[clang][modules] Don't prevent translation of FW_Private includes when explicitly...
[llvm-project.git] / llvm / test / CodeGen / AArch64 / bitfield-insert.ll
blob30b5e86c1e6dc86533ab1dd596335cd4534b9b98
1 ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
2 ; RUN: llc -mtriple=aarch64-none-linux-gnu < %s | FileCheck %s
4 ; First, a simple example from Clang. The registers could plausibly be
5 ; different, but probably won't be.
7 %struct.foo = type { i8, [2 x i8], i8 }
9 define [1 x i64] @from_clang([1 x i64] %f.coerce, i32 %n) nounwind readnone {
10 ; CHECK-LABEL: from_clang:
11 ; CHECK:       // %bb.0: // %entry
12 ; CHECK-NEXT:    mov w8, #135 // =0x87
13 ; CHECK-NEXT:    and x9, x0, #0xffffff00
14 ; CHECK-NEXT:    and w8, w0, w8
15 ; CHECK-NEXT:    bfi w8, w1, #3, #4
16 ; CHECK-NEXT:    orr x0, x8, x9
17 ; CHECK-NEXT:    ret
18 entry:
19   %f.coerce.fca.0.extract = extractvalue [1 x i64] %f.coerce, 0
20   %tmp.sroa.0.0.extract.trunc = trunc i64 %f.coerce.fca.0.extract to i32
21   %bf.value = shl i32 %n, 3
22   %0 = and i32 %bf.value, 120
23   %f.sroa.0.0.insert.ext.masked = and i32 %tmp.sroa.0.0.extract.trunc, 135
24   %1 = or i32 %f.sroa.0.0.insert.ext.masked, %0
25   %f.sroa.0.0.extract.trunc = zext i32 %1 to i64
26   %tmp1.sroa.1.1.insert.insert = and i64 %f.coerce.fca.0.extract, 4294967040
27   %tmp1.sroa.0.0.insert.insert = or i64 %f.sroa.0.0.extract.trunc, %tmp1.sroa.1.1.insert.insert
28   %.fca.0.insert = insertvalue [1 x i64] undef, i64 %tmp1.sroa.0.0.insert.insert, 0
29   ret [1 x i64] %.fca.0.insert
32 define void @test_whole32(ptr %existing, ptr %new) {
33 ; CHECK-LABEL: test_whole32:
34 ; CHECK:       // %bb.0:
35 ; CHECK-NEXT:    ldr w8, [x0]
36 ; CHECK-NEXT:    ldr w9, [x1]
37 ; CHECK-NEXT:    bfi w8, w9, #26, #5
38 ; CHECK-NEXT:    str w8, [x0]
39 ; CHECK-NEXT:    ret
40   %oldval = load volatile i32, ptr %existing
41   %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff
43   %newval = load volatile i32, ptr %new
44   %newval_shifted = shl i32 %newval, 26
45   %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000
47   %combined = or i32 %oldval_keep, %newval_masked
48   store volatile i32 %combined, ptr %existing
50   ret void
53 define void @test_whole64(ptr %existing, ptr %new) {
54 ; CHECK-LABEL: test_whole64:
55 ; CHECK:       // %bb.0:
56 ; CHECK-NEXT:    ldr x8, [x0]
57 ; CHECK-NEXT:    ldr x9, [x1]
58 ; CHECK-NEXT:    bfi x8, x9, #26, #14
59 ; CHECK-NEXT:    str x8, [x0]
60 ; CHECK-NEXT:    ret
61   %oldval = load volatile i64, ptr %existing
62   %oldval_keep = and i64 %oldval, 18446742974265032703 ; = 0xffffff0003ffffffL
64   %newval = load volatile i64, ptr %new
65   %newval_shifted = shl i64 %newval, 26
66   %newval_masked = and i64 %newval_shifted, 1099444518912 ; = 0xfffc000000
68   %combined = or i64 %oldval_keep, %newval_masked
69   store volatile i64 %combined, ptr %existing
71   ret void
74 define void @test_whole32_from64(ptr %existing, ptr %new) {
75 ; CHECK-LABEL: test_whole32_from64:
76 ; CHECK:       // %bb.0:
77 ; CHECK-NEXT:    ldr x8, [x0]
78 ; CHECK-NEXT:    ldr x9, [x1]
79 ; CHECK-NEXT:    and x8, x8, #0xffff0000
80 ; CHECK-NEXT:    bfxil x8, x9, #0, #16
81 ; CHECK-NEXT:    str x8, [x0]
82 ; CHECK-NEXT:    ret
83   %oldval = load volatile i64, ptr %existing
84   %oldval_keep = and i64 %oldval, 4294901760 ; = 0xffff0000
86   %newval = load volatile i64, ptr %new
87   %newval_masked = and i64 %newval, 65535 ; = 0xffff
89   %combined = or i64 %oldval_keep, %newval_masked
90   store volatile i64 %combined, ptr %existing
92   ret void
95 define void @test_32bit_masked(ptr %existing, ptr %new) {
96 ; CHECK-LABEL: test_32bit_masked:
97 ; CHECK:       // %bb.0:
98 ; CHECK-NEXT:    ldr w9, [x0]
99 ; CHECK-NEXT:    mov w8, #135 // =0x87
100 ; CHECK-NEXT:    ldr w10, [x1]
101 ; CHECK-NEXT:    and w8, w9, w8
102 ; CHECK-NEXT:    bfi w8, w10, #3, #4
103 ; CHECK-NEXT:    str w8, [x0]
104 ; CHECK-NEXT:    ret
105   %oldval = load volatile i32, ptr %existing
106   %oldval_keep = and i32 %oldval, 135 ; = 0x87
108   %newval = load volatile i32, ptr %new
109   %newval_shifted = shl i32 %newval, 3
110   %newval_masked = and i32 %newval_shifted, 120 ; = 0x78
112   %combined = or i32 %oldval_keep, %newval_masked
113   store volatile i32 %combined, ptr %existing
115   ret void
118 define void @test_64bit_masked(ptr %existing, ptr %new) {
119 ; CHECK-LABEL: test_64bit_masked:
120 ; CHECK:       // %bb.0:
121 ; CHECK-NEXT:    ldr x8, [x0]
122 ; CHECK-NEXT:    ldr x9, [x1]
123 ; CHECK-NEXT:    and x8, x8, #0xff00000000
124 ; CHECK-NEXT:    bfi x8, x9, #40, #8
125 ; CHECK-NEXT:    str x8, [x0]
126 ; CHECK-NEXT:    ret
127   %oldval = load volatile i64, ptr %existing
128   %oldval_keep = and i64 %oldval, 1095216660480 ; = 0xff_0000_0000
130   %newval = load volatile i64, ptr %new
131   %newval_shifted = shl i64 %newval, 40
132   %newval_masked = and i64 %newval_shifted, 280375465082880 ; = 0xff00_0000_0000
134   %combined = or i64 %newval_masked, %oldval_keep
135   store volatile i64 %combined, ptr %existing
137   ret void
140 ; Mask is too complicated for literal ANDwwi, make sure other avenues are tried.
141 define void @test_32bit_complexmask(ptr %existing, ptr %new) {
142 ; CHECK-LABEL: test_32bit_complexmask:
143 ; CHECK:       // %bb.0:
144 ; CHECK-NEXT:    ldr w9, [x0]
145 ; CHECK-NEXT:    mov w8, #647 // =0x287
146 ; CHECK-NEXT:    ldr w10, [x1]
147 ; CHECK-NEXT:    and w8, w9, w8
148 ; CHECK-NEXT:    bfi w8, w10, #3, #4
149 ; CHECK-NEXT:    str w8, [x0]
150 ; CHECK-NEXT:    ret
151   %oldval = load volatile i32, ptr %existing
152   %oldval_keep = and i32 %oldval, 647 ; = 0x287
154   %newval = load volatile i32, ptr %new
155   %newval_shifted = shl i32 %newval, 3
156   %newval_masked = and i32 %newval_shifted, 120 ; = 0x278
158   %combined = or i32 %oldval_keep, %newval_masked
159   store volatile i32 %combined, ptr %existing
161   ret void
164 ; Neither mask is a contiguous set of 1s. BFI can't be used
165 define void @test_32bit_badmask(ptr %existing, ptr %new) {
166 ; CHECK-LABEL: test_32bit_badmask:
167 ; CHECK:       // %bb.0:
168 ; CHECK-NEXT:    ldr w8, [x0]
169 ; CHECK-NEXT:    ldr w9, [x1]
170 ; CHECK-NEXT:    mov w10, #632 // =0x278
171 ; CHECK-NEXT:    mov w11, #135 // =0x87
172 ; CHECK-NEXT:    and w9, w10, w9, lsl #3
173 ; CHECK-NEXT:    and w8, w8, w11
174 ; CHECK-NEXT:    orr w8, w8, w9
175 ; CHECK-NEXT:    str w8, [x0]
176 ; CHECK-NEXT:    ret
177   %oldval = load volatile i32, ptr %existing
178   %oldval_keep = and i32 %oldval, 135 ; = 0x87
180   %newval = load volatile i32, ptr %new
181   %newval_shifted = shl i32 %newval, 3
182   %newval_masked = and i32 %newval_shifted, 632 ; = 0x278
184   %combined = or i32 %oldval_keep, %newval_masked
185   store volatile i32 %combined, ptr %existing
187   ret void
190 ; Ditto
191 define void @test_64bit_badmask(ptr %existing, ptr %new) {
192 ; CHECK-LABEL: test_64bit_badmask:
193 ; CHECK:       // %bb.0:
194 ; CHECK-NEXT:    ldr x8, [x0]
195 ; CHECK-NEXT:    ldr x9, [x1]
196 ; CHECK-NEXT:    mov w10, #135 // =0x87
197 ; CHECK-NEXT:    mov w11, #664 // =0x298
198 ; CHECK-NEXT:    lsl w9, w9, #3
199 ; CHECK-NEXT:    and x8, x8, x10
200 ; CHECK-NEXT:    and x9, x9, x11
201 ; CHECK-NEXT:    orr x8, x8, x9
202 ; CHECK-NEXT:    str x8, [x0]
203 ; CHECK-NEXT:    ret
204   %oldval = load volatile i64, ptr %existing
205   %oldval_keep = and i64 %oldval, 135 ; = 0x87
207   %newval = load volatile i64, ptr %new
208   %newval_shifted = shl i64 %newval, 3
209   %newval_masked = and i64 %newval_shifted, 664 ; = 0x278
211   %combined = or i64 %oldval_keep, %newval_masked
212   store volatile i64 %combined, ptr %existing
214   ret void
217 ; Bitfield insert where there's a left-over shr needed at the beginning
218 ; (e.g. result of str.bf1 = str.bf2)
219 define void @test_32bit_with_shr(ptr %existing, ptr %new) {
220 ; CHECK-LABEL: test_32bit_with_shr:
221 ; CHECK:       // %bb.0:
222 ; CHECK-NEXT:    ldr w8, [x0]
223 ; CHECK-NEXT:    ldr w9, [x1]
224 ; CHECK-NEXT:    lsr w9, w9, #14
225 ; CHECK-NEXT:    bfi w8, w9, #26, #5
226 ; CHECK-NEXT:    str w8, [x0]
227 ; CHECK-NEXT:    ret
228   %oldval = load volatile i32, ptr %existing
229   %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff
231   %newval = load i32, ptr %new
232   %newval_shifted = shl i32 %newval, 12
233   %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000
235   %combined = or i32 %oldval_keep, %newval_masked
236   store volatile i32 %combined, ptr %existing
238   ret void
241 ; Bitfield insert where the second or operand is a better match to be folded into the BFM
242 define void @test_32bit_opnd1_better(ptr %existing, ptr %new) {
243 ; CHECK-LABEL: test_32bit_opnd1_better:
244 ; CHECK:       // %bb.0:
245 ; CHECK-NEXT:    ldr w8, [x0]
246 ; CHECK-NEXT:    ldr w9, [x1]
247 ; CHECK-NEXT:    and w8, w8, #0xffff
248 ; CHECK-NEXT:    bfi w8, w9, #16, #8
249 ; CHECK-NEXT:    str w8, [x0]
250 ; CHECK-NEXT:    ret
251   %oldval = load volatile i32, ptr %existing
252   %oldval_keep = and i32 %oldval, 65535 ; 0x0000ffff
254   %newval = load i32, ptr %new
255   %newval_shifted = shl i32 %newval, 16
256   %newval_masked = and i32 %newval_shifted, 16711680 ; 0x00ff0000
258   %combined = or i32 %oldval_keep, %newval_masked
259   store volatile i32 %combined, ptr %existing
261   ret void
264 ; Tests when all the bits from one operand are not useful
265 define i32 @test_nouseful_bits(i8 %a, i32 %b) {
266 ; CHECK-LABEL: test_nouseful_bits:
267 ; CHECK:       // %bb.0:
268 ; CHECK-NEXT:    and w8, w0, #0xff
269 ; CHECK-NEXT:    lsl w8, w8, #8
270 ; CHECK-NEXT:    mov w9, w8
271 ; CHECK-NEXT:    bfxil w9, w0, #0, #8
272 ; CHECK-NEXT:    orr w0, w8, w9, lsl #16
273 ; CHECK-NEXT:    ret
274   %conv = zext i8 %a to i32     ;   0  0  0  A
275   %shl = shl i32 %b, 8          ;   B2 B1 B0 0
276   %or = or i32 %conv, %shl      ;   B2 B1 B0 A
277   %shl.1 = shl i32 %or, 8       ;   B1 B0 A 0
278   %or.1 = or i32 %conv, %shl.1  ;   B1 B0 A A
279   %shl.2 = shl i32 %or.1, 8     ;   B0 A A 0
280   %or.2 = or i32 %conv, %shl.2  ;   B0 A A A
281   %shl.3 = shl i32 %or.2, 8     ;   A A A 0
282   %or.3 = or i32 %conv, %shl.3  ;   A A A A
283   %shl.4 = shl i32 %or.3, 8     ;   A A A 0
284   ret i32 %shl.4
287 define void @test_nouseful_strb(ptr %ptr32, ptr %ptr8, i32 %x)  {
288 ; CHECK-LABEL: test_nouseful_strb:
289 ; CHECK:       // %bb.0: // %entry
290 ; CHECK-NEXT:    ldr w8, [x0]
291 ; CHECK-NEXT:    bfxil w8, w2, #16, #3
292 ; CHECK-NEXT:    strb w8, [x1]
293 ; CHECK-NEXT:    ret
294 entry:
295   %0 = load i32, ptr %ptr32, align 8
296   %and = and i32 %0, -8
297   %shr = lshr i32 %x, 16
298   %and1 = and i32 %shr, 7
299   %or = or i32 %and, %and1
300   %trunc = trunc i32 %or to i8
301   store i8 %trunc, ptr %ptr8
302   ret void
305 define void @test_nouseful_strh(ptr %ptr32, ptr %ptr16, i32 %x)  {
306 ; CHECK-LABEL: test_nouseful_strh:
307 ; CHECK:       // %bb.0: // %entry
308 ; CHECK-NEXT:    ldr w8, [x0]
309 ; CHECK-NEXT:    bfxil w8, w2, #16, #4
310 ; CHECK-NEXT:    strh w8, [x1]
311 ; CHECK-NEXT:    ret
312 entry:
313   %0 = load i32, ptr %ptr32, align 8
314   %and = and i32 %0, -16
315   %shr = lshr i32 %x, 16
316   %and1 = and i32 %shr, 15
317   %or = or i32 %and, %and1
318   %trunc = trunc i32 %or to i16
319   store i16 %trunc, ptr %ptr16
320   ret void
323 define void @test_nouseful_sturb(ptr %ptr32, ptr %ptr8, i32 %x)  {
324 ; CHECK-LABEL: test_nouseful_sturb:
325 ; CHECK:       // %bb.0: // %entry
326 ; CHECK-NEXT:    ldr w8, [x0]
327 ; CHECK-NEXT:    bfxil w8, w2, #16, #3
328 ; CHECK-NEXT:    sturb w8, [x1, #-1]
329 ; CHECK-NEXT:    ret
330 entry:
331   %0 = load i32, ptr %ptr32, align 8
332   %and = and i32 %0, -8
333   %shr = lshr i32 %x, 16
334   %and1 = and i32 %shr, 7
335   %or = or i32 %and, %and1
336   %trunc = trunc i32 %or to i8
337   %gep = getelementptr i8, ptr %ptr8, i64 -1
338   store i8 %trunc, ptr %gep
339   ret void
342 define void @test_nouseful_sturh(ptr %ptr32, ptr %ptr16, i32 %x)  {
343 ; CHECK-LABEL: test_nouseful_sturh:
344 ; CHECK:       // %bb.0: // %entry
345 ; CHECK-NEXT:    ldr w8, [x0]
346 ; CHECK-NEXT:    bfxil w8, w2, #16, #4
347 ; CHECK-NEXT:    sturh w8, [x1, #-2]
348 ; CHECK-NEXT:    ret
349 entry:
350   %0 = load i32, ptr %ptr32, align 8
351   %and = and i32 %0, -16
352   %shr = lshr i32 %x, 16
353   %and1 = and i32 %shr, 15
354   %or = or i32 %and, %and1
355   %trunc = trunc i32 %or to i16
356   %gep = getelementptr i16, ptr %ptr16, i64 -1
357   store i16 %trunc, ptr %gep
358   ret void
361 ; The next set of tests generate a BFXIL from 'or (and X, Mask0Imm),
362 ; (and Y, Mask1Imm)' iff Mask0Imm and ~Mask1Imm are equivalent and one of the
363 ; MaskImms is a shifted mask (e.g., 0x000ffff0).
365 define i32 @test_or_and_and1(i32 %a, i32 %b) {
366 ; CHECK-LABEL: test_or_and_and1:
367 ; CHECK:       // %bb.0: // %entry
368 ; CHECK-NEXT:    lsr w8, w1, #4
369 ; CHECK-NEXT:    bfi w0, w8, #4, #12
370 ; CHECK-NEXT:    ret
371 entry:
372   %and = and i32 %a, -65521 ; 0xffff000f
373   %and1 = and i32 %b, 65520 ; 0x0000fff0
374   %or = or i32 %and1, %and
375   ret i32 %or
378 define i32 @test_or_and_and2(i32 %a, i32 %b) {
379 ; CHECK-LABEL: test_or_and_and2:
380 ; CHECK:       // %bb.0: // %entry
381 ; CHECK-NEXT:    lsr w8, w0, #4
382 ; CHECK-NEXT:    mov w0, w1
383 ; CHECK-NEXT:    bfi w0, w8, #4, #12
384 ; CHECK-NEXT:    ret
385 entry:
386   %and = and i32 %a, 65520   ; 0x0000fff0
387   %and1 = and i32 %b, -65521 ; 0xffff000f
388   %or = or i32 %and1, %and
389   ret i32 %or
392 define i64 @test_or_and_and3(i64 %a, i64 %b) {
393 ; CHECK-LABEL: test_or_and_and3:
394 ; CHECK:       // %bb.0: // %entry
395 ; CHECK-NEXT:    lsr x8, x1, #16
396 ; CHECK-NEXT:    bfi x0, x8, #16, #32
397 ; CHECK-NEXT:    ret
398 entry:
399   %and = and i64 %a, -281474976645121 ; 0xffff00000000ffff
400   %and1 = and i64 %b, 281474976645120 ; 0x0000ffffffff0000
401   %or = or i64 %and1, %and
402   ret i64 %or
405 ; Don't convert 'and' with multiple uses.
406 define i32 @test_or_and_and4(i32 %a, i32 %b, ptr %ptr) {
407 ; CHECK-LABEL: test_or_and_and4:
408 ; CHECK:       // %bb.0: // %entry
409 ; CHECK-NEXT:    and w8, w0, #0xffff000f
410 ; CHECK-NEXT:    and w9, w1, #0xfff0
411 ; CHECK-NEXT:    orr w0, w9, w8
412 ; CHECK-NEXT:    str w8, [x2]
413 ; CHECK-NEXT:    ret
414 entry:
415   %and = and i32 %a, -65521
416   store i32 %and, ptr %ptr, align 4
417   %and2 = and i32 %b, 65520
418   %or = or i32 %and2, %and
419   ret i32 %or
422 ; Don't convert 'and' with multiple uses.
423 define i32 @test_or_and_and5(i32 %a, i32 %b, ptr %ptr) {
424 ; CHECK-LABEL: test_or_and_and5:
425 ; CHECK:       // %bb.0: // %entry
426 ; CHECK-NEXT:    and w8, w1, #0xfff0
427 ; CHECK-NEXT:    and w9, w0, #0xffff000f
428 ; CHECK-NEXT:    orr w0, w8, w9
429 ; CHECK-NEXT:    str w8, [x2]
430 ; CHECK-NEXT:    ret
431 entry:
432   %and = and i32 %b, 65520
433   store i32 %and, ptr %ptr, align 4
434   %and1 = and i32 %a, -65521
435   %or = or i32 %and, %and1
436   ret i32 %or
439 define i32 @test1(i32 %a) {
440 ; CHECK-LABEL: test1:
441 ; CHECK:       // %bb.0:
442 ; CHECK-NEXT:    mov w8, #5 // =0x5
443 ; CHECK-NEXT:    bfxil w0, w8, #0, #4
444 ; CHECK-NEXT:    ret
445   %1 = and i32 %a, -16 ; 0xfffffff0
446   %2 = or i32 %1, 5    ; 0x00000005
447   ret i32 %2
450 define i32 @test2(i32 %a) {
451 ; CHECK-LABEL: test2:
452 ; CHECK:       // %bb.0:
453 ; CHECK-NEXT:    mov w8, #10 // =0xa
454 ; CHECK-NEXT:    bfi w0, w8, #22, #4
455 ; CHECK-NEXT:    ret
456   %1 = and i32 %a, -62914561 ; 0xfc3fffff
457   %2 = or i32 %1, 41943040   ; 0x06400000
458   ret i32 %2
461 define i64 @test3(i64 %a) {
462 ; CHECK-LABEL: test3:
463 ; CHECK:       // %bb.0:
464 ; CHECK-NEXT:    mov x8, #5 // =0x5
465 ; CHECK-NEXT:    bfxil x0, x8, #0, #3
466 ; CHECK-NEXT:    ret
467   %1 = and i64 %a, -8 ; 0xfffffffffffffff8
468   %2 = or i64 %1, 5   ; 0x0000000000000005
469   ret i64 %2
472 define i64 @test4(i64 %a) {
473 ; CHECK-LABEL: test4:
474 ; CHECK:       // %bb.0:
475 ; CHECK-NEXT:    mov x8, #9 // =0x9
476 ; CHECK-NEXT:    bfi x0, x8, #1, #7
477 ; CHECK-NEXT:    ret
478   %1 = and i64 %a, -255 ; 0xffffffffffffff01
479   %2 = or i64 %1,  18   ; 0x0000000000000012
480   ret i64 %2
483 ; Don't generate BFI/BFXIL if the immediate can be encoded in the ORR.
484 define i32 @test5(i32 %a) {
485 ; CHECK-LABEL: test5:
486 ; CHECK:       // %bb.0:
487 ; CHECK-NEXT:    and w8, w0, #0xfffffff0
488 ; CHECK-NEXT:    orr w0, w8, #0x6
489 ; CHECK-NEXT:    ret
490   %1 = and i32 %a, 4294967280 ; 0xfffffff0
491   %2 = or i32 %1, 6           ; 0x00000006
492   ret i32 %2
495 ; BFXIL will use the same constant as the ORR, so we don't care how the constant
496 ; is materialized (it's an equal cost either way).
497 define i32 @test6(i32 %a) {
498 ; CHECK-LABEL: test6:
499 ; CHECK:       // %bb.0:
500 ; CHECK-NEXT:    mov w8, #23250 // =0x5ad2
501 ; CHECK-NEXT:    movk w8, #11, lsl #16
502 ; CHECK-NEXT:    bfxil w0, w8, #0, #20
503 ; CHECK-NEXT:    ret
504   %1 = and i32 %a, 4293918720 ; 0xfff00000
505   %2 = or i32 %1, 744146      ; 0x000b5ad2
506   ret i32 %2
509 ; BFIs that require the same number of instruction to materialize the constant
510 ; as the original ORR are okay.
511 define i32 @test7(i32 %a) {
512 ; CHECK-LABEL: test7:
513 ; CHECK:       // %bb.0:
514 ; CHECK-NEXT:    mov w8, #44393 // =0xad69
515 ; CHECK-NEXT:    movk w8, #5, lsl #16
516 ; CHECK-NEXT:    bfi w0, w8, #1, #19
517 ; CHECK-NEXT:    ret
518   %1 = and i32 %a, 4293918721 ; 0xfff00001
519   %2 = or i32 %1, 744146      ; 0x000b5ad2
520   ret i32 %2
523 ; BFIs that require more instructions to materialize the constant as compared
524 ; to the original ORR are not okay.  In this case we would be replacing the
525 ; 'and' with a 'movk', which would decrease ILP while using the same number of
526 ; instructions.
527 define i64 @test8(i64 %a) {
528 ; CHECK-LABEL: test8:
529 ; CHECK:       // %bb.0:
530 ; CHECK-NEXT:    mov x8, #2035482624 // =0x79530000
531 ; CHECK-NEXT:    and x9, x0, #0xff000000000000ff
532 ; CHECK-NEXT:    movk x8, #36694, lsl #32
533 ; CHECK-NEXT:    orr x0, x9, x8
534 ; CHECK-NEXT:    ret
535   %1 = and i64 %a, -72057594037927681 ; 0xff000000000000ff
536   %2 = or i64 %1, 157601565442048     ; 0x00008f5679530000
537   ret i64 %2
540 ; This test exposed an issue with an overly aggressive assert.  The bit of code
541 ; that is expected to catch this case is unable to deal with the trunc, which
542 ; results in a failing check due to a mismatch between the BFI opcode and
543 ; the expected value type of the OR.
544 define i32 @test9(i64 %b, i32 %e) {
545 ; CHECK-LABEL: test9:
546 ; CHECK:       // %bb.0:
547 ; CHECK-NEXT:    lsr x0, x0, #12
548 ; CHECK-NEXT:    lsr w8, w1, #23
549 ; CHECK-NEXT:    bfi w0, w8, #23, #9
550 ; CHECK-NEXT:    // kill: def $w0 killed $w0 killed $x0
551 ; CHECK-NEXT:    ret
552   %c = lshr i64 %b, 12
553   %d = trunc i64 %c to i32
554   %f = and i32 %d, 8388607
555   %g = and i32 %e, -8388608
556   %h = or i32 %g, %f
557   ret i32 %h
560 define <2 x i32> @test_complex_type(ptr %addr, i64 %in, ptr %bf ) {
561 ; CHECK-LABEL: test_complex_type:
562 ; CHECK:       // %bb.0:
563 ; CHECK-NEXT:    ldr d0, [x0], #8
564 ; CHECK-NEXT:    orr x8, x0, x1, lsl #32
565 ; CHECK-NEXT:    str x8, [x2]
566 ; CHECK-NEXT:    ret
567   %vec = load <2 x i32>, ptr %addr
569   %vec.next = getelementptr <2 x i32>, ptr %addr, i32 1
570   %lo = ptrtoint ptr %vec.next to i64
572   %hi = shl i64 %in, 32
573   %both = or i64 %lo, %hi
574   store i64 %both, ptr %bf
576   ret <2 x i32> %vec
579 define i64 @test_truncated_shift(i64 %x, i64 %y) {
580 ; CHECK-LABEL: test_truncated_shift:
581 ; CHECK:       // %bb.0: // %entry
582 ; CHECK-NEXT:    // kill: def $w1 killed $w1 killed $x1 def $x1
583 ; CHECK-NEXT:    bfi x0, x1, #25, #5
584 ; CHECK-NEXT:    ret
585 entry:
586   %and = and i64 %x, -1040187393
587   %shl4 = shl i64 %y, 25
588   %and5 = and i64 %shl4, 1040187392
589   %or = or i64 %and5, %and
590   ret i64 %or
593 define i64 @test_and_extended_shift_with_imm(i64 %0) {
594 ; CHECK-LABEL: test_and_extended_shift_with_imm:
595 ; CHECK:       // %bb.0:
596 ; CHECK-NEXT:    // kill: def $w0 killed $w0 killed $x0 def $x0
597 ; CHECK-NEXT:    ubfiz x0, x0, #7, #8
598 ; CHECK-NEXT:    ret
599   %2 = shl i64 %0, 7
600   %3 = and i64 %2, 32640  ; #0x7f80
601   ret i64 %3
604 ; orr with left-shifted operand is better than bfi, since it improves data
605 ; dependency, and orr has a smaller latency and higher throughput than bfm on
606 ; some AArch64 processors (for the rest, orr is at least as good as bfm)
608 ; ubfx x8, x0, #8, #7
609 ; and x9, x0, #0x7f
610 ; orr x0, x9, x8, lsl #7
611 define i64 @test_orr_not_bfxil_i64(i64 %0) {
612 ; CHECK-LABEL: test_orr_not_bfxil_i64:
613 ; CHECK:       // %bb.0:
614 ; CHECK-NEXT:    ubfx x8, x0, #8, #7
615 ; CHECK-NEXT:    and x9, x0, #0x7f
616 ; CHECK-NEXT:    orr x0, x9, x8, lsl #7
617 ; CHECK-NEXT:    ret
618   %2 = and i64 %0, 127
619   %3 = lshr i64 %0, 1
620   %4 = and i64 %3, 16256  ; 0x3f80
621   %5 = or i64 %4, %2
622   ret i64 %5
625 ; The 32-bit test for `test_orr_not_bfxil_i64`.
626 define i32 @test_orr_not_bfxil_i32(i32 %0) {
627 ; CHECK-LABEL: test_orr_not_bfxil_i32:
628 ; CHECK:       // %bb.0:
629 ; CHECK-NEXT:    ubfx w8, w0, #8, #7
630 ; CHECK-NEXT:    and w9, w0, #0x7f
631 ; CHECK-NEXT:    orr w0, w9, w8, lsl #7
632 ; CHECK-NEXT:    ret
633   %2 = and i32 %0, 127
634   %3 = lshr i32 %0, 1
635   %4 = and i32 %3, 16256  ; 0x3f80
636   %5 = or i32 %4, %2
637   ret i32 %5
640 ; For or operation, one operand is a left shift of another operand.
641 ; So orr with a left-shifted operand is generated (not bfi).
642 define i64 @test_orr_not_bfi_i64(i64 %0) {
643 ; CHECK-LABEL: test_orr_not_bfi_i64:
644 ; CHECK:       // %bb.0:
645 ; CHECK-NEXT:    and x8, x0, #0xff
646 ; CHECK-NEXT:    orr x0, x8, x8, lsl #8
647 ; CHECK-NEXT:    ret
648   %2 = and i64 %0, 255
649   %3 = shl i64 %2, 8
650   %4 = or i64 %2, %3
651   ret i64 %4
654 ; bfi is better than orr, since it would simplify away two instructions
655 ; (%mask and %bit-field-pos-op).
656 define i32 @test_bfi_not_orr_i32(i32 %0, i32 %1) {
657 ; CHECK-LABEL: test_bfi_not_orr_i32:
658 ; CHECK:       // %bb.0:
659 ; CHECK-NEXT:    and w8, w1, #0xff
660 ; CHECK-NEXT:    bfi w8, w0, #8, #8
661 ; CHECK-NEXT:    mov w0, w8
662 ; CHECK-NEXT:    ret
663   %bfi_dst = and i32 %1, 255
664   %mask = and i32 %0, 255
665   %bit-field-pos-op = shl i32 %mask, 8
666   %or_res = or i32 %bit-field-pos-op, %bfi_dst
667   ret i32 %or_res
670 ; orr is generated (not bfi), since both simplify away one instruction (%3)
671 ; while orr has shorter latency and higher throughput.
672 define i32 @test_orr_not_bfi_i32(i32 %0) {
673 ; CHECK-LABEL: test_orr_not_bfi_i32:
674 ; CHECK:       // %bb.0:
675 ; CHECK-NEXT:    and w8, w0, #0xff
676 ; CHECK-NEXT:    orr w0, w8, w8, lsl #8
677 ; CHECK-NEXT:    ret
678   %2 = and i32 %0, 255
679   %3 = shl i32 %2, 8
680   %4 = or i32 %2, %3
681   ret i32 %4
684 ; bfxil is better than orr, since it would simplify away two instructions
685 ; (%mask and %bit-field-extract-op).
686 define i64 @test_bfxil_not_orr_i64(i64 %0, i64 %1) {
687 ; CHECK-LABEL: test_bfxil_not_orr_i64:
688 ; CHECK:       // %bb.0:
689 ; CHECK-NEXT:    and x0, x0, #0xff000
690 ; CHECK-NEXT:    bfxil x0, x1, #12, #8
691 ; CHECK-NEXT:    ret
692   %shifted-mask = and i64 %1, 1044480
693   %bfi-dst = and i64 %0, 1044480
694   %bit-field-extract-op = lshr i64 %shifted-mask, 12
695   %or_res = or i64 %bit-field-extract-op, %bfi-dst
696   ret i64 %or_res
699 ; orr is generated (not bfxil), since one operand is the right shift of another
700 ; operand.
701 define i64 @orr_not_bfxil_test2_i64(i64 %0) {
702 ; CHECK-LABEL: orr_not_bfxil_test2_i64:
703 ; CHECK:       // %bb.0:
704 ; CHECK-NEXT:    and x8, x0, #0xff000
705 ; CHECK-NEXT:    orr x0, x8, x8, lsr #12
706 ; CHECK-NEXT:    ret
707   %2 = and i64 %0, 1044480 ; 0xff000
708   %3 = lshr i64 %2, 12
709   %4 = or i64 %2, %3
710   ret i64 %4
713 ; bfxil simplifies away two instructions (that computes %shifted-mask and
714 ; %bit-field-extract-op respectively), so it's better than orr (which
715 ; simplifies away at most one shift).
716 define i32 @test_bfxil_not_orr_i32(i32 %0, i32 %1) {
717 ; CHECK-LABEL: test_bfxil_not_orr_i32:
718 ; CHECK:       // %bb.0:
719 ; CHECK-NEXT:    and w0, w0, #0xff000
720 ; CHECK-NEXT:    bfxil w0, w1, #12, #8
721 ; CHECK-NEXT:    ret
722   %shifted-mask = and i32 %1, 1044480
723   %bfxil-dst = and i32 %0, 1044480
724   %bit-field-extract-op = lshr i32 %shifted-mask, 12
725   %or_res = or i32 %bit-field-extract-op, %bfxil-dst
726   ret i32 %or_res
729 ; one operand is the shift of another operand, so orr is generated (not bfxil).
730 define i32 @orr_not_bfxil_test2_i32(i32 %0) {
731 ; CHECK-LABEL: orr_not_bfxil_test2_i32:
732 ; CHECK:       // %bb.0:
733 ; CHECK-NEXT:    and w8, w0, #0xff000
734 ; CHECK-NEXT:    orr w0, w8, w8, lsr #12
735 ; CHECK-NEXT:    ret
736   %2 = and i32 %0, 1044480  ; 0xff000
737   %3 = lshr i32 %2, 12
738   %4 = or i32 %2, %3
739   ret i32 %4