AAManager
>(F
, PA
) ||
2900 Inv
.invalidate
<ScalarEvolutionAnalysis
>(F
, PA
) ||
2901 Inv
.invalidate
<LoopAnalysis
>(F
, PA
) ||
2902 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
);
2905 LoopAccessInfoManager
LoopAccessAnalysis::run(Function
&F
,
2906 FunctionAnalysisManager
&FAM
) {
2907 auto &SE
= FAM
.getResult
<ScalarEvolutionAnalysis
>(F
);
2908 auto &AA
= FAM
.getResult
<AAManager
>(F
);
2909 auto &DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
2910 auto &LI
= FAM
.getResult
<LoopAnalysis
>(F
);
2911 auto &TLI
= FAM
.getResult
<TargetLibraryAnalysis
>(F
);
2912 return LoopAccessInfoManager(SE
, AA
, DT
, LI
, &TLI
);
2915 AnalysisKey
LoopAccessAnalysis::Key
;